xref: /titanic_52/usr/src/uts/common/io/nge/nge_chip.c (revision e0f3b92f9ac4073ea7820750694954b119f3fd8c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "nge.h"
30 static uint32_t	nge_watchdog_count	= 1 << 29;
31 extern boolean_t nge_enable_msi;
32 static void nge_sync_mac_modes(nge_t *);
33 
34 #undef NGE_DBG
35 #define	NGE_DBG		NGE_DBG_CHIP
36 
37 /*
38  * Operating register get/set access routines
39  */
40 uint8_t nge_reg_get8(nge_t *ngep, nge_regno_t regno);
41 #pragma	inline(nge_reg_get8)
42 
43 uint8_t
44 nge_reg_get8(nge_t *ngep, nge_regno_t regno)
45 {
46 	NGE_TRACE(("nge_reg_get8($%p, 0x%lx)", (void *)ngep, regno));
47 
48 	return (ddi_get8(ngep->io_handle, PIO_ADDR(ngep, regno)));
49 }
50 
51 void nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data);
52 #pragma	inline(nge_reg_put8)
53 
54 void
55 nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data)
56 {
57 	NGE_TRACE(("nge_reg_put8($%p, 0x%lx, 0x%x)",
58 	    (void *)ngep, regno, data));
59 	ddi_put8(ngep->io_handle, PIO_ADDR(ngep, regno), data);
60 
61 }
62 
63 uint16_t nge_reg_get16(nge_t *ngep, nge_regno_t regno);
64 #pragma	inline(nge_reg_get16)
65 
66 uint16_t
67 nge_reg_get16(nge_t *ngep, nge_regno_t regno)
68 {
69 	NGE_TRACE(("nge_reg_get16($%p, 0x%lx)", (void *)ngep, regno));
70 	return (ddi_get16(ngep->io_handle, PIO_ADDR(ngep, regno)));
71 }
72 
73 void nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data);
74 #pragma	inline(nge_reg_put16)
75 
76 void
77 nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data)
78 {
79 	NGE_TRACE(("nge_reg_put16($%p, 0x%lx, 0x%x)",
80 	    (void *)ngep, regno, data));
81 	ddi_put16(ngep->io_handle, PIO_ADDR(ngep, regno), data);
82 
83 }
84 
85 uint32_t nge_reg_get32(nge_t *ngep, nge_regno_t regno);
86 #pragma	inline(nge_reg_get32)
87 
88 uint32_t
89 nge_reg_get32(nge_t *ngep, nge_regno_t regno)
90 {
91 	NGE_TRACE(("nge_reg_get32($%p, 0x%lx)", (void *)ngep, regno));
92 	return (ddi_get32(ngep->io_handle, PIO_ADDR(ngep, regno)));
93 }
94 
95 void nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data);
96 #pragma	inline(nge_reg_put32)
97 
98 void
99 nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data)
100 {
101 	NGE_TRACE(("nge_reg_put32($%p, 0x%lx, 0x%x)",
102 	    (void *)ngep, regno, data));
103 	ddi_put32(ngep->io_handle, PIO_ADDR(ngep, regno), data);
104 
105 }
106 
107 
108 static int nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
109 #pragma	no_inline(nge_chip_peek_cfg)
110 
111 static int
112 nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
113 {
114 	int err;
115 	uint64_t regval;
116 	uint64_t regno;
117 
118 	NGE_TRACE(("nge_chip_peek_cfg($%p, $%p)",
119 	    (void *)ngep, (void *)ppd));
120 
121 	err = DDI_SUCCESS;
122 	regno = ppd->pp_acc_offset;
123 
124 	switch (ppd->pp_acc_size) {
125 	case 1:
126 		regval = pci_config_get8(ngep->cfg_handle, regno);
127 		break;
128 
129 	case 2:
130 		regval = pci_config_get16(ngep->cfg_handle, regno);
131 		break;
132 
133 	case 4:
134 		regval = pci_config_get32(ngep->cfg_handle, regno);
135 		break;
136 
137 	case 8:
138 		regval = pci_config_get64(ngep->cfg_handle, regno);
139 		break;
140 	}
141 	ppd->pp_acc_data = regval;
142 	return (err);
143 }
144 
145 static int nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
146 
147 static int
148 nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
149 {
150 	int err;
151 	uint64_t regval;
152 	uint64_t regno;
153 
154 	NGE_TRACE(("nge_chip_poke_cfg($%p, $%p)",
155 	    (void *)ngep, (void *)ppd));
156 
157 	err = DDI_SUCCESS;
158 	regno = ppd->pp_acc_offset;
159 	regval = ppd->pp_acc_data;
160 
161 	switch (ppd->pp_acc_size) {
162 	case 1:
163 		pci_config_put8(ngep->cfg_handle, regno, regval);
164 		break;
165 
166 	case 2:
167 		pci_config_put16(ngep->cfg_handle, regno, regval);
168 		break;
169 
170 	case 4:
171 		pci_config_put32(ngep->cfg_handle, regno, regval);
172 		break;
173 
174 	case 8:
175 		pci_config_put64(ngep->cfg_handle, regno, regval);
176 		break;
177 	}
178 
179 	return (err);
180 
181 }
182 
183 static int nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd);
184 
185 static int
186 nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd)
187 {
188 	int err;
189 	uint64_t regval;
190 	void *regaddr;
191 
192 	NGE_TRACE(("nge_chip_peek_reg($%p, $%p)",
193 	    (void *)ngep, (void *)ppd));
194 
195 	err = DDI_SUCCESS;
196 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
197 
198 	switch (ppd->pp_acc_size) {
199 	case 1:
200 		regval = ddi_get8(ngep->io_handle, regaddr);
201 	break;
202 
203 	case 2:
204 		regval = ddi_get16(ngep->io_handle, regaddr);
205 	break;
206 
207 	case 4:
208 		regval = ddi_get32(ngep->io_handle, regaddr);
209 	break;
210 
211 	case 8:
212 		regval = ddi_get64(ngep->io_handle, regaddr);
213 	break;
214 
215 	default:
216 		regval = 0x0ull;
217 	break;
218 	}
219 	ppd->pp_acc_data = regval;
220 	return (err);
221 }
222 
223 static int nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd);
224 
225 static int
226 nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd)
227 {
228 	int err;
229 	uint64_t regval;
230 	void *regaddr;
231 
232 	NGE_TRACE(("nge_chip_poke_reg($%p, $%p)",
233 	    (void *)ngep, (void *)ppd));
234 
235 	err = DDI_SUCCESS;
236 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
237 	regval = ppd->pp_acc_data;
238 
239 	switch (ppd->pp_acc_size) {
240 	case 1:
241 		ddi_put8(ngep->io_handle, regaddr, regval);
242 		break;
243 
244 	case 2:
245 		ddi_put16(ngep->io_handle, regaddr, regval);
246 		break;
247 
248 	case 4:
249 		ddi_put32(ngep->io_handle, regaddr, regval);
250 		break;
251 
252 	case 8:
253 		ddi_put64(ngep->io_handle, regaddr, regval);
254 		break;
255 	}
256 	return (err);
257 }
258 
259 static int nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd);
260 #pragma	no_inline(nge_chip_peek_mii)
261 
262 static int
263 nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd)
264 {
265 	int err;
266 
267 	err = DDI_SUCCESS;
268 	ppd->pp_acc_data = nge_mii_get16(ngep, ppd->pp_acc_offset/2);
269 	return (err);
270 }
271 
272 static int nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd);
273 #pragma	no_inline(nge_chip_poke_mii)
274 
275 static int
276 nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd)
277 {
278 	int err;
279 	err = DDI_SUCCESS;
280 	nge_mii_put16(ngep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
281 	return (err);
282 }
283 
284 /*
285  * Basic SEEPROM get/set access routine
286  *
287  * This uses the chip's SEEPROM auto-access method, controlled by the
288  * Serial EEPROM Address/Data Registers at 0x504h, so the CPU
289  * doesn't have to fiddle with the individual bits.
290  *
291  * The caller should hold <genlock> and *also* have already acquired
292  * the right to access the SEEPROM.
293  *
294  * Return value:
295  *	0 on success,
296  *	ENODATA on access timeout (maybe retryable: device may just be busy)
297  *	EPROTO on other h/w or s/w errors.
298  *
299  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
300  * from a (successful) SEEPROM_ACCESS_READ.
301  */
302 
303 static int
304 nge_seeprom_access(nge_t *ngep, uint32_t cmd, nge_regno_t addr, uint16_t *dp)
305 {
306 	uint32_t tries;
307 	nge_ep_cmd cmd_reg;
308 	nge_ep_data data_reg;
309 
310 	NGE_TRACE(("nge_seeprom_access($%p, %d, %x, $%p)",
311 	    (void *)ngep, cmd, addr, (void *)dp));
312 
313 	ASSERT(mutex_owned(ngep->genlock));
314 
315 	/*
316 	 * Check there's no command in progress.
317 	 *
318 	 * Note: this *shouldn't* ever find that there is a command
319 	 * in progress, because we already hold the <genlock> mutex.
320 	 * Also, to ensure we don't have a conflict with the chip's
321 	 * internal firmware or a process accessing the same (shared)
322 	 * So this is just a final consistency check: we shouldn't
323 	 * see EITHER the START bit (command started but not complete)
324 	 * OR the COMPLETE bit (command completed but not cleared).
