1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/conf.h> 29 #include <sys/id_space.h> 30 #include <sys/esunddi.h> 31 #include <sys/stat.h> 32 #include <sys/mkdev.h> 33 #include <sys/stream.h> 34 #include <sys/strsubr.h> 35 #include <sys/dlpi.h> 36 #include <sys/modhash.h> 37 #include <sys/mac.h> 38 #include <sys/mac_provider.h> 39 #include <sys/mac_impl.h> 40 #include <sys/mac_client_impl.h> 41 #include <sys/mac_client_priv.h> 42 #include <sys/mac_soft_ring.h> 43 #include <sys/mac_stat.h> 44 #include <sys/dld.h> 45 #include <sys/modctl.h> 46 #include <sys/fs/dv_node.h> 47 #include <sys/thread.h> 48 #include <sys/proc.h> 49 #include <sys/callb.h> 50 #include <sys/cpuvar.h> 51 #include <sys/atomic.h> 52 #include <sys/sdt.h> 53 #include <sys/mac_flow.h> 54 #include <sys/ddi_intr_impl.h> 55 #include <sys/disp.h> 56 #include <sys/sdt.h> 57 #include <sys/pattr.h> 58 #include <sys/strsun.h> 59 60 /* 61 * MAC Provider Interface. 62 * 63 * Interface for GLDv3 compatible NIC drivers. 64 */ 65 66 static void i_mac_notify_thread(void *); 67 68 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 69 70 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 71 mac_fanout_recompute, /* MAC_NOTE_LINK */ 72 NULL, /* MAC_NOTE_UNICST */ 73 NULL, /* MAC_NOTE_TX */ 74 NULL, /* MAC_NOTE_DEVPROMISC */ 75 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 76 NULL, /* MAC_NOTE_SDU_SIZE */ 77 NULL, /* MAC_NOTE_MARGIN */ 78 NULL, /* MAC_NOTE_CAPAB_CHG */ 79 NULL /* MAC_NOTE_LOWLINK */ 80 }; 81 82 /* 83 * Driver support functions. 84 */ 85 86 /* REGISTRATION */ 87 88 mac_register_t * 89 mac_alloc(uint_t mac_version) 90 { 91 mac_register_t *mregp; 92 93 /* 94 * Make sure there isn't a version mismatch between the driver and 95 * the framework. In the future, if multiple versions are 96 * supported, this check could become more sophisticated. 97 */ 98 if (mac_version != MAC_VERSION) 99 return (NULL); 100 101 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 102 mregp->m_version = mac_version; 103 return (mregp); 104 } 105 106 void 107 mac_free(mac_register_t *mregp) 108 { 109 kmem_free(mregp, sizeof (mac_register_t)); 110 } 111 112 /* 113 * mac_register() is how drivers register new MACs with the GLDv3 114 * framework. The mregp argument is allocated by drivers using the 115 * mac_alloc() function, and can be freed using mac_free() immediately upon 116 * return from mac_register(). Upon success (0 return value), the mhp 117 * opaque pointer becomes the driver's handle to its MAC interface, and is 118 * the argument to all other mac module entry points. 119 */ 120 /* ARGSUSED */ 121 int 122 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 123 { 124 mac_impl_t *mip; 125 mactype_t *mtype; 126 int err = EINVAL; 127 struct devnames *dnp = NULL; 128 uint_t instance; 129 boolean_t style1_created = B_FALSE; 130 boolean_t style2_created = B_FALSE; 131 char *driver; 132 minor_t minor = 0; 133 134 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 135 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 136 return (EINVAL); 137 138 /* Find the required MAC-Type plugin. */ 139 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 140 return (EINVAL); 141 142 /* Create a mac_impl_t to represent this MAC. */ 143 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 144 145 /* 146 * The mac is not ready for open yet. 147 */ 148 mip->mi_state_flags |= MIS_DISABLED; 149 150 /* 151 * When a mac is registered, the m_instance field can be set to: 152 * 153 * 0: Get the mac's instance number from m_dip. 154 * This is usually used for physical device dips. 155 * 156 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 157 * For example, when an aggregation is created with the key option, 158 * "key" will be used as the instance number. 159 * 160 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 161 * This is often used when a MAC of a virtual link is registered 162 * (e.g., aggregation when "key" is not specified, or vnic). 163 * 164 * Note that the instance number is used to derive the mi_minor field 165 * of mac_impl_t, which will then be used to derive the name of kstats 166 * and the devfs nodes. The first 2 cases are needed to preserve 167 * backward compatibility. 168 */ 169 switch (mregp->m_instance) { 170 case 0: 171 instance = ddi_get_instance(mregp->m_dip); 172 break; 173 case ((uint_t)-1): 174 minor = mac_minor_hold(B_TRUE); 175 if (minor == 0) { 176 err = ENOSPC; 177 goto fail; 178 } 179 instance = minor - 1; 180 break; 181 default: 182 instance = mregp->m_instance; 183 if (instance >= MAC_MAX_MINOR) { 184 err = EINVAL; 185 goto fail; 186 } 187 break; 188 } 189 190 mip->mi_minor = (minor_t)(instance + 1); 191 mip->mi_dip = mregp->m_dip; 192 mip->mi_clients_list = NULL; 193 mip->mi_nclients = 0; 194 195 /* Set the default IEEE Port VLAN Identifier */ 196 mip->mi_pvid = 1; 197 198 /* Default bridge link learning protection values */ 199 mip->mi_llimit = 1000; 200 mip->mi_ldecay = 200; 201 202 driver = (char *)ddi_driver_name(mip->mi_dip); 203 204 /* Construct the MAC name as <drvname><instance> */ 205 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 206 driver, instance); 207 208 mip->mi_driver = mregp->m_driver; 209 210 mip->mi_type = mtype; 211 mip->mi_margin = mregp->m_margin; 212 mip->mi_info.mi_media = mtype->mt_type; 213 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 214 if (mregp->m_max_sdu <= mregp->m_min_sdu) 215 goto fail; 216 if (mregp->m_multicast_sdu == 0) 217 mregp->m_multicast_sdu = mregp->m_max_sdu; 218 if (mregp->m_multicast_sdu < mregp->m_min_sdu || 219 mregp->m_multicast_sdu > mregp->m_max_sdu) 220 goto fail; 221 mip->mi_sdu_min = mregp->m_min_sdu; 222 mip->mi_sdu_max = mregp->m_max_sdu; 223 mip->mi_sdu_multicast = mregp->m_multicast_sdu; 224 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 225 /* 226 * If the media supports a broadcast address, cache a pointer to it 227 * in the mac_info_t so that upper layers can use it. 228 */ 229 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 230 231 mip->mi_v12n_level = mregp->m_v12n; 232 233 /* 234 * Copy the unicast source address into the mac_info_t, but only if 235 * the MAC-Type defines a non-zero address length. We need to 236 * handle MAC-Types that have an address length of 0 237 * (point-to-point protocol MACs for example). 238 */ 239 if (mip->mi_type->mt_addr_length > 0) { 240 if (mregp->m_src_addr == NULL) 241 goto fail; 242 mip->mi_info.mi_unicst_addr = 243 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 244 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 245 mip->mi_type->mt_addr_length); 246 247 /* 248 * Copy the fixed 'factory' MAC address from the immutable 249 * info. This is taken to be the MAC address currently in 250 * use. 251 */ 252 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 253 mip->mi_type->mt_addr_length); 254 255 /* 256 * At this point, we should set up the classification 257 * rules etc but we delay it till mac_open() so that 258 * the resource discovery has taken place and we 259 * know someone wants to use the device. Otherwise 260 * memory gets allocated for Rx ring structures even 261 * during probe. 262 */ 263 264 /* Copy the destination address if one is provided. */ 265 if (mregp->m_dst_addr != NULL) { 266 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 267 mip->mi_type->mt_addr_length); 268 mip->mi_dstaddr_set = B_TRUE; 269 } 270 } else if (mregp->m_src_addr != NULL) { 271 goto fail; 272 } 273 274 /* 275 * The format of the m_pdata is specific to the plugin. It is 276 * passed in as an argument to all of the plugin callbacks. The 277 * driver can update this information by calling 278 * mac_pdata_update(). 279 */ 280 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 281 /* 282 * Verify if the supplied plugin data is valid. Note that 283 * even if the caller passed in a NULL pointer as plugin data, 284 * we still need to verify if that's valid as the plugin may 285 * require plugin data to function. 286 */ 287 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 288 mregp->m_pdata_size)) { 289 goto fail; 290 } 291 if (mregp->m_pdata != NULL) { 292 mip->mi_pdata = 293 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 294 bcopy(mregp->m_pdata, mip->mi_pdata, 295 mregp->m_pdata_size); 296 mip->mi_pdata_size = mregp->m_pdata_size; 297 } 298 } else if (mregp->m_pdata != NULL) { 299 /* 300 * The caller supplied non-NULL plugin data, but the plugin 301 * does not recognize plugin data. 302 */ 303 err = EINVAL; 304 goto fail; 305 } 306 307 /* 308 * Register the private properties. 309 */ 310 mac_register_priv_prop(mip, mregp->m_priv_props); 311 312 /* 313 * Stash the driver callbacks into the mac_impl_t, but first sanity 314 * check to make sure all mandatory callbacks are set. 315 */ 316 if (mregp->m_callbacks->mc_getstat == NULL || 317 mregp->m_callbacks->mc_start == NULL || 318 mregp->m_callbacks->mc_stop == NULL || 319 mregp->m_callbacks->mc_setpromisc == NULL || 320 mregp->m_callbacks->mc_multicst == NULL) { 321 goto fail; 322 } 323 mip->mi_callbacks = mregp->m_callbacks; 324 325 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 326 &mip->mi_capab_legacy)) { 327 mip->mi_state_flags |= MIS_LEGACY; 328 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 329 } else { 330 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 331 mip->mi_minor); 332 } 333 334 /* 335 * Allocate a notification thread. thread_create blocks for memory 336 * if needed, it never fails. 337 */ 338 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 339 mip, 0, &p0, TS_RUN, minclsyspri); 340 341 /* 342 * Initialize the capabilities 343 */ 344 345 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 346 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 347 348 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 349 mip->mi_state_flags |= MIS_IS_VNIC; 350 351 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 352 mip->mi_state_flags |= MIS_IS_AGGR; 353 354 mac_addr_factory_init(mip); 355 356 mac_transceiver_init(mip); 357 358 /* 359 * Enforce the virtrualization level registered. 360 */ 361 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 362 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 363 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 364 goto fail; 365 366 /* 367 * The driver needs to register at least rx rings for this 368 * virtualization level. 369 */ 370 if (mip->mi_rx_groups == NULL) 371 goto fail; 372 } 373 374 /* 375 * The driver must set mc_unicst entry point to NULL when it advertises 376 * CAP_RINGS for rx groups. 377 */ 378 if (mip->mi_rx_groups != NULL) { 379 if (mregp->m_callbacks->mc_unicst != NULL) 380 goto fail; 381 } else { 382 if (mregp->m_callbacks->mc_unicst == NULL) 383 goto fail; 384 } 385 386 /* 387 * Initialize MAC addresses. Must be called after mac_init_rings(). 