xref: /titanic_52/usr/src/uts/common/io/mac/mac.c (revision e7c874af0c35dbf6ef9d056e7be939b0b4e2b0d7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014, Joyent, Inc.  All rights reserved.
25  */
26 
27 /*
28  * MAC Services Module
29  *
30  * The GLDv3 framework locking -  The MAC layer
31  * --------------------------------------------
32  *
33  * The MAC layer is central to the GLD framework and can provide the locking
34  * framework needed for itself and for the use of MAC clients. MAC end points
35  * are fairly disjoint and don't share a lot of state. So a coarse grained
36  * multi-threading scheme is to single thread all create/modify/delete or set
37  * type of control operations on a per mac end point while allowing data threads
38  * concurrently.
39  *
40  * Control operations (set) that modify a mac end point are always serialized on
41  * a per mac end point basis, We have at most 1 such thread per mac end point
42  * at a time.
43  *
44  * All other operations that are not serialized are essentially multi-threaded.
45  * For example a control operation (get) like getting statistics which may not
46  * care about reading values atomically or data threads sending or receiving
47  * data. Mostly these type of operations don't modify the control state. Any
48  * state these operations care about are protected using traditional locks.
49  *
50  * The perimeter only serializes serial operations. It does not imply there
51  * aren't any other concurrent operations. However a serialized operation may
52  * sometimes need to make sure it is the only thread. In this case it needs
53  * to use reference counting mechanisms to cv_wait until any current data
54  * threads are done.
55  *
56  * The mac layer itself does not hold any locks across a call to another layer.
57  * The perimeter is however held across a down call to the driver to make the
58  * whole control operation atomic with respect to other control operations.
59  * Also the data path and get type control operations may proceed concurrently.
60  * These operations synchronize with the single serial operation on a given mac
61  * end point using regular locks. The perimeter ensures that conflicting
62  * operations like say a mac_multicast_add and a mac_multicast_remove on the
63  * same mac end point don't interfere with each other and also ensures that the
64  * changes in the mac layer and the call to the underlying driver to say add a
65  * multicast address are done atomically without interference from a thread
66  * trying to delete the same address.
67  *
68  * For example, consider
69  * mac_multicst_add()
70  * {
71  *	mac_perimeter_enter();	serialize all control operations
72  *
73  *	grab list lock		protect against access by data threads
74  *	add to list
75  *	drop list lock
76  *
77  *	call driver's mi_multicst
78  *
79  *	mac_perimeter_exit();
80  * }
81  *
82  * To lessen the number of serialization locks and simplify the lock hierarchy,
83  * we serialize all the control operations on a per mac end point by using a
84  * single serialization lock called the perimeter. We allow recursive entry into
85  * the perimeter to facilitate use of this mechanism by both the mac client and
86  * the MAC layer itself.
87  *
88  * MAC client means an entity that does an operation on a mac handle
89  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
90  * an entity that does an operation on a mac handle obtained from a
91  * mac_register. An entity could be both client and driver but on different
92  * handles eg. aggr. and should only make the corresponding mac interface calls
93  * i.e. mac driver interface or mac client interface as appropriate for that
94  * mac handle.
95  *
96  * General rules.
97  * -------------
98  *
99  * R1. The lock order of upcall threads is natually opposite to downcall
100  * threads. Hence upcalls must not hold any locks across layers for fear of
101  * recursive lock enter and lock order violation. This applies to all layers.
102  *
103  * R2. The perimeter is just another lock. Since it is held in the down
104  * direction, acquiring the perimeter in an upcall is prohibited as it would
105  * cause a deadlock. This applies to all layers.
106  *
107  * Note that upcalls that need to grab the mac perimeter (for example
108  * mac_notify upcalls) can still achieve that by posting the request to a
109  * thread, which can then grab all the required perimeters and locks in the
110  * right global order. Note that in the above example the mac layer iself
111  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
112  * to the client must do that. Please see the aggr code for an example.
113  *
114  * MAC client rules
115  * ----------------
116  *
117  * R3. A MAC client may use the MAC provided perimeter facility to serialize
118  * control operations on a per mac end point. It does this by by acquring
119  * and holding the perimeter across a sequence of calls to the mac layer.
120  * This ensures atomicity across the entire block of mac calls. In this
121  * model the MAC client must not hold any client locks across the calls to
122  * the mac layer. This model is the preferred solution.
123  *
124  * R4. However if a MAC client has a lot of global state across all mac end
125  * points the per mac end point serialization may not be sufficient. In this
126  * case the client may choose to use global locks or use its own serialization.
127  * To avoid deadlocks, these client layer locks held across the mac calls
128  * in the control path must never be acquired by the data path for the reason
129  * mentioned below.
130  *
131  * (Assume that a control operation that holds a client lock blocks in the
132  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
133  * data thread that holds this reference count, tries to acquire the same
134  * client lock subsequently it will deadlock).
135  *
136  * A MAC client may follow either the R3 model or the R4 model, but can't
137  * mix both. In the former, the hierarchy is Perim -> client locks, but in
138  * the latter it is client locks -> Perim.
139  *
140  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
141  * context since they may block while trying to acquire the perimeter.
142  * In addition some calls may block waiting for upcall refcnts to come down to
143  * zero.
144  *
145  * R6. MAC clients must make sure that they are single threaded and all threads
146  * from the top (in particular data threads) have finished before calling
147  * mac_client_close. The MAC framework does not track the number of client
148  * threads using the mac client handle. Also mac clients must make sure
149  * they have undone all the control operations before calling mac_client_close.
150  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
151  * mac_unicast_add/mac_multicast_add.
152  *
153  * MAC framework rules
154  * -------------------
155  *
156  * R7. The mac layer itself must not hold any mac layer locks (except the mac
157  * perimeter) across a call to any other layer from the mac layer. The call to
158  * any other layer could be via mi_* entry points, classifier entry points into
159  * the driver or via upcall pointers into layers above. The mac perimeter may
160  * be acquired or held only in the down direction, for e.g. when calling into
161  * a mi_* driver enty point to provide atomicity of the operation.
162  *
163  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
164  * mac driver interfaces, the MAC layer must provide a cut out for control
165  * interfaces like upcall notifications and start them in a separate thread.
166  *
167  * R9. Note that locking order also implies a plumbing order. For example
168  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
169  * to plumb in any other order must be failed at mac_open time, otherwise it
170  * could lead to deadlocks due to inverse locking order.
171  *
172  * R10. MAC driver interfaces must not block since the driver could call them
173  * in interrupt context.
174  *
175  * R11. Walkers must preferably not hold any locks while calling walker
176  * callbacks. Instead these can operate on reference counts. In simple
177  * callbacks it may be ok to hold a lock and call the callbacks, but this is
178  * harder to maintain in the general case of arbitrary callbacks.
179  *
180  * R12. The MAC layer must protect upcall notification callbacks using reference
181  * counts rather than holding locks across the callbacks.
182  *
183  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
184  * sure that any pointers (such as mac ring pointers) it passes to the driver
185  * remain valid until mac unregister time. Currently the mac layer achieves
186  * this by using generation numbers for rings and freeing the mac rings only
187  * at unregister time.  The MAC layer must provide a layer of indirection and
188  * must not expose underlying driver rings or driver data structures/pointers
189  * directly to MAC clients.
190  *
191  * MAC driver rules
192  * ----------------
193  *
194  * R14. It would be preferable if MAC drivers don't hold any locks across any
195  * mac call. However at a minimum they must not hold any locks across data
196  * upcalls. They must also make sure that all references to mac data structures
197  * are cleaned up and that it is single threaded at mac_unregister time.
198  *
199  * R15. MAC driver interfaces don't block and so the action may be done
200  * asynchronously in a separate thread as for example handling notifications.
201  * The driver must not assume that the action is complete when the call
202  * returns.
203  *
204  * R16. Drivers must maintain a generation number per Rx ring, and pass it
205  * back to mac_rx_ring(); They are expected to increment the generation
206  * number whenever the ring's stop routine is invoked.
207  * See comments in mac_rx_ring();
208  *
209  * R17 Similarly mi_stop is another synchronization point and the driver must
210  * ensure that all upcalls are done and there won't be any future upcall
211  * before returning from mi_stop.
212  *
213  * R18. The driver may assume that all set/modify control operations via
214  * the mi_* entry points are single threaded on a per mac end point.
215  *
216  * Lock and Perimeter hierarchy scenarios
217  * ---------------------------------------
218  *
219  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
220  *
221  * ft_lock -> fe_lock [mac_flow_lookup]
222  *
223  * mi_rw_lock -> fe_lock [mac_bcast_send]
224  *
225  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
226  *
227  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
228  *
229  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
230  *
231  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
232  * client to driver. In the case of clients that explictly use the mac provided
233  * perimeter mechanism for its serialization, the hierarchy is
234  * Perimeter -> mac layer locks, since the client never holds any locks across
235  * the mac calls. In the case of clients that use its own locks the hierarchy
236  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
237  * calls mac_perim_enter/exit in this case.
238  *
239  * Subflow creation rules
240  * ---------------------------
241  * o In case of a user specified cpulist present on underlying link and flows,
242  * the flows cpulist must be a subset of the underlying link.
243  * o In case of a user specified fanout mode present on link and flow, the
244  * subflow fanout count has to be less than or equal to that of the
245  * underlying link. The cpu-bindings for the subflows will be a subset of
246  * the underlying link.
247  * o In case if no cpulist specified on both underlying link and flow, the
248  * underlying link relies on a  MAC tunable to provide out of box fanout.
249  * The subflow will have no cpulist (the subflow will be unbound)
250  * o In case if no cpulist is specified on the underlying link, a subflow can
251  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
252  * for the subflow will not adhere to restriction that they need to be subset
253  * of the underlying link.
254  * o In case where the underlying link is carrying either a user specified
255  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
256  * created unbound.
257  * o While creating unbound subflows, bandwidth mode changes attempt to
258  * figure a right fanout count. In such cases the fanout count will override
259  * the unbound cpu-binding behavior.
260  * o In addition to this, while cycling between flow and link properties, we
261  * impose a restriction that if a link property has a subflow with
262  * user-specified attributes, we will not allow changing the link property.
263  * The administrator needs to reset all the user specified properties for the
264  * subflows before attempting a link property change.
265  * Some of the above rules can be overridden by specifying additional command
266  * line options while creating or modifying link or subflow properties.
267  *
268  * Datapath
269  * --------
270  *
271  * For information on the datapath, the world of soft rings, hardware rings, how
272  * it is structured, and the path of an mblk_t between a driver and a mac
273  * client, see mac_sched.c.
274  */
275 
276 #include <sys/types.h>
277 #include <sys/conf.h>
278 #include <sys/id_space.h>
279 #include <sys/esunddi.h>
280 #include <sys/stat.h>
281 #include <sys/mkdev.h>
282 #include <sys/stream.h>
283 #include <sys/strsun.h>
284 #include <sys/strsubr.h>
285 #include <sys/dlpi.h>
286 #include <sys/list.h>
287 #include <sys/modhash.h>
288 #include <sys/mac_provider.h>
289 #include <sys/mac_client_impl.h>
290 #include <sys/mac_soft_ring.h>
291 #include <sys/mac_stat.h>
292 #include <sys/mac_impl.h>
293 #include <sys/mac.h>
294 #include <sys/dls.h>
295 #include <sys/dld.h>
296 #include <sys/modctl.h>
297 #include <sys/fs/dv_node.h>
298 #include <sys/thread.h>
299 #include <sys/proc.h>
300 #include <sys/callb.h>
301 #include <sys/cpuvar.h>
302 #include <sys/atomic.h>
303 #include <sys/bitmap.h>
304 #include <sys/sdt.h>
305 #include <sys/mac_flow.h>
306 #include <sys/ddi_intr_impl.h>
307 #include <sys/disp.h>
308 #include <sys/sdt.h>
309 #include <sys/vnic.h>
310 #include <sys/vnic_impl.h>
311 #include <sys/vlan.h>
312 #include <inet/ip.h>
313 #include <inet/ip6.h>
314 #include <sys/exacct.h>
315 #include <sys/exacct_impl.h>
316 #include <inet/nd.h>
317 #include <sys/ethernet.h>
318 #include <sys/pool.h>
319 #include <sys/pool_pset.h>
320 #include <sys/cpupart.h>
321 #include <inet/wifi_ioctl.h>
322 #include <net/wpa.h>
323 
324 #define	IMPL_HASHSZ	67	/* prime */
325 
326 kmem_cache_t		*i_mac_impl_cachep;
327 mod_hash_t		*i_mac_impl_hash;
328 krwlock_t		i_mac_impl_lock;
329 uint_t			i_mac_impl_count;
330 static kmem_cache_t	*mac_ring_cache;
331 static id_space_t	*minor_ids;
332 static uint32_t		minor_count;
333 static pool_event_cb_t	mac_pool_event_reg;
334 
335 /*
336  * Logging stuff. Perhaps mac_logging_interval could be broken into
337  * mac_flow_log_interval and mac_link_log_interval if we want to be
338  * able to schedule them differently.
339  */
340 uint_t			mac_logging_interval;
341 boolean_t		mac_flow_log_enable;
342 boolean_t		mac_link_log_enable;
343 timeout_id_t		mac_logging_timer;
344 
345 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
346 int mac_dbg = 0;
347 
348 #define	MACTYPE_KMODDIR	"mac"
349 #define	MACTYPE_HASHSZ	67
350 static mod_hash_t	*i_mactype_hash;
351 /*
352  * i_mactype_lock synchronizes threads that obtain references to mactype_t
353  * structures through i_mactype_getplugin().
354  */
355 static kmutex_t		i_mactype_lock;
356 
357 /*
358  * mac_tx_percpu_cnt
359  *
360  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
361  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
362  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
363  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
364  */
365 int mac_tx_percpu_cnt;
366 int mac_tx_percpu_cnt_max = 128;
367 
368 /*
369  * Call back functions for the bridge module.  These are guaranteed to be valid
370  * when holding a reference on a link or when holding mip->mi_bridge_lock and
371  * mi_bridge_link is non-NULL.
372  */
373 mac_bridge_tx_t mac_bridge_tx_cb;
374 mac_bridge_rx_t mac_bridge_rx_cb;
375 mac_bridge_ref_t mac_bridge_ref_cb;
376 mac_bridge_ls_t mac_bridge_ls_cb;
377 
378 static int i_mac_constructor(void *, void *, int);
379 static void i_mac_destructor(void *, void *);
380 static int i_mac_ring_ctor(void *, void *, int);
381 static void i_mac_ring_dtor(void *, void *);
382 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
383 void mac_tx_client_flush(mac_client_impl_t *);
384 void mac_tx_client_block(mac_client_impl_t *);
385 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
386 static int mac_start_group_and_rings(mac_group_t *);
387 static void mac_stop_group_and_rings(mac_group_t *);
388 static void mac_pool_event_cb(pool_event_t, int, void *);
389 
390 typedef struct netinfo_s {
391 	list_node_t	ni_link;
392 	void		*ni_record;
393 	int		ni_size;
394 	int		ni_type;
395 } netinfo_t;
396 
397 /*
398  * Module initialization functions.
399  */
400 
401 void
402 mac_init(void)
403 {
404 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
405 	    boot_max_ncpus);
406 
407 	/* Upper bound is mac_tx_percpu_cnt_max */
408 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
409 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
410 
411 	if (mac_tx_percpu_cnt < 1) {
412 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
413 		mac_tx_percpu_cnt = 1;
414 	}
415 
416 	ASSERT(mac_tx_percpu_cnt >= 1);
417 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
418 	/*
419 	 * Make it of the form 2**N - 1 in the range
420 	 * [0 .. mac_tx_percpu_cnt_max - 1]
421 	 */
422 	mac_tx_percpu_cnt--;
423 
424 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
425 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
426 	    NULL, NULL, NULL, 0);
427 	ASSERT(i_mac_impl_cachep != NULL);
428 
429 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
430 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
431 	    NULL, NULL, 0);
432 	ASSERT(mac_ring_cache != NULL);
433 
434 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
435 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
436 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
437 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
438 
439 	mac_flow_init();
440 	mac_soft_ring_init();
441 	mac_bcast_init();
442 	mac_client_init();
443 
444 	i_mac_impl_count = 0;
445 
446 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
447 	    MACTYPE_HASHSZ,
448 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
449 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
450 
451 	/*
452 	 * Allocate an id space to manage minor numbers. The range of the
453 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
454 	 * leaves half of the 32-bit minors available for driver private use.
455 	 */
456 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
457 	    MAC_PRIVATE_MINOR-1);
458 	ASSERT(minor_ids != NULL);
459 	minor_count = 0;
460 
461 	/* Let's default to 20 seconds */
462 	mac_logging_interval = 20;
463 	mac_flow_log_enable = B_FALSE;
464 	mac_link_log_enable = B_FALSE;
465 	mac_logging_timer = 0;
466 
467 	/* Register to be notified of noteworthy pools events */
468 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
469 	mac_pool_event_reg.pec_arg = NULL;
470 	pool_event_cb_register(&mac_pool_event_reg);
471 }
472 
473 int
474 mac_fini(void)
475 {
476 
477 	if (i_mac_impl_count > 0 || minor_count > 0)
478 		return (EBUSY);
479 
480 	pool_event_cb_unregister(&mac_pool_event_reg);
481 
482 	id_space_destroy(minor_ids);
483 	mac_flow_fini();
484 
485 	mod_hash_destroy_hash(i_mac_impl_hash);
486 	rw_destroy(&i_mac_impl_lock);
487 
488 	mac_client_fini();
489 	kmem_cache_destroy(mac_ring_cache);
490 
491 	mod_hash_destroy_hash(i_mactype_hash);
492 	mac_soft_ring_finish();
493 
494 
495 	return (0);
496 }
497 
498 /*
499  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
500  * (e.g. softmac) may pass in a NULL ops argument.
501  */
502 void
503 mac_init_ops(struct dev_ops *ops, const char *name)
504 {
505 	major_t major = ddi_name_to_major((char *)name);
506 
507 	/*
508 	 * By returning on error below, we are not letting the driver continue
509 	 * in an undefined context.  The mac_register() function will faill if
510 	 * DN_GLDV3_DRIVER isn't set.
511 	 */
512 	if (major == DDI_MAJOR_T_NONE)
513 		return;
514 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
515 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
516 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
517 	if (ops != NULL)
518 		dld_init_ops(ops, name);
519 }
520 
521 void
522 mac_fini_ops(struct dev_ops *ops)
523 {
524 	dld_fini_ops(ops);
525 }
526 
527 /*ARGSUSED*/
528 static int
529 i_mac_constructor(void *buf, void *arg, int kmflag)
530 {
531 	mac_impl_t	*mip = buf;
532 
533 	bzero(buf, sizeof (mac_impl_t));
534 
535 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
536 
537 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
538 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
539 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
540 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
541 
542 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
543 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
544 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
545 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
546 
547 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
548 
549 	return (0);
550 }
551 
552 /*ARGSUSED*/
553 static void
554 i_mac_destructor(void *buf, void *arg)
555 {
556 	mac_impl_t	*mip = buf;
557 	mac_cb_info_t	*mcbi;
558 
559 	ASSERT(mip->mi_ref == 0);
560 	ASSERT(mip->mi_active == 0);
561 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
562 	ASSERT(mip->mi_devpromisc == 0);
563 	ASSERT(mip->mi_ksp == NULL);
564 	ASSERT(mip->mi_kstat_count == 0);
565 	ASSERT(mip->mi_nclients == 0);
566 	ASSERT(mip->mi_nactiveclients == 0);
567 	ASSERT(mip->mi_single_active_client == NULL);
568 	ASSERT(mip->mi_state_flags == 0);
569 	ASSERT(mip->mi_factory_addr == NULL);
570 	ASSERT(mip->mi_factory_addr_num == 0);
571 	ASSERT(mip->mi_default_tx_ring == NULL);
572 
573 	mcbi = &mip->mi_notify_cb_info;
574 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
575 	ASSERT(mip->mi_notify_bits == 0);
576 	ASSERT(mip->mi_notify_thread == NULL);
577 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
578 	mcbi->mcbi_lockp = NULL;
579 
580 	mcbi = &mip->mi_promisc_cb_info;
581 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
582 	ASSERT(mip->mi_promisc_list == NULL);
583 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
584 	mcbi->mcbi_lockp = NULL;
585 
586 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
587 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
588 
589 	rw_destroy(&mip->mi_rw_lock);
590 
591 	mutex_destroy(&mip->mi_promisc_lock);
592 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
593 	mutex_destroy(&mip->mi_notify_lock);
594 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
595 	mutex_destroy(&mip->mi_ring_lock);
596 
597 	ASSERT(mip->mi_bridge_link == NULL);
598 }
599 
600 /* ARGSUSED */
601 static int
602 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
603 {
604 	mac_ring_t *ring = (mac_ring_t *)buf;
605 
606 	bzero(ring, sizeof (mac_ring_t));
607 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
608 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
609 	ring->mr_state = MR_FREE;
610 	return (0);
611 }
612 
613 /* ARGSUSED */
614 static void
615 i_mac_ring_dtor(void *buf, void *arg)
616 {
617 	mac_ring_t *ring = (mac_ring_t *)buf;
618 
619 	cv_destroy(&ring->mr_cv);
620 	mutex_destroy(&ring->mr_lock);
621 }
622 
623 /*
624  * Common functions to do mac callback addition and deletion. Currently this is
625  * used by promisc callbacks and notify callbacks. List addition and deletion
626  * need to take care of list walkers. List walkers in general, can't hold list
627  * locks and make upcall callbacks due to potential lock order and recursive
628  * reentry issues. Instead list walkers increment the list walker count to mark
629  * the presence of a walker thread. Addition can be carefully done to ensure
630  * that the list walker always sees either the old list or the new list.
631  * However the deletion can't be done while the walker is active, instead the
632  * deleting thread simply marks the entry as logically deleted. The last walker
633  * physically deletes and frees up the logically deleted entries when the walk
634  * is complete.
635  */
636 void
637 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
638     mac_cb_t *mcb_elem)
639 {
640 	mac_cb_t	*p;
641 	mac_cb_t	**pp;
642 
643 	/* Verify it is not already in the list */
644 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
645 		if (p == mcb_elem)
646 			break;
647 	}
648 	VERIFY(p == NULL);
649 
650 	/*
651 	 * Add it to the head of the callback list. The membar ensures that
652 	 * the following list pointer manipulations reach global visibility
653 	 * in exactly the program order below.
654 	 */
655 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
656 
657 	mcb_elem->mcb_nextp = *mcb_head;
658 	membar_producer();
659 	*mcb_head = mcb_elem;
660 }
661 
662 /*
663  * Mark the entry as logically deleted. If there aren't any walkers unlink
664  * from the list. In either case return the corresponding status.
665  */
666 boolean_t
667 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
668     mac_cb_t *mcb_elem)
669 {
670 	mac_cb_t	*p;
671 	mac_cb_t	**pp;
672 
673 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
674 	/*
675 	 * Search the callback list for the entry to be removed
676 	 */
677 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
678 		if (p == mcb_elem)
679 			break;
680 	}
681 	VERIFY(p != NULL);
682 
683 	/*
684 	 * If there are walkers just mark it as deleted and the last walker
685 	 * will remove from the list and free it.
686 	 */
687 	if (mcbi->mcbi_walker_cnt != 0) {
688 		p->mcb_flags |= MCB_CONDEMNED;
689 		mcbi->mcbi_del_cnt++;
690 		return (B_FALSE);
691 	}
692 
693 	ASSERT(mcbi->mcbi_del_cnt == 0);
694 	*pp = p->mcb_nextp;
695 	p->mcb_nextp = NULL;
696 	return (B_TRUE);
697 }
698 
699 /*
700  * Wait for all pending callback removals to be completed
701  */
702 void
703 mac_callback_remove_wait(mac_cb_info_t *mcbi)
704 {
705 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
706 	while (mcbi->mcbi_del_cnt != 0) {
707 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
708 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
709 	}
710 }
711 
712 /*
713  * The last mac callback walker does the cleanup. Walk the list and unlik
714  * all the logically deleted entries and construct a temporary list of
715  * removed entries. Return the list of removed entries to the caller.
716  */
717 mac_cb_t *
718 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
719 {
720 	mac_cb_t	*p;
721 	mac_cb_t	**pp;
722 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
723 	int	cnt = 0;
724 
725 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
726 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
727 
728 	pp = mcb_head;
729 	while (*pp != NULL) {
730 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
731 			p = *pp;
732 			*pp = p->mcb_nextp;
733 			p->mcb_nextp = rmlist;
734 			rmlist = p;
735 			cnt++;
736 			continue;
737 		}
738 		pp = &(*pp)->mcb_nextp;
739 	}
740 
741 	ASSERT(mcbi->mcbi_del_cnt == cnt);
742 	mcbi->mcbi_del_cnt = 0;
743 	return (rmlist);
744 }
745 
746 boolean_t
747 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
748 {
749 	mac_cb_t	*mcb;
750 
751 	/* Verify it is not already in the list */
752 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
753 		if (mcb == mcb_elem)
754 			return (B_TRUE);
755 	}
756 
757 	return (B_FALSE);
758 }
759 
760 boolean_t
761 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
762 {
763 	boolean_t	found;
764 
765 	mutex_enter(mcbi->mcbi_lockp);
766 	found = mac_callback_lookup(mcb_headp, mcb_elem);
767 	mutex_exit(mcbi->mcbi_lockp);
768 
769 	return (found);
770 }
771 
772 /* Free the list of removed callbacks */
773 void
774 mac_callback_free(mac_cb_t *rmlist)
775 {
776 	mac_cb_t	*mcb;
777 	mac_cb_t	*mcb_next;
778 
779 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
780 		mcb_next = mcb->mcb_nextp;
781 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
782 	}
783 }
784 
785 /*
786  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
787  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
788  * is only a single shared total walker count, and an entry can't be physically
789  * unlinked if a walker is active on either list. The last walker does this
790  * cleanup of logically deleted entries.
791  */
792 void
793 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
794 {
795 	mac_cb_t	*rmlist;
796 	mac_cb_t	*mcb;
797 	mac_cb_t	*mcb_next;
798 	mac_promisc_impl_t	*mpip;
799 
800 	/*
801 	 * Construct a temporary list of deleted callbacks by walking the
802 	 * the mi_promisc_list. Then for each entry in the temporary list,
803 	 * remove it from the mci_promisc_list and free the entry.
804 	 */
805 	rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
806 	    &mip->mi_promisc_list);
807 
808 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
809 		mcb_next = mcb->mcb_nextp;
810 		mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
811 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
812 		    &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
813 		mcb->mcb_flags = 0;
814 		mcb->mcb_nextp = NULL;
815 		kmem_cache_free(mac_promisc_impl_cache, mpip);
816 	}
817 }
818 
819 void
820 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
821 {
822 	mac_cb_info_t	*mcbi;
823 
824 	/*
825 	 * Signal the notify thread even after mi_ref has become zero and
826 	 * mi_disabled is set. The synchronization with the notify thread
827 	 * happens in mac_unregister and that implies the driver must make
828 	 * sure it is single-threaded (with respect to mac calls) and that
829 	 * all pending mac calls have returned before it calls mac_unregister
830 	 */
831 	rw_enter(&i_mac_impl_lock, RW_READER);
832 	if (mip->mi_state_flags & MIS_DISABLED)
833 		goto exit;
834 
835 	/*
836 	 * Guard against incorrect notifications.  (Running a newer
837 	 * mac client against an older implementation?)
838 	 */
839 	if (type >= MAC_NNOTE)
840 		goto exit;
841 
842 	mcbi = &mip->mi_notify_cb_info;
843 	mutex_enter(mcbi->mcbi_lockp);
844 	mip->mi_notify_bits |= (1 << type);
845 	cv_broadcast(&mcbi->mcbi_cv);
846 	mutex_exit(mcbi->mcbi_lockp);
847 
848 exit:
849 	rw_exit(&i_mac_impl_lock);
850 }
851 
852 /*
853  * Mac serialization primitives. Please see the block comment at the
854  * top of the file.
855  */
856 void
857 i_mac_perim_enter(mac_impl_t *mip)
858 {
859 	mac_client_impl_t	*mcip;
860 
861 	if (mip->mi_state_flags & MIS_IS_VNIC) {
862 		/*
863 		 * This is a VNIC. Return the lower mac since that is what
864 		 * we want to serialize on.
865 		 */
866 		mcip = mac_vnic_lower(mip);
867 		mip = mcip->mci_mip;
868 	}
869 
870 	mutex_enter(&mip->mi_perim_lock);
871 	if (mip->mi_perim_owner == curthread) {
872 		mip->mi_perim_ocnt++;
873 		mutex_exit(&mip->mi_perim_lock);
874 		return;
875 	}
876 
877 	while (mip->mi_perim_owner != NULL)
878 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
879 
880 	mip->mi_perim_owner = curthread;
881 	ASSERT(mip->mi_perim_ocnt == 0);
882 	mip->mi_perim_ocnt++;
883 #ifdef DEBUG
884 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
885 	    MAC_PERIM_STACK_DEPTH);
886 #endif
887 	mutex_exit(&mip->mi_perim_lock);
888 }
889 
890 int
891 i_mac_perim_enter_nowait(mac_impl_t *mip)
892 {
893 	/*
894 	 * The vnic is a special case, since the serialization is done based
895 	 * on the lower mac. If the lower mac is busy, it does not imply the
896 	 * vnic can't be unregistered. But in the case of other drivers,
897 	 * a busy perimeter or open mac handles implies that the mac is busy
898 	 * and can't be unregistered.
899 	 */
900 	if (mip->mi_state_flags & MIS_IS_VNIC) {
901 		i_mac_perim_enter(mip);
902 		return (0);
903 	}
904 
905 	mutex_enter(&mip->mi_perim_lock);
906 	if (mip->mi_perim_owner != NULL) {
907 		mutex_exit(&mip->mi_perim_lock);
908 		return (EBUSY);
909 	}
910 	ASSERT(mip->mi_perim_ocnt == 0);
911 	mip->mi_perim_owner = curthread;
912 	mip->mi_perim_ocnt++;
913 	mutex_exit(&mip->mi_perim_lock);
914 
915 	return (0);
916 }
917 
918 void
919 i_mac_perim_exit(mac_impl_t *mip)
920 {
921 	mac_client_impl_t *mcip;
922 
923 	if (mip->mi_state_flags & MIS_IS_VNIC) {
924 		/*
925 		 * This is a VNIC. Return the lower mac since that is what
926 		 * we want to serialize on.
927 		 */
928 		mcip = mac_vnic_lower(mip);
929 		mip = mcip->mci_mip;
930 	}
931 
932 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
933 
934 	mutex_enter(&mip->mi_perim_lock);
935 	if (--mip->mi_perim_ocnt == 0) {
936 		mip->mi_perim_owner = NULL;
937 		cv_signal(&mip->mi_perim_cv);
938 	}
939 	mutex_exit(&mip->mi_perim_lock);
940 }
941 
942 /*
943  * Returns whether the current thread holds the mac perimeter. Used in making
944  * assertions.
945  */
946 boolean_t
947 mac_perim_held(mac_handle_t mh)
948 {
949 	mac_impl_t	*mip = (mac_impl_t *)mh;
950 	mac_client_impl_t *mcip;
951 
952 	if (mip->mi_state_flags & MIS_IS_VNIC) {
953 		/*
954 		 * This is a VNIC. Return the lower mac since that is what
955 		 * we want to serialize on.
