xref: /titanic_52/usr/src/uts/common/io/mac/mac.c (revision 02afa1e50cc61e08906d115412976da2959113d4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015 Joyent, Inc.
25  */
26 
27 /*
28  * MAC Services Module
29  *
30  * The GLDv3 framework locking -  The MAC layer
31  * --------------------------------------------
32  *
33  * The MAC layer is central to the GLD framework and can provide the locking
34  * framework needed for itself and for the use of MAC clients. MAC end points
35  * are fairly disjoint and don't share a lot of state. So a coarse grained
36  * multi-threading scheme is to single thread all create/modify/delete or set
37  * type of control operations on a per mac end point while allowing data threads
38  * concurrently.
39  *
40  * Control operations (set) that modify a mac end point are always serialized on
41  * a per mac end point basis, We have at most 1 such thread per mac end point
42  * at a time.
43  *
44  * All other operations that are not serialized are essentially multi-threaded.
45  * For example a control operation (get) like getting statistics which may not
46  * care about reading values atomically or data threads sending or receiving
47  * data. Mostly these type of operations don't modify the control state. Any
48  * state these operations care about are protected using traditional locks.
49  *
50  * The perimeter only serializes serial operations. It does not imply there
51  * aren't any other concurrent operations. However a serialized operation may
52  * sometimes need to make sure it is the only thread. In this case it needs
53  * to use reference counting mechanisms to cv_wait until any current data
54  * threads are done.
55  *
56  * The mac layer itself does not hold any locks across a call to another layer.
57  * The perimeter is however held across a down call to the driver to make the
58  * whole control operation atomic with respect to other control operations.
59  * Also the data path and get type control operations may proceed concurrently.
60  * These operations synchronize with the single serial operation on a given mac
61  * end point using regular locks. The perimeter ensures that conflicting
62  * operations like say a mac_multicast_add and a mac_multicast_remove on the
63  * same mac end point don't interfere with each other and also ensures that the
64  * changes in the mac layer and the call to the underlying driver to say add a
65  * multicast address are done atomically without interference from a thread
66  * trying to delete the same address.
67  *
68  * For example, consider
69  * mac_multicst_add()
70  * {
71  *	mac_perimeter_enter();	serialize all control operations
72  *
73  *	grab list lock		protect against access by data threads
74  *	add to list
75  *	drop list lock
76  *
77  *	call driver's mi_multicst
78  *
79  *	mac_perimeter_exit();
80  * }
81  *
82  * To lessen the number of serialization locks and simplify the lock hierarchy,
83  * we serialize all the control operations on a per mac end point by using a
84  * single serialization lock called the perimeter. We allow recursive entry into
85  * the perimeter to facilitate use of this mechanism by both the mac client and
86  * the MAC layer itself.
87  *
88  * MAC client means an entity that does an operation on a mac handle
89  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
90  * an entity that does an operation on a mac handle obtained from a
91  * mac_register. An entity could be both client and driver but on different
92  * handles eg. aggr. and should only make the corresponding mac interface calls
93  * i.e. mac driver interface or mac client interface as appropriate for that
94  * mac handle.
95  *
96  * General rules.
97  * -------------
98  *
99  * R1. The lock order of upcall threads is natually opposite to downcall
100  * threads. Hence upcalls must not hold any locks across layers for fear of
101  * recursive lock enter and lock order violation. This applies to all layers.
102  *
103  * R2. The perimeter is just another lock. Since it is held in the down
104  * direction, acquiring the perimeter in an upcall is prohibited as it would
105  * cause a deadlock. This applies to all layers.
106  *
107  * Note that upcalls that need to grab the mac perimeter (for example
108  * mac_notify upcalls) can still achieve that by posting the request to a
109  * thread, which can then grab all the required perimeters and locks in the
110  * right global order. Note that in the above example the mac layer iself
111  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
112  * to the client must do that. Please see the aggr code for an example.
113  *
114  * MAC client rules
115  * ----------------
116  *
117  * R3. A MAC client may use the MAC provided perimeter facility to serialize
118  * control operations on a per mac end point. It does this by by acquring
119  * and holding the perimeter across a sequence of calls to the mac layer.
120  * This ensures atomicity across the entire block of mac calls. In this
121  * model the MAC client must not hold any client locks across the calls to
122  * the mac layer. This model is the preferred solution.
123  *
124  * R4. However if a MAC client has a lot of global state across all mac end
125  * points the per mac end point serialization may not be sufficient. In this
126  * case the client may choose to use global locks or use its own serialization.
127  * To avoid deadlocks, these client layer locks held across the mac calls
128  * in the control path must never be acquired by the data path for the reason
129  * mentioned below.
130  *
131  * (Assume that a control operation that holds a client lock blocks in the
132  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
133  * data thread that holds this reference count, tries to acquire the same
134  * client lock subsequently it will deadlock).
135  *
136  * A MAC client may follow either the R3 model or the R4 model, but can't
137  * mix both. In the former, the hierarchy is Perim -> client locks, but in
138  * the latter it is client locks -> Perim.
139  *
140  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
141  * context since they may block while trying to acquire the perimeter.
142  * In addition some calls may block waiting for upcall refcnts to come down to
143  * zero.
144  *
145  * R6. MAC clients must make sure that they are single threaded and all threads
146  * from the top (in particular data threads) have finished before calling
147  * mac_client_close. The MAC framework does not track the number of client
148  * threads using the mac client handle. Also mac clients must make sure
149  * they have undone all the control operations before calling mac_client_close.
150  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
151  * mac_unicast_add/mac_multicast_add.
152  *
153  * MAC framework rules
154  * -------------------
155  *
156  * R7. The mac layer itself must not hold any mac layer locks (except the mac
157  * perimeter) across a call to any other layer from the mac layer. The call to
158  * any other layer could be via mi_* entry points, classifier entry points into
159  * the driver or via upcall pointers into layers above. The mac perimeter may
160  * be acquired or held only in the down direction, for e.g. when calling into
161  * a mi_* driver enty point to provide atomicity of the operation.
162  *
163  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
164  * mac driver interfaces, the MAC layer must provide a cut out for control
165  * interfaces like upcall notifications and start them in a separate thread.
166  *
167  * R9. Note that locking order also implies a plumbing order. For example
168  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
169  * to plumb in any other order must be failed at mac_open time, otherwise it
170  * could lead to deadlocks due to inverse locking order.
171  *
172  * R10. MAC driver interfaces must not block since the driver could call them
173  * in interrupt context.
174  *
175  * R11. Walkers must preferably not hold any locks while calling walker
176  * callbacks. Instead these can operate on reference counts. In simple
177  * callbacks it may be ok to hold a lock and call the callbacks, but this is
178  * harder to maintain in the general case of arbitrary callbacks.
179  *
180  * R12. The MAC layer must protect upcall notification callbacks using reference
181  * counts rather than holding locks across the callbacks.
182  *
183  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
184  * sure that any pointers (such as mac ring pointers) it passes to the driver
185  * remain valid until mac unregister time. Currently the mac layer achieves
186  * this by using generation numbers for rings and freeing the mac rings only
187  * at unregister time.  The MAC layer must provide a layer of indirection and
188  * must not expose underlying driver rings or driver data structures/pointers
189  * directly to MAC clients.
190  *
191  * MAC driver rules
192  * ----------------
193  *
194  * R14. It would be preferable if MAC drivers don't hold any locks across any
195  * mac call. However at a minimum they must not hold any locks across data
196  * upcalls. They must also make sure that all references to mac data structures
197  * are cleaned up and that it is single threaded at mac_unregister time.
198  *
199  * R15. MAC driver interfaces don't block and so the action may be done
200  * asynchronously in a separate thread as for example handling notifications.
201  * The driver must not assume that the action is complete when the call
202  * returns.
203  *
204  * R16. Drivers must maintain a generation number per Rx ring, and pass it
205  * back to mac_rx_ring(); They are expected to increment the generation
206  * number whenever the ring's stop routine is invoked.
207  * See comments in mac_rx_ring();
208  *
209  * R17 Similarly mi_stop is another synchronization point and the driver must
210  * ensure that all upcalls are done and there won't be any future upcall
211  * before returning from mi_stop.
212  *
213  * R18. The driver may assume that all set/modify control operations via
214  * the mi_* entry points are single threaded on a per mac end point.
215  *
216  * Lock and Perimeter hierarchy scenarios
217  * ---------------------------------------
218  *
219  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
220  *
221  * ft_lock -> fe_lock [mac_flow_lookup]
222  *
223  * mi_rw_lock -> fe_lock [mac_bcast_send]
224  *
225  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
226  *
227  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
228  *
229  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
230  *
231  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
232  * client to driver. In the case of clients that explictly use the mac provided
233  * perimeter mechanism for its serialization, the hierarchy is
234  * Perimeter -> mac layer locks, since the client never holds any locks across
235  * the mac calls. In the case of clients that use its own locks the hierarchy
236  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
237  * calls mac_perim_enter/exit in this case.
238  *
239  * Subflow creation rules
240  * ---------------------------
241  * o In case of a user specified cpulist present on underlying link and flows,
242  * the flows cpulist must be a subset of the underlying link.
243  * o In case of a user specified fanout mode present on link and flow, the
244  * subflow fanout count has to be less than or equal to that of the
245  * underlying link. The cpu-bindings for the subflows will be a subset of
246  * the underlying link.
247  * o In case if no cpulist specified on both underlying link and flow, the
248  * underlying link relies on a  MAC tunable to provide out of box fanout.
249  * The subflow will have no cpulist (the subflow will be unbound)
250  * o In case if no cpulist is specified on the underlying link, a subflow can
251  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
252  * for the subflow will not adhere to restriction that they need to be subset
253  * of the underlying link.
254  * o In case where the underlying link is carrying either a user specified
255  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
256  * created unbound.
257  * o While creating unbound subflows, bandwidth mode changes attempt to
258  * figure a right fanout count. In such cases the fanout count will override
259  * the unbound cpu-binding behavior.
260  * o In addition to this, while cycling between flow and link properties, we
261  * impose a restriction that if a link property has a subflow with
262  * user-specified attributes, we will not allow changing the link property.
263  * The administrator needs to reset all the user specified properties for the
264  * subflows before attempting a link property change.
265  * Some of the above rules can be overridden by specifying additional command
266  * line options while creating or modifying link or subflow properties.
267  *
268  * Datapath
269  * --------
270  *
271  * For information on the datapath, the world of soft rings, hardware rings, how
272  * it is structured, and the path of an mblk_t between a driver and a mac
273  * client, see mac_sched.c.
274  */
275 
276 #include <sys/types.h>
277 #include <sys/conf.h>
278 #include <sys/id_space.h>
279 #include <sys/esunddi.h>
280 #include <sys/stat.h>
281 #include <sys/mkdev.h>
282 #include <sys/stream.h>
283 #include <sys/strsun.h>
284 #include <sys/strsubr.h>
285 #include <sys/dlpi.h>
286 #include <sys/list.h>
287 #include <sys/modhash.h>
288 #include <sys/mac_provider.h>
289 #include <sys/mac_client_impl.h>
290 #include <sys/mac_soft_ring.h>
291 #include <sys/mac_stat.h>
292 #include <sys/mac_impl.h>
293 #include <sys/mac.h>
294 #include <sys/dls.h>
295 #include <sys/dld.h>
296 #include <sys/modctl.h>
297 #include <sys/fs/dv_node.h>
298 #include <sys/thread.h>
299 #include <sys/proc.h>
300 #include <sys/callb.h>
301 #include <sys/cpuvar.h>
302 #include <sys/atomic.h>
303 #include <sys/bitmap.h>
304 #include <sys/sdt.h>
305 #include <sys/mac_flow.h>
306 #include <sys/ddi_intr_impl.h>
307 #include <sys/disp.h>
308 #include <sys/sdt.h>
309 #include <sys/vnic.h>
310 #include <sys/vnic_impl.h>
311 #include <sys/vlan.h>
312 #include <inet/ip.h>
313 #include <inet/ip6.h>
314 #include <sys/exacct.h>
315 #include <sys/exacct_impl.h>
316 #include <inet/nd.h>
317 #include <sys/ethernet.h>
318 #include <sys/pool.h>
319 #include <sys/pool_pset.h>
320 #include <sys/cpupart.h>
321 #include <inet/wifi_ioctl.h>
322 #include <net/wpa.h>
323 
324 #define	IMPL_HASHSZ	67	/* prime */
325 
326 kmem_cache_t		*i_mac_impl_cachep;
327 mod_hash_t		*i_mac_impl_hash;
328 krwlock_t		i_mac_impl_lock;
329 uint_t			i_mac_impl_count;
330 static kmem_cache_t	*mac_ring_cache;
331 static id_space_t	*minor_ids;
332 static uint32_t		minor_count;
333 static pool_event_cb_t	mac_pool_event_reg;
334 
335 /*
336  * Logging stuff. Perhaps mac_logging_interval could be broken into
337  * mac_flow_log_interval and mac_link_log_interval if we want to be
338  * able to schedule them differently.
339  */
340 uint_t			mac_logging_interval;
341 boolean_t		mac_flow_log_enable;
342 boolean_t		mac_link_log_enable;
343 timeout_id_t		mac_logging_timer;
344 
345 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
346 int mac_dbg = 0;
347 
348 #define	MACTYPE_KMODDIR	"mac"
349 #define	MACTYPE_HASHSZ	67
350 static mod_hash_t	*i_mactype_hash;
351 /*
352  * i_mactype_lock synchronizes threads that obtain references to mactype_t
353  * structures through i_mactype_getplugin().
354  */
355 static kmutex_t		i_mactype_lock;
356 
357 /*
358  * mac_tx_percpu_cnt
359  *
360  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
361  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
362  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
363  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
364  */
365 int mac_tx_percpu_cnt;
366 int mac_tx_percpu_cnt_max = 128;
367 
368 /*
369  * Call back functions for the bridge module.  These are guaranteed to be valid
370  * when holding a reference on a link or when holding mip->mi_bridge_lock and
371  * mi_bridge_link is non-NULL.
372  */
373 mac_bridge_tx_t mac_bridge_tx_cb;
374 mac_bridge_rx_t mac_bridge_rx_cb;
375 mac_bridge_ref_t mac_bridge_ref_cb;
376 mac_bridge_ls_t mac_bridge_ls_cb;
377 
378 static int i_mac_constructor(void *, void *, int);
379 static void i_mac_destructor(void *, void *);
380 static int i_mac_ring_ctor(void *, void *, int);
381 static void i_mac_ring_dtor(void *, void *);
382 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
383 void mac_tx_client_flush(mac_client_impl_t *);
384 void mac_tx_client_block(mac_client_impl_t *);
385 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
386 static int mac_start_group_and_rings(mac_group_t *);
387 static void mac_stop_group_and_rings(mac_group_t *);
388 static void mac_pool_event_cb(pool_event_t, int, void *);
389 
390 typedef struct netinfo_s {
391 	list_node_t	ni_link;
392 	void		*ni_record;
393 	int		ni_size;
394 	int		ni_type;
395 } netinfo_t;
396 
397 /*
398  * Module initialization functions.
399  */
400 
401 void
402 mac_init(void)
403 {
404 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
405 	    boot_max_ncpus);
406 
407 	/* Upper bound is mac_tx_percpu_cnt_max */
408 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
409 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
410 
411 	if (mac_tx_percpu_cnt < 1) {
412 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
413 		mac_tx_percpu_cnt = 1;
414 	}
415 
416 	ASSERT(mac_tx_percpu_cnt >= 1);
417 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
418 	/*
419 	 * Make it of the form 2**N - 1 in the range
420 	 * [0 .. mac_tx_percpu_cnt_max - 1]
421 	 */
422 	mac_tx_percpu_cnt--;
423 
424 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
425 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
426 	    NULL, NULL, NULL, 0);
427 	ASSERT(i_mac_impl_cachep != NULL);
428 
429 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
430 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
431 	    NULL, NULL, 0);
432 	ASSERT(mac_ring_cache != NULL);
433 
434 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
435 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
436 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
437 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
438 
439 	mac_flow_init();
440 	mac_soft_ring_init();
441 	mac_bcast_init();
442 	mac_client_init();
443 
444 	i_mac_impl_count = 0;
445 
446 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
447 	    MACTYPE_HASHSZ,
448 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
449 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
450 
451 	/*
452 	 * Allocate an id space to manage minor numbers. The range of the
453 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
454 	 * leaves half of the 32-bit minors available for driver private use.
455 	 */
456 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
457 	    MAC_PRIVATE_MINOR-1);
458 	ASSERT(minor_ids != NULL);
459 	minor_count = 0;
460 
461 	/* Let's default to 20 seconds */
462 	mac_logging_interval = 20;
463 	mac_flow_log_enable = B_FALSE;
464 	mac_link_log_enable = B_FALSE;
465 	mac_logging_timer = 0;
466 
467 	/* Register to be notified of noteworthy pools events */
468 	mac_pool_event_reg.pec_func =  mac_pool_event_cb;
469 	mac_pool_event_reg.pec_arg = NULL;
470 	pool_event_cb_register(&mac_pool_event_reg);
471 }
472 
473 int
474 mac_fini(void)
475 {
476 
477 	if (i_mac_impl_count > 0 || minor_count > 0)
478 		return (EBUSY);
479 
480 	pool_event_cb_unregister(&mac_pool_event_reg);
481 
482 	id_space_destroy(minor_ids);
483 	mac_flow_fini();
484 
485 	mod_hash_destroy_hash(i_mac_impl_hash);
486 	rw_destroy(&i_mac_impl_lock);
487 
488 	mac_client_fini();
489 	kmem_cache_destroy(mac_ring_cache);
490 
491 	mod_hash_destroy_hash(i_mactype_hash);
492 	mac_soft_ring_finish();
493 
494 
495 	return (0);
496 }
497 
498 /*
499  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
500  * (e.g. softmac) may pass in a NULL ops argument.
501  */
502 void
503 mac_init_ops(struct dev_ops *ops, const char *name)
504 {
505 	major_t major = ddi_name_to_major((char *)name);
506 
507 	/*
508 	 * By returning on error below, we are not letting the driver continue
509 	 * in an undefined context.  The mac_register() function will faill if
510 	 * DN_GLDV3_DRIVER isn't set.
511 	 */
512 	if (major == DDI_MAJOR_T_NONE)
513 		return;
514 	LOCK_DEV_OPS(&devnamesp[major].dn_lock);
515 	devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
516 	UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
517 	if (ops != NULL)
518 		dld_init_ops(ops, name);
519 }
520 
521 void
522 mac_fini_ops(struct dev_ops *ops)
523 {
524 	dld_fini_ops(ops);
525 }
526 
527 /*ARGSUSED*/
528 static int
529 i_mac_constructor(void *buf, void *arg, int kmflag)
530 {
531 	mac_impl_t	*mip = buf;
532 
533 	bzero(buf, sizeof (mac_impl_t));
534 
535 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
536 
537 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
538 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
539 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
540 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
541 
542 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
543 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
544 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
545 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
546 
547 	mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
548 
549 	return (0);
550 }
551 
552 /*ARGSUSED*/
553 static void
554 i_mac_destructor(void *buf, void *arg)
555 {
556 	mac_impl_t	*mip = buf;
557 	mac_cb_info_t	*mcbi;
558 
559 	ASSERT(mip->mi_ref == 0);
560 	ASSERT(mip->mi_active == 0);
561 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
562 	ASSERT(mip->mi_devpromisc == 0);
563 	ASSERT(mip->mi_ksp == NULL);
564 	ASSERT(mip->mi_kstat_count == 0);
565 	ASSERT(mip->mi_nclients == 0);
566 	ASSERT(mip->mi_nactiveclients == 0);
567 	ASSERT(mip->mi_single_active_client == NULL);
568 	ASSERT(mip->mi_state_flags == 0);
569 	ASSERT(mip->mi_factory_addr == NULL);
570 	ASSERT(mip->mi_factory_addr_num == 0);
571 	ASSERT(mip->mi_default_tx_ring == NULL);
572 
573 	mcbi = &mip->mi_notify_cb_info;
574 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
575 	ASSERT(mip->mi_notify_bits == 0);
576 	ASSERT(mip->mi_notify_thread == NULL);
577 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
578 	mcbi->mcbi_lockp = NULL;
579 
580 	mcbi = &mip->mi_promisc_cb_info;
581 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
582 	ASSERT(mip->mi_promisc_list == NULL);
583 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
584 	mcbi->mcbi_lockp = NULL;
585 
586 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
587 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
588 
589 	rw_destroy(&mip->mi_rw_lock);
590 
591 	mutex_destroy(&mip->mi_promisc_lock);
592 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
593 	mutex_destroy(&mip->mi_notify_lock);
594 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
595 	mutex_destroy(&mip->mi_ring_lock);
596 
597 	ASSERT(mip->mi_bridge_link == NULL);
598 }
599 
600 /* ARGSUSED */
601 static int
602 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
603 {
604 	mac_ring_t *ring = (mac_ring_t *)buf;
605 
606 	bzero(ring, sizeof (mac_ring_t));
607 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
608 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
609 	ring->mr_state = MR_FREE;
610 	return (0);
611 }
612 
613 /* ARGSUSED */
614 static void
615 i_mac_ring_dtor(void *buf, void *arg)
616 {
617 	mac_ring_t *ring = (mac_ring_t *)buf;
618 
619 	cv_destroy(&ring->mr_cv);
620 	mutex_destroy(&ring->mr_lock);
621 }
622 
623 /*
624  * Common functions to do mac callback addition and deletion. Currently this is
625  * used by promisc callbacks and notify callbacks. List addition and deletion
626  * need to take care of list walkers. List walkers in general, can't hold list
627  * locks and make upcall callbacks due to potential lock order and recursive
628  * reentry issues. Instead list walkers increment the list walker count to mark
629  * the presence of a walker thread. Addition can be carefully done to ensure
630  * that the list walker always sees either the old list or the new list.
631  * However the deletion can't be done while the walker is active, instead the
632  * deleting thread simply marks the entry as logically deleted. The last walker
633  * physically deletes and frees up the logically deleted entries when the walk
634  * is complete.
635  */
636 void
637 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
638     mac_cb_t *mcb_elem)
639 {
640 	mac_cb_t	*p;
641 	mac_cb_t	**pp;
642 
643 	/* Verify it is not already in the list */
644 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
645 		if (p == mcb_elem)
646 			break;
647 	}
648 	VERIFY(p == NULL);
649 
650 	/*
651 	 * Add it to the head of the callback list. The membar ensures that
652 	 * the following list pointer manipulations reach global visibility
653 	 * in exactly the program order below.
654 	 */
655 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
656 
657 	mcb_elem->mcb_nextp = *mcb_head;
658 	membar_producer();
659 	*mcb_head = mcb_elem;
660 }
661 
662 /*
663  * Mark the entry as logically deleted. If there aren't any walkers unlink
664  * from the list. In either case return the corresponding status.
665  */
666 boolean_t
667 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
668     mac_cb_t *mcb_elem)
669 {
670 	mac_cb_t	*p;
671 	mac_cb_t	**pp;
672 
673 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
674 	/*
675 	 * Search the callback list for the entry to be removed
676 	 */
677 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
678 		if (p == mcb_elem)
679 			break;
680 	}
681 	VERIFY(p != NULL);
682 
683 	/*
684 	 * If there are walkers just mark it as deleted and the last walker
685 	 * will remove from the list and free it.
686 	 */
687 	if (mcbi->mcbi_walker_cnt != 0) {
688 		p->mcb_flags |= MCB_CONDEMNED;
689 		mcbi->mcbi_del_cnt++;
690 		return (B_FALSE);
691 	}
692 
693 	ASSERT(mcbi->mcbi_del_cnt == 0);
694 	*pp = p->mcb_nextp;
695 	p->mcb_nextp = NULL;
696 	return (B_TRUE);
697 }
698 
699 /*
700  * Wait for all pending callback removals to be completed
701  */
702 void
703 mac_callback_remove_wait(mac_cb_info_t *mcbi)
704 {
705 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
706 	while (mcbi->mcbi_del_cnt != 0) {
707 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
708 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
709 	}
710 }
711 
712 /*
713  * The last mac callback walker does the cleanup. Walk the list and unlik
714  * all the logically deleted entries and construct a temporary list of
715  * removed entries. Return the list of removed entries to the caller.
716  */
717 mac_cb_t *
718 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
719 {
720 	mac_cb_t	*p;
721 	mac_cb_t	**pp;
722 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
723 	int	cnt = 0;
724 
725 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
726 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
727 
728 	pp = mcb_head;
729 	while (*pp != NULL) {
730 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
731 			p = *pp;
732 			*pp = p->mcb_nextp;
733 			p->mcb_nextp = rmlist;
734 			rmlist = p;
735 			cnt++;
736 			continue;
737 		}
738 		pp = &(*pp)->mcb_nextp;
739 	}
740 
741 	ASSERT(mcbi->mcbi_del_cnt == cnt);
742 	mcbi->mcbi_del_cnt = 0;
743 	return (rmlist);
744 }
745 
746 boolean_t
747 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
748 {
749 	mac_cb_t	*mcb;
750 
751 	/* Verify it is not already in the list */
752 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
753 		if (mcb == mcb_elem)
754 			return (B_TRUE);
755 	}
756 
757 	return (B_FALSE);
758 }
759 
760 boolean_t
761 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
762 {
763 	boolean_t	found;
764 
765 	mutex_enter(mcbi->mcbi_lockp);
766 	found = mac_callback_lookup(mcb_headp, mcb_elem);
767 	mutex_exit(mcbi->mcbi_lockp);
768 
769 	return (found);
770 }
771 
772 /* Free the list of removed callbacks */
773 void
774 mac_callback_free(mac_cb_t *rmlist)
775 {
776 	mac_cb_t	*mcb;
777 	mac_cb_t	*mcb_next;
778 
779 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
780 		mcb_next = mcb->mcb_nextp;
781 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
782 	}
783 }
784 
785 /*
786  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
787  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
788  * is only a single shared total walker count, and an entry can't be physically
789  * unlinked if a walker is active on either list. The last walker does this
790  * cleanup of logically deleted entries.
791  */
792 void
793 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
794 {
795 	mac_cb_t	*rmlist;
796 	mac_cb_t	*mcb;
797 	mac_cb_t	*mcb_next;
798 	mac_promisc_impl_t	*mpip;
799 
800 	/*
801 	 * Construct a temporary list of deleted callbacks by walking the
802 	 * the mi_promisc_list. Then for each entry in the temporary list,
803 	 * remove it from the mci_promisc_list and free the entry.
804 	 */
805 	rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
806 	    &mip->mi_promisc_list);
807 
808 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
809 		mcb_next = mcb->mcb_nextp;
810 		mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
811 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
812 		    &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
813 		mcb->mcb_flags = 0;
814 		mcb->mcb_nextp = NULL;
815 		kmem_cache_free(mac_promisc_impl_cache, mpip);
816 	}
817 }
818 
819 void
820 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
821 {
822 	mac_cb_info_t	*mcbi;
823 
824 	/*
825 	 * Signal the notify thread even after mi_ref has become zero and
826 	 * mi_disabled is set. The synchronization with the notify thread
827 	 * happens in mac_unregister and that implies the driver must make
828 	 * sure it is single-threaded (with respect to mac calls) and that
829 	 * all pending mac calls have returned before it calls mac_unregister
830 	 */
831 	rw_enter(&i_mac_impl_lock, RW_READER);
832 	if (mip->mi_state_flags & MIS_DISABLED)
833 		goto exit;
834 
835 	/*
836 	 * Guard against incorrect notifications.  (Running a newer
837 	 * mac client against an older implementation?)
838 	 */
839 	if (type >= MAC_NNOTE)
840 		goto exit;
841 
842 	mcbi = &mip->mi_notify_cb_info;
843 	mutex_enter(mcbi->mcbi_lockp);
844 	mip->mi_notify_bits |= (1 << type);
845 	cv_broadcast(&mcbi->mcbi_cv);
846 	mutex_exit(mcbi->mcbi_lockp);
847 
848 exit:
849 	rw_exit(&i_mac_impl_lock);
850 }
851 
852 /*
853  * Mac serialization primitives. Please see the block comment at the
854  * top of the file.
855  */
856 void
857 i_mac_perim_enter(mac_impl_t *mip)
858 {
859 	mac_client_impl_t	*mcip;
860 
861 	if (mip->mi_state_flags & MIS_IS_VNIC) {
862 		/*
863 		 * This is a VNIC. Return the lower mac since that is what
864 		 * we want to serialize on.
865 		 */
866 		mcip = mac_vnic_lower(mip);
867 		mip = mcip->mci_mip;
868 	}
869 
870 	mutex_enter(&mip->mi_perim_lock);
871 	if (mip->mi_perim_owner == curthread) {
872 		mip->mi_perim_ocnt++;
873 		mutex_exit(&mip->mi_perim_lock);
874 		return;
875 	}
876 
877 	while (mip->mi_perim_owner != NULL)
878 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
879 
880 	mip->mi_perim_owner = curthread;
881 	ASSERT(mip->mi_perim_ocnt == 0);
882 	mip->mi_perim_ocnt++;
883 #ifdef DEBUG
884 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
885 	    MAC_PERIM_STACK_DEPTH);
886 #endif
887 	mutex_exit(&mip->mi_perim_lock);
888 }
889 
890 int
891 i_mac_perim_enter_nowait(mac_impl_t *mip)
892 {
893 	/*
894 	 * The vnic is a special case, since the serialization is done based
895 	 * on the lower mac. If the lower mac is busy, it does not imply the
896 	 * vnic can't be unregistered. But in the case of other drivers,
897 	 * a busy perimeter or open mac handles implies that the mac is busy
898 	 * and can't be unregistered.
899 	 */
900 	if (mip->mi_state_flags & MIS_IS_VNIC) {
901 		i_mac_perim_enter(mip);
902 		return (0);
903 	}
904 
905 	mutex_enter(&mip->mi_perim_lock);
906 	if (mip->mi_perim_owner != NULL) {
907 		mutex_exit(&mip->mi_perim_lock);
908 		return (EBUSY);
909 	}
910 	ASSERT(mip->mi_perim_ocnt == 0);
911 	mip->mi_perim_owner = curthread;
912 	mip->mi_perim_ocnt++;
913 	mutex_exit(&mip->mi_perim_lock);
914 
915 	return (0);
916 }
917 
918 void
919 i_mac_perim_exit(mac_impl_t *mip)
920 {
921 	mac_client_impl_t *mcip;
922 
923 	if (mip->mi_state_flags & MIS_IS_VNIC) {
924 		/*
925 		 * This is a VNIC. Return the lower mac since that is what
926 		 * we want to serialize on.
927 		 */
928 		mcip = mac_vnic_lower(mip);
929 		mip = mcip->mci_mip;
930 	}
931 
932 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
933 
934 	mutex_enter(&mip->mi_perim_lock);
935 	if (--mip->mi_perim_ocnt == 0) {
936 		mip->mi_perim_owner = NULL;
937 		cv_signal(&mip->mi_perim_cv);
938 	}
939 	mutex_exit(&mip->mi_perim_lock);
940 }
941 
942 /*
943  * Returns whether the current thread holds the mac perimeter. Used in making
944  * assertions.
945  */
946 boolean_t
947 mac_perim_held(mac_handle_t mh)
948 {
949 	mac_impl_t	*mip = (mac_impl_t *)mh;
950 	mac_client_impl_t *mcip;
951 
952 	if (mip->mi_state_flags & MIS_IS_VNIC) {
953 		/*
954 		 * This is a VNIC. Return the lower mac since that is what
955 		 * we want to serialize on.
956 		 */
957 		mcip = mac_vnic_lower(mip);
958 		mip = mcip->mci_mip;
959 	}
960 	return (mip->mi_perim_owner == curthread);
961 }
962 
963 /*
964  * mac client interfaces to enter the mac perimeter of a mac end point, given
965  * its mac handle, or macname or linkid.
966  */
967 void
968 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
969 {
970 	mac_impl_t	*mip = (mac_impl_t *)mh;
971 
972 	i_mac_perim_enter(mip);
973 	/*
974 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
975 	 * mac_open has been done internally while entering the perimeter.
