xref: /titanic_52/usr/src/uts/common/io/lofi.c (revision 8682d1ef2a0960ed5a9f05b9448eaa3e68ac931f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * lofi (loopback file) driver - allows you to attach a file to a device,
27  * which can then be accessed through that device. The simple model is that
28  * you tell lofi to open a file, and then use the block device you get as
29  * you would any block device. lofi translates access to the block device
30  * into I/O on the underlying file. This is mostly useful for
31  * mounting images of filesystems.
32  *
33  * lofi is controlled through /dev/lofictl - this is the only device exported
34  * during attach, and is minor number 0. lofiadm communicates with lofi through
35  * ioctls on this device. When a file is attached to lofi, block and character
36  * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices
37  * are identified by their minor number, and the minor number is also used
38  * as the name in /dev/lofi. If we ever decide to support virtual disks,
39  * we'll have to divide the minor number space to identify fdisk partitions
40  * and slices, and the name will then be the minor number shifted down a
41  * few bits. Minor devices are tracked with state structures handled with
42  * ddi_soft_state(9F) for simplicity.
43  *
44  * A file attached to lofi is opened when attached and not closed until
45  * explicitly detached from lofi. This seems more sensible than deferring
46  * the open until the /dev/lofi device is opened, for a number of reasons.
47  * One is that any failure is likely to be noticed by the person (or script)
48  * running lofiadm. Another is that it would be a security problem if the
49  * file was replaced by another one after being added but before being opened.
50  *
51  * The only hard part about lofi is the ioctls. In order to support things
52  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
53  * So it has to fake disk geometry and partition information. More may need
54  * to be faked if your favorite utility doesn't work and you think it should
55  * (fdformat doesn't work because it really wants to know the type of floppy
56  * controller to talk to, and that didn't seem easy to fake. Or possibly even
57  * necessary, since we have mkfs_pcfs now).
58  *
59  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
60  * support simulation of hotplug events, an optional force flag is provided.
61  * If a lofi device is open when a force detach is requested, then the
62  * underlying file is closed and any subsequent operations return EIO.  When the
63  * device is closed for the last time, it will be cleaned up at that time.  In
64  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
65  * detached but not removed.
66  *
67  * Known problems:
68  *
69  *	UFS logging. Mounting a UFS filesystem image "logging"
70  *	works for basic copy testing but wedges during a build of ON through
71  *	that image. Some deadlock in lufs holding the log mutex and then
72  *	getting stuck on a buf. So for now, don't do that.
73  *
74  *	Direct I/O. Since the filesystem data is being cached in the buffer
75  *	cache, _and_ again in the underlying filesystem, it's tempting to
76  *	enable direct I/O on the underlying file. Don't, because that deadlocks.
77  *	I think to fix the cache-twice problem we might need filesystem support.
78  *
79  * Interesting things to do:
80  *
81  *	Allow multiple files for each device. A poor-man's metadisk, basically.
82  *
83  *	Pass-through ioctls on block devices. You can (though it's not
84  *	documented), give lofi a block device as a file name. Then we shouldn't
85  *	need to fake a geometry, however, it may be relevant if you're replacing
86  *	metadisk, or using lofi to get crypto.
87  *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
88  *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
89  *	In fact this even makes sense if you have lofi "above" metadisk.
90  *
91  * Encryption:
92  *	Each lofi device can have its own symmetric key and cipher.
93  *	They are passed to us by lofiadm(1m) in the correct format for use
94  *	with the misc/kcf crypto_* routines.
95  *
96  *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
97  *	on the "master" key held in the lsp and the block number of the buffer.
98  */
99 
100 #include <sys/types.h>
101 #include <netinet/in.h>
102 #include <sys/sysmacros.h>
103 #include <sys/uio.h>
104 #include <sys/kmem.h>
105 #include <sys/cred.h>
106 #include <sys/mman.h>
107 #include <sys/errno.h>
108 #include <sys/aio_req.h>
109 #include <sys/stat.h>
110 #include <sys/file.h>
111 #include <sys/modctl.h>
112 #include <sys/conf.h>
113 #include <sys/debug.h>
114 #include <sys/vnode.h>
115 #include <sys/lofi.h>
116 #include <sys/fcntl.h>
117 #include <sys/pathname.h>
118 #include <sys/filio.h>
119 #include <sys/fdio.h>
120 #include <sys/open.h>
121 #include <sys/disp.h>
122 #include <vm/seg_map.h>
123 #include <sys/ddi.h>
124 #include <sys/sunddi.h>
125 #include <sys/zmod.h>
126 #include <sys/id_space.h>
127 #include <sys/mkdev.h>
128 #include <sys/crypto/common.h>
129 #include <sys/crypto/api.h>
130 #include <sys/rctl.h>
131 #include <LzmaDec.h>
132 
133 /*
134  * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h.