388 */ 389 mac_init_macaddr(mip); 390 391 mip->mi_share_capab.ms_snum = 0; 392 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 393 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 394 &mip->mi_share_capab); 395 } 396 397 /* 398 * Initialize the kstats for this device. 399 */ 400 mac_driver_stat_create(mip); 401 402 /* Zero out any properties. */ 403 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 404 405 if (mip->mi_minor <= MAC_MAX_MINOR) { 406 /* Create a style-2 DLPI device */ 407 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 408 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 409 goto fail; 410 style2_created = B_TRUE; 411 412 /* Create a style-1 DLPI device */ 413 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 414 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 415 goto fail; 416 style1_created = B_TRUE; 417 } 418 419 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 420 421 rw_enter(&i_mac_impl_lock, RW_WRITER); 422 if (mod_hash_insert(i_mac_impl_hash, 423 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 424 rw_exit(&i_mac_impl_lock); 425 err = EEXIST; 426 goto fail; 427 } 428 429 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 430 (mac_impl_t *), mip); 431 432 /* 433 * Mark the MAC to be ready for open. 434 */ 435 mip->mi_state_flags &= ~MIS_DISABLED; 436 rw_exit(&i_mac_impl_lock); 437 438 atomic_inc_32(&i_mac_impl_count); 439 440 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 441 *mhp = (mac_handle_t)mip; 442 return (0); 443 444 fail: 445 if (style1_created) 446 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 447 448 if (style2_created) 449 ddi_remove_minor_node(mip->mi_dip, driver); 450 451 mac_addr_factory_fini(mip); 452 453 /* Clean up registered MAC addresses */ 454 mac_fini_macaddr(mip); 455 456 /* Clean up registered rings */ 457 mac_free_rings(mip, MAC_RING_TYPE_RX); 458 mac_free_rings(mip, MAC_RING_TYPE_TX); 459 460 /* Clean up notification thread */ 461 if (mip->mi_notify_thread != NULL) 462 i_mac_notify_exit(mip); 463 464 if (mip->mi_info.mi_unicst_addr != NULL) { 465 kmem_free(mip->mi_info.mi_unicst_addr, 466 mip->mi_type->mt_addr_length); 467 mip->mi_info.mi_unicst_addr = NULL; 468 } 469 470 mac_driver_stat_delete(mip); 471 472 if (mip->mi_type != NULL) { 473 atomic_dec_32(&mip->mi_type->mt_ref); 474 mip->mi_type = NULL; 475 } 476 477 if (mip->mi_pdata != NULL) { 478 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 479 mip->mi_pdata = NULL; 480 mip->mi_pdata_size = 0; 481 } 482 483 if (minor != 0) { 484 ASSERT(minor > MAC_MAX_MINOR); 485 mac_minor_rele(minor); 486 } 487 488 mip->mi_state_flags = 0; 489 mac_unregister_priv_prop(mip); 490 491 /* 492 * Clear the state before destroying the mac_impl_t 493 */ 494 mip->mi_state_flags = 0; 495 496 kmem_cache_free(i_mac_impl_cachep, mip); 497 return (err); 498 } 499 500 /* 501 * Unregister from the GLDv3 framework 502 */ 503 int 504 mac_unregister(mac_handle_t mh) 505 { 506 int err; 507 mac_impl_t *mip = (mac_impl_t *)mh; 508 mod_hash_val_t val; 509 mac_margin_req_t *mmr, *nextmmr; 510 511 /* Fail the unregister if there are any open references to this mac. */ 512 if ((err = mac_disable_nowait(mh)) != 0) 513 return (err); 514 515 /* 516 * Clean up notification thread and wait for it to exit. 517 */ 518 i_mac_notify_exit(mip); 519 520 /* 521 * Prior to acquiring the MAC perimeter, remove the MAC instance from 522 * the internal hash table. Such removal means table-walkers that 523 * acquire the perimeter will not do so on behalf of what we are 524 * unregistering, which prevents a deadlock. 525 */ 526 rw_enter(&i_mac_impl_lock, RW_WRITER); 527 (void) mod_hash_remove(i_mac_impl_hash, 528 (mod_hash_key_t)mip->mi_name, &val); 529 rw_exit(&i_mac_impl_lock); 530 ASSERT(mip == (mac_impl_t *)val); 531 532 i_mac_perim_enter(mip); 533 534 /* 535 * There is still resource properties configured over this mac. 536 */ 537 if (mip->mi_resource_props.mrp_mask != 0) 538 mac_fastpath_enable((mac_handle_t)mip); 539 540 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 541 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 542 ddi_remove_minor_node(mip->mi_dip, 543 (char *)ddi_driver_name(mip->mi_dip)); 544 } 545 546 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 547 MIS_EXCLUSIVE)); 548 549 mac_driver_stat_delete(mip); 550 551 ASSERT(i_mac_impl_count > 0); 552 atomic_dec_32(&i_mac_impl_count); 553 554 if (mip->mi_pdata != NULL) 555 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 556 mip->mi_pdata = NULL; 557 mip->mi_pdata_size = 0; 558 559 /* 560 * Free the list of margin request. 561 */ 562 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 563 nextmmr = mmr->mmr_nextp; 564 kmem_free(mmr, sizeof (mac_margin_req_t)); 565 } 566 mip->mi_mmrp = NULL; 567 568 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 569 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 570 mip->mi_info.mi_unicst_addr = NULL; 571 572 atomic_dec_32(&mip->mi_type->mt_ref); 573 mip->mi_type = NULL; 574 575 /* 576 * Free the primary MAC address. 