xref: /titanic_52/usr/src/uts/common/io/scsi/targets/sd.c (revision 373d25a2f31a841db3ccd7bd0a8102efeb2df54f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SCSI disk target driver.
29  */
30 #include <sys/scsi/scsi.h>
31 #include <sys/dkbad.h>
32 #include <sys/dklabel.h>
33 #include <sys/dkio.h>
34 #include <sys/fdio.h>
35 #include <sys/cdio.h>
36 #include <sys/mhd.h>
37 #include <sys/vtoc.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/kstat.h>
40 #include <sys/vtrace.h>
41 #include <sys/note.h>
42 #include <sys/thread.h>
43 #include <sys/proc.h>
44 #include <sys/efi_partition.h>
45 #include <sys/var.h>
46 #include <sys/aio_req.h>
47 
48 #ifdef __lock_lint
49 #define	_LP64
50 #define	__amd64
51 #endif
52 
53 #if (defined(__fibre))
54 /* Note: is there a leadville version of the following? */
55 #include <sys/fc4/fcal_linkapp.h>
56 #endif
57 #include <sys/taskq.h>
58 #include <sys/uuid.h>
59 #include <sys/byteorder.h>
60 #include <sys/sdt.h>
61 
62 #include "sd_xbuf.h"
63 
64 #include <sys/scsi/targets/sddef.h>
65 #include <sys/cmlb.h>
66 #include <sys/sysevent/eventdefs.h>
67 #include <sys/sysevent/dev.h>
68 
69 #include <sys/fm/protocol.h>
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #define	sd_ssc_init			ssd_ssc_init
212 #define	sd_ssc_send			ssd_ssc_send
213 #define	sd_ssc_fini			ssd_ssc_fini
214 #define	sd_ssc_assessment		ssd_ssc_assessment
215 #define	sd_ssc_post			ssd_ssc_post
216 #define	sd_ssc_print			ssd_ssc_print
217 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
218 #define	sd_ssc_set_info			ssd_ssc_set_info
219 #define	sd_ssc_extract_info		ssd_ssc_extract_info
220 
221 #endif
222 
223 #ifdef	SDDEBUG
224 int	sd_force_pm_supported		= 0;
225 #endif	/* SDDEBUG */
226 
227 void *sd_state				= NULL;
228 int sd_io_time				= SD_IO_TIME;
229 int sd_failfast_enable			= 1;
230 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
231 int sd_report_pfa			= 1;
232 int sd_max_throttle			= SD_MAX_THROTTLE;
233 int sd_min_throttle			= SD_MIN_THROTTLE;
234 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
235 int sd_qfull_throttle_enable		= TRUE;
236 
237 int sd_retry_on_reservation_conflict	= 1;
238 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
240 
241 static int sd_dtype_optical_bind	= -1;
242 
243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
244 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
245 
246 /*
247  * Global data for debug logging. To enable debug printing, sd_component_mask
248  * and sd_level_mask should be set to the desired bit patterns as outlined in
249  * sddef.h.
250  */
251 uint_t	sd_component_mask		= 0x0;
252 uint_t	sd_level_mask			= 0x0;
253 struct	sd_lun *sd_debug_un		= NULL;
254 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
255 
256 /* Note: these may go away in the future... */
257 static uint32_t	sd_xbuf_active_limit	= 512;
258 static uint32_t sd_xbuf_reserve_limit	= 16;
259 
260 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
261 
262 /*
263  * Timer value used to reset the throttle after it has been reduced
264  * (typically in response to TRAN_BUSY or STATUS_QFULL)
265  */
266 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
267 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
268 
269 /*
270  * Interval value associated with the media change scsi watch.
271  */
272 static int sd_check_media_time		= 3000000;
273 
274 /*
275  * Wait value used for in progress operations during a DDI_SUSPEND
276  */
277 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
278 
279 /*
280  * sd_label_mutex protects a static buffer used in the disk label
281  * component of the driver
282  */
283 static kmutex_t sd_label_mutex;
284 
285 /*
286  * sd_detach_mutex protects un_layer_count, un_detach_count, and
287  * un_opens_in_progress in the sd_lun structure.
288  */
289 static kmutex_t sd_detach_mutex;
290 
291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
292 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
293 
294 /*
295  * Global buffer and mutex for debug logging
296  */
297 static char	sd_log_buf[1024];
298 static kmutex_t	sd_log_mutex;
299 
300 /*
301  * Structs and globals for recording attached lun information.
302  * This maintains a chain. Each node in the chain represents a SCSI controller.
303  * The structure records the number of luns attached to each target connected
304  * with the controller.
305  * For parallel scsi device only.
306  */
307 struct sd_scsi_hba_tgt_lun {
308 	struct sd_scsi_hba_tgt_lun	*next;
309 	dev_info_t			*pdip;
310 	int				nlun[NTARGETS_WIDE];
311 };
312 
313 /*
314  * Flag to indicate the lun is attached or detached
315  */
316 #define	SD_SCSI_LUN_ATTACH	0
317 #define	SD_SCSI_LUN_DETACH	1
318 
319 static kmutex_t	sd_scsi_target_lun_mutex;
320 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
321 
322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
323     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
324 
325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
326     sd_scsi_target_lun_head))
327 
328 /*
329  * "Smart" Probe Caching structs, globals, #defines, etc.
330  * For parallel scsi and non-self-identify device only.
331  */
332 
333 /*
334  * The following resources and routines are implemented to support
335  * "smart" probing, which caches the scsi_probe() results in an array,
336  * in order to help avoid long probe times.
337  */
338 struct sd_scsi_probe_cache {
339 	struct	sd_scsi_probe_cache	*next;
340 	dev_info_t	*pdip;
341 	int		cache[NTARGETS_WIDE];
342 };
343 
344 static kmutex_t	sd_scsi_probe_cache_mutex;
345 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
346 
347 /*
348  * Really we only need protection on the head of the linked list, but
349  * better safe than sorry.
350  */
351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
352     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
353 
354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
355     sd_scsi_probe_cache_head))
356 
357 
358 /*
359  * Vendor specific data name property declarations
360  */
361 
362 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
363 
364 static sd_tunables seagate_properties = {
365 	SEAGATE_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 
377 static sd_tunables fujitsu_properties = {
378 	FUJITSU_THROTTLE_VALUE,
379 	0,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0
387 };
388 
389 static sd_tunables ibm_properties = {
390 	IBM_THROTTLE_VALUE,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0
399 };
400 
401 static sd_tunables purple_properties = {
402 	PURPLE_THROTTLE_VALUE,
403 	0,
404 	0,
405 	PURPLE_BUSY_RETRIES,
406 	PURPLE_RESET_RETRY_COUNT,
407 	PURPLE_RESERVE_RELEASE_TIME,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables sve_properties = {
414 	SVE_THROTTLE_VALUE,
415 	0,
416 	0,
417 	SVE_BUSY_RETRIES,
418 	SVE_RESET_RETRY_COUNT,
419 	SVE_RESERVE_RELEASE_TIME,
420 	SVE_MIN_THROTTLE_VALUE,
421 	SVE_DISKSORT_DISABLED_FLAG,
422 	0
423 };
424 
425 static sd_tunables maserati_properties = {
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	MASERATI_DISKSORT_DISABLED_FLAG,
434 	MASERATI_LUN_RESET_ENABLED_FLAG
435 };
436 
437 static sd_tunables pirus_properties = {
438 	PIRUS_THROTTLE_VALUE,
439 	0,
440 	PIRUS_NRR_COUNT,
441 	PIRUS_BUSY_RETRIES,
442 	PIRUS_RESET_RETRY_COUNT,
443 	0,
444 	PIRUS_MIN_THROTTLE_VALUE,
445 	PIRUS_DISKSORT_DISABLED_FLAG,
446 	PIRUS_LUN_RESET_ENABLED_FLAG
447 };
448 
449 #endif
450 
451 #if (defined(__sparc) && !defined(__fibre)) || \
452 	(defined(__i386) || defined(__amd64))
453 
454 
455 static sd_tunables elite_properties = {
456 	ELITE_THROTTLE_VALUE,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0
465 };
466 
467 static sd_tunables st31200n_properties = {
468 	ST31200N_THROTTLE_VALUE,
469 	0,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0,
476 	0
477 };
478 
479 #endif /* Fibre or not */
480 
481 static sd_tunables lsi_properties_scsi = {
482 	LSI_THROTTLE_VALUE,
483 	0,
484 	LSI_NOTREADY_RETRIES,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0
491 };
492 
493 static sd_tunables symbios_properties = {
494 	SYMBIOS_THROTTLE_VALUE,
495 	0,
496 	SYMBIOS_NOTREADY_RETRIES,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0
503 };
504 
505 static sd_tunables lsi_properties = {
506 	0,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables lsi_oem_properties = {
518 	0,
519 	0,
520 	LSI_OEM_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0,
527 	1
528 };
529 
530 
531 
532 #if (defined(SD_PROP_TST))
533 
534 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
535 #define	SD_TST_THROTTLE_VAL	16
536 #define	SD_TST_NOTREADY_VAL	12
537 #define	SD_TST_BUSY_VAL		60
538 #define	SD_TST_RST_RETRY_VAL	36
539 #define	SD_TST_RSV_REL_TIME	60
540 
541 static sd_tunables tst_properties = {
542 	SD_TST_THROTTLE_VAL,
543 	SD_TST_CTYPE_VAL,
544 	SD_TST_NOTREADY_VAL,
545 	SD_TST_BUSY_VAL,
546 	SD_TST_RST_RETRY_VAL,
547 	SD_TST_RSV_REL_TIME,
548 	0,
549 	0,
550 	0
551 };
552 #endif
553 
554 /* This is similar to the ANSI toupper implementation */
555 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
556 
557 /*
558  * Static Driver Configuration Table
559  *
560  * This is the table of disks which need throttle adjustment (or, perhaps
561  * something else as defined by the flags at a future time.)  device_id
562  * is a string consisting of concatenated vid (vendor), pid (product/model)
563  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
564  * the parts of the string are as defined by the sizes in the scsi_inquiry
565  * structure.  Device type is searched as far as the device_id string is
566  * defined.  Flags defines which values are to be set in the driver from the
567  * properties list.
568  *
569  * Entries below which begin and end with a "*" are a special case.
570  * These do not have a specific vendor, and the string which follows
571  * can appear anywhere in the 16 byte PID portion of the inquiry data.
572  *
573  * Entries below which begin and end with a " " (blank) are a special
574  * case. The comparison function will treat multiple consecutive blanks
575  * as equivalent to a single blank. For example, this causes a
576  * sd_disk_table entry of " NEC CDROM " to match a device's id string
577  * of  "NEC       CDROM".
578  *
579  * Note: The MD21 controller type has been obsoleted.
580  *	 ST318202F is a Legacy device
581  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
582  *	 made with an FC connection. The entries here are a legacy.
583  */
584 static sd_disk_config_t sd_disk_table[] = {
585 #if defined(__fibre) || defined(__i386) || defined(__amd64)
586 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
592 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
593 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
594 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
595 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
596 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
597 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
598 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
599 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
600 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
601 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
602 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
603 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
604 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
605 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
606 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
607 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
608 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
609 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
610 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
611 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
612 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
613 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
627 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
632 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
636 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
637 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
638 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
639 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
640 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
641 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
642 			SD_CONF_BSET_BSY_RETRY_COUNT|
643 			SD_CONF_BSET_RST_RETRIES|
644 			SD_CONF_BSET_RSV_REL_TIME,
645 		&purple_properties },
646 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
647 		SD_CONF_BSET_BSY_RETRY_COUNT|
648 		SD_CONF_BSET_RST_RETRIES|
649 		SD_CONF_BSET_RSV_REL_TIME|
650 		SD_CONF_BSET_MIN_THROTTLE|
651 		SD_CONF_BSET_DISKSORT_DISABLED,
652 		&sve_properties },
653 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
654 			SD_CONF_BSET_BSY_RETRY_COUNT|
655 			SD_CONF_BSET_RST_RETRIES|
656 			SD_CONF_BSET_RSV_REL_TIME,
657 		&purple_properties },
658 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
659 		SD_CONF_BSET_LUN_RESET_ENABLED,
660 		&maserati_properties },
661 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
662 		SD_CONF_BSET_NRR_COUNT|
663 		SD_CONF_BSET_BSY_RETRY_COUNT|
664 		SD_CONF_BSET_RST_RETRIES|
665 		SD_CONF_BSET_MIN_THROTTLE|
666 		SD_CONF_BSET_DISKSORT_DISABLED|
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&pirus_properties },
669 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
710 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
711 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
712 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
713 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
714 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
715 #endif /* fibre or NON-sparc platforms */
716 #if ((defined(__sparc) && !defined(__fibre)) ||\
717 	(defined(__i386) || defined(__amd64)))
718 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
719 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
720 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
721 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
722 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
723 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
724 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
725 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
726 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
727 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
728 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
729 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
731 	    &symbios_properties },
732 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
733 	    &lsi_properties_scsi },
734 #if defined(__i386) || defined(__amd64)
735 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
736 				    | SD_CONF_BSET_READSUB_BCD
737 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
738 				    | SD_CONF_BSET_NO_READ_HEADER
739 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
740 
741 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
742 				    | SD_CONF_BSET_READSUB_BCD
743 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
744 				    | SD_CONF_BSET_NO_READ_HEADER
745 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
746 #endif /* __i386 || __amd64 */
747 #endif /* sparc NON-fibre or NON-sparc platforms */
748 
749 #if (defined(SD_PROP_TST))
750 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
751 				| SD_CONF_BSET_CTYPE
752 				| SD_CONF_BSET_NRR_COUNT
753 				| SD_CONF_BSET_FAB_DEVID
754 				| SD_CONF_BSET_NOCACHE
755 				| SD_CONF_BSET_BSY_RETRY_COUNT
756 				| SD_CONF_BSET_PLAYMSF_BCD
757 				| SD_CONF_BSET_READSUB_BCD
758 				| SD_CONF_BSET_READ_TOC_TRK_BCD
759 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
760 				| SD_CONF_BSET_NO_READ_HEADER
761 				| SD_CONF_BSET_READ_CD_XD4
762 				| SD_CONF_BSET_RST_RETRIES
763 				| SD_CONF_BSET_RSV_REL_TIME
764 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
765 #endif
766 };
767 
768 static const int sd_disk_table_size =
769 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
770 
771 
772 
773 #define	SD_INTERCONNECT_PARALLEL	0
774 #define	SD_INTERCONNECT_FABRIC		1
775 #define	SD_INTERCONNECT_FIBRE		2
776 #define	SD_INTERCONNECT_SSA		3
777 #define	SD_INTERCONNECT_SATA		4
778 #define	SD_IS_PARALLEL_SCSI(un)		\
779 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
780 #define	SD_IS_SERIAL(un)		\
781 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
782 
783 /*
784  * Definitions used by device id registration routines
785  */
786 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
787 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
788 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
789 
790 static kmutex_t sd_sense_mutex = {0};
791 
792 /*
793  * Macros for updates of the driver state
794  */
795 #define	New_state(un, s)        \
796 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
797 #define	Restore_state(un)	\
798 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
799 
800 static struct sd_cdbinfo sd_cdbtab[] = {
801 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
802 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
803 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
804 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
805 };
806 
807 /*
808  * Specifies the number of seconds that must have elapsed since the last
809  * cmd. has completed for a device to be declared idle to the PM framework.
810  */
811 static int sd_pm_idletime = 1;
812 
813 /*
814  * Internal function prototypes
815  */
816 
817 #if (defined(__fibre))
818 /*
819  * These #defines are to avoid namespace collisions that occur because this
820  * code is currently used to compile two separate driver modules: sd and ssd.
821  * All function names need to be treated this way (even if declared static)
822  * in order to allow the debugger to resolve the names properly.
823  * It is anticipated that in the near future the ssd module will be obsoleted,
824  * at which time this ugliness should go away.
825  */
826 #define	sd_log_trace			ssd_log_trace
827 #define	sd_log_info			ssd_log_info
828 #define	sd_log_err			ssd_log_err
829 #define	sdprobe				ssdprobe
830 #define	sdinfo				ssdinfo
831 #define	sd_prop_op			ssd_prop_op
832 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
833 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
834 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
835 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
836 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
837 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
838 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
839 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
840 #define	sd_spin_up_unit			ssd_spin_up_unit
841 #define	sd_enable_descr_sense		ssd_enable_descr_sense
842 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
843 #define	sd_set_mmc_caps			ssd_set_mmc_caps
844 #define	sd_read_unit_properties		ssd_read_unit_properties
845 #define	sd_process_sdconf_file		ssd_process_sdconf_file
846 #define	sd_process_sdconf_table		ssd_process_sdconf_table
847 #define	sd_sdconf_id_match		ssd_sdconf_id_match
848 #define	sd_blank_cmp			ssd_blank_cmp
849 #define	sd_chk_vers1_data		ssd_chk_vers1_data
850 #define	sd_set_vers1_properties		ssd_set_vers1_properties
851 
852 #define	sd_get_physical_geometry	ssd_get_physical_geometry
853 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
854 #define	sd_update_block_info		ssd_update_block_info
855 #define	sd_register_devid		ssd_register_devid
856 #define	sd_get_devid			ssd_get_devid
857 #define	sd_create_devid			ssd_create_devid
858 #define	sd_write_deviceid		ssd_write_deviceid
859 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
860 #define	sd_setup_pm			ssd_setup_pm
861 #define	sd_create_pm_components		ssd_create_pm_components
862 #define	sd_ddi_suspend			ssd_ddi_suspend
863 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
864 #define	sd_ddi_resume			ssd_ddi_resume
865 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
866 #define	sdpower				ssdpower
867 #define	sdattach			ssdattach
868 #define	sddetach			ssddetach
869 #define	sd_unit_attach			ssd_unit_attach
870 #define	sd_unit_detach			ssd_unit_detach
871 #define	sd_set_unit_attributes		ssd_set_unit_attributes
872 #define	sd_create_errstats		ssd_create_errstats
873 #define	sd_set_errstats			ssd_set_errstats
874 #define	sd_set_pstats			ssd_set_pstats
875 #define	sddump				ssddump
876 #define	sd_scsi_poll			ssd_scsi_poll
877 #define	sd_send_polled_RQS		ssd_send_polled_RQS
878 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
879 #define	sd_init_event_callbacks		ssd_init_event_callbacks
880 #define	sd_event_callback		ssd_event_callback
881 #define	sd_cache_control		ssd_cache_control
882 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
883 #define	sd_get_nv_sup			ssd_get_nv_sup
884 #define	sd_make_device			ssd_make_device
885 #define	sdopen				ssdopen
886 #define	sdclose				ssdclose
887 #define	sd_ready_and_valid		ssd_ready_and_valid
888 #define	sdmin				ssdmin
889 #define	sdread				ssdread
890 #define	sdwrite				ssdwrite
891 #define	sdaread				ssdaread
892 #define	sdawrite			ssdawrite
893 #define	sdstrategy			ssdstrategy
894 #define	sdioctl				ssdioctl
895 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
896 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
897 #define	sd_checksum_iostart		ssd_checksum_iostart
898 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
899 #define	sd_pm_iostart			ssd_pm_iostart
900 #define	sd_core_iostart			ssd_core_iostart
901 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
902 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
903 #define	sd_checksum_iodone		ssd_checksum_iodone
904 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
905 #define	sd_pm_iodone			ssd_pm_iodone
906 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
907 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
908 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
909 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
910 #define	sd_buf_iodone			ssd_buf_iodone
911 #define	sd_uscsi_strategy		ssd_uscsi_strategy
912 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
913 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
914 #define	sd_uscsi_iodone			ssd_uscsi_iodone
915 #define	sd_xbuf_strategy		ssd_xbuf_strategy
916 #define	sd_xbuf_init			ssd_xbuf_init
917 #define	sd_pm_entry			ssd_pm_entry
918 #define	sd_pm_exit			ssd_pm_exit
919 
920 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
921 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
922 
923 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
924 #define	sdintr				ssdintr
925 #define	sd_start_cmds			ssd_start_cmds
926 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
927 #define	sd_bioclone_alloc		ssd_bioclone_alloc
928 #define	sd_bioclone_free		ssd_bioclone_free
929 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
930 #define	sd_shadow_buf_free		ssd_shadow_buf_free
931 #define	sd_print_transport_rejected_message	\
932 					ssd_print_transport_rejected_message
933 #define	sd_retry_command		ssd_retry_command
934 #define	sd_set_retry_bp			ssd_set_retry_bp
935 #define	sd_send_request_sense_command	ssd_send_request_sense_command
936 #define	sd_start_retry_command		ssd_start_retry_command
937 #define	sd_start_direct_priority_command	\
938 					ssd_start_direct_priority_command
939 #define	sd_return_failed_command	ssd_return_failed_command
940 #define	sd_return_failed_command_no_restart	\
941 					ssd_return_failed_command_no_restart
942 #define	sd_return_command		ssd_return_command
943 #define	sd_sync_with_callback		ssd_sync_with_callback
944 #define	sdrunout			ssdrunout
945 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
946 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
947 #define	sd_reduce_throttle		ssd_reduce_throttle
948 #define	sd_restore_throttle		ssd_restore_throttle
949 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
950 #define	sd_init_cdb_limits		ssd_init_cdb_limits
951 #define	sd_pkt_status_good		ssd_pkt_status_good
952 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
953 #define	sd_pkt_status_busy		ssd_pkt_status_busy
954 #define	sd_pkt_status_reservation_conflict	\
955 					ssd_pkt_status_reservation_conflict
956 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
957 #define	sd_handle_request_sense		ssd_handle_request_sense
958 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
959 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
960 #define	sd_validate_sense_data		ssd_validate_sense_data
961 #define	sd_decode_sense			ssd_decode_sense
962 #define	sd_print_sense_msg		ssd_print_sense_msg
963 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
964 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
965 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
966 #define	sd_sense_key_medium_or_hardware_error	\
967 					ssd_sense_key_medium_or_hardware_error
968 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
969 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
970 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
971 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
972 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
973 #define	sd_sense_key_default		ssd_sense_key_default
974 #define	sd_print_retry_msg		ssd_print_retry_msg
975 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
976 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
977 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
978 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
979 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
980 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
981 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
982 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
983 #define	sd_pkt_reason_default		ssd_pkt_reason_default
984 #define	sd_reset_target			ssd_reset_target
985 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
986 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
987 #define	sd_taskq_create			ssd_taskq_create
988 #define	sd_taskq_delete			ssd_taskq_delete
989 #define	sd_target_change_task		ssd_target_change_task
990 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
991 #define	sd_media_change_task		ssd_media_change_task
992 #define	sd_handle_mchange		ssd_handle_mchange
993 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
994 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
995 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
996 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
997 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
998 					sd_send_scsi_feature_GET_CONFIGURATION
999 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1000 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1001 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1002 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1003 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1004 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1005 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1006 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1007 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1008 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1009 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1010 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1011 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1012 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1013 #define	sd_alloc_rqs			ssd_alloc_rqs
1014 #define	sd_free_rqs			ssd_free_rqs
1015 #define	sd_dump_memory			ssd_dump_memory
1016 #define	sd_get_media_info		ssd_get_media_info
1017 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1018 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1019 #define	sd_strtok_r			ssd_strtok_r
1020 #define	sd_set_properties		ssd_set_properties
1021 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1022 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1023 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1024 #define	sd_check_mhd			ssd_check_mhd
1025 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1026 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1027 #define	sd_sname			ssd_sname
1028 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1029 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1030 #define	sd_take_ownership		ssd_take_ownership
1031 #define	sd_reserve_release		ssd_reserve_release
1032 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1033 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1034 #define	sd_persistent_reservation_in_read_keys	\
1035 					ssd_persistent_reservation_in_read_keys
1036 #define	sd_persistent_reservation_in_read_resv	\
1037 					ssd_persistent_reservation_in_read_resv
1038 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1039 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1040 #define	sd_mhdioc_release		ssd_mhdioc_release
1041 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1042 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1043 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1044 #define	sr_change_blkmode		ssr_change_blkmode
1045 #define	sr_change_speed			ssr_change_speed
1046 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1047 #define	sr_pause_resume			ssr_pause_resume
1048 #define	sr_play_msf			ssr_play_msf
1049 #define	sr_play_trkind			ssr_play_trkind
1050 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1051 #define	sr_read_subchannel		ssr_read_subchannel
1052 #define	sr_read_tocentry		ssr_read_tocentry
1053 #define	sr_read_tochdr			ssr_read_tochdr
1054 #define	sr_read_cdda			ssr_read_cdda
1055 #define	sr_read_cdxa			ssr_read_cdxa
1056 #define	sr_read_mode1			ssr_read_mode1
1057 #define	sr_read_mode2			ssr_read_mode2
1058 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1059 #define	sr_sector_mode			ssr_sector_mode
1060 #define	sr_eject			ssr_eject
1061 #define	sr_ejected			ssr_ejected
1062 #define	sr_check_wp			ssr_check_wp
1063 #define	sd_check_media			ssd_check_media
1064 #define	sd_media_watch_cb		ssd_media_watch_cb
1065 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1066 #define	sr_volume_ctrl			ssr_volume_ctrl
1067 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1068 #define	sd_log_page_supported		ssd_log_page_supported
1069 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1070 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1071 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1072 #define	sd_range_lock			ssd_range_lock
1073 #define	sd_get_range			ssd_get_range
1074 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1075 #define	sd_range_unlock			ssd_range_unlock
1076 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1077 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1078 
1079 #define	sd_iostart_chain		ssd_iostart_chain
1080 #define	sd_iodone_chain			ssd_iodone_chain
1081 #define	sd_initpkt_map			ssd_initpkt_map
1082 #define	sd_destroypkt_map		ssd_destroypkt_map
1083 #define	sd_chain_type_map		ssd_chain_type_map
1084 #define	sd_chain_index_map		ssd_chain_index_map
1085 
1086 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1087 #define	sd_failfast_flushq		ssd_failfast_flushq
1088 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1089 
1090 #define	sd_is_lsi			ssd_is_lsi
1091 #define	sd_tg_rdwr			ssd_tg_rdwr
1092 #define	sd_tg_getinfo			ssd_tg_getinfo
1093 
1094 #endif	/* #if (defined(__fibre)) */
1095 
1096 
1097 int _init(void);
1098 int _fini(void);
1099 int _info(struct modinfo *modinfop);
1100 
1101 /*PRINTFLIKE3*/
1102 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1103 /*PRINTFLIKE3*/
1104 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1105 /*PRINTFLIKE3*/
1106 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1107 
1108 static int sdprobe(dev_info_t *devi);
1109 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1110     void **result);
1111 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1112     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1113 
1114 /*
1115  * Smart probe for parallel scsi
1116  */
1117 static void sd_scsi_probe_cache_init(void);
1118 static void sd_scsi_probe_cache_fini(void);
1119 static void sd_scsi_clear_probe_cache(void);
1120 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1121 
1122 /*
1123  * Attached luns on target for parallel scsi
1124  */
1125 static void sd_scsi_target_lun_init(void);
1126 static void sd_scsi_target_lun_fini(void);
1127 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1128 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1129 
1130 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1131 
1132 /*
1133  * Using sd_ssc_init to establish sd_ssc_t struct
1134  * Using sd_ssc_send to send uscsi internal command
1135  * Using sd_ssc_fini to free sd_ssc_t struct
1136  */
1137 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1138 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1139     int flag, enum uio_seg dataspace, int path_flag);
1140 static void sd_ssc_fini(sd_ssc_t *ssc);
1141 
1142 /*
1143  * Using sd_ssc_assessment to set correct type-of-assessment
1144  * Using sd_ssc_post to post ereport & system log
1145  *       sd_ssc_post will call sd_ssc_print to print system log
1146  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1147  */
1148 static void sd_ssc_assessment(sd_ssc_t *ssc,
1149     enum sd_type_assessment tp_assess);
1150 
1151 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1152 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1153 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1154     enum sd_driver_assessment drv_assess);
1155 
1156 /*
1157  * Using sd_ssc_set_info to mark an un-decodable-data error.
1158  * Using sd_ssc_extract_info to transfer information from internal
1159  *       data structures to sd_ssc_t.
1160  */
1161 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags,
1162     const char *fmt, ...);
1163 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1164     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1165 
1166 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1167     enum uio_seg dataspace, int path_flag);
1168 
1169 #ifdef _LP64
1170 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1171 static void	sd_reenable_dsense_task(void *arg);
1172 #endif /* _LP64 */
1173 
1174 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1175 
1176 static void sd_read_unit_properties(struct sd_lun *un);
1177 static int  sd_process_sdconf_file(struct sd_lun *un);
1178 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1179 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1180 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 
1191 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1192     int reservation_flag);
1193 static int  sd_get_devid(sd_ssc_t *ssc);
1194 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1195 static int  sd_write_deviceid(sd_ssc_t *ssc);
1196 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1197 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1198 
1199 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1200 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1201 
1202 static int  sd_ddi_suspend(dev_info_t *devi);
1203 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1204 static int  sd_ddi_resume(dev_info_t *devi);
1205 static int  sd_ddi_pm_resume(struct sd_lun *un);
1206 static int  sdpower(dev_info_t *devi, int component, int level);
1207 
1208 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1209 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1210 static int  sd_unit_attach(dev_info_t *devi);
1211 static int  sd_unit_detach(dev_info_t *devi);
1212 
1213 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1214 static void sd_create_errstats(struct sd_lun *un, int instance);
1215 static void sd_set_errstats(struct sd_lun *un);
1216 static void sd_set_pstats(struct sd_lun *un);
1217 
1218 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1219 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1220 static int  sd_send_polled_RQS(struct sd_lun *un);
1221 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1222 
1223 #if (defined(__fibre))
1224 /*
1225  * Event callbacks (photon)
1226  */
1227 static void sd_init_event_callbacks(struct sd_lun *un);
1228 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1229 #endif
1230 
1231 /*
1232  * Defines for sd_cache_control
1233  */
1234 
1235 #define	SD_CACHE_ENABLE		1
1236 #define	SD_CACHE_DISABLE	0
1237 #define	SD_CACHE_NOCHANGE	-1
1238 
1239 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1240 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1241 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1242 static dev_t sd_make_device(dev_info_t *devi);
1243 
1244 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1245 	uint64_t capacity);
1246 
1247 /*
1248  * Driver entry point functions.
1249  */
1250 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1251 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1252 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1253 
1254 static void sdmin(struct buf *bp);
1255 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1256 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1257 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1258 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1259 
1260 static int sdstrategy(struct buf *bp);
1261 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1262 
1263 /*
1264  * Function prototypes for layering functions in the iostart chain.
1265  */
1266 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1267 	struct buf *bp);
1268 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1269 	struct buf *bp);
1270 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1271 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1272 	struct buf *bp);
1273 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1274 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1275 
1276 /*
1277  * Function prototypes for layering functions in the iodone chain.
1278  */
1279 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1280 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1281 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1282 	struct buf *bp);
1283 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1284 	struct buf *bp);
1285 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1286 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1287 	struct buf *bp);
1288 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1289 
1290 /*
1291  * Prototypes for functions to support buf(9S) based IO.
1292  */
1293 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1294 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1295 static void sd_destroypkt_for_buf(struct buf *);
1296 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1297 	struct buf *bp, int flags,
1298 	int (*callback)(caddr_t), caddr_t callback_arg,
1299 	diskaddr_t lba, uint32_t blockcount);
1300 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1301 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1302 
1303 /*
1304  * Prototypes for functions to support USCSI IO.
1305  */
1306 static int sd_uscsi_strategy(struct buf *bp);
1307 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1308 static void sd_destroypkt_for_uscsi(struct buf *);
1309 
1310 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1311 	uchar_t chain_type, void *pktinfop);
1312 
1313 static int  sd_pm_entry(struct sd_lun *un);
1314 static void sd_pm_exit(struct sd_lun *un);
1315 
1316 static void sd_pm_idletimeout_handler(void *arg);
1317 
1318 /*
1319  * sd_core internal functions (used at the sd_core_io layer).
1320  */
1321 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1322 static void sdintr(struct scsi_pkt *pktp);
1323 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1324 
1325 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1326 	enum uio_seg dataspace, int path_flag);
1327 
1328 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1329 	daddr_t blkno, int (*func)(struct buf *));
1330 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1331 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1332 static void sd_bioclone_free(struct buf *bp);
1333 static void sd_shadow_buf_free(struct buf *bp);
1334 
1335 static void sd_print_transport_rejected_message(struct sd_lun *un,
1336 	struct sd_xbuf *xp, int code);
1337 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1338     void *arg, int code);
1339 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1340     void *arg, int code);
1341 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1342     void *arg, int code);
1343 
1344 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1345 	int retry_check_flag,
1346 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1347 		int c),
1348 	void *user_arg, int failure_code,  clock_t retry_delay,
1349 	void (*statp)(kstat_io_t *));
1350 
1351 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1352 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1353 
1354 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1355 	struct scsi_pkt *pktp);
1356 static void sd_start_retry_command(void *arg);
1357 static void sd_start_direct_priority_command(void *arg);
1358 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1359 	int errcode);
1360 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1361 	struct buf *bp, int errcode);
1362 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1363 static void sd_sync_with_callback(struct sd_lun *un);
1364 static int sdrunout(caddr_t arg);
1365 
1366 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1367 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1368 
1369 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1370 static void sd_restore_throttle(void *arg);
1371 
1372 static void sd_init_cdb_limits(struct sd_lun *un);
1373 
1374 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 
1377 /*
1378  * Error handling functions
1379  */
1380 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1385 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 
1389 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1394 	struct sd_xbuf *xp, size_t actual_len);
1395 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1396 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1397 
1398 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1399 	void *arg, int code);
1400 
1401 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1402 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1403 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1404 	uint8_t *sense_datap,
1405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1406 static void sd_sense_key_not_ready(struct sd_lun *un,
1407 	uint8_t *sense_datap,
1408 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1409 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1410 	uint8_t *sense_datap,
1411 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1412 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1413 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1414 static void sd_sense_key_unit_attention(struct sd_lun *un,
1415 	uint8_t *sense_datap,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1420 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 static void sd_sense_key_default(struct sd_lun *un,
1424 	uint8_t *sense_datap,
1425 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1428 	void *arg, int flag);
1429 
1430 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1435 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1436 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1441 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 
1447 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1448 
1449 static void sd_start_stop_unit_callback(void *arg);
1450 static void sd_start_stop_unit_task(void *arg);
1451 
1452 static void sd_taskq_create(void);
1453 static void sd_taskq_delete(void);
1454 static void sd_target_change_task(void *arg);
1455 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1456 static void sd_media_change_task(void *arg);
1457 
1458 static int sd_handle_mchange(struct sd_lun *un);
1459 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1460 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1461 	uint32_t *lbap, int path_flag);
1462 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1463 	uint32_t *lbap, int path_flag);
1464 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag,
1465 	int path_flag);
1466 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1467 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1468 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1469 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1470 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1471 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1472 	uchar_t usr_cmd, uchar_t *usr_bufp);
1473 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1474 	struct dk_callback *dkc);
1475 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1476 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1477 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1478 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1479 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1480 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1481 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1482 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1483 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1484 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1485 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1486 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1487 	size_t buflen, daddr_t start_block, int path_flag);
1488 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1489 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1490 	path_flag)
1491 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1492 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1493 	path_flag)
1494 
1495 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1496 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1497 	uint16_t param_ptr, int path_flag);
1498 
1499 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1500 static void sd_free_rqs(struct sd_lun *un);
1501 
1502 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1503 	uchar_t *data, int len, int fmt);
1504 static void sd_panic_for_res_conflict(struct sd_lun *un);
1505 
1506 /*
1507  * Disk Ioctl Function Prototypes
1508  */
1509 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1510 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1511 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1512 
1513 /*
1514  * Multi-host Ioctl Prototypes
1515  */
1516 static int sd_check_mhd(dev_t dev, int interval);
1517 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1518 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1519 static char *sd_sname(uchar_t status);
1520 static void sd_mhd_resvd_recover(void *arg);
1521 static void sd_resv_reclaim_thread();
1522 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1523 static int sd_reserve_release(dev_t dev, int cmd);
1524 static void sd_rmv_resv_reclaim_req(dev_t dev);
1525 static void sd_mhd_reset_notify_cb(caddr_t arg);
1526 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1527 	mhioc_inkeys_t *usrp, int flag);
1528 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1529 	mhioc_inresvs_t *usrp, int flag);
1530 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1531 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1532 static int sd_mhdioc_release(dev_t dev);
1533 static int sd_mhdioc_register_devid(dev_t dev);
1534 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1535 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1536 
1537 /*
1538  * SCSI removable prototypes
1539  */
1540 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1541 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1542 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1543 static int sr_pause_resume(dev_t dev, int mode);
1544 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1545 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1546 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1547 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1548 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1549 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1550 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1551 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1552 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1553 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1554 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1555 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1556 static int sr_eject(dev_t dev);
1557 static void sr_ejected(register struct sd_lun *un);
1558 static int sr_check_wp(dev_t dev);
1559 static int sd_check_media(dev_t dev, enum dkio_state state);
1560 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1561 static void sd_delayed_cv_broadcast(void *arg);
1562 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1563 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1564 
1565 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1566 
1567 /*
1568  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1569  */
1570 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1571 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1572 static void sd_wm_cache_destructor(void *wm, void *un);
1573 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1574 	daddr_t endb, ushort_t typ);
1575 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1576 	daddr_t endb);
1577 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1578 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1579 static void sd_read_modify_write_task(void * arg);
1580 static int
1581 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1582 	struct buf **bpp);
1583 
1584 
1585 /*
1586  * Function prototypes for failfast support.
1587  */
1588 static void sd_failfast_flushq(struct sd_lun *un);
1589 static int sd_failfast_flushq_callback(struct buf *bp);
1590 
1591 /*
1592  * Function prototypes to check for lsi devices
1593  */
1594 static void sd_is_lsi(struct sd_lun *un);
1595 
1596 /*
1597  * Function prototypes for partial DMA support
1598  */
1599 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1600 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1601 
1602 
1603 /* Function prototypes for cmlb */
1604 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1605     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1606 
1607 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1608 
1609 /*
1610  * Constants for failfast support:
1611  *
1612  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1613  * failfast processing being performed.
1614  *
1615  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1616  * failfast processing on all bufs with B_FAILFAST set.
1617  */
1618 
1619 #define	SD_FAILFAST_INACTIVE		0
1620 #define	SD_FAILFAST_ACTIVE		1
1621 
1622 /*
1623  * Bitmask to control behavior of buf(9S) flushes when a transition to
1624  * the failfast state occurs. Optional bits include:
1625  *
1626  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1627  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1628  * be flushed.
1629  *
1630  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1631  * driver, in addition to the regular wait queue. This includes the xbuf
1632  * queues. When clear, only the driver's wait queue will be flushed.
1633  */
1634 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1635 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1636 
1637 /*
1638  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1639  * to flush all queues within the driver.
1640  */
1641 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1642 
1643 
1644 /*
1645  * SD Testing Fault Injection
1646  */
1647 #ifdef SD_FAULT_INJECTION
1648 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1649 static void sd_faultinjection(struct scsi_pkt *pktp);
1650 static void sd_injection_log(char *buf, struct sd_lun *un);
1651 #endif
1652 
1653 /*
1654  * Device driver ops vector
1655  */
1656 static struct cb_ops sd_cb_ops = {
1657 	sdopen,			/* open */
1658 	sdclose,		/* close */
1659 	sdstrategy,		/* strategy */
1660 	nodev,			/* print */
1661 	sddump,			/* dump */
1662 	sdread,			/* read */
1663 	sdwrite,		/* write */
1664 	sdioctl,		/* ioctl */
1665 	nodev,			/* devmap */
1666 	nodev,			/* mmap */
1667 	nodev,			/* segmap */
1668 	nochpoll,		/* poll */
1669 	sd_prop_op,		/* cb_prop_op */
1670 	0,			/* streamtab  */
1671 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1672 	CB_REV,			/* cb_rev */
1673 	sdaread, 		/* async I/O read entry point */
1674 	sdawrite		/* async I/O write entry point */
1675 };
1676 
1677 static struct dev_ops sd_ops = {
1678 	DEVO_REV,		/* devo_rev, */
1679 	0,			/* refcnt  */
1680 	sdinfo,			/* info */
1681 	nulldev,		/* identify */
1682 	sdprobe,		/* probe */
1683 	sdattach,		/* attach */
1684 	sddetach,		/* detach */
1685 	nodev,			/* reset */
1686 	&sd_cb_ops,		/* driver operations */
1687 	NULL,			/* bus operations */
1688 	sdpower,		/* power */
1689 	ddi_quiesce_not_needed,		/* quiesce */
1690 };
1691 
1692 
1693 /*
1694  * This is the loadable module wrapper.
1695  */
1696 #include <sys/modctl.h>
1697 
1698 static struct modldrv modldrv = {
1699 	&mod_driverops,		/* Type of module. This one is a driver */
1700 	SD_MODULE_NAME,		/* Module name. */
1701 	&sd_ops			/* driver ops */
1702 };
1703 
1704 
1705 static struct modlinkage modlinkage = {
1706 	MODREV_1,
1707 	&modldrv,
1708 	NULL
1709 };
1710 
1711 static cmlb_tg_ops_t sd_tgops = {
1712 	TG_DK_OPS_VERSION_1,
1713 	sd_tg_rdwr,
1714 	sd_tg_getinfo
1715 	};
1716 
1717 static struct scsi_asq_key_strings sd_additional_codes[] = {
1718 	0x81, 0, "Logical Unit is Reserved",
1719 	0x85, 0, "Audio Address Not Valid",
1720 	0xb6, 0, "Media Load Mechanism Failed",
1721 	0xB9, 0, "Audio Play Operation Aborted",
1722 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1723 	0x53, 2, "Medium removal prevented",
1724 	0x6f, 0, "Authentication failed during key exchange",
1725 	0x6f, 1, "Key not present",
1726 	0x6f, 2, "Key not established",
1727 	0x6f, 3, "Read without proper authentication",
1728 	0x6f, 4, "Mismatched region to this logical unit",
1729 	0x6f, 5, "Region reset count error",
1730 	0xffff, 0x0, NULL
1731 };
1732 
1733 
1734 /*
1735  * Struct for passing printing information for sense data messages
1736  */
1737 struct sd_sense_info {
1738 	int	ssi_severity;
1739 	int	ssi_pfa_flag;
1740 };
1741 
1742 /*
1743  * Table of function pointers for iostart-side routines. Separate "chains"
1744  * of layered function calls are formed by placing the function pointers
1745  * sequentially in the desired order. Functions are called according to an
1746  * incrementing table index ordering. The last function in each chain must
1747  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1748  * in the sd_iodone_chain[] array.
1749  *
1750  * Note: It may seem more natural to organize both the iostart and iodone
1751  * functions together, into an array of structures (or some similar
1752  * organization) with a common index, rather than two separate arrays which
1753  * must be maintained in synchronization. The purpose of this division is
1754  * to achieve improved performance: individual arrays allows for more
1755  * effective cache line utilization on certain platforms.
1756  */
1757 
1758 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1759 
1760 
1761 static sd_chain_t sd_iostart_chain[] = {
1762 
1763 	/* Chain for buf IO for disk drive targets (PM enabled) */
1764 	sd_mapblockaddr_iostart,	/* Index: 0 */
1765 	sd_pm_iostart,			/* Index: 1 */
1766 	sd_core_iostart,		/* Index: 2 */
1767 
1768 	/* Chain for buf IO for disk drive targets (PM disabled) */
1769 	sd_mapblockaddr_iostart,	/* Index: 3 */
1770 	sd_core_iostart,		/* Index: 4 */
1771 
1772 	/* Chain for buf IO for removable-media targets (PM enabled) */
1773 	sd_mapblockaddr_iostart,	/* Index: 5 */
1774 	sd_mapblocksize_iostart,	/* Index: 6 */
1775 	sd_pm_iostart,			/* Index: 7 */
1776 	sd_core_iostart,		/* Index: 8 */
1777 
1778 	/* Chain for buf IO for removable-media targets (PM disabled) */
1779 	sd_mapblockaddr_iostart,	/* Index: 9 */
1780 	sd_mapblocksize_iostart,	/* Index: 10 */
1781 	sd_core_iostart,		/* Index: 11 */
1782 
1783 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1784 	sd_mapblockaddr_iostart,	/* Index: 12 */
1785 	sd_checksum_iostart,		/* Index: 13 */
1786 	sd_pm_iostart,			/* Index: 14 */
1787 	sd_core_iostart,		/* Index: 15 */
1788 
1789 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1790 	sd_mapblockaddr_iostart,	/* Index: 16 */
1791 	sd_checksum_iostart,		/* Index: 17 */
1792 	sd_core_iostart,		/* Index: 18 */
1793 
1794 	/* Chain for USCSI commands (all targets) */
1795 	sd_pm_iostart,			/* Index: 19 */
1796 	sd_core_iostart,		/* Index: 20 */
1797 
1798 	/* Chain for checksumming USCSI commands (all targets) */
1799 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1800 	sd_pm_iostart,			/* Index: 22 */
1801 	sd_core_iostart,		/* Index: 23 */
1802 
1803 	/* Chain for "direct" USCSI commands (all targets) */
1804 	sd_core_iostart,		/* Index: 24 */
1805 
1806 	/* Chain for "direct priority" USCSI commands (all targets) */
1807 	sd_core_iostart,		/* Index: 25 */
1808 };
1809 
1810 /*
1811  * Macros to locate the first function of each iostart chain in the
1812  * sd_iostart_chain[] array. These are located by the index in the array.
1813  */
1814 #define	SD_CHAIN_DISK_IOSTART			0
1815 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1816 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1817 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1818 #define	SD_CHAIN_CHKSUM_IOSTART			12
1819 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1820 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1821 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1822 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1823 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1824 
1825 
1826 /*
1827  * Table of function pointers for the iodone-side routines for the driver-
1828  * internal layering mechanism.  The calling sequence for iodone routines
1829  * uses a decrementing table index, so the last routine called in a chain
1830  * must be at the lowest array index location for that chain.  The last
1831  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1832  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1833  * of the functions in an iodone side chain must correspond to the ordering
1834  * of the iostart routines for that chain.  Note that there is no iodone
1835  * side routine that corresponds to sd_core_iostart(), so there is no
1836  * entry in the table for this.
1837  */
1838 
1839 static sd_chain_t sd_iodone_chain[] = {
1840 
1841 	/* Chain for buf IO for disk drive targets (PM enabled) */
1842 	sd_buf_iodone,			/* Index: 0 */
1843 	sd_mapblockaddr_iodone,		/* Index: 1 */
1844 	sd_pm_iodone,			/* Index: 2 */
1845 
1846 	/* Chain for buf IO for disk drive targets (PM disabled) */
1847 	sd_buf_iodone,			/* Index: 3 */
1848 	sd_mapblockaddr_iodone,		/* Index: 4 */
1849 
1850 	/* Chain for buf IO for removable-media targets (PM enabled) */
1851 	sd_buf_iodone,			/* Index: 5 */
1852 	sd_mapblockaddr_iodone,		/* Index: 6 */
1853 	sd_mapblocksize_iodone,		/* Index: 7 */
1854 	sd_pm_iodone,			/* Index: 8 */
1855 
1856 	/* Chain for buf IO for removable-media targets (PM disabled) */
1857 	sd_buf_iodone,			/* Index: 9 */
1858 	sd_mapblockaddr_iodone,		/* Index: 10 */
1859 	sd_mapblocksize_iodone,		/* Index: 11 */
1860 
1861 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1862 	sd_buf_iodone,			/* Index: 12 */
1863 	sd_mapblockaddr_iodone,		/* Index: 13 */
1864 	sd_checksum_iodone,		/* Index: 14 */
1865 	sd_pm_iodone,			/* Index: 15 */
1866 
1867 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1868 	sd_buf_iodone,			/* Index: 16 */
1869 	sd_mapblockaddr_iodone,		/* Index: 17 */
1870 	sd_checksum_iodone,		/* Index: 18 */
1871 
1872 	/* Chain for USCSI commands (non-checksum targets) */
1873 	sd_uscsi_iodone,		/* Index: 19 */
1874 	sd_pm_iodone,			/* Index: 20 */
1875 
1876 	/* Chain for USCSI commands (checksum targets) */
1877 	sd_uscsi_iodone,		/* Index: 21 */
1878 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1879 	sd_pm_iodone,			/* Index: 22 */
1880 
1881 	/* Chain for "direct" USCSI commands (all targets) */
1882 	sd_uscsi_iodone,		/* Index: 24 */
1883 
1884 	/* Chain for "direct priority" USCSI commands (all targets) */
1885 	sd_uscsi_iodone,		/* Index: 25 */
1886 };
1887 
1888 
1889 /*
1890  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1891  * each iodone-side chain. These are located by the array index, but as the
1892  * iodone side functions are called in a decrementing-index order, the
1893  * highest index number in each chain must be specified (as these correspond
1894  * to the first function in the iodone chain that will be called by the core
1895  * at IO completion time).
1896  */
1897 
1898 #define	SD_CHAIN_DISK_IODONE			2
1899 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1900 #define	SD_CHAIN_RMMEDIA_IODONE			8
1901 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1902 #define	SD_CHAIN_CHKSUM_IODONE			15
1903 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1904 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1905 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1906 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1907 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1908 
1909 
1910 
1911 
1912 /*
1913  * Array to map a layering chain index to the appropriate initpkt routine.
1914  * The redundant entries are present so that the index used for accessing
1915  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1916  * with this table as well.
1917  */
1918 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1919 
1920 static sd_initpkt_t	sd_initpkt_map[] = {
1921 
1922 	/* Chain for buf IO for disk drive targets (PM enabled) */
1923 	sd_initpkt_for_buf,		/* Index: 0 */
1924 	sd_initpkt_for_buf,		/* Index: 1 */
1925 	sd_initpkt_for_buf,		/* Index: 2 */
1926 
1927 	/* Chain for buf IO for disk drive targets (PM disabled) */
1928 	sd_initpkt_for_buf,		/* Index: 3 */
1929 	sd_initpkt_for_buf,		/* Index: 4 */
1930 
1931 	/* Chain for buf IO for removable-media targets (PM enabled) */
1932 	sd_initpkt_for_buf,		/* Index: 5 */
1933 	sd_initpkt_for_buf,		/* Index: 6 */
1934 	sd_initpkt_for_buf,		/* Index: 7 */
1935 	sd_initpkt_for_buf,		/* Index: 8 */
1936 
1937 	/* Chain for buf IO for removable-media targets (PM disabled) */
1938 	sd_initpkt_for_buf,		/* Index: 9 */
1939 	sd_initpkt_for_buf,		/* Index: 10 */
1940 	sd_initpkt_for_buf,		/* Index: 11 */
1941 
1942 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1943 	sd_initpkt_for_buf,		/* Index: 12 */
1944 	sd_initpkt_for_buf,		/* Index: 13 */
1945 	sd_initpkt_for_buf,		/* Index: 14 */
1946 	sd_initpkt_for_buf,		/* Index: 15 */
1947 
1948 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1949 	sd_initpkt_for_buf,		/* Index: 16 */
1950 	sd_initpkt_for_buf,		/* Index: 17 */
1951 	sd_initpkt_for_buf,		/* Index: 18 */
1952 
1953 	/* Chain for USCSI commands (non-checksum targets) */
1954 	sd_initpkt_for_uscsi,		/* Index: 19 */
1955 	sd_initpkt_for_uscsi,		/* Index: 20 */
1956 
1957 	/* Chain for USCSI commands (checksum targets) */
1958 	sd_initpkt_for_uscsi,		/* Index: 21 */
1959 	sd_initpkt_for_uscsi,		/* Index: 22 */
1960 	sd_initpkt_for_uscsi,		/* Index: 22 */
1961 
1962 	/* Chain for "direct" USCSI commands (all targets) */
1963 	sd_initpkt_for_uscsi,		/* Index: 24 */
1964 
1965 	/* Chain for "direct priority" USCSI commands (all targets) */
1966 	sd_initpkt_for_uscsi,		/* Index: 25 */
1967 
1968 };
1969 
1970 
1971 /*
1972  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1973  * The redundant entries are present so that the index used for accessing
1974  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1975  * with this table as well.
1976  */
1977 typedef void (*sd_destroypkt_t)(struct buf *);
1978 
1979 static sd_destroypkt_t	sd_destroypkt_map[] = {
1980 
1981 	/* Chain for buf IO for disk drive targets (PM enabled) */
1982 	sd_destroypkt_for_buf,		/* Index: 0 */
1983 	sd_destroypkt_for_buf,		/* Index: 1 */
1984 	sd_destroypkt_for_buf,		/* Index: 2 */
1985 
1986 	/* Chain for buf IO for disk drive targets (PM disabled) */
1987 	sd_destroypkt_for_buf,		/* Index: 3 */
1988 	sd_destroypkt_for_buf,		/* Index: 4 */
1989 
1990 	/* Chain for buf IO for removable-media targets (PM enabled) */
1991 	sd_destroypkt_for_buf,		/* Index: 5 */
1992 	sd_destroypkt_for_buf,		/* Index: 6 */
1993 	sd_destroypkt_for_buf,		/* Index: 7 */
1994 	sd_destroypkt_for_buf,		/* Index: 8 */
1995 
1996 	/* Chain for buf IO for removable-media targets (PM disabled) */
1997 	sd_destroypkt_for_buf,		/* Index: 9 */
1998 	sd_destroypkt_for_buf,		/* Index: 10 */
1999 	sd_destroypkt_for_buf,		/* Index: 11 */
2000 
2001 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2002 	sd_destroypkt_for_buf,		/* Index: 12 */
2003 	sd_destroypkt_for_buf,		/* Index: 13 */
2004 	sd_destroypkt_for_buf,		/* Index: 14 */
2005 	sd_destroypkt_for_buf,		/* Index: 15 */
2006 
2007 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2008 	sd_destroypkt_for_buf,		/* Index: 16 */
2009 	sd_destroypkt_for_buf,		/* Index: 17 */
2010 	sd_destroypkt_for_buf,		/* Index: 18 */
2011 
2012 	/* Chain for USCSI commands (non-checksum targets) */
2013 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2014 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2015 
2016 	/* Chain for USCSI commands (checksum targets) */
2017 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2018 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2019 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2020 
2021 	/* Chain for "direct" USCSI commands (all targets) */
2022 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2023 
2024 	/* Chain for "direct priority" USCSI commands (all targets) */
2025 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2026 
2027 };
2028 
2029 
2030 
2031 /*
2032  * Array to map a layering chain index to the appropriate chain "type".
2033  * The chain type indicates a specific property/usage of the chain.
2034  * The redundant entries are present so that the index used for accessing
2035  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2036  * with this table as well.
2037  */
2038 
2039 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2040 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2041 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2042 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2043 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2044 						/* (for error recovery) */
2045 
2046 static int sd_chain_type_map[] = {
2047 
2048 	/* Chain for buf IO for disk drive targets (PM enabled) */
2049 	SD_CHAIN_BUFIO,			/* Index: 0 */
2050 	SD_CHAIN_BUFIO,			/* Index: 1 */
2051 	SD_CHAIN_BUFIO,			/* Index: 2 */
2052 
2053 	/* Chain for buf IO for disk drive targets (PM disabled) */
2054 	SD_CHAIN_BUFIO,			/* Index: 3 */
2055 	SD_CHAIN_BUFIO,			/* Index: 4 */
2056 
2057 	/* Chain for buf IO for removable-media targets (PM enabled) */
2058 	SD_CHAIN_BUFIO,			/* Index: 5 */
2059 	SD_CHAIN_BUFIO,			/* Index: 6 */
2060 	SD_CHAIN_BUFIO,			/* Index: 7 */
2061 	SD_CHAIN_BUFIO,			/* Index: 8 */
2062 
2063 	/* Chain for buf IO for removable-media targets (PM disabled) */
2064 	SD_CHAIN_BUFIO,			/* Index: 9 */
2065 	SD_CHAIN_BUFIO,			/* Index: 10 */
2066 	SD_CHAIN_BUFIO,			/* Index: 11 */
2067 
2068 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2069 	SD_CHAIN_BUFIO,			/* Index: 12 */
2070 	SD_CHAIN_BUFIO,			/* Index: 13 */
2071 	SD_CHAIN_BUFIO,			/* Index: 14 */
2072 	SD_CHAIN_BUFIO,			/* Index: 15 */
2073 
2074 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2075 	SD_CHAIN_BUFIO,			/* Index: 16 */
2076 	SD_CHAIN_BUFIO,			/* Index: 17 */
2077 	SD_CHAIN_BUFIO,			/* Index: 18 */
2078 
2079 	/* Chain for USCSI commands (non-checksum targets) */
2080 	SD_CHAIN_USCSI,			/* Index: 19 */
2081 	SD_CHAIN_USCSI,			/* Index: 20 */
2082 
2083 	/* Chain for USCSI commands (checksum targets) */
2084 	SD_CHAIN_USCSI,			/* Index: 21 */
2085 	SD_CHAIN_USCSI,			/* Index: 22 */
2086 	SD_CHAIN_USCSI,			/* Index: 22 */
2087 
2088 	/* Chain for "direct" USCSI commands (all targets) */
2089 	SD_CHAIN_DIRECT,		/* Index: 24 */
2090 
2091 	/* Chain for "direct priority" USCSI commands (all targets) */
2092 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2093 };
2094 
2095 
2096 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2097 #define	SD_IS_BUFIO(xp)			\
2098 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2099 
2100 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2101 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2102 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2103 
2104 
2105 
2106 /*
2107  * Struct, array, and macros to map a specific chain to the appropriate
2108  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2109  *
2110  * The sd_chain_index_map[] array is used at attach time to set the various
2111  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2112  * chain to be used with the instance. This allows different instances to use
2113  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2114  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2115  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2116  * dynamically & without the use of locking; and (2) a layer may update the
2117  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2118  * to allow for deferred processing of an IO within the same chain from a
2119  * different execution context.
2120  */
2121 
2122 struct sd_chain_index {
2123 	int	sci_iostart_index;
2124 	int	sci_iodone_index;
2125 };
2126 
2127 static struct sd_chain_index	sd_chain_index_map[] = {
2128 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2129 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2130 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2131 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2132 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2133 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2134 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2135 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2136 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2137 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2138 };
2139 
2140 
2141 /*
2142  * The following are indexes into the sd_chain_index_map[] array.
2143  */
2144 
2145 /* un->un_buf_chain_type must be set to one of these */
2146 #define	SD_CHAIN_INFO_DISK		0
2147 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2148 #define	SD_CHAIN_INFO_RMMEDIA		2
2149 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2150 #define	SD_CHAIN_INFO_CHKSUM		4
2151 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2152 
2153 /* un->un_uscsi_chain_type must be set to one of these */
2154 #define	SD_CHAIN_INFO_USCSI_CMD		6
2155 /* USCSI with PM disabled is the same as DIRECT */
2156 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2157 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2158 
2159 /* un->un_direct_chain_type must be set to one of these */
2160 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2161 
2162 /* un->un_priority_chain_type must be set to one of these */
2163 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2164 
2165 /* size for devid inquiries */
2166 #define	MAX_INQUIRY_SIZE		0xF0
2167 
2168 /*
2169  * Macros used by functions to pass a given buf(9S) struct along to the
2170  * next function in the layering chain for further processing.
2171  *
2172  * In the following macros, passing more than three arguments to the called
2173  * routines causes the optimizer for the SPARC compiler to stop doing tail
2174  * call elimination which results in significant performance degradation.
2175  */
2176 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2177 	((*(sd_iostart_chain[index]))(index, un, bp))
2178 
2179 #define	SD_BEGIN_IODONE(index, un, bp)	\
2180 	((*(sd_iodone_chain[index]))(index, un, bp))
2181 
2182 #define	SD_NEXT_IOSTART(index, un, bp)				\
2183 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2184 
2185 #define	SD_NEXT_IODONE(index, un, bp)				\
2186 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2187 
2188 /*
2189  *    Function: _init
2190  *
2191  * Description: This is the driver _init(9E) entry point.
2192  *
2193  * Return Code: Returns the value from mod_install(9F) or
2194  *		ddi_soft_state_init(9F) as appropriate.
2195  *
2196  *     Context: Called when driver module loaded.
2197  */
2198 
2199 int
2200 _init(void)
2201 {
2202 	int	err;
2203 
2204 	/* establish driver name from module name */
2205 	sd_label = (char *)mod_modname(&modlinkage);
2206 
2207 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2208 	    SD_MAXUNIT);
2209 
2210 	if (err != 0) {
2211 		return (err);
2212 	}
2213 
2214 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2215 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2216 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2217 
2218 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2219 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2220 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2221 
2222 	/*
2223 	 * it's ok to init here even for fibre device
2224 	 */
2225 	sd_scsi_probe_cache_init();
2226 
2227 	sd_scsi_target_lun_init();
2228 
2229 	/*
2230 	 * Creating taskq before mod_install ensures that all callers (threads)
2231 	 * that enter the module after a successful mod_install encounter
2232 	 * a valid taskq.
2233 	 */
2234 	sd_taskq_create();
2235 
2236 	err = mod_install(&modlinkage);
2237 	if (err != 0) {
2238 		/* delete taskq if install fails */
2239 		sd_taskq_delete();
2240 
2241 		mutex_destroy(&sd_detach_mutex);
2242 		mutex_destroy(&sd_log_mutex);
2243 		mutex_destroy(&sd_label_mutex);
2244 
2245 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2246 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2247 		cv_destroy(&sd_tr.srq_inprocess_cv);
2248 
2249 		sd_scsi_probe_cache_fini();
2250 
2251 		sd_scsi_target_lun_fini();
2252 
2253 		ddi_soft_state_fini(&sd_state);
2254 		return (err);
2255 	}
2256 
2257 	return (err);
2258 }
2259 
2260 
2261 /*
2262  *    Function: _fini
2263  *
2264  * Description: This is the driver _fini(9E) entry point.
2265  *
2266  * Return Code: Returns the value from mod_remove(9F)
2267  *
2268  *     Context: Called when driver module is unloaded.
2269  */
2270 
2271 int
2272 _fini(void)
2273 {
2274 	int err;
2275 
2276 	if ((err = mod_remove(&modlinkage)) != 0) {
2277 		return (err);
2278 	}
2279 
2280 	sd_taskq_delete();
2281 
2282 	mutex_destroy(&sd_detach_mutex);
2283 	mutex_destroy(&sd_log_mutex);
2284 	mutex_destroy(&sd_label_mutex);
2285 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2286 
2287 	sd_scsi_probe_cache_fini();
2288 
2289 	sd_scsi_target_lun_fini();
2290 
2291 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2292 	cv_destroy(&sd_tr.srq_inprocess_cv);
2293 
2294 	ddi_soft_state_fini(&sd_state);
2295 
2296 	return (err);
2297 }
2298 
2299 
2300 /*
2301  *    Function: _info
2302  *
2303  * Description: This is the driver _info(9E) entry point.
2304  *
2305  *   Arguments: modinfop - pointer to the driver modinfo structure
2306  *
2307  * Return Code: Returns the value from mod_info(9F).
2308  *
2309  *     Context: Kernel thread context
2310  */
2311 
2312 int
2313 _info(struct modinfo *modinfop)
2314 {
2315 	return (mod_info(&modlinkage, modinfop));
2316 }
2317 
2318 
2319 /*
2320  * The following routines implement the driver message logging facility.
2321  * They provide component- and level- based debug output filtering.
2322  * Output may also be restricted to messages for a single instance by
2323  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2324  * to NULL, then messages for all instances are printed.
2325  *
2326  * These routines have been cloned from each other due to the language
2327  * constraints of macros and variable argument list processing.
2328  */
2329 
2330 
2331 /*
2332  *    Function: sd_log_err
2333  *
2334  * Description: This routine is called by the SD_ERROR macro for debug
2335  *		logging of error conditions.
2336  *
2337  *   Arguments: comp - driver component being logged
2338  *		dev  - pointer to driver info structure
2339  *		fmt  - error string and format to be logged
2340  */
2341 
2342 static void
2343 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2344 {
2345 	va_list		ap;
2346 	dev_info_t	*dev;
2347 
2348 	ASSERT(un != NULL);
2349 	dev = SD_DEVINFO(un);
2350 	ASSERT(dev != NULL);
2351 
2352 	/*
2353 	 * Filter messages based on the global component and level masks.
2354 	 * Also print if un matches the value of sd_debug_un, or if
2355 	 * sd_debug_un is set to NULL.
2356 	 */
2357 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2358 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2359 		mutex_enter(&sd_log_mutex);
2360 		va_start(ap, fmt);
2361 		(void) vsprintf(sd_log_buf, fmt, ap);
2362 		va_end(ap);
2363 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2364 		mutex_exit(&sd_log_mutex);
2365 	}
2366 #ifdef SD_FAULT_INJECTION
2367 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2368 	if (un->sd_injection_mask & comp) {
2369 		mutex_enter(&sd_log_mutex);
2370 		va_start(ap, fmt);
2371 		(void) vsprintf(sd_log_buf, fmt, ap);
2372 		va_end(ap);
2373 		sd_injection_log(sd_log_buf, un);
2374 		mutex_exit(&sd_log_mutex);
2375 	}
2376 #endif
2377 }
2378 
2379 
2380 /*
2381  *    Function: sd_log_info
2382  *
2383  * Description: This routine is called by the SD_INFO macro for debug
2384  *		logging of general purpose informational conditions.
2385  *
2386  *   Arguments: comp - driver component being logged
2387  *		dev  - pointer to driver info structure
2388  *		fmt  - info string and format to be logged
2389  */
2390 
2391 static void
2392 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2393 {
2394 	va_list		ap;
2395 	dev_info_t	*dev;
2396 
2397 	ASSERT(un != NULL);
2398 	dev = SD_DEVINFO(un);
2399 	ASSERT(dev != NULL);
2400 
2401 	/*
2402 	 * Filter messages based on the global component and level masks.
2403 	 * Also print if un matches the value of sd_debug_un, or if
2404 	 * sd_debug_un is set to NULL.
2405 	 */
2406 	if ((sd_component_mask & component) &&
2407 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2408 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2409 		mutex_enter(&sd_log_mutex);
2410 		va_start(ap, fmt);
2411 		(void) vsprintf(sd_log_buf, fmt, ap);
2412 		va_end(ap);
2413 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2414 		mutex_exit(&sd_log_mutex);
2415 	}
2416 #ifdef SD_FAULT_INJECTION
2417 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2418 	if (un->sd_injection_mask & component) {
2419 		mutex_enter(&sd_log_mutex);
2420 		va_start(ap, fmt);
2421 		(void) vsprintf(sd_log_buf, fmt, ap);
2422 		va_end(ap);
2423 		sd_injection_log(sd_log_buf, un);
2424 		mutex_exit(&sd_log_mutex);
2425 	}
2426 #endif
2427 }
2428 
2429 
2430 /*
2431  *    Function: sd_log_trace
2432  *
2433  * Description: This routine is called by the SD_TRACE macro for debug
2434  *		logging of trace conditions (i.e. function entry/exit).
2435  *
2436  *   Arguments: comp - driver component being logged
2437  *		dev  - pointer to driver info structure
2438  *		fmt  - trace string and format to be logged
2439  */
2440 
2441 static void
2442 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2443 {
2444 	va_list		ap;
2445 	dev_info_t	*dev;
2446 
2447 	ASSERT(un != NULL);
2448 	dev = SD_DEVINFO(un);
2449 	ASSERT(dev != NULL);
2450 
2451 	/*
2452 	 * Filter messages based on the global component and level masks.
2453 	 * Also print if un matches the value of sd_debug_un, or if
2454 	 * sd_debug_un is set to NULL.
2455 	 */
2456 	if ((sd_component_mask & component) &&
2457 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2458 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2459 		mutex_enter(&sd_log_mutex);
2460 		va_start(ap, fmt);
2461 		(void) vsprintf(sd_log_buf, fmt, ap);
2462 		va_end(ap);
2463 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2464 		mutex_exit(&sd_log_mutex);
2465 	}
2466 #ifdef SD_FAULT_INJECTION
2467 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2468 	if (un->sd_injection_mask & component) {
2469 		mutex_enter(&sd_log_mutex);
2470 		va_start(ap, fmt);
2471 		(void) vsprintf(sd_log_buf, fmt, ap);
2472 		va_end(ap);
2473 		sd_injection_log(sd_log_buf, un);
2474 		mutex_exit(&sd_log_mutex);
2475 	}
2476 #endif
2477 }
2478 
2479 
2480 /*
2481  *    Function: sdprobe
2482  *
2483  * Description: This is the driver probe(9e) entry point function.
2484  *
2485  *   Arguments: devi - opaque device info handle
2486  *
2487  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2488  *              DDI_PROBE_FAILURE: If the probe failed.
2489  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2490  *				   but may be present in the future.
2491  */
2492 
2493 static int
2494 sdprobe(dev_info_t *devi)
2495 {
2496 	struct scsi_device	*devp;
2497 	int			rval;
2498 	int			instance;
2499 
2500 	/*
2501 	 * if it wasn't for pln, sdprobe could actually be nulldev
2502 	 * in the "__fibre" case.
2503 	 */
2504 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2505 		return (DDI_PROBE_DONTCARE);
2506 	}
2507 
2508 	devp = ddi_get_driver_private(devi);
2509 
2510 	if (devp == NULL) {
2511 		/* Ooops... nexus driver is mis-configured... */
2512 		return (DDI_PROBE_FAILURE);
2513 	}
2514 
2515 	instance = ddi_get_instance(devi);
2516 
2517 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2518 		return (DDI_PROBE_PARTIAL);
2519 	}
2520 
2521 	/*
2522 	 * Call the SCSA utility probe routine to see if we actually
2523 	 * have a target at this SCSI nexus.
2524 	 */
2525 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2526 	case SCSIPROBE_EXISTS:
2527 		switch (devp->sd_inq->inq_dtype) {
2528 		case DTYPE_DIRECT:
2529 			rval = DDI_PROBE_SUCCESS;
2530 			break;
2531 		case DTYPE_RODIRECT:
2532 			/* CDs etc. Can be removable media */
2533 			rval = DDI_PROBE_SUCCESS;
2534 			break;
2535 		case DTYPE_OPTICAL:
2536 			/*
2537 			 * Rewritable optical driver HP115AA
2538 			 * Can also be removable media
2539 			 */
2540 
2541 			/*
2542 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2543 			 * pre solaris 9 sparc sd behavior is required
2544 			 *
2545 			 * If first time through and sd_dtype_optical_bind
2546 			 * has not been set in /etc/system check properties
2547 			 */
2548 
2549 			if (sd_dtype_optical_bind  < 0) {
2550 				sd_dtype_optical_bind = ddi_prop_get_int
2551 				    (DDI_DEV_T_ANY, devi, 0,
2552 				    "optical-device-bind", 1);
2553 			}
2554 
2555 			if (sd_dtype_optical_bind == 0) {
2556 				rval = DDI_PROBE_FAILURE;
2557 			} else {
2558 				rval = DDI_PROBE_SUCCESS;
2559 			}
2560 			break;
2561 
2562 		case DTYPE_NOTPRESENT:
2563 		default:
2564 			rval = DDI_PROBE_FAILURE;
2565 			break;
2566 		}
2567 		break;
2568 	default:
2569 		rval = DDI_PROBE_PARTIAL;
2570 		break;
2571 	}
2572 
2573 	/*
2574 	 * This routine checks for resource allocation prior to freeing,
2575 	 * so it will take care of the "smart probing" case where a
2576 	 * scsi_probe() may or may not have been issued and will *not*
2577 	 * free previously-freed resources.
2578 	 */
2579 	scsi_unprobe(devp);
2580 	return (rval);
2581 }
2582 
2583 
2584 /*
2585  *    Function: sdinfo
2586  *
2587  * Description: This is the driver getinfo(9e) entry point function.
2588  * 		Given the device number, return the devinfo pointer from
2589  *		the scsi_device structure or the instance number
2590  *		associated with the dev_t.
2591  *
2592  *   Arguments: dip     - pointer to device info structure
2593  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2594  *			  DDI_INFO_DEVT2INSTANCE)
2595  *		arg     - driver dev_t
2596  *		resultp - user buffer for request response
2597  *
2598  * Return Code: DDI_SUCCESS
2599  *              DDI_FAILURE
2600  */
2601 /* ARGSUSED */
2602 static int
2603 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2604 {
2605 	struct sd_lun	*un;
2606 	dev_t		dev;
2607 	int		instance;
2608 	int		error;
2609 
2610 	switch (infocmd) {
2611 	case DDI_INFO_DEVT2DEVINFO:
2612 		dev = (dev_t)arg;
2613 		instance = SDUNIT(dev);
2614 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2615 			return (DDI_FAILURE);
2616 		}
2617 		*result = (void *) SD_DEVINFO(un);
2618 		error = DDI_SUCCESS;
2619 		break;
2620 	case DDI_INFO_DEVT2INSTANCE:
2621 		dev = (dev_t)arg;
2622 		instance = SDUNIT(dev);
2623 		*result = (void *)(uintptr_t)instance;
2624 		error = DDI_SUCCESS;
2625 		break;
2626 	default:
2627 		error = DDI_FAILURE;
2628 	}
2629 	return (error);
2630 }
2631 
2632 /*
2633  *    Function: sd_prop_op
2634  *
2635  * Description: This is the driver prop_op(9e) entry point function.
2636  *		Return the number of blocks for the partition in question
2637  *		or forward the request to the property facilities.
2638  *
2639  *   Arguments: dev       - device number
2640  *		dip       - pointer to device info structure
2641  *		prop_op   - property operator
2642  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2643  *		name      - pointer to property name
2644  *		valuep    - pointer or address of the user buffer
2645  *		lengthp   - property length
2646  *
2647  * Return Code: DDI_PROP_SUCCESS
2648  *              DDI_PROP_NOT_FOUND
2649  *              DDI_PROP_UNDEFINED
2650  *              DDI_PROP_NO_MEMORY
2651  *              DDI_PROP_BUF_TOO_SMALL
2652  */
2653 
2654 static int
2655 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2656 	char *name, caddr_t valuep, int *lengthp)
2657 {
2658 	struct sd_lun	*un;
2659 
2660 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2661 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2662 		    name, valuep, lengthp));
2663 
2664 	return (cmlb_prop_op(un->un_cmlbhandle,
2665 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2666 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2667 }
2668 
2669 /*
2670  * The following functions are for smart probing:
2671  * sd_scsi_probe_cache_init()
2672  * sd_scsi_probe_cache_fini()
2673  * sd_scsi_clear_probe_cache()
2674  * sd_scsi_probe_with_cache()
2675  */
2676 
2677 /*
2678  *    Function: sd_scsi_probe_cache_init
2679  *
2680  * Description: Initializes the probe response cache mutex and head pointer.
2681  *
2682  *     Context: Kernel thread context
2683  */
2684 
2685 static void
2686 sd_scsi_probe_cache_init(void)
2687 {
2688 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2689 	sd_scsi_probe_cache_head = NULL;
2690 }
2691 
2692 
2693 /*
2694  *    Function: sd_scsi_probe_cache_fini
2695  *
2696  * Description: Frees all resources associated with the probe response cache.
2697  *
2698  *     Context: Kernel thread context
2699  */
2700 
2701 static void
2702 sd_scsi_probe_cache_fini(void)
2703 {
2704 	struct sd_scsi_probe_cache *cp;
2705 	struct sd_scsi_probe_cache *ncp;
2706 
2707 	/* Clean up our smart probing linked list */
2708 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2709 		ncp = cp->next;
2710 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2711 	}
2712 	sd_scsi_probe_cache_head = NULL;
2713 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2714 }
2715 
2716 
2717 /*
2718  *    Function: sd_scsi_clear_probe_cache
2719  *
2720  * Description: This routine clears the probe response cache. This is
2721  *		done when open() returns ENXIO so that when deferred
2722  *		attach is attempted (possibly after a device has been
2723  *		turned on) we will retry the probe. Since we don't know
2724  *		which target we failed to open, we just clear the
2725  *		entire cache.
2726  *
2727  *     Context: Kernel thread context
2728  */
2729 
2730 static void
2731 sd_scsi_clear_probe_cache(void)
2732 {
2733 	struct sd_scsi_probe_cache	*cp;
2734 	int				i;
2735 
2736 	mutex_enter(&sd_scsi_probe_cache_mutex);
2737 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2738 		/*
2739 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2740 		 * force probing to be performed the next time
2741 		 * sd_scsi_probe_with_cache is called.
2742 		 */
2743 		for (i = 0; i < NTARGETS_WIDE; i++) {
2744 			cp->cache[i] = SCSIPROBE_EXISTS;
2745 		}
2746 	}
2747 	mutex_exit(&sd_scsi_probe_cache_mutex);
2748 }
2749 
2750 
2751 /*
2752  *    Function: sd_scsi_probe_with_cache
2753  *
2754  * Description: This routine implements support for a scsi device probe
2755  *		with cache. The driver maintains a cache of the target
2756  *		responses to scsi probes. If we get no response from a
2757  *		target during a probe inquiry, we remember that, and we
2758  *		avoid additional calls to scsi_probe on non-zero LUNs
2759  *		on the same target until the cache is cleared. By doing
2760  *		so we avoid the 1/4 sec selection timeout for nonzero
2761  *		LUNs. lun0 of a target is always probed.
2762  *
2763  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2764  *              waitfunc - indicates what the allocator routines should
2765  *			   do when resources are not available. This value
2766  *			   is passed on to scsi_probe() when that routine
2767  *			   is called.
2768  *
2769  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2770  *		otherwise the value returned by scsi_probe(9F).
2771  *
2772  *     Context: Kernel thread context
2773  */
2774 
2775 static int
2776 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2777 {
2778 	struct sd_scsi_probe_cache	*cp;
2779 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2780 	int		lun, tgt;
2781 
2782 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2783 	    SCSI_ADDR_PROP_LUN, 0);
2784 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2785 	    SCSI_ADDR_PROP_TARGET, -1);
2786 
2787 	/* Make sure caching enabled and target in range */
2788 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2789 		/* do it the old way (no cache) */
2790 		return (scsi_probe(devp, waitfn));
2791 	}
2792 
2793 	mutex_enter(&sd_scsi_probe_cache_mutex);
2794 
2795 	/* Find the cache for this scsi bus instance */
2796 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2797 		if (cp->pdip == pdip) {
2798 			break;
2799 		}
2800 	}
2801 
2802 	/* If we can't find a cache for this pdip, create one */
2803 	if (cp == NULL) {
2804 		int i;
2805 
2806 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2807 		    KM_SLEEP);
2808 		cp->pdip = pdip;
2809 		cp->next = sd_scsi_probe_cache_head;
2810 		sd_scsi_probe_cache_head = cp;
2811 		for (i = 0; i < NTARGETS_WIDE; i++) {
2812 			cp->cache[i] = SCSIPROBE_EXISTS;
2813 		}
2814 	}
2815 
2816 	mutex_exit(&sd_scsi_probe_cache_mutex);
2817 
2818 	/* Recompute the cache for this target if LUN zero */
2819 	if (lun == 0) {
2820 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2821 	}
2822 
2823 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2824 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2825 		return (SCSIPROBE_NORESP);
2826 	}
2827 
2828 	/* Do the actual probe; save & return the result */
2829 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2830 }
2831 
2832 
2833 /*
2834  *    Function: sd_scsi_target_lun_init
2835  *
2836  * Description: Initializes the attached lun chain mutex and head pointer.
2837  *
2838  *     Context: Kernel thread context
2839  */
2840 
2841 static void
2842 sd_scsi_target_lun_init(void)
2843 {
2844 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2845 	sd_scsi_target_lun_head = NULL;
2846 }
2847 
2848 
2849 /*
2850  *    Function: sd_scsi_target_lun_fini
2851  *
2852  * Description: Frees all resources associated with the attached lun
2853  *              chain
2854  *
2855  *     Context: Kernel thread context
2856  */
2857 
2858 static void
2859 sd_scsi_target_lun_fini(void)
2860 {
2861 	struct sd_scsi_hba_tgt_lun	*cp;
2862 	struct sd_scsi_hba_tgt_lun	*ncp;
2863 
2864 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2865 		ncp = cp->next;
2866 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2867 	}
2868 	sd_scsi_target_lun_head = NULL;
2869 	mutex_destroy(&sd_scsi_target_lun_mutex);
2870 }
2871 
2872 
2873 /*
2874  *    Function: sd_scsi_get_target_lun_count
2875  *
2876  * Description: This routine will check in the attached lun chain to see
2877  * 		how many luns are attached on the required SCSI controller
2878  * 		and target. Currently, some capabilities like tagged queue
2879  *		are supported per target based by HBA. So all luns in a
2880  *		target have the same capabilities. Based on this assumption,
2881  * 		sd should only set these capabilities once per target. This
2882  *		function is called when sd needs to decide how many luns
2883  *		already attached on a target.
2884  *
2885  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2886  *			  controller device.
2887  *              target	- The target ID on the controller's SCSI bus.
2888  *
2889  * Return Code: The number of luns attached on the required target and
2890  *		controller.
2891  *		-1 if target ID is not in parallel SCSI scope or the given
2892  * 		dip is not in the chain.
2893  *
2894  *     Context: Kernel thread context
2895  */
2896 
2897 static int
2898 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2899 {
2900 	struct sd_scsi_hba_tgt_lun	*cp;
2901 
2902 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2903 		return (-1);
2904 	}
2905 
2906 	mutex_enter(&sd_scsi_target_lun_mutex);
2907 
2908 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2909 		if (cp->pdip == dip) {
2910 			break;
2911 		}
2912 	}
2913 
2914 	mutex_exit(&sd_scsi_target_lun_mutex);
2915 
2916 	if (cp == NULL) {
2917 		return (-1);
2918 	}
2919 
2920 	return (cp->nlun[target]);
2921 }
2922 
2923 
2924 /*
2925  *    Function: sd_scsi_update_lun_on_target
2926  *
2927  * Description: This routine is used to update the attached lun chain when a
2928  *		lun is attached or detached on a target.
2929  *
2930  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2931  *                        controller device.
2932  *              target  - The target ID on the controller's SCSI bus.
2933  *		flag	- Indicate the lun is attached or detached.
2934  *
2935  *     Context: Kernel thread context
2936  */
2937 
2938 static void
2939 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2940 {
2941 	struct sd_scsi_hba_tgt_lun	*cp;
2942 
2943 	mutex_enter(&sd_scsi_target_lun_mutex);
2944 
2945 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2946 		if (cp->pdip == dip) {
2947 			break;
2948 		}
2949 	}
2950 
2951 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2952 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2953 		    KM_SLEEP);
2954 		cp->pdip = dip;
2955 		cp->next = sd_scsi_target_lun_head;
2956 		sd_scsi_target_lun_head = cp;
2957 	}
2958 
2959 	mutex_exit(&sd_scsi_target_lun_mutex);
2960 
2961 	if (cp != NULL) {
2962 		if (flag == SD_SCSI_LUN_ATTACH) {
2963 			cp->nlun[target] ++;
2964 		} else {
2965 			cp->nlun[target] --;
2966 		}
2967 	}
2968 }
2969 
2970 
2971 /*
2972  *    Function: sd_spin_up_unit
2973  *
2974  * Description: Issues the following commands to spin-up the device:
2975  *		START STOP UNIT, and INQUIRY.
2976  *
2977  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
2978  *                      structure for this target.
2979  *
2980  * Return Code: 0 - success
2981  *		EIO - failure
2982  *		EACCES - reservation conflict
2983  *
2984  *     Context: Kernel thread context
2985  */
2986 
2987 static int
2988 sd_spin_up_unit(sd_ssc_t *ssc)
2989 {
2990 	size_t	resid		= 0;
2991 	int	has_conflict	= FALSE;
2992 	uchar_t *bufaddr;
2993 	int 	status;
2994 	struct sd_lun	*un;
2995 
2996 	ASSERT(ssc != NULL);
2997 	un = ssc->ssc_un;
2998 	ASSERT(un != NULL);
2999 
3000 	/*
3001 	 * Send a throwaway START UNIT command.
3002 	 *
3003 	 * If we fail on this, we don't care presently what precisely
3004 	 * is wrong.  EMC's arrays will also fail this with a check
3005 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3006 	 * we don't want to fail the attach because it may become
3007 	 * "active" later.
3008 	 */
3009 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
3010 	    SD_PATH_DIRECT);
3011 
3012 	if (status != 0) {
3013 		if (status == EACCES)
3014 			has_conflict = TRUE;
3015 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3016 	}
3017 
3018 	/*
3019 	 * Send another INQUIRY command to the target. This is necessary for
3020 	 * non-removable media direct access devices because their INQUIRY data
3021 	 * may not be fully qualified until they are spun up (perhaps via the
3022 	 * START command above).  Note: This seems to be needed for some
3023 	 * legacy devices only.) The INQUIRY command should succeed even if a
3024 	 * Reservation Conflict is present.
3025 	 */
3026 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3027 
3028 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3029 	    != 0) {
3030 		kmem_free(bufaddr, SUN_INQSIZE);
3031 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3032 		return (EIO);
3033 	}
3034 
3035 	/*
3036 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3037 	 * Note that this routine does not return a failure here even if the
3038 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3039 	 */
3040 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3041 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3042 	}
3043 
3044 	kmem_free(bufaddr, SUN_INQSIZE);
3045 
3046 	/* If we hit a reservation conflict above, tell the caller. */
3047 	if (has_conflict == TRUE) {
3048 		return (EACCES);
3049 	}
3050 
3051 	return (0);
3052 }
3053 
3054 #ifdef _LP64
3055 /*
3056  *    Function: sd_enable_descr_sense
3057  *
3058  * Description: This routine attempts to select descriptor sense format
3059  *		using the Control mode page.  Devices that support 64 bit
3060  *		LBAs (for >2TB luns) should also implement descriptor
3061  *		sense data so we will call this function whenever we see
3062  *		a lun larger than 2TB.  If for some reason the device
3063  *		supports 64 bit LBAs but doesn't support descriptor sense
3064  *		presumably the mode select will fail.  Everything will
3065  *		continue to work normally except that we will not get
3066  *		complete sense data for commands that fail with an LBA
3067  *		larger than 32 bits.
3068  *
3069  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3070  *                      structure for this target.
3071  *
3072  *     Context: Kernel thread context only
3073  */
3074 
3075 static void
3076 sd_enable_descr_sense(sd_ssc_t *ssc)
3077 {
3078 	uchar_t			*header;
3079 	struct mode_control_scsi3 *ctrl_bufp;
3080 	size_t			buflen;
3081 	size_t			bd_len;
3082 	int			status;
3083 	struct sd_lun		*un;
3084 
3085 	ASSERT(ssc != NULL);
3086 	un = ssc->ssc_un;
3087 	ASSERT(un != NULL);
3088 
3089 	/*
3090 	 * Read MODE SENSE page 0xA, Control Mode Page
3091 	 */
3092 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3093 	    sizeof (struct mode_control_scsi3);
3094 	header = kmem_zalloc(buflen, KM_SLEEP);
3095 
3096 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3097 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3098 
3099 	if (status != 0) {
3100 		SD_ERROR(SD_LOG_COMMON, un,
3101 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3102 		goto eds_exit;
3103 	}
3104 
3105 	/*
3106 	 * Determine size of Block Descriptors in order to locate
3107 	 * the mode page data. ATAPI devices return 0, SCSI devices
3108 	 * should return MODE_BLK_DESC_LENGTH.
3109 	 */
3110 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3111 
3112 	/* Clear the mode data length field for MODE SELECT */
3113 	((struct mode_header *)header)->length = 0;
3114 
3115 	ctrl_bufp = (struct mode_control_scsi3 *)
3116 	    (header + MODE_HEADER_LENGTH + bd_len);
3117 
3118 	/*
3119 	 * If the page length is smaller than the expected value,
3120 	 * the target device doesn't support D_SENSE. Bail out here.
3121 	 */
3122 	if (ctrl_bufp->mode_page.length <
3123 	    sizeof (struct mode_control_scsi3) - 2) {
3124 		SD_ERROR(SD_LOG_COMMON, un,
3125 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3126 		goto eds_exit;
3127 	}
3128 
3129 	/*
3130 	 * Clear PS bit for MODE SELECT
3131 	 */
3132 	ctrl_bufp->mode_page.ps = 0;
3133 
3134 	/*
3135 	 * Set D_SENSE to enable descriptor sense format.
3136 	 */
3137 	ctrl_bufp->d_sense = 1;
3138 
3139 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3140 
3141 	/*
3142 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3143 	 */
3144 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3145 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3146 
3147 	if (status != 0) {
3148 		SD_INFO(SD_LOG_COMMON, un,
3149 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3150 	} else {
3151 		kmem_free(header, buflen);
3152 		return;
3153 	}
3154 
3155 eds_exit:
3156 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3157 	kmem_free(header, buflen);
3158 }
3159 
3160 /*
3161  *    Function: sd_reenable_dsense_task
3162  *
3163  * Description: Re-enable descriptor sense after device or bus reset
3164  *
3165  *     Context: Executes in a taskq() thread context
3166  */
3167 static void
3168 sd_reenable_dsense_task(void *arg)
3169 {
3170 	struct	sd_lun	*un = arg;
3171 	sd_ssc_t	*ssc;
3172 
3173 	ASSERT(un != NULL);
3174 
3175 	ssc = sd_ssc_init(un);
3176 	sd_enable_descr_sense(ssc);
3177 	sd_ssc_fini(ssc);
3178 }
3179 #endif /* _LP64 */
3180 
3181 /*
3182  *    Function: sd_set_mmc_caps
3183  *
3184  * Description: This routine determines if the device is MMC compliant and if
3185  *		the device supports CDDA via a mode sense of the CDVD
3186  *		capabilities mode page. Also checks if the device is a
3187  *		dvdram writable device.
3188  *
3189  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3190  *                      structure for this target.
3191  *
3192  *     Context: Kernel thread context only
3193  */
3194 
3195 static void
3196 sd_set_mmc_caps(sd_ssc_t *ssc)
3197 {
3198 	struct mode_header_grp2		*sense_mhp;
3199 	uchar_t				*sense_page;
3200 	caddr_t				buf;
3201 	int				bd_len;
3202 	int				status;
3203 	struct uscsi_cmd		com;
3204 	int				rtn;
3205 	uchar_t				*out_data_rw, *out_data_hd;
3206 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3207 	struct sd_lun			*un;
3208 
3209 	ASSERT(ssc != NULL);
3210 	un = ssc->ssc_un;
3211 	ASSERT(un != NULL);
3212 
3213 	/*
3214 	 * The flags which will be set in this function are - mmc compliant,
3215 	 * dvdram writable device, cdda support. Initialize them to FALSE
3216 	 * and if a capability is detected - it will be set to TRUE.
3217 	 */
3218 	un->un_f_mmc_cap = FALSE;
3219 	un->un_f_dvdram_writable_device = FALSE;
3220 	un->un_f_cfg_cdda = FALSE;
3221 
3222 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3223 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3224 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3225 
3226 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3227 
3228 	if (status != 0) {
3229 		/* command failed; just return */
3230 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3231 		return;
3232 	}
3233 	/*
3234 	 * If the mode sense request for the CDROM CAPABILITIES
3235 	 * page (0x2A) succeeds the device is assumed to be MMC.
3236 	 */
3237 	un->un_f_mmc_cap = TRUE;
3238 
3239 	/* Get to the page data */
3240 	sense_mhp = (struct mode_header_grp2 *)buf;
3241 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3242 	    sense_mhp->bdesc_length_lo;
3243 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3244 		/*
3245 		 * We did not get back the expected block descriptor
3246 		 * length so we cannot determine if the device supports
3247 		 * CDDA. However, we still indicate the device is MMC
3248 		 * according to the successful response to the page
3249 		 * 0x2A mode sense request.
3250 		 */
3251 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3252 		    "sd_set_mmc_caps: Mode Sense returned "
3253 		    "invalid block descriptor length\n");
3254 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3255 		return;
3256 	}
3257 
3258 	/* See if read CDDA is supported */
3259 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3260 	    bd_len);
3261 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3262 
3263 	/* See if writing DVD RAM is supported. */
3264 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3265 	if (un->un_f_dvdram_writable_device == TRUE) {
3266 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3267 		return;
3268 	}
3269 
3270 	/*
3271 	 * If the device presents DVD or CD capabilities in the mode
3272 	 * page, we can return here since a RRD will not have
3273 	 * these capabilities.
3274 	 */
3275 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3276 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3277 		return;
3278 	}
3279 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3280 
3281 	/*
3282 	 * If un->un_f_dvdram_writable_device is still FALSE,
3283 	 * check for a Removable Rigid Disk (RRD).  A RRD
3284 	 * device is identified by the features RANDOM_WRITABLE and
3285 	 * HARDWARE_DEFECT_MANAGEMENT.
3286 	 */
3287 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3288 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3289 
3290 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3291 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3292 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3293 
3294 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3295 
3296 	if (rtn != 0) {
3297 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3298 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3299 		return;
3300 	}
3301 
3302 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3303 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3304 
3305 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3306 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3307 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3308 
3309 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3310 
3311 	if (rtn == 0) {
3312 		/*
3313 		 * We have good information, check for random writable
3314 		 * and hardware defect features.
3315 		 */
3316 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3317 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3318 			un->un_f_dvdram_writable_device = TRUE;
3319 		}
3320 	}
3321 
3322 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3323 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3324 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3325 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3326 }
3327 
3328 /*
3329  *    Function: sd_check_for_writable_cd
3330  *
3331  * Description: This routine determines if the media in the device is
3332  *		writable or not. It uses the get configuration command (0x46)
3333  *		to determine if the media is writable
3334  *
3335  *   Arguments: un - driver soft state (unit) structure
3336  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3337  *                           chain and the normal command waitq, or
3338  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3339  *                           "direct" chain and bypass the normal command
3340  *                           waitq.
3341  *
3342  *     Context: Never called at interrupt context.
3343  */
3344 
3345 static void
3346 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3347 {
3348 	struct uscsi_cmd		com;
3349 	uchar_t				*out_data;
3350 	uchar_t				*rqbuf;
3351 	int				rtn;
3352 	uchar_t				*out_data_rw, *out_data_hd;
3353 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3354 	struct mode_header_grp2		*sense_mhp;
3355 	uchar_t				*sense_page;
3356 	caddr_t				buf;
3357 	int				bd_len;
3358 	int				status;
3359 	struct sd_lun			*un;
3360 
3361 	ASSERT(ssc != NULL);
3362 	un = ssc->ssc_un;
3363 	ASSERT(un != NULL);
3364 	ASSERT(mutex_owned(SD_MUTEX(un)));
3365 
3366 	/*
3367 	 * Initialize the writable media to false, if configuration info.
3368 	 * tells us otherwise then only we will set it.
3369 	 */
3370 	un->un_f_mmc_writable_media = FALSE;
3371 	mutex_exit(SD_MUTEX(un));
3372 
3373 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3374 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3375 
3376 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3377 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3378 
3379 	if (rtn != 0)
3380 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3381 
3382 	mutex_enter(SD_MUTEX(un));
3383 	if (rtn == 0) {
3384 		/*
3385 		 * We have good information, check for writable DVD.
3386 		 */
3387 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3388 			un->un_f_mmc_writable_media = TRUE;
3389 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3390 			kmem_free(rqbuf, SENSE_LENGTH);
3391 			return;
3392 		}
3393 	}
3394 
3395 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3396 	kmem_free(rqbuf, SENSE_LENGTH);
3397 
3398 	/*
3399 	 * Determine if this is a RRD type device.
3400 	 */
3401 	mutex_exit(SD_MUTEX(un));
3402 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3403 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3404 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3405 
3406 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3407 
3408 	mutex_enter(SD_MUTEX(un));
3409 	if (status != 0) {
3410 		/* command failed; just return */
3411 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3412 		return;
3413 	}
3414 
3415 	/* Get to the page data */
3416 	sense_mhp = (struct mode_header_grp2 *)buf;
3417 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3418 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3419 		/*
3420 		 * We did not get back the expected block descriptor length so
3421 		 * we cannot check the mode page.
3422 		 */
3423 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3424 		    "sd_check_for_writable_cd: Mode Sense returned "
3425 		    "invalid block descriptor length\n");
3426 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3427 		return;
3428 	}
3429 
3430 	/*
3431 	 * If the device presents DVD or CD capabilities in the mode
3432 	 * page, we can return here since a RRD device will not have
3433 	 * these capabilities.
3434 	 */
3435 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3436 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3437 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3438 		return;
3439 	}
3440 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3441 
3442 	/*
3443 	 * If un->un_f_mmc_writable_media is still FALSE,
3444 	 * check for RRD type media.  A RRD device is identified
3445 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3446 	 */
3447 	mutex_exit(SD_MUTEX(un));
3448 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3449 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3450 
3451 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3452 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3453 	    RANDOM_WRITABLE, path_flag);
3454 
3455 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3456 	if (rtn != 0) {
3457 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3458 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3459 		mutex_enter(SD_MUTEX(un));
3460 		return;
3461 	}
3462 
3463 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3464 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3465 
3466 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3467 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3468 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3469 
3470 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3471 	mutex_enter(SD_MUTEX(un));
3472 	if (rtn == 0) {
3473 		/*
3474 		 * We have good information, check for random writable
3475 		 * and hardware defect features as current.
3476 		 */
3477 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3478 		    (out_data_rw[10] & 0x1) &&
3479 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3480 		    (out_data_hd[10] & 0x1)) {
3481 			un->un_f_mmc_writable_media = TRUE;
3482 		}
3483 	}
3484 
3485 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3486 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3487 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3488 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3489 }
3490 
3491 /*
3492  *    Function: sd_read_unit_properties
3493  *
3494  * Description: The following implements a property lookup mechanism.
3495  *		Properties for particular disks (keyed on vendor, model
3496  *		and rev numbers) are sought in the sd.conf file via
3497  *		sd_process_sdconf_file(), and if not found there, are
3498  *		looked for in a list hardcoded in this driver via
3499  *		sd_process_sdconf_table() Once located the properties
3500  *		are used to update the driver unit structure.
3501  *
3502  *   Arguments: un - driver soft state (unit) structure
3503  */
3504 
3505 static void
3506 sd_read_unit_properties(struct sd_lun *un)
3507 {
3508 	/*
3509 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3510 	 * the "sd-config-list" property (from the sd.conf file) or if
3511 	 * there was not a match for the inquiry vid/pid. If this event
3512 	 * occurs the static driver configuration table is searched for
3513 	 * a match.
3514 	 */
3515 	ASSERT(un != NULL);
3516 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3517 		sd_process_sdconf_table(un);
3518 	}
3519 
3520 	/* check for LSI device */
3521 	sd_is_lsi(un);
3522 
3523 
3524 }
3525 
3526 
3527 /*
3528  *    Function: sd_process_sdconf_file
3529  *
3530  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3531  *		driver's config file (ie, sd.conf) and update the driver
3532  *		soft state structure accordingly.
3533  *
3534  *   Arguments: un - driver soft state (unit) structure
3535  *
3536  * Return Code: SD_SUCCESS - The properties were successfully set according
3537  *			     to the driver configuration file.
3538  *		SD_FAILURE - The driver config list was not obtained or
3539  *			     there was no vid/pid match. This indicates that
3540  *			     the static config table should be used.
3541  *
3542  * The config file has a property, "sd-config-list". Currently we support
3543  * two kinds of formats. For both formats, the value of this property
3544  * is a list of duplets:
3545  *
3546  *  sd-config-list=
3547  *	<duplet>,
3548  *	[,<duplet>]*;
3549  *
3550  * For the improved format, where
3551  *
3552  *     <duplet>:= "<vid+pid>","<tunable-list>"
3553  *
3554  * and
3555  *
3556  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3557  *     <tunable> =        <name> : <value>
3558  *
3559  * The <vid+pid> is the string that is returned by the target device on a
3560  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3561  * to apply to all target devices with the specified <vid+pid>.
3562  *
3563  * Each <tunable> is a "<name> : <value>" pair.
3564  *
3565  * For the old format, the structure of each duplet is as follows:
3566  *
3567  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3568  *
3569  * The first entry of the duplet is the device ID string (the concatenated
3570  * vid & pid; not to be confused with a device_id).  This is defined in
3571  * the same way as in the sd_disk_table.
3572  *
3573  * The second part of the duplet is a string that identifies a
3574  * data-property-name-list. The data-property-name-list is defined as
3575  * follows:
3576  *
3577  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3578  *
3579  * The syntax of <data-property-name> depends on the <version> field.
3580  *
3581  * If version = SD_CONF_VERSION_1 we have the following syntax:
3582  *
3583  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3584  *
3585  * where the prop0 value will be used to set prop0 if bit0 set in the
3586  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3587  *
3588  */
3589 
3590 static int
3591 sd_process_sdconf_file(struct sd_lun *un)
3592 {
3593 	char	**config_list = NULL;
3594 	uint_t	nelements;
3595 	char	*vidptr;
3596 	int	vidlen;
3597 	char	*dnlist_ptr;
3598 	char	*dataname_ptr;
3599 	char	*dataname_lasts;
3600 	int	*data_list = NULL;
3601 	uint_t	data_list_len;
3602 	int	rval = SD_FAILURE;
3603 	int	i;
3604 
3605 	ASSERT(un != NULL);
3606 
3607 	/* Obtain the configuration list associated with the .conf file */
3608 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3609 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3610 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3611 		return (SD_FAILURE);
3612 	}
3613 
3614 	/*
3615 	 * Compare vids in each duplet to the inquiry vid - if a match is
3616 	 * made, get the data value and update the soft state structure
3617 	 * accordingly.
3618 	 *
3619 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3620 	 * otherwise.
3621 	 */
3622 	if (nelements & 1) {
3623 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3624 		    "sd-config-list should show as pairs of strings.\n");
3625 		if (config_list)
3626 			ddi_prop_free(config_list);
3627 		return (SD_FAILURE);
3628 	}
3629 
3630 	for (i = 0; i < nelements; i += 2) {
3631 		/*
3632 		 * Note: The assumption here is that each vid entry is on
3633 		 * a unique line from its associated duplet.
3634 		 */
3635 		vidptr = config_list[i];
3636 		vidlen = (int)strlen(vidptr);
3637 		if ((vidlen == 0) ||
3638 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3639 			continue;
3640 		}
3641 
3642 		/*
3643 		 * dnlist contains 1 or more blank separated
3644 		 * data-property-name entries
3645 		 */
3646 		dnlist_ptr = config_list[i + 1];
3647 
3648 		if (strchr(dnlist_ptr, ':') != NULL) {
3649 			/*
3650 			 * Decode the improved format sd-config-list.
3651 			 */
3652 			sd_nvpair_str_decode(un, dnlist_ptr);
3653 		} else {
3654 			/*
3655 			 * The old format sd-config-list, loop through all
3656 			 * data-property-name entries in the
3657 			 * data-property-name-list
3658 			 * setting the properties for each.
3659 			 */
3660 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3661 			    &dataname_lasts); dataname_ptr != NULL;
3662 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3663 			    &dataname_lasts)) {
3664 				int version;
3665 
3666 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3667 				    "sd_process_sdconf_file: disk:%s, "
3668 				    "data:%s\n", vidptr, dataname_ptr);
3669 
3670 				/* Get the data list */
3671 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3672 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3673 				    &data_list_len) != DDI_PROP_SUCCESS) {
3674 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3675 					    "sd_process_sdconf_file: data "
3676 					    "property (%s) has no value\n",
3677 					    dataname_ptr);
3678 					continue;
3679 				}
3680 
3681 				version = data_list[0];
3682 
3683 				if (version == SD_CONF_VERSION_1) {
3684 					sd_tunables values;
3685 
3686 					/* Set the properties */
3687 					if (sd_chk_vers1_data(un, data_list[1],
3688 					    &data_list[2], data_list_len,
3689 					    dataname_ptr) == SD_SUCCESS) {
3690 						sd_get_tunables_from_conf(un,
3691 						    data_list[1], &data_list[2],
3692 						    &values);
3693 						sd_set_vers1_properties(un,
3694 						    data_list[1], &values);
3695 						rval = SD_SUCCESS;
3696 					} else {
3697 						rval = SD_FAILURE;
3698 					}
3699 				} else {
3700 					scsi_log(SD_DEVINFO(un), sd_label,
3701 					    CE_WARN, "data property %s version "
3702 					    "0x%x is invalid.",
3703 					    dataname_ptr, version);
3704 					rval = SD_FAILURE;
3705 				}
3706 				if (data_list)
3707 					ddi_prop_free(data_list);
3708 			}
3709 		}
3710 	}
3711 
3712 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3713 	if (config_list) {
3714 		ddi_prop_free(config_list);
3715 	}
3716 
3717 	return (rval);
3718 }
3719 
3720 /*
3721  *    Function: sd_nvpair_str_decode()
3722  *
3723  * Description: Parse the improved format sd-config-list to get
3724  *    each entry of tunable, which includes a name-value pair.
3725  *    Then call sd_set_properties() to set the property.
3726  *
3727  *   Arguments: un - driver soft state (unit) structure
3728  *    nvpair_str - the tunable list
3729  */
3730 static void
3731 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3732 {
3733 	char	*nv, *name, *value, *token;
3734 	char	*nv_lasts, *v_lasts, *x_lasts;
3735 
3736 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3737 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3738 		token = sd_strtok_r(nv, ":", &v_lasts);
3739 		name  = sd_strtok_r(token, " \t", &x_lasts);
3740 		token = sd_strtok_r(NULL, ":", &v_lasts);
3741 		value = sd_strtok_r(token, " \t", &x_lasts);
3742 		if (name == NULL || value == NULL) {
3743 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3744 			    "sd_nvpair_str_decode: "
3745 			    "name or value is not valid!\n");
3746 		} else {
3747 			sd_set_properties(un, name, value);
3748 		}
3749 	}
3750 }
3751 
3752 /*
3753  *    Function: sd_strtok_r()
3754  *
3755  * Description: This function uses strpbrk and strspn to break
3756  *    string into tokens on sequentially subsequent calls. Return
3757  *    NULL when no non-separator characters remain. The first
3758  *    argument is NULL for subsequent calls.
3759  */
3760 static char *
3761 sd_strtok_r(char *string, const char *sepset, char **lasts)
3762 {
3763 	char	*q, *r;
3764 
3765 	/* First or subsequent call */
3766 	if (string == NULL)
3767 		string = *lasts;
3768 
3769 	if (string == NULL)
3770 		return (NULL);
3771 
3772 	/* Skip leading separators */
3773 	q = string + strspn(string, sepset);
3774 
3775 	if (*q == '\0')
3776 		return (NULL);
3777 
3778 	if ((r = strpbrk(q, sepset)) == NULL)
3779 		*lasts = NULL;
3780 	else {
3781 		*r = '\0';
3782 		*lasts = r + 1;
3783 	}
3784 	return (q);
3785 }
3786 
3787 /*
3788  *    Function: sd_set_properties()
3789  *
3790  * Description: Set device properties based on the improved
3791  *    format sd-config-list.
3792  *
3793  *   Arguments: un - driver soft state (unit) structure
3794  *    name  - supported tunable name
3795  *    value - tunable value
3796  */
3797 static void
3798 sd_set_properties(struct sd_lun *un, char *name, char *value)
3799 {
3800 	char	*endptr = NULL;
3801 	long	val = 0;
3802 
3803 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
3804 		if (strcasecmp(value, "true") == 0) {
3805 			un->un_f_suppress_cache_flush = TRUE;
3806 		} else if (strcasecmp(value, "false") == 0) {
3807 			un->un_f_suppress_cache_flush = FALSE;
3808 		} else {
3809 			goto value_invalid;
3810 		}
3811 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3812 		    "suppress_cache_flush flag set to %d\n",
3813 		    un->un_f_suppress_cache_flush);
3814 		return;
3815 	}
3816 
3817 	if (strcasecmp(name, "controller-type") == 0) {
3818 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3819 			un->un_ctype = val;
3820 		} else {
3821 			goto value_invalid;
3822 		}
3823 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3824 		    "ctype set to %d\n", un->un_ctype);
3825 		return;
3826 	}
3827 
3828 	if (strcasecmp(name, "delay-busy") == 0) {
3829 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3830 			un->un_busy_timeout = drv_usectohz(val / 1000);
3831 		} else {
3832 			goto value_invalid;
3833 		}
3834 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3835 		    "busy_timeout set to %d\n", un->un_busy_timeout);
3836 		return;
3837 	}
3838 
3839 	if (strcasecmp(name, "disksort") == 0) {
3840 		if (strcasecmp(value, "true") == 0) {
3841 			un->un_f_disksort_disabled = FALSE;
3842 		} else if (strcasecmp(value, "false") == 0) {
3843 			un->un_f_disksort_disabled = TRUE;
3844 		} else {
3845 			goto value_invalid;
3846 		}
3847 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3848 		    "disksort disabled flag set to %d\n",
3849 		    un->un_f_disksort_disabled);
3850 		return;
3851 	}
3852 
3853 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
3854 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3855 			un->un_reserve_release_time = val;
3856 		} else {
3857 			goto value_invalid;
3858 		}
3859 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3860 		    "reservation release timeout set to %d\n",
3861 		    un->un_reserve_release_time);
3862 		return;
3863 	}
3864 
3865 	if (strcasecmp(name, "reset-lun") == 0) {
3866 		if (strcasecmp(value, "true") == 0) {
3867 			un->un_f_lun_reset_enabled = TRUE;
3868 		} else if (strcasecmp(value, "false") == 0) {
3869 			un->un_f_lun_reset_enabled = FALSE;
3870 		} else {
3871 			goto value_invalid;
3872 		}
3873 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3874 		    "lun reset enabled flag set to %d\n",
3875 		    un->un_f_lun_reset_enabled);
3876 		return;
3877 	}
3878 
3879 	if (strcasecmp(name, "retries-busy") == 0) {
3880 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3881 			un->un_busy_retry_count = val;
3882 		} else {
3883 			goto value_invalid;
3884 		}
3885 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3886 		    "busy retry count set to %d\n", un->un_busy_retry_count);
3887 		return;
3888 	}
3889 
3890 	if (strcasecmp(name, "retries-timeout") == 0) {
3891 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3892 			un->un_retry_count = val;
3893 		} else {
3894 			goto value_invalid;
3895 		}
3896 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3897 		    "timeout retry count set to %d\n", un->un_retry_count);
3898 		return;
3899 	}
3900 
3901 	if (strcasecmp(name, "retries-notready") == 0) {
3902 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3903 			un->un_notready_retry_count = val;
3904 		} else {
3905 			goto value_invalid;
3906 		}
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3908 		    "notready retry count set to %d\n",
3909 		    un->un_notready_retry_count);
3910 		return;
3911 	}
3912 
3913 	if (strcasecmp(name, "retries-reset") == 0) {
3914 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3915 			un->un_reset_retry_count = val;
3916 		} else {
3917 			goto value_invalid;
3918 		}
3919 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3920 		    "reset retry count set to %d\n",
3921 		    un->un_reset_retry_count);
3922 		return;
3923 	}
3924 
3925 	if (strcasecmp(name, "throttle-max") == 0) {
3926 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3927 			un->un_saved_throttle = un->un_throttle = val;
3928 		} else {
3929 			goto value_invalid;
3930 		}
3931 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3932 		    "throttle set to %d\n", un->un_throttle);
3933 	}
3934 
3935 	if (strcasecmp(name, "throttle-min") == 0) {
3936 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3937 			un->un_min_throttle = val;
3938 		} else {
3939 			goto value_invalid;
3940 		}
3941 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3942 		    "min throttle set to %d\n", un->un_min_throttle);
3943 	}
3944 
3945 	/*
3946 	 * Validate the throttle values.
3947 	 * If any of the numbers are invalid, set everything to defaults.
3948 	 */
3949 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3950 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3951 	    (un->un_min_throttle > un->un_throttle)) {
3952 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3953 		un->un_min_throttle = sd_min_throttle;
3954 	}
3955 	return;
3956 
3957 value_invalid:
3958 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3959 	    "value of prop %s is invalid\n", name);
3960 }
3961 
3962 /*
3963  *    Function: sd_get_tunables_from_conf()
3964  *
3965  *
3966  *    This function reads the data list from the sd.conf file and pulls
3967  *    the values that can have numeric values as arguments and places
3968  *    the values in the appropriate sd_tunables member.
3969  *    Since the order of the data list members varies across platforms
3970  *    This function reads them from the data list in a platform specific
3971  *    order and places them into the correct sd_tunable member that is
3972  *    consistent across all platforms.
3973  */
3974 static void
3975 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3976     sd_tunables *values)
3977 {
3978 	int i;
3979 	int mask;
3980 
3981 	bzero(values, sizeof (sd_tunables));
3982 
3983 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3984 
3985 		mask = 1 << i;
3986 		if (mask > flags) {
3987 			break;
3988 		}
3989 
3990 		switch (mask & flags) {
3991 		case 0:	/* This mask bit not set in flags */
3992 			continue;
3993 		case SD_CONF_BSET_THROTTLE:
3994 			values->sdt_throttle = data_list[i];
3995 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3996 			    "sd_get_tunables_from_conf: throttle = %d\n",
3997 			    values->sdt_throttle);
3998 			break;
3999 		case SD_CONF_BSET_CTYPE:
4000 			values->sdt_ctype = data_list[i];
4001 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4002 			    "sd_get_tunables_from_conf: ctype = %d\n",
4003 			    values->sdt_ctype);
4004 			break;
4005 		case SD_CONF_BSET_NRR_COUNT:
4006 			values->sdt_not_rdy_retries = data_list[i];
4007 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4008 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4009 			    values->sdt_not_rdy_retries);
4010 			break;
4011 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4012 			values->sdt_busy_retries = data_list[i];
4013 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4014 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4015 			    values->sdt_busy_retries);
4016 			break;
4017 		case SD_CONF_BSET_RST_RETRIES:
4018 			values->sdt_reset_retries = data_list[i];
4019 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4020 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4021 			    values->sdt_reset_retries);
4022 			break;
4023 		case SD_CONF_BSET_RSV_REL_TIME:
4024 			values->sdt_reserv_rel_time = data_list[i];
4025 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4027 			    values->sdt_reserv_rel_time);
4028 			break;
4029 		case SD_CONF_BSET_MIN_THROTTLE:
4030 			values->sdt_min_throttle = data_list[i];
4031 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4033 			    values->sdt_min_throttle);
4034 			break;
4035 		case SD_CONF_BSET_DISKSORT_DISABLED:
4036 			values->sdt_disk_sort_dis = data_list[i];
4037 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4038 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4039 			    values->sdt_disk_sort_dis);
4040 			break;
4041 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4042 			values->sdt_lun_reset_enable = data_list[i];
4043 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4044 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4045 			    "\n", values->sdt_lun_reset_enable);
4046 			break;
4047 		case SD_CONF_BSET_CACHE_IS_NV:
4048 			values->sdt_suppress_cache_flush = data_list[i];
4049 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4050 			    "sd_get_tunables_from_conf: \
4051 			    suppress_cache_flush = %d"
4052 			    "\n", values->sdt_suppress_cache_flush);
4053 			break;
4054 		}
4055 	}
4056 }
4057 
4058 /*
4059  *    Function: sd_process_sdconf_table
4060  *
4061  * Description: Search the static configuration table for a match on the
4062  *		inquiry vid/pid and update the driver soft state structure
4063  *		according to the table property values for the device.
4064  *
4065  *		The form of a configuration table entry is:
4066  *		  <vid+pid>,<flags>,<property-data>
4067  *		  "SEAGATE ST42400N",1,0x40000,
4068  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4069  *
4070  *   Arguments: un - driver soft state (unit) structure
4071  */
4072 
4073 static void
4074 sd_process_sdconf_table(struct sd_lun *un)
4075 {
4076 	char	*id = NULL;
4077 	int	table_index;
4078 	int	idlen;
4079 
4080 	ASSERT(un != NULL);
4081 	for (table_index = 0; table_index < sd_disk_table_size;
4082 	    table_index++) {
4083 		id = sd_disk_table[table_index].device_id;
4084 		idlen = strlen(id);
4085 		if (idlen == 0) {
4086 			continue;
4087 		}
4088 
4089 		/*
4090 		 * The static configuration table currently does not
4091 		 * implement version 10 properties. Additionally,
4092 		 * multiple data-property-name entries are not
4093 		 * implemented in the static configuration table.
4094 		 */
4095 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4096 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4097 			    "sd_process_sdconf_table: disk %s\n", id);
4098 			sd_set_vers1_properties(un,
4099 			    sd_disk_table[table_index].flags,
4100 			    sd_disk_table[table_index].properties);
4101 			break;
4102 		}
4103 	}
4104 }
4105 
4106 
4107 /*
4108  *    Function: sd_sdconf_id_match
4109  *
4110  * Description: This local function implements a case sensitive vid/pid
4111  *		comparison as well as the boundary cases of wild card and
4112  *		multiple blanks.
4113  *
4114  *		Note: An implicit assumption made here is that the scsi
4115  *		inquiry structure will always keep the vid, pid and
4116  *		revision strings in consecutive sequence, so they can be
4117  *		read as a single string. If this assumption is not the
4118  *		case, a separate string, to be used for the check, needs
4119  *		to be built with these strings concatenated.