956 		 */
957 		mcip = mac_vnic_lower(mip);
958 		mip = mcip->mci_mip;
959 	}
960 	return (mip->mi_perim_owner == curthread);
961 }
962 
963 /*
964  * mac client interfaces to enter the mac perimeter of a mac end point, given
965  * its mac handle, or macname or linkid.
966  */
967 void
968 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
969 {
970 	mac_impl_t	*mip = (mac_impl_t *)mh;
971 
972 	i_mac_perim_enter(mip);
973 	/*
974 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
975 	 * mac_open has been done internally while entering the perimeter.
976 	 * This information is used in mac_perim_exit
977 	 */
978 	MAC_ENCODE_MPH(*mphp, mip, 0);
979 }
980 
981 int
982 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
983 {
984 	int	err;
985 	mac_handle_t	mh;
986 
987 	if ((err = mac_open(name, &mh)) != 0)
988 		return (err);
989 
990 	mac_perim_enter_by_mh(mh, mphp);
991 	MAC_ENCODE_MPH(*mphp, mh, 1);
992 	return (0);
993 }
994 
995 int
996 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
997 {
998 	int	err;
999 	mac_handle_t	mh;
1000 
1001 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1002 		return (err);
1003 
1004 	mac_perim_enter_by_mh(mh, mphp);
1005 	MAC_ENCODE_MPH(*mphp, mh, 1);
1006 	return (0);
1007 }
1008 
1009 void
1010 mac_perim_exit(mac_perim_handle_t mph)
1011 {
1012 	mac_impl_t	*mip;
1013 	boolean_t	need_close;
1014 
1015 	MAC_DECODE_MPH(mph, mip, need_close);
1016 	i_mac_perim_exit(mip);
1017 	if (need_close)
1018 		mac_close((mac_handle_t)mip);
1019 }
1020 
1021 int
1022 mac_hold(const char *macname, mac_impl_t **pmip)
1023 {
1024 	mac_impl_t	*mip;
1025 	int		err;
1026 
1027 	/*
1028 	 * Check the device name length to make sure it won't overflow our
1029 	 * buffer.
1030 	 */
1031 	if (strlen(macname) >= MAXNAMELEN)
1032 		return (EINVAL);
1033 
1034 	/*
1035 	 * Look up its entry in the global hash table.
1036 	 */
1037 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1038 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1039 	    (mod_hash_val_t *)&mip);
1040 
1041 	if (err != 0) {
1042 		rw_exit(&i_mac_impl_lock);
1043 		return (ENOENT);
1044 	}
1045 
1046 	if (mip->mi_state_flags & MIS_DISABLED) {
1047 		rw_exit(&i_mac_impl_lock);
1048 		return (ENOENT);
1049 	}
1050 
1051 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1052 		rw_exit(&i_mac_impl_lock);
1053 		return (EBUSY);
1054 	}
1055 
1056 	mip->mi_ref++;
1057 	rw_exit(&i_mac_impl_lock);
1058 
1059 	*pmip = mip;
1060 	return (0);
1061 }
1062 
1063 void
1064 mac_rele(mac_impl_t *mip)
1065 {
1066 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1067 	ASSERT(mip->mi_ref != 0);
1068 	if (--mip->mi_ref == 0) {
1069 		ASSERT(mip->mi_nactiveclients == 0 &&
1070 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1071 	}
1072 	rw_exit(&i_mac_impl_lock);
1073 }
1074 
1075 /*
1076  * Private GLDv3 function to start a MAC instance.
1077  */
1078 int
1079 mac_start(mac_handle_t mh)
1080 {
1081 	mac_impl_t	*mip = (mac_impl_t *)mh;
1082 	int		err = 0;
1083 	mac_group_t	*defgrp;
1084 
1085 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1086 	ASSERT(mip->mi_start != NULL);
1087 
1088 	/*
1089 	 * Check whether the device is already started.
1090 	 */
1091 	if (mip->mi_active++ == 0) {
1092 		mac_ring_t *ring = NULL;
1093 
1094 		/*
1095 		 * Start the device.
1096 		 */
1097 		err = mip->mi_start(mip->mi_driver);
1098 		if (err != 0) {
1099 			mip->mi_active--;
1100 			return (err);
1101 		}
1102 
1103 		/*
1104 		 * Start the default tx ring.
1105 		 */
1106 		if (mip->mi_default_tx_ring != NULL) {
1107 
1108 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1109 			if (ring->mr_state != MR_INUSE) {
1110 				err = mac_start_ring(ring);
1111 				if (err != 0) {
1112 					mip->mi_active--;
1113 					return (err);
1114 				}
1115 			}
1116 		}
1117 
1118 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1119 			/*
1120 			 * Start the default ring, since it will be needed
1121 			 * to receive broadcast and multicast traffic for
1122 			 * both primary and non-primary MAC clients.
1123 			 */
1124 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1125 			err = mac_start_group_and_rings(defgrp);
1126 			if (err != 0) {
1127 				mip->mi_active--;
1128 				if ((ring != NULL) &&
1129 				    (ring->mr_state == MR_INUSE))
1130 					mac_stop_ring(ring);
1131 				return (err);
1132 			}
1133 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1134 		}
1135 	}
1136 
1137 	return (err);
1138 }
1139 
1140 /*
1141  * Private GLDv3 function to stop a MAC instance.
1142  */
1143 void
1144 mac_stop(mac_handle_t mh)
1145 {
1146 	mac_impl_t	*mip = (mac_impl_t *)mh;
1147 	mac_group_t	*grp;
1148 
1149 	ASSERT(mip->mi_stop != NULL);
1150 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1151 
1152 	/*
1153 	 * Check whether the device is still needed.
1154 	 */
1155 	ASSERT(mip->mi_active != 0);
1156 	if (--mip->mi_active == 0) {
1157 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1158 			/*
1159 			 * There should be no more active clients since the
1160 			 * MAC is being stopped. Stop the default RX group
1161 			 * and transition it back to registered state.
1162 			 *
1163 			 * When clients are torn down, the groups
1164 			 * are release via mac_release_rx_group which
1165 			 * knows the the default group is always in
1166 			 * started mode since broadcast uses it. So
1167 			 * we can assert that their are no clients
1168 			 * (since mac_bcast_add doesn't register itself
1169 			 * as a client) and group is in SHARED state.
1170 			 */
1171 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1172 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1173 			    mip->mi_nactiveclients == 0);
1174 			mac_stop_group_and_rings(grp);
1175 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1176 		}
1177 
1178 		if (mip->mi_default_tx_ring != NULL) {
1179 			mac_ring_t *ring;
1180 
1181 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1182 			if (ring->mr_state == MR_INUSE) {
1183 				mac_stop_ring(ring);
1184 				ring->mr_flag = 0;
1185 			}
1186 		}
1187 
1188 		/*
1189 		 * Stop the device.
1190 		 */
1191 		mip->mi_stop(mip->mi_driver);
1192 	}
1193 }
1194 
1195 int
1196 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1197 {
1198 	int		err = 0;
1199 
1200 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1201 	ASSERT(mip->mi_setpromisc != NULL);
1202 
1203 	if (on) {
1204 		/*
1205 		 * Enable promiscuous mode on the device if not yet enabled.
1206 		 */
1207 		if (mip->mi_devpromisc++ == 0) {
1208 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1209 			if (err != 0) {
1210 				mip->mi_devpromisc--;
1211 				return (err);
1212 			}
1213 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1214 		}
1215 	} else {
1216 		if (mip->mi_devpromisc == 0)
1217 			return (EPROTO);
1218 
1219 		/*
1220 		 * Disable promiscuous mode on the device if this is the last
1221 		 * enabling.
1222 		 */
1223 		if (--mip->mi_devpromisc == 0) {
1224 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1225 			if (err != 0) {
1226 				mip->mi_devpromisc++;
1227 				return (err);
1228 			}
1229 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1230 		}
1231 	}
1232 
1233 	return (0);
1234 }
1235 
1236 /*
1237  * The promiscuity state can change any time. If the caller needs to take
1238  * actions that are atomic with the promiscuity state, then the caller needs
1239  * to bracket the entire sequence with mac_perim_enter/exit
1240  */
1241 boolean_t
1242 mac_promisc_get(mac_handle_t mh)
1243 {
1244 	mac_impl_t		*mip = (mac_impl_t *)mh;
1245 
1246 	/*
1247 	 * Return the current promiscuity.
1248 	 */
1249 	return (mip->mi_devpromisc != 0);
1250 }
1251 
1252 /*
1253  * Invoked at MAC instance attach time to initialize the list
1254  * of factory MAC addresses supported by a MAC instance. This function
1255  * builds a local cache in the mac_impl_t for the MAC addresses
1256  * supported by the underlying hardware. The MAC clients themselves
1257  * use the mac_addr_factory*() functions to query and reserve
1258  * factory MAC addresses.
1259  */
1260 void
1261 mac_addr_factory_init(mac_impl_t *mip)
1262 {
1263 	mac_capab_multifactaddr_t capab;
1264 	uint8_t *addr;
1265 	int i;
1266 
1267 	/*
1268 	 * First round to see how many factory MAC addresses are available.
1269 	 */
1270 	bzero(&capab, sizeof (capab));
1271 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1272 	    &capab) || (capab.mcm_naddr == 0)) {
1273 		/*
1274 		 * The MAC instance doesn't support multiple factory
1275 		 * MAC addresses, we're done here.
1276 		 */
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * Allocate the space and get all the factory addresses.
1282 	 */
1283 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1284 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1285 
1286 	mip->mi_factory_addr_num = capab.mcm_naddr;
1287 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1288 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1289 
1290 	for (i = 0; i < capab.mcm_naddr; i++) {
1291 		bcopy(addr + i * MAXMACADDRLEN,
1292 		    mip->mi_factory_addr[i].mfa_addr,
1293 		    mip->mi_type->mt_addr_length);
1294 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1295 	}
1296 
1297 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1298 }
1299 
1300 void
1301 mac_addr_factory_fini(mac_impl_t *mip)
1302 {
1303 	if (mip->mi_factory_addr == NULL) {
1304 		ASSERT(mip->mi_factory_addr_num == 0);
1305 		return;
1306 	}
1307 
1308 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1309 	    sizeof (mac_factory_addr_t));
1310 
1311 	mip->mi_factory_addr = NULL;
1312 	mip->mi_factory_addr_num = 0;
1313 }
1314 
1315 /*
1316  * Reserve a factory MAC address. If *slot is set to -1, the function
1317  * attempts to reserve any of the available factory MAC addresses and
1318  * returns the reserved slot id. If no slots are available, the function
1319  * returns ENOSPC. If *slot is not set to -1, the function reserves
1320  * the specified slot if it is available, or returns EBUSY is the slot
1321  * is already used. Returns ENOTSUP if the underlying MAC does not
1322  * support multiple factory addresses. If the slot number is not -1 but
1323  * is invalid, returns EINVAL.
1324  */
1325 int
1326 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1327 {
1328 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1329 	mac_impl_t *mip = mcip->mci_mip;
1330 	int i, ret = 0;
1331 
1332 	i_mac_perim_enter(mip);
1333 	/*
1334 	 * Protect against concurrent readers that may need a self-consistent
1335 	 * view of the factory addresses
1336 	 */
1337 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1338 
1339 	if (mip->mi_factory_addr_num == 0) {
1340 		ret = ENOTSUP;
1341 		goto bail;
1342 	}
1343 
1344 	if (*slot != -1) {
1345 		/* check the specified slot */
1346 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1347 			ret = EINVAL;
1348 			goto bail;
1349 		}
1350 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1351 			ret = EBUSY;
1352 			goto bail;
1353 		}
1354 	} else {
1355 		/* pick the next available slot */
1356 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1357 			if (!mip->mi_factory_addr[i].mfa_in_use)
1358 				break;
1359 		}
1360 
1361 		if (i == mip->mi_factory_addr_num) {
1362 			ret = ENOSPC;
1363 			goto bail;
1364 		}
1365 		*slot = i+1;
1366 	}
1367 
1368 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1369 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1370 
1371 bail:
1372 	rw_exit(&mip->mi_rw_lock);
1373 	i_mac_perim_exit(mip);
1374 	return (ret);
1375 }
1376 
1377 /*
1378  * Release the specified factory MAC address slot.
1379  */
1380 void
1381 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1382 {
1383 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1384 	mac_impl_t *mip = mcip->mci_mip;
1385 
1386 	i_mac_perim_enter(mip);
1387 	/*
1388 	 * Protect against concurrent readers that may need a self-consistent
1389 	 * view of the factory addresses
1390 	 */
1391 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1392 
1393 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1394 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1395 
1396 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1397 
1398 	rw_exit(&mip->mi_rw_lock);
1399 	i_mac_perim_exit(mip);
1400 }
1401 
1402 /*
1403  * Stores in mac_addr the value of the specified MAC address. Returns
1404  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1405  * The caller must provide a string of at least MAXNAMELEN bytes.
1406  */
1407 void
1408 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1409     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1410 {
1411 	mac_impl_t *mip = (mac_impl_t *)mh;
1412 	boolean_t in_use;
1413 
1414 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1415 
1416 	/*
1417 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1418 	 * and mi_rw_lock
1419 	 */
1420 	rw_enter(&mip->mi_rw_lock, RW_READER);
1421 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1422 	*addr_len = mip->mi_type->mt_addr_length;
1423 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1424 	if (in_use && client_name != NULL) {
1425 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1426 		    client_name, MAXNAMELEN);
1427 	}
1428 	if (in_use_arg != NULL)
1429 		*in_use_arg = in_use;
1430 	rw_exit(&mip->mi_rw_lock);
1431 }
1432 
1433 /*
1434  * Returns the number of factory MAC addresses (in addition to the
1435  * primary MAC address), 0 if the underlying MAC doesn't support
1436  * that feature.
1437  */
1438 uint_t
1439 mac_addr_factory_num(mac_handle_t mh)
1440 {
1441 	mac_impl_t *mip = (mac_impl_t *)mh;
1442 
1443 	return (mip->mi_factory_addr_num);
1444 }
1445 
1446 
1447 void
1448 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1449 {
1450 	mac_ring_t	*ring;
1451 
1452 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1453 		ring->mr_flag &= ~flag;
1454 }
1455 
1456 /*
1457  * The following mac_hwrings_xxx() functions are private mac client functions
1458  * used by the aggr driver to access and control the underlying HW Rx group
1459  * and rings. In this case, the aggr driver has exclusive control of the
1460  * underlying HW Rx group/rings, it calls the following functions to
1461  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1462  * addresses, or set up the Rx callback.
1463  */
1464 /* ARGSUSED */
1465 static void
1466 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1467     mblk_t *mp_chain, boolean_t loopback)
1468 {
1469 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1470 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1471 	mac_direct_rx_t		proc;
1472 	void			*arg1;
1473 	mac_resource_handle_t	arg2;
1474 
1475 	proc = srs_rx->sr_func;
1476 	arg1 = srs_rx->sr_arg1;
1477 	arg2 = mac_srs->srs_mrh;
1478 
1479 	proc(arg1, arg2, mp_chain, NULL);
1480 }
1481 
1482 /*
1483  * This function is called to get the list of HW rings that are reserved by
1484  * an exclusive mac client.
1485  *
1486  * Return value: the number of HW rings.
1487  */
1488 int
1489 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1490     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1491 {
1492 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1493 	flow_entry_t		*flent = mcip->mci_flent;
1494 	mac_group_t		*grp;
1495 	mac_ring_t		*ring;
1496 	int			cnt = 0;
1497 
1498 	if (rtype == MAC_RING_TYPE_RX) {
1499 		grp = flent->fe_rx_ring_group;
1500 	} else if (rtype == MAC_RING_TYPE_TX) {
1501 		grp = flent->fe_tx_ring_group;
1502 	} else {
1503 		ASSERT(B_FALSE);
1504 		return (-1);
1505 	}
1506 	/*
1507 	 * The mac client did not reserve any RX group, return directly.
1508 	 * This is probably because the underlying MAC does not support
1509 	 * any groups.
1510 	 */
1511 	if (hwgh != NULL)
1512 		*hwgh = NULL;
1513 	if (grp == NULL)
1514 		return (0);
1515 	/*
1516 	 * This group must be reserved by this mac client.
1517 	 */
1518 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1519 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1520 
1521 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1522 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1523 		hwrh[cnt] = (mac_ring_handle_t)ring;
1524 	}
1525 	if (hwgh != NULL)
1526 		*hwgh = (mac_group_handle_t)grp;
1527 
1528 	return (cnt);
1529 }
1530 
1531 /*
1532  * This function is called to get info about Tx/Rx rings.
1533  *
1534  * Return value: returns uint_t which will have various bits set
1535  * that indicates different properties of the ring.
1536  */
1537 uint_t
1538 mac_hwring_getinfo(mac_ring_handle_t rh)
1539 {
1540 	mac_ring_t *ring = (mac_ring_t *)rh;
1541 	mac_ring_info_t *info = &ring->mr_info;
1542 
1543 	return (info->mri_flags);
1544 }
1545 
1546 /*
1547  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1548  * setup the RX callback of the mac client which exclusively controls
1549  * HW ring.
1550  */
1551 void
1552 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1553     mac_ring_handle_t pseudo_rh)
1554 {
1555 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1556 	mac_ring_t		*pseudo_ring;
1557 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1558 
1559 	if (pseudo_rh != NULL) {
1560 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1561 		/* Export the ddi handles to pseudo ring */
1562 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1563 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1564 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1565 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1566 		/*
1567 		 * Save a pointer to pseudo ring in the hw ring. If
1568 		 * interrupt handle changes, the hw ring will be
1569 		 * notified of the change (see mac_ring_intr_set())
1570 		 * and the appropriate change has to be made to
1571 		 * the pseudo ring that has exported the ddi handle.
1572 		 */
1573 		hw_ring->mr_prh = pseudo_rh;
1574 	}
1575 
1576 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1577 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1578 		mac_srs->srs_mrh = prh;
1579 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1580 	}
1581 }
1582 
1583 void
1584 mac_hwring_teardown(mac_ring_handle_t hwrh)
1585 {
1586 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1587 	mac_soft_ring_set_t	*mac_srs;
1588 
1589 	if (hw_ring == NULL)
1590 		return;
1591 	hw_ring->mr_prh = NULL;
1592 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1593 		mac_srs = hw_ring->mr_srs;
1594 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1595 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1596 		mac_srs->srs_mrh = NULL;
1597 	}
1598 }
1599 
1600 int
1601 mac_hwring_disable_intr(mac_ring_handle_t rh)
1602 {
1603 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1604 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1605 
1606 	return (intr->mi_disable(intr->mi_handle));
1607 }
1608 
1609 int
1610 mac_hwring_enable_intr(mac_ring_handle_t rh)
1611 {
1612 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1613 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1614 
1615 	return (intr->mi_enable(intr->mi_handle));
1616 }
1617 
1618 int
1619 mac_hwring_start(mac_ring_handle_t rh)
1620 {
1621 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1622 
1623 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1624 	return (0);
1625 }
1626 
1627 void
1628 mac_hwring_stop(mac_ring_handle_t rh)
1629 {
1630 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1631 
1632 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1633 }
1634 
1635 mblk_t *
1636 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1637 {
1638 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1639 	mac_ring_info_t *info = &rr_ring->mr_info;
1640 
1641 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1642 }
1643 
1644 /*
1645  * Send packets through a selected tx ring.
1646  */
1647 mblk_t *
1648 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1649 {
1650 	mac_ring_t *ring = (mac_ring_t *)rh;
1651 	mac_ring_info_t *info = &ring->mr_info;
1652 
1653 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1654 	    ring->mr_state >= MR_INUSE);
1655 	return (info->mri_tx(info->mri_driver, mp));
1656 }
1657 
1658 /*
1659  * Query stats for a particular rx/tx ring
1660  */
1661 int
1662 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1663 {
1664 	mac_ring_t	*ring = (mac_ring_t *)rh;
1665 	mac_ring_info_t *info = &ring->mr_info;
1666 
1667 	return (info->mri_stat(info->mri_driver, stat, val));
1668 }
1669 
1670 /*
1671  * Private function that is only used by aggr to send packets through
1672  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1673  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1674  * access to mac_impl_t to send packets through m_tx() entry point.
1675  * It accomplishes this by calling mac_hwring_send_priv() function.
1676  */
1677 mblk_t *
1678 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1679 {
1680 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1681 	mac_impl_t *mip = mcip->mci_mip;
1682 
1683 	MAC_TX(mip, rh, mp, mcip);
1684 	return (mp);
1685 }
1686 
1687 int
1688 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1689 {
1690 	mac_group_t *group = (mac_group_t *)gh;
1691 
1692 	return (mac_group_addmac(group, addr));
1693 }
1694 
1695 int
1696 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1697 {
1698 	mac_group_t *group = (mac_group_t *)gh;
1699 
1700 	return (mac_group_remmac(group, addr));
1701 }
1702 
1703 /*
1704  * Set the RX group to be shared/reserved. Note that the group must be
1705  * started/stopped outside of this function.
1706  */
1707 void
1708 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1709 {
1710 	/*
1711 	 * If there is no change in the group state, just return.
1712 	 */
1713 	if (grp->mrg_state == state)
1714 		return;
1715 
1716 	switch (state) {
1717 	case MAC_GROUP_STATE_RESERVED:
1718 		/*
1719 		 * Successfully reserved the group.
1720 		 *
1721 		 * Given that there is an exclusive client controlling this
1722 		 * group, we enable the group level polling when available,
1723 		 * so that SRSs get to turn on/off individual rings they's
1724 		 * assigned to.
1725 		 */
1726 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1727 
1728 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1729 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1730 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1731 		}
1732 		break;
1733 
1734 	case MAC_GROUP_STATE_SHARED:
1735 		/*
1736 		 * Set all rings of this group to software classified.
1737 		 * If the group has an overriding interrupt, then re-enable it.
1738 		 */
1739 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1740 
1741 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1742 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1743 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1744 		}
1745 		/* The ring is not available for reservations any more */
1746 		break;
1747 
1748 	case MAC_GROUP_STATE_REGISTERED:
1749 		/* Also callable from mac_register, perim is not held */
1750 		break;
1751 
1752 	default:
1753 		ASSERT(B_FALSE);
1754 		break;
1755 	}
1756 
1757 	grp->mrg_state = state;
1758 }
1759 
1760 /*
1761  * Quiesce future hardware classified packets for the specified Rx ring
1762  */
1763 static void
1764 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1765 {
1766 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1767 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1768 
1769 	mutex_enter(&rx_ring->mr_lock);
1770 	rx_ring->mr_flag |= ring_flag;
1771 	while (rx_ring->mr_refcnt != 0)
1772 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1773 	mutex_exit(&rx_ring->mr_lock);
1774 }
1775 
1776 /*
1777  * Please see mac_tx for details about the per cpu locking scheme
1778  */
1779 static void
1780 mac_tx_lock_all(mac_client_impl_t *mcip)
1781 {
1782 	int	i;
1783 
1784 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1785 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1786 }
1787 
1788 static void
1789 mac_tx_unlock_all(mac_client_impl_t *mcip)
1790 {
1791 	int	i;
1792 
1793 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
1794 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1795 }
1796 
1797 static void
1798 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1799 {
1800 	int	i;
1801 
1802 	for (i = mac_tx_percpu_cnt; i > 0; i--)
1803 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1804 }
1805 
1806 static int
1807 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1808 {
1809 	int	i;
1810 	int	refcnt = 0;
1811 
1812 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1813 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1814 
1815 	return (refcnt);
1816 }
1817 
1818 /*
1819  * Stop future Tx packets coming down from the client in preparation for
1820  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1821  * of rings between clients
1822  */
1823 void
1824 mac_tx_client_block(mac_client_impl_t *mcip)
1825 {
1826 	mac_tx_lock_all(mcip);
1827 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1828 	while (mac_tx_sum_refcnt(mcip) != 0) {
1829 		mac_tx_unlock_allbutzero(mcip);
1830 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1831 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1832 		mac_tx_lock_all(mcip);
1833 	}
1834 	mac_tx_unlock_all(mcip);
1835 }
1836 
1837 void
1838 mac_tx_client_unblock(mac_client_impl_t *mcip)
1839 {
1840 	mac_tx_lock_all(mcip);
1841 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1842 	mac_tx_unlock_all(mcip);
1843 	/*
1844 	 * We may fail to disable flow control for the last MAC_NOTE_TX
1845 	 * notification because the MAC client is quiesced. Send the
1846 	 * notification again.
1847 	 */
1848 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1849 }
1850 
1851 /*
1852  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1853  * quiesce is done.
1854  */
1855 static void
1856 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1857 {
1858 	mutex_enter(&srs->srs_lock);
1859 	while (!(srs->srs_state & srs_flag))
1860 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1861 	mutex_exit(&srs->srs_lock);
1862 }
1863 
1864 /*
1865  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1866  * works bottom up by cutting off packet flow from the bottommost point in the
1867  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1868  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1869  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1870  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1871  * for the SRS and MR flags. In the former case the threads pause waiting for
1872  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1873  * is also mostly similar to the above.
1874  *
1875  * 1. Stop future hardware classified packets at the lowest level in the mac.
1876  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1877  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1878  *    from increasing. Upcalls from the driver that come through hardware
1879  *    classification will be dropped in mac_rx from now on. Then we wait for
1880  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1881  *    sure there aren't any upcall threads from the driver through hardware
1882  *    classification. In the case of SRS teardown we also remove the
1883  *    classification rule in the driver.
1884  *
1885  * 2. Stop future software classified packets by marking the flow entry with
1886  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1887  *    increasing. We also remove the flow entry from the table in the latter
1888  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1889  *    that indicates there aren't any active threads using that flow entry.
1890  *
1891  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1892  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1893  *    with the SRS worker thread serving as a master controller. This
1894  *    mechansim is explained in mac_srs_worker_quiesce().
1895  *
1896  * The restart mechanism to reactivate the SRS and softrings is explained
1897  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1898  * restart sequence.
1899  */
1900 void
1901 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1902 {
1903 	flow_entry_t	*flent = srs->srs_flent;
1904 	uint_t	mr_flag, srs_done_flag;
1905 
1906 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1907 	ASSERT(!(srs->srs_type & SRST_TX));
1908 
1909 	if (srs_quiesce_flag == SRS_CONDEMNED) {
1910 		mr_flag = MR_CONDEMNED;
1911 		srs_done_flag = SRS_CONDEMNED_DONE;
1912 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1913 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
1914 	} else {
1915 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1916 		mr_flag = MR_QUIESCE;
1917 		srs_done_flag = SRS_QUIESCE_DONE;
1918 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1919 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1920 	}
1921 
1922 	if (srs->srs_ring != NULL) {
1923 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1924 	} else {
1925 		/*
1926 		 * SRS is driven by software classification. In case
1927 		 * of CONDEMNED, the top level teardown functions will
1928 		 * deal with flow removal.
1929 		 */
1930 		if (srs_quiesce_flag != SRS_CONDEMNED) {
1931 			FLOW_MARK(flent, FE_QUIESCE);
1932 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1933 		}
1934 	}
1935 
1936 	/*
1937 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1938 	 * SRS quiesce to complete. The SRS worker thread will wake us
1939 	 * up when the quiesce is complete
1940 	 */
1941 	mac_srs_signal(srs, srs_quiesce_flag);
1942 	mac_srs_quiesce_wait(srs, srs_done_flag);
1943 }
1944 
1945 /*
1946  * Remove an SRS.
1947  */
1948 void
1949 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1950 {
1951 	flow_entry_t *flent = srs->srs_flent;
1952 	int i;
1953 
1954 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1955 	/*
1956 	 * Locate and remove our entry in the fe_rx_srs[] array, and
1957 	 * adjust the fe_rx_srs array entries and array count by
1958 	 * moving the last entry into the vacated spot.
1959 	 */
1960 	mutex_enter(&flent->fe_lock);
1961 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1962 		if (flent->fe_rx_srs[i] == srs)
1963 			break;
1964 	}
1965 
1966 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1967 	if (i != flent->fe_rx_srs_cnt - 1) {
1968 		flent->fe_rx_srs[i] =
1969 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1970 		i = flent->fe_rx_srs_cnt - 1;
1971 	}
1972 
1973 	flent->fe_rx_srs[i] = NULL;
1974 	flent->fe_rx_srs_cnt--;
1975 	mutex_exit(&flent->fe_lock);
1976 
1977 	mac_srs_free(srs);
1978 }
1979 
1980 static void
1981 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
1982 {
1983 	mutex_enter(&srs->srs_lock);
1984 	srs->srs_state &= ~flag;
1985 	mutex_exit(&srs->srs_lock);
1986 }
1987 
1988 void
1989 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
1990 {
1991 	flow_entry_t	*flent = srs->srs_flent;
1992 	mac_ring_t	*mr;
1993 
1994 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1995 	ASSERT((srs->srs_type & SRST_TX) == 0);
1996 
1997 	/*
1998 	 * This handles a change in the number of SRSs between the quiesce and
1999 	 * and restart operation of a flow.
2000 	 */
2001 	if (!SRS_QUIESCED(srs))
2002 		return;
2003 
2004 	/*
2005 	 * Signal the SRS to restart itself. Wait for the restart to complete
2006 	 * Note that we only restart the SRS if it is not marked as
2007 	 * permanently quiesced.
2008 	 */
2009 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2010 		mac_srs_signal(srs, SRS_RESTART);
2011 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2012 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2013 
2014 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2015 	}
2016 
2017 	/* Finally clear the flags to let the packets in */
2018 	mr = srs->srs_ring;
2019 	if (mr != NULL) {
2020 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2021 		/* In case the ring was stopped, safely restart it */
2022 		if (mr->mr_state != MR_INUSE)
2023 			(void) mac_start_ring(mr);
2024 	} else {
2025 		FLOW_UNMARK(flent, FE_QUIESCE);
2026 	}
2027 }
2028 
2029 /*
2030  * Temporary quiesce of a flow and associated Rx SRS.
2031  * Please see block comment above mac_rx_classify_flow_rem.
2032  */
2033 /* ARGSUSED */
2034 int
2035 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2036 {
2037 	int		i;
2038 
2039 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2040 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2041 		    SRS_QUIESCE);
2042 	}
2043 	return (0);
2044 }
2045 
2046 /*
2047  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2048  * Please see block comment above mac_rx_classify_flow_rem
2049  */
2050 /* ARGSUSED */
2051 int
2052 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2053 {
2054 	int		i;
2055 
2056 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2057 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2058 
2059 	return (0);
2060 }
2061 
2062 void
2063 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2064 {
2065 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2066 	flow_entry_t		*flent = mcip->mci_flent;
2067 	mac_impl_t		*mip = mcip->mci_mip;
2068 	mac_soft_ring_set_t	*mac_srs;
2069 	int			i;
2070 
2071 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2072 
2073 	if (flent == NULL)
2074 		return;
2075 
2076 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2077 		mac_srs = flent->fe_rx_srs[i];
2078 		mutex_enter(&mac_srs->srs_lock);
2079 		if (on)
2080 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2081 		else
2082 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2083 		mutex_exit(&mac_srs->srs_lock);
2084 	}
2085 }
2086 
2087 void
2088 mac_rx_client_quiesce(mac_client_handle_t mch)
2089 {
2090 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2091 	mac_impl_t		*mip = mcip->mci_mip;
2092 
2093 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2094 
2095 	if (MCIP_DATAPATH_SETUP(mcip)) {
2096 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2097 		    NULL);
2098 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2099 		    mac_rx_classify_flow_quiesce, NULL);
2100 	}
2101 }
2102 
2103 void
2104 mac_rx_client_restart(mac_client_handle_t mch)
2105 {
2106 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2107 	mac_impl_t		*mip = mcip->mci_mip;
2108 
2109 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2110 
2111 	if (MCIP_DATAPATH_SETUP(mcip)) {
2112 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2113 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2114 		    mac_rx_classify_flow_restart, NULL);
2115 	}
2116 }
2117 
2118 /*
2119  * This function only quiesces the Tx SRS and softring worker threads. Callers
2120  * need to make sure that there aren't any mac client threads doing current or
2121  * future transmits in the mac before calling this function.
