1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/conf.h> 28 #include <sys/id_space.h> 29 #include <sys/esunddi.h> 30 #include <sys/stat.h> 31 #include <sys/mkdev.h> 32 #include <sys/stream.h> 33 #include <sys/strsubr.h> 34 #include <sys/dlpi.h> 35 #include <sys/modhash.h> 36 #include <sys/mac.h> 37 #include <sys/mac_provider.h> 38 #include <sys/mac_impl.h> 39 #include <sys/mac_client_impl.h> 40 #include <sys/mac_client_priv.h> 41 #include <sys/mac_soft_ring.h> 42 #include <sys/mac_stat.h> 43 #include <sys/dld.h> 44 #include <sys/modctl.h> 45 #include <sys/fs/dv_node.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/callb.h> 49 #include <sys/cpuvar.h> 50 #include <sys/atomic.h> 51 #include <sys/sdt.h> 52 #include <sys/mac_flow.h> 53 #include <sys/ddi_intr_impl.h> 54 #include <sys/disp.h> 55 #include <sys/sdt.h> 56 #include <sys/pattr.h> 57 #include <sys/strsun.h> 58 59 /* 60 * MAC Provider Interface. 61 * 62 * Interface for GLDv3 compatible NIC drivers. 63 */ 64 65 static void i_mac_notify_thread(void *); 66 67 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 68 69 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 70 mac_fanout_recompute, /* MAC_NOTE_LINK */ 71 NULL, /* MAC_NOTE_UNICST */ 72 NULL, /* MAC_NOTE_TX */ 73 NULL, /* MAC_NOTE_DEVPROMISC */ 74 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 75 NULL, /* MAC_NOTE_SDU_SIZE */ 76 NULL, /* MAC_NOTE_MARGIN */ 77 NULL, /* MAC_NOTE_CAPAB_CHG */ 78 NULL /* MAC_NOTE_LOWLINK */ 79 }; 80 81 /* 82 * Driver support functions. 83 */ 84 85 /* REGISTRATION */ 86 87 mac_register_t * 88 mac_alloc(uint_t mac_version) 89 { 90 mac_register_t *mregp; 91 92 /* 93 * Make sure there isn't a version mismatch between the driver and 94 * the framework. In the future, if multiple versions are 95 * supported, this check could become more sophisticated. 96 */ 97 if (mac_version != MAC_VERSION) 98 return (NULL); 99 100 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 101 mregp->m_version = mac_version; 102 return (mregp); 103 } 104 105 void 106 mac_free(mac_register_t *mregp) 107 { 108 kmem_free(mregp, sizeof (mac_register_t)); 109 } 110 111 /* 112 * mac_register() is how drivers register new MACs with the GLDv3 113 * framework. The mregp argument is allocated by drivers using the 114 * mac_alloc() function, and can be freed using mac_free() immediately upon 115 * return from mac_register(). Upon success (0 return value), the mhp 116 * opaque pointer becomes the driver's handle to its MAC interface, and is 117 * the argument to all other mac module entry points. 118 */ 119 /* ARGSUSED */ 120 int 121 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 122 { 123 mac_impl_t *mip; 124 mactype_t *mtype; 125 int err = EINVAL; 126 struct devnames *dnp = NULL; 127 uint_t instance; 128 boolean_t style1_created = B_FALSE; 129 boolean_t style2_created = B_FALSE; 130 char *driver; 131 minor_t minor = 0; 132 133 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 134 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 135 return (EINVAL); 136 137 /* Find the required MAC-Type plugin. */ 138 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 139 return (EINVAL); 140 141 /* Create a mac_impl_t to represent this MAC. */ 142 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 143 144 /* 145 * The mac is not ready for open yet. 146 */ 147 mip->mi_state_flags |= MIS_DISABLED; 148 149 /* 150 * When a mac is registered, the m_instance field can be set to: 151 * 152 * 0: Get the mac's instance number from m_dip. 153 * This is usually used for physical device dips. 154 * 155 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 156 * For example, when an aggregation is created with the key option, 157 * "key" will be used as the instance number. 158 * 159 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 160 * This is often used when a MAC of a virtual link is registered 161 * (e.g., aggregation when "key" is not specified, or vnic). 162 * 163 * Note that the instance number is used to derive the mi_minor field 164 * of mac_impl_t, which will then be used to derive the name of kstats 165 * and the devfs nodes. The first 2 cases are needed to preserve 166 * backward compatibility. 167 */ 168 switch (mregp->m_instance) { 169 case 0: 170 instance = ddi_get_instance(mregp->m_dip); 171 break; 172 case ((uint_t)-1): 173 minor = mac_minor_hold(B_TRUE); 174 if (minor == 0) { 175 err = ENOSPC; 176 goto fail; 177 } 178 instance = minor - 1; 179 break; 180 default: 181 instance = mregp->m_instance; 182 if (instance >= MAC_MAX_MINOR) { 183 err = EINVAL; 184 goto fail; 185 } 186 break; 187 } 188 189 mip->mi_minor = (minor_t)(instance + 1); 190 mip->mi_dip = mregp->m_dip; 191 mip->mi_clients_list = NULL; 192 mip->mi_nclients = 0; 193 194 /* Set the default IEEE Port VLAN Identifier */ 195 mip->mi_pvid = 1; 196 197 /* Default bridge link learning protection values */ 198 mip->mi_llimit = 1000; 199 mip->mi_ldecay = 200; 200 201 driver = (char *)ddi_driver_name(mip->mi_dip); 202 203 /* Construct the MAC name as <drvname><instance> */ 204 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 205 driver, instance); 206 207 mip->mi_driver = mregp->m_driver; 208 209 mip->mi_type = mtype; 210 mip->mi_margin = mregp->m_margin; 211 mip->mi_info.mi_media = mtype->mt_type; 212 