976 	 * This information is used in mac_perim_exit
977 	 */
978 	MAC_ENCODE_MPH(*mphp, mip, 0);
979 }
980 
981 int
982 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
983 {
984 	int	err;
985 	mac_handle_t	mh;
986 
987 	if ((err = mac_open(name, &mh)) != 0)
988 		return (err);
989 
990 	mac_perim_enter_by_mh(mh, mphp);
991 	MAC_ENCODE_MPH(*mphp, mh, 1);
992 	return (0);
993 }
994 
995 int
996 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
997 {
998 	int	err;
999 	mac_handle_t	mh;
1000 
1001 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1002 		return (err);
1003 
1004 	mac_perim_enter_by_mh(mh, mphp);
1005 	MAC_ENCODE_MPH(*mphp, mh, 1);
1006 	return (0);
1007 }
1008 
1009 void
1010 mac_perim_exit(mac_perim_handle_t mph)
1011 {
1012 	mac_impl_t	*mip;
1013 	boolean_t	need_close;
1014 
1015 	MAC_DECODE_MPH(mph, mip, need_close);
1016 	i_mac_perim_exit(mip);
1017 	if (need_close)
1018 		mac_close((mac_handle_t)mip);
1019 }
1020 
1021 int
1022 mac_hold(const char *macname, mac_impl_t **pmip)
1023 {
1024 	mac_impl_t	*mip;
1025 	int		err;
1026 
1027 	/*
1028 	 * Check the device name length to make sure it won't overflow our
1029 	 * buffer.
1030 	 */
1031 	if (strlen(macname) >= MAXNAMELEN)
1032 		return (EINVAL);
1033 
1034 	/*
1035 	 * Look up its entry in the global hash table.
1036 	 */
1037 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1038 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1039 	    (mod_hash_val_t *)&mip);
1040 
1041 	if (err != 0) {
1042 		rw_exit(&i_mac_impl_lock);
1043 		return (ENOENT);
1044 	}
1045 
1046 	if (mip->mi_state_flags & MIS_DISABLED) {
1047 		rw_exit(&i_mac_impl_lock);
1048 		return (ENOENT);
1049 	}
1050 
1051 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1052 		rw_exit(&i_mac_impl_lock);
1053 		return (EBUSY);
1054 	}
1055 
1056 	mip->mi_ref++;
1057 	rw_exit(&i_mac_impl_lock);
1058 
1059 	*pmip = mip;
1060 	return (0);
1061 }
1062 
1063 void
1064 mac_rele(mac_impl_t *mip)
1065 {
1066 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1067 	ASSERT(mip->mi_ref != 0);
1068 	if (--mip->mi_ref == 0) {
1069 		ASSERT(mip->mi_nactiveclients == 0 &&
1070 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1071 	}
1072 	rw_exit(&i_mac_impl_lock);
1073 }
1074 
1075 /*
1076  * Private GLDv3 function to start a MAC instance.
1077  */
1078 int
1079 mac_start(mac_handle_t mh)
1080 {
1081 	mac_impl_t	*mip = (mac_impl_t *)mh;
1082 	int		err = 0;
1083 	mac_group_t	*defgrp;
1084 
1085 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1086 	ASSERT(mip->mi_start != NULL);
1087 
1088 	/*
1089 	 * Check whether the device is already started.
1090 	 */
1091 	if (mip->mi_active++ == 0) {
1092 		mac_ring_t *ring = NULL;
1093 
1094 		/*
1095 		 * Start the device.
1096 		 */
1097 		err = mip->mi_start(mip->mi_driver);
1098 		if (err != 0) {
1099 			mip->mi_active--;
1100 			return (err);
1101 		}
1102 
1103 		/*
1104 		 * Start the default tx ring.
1105 		 */
1106 		if (mip->mi_default_tx_ring != NULL) {
1107 
1108 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1109 			if (ring->mr_state != MR_INUSE) {
1110 				err = mac_start_ring(ring);
1111 				if (err != 0) {
1112 					mip->mi_active--;
1113 					return (err);
1114 				}
1115 			}
1116 		}
1117 
1118 		if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1119 			/*
1120 			 * Start the default ring, since it will be needed
1121 			 * to receive broadcast and multicast traffic for
1122 			 * both primary and non-primary MAC clients.
1123 			 */
1124 			ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1125 			err = mac_start_group_and_rings(defgrp);
1126 			if (err != 0) {
1127 				mip->mi_active--;
1128 				if ((ring != NULL) &&
1129 				    (ring->mr_state == MR_INUSE))
1130 					mac_stop_ring(ring);
1131 				return (err);
1132 			}
1133 			mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1134 		}
1135 	}
1136 
1137 	return (err);
1138 }
1139 
1140 /*
1141  * Private GLDv3 function to stop a MAC instance.
1142  */
1143 void
1144 mac_stop(mac_handle_t mh)
1145 {
1146 	mac_impl_t	*mip = (mac_impl_t *)mh;
1147 	mac_group_t	*grp;
1148 
1149 	ASSERT(mip->mi_stop != NULL);
1150 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1151 
1152 	/*
1153 	 * Check whether the device is still needed.
1154 	 */
1155 	ASSERT(mip->mi_active != 0);
1156 	if (--mip->mi_active == 0) {
1157 		if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1158 			/*
1159 			 * There should be no more active clients since the
1160 			 * MAC is being stopped. Stop the default RX group
1161 			 * and transition it back to registered state.
1162 			 *
1163 			 * When clients are torn down, the groups
1164 			 * are release via mac_release_rx_group which
1165 			 * knows the the default group is always in
1166 			 * started mode since broadcast uses it. So
1167 			 * we can assert that their are no clients
1168 			 * (since mac_bcast_add doesn't register itself
1169 			 * as a client) and group is in SHARED state.
1170 			 */
1171 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1172 			ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1173 			    mip->mi_nactiveclients == 0);
1174 			mac_stop_group_and_rings(grp);
1175 			mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1176 		}
1177 
1178 		if (mip->mi_default_tx_ring != NULL) {
1179 			mac_ring_t *ring;
1180 
1181 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1182 			if (ring->mr_state == MR_INUSE) {
1183 				mac_stop_ring(ring);
1184 				ring->mr_flag = 0;
1185 			}
1186 		}
1187 
1188 		/*
1189 		 * Stop the device.
1190 		 */
1191 		mip->mi_stop(mip->mi_driver);
1192 	}
1193 }
1194 
1195 int
1196 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1197 {
1198 	int		err = 0;
1199 
1200 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1201 	ASSERT(mip->mi_setpromisc != NULL);
1202 
1203 	if (on) {
1204 		/*
1205 		 * Enable promiscuous mode on the device if not yet enabled.
1206 		 */
1207 		if (mip->mi_devpromisc++ == 0) {
1208 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1209 			if (err != 0) {
1210 				mip->mi_devpromisc--;
1211 				return (err);
1212 			}
1213 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1214 		}
1215 	} else {
1216 		if (mip->mi_devpromisc == 0)
1217 			return (EPROTO);
1218 
1219 		/*
1220 		 * Disable promiscuous mode on the device if this is the last
1221 		 * enabling.
1222 		 */
1223 		if (--mip->mi_devpromisc == 0) {
1224 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1225 			if (err != 0) {
1226 				mip->mi_devpromisc++;
1227 				return (err);
1228 			}
1229 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1230 		}
1231 	}
1232 
1233 	return (0);
1234 }
1235 
1236 /*
1237  * The promiscuity state can change any time. If the caller needs to take
1238  * actions that are atomic with the promiscuity state, then the caller needs
1239  * to bracket the entire sequence with mac_perim_enter/exit
1240  */
1241 boolean_t
1242 mac_promisc_get(mac_handle_t mh)
1243 {
1244 	mac_impl_t		*mip = (mac_impl_t *)mh;
1245 
1246 	/*
1247 	 * Return the current promiscuity.
1248 	 */
1249 	return (mip->mi_devpromisc != 0);
1250 }
1251 
1252 /*
1253  * Invoked at MAC instance attach time to initialize the list
1254  * of factory MAC addresses supported by a MAC instance. This function
1255  * builds a local cache in the mac_impl_t for the MAC addresses
1256  * supported by the underlying hardware. The MAC clients themselves
1257  * use the mac_addr_factory*() functions to query and reserve
1258  * factory MAC addresses.
1259  */
1260 void
1261 mac_addr_factory_init(mac_impl_t *mip)
1262 {
1263 	mac_capab_multifactaddr_t capab;
1264 	uint8_t *addr;
1265 	int i;
1266 
1267 	/*
1268 	 * First round to see how many factory MAC addresses are available.
1269 	 */
1270 	bzero(&capab, sizeof (capab));
1271 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1272 	    &capab) || (capab.mcm_naddr == 0)) {
1273 		/*
1274 		 * The MAC instance doesn't support multiple factory
1275 		 * MAC addresses, we're done here.
1276 		 */
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * Allocate the space and get all the factory addresses.
1282 	 */
1283 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1284 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1285 
1286 	mip->mi_factory_addr_num = capab.mcm_naddr;
1287 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1288 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1289 
1290 	for (i = 0; i < capab.mcm_naddr; i++) {
1291 		bcopy(addr + i * MAXMACADDRLEN,
1292 		    mip->mi_factory_addr[i].mfa_addr,
1293 		    mip->mi_type->mt_addr_length);
1294 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1295 	}
1296 
1297 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1298 }
1299 
1300 void
1301 mac_addr_factory_fini(mac_impl_t *mip)
1302 {
1303 	if (mip->mi_factory_addr == NULL) {
1304 		ASSERT(mip->mi_factory_addr_num == 0);
1305 		return;
1306 	}
1307 
1308 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1309 	    sizeof (mac_factory_addr_t));
1310 
1311 	mip->mi_factory_addr = NULL;
1312 	mip->mi_factory_addr_num = 0;
1313 }
1314 
1315 /*
1316  * Reserve a factory MAC address. If *slot is set to -1, the function
1317  * attempts to reserve any of the available factory MAC addresses and
1318  * returns the reserved slot id. If no slots are available, the function
1319  * returns ENOSPC. If *slot is not set to -1, the function reserves
1320  * the specified slot if it is available, or returns EBUSY is the slot
1321  * is already used. Returns ENOTSUP if the underlying MAC does not
1322  * support multiple factory addresses. If the slot number is not -1 but
1323  * is invalid, returns EINVAL.
1324  */
1325 int
1326 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1327 {
1328 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1329 	mac_impl_t *mip = mcip->mci_mip;
1330 	int i, ret = 0;
1331 
1332 	i_mac_perim_enter(mip);
1333 	/*
1334 	 * Protect against concurrent readers that may need a self-consistent
1335 	 * view of the factory addresses
1336 	 */
1337 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1338 
1339 	if (mip->mi_factory_addr_num == 0) {
1340 		ret = ENOTSUP;
1341 		goto bail;
1342 	}
1343 
1344 	if (*slot != -1) {
1345 		/* check the specified slot */
1346 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1347 			ret = EINVAL;
1348 			goto bail;
1349 		}
1350 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1351 			ret = EBUSY;
1352 			goto bail;
1353 		}
1354 	} else {
1355 		/* pick the next available slot */
1356 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1357 			if (!mip->mi_factory_addr[i].mfa_in_use)
1358 				break;
1359 		}
1360 
1361 		if (i == mip->mi_factory_addr_num) {
1362 			ret = ENOSPC;
1363 			goto bail;
1364 		}
1365 		*slot = i+1;
1366 	}
1367 
1368 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1369 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1370 
1371 bail:
1372 	rw_exit(&mip->mi_rw_lock);
1373 	i_mac_perim_exit(mip);
1374 	return (ret);
1375 }
1376 
1377 /*
1378  * Release the specified factory MAC address slot.
1379  */
1380 void
1381 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1382 {
1383 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1384 	mac_impl_t *mip = mcip->mci_mip;
1385 
1386 	i_mac_perim_enter(mip);
1387 	/*
1388 	 * Protect against concurrent readers that may need a self-consistent
1389 	 * view of the factory addresses
1390 	 */
1391 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1392 
1393 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1394 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1395 
1396 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1397 
1398 	rw_exit(&mip->mi_rw_lock);
1399 	i_mac_perim_exit(mip);
1400 }
1401 
1402 /*
1403  * Stores in mac_addr the value of the specified MAC address. Returns
1404  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1405  * The caller must provide a string of at least MAXNAMELEN bytes.
1406  */
1407 void
1408 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1409     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1410 {
1411 	mac_impl_t *mip = (mac_impl_t *)mh;
1412 	boolean_t in_use;
1413 
1414 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1415 
1416 	/*
1417 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1418 	 * and mi_rw_lock
1419 	 */
1420 	rw_enter(&mip->mi_rw_lock, RW_READER);
1421 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1422 	*addr_len = mip->mi_type->mt_addr_length;
1423 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1424 	if (in_use && client_name != NULL) {
1425 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1426 		    client_name, MAXNAMELEN);
1427 	}
1428 	if (in_use_arg != NULL)
1429 		*in_use_arg = in_use;
1430 	rw_exit(&mip->mi_rw_lock);
1431 }
1432 
1433 /*
1434  * Returns the number of factory MAC addresses (in addition to the
1435  * primary MAC address), 0 if the underlying MAC doesn't support
1436  * that feature.
1437  */
1438 uint_t
1439 mac_addr_factory_num(mac_handle_t mh)
1440 {
1441 	mac_impl_t *mip = (mac_impl_t *)mh;
1442 
1443 	return (mip->mi_factory_addr_num);
1444 }
1445 
1446 
1447 void
1448 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1449 {
1450 	mac_ring_t	*ring;
1451 
1452 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1453 		ring->mr_flag &= ~flag;
1454 }
1455 
1456 /*
1457  * The following mac_hwrings_xxx() functions are private mac client functions
1458  * used by the aggr driver to access and control the underlying HW Rx group
1459  * and rings. In this case, the aggr driver has exclusive control of the
1460  * underlying HW Rx group/rings, it calls the following functions to
1461  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1462  * addresses, or set up the Rx callback.
1463  */
1464 /* ARGSUSED */
1465 static void
1466 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1467     mblk_t *mp_chain, boolean_t loopback)
1468 {
1469 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1470 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1471 	mac_direct_rx_t		proc;
1472 	void			*arg1;
1473 	mac_resource_handle_t	arg2;
1474 
1475 	proc = srs_rx->sr_func;
1476 	arg1 = srs_rx->sr_arg1;
1477 	arg2 = mac_srs->srs_mrh;
1478 
1479 	proc(arg1, arg2, mp_chain, NULL);
1480 }
1481 
1482 /*
1483  * This function is called to get the list of HW rings that are reserved by
1484  * an exclusive mac client.
1485  *
1486  * Return value: the number of HW rings.
1487  */
1488 int
1489 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1490     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1491 {
1492 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1493 	flow_entry_t		*flent = mcip->mci_flent;
1494 	mac_group_t		*grp;
1495 	mac_ring_t		*ring;
1496 	int			cnt = 0;
1497 
1498 	if (rtype == MAC_RING_TYPE_RX) {
1499 		grp = flent->fe_rx_ring_group;
1500 	} else if (rtype == MAC_RING_TYPE_TX) {
1501 		grp = flent->fe_tx_ring_group;
1502 	} else {
1503 		ASSERT(B_FALSE);
1504 		return (-1);
1505 	}
1506 	/*
1507 	 * The mac client did not reserve any RX group, return directly.
1508 	 * This is probably because the underlying MAC does not support
1509 	 * any groups.
1510 	 */
1511 	if (hwgh != NULL)
1512 		*hwgh = NULL;
1513 	if (grp == NULL)
1514 		return (0);
1515 	/*
1516 	 * This group must be reserved by this mac client.
1517 	 */
1518 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1519 	    (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1520 
1521 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1522 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1523 		hwrh[cnt] = (mac_ring_handle_t)ring;
1524 	}
1525 	if (hwgh != NULL)
1526 		*hwgh = (mac_group_handle_t)grp;
1527 
1528 	return (cnt);
1529 }
1530 
1531 /*
1532  * This function is called to get info about Tx/Rx rings.
1533  *
1534  * Return value: returns uint_t which will have various bits set
1535  * that indicates different properties of the ring.
1536  */
1537 uint_t
1538 mac_hwring_getinfo(mac_ring_handle_t rh)
1539 {
1540 	mac_ring_t *ring = (mac_ring_t *)rh;
1541 	mac_ring_info_t *info = &ring->mr_info;
1542 
1543 	return (info->mri_flags);
1544 }
1545 
1546 /*
1547  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1548  * setup the RX callback of the mac client which exclusively controls
1549  * HW ring.
1550  */
1551 void
1552 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1553     mac_ring_handle_t pseudo_rh)
1554 {
1555 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1556 	mac_ring_t		*pseudo_ring;
1557 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1558 
1559 	if (pseudo_rh != NULL) {
1560 		pseudo_ring = (mac_ring_t *)pseudo_rh;
1561 		/* Export the ddi handles to pseudo ring */
1562 		pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1563 		    hw_ring->mr_info.mri_intr.mi_ddi_handle;
1564 		pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1565 		    hw_ring->mr_info.mri_intr.mi_ddi_shared;
1566 		/*
1567 		 * Save a pointer to pseudo ring in the hw ring. If
1568 		 * interrupt handle changes, the hw ring will be
1569 		 * notified of the change (see mac_ring_intr_set())
1570 		 * and the appropriate change has to be made to
1571 		 * the pseudo ring that has exported the ddi handle.
1572 		 */
1573 		hw_ring->mr_prh = pseudo_rh;
1574 	}
1575 
1576 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1577 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1578 		mac_srs->srs_mrh = prh;
1579 		mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1580 	}
1581 }
1582 
1583 void
1584 mac_hwring_teardown(mac_ring_handle_t hwrh)
1585 {
1586 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1587 	mac_soft_ring_set_t	*mac_srs;
1588 
1589 	if (hw_ring == NULL)
1590 		return;
1591 	hw_ring->mr_prh = NULL;
1592 	if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1593 		mac_srs = hw_ring->mr_srs;
1594 		ASSERT(!(mac_srs->srs_type & SRST_TX));
1595 		mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1596 		mac_srs->srs_mrh = NULL;
1597 	}
1598 }
1599 
1600 int
1601 mac_hwring_disable_intr(mac_ring_handle_t rh)
1602 {
1603 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1604 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1605 
1606 	return (intr->mi_disable(intr->mi_handle));
1607 }
1608 
1609 int
1610 mac_hwring_enable_intr(mac_ring_handle_t rh)
1611 {
1612 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1613 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1614 
1615 	return (intr->mi_enable(intr->mi_handle));
1616 }
1617 
1618 int
1619 mac_hwring_start(mac_ring_handle_t rh)
1620 {
1621 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1622 
1623 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1624 	return (0);
1625 }
1626 
1627 void
1628 mac_hwring_stop(mac_ring_handle_t rh)
1629 {
1630 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1631 
1632 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1633 }
1634 
1635 mblk_t *
1636 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1637 {
1638 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1639 	mac_ring_info_t *info = &rr_ring->mr_info;
1640 
1641 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1642 }
1643 
1644 /*
1645  * Send packets through a selected tx ring.
1646  */
1647 mblk_t *
1648 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1649 {
1650 	mac_ring_t *ring = (mac_ring_t *)rh;
1651 	mac_ring_info_t *info = &ring->mr_info;
1652 
1653 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1654 	    ring->mr_state >= MR_INUSE);
1655 	return (info->mri_tx(info->mri_driver, mp));
1656 }
1657 
1658 /*
1659  * Query stats for a particular rx/tx ring
1660  */
1661 int
1662 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1663 {
1664 	mac_ring_t	*ring = (mac_ring_t *)rh;
1665 	mac_ring_info_t *info = &ring->mr_info;
1666 
1667 	return (info->mri_stat(info->mri_driver, stat, val));
1668 }
1669 
1670 /*
1671  * Private function that is only used by aggr to send packets through
1672  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1673  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1674  * access to mac_impl_t to send packets through m_tx() entry point.
1675  * It accomplishes this by calling mac_hwring_send_priv() function.
1676  */
1677 mblk_t *
1678 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1679 {
1680 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1681 	mac_impl_t *mip = mcip->mci_mip;
1682 
1683 	MAC_TX(mip, rh, mp, mcip);
1684 	return (mp);
1685 }
1686 
1687 /*
1688  * Private function that is only used by aggr to update the default transmission
1689  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1690  * temporarily be down, it may need to update the default ring that is used by
1691  * MAC such that it refers to a link that can actively be used to send traffic.
1692  * Note that this is different from the case where the port has been removed
1693  * from the group. In those cases, all of the rings will be torn down because
1694  * the ring will no longer exist. It's important to give aggr a case where the
1695  * rings can still exist such that it may be able to continue to send LACP PDUs
1696  * to potentially restore the link.
1697  *
1698  * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1699  * This is to help out aggr which doesn't really know the internal state that
1700  * MAC does about the rings and can't know that it's not quite ready for use
1701  * yet.
1702  */
1703 void
1704 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1705 {
1706 	mac_impl_t *mip = (mac_impl_t *)mh;
1707 	mac_ring_t *ring = (mac_ring_t *)rh;
1708 
1709 	ASSERT(MAC_PERIM_HELD(mh));
1710 	VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1711 
1712 	if (ring->mr_state != MR_INUSE)
1713 		return;
1714 
1715 	mip->mi_default_tx_ring = rh;
1716 }
1717 
1718 int
1719 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1720 {
1721 	mac_group_t *group = (mac_group_t *)gh;
1722 
1723 	return (mac_group_addmac(group, addr));
1724 }
1725 
1726 int
1727 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1728 {
1729 	mac_group_t *group = (mac_group_t *)gh;
1730 
1731 	return (mac_group_remmac(group, addr));
1732 }
1733 
1734 /*
1735  * Set the RX group to be shared/reserved. Note that the group must be
1736  * started/stopped outside of this function.
1737  */
1738 void
1739 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1740 {
1741 	/*
1742 	 * If there is no change in the group state, just return.
1743 	 */
1744 	if (grp->mrg_state == state)
1745 		return;
1746 
1747 	switch (state) {
1748 	case MAC_GROUP_STATE_RESERVED:
1749 		/*
1750 		 * Successfully reserved the group.
1751 		 *
1752 		 * Given that there is an exclusive client controlling this
1753 		 * group, we enable the group level polling when available,
1754 		 * so that SRSs get to turn on/off individual rings they's
1755 		 * assigned to.
1756 		 */
1757 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1758 
1759 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1760 		    GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1761 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1762 		}
1763 		break;
1764 
1765 	case MAC_GROUP_STATE_SHARED:
1766 		/*
1767 		 * Set all rings of this group to software classified.
1768 		 * If the group has an overriding interrupt, then re-enable it.
1769 		 */
1770 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1771 
1772 		if (grp->mrg_type == MAC_RING_TYPE_RX &&
1773 		    GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1774 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1775 		}
1776 		/* The ring is not available for reservations any more */
1777 		break;
1778 
1779 	case MAC_GROUP_STATE_REGISTERED:
1780 		/* Also callable from mac_register, perim is not held */
1781 		break;
1782 
1783 	default:
1784 		ASSERT(B_FALSE);
1785 		break;
1786 	}
1787 
1788 	grp->mrg_state = state;
1789 }
1790 
1791 /*
1792  * Quiesce future hardware classified packets for the specified Rx ring
1793  */
1794 static void
1795 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1796 {
1797 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1798 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1799 
1800 	mutex_enter(&rx_ring->mr_lock);
1801 	rx_ring->mr_flag |= ring_flag;
1802 	while (rx_ring->mr_refcnt != 0)
1803 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1804 	mutex_exit(&rx_ring->mr_lock);
1805 }
1806 
1807 /*
1808  * Please see mac_tx for details about the per cpu locking scheme
1809  */
1810 static void
1811 mac_tx_lock_all(mac_client_impl_t *mcip)
1812 {
1813 	int	i;
1814 
1815 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1816 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1817 }
1818 
1819 static void
1820 mac_tx_unlock_all(mac_client_impl_t *mcip)
1821 {
1822 	int	i;
1823 
1824 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
1825 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1826 }
1827 
1828 static void
1829 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1830 {
1831 	int	i;
1832 
1833 	for (i = mac_tx_percpu_cnt; i > 0; i--)
1834 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1835 }
1836 
1837 static int
1838 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1839 {
1840 	int	i;
1841 	int	refcnt = 0;
1842 
1843 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1844 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1845 
1846 	return (refcnt);
1847 }
1848 
1849 /*
1850  * Stop future Tx packets coming down from the client in preparation for
1851  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1852  * of rings between clients
1853  */
1854 void
1855 mac_tx_client_block(mac_client_impl_t *mcip)
1856 {
1857 	mac_tx_lock_all(mcip);
1858 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1859 	while (mac_tx_sum_refcnt(mcip) != 0) {
1860 		mac_tx_unlock_allbutzero(mcip);
1861 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1862 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1863 		mac_tx_lock_all(mcip);
1864 	}
1865 	mac_tx_unlock_all(mcip);
1866 }
1867 
1868 void
1869 mac_tx_client_unblock(mac_client_impl_t *mcip)
1870 {
1871 	mac_tx_lock_all(mcip);
1872 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1873 	mac_tx_unlock_all(mcip);
1874 	/*
1875 	 * We may fail to disable flow control for the last MAC_NOTE_TX
1876 	 * notification because the MAC client is quiesced. Send the
1877 	 * notification again.
1878 	 */
1879 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1880 }
1881 
1882 /*
1883  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1884  * quiesce is done.
1885  */
1886 static void
1887 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1888 {
1889 	mutex_enter(&srs->srs_lock);
1890 	while (!(srs->srs_state & srs_flag))
1891 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1892 	mutex_exit(&srs->srs_lock);
1893 }
1894 
1895 /*
1896  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1897  * works bottom up by cutting off packet flow from the bottommost point in the
1898  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1899  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1900  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1901  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1902  * for the SRS and MR flags. In the former case the threads pause waiting for
1903  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1904  * is also mostly similar to the above.
1905  *
1906  * 1. Stop future hardware classified packets at the lowest level in the mac.
1907  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1908  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1909  *    from increasing. Upcalls from the driver that come through hardware
1910  *    classification will be dropped in mac_rx from now on. Then we wait for
1911  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1912  *    sure there aren't any upcall threads from the driver through hardware
1913  *    classification. In the case of SRS teardown we also remove the
1914  *    classification rule in the driver.
1915  *
1916  * 2. Stop future software classified packets by marking the flow entry with
1917  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1918  *    increasing. We also remove the flow entry from the table in the latter
1919  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1920  *    that indicates there aren't any active threads using that flow entry.
1921  *
1922  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1923  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1924  *    with the SRS worker thread serving as a master controller. This
1925  *    mechansim is explained in mac_srs_worker_quiesce().
1926  *
1927  * The restart mechanism to reactivate the SRS and softrings is explained
1928  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1929  * restart sequence.
1930  */
1931 void
1932 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1933 {
1934 	flow_entry_t	*flent = srs->srs_flent;
1935 	uint_t	mr_flag, srs_done_flag;
1936 
1937 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1938 	ASSERT(!(srs->srs_type & SRST_TX));
1939 
1940 	if (srs_quiesce_flag == SRS_CONDEMNED) {
1941 		mr_flag = MR_CONDEMNED;
1942 		srs_done_flag = SRS_CONDEMNED_DONE;
1943 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1944 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
1945 	} else {
1946 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1947 		mr_flag = MR_QUIESCE;
1948 		srs_done_flag = SRS_QUIESCE_DONE;
1949 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1950 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1951 	}
1952 
1953 	if (srs->srs_ring != NULL) {
1954 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1955 	} else {
1956 		/*
1957 		 * SRS is driven by software classification. In case
1958 		 * of CONDEMNED, the top level teardown functions will
1959 		 * deal with flow removal.
1960 		 */
1961 		if (srs_quiesce_flag != SRS_CONDEMNED) {
1962 			FLOW_MARK(flent, FE_QUIESCE);
1963 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1964 		}
1965 	}
1966 
1967 	/*
1968 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1969 	 * SRS quiesce to complete. The SRS worker thread will wake us
1970 	 * up when the quiesce is complete
1971 	 */
1972 	mac_srs_signal(srs, srs_quiesce_flag);
1973 	mac_srs_quiesce_wait(srs, srs_done_flag);
1974 }
1975 
1976 /*
1977  * Remove an SRS.
1978  */
1979 void
1980 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1981 {
1982 	flow_entry_t *flent = srs->srs_flent;
1983 	int i;
1984 
1985 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1986 	/*
1987 	 * Locate and remove our entry in the fe_rx_srs[] array, and
1988 	 * adjust the fe_rx_srs array entries and array count by
1989 	 * moving the last entry into the vacated spot.
1990 	 */
1991 	mutex_enter(&flent->fe_lock);
1992 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1993 		if (flent->fe_rx_srs[i] == srs)
1994 			break;
1995 	}
1996 
1997 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1998 	if (i != flent->fe_rx_srs_cnt - 1) {
1999 		flent->fe_rx_srs[i] =
2000 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2001 		i = flent->fe_rx_srs_cnt - 1;
2002 	}
2003 
2004 	flent->fe_rx_srs[i] = NULL;
2005 	flent->fe_rx_srs_cnt--;
2006 	mutex_exit(&flent->fe_lock);
2007 
2008 	mac_srs_free(srs);
2009 }
2010 
2011 static void
2012 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2013 {
2014 	mutex_enter(&srs->srs_lock);
2015 	srs->srs_state &= ~flag;
2016 	mutex_exit(&srs->srs_lock);
2017 }
2018 
2019 void
2020 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2021 {
2022 	flow_entry_t	*flent = srs->srs_flent;
2023 	mac_ring_t	*mr;
2024 
2025 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2026 	ASSERT((srs->srs_type & SRST_TX) == 0);
2027 
2028 	/*
2029 	 * This handles a change in the number of SRSs between the quiesce and
2030 	 * and restart operation of a flow.
2031 	 */
2032 	if (!SRS_QUIESCED(srs))
2033 		return;
2034 
2035 	/*
2036 	 * Signal the SRS to restart itself. Wait for the restart to complete
2037 	 * Note that we only restart the SRS if it is not marked as
2038 	 * permanently quiesced.
2039 	 */
2040 	if (!SRS_QUIESCED_PERMANENT(srs)) {
2041 		mac_srs_signal(srs, SRS_RESTART);
2042 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2043 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2044 
2045 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
2046 	}
2047 
2048 	/* Finally clear the flags to let the packets in */
2049 	mr = srs->srs_ring;
2050 	if (mr != NULL) {
2051 		MAC_RING_UNMARK(mr, MR_QUIESCE);
2052 		/* In case the ring was stopped, safely restart it */
2053 		if (mr->mr_state != MR_INUSE)
2054 			(void) mac_start_ring(mr);
2055 	} else {
2056 		FLOW_UNMARK(flent, FE_QUIESCE);
2057 	}
2058 }
2059 
2060 /*
2061  * Temporary quiesce of a flow and associated Rx SRS.
2062  * Please see block comment above mac_rx_classify_flow_rem.
2063  */
2064 /* ARGSUSED */
2065 int
2066 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2067 {
2068 	int		i;
2069 
2070 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2071 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2072 		    SRS_QUIESCE);
2073 	}
2074 	return (0);
2075 }
2076 
2077 /*
2078  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2079  * Please see block comment above mac_rx_classify_flow_rem
2080  */
2081 /* ARGSUSED */
2082 int
2083 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2084 {
2085 	int		i;
2086 
2087 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2088 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2089 
2090 	return (0);
2091 }
2092 
2093 void
2094 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2095 {
2096 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2097 	flow_entry_t		*flent = mcip->mci_flent;
2098 	mac_impl_t		*mip = mcip->mci_mip;
2099 	mac_soft_ring_set_t	*mac_srs;
2100 	int			i;
2101 
2102 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2103 
2104 	if (flent == NULL)
2105 		return;
2106 
2107 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2108 		mac_srs = flent->fe_rx_srs[i];
2109 		mutex_enter(&mac_srs->srs_lock);
2110 		if (on)
2111 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
2112 		else
2113 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2114 		mutex_exit(&mac_srs->srs_lock);
2115 	}
2116 }
2117 
2118 void
2119 mac_rx_client_quiesce(mac_client_handle_t mch)
2120 {
2121 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2122 	mac_impl_t		*mip = mcip->mci_mip;
2123 
2124 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2125 
2126 	if (MCIP_DATAPATH_SETUP(mcip)) {
2127 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2128 		    NULL);
2129 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2130 		    mac_rx_classify_flow_quiesce, NULL);
2131 	}
2132 }
2133 
2134 void
2135 mac_rx_client_restart(mac_client_handle_t mch)
2136 {
2137 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2138 	mac_impl_t		*mip = mcip->mci_mip;
2139 
2140 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2141 
2142 	if (MCIP_DATAPATH_SETUP(mcip)) {
2143 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2144 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2145 		    mac_rx_classify_flow_restart, NULL);
2146 	}
2147 }
2148 
2149 /*
2150  * This function only quiesces the Tx SRS and softring worker threads. Callers
2151  * need to make sure that there aren't any mac client threads doing current or
2152  * future transmits in the mac before calling this function.