577 */ 578 mac_fini_macaddr(mip); 579 580 /* 581 * free all rings 582 */ 583 mac_free_rings(mip, MAC_RING_TYPE_RX); 584 mac_free_rings(mip, MAC_RING_TYPE_TX); 585 586 mac_addr_factory_fini(mip); 587 588 bzero(mip->mi_addr, MAXMACADDRLEN); 589 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 590 mip->mi_dstaddr_set = B_FALSE; 591 592 /* and the flows */ 593 mac_flow_tab_destroy(mip->mi_flow_tab); 594 mip->mi_flow_tab = NULL; 595 596 if (mip->mi_minor > MAC_MAX_MINOR) 597 mac_minor_rele(mip->mi_minor); 598 599 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 600 601 /* 602 * Reset the perim related fields to default values before 603 * kmem_cache_free 604 */ 605 i_mac_perim_exit(mip); 606 mip->mi_state_flags = 0; 607 608 mac_unregister_priv_prop(mip); 609 610 ASSERT(mip->mi_bridge_link == NULL); 611 kmem_cache_free(i_mac_impl_cachep, mip); 612 613 return (0); 614 } 615 616 /* DATA RECEPTION */ 617 618 /* 619 * This function is invoked for packets received by the MAC driver in 620 * interrupt context. The ring generation number provided by the driver 621 * is matched with the ring generation number held in MAC. If they do not 622 * match, received packets are considered stale packets coming from an older 623 * assignment of the ring. Drop them. 624 */ 625 void 626 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 627 uint64_t mr_gen_num) 628 { 629 mac_ring_t *mr = (mac_ring_t *)mrh; 630 631 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 632 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 633 mr->mr_gen_num, uint64_t, mr_gen_num); 634 freemsgchain(mp_chain); 635 return; 636 } 637 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 638 } 639 640 /* 641 * This function is invoked for each packet received by the underlying driver. 642 */ 643 void 644 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 645 { 646 mac_impl_t *mip = (mac_impl_t *)mh; 647 648 /* 649 * Check if the link is part of a bridge. If not, then we don't need 650 * to take the lock to remain consistent. Make this common case 651 * lock-free and tail-call optimized. 652 */ 653 if (mip->mi_bridge_link == NULL) { 654 mac_rx_common(mh, mrh, mp_chain); 655 } else { 656 /* 657 * Once we take a reference on the bridge link, the bridge 658 * module itself can't unload, so the callback pointers are 659 * stable. 660 */ 661 mutex_enter(&mip->mi_bridge_lock); 662 if ((mh = mip->mi_bridge_link) != NULL) 663 mac_bridge_ref_cb(mh, B_TRUE); 664 mutex_exit(&mip->mi_bridge_lock); 665 if (mh == NULL) { 666 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 667 } else { 668 mac_bridge_rx_cb(mh, mrh, mp_chain); 669 mac_bridge_ref_cb(mh, B_FALSE); 670 } 671 } 672 } 673 674 /* 675 * Special case function: this allows snooping of packets transmitted and 676 * received by TRILL. By design, they go directly into the TRILL module. 677 */ 678 void 679 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 680 { 681 mac_impl_t *mip = (mac_impl_t *)mh; 682 683 if (mip->mi_promisc_list != NULL) 684 mac_promisc_dispatch(mip, mp, NULL); 685 } 686 687 /* 688 * This is the upward reentry point for packets arriving from the bridging 689 * module and from mac_rx for links not part of a bridge. 690 */ 691 void 692 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 693 { 694 mac_impl_t *mip = (mac_impl_t *)mh; 695 mac_ring_t *mr = (mac_ring_t *)mrh; 696 mac_soft_ring_set_t *mac_srs; 697 mblk_t *bp = mp_chain; 698 boolean_t hw_classified = B_FALSE; 699 700 /* 701 * If there are any promiscuous mode callbacks defined for 702 * this MAC, pass them a copy if appropriate. 703 */ 704 if (mip->mi_promisc_list != NULL) 705 mac_promisc_dispatch(mip, mp_chain, NULL); 706 707 if (mr != NULL) { 708 /* 709 * If the SRS teardown has started, just return. The 'mr' 710 * continues to be valid until the driver unregisters the mac. 711 * Hardware classified packets will not make their way up 712 * beyond this point once the teardown has started. The driver 713 * is never passed a pointer to a flow entry or SRS or any 714 * structure that can be freed much before mac_unregister. 715 */ 716 mutex_enter(&mr->mr_lock); 717 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 718 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 719 mutex_exit(&mr->mr_lock); 720 freemsgchain(mp_chain); 721 return; 722 } 723 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 724 hw_classified = B_TRUE; 725 MR_REFHOLD_LOCKED(mr); 726 } 727 mutex_exit(&mr->mr_lock); 728 729 /* 730 * We check if an SRS is controlling this ring. 731 * If so, we can directly call the srs_lower_proc 732 * routine otherwise we need to go through mac_rx_classify 733 * to reach the right place. 734 */ 735 if (hw_classified) { 736 mac_srs = mr->mr_srs; 737 /* 738 * This is supposed to be the fast path. 739 * All packets received though here were steered by 740 * the hardware classifier, and share the same 741 * MAC header info. 742 */ 743 mac_srs->srs_rx.sr_lower_proc(mh, 744 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 745 MR_REFRELE(mr); 746 return; 747 } 748 /* We'll fall through to software classification */ 749 } else { 750 flow_entry_t *flent; 751 int err; 752 753 rw_enter(&mip->mi_rw_lock, RW_READER); 754 if (mip->mi_single_active_client != NULL) { 755 flent = mip->mi_single_active_client->mci_flent_list; 756 FLOW_TRY_REFHOLD(flent, err); 757 rw_exit(&mip->mi_rw_lock); 758 if (err == 0) { 759 (flent->fe_cb_fn)(flent->fe_cb_arg1, 760 flent->fe_cb_arg2, mp_chain, B_FALSE); 761 FLOW_REFRELE(flent); 762 return; 763 } 764 } else { 765 rw_exit(&mip->mi_rw_lock); 766 } 767 } 768 769 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 770 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 771 return; 772 } 773 774 freemsgchain(bp); 775 } 776 777 /* DATA TRANSMISSION */ 778 779 /* 780 * A driver's notification to resume transmission, in case of a provider 781 * without TX rings. 