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 213 if (mregp->m_max_sdu <= mregp->m_min_sdu) 214 goto fail; 215 if (mregp->m_multicast_sdu == 0) 216 mregp->m_multicast_sdu = mregp->m_max_sdu; 217 if (mregp->m_multicast_sdu < mregp->m_min_sdu || 218 mregp->m_multicast_sdu > mregp->m_max_sdu) 219 goto fail; 220 mip->mi_sdu_min = mregp->m_min_sdu; 221 mip->mi_sdu_max = mregp->m_max_sdu; 222 mip->mi_sdu_multicast = mregp->m_multicast_sdu; 223 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 224 /* 225 * If the media supports a broadcast address, cache a pointer to it 226 * in the mac_info_t so that upper layers can use it. 227 */ 228 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 229 230 mip->mi_v12n_level = mregp->m_v12n; 231 232 /* 233 * Copy the unicast source address into the mac_info_t, but only if 234 * the MAC-Type defines a non-zero address length. We need to 235 * handle MAC-Types that have an address length of 0 236 * (point-to-point protocol MACs for example). 237 */ 238 if (mip->mi_type->mt_addr_length > 0) { 239 if (mregp->m_src_addr == NULL) 240 goto fail; 241 mip->mi_info.mi_unicst_addr = 242 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 243 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 244 mip->mi_type->mt_addr_length); 245 246 /* 247 * Copy the fixed 'factory' MAC address from the immutable 248 * info. This is taken to be the MAC address currently in 249 * use. 250 */ 251 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 252 mip->mi_type->mt_addr_length); 253 254 /* 255 * At this point, we should set up the classification 256 * rules etc but we delay it till mac_open() so that 257 * the resource discovery has taken place and we 258 * know someone wants to use the device. Otherwise 259 * memory gets allocated for Rx ring structures even 260 * during probe. 261 */ 262 263 /* Copy the destination address if one is provided. */ 264 if (mregp->m_dst_addr != NULL) { 265 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 266 mip->mi_type->mt_addr_length); 267 mip->mi_dstaddr_set = B_TRUE; 268 } 269 } else if (mregp->m_src_addr != NULL) { 270 goto fail; 271 } 272 273 /* 274 * The format of the m_pdata is specific to the plugin. It is 275 * passed in as an argument to all of the plugin callbacks. The 276 * driver can update this information by calling 277 * mac_pdata_update(). 278 */ 279 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 280 /* 281 * Verify if the supplied plugin data is valid. Note that 282 * even if the caller passed in a NULL pointer as plugin data, 283 * we still need to verify if that's valid as the plugin may 284 * require plugin data to function. 285 */ 286 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 287 mregp->m_pdata_size)) { 288 goto fail; 289 } 290 if (mregp->m_pdata != NULL) { 291 mip->mi_pdata = 292 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 293 bcopy(mregp->m_pdata, mip->mi_pdata, 294 mregp->m_pdata_size); 295 mip->mi_pdata_size = mregp->m_pdata_size; 296 } 297 } else if (mregp->m_pdata != NULL) { 298 /* 299 * The caller supplied non-NULL plugin data, but the plugin 300 * does not recognize plugin data. 301 */ 302 err = EINVAL; 303 goto fail; 304 } 305 306 /* 307 * Register the private properties. 308 */ 309 mac_register_priv_prop(mip, mregp->m_priv_props); 310 311 /* 312 * Stash the driver callbacks into the mac_impl_t, but first sanity 313 * check to make sure all mandatory callbacks are set. 314 */ 315 if (mregp->m_callbacks->mc_getstat == NULL || 316 mregp->m_callbacks->mc_start == NULL || 317 mregp->m_callbacks->mc_stop == NULL || 318 mregp->m_callbacks->mc_setpromisc == NULL || 319 mregp->m_callbacks->mc_multicst == NULL) { 320 goto fail; 321 } 322 mip->mi_callbacks = mregp->m_callbacks; 323 324 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 325 &mip->mi_capab_legacy)) { 326 mip->mi_state_flags |= MIS_LEGACY; 327 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 328 } else { 329 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 330 mip->mi_minor); 331 } 332 333 /* 334 * Allocate a notification thread. thread_create blocks for memory 335 * if needed, it never fails. 336 */ 337 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 338 mip, 0, &p0, TS_RUN, minclsyspri); 339 340 /* 341 * Initialize the capabilities 342 */ 343 344 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 345 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 346 347 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 348 mip->mi_state_flags |= MIS_IS_VNIC; 349 350 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 351 mip->mi_state_flags |= MIS_IS_AGGR; 352 353 mac_addr_factory_init(mip); 354 355 /* 356 * Enforce the virtrualization level registered. 357 */ 358 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 359 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 360 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 361 goto fail; 362 363 /* 364 * The driver needs to register at least rx rings for this 365 * virtualization level. 366 */ 367 if (mip->mi_rx_groups == NULL) 368 goto fail; 369 } 370 371 /* 372 * The driver must set mc_unicst entry point to NULL when it advertises 373 * CAP_RINGS for rx groups. 