xref: /titanic_52/usr/src/uts/common/io/rge/rge_chip.c (revision e23347b1b88ce2c0847fad6e9467a1f953597aa7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include "rge.h"
27 
28 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
29 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
30 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
31 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
32 
33 /*
34  * Patchable globals:
35  *
36  *	rge_autorecover
37  *		Enables/disables automatic recovery after fault detection
38  */
39 static uint32_t rge_autorecover = 1;
40 
41 /*
42  * globals:
43  */
44 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
45 static uint32_t rge_watchdog_count	= 1 << 16;
46 
47 /*
48  * Operating register get/set access routines
49  */
50 
51 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
52 #pragma	inline(rge_reg_get32)
53 
54 static uint32_t
55 rge_reg_get32(rge_t *rgep, uintptr_t regno)
56 {
57 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
58 	    (void *)rgep, regno));
59 
60 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
61 }
62 
63 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
64 #pragma	inline(rge_reg_put32)
65 
66 static void
67 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
68 {
69 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
70 	    (void *)rgep, regno, data));
71 
72 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
73 }
74 
75 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
76 #pragma	inline(rge_reg_set32)
77 
78 static void
79 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
80 {
81 	uint32_t regval;
82 
83 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
84 	    (void *)rgep, regno, bits));
85 
86 	regval = rge_reg_get32(rgep, regno);
87 	regval |= bits;
88 	rge_reg_put32(rgep, regno, regval);
89 }
90 
91 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
92 #pragma	inline(rge_reg_clr32)
93 
94 static void
95 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
96 {
97 	uint32_t regval;
98 
99 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
100 	    (void *)rgep, regno, bits));
101 
102 	regval = rge_reg_get32(rgep, regno);
103 	regval &= ~bits;
104 	rge_reg_put32(rgep, regno, regval);
105 }
106 
107 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
108 #pragma	inline(rge_reg_get16)
109 
110 static uint16_t
111 rge_reg_get16(rge_t *rgep, uintptr_t regno)
112 {
113 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
114 	    (void *)rgep, regno));
115 
116 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
117 }
118 
119 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
120 #pragma	inline(rge_reg_put16)
121 
122 static void
123 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
124 {
125 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
126 	    (void *)rgep, regno, data));
127 
128 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
129 }
130 
131 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
132 #pragma	inline(rge_reg_get8)
133 
134 static uint8_t
135 rge_reg_get8(rge_t *rgep, uintptr_t regno)
136 {
137 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
138 	    (void *)rgep, regno));
139 
140 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
141 }
142 
143 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
144 #pragma	inline(rge_reg_put8)
145 
146 static void
147 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
148 {
149 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
150 	    (void *)rgep, regno, data));
151 
152 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
153 }
154 
155 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
156 #pragma	inline(rge_reg_set8)
157 
158 static void
159 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
160 {
161 	uint8_t regval;
162 
163 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
164 	    (void *)rgep, regno, bits));
165 
166 	regval = rge_reg_get8(rgep, regno);
167 	regval |= bits;
168 	rge_reg_put8(rgep, regno, regval);
169 }
170 
171 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
172 #pragma	inline(rge_reg_clr8)
173 
174 static void
175 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
176 {
177 	uint8_t regval;
178 
179 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
180 	    (void *)rgep, regno, bits));
181 
182 	regval = rge_reg_get8(rgep, regno);
183 	regval &= ~bits;
184 	rge_reg_put8(rgep, regno, regval);
185 }
186 
187 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
188 #pragma	no_inline(rge_mii_get16)
189 
190 uint16_t
191 rge_mii_get16(rge_t *rgep, uintptr_t mii)
192 {
193 	uint32_t regval;
194 	uint32_t val32;
195 	uint32_t i;
196 
197 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
198 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
199 
200 	/*
201 	 * Waiting for PHY reading OK
202 	 */
203 	for (i = 0; i < PHY_RESET_LOOP; i++) {
204 		drv_usecwait(1000);
205 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
206 		if (val32 & PHY_ACCESS_WR_FLAG)
207 			return ((uint16_t)(val32 & 0xffff));
208 	}
209 
210 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
211 	return ((uint16_t)~0u);
212 }
213 
214 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
215 #pragma	no_inline(rge_mii_put16)
216 
217 void
218 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
219 {
220 	uint32_t regval;
221 	uint32_t val32;
222 	uint32_t i;
223 
224 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
225 	regval |= data & PHY_DATA_MASK;
226 	regval |= PHY_ACCESS_WR_FLAG;
227 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
228 
229 	/*
230 	 * Waiting for PHY writing OK
231 	 */
232 	for (i = 0; i < PHY_RESET_LOOP; i++) {
233 		drv_usecwait(1000);
234 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
235 		if (!(val32 & PHY_ACCESS_WR_FLAG))
236 			return;
237 	}
238 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
239 	    mii, data));
240 }
241 
242 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
243 #pragma	no_inline(rge_ephy_put16)
244 
245 void
246 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
247 {
248 	uint32_t regval;
249 	uint32_t val32;
250 	uint32_t i;
251 
252 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
253 	regval |= data & EPHY_DATA_MASK;
254 	regval |= EPHY_ACCESS_WR_FLAG;
255 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
256 
257 	/*
258 	 * Waiting for PHY writing OK
259 	 */
260 	for (i = 0; i < PHY_RESET_LOOP; i++) {
261 		drv_usecwait(1000);
262 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
263 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
264 			return;
265 	}
266 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
267 	    emii, data));
268 }
269 
270 /*
271  * Atomically shift a 32-bit word left, returning
272  * the value it had *before* the shift was applied
273  */
274 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
275 #pragma	inline(rge_mii_put16)
276 
277 static uint32_t
278 rge_atomic_shl32(uint32_t *sp, uint_t count)
279 {
280 	uint32_t oldval;
281 	uint32_t newval;
282 
283 	/* ATOMICALLY */
284 	do {
285 		oldval = *sp;
286 		newval = oldval << count;
287 	} while (cas32(sp, oldval, newval) != oldval);
288 
289 	return (oldval);
290 }
291 
292 /*
293  * PHY operation routines
294  */
295 #if	RGE_DEBUGGING
296 
297 void
298 rge_phydump(rge_t *rgep)
299 {
300 	uint16_t regs[32];
301 	int i;
302 
303 	ASSERT(mutex_owned(rgep->genlock));
304 
305 	for (i = 0; i < 32; ++i) {
306 		regs[i] = rge_mii_get16(rgep, i);
307 	}
308 
309 	for (i = 0; i < 32; i += 8)
310 		RGE_DEBUG(("rge_phydump: "
311 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
312 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
313 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
314 }
315 
316 #endif	/* RGE_DEBUGGING */
317 
318 static void
319 rge_phy_check(rge_t *rgep)
320 {
321 	uint16_t gig_ctl;
322 
323 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
324 		/*
325 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
326 		 * every 15 seconds whin link down & advertise is 1000.