782 */ 783 void 784 mac_tx_update(mac_handle_t mh) 785 { 786 mac_tx_ring_update(mh, NULL); 787 } 788 789 /* 790 * A driver's notification to resume transmission on the specified TX ring. 791 */ 792 void 793 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 794 { 795 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 796 } 797 798 /* LINK STATE */ 799 /* 800 * Notify the MAC layer about a link state change 801 */ 802 void 803 mac_link_update(mac_handle_t mh, link_state_t link) 804 { 805 mac_impl_t *mip = (mac_impl_t *)mh; 806 807 /* 808 * Save the link state. 809 */ 810 mip->mi_lowlinkstate = link; 811 812 /* 813 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 814 * thread to deliver both lower and upper notifications. 815 */ 816 i_mac_notify(mip, MAC_NOTE_LOWLINK); 817 } 818 819 /* 820 * Notify the MAC layer about a link state change due to bridging. 821 */ 822 void 823 mac_link_redo(mac_handle_t mh, link_state_t link) 824 { 825 mac_impl_t *mip = (mac_impl_t *)mh; 826 827 /* 828 * Save the link state. 829 */ 830 mip->mi_linkstate = link; 831 832 /* 833 * Send a MAC_NOTE_LINK notification. Only upper notifications are 834 * made. 835 */ 836 i_mac_notify(mip, MAC_NOTE_LINK); 837 } 838 839 /* MINOR NODE HANDLING */ 840 841 /* 842 * Given a dev_t, return the instance number (PPA) associated with it. 843 * Drivers can use this in their getinfo(9e) implementation to lookup 844 * the instance number (i.e. PPA) of the device, to use as an index to 845 * their own array of soft state structures. 846 * 847 * Returns -1 on error. 848 */ 849 int 850 mac_devt_to_instance(dev_t devt) 851 { 852 return (dld_devt_to_instance(devt)); 853 } 854 855 /* 856 * This function returns the first minor number that is available for 857 * driver private use. All minor numbers smaller than this are 858 * reserved for GLDv3 use. 859 */ 860 minor_t 861 mac_private_minor(void) 862 { 863 return (MAC_PRIVATE_MINOR); 864 } 865 866 /* OTHER CONTROL INFORMATION */ 867 868 /* 869 * A driver notified us that its primary MAC address has changed. 870 */ 871 void 872 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 873 { 874 mac_impl_t *mip = (mac_impl_t *)mh; 875 876 if (mip->mi_type->mt_addr_length == 0) 877 return; 878 879 i_mac_perim_enter(mip); 880 881 /* 882 * If address changes, freshen the MAC address value and update 883 * all MAC clients that share this MAC address. 884 */ 885 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 886 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 887 (uint8_t *)addr); 888 } 889 890 i_mac_perim_exit(mip); 891 892 /* 893 * Send a MAC_NOTE_UNICST notification. 894 */ 895 i_mac_notify(mip, MAC_NOTE_UNICST); 896 } 897 898 void 899 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 900 { 901 mac_impl_t *mip = (mac_impl_t *)mh; 902 903 if (mip->mi_type->mt_addr_length == 0) 904 return; 905 906 i_mac_perim_enter(mip); 907 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 908 i_mac_perim_exit(mip); 909 i_mac_notify(mip, MAC_NOTE_DEST); 910 } 911 912 /* 913 * MAC plugin information changed. 914 */ 915 int 916 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 917 { 918 mac_impl_t *mip = (mac_impl_t *)mh; 919 920 /* 921 * Verify that the plugin supports MAC plugin data and that the 922 * supplied data is valid. 923 */ 924 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 925 return (EINVAL); 926 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 927 return (EINVAL); 928 929 if (mip->mi_pdata != NULL) 930 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 931 932 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 933 bcopy(mac_pdata, mip->mi_pdata, dsize); 934 mip->mi_pdata_size = dsize; 935 936 /* 937 * Since the MAC plugin data is used to construct MAC headers that 938 * were cached in fast-path headers, we need to flush fast-path 939 * information for links associated with this mac. 940 */ 941 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 942 return (0); 943 } 944 945 /* 946 * Invoked by driver as well as the framework to notify its capability change. 947 */ 948 void 949 mac_capab_update(mac_handle_t mh) 950 { 951 /* Send MAC_NOTE_CAPAB_CHG notification */ 952 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 953 } 954 955 /* 956 * Used by normal drivers to update the max sdu size. 957 * We need to handle the case of a smaller mi_sdu_multicast 958 * since this is called by mac_set_mtu() even for drivers that 959 * have differing unicast and multicast mtu and we don't want to 960 * increase the multicast mtu by accident in that case. 961 */ 962 int 963 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 964 { 965 mac_impl_t *mip = (mac_impl_t *)mh; 966 967 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 968 return (EINVAL); 969 mip->mi_sdu_max = sdu_max; 970 if (mip->mi_sdu_multicast > mip->mi_sdu_max) 971 mip->mi_sdu_multicast = mip->mi_sdu_max; 972 973 /* Send a MAC_NOTE_SDU_SIZE notification. */ 974 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 975 return (0); 976 } 977 978 /* 979 * Version of the above function that is used by drivers that have a different 980 * max sdu size for multicast/broadcast vs. unicast. 