4120  *
4121  *   Arguments: un - driver soft state (unit) structure
4122  *		id - table or config file vid/pid
4123  *		idlen  - length of the vid/pid (bytes)
4124  *
4125  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4126  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4127  */
4128 
4129 static int
4130 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4131 {
4132 	struct scsi_inquiry	*sd_inq;
4133 	int 			rval = SD_SUCCESS;
4134 
4135 	ASSERT(un != NULL);
4136 	sd_inq = un->un_sd->sd_inq;
4137 	ASSERT(id != NULL);
4138 
4139 	/*
4140 	 * We use the inq_vid as a pointer to a buffer containing the
4141 	 * vid and pid and use the entire vid/pid length of the table
4142 	 * entry for the comparison. This works because the inq_pid
4143 	 * data member follows inq_vid in the scsi_inquiry structure.
4144 	 */
4145 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4146 		/*
4147 		 * The user id string is compared to the inquiry vid/pid
4148 		 * using a case insensitive comparison and ignoring
4149 		 * multiple spaces.
4150 		 */
4151 		rval = sd_blank_cmp(un, id, idlen);
4152 		if (rval != SD_SUCCESS) {
4153 			/*
4154 			 * User id strings that start and end with a "*"
4155 			 * are a special case. These do not have a
4156 			 * specific vendor, and the product string can
4157 			 * appear anywhere in the 16 byte PID portion of
4158 			 * the inquiry data. This is a simple strstr()
4159 			 * type search for the user id in the inquiry data.
4160 			 */
4161 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4162 				char	*pidptr = &id[1];
4163 				int	i;
4164 				int	j;
4165 				int	pidstrlen = idlen - 2;
4166 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4167 				    pidstrlen;
4168 
4169 				if (j < 0) {
4170 					return (SD_FAILURE);
4171 				}
4172 				for (i = 0; i < j; i++) {
4173 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4174 					    pidptr, pidstrlen) == 0) {
4175 						rval = SD_SUCCESS;
4176 						break;
4177 					}
4178 				}
4179 			}
4180 		}
4181 	}
4182 	return (rval);
4183 }
4184 
4185 
4186 /*
4187  *    Function: sd_blank_cmp
4188  *
4189  * Description: If the id string starts and ends with a space, treat
4190  *		multiple consecutive spaces as equivalent to a single
4191  *		space. For example, this causes a sd_disk_table entry
4192  *		of " NEC CDROM " to match a device's id string of
4193  *		"NEC       CDROM".
4194  *
4195  *		Note: The success exit condition for this routine is if
4196  *		the pointer to the table entry is '\0' and the cnt of
4197  *		the inquiry length is zero. This will happen if the inquiry
4198  *		string returned by the device is padded with spaces to be
4199  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4200  *		SCSI spec states that the inquiry string is to be padded with
4201  *		spaces.
4202  *
4203  *   Arguments: un - driver soft state (unit) structure
4204  *		id - table or config file vid/pid
4205  *		idlen  - length of the vid/pid (bytes)
4206  *
4207  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4208  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4209  */
4210 
4211 static int
4212 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4213 {
4214 	char		*p1;
4215 	char		*p2;
4216 	int		cnt;
4217 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4218 	    sizeof (SD_INQUIRY(un)->inq_pid);
4219 
4220 	ASSERT(un != NULL);
4221 	p2 = un->un_sd->sd_inq->inq_vid;
4222 	ASSERT(id != NULL);
4223 	p1 = id;
4224 
4225 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4226 		/*
4227 		 * Note: string p1 is terminated by a NUL but string p2
4228 		 * isn't.  The end of p2 is determined by cnt.
4229 		 */
4230 		for (;;) {
4231 			/* skip over any extra blanks in both strings */
4232 			while ((*p1 != '\0') && (*p1 == ' ')) {
4233 				p1++;
4234 			}
4235 			while ((cnt != 0) && (*p2 == ' ')) {
4236 				p2++;
4237 				cnt--;
4238 			}
4239 
4240 			/* compare the two strings */
4241 			if ((cnt == 0) ||
4242 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4243 				break;
4244 			}
4245 			while ((cnt > 0) &&
4246 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4247 				p1++;
4248 				p2++;
4249 				cnt--;
4250 			}
4251 		}
4252 	}
4253 
4254 	/* return SD_SUCCESS if both strings match */
4255 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4256 }
4257 
4258 
4259 /*
4260  *    Function: sd_chk_vers1_data
4261  *
4262  * Description: Verify the version 1 device properties provided by the
4263  *		user via the configuration file
4264  *
4265  *   Arguments: un	     - driver soft state (unit) structure
4266  *		flags	     - integer mask indicating properties to be set
4267  *		prop_list    - integer list of property values
4268  *		list_len     - number of the elements
4269  *
4270  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4271  *		SD_FAILURE - Indicates the user provided data is invalid
4272  */
4273 
4274 static int
4275 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4276     int list_len, char *dataname_ptr)
4277 {
4278 	int i;
4279 	int mask = 1;
4280 	int index = 0;
4281 
4282 	ASSERT(un != NULL);
4283 
4284 	/* Check for a NULL property name and list */
4285 	if (dataname_ptr == NULL) {
4286 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4287 		    "sd_chk_vers1_data: NULL data property name.");
4288 		return (SD_FAILURE);
4289 	}
4290 	if (prop_list == NULL) {
4291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4292 		    "sd_chk_vers1_data: %s NULL data property list.",
4293 		    dataname_ptr);
4294 		return (SD_FAILURE);
4295 	}
4296 
4297 	/* Display a warning if undefined bits are set in the flags */
4298 	if (flags & ~SD_CONF_BIT_MASK) {
4299 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4300 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4301 		    "Properties not set.",
4302 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4303 		return (SD_FAILURE);
4304 	}
4305 
4306 	/*
4307 	 * Verify the length of the list by identifying the highest bit set
4308 	 * in the flags and validating that the property list has a length
4309 	 * up to the index of this bit.
4310 	 */
4311 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4312 		if (flags & mask) {
4313 			index++;
4314 		}
4315 		mask = 1 << i;
4316 	}
4317 	if (list_len < (index + 2)) {
4318 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4319 		    "sd_chk_vers1_data: "
4320 		    "Data property list %s size is incorrect. "
4321 		    "Properties not set.", dataname_ptr);
4322 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4323 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4324 		return (SD_FAILURE);
4325 	}
4326 	return (SD_SUCCESS);
4327 }
4328 
4329 
4330 /*
4331  *    Function: sd_set_vers1_properties
4332  *
4333  * Description: Set version 1 device properties based on a property list
4334  *		retrieved from the driver configuration file or static
4335  *		configuration table. Version 1 properties have the format:
4336  *
4337  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4338  *
4339  *		where the prop0 value will be used to set prop0 if bit0
4340  *		is set in the flags
4341  *
4342  *   Arguments: un	     - driver soft state (unit) structure
4343  *		flags	     - integer mask indicating properties to be set
4344  *		prop_list    - integer list of property values
4345  */
4346 
4347 static void
4348 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4349 {
4350 	ASSERT(un != NULL);
4351 
4352 	/*
4353 	 * Set the flag to indicate cache is to be disabled. An attempt
4354 	 * to disable the cache via sd_cache_control() will be made
4355 	 * later during attach once the basic initialization is complete.
4356 	 */
4357 	if (flags & SD_CONF_BSET_NOCACHE) {
4358 		un->un_f_opt_disable_cache = TRUE;
4359 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4360 		    "sd_set_vers1_properties: caching disabled flag set\n");
4361 	}
4362 
4363 	/* CD-specific configuration parameters */
4364 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4365 		un->un_f_cfg_playmsf_bcd = TRUE;
4366 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4367 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4368 	}
4369 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4370 		un->un_f_cfg_readsub_bcd = TRUE;
4371 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4372 		    "sd_set_vers1_properties: readsub_bcd set\n");
4373 	}
4374 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4375 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4376 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4377 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4378 	}
4379 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4380 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4381 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4382 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4383 	}
4384 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4385 		un->un_f_cfg_no_read_header = TRUE;
4386 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4387 		    "sd_set_vers1_properties: no_read_header set\n");
4388 	}
4389 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4390 		un->un_f_cfg_read_cd_xd4 = TRUE;
4391 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4392 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4393 	}
4394 
4395 	/* Support for devices which do not have valid/unique serial numbers */
4396 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4397 		un->un_f_opt_fab_devid = TRUE;
4398 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4399 		    "sd_set_vers1_properties: fab_devid bit set\n");
4400 	}
4401 
4402 	/* Support for user throttle configuration */
4403 	if (flags & SD_CONF_BSET_THROTTLE) {
4404 		ASSERT(prop_list != NULL);
4405 		un->un_saved_throttle = un->un_throttle =
4406 		    prop_list->sdt_throttle;
4407 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4408 		    "sd_set_vers1_properties: throttle set to %d\n",
4409 		    prop_list->sdt_throttle);
4410 	}
4411 
4412 	/* Set the per disk retry count according to the conf file or table. */
4413 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4414 		ASSERT(prop_list != NULL);
4415 		if (prop_list->sdt_not_rdy_retries) {
4416 			un->un_notready_retry_count =
4417 			    prop_list->sdt_not_rdy_retries;
4418 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4419 			    "sd_set_vers1_properties: not ready retry count"
4420 			    " set to %d\n", un->un_notready_retry_count);
4421 		}
4422 	}
4423 
4424 	/* The controller type is reported for generic disk driver ioctls */
4425 	if (flags & SD_CONF_BSET_CTYPE) {
4426 		ASSERT(prop_list != NULL);
4427 		switch (prop_list->sdt_ctype) {
4428 		case CTYPE_CDROM:
4429 			un->un_ctype = prop_list->sdt_ctype;
4430 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4431 			    "sd_set_vers1_properties: ctype set to "
4432 			    "CTYPE_CDROM\n");
4433 			break;
4434 		case CTYPE_CCS:
4435 			un->un_ctype = prop_list->sdt_ctype;
4436 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4437 			    "sd_set_vers1_properties: ctype set to "
4438 			    "CTYPE_CCS\n");
4439 			break;
4440 		case CTYPE_ROD:		/* RW optical */
4441 			un->un_ctype = prop_list->sdt_ctype;
4442 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4443 			    "sd_set_vers1_properties: ctype set to "
4444 			    "CTYPE_ROD\n");
4445 			break;
4446 		default:
4447 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4448 			    "sd_set_vers1_properties: Could not set "
4449 			    "invalid ctype value (%d)",
4450 			    prop_list->sdt_ctype);
4451 		}
4452 	}
4453 
4454 	/* Purple failover timeout */
4455 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4456 		ASSERT(prop_list != NULL);
4457 		un->un_busy_retry_count =
4458 		    prop_list->sdt_busy_retries;
4459 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4460 		    "sd_set_vers1_properties: "
4461 		    "busy retry count set to %d\n",
4462 		    un->un_busy_retry_count);
4463 	}
4464 
4465 	/* Purple reset retry count */
4466 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4467 		ASSERT(prop_list != NULL);
4468 		un->un_reset_retry_count =
4469 		    prop_list->sdt_reset_retries;
4470 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4471 		    "sd_set_vers1_properties: "
4472 		    "reset retry count set to %d\n",
4473 		    un->un_reset_retry_count);
4474 	}
4475 
4476 	/* Purple reservation release timeout */
4477 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4478 		ASSERT(prop_list != NULL);
4479 		un->un_reserve_release_time =
4480 		    prop_list->sdt_reserv_rel_time;
4481 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4482 		    "sd_set_vers1_properties: "
4483 		    "reservation release timeout set to %d\n",
4484 		    un->un_reserve_release_time);
4485 	}
4486 
4487 	/*
4488 	 * Driver flag telling the driver to verify that no commands are pending
4489 	 * for a device before issuing a Test Unit Ready. This is a workaround
4490 	 * for a firmware bug in some Seagate eliteI drives.
4491 	 */
4492 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4493 		un->un_f_cfg_tur_check = TRUE;
4494 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4495 		    "sd_set_vers1_properties: tur queue check set\n");
4496 	}
4497 
4498 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4499 		un->un_min_throttle = prop_list->sdt_min_throttle;
4500 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4501 		    "sd_set_vers1_properties: min throttle set to %d\n",
4502 		    un->un_min_throttle);
4503 	}
4504 
4505 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4506 		un->un_f_disksort_disabled =
4507 		    (prop_list->sdt_disk_sort_dis != 0) ?
4508 		    TRUE : FALSE;
4509 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4510 		    "sd_set_vers1_properties: disksort disabled "
4511 		    "flag set to %d\n",
4512 		    prop_list->sdt_disk_sort_dis);
4513 	}
4514 
4515 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4516 		un->un_f_lun_reset_enabled =
4517 		    (prop_list->sdt_lun_reset_enable != 0) ?
4518 		    TRUE : FALSE;
4519 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4520 		    "sd_set_vers1_properties: lun reset enabled "
4521 		    "flag set to %d\n",
4522 		    prop_list->sdt_lun_reset_enable);
4523 	}
4524 
4525 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4526 		un->un_f_suppress_cache_flush =
4527 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4528 		    TRUE : FALSE;
4529 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4530 		    "sd_set_vers1_properties: suppress_cache_flush "
4531 		    "flag set to %d\n",
4532 		    prop_list->sdt_suppress_cache_flush);
4533 	}
4534 
4535 	/*
4536 	 * Validate the throttle values.
4537 	 * If any of the numbers are invalid, set everything to defaults.
4538 	 */
4539 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4540 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4541 	    (un->un_min_throttle > un->un_throttle)) {
4542 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4543 		un->un_min_throttle = sd_min_throttle;
4544 	}
4545 }
4546 
4547 /*
4548  *   Function: sd_is_lsi()
4549  *
4550  *   Description: Check for lsi devices, step through the static device
4551  *	table to match vid/pid.
4552  *
4553  *   Args: un - ptr to sd_lun
4554  *
4555  *   Notes:  When creating new LSI property, need to add the new LSI property
4556  *		to this function.
4557  */
4558 static void
4559 sd_is_lsi(struct sd_lun *un)
4560 {
4561 	char	*id = NULL;
4562 	int	table_index;
4563 	int	idlen;
4564 	void	*prop;
4565 
4566 	ASSERT(un != NULL);
4567 	for (table_index = 0; table_index < sd_disk_table_size;
4568 	    table_index++) {
4569 		id = sd_disk_table[table_index].device_id;
4570 		idlen = strlen(id);
4571 		if (idlen == 0) {
4572 			continue;
4573 		}
4574 
4575 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4576 			prop = sd_disk_table[table_index].properties;
4577 			if (prop == &lsi_properties ||
4578 			    prop == &lsi_oem_properties ||
4579 			    prop == &lsi_properties_scsi ||
4580 			    prop == &symbios_properties) {
4581 				un->un_f_cfg_is_lsi = TRUE;
4582 			}
4583 			break;
4584 		}
4585 	}
4586 }
4587 
4588 /*
4589  *    Function: sd_get_physical_geometry
4590  *
4591  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4592  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4593  *		target, and use this information to initialize the physical
4594  *		geometry cache specified by pgeom_p.
4595  *
4596  *		MODE SENSE is an optional command, so failure in this case
4597  *		does not necessarily denote an error. We want to use the
4598  *		MODE SENSE commands to derive the physical geometry of the
4599  *		device, but if either command fails, the logical geometry is
4600  *		used as the fallback for disk label geometry in cmlb.
4601  *
4602  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4603  *		have already been initialized for the current target and
4604  *		that the current values be passed as args so that we don't
4605  *		end up ever trying to use -1 as a valid value. This could
4606  *		happen if either value is reset while we're not holding
4607  *		the mutex.
4608  *
4609  *   Arguments: un - driver soft state (unit) structure
4610  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4611  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4612  *			to use the USCSI "direct" chain and bypass the normal
4613  *			command waitq.
4614  *
4615  *     Context: Kernel thread only (can sleep).
4616  */
4617 
4618 static int
4619 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4620 	diskaddr_t capacity, int lbasize, int path_flag)
4621 {
4622 	struct	mode_format	*page3p;
4623 	struct	mode_geometry	*page4p;
4624 	struct	mode_header	*headerp;
4625 	int	sector_size;
4626 	int	nsect;
4627 	int	nhead;
4628 	int	ncyl;
4629 	int	intrlv;
4630 	int	spc;
4631 	diskaddr_t	modesense_capacity;
4632 	int	rpm;
4633 	int	bd_len;
4634 	int	mode_header_length;
4635 	uchar_t	*p3bufp;
4636 	uchar_t	*p4bufp;
4637 	int	cdbsize;
4638 	int 	ret = EIO;
4639 	sd_ssc_t *ssc;
4640 	int	status;
4641 
4642 	ASSERT(un != NULL);
4643 
4644 	if (lbasize == 0) {
4645 		if (ISCD(un)) {
4646 			lbasize = 2048;
4647 		} else {
4648 			lbasize = un->un_sys_blocksize;
4649 		}
4650 	}
4651 	pgeom_p->g_secsize = (unsigned short)lbasize;
4652 
4653 	/*
4654 	 * If the unit is a cd/dvd drive MODE SENSE page three
4655 	 * and MODE SENSE page four are reserved (see SBC spec
4656 	 * and MMC spec). To prevent soft errors just return
4657 	 * using the default LBA size.
4658 	 */
4659 	if (ISCD(un))
4660 		return (ret);
4661 
4662 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4663 
4664 	/*
4665 	 * Retrieve MODE SENSE page 3 - Format Device Page
4666 	 */
4667 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4668 	ssc = sd_ssc_init(un);
4669 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4670 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4671 	if (status != 0) {
4672 		SD_ERROR(SD_LOG_COMMON, un,
4673 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4674 		goto page3_exit;
4675 	}
4676 
4677 	/*
4678 	 * Determine size of Block Descriptors in order to locate the mode
4679 	 * page data.  ATAPI devices return 0, SCSI devices should return
4680 	 * MODE_BLK_DESC_LENGTH.
4681 	 */
4682 	headerp = (struct mode_header *)p3bufp;
4683 	if (un->un_f_cfg_is_atapi == TRUE) {
4684 		struct mode_header_grp2 *mhp =
4685 		    (struct mode_header_grp2 *)headerp;
4686 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4687 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4688 	} else {
4689 		mode_header_length = MODE_HEADER_LENGTH;
4690 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4691 	}
4692 
4693 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4694 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4695 		    "received unexpected bd_len of %d, page3\n", bd_len);
4696 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4697 		    "sd_get_physical_geometry: received unexpected "
4698 		    "bd_len of %d, page3", bd_len);
4699 		status = EIO;
4700 		goto page3_exit;
4701 	}
4702 
4703 	page3p = (struct mode_format *)
4704 	    ((caddr_t)headerp + mode_header_length + bd_len);
4705 
4706 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4707 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4708 		    "mode sense pg3 code mismatch %d\n",
4709 		    page3p->mode_page.code);
4710 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4711 		    "sd_get_physical_geometry: mode sense pg3 code "
4712 		    "mismatch %d", page3p->mode_page.code);
4713 		status = EIO;
4714 		goto page3_exit;
4715 	}
4716 
4717 	/*
4718 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4719 	 * complete successfully; otherwise, revert to the logical geometry.
4720 	 * So, we need to save everything in temporary variables.
4721 	 */
4722 	sector_size = BE_16(page3p->data_bytes_sect);
4723 
4724 	/*
4725 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4726 	 */
4727 	if (sector_size == 0) {
4728 		sector_size = un->un_sys_blocksize;
4729 	} else {
4730 		sector_size &= ~(un->un_sys_blocksize - 1);
4731 	}
4732 
4733 	nsect  = BE_16(page3p->sect_track);
4734 	intrlv = BE_16(page3p->interleave);
4735 
4736 	SD_INFO(SD_LOG_COMMON, un,
4737 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4738 	SD_INFO(SD_LOG_COMMON, un,
4739 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4740 	    page3p->mode_page.code, nsect, sector_size);
4741 	SD_INFO(SD_LOG_COMMON, un,
4742 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4743 	    BE_16(page3p->track_skew),
4744 	    BE_16(page3p->cylinder_skew));
4745 
4746 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4747 
4748 	/*
4749 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4750 	 */
4751 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4752 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
4753 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
4754 	if (status != 0) {
4755 		SD_ERROR(SD_LOG_COMMON, un,
4756 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4757 		goto page4_exit;
4758 	}
4759 
4760 	/*
4761 	 * Determine size of Block Descriptors in order to locate the mode
4762 	 * page data.  ATAPI devices return 0, SCSI devices should return
4763 	 * MODE_BLK_DESC_LENGTH.
4764 	 */
4765 	headerp = (struct mode_header *)p4bufp;
4766 	if (un->un_f_cfg_is_atapi == TRUE) {
4767 		struct mode_header_grp2 *mhp =
4768 		    (struct mode_header_grp2 *)headerp;
4769 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4770 	} else {
4771 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4772 	}
4773 
4774 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4775 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4776 		    "received unexpected bd_len of %d, page4\n", bd_len);
4777 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4778 		    "sd_get_physical_geometry: received unexpected "
4779 		    "bd_len of %d, page4", bd_len);
4780 		status = EIO;
4781 		goto page4_exit;
4782 	}
4783 
4784 	page4p = (struct mode_geometry *)
4785 	    ((caddr_t)headerp + mode_header_length + bd_len);
4786 
4787 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4788 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4789 		    "mode sense pg4 code mismatch %d\n",
4790 		    page4p->mode_page.code);
4791 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4792 		    "sd_get_physical_geometry: mode sense pg4 code "
4793 		    "mismatch %d", page4p->mode_page.code);
4794 		status = EIO;
4795 		goto page4_exit;
4796 	}
4797 
4798 	/*
4799 	 * Stash the data now, after we know that both commands completed.
4800 	 */
4801 
4802 
4803 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4804 	spc   = nhead * nsect;
4805 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4806 	rpm   = BE_16(page4p->rpm);
4807 
4808 	modesense_capacity = spc * ncyl;
4809 
4810 	SD_INFO(SD_LOG_COMMON, un,
4811 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4812 	SD_INFO(SD_LOG_COMMON, un,
4813 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4814 	SD_INFO(SD_LOG_COMMON, un,
4815 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4816 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4817 	    (void *)pgeom_p, capacity);
4818 
4819 	/*
4820 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4821 	 * the product of C * H * S returned by MODE SENSE >= that returned
4822 	 * by read capacity. This is an idiosyncrasy of the original x86
4823 	 * disk subsystem.
4824 	 */
4825 	if (modesense_capacity >= capacity) {
4826 		SD_INFO(SD_LOG_COMMON, un,
4827 		    "sd_get_physical_geometry: adjusting acyl; "
4828 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4829 		    (modesense_capacity - capacity + spc - 1) / spc);
4830 		if (sector_size != 0) {
4831 			/* 1243403: NEC D38x7 drives don't support sec size */
4832 			pgeom_p->g_secsize = (unsigned short)sector_size;
4833 		}
4834 		pgeom_p->g_nsect    = (unsigned short)nsect;
4835 		pgeom_p->g_nhead    = (unsigned short)nhead;
4836 		pgeom_p->g_capacity = capacity;
4837 		pgeom_p->g_acyl	    =
4838 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4839 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4840 	}
4841 
4842 	pgeom_p->g_rpm    = (unsigned short)rpm;
4843 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4844 	ret = 0;
4845 
4846 	SD_INFO(SD_LOG_COMMON, un,
4847 	    "sd_get_physical_geometry: mode sense geometry:\n");
4848 	SD_INFO(SD_LOG_COMMON, un,
4849 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4850 	    nsect, sector_size, intrlv);
4851 	SD_INFO(SD_LOG_COMMON, un,
4852 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4853 	    nhead, ncyl, rpm, modesense_capacity);
4854 	SD_INFO(SD_LOG_COMMON, un,
4855 	    "sd_get_physical_geometry: (cached)\n");
4856 	SD_INFO(SD_LOG_COMMON, un,
4857 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4858 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4859 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4860 	SD_INFO(SD_LOG_COMMON, un,
4861 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4862 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4863 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4864 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4865 
4866 page4_exit:
4867 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4868 
4869 page3_exit:
4870 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4871 
4872 	if (status != 0) {
4873 		if (status == EIO) {
4874 			/*
4875 			 * Some disks do not support mode sense(6), we
4876 			 * should ignore this kind of error(sense key is
4877 			 * 0x5 - illegal request).
4878 			 */
4879 			uint8_t *sensep;
4880 			int senlen;
4881 
4882 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
4883 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
4884 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
4885 
4886 			if (senlen > 0 &&
4887 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
4888 				sd_ssc_assessment(ssc,
4889 				    SD_FMT_IGNORE_COMPROMISE);
4890 			} else {
4891 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
4892 			}
4893 		} else {
4894 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
4895 		}
4896 	}
4897 	sd_ssc_fini(ssc);
4898 	return (ret);
4899 }
4900 
4901 /*
4902  *    Function: sd_get_virtual_geometry
4903  *
4904  * Description: Ask the controller to tell us about the target device.
4905  *
4906  *   Arguments: un - pointer to softstate
4907  *		capacity - disk capacity in #blocks
4908  *		lbasize - disk block size in bytes
4909  *
4910  *     Context: Kernel thread only
4911  */
4912 
4913 static int
4914 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4915     diskaddr_t capacity, int lbasize)
4916 {
4917 	uint_t	geombuf;
4918 	int	spc;
4919 
4920 	ASSERT(un != NULL);
4921 
4922 	/* Set sector size, and total number of sectors */
4923 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4924 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4925 
4926 	/* Let the HBA tell us its geometry */
4927 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4928 
4929 	/* A value of -1 indicates an undefined "geometry" property */
4930 	if (geombuf == (-1)) {
4931 		return (EINVAL);
4932 	}
4933 
4934 	/* Initialize the logical geometry cache. */
4935 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4936 	lgeom_p->g_nsect   = geombuf & 0xffff;
4937 	lgeom_p->g_secsize = un->un_sys_blocksize;
4938 
4939 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4940 
4941 	/*
4942 	 * Note: The driver originally converted the capacity value from
4943 	 * target blocks to system blocks. However, the capacity value passed
4944 	 * to this routine is already in terms of system blocks (this scaling
4945 	 * is done when the READ CAPACITY command is issued and processed).
4946 	 * This 'error' may have gone undetected because the usage of g_ncyl
4947 	 * (which is based upon g_capacity) is very limited within the driver
4948 	 */
4949 	lgeom_p->g_capacity = capacity;
4950 
4951 	/*
4952 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4953 	 * hba may return zero values if the device has been removed.
4954 	 */
4955 	if (spc == 0) {
4956 		lgeom_p->g_ncyl = 0;
4957 	} else {
4958 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4959 	}
4960 	lgeom_p->g_acyl = 0;
4961 
4962 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4963 	return (0);
4964 
4965 }
4966 /*
4967  *    Function: sd_update_block_info
4968  *
4969  * Description: Calculate a byte count to sector count bitshift value
4970  *		from sector size.
4971  *
4972  *   Arguments: un: unit struct.
4973  *		lbasize: new target sector size
4974  *		capacity: new target capacity, ie. block count
4975  *
4976  *     Context: Kernel thread context
4977  */
4978 
4979 static void
4980 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4981 {
4982 	if (lbasize != 0) {
4983 		un->un_tgt_blocksize = lbasize;
4984 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4985 	}
4986 
4987 	if (capacity != 0) {
4988 		un->un_blockcount		= capacity;
4989 		un->un_f_blockcount_is_valid	= TRUE;
4990 	}
4991 }
4992 
4993 
4994 /*
4995  *    Function: sd_register_devid
4996  *
4997  * Description: This routine will obtain the device id information from the
4998  *		target, obtain the serial number, and register the device
4999  *		id with the ddi framework.
5000  *
5001  *   Arguments: devi - the system's dev_info_t for the device.
5002  *		un - driver soft state (unit) structure
5003  *		reservation_flag - indicates if a reservation conflict
5004  *		occurred during attach
5005  *
5006  *     Context: Kernel Thread
5007  */
5008 static void
5009 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5010 {
5011 	int		rval		= 0;
5012 	uchar_t		*inq80		= NULL;
5013 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5014 	size_t		inq80_resid	= 0;
5015 	uchar_t		*inq83		= NULL;
5016 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5017 	size_t		inq83_resid	= 0;
5018 	int		dlen, len;
5019 	char		*sn;
5020 	struct sd_lun	*un;
5021 
5022 	ASSERT(ssc != NULL);
5023 	un = ssc->ssc_un;
5024 	ASSERT(un != NULL);
5025 	ASSERT(mutex_owned(SD_MUTEX(un)));
5026 	ASSERT((SD_DEVINFO(un)) == devi);
5027 
5028 	/*
5029 	 * If transport has already registered a devid for this target
5030 	 * then that takes precedence over the driver's determination
5031 	 * of the devid.
5032 	 */
5033 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5034 		ASSERT(un->un_devid);
5035 		return; /* use devid registered by the transport */
5036 	}
5037 
5038 	/*
5039 	 * This is the case of antiquated Sun disk drives that have the
5040 	 * FAB_DEVID property set in the disk_table.  These drives
5041 	 * manage the devid's by storing them in last 2 available sectors
5042 	 * on the drive and have them fabricated by the ddi layer by calling
5043 	 * ddi_devid_init and passing the DEVID_FAB flag.
5044 	 */
5045 	if (un->un_f_opt_fab_devid == TRUE) {
5046 		/*
5047 		 * Depending on EINVAL isn't reliable, since a reserved disk
5048 		 * may result in invalid geometry, so check to make sure a
5049 		 * reservation conflict did not occur during attach.
5050 		 */
5051 		if ((sd_get_devid(ssc) == EINVAL) &&
5052 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5053 			/*
5054 			 * The devid is invalid AND there is no reservation
5055 			 * conflict.  Fabricate a new devid.
5056 			 */
5057 			(void) sd_create_devid(ssc);
5058 		}
5059 
5060 		/* Register the devid if it exists */
5061 		if (un->un_devid != NULL) {
5062 			(void) ddi_devid_register(SD_DEVINFO(un),
5063 			    un->un_devid);
5064 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5065 			    "sd_register_devid: Devid Fabricated\n");
5066 		}
5067 		return;
5068 	}
5069 
5070 	/*
5071 	 * We check the availability of the World Wide Name (0x83) and Unit
5072 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5073 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5074 	 * 0x83 is available, that is the best choice.  Our next choice is
5075 	 * 0x80.  If neither are available, we munge the devid from the device
5076 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5077 	 * to fabricate a devid for non-Sun qualified disks.
5078 	 */
5079 	if (sd_check_vpd_page_support(ssc) == 0) {
5080 		/* collect page 80 data if available */
5081 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5082 
5083 			mutex_exit(SD_MUTEX(un));
5084 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5085 
5086 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5087 			    0x01, 0x80, &inq80_resid);
5088 
5089 			if (rval != 0) {
5090 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5091 				kmem_free(inq80, inq80_len);
5092 				inq80 = NULL;
5093 				inq80_len = 0;
5094 			} else if (ddi_prop_exists(
5095 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5096 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5097 			    INQUIRY_SERIAL_NO) == 0) {
5098 				/*
5099 				 * If we don't already have a serial number
5100 				 * property, do quick verify of data returned
5101 				 * and define property.
5102 				 */
5103 				dlen = inq80_len - inq80_resid;
5104 				len = (size_t)inq80[3];
5105 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5106 					/*
5107 					 * Ensure sn termination, skip leading
5108 					 * blanks, and create property
5109 					 * 'inquiry-serial-no'.
5110 					 */
5111 					sn = (char *)&inq80[4];
5112 					sn[len] = 0;
5113 					while (*sn && (*sn == ' '))
5114 						sn++;
5115 					if (*sn) {
5116 						(void) ddi_prop_update_string(
5117 						    DDI_DEV_T_NONE,
5118 						    SD_DEVINFO(un),
5119 						    INQUIRY_SERIAL_NO, sn);
5120 					}
5121 				}
5122 			}
5123 			mutex_enter(SD_MUTEX(un));
5124 		}
5125 
5126 		/* collect page 83 data if available */
5127 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5128 			mutex_exit(SD_MUTEX(un));
5129 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5130 
5131 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5132 			    0x01, 0x83, &inq83_resid);
5133 
5134 			if (rval != 0) {
5135 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5136 				kmem_free(inq83, inq83_len);
5137 				inq83 = NULL;
5138 				inq83_len = 0;
5139 			}
5140 			mutex_enter(SD_MUTEX(un));
5141 		}
5142 	}
5143 
5144 	/* encode best devid possible based on data available */
5145 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5146 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5147 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5148 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5149 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5150 
5151 		/* devid successfully encoded, register devid */
5152 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5153 
5154 	} else {
5155 		/*
5156 		 * Unable to encode a devid based on data available.
5157 		 * This is not a Sun qualified disk.  Older Sun disk
5158 		 * drives that have the SD_FAB_DEVID property
5159 		 * set in the disk_table and non Sun qualified
5160 		 * disks are treated in the same manner.  These
5161 		 * drives manage the devid's by storing them in
5162 		 * last 2 available sectors on the drive and
5163 		 * have them fabricated by the ddi layer by
5164 		 * calling ddi_devid_init and passing the
5165 		 * DEVID_FAB flag.
5166 		 * Create a fabricate devid only if there's no
5167 		 * fabricate devid existed.
5168 		 */
5169 		if (sd_get_devid(ssc) == EINVAL) {
5170 			(void) sd_create_devid(ssc);
5171 		}
5172 		un->un_f_opt_fab_devid = TRUE;
5173 
5174 		/* Register the devid if it exists */
5175 		if (un->un_devid != NULL) {
5176 			(void) ddi_devid_register(SD_DEVINFO(un),
5177 			    un->un_devid);
5178 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5179 			    "sd_register_devid: devid fabricated using "
5180 			    "ddi framework\n");
5181 		}
5182 	}
5183 
5184 	/* clean up resources */
5185 	if (inq80 != NULL) {
5186 		kmem_free(inq80, inq80_len);
5187 	}
5188 	if (inq83 != NULL) {
5189 		kmem_free(inq83, inq83_len);
5190 	}
5191 }
5192 
5193 
5194 
5195 /*
5196  *    Function: sd_get_devid
5197  *
5198  * Description: This routine will return 0 if a valid device id has been
5199  *		obtained from the target and stored in the soft state. If a
5200  *		valid device id has not been previously read and stored, a
5201  *		read attempt will be made.
5202  *
5203  *   Arguments: un - driver soft state (unit) structure
5204  *
5205  * Return Code: 0 if we successfully get the device id
5206  *
5207  *     Context: Kernel Thread
5208  */
5209 
5210 static int
5211 sd_get_devid(sd_ssc_t *ssc)
5212 {
5213 	struct dk_devid		*dkdevid;
5214 	ddi_devid_t		tmpid;
5215 	uint_t			*ip;
5216 	size_t			sz;
5217 	diskaddr_t		blk;
5218 	int			status;
5219 	int			chksum;
5220 	int			i;
5221 	size_t			buffer_size;
5222 	struct sd_lun		*un;
5223 
5224 	ASSERT(ssc != NULL);
5225 	un = ssc->ssc_un;
5226 	ASSERT(un != NULL);
5227 	ASSERT(mutex_owned(SD_MUTEX(un)));
5228 
5229 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5230 	    un);
5231 
5232 	if (un->un_devid != NULL) {
5233 		return (0);
5234 	}
5235 
5236 	mutex_exit(SD_MUTEX(un));
5237 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5238 	    (void *)SD_PATH_DIRECT) != 0) {
5239 		mutex_enter(SD_MUTEX(un));
5240 		return (EINVAL);
5241 	}
5242 
5243 	/*
5244 	 * Read and verify device id, stored in the reserved cylinders at the
5245 	 * end of the disk. Backup label is on the odd sectors of the last
5246 	 * track of the last cylinder. Device id will be on track of the next
5247 	 * to last cylinder.
5248 	 */
5249 	mutex_enter(SD_MUTEX(un));
5250 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5251 	mutex_exit(SD_MUTEX(un));
5252 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5253 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5254 	    SD_PATH_DIRECT);
5255 
5256 	if (status != 0) {
5257 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5258 		goto error;
5259 	}
5260 
5261 	/* Validate the revision */
5262 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5263 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5264 		status = EINVAL;
5265 		goto error;
5266 	}
5267 
5268 	/* Calculate the checksum */
5269 	chksum = 0;
5270 	ip = (uint_t *)dkdevid;
5271 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5272 	    i++) {
5273 		chksum ^= ip[i];
5274 	}
5275 
5276 	/* Compare the checksums */
5277 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5278 		status = EINVAL;
5279 		goto error;
5280 	}
5281 
5282 	/* Validate the device id */
5283 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5284 		status = EINVAL;
5285 		goto error;
5286 	}
5287 
5288 	/*
5289 	 * Store the device id in the driver soft state
5290 	 */
5291 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5292 	tmpid = kmem_alloc(sz, KM_SLEEP);
5293 
5294 	mutex_enter(SD_MUTEX(un));
5295 
5296 	un->un_devid = tmpid;
5297 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5298 
5299 	kmem_free(dkdevid, buffer_size);
5300 
5301 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5302 
5303 	return (status);
5304 error:
5305 	mutex_enter(SD_MUTEX(un));
5306 	kmem_free(dkdevid, buffer_size);
5307 	return (status);
5308 }
5309 
5310 
5311 /*
5312  *    Function: sd_create_devid
5313  *
5314  * Description: This routine will fabricate the device id and write it
5315  *		to the disk.
5316  *
5317  *   Arguments: un - driver soft state (unit) structure
5318  *
5319  * Return Code: value of the fabricated device id
5320  *
5321  *     Context: Kernel Thread
5322  */
5323 
5324 static ddi_devid_t
5325 sd_create_devid(sd_ssc_t *ssc)
5326 {
5327 	struct sd_lun	*un;
5328 
5329 	ASSERT(ssc != NULL);
5330 	un = ssc->ssc_un;
5331 	ASSERT(un != NULL);
5332 
5333 	/* Fabricate the devid */
5334 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5335 	    == DDI_FAILURE) {
5336 		return (NULL);
5337 	}
5338 
5339 	/* Write the devid to disk */
5340 	if (sd_write_deviceid(ssc) != 0) {
5341 		ddi_devid_free(un->un_devid);
5342 		un->un_devid = NULL;
5343 	}
5344 
5345 	return (un->un_devid);
5346 }
5347 
5348 
5349 /*
5350  *    Function: sd_write_deviceid
5351  *
5352  * Description: This routine will write the device id to the disk
5353  *		reserved sector.
5354  *
5355  *   Arguments: un - driver soft state (unit) structure
5356  *
5357  * Return Code: EINVAL
5358  *		value returned by sd_send_scsi_cmd
5359  *
5360  *     Context: Kernel Thread
5361  */
5362 
5363 static int
5364 sd_write_deviceid(sd_ssc_t *ssc)
5365 {
5366 	struct dk_devid		*dkdevid;
5367 	diskaddr_t		blk;
5368 	uint_t			*ip, chksum;
5369 	int			status;
5370 	int			i;
5371 	struct sd_lun		*un;
5372 
5373 	ASSERT(ssc != NULL);
5374 	un = ssc->ssc_un;
5375 	ASSERT(un != NULL);
5376 	ASSERT(mutex_owned(SD_MUTEX(un)));
5377 
5378 	mutex_exit(SD_MUTEX(un));
5379 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5380 	    (void *)SD_PATH_DIRECT) != 0) {
5381 		mutex_enter(SD_MUTEX(un));
5382 		return (-1);
5383 	}
5384 
5385 
5386 	/* Allocate the buffer */
5387 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5388 
5389 	/* Fill in the revision */
5390 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5391 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5392 
5393 	/* Copy in the device id */
5394 	mutex_enter(SD_MUTEX(un));
5395 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5396 	    ddi_devid_sizeof(un->un_devid));
5397 	mutex_exit(SD_MUTEX(un));
5398 
5399 	/* Calculate the checksum */
5400 	chksum = 0;
5401 	ip = (uint_t *)dkdevid;
5402 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5403 	    i++) {
5404 		chksum ^= ip[i];
5405 	}
5406 
5407 	/* Fill-in checksum */
5408 	DKD_FORMCHKSUM(chksum, dkdevid);
5409 
5410 	/* Write the reserved sector */
5411 	status = sd_send_scsi_WRITE(ssc, dkdevid, un->un_sys_blocksize, blk,
5412 	    SD_PATH_DIRECT);
5413 	if (status != 0)
5414 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5415 
5416 	kmem_free(dkdevid, un->un_sys_blocksize);
5417 
5418 	mutex_enter(SD_MUTEX(un));
5419 	return (status);
5420 }
5421 
5422 
5423 /*
5424  *    Function: sd_check_vpd_page_support
5425  *
5426  * Description: This routine sends an inquiry command with the EVPD bit set and
5427  *		a page code of 0x00 to the device. It is used to determine which
5428  *		vital product pages are available to find the devid. We are
5429  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5430  *		device does not support that command.
5431  *
5432  *   Arguments: un  - driver soft state (unit) structure
5433  *
5434  * Return Code: 0 - success
5435  *		1 - check condition
5436  *
5437  *     Context: This routine can sleep.
5438  */
5439 
5440 static int
5441 sd_check_vpd_page_support(sd_ssc_t *ssc)
5442 {
5443 	uchar_t	*page_list	= NULL;
5444 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5445 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5446 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5447 	int    	rval		= 0;
5448 	int	counter;
5449 	struct sd_lun		*un;
5450 
5451 	ASSERT(ssc != NULL);
5452 	un = ssc->ssc_un;
5453 	ASSERT(un != NULL);
5454 	ASSERT(mutex_owned(SD_MUTEX(un)));
5455 
5456 	mutex_exit(SD_MUTEX(un));
5457 
5458 	/*
5459 	 * We'll set the page length to the maximum to save figuring it out
5460 	 * with an additional call.
5461 	 */
5462 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5463 
5464 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5465 	    page_code, NULL);
5466 
5467 	if (rval != 0)
5468 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5469 
5470 	mutex_enter(SD_MUTEX(un));
5471 
5472 	/*
5473 	 * Now we must validate that the device accepted the command, as some
5474 	 * drives do not support it.  If the drive does support it, we will
5475 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5476 	 * not, we return -1.
5477 	 */
5478 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5479 		/* Loop to find one of the 2 pages we need */
5480 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5481 
5482 		/*
5483 		 * Pages are returned in ascending order, and 0x83 is what we
5484 		 * are hoping for.
5485 		 */
5486 		while ((page_list[counter] <= 0x86) &&
5487 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5488 		    VPD_HEAD_OFFSET))) {
5489 			/*
5490 			 * Add 3 because page_list[3] is the number of
5491 			 * pages minus 3
5492 			 */
5493 
5494 			switch (page_list[counter]) {
5495 			case 0x00:
5496 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5497 				break;
5498 			case 0x80:
5499 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5500 				break;
5501 			case 0x81:
5502 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5503 				break;
5504 			case 0x82:
5505 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5506 				break;
5507 			case 0x83:
5508 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5509 				break;
5510 			case 0x86:
5511 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5512 				break;
5513 			}
5514 			counter++;
5515 		}
5516 
5517 	} else {
5518 		rval = -1;
5519 
5520 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5521 		    "sd_check_vpd_page_support: This drive does not implement "
5522 		    "VPD pages.\n");
5523 	}
5524 
5525 	kmem_free(page_list, page_length);
5526 
5527 	return (rval);
5528 }
5529 
5530 
5531 /*
5532  *    Function: sd_setup_pm
5533  *
5534  * Description: Initialize Power Management on the device
5535  *
5536  *     Context: Kernel Thread
5537  */
5538 
5539 static void
5540 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5541 {
5542 	uint_t		log_page_size;
5543 	uchar_t		*log_page_data;
5544 	int		rval = 0;
5545 	struct sd_lun	*un;
5546 
5547 	ASSERT(ssc != NULL);
5548 	un = ssc->ssc_un;
5549 	ASSERT(un != NULL);
5550 
5551 	/*
5552 	 * Since we are called from attach, holding a mutex for
5553 	 * un is unnecessary. Because some of the routines called
5554 	 * from here require SD_MUTEX to not be held, assert this
5555 	 * right up front.
5556 	 */
5557 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5558 	/*
5559 	 * Since the sd device does not have the 'reg' property,
5560 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5561 	 * The following code is to tell cpr that this device
5562 	 * DOES need to be suspended and resumed.
5563 	 */
5564 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5565 	    "pm-hardware-state", "needs-suspend-resume");
5566 
5567 	/*
5568 	 * This complies with the new power management framework
5569 	 * for certain desktop machines. Create the pm_components
5570 	 * property as a string array property.
5571 	 */
5572 	if (un->un_f_pm_supported) {
5573 		/*
5574 		 * not all devices have a motor, try it first.
5575 		 * some devices may return ILLEGAL REQUEST, some
5576 		 * will hang
5577 		 * The following START_STOP_UNIT is used to check if target
5578 		 * device has a motor.
5579 		 */
5580 		un->un_f_start_stop_supported = TRUE;
5581 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
5582 		    SD_PATH_DIRECT);
5583 
5584 		if (rval != 0) {
5585 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5586 			un->un_f_start_stop_supported = FALSE;
5587 		}
5588 
5589 		/*
5590 		 * create pm properties anyways otherwise the parent can't
5591 		 * go to sleep
5592 		 */
5593 		(void) sd_create_pm_components(devi, un);
5594 		un->un_f_pm_is_enabled = TRUE;
5595 		return;
5596 	}
5597 
5598 	if (!un->un_f_log_sense_supported) {
5599 		un->un_power_level = SD_SPINDLE_ON;
5600 		un->un_f_pm_is_enabled = FALSE;
5601 		return;
5602 	}
5603 
5604 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5605 
5606 #ifdef	SDDEBUG
5607 	if (sd_force_pm_supported) {
5608 		/* Force a successful result */
5609 		rval = 1;
5610 	}
5611 #endif
5612 
5613 	/*
5614 	 * If the start-stop cycle counter log page is not supported
5615 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5616 	 * then we should not create the pm_components property.
5617 	 */
5618 	if (rval == -1) {
5619 		/*
5620 		 * Error.
5621 		 * Reading log sense failed, most likely this is
5622 		 * an older drive that does not support log sense.
5623 		 * If this fails auto-pm is not supported.
5624 		 */
5625 		un->un_power_level = SD_SPINDLE_ON;
5626 		un->un_f_pm_is_enabled = FALSE;
5627 
5628 	} else if (rval == 0) {
5629 		/*
5630 		 * Page not found.
5631 		 * The start stop cycle counter is implemented as page
5632 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5633 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5634 		 */
5635 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5636 			/*
5637 			 * Page found, use this one.
5638 			 */
5639 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5640 			un->un_f_pm_is_enabled = TRUE;
5641 		} else {
5642 			/*
5643 			 * Error or page not found.
5644 			 * auto-pm is not supported for this device.
5645 			 */
5646 			un->un_power_level = SD_SPINDLE_ON;
5647 			un->un_f_pm_is_enabled = FALSE;
5648 		}
5649 	} else {
5650 		/*
5651 		 * Page found, use it.
5652 		 */
5653 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5654 		un->un_f_pm_is_enabled = TRUE;
5655 	}
5656 
5657 
5658 	if (un->un_f_pm_is_enabled == TRUE) {
5659 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5660 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5661 
5662 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
5663 		    log_page_size, un->un_start_stop_cycle_page,
5664 		    0x01, 0, SD_PATH_DIRECT);
5665 
5666 		if (rval != 0) {
5667 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5668 		}
5669 
5670 #ifdef	SDDEBUG
5671 		if (sd_force_pm_supported) {
5672 			/* Force a successful result */
5673 			rval = 0;
5674 		}
5675 #endif
5676 
5677 		/*
5678 		 * If the Log sense for Page( Start/stop cycle counter page)
5679 		 * succeeds, then power management is supported and we can
5680 		 * enable auto-pm.
5681 		 */
5682 		if (rval == 0)  {
5683 			(void) sd_create_pm_components(devi, un);
5684 		} else {
5685 			un->un_power_level = SD_SPINDLE_ON;
5686 			un->un_f_pm_is_enabled = FALSE;
5687 		}
5688 
5689 		kmem_free(log_page_data, log_page_size);
5690 	}
5691 }
5692 
5693 
5694 /*
5695  *    Function: sd_create_pm_components
5696  *
5697  * Description: Initialize PM property.
5698  *
5699  *     Context: Kernel thread context
5700  */
5701 
5702 static void
5703 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5704 {
5705 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5706 
5707 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5708 
5709 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5710 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5711 		/*
5712 		 * When components are initially created they are idle,
5713 		 * power up any non-removables.
5714 		 * Note: the return value of pm_raise_power can't be used
5715 		 * for determining if PM should be enabled for this device.
5716 		 * Even if you check the return values and remove this
5717 		 * property created above, the PM framework will not honor the
5718 		 * change after the first call to pm_raise_power. Hence,
5719 		 * removal of that property does not help if pm_raise_power
5720 		 * fails. In the case of removable media, the start/stop
5721 		 * will fail if the media is not present.
5722 		 */
5723 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5724 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5725 			mutex_enter(SD_MUTEX(un));
5726 			un->un_power_level = SD_SPINDLE_ON;
5727 			mutex_enter(&un->un_pm_mutex);
5728 			/* Set to on and not busy. */
5729 			un->un_pm_count = 0;
5730 		} else {
5731 			mutex_enter(SD_MUTEX(un));
5732 			un->un_power_level = SD_SPINDLE_OFF;
5733 			mutex_enter(&un->un_pm_mutex);
5734 			/* Set to off. */
5735 			un->un_pm_count = -1;
5736 		}
5737 		mutex_exit(&un->un_pm_mutex);
5738 		mutex_exit(SD_MUTEX(un));
5739 	} else {
5740 		un->un_power_level = SD_SPINDLE_ON;
5741 		un->un_f_pm_is_enabled = FALSE;
5742 	}
5743 }
5744 
5745 
5746 /*
5747  *    Function: sd_ddi_suspend
5748  *
5749  * Description: Performs system power-down operations. This includes
5750  *		setting the drive state to indicate its suspended so
5751  *		that no new commands will be accepted. Also, wait for
5752  *		all commands that are in transport or queued to a timer
5753  *		for retry to complete. All timeout threads are cancelled.
5754  *
5755  * Return Code: DDI_FAILURE or DDI_SUCCESS
5756  *
5757  *     Context: Kernel thread context
5758  */
5759 
5760 static int
5761 sd_ddi_suspend(dev_info_t *devi)
5762 {
5763 	struct	sd_lun	*un;
5764 	clock_t		wait_cmds_complete;
5765 
5766 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5767 	if (un == NULL) {
5768 		return (DDI_FAILURE);
5769 	}
5770 
5771 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5772 
5773 	mutex_enter(SD_MUTEX(un));
5774 
5775 	/* Return success if the device is already suspended. */
5776 	if (un->un_state == SD_STATE_SUSPENDED) {
5777 		mutex_exit(SD_MUTEX(un));
5778 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5779 		    "device already suspended, exiting\n");
5780 		return (DDI_SUCCESS);
5781 	}
5782 
5783 	/* Return failure if the device is being used by HA */
5784 	if (un->un_resvd_status &
5785 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5786 		mutex_exit(SD_MUTEX(un));
5787 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5788 		    "device in use by HA, exiting\n");
5789 		return (DDI_FAILURE);
5790 	}
5791 
5792 	/*
5793 	 * Return failure if the device is in a resource wait
5794 	 * or power changing state.
5795 	 */
5796 	if ((un->un_state == SD_STATE_RWAIT) ||
5797 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5798 		mutex_exit(SD_MUTEX(un));
5799 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5800 		    "device in resource wait state, exiting\n");
5801 		return (DDI_FAILURE);
5802 	}
5803 
5804 
5805 	un->un_save_state = un->un_last_state;
5806 	New_state(un, SD_STATE_SUSPENDED);
5807 
5808 	/*
5809 	 * Wait for all commands that are in transport or queued to a timer
5810 	 * for retry to complete.
5811 	 *
5812 	 * While waiting, no new commands will be accepted or sent because of
5813 	 * the new state we set above.
5814 	 *
5815 	 * Wait till current operation has completed. If we are in the resource
5816 	 * wait state (with an intr outstanding) then we need to wait till the
5817 	 * intr completes and starts the next cmd. We want to wait for
5818 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5819 	 */
5820 	wait_cmds_complete = ddi_get_lbolt() +
5821 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5822 
5823 	while (un->un_ncmds_in_transport != 0) {
5824 		/*
5825 		 * Fail if commands do not finish in the specified time.
5826 		 */
5827 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5828 		    wait_cmds_complete) == -1) {
5829 			/*
5830 			 * Undo the state changes made above. Everything
5831 			 * must go back to it's original value.
5832 			 */
5833 			Restore_state(un);
5834 			un->un_last_state = un->un_save_state;
5835 			/* Wake up any threads that might be waiting. */
5836 			cv_broadcast(&un->un_suspend_cv);
5837 			mutex_exit(SD_MUTEX(un));
5838 			SD_ERROR(SD_LOG_IO_PM, un,
5839 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5840 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5841 			return (DDI_FAILURE);
5842 		}
5843 	}
5844 
5845 	/*
5846 	 * Cancel SCSI watch thread and timeouts, if any are active
5847 	 */
5848 
5849 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5850 		opaque_t temp_token = un->un_swr_token;
5851 		mutex_exit(SD_MUTEX(un));
5852 		scsi_watch_suspend(temp_token);
5853 		mutex_enter(SD_MUTEX(un));
5854 	}
5855 
5856 	if (un->un_reset_throttle_timeid != NULL) {
5857 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5858 		un->un_reset_throttle_timeid = NULL;
5859 		mutex_exit(SD_MUTEX(un));
5860 		(void) untimeout(temp_id);
5861 		mutex_enter(SD_MUTEX(un));
5862 	}
5863 
5864 	if (un->un_dcvb_timeid != NULL) {
5865 		timeout_id_t temp_id = un->un_dcvb_timeid;
5866 		un->un_dcvb_timeid = NULL;
5867 		mutex_exit(SD_MUTEX(un));
5868 		(void) untimeout(temp_id);
5869 		mutex_enter(SD_MUTEX(un));
5870 	}
5871 
5872 	mutex_enter(&un->un_pm_mutex);
5873 	if (un->un_pm_timeid != NULL) {
5874 		timeout_id_t temp_id = un->un_pm_timeid;
5875 		un->un_pm_timeid = NULL;
5876 		mutex_exit(&un->un_pm_mutex);
5877 		mutex_exit(SD_MUTEX(un));
5878 		(void) untimeout(temp_id);
5879 		mutex_enter(SD_MUTEX(un));
5880 	} else {
5881 		mutex_exit(&un->un_pm_mutex);
5882 	}
5883 
5884 	if (un->un_retry_timeid != NULL) {
5885 		timeout_id_t temp_id = un->un_retry_timeid;
5886 		un->un_retry_timeid = NULL;
5887 		mutex_exit(SD_MUTEX(un));
5888 		(void) untimeout(temp_id);
5889 		mutex_enter(SD_MUTEX(un));
5890 
5891 		if (un->un_retry_bp != NULL) {
5892 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5893 			un->un_waitq_headp = un->un_retry_bp;
5894 			if (un->un_waitq_tailp == NULL) {
5895 				un->un_waitq_tailp = un->un_retry_bp;
5896 			}
5897 			un->un_retry_bp = NULL;
5898 			un->un_retry_statp = NULL;
5899 		}
5900 	}
5901 
5902 	if (un->un_direct_priority_timeid != NULL) {
5903 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5904 		un->un_direct_priority_timeid = NULL;
5905 		mutex_exit(SD_MUTEX(un));
5906 		(void) untimeout(temp_id);
5907 		mutex_enter(SD_MUTEX(un));
5908 	}
5909 
5910 	if (un->un_f_is_fibre == TRUE) {
5911 		/*
5912 		 * Remove callbacks for insert and remove events
5913 		 */
5914 		if (un->un_insert_event != NULL) {
5915 			mutex_exit(SD_MUTEX(un));
5916 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5917 			mutex_enter(SD_MUTEX(un));
5918 			un->un_insert_event = NULL;
5919 		}
5920 
5921 		if (un->un_remove_event != NULL) {
5922 			mutex_exit(SD_MUTEX(un));
5923 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5924 			mutex_enter(SD_MUTEX(un));
5925 			un->un_remove_event = NULL;
5926 		}
5927 	}
5928 
5929 	mutex_exit(SD_MUTEX(un));
5930 
5931 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5932 
5933 	return (DDI_SUCCESS);
5934 }
5935 
5936 
5937 /*
5938  *    Function: sd_ddi_pm_suspend
5939  *
5940  * Description: Set the drive state to low power.
5941  *		Someone else is required to actually change the drive
5942  *		power level.
5943  *
5944  *   Arguments: un - driver soft state (unit) structure
5945  *
5946  * Return Code: DDI_FAILURE or DDI_SUCCESS
5947  *
5948  *     Context: Kernel thread context
5949  */
5950 
5951 static int
5952 sd_ddi_pm_suspend(struct sd_lun *un)
5953 {
5954 	ASSERT(un != NULL);
5955 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5956 
5957 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5958 	mutex_enter(SD_MUTEX(un));
5959 
5960 	/*
5961 	 * Exit if power management is not enabled for this device, or if
5962 	 * the device is being used by HA.
5963 	 */
5964 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5965 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5966 		mutex_exit(SD_MUTEX(un));
5967 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5968 		return (DDI_SUCCESS);
5969 	}
5970 
5971 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5972 	    un->un_ncmds_in_driver);
5973 
5974 	/*
5975 	 * See if the device is not busy, ie.:
5976 	 *    - we have no commands in the driver for this device
5977 	 *    - not waiting for resources
5978 	 */
5979 	if ((un->un_ncmds_in_driver == 0) &&
5980 	    (un->un_state != SD_STATE_RWAIT)) {
5981 		/*
5982 		 * The device is not busy, so it is OK to go to low power state.
5983 		 * Indicate low power, but rely on someone else to actually
5984 		 * change it.
5985 		 */
5986 		mutex_enter(&un->un_pm_mutex);
5987 		un->un_pm_count = -1;
5988 		mutex_exit(&un->un_pm_mutex);
5989 		un->un_power_level = SD_SPINDLE_OFF;
5990 	}
5991 
5992 	mutex_exit(SD_MUTEX(un));
5993 
5994 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5995 
5996 	return (DDI_SUCCESS);
5997 }
5998 
5999 
6000 /*
6001  *    Function: sd_ddi_resume
6002  *
6003  * Description: Performs system power-up operations..
6004  *
6005  * Return Code: DDI_SUCCESS
6006  *		DDI_FAILURE
6007  *
6008  *     Context: Kernel thread context
6009  */
6010 
6011 static int
6012 sd_ddi_resume(dev_info_t *devi)
6013 {
6014 	struct	sd_lun	*un;
6015 
6016 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6017 	if (un == NULL) {
6018 		return (DDI_FAILURE);
6019 	}
6020 
6021 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6022 
6023 	mutex_enter(SD_MUTEX(un));
6024 	Restore_state(un);
6025 
6026 	/*
6027 	 * Restore the state which was saved to give the
6028 	 * the right state in un_last_state
6029 	 */
6030 	un->un_last_state = un->un_save_state;
6031 	/*
6032 	 * Note: throttle comes back at full.
6033 	 * Also note: this MUST be done before calling pm_raise_power
6034 	 * otherwise the system can get hung in biowait. The scenario where
6035 	 * this'll happen is under cpr suspend. Writing of the system
6036 	 * state goes through sddump, which writes 0 to un_throttle. If
6037 	 * writing the system state then fails, example if the partition is
6038 	 * too small, then cpr attempts a resume. If throttle isn't restored
6039 	 * from the saved value until after calling pm_raise_power then
6040 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6041 	 * in biowait.
6042 	 */
6043 	un->un_throttle = un->un_saved_throttle;
6044 
6045 	/*
6046 	 * The chance of failure is very rare as the only command done in power
6047 	 * entry point is START command when you transition from 0->1 or
6048 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6049 	 * which suspend was done. Ignore the return value as the resume should
6050 	 * not be failed. In the case of removable media the media need not be
6051 	 * inserted and hence there is a chance that raise power will fail with
6052 	 * media not present.
6053 	 */
6054 	if (un->un_f_attach_spinup) {
6055 		mutex_exit(SD_MUTEX(un));
6056 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6057 		mutex_enter(SD_MUTEX(un));
6058 	}
6059 
6060 	/*
6061 	 * Don't broadcast to the suspend cv and therefore possibly
6062 	 * start I/O until after power has been restored.
6063 	 */
6064 	cv_broadcast(&un->un_suspend_cv);
6065 	cv_broadcast(&un->un_state_cv);
6066 
6067 	/* restart thread */
6068 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6069 		scsi_watch_resume(un->un_swr_token);
6070 	}
6071 
6072 #if (defined(__fibre))
6073 	if (un->un_f_is_fibre == TRUE) {
6074 		/*
6075 		 * Add callbacks for insert and remove events
6076 		 */
6077 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6078 			sd_init_event_callbacks(un);
6079 		}
6080 	}
6081 #endif
6082 
6083 	/*
6084 	 * Transport any pending commands to the target.
6085 	 *
6086 	 * If this is a low-activity device commands in queue will have to wait
6087 	 * until new commands come in, which may take awhile. Also, we
6088 	 * specifically don't check un_ncmds_in_transport because we know that
6089 	 * there really are no commands in progress after the unit was
6090 	 * suspended and we could have reached the throttle level, been
6091 	 * suspended, and have no new commands coming in for awhile. Highly
6092 	 * unlikely, but so is the low-activity disk scenario.
6093 	 */
6094 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6095 
6096 	sd_start_cmds(un, NULL);
6097 	mutex_exit(SD_MUTEX(un));
6098 
6099 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6100 
6101 	return (DDI_SUCCESS);
6102 }
6103 
6104 
6105 /*
6106  *    Function: sd_ddi_pm_resume
6107  *
6108  * Description: Set the drive state to powered on.
6109  *		Someone else is required to actually change the drive
6110  *		power level.
6111  *
6112  *   Arguments: un - driver soft state (unit) structure
6113  *
6114  * Return Code: DDI_SUCCESS
6115  *
6116  *     Context: Kernel thread context
6117  */
6118 
6119 static int
6120 sd_ddi_pm_resume(struct sd_lun *un)
6121 {
6122 	ASSERT(un != NULL);
6123 
6124 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6125 	mutex_enter(SD_MUTEX(un));
6126 	un->un_power_level = SD_SPINDLE_ON;
6127 
6128 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6129 	mutex_enter(&un->un_pm_mutex);
6130 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6131 		un->un_pm_count++;
6132 		ASSERT(un->un_pm_count == 0);
6133 		/*
6134 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6135 		 * un_suspend_cv is for a system resume, not a power management
6136 		 * device resume. (4297749)
6137 		 *	 cv_broadcast(&un->un_suspend_cv);
6138 		 */
6139 	}
6140 	mutex_exit(&un->un_pm_mutex);
6141 	mutex_exit(SD_MUTEX(un));
6142 
6143 	return (DDI_SUCCESS);
6144 }
6145 
6146 
6147 /*
6148  *    Function: sd_pm_idletimeout_handler
6149  *
6150  * Description: A timer routine that's active only while a device is busy.
6151  *		The purpose is to extend slightly the pm framework's busy
6152  *		view of the device to prevent busy/idle thrashing for
6153  *		back-to-back commands. Do this by comparing the current time
6154  *		to the time at which the last command completed and when the
6155  *		difference is greater than sd_pm_idletime, call
6156  *		pm_idle_component. In addition to indicating idle to the pm
6157  *		framework, update the chain type to again use the internal pm
6158  *		layers of the driver.
6159  *
6160  *   Arguments: arg - driver soft state (unit) structure
6161  *
6162  *     Context: Executes in a timeout(9F) thread context
6163  */
6164 
6165 static void
6166 sd_pm_idletimeout_handler(void *arg)
6167 {
6168 	struct sd_lun *un = arg;
6169 
6170 	time_t	now;
6171 
6172 	mutex_enter(&sd_detach_mutex);
6173 	if (un->un_detach_count != 0) {
6174 		/* Abort if the instance is detaching */
6175 		mutex_exit(&sd_detach_mutex);
6176 		return;
6177 	}
6178 	mutex_exit(&sd_detach_mutex);
6179 
6180 	now = ddi_get_time();
6181 	/*
6182 	 * Grab both mutexes, in the proper order, since we're accessing
6183 	 * both PM and softstate variables.
6184 	 */
6185 	mutex_enter(SD_MUTEX(un));
6186 	mutex_enter(&un->un_pm_mutex);
6187 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6188 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6189 		/*
6190 		 * Update the chain types.
6191 		 * This takes affect on the next new command received.
6192 		 */
6193 		if (un->un_f_non_devbsize_supported) {
6194 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6195 		} else {
6196 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6197 		}
6198 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6199 
6200 		SD_TRACE(SD_LOG_IO_PM, un,
6201 		    "sd_pm_idletimeout_handler: idling device\n");
6202 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6203 		un->un_pm_idle_timeid = NULL;
6204 	} else {
6205 		un->un_pm_idle_timeid =
6206 		    timeout(sd_pm_idletimeout_handler, un,
6207 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6208 	}
6209 	mutex_exit(&un->un_pm_mutex);
6210 	mutex_exit(SD_MUTEX(un));
6211 }
6212 
6213 
6214 /*
6215  *    Function: sd_pm_timeout_handler
6216  *
6217  * Description: Callback to tell framework we are idle.
6218  *
6219  *     Context: timeout(9f) thread context.
6220  */
6221 
6222 static void
6223 sd_pm_timeout_handler(void *arg)
6224 {
6225 	struct sd_lun *un = arg;
6226 
6227 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6228 	mutex_enter(&un->un_pm_mutex);
6229 	un->un_pm_timeid = NULL;
6230 	mutex_exit(&un->un_pm_mutex);
6231 }
6232 
6233 
6234 /*
6235  *    Function: sdpower
6236  *
6237  * Description: PM entry point.
6238  *
6239  * Return Code: DDI_SUCCESS
6240  *		DDI_FAILURE
6241  *
6242  *     Context: Kernel thread context
6243  */
6244 
6245 static int
6246 sdpower(dev_info_t *devi, int component, int level)
6247 {
6248 	struct sd_lun	*un;
6249 	int		instance;
6250 	int		rval = DDI_SUCCESS;
6251 	uint_t		i, log_page_size, maxcycles, ncycles;
6252 	uchar_t		*log_page_data;
6253 	int		log_sense_page;
6254 	int		medium_present;
6255 	time_t		intvlp;
6256 	dev_t		dev;
6257 	struct pm_trans_data	sd_pm_tran_data;
6258 	uchar_t		save_state;
6259 	int		sval;
6260 	uchar_t		state_before_pm;
6261 	int		got_semaphore_here;
6262 	sd_ssc_t	*ssc;
6263 
6264 	instance = ddi_get_instance(devi);
6265 
6266 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6267 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6268 	    component != 0) {
6269 		return (DDI_FAILURE);
6270 	}
6271 
6272 	dev = sd_make_device(SD_DEVINFO(un));
6273 	ssc = sd_ssc_init(un);
6274 
6275 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6276 
6277 	/*
6278 	 * Must synchronize power down with close.
6279 	 * Attempt to decrement/acquire the open/close semaphore,
6280 	 * but do NOT wait on it. If it's not greater than zero,
6281 	 * ie. it can't be decremented without waiting, then
6282 	 * someone else, either open or close, already has it
6283 	 * and the try returns 0. Use that knowledge here to determine
6284 	 * if it's OK to change the device power level.
6285 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6286 	 * here.
6287 	 */
6288 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6289 
6290 	mutex_enter(SD_MUTEX(un));
6291 
6292 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6293 	    un->un_ncmds_in_driver);
6294 
6295 	/*
6296 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6297 	 * already being processed in the driver, or if the semaphore was
6298 	 * not gotten here it indicates an open or close is being processed.
6299 	 * At the same time somebody is requesting to go low power which
6300 	 * can't happen, therefore we need to return failure.
6301 	 */
6302 	if ((level == SD_SPINDLE_OFF) &&
6303 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6304 		mutex_exit(SD_MUTEX(un));
6305 
6306 		if (got_semaphore_here != 0) {
6307 			sema_v(&un->un_semoclose);
6308 		}
6309 		SD_TRACE(SD_LOG_IO_PM, un,
6310 		    "sdpower: exit, device has queued cmds.\n");
6311 
6312 		goto sdpower_failed;
6313 	}
6314 
6315 	/*
6316 	 * if it is OFFLINE that means the disk is completely dead
6317 	 * in our case we have to put the disk in on or off by sending commands
6318 	 * Of course that will fail anyway so return back here.
6319 	 *
6320 	 * Power changes to a device that's OFFLINE or SUSPENDED
6321 	 * are not allowed.
6322 	 */
6323 	if ((un->un_state == SD_STATE_OFFLINE) ||
6324 	    (un->un_state == SD_STATE_SUSPENDED)) {
6325 		mutex_exit(SD_MUTEX(un));
6326 
6327 		if (got_semaphore_here != 0) {
6328 			sema_v(&un->un_semoclose);
6329 		}
6330 		SD_TRACE(SD_LOG_IO_PM, un,
6331 		    "sdpower: exit, device is off-line.\n");
6332 
6333 		goto sdpower_failed;
6334 	}
6335 
6336 	/*
6337 	 * Change the device's state to indicate it's power level
6338 	 * is being changed. Do this to prevent a power off in the
6339 	 * middle of commands, which is especially bad on devices
6340 	 * that are really powered off instead of just spun down.
6341 	 */
6342 	state_before_pm = un->un_state;
6343 	un->un_state = SD_STATE_PM_CHANGING;
6344 
6345 	mutex_exit(SD_MUTEX(un));
6346 
6347 	/*
6348 	 * If "pm-capable" property is set to TRUE by HBA drivers,
6349 	 * bypass the following checking, otherwise, check the log
6350 	 * sense information for this device
6351 	 */
6352 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
6353 		/*
6354 		 * Get the log sense information to understand whether the
6355 		 * the powercycle counts have gone beyond the threshhold.
6356 		 */
6357 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6358 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6359 
6360 		mutex_enter(SD_MUTEX(un));
6361 		log_sense_page = un->un_start_stop_cycle_page;
6362 		mutex_exit(SD_MUTEX(un));
6363 
6364 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6365 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6366 
6367 		if (rval != 0) {
6368 			if (rval == EIO)
6369 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6370 			else
6371 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6372 		}
6373 
6374 #ifdef	SDDEBUG
6375 		if (sd_force_pm_supported) {
6376 			/* Force a successful result */
6377 			rval = 0;
6378 		}
6379 #endif
6380 		if (rval != 0) {
6381 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6382 			    "Log Sense Failed\n");
6383 
6384 			kmem_free(log_page_data, log_page_size);
6385 			/* Cannot support power management on those drives */
6386 
6387 			if (got_semaphore_here != 0) {
6388 				sema_v(&un->un_semoclose);
6389 			}
6390 			/*
6391 			 * On exit put the state back to it's original value
6392 			 * and broadcast to anyone waiting for the power
6393 			 * change completion.
6394 			 */
6395 			mutex_enter(SD_MUTEX(un));
6396 			un->un_state = state_before_pm;
6397 			cv_broadcast(&un->un_suspend_cv);
6398 			mutex_exit(SD_MUTEX(un));
6399 			SD_TRACE(SD_LOG_IO_PM, un,
6400 			    "sdpower: exit, Log Sense Failed.\n");
6401 
6402 			goto sdpower_failed;
6403 		}
6404 
6405 		/*
6406 		 * From the page data - Convert the essential information to
6407 		 * pm_trans_data
6408 		 */
6409 		maxcycles =
6410 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6411 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6412 
6413 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6414 
6415 		ncycles =
6416 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6417 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6418 
6419 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6420 
6421 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6422 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6423 			    log_page_data[8+i];
6424 		}
6425 
6426 		kmem_free(log_page_data, log_page_size);
6427 
6428 		/*
6429 		 * Call pm_trans_check routine to get the Ok from
6430 		 * the global policy
6431 		 */
6432 
6433 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6434 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6435 
6436 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6437 #ifdef	SDDEBUG
6438 		if (sd_force_pm_supported) {
6439 			/* Force a successful result */
6440 			rval = 1;
6441 		}
6442 #endif
6443 		switch (rval) {
6444 		case 0:
6445 			/*
6446 			 * Not Ok to Power cycle or error in parameters passed
6447 			 * Would have given the advised time to consider power
6448 			 * cycle. Based on the new intvlp parameter we are
6449 			 * supposed to pretend we are busy so that pm framework
6450 			 * will never call our power entry point. Because of
6451 			 * that install a timeout handler and wait for the
6452 			 * recommended time to elapse so that power management
6453 			 * can be effective again.
6454 			 *
6455 			 * To effect this behavior, call pm_busy_component to
6456 			 * indicate to the framework this device is busy.
6457 			 * By not adjusting un_pm_count the rest of PM in
6458 			 * the driver will function normally, and independent
6459 			 * of this but because the framework is told the device
6460 			 * is busy it won't attempt powering down until it gets
6461 			 * a matching idle. The timeout handler sends this.
6462 			 * Note: sd_pm_entry can't be called here to do this
6463 			 * because sdpower may have been called as a result
6464 			 * of a call to pm_raise_power from within sd_pm_entry.
6465 			 *
6466 			 * If a timeout handler is already active then
6467 			 * don't install another.
6468 			 */
6469 			mutex_enter(&un->un_pm_mutex);
6470 			if (un->un_pm_timeid == NULL) {
6471 				un->un_pm_timeid =
6472 				    timeout(sd_pm_timeout_handler,
6473 				    un, intvlp * drv_usectohz(1000000));
6474 				mutex_exit(&un->un_pm_mutex);
6475 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6476 			} else {
6477 				mutex_exit(&un->un_pm_mutex);
6478 			}
6479 			if (got_semaphore_here != 0) {
6480 				sema_v(&un->un_semoclose);
6481 			}
6482 			/*
6483 			 * On exit put the state back to it's original value
6484 			 * and broadcast to anyone waiting for the power
6485 			 * change completion.
6486 			 */
6487 			mutex_enter(SD_MUTEX(un));
6488 			un->un_state = state_before_pm;
6489 			cv_broadcast(&un->un_suspend_cv);
6490 			mutex_exit(SD_MUTEX(un));
6491 
6492 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6493 			    "trans check Failed, not ok to power cycle.\n");
6494 
6495 			goto sdpower_failed;
6496 		case -1:
6497 			if (got_semaphore_here != 0) {
6498 				sema_v(&un->un_semoclose);
6499 			}
6500 			/*
6501 			 * On exit put the state back to it's original value
6502 			 * and broadcast to anyone waiting for the power
6503 			 * change completion.
6504 			 */
6505 			mutex_enter(SD_MUTEX(un));
6506 			un->un_state = state_before_pm;
6507 			cv_broadcast(&un->un_suspend_cv);
6508 			mutex_exit(SD_MUTEX(un));
6509 			SD_TRACE(SD_LOG_IO_PM, un,
6510 			    "sdpower: exit, trans check command Failed.\n");
6511 
6512 			goto sdpower_failed;
6513 		}
6514 	}
6515 
6516 	if (level == SD_SPINDLE_OFF) {
6517 		/*
6518 		 * Save the last state... if the STOP FAILS we need it
6519 		 * for restoring
6520 		 */
6521 		mutex_enter(SD_MUTEX(un));
6522 		save_state = un->un_last_state;
6523 		/*
6524 		 * There must not be any cmds. getting processed
6525 		 * in the driver when we get here. Power to the
6526 		 * device is potentially going off.
6527 		 */
6528 		ASSERT(un->un_ncmds_in_driver == 0);
6529 		mutex_exit(SD_MUTEX(un));
6530 
6531 		/*
6532 		 * For now suspend the device completely before spindle is
6533 		 * turned off
6534 		 */
6535 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6536 			if (got_semaphore_here != 0) {
6537 				sema_v(&un->un_semoclose);
6538 			}
6539 			/*
6540 			 * On exit put the state back to it's original value
6541 			 * and broadcast to anyone waiting for the power
6542 			 * change completion.
6543 			 */
6544 			mutex_enter(SD_MUTEX(un));
6545 			un->un_state = state_before_pm;
6546 			cv_broadcast(&un->un_suspend_cv);
6547 			mutex_exit(SD_MUTEX(un));
6548 			SD_TRACE(SD_LOG_IO_PM, un,
6549 			    "sdpower: exit, PM suspend Failed.\n");
6550 
6551 			goto sdpower_failed;
6552 		}
6553 	}
6554 
6555 	/*
6556 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6557 	 * close, or strategy. Dump no long uses this routine, it uses it's
6558 	 * own code so it can be done in polled mode.
6559 	 */
6560 
6561 	medium_present = TRUE;
6562 
6563 	/*
6564 	 * When powering up, issue a TUR in case the device is at unit
6565 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6566 	 * a deadlock on un_pm_busy_cv will occur.
6567 	 */
6568 	if (level == SD_SPINDLE_ON) {
6569 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6570 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6571 		if (sval != 0)
6572 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6573 	}
6574 
6575 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6576 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6577 
6578 	sval = sd_send_scsi_START_STOP_UNIT(ssc,
6579 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6580 	    SD_PATH_DIRECT);
6581 	if (sval != 0) {
6582 		if (sval == EIO)
6583 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6584 		else
6585 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6586 	}
6587 
6588 	/* Command failed, check for media present. */
6589 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6590 		medium_present = FALSE;
6591 	}
6592 
6593 	/*
6594 	 * The conditions of interest here are:
6595 	 *   if a spindle off with media present fails,
6596 	 *	then restore the state and return an error.
6597 	 *   else if a spindle on fails,
6598 	 *	then return an error (there's no state to restore).
6599 	 * In all other cases we setup for the new state
6600 	 * and return success.
6601 	 */
6602 	switch (level) {
6603 	case SD_SPINDLE_OFF:
6604 		if ((medium_present == TRUE) && (sval != 0)) {
6605 			/* The stop command from above failed */
6606 			rval = DDI_FAILURE;
6607 			/*
6608 			 * The stop command failed, and we have media
6609 			 * present. Put the level back by calling the
6610 			 * sd_pm_resume() and set the state back to
6611 			 * it's previous value.
6612 			 */
6613 			(void) sd_ddi_pm_resume(un);
6614 			mutex_enter(SD_MUTEX(un));
6615 			un->un_last_state = save_state;
6616 			mutex_exit(SD_MUTEX(un));
6617 			break;
6618 		}
6619 		/*
6620 		 * The stop command from above succeeded.
6621 		 */
6622 		if (un->un_f_monitor_media_state) {
6623 			/*
6624 			 * Terminate watch thread in case of removable media
6625 			 * devices going into low power state. This is as per
6626 			 * the requirements of pm framework, otherwise commands
6627 			 * will be generated for the device (through watch
6628 			 * thread), even when the device is in low power state.
6629 			 */
6630 			mutex_enter(SD_MUTEX(un));
6631 			un->un_f_watcht_stopped = FALSE;
6632 			if (un->un_swr_token != NULL) {
6633 				opaque_t temp_token = un->un_swr_token;
6634 				un->un_f_watcht_stopped = TRUE;
6635 				un->un_swr_token = NULL;
6636 				mutex_exit(SD_MUTEX(un));
6637 				(void) scsi_watch_request_terminate(temp_token,
6638 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6639 			} else {
6640 				mutex_exit(SD_MUTEX(un));
6641 			}
6642 		}
6643 		break;
6644 
6645 	default:	/* The level requested is spindle on... */
6646 		/*
6647 		 * Legacy behavior: return success on a failed spinup
6648 		 * if there is no media in the drive.
6649 		 * Do this by looking at medium_present here.
6650 		 */
6651 		if ((sval != 0) && medium_present) {
6652 			/* The start command from above failed */
6653 			rval = DDI_FAILURE;
6654 			break;
6655 		}
6656 		/*
6657 		 * The start command from above succeeded
6658 		 * Resume the devices now that we have
6659 		 * started the disks
6660 		 */
6661 		(void) sd_ddi_pm_resume(un);
6662 
6663 		/*
6664 		 * Resume the watch thread since it was suspended
6665 		 * when the device went into low power mode.
6666 		 */
6667 		if (un->un_f_monitor_media_state) {
6668 			mutex_enter(SD_MUTEX(un));
6669 			if (un->un_f_watcht_stopped == TRUE) {
6670 				opaque_t temp_token;
6671 
6672 				un->un_f_watcht_stopped = FALSE;
6673 				mutex_exit(SD_MUTEX(un));
6674 				temp_token = scsi_watch_request_submit(
6675 				    SD_SCSI_DEVP(un),
6676 				    sd_check_media_time,
6677 				    SENSE_LENGTH, sd_media_watch_cb,
6678 				    (caddr_t)dev);
6679 				mutex_enter(SD_MUTEX(un));
6680 				un->un_swr_token = temp_token;
6681 			}
6682 			mutex_exit(SD_MUTEX(un));
6683 		}
6684 	}
6685 	if (got_semaphore_here != 0) {
6686 		sema_v(&un->un_semoclose);
6687 	}
6688 	/*
6689 	 * On exit put the state back to it's original value
6690 	 * and broadcast to anyone waiting for the power
6691 	 * change completion.
6692 	 */
6693 	mutex_enter(SD_MUTEX(un));
6694 	un->un_state = state_before_pm;
6695 	cv_broadcast(&un->un_suspend_cv);
6696 	mutex_exit(SD_MUTEX(un));
6697 
6698 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6699 
6700 	sd_ssc_fini(ssc);
6701 	return (rval);
6702 
6703 sdpower_failed:
6704 
6705 	sd_ssc_fini(ssc);
6706 	return (DDI_FAILURE);
6707 }
6708 
6709 
6710 
6711 /*
6712  *    Function: sdattach
6713  *
6714  * Description: Driver's attach(9e) entry point function.
6715  *
6716  *   Arguments: devi - opaque device info handle
6717  *		cmd  - attach  type
6718  *
6719  * Return Code: DDI_SUCCESS
6720  *		DDI_FAILURE
6721  *
6722  *     Context: Kernel thread context
6723  */
6724 
6725 static int
6726 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6727 {
6728 	switch (cmd) {
6729 	case DDI_ATTACH:
6730 		return (sd_unit_attach(devi));
6731 	case DDI_RESUME:
6732 		return (sd_ddi_resume(devi));
6733 	default:
6734 		break;
6735 	}
6736 	return (DDI_FAILURE);
6737 }
6738 
6739 
6740 /*
6741  *    Function: sddetach
6742  *
6743  * Description: Driver's detach(9E) entry point function.
6744  *
6745  *   Arguments: devi - opaque device info handle
6746  *		cmd  - detach  type
6747  *
6748  * Return Code: DDI_SUCCESS
6749  *		DDI_FAILURE
6750  *
6751  *     Context: Kernel thread context
6752  */
6753 
6754 static int
6755 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6756 {
6757 	switch (cmd) {
6758 	case DDI_DETACH:
6759 		return (sd_unit_detach(devi));
6760 	case DDI_SUSPEND:
6761 		return (sd_ddi_suspend(devi));
6762 	default:
6763 		break;
6764 	}
6765 	return (DDI_FAILURE);
6766 }
6767 
6768 
6769 /*
6770  *     Function: sd_sync_with_callback
6771  *
6772  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6773  *		 state while the callback routine is active.
6774  *
6775  *    Arguments: un: softstate structure for the instance
6776  *
6777  *	Context: Kernel thread context
6778  */
6779 
6780 static void
6781 sd_sync_with_callback(struct sd_lun *un)
6782 {
6783 	ASSERT(un != NULL);
6784 
6785 	mutex_enter(SD_MUTEX(un));
6786 
6787 	ASSERT(un->un_in_callback >= 0);
6788 
6789 	while (un->un_in_callback > 0) {
6790 		mutex_exit(SD_MUTEX(un));
6791 		delay(2);
6792 		mutex_enter(SD_MUTEX(un));
6793 	}
6794 
6795 	mutex_exit(SD_MUTEX(un));
6796 }
6797 
6798 /*
6799  *    Function: sd_unit_attach
6800  *
6801  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6802  *		the soft state structure for the device and performs
6803  *		all necessary structure and device initializations.
6804  *
6805  *   Arguments: devi: the system's dev_info_t for the device.
6806  *
6807  * Return Code: DDI_SUCCESS if attach is successful.
6808  *		DDI_FAILURE if any part of the attach fails.
6809  *
6810  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6811  *		Kernel thread context only.  Can sleep.
6812  */
6813 
6814 static int
6815 sd_unit_attach(dev_info_t *devi)
6816 {
6817 	struct	scsi_device	*devp;
6818 	struct	sd_lun		*un;
6819 	char			*variantp;
6820 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6821 	int	instance;
6822 	int	rval;
6823 	int	wc_enabled;
6824 	int	tgt;
6825 	uint64_t	capacity;
6826 	uint_t		lbasize = 0;
6827 	dev_info_t	*pdip = ddi_get_parent(devi);
6828 	int		offbyone = 0;
6829 	int		geom_label_valid = 0;
6830 	sd_ssc_t	*ssc;
6831 	int		status;
6832 	struct sd_fm_internal	*sfip = NULL;
6833 #if defined(__sparc)
6834 	int		max_xfer_size;
6835 #endif
6836 
6837 	/*
6838 	 * Retrieve the target driver's private data area. This was set
6839 	 * up by the HBA.
6840 	 */
6841 	devp = ddi_get_driver_private(devi);
6842 
6843 	/*
6844 	 * Retrieve the target ID of the device.
6845 	 */
6846 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6847 	    SCSI_ADDR_PROP_TARGET, -1);
6848 
6849 	/*
6850 	 * Since we have no idea what state things were left in by the last
6851 	 * user of the device, set up some 'default' settings, ie. turn 'em
6852 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6853 	 * Do this before the scsi_probe, which sends an inquiry.
6854 	 * This is a fix for bug (4430280).
6855 	 * Of special importance is wide-xfer. The drive could have been left
6856 	 * in wide transfer mode by the last driver to communicate with it,
6857 	 * this includes us. If that's the case, and if the following is not
6858 	 * setup properly or we don't re-negotiate with the drive prior to
6859 	 * transferring data to/from the drive, it causes bus parity errors,
6860 	 * data overruns, and unexpected interrupts. This first occurred when
6861 	 * the fix for bug (4378686) was made.
6862 	 */
6863 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6864 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6865 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6866 
6867 	/*
6868 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6869 	 * on a target. Setting it per lun instance actually sets the
6870 	 * capability of this target, which affects those luns already
6871 	 * attached on the same target. So during attach, we can only disable
6872 	 * this capability only when no other lun has been attached on this
6873 	 * target. By doing this, we assume a target has the same tagged-qing
6874 	 * capability for every lun. The condition can be removed when HBA
6875 	 * is changed to support per lun based tagged-qing capability.
6876 	 */
6877 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6878 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6879 	}
6880 
6881 	/*
6882 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6883 	 * This call will allocate and fill in the scsi_inquiry structure
6884 	 * and point the sd_inq member of the scsi_device structure to it.
6885 	 * If the attach succeeds, then this memory will not be de-allocated
6886 	 * (via scsi_unprobe()) until the instance is detached.
6887 	 */
6888 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6889 		goto probe_failed;
6890 	}
6891 
6892 	/*
6893 	 * Check the device type as specified in the inquiry data and
6894 	 * claim it if it is of a type that we support.
6895 	 */
6896 	switch (devp->sd_inq->inq_dtype) {
6897 	case DTYPE_DIRECT:
6898 		break;
6899 	case DTYPE_RODIRECT:
6900 		break;
6901 	case DTYPE_OPTICAL:
6902 		break;
6903 	case DTYPE_NOTPRESENT:
6904 	default:
6905 		/* Unsupported device type; fail the attach. */
6906 		goto probe_failed;
6907 	}
6908 
6909 	/*
6910 	 * Allocate the soft state structure for this unit.
6911 	 *
6912 	 * We rely upon this memory being set to all zeroes by
6913 	 * ddi_soft_state_zalloc().  We assume that any member of the
6914 	 * soft state structure that is not explicitly initialized by
6915 	 * this routine will have a value of zero.
6916 	 */
6917 	instance = ddi_get_instance(devp->sd_dev);
6918 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6919 		goto probe_failed;
6920 	}
6921 
6922 	/*
6923 	 * Retrieve a pointer to the newly-allocated soft state.
6924 	 *
6925 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6926 	 * was successful, unless something has gone horribly wrong and the
6927 	 * ddi's soft state internals are corrupt (in which case it is
6928 	 * probably better to halt here than just fail the attach....)
6929 	 */
6930 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6931 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6932 		    instance);
6933 		/*NOTREACHED*/
6934 	}
6935 
6936 	/*
6937 	 * Link the back ptr of the driver soft state to the scsi_device
6938 	 * struct for this lun.
6939 	 * Save a pointer to the softstate in the driver-private area of
6940 	 * the scsi_device struct.
6941 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6942 	 * we first set un->un_sd below.
6943 	 */
6944 	un->un_sd = devp;
6945 	devp->sd_private = (opaque_t)un;
6946 
6947 	/*
6948 	 * The following must be after devp is stored in the soft state struct.
6949 	 */
6950 #ifdef SDDEBUG
6951 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6952 	    "%s_unit_attach: un:0x%p instance:%d\n",
6953 	    ddi_driver_name(devi), un, instance);
6954 #endif
6955 
6956 	/*
6957 	 * Set up the device type and node type (for the minor nodes).
6958 	 * By default we assume that the device can at least support the
6959 	 * Common Command Set. Call it a CD-ROM if it reports itself
6960 	 * as a RODIRECT device.
6961 	 */
6962 	switch (devp->sd_inq->inq_dtype) {
6963 	case DTYPE_RODIRECT:
6964 		un->un_node_type = DDI_NT_CD_CHAN;
6965 		un->un_ctype	 = CTYPE_CDROM;
6966 		break;
6967 	case DTYPE_OPTICAL:
6968 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6969 		un->un_ctype	 = CTYPE_ROD;
6970 		break;
6971 	default:
6972 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6973 		un->un_ctype	 = CTYPE_CCS;
6974 		break;
6975 	}
6976 
6977 	/*
6978 	 * Try to read the interconnect type from the HBA.
6979 	 *
6980 	 * Note: This driver is currently compiled as two binaries, a parallel
6981 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6982 	 * differences are determined at compile time. In the future a single
6983 	 * binary will be provided and the interconnect type will be used to
6984 	 * differentiate between fibre and parallel scsi behaviors. At that time
6985 	 * it will be necessary for all fibre channel HBAs to support this
6986 	 * property.
6987 	 *
6988 	 * set un_f_is_fiber to TRUE ( default fiber )
6989 	 */
6990 	un->un_f_is_fibre = TRUE;
6991 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6992 	case INTERCONNECT_SSA:
6993 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6994 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6995 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6996 		break;
6997 	case INTERCONNECT_PARALLEL:
6998 		un->un_f_is_fibre = FALSE;
6999 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7000 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7001 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7002 		break;
7003 	case INTERCONNECT_SATA:
7004 		un->un_f_is_fibre = FALSE;
7005 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7006 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7007 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7008 		break;
7009 	case INTERCONNECT_FIBRE:
7010 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7011 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7012 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7013 		break;
7014 	case INTERCONNECT_FABRIC:
7015 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7016 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7017 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7018 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7019 		break;
7020 	default:
7021 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7022 		/*
7023 		 * The HBA does not support the "interconnect-type" property
7024 		 * (or did not provide a recognized type).
7025 		 *
7026 		 * Note: This will be obsoleted when a single fibre channel
7027 		 * and parallel scsi driver is delivered. In the meantime the
7028 		 * interconnect type will be set to the platform default.If that
7029 		 * type is not parallel SCSI, it means that we should be
7030 		 * assuming "ssd" semantics. However, here this also means that
7031 		 * the FC HBA is not supporting the "interconnect-type" property
7032 		 * like we expect it to, so log this occurrence.
7033 		 */
7034 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7035 		if (!SD_IS_PARALLEL_SCSI(un)) {
7036 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7037 			    "sd_unit_attach: un:0x%p Assuming "
7038 			    "INTERCONNECT_FIBRE\n", un);
7039 		} else {
7040 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7041 			    "sd_unit_attach: un:0x%p Assuming "
7042 			    "INTERCONNECT_PARALLEL\n", un);
7043 			un->un_f_is_fibre = FALSE;
7044 		}
7045 #else
7046 		/*
7047 		 * Note: This source will be implemented when a single fibre
7048 		 * channel and parallel scsi driver is delivered. The default
7049 		 * will be to assume that if a device does not support the
7050 		 * "interconnect-type" property it is a parallel SCSI HBA and
7051 		 * we will set the interconnect type for parallel scsi.
7052 		 */
7053 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7054 		un->un_f_is_fibre = FALSE;
7055 #endif
7056 		break;
7057 	}
7058 
7059 	if (un->un_f_is_fibre == TRUE) {
7060 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7061 		    SCSI_VERSION_3) {
7062 			switch (un->un_interconnect_type) {
7063 			case SD_INTERCONNECT_FIBRE:
7064 			case SD_INTERCONNECT_SSA:
7065 				un->un_node_type = DDI_NT_BLOCK_WWN;
7066 				break;
7067 			default:
7068 				break;
7069 			}
7070 		}
7071 	}
7072 
7073 	/*
7074 	 * Initialize the Request Sense command for the target
7075 	 */
7076 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7077 		goto alloc_rqs_failed;
7078 	}
7079 
7080 	/*
7081 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7082 	 * with separate binary for sd and ssd.
7083 	 *
7084 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7085 	 * The hardcoded values will go away when Sparc uses 1 binary
7086 	 * for sd and ssd.  This hardcoded values need to match
7087 	 * SD_RETRY_COUNT in sddef.h
7088 	 * The value used is base on interconnect type.
7089 	 * fibre = 3, parallel = 5
7090 	 */
7091 #if defined(__i386) || defined(__amd64)
7092 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7093 #else
7094 	un->un_retry_count = SD_RETRY_COUNT;
7095 #endif
7096 
7097 	/*
7098 	 * Set the per disk retry count to the default number of retries
7099 	 * for disks and CDROMs. This value can be overridden by the
7100 	 * disk property list or an entry in sd.conf.
7101 	 */
7102 	un->un_notready_retry_count =
7103 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7104 	    : DISK_NOT_READY_RETRY_COUNT(un);
7105 
7106 	/*
7107 	 * Set the busy retry count to the default value of un_retry_count.
7108 	 * This can be overridden by entries in sd.conf or the device
7109 	 * config table.
7110 	 */
7111 	un->un_busy_retry_count = un->un_retry_count;
7112 
7113 	/*
7114 	 * Init the reset threshold for retries.  This number determines
7115 	 * how many retries must be performed before a reset can be issued
7116 	 * (for certain error conditions). This can be overridden by entries
7117 	 * in sd.conf or the device config table.
7118 	 */
7119 	un->un_reset_retry_count = (un->un_retry_count / 2);
7120 
7121 	/*
7122 	 * Set the victim_retry_count to the default un_retry_count
7123 	 */
7124 	un->un_victim_retry_count = (2 * un->un_retry_count);
7125 
7126 	/*
7127 	 * Set the reservation release timeout to the default value of
7128 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7129 	 * device config table.
7130 	 */
7131 	un->un_reserve_release_time = 5;
7132 
7133 	/*
7134 	 * Set up the default maximum transfer size. Note that this may
7135 	 * get updated later in the attach, when setting up default wide
7136 	 * operations for disks.
7137 	 */
7138 #if defined(__i386) || defined(__amd64)
7139 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7140 	un->un_partial_dma_supported = 1;
7141 #else
7142 	un->un_max_xfer_size = (uint_t)maxphys;
7143 #endif
7144 
7145 	/*
7146 	 * Get "allow bus device reset" property (defaults to "enabled" if
7147 	 * the property was not defined). This is to disable bus resets for
7148 	 * certain kinds of error recovery. Note: In the future when a run-time
7149 	 * fibre check is available the soft state flag should default to
7150 	 * enabled.
7151 	 */
7152 	if (un->un_f_is_fibre == TRUE) {
7153 		un->un_f_allow_bus_device_reset = TRUE;
7154 	} else {
7155 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7156 		    "allow-bus-device-reset", 1) != 0) {
7157 			un->un_f_allow_bus_device_reset = TRUE;
7158 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7159 			    "sd_unit_attach: un:0x%p Bus device reset "
7160 			    "enabled\n", un);
7161 		} else {
7162 			un->un_f_allow_bus_device_reset = FALSE;
7163 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7164 			    "sd_unit_attach: un:0x%p Bus device reset "
7165 			    "disabled\n", un);
7166 		}
7167 	}
7168 
7169 	/*
7170 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7171 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7172 	 *
7173 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7174 	 * property. The new "variant" property with a value of "atapi" has been
7175 	 * introduced so that future 'variants' of standard SCSI behavior (like
7176 	 * atapi) could be specified by the underlying HBA drivers by supplying
7177 	 * a new value for the "variant" property, instead of having to define a
7178 	 * new property.
7179 	 */
7180 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7181 		un->un_f_cfg_is_atapi = TRUE;
7182 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7183 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7184 	}
7185 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7186 	    &variantp) == DDI_PROP_SUCCESS) {
7187 		if (strcmp(variantp, "atapi") == 0) {
7188 			un->un_f_cfg_is_atapi = TRUE;
7189 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7190 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7191 		}
7192 		ddi_prop_free(variantp);
7193 	}
7194 
7195 	un->un_cmd_timeout	= SD_IO_TIME;
7196 
7197 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7198 
7199 	/* Info on current states, statuses, etc. (Updated frequently) */
7200 	un->un_state		= SD_STATE_NORMAL;
7201 	un->un_last_state	= SD_STATE_NORMAL;
7202 
7203 	/* Control & status info for command throttling */
7204 	un->un_throttle		= sd_max_throttle;
7205 	un->un_saved_throttle	= sd_max_throttle;
7206 	un->un_min_throttle	= sd_min_throttle;
7207 
7208 	if (un->un_f_is_fibre == TRUE) {
7209 		un->un_f_use_adaptive_throttle = TRUE;
7210 	} else {
7211 		un->un_f_use_adaptive_throttle = FALSE;
7212 	}
7213 
7214 	/* Removable media support. */
7215 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7216 	un->un_mediastate		= DKIO_NONE;
7217 	un->un_specified_mediastate	= DKIO_NONE;
7218 
7219 	/* CVs for suspend/resume (PM or DR) */
7220 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7221 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7222 
7223 	/* Power management support. */
7224 	un->un_power_level = SD_SPINDLE_UNINIT;
7225 
7226 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7227 	un->un_f_wcc_inprog = 0;
7228 
7229 	/*
7230 	 * The open/close semaphore is used to serialize threads executing
7231 	 * in the driver's open & close entry point routines for a given
7232 	 * instance.
7233 	 */
7234 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7235 
7236 	/*
7237 	 * The conf file entry and softstate variable is a forceful override,
7238 	 * meaning a non-zero value must be entered to change the default.
7239 	 */
7240 	un->un_f_disksort_disabled = FALSE;
7241 
7242 	/*
7243 	 * Retrieve the properties from the static driver table or the driver
7244 	 * configuration file (.conf) for this unit and update the soft state
7245 	 * for the device as needed for the indicated properties.
7246 	 * Note: the property configuration needs to occur here as some of the
7247 	 * following routines may have dependencies on soft state flags set
7248 	 * as part of the driver property configuration.
7249 	 */
7250 	sd_read_unit_properties(un);
7251 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7252 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7253 
7254 	/*
7255 	 * Only if a device has "hotpluggable" property, it is
7256 	 * treated as hotpluggable device. Otherwise, it is
7257 	 * regarded as non-hotpluggable one.
7258 	 */
7259 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7260 	    -1) != -1) {
7261 		un->un_f_is_hotpluggable = TRUE;
7262 	}
7263 
7264 	/*
7265 	 * set unit's attributes(flags) according to "hotpluggable" and
7266 	 * RMB bit in INQUIRY data.
7267 	 */
7268 	sd_set_unit_attributes(un, devi);
7269 
7270 	/*
7271 	 * By default, we mark the capacity, lbasize, and geometry
7272 	 * as invalid. Only if we successfully read a valid capacity
7273 	 * will we update the un_blockcount and un_tgt_blocksize with the
7274 	 * valid values (the geometry will be validated later).
7275 	 */
7276 	un->un_f_blockcount_is_valid	= FALSE;
7277 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7278 
7279 	/*
7280 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7281 	 * otherwise.
7282 	 */
7283 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7284 	un->un_blockcount = 0;
7285 
7286 	/*
7287 	 * Set up the per-instance info needed to determine the correct
7288 	 * CDBs and other info for issuing commands to the target.
7289 	 */
7290 	sd_init_cdb_limits(un);
7291 
7292 	/*
7293 	 * Set up the IO chains to use, based upon the target type.
7294 	 */
7295 	if (un->un_f_non_devbsize_supported) {
7296 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7297 	} else {
7298 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7299 	}
7300 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7301 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7302 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7303 
7304 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7305 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7306 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7307 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7308 
7309 
7310 	if (ISCD(un)) {
7311 		un->un_additional_codes = sd_additional_codes;
7312 	} else {
7313 		un->un_additional_codes = NULL;
7314 	}
7315 
7316 	/*
7317 	 * Create the kstats here so they can be available for attach-time
7318 	 * routines that send commands to the unit (either polled or via
7319 	 * sd_send_scsi_cmd).
7320 	 *
7321 	 * Note: This is a critical sequence that needs to be maintained:
7322 	 *	1) Instantiate the kstats here, before any routines using the
7323 	 *	   iopath (i.e. sd_send_scsi_cmd).
7324 	 *	2) Instantiate and initialize the partition stats
7325 	 *	   (sd_set_pstats).
7326 	 *	3) Initialize the error stats (sd_set_errstats), following
7327 	 *	   sd_validate_geometry(),sd_register_devid(),
7328 	 *	   and sd_cache_control().
7329 	 */
7330 
7331 	un->un_stats = kstat_create(sd_label, instance,
7332 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7333 	if (un->un_stats != NULL) {
7334 		un->un_stats->ks_lock = SD_MUTEX(un);
7335 		kstat_install(un->un_stats);
7336 	}
7337 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7338 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7339 
7340 	sd_create_errstats(un, instance);
7341 	if (un->un_errstats == NULL) {
7342 		goto create_errstats_failed;
7343 	}
7344 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7345 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7346 
7347 	/*
7348 	 * The following if/else code was relocated here from below as part
7349 	 * of the fix for bug (4430280). However with the default setup added
7350 	 * on entry to this routine, it's no longer absolutely necessary for
7351 	 * this to be before the call to sd_spin_up_unit.
7352 	 */
7353 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7354 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7355 		    (devp->sd_inq->inq_ansi == 5)) &&
7356 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7357 
7358 		/*
7359 		 * If tagged queueing is supported by the target
7360 		 * and by the host adapter then we will enable it
7361 		 */
7362 		un->un_tagflags = 0;
7363 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7364 		    (un->un_f_arq_enabled == TRUE)) {
7365 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7366 			    1, 1) == 1) {
7367 				un->un_tagflags = FLAG_STAG;
7368 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7369 				    "sd_unit_attach: un:0x%p tag queueing "
7370 				    "enabled\n", un);
7371 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7372 			    "untagged-qing", 0) == 1) {
7373 				un->un_f_opt_queueing = TRUE;
7374 				un->un_saved_throttle = un->un_throttle =
7375 				    min(un->un_throttle, 3);
7376 			} else {
7377 				un->un_f_opt_queueing = FALSE;
7378 				un->un_saved_throttle = un->un_throttle = 1;
7379 			}
7380 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7381 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7382 			/* The Host Adapter supports internal queueing. */
7383 			un->un_f_opt_queueing = TRUE;
7384 			un->un_saved_throttle = un->un_throttle =
7385 			    min(un->un_throttle, 3);
7386 		} else {
7387 			un->un_f_opt_queueing = FALSE;
7388 			un->un_saved_throttle = un->un_throttle = 1;
7389 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7390 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7391 		}
7392 
7393 		/*
7394 		 * Enable large transfers for SATA/SAS drives
7395 		 */
7396 		if (SD_IS_SERIAL(un)) {
7397 			un->un_max_xfer_size =
7398 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7399 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7400 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7401 			    "sd_unit_attach: un:0x%p max transfer "
7402 			    "size=0x%x\n", un, un->un_max_xfer_size);
7403 
7404 		}
7405 
7406 		/* Setup or tear down default wide operations for disks */
7407 
7408 		/*
7409 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7410 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7411 		 * system and be set to different values. In the future this
7412 		 * code may need to be updated when the ssd module is
7413 		 * obsoleted and removed from the system. (4299588)
7414 		 */
7415 		if (SD_IS_PARALLEL_SCSI(un) &&
7416 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7417 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7418 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7419 			    1, 1) == 1) {
7420 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7421 				    "sd_unit_attach: un:0x%p Wide Transfer "
7422 				    "enabled\n", un);
7423 			}
7424 
7425 			/*
7426 			 * If tagged queuing has also been enabled, then
7427 			 * enable large xfers
7428 			 */
7429 			if (un->un_saved_throttle == sd_max_throttle) {
7430 				un->un_max_xfer_size =
7431 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7432 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7433 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7434 				    "sd_unit_attach: un:0x%p max transfer "
7435 				    "size=0x%x\n", un, un->un_max_xfer_size);
7436 			}
7437 		} else {
7438 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7439 			    0, 1) == 1) {
7440 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7441 				    "sd_unit_attach: un:0x%p "
7442 				    "Wide Transfer disabled\n", un);
7443 			}
7444 		}
7445 	} else {
7446 		un->un_tagflags = FLAG_STAG;
7447 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7448 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7449 	}
7450 
7451 	/*
7452 	 * If this target supports LUN reset, try to enable it.
7453 	 */
7454 	if (un->un_f_lun_reset_enabled) {
7455 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7456 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7457 			    "un:0x%p lun_reset capability set\n", un);
7458 		} else {
7459 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7460 			    "un:0x%p lun-reset capability not set\n", un);
7461 		}
7462 	}
7463 
7464 	/*
7465 	 * Adjust the maximum transfer size. This is to fix
7466 	 * the problem of partial DMA support on SPARC. Some
7467 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7468 	 * size, which requires partial DMA support on SPARC.
7469 	 * In the future the SPARC pci nexus driver may solve
7470 	 * the problem instead of this fix.
7471 	 */
7472 #if defined(__sparc)
7473 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7474 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7475 		un->un_max_xfer_size = max_xfer_size;
7476 		un->un_partial_dma_supported = 1;
7477 	}
7478 #endif
7479 
7480 	/*
7481 	 * Set PKT_DMA_PARTIAL flag.
7482 	 */
7483 	if (un->un_partial_dma_supported == 1) {
7484 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7485 	} else {
7486 		un->un_pkt_flags = 0;
7487 	}
7488 
7489 	/* Initialize sd_ssc_t for internal uscsi commands */
7490 	ssc = sd_ssc_init(un);
7491 	scsi_fm_init(devp);
7492 
7493 	/*
7494 	 * Allocate memory for SCSI FMA stuffs.
7495 	 */
7496 	un->un_fm_private =
7497 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7498 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7499 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7500 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7501 	sfip->fm_ssc.ssc_un = un;
7502 
7503 	/*
7504 	 * At this point in the attach, we have enough info in the
7505 	 * soft state to be able to issue commands to the target.
7506 	 *
7507 	 * All command paths used below MUST issue their commands as
7508 	 * SD_PATH_DIRECT. This is important as intermediate layers
7509 	 * are not all initialized yet (such as PM).
7510 	 */
7511 
7512 	/*
7513 	 * Send a TEST UNIT READY command to the device. This should clear
7514 	 * any outstanding UNIT ATTENTION that may be present.
7515 	 *
7516 	 * Note: Don't check for success, just track if there is a reservation,
7517 	 * this is a throw away command to clear any unit attentions.
7518 	 *
7519 	 * Note: This MUST be the first command issued to the target during
7520 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7521 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7522 	 * with attempts at spinning up a device with no media.
7523 	 */
7524 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7525 	if (status != 0) {
7526 		if (status == EACCES)
7527 			reservation_flag = SD_TARGET_IS_RESERVED;
7528 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7529 	}
7530 
7531 	/*
7532 	 * If the device is NOT a removable media device, attempt to spin
7533 	 * it up (using the START_STOP_UNIT command) and read its capacity
7534 	 * (using the READ CAPACITY command).  Note, however, that either
7535 	 * of these could fail and in some cases we would continue with
7536 	 * the attach despite the failure (see below).
7537 	 */
7538 	if (un->un_f_descr_format_supported) {
7539 
7540 		switch (sd_spin_up_unit(ssc)) {
7541 		case 0:
7542 			/*
7543 			 * Spin-up was successful; now try to read the
7544 			 * capacity.  If successful then save the results
7545 			 * and mark the capacity & lbasize as valid.
7546 			 */
7547 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7548 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7549 
7550 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7551 			    &lbasize, SD_PATH_DIRECT);
7552 
7553 			switch (status) {
7554 			case 0: {
7555 				if (capacity > DK_MAX_BLOCKS) {
7556 #ifdef _LP64
7557 					if ((capacity + 1) >
7558 					    SD_GROUP1_MAX_ADDRESS) {
7559 						/*
7560 						 * Enable descriptor format
7561 						 * sense data so that we can
7562 						 * get 64 bit sense data
7563 						 * fields.
7564 						 */
7565 						sd_enable_descr_sense(ssc);
7566 					}
7567 #else
7568 					/* 32-bit kernels can't handle this */
7569 					scsi_log(SD_DEVINFO(un),
7570 					    sd_label, CE_WARN,
7571 					    "disk has %llu blocks, which "
7572 					    "is too large for a 32-bit "
7573 					    "kernel", capacity);
7574 
7575 #if defined(__i386) || defined(__amd64)
7576 					/*
7577 					 * 1TB disk was treated as (1T - 512)B
7578 					 * in the past, so that it might have
7579 					 * valid VTOC and solaris partitions,
7580 					 * we have to allow it to continue to
7581 					 * work.
7582 					 */
7583 					if (capacity -1 > DK_MAX_BLOCKS)
7584 #endif
7585 					goto spinup_failed;
7586 #endif
7587 				}
7588 
7589 				/*
7590 				 * Here it's not necessary to check the case:
7591 				 * the capacity of the device is bigger than
7592 				 * what the max hba cdb can support. Because
7593 				 * sd_send_scsi_READ_CAPACITY will retrieve
7594 				 * the capacity by sending USCSI command, which
7595 				 * is constrained by the max hba cdb. Actually,
7596 				 * sd_send_scsi_READ_CAPACITY will return
7597 				 * EINVAL when using bigger cdb than required
7598 				 * cdb length. Will handle this case in
7599 				 * "case EINVAL".
7600 				 */
7601 
7602 				/*
7603 				 * The following relies on
7604 				 * sd_send_scsi_READ_CAPACITY never
7605 				 * returning 0 for capacity and/or lbasize.
7606 				 */
7607 				sd_update_block_info(un, lbasize, capacity);
7608 
7609 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7610 				    "sd_unit_attach: un:0x%p capacity = %ld "
7611 				    "blocks; lbasize= %ld.\n", un,
7612 				    un->un_blockcount, un->un_tgt_blocksize);
7613 
7614 				break;
7615 			}
7616 			case EINVAL:
7617 				/*
7618 				 * In the case where the max-cdb-length property
7619 				 * is smaller than the required CDB length for
7620 				 * a SCSI device, a target driver can fail to
7621 				 * attach to that device.
7622 				 */
7623 				scsi_log(SD_DEVINFO(un),
7624 				    sd_label, CE_WARN,
7625 				    "disk capacity is too large "
7626 				    "for current cdb length");
7627 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7628 
7629 				goto spinup_failed;
7630 			case EACCES:
7631 				/*
7632 				 * Should never get here if the spin-up
7633 				 * succeeded, but code it in anyway.
7634 				 * From here, just continue with the attach...
7635 				 */
7636 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7637 				    "sd_unit_attach: un:0x%p "
7638 				    "sd_send_scsi_READ_CAPACITY "
7639 				    "returned reservation conflict\n", un);
7640 				reservation_flag = SD_TARGET_IS_RESERVED;
7641 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7642 				break;
7643 			default:
7644 				/*
7645 				 * Likewise, should never get here if the
7646 				 * spin-up succeeded. Just continue with
7647 				 * the attach...
7648 				 */
7649 				if (status == EIO)
7650 					sd_ssc_assessment(ssc,
7651 					    SD_FMT_STATUS_CHECK);
7652 				else
7653 					sd_ssc_assessment(ssc,
7654 					    SD_FMT_IGNORE);
7655 				break;
7656 			}
7657 			break;
7658 		case EACCES:
7659 			/*
7660 			 * Device is reserved by another host.  In this case
7661 			 * we could not spin it up or read the capacity, but
7662 			 * we continue with the attach anyway.
7663 			 */
7664 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7665 			    "sd_unit_attach: un:0x%p spin-up reservation "
7666 			    "conflict.\n", un);
7667 			reservation_flag = SD_TARGET_IS_RESERVED;
7668 			break;
7669 		default:
7670 			/* Fail the attach if the spin-up failed. */
7671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7672 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7673 			goto spinup_failed;
7674 		}
7675 
7676 	}
7677 
7678 	/*
7679 	 * Check to see if this is a MMC drive
7680 	 */
7681 	if (ISCD(un)) {
7682 		sd_set_mmc_caps(ssc);
7683 	}
7684 
7685 
7686 	/*
7687 	 * Add a zero-length attribute to tell the world we support
7688 	 * kernel ioctls (for layered drivers)
7689 	 */
7690 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7691 	    DDI_KERNEL_IOCTL, NULL, 0);
7692 
7693 	/*
7694 	 * Add a boolean property to tell the world we support
7695 	 * the B_FAILFAST flag (for layered drivers)
7696 	 */
7697 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7698 	    "ddi-failfast-supported", NULL, 0);
7699 
7700 	/*
7701 	 * Initialize power management
7702 	 */
7703 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7704 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7705 	sd_setup_pm(ssc, devi);
7706 	if (un->un_f_pm_is_enabled == FALSE) {
7707 		/*
7708 		 * For performance, point to a jump table that does
7709 		 * not include pm.
7710 		 * The direct and priority chains don't change with PM.
7711 		 *
7712 		 * Note: this is currently done based on individual device
7713 		 * capabilities. When an interface for determining system
7714 		 * power enabled state becomes available, or when additional
7715 		 * layers are added to the command chain, these values will
7716 		 * have to be re-evaluated for correctness.
7717 		 */
7718 		if (un->un_f_non_devbsize_supported) {
7719 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7720 		} else {
7721 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7722 		}
7723 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7724 	}
7725 
7726 	/*
7727 	 * This property is set to 0 by HA software to avoid retries
7728 	 * on a reserved disk. (The preferred property name is
7729 	 * "retry-on-reservation-conflict") (1189689)
7730 	 *
7731 	 * Note: The use of a global here can have unintended consequences. A
7732 	 * per instance variable is preferable to match the capabilities of
7733 	 * different underlying hba's (4402600)
7734 	 */
7735 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7736 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7737 	    sd_retry_on_reservation_conflict);
7738 	if (sd_retry_on_reservation_conflict != 0) {
7739 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7740 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7741 		    sd_retry_on_reservation_conflict);
7742 	}
7743 
7744 	/* Set up options for QFULL handling. */
7745 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7746 	    "qfull-retries", -1)) != -1) {
7747 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7748 		    rval, 1);
7749 	}
7750 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7751 	    "qfull-retry-interval", -1)) != -1) {
7752 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7753 		    rval, 1);
7754 	}
7755 
7756 	/*
7757 	 * This just prints a message that announces the existence of the
7758 	 * device. The message is always printed in the system logfile, but
7759 	 * only appears on the console if the system is booted with the
7760 	 * -v (verbose) argument.
7761 	 */
7762 	ddi_report_dev(devi);
7763 
7764 	un->un_mediastate = DKIO_NONE;
7765 
7766 	cmlb_alloc_handle(&un->un_cmlbhandle);
7767 
7768 #if defined(__i386) || defined(__amd64)
7769 	/*
7770 	 * On x86, compensate for off-by-1 legacy error
7771 	 */
7772 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7773 	    (lbasize == un->un_sys_blocksize))
7774 		offbyone = CMLB_OFF_BY_ONE;
7775 #endif
7776 
7777 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7778 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7779 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7780 	    (void *)SD_PATH_DIRECT) != 0) {
7781 		goto cmlb_attach_failed;
7782 	}
7783 
7784 
7785 	/*
7786 	 * Read and validate the device's geometry (ie, disk label)
7787 	 * A new unformatted drive will not have a valid geometry, but
7788 	 * the driver needs to successfully attach to this device so
7789 	 * the drive can be formatted via ioctls.
7790 	 */
7791 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7792 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7793 
7794 	mutex_enter(SD_MUTEX(un));
7795 
7796 	/*
7797 	 * Read and initialize the devid for the unit.
7798 	 */
7799 	if (un->un_f_devid_supported) {
7800 		sd_register_devid(ssc, devi, reservation_flag);
7801 	}
7802 	mutex_exit(SD_MUTEX(un));
7803 
7804 #if (defined(__fibre))
7805 	/*
7806 	 * Register callbacks for fibre only.  You can't do this solely
7807 	 * on the basis of the devid_type because this is hba specific.
7808 	 * We need to query our hba capabilities to find out whether to
7809 	 * register or not.