2122  */
2123 void
2124 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2125 {
2126 	mac_client_impl_t	*mcip = srs->srs_mcip;
2127 
2128 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2129 
2130 	ASSERT(srs->srs_type & SRST_TX);
2131 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2132 	    srs_quiesce_flag == SRS_QUIESCE);
2133 
2134 	/*
2135 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2136 	 * SRS quiesce to complete. The SRS worker thread will wake us
2137 	 * up when the quiesce is complete
2138 	 */
2139 	mac_srs_signal(srs, srs_quiesce_flag);
2140 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2141 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2142 }
2143 
2144 void
2145 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2146 {
2147 	/*
2148 	 * Resizing the fanout could result in creation of new SRSs.
2149 	 * They may not necessarily be in the quiesced state in which
2150 	 * case it need be restarted
2151 	 */
2152 	if (!SRS_QUIESCED(srs))
2153 		return;
2154 
2155 	mac_srs_signal(srs, SRS_RESTART);
2156 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2157 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2158 }
2159 
2160 /*
2161  * Temporary quiesce of a flow and associated Rx SRS.
2162  * Please see block comment above mac_rx_srs_quiesce
2163  */
2164 /* ARGSUSED */
2165 int
2166 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2167 {
2168 	/*
2169 	 * The fe_tx_srs is null for a subflow on an interface that is
2170 	 * not plumbed
2171 	 */
2172 	if (flent->fe_tx_srs != NULL)
2173 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2174 	return (0);
2175 }
2176 
2177 /* ARGSUSED */
2178 int
2179 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2180 {
2181 	/*
2182 	 * The fe_tx_srs is null for a subflow on an interface that is
2183 	 * not plumbed
2184 	 */
2185 	if (flent->fe_tx_srs != NULL)
2186 		mac_tx_srs_restart(flent->fe_tx_srs);
2187 	return (0);
2188 }
2189 
2190 static void
2191 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2192 {
2193 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2194 
2195 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2196 
2197 	mac_tx_client_block(mcip);
2198 	if (MCIP_TX_SRS(mcip) != NULL) {
2199 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2200 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2201 		    mac_tx_flow_quiesce, NULL);
2202 	}
2203 }
2204 
2205 void
2206 mac_tx_client_quiesce(mac_client_handle_t mch)
2207 {
2208 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2209 }
2210 
2211 void
2212 mac_tx_client_condemn(mac_client_handle_t mch)
2213 {
2214 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2215 }
2216 
2217 void
2218 mac_tx_client_restart(mac_client_handle_t mch)
2219 {
2220 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2221 
2222 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2223 
2224 	mac_tx_client_unblock(mcip);
2225 	if (MCIP_TX_SRS(mcip) != NULL) {
2226 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2227 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2228 		    mac_tx_flow_restart, NULL);
2229 	}
2230 }
2231 
2232 void
2233 mac_tx_client_flush(mac_client_impl_t *mcip)
2234 {
2235 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2236 
2237 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2238 	mac_tx_client_restart((mac_client_handle_t)mcip);
2239 }
2240 
2241 void
2242 mac_client_quiesce(mac_client_impl_t *mcip)
2243 {
2244 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2245 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2246 }
2247 
2248 void
2249 mac_client_restart(mac_client_impl_t *mcip)
2250 {
2251 	mac_rx_client_restart((mac_client_handle_t)mcip);
2252 	mac_tx_client_restart((mac_client_handle_t)mcip);
2253 }
2254 
2255 /*
2256  * Allocate a minor number.
2257  */
2258 minor_t
2259 mac_minor_hold(boolean_t sleep)
2260 {
2261 	minor_t	minor;
2262 
2263 	/*
2264 	 * Grab a value from the arena.
2265 	 */
2266 	atomic_inc_32(&minor_count);
2267 
2268 	if (sleep)
2269 		minor = (uint_t)id_alloc(minor_ids);
2270 	else
2271 		minor = (uint_t)id_alloc_nosleep(minor_ids);
2272 
2273 	if (minor == 0) {
2274 		atomic_dec_32(&minor_count);
2275 		return (0);
2276 	}
2277 
2278 	return (minor);
2279 }
2280 
2281 /*
2282  * Release a previously allocated minor number.
2283  */
2284 void
2285 mac_minor_rele(minor_t minor)
2286 {
2287 	/*
2288 	 * Return the value to the arena.
2289 	 */
2290 	id_free(minor_ids, minor);
2291 	atomic_dec_32(&minor_count);
2292 }
2293 
2294 uint32_t
2295 mac_no_notification(mac_handle_t mh)
2296 {
2297 	mac_impl_t *mip = (mac_impl_t *)mh;
2298 
2299 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2300 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2301 }
2302 
2303 /*
2304  * Prevent any new opens of this mac in preparation for unregister
2305  */
2306 int
2307 i_mac_disable(mac_impl_t *mip)
2308 {
2309 	mac_client_impl_t	*mcip;
2310 
2311 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2312 	if (mip->mi_state_flags & MIS_DISABLED) {
2313 		/* Already disabled, return success */
2314 		rw_exit(&i_mac_impl_lock);
2315 		return (0);
2316 	}
2317 	/*
2318 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2319 	 * If so return failure. If all the other checks below pass, then
2320 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2321 	 * any new VLAN's from being created or new mac client opens of this
2322 	 * mac end point.
2323 	 */
2324 	if (mip->mi_ref > 0) {
2325 		rw_exit(&i_mac_impl_lock);
2326 		return (EBUSY);
2327 	}
2328 
2329 	/*
2330 	 * mac clients must delete all multicast groups they join before
2331 	 * closing. bcast groups are reference counted, the last client
2332 	 * to delete the group will wait till the group is physically
2333 	 * deleted. Since all clients have closed this mac end point
2334 	 * mi_bcast_ngrps must be zero at this point
2335 	 */
2336 	ASSERT(mip->mi_bcast_ngrps == 0);
2337 
2338 	/*
2339 	 * Don't let go of this if it has some flows.
2340 	 * All other code guarantees no flows are added to a disabled
2341 	 * mac, therefore it is sufficient to check for the flow table
2342 	 * only here.
2343 	 */
2344 	mcip = mac_primary_client_handle(mip);
2345 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2346 		rw_exit(&i_mac_impl_lock);
2347 		return (ENOTEMPTY);
2348 	}
2349 
2350 	mip->mi_state_flags |= MIS_DISABLED;
2351 	rw_exit(&i_mac_impl_lock);
2352 	return (0);
2353 }
2354 
2355 int
2356 mac_disable_nowait(mac_handle_t mh)
2357 {
2358 	mac_impl_t	*mip = (mac_impl_t *)mh;
2359 	int err;
2360 
2361 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2362 		return (err);
2363 	err = i_mac_disable(mip);
2364 	i_mac_perim_exit(mip);
2365 	return (err);
2366 }
2367 
2368 int
2369 mac_disable(mac_handle_t mh)
2370 {
2371 	mac_impl_t	*mip = (mac_impl_t *)mh;
2372 	int err;
2373 
2374 	i_mac_perim_enter(mip);
2375 	err = i_mac_disable(mip);
2376 	i_mac_perim_exit(mip);
2377 
2378 	/*
2379 	 * Clean up notification thread and wait for it to exit.
2380 	 */
2381 	if (err == 0)
2382 		i_mac_notify_exit(mip);
2383 
2384 	return (err);
2385 }
2386 
2387 /*
2388  * Called when the MAC instance has a non empty flow table, to de-multiplex
2389  * incoming packets to the right flow.
2390  * The MAC's rw lock is assumed held as a READER.
2391  */
2392 /* ARGSUSED */
2393 static mblk_t *
2394 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2395 {
2396 	flow_entry_t	*flent = NULL;
2397 	uint_t		flags = FLOW_INBOUND;
2398 	int		err;
2399 
2400 	/*
2401 	 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2402 	 * to mac_flow_lookup() so that the VLAN packets can be successfully
2403 	 * passed to the non-VLAN aggregation flows.
2404 	 *
2405 	 * Note that there is possibly a race between this and
2406 	 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2407 	 * classified to non-VLAN flows of non-aggregation mac clients. These
2408 	 * VLAN packets will be then filtered out by the mac module.
2409 	 */
2410 	if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2411 		flags |= FLOW_IGNORE_VLAN;
2412 
2413 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2414 	if (err != 0) {
2415 		/* no registered receive function */
2416 		return (mp);
2417 	} else {
2418 		mac_client_impl_t	*mcip;
2419 
2420 		/*
2421 		 * This flent might just be an additional one on the MAC client,
2422 		 * i.e. for classification purposes (different fdesc), however
2423 		 * the resources, SRS et. al., are in the mci_flent, so if
2424 		 * this isn't the mci_flent, we need to get it.
2425 		 */
2426 		if ((mcip = flent->fe_mcip) != NULL &&
2427 		    mcip->mci_flent != flent) {
2428 			FLOW_REFRELE(flent);
2429 			flent = mcip->mci_flent;
2430 			FLOW_TRY_REFHOLD(flent, err);
2431 			if (err != 0)
2432 				return (mp);
2433 		}
2434 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2435 		    B_FALSE);
2436 		FLOW_REFRELE(flent);
2437 	}
2438 	return (NULL);
2439 }
2440 
2441 mblk_t *
2442 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2443 {
2444 	mac_impl_t	*mip = (mac_impl_t *)mh;
2445 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2446 
2447 	/*
2448 	 * We walk the chain and attempt to classify each packet.
2449 	 * The packets that couldn't be classified will be returned
2450 	 * back to the caller.
2451 	 */
2452 	bp = mp_chain;
2453 	bpp = &list;
2454 	while (bp != NULL) {
2455 		bp1 = bp;
2456 		bp = bp->b_next;
2457 		bp1->b_next = NULL;
2458 
2459 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2460 			*bpp = bp1;
2461 			bpp = &bp1->b_next;
2462 		}
2463 	}
2464 	return (list);
2465 }
2466 
2467 static int
2468 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2469 {
2470 	mac_ring_handle_t ring = arg;
2471 
2472 	if (flent->fe_tx_srs)
2473 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2474 	return (0);
2475 }
2476 
2477 void
2478 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2479 {
2480 	mac_client_impl_t	*cclient;
2481 	mac_soft_ring_set_t	*mac_srs;
2482 
2483 	/*
2484 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2485 	 * If there are any clients mi_disabled must be B_FALSE and can't
2486 	 * get set since there are clients. If there aren't any clients we
2487 	 * don't do anything. In any case the mip has to be valid. The driver
2488 	 * must make sure that it goes single threaded (with respect to mac
2489 	 * calls) and wait for all pending mac calls to finish before calling
2490 	 * mac_unregister.
2491 	 */
2492 	rw_enter(&i_mac_impl_lock, RW_READER);
2493 	if (mip->mi_state_flags & MIS_DISABLED) {
2494 		rw_exit(&i_mac_impl_lock);
2495 		return;
2496 	}
2497 
2498 	/*
2499 	 * Get MAC tx srs from walking mac_client_handle list.
2500 	 */
2501 	rw_enter(&mip->mi_rw_lock, RW_READER);
2502 	for (cclient = mip->mi_clients_list; cclient != NULL;
2503 	    cclient = cclient->mci_client_next) {
2504 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2505 			mac_tx_srs_wakeup(mac_srs, ring);
2506 		} else {
2507 			/*
2508 			 * Aggr opens underlying ports in exclusive mode
2509 			 * and registers flow control callbacks using
2510 			 * mac_tx_client_notify(). When opened in
2511 			 * exclusive mode, Tx SRS won't be created
2512 			 * during mac_unicast_add().
2513 			 */
2514 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2515 				mac_tx_invoke_callbacks(cclient,
2516 				    (mac_tx_cookie_t)ring);
2517 			}
2518 		}
2519 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2520 		    mac_tx_flow_srs_wakeup, ring);
2521 	}
2522 	rw_exit(&mip->mi_rw_lock);
2523 	rw_exit(&i_mac_impl_lock);
2524 }
2525 
2526 /* ARGSUSED */
2527 void
2528 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2529     boolean_t add)
2530 {
2531 	mac_impl_t *mip = (mac_impl_t *)mh;
2532 
2533 	i_mac_perim_enter((mac_impl_t *)mh);
2534 	/*
2535 	 * If no specific refresh function was given then default to the
2536 	 * driver's m_multicst entry point.
2537 	 */
2538 	if (refresh == NULL) {
2539 		refresh = mip->mi_multicst;
2540 		arg = mip->mi_driver;
2541 	}
2542 
2543 	mac_bcast_refresh(mip, refresh, arg, add);
2544 	i_mac_perim_exit((mac_impl_t *)mh);
2545 }
2546 
2547 void
2548 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2549 {
2550 	mac_impl_t	*mip = (mac_impl_t *)mh;
2551 
2552 	/*
2553 	 * If no specific refresh function was given then default to the
2554 	 * driver's m_promisc entry point.
2555 	 */
2556 	if (refresh == NULL) {
2557 		refresh = mip->mi_setpromisc;
2558 		arg = mip->mi_driver;
2559 	}
2560 	ASSERT(refresh != NULL);
2561 
2562 	/*
2563 	 * Call the refresh function with the current promiscuity.
2564 	 */
2565 	refresh(arg, (mip->mi_devpromisc != 0));
2566 }
2567 
2568 /*
2569  * The mac client requests that the mac not to change its margin size to
2570  * be less than the specified value.  If "current" is B_TRUE, then the client
2571  * requests the mac not to change its margin size to be smaller than the
2572  * current size. Further, return the current margin size value in this case.
2573  *
2574  * We keep every requested size in an ordered list from largest to smallest.
2575  */
2576 int
2577 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2578 {
2579 	mac_impl_t		*mip = (mac_impl_t *)mh;
2580 	mac_margin_req_t	**pp, *p;
2581 	int			err = 0;
2582 
2583 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2584 	if (current)
2585 		*marginp = mip->mi_margin;
2586 
2587 	/*
2588 	 * If the current margin value cannot satisfy the margin requested,
2589 	 * return ENOTSUP directly.
2590 	 */
2591 	if (*marginp > mip->mi_margin) {
2592 		err = ENOTSUP;
2593 		goto done;
2594 	}
2595 
2596 	/*
2597 	 * Check whether the given margin is already in the list. If so,
2598 	 * bump the reference count.
2599 	 */
2600 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2601 		if (p->mmr_margin == *marginp) {
2602 			/*
2603 			 * The margin requested is already in the list,
2604 			 * so just bump the reference count.
2605 			 */
2606 			p->mmr_ref++;
2607 			goto done;
2608 		}
2609 		if (p->mmr_margin < *marginp)
2610 			break;
2611 	}
2612 
2613 
2614 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2615 	p->mmr_margin = *marginp;
2616 	p->mmr_ref++;
2617 	p->mmr_nextp = *pp;
2618 	*pp = p;
2619 
2620 done:
2621 	rw_exit(&(mip->mi_rw_lock));
2622 	return (err);
2623 }
2624 
2625 /*
2626  * The mac client requests to cancel its previous mac_margin_add() request.
2627  * We remove the requested margin size from the list.
2628  */
2629 int
2630 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2631 {
2632 	mac_impl_t		*mip = (mac_impl_t *)mh;
2633 	mac_margin_req_t	**pp, *p;
2634 	int			err = 0;
2635 
2636 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2637 	/*
2638 	 * Find the entry in the list for the given margin.
2639 	 */
2640 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2641 		if (p->mmr_margin == margin) {
2642 			if (--p->mmr_ref == 0)
2643 				break;
2644 
2645 			/*
2646 			 * There is still a reference to this address so
2647 			 * there's nothing more to do.
2648 			 */
2649 			goto done;
2650 		}
2651 	}
2652 
2653 	/*
2654 	 * We did not find an entry for the given margin.
2655 	 */
2656 	if (p == NULL) {
2657 		err = ENOENT;
2658 		goto done;
2659 	}
2660 
2661 	ASSERT(p->mmr_ref == 0);
2662 
2663 	/*
2664 	 * Remove it from the list.
2665 	 */
2666 	*pp = p->mmr_nextp;
2667 	kmem_free(p, sizeof (mac_margin_req_t));
2668 done:
2669 	rw_exit(&(mip->mi_rw_lock));
2670 	return (err);
2671 }
2672 
2673 boolean_t
2674 mac_margin_update(mac_handle_t mh, uint32_t margin)
2675 {
2676 	mac_impl_t	*mip = (mac_impl_t *)mh;
2677 	uint32_t	margin_needed = 0;
2678 
2679 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2680 
2681 	if (mip->mi_mmrp != NULL)
2682 		margin_needed = mip->mi_mmrp->mmr_margin;
2683 
2684 	if (margin_needed <= margin)
2685 		mip->mi_margin = margin;
2686 
2687 	rw_exit(&(mip->mi_rw_lock));
2688 
2689 	if (margin_needed <= margin)
2690 		i_mac_notify(mip, MAC_NOTE_MARGIN);
2691 
2692 	return (margin_needed <= margin);
2693 }
2694 
2695 /*
2696  * MAC clients use this interface to request that a MAC device not change its
2697  * MTU below the specified amount. At this time, that amount must be within the
2698  * range of the device's current minimum and the device's current maximum. eg. a
2699  * client cannot request a 3000 byte MTU when the device's MTU is currently
2700  * 2000.
2701  *
2702  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2703  * current underlying mac's maximum for this mac client and return it in mtup.
2704  */
2705 int
2706 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2707 {
2708 	mac_impl_t		*mip = (mac_impl_t *)mh;
2709 	mac_mtu_req_t		*prev, *cur;
2710 	mac_propval_range_t	mpr;
2711 	int			err;
2712 
2713 	i_mac_perim_enter(mip);
2714 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2715 
2716 	if (current == B_TRUE)
2717 		*mtup = mip->mi_sdu_max;
2718 	mpr.mpr_count = 1;
2719 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2720 	if (err != 0) {
2721 		rw_exit(&mip->mi_rw_lock);
2722 		i_mac_perim_exit(mip);
2723 		return (err);
2724 	}
2725 
2726 	if (*mtup > mip->mi_sdu_max ||
2727 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2728 		rw_exit(&mip->mi_rw_lock);
2729 		i_mac_perim_exit(mip);
2730 		return (ENOTSUP);
2731 	}
2732 
2733 	prev = NULL;
2734 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2735 		if (*mtup == cur->mtr_mtu) {
2736 			cur->mtr_ref++;
2737 			rw_exit(&mip->mi_rw_lock);
2738 			i_mac_perim_exit(mip);
2739 			return (0);
2740 		}
2741 
2742 		if (*mtup > cur->mtr_mtu)
2743 			break;
2744 
2745 		prev = cur;
2746 	}
2747 
2748 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2749 	cur->mtr_mtu = *mtup;
2750 	cur->mtr_ref = 1;
2751 	if (prev != NULL) {
2752 		cur->mtr_nextp = prev->mtr_nextp;
2753 		prev->mtr_nextp = cur;
2754 	} else {
2755 		cur->mtr_nextp = mip->mi_mtrp;
2756 		mip->mi_mtrp = cur;
2757 	}
2758 
2759 	rw_exit(&mip->mi_rw_lock);
2760 	i_mac_perim_exit(mip);
2761 	return (0);
2762 }
2763 
2764 int
2765 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2766 {
2767 	mac_impl_t *mip = (mac_impl_t *)mh;
2768 	mac_mtu_req_t *cur, *prev;
2769 
2770 	i_mac_perim_enter(mip);
2771 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2772 
2773 	prev = NULL;
2774 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2775 		if (cur->mtr_mtu == mtu) {
2776 			ASSERT(cur->mtr_ref > 0);
2777 			cur->mtr_ref--;
2778 			if (cur->mtr_ref == 0) {
2779 				if (prev == NULL) {
2780 					mip->mi_mtrp = cur->mtr_nextp;
2781 				} else {
2782 					prev->mtr_nextp = cur->mtr_nextp;
2783 				}
2784 				kmem_free(cur, sizeof (mac_mtu_req_t));
2785 			}
2786 			rw_exit(&mip->mi_rw_lock);
2787 			i_mac_perim_exit(mip);
2788 			return (0);
2789 		}
2790 
2791 		prev = cur;
2792 	}
2793 
2794 	rw_exit(&mip->mi_rw_lock);
2795 	i_mac_perim_exit(mip);
2796 	return (ENOENT);
2797 }
2798 
2799 /*
2800  * MAC Type Plugin functions.
2801  */
2802 
2803 mactype_t *
2804 mactype_getplugin(const char *pname)
2805 {
2806 	mactype_t	*mtype = NULL;
2807 	boolean_t	tried_modload = B_FALSE;
2808 
2809 	mutex_enter(&i_mactype_lock);
2810 
2811 find_registered_mactype:
2812 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2813 	    (mod_hash_val_t *)&mtype) != 0) {
2814 		if (!tried_modload) {
2815 			/*
2816 			 * If the plugin has not yet been loaded, then
2817 			 * attempt to load it now.  If modload() succeeds,
2818 			 * the plugin should have registered using
2819 			 * mactype_register(), in which case we can go back
2820 			 * and attempt to find it again.
2821 			 */
2822 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2823 				tried_modload = B_TRUE;
2824 				goto find_registered_mactype;
2825 			}
2826 		}
2827 	} else {
2828 		/*
2829 		 * Note that there's no danger that the plugin we've loaded
2830 		 * could be unloaded between the modload() step and the
2831 		 * reference count bump here, as we're holding
2832 		 * i_mactype_lock, which mactype_unregister() also holds.
2833 		 */
2834 		atomic_inc_32(&mtype->mt_ref);
2835 	}
2836 
2837 	mutex_exit(&i_mactype_lock);
2838 	return (mtype);
2839 }
2840 
2841 mactype_register_t *
2842 mactype_alloc(uint_t mactype_version)
2843 {
2844 	mactype_register_t *mtrp;
2845 
2846 	/*
2847 	 * Make sure there isn't a version mismatch between the plugin and
2848 	 * the framework.  In the future, if multiple versions are
2849 	 * supported, this check could become more sophisticated.
2850 	 */
2851 	if (mactype_version != MACTYPE_VERSION)
2852 		return (NULL);
2853 
2854 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2855 	mtrp->mtr_version = mactype_version;
2856 	return (mtrp);
2857 }
2858 
2859 void
2860 mactype_free(mactype_register_t *mtrp)
2861 {
2862 	kmem_free(mtrp, sizeof (mactype_register_t));
2863 }
2864 
2865 int
2866 mactype_register(mactype_register_t *mtrp)
2867 {
2868 	mactype_t	*mtp;
2869 	mactype_ops_t	*ops = mtrp->mtr_ops;
2870 
2871 	/* Do some sanity checking before we register this MAC type. */
2872 	if (mtrp->mtr_ident == NULL || ops == NULL)
2873 		return (EINVAL);
2874 
2875 	/*
2876 	 * Verify that all mandatory callbacks are set in the ops
2877 	 * vector.
2878 	 */
2879 	if (ops->mtops_unicst_verify == NULL ||
2880 	    ops->mtops_multicst_verify == NULL ||
2881 	    ops->mtops_sap_verify == NULL ||
2882 	    ops->mtops_header == NULL ||
2883 	    ops->mtops_header_info == NULL) {
2884 		return (EINVAL);
2885 	}
2886 
2887 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2888 	mtp->mt_ident = mtrp->mtr_ident;
2889 	mtp->mt_ops = *ops;
2890 	mtp->mt_type = mtrp->mtr_mactype;
2891 	mtp->mt_nativetype = mtrp->mtr_nativetype;
2892 	mtp->mt_addr_length = mtrp->mtr_addrlen;
2893 	if (mtrp->mtr_brdcst_addr != NULL) {
2894 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2895 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2896 		    mtrp->mtr_addrlen);
2897 	}
2898 
2899 	mtp->mt_stats = mtrp->mtr_stats;
2900 	mtp->mt_statcount = mtrp->mtr_statcount;
2901 
2902 	mtp->mt_mapping = mtrp->mtr_mapping;
2903 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2904 
2905 	if (mod_hash_insert(i_mactype_hash,
2906 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2907 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2908 		kmem_free(mtp, sizeof (*mtp));
2909 		return (EEXIST);
2910 	}
2911 	return (0);
2912 }
2913 
2914 int
2915 mactype_unregister(const char *ident)
2916 {
2917 	mactype_t	*mtp;
2918 	mod_hash_val_t	val;
2919 	int 		err;
2920 
2921 	/*
2922 	 * Let's not allow MAC drivers to use this plugin while we're
2923 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
2924 	 * plugin from unregistering while a MAC driver is attempting to
2925 	 * hold a reference to it in i_mactype_getplugin().
2926 	 */
2927 	mutex_enter(&i_mactype_lock);
2928 
2929 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2930 	    (mod_hash_val_t *)&mtp)) != 0) {
2931 		/* A plugin is trying to unregister, but it never registered. */
2932 		err = ENXIO;
2933 		goto done;
2934 	}
2935 
2936 	if (mtp->mt_ref != 0) {
2937 		err = EBUSY;
2938 		goto done;
2939 	}
2940 
2941 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2942 	ASSERT(err == 0);
2943 	if (err != 0) {
2944 		/* This should never happen, thus the ASSERT() above. */
2945 		err = EINVAL;
2946 		goto done;
2947 	}
2948 	ASSERT(mtp == (mactype_t *)val);
2949 
2950 	if (mtp->mt_brdcst_addr != NULL)
2951 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2952 	kmem_free(mtp, sizeof (mactype_t));
2953 done:
2954 	mutex_exit(&i_mactype_lock);
2955 	return (err);
2956 }
2957 
2958 /*
2959  * Checks the size of the value size specified for a property as
2960  * part of a property operation. Returns B_TRUE if the size is
2961  * correct, B_FALSE otherwise.
2962  */
2963 boolean_t
2964 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2965 {
2966 	uint_t minsize = 0;
2967 
2968 	if (is_range)
2969 		return (valsize >= sizeof (mac_propval_range_t));
2970 
2971 	switch (id) {
2972 	case MAC_PROP_ZONE:
2973 		minsize = sizeof (dld_ioc_zid_t);
2974 		break;
2975 	case MAC_PROP_AUTOPUSH:
2976 		if (valsize != 0)
2977 			minsize = sizeof (struct dlautopush);
2978 		break;
2979 	case MAC_PROP_TAGMODE:
2980 		minsize = sizeof (link_tagmode_t);
2981 		break;
2982 	case MAC_PROP_RESOURCE:
2983 	case MAC_PROP_RESOURCE_EFF:
2984 		minsize = sizeof (mac_resource_props_t);
2985 		break;
2986 	case MAC_PROP_DUPLEX:
2987 		minsize = sizeof (link_duplex_t);
2988 		break;
2989 	case MAC_PROP_SPEED:
2990 		minsize = sizeof (uint64_t);
2991 		break;
2992 	case MAC_PROP_STATUS:
2993 		minsize = sizeof (link_state_t);
2994 		break;
2995 	case MAC_PROP_AUTONEG:
2996 	case MAC_PROP_EN_AUTONEG:
2997 		minsize = sizeof (uint8_t);
2998 		break;
2999 	case MAC_PROP_MTU:
3000 	case MAC_PROP_LLIMIT:
3001 	case MAC_PROP_LDECAY:
3002 		minsize = sizeof (uint32_t);
3003 		break;
3004 	case MAC_PROP_FLOWCTRL:
3005 		minsize = sizeof (link_flowctrl_t);
3006 		break;
3007 	case MAC_PROP_ADV_10GFDX_CAP:
3008 	case MAC_PROP_EN_10GFDX_CAP:
3009 	case MAC_PROP_ADV_1000HDX_CAP:
3010 	case MAC_PROP_EN_1000HDX_CAP:
3011 	case MAC_PROP_ADV_100FDX_CAP:
3012 	case MAC_PROP_EN_100FDX_CAP:
3013 	case MAC_PROP_ADV_100HDX_CAP:
3014 	case MAC_PROP_EN_100HDX_CAP:
3015 	case MAC_PROP_ADV_10FDX_CAP:
3016 	case MAC_PROP_EN_10FDX_CAP:
3017 	case MAC_PROP_ADV_10HDX_CAP:
3018 	case MAC_PROP_EN_10HDX_CAP:
3019 	case MAC_PROP_ADV_100T4_CAP:
3020 	case MAC_PROP_EN_100T4_CAP:
3021 		minsize = sizeof (uint8_t);
3022 		break;
3023 	case MAC_PROP_PVID:
3024 		minsize = sizeof (uint16_t);
3025 		break;
3026 	case MAC_PROP_IPTUN_HOPLIMIT:
3027 		minsize = sizeof (uint32_t);
3028 		break;
3029 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3030 		minsize = sizeof (uint32_t);
3031 		break;
3032 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3033 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3034 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3035 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3036 		minsize = sizeof (uint_t);
3037 		break;
3038 	case MAC_PROP_WL_ESSID:
3039 		minsize = sizeof (wl_linkstatus_t);
3040 		break;
3041 	case MAC_PROP_WL_BSSID:
3042 		minsize = sizeof (wl_bssid_t);
3043 		break;
3044 	case MAC_PROP_WL_BSSTYPE:
3045 		minsize = sizeof (wl_bss_type_t);
3046 		break;
3047 	case MAC_PROP_WL_LINKSTATUS:
3048 		minsize = sizeof (wl_linkstatus_t);
3049 		break;
3050 	case MAC_PROP_WL_DESIRED_RATES:
3051 		minsize = sizeof (wl_rates_t);
3052 		break;
3053 	case MAC_PROP_WL_SUPPORTED_RATES:
3054 		minsize = sizeof (wl_rates_t);
3055 		break;
3056 	case MAC_PROP_WL_AUTH_MODE:
3057 		minsize = sizeof (wl_authmode_t);
3058 		break;
3059 	case MAC_PROP_WL_ENCRYPTION:
3060 		minsize = sizeof (wl_encryption_t);
3061 		break;
3062 	case MAC_PROP_WL_RSSI:
3063 		minsize = sizeof (wl_rssi_t);
3064 		break;
3065 	case MAC_PROP_WL_PHY_CONFIG:
3066 		minsize = sizeof (wl_phy_conf_t);
3067 		break;
3068 	case MAC_PROP_WL_CAPABILITY:
3069 		minsize = sizeof (wl_capability_t);
3070 		break;
3071 	case MAC_PROP_WL_WPA:
3072 		minsize = sizeof (wl_wpa_t);
3073 		break;
3074 	case MAC_PROP_WL_SCANRESULTS:
3075 		minsize = sizeof (wl_wpa_ess_t);
3076 		break;
3077 	case MAC_PROP_WL_POWER_MODE:
3078 		minsize = sizeof (wl_ps_mode_t);
3079 		break;
3080 	case MAC_PROP_WL_RADIO:
3081 		minsize = sizeof (wl_radio_t);
3082 		break;
3083 	case MAC_PROP_WL_ESS_LIST:
3084 		minsize = sizeof (wl_ess_list_t);
3085 		break;
3086 	case MAC_PROP_WL_KEY_TAB:
3087 		minsize = sizeof (wl_wep_key_tab_t);
3088 		break;
3089 	case MAC_PROP_WL_CREATE_IBSS:
3090 		minsize = sizeof (wl_create_ibss_t);
3091 		break;
3092 	case MAC_PROP_WL_SETOPTIE:
3093 		minsize = sizeof (wl_wpa_ie_t);
3094 		break;
3095 	case MAC_PROP_WL_DELKEY:
3096 		minsize = sizeof (wl_del_key_t);
3097 		break;
3098 	case MAC_PROP_WL_KEY:
3099 		minsize = sizeof (wl_key_t);
3100 		break;
3101 	case MAC_PROP_WL_MLME:
3102 		minsize = sizeof (wl_mlme_t);
3103 		break;
3104 	}
3105 
3106 	return (valsize >= minsize);
3107 }
3108 
3109 /*
3110  * mac_set_prop() sets MAC or hardware driver properties:
3111  *
3112  * - MAC-managed properties such as resource properties include maxbw,
3113  *   priority, and cpu binding list, as well as the default port VID
3114  *   used by bridging. These properties are consumed by the MAC layer
3115  *   itself and not passed down to the driver. For resource control
3116  *   properties, this function invokes mac_set_resources() which will
3117  *   cache the property value in mac_impl_t and may call
3118  *   mac_client_set_resource() to update property value of the primary
3119  *   mac client, if it exists.