374 */ 375 if (mip->mi_rx_groups != NULL) { 376 if (mregp->m_callbacks->mc_unicst != NULL) 377 goto fail; 378 } else { 379 if (mregp->m_callbacks->mc_unicst == NULL) 380 goto fail; 381 } 382 383 /* 384 * Initialize MAC addresses. Must be called after mac_init_rings(). 385 */ 386 mac_init_macaddr(mip); 387 388 mip->mi_share_capab.ms_snum = 0; 389 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 390 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 391 &mip->mi_share_capab); 392 } 393 394 /* 395 * Initialize the kstats for this device. 396 */ 397 mac_driver_stat_create(mip); 398 399 /* Zero out any properties. */ 400 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 401 402 if (mip->mi_minor <= MAC_MAX_MINOR) { 403 /* Create a style-2 DLPI device */ 404 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 405 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 406 goto fail; 407 style2_created = B_TRUE; 408 409 /* Create a style-1 DLPI device */ 410 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 411 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 412 goto fail; 413 style1_created = B_TRUE; 414 } 415 416 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 417 418 rw_enter(&i_mac_impl_lock, RW_WRITER); 419 if (mod_hash_insert(i_mac_impl_hash, 420 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 421 rw_exit(&i_mac_impl_lock); 422 err = EEXIST; 423 goto fail; 424 } 425 426 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 427 (mac_impl_t *), mip); 428 429 /* 430 * Mark the MAC to be ready for open. 431 */ 432 mip->mi_state_flags &= ~MIS_DISABLED; 433 rw_exit(&i_mac_impl_lock); 434 435 atomic_inc_32(&i_mac_impl_count); 436 437 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 438 *mhp = (mac_handle_t)mip; 439 return (0); 440 441 fail: 442 if (style1_created) 443 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 444 445 if (style2_created) 446 ddi_remove_minor_node(mip->mi_dip, driver); 447 448 mac_addr_factory_fini(mip); 449 450 /* Clean up registered MAC addresses */ 451 mac_fini_macaddr(mip); 452 453 /* Clean up registered rings */ 454 mac_free_rings(mip, MAC_RING_TYPE_RX); 455 mac_free_rings(mip, MAC_RING_TYPE_TX); 456 457 /* Clean up notification thread */ 458 if (mip->mi_notify_thread != NULL) 459 i_mac_notify_exit(mip); 460 461 if (mip->mi_info.mi_unicst_addr != NULL) { 462 kmem_free(mip->mi_info.mi_unicst_addr, 463 mip->mi_type->mt_addr_length); 464 mip->mi_info.mi_unicst_addr = NULL; 465 } 466 467 mac_driver_stat_delete(mip); 468 469 if (mip->mi_type != NULL) { 470 atomic_dec_32(&mip->mi_type->mt_ref); 471 mip->mi_type = NULL; 472 } 473 474 if (mip->mi_pdata != NULL) { 475 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 476 mip->mi_pdata = NULL; 477 mip->mi_pdata_size = 0; 478 } 479 480 if (minor != 0) { 481 ASSERT(minor > MAC_MAX_MINOR); 482 mac_minor_rele(minor); 483 } 484 485 mip->mi_state_flags = 0; 486 mac_unregister_priv_prop(mip); 487 488 /* 489 * Clear the state before destroying the mac_impl_t 490 */ 491 mip->mi_state_flags = 0; 492 493 kmem_cache_free(i_mac_impl_cachep, mip); 494 return (err); 495 } 496 497 /* 498 * Unregister from the GLDv3 framework 499 */ 500 int 501 mac_unregister(mac_handle_t mh) 502 { 503 int err; 504 mac_impl_t *mip = (mac_impl_t *)mh; 505 mod_hash_val_t val; 506 mac_margin_req_t *mmr, *nextmmr; 507 508 /* Fail the unregister if there are any open references to this mac. */ 509 if ((err = mac_disable_nowait(mh)) != 0) 510 return (err); 511 512 /* 513 * Clean up notification thread and wait for it to exit. 514 */ 515 i_mac_notify_exit(mip); 516 517 i_mac_perim_enter(mip); 518 519 /* 520 * There is still resource properties configured over this mac. 521 */ 522 if (mip->mi_resource_props.mrp_mask != 0) 523 mac_fastpath_enable((mac_handle_t)mip); 524 525 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 526 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 527 ddi_remove_minor_node(mip->mi_dip, 528 (char *)ddi_driver_name(mip->mi_dip)); 529 } 530 531 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 532 MIS_EXCLUSIVE)); 533 534 mac_driver_stat_delete(mip); 535 536 (void) mod_hash_remove(i_mac_impl_hash, 537 (mod_hash_key_t)mip->mi_name, &val); 538 ASSERT(mip == (mac_impl_t *)val); 539 540 ASSERT(i_mac_impl_count > 0); 541 atomic_dec_32(&i_mac_impl_count); 542 543 if (mip->mi_pdata != NULL) 544 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 545 mip->mi_pdata = NULL; 546 mip->mi_pdata_size = 0; 547 548 /* 549 * Free the list of margin request. 550 */ 551 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 552 nextmmr = mmr->mmr_nextp; 553 kmem_free(mmr, sizeof (mac_margin_req_t)); 554 } 555 mip->mi_mmrp = NULL; 556 557 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 558 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 559 mip->mi_info.mi_unicst_addr = NULL; 560 561 atomic_dec_32(&mip->mi_type->mt_ref); 562 mip->mi_type = NULL; 563 564 /* 565 * Free the primary MAC address. 