7810 	 */
7811 	if (un->un_f_is_fibre) {
7812 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7813 			sd_init_event_callbacks(un);
7814 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7815 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7816 			    un);
7817 		}
7818 	}
7819 #endif
7820 
7821 	if (un->un_f_opt_disable_cache == TRUE) {
7822 		/*
7823 		 * Disable both read cache and write cache.  This is
7824 		 * the historic behavior of the keywords in the config file.
7825 		 */
7826 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7827 		    0) {
7828 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7829 			    "sd_unit_attach: un:0x%p Could not disable "
7830 			    "caching", un);
7831 			goto devid_failed;
7832 		}
7833 	}
7834 
7835 	/*
7836 	 * Check the value of the WCE bit now and
7837 	 * set un_f_write_cache_enabled accordingly.
7838 	 */
7839 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
7840 	mutex_enter(SD_MUTEX(un));
7841 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7842 	mutex_exit(SD_MUTEX(un));
7843 
7844 	/*
7845 	 * Check the value of the NV_SUP bit and set
7846 	 * un_f_suppress_cache_flush accordingly.
7847 	 */
7848 	sd_get_nv_sup(ssc);
7849 
7850 	/*
7851 	 * Find out what type of reservation this disk supports.
7852 	 */
7853 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
7854 
7855 	switch (status) {
7856 	case 0:
7857 		/*
7858 		 * SCSI-3 reservations are supported.
7859 		 */
7860 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7861 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7862 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7863 		break;
7864 	case ENOTSUP:
7865 		/*
7866 		 * The PERSISTENT RESERVE IN command would not be recognized by
7867 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7868 		 */
7869 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7870 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7871 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7872 
7873 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7874 		break;
7875 	default:
7876 		/*
7877 		 * default to SCSI-3 reservations
7878 		 */
7879 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7880 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7881 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7882 
7883 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7884 		break;
7885 	}
7886 
7887 	/*
7888 	 * Set the pstat and error stat values here, so data obtained during the
7889 	 * previous attach-time routines is available.
7890 	 *
7891 	 * Note: This is a critical sequence that needs to be maintained:
7892 	 *	1) Instantiate the kstats before any routines using the iopath
7893 	 *	   (i.e. sd_send_scsi_cmd).
7894 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7895 	 *	   stats (sd_set_pstats)here, following
7896 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7897 	 *	   sd_cache_control().
7898 	 */
7899 
7900 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7901 		sd_set_pstats(un);
7902 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7903 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7904 	}
7905 
7906 	sd_set_errstats(un);
7907 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7908 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7909 
7910 
7911 	/*
7912 	 * After successfully attaching an instance, we record the information
7913 	 * of how many luns have been attached on the relative target and
7914 	 * controller for parallel SCSI. This information is used when sd tries
7915 	 * to set the tagged queuing capability in HBA.
7916 	 */
7917 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7918 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7919 	}
7920 
7921 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7922 	    "sd_unit_attach: un:0x%p exit success\n", un);
7923 
7924 	/* Uninitialize sd_ssc_t pointer */
7925 	sd_ssc_fini(ssc);
7926 
7927 	return (DDI_SUCCESS);
7928 
7929 	/*
7930 	 * An error occurred during the attach; clean up & return failure.
7931 	 */
7932 
7933 devid_failed:
7934 
7935 setup_pm_failed:
7936 	ddi_remove_minor_node(devi, NULL);
7937 
7938 cmlb_attach_failed:
7939 	/*
7940 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7941 	 */
7942 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7943 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7944 
7945 	/*
7946 	 * Refer to the comments of setting tagged-qing in the beginning of
7947 	 * sd_unit_attach. We can only disable tagged queuing when there is
7948 	 * no lun attached on the target.
7949 	 */
7950 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7951 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7952 	}
7953 
7954 	if (un->un_f_is_fibre == FALSE) {
7955 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7956 	}
7957 
7958 spinup_failed:
7959 
7960 	/* Uninitialize sd_ssc_t pointer */
7961 	sd_ssc_fini(ssc);
7962 
7963 	mutex_enter(SD_MUTEX(un));
7964 
7965 	/* Deallocate SCSI FMA memory spaces */
7966 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
7967 
7968 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7969 	if (un->un_direct_priority_timeid != NULL) {
7970 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7971 		un->un_direct_priority_timeid = NULL;
7972 		mutex_exit(SD_MUTEX(un));
7973 		(void) untimeout(temp_id);
7974 		mutex_enter(SD_MUTEX(un));
7975 	}
7976 
7977 	/* Cancel any pending start/stop timeouts */
7978 	if (un->un_startstop_timeid != NULL) {
7979 		timeout_id_t temp_id = un->un_startstop_timeid;
7980 		un->un_startstop_timeid = NULL;
7981 		mutex_exit(SD_MUTEX(un));
7982 		(void) untimeout(temp_id);
7983 		mutex_enter(SD_MUTEX(un));
7984 	}
7985 
7986 	/* Cancel any pending reset-throttle timeouts */
7987 	if (un->un_reset_throttle_timeid != NULL) {
7988 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7989 		un->un_reset_throttle_timeid = NULL;
7990 		mutex_exit(SD_MUTEX(un));
7991 		(void) untimeout(temp_id);
7992 		mutex_enter(SD_MUTEX(un));
7993 	}
7994 
7995 	/* Cancel any pending retry timeouts */
7996 	if (un->un_retry_timeid != NULL) {
7997 		timeout_id_t temp_id = un->un_retry_timeid;
7998 		un->un_retry_timeid = NULL;
7999 		mutex_exit(SD_MUTEX(un));
8000 		(void) untimeout(temp_id);
8001 		mutex_enter(SD_MUTEX(un));
8002 	}
8003 
8004 	/* Cancel any pending delayed cv broadcast timeouts */
8005 	if (un->un_dcvb_timeid != NULL) {
8006 		timeout_id_t temp_id = un->un_dcvb_timeid;
8007 		un->un_dcvb_timeid = NULL;
8008 		mutex_exit(SD_MUTEX(un));
8009 		(void) untimeout(temp_id);
8010 		mutex_enter(SD_MUTEX(un));
8011 	}
8012 
8013 	mutex_exit(SD_MUTEX(un));
8014 
8015 	/* There should not be any in-progress I/O so ASSERT this check */
8016 	ASSERT(un->un_ncmds_in_transport == 0);
8017 	ASSERT(un->un_ncmds_in_driver == 0);
8018 
8019 	/* Do not free the softstate if the callback routine is active */
8020 	sd_sync_with_callback(un);
8021 
8022 	/*
8023 	 * Partition stats apparently are not used with removables. These would
8024 	 * not have been created during attach, so no need to clean them up...
8025 	 */
8026 	if (un->un_errstats != NULL) {
8027 		kstat_delete(un->un_errstats);
8028 		un->un_errstats = NULL;
8029 	}
8030 
8031 create_errstats_failed:
8032 
8033 	if (un->un_stats != NULL) {
8034 		kstat_delete(un->un_stats);
8035 		un->un_stats = NULL;
8036 	}
8037 
8038 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8039 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8040 
8041 	ddi_prop_remove_all(devi);
8042 	sema_destroy(&un->un_semoclose);
8043 	cv_destroy(&un->un_state_cv);
8044 
8045 getrbuf_failed:
8046 
8047 	sd_free_rqs(un);
8048 
8049 alloc_rqs_failed:
8050 
8051 	devp->sd_private = NULL;
8052 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8053 
8054 get_softstate_failed:
8055 	/*
8056 	 * Note: the man pages are unclear as to whether or not doing a
8057 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8058 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8059 	 * ddi_get_soft_state() fails.  The implication seems to be
8060 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8061 	 */
8062 	ddi_soft_state_free(sd_state, instance);
8063 
8064 probe_failed:
8065 	scsi_unprobe(devp);
8066 
8067 	return (DDI_FAILURE);
8068 }
8069 
8070 
8071 /*
8072  *    Function: sd_unit_detach
8073  *
8074  * Description: Performs DDI_DETACH processing for sddetach().
8075  *
8076  * Return Code: DDI_SUCCESS
8077  *		DDI_FAILURE
8078  *
8079  *     Context: Kernel thread context
8080  */
8081 
8082 static int
8083 sd_unit_detach(dev_info_t *devi)
8084 {
8085 	struct scsi_device	*devp;
8086 	struct sd_lun		*un;
8087 	int			i;
8088 	int			tgt;
8089 	dev_t			dev;
8090 	dev_info_t		*pdip = ddi_get_parent(devi);
8091 	int			instance = ddi_get_instance(devi);
8092 
8093 	mutex_enter(&sd_detach_mutex);
8094 
8095 	/*
8096 	 * Fail the detach for any of the following:
8097 	 *  - Unable to get the sd_lun struct for the instance
8098 	 *  - A layered driver has an outstanding open on the instance
8099 	 *  - Another thread is already detaching this instance
8100 	 *  - Another thread is currently performing an open
8101 	 */
8102 	devp = ddi_get_driver_private(devi);
8103 	if ((devp == NULL) ||
8104 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8105 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8106 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8107 		mutex_exit(&sd_detach_mutex);
8108 		return (DDI_FAILURE);
8109 	}
8110 
8111 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8112 
8113 	/*
8114 	 * Mark this instance as currently in a detach, to inhibit any
8115 	 * opens from a layered driver.
8116 	 */
8117 	un->un_detach_count++;
8118 	mutex_exit(&sd_detach_mutex);
8119 
8120 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8121 	    SCSI_ADDR_PROP_TARGET, -1);
8122 
8123 	dev = sd_make_device(SD_DEVINFO(un));
8124 
8125 #ifndef lint
8126 	_NOTE(COMPETING_THREADS_NOW);
8127 #endif
8128 
8129 	mutex_enter(SD_MUTEX(un));
8130 
8131 	/*
8132 	 * Fail the detach if there are any outstanding layered
8133 	 * opens on this device.
8134 	 */
8135 	for (i = 0; i < NDKMAP; i++) {
8136 		if (un->un_ocmap.lyropen[i] != 0) {
8137 			goto err_notclosed;
8138 		}
8139 	}
8140 
8141 	/*
8142 	 * Verify there are NO outstanding commands issued to this device.
8143 	 * ie, un_ncmds_in_transport == 0.
8144 	 * It's possible to have outstanding commands through the physio
8145 	 * code path, even though everything's closed.
8146 	 */
8147 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8148 	    (un->un_direct_priority_timeid != NULL) ||
8149 	    (un->un_state == SD_STATE_RWAIT)) {
8150 		mutex_exit(SD_MUTEX(un));
8151 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8152 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8153 		goto err_stillbusy;
8154 	}
8155 
8156 	/*
8157 	 * If we have the device reserved, release the reservation.
8158 	 */
8159 	if ((un->un_resvd_status & SD_RESERVE) &&
8160 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8161 		mutex_exit(SD_MUTEX(un));
8162 		/*
8163 		 * Note: sd_reserve_release sends a command to the device
8164 		 * via the sd_ioctlcmd() path, and can sleep.
8165 		 */
8166 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8167 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8168 			    "sd_dr_detach: Cannot release reservation \n");
8169 		}
8170 	} else {
8171 		mutex_exit(SD_MUTEX(un));
8172 	}
8173 
8174 	/*
8175 	 * Untimeout any reserve recover, throttle reset, restart unit
8176 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8177 	 * from getting nulled by their callback functions.
8178 	 */
8179 	mutex_enter(SD_MUTEX(un));
8180 	if (un->un_resvd_timeid != NULL) {
8181 		timeout_id_t temp_id = un->un_resvd_timeid;
8182 		un->un_resvd_timeid = NULL;
8183 		mutex_exit(SD_MUTEX(un));
8184 		(void) untimeout(temp_id);
8185 		mutex_enter(SD_MUTEX(un));
8186 	}
8187 
8188 	if (un->un_reset_throttle_timeid != NULL) {
8189 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8190 		un->un_reset_throttle_timeid = NULL;
8191 		mutex_exit(SD_MUTEX(un));
8192 		(void) untimeout(temp_id);
8193 		mutex_enter(SD_MUTEX(un));
8194 	}
8195 
8196 	if (un->un_startstop_timeid != NULL) {
8197 		timeout_id_t temp_id = un->un_startstop_timeid;
8198 		un->un_startstop_timeid = NULL;
8199 		mutex_exit(SD_MUTEX(un));
8200 		(void) untimeout(temp_id);
8201 		mutex_enter(SD_MUTEX(un));
8202 	}
8203 
8204 	if (un->un_dcvb_timeid != NULL) {
8205 		timeout_id_t temp_id = un->un_dcvb_timeid;
8206 		un->un_dcvb_timeid = NULL;
8207 		mutex_exit(SD_MUTEX(un));
8208 		(void) untimeout(temp_id);
8209 	} else {
8210 		mutex_exit(SD_MUTEX(un));
8211 	}
8212 
8213 	/* Remove any pending reservation reclaim requests for this device */
8214 	sd_rmv_resv_reclaim_req(dev);
8215 
8216 	mutex_enter(SD_MUTEX(un));
8217 
8218 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8219 	if (un->un_direct_priority_timeid != NULL) {
8220 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8221 		un->un_direct_priority_timeid = NULL;
8222 		mutex_exit(SD_MUTEX(un));
8223 		(void) untimeout(temp_id);
8224 		mutex_enter(SD_MUTEX(un));
8225 	}
8226 
8227 	/* Cancel any active multi-host disk watch thread requests */
8228 	if (un->un_mhd_token != NULL) {
8229 		mutex_exit(SD_MUTEX(un));
8230 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8231 		if (scsi_watch_request_terminate(un->un_mhd_token,
8232 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8233 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8234 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8235 			/*
8236 			 * Note: We are returning here after having removed
8237 			 * some driver timeouts above. This is consistent with
8238 			 * the legacy implementation but perhaps the watch
8239 			 * terminate call should be made with the wait flag set.
8240 			 */
8241 			goto err_stillbusy;
8242 		}
8243 		mutex_enter(SD_MUTEX(un));
8244 		un->un_mhd_token = NULL;
8245 	}
8246 
8247 	if (un->un_swr_token != NULL) {
8248 		mutex_exit(SD_MUTEX(un));
8249 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8250 		if (scsi_watch_request_terminate(un->un_swr_token,
8251 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8252 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8253 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8254 			/*
8255 			 * Note: We are returning here after having removed
8256 			 * some driver timeouts above. This is consistent with
8257 			 * the legacy implementation but perhaps the watch
8258 			 * terminate call should be made with the wait flag set.
8259 			 */
8260 			goto err_stillbusy;
8261 		}
8262 		mutex_enter(SD_MUTEX(un));
8263 		un->un_swr_token = NULL;
8264 	}
8265 
8266 	mutex_exit(SD_MUTEX(un));
8267 
8268 	/*
8269 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8270 	 * if we have not registered one.
8271 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8272 	 */
8273 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8274 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8275 
8276 	/*
8277 	 * protect the timeout pointers from getting nulled by
8278 	 * their callback functions during the cancellation process.
8279 	 * In such a scenario untimeout can be invoked with a null value.
8280 	 */
8281 	_NOTE(NO_COMPETING_THREADS_NOW);
8282 
8283 	mutex_enter(&un->un_pm_mutex);
8284 	if (un->un_pm_idle_timeid != NULL) {
8285 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8286 		un->un_pm_idle_timeid = NULL;
8287 		mutex_exit(&un->un_pm_mutex);
8288 
8289 		/*
8290 		 * Timeout is active; cancel it.
8291 		 * Note that it'll never be active on a device
8292 		 * that does not support PM therefore we don't
8293 		 * have to check before calling pm_idle_component.
8294 		 */
8295 		(void) untimeout(temp_id);
8296 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8297 		mutex_enter(&un->un_pm_mutex);
8298 	}
8299 
8300 	/*
8301 	 * Check whether there is already a timeout scheduled for power
8302 	 * management. If yes then don't lower the power here, that's.
8303 	 * the timeout handler's job.
8304 	 */
8305 	if (un->un_pm_timeid != NULL) {
8306 		timeout_id_t temp_id = un->un_pm_timeid;
8307 		un->un_pm_timeid = NULL;
8308 		mutex_exit(&un->un_pm_mutex);
8309 		/*
8310 		 * Timeout is active; cancel it.
8311 		 * Note that it'll never be active on a device
8312 		 * that does not support PM therefore we don't
8313 		 * have to check before calling pm_idle_component.
8314 		 */
8315 		(void) untimeout(temp_id);
8316 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8317 
8318 	} else {
8319 		mutex_exit(&un->un_pm_mutex);
8320 		if ((un->un_f_pm_is_enabled == TRUE) &&
8321 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8322 		    DDI_SUCCESS)) {
8323 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8324 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8325 			/*
8326 			 * Fix for bug: 4297749, item # 13
8327 			 * The above test now includes a check to see if PM is
8328 			 * supported by this device before call
8329 			 * pm_lower_power().
8330 			 * Note, the following is not dead code. The call to
8331 			 * pm_lower_power above will generate a call back into
8332 			 * our sdpower routine which might result in a timeout
8333 			 * handler getting activated. Therefore the following
8334 			 * code is valid and necessary.
8335 			 */
8336 			mutex_enter(&un->un_pm_mutex);
8337 			if (un->un_pm_timeid != NULL) {
8338 				timeout_id_t temp_id = un->un_pm_timeid;
8339 				un->un_pm_timeid = NULL;
8340 				mutex_exit(&un->un_pm_mutex);
8341 				(void) untimeout(temp_id);
8342 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8343 			} else {
8344 				mutex_exit(&un->un_pm_mutex);
8345 			}
8346 		}
8347 	}
8348 
8349 	/*
8350 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8351 	 * Relocated here from above to be after the call to
8352 	 * pm_lower_power, which was getting errors.
8353 	 */
8354 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8355 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8356 
8357 	/*
8358 	 * Currently, tagged queuing is supported per target based by HBA.
8359 	 * Setting this per lun instance actually sets the capability of this
8360 	 * target in HBA, which affects those luns already attached on the
8361 	 * same target. So during detach, we can only disable this capability
8362 	 * only when this is the only lun left on this target. By doing
8363 	 * this, we assume a target has the same tagged queuing capability
8364 	 * for every lun. The condition can be removed when HBA is changed to
8365 	 * support per lun based tagged queuing capability.
8366 	 */
8367 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8368 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8369 	}
8370 
8371 	if (un->un_f_is_fibre == FALSE) {
8372 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8373 	}
8374 
8375 	/*
8376 	 * Remove any event callbacks, fibre only
8377 	 */
8378 	if (un->un_f_is_fibre == TRUE) {
8379 		if ((un->un_insert_event != NULL) &&
8380 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8381 		    DDI_SUCCESS)) {
8382 			/*
8383 			 * Note: We are returning here after having done
8384 			 * substantial cleanup above. This is consistent
8385 			 * with the legacy implementation but this may not
8386 			 * be the right thing to do.
8387 			 */
8388 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8389 			    "sd_dr_detach: Cannot cancel insert event\n");
8390 			goto err_remove_event;
8391 		}
8392 		un->un_insert_event = NULL;
8393 
8394 		if ((un->un_remove_event != NULL) &&
8395 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8396 		    DDI_SUCCESS)) {
8397 			/*
8398 			 * Note: We are returning here after having done
8399 			 * substantial cleanup above. This is consistent
8400 			 * with the legacy implementation but this may not
8401 			 * be the right thing to do.
8402 			 */
8403 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8404 			    "sd_dr_detach: Cannot cancel remove event\n");
8405 			goto err_remove_event;
8406 		}
8407 		un->un_remove_event = NULL;
8408 	}
8409 
8410 	/* Do not free the softstate if the callback routine is active */
8411 	sd_sync_with_callback(un);
8412 
8413 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8414 	cmlb_free_handle(&un->un_cmlbhandle);
8415 
8416 	/*
8417 	 * Hold the detach mutex here, to make sure that no other threads ever
8418 	 * can access a (partially) freed soft state structure.
8419 	 */
8420 	mutex_enter(&sd_detach_mutex);
8421 
8422 	/*
8423 	 * Clean up the soft state struct.
8424 	 * Cleanup is done in reverse order of allocs/inits.
8425 	 * At this point there should be no competing threads anymore.
8426 	 */
8427 
8428 	scsi_fm_fini(devp);
8429 
8430 	/*
8431 	 * Deallocate memory for SCSI FMA.
8432 	 */
8433 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8434 
8435 	/* Unregister and free device id. */
8436 	ddi_devid_unregister(devi);
8437 	if (un->un_devid) {
8438 		ddi_devid_free(un->un_devid);
8439 		un->un_devid = NULL;
8440 	}
8441 
8442 	/*
8443 	 * Destroy wmap cache if it exists.
8444 	 */
8445 	if (un->un_wm_cache != NULL) {
8446 		kmem_cache_destroy(un->un_wm_cache);
8447 		un->un_wm_cache = NULL;
8448 	}
8449 
8450 	/*
8451 	 * kstat cleanup is done in detach for all device types (4363169).
8452 	 * We do not want to fail detach if the device kstats are not deleted
8453 	 * since there is a confusion about the devo_refcnt for the device.
8454 	 * We just delete the kstats and let detach complete successfully.
8455 	 */
8456 	if (un->un_stats != NULL) {
8457 		kstat_delete(un->un_stats);
8458 		un->un_stats = NULL;
8459 	}
8460 	if (un->un_errstats != NULL) {
8461 		kstat_delete(un->un_errstats);
8462 		un->un_errstats = NULL;
8463 	}
8464 
8465 	/* Remove partition stats */
8466 	if (un->un_f_pkstats_enabled) {
8467 		for (i = 0; i < NSDMAP; i++) {
8468 			if (un->un_pstats[i] != NULL) {
8469 				kstat_delete(un->un_pstats[i]);
8470 				un->un_pstats[i] = NULL;
8471 			}
8472 		}
8473 	}
8474 
8475 	/* Remove xbuf registration */
8476 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8477 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8478 
8479 	/* Remove driver properties */
8480 	ddi_prop_remove_all(devi);
8481 
8482 	mutex_destroy(&un->un_pm_mutex);
8483 	cv_destroy(&un->un_pm_busy_cv);
8484 
8485 	cv_destroy(&un->un_wcc_cv);
8486 
8487 	/* Open/close semaphore */
8488 	sema_destroy(&un->un_semoclose);
8489 
8490 	/* Removable media condvar. */
8491 	cv_destroy(&un->un_state_cv);
8492 
8493 	/* Suspend/resume condvar. */
8494 	cv_destroy(&un->un_suspend_cv);
8495 	cv_destroy(&un->un_disk_busy_cv);
8496 
8497 	sd_free_rqs(un);
8498 
8499 	/* Free up soft state */
8500 	devp->sd_private = NULL;
8501 
8502 	bzero(un, sizeof (struct sd_lun));
8503 	ddi_soft_state_free(sd_state, instance);
8504 
8505 	mutex_exit(&sd_detach_mutex);
8506 
8507 	/* This frees up the INQUIRY data associated with the device. */
8508 	scsi_unprobe(devp);
8509 
8510 	/*
8511 	 * After successfully detaching an instance, we update the information
8512 	 * of how many luns have been attached in the relative target and
8513 	 * controller for parallel SCSI. This information is used when sd tries
8514 	 * to set the tagged queuing capability in HBA.
8515 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8516 	 * check if the device is parallel SCSI. However, we don't need to
8517 	 * check here because we've already checked during attach. No device
8518 	 * that is not parallel SCSI is in the chain.
8519 	 */
8520 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8521 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8522 	}
8523 
8524 	return (DDI_SUCCESS);
8525 
8526 err_notclosed:
8527 	mutex_exit(SD_MUTEX(un));
8528 
8529 err_stillbusy:
8530 	_NOTE(NO_COMPETING_THREADS_NOW);
8531 
8532 err_remove_event:
8533 	mutex_enter(&sd_detach_mutex);
8534 	un->un_detach_count--;
8535 	mutex_exit(&sd_detach_mutex);
8536 
8537 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8538 	return (DDI_FAILURE);
8539 }
8540 
8541 
8542 /*
8543  *    Function: sd_create_errstats
8544  *
8545  * Description: This routine instantiates the device error stats.
8546  *
8547  *		Note: During attach the stats are instantiated first so they are
8548  *		available for attach-time routines that utilize the driver
8549  *		iopath to send commands to the device. The stats are initialized
8550  *		separately so data obtained during some attach-time routines is
8551  *		available. (4362483)
8552  *
8553  *   Arguments: un - driver soft state (unit) structure
8554  *		instance - driver instance
8555  *
8556  *     Context: Kernel thread context
8557  */
8558 
8559 static void
8560 sd_create_errstats(struct sd_lun *un, int instance)
8561 {
8562 	struct	sd_errstats	*stp;
8563 	char	kstatmodule_err[KSTAT_STRLEN];
8564 	char	kstatname[KSTAT_STRLEN];
8565 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8566 
8567 	ASSERT(un != NULL);
8568 
8569 	if (un->un_errstats != NULL) {
8570 		return;
8571 	}
8572 
8573 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8574 	    "%serr", sd_label);
8575 	(void) snprintf(kstatname, sizeof (kstatname),
8576 	    "%s%d,err", sd_label, instance);
8577 
8578 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8579 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8580 
8581 	if (un->un_errstats == NULL) {
8582 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8583 		    "sd_create_errstats: Failed kstat_create\n");
8584 		return;
8585 	}
8586 
8587 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8588 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8589 	    KSTAT_DATA_UINT32);
8590 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8591 	    KSTAT_DATA_UINT32);
8592 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8593 	    KSTAT_DATA_UINT32);
8594 	kstat_named_init(&stp->sd_vid,		"Vendor",
8595 	    KSTAT_DATA_CHAR);
8596 	kstat_named_init(&stp->sd_pid,		"Product",
8597 	    KSTAT_DATA_CHAR);
8598 	kstat_named_init(&stp->sd_revision,	"Revision",
8599 	    KSTAT_DATA_CHAR);
8600 	kstat_named_init(&stp->sd_serial,	"Serial No",
8601 	    KSTAT_DATA_CHAR);
8602 	kstat_named_init(&stp->sd_capacity,	"Size",
8603 	    KSTAT_DATA_ULONGLONG);
8604 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8605 	    KSTAT_DATA_UINT32);
8606 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8607 	    KSTAT_DATA_UINT32);
8608 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8609 	    KSTAT_DATA_UINT32);
8610 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8611 	    KSTAT_DATA_UINT32);
8612 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8613 	    KSTAT_DATA_UINT32);
8614 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8615 	    KSTAT_DATA_UINT32);
8616 
8617 	un->un_errstats->ks_private = un;
8618 	un->un_errstats->ks_update  = nulldev;
8619 
8620 	kstat_install(un->un_errstats);
8621 }
8622 
8623 
8624 /*
8625  *    Function: sd_set_errstats
8626  *
8627  * Description: This routine sets the value of the vendor id, product id,
8628  *		revision, serial number, and capacity device error stats.
8629  *
8630  *		Note: During attach the stats are instantiated first so they are
8631  *		available for attach-time routines that utilize the driver
8632  *		iopath to send commands to the device. The stats are initialized
8633  *		separately so data obtained during some attach-time routines is
8634  *		available. (4362483)
8635  *
8636  *   Arguments: un - driver soft state (unit) structure
8637  *
8638  *     Context: Kernel thread context
8639  */
8640 
8641 static void
8642 sd_set_errstats(struct sd_lun *un)
8643 {
8644 	struct	sd_errstats	*stp;
8645 
8646 	ASSERT(un != NULL);
8647 	ASSERT(un->un_errstats != NULL);
8648 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8649 	ASSERT(stp != NULL);
8650 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8651 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8652 	(void) strncpy(stp->sd_revision.value.c,
8653 	    un->un_sd->sd_inq->inq_revision, 4);
8654 
8655 	/*
8656 	 * All the errstats are persistent across detach/attach,
8657 	 * so reset all the errstats here in case of the hot
8658 	 * replacement of disk drives, except for not changed
8659 	 * Sun qualified drives.
8660 	 */
8661 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8662 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8663 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8664 		stp->sd_softerrs.value.ui32 = 0;
8665 		stp->sd_harderrs.value.ui32 = 0;
8666 		stp->sd_transerrs.value.ui32 = 0;
8667 		stp->sd_rq_media_err.value.ui32 = 0;
8668 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8669 		stp->sd_rq_nodev_err.value.ui32 = 0;
8670 		stp->sd_rq_recov_err.value.ui32 = 0;
8671 		stp->sd_rq_illrq_err.value.ui32 = 0;
8672 		stp->sd_rq_pfa_err.value.ui32 = 0;
8673 	}
8674 
8675 	/*
8676 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8677 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8678 	 * (4376302))
8679 	 */
8680 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8681 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8682 		    sizeof (SD_INQUIRY(un)->inq_serial));
8683 	}
8684 
8685 	if (un->un_f_blockcount_is_valid != TRUE) {
8686 		/*
8687 		 * Set capacity error stat to 0 for no media. This ensures
8688 		 * a valid capacity is displayed in response to 'iostat -E'
8689 		 * when no media is present in the device.
8690 		 */
8691 		stp->sd_capacity.value.ui64 = 0;
8692 	} else {
8693 		/*
8694 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8695 		 * capacity.
8696 		 *
8697 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8698 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8699 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8700 		 */
8701 		stp->sd_capacity.value.ui64 = (uint64_t)
8702 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8703 	}
8704 }
8705 
8706 
8707 /*
8708  *    Function: sd_set_pstats
8709  *
8710  * Description: This routine instantiates and initializes the partition
8711  *              stats for each partition with more than zero blocks.
8712  *		(4363169)
8713  *
8714  *   Arguments: un - driver soft state (unit) structure
8715  *
8716  *     Context: Kernel thread context
8717  */
8718 
8719 static void
8720 sd_set_pstats(struct sd_lun *un)
8721 {
8722 	char	kstatname[KSTAT_STRLEN];
8723 	int	instance;
8724 	int	i;
8725 	diskaddr_t	nblks = 0;
8726 	char	*partname = NULL;
8727 
8728 	ASSERT(un != NULL);
8729 
8730 	instance = ddi_get_instance(SD_DEVINFO(un));
8731 
8732 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8733 	for (i = 0; i < NSDMAP; i++) {
8734 
8735 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8736 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8737 			continue;
8738 		mutex_enter(SD_MUTEX(un));
8739 
8740 		if ((un->un_pstats[i] == NULL) &&
8741 		    (nblks != 0)) {
8742 
8743 			(void) snprintf(kstatname, sizeof (kstatname),
8744 			    "%s%d,%s", sd_label, instance,
8745 			    partname);
8746 
8747 			un->un_pstats[i] = kstat_create(sd_label,
8748 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8749 			    1, KSTAT_FLAG_PERSISTENT);
8750 			if (un->un_pstats[i] != NULL) {
8751 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8752 				kstat_install(un->un_pstats[i]);
8753 			}
8754 		}
8755 		mutex_exit(SD_MUTEX(un));
8756 	}
8757 }
8758 
8759 
8760 #if (defined(__fibre))
8761 /*
8762  *    Function: sd_init_event_callbacks
8763  *
8764  * Description: This routine initializes the insertion and removal event
8765  *		callbacks. (fibre only)
8766  *
8767  *   Arguments: un - driver soft state (unit) structure
8768  *
8769  *     Context: Kernel thread context
8770  */
8771 
8772 static void
8773 sd_init_event_callbacks(struct sd_lun *un)
8774 {
8775 	ASSERT(un != NULL);
8776 
8777 	if ((un->un_insert_event == NULL) &&
8778 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8779 	    &un->un_insert_event) == DDI_SUCCESS)) {
8780 		/*
8781 		 * Add the callback for an insertion event
8782 		 */
8783 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8784 		    un->un_insert_event, sd_event_callback, (void *)un,
8785 		    &(un->un_insert_cb_id));
8786 	}
8787 
8788 	if ((un->un_remove_event == NULL) &&
8789 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8790 	    &un->un_remove_event) == DDI_SUCCESS)) {
8791 		/*
8792 		 * Add the callback for a removal event
8793 		 */
8794 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8795 		    un->un_remove_event, sd_event_callback, (void *)un,
8796 		    &(un->un_remove_cb_id));
8797 	}
8798 }
8799 
8800 
8801 /*
8802  *    Function: sd_event_callback
8803  *
8804  * Description: This routine handles insert/remove events (photon). The
8805  *		state is changed to OFFLINE which can be used to supress
8806  *		error msgs. (fibre only)
8807  *
8808  *   Arguments: un - driver soft state (unit) structure
8809  *
8810  *     Context: Callout thread context
8811  */
8812 /* ARGSUSED */
8813 static void
8814 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8815     void *bus_impldata)
8816 {
8817 	struct sd_lun *un = (struct sd_lun *)arg;
8818 
8819 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8820 	if (event == un->un_insert_event) {
8821 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8822 		mutex_enter(SD_MUTEX(un));
8823 		if (un->un_state == SD_STATE_OFFLINE) {
8824 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8825 				un->un_state = un->un_last_state;
8826 			} else {
8827 				/*
8828 				 * We have gone through SUSPEND/RESUME while
8829 				 * we were offline. Restore the last state
8830 				 */
8831 				un->un_state = un->un_save_state;
8832 			}
8833 		}
8834 		mutex_exit(SD_MUTEX(un));
8835 
8836 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8837 	} else if (event == un->un_remove_event) {
8838 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8839 		mutex_enter(SD_MUTEX(un));
8840 		/*
8841 		 * We need to handle an event callback that occurs during
8842 		 * the suspend operation, since we don't prevent it.
8843 		 */
8844 		if (un->un_state != SD_STATE_OFFLINE) {
8845 			if (un->un_state != SD_STATE_SUSPENDED) {
8846 				New_state(un, SD_STATE_OFFLINE);
8847 			} else {
8848 				un->un_last_state = SD_STATE_OFFLINE;
8849 			}
8850 		}
8851 		mutex_exit(SD_MUTEX(un));
8852 	} else {
8853 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8854 		    "!Unknown event\n");
8855 	}
8856 
8857 }
8858 #endif
8859 
8860 /*
8861  *    Function: sd_cache_control()
8862  *
8863  * Description: This routine is the driver entry point for setting
8864  *		read and write caching by modifying the WCE (write cache
8865  *		enable) and RCD (read cache disable) bits of mode
8866  *		page 8 (MODEPAGE_CACHING).
8867  *
8868  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
8869  *                      structure for this target.
8870  *		rcd_flag - flag for controlling the read cache
8871  *		wce_flag - flag for controlling the write cache
8872  *
8873  * Return Code: EIO
8874  *		code returned by sd_send_scsi_MODE_SENSE and
8875  *		sd_send_scsi_MODE_SELECT
8876  *
8877  *     Context: Kernel Thread
8878  */
8879 
8880 static int
8881 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
8882 {
8883 	struct mode_caching	*mode_caching_page;
8884 	uchar_t			*header;
8885 	size_t			buflen;
8886 	int			hdrlen;
8887 	int			bd_len;
8888 	int			rval = 0;
8889 	struct mode_header_grp2	*mhp;
8890 	struct sd_lun		*un;
8891 	int			status;
8892 
8893 	ASSERT(ssc != NULL);
8894 	un = ssc->ssc_un;
8895 	ASSERT(un != NULL);
8896 
8897 	/*
8898 	 * Do a test unit ready, otherwise a mode sense may not work if this
8899 	 * is the first command sent to the device after boot.
8900 	 */
8901 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
8902 	if (status != 0)
8903 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8904 
8905 	if (un->un_f_cfg_is_atapi == TRUE) {
8906 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8907 	} else {
8908 		hdrlen = MODE_HEADER_LENGTH;
8909 	}
8910 
8911 	/*
8912 	 * Allocate memory for the retrieved mode page and its headers.  Set
8913 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8914 	 * we get all of the mode sense data otherwise, the mode select
8915 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8916 	 */
8917 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8918 	    sizeof (struct mode_cache_scsi3);
8919 
8920 	header = kmem_zalloc(buflen, KM_SLEEP);
8921 
8922 	/* Get the information from the device. */
8923 	if (un->un_f_cfg_is_atapi == TRUE) {
8924 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
8925 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8926 	} else {
8927 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
8928 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8929 	}
8930 
8931 	if (rval != 0) {
8932 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8933 		    "sd_cache_control: Mode Sense Failed\n");
8934 		goto mode_sense_failed;
8935 	}
8936 
8937 	/*
8938 	 * Determine size of Block Descriptors in order to locate
8939 	 * the mode page data. ATAPI devices return 0, SCSI devices
8940 	 * should return MODE_BLK_DESC_LENGTH.
8941 	 */
8942 	if (un->un_f_cfg_is_atapi == TRUE) {
8943 		mhp	= (struct mode_header_grp2 *)header;
8944 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8945 	} else {
8946 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8947 	}
8948 
8949 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8950 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8951 		    "sd_cache_control: Mode Sense returned invalid "
8952 		    "block descriptor length\n");
8953 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
8954 		    "sd_cache_control: Mode Sense returned invalid "
8955 		    "block descriptor length");
8956 		rval = EIO;
8957 		goto mode_sense_failed;
8958 	}
8959 
8960 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8961 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8962 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8963 		    " caching page code mismatch %d\n",
8964 		    mode_caching_page->mode_page.code);
8965 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
8966 		    "sd_cache_control: Mode Sense caching page code "
8967 		    "mismatch %d", mode_caching_page->mode_page.code);
8968 		rval = EIO;
8969 		goto mode_sense_failed;
8970 	}
8971 
8972 	/* Check the relevant bits on successful mode sense. */
8973 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8974 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8975 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8976 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8977 
8978 		size_t sbuflen;
8979 		uchar_t save_pg;
8980 
8981 		/*
8982 		 * Construct select buffer length based on the
8983 		 * length of the sense data returned.
8984 		 */
8985 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8986 		    sizeof (struct mode_page) +
8987 		    (int)mode_caching_page->mode_page.length;
8988 
8989 		/*
8990 		 * Set the caching bits as requested.
8991 		 */
8992 		if (rcd_flag == SD_CACHE_ENABLE)
8993 			mode_caching_page->rcd = 0;
8994 		else if (rcd_flag == SD_CACHE_DISABLE)
8995 			mode_caching_page->rcd = 1;
8996 
8997 		if (wce_flag == SD_CACHE_ENABLE)
8998 			mode_caching_page->wce = 1;
8999 		else if (wce_flag == SD_CACHE_DISABLE)
9000 			mode_caching_page->wce = 0;
9001 
9002 		/*
9003 		 * Save the page if the mode sense says the
9004 		 * drive supports it.
9005 		 */
9006 		save_pg = mode_caching_page->mode_page.ps ?
9007 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9008 
9009 		/* Clear reserved bits before mode select. */
9010 		mode_caching_page->mode_page.ps = 0;
9011 
9012 		/*
9013 		 * Clear out mode header for mode select.
9014 		 * The rest of the retrieved page will be reused.
9015 		 */
9016 		bzero(header, hdrlen);
9017 
9018 		if (un->un_f_cfg_is_atapi == TRUE) {
9019 			mhp = (struct mode_header_grp2 *)header;
9020 			mhp->bdesc_length_hi = bd_len >> 8;
9021 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9022 		} else {
9023 			((struct mode_header *)header)->bdesc_length = bd_len;
9024 		}
9025 
9026 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9027 
9028 		/* Issue mode select to change the cache settings */
9029 		if (un->un_f_cfg_is_atapi == TRUE) {
9030 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9031 			    sbuflen, save_pg, SD_PATH_DIRECT);
9032 		} else {
9033 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9034 			    sbuflen, save_pg, SD_PATH_DIRECT);
9035 		}
9036 
9037 	}
9038 
9039 
9040 mode_sense_failed:
9041 
9042 	kmem_free(header, buflen);
9043 
9044 	if (rval != 0) {
9045 		if (rval == EIO)
9046 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9047 		else
9048 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9049 	}
9050 	return (rval);
9051 }
9052 
9053 
9054 /*
9055  *    Function: sd_get_write_cache_enabled()
9056  *
9057  * Description: This routine is the driver entry point for determining if
9058  *		write caching is enabled.  It examines the WCE (write cache
9059  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9060  *
9061  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9062  *                      structure for this target.
9063  *		is_enabled - pointer to int where write cache enabled state
9064  *		is returned (non-zero -> write cache enabled)
9065  *
9066  *
9067  * Return Code: EIO
9068  *		code returned by sd_send_scsi_MODE_SENSE
9069  *
9070  *     Context: Kernel Thread
9071  *
9072  * NOTE: If ioctl is added to disable write cache, this sequence should
9073  * be followed so that no locking is required for accesses to
9074  * un->un_f_write_cache_enabled:
9075  * 	do mode select to clear wce
9076  * 	do synchronize cache to flush cache
9077  * 	set un->un_f_write_cache_enabled = FALSE
9078  *
9079  * Conversely, an ioctl to enable the write cache should be done
9080  * in this order:
9081  * 	set un->un_f_write_cache_enabled = TRUE
9082  * 	do mode select to set wce
9083  */
9084 
9085 static int
9086 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9087 {
9088 	struct mode_caching	*mode_caching_page;
9089 	uchar_t			*header;
9090 	size_t			buflen;
9091 	int			hdrlen;
9092 	int			bd_len;
9093 	int			rval = 0;
9094 	struct sd_lun		*un;
9095 	int			status;
9096 
9097 	ASSERT(ssc != NULL);
9098 	un = ssc->ssc_un;
9099 	ASSERT(un != NULL);
9100 	ASSERT(is_enabled != NULL);
9101 
9102 	/* in case of error, flag as enabled */
9103 	*is_enabled = TRUE;
9104 
9105 	/*
9106 	 * Do a test unit ready, otherwise a mode sense may not work if this
9107 	 * is the first command sent to the device after boot.
9108 	 */
9109 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9110 
9111 	if (status != 0)
9112 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9113 
9114 	if (un->un_f_cfg_is_atapi == TRUE) {
9115 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9116 	} else {
9117 		hdrlen = MODE_HEADER_LENGTH;
9118 	}
9119 
9120 	/*
9121 	 * Allocate memory for the retrieved mode page and its headers.  Set
9122 	 * a pointer to the page itself.
9123 	 */
9124 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9125 	header = kmem_zalloc(buflen, KM_SLEEP);
9126 
9127 	/* Get the information from the device. */
9128 	if (un->un_f_cfg_is_atapi == TRUE) {
9129 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9130 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9131 	} else {
9132 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9133 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9134 	}
9135 
9136 	if (rval != 0) {
9137 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9138 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9139 		goto mode_sense_failed;
9140 	}
9141 
9142 	/*
9143 	 * Determine size of Block Descriptors in order to locate
9144 	 * the mode page data. ATAPI devices return 0, SCSI devices
9145 	 * should return MODE_BLK_DESC_LENGTH.
9146 	 */
9147 	if (un->un_f_cfg_is_atapi == TRUE) {
9148 		struct mode_header_grp2	*mhp;
9149 		mhp	= (struct mode_header_grp2 *)header;
9150 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9151 	} else {
9152 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9153 	}
9154 
9155 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9156 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9157 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9158 		    "block descriptor length\n");
9159 		/* FMA should make upset complain here */
9160 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
9161 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9162 		    "block descriptor length %d", bd_len);
9163 		rval = EIO;
9164 		goto mode_sense_failed;
9165 	}
9166 
9167 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9168 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9169 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
9170 		    " caching page code mismatch %d\n",
9171 		    mode_caching_page->mode_page.code);
9172 		/* FMA could make upset complain here */
9173 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
9174 		    "sd_cache_control: Mode Sense caching page code "
9175 		    "mismatch %d", mode_caching_page->mode_page.code);
9176 		rval = EIO;
9177 		goto mode_sense_failed;
9178 	}
9179 	*is_enabled = mode_caching_page->wce;
9180 
9181 mode_sense_failed:
9182 	if (rval == 0) {
9183 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9184 	} else if (rval == EIO) {
9185 		/*
9186 		 * Some disks do not support mode sense(6), we
9187 		 * should ignore this kind of error(sense key is
9188 		 * 0x5 - illegal request).
9189 		 */
9190 		uint8_t *sensep;
9191 		int senlen;
9192 
9193 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9194 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9195 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9196 
9197 		if (senlen > 0 &&
9198 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9199 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9200 		} else {
9201 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9202 		}
9203 	} else {
9204 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9205 	}
9206 	kmem_free(header, buflen);
9207 	return (rval);
9208 }
9209 
9210 /*
9211  *    Function: sd_get_nv_sup()
9212  *
9213  * Description: This routine is the driver entry point for
9214  * determining whether non-volatile cache is supported. This
9215  * determination process works as follows:
9216  *
9217  * 1. sd first queries sd.conf on whether
9218  * suppress_cache_flush bit is set for this device.
9219  *
9220  * 2. if not there, then queries the internal disk table.
9221  *
9222  * 3. if either sd.conf or internal disk table specifies
9223  * cache flush be suppressed, we don't bother checking
9224  * NV_SUP bit.
9225  *
9226  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9227  * the optional INQUIRY VPD page 0x86. If the device
9228  * supports VPD page 0x86, sd examines the NV_SUP
9229  * (non-volatile cache support) bit in the INQUIRY VPD page
9230  * 0x86:
9231  *   o If NV_SUP bit is set, sd assumes the device has a
9232  *   non-volatile cache and set the
9233  *   un_f_sync_nv_supported to TRUE.
9234  *   o Otherwise cache is not non-volatile,
9235  *   un_f_sync_nv_supported is set to FALSE.
9236  *
9237  * Arguments: un - driver soft state (unit) structure
9238  *
9239  * Return Code:
9240  *
9241  *     Context: Kernel Thread
9242  */
9243 
9244 static void
9245 sd_get_nv_sup(sd_ssc_t *ssc)
9246 {
9247 	int		rval		= 0;
9248 	uchar_t		*inq86		= NULL;
9249 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9250 	size_t		inq86_resid	= 0;
9251 	struct		dk_callback *dkc;
9252 	struct sd_lun	*un;
9253 
9254 	ASSERT(ssc != NULL);
9255 	un = ssc->ssc_un;
9256 	ASSERT(un != NULL);
9257 
9258 	mutex_enter(SD_MUTEX(un));
9259 
9260 	/*
9261 	 * Be conservative on the device's support of
9262 	 * SYNC_NV bit: un_f_sync_nv_supported is
9263 	 * initialized to be false.
9264 	 */
9265 	un->un_f_sync_nv_supported = FALSE;
9266 
9267 	/*
9268 	 * If either sd.conf or internal disk table
9269 	 * specifies cache flush be suppressed, then
9270 	 * we don't bother checking NV_SUP bit.
9271 	 */
9272 	if (un->un_f_suppress_cache_flush == TRUE) {
9273 		mutex_exit(SD_MUTEX(un));
9274 		return;
9275 	}
9276 
9277 	if (sd_check_vpd_page_support(ssc) == 0 &&
9278 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9279 		mutex_exit(SD_MUTEX(un));
9280 		/* collect page 86 data if available */
9281 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9282 
9283 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9284 		    0x01, 0x86, &inq86_resid);
9285 
9286 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9287 			SD_TRACE(SD_LOG_COMMON, un,
9288 			    "sd_get_nv_sup: \
9289 			    successfully get VPD page: %x \
9290 			    PAGE LENGTH: %x BYTE 6: %x\n",
9291 			    inq86[1], inq86[3], inq86[6]);
9292 
9293 			mutex_enter(SD_MUTEX(un));
9294 			/*
9295 			 * check the value of NV_SUP bit: only if the device
9296 			 * reports NV_SUP bit to be 1, the
9297 			 * un_f_sync_nv_supported bit will be set to true.
9298 			 */
9299 			if (inq86[6] & SD_VPD_NV_SUP) {
9300 				un->un_f_sync_nv_supported = TRUE;
9301 			}
9302 			mutex_exit(SD_MUTEX(un));
9303 		} else if (rval != 0) {
9304 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9305 		}
9306 
9307 		kmem_free(inq86, inq86_len);
9308 	} else {
9309 		mutex_exit(SD_MUTEX(un));
9310 	}
9311 
9312 	/*
9313 	 * Send a SYNC CACHE command to check whether
9314 	 * SYNC_NV bit is supported. This command should have
9315 	 * un_f_sync_nv_supported set to correct value.
9316 	 */
9317 	mutex_enter(SD_MUTEX(un));
9318 	if (un->un_f_sync_nv_supported) {
9319 		mutex_exit(SD_MUTEX(un));
9320 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9321 		dkc->dkc_flag = FLUSH_VOLATILE;
9322 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9323 
9324 		/*
9325 		 * Send a TEST UNIT READY command to the device. This should
9326 		 * clear any outstanding UNIT ATTENTION that may be present.
9327 		 */
9328 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9329 		if (rval != 0)
9330 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9331 
9332 		kmem_free(dkc, sizeof (struct dk_callback));
9333 	} else {
9334 		mutex_exit(SD_MUTEX(un));
9335 	}
9336 
9337 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9338 	    un_f_suppress_cache_flush is set to %d\n",
9339 	    un->un_f_suppress_cache_flush);
9340 }
9341 
9342 /*
9343  *    Function: sd_make_device
9344  *
9345  * Description: Utility routine to return the Solaris device number from
9346  *		the data in the device's dev_info structure.
9347  *
9348  * Return Code: The Solaris device number
9349  *
9350  *     Context: Any
9351  */
9352 
9353 static dev_t
9354 sd_make_device(dev_info_t *devi)
9355 {
9356 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9357 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9358 }
9359 
9360 
9361 /*
9362  *    Function: sd_pm_entry
9363  *
9364  * Description: Called at the start of a new command to manage power
9365  *		and busy status of a device. This includes determining whether
9366  *		the current power state of the device is sufficient for
9367  *		performing the command or whether it must be changed.
9368  *		The PM framework is notified appropriately.
9369  *		Only with a return status of DDI_SUCCESS will the
9370  *		component be busy to the framework.
9371  *
9372  *		All callers of sd_pm_entry must check the return status
9373  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9374  *		of DDI_FAILURE indicates the device failed to power up.
9375  *		In this case un_pm_count has been adjusted so the result
9376  *		on exit is still powered down, ie. count is less than 0.
9377  *		Calling sd_pm_exit with this count value hits an ASSERT.
9378  *
9379  * Return Code: DDI_SUCCESS or DDI_FAILURE
9380  *
9381  *     Context: Kernel thread context.
9382  */
9383 
9384 static int
9385 sd_pm_entry(struct sd_lun *un)
9386 {
9387 	int return_status = DDI_SUCCESS;
9388 
9389 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9390 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9391 
9392 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9393 
9394 	if (un->un_f_pm_is_enabled == FALSE) {
9395 		SD_TRACE(SD_LOG_IO_PM, un,
9396 		    "sd_pm_entry: exiting, PM not enabled\n");
9397 		return (return_status);
9398 	}
9399 
9400 	/*
9401 	 * Just increment a counter if PM is enabled. On the transition from
9402 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9403 	 * the count with each IO and mark the device as idle when the count
9404 	 * hits 0.
9405 	 *
9406 	 * If the count is less than 0 the device is powered down. If a powered
9407 	 * down device is successfully powered up then the count must be
9408 	 * incremented to reflect the power up. Note that it'll get incremented
9409 	 * a second time to become busy.
9410 	 *
9411 	 * Because the following has the potential to change the device state
9412 	 * and must release the un_pm_mutex to do so, only one thread can be
9413 	 * allowed through at a time.
9414 	 */
9415 
9416 	mutex_enter(&un->un_pm_mutex);
9417 	while (un->un_pm_busy == TRUE) {
9418 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9419 	}
9420 	un->un_pm_busy = TRUE;
9421 
9422 	if (un->un_pm_count < 1) {
9423 
9424 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9425 
9426 		/*
9427 		 * Indicate we are now busy so the framework won't attempt to
9428 		 * power down the device. This call will only fail if either
9429 		 * we passed a bad component number or the device has no
9430 		 * components. Neither of these should ever happen.
9431 		 */
9432 		mutex_exit(&un->un_pm_mutex);
9433 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9434 		ASSERT(return_status == DDI_SUCCESS);
9435 
9436 		mutex_enter(&un->un_pm_mutex);
9437 
9438 		if (un->un_pm_count < 0) {
9439 			mutex_exit(&un->un_pm_mutex);
9440 
9441 			SD_TRACE(SD_LOG_IO_PM, un,
9442 			    "sd_pm_entry: power up component\n");
9443 
9444 			/*
9445 			 * pm_raise_power will cause sdpower to be called
9446 			 * which brings the device power level to the
9447 			 * desired state, ON in this case. If successful,
9448 			 * un_pm_count and un_power_level will be updated
9449 			 * appropriately.
9450 			 */
9451 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9452 			    SD_SPINDLE_ON);
9453 
9454 			mutex_enter(&un->un_pm_mutex);
9455 
9456 			if (return_status != DDI_SUCCESS) {
9457 				/*
9458 				 * Power up failed.
9459 				 * Idle the device and adjust the count
9460 				 * so the result on exit is that we're
9461 				 * still powered down, ie. count is less than 0.
9462 				 */
9463 				SD_TRACE(SD_LOG_IO_PM, un,
9464 				    "sd_pm_entry: power up failed,"
9465 				    " idle the component\n");
9466 
9467 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9468 				un->un_pm_count--;
9469 			} else {
9470 				/*
9471 				 * Device is powered up, verify the
9472 				 * count is non-negative.
9473 				 * This is debug only.
9474 				 */
9475 				ASSERT(un->un_pm_count == 0);
9476 			}
9477 		}
9478 
9479 		if (return_status == DDI_SUCCESS) {
9480 			/*
9481 			 * For performance, now that the device has been tagged
9482 			 * as busy, and it's known to be powered up, update the
9483 			 * chain types to use jump tables that do not include
9484 			 * pm. This significantly lowers the overhead and
9485 			 * therefore improves performance.
9486 			 */
9487 
9488 			mutex_exit(&un->un_pm_mutex);
9489 			mutex_enter(SD_MUTEX(un));
9490 			SD_TRACE(SD_LOG_IO_PM, un,
9491 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9492 			    un->un_uscsi_chain_type);
9493 
9494 			if (un->un_f_non_devbsize_supported) {
9495 				un->un_buf_chain_type =
9496 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9497 			} else {
9498 				un->un_buf_chain_type =
9499 				    SD_CHAIN_INFO_DISK_NO_PM;
9500 			}
9501 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9502 
9503 			SD_TRACE(SD_LOG_IO_PM, un,
9504 			    "             changed  uscsi_chain_type to   %d\n",
9505 			    un->un_uscsi_chain_type);
9506 			mutex_exit(SD_MUTEX(un));
9507 			mutex_enter(&un->un_pm_mutex);
9508 
9509 			if (un->un_pm_idle_timeid == NULL) {
9510 				/* 300 ms. */
9511 				un->un_pm_idle_timeid =
9512 				    timeout(sd_pm_idletimeout_handler, un,
9513 				    (drv_usectohz((clock_t)300000)));
9514 				/*
9515 				 * Include an extra call to busy which keeps the
9516 				 * device busy with-respect-to the PM layer
9517 				 * until the timer fires, at which time it'll
9518 				 * get the extra idle call.
9519 				 */
9520 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9521 			}
9522 		}
9523 	}
9524 	un->un_pm_busy = FALSE;
9525 	/* Next... */
9526 	cv_signal(&un->un_pm_busy_cv);
9527 
9528 	un->un_pm_count++;
9529 
9530 	SD_TRACE(SD_LOG_IO_PM, un,
9531 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9532 
9533 	mutex_exit(&un->un_pm_mutex);
9534 
9535 	return (return_status);
9536 }
9537 
9538 
9539 /*
9540  *    Function: sd_pm_exit
9541  *
9542  * Description: Called at the completion of a command to manage busy
9543  *		status for the device. If the device becomes idle the
9544  *		PM framework is notified.
9545  *
9546  *     Context: Kernel thread context
9547  */
9548 
9549 static void
9550 sd_pm_exit(struct sd_lun *un)
9551 {
9552 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9553 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9554 
9555 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9556 
9557 	/*
9558 	 * After attach the following flag is only read, so don't
9559 	 * take the penalty of acquiring a mutex for it.
9560 	 */
9561 	if (un->un_f_pm_is_enabled == TRUE) {
9562 
9563 		mutex_enter(&un->un_pm_mutex);
9564 		un->un_pm_count--;
9565 
9566 		SD_TRACE(SD_LOG_IO_PM, un,
9567 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9568 
9569 		ASSERT(un->un_pm_count >= 0);
9570 		if (un->un_pm_count == 0) {
9571 			mutex_exit(&un->un_pm_mutex);
9572 
9573 			SD_TRACE(SD_LOG_IO_PM, un,
9574 			    "sd_pm_exit: idle component\n");
9575 
9576 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9577 
9578 		} else {
9579 			mutex_exit(&un->un_pm_mutex);
9580 		}
9581 	}
9582 
9583 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9584 }
9585 
9586 
9587 /*
9588  *    Function: sdopen
9589  *
9590  * Description: Driver's open(9e) entry point function.
9591  *
9592  *   Arguments: dev_i   - pointer to device number
9593  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9594  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9595  *		cred_p  - user credential pointer
9596  *
9597  * Return Code: EINVAL
9598  *		ENXIO
9599  *		EIO
9600  *		EROFS
9601  *		EBUSY
9602  *
9603  *     Context: Kernel thread context
9604  */
9605 /* ARGSUSED */
9606 static int
9607 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9608 {
9609 	struct sd_lun	*un;
9610 	int		nodelay;
9611 	int		part;
9612 	uint64_t	partmask;
9613 	int		instance;
9614 	dev_t		dev;
9615 	int		rval = EIO;
9616 	diskaddr_t	nblks = 0;
9617 	diskaddr_t	label_cap;
9618 
9619 	/* Validate the open type */
9620 	if (otyp >= OTYPCNT) {
9621 		return (EINVAL);
9622 	}
9623 
9624 	dev = *dev_p;
9625 	instance = SDUNIT(dev);
9626 	mutex_enter(&sd_detach_mutex);
9627 
9628 	/*
9629 	 * Fail the open if there is no softstate for the instance, or
9630 	 * if another thread somewhere is trying to detach the instance.
9631 	 */
9632 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9633 	    (un->un_detach_count != 0)) {
9634 		mutex_exit(&sd_detach_mutex);
9635 		/*
9636 		 * The probe cache only needs to be cleared when open (9e) fails
9637 		 * with ENXIO (4238046).
9638 		 */
9639 		/*
9640 		 * un-conditionally clearing probe cache is ok with
9641 		 * separate sd/ssd binaries
9642 		 * x86 platform can be an issue with both parallel
9643 		 * and fibre in 1 binary
9644 		 */
9645 		sd_scsi_clear_probe_cache();
9646 		return (ENXIO);
9647 	}
9648 
9649 	/*
9650 	 * The un_layer_count is to prevent another thread in specfs from
9651 	 * trying to detach the instance, which can happen when we are
9652 	 * called from a higher-layer driver instead of thru specfs.
9653 	 * This will not be needed when DDI provides a layered driver
9654 	 * interface that allows specfs to know that an instance is in
9655 	 * use by a layered driver & should not be detached.
9656 	 *
9657 	 * Note: the semantics for layered driver opens are exactly one
9658 	 * close for every open.
9659 	 */
9660 	if (otyp == OTYP_LYR) {
9661 		un->un_layer_count++;
9662 	}
9663 
9664 	/*
9665 	 * Keep a count of the current # of opens in progress. This is because
9666 	 * some layered drivers try to call us as a regular open. This can
9667 	 * cause problems that we cannot prevent, however by keeping this count
9668 	 * we can at least keep our open and detach routines from racing against
9669 	 * each other under such conditions.
9670 	 */
9671 	un->un_opens_in_progress++;
9672 	mutex_exit(&sd_detach_mutex);
9673 
9674 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9675 	part	 = SDPART(dev);
9676 	partmask = 1 << part;
9677 
9678 	/*
9679 	 * We use a semaphore here in order to serialize
9680 	 * open and close requests on the device.
9681 	 */
9682 	sema_p(&un->un_semoclose);
9683 
9684 	mutex_enter(SD_MUTEX(un));
9685 
9686 	/*
9687 	 * All device accesses go thru sdstrategy() where we check
9688 	 * on suspend status but there could be a scsi_poll command,
9689 	 * which bypasses sdstrategy(), so we need to check pm
9690 	 * status.
9691 	 */
9692 
9693 	if (!nodelay) {
9694 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9695 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9696 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9697 		}
9698 
9699 		mutex_exit(SD_MUTEX(un));
9700 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9701 			rval = EIO;
9702 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9703 			    "sdopen: sd_pm_entry failed\n");
9704 			goto open_failed_with_pm;
9705 		}
9706 		mutex_enter(SD_MUTEX(un));
9707 	}
9708 
9709 	/* check for previous exclusive open */
9710 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9711 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9712 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9713 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9714 
9715 	if (un->un_exclopen & (partmask)) {
9716 		goto excl_open_fail;
9717 	}
9718 
9719 	if (flag & FEXCL) {
9720 		int i;
9721 		if (un->un_ocmap.lyropen[part]) {
9722 			goto excl_open_fail;
9723 		}
9724 		for (i = 0; i < (OTYPCNT - 1); i++) {
9725 			if (un->un_ocmap.regopen[i] & (partmask)) {
9726 				goto excl_open_fail;
9727 			}
9728 		}
9729 	}
9730 
9731 	/*
9732 	 * Check the write permission if this is a removable media device,
9733 	 * NDELAY has not been set, and writable permission is requested.
9734 	 *
9735 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9736 	 * attempt will fail with EIO as part of the I/O processing. This is a
9737 	 * more permissive implementation that allows the open to succeed and
9738 	 * WRITE attempts to fail when appropriate.
9739 	 */
9740 	if (un->un_f_chk_wp_open) {
9741 		if ((flag & FWRITE) && (!nodelay)) {
9742 			mutex_exit(SD_MUTEX(un));
9743 			/*
9744 			 * Defer the check for write permission on writable
9745 			 * DVD drive till sdstrategy and will not fail open even
9746 			 * if FWRITE is set as the device can be writable
9747 			 * depending upon the media and the media can change
9748 			 * after the call to open().
9749 			 */
9750 			if (un->un_f_dvdram_writable_device == FALSE) {
9751 				if (ISCD(un) || sr_check_wp(dev)) {
9752 				rval = EROFS;
9753 				mutex_enter(SD_MUTEX(un));
9754 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9755 				    "write to cd or write protected media\n");
9756 				goto open_fail;
9757 				}
9758 			}
9759 			mutex_enter(SD_MUTEX(un));
9760 		}
9761 	}
9762 
9763 	/*
9764 	 * If opening in NDELAY/NONBLOCK mode, just return.
9765 	 * Check if disk is ready and has a valid geometry later.
9766 	 */
9767 	if (!nodelay) {
9768 		sd_ssc_t	*ssc;
9769 
9770 		mutex_exit(SD_MUTEX(un));
9771 		ssc = sd_ssc_init(un);
9772 		rval = sd_ready_and_valid(ssc, part);
9773 		sd_ssc_fini(ssc);
9774 		mutex_enter(SD_MUTEX(un));
9775 		/*
9776 		 * Fail if device is not ready or if the number of disk
9777 		 * blocks is zero or negative for non CD devices.
9778 		 */
9779 
9780 		nblks = 0;
9781 
9782 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9783 			/* if cmlb_partinfo fails, nblks remains 0 */
9784 			mutex_exit(SD_MUTEX(un));
9785 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9786 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9787 			mutex_enter(SD_MUTEX(un));
9788 		}
9789 
9790 		if ((rval != SD_READY_VALID) ||
9791 		    (!ISCD(un) && nblks <= 0)) {
9792 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9793 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9794 			    "device not ready or invalid disk block value\n");
9795 			goto open_fail;
9796 		}
9797 #if defined(__i386) || defined(__amd64)
9798 	} else {
9799 		uchar_t *cp;
9800 		/*
9801 		 * x86 requires special nodelay handling, so that p0 is
9802 		 * always defined and accessible.
9803 		 * Invalidate geometry only if device is not already open.
9804 		 */
9805 		cp = &un->un_ocmap.chkd[0];
9806 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9807 			if (*cp != (uchar_t)0) {
9808 				break;
9809 			}
9810 			cp++;
9811 		}
9812 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9813 			mutex_exit(SD_MUTEX(un));
9814 			cmlb_invalidate(un->un_cmlbhandle,
9815 			    (void *)SD_PATH_DIRECT);
9816 			mutex_enter(SD_MUTEX(un));
9817 		}
9818 
9819 #endif
9820 	}
9821 
9822 	if (otyp == OTYP_LYR) {
9823 		un->un_ocmap.lyropen[part]++;
9824 	} else {
9825 		un->un_ocmap.regopen[otyp] |= partmask;
9826 	}
9827 
9828 	/* Set up open and exclusive open flags */
9829 	if (flag & FEXCL) {
9830 		un->un_exclopen |= (partmask);
9831 	}
9832 
9833 	/*
9834 	 * If the lun is EFI labeled and lun capacity is greater than the
9835 	 * capacity contained in the label, log a sys-event to notify the
9836 	 * interested module.
9837 	 * To avoid an infinite loop of logging sys-event, we only log the
9838 	 * event when the lun is not opened in NDELAY mode. The event handler
9839 	 * should open the lun in NDELAY mode.
9840 	 */
9841 	if (!(flag & FNDELAY)) {
9842 		mutex_exit(SD_MUTEX(un));
9843 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9844 		    (void*)SD_PATH_DIRECT) == 0) {
9845 			mutex_enter(SD_MUTEX(un));
9846 			if (un->un_f_blockcount_is_valid &&
9847 			    un->un_blockcount > label_cap) {
9848 				mutex_exit(SD_MUTEX(un));
9849 				sd_log_lun_expansion_event(un,
9850 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9851 				mutex_enter(SD_MUTEX(un));
9852 			}
9853 		} else {
9854 			mutex_enter(SD_MUTEX(un));
9855 		}
9856 	}
9857 
9858 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9859 	    "open of part %d type %d\n", part, otyp);
9860 
9861 	mutex_exit(SD_MUTEX(un));
9862 	if (!nodelay) {
9863 		sd_pm_exit(un);
9864 	}
9865 
9866 	sema_v(&un->un_semoclose);
9867 
9868 	mutex_enter(&sd_detach_mutex);
9869 	un->un_opens_in_progress--;
9870 	mutex_exit(&sd_detach_mutex);
9871 
9872 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9873 	return (DDI_SUCCESS);
9874 
9875 excl_open_fail:
9876 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9877 	rval = EBUSY;
9878 
9879 open_fail:
9880 	mutex_exit(SD_MUTEX(un));
9881 
9882 	/*
9883 	 * On a failed open we must exit the pm management.
9884 	 */
9885 	if (!nodelay) {
9886 		sd_pm_exit(un);
9887 	}
9888 open_failed_with_pm:
9889 	sema_v(&un->un_semoclose);
9890 
9891 	mutex_enter(&sd_detach_mutex);
9892 	un->un_opens_in_progress--;
9893 	if (otyp == OTYP_LYR) {
9894 		un->un_layer_count--;
9895 	}
9896 	mutex_exit(&sd_detach_mutex);
9897 
9898 	return (rval);
9899 }
9900 
9901 
9902 /*
9903  *    Function: sdclose
9904  *
9905  * Description: Driver's close(9e) entry point function.
9906  *
9907  *   Arguments: dev    - device number
9908  *		flag   - file status flag, informational only
9909  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9910  *		cred_p - user credential pointer
9911  *
9912  * Return Code: ENXIO
9913  *
9914  *     Context: Kernel thread context
9915  */
9916 /* ARGSUSED */
9917 static int
9918 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9919 {
9920 	struct sd_lun	*un;
9921 	uchar_t		*cp;
9922 	int		part;
9923 	int		nodelay;
9924 	int		rval = 0;
9925 
9926 	/* Validate the open type */
9927 	if (otyp >= OTYPCNT) {
9928 		return (ENXIO);
9929 	}
9930 
9931 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9932 		return (ENXIO);
9933 	}
9934 
9935 	part = SDPART(dev);
9936 	nodelay = flag & (FNDELAY | FNONBLOCK);
9937 
9938 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9939 	    "sdclose: close of part %d type %d\n", part, otyp);
9940 
9941 	/*
9942 	 * We use a semaphore here in order to serialize
9943 	 * open and close requests on the device.
9944 	 */
9945 	sema_p(&un->un_semoclose);
9946 
9947 	mutex_enter(SD_MUTEX(un));
9948 
9949 	/* Don't proceed if power is being changed. */
9950 	while (un->un_state == SD_STATE_PM_CHANGING) {
9951 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9952 	}
9953 
9954 	if (un->un_exclopen & (1 << part)) {
9955 		un->un_exclopen &= ~(1 << part);
9956 	}
9957 
9958 	/* Update the open partition map */
9959 	if (otyp == OTYP_LYR) {
9960 		un->un_ocmap.lyropen[part] -= 1;
9961 	} else {
9962 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9963 	}
9964 
9965 	cp = &un->un_ocmap.chkd[0];
9966 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9967 		if (*cp != NULL) {
9968 			break;
9969 		}
9970 		cp++;
9971 	}
9972 
9973 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9974 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9975 
9976 		/*
9977 		 * We avoid persistance upon the last close, and set
9978 		 * the throttle back to the maximum.
9979 		 */
9980 		un->un_throttle = un->un_saved_throttle;
9981 
9982 		if (un->un_state == SD_STATE_OFFLINE) {
9983 			if (un->un_f_is_fibre == FALSE) {
9984 				scsi_log(SD_DEVINFO(un), sd_label,
9985 				    CE_WARN, "offline\n");
9986 			}
9987 			mutex_exit(SD_MUTEX(un));
9988 			cmlb_invalidate(un->un_cmlbhandle,
9989 			    (void *)SD_PATH_DIRECT);
9990 			mutex_enter(SD_MUTEX(un));
9991 
9992 		} else {
9993 			/*
9994 			 * Flush any outstanding writes in NVRAM cache.
9995 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9996 			 * cmd, it may not work for non-Pluto devices.
9997 			 * SYNCHRONIZE CACHE is not required for removables,
9998 			 * except DVD-RAM drives.
9999 			 *
10000 			 * Also note: because SYNCHRONIZE CACHE is currently
10001 			 * the only command issued here that requires the
10002 			 * drive be powered up, only do the power up before
10003 			 * sending the Sync Cache command. If additional
10004 			 * commands are added which require a powered up
10005 			 * drive, the following sequence may have to change.
10006 			 *
10007 			 * And finally, note that parallel SCSI on SPARC
10008 			 * only issues a Sync Cache to DVD-RAM, a newly
10009 			 * supported device.
10010 			 */
10011 #if defined(__i386) || defined(__amd64)
10012 			if ((un->un_f_sync_cache_supported &&
10013 			    un->un_f_sync_cache_required) ||
10014 			    un->un_f_dvdram_writable_device == TRUE) {
10015 #else
10016 			if (un->un_f_dvdram_writable_device == TRUE) {
10017 #endif
10018 				mutex_exit(SD_MUTEX(un));
10019 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10020 					rval =
10021 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10022 					    NULL);
10023 					/* ignore error if not supported */
10024 					if (rval == ENOTSUP) {
10025 						rval = 0;
10026 					} else if (rval != 0) {
10027 						rval = EIO;
10028 					}
10029 					sd_pm_exit(un);
10030 				} else {
10031 					rval = EIO;
10032 				}
10033 				mutex_enter(SD_MUTEX(un));
10034 			}
10035 
10036 			/*
10037 			 * For devices which supports DOOR_LOCK, send an ALLOW
10038 			 * MEDIA REMOVAL command, but don't get upset if it
10039 			 * fails. We need to raise the power of the drive before
10040 			 * we can call sd_send_scsi_DOORLOCK()
10041 			 */
10042 			if (un->un_f_doorlock_supported) {
10043 				mutex_exit(SD_MUTEX(un));
10044 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10045 					sd_ssc_t	*ssc;
10046 
10047 					ssc = sd_ssc_init(un);
10048 					rval = sd_send_scsi_DOORLOCK(ssc,
10049 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10050 					if (rval != 0)
10051 						sd_ssc_assessment(ssc,
10052 						    SD_FMT_IGNORE);
10053 					sd_ssc_fini(ssc);
10054 
10055 					sd_pm_exit(un);
10056 					if (ISCD(un) && (rval != 0) &&
10057 					    (nodelay != 0)) {
10058 						rval = ENXIO;
10059 					}
10060 				} else {
10061 					rval = EIO;
10062 				}
10063 				mutex_enter(SD_MUTEX(un));
10064 			}
10065 
10066 			/*
10067 			 * If a device has removable media, invalidate all
10068 			 * parameters related to media, such as geometry,
10069 			 * blocksize, and blockcount.
10070 			 */
10071 			if (un->un_f_has_removable_media) {
10072 				sr_ejected(un);
10073 			}
10074 
10075 			/*
10076 			 * Destroy the cache (if it exists) which was
10077 			 * allocated for the write maps since this is
10078 			 * the last close for this media.
10079 			 */
10080 			if (un->un_wm_cache) {
10081 				/*
10082 				 * Check if there are pending commands.
10083 				 * and if there are give a warning and
10084 				 * do not destroy the cache.
10085 				 */
10086 				if (un->un_ncmds_in_driver > 0) {
10087 					scsi_log(SD_DEVINFO(un),
10088 					    sd_label, CE_WARN,
10089 					    "Unable to clean up memory "
10090 					    "because of pending I/O\n");
10091 				} else {
10092 					kmem_cache_destroy(
10093 					    un->un_wm_cache);
10094 					un->un_wm_cache = NULL;
10095 				}
10096 			}
10097 		}
10098 	}
10099 
10100 	mutex_exit(SD_MUTEX(un));
10101 	sema_v(&un->un_semoclose);
10102 
10103 	if (otyp == OTYP_LYR) {
10104 		mutex_enter(&sd_detach_mutex);
10105 		/*
10106 		 * The detach routine may run when the layer count
10107 		 * drops to zero.
10108 		 */
10109 		un->un_layer_count--;
10110 		mutex_exit(&sd_detach_mutex);
10111 	}
10112 
10113 	return (rval);
10114 }
10115 
10116 
10117 /*
10118  *    Function: sd_ready_and_valid
10119  *
10120  * Description: Test if device is ready and has a valid geometry.
10121  *
10122  *   Arguments: ssc - sd_ssc_t will contain un
10123  *		un  - driver soft state (unit) structure
10124  *
10125  * Return Code: SD_READY_VALID		ready and valid label
10126  *		SD_NOT_READY_VALID	not ready, no label
10127  *		SD_RESERVED_BY_OTHERS	reservation conflict
10128  *
10129  *     Context: Never called at interrupt context.
10130  */
10131 
10132 static int
10133 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10134 {
10135 	struct sd_errstats	*stp;
10136 	uint64_t		capacity;
10137 	uint_t			lbasize;
10138 	int			rval = SD_READY_VALID;
10139 	char			name_str[48];
10140 	int			is_valid;
10141 	struct sd_lun		*un;
10142 	int			status;
10143 
10144 	ASSERT(ssc != NULL);
10145 	un = ssc->ssc_un;
10146 	ASSERT(un != NULL);
10147 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10148 
10149 	mutex_enter(SD_MUTEX(un));
10150 	/*
10151 	 * If a device has removable media, we must check if media is
10152 	 * ready when checking if this device is ready and valid.
10153 	 */
10154 	if (un->un_f_has_removable_media) {
10155 		mutex_exit(SD_MUTEX(un));
10156 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10157 
10158 		if (status != 0) {
10159 			rval = SD_NOT_READY_VALID;
10160 			mutex_enter(SD_MUTEX(un));
10161 
10162 			/* Ignore all failed status for removalbe media */
10163 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10164 
10165 			goto done;
10166 		}
10167 
10168 		is_valid = SD_IS_VALID_LABEL(un);
10169 		mutex_enter(SD_MUTEX(un));
10170 		if (!is_valid ||
10171 		    (un->un_f_blockcount_is_valid == FALSE) ||
10172 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10173 
10174 			/* capacity has to be read every open. */
10175 			mutex_exit(SD_MUTEX(un));
10176 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10177 			    &lbasize, SD_PATH_DIRECT);
10178 
10179 			if (status != 0) {
10180 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10181 
10182 				cmlb_invalidate(un->un_cmlbhandle,
10183 				    (void *)SD_PATH_DIRECT);
10184 				mutex_enter(SD_MUTEX(un));
10185 				rval = SD_NOT_READY_VALID;
10186 
10187 				goto done;
10188 			} else {
10189 				mutex_enter(SD_MUTEX(un));
10190 				sd_update_block_info(un, lbasize, capacity);
10191 			}
10192 		}
10193 
10194 		/*
10195 		 * Check if the media in the device is writable or not.
10196 		 */
10197 		if (!is_valid && ISCD(un)) {
10198 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10199 		}
10200 
10201 	} else {
10202 		/*
10203 		 * Do a test unit ready to clear any unit attention from non-cd
10204 		 * devices.
10205 		 */
10206 		mutex_exit(SD_MUTEX(un));
10207 
10208 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10209 		if (status != 0) {
10210 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10211 		}
10212 
10213 		mutex_enter(SD_MUTEX(un));
10214 	}
10215 
10216 
10217 	/*
10218 	 * If this is a non 512 block device, allocate space for
10219 	 * the wmap cache. This is being done here since every time
10220 	 * a media is changed this routine will be called and the
10221 	 * block size is a function of media rather than device.
10222 	 */
10223 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10224 		if (!(un->un_wm_cache)) {
10225 			(void) snprintf(name_str, sizeof (name_str),
10226 			    "%s%d_cache",
10227 			    ddi_driver_name(SD_DEVINFO(un)),
10228 			    ddi_get_instance(SD_DEVINFO(un)));
10229 			un->un_wm_cache = kmem_cache_create(
10230 			    name_str, sizeof (struct sd_w_map),
10231 			    8, sd_wm_cache_constructor,
10232 			    sd_wm_cache_destructor, NULL,
10233 			    (void *)un, NULL, 0);
10234 			if (!(un->un_wm_cache)) {
10235 				rval = ENOMEM;
10236 				goto done;
10237 			}
10238 		}
10239 	}
10240 
10241 	if (un->un_state == SD_STATE_NORMAL) {
10242 		/*
10243 		 * If the target is not yet ready here (defined by a TUR
10244 		 * failure), invalidate the geometry and print an 'offline'
10245 		 * message. This is a legacy message, as the state of the
10246 		 * target is not actually changed to SD_STATE_OFFLINE.
10247 		 *
10248 		 * If the TUR fails for EACCES (Reservation Conflict),
10249 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10250 		 * reservation conflict. If the TUR fails for other
10251 		 * reasons, SD_NOT_READY_VALID will be returned.
10252 		 */
10253 		int err;
10254 
10255 		mutex_exit(SD_MUTEX(un));
10256 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10257 		mutex_enter(SD_MUTEX(un));
10258 
10259 		if (err != 0) {
10260 			mutex_exit(SD_MUTEX(un));
10261 			cmlb_invalidate(un->un_cmlbhandle,
10262 			    (void *)SD_PATH_DIRECT);
10263 			mutex_enter(SD_MUTEX(un));
10264 			if (err == EACCES) {
10265 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10266 				    "reservation conflict\n");
10267 				rval = SD_RESERVED_BY_OTHERS;
10268 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10269 			} else {
10270 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10271 				    "drive offline\n");
10272 				rval = SD_NOT_READY_VALID;
10273 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10274 			}
10275 			goto done;
10276 		}
10277 	}
10278 
10279 	if (un->un_f_format_in_progress == FALSE) {
10280 		mutex_exit(SD_MUTEX(un));
10281 
10282 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10283 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10284 			rval = SD_NOT_READY_VALID;
10285 			mutex_enter(SD_MUTEX(un));
10286 
10287 			goto done;
10288 		}
10289 		if (un->un_f_pkstats_enabled) {
10290 			sd_set_pstats(un);
10291 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10292 			    "sd_ready_and_valid: un:0x%p pstats created and "
10293 			    "set\n", un);
10294 		}
10295 		mutex_enter(SD_MUTEX(un));
10296 	}
10297 
10298 	/*
10299 	 * If this device supports DOOR_LOCK command, try and send
10300 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10301 	 * if it fails. For a CD, however, it is an error
10302 	 */
10303 	if (un->un_f_doorlock_supported) {
10304 		mutex_exit(SD_MUTEX(un));
10305 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10306 		    SD_PATH_DIRECT);
10307 
10308 		if ((status != 0) && ISCD(un)) {
10309 			rval = SD_NOT_READY_VALID;
10310 			mutex_enter(SD_MUTEX(un));
10311 
10312 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10313 
10314 			goto done;
10315 		} else if (status != 0)
10316 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10317 		mutex_enter(SD_MUTEX(un));
10318 	}
10319 
10320 	/* The state has changed, inform the media watch routines */
10321 	un->un_mediastate = DKIO_INSERTED;
10322 	cv_broadcast(&un->un_state_cv);
10323 	rval = SD_READY_VALID;
10324 
10325 done:
10326 
10327 	/*
10328 	 * Initialize the capacity kstat value, if no media previously
10329 	 * (capacity kstat is 0) and a media has been inserted
10330 	 * (un_blockcount > 0).
10331 	 */
10332 	if (un->un_errstats != NULL) {
10333 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10334 		if ((stp->sd_capacity.value.ui64 == 0) &&
10335 		    (un->un_f_blockcount_is_valid == TRUE)) {
10336 			stp->sd_capacity.value.ui64 =
10337 			    (uint64_t)((uint64_t)un->un_blockcount *
10338 			    un->un_sys_blocksize);
10339 		}
10340 	}
10341 
10342 	mutex_exit(SD_MUTEX(un));
10343 	return (rval);
10344 }
10345 
10346 
10347 /*
10348  *    Function: sdmin
10349  *
10350  * Description: Routine to limit the size of a data transfer. Used in
10351  *		conjunction with physio(9F).
10352  *
10353  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10354  *
10355  *     Context: Kernel thread context.
10356  */
10357 
10358 static void
10359 sdmin(struct buf *bp)
10360 {
10361 	struct sd_lun	*un;
10362 	int		instance;
10363 
10364 	instance = SDUNIT(bp->b_edev);
10365 
10366 	un = ddi_get_soft_state(sd_state, instance);
10367 	ASSERT(un != NULL);
10368 
10369 	if (bp->b_bcount > un->un_max_xfer_size) {
10370 		bp->b_bcount = un->un_max_xfer_size;
10371 	}
10372 }
10373 
10374 
10375 /*
10376  *    Function: sdread
10377  *
10378  * Description: Driver's read(9e) entry point function.
10379  *
10380  *   Arguments: dev   - device number
10381  *		uio   - structure pointer describing where data is to be stored
10382  *			in user's space
10383  *		cred_p  - user credential pointer
10384  *
10385  * Return Code: ENXIO
10386  *		EIO
10387  *		EINVAL
10388  *		value returned by physio
10389  *
10390  *     Context: Kernel thread context.
10391  */
10392 /* ARGSUSED */
10393 static int
10394 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10395 {
10396 	struct sd_lun	*un = NULL;
10397 	int		secmask;
10398 	int		err = 0;
10399 	sd_ssc_t	*ssc;
10400 
10401 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10402 		return (ENXIO);
10403 	}
10404 
10405 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10406 
10407 
10408 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10409 		mutex_enter(SD_MUTEX(un));
10410 		/*
10411 		 * Because the call to sd_ready_and_valid will issue I/O we
10412 		 * must wait here if either the device is suspended or
10413 		 * if it's power level is changing.
10414 		 */
10415 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10416 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10417 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10418 		}
10419 		un->un_ncmds_in_driver++;
10420 		mutex_exit(SD_MUTEX(un));
10421 
10422 		/* Initialize sd_ssc_t for internal uscsi commands */
10423 		ssc = sd_ssc_init(un);
10424 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10425 			err = EIO;
10426 		} else {
10427 			err = 0;
10428 		}
10429 		sd_ssc_fini(ssc);
10430 
10431 		mutex_enter(SD_MUTEX(un));
10432 		un->un_ncmds_in_driver--;
10433 		ASSERT(un->un_ncmds_in_driver >= 0);
10434 		mutex_exit(SD_MUTEX(un));
10435 		if (err != 0)
10436 			return (err);
10437 	}
10438 
10439 	/*
10440 	 * Read requests are restricted to multiples of the system block size.
10441 	 */
10442 	secmask = un->un_sys_blocksize - 1;
10443 
10444 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10445 		SD_ERROR(SD_LOG_READ_WRITE, un,
10446 		    "sdread: file offset not modulo %d\n",
10447 		    un->un_sys_blocksize);
10448 		err = EINVAL;
10449 	} else if (uio->uio_iov->iov_len & (secmask)) {
10450 		SD_ERROR(SD_LOG_READ_WRITE, un,
10451 		    "sdread: transfer length not modulo %d\n",
10452 		    un->un_sys_blocksize);
10453 		err = EINVAL;
10454 	} else {
10455 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10456 	}
10457 
10458 	return (err);
10459 }
10460 
10461 
10462 /*
10463  *    Function: sdwrite
10464  *
10465  * Description: Driver's write(9e) entry point function.
10466  *
10467  *   Arguments: dev   - device number
10468  *		uio   - structure pointer describing where data is stored in
10469  *			user's space
10470  *		cred_p  - user credential pointer
10471  *
10472  * Return Code: ENXIO
10473  *		EIO
10474  *		EINVAL
10475  *		value returned by physio
10476  *
10477  *     Context: Kernel thread context.
10478  */
10479 /* ARGSUSED */
10480 static int
10481 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10482 {
10483 	struct sd_lun	*un = NULL;
10484 	int		secmask;
10485 	int		err = 0;
10486 	sd_ssc_t	*ssc;
10487 
10488 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10489 		return (ENXIO);
10490 	}
10491 
10492 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10493 
10494 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10495 		mutex_enter(SD_MUTEX(un));
10496 		/*
10497 		 * Because the call to sd_ready_and_valid will issue I/O we
10498 		 * must wait here if either the device is suspended or
10499 		 * if it's power level is changing.
10500 		 */
10501 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10502 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10503 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10504 		}
10505 		un->un_ncmds_in_driver++;
10506 		mutex_exit(SD_MUTEX(un));
10507 
10508 		/* Initialize sd_ssc_t for internal uscsi commands */
10509 		ssc = sd_ssc_init(un);
10510 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10511 			err = EIO;
10512 		} else {
10513 			err = 0;
10514 		}
10515 		sd_ssc_fini(ssc);
10516 
10517 		mutex_enter(SD_MUTEX(un));
10518 		un->un_ncmds_in_driver--;
10519 		ASSERT(un->un_ncmds_in_driver >= 0);
10520 		mutex_exit(SD_MUTEX(un));
10521 		if (err != 0)
10522 			return (err);
10523 	}
10524 
10525 	/*
10526 	 * Write requests are restricted to multiples of the system block size.
10527 	 */
10528 	secmask = un->un_sys_blocksize - 1;
10529 
10530 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10531 		SD_ERROR(SD_LOG_READ_WRITE, un,
10532 		    "sdwrite: file offset not modulo %d\n",
10533 		    un->un_sys_blocksize);
10534 		err = EINVAL;
10535 	} else if (uio->uio_iov->iov_len & (secmask)) {
10536 		SD_ERROR(SD_LOG_READ_WRITE, un,
10537 		    "sdwrite: transfer length not modulo %d\n",
10538 		    un->un_sys_blocksize);
10539 		err = EINVAL;
10540 	} else {
10541 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10542 	}
10543 
10544 	return (err);
10545 }
10546 
10547 
10548 /*
10549  *    Function: sdaread
10550  *
10551  * Description: Driver's aread(9e) entry point function.
10552  *
10553  *   Arguments: dev   - device number
10554  *		aio   - structure pointer describing where data is to be stored
10555  *		cred_p  - user credential pointer
10556  *
10557  * Return Code: ENXIO
10558  *		EIO
10559  *		EINVAL
10560  *		value returned by aphysio
10561  *
10562  *     Context: Kernel thread context.
10563  */
10564 /* ARGSUSED */
10565 static int
10566 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10567 {
10568 	struct sd_lun	*un = NULL;
10569 	struct uio	*uio = aio->aio_uio;
10570 	int		secmask;
10571 	int		err = 0;
10572 	sd_ssc_t	*ssc;
10573 
10574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10575 		return (ENXIO);
10576 	}
10577 
10578 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10579 
10580 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10581 		mutex_enter(SD_MUTEX(un));
10582 		/*
10583 		 * Because the call to sd_ready_and_valid will issue I/O we
10584 		 * must wait here if either the device is suspended or
10585 		 * if it's power level is changing.
10586 		 */
10587 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10588 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10589 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10590 		}
10591 		un->un_ncmds_in_driver++;
10592 		mutex_exit(SD_MUTEX(un));
10593 
10594 		/* Initialize sd_ssc_t for internal uscsi commands */
10595 		ssc = sd_ssc_init(un);
10596 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10597 			err = EIO;
10598 		} else {
10599 			err = 0;
10600 		}
10601 		sd_ssc_fini(ssc);
10602 
10603 		mutex_enter(SD_MUTEX(un));
10604 		un->un_ncmds_in_driver--;
10605 		ASSERT(un->un_ncmds_in_driver >= 0);
10606 		mutex_exit(SD_MUTEX(un));
10607 		if (err != 0)
10608 			return (err);
10609 	}
10610 
10611 	/*
10612 	 * Read requests are restricted to multiples of the system block size.
10613 	 */
10614 	secmask = un->un_sys_blocksize - 1;
10615 
10616 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10617 		SD_ERROR(SD_LOG_READ_WRITE, un,
10618 		    "sdaread: file offset not modulo %d\n",
10619 		    un->un_sys_blocksize);
10620 		err = EINVAL;
10621 	} else if (uio->uio_iov->iov_len & (secmask)) {
10622 		SD_ERROR(SD_LOG_READ_WRITE, un,
10623 		    "sdaread: transfer length not modulo %d\n",
10624 		    un->un_sys_blocksize);
10625 		err = EINVAL;
10626 	} else {
10627 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10628 	}
10629 
10630 	return (err);
10631 }
10632 
10633 
10634 /*
10635  *    Function: sdawrite
10636  *
10637  * Description: Driver's awrite(9e) entry point function.
10638  *
10639  *   Arguments: dev   - device number
10640  *		aio   - structure pointer describing where data is stored
10641  *		cred_p  - user credential pointer
10642  *
10643  * Return Code: ENXIO
10644  *		EIO
10645  *		EINVAL
10646  *		value returned by aphysio
10647  *
10648  *     Context: Kernel thread context.
10649  */
10650 /* ARGSUSED */
10651 static int
10652 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10653 {
10654 	struct sd_lun	*un = NULL;
10655 	struct uio	*uio = aio->aio_uio;
10656 	int		secmask;
10657 	int		err = 0;
10658 	sd_ssc_t	*ssc;
10659 
10660 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10661 		return (ENXIO);
10662 	}
10663 
10664 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10665 
10666 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10667 		mutex_enter(SD_MUTEX(un));
10668 		/*
10669 		 * Because the call to sd_ready_and_valid will issue I/O we
10670 		 * must wait here if either the device is suspended or
10671 		 * if it's power level is changing.
10672 		 */
10673 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10674 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10675 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10676 		}
10677 		un->un_ncmds_in_driver++;
10678 		mutex_exit(SD_MUTEX(un));
10679 
10680 		/* Initialize sd_ssc_t for internal uscsi commands */
10681 		ssc = sd_ssc_init(un);
10682 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10683 			err = EIO;
10684 		} else {
10685 			err = 0;
10686 		}
10687 		sd_ssc_fini(ssc);
10688 
10689 		mutex_enter(SD_MUTEX(un));
10690 		un->un_ncmds_in_driver--;
10691 		ASSERT(un->un_ncmds_in_driver >= 0);
10692 		mutex_exit(SD_MUTEX(un));
10693 		if (err != 0)
10694 			return (err);
10695 	}
10696 
10697 	/*
10698 	 * Write requests are restricted to multiples of the system block size.
10699 	 */
10700 	secmask = un->un_sys_blocksize - 1;
10701 
10702 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10703 		SD_ERROR(SD_LOG_READ_WRITE, un,
10704 		    "sdawrite: file offset not modulo %d\n",
10705 		    un->un_sys_blocksize);
10706 		err = EINVAL;
10707 	} else if (uio->uio_iov->iov_len & (secmask)) {
10708 		SD_ERROR(SD_LOG_READ_WRITE, un,
10709 		    "sdawrite: transfer length not modulo %d\n",
10710 		    un->un_sys_blocksize);
10711 		err = EINVAL;
10712 	} else {
10713 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10714 	}
10715 
10716 	return (err);
10717 }
10718 
10719 
10720 
10721 
10722 
10723 /*
10724  * Driver IO processing follows the following sequence:
10725  *
10726  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10727  *         |                |                     ^
10728  *         v                v                     |
10729  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10730  *         |                |                     |                   |
10731  *         v                |                     |                   |
10732  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10733  *         |                |                     ^                   ^
10734  *         v                v                     |                   |
10735  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10736  *         |                |                     |                   |
10737  *     +---+                |                     +------------+      +-------+
10738  *     |                    |                                  |              |
10739  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10740  *     |                    v                                  |              |
10741  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10742  *     |                    |                                  ^              |
10743  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10744  *     |                    v                                  |              |
10745  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10746  *     |                    |                                  ^              |
10747  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10748  *     |                    v                                  |              |
10749  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10750  *     |                    |                                  ^              |
10751  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10752  *     |                    v                                  |              |
10753  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10754  *     |                    |                                  ^              |
10755  *     |                    |                                  |              |
10756  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10757  *                          |                           ^
10758  *                          v                           |
10759  *                   sd_core_iostart()                  |
10760  *                          |                           |
10761  *                          |                           +------>(*destroypkt)()
10762  *                          +-> sd_start_cmds() <-+     |           |
10763  *                          |                     |     |           v
10764  *                          |                     |     |  scsi_destroy_pkt(9F)
10765  *                          |                     |     |
10766  *                          +->(*initpkt)()       +- sdintr()
10767  *                          |  |                        |  |
10768  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10769  *                          |  +-> scsi_setup_cdb(9F)   |
10770  *                          |                           |
10771  *                          +--> scsi_transport(9F)     |
10772  *                                     |                |
10773  *                                     +----> SCSA ---->+
10774  *
10775  *
10776  * This code is based upon the following presumptions:
10777  *
10778  *   - iostart and iodone functions operate on buf(9S) structures. These
10779  *     functions perform the necessary operations on the buf(9S) and pass
10780  *     them along to the next function in the chain by using the macros
10781  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10782  *     (for iodone side functions).
10783  *
10784  *   - The iostart side functions may sleep. The iodone side functions
10785  *     are called under interrupt context and may NOT sleep. Therefore
10786  *     iodone side functions also may not call iostart side functions.
10787  *     (NOTE: iostart side functions should NOT sleep for memory, as
10788  *     this could result in deadlock.)
10789  *
10790  *   - An iostart side function may call its corresponding iodone side
10791  *     function directly (if necessary).
10792  *
10793  *   - In the event of an error, an iostart side function can return a buf(9S)
10794  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10795  *     b_error in the usual way of course).
10796  *
10797  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10798  *     requests to the iostart side functions.  The iostart side functions in
10799  *     this case would be called under the context of a taskq thread, so it's
10800  *     OK for them to block/sleep/spin in this case.
10801  *
10802  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10803  *     pass them along to the next function in the chain.  The corresponding
10804  *     iodone side functions must coalesce the "shadow" bufs and return
10805  *     the "original" buf to the next higher layer.
10806  *
10807  *   - The b_private field of the buf(9S) struct holds a pointer to
10808  *     an sd_xbuf struct, which contains information needed to
10809  *     construct the scsi_pkt for the command.
10810  *
10811  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10812  *     layer must acquire & release the SD_MUTEX(un) as needed.
10813  */
10814 
10815 
10816 /*
10817  * Create taskq for all targets in the system. This is created at
10818  * _init(9E) and destroyed at _fini(9E).
10819  *
10820  * Note: here we set the minalloc to a reasonably high number to ensure that
10821  * we will have an adequate supply of task entries available at interrupt time.
10822  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10823  * sd_create_taskq().  Since we do not want to sleep for allocations at
10824  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10825  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10826  * requests any one instant in time.
10827  */
10828 #define	SD_TASKQ_NUMTHREADS	8
10829 #define	SD_TASKQ_MINALLOC	256
10830 #define	SD_TASKQ_MAXALLOC	256
10831 
10832 static taskq_t	*sd_tq = NULL;
10833 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10834 
10835 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10836 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10837 
10838 /*
10839  * The following task queue is being created for the write part of
10840  * read-modify-write of non-512 block size devices.
10841  * Limit the number of threads to 1 for now. This number has been chosen
10842  * considering the fact that it applies only to dvd ram drives/MO drives
10843  * currently. Performance for which is not main criteria at this stage.
10844  * Note: It needs to be explored if we can use a single taskq in future
10845  */
10846 #define	SD_WMR_TASKQ_NUMTHREADS	1
10847 static taskq_t	*sd_wmr_tq = NULL;
10848 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10849 
10850 /*
10851  *    Function: sd_taskq_create
10852  *
10853  * Description: Create taskq thread(s) and preallocate task entries
10854  *
10855  * Return Code: Returns a pointer to the allocated taskq_t.
10856  *
10857  *     Context: Can sleep. Requires blockable context.
10858  *
10859  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10860  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10861  *		- taskq_create() will block for memory, also it will panic
10862  *		  if it cannot create the requested number of threads.
10863  *		- Currently taskq_create() creates threads that cannot be
10864  *		  swapped.
10865  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10866  *		  supply of taskq entries at interrupt time (ie, so that we
10867  *		  do not have to sleep for memory)
10868  */
10869 
10870 static void
10871 sd_taskq_create(void)
10872 {
10873 	char	taskq_name[TASKQ_NAMELEN];
10874 
10875 	ASSERT(sd_tq == NULL);
10876 	ASSERT(sd_wmr_tq == NULL);
10877 
10878 	(void) snprintf(taskq_name, sizeof (taskq_name),
10879 	    "%s_drv_taskq", sd_label);
10880 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10881 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10882 	    TASKQ_PREPOPULATE));
10883 
10884 	(void) snprintf(taskq_name, sizeof (taskq_name),
10885 	    "%s_rmw_taskq", sd_label);
10886 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10887 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10888 	    TASKQ_PREPOPULATE));
10889 }
10890 
10891 
10892 /*
10893  *    Function: sd_taskq_delete
10894  *
10895  * Description: Complementary cleanup routine for sd_taskq_create().
10896  *
10897  *     Context: Kernel thread context.
10898  */
10899 
10900 static void
10901 sd_taskq_delete(void)
10902 {
10903 	ASSERT(sd_tq != NULL);
10904 	ASSERT(sd_wmr_tq != NULL);
10905 	taskq_destroy(sd_tq);
10906 	taskq_destroy(sd_wmr_tq);
10907 	sd_tq = NULL;
10908 	sd_wmr_tq = NULL;
10909 }
10910 
10911 
10912 /*
10913  *    Function: sdstrategy
10914  *
10915  * Description: Driver's strategy (9E) entry point function.
10916  *
10917  *   Arguments: bp - pointer to buf(9S)
10918  *
10919  * Return Code: Always returns zero
10920  *
10921  *     Context: Kernel thread context.
10922  */
10923 
10924 static int
10925 sdstrategy(struct buf *bp)
10926 {
10927 	struct sd_lun *un;
10928 
10929 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10930 	if (un == NULL) {
10931 		bioerror(bp, EIO);
10932 		bp->b_resid = bp->b_bcount;
10933 		biodone(bp);
10934 		return (0);
10935 	}
10936 	/* As was done in the past, fail new cmds. if state is dumping. */
10937 	if (un->un_state == SD_STATE_DUMPING) {
10938 		bioerror(bp, ENXIO);
10939 		bp->b_resid = bp->b_bcount;
10940 		biodone(bp);
10941 		return (0);
10942 	}
10943 
10944 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10945 
10946 	/*
10947 	 * Commands may sneak in while we released the mutex in
10948 	 * DDI_SUSPEND, we should block new commands. However, old
10949 	 * commands that are still in the driver at this point should
10950 	 * still be allowed to drain.
10951 	 */
10952 	mutex_enter(SD_MUTEX(un));
10953 	/*
10954 	 * Must wait here if either the device is suspended or
10955 	 * if it's power level is changing.
10956 	 */
10957 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10958 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10959 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10960 	}
10961 
10962 	un->un_ncmds_in_driver++;
10963 
10964 	/*
10965 	 * atapi: Since we are running the CD for now in PIO mode we need to
10966 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10967 	 * the HBA's init_pkt routine.
10968 	 */
10969 	if (un->un_f_cfg_is_atapi == TRUE) {
10970 		mutex_exit(SD_MUTEX(un));
10971 		bp_mapin(bp);
10972 		mutex_enter(SD_MUTEX(un));
10973 	}
10974 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10975 	    un->un_ncmds_in_driver);
10976 
10977 	if (bp->b_flags & B_WRITE)
10978 		un->un_f_sync_cache_required = TRUE;
10979 
10980 	mutex_exit(SD_MUTEX(un));
10981 
10982 	/*
10983 	 * This will (eventually) allocate the sd_xbuf area and
10984 	 * call sd_xbuf_strategy().  We just want to return the
10985 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10986 	 * imized tail call which saves us a stack frame.
10987 	 */
10988 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10989 }
10990 
10991 
10992 /*
10993  *    Function: sd_xbuf_strategy
10994  *
10995  * Description: Function for initiating IO operations via the
10996  *		ddi_xbuf_qstrategy() mechanism.
10997  *
10998  *     Context: Kernel thread context.
10999  */
11000 
11001 static void
11002 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11003 {
11004 	struct sd_lun *un = arg;
11005 
11006 	ASSERT(bp != NULL);
11007 	ASSERT(xp != NULL);
11008 	ASSERT(un != NULL);
11009 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11010 
11011 	/*
11012 	 * Initialize the fields in the xbuf and save a pointer to the
11013 	 * xbuf in bp->b_private.
11014 	 */
11015 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11016 
11017 	/* Send the buf down the iostart chain */
11018 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11019 }
11020 
11021 
11022 /*
11023  *    Function: sd_xbuf_init
11024  *
11025  * Description: Prepare the given sd_xbuf struct for use.
11026  *
11027  *   Arguments: un - ptr to softstate
11028  *		bp - ptr to associated buf(9S)
11029  *		xp - ptr to associated sd_xbuf
11030  *		chain_type - IO chain type to use:
11031  *			SD_CHAIN_NULL
11032  *			SD_CHAIN_BUFIO
11033  *			SD_CHAIN_USCSI
11034  *			SD_CHAIN_DIRECT
11035  *			SD_CHAIN_DIRECT_PRIORITY
11036  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11037  *			initialization; may be NULL if none.
11038  *
11039  *     Context: Kernel thread context
11040  */
11041 
11042 static void
11043 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11044 	uchar_t chain_type, void *pktinfop)
11045 {
11046 	int index;
11047 
11048 	ASSERT(un != NULL);
11049 	ASSERT(bp != NULL);
11050 	ASSERT(xp != NULL);
11051 
11052 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11053 	    bp, chain_type);
11054 
11055 	xp->xb_un	= un;
11056 	xp->xb_pktp	= NULL;
11057 	xp->xb_pktinfo	= pktinfop;
11058 	xp->xb_private	= bp->b_private;
11059 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11060 
11061 	/*
11062 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11063 	 * upon the specified chain type to use.
11064 	 */
11065 	switch (chain_type) {
11066 	case SD_CHAIN_NULL:
11067 		/*
11068 		 * Fall thru to just use the values for the buf type, even
11069 		 * tho for the NULL chain these values will never be used.
11070 		 */
11071 		/* FALLTHRU */
11072 	case SD_CHAIN_BUFIO:
11073 		index = un->un_buf_chain_type;
11074 		break;
11075 	case SD_CHAIN_USCSI:
11076 		index = un->un_uscsi_chain_type;
11077 		break;
11078 	case SD_CHAIN_DIRECT:
11079 		index = un->un_direct_chain_type;
11080 		break;
11081 	case SD_CHAIN_DIRECT_PRIORITY:
11082 		index = un->un_priority_chain_type;
11083 		break;
11084 	default:
11085 		/* We're really broken if we ever get here... */
11086 		panic("sd_xbuf_init: illegal chain type!");
11087 		/*NOTREACHED*/
11088 	}
11089 
11090 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11091 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11092 
11093 	/*
11094 	 * It might be a bit easier to simply bzero the entire xbuf above,
11095 	 * but it turns out that since we init a fair number of members anyway,
11096 	 * we save a fair number cycles by doing explicit assignment of zero.
11097 	 */
11098 	xp->xb_pkt_flags	= 0;
11099 	xp->xb_dma_resid	= 0;
11100 	xp->xb_retry_count	= 0;
11101 	xp->xb_victim_retry_count = 0;
11102 	xp->xb_ua_retry_count	= 0;
11103 	xp->xb_nr_retry_count	= 0;
11104 	xp->xb_sense_bp		= NULL;
11105 	xp->xb_sense_status	= 0;
11106 	xp->xb_sense_state	= 0;
11107 	xp->xb_sense_resid	= 0;
11108 	xp->xb_ena		= 0;
11109 
11110 	bp->b_private	= xp;
11111 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11112 	bp->b_resid	= 0;
11113 	bp->av_forw	= NULL;
11114 	bp->av_back	= NULL;
11115 	bioerror(bp, 0);
11116 
11117 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11118 }
11119 
11120 
11121 /*
11122  *    Function: sd_uscsi_strategy
11123  *
11124  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11125  *
11126  *   Arguments: bp - buf struct ptr
11127  *
11128  * Return Code: Always returns 0
11129  *
11130  *     Context: Kernel thread context
11131  */
11132 
11133 static int
11134 sd_uscsi_strategy(struct buf *bp)
11135 {
11136 	struct sd_lun		*un;
11137 	struct sd_uscsi_info	*uip;
11138 	struct sd_xbuf		*xp;
11139 	uchar_t			chain_type;
11140 	uchar_t			cmd;
11141 
11142 	ASSERT(bp != NULL);
11143 
11144 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11145 	if (un == NULL) {
11146 		bioerror(bp, EIO);
11147 		bp->b_resid = bp->b_bcount;
11148 		biodone(bp);
11149 		return (0);
11150 	}
11151 
11152 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11153 
11154 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11155 
11156 	/*
11157 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11158 	 */
11159 	ASSERT(bp->b_private != NULL);
11160 	uip = (struct sd_uscsi_info *)bp->b_private;
11161 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11162 
11163 	mutex_enter(SD_MUTEX(un));
11164 	/*
11165 	 * atapi: Since we are running the CD for now in PIO mode we need to
11166 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11167 	 * the HBA's init_pkt routine.
11168 	 */
11169 	if (un->un_f_cfg_is_atapi == TRUE) {
11170 		mutex_exit(SD_MUTEX(un));
11171 		bp_mapin(bp);
11172 		mutex_enter(SD_MUTEX(un));
11173 	}
11174 	un->un_ncmds_in_driver++;
11175 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11176 	    un->un_ncmds_in_driver);
11177 
11178 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11179 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11180 		un->un_f_sync_cache_required = TRUE;
11181 
11182 	mutex_exit(SD_MUTEX(un));
11183 
11184 	switch (uip->ui_flags) {
11185 	case SD_PATH_DIRECT:
11186 		chain_type = SD_CHAIN_DIRECT;
11187 		break;
11188 	case SD_PATH_DIRECT_PRIORITY:
11189 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11190 		break;
11191 	default:
11192 		chain_type = SD_CHAIN_USCSI;
11193 		break;
11194 	}
11195 
11196 	/*
11197 	 * We may allocate extra buf for external USCSI commands. If the
11198 	 * application asks for bigger than 20-byte sense data via USCSI,
11199 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11200 	 */
11201 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11202 	    SENSE_LENGTH) {
11203 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11204 		    MAX_SENSE_LENGTH, KM_SLEEP);
11205 	} else {
11206 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11207 	}
11208 
11209 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11210 
11211 	/* Use the index obtained within xbuf_init */
11212 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11213 
11214 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11215 
11216 	return (0);
11217 }
11218 
11219 /*
11220  *    Function: sd_send_scsi_cmd
11221  *
11222  * Description: Runs a USCSI command for user (when called thru sdioctl),
11223  *		or for the driver
11224  *
11225  *   Arguments: dev - the dev_t for the device
11226  *		incmd - ptr to a valid uscsi_cmd struct
11227  *		flag - bit flag, indicating open settings, 32/64 bit type
11228  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11229  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11230  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11231  *			to use the USCSI "direct" chain and bypass the normal
11232  *			command waitq.
11233  *
11234  * Return Code: 0 -  successful completion of the given command
11235  *		EIO - scsi_uscsi_handle_command() failed
11236  *		ENXIO  - soft state not found for specified dev
11237  *		EINVAL
11238  *		EFAULT - copyin/copyout error
11239  *		return code of scsi_uscsi_handle_command():
11240  *			EIO
11241  *			ENXIO
11242  *			EACCES
11243  *
11244  *     Context: Waits for command to complete. Can sleep.
11245  */
11246 
11247 static int
11248 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11249 	enum uio_seg dataspace, int path_flag)
11250 {
11251 	struct sd_lun	*un;
11252 	sd_ssc_t	*ssc;
11253 	int		rval;
11254 
11255 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11256 	if (un == NULL) {
11257 		return (ENXIO);
11258 	}
11259 
11260 	/*
11261 	 * Using sd_ssc_send to handle uscsi cmd
11262 	 */
11263 	ssc = sd_ssc_init(un);
11264 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11265 	sd_ssc_fini(ssc);
11266 
11267 	return (rval);
11268 }
11269 
11270 /*
11271  *    Function: sd_ssc_init
11272  *
11273  * Description: Uscsi end-user call this function to initialize necessary
11274  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11275  *
11276  *              The return value of sd_send_scsi_cmd will be treated as a
11277  *              fault in various conditions. Even it is not Zero, some
11278  *              callers may ignore the return value. That is to say, we can
11279  *              not make an accurate assessment in sdintr, since if a
11280  *              command is failed in sdintr it does not mean the caller of
11281  *              sd_send_scsi_cmd will treat it as a real failure.
11282  *
11283  *              To avoid printing too many error logs for a failed uscsi
11284  *              packet that the caller may not treat it as a failure, the
11285  *              sd will keep silent for handling all uscsi commands.
11286  *
11287  *              During detach->attach and attach-open, for some types of
11288  *              problems, the driver should be providing information about
11289  *              the problem encountered. Device use USCSI_SILENT, which
11290  *              suppresses all driver information. The result is that no
11291  *              information about the problem is available. Being
11292  *              completely silent during this time is inappropriate. The
11293  *              driver needs a more selective filter than USCSI_SILENT, so
11294  *              that information related to faults is provided.
11295  *
11296  *              To make the accurate accessment, the caller  of
11297  *              sd_send_scsi_USCSI_CMD should take the ownership and
11298  *              get necessary information to print error messages.
11299  *
11300  *              If we want to print necessary info of uscsi command, we need to
11301  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11302  *              assessment. We use sd_ssc_init to alloc necessary
11303  *              structs for sending an uscsi command and we are also
11304  *              responsible for free the memory by calling
11305  *              sd_ssc_fini.
11306  *
11307  *              The calling secquences will look like:
11308  *              sd_ssc_init->
11309  *
11310  *                  ...
11311  *
11312  *                  sd_send_scsi_USCSI_CMD->
11313  *                      sd_ssc_send-> - - - sdintr
11314  *                  ...
11315  *
11316  *                  if we think the return value should be treated as a
11317  *                  failure, we make the accessment here and print out
11318  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11319  *
11320  *                  ...
11321  *
11322  *              sd_ssc_fini
11323  *
11324  *
11325  *   Arguments: un - pointer to driver soft state (unit) structure for this
11326  *                   target.
11327  *
11328  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11329  *                         uscsi_cmd and sd_uscsi_info.
11330  *                  NULL - if can not alloc memory for sd_ssc_t struct
11331  *
11332  *     Context: Kernel Thread.
11333  */
11334 static sd_ssc_t *
11335 sd_ssc_init(struct sd_lun *un)
11336 {
11337 	sd_ssc_t		*ssc;
11338 	struct uscsi_cmd	*ucmdp;
11339 	struct sd_uscsi_info	*uip;
11340 
11341 	ASSERT(un != NULL);
11342 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11343 
11344 	/*
11345 	 * Allocate sd_ssc_t structure
11346 	 */
11347 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11348 
11349 	/*
11350 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11351 	 */
11352 	ucmdp = scsi_uscsi_alloc();
11353 
11354 	/*
11355 	 * Allocate sd_uscsi_info structure
11356 	 */
11357 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11358 
11359 	ssc->ssc_uscsi_cmd = ucmdp;
11360 	ssc->ssc_uscsi_info = uip;
11361 	ssc->ssc_un = un;
11362 
11363 	return (ssc);
11364 }
11365 
11366 /*
11367  * Function: sd_ssc_fini
11368  *
11369  * Description: To free sd_ssc_t and it's hanging off
11370  *
11371  * Arguments: ssc - struct pointer of sd_ssc_t.
11372  */
11373 static void
11374 sd_ssc_fini(sd_ssc_t *ssc)
11375 {
11376 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11377 
11378 	if (ssc->ssc_uscsi_info != NULL) {
11379 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11380 		ssc->ssc_uscsi_info = NULL;
11381 	}
11382 
11383 	kmem_free(ssc, sizeof (sd_ssc_t));
11384 	ssc = NULL;
11385 }
11386 
11387 /*
11388  * Function: sd_ssc_send
11389  *
11390  * Description: Runs a USCSI command for user when called through sdioctl,
11391  *              or for the driver.
11392  *
11393  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11394  *                    sd_uscsi_info in.
11395  *		incmd - ptr to a valid uscsi_cmd struct
11396  *		flag - bit flag, indicating open settings, 32/64 bit type
11397  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11398  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11399  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11400  *			to use the USCSI "direct" chain and bypass the normal
11401  *			command waitq.
11402  *
11403  * Return Code: 0 -  successful completion of the given command
11404  *		EIO - scsi_uscsi_handle_command() failed
11405  *		ENXIO  - soft state not found for specified dev
11406  *		EINVAL
11407  *		EFAULT - copyin/copyout error
11408  *		return code of scsi_uscsi_handle_command():
11409  *			EIO
11410  *			ENXIO
11411  *			EACCES
11412  *
11413  *     Context: Kernel Thread;
11414  *              Waits for command to complete. Can sleep.
11415  */
11416 static int
11417 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11418 	enum uio_seg dataspace, int path_flag)
11419 {
11420 	struct sd_uscsi_info	*uip;
11421 	struct uscsi_cmd	*uscmd = ssc->ssc_uscsi_cmd;
11422 	struct sd_lun		*un;
11423 	dev_t			dev;
11424 
11425 	int	format = 0;
11426 	int	rval;
11427 
11428 
11429 	ASSERT(ssc != NULL);
11430 	un = ssc->ssc_un;
11431 	ASSERT(un != NULL);
11432 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11433 	ASSERT(!(ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT));
11434 	/*
11435 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11436 	 * followed to avoid missing any point of telemetry.
11437 	 */
11438 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11439 
11440 	if (uscmd == NULL) {
11441 		return (ENXIO);
11442 	}
11443 
11444 
11445 #ifdef SDDEBUG
11446 	switch (dataspace) {
11447 	case UIO_USERSPACE:
11448 		SD_TRACE(SD_LOG_IO, un,
11449 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11450 		break;
11451 	case UIO_SYSSPACE:
11452 		SD_TRACE(SD_LOG_IO, un,
11453 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11454 		break;
11455 	default:
11456 		SD_TRACE(SD_LOG_IO, un,
11457 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
11458 		break;
11459 	}
11460 #endif
11461 
11462 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
11463 	    SD_ADDRESS(un), &uscmd);
11464 	if (rval != 0) {
11465 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
11466 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
11467 		return (rval);
11468 	}
11469 
11470 	if ((uscmd->uscsi_cdb != NULL) &&
11471 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
11472 		mutex_enter(SD_MUTEX(un));
11473 		un->un_f_format_in_progress = TRUE;
11474 		mutex_exit(SD_MUTEX(un));
11475 		format = 1;
11476 	}
11477 
11478 	/*
11479 	 * Allocate an sd_uscsi_info struct and fill it with the info
11480 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11481 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11482 	 * since we allocate the buf here in this function, we do not
11483 	 * need to preserve the prior contents of b_private.
11484 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11485 	 */
11486 	uip = ssc->ssc_uscsi_info;
11487 	uip->ui_flags = path_flag;
11488 	uip->ui_cmdp = uscmd;
11489 
11490 	/*
11491 	 * Commands sent with priority are intended for error recovery
11492 	 * situations, and do not have retries performed.
11493 	 */
11494 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11495 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11496 	}
11497 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
11498 
11499 	dev = SD_GET_DEV(un);
11500 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
11501 	    sd_uscsi_strategy, NULL, uip);
11502 
11503 	/*
11504 	 * mark ssc_flags right after handle_cmd to make sure
11505 	 * the uscsi has been sent
11506 	 */
11507 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
11508 
11509 #ifdef SDDEBUG
11510 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11511 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11512 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11513 	if (uscmd->uscsi_bufaddr != NULL) {
11514 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11515 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11516 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11517 		if (dataspace == UIO_SYSSPACE) {
11518 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11519 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11520 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11521 		}
11522 	}
11523 #endif
11524 
11525 	if (format == 1) {
11526 		mutex_enter(SD_MUTEX(un));
11527 		un->un_f_format_in_progress = FALSE;
11528 		mutex_exit(SD_MUTEX(un));
11529 	}
11530 
11531 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
11532 
11533 	return (rval);
11534 }
11535 
11536 /*
11537  *     Function: sd_ssc_print
11538  *
11539  * Description: Print information available to the console.