3120  *
3121  * - Properties which act on the hardware and must be passed to the
3122  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3123  */
3124 int
3125 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3126     uint_t valsize)
3127 {
3128 	int err = ENOTSUP;
3129 	mac_impl_t *mip = (mac_impl_t *)mh;
3130 
3131 	ASSERT(MAC_PERIM_HELD(mh));
3132 
3133 	switch (id) {
3134 	case MAC_PROP_RESOURCE: {
3135 		mac_resource_props_t *mrp;
3136 
3137 		/* call mac_set_resources() for MAC properties */
3138 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3139 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3140 		bcopy(val, mrp, sizeof (*mrp));
3141 		err = mac_set_resources(mh, mrp);
3142 		kmem_free(mrp, sizeof (*mrp));
3143 		break;
3144 	}
3145 
3146 	case MAC_PROP_PVID:
3147 		ASSERT(valsize >= sizeof (uint16_t));
3148 		if (mip->mi_state_flags & MIS_IS_VNIC)
3149 			return (EINVAL);
3150 		err = mac_set_pvid(mh, *(uint16_t *)val);
3151 		break;
3152 
3153 	case MAC_PROP_MTU: {
3154 		uint32_t mtu;
3155 
3156 		ASSERT(valsize >= sizeof (uint32_t));
3157 		bcopy(val, &mtu, sizeof (mtu));
3158 		err = mac_set_mtu(mh, mtu, NULL);
3159 		break;
3160 	}
3161 
3162 	case MAC_PROP_LLIMIT:
3163 	case MAC_PROP_LDECAY: {
3164 		uint32_t learnval;
3165 
3166 		if (valsize < sizeof (learnval) ||
3167 		    (mip->mi_state_flags & MIS_IS_VNIC))
3168 			return (EINVAL);
3169 		bcopy(val, &learnval, sizeof (learnval));
3170 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3171 			return (EINVAL);
3172 		if (id == MAC_PROP_LLIMIT)
3173 			mip->mi_llimit = learnval;
3174 		else
3175 			mip->mi_ldecay = learnval;
3176 		err = 0;
3177 		break;
3178 	}
3179 
3180 	default:
3181 		/* For other driver properties, call driver's callback */
3182 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3183 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3184 			    name, id, valsize, val);
3185 		}
3186 	}
3187 	return (err);
3188 }
3189 
3190 /*
3191  * mac_get_prop() gets MAC or device driver properties.
3192  *
3193  * If the property is a driver property, mac_get_prop() calls driver's callback
3194  * entry point to get it.
3195  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3196  * which returns the cached value in mac_impl_t.
3197  */
3198 int
3199 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3200     uint_t valsize)
3201 {
3202 	int err = ENOTSUP;
3203 	mac_impl_t *mip = (mac_impl_t *)mh;
3204 	uint_t	rings;
3205 	uint_t	vlinks;
3206 
3207 	bzero(val, valsize);
3208 
3209 	switch (id) {
3210 	case MAC_PROP_RESOURCE: {
3211 		mac_resource_props_t *mrp;
3212 
3213 		/* If mac property, read from cache */
3214 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3215 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3216 		mac_get_resources(mh, mrp);
3217 		bcopy(mrp, val, sizeof (*mrp));
3218 		kmem_free(mrp, sizeof (*mrp));
3219 		return (0);
3220 	}
3221 	case MAC_PROP_RESOURCE_EFF: {
3222 		mac_resource_props_t *mrp;
3223 
3224 		/* If mac effective property, read from client */
3225 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3226 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3227 		mac_get_effective_resources(mh, mrp);
3228 		bcopy(mrp, val, sizeof (*mrp));
3229 		kmem_free(mrp, sizeof (*mrp));
3230 		return (0);
3231 	}
3232 
3233 	case MAC_PROP_PVID:
3234 		ASSERT(valsize >= sizeof (uint16_t));
3235 		if (mip->mi_state_flags & MIS_IS_VNIC)
3236 			return (EINVAL);
3237 		*(uint16_t *)val = mac_get_pvid(mh);
3238 		return (0);
3239 
3240 	case MAC_PROP_LLIMIT:
3241 	case MAC_PROP_LDECAY:
3242 		ASSERT(valsize >= sizeof (uint32_t));
3243 		if (mip->mi_state_flags & MIS_IS_VNIC)
3244 			return (EINVAL);
3245 		if (id == MAC_PROP_LLIMIT)
3246 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3247 		else
3248 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3249 		return (0);
3250 
3251 	case MAC_PROP_MTU: {
3252 		uint32_t sdu;
3253 
3254 		ASSERT(valsize >= sizeof (uint32_t));
3255 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3256 		bcopy(&sdu, val, sizeof (sdu));
3257 
3258 		return (0);
3259 	}
3260 	case MAC_PROP_STATUS: {
3261 		link_state_t link_state;
3262 
3263 		if (valsize < sizeof (link_state))
3264 			return (EINVAL);
3265 		link_state = mac_link_get(mh);
3266 		bcopy(&link_state, val, sizeof (link_state));
3267 
3268 		return (0);
3269 	}
3270 
3271 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3272 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3273 		ASSERT(valsize >= sizeof (uint_t));
3274 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3275 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3276 		bcopy(&rings, val, sizeof (uint_t));
3277 		return (0);
3278 
3279 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3280 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3281 		ASSERT(valsize >= sizeof (uint_t));
3282 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3283 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3284 		bcopy(&vlinks, val, sizeof (uint_t));
3285 		return (0);
3286 
3287 	case MAC_PROP_RXRINGSRANGE:
3288 	case MAC_PROP_TXRINGSRANGE:
3289 		/*
3290 		 * The value for these properties are returned through
3291 		 * the MAC_PROP_RESOURCE property.
3292 		 */
3293 		return (0);
3294 
3295 	default:
3296 		break;
3297 
3298 	}
3299 
3300 	/* If driver property, request from driver */
3301 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3302 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3303 		    valsize, val);
3304 	}
3305 
3306 	return (err);
3307 }
3308 
3309 /*
3310  * Helper function to initialize the range structure for use in
3311  * mac_get_prop. If the type can be other than uint32, we can
3312  * pass that as an arg.
3313  */
3314 static void
3315 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3316 {
3317 	range->mpr_count = 1;
3318 	range->mpr_type = MAC_PROPVAL_UINT32;
3319 	range->mpr_range_uint32[0].mpur_min = min;
3320 	range->mpr_range_uint32[0].mpur_max = max;
3321 }
3322 
3323 /*
3324  * Returns information about the specified property, such as default
3325  * values or permissions.
3326  */
3327 int
3328 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3329     void *default_val, uint_t default_size, mac_propval_range_t *range,
3330     uint_t *perm)
3331 {
3332 	mac_prop_info_state_t state;
3333 	mac_impl_t *mip = (mac_impl_t *)mh;
3334 	uint_t	max;
3335 
3336 	/*
3337 	 * A property is read/write by default unless the driver says
3338 	 * otherwise.
3339 	 */
3340 	if (perm != NULL)
3341 		*perm = MAC_PROP_PERM_RW;
3342 
3343 	if (default_val != NULL)
3344 		bzero(default_val, default_size);
3345 
3346 	/*
3347 	 * First, handle framework properties for which we don't need to
3348 	 * involve the driver.
3349 	 */
3350 	switch (id) {
3351 	case MAC_PROP_RESOURCE:
3352 	case MAC_PROP_PVID:
3353 	case MAC_PROP_LLIMIT:
3354 	case MAC_PROP_LDECAY:
3355 		return (0);
3356 
3357 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3358 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3359 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3360 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3361 		if (perm != NULL)
3362 			*perm = MAC_PROP_PERM_READ;
3363 		return (0);
3364 
3365 	case MAC_PROP_RXRINGSRANGE:
3366 	case MAC_PROP_TXRINGSRANGE:
3367 		/*
3368 		 * Currently, we support range for RX and TX rings properties.
3369 		 * When we extend this support to maxbw, cpus and priority,
3370 		 * we should move this to mac_get_resources.
3371 		 * There is no default value for RX or TX rings.
3372 		 */
3373 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3374 		    mac_is_vnic_primary(mh)) {
3375 			/*
3376 			 * We don't support setting rings for a VLAN
3377 			 * data link because it shares its ring with the
3378 			 * primary MAC client.
3379 			 */
3380 			if (perm != NULL)
3381 				*perm = MAC_PROP_PERM_READ;
3382 			if (range != NULL)
3383 				range->mpr_count = 0;
3384 		} else if (range != NULL) {
3385 			if (mip->mi_state_flags & MIS_IS_VNIC)
3386 				mh = mac_get_lower_mac_handle(mh);
3387 			mip = (mac_impl_t *)mh;
3388 			if ((id == MAC_PROP_RXRINGSRANGE &&
3389 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3390 			    (id == MAC_PROP_TXRINGSRANGE &&
3391 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3392 				if (id == MAC_PROP_RXRINGSRANGE) {
3393 					if ((mac_rxhwlnksavail_get(mh) +
3394 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3395 						/*
3396 						 * doesn't support groups or
3397 						 * rings
3398 						 */
3399 						range->mpr_count = 0;
3400 					} else {
3401 						/*
3402 						 * supports specifying groups,
3403 						 * but not rings
3404 						 */
3405 						_mac_set_range(range, 0, 0);
3406 					}
3407 				} else {
3408 					if ((mac_txhwlnksavail_get(mh) +
3409 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3410 						/*
3411 						 * doesn't support groups or
3412 						 * rings
3413 						 */
3414 						range->mpr_count = 0;
3415 					} else {
3416 						/*
3417 						 * supports specifying groups,
3418 						 * but not rings
3419 						 */
3420 						_mac_set_range(range, 0, 0);
3421 					}
3422 				}
3423 			} else {
3424 				max = id == MAC_PROP_RXRINGSRANGE ?
3425 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3426 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3427 				if (max <= 1) {
3428 					/*
3429 					 * doesn't support groups or
3430 					 * rings
3431 					 */
3432 					range->mpr_count = 0;
3433 				} else  {
3434 					/*
3435 					 * -1 because we have to leave out the
3436 					 * default ring.
3437 					 */
3438 					_mac_set_range(range, 1, max - 1);
3439 				}
3440 			}
3441 		}
3442 		return (0);
3443 
3444 	case MAC_PROP_STATUS:
3445 		if (perm != NULL)
3446 			*perm = MAC_PROP_PERM_READ;
3447 		return (0);
3448 	}
3449 
3450 	/*
3451 	 * Get the property info from the driver if it implements the
3452 	 * property info entry point.
3453 	 */
3454 	bzero(&state, sizeof (state));
3455 
3456 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3457 		state.pr_default = default_val;
3458 		state.pr_default_size = default_size;
3459 
3460 		/*
3461 		 * The caller specifies the maximum number of ranges
3462 		 * it can accomodate using mpr_count. We don't touch
3463 		 * this value until the driver returns from its
3464 		 * mc_propinfo() callback, and ensure we don't exceed
3465 		 * this number of range as the driver defines
3466 		 * supported range from its mc_propinfo().
3467 		 *
3468 		 * pr_range_cur_count keeps track of how many ranges
3469 		 * were defined by the driver from its mc_propinfo()
3470 		 * entry point.
3471 		 *
3472 		 * On exit, the user-specified range mpr_count returns
3473 		 * the number of ranges specified by the driver on
3474 		 * success, or the number of ranges it wanted to
3475 		 * define if that number of ranges could not be
3476 		 * accomodated by the specified range structure.  In
3477 		 * the latter case, the caller will be able to
3478 		 * allocate a larger range structure, and query the
3479 		 * property again.
3480 		 */
3481 		state.pr_range_cur_count = 0;
3482 		state.pr_range = range;
3483 
3484 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3485 		    (mac_prop_info_handle_t)&state);
3486 
3487 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3488 			range->mpr_count = state.pr_range_cur_count;
3489 
3490 		/*
3491 		 * The operation could fail if the buffer supplied by
3492 		 * the user was too small for the range or default
3493 		 * value of the property.
3494 		 */
3495 		if (state.pr_errno != 0)
3496 			return (state.pr_errno);
3497 
3498 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3499 			*perm = state.pr_perm;
3500 	}
3501 
3502 	/*
3503 	 * The MAC layer may want to provide default values or allowed
3504 	 * ranges for properties if the driver does not provide a
3505 	 * property info entry point, or that entry point exists, but
3506 	 * it did not provide a default value or allowed ranges for
3507 	 * that property.
3508 	 */
3509 	switch (id) {
3510 	case MAC_PROP_MTU: {
3511 		uint32_t sdu;
3512 
3513 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3514 
3515 		if (range != NULL && !(state.pr_flags &
3516 		    MAC_PROP_INFO_RANGE)) {
3517 			/* MTU range */
3518 			_mac_set_range(range, sdu, sdu);
3519 		}
3520 
3521 		if (default_val != NULL && !(state.pr_flags &
3522 		    MAC_PROP_INFO_DEFAULT)) {
3523 			if (mip->mi_info.mi_media == DL_ETHER)
3524 				sdu = ETHERMTU;
3525 			/* default MTU value */
3526 			bcopy(&sdu, default_val, sizeof (sdu));
3527 		}
3528 	}
3529 	}
3530 
3531 	return (0);
3532 }
3533 
3534 int
3535 mac_fastpath_disable(mac_handle_t mh)
3536 {
3537 	mac_impl_t	*mip = (mac_impl_t *)mh;
3538 
3539 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3540 		return (0);
3541 
3542 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3543 }
3544 
3545 void
3546 mac_fastpath_enable(mac_handle_t mh)
3547 {
3548 	mac_impl_t	*mip = (mac_impl_t *)mh;
3549 
3550 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3551 		return;
3552 
3553 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3554 }
3555 
3556 void
3557 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3558 {
3559 	uint_t nprops, i;
3560 
3561 	if (priv_props == NULL)
3562 		return;
3563 
3564 	nprops = 0;
3565 	while (priv_props[nprops] != NULL)
3566 		nprops++;
3567 	if (nprops == 0)
3568 		return;
3569 
3570 
3571 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3572 
3573 	for (i = 0; i < nprops; i++) {
3574 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3575 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3576 		    MAXLINKPROPNAME);
3577 	}
3578 
3579 	mip->mi_priv_prop_count = nprops;
3580 }
3581 
3582 void
3583 mac_unregister_priv_prop(mac_impl_t *mip)
3584 {
3585 	uint_t i;
3586 
3587 	if (mip->mi_priv_prop_count == 0) {
3588 		ASSERT(mip->mi_priv_prop == NULL);
3589 		return;
3590 	}
3591 
3592 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3593 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3594 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3595 	    sizeof (char *));
3596 
3597 	mip->mi_priv_prop = NULL;
3598 	mip->mi_priv_prop_count = 0;
3599 }
3600 
3601 /*
3602  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3603  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3604  * cases if MAC free's the ring structure after mac_stop_ring(), any
3605  * illegal access to the ring structure coming from the driver will panic
3606  * the system. In order to protect the system from such inadverent access,
3607  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3608  * When packets are received on free'd up rings, MAC (through the generation
3609  * count mechanism) will drop such packets.
3610  */
3611 static mac_ring_t *
3612 mac_ring_alloc(mac_impl_t *mip)
3613 {
3614 	mac_ring_t *ring;
3615 
3616 	mutex_enter(&mip->mi_ring_lock);
3617 	if (mip->mi_ring_freelist != NULL) {
3618 		ring = mip->mi_ring_freelist;
3619 		mip->mi_ring_freelist = ring->mr_next;
3620 		bzero(ring, sizeof (mac_ring_t));
3621 		mutex_exit(&mip->mi_ring_lock);
3622 	} else {
3623 		mutex_exit(&mip->mi_ring_lock);
3624 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3625 	}
3626 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3627 	return (ring);
3628 }
3629 
3630 static void
3631 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3632 {
3633 	ASSERT(ring->mr_state == MR_FREE);
3634 
3635 	mutex_enter(&mip->mi_ring_lock);
3636 	ring->mr_state = MR_FREE;
3637 	ring->mr_flag = 0;
3638 	ring->mr_next = mip->mi_ring_freelist;
3639 	ring->mr_mip = NULL;
3640 	mip->mi_ring_freelist = ring;
3641 	mac_ring_stat_delete(ring);
3642 	mutex_exit(&mip->mi_ring_lock);
3643 }
3644 
3645 static void
3646 mac_ring_freeall(mac_impl_t *mip)
3647 {
3648 	mac_ring_t *ring_next;
3649 	mutex_enter(&mip->mi_ring_lock);
3650 	mac_ring_t *ring = mip->mi_ring_freelist;
3651 	while (ring != NULL) {
3652 		ring_next = ring->mr_next;
3653 		kmem_cache_free(mac_ring_cache, ring);
3654 		ring = ring_next;
3655 	}
3656 	mip->mi_ring_freelist = NULL;
3657 	mutex_exit(&mip->mi_ring_lock);
3658 }
3659 
3660 int
3661 mac_start_ring(mac_ring_t *ring)
3662 {
3663 	int rv = 0;
3664 
3665 	ASSERT(ring->mr_state == MR_FREE);
3666 
3667 	if (ring->mr_start != NULL) {
3668 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3669 		if (rv != 0)
3670 			return (rv);
3671 	}
3672 
3673 	ring->mr_state = MR_INUSE;
3674 	return (rv);
3675 }
3676 
3677 void
3678 mac_stop_ring(mac_ring_t *ring)
3679 {
3680 	ASSERT(ring->mr_state == MR_INUSE);
3681 
3682 	if (ring->mr_stop != NULL)
3683 		ring->mr_stop(ring->mr_driver);
3684 
3685 	ring->mr_state = MR_FREE;
3686 
3687 	/*
3688 	 * Increment the ring generation number for this ring.
3689 	 */
3690 	ring->mr_gen_num++;
3691 }
3692 
3693 int
3694 mac_start_group(mac_group_t *group)
3695 {
3696 	int rv = 0;
3697 
3698 	if (group->mrg_start != NULL)
3699 		rv = group->mrg_start(group->mrg_driver);
3700 
3701 	return (rv);
3702 }
3703 
3704 void
3705 mac_stop_group(mac_group_t *group)
3706 {
3707 	if (group->mrg_stop != NULL)
3708 		group->mrg_stop(group->mrg_driver);
3709 }
3710 
3711 /*
3712  * Called from mac_start() on the default Rx group. Broadcast and multicast
3713  * packets are received only on the default group. Hence the default group
3714  * needs to be up even if the primary client is not up, for the other groups
3715  * to be functional. We do this by calling this function at mac_start time
3716  * itself. However the broadcast packets that are received can't make their
3717  * way beyond mac_rx until a mac client creates a broadcast flow.
3718  */
3719 static int
3720 mac_start_group_and_rings(mac_group_t *group)
3721 {
3722 	mac_ring_t	*ring;
3723 	int		rv = 0;
3724 
3725 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3726 	if ((rv = mac_start_group(group)) != 0)
3727 		return (rv);
3728 
3729 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3730 		ASSERT(ring->mr_state == MR_FREE);
3731 		if ((rv = mac_start_ring(ring)) != 0)
3732 			goto error;
3733 		ring->mr_classify_type = MAC_SW_CLASSIFIER;
3734 	}
3735 	return (0);
3736 
3737 error:
3738 	mac_stop_group_and_rings(group);
3739 	return (rv);
3740 }
3741 
3742 /* Called from mac_stop on the default Rx group */
3743 static void
3744 mac_stop_group_and_rings(mac_group_t *group)
3745 {
3746 	mac_ring_t	*ring;
3747 
3748 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3749 		if (ring->mr_state != MR_FREE) {
3750 			mac_stop_ring(ring);
3751 			ring->mr_flag = 0;
3752 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
3753 		}
3754 	}
3755 	mac_stop_group(group);
3756 }
3757 
3758 
3759 static mac_ring_t *
3760 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3761     mac_capab_rings_t *cap_rings)
3762 {
3763 	mac_ring_t *ring, *rnext;
3764 	mac_ring_info_t ring_info;
3765 	ddi_intr_handle_t ddi_handle;
3766 
3767 	ring = mac_ring_alloc(mip);
3768 
3769 	/* Prepare basic information of ring */
3770 
3771 	/*
3772 	 * Ring index is numbered to be unique across a particular device.
3773 	 * Ring index computation makes following assumptions:
3774 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
3775 	 *	ring index exchanged with the driver (e.g. during mr_rget)
3776 	 *	is unique only across the group the ring belongs to.
3777 	 *	- Drivers with dynamic grouping (e.g. nxge), start
3778 	 *	with single group (mrg_index = 0).
3779 	 */
3780 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3781 	ring->mr_type = group->mrg_type;
3782 	ring->mr_gh = (mac_group_handle_t)group;
3783 
3784 	/* Insert the new ring to the list. */
3785 	ring->mr_next = group->mrg_rings;
3786 	group->mrg_rings = ring;
3787 
3788 	/* Zero to reuse the info data structure */
3789 	bzero(&ring_info, sizeof (ring_info));
3790 
3791 	/* Query ring information from driver */
3792 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3793 	    index, &ring_info, (mac_ring_handle_t)ring);
3794 
3795 	ring->mr_info = ring_info;
3796 
3797 	/*
3798 	 * The interrupt handle could be shared among multiple rings.
3799 	 * Thus if there is a bunch of rings that are sharing an
3800 	 * interrupt, then only one ring among the bunch will be made
3801 	 * available for interrupt re-targeting; the rest will have
3802 	 * ddi_shared flag set to TRUE and would not be available for
3803 	 * be interrupt re-targeting.
3804 	 */
3805 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3806 		rnext = ring->mr_next;
3807 		while (rnext != NULL) {
3808 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3809 			    ddi_handle) {
3810 				/*
3811 				 * If default ring (mr_index == 0) is part
3812 				 * of a group of rings sharing an
3813 				 * interrupt, then set ddi_shared flag for
3814 				 * the default ring and give another ring
3815 				 * the chance to be re-targeted.
3816 				 */
3817 				if (rnext->mr_index == 0 &&
3818 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
3819 					rnext->mr_info.mri_intr.mi_ddi_shared =
3820 					    B_TRUE;
3821 				} else {
3822 					ring->mr_info.mri_intr.mi_ddi_shared =
3823 					    B_TRUE;
3824 				}
3825 				break;
3826 			}
3827 			rnext = rnext->mr_next;
3828 		}
3829 		/*
3830 		 * If rnext is NULL, then no matching ddi_handle was found.
3831 		 * Rx rings get registered first. So if this is a Tx ring,
3832 		 * then go through all the Rx rings and see if there is a
3833 		 * matching ddi handle.
3834 		 */
3835 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3836 			mac_compare_ddi_handle(mip->mi_rx_groups,
3837 			    mip->mi_rx_group_count, ring);
3838 		}
3839 	}
3840 
3841 	/* Update ring's status */
3842 	ring->mr_state = MR_FREE;
3843 	ring->mr_flag = 0;
3844 
3845 	/* Update the ring count of the group */
3846 	group->mrg_cur_count++;
3847 
3848 	/* Create per ring kstats */
3849 	if (ring->mr_stat != NULL) {
3850 		ring->mr_mip = mip;
3851 		mac_ring_stat_create(ring);
3852 	}
3853 
3854 	return (ring);
3855 }
3856 
3857 /*
3858  * Rings are chained together for easy regrouping.
3859  */
3860 static void
3861 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3862     mac_capab_rings_t *cap_rings)
3863 {
3864 	int index;
3865 
3866 	/*
3867 	 * Initialize all ring members of this group. Size of zero will not
3868 	 * enter the loop, so it's safe for initializing an empty group.
3869 	 */
3870 	for (index = size - 1; index >= 0; index--)
3871 		(void) mac_init_ring(mip, group, index, cap_rings);
3872 }
3873 
3874 int
3875 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3876 {
3877 	mac_capab_rings_t	*cap_rings;
3878 	mac_group_t		*group;
3879 	mac_group_t		*groups;
3880 	mac_group_info_t	group_info;
3881 	uint_t			group_free = 0;
3882 	uint_t			ring_left;
3883 	mac_ring_t		*ring;
3884 	int			g;
3885 	int			err = 0;
3886 	uint_t			grpcnt;
3887 	boolean_t		pseudo_txgrp = B_FALSE;
3888 
3889 	switch (rtype) {
3890 	case MAC_RING_TYPE_RX:
3891 		ASSERT(mip->mi_rx_groups == NULL);
3892 
3893 		cap_rings = &mip->mi_rx_rings_cap;
3894 		cap_rings->mr_type = MAC_RING_TYPE_RX;
3895 		break;
3896 	case MAC_RING_TYPE_TX:
3897 		ASSERT(mip->mi_tx_groups == NULL);
3898 
3899 		cap_rings = &mip->mi_tx_rings_cap;
3900 		cap_rings->mr_type = MAC_RING_TYPE_TX;
3901 		break;
3902 	default:
3903 		ASSERT(B_FALSE);
3904 	}
3905 
3906 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3907 		return (0);
3908 	grpcnt = cap_rings->mr_gnum;
3909 
3910 	/*
3911 	 * If we have multiple TX rings, but only one TX group, we can
3912 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
3913 	 * except for an aggr. For an aggr currently we maintain only
3914 	 * one group with all the rings (for all its ports), going
3915 	 * forwards we might change this.
3916 	 */
3917 	if (rtype == MAC_RING_TYPE_TX &&
3918 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3919 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3920 		/*
3921 		 * The -1 here is because we create a default TX group
3922 		 * with all the rings in it.
3923 		 */
3924 		grpcnt = cap_rings->mr_rnum - 1;
3925 		pseudo_txgrp = B_TRUE;
3926 	}
3927 
3928 	/*
3929 	 * Allocate a contiguous buffer for all groups.
3930 	 */
3931 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3932 
3933 	ring_left = cap_rings->mr_rnum;
3934 
3935 	/*
3936 	 * Get all ring groups if any, and get their ring members
3937 	 * if any.
3938 	 */
3939 	for (g = 0; g < grpcnt; g++) {
3940 		group = groups + g;
3941 
3942 		/* Prepare basic information of the group */
3943 		group->mrg_index = g;
3944 		group->mrg_type = rtype;
3945 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
3946 		group->mrg_mh = (mac_handle_t)mip;
3947 		group->mrg_next = group + 1;
3948 
3949 		/* Zero to reuse the info data structure */
3950 		bzero(&group_info, sizeof (group_info));
3951 
3952 		if (pseudo_txgrp) {
3953 			/*
3954 			 * This is a pseudo group that we created, apart
3955 			 * from setting the state there is nothing to be
3956 			 * done.
3957 			 */
3958 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
3959 			group_free++;
3960 			continue;
3961 		}
3962 		/* Query group information from driver */
3963 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3964 		    (mac_group_handle_t)group);
3965 
3966 		switch (cap_rings->mr_group_type) {
3967 		case MAC_GROUP_TYPE_DYNAMIC:
3968 			if (cap_rings->mr_gaddring == NULL ||
3969 			    cap_rings->mr_gremring == NULL) {
3970 				DTRACE_PROBE3(
3971 				    mac__init__rings_no_addremring,
3972 				    char *, mip->mi_name,
3973 				    mac_group_add_ring_t,
3974 				    cap_rings->mr_gaddring,
3975 				    mac_group_add_ring_t,
3976 				    cap_rings->mr_gremring);
3977 				err = EINVAL;
3978 				goto bail;
3979 			}
3980 
3981 			switch (rtype) {
3982 			case MAC_RING_TYPE_RX:
3983 				/*
3984 				 * The first RX group must have non-zero
3985 				 * rings, and the following groups must
3986 				 * have zero rings.
3987 				 */
3988 				if (g == 0 && group_info.mgi_count == 0) {
3989 					DTRACE_PROBE1(
3990 					    mac__init__rings__rx__def__zero,
3991 					    char *, mip->mi_name);
3992 					err = EINVAL;
3993 					goto bail;
3994 				}
3995 				if (g > 0 && group_info.mgi_count != 0) {
3996 					DTRACE_PROBE3(
3997 					    mac__init__rings__rx__nonzero,
3998 					    char *, mip->mi_name,
3999 					    int, g, int, group_info.mgi_count);
4000 					err = EINVAL;
4001 					goto bail;
4002 				}
4003 				break;
4004 			case MAC_RING_TYPE_TX:
4005 				/*
4006 				 * All TX ring groups must have zero rings.
4007 				 */
4008 				if (group_info.mgi_count != 0) {
4009 					DTRACE_PROBE3(
4010 					    mac__init__rings__tx__nonzero,
4011 					    char *, mip->mi_name,
4012 					    int, g, int, group_info.mgi_count);
4013 					err = EINVAL;
4014 					goto bail;
4015 				}
4016 				break;
4017 			}
4018 			break;
4019 		case MAC_GROUP_TYPE_STATIC:
4020 			/*
4021 			 * Note that an empty group is allowed, e.g., an aggr
4022 			 * would start with an empty group.
4023 			 */
4024 			break;
4025 		default:
4026 			/* unknown group type */
4027 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4028 			    char *, mip->mi_name,
4029 			    int, cap_rings->mr_group_type);
4030 			err = EINVAL;
4031 			goto bail;
4032 		}
4033 
4034 
4035 		/*
4036 		 * Driver must register group->mgi_addmac/remmac() for rx groups
4037 		 * to support multiple MAC addresses.