325 	 */
326 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
327 	for (tries = 0; tries < 30; tries++) {
328 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
329 			break;
330 		drv_usecwait(10);
331 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
332 	}
333 
334 	/*
335 	 * This should not happen. If so, we have to restart eeprom
336 	 *  state machine
337 	 */
338 	if (tries == 30) {
339 		cmd_reg.cmd_bits.sts = SEEPROM_READY;
340 		nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
341 		drv_usecwait(10);
342 		/*
343 		 * Polling the status bit to make assure the eeprom is ready
344 		 */
345 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
346 		for (tries = 0; tries < 30; tries++) {
347 			if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
348 				break;
349 			drv_usecwait(10);
350 			cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
351 		}
352 	}
353 
354 	/*
355 	 * Assemble the command ...
356 	 */
357 	cmd_reg.cmd_bits.addr = addr;
358 	cmd_reg.cmd_bits.cmd = cmd;
359 	cmd_reg.cmd_bits.sts = 0;
360 
361 	nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
362 
363 	/*
364 	 * Polling whether the access is successful.
365 	 *
366 	 */
367 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
368 	for (tries = 0; tries < 30; tries++) {
369 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
370 			break;
371 		drv_usecwait(10);
372 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
373 	}
374 
375 	if (tries == 30) {
376 		nge_report(ngep, NGE_HW_ROM);
377 		return (DDI_FAILURE);
378 	}
379 	switch (cmd) {
380 	default:
381 	case SEEPROM_CMD_WRITE_ENABLE:
382 	case SEEPROM_CMD_ERASE:
383 	case SEEPROM_CMD_ERALSE_ALL:
384 	case SEEPROM_CMD_WRITE_DIS:
385 	break;
386 
387 	case SEEPROM_CMD_READ:
388 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
389 		*dp = data_reg.data_bits.data;
390 	break;
391 
392 	case SEEPROM_CMD_WRITE:
393 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
394 		data_reg.data_bits.data = *dp;
395 		nge_reg_put32(ngep, NGE_EP_DATA, data_reg.data_val);
396 	break;
397 	}
398 
399 	return (DDI_SUCCESS);
400 }
401 
402 
403 static int
404 nge_chip_peek_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
405 {
406 	uint16_t data;
407 	int err;
408 
409 	err = nge_seeprom_access(ngep, SEEPROM_CMD_READ,
410 	    ppd->pp_acc_offset, &data);
411 	ppd->pp_acc_data =  data;
412 	return (err);
413 }
414 
415 static int
416 nge_chip_poke_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
417 {
418 	uint16_t data;
419 	int err;
420 
421 	data = ppd->pp_acc_data;
422 	err = nge_seeprom_access(ngep, SEEPROM_CMD_WRITE,
423 	    ppd->pp_acc_offset, &data);
424 	return (err);
425 }
426 
427 void
428 nge_init_dev_spec_param(nge_t *ngep)
429 {
430 	nge_dev_spec_param_t	*dev_param_p;
431 	chip_info_t	*infop;
432 
433 	dev_param_p = &ngep->dev_spec_param;
434 	infop = (chip_info_t *)&ngep->chipinfo;
435 
436 	switch (infop->device) {
437 	case DEVICE_ID_NF3_E6:
438 	case DEVICE_ID_NF3_DF:
439 	case DEVICE_ID_MCP61_3EE:
440 	case DEVICE_ID_MCP61_3EF:
441 	case DEVICE_ID_MCP04_37:
442 	case DEVICE_ID_MCP04_38:
443 		dev_param_p->msi = B_FALSE;
444 		dev_param_p->msi_x = B_FALSE;
445 		dev_param_p->vlan = B_FALSE;
446 		dev_param_p->tx_pause_frame = B_FALSE;
447 		dev_param_p->rx_pause_frame = B_FALSE;
448 		dev_param_p->jumbo = B_FALSE;
449 		dev_param_p->tx_rx_64byte = B_FALSE;
450 		dev_param_p->rx_hw_checksum = B_FALSE;
451 		dev_param_p->tx_hw_checksum = 0;
452 		dev_param_p->desc_type = DESC_OFFLOAD;
453 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
454 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
455 		dev_param_p->nge_split = NGE_SPLIT_32;
456 		break;
457 
458 	case DEVICE_ID_CK804_56:
459 	case DEVICE_ID_CK804_57:
460 		dev_param_p->msi = B_TRUE;
461 		dev_param_p->msi_x = B_TRUE;
462 		dev_param_p->vlan = B_FALSE;
463 		dev_param_p->tx_pause_frame = B_FALSE;
464 		dev_param_p->rx_pause_frame = B_TRUE;
465 		dev_param_p->jumbo = B_TRUE;
466 		dev_param_p->tx_rx_64byte = B_FALSE;
467 		dev_param_p->rx_hw_checksum = B_TRUE;
468 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
469 		dev_param_p->desc_type = DESC_HOT;
470 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
471 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
472 		dev_param_p->nge_split = NGE_SPLIT_96;
473 		break;
474 
475 	case DEVICE_ID_MCP51_268:
476 	case DEVICE_ID_MCP51_269:
477 		dev_param_p->msi = B_FALSE;
478 		dev_param_p->msi_x = B_FALSE;
479 		dev_param_p->vlan = B_FALSE;
480 		dev_param_p->tx_pause_frame = B_FALSE;
481 		dev_param_p->rx_pause_frame = B_FALSE;
482 		dev_param_p->jumbo = B_FALSE;
483 		dev_param_p->tx_rx_64byte = B_TRUE;
484 		dev_param_p->rx_hw_checksum = B_FALSE;
485 		dev_param_p->tx_hw_checksum = 0;
486 		dev_param_p->desc_type = DESC_OFFLOAD;
487 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
488 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
489 		dev_param_p->nge_split = NGE_SPLIT_32;
490 		break;
491 
492 	case DEVICE_ID_MCP55_372:
493 	case DEVICE_ID_MCP55_373:
494 		dev_param_p->msi = B_TRUE;
495 		dev_param_p->msi_x = B_TRUE;
496 		dev_param_p->vlan = B_TRUE;
497 		dev_param_p->tx_pause_frame = B_TRUE;
498 		dev_param_p->rx_pause_frame = B_TRUE;
499 		dev_param_p->jumbo = B_TRUE;
500 		dev_param_p->tx_rx_64byte = B_TRUE;
501 		dev_param_p->rx_hw_checksum = B_TRUE;
502 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
503 		dev_param_p->desc_type = DESC_HOT;
504 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
505 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
506 		dev_param_p->nge_split = NGE_SPLIT_96;
507 		break;
508 
509 	default:
510 		dev_param_p->msi = B_FALSE;
511 		dev_param_p->msi_x = B_FALSE;
512 		dev_param_p->vlan = B_FALSE;
513 		dev_param_p->tx_pause_frame = B_FALSE;
514 		dev_param_p->rx_pause_frame = B_FALSE;
515 		dev_param_p->jumbo = B_FALSE;
516 		dev_param_p->tx_rx_64byte = B_FALSE;
517 		dev_param_p->rx_hw_checksum = B_FALSE;
518 		dev_param_p->tx_hw_checksum = 0;
519 		dev_param_p->desc_type = DESC_OFFLOAD;
520 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
521 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
522 		dev_param_p->nge_split = NGE_SPLIT_32;
523 		return;
524 	}
525 }
526 /*
527  * Perform first-stage chip (re-)initialisation, using only config-space
528  * accesses:
529  *
530  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
531  *   returning the data in the structure pointed to by <infop>.