2153  */
2154 void
2155 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2156 {
2157 	mac_client_impl_t	*mcip = srs->srs_mcip;
2158 
2159 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2160 
2161 	ASSERT(srs->srs_type & SRST_TX);
2162 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2163 	    srs_quiesce_flag == SRS_QUIESCE);
2164 
2165 	/*
2166 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2167 	 * SRS quiesce to complete. The SRS worker thread will wake us
2168 	 * up when the quiesce is complete
2169 	 */
2170 	mac_srs_signal(srs, srs_quiesce_flag);
2171 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2172 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2173 }
2174 
2175 void
2176 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2177 {
2178 	/*
2179 	 * Resizing the fanout could result in creation of new SRSs.
2180 	 * They may not necessarily be in the quiesced state in which
2181 	 * case it need be restarted
2182 	 */
2183 	if (!SRS_QUIESCED(srs))
2184 		return;
2185 
2186 	mac_srs_signal(srs, SRS_RESTART);
2187 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2188 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2189 }
2190 
2191 /*
2192  * Temporary quiesce of a flow and associated Rx SRS.
2193  * Please see block comment above mac_rx_srs_quiesce
2194  */
2195 /* ARGSUSED */
2196 int
2197 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2198 {
2199 	/*
2200 	 * The fe_tx_srs is null for a subflow on an interface that is
2201 	 * not plumbed
2202 	 */
2203 	if (flent->fe_tx_srs != NULL)
2204 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2205 	return (0);
2206 }
2207 
2208 /* ARGSUSED */
2209 int
2210 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2211 {
2212 	/*
2213 	 * The fe_tx_srs is null for a subflow on an interface that is
2214 	 * not plumbed
2215 	 */
2216 	if (flent->fe_tx_srs != NULL)
2217 		mac_tx_srs_restart(flent->fe_tx_srs);
2218 	return (0);
2219 }
2220 
2221 static void
2222 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2223 {
2224 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2225 
2226 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2227 
2228 	mac_tx_client_block(mcip);
2229 	if (MCIP_TX_SRS(mcip) != NULL) {
2230 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2231 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2232 		    mac_tx_flow_quiesce, NULL);
2233 	}
2234 }
2235 
2236 void
2237 mac_tx_client_quiesce(mac_client_handle_t mch)
2238 {
2239 	i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2240 }
2241 
2242 void
2243 mac_tx_client_condemn(mac_client_handle_t mch)
2244 {
2245 	i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2246 }
2247 
2248 void
2249 mac_tx_client_restart(mac_client_handle_t mch)
2250 {
2251 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2252 
2253 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2254 
2255 	mac_tx_client_unblock(mcip);
2256 	if (MCIP_TX_SRS(mcip) != NULL) {
2257 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2258 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2259 		    mac_tx_flow_restart, NULL);
2260 	}
2261 }
2262 
2263 void
2264 mac_tx_client_flush(mac_client_impl_t *mcip)
2265 {
2266 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2267 
2268 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2269 	mac_tx_client_restart((mac_client_handle_t)mcip);
2270 }
2271 
2272 void
2273 mac_client_quiesce(mac_client_impl_t *mcip)
2274 {
2275 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2276 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
2277 }
2278 
2279 void
2280 mac_client_restart(mac_client_impl_t *mcip)
2281 {
2282 	mac_rx_client_restart((mac_client_handle_t)mcip);
2283 	mac_tx_client_restart((mac_client_handle_t)mcip);
2284 }
2285 
2286 /*
2287  * Allocate a minor number.
2288  */
2289 minor_t
2290 mac_minor_hold(boolean_t sleep)
2291 {
2292 	minor_t	minor;
2293 
2294 	/*
2295 	 * Grab a value from the arena.
2296 	 */
2297 	atomic_inc_32(&minor_count);
2298 
2299 	if (sleep)
2300 		minor = (uint_t)id_alloc(minor_ids);
2301 	else
2302 		minor = (uint_t)id_alloc_nosleep(minor_ids);
2303 
2304 	if (minor == 0) {
2305 		atomic_dec_32(&minor_count);
2306 		return (0);
2307 	}
2308 
2309 	return (minor);
2310 }
2311 
2312 /*
2313  * Release a previously allocated minor number.
2314  */
2315 void
2316 mac_minor_rele(minor_t minor)
2317 {
2318 	/*
2319 	 * Return the value to the arena.
2320 	 */
2321 	id_free(minor_ids, minor);
2322 	atomic_dec_32(&minor_count);
2323 }
2324 
2325 uint32_t
2326 mac_no_notification(mac_handle_t mh)
2327 {
2328 	mac_impl_t *mip = (mac_impl_t *)mh;
2329 
2330 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2331 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2332 }
2333 
2334 /*
2335  * Prevent any new opens of this mac in preparation for unregister
2336  */
2337 int
2338 i_mac_disable(mac_impl_t *mip)
2339 {
2340 	mac_client_impl_t	*mcip;
2341 
2342 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2343 	if (mip->mi_state_flags & MIS_DISABLED) {
2344 		/* Already disabled, return success */
2345 		rw_exit(&i_mac_impl_lock);
2346 		return (0);
2347 	}
2348 	/*
2349 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2350 	 * If so return failure. If all the other checks below pass, then
2351 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2352 	 * any new VLAN's from being created or new mac client opens of this
2353 	 * mac end point.
2354 	 */
2355 	if (mip->mi_ref > 0) {
2356 		rw_exit(&i_mac_impl_lock);
2357 		return (EBUSY);
2358 	}
2359 
2360 	/*
2361 	 * mac clients must delete all multicast groups they join before
2362 	 * closing. bcast groups are reference counted, the last client
2363 	 * to delete the group will wait till the group is physically
2364 	 * deleted. Since all clients have closed this mac end point
2365 	 * mi_bcast_ngrps must be zero at this point
2366 	 */
2367 	ASSERT(mip->mi_bcast_ngrps == 0);
2368 
2369 	/*
2370 	 * Don't let go of this if it has some flows.
2371 	 * All other code guarantees no flows are added to a disabled
2372 	 * mac, therefore it is sufficient to check for the flow table
2373 	 * only here.
2374 	 */
2375 	mcip = mac_primary_client_handle(mip);
2376 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2377 		rw_exit(&i_mac_impl_lock);
2378 		return (ENOTEMPTY);
2379 	}
2380 
2381 	mip->mi_state_flags |= MIS_DISABLED;
2382 	rw_exit(&i_mac_impl_lock);
2383 	return (0);
2384 }
2385 
2386 int
2387 mac_disable_nowait(mac_handle_t mh)
2388 {
2389 	mac_impl_t	*mip = (mac_impl_t *)mh;
2390 	int err;
2391 
2392 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2393 		return (err);
2394 	err = i_mac_disable(mip);
2395 	i_mac_perim_exit(mip);
2396 	return (err);
2397 }
2398 
2399 int
2400 mac_disable(mac_handle_t mh)
2401 {
2402 	mac_impl_t	*mip = (mac_impl_t *)mh;
2403 	int err;
2404 
2405 	i_mac_perim_enter(mip);
2406 	err = i_mac_disable(mip);
2407 	i_mac_perim_exit(mip);
2408 
2409 	/*
2410 	 * Clean up notification thread and wait for it to exit.
2411 	 */
2412 	if (err == 0)
2413 		i_mac_notify_exit(mip);
2414 
2415 	return (err);
2416 }
2417 
2418 /*
2419  * Called when the MAC instance has a non empty flow table, to de-multiplex
2420  * incoming packets to the right flow.
2421  * The MAC's rw lock is assumed held as a READER.
2422  */
2423 /* ARGSUSED */
2424 static mblk_t *
2425 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2426 {
2427 	flow_entry_t	*flent = NULL;
2428 	uint_t		flags = FLOW_INBOUND;
2429 	int		err;
2430 
2431 	/*
2432 	 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2433 	 * to mac_flow_lookup() so that the VLAN packets can be successfully
2434 	 * passed to the non-VLAN aggregation flows.
2435 	 *
2436 	 * Note that there is possibly a race between this and
2437 	 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2438 	 * classified to non-VLAN flows of non-aggregation mac clients. These
2439 	 * VLAN packets will be then filtered out by the mac module.
2440 	 */
2441 	if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2442 		flags |= FLOW_IGNORE_VLAN;
2443 
2444 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2445 	if (err != 0) {
2446 		/* no registered receive function */
2447 		return (mp);
2448 	} else {
2449 		mac_client_impl_t	*mcip;
2450 
2451 		/*
2452 		 * This flent might just be an additional one on the MAC client,
2453 		 * i.e. for classification purposes (different fdesc), however
2454 		 * the resources, SRS et. al., are in the mci_flent, so if
2455 		 * this isn't the mci_flent, we need to get it.
2456 		 */
2457 		if ((mcip = flent->fe_mcip) != NULL &&
2458 		    mcip->mci_flent != flent) {
2459 			FLOW_REFRELE(flent);
2460 			flent = mcip->mci_flent;
2461 			FLOW_TRY_REFHOLD(flent, err);
2462 			if (err != 0)
2463 				return (mp);
2464 		}
2465 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2466 		    B_FALSE);
2467 		FLOW_REFRELE(flent);
2468 	}
2469 	return (NULL);
2470 }
2471 
2472 mblk_t *
2473 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2474 {
2475 	mac_impl_t	*mip = (mac_impl_t *)mh;
2476 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2477 
2478 	/*
2479 	 * We walk the chain and attempt to classify each packet.
2480 	 * The packets that couldn't be classified will be returned
2481 	 * back to the caller.
2482 	 */
2483 	bp = mp_chain;
2484 	bpp = &list;
2485 	while (bp != NULL) {
2486 		bp1 = bp;
2487 		bp = bp->b_next;
2488 		bp1->b_next = NULL;
2489 
2490 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2491 			*bpp = bp1;
2492 			bpp = &bp1->b_next;
2493 		}
2494 	}
2495 	return (list);
2496 }
2497 
2498 static int
2499 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2500 {
2501 	mac_ring_handle_t ring = arg;
2502 
2503 	if (flent->fe_tx_srs)
2504 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2505 	return (0);
2506 }
2507 
2508 void
2509 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2510 {
2511 	mac_client_impl_t	*cclient;
2512 	mac_soft_ring_set_t	*mac_srs;
2513 
2514 	/*
2515 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2516 	 * If there are any clients mi_disabled must be B_FALSE and can't
2517 	 * get set since there are clients. If there aren't any clients we
2518 	 * don't do anything. In any case the mip has to be valid. The driver
2519 	 * must make sure that it goes single threaded (with respect to mac
2520 	 * calls) and wait for all pending mac calls to finish before calling
2521 	 * mac_unregister.
2522 	 */
2523 	rw_enter(&i_mac_impl_lock, RW_READER);
2524 	if (mip->mi_state_flags & MIS_DISABLED) {
2525 		rw_exit(&i_mac_impl_lock);
2526 		return;
2527 	}
2528 
2529 	/*
2530 	 * Get MAC tx srs from walking mac_client_handle list.
2531 	 */
2532 	rw_enter(&mip->mi_rw_lock, RW_READER);
2533 	for (cclient = mip->mi_clients_list; cclient != NULL;
2534 	    cclient = cclient->mci_client_next) {
2535 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2536 			mac_tx_srs_wakeup(mac_srs, ring);
2537 		} else {
2538 			/*
2539 			 * Aggr opens underlying ports in exclusive mode
2540 			 * and registers flow control callbacks using
2541 			 * mac_tx_client_notify(). When opened in
2542 			 * exclusive mode, Tx SRS won't be created
2543 			 * during mac_unicast_add().
2544 			 */
2545 			if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2546 				mac_tx_invoke_callbacks(cclient,
2547 				    (mac_tx_cookie_t)ring);
2548 			}
2549 		}
2550 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2551 		    mac_tx_flow_srs_wakeup, ring);
2552 	}
2553 	rw_exit(&mip->mi_rw_lock);
2554 	rw_exit(&i_mac_impl_lock);
2555 }
2556 
2557 /* ARGSUSED */
2558 void
2559 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2560     boolean_t add)
2561 {
2562 	mac_impl_t *mip = (mac_impl_t *)mh;
2563 
2564 	i_mac_perim_enter((mac_impl_t *)mh);
2565 	/*
2566 	 * If no specific refresh function was given then default to the
2567 	 * driver's m_multicst entry point.
2568 	 */
2569 	if (refresh == NULL) {
2570 		refresh = mip->mi_multicst;
2571 		arg = mip->mi_driver;
2572 	}
2573 
2574 	mac_bcast_refresh(mip, refresh, arg, add);
2575 	i_mac_perim_exit((mac_impl_t *)mh);
2576 }
2577 
2578 void
2579 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2580 {
2581 	mac_impl_t	*mip = (mac_impl_t *)mh;
2582 
2583 	/*
2584 	 * If no specific refresh function was given then default to the
2585 	 * driver's m_promisc entry point.
2586 	 */
2587 	if (refresh == NULL) {
2588 		refresh = mip->mi_setpromisc;
2589 		arg = mip->mi_driver;
2590 	}
2591 	ASSERT(refresh != NULL);
2592 
2593 	/*
2594 	 * Call the refresh function with the current promiscuity.
2595 	 */
2596 	refresh(arg, (mip->mi_devpromisc != 0));
2597 }
2598 
2599 /*
2600  * The mac client requests that the mac not to change its margin size to
2601  * be less than the specified value.  If "current" is B_TRUE, then the client
2602  * requests the mac not to change its margin size to be smaller than the
2603  * current size. Further, return the current margin size value in this case.
2604  *
2605  * We keep every requested size in an ordered list from largest to smallest.
2606  */
2607 int
2608 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2609 {
2610 	mac_impl_t		*mip = (mac_impl_t *)mh;
2611 	mac_margin_req_t	**pp, *p;
2612 	int			err = 0;
2613 
2614 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2615 	if (current)
2616 		*marginp = mip->mi_margin;
2617 
2618 	/*
2619 	 * If the current margin value cannot satisfy the margin requested,
2620 	 * return ENOTSUP directly.
2621 	 */
2622 	if (*marginp > mip->mi_margin) {
2623 		err = ENOTSUP;
2624 		goto done;
2625 	}
2626 
2627 	/*
2628 	 * Check whether the given margin is already in the list. If so,
2629 	 * bump the reference count.
2630 	 */
2631 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2632 		if (p->mmr_margin == *marginp) {
2633 			/*
2634 			 * The margin requested is already in the list,
2635 			 * so just bump the reference count.
2636 			 */
2637 			p->mmr_ref++;
2638 			goto done;
2639 		}
2640 		if (p->mmr_margin < *marginp)
2641 			break;
2642 	}
2643 
2644 
2645 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2646 	p->mmr_margin = *marginp;
2647 	p->mmr_ref++;
2648 	p->mmr_nextp = *pp;
2649 	*pp = p;
2650 
2651 done:
2652 	rw_exit(&(mip->mi_rw_lock));
2653 	return (err);
2654 }
2655 
2656 /*
2657  * The mac client requests to cancel its previous mac_margin_add() request.
2658  * We remove the requested margin size from the list.
2659  */
2660 int
2661 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2662 {
2663 	mac_impl_t		*mip = (mac_impl_t *)mh;
2664 	mac_margin_req_t	**pp, *p;
2665 	int			err = 0;
2666 
2667 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2668 	/*
2669 	 * Find the entry in the list for the given margin.
2670 	 */
2671 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2672 		if (p->mmr_margin == margin) {
2673 			if (--p->mmr_ref == 0)
2674 				break;
2675 
2676 			/*
2677 			 * There is still a reference to this address so
2678 			 * there's nothing more to do.
2679 			 */
2680 			goto done;
2681 		}
2682 	}
2683 
2684 	/*
2685 	 * We did not find an entry for the given margin.
2686 	 */
2687 	if (p == NULL) {
2688 		err = ENOENT;
2689 		goto done;
2690 	}
2691 
2692 	ASSERT(p->mmr_ref == 0);
2693 
2694 	/*
2695 	 * Remove it from the list.
2696 	 */
2697 	*pp = p->mmr_nextp;
2698 	kmem_free(p, sizeof (mac_margin_req_t));
2699 done:
2700 	rw_exit(&(mip->mi_rw_lock));
2701 	return (err);
2702 }
2703 
2704 boolean_t
2705 mac_margin_update(mac_handle_t mh, uint32_t margin)
2706 {
2707 	mac_impl_t	*mip = (mac_impl_t *)mh;
2708 	uint32_t	margin_needed = 0;
2709 
2710 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2711 
2712 	if (mip->mi_mmrp != NULL)
2713 		margin_needed = mip->mi_mmrp->mmr_margin;
2714 
2715 	if (margin_needed <= margin)
2716 		mip->mi_margin = margin;
2717 
2718 	rw_exit(&(mip->mi_rw_lock));
2719 
2720 	if (margin_needed <= margin)
2721 		i_mac_notify(mip, MAC_NOTE_MARGIN);
2722 
2723 	return (margin_needed <= margin);
2724 }
2725 
2726 /*
2727  * MAC clients use this interface to request that a MAC device not change its
2728  * MTU below the specified amount. At this time, that amount must be within the
2729  * range of the device's current minimum and the device's current maximum. eg. a
2730  * client cannot request a 3000 byte MTU when the device's MTU is currently
2731  * 2000.
2732  *
2733  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2734  * current underlying mac's maximum for this mac client and return it in mtup.
2735  */
2736 int
2737 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2738 {
2739 	mac_impl_t		*mip = (mac_impl_t *)mh;
2740 	mac_mtu_req_t		*prev, *cur;
2741 	mac_propval_range_t	mpr;
2742 	int			err;
2743 
2744 	i_mac_perim_enter(mip);
2745 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2746 
2747 	if (current == B_TRUE)
2748 		*mtup = mip->mi_sdu_max;
2749 	mpr.mpr_count = 1;
2750 	err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2751 	if (err != 0) {
2752 		rw_exit(&mip->mi_rw_lock);
2753 		i_mac_perim_exit(mip);
2754 		return (err);
2755 	}
2756 
2757 	if (*mtup > mip->mi_sdu_max ||
2758 	    *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2759 		rw_exit(&mip->mi_rw_lock);
2760 		i_mac_perim_exit(mip);
2761 		return (ENOTSUP);
2762 	}
2763 
2764 	prev = NULL;
2765 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2766 		if (*mtup == cur->mtr_mtu) {
2767 			cur->mtr_ref++;
2768 			rw_exit(&mip->mi_rw_lock);
2769 			i_mac_perim_exit(mip);
2770 			return (0);
2771 		}
2772 
2773 		if (*mtup > cur->mtr_mtu)
2774 			break;
2775 
2776 		prev = cur;
2777 	}
2778 
2779 	cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2780 	cur->mtr_mtu = *mtup;
2781 	cur->mtr_ref = 1;
2782 	if (prev != NULL) {
2783 		cur->mtr_nextp = prev->mtr_nextp;
2784 		prev->mtr_nextp = cur;
2785 	} else {
2786 		cur->mtr_nextp = mip->mi_mtrp;
2787 		mip->mi_mtrp = cur;
2788 	}
2789 
2790 	rw_exit(&mip->mi_rw_lock);
2791 	i_mac_perim_exit(mip);
2792 	return (0);
2793 }
2794 
2795 int
2796 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2797 {
2798 	mac_impl_t *mip = (mac_impl_t *)mh;
2799 	mac_mtu_req_t *cur, *prev;
2800 
2801 	i_mac_perim_enter(mip);
2802 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2803 
2804 	prev = NULL;
2805 	for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2806 		if (cur->mtr_mtu == mtu) {
2807 			ASSERT(cur->mtr_ref > 0);
2808 			cur->mtr_ref--;
2809 			if (cur->mtr_ref == 0) {
2810 				if (prev == NULL) {
2811 					mip->mi_mtrp = cur->mtr_nextp;
2812 				} else {
2813 					prev->mtr_nextp = cur->mtr_nextp;
2814 				}
2815 				kmem_free(cur, sizeof (mac_mtu_req_t));
2816 			}
2817 			rw_exit(&mip->mi_rw_lock);
2818 			i_mac_perim_exit(mip);
2819 			return (0);
2820 		}
2821 
2822 		prev = cur;
2823 	}
2824 
2825 	rw_exit(&mip->mi_rw_lock);
2826 	i_mac_perim_exit(mip);
2827 	return (ENOENT);
2828 }
2829 
2830 /*
2831  * MAC Type Plugin functions.
2832  */
2833 
2834 mactype_t *
2835 mactype_getplugin(const char *pname)
2836 {
2837 	mactype_t	*mtype = NULL;
2838 	boolean_t	tried_modload = B_FALSE;
2839 
2840 	mutex_enter(&i_mactype_lock);
2841 
2842 find_registered_mactype:
2843 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2844 	    (mod_hash_val_t *)&mtype) != 0) {
2845 		if (!tried_modload) {
2846 			/*
2847 			 * If the plugin has not yet been loaded, then
2848 			 * attempt to load it now.  If modload() succeeds,
2849 			 * the plugin should have registered using
2850 			 * mactype_register(), in which case we can go back
2851 			 * and attempt to find it again.
2852 			 */
2853 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2854 				tried_modload = B_TRUE;
2855 				goto find_registered_mactype;
2856 			}
2857 		}
2858 	} else {
2859 		/*
2860 		 * Note that there's no danger that the plugin we've loaded
2861 		 * could be unloaded between the modload() step and the
2862 		 * reference count bump here, as we're holding
2863 		 * i_mactype_lock, which mactype_unregister() also holds.
2864 		 */
2865 		atomic_inc_32(&mtype->mt_ref);
2866 	}
2867 
2868 	mutex_exit(&i_mactype_lock);
2869 	return (mtype);
2870 }
2871 
2872 mactype_register_t *
2873 mactype_alloc(uint_t mactype_version)
2874 {
2875 	mactype_register_t *mtrp;
2876 
2877 	/*
2878 	 * Make sure there isn't a version mismatch between the plugin and
2879 	 * the framework.  In the future, if multiple versions are
2880 	 * supported, this check could become more sophisticated.
2881 	 */
2882 	if (mactype_version != MACTYPE_VERSION)
2883 		return (NULL);
2884 
2885 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2886 	mtrp->mtr_version = mactype_version;
2887 	return (mtrp);
2888 }
2889 
2890 void
2891 mactype_free(mactype_register_t *mtrp)
2892 {
2893 	kmem_free(mtrp, sizeof (mactype_register_t));
2894 }
2895 
2896 int
2897 mactype_register(mactype_register_t *mtrp)
2898 {
2899 	mactype_t	*mtp;
2900 	mactype_ops_t	*ops = mtrp->mtr_ops;
2901 
2902 	/* Do some sanity checking before we register this MAC type. */
2903 	if (mtrp->mtr_ident == NULL || ops == NULL)
2904 		return (EINVAL);
2905 
2906 	/*
2907 	 * Verify that all mandatory callbacks are set in the ops
2908 	 * vector.
2909 	 */
2910 	if (ops->mtops_unicst_verify == NULL ||
2911 	    ops->mtops_multicst_verify == NULL ||
2912 	    ops->mtops_sap_verify == NULL ||
2913 	    ops->mtops_header == NULL ||
2914 	    ops->mtops_header_info == NULL) {
2915 		return (EINVAL);
2916 	}
2917 
2918 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2919 	mtp->mt_ident = mtrp->mtr_ident;
2920 	mtp->mt_ops = *ops;
2921 	mtp->mt_type = mtrp->mtr_mactype;
2922 	mtp->mt_nativetype = mtrp->mtr_nativetype;
2923 	mtp->mt_addr_length = mtrp->mtr_addrlen;
2924 	if (mtrp->mtr_brdcst_addr != NULL) {
2925 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2926 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2927 		    mtrp->mtr_addrlen);
2928 	}
2929 
2930 	mtp->mt_stats = mtrp->mtr_stats;
2931 	mtp->mt_statcount = mtrp->mtr_statcount;
2932 
2933 	mtp->mt_mapping = mtrp->mtr_mapping;
2934 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2935 
2936 	if (mod_hash_insert(i_mactype_hash,
2937 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2938 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2939 		kmem_free(mtp, sizeof (*mtp));
2940 		return (EEXIST);
2941 	}
2942 	return (0);
2943 }
2944 
2945 int
2946 mactype_unregister(const char *ident)
2947 {
2948 	mactype_t	*mtp;
2949 	mod_hash_val_t	val;
2950 	int 		err;
2951 
2952 	/*
2953 	 * Let's not allow MAC drivers to use this plugin while we're
2954 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
2955 	 * plugin from unregistering while a MAC driver is attempting to
2956 	 * hold a reference to it in i_mactype_getplugin().
2957 	 */
2958 	mutex_enter(&i_mactype_lock);
2959 
2960 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2961 	    (mod_hash_val_t *)&mtp)) != 0) {
2962 		/* A plugin is trying to unregister, but it never registered. */
2963 		err = ENXIO;
2964 		goto done;
2965 	}
2966 
2967 	if (mtp->mt_ref != 0) {
2968 		err = EBUSY;
2969 		goto done;
2970 	}
2971 
2972 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2973 	ASSERT(err == 0);
2974 	if (err != 0) {
2975 		/* This should never happen, thus the ASSERT() above. */
2976 		err = EINVAL;
2977 		goto done;
2978 	}
2979 	ASSERT(mtp == (mactype_t *)val);
2980 
2981 	if (mtp->mt_brdcst_addr != NULL)
2982 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2983 	kmem_free(mtp, sizeof (mactype_t));
2984 done:
2985 	mutex_exit(&i_mactype_lock);
2986 	return (err);
2987 }
2988 
2989 /*
2990  * Checks the size of the value size specified for a property as
2991  * part of a property operation. Returns B_TRUE if the size is
2992  * correct, B_FALSE otherwise.
2993  */
2994 boolean_t
2995 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2996 {
2997 	uint_t minsize = 0;
2998 
2999 	if (is_range)
3000 		return (valsize >= sizeof (mac_propval_range_t));
3001 
3002 	switch (id) {
3003 	case MAC_PROP_ZONE:
3004 		minsize = sizeof (dld_ioc_zid_t);
3005 		break;
3006 	case MAC_PROP_AUTOPUSH:
3007 		if (valsize != 0)
3008 			minsize = sizeof (struct dlautopush);
3009 		break;
3010 	case MAC_PROP_TAGMODE:
3011 		minsize = sizeof (link_tagmode_t);
3012 		break;
3013 	case MAC_PROP_RESOURCE:
3014 	case MAC_PROP_RESOURCE_EFF:
3015 		minsize = sizeof (mac_resource_props_t);
3016 		break;
3017 	case MAC_PROP_DUPLEX:
3018 		minsize = sizeof (link_duplex_t);
3019 		break;
3020 	case MAC_PROP_SPEED:
3021 		minsize = sizeof (uint64_t);
3022 		break;
3023 	case MAC_PROP_STATUS:
3024 		minsize = sizeof (link_state_t);
3025 		break;
3026 	case MAC_PROP_AUTONEG:
3027 	case MAC_PROP_EN_AUTONEG:
3028 		minsize = sizeof (uint8_t);
3029 		break;
3030 	case MAC_PROP_MTU:
3031 	case MAC_PROP_LLIMIT:
3032 	case MAC_PROP_LDECAY:
3033 		minsize = sizeof (uint32_t);
3034 		break;
3035 	case MAC_PROP_FLOWCTRL:
3036 		minsize = sizeof (link_flowctrl_t);
3037 		break;
3038 	case MAC_PROP_ADV_10GFDX_CAP:
3039 	case MAC_PROP_EN_10GFDX_CAP:
3040 	case MAC_PROP_ADV_1000HDX_CAP:
3041 	case MAC_PROP_EN_1000HDX_CAP:
3042 	case MAC_PROP_ADV_100FDX_CAP:
3043 	case MAC_PROP_EN_100FDX_CAP:
3044 	case MAC_PROP_ADV_100HDX_CAP:
3045 	case MAC_PROP_EN_100HDX_CAP:
3046 	case MAC_PROP_ADV_10FDX_CAP:
3047 	case MAC_PROP_EN_10FDX_CAP:
3048 	case MAC_PROP_ADV_10HDX_CAP:
3049 	case MAC_PROP_EN_10HDX_CAP:
3050 	case MAC_PROP_ADV_100T4_CAP:
3051 	case MAC_PROP_EN_100T4_CAP:
3052 		minsize = sizeof (uint8_t);
3053 		break;
3054 	case MAC_PROP_PVID:
3055 		minsize = sizeof (uint16_t);
3056 		break;
3057 	case MAC_PROP_IPTUN_HOPLIMIT:
3058 		minsize = sizeof (uint32_t);
3059 		break;
3060 	case MAC_PROP_IPTUN_ENCAPLIMIT:
3061 		minsize = sizeof (uint32_t);
3062 		break;
3063 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3064 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3065 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3066 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3067 		minsize = sizeof (uint_t);
3068 		break;
3069 	case MAC_PROP_WL_ESSID:
3070 		minsize = sizeof (wl_linkstatus_t);
3071 		break;
3072 	case MAC_PROP_WL_BSSID:
3073 		minsize = sizeof (wl_bssid_t);
3074 		break;
3075 	case MAC_PROP_WL_BSSTYPE:
3076 		minsize = sizeof (wl_bss_type_t);
3077 		break;
3078 	case MAC_PROP_WL_LINKSTATUS:
3079 		minsize = sizeof (wl_linkstatus_t);
3080 		break;
3081 	case MAC_PROP_WL_DESIRED_RATES:
3082 		minsize = sizeof (wl_rates_t);
3083 		break;
3084 	case MAC_PROP_WL_SUPPORTED_RATES:
3085 		minsize = sizeof (wl_rates_t);
3086 		break;
3087 	case MAC_PROP_WL_AUTH_MODE:
3088 		minsize = sizeof (wl_authmode_t);
3089 		break;
3090 	case MAC_PROP_WL_ENCRYPTION:
3091 		minsize = sizeof (wl_encryption_t);
3092 		break;
3093 	case MAC_PROP_WL_RSSI:
3094 		minsize = sizeof (wl_rssi_t);
3095 		break;
3096 	case MAC_PROP_WL_PHY_CONFIG:
3097 		minsize = sizeof (wl_phy_conf_t);
3098 		break;
3099 	case MAC_PROP_WL_CAPABILITY:
3100 		minsize = sizeof (wl_capability_t);
3101 		break;
3102 	case MAC_PROP_WL_WPA:
3103 		minsize = sizeof (wl_wpa_t);
3104 		break;
3105 	case MAC_PROP_WL_SCANRESULTS:
3106 		minsize = sizeof (wl_wpa_ess_t);
3107 		break;
3108 	case MAC_PROP_WL_POWER_MODE:
3109 		minsize = sizeof (wl_ps_mode_t);
3110 		break;
3111 	case MAC_PROP_WL_RADIO:
3112 		minsize = sizeof (wl_radio_t);
3113 		break;
3114 	case MAC_PROP_WL_ESS_LIST:
3115 		minsize = sizeof (wl_ess_list_t);
3116 		break;
3117 	case MAC_PROP_WL_KEY_TAB:
3118 		minsize = sizeof (wl_wep_key_tab_t);
3119 		break;
3120 	case MAC_PROP_WL_CREATE_IBSS:
3121 		minsize = sizeof (wl_create_ibss_t);
3122 		break;
3123 	case MAC_PROP_WL_SETOPTIE:
3124 		minsize = sizeof (wl_wpa_ie_t);
3125 		break;
3126 	case MAC_PROP_WL_DELKEY:
3127 		minsize = sizeof (wl_del_key_t);
3128 		break;
3129 	case MAC_PROP_WL_KEY:
3130 		minsize = sizeof (wl_key_t);
3131 		break;
3132 	case MAC_PROP_WL_MLME:
3133 		minsize = sizeof (wl_mlme_t);
3134 		break;
3135 	}
3136 
3137 	return (valsize >= minsize);
3138 }
3139 
3140 /*
3141  * mac_set_prop() sets MAC or hardware driver properties:
3142  *
3143  * - MAC-managed properties such as resource properties include maxbw,
3144  *   priority, and cpu binding list, as well as the default port VID
3145  *   used by bridging. These properties are consumed by the MAC layer
3146  *   itself and not passed down to the driver. For resource control
3147  *   properties, this function invokes mac_set_resources() which will
3148  *   cache the property value in mac_impl_t and may call
3149  *   mac_client_set_resource() to update property value of the primary
3150  *   mac client, if it exists.