4038 		 */
4039 		if (rtype == MAC_RING_TYPE_RX &&
4040 		    ((group_info.mgi_addmac == NULL) ||
4041 		    (group_info.mgi_remmac == NULL))) {
4042 			err = EINVAL;
4043 			goto bail;
4044 		}
4045 
4046 		/* Cache driver-supplied information */
4047 		group->mrg_info = group_info;
4048 
4049 		/* Update the group's status and group count. */
4050 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4051 		group_free++;
4052 
4053 		group->mrg_rings = NULL;
4054 		group->mrg_cur_count = 0;
4055 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4056 		ring_left -= group_info.mgi_count;
4057 
4058 		/* The current group size should be equal to default value */
4059 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4060 	}
4061 
4062 	/* Build up a dummy group for free resources as a pool */
4063 	group = groups + grpcnt;
4064 
4065 	/* Prepare basic information of the group */
4066 	group->mrg_index = -1;
4067 	group->mrg_type = rtype;
4068 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4069 	group->mrg_mh = (mac_handle_t)mip;
4070 	group->mrg_next = NULL;
4071 
4072 	/*
4073 	 * If there are ungrouped rings, allocate a continuous buffer for
4074 	 * remaining resources.
4075 	 */
4076 	if (ring_left != 0) {
4077 		group->mrg_rings = NULL;
4078 		group->mrg_cur_count = 0;
4079 		mac_init_group(mip, group, ring_left, cap_rings);
4080 
4081 		/* The current group size should be equal to ring_left */
4082 		ASSERT(group->mrg_cur_count == ring_left);
4083 
4084 		ring_left = 0;
4085 
4086 		/* Update this group's status */
4087 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4088 	} else
4089 		group->mrg_rings = NULL;
4090 
4091 	ASSERT(ring_left == 0);
4092 
4093 bail:
4094 
4095 	/* Cache other important information to finalize the initialization */
4096 	switch (rtype) {
4097 	case MAC_RING_TYPE_RX:
4098 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4099 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4100 		mip->mi_rx_groups = groups;
4101 		mip->mi_rx_donor_grp = groups;
4102 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4103 			/*
4104 			 * The default ring is reserved since it is
4105 			 * used for sending the broadcast etc. packets.
4106 			 */
4107 			mip->mi_rxrings_avail =
4108 			    mip->mi_rx_groups->mrg_cur_count - 1;
4109 			mip->mi_rxrings_rsvd = 1;
4110 		}
4111 		/*
4112 		 * The default group cannot be reserved. It is used by
4113 		 * all the clients that do not have an exclusive group.
4114 		 */
4115 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4116 		mip->mi_rxhwclnt_used = 1;
4117 		break;
4118 	case MAC_RING_TYPE_TX:
4119 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4120 		    cap_rings->mr_group_type;
4121 		mip->mi_tx_group_count = grpcnt;
4122 		mip->mi_tx_group_free = group_free;
4123 		mip->mi_tx_groups = groups;
4124 
4125 		group = groups + grpcnt;
4126 		ring = group->mrg_rings;
4127 		/*
4128 		 * The ring can be NULL in the case of aggr. Aggr will
4129 		 * have an empty Tx group which will get populated
4130 		 * later when pseudo Tx rings are added after
4131 		 * mac_register() is done.
4132 		 */
4133 		if (ring == NULL) {
4134 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4135 			/*
4136 			 * pass the group to aggr so it can add Tx
4137 			 * rings to the group later.
4138 			 */
4139 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4140 			    (mac_group_handle_t)group);
4141 			/*
4142 			 * Even though there are no rings at this time
4143 			 * (rings will come later), set the group
4144 			 * state to registered.
4145 			 */
4146 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4147 		} else {
4148 			/*
4149 			 * Ring 0 is used as the default one and it could be
4150 			 * assigned to a client as well.
4151 			 */
4152 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4153 				ring = ring->mr_next;
4154 			ASSERT(ring->mr_index == 0);
4155 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4156 		}
4157 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
4158 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4159 			/*
4160 			 * The default ring cannot be reserved.
4161 			 */
4162 			mip->mi_txrings_rsvd = 1;
4163 		/*
4164 		 * The default group cannot be reserved. It will be shared
4165 		 * by clients that do not have an exclusive group.
4166 		 */
4167 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4168 		mip->mi_txhwclnt_used = 1;
4169 		break;
4170 	default:
4171 		ASSERT(B_FALSE);
4172 	}
4173 
4174 	if (err != 0)
4175 		mac_free_rings(mip, rtype);
4176 
4177 	return (err);
4178 }
4179 
4180 /*
4181  * The ddi interrupt handle could be shared amoung rings. If so, compare
4182  * the new ring's ddi handle with the existing ones and set ddi_shared
4183  * flag.
4184  */
4185 void
4186 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4187 {
4188 	mac_group_t *group;
4189 	mac_ring_t *ring;
4190 	ddi_intr_handle_t ddi_handle;
4191 	int g;
4192 
4193 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4194 	for (g = 0; g < grpcnt; g++) {
4195 		group = groups + g;
4196 		for (ring = group->mrg_rings; ring != NULL;
4197 		    ring = ring->mr_next) {
4198 			if (ring == cring)
4199 				continue;
4200 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4201 			    ddi_handle) {
4202 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4203 				    ring->mr_index == 0 &&
4204 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4205 					ring->mr_info.mri_intr.mi_ddi_shared =
4206 					    B_TRUE;
4207 				} else {
4208 					cring->mr_info.mri_intr.mi_ddi_shared =
4209 					    B_TRUE;
4210 				}
4211 				return;
4212 			}
4213 		}
4214 	}
4215 }
4216 
4217 /*
4218  * Called to free all groups of particular type (RX or TX). It's assumed that
4219  * no clients are using these groups.
4220  */
4221 void
4222 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4223 {
4224 	mac_group_t *group, *groups;
4225 	uint_t group_count;
4226 
4227 	switch (rtype) {
4228 	case MAC_RING_TYPE_RX:
4229 		if (mip->mi_rx_groups == NULL)
4230 			return;
4231 
4232 		groups = mip->mi_rx_groups;
4233 		group_count = mip->mi_rx_group_count;
4234 
4235 		mip->mi_rx_groups = NULL;
4236 		mip->mi_rx_donor_grp = NULL;
4237 		mip->mi_rx_group_count = 0;
4238 		break;
4239 	case MAC_RING_TYPE_TX:
4240 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4241 
4242 		if (mip->mi_tx_groups == NULL)
4243 			return;
4244 
4245 		groups = mip->mi_tx_groups;
4246 		group_count = mip->mi_tx_group_count;
4247 
4248 		mip->mi_tx_groups = NULL;
4249 		mip->mi_tx_group_count = 0;
4250 		mip->mi_tx_group_free = 0;
4251 		mip->mi_default_tx_ring = NULL;
4252 		break;
4253 	default:
4254 		ASSERT(B_FALSE);
4255 	}
4256 
4257 	for (group = groups; group != NULL; group = group->mrg_next) {
4258 		mac_ring_t *ring;
4259 
4260 		if (group->mrg_cur_count == 0)
4261 			continue;
4262 
4263 		ASSERT(group->mrg_rings != NULL);
4264 
4265 		while ((ring = group->mrg_rings) != NULL) {
4266 			group->mrg_rings = ring->mr_next;
4267 			mac_ring_free(mip, ring);
4268 		}
4269 	}
4270 
4271 	/* Free all the cached rings */
4272 	mac_ring_freeall(mip);
4273 	/* Free the block of group data strutures */
4274 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4275 }
4276 
4277 /*
4278  * Associate a MAC address with a receive group.
4279  *
4280  * The return value of this function should always be checked properly, because
4281  * any type of failure could cause unexpected results. A group can be added
4282  * or removed with a MAC address only after it has been reserved. Ideally,
4283  * a successful reservation always leads to calling mac_group_addmac() to
4284  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4285  * always imply that the group is functioning abnormally.
4286  *
4287  * Currently this function is called everywhere, and it reflects assumptions
4288  * about MAC addresses in the implementation. CR 6735196.
4289  */
4290 int
4291 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4292 {
4293 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4294 	ASSERT(group->mrg_info.mgi_addmac != NULL);
4295 
4296 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4297 }
4298 
4299 /*
4300  * Remove the association between MAC address and receive group.
4301  */
4302 int
4303 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4304 {
4305 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4306 	ASSERT(group->mrg_info.mgi_remmac != NULL);
4307 
4308 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4309 }
4310 
4311 /*
4312  * This is the entry point for packets transmitted through the bridging code.
4313  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4314  * pointer may be NULL to select the default ring.
4315  */
4316 mblk_t *
4317 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4318 {
4319 	mac_handle_t mh;
4320 
4321 	/*
4322 	 * Once we take a reference on the bridge link, the bridge
4323 	 * module itself can't unload, so the callback pointers are
4324 	 * stable.
4325 	 */
4326 	mutex_enter(&mip->mi_bridge_lock);
4327 	if ((mh = mip->mi_bridge_link) != NULL)
4328 		mac_bridge_ref_cb(mh, B_TRUE);
4329 	mutex_exit(&mip->mi_bridge_lock);
4330 	if (mh == NULL) {
4331 		MAC_RING_TX(mip, rh, mp, mp);
4332 	} else {
4333 		mp = mac_bridge_tx_cb(mh, rh, mp);
4334 		mac_bridge_ref_cb(mh, B_FALSE);
4335 	}
4336 
4337 	return (mp);
4338 }
4339 
4340 /*
4341  * Find a ring from its index.
4342  */
4343 mac_ring_handle_t
4344 mac_find_ring(mac_group_handle_t gh, int index)
4345 {
4346 	mac_group_t *group = (mac_group_t *)gh;
4347 	mac_ring_t *ring = group->mrg_rings;
4348 
4349 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4350 		if (ring->mr_index == index)
4351 			break;
4352 
4353 	return ((mac_ring_handle_t)ring);
4354 }
4355 /*
4356  * Add a ring to an existing group.
4357  *
4358  * The ring must be either passed directly (for example if the ring
4359  * movement is initiated by the framework), or specified through a driver
4360  * index (for example when the ring is added by the driver.
4361  *
4362  * The caller needs to call mac_perim_enter() before calling this function.
4363  */
4364 int
4365 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4366 {
4367 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4368 	mac_capab_rings_t *cap_rings;
4369 	boolean_t driver_call = (ring == NULL);
4370 	mac_group_type_t group_type;
4371 	int ret = 0;
4372 	flow_entry_t *flent;
4373 
4374 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4375 
4376 	switch (group->mrg_type) {
4377 	case MAC_RING_TYPE_RX:
4378 		cap_rings = &mip->mi_rx_rings_cap;
4379 		group_type = mip->mi_rx_group_type;
4380 		break;
4381 	case MAC_RING_TYPE_TX:
4382 		cap_rings = &mip->mi_tx_rings_cap;
4383 		group_type = mip->mi_tx_group_type;
4384 		break;
4385 	default:
4386 		ASSERT(B_FALSE);
4387 	}
4388 
4389 	/*
4390 	 * There should be no ring with the same ring index in the target
4391 	 * group.
4392 	 */
4393 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4394 	    driver_call ? index : ring->mr_index) == NULL);
4395 
4396 	if (driver_call) {
4397 		/*
4398 		 * The function is called as a result of a request from
4399 		 * a driver to add a ring to an existing group, for example
4400 		 * from the aggregation driver. Allocate a new mac_ring_t
4401 		 * for that ring.
4402 		 */
4403 		ring = mac_init_ring(mip, group, index, cap_rings);
4404 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4405 	} else {
4406 		/*
4407 		 * The function is called as a result of a MAC layer request
4408 		 * to add a ring to an existing group. In this case the
4409 		 * ring is being moved between groups, which requires
4410 		 * the underlying driver to support dynamic grouping,
4411 		 * and the mac_ring_t already exists.
4412 		 */
4413 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4414 		ASSERT(group->mrg_driver == NULL ||
4415 		    cap_rings->mr_gaddring != NULL);
4416 		ASSERT(ring->mr_gh == NULL);
4417 	}
4418 
4419 	/*
4420 	 * At this point the ring should not be in use, and it should be
4421 	 * of the right for the target group.
4422 	 */
4423 	ASSERT(ring->mr_state < MR_INUSE);
4424 	ASSERT(ring->mr_srs == NULL);
4425 	ASSERT(ring->mr_type == group->mrg_type);
4426 
4427 	if (!driver_call) {
4428 		/*
4429 		 * Add the driver level hardware ring if the process was not
4430 		 * initiated by the driver, and the target group is not the
4431 		 * group.
4432 		 */
4433 		if (group->mrg_driver != NULL) {
4434 			cap_rings->mr_gaddring(group->mrg_driver,
4435 			    ring->mr_driver, ring->mr_type);
4436 		}
4437 
4438 		/*
4439 		 * Insert the ring ahead existing rings.
4440 		 */
4441 		ring->mr_next = group->mrg_rings;
4442 		group->mrg_rings = ring;
4443 		ring->mr_gh = (mac_group_handle_t)group;
4444 		group->mrg_cur_count++;
4445 	}
4446 
4447 	/*
4448 	 * If the group has not been actively used, we're done.
4449 	 */
4450 	if (group->mrg_index != -1 &&
4451 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4452 		return (0);
4453 
4454 	/*
4455 	 * Start the ring if needed. Failure causes to undo the grouping action.
4456 	 */
4457 	if (ring->mr_state != MR_INUSE) {
4458 		if ((ret = mac_start_ring(ring)) != 0) {
4459 			if (!driver_call) {
4460 				cap_rings->mr_gremring(group->mrg_driver,
4461 				    ring->mr_driver, ring->mr_type);
4462 			}
4463 			group->mrg_cur_count--;
4464 			group->mrg_rings = ring->mr_next;
4465 
4466 			ring->mr_gh = NULL;
4467 
4468 			if (driver_call)
4469 				mac_ring_free(mip, ring);
4470 
4471 			return (ret);
4472 		}
4473 	}
4474 
4475 	/*
4476 	 * Set up SRS/SR according to the ring type.
4477 	 */
4478 	switch (ring->mr_type) {
4479 	case MAC_RING_TYPE_RX:
4480 		/*
4481 		 * Setup SRS on top of the new ring if the group is
4482 		 * reserved for someones exclusive use.
4483 		 */
4484 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4485 			mac_client_impl_t *mcip;
4486 
4487 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4488 			/*
4489 			 * Even though this group is reserved we migth still
4490 			 * have multiple clients, i.e a VLAN shares the
4491 			 * group with the primary mac client.
4492 			 */
4493 			if (mcip != NULL) {
4494 				flent = mcip->mci_flent;
4495 				ASSERT(flent->fe_rx_srs_cnt > 0);
4496 				mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4497 				mac_fanout_setup(mcip, flent,
4498 				    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4499 				    mcip, NULL, NULL);
4500 			} else {
4501 				ring->mr_classify_type = MAC_SW_CLASSIFIER;
4502 			}
4503 		}
4504 		break;
4505 	case MAC_RING_TYPE_TX:
4506 	{
4507 		mac_grp_client_t	*mgcp = group->mrg_clients;
4508 		mac_client_impl_t	*mcip;
4509 		mac_soft_ring_set_t	*mac_srs;
4510 		mac_srs_tx_t		*tx;
4511 
4512 		if (MAC_GROUP_NO_CLIENT(group)) {
4513 			if (ring->mr_state == MR_INUSE)
4514 				mac_stop_ring(ring);
4515 			ring->mr_flag = 0;
4516 			break;
4517 		}
4518 		/*
4519 		 * If the rings are being moved to a group that has
4520 		 * clients using it, then add the new rings to the
4521 		 * clients SRS.
4522 		 */
4523 		while (mgcp != NULL) {
4524 			boolean_t	is_aggr;
4525 
4526 			mcip = mgcp->mgc_client;
4527 			flent = mcip->mci_flent;
4528 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4529 			mac_srs = MCIP_TX_SRS(mcip);
4530 			tx = &mac_srs->srs_tx;
4531 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4532 			/*
4533 			 * If we are  growing from 1 to multiple rings.
4534 			 */
4535 			if (tx->st_mode == SRS_TX_BW ||
4536 			    tx->st_mode == SRS_TX_SERIALIZE ||
4537 			    tx->st_mode == SRS_TX_DEFAULT) {
4538 				mac_ring_t	*tx_ring = tx->st_arg2;
4539 
4540 				tx->st_arg2 = NULL;
4541 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4542 				mac_tx_srs_add_ring(mac_srs, tx_ring);
4543 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4544 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4545 					    SRS_TX_BW_FANOUT;
4546 				} else {
4547 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
4548 					    SRS_TX_FANOUT;
4549 				}
4550 				tx->st_func = mac_tx_get_func(tx->st_mode);
4551 			}
4552 			mac_tx_srs_add_ring(mac_srs, ring);
4553 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4554 			    mac_rx_deliver, mcip, NULL, NULL);
4555 			mac_tx_client_restart((mac_client_handle_t)mcip);
4556 			mgcp = mgcp->mgc_next;
4557 		}
4558 		break;
4559 	}
4560 	default:
4561 		ASSERT(B_FALSE);
4562 	}
4563 	/*
4564 	 * For aggr, the default ring will be NULL to begin with. If it
4565 	 * is NULL, then pick the first ring that gets added as the
4566 	 * default ring. Any ring in an aggregation can be removed at
4567 	 * any time (by the user action of removing a link) and if the
4568 	 * current default ring gets removed, then a new one gets
4569 	 * picked (see i_mac_group_rem_ring()).
4570 	 */
4571 	if (mip->mi_state_flags & MIS_IS_AGGR &&
4572 	    mip->mi_default_tx_ring == NULL &&
4573 	    ring->mr_type == MAC_RING_TYPE_TX) {
4574 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4575 	}
4576 
4577 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
4578 	return (0);
4579 }
4580 
4581 /*
4582  * Remove a ring from it's current group. MAC internal function for dynamic
4583  * grouping.
4584  *
4585  * The caller needs to call mac_perim_enter() before calling this function.
4586  */
4587 void
4588 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4589     boolean_t driver_call)
4590 {
4591 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4592 	mac_capab_rings_t *cap_rings = NULL;
4593 	mac_group_type_t group_type;
4594 
4595 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4596 
4597 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4598 	    ring->mr_index) == (mac_ring_handle_t)ring);
4599 	ASSERT((mac_group_t *)ring->mr_gh == group);
4600 	ASSERT(ring->mr_type == group->mrg_type);
4601 
4602 	if (ring->mr_state == MR_INUSE)
4603 		mac_stop_ring(ring);
4604 	switch (ring->mr_type) {
4605 	case MAC_RING_TYPE_RX:
4606 		group_type = mip->mi_rx_group_type;
4607 		cap_rings = &mip->mi_rx_rings_cap;
4608 
4609 		/*
4610 		 * Only hardware classified packets hold a reference to the
4611 		 * ring all the way up the Rx path. mac_rx_srs_remove()
4612 		 * will take care of quiescing the Rx path and removing the
4613 		 * SRS. The software classified path neither holds a reference
4614 		 * nor any association with the ring in mac_rx.
4615 		 */
4616 		if (ring->mr_srs != NULL) {
4617 			mac_rx_srs_remove(ring->mr_srs);
4618 			ring->mr_srs = NULL;
4619 		}
4620 
4621 		break;
4622 	case MAC_RING_TYPE_TX:
4623 	{
4624 		mac_grp_client_t	*mgcp;
4625 		mac_client_impl_t	*mcip;
4626 		mac_soft_ring_set_t	*mac_srs;
4627 		mac_srs_tx_t		*tx;
4628 		mac_ring_t		*rem_ring;
4629 		mac_group_t		*defgrp;
4630 		uint_t			ring_info = 0;
4631 
4632 		/*
4633 		 * For TX this function is invoked in three
4634 		 * cases:
4635 		 *
4636 		 * 1) In the case of a failure during the
4637 		 * initial creation of a group when a share is
4638 		 * associated with a MAC client. So the SRS is not
4639 		 * yet setup, and will be setup later after the
4640 		 * group has been reserved and populated.
4641 		 *
4642 		 * 2) From mac_release_tx_group() when freeing
4643 		 * a TX SRS.
4644 		 *
4645 		 * 3) In the case of aggr, when a port gets removed,
4646 		 * the pseudo Tx rings that it exposed gets removed.
4647 		 *
4648 		 * In the first two cases the SRS and its soft
4649 		 * rings are already quiesced.
4650 		 */
4651 		if (driver_call) {
4652 			mac_client_impl_t *mcip;
4653 			mac_soft_ring_set_t *mac_srs;
4654 			mac_soft_ring_t *sringp;
4655 			mac_srs_tx_t *srs_tx;
4656 
4657 			if (mip->mi_state_flags & MIS_IS_AGGR &&
4658 			    mip->mi_default_tx_ring ==
4659 			    (mac_ring_handle_t)ring) {
4660 				/* pick a new default Tx ring */
4661 				mip->mi_default_tx_ring =
4662 				    (group->mrg_rings != ring) ?
4663 				    (mac_ring_handle_t)group->mrg_rings :
4664 				    (mac_ring_handle_t)(ring->mr_next);
4665 			}
4666 			/* Presently only aggr case comes here */
4667 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4668 				break;
4669 
4670 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4671 			ASSERT(mcip != NULL);
4672 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4673 			mac_srs = MCIP_TX_SRS(mcip);
4674 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4675 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4676 			srs_tx = &mac_srs->srs_tx;
4677 			/*
4678 			 * Wakeup any callers blocked on this
4679 			 * Tx ring due to flow control.
4680 			 */
4681 			sringp = srs_tx->st_soft_rings[ring->mr_index];
4682 			ASSERT(sringp != NULL);
4683 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4684 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4685 			mac_tx_srs_del_ring(mac_srs, ring);
4686 			mac_tx_client_restart((mac_client_handle_t)mcip);
4687 			break;
4688 		}
4689 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4690 		group_type = mip->mi_tx_group_type;
4691 		cap_rings = &mip->mi_tx_rings_cap;
4692 		/*
4693 		 * See if we need to take it out of the MAC clients using
4694 		 * this group
4695 		 */
4696 		if (MAC_GROUP_NO_CLIENT(group))
4697 			break;
4698 		mgcp = group->mrg_clients;
4699 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
4700 		while (mgcp != NULL) {
4701 			mcip = mgcp->mgc_client;
4702 			mac_srs = MCIP_TX_SRS(mcip);
4703 			tx = &mac_srs->srs_tx;
4704 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4705 			/*
4706 			 * If we are here when removing rings from the
4707 			 * defgroup, mac_reserve_tx_ring would have
4708 			 * already deleted the ring from the MAC
4709 			 * clients in the group.
4710 			 */
4711 			if (group != defgrp) {
4712 				mac_tx_invoke_callbacks(mcip,
4713 				    (mac_tx_cookie_t)
4714 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
4715 				mac_tx_srs_del_ring(mac_srs, ring);
4716 			}
4717 			/*
4718 			 * Additionally, if  we are left with only
4719 			 * one ring in the group after this, we need
4720 			 * to modify the mode etc. to. (We haven't
4721 			 * yet taken the ring out, so we check with 2).
4722 			 */
4723 			if (group->mrg_cur_count == 2) {
4724 				if (ring->mr_next == NULL)
4725 					rem_ring = group->mrg_rings;
4726 				else
4727 					rem_ring = ring->mr_next;
4728 				mac_tx_invoke_callbacks(mcip,
4729 				    (mac_tx_cookie_t)
4730 				    mac_tx_srs_get_soft_ring(mac_srs,
4731 				    rem_ring));
4732 				mac_tx_srs_del_ring(mac_srs, rem_ring);
4733 				if (rem_ring->mr_state != MR_INUSE) {
4734 					(void) mac_start_ring(rem_ring);
4735 				}
4736 				tx->st_arg2 = (void *)rem_ring;
4737 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4738 				ring_info = mac_hwring_getinfo(
4739 				    (mac_ring_handle_t)rem_ring);
4740 				/*
4741 				 * We are  shrinking from multiple
4742 				 * to 1 ring.
4743 				 */
4744 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4745 					tx->st_mode = SRS_TX_BW;
4746 				} else if (mac_tx_serialize ||
4747 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
4748 					tx->st_mode = SRS_TX_SERIALIZE;
4749 				} else {
4750 					tx->st_mode = SRS_TX_DEFAULT;
4751 				}
4752 				tx->st_func = mac_tx_get_func(tx->st_mode);
4753 			}
4754 			mac_tx_client_restart((mac_client_handle_t)mcip);
4755 			mgcp = mgcp->mgc_next;
4756 		}
4757 		break;
4758 	}
4759 	default:
4760 		ASSERT(B_FALSE);
4761 	}
4762 
4763 	/*
4764 	 * Remove the ring from the group.
4765 	 */
4766 	if (ring == group->mrg_rings)
4767 		group->mrg_rings = ring->mr_next;
4768 	else {
4769 		mac_ring_t *pre;
4770 
4771 		pre = group->mrg_rings;
4772 		while (pre->mr_next != ring)
4773 			pre = pre->mr_next;
4774 		pre->mr_next = ring->mr_next;
4775 	}
4776 	group->mrg_cur_count--;
4777 
4778 	if (!driver_call) {
4779 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4780 		ASSERT(group->mrg_driver == NULL ||
4781 		    cap_rings->mr_gremring != NULL);
4782 
4783 		/*
4784 		 * Remove the driver level hardware ring.
4785 		 */
4786 		if (group->mrg_driver != NULL) {
4787 			cap_rings->mr_gremring(group->mrg_driver,
4788 			    ring->mr_driver, ring->mr_type);
4789 		}
4790 	}
4791 
4792 	ring->mr_gh = NULL;
4793 	if (driver_call)
4794 		mac_ring_free(mip, ring);
4795 	else
4796 		ring->mr_flag = 0;
4797 }
4798 
4799 /*
4800  * Move a ring to the target group. If needed, remove the ring from the group
4801  * that it currently belongs to.
4802  *
4803  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4804  */
4805 static int
4806 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4807 {
4808 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4809 	int rv;
4810 
4811 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4812 	ASSERT(d_group != NULL);
4813 	ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4814 
4815 	if (s_group == d_group)
4816 		return (0);
4817 
4818 	/*
4819 	 * Remove it from current group first.
4820 	 */
4821 	if (s_group != NULL)
4822 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
4823 
4824 	/*
4825 	 * Add it to the new group.
4826 	 */
4827 	rv = i_mac_group_add_ring(d_group, ring, 0);
4828 	if (rv != 0) {
4829 		/*
4830 		 * Failed to add ring back to source group. If
4831 		 * that fails, the ring is stuck in limbo, log message.
4832 		 */
4833 		if (i_mac_group_add_ring(s_group, ring, 0)) {
4834 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4835 			    mip->mi_name, (void *)ring);
4836 		}
4837 	}
4838 
4839 	return (rv);
4840 }
4841 
4842 /*
4843  * Find a MAC address according to its value.
4844  */
4845 mac_address_t *
4846 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4847 {
4848 	mac_address_t *map;
4849 
4850 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4851 
4852 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4853 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4854 			break;
4855 	}
4856 
4857 	return (map);
4858 }
4859 
4860 /*
4861  * Check whether the MAC address is shared by multiple clients.
4862  */
4863 boolean_t
4864 mac_check_macaddr_shared(mac_address_t *map)
4865 {
4866 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4867 
4868 	return (map->ma_nusers > 1);
4869 }
4870 
4871 /*
4872  * Remove the specified MAC address from the MAC address list and free it.
4873  */
4874 static void
4875 mac_free_macaddr(mac_address_t *map)
4876 {
4877 	mac_impl_t *mip = map->ma_mip;
4878 
4879 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4880 	ASSERT(mip->mi_addresses != NULL);
4881 
4882 	map = mac_find_macaddr(mip, map->ma_addr);
4883 
4884 	ASSERT(map != NULL);
4885 	ASSERT(map->ma_nusers == 0);
4886 
4887 	if (map == mip->mi_addresses) {
4888 		mip->mi_addresses = map->ma_next;
4889 	} else {
4890 		mac_address_t *pre;
4891 
4892 		pre = mip->mi_addresses;
4893 		while (pre->ma_next != map)
4894 			pre = pre->ma_next;
4895 		pre->ma_next = map->ma_next;
4896 	}
4897 
4898 	kmem_free(map, sizeof (mac_address_t));
4899 }
4900 
4901 /*
4902  * Add a MAC address reference for a client. If the desired MAC address
4903  * exists, add a reference to it. Otherwise, add the new address by adding
4904  * it to a reserved group or setting promiscuous mode. Won't try different
4905  * group is the group is non-NULL, so the caller must explictly share
4906  * default group when needed.
4907  *
4908  * Note, the primary MAC address is initialized at registration time, so
4909  * to add it to default group only need to activate it if its reference
4910  * count is still zero. Also, some drivers may not have advertised RINGS
4911  * capability.
4912  */
4913 int
4914 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4915     boolean_t use_hw)
4916 {
4917 	mac_address_t *map;
4918 	int err = 0;
4919 	boolean_t allocated_map = B_FALSE;
4920 
4921 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4922 
4923 	map = mac_find_macaddr(mip, mac_addr);
4924 
4925 	/*
4926 	 * If the new MAC address has not been added. Allocate a new one
4927 	 * and set it up.
4928 	 */
4929 	if (map == NULL) {
4930 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4931 		map->ma_len = mip->mi_type->mt_addr_length;
4932 		bcopy(mac_addr, map->ma_addr, map->ma_len);
4933 		map->ma_nusers = 0;
4934 		map->ma_group = group;
4935 		map->ma_mip = mip;
4936 
4937 		/* add the new MAC address to the head of the address list */
4938 		map->ma_next = mip->mi_addresses;
4939 		mip->mi_addresses = map;
4940 
4941 		allocated_map = B_TRUE;
4942 	}
4943 
4944 	ASSERT(map->ma_group == NULL || map->ma_group == group);
4945 	if (map->ma_group == NULL)
4946 		map->ma_group = group;
4947 
4948 	/*
4949 	 * If the MAC address is already in use, simply account for the
4950 	 * new client.
4951 	 */
4952 	if (map->ma_nusers++ > 0)
4953 		return (0);
4954 
4955 	/*
4956 	 * Activate this MAC address by adding it to the reserved group.
4957 	 */
4958 	if (group != NULL) {
4959 		err = mac_group_addmac(group, (const uint8_t *)mac_addr);
4960 		if (err == 0) {
4961 			map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4962 			return (0);
4963 		}
4964 	}
4965 
4966 	/*
4967 	 * The MAC address addition failed. If the client requires a
4968 	 * hardware classified MAC address, fail the operation.
4969 	 */
4970 	if (use_hw) {
4971 		err = ENOSPC;
4972 		goto bail;
4973 	}
4974 
4975 	/*
4976 	 * Try promiscuous mode.
4977 	 *
4978 	 * For drivers that don't advertise RINGS capability, do
4979 	 * nothing for the primary address.
4980 	 */
4981 	if ((group == NULL) &&
4982 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
4983 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4984 		return (0);
4985 	}
4986 
4987 	/*
4988 	 * Enable promiscuous mode in order to receive traffic
4989 	 * to the new MAC address.
4990 	 */
4991 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
4992 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
4993 		return (0);
4994 	}
4995 
4996 	/*
4997 	 * Free the MAC address that could not be added. Don't free
4998 	 * a pre-existing address, it could have been the entry
4999 	 * for the primary MAC address which was pre-allocated by
5000 	 * mac_init_macaddr(), and which must remain on the list.
5001 	 */
5002 bail:
5003 	map->ma_nusers--;
5004 	if (allocated_map)
5005 		mac_free_macaddr(map);
5006 	return (err);
5007 }
5008 
5009 /*
5010  * Remove a reference to a MAC address. This may cause to remove the MAC
5011  * address from an associated group or to turn off promiscuous mode.
5012  * The caller needs to handle the failure properly.