532  */
533 void nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset);
534 #pragma	no_inline(nge_chip_cfg_init)
535 
536 void
537 nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset)
538 {
539 	uint16_t command;
540 	ddi_acc_handle_t handle;
541 	nge_interbus_conf interbus_conf;
542 	nge_msi_mask_conf msi_mask_conf;
543 	nge_msi_map_cap_conf cap_conf;
544 
545 	NGE_TRACE(("nge_chip_cfg_init($%p, $%p, %d)",
546 	    (void *)ngep, (void *)infop, reset));
547 
548 	/*
549 	 * save PCI cache line size and subsystem vendor ID
550 	 *
551 	 * Read all the config-space registers that characterise the
552 	 * chip, specifically vendor/device/revision/subsystem vendor
553 	 * and subsystem device id.  We expect (but don't check) that
554 	 */
555 	handle = ngep->cfg_handle;
556 	/* reading the vendor information once */
557 	if (reset == B_FALSE) {
558 		infop->command = pci_config_get16(handle,
559 		    PCI_CONF_COMM);
560 		infop->vendor = pci_config_get16(handle,
561 		    PCI_CONF_VENID);
562 		infop->device = pci_config_get16(handle,
563 		    PCI_CONF_DEVID);
564 		infop->subven = pci_config_get16(handle,
565 		    PCI_CONF_SUBVENID);
566 		infop->subdev = pci_config_get16(handle,
567 		    PCI_CONF_SUBSYSID);
568 		infop->class_code = pci_config_get8(handle,
569 		    PCI_CONF_BASCLASS);
570 		infop->revision = pci_config_get8(handle,
571 		    PCI_CONF_REVID);
572 		infop->clsize = pci_config_get8(handle,
573 		    PCI_CONF_CACHE_LINESZ);
574 		infop->latency = pci_config_get8(handle,
575 		    PCI_CONF_LATENCY_TIMER);
576 	}
577 	if (nge_enable_msi) {
578 		/* Disable the hidden for MSI support */
579 		interbus_conf.conf_val = pci_config_get32(handle,
580 		    PCI_CONF_HT_INTERNAL);
581 		if ((infop->device == DEVICE_ID_MCP55_373) ||
582 		    (infop->device == DEVICE_ID_MCP55_372))
583 			interbus_conf.conf_bits.msix_off = NGE_SET;
584 		interbus_conf.conf_bits.msi_off = NGE_CLEAR;
585 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
586 		    interbus_conf.conf_val);
587 
588 		if ((infop->device == DEVICE_ID_MCP55_373) ||
589 		    (infop->device == DEVICE_ID_MCP55_372)) {
590 
591 			/* Disable the vector off for mcp55 */
592 			msi_mask_conf.msi_mask_conf_val =
593 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MASK);
594 			msi_mask_conf.msi_mask_bits.vec0_off = NGE_CLEAR;
595 			msi_mask_conf.msi_mask_bits.vec1_off = NGE_CLEAR;
596 			msi_mask_conf.msi_mask_bits.vec2_off = NGE_CLEAR;
597 			msi_mask_conf.msi_mask_bits.vec3_off = NGE_CLEAR;
598 			msi_mask_conf.msi_mask_bits.vec4_off = NGE_CLEAR;
599 			msi_mask_conf.msi_mask_bits.vec5_off = NGE_CLEAR;
600 			msi_mask_conf.msi_mask_bits.vec6_off = NGE_CLEAR;
601 			msi_mask_conf.msi_mask_bits.vec7_off = NGE_CLEAR;
602 			pci_config_put32(handle, PCI_CONF_HT_MSI_MASK,
603 			    msi_mask_conf.msi_mask_conf_val);
604 
605 			/* Enable the MSI mapping */
606 			cap_conf.msi_map_cap_conf_val =
607 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MAP_CAP);
608 			cap_conf.map_cap_conf_bits.map_en = NGE_SET;
609 			pci_config_put32(handle, PCI_CONF_HT_MSI_MAP_CAP,
610 			    cap_conf.msi_map_cap_conf_val);
611 		}
612 	} else {
613 		interbus_conf.conf_val = pci_config_get32(handle,
614 		    PCI_CONF_HT_INTERNAL);
615 		interbus_conf.conf_bits.msi_off = NGE_SET;
616 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
617 		    interbus_conf.conf_val);
618 	}
619 	command = infop->command | PCI_COMM_MAE;
620 	command &= ~PCI_COMM_MEMWR_INVAL;
621 	command |= PCI_COMM_ME;
622 	pci_config_put16(handle, PCI_CONF_COMM, command);
623 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
624 
625 }
626 
627 int
628 nge_chip_stop(nge_t *ngep, boolean_t fault)
629 {
630 	int err;
631 	uint32_t reg_val;
632 	uint32_t	tries;
633 	nge_intr_src intr_src;
634 	nge_mintr_src mintr_src;
635 	nge_mii_cs mii_cs;
636 	nge_rx_poll rx_poll;
637 	nge_tx_poll tx_poll;
638 	nge_rx_en rx_en;
639 	nge_tx_en tx_en;
640 	nge_tx_sta tx_sta;
641 	nge_rx_sta rx_sta;
642 	nge_mode_cntl mode;
643 	nge_pmu_cntl2 pmu_cntl2;
644 
645 	NGE_TRACE(("nge_chip_stop($%p, %d)", (void *)ngep, fault));
646 
647 	err = DDI_SUCCESS;
648 	/* Clear all pending  interrupts */
649 	intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
650 	nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
651 	mintr_src.src_val = nge_reg_get8(ngep, NGE_MINTR_SRC);
652 	nge_reg_put8(ngep, NGE_MINTR_SRC, mintr_src.src_val);
653 
654 	/* Mask all interrupts */
655 	reg_val = nge_reg_get32(ngep, NGE_INTR_MASK);
656 	reg_val &= ~NGE_INTR_ALL_EN;
657 	nge_reg_put32(ngep, NGE_INTR_MASK, reg_val);
658 
659 	/* Disable auto-polling of phy */
660 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
661 	mii_cs.cs_bits.ap_en = NGE_CLEAR;
662 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
663 
664 	/* Reset buffer management & DMA */
665 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
666 	mode.mode_bits.bm_reset = NGE_SET;
667 	mode.mode_bits.dma_dis = NGE_SET;
668 	mode.mode_bits.desc_type = ngep->desc_mode;
669 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
670 
671 	drv_usecwait(50000);
672 
673 	/* Restore buffer management */
674 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
675 	mode.mode_bits.bm_reset = NGE_CLEAR;
676 	mode.mode_bits.tx_rcom_en = NGE_SET;
677 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
678 
679 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
680 	for (tries = 0; tries < 5000; tries++) {
681 		drv_usecwait(10);
682 		mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
683 		if (mode.mode_bits.dma_status == NGE_SET)
684 			break;
685 	}
686 	if (tries == 5000) {
687 		return (DDI_FAILURE);
688 	}
689 
690 	/*
691 	 * For mcp55, the bits 1:31 of NGE_RX_EN and NGE_TX_EN are
692 	 * defined to be used by SMU. The newer PXE than 527 began to
693 	 * support SMU and bit 24 of NGE_RX_EN/NGE_TX_EN are set
694 	 * when leaving PXE to prevents the MAC from winning
695 	 * arbitration to the main transmit/receive channels.
696 	 */
697 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
698 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
699 
700 		/* Disable rx's machine */
701 		nge_reg_put32(ngep, NGE_RX_EN, 0x0);
702 
703 		/* Disable tx's machine */
704 		nge_reg_put32(ngep, NGE_TX_EN, 0x0);
705 	} else {
706 
707 		/* Disable rx's machine */
708 		rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
709 		rx_en.bits.rx_en = NGE_CLEAR;
710 		nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
711 
712 
713 		/* Disable tx's machine */
714 		tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
715 		tx_en.bits.tx_en = NGE_CLEAR;
716 		nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
717 	}
718 
719 	/* Disable auto-poll of rx's state machine */
720 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
721 	rx_poll.poll_bits.rpen = NGE_CLEAR;
722 	rx_poll.poll_bits.rpi = NGE_CLEAR;
723 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
724 
725 	/* Disable auto-polling of tx's  state machine */
726 	tx_poll.poll_val = nge_reg_get32(ngep, NGE_TX_POLL);
727 	tx_poll.poll_bits.tpen = NGE_CLEAR;
728 	tx_poll.poll_bits.tpi = NGE_CLEAR;
729 	nge_reg_put32(ngep, NGE_TX_POLL, tx_poll.poll_val);
730 
731 
732 	/*
733 	 * Clean the status of tx's state machine
734 	 * and Make assure the tx's channel is idle
735 	 */
736 	tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
737 	for (tries = 0; tries < 1000; tries++) {
738 		if (tx_sta.sta_bits.tx_chan_sta == NGE_CLEAR)
739 			break;
740 		drv_usecwait(10);
741 		tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
742 	}
743 	if (tries == 1000) {
744 		return (DDI_FAILURE);
745 	}
746 	nge_reg_put32(ngep, NGE_TX_STA,  tx_sta.sta_val);
747 
748 	/*
749 	 * Clean the status of rx's state machine
750 	 * and Make assure the tx's channel is idle
751 	 */
752 	rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
753 	for (tries = 0; tries < 1000; tries++) {
754 		if (rx_sta.sta_bits.rx_chan_sta == NGE_CLEAR)
755 			break;
756 		drv_usecwait(10);
757 		rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
758 	}
759 	if (tries == 1000) {
760 		return (DDI_FAILURE);
761 	}
762 	nge_reg_put32(ngep, NGE_RX_STA, rx_sta.sta_val);
763 
764 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
765 	    ngep->chipinfo.device == DEVICE_ID_MCP51_268) {
766 
767 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT, 0);
768 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT, 0);
769 
770 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
771 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_CLEAR;
772 		pmu_cntl2.cntl2_bits.didle_timer = NGE_CLEAR;
773 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
774 	}
775 	if (fault)
776 		ngep->nge_chip_state = NGE_CHIP_FAULT;
777 	else
778 		ngep->nge_chip_state = NGE_CHIP_STOPPED;
779 
780 	return (err);
781 }
782 
783 static void
784 nge_rx_setup(nge_t *ngep)
785 {
786 	uint64_t desc_addr;
787 	nge_rxtx_dlen dlen;
788 	nge_rx_poll rx_poll;
789 
790 	/*
791 	 * Filling the address and length of rx's descriptors
792 	 */
793 	desc_addr = ngep->recv->desc.cookie.dmac_laddress;
794 	nge_reg_put32(ngep, NGE_RX_DADR, desc_addr);
795 	nge_reg_put32(ngep, NGE_RX_DADR_HI, desc_addr >> 32);
796 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
797 	dlen.dlen_bits.rdlen = ngep->recv->desc.nslots - 1;
798 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
799 
800 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
801 	rx_poll.poll_bits.rpi = RX_POLL_INTV_1G;
802 	rx_poll.poll_bits.rpen = NGE_SET;
803 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
804 }
805 
806 static void
807 nge_tx_setup(nge_t *ngep)
808 {
809 	uint64_t desc_addr;
810 	nge_rxtx_dlen dlen;
811 
812 	/*
813 	 * Filling the address and length of tx's descriptors
814 	 */
815 	desc_addr = ngep->send->desc.cookie.dmac_laddress;
816 	nge_reg_put32(ngep, NGE_TX_DADR, desc_addr);
817 	nge_reg_put32(ngep, NGE_TX_DADR_HI, desc_addr >> 32);
818 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
819 	dlen.dlen_bits.tdlen = ngep->send->desc.nslots - 1;
820 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
821 }
822 
823 static int
824 nge_buff_setup(nge_t *ngep)
825 {
826 	nge_mode_cntl mode_cntl;
827 	nge_dev_spec_param_t	*dev_param_p;
828 
829 	dev_param_p = &ngep->dev_spec_param;
830 
831 	/*
832 	 * Configure Rx&Tx's buffer
833 	 */
834 	nge_rx_setup(ngep);
835 	nge_tx_setup(ngep);
836 
837 	/*
838 	 * Configure buffer attribute
839 	 */
840 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
841 
842 	/*
843 	 * Enable Dma access request
844 	 */
845 	mode_cntl.mode_bits.dma_dis = NGE_CLEAR;
846 
847 	/*
848 	 * Enbale Buffer management
849 	 */
850 	mode_cntl.mode_bits.bm_reset = NGE_CLEAR;
851 
852 	/*
853 	 * Support Standoffload Descriptor
854 	 */
855 	mode_cntl.mode_bits.desc_type = ngep->desc_mode;
856 
857 	/*
858 	 * Support receive hardware checksum
859 	 */
860 	if (dev_param_p->rx_hw_checksum) {
861 		mode_cntl.mode_bits.rx_sum_en = NGE_SET;
862 	} else
863 		mode_cntl.mode_bits.rx_sum_en = NGE_CLEAR;
864 
865 	/*
866 	 * Disable Tx PRD coarse update
867 	 */
868 	mode_cntl.mode_bits.tx_prd_cu_en = NGE_CLEAR;
869 
870 	/*
871 	 * Disable 64-byte access
872 	 */
873 	mode_cntl.mode_bits.w64_dis = NGE_SET;
874 
875 	/*
876 	 * Skip Rx Error Frame is not supported and if
877 	 * enable it, jumbo frame does not work any more.
