1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/conf.h> 29 #include <sys/id_space.h> 30 #include <sys/esunddi.h> 31 #include <sys/stat.h> 32 #include <sys/mkdev.h> 33 #include <sys/stream.h> 34 #include <sys/strsubr.h> 35 #include <sys/dlpi.h> 36 #include <sys/modhash.h> 37 #include <sys/mac.h> 38 #include <sys/mac_provider.h> 39 #include <sys/mac_impl.h> 40 #include <sys/mac_client_impl.h> 41 #include <sys/mac_client_priv.h> 42 #include <sys/mac_soft_ring.h> 43 #include <sys/dld.h> 44 #include <sys/modctl.h> 45 #include <sys/fs/dv_node.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/callb.h> 49 #include <sys/cpuvar.h> 50 #include <sys/atomic.h> 51 #include <sys/sdt.h> 52 #include <sys/mac_flow.h> 53 #include <sys/ddi_intr_impl.h> 54 #include <sys/disp.h> 55 #include <sys/sdt.h> 56 57 /* 58 * MAC Provider Interface. 59 * 60 * Interface for GLDv3 compatible NIC drivers. 61 */ 62 63 static void i_mac_notify_thread(void *); 64 65 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 66 67 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 68 mac_fanout_recompute, /* MAC_NOTE_LINK */ 69 NULL, /* MAC_NOTE_UNICST */ 70 NULL, /* MAC_NOTE_TX */ 71 NULL, /* MAC_NOTE_DEVPROMISC */ 72 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 73 NULL, /* MAC_NOTE_SDU_SIZE */ 74 NULL, /* MAC_NOTE_MARGIN */ 75 NULL, /* MAC_NOTE_CAPAB_CHG */ 76 NULL /* MAC_NOTE_LOWLINK */ 77 }; 78 79 /* 80 * Driver support functions. 81 */ 82 83 /* REGISTRATION */ 84 85 mac_register_t * 86 mac_alloc(uint_t mac_version) 87 { 88 mac_register_t *mregp; 89 90 /* 91 * Make sure there isn't a version mismatch between the driver and 92 * the framework. In the future, if multiple versions are 93 * supported, this check could become more sophisticated. 94 */ 95 if (mac_version != MAC_VERSION) 96 return (NULL); 97 98 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 99 mregp->m_version = mac_version; 100 return (mregp); 101 } 102 103 void 104 mac_free(mac_register_t *mregp) 105 { 106 kmem_free(mregp, sizeof (mac_register_t)); 107 } 108 109 /* 110 * mac_register() is how drivers register new MACs with the GLDv3 111 * framework. The mregp argument is allocated by drivers using the 112 * mac_alloc() function, and can be freed using mac_free() immediately upon 113 * return from mac_register(). Upon success (0 return value), the mhp 114 * opaque pointer becomes the driver's handle to its MAC interface, and is 115 * the argument to all other mac module entry points. 116 */ 117 /* ARGSUSED */ 118 int 119 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 120 { 121 mac_impl_t *mip; 122 mactype_t *mtype; 123 int err = EINVAL; 124 struct devnames *dnp = NULL; 125 uint_t instance; 126 boolean_t style1_created = B_FALSE; 127 boolean_t style2_created = B_FALSE; 128 char *driver; 129 minor_t minor = 0; 130 131 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 132 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 133 return (EINVAL); 134 135 /* Find the required MAC-Type plugin. */ 136 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 137 return (EINVAL); 138 139 /* Create a mac_impl_t to represent this MAC. */ 140 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 141 142 /* 143 * The mac is not ready for open yet. 144 */ 145 mip->mi_state_flags |= MIS_DISABLED; 146 147 /* 148 * When a mac is registered, the m_instance field can be set to: 149 * 150 * 0: Get the mac's instance number from m_dip. 151 * This is usually used for physical device dips. 152 * 153 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 154 * For example, when an aggregation is created with the key option, 155 * "key" will be used as the instance number. 156 * 157 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 158 * This is often used when a MAC of a virtual link is registered 159 * (e.g., aggregation when "key" is not specified, or vnic). 