5013  */
5014 int
5015 mac_remove_macaddr(mac_address_t *map)
5016 {
5017 	mac_impl_t *mip = map->ma_mip;
5018 	int err = 0;
5019 
5020 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5021 
5022 	ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5023 
5024 	/*
5025 	 * If it's not the last client using this MAC address, only update
5026 	 * the MAC clients count.
5027 	 */
5028 	if (--map->ma_nusers > 0)
5029 		return (0);
5030 
5031 	/*
5032 	 * The MAC address is no longer used by any MAC client, so remove
5033 	 * it from its associated group, or turn off promiscuous mode
5034 	 * if it was enabled for the MAC address.
5035 	 */
5036 	switch (map->ma_type) {
5037 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5038 		/*
5039 		 * Don't free the preset primary address for drivers that
5040 		 * don't advertise RINGS capability.
5041 		 */
5042 		if (map->ma_group == NULL)
5043 			return (0);
5044 
5045 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5046 		if (err == 0)
5047 			map->ma_group = NULL;
5048 		break;
5049 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5050 		err = i_mac_promisc_set(mip, B_FALSE);
5051 		break;
5052 	default:
5053 		ASSERT(B_FALSE);
5054 	}
5055 
5056 	if (err != 0)
5057 		return (err);
5058 
5059 	/*
5060 	 * We created MAC address for the primary one at registration, so we
5061 	 * won't free it here. mac_fini_macaddr() will take care of it.
5062 	 */
5063 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5064 		mac_free_macaddr(map);
5065 
5066 	return (0);
5067 }
5068 
5069 /*
5070  * Update an existing MAC address. The caller need to make sure that the new
5071  * value has not been used.
5072  */
5073 int
5074 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5075 {
5076 	mac_impl_t *mip = map->ma_mip;
5077 	int err = 0;
5078 
5079 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5080 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5081 
5082 	switch (map->ma_type) {
5083 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5084 		/*
5085 		 * Update the primary address for drivers that are not
5086 		 * RINGS capable.
5087 		 */
5088 		if (mip->mi_rx_groups == NULL) {
5089 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5090 			    mac_addr);
5091 			if (err != 0)
5092 				return (err);
5093 			break;
5094 		}
5095 
5096 		/*
5097 		 * If this MAC address is not currently in use,
5098 		 * simply break out and update the value.
5099 		 */
5100 		if (map->ma_nusers == 0)
5101 			break;
5102 
5103 		/*
5104 		 * Need to replace the MAC address associated with a group.
5105 		 */
5106 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5107 		if (err != 0)
5108 			return (err);
5109 
5110 		err = mac_group_addmac(map->ma_group, mac_addr);
5111 
5112 		/*
5113 		 * Failure hints hardware error. The MAC layer needs to
5114 		 * have error notification facility to handle this.
5115 		 * Now, simply try to restore the value.
5116 		 */
5117 		if (err != 0)
5118 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5119 
5120 		break;
5121 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5122 		/*
5123 		 * Need to do nothing more if in promiscuous mode.
5124 		 */
5125 		break;
5126 	default:
5127 		ASSERT(B_FALSE);
5128 	}
5129 
5130 	/*
5131 	 * Successfully replaced the MAC address.
5132 	 */
5133 	if (err == 0)
5134 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5135 
5136 	return (err);
5137 }
5138 
5139 /*
5140  * Freshen the MAC address with new value. Its caller must have updated the
5141  * hardware MAC address before calling this function.
5142  * This funcitons is supposed to be used to handle the MAC address change
5143  * notification from underlying drivers.
5144  */
5145 void
5146 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5147 {
5148 	mac_impl_t *mip = map->ma_mip;
5149 
5150 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5151 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5152 
5153 	/*
5154 	 * Freshen the MAC address with new value.
5155 	 */
5156 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5157 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5158 
5159 	/*
5160 	 * Update all MAC clients that share this MAC address.
5161 	 */
5162 	mac_unicast_update_clients(mip, map);
5163 }
5164 
5165 /*
5166  * Set up the primary MAC address.
5167  */
5168 void
5169 mac_init_macaddr(mac_impl_t *mip)
5170 {
5171 	mac_address_t *map;
5172 
5173 	/*
5174 	 * The reference count is initialized to zero, until it's really
5175 	 * activated.
5176 	 */
5177 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5178 	map->ma_len = mip->mi_type->mt_addr_length;
5179 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5180 
5181 	/*
5182 	 * If driver advertises RINGS capability, it shouldn't have initialized
5183 	 * its primary MAC address. For other drivers, including VNIC, the
5184 	 * primary address must work after registration.
5185 	 */
5186 	if (mip->mi_rx_groups == NULL)
5187 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5188 
5189 	map->ma_mip = mip;
5190 
5191 	mip->mi_addresses = map;
5192 }
5193 
5194 /*
5195  * Clean up the primary MAC address. Note, only one primary MAC address
5196  * is allowed. All other MAC addresses must have been freed appropriately.
5197  */
5198 void
5199 mac_fini_macaddr(mac_impl_t *mip)
5200 {
5201 	mac_address_t *map = mip->mi_addresses;
5202 
5203 	if (map == NULL)
5204 		return;
5205 
5206 	/*
5207 	 * If mi_addresses is initialized, there should be exactly one
5208 	 * entry left on the list with no users.
5209 	 */
5210 	ASSERT(map->ma_nusers == 0);
5211 	ASSERT(map->ma_next == NULL);
5212 
5213 	kmem_free(map, sizeof (mac_address_t));
5214 	mip->mi_addresses = NULL;
5215 }
5216 
5217 /*
5218  * Logging related functions.
5219  *
5220  * Note that Kernel statistics have been extended to maintain fine
5221  * granularity of statistics viz. hardware lane, software lane, fanout
5222  * stats etc. However, extended accounting continues to support only
5223  * aggregate statistics like before.
5224  */
5225 
5226 /* Write the flow description to a netinfo_t record */
5227 static netinfo_t *
5228 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5229 {
5230 	netinfo_t		*ninfo;
5231 	net_desc_t		*ndesc;
5232 	flow_desc_t		*fdesc;
5233 	mac_resource_props_t	*mrp;
5234 
5235 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5236 	if (ninfo == NULL)
5237 		return (NULL);
5238 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5239 	if (ndesc == NULL) {
5240 		kmem_free(ninfo, sizeof (netinfo_t));
5241 		return (NULL);
5242 	}
5243 
5244 	/*
5245 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5246 	 * Updates to the fe_flow_desc are done under the fe_lock
5247 	 */
5248 	mutex_enter(&flent->fe_lock);
5249 	fdesc = &flent->fe_flow_desc;
5250 	mrp = &flent->fe_resource_props;
5251 
5252 	ndesc->nd_name = flent->fe_flow_name;
5253 	ndesc->nd_devname = mcip->mci_name;
5254 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5255 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5256 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5257 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5258 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5259 	if (ndesc->nd_isv4) {
5260 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5261 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5262 	} else {
5263 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5264 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5265 	}
5266 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5267 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5268 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5269 	mutex_exit(&flent->fe_lock);
5270 
5271 	ninfo->ni_record = ndesc;
5272 	ninfo->ni_size = sizeof (net_desc_t);
5273 	ninfo->ni_type = EX_NET_FLDESC_REC;
5274 
5275 	return (ninfo);
5276 }
5277 
5278 /* Write the flow statistics to a netinfo_t record */
5279 static netinfo_t *
5280 mac_write_flow_stats(flow_entry_t *flent)
5281 {
5282 	netinfo_t		*ninfo;
5283 	net_stat_t		*nstat;
5284 	mac_soft_ring_set_t	*mac_srs;
5285 	mac_rx_stats_t		*mac_rx_stat;
5286 	mac_tx_stats_t		*mac_tx_stat;
5287 	int			i;
5288 
5289 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5290 	if (ninfo == NULL)
5291 		return (NULL);
5292 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5293 	if (nstat == NULL) {
5294 		kmem_free(ninfo, sizeof (netinfo_t));
5295 		return (NULL);
5296 	}
5297 
5298 	nstat->ns_name = flent->fe_flow_name;
5299 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5300 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5301 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5302 
5303 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5304 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5305 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5306 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5307 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5308 	}
5309 
5310 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5311 	if (mac_srs != NULL) {
5312 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5313 
5314 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5315 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5316 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5317 	}
5318 
5319 	ninfo->ni_record = nstat;
5320 	ninfo->ni_size = sizeof (net_stat_t);
5321 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5322 
5323 	return (ninfo);
5324 }
5325 
5326 /* Write the link description to a netinfo_t record */
5327 static netinfo_t *
5328 mac_write_link_desc(mac_client_impl_t *mcip)
5329 {
5330 	netinfo_t		*ninfo;
5331 	net_desc_t		*ndesc;
5332 	flow_entry_t		*flent = mcip->mci_flent;
5333 
5334 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5335 	if (ninfo == NULL)
5336 		return (NULL);
5337 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5338 	if (ndesc == NULL) {
5339 		kmem_free(ninfo, sizeof (netinfo_t));
5340 		return (NULL);
5341 	}
5342 
5343 	ndesc->nd_name = mcip->mci_name;
5344 	ndesc->nd_devname = mcip->mci_name;
5345 	ndesc->nd_isv4 = B_TRUE;
5346 	/*
5347 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5348 	 * Updates to the fe_flow_desc are done under the fe_lock
5349 	 * after removing the flent from the flow table.
5350 	 */
5351 	mutex_enter(&flent->fe_lock);
5352 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5353 	mutex_exit(&flent->fe_lock);
5354 
5355 	ninfo->ni_record = ndesc;
5356 	ninfo->ni_size = sizeof (net_desc_t);
5357 	ninfo->ni_type = EX_NET_LNDESC_REC;
5358 
5359 	return (ninfo);
5360 }
5361 
5362 /* Write the link statistics to a netinfo_t record */
5363 static netinfo_t *
5364 mac_write_link_stats(mac_client_impl_t *mcip)
5365 {
5366 	netinfo_t		*ninfo;
5367 	net_stat_t		*nstat;
5368 	flow_entry_t		*flent;
5369 	mac_soft_ring_set_t	*mac_srs;
5370 	mac_rx_stats_t		*mac_rx_stat;
5371 	mac_tx_stats_t		*mac_tx_stat;
5372 	int			i;
5373 
5374 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5375 	if (ninfo == NULL)
5376 		return (NULL);
5377 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5378 	if (nstat == NULL) {
5379 		kmem_free(ninfo, sizeof (netinfo_t));
5380 		return (NULL);
5381 	}
5382 
5383 	nstat->ns_name = mcip->mci_name;
5384 	flent = mcip->mci_flent;
5385 	if (flent != NULL)  {
5386 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5387 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5388 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5389 
5390 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5391 			    mac_rx_stat->mrs_pollbytes +
5392 			    mac_rx_stat->mrs_lclbytes;
5393 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5394 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5395 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5396 		}
5397 	}
5398 
5399 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5400 	if (mac_srs != NULL) {
5401 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5402 
5403 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5404 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5405 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5406 	}
5407 
5408 	ninfo->ni_record = nstat;
5409 	ninfo->ni_size = sizeof (net_stat_t);
5410 	ninfo->ni_type = EX_NET_LNSTAT_REC;
5411 
5412 	return (ninfo);
5413 }
5414 
5415 typedef struct i_mac_log_state_s {
5416 	boolean_t	mi_last;
5417 	int		mi_fenable;
5418 	int		mi_lenable;
5419 	list_t		*mi_list;
5420 } i_mac_log_state_t;
5421 
5422 /*
5423  * For a given flow, if the description has not been logged before, do it now.
5424  * If it is a VNIC, then we have collected information about it from the MAC
5425  * table, so skip it.
5426  *
5427  * Called through mac_flow_walk_nolock()
5428  *
5429  * Return 0 if successful.
5430  */
5431 static int
5432 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5433 {
5434 	mac_client_impl_t	*mcip = flent->fe_mcip;
5435 	i_mac_log_state_t	*lstate = arg;
5436 	netinfo_t		*ninfo;
5437 
5438 	if (mcip == NULL)
5439 		return (0);
5440 
5441 	/*
5442 	 * If the name starts with "vnic", and fe_user_generated is true (to
5443 	 * exclude the mcast and active flow entries created implicitly for
5444 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5445 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5446 	 */
5447 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5448 	    (flent->fe_type & FLOW_USER) != 0) {
5449 		return (0);
5450 	}
5451 
5452 	if (!flent->fe_desc_logged) {
5453 		/*
5454 		 * We don't return error because we want to continue the
5455 		 * walk in case this is the last walk which means we
5456 		 * need to reset fe_desc_logged in all the flows.
5457 		 */
5458 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5459 			return (0);
5460 		list_insert_tail(lstate->mi_list, ninfo);
5461 		flent->fe_desc_logged = B_TRUE;
5462 	}
5463 
5464 	/*
5465 	 * Regardless of the error, we want to proceed in case we have to
5466 	 * reset fe_desc_logged.
5467 	 */
5468 	ninfo = mac_write_flow_stats(flent);
5469 	if (ninfo == NULL)
5470 		return (-1);
5471 
5472 	list_insert_tail(lstate->mi_list, ninfo);
5473 
5474 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5475 		flent->fe_desc_logged = B_FALSE;
5476 
5477 	return (0);
5478 }
5479 
5480 /*
5481  * Log the description for each mac client of this mac_impl_t, if it
5482  * hasn't already been done. Additionally, log statistics for the link as
5483  * well. Walk the flow table and log information for each flow as well.
5484  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5485  * also fe_desc_logged, if flow logging is on) since we want to log the
5486  * description if and when logging is restarted.
5487  *
5488  * Return 0 upon success or -1 upon failure
5489  */
5490 static int
5491 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5492 {
5493 	mac_client_impl_t	*mcip;
5494 	netinfo_t		*ninfo;
5495 
5496 	i_mac_perim_enter(mip);
5497 	/*
5498 	 * Only walk the client list for NIC and etherstub
5499 	 */
5500 	if ((mip->mi_state_flags & MIS_DISABLED) ||
5501 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
5502 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5503 		i_mac_perim_exit(mip);
5504 		return (0);
5505 	}
5506 
5507 	for (mcip = mip->mi_clients_list; mcip != NULL;
5508 	    mcip = mcip->mci_client_next) {
5509 		if (!MCIP_DATAPATH_SETUP(mcip))
5510 			continue;
5511 		if (lstate->mi_lenable) {
5512 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5513 				ninfo = mac_write_link_desc(mcip);
5514 				if (ninfo == NULL) {
5515 				/*
5516 				 * We can't terminate it if this is the last
5517 				 * walk, else there might be some links with
5518 				 * mi_desc_logged set to true, which means
5519 				 * their description won't be logged the next
5520 				 * time logging is started (similarly for the
5521 				 * flows within such links). We can continue
5522 				 * without walking the flow table (i.e. to
5523 				 * set fe_desc_logged to false) because we
5524 				 * won't have written any flow stuff for this
5525 				 * link as we haven't logged the link itself.
5526 				 */
5527 					i_mac_perim_exit(mip);
5528 					if (lstate->mi_last)
5529 						return (0);
5530 					else
5531 						return (-1);
5532 				}
5533 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5534 				list_insert_tail(lstate->mi_list, ninfo);
5535 			}
5536 		}
5537 
5538 		ninfo = mac_write_link_stats(mcip);
5539 		if (ninfo == NULL && !lstate->mi_last) {
5540 			i_mac_perim_exit(mip);
5541 			return (-1);
5542 		}
5543 		list_insert_tail(lstate->mi_list, ninfo);
5544 
5545 		if (lstate->mi_last)
5546 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5547 
5548 		if (lstate->mi_fenable) {
5549 			if (mcip->mci_subflow_tab != NULL) {
5550 				(void) mac_flow_walk_nolock(
5551 				    mcip->mci_subflow_tab, mac_log_flowinfo,
5552 				    lstate);
5553 			}
5554 		}
5555 	}
5556 	i_mac_perim_exit(mip);
5557 	return (0);
5558 }
5559 
5560 /*
5561  * modhash walker function to add a mac_impl_t to a list
5562  */
5563 /*ARGSUSED*/
5564 static uint_t
5565 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5566 {
5567 	list_t			*list = (list_t *)arg;
5568 	mac_impl_t		*mip = (mac_impl_t *)val;
5569 
5570 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5571 		list_insert_tail(list, mip);
5572 		mip->mi_ref++;
5573 	}
5574 
5575 	return (MH_WALK_CONTINUE);
5576 }
5577 
5578 void
5579 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5580 {
5581 	list_t			mac_impl_list;
5582 	mac_impl_t		*mip;
5583 	netinfo_t		*ninfo;
5584 
5585 	/* Create list of mac_impls */
5586 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5587 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5588 	    mi_node));
5589 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5590 	rw_exit(&i_mac_impl_lock);
5591 
5592 	/* Create log entries for each mac_impl */
5593 	for (mip = list_head(&mac_impl_list); mip != NULL;
5594 	    mip = list_next(&mac_impl_list, mip)) {
5595 		if (i_mac_impl_log(mip, lstate) != 0)
5596 			continue;
5597 	}
5598 
5599 	/* Remove elements and destroy list of mac_impls */
5600 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5601 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5602 		mip->mi_ref--;
5603 	}
5604 	rw_exit(&i_mac_impl_lock);
5605 	list_destroy(&mac_impl_list);
5606 
5607 	/*
5608 	 * Write log entries to files outside of locks, free associated
5609 	 * structures, and remove entries from the list.
5610 	 */
5611 	while ((ninfo = list_head(net_log_list)) != NULL) {
5612 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5613 		list_remove(net_log_list, ninfo);
5614 		kmem_free(ninfo->ni_record, ninfo->ni_size);
5615 		kmem_free(ninfo, sizeof (*ninfo));
5616 	}
5617 	list_destroy(net_log_list);
5618 }
5619 
5620 /*
5621  * The timer thread that runs every mac_logging_interval seconds and logs
5622  * link and/or flow information.
5623  */
5624 /* ARGSUSED */
5625 void
5626 mac_log_linkinfo(void *arg)
5627 {
5628 	i_mac_log_state_t	lstate;
5629 	list_t			net_log_list;
5630 
5631 	list_create(&net_log_list, sizeof (netinfo_t),
5632 	    offsetof(netinfo_t, ni_link));
5633 
5634 	rw_enter(&i_mac_impl_lock, RW_READER);
5635 	if (!mac_flow_log_enable && !mac_link_log_enable) {
5636 		rw_exit(&i_mac_impl_lock);
5637 		return;
5638 	}
5639 	lstate.mi_fenable = mac_flow_log_enable;
5640 	lstate.mi_lenable = mac_link_log_enable;
5641 	lstate.mi_last = B_FALSE;
5642 	lstate.mi_list = &net_log_list;
5643 
5644 	/* Write log entries for each mac_impl in the list */
5645 	i_mac_log_info(&net_log_list, &lstate);
5646 
5647 	if (mac_flow_log_enable || mac_link_log_enable) {
5648 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5649 		    SEC_TO_TICK(mac_logging_interval));
5650 	}
5651 }
5652 
5653 typedef struct i_mac_fastpath_state_s {
5654 	boolean_t	mf_disable;
5655 	int		mf_err;
5656 } i_mac_fastpath_state_t;
5657 
5658 /* modhash walker function to enable or disable fastpath */
5659 /*ARGSUSED*/
5660 static uint_t
5661 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5662     void *arg)
5663 {
5664 	i_mac_fastpath_state_t	*state = arg;
5665 	mac_handle_t		mh = (mac_handle_t)val;
5666 
5667 	if (state->mf_disable)
5668 		state->mf_err = mac_fastpath_disable(mh);
5669 	else
5670 		mac_fastpath_enable(mh);
5671 
5672 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5673 }
5674 
5675 /*
5676  * Start the logging timer.
5677  */
5678 int
5679 mac_start_logusage(mac_logtype_t type, uint_t interval)
5680 {
5681 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
5682 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5683 	int			err;
5684 
5685 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5686 	switch (type) {
5687 	case MAC_LOGTYPE_FLOW:
5688 		if (mac_flow_log_enable) {
5689 			rw_exit(&i_mac_impl_lock);
5690 			return (0);
5691 		}
5692 		/* FALLTHRU */
5693 	case MAC_LOGTYPE_LINK:
5694 		if (mac_link_log_enable) {
5695 			rw_exit(&i_mac_impl_lock);
5696 			return (0);
5697 		}
5698 		break;
5699 	default:
5700 		ASSERT(0);
5701 	}
5702 
5703 	/* Disable fastpath */
5704 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5705 	if ((err = dstate.mf_err) != 0) {
5706 		/* Reenable fastpath  */
5707 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5708 		rw_exit(&i_mac_impl_lock);
5709 		return (err);
5710 	}
5711 
5712 	switch (type) {
5713 	case MAC_LOGTYPE_FLOW:
5714 		mac_flow_log_enable = B_TRUE;
5715 		/* FALLTHRU */
5716 	case MAC_LOGTYPE_LINK:
5717 		mac_link_log_enable = B_TRUE;
5718 		break;
5719 	}
5720 
5721 	mac_logging_interval = interval;
5722 	rw_exit(&i_mac_impl_lock);
5723 	mac_log_linkinfo(NULL);
5724 	return (0);
5725 }
5726 
5727 /*
5728  * Stop the logging timer if both link and flow logging are turned off.
5729  */
5730 void
5731 mac_stop_logusage(mac_logtype_t type)
5732 {
5733 	i_mac_log_state_t	lstate;
5734 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5735 	list_t			net_log_list;
5736 
5737 	list_create(&net_log_list, sizeof (netinfo_t),
5738 	    offsetof(netinfo_t, ni_link));
5739 
5740 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5741 
5742 	lstate.mi_fenable = mac_flow_log_enable;
5743 	lstate.mi_lenable = mac_link_log_enable;
5744 	lstate.mi_list = &net_log_list;
5745 
5746 	/* Last walk */
5747 	lstate.mi_last = B_TRUE;
5748 
5749 	switch (type) {
5750 	case MAC_LOGTYPE_FLOW:
5751 		if (lstate.mi_fenable) {
5752 			ASSERT(mac_link_log_enable);
5753 			mac_flow_log_enable = B_FALSE;
5754 			mac_link_log_enable = B_FALSE;
5755 			break;
5756 		}
5757 		/* FALLTHRU */
5758 	case MAC_LOGTYPE_LINK:
5759 		if (!lstate.mi_lenable || mac_flow_log_enable) {
5760 			rw_exit(&i_mac_impl_lock);
5761 			return;
5762 		}
5763 		mac_link_log_enable = B_FALSE;
5764 		break;
5765 	default:
5766 		ASSERT(0);
5767 	}
5768 
5769 	/* Reenable fastpath */
5770 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5771 
5772 	(void) untimeout(mac_logging_timer);
5773 	mac_logging_timer = 0;
5774 
5775 	/* Write log entries for each mac_impl in the list */
5776 	i_mac_log_info(&net_log_list, &lstate);
5777 }
5778 
5779 /*
5780  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5781  */
5782 void
5783 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5784 {
5785 	pri_t			pri;
5786 	int			count;
5787 	mac_soft_ring_set_t	*mac_srs;
5788 
5789 	if (flent->fe_rx_srs_cnt <= 0)
5790 		return;
5791 
5792 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5793 	    SRST_FLOW) {
5794 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
5795 		    mcip->mci_max_pri,
5796 		    flent->fe_resource_props.mrp_priority);
5797 	} else {
5798 		pri = mcip->mci_max_pri;
5799 	}
5800 
5801 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5802 		mac_srs = flent->fe_rx_srs[count];
5803 		mac_update_srs_priority(mac_srs, pri);
5804 	}
5805 	/*
5806 	 * If we have a Tx SRS, we need to modify all the threads associated
5807 	 * with it.
5808 	 */
5809 	if (flent->fe_tx_srs != NULL)
5810 		mac_update_srs_priority(flent->fe_tx_srs, pri);
5811 }
5812 
5813 /*
5814  * RX and TX rings are reserved according to different semantics depending
5815  * on the requests from the MAC clients and type of rings:
5816  *
5817  * On the Tx side, by default we reserve individual rings, independently from
5818  * the groups.
5819  *
5820  * On the Rx side, the reservation is at the granularity of the group
5821  * of rings, and used for v12n level 1 only. It has a special case for the
5822  * primary client.
5823  *
5824  * If a share is allocated to a MAC client, we allocate a TX group and an
5825  * RX group to the client, and assign TX rings and RX rings to these
5826  * groups according to information gathered from the driver through
5827  * the share capability.
5828  *
5829  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5830  * to allocate individual rings out of a group and program the hw classifier
5831  * based on IP address or higher level criteria.
5832  */
5833 
5834 /*
5835  * mac_reserve_tx_ring()
5836  * Reserve a unused ring by marking it with MR_INUSE state.
5837  * As reserved, the ring is ready to function.
5838  *
5839  * Notes for Hybrid I/O:
5840  *
5841  * If a specific ring is needed, it is specified through the desired_ring
5842  * argument. Otherwise that argument is set to NULL.
5843  * If the desired ring was previous allocated to another client, this
5844  * function swaps it with a new ring from the group of unassigned rings.
5845  */
5846 mac_ring_t *
5847 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5848 {
5849 	mac_group_t		*group;
5850 	mac_grp_client_t	*mgcp;
5851 	mac_client_impl_t	*mcip;
5852 	mac_soft_ring_set_t	*srs;
5853 
5854 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5855 
5856 	/*
5857 	 * Find an available ring and start it before changing its status.
5858 	 * The unassigned rings are at the end of the mi_tx_groups
5859 	 * array.
5860 	 */
5861 	group = MAC_DEFAULT_TX_GROUP(mip);
5862 
5863 	/* Can't take the default ring out of the default group */
5864 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5865 
5866 	if (desired_ring->mr_state == MR_FREE) {
5867 		ASSERT(MAC_GROUP_NO_CLIENT(group));
5868 		if (mac_start_ring(desired_ring) != 0)
5869 			return (NULL);
5870 		return (desired_ring);
5871 	}
5872 	/*
5873 	 * There are clients using this ring, so let's move the clients
5874 	 * away from using this ring.
5875 	 */
5876 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5877 		mcip = mgcp->mgc_client;
5878 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
5879 		srs = MCIP_TX_SRS(mcip);
5880 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5881 		mac_tx_invoke_callbacks(mcip,
5882 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5883 		    desired_ring));
5884 		mac_tx_srs_del_ring(srs, desired_ring);
5885 		mac_tx_client_restart((mac_client_handle_t)mcip);
5886 	}
5887 	return (desired_ring);
5888 }
5889 
5890 /*
5891  * For a reserved group with multiple clients, return the primary client.
5892  */
5893 static mac_client_impl_t *
5894 mac_get_grp_primary(mac_group_t *grp)
5895 {
5896 	mac_grp_client_t	*mgcp = grp->mrg_clients;
5897 	mac_client_impl_t	*mcip;
5898 
5899 	while (mgcp != NULL) {
5900 		mcip = mgcp->mgc_client;
5901 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5902 			return (mcip);
5903 		mgcp = mgcp->mgc_next;
5904 	}
5905 	return (NULL);
5906 }
5907 
5908 /*
5909  * Hybrid I/O specifies the ring that should be given to a share.
5910  * If the ring is already used by clients, then we need to release
5911  * the ring back to the default group so that we can give it to
5912  * the share. This means the clients using this ring now get a
5913  * replacement ring. If there aren't any replacement rings, this
5914  * function returns a failure.
5915  */
5916 static int
5917 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5918     mac_ring_t *ring, mac_ring_t **rings, int nrings)
5919 {
5920 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
5921 	mac_resource_props_t	*mrp;
5922 	mac_client_impl_t	*mcip;
5923 	mac_group_t		*defgrp;
5924 	mac_ring_t		*tring;
5925 	mac_group_t		*tgrp;
5926 	int			i;
5927 	int			j;
5928 
5929 	mcip = MAC_GROUP_ONLY_CLIENT(group);
5930 	if (mcip == NULL)
5931 		mcip = mac_get_grp_primary(group);
5932 	ASSERT(mcip != NULL);
5933 	ASSERT(mcip->mci_share == NULL);
5934 
5935 	mrp = MCIP_RESOURCE_PROPS(mcip);
5936 	if (ring_type == MAC_RING_TYPE_RX) {
5937 		defgrp = mip->mi_rx_donor_grp;
5938 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5939 			/* Need to put this mac client in the default group */
5940 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5941 				return (ENOSPC);
5942 		} else {
5943 			/*
5944 			 * Switch this ring with some other ring from
5945 			 * the default group.
5946 			 */
5947 			for (tring = defgrp->mrg_rings; tring != NULL;
5948 			    tring = tring->mr_next) {
5949 				if (tring->mr_index == 0)
5950 					continue;
5951 				for (j = 0; j < nrings; j++) {
5952 					if (rings[j] == tring)
5953 						break;
5954 				}
5955 				if (j >= nrings)
5956 					break;
5957 			}
5958 			if (tring == NULL)
5959 				return (ENOSPC);
5960 			if (mac_group_mov_ring(mip, group, tring) != 0)
5961 				return (ENOSPC);
5962 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
5963 				(void) mac_group_mov_ring(mip, defgrp, tring);
5964 				return (ENOSPC);
5965 			}
5966 		}
5967 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
5968 		return (0);
5969 	}
5970 
5971 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
5972 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
5973 		/*
5974 		 * See if we can get a spare ring to replace the default
5975 		 * ring.
5976 		 */
5977 		if (defgrp->mrg_cur_count == 1) {
5978 			/*
5979 			 * Need to get a ring from another client, see if
5980 			 * there are any clients that can be moved to
5981 			 * the default group, thereby freeing some rings.
5982 			 */
5983 			for (i = 0; i < mip->mi_tx_group_count; i++) {
5984 				tgrp = &mip->mi_tx_groups[i];
5985 				if (tgrp->mrg_state ==
5986 				    MAC_GROUP_STATE_REGISTERED) {
5987 					continue;
5988 				}
5989 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
5990 				if (mcip == NULL)
5991 					mcip = mac_get_grp_primary(tgrp);
5992 				ASSERT(mcip != NULL);
5993 				mrp = MCIP_RESOURCE_PROPS(mcip);
5994 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
5995 					ASSERT(tgrp->mrg_cur_count == 1);
5996 					/*
5997 					 * If this ring is part of the
5998 					 * rings asked by the share we cannot
5999 					 * use it as the default ring.
6000 					 */
6001 					for (j = 0; j < nrings; j++) {
6002 						if (rings[j] == tgrp->mrg_rings)
6003 							break;
6004 					}
6005 					if (j < nrings)
6006 						continue;
6007 					mac_tx_client_quiesce(
6008 					    (mac_client_handle_t)mcip);
6009 					mac_tx_switch_group(mcip, tgrp,
6010 					    defgrp);
6011 					mac_tx_client_restart(
6012 					    (mac_client_handle_t)mcip);
6013 					break;
6014 				}
6015 			}
6016 			/*
6017 			 * All the rings are reserved, can't give up the
6018 			 * default ring.
6019 			 */
6020 			if (defgrp->mrg_cur_count <= 1)
6021 				return (ENOSPC);
6022 		}
6023 		/*
6024 		 * Swap the default ring with another.
6025 		 */
6026 		for (tring = defgrp->mrg_rings; tring != NULL;
6027 		    tring = tring->mr_next) {
6028 			/*
6029 			 * If this ring is part of the rings asked by the
6030 			 * share we cannot use it as the default ring.