878 	 */
879 	mode_cntl.mode_bits.rx_filter_en = NGE_CLEAR;
880 
881 	/*
882 	 * Can not support hot mode now
883 	 */
884 	mode_cntl.mode_bits.resv15 = NGE_CLEAR;
885 
886 	if (dev_param_p->vlan) {
887 		/* Disable the vlan strip for devices which support vlan */
888 		mode_cntl.mode_bits.vlan_strip = NGE_CLEAR;
889 
890 		/* Disable the vlan insert for devices which supprot vlan */
891 		mode_cntl.mode_bits.vlan_ins = NGE_CLEAR;
892 	}
893 
894 	if (dev_param_p->tx_rx_64byte) {
895 
896 		/* Set the maximum TX PRD fetch size to 64 bytes */
897 		mode_cntl.mode_bits.tx_fetch_prd = NGE_SET;
898 
899 		/* Set the maximum RX PRD fetch size to 64 bytes */
900 		mode_cntl.mode_bits.rx_fetch_prd = NGE_SET;
901 	}
902 	/*
903 	 * Upload Rx data as it arrives, rather than waiting for full frame
904 	 */
905 	mode_cntl.mode_bits.resv16 = NGE_CLEAR;
906 
907 	/*
908 	 * Normal HOT table accesses
909 	 */
910 	mode_cntl.mode_bits.resv17 = NGE_CLEAR;
911 
912 	/*
913 	 * Normal HOT buffer requesting
914 	 */
915 	mode_cntl.mode_bits.resv18 = NGE_CLEAR;
916 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
917 
918 	/*
919 	 * Signal controller to check for new Rx descriptors
920 	 */
921 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
922 	mode_cntl.mode_bits.rxdm = NGE_SET;
923 	mode_cntl.mode_bits.tx_rcom_en = NGE_SET;
924 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
925 
926 
927 	return (DDI_SUCCESS);
928 }
929 
930 /*
931  * When chipset resets, the chipset can not restore  the orignial
932  * mac address to the mac address registers.
933  *
934  * When the driver is dettached, the function will write the orignial
935  * mac address to the mac address registers.
936  */
937 
938 void
939 nge_restore_mac_addr(nge_t *ngep)
940 {
941 	uint32_t mac_addr;
942 
943 	mac_addr = (uint32_t)ngep->chipinfo.hw_mac_addr;
944 	nge_reg_put32(ngep, NGE_UNI_ADDR0, mac_addr);
945 	mac_addr = (uint32_t)(ngep->chipinfo.hw_mac_addr >> 32);
946 	nge_reg_put32(ngep, NGE_UNI_ADDR1, mac_addr);
947 }
948 
949 int
950 nge_chip_reset(nge_t *ngep)
951 {
952 	int err;
953 	uint8_t i;
954 	uint32_t regno;
955 	uint64_t mac;
956 	nge_uni_addr1 uaddr1;
957 	nge_mul_addr1 maddr1;
958 	nge_cp_cntl ee_cntl;
959 	nge_soft_misc soft_misc;
960 	nge_pmu_cntl0 pmu_cntl0;
961 	nge_pmu_cntl2 pmu_cntl2;
962 	nge_pm_cntl2 pm_cntl2;
963 	const nge_ksindex_t *ksip;
964 	nge_sw_statistics_t *sw_stp;
965 	sw_stp = &ngep->statistics.sw_statistics;
966 
967 	NGE_TRACE(("nge_chip_reset($%p)", (void *)ngep));
968 
969 	/*
970 	 * Clear the statistics by reading the statistics register
971 	 */
972 	for (ksip = nge_statistics; ksip->name != NULL; ++ksip) {
973 		regno = KS_BASE + ksip->index * sizeof (uint32_t);
974 		(void) nge_reg_get32(ngep, regno);
975 	}
976 	/* Clear the software statistics */
977 	sw_stp->recv_count = 0;
978 	sw_stp->xmit_count = 0;
979 	sw_stp->rbytes = 0;
980 	sw_stp->obytes = 0;
981 
982 	/*
983 	 * Clear the Multicast mac address table
984 	 */
985 	nge_reg_put32(ngep, NGE_MUL_ADDR0, 0);
986 	maddr1.addr_val = nge_reg_get32(ngep, NGE_MUL_ADDR1);
987 	maddr1.addr_bits.addr = 0;
988 	nge_reg_put32(ngep, NGE_MUL_ADDR1, maddr1.addr_val);
989 
990 	/*
991 	 * Setup seeprom control
992 	 */
993 	ee_cntl.cntl_val = nge_reg_get32(ngep, NGE_EP_CNTL);
994 	ee_cntl.cntl_bits.clkdiv = EEPROM_CLKDIV;
995 	ee_cntl.cntl_bits.rom_size = EEPROM_32K;
996 	ee_cntl.cntl_bits.word_wid = ACCESS_16BIT;
997 	ee_cntl.cntl_bits.wait_slots = EEPROM_WAITCLK;
998 	nge_reg_put32(ngep, NGE_EP_CNTL, ee_cntl.cntl_val);
999 
1000 	/*
1001 	 * Reading the unicast mac address table
1002 	 */
1003 	if (ngep->nge_chip_state == NGE_CHIP_INITIAL) {
1004 		uaddr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1005 		mac = uaddr1.addr_bits.addr;
1006 		mac <<= 32;
1007 		mac |= nge_reg_get32(ngep, NGE_UNI_ADDR0);
1008 		if (mac != 0ULL && mac != ~0ULL) {
1009 			ngep->chipinfo.hw_mac_addr = mac;
1010 			for (i = ETHERADDRL; i-- != 0; ) {
1011 				ngep->chipinfo.vendor_addr.addr[i] =
1012 				    (uchar_t)mac;
1013 				ngep->cur_uni_addr.addr[i] = (uchar_t)mac;
1014 				mac >>= 8;
1015 			}
1016 			ngep->chipinfo.vendor_addr.set = 1;
1017 		}
1018 	}
1019 	pci_config_put8(ngep->cfg_handle, PCI_CONF_CACHE_LINESZ,
1020 	    ngep->chipinfo.clsize);
1021 	pci_config_put8(ngep->cfg_handle, PCI_CONF_LATENCY_TIMER,
1022 	    ngep->chipinfo.latency);
1023 
1024 	/*
1025 	 * Stop the chipset and clear buffer management
1026 	 */
1027 	err = nge_chip_stop(ngep, B_FALSE);
1028 	if (err == DDI_FAILURE)
1029 		return (err);
1030 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
1031 	    ngep->chipinfo.device == DEVICE_ID_MCP51_268) {
1032 
1033 		/* Program software misc register */
1034 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1035 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_SET;
1036 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_SET;
1037 		soft_misc.misc_bits.clk12m_vx_rst = NGE_SET;
1038 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_SET;
1039 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_SET;
1040 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_SET;
1041 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_SET;
1042 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_SET;
1043 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1044 
1045 		/* wait for 4 us */
1046 		drv_usecwait(4);
1047 
1048 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1049 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_CLEAR;
1050 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_CLEAR;
1051 		soft_misc.misc_bits.clk12m_vx_rst = NGE_CLEAR;
1052 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_CLEAR;
1053 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_CLEAR;
1054 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_CLEAR;
1055 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_CLEAR;
1056 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_CLEAR;
1057 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1058 
1059 		/* Program PMU registers */
1060 		pmu_cntl0.cntl0_val = nge_reg_get32(ngep, NGE_PMU_CNTL0);
1061 		pmu_cntl0.cntl0_bits.core_spd10_fp =
1062 		    NGE_PMU_CORE_SPD10_BUSY;
1063 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1064 		    NGE_PMU_CORE_SPD10_IDLE;
1065 		pmu_cntl0.cntl0_bits.core_spd100_fp =
1066 		    NGE_PMU_CORE_SPD100_BUSY;
1067 		pmu_cntl0.cntl0_bits.core_spd100_idle =
1068 		    NGE_PMU_CORE_SPD100_IDLE;
1069 		pmu_cntl0.cntl0_bits.core_spd1000_fp =
1070 		    NGE_PMU_CORE_SPD1000_BUSY;
1071 		pmu_cntl0.cntl0_bits.core_spd1000_idle =
1072 		    NGE_PMU_CORE_SPD100_IDLE;
1073 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1074 		    NGE_PMU_CORE_SPD10_IDLE;
1075 		nge_reg_put32(ngep, NGE_PMU_CNTL0, pmu_cntl0.cntl0_val);
1076 
1077 		/* Set the core idle limit value */
1078 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT,
1079 		    NGE_PMU_CIDLE_LIMIT_DEF);
1080 
1081 		/* Set the device idle limit value */
1082 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT,
1083 		    NGE_PMU_DIDLE_LIMIT_DEF);
1084 
1085 		/* Enable the core/device idle timer in PMU control 2 */
1086 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
1087 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_SET;
1088 		pmu_cntl2.cntl2_bits.didle_timer = NGE_SET;
1089 		pmu_cntl2.cntl2_bits.core_enable = NGE_SET;
1090 		pmu_cntl2.cntl2_bits.dev_enable = NGE_SET;
1091 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
1092 	}
1093 
1094 	/*
1095 	 * Clear the power state bits for phy since interface no longer
1096 	 * works after rebooting from Windows on a multi-boot machine
1097 	 */
1098 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_268 ||