160 * 161 * Note that the instance number is used to derive the mi_minor field 162 * of mac_impl_t, which will then be used to derive the name of kstats 163 * and the devfs nodes. The first 2 cases are needed to preserve 164 * backward compatibility. 165 */ 166 switch (mregp->m_instance) { 167 case 0: 168 instance = ddi_get_instance(mregp->m_dip); 169 break; 170 case ((uint_t)-1): 171 minor = mac_minor_hold(B_TRUE); 172 if (minor == 0) { 173 err = ENOSPC; 174 goto fail; 175 } 176 instance = minor - 1; 177 break; 178 default: 179 instance = mregp->m_instance; 180 if (instance >= MAC_MAX_MINOR) { 181 err = EINVAL; 182 goto fail; 183 } 184 break; 185 } 186 187 mip->mi_minor = (minor_t)(instance + 1); 188 mip->mi_dip = mregp->m_dip; 189 mip->mi_clients_list = NULL; 190 mip->mi_nclients = 0; 191 192 /* Set the default IEEE Port VLAN Identifier */ 193 mip->mi_pvid = 1; 194 195 /* Default bridge link learning protection values */ 196 mip->mi_llimit = 1000; 197 mip->mi_ldecay = 200; 198 199 driver = (char *)ddi_driver_name(mip->mi_dip); 200 201 /* Construct the MAC name as <drvname><instance> */ 202 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 203 driver, instance); 204 205 mip->mi_driver = mregp->m_driver; 206 207 mip->mi_type = mtype; 208 mip->mi_margin = mregp->m_margin; 209 mip->mi_info.mi_media = mtype->mt_type; 210 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 211 if (mregp->m_max_sdu <= mregp->m_min_sdu) 212 goto fail; 213 mip->mi_sdu_min = mregp->m_min_sdu; 214 mip->mi_sdu_max = mregp->m_max_sdu; 215 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 216 /* 217 * If the media supports a broadcast address, cache a pointer to it 218 * in the mac_info_t so that upper layers can use it. 219 */ 220 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 221 222 mip->mi_v12n_level = mregp->m_v12n; 223 224 /* 225 * Copy the unicast source address into the mac_info_t, but only if 226 * the MAC-Type defines a non-zero address length. We need to 227 * handle MAC-Types that have an address length of 0 228 * (point-to-point protocol MACs for example). 229 */ 230 if (mip->mi_type->mt_addr_length > 0) { 231 if (mregp->m_src_addr == NULL) 232 goto fail; 233 mip->mi_info.mi_unicst_addr = 234 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 235 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 236 mip->mi_type->mt_addr_length); 237 238 /* 239 * Copy the fixed 'factory' MAC address from the immutable 240 * info. This is taken to be the MAC address currently in 241 * use. 242 */ 243 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 244 mip->mi_type->mt_addr_length); 245 246 /* 247 * At this point, we should set up the classification 248 * rules etc but we delay it till mac_open() so that 249 * the resource discovery has taken place and we 250 * know someone wants to use the device. Otherwise 251 * memory gets allocated for Rx ring structures even 252 * during probe. 253 */ 254 255 /* Copy the destination address if one is provided. */ 256 if (mregp->m_dst_addr != NULL) { 257 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 258 mip->mi_type->mt_addr_length); 259 mip->mi_dstaddr_set = B_TRUE; 260 } 261 } else if (mregp->m_src_addr != NULL) { 262 goto fail; 263 } 264 265 /* 266 * The format of the m_pdata is specific to the plugin. It is 267 * passed in as an argument to all of the plugin callbacks. The 268 * driver can update this information by calling 269 * mac_pdata_update(). 270 */ 271 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 272 /* 273 * Verify if the supplied plugin data is valid. Note that 274 * even if the caller passed in a NULL pointer as plugin data, 275 * we still need to verify if that's valid as the plugin may 276 * require plugin data to function. 