3151  *
3152  * - Properties which act on the hardware and must be passed to the
3153  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3154  */
3155 int
3156 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3157     uint_t valsize)
3158 {
3159 	int err = ENOTSUP;
3160 	mac_impl_t *mip = (mac_impl_t *)mh;
3161 
3162 	ASSERT(MAC_PERIM_HELD(mh));
3163 
3164 	switch (id) {
3165 	case MAC_PROP_RESOURCE: {
3166 		mac_resource_props_t *mrp;
3167 
3168 		/* call mac_set_resources() for MAC properties */
3169 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3170 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3171 		bcopy(val, mrp, sizeof (*mrp));
3172 		err = mac_set_resources(mh, mrp);
3173 		kmem_free(mrp, sizeof (*mrp));
3174 		break;
3175 	}
3176 
3177 	case MAC_PROP_PVID:
3178 		ASSERT(valsize >= sizeof (uint16_t));
3179 		if (mip->mi_state_flags & MIS_IS_VNIC)
3180 			return (EINVAL);
3181 		err = mac_set_pvid(mh, *(uint16_t *)val);
3182 		break;
3183 
3184 	case MAC_PROP_MTU: {
3185 		uint32_t mtu;
3186 
3187 		ASSERT(valsize >= sizeof (uint32_t));
3188 		bcopy(val, &mtu, sizeof (mtu));
3189 		err = mac_set_mtu(mh, mtu, NULL);
3190 		break;
3191 	}
3192 
3193 	case MAC_PROP_LLIMIT:
3194 	case MAC_PROP_LDECAY: {
3195 		uint32_t learnval;
3196 
3197 		if (valsize < sizeof (learnval) ||
3198 		    (mip->mi_state_flags & MIS_IS_VNIC))
3199 			return (EINVAL);
3200 		bcopy(val, &learnval, sizeof (learnval));
3201 		if (learnval == 0 && id == MAC_PROP_LDECAY)
3202 			return (EINVAL);
3203 		if (id == MAC_PROP_LLIMIT)
3204 			mip->mi_llimit = learnval;
3205 		else
3206 			mip->mi_ldecay = learnval;
3207 		err = 0;
3208 		break;
3209 	}
3210 
3211 	default:
3212 		/* For other driver properties, call driver's callback */
3213 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3214 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3215 			    name, id, valsize, val);
3216 		}
3217 	}
3218 	return (err);
3219 }
3220 
3221 /*
3222  * mac_get_prop() gets MAC or device driver properties.
3223  *
3224  * If the property is a driver property, mac_get_prop() calls driver's callback
3225  * entry point to get it.
3226  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3227  * which returns the cached value in mac_impl_t.
3228  */
3229 int
3230 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3231     uint_t valsize)
3232 {
3233 	int err = ENOTSUP;
3234 	mac_impl_t *mip = (mac_impl_t *)mh;
3235 	uint_t	rings;
3236 	uint_t	vlinks;
3237 
3238 	bzero(val, valsize);
3239 
3240 	switch (id) {
3241 	case MAC_PROP_RESOURCE: {
3242 		mac_resource_props_t *mrp;
3243 
3244 		/* If mac property, read from cache */
3245 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3246 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3247 		mac_get_resources(mh, mrp);
3248 		bcopy(mrp, val, sizeof (*mrp));
3249 		kmem_free(mrp, sizeof (*mrp));
3250 		return (0);
3251 	}
3252 	case MAC_PROP_RESOURCE_EFF: {
3253 		mac_resource_props_t *mrp;
3254 
3255 		/* If mac effective property, read from client */
3256 		ASSERT(valsize >= sizeof (mac_resource_props_t));
3257 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3258 		mac_get_effective_resources(mh, mrp);
3259 		bcopy(mrp, val, sizeof (*mrp));
3260 		kmem_free(mrp, sizeof (*mrp));
3261 		return (0);
3262 	}
3263 
3264 	case MAC_PROP_PVID:
3265 		ASSERT(valsize >= sizeof (uint16_t));
3266 		if (mip->mi_state_flags & MIS_IS_VNIC)
3267 			return (EINVAL);
3268 		*(uint16_t *)val = mac_get_pvid(mh);
3269 		return (0);
3270 
3271 	case MAC_PROP_LLIMIT:
3272 	case MAC_PROP_LDECAY:
3273 		ASSERT(valsize >= sizeof (uint32_t));
3274 		if (mip->mi_state_flags & MIS_IS_VNIC)
3275 			return (EINVAL);
3276 		if (id == MAC_PROP_LLIMIT)
3277 			bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3278 		else
3279 			bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3280 		return (0);
3281 
3282 	case MAC_PROP_MTU: {
3283 		uint32_t sdu;
3284 
3285 		ASSERT(valsize >= sizeof (uint32_t));
3286 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3287 		bcopy(&sdu, val, sizeof (sdu));
3288 
3289 		return (0);
3290 	}
3291 	case MAC_PROP_STATUS: {
3292 		link_state_t link_state;
3293 
3294 		if (valsize < sizeof (link_state))
3295 			return (EINVAL);
3296 		link_state = mac_link_get(mh);
3297 		bcopy(&link_state, val, sizeof (link_state));
3298 
3299 		return (0);
3300 	}
3301 
3302 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3303 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3304 		ASSERT(valsize >= sizeof (uint_t));
3305 		rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3306 		    mac_rxavail_get(mh) : mac_txavail_get(mh);
3307 		bcopy(&rings, val, sizeof (uint_t));
3308 		return (0);
3309 
3310 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3311 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3312 		ASSERT(valsize >= sizeof (uint_t));
3313 		vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3314 		    mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3315 		bcopy(&vlinks, val, sizeof (uint_t));
3316 		return (0);
3317 
3318 	case MAC_PROP_RXRINGSRANGE:
3319 	case MAC_PROP_TXRINGSRANGE:
3320 		/*
3321 		 * The value for these properties are returned through
3322 		 * the MAC_PROP_RESOURCE property.
3323 		 */
3324 		return (0);
3325 
3326 	default:
3327 		break;
3328 
3329 	}
3330 
3331 	/* If driver property, request from driver */
3332 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3333 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3334 		    valsize, val);
3335 	}
3336 
3337 	return (err);
3338 }
3339 
3340 /*
3341  * Helper function to initialize the range structure for use in
3342  * mac_get_prop. If the type can be other than uint32, we can
3343  * pass that as an arg.
3344  */
3345 static void
3346 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3347 {
3348 	range->mpr_count = 1;
3349 	range->mpr_type = MAC_PROPVAL_UINT32;
3350 	range->mpr_range_uint32[0].mpur_min = min;
3351 	range->mpr_range_uint32[0].mpur_max = max;
3352 }
3353 
3354 /*
3355  * Returns information about the specified property, such as default
3356  * values or permissions.
3357  */
3358 int
3359 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3360     void *default_val, uint_t default_size, mac_propval_range_t *range,
3361     uint_t *perm)
3362 {
3363 	mac_prop_info_state_t state;
3364 	mac_impl_t *mip = (mac_impl_t *)mh;
3365 	uint_t	max;
3366 
3367 	/*
3368 	 * A property is read/write by default unless the driver says
3369 	 * otherwise.
3370 	 */
3371 	if (perm != NULL)
3372 		*perm = MAC_PROP_PERM_RW;
3373 
3374 	if (default_val != NULL)
3375 		bzero(default_val, default_size);
3376 
3377 	/*
3378 	 * First, handle framework properties for which we don't need to
3379 	 * involve the driver.
3380 	 */
3381 	switch (id) {
3382 	case MAC_PROP_RESOURCE:
3383 	case MAC_PROP_PVID:
3384 	case MAC_PROP_LLIMIT:
3385 	case MAC_PROP_LDECAY:
3386 		return (0);
3387 
3388 	case MAC_PROP_MAX_RX_RINGS_AVAIL:
3389 	case MAC_PROP_MAX_TX_RINGS_AVAIL:
3390 	case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3391 	case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3392 		if (perm != NULL)
3393 			*perm = MAC_PROP_PERM_READ;
3394 		return (0);
3395 
3396 	case MAC_PROP_RXRINGSRANGE:
3397 	case MAC_PROP_TXRINGSRANGE:
3398 		/*
3399 		 * Currently, we support range for RX and TX rings properties.
3400 		 * When we extend this support to maxbw, cpus and priority,
3401 		 * we should move this to mac_get_resources.
3402 		 * There is no default value for RX or TX rings.
3403 		 */
3404 		if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3405 		    mac_is_vnic_primary(mh)) {
3406 			/*
3407 			 * We don't support setting rings for a VLAN
3408 			 * data link because it shares its ring with the
3409 			 * primary MAC client.
3410 			 */
3411 			if (perm != NULL)
3412 				*perm = MAC_PROP_PERM_READ;
3413 			if (range != NULL)
3414 				range->mpr_count = 0;
3415 		} else if (range != NULL) {
3416 			if (mip->mi_state_flags & MIS_IS_VNIC)
3417 				mh = mac_get_lower_mac_handle(mh);
3418 			mip = (mac_impl_t *)mh;
3419 			if ((id == MAC_PROP_RXRINGSRANGE &&
3420 			    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3421 			    (id == MAC_PROP_TXRINGSRANGE &&
3422 			    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3423 				if (id == MAC_PROP_RXRINGSRANGE) {
3424 					if ((mac_rxhwlnksavail_get(mh) +
3425 					    mac_rxhwlnksrsvd_get(mh)) <= 1) {
3426 						/*
3427 						 * doesn't support groups or
3428 						 * rings
3429 						 */
3430 						range->mpr_count = 0;
3431 					} else {
3432 						/*
3433 						 * supports specifying groups,
3434 						 * but not rings
3435 						 */
3436 						_mac_set_range(range, 0, 0);
3437 					}
3438 				} else {
3439 					if ((mac_txhwlnksavail_get(mh) +
3440 					    mac_txhwlnksrsvd_get(mh)) <= 1) {
3441 						/*
3442 						 * doesn't support groups or
3443 						 * rings
3444 						 */
3445 						range->mpr_count = 0;
3446 					} else {
3447 						/*
3448 						 * supports specifying groups,
3449 						 * but not rings
3450 						 */
3451 						_mac_set_range(range, 0, 0);
3452 					}
3453 				}
3454 			} else {
3455 				max = id == MAC_PROP_RXRINGSRANGE ?
3456 				    mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3457 				    mac_txavail_get(mh) + mac_txrsvd_get(mh);
3458 				if (max <= 1) {
3459 					/*
3460 					 * doesn't support groups or
3461 					 * rings
3462 					 */
3463 					range->mpr_count = 0;
3464 				} else  {
3465 					/*
3466 					 * -1 because we have to leave out the
3467 					 * default ring.
3468 					 */
3469 					_mac_set_range(range, 1, max - 1);
3470 				}
3471 			}
3472 		}
3473 		return (0);
3474 
3475 	case MAC_PROP_STATUS:
3476 		if (perm != NULL)
3477 			*perm = MAC_PROP_PERM_READ;
3478 		return (0);
3479 	}
3480 
3481 	/*
3482 	 * Get the property info from the driver if it implements the
3483 	 * property info entry point.
3484 	 */
3485 	bzero(&state, sizeof (state));
3486 
3487 	if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3488 		state.pr_default = default_val;
3489 		state.pr_default_size = default_size;
3490 
3491 		/*
3492 		 * The caller specifies the maximum number of ranges
3493 		 * it can accomodate using mpr_count. We don't touch
3494 		 * this value until the driver returns from its
3495 		 * mc_propinfo() callback, and ensure we don't exceed
3496 		 * this number of range as the driver defines
3497 		 * supported range from its mc_propinfo().
3498 		 *
3499 		 * pr_range_cur_count keeps track of how many ranges
3500 		 * were defined by the driver from its mc_propinfo()
3501 		 * entry point.
3502 		 *
3503 		 * On exit, the user-specified range mpr_count returns
3504 		 * the number of ranges specified by the driver on
3505 		 * success, or the number of ranges it wanted to
3506 		 * define if that number of ranges could not be
3507 		 * accomodated by the specified range structure.  In
3508 		 * the latter case, the caller will be able to
3509 		 * allocate a larger range structure, and query the
3510 		 * property again.
3511 		 */
3512 		state.pr_range_cur_count = 0;
3513 		state.pr_range = range;
3514 
3515 		mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3516 		    (mac_prop_info_handle_t)&state);
3517 
3518 		if (state.pr_flags & MAC_PROP_INFO_RANGE)
3519 			range->mpr_count = state.pr_range_cur_count;
3520 
3521 		/*
3522 		 * The operation could fail if the buffer supplied by
3523 		 * the user was too small for the range or default
3524 		 * value of the property.
3525 		 */
3526 		if (state.pr_errno != 0)
3527 			return (state.pr_errno);
3528 
3529 		if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3530 			*perm = state.pr_perm;
3531 	}
3532 
3533 	/*
3534 	 * The MAC layer may want to provide default values or allowed
3535 	 * ranges for properties if the driver does not provide a
3536 	 * property info entry point, or that entry point exists, but
3537 	 * it did not provide a default value or allowed ranges for
3538 	 * that property.
3539 	 */
3540 	switch (id) {
3541 	case MAC_PROP_MTU: {
3542 		uint32_t sdu;
3543 
3544 		mac_sdu_get2(mh, NULL, &sdu, NULL);
3545 
3546 		if (range != NULL && !(state.pr_flags &
3547 		    MAC_PROP_INFO_RANGE)) {
3548 			/* MTU range */
3549 			_mac_set_range(range, sdu, sdu);
3550 		}
3551 
3552 		if (default_val != NULL && !(state.pr_flags &
3553 		    MAC_PROP_INFO_DEFAULT)) {
3554 			if (mip->mi_info.mi_media == DL_ETHER)
3555 				sdu = ETHERMTU;
3556 			/* default MTU value */
3557 			bcopy(&sdu, default_val, sizeof (sdu));
3558 		}
3559 	}
3560 	}
3561 
3562 	return (0);
3563 }
3564 
3565 int
3566 mac_fastpath_disable(mac_handle_t mh)
3567 {
3568 	mac_impl_t	*mip = (mac_impl_t *)mh;
3569 
3570 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3571 		return (0);
3572 
3573 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3574 }
3575 
3576 void
3577 mac_fastpath_enable(mac_handle_t mh)
3578 {
3579 	mac_impl_t	*mip = (mac_impl_t *)mh;
3580 
3581 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3582 		return;
3583 
3584 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3585 }
3586 
3587 void
3588 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3589 {
3590 	uint_t nprops, i;
3591 
3592 	if (priv_props == NULL)
3593 		return;
3594 
3595 	nprops = 0;
3596 	while (priv_props[nprops] != NULL)
3597 		nprops++;
3598 	if (nprops == 0)
3599 		return;
3600 
3601 
3602 	mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3603 
3604 	for (i = 0; i < nprops; i++) {
3605 		mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3606 		(void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3607 		    MAXLINKPROPNAME);
3608 	}
3609 
3610 	mip->mi_priv_prop_count = nprops;
3611 }
3612 
3613 void
3614 mac_unregister_priv_prop(mac_impl_t *mip)
3615 {
3616 	uint_t i;
3617 
3618 	if (mip->mi_priv_prop_count == 0) {
3619 		ASSERT(mip->mi_priv_prop == NULL);
3620 		return;
3621 	}
3622 
3623 	for (i = 0; i < mip->mi_priv_prop_count; i++)
3624 		kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3625 	kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3626 	    sizeof (char *));
3627 
3628 	mip->mi_priv_prop = NULL;
3629 	mip->mi_priv_prop_count = 0;
3630 }
3631 
3632 /*
3633  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3634  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3635  * cases if MAC free's the ring structure after mac_stop_ring(), any
3636  * illegal access to the ring structure coming from the driver will panic
3637  * the system. In order to protect the system from such inadverent access,
3638  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3639  * When packets are received on free'd up rings, MAC (through the generation
3640  * count mechanism) will drop such packets.
3641  */
3642 static mac_ring_t *
3643 mac_ring_alloc(mac_impl_t *mip)
3644 {
3645 	mac_ring_t *ring;
3646 
3647 	mutex_enter(&mip->mi_ring_lock);
3648 	if (mip->mi_ring_freelist != NULL) {
3649 		ring = mip->mi_ring_freelist;
3650 		mip->mi_ring_freelist = ring->mr_next;
3651 		bzero(ring, sizeof (mac_ring_t));
3652 		mutex_exit(&mip->mi_ring_lock);
3653 	} else {
3654 		mutex_exit(&mip->mi_ring_lock);
3655 		ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3656 	}
3657 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3658 	return (ring);
3659 }
3660 
3661 static void
3662 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3663 {
3664 	ASSERT(ring->mr_state == MR_FREE);
3665 
3666 	mutex_enter(&mip->mi_ring_lock);
3667 	ring->mr_state = MR_FREE;
3668 	ring->mr_flag = 0;
3669 	ring->mr_next = mip->mi_ring_freelist;
3670 	ring->mr_mip = NULL;
3671 	mip->mi_ring_freelist = ring;
3672 	mac_ring_stat_delete(ring);
3673 	mutex_exit(&mip->mi_ring_lock);
3674 }
3675 
3676 static void
3677 mac_ring_freeall(mac_impl_t *mip)
3678 {
3679 	mac_ring_t *ring_next;
3680 	mutex_enter(&mip->mi_ring_lock);
3681 	mac_ring_t *ring = mip->mi_ring_freelist;
3682 	while (ring != NULL) {
3683 		ring_next = ring->mr_next;
3684 		kmem_cache_free(mac_ring_cache, ring);
3685 		ring = ring_next;
3686 	}
3687 	mip->mi_ring_freelist = NULL;
3688 	mutex_exit(&mip->mi_ring_lock);
3689 }
3690 
3691 int
3692 mac_start_ring(mac_ring_t *ring)
3693 {
3694 	int rv = 0;
3695 
3696 	ASSERT(ring->mr_state == MR_FREE);
3697 
3698 	if (ring->mr_start != NULL) {
3699 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3700 		if (rv != 0)
3701 			return (rv);
3702 	}
3703 
3704 	ring->mr_state = MR_INUSE;
3705 	return (rv);
3706 }
3707 
3708 void
3709 mac_stop_ring(mac_ring_t *ring)
3710 {
3711 	ASSERT(ring->mr_state == MR_INUSE);
3712 
3713 	if (ring->mr_stop != NULL)
3714 		ring->mr_stop(ring->mr_driver);
3715 
3716 	ring->mr_state = MR_FREE;
3717 
3718 	/*
3719 	 * Increment the ring generation number for this ring.
3720 	 */
3721 	ring->mr_gen_num++;
3722 }
3723 
3724 int
3725 mac_start_group(mac_group_t *group)
3726 {
3727 	int rv = 0;
3728 
3729 	if (group->mrg_start != NULL)
3730 		rv = group->mrg_start(group->mrg_driver);
3731 
3732 	return (rv);
3733 }
3734 
3735 void
3736 mac_stop_group(mac_group_t *group)
3737 {
3738 	if (group->mrg_stop != NULL)
3739 		group->mrg_stop(group->mrg_driver);
3740 }
3741 
3742 /*
3743  * Called from mac_start() on the default Rx group. Broadcast and multicast
3744  * packets are received only on the default group. Hence the default group
3745  * needs to be up even if the primary client is not up, for the other groups
3746  * to be functional. We do this by calling this function at mac_start time
3747  * itself. However the broadcast packets that are received can't make their
3748  * way beyond mac_rx until a mac client creates a broadcast flow.
3749  */
3750 static int
3751 mac_start_group_and_rings(mac_group_t *group)
3752 {
3753 	mac_ring_t	*ring;
3754 	int		rv = 0;
3755 
3756 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3757 	if ((rv = mac_start_group(group)) != 0)
3758 		return (rv);
3759 
3760 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3761 		ASSERT(ring->mr_state == MR_FREE);
3762 		if ((rv = mac_start_ring(ring)) != 0)
3763 			goto error;
3764 		ring->mr_classify_type = MAC_SW_CLASSIFIER;
3765 	}
3766 	return (0);
3767 
3768 error:
3769 	mac_stop_group_and_rings(group);
3770 	return (rv);
3771 }
3772 
3773 /* Called from mac_stop on the default Rx group */
3774 static void
3775 mac_stop_group_and_rings(mac_group_t *group)
3776 {
3777 	mac_ring_t	*ring;
3778 
3779 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3780 		if (ring->mr_state != MR_FREE) {
3781 			mac_stop_ring(ring);
3782 			ring->mr_flag = 0;
3783 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
3784 		}
3785 	}
3786 	mac_stop_group(group);
3787 }
3788 
3789 
3790 static mac_ring_t *
3791 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3792     mac_capab_rings_t *cap_rings)
3793 {
3794 	mac_ring_t *ring, *rnext;
3795 	mac_ring_info_t ring_info;
3796 	ddi_intr_handle_t ddi_handle;
3797 
3798 	ring = mac_ring_alloc(mip);
3799 
3800 	/* Prepare basic information of ring */
3801 
3802 	/*
3803 	 * Ring index is numbered to be unique across a particular device.
3804 	 * Ring index computation makes following assumptions:
3805 	 *	- For drivers with static grouping (e.g. ixgbe, bge),
3806 	 *	ring index exchanged with the driver (e.g. during mr_rget)
3807 	 *	is unique only across the group the ring belongs to.
3808 	 *	- Drivers with dynamic grouping (e.g. nxge), start
3809 	 *	with single group (mrg_index = 0).
3810 	 */
3811 	ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3812 	ring->mr_type = group->mrg_type;
3813 	ring->mr_gh = (mac_group_handle_t)group;
3814 
3815 	/* Insert the new ring to the list. */
3816 	ring->mr_next = group->mrg_rings;
3817 	group->mrg_rings = ring;
3818 
3819 	/* Zero to reuse the info data structure */
3820 	bzero(&ring_info, sizeof (ring_info));
3821 
3822 	/* Query ring information from driver */
3823 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3824 	    index, &ring_info, (mac_ring_handle_t)ring);
3825 
3826 	ring->mr_info = ring_info;
3827 
3828 	/*
3829 	 * The interrupt handle could be shared among multiple rings.
3830 	 * Thus if there is a bunch of rings that are sharing an
3831 	 * interrupt, then only one ring among the bunch will be made
3832 	 * available for interrupt re-targeting; the rest will have
3833 	 * ddi_shared flag set to TRUE and would not be available for
3834 	 * be interrupt re-targeting.
3835 	 */
3836 	if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3837 		rnext = ring->mr_next;
3838 		while (rnext != NULL) {
3839 			if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3840 			    ddi_handle) {
3841 				/*
3842 				 * If default ring (mr_index == 0) is part
3843 				 * of a group of rings sharing an
3844 				 * interrupt, then set ddi_shared flag for
3845 				 * the default ring and give another ring
3846 				 * the chance to be re-targeted.
3847 				 */
3848 				if (rnext->mr_index == 0 &&
3849 				    !rnext->mr_info.mri_intr.mi_ddi_shared) {
3850 					rnext->mr_info.mri_intr.mi_ddi_shared =
3851 					    B_TRUE;
3852 				} else {
3853 					ring->mr_info.mri_intr.mi_ddi_shared =
3854 					    B_TRUE;
3855 				}
3856 				break;
3857 			}
3858 			rnext = rnext->mr_next;
3859 		}
3860 		/*
3861 		 * If rnext is NULL, then no matching ddi_handle was found.
3862 		 * Rx rings get registered first. So if this is a Tx ring,
3863 		 * then go through all the Rx rings and see if there is a
3864 		 * matching ddi handle.
3865 		 */
3866 		if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3867 			mac_compare_ddi_handle(mip->mi_rx_groups,
3868 			    mip->mi_rx_group_count, ring);
3869 		}
3870 	}
3871 
3872 	/* Update ring's status */
3873 	ring->mr_state = MR_FREE;
3874 	ring->mr_flag = 0;
3875 
3876 	/* Update the ring count of the group */
3877 	group->mrg_cur_count++;
3878 
3879 	/* Create per ring kstats */
3880 	if (ring->mr_stat != NULL) {
3881 		ring->mr_mip = mip;
3882 		mac_ring_stat_create(ring);
3883 	}
3884 
3885 	return (ring);
3886 }
3887 
3888 /*
3889  * Rings are chained together for easy regrouping.
3890  */
3891 static void
3892 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3893     mac_capab_rings_t *cap_rings)
3894 {
3895 	int index;
3896 
3897 	/*
3898 	 * Initialize all ring members of this group. Size of zero will not
3899 	 * enter the loop, so it's safe for initializing an empty group.
3900 	 */
3901 	for (index = size - 1; index >= 0; index--)
3902 		(void) mac_init_ring(mip, group, index, cap_rings);
3903 }
3904 
3905 int
3906 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3907 {
3908 	mac_capab_rings_t	*cap_rings;
3909 	mac_group_t		*group;
3910 	mac_group_t		*groups;
3911 	mac_group_info_t	group_info;
3912 	uint_t			group_free = 0;
3913 	uint_t			ring_left;
3914 	mac_ring_t		*ring;
3915 	int			g;
3916 	int			err = 0;
3917 	uint_t			grpcnt;
3918 	boolean_t		pseudo_txgrp = B_FALSE;
3919 
3920 	switch (rtype) {
3921 	case MAC_RING_TYPE_RX:
3922 		ASSERT(mip->mi_rx_groups == NULL);
3923 
3924 		cap_rings = &mip->mi_rx_rings_cap;
3925 		cap_rings->mr_type = MAC_RING_TYPE_RX;
3926 		break;
3927 	case MAC_RING_TYPE_TX:
3928 		ASSERT(mip->mi_tx_groups == NULL);
3929 
3930 		cap_rings = &mip->mi_tx_rings_cap;
3931 		cap_rings->mr_type = MAC_RING_TYPE_TX;
3932 		break;
3933 	default:
3934 		ASSERT(B_FALSE);
3935 	}
3936 
3937 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3938 		return (0);
3939 	grpcnt = cap_rings->mr_gnum;
3940 
3941 	/*
3942 	 * If we have multiple TX rings, but only one TX group, we can
3943 	 * create pseudo TX groups (one per TX ring) in the MAC layer,
3944 	 * except for an aggr. For an aggr currently we maintain only
3945 	 * one group with all the rings (for all its ports), going
3946 	 * forwards we might change this.
3947 	 */
3948 	if (rtype == MAC_RING_TYPE_TX &&
3949 	    cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
3950 	    (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3951 		/*
3952 		 * The -1 here is because we create a default TX group
3953 		 * with all the rings in it.
3954 		 */
3955 		grpcnt = cap_rings->mr_rnum - 1;
3956 		pseudo_txgrp = B_TRUE;
3957 	}
3958 
3959 	/*
3960 	 * Allocate a contiguous buffer for all groups.
3961 	 */
3962 	groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3963 
3964 	ring_left = cap_rings->mr_rnum;
3965 
3966 	/*
3967 	 * Get all ring groups if any, and get their ring members
3968 	 * if any.
3969 	 */
3970 	for (g = 0; g < grpcnt; g++) {
3971 		group = groups + g;
3972 
3973 		/* Prepare basic information of the group */
3974 		group->mrg_index = g;
3975 		group->mrg_type = rtype;
3976 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
3977 		group->mrg_mh = (mac_handle_t)mip;
3978 		group->mrg_next = group + 1;
3979 
3980 		/* Zero to reuse the info data structure */
3981 		bzero(&group_info, sizeof (group_info));
3982 
3983 		if (pseudo_txgrp) {
3984 			/*
3985 			 * This is a pseudo group that we created, apart
3986 			 * from setting the state there is nothing to be
3987 			 * done.
3988 			 */
3989 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
3990 			group_free++;
3991 			continue;
3992 		}
3993 		/* Query group information from driver */
3994 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3995 		    (mac_group_handle_t)group);
3996 
3997 		switch (cap_rings->mr_group_type) {
3998 		case MAC_GROUP_TYPE_DYNAMIC:
3999 			if (cap_rings->mr_gaddring == NULL ||
4000 			    cap_rings->mr_gremring == NULL) {
4001 				DTRACE_PROBE3(
4002 				    mac__init__rings_no_addremring,
4003 				    char *, mip->mi_name,
4004 				    mac_group_add_ring_t,
4005 				    cap_rings->mr_gaddring,
4006 				    mac_group_add_ring_t,
4007 				    cap_rings->mr_gremring);
4008 				err = EINVAL;
4009 				goto bail;
4010 			}
4011 
4012 			switch (rtype) {
4013 			case MAC_RING_TYPE_RX:
4014 				/*
4015 				 * The first RX group must have non-zero
4016 				 * rings, and the following groups must
4017 				 * have zero rings.
4018 				 */
4019 				if (g == 0 && group_info.mgi_count == 0) {
4020 					DTRACE_PROBE1(
4021 					    mac__init__rings__rx__def__zero,
4022 					    char *, mip->mi_name);
4023 					err = EINVAL;
4024 					goto bail;
4025 				}
4026 				if (g > 0 && group_info.mgi_count != 0) {
4027 					DTRACE_PROBE3(
4028 					    mac__init__rings__rx__nonzero,
4029 					    char *, mip->mi_name,
4030 					    int, g, int, group_info.mgi_count);
4031 					err = EINVAL;
4032 					goto bail;
4033 				}
4034 				break;
4035 			case MAC_RING_TYPE_TX:
4036 				/*
4037 				 * All TX ring groups must have zero rings.
4038 				 */
4039 				if (group_info.mgi_count != 0) {
4040 					DTRACE_PROBE3(
4041 					    mac__init__rings__tx__nonzero,
4042 					    char *, mip->mi_name,
4043 					    int, g, int, group_info.mgi_count);
4044 					err = EINVAL;
4045 					goto bail;
4046 				}
4047 				break;
4048 			}
4049 			break;
4050 		case MAC_GROUP_TYPE_STATIC:
4051 			/*
4052 			 * Note that an empty group is allowed, e.g., an aggr
4053 			 * would start with an empty group.
4054 			 */
4055 			break;
4056 		default:
4057 			/* unknown group type */
4058 			DTRACE_PROBE2(mac__init__rings__unknown__type,
4059 			    char *, mip->mi_name,
4060 			    int, cap_rings->mr_group_type);
4061 			err = EINVAL;
4062 			goto bail;
4063 		}
4064 
4065 
4066 		/*
4067 		 * Driver must register group->mgi_addmac/remmac() for rx groups
4068 		 * to support multiple MAC addresses.
4069 		 */
4070 		if (rtype == MAC_RING_TYPE_RX &&
4071 		    ((group_info.mgi_addmac == NULL) ||
4072 		    (group_info.mgi_remmac == NULL))) {
4073 			err = EINVAL;
4074 			goto bail;
4075 		}
4076 
4077 		/* Cache driver-supplied information */
4078 		group->mrg_info = group_info;
4079 
4080 		/* Update the group's status and group count. */
4081 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4082 		group_free++;
4083 
4084 		group->mrg_rings = NULL;
4085 		group->mrg_cur_count = 0;
4086 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4087 		ring_left -= group_info.mgi_count;
4088 
4089 		/* The current group size should be equal to default value */
4090 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
4091 	}
4092 
4093 	/* Build up a dummy group for free resources as a pool */
4094 	group = groups + grpcnt;
4095 
4096 	/* Prepare basic information of the group */
4097 	group->mrg_index = -1;
4098 	group->mrg_type = rtype;
4099 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
4100 	group->mrg_mh = (mac_handle_t)mip;
4101 	group->mrg_next = NULL;
4102 
4103 	/*
4104 	 * If there are ungrouped rings, allocate a continuous buffer for
4105 	 * remaining resources.
4106 	 */
4107 	if (ring_left != 0) {
4108 		group->mrg_rings = NULL;
4109 		group->mrg_cur_count = 0;
4110 		mac_init_group(mip, group, ring_left, cap_rings);
4111 
4112 		/* The current group size should be equal to ring_left */
4113 		ASSERT(group->mrg_cur_count == ring_left);
4114 
4115 		ring_left = 0;
4116 
4117 		/* Update this group's status */
4118 		mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4119 	} else
4120 		group->mrg_rings = NULL;
4121 
4122 	ASSERT(ring_left == 0);
4123 
4124 bail:
4125 
4126 	/* Cache other important information to finalize the initialization */
4127 	switch (rtype) {
4128 	case MAC_RING_TYPE_RX:
4129 		mip->mi_rx_group_type = cap_rings->mr_group_type;
4130 		mip->mi_rx_group_count = cap_rings->mr_gnum;
4131 		mip->mi_rx_groups = groups;
4132 		mip->mi_rx_donor_grp = groups;
4133 		if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4134 			/*
4135 			 * The default ring is reserved since it is
4136 			 * used for sending the broadcast etc. packets.