1099 	    ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
1100 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372 ||
1101 	    ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1102 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EE ||
1103 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EF) {
1104 
1105 		pm_cntl2.cntl_val = nge_reg_get32(ngep, NGE_PM_CNTL2);
1106 		/* bring phy out of coma mode */
1107 		pm_cntl2.cntl_bits.phy_coma_set = NGE_CLEAR;
1108 		/* disable auto reset coma bits */
1109 		pm_cntl2.cntl_bits.resv4 = NGE_CLEAR;
1110 		/* restore power to gated clocks */
1111 		pm_cntl2.cntl_bits.resv8_11 = NGE_CLEAR;
1112 		nge_reg_put32(ngep, NGE_PM_CNTL2, pm_cntl2.cntl_val);
1113 	}
1114 
1115 	/*
1116 	 * Reset the external phy
1117 	 */
1118 	(void) nge_phy_reset(ngep);
1119 	ngep->nge_chip_state = NGE_CHIP_RESET;
1120 	return (DDI_SUCCESS);
1121 }
1122 
1123 int
1124 nge_chip_start(nge_t *ngep)
1125 {
1126 	int err;
1127 	nge_itc itc;
1128 	nge_tx_cntl tx_cntl;
1129 	nge_rx_cntrl0 rx_cntl0;
1130 	nge_rx_cntl1 rx_cntl1;
1131 	nge_tx_en tx_en;
1132 	nge_rx_en rx_en;
1133 	nge_mii_cs mii_cs;
1134 	nge_swtr_cntl swtr_cntl;
1135 	nge_rx_fifo_wm rx_fifo;
1136 	nge_intr_mask intr_mask;
1137 	nge_mintr_mask mintr_mask;
1138 	nge_dev_spec_param_t	*dev_param_p;
1139 
1140 	NGE_TRACE(("nge_chip_start($%p)", (void *)ngep));
1141 
1142 	/*
1143 	 * Setup buffer management
1144 	 */
1145 	err = nge_buff_setup(ngep);
1146 	if (err == DDI_FAILURE)
1147 		return (err);
1148 
1149 	dev_param_p = &ngep->dev_spec_param;
1150 
1151 	/*
1152 	 * Enable polling attribute
1153 	 */
1154 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
1155 	mii_cs.cs_bits.ap_paddr = ngep->phy_xmii_addr;
1156 	mii_cs.cs_bits.ap_en = NGE_SET;
1157 	mii_cs.cs_bits.ap_intv = MII_POLL_INTV;
1158 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
1159 
1160 	/*
1161 	 * Setup link
1162 	 */
1163 	(*ngep->physops->phys_update)(ngep);
1164 
1165 	/*
1166 	 * Configure the tx's parameters
1167 	 */
1168 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1169 	if (dev_param_p->tx_pause_frame)
1170 		tx_cntl.cntl_bits.paen = NGE_SET;
1171 	else
1172 		tx_cntl.cntl_bits.paen = NGE_CLEAR;
1173 	tx_cntl.cntl_bits.retry_en = NGE_SET;
1174 	tx_cntl.cntl_bits.pad_en = NGE_SET;
1175 	tx_cntl.cntl_bits.fappend_en = NGE_SET;
1176 	tx_cntl.cntl_bits.two_def_en = NGE_SET;
1177 	tx_cntl.cntl_bits.max_retry = 15;
1178 	tx_cntl.cntl_bits.burst_en = NGE_CLEAR;
1179 	tx_cntl.cntl_bits.uflo_err_mask = NGE_CLEAR;
1180 	tx_cntl.cntl_bits.tlcol_mask = NGE_CLEAR;
1181 	tx_cntl.cntl_bits.lcar_mask = NGE_CLEAR;
1182 	tx_cntl.cntl_bits.def_mask = NGE_CLEAR;
1183 	tx_cntl.cntl_bits.exdef_mask = NGE_SET;
1184 	tx_cntl.cntl_bits.lcar_mask = NGE_SET;
1185 	tx_cntl.cntl_bits.tlcol_mask = NGE_SET;
1186 	tx_cntl.cntl_bits.uflo_err_mask = NGE_SET;
1187 	tx_cntl.cntl_bits.jam_seq_en = NGE_CLEAR;
1188 	nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1189 
1190 
1191 	/*
1192 	 * Configure the parameters of Rx's state machine
1193 	 * Enabe the parameters:
1194 	 * 1). Pad Strip
1195 	 * 2). FCS Relay
1196 	 * 3). Pause
1197 	 * 4). Address filter
1198 	 * 5). Runt Packet receive
1199 	 * 6). Broadcast
1200 	 * 7). Receive Deferral
1201 	 *
1202 	 * Disable the following parameters for decreasing
1203 	 * the number of interrupts:
1204 	 * 1). Runt Inerrupt.
1205 	 * 2). Rx's Late Collision interrupt.
1206 	 * 3). Rx's Max length Error Interrupt.
1207 	 * 4). Rx's Length Field error Interrupt.
1208 	 * 5). Rx's FCS error interrupt.
1209 	 * 6). Rx's overflow error interrupt.
1210 	 * 7). Rx's Frame alignment error interrupt.
1211 	 */
1212 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1213 	rx_cntl0.cntl_bits.padsen = NGE_CLEAR;
1214 	rx_cntl0.cntl_bits.fcsren = NGE_CLEAR;
1215 	if (dev_param_p->rx_pause_frame)
1216 		rx_cntl0.cntl_bits.paen = NGE_SET;
1217 	else
1218 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1219 	rx_cntl0.cntl_bits.lben = NGE_CLEAR;
1220 	rx_cntl0.cntl_bits.afen = NGE_SET;
1221 	rx_cntl0.cntl_bits.runten = NGE_CLEAR;
1222 	rx_cntl0.cntl_bits.brdis = NGE_CLEAR;
1223 	rx_cntl0.cntl_bits.rdfen = NGE_CLEAR;
1224 	rx_cntl0.cntl_bits.runtm = NGE_CLEAR;
1225 	rx_cntl0.cntl_bits.slfb = NGE_CLEAR;
1226 	rx_cntl0.cntl_bits.rlcolm = NGE_CLEAR;
1227 	rx_cntl0.cntl_bits.maxerm = NGE_CLEAR;
1228 	rx_cntl0.cntl_bits.lferm = NGE_CLEAR;
1229 	rx_cntl0.cntl_bits.crcm = NGE_CLEAR;
1230 	rx_cntl0.cntl_bits.ofolm = NGE_CLEAR;
1231 	rx_cntl0.cntl_bits.framerm = NGE_CLEAR;
1232 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1233 
1234 	/*
1235 	 * Configure the watermark for the rx's statemachine
1236 	 */
1237 	rx_fifo.wm_val = nge_reg_get32(ngep, NGE_RX_FIFO_WM);
1238 	rx_fifo.wm_bits.data_hwm = ngep->rx_datahwm;
1239 	rx_fifo.wm_bits.prd_lwm = ngep->rx_prdlwm;
1240 	rx_fifo.wm_bits.prd_hwm = ngep->rx_prdhwm;
1241 	nge_reg_put32(ngep, NGE_RX_FIFO_WM, rx_fifo.wm_val);
1242 
1243 	/*
1244 	 * Configure the deffer time slot for rx's state machine
1245 	 */
1246 	nge_reg_put8(ngep, NGE_RX_DEf, ngep->rx_def);
1247 
1248 	/*
1249 	 * Configure the length of rx's packet
1250 	 */
1251 	rx_cntl1.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL1);
1252 	rx_cntl1.cntl_bits.length = ngep->max_sdu;
1253 	nge_reg_put32(ngep, NGE_RX_CNTL1, rx_cntl1.cntl_val);
1254 	/*
1255 	 * Enable Tx's state machine
1256 	 */
1257 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
1258 	tx_en.bits.tx_en = NGE_SET;
1259 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
1260 
1261 	/*
1262 	 * Enable Rx's state machine
1263 	 */
1264 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
1265 	rx_en.bits.rx_en = NGE_SET;
1266 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
1267 
1268 	itc.itc_val = nge_reg_get32(ngep, NGE_SWTR_ITC);
1269 	itc.itc_bits.sw_intv = ngep->sw_intr_intv;
1270 	nge_reg_put32(ngep, NGE_SWTR_ITC, itc.itc_val);
1271 
1272 	swtr_cntl.ctrl_val = nge_reg_get8(ngep, NGE_SWTR_CNTL);
1273 	swtr_cntl.cntl_bits.sten = NGE_SET;
1274 	swtr_cntl.cntl_bits.stren = NGE_SET;
1275 	nge_reg_put32(ngep, NGE_SWTR_CNTL, swtr_cntl.ctrl_val);
1276 
1277 	/*
1278 	 * Disable all mii read/write operation Interrupt
1279 	 */
1280 	mintr_mask.mask_val = nge_reg_get8(ngep, NGE_MINTR_MASK);
1281 	mintr_mask.mask_bits.mrei = NGE_CLEAR;
1282 	mintr_mask.mask_bits.mcc2 = NGE_CLEAR;
1283 	mintr_mask.mask_bits.mcc1 = NGE_CLEAR;
1284 	mintr_mask.mask_bits.mapi = NGE_SET;
1285 	mintr_mask.mask_bits.mpdi = NGE_SET;
1286 	nge_reg_put8(ngep, NGE_MINTR_MASK, mintr_mask.mask_val);
1287 
1288 	/*
1289 	 * Enable all interrupt event
1290 	 */
1291 	intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1292 	intr_mask.mask_bits.reint = NGE_SET;
1293 	intr_mask.mask_bits.rcint = NGE_SET;
1294 	intr_mask.mask_bits.miss = NGE_SET;
1295 	intr_mask.mask_bits.teint = NGE_CLEAR;
1296 	intr_mask.mask_bits.tcint = NGE_SET;
1297 	intr_mask.mask_bits.stint = NGE_CLEAR;
1298 	intr_mask.mask_bits.mint = NGE_CLEAR;
1299 	intr_mask.mask_bits.rfint = NGE_CLEAR;
1300 	intr_mask.mask_bits.tfint = NGE_CLEAR;
1301 	intr_mask.mask_bits.feint = NGE_SET;
1302 	intr_mask.mask_bits.resv10 = NGE_CLEAR;
1303 	intr_mask.mask_bits.resv11 = NGE_CLEAR;
1304 	intr_mask.mask_bits.resv12 = NGE_CLEAR;
1305 	intr_mask.mask_bits.resv13 = NGE_CLEAR;
1306 	intr_mask.mask_bits.phyint = NGE_CLEAR;
1307 	ngep->intr_masks = intr_mask.mask_val;
1308 	nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1309 	ngep->nge_chip_state = NGE_CHIP_RUNNING;
1310 	return (DDI_SUCCESS);
1311 }
1312 
1313 /*
1314  * nge_chip_sync() -- program the chip with the unicast MAC address,
1315  * the multicast hash table, the required level of promiscuity.