11540  *
11541  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11542  *                    sd_uscsi_info in.
11543  *            sd_severity - log level.
11544  *     Context: Kernel thread or interrupt context.
11545  */
11546 static void
11547 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
11548 {
11549 	struct uscsi_cmd	*ucmdp;
11550 	struct scsi_device	*devp;
11551 	dev_info_t 		*devinfo;
11552 	uchar_t			*sensep;
11553 	int			senlen;
11554 	union scsi_cdb		*cdbp;
11555 	uchar_t			com;
11556 	extern struct scsi_key_strings scsi_cmds[];
11557 
11558 	ASSERT(ssc != NULL);
11559 
11560 	ucmdp = ssc->ssc_uscsi_cmd;
11561 	devp = SD_SCSI_DEVP(ssc->ssc_un);
11562 	devinfo = SD_DEVINFO(ssc->ssc_un);
11563 	ASSERT(ucmdp != NULL);
11564 	ASSERT(devp != NULL);
11565 	ASSERT(devinfo != NULL);
11566 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
11567 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
11568 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
11569 
11570 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
11571 	if (cdbp == NULL)
11572 		return;
11573 	/* We don't print log if no sense data available. */
11574 	if (senlen == 0)
11575 		sensep = NULL;
11576 	com = cdbp->scc_cmd;
11577 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
11578 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
11579 }
11580 
11581 /*
11582  *     Function: sd_ssc_assessment
11583  *
11584  * Description: We use this function to make an assessment at the point
11585  *              where SD driver may encounter a potential error.
11586  *
11587  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11588  *                    sd_uscsi_info in.
11589  *            tp_assess - a hint of strategy for ereport posting.
11590  *            Possible values of tp_assess include:
11591  *                SD_FMT_IGNORE - we don't post any ereport because we're
11592  *                sure that it is ok to ignore the underlying problems.
11593  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
11594  *                but it might be not correct to ignore the underlying hardware
11595  *                error.
11596  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
11597  *                payload driver-assessment of value "fail" or
11598  *                "fatal"(depending on what information we have here). This
11599  *                assessment value is usually set when SD driver think there
11600  *                is a potential error occurred(Typically, when return value
11601  *                of the SCSI command is EIO).
11602  *                SD_FMT_STANDARD - we will post an ereport with the payload
11603  *                driver-assessment of value "info". This assessment value is
11604  *                set when the SCSI command returned successfully and with
11605  *                sense data sent back.
11606  *
11607  *     Context: Kernel thread.
11608  */
11609 static void
11610 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
11611 {
11612 	int senlen = 0;
11613 	struct uscsi_cmd *ucmdp = NULL;
11614 	struct sd_lun *un;
11615 
11616 	ASSERT(ssc != NULL);
11617 	ASSERT(ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT);
11618 
11619 	ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
11620 	un = ssc->ssc_un;
11621 	ASSERT(un != NULL);
11622 
11623 	/*
11624 	 * We don't handle CD-ROM, and removable media
11625 	 */
11626 	if (ISCD(un) || un->un_f_has_removable_media) {
11627 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11628 		ssc->ssc_flags &= ~SSC_FLAGS_INVALID_DATA;
11629 		return;
11630 	}
11631 
11632 	/*
11633 	 * Only handle an issued command which is waiting for assessment.
11634 	 */
11635 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
11636 		sd_ssc_print(ssc, SCSI_ERR_INFO);
11637 		return;
11638 	} else
11639 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11640 
11641 	ucmdp = ssc->ssc_uscsi_cmd;
11642 	ASSERT(ucmdp != NULL);
11643 
11644 	/*
11645 	 * We will not deal with non-retryable commands here.
11646 	 */
11647 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
11648 		ssc->ssc_flags &= ~SSC_FLAGS_INVALID_DATA;
11649 		return;
11650 	}
11651 
11652 	switch (tp_assess) {
11653 	case SD_FMT_IGNORE:
11654 	case SD_FMT_IGNORE_COMPROMISE:
11655 		ssc->ssc_flags &= ~SSC_FLAGS_INVALID_DATA;
11656 		break;
11657 	case SD_FMT_STATUS_CHECK:
11658 		/*
11659 		 * For a failed command(including the succeeded command
11660 		 * with invalid data sent back).
11661 		 */
11662 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
11663 		break;
11664 	case SD_FMT_STANDARD:
11665 		/*
11666 		 * Always for the succeeded commands probably with sense
11667 		 * data sent back.
11668 		 * Limitation:
11669 		 *	We can only handle a succeeded command with sense
11670 		 *	data sent back when auto-request-sense is enabled.
11671 		 */
11672 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
11673 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
11674 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
11675 		    (un->un_f_arq_enabled == TRUE) &&
11676 		    senlen > 0 &&
11677 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
11678 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
11679 		}
11680 		break;
11681 	default:
11682 		/*
11683 		 * Should be an software error.
11684 		 */
11685 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
11686 		    "sd_ssc_assessment got wrong \
11687 		    sd_type_assessment %d\n", tp_assess);
11688 		break;
11689 	}
11690 }
11691 
11692 /*
11693  *    Function: sd_ssc_post
11694  *
11695  * Description: 1. read the driver property to get fm-scsi-log flag.
11696  *              2. print log if fm_log_capable is non-zero.
11697  *              3. call sd_ssc_ereport_post to post ereport if possible.
11698  *
11699  *    Context: May be called from kernel thread or interrupt context.
11700  */
11701 static void
11702 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
11703 {
11704 	struct sd_lun	*un;
11705 	int 		fm_scsi_log = 0;
11706 	int		sd_severity;
11707 
11708 	ASSERT(ssc != NULL);
11709 	un = ssc->ssc_un;
11710 	ASSERT(un != NULL);
11711 
11712 	fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
11713 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
11714 
11715 	if (fm_scsi_log != 0) {
11716 		switch (sd_assess) {
11717 		case SD_FM_DRV_FATAL:
11718 			sd_severity = SCSI_ERR_FATAL;
11719 			break;
11720 		case SD_FM_DRV_RECOVERY:
11721 			sd_severity = SCSI_ERR_RECOVERED;
11722 			break;
11723 		case SD_FM_DRV_RETRY:
11724 			sd_severity = SCSI_ERR_RETRYABLE;
11725 			break;
11726 		case SD_FM_DRV_NOTICE:
11727 			sd_severity = SCSI_ERR_INFO;
11728 			break;
11729 		default:
11730 			sd_severity = SCSI_ERR_UNKNOWN;
11731 		}
11732 		/* print log */
11733 		sd_ssc_print(ssc, sd_severity);
11734 	}
11735 
11736 	/* always post ereport */
11737 	sd_ssc_ereport_post(ssc, sd_assess);
11738 }
11739 
11740 /*
11741  *    Function: sd_ssc_set_info
11742  *
11743  * Description: Mark ssc_flags and set ssc_info which would be the
11744  *              payload of uderr ereport. This function will cause
11745  *              sd_ssc_ereport_post to post uderr ereport only.
11746  *
11747  *    Context: Kernel thread or interrupt context
11748  */
11749 static void
11750 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, const char *fmt, ...)
11751 {
11752 	va_list	ap;
11753 
11754 	ASSERT(ssc != NULL);
11755 
11756 	ssc->ssc_flags |= ssc_flags;
11757 	va_start(ap, fmt);
11758 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
11759 	va_end(ap);
11760 }
11761 
11762 /*
11763  *    Function: sd_buf_iodone
11764  *
11765  * Description: Frees the sd_xbuf & returns the buf to its originator.
11766  *
11767  *     Context: May be called from interrupt context.
11768  */
11769 /* ARGSUSED */
11770 static void
11771 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11772 {
11773 	struct sd_xbuf *xp;
11774 
11775 	ASSERT(un != NULL);
11776 	ASSERT(bp != NULL);
11777 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11778 
11779 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11780 
11781 	xp = SD_GET_XBUF(bp);
11782 	ASSERT(xp != NULL);
11783 
11784 	mutex_enter(SD_MUTEX(un));
11785 
11786 	/*
11787 	 * Grab time when the cmd completed.
11788 	 * This is used for determining if the system has been
11789 	 * idle long enough to make it idle to the PM framework.
11790 	 * This is for lowering the overhead, and therefore improving
11791 	 * performance per I/O operation.
11792 	 */
11793 	un->un_pm_idle_time = ddi_get_time();
11794 
11795 	un->un_ncmds_in_driver--;
11796 	ASSERT(un->un_ncmds_in_driver >= 0);
11797 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11798 	    un->un_ncmds_in_driver);
11799 
11800 	mutex_exit(SD_MUTEX(un));
11801 
11802 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11803 	biodone(bp);				/* bp is gone after this */
11804 
11805 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11806 }
11807 
11808 
11809 /*
11810  *    Function: sd_uscsi_iodone
11811  *
11812  * Description: Frees the sd_xbuf & returns the buf to its originator.
11813  *
11814  *     Context: May be called from interrupt context.
11815  */
11816 /* ARGSUSED */
11817 static void
11818 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11819 {
11820 	struct sd_xbuf *xp;
11821 
11822 	ASSERT(un != NULL);
11823 	ASSERT(bp != NULL);
11824 
11825 	xp = SD_GET_XBUF(bp);
11826 	ASSERT(xp != NULL);
11827 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11828 
11829 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11830 
11831 	bp->b_private = xp->xb_private;
11832 
11833 	mutex_enter(SD_MUTEX(un));
11834 
11835 	/*
11836 	 * Grab time when the cmd completed.
11837 	 * This is used for determining if the system has been
11838 	 * idle long enough to make it idle to the PM framework.
11839 	 * This is for lowering the overhead, and therefore improving
11840 	 * performance per I/O operation.
11841 	 */
11842 	un->un_pm_idle_time = ddi_get_time();
11843 
11844 	un->un_ncmds_in_driver--;
11845 	ASSERT(un->un_ncmds_in_driver >= 0);
11846 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11847 	    un->un_ncmds_in_driver);
11848 
11849 	mutex_exit(SD_MUTEX(un));
11850 
11851 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
11852 	    SENSE_LENGTH) {
11853 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
11854 		    MAX_SENSE_LENGTH);
11855 	} else {
11856 		kmem_free(xp, sizeof (struct sd_xbuf));
11857 	}
11858 
11859 	biodone(bp);
11860 
11861 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11862 }
11863 
11864 
11865 /*
11866  *    Function: sd_mapblockaddr_iostart
11867  *
11868  * Description: Verify request lies within the partition limits for
11869  *		the indicated minor device.  Issue "overrun" buf if
11870  *		request would exceed partition range.  Converts
11871  *		partition-relative block address to absolute.
11872  *
11873  *     Context: Can sleep
11874  *
11875  *      Issues: This follows what the old code did, in terms of accessing
11876  *		some of the partition info in the unit struct without holding
11877  *		the mutext.  This is a general issue, if the partition info
11878  *		can be altered while IO is in progress... as soon as we send
11879  *		a buf, its partitioning can be invalid before it gets to the
11880  *		device.  Probably the right fix is to move partitioning out
11881  *		of the driver entirely.
11882  */
11883 
11884 static void
11885 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11886 {
11887 	diskaddr_t	nblocks;	/* #blocks in the given partition */
11888 	daddr_t	blocknum;	/* Block number specified by the buf */
11889 	size_t	requested_nblocks;
11890 	size_t	available_nblocks;
11891 	int	partition;
11892 	diskaddr_t	partition_offset;
11893 	struct sd_xbuf *xp;
11894 
11895 	ASSERT(un != NULL);
11896 	ASSERT(bp != NULL);
11897 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11898 
11899 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11900 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11901 
11902 	xp = SD_GET_XBUF(bp);
11903 	ASSERT(xp != NULL);
11904 
11905 	/*
11906 	 * If the geometry is not indicated as valid, attempt to access
11907 	 * the unit & verify the geometry/label. This can be the case for
11908 	 * removable-media devices, of if the device was opened in
11909 	 * NDELAY/NONBLOCK mode.
11910 	 */
11911 	partition = SDPART(bp->b_edev);
11912 
11913 	if (!SD_IS_VALID_LABEL(un)) {
11914 		sd_ssc_t *ssc;
11915 		/*
11916 		 * Initialize sd_ssc_t for internal uscsi commands
11917 		 * In case of potential porformance issue, we need
11918 		 * to alloc memory only if there is invalid label
11919 		 */
11920 		ssc = sd_ssc_init(un);
11921 
11922 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
11923 			/*
11924 			 * For removable devices it is possible to start an
11925 			 * I/O without a media by opening the device in nodelay
11926 			 * mode. Also for writable CDs there can be many
11927 			 * scenarios where there is no geometry yet but volume
11928 			 * manager is trying to issue a read() just because
11929 			 * it can see TOC on the CD. So do not print a message
11930 			 * for removables.
11931 			 */
11932 			if (!un->un_f_has_removable_media) {
11933 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11934 				    "i/o to invalid geometry\n");
11935 			}
11936 			bioerror(bp, EIO);
11937 			bp->b_resid = bp->b_bcount;
11938 			SD_BEGIN_IODONE(index, un, bp);
11939 
11940 			sd_ssc_fini(ssc);
11941 			return;
11942 		}
11943 		sd_ssc_fini(ssc);
11944 	}
11945 
11946 	nblocks = 0;
11947 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
11948 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
11949 
11950 	/*
11951 	 * blocknum is the starting block number of the request. At this
11952 	 * point it is still relative to the start of the minor device.
11953 	 */
11954 	blocknum = xp->xb_blkno;
11955 
11956 	/*
11957 	 * Legacy: If the starting block number is one past the last block
11958 	 * in the partition, do not set B_ERROR in the buf.
11959 	 */
11960 	if (blocknum == nblocks)  {
11961 		goto error_exit;
11962 	}
11963 
11964 	/*
11965 	 * Confirm that the first block of the request lies within the
11966 	 * partition limits. Also the requested number of bytes must be
11967 	 * a multiple of the system block size.
11968 	 */
11969 	if ((blocknum < 0) || (blocknum >= nblocks) ||
11970 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
11971 		bp->b_flags |= B_ERROR;
11972 		goto error_exit;
11973 	}
11974 
11975 	/*
11976 	 * If the requsted # blocks exceeds the available # blocks, that
11977 	 * is an overrun of the partition.
11978 	 */
11979 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
11980 	available_nblocks = (size_t)(nblocks - blocknum);
11981 	ASSERT(nblocks >= blocknum);
11982 
11983 	if (requested_nblocks > available_nblocks) {
11984 		/*
11985 		 * Allocate an "overrun" buf to allow the request to proceed
11986 		 * for the amount of space available in the partition. The
11987 		 * amount not transferred will be added into the b_resid
11988 		 * when the operation is complete. The overrun buf
11989 		 * replaces the original buf here, and the original buf
11990 		 * is saved inside the overrun buf, for later use.
11991 		 */
11992 		size_t resid = SD_SYSBLOCKS2BYTES(un,
11993 		    (offset_t)(requested_nblocks - available_nblocks));
11994 		size_t count = bp->b_bcount - resid;
11995 		/*
11996 		 * Note: count is an unsigned entity thus it'll NEVER
11997 		 * be less than 0 so ASSERT the original values are
11998 		 * correct.
11999 		 */
12000 		ASSERT(bp->b_bcount >= resid);
12001 
12002 		bp = sd_bioclone_alloc(bp, count, blocknum,
12003 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12004 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12005 		ASSERT(xp != NULL);
12006 	}
12007 
12008 	/* At this point there should be no residual for this buf. */
12009 	ASSERT(bp->b_resid == 0);
12010 
12011 	/* Convert the block number to an absolute address. */
12012 	xp->xb_blkno += partition_offset;
12013 
12014 	SD_NEXT_IOSTART(index, un, bp);
12015 
12016 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12017 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12018 
12019 	return;
12020 
12021 error_exit:
12022 	bp->b_resid = bp->b_bcount;
12023 	SD_BEGIN_IODONE(index, un, bp);
12024 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12025 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12026 }
12027 
12028 
12029 /*
12030  *    Function: sd_mapblockaddr_iodone
12031  *
12032  * Description: Completion-side processing for partition management.
12033  *
12034  *     Context: May be called under interrupt context
12035  */
12036 
12037 static void
12038 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12039 {
12040 	/* int	partition; */	/* Not used, see below. */
12041 	ASSERT(un != NULL);
12042 	ASSERT(bp != NULL);
12043 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12044 
12045 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12046 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12047 
12048 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12049 		/*
12050 		 * We have an "overrun" buf to deal with...
12051 		 */
12052 		struct sd_xbuf	*xp;
12053 		struct buf	*obp;	/* ptr to the original buf */
12054 
12055 		xp = SD_GET_XBUF(bp);
12056 		ASSERT(xp != NULL);
12057 
12058 		/* Retrieve the pointer to the original buf */
12059 		obp = (struct buf *)xp->xb_private;
12060 		ASSERT(obp != NULL);
12061 
12062 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12063 		bioerror(obp, bp->b_error);
12064 
12065 		sd_bioclone_free(bp);
12066 
12067 		/*
12068 		 * Get back the original buf.
12069 		 * Note that since the restoration of xb_blkno below
12070 		 * was removed, the sd_xbuf is not needed.
12071 		 */
12072 		bp = obp;
12073 		/*
12074 		 * xp = SD_GET_XBUF(bp);
12075 		 * ASSERT(xp != NULL);
12076 		 */
12077 	}
12078 
12079 	/*
12080 	 * Convert sd->xb_blkno back to a minor-device relative value.
12081 	 * Note: this has been commented out, as it is not needed in the
12082 	 * current implementation of the driver (ie, since this function
12083 	 * is at the top of the layering chains, so the info will be
12084 	 * discarded) and it is in the "hot" IO path.
12085 	 *
12086 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12087 	 * xp->xb_blkno -= un->un_offset[partition];
12088 	 */
12089 
12090 	SD_NEXT_IODONE(index, un, bp);
12091 
12092 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12093 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12094 }
12095 
12096 
12097 /*
12098  *    Function: sd_mapblocksize_iostart
12099  *
12100  * Description: Convert between system block size (un->un_sys_blocksize)
12101  *		and target block size (un->un_tgt_blocksize).
12102  *
12103  *     Context: Can sleep to allocate resources.
12104  *
12105  * Assumptions: A higher layer has already performed any partition validation,
12106  *		and converted the xp->xb_blkno to an absolute value relative
12107  *		to the start of the device.
12108  *
12109  *		It is also assumed that the higher layer has implemented
12110  *		an "overrun" mechanism for the case where the request would
12111  *		read/write beyond the end of a partition.  In this case we
12112  *		assume (and ASSERT) that bp->b_resid == 0.
12113  *
12114  *		Note: The implementation for this routine assumes the target
12115  *		block size remains constant between allocation and transport.
12116  */
12117 
12118 static void
12119 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12120 {
12121 	struct sd_mapblocksize_info	*bsp;
12122 	struct sd_xbuf			*xp;
12123 	offset_t first_byte;
12124 	daddr_t	start_block, end_block;
12125 	daddr_t	request_bytes;
12126 	ushort_t is_aligned = FALSE;
12127 
12128 	ASSERT(un != NULL);
12129 	ASSERT(bp != NULL);
12130 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12131 	ASSERT(bp->b_resid == 0);
12132 
12133 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12134 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12135 
12136 	/*
12137 	 * For a non-writable CD, a write request is an error
12138 	 */
12139 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12140 	    (un->un_f_mmc_writable_media == FALSE)) {
12141 		bioerror(bp, EIO);
12142 		bp->b_resid = bp->b_bcount;
12143 		SD_BEGIN_IODONE(index, un, bp);
12144 		return;
12145 	}
12146 
12147 	/*
12148 	 * We do not need a shadow buf if the device is using
12149 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12150 	 * In this case there is no layer-private data block allocated.
12151 	 */
12152 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12153 	    (bp->b_bcount == 0)) {
12154 		goto done;
12155 	}
12156 
12157 #if defined(__i386) || defined(__amd64)
12158 	/* We do not support non-block-aligned transfers for ROD devices */
12159 	ASSERT(!ISROD(un));
12160 #endif
12161 
12162 	xp = SD_GET_XBUF(bp);
12163 	ASSERT(xp != NULL);
12164 
12165 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12166 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12167 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12168 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12169 	    "request start block:0x%x\n", xp->xb_blkno);
12170 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12171 	    "request len:0x%x\n", bp->b_bcount);
12172 
12173 	/*
12174 	 * Allocate the layer-private data area for the mapblocksize layer.
12175 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12176 	 * struct to store the pointer to their layer-private data block, but
12177 	 * each layer also has the responsibility of restoring the prior
12178 	 * contents of xb_private before returning the buf/xbuf to the
12179 	 * higher layer that sent it.
12180 	 *
12181 	 * Here we save the prior contents of xp->xb_private into the
12182 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12183 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12184 	 * the layer-private area and returning the buf/xbuf to the layer
12185 	 * that sent it.
12186 	 *
12187 	 * Note that here we use kmem_zalloc for the allocation as there are
12188 	 * parts of the mapblocksize code that expect certain fields to be
12189 	 * zero unless explicitly set to a required value.
12190 	 */
12191 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12192 	bsp->mbs_oprivate = xp->xb_private;
12193 	xp->xb_private = bsp;
12194 
12195 	/*
12196 	 * This treats the data on the disk (target) as an array of bytes.
12197 	 * first_byte is the byte offset, from the beginning of the device,
12198 	 * to the location of the request. This is converted from a
12199 	 * un->un_sys_blocksize block address to a byte offset, and then back
12200 	 * to a block address based upon a un->un_tgt_blocksize block size.
12201 	 *
12202 	 * xp->xb_blkno should be absolute upon entry into this function,
12203 	 * but, but it is based upon partitions that use the "system"
12204 	 * block size. It must be adjusted to reflect the block size of
12205 	 * the target.
12206 	 *
12207 	 * Note that end_block is actually the block that follows the last
12208 	 * block of the request, but that's what is needed for the computation.
12209 	 */
12210 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12211 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12212 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12213 	    un->un_tgt_blocksize;
12214 
12215 	/* request_bytes is rounded up to a multiple of the target block size */
12216 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12217 
12218 	/*
12219 	 * See if the starting address of the request and the request
12220 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12221 	 * then we do not need to allocate a shadow buf to handle the request.
12222 	 */
12223 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12224 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12225 		is_aligned = TRUE;
12226 	}
12227 
12228 	if ((bp->b_flags & B_READ) == 0) {
12229 		/*
12230 		 * Lock the range for a write operation. An aligned request is
12231 		 * considered a simple write; otherwise the request must be a
12232 		 * read-modify-write.
12233 		 */
12234 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12235 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12236 	}
12237 
12238 	/*
12239 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12240 	 * where the READ command is generated for a read-modify-write. (The
12241 	 * write phase is deferred until after the read completes.)
12242 	 */
12243 	if (is_aligned == FALSE) {
12244 
12245 		struct sd_mapblocksize_info	*shadow_bsp;
12246 		struct sd_xbuf	*shadow_xp;
12247 		struct buf	*shadow_bp;
12248 
12249 		/*
12250 		 * Allocate the shadow buf and it associated xbuf. Note that
12251 		 * after this call the xb_blkno value in both the original
12252 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12253 		 * same: absolute relative to the start of the device, and
12254 		 * adjusted for the target block size. The b_blkno in the
12255 		 * shadow buf will also be set to this value. We should never
12256 		 * change b_blkno in the original bp however.
12257 		 *
12258 		 * Note also that the shadow buf will always need to be a
12259 		 * READ command, regardless of whether the incoming command
12260 		 * is a READ or a WRITE.
12261 		 */
12262 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12263 		    xp->xb_blkno,
12264 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12265 
12266 		shadow_xp = SD_GET_XBUF(shadow_bp);
12267 
12268 		/*
12269 		 * Allocate the layer-private data for the shadow buf.
12270 		 * (No need to preserve xb_private in the shadow xbuf.)
12271 		 */
12272 		shadow_xp->xb_private = shadow_bsp =
12273 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12274 
12275 		/*
12276 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12277 		 * to figure out where the start of the user data is (based upon
12278 		 * the system block size) in the data returned by the READ
12279 		 * command (which will be based upon the target blocksize). Note
12280 		 * that this is only really used if the request is unaligned.
12281 		 */
12282 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12283 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12284 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12285 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12286 
12287 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12288 
12289 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12290 
12291 		/* Transfer the wmap (if any) to the shadow buf */
12292 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12293 		bsp->mbs_wmp = NULL;
12294 
12295 		/*
12296 		 * The shadow buf goes on from here in place of the
12297 		 * original buf.
12298 		 */
12299 		shadow_bsp->mbs_orig_bp = bp;
12300 		bp = shadow_bp;
12301 	}
12302 
12303 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12304 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12305 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12306 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12307 	    request_bytes);
12308 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12309 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12310 
12311 done:
12312 	SD_NEXT_IOSTART(index, un, bp);
12313 
12314 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12315 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12316 }
12317 
12318 
12319 /*
12320  *    Function: sd_mapblocksize_iodone
12321  *
12322  * Description: Completion side processing for block-size mapping.
12323  *
12324  *     Context: May be called under interrupt context
12325  */
12326 
12327 static void
12328 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12329 {
12330 	struct sd_mapblocksize_info	*bsp;
12331 	struct sd_xbuf	*xp;
12332 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12333 	struct buf	*orig_bp;	/* ptr to the original buf */
12334 	offset_t	shadow_end;
12335 	offset_t	request_end;
12336 	offset_t	shadow_start;
12337 	ssize_t		copy_offset;
12338 	size_t		copy_length;
12339 	size_t		shortfall;
12340 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12341 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12342 
12343 	ASSERT(un != NULL);
12344 	ASSERT(bp != NULL);
12345 
12346 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12347 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12348 
12349 	/*
12350 	 * There is no shadow buf or layer-private data if the target is
12351 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12352 	 */
12353 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12354 	    (bp->b_bcount == 0)) {
12355 		goto exit;
12356 	}
12357 
12358 	xp = SD_GET_XBUF(bp);
12359 	ASSERT(xp != NULL);
12360 
12361 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12362 	bsp = xp->xb_private;
12363 
12364 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12365 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12366 
12367 	if (is_write) {
12368 		/*
12369 		 * For a WRITE request we must free up the block range that
12370 		 * we have locked up.  This holds regardless of whether this is
12371 		 * an aligned write request or a read-modify-write request.
12372 		 */
12373 		sd_range_unlock(un, bsp->mbs_wmp);
12374 		bsp->mbs_wmp = NULL;
12375 	}
12376 
12377 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12378 		/*
12379 		 * An aligned read or write command will have no shadow buf;
12380 		 * there is not much else to do with it.
12381 		 */
12382 		goto done;
12383 	}
12384 
12385 	orig_bp = bsp->mbs_orig_bp;
12386 	ASSERT(orig_bp != NULL);
12387 	orig_xp = SD_GET_XBUF(orig_bp);
12388 	ASSERT(orig_xp != NULL);
12389 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12390 
12391 	if (!is_write && has_wmap) {
12392 		/*
12393 		 * A READ with a wmap means this is the READ phase of a
12394 		 * read-modify-write. If an error occurred on the READ then
12395 		 * we do not proceed with the WRITE phase or copy any data.
12396 		 * Just release the write maps and return with an error.
12397 		 */
12398 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12399 			orig_bp->b_resid = orig_bp->b_bcount;
12400 			bioerror(orig_bp, bp->b_error);
12401 			sd_range_unlock(un, bsp->mbs_wmp);
12402 			goto freebuf_done;
12403 		}
12404 	}
12405 
12406 	/*
12407 	 * Here is where we set up to copy the data from the shadow buf
12408 	 * into the space associated with the original buf.
12409 	 *
12410 	 * To deal with the conversion between block sizes, these
12411 	 * computations treat the data as an array of bytes, with the
12412 	 * first byte (byte 0) corresponding to the first byte in the
12413 	 * first block on the disk.
12414 	 */
12415 
12416 	/*
12417 	 * shadow_start and shadow_len indicate the location and size of
12418 	 * the data returned with the shadow IO request.
12419 	 */
12420 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12421 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12422 
12423 	/*
12424 	 * copy_offset gives the offset (in bytes) from the start of the first
12425 	 * block of the READ request to the beginning of the data.  We retrieve
12426 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12427 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12428 	 * data to be copied (in bytes).
12429 	 */
12430 	copy_offset  = bsp->mbs_copy_offset;
12431 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12432 	copy_length  = orig_bp->b_bcount;
12433 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12434 
12435 	/*
12436 	 * Set up the resid and error fields of orig_bp as appropriate.
12437 	 */
12438 	if (shadow_end >= request_end) {
12439 		/* We got all the requested data; set resid to zero */
12440 		orig_bp->b_resid = 0;
12441 	} else {
12442 		/*
12443 		 * We failed to get enough data to fully satisfy the original
12444 		 * request. Just copy back whatever data we got and set
12445 		 * up the residual and error code as required.
12446 		 *
12447 		 * 'shortfall' is the amount by which the data received with the
12448 		 * shadow buf has "fallen short" of the requested amount.
12449 		 */
12450 		shortfall = (size_t)(request_end - shadow_end);
12451 
12452 		if (shortfall > orig_bp->b_bcount) {
12453 			/*
12454 			 * We did not get enough data to even partially
12455 			 * fulfill the original request.  The residual is
12456 			 * equal to the amount requested.
12457 			 */
12458 			orig_bp->b_resid = orig_bp->b_bcount;
12459 		} else {
12460 			/*
12461 			 * We did not get all the data that we requested
12462 			 * from the device, but we will try to return what
12463 			 * portion we did get.
12464 			 */
12465 			orig_bp->b_resid = shortfall;
12466 		}
12467 		ASSERT(copy_length >= orig_bp->b_resid);
12468 		copy_length  -= orig_bp->b_resid;
12469 	}
12470 
12471 	/* Propagate the error code from the shadow buf to the original buf */
12472 	bioerror(orig_bp, bp->b_error);
12473 
12474 	if (is_write) {
12475 		goto freebuf_done;	/* No data copying for a WRITE */
12476 	}
12477 
12478 	if (has_wmap) {
12479 		/*
12480 		 * This is a READ command from the READ phase of a
12481 		 * read-modify-write request. We have to copy the data given
12482 		 * by the user OVER the data returned by the READ command,
12483 		 * then convert the command from a READ to a WRITE and send
12484 		 * it back to the target.
12485 		 */
12486 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12487 		    copy_length);
12488 
12489 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12490 
12491 		/*
12492 		 * Dispatch the WRITE command to the taskq thread, which
12493 		 * will in turn send the command to the target. When the
12494 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12495 		 * will get called again as part of the iodone chain
12496 		 * processing for it. Note that we will still be dealing
12497 		 * with the shadow buf at that point.
12498 		 */
12499 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12500 		    KM_NOSLEEP) != 0) {
12501 			/*
12502 			 * Dispatch was successful so we are done. Return
12503 			 * without going any higher up the iodone chain. Do
12504 			 * not free up any layer-private data until after the
12505 			 * WRITE completes.
12506 			 */
12507 			return;
12508 		}
12509 
12510 		/*
12511 		 * Dispatch of the WRITE command failed; set up the error
12512 		 * condition and send this IO back up the iodone chain.
12513 		 */
12514 		bioerror(orig_bp, EIO);
12515 		orig_bp->b_resid = orig_bp->b_bcount;
12516 
12517 	} else {
12518 		/*
12519 		 * This is a regular READ request (ie, not a RMW). Copy the
12520 		 * data from the shadow buf into the original buf. The
12521 		 * copy_offset compensates for any "misalignment" between the
12522 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12523 		 * original buf (with its un->un_sys_blocksize blocks).
12524 		 */
12525 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12526 		    copy_length);
12527 	}
12528 
12529 freebuf_done:
12530 
12531 	/*
12532 	 * At this point we still have both the shadow buf AND the original
12533 	 * buf to deal with, as well as the layer-private data area in each.
12534 	 * Local variables are as follows:
12535 	 *
12536 	 * bp -- points to shadow buf
12537 	 * xp -- points to xbuf of shadow buf
12538 	 * bsp -- points to layer-private data area of shadow buf
12539 	 * orig_bp -- points to original buf
12540 	 *
12541 	 * First free the shadow buf and its associated xbuf, then free the
12542 	 * layer-private data area from the shadow buf. There is no need to
12543 	 * restore xb_private in the shadow xbuf.
12544 	 */
12545 	sd_shadow_buf_free(bp);
12546 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12547 
12548 	/*
12549 	 * Now update the local variables to point to the original buf, xbuf,
12550 	 * and layer-private area.
12551 	 */
12552 	bp = orig_bp;
12553 	xp = SD_GET_XBUF(bp);
12554 	ASSERT(xp != NULL);
12555 	ASSERT(xp == orig_xp);
12556 	bsp = xp->xb_private;
12557 	ASSERT(bsp != NULL);
12558 
12559 done:
12560 	/*
12561 	 * Restore xb_private to whatever it was set to by the next higher
12562 	 * layer in the chain, then free the layer-private data area.
12563 	 */
12564 	xp->xb_private = bsp->mbs_oprivate;
12565 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12566 
12567 exit:
12568 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12569 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12570 
12571 	SD_NEXT_IODONE(index, un, bp);
12572 }
12573 
12574 
12575 /*
12576  *    Function: sd_checksum_iostart
12577  *
12578  * Description: A stub function for a layer that's currently not used.
12579  *		For now just a placeholder.
12580  *
12581  *     Context: Kernel thread context
12582  */
12583 
12584 static void
12585 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12586 {
12587 	ASSERT(un != NULL);
12588 	ASSERT(bp != NULL);
12589 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12590 	SD_NEXT_IOSTART(index, un, bp);
12591 }
12592 
12593 
12594 /*
12595  *    Function: sd_checksum_iodone
12596  *
12597  * Description: A stub function for a layer that's currently not used.
12598  *		For now just a placeholder.
12599  *
12600  *     Context: May be called under interrupt context
12601  */
12602 
12603 static void
12604 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12605 {
12606 	ASSERT(un != NULL);
12607 	ASSERT(bp != NULL);
12608 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12609 	SD_NEXT_IODONE(index, un, bp);
12610 }
12611 
12612 
12613 /*
12614  *    Function: sd_checksum_uscsi_iostart
12615  *
12616  * Description: A stub function for a layer that's currently not used.
12617  *		For now just a placeholder.
12618  *
12619  *     Context: Kernel thread context
12620  */
12621 
12622 static void
12623 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12624 {
12625 	ASSERT(un != NULL);
12626 	ASSERT(bp != NULL);
12627 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12628 	SD_NEXT_IOSTART(index, un, bp);
12629 }
12630 
12631 
12632 /*
12633  *    Function: sd_checksum_uscsi_iodone
12634  *
12635  * Description: A stub function for a layer that's currently not used.
12636  *		For now just a placeholder.
12637  *
12638  *     Context: May be called under interrupt context
12639  */
12640 
12641 static void
12642 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12643 {
12644 	ASSERT(un != NULL);
12645 	ASSERT(bp != NULL);
12646 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12647 	SD_NEXT_IODONE(index, un, bp);
12648 }
12649 
12650 
12651 /*
12652  *    Function: sd_pm_iostart
12653  *
12654  * Description: iostart-side routine for Power mangement.
12655  *
12656  *     Context: Kernel thread context
12657  */
12658 
12659 static void
12660 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12661 {
12662 	ASSERT(un != NULL);
12663 	ASSERT(bp != NULL);
12664 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12665 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12666 
12667 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12668 
12669 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12670 		/*
12671 		 * Set up to return the failed buf back up the 'iodone'
12672 		 * side of the calling chain.
12673 		 */
12674 		bioerror(bp, EIO);
12675 		bp->b_resid = bp->b_bcount;
12676 
12677 		SD_BEGIN_IODONE(index, un, bp);
12678 
12679 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12680 		return;
12681 	}
12682 
12683 	SD_NEXT_IOSTART(index, un, bp);
12684 
12685 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12686 }
12687 
12688 
12689 /*
12690  *    Function: sd_pm_iodone
12691  *
12692  * Description: iodone-side routine for power mangement.
12693  *
12694  *     Context: may be called from interrupt context
12695  */
12696 
12697 static void
12698 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12699 {
12700 	ASSERT(un != NULL);
12701 	ASSERT(bp != NULL);
12702 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12703 
12704 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12705 
12706 	/*
12707 	 * After attach the following flag is only read, so don't
12708 	 * take the penalty of acquiring a mutex for it.
12709 	 */
12710 	if (un->un_f_pm_is_enabled == TRUE) {
12711 		sd_pm_exit(un);
12712 	}
12713 
12714 	SD_NEXT_IODONE(index, un, bp);
12715 
12716 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12717 }
12718 
12719 
12720 /*
12721  *    Function: sd_core_iostart
12722  *
12723  * Description: Primary driver function for enqueuing buf(9S) structs from
12724  *		the system and initiating IO to the target device
12725  *
12726  *     Context: Kernel thread context. Can sleep.
12727  *
12728  * Assumptions:  - The given xp->xb_blkno is absolute
12729  *		   (ie, relative to the start of the device).
12730  *		 - The IO is to be done using the native blocksize of
12731  *		   the device, as specified in un->un_tgt_blocksize.
12732  */
12733 /* ARGSUSED */
12734 static void
12735 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12736 {
12737 	struct sd_xbuf *xp;
12738 
12739 	ASSERT(un != NULL);
12740 	ASSERT(bp != NULL);
12741 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12742 	ASSERT(bp->b_resid == 0);
12743 
12744 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12745 
12746 	xp = SD_GET_XBUF(bp);
12747 	ASSERT(xp != NULL);
12748 
12749 	mutex_enter(SD_MUTEX(un));
12750 
12751 	/*
12752 	 * If we are currently in the failfast state, fail any new IO
12753 	 * that has B_FAILFAST set, then return.
12754 	 */
12755 	if ((bp->b_flags & B_FAILFAST) &&
12756 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12757 		mutex_exit(SD_MUTEX(un));
12758 		bioerror(bp, EIO);
12759 		bp->b_resid = bp->b_bcount;
12760 		SD_BEGIN_IODONE(index, un, bp);
12761 		return;
12762 	}
12763 
12764 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12765 		/*
12766 		 * Priority command -- transport it immediately.
12767 		 *
12768 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12769 		 * because all direct priority commands should be associated
12770 		 * with error recovery actions which we don't want to retry.
12771 		 */
12772 		sd_start_cmds(un, bp);
12773 	} else {
12774 		/*
12775 		 * Normal command -- add it to the wait queue, then start
12776 		 * transporting commands from the wait queue.
12777 		 */
12778 		sd_add_buf_to_waitq(un, bp);
12779 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12780 		sd_start_cmds(un, NULL);
12781 	}
12782 
12783 	mutex_exit(SD_MUTEX(un));
12784 
12785 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12786 }
12787 
12788 
12789 /*
12790  *    Function: sd_init_cdb_limits
12791  *
12792  * Description: This is to handle scsi_pkt initialization differences
12793  *		between the driver platforms.
12794  *
12795  *		Legacy behaviors:
12796  *
12797  *		If the block number or the sector count exceeds the
12798  *		capabilities of a Group 0 command, shift over to a
12799  *		Group 1 command. We don't blindly use Group 1
12800  *		commands because a) some drives (CDC Wren IVs) get a
12801  *		bit confused, and b) there is probably a fair amount
12802  *		of speed difference for a target to receive and decode
12803  *		a 10 byte command instead of a 6 byte command.
12804  *
12805  *		The xfer time difference of 6 vs 10 byte CDBs is
12806  *		still significant so this code is still worthwhile.
12807  *		10 byte CDBs are very inefficient with the fas HBA driver
12808  *		and older disks. Each CDB byte took 1 usec with some
12809  *		popular disks.
12810  *
12811  *     Context: Must be called at attach time
12812  */
12813 
12814 static void
12815 sd_init_cdb_limits(struct sd_lun *un)
12816 {
12817 	int hba_cdb_limit;
12818 
12819 	/*
12820 	 * Use CDB_GROUP1 commands for most devices except for
12821 	 * parallel SCSI fixed drives in which case we get better
12822 	 * performance using CDB_GROUP0 commands (where applicable).
12823 	 */
12824 	un->un_mincdb = SD_CDB_GROUP1;
12825 #if !defined(__fibre)
12826 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12827 	    !un->un_f_has_removable_media) {
12828 		un->un_mincdb = SD_CDB_GROUP0;
12829 	}
12830 #endif
12831 
12832 	/*
12833 	 * Try to read the max-cdb-length supported by HBA.
12834 	 */
12835 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
12836 	if (0 >= un->un_max_hba_cdb) {
12837 		un->un_max_hba_cdb = CDB_GROUP4;
12838 		hba_cdb_limit = SD_CDB_GROUP4;
12839 	} else if (0 < un->un_max_hba_cdb &&
12840 	    un->un_max_hba_cdb < CDB_GROUP1) {
12841 		hba_cdb_limit = SD_CDB_GROUP0;
12842 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
12843 	    un->un_max_hba_cdb < CDB_GROUP5) {
12844 		hba_cdb_limit = SD_CDB_GROUP1;
12845 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
12846 	    un->un_max_hba_cdb < CDB_GROUP4) {
12847 		hba_cdb_limit = SD_CDB_GROUP5;
12848 	} else {
12849 		hba_cdb_limit = SD_CDB_GROUP4;
12850 	}
12851 
12852 	/*
12853 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12854 	 * commands for fixed disks unless we are building for a 32 bit
12855 	 * kernel.
12856 	 */
12857 #ifdef _LP64
12858 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12859 	    min(hba_cdb_limit, SD_CDB_GROUP4);
12860 #else
12861 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12862 	    min(hba_cdb_limit, SD_CDB_GROUP1);
12863 #endif
12864 
12865 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12866 	    ? sizeof (struct scsi_arq_status) : 1);
12867 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12868 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12869 }
12870 
12871 
12872 /*
12873  *    Function: sd_initpkt_for_buf
12874  *
12875  * Description: Allocate and initialize for transport a scsi_pkt struct,
12876  *		based upon the info specified in the given buf struct.
12877  *
12878  *		Assumes the xb_blkno in the request is absolute (ie,
12879  *		relative to the start of the device (NOT partition!).
12880  *		Also assumes that the request is using the native block
12881  *		size of the device (as returned by the READ CAPACITY
12882  *		command).
12883  *
12884  * Return Code: SD_PKT_ALLOC_SUCCESS
12885  *		SD_PKT_ALLOC_FAILURE
12886  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12887  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12888  *
12889  *     Context: Kernel thread and may be called from software interrupt context
12890  *		as part of a sdrunout callback. This function may not block or
12891  *		call routines that block
12892  */
12893 
12894 static int
12895 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12896 {
12897 	struct sd_xbuf	*xp;
12898 	struct scsi_pkt *pktp = NULL;
12899 	struct sd_lun	*un;
12900 	size_t		blockcount;
12901 	daddr_t		startblock;
12902 	int		rval;
12903 	int		cmd_flags;
12904 
12905 	ASSERT(bp != NULL);
12906 	ASSERT(pktpp != NULL);
12907 	xp = SD_GET_XBUF(bp);
12908 	ASSERT(xp != NULL);
12909 	un = SD_GET_UN(bp);
12910 	ASSERT(un != NULL);
12911 	ASSERT(mutex_owned(SD_MUTEX(un)));
12912 	ASSERT(bp->b_resid == 0);
12913 
12914 	SD_TRACE(SD_LOG_IO_CORE, un,
12915 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12916 
12917 	mutex_exit(SD_MUTEX(un));
12918 
12919 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12920 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12921 		/*
12922 		 * Already have a scsi_pkt -- just need DMA resources.
12923 		 * We must recompute the CDB in case the mapping returns
12924 		 * a nonzero pkt_resid.
12925 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12926 		 * that is being retried, the unmap/remap of the DMA resouces
12927 		 * will result in the entire transfer starting over again
12928 		 * from the very first block.
12929 		 */
12930 		ASSERT(xp->xb_pktp != NULL);
12931 		pktp = xp->xb_pktp;
12932 	} else {
12933 		pktp = NULL;
12934 	}
12935 #endif /* __i386 || __amd64 */
12936 
12937 	startblock = xp->xb_blkno;	/* Absolute block num. */
12938 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12939 
12940 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12941 
12942 	/*
12943 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12944 	 * call scsi_init_pkt, and build the CDB.
12945 	 */
12946 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12947 	    cmd_flags, sdrunout, (caddr_t)un,
12948 	    startblock, blockcount);
12949 
12950 	if (rval == 0) {
12951 		/*
12952 		 * Success.
12953 		 *
12954 		 * If partial DMA is being used and required for this transfer.
12955 		 * set it up here.
12956 		 */
12957 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
12958 		    (pktp->pkt_resid != 0)) {
12959 
12960 			/*
12961 			 * Save the CDB length and pkt_resid for the
12962 			 * next xfer
12963 			 */
12964 			xp->xb_dma_resid = pktp->pkt_resid;
12965 
12966 			/* rezero resid */
12967 			pktp->pkt_resid = 0;
12968 
12969 		} else {
12970 			xp->xb_dma_resid = 0;
12971 		}
12972 
12973 		pktp->pkt_flags = un->un_tagflags;
12974 		pktp->pkt_time  = un->un_cmd_timeout;
12975 		pktp->pkt_comp  = sdintr;
12976 
12977 		pktp->pkt_private = bp;
12978 		*pktpp = pktp;
12979 
12980 		SD_TRACE(SD_LOG_IO_CORE, un,
12981 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
12982 
12983 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12984 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
12985 #endif
12986 
12987 		mutex_enter(SD_MUTEX(un));
12988 		return (SD_PKT_ALLOC_SUCCESS);
12989 
12990 	}
12991 
12992 	/*
12993 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
12994 	 * from sd_setup_rw_pkt.
12995 	 */
12996 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
12997 
12998 	if (rval == SD_PKT_ALLOC_FAILURE) {
12999 		*pktpp = NULL;
13000 		/*
13001 		 * Set the driver state to RWAIT to indicate the driver
13002 		 * is waiting on resource allocations. The driver will not
13003 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13004 		 */
13005 		mutex_enter(SD_MUTEX(un));
13006 		New_state(un, SD_STATE_RWAIT);
13007 
13008 		SD_ERROR(SD_LOG_IO_CORE, un,
13009 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13010 
13011 		if ((bp->b_flags & B_ERROR) != 0) {
13012 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13013 		}
13014 		return (SD_PKT_ALLOC_FAILURE);
13015 	} else {
13016 		/*
13017 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13018 		 *
13019 		 * This should never happen.  Maybe someone messed with the
13020 		 * kernel's minphys?
13021 		 */
13022 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13023 		    "Request rejected: too large for CDB: "
13024 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13025 		SD_ERROR(SD_LOG_IO_CORE, un,
13026 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13027 		mutex_enter(SD_MUTEX(un));
13028 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13029 
13030 	}
13031 }
13032 
13033 
13034 /*
13035  *    Function: sd_destroypkt_for_buf
13036  *
13037  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13038  *
13039  *     Context: Kernel thread or interrupt context
13040  */
13041 
13042 static void
13043 sd_destroypkt_for_buf(struct buf *bp)
13044 {
13045 	ASSERT(bp != NULL);
13046 	ASSERT(SD_GET_UN(bp) != NULL);
13047 
13048 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13049 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13050 
13051 	ASSERT(SD_GET_PKTP(bp) != NULL);
13052 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13053 
13054 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13055 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13056 }
13057 
13058 /*
13059  *    Function: sd_setup_rw_pkt
13060  *
13061  * Description: Determines appropriate CDB group for the requested LBA
13062  *		and transfer length, calls scsi_init_pkt, and builds
13063  *		the CDB.  Do not use for partial DMA transfers except
13064  *		for the initial transfer since the CDB size must
13065  *		remain constant.
13066  *
13067  *     Context: Kernel thread and may be called from software interrupt
13068  *		context as part of a sdrunout callback. This function may not
13069  *		block or call routines that block
13070  */
13071 
13072 
13073 int
13074 sd_setup_rw_pkt(struct sd_lun *un,
13075     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13076     int (*callback)(caddr_t), caddr_t callback_arg,
13077     diskaddr_t lba, uint32_t blockcount)
13078 {
13079 	struct scsi_pkt *return_pktp;
13080 	union scsi_cdb *cdbp;
13081 	struct sd_cdbinfo *cp = NULL;
13082 	int i;
13083 
13084 	/*
13085 	 * See which size CDB to use, based upon the request.
13086 	 */
13087 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13088 
13089 		/*
13090 		 * Check lba and block count against sd_cdbtab limits.
13091 		 * In the partial DMA case, we have to use the same size
13092 		 * CDB for all the transfers.  Check lba + blockcount
13093 		 * against the max LBA so we know that segment of the
13094 		 * transfer can use the CDB we select.
13095 		 */
13096 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13097 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13098 
13099 			/*
13100 			 * The command will fit into the CDB type
13101 			 * specified by sd_cdbtab[i].
13102 			 */
13103 			cp = sd_cdbtab + i;
13104 
13105 			/*
13106 			 * Call scsi_init_pkt so we can fill in the
13107 			 * CDB.
13108 			 */
13109 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13110 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13111 			    flags, callback, callback_arg);
13112 
13113 			if (return_pktp != NULL) {
13114 
13115 				/*
13116 				 * Return new value of pkt
13117 				 */
13118 				*pktpp = return_pktp;
13119 
13120 				/*
13121 				 * To be safe, zero the CDB insuring there is
13122 				 * no leftover data from a previous command.
13123 				 */
13124 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13125 
13126 				/*
13127 				 * Handle partial DMA mapping
13128 				 */
13129 				if (return_pktp->pkt_resid != 0) {
13130 
13131 					/*
13132 					 * Not going to xfer as many blocks as
13133 					 * originally expected
13134 					 */
13135 					blockcount -=
13136 					    SD_BYTES2TGTBLOCKS(un,
13137 					    return_pktp->pkt_resid);
13138 				}
13139 
13140 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13141 
13142 				/*
13143 				 * Set command byte based on the CDB
13144 				 * type we matched.
13145 				 */
13146 				cdbp->scc_cmd = cp->sc_grpmask |
13147 				    ((bp->b_flags & B_READ) ?
13148 				    SCMD_READ : SCMD_WRITE);
13149 
13150 				SD_FILL_SCSI1_LUN(un, return_pktp);
13151 
13152 				/*
13153 				 * Fill in LBA and length
13154 				 */
13155 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13156 				    (cp->sc_grpcode == CDB_GROUP4) ||
13157 				    (cp->sc_grpcode == CDB_GROUP0) ||
13158 				    (cp->sc_grpcode == CDB_GROUP5));
13159 
13160 				if (cp->sc_grpcode == CDB_GROUP1) {
13161 					FORMG1ADDR(cdbp, lba);
13162 					FORMG1COUNT(cdbp, blockcount);
13163 					return (0);
13164 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13165 					FORMG4LONGADDR(cdbp, lba);
13166 					FORMG4COUNT(cdbp, blockcount);
13167 					return (0);
13168 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13169 					FORMG0ADDR(cdbp, lba);
13170 					FORMG0COUNT(cdbp, blockcount);
13171 					return (0);
13172 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13173 					FORMG5ADDR(cdbp, lba);
13174 					FORMG5COUNT(cdbp, blockcount);
13175 					return (0);
13176 				}
13177 
13178 				/*
13179 				 * It should be impossible to not match one
13180 				 * of the CDB types above, so we should never
13181 				 * reach this point.  Set the CDB command byte
13182 				 * to test-unit-ready to avoid writing
13183 				 * to somewhere we don't intend.
13184 				 */
13185 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13186 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13187 			} else {
13188 				/*
13189 				 * Couldn't get scsi_pkt
13190 				 */
13191 				return (SD_PKT_ALLOC_FAILURE);
13192 			}
13193 		}
13194 	}
13195 
13196 	/*
13197 	 * None of the available CDB types were suitable.  This really
13198 	 * should never happen:  on a 64 bit system we support
13199 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13200 	 * and on a 32 bit system we will refuse to bind to a device
13201 	 * larger than 2TB so addresses will never be larger than 32 bits.
13202 	 */
13203 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13204 }
13205 
13206 /*
13207  *    Function: sd_setup_next_rw_pkt
13208  *
13209  * Description: Setup packet for partial DMA transfers, except for the
13210  * 		initial transfer.  sd_setup_rw_pkt should be used for
13211  *		the initial transfer.
13212  *
13213  *     Context: Kernel thread and may be called from interrupt context.
13214  */
13215 
13216 int
13217 sd_setup_next_rw_pkt(struct sd_lun *un,
13218     struct scsi_pkt *pktp, struct buf *bp,
13219     diskaddr_t lba, uint32_t blockcount)
13220 {
13221 	uchar_t com;
13222 	union scsi_cdb *cdbp;
13223 	uchar_t cdb_group_id;
13224 
13225 	ASSERT(pktp != NULL);
13226 	ASSERT(pktp->pkt_cdbp != NULL);
13227 
13228 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13229 	com = cdbp->scc_cmd;
13230 	cdb_group_id = CDB_GROUPID(com);
13231 
13232 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13233 	    (cdb_group_id == CDB_GROUPID_1) ||
13234 	    (cdb_group_id == CDB_GROUPID_4) ||
13235 	    (cdb_group_id == CDB_GROUPID_5));
13236 
13237 	/*
13238 	 * Move pkt to the next portion of the xfer.
13239 	 * func is NULL_FUNC so we do not have to release
13240 	 * the disk mutex here.
13241 	 */
13242 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13243 	    NULL_FUNC, NULL) == pktp) {
13244 		/* Success.  Handle partial DMA */
13245 		if (pktp->pkt_resid != 0) {
13246 			blockcount -=
13247 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13248 		}
13249 
13250 		cdbp->scc_cmd = com;
13251 		SD_FILL_SCSI1_LUN(un, pktp);
13252 		if (cdb_group_id == CDB_GROUPID_1) {
13253 			FORMG1ADDR(cdbp, lba);
13254 			FORMG1COUNT(cdbp, blockcount);
13255 			return (0);
13256 		} else if (cdb_group_id == CDB_GROUPID_4) {
13257 			FORMG4LONGADDR(cdbp, lba);
13258 			FORMG4COUNT(cdbp, blockcount);
13259 			return (0);
13260 		} else if (cdb_group_id == CDB_GROUPID_0) {
13261 			FORMG0ADDR(cdbp, lba);
13262 			FORMG0COUNT(cdbp, blockcount);
13263 			return (0);
13264 		} else if (cdb_group_id == CDB_GROUPID_5) {
13265 			FORMG5ADDR(cdbp, lba);
13266 			FORMG5COUNT(cdbp, blockcount);
13267 			return (0);
13268 		}
13269 
13270 		/* Unreachable */
13271 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13272 	}
13273 
13274 	/*
13275 	 * Error setting up next portion of cmd transfer.
13276 	 * Something is definitely very wrong and this
13277 	 * should not happen.
13278 	 */
13279 	return (SD_PKT_ALLOC_FAILURE);
13280 }
13281 
13282 /*
13283  *    Function: sd_initpkt_for_uscsi
13284  *
13285  * Description: Allocate and initialize for transport a scsi_pkt struct,
13286  *		based upon the info specified in the given uscsi_cmd struct.
13287  *
13288  * Return Code: SD_PKT_ALLOC_SUCCESS
13289  *		SD_PKT_ALLOC_FAILURE
13290  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13291  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13292  *
13293  *     Context: Kernel thread and may be called from software interrupt context
13294  *		as part of a sdrunout callback. This function may not block or
13295  *		call routines that block
13296  */
13297 
13298 static int
13299 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13300 {
13301 	struct uscsi_cmd *uscmd;
13302 	struct sd_xbuf	*xp;
13303 	struct scsi_pkt	*pktp;
13304 	struct sd_lun	*un;
13305 	uint32_t	flags = 0;
13306 
13307 	ASSERT(bp != NULL);
13308 	ASSERT(pktpp != NULL);
13309 	xp = SD_GET_XBUF(bp);
13310 	ASSERT(xp != NULL);
13311 	un = SD_GET_UN(bp);
13312 	ASSERT(un != NULL);
13313 	ASSERT(mutex_owned(SD_MUTEX(un)));
13314 
13315 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13316 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13317 	ASSERT(uscmd != NULL);
13318 
13319 	SD_TRACE(SD_LOG_IO_CORE, un,
13320 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13321 
13322 	/*
13323 	 * Allocate the scsi_pkt for the command.
13324 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13325 	 *	 during scsi_init_pkt time and will continue to use the
13326 	 *	 same path as long as the same scsi_pkt is used without
13327 	 *	 intervening scsi_dma_free(). Since uscsi command does
13328 	 *	 not call scsi_dmafree() before retry failed command, it
13329 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13330 	 *	 set such that scsi_vhci can use other available path for
13331 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13332 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13333 	 */
13334 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13335 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13336 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13337 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
13338 		    - sizeof (struct scsi_extended_sense)), 0,
13339 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
13340 		    sdrunout, (caddr_t)un);
13341 	} else {
13342 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13343 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13344 		    sizeof (struct scsi_arq_status), 0,
13345 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13346 		    sdrunout, (caddr_t)un);
13347 	}
13348 
13349 	if (pktp == NULL) {
13350 		*pktpp = NULL;
13351 		/*
13352 		 * Set the driver state to RWAIT to indicate the driver
13353 		 * is waiting on resource allocations. The driver will not
13354 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13355 		 */
13356 		New_state(un, SD_STATE_RWAIT);
13357 
13358 		SD_ERROR(SD_LOG_IO_CORE, un,
13359 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13360 
13361 		if ((bp->b_flags & B_ERROR) != 0) {
13362 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13363 		}
13364 		return (SD_PKT_ALLOC_FAILURE);
13365 	}
13366 
13367 	/*
13368 	 * We do not do DMA breakup for USCSI commands, so return failure
13369 	 * here if all the needed DMA resources were not allocated.
13370 	 */
13371 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13372 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13373 		scsi_destroy_pkt(pktp);
13374 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13375 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13376 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13377 	}
13378 
13379 	/* Init the cdb from the given uscsi struct */
13380 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13381 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13382 
13383 	SD_FILL_SCSI1_LUN(un, pktp);
13384 
13385 	/*
13386 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13387 	 * for listing of the supported flags.
13388 	 */
13389 
13390 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13391 		flags |= FLAG_SILENT;
13392 	}
13393 
13394 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13395 		flags |= FLAG_DIAGNOSE;
13396 	}
13397 
13398 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13399 		flags |= FLAG_ISOLATE;
13400 	}
13401 
13402 	if (un->un_f_is_fibre == FALSE) {
13403 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13404 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13405 		}
13406 	}
13407 
13408 	/*
13409 	 * Set the pkt flags here so we save time later.
13410 	 * Note: These flags are NOT in the uscsi man page!!!
13411 	 */
13412 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13413 		flags |= FLAG_HEAD;
13414 	}
13415 
13416 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13417 		flags |= FLAG_NOINTR;
13418 	}
13419 
13420 	/*
13421 	 * For tagged queueing, things get a bit complicated.
13422 	 * Check first for head of queue and last for ordered queue.
13423 	 * If neither head nor order, use the default driver tag flags.
13424 	 */
13425 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13426 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13427 			flags |= FLAG_HTAG;
13428 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13429 			flags |= FLAG_OTAG;
13430 		} else {
13431 			flags |= un->un_tagflags & FLAG_TAGMASK;
13432 		}
13433 	}
13434 
13435 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13436 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13437 	}
13438 
13439 	pktp->pkt_flags = flags;
13440 
13441 	/* Transfer uscsi information to scsi_pkt */
13442 	(void) scsi_uscsi_pktinit(uscmd, pktp);
13443 
13444 	/* Copy the caller's CDB into the pkt... */
13445 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13446 
13447 	if (uscmd->uscsi_timeout == 0) {
13448 		pktp->pkt_time = un->un_uscsi_timeout;
13449 	} else {
13450 		pktp->pkt_time = uscmd->uscsi_timeout;
13451 	}
13452 
13453 	/* need it later to identify USCSI request in sdintr */
13454 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13455 
13456 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13457 
13458 	pktp->pkt_private = bp;
13459 	pktp->pkt_comp = sdintr;
13460 	*pktpp = pktp;
13461 
13462 	SD_TRACE(SD_LOG_IO_CORE, un,
13463 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13464 
13465 	return (SD_PKT_ALLOC_SUCCESS);
13466 }
13467 
13468 
13469 /*
13470  *    Function: sd_destroypkt_for_uscsi
13471  *
13472  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13473  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13474  *		struct.
13475  *
13476  *     Context: May be called under interrupt context
13477  */
13478 
13479 static void
13480 sd_destroypkt_for_uscsi(struct buf *bp)
13481 {
13482 	struct uscsi_cmd *uscmd;
13483 	struct sd_xbuf	*xp;
13484 	struct scsi_pkt	*pktp;
13485 	struct sd_lun	*un;
13486 	struct sd_uscsi_info *suip;
13487 
13488 	ASSERT(bp != NULL);
13489 	xp = SD_GET_XBUF(bp);
13490 	ASSERT(xp != NULL);
13491 	un = SD_GET_UN(bp);
13492 	ASSERT(un != NULL);
13493 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13494 	pktp = SD_GET_PKTP(bp);
13495 	ASSERT(pktp != NULL);
13496 
13497 	SD_TRACE(SD_LOG_IO_CORE, un,
13498 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13499 
13500 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13501 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13502 	ASSERT(uscmd != NULL);
13503 
13504 	/* Save the status and the residual into the uscsi_cmd struct */
13505 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13506 	uscmd->uscsi_resid  = bp->b_resid;
13507 
13508 	/* Transfer scsi_pkt information to uscsi */
13509 	(void) scsi_uscsi_pktfini(pktp, uscmd);
13510 
13511 	/*
13512 	 * If enabled, copy any saved sense data into the area specified
13513 	 * by the uscsi command.
13514 	 */
13515 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13516 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13517 		/*
13518 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13519 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13520 		 */
13521 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13522 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13523 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13524 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13525 			    MAX_SENSE_LENGTH);
13526 		} else {
13527 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13528 			    SENSE_LENGTH);
13529 		}
13530 	}
13531 	/*
13532 	 * The following assignments are for SCSI FMA.
13533 	 */
13534 	ASSERT(xp->xb_private != NULL);
13535 	suip = (struct sd_uscsi_info *)xp->xb_private;
13536 	suip->ui_pkt_reason = pktp->pkt_reason;
13537 	suip->ui_pkt_state = pktp->pkt_state;
13538 	suip->ui_pkt_statistics = pktp->pkt_statistics;
13539 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
13540 
13541 	/* We are done with the scsi_pkt; free it now */
13542 	ASSERT(SD_GET_PKTP(bp) != NULL);
13543 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13544 
13545 	SD_TRACE(SD_LOG_IO_CORE, un,
13546 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13547 }
13548 
13549 
13550 /*
13551  *    Function: sd_bioclone_alloc
13552  *
13553  * Description: Allocate a buf(9S) and init it as per the given buf
13554  *		and the various arguments.  The associated sd_xbuf
13555  *		struct is (nearly) duplicated.  The struct buf *bp
13556  *		argument is saved in new_xp->xb_private.
13557  *
13558  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13559  *		datalen - size of data area for the shadow bp
13560  *		blkno - starting LBA
13561  *		func - function pointer for b_iodone in the shadow buf. (May
13562  *			be NULL if none.)
13563  *
13564  * Return Code: Pointer to allocates buf(9S) struct
13565  *
13566  *     Context: Can sleep.
13567  */
13568 
13569 static struct buf *
13570 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13571 	daddr_t blkno, int (*func)(struct buf *))
13572 {
13573 	struct	sd_lun	*un;
13574 	struct	sd_xbuf	*xp;
13575 	struct	sd_xbuf	*new_xp;
13576 	struct	buf	*new_bp;
13577 
13578 	ASSERT(bp != NULL);
13579 	xp = SD_GET_XBUF(bp);
13580 	ASSERT(xp != NULL);
13581 	un = SD_GET_UN(bp);
13582 	ASSERT(un != NULL);
13583 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13584 
13585 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13586 	    NULL, KM_SLEEP);
13587 
13588 	new_bp->b_lblkno	= blkno;
13589 
13590 	/*
13591 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13592 	 * original xbuf into it.
13593 	 */
13594 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13595 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13596 
13597 	/*
13598 	 * The given bp is automatically saved in the xb_private member
13599 	 * of the new xbuf.  Callers are allowed to depend on this.
13600 	 */
13601 	new_xp->xb_private = bp;
13602 
13603 	new_bp->b_private  = new_xp;
13604 
13605 	return (new_bp);
13606 }
13607 
13608 /*
13609  *    Function: sd_shadow_buf_alloc
13610  *
13611  * Description: Allocate a buf(9S) and init it as per the given buf
13612  *		and the various arguments.  The associated sd_xbuf
13613  *		struct is (nearly) duplicated.  The struct buf *bp
13614  *		argument is saved in new_xp->xb_private.
13615  *
13616  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13617  *		datalen - size of data area for the shadow bp
13618  *		bflags - B_READ or B_WRITE (pseudo flag)
13619  *		blkno - starting LBA
13620  *		func - function pointer for b_iodone in the shadow buf. (May
13621  *			be NULL if none.)
13622  *
13623  * Return Code: Pointer to allocates buf(9S) struct
13624  *
13625  *     Context: Can sleep.
13626  */
13627 
13628 static struct buf *
13629 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13630 	daddr_t blkno, int (*func)(struct buf *))
13631 {
13632 	struct	sd_lun	*un;
13633 	struct	sd_xbuf	*xp;
13634 	struct	sd_xbuf	*new_xp;
13635 	struct	buf	*new_bp;
13636 
13637 	ASSERT(bp != NULL);
13638 	xp = SD_GET_XBUF(bp);
13639 	ASSERT(xp != NULL);
13640 	un = SD_GET_UN(bp);
13641 	ASSERT(un != NULL);
13642 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13643 
13644 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13645 		bp_mapin(bp);
13646 	}
13647 
13648 	bflags &= (B_READ | B_WRITE);
13649 #if defined(__i386) || defined(__amd64)
13650 	new_bp = getrbuf(KM_SLEEP);
13651 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13652 	new_bp->b_bcount = datalen;
13653 	new_bp->b_flags = bflags |
13654 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
13655 #else
13656 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13657 	    datalen, bflags, SLEEP_FUNC, NULL);
13658 #endif
13659 	new_bp->av_forw	= NULL;
13660 	new_bp->av_back	= NULL;
13661 	new_bp->b_dev	= bp->b_dev;
13662 	new_bp->b_blkno	= blkno;
13663 	new_bp->b_iodone = func;
13664 	new_bp->b_edev	= bp->b_edev;
13665 	new_bp->b_resid	= 0;
13666 
13667 	/* We need to preserve the B_FAILFAST flag */
13668 	if (bp->b_flags & B_FAILFAST) {
13669 		new_bp->b_flags |= B_FAILFAST;
13670 	}
13671 
13672 	/*
13673 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13674 	 * original xbuf into it.
13675 	 */
13676 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13677 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13678 
13679 	/* Need later to copy data between the shadow buf & original buf! */
13680 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13681 
13682 	/*
13683 	 * The given bp is automatically saved in the xb_private member
13684 	 * of the new xbuf.  Callers are allowed to depend on this.
13685 	 */
13686 	new_xp->xb_private = bp;
13687 
13688 	new_bp->b_private  = new_xp;
13689 
13690 	return (new_bp);
13691 }
13692 
13693 /*
13694  *    Function: sd_bioclone_free
13695  *
13696  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13697  *		in the larger than partition operation.
13698  *
13699  *     Context: May be called under interrupt context
13700  */
13701 
13702 static void
13703 sd_bioclone_free(struct buf *bp)
13704 {
13705 	struct sd_xbuf	*xp;
13706 
13707 	ASSERT(bp != NULL);
13708 	xp = SD_GET_XBUF(bp);
13709 	ASSERT(xp != NULL);
13710 
13711 	/*
13712 	 * Call bp_mapout() before freeing the buf,  in case a lower
13713 	 * layer or HBA  had done a bp_mapin().  we must do this here
13714 	 * as we are the "originator" of the shadow buf.
13715 	 */
13716 	bp_mapout(bp);
13717 
13718 	/*
13719 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13720 	 * never gets confused by a stale value in this field. (Just a little
13721 	 * extra defensiveness here.)
13722 	 */
13723 	bp->b_iodone = NULL;
13724 
13725 	freerbuf(bp);
13726 
13727 	kmem_free(xp, sizeof (struct sd_xbuf));
13728 }
13729 
13730 /*
13731  *    Function: sd_shadow_buf_free
13732  *
13733  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13734  *
13735  *     Context: May be called under interrupt context
13736  */
13737 
13738 static void
13739 sd_shadow_buf_free(struct buf *bp)
13740 {
13741 	struct sd_xbuf	*xp;
13742 
13743 	ASSERT(bp != NULL);
13744 	xp = SD_GET_XBUF(bp);
13745 	ASSERT(xp != NULL);
13746 
13747 #if defined(__sparc)
13748 	/*
13749 	 * Call bp_mapout() before freeing the buf,  in case a lower
13750 	 * layer or HBA  had done a bp_mapin().  we must do this here
13751 	 * as we are the "originator" of the shadow buf.
13752 	 */
13753 	bp_mapout(bp);
13754 #endif
13755 
13756 	/*
13757 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13758 	 * never gets confused by a stale value in this field. (Just a little
13759 	 * extra defensiveness here.)
13760 	 */
13761 	bp->b_iodone = NULL;
13762 
13763 #if defined(__i386) || defined(__amd64)
13764 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13765 	freerbuf(bp);
13766 #else
13767 	scsi_free_consistent_buf(bp);
13768 #endif
13769 
13770 	kmem_free(xp, sizeof (struct sd_xbuf));
13771 }
13772 
13773 
13774 /*
13775  *    Function: sd_print_transport_rejected_message
13776  *
13777  * Description: This implements the ludicrously complex rules for printing
13778  *		a "transport rejected" message.  This is to address the
13779  *		specific problem of having a flood of this error message
13780  *		produced when a failover occurs.
13781  *
13782  *     Context: Any.
13783  */
13784 
13785 static void
13786 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13787 	int code)
13788 {
13789 	ASSERT(un != NULL);
13790 	ASSERT(mutex_owned(SD_MUTEX(un)));
13791 	ASSERT(xp != NULL);
13792 
13793 	/*
13794 	 * Print the "transport rejected" message under the following
13795 	 * conditions:
13796 	 *
13797 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13798 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13799 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13800 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13801 	 *   scsi_transport(9F) (which indicates that the target might have
13802 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13803 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13804 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13805 	 *   from scsi_transport().
13806 	 *
13807 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13808 	 * the preceeding cases in order for the message to be printed.
13809 	 */
13810 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13811 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13812 		    (code != TRAN_FATAL_ERROR) ||
13813 		    (un->un_tran_fatal_count == 1)) {
13814 			switch (code) {
13815 			case TRAN_BADPKT:
13816 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13817 				    "transport rejected bad packet\n");
13818 				break;
13819 			case TRAN_FATAL_ERROR:
13820 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13821 				    "transport rejected fatal error\n");
13822 				break;
13823 			default:
13824 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13825 				    "transport rejected (%d)\n", code);
13826 				break;
13827 			}
13828 		}
13829 	}
13830 }
13831 
13832 
13833 /*
13834  *    Function: sd_add_buf_to_waitq
13835  *
13836  * Description: Add the given buf(9S) struct to the wait queue for the
13837  *		instance.  If sorting is enabled, then the buf is added
13838  *		to the queue via an elevator sort algorithm (a la
13839  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13840  *		If sorting is not enabled, then the buf is just added
13841  *		to the end of the wait queue.
13842  *
13843  * Return Code: void
13844  *
13845  *     Context: Does not sleep/block, therefore technically can be called
13846  *		from any context.  However if sorting is enabled then the
13847  *		execution time is indeterminate, and may take long if
13848  *		the wait queue grows large.
13849  */
13850 
13851 static void
13852 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13853 {
13854 	struct buf *ap;
13855 
13856 	ASSERT(bp != NULL);
13857 	ASSERT(un != NULL);
13858 	ASSERT(mutex_owned(SD_MUTEX(un)));
13859 
13860 	/* If the queue is empty, add the buf as the only entry & return. */
13861 	if (un->un_waitq_headp == NULL) {
13862 		ASSERT(un->un_waitq_tailp == NULL);
13863 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13864 		bp->av_forw = NULL;
13865 		return;
13866 	}
13867 
13868 	ASSERT(un->un_waitq_tailp != NULL);
13869 
13870 	/*
13871 	 * If sorting is disabled, just add the buf to the tail end of
13872 	 * the wait queue and return.
13873 	 */
13874 	if (un->un_f_disksort_disabled) {
13875 		un->un_waitq_tailp->av_forw = bp;
13876 		un->un_waitq_tailp = bp;
13877 		bp->av_forw = NULL;
13878 		return;
13879 	}
13880 
13881 	/*
13882 	 * Sort thru the list of requests currently on the wait queue
13883 	 * and add the new buf request at the appropriate position.
13884 	 *
13885 	 * The un->un_waitq_headp is an activity chain pointer on which
13886 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13887 	 * first queue holds those requests which are positioned after
13888 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13889 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13890 	 * Thus we implement a one way scan, retracting after reaching
13891 	 * the end of the drive to the first request on the second
13892 	 * queue, at which time it becomes the first queue.
13893 	 * A one-way scan is natural because of the way UNIX read-ahead
13894 	 * blocks are allocated.
13895 	 *
13896 	 * If we lie after the first request, then we must locate the
13897 	 * second request list and add ourselves to it.
13898 	 */
13899 	ap = un->un_waitq_headp;
13900 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13901 		while (ap->av_forw != NULL) {
13902 			/*
13903 			 * Look for an "inversion" in the (normally
13904 			 * ascending) block numbers. This indicates
13905 			 * the start of the second request list.
13906 			 */
13907 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13908 				/*
13909 				 * Search the second request list for the
13910 				 * first request at a larger block number.
13911 				 * We go before that; however if there is
13912 				 * no such request, we go at the end.
13913 				 */
13914 				do {
13915 					if (SD_GET_BLKNO(bp) <
13916 					    SD_GET_BLKNO(ap->av_forw)) {
13917 						goto insert;
13918 					}
13919 					ap = ap->av_forw;
13920 				} while (ap->av_forw != NULL);
13921 				goto insert;		/* after last */
13922 			}
13923 			ap = ap->av_forw;
13924 		}
13925 
13926 		/*
13927 		 * No inversions... we will go after the last, and
13928 		 * be the first request in the second request list.
13929 		 */
13930 		goto insert;
13931 	}
13932 
13933 	/*
13934 	 * Request is at/after the current request...
13935 	 * sort in the first request list.
13936 	 */
13937 	while (ap->av_forw != NULL) {
13938 		/*
13939 		 * We want to go after the current request (1) if
13940 		 * there is an inversion after it (i.e. it is the end
13941 		 * of the first request list), or (2) if the next
13942 		 * request is a larger block no. than our request.
13943 		 */
13944 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13945 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13946 			goto insert;
13947 		}
13948 		ap = ap->av_forw;
13949 	}
13950 
13951 	/*
13952 	 * Neither a second list nor a larger request, therefore
13953 	 * we go at the end of the first list (which is the same
13954 	 * as the end of the whole schebang).
13955 	 */
13956 insert:
13957 	bp->av_forw = ap->av_forw;
13958 	ap->av_forw = bp;
13959 
13960 	/*
13961 	 * If we inserted onto the tail end of the waitq, make sure the
13962 	 * tail pointer is updated.
13963 	 */
13964 	if (ap == un->un_waitq_tailp) {
13965 		un->un_waitq_tailp = bp;
13966 	}
13967 }
13968 
13969 
13970 /*
13971  *    Function: sd_start_cmds
13972  *
13973  * Description: Remove and transport cmds from the driver queues.
13974  *
13975  *   Arguments: un - pointer to the unit (soft state) struct for the target.
13976  *
13977  *		immed_bp - ptr to a buf to be transported immediately. Only
13978  *		the immed_bp is transported; bufs on the waitq are not
13979  *		processed and the un_retry_bp is not checked.  If immed_bp is
13980  *		NULL, then normal queue processing is performed.
13981  *
13982  *     Context: May be called from kernel thread context, interrupt context,
13983  *		or runout callback context. This function may not block or
13984  *		call routines that block.
13985  */
13986 
13987 static void
13988 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
13989 {
13990 	struct	sd_xbuf	*xp;
13991 	struct	buf	*bp;
13992 	void	(*statp)(kstat_io_t *);
13993 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13994 	void	(*saved_statp)(kstat_io_t *);
13995 #endif
13996 	int	rval;
13997 	struct sd_fm_internal *sfip = NULL;
13998 
13999 	ASSERT(un != NULL);
14000 	ASSERT(mutex_owned(SD_MUTEX(un)));
14001 	ASSERT(un->un_ncmds_in_transport >= 0);
14002 	ASSERT(un->un_throttle >= 0);
14003 
14004 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14005 
14006 	do {
14007 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14008 		saved_statp = NULL;
14009 #endif
14010 
14011 		/*
14012 		 * If we are syncing or dumping, fail the command to
14013 		 * avoid recursively calling back into scsi_transport().
14014 		 * The dump I/O itself uses a separate code path so this
14015 		 * only prevents non-dump I/O from being sent while dumping.
14016 		 * File system sync takes place before dumping begins.
14017 		 * During panic, filesystem I/O is allowed provided
14018 		 * un_in_callback is <= 1.  This is to prevent recursion
14019 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14020 		 * sd_start_cmds and so on.  See panic.c for more information
14021 		 * about the states the system can be in during panic.
14022 		 */
14023 		if ((un->un_state == SD_STATE_DUMPING) ||
14024 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14025 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14026 			    "sd_start_cmds: panicking\n");
14027 			goto exit;
14028 		}
14029 
14030 		if ((bp = immed_bp) != NULL) {
14031 			/*
14032 			 * We have a bp that must be transported immediately.
14033 			 * It's OK to transport the immed_bp here without doing
14034 			 * the throttle limit check because the immed_bp is
14035 			 * always used in a retry/recovery case. This means
14036 			 * that we know we are not at the throttle limit by
14037 			 * virtue of the fact that to get here we must have
14038 			 * already gotten a command back via sdintr(). This also
14039 			 * relies on (1) the command on un_retry_bp preventing
14040 			 * further commands from the waitq from being issued;
14041 			 * and (2) the code in sd_retry_command checking the
14042 			 * throttle limit before issuing a delayed or immediate
14043 			 * retry. This holds even if the throttle limit is
14044 			 * currently ratcheted down from its maximum value.
14045 			 */
14046 			statp = kstat_runq_enter;
14047 			if (bp == un->un_retry_bp) {
14048 				ASSERT((un->un_retry_statp == NULL) ||
14049 				    (un->un_retry_statp == kstat_waitq_enter) ||
14050 				    (un->un_retry_statp ==
14051 				    kstat_runq_back_to_waitq));
14052 				/*
14053 				 * If the waitq kstat was incremented when
14054 				 * sd_set_retry_bp() queued this bp for a retry,
14055 				 * then we must set up statp so that the waitq
14056 				 * count will get decremented correctly below.
14057 				 * Also we must clear un->un_retry_statp to
14058 				 * ensure that we do not act on a stale value
14059 				 * in this field.
14060 				 */
14061 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14062 				    (un->un_retry_statp ==
14063 				    kstat_runq_back_to_waitq)) {
14064 					statp = kstat_waitq_to_runq;
14065 				}
14066 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14067 				saved_statp = un->un_retry_statp;
14068 #endif
14069 				un->un_retry_statp = NULL;
14070 
14071 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14072 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14073 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14074 				    un, un->un_retry_bp, un->un_throttle,
14075 				    un->un_ncmds_in_transport);
14076 			} else {
14077 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14078 				    "processing priority bp:0x%p\n", bp);
14079 			}
14080 
14081 		} else if ((bp = un->un_waitq_headp) != NULL) {
14082 			/*
14083 			 * A command on the waitq is ready to go, but do not
14084 			 * send it if:
14085 			 *
14086 			 * (1) the throttle limit has been reached, or
14087 			 * (2) a retry is pending, or
14088 			 * (3) a START_STOP_UNIT callback pending, or
14089 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14090 			 *	command is pending.
14091 			 *
14092 			 * For all of these conditions, IO processing will
14093 			 * restart after the condition is cleared.
14094 			 */
14095 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14096 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14097 				    "sd_start_cmds: exiting, "
14098 				    "throttle limit reached!\n");
14099 				goto exit;
14100 			}
14101 			if (un->un_retry_bp != NULL) {
14102 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14103 				    "sd_start_cmds: exiting, retry pending!\n");
14104 				goto exit;
14105 			}
14106 			if (un->un_startstop_timeid != NULL) {
14107 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14108 				    "sd_start_cmds: exiting, "
14109 				    "START_STOP pending!\n");
14110 				goto exit;
14111 			}
14112 			if (un->un_direct_priority_timeid != NULL) {
14113 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14114 				    "sd_start_cmds: exiting, "
14115 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14116 				goto exit;
14117 			}
14118 
14119 			/* Dequeue the command */
14120 			un->un_waitq_headp = bp->av_forw;
14121 			if (un->un_waitq_headp == NULL) {
14122 				un->un_waitq_tailp = NULL;
14123 			}
14124 			bp->av_forw = NULL;
14125 			statp = kstat_waitq_to_runq;
14126 			SD_TRACE(SD_LOG_IO_CORE, un,
14127 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14128 
14129 		} else {
14130 			/* No work to do so bail out now */
14131 			SD_TRACE(SD_LOG_IO_CORE, un,
14132 			    "sd_start_cmds: no more work, exiting!\n");
14133 			goto exit;
14134 		}
14135 
14136 		/*
14137 		 * Reset the state to normal. This is the mechanism by which
14138 		 * the state transitions from either SD_STATE_RWAIT or
14139 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14140 		 * If state is SD_STATE_PM_CHANGING then this command is
14141 		 * part of the device power control and the state must
14142 		 * not be put back to normal. Doing so would would
14143 		 * allow new commands to proceed when they shouldn't,
14144 		 * the device may be going off.
14145 		 */
14146 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14147 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14148 			New_state(un, SD_STATE_NORMAL);
14149 		}
14150 
14151 		xp = SD_GET_XBUF(bp);
14152 		ASSERT(xp != NULL);
14153 
14154 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14155 		/*
14156 		 * Allocate the scsi_pkt if we need one, or attach DMA
14157 		 * resources if we have a scsi_pkt that needs them. The
14158 		 * latter should only occur for commands that are being
14159 		 * retried.
14160 		 */
14161 		if ((xp->xb_pktp == NULL) ||
14162 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14163 #else
14164 		if (xp->xb_pktp == NULL) {
14165 #endif
14166 			/*
14167 			 * There is no scsi_pkt allocated for this buf. Call
14168 			 * the initpkt function to allocate & init one.
14169 			 *
14170 			 * The scsi_init_pkt runout callback functionality is
14171 			 * implemented as follows:
14172 			 *
14173 			 * 1) The initpkt function always calls
14174 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14175 			 *    callback routine.
14176 			 * 2) A successful packet allocation is initialized and
14177 			 *    the I/O is transported.
14178 			 * 3) The I/O associated with an allocation resource
14179 			 *    failure is left on its queue to be retried via
14180 			 *    runout or the next I/O.
14181 			 * 4) The I/O associated with a DMA error is removed
14182 			 *    from the queue and failed with EIO. Processing of
14183 			 *    the transport queues is also halted to be
14184 			 *    restarted via runout or the next I/O.
14185 			 * 5) The I/O associated with a CDB size or packet
14186 			 *    size error is removed from the queue and failed
14187 			 *    with EIO. Processing of the transport queues is
14188 			 *    continued.
14189 			 *
14190 			 * Note: there is no interface for canceling a runout
14191 			 * callback. To prevent the driver from detaching or
14192 			 * suspending while a runout is pending the driver
14193 			 * state is set to SD_STATE_RWAIT
14194 			 *
14195 			 * Note: using the scsi_init_pkt callback facility can
14196 			 * result in an I/O request persisting at the head of
14197 			 * the list which cannot be satisfied even after
14198 			 * multiple retries. In the future the driver may
14199 			 * implement some kind of maximum runout count before
14200 			 * failing an I/O.
14201 			 *
14202 			 * Note: the use of funcp below may seem superfluous,
14203 			 * but it helps warlock figure out the correct
14204 			 * initpkt function calls (see [s]sd.wlcmd).
14205 			 */
14206 			struct scsi_pkt	*pktp;
14207 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14208 
14209 			ASSERT(bp != un->un_rqs_bp);
14210 
14211 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14212 			switch ((*funcp)(bp, &pktp)) {
14213 			case  SD_PKT_ALLOC_SUCCESS:
14214 				xp->xb_pktp = pktp;
14215 				SD_TRACE(SD_LOG_IO_CORE, un,
14216 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14217 				    pktp);
14218 				goto got_pkt;
14219 
14220 			case SD_PKT_ALLOC_FAILURE:
14221 				/*
14222 				 * Temporary (hopefully) resource depletion.
14223 				 * Since retries and RQS commands always have a
14224 				 * scsi_pkt allocated, these cases should never
14225 				 * get here. So the only cases this needs to
14226 				 * handle is a bp from the waitq (which we put
14227 				 * back onto the waitq for sdrunout), or a bp
14228 				 * sent as an immed_bp (which we just fail).
14229 				 */
14230 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14231 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14232 
14233 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14234 
14235 				if (bp == immed_bp) {
14236 					/*
14237 					 * If SD_XB_DMA_FREED is clear, then
14238 					 * this is a failure to allocate a
14239 					 * scsi_pkt, and we must fail the
14240 					 * command.
14241 					 */
14242 					if ((xp->xb_pkt_flags &
14243 					    SD_XB_DMA_FREED) == 0) {
14244 						break;
14245 					}
14246 
14247 					/*
14248 					 * If this immediate command is NOT our
14249 					 * un_retry_bp, then we must fail it.
14250 					 */
14251 					if (bp != un->un_retry_bp) {
14252 						break;
14253 					}
14254 
14255 					/*
14256 					 * We get here if this cmd is our
14257 					 * un_retry_bp that was DMAFREED, but
14258 					 * scsi_init_pkt() failed to reallocate
14259 					 * DMA resources when we attempted to
14260 					 * retry it. This can happen when an
14261 					 * mpxio failover is in progress, but
14262 					 * we don't want to just fail the
14263 					 * command in this case.
14264 					 *
14265 					 * Use timeout(9F) to restart it after
14266 					 * a 100ms delay.  We don't want to
14267 					 * let sdrunout() restart it, because
14268 					 * sdrunout() is just supposed to start
14269 					 * commands that are sitting on the
14270 					 * wait queue.  The un_retry_bp stays
14271 					 * set until the command completes, but
14272 					 * sdrunout can be called many times
14273 					 * before that happens.  Since sdrunout
14274 					 * cannot tell if the un_retry_bp is
14275 					 * already in the transport, it could
14276 					 * end up calling scsi_transport() for
14277 					 * the un_retry_bp multiple times.
14278 					 *
14279 					 * Also: don't schedule the callback
14280 					 * if some other callback is already
14281 					 * pending.
14282 					 */
14283 					if (un->un_retry_statp == NULL) {
14284 						/*
14285 						 * restore the kstat pointer to
14286 						 * keep kstat counts coherent
14287 						 * when we do retry the command.
14288 						 */
14289 						un->un_retry_statp =
14290 						    saved_statp;
14291 					}
14292 
14293 					if ((un->un_startstop_timeid == NULL) &&
14294 					    (un->un_retry_timeid == NULL) &&
14295 					    (un->un_direct_priority_timeid ==
14296 					    NULL)) {
14297 
14298 						un->un_retry_timeid =
14299 						    timeout(
14300 						    sd_start_retry_command,
14301 						    un, SD_RESTART_TIMEOUT);
14302 					}
14303 					goto exit;
14304 				}
14305 
14306 #else
14307 				if (bp == immed_bp) {
14308 					break;	/* Just fail the command */
14309 				}
14310 #endif
14311 
14312 				/* Add the buf back to the head of the waitq */
14313 				bp->av_forw = un->un_waitq_headp;
14314 				un->un_waitq_headp = bp;
14315 				if (un->un_waitq_tailp == NULL) {
14316 					un->un_waitq_tailp = bp;
14317 				}
14318 				goto exit;
14319 
14320 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14321 				/*
14322 				 * HBA DMA resource failure. Fail the command
14323 				 * and continue processing of the queues.
14324 				 */
14325 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14326 				    "sd_start_cmds: "
14327 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14328 				break;
14329 
14330 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14331 				/*
14332 				 * Note:x86: Partial DMA mapping not supported
14333 				 * for USCSI commands, and all the needed DMA
14334 				 * resources were not allocated.
14335 				 */
14336 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14337 				    "sd_start_cmds: "
14338 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14339 				break;
14340 
14341 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14342 				/*
14343 				 * Note:x86: Request cannot fit into CDB based
14344 				 * on lba and len.
14345 				 */
14346 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14347 				    "sd_start_cmds: "
14348 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14349 				break;
14350 
14351 			default:
14352 				/* Should NEVER get here! */
14353 				panic("scsi_initpkt error");
14354 				/*NOTREACHED*/
14355 			}
14356 
14357 			/*
14358 			 * Fatal error in allocating a scsi_pkt for this buf.
14359 			 * Update kstats & return the buf with an error code.
14360 			 * We must use sd_return_failed_command_no_restart() to
14361 			 * avoid a recursive call back into sd_start_cmds().
14362 			 * However this also means that we must keep processing
14363 			 * the waitq here in order to avoid stalling.
14364 			 */
14365 			if (statp == kstat_waitq_to_runq) {
14366 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14367 			}
14368 			sd_return_failed_command_no_restart(un, bp, EIO);
14369 			if (bp == immed_bp) {
14370 				/* immed_bp is gone by now, so clear this */
14371 				immed_bp = NULL;
14372 			}
14373 			continue;
14374 		}
14375 got_pkt:
14376 		if (bp == immed_bp) {
14377 			/* goto the head of the class.... */
14378 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14379 		}
14380 
14381 		un->un_ncmds_in_transport++;
14382 		SD_UPDATE_KSTATS(un, statp, bp);
14383 
14384 		/*
14385 		 * Call scsi_transport() to send the command to the target.
14386 		 * According to SCSA architecture, we must drop the mutex here
14387 		 * before calling scsi_transport() in order to avoid deadlock.
14388 		 * Note that the scsi_pkt's completion routine can be executed
14389 		 * (from interrupt context) even before the call to
14390 		 * scsi_transport() returns.
14391 		 */
14392 		SD_TRACE(SD_LOG_IO_CORE, un,
14393 		    "sd_start_cmds: calling scsi_transport()\n");
14394 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14395 
14396 		mutex_exit(SD_MUTEX(un));
14397 		rval = scsi_transport(xp->xb_pktp);
14398 		mutex_enter(SD_MUTEX(un));
14399 
14400 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14401 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14402 
14403 		switch (rval) {
14404 		case TRAN_ACCEPT:
14405 			/* Clear this with every pkt accepted by the HBA */
14406 			un->un_tran_fatal_count = 0;
14407 			break;	/* Success; try the next cmd (if any) */
14408 
14409 		case TRAN_BUSY:
14410 			un->un_ncmds_in_transport--;
14411 			ASSERT(un->un_ncmds_in_transport >= 0);
14412 
14413 			/*
14414 			 * Don't retry request sense, the sense data
14415 			 * is lost when another request is sent.
14416 			 * Free up the rqs buf and retry
14417 			 * the original failed cmd.  Update kstat.
14418 			 */
14419 			if (bp == un->un_rqs_bp) {
14420 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14421 				bp = sd_mark_rqs_idle(un, xp);
14422 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14423 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
14424 				    kstat_waitq_enter);
14425 				goto exit;
14426 			}
14427 
14428 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14429 			/*
14430 			 * Free the DMA resources for the  scsi_pkt. This will
14431 			 * allow mpxio to select another path the next time
14432 			 * we call scsi_transport() with this scsi_pkt.
14433 			 * See sdintr() for the rationalization behind this.
14434 			 */
14435 			if ((un->un_f_is_fibre == TRUE) &&
14436 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14437 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14438 				scsi_dmafree(xp->xb_pktp);
14439 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14440 			}
14441 #endif
14442 
14443 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14444 				/*
14445 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14446 				 * are for error recovery situations. These do
14447 				 * not use the normal command waitq, so if they
14448 				 * get a TRAN_BUSY we cannot put them back onto
14449 				 * the waitq for later retry. One possible
14450 				 * problem is that there could already be some
14451 				 * other command on un_retry_bp that is waiting
14452 				 * for this one to complete, so we would be
14453 				 * deadlocked if we put this command back onto
14454 				 * the waitq for later retry (since un_retry_bp
14455 				 * must complete before the driver gets back to
14456 				 * commands on the waitq).
14457 				 *
14458 				 * To avoid deadlock we must schedule a callback
14459 				 * that will restart this command after a set
14460 				 * interval.  This should keep retrying for as
14461 				 * long as the underlying transport keeps
14462 				 * returning TRAN_BUSY (just like for other
14463 				 * commands).  Use the same timeout interval as
14464 				 * for the ordinary TRAN_BUSY retry.
14465 				 */
14466 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14467 				    "sd_start_cmds: scsi_transport() returned "
14468 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14469 
14470 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14471 				un->un_direct_priority_timeid =
14472 				    timeout(sd_start_direct_priority_command,
14473 				    bp, un->un_busy_timeout / 500);
14474 
14475 				goto exit;
14476 			}
14477 
14478 			/*
14479 			 * For TRAN_BUSY, we want to reduce the throttle value,
14480 			 * unless we are retrying a command.
14481 			 */
14482 			if (bp != un->un_retry_bp) {
14483 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14484 			}
14485 
14486 			/*
14487 			 * Set up the bp to be tried again 10 ms later.
14488 			 * Note:x86: Is there a timeout value in the sd_lun
14489 			 * for this condition?
14490 			 */
14491 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
14492 			    kstat_runq_back_to_waitq);
14493 			goto exit;
14494 
14495 		case TRAN_FATAL_ERROR:
14496 			un->un_tran_fatal_count++;
14497 			/* FALLTHRU */
14498 
14499 		case TRAN_BADPKT:
14500 		default:
14501 			un->un_ncmds_in_transport--;
14502 			ASSERT(un->un_ncmds_in_transport >= 0);
14503 
14504 			/*
14505 			 * If this is our REQUEST SENSE command with a
14506 			 * transport error, we must get back the pointers
14507 			 * to the original buf, and mark the REQUEST
14508 			 * SENSE command as "available".
14509 			 */
14510 			if (bp == un->un_rqs_bp) {
14511 				bp = sd_mark_rqs_idle(un, xp);
14512 				xp = SD_GET_XBUF(bp);
14513 			} else {
14514 				/*
14515 				 * Legacy behavior: do not update transport
14516 				 * error count for request sense commands.
14517 				 */
14518 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14519 			}
14520 
14521 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14522 			sd_print_transport_rejected_message(un, xp, rval);
14523 
14524 			/*
14525 			 * This command will be terminated by SD driver due
14526 			 * to a fatal transport error. We should post
14527 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
14528 			 * of "fail" for any command to indicate this
14529 			 * situation.
14530 			 */
14531 			if (xp->xb_ena > 0) {
14532 				ASSERT(un->un_fm_private != NULL);
14533 				sfip = un->un_fm_private;
14534 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
14535 				sd_ssc_extract_info(&sfip->fm_ssc, un,
14536 				    xp->xb_pktp, bp, xp);
14537 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14538 			}
14539 
14540 			/*
14541 			 * We must use sd_return_failed_command_no_restart() to
14542 			 * avoid a recursive call back into sd_start_cmds().
14543 			 * However this also means that we must keep processing
14544 			 * the waitq here in order to avoid stalling.
14545 			 */
14546 			sd_return_failed_command_no_restart(un, bp, EIO);
14547 
14548 			/*
14549 			 * Notify any threads waiting in sd_ddi_suspend() that
14550 			 * a command completion has occurred.
14551 			 */
14552 			if (un->un_state == SD_STATE_SUSPENDED) {
14553 				cv_broadcast(&un->un_disk_busy_cv);
14554 			}
14555 
14556 			if (bp == immed_bp) {
14557 				/* immed_bp is gone by now, so clear this */
14558 				immed_bp = NULL;
14559 			}
14560 			break;
14561 		}
14562 
14563 	} while (immed_bp == NULL);
14564 
14565 exit:
14566 	ASSERT(mutex_owned(SD_MUTEX(un)));
14567 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14568 }
14569 
14570 
14571 /*
14572  *    Function: sd_return_command
14573  *
14574  * Description: Returns a command to its originator (with or without an
14575  *		error).  Also starts commands waiting to be transported
14576  *		to the target.
14577  *
14578  *     Context: May be called from interrupt, kernel, or timeout context
14579  */
14580 
14581 static void
14582 sd_return_command(struct sd_lun *un, struct buf *bp)
14583 {
14584 	struct sd_xbuf *xp;
14585 	struct scsi_pkt *pktp;
14586 	struct sd_fm_internal *sfip;
14587 
14588 	ASSERT(bp != NULL);
14589 	ASSERT(un != NULL);
14590 	ASSERT(mutex_owned(SD_MUTEX(un)));
14591 	ASSERT(bp != un->un_rqs_bp);
14592 	xp = SD_GET_XBUF(bp);
14593 	ASSERT(xp != NULL);
14594 
14595 	pktp = SD_GET_PKTP(bp);
14596 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14597 	ASSERT(sfip != NULL);
14598 
14599 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14600 
14601 	/*
14602 	 * Note: check for the "sdrestart failed" case.
14603 	 */
14604 	if ((un->un_partial_dma_supported == 1) &&
14605 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14606 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14607 	    (xp->xb_pktp->pkt_resid == 0)) {
14608 
14609 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14610 			/*
14611 			 * Successfully set up next portion of cmd
14612 			 * transfer, try sending it
14613 			 */
14614 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14615 			    NULL, NULL, 0, (clock_t)0, NULL);
14616 			sd_start_cmds(un, NULL);
14617 			return;	/* Note:x86: need a return here? */
14618 		}
14619 	}
14620 
14621 	/*
14622 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14623 	 * can happen if upon being re-tried the failfast bp either
14624 	 * succeeded or encountered another error (possibly even a different
14625 	 * error than the one that precipitated the failfast state, but in
14626 	 * that case it would have had to exhaust retries as well). Regardless,
14627 	 * this should not occur whenever the instance is in the active
14628 	 * failfast state.
14629 	 */
14630 	if (bp == un->un_failfast_bp) {
14631 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14632 		un->un_failfast_bp = NULL;
14633 	}
14634 
14635 	/*
14636 	 * Clear the failfast state upon successful completion of ANY cmd.
14637 	 */
14638 	if (bp->b_error == 0) {
14639 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14640 		/*
14641 		 * If this is a successful command, but used to be retried,
14642 		 * we will take it as a recovered command and post an
14643 		 * ereport with driver-assessment of "recovered".
14644 		 */
14645 		if (xp->xb_ena > 0) {
14646 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14647 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
14648 		}
14649 	} else {
14650 		/*
14651 		 * If this is a failed non-USCSI command we will post an
14652 		 * ereport with driver-assessment set accordingly("fail" or
14653 		 * "fatal").
14654 		 */
14655 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
14656 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14657 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14658 		}
14659 	}
14660 
14661 	/*
14662 	 * This is used if the command was retried one or more times. Show that
14663 	 * we are done with it, and allow processing of the waitq to resume.
14664 	 */
14665 	if (bp == un->un_retry_bp) {
14666 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14667 		    "sd_return_command: un:0x%p: "
14668 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14669 		un->un_retry_bp = NULL;
14670 		un->un_retry_statp = NULL;
14671 	}
14672 
14673 	SD_UPDATE_RDWR_STATS(un, bp);
14674 	SD_UPDATE_PARTITION_STATS(un, bp);
14675 
14676 	switch (un->un_state) {
14677 	case SD_STATE_SUSPENDED:
14678 		/*
14679 		 * Notify any threads waiting in sd_ddi_suspend() that
14680 		 * a command completion has occurred.
14681 		 */
14682 		cv_broadcast(&un->un_disk_busy_cv);
14683 		break;
14684 	default:
14685 		sd_start_cmds(un, NULL);
14686 		break;
14687 	}
14688 
14689 	/* Return this command up the iodone chain to its originator. */
14690 	mutex_exit(SD_MUTEX(un));
14691 
14692 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14693 	xp->xb_pktp = NULL;
14694 
14695 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14696 
14697 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14698 	mutex_enter(SD_MUTEX(un));
14699 
14700 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14701 }
14702 
14703 
14704 /*
14705  *    Function: sd_return_failed_command
14706  *
14707  * Description: Command completion when an error occurred.
14708  *
14709  *     Context: May be called from interrupt context
14710  */
14711 
14712 static void
14713 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14714 {
14715 	ASSERT(bp != NULL);
14716 	ASSERT(un != NULL);
14717 	ASSERT(mutex_owned(SD_MUTEX(un)));
14718 
14719 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14720 	    "sd_return_failed_command: entry\n");
14721 
14722 	/*
14723 	 * b_resid could already be nonzero due to a partial data
14724 	 * transfer, so do not change it here.
14725 	 */
14726 	SD_BIOERROR(bp, errcode);
14727 
14728 	sd_return_command(un, bp);
14729 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14730 	    "sd_return_failed_command: exit\n");
14731 }
14732 
14733 
14734 /*
14735  *    Function: sd_return_failed_command_no_restart
14736  *
14737  * Description: Same as sd_return_failed_command, but ensures that no
14738  *		call back into sd_start_cmds will be issued.
14739  *
14740  *     Context: May be called from interrupt context
14741  */
14742 
14743 static void
14744 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14745 	int errcode)
14746 {
14747 	struct sd_xbuf *xp;
14748 
14749 	ASSERT(bp != NULL);
14750 	ASSERT(un != NULL);
14751 	ASSERT(mutex_owned(SD_MUTEX(un)));
14752 	xp = SD_GET_XBUF(bp);
14753 	ASSERT(xp != NULL);
14754 	ASSERT(errcode != 0);
14755 
14756 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14757 	    "sd_return_failed_command_no_restart: entry\n");
14758 
14759 	/*
14760 	 * b_resid could already be nonzero due to a partial data
14761 	 * transfer, so do not change it here.
14762 	 */
14763 	SD_BIOERROR(bp, errcode);
14764 
14765 	/*
14766 	 * If this is the failfast bp, clear it. This can happen if the
14767 	 * failfast bp encounterd a fatal error when we attempted to
14768 	 * re-try it (such as a scsi_transport(9F) failure).  However
14769 	 * we should NOT be in an active failfast state if the failfast
14770 	 * bp is not NULL.
14771 	 */
14772 	if (bp == un->un_failfast_bp) {
14773 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14774 		un->un_failfast_bp = NULL;
14775 	}
14776 
14777 	if (bp == un->un_retry_bp) {
14778 		/*
14779 		 * This command was retried one or more times. Show that we are
14780 		 * done with it, and allow processing of the waitq to resume.
14781 		 */
14782 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14783 		    "sd_return_failed_command_no_restart: "
14784 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14785 		un->un_retry_bp = NULL;
14786 		un->un_retry_statp = NULL;
14787 	}
14788 
14789 	SD_UPDATE_RDWR_STATS(un, bp);
14790 	SD_UPDATE_PARTITION_STATS(un, bp);
14791 
14792 	mutex_exit(SD_MUTEX(un));
14793 
14794 	if (xp->xb_pktp != NULL) {
14795 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14796 		xp->xb_pktp = NULL;
14797 	}
14798 
14799 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14800 
14801 	mutex_enter(SD_MUTEX(un));
14802 
14803 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14804 	    "sd_return_failed_command_no_restart: exit\n");
14805 }
14806 
14807 
14808 /*
14809  *    Function: sd_retry_command
14810  *
14811  * Description: queue up a command for retry, or (optionally) fail it
14812  *		if retry counts are exhausted.
14813  *
14814  *   Arguments: un - Pointer to the sd_lun struct for the target.
14815  *
14816  *		bp - Pointer to the buf for the command to be retried.
14817  *
14818  *		retry_check_flag - Flag to see which (if any) of the retry
14819  *		   counts should be decremented/checked. If the indicated
14820  *		   retry count is exhausted, then the command will not be
14821  *		   retried; it will be failed instead. This should use a
14822  *		   value equal to one of the following:
14823  *
14824  *			SD_RETRIES_NOCHECK
14825  *			SD_RESD_RETRIES_STANDARD
14826  *			SD_RETRIES_VICTIM
14827  *
14828  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14829  *		   if the check should be made to see of FLAG_ISOLATE is set
14830  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14831  *		   not retried, it is simply failed.
14832  *
14833  *		user_funcp - Ptr to function to call before dispatching the
14834  *		   command. May be NULL if no action needs to be performed.
14835  *		   (Primarily intended for printing messages.)
14836  *
14837  *		user_arg - Optional argument to be passed along to
14838  *		   the user_funcp call.
14839  *
14840  *		failure_code - errno return code to set in the bp if the
14841  *		   command is going to be failed.
14842  *
14843  *		retry_delay - Retry delay interval in (clock_t) units. May
14844  *		   be zero which indicates that the retry should be retried
14845  *		   immediately (ie, without an intervening delay).
14846  *
14847  *		statp - Ptr to kstat function to be updated if the command
14848  *		   is queued for a delayed retry. May be NULL if no kstat
14849  *		   update is desired.
14850  *
14851  *     Context: May be called from interrupt context.
14852  */
14853 
14854 static void
14855 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14856 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14857 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14858 	void (*statp)(kstat_io_t *))
14859 {
14860 	struct sd_xbuf	*xp;
14861 	struct scsi_pkt	*pktp;
14862 	struct sd_fm_internal *sfip;
14863 
14864 	ASSERT(un != NULL);
14865 	ASSERT(mutex_owned(SD_MUTEX(un)));
14866 	ASSERT(bp != NULL);
14867 	xp = SD_GET_XBUF(bp);
14868 	ASSERT(xp != NULL);
14869 	pktp = SD_GET_PKTP(bp);
14870 	ASSERT(pktp != NULL);
14871 
14872 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14873 	ASSERT(sfip != NULL);
14874 
14875 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14876 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14877 
14878 	/*
14879 	 * If we are syncing or dumping, fail the command to avoid
14880 	 * recursively calling back into scsi_transport().
14881 	 */
14882 	if (ddi_in_panic()) {
14883 		goto fail_command_no_log;
14884 	}
14885 
14886 	/*
14887 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14888 	 * log an error and fail the command.
14889 	 */
14890 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14891 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14892 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14893 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14894 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14895 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14896 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14897 		goto fail_command;
14898 	}
14899 
14900 	/*
14901 	 * If we are suspended, then put the command onto head of the
14902 	 * wait queue since we don't want to start more commands, and
14903 	 * clear the un_retry_bp. Next time when we are resumed, will
14904 	 * handle the command in the wait queue.
14905 	 */
14906 	switch (un->un_state) {
14907 	case SD_STATE_SUSPENDED:
14908 	case SD_STATE_DUMPING:
14909 		bp->av_forw = un->un_waitq_headp;
14910 		un->un_waitq_headp = bp;
14911 		if (un->un_waitq_tailp == NULL) {
14912 			un->un_waitq_tailp = bp;
14913 		}
14914 		if (bp == un->un_retry_bp) {
14915 			un->un_retry_bp = NULL;
14916 			un->un_retry_statp = NULL;
14917 		}
14918 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14919 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14920 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14921 		return;
14922 	default:
14923 		break;
14924 	}
14925 
14926 	/*
14927 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14928 	 * is set; if it is then we do not want to retry the command.
14929 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14930 	 */
14931 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14932 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14933 			goto fail_command;
14934 		}
14935 	}
14936 
14937 
14938 	/*
14939 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14940 	 * command timeout or a selection timeout has occurred. This means
14941 	 * that we were unable to establish an kind of communication with
14942 	 * the target, and subsequent retries and/or commands are likely
14943 	 * to encounter similar results and take a long time to complete.
14944 	 *
14945 	 * If this is a failfast error condition, we need to update the
14946 	 * failfast state, even if this bp does not have B_FAILFAST set.
14947 	 */
14948 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
14949 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
14950 			ASSERT(un->un_failfast_bp == NULL);
14951 			/*
14952 			 * If we are already in the active failfast state, and
14953 			 * another failfast error condition has been detected,
14954 			 * then fail this command if it has B_FAILFAST set.
14955 			 * If B_FAILFAST is clear, then maintain the legacy
14956 			 * behavior of retrying heroically, even tho this will
14957 			 * take a lot more time to fail the command.
14958 			 */
14959 			if (bp->b_flags & B_FAILFAST) {
14960 				goto fail_command;
14961 			}
14962 		} else {
14963 			/*
14964 			 * We're not in the active failfast state, but we
14965 			 * have a failfast error condition, so we must begin
14966 			 * transition to the next state. We do this regardless
14967 			 * of whether or not this bp has B_FAILFAST set.
14968 			 */
14969 			if (un->un_failfast_bp == NULL) {
14970 				/*
14971 				 * This is the first bp to meet a failfast
14972 				 * condition so save it on un_failfast_bp &
14973 				 * do normal retry processing. Do not enter
14974 				 * active failfast state yet. This marks
14975 				 * entry into the "failfast pending" state.
14976 				 */
14977 				un->un_failfast_bp = bp;
14978 
14979 			} else if (un->un_failfast_bp == bp) {
14980 				/*
14981 				 * This is the second time *this* bp has
14982 				 * encountered a failfast error condition,
14983 				 * so enter active failfast state & flush
14984 				 * queues as appropriate.
14985 				 */
14986 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
14987 				un->un_failfast_bp = NULL;
14988 				sd_failfast_flushq(un);
14989 
14990 				/*
14991 				 * Fail this bp now if B_FAILFAST set;
14992 				 * otherwise continue with retries. (It would
14993 				 * be pretty ironic if this bp succeeded on a
14994 				 * subsequent retry after we just flushed all
14995 				 * the queues).
14996 				 */
14997 				if (bp->b_flags & B_FAILFAST) {
14998 					goto fail_command;
14999 				}
15000 
15001 #if !defined(lint) && !defined(__lint)
15002 			} else {
15003 				/*
15004 				 * If neither of the preceeding conditionals
15005 				 * was true, it means that there is some
15006 				 * *other* bp that has met an inital failfast
15007 				 * condition and is currently either being
15008 				 * retried or is waiting to be retried. In
15009 				 * that case we should perform normal retry
15010 				 * processing on *this* bp, since there is a
15011 				 * chance that the current failfast condition
15012 				 * is transient and recoverable. If that does
15013 				 * not turn out to be the case, then retries
15014 				 * will be cleared when the wait queue is
15015 				 * flushed anyway.
15016 				 */
15017 #endif
15018 			}
15019 		}
15020 	} else {
15021 		/*
15022 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15023 		 * likely were able to at least establish some level of
15024 		 * communication with the target and subsequent commands
15025 		 * and/or retries are likely to get through to the target,
15026 		 * In this case we want to be aggressive about clearing
15027 		 * the failfast state. Note that this does not affect
15028 		 * the "failfast pending" condition.
15029 		 */
15030 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15031 	}
15032 
15033 
15034 	/*
15035 	 * Check the specified retry count to see if we can still do
15036 	 * any retries with this pkt before we should fail it.
15037 	 */
15038 	switch (retry_check_flag & SD_RETRIES_MASK) {
15039 	case SD_RETRIES_VICTIM:
15040 		/*
15041 		 * Check the victim retry count. If exhausted, then fall
15042 		 * thru & check against the standard retry count.
15043 		 */
15044 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15045 			/* Increment count & proceed with the retry */
15046 			xp->xb_victim_retry_count++;
15047 			break;
15048 		}
15049 		/* Victim retries exhausted, fall back to std. retries... */
15050 		/* FALLTHRU */
15051 
15052 	case SD_RETRIES_STANDARD:
15053 		if (xp->xb_retry_count >= un->un_retry_count) {
15054 			/* Retries exhausted, fail the command */
15055 			SD_TRACE(SD_LOG_IO_CORE, un,
15056 			    "sd_retry_command: retries exhausted!\n");
15057 			/*
15058 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15059 			 * commands with nonzero pkt_resid.
15060 			 */
15061 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15062 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15063 			    (pktp->pkt_resid != 0)) {
15064 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15065 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15066 					SD_UPDATE_B_RESID(bp, pktp);
15067 				}
15068 			}
15069 			goto fail_command;
15070 		}
15071 		xp->xb_retry_count++;
15072 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15073 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15074 		break;
15075 
15076 	case SD_RETRIES_UA:
15077 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15078 			/* Retries exhausted, fail the command */
15079 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15080 			    "Unit Attention retries exhausted. "
15081 			    "Check the target.\n");
15082 			goto fail_command;
15083 		}
15084 		xp->xb_ua_retry_count++;
15085 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15086 		    "sd_retry_command: retry count:%d\n",
15087 		    xp->xb_ua_retry_count);
15088 		break;
15089 
15090 	case SD_RETRIES_BUSY:
15091 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15092 			/* Retries exhausted, fail the command */
15093 			SD_TRACE(SD_LOG_IO_CORE, un,
15094 			    "sd_retry_command: retries exhausted!\n");
15095 			goto fail_command;
15096 		}
15097 		xp->xb_retry_count++;
15098 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15099 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15100 		break;
15101 
15102 	case SD_RETRIES_NOCHECK:
15103 	default:
15104 		/* No retry count to check. Just proceed with the retry */
15105 		break;
15106 	}
15107 
15108 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15109 
15110 	/*
15111 	 * If this is a non-USCSI command being retried
15112 	 * during execution last time, we should post an ereport with
15113 	 * driver-assessment of the value "retry".
15114 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15115 	 * hardware errors, we bypass ereport posting.
15116 	 */
15117 	if (failure_code != 0) {
15118 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15119 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15120 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15121 		}
15122 	}
15123 
15124 	/*
15125 	 * If we were given a zero timeout, we must attempt to retry the
15126 	 * command immediately (ie, without a delay).
15127 	 */
15128 	if (retry_delay == 0) {
15129 		/*
15130 		 * Check some limiting conditions to see if we can actually
15131 		 * do the immediate retry.  If we cannot, then we must
15132 		 * fall back to queueing up a delayed retry.
15133 		 */
15134 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15135 			/*
15136 			 * We are at the throttle limit for the target,
15137 			 * fall back to delayed retry.
15138 			 */
15139 			retry_delay = un->un_busy_timeout;
15140 			statp = kstat_waitq_enter;
15141 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15142 			    "sd_retry_command: immed. retry hit "
15143 			    "throttle!\n");
15144 		} else {
15145 			/*
15146 			 * We're clear to proceed with the immediate retry.
15147 			 * First call the user-provided function (if any)
15148 			 */
15149 			if (user_funcp != NULL) {
15150 				(*user_funcp)(un, bp, user_arg,
15151 				    SD_IMMEDIATE_RETRY_ISSUED);
15152 #ifdef __lock_lint
15153 				sd_print_incomplete_msg(un, bp, user_arg,
15154 				    SD_IMMEDIATE_RETRY_ISSUED);
15155 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15156 				    SD_IMMEDIATE_RETRY_ISSUED);
15157 				sd_print_sense_failed_msg(un, bp, user_arg,
15158 				    SD_IMMEDIATE_RETRY_ISSUED);
15159 #endif
15160 			}
15161 
15162 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15163 			    "sd_retry_command: issuing immediate retry\n");
15164 
15165 			/*
15166 			 * Call sd_start_cmds() to transport the command to
15167 			 * the target.
15168 			 */
15169 			sd_start_cmds(un, bp);
15170 
15171 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15172 			    "sd_retry_command exit\n");
15173 			return;
15174 		}
15175 	}
15176 
15177 	/*
15178 	 * Set up to retry the command after a delay.
15179 	 * First call the user-provided function (if any)
15180 	 */
15181 	if (user_funcp != NULL) {
15182 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15183 	}
15184 
15185 	sd_set_retry_bp(un, bp, retry_delay, statp);
15186 
15187 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15188 	return;
15189 
15190 fail_command:
15191 
15192 	if (user_funcp != NULL) {
15193 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15194 	}
15195 
15196 fail_command_no_log:
15197 
15198 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15199 	    "sd_retry_command: returning failed command\n");
15200 
15201 	sd_return_failed_command(un, bp, failure_code);
15202 
15203 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15204 }
15205 
15206 
15207 /*
15208  *    Function: sd_set_retry_bp
15209  *
15210  * Description: Set up the given bp for retry.