566 */ 567 mac_fini_macaddr(mip); 568 569 /* 570 * free all rings 571 */ 572 mac_free_rings(mip, MAC_RING_TYPE_RX); 573 mac_free_rings(mip, MAC_RING_TYPE_TX); 574 575 mac_addr_factory_fini(mip); 576 577 bzero(mip->mi_addr, MAXMACADDRLEN); 578 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 579 mip->mi_dstaddr_set = B_FALSE; 580 581 /* and the flows */ 582 mac_flow_tab_destroy(mip->mi_flow_tab); 583 mip->mi_flow_tab = NULL; 584 585 if (mip->mi_minor > MAC_MAX_MINOR) 586 mac_minor_rele(mip->mi_minor); 587 588 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 589 590 /* 591 * Reset the perim related fields to default values before 592 * kmem_cache_free 593 */ 594 i_mac_perim_exit(mip); 595 mip->mi_state_flags = 0; 596 597 mac_unregister_priv_prop(mip); 598 599 ASSERT(mip->mi_bridge_link == NULL); 600 kmem_cache_free(i_mac_impl_cachep, mip); 601 602 return (0); 603 } 604 605 /* DATA RECEPTION */ 606 607 /* 608 * This function is invoked for packets received by the MAC driver in 609 * interrupt context. The ring generation number provided by the driver 610 * is matched with the ring generation number held in MAC. If they do not 611 * match, received packets are considered stale packets coming from an older 612 * assignment of the ring. Drop them. 613 */ 614 void 615 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 616 uint64_t mr_gen_num) 617 { 618 mac_ring_t *mr = (mac_ring_t *)mrh; 619 620 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 621 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 622 mr->mr_gen_num, uint64_t, mr_gen_num); 623 freemsgchain(mp_chain); 624 return; 625 } 626 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 627 } 628 629 /* 630 * This function is invoked for each packet received by the underlying driver. 631 */ 632 void 633 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 634 { 635 mac_impl_t *mip = (mac_impl_t *)mh; 636 637 /* 638 * Check if the link is part of a bridge. If not, then we don't need 639 * to take the lock to remain consistent. Make this common case 640 * lock-free and tail-call optimized. 641 */ 642 if (mip->mi_bridge_link == NULL) { 643 mac_rx_common(mh, mrh, mp_chain); 644 } else { 645 /* 646 * Once we take a reference on the bridge link, the bridge 647 * module itself can't unload, so the callback pointers are 648 * stable. 649 */ 650 mutex_enter(&mip->mi_bridge_lock); 651 if ((mh = mip->mi_bridge_link) != NULL) 652 mac_bridge_ref_cb(mh, B_TRUE); 653 mutex_exit(&mip->mi_bridge_lock); 654 if (mh == NULL) { 655 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 656 } else { 657 mac_bridge_rx_cb(mh, mrh, mp_chain); 658 mac_bridge_ref_cb(mh, B_FALSE); 659 } 660 } 661 } 662 663 /* 664 * Special case function: this allows snooping of packets transmitted and 665 * received by TRILL. By design, they go directly into the TRILL module. 666 */ 667 void 668 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 669 { 670 mac_impl_t *mip = (mac_impl_t *)mh; 671 672 if (mip->mi_promisc_list != NULL) 673 mac_promisc_dispatch(mip, mp, NULL); 674 } 675 676 /* 677 * This is the upward reentry point for packets arriving from the bridging 678 * module and from mac_rx for links not part of a bridge. 679 */ 680 void 681 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 682 { 683 mac_impl_t *mip = (mac_impl_t *)mh; 684 mac_ring_t *mr = (mac_ring_t *)mrh; 685 mac_soft_ring_set_t *mac_srs; 686 mblk_t *bp = mp_chain; 687 boolean_t hw_classified = B_FALSE; 688 689 /* 690 * If there are any promiscuous mode callbacks defined for 691 * this MAC, pass them a copy if appropriate. 692 */ 693 if (mip->mi_promisc_list != NULL) 694 mac_promisc_dispatch(mip, mp_chain, NULL); 695 696 if (mr != NULL) { 697 /* 698 * If the SRS teardown has started, just return. The 'mr' 699 * continues to be valid until the driver unregisters the mac. 700 * Hardware classified packets will not make their way up 701 * beyond this point once the teardown has started. The driver 702 * is never passed a pointer to a flow entry or SRS or any 703 * structure that can be freed much before mac_unregister. 704 */ 705 mutex_enter(&mr->mr_lock); 706 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 707 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 708 mutex_exit(&mr->mr_lock); 709 freemsgchain(mp_chain); 710 return; 711 } 712 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 713 hw_classified = B_TRUE; 714 MR_REFHOLD_LOCKED(mr); 715 } 716 mutex_exit(&mr->mr_lock); 717 718 /* 719 * We check if an SRS is controlling this ring. 720 * If so, we can directly call the srs_lower_proc 721 * routine otherwise we need to go through mac_rx_classify 722 * to reach the right place. 723 */ 724 if (hw_classified) { 725 mac_srs = mr->mr_srs; 726 /* 727 * This is supposed to be the fast path. 728 * All packets received though here were steered by 729 * the hardware classifier, and share the same 730 * MAC header info. 731 */ 732 mac_srs->srs_rx.sr_lower_proc(mh, 733 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 734 MR_REFRELE(mr); 735 return; 736 } 737 /* We'll fall through to software classification */ 738 } else { 739 flow_entry_t *flent; 740 int err; 741 742 rw_enter(&mip->mi_rw_lock, RW_READER); 743 if (mip->mi_single_active_client != NULL) { 744 flent = mip->mi_single_active_client->mci_flent_list; 745 FLOW_TRY_REFHOLD(flent, err); 746 rw_exit(&mip->mi_rw_lock); 747 if (err == 0) { 748 (flent->fe_cb_fn)(flent->fe_cb_arg1, 749 flent->fe_cb_arg2, mp_chain, B_FALSE); 750 FLOW_REFRELE(flent); 751 return; 752 } 753 } else { 754 rw_exit(&mip->mi_rw_lock); 755 } 756 } 757 758 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 759 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 760 return; 761 } 762 763 freemsgchain(bp); 764 } 765 766 /* DATA TRANSMISSION */ 767 768 /* 769 * A driver's notification to resume transmission, in case of a provider 770 * without TX rings. 