1316  */
1317 void
1318 nge_chip_sync(nge_t *ngep)
1319 {
1320 	uint8_t i;
1321 	uint64_t macaddr;
1322 	uint64_t mul_addr;
1323 	uint64_t mul_mask;
1324 	nge_rx_cntrl0 rx_cntl;
1325 	nge_uni_addr1 uni_adr1;
1326 
1327 	NGE_TRACE(("nge_chip_sync($%p)", (void *)ngep));
1328 
1329 	macaddr = 0x0ull;
1330 	mul_addr = 0x0ull;
1331 	mul_mask = 0x0ull;
1332 	rx_cntl.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1333 
1334 	if (ngep->promisc) {
1335 		rx_cntl.cntl_bits.afen = NGE_CLEAR;
1336 		rx_cntl.cntl_bits.brdis = NGE_SET;
1337 	} else {
1338 		rx_cntl.cntl_bits.afen = NGE_SET;
1339 		rx_cntl.cntl_bits.brdis = NGE_CLEAR;
1340 	}
1341 
1342 	/*
1343 	 * Transform the MAC address from host to chip format, the unicast
1344 	 * MAC address(es) ...
1345 	 */
1346 	for (i = ETHERADDRL, macaddr = 0ull; i != 0; --i) {
1347 		macaddr |= ngep->cur_uni_addr.addr[i-1];
1348 		macaddr <<= (i > 1) ? 8 : 0;
1349 	}
1350 
1351 	nge_reg_put32(ngep, NGE_UNI_ADDR0, (uint32_t)macaddr);
1352 	macaddr = macaddr >>32;
1353 	uni_adr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1354 	uni_adr1.addr_bits.addr = (uint16_t)macaddr;
1355 	uni_adr1.addr_bits.resv16_31 = (uint16_t)0;
1356 	nge_reg_put32(ngep, NGE_UNI_ADDR1, uni_adr1.addr_val);
1357 
1358 	/*
1359 	 * Reprogram the  multicast address table ...
1360 	 */
1361 	for (i = ETHERADDRL, mul_addr = 0ull; i != 0; --i) {
1362 		mul_addr |= ngep->cur_mul_addr.addr[i-1];
1363 		mul_addr <<= (i > 1) ? 8 : 0;
1364 		mul_mask |= ngep->cur_mul_mask.addr[i-1];
1365 		mul_mask <<= (i > 1) ? 8 : 0;
1366 	}
1367 	nge_reg_put32(ngep, NGE_MUL_ADDR0, (uint32_t)mul_addr);
1368 	mul_addr >>= 32;
1369 	nge_reg_put32(ngep, NGE_MUL_ADDR1, mul_addr);
1370 	nge_reg_put32(ngep, NGE_MUL_MASK, (uint32_t)mul_mask);
1371 	mul_mask >>= 32;
1372 	nge_reg_put32(ngep, NGE_MUL_MASK1, mul_mask);
1373 	/*
1374 	 * Set or clear the PROMISCUOUS mode bit
1375 	 */
1376 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl.cntl_val);
1377 	/*
1378 	 * For internal PHY loopback, the link will
1379 	 * not be up, so it need to sync mac modes directly.
1380 	 */
1381 	if (ngep->param_loop_mode == NGE_LOOP_INTERNAL_PHY)
1382 		nge_sync_mac_modes(ngep);
1383 }
1384 
1385 static void
1386 nge_chip_err(nge_t *ngep)
1387 {
1388 	nge_reg010 reg010_ins;
1389 	nge_sw_statistics_t *psw_stat;
1390 	nge_intr_mask intr_mask;
1391 
1392 	NGE_TRACE(("nge_chip_err($%p)", (void *)ngep));
1393 
1394 	psw_stat = (nge_sw_statistics_t *)&ngep->statistics.sw_statistics;
1395 	reg010_ins.reg010_val = nge_reg_get32(ngep, NGE_REG010);
1396 	if (reg010_ins.reg010_bits.resv0)
1397 		psw_stat->fe_err.tso_err_mss ++;
1398 
1399 	if (reg010_ins.reg010_bits.resv1)
1400 		psw_stat->fe_err.tso_dis ++;
1401 
1402 	if (reg010_ins.reg010_bits.resv2)
1403 		psw_stat->fe_err.tso_err_nosum ++;
1404 
1405 	if (reg010_ins.reg010_bits.resv3)
1406 		psw_stat->fe_err.tso_err_hov ++;
1407 
1408 	if (reg010_ins.reg010_bits.resv4)
1409 		psw_stat->fe_err.tso_err_huf ++;
1410 
1411 	if (reg010_ins.reg010_bits.resv5)
1412 		psw_stat->fe_err.tso_err_l2 ++;
1413 
1414 	if (reg010_ins.reg010_bits.resv6)
1415 		psw_stat->fe_err.tso_err_ip ++;
1416 
1417 	if (reg010_ins.reg010_bits.resv7)
1418 		psw_stat->fe_err.tso_err_l4 ++;
1419 
1420 	if (reg010_ins.reg010_bits.resv8)
1421 		psw_stat->fe_err.tso_err_tcp ++;
1422 
1423 	if (reg010_ins.reg010_bits.resv9)
1424 		psw_stat->fe_err.hsum_err_ip ++;
1425 
1426 	if (reg010_ins.reg010_bits.resv10)
1427 		psw_stat->fe_err.hsum_err_l4 ++;
1428 
1429 	if (reg010_ins.reg010_val != 0) {
1430 
1431 		/*
1432 		 * Fatal error is triggered by malformed driver commands.
1433 		 * Disable unless debugging.