6031 			 */
6032 			for (j = 0; j < nrings; j++) {
6033 				if (rings[j] == tring)
6034 					break;
6035 			}
6036 			if (j >= nrings)
6037 				break;
6038 		}
6039 		ASSERT(tring != NULL);
6040 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6041 		return (0);
6042 	}
6043 	/*
6044 	 * The Tx ring is with a group reserved by a MAC client. See if
6045 	 * we can swap it.
6046 	 */
6047 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6048 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6049 	if (mcip == NULL)
6050 		mcip = mac_get_grp_primary(group);
6051 	ASSERT(mcip !=  NULL);
6052 	mrp = MCIP_RESOURCE_PROPS(mcip);
6053 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6054 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6055 		ASSERT(group->mrg_cur_count == 1);
6056 		/* Put this mac client in the default group */
6057 		mac_tx_switch_group(mcip, group, defgrp);
6058 	} else {
6059 		/*
6060 		 * Switch this ring with some other ring from
6061 		 * the default group.
6062 		 */
6063 		for (tring = defgrp->mrg_rings; tring != NULL;
6064 		    tring = tring->mr_next) {
6065 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6066 				continue;
6067 			/*
6068 			 * If this ring is part of the rings asked by the
6069 			 * share we cannot use it for swapping.
6070 			 */
6071 			for (j = 0; j < nrings; j++) {
6072 				if (rings[j] == tring)
6073 					break;
6074 			}
6075 			if (j >= nrings)
6076 				break;
6077 		}
6078 		if (tring == NULL) {
6079 			mac_tx_client_restart((mac_client_handle_t)mcip);
6080 			return (ENOSPC);
6081 		}
6082 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6083 			mac_tx_client_restart((mac_client_handle_t)mcip);
6084 			return (ENOSPC);
6085 		}
6086 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6087 			(void) mac_group_mov_ring(mip, defgrp, tring);
6088 			mac_tx_client_restart((mac_client_handle_t)mcip);
6089 			return (ENOSPC);
6090 		}
6091 	}
6092 	mac_tx_client_restart((mac_client_handle_t)mcip);
6093 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6094 	return (0);
6095 }
6096 
6097 /*
6098  * Populate a zero-ring group with rings. If the share is non-NULL,
6099  * the rings are chosen according to that share.
6100  * Invoked after allocating a new RX or TX group through
6101  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6102  * Returns zero on success, an errno otherwise.
6103  */
6104 int
6105 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6106     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6107     uint32_t ringcnt)
6108 {
6109 	mac_ring_t **rings, *ring;
6110 	uint_t nrings;
6111 	int rv = 0, i = 0, j;
6112 
6113 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6114 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6115 	    (ring_type == MAC_RING_TYPE_TX &&
6116 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6117 
6118 	/*
6119 	 * First find the rings to allocate to the group.
6120 	 */
6121 	if (share != NULL) {
6122 		/* get rings through ms_squery() */
6123 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6124 		ASSERT(nrings != 0);
6125 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6126 		    KM_SLEEP);
6127 		mip->mi_share_capab.ms_squery(share, ring_type,
6128 		    (mac_ring_handle_t *)rings, &nrings);
6129 		for (i = 0; i < nrings; i++) {
6130 			/*
6131 			 * If we have given this ring to a non-default
6132 			 * group, we need to check if we can get this
6133 			 * ring.
6134 			 */
6135 			ring = rings[i];
6136 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6137 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6138 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6139 				    ring, rings, nrings) != 0) {
6140 					rv = ENOSPC;
6141 					goto bail;
6142 				}
6143 			}
6144 		}
6145 	} else {
6146 		/*
6147 		 * Pick one ring from default group.
6148 		 *
6149 		 * for now pick the second ring which requires the first ring
6150 		 * at index 0 to stay in the default group, since it is the
6151 		 * ring which carries the multicast traffic.
6152 		 * We need a better way for a driver to indicate this,
6153 		 * for example a per-ring flag.
6154 		 */
6155 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6156 		    KM_SLEEP);
6157 		for (ring = src_group->mrg_rings; ring != NULL;
6158 		    ring = ring->mr_next) {
6159 			if (ring_type == MAC_RING_TYPE_RX &&
6160 			    ring->mr_index == 0) {
6161 				continue;
6162 			}
6163 			if (ring_type == MAC_RING_TYPE_TX &&
6164 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6165 				continue;
6166 			}
6167 			rings[i++] = ring;
6168 			if (i == ringcnt)
6169 				break;
6170 		}
6171 		ASSERT(ring != NULL);
6172 		nrings = i;
6173 		/* Not enough rings as required */
6174 		if (nrings != ringcnt) {
6175 			rv = ENOSPC;
6176 			goto bail;
6177 		}
6178 	}
6179 
6180 	switch (ring_type) {
6181 	case MAC_RING_TYPE_RX:
6182 		if (src_group->mrg_cur_count - nrings < 1) {
6183 			/* we ran out of rings */
6184 			rv = ENOSPC;
6185 			goto bail;
6186 		}
6187 
6188 		/* move receive rings to new group */
6189 		for (i = 0; i < nrings; i++) {
6190 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6191 			if (rv != 0) {
6192 				/* move rings back on failure */
6193 				for (j = 0; j < i; j++) {
6194 					(void) mac_group_mov_ring(mip,
6195 					    src_group, rings[j]);
6196 				}
6197 				goto bail;
6198 			}
6199 		}
6200 		break;
6201 
6202 	case MAC_RING_TYPE_TX: {
6203 		mac_ring_t *tmp_ring;
6204 
6205 		/* move the TX rings to the new group */
6206 		for (i = 0; i < nrings; i++) {
6207 			/* get the desired ring */
6208 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6209 			if (tmp_ring == NULL) {
6210 				rv = ENOSPC;
6211 				goto bail;
6212 			}
6213 			ASSERT(tmp_ring == rings[i]);
6214 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6215 			if (rv != 0) {
6216 				/* cleanup on failure */
6217 				for (j = 0; j < i; j++) {
6218 					(void) mac_group_mov_ring(mip,
6219 					    MAC_DEFAULT_TX_GROUP(mip),
6220 					    rings[j]);
6221 				}
6222 				goto bail;
6223 			}
6224 		}
6225 		break;
6226 	}
6227 	}
6228 
6229 	/* add group to share */
6230 	if (share != NULL)
6231 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6232 
6233 bail:
6234 	/* free temporary array of rings */
6235 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6236 
6237 	return (rv);
6238 }
6239 
6240 void
6241 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6242 {
6243 	mac_grp_client_t *mgcp;
6244 
6245 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6246 		if (mgcp->mgc_client == mcip)
6247 			break;
6248 	}
6249 
6250 	VERIFY(mgcp == NULL);
6251 
6252 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6253 	mgcp->mgc_client = mcip;
6254 	mgcp->mgc_next = grp->mrg_clients;
6255 	grp->mrg_clients = mgcp;
6256 
6257 }
6258 
6259 void
6260 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6261 {
6262 	mac_grp_client_t *mgcp, **pprev;
6263 
6264 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6265 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6266 		if (mgcp->mgc_client == mcip)
6267 			break;
6268 	}
6269 
6270 	ASSERT(mgcp != NULL);
6271 
6272 	*pprev = mgcp->mgc_next;
6273 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6274 }
6275 
6276 /*
6277  * mac_reserve_rx_group()
6278  *
6279  * Finds an available group and exclusively reserves it for a client.
6280  * The group is chosen to suit the flow's resource controls (bandwidth and
6281  * fanout requirements) and the address type.
6282  * If the requestor is the pimary MAC then return the group with the
6283  * largest number of rings, otherwise the default ring when available.
6284  */
6285 mac_group_t *
6286 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6287 {
6288 	mac_share_handle_t	share = mcip->mci_share;
6289 	mac_impl_t		*mip = mcip->mci_mip;
6290 	mac_group_t		*grp = NULL;
6291 	int			i;
6292 	int			err = 0;
6293 	mac_address_t		*map;
6294 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6295 	int			nrings;
6296 	int			donor_grp_rcnt;
6297 	boolean_t		need_exclgrp = B_FALSE;
6298 	int			need_rings = 0;
6299 	mac_group_t		*candidate_grp = NULL;
6300 	mac_client_impl_t	*gclient;
6301 	mac_resource_props_t	*gmrp;
6302 	mac_group_t		*donorgrp = NULL;
6303 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6304 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6305 	boolean_t		isprimary;
6306 
6307 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6308 
6309 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6310 
6311 	/*
6312 	 * Check if a group already has this mac address (case of VLANs)
6313 	 * unless we are moving this MAC client from one group to another.
6314 	 */
6315 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6316 		if (map->ma_group != NULL)
6317 			return (map->ma_group);
6318 	}
6319 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6320 		return (NULL);
6321 	/*
6322 	 * If exclusive open, return NULL which will enable the
6323 	 * caller to use the default group.
6324 	 */
6325 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6326 		return (NULL);
6327 
6328 	/* For dynamic groups default unspecified to 1 */
6329 	if (rxhw && unspec &&
6330 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6331 		mrp->mrp_nrxrings = 1;
6332 	}
6333 	/*
6334 	 * For static grouping we allow only specifying rings=0 and
6335 	 * unspecified
6336 	 */
6337 	if (rxhw && mrp->mrp_nrxrings > 0 &&
6338 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6339 		return (NULL);
6340 	}
6341 	if (rxhw) {
6342 		/*
6343 		 * We have explicitly asked for a group (with nrxrings,
6344 		 * if unspec).
6345 		 */
6346 		if (unspec || mrp->mrp_nrxrings > 0) {
6347 			need_exclgrp = B_TRUE;
6348 			need_rings = mrp->mrp_nrxrings;
6349 		} else if (mrp->mrp_nrxrings == 0) {
6350 			/*
6351 			 * We have asked for a software group.
6352 			 */
6353 			return (NULL);
6354 		}
6355 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
6356 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6357 		/*
6358 		 * If the primary is the only active client on this
6359 		 * mip and we have not asked for any rings, we give
6360 		 * it the default group so that the primary gets to
6361 		 * use all the rings.
6362 		 */
6363 		return (NULL);
6364 	}
6365 
6366 	/* The group that can donate rings */
6367 	donorgrp = mip->mi_rx_donor_grp;
6368 
6369 	/*
6370 	 * The number of rings that the default group can donate.
6371 	 * We need to leave at least one ring.
6372 	 */
6373 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6374 
6375 	/*
6376 	 * Try to exclusively reserve a RX group.
6377 	 *
6378 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6379 	 * client), try to reserve the a non-default RX group and give
6380 	 * it all the rings from the donor group, except the default ring
6381 	 *
6382 	 * For flows requiring HW_RING (unicast flow of other clients), try
6383 	 * to reserve non-default RX group with the specified number of
6384 	 * rings, if available.
6385 	 *
6386 	 * For flows that have not asked for software or hardware ring,
6387 	 * try to reserve a non-default group with 1 ring, if available.
6388 	 */
6389 	for (i = 1; i < mip->mi_rx_group_count; i++) {
6390 		grp = &mip->mi_rx_groups[i];
6391 
6392 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6393 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6394 
6395 		/*
6396 		 * Check if this group could be a candidate group for
6397 		 * eviction if we need a group for this MAC client,
6398 		 * but there aren't any. A candidate group is one
6399 		 * that didn't ask for an exclusive group, but got
6400 		 * one and it has enough rings (combined with what
6401 		 * the donor group can donate) for the new MAC
6402 		 * client
6403 		 */
6404 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6405 			/*
6406 			 * If the primary/donor group is not the default
6407 			 * group, don't bother looking for a candidate group.
6408 			 * If we don't have enough rings we will check
6409 			 * if the primary group can be vacated.
6410 			 */
6411 			if (candidate_grp == NULL &&
6412 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6413 				ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6414 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6415 				if (gclient == NULL)
6416 					gclient = mac_get_grp_primary(grp);
6417 				ASSERT(gclient != NULL);
6418 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6419 				if (gclient->mci_share == NULL &&
6420 				    (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6421 				    (unspec ||
6422 				    (grp->mrg_cur_count + donor_grp_rcnt >=
6423 				    need_rings))) {
6424 					candidate_grp = grp;
6425 				}
6426 			}
6427 			continue;
6428 		}
6429 		/*
6430 		 * This group could already be SHARED by other multicast
6431 		 * flows on this client. In that case, the group would
6432 		 * be shared and has already been started.
6433 		 */
6434 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6435 
6436 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6437 		    (mac_start_group(grp) != 0)) {
6438 			continue;
6439 		}
6440 
6441 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6442 			break;
6443 		ASSERT(grp->mrg_cur_count == 0);
6444 
6445 		/*
6446 		 * Populate the group. Rings should be taken
6447 		 * from the donor group.
6448 		 */
6449 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6450 
6451 		/*
6452 		 * If the donor group can't donate, let's just walk and
6453 		 * see if someone can vacate a group, so that we have
6454 		 * enough rings for this, unless we already have
6455 		 * identified a candiate group..
6456 		 */
6457 		if (nrings <= donor_grp_rcnt) {
6458 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6459 			    donorgrp, grp, share, nrings);
6460 			if (err == 0) {
6461 				/*
6462 				 * For a share i_mac_group_allocate_rings gets
6463 				 * the rings from the driver, let's populate
6464 				 * the property for the client now.
6465 				 */
6466 				if (share != NULL) {
6467 					mac_client_set_rings(
6468 					    (mac_client_handle_t)mcip,
6469 					    grp->mrg_cur_count, -1);
6470 				}
6471 				if (mac_is_primary_client(mcip) && !rxhw)
6472 					mip->mi_rx_donor_grp = grp;
6473 				break;
6474 			}
6475 		}
6476 
6477 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6478 		    mip->mi_name, int, grp->mrg_index, int, err);
6479 
6480 		/*
6481 		 * It's a dynamic group but the grouping operation
6482 		 * failed.
6483 		 */
6484 		mac_stop_group(grp);
6485 	}
6486 	/* We didn't find an exclusive group for this MAC client */
6487 	if (i >= mip->mi_rx_group_count) {
6488 
6489 		if (!need_exclgrp)
6490 			return (NULL);
6491 
6492 		/*
6493 		 * If we found a candidate group then we switch the
6494 		 * MAC client from the candidate_group to the default
6495 		 * group and give the group to this MAC client. If
6496 		 * we didn't find a candidate_group, check if the
6497 		 * primary is in its own group and if it can make way
6498 		 * for this MAC client.
6499 		 */
6500 		if (candidate_grp == NULL &&
6501 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6502 		    donorgrp->mrg_cur_count >= need_rings) {
6503 			candidate_grp = donorgrp;
6504 		}
6505 		if (candidate_grp != NULL) {
6506 			boolean_t	prim_grp = B_FALSE;
6507 
6508 			/*
6509 			 * Switch the MAC client from the candidate group
6510 			 * to the default group.. If this group was the
6511 			 * donor group, then after the switch we need
6512 			 * to update the donor group too.
6513 			 */
6514 			grp = candidate_grp;
6515 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
6516 			if (gclient == NULL)
6517 				gclient = mac_get_grp_primary(grp);
6518 			if (grp == mip->mi_rx_donor_grp)
6519 				prim_grp = B_TRUE;
6520 			if (mac_rx_switch_group(gclient, grp,
6521 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6522 				return (NULL);
6523 			}
6524 			if (prim_grp) {
6525 				mip->mi_rx_donor_grp =
6526 				    MAC_DEFAULT_RX_GROUP(mip);
6527 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6528 			}
6529 
6530 
6531 			/*
6532 			 * Now give this group with the required rings
6533 			 * to this MAC client.
6534 			 */
6535 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6536 			if (mac_start_group(grp) != 0)
6537 				return (NULL);
6538 
6539 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6540 				return (grp);
6541 
6542 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6543 			ASSERT(grp->mrg_cur_count == 0);
6544 			ASSERT(donor_grp_rcnt >= need_rings);
6545 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6546 			    donorgrp, grp, share, need_rings);
6547 			if (err == 0) {
6548 				/*
6549 				 * For a share i_mac_group_allocate_rings gets
6550 				 * the rings from the driver, let's populate
6551 				 * the property for the client now.
6552 				 */
6553 				if (share != NULL) {
6554 					mac_client_set_rings(
6555 					    (mac_client_handle_t)mcip,
6556 					    grp->mrg_cur_count, -1);
6557 				}
6558 				DTRACE_PROBE2(rx__group__reserved,
6559 				    char *, mip->mi_name, int, grp->mrg_index);
6560 				return (grp);
6561 			}
6562 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6563 			    mip->mi_name, int, grp->mrg_index, int, err);
6564 			mac_stop_group(grp);
6565 		}
6566 		return (NULL);
6567 	}
6568 	ASSERT(grp != NULL);
6569 
6570 	DTRACE_PROBE2(rx__group__reserved,
6571 	    char *, mip->mi_name, int, grp->mrg_index);
6572 	return (grp);
6573 }
6574 
6575 /*
6576  * mac_rx_release_group()
6577  *
6578  * This is called when there are no clients left for the group.
6579  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6580  * and if it is a non default group, the shares are removed and
6581  * all rings are assigned back to default group.
6582  */
6583 void
6584 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6585 {
6586 	mac_impl_t		*mip = mcip->mci_mip;
6587 	mac_ring_t		*ring;
6588 
6589 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6590 
6591 	if (mip->mi_rx_donor_grp == group)
6592 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6593 
6594 	/*
6595 	 * This is the case where there are no clients left. Any
6596 	 * SRS etc on this group have also be quiesced.
6597 	 */
6598 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6599 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6600 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6601 			/*
6602 			 * Remove the SRS associated with the HW ring.
6603 			 * As a result, polling will be disabled.
6604 			 */
6605 			ring->mr_srs = NULL;
6606 		}
6607 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6608 		    ring->mr_state == MR_INUSE);
6609 		if (ring->mr_state == MR_INUSE) {
6610 			mac_stop_ring(ring);
6611 			ring->mr_flag = 0;
6612 		}
6613 	}
6614 
6615 	/* remove group from share */
6616 	if (mcip->mci_share != NULL) {
6617 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
6618 		    group->mrg_driver);
6619 	}
6620 
6621 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6622 		mac_ring_t *ring;
6623 
6624 		/*
6625 		 * Rings were dynamically allocated to group.
6626 		 * Move rings back to default group.
6627 		 */
6628 		while ((ring = group->mrg_rings) != NULL) {
6629 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6630 			    ring);
6631 		}
6632 	}
6633 	mac_stop_group(group);
6634 	/*
6635 	 * Possible improvement: See if we can assign the group just released
6636 	 * to a another client of the mip
6637 	 */
6638 }
6639 
6640 /*
6641  * When we move the primary's mac address between groups, we need to also
6642  * take all the clients sharing the same mac address along with it (VLANs)
6643  * We remove the mac address for such clients from the group after quiescing
6644  * them. When we add the mac address we restart the client. Note that
6645  * the primary's mac address is removed from the group after all the
6646  * other clients sharing the address are removed. Similarly, the primary's
6647  * mac address is added before all the other client's mac address are
6648  * added. While grp is the group where the clients reside, tgrp is
6649  * the group where the addresses have to be added.
6650  */
6651 static void
6652 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6653     mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6654 {
6655 	mac_impl_t		*mip = mcip->mci_mip;
6656 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6657 	mac_client_impl_t	*gmcip;
6658 	boolean_t		prim;
6659 
6660 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6661 
6662 	/*
6663 	 * If the clients are in a non-default group, we just have to
6664 	 * walk the group's client list. If it is in the default group
6665 	 * (which will be shared by other clients as well, we need to
6666 	 * check if the unicast address matches mcip's unicast.
6667 	 */
6668 	while (mgcp != NULL) {
6669 		gmcip = mgcp->mgc_client;
6670 		if (gmcip != mcip &&
6671 		    (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6672 		    mcip->mci_unicast == gmcip->mci_unicast)) {
6673 			if (!add) {
6674 				mac_rx_client_quiesce(
6675 				    (mac_client_handle_t)gmcip);
6676 				(void) mac_remove_macaddr(mcip->mci_unicast);
6677 			} else {
6678 				(void) mac_add_macaddr(mip, tgrp, maddr, prim);
6679 				mac_rx_client_restart(
6680 				    (mac_client_handle_t)gmcip);
6681 			}
6682 		}
6683 		mgcp = mgcp->mgc_next;
6684 	}
6685 }
6686 
6687 
6688 /*
6689  * Move the MAC address from fgrp to tgrp. If this is the primary client,
6690  * we need to take any VLANs etc. together too.
6691  */
6692 static int
6693 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6694     mac_group_t *tgrp)
6695 {
6696 	mac_impl_t		*mip = mcip->mci_mip;
6697 	uint8_t			maddr[MAXMACADDRLEN];
6698 	int			err = 0;
6699 	boolean_t		prim;
6700 	boolean_t		multiclnt = B_FALSE;
6701 
6702 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
6703 	ASSERT(mcip->mci_unicast != NULL);
6704 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6705 
6706 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6707 	if (mcip->mci_unicast->ma_nusers > 1) {
6708 		mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6709 		multiclnt = B_TRUE;
6710 	}
6711 	ASSERT(mcip->mci_unicast->ma_nusers == 1);
6712 	err = mac_remove_macaddr(mcip->mci_unicast);
6713 	if (err != 0) {
6714 		mac_rx_client_restart((mac_client_handle_t)mcip);
6715 		if (multiclnt) {
6716 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6717 			    B_TRUE);
6718 		}
6719 		return (err);
6720 	}
6721 	/*
6722 	 * Program the H/W Classifier first, if this fails we need
6723 	 * not proceed with the other stuff.
6724 	 */
6725 	if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6726 		/* Revert back the H/W Classifier */
6727 		if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6728 			/*
6729 			 * This should not fail now since it worked earlier,
6730 			 * should we panic?
6731 			 */
6732 			cmn_err(CE_WARN,
6733 			    "mac_rx_switch_group: switching %p back"
6734 			    " to group %p failed!!", (void *)mcip,
6735 			    (void *)fgrp);
6736 		}
6737 		mac_rx_client_restart((mac_client_handle_t)mcip);
6738 		if (multiclnt) {
6739 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6740 			    B_TRUE);
6741 		}
6742 		return (err);
6743 	}
6744 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6745 	mac_rx_client_restart((mac_client_handle_t)mcip);
6746 	if (multiclnt)
6747 		mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6748 	return (err);
6749 }
6750 
6751 /*
6752  * Switch the MAC client from one group to another. This means we need
6753  * to remove the MAC address from the group, remove the MAC client,
6754  * teardown the SRSs and revert the group state. Then, we add the client
6755  * to the destination group, set the SRSs, and add the MAC address to the
6756  * group.
6757  */
6758 int
6759 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6760     mac_group_t *tgrp)
6761 {
6762 	int			err;
6763 	mac_group_state_t	next_state;
6764 	mac_client_impl_t	*group_only_mcip;
6765 	mac_client_impl_t	*gmcip;
6766 	mac_impl_t		*mip = mcip->mci_mip;
6767 	mac_grp_client_t	*mgcp;
6768 
6769 	ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6770 
6771 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6772 		return (err);
6773 
6774 	/*
6775 	 * The group might be reserved, but SRSs may not be set up, e.g.
6776 	 * primary and its vlans using a reserved group.
6777 	 */
6778 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6779 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6780 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6781 	}
6782 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6783 		mgcp = fgrp->mrg_clients;
6784 		while (mgcp != NULL) {
6785 			gmcip = mgcp->mgc_client;
6786 			mgcp = mgcp->mgc_next;
6787 			mac_group_remove_client(fgrp, gmcip);
6788 			mac_group_add_client(tgrp, gmcip);
6789 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
6790 		}
6791 		mac_release_rx_group(mcip, fgrp);
6792 		ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6793 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6794 	} else {
6795 		mac_group_remove_client(fgrp, mcip);
6796 		mac_group_add_client(tgrp, mcip);
6797 		mcip->mci_flent->fe_rx_ring_group = tgrp;
6798 		/*
6799 		 * If there are other clients (VLANs) sharing this address
6800 		 * we should be here only for the primary.
6801 		 */
6802 		if (mcip->mci_unicast->ma_nusers > 1) {
6803 			/*
6804 			 * We need to move all the clients that are using
6805 			 * this h/w address.
6806 			 */
6807 			mgcp = fgrp->mrg_clients;
6808 			while (mgcp != NULL) {
6809 				gmcip = mgcp->mgc_client;
6810 				mgcp = mgcp->mgc_next;
6811 				if (mcip->mci_unicast == gmcip->mci_unicast) {
6812 					mac_group_remove_client(fgrp, gmcip);
6813 					mac_group_add_client(tgrp, gmcip);
6814 					gmcip->mci_flent->fe_rx_ring_group =
6815 					    tgrp;
6816 				}
6817 			}
6818 		}
6819 		/*
6820 		 * The default group will still take the multicast,
6821 		 * broadcast traffic etc., so it won't go to
6822 		 * MAC_GROUP_STATE_REGISTERED.
6823 		 */
6824 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6825 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6826 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6827 	}
6828 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
6829 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6830 	mac_set_group_state(tgrp, next_state);
6831 	/*
6832 	 * If the destination group is reserved, setup the SRSs etc.
6833 	 */
6834 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6835 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6836 		mac_fanout_setup(mcip, mcip->mci_flent,
6837 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6838 		    NULL);
6839 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6840 	} else {
6841 		mac_rx_switch_grp_to_sw(tgrp);
6842 	}
6843 	return (0);
6844 }
6845 
6846 /*
6847  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6848  * when a share was allocated to the client.
6849  */
6850 mac_group_t *
6851 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6852 {
6853 	mac_impl_t		*mip = mcip->mci_mip;
6854 	mac_group_t		*grp = NULL;
6855 	int			rv;
6856 	int			i;
6857 	int			err;
6858 	mac_group_t		*defgrp;
6859 	mac_share_handle_t	share = mcip->mci_share;
6860 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6861 	int			nrings;
6862 	int			defnrings;
6863 	boolean_t		need_exclgrp = B_FALSE;
6864 	int			need_rings = 0;
6865 	mac_group_t		*candidate_grp = NULL;
6866 	mac_client_impl_t	*gclient;
6867 	mac_resource_props_t	*gmrp;
6868 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
6869 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6870 	boolean_t		isprimary;
6871 
6872 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6873 	/*
6874 	 * When we come here for a VLAN on the primary (dladm create-vlan),
6875 	 * we need to pair it along with the primary (to keep it consistent
6876 	 * with the RX side). So, we check if the primary is already assigned
6877 	 * to a group and return the group if so. The other way is also
6878 	 * true, i.e. the VLAN is already created and now we are plumbing
6879 	 * the primary.
6880 	 */
6881 	if (!move && isprimary) {
6882 		for (gclient = mip->mi_clients_list; gclient != NULL;
6883 		    gclient = gclient->mci_client_next) {
6884 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6885 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
6886 				return (gclient->mci_flent->fe_tx_ring_group);
6887 			}
6888 		}
6889 	}
6890 
6891 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6892 		return (NULL);
6893 
6894 	/* For dynamic groups, default unspec to 1 */
6895 	if (txhw && unspec &&
6896 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6897 		mrp->mrp_ntxrings = 1;
6898 	}
6899 	/*
6900 	 * For static grouping we allow only specifying rings=0 and
6901 	 * unspecified
6902 	 */
6903 	if (txhw && mrp->mrp_ntxrings > 0 &&
6904 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6905 		return (NULL);
6906 	}
6907 
6908 	if (txhw) {
6909 		/*
6910 		 * We have explicitly asked for a group (with ntxrings,
6911 		 * if unspec).
6912 		 */
6913 		if (unspec || mrp->mrp_ntxrings > 0) {
6914 			need_exclgrp = B_TRUE;
6915 			need_rings = mrp->mrp_ntxrings;
6916 		} else if (mrp->mrp_ntxrings == 0) {
6917 			/*
6918 			 * We have asked for a software group.
6919 			 */
6920 			return (NULL);
6921 		}
6922 	}
6923 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6924 	/*
6925 	 * The number of rings that the default group can donate.
6926 	 * We need to leave at least one ring - the default ring - in
6927 	 * this group.
6928 	 */
6929 	defnrings = defgrp->mrg_cur_count - 1;
6930 
6931 	/*
6932 	 * Primary gets default group unless explicitly told not
6933 	 * to  (i.e. rings > 0).
6934 	 */
6935 	if (isprimary && !need_exclgrp)
6936 		return (NULL);
6937 
6938 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6939 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
6940 		grp = &mip->mi_tx_groups[i];
6941 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6942 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6943 			/*
6944 			 * Select a candidate for replacement if we don't
6945 			 * get an exclusive group. A candidate group is one
6946 			 * that didn't ask for an exclusive group, but got
6947 			 * one and it has enough rings (combined with what
6948 			 * the default group can donate) for the new MAC
6949 			 * client.
6950 			 */
6951 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6952 			    candidate_grp == NULL) {
6953 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6954 				if (gclient == NULL)
6955 					gclient = mac_get_grp_primary(grp);
6956 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6957 				if (gclient->mci_share == NULL &&
6958 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
6959 				    (unspec ||
6960 				    (grp->mrg_cur_count + defnrings) >=
6961 				    need_rings)) {
6962 					candidate_grp = grp;
6963 				}
6964 			}
6965 			continue;
6966 		}
6967 		/*
6968 		 * If the default can't donate let's just walk and
6969 		 * see if someone can vacate a group, so that we have
6970 		 * enough rings for this.
6971 		 */
6972 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
6973 		    nrings <= defnrings) {
6974 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
6975 				rv = mac_start_group(grp);
6976 				ASSERT(rv == 0);
6977 			}
6978 			break;
6979 		}
6980 	}
6981 
6982 	/* The default group */
6983 	if (i >= mip->mi_tx_group_count) {
6984 		/*
6985 		 * If we need an exclusive group and have identified a
6986 		 * candidate group we switch the MAC client from the
6987 		 * candidate group to the default group and give the
6988 		 * candidate group to this client.
6989 		 */
6990 		if (need_exclgrp && candidate_grp != NULL) {
6991 			/*
6992 			 * Switch the MAC client from the candidate group
6993 			 * to the default group.
6994 			 */
6995 			grp = candidate_grp;
6996 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
6997 			if (gclient == NULL)
6998 				gclient = mac_get_grp_primary(grp);
6999 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
7000 			mac_tx_switch_group(gclient, grp, defgrp);
7001 			mac_tx_client_restart((mac_client_handle_t)gclient);
7002 
7003 			/*
7004 			 * Give the candidate group with the specified number
7005 			 * of rings to this MAC client.
7006 			 */
7007 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7008 			rv = mac_start_group(grp);
7009 			ASSERT(rv == 0);
7010 
7011 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7012 				return (grp);
7013 
7014 			ASSERT(grp->mrg_cur_count == 0);
7015 			ASSERT(defgrp->mrg_cur_count > need_rings);
7016 
7017 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7018 			    defgrp, grp, share, need_rings);
7019 			if (err == 0) {
7020 				/*
7021 				 * For a share i_mac_group_allocate_rings gets
7022 				 * the rings from the driver, let's populate
7023 				 * the property for the client now.
7024 				 */
7025 				if (share != NULL) {
7026 					mac_client_set_rings(
7027 					    (mac_client_handle_t)mcip, -1,
7028 					    grp->mrg_cur_count);
7029 				}
7030 				mip->mi_tx_group_free--;
7031 				return (grp);
7032 			}
7033 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7034 			    mip->mi_name, int, grp->mrg_index, int, err);
7035 			mac_stop_group(grp);
7036 		}
7037 		return (NULL);
7038 	}
7039 	/*
7040 	 * We got an exclusive group, but it is not dynamic.