4137 			 */
4138 			mip->mi_rxrings_avail =
4139 			    mip->mi_rx_groups->mrg_cur_count - 1;
4140 			mip->mi_rxrings_rsvd = 1;
4141 		}
4142 		/*
4143 		 * The default group cannot be reserved. It is used by
4144 		 * all the clients that do not have an exclusive group.
4145 		 */
4146 		mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4147 		mip->mi_rxhwclnt_used = 1;
4148 		break;
4149 	case MAC_RING_TYPE_TX:
4150 		mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4151 		    cap_rings->mr_group_type;
4152 		mip->mi_tx_group_count = grpcnt;
4153 		mip->mi_tx_group_free = group_free;
4154 		mip->mi_tx_groups = groups;
4155 
4156 		group = groups + grpcnt;
4157 		ring = group->mrg_rings;
4158 		/*
4159 		 * The ring can be NULL in the case of aggr. Aggr will
4160 		 * have an empty Tx group which will get populated
4161 		 * later when pseudo Tx rings are added after
4162 		 * mac_register() is done.
4163 		 */
4164 		if (ring == NULL) {
4165 			ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4166 			/*
4167 			 * pass the group to aggr so it can add Tx
4168 			 * rings to the group later.
4169 			 */
4170 			cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4171 			    (mac_group_handle_t)group);
4172 			/*
4173 			 * Even though there are no rings at this time
4174 			 * (rings will come later), set the group
4175 			 * state to registered.
4176 			 */
4177 			group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4178 		} else {
4179 			/*
4180 			 * Ring 0 is used as the default one and it could be
4181 			 * assigned to a client as well.
4182 			 */
4183 			while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4184 				ring = ring->mr_next;
4185 			ASSERT(ring->mr_index == 0);
4186 			mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4187 		}
4188 		if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
4189 			mip->mi_txrings_avail = group->mrg_cur_count - 1;
4190 			/*
4191 			 * The default ring cannot be reserved.
4192 			 */
4193 			mip->mi_txrings_rsvd = 1;
4194 		/*
4195 		 * The default group cannot be reserved. It will be shared
4196 		 * by clients that do not have an exclusive group.
4197 		 */
4198 		mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4199 		mip->mi_txhwclnt_used = 1;
4200 		break;
4201 	default:
4202 		ASSERT(B_FALSE);
4203 	}
4204 
4205 	if (err != 0)
4206 		mac_free_rings(mip, rtype);
4207 
4208 	return (err);
4209 }
4210 
4211 /*
4212  * The ddi interrupt handle could be shared amoung rings. If so, compare
4213  * the new ring's ddi handle with the existing ones and set ddi_shared
4214  * flag.
4215  */
4216 void
4217 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4218 {
4219 	mac_group_t *group;
4220 	mac_ring_t *ring;
4221 	ddi_intr_handle_t ddi_handle;
4222 	int g;
4223 
4224 	ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4225 	for (g = 0; g < grpcnt; g++) {
4226 		group = groups + g;
4227 		for (ring = group->mrg_rings; ring != NULL;
4228 		    ring = ring->mr_next) {
4229 			if (ring == cring)
4230 				continue;
4231 			if (ring->mr_info.mri_intr.mi_ddi_handle ==
4232 			    ddi_handle) {
4233 				if (cring->mr_type == MAC_RING_TYPE_RX &&
4234 				    ring->mr_index == 0 &&
4235 				    !ring->mr_info.mri_intr.mi_ddi_shared) {
4236 					ring->mr_info.mri_intr.mi_ddi_shared =
4237 					    B_TRUE;
4238 				} else {
4239 					cring->mr_info.mri_intr.mi_ddi_shared =
4240 					    B_TRUE;
4241 				}
4242 				return;
4243 			}
4244 		}
4245 	}
4246 }
4247 
4248 /*
4249  * Called to free all groups of particular type (RX or TX). It's assumed that
4250  * no clients are using these groups.
4251  */
4252 void
4253 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4254 {
4255 	mac_group_t *group, *groups;
4256 	uint_t group_count;
4257 
4258 	switch (rtype) {
4259 	case MAC_RING_TYPE_RX:
4260 		if (mip->mi_rx_groups == NULL)
4261 			return;
4262 
4263 		groups = mip->mi_rx_groups;
4264 		group_count = mip->mi_rx_group_count;
4265 
4266 		mip->mi_rx_groups = NULL;
4267 		mip->mi_rx_donor_grp = NULL;
4268 		mip->mi_rx_group_count = 0;
4269 		break;
4270 	case MAC_RING_TYPE_TX:
4271 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4272 
4273 		if (mip->mi_tx_groups == NULL)
4274 			return;
4275 
4276 		groups = mip->mi_tx_groups;
4277 		group_count = mip->mi_tx_group_count;
4278 
4279 		mip->mi_tx_groups = NULL;
4280 		mip->mi_tx_group_count = 0;
4281 		mip->mi_tx_group_free = 0;
4282 		mip->mi_default_tx_ring = NULL;
4283 		break;
4284 	default:
4285 		ASSERT(B_FALSE);
4286 	}
4287 
4288 	for (group = groups; group != NULL; group = group->mrg_next) {
4289 		mac_ring_t *ring;
4290 
4291 		if (group->mrg_cur_count == 0)
4292 			continue;
4293 
4294 		ASSERT(group->mrg_rings != NULL);
4295 
4296 		while ((ring = group->mrg_rings) != NULL) {
4297 			group->mrg_rings = ring->mr_next;
4298 			mac_ring_free(mip, ring);
4299 		}
4300 	}
4301 
4302 	/* Free all the cached rings */
4303 	mac_ring_freeall(mip);
4304 	/* Free the block of group data strutures */
4305 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4306 }
4307 
4308 /*
4309  * Associate a MAC address with a receive group.
4310  *
4311  * The return value of this function should always be checked properly, because
4312  * any type of failure could cause unexpected results. A group can be added
4313  * or removed with a MAC address only after it has been reserved. Ideally,
4314  * a successful reservation always leads to calling mac_group_addmac() to
4315  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4316  * always imply that the group is functioning abnormally.
4317  *
4318  * Currently this function is called everywhere, and it reflects assumptions
4319  * about MAC addresses in the implementation. CR 6735196.
4320  */
4321 int
4322 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4323 {
4324 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4325 	ASSERT(group->mrg_info.mgi_addmac != NULL);
4326 
4327 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4328 }
4329 
4330 /*
4331  * Remove the association between MAC address and receive group.
4332  */
4333 int
4334 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4335 {
4336 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4337 	ASSERT(group->mrg_info.mgi_remmac != NULL);
4338 
4339 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4340 }
4341 
4342 /*
4343  * This is the entry point for packets transmitted through the bridging code.
4344  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4345  * pointer may be NULL to select the default ring.
4346  */
4347 mblk_t *
4348 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4349 {
4350 	mac_handle_t mh;
4351 
4352 	/*
4353 	 * Once we take a reference on the bridge link, the bridge
4354 	 * module itself can't unload, so the callback pointers are
4355 	 * stable.
4356 	 */
4357 	mutex_enter(&mip->mi_bridge_lock);
4358 	if ((mh = mip->mi_bridge_link) != NULL)
4359 		mac_bridge_ref_cb(mh, B_TRUE);
4360 	mutex_exit(&mip->mi_bridge_lock);
4361 	if (mh == NULL) {
4362 		MAC_RING_TX(mip, rh, mp, mp);
4363 	} else {
4364 		mp = mac_bridge_tx_cb(mh, rh, mp);
4365 		mac_bridge_ref_cb(mh, B_FALSE);
4366 	}
4367 
4368 	return (mp);
4369 }
4370 
4371 /*
4372  * Find a ring from its index.
4373  */
4374 mac_ring_handle_t
4375 mac_find_ring(mac_group_handle_t gh, int index)
4376 {
4377 	mac_group_t *group = (mac_group_t *)gh;
4378 	mac_ring_t *ring = group->mrg_rings;
4379 
4380 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4381 		if (ring->mr_index == index)
4382 			break;
4383 
4384 	return ((mac_ring_handle_t)ring);
4385 }
4386 /*
4387  * Add a ring to an existing group.
4388  *
4389  * The ring must be either passed directly (for example if the ring
4390  * movement is initiated by the framework), or specified through a driver
4391  * index (for example when the ring is added by the driver.
4392  *
4393  * The caller needs to call mac_perim_enter() before calling this function.
4394  */
4395 int
4396 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4397 {
4398 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4399 	mac_capab_rings_t *cap_rings;
4400 	boolean_t driver_call = (ring == NULL);
4401 	mac_group_type_t group_type;
4402 	int ret = 0;
4403 	flow_entry_t *flent;
4404 
4405 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4406 
4407 	switch (group->mrg_type) {
4408 	case MAC_RING_TYPE_RX:
4409 		cap_rings = &mip->mi_rx_rings_cap;
4410 		group_type = mip->mi_rx_group_type;
4411 		break;
4412 	case MAC_RING_TYPE_TX:
4413 		cap_rings = &mip->mi_tx_rings_cap;
4414 		group_type = mip->mi_tx_group_type;
4415 		break;
4416 	default:
4417 		ASSERT(B_FALSE);
4418 	}
4419 
4420 	/*
4421 	 * There should be no ring with the same ring index in the target
4422 	 * group.
4423 	 */
4424 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4425 	    driver_call ? index : ring->mr_index) == NULL);
4426 
4427 	if (driver_call) {
4428 		/*
4429 		 * The function is called as a result of a request from
4430 		 * a driver to add a ring to an existing group, for example
4431 		 * from the aggregation driver. Allocate a new mac_ring_t
4432 		 * for that ring.
4433 		 */
4434 		ring = mac_init_ring(mip, group, index, cap_rings);
4435 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4436 	} else {
4437 		/*
4438 		 * The function is called as a result of a MAC layer request
4439 		 * to add a ring to an existing group. In this case the
4440 		 * ring is being moved between groups, which requires
4441 		 * the underlying driver to support dynamic grouping,
4442 		 * and the mac_ring_t already exists.
4443 		 */
4444 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4445 		ASSERT(group->mrg_driver == NULL ||
4446 		    cap_rings->mr_gaddring != NULL);
4447 		ASSERT(ring->mr_gh == NULL);
4448 	}
4449 
4450 	/*
4451 	 * At this point the ring should not be in use, and it should be
4452 	 * of the right for the target group.
4453 	 */
4454 	ASSERT(ring->mr_state < MR_INUSE);
4455 	ASSERT(ring->mr_srs == NULL);
4456 	ASSERT(ring->mr_type == group->mrg_type);
4457 
4458 	if (!driver_call) {
4459 		/*
4460 		 * Add the driver level hardware ring if the process was not
4461 		 * initiated by the driver, and the target group is not the
4462 		 * group.
4463 		 */
4464 		if (group->mrg_driver != NULL) {
4465 			cap_rings->mr_gaddring(group->mrg_driver,
4466 			    ring->mr_driver, ring->mr_type);
4467 		}
4468 
4469 		/*
4470 		 * Insert the ring ahead existing rings.
4471 		 */
4472 		ring->mr_next = group->mrg_rings;
4473 		group->mrg_rings = ring;
4474 		ring->mr_gh = (mac_group_handle_t)group;
4475 		group->mrg_cur_count++;
4476 	}
4477 
4478 	/*
4479 	 * If the group has not been actively used, we're done.
4480 	 */
4481 	if (group->mrg_index != -1 &&
4482 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
4483 		return (0);
4484 
4485 	/*
4486 	 * Start the ring if needed. Failure causes to undo the grouping action.
4487 	 */
4488 	if (ring->mr_state != MR_INUSE) {
4489 		if ((ret = mac_start_ring(ring)) != 0) {
4490 			if (!driver_call) {
4491 				cap_rings->mr_gremring(group->mrg_driver,
4492 				    ring->mr_driver, ring->mr_type);
4493 			}
4494 			group->mrg_cur_count--;
4495 			group->mrg_rings = ring->mr_next;
4496 
4497 			ring->mr_gh = NULL;
4498 
4499 			if (driver_call)
4500 				mac_ring_free(mip, ring);
4501 
4502 			return (ret);
4503 		}
4504 	}
4505 
4506 	/*
4507 	 * Set up SRS/SR according to the ring type.
4508 	 */
4509 	switch (ring->mr_type) {
4510 	case MAC_RING_TYPE_RX:
4511 		/*
4512 		 * Setup SRS on top of the new ring if the group is
4513 		 * reserved for someones exclusive use.
4514 		 */
4515 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4516 			mac_client_impl_t *mcip;
4517 
4518 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4519 			/*
4520 			 * Even though this group is reserved we migth still
4521 			 * have multiple clients, i.e a VLAN shares the
4522 			 * group with the primary mac client.
4523 			 */
4524 			if (mcip != NULL) {
4525 				flent = mcip->mci_flent;
4526 				ASSERT(flent->fe_rx_srs_cnt > 0);
4527 				mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4528 				mac_fanout_setup(mcip, flent,
4529 				    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4530 				    mcip, NULL, NULL);
4531 			} else {
4532 				ring->mr_classify_type = MAC_SW_CLASSIFIER;
4533 			}
4534 		}
4535 		break;
4536 	case MAC_RING_TYPE_TX:
4537 	{
4538 		mac_grp_client_t	*mgcp = group->mrg_clients;
4539 		mac_client_impl_t	*mcip;
4540 		mac_soft_ring_set_t	*mac_srs;
4541 		mac_srs_tx_t		*tx;
4542 
4543 		if (MAC_GROUP_NO_CLIENT(group)) {
4544 			if (ring->mr_state == MR_INUSE)
4545 				mac_stop_ring(ring);
4546 			ring->mr_flag = 0;
4547 			break;
4548 		}
4549 		/*
4550 		 * If the rings are being moved to a group that has
4551 		 * clients using it, then add the new rings to the
4552 		 * clients SRS.
4553 		 */
4554 		while (mgcp != NULL) {
4555 			boolean_t	is_aggr;
4556 
4557 			mcip = mgcp->mgc_client;
4558 			flent = mcip->mci_flent;
4559 			is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4560 			mac_srs = MCIP_TX_SRS(mcip);
4561 			tx = &mac_srs->srs_tx;
4562 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4563 			/*
4564 			 * If we are  growing from 1 to multiple rings.
4565 			 */
4566 			if (tx->st_mode == SRS_TX_BW ||
4567 			    tx->st_mode == SRS_TX_SERIALIZE ||
4568 			    tx->st_mode == SRS_TX_DEFAULT) {
4569 				mac_ring_t	*tx_ring = tx->st_arg2;
4570 
4571 				tx->st_arg2 = NULL;
4572 				mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4573 				mac_tx_srs_add_ring(mac_srs, tx_ring);
4574 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4575 					tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4576 					    SRS_TX_BW_FANOUT;
4577 				} else {
4578 					tx->st_mode = is_aggr ? SRS_TX_AGGR :
4579 					    SRS_TX_FANOUT;
4580 				}
4581 				tx->st_func = mac_tx_get_func(tx->st_mode);
4582 			}
4583 			mac_tx_srs_add_ring(mac_srs, ring);
4584 			mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4585 			    mac_rx_deliver, mcip, NULL, NULL);
4586 			mac_tx_client_restart((mac_client_handle_t)mcip);
4587 			mgcp = mgcp->mgc_next;
4588 		}
4589 		break;
4590 	}
4591 	default:
4592 		ASSERT(B_FALSE);
4593 	}
4594 	/*
4595 	 * For aggr, the default ring will be NULL to begin with. If it
4596 	 * is NULL, then pick the first ring that gets added as the
4597 	 * default ring. Any ring in an aggregation can be removed at
4598 	 * any time (by the user action of removing a link) and if the
4599 	 * current default ring gets removed, then a new one gets
4600 	 * picked (see i_mac_group_rem_ring()).
4601 	 */
4602 	if (mip->mi_state_flags & MIS_IS_AGGR &&
4603 	    mip->mi_default_tx_ring == NULL &&
4604 	    ring->mr_type == MAC_RING_TYPE_TX) {
4605 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4606 	}
4607 
4608 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
4609 	return (0);
4610 }
4611 
4612 /*
4613  * Remove a ring from it's current group. MAC internal function for dynamic
4614  * grouping.
4615  *
4616  * The caller needs to call mac_perim_enter() before calling this function.
4617  */
4618 void
4619 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4620     boolean_t driver_call)
4621 {
4622 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4623 	mac_capab_rings_t *cap_rings = NULL;
4624 	mac_group_type_t group_type;
4625 
4626 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4627 
4628 	ASSERT(mac_find_ring((mac_group_handle_t)group,
4629 	    ring->mr_index) == (mac_ring_handle_t)ring);
4630 	ASSERT((mac_group_t *)ring->mr_gh == group);
4631 	ASSERT(ring->mr_type == group->mrg_type);
4632 
4633 	if (ring->mr_state == MR_INUSE)
4634 		mac_stop_ring(ring);
4635 	switch (ring->mr_type) {
4636 	case MAC_RING_TYPE_RX:
4637 		group_type = mip->mi_rx_group_type;
4638 		cap_rings = &mip->mi_rx_rings_cap;
4639 
4640 		/*
4641 		 * Only hardware classified packets hold a reference to the
4642 		 * ring all the way up the Rx path. mac_rx_srs_remove()
4643 		 * will take care of quiescing the Rx path and removing the
4644 		 * SRS. The software classified path neither holds a reference
4645 		 * nor any association with the ring in mac_rx.
4646 		 */
4647 		if (ring->mr_srs != NULL) {
4648 			mac_rx_srs_remove(ring->mr_srs);
4649 			ring->mr_srs = NULL;
4650 		}
4651 
4652 		break;
4653 	case MAC_RING_TYPE_TX:
4654 	{
4655 		mac_grp_client_t	*mgcp;
4656 		mac_client_impl_t	*mcip;
4657 		mac_soft_ring_set_t	*mac_srs;
4658 		mac_srs_tx_t		*tx;
4659 		mac_ring_t		*rem_ring;
4660 		mac_group_t		*defgrp;
4661 		uint_t			ring_info = 0;
4662 
4663 		/*
4664 		 * For TX this function is invoked in three
4665 		 * cases:
4666 		 *
4667 		 * 1) In the case of a failure during the
4668 		 * initial creation of a group when a share is
4669 		 * associated with a MAC client. So the SRS is not
4670 		 * yet setup, and will be setup later after the
4671 		 * group has been reserved and populated.
4672 		 *
4673 		 * 2) From mac_release_tx_group() when freeing
4674 		 * a TX SRS.
4675 		 *
4676 		 * 3) In the case of aggr, when a port gets removed,
4677 		 * the pseudo Tx rings that it exposed gets removed.
4678 		 *
4679 		 * In the first two cases the SRS and its soft
4680 		 * rings are already quiesced.
4681 		 */
4682 		if (driver_call) {
4683 			mac_client_impl_t *mcip;
4684 			mac_soft_ring_set_t *mac_srs;
4685 			mac_soft_ring_t *sringp;
4686 			mac_srs_tx_t *srs_tx;
4687 
4688 			if (mip->mi_state_flags & MIS_IS_AGGR &&
4689 			    mip->mi_default_tx_ring ==
4690 			    (mac_ring_handle_t)ring) {
4691 				/* pick a new default Tx ring */
4692 				mip->mi_default_tx_ring =
4693 				    (group->mrg_rings != ring) ?
4694 				    (mac_ring_handle_t)group->mrg_rings :
4695 				    (mac_ring_handle_t)(ring->mr_next);
4696 			}
4697 			/* Presently only aggr case comes here */
4698 			if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4699 				break;
4700 
4701 			mcip = MAC_GROUP_ONLY_CLIENT(group);
4702 			ASSERT(mcip != NULL);
4703 			ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4704 			mac_srs = MCIP_TX_SRS(mcip);
4705 			ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4706 			    mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4707 			srs_tx = &mac_srs->srs_tx;
4708 			/*
4709 			 * Wakeup any callers blocked on this
4710 			 * Tx ring due to flow control.
4711 			 */
4712 			sringp = srs_tx->st_soft_rings[ring->mr_index];
4713 			ASSERT(sringp != NULL);
4714 			mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4715 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4716 			mac_tx_srs_del_ring(mac_srs, ring);
4717 			mac_tx_client_restart((mac_client_handle_t)mcip);
4718 			break;
4719 		}
4720 		ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4721 		group_type = mip->mi_tx_group_type;
4722 		cap_rings = &mip->mi_tx_rings_cap;
4723 		/*
4724 		 * See if we need to take it out of the MAC clients using
4725 		 * this group
4726 		 */
4727 		if (MAC_GROUP_NO_CLIENT(group))
4728 			break;
4729 		mgcp = group->mrg_clients;
4730 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
4731 		while (mgcp != NULL) {
4732 			mcip = mgcp->mgc_client;
4733 			mac_srs = MCIP_TX_SRS(mcip);
4734 			tx = &mac_srs->srs_tx;
4735 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
4736 			/*
4737 			 * If we are here when removing rings from the
4738 			 * defgroup, mac_reserve_tx_ring would have
4739 			 * already deleted the ring from the MAC
4740 			 * clients in the group.
4741 			 */
4742 			if (group != defgrp) {
4743 				mac_tx_invoke_callbacks(mcip,
4744 				    (mac_tx_cookie_t)
4745 				    mac_tx_srs_get_soft_ring(mac_srs, ring));
4746 				mac_tx_srs_del_ring(mac_srs, ring);
4747 			}
4748 			/*
4749 			 * Additionally, if  we are left with only
4750 			 * one ring in the group after this, we need
4751 			 * to modify the mode etc. to. (We haven't
4752 			 * yet taken the ring out, so we check with 2).
4753 			 */
4754 			if (group->mrg_cur_count == 2) {
4755 				if (ring->mr_next == NULL)
4756 					rem_ring = group->mrg_rings;
4757 				else
4758 					rem_ring = ring->mr_next;
4759 				mac_tx_invoke_callbacks(mcip,
4760 				    (mac_tx_cookie_t)
4761 				    mac_tx_srs_get_soft_ring(mac_srs,
4762 				    rem_ring));
4763 				mac_tx_srs_del_ring(mac_srs, rem_ring);
4764 				if (rem_ring->mr_state != MR_INUSE) {
4765 					(void) mac_start_ring(rem_ring);
4766 				}
4767 				tx->st_arg2 = (void *)rem_ring;
4768 				mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4769 				ring_info = mac_hwring_getinfo(
4770 				    (mac_ring_handle_t)rem_ring);
4771 				/*
4772 				 * We are  shrinking from multiple
4773 				 * to 1 ring.
4774 				 */
4775 				if (mac_srs->srs_type & SRST_BW_CONTROL) {
4776 					tx->st_mode = SRS_TX_BW;
4777 				} else if (mac_tx_serialize ||
4778 				    (ring_info & MAC_RING_TX_SERIALIZE)) {
4779 					tx->st_mode = SRS_TX_SERIALIZE;
4780 				} else {
4781 					tx->st_mode = SRS_TX_DEFAULT;
4782 				}
4783 				tx->st_func = mac_tx_get_func(tx->st_mode);
4784 			}
4785 			mac_tx_client_restart((mac_client_handle_t)mcip);
4786 			mgcp = mgcp->mgc_next;
4787 		}
4788 		break;
4789 	}
4790 	default:
4791 		ASSERT(B_FALSE);
4792 	}
4793 
4794 	/*
4795 	 * Remove the ring from the group.
4796 	 */
4797 	if (ring == group->mrg_rings)
4798 		group->mrg_rings = ring->mr_next;
4799 	else {
4800 		mac_ring_t *pre;
4801 
4802 		pre = group->mrg_rings;
4803 		while (pre->mr_next != ring)
4804 			pre = pre->mr_next;
4805 		pre->mr_next = ring->mr_next;
4806 	}
4807 	group->mrg_cur_count--;
4808 
4809 	if (!driver_call) {
4810 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4811 		ASSERT(group->mrg_driver == NULL ||
4812 		    cap_rings->mr_gremring != NULL);
4813 
4814 		/*
4815 		 * Remove the driver level hardware ring.
4816 		 */
4817 		if (group->mrg_driver != NULL) {
4818 			cap_rings->mr_gremring(group->mrg_driver,
4819 			    ring->mr_driver, ring->mr_type);
4820 		}
4821 	}
4822 
4823 	ring->mr_gh = NULL;
4824 	if (driver_call)
4825 		mac_ring_free(mip, ring);
4826 	else
4827 		ring->mr_flag = 0;
4828 }
4829 
4830 /*
4831  * Move a ring to the target group. If needed, remove the ring from the group
4832  * that it currently belongs to.
4833  *
4834  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4835  */
4836 static int
4837 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4838 {
4839 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4840 	int rv;
4841 
4842 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4843 	ASSERT(d_group != NULL);
4844 	ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4845 
4846 	if (s_group == d_group)
4847 		return (0);
4848 
4849 	/*
4850 	 * Remove it from current group first.
4851 	 */
4852 	if (s_group != NULL)
4853 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
4854 
4855 	/*
4856 	 * Add it to the new group.
4857 	 */
4858 	rv = i_mac_group_add_ring(d_group, ring, 0);
4859 	if (rv != 0) {
4860 		/*
4861 		 * Failed to add ring back to source group. If
4862 		 * that fails, the ring is stuck in limbo, log message.
4863 		 */
4864 		if (i_mac_group_add_ring(s_group, ring, 0)) {
4865 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4866 			    mip->mi_name, (void *)ring);
4867 		}
4868 	}
4869 
4870 	return (rv);
4871 }
4872 
4873 /*
4874  * Find a MAC address according to its value.
4875  */
4876 mac_address_t *
4877 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4878 {
4879 	mac_address_t *map;
4880 
4881 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4882 
4883 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4884 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4885 			break;
4886 	}
4887 
4888 	return (map);
4889 }
4890 
4891 /*
4892  * Check whether the MAC address is shared by multiple clients.
4893  */
4894 boolean_t
4895 mac_check_macaddr_shared(mac_address_t *map)
4896 {
4897 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4898 
4899 	return (map->ma_nusers > 1);
4900 }
4901 
4902 /*
4903  * Remove the specified MAC address from the MAC address list and free it.
4904  */
4905 static void
4906 mac_free_macaddr(mac_address_t *map)
4907 {
4908 	mac_impl_t *mip = map->ma_mip;
4909 
4910 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4911 	ASSERT(mip->mi_addresses != NULL);
4912 
4913 	map = mac_find_macaddr(mip, map->ma_addr);
4914 
4915 	ASSERT(map != NULL);
4916 	ASSERT(map->ma_nusers == 0);
4917 
4918 	if (map == mip->mi_addresses) {
4919 		mip->mi_addresses = map->ma_next;
4920 	} else {
4921 		mac_address_t *pre;
4922 
4923 		pre = mip->mi_addresses;
4924 		while (pre->ma_next != map)
4925 			pre = pre->ma_next;
4926 		pre->ma_next = map->ma_next;
4927 	}
4928 
4929 	kmem_free(map, sizeof (mac_address_t));
4930 }
4931 
4932 /*
4933  * Add a MAC address reference for a client. If the desired MAC address
4934  * exists, add a reference to it. Otherwise, add the new address by adding
4935  * it to a reserved group or setting promiscuous mode. Won't try different
4936  * group is the group is non-NULL, so the caller must explictly share
4937  * default group when needed.
4938  *
4939  * Note, the primary MAC address is initialized at registration time, so
4940  * to add it to default group only need to activate it if its reference
4941  * count is still zero. Also, some drivers may not have advertised RINGS
4942  * capability.
4943  */
4944 int
4945 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4946     boolean_t use_hw)
4947 {
4948 	mac_address_t *map;
4949 	int err = 0;
4950 	boolean_t allocated_map = B_FALSE;
4951 
4952 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4953 
4954 	map = mac_find_macaddr(mip, mac_addr);
4955 
4956 	/*
4957 	 * If the new MAC address has not been added. Allocate a new one
4958 	 * and set it up.
4959 	 */
4960 	if (map == NULL) {
4961 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4962 		map->ma_len = mip->mi_type->mt_addr_length;
4963 		bcopy(mac_addr, map->ma_addr, map->ma_len);
4964 		map->ma_nusers = 0;
4965 		map->ma_group = group;
4966 		map->ma_mip = mip;
4967 
4968 		/* add the new MAC address to the head of the address list */
4969 		map->ma_next = mip->mi_addresses;
4970 		mip->mi_addresses = map;
4971 
4972 		allocated_map = B_TRUE;
4973 	}
4974 
4975 	ASSERT(map->ma_group == NULL || map->ma_group == group);
4976 	if (map->ma_group == NULL)
4977 		map->ma_group = group;
4978 
4979 	/*
4980 	 * If the MAC address is already in use, simply account for the
4981 	 * new client.
4982 	 */
4983 	if (map->ma_nusers++ > 0)
4984 		return (0);
4985 
4986 	/*
4987 	 * Activate this MAC address by adding it to the reserved group.
4988 	 */
4989 	if (group != NULL) {
4990 		err = mac_group_addmac(group, (const uint8_t *)mac_addr);
4991 		if (err == 0) {
4992 			map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4993 			return (0);
4994 		}
4995 	}
4996 
4997 	/*
4998 	 * The MAC address addition failed. If the client requires a
4999 	 * hardware classified MAC address, fail the operation.
5000 	 */
5001 	if (use_hw) {
5002 		err = ENOSPC;
5003 		goto bail;
5004 	}
5005 
5006 	/*
5007 	 * Try promiscuous mode.
5008 	 *
5009 	 * For drivers that don't advertise RINGS capability, do
5010 	 * nothing for the primary address.
5011 	 */
5012 	if ((group == NULL) &&
5013 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5014 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5015 		return (0);
5016 	}
5017 
5018 	/*
5019 	 * Enable promiscuous mode in order to receive traffic
5020 	 * to the new MAC address.
5021 	 */
5022 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5023 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5024 		return (0);
5025 	}
5026 
5027 	/*
5028 	 * Free the MAC address that could not be added. Don't free
5029 	 * a pre-existing address, it could have been the entry
5030 	 * for the primary MAC address which was pre-allocated by
5031 	 * mac_init_macaddr(), and which must remain on the list.
5032 	 */
5033 bail:
5034 	map->ma_nusers--;
5035 	if (allocated_map)
5036 		mac_free_macaddr(map);
5037 	return (err);
5038 }
5039 
5040 /*
5041  * Remove a reference to a MAC address. This may cause to remove the MAC
5042  * address from an associated group or to turn off promiscuous mode.
5043  * The caller needs to handle the failure properly.
5044  */
5045 int
5046 mac_remove_macaddr(mac_address_t *map)
5047 {
5048 	mac_impl_t *mip = map->ma_mip;
5049 	int err = 0;
5050 
5051 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5052 
5053 	ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5054 
5055 	/*
5056 	 * If it's not the last client using this MAC address, only update
5057 	 * the MAC clients count.
5058 	 */
5059 	if (--map->ma_nusers > 0)
5060 		return (0);
5061 
5062 	/*
5063 	 * The MAC address is no longer used by any MAC client, so remove
5064 	 * it from its associated group, or turn off promiscuous mode
5065 	 * if it was enabled for the MAC address.
5066 	 */
5067 	switch (map->ma_type) {
5068 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5069 		/*
5070 		 * Don't free the preset primary address for drivers that
5071 		 * don't advertise RINGS capability.
5072 		 */
5073 		if (map->ma_group == NULL)
5074 			return (0);
5075 
5076 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5077 		if (err == 0)
5078 			map->ma_group = NULL;
5079 		break;
5080 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5081 		err = i_mac_promisc_set(mip, B_FALSE);
5082 		break;
5083 	default:
5084 		ASSERT(B_FALSE);
5085 	}
5086 
5087 	if (err != 0)
5088 		return (err);
5089 
5090 	/*
5091 	 * We created MAC address for the primary one at registration, so we
5092 	 * won't free it here. mac_fini_macaddr() will take care of it.
5093 	 */
5094 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5095 		mac_free_macaddr(map);
5096 
5097 	return (0);
5098 }
5099 
5100 /*
5101  * Update an existing MAC address. The caller need to make sure that the new
5102  * value has not been used.