1434 		 */
1435 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1436 		intr_mask.mask_bits.feint = NGE_CLEAR;
1437 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1438 		ngep->intr_masks = intr_mask.mask_val;
1439 
1440 	}
1441 }
1442 
1443 static void
1444 nge_sync_mac_modes(nge_t *ngep)
1445 {
1446 	nge_tx_def tx_def;
1447 	nge_tx_fifo_wm tx_fifo;
1448 	nge_bkoff_cntl bk_cntl;
1449 	nge_mac2phy m2p;
1450 	nge_rx_cntrl0 rx_cntl0;
1451 	nge_dev_spec_param_t	*dev_param_p;
1452 
1453 	dev_param_p = &ngep->dev_spec_param;
1454 
1455 	tx_def.def_val = nge_reg_get32(ngep, NGE_TX_DEF);
1456 	m2p.m2p_val = nge_reg_get32(ngep, NGE_MAC2PHY);
1457 	tx_fifo.wm_val = nge_reg_get32(ngep, NGE_TX_FIFO_WM);
1458 	bk_cntl.cntl_val = nge_reg_get32(ngep, NGE_BKOFF_CNTL);
1459 	bk_cntl.bkoff_bits.rseed = BKOFF_RSEED;
1460 	switch (ngep->param_link_speed) {
1461 	case 10:
1462 		m2p.m2p_bits.speed = low_speed;
1463 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1464 		if (ngep->phy_mode == RGMII_IN) {
1465 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1466 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1467 		} else {
1468 			tx_def.def_bits.if_def = TX_TIFG_MII;
1469 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1470 		}
1471 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1472 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1473 		break;
1474 
1475 	case 100:
1476 		m2p.m2p_bits.speed = fast_speed;
1477 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1478 		if (ngep->phy_mode == RGMII_IN) {
1479 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1480 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1481 		} else {
1482 			tx_def.def_bits.if_def = TX_TIFG_MII;
1483 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1484 		}
1485 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1486 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1487 		break;
1488 
1489 	case 1000:
1490 		m2p.m2p_bits.speed = giga_speed;
1491 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1492 		if (ngep->param_link_duplex == LINK_DUPLEX_FULL) {
1493 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1494 			tx_def.def_bits.if_def = TX_IFG_RGMII_1000_FD;
1495 		} else {
1496 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1497 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1498 		}
1499 
1500 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_GMII;
1501 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_GMII;
1502 		break;
1503 	}
1504 
1505 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1506 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
1507 		m2p.m2p_bits.phyintr = NGE_CLEAR;
1508 		m2p.m2p_bits.phyintrlvl = NGE_CLEAR;
1509 	}
1510 	if (ngep->param_link_duplex == LINK_DUPLEX_HALF) {
1511 		m2p.m2p_bits.hdup_en = NGE_SET;
1512 	}
1513 	else
1514 		m2p.m2p_bits.hdup_en = NGE_CLEAR;
1515 	nge_reg_put32(ngep, NGE_MAC2PHY, m2p.m2p_val);
1516 	nge_reg_put32(ngep, NGE_TX_DEF, tx_def.def_val);
1517 
1518 	tx_fifo.wm_bits.data_lwm = TX_FIFO_DATA_LWM;
1519 	tx_fifo.wm_bits.prd_lwm = TX_FIFO_PRD_LWM;
1520 	tx_fifo.wm_bits.uprd_hwm = TX_FIFO_PRD_HWM;
1521 	tx_fifo.wm_bits.fb_wm = TX_FIFO_TBFW;
1522 	nge_reg_put32(ngep, NGE_TX_FIFO_WM, tx_fifo.wm_val);
1523 
1524 	nge_reg_put32(ngep, NGE_BKOFF_CNTL, bk_cntl.cntl_val);
1525 
1526 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1527 	if (ngep->param_link_rx_pause && dev_param_p->rx_pause_frame)
1528 		rx_cntl0.cntl_bits.paen = NGE_SET;
1529 	else
1530 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1531 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1532 }
1533 
1534 /*
1535  * Handler for hardware link state change.
1536  *
1537  * When this routine is called, the hardware link state has changed
1538  * and the new state is reflected in the param_* variables.  Here
1539  * we must update the softstate, reprogram the MAC to match, and
1540  * record the change in the log and/or on the console.
1541  */
1542 static void
1543 nge_factotum_link_handler(nge_t *ngep)
1544 {
1545 	/*
1546 	 * Update the s/w link_state
1547 	 */
1548 	if (ngep->param_link_up)
1549 		ngep->link_state = LINK_STATE_UP;
1550 	else
1551 		ngep->link_state = LINK_STATE_DOWN;
1552 
1553 	/*
1554 	 * Reprogram the MAC modes to match
1555 	 */
1556 	nge_sync_mac_modes(ngep);
1557 }
1558 
1559 static boolean_t
1560 nge_factotum_link_check(nge_t *ngep)
1561 {
1562 	boolean_t lchg;
1563 	boolean_t check;
1564 
1565 	ASSERT(mutex_owned(ngep->genlock));
1566 
1567 	(*ngep->physops->phys_check)(ngep);
1568 	switch (ngep->link_state) {
1569 	case LINK_STATE_UP:
1570 		lchg = (ngep->param_link_up == B_FALSE);
1571 		check = (ngep->param_link_up == B_FALSE);
1572 		break;
1573 
1574 	case LINK_STATE_DOWN:
1575 		lchg = (ngep->param_link_up == B_TRUE);
1576 		check = (ngep->param_link_up == B_TRUE);
1577 		break;
1578 
1579 	default:
1580 		check = B_TRUE;
1581 		break;
1582 	}
1583 
1584 	/*
1585 	 * If <check> is false, we're sure the link hasn't changed.
1586 	 * If true, however, it's not yet definitive; we have to call
1587 	 * nge_phys_check() to determine whether the link has settled
1588 	 * into a new state yet ... and if it has, then call the link
1589 	 * state change handler.But when the chip is 5700 in Dell 6650
1590 	 * ,even if check is false, the link may have changed.So we
1591 	 * have to call nge_phys_check() to determine the link state.
1592 	 */
1593 	if (check)
1594 		nge_factotum_link_handler(ngep);
1595 
1596 	return (lchg);
1597 }
1598 
1599 /*
1600  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1601  */
1602 static boolean_t nge_factotum_stall_check(nge_t *ngep);
1603 
1604 static boolean_t
1605 nge_factotum_stall_check(nge_t *ngep)
1606 {
1607 	uint32_t dogval;
1608 	/*
1609 	 * Specific check for Tx stall ...
1610 	 *
1611 	 * The 'watchdog' counter is incremented whenever a packet
1612 	 * is queued, reset to 1 when some (but not all) buffers
1613 	 * are reclaimed, reset to 0 (disabled) when all buffers
1614 	 * are reclaimed, and shifted left here.  If it exceeds the
1615 	 * threshold value, the chip is assumed to have stalled and
1616 	 * is put into the ERROR state.  The factotum will then reset
1617 	 * it on the next pass.
1618 	 *
1619 	 * All of which should ensure that we don't get into a state
1620 	 * where packets are left pending indefinitely!
1621 	 */
1622 	dogval = nge_atomic_shl32(&ngep->watchdog, 1);
1623 	if (dogval < nge_watchdog_count) {
1624 		ngep->stall_cknum = 0;
1625 	} else {
1626 		ngep->stall_cknum++;
1627 	}
1628 	if (ngep->stall_cknum < 8) {
1629 		return (B_FALSE);
1630 	} else {
1631 		ngep->stall_cknum = 0;
1632 		ngep->statistics.sw_statistics.tx_stall++;
1633 		return (B_TRUE);
1634 	}
1635 }
1636 
1637 
1638 
1639 /*
1640  * The factotum is woken up when there's something to do that we'd rather
1641  * not do from inside a hardware interrupt handler or high-level cyclic.
1642  * Its two main tasks are:
1643  *	reset & restart the chip after an error
1644  *	check the link status whenever necessary
1645  */
1646 /* ARGSUSED */
1647 uint_t
1648 nge_chip_factotum(caddr_t args1, caddr_t args2)
1649 {
1650 	uint_t result;
1651 	nge_t *ngep;
1652 	boolean_t err;
1653 	boolean_t linkchg;
1654 
1655 	ngep = (nge_t *)args1;
1656 
1657 	NGE_TRACE(("nge_chip_factotum($%p)", (void *)ngep));
1658 
1659 	mutex_enter(ngep->softlock);
1660 	if (ngep->factotum_flag == 0) {
1661 		mutex_exit(ngep->softlock);
1662 		return (DDI_INTR_UNCLAIMED);
1663 	}
1664 	ngep->factotum_flag = 0;
1665 	mutex_exit(ngep->softlock);
1666 	err = B_FALSE;
1667 	linkchg = B_FALSE;
1668 	result = DDI_INTR_CLAIMED;
1669 
1670 	mutex_enter(ngep->genlock);
1671 	switch (ngep->nge_chip_state) {
1672 	default:
1673 		break;
1674 
1675 	case NGE_CHIP_RUNNING:
1676 		linkchg = nge_factotum_link_check(ngep);
1677 		err = nge_factotum_stall_check(ngep);
1678 		break;
1679 
1680 	case NGE_CHIP_FAULT:
1681 		(void) nge_restart(ngep);
1682 		NGE_REPORT((ngep, "automatic recovery activated"));
1683 		break;
1684 	}
1685 
1686 	if (err)
1687 		(void) nge_chip_stop(ngep, B_TRUE);
1688 	mutex_exit(ngep->genlock);
1689 
1690 	/*
1691 	 * If the link state changed, tell the world about it (if
1692 	 * this version of MAC supports link state notification).
1693 	 * Note: can't do this while still holding the mutex.