135  * Crypto metadata, if it exists, is located at the end of the boot block
136  * (BBOFF + BBSIZE, which is SBOFF).  The super block and everything after
137  * is offset by the size of the crypto metadata which is handled by
138  * lsp->ls_crypto_offset.
139  */
140 #define	CRYOFF	((off_t)8192)
141 
142 #define	NBLOCKS_PROP_NAME	"Nblocks"
143 #define	SIZE_PROP_NAME		"Size"
144 #define	ZONE_PROP_NAME		"zone"
145 
146 #define	SETUP_C_DATA(cd, buf, len) 		\
147 	(cd).cd_format = CRYPTO_DATA_RAW;	\
148 	(cd).cd_offset = 0;			\
149 	(cd).cd_miscdata = NULL;		\
150 	(cd).cd_length = (len);			\
151 	(cd).cd_raw.iov_base = (buf);		\
152 	(cd).cd_raw.iov_len = (len);
153 
154 #define	UIO_CHECK(uio)	\
155 	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
156 	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
157 		return (EINVAL); \
158 	}
159 
160 static dev_info_t *lofi_dip = NULL;
161 static void *lofi_statep = NULL;
162 static kmutex_t lofi_lock;		/* state lock */
163 static id_space_t *lofi_minor_id;
164 static list_t lofi_list;
165 static zone_key_t lofi_zone_key;
166 
167 /*
168  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
169  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
170  * high.  If we want to be assured that the underlying device is always busy,
171  * we must be sure that the number of bytes enqueued when the number of
172  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
173  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
174  * set maxalloc to be the maximum throughput (in bytes per second) of the
175  * underlying device divided by the minimum I/O size.  We assume a realistic
176  * maximum throughput of one hundred megabytes per second; we set maxalloc on
177  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
178  */
179 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
180 static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
181 
182 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
183 
184 /*
185  * To avoid decompressing data in a compressed segment multiple times
186  * when accessing small parts of a segment's data, we cache and reuse
187  * the uncompressed segment's data.
188  *
189  * A single cached segment is sufficient to avoid lots of duplicate
190  * segment decompress operations. A small cache size also reduces the
191  * memory footprint.
192  *
193  * lofi_max_comp_cache is the maximum number of decompressed data segments
194  * cached for each compressed lofi image. It can be set to 0 to disable
195  * caching.
196  */
197 
198 uint32_t lofi_max_comp_cache = 1;
199 
200 static int gzip_decompress(void *src, size_t srclen, void *dst,
201 	size_t *destlen, int level);
202 
203 static int lzma_decompress(void *src, size_t srclen, void *dst,
204 	size_t *dstlen, int level);
205 
206 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
207 	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
208 	{gzip_decompress,	NULL,	6,	"gzip-6"},
209 	{gzip_decompress,	NULL,	9,	"gzip-9"},
210 	{lzma_decompress,	NULL,	0,	"lzma"}
211 };
212 
213 /*ARGSUSED*/
214 static void
215 *SzAlloc(void *p, size_t size)
216 {
217 	return (kmem_alloc(size, KM_SLEEP));
218 }
219 
220 /*ARGSUSED*/
221 static void
222 SzFree(void *p, void *address, size_t size)
223 {
224 	kmem_free(address, size);
225 }
226 
227 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
228 
229 /*
230  * Free data referenced by the linked list of cached uncompressed
231  * segments.