5103  */
5104 int
5105 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5106 {
5107 	mac_impl_t *mip = map->ma_mip;
5108 	int err = 0;
5109 
5110 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5111 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5112 
5113 	switch (map->ma_type) {
5114 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5115 		/*
5116 		 * Update the primary address for drivers that are not
5117 		 * RINGS capable.
5118 		 */
5119 		if (mip->mi_rx_groups == NULL) {
5120 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5121 			    mac_addr);
5122 			if (err != 0)
5123 				return (err);
5124 			break;
5125 		}
5126 
5127 		/*
5128 		 * If this MAC address is not currently in use,
5129 		 * simply break out and update the value.
5130 		 */
5131 		if (map->ma_nusers == 0)
5132 			break;
5133 
5134 		/*
5135 		 * Need to replace the MAC address associated with a group.
5136 		 */
5137 		err = mac_group_remmac(map->ma_group, map->ma_addr);
5138 		if (err != 0)
5139 			return (err);
5140 
5141 		err = mac_group_addmac(map->ma_group, mac_addr);
5142 
5143 		/*
5144 		 * Failure hints hardware error. The MAC layer needs to
5145 		 * have error notification facility to handle this.
5146 		 * Now, simply try to restore the value.
5147 		 */
5148 		if (err != 0)
5149 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
5150 
5151 		break;
5152 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5153 		/*
5154 		 * Need to do nothing more if in promiscuous mode.
5155 		 */
5156 		break;
5157 	default:
5158 		ASSERT(B_FALSE);
5159 	}
5160 
5161 	/*
5162 	 * Successfully replaced the MAC address.
5163 	 */
5164 	if (err == 0)
5165 		bcopy(mac_addr, map->ma_addr, map->ma_len);
5166 
5167 	return (err);
5168 }
5169 
5170 /*
5171  * Freshen the MAC address with new value. Its caller must have updated the
5172  * hardware MAC address before calling this function.
5173  * This funcitons is supposed to be used to handle the MAC address change
5174  * notification from underlying drivers.
5175  */
5176 void
5177 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5178 {
5179 	mac_impl_t *mip = map->ma_mip;
5180 
5181 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5182 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5183 
5184 	/*
5185 	 * Freshen the MAC address with new value.
5186 	 */
5187 	bcopy(mac_addr, map->ma_addr, map->ma_len);
5188 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
5189 
5190 	/*
5191 	 * Update all MAC clients that share this MAC address.
5192 	 */
5193 	mac_unicast_update_clients(mip, map);
5194 }
5195 
5196 /*
5197  * Set up the primary MAC address.
5198  */
5199 void
5200 mac_init_macaddr(mac_impl_t *mip)
5201 {
5202 	mac_address_t *map;
5203 
5204 	/*
5205 	 * The reference count is initialized to zero, until it's really
5206 	 * activated.
5207 	 */
5208 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5209 	map->ma_len = mip->mi_type->mt_addr_length;
5210 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5211 
5212 	/*
5213 	 * If driver advertises RINGS capability, it shouldn't have initialized
5214 	 * its primary MAC address. For other drivers, including VNIC, the
5215 	 * primary address must work after registration.
5216 	 */
5217 	if (mip->mi_rx_groups == NULL)
5218 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5219 
5220 	map->ma_mip = mip;
5221 
5222 	mip->mi_addresses = map;
5223 }
5224 
5225 /*
5226  * Clean up the primary MAC address. Note, only one primary MAC address
5227  * is allowed. All other MAC addresses must have been freed appropriately.
5228  */
5229 void
5230 mac_fini_macaddr(mac_impl_t *mip)
5231 {
5232 	mac_address_t *map = mip->mi_addresses;
5233 
5234 	if (map == NULL)
5235 		return;
5236 
5237 	/*
5238 	 * If mi_addresses is initialized, there should be exactly one
5239 	 * entry left on the list with no users.
5240 	 */
5241 	ASSERT(map->ma_nusers == 0);
5242 	ASSERT(map->ma_next == NULL);
5243 
5244 	kmem_free(map, sizeof (mac_address_t));
5245 	mip->mi_addresses = NULL;
5246 }
5247 
5248 /*
5249  * Logging related functions.
5250  *
5251  * Note that Kernel statistics have been extended to maintain fine
5252  * granularity of statistics viz. hardware lane, software lane, fanout
5253  * stats etc. However, extended accounting continues to support only
5254  * aggregate statistics like before.
5255  */
5256 
5257 /* Write the flow description to a netinfo_t record */
5258 static netinfo_t *
5259 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5260 {
5261 	netinfo_t		*ninfo;
5262 	net_desc_t		*ndesc;
5263 	flow_desc_t		*fdesc;
5264 	mac_resource_props_t	*mrp;
5265 
5266 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5267 	if (ninfo == NULL)
5268 		return (NULL);
5269 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5270 	if (ndesc == NULL) {
5271 		kmem_free(ninfo, sizeof (netinfo_t));
5272 		return (NULL);
5273 	}
5274 
5275 	/*
5276 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5277 	 * Updates to the fe_flow_desc are done under the fe_lock
5278 	 */
5279 	mutex_enter(&flent->fe_lock);
5280 	fdesc = &flent->fe_flow_desc;
5281 	mrp = &flent->fe_resource_props;
5282 
5283 	ndesc->nd_name = flent->fe_flow_name;
5284 	ndesc->nd_devname = mcip->mci_name;
5285 	bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5286 	bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5287 	ndesc->nd_sap = htonl(fdesc->fd_sap);
5288 	ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5289 	ndesc->nd_bw_limit = mrp->mrp_maxbw;
5290 	if (ndesc->nd_isv4) {
5291 		ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5292 		ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5293 	} else {
5294 		bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5295 		bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5296 	}
5297 	ndesc->nd_sport = htons(fdesc->fd_local_port);
5298 	ndesc->nd_dport = htons(fdesc->fd_remote_port);
5299 	ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5300 	mutex_exit(&flent->fe_lock);
5301 
5302 	ninfo->ni_record = ndesc;
5303 	ninfo->ni_size = sizeof (net_desc_t);
5304 	ninfo->ni_type = EX_NET_FLDESC_REC;
5305 
5306 	return (ninfo);
5307 }
5308 
5309 /* Write the flow statistics to a netinfo_t record */
5310 static netinfo_t *
5311 mac_write_flow_stats(flow_entry_t *flent)
5312 {
5313 	netinfo_t		*ninfo;
5314 	net_stat_t		*nstat;
5315 	mac_soft_ring_set_t	*mac_srs;
5316 	mac_rx_stats_t		*mac_rx_stat;
5317 	mac_tx_stats_t		*mac_tx_stat;
5318 	int			i;
5319 
5320 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5321 	if (ninfo == NULL)
5322 		return (NULL);
5323 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5324 	if (nstat == NULL) {
5325 		kmem_free(ninfo, sizeof (netinfo_t));
5326 		return (NULL);
5327 	}
5328 
5329 	nstat->ns_name = flent->fe_flow_name;
5330 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5331 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5332 		mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5333 
5334 		nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5335 		    mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5336 		nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5337 		    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5338 		nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5339 	}
5340 
5341 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5342 	if (mac_srs != NULL) {
5343 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5344 
5345 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5346 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5347 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5348 	}
5349 
5350 	ninfo->ni_record = nstat;
5351 	ninfo->ni_size = sizeof (net_stat_t);
5352 	ninfo->ni_type = EX_NET_FLSTAT_REC;
5353 
5354 	return (ninfo);
5355 }
5356 
5357 /* Write the link description to a netinfo_t record */
5358 static netinfo_t *
5359 mac_write_link_desc(mac_client_impl_t *mcip)
5360 {
5361 	netinfo_t		*ninfo;
5362 	net_desc_t		*ndesc;
5363 	flow_entry_t		*flent = mcip->mci_flent;
5364 
5365 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5366 	if (ninfo == NULL)
5367 		return (NULL);
5368 	ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5369 	if (ndesc == NULL) {
5370 		kmem_free(ninfo, sizeof (netinfo_t));
5371 		return (NULL);
5372 	}
5373 
5374 	ndesc->nd_name = mcip->mci_name;
5375 	ndesc->nd_devname = mcip->mci_name;
5376 	ndesc->nd_isv4 = B_TRUE;
5377 	/*
5378 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5379 	 * Updates to the fe_flow_desc are done under the fe_lock
5380 	 * after removing the flent from the flow table.
5381 	 */
5382 	mutex_enter(&flent->fe_lock);
5383 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5384 	mutex_exit(&flent->fe_lock);
5385 
5386 	ninfo->ni_record = ndesc;
5387 	ninfo->ni_size = sizeof (net_desc_t);
5388 	ninfo->ni_type = EX_NET_LNDESC_REC;
5389 
5390 	return (ninfo);
5391 }
5392 
5393 /* Write the link statistics to a netinfo_t record */
5394 static netinfo_t *
5395 mac_write_link_stats(mac_client_impl_t *mcip)
5396 {
5397 	netinfo_t		*ninfo;
5398 	net_stat_t		*nstat;
5399 	flow_entry_t		*flent;
5400 	mac_soft_ring_set_t	*mac_srs;
5401 	mac_rx_stats_t		*mac_rx_stat;
5402 	mac_tx_stats_t		*mac_tx_stat;
5403 	int			i;
5404 
5405 	ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5406 	if (ninfo == NULL)
5407 		return (NULL);
5408 	nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5409 	if (nstat == NULL) {
5410 		kmem_free(ninfo, sizeof (netinfo_t));
5411 		return (NULL);
5412 	}
5413 
5414 	nstat->ns_name = mcip->mci_name;
5415 	flent = mcip->mci_flent;
5416 	if (flent != NULL)  {
5417 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5418 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5419 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5420 
5421 			nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5422 			    mac_rx_stat->mrs_pollbytes +
5423 			    mac_rx_stat->mrs_lclbytes;
5424 			nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5425 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5426 			nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5427 		}
5428 	}
5429 
5430 	mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5431 	if (mac_srs != NULL) {
5432 		mac_tx_stat = &mac_srs->srs_tx.st_stat;
5433 
5434 		nstat->ns_obytes = mac_tx_stat->mts_obytes;
5435 		nstat->ns_opackets = mac_tx_stat->mts_opackets;
5436 		nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5437 	}
5438 
5439 	ninfo->ni_record = nstat;
5440 	ninfo->ni_size = sizeof (net_stat_t);
5441 	ninfo->ni_type = EX_NET_LNSTAT_REC;
5442 
5443 	return (ninfo);
5444 }
5445 
5446 typedef struct i_mac_log_state_s {
5447 	boolean_t	mi_last;
5448 	int		mi_fenable;
5449 	int		mi_lenable;
5450 	list_t		*mi_list;
5451 } i_mac_log_state_t;
5452 
5453 /*
5454  * For a given flow, if the description has not been logged before, do it now.
5455  * If it is a VNIC, then we have collected information about it from the MAC
5456  * table, so skip it.
5457  *
5458  * Called through mac_flow_walk_nolock()
5459  *
5460  * Return 0 if successful.
5461  */
5462 static int
5463 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5464 {
5465 	mac_client_impl_t	*mcip = flent->fe_mcip;
5466 	i_mac_log_state_t	*lstate = arg;
5467 	netinfo_t		*ninfo;
5468 
5469 	if (mcip == NULL)
5470 		return (0);
5471 
5472 	/*
5473 	 * If the name starts with "vnic", and fe_user_generated is true (to
5474 	 * exclude the mcast and active flow entries created implicitly for
5475 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5476 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5477 	 */
5478 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5479 	    (flent->fe_type & FLOW_USER) != 0) {
5480 		return (0);
5481 	}
5482 
5483 	if (!flent->fe_desc_logged) {
5484 		/*
5485 		 * We don't return error because we want to continue the
5486 		 * walk in case this is the last walk which means we
5487 		 * need to reset fe_desc_logged in all the flows.
5488 		 */
5489 		if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5490 			return (0);
5491 		list_insert_tail(lstate->mi_list, ninfo);
5492 		flent->fe_desc_logged = B_TRUE;
5493 	}
5494 
5495 	/*
5496 	 * Regardless of the error, we want to proceed in case we have to
5497 	 * reset fe_desc_logged.
5498 	 */
5499 	ninfo = mac_write_flow_stats(flent);
5500 	if (ninfo == NULL)
5501 		return (-1);
5502 
5503 	list_insert_tail(lstate->mi_list, ninfo);
5504 
5505 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5506 		flent->fe_desc_logged = B_FALSE;
5507 
5508 	return (0);
5509 }
5510 
5511 /*
5512  * Log the description for each mac client of this mac_impl_t, if it
5513  * hasn't already been done. Additionally, log statistics for the link as
5514  * well. Walk the flow table and log information for each flow as well.
5515  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5516  * also fe_desc_logged, if flow logging is on) since we want to log the
5517  * description if and when logging is restarted.
5518  *
5519  * Return 0 upon success or -1 upon failure
5520  */
5521 static int
5522 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5523 {
5524 	mac_client_impl_t	*mcip;
5525 	netinfo_t		*ninfo;
5526 
5527 	i_mac_perim_enter(mip);
5528 	/*
5529 	 * Only walk the client list for NIC and etherstub
5530 	 */
5531 	if ((mip->mi_state_flags & MIS_DISABLED) ||
5532 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
5533 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5534 		i_mac_perim_exit(mip);
5535 		return (0);
5536 	}
5537 
5538 	for (mcip = mip->mi_clients_list; mcip != NULL;
5539 	    mcip = mcip->mci_client_next) {
5540 		if (!MCIP_DATAPATH_SETUP(mcip))
5541 			continue;
5542 		if (lstate->mi_lenable) {
5543 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5544 				ninfo = mac_write_link_desc(mcip);
5545 				if (ninfo == NULL) {
5546 				/*
5547 				 * We can't terminate it if this is the last
5548 				 * walk, else there might be some links with
5549 				 * mi_desc_logged set to true, which means
5550 				 * their description won't be logged the next
5551 				 * time logging is started (similarly for the
5552 				 * flows within such links). We can continue
5553 				 * without walking the flow table (i.e. to
5554 				 * set fe_desc_logged to false) because we
5555 				 * won't have written any flow stuff for this
5556 				 * link as we haven't logged the link itself.
5557 				 */
5558 					i_mac_perim_exit(mip);
5559 					if (lstate->mi_last)
5560 						return (0);
5561 					else
5562 						return (-1);
5563 				}
5564 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5565 				list_insert_tail(lstate->mi_list, ninfo);
5566 			}
5567 		}
5568 
5569 		ninfo = mac_write_link_stats(mcip);
5570 		if (ninfo == NULL && !lstate->mi_last) {
5571 			i_mac_perim_exit(mip);
5572 			return (-1);
5573 		}
5574 		list_insert_tail(lstate->mi_list, ninfo);
5575 
5576 		if (lstate->mi_last)
5577 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5578 
5579 		if (lstate->mi_fenable) {
5580 			if (mcip->mci_subflow_tab != NULL) {
5581 				(void) mac_flow_walk_nolock(
5582 				    mcip->mci_subflow_tab, mac_log_flowinfo,
5583 				    lstate);
5584 			}
5585 		}
5586 	}
5587 	i_mac_perim_exit(mip);
5588 	return (0);
5589 }
5590 
5591 /*
5592  * modhash walker function to add a mac_impl_t to a list
5593  */
5594 /*ARGSUSED*/
5595 static uint_t
5596 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5597 {
5598 	list_t			*list = (list_t *)arg;
5599 	mac_impl_t		*mip = (mac_impl_t *)val;
5600 
5601 	if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5602 		list_insert_tail(list, mip);
5603 		mip->mi_ref++;
5604 	}
5605 
5606 	return (MH_WALK_CONTINUE);
5607 }
5608 
5609 void
5610 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5611 {
5612 	list_t			mac_impl_list;
5613 	mac_impl_t		*mip;
5614 	netinfo_t		*ninfo;
5615 
5616 	/* Create list of mac_impls */
5617 	ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5618 	list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5619 	    mi_node));
5620 	mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5621 	rw_exit(&i_mac_impl_lock);
5622 
5623 	/* Create log entries for each mac_impl */
5624 	for (mip = list_head(&mac_impl_list); mip != NULL;
5625 	    mip = list_next(&mac_impl_list, mip)) {
5626 		if (i_mac_impl_log(mip, lstate) != 0)
5627 			continue;
5628 	}
5629 
5630 	/* Remove elements and destroy list of mac_impls */
5631 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5632 	while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5633 		mip->mi_ref--;
5634 	}
5635 	rw_exit(&i_mac_impl_lock);
5636 	list_destroy(&mac_impl_list);
5637 
5638 	/*
5639 	 * Write log entries to files outside of locks, free associated
5640 	 * structures, and remove entries from the list.
5641 	 */
5642 	while ((ninfo = list_head(net_log_list)) != NULL) {
5643 		(void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5644 		list_remove(net_log_list, ninfo);
5645 		kmem_free(ninfo->ni_record, ninfo->ni_size);
5646 		kmem_free(ninfo, sizeof (*ninfo));
5647 	}
5648 	list_destroy(net_log_list);
5649 }
5650 
5651 /*
5652  * The timer thread that runs every mac_logging_interval seconds and logs
5653  * link and/or flow information.
5654  */
5655 /* ARGSUSED */
5656 void
5657 mac_log_linkinfo(void *arg)
5658 {
5659 	i_mac_log_state_t	lstate;
5660 	list_t			net_log_list;
5661 
5662 	list_create(&net_log_list, sizeof (netinfo_t),
5663 	    offsetof(netinfo_t, ni_link));
5664 
5665 	rw_enter(&i_mac_impl_lock, RW_READER);
5666 	if (!mac_flow_log_enable && !mac_link_log_enable) {
5667 		rw_exit(&i_mac_impl_lock);
5668 		return;
5669 	}
5670 	lstate.mi_fenable = mac_flow_log_enable;
5671 	lstate.mi_lenable = mac_link_log_enable;
5672 	lstate.mi_last = B_FALSE;
5673 	lstate.mi_list = &net_log_list;
5674 
5675 	/* Write log entries for each mac_impl in the list */
5676 	i_mac_log_info(&net_log_list, &lstate);
5677 
5678 	if (mac_flow_log_enable || mac_link_log_enable) {
5679 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5680 		    SEC_TO_TICK(mac_logging_interval));
5681 	}
5682 }
5683 
5684 typedef struct i_mac_fastpath_state_s {
5685 	boolean_t	mf_disable;
5686 	int		mf_err;
5687 } i_mac_fastpath_state_t;
5688 
5689 /* modhash walker function to enable or disable fastpath */
5690 /*ARGSUSED*/
5691 static uint_t
5692 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5693     void *arg)
5694 {
5695 	i_mac_fastpath_state_t	*state = arg;
5696 	mac_handle_t		mh = (mac_handle_t)val;
5697 
5698 	if (state->mf_disable)
5699 		state->mf_err = mac_fastpath_disable(mh);
5700 	else
5701 		mac_fastpath_enable(mh);
5702 
5703 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5704 }
5705 
5706 /*
5707  * Start the logging timer.
5708  */
5709 int
5710 mac_start_logusage(mac_logtype_t type, uint_t interval)
5711 {
5712 	i_mac_fastpath_state_t	dstate = {B_TRUE, 0};
5713 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5714 	int			err;
5715 
5716 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5717 	switch (type) {
5718 	case MAC_LOGTYPE_FLOW:
5719 		if (mac_flow_log_enable) {
5720 			rw_exit(&i_mac_impl_lock);
5721 			return (0);
5722 		}
5723 		/* FALLTHRU */
5724 	case MAC_LOGTYPE_LINK:
5725 		if (mac_link_log_enable) {
5726 			rw_exit(&i_mac_impl_lock);
5727 			return (0);
5728 		}
5729 		break;
5730 	default:
5731 		ASSERT(0);
5732 	}
5733 
5734 	/* Disable fastpath */
5735 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5736 	if ((err = dstate.mf_err) != 0) {
5737 		/* Reenable fastpath  */
5738 		mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5739 		rw_exit(&i_mac_impl_lock);
5740 		return (err);
5741 	}
5742 
5743 	switch (type) {
5744 	case MAC_LOGTYPE_FLOW:
5745 		mac_flow_log_enable = B_TRUE;
5746 		/* FALLTHRU */
5747 	case MAC_LOGTYPE_LINK:
5748 		mac_link_log_enable = B_TRUE;
5749 		break;
5750 	}
5751 
5752 	mac_logging_interval = interval;
5753 	rw_exit(&i_mac_impl_lock);
5754 	mac_log_linkinfo(NULL);
5755 	return (0);
5756 }
5757 
5758 /*
5759  * Stop the logging timer if both link and flow logging are turned off.
5760  */
5761 void
5762 mac_stop_logusage(mac_logtype_t type)
5763 {
5764 	i_mac_log_state_t	lstate;
5765 	i_mac_fastpath_state_t	estate = {B_FALSE, 0};
5766 	list_t			net_log_list;
5767 
5768 	list_create(&net_log_list, sizeof (netinfo_t),
5769 	    offsetof(netinfo_t, ni_link));
5770 
5771 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5772 
5773 	lstate.mi_fenable = mac_flow_log_enable;
5774 	lstate.mi_lenable = mac_link_log_enable;
5775 	lstate.mi_list = &net_log_list;
5776 
5777 	/* Last walk */
5778 	lstate.mi_last = B_TRUE;
5779 
5780 	switch (type) {
5781 	case MAC_LOGTYPE_FLOW:
5782 		if (lstate.mi_fenable) {
5783 			ASSERT(mac_link_log_enable);
5784 			mac_flow_log_enable = B_FALSE;
5785 			mac_link_log_enable = B_FALSE;
5786 			break;
5787 		}
5788 		/* FALLTHRU */
5789 	case MAC_LOGTYPE_LINK:
5790 		if (!lstate.mi_lenable || mac_flow_log_enable) {
5791 			rw_exit(&i_mac_impl_lock);
5792 			return;
5793 		}
5794 		mac_link_log_enable = B_FALSE;
5795 		break;
5796 	default:
5797 		ASSERT(0);
5798 	}
5799 
5800 	/* Reenable fastpath */
5801 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5802 
5803 	(void) untimeout(mac_logging_timer);
5804 	mac_logging_timer = 0;
5805 
5806 	/* Write log entries for each mac_impl in the list */
5807 	i_mac_log_info(&net_log_list, &lstate);
5808 }
5809 
5810 /*
5811  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5812  */
5813 void
5814 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5815 {
5816 	pri_t			pri;
5817 	int			count;
5818 	mac_soft_ring_set_t	*mac_srs;
5819 
5820 	if (flent->fe_rx_srs_cnt <= 0)
5821 		return;
5822 
5823 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5824 	    SRST_FLOW) {
5825 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
5826 		    mcip->mci_max_pri,
5827 		    flent->fe_resource_props.mrp_priority);
5828 	} else {
5829 		pri = mcip->mci_max_pri;
5830 	}
5831 
5832 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5833 		mac_srs = flent->fe_rx_srs[count];
5834 		mac_update_srs_priority(mac_srs, pri);
5835 	}
5836 	/*
5837 	 * If we have a Tx SRS, we need to modify all the threads associated
5838 	 * with it.
5839 	 */
5840 	if (flent->fe_tx_srs != NULL)
5841 		mac_update_srs_priority(flent->fe_tx_srs, pri);
5842 }
5843 
5844 /*
5845  * RX and TX rings are reserved according to different semantics depending
5846  * on the requests from the MAC clients and type of rings:
5847  *
5848  * On the Tx side, by default we reserve individual rings, independently from
5849  * the groups.
5850  *
5851  * On the Rx side, the reservation is at the granularity of the group
5852  * of rings, and used for v12n level 1 only. It has a special case for the
5853  * primary client.
5854  *
5855  * If a share is allocated to a MAC client, we allocate a TX group and an
5856  * RX group to the client, and assign TX rings and RX rings to these
5857  * groups according to information gathered from the driver through
5858  * the share capability.
5859  *
5860  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5861  * to allocate individual rings out of a group and program the hw classifier
5862  * based on IP address or higher level criteria.
5863  */
5864 
5865 /*
5866  * mac_reserve_tx_ring()
5867  * Reserve a unused ring by marking it with MR_INUSE state.
5868  * As reserved, the ring is ready to function.
5869  *
5870  * Notes for Hybrid I/O:
5871  *
5872  * If a specific ring is needed, it is specified through the desired_ring
5873  * argument. Otherwise that argument is set to NULL.
5874  * If the desired ring was previous allocated to another client, this
5875  * function swaps it with a new ring from the group of unassigned rings.
5876  */
5877 mac_ring_t *
5878 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5879 {
5880 	mac_group_t		*group;
5881 	mac_grp_client_t	*mgcp;
5882 	mac_client_impl_t	*mcip;
5883 	mac_soft_ring_set_t	*srs;
5884 
5885 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5886 
5887 	/*
5888 	 * Find an available ring and start it before changing its status.
5889 	 * The unassigned rings are at the end of the mi_tx_groups
5890 	 * array.
5891 	 */
5892 	group = MAC_DEFAULT_TX_GROUP(mip);
5893 
5894 	/* Can't take the default ring out of the default group */
5895 	ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5896 
5897 	if (desired_ring->mr_state == MR_FREE) {
5898 		ASSERT(MAC_GROUP_NO_CLIENT(group));
5899 		if (mac_start_ring(desired_ring) != 0)
5900 			return (NULL);
5901 		return (desired_ring);
5902 	}
5903 	/*
5904 	 * There are clients using this ring, so let's move the clients
5905 	 * away from using this ring.
5906 	 */
5907 	for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5908 		mcip = mgcp->mgc_client;
5909 		mac_tx_client_quiesce((mac_client_handle_t)mcip);
5910 		srs = MCIP_TX_SRS(mcip);
5911 		ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5912 		mac_tx_invoke_callbacks(mcip,
5913 		    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5914 		    desired_ring));
5915 		mac_tx_srs_del_ring(srs, desired_ring);
5916 		mac_tx_client_restart((mac_client_handle_t)mcip);
5917 	}
5918 	return (desired_ring);
5919 }
5920 
5921 /*
5922  * For a reserved group with multiple clients, return the primary client.
5923  */
5924 static mac_client_impl_t *
5925 mac_get_grp_primary(mac_group_t *grp)
5926 {
5927 	mac_grp_client_t	*mgcp = grp->mrg_clients;
5928 	mac_client_impl_t	*mcip;
5929 
5930 	while (mgcp != NULL) {
5931 		mcip = mgcp->mgc_client;
5932 		if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5933 			return (mcip);
5934 		mgcp = mgcp->mgc_next;
5935 	}
5936 	return (NULL);
5937 }
5938 
5939 /*
5940  * Hybrid I/O specifies the ring that should be given to a share.
5941  * If the ring is already used by clients, then we need to release
5942  * the ring back to the default group so that we can give it to
5943  * the share. This means the clients using this ring now get a
5944  * replacement ring. If there aren't any replacement rings, this
5945  * function returns a failure.
5946  */
5947 static int
5948 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5949     mac_ring_t *ring, mac_ring_t **rings, int nrings)
5950 {
5951 	mac_group_t		*group = (mac_group_t *)ring->mr_gh;
5952 	mac_resource_props_t	*mrp;
5953 	mac_client_impl_t	*mcip;
5954 	mac_group_t		*defgrp;
5955 	mac_ring_t		*tring;
5956 	mac_group_t		*tgrp;
5957 	int			i;
5958 	int			j;
5959 
5960 	mcip = MAC_GROUP_ONLY_CLIENT(group);
5961 	if (mcip == NULL)
5962 		mcip = mac_get_grp_primary(group);
5963 	ASSERT(mcip != NULL);
5964 	ASSERT(mcip->mci_share == NULL);
5965 
5966 	mrp = MCIP_RESOURCE_PROPS(mcip);
5967 	if (ring_type == MAC_RING_TYPE_RX) {
5968 		defgrp = mip->mi_rx_donor_grp;
5969 		if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5970 			/* Need to put this mac client in the default group */
5971 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5972 				return (ENOSPC);
5973 		} else {
5974 			/*
5975 			 * Switch this ring with some other ring from
5976 			 * the default group.
5977 			 */
5978 			for (tring = defgrp->mrg_rings; tring != NULL;
5979 			    tring = tring->mr_next) {
5980 				if (tring->mr_index == 0)
5981 					continue;
5982 				for (j = 0; j < nrings; j++) {
5983 					if (rings[j] == tring)
5984 						break;
5985 				}
5986 				if (j >= nrings)
5987 					break;
5988 			}
5989 			if (tring == NULL)
5990 				return (ENOSPC);
5991 			if (mac_group_mov_ring(mip, group, tring) != 0)
5992 				return (ENOSPC);
5993 			if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
5994 				(void) mac_group_mov_ring(mip, defgrp, tring);
5995 				return (ENOSPC);
5996 			}
5997 		}
5998 		ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
5999 		return (0);
6000 	}
6001 
6002 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6003 	if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6004 		/*
6005 		 * See if we can get a spare ring to replace the default
6006 		 * ring.
6007 		 */
6008 		if (defgrp->mrg_cur_count == 1) {
6009 			/*
6010 			 * Need to get a ring from another client, see if
6011 			 * there are any clients that can be moved to
6012 			 * the default group, thereby freeing some rings.
6013 			 */
6014 			for (i = 0; i < mip->mi_tx_group_count; i++) {
6015 				tgrp = &mip->mi_tx_groups[i];
6016 				if (tgrp->mrg_state ==
6017 				    MAC_GROUP_STATE_REGISTERED) {
6018 					continue;
6019 				}
6020 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6021 				if (mcip == NULL)
6022 					mcip = mac_get_grp_primary(tgrp);
6023 				ASSERT(mcip != NULL);
6024 				mrp = MCIP_RESOURCE_PROPS(mcip);
6025 				if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6026 					ASSERT(tgrp->mrg_cur_count == 1);
6027 					/*
6028 					 * If this ring is part of the
6029 					 * rings asked by the share we cannot
6030 					 * use it as the default ring.
6031 					 */
6032 					for (j = 0; j < nrings; j++) {
6033 						if (rings[j] == tgrp->mrg_rings)
6034 							break;
6035 					}
6036 					if (j < nrings)
6037 						continue;
6038 					mac_tx_client_quiesce(
6039 					    (mac_client_handle_t)mcip);
6040 					mac_tx_switch_group(mcip, tgrp,
6041 					    defgrp);
6042 					mac_tx_client_restart(
6043 					    (mac_client_handle_t)mcip);
6044 					break;
6045 				}
6046 			}
6047 			/*
6048 			 * All the rings are reserved, can't give up the
6049 			 * default ring.
6050 			 */
6051 			if (defgrp->mrg_cur_count <= 1)
6052 				return (ENOSPC);
6053 		}
6054 		/*
6055 		 * Swap the default ring with another.
6056 		 */
6057 		for (tring = defgrp->mrg_rings; tring != NULL;
6058 		    tring = tring->mr_next) {
6059 			/*
6060 			 * If this ring is part of the rings asked by the
6061 			 * share we cannot use it as the default ring.
6062 			 */
6063 			for (j = 0; j < nrings; j++) {
6064 				if (rings[j] == tring)
6065 					break;
6066 			}
6067 			if (j >= nrings)
6068 				break;
6069 		}
6070 		ASSERT(tring != NULL);
6071 		mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6072 		return (0);
6073 	}
6074 	/*
6075 	 * The Tx ring is with a group reserved by a MAC client. See if
6076 	 * we can swap it.
6077 	 */
6078 	ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6079 	mcip = MAC_GROUP_ONLY_CLIENT(group);
6080 	if (mcip == NULL)
6081 		mcip = mac_get_grp_primary(group);
6082 	ASSERT(mcip !=  NULL);
6083 	mrp = MCIP_RESOURCE_PROPS(mcip);
6084 	mac_tx_client_quiesce((mac_client_handle_t)mcip);
6085 	if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6086 		ASSERT(group->mrg_cur_count == 1);
6087 		/* Put this mac client in the default group */
6088 		mac_tx_switch_group(mcip, group, defgrp);
6089 	} else {
6090 		/*
6091 		 * Switch this ring with some other ring from
6092 		 * the default group.
6093 		 */
6094 		for (tring = defgrp->mrg_rings; tring != NULL;
6095 		    tring = tring->mr_next) {
6096 			if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6097 				continue;
6098 			/*
6099 			 * If this ring is part of the rings asked by the
6100 			 * share we cannot use it for swapping.