771 */ 772 void 773 mac_tx_update(mac_handle_t mh) 774 { 775 mac_tx_ring_update(mh, NULL); 776 } 777 778 /* 779 * A driver's notification to resume transmission on the specified TX ring. 780 */ 781 void 782 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 783 { 784 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 785 } 786 787 /* LINK STATE */ 788 /* 789 * Notify the MAC layer about a link state change 790 */ 791 void 792 mac_link_update(mac_handle_t mh, link_state_t link) 793 { 794 mac_impl_t *mip = (mac_impl_t *)mh; 795 796 /* 797 * Save the link state. 798 */ 799 mip->mi_lowlinkstate = link; 800 801 /* 802 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 803 * thread to deliver both lower and upper notifications. 804 */ 805 i_mac_notify(mip, MAC_NOTE_LOWLINK); 806 } 807 808 /* 809 * Notify the MAC layer about a link state change due to bridging. 810 */ 811 void 812 mac_link_redo(mac_handle_t mh, link_state_t link) 813 { 814 mac_impl_t *mip = (mac_impl_t *)mh; 815 816 /* 817 * Save the link state. 818 */ 819 mip->mi_linkstate = link; 820 821 /* 822 * Send a MAC_NOTE_LINK notification. Only upper notifications are 823 * made. 824 */ 825 i_mac_notify(mip, MAC_NOTE_LINK); 826 } 827 828 /* MINOR NODE HANDLING */ 829 830 /* 831 * Given a dev_t, return the instance number (PPA) associated with it. 832 * Drivers can use this in their getinfo(9e) implementation to lookup 833 * the instance number (i.e. PPA) of the device, to use as an index to 834 * their own array of soft state structures. 835 * 836 * Returns -1 on error. 837 */ 838 int 839 mac_devt_to_instance(dev_t devt) 840 { 841 return (dld_devt_to_instance(devt)); 842 } 843 844 /* 845 * This function returns the first minor number that is available for 846 * driver private use. All minor numbers smaller than this are 847 * reserved for GLDv3 use. 848 */ 849 minor_t 850 mac_private_minor(void) 851 { 852 return (MAC_PRIVATE_MINOR); 853 } 854 855 /* OTHER CONTROL INFORMATION */ 856 857 /* 858 * A driver notified us that its primary MAC address has changed. 859 */ 860 void 861 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 862 { 863 mac_impl_t *mip = (mac_impl_t *)mh; 864 865 if (mip->mi_type->mt_addr_length == 0) 866 return; 867 868 i_mac_perim_enter(mip); 869 870 /* 871 * If address changes, freshen the MAC address value and update 872 * all MAC clients that share this MAC address. 873 */ 874 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 875 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 876 (uint8_t *)addr); 877 } 878 879 i_mac_perim_exit(mip); 880 881 /* 882 * Send a MAC_NOTE_UNICST notification. 883 */ 884 i_mac_notify(mip, MAC_NOTE_UNICST); 885 } 886 887 void 888 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 889 { 890 mac_impl_t *mip = (mac_impl_t *)mh; 891 892 if (mip->mi_type->mt_addr_length == 0) 893 return; 894 895 i_mac_perim_enter(mip); 896 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 897 i_mac_perim_exit(mip); 898 i_mac_notify(mip, MAC_NOTE_DEST); 899 } 900 901 /* 902 * MAC plugin information changed. 903 */ 904 int 905 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 906 { 907 mac_impl_t *mip = (mac_impl_t *)mh; 908 909 /* 910 * Verify that the plugin supports MAC plugin data and that the 911 * supplied data is valid. 912 */ 913 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 914 return (EINVAL); 915 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 916 return (EINVAL); 917 918 if (mip->mi_pdata != NULL) 919 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 920 921 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 922 bcopy(mac_pdata, mip->mi_pdata, dsize); 923 mip->mi_pdata_size = dsize; 924 925 /* 926 * Since the MAC plugin data is used to construct MAC headers that 927 * were cached in fast-path headers, we need to flush fast-path 928 * information for links associated with this mac. 929 */ 930 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 931 return (0); 932 } 933 934 /* 935 * Invoked by driver as well as the framework to notify its capability change. 936 */ 937 void 938 mac_capab_update(mac_handle_t mh) 939 { 940 /* Send MAC_NOTE_CAPAB_CHG notification */ 941 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 942 } 943 944 /* 945 * Used by normal drivers to update the max sdu size. 946 * We need to handle the case of a smaller mi_sdu_multicast 947 * since this is called by mac_set_mtu() even for drivers that 948 * have differing unicast and multicast mtu and we don't want to 949 * increase the multicast mtu by accident in that case. 950 */ 951 int 952 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 953 { 954 mac_impl_t *mip = (mac_impl_t *)mh; 955 956 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 957 return (EINVAL); 958 mip->mi_sdu_max = sdu_max; 959 if (mip->mi_sdu_multicast > mip->mi_sdu_max) 960 mip->mi_sdu_multicast = mip->mi_sdu_max; 961 962 /* Send a MAC_NOTE_SDU_SIZE notification. */ 963 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 964 return (0); 965 } 966 967 /* 968 * Version of the above function that is used by drivers that have a different 969 * max sdu size for multicast/broadcast vs. unicast. 