327 		 */
328 		if (rgep->chipid.phy_ver == PHY_VER_S) {
329 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
330 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
331 				rgep->link_down_count++;
332 				if (rgep->link_down_count > 15) {
333 					(void) rge_phy_reset(rgep);
334 					rgep->stats.phy_reset++;
335 					rgep->link_down_count = 0;
336 				}
337 			}
338 		}
339 	} else {
340 		rgep->link_down_count = 0;
341 	}
342 }
343 
344 /*
345  * Basic low-level function to reset the PHY.
346  * Doesn't incorporate any special-case workarounds.
347  *
348  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
349  */
350 boolean_t
351 rge_phy_reset(rge_t *rgep)
352 {
353 	uint16_t control;
354 	uint_t count;
355 
356 	/*
357 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
358 	 */
359 	control = rge_mii_get16(rgep, MII_CONTROL);
360 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
361 	for (count = 0; count < 5; count++) {
362 		drv_usecwait(100);
363 		control = rge_mii_get16(rgep, MII_CONTROL);
364 		if (BIC(control, MII_CONTROL_RESET))
365 			return (B_TRUE);
366 	}
367 
368 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
369 	return (B_FALSE);
370 }
371 
372 /*
373  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
374  * and advertisements with the required settings as specified by the various
375  * param_* variables that can be poked via the NDD interface.
376  *
377  * We always reset the PHY and reprogram *all* the relevant registers,
378  * not just those changed.  This should cause the link to go down, and then
379  * back up again once the link is stable and autonegotiation (if enabled)
380  * is complete.  We should get a link state change interrupt somewhere along
381  * the way ...
382  *
383  * NOTE: <genlock> must already be held by the caller
384  */
385 void
386 rge_phy_update(rge_t *rgep)
387 {
388 	boolean_t adv_autoneg;
389 	boolean_t adv_pause;
390 	boolean_t adv_asym_pause;
391 	boolean_t adv_1000fdx;
392 	boolean_t adv_1000hdx;
393 	boolean_t adv_100fdx;
394 	boolean_t adv_100hdx;
395 	boolean_t adv_10fdx;
396 	boolean_t adv_10hdx;
397 
398 	uint16_t control;
399 	uint16_t gigctrl;
400 	uint16_t anar;
401 
402 	ASSERT(mutex_owned(rgep->genlock));
403 
404 	RGE_DEBUG(("rge_phy_update: autoneg %d "
405 	    "pause %d asym_pause %d "
406 	    "1000fdx %d 1000hdx %d "
407 	    "100fdx %d 100hdx %d "
408 	    "10fdx %d 10hdx %d ",
409 	    rgep->param_adv_autoneg,
410 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
411 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
412 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
413 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
414 
415 	control = gigctrl = anar = 0;
416 
417 	/*
418 	 * PHY settings are normally based on the param_* variables,
419 	 * but if any loopback mode is in effect, that takes precedence.
420 	 *
421 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
422 	 * and External loopback at a variety of speeds (with a special
423 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
424 	 * is turned ON, and the speed/mastership is forced.
425 	 */
426 	switch (rgep->param_loop_mode) {
427 	case RGE_LOOP_NONE:
428 	default:
429 		adv_autoneg = rgep->param_adv_autoneg;
430 		adv_pause = rgep->param_adv_pause;
431 		adv_asym_pause = rgep->param_adv_asym_pause;
432 		adv_1000fdx = rgep->param_adv_1000fdx;
433 		adv_1000hdx = rgep->param_adv_1000hdx;
434 		adv_100fdx = rgep->param_adv_100fdx;
435 		adv_100hdx = rgep->param_adv_100hdx;
436 		adv_10fdx = rgep->param_adv_10fdx;
437 		adv_10hdx = rgep->param_adv_10hdx;
438 		break;
439 
440 	case RGE_LOOP_INTERNAL_PHY:
441 	case RGE_LOOP_INTERNAL_MAC:
442 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
443 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
444 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
445 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
446 
447 		switch (rgep->param_loop_mode) {
448 		case RGE_LOOP_INTERNAL_PHY:
449 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
450 				rgep->param_link_speed = 1000;
451 				adv_1000fdx = B_TRUE;
452 			} else {
453 				rgep->param_link_speed = 100;
454 				adv_100fdx = B_TRUE;
455 			}
456 			control = MII_CONTROL_LOOPBACK;
457 			break;
458 
459 		case RGE_LOOP_INTERNAL_MAC:
460 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
461 				rgep->param_link_speed = 1000;
462 				adv_1000fdx = B_TRUE;
463 			} else {
464 				rgep->param_link_speed = 100;
465 				adv_100fdx = B_TRUE;
466 			break;
467 		}
468 	}
469 
470 	RGE_DEBUG(("rge_phy_update: autoneg %d "
471 	    "pause %d asym_pause %d "
472 	    "1000fdx %d 1000hdx %d "
473 	    "100fdx %d 100hdx %d "
474 	    "10fdx %d 10hdx %d ",
475 	    adv_autoneg,
476 	    adv_pause, adv_asym_pause,
477 	    adv_1000fdx, adv_1000hdx,
478 	    adv_100fdx, adv_100hdx,
479 	    adv_10fdx, adv_10hdx));
480 
481 	/*
482 	 * We should have at least one technology capability set;
483 	 * if not, we select a default of 1000Mb/s full-duplex
484 	 */
485 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
486 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
487 		if (rgep->chipid.mac_ver != MAC_VER_8101E)
488 			adv_1000fdx = B_TRUE;
489 		} else {
490 			adv_1000fdx = B_FALSE;
491 			adv_100fdx = B_TRUE;
492 		}
493 	}
494 
495 	/*
496 	 * Now transform the adv_* variables into the proper settings
497 	 * of the PHY registers ...
498 	 *
499 	 * If autonegotiation is (now) enabled, we want to trigger
500 	 * a new autonegotiation cycle once the PHY has been
501 	 * programmed with the capabilities to be advertised.
502 	 *
503 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
504 	 */
505 	if (adv_autoneg)
506 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
507 
508 	if (adv_1000fdx)
509 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
510 	else if (adv_1000hdx)
511 		control |= MII_CONTROL_1GB;
512 	else if (adv_100fdx)
513 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
514 	else if (adv_100hdx)
515 		control |= MII_CONTROL_100MB;
516 	else if (adv_10fdx)
517 		control |= MII_CONTROL_FDUPLEX;
518 	else if (adv_10hdx)
519 		control |= 0;
520 	else
521 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
522 
523 	if (adv_1000fdx) {
524 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
525 		/*
526 		 * Chipset limitation: need set other capabilities to true
527 		 */
528 		if (rgep->chipid.is_pcie)
529 			adv_1000hdx = B_TRUE;
530 		adv_100fdx = B_TRUE;
531 		adv_100hdx  = B_TRUE;
532 		adv_10fdx = B_TRUE;
533 		adv_10hdx = B_TRUE;
534 	}
535 
536 	if (adv_1000hdx)
537 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
538 
539 	if (adv_100fdx)
540 		anar |= MII_ABILITY_100BASE_TX_FD;
541 	if (adv_100hdx)
542 		anar |= MII_ABILITY_100BASE_TX;
543 	if (adv_10fdx)
544 		anar |= MII_ABILITY_10BASE_T_FD;
545 	if (adv_10hdx)
546 		anar |= MII_ABILITY_10BASE_T;
547 
548 	if (adv_pause)
549 		anar |= MII_ABILITY_PAUSE;
550 	if (adv_asym_pause)
551 		anar |= MII_ABILITY_ASMPAUSE;
552 
553 	/*
554 	 * Munge in any other fixed bits we require ...