981 */ 982 int 983 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast) 984 { 985 mac_impl_t *mip = (mac_impl_t *)mh; 986 987 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 988 return (EINVAL); 989 if (sdu_multicast == 0) 990 sdu_multicast = sdu_max; 991 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min) 992 return (EINVAL); 993 mip->mi_sdu_max = sdu_max; 994 mip->mi_sdu_multicast = sdu_multicast; 995 996 /* Send a MAC_NOTE_SDU_SIZE notification. */ 997 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 998 return (0); 999 } 1000 1001 static void 1002 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 1003 { 1004 mac_client_impl_t *mcip; 1005 flow_entry_t *flent; 1006 mac_soft_ring_set_t *mac_rx_srs; 1007 mac_cpus_t *srs_cpu; 1008 int i; 1009 1010 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 1011 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 1012 /* interrupt can be re-targeted */ 1013 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 1014 flent = mcip->mci_flent; 1015 if (ring->mr_type == MAC_RING_TYPE_RX) { 1016 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1017 mac_rx_srs = flent->fe_rx_srs[i]; 1018 if (mac_rx_srs->srs_ring != ring) 1019 continue; 1020 srs_cpu = &mac_rx_srs->srs_cpu; 1021 mutex_enter(&cpu_lock); 1022 mac_rx_srs_retarget_intr(mac_rx_srs, 1023 srs_cpu->mc_rx_intr_cpu); 1024 mutex_exit(&cpu_lock); 1025 break; 1026 } 1027 } else { 1028 if (flent->fe_tx_srs != NULL) { 1029 mutex_enter(&cpu_lock); 1030 mac_tx_srs_retarget_intr( 1031 flent->fe_tx_srs); 1032 mutex_exit(&cpu_lock); 1033 } 1034 } 1035 } 1036 } 1037 1038 /* 1039 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 1040 * their clients. There is a 1-1 mapping pseudo ring and the hardware 1041 * ring. ddi interrupt handles are exported from the hardware ring to 1042 * the pseudo ring. Thus when the interrupt handle changes, clients of 1043 * aggr that are using the handle need to use the new handle and 1044 * re-target their interrupts. 1045 */ 1046 static void 1047 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 1048 ddi_intr_handle_t ddh) 1049 { 1050 mac_ring_t *pring; 1051 mac_group_t *pgroup; 1052 mac_impl_t *pmip; 1053 char macname[MAXNAMELEN]; 1054 mac_perim_handle_t p_mph; 1055 uint64_t saved_gen_num; 1056 1057 again: 1058 pring = (mac_ring_t *)ring->mr_prh; 1059 pgroup = (mac_group_t *)pring->mr_gh; 1060 pmip = (mac_impl_t *)pgroup->mrg_mh; 1061 saved_gen_num = ring->mr_gen_num; 1062 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1063 /* 1064 * We need to enter aggr's perimeter. The locking hierarchy 1065 * dictates that aggr's perimeter should be entered first 1066 * and then the port's perimeter. So drop the port's 1067 * perimeter, enter aggr's and then re-enter port's 1068 * perimeter. 1069 */ 1070 i_mac_perim_exit(mip); 1071 /* 1072 * While we know pmip is the aggr's mip, there is a 1073 * possibility that aggr could have unregistered by 1074 * the time we exit port's perimeter (mip) and 1075 * enter aggr's perimeter (pmip). To avoid that 1076 * scenario, enter aggr's perimeter using its name. 1077 */ 1078 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1079 return; 1080 i_mac_perim_enter(mip); 1081 /* 1082 * Check if the ring got assigned to another aggregation before 1083 * be could enter aggr's and the port's perimeter. When a ring 1084 * gets deleted from an aggregation, it calls mac_stop_ring() 1085 * which increments the generation number. So checking 1086 * generation number will be enough. 1087 */ 1088 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1089 i_mac_perim_exit(mip); 1090 mac_perim_exit(p_mph); 1091 i_mac_perim_enter(mip); 1092 goto again; 1093 } 1094 1095 /* Check if pseudo ring is still present */ 1096 if (ring->mr_prh != NULL) { 1097 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1098 pring->mr_info.mri_intr.mi_ddi_shared = 1099 ring->mr_info.mri_intr.mi_ddi_shared; 1100 if (ddh != NULL) 1101 mac_ring_intr_retarget(pgroup, pring); 1102 } 1103 i_mac_perim_exit(mip); 1104 mac_perim_exit(p_mph); 1105 } 1106 /* 1107 * API called by driver to provide new interrupt handle for TX/RX rings. 1108 * This usually happens when IRM (Interrupt Resource Manangement) 1109 * framework either gives the driver more MSI-x interrupts or takes 1110 * away MSI-x interrupts from the driver. 1111 */ 1112 void 1113 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1114 { 1115 mac_ring_t *ring = (mac_ring_t *)mrh; 1116 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1117 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1118 1119 i_mac_perim_enter(mip); 1120 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1121 if (ddh == NULL) { 1122 /* Interrupts being reset */ 1123 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1124 if (ring->mr_prh != NULL) { 1125 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1126 return; 1127 } 1128 } else { 1129 /* New interrupt handle */ 1130 mac_compare_ddi_handle(mip->mi_rx_groups, 1131 mip->mi_rx_group_count, ring); 1132 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1133 mac_compare_ddi_handle(mip->mi_tx_groups, 1134 mip->mi_tx_group_count, ring); 1135 } 1136 if (ring->mr_prh != NULL) { 1137 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1138 return; 1139 } else { 1140 mac_ring_intr_retarget(group, ring); 1141 } 1142 } 1143 i_mac_perim_exit(mip); 1144 } 1145 1146 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1147 1148 /* 1149 * Updates the mac_impl structure with the current state of the link 1150 */ 1151 static void 1152 i_mac_log_link_state(mac_impl_t *mip) 1153 { 1154 /* 1155 * If no change, then it is not interesting. 