970 */ 971 int 972 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast) 973 { 974 mac_impl_t *mip = (mac_impl_t *)mh; 975 976 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 977 return (EINVAL); 978 if (sdu_multicast == 0) 979 sdu_multicast = sdu_max; 980 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min) 981 return (EINVAL); 982 mip->mi_sdu_max = sdu_max; 983 mip->mi_sdu_multicast = sdu_multicast; 984 985 /* Send a MAC_NOTE_SDU_SIZE notification. */ 986 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 987 return (0); 988 } 989 990 static void 991 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 992 { 993 mac_client_impl_t *mcip; 994 flow_entry_t *flent; 995 mac_soft_ring_set_t *mac_rx_srs; 996 mac_cpus_t *srs_cpu; 997 int i; 998 999 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 1000 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 1001 /* interrupt can be re-targeted */ 1002 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 1003 flent = mcip->mci_flent; 1004 if (ring->mr_type == MAC_RING_TYPE_RX) { 1005 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1006 mac_rx_srs = flent->fe_rx_srs[i]; 1007 if (mac_rx_srs->srs_ring != ring) 1008 continue; 1009 srs_cpu = &mac_rx_srs->srs_cpu; 1010 mutex_enter(&cpu_lock); 1011 mac_rx_srs_retarget_intr(mac_rx_srs, 1012 srs_cpu->mc_rx_intr_cpu); 1013 mutex_exit(&cpu_lock); 1014 break; 1015 } 1016 } else { 1017 if (flent->fe_tx_srs != NULL) { 1018 mutex_enter(&cpu_lock); 1019 mac_tx_srs_retarget_intr( 1020 flent->fe_tx_srs); 1021 mutex_exit(&cpu_lock); 1022 } 1023 } 1024 } 1025 } 1026 1027 /* 1028 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 1029 * their clients. There is a 1-1 mapping pseudo ring and the hardware 1030 * ring. ddi interrupt handles are exported from the hardware ring to 1031 * the pseudo ring. Thus when the interrupt handle changes, clients of 1032 * aggr that are using the handle need to use the new handle and 1033 * re-target their interrupts. 1034 */ 1035 static void 1036 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 1037 ddi_intr_handle_t ddh) 1038 { 1039 mac_ring_t *pring; 1040 mac_group_t *pgroup; 1041 mac_impl_t *pmip; 1042 char macname[MAXNAMELEN]; 1043 mac_perim_handle_t p_mph; 1044 uint64_t saved_gen_num; 1045 1046 again: 1047 pring = (mac_ring_t *)ring->mr_prh; 1048 pgroup = (mac_group_t *)pring->mr_gh; 1049 pmip = (mac_impl_t *)pgroup->mrg_mh; 1050 saved_gen_num = ring->mr_gen_num; 1051 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1052 /* 1053 * We need to enter aggr's perimeter. The locking hierarchy 1054 * dictates that aggr's perimeter should be entered first 1055 * and then the port's perimeter. So drop the port's 1056 * perimeter, enter aggr's and then re-enter port's 1057 * perimeter. 1058 */ 1059 i_mac_perim_exit(mip); 1060 /* 1061 * While we know pmip is the aggr's mip, there is a 1062 * possibility that aggr could have unregistered by 1063 * the time we exit port's perimeter (mip) and 1064 * enter aggr's perimeter (pmip). To avoid that 1065 * scenario, enter aggr's perimeter using its name. 1066 */ 1067 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1068 return; 1069 i_mac_perim_enter(mip); 1070 /* 1071 * Check if the ring got assigned to another aggregation before 1072 * be could enter aggr's and the port's perimeter. When a ring 1073 * gets deleted from an aggregation, it calls mac_stop_ring() 1074 * which increments the generation number. So checking 1075 * generation number will be enough. 1076 */ 1077 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1078 i_mac_perim_exit(mip); 1079 mac_perim_exit(p_mph); 1080 i_mac_perim_enter(mip); 1081 goto again; 1082 } 1083 1084 /* Check if pseudo ring is still present */ 1085 if (ring->mr_prh != NULL) { 1086 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1087 pring->mr_info.mri_intr.mi_ddi_shared = 1088 ring->mr_info.mri_intr.mi_ddi_shared; 1089 if (ddh != NULL) 1090 mac_ring_intr_retarget(pgroup, pring); 1091 } 1092 i_mac_perim_exit(mip); 1093 mac_perim_exit(p_mph); 1094 } 1095 /* 1096 * API called by driver to provide new interrupt handle for TX/RX rings. 1097 * This usually happens when IRM (Interrupt Resource Manangement) 1098 * framework either gives the driver more MSI-x interrupts or takes 1099 * away MSI-x interrupts from the driver. 1100 */ 1101 void 1102 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1103 { 1104 mac_ring_t *ring = (mac_ring_t *)mrh; 1105 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1106 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1107 1108 i_mac_perim_enter(mip); 1109 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1110 if (ddh == NULL) { 1111 /* Interrupts being reset */ 1112 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1113 if (ring->mr_prh != NULL) { 1114 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1115 return; 1116 } 1117 } else { 1118 /* New interrupt handle */ 1119 mac_compare_ddi_handle(mip->mi_rx_groups, 1120 mip->mi_rx_group_count, ring); 1121 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1122 mac_compare_ddi_handle(mip->mi_tx_groups, 1123 mip->mi_tx_group_count, ring); 1124 } 1125 if (ring->mr_prh != NULL) { 1126 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1127 return; 1128 } else { 1129 mac_ring_intr_retarget(group, ring); 1130 } 1131 } 1132 i_mac_perim_exit(mip); 1133 } 1134 1135 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1136 1137 /* 1138 * Updates the mac_impl structure with the current state of the link 1139 */ 1140 static void 1141 i_mac_log_link_state(mac_impl_t *mip) 1142 { 1143 /* 1144 * If no change, then it is not interesting. 