15211  *
15212  *   Arguments: un - ptr to associated softstate
15213  *		bp - ptr to buf(9S) for the command
15214  *		retry_delay - time interval before issuing retry (may be 0)
15215  *		statp - optional pointer to kstat function
15216  *
15217  *     Context: May be called under interrupt context
15218  */
15219 
15220 static void
15221 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15222 	void (*statp)(kstat_io_t *))
15223 {
15224 	ASSERT(un != NULL);
15225 	ASSERT(mutex_owned(SD_MUTEX(un)));
15226 	ASSERT(bp != NULL);
15227 
15228 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15229 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15230 
15231 	/*
15232 	 * Indicate that the command is being retried. This will not allow any
15233 	 * other commands on the wait queue to be transported to the target
15234 	 * until this command has been completed (success or failure). The
15235 	 * "retry command" is not transported to the target until the given
15236 	 * time delay expires, unless the user specified a 0 retry_delay.
15237 	 *
15238 	 * Note: the timeout(9F) callback routine is what actually calls
15239 	 * sd_start_cmds() to transport the command, with the exception of a
15240 	 * zero retry_delay. The only current implementor of a zero retry delay
15241 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15242 	 */
15243 	if (un->un_retry_bp == NULL) {
15244 		ASSERT(un->un_retry_statp == NULL);
15245 		un->un_retry_bp = bp;
15246 
15247 		/*
15248 		 * If the user has not specified a delay the command should
15249 		 * be queued and no timeout should be scheduled.
15250 		 */
15251 		if (retry_delay == 0) {
15252 			/*
15253 			 * Save the kstat pointer that will be used in the
15254 			 * call to SD_UPDATE_KSTATS() below, so that
15255 			 * sd_start_cmds() can correctly decrement the waitq
15256 			 * count when it is time to transport this command.
15257 			 */
15258 			un->un_retry_statp = statp;
15259 			goto done;
15260 		}
15261 	}
15262 
15263 	if (un->un_retry_bp == bp) {
15264 		/*
15265 		 * Save the kstat pointer that will be used in the call to
15266 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15267 		 * correctly decrement the waitq count when it is time to
15268 		 * transport this command.
15269 		 */
15270 		un->un_retry_statp = statp;
15271 
15272 		/*
15273 		 * Schedule a timeout if:
15274 		 *   1) The user has specified a delay.
15275 		 *   2) There is not a START_STOP_UNIT callback pending.
15276 		 *
15277 		 * If no delay has been specified, then it is up to the caller
15278 		 * to ensure that IO processing continues without stalling.
15279 		 * Effectively, this means that the caller will issue the
15280 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15281 		 * callback does this after the START STOP UNIT command has
15282 		 * completed. In either of these cases we should not schedule
15283 		 * a timeout callback here.  Also don't schedule the timeout if
15284 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15285 		 */
15286 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15287 		    (un->un_direct_priority_timeid == NULL)) {
15288 			un->un_retry_timeid =
15289 			    timeout(sd_start_retry_command, un, retry_delay);
15290 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15291 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15292 			    " bp:0x%p un_retry_timeid:0x%p\n",
15293 			    un, bp, un->un_retry_timeid);
15294 		}
15295 	} else {
15296 		/*
15297 		 * We only get in here if there is already another command
15298 		 * waiting to be retried.  In this case, we just put the
15299 		 * given command onto the wait queue, so it can be transported
15300 		 * after the current retry command has completed.
15301 		 *
15302 		 * Also we have to make sure that if the command at the head
15303 		 * of the wait queue is the un_failfast_bp, that we do not
15304 		 * put ahead of it any other commands that are to be retried.
15305 		 */
15306 		if ((un->un_failfast_bp != NULL) &&
15307 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15308 			/*
15309 			 * Enqueue this command AFTER the first command on
15310 			 * the wait queue (which is also un_failfast_bp).
15311 			 */
15312 			bp->av_forw = un->un_waitq_headp->av_forw;
15313 			un->un_waitq_headp->av_forw = bp;
15314 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15315 				un->un_waitq_tailp = bp;
15316 			}
15317 		} else {
15318 			/* Enqueue this command at the head of the waitq. */
15319 			bp->av_forw = un->un_waitq_headp;
15320 			un->un_waitq_headp = bp;
15321 			if (un->un_waitq_tailp == NULL) {
15322 				un->un_waitq_tailp = bp;
15323 			}
15324 		}
15325 
15326 		if (statp == NULL) {
15327 			statp = kstat_waitq_enter;
15328 		}
15329 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15330 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15331 	}
15332 
15333 done:
15334 	if (statp != NULL) {
15335 		SD_UPDATE_KSTATS(un, statp, bp);
15336 	}
15337 
15338 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15339 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15340 }
15341 
15342 
15343 /*
15344  *    Function: sd_start_retry_command
15345  *
15346  * Description: Start the command that has been waiting on the target's
15347  *		retry queue.  Called from timeout(9F) context after the
15348  *		retry delay interval has expired.
15349  *
15350  *   Arguments: arg - pointer to associated softstate for the device.
15351  *
15352  *     Context: timeout(9F) thread context.  May not sleep.
15353  */
15354 
15355 static void
15356 sd_start_retry_command(void *arg)
15357 {
15358 	struct sd_lun *un = arg;
15359 
15360 	ASSERT(un != NULL);
15361 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15362 
15363 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15364 	    "sd_start_retry_command: entry\n");
15365 
15366 	mutex_enter(SD_MUTEX(un));
15367 
15368 	un->un_retry_timeid = NULL;
15369 
15370 	if (un->un_retry_bp != NULL) {
15371 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15372 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15373 		    un, un->un_retry_bp);
15374 		sd_start_cmds(un, un->un_retry_bp);
15375 	}
15376 
15377 	mutex_exit(SD_MUTEX(un));
15378 
15379 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15380 	    "sd_start_retry_command: exit\n");
15381 }
15382 
15383 
15384 /*
15385  *    Function: sd_start_direct_priority_command
15386  *
15387  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15388  *		received TRAN_BUSY when we called scsi_transport() to send it
15389  *		to the underlying HBA. This function is called from timeout(9F)
15390  *		context after the delay interval has expired.
15391  *
15392  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15393  *
15394  *     Context: timeout(9F) thread context.  May not sleep.
15395  */
15396 
15397 static void
15398 sd_start_direct_priority_command(void *arg)
15399 {
15400 	struct buf	*priority_bp = arg;
15401 	struct sd_lun	*un;
15402 
15403 	ASSERT(priority_bp != NULL);
15404 	un = SD_GET_UN(priority_bp);
15405 	ASSERT(un != NULL);
15406 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15407 
15408 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15409 	    "sd_start_direct_priority_command: entry\n");
15410 
15411 	mutex_enter(SD_MUTEX(un));
15412 	un->un_direct_priority_timeid = NULL;
15413 	sd_start_cmds(un, priority_bp);
15414 	mutex_exit(SD_MUTEX(un));
15415 
15416 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15417 	    "sd_start_direct_priority_command: exit\n");
15418 }
15419 
15420 
15421 /*
15422  *    Function: sd_send_request_sense_command
15423  *
15424  * Description: Sends a REQUEST SENSE command to the target
15425  *
15426  *     Context: May be called from interrupt context.
15427  */
15428 
15429 static void
15430 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15431 	struct scsi_pkt *pktp)
15432 {
15433 	ASSERT(bp != NULL);
15434 	ASSERT(un != NULL);
15435 	ASSERT(mutex_owned(SD_MUTEX(un)));
15436 
15437 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15438 	    "entry: buf:0x%p\n", bp);
15439 
15440 	/*
15441 	 * If we are syncing or dumping, then fail the command to avoid a
15442 	 * recursive callback into scsi_transport(). Also fail the command
15443 	 * if we are suspended (legacy behavior).
15444 	 */
15445 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15446 	    (un->un_state == SD_STATE_DUMPING)) {
15447 		sd_return_failed_command(un, bp, EIO);
15448 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15449 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15450 		return;
15451 	}
15452 
15453 	/*
15454 	 * Retry the failed command and don't issue the request sense if:
15455 	 *    1) the sense buf is busy
15456 	 *    2) we have 1 or more outstanding commands on the target
15457 	 *    (the sense data will be cleared or invalidated any way)
15458 	 *
15459 	 * Note: There could be an issue with not checking a retry limit here,
15460 	 * the problem is determining which retry limit to check.
15461 	 */
15462 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15463 		/* Don't retry if the command is flagged as non-retryable */
15464 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15465 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15466 			    NULL, NULL, 0, un->un_busy_timeout,
15467 			    kstat_waitq_enter);
15468 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15469 			    "sd_send_request_sense_command: "
15470 			    "at full throttle, retrying exit\n");
15471 		} else {
15472 			sd_return_failed_command(un, bp, EIO);
15473 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15474 			    "sd_send_request_sense_command: "
15475 			    "at full throttle, non-retryable exit\n");
15476 		}
15477 		return;
15478 	}
15479 
15480 	sd_mark_rqs_busy(un, bp);
15481 	sd_start_cmds(un, un->un_rqs_bp);
15482 
15483 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15484 	    "sd_send_request_sense_command: exit\n");
15485 }
15486 
15487 
15488 /*
15489  *    Function: sd_mark_rqs_busy
15490  *
15491  * Description: Indicate that the request sense bp for this instance is
15492  *		in use.
15493  *
15494  *     Context: May be called under interrupt context
15495  */
15496 
15497 static void
15498 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15499 {
15500 	struct sd_xbuf	*sense_xp;
15501 
15502 	ASSERT(un != NULL);
15503 	ASSERT(bp != NULL);
15504 	ASSERT(mutex_owned(SD_MUTEX(un)));
15505 	ASSERT(un->un_sense_isbusy == 0);
15506 
15507 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15508 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15509 
15510 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15511 	ASSERT(sense_xp != NULL);
15512 
15513 	SD_INFO(SD_LOG_IO, un,
15514 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15515 
15516 	ASSERT(sense_xp->xb_pktp != NULL);
15517 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15518 	    == (FLAG_SENSING | FLAG_HEAD));
15519 
15520 	un->un_sense_isbusy = 1;
15521 	un->un_rqs_bp->b_resid = 0;
15522 	sense_xp->xb_pktp->pkt_resid  = 0;
15523 	sense_xp->xb_pktp->pkt_reason = 0;
15524 
15525 	/* So we can get back the bp at interrupt time! */
15526 	sense_xp->xb_sense_bp = bp;
15527 
15528 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15529 
15530 	/*
15531 	 * Mark this buf as awaiting sense data. (This is already set in
15532 	 * the pkt_flags for the RQS packet.)
15533 	 */
15534 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15535 
15536 	/* Request sense down same path */
15537 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
15538 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
15539 		sense_xp->xb_pktp->pkt_path_instance =
15540 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
15541 
15542 	sense_xp->xb_retry_count	= 0;
15543 	sense_xp->xb_victim_retry_count = 0;
15544 	sense_xp->xb_ua_retry_count	= 0;
15545 	sense_xp->xb_nr_retry_count 	= 0;
15546 	sense_xp->xb_dma_resid  = 0;
15547 
15548 	/* Clean up the fields for auto-request sense */
15549 	sense_xp->xb_sense_status = 0;
15550 	sense_xp->xb_sense_state  = 0;
15551 	sense_xp->xb_sense_resid  = 0;
15552 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15553 
15554 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15555 }
15556 
15557 
15558 /*
15559  *    Function: sd_mark_rqs_idle
15560  *
15561  * Description: SD_MUTEX must be held continuously through this routine
15562  *		to prevent reuse of the rqs struct before the caller can
15563  *		complete it's processing.
15564  *
15565  * Return Code: Pointer to the RQS buf
15566  *
15567  *     Context: May be called under interrupt context
15568  */
15569 
15570 static struct buf *
15571 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15572 {
15573 	struct buf *bp;
15574 	ASSERT(un != NULL);
15575 	ASSERT(sense_xp != NULL);
15576 	ASSERT(mutex_owned(SD_MUTEX(un)));
15577 	ASSERT(un->un_sense_isbusy != 0);
15578 
15579 	un->un_sense_isbusy = 0;
15580 	bp = sense_xp->xb_sense_bp;
15581 	sense_xp->xb_sense_bp = NULL;
15582 
15583 	/* This pkt is no longer interested in getting sense data */
15584 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15585 
15586 	return (bp);
15587 }
15588 
15589 
15590 
15591 /*
15592  *    Function: sd_alloc_rqs
15593  *
15594  * Description: Set up the unit to receive auto request sense data
15595  *
15596  * Return Code: DDI_SUCCESS or DDI_FAILURE
15597  *
15598  *     Context: Called under attach(9E) context
15599  */
15600 
15601 static int
15602 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15603 {
15604 	struct sd_xbuf *xp;
15605 
15606 	ASSERT(un != NULL);
15607 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15608 	ASSERT(un->un_rqs_bp == NULL);
15609 	ASSERT(un->un_rqs_pktp == NULL);
15610 
15611 	/*
15612 	 * First allocate the required buf and scsi_pkt structs, then set up
15613 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15614 	 */
15615 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15616 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15617 	if (un->un_rqs_bp == NULL) {
15618 		return (DDI_FAILURE);
15619 	}
15620 
15621 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15622 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15623 
15624 	if (un->un_rqs_pktp == NULL) {
15625 		sd_free_rqs(un);
15626 		return (DDI_FAILURE);
15627 	}
15628 
15629 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15630 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15631 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
15632 
15633 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15634 
15635 	/* Set up the other needed members in the ARQ scsi_pkt. */
15636 	un->un_rqs_pktp->pkt_comp   = sdintr;
15637 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15638 	un->un_rqs_pktp->pkt_flags |=
15639 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15640 
15641 	/*
15642 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15643 	 * provide any intpkt, destroypkt routines as we take care of
15644 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15645 	 */
15646 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15647 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15648 	xp->xb_pktp = un->un_rqs_pktp;
15649 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15650 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15651 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15652 
15653 	/*
15654 	 * Save the pointer to the request sense private bp so it can
15655 	 * be retrieved in sdintr.
15656 	 */
15657 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15658 	ASSERT(un->un_rqs_bp->b_private == xp);
15659 
15660 	/*
15661 	 * See if the HBA supports auto-request sense for the specified
15662 	 * target/lun. If it does, then try to enable it (if not already
15663 	 * enabled).
15664 	 *
15665 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15666 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15667 	 * return success.  However, in both of these cases ARQ is always
15668 	 * enabled and scsi_ifgetcap will always return true. The best approach
15669 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15670 	 *
15671 	 * The 3rd case is the HBA (adp) always return enabled on
15672 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15673 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15674 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15675 	 */
15676 
15677 	if (un->un_f_is_fibre == TRUE) {
15678 		un->un_f_arq_enabled = TRUE;
15679 	} else {
15680 #if defined(__i386) || defined(__amd64)
15681 		/*
15682 		 * Circumvent the Adaptec bug, remove this code when
15683 		 * the bug is fixed
15684 		 */
15685 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15686 #endif
15687 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15688 		case 0:
15689 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15690 			    "sd_alloc_rqs: HBA supports ARQ\n");
15691 			/*
15692 			 * ARQ is supported by this HBA but currently is not
15693 			 * enabled. Attempt to enable it and if successful then
15694 			 * mark this instance as ARQ enabled.
15695 			 */
15696 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15697 			    == 1) {
15698 				/* Successfully enabled ARQ in the HBA */
15699 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15700 				    "sd_alloc_rqs: ARQ enabled\n");
15701 				un->un_f_arq_enabled = TRUE;
15702 			} else {
15703 				/* Could not enable ARQ in the HBA */
15704 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15705 				    "sd_alloc_rqs: failed ARQ enable\n");
15706 				un->un_f_arq_enabled = FALSE;
15707 			}
15708 			break;
15709 		case 1:
15710 			/*
15711 			 * ARQ is supported by this HBA and is already enabled.
15712 			 * Just mark ARQ as enabled for this instance.
15713 			 */
15714 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15715 			    "sd_alloc_rqs: ARQ already enabled\n");
15716 			un->un_f_arq_enabled = TRUE;
15717 			break;
15718 		default:
15719 			/*
15720 			 * ARQ is not supported by this HBA; disable it for this
15721 			 * instance.
15722 			 */
15723 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15724 			    "sd_alloc_rqs: HBA does not support ARQ\n");
15725 			un->un_f_arq_enabled = FALSE;
15726 			break;
15727 		}
15728 	}
15729 
15730 	return (DDI_SUCCESS);
15731 }
15732 
15733 
15734 /*
15735  *    Function: sd_free_rqs
15736  *
15737  * Description: Cleanup for the pre-instance RQS command.
15738  *
15739  *     Context: Kernel thread context
15740  */
15741 
15742 static void
15743 sd_free_rqs(struct sd_lun *un)
15744 {
15745 	ASSERT(un != NULL);
15746 
15747 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15748 
15749 	/*
15750 	 * If consistent memory is bound to a scsi_pkt, the pkt
15751 	 * has to be destroyed *before* freeing the consistent memory.
15752 	 * Don't change the sequence of this operations.
15753 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15754 	 * after it was freed in scsi_free_consistent_buf().
15755 	 */
15756 	if (un->un_rqs_pktp != NULL) {
15757 		scsi_destroy_pkt(un->un_rqs_pktp);
15758 		un->un_rqs_pktp = NULL;
15759 	}
15760 
15761 	if (un->un_rqs_bp != NULL) {
15762 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
15763 		if (xp != NULL) {
15764 			kmem_free(xp, sizeof (struct sd_xbuf));
15765 		}
15766 		scsi_free_consistent_buf(un->un_rqs_bp);
15767 		un->un_rqs_bp = NULL;
15768 	}
15769 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15770 }
15771 
15772 
15773 
15774 /*
15775  *    Function: sd_reduce_throttle
15776  *
15777  * Description: Reduces the maximum # of outstanding commands on a
15778  *		target to the current number of outstanding commands.
15779  *		Queues a tiemout(9F) callback to restore the limit
15780  *		after a specified interval has elapsed.
15781  *		Typically used when we get a TRAN_BUSY return code
15782  *		back from scsi_transport().
15783  *
15784  *   Arguments: un - ptr to the sd_lun softstate struct
15785  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15786  *
15787  *     Context: May be called from interrupt context
15788  */
15789 
15790 static void
15791 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15792 {
15793 	ASSERT(un != NULL);
15794 	ASSERT(mutex_owned(SD_MUTEX(un)));
15795 	ASSERT(un->un_ncmds_in_transport >= 0);
15796 
15797 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15798 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15799 	    un, un->un_throttle, un->un_ncmds_in_transport);
15800 
15801 	if (un->un_throttle > 1) {
15802 		if (un->un_f_use_adaptive_throttle == TRUE) {
15803 			switch (throttle_type) {
15804 			case SD_THROTTLE_TRAN_BUSY:
15805 				if (un->un_busy_throttle == 0) {
15806 					un->un_busy_throttle = un->un_throttle;
15807 				}
15808 				break;
15809 			case SD_THROTTLE_QFULL:
15810 				un->un_busy_throttle = 0;
15811 				break;
15812 			default:
15813 				ASSERT(FALSE);
15814 			}
15815 
15816 			if (un->un_ncmds_in_transport > 0) {
15817 				un->un_throttle = un->un_ncmds_in_transport;
15818 			}
15819 
15820 		} else {
15821 			if (un->un_ncmds_in_transport == 0) {
15822 				un->un_throttle = 1;
15823 			} else {
15824 				un->un_throttle = un->un_ncmds_in_transport;
15825 			}
15826 		}
15827 	}
15828 
15829 	/* Reschedule the timeout if none is currently active */
15830 	if (un->un_reset_throttle_timeid == NULL) {
15831 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15832 		    un, SD_THROTTLE_RESET_INTERVAL);
15833 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15834 		    "sd_reduce_throttle: timeout scheduled!\n");
15835 	}
15836 
15837 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15838 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15839 }
15840 
15841 
15842 
15843 /*
15844  *    Function: sd_restore_throttle
15845  *
15846  * Description: Callback function for timeout(9F).  Resets the current
15847  *		value of un->un_throttle to its default.
15848  *
15849  *   Arguments: arg - pointer to associated softstate for the device.
15850  *
15851  *     Context: May be called from interrupt context
15852  */
15853 
15854 static void
15855 sd_restore_throttle(void *arg)
15856 {
15857 	struct sd_lun	*un = arg;
15858 
15859 	ASSERT(un != NULL);
15860 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15861 
15862 	mutex_enter(SD_MUTEX(un));
15863 
15864 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15865 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15866 
15867 	un->un_reset_throttle_timeid = NULL;
15868 
15869 	if (un->un_f_use_adaptive_throttle == TRUE) {
15870 		/*
15871 		 * If un_busy_throttle is nonzero, then it contains the
15872 		 * value that un_throttle was when we got a TRAN_BUSY back
15873 		 * from scsi_transport(). We want to revert back to this
15874 		 * value.
15875 		 *
15876 		 * In the QFULL case, the throttle limit will incrementally
15877 		 * increase until it reaches max throttle.
15878 		 */
15879 		if (un->un_busy_throttle > 0) {
15880 			un->un_throttle = un->un_busy_throttle;
15881 			un->un_busy_throttle = 0;
15882 		} else {
15883 			/*
15884 			 * increase throttle by 10% open gate slowly, schedule
15885 			 * another restore if saved throttle has not been
15886 			 * reached
15887 			 */
15888 			short throttle;
15889 			if (sd_qfull_throttle_enable) {
15890 				throttle = un->un_throttle +
15891 				    max((un->un_throttle / 10), 1);
15892 				un->un_throttle =
15893 				    (throttle < un->un_saved_throttle) ?
15894 				    throttle : un->un_saved_throttle;
15895 				if (un->un_throttle < un->un_saved_throttle) {
15896 					un->un_reset_throttle_timeid =
15897 					    timeout(sd_restore_throttle,
15898 					    un,
15899 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
15900 				}
15901 			}
15902 		}
15903 
15904 		/*
15905 		 * If un_throttle has fallen below the low-water mark, we
15906 		 * restore the maximum value here (and allow it to ratchet
15907 		 * down again if necessary).
15908 		 */
15909 		if (un->un_throttle < un->un_min_throttle) {
15910 			un->un_throttle = un->un_saved_throttle;
15911 		}
15912 	} else {
15913 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15914 		    "restoring limit from 0x%x to 0x%x\n",
15915 		    un->un_throttle, un->un_saved_throttle);
15916 		un->un_throttle = un->un_saved_throttle;
15917 	}
15918 
15919 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15920 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15921 
15922 	sd_start_cmds(un, NULL);
15923 
15924 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15925 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15926 	    un, un->un_throttle);
15927 
15928 	mutex_exit(SD_MUTEX(un));
15929 
15930 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15931 }
15932 
15933 /*
15934  *    Function: sdrunout
15935  *
15936  * Description: Callback routine for scsi_init_pkt when a resource allocation
15937  *		fails.
15938  *
15939  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15940  *		soft state instance.
15941  *
15942  * Return Code: The scsi_init_pkt routine allows for the callback function to
15943  *		return a 0 indicating the callback should be rescheduled or a 1
15944  *		indicating not to reschedule. This routine always returns 1
15945  *		because the driver always provides a callback function to
15946  *		scsi_init_pkt. This results in a callback always being scheduled
15947  *		(via the scsi_init_pkt callback implementation) if a resource
15948  *		failure occurs.
15949  *
15950  *     Context: This callback function may not block or call routines that block
15951  *
15952  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15953  *		request persisting at the head of the list which cannot be
15954  *		satisfied even after multiple retries. In the future the driver
15955  *		may implement some time of maximum runout count before failing
15956  *		an I/O.
15957  */
15958 
15959 static int
15960 sdrunout(caddr_t arg)
15961 {
15962 	struct sd_lun	*un = (struct sd_lun *)arg;
15963 
15964 	ASSERT(un != NULL);
15965 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15966 
15967 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15968 
15969 	mutex_enter(SD_MUTEX(un));
15970 	sd_start_cmds(un, NULL);
15971 	mutex_exit(SD_MUTEX(un));
15972 	/*
15973 	 * This callback routine always returns 1 (i.e. do not reschedule)
15974 	 * because we always specify sdrunout as the callback handler for
15975 	 * scsi_init_pkt inside the call to sd_start_cmds.
15976 	 */
15977 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
15978 	return (1);
15979 }
15980 
15981 
15982 /*
15983  *    Function: sdintr
15984  *
15985  * Description: Completion callback routine for scsi_pkt(9S) structs
15986  *		sent to the HBA driver via scsi_transport(9F).
15987  *
15988  *     Context: Interrupt context
15989  */
15990 
15991 static void
15992 sdintr(struct scsi_pkt *pktp)
15993 {
15994 	struct buf	*bp;
15995 	struct sd_xbuf	*xp;
15996 	struct sd_lun	*un;
15997 	size_t		actual_len;
15998 	sd_ssc_t	*sscp;
15999 
16000 	ASSERT(pktp != NULL);
16001 	bp = (struct buf *)pktp->pkt_private;
16002 	ASSERT(bp != NULL);
16003 	xp = SD_GET_XBUF(bp);
16004 	ASSERT(xp != NULL);
16005 	ASSERT(xp->xb_pktp != NULL);
16006 	un = SD_GET_UN(bp);
16007 	ASSERT(un != NULL);
16008 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16009 
16010 #ifdef SD_FAULT_INJECTION
16011 
16012 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16013 	/* SD FaultInjection */
16014 	sd_faultinjection(pktp);
16015 
16016 #endif /* SD_FAULT_INJECTION */
16017 
16018 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16019 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16020 
16021 	mutex_enter(SD_MUTEX(un));
16022 
16023 	ASSERT(un->un_fm_private != NULL);
16024 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16025 	ASSERT(sscp != NULL);
16026 
16027 	/* Reduce the count of the #commands currently in transport */
16028 	un->un_ncmds_in_transport--;
16029 	ASSERT(un->un_ncmds_in_transport >= 0);
16030 
16031 	/* Increment counter to indicate that the callback routine is active */
16032 	un->un_in_callback++;
16033 
16034 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16035 
16036 #ifdef	SDDEBUG
16037 	if (bp == un->un_retry_bp) {
16038 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16039 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16040 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16041 	}
16042 #endif
16043 
16044 	/*
16045 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16046 	 * state if needed.
16047 	 */
16048 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16049 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16050 		    "Command failed to complete...Device is gone\n");
16051 		if (un->un_mediastate != DKIO_DEV_GONE) {
16052 			un->un_mediastate = DKIO_DEV_GONE;
16053 			cv_broadcast(&un->un_state_cv);
16054 		}
16055 		sd_return_failed_command(un, bp, EIO);
16056 		goto exit;
16057 	}
16058 
16059 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16060 		SD_TRACE(SD_LOG_COMMON, un,
16061 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16062 	}
16063 
16064 	/*
16065 	 * First see if the pkt has auto-request sense data with it....
16066 	 * Look at the packet state first so we don't take a performance
16067 	 * hit looking at the arq enabled flag unless absolutely necessary.
16068 	 */
16069 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16070 	    (un->un_f_arq_enabled == TRUE)) {
16071 		/*
16072 		 * The HBA did an auto request sense for this command so check
16073 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16074 		 * driver command that should not be retried.
16075 		 */
16076 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16077 			/*
16078 			 * Save the relevant sense info into the xp for the
16079 			 * original cmd.
16080 			 */
16081 			struct scsi_arq_status *asp;
16082 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16083 			xp->xb_sense_status =
16084 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16085 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16086 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16087 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16088 				actual_len = MAX_SENSE_LENGTH -
16089 				    xp->xb_sense_resid;
16090 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16091 				    MAX_SENSE_LENGTH);
16092 			} else {
16093 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16094 					actual_len = MAX_SENSE_LENGTH -
16095 					    xp->xb_sense_resid;
16096 				} else {
16097 					actual_len = SENSE_LENGTH -
16098 					    xp->xb_sense_resid;
16099 				}
16100 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16101 					if ((((struct uscsi_cmd *)
16102 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16103 					    actual_len) {
16104 						xp->xb_sense_resid =
16105 						    (((struct uscsi_cmd *)
16106 						    (xp->xb_pktinfo))->
16107 						    uscsi_rqlen) - actual_len;
16108 					} else {
16109 						xp->xb_sense_resid = 0;
16110 					}
16111 				}
16112 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16113 				    SENSE_LENGTH);
16114 			}
16115 
16116 			/* fail the command */
16117 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16118 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16119 			sd_return_failed_command(un, bp, EIO);
16120 			goto exit;
16121 		}
16122 
16123 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16124 		/*
16125 		 * We want to either retry or fail this command, so free
16126 		 * the DMA resources here.  If we retry the command then
16127 		 * the DMA resources will be reallocated in sd_start_cmds().
16128 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16129 		 * causes the *entire* transfer to start over again from the
16130 		 * beginning of the request, even for PARTIAL chunks that
16131 		 * have already transferred successfully.
16132 		 */
16133 		if ((un->un_f_is_fibre == TRUE) &&
16134 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16135 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16136 			scsi_dmafree(pktp);
16137 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16138 		}
16139 #endif
16140 
16141 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16142 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16143 
16144 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16145 		goto exit;
16146 	}
16147 
16148 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16149 	if (pktp->pkt_flags & FLAG_SENSING)  {
16150 		/* This pktp is from the unit's REQUEST_SENSE command */
16151 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16152 		    "sdintr: sd_handle_request_sense\n");
16153 		sd_handle_request_sense(un, bp, xp, pktp);
16154 		goto exit;
16155 	}
16156 
16157 	/*
16158 	 * Check to see if the command successfully completed as requested;
16159 	 * this is the most common case (and also the hot performance path).
16160 	 *
16161 	 * Requirements for successful completion are:
16162 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16163 	 * In addition:
16164 	 * - A residual of zero indicates successful completion no matter what
16165 	 *   the command is.
16166 	 * - If the residual is not zero and the command is not a read or
16167 	 *   write, then it's still defined as successful completion. In other
16168 	 *   words, if the command is a read or write the residual must be
16169 	 *   zero for successful completion.
16170 	 * - If the residual is not zero and the command is a read or
16171 	 *   write, and it's a USCSICMD, then it's still defined as
16172 	 *   successful completion.
16173 	 */
16174 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16175 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16176 
16177 		/*
16178 		 * Since this command is returned with a good status, we
16179 		 * can reset the count for Sonoma failover.
16180 		 */
16181 		un->un_sonoma_failure_count = 0;
16182 
16183 		/*
16184 		 * Return all USCSI commands on good status
16185 		 */
16186 		if (pktp->pkt_resid == 0) {
16187 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16188 			    "sdintr: returning command for resid == 0\n");
16189 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16190 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16191 			SD_UPDATE_B_RESID(bp, pktp);
16192 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16193 			    "sdintr: returning command for resid != 0\n");
16194 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16195 			SD_UPDATE_B_RESID(bp, pktp);
16196 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16197 			    "sdintr: returning uscsi command\n");
16198 		} else {
16199 			goto not_successful;
16200 		}
16201 		sd_return_command(un, bp);
16202 
16203 		/*
16204 		 * Decrement counter to indicate that the callback routine
16205 		 * is done.
16206 		 */
16207 		un->un_in_callback--;
16208 		ASSERT(un->un_in_callback >= 0);
16209 		mutex_exit(SD_MUTEX(un));
16210 
16211 		return;
16212 	}
16213 
16214 not_successful:
16215 
16216 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16217 	/*
16218 	 * The following is based upon knowledge of the underlying transport
16219 	 * and its use of DMA resources.  This code should be removed when
16220 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16221 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16222 	 * and sd_start_cmds().
16223 	 *
16224 	 * Free any DMA resources associated with this command if there
16225 	 * is a chance it could be retried or enqueued for later retry.
16226 	 * If we keep the DMA binding then mpxio cannot reissue the
16227 	 * command on another path whenever a path failure occurs.
16228 	 *
16229 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16230 	 * causes the *entire* transfer to start over again from the
16231 	 * beginning of the request, even for PARTIAL chunks that
16232 	 * have already transferred successfully.
16233 	 *
16234 	 * This is only done for non-uscsi commands (and also skipped for the
16235 	 * driver's internal RQS command). Also just do this for Fibre Channel
16236 	 * devices as these are the only ones that support mpxio.
16237 	 */
16238 	if ((un->un_f_is_fibre == TRUE) &&
16239 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16240 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16241 		scsi_dmafree(pktp);
16242 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16243 	}
16244 #endif
16245 
16246 	/*
16247 	 * The command did not successfully complete as requested so check
16248 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16249 	 * driver command that should not be retried so just return. If
16250 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16251 	 */
16252 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16253 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16254 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16255 		/*
16256 		 * Issue a request sense if a check condition caused the error
16257 		 * (we handle the auto request sense case above), otherwise
16258 		 * just fail the command.
16259 		 */
16260 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16261 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16262 			sd_send_request_sense_command(un, bp, pktp);
16263 		} else {
16264 			sd_return_failed_command(un, bp, EIO);
16265 		}
16266 		goto exit;
16267 	}
16268 
16269 	/*
16270 	 * The command did not successfully complete as requested so process
16271 	 * the error, retry, and/or attempt recovery.
16272 	 */
16273 	switch (pktp->pkt_reason) {
16274 	case CMD_CMPLT:
16275 		switch (SD_GET_PKT_STATUS(pktp)) {
16276 		case STATUS_GOOD:
16277 			/*
16278 			 * The command completed successfully with a non-zero
16279 			 * residual
16280 			 */
16281 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16282 			    "sdintr: STATUS_GOOD \n");
16283 			sd_pkt_status_good(un, bp, xp, pktp);
16284 			break;
16285 
16286 		case STATUS_CHECK:
16287 		case STATUS_TERMINATED:
16288 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16289 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16290 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16291 			break;
16292 
16293 		case STATUS_BUSY:
16294 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16295 			    "sdintr: STATUS_BUSY\n");
16296 			sd_pkt_status_busy(un, bp, xp, pktp);
16297 			break;
16298 
16299 		case STATUS_RESERVATION_CONFLICT:
16300 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16301 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16302 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16303 			break;
16304 
16305 		case STATUS_QFULL:
16306 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16307 			    "sdintr: STATUS_QFULL\n");
16308 			sd_pkt_status_qfull(un, bp, xp, pktp);
16309 			break;
16310 
16311 		case STATUS_MET:
16312 		case STATUS_INTERMEDIATE:
16313 		case STATUS_SCSI2:
16314 		case STATUS_INTERMEDIATE_MET:
16315 		case STATUS_ACA_ACTIVE:
16316 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16317 			    "Unexpected SCSI status received: 0x%x\n",
16318 			    SD_GET_PKT_STATUS(pktp));
16319 			/*
16320 			 * Mark the ssc_flags when detected invalid status
16321 			 * code for non-USCSI command.
16322 			 */
16323 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16324 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16325 				    "stat-code");
16326 			}
16327 			sd_return_failed_command(un, bp, EIO);
16328 			break;
16329 
16330 		default:
16331 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16332 			    "Invalid SCSI status received: 0x%x\n",
16333 			    SD_GET_PKT_STATUS(pktp));
16334 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16335 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16336 				    "stat-code");
16337 			}
16338 			sd_return_failed_command(un, bp, EIO);
16339 			break;
16340 
16341 		}
16342 		break;
16343 
16344 	case CMD_INCOMPLETE:
16345 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16346 		    "sdintr:  CMD_INCOMPLETE\n");
16347 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16348 		break;
16349 	case CMD_TRAN_ERR:
16350 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16351 		    "sdintr: CMD_TRAN_ERR\n");
16352 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16353 		break;
16354 	case CMD_RESET:
16355 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16356 		    "sdintr: CMD_RESET \n");
16357 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16358 		break;
16359 	case CMD_ABORTED:
16360 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16361 		    "sdintr: CMD_ABORTED \n");
16362 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16363 		break;
16364 	case CMD_TIMEOUT:
16365 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16366 		    "sdintr: CMD_TIMEOUT\n");
16367 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16368 		break;
16369 	case CMD_UNX_BUS_FREE:
16370 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16371 		    "sdintr: CMD_UNX_BUS_FREE \n");
16372 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16373 		break;
16374 	case CMD_TAG_REJECT:
16375 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16376 		    "sdintr: CMD_TAG_REJECT\n");
16377 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16378 		break;
16379 	default:
16380 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16381 		    "sdintr: default\n");
16382 		/*
16383 		 * Mark the ssc_flags for detecting invliad pkt_reason.
16384 		 */
16385 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16386 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
16387 			    "pkt-reason");
16388 		}
16389 		sd_pkt_reason_default(un, bp, xp, pktp);
16390 		break;
16391 	}
16392 
16393 exit:
16394 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16395 
16396 	/* Decrement counter to indicate that the callback routine is done. */
16397 	un->un_in_callback--;
16398 	ASSERT(un->un_in_callback >= 0);
16399 
16400 	/*
16401 	 * At this point, the pkt has been dispatched, ie, it is either
16402 	 * being re-tried or has been returned to its caller and should
16403 	 * not be referenced.
16404 	 */
16405 
16406 	mutex_exit(SD_MUTEX(un));
16407 }
16408 
16409 
16410 /*
16411  *    Function: sd_print_incomplete_msg
16412  *
16413  * Description: Prints the error message for a CMD_INCOMPLETE error.
16414  *
16415  *   Arguments: un - ptr to associated softstate for the device.
16416  *		bp - ptr to the buf(9S) for the command.
16417  *		arg - message string ptr
16418  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16419  *			or SD_NO_RETRY_ISSUED.
16420  *
16421  *     Context: May be called under interrupt context
16422  */
16423 
16424 static void
16425 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16426 {
16427 	struct scsi_pkt	*pktp;
16428 	char	*msgp;
16429 	char	*cmdp = arg;
16430 
16431 	ASSERT(un != NULL);
16432 	ASSERT(mutex_owned(SD_MUTEX(un)));
16433 	ASSERT(bp != NULL);
16434 	ASSERT(arg != NULL);
16435 	pktp = SD_GET_PKTP(bp);
16436 	ASSERT(pktp != NULL);
16437 
16438 	switch (code) {
16439 	case SD_DELAYED_RETRY_ISSUED:
16440 	case SD_IMMEDIATE_RETRY_ISSUED:
16441 		msgp = "retrying";
16442 		break;
16443 	case SD_NO_RETRY_ISSUED:
16444 	default:
16445 		msgp = "giving up";
16446 		break;
16447 	}
16448 
16449 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16450 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16451 		    "incomplete %s- %s\n", cmdp, msgp);
16452 	}
16453 }
16454 
16455 
16456 
16457 /*
16458  *    Function: sd_pkt_status_good
16459  *
16460  * Description: Processing for a STATUS_GOOD code in pkt_status.
16461  *
16462  *     Context: May be called under interrupt context
16463  */
16464 
16465 static void
16466 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16467 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16468 {
16469 	char	*cmdp;
16470 
16471 	ASSERT(un != NULL);
16472 	ASSERT(mutex_owned(SD_MUTEX(un)));
16473 	ASSERT(bp != NULL);
16474 	ASSERT(xp != NULL);
16475 	ASSERT(pktp != NULL);
16476 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16477 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16478 	ASSERT(pktp->pkt_resid != 0);
16479 
16480 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16481 
16482 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16483 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16484 	case SCMD_READ:
16485 		cmdp = "read";
16486 		break;
16487 	case SCMD_WRITE:
16488 		cmdp = "write";
16489 		break;
16490 	default:
16491 		SD_UPDATE_B_RESID(bp, pktp);
16492 		sd_return_command(un, bp);
16493 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16494 		return;
16495 	}
16496 
16497 	/*
16498 	 * See if we can retry the read/write, preferrably immediately.
16499 	 * If retries are exhaused, then sd_retry_command() will update
16500 	 * the b_resid count.
16501 	 */
16502 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16503 	    cmdp, EIO, (clock_t)0, NULL);
16504 
16505 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16506 }
16507 
16508 
16509 
16510 
16511 
16512 /*
16513  *    Function: sd_handle_request_sense
16514  *
16515  * Description: Processing for non-auto Request Sense command.
16516  *
16517  *   Arguments: un - ptr to associated softstate
16518  *		sense_bp - ptr to buf(9S) for the RQS command
16519  *		sense_xp - ptr to the sd_xbuf for the RQS command
16520  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16521  *
16522  *     Context: May be called under interrupt context
16523  */
16524 
16525 static void
16526 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16527 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16528 {
16529 	struct buf	*cmd_bp;	/* buf for the original command */
16530 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16531 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16532 	size_t		actual_len;	/* actual sense data length */
16533 
16534 	ASSERT(un != NULL);
16535 	ASSERT(mutex_owned(SD_MUTEX(un)));
16536 	ASSERT(sense_bp != NULL);
16537 	ASSERT(sense_xp != NULL);
16538 	ASSERT(sense_pktp != NULL);
16539 
16540 	/*
16541 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16542 	 * RQS command and not the original command.
16543 	 */
16544 	ASSERT(sense_pktp == un->un_rqs_pktp);
16545 	ASSERT(sense_bp   == un->un_rqs_bp);
16546 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16547 	    (FLAG_SENSING | FLAG_HEAD));
16548 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16549 	    FLAG_SENSING) == FLAG_SENSING);
16550 
16551 	/* These are the bp, xp, and pktp for the original command */
16552 	cmd_bp = sense_xp->xb_sense_bp;
16553 	cmd_xp = SD_GET_XBUF(cmd_bp);
16554 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16555 
16556 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16557 		/*
16558 		 * The REQUEST SENSE command failed.  Release the REQUEST
16559 		 * SENSE command for re-use, get back the bp for the original
16560 		 * command, and attempt to re-try the original command if
16561 		 * FLAG_DIAGNOSE is not set in the original packet.
16562 		 */
16563 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16564 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16565 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16566 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16567 			    NULL, NULL, EIO, (clock_t)0, NULL);
16568 			return;
16569 		}
16570 	}
16571 
16572 	/*
16573 	 * Save the relevant sense info into the xp for the original cmd.
16574 	 *
16575 	 * Note: if the request sense failed the state info will be zero
16576 	 * as set in sd_mark_rqs_busy()
16577 	 */
16578 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16579 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16580 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
16581 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
16582 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
16583 	    SENSE_LENGTH)) {
16584 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16585 		    MAX_SENSE_LENGTH);
16586 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
16587 	} else {
16588 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16589 		    SENSE_LENGTH);
16590 		if (actual_len < SENSE_LENGTH) {
16591 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
16592 		} else {
16593 			cmd_xp->xb_sense_resid = 0;
16594 		}
16595 	}
16596 
16597 	/*
16598 	 *  Free up the RQS command....
16599 	 *  NOTE:
16600 	 *	Must do this BEFORE calling sd_validate_sense_data!
16601 	 *	sd_validate_sense_data may return the original command in
16602 	 *	which case the pkt will be freed and the flags can no
16603 	 *	longer be touched.
16604 	 *	SD_MUTEX is held through this process until the command
16605 	 *	is dispatched based upon the sense data, so there are
16606 	 *	no race conditions.
16607 	 */
16608 	(void) sd_mark_rqs_idle(un, sense_xp);
16609 
16610 	/*
16611 	 * For a retryable command see if we have valid sense data, if so then
16612 	 * turn it over to sd_decode_sense() to figure out the right course of
16613 	 * action. Just fail a non-retryable command.
16614 	 */
16615 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16616 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
16617 		    SD_SENSE_DATA_IS_VALID) {
16618 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16619 		}
16620 	} else {
16621 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16622 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16623 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16624 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16625 		sd_return_failed_command(un, cmd_bp, EIO);
16626 	}
16627 }
16628 
16629 
16630 
16631 
16632 /*
16633  *    Function: sd_handle_auto_request_sense
16634  *
16635  * Description: Processing for auto-request sense information.
16636  *
16637  *   Arguments: un - ptr to associated softstate
16638  *		bp - ptr to buf(9S) for the command
16639  *		xp - ptr to the sd_xbuf for the command
16640  *		pktp - ptr to the scsi_pkt(9S) for the command
16641  *
16642  *     Context: May be called under interrupt context
16643  */
16644 
16645 static void
16646 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16647 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16648 {
16649 	struct scsi_arq_status *asp;
16650 	size_t actual_len;
16651 
16652 	ASSERT(un != NULL);
16653 	ASSERT(mutex_owned(SD_MUTEX(un)));
16654 	ASSERT(bp != NULL);
16655 	ASSERT(xp != NULL);
16656 	ASSERT(pktp != NULL);
16657 	ASSERT(pktp != un->un_rqs_pktp);
16658 	ASSERT(bp   != un->un_rqs_bp);
16659 
16660 	/*
16661 	 * For auto-request sense, we get a scsi_arq_status back from
16662 	 * the HBA, with the sense data in the sts_sensedata member.
16663 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16664 	 */
16665 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16666 
16667 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16668 		/*
16669 		 * The auto REQUEST SENSE failed; see if we can re-try
16670 		 * the original command.
16671 		 */
16672 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16673 		    "auto request sense failed (reason=%s)\n",
16674 		    scsi_rname(asp->sts_rqpkt_reason));
16675 
16676 		sd_reset_target(un, pktp);
16677 
16678 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16679 		    NULL, NULL, EIO, (clock_t)0, NULL);
16680 		return;
16681 	}
16682 
16683 	/* Save the relevant sense info into the xp for the original cmd. */
16684 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16685 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16686 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16687 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
16688 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16689 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16690 		    MAX_SENSE_LENGTH);
16691 	} else {
16692 		if (xp->xb_sense_resid > SENSE_LENGTH) {
16693 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16694 		} else {
16695 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
16696 		}
16697 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16698 			if ((((struct uscsi_cmd *)
16699 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
16700 				xp->xb_sense_resid = (((struct uscsi_cmd *)
16701 				    (xp->xb_pktinfo))->uscsi_rqlen) -
16702 				    actual_len;
16703 			} else {
16704 				xp->xb_sense_resid = 0;
16705 			}
16706 		}
16707 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
16708 	}
16709 
16710 	/*
16711 	 * See if we have valid sense data, if so then turn it over to
16712 	 * sd_decode_sense() to figure out the right course of action.
16713 	 */
16714 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
16715 	    SD_SENSE_DATA_IS_VALID) {
16716 		sd_decode_sense(un, bp, xp, pktp);
16717 	}
16718 }
16719 
16720 
16721 /*
16722  *    Function: sd_print_sense_failed_msg
16723  *
16724  * Description: Print log message when RQS has failed.
16725  *
16726  *   Arguments: un - ptr to associated softstate
16727  *		bp - ptr to buf(9S) for the command
16728  *		arg - generic message string ptr
16729  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16730  *			or SD_NO_RETRY_ISSUED
16731  *
16732  *     Context: May be called from interrupt context
16733  */
16734 
16735 static void
16736 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16737 	int code)
16738 {
16739 	char	*msgp = arg;
16740 
16741 	ASSERT(un != NULL);
16742 	ASSERT(mutex_owned(SD_MUTEX(un)));
16743 	ASSERT(bp != NULL);
16744 
16745 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16746 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16747 	}
16748 }
16749 
16750 
16751 /*
16752  *    Function: sd_validate_sense_data
16753  *
16754  * Description: Check the given sense data for validity.
16755  *		If the sense data is not valid, the command will
16756  *		be either failed or retried!
16757  *
16758  * Return Code: SD_SENSE_DATA_IS_INVALID
16759  *		SD_SENSE_DATA_IS_VALID
16760  *
16761  *     Context: May be called from interrupt context
16762  */
16763 
16764 static int
16765 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16766 	size_t actual_len)
16767 {
16768 	struct scsi_extended_sense *esp;
16769 	struct	scsi_pkt *pktp;
16770 	char	*msgp = NULL;
16771 	sd_ssc_t *sscp;
16772 
16773 	ASSERT(un != NULL);
16774 	ASSERT(mutex_owned(SD_MUTEX(un)));
16775 	ASSERT(bp != NULL);
16776 	ASSERT(bp != un->un_rqs_bp);
16777 	ASSERT(xp != NULL);
16778 	ASSERT(un->un_fm_private != NULL);
16779 
16780 	pktp = SD_GET_PKTP(bp);
16781 	ASSERT(pktp != NULL);
16782 
16783 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16784 	ASSERT(sscp != NULL);
16785 
16786 	/*
16787 	 * Check the status of the RQS command (auto or manual).
16788 	 */
16789 	switch (xp->xb_sense_status & STATUS_MASK) {
16790 	case STATUS_GOOD:
16791 		break;
16792 
16793 	case STATUS_RESERVATION_CONFLICT:
16794 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16795 		return (SD_SENSE_DATA_IS_INVALID);
16796 
16797 	case STATUS_BUSY:
16798 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16799 		    "Busy Status on REQUEST SENSE\n");
16800 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16801 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16802 		return (SD_SENSE_DATA_IS_INVALID);
16803 
16804 	case STATUS_QFULL:
16805 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16806 		    "QFULL Status on REQUEST SENSE\n");
16807 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16808 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16809 		return (SD_SENSE_DATA_IS_INVALID);
16810 
16811 	case STATUS_CHECK:
16812 	case STATUS_TERMINATED:
16813 		msgp = "Check Condition on REQUEST SENSE\n";
16814 		goto sense_failed;
16815 
16816 	default:
16817 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16818 		goto sense_failed;
16819 	}
16820 
16821 	/*
16822 	 * See if we got the minimum required amount of sense data.
16823 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16824 	 * or less.
16825 	 */
16826 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16827 	    (actual_len == 0)) {
16828 		msgp = "Request Sense couldn't get sense data\n";
16829 		goto sense_failed;
16830 	}
16831 
16832 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16833 		msgp = "Not enough sense information\n";
16834 		/* Mark the ssc_flags for detecting invalid sense data */
16835 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16836 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16837 			    "sense-data");
16838 		}
16839 		goto sense_failed;
16840 	}
16841 
16842 	/*
16843 	 * We require the extended sense data
16844 	 */
16845 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16846 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16847 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16848 			static char tmp[8];
16849 			static char buf[148];
16850 			char *p = (char *)(xp->xb_sense_data);
16851 			int i;
16852 
16853 			mutex_enter(&sd_sense_mutex);
16854 			(void) strcpy(buf, "undecodable sense information:");
16855 			for (i = 0; i < actual_len; i++) {
16856 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16857 				(void) strcpy(&buf[strlen(buf)], tmp);
16858 			}
16859 			i = strlen(buf);
16860 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16861 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16862 			mutex_exit(&sd_sense_mutex);
16863 		}
16864 
16865 		/* Mark the ssc_flags for detecting invalid sense data */
16866 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16867 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16868 			    "sense-data");
16869 		}
16870 
16871 		/* Note: Legacy behavior, fail the command with no retry */
16872 		sd_return_failed_command(un, bp, EIO);
16873 		return (SD_SENSE_DATA_IS_INVALID);
16874 	}
16875 
16876 	/*
16877 	 * Check that es_code is valid (es_class concatenated with es_code
16878 	 * make up the "response code" field.  es_class will always be 7, so
16879 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16880 	 * format.
16881 	 */
16882 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16883 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16884 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16885 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16886 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16887 		/* Mark the ssc_flags for detecting invalid sense data */
16888 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16889 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16890 			    "sense-data");
16891 		}
16892 		goto sense_failed;
16893 	}
16894 
16895 	return (SD_SENSE_DATA_IS_VALID);
16896 
16897 sense_failed:
16898 	/*
16899 	 * If the request sense failed (for whatever reason), attempt
16900 	 * to retry the original command.
16901 	 */
16902 #if defined(__i386) || defined(__amd64)
16903 	/*
16904 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16905 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16906 	 * for both SCSI/FC.
16907 	 * The SD_RETRY_DELAY value need to be adjusted here
16908 	 * when SD_RETRY_DELAY change in sddef.h
16909 	 */
16910 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16911 	    sd_print_sense_failed_msg, msgp, EIO,
16912 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16913 #else
16914 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16915 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16916 #endif
16917 
16918 	return (SD_SENSE_DATA_IS_INVALID);
16919 }
16920 
16921 /*
16922  *    Function: sd_decode_sense
16923  *
16924  * Description: Take recovery action(s) when SCSI Sense Data is received.
16925  *
16926  *     Context: Interrupt context.
16927  */
16928 
16929 static void
16930 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16931 	struct scsi_pkt *pktp)
16932 {
16933 	uint8_t sense_key;
16934 
16935 	ASSERT(un != NULL);
16936 	ASSERT(mutex_owned(SD_MUTEX(un)));
16937 	ASSERT(bp != NULL);
16938 	ASSERT(bp != un->un_rqs_bp);
16939 	ASSERT(xp != NULL);
16940 	ASSERT(pktp != NULL);
16941 
16942 	sense_key = scsi_sense_key(xp->xb_sense_data);
16943 
16944 	switch (sense_key) {
16945 	case KEY_NO_SENSE:
16946 		sd_sense_key_no_sense(un, bp, xp, pktp);
16947 		break;
16948 	case KEY_RECOVERABLE_ERROR:
16949 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
16950 		    bp, xp, pktp);
16951 		break;
16952 	case KEY_NOT_READY:
16953 		sd_sense_key_not_ready(un, xp->xb_sense_data,
16954 		    bp, xp, pktp);
16955 		break;
16956 	case KEY_MEDIUM_ERROR:
16957 	case KEY_HARDWARE_ERROR:
16958 		sd_sense_key_medium_or_hardware_error(un,
16959 		    xp->xb_sense_data, bp, xp, pktp);
16960 		break;
16961 	case KEY_ILLEGAL_REQUEST:
16962 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16963 		break;
16964 	case KEY_UNIT_ATTENTION:
16965 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
16966 		    bp, xp, pktp);
16967 		break;
16968 	case KEY_WRITE_PROTECT:
16969 	case KEY_VOLUME_OVERFLOW:
16970 	case KEY_MISCOMPARE:
16971 		sd_sense_key_fail_command(un, bp, xp, pktp);
16972 		break;
16973 	case KEY_BLANK_CHECK:
16974 		sd_sense_key_blank_check(un, bp, xp, pktp);
16975 		break;
16976 	case KEY_ABORTED_COMMAND:
16977 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16978 		break;
16979 	case KEY_VENDOR_UNIQUE:
16980 	case KEY_COPY_ABORTED:
16981 	case KEY_EQUAL:
16982 	case KEY_RESERVED:
16983 	default:
16984 		sd_sense_key_default(un, xp->xb_sense_data,
16985 		    bp, xp, pktp);
16986 		break;
16987 	}
16988 }
16989 
16990 
16991 /*
16992  *    Function: sd_dump_memory
16993  *
16994  * Description: Debug logging routine to print the contents of a user provided
16995  *		buffer. The output of the buffer is broken up into 256 byte
16996  *		segments due to a size constraint of the scsi_log.
16997  *		implementation.
16998  *
16999  *   Arguments: un - ptr to softstate
17000  *		comp - component mask
17001  *		title - "title" string to preceed data when printed
17002  *		data - ptr to data block to be printed
17003  *		len - size of data block to be printed
17004  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17005  *
17006  *     Context: May be called from interrupt context
17007  */
17008 
17009 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17010 
17011 static char *sd_dump_format_string[] = {
17012 		" 0x%02x",
17013 		" %c"
17014 };
17015 
17016 static void
17017 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17018     int len, int fmt)
17019 {
17020 	int	i, j;
17021 	int	avail_count;
17022 	int	start_offset;
17023 	int	end_offset;
17024 	size_t	entry_len;
17025 	char	*bufp;
17026 	char	*local_buf;
17027 	char	*format_string;
17028 
17029 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17030 
17031 	/*
17032 	 * In the debug version of the driver, this function is called from a
17033 	 * number of places which are NOPs in the release driver.
17034 	 * The debug driver therefore has additional methods of filtering
17035 	 * debug output.
17036 	 */
17037 #ifdef SDDEBUG
17038 	/*
17039 	 * In the debug version of the driver we can reduce the amount of debug
17040 	 * messages by setting sd_error_level to something other than
17041 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17042 	 * sd_component_mask.
17043 	 */
17044 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17045 	    (sd_error_level != SCSI_ERR_ALL)) {
17046 		return;
17047 	}
17048 	if (((sd_component_mask & comp) == 0) ||
17049 	    (sd_error_level != SCSI_ERR_ALL)) {
17050 		return;
17051 	}
17052 #else
17053 	if (sd_error_level != SCSI_ERR_ALL) {
17054 		return;
17055 	}
17056 #endif
17057 
17058 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17059 	bufp = local_buf;
17060 	/*
17061 	 * Available length is the length of local_buf[], minus the
17062 	 * length of the title string, minus one for the ":", minus
17063 	 * one for the newline, minus one for the NULL terminator.
17064 	 * This gives the #bytes available for holding the printed
17065 	 * values from the given data buffer.
17066 	 */
17067 	if (fmt == SD_LOG_HEX) {
17068 		format_string = sd_dump_format_string[0];
17069 	} else /* SD_LOG_CHAR */ {
17070 		format_string = sd_dump_format_string[1];
17071 	}
17072 	/*
17073 	 * Available count is the number of elements from the given
17074 	 * data buffer that we can fit into the available length.
17075 	 * This is based upon the size of the format string used.
17076 	 * Make one entry and find it's size.
17077 	 */
17078 	(void) sprintf(bufp, format_string, data[0]);
17079 	entry_len = strlen(bufp);
17080 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17081 
17082 	j = 0;
17083 	while (j < len) {
17084 		bufp = local_buf;
17085 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17086 		start_offset = j;
17087 
17088 		end_offset = start_offset + avail_count;
17089 
17090 		(void) sprintf(bufp, "%s:", title);
17091 		bufp += strlen(bufp);
17092 		for (i = start_offset; ((i < end_offset) && (j < len));
17093 		    i++, j++) {
17094 			(void) sprintf(bufp, format_string, data[i]);
17095 			bufp += entry_len;
17096 		}
17097 		(void) sprintf(bufp, "\n");
17098 
17099 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17100 	}
17101 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17102 }
17103 
17104 /*
17105  *    Function: sd_print_sense_msg
17106  *
17107  * Description: Log a message based upon the given sense data.
17108  *
17109  *   Arguments: un - ptr to associated softstate
17110  *		bp - ptr to buf(9S) for the command
17111  *		arg - ptr to associate sd_sense_info struct
17112  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17113  *			or SD_NO_RETRY_ISSUED
17114  *
17115  *     Context: May be called from interrupt context
17116  */
17117 
17118 static void
17119 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17120 {
17121 	struct sd_xbuf	*xp;
17122 	struct scsi_pkt	*pktp;
17123 	uint8_t *sensep;
17124 	daddr_t request_blkno;
17125 	diskaddr_t err_blkno;
17126 	int severity;
17127 	int pfa_flag;
17128 	extern struct scsi_key_strings scsi_cmds[];
17129 
17130 	ASSERT(un != NULL);
17131 	ASSERT(mutex_owned(SD_MUTEX(un)));
17132 	ASSERT(bp != NULL);
17133 	xp = SD_GET_XBUF(bp);
17134 	ASSERT(xp != NULL);
17135 	pktp = SD_GET_PKTP(bp);
17136 	ASSERT(pktp != NULL);
17137 	ASSERT(arg != NULL);
17138 
17139 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17140 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17141 
17142 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17143 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17144 		severity = SCSI_ERR_RETRYABLE;
17145 	}
17146 
17147 	/* Use absolute block number for the request block number */
17148 	request_blkno = xp->xb_blkno;
17149 
17150 	/*
17151 	 * Now try to get the error block number from the sense data
17152 	 */
17153 	sensep = xp->xb_sense_data;
17154 
17155 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17156 	    (uint64_t *)&err_blkno)) {
17157 		/*
17158 		 * We retrieved the error block number from the information
17159 		 * portion of the sense data.
17160 		 *
17161 		 * For USCSI commands we are better off using the error
17162 		 * block no. as the requested block no. (This is the best
17163 		 * we can estimate.)
17164 		 */
17165 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17166 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17167 			request_blkno = err_blkno;
17168 		}
17169 	} else {
17170 		/*
17171 		 * Without the es_valid bit set (for fixed format) or an
17172 		 * information descriptor (for descriptor format) we cannot
17173 		 * be certain of the error blkno, so just use the
17174 		 * request_blkno.
17175 		 */
17176 		err_blkno = (diskaddr_t)request_blkno;
17177 	}
17178 
17179 	/*
17180 	 * The following will log the buffer contents for the release driver
17181 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17182 	 * level is set to verbose.
17183 	 */
17184 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17185 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17186 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17187 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17188 
17189 	if (pfa_flag == FALSE) {
17190 		/* This is normally only set for USCSI */
17191 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17192 			return;
17193 		}
17194 
17195 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17196 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17197 		    (severity < sd_error_level))) {
17198 			return;
17199 		}
17200 	}
17201 	/*
17202 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17203 	 */
17204 	if ((SD_IS_LSI(un)) &&
17205 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17206 	    (scsi_sense_asc(sensep) == 0x94) &&
17207 	    (scsi_sense_ascq(sensep) == 0x01)) {
17208 		un->un_sonoma_failure_count++;
17209 		if (un->un_sonoma_failure_count > 1) {
17210 			return;
17211 		}
17212 	}
17213 
17214 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17215 	    request_blkno, err_blkno, scsi_cmds,
17216 	    (struct scsi_extended_sense *)sensep,
17217 	    un->un_additional_codes, NULL);
17218 }
17219 
17220 /*
17221  *    Function: sd_sense_key_no_sense
17222  *
17223  * Description: Recovery action when sense data was not received.
17224  *
17225  *     Context: May be called from interrupt context
17226  */
17227 
17228 static void
17229 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17230 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17231 {
17232 	struct sd_sense_info	si;
17233 
17234 	ASSERT(un != NULL);
17235 	ASSERT(mutex_owned(SD_MUTEX(un)));
17236 	ASSERT(bp != NULL);
17237 	ASSERT(xp != NULL);
17238 	ASSERT(pktp != NULL);
17239 
17240 	si.ssi_severity = SCSI_ERR_FATAL;
17241 	si.ssi_pfa_flag = FALSE;
17242 
17243 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17244 
17245 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17246 	    &si, EIO, (clock_t)0, NULL);
17247 }
17248 
17249 
17250 /*
17251  *    Function: sd_sense_key_recoverable_error
17252  *
17253  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17254  *
17255  *     Context: May be called from interrupt context
17256  */
17257 
17258 static void
17259 sd_sense_key_recoverable_error(struct sd_lun *un,
17260 	uint8_t *sense_datap,
17261 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17262 {
17263 	struct sd_sense_info	si;
17264 	uint8_t asc = scsi_sense_asc(sense_datap);
17265 
17266 	ASSERT(un != NULL);
17267 	ASSERT(mutex_owned(SD_MUTEX(un)));
17268 	ASSERT(bp != NULL);
17269 	ASSERT(xp != NULL);
17270 	ASSERT(pktp != NULL);
17271 
17272 	/*
17273 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17274 	 */
17275 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17276 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17277 		si.ssi_severity = SCSI_ERR_INFO;
17278 		si.ssi_pfa_flag = TRUE;
17279 	} else {
17280 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17281 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17282 		si.ssi_severity = SCSI_ERR_RECOVERED;
17283 		si.ssi_pfa_flag = FALSE;
17284 	}
17285 
17286 	if (pktp->pkt_resid == 0) {
17287 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17288 		sd_return_command(un, bp);
17289 		return;
17290 	}
17291 
17292 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17293 	    &si, EIO, (clock_t)0, NULL);
17294 }
17295 
17296 
17297 
17298 
17299 /*
17300  *    Function: sd_sense_key_not_ready
17301  *
17302  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17303  *
17304  *     Context: May be called from interrupt context
17305  */
17306 
17307 static void
17308 sd_sense_key_not_ready(struct sd_lun *un,
17309 	uint8_t *sense_datap,
17310 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17311 {
17312 	struct sd_sense_info	si;
17313 	uint8_t asc = scsi_sense_asc(sense_datap);
17314 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17315 
17316 	ASSERT(un != NULL);
17317 	ASSERT(mutex_owned(SD_MUTEX(un)));
17318 	ASSERT(bp != NULL);
17319 	ASSERT(xp != NULL);
17320 	ASSERT(pktp != NULL);
17321 
17322 	si.ssi_severity = SCSI_ERR_FATAL;
17323 	si.ssi_pfa_flag = FALSE;
17324 
17325 	/*
17326 	 * Update error stats after first NOT READY error. Disks may have
17327 	 * been powered down and may need to be restarted.  For CDROMs,
17328 	 * report NOT READY errors only if media is present.
17329 	 */
17330 	if ((ISCD(un) && (asc == 0x3A)) ||
17331 	    (xp->xb_nr_retry_count > 0)) {
17332 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17333 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17334 	}
17335 
17336 	/*
17337 	 * Just fail if the "not ready" retry limit has been reached.
17338 	 */
17339 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
17340 		/* Special check for error message printing for removables. */
17341 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17342 		    (ascq >= 0x04)) {
17343 			si.ssi_severity = SCSI_ERR_ALL;
17344 		}
17345 		goto fail_command;
17346 	}
17347 
17348 	/*
17349 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17350 	 * what to do.
17351 	 */
17352 	switch (asc) {
17353 	case 0x04:	/* LOGICAL UNIT NOT READY */
17354 		/*
17355 		 * disk drives that don't spin up result in a very long delay
17356 		 * in format without warning messages. We will log a message
17357 		 * if the error level is set to verbose.
17358 		 */
17359 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17360 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17361 			    "logical unit not ready, resetting disk\n");
17362 		}
17363 
17364 		/*
17365 		 * There are different requirements for CDROMs and disks for
17366 		 * the number of retries.  If a CD-ROM is giving this, it is
17367 		 * probably reading TOC and is in the process of getting
17368 		 * ready, so we should keep on trying for a long time to make
17369 		 * sure that all types of media are taken in account (for
17370 		 * some media the drive takes a long time to read TOC).  For
17371 		 * disks we do not want to retry this too many times as this
17372 		 * can cause a long hang in format when the drive refuses to
17373 		 * spin up (a very common failure).
17374 		 */
17375 		switch (ascq) {
17376 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17377 			/*
17378 			 * Disk drives frequently refuse to spin up which
17379 			 * results in a very long hang in format without
17380 			 * warning messages.
17381 			 *
17382 			 * Note: This code preserves the legacy behavior of
17383 			 * comparing xb_nr_retry_count against zero for fibre
17384 			 * channel targets instead of comparing against the
17385 			 * un_reset_retry_count value.  The reason for this
17386 			 * discrepancy has been so utterly lost beneath the
17387 			 * Sands of Time that even Indiana Jones could not
17388 			 * find it.
17389 			 */
17390 			if (un->un_f_is_fibre == TRUE) {
17391 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17392 				    (xp->xb_nr_retry_count > 0)) &&
17393 				    (un->un_startstop_timeid == NULL)) {
17394 					scsi_log(SD_DEVINFO(un), sd_label,
17395 					    CE_WARN, "logical unit not ready, "
17396 					    "resetting disk\n");
17397 					sd_reset_target(un, pktp);
17398 				}
17399 			} else {
17400 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17401 				    (xp->xb_nr_retry_count >
17402 				    un->un_reset_retry_count)) &&
17403 				    (un->un_startstop_timeid == NULL)) {
17404 					scsi_log(SD_DEVINFO(un), sd_label,
17405 					    CE_WARN, "logical unit not ready, "
17406 					    "resetting disk\n");
17407 					sd_reset_target(un, pktp);
17408 				}
17409 			}
17410 			break;
17411 
17412 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17413 			/*
17414 			 * If the target is in the process of becoming
17415 			 * ready, just proceed with the retry. This can
17416 			 * happen with CD-ROMs that take a long time to
17417 			 * read TOC after a power cycle or reset.
17418 			 */
17419 			goto do_retry;
17420 
17421 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17422 			break;
17423 
17424 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17425 			/*
17426 			 * Retries cannot help here so just fail right away.
17427 			 */
17428 			goto fail_command;
17429 
17430 		case 0x88:
17431 			/*
17432 			 * Vendor-unique code for T3/T4: it indicates a
17433 			 * path problem in a mutipathed config, but as far as
17434 			 * the target driver is concerned it equates to a fatal
17435 			 * error, so we should just fail the command right away
17436 			 * (without printing anything to the console). If this
17437 			 * is not a T3/T4, fall thru to the default recovery
17438 			 * action.
17439 			 * T3/T4 is FC only, don't need to check is_fibre
17440 			 */
17441 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17442 				sd_return_failed_command(un, bp, EIO);
17443 				return;
17444 			}
17445 			/* FALLTHRU */
17446 
17447 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17448 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17449 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17450 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17451 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17452 		default:    /* Possible future codes in SCSI spec? */
17453 			/*
17454 			 * For removable-media devices, do not retry if
17455 			 * ASCQ > 2 as these result mostly from USCSI commands
17456 			 * on MMC devices issued to check status of an
17457 			 * operation initiated in immediate mode.  Also for
17458 			 * ASCQ >= 4 do not print console messages as these
17459 			 * mainly represent a user-initiated operation
17460 			 * instead of a system failure.
17461 			 */
17462 			if (un->un_f_has_removable_media) {
17463 				si.ssi_severity = SCSI_ERR_ALL;
17464 				goto fail_command;
17465 			}
17466 			break;
17467 		}
17468 
17469 		/*
17470 		 * As part of our recovery attempt for the NOT READY
17471 		 * condition, we issue a START STOP UNIT command. However
17472 		 * we want to wait for a short delay before attempting this
17473 		 * as there may still be more commands coming back from the
17474 		 * target with the check condition. To do this we use
17475 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17476 		 * the delay interval expires. (sd_start_stop_unit_callback()
17477 		 * dispatches sd_start_stop_unit_task(), which will issue
17478 		 * the actual START STOP UNIT command. The delay interval
17479 		 * is one-half of the delay that we will use to retry the
17480 		 * command that generated the NOT READY condition.
17481 		 *
17482 		 * Note that we could just dispatch sd_start_stop_unit_task()
17483 		 * from here and allow it to sleep for the delay interval,
17484 		 * but then we would be tying up the taskq thread
17485 		 * uncesessarily for the duration of the delay.
17486 		 *
17487 		 * Do not issue the START STOP UNIT if the current command
17488 		 * is already a START STOP UNIT.
17489 		 */
17490 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17491 			break;
17492 		}
17493 
17494 		/*
17495 		 * Do not schedule the timeout if one is already pending.
17496 		 */
17497 		if (un->un_startstop_timeid != NULL) {
17498 			SD_INFO(SD_LOG_ERROR, un,
17499 			    "sd_sense_key_not_ready: restart already issued to"
17500 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17501 			    ddi_get_instance(SD_DEVINFO(un)));
17502 			break;
17503 		}
17504 
17505 		/*
17506 		 * Schedule the START STOP UNIT command, then queue the command
17507 		 * for a retry.
17508 		 *
17509 		 * Note: A timeout is not scheduled for this retry because we
17510 		 * want the retry to be serial with the START_STOP_UNIT. The
17511 		 * retry will be started when the START_STOP_UNIT is completed
17512 		 * in sd_start_stop_unit_task.
17513 		 */
17514 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17515 		    un, un->un_busy_timeout / 2);
17516 		xp->xb_nr_retry_count++;
17517 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17518 		return;
17519 
17520 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17521 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17522 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17523 			    "unit does not respond to selection\n");
17524 		}
17525 		break;
17526 
17527 	case 0x3A:	/* MEDIUM NOT PRESENT */
17528 		if (sd_error_level >= SCSI_ERR_FATAL) {
17529 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17530 			    "Caddy not inserted in drive\n");
17531 		}
17532 
17533 		sr_ejected(un);
17534 		un->un_mediastate = DKIO_EJECTED;
17535 		/* The state has changed, inform the media watch routines */
17536 		cv_broadcast(&un->un_state_cv);
17537 		/* Just fail if no media is present in the drive. */
17538 		goto fail_command;
17539 
17540 	default:
17541 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17542 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17543 			    "Unit not Ready. Additional sense code 0x%x\n",
17544 			    asc);
17545 		}
17546 		break;
17547 	}
17548 
17549 do_retry:
17550 
17551 	/*
17552 	 * Retry the command, as some targets may report NOT READY for
17553 	 * several seconds after being reset.
17554 	 */
17555 	xp->xb_nr_retry_count++;
17556 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17557 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17558 	    &si, EIO, un->un_busy_timeout, NULL);
17559 
17560 	return;
17561 
17562 fail_command:
17563 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17564 	sd_return_failed_command(un, bp, EIO);
17565 }
17566 
17567 
17568 
17569 /*
17570  *    Function: sd_sense_key_medium_or_hardware_error
17571  *
17572  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17573  *		sense key.
17574  *
17575  *     Context: May be called from interrupt context
17576  */
17577 
17578 static void
17579 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17580 	uint8_t *sense_datap,
17581 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17582 {
17583 	struct sd_sense_info	si;
17584 	uint8_t sense_key = scsi_sense_key(sense_datap);
17585 	uint8_t asc = scsi_sense_asc(sense_datap);
17586 
17587 	ASSERT(un != NULL);
17588 	ASSERT(mutex_owned(SD_MUTEX(un)));
17589 	ASSERT(bp != NULL);
17590 	ASSERT(xp != NULL);
17591 	ASSERT(pktp != NULL);
17592 
17593 	si.ssi_severity = SCSI_ERR_FATAL;
17594 	si.ssi_pfa_flag = FALSE;
17595 
17596 	if (sense_key == KEY_MEDIUM_ERROR) {
17597 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17598 	}
17599 
17600 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17601 
17602 	if ((un->un_reset_retry_count != 0) &&
17603 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17604 		mutex_exit(SD_MUTEX(un));
17605 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17606 		if (un->un_f_allow_bus_device_reset == TRUE) {
17607 
17608 			boolean_t try_resetting_target = B_TRUE;
17609 
17610 			/*
17611 			 * We need to be able to handle specific ASC when we are
17612 			 * handling a KEY_HARDWARE_ERROR. In particular
17613 			 * taking the default action of resetting the target may
17614 			 * not be the appropriate way to attempt recovery.
17615 			 * Resetting a target because of a single LUN failure
17616 			 * victimizes all LUNs on that target.
17617 			 *
17618 			 * This is true for the LSI arrays, if an LSI
17619 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17620 			 * should trust it.
17621 			 */
17622 
17623 			if (sense_key == KEY_HARDWARE_ERROR) {
17624 				switch (asc) {
17625 				case 0x84:
17626 					if (SD_IS_LSI(un)) {
17627 						try_resetting_target = B_FALSE;
17628 					}
17629 					break;
17630 				default:
17631 					break;
17632 				}
17633 			}
17634 
17635 			if (try_resetting_target == B_TRUE) {
17636 				int reset_retval = 0;
17637 				if (un->un_f_lun_reset_enabled == TRUE) {
17638 					SD_TRACE(SD_LOG_IO_CORE, un,
17639 					    "sd_sense_key_medium_or_hardware_"
17640 					    "error: issuing RESET_LUN\n");
17641 					reset_retval =
17642 					    scsi_reset(SD_ADDRESS(un),
17643 					    RESET_LUN);
17644 				}
17645 				if (reset_retval == 0) {
17646 					SD_TRACE(SD_LOG_IO_CORE, un,
17647 					    "sd_sense_key_medium_or_hardware_"
17648 					    "error: issuing RESET_TARGET\n");
17649 					(void) scsi_reset(SD_ADDRESS(un),
17650 					    RESET_TARGET);
17651 				}
17652 			}
17653 		}
17654 		mutex_enter(SD_MUTEX(un));
17655 	}
17656 
17657 	/*
17658 	 * This really ought to be a fatal error, but we will retry anyway
17659 	 * as some drives report this as a spurious error.
17660 	 */
17661 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17662 	    &si, EIO, (clock_t)0, NULL);
17663 }
17664 
17665 
17666 
17667 /*
17668  *    Function: sd_sense_key_illegal_request
17669  *
17670  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17671  *
17672  *     Context: May be called from interrupt context
17673  */
17674 
17675 static void
17676 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17677 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17678 {
17679 	struct sd_sense_info	si;
17680 
17681 	ASSERT(un != NULL);
17682 	ASSERT(mutex_owned(SD_MUTEX(un)));
17683 	ASSERT(bp != NULL);
17684 	ASSERT(xp != NULL);
17685 	ASSERT(pktp != NULL);
17686 
17687 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17688 
17689 	si.ssi_severity = SCSI_ERR_INFO;
17690 	si.ssi_pfa_flag = FALSE;
17691 
17692 	/* Pointless to retry if the target thinks it's an illegal request */
17693 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17694 	sd_return_failed_command(un, bp, EIO);
17695 }
17696 
17697 
17698 
17699 
17700 /*
17701  *    Function: sd_sense_key_unit_attention
17702  *
17703  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17704  *
17705  *     Context: May be called from interrupt context
17706  */
17707 
17708 static void
17709 sd_sense_key_unit_attention(struct sd_lun *un,
17710 	uint8_t *sense_datap,
17711 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17712 {
17713 	/*
17714 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17715 	 * like Sonoma can return UNIT ATTENTION close to a minute
17716 	 * under certain conditions.
17717 	 */
17718 	int	retry_check_flag = SD_RETRIES_UA;
17719 	boolean_t	kstat_updated = B_FALSE;
17720 	struct	sd_sense_info		si;
17721 	uint8_t asc = scsi_sense_asc(sense_datap);
17722 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
17723 
17724 	ASSERT(un != NULL);
17725 	ASSERT(mutex_owned(SD_MUTEX(un)));
17726 	ASSERT(bp != NULL);
17727 	ASSERT(xp != NULL);
17728 	ASSERT(pktp != NULL);
17729 
17730 	si.ssi_severity = SCSI_ERR_INFO;
17731 	si.ssi_pfa_flag = FALSE;
17732 
17733 
17734 	switch (asc) {
17735 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17736 		if (sd_report_pfa != 0) {
17737 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17738 			si.ssi_pfa_flag = TRUE;
17739 			retry_check_flag = SD_RETRIES_STANDARD;
17740 			goto do_retry;
17741 		}
17742 
17743 		break;
17744 
17745 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17746 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17747 			un->un_resvd_status |=
17748 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17749 		}
17750 #ifdef _LP64
17751 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
17752 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
17753 			    un, KM_NOSLEEP) == 0) {
17754 				/*
17755 				 * If we can't dispatch the task we'll just
17756 				 * live without descriptor sense.  We can
17757 				 * try again on the next "unit attention"
17758 				 */
17759 				SD_ERROR(SD_LOG_ERROR, un,
17760 				    "sd_sense_key_unit_attention: "
17761 				    "Could not dispatch "
17762 				    "sd_reenable_dsense_task\n");
17763 			}
17764 		}
17765 #endif /* _LP64 */
17766 		/* FALLTHRU */
17767 
17768 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17769 		if (!un->un_f_has_removable_media) {
17770 			break;
17771 		}
17772 
17773 		/*
17774 		 * When we get a unit attention from a removable-media device,
17775 		 * it may be in a state that will take a long time to recover
17776 		 * (e.g., from a reset).  Since we are executing in interrupt
17777 		 * context here, we cannot wait around for the device to come
17778 		 * back. So hand this command off to sd_media_change_task()
17779 		 * for deferred processing under taskq thread context. (Note
17780 		 * that the command still may be failed if a problem is
17781 		 * encountered at a later time.)
17782 		 */
17783 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17784 		    KM_NOSLEEP) == 0) {
17785 			/*
17786 			 * Cannot dispatch the request so fail the command.
17787 			 */
17788 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17789 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17790 			si.ssi_severity = SCSI_ERR_FATAL;
17791 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17792 			sd_return_failed_command(un, bp, EIO);
17793 		}
17794 
17795 		/*
17796 		 * If failed to dispatch sd_media_change_task(), we already
17797 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17798 		 * we should update kstat later if it encounters an error. So,
17799 		 * we update kstat_updated flag here.
17800 		 */
17801 		kstat_updated = B_TRUE;
17802 
17803 		/*
17804 		 * Either the command has been successfully dispatched to a
17805 		 * task Q for retrying, or the dispatch failed. In either case
17806 		 * do NOT retry again by calling sd_retry_command. This sets up
17807 		 * two retries of the same command and when one completes and
17808 		 * frees the resources the other will access freed memory,
17809 		 * a bad thing.
17810 		 */
17811 		return;
17812 
17813 	default:
17814 		break;
17815 	}
17816 
17817 	/*
17818 	 * ASC  ASCQ
17819 	 *  2A   09	Capacity data has changed
17820 	 *  2A   01	Mode parameters changed
17821 	 *  3F   0E	Reported luns data has changed
17822 	 * Arrays that support logical unit expansion should report
17823 	 * capacity changes(2Ah/09). Mode parameters changed and
17824 	 * reported luns data has changed are the approximation.
17825 	 */
17826 	if (((asc == 0x2a) && (ascq == 0x09)) ||
17827 	    ((asc == 0x2a) && (ascq == 0x01)) ||
17828 	    ((asc == 0x3f) && (ascq == 0x0e))) {
17829 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
17830 		    KM_NOSLEEP) == 0) {
17831 			SD_ERROR(SD_LOG_ERROR, un,
17832 			    "sd_sense_key_unit_attention: "
17833 			    "Could not dispatch sd_target_change_task\n");
17834 		}
17835 	}
17836 
17837 	/*
17838 	 * Update kstat if we haven't done that.
17839 	 */
17840 	if (!kstat_updated) {
17841 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17842 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17843 	}
17844 
17845 do_retry:
17846 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17847 	    EIO, SD_UA_RETRY_DELAY, NULL);
17848 }
17849 
17850 
17851 
17852 /*
17853  *    Function: sd_sense_key_fail_command
17854  *
17855  * Description: Use to fail a command when we don't like the sense key that
17856  *		was returned.
17857  *
17858  *     Context: May be called from interrupt context
17859  */
17860 
17861 static void
17862 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17863 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17864 {
17865 	struct sd_sense_info	si;
17866 
17867 	ASSERT(un != NULL);
17868 	ASSERT(mutex_owned(SD_MUTEX(un)));
17869 	ASSERT(bp != NULL);
17870 	ASSERT(xp != NULL);
17871 	ASSERT(pktp != NULL);
17872 
17873 	si.ssi_severity = SCSI_ERR_FATAL;
17874 	si.ssi_pfa_flag = FALSE;
17875 
17876 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17877 	sd_return_failed_command(un, bp, EIO);
17878 }
17879 
17880 
17881 
17882 /*
17883  *    Function: sd_sense_key_blank_check
17884  *
17885  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17886  *		Has no monetary connotation.
17887  *
17888  *     Context: May be called from interrupt context
17889  */
17890 
17891 static void
17892 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17893 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17894 {
17895 	struct sd_sense_info	si;
17896 
17897 	ASSERT(un != NULL);
17898 	ASSERT(mutex_owned(SD_MUTEX(un)));
17899 	ASSERT(bp != NULL);
17900 	ASSERT(xp != NULL);
17901 	ASSERT(pktp != NULL);
17902 
17903 	/*
17904 	 * Blank check is not fatal for removable devices, therefore
17905 	 * it does not require a console message.
17906 	 */
17907 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
17908 	    SCSI_ERR_FATAL;
17909 	si.ssi_pfa_flag = FALSE;
17910 
17911 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17912 	sd_return_failed_command(un, bp, EIO);
17913 }
17914 
17915 
17916 
17917 
17918 /*
17919  *    Function: sd_sense_key_aborted_command
17920  *
17921  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17922  *
17923  *     Context: May be called from interrupt context
17924  */
17925 
17926 static void
17927 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17928 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17929 {
17930 	struct sd_sense_info	si;
17931 
17932 	ASSERT(un != NULL);
17933 	ASSERT(mutex_owned(SD_MUTEX(un)));
17934 	ASSERT(bp != NULL);
17935 	ASSERT(xp != NULL);
17936 	ASSERT(pktp != NULL);
17937 
17938 	si.ssi_severity = SCSI_ERR_FATAL;
17939 	si.ssi_pfa_flag = FALSE;
17940 
17941 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17942 
17943 	/*
17944 	 * This really ought to be a fatal error, but we will retry anyway
17945 	 * as some drives report this as a spurious error.
17946 	 */
17947 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17948 	    &si, EIO, drv_usectohz(100000), NULL);
17949 }
17950 
17951 
17952 
17953 /*
17954  *    Function: sd_sense_key_default
17955  *
17956  * Description: Default recovery action for several SCSI sense keys (basically
17957  *		attempts a retry).
17958  *
17959  *     Context: May be called from interrupt context
17960  */
17961 
17962 static void
17963 sd_sense_key_default(struct sd_lun *un,
17964 	uint8_t *sense_datap,
17965 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17966 {
17967 	struct sd_sense_info	si;
17968 	uint8_t sense_key = scsi_sense_key(sense_datap);
17969 
17970 	ASSERT(un != NULL);
17971 	ASSERT(mutex_owned(SD_MUTEX(un)));
17972 	ASSERT(bp != NULL);
17973 	ASSERT(xp != NULL);
17974 	ASSERT(pktp != NULL);
17975 
17976 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17977 
17978 	/*
17979 	 * Undecoded sense key.	Attempt retries and hope that will fix
17980 	 * the problem.  Otherwise, we're dead.
17981 	 */
17982 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17983 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17984 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17985 	}
17986 
17987 	si.ssi_severity = SCSI_ERR_FATAL;
17988 	si.ssi_pfa_flag = FALSE;
17989 
17990 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17991 	    &si, EIO, (clock_t)0, NULL);
17992 }
17993 
17994 
17995 
17996 /*
17997  *    Function: sd_print_retry_msg
17998  *
17999  * Description: Print a message indicating the retry action being taken.
18000  *
18001  *   Arguments: un - ptr to associated softstate
18002  *		bp - ptr to buf(9S) for the command
18003  *		arg - not used.
18004  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18005  *			or SD_NO_RETRY_ISSUED
18006  *
18007  *     Context: May be called from interrupt context
18008  */
18009 /* ARGSUSED */
18010 static void
18011 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18012 {
18013 	struct sd_xbuf	*xp;
18014 	struct scsi_pkt *pktp;
18015 	char *reasonp;
18016 	char *msgp;
18017 
18018 	ASSERT(un != NULL);
18019 	ASSERT(mutex_owned(SD_MUTEX(un)));
18020 	ASSERT(bp != NULL);
18021 	pktp = SD_GET_PKTP(bp);
18022 	ASSERT(pktp != NULL);
18023 	xp = SD_GET_XBUF(bp);
18024 	ASSERT(xp != NULL);
18025 
18026 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18027 	mutex_enter(&un->un_pm_mutex);
18028 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18029 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18030 	    (pktp->pkt_flags & FLAG_SILENT)) {
18031 		mutex_exit(&un->un_pm_mutex);
18032 		goto update_pkt_reason;
18033 	}
18034 	mutex_exit(&un->un_pm_mutex);
18035 
18036 	/*
18037 	 * Suppress messages if they are all the same pkt_reason; with
18038 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18039 	 * If we are in panic, then suppress the retry messages.
18040 	 */
18041 	switch (flag) {
18042 	case SD_NO_RETRY_ISSUED:
18043 		msgp = "giving up";
18044 		break;
18045 	case SD_IMMEDIATE_RETRY_ISSUED:
18046 	case SD_DELAYED_RETRY_ISSUED:
18047 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18048 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18049 		    (sd_error_level != SCSI_ERR_ALL))) {
18050 			return;
18051 		}
18052 		msgp = "retrying command";
18053 		break;
18054 	default:
18055 		goto update_pkt_reason;
18056 	}
18057 
18058 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18059 	    scsi_rname(pktp->pkt_reason));
18060 
18061 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18062 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18063 
18064 update_pkt_reason:
18065 	/*
18066 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18067 	 * This is to prevent multiple console messages for the same failure
18068 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18069 	 * when the command is retried successfully because there still may be
18070 	 * more commands coming back with the same value of pktp->pkt_reason.
18071 	 */
18072 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18073 		un->un_last_pkt_reason = pktp->pkt_reason;
18074 	}
18075 }
18076 
18077 
18078 /*
18079  *    Function: sd_print_cmd_incomplete_msg
18080  *
18081  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18082  *
18083  *   Arguments: un - ptr to associated softstate
18084  *		bp - ptr to buf(9S) for the command
18085  *		arg - passed to sd_print_retry_msg()
18086  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18087  *			or SD_NO_RETRY_ISSUED
18088  *
18089  *     Context: May be called from interrupt context
18090  */
18091 
18092 static void
18093 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18094 	int code)
18095 {
18096 	dev_info_t	*dip;
18097 
18098 	ASSERT(un != NULL);
18099 	ASSERT(mutex_owned(SD_MUTEX(un)));
18100 	ASSERT(bp != NULL);
18101 
18102 	switch (code) {
18103 	case SD_NO_RETRY_ISSUED:
18104 		/* Command was failed. Someone turned off this target? */
18105 		if (un->un_state != SD_STATE_OFFLINE) {
18106 			/*
18107 			 * Suppress message if we are detaching and
18108 			 * device has been disconnected
18109 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18110 			 * private interface and not part of the DDI
18111 			 */
18112 			dip = un->un_sd->sd_dev;
18113 			if (!(DEVI_IS_DETACHING(dip) &&
18114 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18115 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18116 				"disk not responding to selection\n");
18117 			}
18118 			New_state(un, SD_STATE_OFFLINE);
18119 		}
18120 		break;
18121 
18122 	case SD_DELAYED_RETRY_ISSUED:
18123 	case SD_IMMEDIATE_RETRY_ISSUED:
18124 	default:
18125 		/* Command was successfully queued for retry */
18126 		sd_print_retry_msg(un, bp, arg, code);
18127 		break;
18128 	}
18129 }
18130 
18131 
18132 /*
18133  *    Function: sd_pkt_reason_cmd_incomplete
18134  *
18135  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18136  *
18137  *     Context: May be called from interrupt context
18138  */
18139 
18140 static void
18141 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18142 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18143 {
18144 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18145 
18146 	ASSERT(un != NULL);
18147 	ASSERT(mutex_owned(SD_MUTEX(un)));
18148 	ASSERT(bp != NULL);
18149 	ASSERT(xp != NULL);
18150 	ASSERT(pktp != NULL);
18151 
18152 	/* Do not do a reset if selection did not complete */
18153 	/* Note: Should this not just check the bit? */
18154 	if (pktp->pkt_state != STATE_GOT_BUS) {
18155 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18156 		sd_reset_target(un, pktp);
18157 	}
18158 
18159 	/*
18160 	 * If the target was not successfully selected, then set
18161 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18162 	 * with the target, and further retries and/or commands are
18163 	 * likely to take a long time.
18164 	 */
18165 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18166 		flag |= SD_RETRIES_FAILFAST;
18167 	}
18168 
18169 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18170 
18171 	sd_retry_command(un, bp, flag,
18172 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18173 }
18174 
18175 
18176 
18177 /*
18178  *    Function: sd_pkt_reason_cmd_tran_err
18179  *
18180  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18181  *
18182  *     Context: May be called from interrupt context
18183  */
18184 
18185 static void
18186 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18187 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18188 {
18189 	ASSERT(un != NULL);
18190 	ASSERT(mutex_owned(SD_MUTEX(un)));
18191 	ASSERT(bp != NULL);
18192 	ASSERT(xp != NULL);
18193 	ASSERT(pktp != NULL);
18194 
18195 	/*
18196 	 * Do not reset if we got a parity error, or if
18197 	 * selection did not complete.
18198 	 */
18199 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18200 	/* Note: Should this not just check the bit for pkt_state? */
18201 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18202 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18203 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18204 		sd_reset_target(un, pktp);
18205 	}
18206 
18207 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18208 
18209 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18210 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18211 }
18212 
18213 
18214 
18215 /*
18216  *    Function: sd_pkt_reason_cmd_reset
18217  *
18218  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18219  *
18220  *     Context: May be called from interrupt context
18221  */
18222 
18223 static void
18224 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18225 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18226 {
18227 	ASSERT(un != NULL);
18228 	ASSERT(mutex_owned(SD_MUTEX(un)));
18229 	ASSERT(bp != NULL);
18230 	ASSERT(xp != NULL);
18231 	ASSERT(pktp != NULL);
18232 
18233 	/* The target may still be running the command, so try to reset. */
18234 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18235 	sd_reset_target(un, pktp);
18236 
18237 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18238 
18239 	/*
18240 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18241 	 * reset because another target on this bus caused it. The target
18242 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18243 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18244 	 */
18245 
18246 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18247 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18248 }
18249 
18250 
18251 
18252 
18253 /*
18254  *    Function: sd_pkt_reason_cmd_aborted
18255  *
18256  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18257  *
18258  *     Context: May be called from interrupt context
18259  */
18260 
18261 static void
18262 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18263 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18264 {
18265 	ASSERT(un != NULL);
18266 	ASSERT(mutex_owned(SD_MUTEX(un)));
18267 	ASSERT(bp != NULL);
18268 	ASSERT(xp != NULL);
18269 	ASSERT(pktp != NULL);
18270 
18271 	/* The target may still be running the command, so try to reset. */
18272 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18273 	sd_reset_target(un, pktp);
18274 
18275 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18276 
18277 	/*
18278 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18279 	 * aborted because another target on this bus caused it. The target
18280 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18281 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18282 	 */
18283 
18284 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18285 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18286 }
18287 
18288 
18289 
18290 /*
18291  *    Function: sd_pkt_reason_cmd_timeout
18292  *
18293  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18294  *
18295  *     Context: May be called from interrupt context
18296  */
18297 
18298 static void
18299 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18300 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18301 {
18302 	ASSERT(un != NULL);
18303 	ASSERT(mutex_owned(SD_MUTEX(un)));
18304 	ASSERT(bp != NULL);
18305 	ASSERT(xp != NULL);
18306 	ASSERT(pktp != NULL);
18307 
18308 
18309 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18310 	sd_reset_target(un, pktp);
18311 
18312 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18313 
18314 	/*
18315 	 * A command timeout indicates that we could not establish
18316 	 * communication with the target, so set SD_RETRIES_FAILFAST
18317 	 * as further retries/commands are likely to take a long time.
18318 	 */
18319 	sd_retry_command(un, bp,
18320 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18321 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18322 }
18323 
18324 
18325 
18326 /*
18327  *    Function: sd_pkt_reason_cmd_unx_bus_free
18328  *
18329  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18330  *
18331  *     Context: May be called from interrupt context
18332  */
18333 
18334 static void
18335 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18336 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18337 {
18338 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18339 
18340 	ASSERT(un != NULL);
18341 	ASSERT(mutex_owned(SD_MUTEX(un)));
18342 	ASSERT(bp != NULL);
18343 	ASSERT(xp != NULL);
18344 	ASSERT(pktp != NULL);
18345 
18346 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18347 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18348 
18349 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18350 	    sd_print_retry_msg : NULL;
18351 
18352 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18353 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18354 }
18355 
18356 
18357 /*
18358  *    Function: sd_pkt_reason_cmd_tag_reject
18359  *
18360  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18361  *
18362  *     Context: May be called from interrupt context
18363  */
18364 
18365 static void
18366 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18367 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18368 {
18369 	ASSERT(un != NULL);
18370 	ASSERT(mutex_owned(SD_MUTEX(un)));
18371 	ASSERT(bp != NULL);
18372 	ASSERT(xp != NULL);
18373 	ASSERT(pktp != NULL);
18374 
18375 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18376 	pktp->pkt_flags = 0;
18377 	un->un_tagflags = 0;
18378 	if (un->un_f_opt_queueing == TRUE) {
18379 		un->un_throttle = min(un->un_throttle, 3);
18380 	} else {
18381 		un->un_throttle = 1;
18382 	}
18383 	mutex_exit(SD_MUTEX(un));
18384 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18385 	mutex_enter(SD_MUTEX(un));
18386 
18387 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18388 
18389 	/* Legacy behavior not to check retry counts here. */
18390 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18391 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18392 }
18393 
18394 
18395 /*
18396  *    Function: sd_pkt_reason_default
18397  *
18398  * Description: Default recovery actions for SCSA pkt_reason values that
18399  *		do not have more explicit recovery actions.
18400  *
18401  *     Context: May be called from interrupt context
18402  */
18403 
18404 static void
18405 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18406 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18407 {
18408 	ASSERT(un != NULL);
18409 	ASSERT(mutex_owned(SD_MUTEX(un)));
18410 	ASSERT(bp != NULL);
18411 	ASSERT(xp != NULL);
18412 	ASSERT(pktp != NULL);
18413 
18414 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18415 	sd_reset_target(un, pktp);
18416 
18417 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18418 
18419 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18420 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18421 }
18422 
18423 
18424 
18425 /*
18426  *    Function: sd_pkt_status_check_condition
18427  *
18428  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18429  *
18430  *     Context: May be called from interrupt context
18431  */
18432 
18433 static void
18434 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18435 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18436 {
18437 	ASSERT(un != NULL);
18438 	ASSERT(mutex_owned(SD_MUTEX(un)));
18439 	ASSERT(bp != NULL);
18440 	ASSERT(xp != NULL);
18441 	ASSERT(pktp != NULL);
18442 
18443 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18444 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18445 
18446 	/*
18447 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18448 	 * command will be retried after the request sense). Otherwise, retry
18449 	 * the command. Note: we are issuing the request sense even though the
18450 	 * retry limit may have been reached for the failed command.
18451 	 */
18452 	if (un->un_f_arq_enabled == FALSE) {
18453 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18454 		    "no ARQ, sending request sense command\n");
18455 		sd_send_request_sense_command(un, bp, pktp);
18456 	} else {
18457 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18458 		    "ARQ,retrying request sense command\n");
18459 #if defined(__i386) || defined(__amd64)
18460 		/*
18461 		 * The SD_RETRY_DELAY value need to be adjusted here
18462 		 * when SD_RETRY_DELAY change in sddef.h
18463 		 */
18464 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18465 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18466 		    NULL);
18467 #else
18468 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18469 		    EIO, SD_RETRY_DELAY, NULL);
18470 #endif
18471 	}
18472 
18473 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18474 }
18475 
18476 
18477 /*
18478  *    Function: sd_pkt_status_busy
18479  *
18480  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18481  *
18482  *     Context: May be called from interrupt context
18483  */
18484 
18485 static void
18486 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18487 	struct scsi_pkt *pktp)
18488 {
18489 	ASSERT(un != NULL);
18490 	ASSERT(mutex_owned(SD_MUTEX(un)));
18491 	ASSERT(bp != NULL);
18492 	ASSERT(xp != NULL);
18493 	ASSERT(pktp != NULL);
18494 
18495 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18496 	    "sd_pkt_status_busy: entry\n");
18497 
18498 	/* If retries are exhausted, just fail the command. */
18499 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18500 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18501 		    "device busy too long\n");
18502 		sd_return_failed_command(un, bp, EIO);
18503 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18504 		    "sd_pkt_status_busy: exit\n");
18505 		return;
18506 	}
18507 	xp->xb_retry_count++;
18508 
18509 	/*
18510 	 * Try to reset the target. However, we do not want to perform
18511 	 * more than one reset if the device continues to fail. The reset
18512 	 * will be performed when the retry count reaches the reset
18513 	 * threshold.  This threshold should be set such that at least
18514 	 * one retry is issued before the reset is performed.
18515 	 */
18516 	if (xp->xb_retry_count ==
18517 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18518 		int rval = 0;
18519 		mutex_exit(SD_MUTEX(un));
18520 		if (un->un_f_allow_bus_device_reset == TRUE) {
18521 			/*
18522 			 * First try to reset the LUN; if we cannot then
18523 			 * try to reset the target.
18524 			 */
18525 			if (un->un_f_lun_reset_enabled == TRUE) {
18526 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18527 				    "sd_pkt_status_busy: RESET_LUN\n");
18528 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18529 			}
18530 			if (rval == 0) {
18531 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18532 				    "sd_pkt_status_busy: RESET_TARGET\n");
18533 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18534 			}
18535 		}
18536 		if (rval == 0) {
18537 			/*
18538 			 * If the RESET_LUN and/or RESET_TARGET failed,
18539 			 * try RESET_ALL
18540 			 */
18541 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18542 			    "sd_pkt_status_busy: RESET_ALL\n");
18543 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18544 		}
18545 		mutex_enter(SD_MUTEX(un));
18546 		if (rval == 0) {
18547 			/*
18548 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18549 			 * At this point we give up & fail the command.
18550 			 */
18551 			sd_return_failed_command(un, bp, EIO);
18552 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18553 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18554 			return;
18555 		}
18556 	}
18557 
18558 	/*
18559 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18560 	 * we have already checked the retry counts above.
18561 	 */
18562 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18563 	    EIO, un->un_busy_timeout, NULL);
18564 
18565 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18566 	    "sd_pkt_status_busy: exit\n");
18567 }
18568 
18569 
18570 /*
18571  *    Function: sd_pkt_status_reservation_conflict
18572  *
18573  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18574  *		command status.
18575  *
18576  *     Context: May be called from interrupt context
18577  */
18578 
18579 static void
18580 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18581 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18582 {
18583 	ASSERT(un != NULL);
18584 	ASSERT(mutex_owned(SD_MUTEX(un)));
18585 	ASSERT(bp != NULL);
18586 	ASSERT(xp != NULL);
18587 	ASSERT(pktp != NULL);
18588 
18589 	/*
18590 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18591 	 * conflict could be due to various reasons like incorrect keys, not
18592 	 * registered or not reserved etc. So, we return EACCES to the caller.
18593 	 */
18594 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18595 		int cmd = SD_GET_PKT_OPCODE(pktp);
18596 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18597 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18598 			sd_return_failed_command(un, bp, EACCES);
18599 			return;
18600 		}
18601 	}
18602 
18603 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18604 
18605 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18606 		if (sd_failfast_enable != 0) {
18607 			/* By definition, we must panic here.... */
18608 			sd_panic_for_res_conflict(un);
18609 			/*NOTREACHED*/
18610 		}
18611 		SD_ERROR(SD_LOG_IO, un,
18612 		    "sd_handle_resv_conflict: Disk Reserved\n");
18613 		sd_return_failed_command(un, bp, EACCES);
18614 		return;
18615 	}
18616 
18617 	/*
18618 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18619 	 * property is set (default is 1). Retries will not succeed
18620 	 * on a disk reserved by another initiator. HA systems
18621 	 * may reset this via sd.conf to avoid these retries.
18622 	 *
18623 	 * Note: The legacy return code for this failure is EIO, however EACCES
18624 	 * seems more appropriate for a reservation conflict.
18625 	 */
18626 	if (sd_retry_on_reservation_conflict == 0) {
18627 		SD_ERROR(SD_LOG_IO, un,
18628 		    "sd_handle_resv_conflict: Device Reserved\n");
18629 		sd_return_failed_command(un, bp, EIO);
18630 		return;
18631 	}
18632 
18633 	/*
18634 	 * Retry the command if we can.
18635 	 *
18636 	 * Note: The legacy return code for this failure is EIO, however EACCES
18637 	 * seems more appropriate for a reservation conflict.
18638 	 */
18639 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18640 	    (clock_t)2, NULL);
18641 }
18642 
18643 
18644 
18645 /*
18646  *    Function: sd_pkt_status_qfull
18647  *
18648  * Description: Handle a QUEUE FULL condition from the target.  This can
18649  *		occur if the HBA does not handle the queue full condition.
18650  *		(Basically this means third-party HBAs as Sun HBAs will
18651  *		handle the queue full condition.)  Note that if there are
18652  *		some commands already in the transport, then the queue full
18653  *		has occurred because the queue for this nexus is actually
18654  *		full. If there are no commands in the transport, then the
18655  *		queue full is resulting from some other initiator or lun
18656  *		consuming all the resources at the target.
18657  *
18658  *     Context: May be called from interrupt context
18659  */
18660 
18661 static void
18662 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18663 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18664 {
18665 	ASSERT(un != NULL);
18666 	ASSERT(mutex_owned(SD_MUTEX(un)));
18667 	ASSERT(bp != NULL);
18668 	ASSERT(xp != NULL);
18669 	ASSERT(pktp != NULL);
18670 
18671 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18672 	    "sd_pkt_status_qfull: entry\n");
18673 
18674 	/*
18675 	 * Just lower the QFULL throttle and retry the command.  Note that
18676 	 * we do not limit the number of retries here.
18677 	 */
18678 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18679 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18680 	    SD_RESTART_TIMEOUT, NULL);
18681 
18682 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18683 	    "sd_pkt_status_qfull: exit\n");
18684 }
18685 
18686 
18687 /*
18688  *    Function: sd_reset_target
18689  *
18690  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18691  *		RESET_TARGET, or RESET_ALL.
18692  *
18693  *     Context: May be called under interrupt context.
18694  */
18695 
18696 static void
18697 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18698 {
18699 	int rval = 0;
18700 
18701 	ASSERT(un != NULL);
18702 	ASSERT(mutex_owned(SD_MUTEX(un)));
18703 	ASSERT(pktp != NULL);
18704 
18705 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18706 
18707 	/*
18708 	 * No need to reset if the transport layer has already done so.
18709 	 */
18710 	if ((pktp->pkt_statistics &
18711 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18712 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18713 		    "sd_reset_target: no reset\n");
18714 		return;
18715 	}
18716 
18717 	mutex_exit(SD_MUTEX(un));
18718 
18719 	if (un->un_f_allow_bus_device_reset == TRUE) {
18720 		if (un->un_f_lun_reset_enabled == TRUE) {
18721 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18722 			    "sd_reset_target: RESET_LUN\n");
18723 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18724 		}
18725 		if (rval == 0) {
18726 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18727 			    "sd_reset_target: RESET_TARGET\n");
18728 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18729 		}
18730 	}
18731 
18732 	if (rval == 0) {
18733 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18734 		    "sd_reset_target: RESET_ALL\n");
18735 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18736 	}
18737 
18738 	mutex_enter(SD_MUTEX(un));
18739 
18740 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18741 }
18742 
18743 /*
18744  *    Function: sd_target_change_task
18745  *
18746  * Description: Handle dynamic target change
18747  *
18748  *     Context: Executes in a taskq() thread context
18749  */
18750 static void
18751 sd_target_change_task(void *arg)
18752 {
18753 	struct sd_lun		*un = arg;
18754 	uint64_t		capacity;
18755 	diskaddr_t		label_cap;
18756 	uint_t			lbasize;
18757 	sd_ssc_t		*ssc;
18758 
18759 	ASSERT(un != NULL);
18760 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18761 
18762 	if ((un->un_f_blockcount_is_valid == FALSE) ||
18763 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
18764 		return;
18765 	}
18766 
18767 	ssc = sd_ssc_init(un);
18768 
18769 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
18770 	    &lbasize, SD_PATH_DIRECT) != 0) {
18771 		SD_ERROR(SD_LOG_ERROR, un,
18772 		    "sd_target_change_task: fail to read capacity\n");
18773 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
18774 		goto task_exit;
18775 	}
18776 
18777 	mutex_enter(SD_MUTEX(un));
18778 	if (capacity <= un->un_blockcount) {
18779 		mutex_exit(SD_MUTEX(un));
18780 		goto task_exit;
18781 	}
18782 
18783 	sd_update_block_info(un, lbasize, capacity);
18784 	mutex_exit(SD_MUTEX(un));
18785 
18786 	/*
18787 	 * If lun is EFI labeled and lun capacity is greater than the
18788 	 * capacity contained in the label, log a sys event.
18789 	 */
18790 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
18791 	    (void*)SD_PATH_DIRECT) == 0) {
18792 		mutex_enter(SD_MUTEX(un));
18793 		if (un->un_f_blockcount_is_valid &&
18794 		    un->un_blockcount > label_cap) {
18795 			mutex_exit(SD_MUTEX(un));
18796 			sd_log_lun_expansion_event(un, KM_SLEEP);
18797 		} else {
18798 			mutex_exit(SD_MUTEX(un));
18799 		}
18800 	}
18801 
18802 task_exit:
18803 	sd_ssc_fini(ssc);
18804 }
18805 
18806 /*
18807  *    Function: sd_log_lun_expansion_event
18808  *
18809  * Description: Log lun expansion sys event
18810  *
18811  *     Context: Never called from interrupt context
18812  */
18813 static void
18814 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
18815 {
18816 	int err;
18817 	char			*path;
18818 	nvlist_t		*dle_attr_list;
18819 
18820 	/* Allocate and build sysevent attribute list */
18821 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
18822 	if (err != 0) {
18823 		SD_ERROR(SD_LOG_ERROR, un,
18824 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18825 		return;
18826 	}
18827 
18828 	path = kmem_alloc(MAXPATHLEN, km_flag);
18829 	if (path == NULL) {
18830 		nvlist_free(dle_attr_list);
18831 		SD_ERROR(SD_LOG_ERROR, un,
18832 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18833 		return;
18834 	}
18835 	/*
18836 	 * Add path attribute to identify the lun.
18837 	 * We are using minor node 'a' as the sysevent attribute.
18838 	 */
18839 	(void) snprintf(path, MAXPATHLEN, "/devices");
18840 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
18841 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
18842 	    ":a");
18843 
18844 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
18845 	if (err != 0) {
18846 		nvlist_free(dle_attr_list);
18847 		kmem_free(path, MAXPATHLEN);
18848 		SD_ERROR(SD_LOG_ERROR, un,
18849 		    "sd_log_lun_expansion_event: fail to add attribute\n");
18850 		return;
18851 	}
18852 
18853 	/* Log dynamic lun expansion sysevent */
18854 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
18855 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
18856 	if (err != DDI_SUCCESS) {
18857 		SD_ERROR(SD_LOG_ERROR, un,
18858 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
18859 	}
18860 
18861 	nvlist_free(dle_attr_list);
18862 	kmem_free(path, MAXPATHLEN);
18863 }
18864 
18865 /*
18866  *    Function: sd_media_change_task
18867  *
18868  * Description: Recovery action for CDROM to become available.
18869  *
18870  *     Context: Executes in a taskq() thread context
18871  */
18872 
18873 static void
18874 sd_media_change_task(void *arg)
18875 {
18876 	struct	scsi_pkt	*pktp = arg;
18877 	struct	sd_lun		*un;
18878 	struct	buf		*bp;
18879 	struct	sd_xbuf		*xp;
18880 	int	err		= 0;
18881 	int	retry_count	= 0;
18882 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18883 	struct	sd_sense_info	si;
18884 
18885 	ASSERT(pktp != NULL);
18886 	bp = (struct buf *)pktp->pkt_private;
18887 	ASSERT(bp != NULL);
18888 	xp = SD_GET_XBUF(bp);
18889 	ASSERT(xp != NULL);
18890 	un = SD_GET_UN(bp);
18891 	ASSERT(un != NULL);
18892 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18893 	ASSERT(un->un_f_monitor_media_state);
18894 
18895 	si.ssi_severity = SCSI_ERR_INFO;
18896 	si.ssi_pfa_flag = FALSE;
18897 
18898 	/*
18899 	 * When a reset is issued on a CDROM, it takes a long time to
18900 	 * recover. First few attempts to read capacity and other things
18901 	 * related to handling unit attention fail (with a ASC 0x4 and
18902 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18903 	 * to limit the retries in other cases of genuine failures like
18904 	 * no media in drive.
18905 	 */
18906 	while (retry_count++ < retry_limit) {
18907 		if ((err = sd_handle_mchange(un)) == 0) {
18908 			break;
18909 		}
18910 		if (err == EAGAIN) {
18911 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18912 		}
18913 		/* Sleep for 0.5 sec. & try again */
18914 		delay(drv_usectohz(500000));
18915 	}
18916 
18917 	/*
18918 	 * Dispatch (retry or fail) the original command here,
18919 	 * along with appropriate console messages....
18920 	 *
18921 	 * Must grab the mutex before calling sd_retry_command,
18922 	 * sd_print_sense_msg and sd_return_failed_command.
18923 	 */
18924 	mutex_enter(SD_MUTEX(un));
18925 	if (err != SD_CMD_SUCCESS) {
18926 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18927 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18928 		si.ssi_severity = SCSI_ERR_FATAL;
18929 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18930 		sd_return_failed_command(un, bp, EIO);
18931 	} else {
18932 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18933 		    &si, EIO, (clock_t)0, NULL);
18934 	}
18935 	mutex_exit(SD_MUTEX(un));
18936 }
18937 
18938 
18939 
18940 /*
18941  *    Function: sd_handle_mchange
18942  *
18943  * Description: Perform geometry validation & other recovery when CDROM
18944  *		has been removed from drive.
18945  *
18946  * Return Code: 0 for success
18947  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18948  *		sd_send_scsi_READ_CAPACITY()
18949  *
18950  *     Context: Executes in a taskq() thread context
18951  */
18952 
18953 static int
18954 sd_handle_mchange(struct sd_lun *un)
18955 {
18956 	uint64_t	capacity;
18957 	uint32_t	lbasize;
18958 	int		rval;
18959 	sd_ssc_t	*ssc;
18960 
18961 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18962 	ASSERT(un->un_f_monitor_media_state);
18963 
18964 	ssc = sd_ssc_init(un);
18965 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
18966 	    SD_PATH_DIRECT_PRIORITY);
18967 
18968 	if (rval != 0)
18969 		goto failed;
18970 
18971 	mutex_enter(SD_MUTEX(un));
18972 	sd_update_block_info(un, lbasize, capacity);
18973 
18974 	if (un->un_errstats != NULL) {
18975 		struct	sd_errstats *stp =
18976 		    (struct sd_errstats *)un->un_errstats->ks_data;
18977 		stp->sd_capacity.value.ui64 = (uint64_t)
18978 		    ((uint64_t)un->un_blockcount *
18979 		    (uint64_t)un->un_tgt_blocksize);
18980 	}
18981 
18982 	/*
18983 	 * Check if the media in the device is writable or not
18984 	 */
18985 	if (ISCD(un)) {
18986 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
18987 	}
18988 
18989 	/*
18990 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18991 	 * valid geometry.
18992 	 */
18993 	mutex_exit(SD_MUTEX(un));
18994 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
18995 
18996 
18997 	if (cmlb_validate(un->un_cmlbhandle, 0,
18998 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
18999 		sd_ssc_fini(ssc);
19000 		return (EIO);
19001 	} else {
19002 		if (un->un_f_pkstats_enabled) {
19003 			sd_set_pstats(un);
19004 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19005 			    "sd_handle_mchange: un:0x%p pstats created and "
19006 			    "set\n", un);
19007 		}
19008 	}
19009 
19010 	/*
19011 	 * Try to lock the door
19012 	 */
19013 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19014 	    SD_PATH_DIRECT_PRIORITY);
19015 failed:
19016 	if (rval != 0)
19017 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19018 	sd_ssc_fini(ssc);
19019 	return (rval);
19020 }
19021 
19022 
19023 /*
19024  *    Function: sd_send_scsi_DOORLOCK
19025  *
19026  * Description: Issue the scsi DOOR LOCK command
19027  *
19028  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19029  *                      structure for this target.
19030  *		flag  - SD_REMOVAL_ALLOW
19031  *			SD_REMOVAL_PREVENT
19032  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19033  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19034  *			to use the USCSI "direct" chain and bypass the normal
19035  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19036  *			command is issued as part of an error recovery action.
19037  *
19038  * Return Code: 0   - Success
19039  *		errno return code from sd_ssc_send()
19040  *
19041  *     Context: Can sleep.
19042  */
19043 
19044 static int
19045 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19046 {
19047 	struct scsi_extended_sense	sense_buf;
19048 	union scsi_cdb		cdb;
19049 	struct uscsi_cmd	ucmd_buf;
19050 	int			status;
19051 	struct sd_lun		*un;
19052 
19053 	ASSERT(ssc != NULL);
19054 	un = ssc->ssc_un;
19055 	ASSERT(un != NULL);
19056 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19057 
19058 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19059 
19060 	/* already determined doorlock is not supported, fake success */
19061 	if (un->un_f_doorlock_supported == FALSE) {
19062 		return (0);
19063 	}
19064 
19065 	/*
19066 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19067 	 * ignore the command so we can complete the eject
19068 	 * operation.
19069 	 */
19070 	if (flag == SD_REMOVAL_PREVENT) {
19071 		mutex_enter(SD_MUTEX(un));
19072 		if (un->un_f_ejecting == TRUE) {
19073 			mutex_exit(SD_MUTEX(un));
19074 			return (EAGAIN);
19075 		}
19076 		mutex_exit(SD_MUTEX(un));
19077 	}
19078 
19079 	bzero(&cdb, sizeof (cdb));
19080 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19081 
19082 	cdb.scc_cmd = SCMD_DOORLOCK;
19083 	cdb.cdb_opaque[4] = (uchar_t)flag;
19084 
19085 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19086 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19087 	ucmd_buf.uscsi_bufaddr	= NULL;
19088 	ucmd_buf.uscsi_buflen	= 0;
19089 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19090 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19091 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19092 	ucmd_buf.uscsi_timeout	= 15;
19093 
19094 	SD_TRACE(SD_LOG_IO, un,
19095 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19096 
19097 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19098 	    UIO_SYSSPACE, path_flag);
19099 
19100 	if (status == 0)
19101 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19102 
19103 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19104 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19105 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19106 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19107 
19108 		/* fake success and skip subsequent doorlock commands */
19109 		un->un_f_doorlock_supported = FALSE;
19110 		return (0);
19111 	}
19112 
19113 	return (status);
19114 }
19115 
19116 /*
19117  *    Function: sd_send_scsi_READ_CAPACITY
19118  *
19119  * Description: This routine uses the scsi READ CAPACITY command to determine
19120  *		the device capacity in number of blocks and the device native
19121  *		block size. If this function returns a failure, then the
19122  *		values in *capp and *lbap are undefined.  If the capacity
19123  *		returned is 0xffffffff then the lun is too large for a
19124  *		normal READ CAPACITY command and the results of a
19125  *		READ CAPACITY 16 will be used instead.