555 	 */
556 	anar |= MII_AN_SELECTOR_8023;
557 
558 	/*
559 	 * Restart the PHY and write the new values.  Note the
560 	 * time, so that we can say whether subsequent link state
561 	 * changes can be attributed to our reprogramming the PHY
562 	 */
563 	rge_phy_init(rgep);
564 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
565 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
566 		/* power up PHY for RTL8168B chipset */
567 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
568 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
569 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
570 	}
571 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
572 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
573 	rge_mii_put16(rgep, MII_CONTROL, control);
574 
575 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
576 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
577 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
578 }
579 
580 void rge_phy_init(rge_t *rgep);
581 #pragma	no_inline(rge_phy_init)
582 
583 void
584 rge_phy_init(rge_t *rgep)
585 {
586 	rgep->phy_mii_addr = 1;
587 
588 	/*
589 	 * Below phy config steps are copied from the Programming Guide
590 	 * (there's no detail comments for these steps.)
591 	 */
592 	switch (rgep->chipid.mac_ver) {
593 	case MAC_VER_8169S_D:
594 	case MAC_VER_8169S_E :
595 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
596 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
597 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
598 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
599 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
600 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
601 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
602 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
603 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
604 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
605 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
606 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
607 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
608 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
609 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
610 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
611 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
612 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
613 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
614 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
615 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
616 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
617 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
618 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
619 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
620 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
621 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
622 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
623 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
624 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
625 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
626 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
627 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
628 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
629 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
630 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
631 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
632 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
633 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
634 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
635 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
636 		break;
637 
638 	case MAC_VER_8169SB:
639 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
640 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
641 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
642 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
643 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
644 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
645 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
646 		break;
647 
648 	case MAC_VER_8169SC:
649 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
650 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
651 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
652 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
653 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
654 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
655 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
656 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
657 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
658 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
659 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
660 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
661 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
662 		break;
663 
664 	case MAC_VER_8168:
665 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
666 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
667 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
668 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
669 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
670 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
671 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
672 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
673 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
674 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
675 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
676 		break;
677 
678 	case MAC_VER_8168B_B:
679 	case MAC_VER_8168B_C:
680 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
681 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
682 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
683 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
684 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
685 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
686 		break;
687 	}
688 }
689 
690 void rge_chip_ident(rge_t *rgep);
691 #pragma	no_inline(rge_chip_ident)
692 
693 void
694 rge_chip_ident(rge_t *rgep)
695 {
696 	chip_id_t *chip = &rgep->chipid;
697 	uint32_t val32;
698 	uint16_t val16;
699 
700 	/*
701 	 * Read and record MAC version
702 	 */
703 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
704 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
705 	chip->mac_ver = val32;
706 	switch (chip->mac_ver) {
707 	case MAC_VER_8168:
708 	case MAC_VER_8168B_B:
709 	case MAC_VER_8168B_C:
710 	case MAC_VER_8101E:
711 	case MAC_VER_8101E_B:
712 		chip->is_pcie = B_TRUE;
713 		break;
714 
715 	default:
716 		chip->is_pcie = B_FALSE;
717 		break;
718 	}
719 
720 	/*
721 	 * Read and record PHY version
722 	 */
723 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
724 	val16 &= PHY_VER_MASK;
725 	chip->phy_ver = val16;
726 
727 	/* set pci latency timer */
728 	if (chip->mac_ver == MAC_VER_8169 ||
729 	    chip->mac_ver == MAC_VER_8169S_D ||
730 	    chip->mac_ver == MAC_VER_8169SC)
731 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
732 
733 	if (chip->mac_ver == MAC_VER_8169SC) {
734 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
735 		val16 &= 0x0300;
736 		if (val16 == 0x1)	/* 66Mhz PCI */
737 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff);
738 		else if (val16 == 0x0) /* 33Mhz PCI */
739 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00);
740 	}
741 
742 	/*
743 	 * PCIE chipset require the Rx buffer start address must be
744 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
745 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
746 	 */
747 	if (chip->is_pcie) {
748 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
749 		if (rgep->default_mtu > ETHERMTU) {
750 			rge_notice(rgep, "Jumbo packets not supported "
751 			    "for this PCIE chipset");
752 			rgep->default_mtu = ETHERMTU;
753 		}
754 	}
755 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
756 		rgep->head_room = 0;
757 	else
758 		rgep->head_room = RGE_HEADROOM;
759 
760 	/*
761 	 * Initialize other variables.
762 	 */
763 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
764 		rgep->default_mtu = ETHERMTU;
765 	if (rgep->default_mtu > ETHERMTU) {
766 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
767 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
768 		rgep->ethmax_size = RGE_JUMBO_SIZE;
769 	} else {
770 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
771 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
772 		rgep->ethmax_size = ETHERMAX;
773 	}
774 	chip->rxconfig = RX_CONFIG_DEFAULT;
775 	chip->txconfig = TX_CONFIG_DEFAULT;
776 
777 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
778 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
779 }
780 
781 /*
782  * Perform first-stage chip (re-)initialisation, using only config-space
783  * accesses:
784  *
785  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
786  *   returning the data in the structure pointed to by <idp>.
787  * + Enable Memory Space accesses.
788  * + Enable Bus Mastering according.
789  */
790 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
791 #pragma	no_inline(rge_chip_cfg_init)
792 
793 void
794 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
795 {
796 	ddi_acc_handle_t handle;
797 	uint16_t commd;
798 
799 	handle = rgep->cfg_handle;
800 
801 	/*
802 	 * Save PCI cache line size and subsystem vendor ID
803 	 */
804 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
805 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
806 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
807 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
808 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
809 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
810 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
811 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
812 
813 	/*
814 	 * Turn on Master Enable (DMA) and IO Enable bits.