232  */
233 static void
234 lofi_free_comp_cache(struct lofi_state *lsp)
235 {
236 	struct lofi_comp_cache *lc;
237 
238 	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
239 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
240 		kmem_free(lc, sizeof (struct lofi_comp_cache));
241 		lsp->ls_comp_cache_count--;
242 	}
243 	ASSERT(lsp->ls_comp_cache_count == 0);
244 }
245 
246 static int
247 is_opened(struct lofi_state *lsp)
248 {
249 	ASSERT(MUTEX_HELD(&lofi_lock));
250 	return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count);
251 }
252 
253 static int
254 mark_opened(struct lofi_state *lsp, int otyp)
255 {
256 	ASSERT(MUTEX_HELD(&lofi_lock));
257 	switch (otyp) {
258 	case OTYP_CHR:
259 		lsp->ls_chr_open = 1;
260 		break;
261 	case OTYP_BLK:
262 		lsp->ls_blk_open = 1;
263 		break;
264 	case OTYP_LYR:
265 		lsp->ls_lyr_open_count++;
266 		break;
267 	default:
268 		return (-1);
269 	}
270 	return (0);
271 }
272 
273 static void
274 mark_closed(struct lofi_state *lsp, int otyp)
275 {
276 	ASSERT(MUTEX_HELD(&lofi_lock));
277 	switch (otyp) {
278 	case OTYP_CHR:
279 		lsp->ls_chr_open = 0;
280 		break;
281 	case OTYP_BLK:
282 		lsp->ls_blk_open = 0;
283 		break;
284 	case OTYP_LYR:
285 		lsp->ls_lyr_open_count--;
286 		break;
287 	default:
288 		break;
289 	}
290 }
291 
292 static void
293 lofi_free_crypto(struct lofi_state *lsp)
294 {
295 	ASSERT(MUTEX_HELD(&lofi_lock));
296 
297 	if (lsp->ls_crypto_enabled) {
298 		/*
299 		 * Clean up the crypto state so that it doesn't hang around
300 		 * in memory after we are done with it.
301 		 */
302 		if (lsp->ls_key.ck_data != NULL) {
303 			bzero(lsp->ls_key.ck_data,
304 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
305 			kmem_free(lsp->ls_key.ck_data,
306 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
307 			lsp->ls_key.ck_data = NULL;
308 			lsp->ls_key.ck_length = 0;
309 		}
310 
311 		if (lsp->ls_mech.cm_param != NULL) {
312 			kmem_free(lsp->ls_mech.cm_param,
313 			    lsp->ls_mech.cm_param_len);
314 			lsp->ls_mech.cm_param = NULL;
315 			lsp->ls_mech.cm_param_len = 0;
316 		}
317 
318 		if (lsp->ls_iv_mech.cm_param != NULL) {
319 			kmem_free(lsp->ls_iv_mech.cm_param,
320 			    lsp->ls_iv_mech.cm_param_len);
321 			lsp->ls_iv_mech.cm_param = NULL;
322 			lsp->ls_iv_mech.cm_param_len = 0;
323 		}
324 
325 		mutex_destroy(&lsp->ls_crypto_lock);
326 	}
327 }
328 
329 static void
330 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
331 {
332 	minor_t minor = getminor(lsp->ls_dev);
333 	int i;
334 
335 	ASSERT(MUTEX_HELD(&lofi_lock));
336 
337 	list_remove(&lofi_list, lsp);
338 
339 	lofi_free_crypto(lsp);
340 
341 	/*
342 	 * Free pre-allocated compressed buffers
343 	 */
344 	if (lsp->ls_comp_bufs != NULL) {
345 		for (i = 0; i < lofi_taskq_nthreads; i++) {
346 			if (lsp->ls_comp_bufs[i].bufsize > 0)
347 				kmem_free(lsp->ls_comp_bufs[i].buf,
348 				    lsp->ls_comp_bufs[i].bufsize);
349 		}
350 		kmem_free(lsp->ls_comp_bufs,
351 		    sizeof (struct compbuf) * lofi_taskq_nthreads);
352 	}
353 
354 	(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
355 	    1, 0, credp, NULL);
356 	VN_RELE(lsp->ls_vp);
357 	if (lsp->ls_stacked_vp != lsp->ls_vp)
358 		VN_RELE(lsp->ls_stacked_vp);
359 
360 	taskq_destroy(lsp->ls_taskq);
361 
362 	if (lsp->ls_kstat != NULL)
363 		kstat_delete(lsp->ls_kstat);
364 
365 	/*
366 	 * Free cached decompressed segment data
367 	 */
368 	lofi_free_comp_cache(lsp);
369 	list_destroy(&lsp->ls_comp_cache);
370 
371 	if (lsp->ls_uncomp_seg_sz > 0) {
372 		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
373 		lsp->ls_uncomp_seg_sz = 0;
374 	}
375 
376 	rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