19126  *
19127  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19128  *		capp - ptr to unsigned 64-bit variable to receive the
19129  *			capacity value from the command.
19130  *		lbap - ptr to unsigned 32-bit varaible to receive the
19131  *			block size value from the command
19132  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19133  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19134  *			to use the USCSI "direct" chain and bypass the normal
19135  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19136  *			command is issued as part of an error recovery action.
19137  *
19138  * Return Code: 0   - Success
19139  *		EIO - IO error
19140  *		EACCES - Reservation conflict detected
19141  *		EAGAIN - Device is becoming ready
19142  *		errno return code from sd_ssc_send()
19143  *
19144  *     Context: Can sleep.  Blocks until command completes.
19145  */
19146 
19147 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19148 
19149 static int
19150 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19151 	int path_flag)
19152 {
19153 	struct	scsi_extended_sense	sense_buf;
19154 	struct	uscsi_cmd	ucmd_buf;
19155 	union	scsi_cdb	cdb;
19156 	uint32_t		*capacity_buf;
19157 	uint64_t		capacity;
19158 	uint32_t		lbasize;
19159 	int			status;
19160 	struct sd_lun		*un;
19161 
19162 	ASSERT(ssc != NULL);
19163 
19164 	un = ssc->ssc_un;
19165 	ASSERT(un != NULL);
19166 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19167 	ASSERT(capp != NULL);
19168 	ASSERT(lbap != NULL);
19169 
19170 	SD_TRACE(SD_LOG_IO, un,
19171 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19172 
19173 	/*
19174 	 * First send a READ_CAPACITY command to the target.
19175 	 * (This command is mandatory under SCSI-2.)
19176 	 *
19177 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19178 	 * Medium Indicator bit is cleared.  The address field must be
19179 	 * zero if the PMI bit is zero.
19180 	 */
19181 	bzero(&cdb, sizeof (cdb));
19182 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19183 
19184 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19185 
19186 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19187 
19188 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19189 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19190 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19191 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19192 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19193 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19194 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19195 	ucmd_buf.uscsi_timeout	= 60;
19196 
19197 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19198 	    UIO_SYSSPACE, path_flag);
19199 
19200 	switch (status) {
19201 	case 0:
19202 		/* Return failure if we did not get valid capacity data. */
19203 		if (ucmd_buf.uscsi_resid != 0) {
19204 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19205 			    "sd_send_scsi_READ_CAPACITY received "
19206 			    "invalid capacity data");
19207 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19208 			return (EIO);
19209 		}
19210 
19211 		/*
19212 		 * Read capacity and block size from the READ CAPACITY 10 data.
19213 		 * This data may be adjusted later due to device specific
19214 		 * issues.
19215 		 *
19216 		 * According to the SCSI spec, the READ CAPACITY 10
19217 		 * command returns the following:
19218 		 *
19219 		 *  bytes 0-3: Maximum logical block address available.
19220 		 *		(MSB in byte:0 & LSB in byte:3)
19221 		 *
19222 		 *  bytes 4-7: Block length in bytes
19223 		 *		(MSB in byte:4 & LSB in byte:7)
19224 		 *
19225 		 */
19226 		capacity = BE_32(capacity_buf[0]);
19227 		lbasize = BE_32(capacity_buf[1]);
19228 
19229 		/*
19230 		 * Done with capacity_buf
19231 		 */
19232 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19233 
19234 		/*
19235 		 * if the reported capacity is set to all 0xf's, then
19236 		 * this disk is too large and requires SBC-2 commands.
19237 		 * Reissue the request using READ CAPACITY 16.
19238 		 */
19239 		if (capacity == 0xffffffff) {
19240 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19241 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
19242 			    &lbasize, path_flag);
19243 			if (status != 0) {
19244 				return (status);
19245 			}
19246 		}
19247 		break;	/* Success! */
19248 	case EIO:
19249 		switch (ucmd_buf.uscsi_status) {
19250 		case STATUS_RESERVATION_CONFLICT:
19251 			status = EACCES;
19252 			break;
19253 		case STATUS_CHECK:
19254 			/*
19255 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19256 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19257 			 */
19258 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19259 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19260 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19261 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19262 				return (EAGAIN);
19263 			}
19264 			break;
19265 		default:
19266 			break;
19267 		}
19268 		/* FALLTHRU */
19269 	default:
19270 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19271 		return (status);
19272 	}
19273 
19274 	/*
19275 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19276 	 * (2352 and 0 are common) so for these devices always force the value
19277 	 * to 2048 as required by the ATAPI specs.
19278 	 */
19279 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19280 		lbasize = 2048;
19281 	}
19282 
19283 	/*
19284 	 * Get the maximum LBA value from the READ CAPACITY data.
19285 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19286 	 * was cleared when issuing the command. This means that the LBA
19287 	 * returned from the device is the LBA of the last logical block
19288 	 * on the logical unit.  The actual logical block count will be
19289 	 * this value plus one.
19290 	 *
19291 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19292 	 * so scale the capacity value to reflect this.
19293 	 */
19294 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19295 
19296 	/*
19297 	 * Copy the values from the READ CAPACITY command into the space
19298 	 * provided by the caller.
19299 	 */
19300 	*capp = capacity;
19301 	*lbap = lbasize;
19302 
19303 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19304 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19305 
19306 	/*
19307 	 * Both the lbasize and capacity from the device must be nonzero,
19308 	 * otherwise we assume that the values are not valid and return
19309 	 * failure to the caller. (4203735)
19310 	 */
19311 	if ((capacity == 0) || (lbasize == 0)) {
19312 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19313 		    "sd_send_scsi_READ_CAPACITY received invalid value "
19314 		    "capacity %llu lbasize %d", capacity, lbasize);
19315 		return (EIO);
19316 	}
19317 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19318 	return (0);
19319 }
19320 
19321 /*
19322  *    Function: sd_send_scsi_READ_CAPACITY_16
19323  *
19324  * Description: This routine uses the scsi READ CAPACITY 16 command to
19325  *		determine the device capacity in number of blocks and the
19326  *		device native block size.  If this function returns a failure,
19327  *		then the values in *capp and *lbap are undefined.
19328  *		This routine should always be called by
19329  *		sd_send_scsi_READ_CAPACITY which will appy any device
19330  *		specific adjustments to capacity and lbasize.
19331  *
19332  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19333  *		capp - ptr to unsigned 64-bit variable to receive the
19334  *			capacity value from the command.
19335  *		lbap - ptr to unsigned 32-bit varaible to receive the
19336  *			block size value from the command
19337  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19338  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19339  *			to use the USCSI "direct" chain and bypass the normal
19340  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19341  *			this command is issued as part of an error recovery
19342  *			action.
19343  *
19344  * Return Code: 0   - Success
19345  *		EIO - IO error
19346  *		EACCES - Reservation conflict detected
19347  *		EAGAIN - Device is becoming ready
19348  *		errno return code from sd_ssc_send()
19349  *
19350  *     Context: Can sleep.  Blocks until command completes.
19351  */
19352 
19353 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19354 
19355 static int
19356 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
19357 	uint32_t *lbap, int path_flag)
19358 {
19359 	struct	scsi_extended_sense	sense_buf;
19360 	struct	uscsi_cmd	ucmd_buf;
19361 	union	scsi_cdb	cdb;
19362 	uint64_t		*capacity16_buf;
19363 	uint64_t		capacity;
19364 	uint32_t		lbasize;
19365 	int			status;
19366 	struct sd_lun		*un;
19367 
19368 	ASSERT(ssc != NULL);
19369 
19370 	un = ssc->ssc_un;
19371 	ASSERT(un != NULL);
19372 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19373 	ASSERT(capp != NULL);
19374 	ASSERT(lbap != NULL);
19375 
19376 	SD_TRACE(SD_LOG_IO, un,
19377 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19378 
19379 	/*
19380 	 * First send a READ_CAPACITY_16 command to the target.
19381 	 *
19382 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19383 	 * Medium Indicator bit is cleared.  The address field must be
19384 	 * zero if the PMI bit is zero.
19385 	 */
19386 	bzero(&cdb, sizeof (cdb));
19387 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19388 
19389 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19390 
19391 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19392 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19393 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19394 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19395 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19396 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19397 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19398 	ucmd_buf.uscsi_timeout	= 60;
19399 
19400 	/*
19401 	 * Read Capacity (16) is a Service Action In command.  One
19402 	 * command byte (0x9E) is overloaded for multiple operations,
19403 	 * with the second CDB byte specifying the desired operation
19404 	 */
19405 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19406 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19407 
19408 	/*
19409 	 * Fill in allocation length field
19410 	 */
19411 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19412 
19413 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19414 	    UIO_SYSSPACE, path_flag);
19415 
19416 	switch (status) {
19417 	case 0:
19418 		/* Return failure if we did not get valid capacity data. */
19419 		if (ucmd_buf.uscsi_resid > 20) {
19420 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19421 			    "sd_send_scsi_READ_CAPACITY_16 received "
19422 			    "invalid capacity data");
19423 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19424 			return (EIO);
19425 		}
19426 
19427 		/*
19428 		 * Read capacity and block size from the READ CAPACITY 10 data.
19429 		 * This data may be adjusted later due to device specific
19430 		 * issues.
19431 		 *
19432 		 * According to the SCSI spec, the READ CAPACITY 10
19433 		 * command returns the following:
19434 		 *
19435 		 *  bytes 0-7: Maximum logical block address available.
19436 		 *		(MSB in byte:0 & LSB in byte:7)
19437 		 *
19438 		 *  bytes 8-11: Block length in bytes
19439 		 *		(MSB in byte:8 & LSB in byte:11)
19440 		 *
19441 		 */
19442 		capacity = BE_64(capacity16_buf[0]);
19443 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19444 
19445 		/*
19446 		 * Done with capacity16_buf
19447 		 */
19448 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19449 
19450 		/*
19451 		 * if the reported capacity is set to all 0xf's, then
19452 		 * this disk is too large.  This could only happen with
19453 		 * a device that supports LBAs larger than 64 bits which
19454 		 * are not defined by any current T10 standards.
19455 		 */
19456 		if (capacity == 0xffffffffffffffff) {
19457 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19458 			    "disk is too large");
19459 			return (EIO);
19460 		}
19461 		break;	/* Success! */
19462 	case EIO:
19463 		switch (ucmd_buf.uscsi_status) {
19464 		case STATUS_RESERVATION_CONFLICT:
19465 			status = EACCES;
19466 			break;
19467 		case STATUS_CHECK:
19468 			/*
19469 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19470 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19471 			 */
19472 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19473 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19474 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19475 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19476 				return (EAGAIN);
19477 			}
19478 			break;
19479 		default:
19480 			break;
19481 		}
19482 		/* FALLTHRU */
19483 	default:
19484 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19485 		return (status);
19486 	}
19487 
19488 	*capp = capacity;
19489 	*lbap = lbasize;
19490 
19491 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19492 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19493 
19494 	return (0);
19495 }
19496 
19497 
19498 /*
19499  *    Function: sd_send_scsi_START_STOP_UNIT
19500  *
19501  * Description: Issue a scsi START STOP UNIT command to the target.
19502  *
19503  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
19504  *                       structure for this target.
19505  *		flag  - SD_TARGET_START
19506  *			SD_TARGET_STOP
19507  *			SD_TARGET_EJECT
19508  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19509  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19510  *			to use the USCSI "direct" chain and bypass the normal
19511  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19512  *			command is issued as part of an error recovery action.
19513  *
19514  * Return Code: 0   - Success
19515  *		EIO - IO error
19516  *		EACCES - Reservation conflict detected
19517  *		ENXIO  - Not Ready, medium not present
19518  *		errno return code from sd_ssc_send()
19519  *
19520  *     Context: Can sleep.
19521  */
19522 
19523 static int
19524 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, int path_flag)
19525 {
19526 	struct	scsi_extended_sense	sense_buf;
19527 	union scsi_cdb		cdb;
19528 	struct uscsi_cmd	ucmd_buf;
19529 	int			status;
19530 	struct sd_lun		*un;
19531 
19532 	ASSERT(ssc != NULL);
19533 	un = ssc->ssc_un;
19534 	ASSERT(un != NULL);
19535 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19536 
19537 	SD_TRACE(SD_LOG_IO, un,
19538 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19539 
19540 	if (un->un_f_check_start_stop &&
19541 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19542 	    (un->un_f_start_stop_supported != TRUE)) {
19543 		return (0);
19544 	}
19545 
19546 	/*
19547 	 * If we are performing an eject operation and
19548 	 * we receive any command other than SD_TARGET_EJECT
19549 	 * we should immediately return.
19550 	 */
19551 	if (flag != SD_TARGET_EJECT) {
19552 		mutex_enter(SD_MUTEX(un));
19553 		if (un->un_f_ejecting == TRUE) {
19554 			mutex_exit(SD_MUTEX(un));
19555 			return (EAGAIN);
19556 		}
19557 		mutex_exit(SD_MUTEX(un));
19558 	}
19559 
19560 	bzero(&cdb, sizeof (cdb));
19561 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19562 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19563 
19564 	cdb.scc_cmd = SCMD_START_STOP;
19565 	cdb.cdb_opaque[4] = (uchar_t)flag;
19566 
19567 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19568 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19569 	ucmd_buf.uscsi_bufaddr	= NULL;
19570 	ucmd_buf.uscsi_buflen	= 0;
19571 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19572 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19573 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19574 	ucmd_buf.uscsi_timeout	= 200;
19575 
19576 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19577 	    UIO_SYSSPACE, path_flag);
19578 
19579 	switch (status) {
19580 	case 0:
19581 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19582 		break;	/* Success! */
19583 	case EIO:
19584 		switch (ucmd_buf.uscsi_status) {
19585 		case STATUS_RESERVATION_CONFLICT:
19586 			status = EACCES;
19587 			break;
19588 		case STATUS_CHECK:
19589 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19590 				switch (scsi_sense_key(
19591 				    (uint8_t *)&sense_buf)) {
19592 				case KEY_ILLEGAL_REQUEST:
19593 					status = ENOTSUP;
19594 					break;
19595 				case KEY_NOT_READY:
19596 					if (scsi_sense_asc(
19597 					    (uint8_t *)&sense_buf)
19598 					    == 0x3A) {
19599 						status = ENXIO;
19600 					}
19601 					break;
19602 				default:
19603 					break;
19604 				}
19605 			}
19606 			break;
19607 		default:
19608 			break;
19609 		}
19610 		break;
19611 	default:
19612 		break;
19613 	}
19614 
19615 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19616 
19617 	return (status);
19618 }
19619 
19620 
19621 /*
19622  *    Function: sd_start_stop_unit_callback
19623  *
19624  * Description: timeout(9F) callback to begin recovery process for a
19625  *		device that has spun down.
19626  *
19627  *   Arguments: arg - pointer to associated softstate struct.
19628  *
19629  *     Context: Executes in a timeout(9F) thread context
19630  */
19631 
19632 static void
19633 sd_start_stop_unit_callback(void *arg)
19634 {
19635 	struct sd_lun	*un = arg;
19636 	ASSERT(un != NULL);
19637 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19638 
19639 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19640 
19641 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19642 }
19643 
19644 
19645 /*
19646  *    Function: sd_start_stop_unit_task
19647  *
19648  * Description: Recovery procedure when a drive is spun down.
19649  *
19650  *   Arguments: arg - pointer to associated softstate struct.
19651  *
19652  *     Context: Executes in a taskq() thread context
19653  */
19654 
19655 static void
19656 sd_start_stop_unit_task(void *arg)
19657 {
19658 	struct sd_lun	*un = arg;
19659 	sd_ssc_t	*ssc;
19660 	int		rval;
19661 
19662 	ASSERT(un != NULL);
19663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19664 
19665 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19666 
19667 	/*
19668 	 * Some unformatted drives report not ready error, no need to
19669 	 * restart if format has been initiated.
19670 	 */
19671 	mutex_enter(SD_MUTEX(un));
19672 	if (un->un_f_format_in_progress == TRUE) {
19673 		mutex_exit(SD_MUTEX(un));
19674 		return;
19675 	}
19676 	mutex_exit(SD_MUTEX(un));
19677 
19678 	/*
19679 	 * When a START STOP command is issued from here, it is part of a
19680 	 * failure recovery operation and must be issued before any other
19681 	 * commands, including any pending retries. Thus it must be sent
19682 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19683 	 * succeeds or not, we will start I/O after the attempt.
19684 	 */
19685 	ssc = sd_ssc_init(un);
19686 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
19687 	    SD_PATH_DIRECT_PRIORITY);
19688 	if (rval != 0)
19689 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19690 	sd_ssc_fini(ssc);
19691 	/*
19692 	 * The above call blocks until the START_STOP_UNIT command completes.
19693 	 * Now that it has completed, we must re-try the original IO that
19694 	 * received the NOT READY condition in the first place. There are
19695 	 * three possible conditions here:
19696 	 *
19697 	 *  (1) The original IO is on un_retry_bp.
19698 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19699 	 *	is NULL.
19700 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19701 	 *	points to some other, unrelated bp.
19702 	 *
19703 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19704 	 * as the argument. If un_retry_bp is NULL, this will initiate
19705 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19706 	 * then this will process the bp on un_retry_bp. That may or may not
19707 	 * be the original IO, but that does not matter: the important thing
19708 	 * is to keep the IO processing going at this point.
19709 	 *
19710 	 * Note: This is a very specific error recovery sequence associated
19711 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19712 	 * serialize the I/O with completion of the spin-up.
19713 	 */
19714 	mutex_enter(SD_MUTEX(un));
19715 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19716 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19717 	    un, un->un_retry_bp);
19718 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19719 	sd_start_cmds(un, un->un_retry_bp);
19720 	mutex_exit(SD_MUTEX(un));
19721 
19722 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19723 }
19724 
19725 
19726 /*
19727  *    Function: sd_send_scsi_INQUIRY
19728  *
19729  * Description: Issue the scsi INQUIRY command.
19730  *
19731  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19732  *                      structure for this target.
19733  *		bufaddr
19734  *		buflen
19735  *		evpd
19736  *		page_code
19737  *		page_length
19738  *
19739  * Return Code: 0   - Success
19740  *		errno return code from sd_ssc_send()
19741  *
19742  *     Context: Can sleep. Does not return until command is completed.
19743  */
19744 
19745 static int
19746 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
19747 	uchar_t evpd, uchar_t page_code, size_t *residp)
19748 {
19749 	union scsi_cdb		cdb;
19750 	struct uscsi_cmd	ucmd_buf;
19751 	int			status;
19752 	struct sd_lun		*un;
19753 
19754 	ASSERT(ssc != NULL);
19755 	un = ssc->ssc_un;
19756 	ASSERT(un != NULL);
19757 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19758 	ASSERT(bufaddr != NULL);
19759 
19760 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19761 
19762 	bzero(&cdb, sizeof (cdb));
19763 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19764 	bzero(bufaddr, buflen);
19765 
19766 	cdb.scc_cmd = SCMD_INQUIRY;
19767 	cdb.cdb_opaque[1] = evpd;
19768 	cdb.cdb_opaque[2] = page_code;
19769 	FORMG0COUNT(&cdb, buflen);
19770 
19771 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19772 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19773 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19774 	ucmd_buf.uscsi_buflen	= buflen;
19775 	ucmd_buf.uscsi_rqbuf	= NULL;
19776 	ucmd_buf.uscsi_rqlen	= 0;
19777 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19778 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19779 
19780 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19781 	    UIO_SYSSPACE, SD_PATH_DIRECT);
19782 
19783 	/*
19784 	 * Only handle status == 0, the upper-level caller
19785 	 * will put different assessment based on the context.
19786 	 */
19787 	if (status == 0)
19788 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19789 
19790 	if ((status == 0) && (residp != NULL)) {
19791 		*residp = ucmd_buf.uscsi_resid;
19792 	}
19793 
19794 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19795 
19796 	return (status);
19797 }
19798 
19799 
19800 /*
19801  *    Function: sd_send_scsi_TEST_UNIT_READY
19802  *
19803  * Description: Issue the scsi TEST UNIT READY command.
19804  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19805  *		prevent retrying failed commands. Use this when the intent
19806  *		is either to check for device readiness, to clear a Unit
19807  *		Attention, or to clear any outstanding sense data.
19808  *		However under specific conditions the expected behavior
19809  *		is for retries to bring a device ready, so use the flag
19810  *		with caution.
19811  *
19812  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19813  *                      structure for this target.
19814  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19815  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19816  *			0: dont check for media present, do retries on cmd.
19817  *
19818  * Return Code: 0   - Success
19819  *		EIO - IO error
19820  *		EACCES - Reservation conflict detected
19821  *		ENXIO  - Not Ready, medium not present
19822  *		errno return code from sd_ssc_send()
19823  *
19824  *     Context: Can sleep. Does not return until command is completed.
19825  */
19826 
19827 static int
19828 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
19829 {
19830 	struct	scsi_extended_sense	sense_buf;
19831 	union scsi_cdb		cdb;
19832 	struct uscsi_cmd	ucmd_buf;
19833 	int			status;
19834 	struct sd_lun		*un;
19835 
19836 	ASSERT(ssc != NULL);
19837 	un = ssc->ssc_un;
19838 	ASSERT(un != NULL);
19839 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19840 
19841 	SD_TRACE(SD_LOG_IO, un,
19842 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19843 
19844 	/*
19845 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19846 	 * timeouts when they receive a TUR and the queue is not empty. Check
19847 	 * the configuration flag set during attach (indicating the drive has
19848 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19849 	 * TUR. If there are
19850 	 * pending commands return success, this is a bit arbitrary but is ok
19851 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19852 	 * configurations.
19853 	 */
19854 	if (un->un_f_cfg_tur_check == TRUE) {
19855 		mutex_enter(SD_MUTEX(un));
19856 		if (un->un_ncmds_in_transport != 0) {
19857 			mutex_exit(SD_MUTEX(un));
19858 			return (0);
19859 		}
19860 		mutex_exit(SD_MUTEX(un));
19861 	}
19862 
19863 	bzero(&cdb, sizeof (cdb));
19864 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19865 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19866 
19867 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19868 
19869 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19870 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19871 	ucmd_buf.uscsi_bufaddr	= NULL;
19872 	ucmd_buf.uscsi_buflen	= 0;
19873 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19874 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19875 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19876 
19877 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19878 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19879 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19880 	}
19881 	ucmd_buf.uscsi_timeout	= 60;
19882 
19883 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19884 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
19885 	    SD_PATH_STANDARD));
19886 
19887 	switch (status) {
19888 	case 0:
19889 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19890 		break;	/* Success! */
19891 	case EIO:
19892 		switch (ucmd_buf.uscsi_status) {
19893 		case STATUS_RESERVATION_CONFLICT:
19894 			status = EACCES;
19895 			break;
19896 		case STATUS_CHECK:
19897 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19898 				break;
19899 			}
19900 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19901 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19902 			    KEY_NOT_READY) &&
19903 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
19904 				status = ENXIO;
19905 			}
19906 			break;
19907 		default:
19908 			break;
19909 		}
19910 		break;
19911 	default:
19912 		break;
19913 	}
19914 
19915 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19916 
19917 	return (status);
19918 }
19919 
19920 /*
19921  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19922  *
19923  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19924  *
19925  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19926  *                      structure for this target.
19927  *
19928  * Return Code: 0   - Success
19929  *		EACCES
19930  *		ENOTSUP
19931  *		errno return code from sd_ssc_send()
19932  *
19933  *     Context: Can sleep. Does not return until command is completed.
19934  */
19935 
19936 static int
19937 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
19938 	uint16_t data_len, uchar_t *data_bufp)
19939 {
19940 	struct scsi_extended_sense	sense_buf;
19941 	union scsi_cdb		cdb;
19942 	struct uscsi_cmd	ucmd_buf;
19943 	int			status;
19944 	int			no_caller_buf = FALSE;
19945 	struct sd_lun		*un;
19946 
19947 	ASSERT(ssc != NULL);
19948 	un = ssc->ssc_un;
19949 	ASSERT(un != NULL);
19950 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19951 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19952 
19953 	SD_TRACE(SD_LOG_IO, un,
19954 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19955 
19956 	bzero(&cdb, sizeof (cdb));
19957 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19958 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19959 	if (data_bufp == NULL) {
19960 		/* Allocate a default buf if the caller did not give one */
19961 		ASSERT(data_len == 0);
19962 		data_len  = MHIOC_RESV_KEY_SIZE;
19963 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19964 		no_caller_buf = TRUE;
19965 	}
19966 
19967 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19968 	cdb.cdb_opaque[1] = usr_cmd;
19969 	FORMG1COUNT(&cdb, data_len);
19970 
19971 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19972 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19973 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19974 	ucmd_buf.uscsi_buflen	= data_len;
19975 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19976 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19977 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19978 	ucmd_buf.uscsi_timeout	= 60;
19979 
19980 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19981 	    UIO_SYSSPACE, SD_PATH_STANDARD);
19982 
19983 	switch (status) {
19984 	case 0:
19985 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19986 
19987 		break;	/* Success! */
19988 	case EIO:
19989 		switch (ucmd_buf.uscsi_status) {
19990 		case STATUS_RESERVATION_CONFLICT:
19991 			status = EACCES;
19992 			break;
19993 		case STATUS_CHECK:
19994 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19995 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19996 			    KEY_ILLEGAL_REQUEST)) {
19997 				status = ENOTSUP;
19998 			}
19999 			break;
20000 		default:
20001 			break;
20002 		}
20003 		break;
20004 	default:
20005 		break;
20006 	}
20007 
20008 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20009 
20010 	if (no_caller_buf == TRUE) {
20011 		kmem_free(data_bufp, data_len);
20012 	}
20013 
20014 	return (status);
20015 }
20016 
20017 
20018 /*
20019  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20020  *
20021  * Description: This routine is the driver entry point for handling CD-ROM
20022  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20023  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20024  *		device.
20025  *
20026  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20027  *                      for the target.
20028  *		usr_cmd SCSI-3 reservation facility command (one of
20029  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20030  *			SD_SCSI3_PREEMPTANDABORT)
20031  *		usr_bufp - user provided pointer register, reserve descriptor or
20032  *			preempt and abort structure (mhioc_register_t,
20033  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20034  *
20035  * Return Code: 0   - Success
20036  *		EACCES
20037  *		ENOTSUP
20038  *		errno return code from sd_ssc_send()
20039  *
20040  *     Context: Can sleep. Does not return until command is completed.
20041  */
20042 
20043 static int
20044 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20045 	uchar_t	*usr_bufp)
20046 {
20047 	struct scsi_extended_sense	sense_buf;
20048 	union scsi_cdb		cdb;
20049 	struct uscsi_cmd	ucmd_buf;
20050 	int			status;
20051 	uchar_t			data_len = sizeof (sd_prout_t);
20052 	sd_prout_t		*prp;
20053 	struct sd_lun		*un;
20054 
20055 	ASSERT(ssc != NULL);
20056 	un = ssc->ssc_un;
20057 	ASSERT(un != NULL);
20058 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20059 	ASSERT(data_len == 24);	/* required by scsi spec */
20060 
20061 	SD_TRACE(SD_LOG_IO, un,
20062 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20063 
20064 	if (usr_bufp == NULL) {
20065 		return (EINVAL);
20066 	}
20067 
20068 	bzero(&cdb, sizeof (cdb));
20069 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20070 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20071 	prp = kmem_zalloc(data_len, KM_SLEEP);
20072 
20073 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20074 	cdb.cdb_opaque[1] = usr_cmd;
20075 	FORMG1COUNT(&cdb, data_len);
20076 
20077 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20078 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20079 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20080 	ucmd_buf.uscsi_buflen	= data_len;
20081 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20082 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20083 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20084 	ucmd_buf.uscsi_timeout	= 60;
20085 
20086 	switch (usr_cmd) {
20087 	case SD_SCSI3_REGISTER: {
20088 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20089 
20090 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20091 		bcopy(ptr->newkey.key, prp->service_key,
20092 		    MHIOC_RESV_KEY_SIZE);
20093 		prp->aptpl = ptr->aptpl;
20094 		break;
20095 	}
20096 	case SD_SCSI3_RESERVE:
20097 	case SD_SCSI3_RELEASE: {
20098 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20099 
20100 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20101 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20102 		cdb.cdb_opaque[2] = ptr->type;
20103 		break;
20104 	}
20105 	case SD_SCSI3_PREEMPTANDABORT: {
20106 		mhioc_preemptandabort_t *ptr =
20107 		    (mhioc_preemptandabort_t *)usr_bufp;
20108 
20109 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20110 		bcopy(ptr->victim_key.key, prp->service_key,
20111 		    MHIOC_RESV_KEY_SIZE);
20112 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20113 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20114 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20115 		break;
20116 	}
20117 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20118 	{
20119 		mhioc_registerandignorekey_t *ptr;
20120 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20121 		bcopy(ptr->newkey.key,
20122 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20123 		prp->aptpl = ptr->aptpl;
20124 		break;
20125 	}
20126 	default:
20127 		ASSERT(FALSE);
20128 		break;
20129 	}
20130 
20131 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20132 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20133 
20134 	switch (status) {
20135 	case 0:
20136 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20137 		break;	/* Success! */
20138 	case EIO:
20139 		switch (ucmd_buf.uscsi_status) {
20140 		case STATUS_RESERVATION_CONFLICT:
20141 			status = EACCES;
20142 			break;
20143 		case STATUS_CHECK:
20144 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20145 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20146 			    KEY_ILLEGAL_REQUEST)) {
20147 				status = ENOTSUP;
20148 			}
20149 			break;
20150 		default:
20151 			break;
20152 		}
20153 		break;
20154 	default:
20155 		break;
20156 	}
20157 
20158 	kmem_free(prp, data_len);
20159 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20160 	return (status);
20161 }
20162 
20163 
20164 /*
20165  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20166  *
20167  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20168  *
20169  *   Arguments: un - pointer to the target's soft state struct
20170  *              dkc - pointer to the callback structure
20171  *
20172  * Return Code: 0 - success
20173  *		errno-type error code
20174  *
20175  *     Context: kernel thread context only.
20176  *
20177  *  _______________________________________________________________
20178  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
20179  * |FLUSH_VOLATILE|              | operation                       |
20180  * |______________|______________|_________________________________|
20181  * | 0            | NULL         | Synchronous flush on both       |
20182  * |              |              | volatile and non-volatile cache |
20183  * |______________|______________|_________________________________|
20184  * | 1            | NULL         | Synchronous flush on volatile   |
20185  * |              |              | cache; disk drivers may suppress|
20186  * |              |              | flush if disk table indicates   |
20187  * |              |              | non-volatile cache              |
20188  * |______________|______________|_________________________________|
20189  * | 0            | !NULL        | Asynchronous flush on both      |
20190  * |              |              | volatile and non-volatile cache;|
20191  * |______________|______________|_________________________________|
20192  * | 1            | !NULL        | Asynchronous flush on volatile  |
20193  * |              |              | cache; disk drivers may suppress|
20194  * |              |              | flush if disk table indicates   |
20195  * |              |              | non-volatile cache              |
20196  * |______________|______________|_________________________________|
20197  *
20198  */
20199 
20200 static int
20201 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20202 {
20203 	struct sd_uscsi_info	*uip;
20204 	struct uscsi_cmd	*uscmd;
20205 	union scsi_cdb		*cdb;
20206 	struct buf		*bp;
20207 	int			rval = 0;
20208 	int			is_async;
20209 
20210 	SD_TRACE(SD_LOG_IO, un,
20211 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20212 
20213 	ASSERT(un != NULL);
20214 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20215 
20216 	if (dkc == NULL || dkc->dkc_callback == NULL) {
20217 		is_async = FALSE;
20218 	} else {
20219 		is_async = TRUE;
20220 	}
20221 
20222 	mutex_enter(SD_MUTEX(un));
20223 	/* check whether cache flush should be suppressed */
20224 	if (un->un_f_suppress_cache_flush == TRUE) {
20225 		mutex_exit(SD_MUTEX(un));
20226 		/*
20227 		 * suppress the cache flush if the device is told to do
20228 		 * so by sd.conf or disk table
20229 		 */
20230 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
20231 		    skip the cache flush since suppress_cache_flush is %d!\n",
20232 		    un->un_f_suppress_cache_flush);
20233 
20234 		if (is_async == TRUE) {
20235 			/* invoke callback for asynchronous flush */
20236 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
20237 		}
20238 		return (rval);
20239 	}
20240 	mutex_exit(SD_MUTEX(un));
20241 
20242 	/*
20243 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
20244 	 * set properly
20245 	 */
20246 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20247 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20248 
20249 	mutex_enter(SD_MUTEX(un));
20250 	if (dkc != NULL && un->un_f_sync_nv_supported &&
20251 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
20252 		/*
20253 		 * if the device supports SYNC_NV bit, turn on
20254 		 * the SYNC_NV bit to only flush volatile cache
20255 		 */
20256 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
20257 	}
20258 	mutex_exit(SD_MUTEX(un));
20259 
20260 	/*
20261 	 * First get some memory for the uscsi_cmd struct and cdb
20262 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20263 	 */
20264 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20265 	uscmd->uscsi_cdblen = CDB_GROUP1;
20266 	uscmd->uscsi_cdb = (caddr_t)cdb;
20267 	uscmd->uscsi_bufaddr = NULL;
20268 	uscmd->uscsi_buflen = 0;
20269 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20270 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20271 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20272 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20273 	uscmd->uscsi_timeout = sd_io_time;
20274 
20275 	/*
20276 	 * Allocate an sd_uscsi_info struct and fill it with the info
20277 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20278 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20279 	 * since we allocate the buf here in this function, we do not
20280 	 * need to preserve the prior contents of b_private.
20281 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20282 	 */
20283 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20284 	uip->ui_flags = SD_PATH_DIRECT;
20285 	uip->ui_cmdp  = uscmd;
20286 
20287 	bp = getrbuf(KM_SLEEP);
20288 	bp->b_private = uip;
20289 
20290 	/*
20291 	 * Setup buffer to carry uscsi request.
20292 	 */
20293 	bp->b_flags  = B_BUSY;
20294 	bp->b_bcount = 0;
20295 	bp->b_blkno  = 0;
20296 
20297 	if (is_async == TRUE) {
20298 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20299 		uip->ui_dkc = *dkc;
20300 	}
20301 
20302 	bp->b_edev = SD_GET_DEV(un);
20303 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20304 
20305 	/*
20306 	 * Unset un_f_sync_cache_required flag
20307 	 */
20308 	mutex_enter(SD_MUTEX(un));
20309 	un->un_f_sync_cache_required = FALSE;
20310 	mutex_exit(SD_MUTEX(un));
20311 
20312 	(void) sd_uscsi_strategy(bp);
20313 
20314 	/*
20315 	 * If synchronous request, wait for completion
20316 	 * If async just return and let b_iodone callback
20317 	 * cleanup.
20318 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20319 	 * but it was also incremented in sd_uscsi_strategy(), so
20320 	 * we should be ok.
20321 	 */
20322 	if (is_async == FALSE) {
20323 		(void) biowait(bp);
20324 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20325 	}
20326 
20327 	return (rval);
20328 }
20329 
20330 
20331 static int
20332 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20333 {
20334 	struct sd_uscsi_info *uip;
20335 	struct uscsi_cmd *uscmd;
20336 	uint8_t *sense_buf;
20337 	struct sd_lun *un;
20338 	int status;
20339 	union scsi_cdb *cdb;
20340 
20341 	uip = (struct sd_uscsi_info *)(bp->b_private);
20342 	ASSERT(uip != NULL);
20343 
20344 	uscmd = uip->ui_cmdp;
20345 	ASSERT(uscmd != NULL);
20346 
20347 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20348 	ASSERT(sense_buf != NULL);
20349 
20350 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20351 	ASSERT(un != NULL);
20352 
20353 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
20354 
20355 	status = geterror(bp);
20356 	switch (status) {
20357 	case 0:
20358 		break;	/* Success! */
20359 	case EIO:
20360 		switch (uscmd->uscsi_status) {
20361 		case STATUS_RESERVATION_CONFLICT:
20362 			/* Ignore reservation conflict */
20363 			status = 0;
20364 			goto done;
20365 
20366 		case STATUS_CHECK:
20367 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20368 			    (scsi_sense_key(sense_buf) ==
20369 			    KEY_ILLEGAL_REQUEST)) {
20370 				/* Ignore Illegal Request error */
20371 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
20372 					mutex_enter(SD_MUTEX(un));
20373 					un->un_f_sync_nv_supported = FALSE;
20374 					mutex_exit(SD_MUTEX(un));
20375 					status = 0;
20376 					SD_TRACE(SD_LOG_IO, un,
20377 					    "un_f_sync_nv_supported \
20378 					    is set to false.\n");
20379 					goto done;
20380 				}
20381 
20382 				mutex_enter(SD_MUTEX(un));
20383 				un->un_f_sync_cache_supported = FALSE;
20384 				mutex_exit(SD_MUTEX(un));
20385 				SD_TRACE(SD_LOG_IO, un,
20386 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
20387 				    un_f_sync_cache_supported set to false \
20388 				    with asc = %x, ascq = %x\n",
20389 				    scsi_sense_asc(sense_buf),
20390 				    scsi_sense_ascq(sense_buf));
20391 				status = ENOTSUP;
20392 				goto done;
20393 			}
20394 			break;
20395 		default:
20396 			break;
20397 		}
20398 		/* FALLTHRU */
20399 	default:
20400 		/*
20401 		 * Turn on the un_f_sync_cache_required flag
20402 		 * since the SYNC CACHE command failed
20403 		 */
20404 		mutex_enter(SD_MUTEX(un));
20405 		un->un_f_sync_cache_required = TRUE;
20406 		mutex_exit(SD_MUTEX(un));
20407 
20408 		/*
20409 		 * Don't log an error message if this device
20410 		 * has removable media.
20411 		 */
20412 		if (!un->un_f_has_removable_media) {
20413 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20414 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20415 		}
20416 		break;
20417 	}
20418 
20419 done:
20420 	if (uip->ui_dkc.dkc_callback != NULL) {
20421 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20422 	}
20423 
20424 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20425 	freerbuf(bp);
20426 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20427 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20428 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20429 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20430 
20431 	return (status);
20432 }
20433 
20434 
20435 /*
20436  *    Function: sd_send_scsi_GET_CONFIGURATION
20437  *
20438  * Description: Issues the get configuration command to the device.
20439  *		Called from sd_check_for_writable_cd & sd_get_media_info
20440  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20441  *   Arguments: ssc
20442  *		ucmdbuf
20443  *		rqbuf
20444  *		rqbuflen
20445  *		bufaddr
20446  *		buflen
20447  *		path_flag
20448  *
20449  * Return Code: 0   - Success
20450  *		errno return code from sd_ssc_send()
20451  *
20452  *     Context: Can sleep. Does not return until command is completed.
20453  *
20454  */
20455 
20456 static int
20457 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
20458 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
20459 	int path_flag)
20460 {
20461 	char	cdb[CDB_GROUP1];
20462 	int	status;
20463 	struct sd_lun	*un;
20464 
20465 	ASSERT(ssc != NULL);
20466 	un = ssc->ssc_un;
20467 	ASSERT(un != NULL);
20468 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20469 	ASSERT(bufaddr != NULL);
20470 	ASSERT(ucmdbuf != NULL);
20471 	ASSERT(rqbuf != NULL);
20472 
20473 	SD_TRACE(SD_LOG_IO, un,
20474 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20475 
20476 	bzero(cdb, sizeof (cdb));
20477 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20478 	bzero(rqbuf, rqbuflen);
20479 	bzero(bufaddr, buflen);
20480 
20481 	/*
20482 	 * Set up cdb field for the get configuration command.
20483 	 */
20484 	cdb[0] = SCMD_GET_CONFIGURATION;
20485 	cdb[1] = 0x02;  /* Requested Type */
20486 	cdb[8] = SD_PROFILE_HEADER_LEN;
20487 	ucmdbuf->uscsi_cdb = cdb;
20488 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20489 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20490 	ucmdbuf->uscsi_buflen = buflen;
20491 	ucmdbuf->uscsi_timeout = sd_io_time;
20492 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20493 	ucmdbuf->uscsi_rqlen = rqbuflen;
20494 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20495 
20496 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20497 	    UIO_SYSSPACE, path_flag);
20498 
20499 	switch (status) {
20500 	case 0:
20501 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20502 		break;  /* Success! */
20503 	case EIO:
20504 		switch (ucmdbuf->uscsi_status) {
20505 		case STATUS_RESERVATION_CONFLICT:
20506 			status = EACCES;
20507 			break;
20508 		default:
20509 			break;
20510 		}
20511 		break;
20512 	default:
20513 		break;
20514 	}
20515 
20516 	if (status == 0) {
20517 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20518 		    "sd_send_scsi_GET_CONFIGURATION: data",
20519 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20520 	}
20521 
20522 	SD_TRACE(SD_LOG_IO, un,
20523 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20524 
20525 	return (status);
20526 }
20527 
20528 /*
20529  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20530  *
20531  * Description: Issues the get configuration command to the device to
20532  *              retrieve a specific feature. Called from
20533  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20534  *   Arguments: ssc
20535  *              ucmdbuf
20536  *              rqbuf
20537  *              rqbuflen
20538  *              bufaddr
20539  *              buflen
20540  *		feature
20541  *
20542  * Return Code: 0   - Success
20543  *              errno return code from sd_ssc_send()
20544  *
20545  *     Context: Can sleep. Does not return until command is completed.
20546  *
20547  */
20548 static int
20549 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
20550 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20551 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
20552 {
20553 	char    cdb[CDB_GROUP1];
20554 	int	status;
20555 	struct sd_lun	*un;
20556 
20557 	ASSERT(ssc != NULL);
20558 	un = ssc->ssc_un;
20559 	ASSERT(un != NULL);
20560 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20561 	ASSERT(bufaddr != NULL);
20562 	ASSERT(ucmdbuf != NULL);
20563 	ASSERT(rqbuf != NULL);
20564 
20565 	SD_TRACE(SD_LOG_IO, un,
20566 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20567 
20568 	bzero(cdb, sizeof (cdb));
20569 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20570 	bzero(rqbuf, rqbuflen);
20571 	bzero(bufaddr, buflen);
20572 
20573 	/*
20574 	 * Set up cdb field for the get configuration command.
20575 	 */
20576 	cdb[0] = SCMD_GET_CONFIGURATION;
20577 	cdb[1] = 0x02;  /* Requested Type */
20578 	cdb[3] = feature;
20579 	cdb[8] = buflen;
20580 	ucmdbuf->uscsi_cdb = cdb;
20581 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20582 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20583 	ucmdbuf->uscsi_buflen = buflen;
20584 	ucmdbuf->uscsi_timeout = sd_io_time;
20585 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20586 	ucmdbuf->uscsi_rqlen = rqbuflen;
20587 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20588 
20589 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20590 	    UIO_SYSSPACE, path_flag);
20591 
20592 	switch (status) {
20593 	case 0:
20594 
20595 		break;  /* Success! */
20596 	case EIO:
20597 		switch (ucmdbuf->uscsi_status) {
20598 		case STATUS_RESERVATION_CONFLICT:
20599 			status = EACCES;
20600 			break;
20601 		default:
20602 			break;
20603 		}
20604 		break;
20605 	default:
20606 		break;
20607 	}
20608 
20609 	if (status == 0) {
20610 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20611 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20612 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20613 	}
20614 
20615 	SD_TRACE(SD_LOG_IO, un,
20616 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20617 
20618 	return (status);
20619 }
20620 
20621 
20622 /*
20623  *    Function: sd_send_scsi_MODE_SENSE
20624  *
20625  * Description: Utility function for issuing a scsi MODE SENSE command.
20626  *		Note: This routine uses a consistent implementation for Group0,
20627  *		Group1, and Group2 commands across all platforms. ATAPI devices
20628  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20629  *
20630  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20631  *                      structure for this target.
20632  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20633  *			  CDB_GROUP[1|2] (10 byte).
20634  *		bufaddr - buffer for page data retrieved from the target.
20635  *		buflen - size of page to be retrieved.
20636  *		page_code - page code of data to be retrieved from the target.
20637  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20638  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20639  *			to use the USCSI "direct" chain and bypass the normal
20640  *			command waitq.
20641  *
20642  * Return Code: 0   - Success
20643  *		errno return code from sd_ssc_send()
20644  *
20645  *     Context: Can sleep. Does not return until command is completed.
20646  */
20647 
20648 static int
20649 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20650 	size_t buflen,  uchar_t page_code, int path_flag)
20651 {
20652 	struct	scsi_extended_sense	sense_buf;
20653 	union scsi_cdb		cdb;
20654 	struct uscsi_cmd	ucmd_buf;
20655 	int			status;
20656 	int			headlen;
20657 	struct sd_lun		*un;
20658 
20659 	ASSERT(ssc != NULL);
20660 	un = ssc->ssc_un;
20661 	ASSERT(un != NULL);
20662 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20663 	ASSERT(bufaddr != NULL);
20664 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20665 	    (cdbsize == CDB_GROUP2));
20666 
20667 	SD_TRACE(SD_LOG_IO, un,
20668 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20669 
20670 	bzero(&cdb, sizeof (cdb));
20671 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20672 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20673 	bzero(bufaddr, buflen);
20674 
20675 	if (cdbsize == CDB_GROUP0) {
20676 		cdb.scc_cmd = SCMD_MODE_SENSE;
20677 		cdb.cdb_opaque[2] = page_code;
20678 		FORMG0COUNT(&cdb, buflen);
20679 		headlen = MODE_HEADER_LENGTH;
20680 	} else {
20681 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20682 		cdb.cdb_opaque[2] = page_code;
20683 		FORMG1COUNT(&cdb, buflen);
20684 		headlen = MODE_HEADER_LENGTH_GRP2;
20685 	}
20686 
20687 	ASSERT(headlen <= buflen);
20688 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20689 
20690 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20691 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20692 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20693 	ucmd_buf.uscsi_buflen	= buflen;
20694 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20695 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20696 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20697 	ucmd_buf.uscsi_timeout	= 60;
20698 
20699 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20700 	    UIO_SYSSPACE, path_flag);
20701 
20702 	switch (status) {
20703 	case 0:
20704 		/*
20705 		 * sr_check_wp() uses 0x3f page code and check the header of
20706 		 * mode page to determine if target device is write-protected.
20707 		 * But some USB devices return 0 bytes for 0x3f page code. For
20708 		 * this case, make sure that mode page header is returned at
20709 		 * least.
20710 		 */
20711 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
20712 			status = EIO;
20713 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
20714 			    "mode page header is not returned");
20715 		}
20716 		break;	/* Success! */
20717 	case EIO:
20718 		switch (ucmd_buf.uscsi_status) {
20719 		case STATUS_RESERVATION_CONFLICT:
20720 			status = EACCES;
20721 			break;
20722 		default:
20723 			break;
20724 		}
20725 		break;
20726 	default:
20727 		break;
20728 	}
20729 
20730 	if (status == 0) {
20731 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20732 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20733 	}
20734 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20735 
20736 	return (status);
20737 }
20738 
20739 
20740 /*
20741  *    Function: sd_send_scsi_MODE_SELECT
20742  *
20743  * Description: Utility function for issuing a scsi MODE SELECT command.
20744  *		Note: This routine uses a consistent implementation for Group0,
20745  *		Group1, and Group2 commands across all platforms. ATAPI devices
20746  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20747  *
20748  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20749  *                      structure for this target.
20750  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20751  *			  CDB_GROUP[1|2] (10 byte).
20752  *		bufaddr - buffer for page data retrieved from the target.
20753  *		buflen - size of page to be retrieved.
20754  *		save_page - boolean to determin if SP bit should be set.
20755  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20756  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20757  *			to use the USCSI "direct" chain and bypass the normal
20758  *			command waitq.
20759  *
20760  * Return Code: 0   - Success
20761  *		errno return code from sd_ssc_send()
20762  *
20763  *     Context: Can sleep. Does not return until command is completed.
20764  */
20765 
20766 static int
20767 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20768 	size_t buflen,  uchar_t save_page, int path_flag)
20769 {
20770 	struct	scsi_extended_sense	sense_buf;
20771 	union scsi_cdb		cdb;
20772 	struct uscsi_cmd	ucmd_buf;
20773 	int			status;
20774 	struct sd_lun		*un;
20775 
20776 	ASSERT(ssc != NULL);
20777 	un = ssc->ssc_un;
20778 	ASSERT(un != NULL);
20779 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20780 	ASSERT(bufaddr != NULL);
20781 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20782 	    (cdbsize == CDB_GROUP2));
20783 
20784 	SD_TRACE(SD_LOG_IO, un,
20785 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20786 
20787 	bzero(&cdb, sizeof (cdb));
20788 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20789 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20790 
20791 	/* Set the PF bit for many third party drives */
20792 	cdb.cdb_opaque[1] = 0x10;
20793 
20794 	/* Set the savepage(SP) bit if given */
20795 	if (save_page == SD_SAVE_PAGE) {
20796 		cdb.cdb_opaque[1] |= 0x01;
20797 	}
20798 
20799 	if (cdbsize == CDB_GROUP0) {
20800 		cdb.scc_cmd = SCMD_MODE_SELECT;
20801 		FORMG0COUNT(&cdb, buflen);
20802 	} else {
20803 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20804 		FORMG1COUNT(&cdb, buflen);
20805 	}
20806 
20807 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20808 
20809 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20810 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20811 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20812 	ucmd_buf.uscsi_buflen	= buflen;
20813 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20814 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20815 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20816 	ucmd_buf.uscsi_timeout	= 60;
20817 
20818 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20819 	    UIO_SYSSPACE, path_flag);
20820 
20821 	switch (status) {
20822 	case 0:
20823 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20824 		break;	/* Success! */
20825 	case EIO:
20826 		switch (ucmd_buf.uscsi_status) {
20827 		case STATUS_RESERVATION_CONFLICT:
20828 			status = EACCES;
20829 			break;
20830 		default:
20831 			break;
20832 		}
20833 		break;
20834 	default:
20835 		break;
20836 	}
20837 
20838 	if (status == 0) {
20839 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20840 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20841 	}
20842 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20843 
20844 	return (status);
20845 }
20846 
20847 
20848 /*
20849  *    Function: sd_send_scsi_RDWR
20850  *
20851  * Description: Issue a scsi READ or WRITE command with the given parameters.
20852  *
20853  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20854  *                      structure for this target.
20855  *		cmd:	 SCMD_READ or SCMD_WRITE
20856  *		bufaddr: Address of caller's buffer to receive the RDWR data
20857  *		buflen:  Length of caller's buffer receive the RDWR data.
20858  *		start_block: Block number for the start of the RDWR operation.
20859  *			 (Assumes target-native block size.)
20860  *		residp:  Pointer to variable to receive the redisual of the
20861  *			 RDWR operation (may be NULL of no residual requested).
20862  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20863  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20864  *			to use the USCSI "direct" chain and bypass the normal
20865  *			command waitq.
20866  *
20867  * Return Code: 0   - Success
20868  *		errno return code from sd_ssc_send()
20869  *
20870  *     Context: Can sleep. Does not return until command is completed.
20871  */
20872 
20873 static int
20874 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
20875 	size_t buflen, daddr_t start_block, int path_flag)
20876 {
20877 	struct	scsi_extended_sense	sense_buf;
20878 	union scsi_cdb		cdb;
20879 	struct uscsi_cmd	ucmd_buf;
20880 	uint32_t		block_count;
20881 	int			status;
20882 	int			cdbsize;
20883 	uchar_t			flag;
20884 	struct sd_lun		*un;
20885 
20886 	ASSERT(ssc != NULL);
20887 	un = ssc->ssc_un;
20888 	ASSERT(un != NULL);
20889 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20890 	ASSERT(bufaddr != NULL);
20891 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20892 
20893 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20894 
20895 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20896 		return (EINVAL);
20897 	}
20898 
20899 	mutex_enter(SD_MUTEX(un));
20900 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20901 	mutex_exit(SD_MUTEX(un));
20902 
20903 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20904 
20905 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20906 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20907 	    bufaddr, buflen, start_block, block_count);
20908 
20909 	bzero(&cdb, sizeof (cdb));
20910 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20911 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20912 
20913 	/* Compute CDB size to use */
20914 	if (start_block > 0xffffffff)
20915 		cdbsize = CDB_GROUP4;
20916 	else if ((start_block & 0xFFE00000) ||
20917 	    (un->un_f_cfg_is_atapi == TRUE))
20918 		cdbsize = CDB_GROUP1;
20919 	else
20920 		cdbsize = CDB_GROUP0;
20921 
20922 	switch (cdbsize) {
20923 	case CDB_GROUP0:	/* 6-byte CDBs */
20924 		cdb.scc_cmd = cmd;
20925 		FORMG0ADDR(&cdb, start_block);
20926 		FORMG0COUNT(&cdb, block_count);
20927 		break;
20928 	case CDB_GROUP1:	/* 10-byte CDBs */
20929 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20930 		FORMG1ADDR(&cdb, start_block);
20931 		FORMG1COUNT(&cdb, block_count);
20932 		break;
20933 	case CDB_GROUP4:	/* 16-byte CDBs */
20934 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20935 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20936 		FORMG4COUNT(&cdb, block_count);
20937 		break;
20938 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20939 	default:
20940 		/* All others reserved */
20941 		return (EINVAL);
20942 	}
20943 
20944 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20945 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20946 
20947 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20948 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20949 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20950 	ucmd_buf.uscsi_buflen	= buflen;
20951 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20952 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20953 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20954 	ucmd_buf.uscsi_timeout	= 60;
20955 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20956 	    UIO_SYSSPACE, path_flag);
20957 
20958 	switch (status) {
20959 	case 0:
20960 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20961 		break;	/* Success! */
20962 	case EIO:
20963 		switch (ucmd_buf.uscsi_status) {
20964 		case STATUS_RESERVATION_CONFLICT:
20965 			status = EACCES;
20966 			break;
20967 		default:
20968 			break;
20969 		}
20970 		break;
20971 	default:
20972 		break;
20973 	}
20974 
20975 	if (status == 0) {
20976 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20977 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20978 	}
20979 
20980 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20981 
20982 	return (status);
20983 }
20984 
20985 
20986 /*
20987  *    Function: sd_send_scsi_LOG_SENSE
20988  *
20989  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20990  *
20991  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20992  *                      structure for this target.
20993  *
20994  * Return Code: 0   - Success
20995  *		errno return code from sd_ssc_send()
20996  *
20997  *     Context: Can sleep. Does not return until command is completed.
20998  */
20999 
21000 static int
21001 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21002 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21003 	int path_flag)
21004 
21005 {
21006 	struct scsi_extended_sense	sense_buf;
21007 	union scsi_cdb		cdb;
21008 	struct uscsi_cmd	ucmd_buf;
21009 	int			status;
21010 	struct sd_lun		*un;
21011 
21012 	ASSERT(ssc != NULL);
21013 	un = ssc->ssc_un;
21014 	ASSERT(un != NULL);
21015 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21016 
21017 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21018 
21019 	bzero(&cdb, sizeof (cdb));
21020 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21021 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21022 
21023 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21024 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21025 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21026 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21027 	FORMG1COUNT(&cdb, buflen);
21028 
21029 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21030 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21031 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21032 	ucmd_buf.uscsi_buflen	= buflen;
21033 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21034 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21035 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21036 	ucmd_buf.uscsi_timeout	= 60;
21037 
21038 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21039 	    UIO_SYSSPACE, path_flag);
21040 
21041 	switch (status) {
21042 	case 0:
21043 		break;
21044 	case EIO:
21045 		switch (ucmd_buf.uscsi_status) {
21046 		case STATUS_RESERVATION_CONFLICT:
21047 			status = EACCES;
21048 			break;
21049 		case STATUS_CHECK:
21050 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21051 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21052 				KEY_ILLEGAL_REQUEST) &&
21053 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21054 				/*
21055 				 * ASC 0x24: INVALID FIELD IN CDB
21056 				 */
21057 				switch (page_code) {
21058 				case START_STOP_CYCLE_PAGE:
21059 					/*
21060 					 * The start stop cycle counter is
21061 					 * implemented as page 0x31 in earlier
21062 					 * generation disks. In new generation
21063 					 * disks the start stop cycle counter is
21064 					 * implemented as page 0xE. To properly
21065 					 * handle this case if an attempt for
21066 					 * log page 0xE is made and fails we
21067 					 * will try again using page 0x31.
21068 					 *
21069 					 * Network storage BU committed to
21070 					 * maintain the page 0x31 for this
21071 					 * purpose and will not have any other
21072 					 * page implemented with page code 0x31
21073 					 * until all disks transition to the
21074 					 * standard page.
21075 					 */
21076 					mutex_enter(SD_MUTEX(un));
21077 					un->un_start_stop_cycle_page =
21078 					    START_STOP_CYCLE_VU_PAGE;
21079 					cdb.cdb_opaque[2] =
21080 					    (char)(page_control << 6) |
21081 					    un->un_start_stop_cycle_page;
21082 					mutex_exit(SD_MUTEX(un));
21083 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21084 					status = sd_ssc_send(
21085 					    ssc, &ucmd_buf, FKIOCTL,
21086 					    UIO_SYSSPACE, path_flag);
21087 
21088 					break;
21089 				case TEMPERATURE_PAGE:
21090 					status = ENOTTY;
21091 					break;
21092 				default:
21093 					break;
21094 				}
21095 			}
21096 			break;
21097 		default:
21098 			break;
21099 		}
21100 		break;
21101 	default:
21102 		break;
21103 	}
21104 
21105 	if (status == 0) {
21106 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21107 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21108 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21109 	}
21110 
21111 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21112 
21113 	return (status);
21114 }
21115 
21116 
21117 /*
21118  *    Function: sdioctl
21119  *
21120  * Description: Driver's ioctl(9e) entry point function.
21121  *
21122  *   Arguments: dev     - device number
21123  *		cmd     - ioctl operation to be performed
21124  *		arg     - user argument, contains data to be set or reference
21125  *			  parameter for get
21126  *		flag    - bit flag, indicating open settings, 32/64 bit type
21127  *		cred_p  - user credential pointer
21128  *		rval_p  - calling process return value (OPT)
21129  *
21130  * Return Code: EINVAL
21131  *		ENOTTY
21132  *		ENXIO
21133  *		EIO
21134  *		EFAULT
21135  *		ENOTSUP
21136  *		EPERM
21137  *
21138  *     Context: Called from the device switch at normal priority.
21139  */
21140 
21141 static int
21142 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21143 {
21144 	struct sd_lun	*un = NULL;
21145 	int		err = 0;
21146 	int		i = 0;
21147 	cred_t		*cr;
21148 	int		tmprval = EINVAL;
21149 	int 		is_valid;
21150 	sd_ssc_t	*ssc;
21151 
21152 	/*
21153 	 * All device accesses go thru sdstrategy where we check on suspend
21154 	 * status
21155 	 */
21156 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21157 		return (ENXIO);
21158 	}
21159 
21160 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21161 
21162 	/* Initialize sd_ssc_t for internal uscsi commands */
21163 	ssc = sd_ssc_init(un);
21164 
21165 	is_valid = SD_IS_VALID_LABEL(un);
21166 
21167 	/*
21168 	 * Moved this wait from sd_uscsi_strategy to here for
21169 	 * reasons of deadlock prevention. Internal driver commands,
21170 	 * specifically those to change a devices power level, result
21171 	 * in a call to sd_uscsi_strategy.
21172 	 */
21173 	mutex_enter(SD_MUTEX(un));
21174 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21175 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21176 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21177 	}
21178 	/*
21179 	 * Twiddling the counter here protects commands from now
21180 	 * through to the top of sd_uscsi_strategy. Without the
21181 	 * counter inc. a power down, for example, could get in
21182 	 * after the above check for state is made and before
21183 	 * execution gets to the top of sd_uscsi_strategy.
21184 	 * That would cause problems.
21185 	 */
21186 	un->un_ncmds_in_driver++;
21187 
21188 	if (!is_valid &&
21189 	    (flag & (FNDELAY | FNONBLOCK))) {
21190 		switch (cmd) {
21191 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
21192 		case DKIOCGVTOC:
21193 		case DKIOCGEXTVTOC:
21194 		case DKIOCGAPART:
21195 		case DKIOCPARTINFO:
21196 		case DKIOCEXTPARTINFO:
21197 		case DKIOCSGEOM:
21198 		case DKIOCSAPART:
21199 		case DKIOCGETEFI:
21200 		case DKIOCPARTITION:
21201 		case DKIOCSVTOC:
21202 		case DKIOCSEXTVTOC:
21203 		case DKIOCSETEFI:
21204 		case DKIOCGMBOOT:
21205 		case DKIOCSMBOOT:
21206 		case DKIOCG_PHYGEOM:
21207 		case DKIOCG_VIRTGEOM:
21208 			/* let cmlb handle it */
21209 			goto skip_ready_valid;
21210 
21211 		case CDROMPAUSE:
21212 		case CDROMRESUME:
21213 		case CDROMPLAYMSF:
21214 		case CDROMPLAYTRKIND:
21215 		case CDROMREADTOCHDR:
21216 		case CDROMREADTOCENTRY:
21217 		case CDROMSTOP:
21218 		case CDROMSTART:
21219 		case CDROMVOLCTRL:
21220 		case CDROMSUBCHNL:
21221 		case CDROMREADMODE2:
21222 		case CDROMREADMODE1:
21223 		case CDROMREADOFFSET:
21224 		case CDROMSBLKMODE:
21225 		case CDROMGBLKMODE:
21226 		case CDROMGDRVSPEED:
21227 		case CDROMSDRVSPEED:
21228 		case CDROMCDDA:
21229 		case CDROMCDXA:
21230 		case CDROMSUBCODE:
21231 			if (!ISCD(un)) {
21232 				un->un_ncmds_in_driver--;
21233 				ASSERT(un->un_ncmds_in_driver >= 0);
21234 				mutex_exit(SD_MUTEX(un));
21235 				err = ENOTTY;
21236 				goto done_without_assess;
21237 			}
21238 			break;
21239 		case FDEJECT:
21240 		case DKIOCEJECT:
21241 		case CDROMEJECT:
21242 			if (!un->un_f_eject_media_supported) {
21243 				un->un_ncmds_in_driver--;
21244 				ASSERT(un->un_ncmds_in_driver >= 0);
21245 				mutex_exit(SD_MUTEX(un));
21246 				err = ENOTTY;
21247 				goto done_without_assess;
21248 			}
21249 			break;
21250 		case DKIOCFLUSHWRITECACHE:
21251 			mutex_exit(SD_MUTEX(un));
21252 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21253 			if (err != 0) {
21254 				mutex_enter(SD_MUTEX(un));
21255 				un->un_ncmds_in_driver--;
21256 				ASSERT(un->un_ncmds_in_driver >= 0);
21257 				mutex_exit(SD_MUTEX(un));
21258 				err = EIO;
21259 				goto done_quick_assess;
21260 			}
21261 			mutex_enter(SD_MUTEX(un));
21262 			/* FALLTHROUGH */
21263 		case DKIOCREMOVABLE:
21264 		case DKIOCHOTPLUGGABLE:
21265 		case DKIOCINFO:
21266 		case DKIOCGMEDIAINFO:
21267 		case MHIOCENFAILFAST:
21268 		case MHIOCSTATUS:
21269 		case MHIOCTKOWN:
21270 		case MHIOCRELEASE:
21271 		case MHIOCGRP_INKEYS:
21272 		case MHIOCGRP_INRESV:
21273 		case MHIOCGRP_REGISTER:
21274 		case MHIOCGRP_RESERVE:
21275 		case MHIOCGRP_PREEMPTANDABORT:
21276 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21277 		case CDROMCLOSETRAY:
21278 		case USCSICMD:
21279 			goto skip_ready_valid;
21280 		default:
21281 			break;
21282 		}
21283 
21284 		mutex_exit(SD_MUTEX(un));
21285 		err = sd_ready_and_valid(ssc, SDPART(dev));
21286 		mutex_enter(SD_MUTEX(un));
21287 
21288 		if (err != SD_READY_VALID) {
21289 			switch (cmd) {
21290 			case DKIOCSTATE:
21291 			case CDROMGDRVSPEED:
21292 			case CDROMSDRVSPEED:
21293 			case FDEJECT:	/* for eject command */
21294 			case DKIOCEJECT:
21295 			case CDROMEJECT:
21296 			case DKIOCREMOVABLE:
21297 			case DKIOCHOTPLUGGABLE:
21298 				break;
21299 			default:
21300 				if (un->un_f_has_removable_media) {
21301 					err = ENXIO;
21302 				} else {
21303 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21304 					if (err == SD_RESERVED_BY_OTHERS) {
21305 						err = EACCES;
21306 					} else {
21307 						err = EIO;
21308 					}
21309 				}
21310 				un->un_ncmds_in_driver--;
21311 				ASSERT(un->un_ncmds_in_driver >= 0);
21312 				mutex_exit(SD_MUTEX(un));
21313 
21314 				goto done_without_assess;
21315 			}
21316 		}
21317 	}
21318 
21319 skip_ready_valid:
21320 	mutex_exit(SD_MUTEX(un));
21321 
21322 	switch (cmd) {
21323 	case DKIOCINFO:
21324 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21325 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21326 		break;
21327 
21328 	case DKIOCGMEDIAINFO:
21329 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21330 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21331 		break;
21332 
21333 	case DKIOCGGEOM:
21334 	case DKIOCGVTOC:
21335 	case DKIOCGEXTVTOC:
21336 	case DKIOCGAPART:
21337 	case DKIOCPARTINFO:
21338 	case DKIOCEXTPARTINFO:
21339 	case DKIOCSGEOM:
21340 	case DKIOCSAPART:
21341 	case DKIOCGETEFI:
21342 	case DKIOCPARTITION:
21343 	case DKIOCSVTOC:
21344 	case DKIOCSEXTVTOC:
21345 	case DKIOCSETEFI:
21346 	case DKIOCGMBOOT:
21347 	case DKIOCSMBOOT:
21348 	case DKIOCG_PHYGEOM:
21349 	case DKIOCG_VIRTGEOM:
21350 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
21351 
21352 		/* TUR should spin up */
21353 
21354 		if (un->un_f_has_removable_media)
21355 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
21356 			    SD_CHECK_FOR_MEDIA);
21357 
21358 		else
21359 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21360 
21361 		if (err != 0)
21362 			goto done_with_assess;
21363 
21364 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
21365 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
21366 
21367 		if ((err == 0) &&
21368 		    ((cmd == DKIOCSETEFI) ||
21369 		    (un->un_f_pkstats_enabled) &&
21370 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
21371 
21372 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
21373 			    (void *)SD_PATH_DIRECT);
21374 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
21375 				sd_set_pstats(un);
21376 				SD_TRACE(SD_LOG_IO_PARTITION, un,
21377 				    "sd_ioctl: un:0x%p pstats created and "
21378 				    "set\n", un);
21379 			}
21380 		}
21381 
21382 		if ((cmd == DKIOCSVTOC) ||
21383 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
21384 
21385 			mutex_enter(SD_MUTEX(un));
21386 			if (un->un_f_devid_supported &&
21387 			    (un->un_f_opt_fab_devid == TRUE)) {
21388 				if (un->un_devid == NULL) {
21389 					sd_register_devid(ssc, SD_DEVINFO(un),
21390 					    SD_TARGET_IS_UNRESERVED);
21391 				} else {
21392 					/*
21393 					 * The device id for this disk
21394 					 * has been fabricated. The
21395 					 * device id must be preserved
21396 					 * by writing it back out to
21397 					 * disk.
21398 					 */
21399 					if (sd_write_deviceid(ssc) != 0) {
21400 						ddi_devid_free(un->un_devid);
21401 						un->un_devid = NULL;
21402 					}
21403 				}
21404 			}
21405 			mutex_exit(SD_MUTEX(un));
21406 		}
21407 
21408 		break;
21409 
21410 	case DKIOCLOCK:
21411 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21412 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
21413 		    SD_PATH_STANDARD);
21414 		goto done_with_assess;
21415 
21416 	case DKIOCUNLOCK:
21417 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21418 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
21419 		    SD_PATH_STANDARD);
21420 		goto done_with_assess;
21421 
21422 	case DKIOCSTATE: {
21423 		enum dkio_state		state;
21424 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21425 
21426 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21427 			err = EFAULT;
21428 		} else {
21429 			err = sd_check_media(dev, state);
21430 			if (err == 0) {
21431 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21432 				    sizeof (int), flag) != 0)
21433 					err = EFAULT;
21434 			}
21435 		}
21436 		break;
21437 	}
21438 
21439 	case DKIOCREMOVABLE:
21440 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21441 		i = un->un_f_has_removable_media ? 1 : 0;
21442 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21443 			err = EFAULT;
21444 		} else {
21445 			err = 0;
21446 		}
21447 		break;
21448 
21449 	case DKIOCHOTPLUGGABLE:
21450 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21451 		i = un->un_f_is_hotpluggable ? 1 : 0;
21452 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21453 			err = EFAULT;
21454 		} else {
21455 			err = 0;
21456 		}
21457 		break;
21458 
21459 	case DKIOCGTEMPERATURE:
21460 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21461 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21462 		break;
21463 
21464 	case MHIOCENFAILFAST:
21465 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21466 		if ((err = drv_priv(cred_p)) == 0) {
21467 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21468 		}
21469 		break;
21470 
21471 	case MHIOCTKOWN:
21472 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21473 		if ((err = drv_priv(cred_p)) == 0) {
21474 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21475 		}
21476 		break;
21477 
21478 	case MHIOCRELEASE:
21479 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21480 		if ((err = drv_priv(cred_p)) == 0) {
21481 			err = sd_mhdioc_release(dev);
21482 		}
21483 		break;
21484 
21485 	case MHIOCSTATUS:
21486 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21487 		if ((err = drv_priv(cred_p)) == 0) {
21488 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
21489 			case 0:
21490 				err = 0;
21491 				break;
21492 			case EACCES:
21493 				*rval_p = 1;
21494 				err = 0;
21495 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21496 				break;
21497 			default:
21498 				err = EIO;
21499 				goto done_with_assess;
21500 			}
21501 		}
21502 		break;
21503 
21504 	case MHIOCQRESERVE:
21505 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21506 		if ((err = drv_priv(cred_p)) == 0) {
21507 			err = sd_reserve_release(dev, SD_RESERVE);
21508 		}
21509 		break;
21510 
21511 	case MHIOCREREGISTERDEVID:
21512 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21513 		if (drv_priv(cred_p) == EPERM) {
21514 			err = EPERM;
21515 		} else if (!un->un_f_devid_supported) {
21516 			err = ENOTTY;
21517 		} else {
21518 			err = sd_mhdioc_register_devid(dev);
21519 		}
21520 		break;
21521 
21522 	case MHIOCGRP_INKEYS:
21523 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21524 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21525 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21526 				err = ENOTSUP;
21527 			} else {
21528 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21529 				    flag);
21530 			}
21531 		}
21532 		break;
21533 
21534 	case MHIOCGRP_INRESV:
21535 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21536 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21537 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21538 				err = ENOTSUP;
21539 			} else {
21540 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21541 			}
21542 		}
21543 		break;
21544 
21545 	case MHIOCGRP_REGISTER:
21546 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21547 		if ((err = drv_priv(cred_p)) != EPERM) {
21548 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21549 				err = ENOTSUP;
21550 			} else if (arg != NULL) {
21551 				mhioc_register_t reg;
21552 				if (ddi_copyin((void *)arg, &reg,
21553 				    sizeof (mhioc_register_t), flag) != 0) {
21554 					err = EFAULT;
21555 				} else {
21556 					err =
21557 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21558 					    ssc, SD_SCSI3_REGISTER,
21559 					    (uchar_t *)&reg);
21560 					if (err != 0)
21561 						goto done_with_assess;
21562 				}
21563 			}
21564 		}
21565 		break;
21566 
21567 	case MHIOCGRP_RESERVE:
21568 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21569 		if ((err = drv_priv(cred_p)) != EPERM) {
21570 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21571 				err = ENOTSUP;
21572 			} else if (arg != NULL) {
21573 				mhioc_resv_desc_t resv_desc;
21574 				if (ddi_copyin((void *)arg, &resv_desc,
21575 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21576 					err = EFAULT;
21577 				} else {
21578 					err =
21579 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21580 					    ssc, SD_SCSI3_RESERVE,
21581 					    (uchar_t *)&resv_desc);
21582 					if (err != 0)
21583 						goto done_with_assess;
21584 				}
21585 			}
21586 		}
21587 		break;
21588 
21589 	case MHIOCGRP_PREEMPTANDABORT:
21590 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21591 		if ((err = drv_priv(cred_p)) != EPERM) {
21592 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21593 				err = ENOTSUP;
21594 			} else if (arg != NULL) {
21595 				mhioc_preemptandabort_t preempt_abort;
21596 				if (ddi_copyin((void *)arg, &preempt_abort,
21597 				    sizeof (mhioc_preemptandabort_t),
21598 				    flag) != 0) {
21599 					err = EFAULT;
21600 				} else {
21601 					err =
21602 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21603 					    ssc, SD_SCSI3_PREEMPTANDABORT,
21604 					    (uchar_t *)&preempt_abort);
21605 					if (err != 0)
21606 						goto done_with_assess;
21607 				}
21608 			}
21609 		}
21610 		break;
21611 
21612 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21613 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
21614 		if ((err = drv_priv(cred_p)) != EPERM) {
21615 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21616 				err = ENOTSUP;
21617 			} else if (arg != NULL) {
21618 				mhioc_registerandignorekey_t r_and_i;
21619 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21620 				    sizeof (mhioc_registerandignorekey_t),
21621 				    flag) != 0) {
21622 					err = EFAULT;
21623 				} else {
21624 					err =
21625 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21626 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
21627 					    (uchar_t *)&r_and_i);
21628 					if (err != 0)
21629 						goto done_with_assess;
21630 				}
21631 			}
21632 		}
21633 		break;
21634 
21635 	case USCSICMD:
21636 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21637 		cr = ddi_get_cred();
21638 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21639 			err = EPERM;
21640 		} else {
21641 			enum uio_seg	uioseg;
21642 
21643 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
21644 			    UIO_USERSPACE;
21645 			if (un->un_f_format_in_progress == TRUE) {
21646 				err = EAGAIN;
21647 				break;
21648 			}
21649 
21650 			err = sd_ssc_send(ssc,
21651 			    (struct uscsi_cmd *)arg,
21652 			    flag, uioseg, SD_PATH_STANDARD);
21653 			if (err != 0)
21654 				goto done_with_assess;
21655 			else
21656 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21657 		}
21658 		break;
21659 
21660 	case CDROMPAUSE:
21661 	case CDROMRESUME:
21662 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21663 		if (!ISCD(un)) {
21664 			err = ENOTTY;
21665 		} else {
21666 			err = sr_pause_resume(dev, cmd);
21667 		}
21668 		break;
21669 
21670 	case CDROMPLAYMSF:
21671 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21672 		if (!ISCD(un)) {
21673 			err = ENOTTY;
21674 		} else {
21675 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21676 		}
21677 		break;
21678 
21679 	case CDROMPLAYTRKIND:
21680 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21681 #if defined(__i386) || defined(__amd64)
21682 		/*
21683 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21684 		 */
21685 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21686 #else
21687 		if (!ISCD(un)) {
21688 #endif
21689 			err = ENOTTY;
21690 		} else {
21691 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21692 		}
21693 		break;
21694 
21695 	case CDROMREADTOCHDR:
21696 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21697 		if (!ISCD(un)) {
21698 			err = ENOTTY;
21699 		} else {
21700 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21701 		}
21702 		break;
21703 
21704 	case CDROMREADTOCENTRY:
21705 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21706 		if (!ISCD(un)) {
21707 			err = ENOTTY;
21708 		} else {
21709 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21710 		}
21711 		break;
21712 
21713 	case CDROMSTOP:
21714 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21715 		if (!ISCD(un)) {
21716 			err = ENOTTY;
21717 		} else {
21718 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_STOP,
21719 			    SD_PATH_STANDARD);
21720 			goto done_with_assess;
21721 		}
21722 		break;
21723 
21724 	case CDROMSTART:
21725 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21726 		if (!ISCD(un)) {
21727 			err = ENOTTY;
21728 		} else {
21729 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
21730 			    SD_PATH_STANDARD);
21731 			goto done_with_assess;
21732 		}
21733 		break;
21734 
21735 	case CDROMCLOSETRAY:
21736 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21737 		if (!ISCD(un)) {
21738 			err = ENOTTY;
21739 		} else {
21740 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_CLOSE,
21741 			    SD_PATH_STANDARD);
21742 			goto done_with_assess;
21743 		}
21744 		break;
21745 
21746 	case FDEJECT:	/* for eject command */
21747 	case DKIOCEJECT:
21748 	case CDROMEJECT:
21749 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21750 		if (!un->un_f_eject_media_supported) {
21751 			err = ENOTTY;
21752 		} else {
21753 			err = sr_eject(dev);
21754 		}
21755 		break;
21756 
21757 	case CDROMVOLCTRL:
21758 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21759 		if (!ISCD(un)) {
21760 			err = ENOTTY;
21761 		} else {
21762 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21763 		}
21764 		break;
21765 
21766 	case CDROMSUBCHNL:
21767 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21768 		if (!ISCD(un)) {
21769 			err = ENOTTY;
21770 		} else {
21771 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21772 		}
21773 		break;
21774 
21775 	case CDROMREADMODE2:
21776 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21777 		if (!ISCD(un)) {
21778 			err = ENOTTY;
21779 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21780 			/*
21781 			 * If the drive supports READ CD, use that instead of
21782 			 * switching the LBA size via a MODE SELECT
21783 			 * Block Descriptor
21784 			 */
21785 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21786 		} else {
21787 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21788 		}
21789 		break;
21790 
21791 	case CDROMREADMODE1:
21792 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21793 		if (!ISCD(un)) {
21794 			err = ENOTTY;
21795 		} else {
21796 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21797 		}
21798 		break;
21799 
21800 	case CDROMREADOFFSET:
21801 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21802 		if (!ISCD(un)) {
21803 			err = ENOTTY;
21804 		} else {
21805 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21806 			    flag);
21807 		}
21808 		break;
21809 
21810 	case CDROMSBLKMODE:
21811 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21812 		/*
21813 		 * There is no means of changing block size in case of atapi
21814 		 * drives, thus return ENOTTY if drive type is atapi
21815 		 */
21816 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21817 			err = ENOTTY;
21818 		} else if (un->un_f_mmc_cap == TRUE) {
21819 
21820 			/*
21821 			 * MMC Devices do not support changing the
21822 			 * logical block size
21823 			 *
21824 			 * Note: EINVAL is being returned instead of ENOTTY to
21825 			 * maintain consistancy with the original mmc
21826 			 * driver update.
21827 			 */
21828 			err = EINVAL;
21829 		} else {
21830 			mutex_enter(SD_MUTEX(un));
21831 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21832 			    (un->un_ncmds_in_transport > 0)) {
21833 				mutex_exit(SD_MUTEX(un));
21834 				err = EINVAL;
21835 			} else {
21836 				mutex_exit(SD_MUTEX(un));
21837 				err = sr_change_blkmode(dev, cmd, arg, flag);
21838 			}
21839 		}
21840 		break;
21841 
21842 	case CDROMGBLKMODE:
21843 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21844 		if (!ISCD(un)) {
21845 			err = ENOTTY;
21846 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21847 		    (un->un_f_blockcount_is_valid != FALSE)) {
21848 			/*
21849 			 * Drive is an ATAPI drive so return target block
21850 			 * size for ATAPI drives since we cannot change the
21851 			 * blocksize on ATAPI drives. Used primarily to detect
21852 			 * if an ATAPI cdrom is present.
21853 			 */
21854 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21855 			    sizeof (int), flag) != 0) {
21856 				err = EFAULT;
21857 			} else {
21858 				err = 0;
21859 			}
21860 
21861 		} else {
21862 			/*
21863 			 * Drive supports changing block sizes via a Mode
21864 			 * Select.
21865 			 */
21866 			err = sr_change_blkmode(dev, cmd, arg, flag);
21867 		}
21868 		break;
21869 
21870 	case CDROMGDRVSPEED:
21871 	case CDROMSDRVSPEED:
21872 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21873 		if (!ISCD(un)) {
21874 			err = ENOTTY;
21875 		} else if (un->un_f_mmc_cap == TRUE) {
21876 			/*
21877 			 * Note: In the future the driver implementation
21878 			 * for getting and
21879 			 * setting cd speed should entail:
21880 			 * 1) If non-mmc try the Toshiba mode page
21881 			 *    (sr_change_speed)
21882 			 * 2) If mmc but no support for Real Time Streaming try
21883 			 *    the SET CD SPEED (0xBB) command
21884 			 *   (sr_atapi_change_speed)
21885 			 * 3) If mmc and support for Real Time Streaming
21886 			 *    try the GET PERFORMANCE and SET STREAMING
21887 			 *    commands (not yet implemented, 4380808)
21888 			 */
21889 			/*
21890 			 * As per recent MMC spec, CD-ROM speed is variable
21891 			 * and changes with LBA. Since there is no such
21892 			 * things as drive speed now, fail this ioctl.
21893 			 *
21894 			 * Note: EINVAL is returned for consistancy of original
21895 			 * implementation which included support for getting
21896 			 * the drive speed of mmc devices but not setting
21897 			 * the drive speed. Thus EINVAL would be returned
21898 			 * if a set request was made for an mmc device.
21899 			 * We no longer support get or set speed for
21900 			 * mmc but need to remain consistent with regard
21901 			 * to the error code returned.
21902 			 */
21903 			err = EINVAL;
21904 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21905 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21906 		} else {
21907 			err = sr_change_speed(dev, cmd, arg, flag);
21908 		}
21909 		break;
21910 
21911 	case CDROMCDDA:
21912 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21913 		if (!ISCD(un)) {
21914 			err = ENOTTY;
21915 		} else {
21916 			err = sr_read_cdda(dev, (void *)arg, flag);
21917 		}
21918 		break;
21919 
21920 	case CDROMCDXA:
21921 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21922 		if (!ISCD(un)) {
21923 			err = ENOTTY;
21924 		} else {
21925 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21926 		}
21927 		break;
21928 
21929 	case CDROMSUBCODE:
21930 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21931 		if (!ISCD(un)) {
21932 			err = ENOTTY;
21933 		} else {
21934 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21935 		}
21936 		break;
21937 
21938 
21939 #ifdef SDDEBUG
21940 /* RESET/ABORTS testing ioctls */
21941 	case DKIOCRESET: {
21942 		int	reset_level;
21943 
21944 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21945 			err = EFAULT;
21946 		} else {
21947 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21948 			    "reset_level = 0x%lx\n", reset_level);
21949 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21950 				err = 0;
21951 			} else {
21952 				err = EIO;
21953 			}
21954 		}
21955 		break;
21956 	}
21957 
21958 	case DKIOCABORT:
21959 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21960 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21961 			err = 0;
21962 		} else {
21963 			err = EIO;
21964 		}
21965 		break;
21966 #endif
21967 
21968 #ifdef SD_FAULT_INJECTION
21969 /* SDIOC FaultInjection testing ioctls */
21970 	case SDIOCSTART:
21971 	case SDIOCSTOP:
21972 	case SDIOCINSERTPKT:
21973 	case SDIOCINSERTXB:
21974 	case SDIOCINSERTUN:
21975 	case SDIOCINSERTARQ:
21976 	case SDIOCPUSH:
21977 	case SDIOCRETRIEVE:
21978 	case SDIOCRUN:
21979 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21980 		    "SDIOC detected cmd:0x%X:\n", cmd);
21981 		/* call error generator */
21982 		sd_faultinjection_ioctl(cmd, arg, un);
21983 		err = 0;
21984 		break;
21985 
21986 #endif /* SD_FAULT_INJECTION */
21987 
21988 	case DKIOCFLUSHWRITECACHE:
21989 		{
21990 			struct dk_callback *dkc = (struct dk_callback *)arg;
21991 
21992 			mutex_enter(SD_MUTEX(un));
21993 			if (!un->un_f_sync_cache_supported ||
21994 			    !un->un_f_write_cache_enabled) {
21995 				err = un->un_f_sync_cache_supported ?
21996 				    0 : ENOTSUP;
21997 				mutex_exit(SD_MUTEX(un));
21998 				if ((flag & FKIOCTL) && dkc != NULL &&
21999 				    dkc->dkc_callback != NULL) {
22000 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22001 					    err);
22002 					/*
22003 					 * Did callback and reported error.
22004 					 * Since we did a callback, ioctl
22005 					 * should return 0.
22006 					 */
22007 					err = 0;
22008 				}
22009 				break;
22010 			}
22011 			mutex_exit(SD_MUTEX(un));
22012 
22013 			if ((flag & FKIOCTL) && dkc != NULL &&
22014 			    dkc->dkc_callback != NULL) {
22015 				/* async SYNC CACHE request */
22016 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22017 			} else {
22018 				/* synchronous SYNC CACHE request */
22019 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22020 			}
22021 		}
22022 		break;
22023 
22024 	case DKIOCGETWCE: {
22025 
22026 		int wce;
22027 
22028 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
22029 			break;
22030 		}
22031 
22032 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22033 			err = EFAULT;
22034 		}
22035 		break;
22036 	}
22037 
22038 	case DKIOCSETWCE: {
22039 
22040 		int wce, sync_supported;
22041 
22042 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22043 			err = EFAULT;
22044 			break;
22045 		}
22046 
22047 		/*
22048 		 * Synchronize multiple threads trying to enable
22049 		 * or disable the cache via the un_f_wcc_cv
22050 		 * condition variable.
22051 		 */
22052 		mutex_enter(SD_MUTEX(un));
22053 
22054 		/*
22055 		 * Don't allow the cache to be enabled if the
22056 		 * config file has it disabled.
22057 		 */
22058 		if (un->un_f_opt_disable_cache && wce) {
22059 			mutex_exit(SD_MUTEX(un));
22060 			err = EINVAL;
22061 			break;
22062 		}
22063 
22064 		/*
22065 		 * Wait for write cache change in progress
22066 		 * bit to be clear before proceeding.
22067 		 */
22068 		while (un->un_f_wcc_inprog)
22069 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22070 
22071 		un->un_f_wcc_inprog = 1;
22072 
22073 		if (un->un_f_write_cache_enabled && wce == 0) {
22074 			/*
22075 			 * Disable the write cache.  Don't clear
22076 			 * un_f_write_cache_enabled until after
22077 			 * the mode select and flush are complete.
22078 			 */
22079 			sync_supported = un->un_f_sync_cache_supported;
22080 
22081 			/*
22082 			 * If cache flush is suppressed, we assume that the
22083 			 * controller firmware will take care of managing the
22084 			 * write cache for us: no need to explicitly
22085 			 * disable it.
22086 			 */
22087 			if (!un->un_f_suppress_cache_flush) {
22088 				mutex_exit(SD_MUTEX(un));
22089 				if ((err = sd_cache_control(ssc,
22090 				    SD_CACHE_NOCHANGE,
22091 				    SD_CACHE_DISABLE)) == 0 &&
22092 				    sync_supported) {
22093 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
22094 					    NULL);
22095 				}
22096 			} else {
22097 				mutex_exit(SD_MUTEX(un));
22098 			}
22099 
22100 			mutex_enter(SD_MUTEX(un));
22101 			if (err == 0) {
22102 				un->un_f_write_cache_enabled = 0;
22103 			}
22104 
22105 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22106 			/*
22107 			 * Set un_f_write_cache_enabled first, so there is
22108 			 * no window where the cache is enabled, but the
22109 			 * bit says it isn't.
22110 			 */
22111 			un->un_f_write_cache_enabled = 1;
22112 
22113 			/*
22114 			 * If cache flush is suppressed, we assume that the
22115 			 * controller firmware will take care of managing the
22116 			 * write cache for us: no need to explicitly
22117 			 * enable it.
22118 			 */
22119 			if (!un->un_f_suppress_cache_flush) {
22120 				mutex_exit(SD_MUTEX(un));
22121 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
22122 				    SD_CACHE_ENABLE);
22123 			} else {
22124 				mutex_exit(SD_MUTEX(un));
22125 			}
22126 
22127 			mutex_enter(SD_MUTEX(un));
22128 
22129 			if (err) {
22130 				un->un_f_write_cache_enabled = 0;
22131 			}
22132 		}
22133 
22134 		un->un_f_wcc_inprog = 0;
22135 		cv_broadcast(&un->un_wcc_cv);
22136 		mutex_exit(SD_MUTEX(un));
22137 		break;
22138 	}
22139 
22140 	default:
22141 		err = ENOTTY;
22142 		break;
22143 	}
22144 	mutex_enter(SD_MUTEX(un));
22145 	un->un_ncmds_in_driver--;
22146 	ASSERT(un->un_ncmds_in_driver >= 0);
22147 	mutex_exit(SD_MUTEX(un));
22148 
22149 
22150 done_without_assess:
22151 	sd_ssc_fini(ssc);
22152 
22153 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22154 	return (err);
22155 
22156 done_with_assess:
22157 	mutex_enter(SD_MUTEX(un));
22158 	un->un_ncmds_in_driver--;
22159 	ASSERT(un->un_ncmds_in_driver >= 0);
22160 	mutex_exit(SD_MUTEX(un));
22161 
22162 done_quick_assess:
22163 	if (err != 0)
22164 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22165 	/* Uninitialize sd_ssc_t pointer */
22166 	sd_ssc_fini(ssc);
22167 
22168 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22169 	return (err);
22170 }
22171 
22172 
22173 /*
22174  *    Function: sd_dkio_ctrl_info
22175  *
22176  * Description: This routine is the driver entry point for handling controller
22177  *		information ioctl requests (DKIOCINFO).
22178  *
22179  *   Arguments: dev  - the device number
22180  *		arg  - pointer to user provided dk_cinfo structure
22181  *		       specifying the controller type and attributes.
22182  *		flag - this argument is a pass through to ddi_copyxxx()
22183  *		       directly from the mode argument of ioctl().
22184  *
22185  * Return Code: 0
22186  *		EFAULT
22187  *		ENXIO
22188  */
22189 
22190 static int
22191 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22192 {
22193 	struct sd_lun	*un = NULL;
22194 	struct dk_cinfo	*info;
22195 	dev_info_t	*pdip;
22196 	int		lun, tgt;
22197 
22198 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22199 		return (ENXIO);
22200 	}
22201 
22202 	info = (struct dk_cinfo *)
22203 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22204 
22205 	switch (un->un_ctype) {
22206 	case CTYPE_CDROM:
22207 		info->dki_ctype = DKC_CDROM;
22208 		break;
22209 	default:
22210 		info->dki_ctype = DKC_SCSI_CCS;
22211 		break;
22212 	}
22213 	pdip = ddi_get_parent(SD_DEVINFO(un));
22214 	info->dki_cnum = ddi_get_instance(pdip);
22215 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22216 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22217 	} else {
22218 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22219 		    DK_DEVLEN - 1);
22220 	}
22221 
22222 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22223 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22224 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22225 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22226 
22227 	/* Unit Information */
22228 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22229 	info->dki_slave = ((tgt << 3) | lun);
22230 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22231 	    DK_DEVLEN - 1);
22232 	info->dki_flags = DKI_FMTVOL;
22233 	info->dki_partition = SDPART(dev);
22234 
22235 	/* Max Transfer size of this device in blocks */
22236 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22237 	info->dki_addr = 0;
22238 	info->dki_space = 0;
22239 	info->dki_prio = 0;
22240 	info->dki_vec = 0;
22241 
22242 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22243 		kmem_free(info, sizeof (struct dk_cinfo));
22244 		return (EFAULT);
22245 	} else {
22246 		kmem_free(info, sizeof (struct dk_cinfo));
22247 		return (0);
22248 	}
22249 }
22250 
22251 
22252 /*
22253  *    Function: sd_get_media_info
22254  *
22255  * Description: This routine is the driver entry point for handling ioctl
22256  *		requests for the media type or command set profile used by the
22257  *		drive to operate on the media (DKIOCGMEDIAINFO).
22258  *
22259  *   Arguments: dev	- the device number
22260  *		arg	- pointer to user provided dk_minfo structure
22261  *			  specifying the media type, logical block size and
22262  *			  drive capacity.
22263  *		flag	- this argument is a pass through to ddi_copyxxx()
22264  *			  directly from the mode argument of ioctl().
22265  *
22266  * Return Code: 0
22267  *		EACCESS
22268  *		EFAULT
22269  *		ENXIO
22270  *		EIO
22271  */
22272 
22273 static int
22274 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22275 {
22276 	struct sd_lun		*un = NULL;
22277 	struct uscsi_cmd	com;
22278 	struct scsi_inquiry	*sinq;
22279 	struct dk_minfo		media_info;
22280 	u_longlong_t		media_capacity;
22281 	uint64_t		capacity;
22282 	uint_t			lbasize;
22283 	uchar_t			*out_data;
22284 	uchar_t			*rqbuf;
22285 	int			rval = 0;
22286 	int			rtn;
22287 	sd_ssc_t		*ssc;
22288 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22289 	    (un->un_state == SD_STATE_OFFLINE)) {
22290 		return (ENXIO);
22291 	}
22292 
22293 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22294 
22295 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22296 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22297 
22298 	/* Issue a TUR to determine if the drive is ready with media present */
22299 	ssc = sd_ssc_init(un);
22300 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
22301 	if (rval == ENXIO) {
22302 		goto done;
22303 	} else if (rval != 0) {
22304 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22305 	}
22306 
22307 	/* Now get configuration data */
22308 	if (ISCD(un)) {
22309 		media_info.dki_media_type = DK_CDROM;
22310 
22311 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22312 		if (un->un_f_mmc_cap == TRUE) {
22313 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
22314 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
22315 			    SD_PATH_STANDARD);
22316 
22317 			if (rtn) {
22318 				/*
22319 				 * We ignore all failures for CD and need to
22320 				 * put the assessment before processing code
22321 				 * to avoid missing assessment for FMA.
22322 				 */
22323 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22324 				/*
22325 				 * Failed for other than an illegal request
22326 				 * or command not supported
22327 				 */
22328 				if ((com.uscsi_status == STATUS_CHECK) &&
22329 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22330 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22331 					    (rqbuf[12] != 0x20)) {
22332 						rval = EIO;
22333 						goto no_assessment;
22334 					}
22335 				}
22336 			} else {
22337 				/*
22338 				 * The GET CONFIGURATION command succeeded
22339 				 * so set the media type according to the
22340 				 * returned data
22341 				 */
22342 				media_info.dki_media_type = out_data[6];
22343 				media_info.dki_media_type <<= 8;
22344 				media_info.dki_media_type |= out_data[7];
22345 			}
22346 		}
22347 	} else {
22348 		/*
22349 		 * The profile list is not available, so we attempt to identify
22350 		 * the media type based on the inquiry data
22351 		 */
22352 		sinq = un->un_sd->sd_inq;
22353 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
22354 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
22355 			/* This is a direct access device  or optical disk */
22356 			media_info.dki_media_type = DK_FIXED_DISK;
22357 
22358 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22359 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22360 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22361 					media_info.dki_media_type = DK_ZIP;
22362 				} else if (
22363 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22364 					media_info.dki_media_type = DK_JAZ;
22365 				}
22366 			}
22367 		} else {
22368 			/*
22369 			 * Not a CD, direct access or optical disk so return
22370 			 * unknown media
22371 			 */
22372 			media_info.dki_media_type = DK_UNKNOWN;
22373 		}
22374 	}
22375 
22376 	/* Now read the capacity so we can provide the lbasize and capacity */
22377 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
22378 	    SD_PATH_DIRECT);
22379 	switch (rval) {
22380 	case 0:
22381 		break;
22382 	case EACCES:
22383 		rval = EACCES;
22384 		goto done;
22385 	default:
22386 		rval = EIO;
22387 		goto done;
22388 	}
22389 
22390 	/*
22391 	 * If lun is expanded dynamically, update the un structure.
22392 	 */
22393 	mutex_enter(SD_MUTEX(un));
22394 	if ((un->un_f_blockcount_is_valid == TRUE) &&
22395 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
22396 	    (capacity > un->un_blockcount)) {
22397 		sd_update_block_info(un, lbasize, capacity);
22398 	}
22399 	mutex_exit(SD_MUTEX(un));
22400 
22401 	media_info.dki_lbsize = lbasize;
22402 	media_capacity = capacity;
22403 
22404 	/*
22405 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22406 	 * un->un_sys_blocksize chunks. So we need to convert it into
22407 	 * cap.lbasize chunks.
22408 	 */
22409 	media_capacity *= un->un_sys_blocksize;
22410 	media_capacity /= lbasize;
22411 	media_info.dki_capacity = media_capacity;
22412 
22413 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22414 		rval = EFAULT;
22415 		/* Put goto. Anybody might add some code below in future */
22416 		goto no_assessment;
22417 	}
22418 done:
22419 	if (rval != 0) {
22420 		if (rval == EIO)
22421 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22422 		else
22423 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22424 	}
22425 no_assessment:
22426 	sd_ssc_fini(ssc);
22427 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22428 	kmem_free(rqbuf, SENSE_LENGTH);
22429 	return (rval);
22430 }
22431 
22432 
22433 /*
22434  *    Function: sd_check_media
22435  *
22436  * Description: This utility routine implements the functionality for the
22437  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
22438  *		driver state changes from that specified by the user
22439  *		(inserted or ejected). For example, if the user specifies
22440  *		DKIO_EJECTED and the current media state is inserted this
22441  *		routine will immediately return DKIO_INSERTED. However, if the
22442  *		current media state is not inserted the user thread will be
22443  *		blocked until the drive state changes. If DKIO_NONE is specified
22444  *		the user thread will block until a drive state change occurs.
22445  *
22446  *   Arguments: dev  - the device number
22447  *		state  - user pointer to a dkio_state, updated with the current
22448  *			drive state at return.
22449  *
22450  * Return Code: ENXIO
22451  *		EIO
22452  *		EAGAIN
22453  *		EINTR
22454  */
22455 
22456 static int
22457 sd_check_media(dev_t dev, enum dkio_state state)
22458 {
22459 	struct sd_lun		*un = NULL;
22460 	enum dkio_state		prev_state;
22461 	opaque_t		token = NULL;
22462 	int			rval = 0;
22463 	sd_ssc_t		*ssc;
22464 
22465 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22466 		return (ENXIO);
22467 	}
22468 
22469 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
22470 
22471 	ssc = sd_ssc_init(un);
22472 
22473 	mutex_enter(SD_MUTEX(un));
22474 
22475 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
22476 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
22477 
22478 	prev_state = un->un_mediastate;
22479 
22480 	/* is there anything to do? */
22481 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
22482 		/*
22483 		 * submit the request to the scsi_watch service;
22484 		 * scsi_media_watch_cb() does the real work
22485 		 */
22486 		mutex_exit(SD_MUTEX(un));
22487 
22488 		/*
22489 		 * This change handles the case where a scsi watch request is
22490 		 * added to a device that is powered down. To accomplish this
22491 		 * we power up the device before adding the scsi watch request,
22492 		 * since the scsi watch sends a TUR directly to the device
22493 		 * which the device cannot handle if it is powered down.
22494 		 */
22495 		if (sd_pm_entry(un) != DDI_SUCCESS) {
22496 			mutex_enter(SD_MUTEX(un));
22497 			goto done;
22498 		}
22499 
22500 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
22501 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
22502 		    (caddr_t)dev);
22503 
22504 		sd_pm_exit(un);
22505 
22506 		mutex_enter(SD_MUTEX(un));
22507 		if (token == NULL) {
22508 			rval = EAGAIN;
22509 			goto done;
22510 		}
22511 
22512 		/*
22513 		 * This is a special case IOCTL that doesn't return
22514 		 * until the media state changes. Routine sdpower
22515 		 * knows about and handles this so don't count it
22516 		 * as an active cmd in the driver, which would
22517 		 * keep the device busy to the pm framework.
22518 		 * If the count isn't decremented the device can't
22519 		 * be powered down.
22520 		 */
22521 		un->un_ncmds_in_driver--;
22522 		ASSERT(un->un_ncmds_in_driver >= 0);
22523 
22524 		/*
22525 		 * if a prior request had been made, this will be the same
22526 		 * token, as scsi_watch was designed that way.
22527 		 */
22528 		un->un_swr_token = token;
22529 		un->un_specified_mediastate = state;
22530 
22531 		/*
22532 		 * now wait for media change
22533 		 * we will not be signalled unless mediastate == state but it is
22534 		 * still better to test for this condition, since there is a
22535 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
22536 		 */
22537 		SD_TRACE(SD_LOG_COMMON, un,
22538 		    "sd_check_media: waiting for media state change\n");
22539 		while (un->un_mediastate == state) {
22540 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
22541 				SD_TRACE(SD_LOG_COMMON, un,
22542 				    "sd_check_media: waiting for media state "
22543 				    "was interrupted\n");
22544 				un->un_ncmds_in_driver++;
22545 				rval = EINTR;
22546 				goto done;
22547 			}
22548 			SD_TRACE(SD_LOG_COMMON, un,
22549 			    "sd_check_media: received signal, state=%x\n",
22550 			    un->un_mediastate);
22551 		}
22552 		/*
22553 		 * Inc the counter to indicate the device once again
22554 		 * has an active outstanding cmd.
22555 		 */
22556 		un->un_ncmds_in_driver++;
22557 	}
22558 
22559 	/* invalidate geometry */
22560 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
22561 		sr_ejected(un);
22562 	}
22563 
22564 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
22565 		uint64_t	capacity;
22566 		uint_t		lbasize;
22567 
22568 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
22569 		mutex_exit(SD_MUTEX(un));
22570 		/*
22571 		 * Since the following routines use SD_PATH_DIRECT, we must
22572 		 * call PM directly before the upcoming disk accesses. This
22573 		 * may cause the disk to be power/spin up.
22574 		 */
22575 
22576 		if (sd_pm_entry(un) == DDI_SUCCESS) {
22577 			rval = sd_send_scsi_READ_CAPACITY(ssc,
22578 			    &capacity, &lbasize, SD_PATH_DIRECT);
22579 			if (rval != 0) {
22580 				sd_pm_exit(un);
22581 				if (rval == EIO)
22582 					sd_ssc_assessment(ssc,
22583 					    SD_FMT_STATUS_CHECK);
22584 				else
22585 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22586 				mutex_enter(SD_MUTEX(un));
22587 				goto done;
22588 			}
22589 		} else {
22590 			rval = EIO;
22591 			mutex_enter(SD_MUTEX(un));
22592 			goto done;
22593 		}
22594 		mutex_enter(SD_MUTEX(un));
22595 
22596 		sd_update_block_info(un, lbasize, capacity);
22597 
22598 		/*
22599 		 *  Check if the media in the device is writable or not
22600 		 */
22601 		if (ISCD(un)) {
22602 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
22603 		}
22604 
22605 		mutex_exit(SD_MUTEX(un));
22606 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
22607 		if ((cmlb_validate(un->un_cmlbhandle, 0,
22608 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
22609 			sd_set_pstats(un);
22610 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22611 			    "sd_check_media: un:0x%p pstats created and "
22612 			    "set\n", un);
22613 		}
22614 
22615 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22616 		    SD_PATH_DIRECT);
22617 
22618 		sd_pm_exit(un);
22619 
22620 		if (rval != 0) {
22621 			if (rval == EIO)
22622 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22623 			else
22624 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22625 		}
22626 
22627 		mutex_enter(SD_MUTEX(un));
22628 	}
22629 done:
22630 	sd_ssc_fini(ssc);
22631 	un->un_f_watcht_stopped = FALSE;
22632 		/*
22633 		 * Use of this local token and the mutex ensures that we avoid
22634 		 * some race conditions associated with terminating the
22635 		 * scsi watch.
22636 		 */
22637 	if (token) {
22638 		un->un_swr_token = (opaque_t)NULL;
22639 		mutex_exit(SD_MUTEX(un));
22640 		(void) scsi_watch_request_terminate(token,
22641 		    SCSI_WATCH_TERMINATE_WAIT);
22642 		mutex_enter(SD_MUTEX(un));
22643 	}
22644 
22645 	/*
22646 	 * Update the capacity kstat value, if no media previously
22647 	 * (capacity kstat is 0) and a media has been inserted
22648 	 * (un_f_blockcount_is_valid == TRUE)
22649 	 */
22650 	if (un->un_errstats) {
22651 		struct sd_errstats	*stp = NULL;
22652 
22653 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
22654 		if ((stp->sd_capacity.value.ui64 == 0) &&
22655 		    (un->un_f_blockcount_is_valid == TRUE)) {
22656 			stp->sd_capacity.value.ui64 =
22657 			    (uint64_t)((uint64_t)un->un_blockcount *
22658 			    un->un_sys_blocksize);
22659 		}
22660 	}
22661 	mutex_exit(SD_MUTEX(un));
22662 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
22663 	return (rval);
22664 }
22665 
22666 
22667 /*
22668  *    Function: sd_delayed_cv_broadcast
22669  *
22670  * Description: Delayed cv_broadcast to allow for target to recover from media
22671  *		insertion.
22672  *
22673  *   Arguments: arg - driver soft state (unit) structure
22674  */
22675 
22676 static void
22677 sd_delayed_cv_broadcast(void *arg)
22678 {
22679 	struct sd_lun *un = arg;
22680 
22681 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
22682 
22683 	mutex_enter(SD_MUTEX(un));
22684 	un->un_dcvb_timeid = NULL;
22685 	cv_broadcast(&un->un_state_cv);
22686 	mutex_exit(SD_MUTEX(un));
22687 }
22688 
22689 
22690 /*
22691  *    Function: sd_media_watch_cb
22692  *
22693  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
22694  *		routine processes the TUR sense data and updates the driver
22695  *		state if a transition has occurred. The user thread
22696  *		(sd_check_media) is then signalled.
22697  *
22698  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22699  *			among multiple watches that share this callback function
22700  *		resultp - scsi watch facility result packet containing scsi
22701  *			  packet, status byte and sense data
22702  *
22703  * Return Code: 0 for success, -1 for failure
22704  */
22705 
22706 static int
22707 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22708 {
22709 	struct sd_lun			*un;
22710 	struct scsi_status		*statusp = resultp->statusp;
22711 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
22712 	enum dkio_state			state = DKIO_NONE;
22713 	dev_t				dev = (dev_t)arg;
22714 	uchar_t				actual_sense_length;
22715 	uint8_t				skey, asc, ascq;
22716 
22717 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22718 		return (-1);
22719 	}
22720 	actual_sense_length = resultp->actual_sense_length;
22721 
22722 	mutex_enter(SD_MUTEX(un));
22723 	SD_TRACE(SD_LOG_COMMON, un,
22724 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
22725 	    *((char *)statusp), (void *)sensep, actual_sense_length);
22726 
22727 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
22728 		un->un_mediastate = DKIO_DEV_GONE;
22729 		cv_broadcast(&un->un_state_cv);
22730 		mutex_exit(SD_MUTEX(un));
22731 
22732 		return (0);
22733 	}
22734 
22735 	/*
22736 	 * If there was a check condition then sensep points to valid sense data
22737 	 * If status was not a check condition but a reservation or busy status
22738 	 * then the new state is DKIO_NONE
22739 	 */
22740 	if (sensep != NULL) {
22741 		skey = scsi_sense_key(sensep);
22742 		asc = scsi_sense_asc(sensep);
22743 		ascq = scsi_sense_ascq(sensep);
22744 
22745 		SD_INFO(SD_LOG_COMMON, un,
22746 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
22747 		    skey, asc, ascq);
22748 		/* This routine only uses up to 13 bytes of sense data. */
22749 		if (actual_sense_length >= 13) {
22750 			if (skey == KEY_UNIT_ATTENTION) {
22751 				if (asc == 0x28) {
22752 					state = DKIO_INSERTED;
22753 				}
22754 			} else if (skey == KEY_NOT_READY) {
22755 				/*
22756 				 * Sense data of 02/06/00 means that the
22757 				 * drive could not read the media (No
22758 				 * reference position found). In this case
22759 				 * to prevent a hang on the DKIOCSTATE IOCTL
22760 				 * we set the media state to DKIO_INSERTED.
22761 				 */
22762 				if (asc == 0x06 && ascq == 0x00)
22763 					state = DKIO_INSERTED;
22764 
22765 				/*
22766 				 * if 02/04/02  means that the host
22767 				 * should send start command. Explicitly
22768 				 * leave the media state as is
22769 				 * (inserted) as the media is inserted
22770 				 * and host has stopped device for PM
22771 				 * reasons. Upon next true read/write
22772 				 * to this media will bring the
22773 				 * device to the right state good for
22774 				 * media access.
22775 				 */
22776 				if (asc == 0x3a) {
22777 					state = DKIO_EJECTED;
22778 				} else {
22779 					/*
22780 					 * If the drive is busy with an
22781 					 * operation or long write, keep the
22782 					 * media in an inserted state.
22783 					 */
22784 
22785 					if ((asc == 0x04) &&
22786 					    ((ascq == 0x02) ||
22787 					    (ascq == 0x07) ||
22788 					    (ascq == 0x08))) {
22789 						state = DKIO_INSERTED;
22790 					}
22791 				}
22792 			} else if (skey == KEY_NO_SENSE) {
22793 				if ((asc == 0x00) && (ascq == 0x00)) {
22794 					/*
22795 					 * Sense Data 00/00/00 does not provide
22796 					 * any information about the state of
22797 					 * the media. Ignore it.
22798 					 */
22799 					mutex_exit(SD_MUTEX(un));
22800 					return (0);
22801 				}
22802 			}
22803 		}
22804 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
22805 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
22806 		state = DKIO_INSERTED;
22807 	}
22808 
22809 	SD_TRACE(SD_LOG_COMMON, un,
22810 	    "sd_media_watch_cb: state=%x, specified=%x\n",
22811 	    state, un->un_specified_mediastate);
22812 
22813 	/*
22814 	 * now signal the waiting thread if this is *not* the specified state;
22815 	 * delay the signal if the state is DKIO_INSERTED to allow the target
22816 	 * to recover
22817 	 */
22818 	if (state != un->un_specified_mediastate) {
22819 		un->un_mediastate = state;
22820 		if (state == DKIO_INSERTED) {
22821 			/*
22822 			 * delay the signal to give the drive a chance
22823 			 * to do what it apparently needs to do
22824 			 */
22825 			SD_TRACE(SD_LOG_COMMON, un,
22826 			    "sd_media_watch_cb: delayed cv_broadcast\n");
22827 			if (un->un_dcvb_timeid == NULL) {
22828 				un->un_dcvb_timeid =
22829 				    timeout(sd_delayed_cv_broadcast, un,
22830 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
22831 			}
22832 		} else {
22833 			SD_TRACE(SD_LOG_COMMON, un,
22834 			    "sd_media_watch_cb: immediate cv_broadcast\n");
22835 			cv_broadcast(&un->un_state_cv);
22836 		}
22837 	}
22838 	mutex_exit(SD_MUTEX(un));
22839 	return (0);
22840 }
22841 
22842 
22843 /*
22844  *    Function: sd_dkio_get_temp
22845  *
22846  * Description: This routine is the driver entry point for handling ioctl
22847  *		requests to get the disk temperature.
22848  *
22849  *   Arguments: dev  - the device number
22850  *		arg  - pointer to user provided dk_temperature structure.
22851  *		flag - this argument is a pass through to ddi_copyxxx()
22852  *		       directly from the mode argument of ioctl().
22853  *
22854  * Return Code: 0
22855  *		EFAULT
22856  *		ENXIO
22857  *		EAGAIN
22858  */
22859 
22860 static int
22861 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
22862 {
22863 	struct sd_lun		*un = NULL;
22864 	struct dk_temperature	*dktemp = NULL;
22865 	uchar_t			*temperature_page;
22866 	int			rval = 0;
22867 	int			path_flag = SD_PATH_STANDARD;
22868 	sd_ssc_t		*ssc;
22869 
22870 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22871 		return (ENXIO);
22872 	}
22873 
22874 	ssc = sd_ssc_init(un);
22875 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
22876 
22877 	/* copyin the disk temp argument to get the user flags */
22878 	if (ddi_copyin((void *)arg, dktemp,
22879 	    sizeof (struct dk_temperature), flag) != 0) {
22880 		rval = EFAULT;
22881 		goto done;
22882 	}
22883 
22884 	/* Initialize the temperature to invalid. */
22885 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
22886 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
22887 
22888 	/*
22889 	 * Note: Investigate removing the "bypass pm" semantic.
22890 	 * Can we just bypass PM always?
22891 	 */
22892 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
22893 		path_flag = SD_PATH_DIRECT;
22894 		ASSERT(!mutex_owned(&un->un_pm_mutex));
22895 		mutex_enter(&un->un_pm_mutex);
22896 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22897 			/*
22898 			 * If DKT_BYPASS_PM is set, and the drive happens to be
22899 			 * in low power mode, we can not wake it up, Need to
22900 			 * return EAGAIN.
22901 			 */
22902 			mutex_exit(&un->un_pm_mutex);
22903 			rval = EAGAIN;
22904 			goto done;
22905 		} else {
22906 			/*
22907 			 * Indicate to PM the device is busy. This is required
22908 			 * to avoid a race - i.e. the ioctl is issuing a
22909 			 * command and the pm framework brings down the device
22910 			 * to low power mode (possible power cut-off on some
22911 			 * platforms).
22912 			 */
22913 			mutex_exit(&un->un_pm_mutex);
22914 			if (sd_pm_entry(un) != DDI_SUCCESS) {
22915 				rval = EAGAIN;
22916 				goto done;
22917 			}
22918 		}
22919 	}
22920 
22921 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
22922 
22923 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
22924 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
22925 	if (rval != 0)
22926 		goto done2;
22927 
22928 	/*
22929 	 * For the current temperature verify that the parameter length is 0x02
22930 	 * and the parameter code is 0x00
22931 	 */
22932 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
22933 	    (temperature_page[5] == 0x00)) {
22934 		if (temperature_page[9] == 0xFF) {
22935 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
22936 		} else {
22937 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
22938 		}
22939 	}
22940 
22941 	/*
22942 	 * For the reference temperature verify that the parameter
22943 	 * length is 0x02 and the parameter code is 0x01
22944 	 */
22945 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
22946 	    (temperature_page[11] == 0x01)) {
22947 		if (temperature_page[15] == 0xFF) {
22948 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
22949 		} else {
22950 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
22951 		}
22952 	}
22953 
22954 	/* Do the copyout regardless of the temperature commands status. */
22955 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
22956 	    flag) != 0) {
22957 		rval = EFAULT;
22958 		goto done1;
22959 	}
22960 
22961 done2:
22962 	if (rval != 0) {
22963 		if (rval == EIO)
22964 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22965 		else
22966 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22967 	}
22968 done1:
22969 	if (path_flag == SD_PATH_DIRECT) {
22970 		sd_pm_exit(un);
22971 	}
22972 
22973 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
22974 done:
22975 	sd_ssc_fini(ssc);
22976 	if (dktemp != NULL) {
22977 		kmem_free(dktemp, sizeof (struct dk_temperature));
22978 	}
22979 
22980 	return (rval);
22981 }
22982 
22983 
22984 /*
22985  *    Function: sd_log_page_supported
22986  *
22987  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
22988  *		supported log pages.
22989  *
22990  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22991  *                      structure for this target.
22992  *		log_page -
22993  *
22994  * Return Code: -1 - on error (log sense is optional and may not be supported).
22995  *		0  - log page not found.
22996  *  		1  - log page found.
22997  */
22998 
22999 static int
23000 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
23001 {
23002 	uchar_t *log_page_data;
23003 	int	i;
23004 	int	match = 0;
23005 	int	log_size;
23006 	int	status = 0;
23007 	struct sd_lun	*un;
23008 
23009 	ASSERT(ssc != NULL);
23010 	un = ssc->ssc_un;
23011 	ASSERT(un != NULL);
23012 
23013 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23014 
23015 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
23016 	    SD_PATH_DIRECT);
23017 
23018 	if (status != 0) {
23019 		if (status == EIO) {
23020 			/*
23021 			 * Some disks do not support log sense, we
23022 			 * should ignore this kind of error(sense key is
23023 			 * 0x5 - illegal request).
23024 			 */
23025 			uint8_t *sensep;
23026 			int senlen;
23027 
23028 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
23029 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
23030 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
23031 
23032 			if (senlen > 0 &&
23033 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
23034 				sd_ssc_assessment(ssc,
23035 				    SD_FMT_IGNORE_COMPROMISE);
23036 			} else {
23037 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23038 			}
23039 		} else {
23040 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23041 		}
23042 
23043 		SD_ERROR(SD_LOG_COMMON, un,
23044 		    "sd_log_page_supported: failed log page retrieval\n");
23045 		kmem_free(log_page_data, 0xFF);
23046 		return (-1);
23047 	}
23048 
23049 	log_size = log_page_data[3];
23050 
23051 	/*
23052 	 * The list of supported log pages start from the fourth byte. Check
23053 	 * until we run out of log pages or a match is found.
23054 	 */
23055 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23056 		if (log_page_data[i] == log_page) {
23057 			match++;
23058 		}
23059 	}
23060 	kmem_free(log_page_data, 0xFF);
23061 	return (match);
23062 }
23063 
23064 
23065 /*
23066  *    Function: sd_mhdioc_failfast
23067  *
23068  * Description: This routine is the driver entry point for handling ioctl
23069  *		requests to enable/disable the multihost failfast option.
23070  *		(MHIOCENFAILFAST)
23071  *
23072  *   Arguments: dev	- the device number
23073  *		arg	- user specified probing interval.