1145 */ 1146 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1147 return; 1148 1149 switch (mip->mi_lowlinkstate) { 1150 case LINK_STATE_UP: 1151 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1152 char det[200]; 1153 1154 mip->mi_type->mt_ops.mtops_link_details(det, 1155 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1156 1157 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1158 } else { 1159 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1160 } 1161 break; 1162 1163 case LINK_STATE_DOWN: 1164 /* 1165 * Only transitions from UP to DOWN are interesting 1166 */ 1167 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1168 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1169 break; 1170 1171 case LINK_STATE_UNKNOWN: 1172 /* 1173 * This case is normally not interesting. 1174 */ 1175 break; 1176 } 1177 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1178 } 1179 1180 /* 1181 * Main routine for the callbacks notifications thread 1182 */ 1183 static void 1184 i_mac_notify_thread(void *arg) 1185 { 1186 mac_impl_t *mip = arg; 1187 callb_cpr_t cprinfo; 1188 mac_cb_t *mcb; 1189 mac_cb_info_t *mcbi; 1190 mac_notify_cb_t *mncb; 1191 1192 mcbi = &mip->mi_notify_cb_info; 1193 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1194 "i_mac_notify_thread"); 1195 1196 mutex_enter(mcbi->mcbi_lockp); 1197 1198 for (;;) { 1199 uint32_t bits; 1200 uint32_t type; 1201 1202 bits = mip->mi_notify_bits; 1203 if (bits == 0) { 1204 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1205 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1206 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1207 continue; 1208 } 1209 mip->mi_notify_bits = 0; 1210 if ((bits & (1 << MAC_NNOTE)) != 0) { 1211 /* request to quit */ 1212 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1213 break; 1214 } 1215 1216 mutex_exit(mcbi->mcbi_lockp); 1217 1218 /* 1219 * Log link changes on the actual link, but then do reports on 1220 * synthetic state (if part of a bridge). 1221 */ 1222 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1223 link_state_t newstate; 1224 mac_handle_t mh; 1225 1226 i_mac_log_link_state(mip); 1227 newstate = mip->mi_lowlinkstate; 1228 if (mip->mi_bridge_link != NULL) { 1229 mutex_enter(&mip->mi_bridge_lock); 1230 if ((mh = mip->mi_bridge_link) != NULL) { 1231 newstate = mac_bridge_ls_cb(mh, 1232 newstate); 1233 } 1234 mutex_exit(&mip->mi_bridge_lock); 1235 } 1236 if (newstate != mip->mi_linkstate) { 1237 mip->mi_linkstate = newstate; 1238 bits |= 1 << MAC_NOTE_LINK; 1239 } 1240 } 1241 1242 /* 1243 * Do notification callbacks for each notification type. 1244 */ 1245 for (type = 0; type < MAC_NNOTE; type++) { 1246 if ((bits & (1 << type)) == 0) { 1247 continue; 1248 } 1249 1250 if (mac_notify_cb_list[type] != NULL) 1251 (*mac_notify_cb_list[type])(mip); 1252 1253 /* 1254 * Walk the list of notifications. 1255 */ 1256 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1257 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1258 mcb = mcb->mcb_nextp) { 1259 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1260 mncb->mncb_fn(mncb->mncb_arg, type); 1261 } 1262 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1263 &mip->mi_notify_cb_list); 1264 } 1265 1266 mutex_enter(mcbi->mcbi_lockp); 1267 } 1268 1269 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1270 cv_broadcast(&mcbi->mcbi_cv); 1271 1272 /* CALLB_CPR_EXIT drops the lock */ 1273 CALLB_CPR_EXIT(&cprinfo); 1274 thread_exit(); 1275 } 1276 1277 /* 1278 * Signal the i_mac_notify_thread asking it to quit. 1279 * Then wait till it is done. 1280 */ 1281 void 1282 i_mac_notify_exit(mac_impl_t *mip) 1283 { 1284 mac_cb_info_t *mcbi; 1285 1286 mcbi = &mip->mi_notify_cb_info; 1287 1288 mutex_enter(mcbi->mcbi_lockp); 1289 mip->mi_notify_bits = (1 << MAC_NNOTE); 1290 cv_broadcast(&mcbi->mcbi_cv); 1291 1292 1293 while ((mip->mi_notify_thread != NULL) && 1294 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1295 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1296 } 1297 1298 /* Necessary clean up before doing kmem_cache_free */ 1299 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1300 mip->mi_notify_bits = 0; 1301 mip->mi_notify_thread = NULL; 1302 mutex_exit(mcbi->mcbi_lockp); 1303 } 1304 1305 /* 1306 * Entry point invoked by drivers to dynamically add a ring to an 1307 * existing group. 1308 */ 1309 int 1310 mac_group_add_ring(mac_group_handle_t gh, int index) 1311 { 1312 mac_group_t *group = (mac_group_t *)gh; 1313 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1314 int ret; 1315 1316 i_mac_perim_enter(mip); 1317 ret = i_mac_group_add_ring(group, NULL, index); 1318 i_mac_perim_exit(mip); 1319 return (ret); 1320 } 1321 1322 /* 1323 * Entry point invoked by drivers to dynamically remove a ring 1324 * from an existing group. The specified ring handle must no longer 1325 * be used by the driver after a call to this function. 