277 */ 278 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 279 mregp->m_pdata_size)) { 280 goto fail; 281 } 282 if (mregp->m_pdata != NULL) { 283 mip->mi_pdata = 284 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 285 bcopy(mregp->m_pdata, mip->mi_pdata, 286 mregp->m_pdata_size); 287 mip->mi_pdata_size = mregp->m_pdata_size; 288 } 289 } else if (mregp->m_pdata != NULL) { 290 /* 291 * The caller supplied non-NULL plugin data, but the plugin 292 * does not recognize plugin data. 293 */ 294 err = EINVAL; 295 goto fail; 296 } 297 298 /* 299 * Register the private properties. 300 */ 301 mac_register_priv_prop(mip, mregp->m_priv_props, 302 mregp->m_priv_prop_count); 303 304 /* 305 * Stash the driver callbacks into the mac_impl_t, but first sanity 306 * check to make sure all mandatory callbacks are set. 307 */ 308 if (mregp->m_callbacks->mc_getstat == NULL || 309 mregp->m_callbacks->mc_start == NULL || 310 mregp->m_callbacks->mc_stop == NULL || 311 mregp->m_callbacks->mc_setpromisc == NULL || 312 mregp->m_callbacks->mc_multicst == NULL) { 313 goto fail; 314 } 315 mip->mi_callbacks = mregp->m_callbacks; 316 317 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 318 &mip->mi_capab_legacy)) { 319 mip->mi_state_flags |= MIS_LEGACY; 320 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 321 } else { 322 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 323 mip->mi_minor); 324 } 325 326 /* 327 * Allocate a notification thread. thread_create blocks for memory 328 * if needed, it never fails. 329 */ 330 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 331 mip, 0, &p0, TS_RUN, minclsyspri); 332 333 /* 334 * Initialize the capabilities 335 */ 336 337 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 338 mip->mi_state_flags |= MIS_IS_VNIC; 339 340 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 341 mip->mi_state_flags |= MIS_IS_AGGR; 342 343 mac_addr_factory_init(mip); 344 345 /* 346 * Enforce the virtrualization level registered. 347 */ 348 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 349 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 350 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 351 goto fail; 352 353 /* 354 * The driver needs to register at least rx rings for this 355 * virtualization level. 356 */ 357 if (mip->mi_rx_groups == NULL) 358 goto fail; 359 } 360 361 /* 362 * The driver must set mc_unicst entry point to NULL when it advertises 363 * CAP_RINGS for rx groups. 364 */ 365 if (mip->mi_rx_groups != NULL) { 366 if (mregp->m_callbacks->mc_unicst != NULL) 367 goto fail; 368 } else { 369 if (mregp->m_callbacks->mc_unicst == NULL) 370 goto fail; 371 } 372 373 /* 374 * The driver must set mc_tx entry point to NULL when it advertises 375 * CAP_RINGS for tx rings. 376 */ 377 if (mip->mi_tx_groups != NULL) { 378 if (mregp->m_callbacks->mc_tx != NULL) 379 goto fail; 380 } else { 381 if (mregp->m_callbacks->mc_tx == NULL) 382 goto fail; 383 } 384 385 /* 386 * Initialize MAC addresses. Must be called after mac_init_rings(). 387 */ 388 mac_init_macaddr(mip); 389 390 mip->mi_share_capab.ms_snum = 0; 391 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 392 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 393 &mip->mi_share_capab); 394 } 395 396 /* 397 * Initialize the kstats for this device. 398 */ 399 mac_stat_create(mip); 400 401 /* Zero out any properties. */ 402 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 403 404 if (mip->mi_minor <= MAC_MAX_MINOR) { 405 /* Create a style-2 DLPI device */ 406 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 407 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 408 goto fail; 409 style2_created = B_TRUE; 410 411 /* Create a style-1 DLPI device */ 412 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 413 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 414 goto fail; 415 style1_created = B_TRUE; 416 } 417 418 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 419 420 rw_enter(&i_mac_impl_lock, RW_WRITER); 421 if (mod_hash_insert(i_mac_impl_hash, 422 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 423 rw_exit(&i_mac_impl_lock); 424 err = EEXIST; 425 goto fail; 426 } 427 428 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 429 (mac_impl_t *), mip); 430 431 /* 432 * Mark the MAC to be ready for open. 433 */ 434 mip->mi_state_flags &= ~MIS_DISABLED; 435 rw_exit(&i_mac_impl_lock); 436 437 atomic_inc_32(&i_mac_impl_count); 438 439 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 440 *mhp = (mac_handle_t)mip; 441 return (0); 442 443 fail: 444 if (style1_created) 445 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 446 447 if (style2_created) 448 ddi_remove_minor_node(mip->mi_dip, driver); 449 450 mac_addr_factory_fini(mip); 451 452 /* Clean up registered MAC addresses */ 453 mac_fini_macaddr(mip); 454 455 /* Clean up registered rings */ 456 mac_free_rings(mip, MAC_RING_TYPE_RX); 457 mac_free_rings(mip, MAC_RING_TYPE_TX); 458 459 /* Clean up notification thread */ 460 if (mip->mi_notify_thread != NULL) 461 i_mac_notify_exit(mip); 462 463 if (mip->mi_info.mi_unicst_addr != NULL) { 464 kmem_free(mip->mi_info.mi_unicst_addr, 465 mip->mi_type->mt_addr_length); 466 mip->mi_info.mi_unicst_addr = NULL; 467 } 468 469 mac_stat_destroy(mip); 470 471 if (mip->mi_type != NULL) { 472 atomic_dec_32(&mip->mi_type->mt_ref); 473 mip->mi_type = NULL; 474 } 475 476 if (mip->mi_pdata != NULL) { 477 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 478 mip->mi_pdata = NULL; 479 mip->mi_pdata_size = 0; 480 } 481 482 if (minor != 0) { 483 ASSERT(minor > MAC_MAX_MINOR); 484 mac_minor_rele(minor); 485 } 486 487 mac_unregister_priv_prop(mip); 488 489 kmem_cache_free(i_mac_impl_cachep, mip); 490 return (err); 491 } 492 493 /* 494 * Unregister from the GLDv3 framework 495 */ 496 int 497 mac_unregister(mac_handle_t mh) 498 { 499 int err; 500 mac_impl_t *mip = (mac_impl_t *)mh; 501 mod_hash_val_t val; 502 mac_margin_req_t *mmr, *nextmmr; 503 504 /* Fail the unregister if there are any open references to this mac. */ 505 if ((err = mac_disable_nowait(mh)) != 0) 506 return (err); 507 508 /* 509 * Clean up notification thread and wait for it to exit. 510 */ 511 i_mac_notify_exit(mip); 512 513 i_mac_perim_enter(mip); 514 515 /* 516 * There is still resource properties configured over this mac. 517 */ 518 if (mip->mi_resource_props.mrp_mask != 0) 519 mac_fastpath_enable((mac_handle_t)mip); 520 521 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 522 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 523 ddi_remove_minor_node(mip->mi_dip, 524 (char *)ddi_driver_name(mip->mi_dip)); 525 } 526 527 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 528 MIS_EXCLUSIVE)); 529 530 mac_stat_destroy(mip); 531 532 (void) mod_hash_remove(i_mac_impl_hash, 533 (mod_hash_key_t)mip->mi_name, &val); 534 ASSERT(mip == (mac_impl_t *)val); 535 536 ASSERT(i_mac_impl_count > 0); 537 atomic_dec_32(&i_mac_impl_count); 538 539 if (mip->mi_pdata != NULL) 540 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 541 mip->mi_pdata = NULL; 542 mip->mi_pdata_size = 0; 543 544 /* 545 * Free the list of margin request. 546 */ 547 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 548 nextmmr = mmr->mmr_nextp; 549 kmem_free(mmr, sizeof (mac_margin_req_t)); 550 } 551 mip->mi_mmrp = NULL; 552 553 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 554 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 555 mip->mi_info.mi_unicst_addr = NULL; 556 557 atomic_dec_32(&mip->mi_type->mt_ref); 558 mip->mi_type = NULL; 559 560 /* 561 * Free the primary MAC address. 562 */ 563 mac_fini_macaddr(mip); 564 565 /* 566 * free all rings 567 */ 568 mac_free_rings(mip, MAC_RING_TYPE_RX); 569 mac_free_rings(mip, MAC_RING_TYPE_TX); 570 571 mac_addr_factory_fini(mip); 572 573 bzero(mip->mi_addr, MAXMACADDRLEN); 574 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 575 576 /* and the flows */ 577 mac_flow_tab_destroy(mip->mi_flow_tab); 578 mip->mi_flow_tab = NULL; 579 580 if (mip->mi_minor > MAC_MAX_MINOR) 581 mac_minor_rele(mip->mi_minor); 582 583 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 584 585 /* 586 * Reset the perim related fields to default values before 587 * kmem_cache_free 588 */ 589 i_mac_perim_exit(mip); 590 mip->mi_state_flags = 0; 591 592 mac_unregister_priv_prop(mip); 593 594 ASSERT(mip->mi_bridge_link == NULL); 595 kmem_cache_free(i_mac_impl_cachep, mip); 596 597 return (0); 598 } 599 600 /* DATA RECEPTION */ 601 602 /* 603 * This function is invoked for packets received by the MAC driver in 604 * interrupt context. The ring generation number provided by the driver 605 * is matched with the ring generation number held in MAC. If they do not 606 * match, received packets are considered stale packets coming from an older 607 * assignment of the ring. Drop them. 608 */ 609 void 610 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 611 uint64_t mr_gen_num) 612 { 613 mac_ring_t *mr = (mac_ring_t *)mrh; 614 615 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 616 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 617 mr->mr_gen_num, uint64_t, mr_gen_num); 618 freemsgchain(mp_chain); 619 return; 620 } 621 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 622 } 623 624 /* 625 * This function is invoked for each packet received by the underlying driver. 626 */ 627 void 628 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 629 { 630 mac_impl_t *mip = (mac_impl_t *)mh; 631 632 /* 633 * Check if the link is part of a bridge. If not, then we don't need 634 * to take the lock to remain consistent. Make this common case 635 * lock-free and tail-call optimized. 636 */ 637 if (mip->mi_bridge_link == NULL) { 638 mac_rx_common(mh, mrh, mp_chain); 639 } else { 640 /* 641 * Once we take a reference on the bridge link, the bridge 642 * module itself can't unload, so the callback pointers are 643 * stable. 644 */ 645 mutex_enter(&mip->mi_bridge_lock); 646 if ((mh = mip->mi_bridge_link) != NULL) 647 mac_bridge_ref_cb(mh, B_TRUE); 648 mutex_exit(&mip->mi_bridge_lock); 649 if (mh == NULL) { 650 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 651 } else { 652 mac_bridge_rx_cb(mh, mrh, mp_chain); 653 mac_bridge_ref_cb(mh, B_FALSE); 654 } 655 } 656 } 657 658 /* 659 * Special case function: this allows snooping of packets transmitted and 660 * received by TRILL. By design, they go directly into the TRILL module. 661 */ 662 void 663 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 664 { 665 mac_impl_t *mip = (mac_impl_t *)mh; 666 667 if (mip->mi_promisc_list != NULL) 668 mac_promisc_dispatch(mip, mp, NULL); 669 } 670 671 /* 672 * This is the upward reentry point for packets arriving from the bridging 673 * module and from mac_rx for links not part of a bridge. 674 */ 675 void 676 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 677 { 678 mac_impl_t *mip = (mac_impl_t *)mh; 679 mac_ring_t *mr = (mac_ring_t *)mrh; 680 mac_soft_ring_set_t *mac_srs; 681 mblk_t *bp = mp_chain; 682 boolean_t hw_classified = B_FALSE; 683 684 /* 685 * If there are any promiscuous mode callbacks defined for 686 * this MAC, pass them a copy if appropriate. 687 */ 688 if (mip->mi_promisc_list != NULL) 689 mac_promisc_dispatch(mip, mp_chain, NULL); 690 691 if (mr != NULL) { 692 /* 693 * If the SRS teardown has started, just return. The 'mr' 694 * continues to be valid until the driver unregisters the mac. 695 * Hardware classified packets will not make their way up 696 * beyond this point once the teardown has started. The driver 697 * is never passed a pointer to a flow entry or SRS or any 698 * structure that can be freed much before mac_unregister. 699 */ 700 mutex_enter(&mr->mr_lock); 701 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 702 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 703 mutex_exit(&mr->mr_lock); 704 freemsgchain(mp_chain); 705 return; 706 } 707 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 708 hw_classified = B_TRUE; 709 MR_REFHOLD_LOCKED(mr); 710 } 711 mutex_exit(&mr->mr_lock); 712 713 /* 714 * We check if an SRS is controlling this ring. 715 * If so, we can directly call the srs_lower_proc 716 * routine otherwise we need to go through mac_rx_classify 717 * to reach the right place. 