815 	 * Enable PCI Memory Space accesses
816 	 */
817 	commd = cidp->command;
818 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
819 	pci_config_put16(handle, PCI_CONF_COMM, commd);
820 
821 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
822 	    cidp->vendor, cidp->device, cidp->revision));
823 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
824 	    cidp->subven, cidp->subdev));
825 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
826 	    cidp->clsize, cidp->latency, cidp->command));
827 }
828 
829 int rge_chip_reset(rge_t *rgep);
830 #pragma	no_inline(rge_chip_reset)
831 
832 int
833 rge_chip_reset(rge_t *rgep)
834 {
835 	int i;
836 	uint8_t val8;
837 
838 	/*
839 	 * Chip should be in STOP state
840 	 */
841 	rge_reg_clr8(rgep, RT_COMMAND_REG,
842 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
843 
844 	/*
845 	 * Disable interrupt
846 	 */
847 	rgep->int_mask = INT_MASK_NONE;
848 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
849 
850 	/*
851 	 * Clear pended interrupt
852 	 */
853 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
854 
855 	/*
856 	 * Reset chip
857 	 */
858 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
859 
860 	/*
861 	 * Wait for reset success
862 	 */
863 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
864 		drv_usecwait(10);
865 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
866 		if (!(val8 & RT_COMMAND_RESET)) {
867 			rgep->rge_chip_state = RGE_CHIP_RESET;
868 			return (0);
869 		}
870 	}
871 	RGE_REPORT((rgep, "rge_chip_reset fail."));
872 	return (-1);
873 }
874 
875 void rge_chip_init(rge_t *rgep);
876 #pragma	no_inline(rge_chip_init)
877 
878 void
879 rge_chip_init(rge_t *rgep)
880 {
881 	uint32_t val32;
882 	uint32_t val16;
883 	uint32_t *hashp;
884 	chip_id_t *chip = &rgep->chipid;
885 
886 	if (chip->is_pcie) {
887 		/*
888 		 * Increase the threshold voltage of RX sensitivity
889 		 */
890 		if (chip->mac_ver != MAC_VER_8168 &&
891 		    chip->mac_ver != MAC_VER_8101E_B)
892 			rge_ephy_put16(rgep, 0x01, 0x1bd3);
893 
894 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
895 		val16 = 0x12<<8 | val16;
896 		if (rgep->chipid.mac_ver != MAC_VER_8101E &&
897 		    rgep->chipid.mac_ver != MAC_VER_8101E_B &&
898 		    rgep->chipid.mac_ver != MAC_VER_8101E_C &&
899 		    rgep->chipid.mac_ver != MAC_VER_8168B_C) {
900 			rge_reg_put16(rgep, PHY_STATUS_REG, val16);
901 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
902 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
903 			rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
904 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
905 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
906 			val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
907 			val32 |= 0x7000;
908 			val32 &= 0xffff5fff;
909 			rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
910 			rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
911 		}
912 	}
913 
914 	/*
915 	 * Config MII register
916 	 */
917 	rgep->param_link_up = LINK_STATE_DOWN;
918 	rge_phy_update(rgep);
919 
920 	/*
921 	 * Enable Rx checksum offload.
922 	 *  Then for vlan support, we must enable receive vlan de-tagging.
923 	 *  Otherwise, there'll be checksum error.
924 	 */
925 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
926 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
927 	if (chip->mac_ver == MAC_VER_8169S_D) {
928 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
929 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
930 	}
931 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
932 
933 	/*
934 	 * Start transmit/receive before set tx/rx configuration register
935 	 */
936 	if (!chip->is_pcie)
937 		rge_reg_set8(rgep, RT_COMMAND_REG,
938 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
939 
940 	/*
941 	 * Set dump tally counter register
942 	 */
943 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
944 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
945 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
946 	val32 &= DUMP_COUNTER_REG_RESV;
947 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
948 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
949 
950 	/*
951 	 * Change to config register write enable mode
952 	 */
953 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
954 
955 	/*
956 	 * Set Tx/Rx maximum packet size
957 	 */
958 	if (rgep->default_mtu > ETHERMTU) {
959 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
960 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
961 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
962 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
963 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
964 	} else {
965 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
966 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
967 	}
968 
969 	/*
970 	 * Set receive configuration register
971 	 */
972 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
973 	val32 &= RX_CONFIG_REG_RESV;
974 	if (rgep->promisc)
975 		val32 |= RX_ACCEPT_ALL_PKT;
976 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
977 
978 	/*
979 	 * Set transmit configuration register
980 	 */
981 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
982 	val32 &= TX_CONFIG_REG_RESV;
983 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
984 
985 	/*
986 	 * Set Tx/Rx descriptor register
987 	 */
988 	val32 = rgep->tx_desc.cookie.dmac_laddress;
989 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
990 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
991 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
992 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
993 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
994 	val32 = rgep->rx_desc.cookie.dmac_laddress;
995 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
996 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
997 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
998 
999 	/*
1000 	 * Suggested setting from Realtek
1001 	 */
1002 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1003 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1004 	else
1005 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1006 
1007 	/*
1008 	 * Set multicast register
1009 	 */
1010 	hashp = (uint32_t *)rgep->mcast_hash;
1011 	rge_reg_put32(rgep, MULTICAST_0_REG, hashp[0]);
1012 	rge_reg_put32(rgep, MULTICAST_4_REG, hashp[1]);
1013 
1014 	/*
1015 	 * Msic register setting:
1016 	 *   -- Missed packet counter: clear it
1017 	 *   -- TimerInt Register
1018 	 *   -- Timer count register
1019 	 */
1020 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1021 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1022 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1023 
1024 	/*
1025 	 * disable the Unicast Wakeup Frame capability
1026 	 */
1027 	rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
1028 
1029 	/*
1030 	 * Return to normal network/host communication mode
1031 	 */
1032 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1033 	drv_usecwait(20);
1034 }
1035 
1036 /*
1037  * rge_chip_start() -- start the chip transmitting and/or receiving,
1038  * including enabling interrupts
1039  */
1040 void rge_chip_start(rge_t *rgep);
1041 #pragma	no_inline(rge_chip_start)
1042 
1043 void
1044 rge_chip_start(rge_t *rgep)
1045 {
1046 	/*
1047 	 * Clear statistics
1048 	 */
1049 	bzero(&rgep->stats, sizeof (rge_stats_t));
1050 	DMA_ZERO(rgep->dma_area_stats);
1051 
1052 	/*
1053 	 * Start transmit/receive
1054 	 */
1055 	rge_reg_set8(rgep, RT_COMMAND_REG,
1056 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1057 
1058 	/*
1059 	 * Enable interrupt
1060 	 */
1061 	rgep->int_mask = RGE_INT_MASK;
1062 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1063 
1064 	/*
1065 	 * All done!
1066 	 */
1067 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1068 }
1069 
1070 /*
1071  * rge_chip_stop() -- stop board receiving
1072  *
1073  * Since this function is also invoked by rge_quiesce(), it
1074  * must not block; also, no tracing or logging takes place
1075  * when invoked by rge_quiesce().