1326 */ 1327 void 1328 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1329 { 1330 mac_group_t *group = (mac_group_t *)gh; 1331 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1332 1333 i_mac_perim_enter(mip); 1334 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1335 i_mac_perim_exit(mip); 1336 } 1337 1338 /* 1339 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1340 * entry points. 1341 */ 1342 1343 void 1344 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1345 { 1346 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1347 1348 /* nothing to do if the caller doesn't want the default value */ 1349 if (pr->pr_default == NULL) 1350 return; 1351 1352 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1353 1354 *(uint8_t *)(pr->pr_default) = val; 1355 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1356 } 1357 1358 void 1359 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1360 { 1361 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1362 1363 /* nothing to do if the caller doesn't want the default value */ 1364 if (pr->pr_default == NULL) 1365 return; 1366 1367 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1368 1369 bcopy(&val, pr->pr_default, sizeof (val)); 1370 1371 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1372 } 1373 1374 void 1375 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1376 { 1377 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1378 1379 /* nothing to do if the caller doesn't want the default value */ 1380 if (pr->pr_default == NULL) 1381 return; 1382 1383 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1384 1385 bcopy(&val, pr->pr_default, sizeof (val)); 1386 1387 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1388 } 1389 1390 void 1391 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1392 { 1393 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1394 1395 /* nothing to do if the caller doesn't want the default value */ 1396 if (pr->pr_default == NULL) 1397 return; 1398 1399 if (strlen(str) >= pr->pr_default_size) 1400 pr->pr_errno = ENOBUFS; 1401 else 1402 (void) strlcpy(pr->pr_default, str, pr->pr_default_size); 1403 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1404 } 1405 1406 void 1407 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1408 link_flowctrl_t val) 1409 { 1410 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1411 1412 /* nothing to do if the caller doesn't want the default value */ 1413 if (pr->pr_default == NULL) 1414 return; 1415 1416 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1417 1418 bcopy(&val, pr->pr_default, sizeof (val)); 1419 1420 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1421 } 1422 1423 void 1424 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1425 uint32_t max) 1426 { 1427 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1428 mac_propval_range_t *range = pr->pr_range; 1429 mac_propval_uint32_range_t *range32; 1430 1431 /* nothing to do if the caller doesn't want the range info */ 1432 if (range == NULL) 1433 return; 1434 1435 if (pr->pr_range_cur_count++ == 0) { 1436 /* first range */ 1437 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1438 range->mpr_type = MAC_PROPVAL_UINT32; 1439 } else { 1440 /* all ranges of a property should be of the same type */ 1441 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32); 1442 if (pr->pr_range_cur_count > range->mpr_count) { 1443 pr->pr_errno = ENOSPC; 1444 return; 1445 } 1446 } 1447 1448 range32 = range->mpr_range_uint32; 1449 range32[pr->pr_range_cur_count - 1].mpur_min = min; 1450 range32[pr->pr_range_cur_count - 1].mpur_max = max; 1451 } 1452 1453 void 1454 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1455 { 1456 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1457 1458 pr->pr_perm = perm; 1459 pr->pr_flags |= MAC_PROP_INFO_PERM; 1460 } 1461 1462 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff, 1463 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1464 { 1465 uint32_t flags; 1466 1467 ASSERT(DB_TYPE(mp) == M_DATA); 1468 1469 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1470 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1471 if (value != NULL) 1472 *value = (uint32_t)DB_CKSUM16(mp); 1473 if ((flags & HCK_PARTIALCKSUM) != 0) { 1474 if (start != NULL) 1475 *start = (uint32_t)DB_CKSUMSTART(mp); 1476 if (stuff != NULL) 1477 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1478 if (end != NULL) 1479 *end = (uint32_t)DB_CKSUMEND(mp); 1480 } 1481 } 1482 1483 if (flags_ptr != NULL) 1484 *flags_ptr = flags; 1485 } 1486 1487 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, 1488 uint32_t end, uint32_t value, uint32_t flags) 1489 { 1490 ASSERT(DB_TYPE(mp) == M_DATA); 1491 1492 DB_CKSUMSTART(mp) = (intptr_t)start; 1493 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1494 DB_CKSUMEND(mp) = (intptr_t)end; 1495 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1496 DB_CKSUM16(mp) = (uint16_t)value; 1497 } 1498 1499 void 1500 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1501 { 1502 ASSERT(DB_TYPE(mp) == M_DATA); 1503 1504 if (flags != NULL) { 1505 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1506 if ((*flags != 0) && (mss != NULL)) 1507 *mss = (uint32_t)DB_LSOMSS(mp); 1508 } 1509 } 1510