377 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
378 
379 	mutex_destroy(&lsp->ls_comp_cache_lock);
380 	mutex_destroy(&lsp->ls_comp_bufs_lock);
381 	mutex_destroy(&lsp->ls_kstat_lock);
382 	mutex_destroy(&lsp->ls_vp_lock);
383 
384 	ASSERT(ddi_get_soft_state(lofi_statep, minor) == lsp);
385 	ddi_soft_state_free(lofi_statep, minor);
386 	id_free(lofi_minor_id, minor);
387 }
388 
389 static void
390 lofi_free_dev(dev_t dev)
391 {
392 	minor_t minor = getminor(dev);
393 	char namebuf[50];
394 
395 	ASSERT(MUTEX_HELD(&lofi_lock));
396 
397 	(void) ddi_prop_remove(dev, lofi_dip, ZONE_PROP_NAME);
398 	(void) ddi_prop_remove(dev, lofi_dip, SIZE_PROP_NAME);
399 	(void) ddi_prop_remove(dev, lofi_dip, NBLOCKS_PROP_NAME);
400 
401 	(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
402 	ddi_remove_minor_node(lofi_dip, namebuf);
403 	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
404 	ddi_remove_minor_node(lofi_dip, namebuf);
405 }
406 
407 /*ARGSUSED*/
408 static void
409 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
410 {
411 	struct lofi_state *lsp;
412 	struct lofi_state *next;
413 
414 	mutex_enter(&lofi_lock);
415 
416 	for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
417 
418 		/* lofi_destroy() frees lsp */
419 		next = list_next(&lofi_list, lsp);
420 
421 		if (lsp->ls_zone.zref_zone->zone_id != zoneid)
422 			continue;
423 
424 		/*
425 		 * No in-zone processes are running, but something has this
426 		 * open.  It's either a global zone process, or a lofi
427 		 * mount.  In either case we set ls_cleanup so the last
428 		 * user destroys the device.
429 		 */
430 		if (is_opened(lsp)) {
431 			lsp->ls_cleanup = 1;
432 		} else {
433 			lofi_free_dev(lsp->ls_dev);
434 			lofi_destroy(lsp, kcred);
435 		}
436 	}
437 
438 	mutex_exit(&lofi_lock);
439 }
440 
441 /*ARGSUSED*/
442 static int
443 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
444 {
445 	minor_t	minor;
446 	struct lofi_state *lsp;
447 
448 	/*
449 	 * lofiadm -a /dev/lofi/1 gets us here.
450 	 */
451 	if (mutex_owner(&lofi_lock) == curthread)
452 		return (EINVAL);
453 
454 	mutex_enter(&lofi_lock);
455 
456 	minor = getminor(*devp);
457 
458 	/* master control device */
459 	if (minor == 0) {
460 		mutex_exit(&lofi_lock);
461 		return (0);
462 	}
463 
464 	/* otherwise, the mapping should already exist */
465 	lsp = ddi_get_soft_state(lofi_statep, minor);
466 	if (lsp == NULL) {
467 		mutex_exit(&lofi_lock);
468 		return (EINVAL);
469 	}
470 
471 	if (lsp->ls_vp == NULL) {
472 		mutex_exit(&lofi_lock);
473 		return (ENXIO);
474 	}
475 
476 	if (mark_opened(lsp, otyp) == -1) {
477 		mutex_exit(&lofi_lock);
478 		return (EINVAL);
479 	}
480 
481 	mutex_exit(&lofi_lock);
482 	return (0);
483 }
484 
485 /*ARGSUSED*/
486 static int
487 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
488 {
489 	minor_t	minor;
490 	struct lofi_state *lsp;
491 
492 	mutex_enter(&lofi_lock);
493 	minor = getminor(dev);
494 	lsp = ddi_get_soft_state(lofi_statep, minor);
495 	if (lsp == NULL) {
496 		mutex_exit(&lofi_lock);
497 		return (EINVAL);
498 	}
499 
500 	if (minor == 0) {
501 		mutex_exit(&lofi_lock);
502 		return (0);
503 	}
504 
505 	mark_closed(lsp, otyp);
506 
507 	/*
508 	 * If we forcibly closed the underlying device (li_force), or
509 	 * asked for cleanup (li_cleanup), finish up if we're the last
510 	 * out of the door.
511 	 */
512 	if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) {
513 		lofi_free_dev(lsp->ls_dev);
514 		lofi_destroy(lsp, credp);
515 	}
516 
517 	mutex_exit(&lofi_lock);
518 	return (0);
519 }
520 
521 /*
522  * Sets the mechanism's initialization vector (IV) if one is needed.