1076  */
1077 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1078 #pragma	no_inline(rge_chip_stop)
1079 
1080 void
1081 rge_chip_stop(rge_t *rgep, boolean_t fault)
1082 {
1083 	/*
1084 	 * Disable interrupt
1085 	 */
1086 	rgep->int_mask = INT_MASK_NONE;
1087 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1088 
1089 	/*
1090 	 * Clear pended interrupt
1091 	 */
1092 	if (!rgep->suspended) {
1093 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1094 	}
1095 
1096 	/*
1097 	 * Stop the board and disable transmit/receive
1098 	 */
1099 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1100 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1101 
1102 	if (fault)
1103 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1104 	else
1105 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1106 }
1107 
1108 /*
1109  * rge_get_mac_addr() -- get the MAC address on NIC
1110  */
1111 static void rge_get_mac_addr(rge_t *rgep);
1112 #pragma	inline(rge_get_mac_addr)
1113 
1114 static void
1115 rge_get_mac_addr(rge_t *rgep)
1116 {
1117 	uint8_t *macaddr = rgep->netaddr;
1118 	uint32_t val32;
1119 
1120 	/*
1121 	 * Read first 4-byte of mac address
1122 	 */
1123 	val32 = rge_reg_get32(rgep, ID_0_REG);
1124 	macaddr[0] = val32 & 0xff;
1125 	val32 = val32 >> 8;
1126 	macaddr[1] = val32 & 0xff;
1127 	val32 = val32 >> 8;
1128 	macaddr[2] = val32 & 0xff;
1129 	val32 = val32 >> 8;
1130 	macaddr[3] = val32 & 0xff;
1131 
1132 	/*
1133 	 * Read last 2-byte of mac address
1134 	 */
1135 	val32 = rge_reg_get32(rgep, ID_4_REG);
1136 	macaddr[4] = val32 & 0xff;
1137 	val32 = val32 >> 8;
1138 	macaddr[5] = val32 & 0xff;
1139 }
1140 
1141 static void rge_set_mac_addr(rge_t *rgep);
1142 #pragma	inline(rge_set_mac_addr)
1143 
1144 static void
1145 rge_set_mac_addr(rge_t *rgep)
1146 {
1147 	uint8_t *p = rgep->netaddr;
1148 	uint32_t val32;
1149 
1150 	/*
1151 	 * Change to config register write enable mode
1152 	 */
1153 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1154 
1155 	/*
1156 	 * Get first 4 bytes of mac address
1157 	 */
1158 	val32 = p[3];
1159 	val32 = val32 << 8;
1160 	val32 |= p[2];
1161 	val32 = val32 << 8;
1162 	val32 |= p[1];
1163 	val32 = val32 << 8;
1164 	val32 |= p[0];
1165 
1166 	/*
1167 	 * Set first 4 bytes of mac address
1168 	 */
1169 	rge_reg_put32(rgep, ID_0_REG, val32);
1170 
1171 	/*
1172 	 * Get last 2 bytes of mac address
1173 	 */
1174 	val32 = p[5];
1175 	val32 = val32 << 8;
1176 	val32 |= p[4];
1177 
1178 	/*
1179 	 * Set last 2 bytes of mac address
1180 	 */
1181 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1182 	rge_reg_put32(rgep, ID_4_REG, val32);
1183 
1184 	/*
1185 	 * Return to normal network/host communication mode
1186 	 */
1187 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1188 }
1189 
1190 static void rge_set_multi_addr(rge_t *rgep);
1191 #pragma	inline(rge_set_multi_addr)
1192 
1193 static void
1194 rge_set_multi_addr(rge_t *rgep)
1195 {
1196 	uint32_t *hashp;
1197 
1198 	hashp = (uint32_t *)rgep->mcast_hash;
1199 
1200 	/*
1201 	 * Change to config register write enable mode
1202 	 */
1203 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1204 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1205 	}
1206 	rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1207 	rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1208 
1209 	/*
1210 	 * Return to normal network/host communication mode
1211 	 */
1212 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1213 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1214 	}
1215 }
1216 
1217 static void rge_set_promisc(rge_t *rgep);
1218 #pragma	inline(rge_set_promisc)
1219 
1220 static void
1221 rge_set_promisc(rge_t *rgep)
1222 {
1223 	if (rgep->promisc)
1224 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1225 	else
1226 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1227 }
1228 
1229 /*
1230  * rge_chip_sync() -- program the chip with the unicast MAC address,
1231  * the multicast hash table, the required level of promiscuity, and
1232  * the current loopback mode ...
1233  */
1234 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1235 #pragma	no_inline(rge_chip_sync)
1236 
1237 void
1238 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1239 {
1240 	switch (todo) {
1241 	case RGE_GET_MAC:
1242 		rge_get_mac_addr(rgep);
1243 		break;
1244 	case RGE_SET_MAC:
1245 		/* Reprogram the unicast MAC address(es) ... */
1246 		rge_set_mac_addr(rgep);
1247 		break;
1248 	case RGE_SET_MUL:
1249 		/* Reprogram the hashed multicast address table ... */
1250 		rge_set_multi_addr(rgep);
1251 		break;
1252 	case RGE_SET_PROMISC:
1253 		/* Set or clear the PROMISCUOUS mode bit */
1254 		rge_set_promisc(rgep);
1255 		break;
1256 	default:
1257 		break;
1258 	}
1259 }
1260 
1261 void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
1262 #pragma	no_inline(rge_chip_blank)
1263 
1264 /* ARGSUSED */
1265 void
1266 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
1267 {
1268 	_NOTE(ARGUNUSED(arg, ticks, count));
1269 }
1270 
1271 void rge_tx_trigger(rge_t *rgep);
1272 #pragma	no_inline(rge_tx_trigger)
1273 
1274 void
1275 rge_tx_trigger(rge_t *rgep)
1276 {
1277 	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1278 }
1279 
1280 void rge_hw_stats_dump(rge_t *rgep);
1281 #pragma	no_inline(rge_tx_trigger)
1282 
1283 void
1284 rge_hw_stats_dump(rge_t *rgep)
1285 {
1286 	int i = 0;
1287 
1288 	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1289 		drv_usecwait(100);
1290 		if (++i > STATS_DUMP_LOOP) {
1291 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1292 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1293 			return;
1294 		}
1295 	}
1296 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1297 
1298 	/*
1299 	 * Start H/W statistics dump for RTL8169 chip
1300 	 */
1301 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1302 }
1303 
1304 /*
1305  * ========== Hardware interrupt handler ==========
1306  */
1307 
1308 #undef	RGE_DBG
1309 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1310 
1311 static void rge_wake_factotum(rge_t *rgep);
1312 #pragma	inline(rge_wake_factotum)
1313 
1314 static void
1315 rge_wake_factotum(rge_t *rgep)
1316 {
1317 	if (rgep->factotum_flag == 0) {
1318 		rgep->factotum_flag = 1;
1319 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1320 	}
1321 }
1322 
1323 /*
1324  *	rge_intr() -- handle chip interrupts
1325  */
1326 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1327 #pragma	no_inline(rge_intr)
1328 
1329 uint_t
1330 rge_intr(caddr_t arg1, caddr_t arg2)
1331 {
1332 	rge_t *rgep = (rge_t *)arg1;
1333 	uint16_t int_status;
1334 
1335 	_NOTE(ARGUNUSED(arg2))
1336 
1337 	mutex_enter(rgep->genlock);
1338 
1339 	if (rgep->suspended) {
1340 		mutex_exit(rgep->genlock);
1341 		return (DDI_INTR_UNCLAIMED);
1342 	}
1343 
1344 	/*
1345 	 * Was this interrupt caused by our device...
1346 	 */
1347 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1348 	if (!(int_status & rgep->int_mask)) {
1349 		mutex_exit(rgep->genlock);
1350 		return (DDI_INTR_UNCLAIMED);
1351 				/* indicate it wasn't our interrupt */
1352 	}
1353 	rgep->stats.intr++;
1354 
1355 	/*
1356 	 * Clear interrupt
1357 	 *	For PCIE chipset, we need disable interrupt first.