7041 	 */
7042 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7043 		mip->mi_tx_group_free--;
7044 		return (grp);
7045 	}
7046 
7047 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7048 	    share, nrings);
7049 	if (rv != 0) {
7050 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7051 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7052 		mac_stop_group(grp);
7053 		return (NULL);
7054 	}
7055 	/*
7056 	 * For a share i_mac_group_allocate_rings gets the rings from the
7057 	 * driver, let's populate the property for the client now.
7058 	 */
7059 	if (share != NULL) {
7060 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7061 		    grp->mrg_cur_count);
7062 	}
7063 	mip->mi_tx_group_free--;
7064 	return (grp);
7065 }
7066 
7067 void
7068 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7069 {
7070 	mac_impl_t		*mip = mcip->mci_mip;
7071 	mac_share_handle_t	share = mcip->mci_share;
7072 	mac_ring_t		*ring;
7073 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7074 	mac_group_t		*defgrp;
7075 
7076 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7077 	if (srs != NULL) {
7078 		if (srs->srs_soft_ring_count > 0) {
7079 			for (ring = grp->mrg_rings; ring != NULL;
7080 			    ring = ring->mr_next) {
7081 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7082 				mac_tx_invoke_callbacks(mcip,
7083 				    (mac_tx_cookie_t)
7084 				    mac_tx_srs_get_soft_ring(srs, ring));
7085 				mac_tx_srs_del_ring(srs, ring);
7086 			}
7087 		} else {
7088 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7089 			srs->srs_tx.st_arg2 = NULL;
7090 			mac_srs_stat_delete(srs);
7091 		}
7092 	}
7093 	if (share != NULL)
7094 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7095 
7096 	/* move the ring back to the pool */
7097 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7098 		while ((ring = grp->mrg_rings) != NULL)
7099 			(void) mac_group_mov_ring(mip, defgrp, ring);
7100 	}
7101 	mac_stop_group(grp);
7102 	mip->mi_tx_group_free++;
7103 }
7104 
7105 /*
7106  * Disassociate a MAC client from a group, i.e go through the rings in the
7107  * group and delete all the soft rings tied to them.
7108  */
7109 static void
7110 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7111 {
7112 	mac_client_impl_t	*mcip = flent->fe_mcip;
7113 	mac_soft_ring_set_t	*tx_srs;
7114 	mac_srs_tx_t		*tx;
7115 	mac_ring_t		*ring;
7116 
7117 	tx_srs = flent->fe_tx_srs;
7118 	tx = &tx_srs->srs_tx;
7119 
7120 	/* Single ring case we haven't created any soft rings */
7121 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7122 	    tx->st_mode == SRS_TX_DEFAULT) {
7123 		tx->st_arg2 = NULL;
7124 		mac_srs_stat_delete(tx_srs);
7125 	/* Fanout case, where we have to dismantle the soft rings */
7126 	} else {
7127 		for (ring = fgrp->mrg_rings; ring != NULL;
7128 		    ring = ring->mr_next) {
7129 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7130 			mac_tx_invoke_callbacks(mcip,
7131 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7132 			    ring));
7133 			mac_tx_srs_del_ring(tx_srs, ring);
7134 		}
7135 		ASSERT(tx->st_arg2 == NULL);
7136 	}
7137 }
7138 
7139 /*
7140  * Switch the MAC client from one group to another. This means we need
7141  * to remove the MAC client, teardown the SRSs and revert the group state.
7142  * Then, we add the client to the destination roup, set the SRSs etc.
7143  */
7144 void
7145 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7146     mac_group_t *tgrp)
7147 {
7148 	mac_client_impl_t	*group_only_mcip;
7149 	mac_impl_t		*mip = mcip->mci_mip;
7150 	flow_entry_t		*flent = mcip->mci_flent;
7151 	mac_group_t		*defgrp;
7152 	mac_grp_client_t	*mgcp;
7153 	mac_client_impl_t	*gmcip;
7154 	flow_entry_t		*gflent;
7155 
7156 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7157 	ASSERT(fgrp == flent->fe_tx_ring_group);
7158 
7159 	if (fgrp == defgrp) {
7160 		/*
7161 		 * If this is the primary we need to find any VLANs on
7162 		 * the primary and move them too.
7163 		 */
7164 		mac_group_remove_client(fgrp, mcip);
7165 		mac_tx_dismantle_soft_rings(fgrp, flent);
7166 		if (mcip->mci_unicast->ma_nusers > 1) {
7167 			mgcp = fgrp->mrg_clients;
7168 			while (mgcp != NULL) {
7169 				gmcip = mgcp->mgc_client;
7170 				mgcp = mgcp->mgc_next;
7171 				if (mcip->mci_unicast != gmcip->mci_unicast)
7172 					continue;
7173 				mac_tx_client_quiesce(
7174 				    (mac_client_handle_t)gmcip);
7175 
7176 				gflent = gmcip->mci_flent;
7177 				mac_group_remove_client(fgrp, gmcip);
7178 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7179 
7180 				mac_group_add_client(tgrp, gmcip);
7181 				gflent->fe_tx_ring_group = tgrp;
7182 				/* We could directly set this to SHARED */
7183 				tgrp->mrg_state = mac_group_next_state(tgrp,
7184 				    &group_only_mcip, defgrp, B_FALSE);
7185 
7186 				mac_tx_srs_group_setup(gmcip, gflent,
7187 				    SRST_LINK);
7188 				mac_fanout_setup(gmcip, gflent,
7189 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7190 				    gmcip, NULL, NULL);
7191 
7192 				mac_tx_client_restart(
7193 				    (mac_client_handle_t)gmcip);
7194 			}
7195 		}
7196 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7197 			mac_ring_t	*ring;
7198 			int		cnt;
7199 			int		ringcnt;
7200 
7201 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7202 			/*
7203 			 * Additionally, we also need to stop all
7204 			 * the rings in the default group, except
7205 			 * the default ring. The reason being
7206 			 * this group won't be released since it is
7207 			 * the default group, so the rings won't
7208 			 * be stopped otherwise.
7209 			 */
7210 			ringcnt = fgrp->mrg_cur_count;
7211 			ring = fgrp->mrg_rings;
7212 			for (cnt = 0; cnt < ringcnt; cnt++) {
7213 				if (ring->mr_state == MR_INUSE &&
7214 				    ring !=
7215 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7216 					mac_stop_ring(ring);
7217 					ring->mr_flag = 0;
7218 				}
7219 				ring = ring->mr_next;
7220 			}
7221 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7222 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7223 		} else {
7224 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7225 		}
7226 	} else {
7227 		/*
7228 		 * We could have VLANs sharing the non-default group with
7229 		 * the primary.
7230 		 */
7231 		mgcp = fgrp->mrg_clients;
7232 		while (mgcp != NULL) {
7233 			gmcip = mgcp->mgc_client;
7234 			mgcp = mgcp->mgc_next;
7235 			if (gmcip == mcip)
7236 				continue;
7237 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7238 			gflent = gmcip->mci_flent;
7239 
7240 			mac_group_remove_client(fgrp, gmcip);
7241 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7242 
7243 			mac_group_add_client(tgrp, gmcip);
7244 			gflent->fe_tx_ring_group = tgrp;
7245 			/* We could directly set this to SHARED */
7246 			tgrp->mrg_state = mac_group_next_state(tgrp,
7247 			    &group_only_mcip, defgrp, B_FALSE);
7248 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7249 			mac_fanout_setup(gmcip, gflent,
7250 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7251 			    gmcip, NULL, NULL);
7252 
7253 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7254 		}
7255 		mac_group_remove_client(fgrp, mcip);
7256 		mac_release_tx_group(mcip, fgrp);
7257 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7258 	}
7259 
7260 	/* Add it to the tgroup */
7261 	mac_group_add_client(tgrp, mcip);
7262 	flent->fe_tx_ring_group = tgrp;
7263 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7264 	    defgrp, B_FALSE);
7265 
7266 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7267 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7268 	    mac_rx_deliver, mcip, NULL, NULL);
7269 }
7270 
7271 /*
7272  * This is a 1-time control path activity initiated by the client (IP).
7273  * The mac perimeter protects against other simultaneous control activities,
7274  * for example an ioctl that attempts to change the degree of fanout and
7275  * increase or decrease the number of softrings associated with this Tx SRS.
7276  */
7277 static mac_tx_notify_cb_t *
7278 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7279     mac_tx_notify_t notify, void *arg)
7280 {
7281 	mac_cb_info_t *mcbi;
7282 	mac_tx_notify_cb_t *mtnfp;
7283 
7284 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7285 
7286 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7287 	mtnfp->mtnf_fn = notify;
7288 	mtnfp->mtnf_arg = arg;
7289 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7290 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7291 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7292 
7293 	mcbi = &mcip->mci_tx_notify_cb_info;
7294 	mutex_enter(mcbi->mcbi_lockp);
7295 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7296 	mutex_exit(mcbi->mcbi_lockp);
7297 	return (mtnfp);
7298 }
7299 
7300 static void
7301 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7302 {
7303 	mac_cb_info_t	*mcbi;
7304 	mac_cb_t	**cblist;
7305 
7306 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7307 
7308 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7309 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7310 		cmn_err(CE_WARN,
7311 		    "mac_client_tx_notify_remove: callback not "
7312 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7313 		return;
7314 	}
7315 
7316 	mcbi = &mcip->mci_tx_notify_cb_info;
7317 	cblist = &mcip->mci_tx_notify_cb_list;
7318 	mutex_enter(mcbi->mcbi_lockp);
7319 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7320 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7321 	else
7322 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7323 	mutex_exit(mcbi->mcbi_lockp);
7324 }
7325 
7326 /*
7327  * mac_client_tx_notify():
7328  * call to add and remove flow control callback routine.
7329  */
7330 mac_tx_notify_handle_t
7331 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7332     void *ptr)
7333 {
7334 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
7335 	mac_tx_notify_cb_t	*mtnfp = NULL;
7336 
7337 	i_mac_perim_enter(mcip->mci_mip);
7338 
7339 	if (callb_func != NULL) {
7340 		/* Add a notify callback */
7341 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7342 	} else {
7343 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7344 	}
7345 	i_mac_perim_exit(mcip->mci_mip);
7346 
7347 	return ((mac_tx_notify_handle_t)mtnfp);
7348 }
7349 
7350 void
7351 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7352     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7353 {
7354 	mac_bridge_tx_cb = txf;
7355 	mac_bridge_rx_cb = rxf;
7356 	mac_bridge_ref_cb = reff;
7357 	mac_bridge_ls_cb = lsf;
7358 }
7359 
7360 int
7361 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7362 {
7363 	mac_impl_t *mip = (mac_impl_t *)mh;
7364 	int retv;
7365 
7366 	mutex_enter(&mip->mi_bridge_lock);
7367 	if (mip->mi_bridge_link == NULL) {
7368 		mip->mi_bridge_link = link;
7369 		retv = 0;
7370 	} else {
7371 		retv = EBUSY;
7372 	}
7373 	mutex_exit(&mip->mi_bridge_lock);
7374 	if (retv == 0) {
7375 		mac_poll_state_change(mh, B_FALSE);
7376 		mac_capab_update(mh);
7377 	}
7378 	return (retv);
7379 }
7380 
7381 /*
7382  * Disable bridging on the indicated link.
7383  */
7384 void
7385 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7386 {
7387 	mac_impl_t *mip = (mac_impl_t *)mh;
7388 
7389 	mutex_enter(&mip->mi_bridge_lock);
7390 	ASSERT(mip->mi_bridge_link == link);
7391 	mip->mi_bridge_link = NULL;
7392 	mutex_exit(&mip->mi_bridge_lock);
7393 	mac_poll_state_change(mh, B_TRUE);
7394 	mac_capab_update(mh);
7395 }
7396 
7397 void
7398 mac_no_active(mac_handle_t mh)
7399 {
7400 	mac_impl_t *mip = (mac_impl_t *)mh;
7401 
7402 	i_mac_perim_enter(mip);
7403 	mip->mi_state_flags |= MIS_NO_ACTIVE;
7404 	i_mac_perim_exit(mip);
7405 }
7406 
7407 /*
7408  * Walk the primary VLAN clients whenever the primary's rings property
7409  * changes and update the mac_resource_props_t for the VLAN's client.
7410  * We need to do this since we don't support setting these properties
7411  * on the primary's VLAN clients, but the VLAN clients have to
7412  * follow the primary w.r.t the rings property;
7413  */
7414 void
7415 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7416 {
7417 	mac_client_impl_t	*vmcip;
7418 	mac_resource_props_t	*vmrp;
7419 
7420 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
7421 	    vmcip = vmcip->mci_client_next) {
7422 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7423 		    mac_client_vid((mac_client_handle_t)vmcip) ==
7424 		    VLAN_ID_NONE) {
7425 			continue;
7426 		}
7427 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
7428 
7429 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7430 		if (mrp->mrp_mask & MRP_RX_RINGS)
7431 			vmrp->mrp_mask |= MRP_RX_RINGS;
7432 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
7433 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
7434 
7435 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7436 		if (mrp->mrp_mask & MRP_TX_RINGS)
7437 			vmrp->mrp_mask |= MRP_TX_RINGS;
7438 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
7439 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
7440 
7441 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7442 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7443 		else
7444 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7445 
7446 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7447 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7448 		else
7449 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7450 	}
7451 }
7452 
7453 /*
7454  * We are adding or removing ring(s) from a group. The source for taking
7455  * rings is the default group. The destination for giving rings back is
7456  * the default group.
7457  */
7458 int
7459 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7460     mac_group_t *defgrp)
7461 {
7462 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7463 	uint_t			modify;
7464 	int			count;
7465 	mac_ring_t		*ring;
7466 	mac_ring_t		*next;
7467 	mac_impl_t		*mip = mcip->mci_mip;
7468 	mac_ring_t		**rings;
7469 	uint_t			ringcnt;
7470 	int			i = 0;
7471 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7472 	int			start;
7473 	int			end;
7474 	mac_group_t		*tgrp;
7475 	int			j;
7476 	int			rv = 0;
7477 
7478 	/*
7479 	 * If we are asked for just a group, we give 1 ring, else
7480 	 * the specified number of rings.
7481 	 */
7482 	if (rx_group) {
7483 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7484 		    mrp->mrp_nrxrings;
7485 	} else {
7486 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7487 		    mrp->mrp_ntxrings;
7488 	}
7489 
7490 	/* don't allow modifying rings for a share for now. */
7491 	ASSERT(mcip->mci_share == NULL);
7492 
7493 	if (ringcnt == group->mrg_cur_count)
7494 		return (0);
7495 
7496 	if (group->mrg_cur_count > ringcnt) {
7497 		modify = group->mrg_cur_count - ringcnt;
7498 		if (rx_group) {
7499 			if (mip->mi_rx_donor_grp == group) {
7500 				ASSERT(mac_is_primary_client(mcip));
7501 				mip->mi_rx_donor_grp = defgrp;
7502 			} else {
7503 				defgrp = mip->mi_rx_donor_grp;
7504 			}
7505 		}
7506 		ring = group->mrg_rings;
7507 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7508 		    KM_SLEEP);
7509 		j = 0;
7510 		for (count = 0; count < modify; count++) {
7511 			next = ring->mr_next;
7512 			rv = mac_group_mov_ring(mip, defgrp, ring);
7513 			if (rv != 0) {
7514 				/* cleanup on failure */
7515 				for (j = 0; j < count; j++) {
7516 					(void) mac_group_mov_ring(mip, group,
7517 					    rings[j]);
7518 				}
7519 				break;
7520 			}
7521 			rings[j++] = ring;
7522 			ring = next;
7523 		}
7524 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7525 		return (rv);
7526 	}
7527 	if (ringcnt >= MAX_RINGS_PER_GROUP)
7528 		return (EINVAL);
7529 
7530 	modify = ringcnt - group->mrg_cur_count;
7531 
7532 	if (rx_group) {
7533 		if (group != mip->mi_rx_donor_grp)
7534 			defgrp = mip->mi_rx_donor_grp;
7535 		else
7536 			/*
7537 			 * This is the donor group with all the remaining
7538 			 * rings. Default group now gets to be the donor
7539 			 */
7540 			mip->mi_rx_donor_grp = defgrp;
7541 		start = 1;
7542 		end = mip->mi_rx_group_count;
7543 	} else {
7544 		start = 0;
7545 		end = mip->mi_tx_group_count - 1;
7546 	}
7547 	/*
7548 	 * If the default doesn't have any rings, lets see if we can
7549 	 * take rings given to an h/w client that doesn't need it.
7550 	 * For now, we just see if there is  any one client that can donate
7551 	 * all the required rings.
7552 	 */
7553 	if (defgrp->mrg_cur_count < (modify + 1)) {
7554 		for (i = start; i < end; i++) {
7555 			if (rx_group) {
7556 				tgrp = &mip->mi_rx_groups[i];
7557 				if (tgrp == group || tgrp->mrg_state <
7558 				    MAC_GROUP_STATE_RESERVED) {
7559 					continue;
7560 				}
7561 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7562 				if (mcip == NULL)
7563 					mcip = mac_get_grp_primary(tgrp);
7564 				ASSERT(mcip != NULL);
7565 				mrp = MCIP_RESOURCE_PROPS(mcip);
7566 				if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7567 					continue;
7568 				if ((tgrp->mrg_cur_count +
7569 				    defgrp->mrg_cur_count) < (modify + 1)) {
7570 					continue;
7571 				}
7572 				if (mac_rx_switch_group(mcip, tgrp,
7573 				    defgrp) != 0) {
7574 					return (ENOSPC);
7575 				}
7576 			} else {
7577 				tgrp = &mip->mi_tx_groups[i];
7578 				if (tgrp == group || tgrp->mrg_state <
7579 				    MAC_GROUP_STATE_RESERVED) {
7580 					continue;
7581 				}
7582 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7583 				if (mcip == NULL)
7584 					mcip = mac_get_grp_primary(tgrp);
7585 				mrp = MCIP_RESOURCE_PROPS(mcip);
7586 				if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7587 					continue;
7588 				if ((tgrp->mrg_cur_count +
7589 				    defgrp->mrg_cur_count) < (modify + 1)) {
7590 					continue;
7591 				}
7592 				/* OK, we can switch this to s/w */
7593 				mac_tx_client_quiesce(
7594 				    (mac_client_handle_t)mcip);
7595 				mac_tx_switch_group(mcip, tgrp, defgrp);
7596 				mac_tx_client_restart(
7597 				    (mac_client_handle_t)mcip);
7598 			}
7599 		}
7600 		if (defgrp->mrg_cur_count < (modify + 1))
7601 			return (ENOSPC);
7602 	}
7603 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7604 	    group, mcip->mci_share, modify)) != 0) {
7605 		return (rv);
7606 	}
7607 	return (0);
7608 }
7609 
7610 /*
7611  * Given the poolname in mac_resource_props, find the cpupart
7612  * that is associated with this pool.  The cpupart will be used
7613  * later for finding the cpus to be bound to the networking threads.
7614  *
7615  * use_default is set B_TRUE if pools are enabled and pool_default
7616  * is returned.  This avoids a 2nd lookup to set the poolname
7617  * for pool-effective.
7618  *
7619  * returns:
7620  *
7621  *    NULL -   pools are disabled or if the 'cpus' property is set.
7622  *    cpupart of pool_default  - pools are enabled and the pool
7623  *             is not available or poolname is blank
7624  *    cpupart of named pool    - pools are enabled and the pool
7625  *             is available.
7626  */
7627 cpupart_t *
7628 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7629 {
7630 	pool_t		*pool;
7631 	cpupart_t	*cpupart;
7632 
7633 	*use_default = B_FALSE;
7634 
7635 	/* CPUs property is set */
7636 	if (mrp->mrp_mask & MRP_CPUS)
7637 		return (NULL);
7638 
7639 	ASSERT(pool_lock_held());
7640 
7641 	/* Pools are disabled, no pset */
7642 	if (pool_state == POOL_DISABLED)
7643 		return (NULL);
7644 
7645 	/* Pools property is set */
7646 	if (mrp->mrp_mask & MRP_POOL) {
7647 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7648 			/* Pool not found */
7649 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7650 			    mrp->mrp_pool);
7651 			*use_default = B_TRUE;
7652 			pool = pool_default;
7653 		}
7654 	/* Pools property is not set */
7655 	} else {
7656 		*use_default = B_TRUE;
7657 		pool = pool_default;
7658 	}
7659 
7660 	/* Find the CPU pset that corresponds to the pool */
7661 	mutex_enter(&cpu_lock);
7662 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7663 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7664 		    pool->pool_pset->pset_id);
7665 	}
7666 	mutex_exit(&cpu_lock);
7667 
7668 	return (cpupart);
7669 }
7670 
7671 void
7672 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7673     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7674 {
7675 	ASSERT(pool_lock_held());
7676 
7677 	if (cpupart != NULL) {
7678 		emrp->mrp_mask |= MRP_POOL;
7679 		if (use_default) {
7680 			(void) strcpy(emrp->mrp_pool,
7681 			    "pool_default");
7682 		} else {
7683 			ASSERT(strlen(mrp->mrp_pool) != 0);
7684 			(void) strcpy(emrp->mrp_pool,
7685 			    mrp->mrp_pool);
7686 		}
7687 	} else {
7688 		emrp->mrp_mask &= ~MRP_POOL;
7689 		bzero(emrp->mrp_pool, MAXPATHLEN);
7690 	}
7691 }
7692 
7693 struct mac_pool_arg {
7694 	char		mpa_poolname[MAXPATHLEN];
7695 	pool_event_t	mpa_what;
7696 };
7697 
7698 /*ARGSUSED*/
7699 static uint_t
7700 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7701 {
7702 	struct mac_pool_arg	*mpa = arg;
7703 	mac_impl_t		*mip = (mac_impl_t *)val;
7704 	mac_client_impl_t	*mcip;
7705 	mac_resource_props_t	*mrp, *emrp;
7706 	boolean_t		pool_update = B_FALSE;
7707 	boolean_t		pool_clear = B_FALSE;
7708 	boolean_t		use_default = B_FALSE;
7709 	cpupart_t		*cpupart = NULL;
7710 
7711 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7712 	i_mac_perim_enter(mip);
7713 	for (mcip = mip->mi_clients_list; mcip != NULL;
7714 	    mcip = mcip->mci_client_next) {
7715 		pool_update = B_FALSE;
7716 		pool_clear = B_FALSE;
7717 		use_default = B_FALSE;
7718 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7719 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
7720 
7721 		/*
7722 		 * When pools are enabled
7723 		 */
7724 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
7725 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7726 			mrp->mrp_mask |= MRP_POOL;
7727 			pool_update = B_TRUE;
7728 		}
7729 
7730 		/*
7731 		 * When pools are disabled
7732 		 */
7733 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
7734 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7735 			mrp->mrp_mask |= MRP_POOL;
7736 			pool_clear = B_TRUE;
7737 		}
7738 
7739 		/*
7740 		 * Look for links with the pool property set and the poolname
7741 		 * matching the one which is changing.
7742 		 */
7743 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7744 			/*
7745 			 * The pool associated with the link has changed.
7746 			 */
7747 			if (mpa->mpa_what == POOL_E_CHANGE) {
7748 				mrp->mrp_mask |= MRP_POOL;
7749 				pool_update = B_TRUE;
7750 			}
7751 		}
7752 
7753 		/*
7754 		 * This link is associated with pool_default and
7755 		 * pool_default has changed.
7756 		 */
7757 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
7758 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7759 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7760 			mrp->mrp_mask |= MRP_POOL;
7761 			pool_update = B_TRUE;
7762 		}
7763 
7764 		/*
7765 		 * Get new list of cpus for the pool, bind network
7766 		 * threads to new list of cpus and update resources.
7767 		 */
7768 		if (pool_update) {
7769 			if (MCIP_DATAPATH_SETUP(mcip)) {
7770 				pool_lock();
7771 				cpupart = mac_pset_find(mrp, &use_default);
7772 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7773 				    mac_rx_deliver, mcip, NULL, cpupart);
7774 				mac_set_pool_effective(use_default, cpupart,
7775 				    mrp, emrp);
7776 				pool_unlock();
7777 			}
7778 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7779 			    B_FALSE);
7780 		}
7781 
7782 		/*
7783 		 * Clear the effective pool and bind network threads
7784 		 * to any available CPU.
7785 		 */
7786 		if (pool_clear) {
7787 			if (MCIP_DATAPATH_SETUP(mcip)) {
7788 				emrp->mrp_mask &= ~MRP_POOL;
7789 				bzero(emrp->mrp_pool, MAXPATHLEN);
7790 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7791 				    mac_rx_deliver, mcip, NULL, NULL);
7792 			}
7793 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7794 			    B_FALSE);
7795 		}
7796 	}
7797 	i_mac_perim_exit(mip);
7798 	kmem_free(mrp, sizeof (*mrp));
7799 	return (MH_WALK_CONTINUE);
7800 }
7801 
7802 static void
7803 mac_pool_update(void *arg)
7804 {
7805 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7806 	kmem_free(arg, sizeof (struct mac_pool_arg));
7807 }
7808 
7809 /*
7810  * Callback function to be executed when a noteworthy pool event
7811  * takes place.
7812  */
7813 /* ARGSUSED */
7814 static void
7815 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7816 {
7817 	pool_t			*pool;
7818 	char			*poolname = NULL;
7819 	struct mac_pool_arg	*mpa;
7820 
7821 	pool_lock();
7822 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7823 
7824 	switch (what) {
7825 	case POOL_E_ENABLE:
7826 	case POOL_E_DISABLE:
7827 		break;
7828 
7829 	case POOL_E_CHANGE:
7830 		pool = pool_lookup_pool_by_id(id);
7831 		if (pool == NULL) {
7832 			kmem_free(mpa, sizeof (struct mac_pool_arg));
7833 			pool_unlock();
7834 			return;
7835 		}
7836 		pool_get_name(pool, &poolname);
7837 		(void) strlcpy(mpa->mpa_poolname, poolname,
7838 		    sizeof (mpa->mpa_poolname));
7839 		break;
7840 
7841 	default:
7842 		kmem_free(mpa, sizeof (struct mac_pool_arg));
7843 		pool_unlock();
7844 		return;
7845 	}
7846 	pool_unlock();
7847 
7848 	mpa->mpa_what = what;
7849 
7850 	mac_pool_update(mpa);
7851 }
7852 
7853 /*
7854  * Set effective rings property. This could be called from datapath_setup/
7855  * datapath_teardown or set-linkprop.
7856  * If the group is reserved we just go ahead and set the effective rings.
7857  * Additionally, for TX this could mean the default  group has lost/gained
7858  * some rings, so if the default group is reserved, we need to adjust the
7859  * effective rings for the default group clients. For RX, if we are working
7860  * with the non-default group, we just need * to reset the effective props
7861  * for the default group clients.
7862  */
7863 void
7864 mac_set_rings_effective(mac_client_impl_t *mcip)
7865 {
7866 	mac_impl_t		*mip = mcip->mci_mip;
7867 	mac_group_t		*grp;
7868 	mac_group_t		*defgrp;
7869 	flow_entry_t		*flent = mcip->mci_flent;
7870 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
7871 	mac_grp_client_t	*mgcp;
7872 	mac_client_impl_t	*gmcip;
7873 
7874 	grp = flent->fe_rx_ring_group;
7875 	if (grp != NULL) {
7876 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
7877 		/*
7878 		 * If we have reserved a group, set the effective rings
7879 		 * to the ring count in the group.
7880 		 */
7881 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7882 			emrp->mrp_mask |= MRP_RX_RINGS;
7883 			emrp->mrp_nrxrings = grp->mrg_cur_count;
7884 		}
7885 
7886 		/*
7887 		 * We go through the clients in the shared group and
7888 		 * reset the effective properties. It is possible this
7889 		 * might have already been done for some client (i.e.
7890 		 * if some client is being moved to a group that is
7891 		 * already shared). The case where the default group is
7892 		 * RESERVED is taken care of above (note in the RX side if
7893 		 * there is a non-default group, the default group is always
7894 		 * SHARED).
7895 		 */
7896 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7897 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7898 				mgcp = grp->mrg_clients;
7899 			else
7900 				mgcp = defgrp->mrg_clients;
7901 			while (mgcp != NULL) {
7902 				gmcip = mgcp->mgc_client;
7903 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7904 				if (emrp->mrp_mask & MRP_RX_RINGS) {
7905 					emrp->mrp_mask &= ~MRP_RX_RINGS;
7906 					emrp->mrp_nrxrings = 0;
7907 				}
7908 				mgcp = mgcp->mgc_next;
7909 			}
7910 		}
7911 	}
7912 
7913 	/* Now the TX side */
7914 	grp = flent->fe_tx_ring_group;
7915 	if (grp != NULL) {
7916 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
7917 
7918 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7919 			emrp->mrp_mask |= MRP_TX_RINGS;
7920 			emrp->mrp_ntxrings = grp->mrg_cur_count;
7921 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7922 			mgcp = grp->mrg_clients;
7923 			while (mgcp != NULL) {
7924 				gmcip = mgcp->mgc_client;
7925 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7926 				if (emrp->mrp_mask & MRP_TX_RINGS) {
7927 					emrp->mrp_mask &= ~MRP_TX_RINGS;
7928 					emrp->mrp_ntxrings = 0;
7929 				}
7930 				mgcp = mgcp->mgc_next;
7931 			}
7932 		}
7933 
7934 		/*
7935 		 * If the group is not the default group and the default
7936 		 * group is reserved, the ring count in the default group
7937 		 * might have changed, update it.
7938 		 */
7939 		if (grp != defgrp &&
7940 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7941 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7942 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7943 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7944 		}
7945 	}
7946 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
7947 }
7948 
7949 /*
7950  * Check if the primary is in the default group. If so, see if we
7951  * can give it a an exclusive group now that another client is
7952  * being configured. We take the primary out of the default group
7953  * because the multicast/broadcast packets for the all the clients
7954  * will land in the default ring in the default group which means
7955  * any client in the default group, even if it is the only on in
7956  * the group, will lose exclusive access to the rings, hence
7957  * polling.
7958  */
7959 mac_client_impl_t *
7960 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
7961 {
7962 	mac_impl_t		*mip = mcip->mci_mip;
7963 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
7964 	flow_entry_t		*flent = mcip->mci_flent;
7965 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7966 	uint8_t			*mac_addr;
7967 	mac_group_t		*ngrp;
7968 
7969 	/*
7970 	 * Check if the primary is in the default group, if not
7971 	 * or if it is explicitly configured to be in the default
7972 	 * group OR set the RX rings property, return.
7973 	 */
7974 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
7975 		return (NULL);
7976 
7977 	/*
7978 	 * If the new client needs an exclusive group and we
7979 	 * don't have another for the primary, return.
7980 	 */
7981 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
7982 		return (NULL);
7983 
7984 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
7985 	/*
7986 	 * We call this when we are setting up the datapath for
7987 	 * the first non-primary.
7988 	 */
7989 	ASSERT(mip->mi_nactiveclients == 2);
7990 	/*
7991 	 * OK, now we have the primary that needs to be relocated.
7992 	 */
7993 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
7994 	if (ngrp == NULL)
7995 		return (NULL);
7996 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
7997 		mac_stop_group(ngrp);
7998 		return (NULL);
7999 	}
8000 	return (mcip);
8001 }
8002