1694 	 */
1695 	if (linkchg)
1696 		mac_link_update(ngep->mh, ngep->link_state);
1697 
1698 	return (result);
1699 
1700 }
1701 
1702 static void
1703 nge_intr_handle(nge_t *ngep, nge_intr_src *pintr_src)
1704 {
1705 	boolean_t brx;
1706 	boolean_t btx;
1707 	nge_mintr_src mintr_src;
1708 
1709 	brx = B_FALSE;
1710 	btx = B_FALSE;
1711 	ngep->statistics.sw_statistics.intr_count++;
1712 	ngep->statistics.sw_statistics.intr_lval = pintr_src->intr_val;
1713 	brx = (pintr_src->int_bits.reint | pintr_src->int_bits.miss
1714 	    | pintr_src->int_bits.rcint | pintr_src->int_bits.stint)
1715 	    > 0 ? B_TRUE : B_FALSE;
1716 	if (pintr_src->int_bits.reint)
1717 		ngep->statistics.sw_statistics.rx_err++;
1718 	if (pintr_src->int_bits.miss)
1719 		ngep->statistics.sw_statistics.rx_nobuffer++;
1720 
1721 	if (brx)
1722 		nge_receive(ngep);
1723 	btx = (pintr_src->int_bits.teint | pintr_src->int_bits.tcint)
1724 	    > 0 ? B_TRUE : B_FALSE;
1725 	if (btx)
1726 		nge_tx_recycle(ngep, B_TRUE);
1727 	if (pintr_src->int_bits.teint)
1728 		ngep->statistics.sw_statistics.tx_stop_err++;
1729 	if (pintr_src->int_bits.stint) {
1730 		if ((ngep->poll) &&
1731 		    (ngep->recv_count < INTR_HWATER)) {
1732 			ngep->poll_time++;
1733 		}
1734 		if ((ngep->recv_count > POLL_LWATER) &&
1735 		    (!ngep->poll)) {
1736 			ngep->poll = B_TRUE;
1737 		}
1738 
1739 		if (ngep->poll_time == 10) {
1740 			ngep->poll = B_FALSE;
1741 			ngep->poll_time = 0;
1742 		}
1743 		ngep->recv_count = 0;
1744 	}
1745 	if (pintr_src->int_bits.feint)
1746 		nge_chip_err(ngep);
1747 	/* link interrupt, check the link state */
1748 	if (pintr_src->int_bits.mint) {
1749 		mintr_src.src_val = nge_reg_get32(ngep, NGE_MINTR_SRC);
1750 		nge_reg_put32(ngep, NGE_MINTR_SRC, mintr_src.src_val);
1751 		nge_wake_factotum(ngep);
1752 	}
1753 }
1754 
1755 /*
1756  *	nge_chip_intr() -- handle chip interrupts
1757  */
1758 /* ARGSUSED */
1759 uint_t
1760 nge_chip_intr(caddr_t arg1, caddr_t arg2)
1761 {
1762 	nge_t *ngep = (nge_t *)arg1;
1763 	nge_intr_src intr_src;
1764 	nge_intr_mask intr_mask;
1765 
1766 	mutex_enter(ngep->genlock);
1767 
1768 	/*
1769 	 * Check whether chip's says it's asserting #INTA;
1770 	 * if not, don't process or claim the interrupt.
1771 	 */
1772 	intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
1773 	if (intr_src.intr_val == 0) {
1774 		mutex_exit(ngep->genlock);
1775 		return (DDI_INTR_UNCLAIMED);
1776 	}
1777 	/*
1778 	 * Ack the interrupt
1779 	 */
1780 	nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
1781 
1782 	if (ngep->nge_chip_state != NGE_CHIP_RUNNING) {
1783 		mutex_exit(ngep->genlock);
1784 		return (DDI_INTR_CLAIMED);
1785 	}
1786 	nge_intr_handle(ngep, &intr_src);
1787 	if (ngep->poll && !ngep->ch_intr_mode) {
1788 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1789 		intr_mask.mask_val &= ~(ngep->intr_masks);
1790 		intr_mask.mask_bits.stint = NGE_SET;
1791 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1792 		ngep->ch_intr_mode = B_TRUE;
1793 	} else if ((ngep->ch_intr_mode) && (!ngep->poll)) {
1794 		nge_reg_put32(ngep, NGE_INTR_MASK, ngep->intr_masks);
1795 		ngep->ch_intr_mode = B_FALSE;
1796 	}
1797 	mutex_exit(ngep->genlock);
1798 	return (DDI_INTR_CLAIMED);
1799 }
1800 
1801 static enum ioc_reply
1802 nge_pp_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1803 {
1804 	int err;
1805 	uint64_t sizemask;
1806 	uint64_t mem_va;
1807 	uint64_t maxoff;
1808 	boolean_t peek;
1809 	nge_peekpoke_t *ppd;
1810 	int (*ppfn)(nge_t *ngep, nge_peekpoke_t *ppd);
1811 
1812 	switch (cmd) {
1813 	default:
1814 		return (IOC_INVAL);
1815 
1816 	case NGE_PEEK:
1817 		peek = B_TRUE;
1818 		break;
1819 
1820 	case NGE_POKE:
1821 		peek = B_FALSE;
1822 		break;
1823 	}
1824 
1825 	/*
1826 	 * Validate format of ioctl
1827 	 */
1828 	if (iocp->ioc_count != sizeof (nge_peekpoke_t))
1829 		return (IOC_INVAL);
1830 	if (mp->b_cont == NULL)
1831 		return (IOC_INVAL);
1832 	ppd = (nge_peekpoke_t *)mp->b_cont->b_rptr;
1833 
1834 	/*
1835 	 * Validate request parameters
1836 	 */
1837 	switch (ppd->pp_acc_space) {
1838 	default:
1839 		return (IOC_INVAL);
1840 
1841 	case NGE_PP_SPACE_CFG:
1842 		/*
1843 		 * Config space
1844 		 */
1845 		sizemask = 8|4|2|1;
1846 		mem_va = 0;
1847 		maxoff = PCI_CONF_HDR_SIZE;
1848 		ppfn = peek ? nge_chip_peek_cfg : nge_chip_poke_cfg;
1849 		break;
1850 
1851 	case NGE_PP_SPACE_REG:
1852 		/*
1853 		 * Memory-mapped I/O space
1854 		 */
1855 		sizemask = 8|4|2|1;
1856 		mem_va = 0;
1857 		maxoff = NGE_REG_SIZE;
1858 		ppfn = peek ? nge_chip_peek_reg : nge_chip_poke_reg;
1859 		break;
1860 
1861 	case NGE_PP_SPACE_MII:
1862 		sizemask = 4|2|1;
1863 		mem_va = 0;
1864 		maxoff = NGE_MII_SIZE;
1865 		ppfn = peek ? nge_chip_peek_mii : nge_chip_poke_mii;
1866 		break;
1867 
1868 	case NGE_PP_SPACE_SEEPROM:
1869 		sizemask = 4|2|1;
1870 		mem_va = 0;
1871 		maxoff = NGE_SEEROM_SIZE;
1872 		ppfn = peek ? nge_chip_peek_seeprom : nge_chip_poke_seeprom;
1873 		break;
1874 	}
1875 
1876 	switch (ppd->pp_acc_size) {
1877 	default:
1878 		return (IOC_INVAL);
1879 
1880 	case 8:
1881 	case 4:
1882 	case 2:
1883 	case 1:
1884 		if ((ppd->pp_acc_size & sizemask) == 0)
1885 			return (IOC_INVAL);
1886 		break;
1887 	}
1888 
1889 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1890 		return (IOC_INVAL);
1891 
1892 	if (ppd->pp_acc_offset >= maxoff)
1893 		return (IOC_INVAL);
1894 
1895 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1896 		return (IOC_INVAL);
1897 
1898 	/*
1899 	 * All OK - go do it!
1900 	 */
1901 	ppd->pp_acc_offset += mem_va;
1902 	if (ppfn)
1903 		err = (*ppfn)(ngep, ppd);
1904 	if (err != DDI_SUCCESS)
1905 		return (IOC_INVAL);
1906 	return (peek ? IOC_REPLY : IOC_ACK);
1907 }
1908 
1909 static enum ioc_reply nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp,
1910 					struct iocblk *iocp);
1911 #pragma	no_inline(nge_diag_ioctl)
1912 
1913 static enum ioc_reply
1914 nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1915 {
1916 	ASSERT(mutex_owned(ngep->genlock));
1917 
1918 	switch (cmd) {
1919 	default:
1920 		nge_error(ngep, "nge_diag_ioctl: invalid cmd 0x%x", cmd);
1921 		return (IOC_INVAL);
1922 
1923 	case NGE_DIAG:
1924 		return (IOC_ACK);
1925 
1926 	case NGE_PEEK:
1927 	case NGE_POKE:
1928 		return (nge_pp_ioctl(ngep, cmd, mp, iocp));
1929 
1930 	case NGE_PHY_RESET:
1931 		return (IOC_RESTART_ACK);
1932 
1933 	case NGE_SOFT_RESET:
1934 	case NGE_HARD_RESET:
1935 		return (IOC_ACK);
1936 	}
1937 
1938 	/* NOTREACHED */
1939 }
1940 
1941 enum ioc_reply
1942 nge_chip_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
1943 {
1944 	int cmd;
1945 
1946 	ASSERT(mutex_owned(ngep->genlock));
1947 
1948 	cmd = iocp->ioc_cmd;
1949 
1950 	switch (cmd) {
1951 	default:
1952 		return (IOC_INVAL);
1953 
1954 	case NGE_DIAG:
1955 	case NGE_PEEK:
1956 	case NGE_POKE:
1957 	case NGE_PHY_RESET:
1958 	case NGE_SOFT_RESET:
1959 	case NGE_HARD_RESET:
1960 #if	NGE_DEBUGGING
1961 		return (nge_diag_ioctl(ngep, cmd, mp, iocp));
1962 #else
1963 		return (IOC_INVAL);
1964 #endif
1965 
1966 	case NGE_MII_READ:
1967 	case NGE_MII_WRITE:
1968 		return (IOC_INVAL);
1969 
1970 #if	NGE_SEE_IO32
1971 	case NGE_SEE_READ:
1972 	case NGE_SEE_WRITE:
1973 		return (IOC_INVAL);
1974 #endif
1975 
1976 #if	NGE_FLASH_IO32
1977 	case NGE_FLASH_READ:
1978 	case NGE_FLASH_WRITE:
1979 		return (IOC_INVAL);
1980 #endif
1981 	}
1982 }
1983