523  * The IV is computed from the data block number.  lsp->ls_mech is
524  * altered so that:
525  *	lsp->ls_mech.cm_param_len is set to the IV len.
526  *	lsp->ls_mech.cm_param is set to the IV.
527  */
528 static int
529 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
530 {
531 	int	ret;
532 	crypto_data_t cdata;
533 	char	*iv;
534 	size_t	iv_len;
535 	size_t	min;
536 	void	*data;
537 	size_t	datasz;
538 
539 	ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
540 
541 	if (lsp == NULL)
542 		return (CRYPTO_DEVICE_ERROR);
543 
544 	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
545 	if (lsp->ls_iv_type == IVM_NONE) {
546 		return (CRYPTO_SUCCESS);
547 	}
548 
549 	/*
550 	 * if kmem already alloced from previous call and it's the same size
551 	 * we need now, just recycle it; allocate new kmem only if we have to
552 	 */
553 	if (lsp->ls_mech.cm_param == NULL ||
554 	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
555 		iv_len = lsp->ls_iv_len;
556 		iv = kmem_zalloc(iv_len, KM_SLEEP);
557 	} else {
558 		iv_len = lsp->ls_mech.cm_param_len;
559 		iv = lsp->ls_mech.cm_param;
560 		bzero(iv, iv_len);
561 	}
562 
563 	switch (lsp->ls_iv_type) {
564 	case IVM_ENC_BLKNO:
565 		/* iv is not static, lblkno changes each time */
566 		data = &lblkno;
567 		datasz = sizeof (lblkno);
568 		break;
569 	default:
570 		data = 0;
571 		datasz = 0;
572 		break;
573 	}
574 
575 	/*
576 	 * write blkno into the iv buffer padded on the left in case
577 	 * blkno ever grows bigger than its current longlong_t size
578 	 * or a variation other than blkno is used for the iv data
579 	 */
580 	min = MIN(datasz, iv_len);
581 	bcopy(data, iv + (iv_len - min), min);
582 
583 	/* encrypt the data in-place to get the IV */
584 	SETUP_C_DATA(cdata, iv, iv_len);
585 
586 	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
587 	    NULL, NULL, NULL);
588 	if (ret != CRYPTO_SUCCESS) {
589 		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
590 		    lblkno, ret);
591 		if (lsp->ls_mech.cm_param != iv)
592 			kmem_free(iv, iv_len);
593 
594 		return (ret);
595 	}
596 
597 	/* clean up the iv from the last computation */
598 	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
599 		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
600 
601 	lsp->ls_mech.cm_param_len = iv_len;
602 	lsp->ls_mech.cm_param = iv;
603 
604 	return (CRYPTO_SUCCESS);
605 }
606 
607 /*
608  * Performs encryption and decryption of a chunk of data of size "len",
609  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
610  * DEV_BSIZE.
611  */
612 static int
613 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
614     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
615 {
616 	crypto_data_t cdata;
617 	crypto_data_t wdata;
618 	int ret;
619 	longlong_t lblkno = bp->b_lblkno;
620 
621 	mutex_enter(&lsp->ls_crypto_lock);
622 
623 	/*
624 	 * though we could encrypt/decrypt entire "len" chunk of data, we need
625 	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
626 	 */
627 	SETUP_C_DATA(cdata, plaintext, len);
628 	cdata.cd_length = DEV_BSIZE;
629 	if (ciphertext != NULL) {		/* not in-place crypto */
630 		SETUP_C_DATA(wdata, ciphertext, len);
631 		wdata.cd_length = DEV_BSIZE;
632 	}
633 
634 	do {
635 		ret = lofi_blk_mech(lsp, lblkno);
636 		if (ret != CRYPTO_SUCCESS)
637 			continue;
638 
639 		if (op_encrypt) {
640 			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
641 			    &lsp->ls_key, NULL,
642 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
643 		} else {
644 			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
645 			    &lsp->ls_key, NULL,
646 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
647 		}
648 
649 		cdata.cd_offset += DEV_BSIZE;
650 		if (ciphertext != NULL)
651 			wdata.cd_offset += DEV_BSIZE;
652 		lblkno++;
653 	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
654 
655 	mutex_exit(&lsp->ls_crypto_lock);
656 
657 	if (ret != CRYPTO_SUCCESS) {
658 		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
659 		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
660 		    lblkno, ret);
661 	}
662 
663 	return (ret);
664 }
665 
666 #define	RDWR_RAW	1
667 #define	RDWR_BCOPY	2
668 
669 static int
670 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
671     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
672 {
673 	ssize_t resid;
674 	int isread;
675 	int error;
676 
677 	/*
678 	 * Handles reads/writes for both plain and encrypted lofi
679 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
680 	 * when it gets here.