23074  *		flag	- this argument is a pass through to ddi_copyxxx()
23075  *			  directly from the mode argument of ioctl().
23076  *
23077  * Return Code: 0
23078  *		EFAULT
23079  *		ENXIO
23080  */
23081 
23082 static int
23083 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23084 {
23085 	struct sd_lun	*un = NULL;
23086 	int		mh_time;
23087 	int		rval = 0;
23088 
23089 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23090 		return (ENXIO);
23091 	}
23092 
23093 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
23094 		return (EFAULT);
23095 
23096 	if (mh_time) {
23097 		mutex_enter(SD_MUTEX(un));
23098 		un->un_resvd_status |= SD_FAILFAST;
23099 		mutex_exit(SD_MUTEX(un));
23100 		/*
23101 		 * If mh_time is INT_MAX, then this ioctl is being used for
23102 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
23103 		 */
23104 		if (mh_time != INT_MAX) {
23105 			rval = sd_check_mhd(dev, mh_time);
23106 		}
23107 	} else {
23108 		(void) sd_check_mhd(dev, 0);
23109 		mutex_enter(SD_MUTEX(un));
23110 		un->un_resvd_status &= ~SD_FAILFAST;
23111 		mutex_exit(SD_MUTEX(un));
23112 	}
23113 	return (rval);
23114 }
23115 
23116 
23117 /*
23118  *    Function: sd_mhdioc_takeown
23119  *
23120  * Description: This routine is the driver entry point for handling ioctl
23121  *		requests to forcefully acquire exclusive access rights to the
23122  *		multihost disk (MHIOCTKOWN).
23123  *
23124  *   Arguments: dev	- the device number
23125  *		arg	- user provided structure specifying the delay
23126  *			  parameters in milliseconds
23127  *		flag	- this argument is a pass through to ddi_copyxxx()
23128  *			  directly from the mode argument of ioctl().
23129  *
23130  * Return Code: 0
23131  *		EFAULT
23132  *		ENXIO
23133  */
23134 
23135 static int
23136 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
23137 {
23138 	struct sd_lun		*un = NULL;
23139 	struct mhioctkown	*tkown = NULL;
23140 	int			rval = 0;
23141 
23142 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23143 		return (ENXIO);
23144 	}
23145 
23146 	if (arg != NULL) {
23147 		tkown = (struct mhioctkown *)
23148 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
23149 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
23150 		if (rval != 0) {
23151 			rval = EFAULT;
23152 			goto error;
23153 		}
23154 	}
23155 
23156 	rval = sd_take_ownership(dev, tkown);
23157 	mutex_enter(SD_MUTEX(un));
23158 	if (rval == 0) {
23159 		un->un_resvd_status |= SD_RESERVE;
23160 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
23161 			sd_reinstate_resv_delay =
23162 			    tkown->reinstate_resv_delay * 1000;
23163 		} else {
23164 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
23165 		}
23166 		/*
23167 		 * Give the scsi_watch routine interval set by
23168 		 * the MHIOCENFAILFAST ioctl precedence here.
23169 		 */
23170 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
23171 			mutex_exit(SD_MUTEX(un));
23172 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
23173 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
23174 			    "sd_mhdioc_takeown : %d\n",
23175 			    sd_reinstate_resv_delay);
23176 		} else {
23177 			mutex_exit(SD_MUTEX(un));
23178 		}
23179 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
23180 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23181 	} else {
23182 		un->un_resvd_status &= ~SD_RESERVE;
23183 		mutex_exit(SD_MUTEX(un));
23184 	}
23185 
23186 error:
23187 	if (tkown != NULL) {
23188 		kmem_free(tkown, sizeof (struct mhioctkown));
23189 	}
23190 	return (rval);
23191 }
23192 
23193 
23194 /*
23195  *    Function: sd_mhdioc_release
23196  *
23197  * Description: This routine is the driver entry point for handling ioctl
23198  *		requests to release exclusive access rights to the multihost
23199  *		disk (MHIOCRELEASE).
23200  *
23201  *   Arguments: dev	- the device number
23202  *
23203  * Return Code: 0
23204  *		ENXIO
23205  */
23206 
23207 static int
23208 sd_mhdioc_release(dev_t dev)
23209 {
23210 	struct sd_lun		*un = NULL;
23211 	timeout_id_t		resvd_timeid_save;
23212 	int			resvd_status_save;
23213 	int			rval = 0;
23214 
23215 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23216 		return (ENXIO);
23217 	}
23218 
23219 	mutex_enter(SD_MUTEX(un));
23220 	resvd_status_save = un->un_resvd_status;
23221 	un->un_resvd_status &=
23222 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
23223 	if (un->un_resvd_timeid) {
23224 		resvd_timeid_save = un->un_resvd_timeid;
23225 		un->un_resvd_timeid = NULL;
23226 		mutex_exit(SD_MUTEX(un));
23227 		(void) untimeout(resvd_timeid_save);
23228 	} else {
23229 		mutex_exit(SD_MUTEX(un));
23230 	}
23231 
23232 	/*
23233 	 * destroy any pending timeout thread that may be attempting to
23234 	 * reinstate reservation on this device.
23235 	 */
23236 	sd_rmv_resv_reclaim_req(dev);
23237 
23238 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
23239 		mutex_enter(SD_MUTEX(un));
23240 		if ((un->un_mhd_token) &&
23241 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
23242 			mutex_exit(SD_MUTEX(un));
23243 			(void) sd_check_mhd(dev, 0);
23244 		} else {
23245 			mutex_exit(SD_MUTEX(un));
23246 		}
23247 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
23248 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23249 	} else {
23250 		/*
23251 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
23252 		 */
23253 		mutex_enter(SD_MUTEX(un));
23254 		un->un_resvd_status = resvd_status_save;
23255 		mutex_exit(SD_MUTEX(un));
23256 	}
23257 	return (rval);
23258 }
23259 
23260 
23261 /*
23262  *    Function: sd_mhdioc_register_devid
23263  *
23264  * Description: This routine is the driver entry point for handling ioctl
23265  *		requests to register the device id (MHIOCREREGISTERDEVID).
23266  *
23267  *		Note: The implementation for this ioctl has been updated to
23268  *		be consistent with the original PSARC case (1999/357)
23269  *		(4375899, 4241671, 4220005)
23270  *
23271  *   Arguments: dev	- the device number
23272  *
23273  * Return Code: 0
23274  *		ENXIO
23275  */
23276 
23277 static int
23278 sd_mhdioc_register_devid(dev_t dev)
23279 {
23280 	struct sd_lun	*un = NULL;
23281 	int		rval = 0;
23282 	sd_ssc_t	*ssc;
23283 
23284 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23285 		return (ENXIO);
23286 	}
23287 
23288 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23289 
23290 	mutex_enter(SD_MUTEX(un));
23291 
23292 	/* If a devid already exists, de-register it */
23293 	if (un->un_devid != NULL) {
23294 		ddi_devid_unregister(SD_DEVINFO(un));
23295 		/*
23296 		 * After unregister devid, needs to free devid memory
23297 		 */
23298 		ddi_devid_free(un->un_devid);
23299 		un->un_devid = NULL;
23300 	}
23301 
23302 	/* Check for reservation conflict */
23303 	mutex_exit(SD_MUTEX(un));
23304 	ssc = sd_ssc_init(un);
23305 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
23306 	mutex_enter(SD_MUTEX(un));
23307 
23308 	switch (rval) {
23309 	case 0:
23310 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
23311 		break;
23312 	case EACCES:
23313 		break;
23314 	default:
23315 		rval = EIO;
23316 	}
23317 
23318 	mutex_exit(SD_MUTEX(un));
23319 	if (rval != 0) {
23320 		if (rval == EIO)
23321 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23322 		else
23323 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23324 	}
23325 	sd_ssc_fini(ssc);
23326 	return (rval);
23327 }
23328 
23329 
23330 /*
23331  *    Function: sd_mhdioc_inkeys
23332  *
23333  * Description: This routine is the driver entry point for handling ioctl
23334  *		requests to issue the SCSI-3 Persistent In Read Keys command
23335  *		to the device (MHIOCGRP_INKEYS).
23336  *
23337  *   Arguments: dev	- the device number
23338  *		arg	- user provided in_keys structure
23339  *		flag	- this argument is a pass through to ddi_copyxxx()
23340  *			  directly from the mode argument of ioctl().
23341  *
23342  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
23343  *		ENXIO
23344  *		EFAULT
23345  */
23346 
23347 static int
23348 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
23349 {
23350 	struct sd_lun		*un;
23351 	mhioc_inkeys_t		inkeys;
23352 	int			rval = 0;
23353 
23354 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23355 		return (ENXIO);
23356 	}
23357 
23358 #ifdef _MULTI_DATAMODEL
23359 	switch (ddi_model_convert_from(flag & FMODELS)) {
23360 	case DDI_MODEL_ILP32: {
23361 		struct mhioc_inkeys32	inkeys32;
23362 
23363 		if (ddi_copyin(arg, &inkeys32,
23364 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
23365 			return (EFAULT);
23366 		}
23367 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
23368 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23369 		    &inkeys, flag)) != 0) {
23370 			return (rval);
23371 		}
23372 		inkeys32.generation = inkeys.generation;
23373 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
23374 		    flag) != 0) {
23375 			return (EFAULT);
23376 		}
23377 		break;
23378 	}
23379 	case DDI_MODEL_NONE:
23380 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
23381 		    flag) != 0) {
23382 			return (EFAULT);
23383 		}
23384 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23385 		    &inkeys, flag)) != 0) {
23386 			return (rval);
23387 		}
23388 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
23389 		    flag) != 0) {
23390 			return (EFAULT);
23391 		}
23392 		break;
23393 	}
23394 
23395 #else /* ! _MULTI_DATAMODEL */
23396 
23397 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
23398 		return (EFAULT);
23399 	}
23400 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
23401 	if (rval != 0) {
23402 		return (rval);
23403 	}
23404 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
23405 		return (EFAULT);
23406 	}
23407 
23408 #endif /* _MULTI_DATAMODEL */
23409 
23410 	return (rval);
23411 }
23412 
23413 
23414 /*
23415  *    Function: sd_mhdioc_inresv
23416  *
23417  * Description: This routine is the driver entry point for handling ioctl
23418  *		requests to issue the SCSI-3 Persistent In Read Reservations
23419  *		command to the device (MHIOCGRP_INKEYS).
23420  *
23421  *   Arguments: dev	- the device number
23422  *		arg	- user provided in_resv structure
23423  *		flag	- this argument is a pass through to ddi_copyxxx()
23424  *			  directly from the mode argument of ioctl().
23425  *
23426  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
23427  *		ENXIO
23428  *		EFAULT
23429  */
23430 
23431 static int
23432 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
23433 {
23434 	struct sd_lun		*un;
23435 	mhioc_inresvs_t		inresvs;
23436 	int			rval = 0;
23437 
23438 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23439 		return (ENXIO);
23440 	}
23441 
23442 #ifdef _MULTI_DATAMODEL
23443 
23444 	switch (ddi_model_convert_from(flag & FMODELS)) {
23445 	case DDI_MODEL_ILP32: {
23446 		struct mhioc_inresvs32	inresvs32;
23447 
23448 		if (ddi_copyin(arg, &inresvs32,
23449 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23450 			return (EFAULT);
23451 		}
23452 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
23453 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23454 		    &inresvs, flag)) != 0) {
23455 			return (rval);
23456 		}
23457 		inresvs32.generation = inresvs.generation;
23458 		if (ddi_copyout(&inresvs32, arg,
23459 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23460 			return (EFAULT);
23461 		}
23462 		break;
23463 	}
23464 	case DDI_MODEL_NONE:
23465 		if (ddi_copyin(arg, &inresvs,
23466 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23467 			return (EFAULT);
23468 		}
23469 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23470 		    &inresvs, flag)) != 0) {
23471 			return (rval);
23472 		}
23473 		if (ddi_copyout(&inresvs, arg,
23474 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23475 			return (EFAULT);
23476 		}
23477 		break;
23478 	}
23479 
23480 #else /* ! _MULTI_DATAMODEL */
23481 
23482 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
23483 		return (EFAULT);
23484 	}
23485 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
23486 	if (rval != 0) {
23487 		return (rval);
23488 	}
23489 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
23490 		return (EFAULT);
23491 	}
23492 
23493 #endif /* ! _MULTI_DATAMODEL */
23494 
23495 	return (rval);
23496 }
23497 
23498 
23499 /*
23500  * The following routines support the clustering functionality described below
23501  * and implement lost reservation reclaim functionality.
23502  *
23503  * Clustering
23504  * ----------
23505  * The clustering code uses two different, independent forms of SCSI
23506  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
23507  * Persistent Group Reservations. For any particular disk, it will use either
23508  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
23509  *
23510  * SCSI-2
23511  * The cluster software takes ownership of a multi-hosted disk by issuing the
23512  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
23513  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
23514  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
23515  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
23516  * driver. The meaning of failfast is that if the driver (on this host) ever
23517  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
23518  * it should immediately panic the host. The motivation for this ioctl is that
23519  * if this host does encounter reservation conflict, the underlying cause is
23520  * that some other host of the cluster has decided that this host is no longer
23521  * in the cluster and has seized control of the disks for itself. Since this
23522  * host is no longer in the cluster, it ought to panic itself. The
23523  * MHIOCENFAILFAST ioctl does two things:
23524  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
23525  *      error to panic the host
23526  *      (b) it sets up a periodic timer to test whether this host still has
23527  *      "access" (in that no other host has reserved the device):  if the
23528  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
23529  *      purpose of that periodic timer is to handle scenarios where the host is
23530  *      otherwise temporarily quiescent, temporarily doing no real i/o.
23531  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
23532  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
23533  * the device itself.
23534  *
23535  * SCSI-3 PGR
23536  * A direct semantic implementation of the SCSI-3 Persistent Reservation
23537  * facility is supported through the shared multihost disk ioctls
23538  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
23539  * MHIOCGRP_PREEMPTANDABORT)
23540  *
23541  * Reservation Reclaim:
23542  * --------------------
23543  * To support the lost reservation reclaim operations this driver creates a
23544  * single thread to handle reinstating reservations on all devices that have
23545  * lost reservations sd_resv_reclaim_requests are logged for all devices that
23546  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
23547  * and the reservation reclaim thread loops through the requests to regain the
23548  * lost reservations.
23549  */
23550 
23551 /*
23552  *    Function: sd_check_mhd()
23553  *
23554  * Description: This function sets up and submits a scsi watch request or
23555  *		terminates an existing watch request. This routine is used in
23556  *		support of reservation reclaim.
23557  *
23558  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
23559  *			 among multiple watches that share the callback function
23560  *		interval - the number of microseconds specifying the watch
23561  *			   interval for issuing TEST UNIT READY commands. If
23562  *			   set to 0 the watch should be terminated. If the
23563  *			   interval is set to 0 and if the device is required
23564  *			   to hold reservation while disabling failfast, the
23565  *			   watch is restarted with an interval of
23566  *			   reinstate_resv_delay.
23567  *
23568  * Return Code: 0	   - Successful submit/terminate of scsi watch request
23569  *		ENXIO      - Indicates an invalid device was specified
23570  *		EAGAIN     - Unable to submit the scsi watch request
23571  */
23572 
23573 static int
23574 sd_check_mhd(dev_t dev, int interval)
23575 {
23576 	struct sd_lun	*un;
23577 	opaque_t	token;
23578 
23579 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23580 		return (ENXIO);
23581 	}
23582 
23583 	/* is this a watch termination request? */
23584 	if (interval == 0) {
23585 		mutex_enter(SD_MUTEX(un));
23586 		/* if there is an existing watch task then terminate it */
23587 		if (un->un_mhd_token) {
23588 			token = un->un_mhd_token;
23589 			un->un_mhd_token = NULL;
23590 			mutex_exit(SD_MUTEX(un));
23591 			(void) scsi_watch_request_terminate(token,
23592 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
23593 			mutex_enter(SD_MUTEX(un));
23594 		} else {
23595 			mutex_exit(SD_MUTEX(un));
23596 			/*
23597 			 * Note: If we return here we don't check for the
23598 			 * failfast case. This is the original legacy
23599 			 * implementation but perhaps we should be checking
23600 			 * the failfast case.
23601 			 */
23602 			return (0);
23603 		}
23604 		/*
23605 		 * If the device is required to hold reservation while
23606 		 * disabling failfast, we need to restart the scsi_watch
23607 		 * routine with an interval of reinstate_resv_delay.
23608 		 */
23609 		if (un->un_resvd_status & SD_RESERVE) {
23610 			interval = sd_reinstate_resv_delay/1000;
23611 		} else {
23612 			/* no failfast so bail */
23613 			mutex_exit(SD_MUTEX(un));
23614 			return (0);
23615 		}
23616 		mutex_exit(SD_MUTEX(un));
23617 	}
23618 
23619 	/*
23620 	 * adjust minimum time interval to 1 second,
23621 	 * and convert from msecs to usecs
23622 	 */
23623 	if (interval > 0 && interval < 1000) {
23624 		interval = 1000;
23625 	}
23626 	interval *= 1000;
23627 
23628 	/*
23629 	 * submit the request to the scsi_watch service
23630 	 */
23631 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
23632 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
23633 	if (token == NULL) {
23634 		return (EAGAIN);
23635 	}
23636 
23637 	/*
23638 	 * save token for termination later on
23639 	 */
23640 	mutex_enter(SD_MUTEX(un));
23641 	un->un_mhd_token = token;
23642 	mutex_exit(SD_MUTEX(un));
23643 	return (0);
23644 }
23645 
23646 
23647 /*
23648  *    Function: sd_mhd_watch_cb()
23649  *
23650  * Description: This function is the call back function used by the scsi watch
23651  *		facility. The scsi watch facility sends the "Test Unit Ready"
23652  *		and processes the status. If applicable (i.e. a "Unit Attention"
23653  *		status and automatic "Request Sense" not used) the scsi watch
23654  *		facility will send a "Request Sense" and retrieve the sense data
23655  *		to be passed to this callback function. In either case the
23656  *		automatic "Request Sense" or the facility submitting one, this
23657  *		callback is passed the status and sense data.
23658  *
23659  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23660  *			among multiple watches that share this callback function
23661  *		resultp - scsi watch facility result packet containing scsi
23662  *			  packet, status byte and sense data
23663  *
23664  * Return Code: 0 - continue the watch task
23665  *		non-zero - terminate the watch task
23666  */
23667 
23668 static int
23669 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23670 {
23671 	struct sd_lun			*un;
23672 	struct scsi_status		*statusp;
23673 	uint8_t				*sensep;
23674 	struct scsi_pkt			*pkt;
23675 	uchar_t				actual_sense_length;
23676 	dev_t  				dev = (dev_t)arg;
23677 
23678 	ASSERT(resultp != NULL);
23679 	statusp			= resultp->statusp;
23680 	sensep			= (uint8_t *)resultp->sensep;
23681 	pkt			= resultp->pkt;
23682 	actual_sense_length	= resultp->actual_sense_length;
23683 
23684 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23685 		return (ENXIO);
23686 	}
23687 
23688 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
23689 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
23690 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
23691 
23692 	/* Begin processing of the status and/or sense data */
23693 	if (pkt->pkt_reason != CMD_CMPLT) {
23694 		/* Handle the incomplete packet */
23695 		sd_mhd_watch_incomplete(un, pkt);
23696 		return (0);
23697 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
23698 		if (*((unsigned char *)statusp)
23699 		    == STATUS_RESERVATION_CONFLICT) {
23700 			/*
23701 			 * Handle a reservation conflict by panicking if
23702 			 * configured for failfast or by logging the conflict
23703 			 * and updating the reservation status
23704 			 */
23705 			mutex_enter(SD_MUTEX(un));
23706 			if ((un->un_resvd_status & SD_FAILFAST) &&
23707 			    (sd_failfast_enable)) {
23708 				sd_panic_for_res_conflict(un);
23709 				/*NOTREACHED*/
23710 			}
23711 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23712 			    "sd_mhd_watch_cb: Reservation Conflict\n");
23713 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
23714 			mutex_exit(SD_MUTEX(un));
23715 		}
23716 	}
23717 
23718 	if (sensep != NULL) {
23719 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
23720 			mutex_enter(SD_MUTEX(un));
23721 			if ((scsi_sense_asc(sensep) ==
23722 			    SD_SCSI_RESET_SENSE_CODE) &&
23723 			    (un->un_resvd_status & SD_RESERVE)) {
23724 				/*
23725 				 * The additional sense code indicates a power
23726 				 * on or bus device reset has occurred; update
23727 				 * the reservation status.
23728 				 */
23729 				un->un_resvd_status |=
23730 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23731 				SD_INFO(SD_LOG_IOCTL_MHD, un,
23732 				    "sd_mhd_watch_cb: Lost Reservation\n");
23733 			}
23734 		} else {
23735 			return (0);
23736 		}
23737 	} else {
23738 		mutex_enter(SD_MUTEX(un));
23739 	}
23740 
23741 	if ((un->un_resvd_status & SD_RESERVE) &&
23742 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
23743 		if (un->un_resvd_status & SD_WANT_RESERVE) {
23744 			/*
23745 			 * A reset occurred in between the last probe and this
23746 			 * one so if a timeout is pending cancel it.
23747 			 */
23748 			if (un->un_resvd_timeid) {
23749 				timeout_id_t temp_id = un->un_resvd_timeid;
23750 				un->un_resvd_timeid = NULL;
23751 				mutex_exit(SD_MUTEX(un));
23752 				(void) untimeout(temp_id);
23753 				mutex_enter(SD_MUTEX(un));
23754 			}
23755 			un->un_resvd_status &= ~SD_WANT_RESERVE;
23756 		}
23757 		if (un->un_resvd_timeid == 0) {
23758 			/* Schedule a timeout to handle the lost reservation */
23759 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
23760 			    (void *)dev,
23761 			    drv_usectohz(sd_reinstate_resv_delay));
23762 		}
23763 	}
23764 	mutex_exit(SD_MUTEX(un));
23765 	return (0);
23766 }
23767 
23768 
23769 /*
23770  *    Function: sd_mhd_watch_incomplete()
23771  *
23772  * Description: This function is used to find out why a scsi pkt sent by the
23773  *		scsi watch facility was not completed. Under some scenarios this
23774  *		routine will return. Otherwise it will send a bus reset to see
23775  *		if the drive is still online.
23776  *
23777  *   Arguments: un  - driver soft state (unit) structure
23778  *		pkt - incomplete scsi pkt
23779  */
23780 
23781 static void
23782 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
23783 {
23784 	int	be_chatty;
23785 	int	perr;
23786 
23787 	ASSERT(pkt != NULL);
23788 	ASSERT(un != NULL);
23789 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
23790 	perr		= (pkt->pkt_statistics & STAT_PERR);
23791 
23792 	mutex_enter(SD_MUTEX(un));
23793 	if (un->un_state == SD_STATE_DUMPING) {
23794 		mutex_exit(SD_MUTEX(un));
23795 		return;
23796 	}
23797 
23798 	switch (pkt->pkt_reason) {
23799 	case CMD_UNX_BUS_FREE:
23800 		/*
23801 		 * If we had a parity error that caused the target to drop BSY*,
23802 		 * don't be chatty about it.
23803 		 */
23804 		if (perr && be_chatty) {
23805 			be_chatty = 0;
23806 		}
23807 		break;
23808 	case CMD_TAG_REJECT:
23809 		/*
23810 		 * The SCSI-2 spec states that a tag reject will be sent by the
23811 		 * target if tagged queuing is not supported. A tag reject may
23812 		 * also be sent during certain initialization periods or to
23813 		 * control internal resources. For the latter case the target
23814 		 * may also return Queue Full.
23815 		 *
23816 		 * If this driver receives a tag reject from a target that is
23817 		 * going through an init period or controlling internal
23818 		 * resources tagged queuing will be disabled. This is a less
23819 		 * than optimal behavior but the driver is unable to determine
23820 		 * the target state and assumes tagged queueing is not supported
23821 		 */
23822 		pkt->pkt_flags = 0;
23823 		un->un_tagflags = 0;
23824 
23825 		if (un->un_f_opt_queueing == TRUE) {
23826 			un->un_throttle = min(un->un_throttle, 3);
23827 		} else {
23828 			un->un_throttle = 1;
23829 		}
23830 		mutex_exit(SD_MUTEX(un));
23831 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
23832 		mutex_enter(SD_MUTEX(un));
23833 		break;
23834 	case CMD_INCOMPLETE:
23835 		/*
23836 		 * The transport stopped with an abnormal state, fallthrough and
23837 		 * reset the target and/or bus unless selection did not complete
23838 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
23839 		 * go through a target/bus reset
23840 		 */
23841 		if (pkt->pkt_state == STATE_GOT_BUS) {
23842 			break;
23843 		}
23844 		/*FALLTHROUGH*/
23845 
23846 	case CMD_TIMEOUT:
23847 	default:
23848 		/*
23849 		 * The lun may still be running the command, so a lun reset
23850 		 * should be attempted. If the lun reset fails or cannot be
23851 		 * issued, than try a target reset. Lastly try a bus reset.
23852 		 */
23853 		if ((pkt->pkt_statistics &
23854 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
23855 			int reset_retval = 0;
23856 			mutex_exit(SD_MUTEX(un));
23857 			if (un->un_f_allow_bus_device_reset == TRUE) {
23858 				if (un->un_f_lun_reset_enabled == TRUE) {
23859 					reset_retval =
23860 					    scsi_reset(SD_ADDRESS(un),
23861 					    RESET_LUN);
23862 				}
23863 				if (reset_retval == 0) {
23864 					reset_retval =
23865 					    scsi_reset(SD_ADDRESS(un),
23866 					    RESET_TARGET);
23867 				}
23868 			}
23869 			if (reset_retval == 0) {
23870 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23871 			}
23872 			mutex_enter(SD_MUTEX(un));
23873 		}
23874 		break;
23875 	}
23876 
23877 	/* A device/bus reset has occurred; update the reservation status. */
23878 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
23879 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
23880 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
23881 			un->un_resvd_status |=
23882 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23883 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23884 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
23885 		}
23886 	}
23887 
23888 	/*
23889 	 * The disk has been turned off; Update the device state.
23890 	 *
23891 	 * Note: Should we be offlining the disk here?
23892 	 */
23893 	if (pkt->pkt_state == STATE_GOT_BUS) {
23894 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
23895 		    "Disk not responding to selection\n");
23896 		if (un->un_state != SD_STATE_OFFLINE) {
23897 			New_state(un, SD_STATE_OFFLINE);
23898 		}
23899 	} else if (be_chatty) {
23900 		/*
23901 		 * suppress messages if they are all the same pkt reason;
23902 		 * with TQ, many (up to 256) are returned with the same
23903 		 * pkt_reason
23904 		 */
23905 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
23906 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23907 			    "sd_mhd_watch_incomplete: "
23908 			    "SCSI transport failed: reason '%s'\n",
23909 			    scsi_rname(pkt->pkt_reason));
23910 		}
23911 	}
23912 	un->un_last_pkt_reason = pkt->pkt_reason;
23913 	mutex_exit(SD_MUTEX(un));
23914 }
23915 
23916 
23917 /*
23918  *    Function: sd_sname()
23919  *
23920  * Description: This is a simple little routine to return a string containing
23921  *		a printable description of command status byte for use in
23922  *		logging.
23923  *
23924  *   Arguments: status - pointer to a status byte
23925  *
23926  * Return Code: char * - string containing status description.
23927  */
23928 
23929 static char *
23930 sd_sname(uchar_t status)
23931 {
23932 	switch (status & STATUS_MASK) {
23933 	case STATUS_GOOD:
23934 		return ("good status");
23935 	case STATUS_CHECK:
23936 		return ("check condition");
23937 	case STATUS_MET:
23938 		return ("condition met");
23939 	case STATUS_BUSY:
23940 		return ("busy");
23941 	case STATUS_INTERMEDIATE:
23942 		return ("intermediate");
23943 	case STATUS_INTERMEDIATE_MET:
23944 		return ("intermediate - condition met");
23945 	case STATUS_RESERVATION_CONFLICT:
23946 		return ("reservation_conflict");
23947 	case STATUS_TERMINATED:
23948 		return ("command terminated");
23949 	case STATUS_QFULL:
23950 		return ("queue full");
23951 	default:
23952 		return ("<unknown status>");
23953 	}
23954 }
23955 
23956 
23957 /*
23958  *    Function: sd_mhd_resvd_recover()
23959  *
23960  * Description: This function adds a reservation entry to the
23961  *		sd_resv_reclaim_request list and signals the reservation
23962  *		reclaim thread that there is work pending. If the reservation
23963  *		reclaim thread has not been previously created this function
23964  *		will kick it off.
23965  *
23966  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23967  *			among multiple watches that share this callback function
23968  *
23969  *     Context: This routine is called by timeout() and is run in interrupt
23970  *		context. It must not sleep or call other functions which may
23971  *		sleep.
23972  */
23973 
23974 static void
23975 sd_mhd_resvd_recover(void *arg)
23976 {
23977 	dev_t			dev = (dev_t)arg;
23978 	struct sd_lun		*un;
23979 	struct sd_thr_request	*sd_treq = NULL;
23980 	struct sd_thr_request	*sd_cur = NULL;
23981 	struct sd_thr_request	*sd_prev = NULL;
23982 	int			already_there = 0;
23983 
23984 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23985 		return;
23986 	}
23987 
23988 	mutex_enter(SD_MUTEX(un));
23989 	un->un_resvd_timeid = NULL;
23990 	if (un->un_resvd_status & SD_WANT_RESERVE) {
23991 		/*
23992 		 * There was a reset so don't issue the reserve, allow the
23993 		 * sd_mhd_watch_cb callback function to notice this and
23994 		 * reschedule the timeout for reservation.
23995 		 */
23996 		mutex_exit(SD_MUTEX(un));
23997 		return;
23998 	}
23999 	mutex_exit(SD_MUTEX(un));
24000 
24001 	/*
24002 	 * Add this device to the sd_resv_reclaim_request list and the
24003 	 * sd_resv_reclaim_thread should take care of the rest.
24004 	 *
24005 	 * Note: We can't sleep in this context so if the memory allocation
24006 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24007 	 * reschedule the timeout for reservation.  (4378460)
24008 	 */
24009 	sd_treq = (struct sd_thr_request *)
24010 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24011 	if (sd_treq == NULL) {
24012 		return;
24013 	}
24014 
24015 	sd_treq->sd_thr_req_next = NULL;
24016 	sd_treq->dev = dev;
24017 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24018 	if (sd_tr.srq_thr_req_head == NULL) {
24019 		sd_tr.srq_thr_req_head = sd_treq;
24020 	} else {
24021 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24022 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24023 			if (sd_cur->dev == dev) {
24024 				/*
24025 				 * already in Queue so don't log
24026 				 * another request for the device
24027 				 */
24028 				already_there = 1;
24029 				break;
24030 			}
24031 			sd_prev = sd_cur;
24032 		}
24033 		if (!already_there) {
24034 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24035 			    "logging request for %lx\n", dev);
24036 			sd_prev->sd_thr_req_next = sd_treq;
24037 		} else {
24038 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24039 		}
24040 	}
24041 
24042 	/*
24043 	 * Create a kernel thread to do the reservation reclaim and free up this
24044 	 * thread. We cannot block this thread while we go away to do the
24045 	 * reservation reclaim
24046 	 */
24047 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24048 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24049 		    sd_resv_reclaim_thread, NULL,
24050 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24051 
24052 	/* Tell the reservation reclaim thread that it has work to do */
24053 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24054 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24055 }
24056 
24057 /*
24058  *    Function: sd_resv_reclaim_thread()
24059  *
24060  * Description: This function implements the reservation reclaim operations
24061  *
24062  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24063  *		      among multiple watches that share this callback function
24064  */
24065 
24066 static void
24067 sd_resv_reclaim_thread()
24068 {
24069 	struct sd_lun		*un;
24070 	struct sd_thr_request	*sd_mhreq;
24071 
24072 	/* Wait for work */
24073 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24074 	if (sd_tr.srq_thr_req_head == NULL) {
24075 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24076 		    &sd_tr.srq_resv_reclaim_mutex);
24077 	}
24078 
24079 	/* Loop while we have work */
24080 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24081 		un = ddi_get_soft_state(sd_state,
24082 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24083 		if (un == NULL) {
24084 			/*
24085 			 * softstate structure is NULL so just
24086 			 * dequeue the request and continue
24087 			 */
24088 			sd_tr.srq_thr_req_head =
24089 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24090 			kmem_free(sd_tr.srq_thr_cur_req,
24091 			    sizeof (struct sd_thr_request));
24092 			continue;
24093 		}
24094 
24095 		/* dequeue the request */
24096 		sd_mhreq = sd_tr.srq_thr_cur_req;
24097 		sd_tr.srq_thr_req_head =
24098 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24099 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24100 
24101 		/*
24102 		 * Reclaim reservation only if SD_RESERVE is still set. There
24103 		 * may have been a call to MHIOCRELEASE before we got here.
24104 		 */
24105 		mutex_enter(SD_MUTEX(un));
24106 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24107 			/*
24108 			 * Note: The SD_LOST_RESERVE flag is cleared before
24109 			 * reclaiming the reservation. If this is done after the
24110 			 * call to sd_reserve_release a reservation loss in the
24111 			 * window between pkt completion of reserve cmd and
24112 			 * mutex_enter below may not be recognized
24113 			 */
24114 			un->un_resvd_status &= ~SD_LOST_RESERVE;
24115 			mutex_exit(SD_MUTEX(un));
24116 
24117 			if (sd_reserve_release(sd_mhreq->dev,
24118 			    SD_RESERVE) == 0) {
24119 				mutex_enter(SD_MUTEX(un));
24120 				un->un_resvd_status |= SD_RESERVE;
24121 				mutex_exit(SD_MUTEX(un));
24122 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24123 				    "sd_resv_reclaim_thread: "
24124 				    "Reservation Recovered\n");
24125 			} else {
24126 				mutex_enter(SD_MUTEX(un));
24127 				un->un_resvd_status |= SD_LOST_RESERVE;
24128 				mutex_exit(SD_MUTEX(un));
24129 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24130 				    "sd_resv_reclaim_thread: Failed "
24131 				    "Reservation Recovery\n");
24132 			}
24133 		} else {
24134 			mutex_exit(SD_MUTEX(un));
24135 		}
24136 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24137 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
24138 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24139 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
24140 		/*
24141 		 * wakeup the destroy thread if anyone is waiting on
24142 		 * us to complete.
24143 		 */
24144 		cv_signal(&sd_tr.srq_inprocess_cv);
24145 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
24146 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
24147 	}
24148 
24149 	/*
24150 	 * cleanup the sd_tr structure now that this thread will not exist
24151 	 */
24152 	ASSERT(sd_tr.srq_thr_req_head == NULL);
24153 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
24154 	sd_tr.srq_resv_reclaim_thread = NULL;
24155 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24156 	thread_exit();
24157 }
24158 
24159 
24160 /*
24161  *    Function: sd_rmv_resv_reclaim_req()
24162  *
24163  * Description: This function removes any pending reservation reclaim requests
24164  *		for the specified device.
24165  *
24166  *   Arguments: dev - the device 'dev_t'
24167  */
24168 
24169 static void
24170 sd_rmv_resv_reclaim_req(dev_t dev)
24171 {
24172 	struct sd_thr_request *sd_mhreq;
24173 	struct sd_thr_request *sd_prev;
24174 
24175 	/* Remove a reservation reclaim request from the list */
24176 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24177 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
24178 		/*
24179 		 * We are attempting to reinstate reservation for
24180 		 * this device. We wait for sd_reserve_release()
24181 		 * to return before we return.
24182 		 */
24183 		cv_wait(&sd_tr.srq_inprocess_cv,
24184 		    &sd_tr.srq_resv_reclaim_mutex);
24185 	} else {
24186 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
24187 		if (sd_mhreq && sd_mhreq->dev == dev) {
24188 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
24189 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24190 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24191 			return;
24192 		}
24193 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
24194 			if (sd_mhreq && sd_mhreq->dev == dev) {
24195 				break;
24196 			}
24197 			sd_prev = sd_mhreq;
24198 		}
24199 		if (sd_mhreq != NULL) {
24200 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
24201 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24202 		}
24203 	}
24204 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24205 }
24206 
24207 
24208 /*
24209  *    Function: sd_mhd_reset_notify_cb()
24210  *
24211  * Description: This is a call back function for scsi_reset_notify. This
24212  *		function updates the softstate reserved status and logs the
24213  *		reset. The driver scsi watch facility callback function
24214  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
24215  *		will reclaim the reservation.
24216  *
24217  *   Arguments: arg  - driver soft state (unit) structure
24218  */
24219 
24220 static void
24221 sd_mhd_reset_notify_cb(caddr_t arg)
24222 {
24223 	struct sd_lun *un = (struct sd_lun *)arg;
24224 
24225 	mutex_enter(SD_MUTEX(un));
24226 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24227 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
24228 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24229 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
24230 	}
24231 	mutex_exit(SD_MUTEX(un));
24232 }
24233 
24234 
24235 /*
24236  *    Function: sd_take_ownership()
24237  *
24238  * Description: This routine implements an algorithm to achieve a stable
24239  *		reservation on disks which don't implement priority reserve,
24240  *		and makes sure that other host lose re-reservation attempts.
24241  *		This algorithm contains of a loop that keeps issuing the RESERVE
24242  *		for some period of time (min_ownership_delay, default 6 seconds)
24243  *		During that loop, it looks to see if there has been a bus device
24244  *		reset or bus reset (both of which cause an existing reservation
24245  *		to be lost). If the reservation is lost issue RESERVE until a
24246  *		period of min_ownership_delay with no resets has gone by, or
24247  *		until max_ownership_delay has expired. This loop ensures that
24248  *		the host really did manage to reserve the device, in spite of
24249  *		resets. The looping for min_ownership_delay (default six
24250  *		seconds) is important to early generation clustering products,
24251  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
24252  *		MHIOCENFAILFAST periodic timer of two seconds. By having
24253  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
24254  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
24255  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
24256  *		have already noticed, via the MHIOCENFAILFAST polling, that it
24257  *		no longer "owns" the disk and will have panicked itself.  Thus,
24258  *		the host issuing the MHIOCTKOWN is assured (with timing
24259  *		dependencies) that by the time it actually starts to use the
24260  *		disk for real work, the old owner is no longer accessing it.
24261  *
24262  *		min_ownership_delay is the minimum amount of time for which the
24263  *		disk must be reserved continuously devoid of resets before the
24264  *		MHIOCTKOWN ioctl will return success.
24265  *
24266  *		max_ownership_delay indicates the amount of time by which the
24267  *		take ownership should succeed or timeout with an error.
24268  *
24269  *   Arguments: dev - the device 'dev_t'
24270  *		*p  - struct containing timing info.
24271  *
24272  * Return Code: 0 for success or error code
24273  */
24274 
24275 static int
24276 sd_take_ownership(dev_t dev, struct mhioctkown *p)
24277 {
24278 	struct sd_lun	*un;
24279 	int		rval;
24280 	int		err;
24281 	int		reservation_count   = 0;
24282 	int		min_ownership_delay =  6000000; /* in usec */
24283 	int		max_ownership_delay = 30000000; /* in usec */
24284 	clock_t		start_time;	/* starting time of this algorithm */
24285 	clock_t		end_time;	/* time limit for giving up */
24286 	clock_t		ownership_time;	/* time limit for stable ownership */
24287 	clock_t		current_time;
24288 	clock_t		previous_current_time;
24289 
24290 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24291 		return (ENXIO);
24292 	}
24293 
24294 	/*
24295 	 * Attempt a device reservation. A priority reservation is requested.
24296 	 */
24297 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
24298 	    != SD_SUCCESS) {
24299 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24300 		    "sd_take_ownership: return(1)=%d\n", rval);
24301 		return (rval);
24302 	}
24303 
24304 	/* Update the softstate reserved status to indicate the reservation */
24305 	mutex_enter(SD_MUTEX(un));
24306 	un->un_resvd_status |= SD_RESERVE;
24307 	un->un_resvd_status &=
24308 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
24309 	mutex_exit(SD_MUTEX(un));
24310 
24311 	if (p != NULL) {
24312 		if (p->min_ownership_delay != 0) {
24313 			min_ownership_delay = p->min_ownership_delay * 1000;
24314 		}
24315 		if (p->max_ownership_delay != 0) {
24316 			max_ownership_delay = p->max_ownership_delay * 1000;
24317 		}
24318 	}
24319 	SD_INFO(SD_LOG_IOCTL_MHD, un,
24320 	    "sd_take_ownership: min, max delays: %d, %d\n",
24321 	    min_ownership_delay, max_ownership_delay);
24322 
24323 	start_time = ddi_get_lbolt();
24324 	current_time	= start_time;
24325 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
24326 	end_time	= start_time + drv_usectohz(max_ownership_delay);
24327 
24328 	while (current_time - end_time < 0) {
24329 		delay(drv_usectohz(500000));
24330 
24331 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
24332 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
24333 				mutex_enter(SD_MUTEX(un));
24334 				rval = (un->un_resvd_status &
24335 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
24336 				mutex_exit(SD_MUTEX(un));
24337 				break;
24338 			}
24339 		}
24340 		previous_current_time = current_time;
24341 		current_time = ddi_get_lbolt();
24342 		mutex_enter(SD_MUTEX(un));
24343 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
24344 			ownership_time = ddi_get_lbolt() +
24345 			    drv_usectohz(min_ownership_delay);
24346 			reservation_count = 0;
24347 		} else {
24348 			reservation_count++;
24349 		}
24350 		un->un_resvd_status |= SD_RESERVE;
24351 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
24352 		mutex_exit(SD_MUTEX(un));
24353 
24354 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24355 		    "sd_take_ownership: ticks for loop iteration=%ld, "
24356 		    "reservation=%s\n", (current_time - previous_current_time),
24357 		    reservation_count ? "ok" : "reclaimed");
24358 
24359 		if (current_time - ownership_time >= 0 &&
24360 		    reservation_count >= 4) {
24361 			rval = 0; /* Achieved a stable ownership */
24362 			break;
24363 		}
24364 		if (current_time - end_time >= 0) {
24365 			rval = EACCES; /* No ownership in max possible time */
24366 			break;
24367 		}
24368 	}
24369 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24370 	    "sd_take_ownership: return(2)=%d\n", rval);
24371 	return (rval);
24372 }
24373 
24374 
24375 /*
24376  *    Function: sd_reserve_release()
24377  *
24378  * Description: This function builds and sends scsi RESERVE, RELEASE, and
24379  *		PRIORITY RESERVE commands based on a user specified command type
24380  *
24381  *   Arguments: dev - the device 'dev_t'
24382  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
24383  *		      SD_RESERVE, SD_RELEASE
24384  *
24385  * Return Code: 0 or Error Code
24386  */
24387 
24388 static int
24389 sd_reserve_release(dev_t dev, int cmd)
24390 {
24391 	struct uscsi_cmd	*com = NULL;
24392 	struct sd_lun		*un = NULL;
24393 	char			cdb[CDB_GROUP0];
24394 	int			rval;
24395 
24396 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
24397 	    (cmd == SD_PRIORITY_RESERVE));
24398 
24399 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24400 		return (ENXIO);
24401 	}
24402 
24403 	/* instantiate and initialize the command and cdb */
24404 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24405 	bzero(cdb, CDB_GROUP0);
24406 	com->uscsi_flags   = USCSI_SILENT;
24407 	com->uscsi_timeout = un->un_reserve_release_time;
24408 	com->uscsi_cdblen  = CDB_GROUP0;
24409 	com->uscsi_cdb	   = cdb;
24410 	if (cmd == SD_RELEASE) {
24411 		cdb[0] = SCMD_RELEASE;
24412 	} else {
24413 		cdb[0] = SCMD_RESERVE;
24414 	}
24415 
24416 	/* Send the command. */
24417 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24418 	    SD_PATH_STANDARD);
24419 
24420 	/*
24421 	 * "break" a reservation that is held by another host, by issuing a
24422 	 * reset if priority reserve is desired, and we could not get the
24423 	 * device.
24424 	 */
24425 	if ((cmd == SD_PRIORITY_RESERVE) &&
24426 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24427 		/*
24428 		 * First try to reset the LUN. If we cannot, then try a target
24429 		 * reset, followed by a bus reset if the target reset fails.
24430 		 */
24431 		int reset_retval = 0;
24432 		if (un->un_f_lun_reset_enabled == TRUE) {
24433 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
24434 		}
24435 		if (reset_retval == 0) {
24436 			/* The LUN reset either failed or was not issued */
24437 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24438 		}
24439 		if ((reset_retval == 0) &&
24440 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
24441 			rval = EIO;
24442 			kmem_free(com, sizeof (*com));
24443 			return (rval);
24444 		}
24445 
24446 		bzero(com, sizeof (struct uscsi_cmd));
24447 		com->uscsi_flags   = USCSI_SILENT;
24448 		com->uscsi_cdb	   = cdb;
24449 		com->uscsi_cdblen  = CDB_GROUP0;
24450 		com->uscsi_timeout = 5;
24451 
24452 		/*
24453 		 * Reissue the last reserve command, this time without request
24454 		 * sense.  Assume that it is just a regular reserve command.
24455 		 */
24456 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24457 		    SD_PATH_STANDARD);
24458 	}
24459 
24460 	/* Return an error if still getting a reservation conflict. */
24461 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24462 		rval = EACCES;
24463 	}
24464 
24465 	kmem_free(com, sizeof (*com));
24466 	return (rval);
24467 }
24468 
24469 
24470 #define	SD_NDUMP_RETRIES	12
24471 /*
24472  *	System Crash Dump routine
24473  */
24474 
24475 static int
24476 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
24477 {
24478 	int		instance;
24479 	int		partition;
24480 	int		i;
24481 	int		err;
24482 	struct sd_lun	*un;
24483 	struct scsi_pkt *wr_pktp;
24484 	struct buf	*wr_bp;
24485 	struct buf	wr_buf;
24486 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
24487 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
24488 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
24489 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
24490 	size_t		io_start_offset;
24491 	int		doing_rmw = FALSE;
24492 	int		rval;
24493 	ssize_t		dma_resid;
24494 	daddr_t		oblkno;
24495 	diskaddr_t	nblks = 0;
24496 	diskaddr_t	start_block;
24497 
24498 	instance = SDUNIT(dev);
24499 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
24500 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
24501 		return (ENXIO);
24502 	}
24503 
24504 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
24505 
24506 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
24507 
24508 	partition = SDPART(dev);
24509 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
24510 
24511 	/* Validate blocks to dump at against partition size. */
24512 
24513 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
24514 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
24515 
24516 	if ((blkno + nblk) > nblks) {
24517 		SD_TRACE(SD_LOG_DUMP, un,
24518 		    "sddump: dump range larger than partition: "
24519 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
24520 		    blkno, nblk, nblks);
24521 		return (EINVAL);
24522 	}
24523 
24524 	mutex_enter(&un->un_pm_mutex);
24525 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24526 		struct scsi_pkt *start_pktp;
24527 
24528 		mutex_exit(&un->un_pm_mutex);
24529 
24530 		/*
24531 		 * use pm framework to power on HBA 1st
24532 		 */
24533 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
24534 
24535 		/*
24536 		 * Dump no long uses sdpower to power on a device, it's
24537 		 * in-line here so it can be done in polled mode.
24538 		 */
24539 
24540 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
24541 
24542 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
24543 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
24544 
24545 		if (start_pktp == NULL) {
24546 			/* We were not given a SCSI packet, fail. */
24547 			return (EIO);
24548 		}
24549 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
24550 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
24551 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
24552 		start_pktp->pkt_flags = FLAG_NOINTR;
24553 
24554 		mutex_enter(SD_MUTEX(un));
24555 		SD_FILL_SCSI1_LUN(un, start_pktp);
24556 		mutex_exit(SD_MUTEX(un));
24557 		/*
24558 		 * Scsi_poll returns 0 (success) if the command completes and
24559 		 * the status block is STATUS_GOOD.
24560 		 */
24561 		if (sd_scsi_poll(un, start_pktp) != 0) {
24562 			scsi_destroy_pkt(start_pktp);
24563 			return (EIO);
24564 		}
24565 		scsi_destroy_pkt(start_pktp);
24566 		(void) sd_ddi_pm_resume(un);
24567 	} else {
24568 		mutex_exit(&un->un_pm_mutex);
24569 	}
24570 
24571 	mutex_enter(SD_MUTEX(un));
24572 	un->un_throttle = 0;
24573 
24574 	/*
24575 	 * The first time through, reset the specific target device.
24576 	 * However, when cpr calls sddump we know that sd is in a
24577 	 * a good state so no bus reset is required.
24578 	 * Clear sense data via Request Sense cmd.
24579 	 * In sddump we don't care about allow_bus_device_reset anymore
24580 	 */
24581 
24582 	if ((un->un_state != SD_STATE_SUSPENDED) &&
24583 	    (un->un_state != SD_STATE_DUMPING)) {
24584 
24585 		New_state(un, SD_STATE_DUMPING);
24586 
24587 		if (un->un_f_is_fibre == FALSE) {
24588 			mutex_exit(SD_MUTEX(un));
24589 			/*
24590 			 * Attempt a bus reset for parallel scsi.
24591 			 *
24592 			 * Note: A bus reset is required because on some host
24593 			 * systems (i.e. E420R) a bus device reset is
24594 			 * insufficient to reset the state of the target.
24595 			 *
24596 			 * Note: Don't issue the reset for fibre-channel,
24597 			 * because this tends to hang the bus (loop) for
24598 			 * too long while everyone is logging out and in
24599 			 * and the deadman timer for dumping will fire
24600 			 * before the dump is complete.
24601 			 */
24602 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
24603 				mutex_enter(SD_MUTEX(un));
24604 				Restore_state(un);
24605 				mutex_exit(SD_MUTEX(un));
24606 				return (EIO);
24607 			}
24608 
24609 			/* Delay to give the device some recovery time. */
24610 			drv_usecwait(10000);
24611 
24612 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
24613 				SD_INFO(SD_LOG_DUMP, un,
24614 				    "sddump: sd_send_polled_RQS failed\n");
24615 			}
24616 			mutex_enter(SD_MUTEX(un));
24617 		}
24618 	}
24619 
24620 	/*
24621 	 * Convert the partition-relative block number to a
24622 	 * disk physical block number.
24623 	 */
24624 	blkno += start_block;
24625 
24626 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
24627 
24628 
24629 	/*
24630 	 * Check if the device has a non-512 block size.
24631 	 */
24632 	wr_bp = NULL;
24633 	if (NOT_DEVBSIZE(un)) {
24634 		tgt_byte_offset = blkno * un->un_sys_blocksize;
24635 		tgt_byte_count = nblk * un->un_sys_blocksize;
24636 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
24637 		    (tgt_byte_count % un->un_tgt_blocksize)) {
24638 			doing_rmw = TRUE;
24639 			/*
24640 			 * Calculate the block number and number of block
24641 			 * in terms of the media block size.
24642 			 */
24643 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24644 			tgt_nblk =
24645 			    ((tgt_byte_offset + tgt_byte_count +
24646 			    (un->un_tgt_blocksize - 1)) /
24647 			    un->un_tgt_blocksize) - tgt_blkno;
24648 
24649 			/*
24650 			 * Invoke the routine which is going to do read part
24651 			 * of read-modify-write.
24652 			 * Note that this routine returns a pointer to
24653 			 * a valid bp in wr_bp.
24654 			 */
24655 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
24656 			    &wr_bp);
24657 			if (err) {
24658 				mutex_exit(SD_MUTEX(un));
24659 				return (err);
24660 			}
24661 			/*
24662 			 * Offset is being calculated as -
24663 			 * (original block # * system block size) -
24664 			 * (new block # * target block size)
24665 			 */
24666 			io_start_offset =
24667 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
24668 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
24669 
24670 			ASSERT((io_start_offset >= 0) &&
24671 			    (io_start_offset < un->un_tgt_blocksize));
24672 			/*
24673 			 * Do the modify portion of read modify write.
24674 			 */
24675 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
24676 			    (size_t)nblk * un->un_sys_blocksize);
24677 		} else {
24678 			doing_rmw = FALSE;
24679 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24680 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
24681 		}
24682 
24683 		/* Convert blkno and nblk to target blocks */
24684 		blkno = tgt_blkno;
24685 		nblk = tgt_nblk;
24686 	} else {
24687 		wr_bp = &wr_buf;
24688 		bzero(wr_bp, sizeof (struct buf));
24689 		wr_bp->b_flags		= B_BUSY;
24690 		wr_bp->b_un.b_addr	= addr;
24691 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
24692 		wr_bp->b_resid		= 0;
24693 	}
24694 
24695 	mutex_exit(SD_MUTEX(un));
24696 
24697 	/*
24698 	 * Obtain a SCSI packet for the write command.
24699 	 * It should be safe to call the allocator here without
24700 	 * worrying about being locked for DVMA mapping because
24701 	 * the address we're passed is already a DVMA mapping
24702 	 *
24703 	 * We are also not going to worry about semaphore ownership
24704 	 * in the dump buffer. Dumping is single threaded at present.
24705 	 */
24706 
24707 	wr_pktp = NULL;
24708 
24709 	dma_resid = wr_bp->b_bcount;
24710 	oblkno = blkno;
24711 
24712 	while (dma_resid != 0) {
24713 
24714 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24715 		wr_bp->b_flags &= ~B_ERROR;
24716 
24717 		if (un->un_partial_dma_supported == 1) {
24718 			blkno = oblkno +
24719 			    ((wr_bp->b_bcount - dma_resid) /
24720 			    un->un_tgt_blocksize);
24721 			nblk = dma_resid / un->un_tgt_blocksize;
24722 
24723 			if (wr_pktp) {
24724 				/*
24725 				 * Partial DMA transfers after initial transfer
24726 				 */
24727 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
24728 				    blkno, nblk);
24729 			} else {
24730 				/* Initial transfer */
24731 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24732 				    un->un_pkt_flags, NULL_FUNC, NULL,
24733 				    blkno, nblk);
24734 			}
24735 		} else {
24736 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24737 			    0, NULL_FUNC, NULL, blkno, nblk);
24738 		}
24739 
24740 		if (rval == 0) {
24741 			/* We were given a SCSI packet, continue. */
24742 			break;
24743 		}
24744 
24745 		if (i == 0) {
24746 			if (wr_bp->b_flags & B_ERROR) {
24747 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24748 				    "no resources for dumping; "
24749 				    "error code: 0x%x, retrying",
24750 				    geterror(wr_bp));
24751 			} else {
24752 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24753 				    "no resources for dumping; retrying");
24754 			}
24755 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
24756 			if (wr_bp->b_flags & B_ERROR) {
24757 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24758 				    "no resources for dumping; error code: "
24759 				    "0x%x, retrying\n", geterror(wr_bp));
24760 			}
24761 		} else {
24762 			if (wr_bp->b_flags & B_ERROR) {
24763 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24764 				    "no resources for dumping; "
24765 				    "error code: 0x%x, retries failed, "
24766 				    "giving up.\n", geterror(wr_bp));
24767 			} else {
24768 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24769 				    "no resources for dumping; "
24770 				    "retries failed, giving up.\n");
24771 			}
24772 			mutex_enter(SD_MUTEX(un));
24773 			Restore_state(un);
24774 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
24775 				mutex_exit(SD_MUTEX(un));
24776 				scsi_free_consistent_buf(wr_bp);
24777 			} else {
24778 				mutex_exit(SD_MUTEX(un));
24779 			}
24780 			return (EIO);
24781 		}
24782 		drv_usecwait(10000);
24783 	}
24784 
24785 	if (un->un_partial_dma_supported == 1) {
24786 		/*
24787 		 * save the resid from PARTIAL_DMA
24788 		 */
24789 		dma_resid = wr_pktp->pkt_resid;
24790 		if (dma_resid != 0)
24791 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
24792 		wr_pktp->pkt_resid = 0;
24793 	} else {
24794 		dma_resid = 0;
24795 	}
24796 
24797 	/* SunBug 1222170 */
24798 	wr_pktp->pkt_flags = FLAG_NOINTR;
24799 
24800 	err = EIO;
24801 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24802 
24803 		/*
24804 		 * Scsi_poll returns 0 (success) if the command completes and
24805 		 * the status block is STATUS_GOOD.  We should only check
24806 		 * errors if this condition is not true.  Even then we should
24807 		 * send our own request sense packet only if we have a check
24808 		 * condition and auto request sense has not been performed by
24809 		 * the hba.
24810 		 */
24811 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
24812 
24813 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
24814 		    (wr_pktp->pkt_resid == 0)) {
24815 			err = SD_SUCCESS;
24816 			break;
24817 		}
24818 
24819 		/*
24820 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
24821 		 */
24822 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
24823 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24824 			    "Error while dumping state...Device is gone\n");
24825 			break;
24826 		}
24827 
24828 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
24829 			SD_INFO(SD_LOG_DUMP, un,
24830 			    "sddump: write failed with CHECK, try # %d\n", i);
24831 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
24832 				(void) sd_send_polled_RQS(un);
24833 			}
24834 
24835 			continue;
24836 		}
24837 
24838 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
24839 			int reset_retval = 0;
24840 
24841 			SD_INFO(SD_LOG_DUMP, un,
24842 			    "sddump: write failed with BUSY, try # %d\n", i);
24843 
24844 			if (un->un_f_lun_reset_enabled == TRUE) {
24845 				reset_retval = scsi_reset(SD_ADDRESS(un),
24846 				    RESET_LUN);
24847 			}
24848 			if (reset_retval == 0) {
24849 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24850 			}
24851 			(void) sd_send_polled_RQS(un);
24852 
24853 		} else {
24854 			SD_INFO(SD_LOG_DUMP, un,
24855 			    "sddump: write failed with 0x%x, try # %d\n",
24856 			    SD_GET_PKT_STATUS(wr_pktp), i);
24857 			mutex_enter(SD_MUTEX(un));
24858 			sd_reset_target(un, wr_pktp);
24859 			mutex_exit(SD_MUTEX(un));
24860 		}
24861 
24862 		/*
24863 		 * If we are not getting anywhere with lun/target resets,
24864 		 * let's reset the bus.
24865 		 */
24866 		if (i == SD_NDUMP_RETRIES/2) {
24867 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24868 			(void) sd_send_polled_RQS(un);
24869 		}
24870 	}
24871 	}
24872 
24873 	scsi_destroy_pkt(wr_pktp);
24874 	mutex_enter(SD_MUTEX(un));
24875 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
24876 		mutex_exit(SD_MUTEX(un));
24877 		scsi_free_consistent_buf(wr_bp);
24878 	} else {
24879 		mutex_exit(SD_MUTEX(un));
24880 	}
24881 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
24882 	return (err);
24883 }
24884 
24885 /*
24886  *    Function: sd_scsi_poll()
24887  *
24888  * Description: This is a wrapper for the scsi_poll call.
24889  *
24890  *   Arguments: sd_lun - The unit structure
24891  *              scsi_pkt - The scsi packet being sent to the device.
24892  *
24893  * Return Code: 0 - Command completed successfully with good status
24894  *             -1 - Command failed.  This could indicate a check condition
24895  *                  or other status value requiring recovery action.
24896  *
24897  * NOTE: This code is only called off sddump().
24898  */
24899 
24900 static int
24901 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
24902 {
24903 	int status;
24904 
24905 	ASSERT(un != NULL);
24906 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24907 	ASSERT(pktp != NULL);
24908 
24909 	status = SD_SUCCESS;
24910 
24911 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
24912 		pktp->pkt_flags |= un->un_tagflags;
24913 		pktp->pkt_flags &= ~FLAG_NODISCON;
24914 	}
24915 
24916 	status = sd_ddi_scsi_poll(pktp);
24917 	/*
24918 	 * Scsi_poll returns 0 (success) if the command completes and the
24919 	 * status block is STATUS_GOOD.  We should only check errors if this
24920 	 * condition is not true.  Even then we should send our own request
24921 	 * sense packet only if we have a check condition and auto
24922 	 * request sense has not been performed by the hba.
24923 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
24924 	 */
24925 	if ((status != SD_SUCCESS) &&
24926 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
24927 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
24928 	    (pktp->pkt_reason != CMD_DEV_GONE))
24929 		(void) sd_send_polled_RQS(un);
24930 
24931 	return (status);
24932 }
24933 
24934 /*
24935  *    Function: sd_send_polled_RQS()
24936  *
24937  * Description: This sends the request sense command to a device.
24938  *
24939  *   Arguments: sd_lun - The unit structure
24940  *
24941  * Return Code: 0 - Command completed successfully with good status
24942  *             -1 - Command failed.
24943  *
24944  */
24945 
24946 static int
24947 sd_send_polled_RQS(struct sd_lun *un)
24948 {
24949 	int	ret_val;
24950 	struct	scsi_pkt	*rqs_pktp;
24951 	struct	buf		*rqs_bp;
24952 
24953 	ASSERT(un != NULL);
24954 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24955 
24956 	ret_val = SD_SUCCESS;
24957 
24958 	rqs_pktp = un->un_rqs_pktp;
24959 	rqs_bp	 = un->un_rqs_bp;
24960 
24961 	mutex_enter(SD_MUTEX(un));
24962 
24963 	if (un->un_sense_isbusy) {
24964 		ret_val = SD_FAILURE;
24965 		mutex_exit(SD_MUTEX(un));
24966 		return (ret_val);
24967 	}
24968 
24969 	/*
24970 	 * If the request sense buffer (and packet) is not in use,
24971 	 * let's set the un_sense_isbusy and send our packet
24972 	 */
24973 	un->un_sense_isbusy 	= 1;
24974 	rqs_pktp->pkt_resid  	= 0;
24975 	rqs_pktp->pkt_reason 	= 0;
24976 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
24977 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
24978 
24979 	mutex_exit(SD_MUTEX(un));
24980 
24981 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
24982 	    " 0x%p\n", rqs_bp->b_un.b_addr);
24983 
24984 	/*
24985 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
24986 	 * axle - it has a call into us!
24987 	 */
24988 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
24989 		SD_INFO(SD_LOG_COMMON, un,
24990 		    "sd_send_polled_RQS: RQS failed\n");
24991 	}
24992 
24993 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
24994 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
24995 
24996 	mutex_enter(SD_MUTEX(un));
24997 	un->un_sense_isbusy = 0;
24998 	mutex_exit(SD_MUTEX(un));
24999 
25000 	return (ret_val);
25001 }
25002 
25003 /*
25004  * Defines needed for localized version of the scsi_poll routine.
25005  */
25006 #define	CSEC		10000			/* usecs */
25007 #define	SEC_TO_CSEC	(1000000/CSEC)
25008 
25009 /*
25010  *    Function: sd_ddi_scsi_poll()
25011  *
25012  * Description: Localized version of the scsi_poll routine.  The purpose is to
25013  *		send a scsi_pkt to a device as a polled command.  This version
25014  *		is to ensure more robust handling of transport errors.
25015  *		Specifically this routine cures not ready, coming ready
25016  *		transition for power up and reset of sonoma's.  This can take
25017  *		up to 45 seconds for power-on and 20 seconds for reset of a
25018  * 		sonoma lun.
25019  *
25020  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25021  *
25022  * Return Code: 0 - Command completed successfully with good status
25023  *             -1 - Command failed.
25024  *
25025  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
25026  * be fixed (removing this code), we need to determine how to handle the
25027  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
25028  *
25029  * NOTE: This code is only called off sddump().
25030  */
25031 static int
25032 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25033 {
25034 	int			rval = -1;
25035 	int			savef;
25036 	long			savet;
25037 	void			(*savec)();
25038 	int			timeout;
25039 	int			busy_count;
25040 	int			poll_delay;
25041 	int			rc;
25042 	uint8_t			*sensep;
25043 	struct scsi_arq_status	*arqstat;
25044 	extern int		do_polled_io;
25045 
25046 	ASSERT(pkt->pkt_scbp);
25047 
25048 	/*
25049 	 * save old flags..
25050 	 */
25051 	savef = pkt->pkt_flags;
25052 	savec = pkt->pkt_comp;
25053 	savet = pkt->pkt_time;
25054 
25055 	pkt->pkt_flags |= FLAG_NOINTR;
25056 
25057 	/*
25058 	 * XXX there is nothing in the SCSA spec that states that we should not
25059 	 * do a callback for polled cmds; however, removing this will break sd
25060 	 * and probably other target drivers
25061 	 */
25062 	pkt->pkt_comp = NULL;
25063 
25064 	/*
25065 	 * we don't like a polled command without timeout.
25066 	 * 60 seconds seems long enough.
25067 	 */
25068 	if (pkt->pkt_time == 0)
25069 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25070 
25071 	/*
25072 	 * Send polled cmd.
25073 	 *
25074 	 * We do some error recovery for various errors.  Tran_busy,
25075 	 * queue full, and non-dispatched commands are retried every 10 msec.
25076 	 * as they are typically transient failures.  Busy status and Not
25077 	 * Ready are retried every second as this status takes a while to
25078 	 * change.
25079 	 */
25080 	timeout = pkt->pkt_time * SEC_TO_CSEC;
25081 
25082 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25083 		/*
25084 		 * Initialize pkt status variables.
25085 		 */
25086 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25087 
25088 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25089 			if (rc != TRAN_BUSY) {
25090 				/* Transport failed - give up. */
25091 				break;
25092 			} else {
25093 				/* Transport busy - try again. */
25094 				poll_delay = 1 * CSEC;		/* 10 msec. */
25095 			}
25096 		} else {
25097 			/*
25098 			 * Transport accepted - check pkt status.
25099 			 */
25100 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
25101 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25102 			    (rc == STATUS_CHECK) &&
25103 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
25104 				arqstat =
25105 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
25106 				sensep = (uint8_t *)&arqstat->sts_sensedata;
25107 			} else {
25108 				sensep = NULL;
25109 			}
25110 
25111 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25112 			    (rc == STATUS_GOOD)) {
25113 				/* No error - we're done */
25114 				rval = 0;
25115 				break;
25116 
25117 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
25118 				/* Lost connection - give up */
25119 				break;
25120 
25121 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
25122 			    (pkt->pkt_state == 0)) {
25123 				/* Pkt not dispatched - try again. */
25124 				poll_delay = 1 * CSEC;		/* 10 msec. */
25125 
25126 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25127 			    (rc == STATUS_QFULL)) {
25128 				/* Queue full - try again. */
25129 				poll_delay = 1 * CSEC;		/* 10 msec. */
25130 
25131 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25132 			    (rc == STATUS_BUSY)) {
25133 				/* Busy - try again. */
25134 				poll_delay = 100 * CSEC;	/* 1 sec. */
25135 				busy_count += (SEC_TO_CSEC - 1);
25136 
25137 			} else if ((sensep != NULL) &&
25138 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
25139 				/*
25140 				 * Unit Attention - try again.
25141 				 * Pretend it took 1 sec.
25142 				 * NOTE: 'continue' avoids poll_delay
25143 				 */
25144 				busy_count += (SEC_TO_CSEC - 1);
25145 				continue;
25146 
25147 			} else if ((sensep != NULL) &&
25148 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
25149 			    (scsi_sense_asc(sensep) == 0x04) &&
25150 			    (scsi_sense_ascq(sensep) == 0x01)) {
25151 				/*
25152 				 * Not ready -> ready - try again.
25153 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
25154 				 * ...same as STATUS_BUSY
25155 				 */
25156 				poll_delay = 100 * CSEC;	/* 1 sec. */
25157 				busy_count += (SEC_TO_CSEC - 1);
25158 
25159 			} else {
25160 				/* BAD status - give up. */
25161 				break;
25162 			}
25163 		}
25164 
25165 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
25166 		    !do_polled_io) {
25167 			delay(drv_usectohz(poll_delay));
25168 		} else {
25169 			/* we busy wait during cpr_dump or interrupt threads */
25170 			drv_usecwait(poll_delay);
25171 		}
25172 	}
25173 
25174 	pkt->pkt_flags = savef;
25175 	pkt->pkt_comp = savec;
25176 	pkt->pkt_time = savet;
25177 
25178 	/* return on error */
25179 	if (rval)
25180 		return (rval);
25181 
25182 	/*
25183 	 * This is not a performance critical code path.
25184 	 *
25185 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
25186 	 * issues associated with looking at DMA memory prior to
25187 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
25188 	 */
25189 	scsi_sync_pkt(pkt);
25190 	return (0);
25191 }
25192 
25193 
25194 
25195 /*
25196  *    Function: sd_persistent_reservation_in_read_keys
25197  *
25198  * Description: This routine is the driver entry point for handling CD-ROM
25199  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
25200  *		by sending the SCSI-3 PRIN commands to the device.
25201  *		Processes the read keys command response by copying the
25202  *		reservation key information into the user provided buffer.
25203  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
25204  *
25205  *   Arguments: un   -  Pointer to soft state struct for the target.
25206  *		usrp -	user provided pointer to multihost Persistent In Read
25207  *			Keys structure (mhioc_inkeys_t)
25208  *		flag -	this argument is a pass through to ddi_copyxxx()
25209  *			directly from the mode argument of ioctl().
25210  *
25211  * Return Code: 0   - Success
25212  *		EACCES
25213  *		ENOTSUP
25214  *		errno return code from sd_send_scsi_cmd()
25215  *
25216  *     Context: Can sleep. Does not return until command is completed.
25217  */
25218 
25219 static int
25220 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
25221     mhioc_inkeys_t *usrp, int flag)
25222 {
25223 #ifdef _MULTI_DATAMODEL
25224 	struct mhioc_key_list32	li32;
25225 #endif
25226 	sd_prin_readkeys_t	*in;
25227 	mhioc_inkeys_t		*ptr;
25228 	mhioc_key_list_t	li;
25229 	uchar_t			*data_bufp;
25230 	int 			data_len;
25231 	int			rval = 0;
25232 	size_t			copysz;
25233 	sd_ssc_t		*ssc;
25234 
25235 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
25236 		return (EINVAL);
25237 	}
25238 	bzero(&li, sizeof (mhioc_key_list_t));
25239 
25240 	ssc = sd_ssc_init(un);
25241 
25242 	/*
25243 	 * Get the listsize from user
25244 	 */
25245 #ifdef _MULTI_DATAMODEL
25246 
25247 	switch (ddi_model_convert_from(flag & FMODELS)) {
25248 	case DDI_MODEL_ILP32:
25249 		copysz = sizeof (struct mhioc_key_list32);
25250 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
25251 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25252 			    "sd_persistent_reservation_in_read_keys: "
25253 			    "failed ddi_copyin: mhioc_key_list32_t\n");
25254 			rval = EFAULT;
25255 			goto done;
25256 		}
25257 		li.listsize = li32.listsize;
25258 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
25259 		break;
25260 
25261 	case DDI_MODEL_NONE:
25262 		copysz = sizeof (mhioc_key_list_t);
25263 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25264 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25265 			    "sd_persistent_reservation_in_read_keys: "
25266 			    "failed ddi_copyin: mhioc_key_list_t\n");
25267 			rval = EFAULT;
25268 			goto done;
25269 		}
25270 		break;
25271 	}
25272 
25273 #else /* ! _MULTI_DATAMODEL */
25274 	copysz = sizeof (mhioc_key_list_t);
25275 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25276 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25277 		    "sd_persistent_reservation_in_read_keys: "
25278 		    "failed ddi_copyin: mhioc_key_list_t\n");
25279 		rval = EFAULT;
25280 		goto done;
25281 	}
25282 #endif
25283 
25284 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
25285 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
25286 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25287 
25288 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
25289 	    data_len, data_bufp);
25290 	if (rval != 0) {
25291 		if (rval == EIO)
25292 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25293 		else
25294 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25295 		goto done;
25296 	}
25297 	in = (sd_prin_readkeys_t *)data_bufp;
25298 	ptr->generation = BE_32(in->generation);
25299 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
25300 
25301 	/*
25302 	 * Return the min(listsize, listlen) keys
25303 	 */
25304 #ifdef _MULTI_DATAMODEL
25305 
25306 	switch (ddi_model_convert_from(flag & FMODELS)) {
25307 	case DDI_MODEL_ILP32:
25308 		li32.listlen = li.listlen;
25309 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
25310 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25311 			    "sd_persistent_reservation_in_read_keys: "
25312 			    "failed ddi_copyout: mhioc_key_list32_t\n");
25313 			rval = EFAULT;
25314 			goto done;
25315 		}
25316 		break;
25317 
25318 	case DDI_MODEL_NONE:
25319 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25320 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25321 			    "sd_persistent_reservation_in_read_keys: "
25322 			    "failed ddi_copyout: mhioc_key_list_t\n");
25323 			rval = EFAULT;
25324 			goto done;
25325 		}
25326 		break;
25327 	}
25328 
25329 #else /* ! _MULTI_DATAMODEL */
25330 
25331 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25332 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25333 		    "sd_persistent_reservation_in_read_keys: "
25334 		    "failed ddi_copyout: mhioc_key_list_t\n");
25335 		rval = EFAULT;
25336 		goto done;
25337 	}
25338 
25339 #endif /* _MULTI_DATAMODEL */
25340 
25341 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
25342 	    li.listsize * MHIOC_RESV_KEY_SIZE);
25343 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
25344 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25345 		    "sd_persistent_reservation_in_read_keys: "
25346 		    "failed ddi_copyout: keylist\n");
25347 		rval = EFAULT;
25348 	}
25349 done:
25350 	sd_ssc_fini(ssc);
25351 	kmem_free(data_bufp, data_len);
25352 	return (rval);
25353 }
25354 
25355 
25356 /*
25357  *    Function: sd_persistent_reservation_in_read_resv
25358  *
25359  * Description: This routine is the driver entry point for handling CD-ROM
25360  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
25361  *		by sending the SCSI-3 PRIN commands to the device.
25362  *		Process the read persistent reservations command response by
25363  *		copying the reservation information into the user provided
25364  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
25365  *
25366  *   Arguments: un   -  Pointer to soft state struct for the target.
25367  *		usrp -	user provided pointer to multihost Persistent In Read
25368  *			Keys structure (mhioc_inkeys_t)
25369  *		flag -	this argument is a pass through to ddi_copyxxx()
25370  *			directly from the mode argument of ioctl().
25371  *
25372  * Return Code: 0   - Success
25373  *		EACCES
25374  *		ENOTSUP
25375  *		errno return code from sd_send_scsi_cmd()
25376  *
25377  *     Context: Can sleep. Does not return until command is completed.
25378  */
25379 
25380 static int
25381 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
25382     mhioc_inresvs_t *usrp, int flag)
25383 {
25384 #ifdef _MULTI_DATAMODEL
25385 	struct mhioc_resv_desc_list32 resvlist32;
25386 #endif
25387 	sd_prin_readresv_t	*in;
25388 	mhioc_inresvs_t		*ptr;
25389 	sd_readresv_desc_t	*readresv_ptr;
25390 	mhioc_resv_desc_list_t	resvlist;
25391 	mhioc_resv_desc_t 	resvdesc;
25392 	uchar_t			*data_bufp = NULL;
25393 	int 			data_len;
25394 	int			rval = 0;
25395 	int			i;
25396 	size_t			copysz;
25397 	mhioc_resv_desc_t	*bufp;
25398 	sd_ssc_t		*ssc;
25399 
25400 	if ((ptr = usrp) == NULL) {
25401 		return (EINVAL);
25402 	}
25403 
25404 	ssc = sd_ssc_init(un);
25405 
25406 	/*
25407 	 * Get the listsize from user
25408 	 */
25409 #ifdef _MULTI_DATAMODEL
25410 	switch (ddi_model_convert_from(flag & FMODELS)) {
25411 	case DDI_MODEL_ILP32:
25412 		copysz = sizeof (struct mhioc_resv_desc_list32);
25413 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
25414 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25415 			    "sd_persistent_reservation_in_read_resv: "
25416 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25417 			rval = EFAULT;
25418 			goto done;
25419 		}
25420 		resvlist.listsize = resvlist32.listsize;
25421 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
25422 		break;
25423 
25424 	case DDI_MODEL_NONE:
25425 		copysz = sizeof (mhioc_resv_desc_list_t);
25426 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25427 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25428 			    "sd_persistent_reservation_in_read_resv: "
25429 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25430 			rval = EFAULT;
25431 			goto done;
25432 		}
25433 		break;
25434 	}
25435 #else /* ! _MULTI_DATAMODEL */
25436 	copysz = sizeof (mhioc_resv_desc_list_t);
25437 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25438 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25439 		    "sd_persistent_reservation_in_read_resv: "
25440 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25441 		rval = EFAULT;
25442 		goto done;
25443 	}
25444 #endif /* ! _MULTI_DATAMODEL */
25445 
25446 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
25447 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
25448 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25449 
25450 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
25451 	    data_len, data_bufp);
25452 	if (rval != 0) {
25453 		if (rval == EIO)
25454 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25455 		else
25456 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25457 		goto done;
25458 	}
25459 	in = (sd_prin_readresv_t *)data_bufp;
25460 	ptr->generation = BE_32(in->generation);
25461 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
25462 
25463 	/*
25464 	 * Return the min(listsize, listlen( keys
25465 	 */
25466 #ifdef _MULTI_DATAMODEL
25467 
25468 	switch (ddi_model_convert_from(flag & FMODELS)) {
25469 	case DDI_MODEL_ILP32:
25470 		resvlist32.listlen = resvlist.listlen;
25471 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
25472 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25473 			    "sd_persistent_reservation_in_read_resv: "
25474 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25475 			rval = EFAULT;
25476 			goto done;
25477 		}
25478 		break;
25479 
25480 	case DDI_MODEL_NONE:
25481 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25482 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25483 			    "sd_persistent_reservation_in_read_resv: "
25484 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25485 			rval = EFAULT;
25486 			goto done;
25487 		}
25488 		break;
25489 	}
25490 
25491 #else /* ! _MULTI_DATAMODEL */
25492 
25493 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25494 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25495 		    "sd_persistent_reservation_in_read_resv: "
25496 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25497 		rval = EFAULT;
25498 		goto done;
25499 	}
25500 
25501 #endif /* ! _MULTI_DATAMODEL */
25502 
25503 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
25504 	bufp = resvlist.list;
25505 	copysz = sizeof (mhioc_resv_desc_t);
25506 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
25507 	    i++, readresv_ptr++, bufp++) {
25508 
25509 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
25510 		    MHIOC_RESV_KEY_SIZE);
25511 		resvdesc.type  = readresv_ptr->type;
25512 		resvdesc.scope = readresv_ptr->scope;
25513 		resvdesc.scope_specific_addr =
25514 		    BE_32(readresv_ptr->scope_specific_addr);
25515 
25516 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
25517 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25518 			    "sd_persistent_reservation_in_read_resv: "
25519 			    "failed ddi_copyout: resvlist\n");
25520 			rval = EFAULT;
25521 			goto done;
25522 		}
25523 	}
25524 done:
25525 	sd_ssc_fini(ssc);
25526 	/* only if data_bufp is allocated, we need to free it */
25527 	if (data_bufp) {
25528 		kmem_free(data_bufp, data_len);
25529 	}
25530 	return (rval);
25531 }
25532 
25533 
25534 /*
25535  *    Function: sr_change_blkmode()
25536  *
25537  * Description: This routine is the driver entry point for handling CD-ROM
25538  *		block mode ioctl requests. Support for returning and changing
25539  *		the current block size in use by the device is implemented. The
25540  *		LBA size is changed via a MODE SELECT Block Descriptor.
25541  *
25542  *		This routine issues a mode sense with an allocation length of
25543  *		12 bytes for the mode page header and a single block descriptor.
25544  *
25545  *   Arguments: dev - the device 'dev_t'
25546  *		cmd - the request type; one of CDROMGBLKMODE (get) or
25547  *		      CDROMSBLKMODE (set)
25548  *		data - current block size or requested block size
25549  *		flag - this argument is a pass through to ddi_copyxxx() directly
25550  *		       from the mode argument of ioctl().
25551  *
25552  * Return Code: the code returned by sd_send_scsi_cmd()
25553  *		EINVAL if invalid arguments are provided
25554  *		EFAULT if ddi_copyxxx() fails
25555  *		ENXIO if fail ddi_get_soft_state
25556  *		EIO if invalid mode sense block descriptor length
25557  *
25558  */
25559 
25560 static int
25561 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
25562 {
25563 	struct sd_lun			*un = NULL;
25564 	struct mode_header		*sense_mhp, *select_mhp;
25565 	struct block_descriptor		*sense_desc, *select_desc;
25566 	int				current_bsize;
25567 	int				rval = EINVAL;
25568 	uchar_t				*sense = NULL;
25569 	uchar_t				*select = NULL;
25570 	sd_ssc_t			*ssc;
25571 
25572 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
25573 
25574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25575 		return (ENXIO);
25576 	}
25577 
25578 	/*
25579 	 * The block length is changed via the Mode Select block descriptor, the
25580 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
25581 	 * required as part of this routine. Therefore the mode sense allocation
25582 	 * length is specified to be the length of a mode page header and a
25583 	 * block descriptor.
25584 	 */
25585 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25586 
25587 	ssc = sd_ssc_init(un);
25588 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25589 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
25590 	sd_ssc_fini(ssc);
25591 	if (rval != 0) {
25592 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25593 		    "sr_change_blkmode: Mode Sense Failed\n");
25594 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25595 		return (rval);
25596 	}
25597 
25598 	/* Check the block descriptor len to handle only 1 block descriptor */
25599 	sense_mhp = (struct mode_header *)sense;
25600 	if ((sense_mhp->bdesc_length == 0) ||
25601 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
25602 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25603 		    "sr_change_blkmode: Mode Sense returned invalid block"
25604 		    " descriptor length\n");
25605 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25606 		return (EIO);
25607 	}
25608 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
25609 	current_bsize = ((sense_desc->blksize_hi << 16) |
25610 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
25611 
25612 	/* Process command */
25613 	switch (cmd) {
25614 	case CDROMGBLKMODE:
25615 		/* Return the block size obtained during the mode sense */
25616 		if (ddi_copyout(&current_bsize, (void *)data,
25617 		    sizeof (int), flag) != 0)
25618 			rval = EFAULT;
25619 		break;
25620 	case CDROMSBLKMODE:
25621 		/* Validate the requested block size */
25622 		switch (data) {
25623 		case CDROM_BLK_512:
25624 		case CDROM_BLK_1024:
25625 		case CDROM_BLK_2048:
25626 		case CDROM_BLK_2056:
25627 		case CDROM_BLK_2336:
25628 		case CDROM_BLK_2340:
25629 		case CDROM_BLK_2352:
25630 		case CDROM_BLK_2368:
25631 		case CDROM_BLK_2448:
25632 		case CDROM_BLK_2646:
25633 		case CDROM_BLK_2647:
25634 			break;
25635 		default:
25636 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25637 			    "sr_change_blkmode: "
25638 			    "Block Size '%ld' Not Supported\n", data);
25639 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25640 			return (EINVAL);
25641 		}
25642 
25643 		/*
25644 		 * The current block size matches the requested block size so
25645 		 * there is no need to send the mode select to change the size
25646 		 */
25647 		if (current_bsize == data) {
25648 			break;
25649 		}
25650 
25651 		/* Build the select data for the requested block size */
25652 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25653 		select_mhp = (struct mode_header *)select;
25654 		select_desc =
25655 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
25656 		/*
25657 		 * The LBA size is changed via the block descriptor, so the
25658 		 * descriptor is built according to the user data
25659 		 */
25660 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
25661 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
25662 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
25663 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
25664 
25665 		/* Send the mode select for the requested block size */
25666 		ssc = sd_ssc_init(un);
25667 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25668 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25669 		    SD_PATH_STANDARD);
25670 		sd_ssc_fini(ssc);
25671 		if (rval != 0) {
25672 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25673 			    "sr_change_blkmode: Mode Select Failed\n");
25674 			/*
25675 			 * The mode select failed for the requested block size,
25676 			 * so reset the data for the original block size and
25677 			 * send it to the target. The error is indicated by the
25678 			 * return value for the failed mode select.
25679 			 */
25680 			select_desc->blksize_hi  = sense_desc->blksize_hi;
25681 			select_desc->blksize_mid = sense_desc->blksize_mid;
25682 			select_desc->blksize_lo  = sense_desc->blksize_lo;
25683 			ssc = sd_ssc_init(un);
25684 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25685 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25686 			    SD_PATH_STANDARD);
25687 			sd_ssc_fini(ssc);
25688 		} else {
25689 			ASSERT(!mutex_owned(SD_MUTEX(un)));
25690 			mutex_enter(SD_MUTEX(un));
25691 			sd_update_block_info(un, (uint32_t)data, 0);
25692 			mutex_exit(SD_MUTEX(un));
25693 		}
25694 		break;
25695 	default:
25696 		/* should not reach here, but check anyway */
25697 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25698 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
25699 		rval = EINVAL;
25700 		break;
25701 	}
25702 
25703 	if (select) {
25704 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
25705 	}
25706 	if (sense) {
25707 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25708 	}
25709 	return (rval);
25710 }
25711 
25712 
25713 /*
25714  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
25715  * implement driver support for getting and setting the CD speed. The command
25716  * set used will be based on the device type. If the device has not been
25717  * identified as MMC the Toshiba vendor specific mode page will be used. If
25718  * the device is MMC but does not support the Real Time Streaming feature
25719  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
25720  * be used to read the speed.
25721  */
25722 
25723 /*
25724  *    Function: sr_change_speed()
25725  *
25726  * Description: This routine is the driver entry point for handling CD-ROM
25727  *		drive speed ioctl requests for devices supporting the Toshiba
25728  *		vendor specific drive speed mode page. Support for returning
25729  *		and changing the current drive speed in use by the device is
25730  *		implemented.
25731  *
25732  *   Arguments: dev - the device 'dev_t'
25733  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
25734  *		      CDROMSDRVSPEED (set)
25735  *		data - current drive speed or requested drive speed
25736  *		flag - this argument is a pass through to ddi_copyxxx() directly
25737  *		       from the mode argument of ioctl().
25738  *
25739  * Return Code: the code returned by sd_send_scsi_cmd()
25740  *		EINVAL if invalid arguments are provided
25741  *		EFAULT if ddi_copyxxx() fails
25742  *		ENXIO if fail ddi_get_soft_state
25743  *		EIO if invalid mode sense block descriptor length
25744  */
25745 
25746 static int
25747 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25748 {
25749 	struct sd_lun			*un = NULL;
25750 	struct mode_header		*sense_mhp, *select_mhp;
25751 	struct mode_speed		*sense_page, *select_page;
25752 	int				current_speed;
25753 	int				rval = EINVAL;
25754 	int				bd_len;
25755 	uchar_t				*sense = NULL;
25756 	uchar_t				*select = NULL;
25757 	sd_ssc_t			*ssc;
25758 
25759 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25760 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25761 		return (ENXIO);
25762 	}
25763 
25764 	/*
25765 	 * Note: The drive speed is being modified here according to a Toshiba
25766 	 * vendor specific mode page (0x31).
25767 	 */
25768 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25769 
25770 	ssc = sd_ssc_init(un);
25771 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25772 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
25773 	    SD_PATH_STANDARD);
25774 	sd_ssc_fini(ssc);
25775 	if (rval != 0) {
25776 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25777 		    "sr_change_speed: Mode Sense Failed\n");
25778 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25779 		return (rval);
25780 	}
25781 	sense_mhp  = (struct mode_header *)sense;
25782 
25783 	/* Check the block descriptor len to handle only 1 block descriptor */
25784 	bd_len = sense_mhp->bdesc_length;
25785 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25786 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25787 		    "sr_change_speed: Mode Sense returned invalid block "
25788 		    "descriptor length\n");
25789 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25790 		return (EIO);
25791 	}
25792 
25793 	sense_page = (struct mode_speed *)
25794 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25795 	current_speed = sense_page->speed;
25796 
25797 	/* Process command */
25798 	switch (cmd) {
25799 	case CDROMGDRVSPEED:
25800 		/* Return the drive speed obtained during the mode sense */
25801 		if (current_speed == 0x2) {
25802 			current_speed = CDROM_TWELVE_SPEED;
25803 		}
25804 		if (ddi_copyout(&current_speed, (void *)data,
25805 		    sizeof (int), flag) != 0) {
25806 			rval = EFAULT;
25807 		}
25808 		break;
25809 	case CDROMSDRVSPEED:
25810 		/* Validate the requested drive speed */
25811 		switch ((uchar_t)data) {
25812 		case CDROM_TWELVE_SPEED:
25813 			data = 0x2;
25814 			/*FALLTHROUGH*/
25815 		case CDROM_NORMAL_SPEED:
25816 		case CDROM_DOUBLE_SPEED:
25817 		case CDROM_QUAD_SPEED:
25818 		case CDROM_MAXIMUM_SPEED:
25819 			break;
25820 		default:
25821 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25822 			    "sr_change_speed: "
25823 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
25824 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25825 			return (EINVAL);
25826 		}
25827 
25828 		/*
25829 		 * The current drive speed matches the requested drive speed so
25830 		 * there is no need to send the mode select to change the speed
25831 		 */
25832 		if (current_speed == data) {
25833 			break;
25834 		}
25835 
25836 		/* Build the select data for the requested drive speed */
25837 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25838 		select_mhp = (struct mode_header *)select;
25839 		select_mhp->bdesc_length = 0;
25840 		select_page =
25841 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25842 		select_page =
25843 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25844 		select_page->mode_page.code = CDROM_MODE_SPEED;
25845 		select_page->mode_page.length = 2;
25846 		select_page->speed = (uchar_t)data;
25847 
25848 		/* Send the mode select for the requested block size */
25849 		ssc = sd_ssc_init(un);
25850 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25851 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25852 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25853 		sd_ssc_fini(ssc);
25854 		if (rval != 0) {
25855 			/*
25856 			 * The mode select failed for the requested drive speed,
25857 			 * so reset the data for the original drive speed and
25858 			 * send it to the target. The error is indicated by the
25859 			 * return value for the failed mode select.
25860 			 */
25861 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25862 			    "sr_drive_speed: Mode Select Failed\n");
25863 			select_page->speed = sense_page->speed;
25864 			ssc = sd_ssc_init(un);
25865 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25866 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25867 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25868 			sd_ssc_fini(ssc);
25869 		}
25870 		break;
25871 	default:
25872 		/* should not reach here, but check anyway */
25873 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25874 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
25875 		rval = EINVAL;
25876 		break;
25877 	}
25878 
25879 	if (select) {
25880 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
25881 	}
25882 	if (sense) {
25883 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25884 	}
25885 
25886 	return (rval);
25887 }
25888 
25889 
25890 /*
25891  *    Function: sr_atapi_change_speed()
25892  *
25893  * Description: This routine is the driver entry point for handling CD-ROM
25894  *		drive speed ioctl requests for MMC devices that do not support
25895  *		the Real Time Streaming feature (0x107).
25896  *
25897  *		Note: This routine will use the SET SPEED command which may not
25898  *		be supported by all devices.
25899  *
25900  *   Arguments: dev- the device 'dev_t'
25901  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
25902  *		     CDROMSDRVSPEED (set)
25903  *		data- current drive speed or requested drive speed
25904  *		flag- this argument is a pass through to ddi_copyxxx() directly
25905  *		      from the mode argument of ioctl().
25906  *
25907  * Return Code: the code returned by sd_send_scsi_cmd()
25908  *		EINVAL if invalid arguments are provided
25909  *		EFAULT if ddi_copyxxx() fails
25910  *		ENXIO if fail ddi_get_soft_state
25911  *		EIO if invalid mode sense block descriptor length
25912  */
25913 
25914 static int
25915 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25916 {
25917 	struct sd_lun			*un;
25918 	struct uscsi_cmd		*com = NULL;
25919 	struct mode_header_grp2		*sense_mhp;
25920 	uchar_t				*sense_page;
25921 	uchar_t				*sense = NULL;
25922 	char				cdb[CDB_GROUP5];
25923 	int				bd_len;
25924 	int				current_speed = 0;
25925 	int				max_speed = 0;
25926 	int				rval;
25927 	sd_ssc_t			*ssc;
25928 
25929 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25930 
25931 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25932 		return (ENXIO);
25933 	}
25934 
25935 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
25936 
25937 	ssc = sd_ssc_init(un);
25938 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
25939 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
25940 	    SD_PATH_STANDARD);
25941 	sd_ssc_fini(ssc);
25942 	if (rval != 0) {
25943 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25944 		    "sr_atapi_change_speed: Mode Sense Failed\n");
25945 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
25946 		return (rval);
25947 	}
25948 
25949 	/* Check the block descriptor len to handle only 1 block descriptor */
25950 	sense_mhp = (struct mode_header_grp2 *)sense;
25951 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
25952 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25953 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25954 		    "sr_atapi_change_speed: Mode Sense returned invalid "
25955 		    "block descriptor length\n");
25956 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
25957 		return (EIO);
25958 	}
25959 
25960 	/* Calculate the current and maximum drive speeds */
25961 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25962 	current_speed = (sense_page[14] << 8) | sense_page[15];
25963 	max_speed = (sense_page[8] << 8) | sense_page[9];
25964 
25965 	/* Process the command */
25966 	switch (cmd) {
25967 	case CDROMGDRVSPEED:
25968 		current_speed /= SD_SPEED_1X;
25969 		if (ddi_copyout(&current_speed, (void *)data,
25970 		    sizeof (int), flag) != 0)
25971 			rval = EFAULT;
25972 		break;
25973 	case CDROMSDRVSPEED:
25974 		/* Convert the speed code to KB/sec */
25975 		switch ((uchar_t)data) {
25976 		case CDROM_NORMAL_SPEED:
25977 			current_speed = SD_SPEED_1X;
25978 			break;
25979 		case CDROM_DOUBLE_SPEED:
25980 			current_speed = 2 * SD_SPEED_1X;
25981 			break;
25982 		case CDROM_QUAD_SPEED:
25983 			current_speed = 4 * SD_SPEED_1X;
25984 			break;
25985 		case CDROM_TWELVE_SPEED:
25986 			current_speed = 12 * SD_SPEED_1X;
25987 			break;
25988 		case CDROM_MAXIMUM_SPEED:
25989 			current_speed = 0xffff;
25990 			break;
25991 		default:
25992 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25993 			    "sr_atapi_change_speed: invalid drive speed %d\n",
25994 			    (uchar_t)data);
25995 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
25996 			return (EINVAL);
25997 		}
25998 
25999 		/* Check the request against the drive's max speed. */
26000 		if (current_speed != 0xffff) {
26001 			if (current_speed > max_speed) {
26002 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26003 				return (EINVAL);
26004 			}
26005 		}
26006 
26007 		/*
26008 		 * Build and send the SET SPEED command
26009 		 *
26010 		 * Note: The SET SPEED (0xBB) command used in this routine is
26011 		 * obsolete per the SCSI MMC spec but still supported in the
26012 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26013 		 * therefore the command is still implemented in this routine.
26014 		 */
26015 		bzero(cdb, sizeof (cdb));
26016 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26017 		cdb[2] = (uchar_t)(current_speed >> 8);
26018 		cdb[3] = (uchar_t)current_speed;
26019 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26020 		com->uscsi_cdb	   = (caddr_t)cdb;
26021 		com->uscsi_cdblen  = CDB_GROUP5;
26022 		com->uscsi_bufaddr = NULL;
26023 		com->uscsi_buflen  = 0;
26024 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26025 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
26026 		break;
26027 	default:
26028 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26029 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26030 		rval = EINVAL;
26031 	}
26032 
26033 	if (sense) {
26034 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26035 	}
26036 	if (com) {
26037 		kmem_free(com, sizeof (*com));
26038 	}
26039 	return (rval);
26040 }
26041 
26042 
26043 /*
26044  *    Function: sr_pause_resume()
26045  *
26046  * Description: This routine is the driver entry point for handling CD-ROM
26047  *		pause/resume ioctl requests. This only affects the audio play
26048  *		operation.
26049  *
26050  *   Arguments: dev - the device 'dev_t'
26051  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26052  *		      for setting the resume bit of the cdb.
26053  *
26054  * Return Code: the code returned by sd_send_scsi_cmd()
26055  *		EINVAL if invalid mode specified
26056  *
26057  */
26058 
26059 static int
26060 sr_pause_resume(dev_t dev, int cmd)
26061 {
26062 	struct sd_lun		*un;
26063 	struct uscsi_cmd	*com;
26064 	char			cdb[CDB_GROUP1];
26065 	int			rval;
26066 
26067 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26068 		return (ENXIO);
26069 	}
26070 
26071 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26072 	bzero(cdb, CDB_GROUP1);
26073 	cdb[0] = SCMD_PAUSE_RESUME;
26074 	switch (cmd) {
26075 	case CDROMRESUME:
26076 		cdb[8] = 1;
26077 		break;
26078 	case CDROMPAUSE:
26079 		cdb[8] = 0;
26080 		break;
26081 	default:
26082 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26083 		    " Command '%x' Not Supported\n", cmd);
26084 		rval = EINVAL;
26085 		goto done;
26086 	}
26087 
26088 	com->uscsi_cdb    = cdb;
26089 	com->uscsi_cdblen = CDB_GROUP1;
26090 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26091 
26092 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26093 	    SD_PATH_STANDARD);
26094 
26095 done:
26096 	kmem_free(com, sizeof (*com));
26097 	return (rval);
26098 }
26099 
26100 
26101 /*
26102  *    Function: sr_play_msf()
26103  *
26104  * Description: This routine is the driver entry point for handling CD-ROM
26105  *		ioctl requests to output the audio signals at the specified
26106  *		starting address and continue the audio play until the specified
26107  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26108  *		Frame (MSF) format.
26109  *
26110  *   Arguments: dev	- the device 'dev_t'
26111  *		data	- pointer to user provided audio msf structure,
26112  *		          specifying start/end addresses.
26113  *		flag	- this argument is a pass through to ddi_copyxxx()
26114  *		          directly from the mode argument of ioctl().
26115  *
26116  * Return Code: the code returned by sd_send_scsi_cmd()
26117  *		EFAULT if ddi_copyxxx() fails
26118  *		ENXIO if fail ddi_get_soft_state
26119  *		EINVAL if data pointer is NULL
26120  */
26121 
26122 static int
26123 sr_play_msf(dev_t dev, caddr_t data, int flag)
26124 {
26125 	struct sd_lun		*un;
26126 	struct uscsi_cmd	*com;
26127 	struct cdrom_msf	msf_struct;
26128 	struct cdrom_msf	*msf = &msf_struct;
26129 	char			cdb[CDB_GROUP1];
26130 	int			rval;
26131 
26132 	if (data == NULL) {
26133 		return (EINVAL);
26134 	}
26135 
26136 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26137 		return (ENXIO);
26138 	}
26139 
26140 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26141 		return (EFAULT);
26142 	}
26143 
26144 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26145 	bzero(cdb, CDB_GROUP1);
26146 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26147 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26148 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26149 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26150 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26151 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26152 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26153 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26154 	} else {
26155 		cdb[3] = msf->cdmsf_min0;
26156 		cdb[4] = msf->cdmsf_sec0;
26157 		cdb[5] = msf->cdmsf_frame0;
26158 		cdb[6] = msf->cdmsf_min1;
26159 		cdb[7] = msf->cdmsf_sec1;
26160 		cdb[8] = msf->cdmsf_frame1;
26161 	}
26162 	com->uscsi_cdb    = cdb;
26163 	com->uscsi_cdblen = CDB_GROUP1;
26164 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26165 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26166 	    SD_PATH_STANDARD);
26167 	kmem_free(com, sizeof (*com));
26168 	return (rval);
26169 }
26170 
26171 
26172 /*
26173  *    Function: sr_play_trkind()
26174  *
26175  * Description: This routine is the driver entry point for handling CD-ROM
26176  *		ioctl requests to output the audio signals at the specified
26177  *		starting address and continue the audio play until the specified
26178  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
26179  *		format.
26180  *
26181  *   Arguments: dev	- the device 'dev_t'
26182  *		data	- pointer to user provided audio track/index structure,
26183  *		          specifying start/end addresses.
26184  *		flag	- this argument is a pass through to ddi_copyxxx()
26185  *		          directly from the mode argument of ioctl().
26186  *
26187  * Return Code: the code returned by sd_send_scsi_cmd()
26188  *		EFAULT if ddi_copyxxx() fails
26189  *		ENXIO if fail ddi_get_soft_state
26190  *		EINVAL if data pointer is NULL
26191  */
26192 
26193 static int
26194 sr_play_trkind(dev_t dev, caddr_t data, int flag)
26195 {
26196 	struct cdrom_ti		ti_struct;
26197 	struct cdrom_ti		*ti = &ti_struct;
26198 	struct uscsi_cmd	*com = NULL;
26199 	char			cdb[CDB_GROUP1];
26200 	int			rval;
26201 
26202 	if (data == NULL) {
26203 		return (EINVAL);
26204 	}
26205 
26206 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
26207 		return (EFAULT);
26208 	}
26209 
26210 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26211 	bzero(cdb, CDB_GROUP1);
26212 	cdb[0] = SCMD_PLAYAUDIO_TI;
26213 	cdb[4] = ti->cdti_trk0;
26214 	cdb[5] = ti->cdti_ind0;
26215 	cdb[7] = ti->cdti_trk1;
26216 	cdb[8] = ti->cdti_ind1;
26217 	com->uscsi_cdb    = cdb;
26218 	com->uscsi_cdblen = CDB_GROUP1;
26219 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26220 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26221 	    SD_PATH_STANDARD);
26222 	kmem_free(com, sizeof (*com));
26223 	return (rval);
26224 }
26225 
26226 
26227 /*
26228  *    Function: sr_read_all_subcodes()
26229  *
26230  * Description: This routine is the driver entry point for handling CD-ROM
26231  *		ioctl requests to return raw subcode data while the target is
26232  *		playing audio (CDROMSUBCODE).
26233  *
26234  *   Arguments: dev	- the device 'dev_t'
26235  *		data	- pointer to user provided cdrom subcode structure,
26236  *		          specifying the transfer length and address.
26237  *		flag	- this argument is a pass through to ddi_copyxxx()
26238  *		          directly from the mode argument of ioctl().
26239  *
26240  * Return Code: the code returned by sd_send_scsi_cmd()
26241  *		EFAULT if ddi_copyxxx() fails
26242  *		ENXIO if fail ddi_get_soft_state
26243  *		EINVAL if data pointer is NULL
26244  */
26245 
26246 static int
26247 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
26248 {
26249 	struct sd_lun		*un = NULL;
26250 	struct uscsi_cmd	*com = NULL;
26251 	struct cdrom_subcode	*subcode = NULL;
26252 	int			rval;
26253 	size_t			buflen;
26254 	char			cdb[CDB_GROUP5];
26255 
26256 #ifdef _MULTI_DATAMODEL
26257 	/* To support ILP32 applications in an LP64 world */
26258 	struct cdrom_subcode32		cdrom_subcode32;
26259 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
26260 #endif
26261 	if (data == NULL) {
26262 		return (EINVAL);
26263 	}
26264 
26265 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26266 		return (ENXIO);
26267 	}
26268 
26269 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
26270 
26271 #ifdef _MULTI_DATAMODEL
26272 	switch (ddi_model_convert_from(flag & FMODELS)) {
26273 	case DDI_MODEL_ILP32:
26274 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
26275 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26276 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26277 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26278 			return (EFAULT);
26279 		}
26280 		/* Convert the ILP32 uscsi data from the application to LP64 */
26281 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
26282 		break;
26283 	case DDI_MODEL_NONE:
26284 		if (ddi_copyin(data, subcode,
26285 		    sizeof (struct cdrom_subcode), flag)) {
26286 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26287 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26288 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26289 			return (EFAULT);
26290 		}
26291 		break;
26292 	}
26293 #else /* ! _MULTI_DATAMODEL */
26294 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
26295 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26296 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
26297 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26298 		return (EFAULT);
26299 	}
26300 #endif /* _MULTI_DATAMODEL */
26301 
26302 	/*
26303 	 * Since MMC-2 expects max 3 bytes for length, check if the
26304 	 * length input is greater than 3 bytes
26305 	 */
26306 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
26307 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26308 		    "sr_read_all_subcodes: "
26309 		    "cdrom transfer length too large: %d (limit %d)\n",
26310 		    subcode->cdsc_length, 0xFFFFFF);
26311 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26312 		return (EINVAL);
26313 	}
26314 
26315 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
26316 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26317 	bzero(cdb, CDB_GROUP5);
26318 
26319 	if (un->un_f_mmc_cap == TRUE) {
26320 		cdb[0] = (char)SCMD_READ_CD;
26321 		cdb[2] = (char)0xff;
26322 		cdb[3] = (char)0xff;
26323 		cdb[4] = (char)0xff;
26324 		cdb[5] = (char)0xff;
26325 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26326 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26327 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
26328 		cdb[10] = 1;
26329 	} else {
26330 		/*
26331 		 * Note: A vendor specific command (0xDF) is being used her to
26332 		 * request a read of all subcodes.
26333 		 */
26334 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
26335 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
26336 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26337 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26338 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
26339 	}
26340 	com->uscsi_cdb	   = cdb;
26341 	com->uscsi_cdblen  = CDB_GROUP5;
26342 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
26343 	com->uscsi_buflen  = buflen;
26344 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26345 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26346 	    SD_PATH_STANDARD);
26347 	kmem_free(subcode, sizeof (struct cdrom_subcode));
26348 	kmem_free(com, sizeof (*com));
26349 	return (rval);
26350 }
26351 
26352 
26353 /*
26354  *    Function: sr_read_subchannel()
26355  *
26356  * Description: This routine is the driver entry point for handling CD-ROM
26357  *		ioctl requests to return the Q sub-channel data of the CD
26358  *		current position block. (CDROMSUBCHNL) The data includes the
26359  *		track number, index number, absolute CD-ROM address (LBA or MSF
26360  *		format per the user) , track relative CD-ROM address (LBA or MSF
26361  *		format per the user), control data and audio status.
26362  *
26363  *   Arguments: dev	- the device 'dev_t'
26364  *		data	- pointer to user provided cdrom sub-channel structure
26365  *		flag	- this argument is a pass through to ddi_copyxxx()
26366  *		          directly from the mode argument of ioctl().
26367  *
26368  * Return Code: the code returned by sd_send_scsi_cmd()
26369  *		EFAULT if ddi_copyxxx() fails
26370  *		ENXIO if fail ddi_get_soft_state
26371  *		EINVAL if data pointer is NULL
26372  */
26373 
26374 static int
26375 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
26376 {
26377 	struct sd_lun		*un;
26378 	struct uscsi_cmd	*com;
26379 	struct cdrom_subchnl	subchanel;
26380 	struct cdrom_subchnl	*subchnl = &subchanel;
26381 	char			cdb[CDB_GROUP1];
26382 	caddr_t			buffer;
26383 	int			rval;
26384 
26385 	if (data == NULL) {
26386 		return (EINVAL);
26387 	}
26388 
26389 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26390 	    (un->un_state == SD_STATE_OFFLINE)) {
26391 		return (ENXIO);
26392 	}
26393 
26394 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
26395 		return (EFAULT);
26396 	}
26397 
26398 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
26399 	bzero(cdb, CDB_GROUP1);
26400 	cdb[0] = SCMD_READ_SUBCHANNEL;
26401 	/* Set the MSF bit based on the user requested address format */
26402 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
26403 	/*
26404 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
26405 	 * returned
26406 	 */
26407 	cdb[2] = 0x40;
26408 	/*
26409 	 * Set byte 3 to specify the return data format. A value of 0x01
26410 	 * indicates that the CD-ROM current position should be returned.
26411 	 */
26412 	cdb[3] = 0x01;
26413 	cdb[8] = 0x10;
26414 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26415 	com->uscsi_cdb	   = cdb;
26416 	com->uscsi_cdblen  = CDB_GROUP1;
26417 	com->uscsi_bufaddr = buffer;
26418 	com->uscsi_buflen  = 16;
26419 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26420 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26421 	    SD_PATH_STANDARD);
26422 	if (rval != 0) {
26423 		kmem_free(buffer, 16);
26424 		kmem_free(com, sizeof (*com));
26425 		return (rval);
26426 	}
26427 
26428 	/* Process the returned Q sub-channel data */
26429 	subchnl->cdsc_audiostatus = buffer[1];
26430 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
26431 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
26432 	subchnl->cdsc_trk	= buffer[6];
26433 	subchnl->cdsc_ind	= buffer[7];
26434 	if (subchnl->cdsc_format & CDROM_LBA) {
26435 		subchnl->cdsc_absaddr.lba =
26436 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26437 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26438 		subchnl->cdsc_reladdr.lba =
26439 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
26440 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
26441 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
26442 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
26443 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
26444 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
26445 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
26446 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
26447 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
26448 	} else {
26449 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
26450 		subchnl->cdsc_absaddr.msf.second = buffer[10];
26451 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
26452 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
26453 		subchnl->cdsc_reladdr.msf.second = buffer[14];
26454 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
26455 	}
26456 	kmem_free(buffer, 16);
26457 	kmem_free(com, sizeof (*com));
26458 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
26459 	    != 0) {
26460 		return (EFAULT);
26461 	}
26462 	return (rval);
26463 }
26464 
26465 
26466 /*
26467  *    Function: sr_read_tocentry()
26468  *
26469  * Description: This routine is the driver entry point for handling CD-ROM
26470  *		ioctl requests to read from the Table of Contents (TOC)
26471  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
26472  *		fields, the starting address (LBA or MSF format per the user)
26473  *		and the data mode if the user specified track is a data track.
26474  *
26475  *		Note: The READ HEADER (0x44) command used in this routine is
26476  *		obsolete per the SCSI MMC spec but still supported in the
26477  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26478  *		therefore the command is still implemented in this routine.
26479  *
26480  *   Arguments: dev	- the device 'dev_t'
26481  *		data	- pointer to user provided toc entry structure,
26482  *			  specifying the track # and the address format
26483  *			  (LBA or MSF).
26484  *		flag	- this argument is a pass through to ddi_copyxxx()
26485  *		          directly from the mode argument of ioctl().
26486  *
26487  * Return Code: the code returned by sd_send_scsi_cmd()
26488  *		EFAULT if ddi_copyxxx() fails
26489  *		ENXIO if fail ddi_get_soft_state
26490  *		EINVAL if data pointer is NULL
26491  */
26492 
26493 static int
26494 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
26495 {
26496 	struct sd_lun		*un = NULL;
26497 	struct uscsi_cmd	*com;
26498 	struct cdrom_tocentry	toc_entry;
26499 	struct cdrom_tocentry	*entry = &toc_entry;
26500 	caddr_t			buffer;
26501 	int			rval;
26502 	char			cdb[CDB_GROUP1];
26503 
26504 	if (data == NULL) {
26505 		return (EINVAL);
26506 	}
26507 
26508 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26509 	    (un->un_state == SD_STATE_OFFLINE)) {
26510 		return (ENXIO);
26511 	}
26512 
26513 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
26514 		return (EFAULT);
26515 	}
26516 
26517 	/* Validate the requested track and address format */
26518 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
26519 		return (EINVAL);
26520 	}
26521 
26522 	if (entry->cdte_track == 0) {
26523 		return (EINVAL);
26524 	}
26525 
26526 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
26527 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26528 	bzero(cdb, CDB_GROUP1);
26529 
26530 	cdb[0] = SCMD_READ_TOC;
26531 	/* Set the MSF bit based on the user requested address format  */
26532 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
26533 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26534 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
26535 	} else {
26536 		cdb[6] = entry->cdte_track;
26537 	}
26538 
26539 	/*
26540 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26541 	 * (4 byte TOC response header + 8 byte track descriptor)
26542 	 */
26543 	cdb[8] = 12;
26544 	com->uscsi_cdb	   = cdb;
26545 	com->uscsi_cdblen  = CDB_GROUP1;
26546 	com->uscsi_bufaddr = buffer;
26547 	com->uscsi_buflen  = 0x0C;
26548 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
26549 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26550 	    SD_PATH_STANDARD);
26551 	if (rval != 0) {
26552 		kmem_free(buffer, 12);
26553 		kmem_free(com, sizeof (*com));
26554 		return (rval);
26555 	}
26556 
26557 	/* Process the toc entry */
26558 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
26559 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
26560 	if (entry->cdte_format & CDROM_LBA) {
26561 		entry->cdte_addr.lba =
26562 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26563 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26564 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
26565 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
26566 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
26567 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
26568 		/*
26569 		 * Send a READ TOC command using the LBA address format to get
26570 		 * the LBA for the track requested so it can be used in the
26571 		 * READ HEADER request
26572 		 *
26573 		 * Note: The MSF bit of the READ HEADER command specifies the
26574 		 * output format. The block address specified in that command
26575 		 * must be in LBA format.
26576 		 */
26577 		cdb[1] = 0;
26578 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26579 		    SD_PATH_STANDARD);
26580 		if (rval != 0) {
26581 			kmem_free(buffer, 12);
26582 			kmem_free(com, sizeof (*com));
26583 			return (rval);
26584 		}
26585 	} else {
26586 		entry->cdte_addr.msf.minute	= buffer[9];
26587 		entry->cdte_addr.msf.second	= buffer[10];
26588 		entry->cdte_addr.msf.frame	= buffer[11];
26589 		/*
26590 		 * Send a READ TOC command using the LBA address format to get
26591 		 * the LBA for the track requested so it can be used in the
26592 		 * READ HEADER request
26593 		 *
26594 		 * Note: The MSF bit of the READ HEADER command specifies the
26595 		 * output format. The block address specified in that command
26596 		 * must be in LBA format.
26597 		 */
26598 		cdb[1] = 0;
26599 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26600 		    SD_PATH_STANDARD);
26601 		if (rval != 0) {
26602 			kmem_free(buffer, 12);
26603 			kmem_free(com, sizeof (*com));
26604 			return (rval);
26605 		}
26606 	}
26607 
26608 	/*
26609 	 * Build and send the READ HEADER command to determine the data mode of
26610 	 * the user specified track.
26611 	 */
26612 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
26613 	    (entry->cdte_track != CDROM_LEADOUT)) {
26614 		bzero(cdb, CDB_GROUP1);
26615 		cdb[0] = SCMD_READ_HEADER;
26616 		cdb[2] = buffer[8];
26617 		cdb[3] = buffer[9];
26618 		cdb[4] = buffer[10];
26619 		cdb[5] = buffer[11];
26620 		cdb[8] = 0x08;
26621 		com->uscsi_buflen = 0x08;
26622 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26623 		    SD_PATH_STANDARD);
26624 		if (rval == 0) {
26625 			entry->cdte_datamode = buffer[0];
26626 		} else {
26627 			/*
26628 			 * READ HEADER command failed, since this is
26629 			 * obsoleted in one spec, its better to return
26630 			 * -1 for an invlid track so that we can still
26631 			 * receive the rest of the TOC data.
26632 			 */
26633 			entry->cdte_datamode = (uchar_t)-1;
26634 		}
26635 	} else {
26636 		entry->cdte_datamode = (uchar_t)-1;
26637 	}
26638 
26639 	kmem_free(buffer, 12);
26640 	kmem_free(com, sizeof (*com));
26641 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
26642 		return (EFAULT);
26643 
26644 	return (rval);
26645 }
26646 
26647 
26648 /*
26649  *    Function: sr_read_tochdr()
26650  *
26651  * Description: This routine is the driver entry point for handling CD-ROM
26652  * 		ioctl requests to read the Table of Contents (TOC) header
26653  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
26654  *		and ending track numbers
26655  *
26656  *   Arguments: dev	- the device 'dev_t'
26657  *		data	- pointer to user provided toc header structure,
26658  *			  specifying the starting and ending track numbers.
26659  *		flag	- this argument is a pass through to ddi_copyxxx()
26660  *			  directly from the mode argument of ioctl().
26661  *
26662  * Return Code: the code returned by sd_send_scsi_cmd()
26663  *		EFAULT if ddi_copyxxx() fails
26664  *		ENXIO if fail ddi_get_soft_state
26665  *		EINVAL if data pointer is NULL
26666  */
26667 
26668 static int
26669 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
26670 {
26671 	struct sd_lun		*un;
26672 	struct uscsi_cmd	*com;
26673 	struct cdrom_tochdr	toc_header;
26674 	struct cdrom_tochdr	*hdr = &toc_header;
26675 	char			cdb[CDB_GROUP1];
26676 	int			rval;
26677 	caddr_t			buffer;
26678 
26679 	if (data == NULL) {
26680 		return (EINVAL);
26681 	}
26682 
26683 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26684 	    (un->un_state == SD_STATE_OFFLINE)) {
26685 		return (ENXIO);
26686 	}
26687 
26688 	buffer = kmem_zalloc(4, KM_SLEEP);
26689 	bzero(cdb, CDB_GROUP1);
26690 	cdb[0] = SCMD_READ_TOC;
26691 	/*
26692 	 * Specifying a track number of 0x00 in the READ TOC command indicates
26693 	 * that the TOC header should be returned
26694 	 */
26695 	cdb[6] = 0x00;
26696 	/*
26697 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
26698 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
26699 	 */
26700 	cdb[8] = 0x04;
26701 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26702 	com->uscsi_cdb	   = cdb;
26703 	com->uscsi_cdblen  = CDB_GROUP1;
26704 	com->uscsi_bufaddr = buffer;
26705 	com->uscsi_buflen  = 0x04;
26706 	com->uscsi_timeout = 300;
26707 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26708 
26709 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26710 	    SD_PATH_STANDARD);
26711 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26712 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
26713 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
26714 	} else {
26715 		hdr->cdth_trk0 = buffer[2];
26716 		hdr->cdth_trk1 = buffer[3];
26717 	}
26718 	kmem_free(buffer, 4);
26719 	kmem_free(com, sizeof (*com));
26720 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
26721 		return (EFAULT);
26722 	}
26723 	return (rval);
26724 }
26725 
26726 
26727 /*
26728  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
26729  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
26730  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
26731  * digital audio and extended architecture digital audio. These modes are
26732  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
26733  * MMC specs.