1358 	 */
1359 	if (rgep->chipid.is_pcie)
1360 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1361 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1362 
1363 	/*
1364 	 * Cable link change interrupt
1365 	 */
1366 	if (int_status & LINK_CHANGE_INT) {
1367 		rge_chip_cyclic(rgep);
1368 	}
1369 
1370 	mutex_exit(rgep->genlock);
1371 
1372 	/*
1373 	 * Receive interrupt
1374 	 */
1375 	if (int_status & RGE_RX_INT)
1376 		rge_receive(rgep);
1377 
1378 	/*
1379 	 * Re-enable interrupt for PCIE chipset
1380 	 */
1381 	if (rgep->chipid.is_pcie)
1382 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1383 
1384 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1385 }
1386 
1387 /*
1388  * ========== Factotum, implemented as a softint handler ==========
1389  */
1390 
1391 #undef	RGE_DBG
1392 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1393 
1394 static boolean_t rge_factotum_link_check(rge_t *rgep);
1395 #pragma	no_inline(rge_factotum_link_check)
1396 
1397 static boolean_t
1398 rge_factotum_link_check(rge_t *rgep)
1399 {
1400 	uint8_t media_status;
1401 	int32_t link;
1402 
1403 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1404 	link = (media_status & PHY_STATUS_LINK_UP) ?
1405 	    LINK_STATE_UP : LINK_STATE_DOWN;
1406 	if (rgep->param_link_up != link) {
1407 		/*
1408 		 * Link change.
1409 		 */
1410 		rgep->param_link_up = link;
1411 
1412 		if (link == LINK_STATE_UP) {
1413 			if (media_status & PHY_STATUS_1000MF) {
1414 				rgep->param_link_speed = RGE_SPEED_1000M;
1415 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1416 			} else {
1417 				rgep->param_link_speed =
1418 				    (media_status & PHY_STATUS_100M) ?
1419 				    RGE_SPEED_100M : RGE_SPEED_10M;
1420 				rgep->param_link_duplex =
1421 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1422 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1423 			}
1424 		}
1425 		return (B_TRUE);
1426 	}
1427 	return (B_FALSE);
1428 }
1429 
1430 /*
1431  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1432  */
1433 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1434 #pragma	no_inline(rge_factotum_stall_check)
1435 
1436 static boolean_t
1437 rge_factotum_stall_check(rge_t *rgep)
1438 {
1439 	uint32_t dogval;
1440 
1441 	ASSERT(mutex_owned(rgep->genlock));
1442 
1443 	/*
1444 	 * Specific check for Tx stall ...
1445 	 *
1446 	 * The 'watchdog' counter is incremented whenever a packet
1447 	 * is queued, reset to 1 when some (but not all) buffers
1448 	 * are reclaimed, reset to 0 (disabled) when all buffers
1449 	 * are reclaimed, and shifted left here.  If it exceeds the
1450 	 * threshold value, the chip is assumed to have stalled and
1451 	 * is put into the ERROR state.  The factotum will then reset
1452 	 * it on the next pass.
1453 	 *
1454 	 * All of which should ensure that we don't get into a state
1455 	 * where packets are left pending indefinitely!
1456 	 */
1457 	if (rgep->resched_needed)
1458 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1459 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1460 	if (dogval < rge_watchdog_count)
1461 		return (B_FALSE);
1462 
1463 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1464 	return (B_TRUE);
1465 
1466 }
1467 
1468 /*
1469  * The factotum is woken up when there's something to do that we'd rather
1470  * not do from inside a hardware interrupt handler or high-level cyclic.
1471  * Its two main tasks are:
1472  *	reset & restart the chip after an error
1473  *	check the link status whenever necessary
1474  */
1475 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1476 #pragma	no_inline(rge_chip_factotum)
1477 
1478 uint_t
1479 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1480 {
1481 	rge_t *rgep;
1482 	uint_t result;
1483 	boolean_t error;
1484 	boolean_t linkchg;
1485 
1486 	rgep = (rge_t *)arg1;
1487 	_NOTE(ARGUNUSED(arg2))
1488 
1489 	if (rgep->factotum_flag == 0)
1490 		return (DDI_INTR_UNCLAIMED);
1491 
1492 	rgep->factotum_flag = 0;
1493 	result = DDI_INTR_CLAIMED;
1494 	error = B_FALSE;
1495 	linkchg = B_FALSE;
1496 
1497 	mutex_enter(rgep->genlock);
1498 	switch (rgep->rge_chip_state) {
1499 	default:
1500 		break;
1501 
1502 	case RGE_CHIP_RUNNING:
1503 		linkchg = rge_factotum_link_check(rgep);
1504 		error = rge_factotum_stall_check(rgep);
1505 		break;
1506 
1507 	case RGE_CHIP_ERROR:
1508 		error = B_TRUE;
1509 		break;
1510 
1511 	case RGE_CHIP_FAULT:
1512 		/*
1513 		 * Fault detected, time to reset ...
1514 		 */
1515 		if (rge_autorecover) {
1516 			RGE_REPORT((rgep, "automatic recovery activated"));
1517 			rge_restart(rgep);
1518 		}
1519 		break;
1520 	}
1521 
1522 	/*
1523 	 * If an error is detected, stop the chip now, marking it as
1524 	 * faulty, so that it will be reset next time through ...
1525 	 */
1526 	if (error)
1527 		rge_chip_stop(rgep, B_TRUE);
1528 	mutex_exit(rgep->genlock);
1529 
1530 	/*
1531 	 * If the link state changed, tell the world about it.
1532 	 * Note: can't do this while still holding the mutex.
1533 	 */
1534 	if (linkchg)
1535 		mac_link_update(rgep->mh, rgep->param_link_up);
1536 
1537 	return (result);
1538 }
1539 
1540 /*
1541  * High-level cyclic handler
1542  *
1543  * This routine schedules a (low-level) softint callback to the
1544  * factotum, and prods the chip to update the status block (which
1545  * will cause a hardware interrupt when complete).