718 */ 719 if (hw_classified) { 720 mac_srs = mr->mr_srs; 721 /* 722 * This is supposed to be the fast path. 723 * All packets received though here were steered by 724 * the hardware classifier, and share the same 725 * MAC header info. 726 */ 727 mac_srs->srs_rx.sr_lower_proc(mh, 728 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 729 MR_REFRELE(mr); 730 return; 731 } 732 /* We'll fall through to software classification */ 733 } else { 734 flow_entry_t *flent; 735 int err; 736 737 rw_enter(&mip->mi_rw_lock, RW_READER); 738 if (mip->mi_single_active_client != NULL) { 739 flent = mip->mi_single_active_client->mci_flent_list; 740 FLOW_TRY_REFHOLD(flent, err); 741 rw_exit(&mip->mi_rw_lock); 742 if (err == 0) { 743 (flent->fe_cb_fn)(flent->fe_cb_arg1, 744 flent->fe_cb_arg2, mp_chain, B_FALSE); 745 FLOW_REFRELE(flent); 746 return; 747 } 748 } else { 749 rw_exit(&mip->mi_rw_lock); 750 } 751 } 752 753 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 754 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 755 return; 756 } 757 758 freemsgchain(bp); 759 } 760 761 /* DATA TRANSMISSION */ 762 763 /* 764 * A driver's notification to resume transmission, in case of a provider 765 * without TX rings. 766 */ 767 void 768 mac_tx_update(mac_handle_t mh) 769 { 770 /* 771 * Walk the list of MAC clients (mac_client_handle) 772 * and update 773 */ 774 i_mac_tx_srs_notify((mac_impl_t *)mh, NULL); 775 } 776 777 /* 778 * A driver's notification to resume transmission on the specified TX ring. 779 */ 780 void 781 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 782 { 783 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 784 } 785 786 /* LINK STATE */ 787 /* 788 * Notify the MAC layer about a link state change 789 */ 790 void 791 mac_link_update(mac_handle_t mh, link_state_t link) 792 { 793 mac_impl_t *mip = (mac_impl_t *)mh; 794 795 /* 796 * Save the link state. 797 */ 798 mip->mi_lowlinkstate = link; 799 800 /* 801 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 802 * thread to deliver both lower and upper notifications. 803 */ 804 i_mac_notify(mip, MAC_NOTE_LOWLINK); 805 } 806 807 /* 808 * Notify the MAC layer about a link state change due to bridging. 809 */ 810 void 811 mac_link_redo(mac_handle_t mh, link_state_t link) 812 { 813 mac_impl_t *mip = (mac_impl_t *)mh; 814 815 /* 816 * Save the link state. 817 */ 818 mip->mi_linkstate = link; 819 820 /* 821 * Send a MAC_NOTE_LINK notification. Only upper notifications are 822 * made. 823 */ 824 i_mac_notify(mip, MAC_NOTE_LINK); 825 } 826 827 /* MINOR NODE HANDLING */ 828 829 /* 830 * Given a dev_t, return the instance number (PPA) associated with it. 831 * Drivers can use this in their getinfo(9e) implementation to lookup 832 * the instance number (i.e. PPA) of the device, to use as an index to 833 * their own array of soft state structures. 834 * 835 * Returns -1 on error. 836 */ 837 int 838 mac_devt_to_instance(dev_t devt) 839 { 840 return (dld_devt_to_instance(devt)); 841 } 842 843 /* 844 * This function returns the first minor number that is available for 845 * driver private use. All minor numbers smaller than this are 846 * reserved for GLDv3 use. 847 */ 848 minor_t 849 mac_private_minor(void) 850 { 851 return (MAC_PRIVATE_MINOR); 852 } 853 854 /* OTHER CONTROL INFORMATION */ 855 856 /* 857 * A driver notified us that its primary MAC address has changed. 858 */ 859 void 860 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 861 { 862 mac_impl_t *mip = (mac_impl_t *)mh; 863 864 if (mip->mi_type->mt_addr_length == 0) 865 return; 866 867 i_mac_perim_enter(mip); 868 /* 869 * If address doesn't change, do nothing. 870 */ 871 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 872 i_mac_perim_exit(mip); 873 return; 874 } 875 876 /* 877 * Freshen the MAC address value and update all MAC clients that 878 * share this MAC address. 