26734  *
26735  * In addition to support for the various data formats these routines also
26736  * include support for devices that implement only the direct access READ
26737  * commands (0x08, 0x28), devices that implement the READ_CD commands
26738  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
26739  * READ CDXA commands (0xD8, 0xDB)
26740  */
26741 
26742 /*
26743  *    Function: sr_read_mode1()
26744  *
26745  * Description: This routine is the driver entry point for handling CD-ROM
26746  *		ioctl read mode1 requests (CDROMREADMODE1).
26747  *
26748  *   Arguments: dev	- the device 'dev_t'
26749  *		data	- pointer to user provided cd read structure specifying
26750  *			  the lba buffer address and length.
26751  *		flag	- this argument is a pass through to ddi_copyxxx()
26752  *			  directly from the mode argument of ioctl().
26753  *
26754  * Return Code: the code returned by sd_send_scsi_cmd()
26755  *		EFAULT if ddi_copyxxx() fails
26756  *		ENXIO if fail ddi_get_soft_state
26757  *		EINVAL if data pointer is NULL
26758  */
26759 
26760 static int
26761 sr_read_mode1(dev_t dev, caddr_t data, int flag)
26762 {
26763 	struct sd_lun		*un;
26764 	struct cdrom_read	mode1_struct;
26765 	struct cdrom_read	*mode1 = &mode1_struct;
26766 	int			rval;
26767 	sd_ssc_t		*ssc;
26768 
26769 #ifdef _MULTI_DATAMODEL
26770 	/* To support ILP32 applications in an LP64 world */
26771 	struct cdrom_read32	cdrom_read32;
26772 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26773 #endif /* _MULTI_DATAMODEL */
26774 
26775 	if (data == NULL) {
26776 		return (EINVAL);
26777 	}
26778 
26779 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26780 	    (un->un_state == SD_STATE_OFFLINE)) {
26781 		return (ENXIO);
26782 	}
26783 
26784 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26785 	    "sd_read_mode1: entry: un:0x%p\n", un);
26786 
26787 #ifdef _MULTI_DATAMODEL
26788 	switch (ddi_model_convert_from(flag & FMODELS)) {
26789 	case DDI_MODEL_ILP32:
26790 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26791 			return (EFAULT);
26792 		}
26793 		/* Convert the ILP32 uscsi data from the application to LP64 */
26794 		cdrom_read32tocdrom_read(cdrd32, mode1);
26795 		break;
26796 	case DDI_MODEL_NONE:
26797 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26798 			return (EFAULT);
26799 		}
26800 	}
26801 #else /* ! _MULTI_DATAMODEL */
26802 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26803 		return (EFAULT);
26804 	}
26805 #endif /* _MULTI_DATAMODEL */
26806 
26807 	ssc = sd_ssc_init(un);
26808 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
26809 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
26810 	sd_ssc_fini(ssc);
26811 
26812 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26813 	    "sd_read_mode1: exit: un:0x%p\n", un);
26814 
26815 	return (rval);
26816 }
26817 
26818 
26819 /*
26820  *    Function: sr_read_cd_mode2()
26821  *
26822  * Description: This routine is the driver entry point for handling CD-ROM
26823  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26824  *		support the READ CD (0xBE) command or the 1st generation
26825  *		READ CD (0xD4) command.
26826  *
26827  *   Arguments: dev	- the device 'dev_t'
26828  *		data	- pointer to user provided cd read structure specifying
26829  *			  the lba buffer address and length.
26830  *		flag	- this argument is a pass through to ddi_copyxxx()
26831  *			  directly from the mode argument of ioctl().
26832  *
26833  * Return Code: the code returned by sd_send_scsi_cmd()
26834  *		EFAULT if ddi_copyxxx() fails
26835  *		ENXIO if fail ddi_get_soft_state
26836  *		EINVAL if data pointer is NULL
26837  */
26838 
26839 static int
26840 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
26841 {
26842 	struct sd_lun		*un;
26843 	struct uscsi_cmd	*com;
26844 	struct cdrom_read	mode2_struct;
26845 	struct cdrom_read	*mode2 = &mode2_struct;
26846 	uchar_t			cdb[CDB_GROUP5];
26847 	int			nblocks;
26848 	int			rval;
26849 #ifdef _MULTI_DATAMODEL
26850 	/*  To support ILP32 applications in an LP64 world */
26851 	struct cdrom_read32	cdrom_read32;
26852 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26853 #endif /* _MULTI_DATAMODEL */
26854 
26855 	if (data == NULL) {
26856 		return (EINVAL);
26857 	}
26858 
26859 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26860 	    (un->un_state == SD_STATE_OFFLINE)) {
26861 		return (ENXIO);
26862 	}
26863 
26864 #ifdef _MULTI_DATAMODEL
26865 	switch (ddi_model_convert_from(flag & FMODELS)) {
26866 	case DDI_MODEL_ILP32:
26867 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26868 			return (EFAULT);
26869 		}
26870 		/* Convert the ILP32 uscsi data from the application to LP64 */
26871 		cdrom_read32tocdrom_read(cdrd32, mode2);
26872 		break;
26873 	case DDI_MODEL_NONE:
26874 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26875 			return (EFAULT);
26876 		}
26877 		break;
26878 	}
26879 
26880 #else /* ! _MULTI_DATAMODEL */
26881 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26882 		return (EFAULT);
26883 	}
26884 #endif /* _MULTI_DATAMODEL */
26885 
26886 	bzero(cdb, sizeof (cdb));
26887 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
26888 		/* Read command supported by 1st generation atapi drives */
26889 		cdb[0] = SCMD_READ_CDD4;
26890 	} else {
26891 		/* Universal CD Access Command */
26892 		cdb[0] = SCMD_READ_CD;
26893 	}
26894 
26895 	/*
26896 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
26897 	 */
26898 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
26899 
26900 	/* set the start address */
26901 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
26902 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
26903 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
26904 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
26905 
26906 	/* set the transfer length */
26907 	nblocks = mode2->cdread_buflen / 2336;
26908 	cdb[6] = (uchar_t)(nblocks >> 16);
26909 	cdb[7] = (uchar_t)(nblocks >> 8);
26910 	cdb[8] = (uchar_t)nblocks;
26911 
26912 	/* set the filter bits */
26913 	cdb[9] = CDROM_READ_CD_USERDATA;
26914 
26915 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26916 	com->uscsi_cdb = (caddr_t)cdb;
26917 	com->uscsi_cdblen = sizeof (cdb);
26918 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
26919 	com->uscsi_buflen = mode2->cdread_buflen;
26920 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26921 
26922 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26923 	    SD_PATH_STANDARD);
26924 	kmem_free(com, sizeof (*com));
26925 	return (rval);
26926 }
26927 
26928 
26929 /*
26930  *    Function: sr_read_mode2()
26931  *
26932  * Description: This routine is the driver entry point for handling CD-ROM
26933  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26934  *		do not support the READ CD (0xBE) command.
26935  *
26936  *   Arguments: dev	- the device 'dev_t'
26937  *		data	- pointer to user provided cd read structure specifying
26938  *			  the lba buffer address and length.
26939  *		flag	- this argument is a pass through to ddi_copyxxx()
26940  *			  directly from the mode argument of ioctl().
26941  *
26942  * Return Code: the code returned by sd_send_scsi_cmd()
26943  *		EFAULT if ddi_copyxxx() fails
26944  *		ENXIO if fail ddi_get_soft_state
26945  *		EINVAL if data pointer is NULL
26946  *		EIO if fail to reset block size
26947  *		EAGAIN if commands are in progress in the driver
26948  */
26949 
26950 static int
26951 sr_read_mode2(dev_t dev, caddr_t data, int flag)
26952 {
26953 	struct sd_lun		*un;
26954 	struct cdrom_read	mode2_struct;
26955 	struct cdrom_read	*mode2 = &mode2_struct;
26956 	int			rval;
26957 	uint32_t		restore_blksize;
26958 	struct uscsi_cmd	*com;
26959 	uchar_t			cdb[CDB_GROUP0];
26960 	int			nblocks;
26961 
26962 #ifdef _MULTI_DATAMODEL
26963 	/* To support ILP32 applications in an LP64 world */
26964 	struct cdrom_read32	cdrom_read32;
26965 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26966 #endif /* _MULTI_DATAMODEL */
26967 
26968 	if (data == NULL) {
26969 		return (EINVAL);
26970 	}
26971 
26972 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26973 	    (un->un_state == SD_STATE_OFFLINE)) {
26974 		return (ENXIO);
26975 	}
26976 
26977 	/*
26978 	 * Because this routine will update the device and driver block size
26979 	 * being used we want to make sure there are no commands in progress.
26980 	 * If commands are in progress the user will have to try again.
26981 	 *
26982 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
26983 	 * in sdioctl to protect commands from sdioctl through to the top of
26984 	 * sd_uscsi_strategy. See sdioctl for details.
26985 	 */
26986 	mutex_enter(SD_MUTEX(un));
26987 	if (un->un_ncmds_in_driver != 1) {
26988 		mutex_exit(SD_MUTEX(un));
26989 		return (EAGAIN);
26990 	}
26991 	mutex_exit(SD_MUTEX(un));
26992 
26993 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26994 	    "sd_read_mode2: entry: un:0x%p\n", un);
26995 
26996 #ifdef _MULTI_DATAMODEL
26997 	switch (ddi_model_convert_from(flag & FMODELS)) {
26998 	case DDI_MODEL_ILP32:
26999 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27000 			return (EFAULT);
27001 		}
27002 		/* Convert the ILP32 uscsi data from the application to LP64 */
27003 		cdrom_read32tocdrom_read(cdrd32, mode2);
27004 		break;
27005 	case DDI_MODEL_NONE:
27006 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27007 			return (EFAULT);
27008 		}
27009 		break;
27010 	}
27011 #else /* ! _MULTI_DATAMODEL */
27012 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27013 		return (EFAULT);
27014 	}
27015 #endif /* _MULTI_DATAMODEL */
27016 
27017 	/* Store the current target block size for restoration later */
27018 	restore_blksize = un->un_tgt_blocksize;
27019 
27020 	/* Change the device and soft state target block size to 2336 */
27021 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27022 		rval = EIO;
27023 		goto done;
27024 	}
27025 
27026 
27027 	bzero(cdb, sizeof (cdb));
27028 
27029 	/* set READ operation */
27030 	cdb[0] = SCMD_READ;
27031 
27032 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27033 	mode2->cdread_lba >>= 2;
27034 
27035 	/* set the start address */
27036 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27037 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27038 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27039 
27040 	/* set the transfer length */
27041 	nblocks = mode2->cdread_buflen / 2336;
27042 	cdb[4] = (uchar_t)nblocks & 0xFF;
27043 
27044 	/* build command */
27045 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27046 	com->uscsi_cdb = (caddr_t)cdb;
27047 	com->uscsi_cdblen = sizeof (cdb);
27048 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27049 	com->uscsi_buflen = mode2->cdread_buflen;
27050 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27051 
27052 	/*
27053 	 * Issue SCSI command with user space address for read buffer.
27054 	 *
27055 	 * This sends the command through main channel in the driver.
27056 	 *
27057 	 * Since this is accessed via an IOCTL call, we go through the
27058 	 * standard path, so that if the device was powered down, then
27059 	 * it would be 'awakened' to handle the command.
27060 	 */
27061 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27062 	    SD_PATH_STANDARD);
27063 
27064 	kmem_free(com, sizeof (*com));
27065 
27066 	/* Restore the device and soft state target block size */
27067 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27068 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27069 		    "can't do switch back to mode 1\n");
27070 		/*
27071 		 * If sd_send_scsi_READ succeeded we still need to report
27072 		 * an error because we failed to reset the block size
27073 		 */
27074 		if (rval == 0) {
27075 			rval = EIO;
27076 		}
27077 	}
27078 
27079 done:
27080 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27081 	    "sd_read_mode2: exit: un:0x%p\n", un);
27082 
27083 	return (rval);
27084 }
27085 
27086 
27087 /*
27088  *    Function: sr_sector_mode()
27089  *
27090  * Description: This utility function is used by sr_read_mode2 to set the target
27091  *		block size based on the user specified size. This is a legacy
27092  *		implementation based upon a vendor specific mode page
27093  *
27094  *   Arguments: dev	- the device 'dev_t'
27095  *		data	- flag indicating if block size is being set to 2336 or
27096  *			  512.
27097  *
27098  * Return Code: the code returned by sd_send_scsi_cmd()
27099  *		EFAULT if ddi_copyxxx() fails
27100  *		ENXIO if fail ddi_get_soft_state
27101  *		EINVAL if data pointer is NULL
27102  */
27103 
27104 static int
27105 sr_sector_mode(dev_t dev, uint32_t blksize)
27106 {
27107 	struct sd_lun	*un;
27108 	uchar_t		*sense;
27109 	uchar_t		*select;
27110 	int		rval;
27111 	sd_ssc_t	*ssc;
27112 
27113 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27114 	    (un->un_state == SD_STATE_OFFLINE)) {
27115 		return (ENXIO);
27116 	}
27117 
27118 	sense = kmem_zalloc(20, KM_SLEEP);
27119 
27120 	/* Note: This is a vendor specific mode page (0x81) */
27121 	ssc = sd_ssc_init(un);
27122 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
27123 	    SD_PATH_STANDARD);
27124 	sd_ssc_fini(ssc);
27125 	if (rval != 0) {
27126 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27127 		    "sr_sector_mode: Mode Sense failed\n");
27128 		kmem_free(sense, 20);
27129 		return (rval);
27130 	}
27131 	select = kmem_zalloc(20, KM_SLEEP);
27132 	select[3] = 0x08;
27133 	select[10] = ((blksize >> 8) & 0xff);
27134 	select[11] = (blksize & 0xff);
27135 	select[12] = 0x01;
27136 	select[13] = 0x06;
27137 	select[14] = sense[14];
27138 	select[15] = sense[15];
27139 	if (blksize == SD_MODE2_BLKSIZE) {
27140 		select[14] |= 0x01;
27141 	}
27142 
27143 	ssc = sd_ssc_init(un);
27144 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
27145 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27146 	sd_ssc_fini(ssc);
27147 	if (rval != 0) {
27148 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27149 		    "sr_sector_mode: Mode Select failed\n");
27150 	} else {
27151 		/*
27152 		 * Only update the softstate block size if we successfully
27153 		 * changed the device block mode.
27154 		 */
27155 		mutex_enter(SD_MUTEX(un));
27156 		sd_update_block_info(un, blksize, 0);
27157 		mutex_exit(SD_MUTEX(un));
27158 	}
27159 	kmem_free(sense, 20);
27160 	kmem_free(select, 20);
27161 	return (rval);
27162 }
27163 
27164 
27165 /*
27166  *    Function: sr_read_cdda()
27167  *
27168  * Description: This routine is the driver entry point for handling CD-ROM
27169  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27170  *		the target supports CDDA these requests are handled via a vendor
27171  *		specific command (0xD8) If the target does not support CDDA
27172  *		these requests are handled via the READ CD command (0xBE).
27173  *
27174  *   Arguments: dev	- the device 'dev_t'
27175  *		data	- pointer to user provided CD-DA structure specifying
27176  *			  the track starting address, transfer length, and
27177  *			  subcode options.
27178  *		flag	- this argument is a pass through to ddi_copyxxx()
27179  *			  directly from the mode argument of ioctl().
27180  *
27181  * Return Code: the code returned by sd_send_scsi_cmd()
27182  *		EFAULT if ddi_copyxxx() fails
27183  *		ENXIO if fail ddi_get_soft_state
27184  *		EINVAL if invalid arguments are provided
27185  *		ENOTTY
27186  */
27187 
27188 static int
27189 sr_read_cdda(dev_t dev, caddr_t data, int flag)
27190 {
27191 	struct sd_lun			*un;
27192 	struct uscsi_cmd		*com;
27193 	struct cdrom_cdda		*cdda;
27194 	int				rval;
27195 	size_t				buflen;
27196 	char				cdb[CDB_GROUP5];
27197 
27198 #ifdef _MULTI_DATAMODEL
27199 	/* To support ILP32 applications in an LP64 world */
27200 	struct cdrom_cdda32	cdrom_cdda32;
27201 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
27202 #endif /* _MULTI_DATAMODEL */
27203 
27204 	if (data == NULL) {
27205 		return (EINVAL);
27206 	}
27207 
27208 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27209 		return (ENXIO);
27210 	}
27211 
27212 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
27213 
27214 #ifdef _MULTI_DATAMODEL
27215 	switch (ddi_model_convert_from(flag & FMODELS)) {
27216 	case DDI_MODEL_ILP32:
27217 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
27218 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27219 			    "sr_read_cdda: ddi_copyin Failed\n");
27220 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27221 			return (EFAULT);
27222 		}
27223 		/* Convert the ILP32 uscsi data from the application to LP64 */
27224 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
27225 		break;
27226 	case DDI_MODEL_NONE:
27227 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27228 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27229 			    "sr_read_cdda: ddi_copyin Failed\n");
27230 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27231 			return (EFAULT);
27232 		}
27233 		break;
27234 	}
27235 #else /* ! _MULTI_DATAMODEL */
27236 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27237 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27238 		    "sr_read_cdda: ddi_copyin Failed\n");
27239 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27240 		return (EFAULT);
27241 	}
27242 #endif /* _MULTI_DATAMODEL */
27243 
27244 	/*
27245 	 * Since MMC-2 expects max 3 bytes for length, check if the
27246 	 * length input is greater than 3 bytes
27247 	 */
27248 	if ((cdda->cdda_length & 0xFF000000) != 0) {
27249 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
27250 		    "cdrom transfer length too large: %d (limit %d)\n",
27251 		    cdda->cdda_length, 0xFFFFFF);
27252 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27253 		return (EINVAL);
27254 	}
27255 
27256 	switch (cdda->cdda_subcode) {
27257 	case CDROM_DA_NO_SUBCODE:
27258 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
27259 		break;
27260 	case CDROM_DA_SUBQ:
27261 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
27262 		break;
27263 	case CDROM_DA_ALL_SUBCODE:
27264 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
27265 		break;
27266 	case CDROM_DA_SUBCODE_ONLY:
27267 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
27268 		break;
27269 	default:
27270 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27271 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
27272 		    cdda->cdda_subcode);
27273 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27274 		return (EINVAL);
27275 	}
27276 
27277 	/* Build and send the command */
27278 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27279 	bzero(cdb, CDB_GROUP5);
27280 
27281 	if (un->un_f_cfg_cdda == TRUE) {
27282 		cdb[0] = (char)SCMD_READ_CD;
27283 		cdb[1] = 0x04;
27284 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27285 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27286 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27287 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27288 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27289 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27290 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
27291 		cdb[9] = 0x10;
27292 		switch (cdda->cdda_subcode) {
27293 		case CDROM_DA_NO_SUBCODE :
27294 			cdb[10] = 0x0;
27295 			break;
27296 		case CDROM_DA_SUBQ :
27297 			cdb[10] = 0x2;
27298 			break;
27299 		case CDROM_DA_ALL_SUBCODE :
27300 			cdb[10] = 0x1;
27301 			break;
27302 		case CDROM_DA_SUBCODE_ONLY :
27303 			/* FALLTHROUGH */
27304 		default :
27305 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27306 			kmem_free(com, sizeof (*com));
27307 			return (ENOTTY);
27308 		}
27309 	} else {
27310 		cdb[0] = (char)SCMD_READ_CDDA;
27311 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27312 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27313 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27314 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27315 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
27316 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27317 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27318 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
27319 		cdb[10] = cdda->cdda_subcode;
27320 	}
27321 
27322 	com->uscsi_cdb = cdb;
27323 	com->uscsi_cdblen = CDB_GROUP5;
27324 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
27325 	com->uscsi_buflen = buflen;
27326 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27327 
27328 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27329 	    SD_PATH_STANDARD);
27330 
27331 	kmem_free(cdda, sizeof (struct cdrom_cdda));
27332 	kmem_free(com, sizeof (*com));
27333 	return (rval);
27334 }
27335 
27336 
27337 /*
27338  *    Function: sr_read_cdxa()
27339  *
27340  * Description: This routine is the driver entry point for handling CD-ROM
27341  *		ioctl requests to return CD-XA (Extended Architecture) data.
27342  *		(CDROMCDXA).
27343  *
27344  *   Arguments: dev	- the device 'dev_t'
27345  *		data	- pointer to user provided CD-XA structure specifying
27346  *			  the data starting address, transfer length, and format
27347  *		flag	- this argument is a pass through to ddi_copyxxx()
27348  *			  directly from the mode argument of ioctl().
27349  *
27350  * Return Code: the code returned by sd_send_scsi_cmd()
27351  *		EFAULT if ddi_copyxxx() fails
27352  *		ENXIO if fail ddi_get_soft_state
27353  *		EINVAL if data pointer is NULL
27354  */
27355 
27356 static int
27357 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
27358 {
27359 	struct sd_lun		*un;
27360 	struct uscsi_cmd	*com;
27361 	struct cdrom_cdxa	*cdxa;
27362 	int			rval;
27363 	size_t			buflen;
27364 	char			cdb[CDB_GROUP5];
27365 	uchar_t			read_flags;
27366 
27367 #ifdef _MULTI_DATAMODEL
27368 	/* To support ILP32 applications in an LP64 world */
27369 	struct cdrom_cdxa32		cdrom_cdxa32;
27370 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
27371 #endif /* _MULTI_DATAMODEL */
27372 
27373 	if (data == NULL) {
27374 		return (EINVAL);
27375 	}
27376 
27377 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27378 		return (ENXIO);
27379 	}
27380 
27381 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
27382 
27383 #ifdef _MULTI_DATAMODEL
27384 	switch (ddi_model_convert_from(flag & FMODELS)) {
27385 	case DDI_MODEL_ILP32:
27386 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
27387 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27388 			return (EFAULT);
27389 		}
27390 		/*
27391 		 * Convert the ILP32 uscsi data from the
27392 		 * application to LP64 for internal use.
27393 		 */
27394 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
27395 		break;
27396 	case DDI_MODEL_NONE:
27397 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27398 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27399 			return (EFAULT);
27400 		}
27401 		break;
27402 	}
27403 #else /* ! _MULTI_DATAMODEL */
27404 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27405 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27406 		return (EFAULT);
27407 	}
27408 #endif /* _MULTI_DATAMODEL */
27409 
27410 	/*
27411 	 * Since MMC-2 expects max 3 bytes for length, check if the
27412 	 * length input is greater than 3 bytes
27413 	 */
27414 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
27415 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
27416 		    "cdrom transfer length too large: %d (limit %d)\n",
27417 		    cdxa->cdxa_length, 0xFFFFFF);
27418 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27419 		return (EINVAL);
27420 	}
27421 
27422 	switch (cdxa->cdxa_format) {
27423 	case CDROM_XA_DATA:
27424 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
27425 		read_flags = 0x10;
27426 		break;
27427 	case CDROM_XA_SECTOR_DATA:
27428 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
27429 		read_flags = 0xf8;
27430 		break;
27431 	case CDROM_XA_DATA_W_ERROR:
27432 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
27433 		read_flags = 0xfc;
27434 		break;
27435 	default:
27436 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27437 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
27438 		    cdxa->cdxa_format);
27439 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27440 		return (EINVAL);
27441 	}
27442 
27443 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27444 	bzero(cdb, CDB_GROUP5);
27445 	if (un->un_f_mmc_cap == TRUE) {
27446 		cdb[0] = (char)SCMD_READ_CD;
27447 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27448 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27449 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27450 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27451 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27452 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27453 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
27454 		cdb[9] = (char)read_flags;
27455 	} else {
27456 		/*
27457 		 * Note: A vendor specific command (0xDB) is being used her to
27458 		 * request a read of all subcodes.
27459 		 */
27460 		cdb[0] = (char)SCMD_READ_CDXA;
27461 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27462 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27463 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27464 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27465 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
27466 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27467 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27468 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
27469 		cdb[10] = cdxa->cdxa_format;
27470 	}
27471 	com->uscsi_cdb	   = cdb;
27472 	com->uscsi_cdblen  = CDB_GROUP5;
27473 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
27474 	com->uscsi_buflen  = buflen;
27475 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27476 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27477 	    SD_PATH_STANDARD);
27478 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27479 	kmem_free(com, sizeof (*com));
27480 	return (rval);
27481 }
27482 
27483 
27484 /*
27485  *    Function: sr_eject()
27486  *
27487  * Description: This routine is the driver entry point for handling CD-ROM
27488  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
27489  *
27490  *   Arguments: dev	- the device 'dev_t'
27491  *
27492  * Return Code: the code returned by sd_send_scsi_cmd()
27493  */
27494 
27495 static int
27496 sr_eject(dev_t dev)
27497 {
27498 	struct sd_lun	*un;
27499 	int		rval;
27500 	sd_ssc_t	*ssc;
27501 
27502 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27503 	    (un->un_state == SD_STATE_OFFLINE)) {
27504 		return (ENXIO);
27505 	}
27506 
27507 	/*
27508 	 * To prevent race conditions with the eject
27509 	 * command, keep track of an eject command as
27510 	 * it progresses. If we are already handling
27511 	 * an eject command in the driver for the given
27512 	 * unit and another request to eject is received
27513 	 * immediately return EAGAIN so we don't lose
27514 	 * the command if the current eject command fails.
27515 	 */
27516 	mutex_enter(SD_MUTEX(un));
27517 	if (un->un_f_ejecting == TRUE) {
27518 		mutex_exit(SD_MUTEX(un));
27519 		return (EAGAIN);
27520 	}
27521 	un->un_f_ejecting = TRUE;
27522 	mutex_exit(SD_MUTEX(un));
27523 
27524 	ssc = sd_ssc_init(un);
27525 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
27526 	    SD_PATH_STANDARD);
27527 	sd_ssc_fini(ssc);
27528 
27529 	if (rval != 0) {
27530 		mutex_enter(SD_MUTEX(un));
27531 		un->un_f_ejecting = FALSE;
27532 		mutex_exit(SD_MUTEX(un));
27533 		return (rval);
27534 	}
27535 
27536 	ssc = sd_ssc_init(un);
27537 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_EJECT,
27538 	    SD_PATH_STANDARD);
27539 	sd_ssc_fini(ssc);
27540 
27541 	if (rval == 0) {
27542 		mutex_enter(SD_MUTEX(un));
27543 		sr_ejected(un);
27544 		un->un_mediastate = DKIO_EJECTED;
27545 		un->un_f_ejecting = FALSE;
27546 		cv_broadcast(&un->un_state_cv);
27547 		mutex_exit(SD_MUTEX(un));
27548 	} else {
27549 		mutex_enter(SD_MUTEX(un));
27550 		un->un_f_ejecting = FALSE;
27551 		mutex_exit(SD_MUTEX(un));
27552 	}
27553 	return (rval);
27554 }
27555 
27556 
27557 /*
27558  *    Function: sr_ejected()
27559  *
27560  * Description: This routine updates the soft state structure to invalidate the
27561  *		geometry information after the media has been ejected or a
27562  *		media eject has been detected.
27563  *
27564  *   Arguments: un - driver soft state (unit) structure
27565  */
27566 
27567 static void
27568 sr_ejected(struct sd_lun *un)
27569 {
27570 	struct sd_errstats *stp;
27571 
27572 	ASSERT(un != NULL);
27573 	ASSERT(mutex_owned(SD_MUTEX(un)));
27574 
27575 	un->un_f_blockcount_is_valid	= FALSE;
27576 	un->un_f_tgt_blocksize_is_valid	= FALSE;
27577 	mutex_exit(SD_MUTEX(un));
27578 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
27579 	mutex_enter(SD_MUTEX(un));
27580 
27581 	if (un->un_errstats != NULL) {
27582 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
27583 		stp->sd_capacity.value.ui64 = 0;
27584 	}
27585 }
27586 
27587 
27588 /*
27589  *    Function: sr_check_wp()
27590  *
27591  * Description: This routine checks the write protection of a removable
27592  *      media disk and hotpluggable devices via the write protect bit of
27593  *      the Mode Page Header device specific field. Some devices choke
27594  *      on unsupported mode page. In order to workaround this issue,
27595  *      this routine has been implemented to use 0x3f mode page(request
27596  *      for all pages) for all device types.
27597  *
27598  *   Arguments: dev             - the device 'dev_t'
27599  *
27600  * Return Code: int indicating if the device is write protected (1) or not (0)
27601  *
27602  *     Context: Kernel thread.
27603  *
27604  */
27605 
27606 static int
27607 sr_check_wp(dev_t dev)
27608 {
27609 	struct sd_lun	*un;
27610 	uchar_t		device_specific;
27611 	uchar_t		*sense;
27612 	int		hdrlen;
27613 	int		rval = FALSE;
27614 	int		status;
27615 	sd_ssc_t	*ssc;
27616 
27617 	/*
27618 	 * Note: The return codes for this routine should be reworked to
27619 	 * properly handle the case of a NULL softstate.
27620 	 */
27621 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27622 		return (FALSE);
27623 	}
27624 
27625 	if (un->un_f_cfg_is_atapi == TRUE) {
27626 		/*
27627 		 * The mode page contents are not required; set the allocation
27628 		 * length for the mode page header only
27629 		 */
27630 		hdrlen = MODE_HEADER_LENGTH_GRP2;
27631 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27632 		ssc = sd_ssc_init(un);
27633 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
27634 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27635 		sd_ssc_fini(ssc);
27636 		if (status != 0)
27637 			goto err_exit;
27638 		device_specific =
27639 		    ((struct mode_header_grp2 *)sense)->device_specific;
27640 	} else {
27641 		hdrlen = MODE_HEADER_LENGTH;
27642 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27643 		ssc = sd_ssc_init(un);
27644 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
27645 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27646 		sd_ssc_fini(ssc);
27647 		if (status != 0)
27648 			goto err_exit;
27649 		device_specific =
27650 		    ((struct mode_header *)sense)->device_specific;
27651 	}
27652 
27653 
27654 	/*
27655 	 * Write protect mode sense failed; not all disks
27656 	 * understand this query. Return FALSE assuming that
27657 	 * these devices are not writable.
27658 	 */
27659 	if (device_specific & WRITE_PROTECT) {
27660 		rval = TRUE;
27661 	}
27662 
27663 err_exit:
27664 	kmem_free(sense, hdrlen);
27665 	return (rval);
27666 }
27667 
27668 /*
27669  *    Function: sr_volume_ctrl()
27670  *
27671  * Description: This routine is the driver entry point for handling CD-ROM
27672  *		audio output volume ioctl requests. (CDROMVOLCTRL)
27673  *
27674  *   Arguments: dev	- the device 'dev_t'
27675  *		data	- pointer to user audio volume control structure
27676  *		flag	- this argument is a pass through to ddi_copyxxx()
27677  *			  directly from the mode argument of ioctl().
27678  *
27679  * Return Code: the code returned by sd_send_scsi_cmd()
27680  *		EFAULT if ddi_copyxxx() fails
27681  *		ENXIO if fail ddi_get_soft_state
27682  *		EINVAL if data pointer is NULL
27683  *
27684  */
27685 
27686 static int
27687 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
27688 {
27689 	struct sd_lun		*un;
27690 	struct cdrom_volctrl    volume;
27691 	struct cdrom_volctrl    *vol = &volume;
27692 	uchar_t			*sense_page;
27693 	uchar_t			*select_page;
27694 	uchar_t			*sense;
27695 	uchar_t			*select;
27696 	int			sense_buflen;
27697 	int			select_buflen;
27698 	int			rval;
27699 	sd_ssc_t		*ssc;
27700 
27701 	if (data == NULL) {
27702 		return (EINVAL);
27703 	}
27704 
27705 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27706 	    (un->un_state == SD_STATE_OFFLINE)) {
27707 		return (ENXIO);
27708 	}
27709 
27710 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
27711 		return (EFAULT);
27712 	}
27713 
27714 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27715 		struct mode_header_grp2		*sense_mhp;
27716 		struct mode_header_grp2		*select_mhp;
27717 		int				bd_len;
27718 
27719 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
27720 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
27721 		    MODEPAGE_AUDIO_CTRL_LEN;
27722 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27723 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27724 		ssc = sd_ssc_init(un);
27725 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27726 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27727 		    SD_PATH_STANDARD);
27728 		sd_ssc_fini(ssc);
27729 
27730 		if (rval != 0) {
27731 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27732 			    "sr_volume_ctrl: Mode Sense Failed\n");
27733 			kmem_free(sense, sense_buflen);
27734 			kmem_free(select, select_buflen);
27735 			return (rval);
27736 		}
27737 		sense_mhp = (struct mode_header_grp2 *)sense;
27738 		select_mhp = (struct mode_header_grp2 *)select;
27739 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
27740 		    sense_mhp->bdesc_length_lo;
27741 		if (bd_len > MODE_BLK_DESC_LENGTH) {
27742 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27743 			    "sr_volume_ctrl: Mode Sense returned invalid "
27744 			    "block descriptor length\n");
27745 			kmem_free(sense, sense_buflen);
27746 			kmem_free(select, select_buflen);
27747 			return (EIO);
27748 		}
27749 		sense_page = (uchar_t *)
27750 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27751 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
27752 		select_mhp->length_msb = 0;
27753 		select_mhp->length_lsb = 0;
27754 		select_mhp->bdesc_length_hi = 0;
27755 		select_mhp->bdesc_length_lo = 0;
27756 	} else {
27757 		struct mode_header		*sense_mhp, *select_mhp;
27758 
27759 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27760 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27761 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27762 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27763 		ssc = sd_ssc_init(un);
27764 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27765 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27766 		    SD_PATH_STANDARD);
27767 		sd_ssc_fini(ssc);
27768 
27769 		if (rval != 0) {
27770 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27771 			    "sr_volume_ctrl: Mode Sense Failed\n");
27772 			kmem_free(sense, sense_buflen);
27773 			kmem_free(select, select_buflen);
27774 			return (rval);
27775 		}
27776 		sense_mhp  = (struct mode_header *)sense;
27777 		select_mhp = (struct mode_header *)select;
27778 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
27779 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27780 			    "sr_volume_ctrl: Mode Sense returned invalid "
27781 			    "block descriptor length\n");
27782 			kmem_free(sense, sense_buflen);
27783 			kmem_free(select, select_buflen);
27784 			return (EIO);
27785 		}
27786 		sense_page = (uchar_t *)
27787 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27788 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
27789 		select_mhp->length = 0;
27790 		select_mhp->bdesc_length = 0;
27791 	}
27792 	/*
27793 	 * Note: An audio control data structure could be created and overlayed
27794 	 * on the following in place of the array indexing method implemented.
27795 	 */
27796 
27797 	/* Build the select data for the user volume data */
27798 	select_page[0] = MODEPAGE_AUDIO_CTRL;
27799 	select_page[1] = 0xE;
27800 	/* Set the immediate bit */
27801 	select_page[2] = 0x04;
27802 	/* Zero out reserved fields */
27803 	select_page[3] = 0x00;
27804 	select_page[4] = 0x00;
27805 	/* Return sense data for fields not to be modified */
27806 	select_page[5] = sense_page[5];
27807 	select_page[6] = sense_page[6];
27808 	select_page[7] = sense_page[7];
27809 	/* Set the user specified volume levels for channel 0 and 1 */
27810 	select_page[8] = 0x01;
27811 	select_page[9] = vol->channel0;
27812 	select_page[10] = 0x02;
27813 	select_page[11] = vol->channel1;
27814 	/* Channel 2 and 3 are currently unsupported so return the sense data */
27815 	select_page[12] = sense_page[12];
27816 	select_page[13] = sense_page[13];
27817 	select_page[14] = sense_page[14];
27818 	select_page[15] = sense_page[15];
27819 
27820 	ssc = sd_ssc_init(un);
27821 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27822 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
27823 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27824 	} else {
27825 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27826 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27827 	}
27828 	sd_ssc_fini(ssc);
27829 
27830 	kmem_free(sense, sense_buflen);
27831 	kmem_free(select, select_buflen);
27832 	return (rval);
27833 }
27834 
27835 
27836 /*
27837  *    Function: sr_read_sony_session_offset()
27838  *
27839  * Description: This routine is the driver entry point for handling CD-ROM
27840  *		ioctl requests for session offset information. (CDROMREADOFFSET)
27841  *		The address of the first track in the last session of a
27842  *		multi-session CD-ROM is returned
27843  *
27844  *		Note: This routine uses a vendor specific key value in the
27845  *		command control field without implementing any vendor check here
27846  *		or in the ioctl routine.
27847  *
27848  *   Arguments: dev	- the device 'dev_t'
27849  *		data	- pointer to an int to hold the requested address
27850  *		flag	- this argument is a pass through to ddi_copyxxx()
27851  *			  directly from the mode argument of ioctl().
27852  *
27853  * Return Code: the code returned by sd_send_scsi_cmd()
27854  *		EFAULT if ddi_copyxxx() fails
27855  *		ENXIO if fail ddi_get_soft_state
27856  *		EINVAL if data pointer is NULL
27857  */
27858 
27859 static int
27860 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
27861 {
27862 	struct sd_lun		*un;
27863 	struct uscsi_cmd	*com;
27864 	caddr_t			buffer;
27865 	char			cdb[CDB_GROUP1];
27866 	int			session_offset = 0;
27867 	int			rval;
27868 
27869 	if (data == NULL) {
27870 		return (EINVAL);
27871 	}
27872 
27873 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27874 	    (un->un_state == SD_STATE_OFFLINE)) {
27875 		return (ENXIO);
27876 	}
27877 
27878 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
27879 	bzero(cdb, CDB_GROUP1);
27880 	cdb[0] = SCMD_READ_TOC;
27881 	/*
27882 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27883 	 * (4 byte TOC response header + 8 byte response data)
27884 	 */
27885 	cdb[8] = SONY_SESSION_OFFSET_LEN;
27886 	/* Byte 9 is the control byte. A vendor specific value is used */
27887 	cdb[9] = SONY_SESSION_OFFSET_KEY;
27888 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27889 	com->uscsi_cdb = cdb;
27890 	com->uscsi_cdblen = CDB_GROUP1;
27891 	com->uscsi_bufaddr = buffer;
27892 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
27893 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27894 
27895 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27896 	    SD_PATH_STANDARD);
27897 	if (rval != 0) {
27898 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
27899 		kmem_free(com, sizeof (*com));
27900 		return (rval);
27901 	}
27902 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
27903 		session_offset =
27904 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27905 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27906 		/*
27907 		 * Offset returned offset in current lbasize block's. Convert to
27908 		 * 2k block's to return to the user
27909 		 */
27910 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
27911 			session_offset >>= 2;
27912 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
27913 			session_offset >>= 1;
27914 		}
27915 	}
27916 
27917 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
27918 		rval = EFAULT;
27919 	}
27920 
27921 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
27922 	kmem_free(com, sizeof (*com));
27923 	return (rval);
27924 }
27925 
27926 
27927 /*
27928  *    Function: sd_wm_cache_constructor()
27929  *
27930  * Description: Cache Constructor for the wmap cache for the read/modify/write
27931  * 		devices.
27932  *
27933  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
27934  *		un	- sd_lun structure for the device.
27935  *		flag	- the km flags passed to constructor
27936  *
27937  * Return Code: 0 on success.
27938  *		-1 on failure.
27939  */
27940 
27941 /*ARGSUSED*/
27942 static int
27943 sd_wm_cache_constructor(void *wm, void *un, int flags)
27944 {
27945 	bzero(wm, sizeof (struct sd_w_map));
27946 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
27947 	return (0);
27948 }
27949 
27950 
27951 /*
27952  *    Function: sd_wm_cache_destructor()
27953  *
27954  * Description: Cache destructor for the wmap cache for the read/modify/write
27955  * 		devices.
27956  *
27957  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
27958  *		un	- sd_lun structure for the device.
27959  */
27960 /*ARGSUSED*/
27961 static void
27962 sd_wm_cache_destructor(void *wm, void *un)
27963 {
27964 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
27965 }
27966 
27967 
27968 /*
27969  *    Function: sd_range_lock()
27970  *
27971  * Description: Lock the range of blocks specified as parameter to ensure
27972  *		that read, modify write is atomic and no other i/o writes
27973  *		to the same location. The range is specified in terms
27974  *		of start and end blocks. Block numbers are the actual
27975  *		media block numbers and not system.
27976  *
27977  *   Arguments: un	- sd_lun structure for the device.
27978  *		startb - The starting block number
27979  *		endb - The end block number
27980  *		typ - type of i/o - simple/read_modify_write
27981  *
27982  * Return Code: wm  - pointer to the wmap structure.
27983  *
27984  *     Context: This routine can sleep.
27985  */
27986 
27987 static struct sd_w_map *
27988 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
27989 {
27990 	struct sd_w_map *wmp = NULL;
27991 	struct sd_w_map *sl_wmp = NULL;
27992 	struct sd_w_map *tmp_wmp;
27993 	wm_state state = SD_WM_CHK_LIST;
27994 
27995 
27996 	ASSERT(un != NULL);
27997 	ASSERT(!mutex_owned(SD_MUTEX(un)));
27998 
27999 	mutex_enter(SD_MUTEX(un));
28000 
28001 	while (state != SD_WM_DONE) {
28002 
28003 		switch (state) {
28004 		case SD_WM_CHK_LIST:
28005 			/*
28006 			 * This is the starting state. Check the wmap list
28007 			 * to see if the range is currently available.
28008 			 */
28009 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28010 				/*
28011 				 * If this is a simple write and no rmw
28012 				 * i/o is pending then try to lock the
28013 				 * range as the range should be available.
28014 				 */
28015 				state = SD_WM_LOCK_RANGE;
28016 			} else {
28017 				tmp_wmp = sd_get_range(un, startb, endb);
28018 				if (tmp_wmp != NULL) {
28019 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28020 						/*
28021 						 * Should not keep onlist wmps
28022 						 * while waiting this macro
28023 						 * will also do wmp = NULL;
28024 						 */
28025 						FREE_ONLIST_WMAP(un, wmp);
28026 					}
28027 					/*
28028 					 * sl_wmp is the wmap on which wait
28029 					 * is done, since the tmp_wmp points
28030 					 * to the inuse wmap, set sl_wmp to
28031 					 * tmp_wmp and change the state to sleep
28032 					 */
28033 					sl_wmp = tmp_wmp;
28034 					state = SD_WM_WAIT_MAP;
28035 				} else {
28036 					state = SD_WM_LOCK_RANGE;
28037 				}
28038 
28039 			}
28040 			break;
28041 
28042 		case SD_WM_LOCK_RANGE:
28043 			ASSERT(un->un_wm_cache);
28044 			/*
28045 			 * The range need to be locked, try to get a wmap.
28046 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28047 			 * if possible as we will have to release the sd mutex
28048 			 * if we have to sleep.
28049 			 */
28050 			if (wmp == NULL)
28051 				wmp = kmem_cache_alloc(un->un_wm_cache,
28052 				    KM_NOSLEEP);
28053 			if (wmp == NULL) {
28054 				mutex_exit(SD_MUTEX(un));
28055 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28056 				    (sd_lun::un_wm_cache))
28057 				wmp = kmem_cache_alloc(un->un_wm_cache,
28058 				    KM_SLEEP);
28059 				mutex_enter(SD_MUTEX(un));
28060 				/*
28061 				 * we released the mutex so recheck and go to
28062 				 * check list state.
28063 				 */
28064 				state = SD_WM_CHK_LIST;
28065 			} else {
28066 				/*
28067 				 * We exit out of state machine since we
28068 				 * have the wmap. Do the housekeeping first.
28069 				 * place the wmap on the wmap list if it is not
28070 				 * on it already and then set the state to done.
28071 				 */
28072 				wmp->wm_start = startb;
28073 				wmp->wm_end = endb;
28074 				wmp->wm_flags = typ | SD_WM_BUSY;
28075 				if (typ & SD_WTYPE_RMW) {
28076 					un->un_rmw_count++;
28077 				}
28078 				/*
28079 				 * If not already on the list then link
28080 				 */
28081 				if (!ONLIST(un, wmp)) {
28082 					wmp->wm_next = un->un_wm;
28083 					wmp->wm_prev = NULL;
28084 					if (wmp->wm_next)
28085 						wmp->wm_next->wm_prev = wmp;
28086 					un->un_wm = wmp;
28087 				}
28088 				state = SD_WM_DONE;
28089 			}
28090 			break;
28091 
28092 		case SD_WM_WAIT_MAP:
28093 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28094 			/*
28095 			 * Wait is done on sl_wmp, which is set in the
28096 			 * check_list state.
28097 			 */
28098 			sl_wmp->wm_wanted_count++;
28099 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28100 			sl_wmp->wm_wanted_count--;
28101 			/*
28102 			 * We can reuse the memory from the completed sl_wmp
28103 			 * lock range for our new lock, but only if noone is
28104 			 * waiting for it.
28105 			 */
28106 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
28107 			if (sl_wmp->wm_wanted_count == 0) {
28108 				if (wmp != NULL)
28109 					CHK_N_FREEWMP(un, wmp);
28110 				wmp = sl_wmp;
28111 			}
28112 			sl_wmp = NULL;
28113 			/*
28114 			 * After waking up, need to recheck for availability of
28115 			 * range.
28116 			 */
28117 			state = SD_WM_CHK_LIST;
28118 			break;
28119 
28120 		default:
28121 			panic("sd_range_lock: "
28122 			    "Unknown state %d in sd_range_lock", state);
28123 			/*NOTREACHED*/
28124 		} /* switch(state) */
28125 
28126 	} /* while(state != SD_WM_DONE) */
28127 
28128 	mutex_exit(SD_MUTEX(un));
28129 
28130 	ASSERT(wmp != NULL);
28131 
28132 	return (wmp);
28133 }
28134 
28135 
28136 /*
28137  *    Function: sd_get_range()
28138  *
28139  * Description: Find if there any overlapping I/O to this one
28140  *		Returns the write-map of 1st such I/O, NULL otherwise.
28141  *
28142  *   Arguments: un	- sd_lun structure for the device.
28143  *		startb - The starting block number
28144  *		endb - The end block number
28145  *
28146  * Return Code: wm  - pointer to the wmap structure.
28147  */
28148 
28149 static struct sd_w_map *
28150 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28151 {
28152 	struct sd_w_map *wmp;
28153 
28154 	ASSERT(un != NULL);
28155 
28156 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28157 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28158 			continue;
28159 		}
28160 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28161 			break;
28162 		}
28163 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28164 			break;
28165 		}
28166 	}
28167 
28168 	return (wmp);
28169 }
28170 
28171 
28172 /*
28173  *    Function: sd_free_inlist_wmap()
28174  *
28175  * Description: Unlink and free a write map struct.
28176  *
28177  *   Arguments: un      - sd_lun structure for the device.
28178  *		wmp	- sd_w_map which needs to be unlinked.
28179  */
28180 
28181 static void
28182 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28183 {
28184 	ASSERT(un != NULL);
28185 
28186 	if (un->un_wm == wmp) {
28187 		un->un_wm = wmp->wm_next;
28188 	} else {
28189 		wmp->wm_prev->wm_next = wmp->wm_next;
28190 	}
28191 
28192 	if (wmp->wm_next) {
28193 		wmp->wm_next->wm_prev = wmp->wm_prev;
28194 	}
28195 
28196 	wmp->wm_next = wmp->wm_prev = NULL;
28197 
28198 	kmem_cache_free(un->un_wm_cache, wmp);
28199 }
28200 
28201 
28202 /*
28203  *    Function: sd_range_unlock()
28204  *
28205  * Description: Unlock the range locked by wm.
28206  *		Free write map if nobody else is waiting on it.
28207  *
28208  *   Arguments: un      - sd_lun structure for the device.
28209  *              wmp     - sd_w_map which needs to be unlinked.
28210  */
28211 
28212 static void
28213 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
28214 {
28215 	ASSERT(un != NULL);
28216 	ASSERT(wm != NULL);
28217 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28218 
28219 	mutex_enter(SD_MUTEX(un));
28220 
28221 	if (wm->wm_flags & SD_WTYPE_RMW) {
28222 		un->un_rmw_count--;
28223 	}
28224 
28225 	if (wm->wm_wanted_count) {
28226 		wm->wm_flags = 0;
28227 		/*
28228 		 * Broadcast that the wmap is available now.
28229 		 */
28230 		cv_broadcast(&wm->wm_avail);
28231 	} else {
28232 		/*
28233 		 * If no one is waiting on the map, it should be free'ed.
28234 		 */
28235 		sd_free_inlist_wmap(un, wm);
28236 	}
28237 
28238 	mutex_exit(SD_MUTEX(un));
28239 }
28240 
28241 
28242 /*
28243  *    Function: sd_read_modify_write_task
28244  *
28245  * Description: Called from a taskq thread to initiate the write phase of
28246  *		a read-modify-write request.  This is used for targets where
28247  *		un->un_sys_blocksize != un->un_tgt_blocksize.
28248  *
28249  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
28250  *
28251  *     Context: Called under taskq thread context.
28252  */
28253 
28254 static void
28255 sd_read_modify_write_task(void *arg)
28256 {
28257 	struct sd_mapblocksize_info	*bsp;
28258 	struct buf	*bp;
28259 	struct sd_xbuf	*xp;
28260 	struct sd_lun	*un;
28261 
28262 	bp = arg;	/* The bp is given in arg */
28263 	ASSERT(bp != NULL);
28264 
28265 	/* Get the pointer to the layer-private data struct */
28266 	xp = SD_GET_XBUF(bp);
28267 	ASSERT(xp != NULL);
28268 	bsp = xp->xb_private;
28269 	ASSERT(bsp != NULL);
28270 
28271 	un = SD_GET_UN(bp);
28272 	ASSERT(un != NULL);
28273 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28274 
28275 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28276 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
28277 
28278 	/*
28279 	 * This is the write phase of a read-modify-write request, called
28280 	 * under the context of a taskq thread in response to the completion
28281 	 * of the read portion of the rmw request completing under interrupt
28282 	 * context. The write request must be sent from here down the iostart
28283 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
28284 	 * we use the layer index saved in the layer-private data area.
28285 	 */
28286 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
28287 
28288 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28289 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
28290 }
28291 
28292 
28293 /*
28294  *    Function: sddump_do_read_of_rmw()
28295  *
28296  * Description: This routine will be called from sddump, If sddump is called
28297  *		with an I/O which not aligned on device blocksize boundary
28298  *		then the write has to be converted to read-modify-write.
28299  *		Do the read part here in order to keep sddump simple.
28300  *		Note - That the sd_mutex is held across the call to this
28301  *		routine.
28302  *
28303  *   Arguments: un	- sd_lun
28304  *		blkno	- block number in terms of media block size.
28305  *		nblk	- number of blocks.
28306  *		bpp	- pointer to pointer to the buf structure. On return
28307  *			from this function, *bpp points to the valid buffer
28308  *			to which the write has to be done.
28309  *
28310  * Return Code: 0 for success or errno-type return code
28311  */
28312 
28313 static int
28314 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
28315 	struct buf **bpp)
28316 {
28317 	int err;
28318 	int i;
28319 	int rval;
28320 	struct buf *bp;
28321 	struct scsi_pkt *pkt = NULL;
28322 	uint32_t target_blocksize;
28323 
28324 	ASSERT(un != NULL);
28325 	ASSERT(mutex_owned(SD_MUTEX(un)));
28326 
28327 	target_blocksize = un->un_tgt_blocksize;
28328 
28329 	mutex_exit(SD_MUTEX(un));
28330 
28331 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
28332 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
28333 	if (bp == NULL) {
28334 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28335 		    "no resources for dumping; giving up");
28336 		err = ENOMEM;
28337 		goto done;
28338 	}
28339 
28340 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
28341 	    blkno, nblk);
28342 	if (rval != 0) {
28343 		scsi_free_consistent_buf(bp);
28344 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28345 		    "no resources for dumping; giving up");
28346 		err = ENOMEM;
28347 		goto done;
28348 	}
28349 
28350 	pkt->pkt_flags |= FLAG_NOINTR;
28351 
28352 	err = EIO;
28353 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
28354 
28355 		/*
28356 		 * Scsi_poll returns 0 (success) if the command completes and
28357 		 * the status block is STATUS_GOOD.  We should only check
28358 		 * errors if this condition is not true.  Even then we should
28359 		 * send our own request sense packet only if we have a check
28360 		 * condition and auto request sense has not been performed by
28361 		 * the hba.
28362 		 */
28363 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
28364 
28365 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
28366 			err = 0;
28367 			break;
28368 		}
28369 
28370 		/*
28371 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
28372 		 * no need to read RQS data.
28373 		 */
28374 		if (pkt->pkt_reason == CMD_DEV_GONE) {
28375 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28376 			    "Error while dumping state with rmw..."
28377 			    "Device is gone\n");
28378 			break;
28379 		}
28380 
28381 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
28382 			SD_INFO(SD_LOG_DUMP, un,
28383 			    "sddump: read failed with CHECK, try # %d\n", i);
28384 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
28385 				(void) sd_send_polled_RQS(un);
28386 			}
28387 
28388 			continue;
28389 		}
28390 
28391 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
28392 			int reset_retval = 0;
28393 
28394 			SD_INFO(SD_LOG_DUMP, un,
28395 			    "sddump: read failed with BUSY, try # %d\n", i);
28396 
28397 			if (un->un_f_lun_reset_enabled == TRUE) {
28398 				reset_retval = scsi_reset(SD_ADDRESS(un),
28399 				    RESET_LUN);
28400 			}
28401 			if (reset_retval == 0) {
28402 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
28403 			}
28404 			(void) sd_send_polled_RQS(un);
28405 
28406 		} else {
28407 			SD_INFO(SD_LOG_DUMP, un,
28408 			    "sddump: read failed with 0x%x, try # %d\n",
28409 			    SD_GET_PKT_STATUS(pkt), i);
28410 			mutex_enter(SD_MUTEX(un));
28411 			sd_reset_target(un, pkt);
28412 			mutex_exit(SD_MUTEX(un));
28413 		}
28414 
28415 		/*
28416 		 * If we are not getting anywhere with lun/target resets,
28417 		 * let's reset the bus.
28418 		 */
28419 		if (i > SD_NDUMP_RETRIES/2) {
28420 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
28421 			(void) sd_send_polled_RQS(un);
28422 		}
28423 
28424 	}
28425 	scsi_destroy_pkt(pkt);
28426 
28427 	if (err != 0) {
28428 		scsi_free_consistent_buf(bp);
28429 		*bpp = NULL;
28430 	} else {
28431 		*bpp = bp;
28432 	}
28433 
28434 done:
28435 	mutex_enter(SD_MUTEX(un));
28436 	return (err);
28437 }
28438 
28439 
28440 /*
28441  *    Function: sd_failfast_flushq
28442  *
28443  * Description: Take all bp's on the wait queue that have B_FAILFAST set
28444  *		in b_flags and move them onto the failfast queue, then kick
28445  *		off a thread to return all bp's on the failfast queue to
28446  *		their owners with an error set.
28447  *
28448  *   Arguments: un - pointer to the soft state struct for the instance.
28449  *
28450  *     Context: may execute in interrupt context.
28451  */
28452 
28453 static void
28454 sd_failfast_flushq(struct sd_lun *un)
28455 {
28456 	struct buf *bp;
28457 	struct buf *next_waitq_bp;
28458 	struct buf *prev_waitq_bp = NULL;
28459 
28460 	ASSERT(un != NULL);
28461 	ASSERT(mutex_owned(SD_MUTEX(un)));
28462 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
28463 	ASSERT(un->un_failfast_bp == NULL);
28464 
28465 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28466 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
28467 
28468 	/*
28469 	 * Check if we should flush all bufs when entering failfast state, or
28470 	 * just those with B_FAILFAST set.
28471 	 */
28472 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
28473 		/*
28474 		 * Move *all* bp's on the wait queue to the failfast flush
28475 		 * queue, including those that do NOT have B_FAILFAST set.
28476 		 */
28477 		if (un->un_failfast_headp == NULL) {
28478 			ASSERT(un->un_failfast_tailp == NULL);
28479 			un->un_failfast_headp = un->un_waitq_headp;
28480 		} else {
28481 			ASSERT(un->un_failfast_tailp != NULL);
28482 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
28483 		}
28484 
28485 		un->un_failfast_tailp = un->un_waitq_tailp;
28486 
28487 		/* update kstat for each bp moved out of the waitq */
28488 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
28489 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28490 		}
28491 
28492 		/* empty the waitq */
28493 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
28494 
28495 	} else {
28496 		/*
28497 		 * Go thru the wait queue, pick off all entries with
28498 		 * B_FAILFAST set, and move these onto the failfast queue.
28499 		 */
28500 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
28501 			/*
28502 			 * Save the pointer to the next bp on the wait queue,
28503 			 * so we get to it on the next iteration of this loop.
28504 			 */
28505 			next_waitq_bp = bp->av_forw;
28506 
28507 			/*
28508 			 * If this bp from the wait queue does NOT have
28509 			 * B_FAILFAST set, just move on to the next element
28510 			 * in the wait queue. Note, this is the only place
28511 			 * where it is correct to set prev_waitq_bp.
28512 			 */
28513 			if ((bp->b_flags & B_FAILFAST) == 0) {
28514 				prev_waitq_bp = bp;
28515 				continue;
28516 			}
28517 
28518 			/*
28519 			 * Remove the bp from the wait queue.
28520 			 */
28521 			if (bp == un->un_waitq_headp) {
28522 				/* The bp is the first element of the waitq. */
28523 				un->un_waitq_headp = next_waitq_bp;
28524 				if (un->un_waitq_headp == NULL) {
28525 					/* The wait queue is now empty */
28526 					un->un_waitq_tailp = NULL;
28527 				}
28528 			} else {
28529 				/*
28530 				 * The bp is either somewhere in the middle
28531 				 * or at the end of the wait queue.
28532 				 */
28533 				ASSERT(un->un_waitq_headp != NULL);
28534 				ASSERT(prev_waitq_bp != NULL);
28535 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
28536 				    == 0);
28537 				if (bp == un->un_waitq_tailp) {
28538 					/* bp is the last entry on the waitq. */
28539 					ASSERT(next_waitq_bp == NULL);
28540 					un->un_waitq_tailp = prev_waitq_bp;
28541 				}
28542 				prev_waitq_bp->av_forw = next_waitq_bp;
28543 			}
28544 			bp->av_forw = NULL;
28545 
28546 			/*
28547 			 * update kstat since the bp is moved out of
28548 			 * the waitq
28549 			 */
28550 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28551 
28552 			/*
28553 			 * Now put the bp onto the failfast queue.
28554 			 */
28555 			if (un->un_failfast_headp == NULL) {
28556 				/* failfast queue is currently empty */
28557 				ASSERT(un->un_failfast_tailp == NULL);
28558 				un->un_failfast_headp =
28559 				    un->un_failfast_tailp = bp;
28560 			} else {
28561 				/* Add the bp to the end of the failfast q */
28562 				ASSERT(un->un_failfast_tailp != NULL);
28563 				ASSERT(un->un_failfast_tailp->b_flags &
28564 				    B_FAILFAST);
28565 				un->un_failfast_tailp->av_forw = bp;
28566 				un->un_failfast_tailp = bp;
28567 			}
28568 		}
28569 	}
28570 
28571 	/*
28572 	 * Now return all bp's on the failfast queue to their owners.
28573 	 */
28574 	while ((bp = un->un_failfast_headp) != NULL) {
28575 
28576 		un->un_failfast_headp = bp->av_forw;
28577 		if (un->un_failfast_headp == NULL) {
28578 			un->un_failfast_tailp = NULL;
28579 		}
28580 
28581 		/*
28582 		 * We want to return the bp with a failure error code, but
28583 		 * we do not want a call to sd_start_cmds() to occur here,
28584 		 * so use sd_return_failed_command_no_restart() instead of
28585 		 * sd_return_failed_command().
28586 		 */
28587 		sd_return_failed_command_no_restart(un, bp, EIO);
28588 	}
28589 
28590 	/* Flush the xbuf queues if required. */
28591 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
28592 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
28593 	}
28594 
28595 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28596 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
28597 }
28598 
28599 
28600 /*
28601  *    Function: sd_failfast_flushq_callback
28602  *
28603  * Description: Return TRUE if the given bp meets the criteria for failfast
28604  *		flushing. Used with ddi_xbuf_flushq(9F).
28605  *
28606  *   Arguments: bp - ptr to buf struct to be examined.
28607  *
28608  *     Context: Any
28609  */
28610 
28611 static int
28612 sd_failfast_flushq_callback(struct buf *bp)
28613 {
28614 	/*
28615 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
28616 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
28617 	 */
28618 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
28619 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
28620 }
28621 
28622 
28623 
28624 /*
28625  * Function: sd_setup_next_xfer
28626  *
28627  * Description: Prepare next I/O operation using DMA_PARTIAL
28628  *
28629  */
28630 
28631 static int
28632 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
28633     struct scsi_pkt *pkt, struct sd_xbuf *xp)
28634 {
28635 	ssize_t	num_blks_not_xfered;
28636 	daddr_t	strt_blk_num;
28637 	ssize_t	bytes_not_xfered;
28638 	int	rval;
28639 
28640 	ASSERT(pkt->pkt_resid == 0);
28641 
28642 	/*
28643 	 * Calculate next block number and amount to be transferred.
28644 	 *
28645 	 * How much data NOT transfered to the HBA yet.
28646 	 */
28647 	bytes_not_xfered = xp->xb_dma_resid;
28648 
28649 	/*
28650 	 * figure how many blocks NOT transfered to the HBA yet.
28651 	 */
28652 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
28653 
28654 	/*
28655 	 * set starting block number to the end of what WAS transfered.
28656 	 */
28657 	strt_blk_num = xp->xb_blkno +
28658 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
28659 
28660 	/*
28661 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
28662 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
28663 	 * the disk mutex here.
28664 	 */
28665 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
28666 	    strt_blk_num, num_blks_not_xfered);
28667 
28668 	if (rval == 0) {
28669 
28670 		/*
28671 		 * Success.
28672 		 *
28673 		 * Adjust things if there are still more blocks to be
28674 		 * transfered.
28675 		 */
28676 		xp->xb_dma_resid = pkt->pkt_resid;
28677 		pkt->pkt_resid = 0;
28678 
28679 		return (1);
28680 	}
28681 
28682 	/*
28683 	 * There's really only one possible return value from
28684 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
28685 	 * returns NULL.
28686 	 */
28687 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
28688 
28689 	bp->b_resid = bp->b_bcount;
28690 	bp->b_flags |= B_ERROR;
28691 
28692 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28693 	    "Error setting up next portion of DMA transfer\n");
28694 
28695 	return (0);
28696 }
28697 
28698 /*
28699  *    Function: sd_panic_for_res_conflict
28700  *
28701  * Description: Call panic with a string formatted with "Reservation Conflict"
28702  *		and a human readable identifier indicating the SD instance
28703  *		that experienced the reservation conflict.
28704  *
28705  *   Arguments: un - pointer to the soft state struct for the instance.
28706  *
28707  *     Context: may execute in interrupt context.
28708  */
28709 
28710 #define	SD_RESV_CONFLICT_FMT_LEN 40
28711 void
28712 sd_panic_for_res_conflict(struct sd_lun *un)
28713 {
28714 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
28715 	char path_str[MAXPATHLEN];
28716 
28717 	(void) snprintf(panic_str, sizeof (panic_str),
28718 	    "Reservation Conflict\nDisk: %s",
28719 	    ddi_pathname(SD_DEVINFO(un), path_str));
28720 
28721 	panic(panic_str);
28722 }
28723 
28724 /*
28725  * Note: The following sd_faultinjection_ioctl( ) routines implement
28726  * driver support for handling fault injection for error analysis
28727  * causing faults in multiple layers of the driver.
28728  *
28729  */
28730 
28731 #ifdef SD_FAULT_INJECTION
28732 static uint_t   sd_fault_injection_on = 0;
28733 
28734 /*
28735  *    Function: sd_faultinjection_ioctl()
28736  *
28737  * Description: This routine is the driver entry point for handling
28738  *              faultinjection ioctls to inject errors into the
28739  *              layer model
28740  *
28741  *   Arguments: cmd	- the ioctl cmd received
28742  *		arg	- the arguments from user and returns
28743  */
28744 
28745 static void
28746 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
28747 
28748 	uint_t i = 0;
28749 	uint_t rval;
28750 
28751 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
28752 
28753 	mutex_enter(SD_MUTEX(un));
28754 
28755 	switch (cmd) {
28756 	case SDIOCRUN:
28757 		/* Allow pushed faults to be injected */
28758 		SD_INFO(SD_LOG_SDTEST, un,
28759 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
28760 
28761 		sd_fault_injection_on = 1;
28762 
28763 		SD_INFO(SD_LOG_IOERR, un,
28764 		    "sd_faultinjection_ioctl: run finished\n");
28765 		break;
28766 
28767 	case SDIOCSTART:
28768 		/* Start Injection Session */
28769 		SD_INFO(SD_LOG_SDTEST, un,
28770 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
28771 
28772 		sd_fault_injection_on = 0;
28773 		un->sd_injection_mask = 0xFFFFFFFF;
28774 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28775 			un->sd_fi_fifo_pkt[i] = NULL;
28776 			un->sd_fi_fifo_xb[i] = NULL;
28777 			un->sd_fi_fifo_un[i] = NULL;
28778 			un->sd_fi_fifo_arq[i] = NULL;
28779 		}
28780 		un->sd_fi_fifo_start = 0;
28781 		un->sd_fi_fifo_end = 0;
28782 
28783 		mutex_enter(&(un->un_fi_mutex));
28784 		un->sd_fi_log[0] = '\0';
28785 		un->sd_fi_buf_len = 0;
28786 		mutex_exit(&(un->un_fi_mutex));
28787 
28788 		SD_INFO(SD_LOG_IOERR, un,
28789 		    "sd_faultinjection_ioctl: start finished\n");
28790 		break;
28791 
28792 	case SDIOCSTOP:
28793 		/* Stop Injection Session */
28794 		SD_INFO(SD_LOG_SDTEST, un,
28795 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
28796 		sd_fault_injection_on = 0;
28797 		un->sd_injection_mask = 0x0;
28798 
28799 		/* Empty stray or unuseds structs from fifo */
28800 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28801 			if (un->sd_fi_fifo_pkt[i] != NULL) {
28802 				kmem_free(un->sd_fi_fifo_pkt[i],
28803 				    sizeof (struct sd_fi_pkt));
28804 			}
28805 			if (un->sd_fi_fifo_xb[i] != NULL) {
28806 				kmem_free(un->sd_fi_fifo_xb[i],
28807 				    sizeof (struct sd_fi_xb));
28808 			}
28809 			if (un->sd_fi_fifo_un[i] != NULL) {
28810 				kmem_free(un->sd_fi_fifo_un[i],
28811 				    sizeof (struct sd_fi_un));
28812 			}
28813 			if (un->sd_fi_fifo_arq[i] != NULL) {
28814 				kmem_free(un->sd_fi_fifo_arq[i],
28815 				    sizeof (struct sd_fi_arq));
28816 			}
28817 			un->sd_fi_fifo_pkt[i] = NULL;
28818 			un->sd_fi_fifo_un[i] = NULL;
28819 			un->sd_fi_fifo_xb[i] = NULL;
28820 			un->sd_fi_fifo_arq[i] = NULL;
28821 		}
28822 		un->sd_fi_fifo_start = 0;
28823 		un->sd_fi_fifo_end = 0;
28824 
28825 		SD_INFO(SD_LOG_IOERR, un,
28826 		    "sd_faultinjection_ioctl: stop finished\n");
28827 		break;
28828 
28829 	case SDIOCINSERTPKT:
28830 		/* Store a packet struct to be pushed onto fifo */
28831 		SD_INFO(SD_LOG_SDTEST, un,
28832 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
28833 
28834 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28835 
28836 		sd_fault_injection_on = 0;
28837 
28838 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
28839 		if (un->sd_fi_fifo_pkt[i] != NULL) {
28840 			kmem_free(un->sd_fi_fifo_pkt[i],
28841 			    sizeof (struct sd_fi_pkt));
28842 		}
28843 		if (arg != NULL) {
28844 			un->sd_fi_fifo_pkt[i] =
28845 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
28846 			if (un->sd_fi_fifo_pkt[i] == NULL) {
28847 				/* Alloc failed don't store anything */
28848 				break;
28849 			}
28850 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
28851 			    sizeof (struct sd_fi_pkt), 0);
28852 			if (rval == -1) {
28853 				kmem_free(un->sd_fi_fifo_pkt[i],
28854 				    sizeof (struct sd_fi_pkt));
28855 				un->sd_fi_fifo_pkt[i] = NULL;
28856 			}
28857 		} else {
28858 			SD_INFO(SD_LOG_IOERR, un,
28859 			    "sd_faultinjection_ioctl: pkt null\n");
28860 		}
28861 		break;
28862 
28863 	case SDIOCINSERTXB:
28864 		/* Store a xb struct to be pushed onto fifo */
28865 		SD_INFO(SD_LOG_SDTEST, un,
28866 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
28867 
28868 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28869 
28870 		sd_fault_injection_on = 0;
28871 
28872 		if (un->sd_fi_fifo_xb[i] != NULL) {
28873 			kmem_free(un->sd_fi_fifo_xb[i],
28874 			    sizeof (struct sd_fi_xb));
28875 			un->sd_fi_fifo_xb[i] = NULL;
28876 		}
28877 		if (arg != NULL) {
28878 			un->sd_fi_fifo_xb[i] =
28879 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
28880 			if (un->sd_fi_fifo_xb[i] == NULL) {
28881 				/* Alloc failed don't store anything */
28882 				break;
28883 			}
28884 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
28885 			    sizeof (struct sd_fi_xb), 0);
28886 
28887 			if (rval == -1) {
28888 				kmem_free(un->sd_fi_fifo_xb[i],
28889 				    sizeof (struct sd_fi_xb));
28890 				un->sd_fi_fifo_xb[i] = NULL;
28891 			}
28892 		} else {
28893 			SD_INFO(SD_LOG_IOERR, un,
28894 			    "sd_faultinjection_ioctl: xb null\n");
28895 		}
28896 		break;
28897 
28898 	case SDIOCINSERTUN:
28899 		/* Store a un struct to be pushed onto fifo */
28900 		SD_INFO(SD_LOG_SDTEST, un,
28901 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
28902 
28903 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28904 
28905 		sd_fault_injection_on = 0;
28906 
28907 		if (un->sd_fi_fifo_un[i] != NULL) {
28908 			kmem_free(un->sd_fi_fifo_un[i],
28909 			    sizeof (struct sd_fi_un));
28910 			un->sd_fi_fifo_un[i] = NULL;
28911 		}
28912 		if (arg != NULL) {
28913 			un->sd_fi_fifo_un[i] =
28914 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
28915 			if (un->sd_fi_fifo_un[i] == NULL) {
28916 				/* Alloc failed don't store anything */
28917 				break;
28918 			}
28919 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
28920 			    sizeof (struct sd_fi_un), 0);
28921 			if (rval == -1) {
28922 				kmem_free(un->sd_fi_fifo_un[i],
28923 				    sizeof (struct sd_fi_un));
28924 				un->sd_fi_fifo_un[i] = NULL;
28925 			}
28926 
28927 		} else {
28928 			SD_INFO(SD_LOG_IOERR, un,
28929 			    "sd_faultinjection_ioctl: un null\n");
28930 		}
28931 
28932 		break;
28933 
28934 	case SDIOCINSERTARQ:
28935 		/* Store a arq struct to be pushed onto fifo */
28936 		SD_INFO(SD_LOG_SDTEST, un,
28937 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
28938 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28939 
28940 		sd_fault_injection_on = 0;
28941 
28942 		if (un->sd_fi_fifo_arq[i] != NULL) {
28943 			kmem_free(un->sd_fi_fifo_arq[i],
28944 			    sizeof (struct sd_fi_arq));
28945 			un->sd_fi_fifo_arq[i] = NULL;
28946 		}
28947 		if (arg != NULL) {
28948 			un->sd_fi_fifo_arq[i] =
28949 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
28950 			if (un->sd_fi_fifo_arq[i] == NULL) {
28951 				/* Alloc failed don't store anything */
28952 				break;
28953 			}
28954 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
28955 			    sizeof (struct sd_fi_arq), 0);
28956 			if (rval == -1) {
28957 				kmem_free(un->sd_fi_fifo_arq[i],
28958 				    sizeof (struct sd_fi_arq));
28959 				un->sd_fi_fifo_arq[i] = NULL;
28960 			}
28961 
28962 		} else {
28963 			SD_INFO(SD_LOG_IOERR, un,
28964 			    "sd_faultinjection_ioctl: arq null\n");
28965 		}
28966 
28967 		break;
28968 
28969 	case SDIOCPUSH:
28970 		/* Push stored xb, pkt, un, and arq onto fifo */
28971 		sd_fault_injection_on = 0;
28972 
28973 		if (arg != NULL) {
28974 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
28975 			if (rval != -1 &&
28976 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
28977 				un->sd_fi_fifo_end += i;
28978 			}
28979 		} else {
28980 			SD_INFO(SD_LOG_IOERR, un,
28981 			    "sd_faultinjection_ioctl: push arg null\n");
28982 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
28983 				un->sd_fi_fifo_end++;
28984 			}
28985 		}
28986 		SD_INFO(SD_LOG_IOERR, un,
28987 		    "sd_faultinjection_ioctl: push to end=%d\n",
28988 		    un->sd_fi_fifo_end);
28989 		break;
28990 
28991 	case SDIOCRETRIEVE:
28992 		/* Return buffer of log from Injection session */
28993 		SD_INFO(SD_LOG_SDTEST, un,
28994 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
28995 
28996 		sd_fault_injection_on = 0;
28997 
28998 		mutex_enter(&(un->un_fi_mutex));
28999 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29000 		    un->sd_fi_buf_len+1, 0);
29001 		mutex_exit(&(un->un_fi_mutex));
29002 
29003 		if (rval == -1) {
29004 			/*
29005 			 * arg is possibly invalid setting
29006 			 * it to NULL for return
29007 			 */
29008 			arg = NULL;
29009 		}
29010 		break;
29011 	}
29012 
29013 	mutex_exit(SD_MUTEX(un));
29014 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29015 			    " exit\n");
29016 }
29017 
29018 
29019 /*
29020  *    Function: sd_injection_log()
29021  *
29022  * Description: This routine adds buff to the already existing injection log
29023  *              for retrieval via faultinjection_ioctl for use in fault
29024  *              detection and recovery
29025  *
29026  *   Arguments: buf - the string to add to the log
29027  */
29028 
29029 static void
29030 sd_injection_log(char *buf, struct sd_lun *un)
29031 {
29032 	uint_t len;
29033 
29034 	ASSERT(un != NULL);
29035 	ASSERT(buf != NULL);
29036 
29037 	mutex_enter(&(un->un_fi_mutex));
29038 
29039 	len = min(strlen(buf), 255);
29040 	/* Add logged value to Injection log to be returned later */
29041 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29042 		uint_t	offset = strlen((char *)un->sd_fi_log);
29043 		char *destp = (char *)un->sd_fi_log + offset;
29044 		int i;
29045 		for (i = 0; i < len; i++) {
29046 			*destp++ = *buf++;
29047 		}
29048 		un->sd_fi_buf_len += len;
29049 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29050 	}
29051 
29052 	mutex_exit(&(un->un_fi_mutex));
29053 }
29054 
29055 
29056 /*
29057  *    Function: sd_faultinjection()
29058  *
29059  * Description: This routine takes the pkt and changes its
29060  *		content based on error injection scenerio.
29061  *
29062  *   Arguments: pktp	- packet to be changed
29063  */
29064 
29065 static void
29066 sd_faultinjection(struct scsi_pkt *pktp)
29067 {
29068 	uint_t i;
29069 	struct sd_fi_pkt *fi_pkt;
29070 	struct sd_fi_xb *fi_xb;
29071 	struct sd_fi_un *fi_un;
29072 	struct sd_fi_arq *fi_arq;
29073 	struct buf *bp;
29074 	struct sd_xbuf *xb;
29075 	struct sd_lun *un;
29076 
29077 	ASSERT(pktp != NULL);
29078 
29079 	/* pull bp xb and un from pktp */
29080 	bp = (struct buf *)pktp->pkt_private;
29081 	xb = SD_GET_XBUF(bp);
29082 	un = SD_GET_UN(bp);
29083 
29084 	ASSERT(un != NULL);
29085 
29086 	mutex_enter(SD_MUTEX(un));
29087 
29088 	SD_TRACE(SD_LOG_SDTEST, un,
29089 	    "sd_faultinjection: entry Injection from sdintr\n");
29090 
29091 	/* if injection is off return */
29092 	if (sd_fault_injection_on == 0 ||
29093 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29094 		mutex_exit(SD_MUTEX(un));
29095 		return;
29096 	}
29097 
29098 	SD_INFO(SD_LOG_SDTEST, un,
29099 	    "sd_faultinjection: is working for copying\n");
29100 
29101 	/* take next set off fifo */
29102 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29103 
29104 	fi_pkt = un->sd_fi_fifo_pkt[i];
29105 	fi_xb = un->sd_fi_fifo_xb[i];
29106 	fi_un = un->sd_fi_fifo_un[i];
29107 	fi_arq = un->sd_fi_fifo_arq[i];
29108 
29109 
29110 	/* set variables accordingly */
29111 	/* set pkt if it was on fifo */
29112 	if (fi_pkt != NULL) {
29113 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29114 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29115 		if (fi_pkt->pkt_cdbp != 0xff)
29116 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29117 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29118 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29119 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29120 
29121 	}
29122 	/* set xb if it was on fifo */
29123 	if (fi_xb != NULL) {
29124 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29125 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29126 		if (fi_xb->xb_retry_count != 0)
29127 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29128 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29129 		    "xb_victim_retry_count");
29130 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29131 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29132 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29133 
29134 		/* copy in block data from sense */
29135 		/*
29136 		 * if (fi_xb->xb_sense_data[0] != -1) {
29137 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29138 		 *	SENSE_LENGTH);
29139 		 * }
29140 		 */
29141 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
29142 
29143 		/* copy in extended sense codes */
29144 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29145 		    xb, es_code, "es_code");
29146 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29147 		    xb, es_key, "es_key");
29148 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29149 		    xb, es_add_code, "es_add_code");
29150 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29151 		    xb, es_qual_code, "es_qual_code");
29152 		struct scsi_extended_sense *esp;
29153 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
29154 		esp->es_class = CLASS_EXTENDED_SENSE;
29155 	}
29156 
29157 	/* set un if it was on fifo */
29158 	if (fi_un != NULL) {
29159 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29160 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29161 		SD_CONDSET(un, un, un_reset_retry_count,
29162 		    "un_reset_retry_count");
29163 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29164 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29165 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29166 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29167 		    "un_f_allow_bus_device_reset");
29168 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29169 
29170 	}
29171 
29172 	/* copy in auto request sense if it was on fifo */
29173 	if (fi_arq != NULL) {
29174 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29175 	}
29176 
29177 	/* free structs */
29178 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29179 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29180 	}
29181 	if (un->sd_fi_fifo_xb[i] != NULL) {
29182 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29183 	}
29184 	if (un->sd_fi_fifo_un[i] != NULL) {
29185 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29186 	}
29187 	if (un->sd_fi_fifo_arq[i] != NULL) {
29188 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29189 	}
29190 
29191 	/*
29192 	 * kmem_free does not gurantee to set to NULL
29193 	 * since we uses these to determine if we set
29194 	 * values or not lets confirm they are always
29195 	 * NULL after free
29196 	 */
29197 	un->sd_fi_fifo_pkt[i] = NULL;
29198 	un->sd_fi_fifo_un[i] = NULL;
29199 	un->sd_fi_fifo_xb[i] = NULL;
29200 	un->sd_fi_fifo_arq[i] = NULL;
29201 
29202 	un->sd_fi_fifo_start++;
29203 
29204 	mutex_exit(SD_MUTEX(un));
29205 
29206 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29207 }
29208 
29209 #endif /* SD_FAULT_INJECTION */
29210 
29211 /*
29212  * This routine is invoked in sd_unit_attach(). Before calling it, the
29213  * properties in conf file should be processed already, and "hotpluggable"
29214  * property was processed also.
29215  *
29216  * The sd driver distinguishes 3 different type of devices: removable media,
29217  * non-removable media, and hotpluggable. Below the differences are defined:
29218  *
29219  * 1. Device ID
29220  *
29221  *     The device ID of a device is used to identify this device. Refer to
29222  *     ddi_devid_register(9F).
29223  *
29224  *     For a non-removable media disk device which can provide 0x80 or 0x83
29225  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
29226  *     device ID is created to identify this device. For other non-removable
29227  *     media devices, a default device ID is created only if this device has
29228  *     at least 2 alter cylinders. Otherwise, this device has no devid.
29229  *
29230  *     -------------------------------------------------------
29231  *     removable media   hotpluggable  | Can Have Device ID
29232  *     -------------------------------------------------------
29233  *         false             false     |     Yes
29234  *         false             true      |     Yes
29235  *         true                x       |     No
29236  *     ------------------------------------------------------
29237  *
29238  *
29239  * 2. SCSI group 4 commands
29240  *
29241  *     In SCSI specs, only some commands in group 4 command set can use
29242  *     8-byte addresses that can be used to access >2TB storage spaces.
29243  *     Other commands have no such capability. Without supporting group4,
29244  *     it is impossible to make full use of storage spaces of a disk with
29245  *     capacity larger than 2TB.
29246  *
29247  *     -----------------------------------------------
29248  *     removable media   hotpluggable   LP64  |  Group
29249  *     -----------------------------------------------
29250  *           false          false       false |   1
29251  *           false          false       true  |   4
29252  *           false          true        false |   1
29253  *           false          true        true  |   4
29254  *           true             x           x   |   5
29255  *     -----------------------------------------------
29256  *
29257  *
29258  * 3. Check for VTOC Label
29259  *
29260  *     If a direct-access disk has no EFI label, sd will check if it has a
29261  *     valid VTOC label. Now, sd also does that check for removable media
29262  *     and hotpluggable devices.
29263  *
29264  *     --------------------------------------------------------------
29265  *     Direct-Access   removable media    hotpluggable |  Check Label
29266  *     -------------------------------------------------------------
29267  *         false          false           false        |   No
29268  *         false          false           true         |   No
29269  *         false          true            false        |   Yes
29270  *         false          true            true         |   Yes
29271  *         true            x                x          |   Yes
29272  *     --------------------------------------------------------------
29273  *
29274  *
29275  * 4. Building default VTOC label
29276  *
29277  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
29278  *     If those devices have no valid VTOC label, sd(7d) will attempt to
29279  *     create default VTOC for them. Currently sd creates default VTOC label
29280  *     for all devices on x86 platform (VTOC_16), but only for removable
29281  *     media devices on SPARC (VTOC_8).
29282  *
29283  *     -----------------------------------------------------------
29284  *       removable media hotpluggable platform   |   Default Label
29285  *     -----------------------------------------------------------
29286  *             false          false    sparc     |     No
29287  *             false          true      x86      |     Yes
29288  *             false          true     sparc     |     Yes
29289  *             true             x        x       |     Yes
29290  *     ----------------------------------------------------------
29291  *
29292  *
29293  * 5. Supported blocksizes of target devices
29294  *
29295  *     Sd supports non-512-byte blocksize for removable media devices only.
29296  *     For other devices, only 512-byte blocksize is supported. This may be
29297  *     changed in near future because some RAID devices require non-512-byte
29298  *     blocksize
29299  *
29300  *     -----------------------------------------------------------
29301  *     removable media    hotpluggable    | non-512-byte blocksize
29302  *     -----------------------------------------------------------
29303  *           false          false         |   No
29304  *           false          true          |   No
29305  *           true             x           |   Yes
29306  *     -----------------------------------------------------------
29307  *
29308  *
29309  * 6. Automatic mount & unmount
29310  *
29311  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
29312  *     if a device is removable media device. It return 1 for removable media
29313  *     devices, and 0 for others.
29314  *
29315  *     The automatic mounting subsystem should distinguish between the types
29316  *     of devices and apply automounting policies to each.
29317  *
29318  *
29319  * 7. fdisk partition management
29320  *
29321  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
29322  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
29323  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
29324  *     fdisk partitions on both x86 and SPARC platform.
29325  *
29326  *     -----------------------------------------------------------
29327  *       platform   removable media  USB/1394  |  fdisk supported
29328  *     -----------------------------------------------------------
29329  *        x86         X               X        |       true
29330  *     ------------------------------------------------------------
29331  *        sparc       X               X        |       false
29332  *     ------------------------------------------------------------
29333  *
29334  *
29335  * 8. MBOOT/MBR
29336  *
29337  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
29338  *     read/write mboot for removable media devices on sparc platform.
29339  *
29340  *     -----------------------------------------------------------
29341  *       platform   removable media  USB/1394  |  mboot supported
29342  *     -----------------------------------------------------------
29343  *        x86         X               X        |       true
29344  *     ------------------------------------------------------------
29345  *        sparc      false           false     |       false
29346  *        sparc      false           true      |       true
29347  *        sparc      true            false     |       true
29348  *        sparc      true            true      |       true
29349  *     ------------------------------------------------------------
29350  *
29351  *
29352  * 9.  error handling during opening device
29353  *
29354  *     If failed to open a disk device, an errno is returned. For some kinds
29355  *     of errors, different errno is returned depending on if this device is
29356  *     a removable media device. This brings USB/1394 hard disks in line with
29357  *     expected hard disk behavior. It is not expected that this breaks any
29358  *     application.
29359  *
29360  *     ------------------------------------------------------
29361  *       removable media    hotpluggable   |  errno
29362  *     ------------------------------------------------------
29363  *             false          false        |   EIO
29364  *             false          true         |   EIO
29365  *             true             x          |   ENXIO
29366  *     ------------------------------------------------------
29367  *
29368  *
29369  * 11. ioctls: DKIOCEJECT, CDROMEJECT
29370  *
29371  *     These IOCTLs are applicable only to removable media devices.
29372  *
29373  *     -----------------------------------------------------------
29374  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
29375  *     -----------------------------------------------------------
29376  *             false          false        |     No
29377  *             false          true         |     No
29378  *             true            x           |     Yes
29379  *     -----------------------------------------------------------
29380  *
29381  *
29382  * 12. Kstats for partitions
29383  *
29384  *     sd creates partition kstat for non-removable media devices. USB and
29385  *     Firewire hard disks now have partition kstats
29386  *
29387  *      ------------------------------------------------------
29388  *       removable media    hotpluggable   |   kstat
29389  *      ------------------------------------------------------
29390  *             false          false        |    Yes
29391  *             false          true         |    Yes
29392  *             true             x          |    No
29393  *       ------------------------------------------------------
29394  *
29395  *
29396  * 13. Removable media & hotpluggable properties
29397  *
29398  *     Sd driver creates a "removable-media" property for removable media
29399  *     devices. Parent nexus drivers create a "hotpluggable" property if
29400  *     it supports hotplugging.
29401  *
29402  *     ---------------------------------------------------------------------
29403  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
29404  *     ---------------------------------------------------------------------
29405  *       false            false       |    No                   No
29406  *       false            true        |    No                   Yes
29407  *       true             false       |    Yes                  No
29408  *       true             true        |    Yes                  Yes
29409  *     ---------------------------------------------------------------------
29410  *
29411  *
29412  * 14. Power Management
29413  *
29414  *     sd only power manages removable media devices or devices that support
29415  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
29416  *
29417  *     A parent nexus that supports hotplugging can also set "pm-capable"
29418  *     if the disk can be power managed.
29419  *
29420  *     ------------------------------------------------------------
29421  *       removable media hotpluggable pm-capable  |   power manage
29422  *     ------------------------------------------------------------
29423  *             false          false     false     |     No
29424  *             false          false     true      |     Yes
29425  *             false          true      false     |     No
29426  *             false          true      true      |     Yes
29427  *             true             x        x        |     Yes
29428  *     ------------------------------------------------------------
29429  *
29430  *      USB and firewire hard disks can now be power managed independently
29431  *      of the framebuffer
29432  *
29433  *
29434  * 15. Support for USB disks with capacity larger than 1TB
29435  *
29436  *     Currently, sd doesn't permit a fixed disk device with capacity
29437  *     larger than 1TB to be used in a 32-bit operating system environment.
29438  *     However, sd doesn't do that for removable media devices. Instead, it
29439  *     assumes that removable media devices cannot have a capacity larger
29440  *     than 1TB. Therefore, using those devices on 32-bit system is partially
29441  *     supported, which can cause some unexpected results.
29442  *
29443  *     ---------------------------------------------------------------------
29444  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
29445  *     ---------------------------------------------------------------------
29446  *             false          false  |   true         |     no
29447  *             false          true   |   true         |     no
29448  *             true           false  |   true         |     Yes
29449  *             true           true   |   true         |     Yes
29450  *     ---------------------------------------------------------------------
29451  *
29452  *
29453  * 16. Check write-protection at open time
29454  *
29455  *     When a removable media device is being opened for writing without NDELAY
29456  *     flag, sd will check if this device is writable. If attempting to open
29457  *     without NDELAY flag a write-protected device, this operation will abort.
29458  *
29459  *     ------------------------------------------------------------
29460  *       removable media    USB/1394   |   WP Check
29461  *     ------------------------------------------------------------
29462  *             false          false    |     No
29463  *             false          true     |     No
29464  *             true           false    |     Yes
29465  *             true           true     |     Yes
29466  *     ------------------------------------------------------------
29467  *
29468  *
29469  * 17. syslog when corrupted VTOC is encountered
29470  *
29471  *      Currently, if an invalid VTOC is encountered, sd only print syslog
29472  *      for fixed SCSI disks.
29473  *     ------------------------------------------------------------
29474  *       removable media    USB/1394   |   print syslog
29475  *     ------------------------------------------------------------
29476  *             false          false    |     Yes
29477  *             false          true     |     No
29478  *             true           false    |     No
29479  *             true           true     |     No
29480  *     ------------------------------------------------------------
29481  */
29482 static void
29483 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
29484 {
29485 	int	pm_capable_prop;
29486 
29487 	ASSERT(un->un_sd);
29488 	ASSERT(un->un_sd->sd_inq);
29489 
29490 	/*
29491 	 * Enable SYNC CACHE support for all devices.
29492 	 */
29493 	un->un_f_sync_cache_supported = TRUE;
29494 
29495 	/*
29496 	 * Set the sync cache required flag to false.
29497 	 * This would ensure that there is no SYNC CACHE
29498 	 * sent when there are no writes
29499 	 */
29500 	un->un_f_sync_cache_required = FALSE;
29501 
29502 	if (un->un_sd->sd_inq->inq_rmb) {
29503 		/*
29504 		 * The media of this device is removable. And for this kind
29505 		 * of devices, it is possible to change medium after opening
29506 		 * devices. Thus we should support this operation.
29507 		 */
29508 		un->un_f_has_removable_media = TRUE;
29509 
29510 		/*
29511 		 * support non-512-byte blocksize of removable media devices
29512 		 */
29513 		un->un_f_non_devbsize_supported = TRUE;
29514 
29515 		/*
29516 		 * Assume that all removable media devices support DOOR_LOCK
29517 		 */
29518 		un->un_f_doorlock_supported = TRUE;
29519 
29520 		/*
29521 		 * For a removable media device, it is possible to be opened
29522 		 * with NDELAY flag when there is no media in drive, in this
29523 		 * case we don't care if device is writable. But if without
29524 		 * NDELAY flag, we need to check if media is write-protected.
29525 		 */
29526 		un->un_f_chk_wp_open = TRUE;
29527 
29528 		/*
29529 		 * need to start a SCSI watch thread to monitor media state,
29530 		 * when media is being inserted or ejected, notify syseventd.
29531 		 */
29532 		un->un_f_monitor_media_state = TRUE;
29533 
29534 		/*
29535 		 * Some devices don't support START_STOP_UNIT command.
29536 		 * Therefore, we'd better check if a device supports it
29537 		 * before sending it.
29538 		 */
29539 		un->un_f_check_start_stop = TRUE;
29540 
29541 		/*
29542 		 * support eject media ioctl:
29543 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
29544 		 */
29545 		un->un_f_eject_media_supported = TRUE;
29546 
29547 		/*
29548 		 * Because many removable-media devices don't support
29549 		 * LOG_SENSE, we couldn't use this command to check if
29550 		 * a removable media device support power-management.
29551 		 * We assume that they support power-management via
29552 		 * START_STOP_UNIT command and can be spun up and down
29553 		 * without limitations.
29554 		 */
29555 		un->un_f_pm_supported = TRUE;
29556 
29557 		/*
29558 		 * Need to create a zero length (Boolean) property
29559 		 * removable-media for the removable media devices.
29560 		 * Note that the return value of the property is not being
29561 		 * checked, since if unable to create the property
29562 		 * then do not want the attach to fail altogether. Consistent
29563 		 * with other property creation in attach.
29564 		 */
29565 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
29566 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
29567 
29568 	} else {
29569 		/*
29570 		 * create device ID for device
29571 		 */
29572 		un->un_f_devid_supported = TRUE;
29573 
29574 		/*
29575 		 * Spin up non-removable-media devices once it is attached
29576 		 */
29577 		un->un_f_attach_spinup = TRUE;
29578 
29579 		/*
29580 		 * According to SCSI specification, Sense data has two kinds of
29581 		 * format: fixed format, and descriptor format. At present, we
29582 		 * don't support descriptor format sense data for removable
29583 		 * media.
29584 		 */
29585 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
29586 			un->un_f_descr_format_supported = TRUE;
29587 		}
29588 
29589 		/*
29590 		 * kstats are created only for non-removable media devices.
29591 		 *
29592 		 * Set this in sd.conf to 0 in order to disable kstats.  The
29593 		 * default is 1, so they are enabled by default.
29594 		 */
29595 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
29596 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
29597 		    "enable-partition-kstats", 1));
29598 
29599 		/*
29600 		 * Check if HBA has set the "pm-capable" property.
29601 		 * If "pm-capable" exists and is non-zero then we can
29602 		 * power manage the device without checking the start/stop
29603 		 * cycle count log sense page.
29604 		 *
29605 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
29606 		 * then we should not power manage the device.
29607 		 *
29608 		 * If "pm-capable" doesn't exist then pm_capable_prop will
29609 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
29610 		 * sd will check the start/stop cycle count log sense page
29611 		 * and power manage the device if the cycle count limit has
29612 		 * not been exceeded.
29613 		 */
29614 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
29615 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
29616 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
29617 			un->un_f_log_sense_supported = TRUE;
29618 		} else {
29619 			/*
29620 			 * pm-capable property exists.
29621 			 *
29622 			 * Convert "TRUE" values for pm_capable_prop to
29623 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
29624 			 * later. "TRUE" values are any values except
29625 			 * SD_PM_CAPABLE_FALSE (0) and
29626 			 * SD_PM_CAPABLE_UNDEFINED (-1)
29627 			 */
29628 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
29629 				un->un_f_log_sense_supported = FALSE;
29630 			} else {
29631 				un->un_f_pm_supported = TRUE;
29632 			}
29633 
29634 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
29635 			    "sd_unit_attach: un:0x%p pm-capable "
29636 			    "property set to %d.\n", un, un->un_f_pm_supported);
29637 		}
29638 	}
29639 
29640 	if (un->un_f_is_hotpluggable) {
29641 
29642 		/*
29643 		 * Have to watch hotpluggable devices as well, since
29644 		 * that's the only way for userland applications to
29645 		 * detect hot removal while device is busy/mounted.
29646 		 */
29647 		un->un_f_monitor_media_state = TRUE;
29648 
29649 		un->un_f_check_start_stop = TRUE;
29650 
29651 	}
29652 }
29653 
29654 /*
29655  * sd_tg_rdwr:
29656  * Provides rdwr access for cmlb via sd_tgops. The start_block is
29657  * in sys block size, req_length in bytes.
29658  *
29659  */
29660 static int
29661 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
29662     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
29663 {
29664 	struct sd_lun *un;
29665 	int path_flag = (int)(uintptr_t)tg_cookie;
29666 	char *dkl = NULL;
29667 	diskaddr_t real_addr = start_block;
29668 	diskaddr_t first_byte, end_block;
29669 
29670 	size_t	buffer_size = reqlength;
29671 	int rval = 0;
29672 	diskaddr_t	cap;
29673 	uint32_t	lbasize;
29674 	sd_ssc_t	*ssc;
29675 
29676 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29677 	if (un == NULL)
29678 		return (ENXIO);
29679 
29680 	if (cmd != TG_READ && cmd != TG_WRITE)
29681 		return (EINVAL);
29682 
29683 	ssc = sd_ssc_init(un);
29684 	mutex_enter(SD_MUTEX(un));
29685 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
29686 		mutex_exit(SD_MUTEX(un));
29687 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29688 		    &lbasize, path_flag);
29689 		if (rval != 0)
29690 			goto done1;
29691 		mutex_enter(SD_MUTEX(un));
29692 		sd_update_block_info(un, lbasize, cap);
29693 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
29694 			mutex_exit(SD_MUTEX(un));
29695 			rval = EIO;
29696 			goto done;
29697 		}
29698 	}
29699 
29700 	if (NOT_DEVBSIZE(un)) {
29701 		/*
29702 		 * sys_blocksize != tgt_blocksize, need to re-adjust
29703 		 * blkno and save the index to beginning of dk_label
29704 		 */
29705 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
29706 		real_addr = first_byte / un->un_tgt_blocksize;
29707 
29708 		end_block = (first_byte + reqlength +
29709 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
29710 
29711 		/* round up buffer size to multiple of target block size */
29712 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
29713 
29714 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
29715 		    "label_addr: 0x%x allocation size: 0x%x\n",
29716 		    real_addr, buffer_size);
29717 
29718 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
29719 		    (reqlength % un->un_tgt_blocksize) != 0)
29720 			/* the request is not aligned */
29721 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
29722 	}
29723 
29724 	/*
29725 	 * The MMC standard allows READ CAPACITY to be
29726 	 * inaccurate by a bounded amount (in the interest of
29727 	 * response latency).  As a result, failed READs are
29728 	 * commonplace (due to the reading of metadata and not
29729 	 * data). Depending on the per-Vendor/drive Sense data,
29730 	 * the failed READ can cause many (unnecessary) retries.
29731 	 */
29732 
29733 	if (ISCD(un) && (cmd == TG_READ) &&
29734 	    (un->un_f_blockcount_is_valid == TRUE) &&
29735 	    ((start_block == (un->un_blockcount - 1))||
29736 	    (start_block == (un->un_blockcount - 2)))) {
29737 			path_flag = SD_PATH_DIRECT_PRIORITY;
29738 	}
29739 
29740 	mutex_exit(SD_MUTEX(un));
29741 	if (cmd == TG_READ) {
29742 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
29743 		    buffer_size, real_addr, path_flag);
29744 		if (dkl != NULL)
29745 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
29746 			    real_addr), bufaddr, reqlength);
29747 	} else {
29748 		if (dkl) {
29749 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
29750 			    real_addr, path_flag);
29751 			if (rval) {
29752 				goto done1;
29753 			}
29754 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
29755 			    real_addr), reqlength);
29756 		}
29757 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
29758 		    buffer_size, real_addr, path_flag);
29759 	}
29760 
29761 done1:
29762 	if (dkl != NULL)
29763 		kmem_free(dkl, buffer_size);
29764 
29765 	if (rval != 0) {
29766 		if (rval == EIO)
29767 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
29768 		else
29769 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
29770 	}
29771 done:
29772 	sd_ssc_fini(ssc);
29773 	return (rval);
29774 }
29775 
29776 
29777 static int
29778 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
29779 {
29780 
29781 	struct sd_lun *un;
29782 	diskaddr_t	cap;
29783 	uint32_t	lbasize;
29784 	int		path_flag = (int)(uintptr_t)tg_cookie;
29785 	int		ret = 0;
29786 
29787 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29788 	if (un == NULL)
29789 		return (ENXIO);
29790 
29791 	switch (cmd) {
29792 	case TG_GETPHYGEOM:
29793 	case TG_GETVIRTGEOM:
29794 	case TG_GETCAPACITY:
29795 	case TG_GETBLOCKSIZE:
29796 		mutex_enter(SD_MUTEX(un));
29797 
29798 		if ((un->un_f_blockcount_is_valid == TRUE) &&
29799 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
29800 			cap = un->un_blockcount;
29801 			lbasize = un->un_tgt_blocksize;
29802 			mutex_exit(SD_MUTEX(un));
29803 		} else {
29804 			sd_ssc_t	*ssc;
29805 			mutex_exit(SD_MUTEX(un));
29806 			ssc = sd_ssc_init(un);
29807 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29808 			    &lbasize, path_flag);
29809 			if (ret != 0) {
29810 				if (ret == EIO)
29811 					sd_ssc_assessment(ssc,
29812 					    SD_FMT_STATUS_CHECK);
29813 				else
29814 					sd_ssc_assessment(ssc,
29815 					    SD_FMT_IGNORE);
29816 				sd_ssc_fini(ssc);
29817 				return (ret);
29818 			}
29819 			sd_ssc_fini(ssc);
29820 			mutex_enter(SD_MUTEX(un));
29821 			sd_update_block_info(un, lbasize, cap);
29822 			if ((un->un_f_blockcount_is_valid == FALSE) ||
29823 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
29824 				mutex_exit(SD_MUTEX(un));
29825 				return (EIO);
29826 			}
29827 			mutex_exit(SD_MUTEX(un));
29828 		}
29829 
29830 		if (cmd == TG_GETCAPACITY) {
29831 			*(diskaddr_t *)arg = cap;
29832 			return (0);
29833 		}
29834 
29835 		if (cmd == TG_GETBLOCKSIZE) {
29836 			*(uint32_t *)arg = lbasize;
29837 			return (0);
29838 		}
29839 
29840 		if (cmd == TG_GETPHYGEOM)
29841 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
29842 			    cap, lbasize, path_flag);
29843 		else
29844 			/* TG_GETVIRTGEOM */
29845 			ret = sd_get_virtual_geometry(un,
29846 			    (cmlb_geom_t *)arg, cap, lbasize);
29847 
29848 		return (ret);
29849 
29850 	case TG_GETATTR:
29851 		mutex_enter(SD_MUTEX(un));
29852 		((tg_attribute_t *)arg)->media_is_writable =
29853 		    un->un_f_mmc_writable_media;
29854 		mutex_exit(SD_MUTEX(un));
29855 		return (0);
29856 	default:
29857 		return (ENOTTY);
29858 
29859 	}
29860 }
29861 
29862 /*
29863  *    Function: sd_ssc_ereport_post
29864  *
29865  * Description: Will be called when SD driver need to post an ereport.
29866  *
29867  *    Context: Kernel thread or interrupt context.
29868  */
29869 static void
29870 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
29871 {
29872 	int uscsi_path_instance = 0;
29873 	uchar_t	uscsi_pkt_reason;
29874 	uint32_t uscsi_pkt_state;
29875 	uint32_t uscsi_pkt_statistics;
29876 	uint64_t uscsi_ena;
29877 	uchar_t op_code;
29878 	uint8_t *sensep;
29879 	union scsi_cdb *cdbp;
29880 	uint_t cdblen = 0;
29881 	uint_t senlen = 0;
29882 	struct sd_lun *un;
29883 	dev_info_t *dip;
29884 	char *devid;
29885 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
29886 	    SSC_FLAGS_INVALID_STATUS |
29887 	    SSC_FLAGS_INVALID_SENSE |
29888 	    SSC_FLAGS_INVALID_DATA;
29889 	char assessment[16];
29890 
29891 	ASSERT(ssc != NULL);
29892 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
29893 	ASSERT(ssc->ssc_uscsi_info != NULL);
29894 
29895 	un = ssc->ssc_un;
29896 	ASSERT(un != NULL);
29897 
29898 	dip = un->un_sd->sd_dev;
29899 
29900 	/*
29901 	 * Get the devid:
29902 	 *	devid will only be passed to non-transport error reports.
29903 	 */
29904 	devid = DEVI(dip)->devi_devid_str;
29905 
29906 	/*
29907 	 * If we are syncing or dumping, the command will not be executed
29908 	 * so we bypass this situation.
29909 	 */
29910 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
29911 	    (un->un_state == SD_STATE_DUMPING))
29912 		return;
29913 
29914 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
29915 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
29916 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
29917 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
29918 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
29919 
29920 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
29921 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
29922 
29923 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
29924 	if (cdbp == NULL) {
29925 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29926 		    "sd_ssc_ereport_post meet empty cdb\n");
29927 		return;
29928 	}
29929 
29930 	op_code = cdbp->scc_cmd;
29931 
29932 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
29933 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
29934 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
29935 
29936 	if (senlen > 0)
29937 		ASSERT(sensep != NULL);
29938 
29939 	/*
29940 	 * Initialize drv_assess to corresponding values.
29941 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
29942 	 * on the sense-key returned back.
29943 	 */
29944 	switch (drv_assess) {
29945 		case SD_FM_DRV_RECOVERY:
29946 			(void) sprintf(assessment, "%s", "recovered");
29947 			break;
29948 		case SD_FM_DRV_RETRY:
29949 			(void) sprintf(assessment, "%s", "retry");
29950 			break;
29951 		case SD_FM_DRV_NOTICE:
29952 			(void) sprintf(assessment, "%s", "info");
29953 			break;
29954 		case SD_FM_DRV_FATAL:
29955 		default:
29956 			(void) sprintf(assessment, "%s", "unknown");
29957 	}
29958 	/*
29959 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
29960 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
29961 	 * driver-assessment will always be "recovered" here.
29962 	 */
29963 	if (drv_assess == SD_FM_DRV_RECOVERY) {
29964 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
29965 		    "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP,
29966 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
29967 		    "driver-assessment", DATA_TYPE_STRING, assessment,
29968 		    "op-code", DATA_TYPE_UINT8, op_code,
29969 		    "cdb", DATA_TYPE_UINT8_ARRAY,
29970 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
29971 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
29972 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
29973 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
29974 		    NULL);
29975 		return;
29976 	}
29977 
29978 	/*
29979 	 * If there is un-expected/un-decodable data, we should post
29980 	 * ereport.io.scsi.cmd.disk.dev.uderr.
29981 	 * driver-assessment will be set based on parameter drv_assess.
29982 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
29983 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
29984 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
29985 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
29986 	 */
29987 	if (ssc->ssc_flags & ssc_invalid_flags) {
29988 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
29989 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
29990 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
29991 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
29992 			    "driver-assessment", DATA_TYPE_STRING,
29993 			    drv_assess == SD_FM_DRV_FATAL ?
29994 			    "fail" : assessment,
29995 			    "op-code", DATA_TYPE_UINT8, op_code,
29996 			    "cdb", DATA_TYPE_UINT8_ARRAY,
29997 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
29998 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
29999 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30000 			    "pkt-stats", DATA_TYPE_UINT32,
30001 			    uscsi_pkt_statistics,
30002 			    "stat-code", DATA_TYPE_UINT8,
30003 			    ssc->ssc_uscsi_cmd->uscsi_status,
30004 			    "un-decode-info", DATA_TYPE_STRING,
30005 			    ssc->ssc_info,
30006 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30007 			    senlen, sensep,
30008 			    NULL);
30009 		} else {
30010 			/*
30011 			 * For other type of invalid data, the
30012 			 * un-decode-value field would be empty because the
30013 			 * un-decodable content could be seen from upper
30014 			 * level payload or inside un-decode-info.
30015 			 */
30016 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30017 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30018 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30019 			    "driver-assessment", DATA_TYPE_STRING,
30020 			    drv_assess == SD_FM_DRV_FATAL ?
30021 			    "fail" : assessment,
30022 			    "op-code", DATA_TYPE_UINT8, op_code,
30023 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30024 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30025 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30026 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30027 			    "pkt-stats", DATA_TYPE_UINT32,
30028 			    uscsi_pkt_statistics,
30029 			    "stat-code", DATA_TYPE_UINT8,
30030 			    ssc->ssc_uscsi_cmd->uscsi_status,
30031 			    "un-decode-info", DATA_TYPE_STRING,
30032 			    ssc->ssc_info,
30033 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30034 			    0, NULL,
30035 			    NULL);
30036 		}
30037 		ssc->ssc_flags &= ~ssc_invalid_flags;
30038 		return;
30039 	}
30040 
30041 	if (uscsi_pkt_reason != CMD_CMPLT ||
30042 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
30043 		/*
30044 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
30045 		 * set inside sd_start_cmds due to errors(bad packet or
30046 		 * fatal transport error), we should take it as a
30047 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
30048 		 * driver-assessment will be set based on drv_assess.
30049 		 * We will set devid to NULL because it is a transport
30050 		 * error.
30051 		 */
30052 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
30053 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
30054 
30055 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30056 		    "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION,
30057 		    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30058 		    "driver-assessment", DATA_TYPE_STRING,
30059 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30060 		    "op-code", DATA_TYPE_UINT8, op_code,
30061 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30062 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30063 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30064 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
30065 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30066 		    NULL);
30067 	} else {
30068 		/*
30069 		 * If we got here, we have a completed command, and we need
30070 		 * to further investigate the sense data to see what kind
30071 		 * of ereport we should post.
30072 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
30073 		 * if sense-key == 0x3.
30074 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
30075 		 * driver-assessment will be set based on the parameter
30076 		 * drv_assess.
30077 		 */
30078 		if (senlen > 0) {
30079 			/*
30080 			 * Here we have sense data available.
30081 			 */
30082 			uint8_t sense_key;
30083 			sense_key = scsi_sense_key(sensep);
30084 			if (sense_key == 0x3) {
30085 				/*
30086 				 * sense-key == 0x3(medium error),
30087 				 * driver-assessment should be "fatal" if
30088 				 * drv_assess is SD_FM_DRV_FATAL.
30089 				 */
30090 				scsi_fm_ereport_post(un->un_sd,
30091 				    uscsi_path_instance,
30092 				    "cmd.disk.dev.rqs.merr",
30093 				    uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION,
30094 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30095 				    "driver-assessment",
30096 				    DATA_TYPE_STRING,
30097 				    drv_assess == SD_FM_DRV_FATAL ?
30098 				    "fatal" : assessment,
30099 				    "op-code",
30100 				    DATA_TYPE_UINT8, op_code,
30101 				    "cdb",
30102 				    DATA_TYPE_UINT8_ARRAY, cdblen,
30103 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
30104 				    "pkt-reason",
30105 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
30106 				    "pkt-state",
30107 				    DATA_TYPE_UINT8, uscsi_pkt_state,
30108 				    "pkt-stats",
30109 				    DATA_TYPE_UINT32,
30110 				    uscsi_pkt_statistics,
30111 				    "stat-code",
30112 				    DATA_TYPE_UINT8,
30113 				    ssc->ssc_uscsi_cmd->uscsi_status,
30114 				    "key",
30115 				    DATA_TYPE_UINT8,
30116 				    scsi_sense_key(sensep),
30117 				    "asc",
30118 				    DATA_TYPE_UINT8,
30119 				    scsi_sense_asc(sensep),
30120 				    "ascq",
30121 				    DATA_TYPE_UINT8,
30122 				    scsi_sense_ascq(sensep),
30123 				    "sense-data",
30124 				    DATA_TYPE_UINT8_ARRAY,
30125 				    senlen, sensep,
30126 				    "lba",
30127 				    DATA_TYPE_UINT64,
30128 				    ssc->ssc_uscsi_info->ui_lba,
30129 				    NULL);
30130 				} else {
30131 					/*
30132 					 * if sense-key == 0x4(hardware
30133 					 * error), driver-assessment should
30134 					 * be "fatal" if drv_assess is
30135 					 * SD_FM_DRV_FATAL.
30136 					 */
30137 					scsi_fm_ereport_post(un->un_sd,
30138 					    uscsi_path_instance,
30139 					    "cmd.disk.dev.rqs.derr",
30140 					    uscsi_ena, devid, DDI_NOSLEEP,
30141 					    FM_VERSION,
30142 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30143 					    "driver-assessment",
30144 					    DATA_TYPE_STRING,
30145 					    drv_assess == SD_FM_DRV_FATAL ?
30146 					    (sense_key == 0x4 ?
30147 					    "fatal" : "fail") : assessment,
30148 					    "op-code",
30149 					    DATA_TYPE_UINT8, op_code,
30150 					    "cdb",
30151 					    DATA_TYPE_UINT8_ARRAY, cdblen,
30152 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
30153 					    "pkt-reason",
30154 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
30155 					    "pkt-state",
30156 					    DATA_TYPE_UINT8, uscsi_pkt_state,
30157 					    "pkt-stats",
30158 					    DATA_TYPE_UINT32,
30159 					    uscsi_pkt_statistics,
30160 					    "stat-code",
30161 					    DATA_TYPE_UINT8,
30162 					    ssc->ssc_uscsi_cmd->uscsi_status,
30163 					    "key",
30164 					    DATA_TYPE_UINT8,
30165 					    scsi_sense_key(sensep),
30166 					    "asc",
30167 					    DATA_TYPE_UINT8,
30168 					    scsi_sense_asc(sensep),
30169 					    "ascq",
30170 					    DATA_TYPE_UINT8,
30171 					    scsi_sense_ascq(sensep),
30172 					    "sense-data",
30173 					    DATA_TYPE_UINT8_ARRAY,
30174 					    senlen, sensep,
30175 					    NULL);
30176 				}
30177 		} else {
30178 			/*
30179 			 * For stat_code == STATUS_GOOD, this is not a
30180 			 * hardware error.
30181 			 */
30182 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
30183 				return;
30184 
30185 			/*
30186 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
30187 			 * stat-code but with sense data unavailable.
30188 			 * driver-assessment will be set based on parameter
30189 			 * drv_assess.
30190 			 */
30191 			scsi_fm_ereport_post(un->un_sd,
30192 			    uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena,
30193 			    devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8,
30194 			    FM_EREPORT_VERS0,
30195 			    "driver-assessment", DATA_TYPE_STRING,
30196 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30197 			    "op-code", DATA_TYPE_UINT8, op_code,
30198 			    "cdb",
30199 			    DATA_TYPE_UINT8_ARRAY,
30200 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30201 			    "pkt-reason",
30202 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
30203 			    "pkt-state",
30204 			    DATA_TYPE_UINT8, uscsi_pkt_state,
30205 			    "pkt-stats",
30206 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
30207 			    "stat-code",
30208 			    DATA_TYPE_UINT8,
30209 			    ssc->ssc_uscsi_cmd->uscsi_status,
30210 			    NULL);
30211 		}
30212 	}
30213 }
30214 
30215 /*
30216  *     Function: sd_ssc_extract_info
30217  *
30218  * Description: Extract information available to help generate ereport.
30219  *
30220  *     Context: Kernel thread or interrupt context.
30221  */
30222 static void
30223 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
30224     struct buf *bp, struct sd_xbuf *xp)
30225 {
30226 	size_t senlen = 0;
30227 	union scsi_cdb *cdbp;
30228 	int path_instance;
30229 	/*
30230 	 * Need scsi_cdb_size array to determine the cdb length.
30231 	 */
30232 	extern uchar_t	scsi_cdb_size[];
30233 
30234 	ASSERT(un != NULL);
30235 	ASSERT(pktp != NULL);
30236 	ASSERT(bp != NULL);
30237 	ASSERT(xp != NULL);
30238 	ASSERT(ssc != NULL);
30239 	ASSERT(mutex_owned(SD_MUTEX(un)));
30240 
30241 	/*
30242 	 * Transfer the cdb buffer pointer here.
30243 	 */
30244 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
30245 
30246 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
30247 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
30248 
30249 	/*
30250 	 * Transfer the sense data buffer pointer if sense data is available,
30251 	 * calculate the sense data length first.
30252 	 */
30253 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
30254 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
30255 		/*
30256 		 * For arq case, we will enter here.
30257 		 */
30258 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
30259 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
30260 		} else {
30261 			senlen = SENSE_LENGTH;
30262 		}
30263 	} else {
30264 		/*
30265 		 * For non-arq case, we will enter this branch.
30266 		 */
30267 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
30268 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
30269 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
30270 		}
30271 
30272 	}
30273 
30274 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
30275 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
30276 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
30277 
30278 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
30279 
30280 	/*
30281 	 * Only transfer path_instance when scsi_pkt was properly allocated.
30282 	 */
30283 	path_instance = pktp->pkt_path_instance;
30284 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
30285 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
30286 	else
30287 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
30288 
30289 	/*
30290 	 * Copy in the other fields we may need when posting ereport.
30291 	 */
30292 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
30293 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
30294 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
30295 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
30296 
30297 	/*
30298 	 * For partially read/write command, we will not create ena
30299 	 * in case of a successful command be reconized as recovered.
30300 	 */
30301 	if ((pktp->pkt_reason == CMD_CMPLT) &&
30302 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
30303 	    (senlen == 0)) {
30304 		return;
30305 	}
30306 
30307 	/*
30308 	 * To associate ereports of a single command execution flow, we
30309 	 * need a shared ena for a specific command.
30310 	 */
30311 	if (xp->xb_ena == 0)
30312 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
30313 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
30314 }
30315