1546  */
1547 void rge_chip_cyclic(void *arg);
1548 #pragma	no_inline(rge_chip_cyclic)
1549 
1550 void
1551 rge_chip_cyclic(void *arg)
1552 {
1553 	rge_t *rgep;
1554 
1555 	rgep = arg;
1556 
1557 	switch (rgep->rge_chip_state) {
1558 	default:
1559 		return;
1560 
1561 	case RGE_CHIP_RUNNING:
1562 		rge_phy_check(rgep);
1563 		break;
1564 
1565 	case RGE_CHIP_FAULT:
1566 	case RGE_CHIP_ERROR:
1567 		break;
1568 	}
1569 
1570 	rge_wake_factotum(rgep);
1571 }
1572 
1573 
1574 /*
1575  * ========== Ioctl subfunctions ==========
1576  */
1577 
1578 #undef	RGE_DBG
1579 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1580 
1581 #if	RGE_DEBUGGING || RGE_DO_PPIO
1582 
1583 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1584 #pragma	no_inline(rge_chip_peek_cfg)
1585 
1586 static void
1587 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1588 {
1589 	uint64_t regval;
1590 	uint64_t regno;
1591 
1592 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1593 	    (void *)rgep, (void *)ppd));
1594 
1595 	regno = ppd->pp_acc_offset;
1596 
1597 	switch (ppd->pp_acc_size) {
1598 	case 1:
1599 		regval = pci_config_get8(rgep->cfg_handle, regno);
1600 		break;
1601 
1602 	case 2:
1603 		regval = pci_config_get16(rgep->cfg_handle, regno);
1604 		break;
1605 
1606 	case 4:
1607 		regval = pci_config_get32(rgep->cfg_handle, regno);
1608 		break;
1609 
1610 	case 8:
1611 		regval = pci_config_get64(rgep->cfg_handle, regno);
1612 		break;
1613 	}
1614 
1615 	ppd->pp_acc_data = regval;
1616 }
1617 
1618 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1619 #pragma	no_inline(rge_chip_poke_cfg)
1620 
1621 static void
1622 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1623 {
1624 	uint64_t regval;
1625 	uint64_t regno;
1626 
1627 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1628 	    (void *)rgep, (void *)ppd));
1629 
1630 	regno = ppd->pp_acc_offset;
1631 	regval = ppd->pp_acc_data;
1632 
1633 	switch (ppd->pp_acc_size) {
1634 	case 1:
1635 		pci_config_put8(rgep->cfg_handle, regno, regval);
1636 		break;
1637 
1638 	case 2:
1639 		pci_config_put16(rgep->cfg_handle, regno, regval);
1640 		break;
1641 
1642 	case 4:
1643 		pci_config_put32(rgep->cfg_handle, regno, regval);
1644 		break;
1645 
1646 	case 8:
1647 		pci_config_put64(rgep->cfg_handle, regno, regval);
1648 		break;
1649 	}
1650 }
1651 
1652 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1653 #pragma	no_inline(rge_chip_peek_reg)
1654 
1655 static void
1656 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1657 {
1658 	uint64_t regval;
1659 	void *regaddr;
1660 
1661 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1662 	    (void *)rgep, (void *)ppd));
1663 
1664 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1665 
1666 	switch (ppd->pp_acc_size) {
1667 	case 1:
1668 		regval = ddi_get8(rgep->io_handle, regaddr);
1669 		break;
1670 
1671 	case 2:
1672 		regval = ddi_get16(rgep->io_handle, regaddr);
1673 		break;
1674 
1675 	case 4:
1676 		regval = ddi_get32(rgep->io_handle, regaddr);
1677 		break;
1678 
1679 	case 8:
1680 		regval = ddi_get64(rgep->io_handle, regaddr);
1681 		break;
1682 	}
1683 
1684 	ppd->pp_acc_data = regval;
1685 }
1686 
1687 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1688 #pragma	no_inline(rge_chip_peek_reg)
1689 
1690 static void
1691 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1692 {
1693 	uint64_t regval;
1694 	void *regaddr;
1695 
1696 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1697 	    (void *)rgep, (void *)ppd));
1698 
1699 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1700 	regval = ppd->pp_acc_data;
1701 
1702 	switch (ppd->pp_acc_size) {
1703 	case 1:
1704 		ddi_put8(rgep->io_handle, regaddr, regval);
1705 		break;
1706 
1707 	case 2:
1708 		ddi_put16(rgep->io_handle, regaddr, regval);
1709 		break;
1710 
1711 	case 4:
1712 		ddi_put32(rgep->io_handle, regaddr, regval);
1713 		break;
1714 
1715 	case 8:
1716 		ddi_put64(rgep->io_handle, regaddr, regval);
1717 		break;
1718 	}
1719 }
1720 
1721 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1722 #pragma	no_inline(rge_chip_peek_mii)
1723 
1724 static void
1725 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1726 {
1727 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1728 	    (void *)rgep, (void *)ppd));
1729 
1730 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1731 }
1732 
1733 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1734 #pragma	no_inline(rge_chip_poke_mii)
1735 
1736 static void
1737 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1738 {
1739 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1740 	    (void *)rgep, (void *)ppd));
1741 
1742 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1743 }
1744 
1745 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1746 #pragma	no_inline(rge_chip_peek_mem)
1747 
1748 static void
1749 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1750 {
1751 	uint64_t regval;
1752 	void *vaddr;
1753 
1754 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1755 	    (void *)rgep, (void *)ppd));
1756 
1757 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1758 
1759 	switch (ppd->pp_acc_size) {
1760 	case 1:
1761 		regval = *(uint8_t *)vaddr;
1762 		break;
1763 
1764 	case 2:
1765 		regval = *(uint16_t *)vaddr;
1766 		break;
1767 
1768 	case 4:
1769 		regval = *(uint32_t *)vaddr;
1770 		break;
1771 
1772 	case 8:
1773 		regval = *(uint64_t *)vaddr;
1774 		break;
1775 	}
1776 
1777 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1778 	    (void *)rgep, (void *)ppd, regval, vaddr));
1779 
1780 	ppd->pp_acc_data = regval;
1781 }
1782 
1783 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1784 #pragma	no_inline(rge_chip_poke_mem)
1785 
1786 static void
1787 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1788 {
1789 	uint64_t regval;
1790 	void *vaddr;
1791 
1792 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1793 	    (void *)rgep, (void *)ppd));
1794 
1795 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1796 	regval = ppd->pp_acc_data;
1797 
1798 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1799 	    (void *)rgep, (void *)ppd, regval, vaddr));
1800 
1801 	switch (ppd->pp_acc_size) {
1802 	case 1:
1803 		*(uint8_t *)vaddr = (uint8_t)regval;
1804 		break;
1805 
1806 	case 2:
1807 		*(uint16_t *)vaddr = (uint16_t)regval;
1808 		break;
1809 
1810 	case 4:
1811 		*(uint32_t *)vaddr = (uint32_t)regval;
1812 		break;
1813 
1814 	case 8:
1815 		*(uint64_t *)vaddr = (uint64_t)regval;
1816 		break;
1817 	}
1818 }
1819 
1820 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1821 					struct iocblk *iocp);
1822 #pragma	no_inline(rge_pp_ioctl)
1823 
1824 static enum ioc_reply
1825 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1826 {
1827 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1828 	rge_peekpoke_t *ppd;
1829 	dma_area_t *areap;
1830 	uint64_t sizemask;
1831 	uint64_t mem_va;
1832 	uint64_t maxoff;
1833 	boolean_t peek;
1834 
1835 	switch (cmd) {
1836 	default:
1837 		/* NOTREACHED */
1838 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1839 		return (IOC_INVAL);
1840 
1841 	case RGE_PEEK:
1842 		peek = B_TRUE;
1843 		break;
1844 
1845 	case RGE_POKE:
1846 		peek = B_FALSE;
1847 		break;
1848 	}
1849 
1850 	/*
1851 	 * Validate format of ioctl
1852 	 */
1853 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1854 		return (IOC_INVAL);
1855 	if (mp->b_cont == NULL)
1856 		return (IOC_INVAL);
1857 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1858 
1859 	/*
1860 	 * Validate request parameters
1861 	 */
1862 	switch (ppd->pp_acc_space) {
1863 	default:
1864 		return (IOC_INVAL);
1865 
1866 	case RGE_PP_SPACE_CFG:
1867 		/*
1868 		 * Config space
1869 		 */
1870 		sizemask = 8|4|2|1;
1871 		mem_va = 0;
1872 		maxoff = PCI_CONF_HDR_SIZE;
1873 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1874 		break;
1875 
1876 	case RGE_PP_SPACE_REG:
1877 		/*
1878 		 * Memory-mapped I/O space
1879 		 */
1880 		sizemask = 8|4|2|1;
1881 		mem_va = 0;
1882 		maxoff = RGE_REGISTER_MAX;
1883 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1884 		break;
1885 
1886 	case RGE_PP_SPACE_MII:
1887 		/*
1888 		 * PHY's MII registers
1889 		 * NB: all PHY registers are two bytes, but the
1890 		 * addresses increment in ones (word addressing).