1156 */ 1157 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1158 return; 1159 1160 switch (mip->mi_lowlinkstate) { 1161 case LINK_STATE_UP: 1162 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1163 char det[200]; 1164 1165 mip->mi_type->mt_ops.mtops_link_details(det, 1166 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1167 1168 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1169 } else { 1170 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1171 } 1172 break; 1173 1174 case LINK_STATE_DOWN: 1175 /* 1176 * Only transitions from UP to DOWN are interesting 1177 */ 1178 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1179 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1180 break; 1181 1182 case LINK_STATE_UNKNOWN: 1183 /* 1184 * This case is normally not interesting. 1185 */ 1186 break; 1187 } 1188 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1189 } 1190 1191 /* 1192 * Main routine for the callbacks notifications thread 1193 */ 1194 static void 1195 i_mac_notify_thread(void *arg) 1196 { 1197 mac_impl_t *mip = arg; 1198 callb_cpr_t cprinfo; 1199 mac_cb_t *mcb; 1200 mac_cb_info_t *mcbi; 1201 mac_notify_cb_t *mncb; 1202 1203 mcbi = &mip->mi_notify_cb_info; 1204 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1205 "i_mac_notify_thread"); 1206 1207 mutex_enter(mcbi->mcbi_lockp); 1208 1209 for (;;) { 1210 uint32_t bits; 1211 uint32_t type; 1212 1213 bits = mip->mi_notify_bits; 1214 if (bits == 0) { 1215 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1216 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1217 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1218 continue; 1219 } 1220 mip->mi_notify_bits = 0; 1221 if ((bits & (1 << MAC_NNOTE)) != 0) { 1222 /* request to quit */ 1223 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1224 break; 1225 } 1226 1227 mutex_exit(mcbi->mcbi_lockp); 1228 1229 /* 1230 * Log link changes on the actual link, but then do reports on 1231 * synthetic state (if part of a bridge). 1232 */ 1233 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1234 link_state_t newstate; 1235 mac_handle_t mh; 1236 1237 i_mac_log_link_state(mip); 1238 newstate = mip->mi_lowlinkstate; 1239 if (mip->mi_bridge_link != NULL) { 1240 mutex_enter(&mip->mi_bridge_lock); 1241 if ((mh = mip->mi_bridge_link) != NULL) { 1242 newstate = mac_bridge_ls_cb(mh, 1243 newstate); 1244 } 1245 mutex_exit(&mip->mi_bridge_lock); 1246 } 1247 if (newstate != mip->mi_linkstate) { 1248 mip->mi_linkstate = newstate; 1249 bits |= 1 << MAC_NOTE_LINK; 1250 } 1251 } 1252 1253 /* 1254 * Do notification callbacks for each notification type. 1255 */ 1256 for (type = 0; type < MAC_NNOTE; type++) { 1257 if ((bits & (1 << type)) == 0) { 1258 continue; 1259 } 1260 1261 if (mac_notify_cb_list[type] != NULL) 1262 (*mac_notify_cb_list[type])(mip); 1263 1264 /* 1265 * Walk the list of notifications. 1266 */ 1267 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1268 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1269 mcb = mcb->mcb_nextp) { 1270 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1271 mncb->mncb_fn(mncb->mncb_arg, type); 1272 } 1273 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1274 &mip->mi_notify_cb_list); 1275 } 1276 1277 mutex_enter(mcbi->mcbi_lockp); 1278 } 1279 1280 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1281 cv_broadcast(&mcbi->mcbi_cv); 1282 1283 /* CALLB_CPR_EXIT drops the lock */ 1284 CALLB_CPR_EXIT(&cprinfo); 1285 thread_exit(); 1286 } 1287 1288 /* 1289 * Signal the i_mac_notify_thread asking it to quit. 1290 * Then wait till it is done. 1291 */ 1292 void 1293 i_mac_notify_exit(mac_impl_t *mip) 1294 { 1295 mac_cb_info_t *mcbi; 1296 1297 mcbi = &mip->mi_notify_cb_info; 1298 1299 mutex_enter(mcbi->mcbi_lockp); 1300 mip->mi_notify_bits = (1 << MAC_NNOTE); 1301 cv_broadcast(&mcbi->mcbi_cv); 1302 1303 1304 while ((mip->mi_notify_thread != NULL) && 1305 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1306 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1307 } 1308 1309 /* Necessary clean up before doing kmem_cache_free */ 1310 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1311 mip->mi_notify_bits = 0; 1312 mip->mi_notify_thread = NULL; 1313 mutex_exit(mcbi->mcbi_lockp); 1314 } 1315 1316 /* 1317 * Entry point invoked by drivers to dynamically add a ring to an 1318 * existing group. 1319 */ 1320 int 1321 mac_group_add_ring(mac_group_handle_t gh, int index) 1322 { 1323 mac_group_t *group = (mac_group_t *)gh; 1324 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1325 int ret; 1326 1327 i_mac_perim_enter(mip); 1328 ret = i_mac_group_add_ring(group, NULL, index); 1329 i_mac_perim_exit(mip); 1330 return (ret); 1331 } 1332 1333 /* 1334 * Entry point invoked by drivers to dynamically remove a ring 1335 * from an existing group. The specified ring handle must no longer 1336 * be used by the driver after a call to this function. 