6101 			 */
6102 			for (j = 0; j < nrings; j++) {
6103 				if (rings[j] == tring)
6104 					break;
6105 			}
6106 			if (j >= nrings)
6107 				break;
6108 		}
6109 		if (tring == NULL) {
6110 			mac_tx_client_restart((mac_client_handle_t)mcip);
6111 			return (ENOSPC);
6112 		}
6113 		if (mac_group_mov_ring(mip, group, tring) != 0) {
6114 			mac_tx_client_restart((mac_client_handle_t)mcip);
6115 			return (ENOSPC);
6116 		}
6117 		if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6118 			(void) mac_group_mov_ring(mip, defgrp, tring);
6119 			mac_tx_client_restart((mac_client_handle_t)mcip);
6120 			return (ENOSPC);
6121 		}
6122 	}
6123 	mac_tx_client_restart((mac_client_handle_t)mcip);
6124 	ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6125 	return (0);
6126 }
6127 
6128 /*
6129  * Populate a zero-ring group with rings. If the share is non-NULL,
6130  * the rings are chosen according to that share.
6131  * Invoked after allocating a new RX or TX group through
6132  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6133  * Returns zero on success, an errno otherwise.
6134  */
6135 int
6136 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6137     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6138     uint32_t ringcnt)
6139 {
6140 	mac_ring_t **rings, *ring;
6141 	uint_t nrings;
6142 	int rv = 0, i = 0, j;
6143 
6144 	ASSERT((ring_type == MAC_RING_TYPE_RX &&
6145 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6146 	    (ring_type == MAC_RING_TYPE_TX &&
6147 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6148 
6149 	/*
6150 	 * First find the rings to allocate to the group.
6151 	 */
6152 	if (share != NULL) {
6153 		/* get rings through ms_squery() */
6154 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6155 		ASSERT(nrings != 0);
6156 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6157 		    KM_SLEEP);
6158 		mip->mi_share_capab.ms_squery(share, ring_type,
6159 		    (mac_ring_handle_t *)rings, &nrings);
6160 		for (i = 0; i < nrings; i++) {
6161 			/*
6162 			 * If we have given this ring to a non-default
6163 			 * group, we need to check if we can get this
6164 			 * ring.
6165 			 */
6166 			ring = rings[i];
6167 			if (ring->mr_gh != (mac_group_handle_t)src_group ||
6168 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6169 				if (mac_reclaim_ring_from_grp(mip, ring_type,
6170 				    ring, rings, nrings) != 0) {
6171 					rv = ENOSPC;
6172 					goto bail;
6173 				}
6174 			}
6175 		}
6176 	} else {
6177 		/*
6178 		 * Pick one ring from default group.
6179 		 *
6180 		 * for now pick the second ring which requires the first ring
6181 		 * at index 0 to stay in the default group, since it is the
6182 		 * ring which carries the multicast traffic.
6183 		 * We need a better way for a driver to indicate this,
6184 		 * for example a per-ring flag.
6185 		 */
6186 		rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6187 		    KM_SLEEP);
6188 		for (ring = src_group->mrg_rings; ring != NULL;
6189 		    ring = ring->mr_next) {
6190 			if (ring_type == MAC_RING_TYPE_RX &&
6191 			    ring->mr_index == 0) {
6192 				continue;
6193 			}
6194 			if (ring_type == MAC_RING_TYPE_TX &&
6195 			    ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6196 				continue;
6197 			}
6198 			rings[i++] = ring;
6199 			if (i == ringcnt)
6200 				break;
6201 		}
6202 		ASSERT(ring != NULL);
6203 		nrings = i;
6204 		/* Not enough rings as required */
6205 		if (nrings != ringcnt) {
6206 			rv = ENOSPC;
6207 			goto bail;
6208 		}
6209 	}
6210 
6211 	switch (ring_type) {
6212 	case MAC_RING_TYPE_RX:
6213 		if (src_group->mrg_cur_count - nrings < 1) {
6214 			/* we ran out of rings */
6215 			rv = ENOSPC;
6216 			goto bail;
6217 		}
6218 
6219 		/* move receive rings to new group */
6220 		for (i = 0; i < nrings; i++) {
6221 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6222 			if (rv != 0) {
6223 				/* move rings back on failure */
6224 				for (j = 0; j < i; j++) {
6225 					(void) mac_group_mov_ring(mip,
6226 					    src_group, rings[j]);
6227 				}
6228 				goto bail;
6229 			}
6230 		}
6231 		break;
6232 
6233 	case MAC_RING_TYPE_TX: {
6234 		mac_ring_t *tmp_ring;
6235 
6236 		/* move the TX rings to the new group */
6237 		for (i = 0; i < nrings; i++) {
6238 			/* get the desired ring */
6239 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6240 			if (tmp_ring == NULL) {
6241 				rv = ENOSPC;
6242 				goto bail;
6243 			}
6244 			ASSERT(tmp_ring == rings[i]);
6245 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
6246 			if (rv != 0) {
6247 				/* cleanup on failure */
6248 				for (j = 0; j < i; j++) {
6249 					(void) mac_group_mov_ring(mip,
6250 					    MAC_DEFAULT_TX_GROUP(mip),
6251 					    rings[j]);
6252 				}
6253 				goto bail;
6254 			}
6255 		}
6256 		break;
6257 	}
6258 	}
6259 
6260 	/* add group to share */
6261 	if (share != NULL)
6262 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6263 
6264 bail:
6265 	/* free temporary array of rings */
6266 	kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6267 
6268 	return (rv);
6269 }
6270 
6271 void
6272 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6273 {
6274 	mac_grp_client_t *mgcp;
6275 
6276 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6277 		if (mgcp->mgc_client == mcip)
6278 			break;
6279 	}
6280 
6281 	VERIFY(mgcp == NULL);
6282 
6283 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6284 	mgcp->mgc_client = mcip;
6285 	mgcp->mgc_next = grp->mrg_clients;
6286 	grp->mrg_clients = mgcp;
6287 
6288 }
6289 
6290 void
6291 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6292 {
6293 	mac_grp_client_t *mgcp, **pprev;
6294 
6295 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6296 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
6297 		if (mgcp->mgc_client == mcip)
6298 			break;
6299 	}
6300 
6301 	ASSERT(mgcp != NULL);
6302 
6303 	*pprev = mgcp->mgc_next;
6304 	kmem_free(mgcp, sizeof (mac_grp_client_t));
6305 }
6306 
6307 /*
6308  * mac_reserve_rx_group()
6309  *
6310  * Finds an available group and exclusively reserves it for a client.
6311  * The group is chosen to suit the flow's resource controls (bandwidth and
6312  * fanout requirements) and the address type.
6313  * If the requestor is the pimary MAC then return the group with the
6314  * largest number of rings, otherwise the default ring when available.
6315  */
6316 mac_group_t *
6317 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6318 {
6319 	mac_share_handle_t	share = mcip->mci_share;
6320 	mac_impl_t		*mip = mcip->mci_mip;
6321 	mac_group_t		*grp = NULL;
6322 	int			i;
6323 	int			err = 0;
6324 	mac_address_t		*map;
6325 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6326 	int			nrings;
6327 	int			donor_grp_rcnt;
6328 	boolean_t		need_exclgrp = B_FALSE;
6329 	int			need_rings = 0;
6330 	mac_group_t		*candidate_grp = NULL;
6331 	mac_client_impl_t	*gclient;
6332 	mac_resource_props_t	*gmrp;
6333 	mac_group_t		*donorgrp = NULL;
6334 	boolean_t		rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6335 	boolean_t		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6336 	boolean_t		isprimary;
6337 
6338 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6339 
6340 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6341 
6342 	/*
6343 	 * Check if a group already has this mac address (case of VLANs)
6344 	 * unless we are moving this MAC client from one group to another.
6345 	 */
6346 	if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6347 		if (map->ma_group != NULL)
6348 			return (map->ma_group);
6349 	}
6350 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6351 		return (NULL);
6352 	/*
6353 	 * If exclusive open, return NULL which will enable the
6354 	 * caller to use the default group.
6355 	 */
6356 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6357 		return (NULL);
6358 
6359 	/* For dynamic groups default unspecified to 1 */
6360 	if (rxhw && unspec &&
6361 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6362 		mrp->mrp_nrxrings = 1;
6363 	}
6364 	/*
6365 	 * For static grouping we allow only specifying rings=0 and
6366 	 * unspecified
6367 	 */
6368 	if (rxhw && mrp->mrp_nrxrings > 0 &&
6369 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6370 		return (NULL);
6371 	}
6372 	if (rxhw) {
6373 		/*
6374 		 * We have explicitly asked for a group (with nrxrings,
6375 		 * if unspec).
6376 		 */
6377 		if (unspec || mrp->mrp_nrxrings > 0) {
6378 			need_exclgrp = B_TRUE;
6379 			need_rings = mrp->mrp_nrxrings;
6380 		} else if (mrp->mrp_nrxrings == 0) {
6381 			/*
6382 			 * We have asked for a software group.
6383 			 */
6384 			return (NULL);
6385 		}
6386 	} else if (isprimary && mip->mi_nactiveclients == 1 &&
6387 	    mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6388 		/*
6389 		 * If the primary is the only active client on this
6390 		 * mip and we have not asked for any rings, we give
6391 		 * it the default group so that the primary gets to
6392 		 * use all the rings.
6393 		 */
6394 		return (NULL);
6395 	}
6396 
6397 	/* The group that can donate rings */
6398 	donorgrp = mip->mi_rx_donor_grp;
6399 
6400 	/*
6401 	 * The number of rings that the default group can donate.
6402 	 * We need to leave at least one ring.
6403 	 */
6404 	donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6405 
6406 	/*
6407 	 * Try to exclusively reserve a RX group.
6408 	 *
6409 	 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6410 	 * client), try to reserve the a non-default RX group and give
6411 	 * it all the rings from the donor group, except the default ring
6412 	 *
6413 	 * For flows requiring HW_RING (unicast flow of other clients), try
6414 	 * to reserve non-default RX group with the specified number of
6415 	 * rings, if available.
6416 	 *
6417 	 * For flows that have not asked for software or hardware ring,
6418 	 * try to reserve a non-default group with 1 ring, if available.
6419 	 */
6420 	for (i = 1; i < mip->mi_rx_group_count; i++) {
6421 		grp = &mip->mi_rx_groups[i];
6422 
6423 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6424 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6425 
6426 		/*
6427 		 * Check if this group could be a candidate group for
6428 		 * eviction if we need a group for this MAC client,
6429 		 * but there aren't any. A candidate group is one
6430 		 * that didn't ask for an exclusive group, but got
6431 		 * one and it has enough rings (combined with what
6432 		 * the donor group can donate) for the new MAC
6433 		 * client
6434 		 */
6435 		if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6436 			/*
6437 			 * If the primary/donor group is not the default
6438 			 * group, don't bother looking for a candidate group.
6439 			 * If we don't have enough rings we will check
6440 			 * if the primary group can be vacated.
6441 			 */
6442 			if (candidate_grp == NULL &&
6443 			    donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6444 				ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6445 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6446 				if (gclient == NULL)
6447 					gclient = mac_get_grp_primary(grp);
6448 				ASSERT(gclient != NULL);
6449 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6450 				if (gclient->mci_share == NULL &&
6451 				    (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6452 				    (unspec ||
6453 				    (grp->mrg_cur_count + donor_grp_rcnt >=
6454 				    need_rings))) {
6455 					candidate_grp = grp;
6456 				}
6457 			}
6458 			continue;
6459 		}
6460 		/*
6461 		 * This group could already be SHARED by other multicast
6462 		 * flows on this client. In that case, the group would
6463 		 * be shared and has already been started.
6464 		 */
6465 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6466 
6467 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6468 		    (mac_start_group(grp) != 0)) {
6469 			continue;
6470 		}
6471 
6472 		if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6473 			break;
6474 		ASSERT(grp->mrg_cur_count == 0);
6475 
6476 		/*
6477 		 * Populate the group. Rings should be taken
6478 		 * from the donor group.
6479 		 */
6480 		nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6481 
6482 		/*
6483 		 * If the donor group can't donate, let's just walk and
6484 		 * see if someone can vacate a group, so that we have
6485 		 * enough rings for this, unless we already have
6486 		 * identified a candiate group..
6487 		 */
6488 		if (nrings <= donor_grp_rcnt) {
6489 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6490 			    donorgrp, grp, share, nrings);
6491 			if (err == 0) {
6492 				/*
6493 				 * For a share i_mac_group_allocate_rings gets
6494 				 * the rings from the driver, let's populate
6495 				 * the property for the client now.
6496 				 */
6497 				if (share != NULL) {
6498 					mac_client_set_rings(
6499 					    (mac_client_handle_t)mcip,
6500 					    grp->mrg_cur_count, -1);
6501 				}
6502 				if (mac_is_primary_client(mcip) && !rxhw)
6503 					mip->mi_rx_donor_grp = grp;
6504 				break;
6505 			}
6506 		}
6507 
6508 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6509 		    mip->mi_name, int, grp->mrg_index, int, err);
6510 
6511 		/*
6512 		 * It's a dynamic group but the grouping operation
6513 		 * failed.
6514 		 */
6515 		mac_stop_group(grp);
6516 	}
6517 	/* We didn't find an exclusive group for this MAC client */
6518 	if (i >= mip->mi_rx_group_count) {
6519 
6520 		if (!need_exclgrp)
6521 			return (NULL);
6522 
6523 		/*
6524 		 * If we found a candidate group then we switch the
6525 		 * MAC client from the candidate_group to the default
6526 		 * group and give the group to this MAC client. If
6527 		 * we didn't find a candidate_group, check if the
6528 		 * primary is in its own group and if it can make way
6529 		 * for this MAC client.
6530 		 */
6531 		if (candidate_grp == NULL &&
6532 		    donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6533 		    donorgrp->mrg_cur_count >= need_rings) {
6534 			candidate_grp = donorgrp;
6535 		}
6536 		if (candidate_grp != NULL) {
6537 			boolean_t	prim_grp = B_FALSE;
6538 
6539 			/*
6540 			 * Switch the MAC client from the candidate group
6541 			 * to the default group.. If this group was the
6542 			 * donor group, then after the switch we need
6543 			 * to update the donor group too.
6544 			 */
6545 			grp = candidate_grp;
6546 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
6547 			if (gclient == NULL)
6548 				gclient = mac_get_grp_primary(grp);
6549 			if (grp == mip->mi_rx_donor_grp)
6550 				prim_grp = B_TRUE;
6551 			if (mac_rx_switch_group(gclient, grp,
6552 			    MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6553 				return (NULL);
6554 			}
6555 			if (prim_grp) {
6556 				mip->mi_rx_donor_grp =
6557 				    MAC_DEFAULT_RX_GROUP(mip);
6558 				donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6559 			}
6560 
6561 
6562 			/*
6563 			 * Now give this group with the required rings
6564 			 * to this MAC client.
6565 			 */
6566 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6567 			if (mac_start_group(grp) != 0)
6568 				return (NULL);
6569 
6570 			if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6571 				return (grp);
6572 
6573 			donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6574 			ASSERT(grp->mrg_cur_count == 0);
6575 			ASSERT(donor_grp_rcnt >= need_rings);
6576 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6577 			    donorgrp, grp, share, need_rings);
6578 			if (err == 0) {
6579 				/*
6580 				 * For a share i_mac_group_allocate_rings gets
6581 				 * the rings from the driver, let's populate
6582 				 * the property for the client now.
6583 				 */
6584 				if (share != NULL) {
6585 					mac_client_set_rings(
6586 					    (mac_client_handle_t)mcip,
6587 					    grp->mrg_cur_count, -1);
6588 				}
6589 				DTRACE_PROBE2(rx__group__reserved,
6590 				    char *, mip->mi_name, int, grp->mrg_index);
6591 				return (grp);
6592 			}
6593 			DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6594 			    mip->mi_name, int, grp->mrg_index, int, err);
6595 			mac_stop_group(grp);
6596 		}
6597 		return (NULL);
6598 	}
6599 	ASSERT(grp != NULL);
6600 
6601 	DTRACE_PROBE2(rx__group__reserved,
6602 	    char *, mip->mi_name, int, grp->mrg_index);
6603 	return (grp);
6604 }
6605 
6606 /*
6607  * mac_rx_release_group()
6608  *
6609  * This is called when there are no clients left for the group.
6610  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6611  * and if it is a non default group, the shares are removed and
6612  * all rings are assigned back to default group.
6613  */
6614 void
6615 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6616 {
6617 	mac_impl_t		*mip = mcip->mci_mip;
6618 	mac_ring_t		*ring;
6619 
6620 	ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6621 
6622 	if (mip->mi_rx_donor_grp == group)
6623 		mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6624 
6625 	/*
6626 	 * This is the case where there are no clients left. Any
6627 	 * SRS etc on this group have also be quiesced.
6628 	 */
6629 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6630 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6631 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6632 			/*
6633 			 * Remove the SRS associated with the HW ring.
6634 			 * As a result, polling will be disabled.
6635 			 */
6636 			ring->mr_srs = NULL;
6637 		}
6638 		ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6639 		    ring->mr_state == MR_INUSE);
6640 		if (ring->mr_state == MR_INUSE) {
6641 			mac_stop_ring(ring);
6642 			ring->mr_flag = 0;
6643 		}
6644 	}
6645 
6646 	/* remove group from share */
6647 	if (mcip->mci_share != NULL) {
6648 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
6649 		    group->mrg_driver);
6650 	}
6651 
6652 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6653 		mac_ring_t *ring;
6654 
6655 		/*
6656 		 * Rings were dynamically allocated to group.
6657 		 * Move rings back to default group.
6658 		 */
6659 		while ((ring = group->mrg_rings) != NULL) {
6660 			(void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6661 			    ring);
6662 		}
6663 	}
6664 	mac_stop_group(group);
6665 	/*
6666 	 * Possible improvement: See if we can assign the group just released
6667 	 * to a another client of the mip
6668 	 */
6669 }
6670 
6671 /*
6672  * When we move the primary's mac address between groups, we need to also
6673  * take all the clients sharing the same mac address along with it (VLANs)
6674  * We remove the mac address for such clients from the group after quiescing
6675  * them. When we add the mac address we restart the client. Note that
6676  * the primary's mac address is removed from the group after all the
6677  * other clients sharing the address are removed. Similarly, the primary's
6678  * mac address is added before all the other client's mac address are
6679  * added. While grp is the group where the clients reside, tgrp is
6680  * the group where the addresses have to be added.
6681  */
6682 static void
6683 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6684     mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6685 {
6686 	mac_impl_t		*mip = mcip->mci_mip;
6687 	mac_grp_client_t	*mgcp = grp->mrg_clients;
6688 	mac_client_impl_t	*gmcip;
6689 	boolean_t		prim;
6690 
6691 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6692 
6693 	/*
6694 	 * If the clients are in a non-default group, we just have to
6695 	 * walk the group's client list. If it is in the default group
6696 	 * (which will be shared by other clients as well, we need to
6697 	 * check if the unicast address matches mcip's unicast.
6698 	 */
6699 	while (mgcp != NULL) {
6700 		gmcip = mgcp->mgc_client;
6701 		if (gmcip != mcip &&
6702 		    (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6703 		    mcip->mci_unicast == gmcip->mci_unicast)) {
6704 			if (!add) {
6705 				mac_rx_client_quiesce(
6706 				    (mac_client_handle_t)gmcip);
6707 				(void) mac_remove_macaddr(mcip->mci_unicast);
6708 			} else {
6709 				(void) mac_add_macaddr(mip, tgrp, maddr, prim);
6710 				mac_rx_client_restart(
6711 				    (mac_client_handle_t)gmcip);
6712 			}
6713 		}
6714 		mgcp = mgcp->mgc_next;
6715 	}
6716 }
6717 
6718 
6719 /*
6720  * Move the MAC address from fgrp to tgrp. If this is the primary client,
6721  * we need to take any VLANs etc. together too.
6722  */
6723 static int
6724 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6725     mac_group_t *tgrp)
6726 {
6727 	mac_impl_t		*mip = mcip->mci_mip;
6728 	uint8_t			maddr[MAXMACADDRLEN];
6729 	int			err = 0;
6730 	boolean_t		prim;
6731 	boolean_t		multiclnt = B_FALSE;
6732 
6733 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
6734 	ASSERT(mcip->mci_unicast != NULL);
6735 	bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6736 
6737 	prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6738 	if (mcip->mci_unicast->ma_nusers > 1) {
6739 		mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6740 		multiclnt = B_TRUE;
6741 	}
6742 	ASSERT(mcip->mci_unicast->ma_nusers == 1);
6743 	err = mac_remove_macaddr(mcip->mci_unicast);
6744 	if (err != 0) {
6745 		mac_rx_client_restart((mac_client_handle_t)mcip);
6746 		if (multiclnt) {
6747 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6748 			    B_TRUE);
6749 		}
6750 		return (err);
6751 	}
6752 	/*
6753 	 * Program the H/W Classifier first, if this fails we need
6754 	 * not proceed with the other stuff.
6755 	 */
6756 	if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6757 		/* Revert back the H/W Classifier */
6758 		if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6759 			/*
6760 			 * This should not fail now since it worked earlier,
6761 			 * should we panic?
6762 			 */
6763 			cmn_err(CE_WARN,
6764 			    "mac_rx_switch_group: switching %p back"
6765 			    " to group %p failed!!", (void *)mcip,
6766 			    (void *)fgrp);
6767 		}
6768 		mac_rx_client_restart((mac_client_handle_t)mcip);
6769 		if (multiclnt) {
6770 			mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6771 			    B_TRUE);
6772 		}
6773 		return (err);
6774 	}
6775 	mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6776 	mac_rx_client_restart((mac_client_handle_t)mcip);
6777 	if (multiclnt)
6778 		mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6779 	return (err);
6780 }
6781 
6782 /*
6783  * Switch the MAC client from one group to another. This means we need
6784  * to remove the MAC address from the group, remove the MAC client,
6785  * teardown the SRSs and revert the group state. Then, we add the client
6786  * to the destination group, set the SRSs, and add the MAC address to the
6787  * group.
6788  */
6789 int
6790 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6791     mac_group_t *tgrp)
6792 {
6793 	int			err;
6794 	mac_group_state_t	next_state;
6795 	mac_client_impl_t	*group_only_mcip;
6796 	mac_client_impl_t	*gmcip;
6797 	mac_impl_t		*mip = mcip->mci_mip;
6798 	mac_grp_client_t	*mgcp;
6799 
6800 	ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6801 
6802 	if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6803 		return (err);
6804 
6805 	/*
6806 	 * The group might be reserved, but SRSs may not be set up, e.g.
6807 	 * primary and its vlans using a reserved group.
6808 	 */
6809 	if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6810 	    MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6811 		mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6812 	}
6813 	if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6814 		mgcp = fgrp->mrg_clients;
6815 		while (mgcp != NULL) {
6816 			gmcip = mgcp->mgc_client;
6817 			mgcp = mgcp->mgc_next;
6818 			mac_group_remove_client(fgrp, gmcip);
6819 			mac_group_add_client(tgrp, gmcip);
6820 			gmcip->mci_flent->fe_rx_ring_group = tgrp;
6821 		}
6822 		mac_release_rx_group(mcip, fgrp);
6823 		ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6824 		mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6825 	} else {
6826 		mac_group_remove_client(fgrp, mcip);
6827 		mac_group_add_client(tgrp, mcip);
6828 		mcip->mci_flent->fe_rx_ring_group = tgrp;
6829 		/*
6830 		 * If there are other clients (VLANs) sharing this address
6831 		 * we should be here only for the primary.
6832 		 */
6833 		if (mcip->mci_unicast->ma_nusers > 1) {
6834 			/*
6835 			 * We need to move all the clients that are using
6836 			 * this h/w address.
6837 			 */
6838 			mgcp = fgrp->mrg_clients;
6839 			while (mgcp != NULL) {
6840 				gmcip = mgcp->mgc_client;
6841 				mgcp = mgcp->mgc_next;
6842 				if (mcip->mci_unicast == gmcip->mci_unicast) {
6843 					mac_group_remove_client(fgrp, gmcip);
6844 					mac_group_add_client(tgrp, gmcip);
6845 					gmcip->mci_flent->fe_rx_ring_group =
6846 					    tgrp;
6847 				}
6848 			}
6849 		}
6850 		/*
6851 		 * The default group will still take the multicast,
6852 		 * broadcast traffic etc., so it won't go to
6853 		 * MAC_GROUP_STATE_REGISTERED.
6854 		 */
6855 		if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6856 			mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6857 		mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6858 	}
6859 	next_state = mac_group_next_state(tgrp, &group_only_mcip,
6860 	    MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6861 	mac_set_group_state(tgrp, next_state);
6862 	/*
6863 	 * If the destination group is reserved, setup the SRSs etc.
6864 	 */
6865 	if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6866 		mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6867 		mac_fanout_setup(mcip, mcip->mci_flent,
6868 		    MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6869 		    NULL);
6870 		mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6871 	} else {
6872 		mac_rx_switch_grp_to_sw(tgrp);
6873 	}
6874 	return (0);
6875 }
6876 
6877 /*
6878  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6879  * when a share was allocated to the client.
6880  */
6881 mac_group_t *
6882 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6883 {
6884 	mac_impl_t		*mip = mcip->mci_mip;
6885 	mac_group_t		*grp = NULL;
6886 	int			rv;
6887 	int			i;
6888 	int			err;
6889 	mac_group_t		*defgrp;
6890 	mac_share_handle_t	share = mcip->mci_share;
6891 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
6892 	int			nrings;
6893 	int			defnrings;
6894 	boolean_t		need_exclgrp = B_FALSE;
6895 	int			need_rings = 0;
6896 	mac_group_t		*candidate_grp = NULL;
6897 	mac_client_impl_t	*gclient;
6898 	mac_resource_props_t	*gmrp;
6899 	boolean_t		txhw = mrp->mrp_mask & MRP_TX_RINGS;
6900 	boolean_t		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6901 	boolean_t		isprimary;
6902 
6903 	isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6904 	/*
6905 	 * When we come here for a VLAN on the primary (dladm create-vlan),
6906 	 * we need to pair it along with the primary (to keep it consistent
6907 	 * with the RX side). So, we check if the primary is already assigned
6908 	 * to a group and return the group if so. The other way is also
6909 	 * true, i.e. the VLAN is already created and now we are plumbing
6910 	 * the primary.
6911 	 */
6912 	if (!move && isprimary) {
6913 		for (gclient = mip->mi_clients_list; gclient != NULL;
6914 		    gclient = gclient->mci_client_next) {
6915 			if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6916 			    gclient->mci_flent->fe_tx_ring_group != NULL) {
6917 				return (gclient->mci_flent->fe_tx_ring_group);
6918 			}
6919 		}
6920 	}
6921 
6922 	if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6923 		return (NULL);
6924 
6925 	/* For dynamic groups, default unspec to 1 */
6926 	if (txhw && unspec &&
6927 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6928 		mrp->mrp_ntxrings = 1;
6929 	}
6930 	/*
6931 	 * For static grouping we allow only specifying rings=0 and
6932 	 * unspecified
6933 	 */
6934 	if (txhw && mrp->mrp_ntxrings > 0 &&
6935 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6936 		return (NULL);
6937 	}
6938 
6939 	if (txhw) {
6940 		/*
6941 		 * We have explicitly asked for a group (with ntxrings,
6942 		 * if unspec).
6943 		 */
6944 		if (unspec || mrp->mrp_ntxrings > 0) {
6945 			need_exclgrp = B_TRUE;
6946 			need_rings = mrp->mrp_ntxrings;
6947 		} else if (mrp->mrp_ntxrings == 0) {
6948 			/*
6949 			 * We have asked for a software group.
6950 			 */
6951 			return (NULL);
6952 		}
6953 	}
6954 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
6955 	/*
6956 	 * The number of rings that the default group can donate.
6957 	 * We need to leave at least one ring - the default ring - in
6958 	 * this group.
6959 	 */
6960 	defnrings = defgrp->mrg_cur_count - 1;
6961 
6962 	/*
6963 	 * Primary gets default group unless explicitly told not
6964 	 * to  (i.e. rings > 0).
6965 	 */
6966 	if (isprimary && !need_exclgrp)
6967 		return (NULL);
6968 
6969 	nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6970 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
6971 		grp = &mip->mi_tx_groups[i];
6972 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6973 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6974 			/*
6975 			 * Select a candidate for replacement if we don't
6976 			 * get an exclusive group. A candidate group is one
6977 			 * that didn't ask for an exclusive group, but got
6978 			 * one and it has enough rings (combined with what
6979 			 * the default group can donate) for the new MAC
6980 			 * client.
6981 			 */
6982 			if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6983 			    candidate_grp == NULL) {
6984 				gclient = MAC_GROUP_ONLY_CLIENT(grp);
6985 				if (gclient == NULL)
6986 					gclient = mac_get_grp_primary(grp);
6987 				gmrp = MCIP_RESOURCE_PROPS(gclient);
6988 				if (gclient->mci_share == NULL &&
6989 				    (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
6990 				    (unspec ||
6991 				    (grp->mrg_cur_count + defnrings) >=
6992 				    need_rings)) {
6993 					candidate_grp = grp;
6994 				}
6995 			}
6996 			continue;
6997 		}
6998 		/*
6999 		 * If the default can't donate let's just walk and
7000 		 * see if someone can vacate a group, so that we have
7001 		 * enough rings for this.
7002 		 */
7003 		if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7004 		    nrings <= defnrings) {
7005 			if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7006 				rv = mac_start_group(grp);
7007 				ASSERT(rv == 0);
7008 			}
7009 			break;
7010 		}
7011 	}
7012 
7013 	/* The default group */
7014 	if (i >= mip->mi_tx_group_count) {
7015 		/*
7016 		 * If we need an exclusive group and have identified a
7017 		 * candidate group we switch the MAC client from the
7018 		 * candidate group to the default group and give the
7019 		 * candidate group to this client.
7020 		 */
7021 		if (need_exclgrp && candidate_grp != NULL) {
7022 			/*
7023 			 * Switch the MAC client from the candidate group
7024 			 * to the default group.
7025 			 */
7026 			grp = candidate_grp;
7027 			gclient = MAC_GROUP_ONLY_CLIENT(grp);
7028 			if (gclient == NULL)
7029 				gclient = mac_get_grp_primary(grp);
7030 			mac_tx_client_quiesce((mac_client_handle_t)gclient);
7031 			mac_tx_switch_group(gclient, grp, defgrp);
7032 			mac_tx_client_restart((mac_client_handle_t)gclient);
7033 
7034 			/*
7035 			 * Give the candidate group with the specified number
7036 			 * of rings to this MAC client.
7037 			 */
7038 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7039 			rv = mac_start_group(grp);
7040 			ASSERT(rv == 0);
7041 
7042 			if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7043 				return (grp);
7044 
7045 			ASSERT(grp->mrg_cur_count == 0);
7046 			ASSERT(defgrp->mrg_cur_count > need_rings);
7047 
7048 			err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7049 			    defgrp, grp, share, need_rings);
7050 			if (err == 0) {
7051 				/*
7052 				 * For a share i_mac_group_allocate_rings gets
7053 				 * the rings from the driver, let's populate
7054 				 * the property for the client now.
7055 				 */
7056 				if (share != NULL) {
7057 					mac_client_set_rings(
7058 					    (mac_client_handle_t)mcip, -1,
7059 					    grp->mrg_cur_count);
7060 				}
7061 				mip->mi_tx_group_free--;
7062 				return (grp);
7063 			}
7064 			DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7065 			    mip->mi_name, int, grp->mrg_index, int, err);
7066 			mac_stop_group(grp);
7067 		}
7068 		return (NULL);
7069 	}
7070 	/*
7071 	 * We got an exclusive group, but it is not dynamic.
7072 	 */
7073 	if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7074 		mip->mi_tx_group_free--;
7075 		return (grp);
7076 	}
7077 
7078 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7079 	    share, nrings);
7080 	if (rv != 0) {
7081 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7082 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
7083 		mac_stop_group(grp);
7084 		return (NULL);
7085 	}
7086 	/*
7087 	 * For a share i_mac_group_allocate_rings gets the rings from the
7088 	 * driver, let's populate the property for the client now.