1891 		 * So we scale the address here, then undo the
1892 		 * transformation inside the peek/poke functions.
1893 		 */
1894 		ppd->pp_acc_offset *= 2;
1895 		sizemask = 2;
1896 		mem_va = 0;
1897 		maxoff = (MII_MAXREG+1)*2;
1898 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1899 		break;
1900 
1901 	case RGE_PP_SPACE_RGE:
1902 		/*
1903 		 * RGE data structure!
1904 		 */
1905 		sizemask = 8|4|2|1;
1906 		mem_va = (uintptr_t)rgep;
1907 		maxoff = sizeof (*rgep);
1908 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1909 		break;
1910 
1911 	case RGE_PP_SPACE_STATISTICS:
1912 	case RGE_PP_SPACE_TXDESC:
1913 	case RGE_PP_SPACE_TXBUFF:
1914 	case RGE_PP_SPACE_RXDESC:
1915 	case RGE_PP_SPACE_RXBUFF:
1916 		/*
1917 		 * Various DMA_AREAs
1918 		 */
1919 		switch (ppd->pp_acc_space) {
1920 		case RGE_PP_SPACE_TXDESC:
1921 			areap = &rgep->dma_area_txdesc;
1922 			break;
1923 		case RGE_PP_SPACE_RXDESC:
1924 			areap = &rgep->dma_area_rxdesc;
1925 			break;
1926 		case RGE_PP_SPACE_STATISTICS:
1927 			areap = &rgep->dma_area_stats;
1928 			break;
1929 		}
1930 
1931 		sizemask = 8|4|2|1;
1932 		mem_va = (uintptr_t)areap->mem_va;
1933 		maxoff = areap->alength;
1934 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1935 		break;
1936 	}
1937 
1938 	switch (ppd->pp_acc_size) {
1939 	default:
1940 		return (IOC_INVAL);
1941 
1942 	case 8:
1943 	case 4:
1944 	case 2:
1945 	case 1:
1946 		if ((ppd->pp_acc_size & sizemask) == 0)
1947 			return (IOC_INVAL);
1948 		break;
1949 	}
1950 
1951 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1952 		return (IOC_INVAL);
1953 
1954 	if (ppd->pp_acc_offset >= maxoff)
1955 		return (IOC_INVAL);
1956 
1957 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1958 		return (IOC_INVAL);
1959 
1960 	/*
1961 	 * All OK - go do it!
1962 	 */
1963 	ppd->pp_acc_offset += mem_va;
1964 	(*ppfn)(rgep, ppd);
1965 	return (peek ? IOC_REPLY : IOC_ACK);
1966 }
1967 
1968 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1969 					struct iocblk *iocp);
1970 #pragma	no_inline(rge_diag_ioctl)
1971 
1972 static enum ioc_reply
1973 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1974 {
1975 	ASSERT(mutex_owned(rgep->genlock));
1976 
1977 	switch (cmd) {
1978 	default:
1979 		/* NOTREACHED */
1980 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
1981 		return (IOC_INVAL);
1982 
1983 	case RGE_DIAG:
1984 		/*
1985 		 * Currently a no-op
1986 		 */
1987 		return (IOC_ACK);
1988 
1989 	case RGE_PEEK:
1990 	case RGE_POKE:
1991 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
1992 
1993 	case RGE_PHY_RESET:
1994 		return (IOC_RESTART_ACK);
1995 
1996 	case RGE_SOFT_RESET:
1997 	case RGE_HARD_RESET:
1998 		/*
1999 		 * Reset and reinitialise the 570x hardware
2000 		 */
2001 		rge_restart(rgep);
2002 		return (IOC_ACK);
2003 	}
2004 
2005 	/* NOTREACHED */
2006 }
2007 
2008 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2009 
2010 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2011 				    struct iocblk *iocp);
2012 #pragma	no_inline(rge_mii_ioctl)
2013 
2014 static enum ioc_reply
2015 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2016 {
2017 	struct rge_mii_rw *miirwp;
2018 
2019 	/*
2020 	 * Validate format of ioctl
2021 	 */
2022 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2023 		return (IOC_INVAL);
2024 	if (mp->b_cont == NULL)
2025 		return (IOC_INVAL);
2026 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2027 
2028 	/*
2029 	 * Validate request parameters ...
2030 	 */
2031 	if (miirwp->mii_reg > MII_MAXREG)
2032 		return (IOC_INVAL);
2033 
2034 	switch (cmd) {
2035 	default:
2036 		/* NOTREACHED */
2037 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2038 		return (IOC_INVAL);
2039 
2040 	case RGE_MII_READ:
2041 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2042 		return (IOC_REPLY);
2043 
2044 	case RGE_MII_WRITE:
2045 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2046 		return (IOC_ACK);
2047 	}
2048 
2049 	/* NOTREACHED */
2050 }
2051 
2052 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2053 				struct iocblk *iocp);
2054 #pragma	no_inline(rge_chip_ioctl)
2055 
2056 enum ioc_reply
2057 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2058 {
2059 	int cmd;
2060 
2061 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2062 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2063 
2064 	ASSERT(mutex_owned(rgep->genlock));
2065 
2066 	cmd = iocp->ioc_cmd;
2067 	switch (cmd) {
2068 	default:
2069 		/* NOTREACHED */
2070 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2071 		return (IOC_INVAL);
2072 
2073 	case RGE_DIAG:
2074 	case RGE_PEEK:
2075 	case RGE_POKE:
2076 	case RGE_PHY_RESET:
2077 	case RGE_SOFT_RESET:
2078 	case RGE_HARD_RESET:
2079 #if	RGE_DEBUGGING || RGE_DO_PPIO
2080 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2081 #else
2082 		return (IOC_INVAL);
2083 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2084 
2085 	case RGE_MII_READ:
2086 	case RGE_MII_WRITE:
2087 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2088 
2089 	}
2090 
2091 	/* NOTREACHED */
2092 }
2093