879 */ 880 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 881 (uint8_t *)addr); 882 883 i_mac_perim_exit(mip); 884 885 /* 886 * Send a MAC_NOTE_UNICST notification. 887 */ 888 i_mac_notify(mip, MAC_NOTE_UNICST); 889 } 890 891 void 892 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 893 { 894 mac_impl_t *mip = (mac_impl_t *)mh; 895 896 if (mip->mi_type->mt_addr_length == 0) 897 return; 898 899 i_mac_perim_enter(mip); 900 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 901 i_mac_perim_exit(mip); 902 i_mac_notify(mip, MAC_NOTE_DEST); 903 } 904 905 /* 906 * MAC plugin information changed. 907 */ 908 int 909 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 910 { 911 mac_impl_t *mip = (mac_impl_t *)mh; 912 913 /* 914 * Verify that the plugin supports MAC plugin data and that the 915 * supplied data is valid. 916 */ 917 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 918 return (EINVAL); 919 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 920 return (EINVAL); 921 922 if (mip->mi_pdata != NULL) 923 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 924 925 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 926 bcopy(mac_pdata, mip->mi_pdata, dsize); 927 mip->mi_pdata_size = dsize; 928 929 /* 930 * Since the MAC plugin data is used to construct MAC headers that 931 * were cached in fast-path headers, we need to flush fast-path 932 * information for links associated with this mac. 933 */ 934 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 935 return (0); 936 } 937 938 /* 939 * Invoked by driver as well as the framework to notify its capability change. 940 */ 941 void 942 mac_capab_update(mac_handle_t mh) 943 { 944 /* Send MAC_NOTE_CAPAB_CHG notification */ 945 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 946 } 947 948 int 949 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 950 { 951 mac_impl_t *mip = (mac_impl_t *)mh; 952 953 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 954 return (EINVAL); 955 mip->mi_sdu_max = sdu_max; 956 957 /* Send a MAC_NOTE_SDU_SIZE notification. */ 958 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 959 return (0); 960 } 961 962 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 963 964 /* 965 * Updates the mac_impl structure with the current state of the link 966 */ 967 static void 968 i_mac_log_link_state(mac_impl_t *mip) 969 { 970 /* 971 * If no change, then it is not interesting. 972 */ 973 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 974 return; 975 976 switch (mip->mi_lowlinkstate) { 977 case LINK_STATE_UP: 978 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 979 char det[200]; 980 981 mip->mi_type->mt_ops.mtops_link_details(det, 982 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 983 984 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 985 } else { 986 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 987 } 988 break; 989 990 case LINK_STATE_DOWN: 991 /* 992 * Only transitions from UP to DOWN are interesting 993 */ 994 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 995 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 996 break; 997 998 case LINK_STATE_UNKNOWN: 999 /* 1000 * This case is normally not interesting. 1001 */ 1002 break; 1003 } 1004 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1005 } 1006 1007 /* 1008 * Main routine for the callbacks notifications thread 1009 */ 1010 static void 1011 i_mac_notify_thread(void *arg) 1012 { 1013 mac_impl_t *mip = arg; 1014 callb_cpr_t cprinfo; 1015 mac_cb_t *mcb; 1016 mac_cb_info_t *mcbi; 1017 mac_notify_cb_t *mncb; 1018 1019 mcbi = &mip->mi_notify_cb_info; 1020 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1021 "i_mac_notify_thread"); 1022 1023 mutex_enter(mcbi->mcbi_lockp); 1024 1025 for (;;) { 1026 uint32_t bits; 1027 uint32_t type; 1028 1029 bits = mip->mi_notify_bits; 1030 if (bits == 0) { 1031 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1032 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1033 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1034 continue; 1035 } 1036 mip->mi_notify_bits = 0; 1037 if ((bits & (1 << MAC_NNOTE)) != 0) { 1038 /* request to quit */ 1039 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1040 break; 1041 } 1042 1043 mutex_exit(mcbi->mcbi_lockp); 1044 1045 /* 1046 * Log link changes on the actual link, but then do reports on 1047 * synthetic state (if part of a bridge). 