7089 	 */
7090 	if (share != NULL) {
7091 		mac_client_set_rings((mac_client_handle_t)mcip, -1,
7092 		    grp->mrg_cur_count);
7093 	}
7094 	mip->mi_tx_group_free--;
7095 	return (grp);
7096 }
7097 
7098 void
7099 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7100 {
7101 	mac_impl_t		*mip = mcip->mci_mip;
7102 	mac_share_handle_t	share = mcip->mci_share;
7103 	mac_ring_t		*ring;
7104 	mac_soft_ring_set_t	*srs = MCIP_TX_SRS(mcip);
7105 	mac_group_t		*defgrp;
7106 
7107 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7108 	if (srs != NULL) {
7109 		if (srs->srs_soft_ring_count > 0) {
7110 			for (ring = grp->mrg_rings; ring != NULL;
7111 			    ring = ring->mr_next) {
7112 				ASSERT(mac_tx_srs_ring_present(srs, ring));
7113 				mac_tx_invoke_callbacks(mcip,
7114 				    (mac_tx_cookie_t)
7115 				    mac_tx_srs_get_soft_ring(srs, ring));
7116 				mac_tx_srs_del_ring(srs, ring);
7117 			}
7118 		} else {
7119 			ASSERT(srs->srs_tx.st_arg2 != NULL);
7120 			srs->srs_tx.st_arg2 = NULL;
7121 			mac_srs_stat_delete(srs);
7122 		}
7123 	}
7124 	if (share != NULL)
7125 		mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7126 
7127 	/* move the ring back to the pool */
7128 	if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7129 		while ((ring = grp->mrg_rings) != NULL)
7130 			(void) mac_group_mov_ring(mip, defgrp, ring);
7131 	}
7132 	mac_stop_group(grp);
7133 	mip->mi_tx_group_free++;
7134 }
7135 
7136 /*
7137  * Disassociate a MAC client from a group, i.e go through the rings in the
7138  * group and delete all the soft rings tied to them.
7139  */
7140 static void
7141 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7142 {
7143 	mac_client_impl_t	*mcip = flent->fe_mcip;
7144 	mac_soft_ring_set_t	*tx_srs;
7145 	mac_srs_tx_t		*tx;
7146 	mac_ring_t		*ring;
7147 
7148 	tx_srs = flent->fe_tx_srs;
7149 	tx = &tx_srs->srs_tx;
7150 
7151 	/* Single ring case we haven't created any soft rings */
7152 	if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7153 	    tx->st_mode == SRS_TX_DEFAULT) {
7154 		tx->st_arg2 = NULL;
7155 		mac_srs_stat_delete(tx_srs);
7156 	/* Fanout case, where we have to dismantle the soft rings */
7157 	} else {
7158 		for (ring = fgrp->mrg_rings; ring != NULL;
7159 		    ring = ring->mr_next) {
7160 			ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7161 			mac_tx_invoke_callbacks(mcip,
7162 			    (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7163 			    ring));
7164 			mac_tx_srs_del_ring(tx_srs, ring);
7165 		}
7166 		ASSERT(tx->st_arg2 == NULL);
7167 	}
7168 }
7169 
7170 /*
7171  * Switch the MAC client from one group to another. This means we need
7172  * to remove the MAC client, teardown the SRSs and revert the group state.
7173  * Then, we add the client to the destination roup, set the SRSs etc.
7174  */
7175 void
7176 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7177     mac_group_t *tgrp)
7178 {
7179 	mac_client_impl_t	*group_only_mcip;
7180 	mac_impl_t		*mip = mcip->mci_mip;
7181 	flow_entry_t		*flent = mcip->mci_flent;
7182 	mac_group_t		*defgrp;
7183 	mac_grp_client_t	*mgcp;
7184 	mac_client_impl_t	*gmcip;
7185 	flow_entry_t		*gflent;
7186 
7187 	defgrp = MAC_DEFAULT_TX_GROUP(mip);
7188 	ASSERT(fgrp == flent->fe_tx_ring_group);
7189 
7190 	if (fgrp == defgrp) {
7191 		/*
7192 		 * If this is the primary we need to find any VLANs on
7193 		 * the primary and move them too.
7194 		 */
7195 		mac_group_remove_client(fgrp, mcip);
7196 		mac_tx_dismantle_soft_rings(fgrp, flent);
7197 		if (mcip->mci_unicast->ma_nusers > 1) {
7198 			mgcp = fgrp->mrg_clients;
7199 			while (mgcp != NULL) {
7200 				gmcip = mgcp->mgc_client;
7201 				mgcp = mgcp->mgc_next;
7202 				if (mcip->mci_unicast != gmcip->mci_unicast)
7203 					continue;
7204 				mac_tx_client_quiesce(
7205 				    (mac_client_handle_t)gmcip);
7206 
7207 				gflent = gmcip->mci_flent;
7208 				mac_group_remove_client(fgrp, gmcip);
7209 				mac_tx_dismantle_soft_rings(fgrp, gflent);
7210 
7211 				mac_group_add_client(tgrp, gmcip);
7212 				gflent->fe_tx_ring_group = tgrp;
7213 				/* We could directly set this to SHARED */
7214 				tgrp->mrg_state = mac_group_next_state(tgrp,
7215 				    &group_only_mcip, defgrp, B_FALSE);
7216 
7217 				mac_tx_srs_group_setup(gmcip, gflent,
7218 				    SRST_LINK);
7219 				mac_fanout_setup(gmcip, gflent,
7220 				    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7221 				    gmcip, NULL, NULL);
7222 
7223 				mac_tx_client_restart(
7224 				    (mac_client_handle_t)gmcip);
7225 			}
7226 		}
7227 		if (MAC_GROUP_NO_CLIENT(fgrp)) {
7228 			mac_ring_t	*ring;
7229 			int		cnt;
7230 			int		ringcnt;
7231 
7232 			fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7233 			/*
7234 			 * Additionally, we also need to stop all
7235 			 * the rings in the default group, except
7236 			 * the default ring. The reason being
7237 			 * this group won't be released since it is
7238 			 * the default group, so the rings won't
7239 			 * be stopped otherwise.
7240 			 */
7241 			ringcnt = fgrp->mrg_cur_count;
7242 			ring = fgrp->mrg_rings;
7243 			for (cnt = 0; cnt < ringcnt; cnt++) {
7244 				if (ring->mr_state == MR_INUSE &&
7245 				    ring !=
7246 				    (mac_ring_t *)mip->mi_default_tx_ring) {
7247 					mac_stop_ring(ring);
7248 					ring->mr_flag = 0;
7249 				}
7250 				ring = ring->mr_next;
7251 			}
7252 		} else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7253 			fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7254 		} else {
7255 			ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7256 		}
7257 	} else {
7258 		/*
7259 		 * We could have VLANs sharing the non-default group with
7260 		 * the primary.
7261 		 */
7262 		mgcp = fgrp->mrg_clients;
7263 		while (mgcp != NULL) {
7264 			gmcip = mgcp->mgc_client;
7265 			mgcp = mgcp->mgc_next;
7266 			if (gmcip == mcip)
7267 				continue;
7268 			mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7269 			gflent = gmcip->mci_flent;
7270 
7271 			mac_group_remove_client(fgrp, gmcip);
7272 			mac_tx_dismantle_soft_rings(fgrp, gflent);
7273 
7274 			mac_group_add_client(tgrp, gmcip);
7275 			gflent->fe_tx_ring_group = tgrp;
7276 			/* We could directly set this to SHARED */
7277 			tgrp->mrg_state = mac_group_next_state(tgrp,
7278 			    &group_only_mcip, defgrp, B_FALSE);
7279 			mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7280 			mac_fanout_setup(gmcip, gflent,
7281 			    MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7282 			    gmcip, NULL, NULL);
7283 
7284 			mac_tx_client_restart((mac_client_handle_t)gmcip);
7285 		}
7286 		mac_group_remove_client(fgrp, mcip);
7287 		mac_release_tx_group(mcip, fgrp);
7288 		fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7289 	}
7290 
7291 	/* Add it to the tgroup */
7292 	mac_group_add_client(tgrp, mcip);
7293 	flent->fe_tx_ring_group = tgrp;
7294 	tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7295 	    defgrp, B_FALSE);
7296 
7297 	mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7298 	mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7299 	    mac_rx_deliver, mcip, NULL, NULL);
7300 }
7301 
7302 /*
7303  * This is a 1-time control path activity initiated by the client (IP).
7304  * The mac perimeter protects against other simultaneous control activities,
7305  * for example an ioctl that attempts to change the degree of fanout and
7306  * increase or decrease the number of softrings associated with this Tx SRS.
7307  */
7308 static mac_tx_notify_cb_t *
7309 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7310     mac_tx_notify_t notify, void *arg)
7311 {
7312 	mac_cb_info_t *mcbi;
7313 	mac_tx_notify_cb_t *mtnfp;
7314 
7315 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7316 
7317 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7318 	mtnfp->mtnf_fn = notify;
7319 	mtnfp->mtnf_arg = arg;
7320 	mtnfp->mtnf_link.mcb_objp = mtnfp;
7321 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7322 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7323 
7324 	mcbi = &mcip->mci_tx_notify_cb_info;
7325 	mutex_enter(mcbi->mcbi_lockp);
7326 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7327 	mutex_exit(mcbi->mcbi_lockp);
7328 	return (mtnfp);
7329 }
7330 
7331 static void
7332 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7333 {
7334 	mac_cb_info_t	*mcbi;
7335 	mac_cb_t	**cblist;
7336 
7337 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7338 
7339 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7340 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7341 		cmn_err(CE_WARN,
7342 		    "mac_client_tx_notify_remove: callback not "
7343 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7344 		return;
7345 	}
7346 
7347 	mcbi = &mcip->mci_tx_notify_cb_info;
7348 	cblist = &mcip->mci_tx_notify_cb_list;
7349 	mutex_enter(mcbi->mcbi_lockp);
7350 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7351 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7352 	else
7353 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7354 	mutex_exit(mcbi->mcbi_lockp);
7355 }
7356 
7357 /*
7358  * mac_client_tx_notify():
7359  * call to add and remove flow control callback routine.
7360  */
7361 mac_tx_notify_handle_t
7362 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7363     void *ptr)
7364 {
7365 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
7366 	mac_tx_notify_cb_t	*mtnfp = NULL;
7367 
7368 	i_mac_perim_enter(mcip->mci_mip);
7369 
7370 	if (callb_func != NULL) {
7371 		/* Add a notify callback */
7372 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7373 	} else {
7374 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7375 	}
7376 	i_mac_perim_exit(mcip->mci_mip);
7377 
7378 	return ((mac_tx_notify_handle_t)mtnfp);
7379 }
7380 
7381 void
7382 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7383     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7384 {
7385 	mac_bridge_tx_cb = txf;
7386 	mac_bridge_rx_cb = rxf;
7387 	mac_bridge_ref_cb = reff;
7388 	mac_bridge_ls_cb = lsf;
7389 }
7390 
7391 int
7392 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7393 {
7394 	mac_impl_t *mip = (mac_impl_t *)mh;
7395 	int retv;
7396 
7397 	mutex_enter(&mip->mi_bridge_lock);
7398 	if (mip->mi_bridge_link == NULL) {
7399 		mip->mi_bridge_link = link;
7400 		retv = 0;
7401 	} else {
7402 		retv = EBUSY;
7403 	}
7404 	mutex_exit(&mip->mi_bridge_lock);
7405 	if (retv == 0) {
7406 		mac_poll_state_change(mh, B_FALSE);
7407 		mac_capab_update(mh);
7408 	}
7409 	return (retv);
7410 }
7411 
7412 /*
7413  * Disable bridging on the indicated link.
7414  */
7415 void
7416 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7417 {
7418 	mac_impl_t *mip = (mac_impl_t *)mh;
7419 
7420 	mutex_enter(&mip->mi_bridge_lock);
7421 	ASSERT(mip->mi_bridge_link == link);
7422 	mip->mi_bridge_link = NULL;
7423 	mutex_exit(&mip->mi_bridge_lock);
7424 	mac_poll_state_change(mh, B_TRUE);
7425 	mac_capab_update(mh);
7426 }
7427 
7428 void
7429 mac_no_active(mac_handle_t mh)
7430 {
7431 	mac_impl_t *mip = (mac_impl_t *)mh;
7432 
7433 	i_mac_perim_enter(mip);
7434 	mip->mi_state_flags |= MIS_NO_ACTIVE;
7435 	i_mac_perim_exit(mip);
7436 }
7437 
7438 /*
7439  * Walk the primary VLAN clients whenever the primary's rings property
7440  * changes and update the mac_resource_props_t for the VLAN's client.
7441  * We need to do this since we don't support setting these properties
7442  * on the primary's VLAN clients, but the VLAN clients have to
7443  * follow the primary w.r.t the rings property;
7444  */
7445 void
7446 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7447 {
7448 	mac_client_impl_t	*vmcip;
7449 	mac_resource_props_t	*vmrp;
7450 
7451 	for (vmcip = mip->mi_clients_list; vmcip != NULL;
7452 	    vmcip = vmcip->mci_client_next) {
7453 		if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7454 		    mac_client_vid((mac_client_handle_t)vmcip) ==
7455 		    VLAN_ID_NONE) {
7456 			continue;
7457 		}
7458 		vmrp = MCIP_RESOURCE_PROPS(vmcip);
7459 
7460 		vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7461 		if (mrp->mrp_mask & MRP_RX_RINGS)
7462 			vmrp->mrp_mask |= MRP_RX_RINGS;
7463 		else if (vmrp->mrp_mask & MRP_RX_RINGS)
7464 			vmrp->mrp_mask &= ~MRP_RX_RINGS;
7465 
7466 		vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7467 		if (mrp->mrp_mask & MRP_TX_RINGS)
7468 			vmrp->mrp_mask |= MRP_TX_RINGS;
7469 		else if (vmrp->mrp_mask & MRP_TX_RINGS)
7470 			vmrp->mrp_mask &= ~MRP_TX_RINGS;
7471 
7472 		if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7473 			vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7474 		else
7475 			vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7476 
7477 		if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7478 			vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7479 		else
7480 			vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7481 	}
7482 }
7483 
7484 /*
7485  * We are adding or removing ring(s) from a group. The source for taking
7486  * rings is the default group. The destination for giving rings back is
7487  * the default group.
7488  */
7489 int
7490 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7491     mac_group_t *defgrp)
7492 {
7493 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7494 	uint_t			modify;
7495 	int			count;
7496 	mac_ring_t		*ring;
7497 	mac_ring_t		*next;
7498 	mac_impl_t		*mip = mcip->mci_mip;
7499 	mac_ring_t		**rings;
7500 	uint_t			ringcnt;
7501 	int			i = 0;
7502 	boolean_t		rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7503 	int			start;
7504 	int			end;
7505 	mac_group_t		*tgrp;
7506 	int			j;
7507 	int			rv = 0;
7508 
7509 	/*
7510 	 * If we are asked for just a group, we give 1 ring, else
7511 	 * the specified number of rings.
7512 	 */
7513 	if (rx_group) {
7514 		ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7515 		    mrp->mrp_nrxrings;
7516 	} else {
7517 		ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7518 		    mrp->mrp_ntxrings;
7519 	}
7520 
7521 	/* don't allow modifying rings for a share for now. */
7522 	ASSERT(mcip->mci_share == NULL);
7523 
7524 	if (ringcnt == group->mrg_cur_count)
7525 		return (0);
7526 
7527 	if (group->mrg_cur_count > ringcnt) {
7528 		modify = group->mrg_cur_count - ringcnt;
7529 		if (rx_group) {
7530 			if (mip->mi_rx_donor_grp == group) {
7531 				ASSERT(mac_is_primary_client(mcip));
7532 				mip->mi_rx_donor_grp = defgrp;
7533 			} else {
7534 				defgrp = mip->mi_rx_donor_grp;
7535 			}
7536 		}
7537 		ring = group->mrg_rings;
7538 		rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7539 		    KM_SLEEP);
7540 		j = 0;
7541 		for (count = 0; count < modify; count++) {
7542 			next = ring->mr_next;
7543 			rv = mac_group_mov_ring(mip, defgrp, ring);
7544 			if (rv != 0) {
7545 				/* cleanup on failure */
7546 				for (j = 0; j < count; j++) {
7547 					(void) mac_group_mov_ring(mip, group,
7548 					    rings[j]);
7549 				}
7550 				break;
7551 			}
7552 			rings[j++] = ring;
7553 			ring = next;
7554 		}
7555 		kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7556 		return (rv);
7557 	}
7558 	if (ringcnt >= MAX_RINGS_PER_GROUP)
7559 		return (EINVAL);
7560 
7561 	modify = ringcnt - group->mrg_cur_count;
7562 
7563 	if (rx_group) {
7564 		if (group != mip->mi_rx_donor_grp)
7565 			defgrp = mip->mi_rx_donor_grp;
7566 		else
7567 			/*
7568 			 * This is the donor group with all the remaining
7569 			 * rings. Default group now gets to be the donor
7570 			 */
7571 			mip->mi_rx_donor_grp = defgrp;
7572 		start = 1;
7573 		end = mip->mi_rx_group_count;
7574 	} else {
7575 		start = 0;
7576 		end = mip->mi_tx_group_count - 1;
7577 	}
7578 	/*
7579 	 * If the default doesn't have any rings, lets see if we can
7580 	 * take rings given to an h/w client that doesn't need it.
7581 	 * For now, we just see if there is  any one client that can donate
7582 	 * all the required rings.
7583 	 */
7584 	if (defgrp->mrg_cur_count < (modify + 1)) {
7585 		for (i = start; i < end; i++) {
7586 			if (rx_group) {
7587 				tgrp = &mip->mi_rx_groups[i];
7588 				if (tgrp == group || tgrp->mrg_state <
7589 				    MAC_GROUP_STATE_RESERVED) {
7590 					continue;
7591 				}
7592 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7593 				if (mcip == NULL)
7594 					mcip = mac_get_grp_primary(tgrp);
7595 				ASSERT(mcip != NULL);
7596 				mrp = MCIP_RESOURCE_PROPS(mcip);
7597 				if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7598 					continue;
7599 				if ((tgrp->mrg_cur_count +
7600 				    defgrp->mrg_cur_count) < (modify + 1)) {
7601 					continue;
7602 				}
7603 				if (mac_rx_switch_group(mcip, tgrp,
7604 				    defgrp) != 0) {
7605 					return (ENOSPC);
7606 				}
7607 			} else {
7608 				tgrp = &mip->mi_tx_groups[i];
7609 				if (tgrp == group || tgrp->mrg_state <
7610 				    MAC_GROUP_STATE_RESERVED) {
7611 					continue;
7612 				}
7613 				mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7614 				if (mcip == NULL)
7615 					mcip = mac_get_grp_primary(tgrp);
7616 				mrp = MCIP_RESOURCE_PROPS(mcip);
7617 				if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7618 					continue;
7619 				if ((tgrp->mrg_cur_count +
7620 				    defgrp->mrg_cur_count) < (modify + 1)) {
7621 					continue;
7622 				}
7623 				/* OK, we can switch this to s/w */
7624 				mac_tx_client_quiesce(
7625 				    (mac_client_handle_t)mcip);
7626 				mac_tx_switch_group(mcip, tgrp, defgrp);
7627 				mac_tx_client_restart(
7628 				    (mac_client_handle_t)mcip);
7629 			}
7630 		}
7631 		if (defgrp->mrg_cur_count < (modify + 1))
7632 			return (ENOSPC);
7633 	}
7634 	if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7635 	    group, mcip->mci_share, modify)) != 0) {
7636 		return (rv);
7637 	}
7638 	return (0);
7639 }
7640 
7641 /*
7642  * Given the poolname in mac_resource_props, find the cpupart
7643  * that is associated with this pool.  The cpupart will be used
7644  * later for finding the cpus to be bound to the networking threads.
7645  *
7646  * use_default is set B_TRUE if pools are enabled and pool_default
7647  * is returned.  This avoids a 2nd lookup to set the poolname
7648  * for pool-effective.
7649  *
7650  * returns:
7651  *
7652  *    NULL -   pools are disabled or if the 'cpus' property is set.
7653  *    cpupart of pool_default  - pools are enabled and the pool
7654  *             is not available or poolname is blank
7655  *    cpupart of named pool    - pools are enabled and the pool
7656  *             is available.
7657  */
7658 cpupart_t *
7659 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7660 {
7661 	pool_t		*pool;
7662 	cpupart_t	*cpupart;
7663 
7664 	*use_default = B_FALSE;
7665 
7666 	/* CPUs property is set */
7667 	if (mrp->mrp_mask & MRP_CPUS)
7668 		return (NULL);
7669 
7670 	ASSERT(pool_lock_held());
7671 
7672 	/* Pools are disabled, no pset */
7673 	if (pool_state == POOL_DISABLED)
7674 		return (NULL);
7675 
7676 	/* Pools property is set */
7677 	if (mrp->mrp_mask & MRP_POOL) {
7678 		if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7679 			/* Pool not found */
7680 			DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7681 			    mrp->mrp_pool);
7682 			*use_default = B_TRUE;
7683 			pool = pool_default;
7684 		}
7685 	/* Pools property is not set */
7686 	} else {
7687 		*use_default = B_TRUE;
7688 		pool = pool_default;
7689 	}
7690 
7691 	/* Find the CPU pset that corresponds to the pool */
7692 	mutex_enter(&cpu_lock);
7693 	if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7694 		DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7695 		    pool->pool_pset->pset_id);
7696 	}
7697 	mutex_exit(&cpu_lock);
7698 
7699 	return (cpupart);
7700 }
7701 
7702 void
7703 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7704     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7705 {
7706 	ASSERT(pool_lock_held());
7707 
7708 	if (cpupart != NULL) {
7709 		emrp->mrp_mask |= MRP_POOL;
7710 		if (use_default) {
7711 			(void) strcpy(emrp->mrp_pool,
7712 			    "pool_default");
7713 		} else {
7714 			ASSERT(strlen(mrp->mrp_pool) != 0);
7715 			(void) strcpy(emrp->mrp_pool,
7716 			    mrp->mrp_pool);
7717 		}
7718 	} else {
7719 		emrp->mrp_mask &= ~MRP_POOL;
7720 		bzero(emrp->mrp_pool, MAXPATHLEN);
7721 	}
7722 }
7723 
7724 struct mac_pool_arg {
7725 	char		mpa_poolname[MAXPATHLEN];
7726 	pool_event_t	mpa_what;
7727 };
7728 
7729 /*ARGSUSED*/
7730 static uint_t
7731 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7732 {
7733 	struct mac_pool_arg	*mpa = arg;
7734 	mac_impl_t		*mip = (mac_impl_t *)val;
7735 	mac_client_impl_t	*mcip;
7736 	mac_resource_props_t	*mrp, *emrp;
7737 	boolean_t		pool_update = B_FALSE;
7738 	boolean_t		pool_clear = B_FALSE;
7739 	boolean_t		use_default = B_FALSE;
7740 	cpupart_t		*cpupart = NULL;
7741 
7742 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7743 	i_mac_perim_enter(mip);
7744 	for (mcip = mip->mi_clients_list; mcip != NULL;
7745 	    mcip = mcip->mci_client_next) {
7746 		pool_update = B_FALSE;
7747 		pool_clear = B_FALSE;
7748 		use_default = B_FALSE;
7749 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7750 		emrp = MCIP_EFFECTIVE_PROPS(mcip);
7751 
7752 		/*
7753 		 * When pools are enabled
7754 		 */
7755 		if ((mpa->mpa_what == POOL_E_ENABLE) &&
7756 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7757 			mrp->mrp_mask |= MRP_POOL;
7758 			pool_update = B_TRUE;
7759 		}
7760 
7761 		/*
7762 		 * When pools are disabled
7763 		 */
7764 		if ((mpa->mpa_what == POOL_E_DISABLE) &&
7765 		    ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7766 			mrp->mrp_mask |= MRP_POOL;
7767 			pool_clear = B_TRUE;
7768 		}
7769 
7770 		/*
7771 		 * Look for links with the pool property set and the poolname
7772 		 * matching the one which is changing.
7773 		 */
7774 		if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7775 			/*
7776 			 * The pool associated with the link has changed.
7777 			 */
7778 			if (mpa->mpa_what == POOL_E_CHANGE) {
7779 				mrp->mrp_mask |= MRP_POOL;
7780 				pool_update = B_TRUE;
7781 			}
7782 		}
7783 
7784 		/*
7785 		 * This link is associated with pool_default and
7786 		 * pool_default has changed.
7787 		 */
7788 		if ((mpa->mpa_what == POOL_E_CHANGE) &&
7789 		    (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7790 		    (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7791 			mrp->mrp_mask |= MRP_POOL;
7792 			pool_update = B_TRUE;
7793 		}
7794 
7795 		/*
7796 		 * Get new list of cpus for the pool, bind network
7797 		 * threads to new list of cpus and update resources.
7798 		 */
7799 		if (pool_update) {
7800 			if (MCIP_DATAPATH_SETUP(mcip)) {
7801 				pool_lock();
7802 				cpupart = mac_pset_find(mrp, &use_default);
7803 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7804 				    mac_rx_deliver, mcip, NULL, cpupart);
7805 				mac_set_pool_effective(use_default, cpupart,
7806 				    mrp, emrp);
7807 				pool_unlock();
7808 			}
7809 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7810 			    B_FALSE);
7811 		}
7812 
7813 		/*
7814 		 * Clear the effective pool and bind network threads
7815 		 * to any available CPU.
7816 		 */
7817 		if (pool_clear) {
7818 			if (MCIP_DATAPATH_SETUP(mcip)) {
7819 				emrp->mrp_mask &= ~MRP_POOL;
7820 				bzero(emrp->mrp_pool, MAXPATHLEN);
7821 				mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7822 				    mac_rx_deliver, mcip, NULL, NULL);
7823 			}
7824 			mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7825 			    B_FALSE);
7826 		}
7827 	}
7828 	i_mac_perim_exit(mip);
7829 	kmem_free(mrp, sizeof (*mrp));
7830 	return (MH_WALK_CONTINUE);
7831 }
7832 
7833 static void
7834 mac_pool_update(void *arg)
7835 {
7836 	mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7837 	kmem_free(arg, sizeof (struct mac_pool_arg));
7838 }
7839 
7840 /*
7841  * Callback function to be executed when a noteworthy pool event
7842  * takes place.
7843  */
7844 /* ARGSUSED */
7845 static void
7846 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7847 {
7848 	pool_t			*pool;
7849 	char			*poolname = NULL;
7850 	struct mac_pool_arg	*mpa;
7851 
7852 	pool_lock();
7853 	mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7854 
7855 	switch (what) {
7856 	case POOL_E_ENABLE:
7857 	case POOL_E_DISABLE:
7858 		break;
7859 
7860 	case POOL_E_CHANGE:
7861 		pool = pool_lookup_pool_by_id(id);
7862 		if (pool == NULL) {
7863 			kmem_free(mpa, sizeof (struct mac_pool_arg));
7864 			pool_unlock();
7865 			return;
7866 		}
7867 		pool_get_name(pool, &poolname);
7868 		(void) strlcpy(mpa->mpa_poolname, poolname,
7869 		    sizeof (mpa->mpa_poolname));
7870 		break;
7871 
7872 	default:
7873 		kmem_free(mpa, sizeof (struct mac_pool_arg));
7874 		pool_unlock();
7875 		return;
7876 	}
7877 	pool_unlock();
7878 
7879 	mpa->mpa_what = what;
7880 
7881 	mac_pool_update(mpa);
7882 }
7883 
7884 /*
7885  * Set effective rings property. This could be called from datapath_setup/
7886  * datapath_teardown or set-linkprop.
7887  * If the group is reserved we just go ahead and set the effective rings.
7888  * Additionally, for TX this could mean the default  group has lost/gained
7889  * some rings, so if the default group is reserved, we need to adjust the
7890  * effective rings for the default group clients. For RX, if we are working
7891  * with the non-default group, we just need * to reset the effective props
7892  * for the default group clients.
7893  */
7894 void
7895 mac_set_rings_effective(mac_client_impl_t *mcip)
7896 {
7897 	mac_impl_t		*mip = mcip->mci_mip;
7898 	mac_group_t		*grp;
7899 	mac_group_t		*defgrp;
7900 	flow_entry_t		*flent = mcip->mci_flent;
7901 	mac_resource_props_t	*emrp = MCIP_EFFECTIVE_PROPS(mcip);
7902 	mac_grp_client_t	*mgcp;
7903 	mac_client_impl_t	*gmcip;
7904 
7905 	grp = flent->fe_rx_ring_group;
7906 	if (grp != NULL) {
7907 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
7908 		/*
7909 		 * If we have reserved a group, set the effective rings
7910 		 * to the ring count in the group.
7911 		 */
7912 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7913 			emrp->mrp_mask |= MRP_RX_RINGS;
7914 			emrp->mrp_nrxrings = grp->mrg_cur_count;
7915 		}
7916 
7917 		/*
7918 		 * We go through the clients in the shared group and
7919 		 * reset the effective properties. It is possible this
7920 		 * might have already been done for some client (i.e.
7921 		 * if some client is being moved to a group that is
7922 		 * already shared). The case where the default group is
7923 		 * RESERVED is taken care of above (note in the RX side if
7924 		 * there is a non-default group, the default group is always
7925 		 * SHARED).
7926 		 */
7927 		if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7928 			if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7929 				mgcp = grp->mrg_clients;
7930 			else
7931 				mgcp = defgrp->mrg_clients;
7932 			while (mgcp != NULL) {
7933 				gmcip = mgcp->mgc_client;
7934 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7935 				if (emrp->mrp_mask & MRP_RX_RINGS) {
7936 					emrp->mrp_mask &= ~MRP_RX_RINGS;
7937 					emrp->mrp_nrxrings = 0;
7938 				}
7939 				mgcp = mgcp->mgc_next;
7940 			}
7941 		}
7942 	}
7943 
7944 	/* Now the TX side */
7945 	grp = flent->fe_tx_ring_group;
7946 	if (grp != NULL) {
7947 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
7948 
7949 		if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7950 			emrp->mrp_mask |= MRP_TX_RINGS;
7951 			emrp->mrp_ntxrings = grp->mrg_cur_count;
7952 		} else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7953 			mgcp = grp->mrg_clients;
7954 			while (mgcp != NULL) {
7955 				gmcip = mgcp->mgc_client;
7956 				emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7957 				if (emrp->mrp_mask & MRP_TX_RINGS) {
7958 					emrp->mrp_mask &= ~MRP_TX_RINGS;
7959 					emrp->mrp_ntxrings = 0;
7960 				}
7961 				mgcp = mgcp->mgc_next;
7962 			}
7963 		}
7964 
7965 		/*
7966 		 * If the group is not the default group and the default
7967 		 * group is reserved, the ring count in the default group
7968 		 * might have changed, update it.
7969 		 */
7970 		if (grp != defgrp &&
7971 		    defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7972 			gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7973 			emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7974 			emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7975 		}
7976 	}
7977 	emrp = MCIP_EFFECTIVE_PROPS(mcip);
7978 }
7979 
7980 /*
7981  * Check if the primary is in the default group. If so, see if we
7982  * can give it a an exclusive group now that another client is
7983  * being configured. We take the primary out of the default group
7984  * because the multicast/broadcast packets for the all the clients
7985  * will land in the default ring in the default group which means
7986  * any client in the default group, even if it is the only on in
7987  * the group, will lose exclusive access to the rings, hence
7988  * polling.
7989  */
7990 mac_client_impl_t *
7991 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
7992 {
7993 	mac_impl_t		*mip = mcip->mci_mip;
7994 	mac_group_t		*defgrp = MAC_DEFAULT_RX_GROUP(mip);
7995 	flow_entry_t		*flent = mcip->mci_flent;
7996 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
7997 	uint8_t			*mac_addr;
7998 	mac_group_t		*ngrp;
7999 
8000 	/*
8001 	 * Check if the primary is in the default group, if not
8002 	 * or if it is explicitly configured to be in the default
8003 	 * group OR set the RX rings property, return.
8004 	 */
8005 	if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8006 		return (NULL);
8007 
8008 	/*
8009 	 * If the new client needs an exclusive group and we
8010 	 * don't have another for the primary, return.
8011 	 */
8012 	if (rxhw && mip->mi_rxhwclnt_avail < 2)
8013 		return (NULL);
8014 
8015 	mac_addr = flent->fe_flow_desc.fd_dst_mac;
8016 	/*
8017 	 * We call this when we are setting up the datapath for
8018 	 * the first non-primary.
8019 	 */
8020 	ASSERT(mip->mi_nactiveclients == 2);
8021 	/*
8022 	 * OK, now we have the primary that needs to be relocated.
8023 	 */
8024 	ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8025 	if (ngrp == NULL)
8026 		return (NULL);
8027 	if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8028 		mac_stop_group(ngrp);
8029 		return (NULL);
8030 	}
8031 	return (mcip);
8032 }
8033