1337 */ 1338 void 1339 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1340 { 1341 mac_group_t *group = (mac_group_t *)gh; 1342 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1343 1344 i_mac_perim_enter(mip); 1345 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1346 i_mac_perim_exit(mip); 1347 } 1348 1349 /* 1350 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1351 * entry points. 1352 */ 1353 1354 void 1355 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1356 { 1357 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1358 1359 /* nothing to do if the caller doesn't want the default value */ 1360 if (pr->pr_default == NULL) 1361 return; 1362 1363 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1364 1365 *(uint8_t *)(pr->pr_default) = val; 1366 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1367 } 1368 1369 void 1370 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1371 { 1372 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1373 1374 /* nothing to do if the caller doesn't want the default value */ 1375 if (pr->pr_default == NULL) 1376 return; 1377 1378 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1379 1380 bcopy(&val, pr->pr_default, sizeof (val)); 1381 1382 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1383 } 1384 1385 void 1386 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1387 { 1388 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1389 1390 /* nothing to do if the caller doesn't want the default value */ 1391 if (pr->pr_default == NULL) 1392 return; 1393 1394 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1395 1396 bcopy(&val, pr->pr_default, sizeof (val)); 1397 1398 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1399 } 1400 1401 void 1402 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1403 { 1404 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1405 1406 /* nothing to do if the caller doesn't want the default value */ 1407 if (pr->pr_default == NULL) 1408 return; 1409 1410 if (strlen(str) >= pr->pr_default_size) 1411 pr->pr_errno = ENOBUFS; 1412 else 1413 (void) strlcpy(pr->pr_default, str, pr->pr_default_size); 1414 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1415 } 1416 1417 void 1418 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1419 link_flowctrl_t val) 1420 { 1421 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1422 1423 /* nothing to do if the caller doesn't want the default value */ 1424 if (pr->pr_default == NULL) 1425 return; 1426 1427 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1428 1429 bcopy(&val, pr->pr_default, sizeof (val)); 1430 1431 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1432 } 1433 1434 void 1435 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1436 uint32_t max) 1437 { 1438 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1439 mac_propval_range_t *range = pr->pr_range; 1440 mac_propval_uint32_range_t *range32; 1441 1442 /* nothing to do if the caller doesn't want the range info */ 1443 if (range == NULL) 1444 return; 1445 1446 if (pr->pr_range_cur_count++ == 0) { 1447 /* first range */ 1448 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1449 range->mpr_type = MAC_PROPVAL_UINT32; 1450 } else { 1451 /* all ranges of a property should be of the same type */ 1452 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32); 1453 if (pr->pr_range_cur_count > range->mpr_count) { 1454 pr->pr_errno = ENOSPC; 1455 return; 1456 } 1457 } 1458 1459 range32 = range->mpr_range_uint32; 1460 range32[pr->pr_range_cur_count - 1].mpur_min = min; 1461 range32[pr->pr_range_cur_count - 1].mpur_max = max; 1462 } 1463 1464 void 1465 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1466 { 1467 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1468 1469 pr->pr_perm = perm; 1470 pr->pr_flags |= MAC_PROP_INFO_PERM; 1471 } 1472 1473 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff, 1474 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1475 { 1476 uint32_t flags; 1477 1478 ASSERT(DB_TYPE(mp) == M_DATA); 1479 1480 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1481 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1482 if (value != NULL) 1483 *value = (uint32_t)DB_CKSUM16(mp); 1484 if ((flags & HCK_PARTIALCKSUM) != 0) { 1485 if (start != NULL) 1486 *start = (uint32_t)DB_CKSUMSTART(mp); 1487 if (stuff != NULL) 1488 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1489 if (end != NULL) 1490 *end = (uint32_t)DB_CKSUMEND(mp); 1491 } 1492 } 1493 1494 if (flags_ptr != NULL) 1495 *flags_ptr = flags; 1496 } 1497 1498 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, 1499 uint32_t end, uint32_t value, uint32_t flags) 1500 { 1501 ASSERT(DB_TYPE(mp) == M_DATA); 1502 1503 DB_CKSUMSTART(mp) = (intptr_t)start; 1504 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1505 DB_CKSUMEND(mp) = (intptr_t)end; 1506 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1507 DB_CKSUM16(mp) = (uint16_t)value; 1508 } 1509 1510 void 1511 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1512 { 1513 ASSERT(DB_TYPE(mp) == M_DATA); 1514 1515 if (flags != NULL) { 1516 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1517 if ((*flags != 0) && (mss != NULL)) 1518 *mss = (uint32_t)DB_LSOMSS(mp); 1519 } 1520 } 1521 1522 void 1523 mac_transceiver_info_set_present(mac_transceiver_info_t *infop, 1524 boolean_t present) 1525 { 1526 infop->mti_present = present; 1527 } 1528 1529 void 1530 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop, 1531 boolean_t usable) 1532 { 1533 infop->mti_usable = usable; 1534 } 1535