1048 */ 1049 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1050 link_state_t newstate; 1051 mac_handle_t mh; 1052 1053 i_mac_log_link_state(mip); 1054 newstate = mip->mi_lowlinkstate; 1055 if (mip->mi_bridge_link != NULL) { 1056 mutex_enter(&mip->mi_bridge_lock); 1057 if ((mh = mip->mi_bridge_link) != NULL) { 1058 newstate = mac_bridge_ls_cb(mh, 1059 newstate); 1060 } 1061 mutex_exit(&mip->mi_bridge_lock); 1062 } 1063 if (newstate != mip->mi_linkstate) { 1064 mip->mi_linkstate = newstate; 1065 bits |= 1 << MAC_NOTE_LINK; 1066 } 1067 } 1068 1069 /* 1070 * Do notification callbacks for each notification type. 1071 */ 1072 for (type = 0; type < MAC_NNOTE; type++) { 1073 if ((bits & (1 << type)) == 0) { 1074 continue; 1075 } 1076 1077 if (mac_notify_cb_list[type] != NULL) 1078 (*mac_notify_cb_list[type])(mip); 1079 1080 /* 1081 * Walk the list of notifications. 1082 */ 1083 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1084 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1085 mcb = mcb->mcb_nextp) { 1086 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1087 mncb->mncb_fn(mncb->mncb_arg, type); 1088 } 1089 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1090 &mip->mi_notify_cb_list); 1091 } 1092 1093 mutex_enter(mcbi->mcbi_lockp); 1094 } 1095 1096 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1097 cv_broadcast(&mcbi->mcbi_cv); 1098 1099 /* CALLB_CPR_EXIT drops the lock */ 1100 CALLB_CPR_EXIT(&cprinfo); 1101 thread_exit(); 1102 } 1103 1104 /* 1105 * Signal the i_mac_notify_thread asking it to quit. 1106 * Then wait till it is done. 1107 */ 1108 void 1109 i_mac_notify_exit(mac_impl_t *mip) 1110 { 1111 mac_cb_info_t *mcbi; 1112 1113 mcbi = &mip->mi_notify_cb_info; 1114 1115 mutex_enter(mcbi->mcbi_lockp); 1116 mip->mi_notify_bits = (1 << MAC_NNOTE); 1117 cv_broadcast(&mcbi->mcbi_cv); 1118 1119 1120 while ((mip->mi_notify_thread != NULL) && 1121 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1122 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1123 } 1124 1125 /* Necessary clean up before doing kmem_cache_free */ 1126 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1127 mip->mi_notify_bits = 0; 1128 mip->mi_notify_thread = NULL; 1129 mutex_exit(mcbi->mcbi_lockp); 1130 } 1131 1132 /* 1133 * Entry point invoked by drivers to dynamically add a ring to an 1134 * existing group. 1135 */ 1136 int 1137 mac_group_add_ring(mac_group_handle_t gh, int index) 1138 { 1139 mac_group_t *group = (mac_group_t *)gh; 1140 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1141 int ret; 1142 1143 i_mac_perim_enter(mip); 1144 1145 /* 1146 * Only RX rings can be added or removed by drivers currently. 1147 */ 1148 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 1149 1150 ret = i_mac_group_add_ring(group, NULL, index); 1151 1152 i_mac_perim_exit(mip); 1153 1154 return (ret); 1155 } 1156 1157 /* 1158 * Entry point invoked by drivers to dynamically remove a ring 1159 * from an existing group. The specified ring handle must no longer 1160 * be used by the driver after a call to this function. 1161 */ 1162 void 1163 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1164 { 1165 mac_group_t *group = (mac_group_t *)gh; 1166 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1167 1168 i_mac_perim_enter(mip); 1169 1170 /* 1171 * Only RX rings can be added or removed by drivers currently. 1172 */ 1173 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 1174 1175 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1176 1177 i_mac_perim_exit(mip); 1178 } 1179