681 	 */
682 
683 	isread = bp->b_flags & B_READ;
684 	if (isread) {
685 		if (method == RDWR_BCOPY) {
686 			/* DO NOT update bp->b_resid for bcopy */
687 			bcopy(bcopy_locn, bufaddr, len);
688 			error = 0;
689 		} else {		/* RDWR_RAW */
690 			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
691 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
692 			    &resid);
693 			bp->b_resid = resid;
694 		}
695 		if (lsp->ls_crypto_enabled && error == 0) {
696 			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
697 			    B_FALSE) != CRYPTO_SUCCESS) {
698 				/*
699 				 * XXX: original code didn't set residual
700 				 * back to len because no error was expected
701 				 * from bcopy() if encryption is not enabled
702 				 */
703 				if (method != RDWR_BCOPY)
704 					bp->b_resid = len;
705 				error = EIO;
706 			}
707 		}
708 		return (error);
709 	} else {
710 		void *iobuf = bufaddr;
711 
712 		if (lsp->ls_crypto_enabled) {
713 			/* don't do in-place crypto to keep bufaddr intact */
714 			iobuf = kmem_alloc(len, KM_SLEEP);
715 			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
716 			    B_TRUE) != CRYPTO_SUCCESS) {
717 				kmem_free(iobuf, len);
718 				if (method != RDWR_BCOPY)
719 					bp->b_resid = len;
720 				return (EIO);
721 			}
722 		}
723 		if (method == RDWR_BCOPY) {
724 			/* DO NOT update bp->b_resid for bcopy */
725 			bcopy(iobuf, bcopy_locn, len);
726 			error = 0;
727 		} else {		/* RDWR_RAW */
728 			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
729 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
730 			    &resid);
731 			bp->b_resid = resid;
732 		}
733 		if (lsp->ls_crypto_enabled) {
734 			kmem_free(iobuf, len);
735 		}
736 		return (error);
737 	}
738 }
739 
740 static int
741 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
742     struct lofi_state *lsp)
743 {
744 	int error;
745 	offset_t alignedoffset, mapoffset;
746 	size_t	xfersize;
747 	int	isread;
748 	int	smflags;
749 	caddr_t	mapaddr;
750 	size_t	len;
751 	enum seg_rw srw;
752 	int	save_error;
753 
754 	/*
755 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
756 	 * when it gets here.
757 	 */
758 	if (lsp->ls_crypto_enabled)
759 		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
760 
761 	/*
762 	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
763 	 * an 8K boundary, but the buf transfer address may not be
764 	 * aligned on more than a 512-byte boundary (we don't enforce
765 	 * that even though we could). This matters since the initial
766 	 * part of the transfer may not start at offset 0 within the
767 	 * segmap'd chunk. So we have to compensate for that with
768 	 * 'mapoffset'. Subsequent chunks always start off at the
769 	 * beginning, and the last is capped by b_resid
770 	 *
771 	 * Visually, where "|" represents page map boundaries:
772 	 *   alignedoffset (mapaddr begins at this segmap boundary)
773 	 *    |   offset (from beginning of file)
774 	 *    |    |	   len
775 	 *    v    v	    v
776 	 * ===|====X========|====...======|========X====|====
777 	 *	   /-------------...---------------/
778 	 *		^ bp->b_bcount/bp->b_resid at start
779 	 *    /----/--------/----...------/--------/
780 	 *	^	^	^   ^		^
781 	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
782 	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
783 	 *	|	1st xfersize (<= MAXBSIZE)
784 	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
785 	 *
786 	 * Notes: "alignedoffset" is "offset" rounded down to nearest
787 	 * MAXBSIZE boundary.  "len" is next page boundary of size
788 	 * PAGESIZE after "alignedoffset".
789 	 */
790 	mapoffset = offset & MAXBOFFSET;
791 	alignedoffset = offset - mapoffset;
792 	bp->b_resid = bp->b_bcount;
793 	isread = bp->b_flags & B_READ;
794 	srw = isread ? S_READ : S_WRITE;
795 	do {
796 		xfersize = MIN(lsp->ls_vp_comp_size - offset,
797 		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
798 		len = roundup(mapoffset + xfersize, PAGESIZE);
799 		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
800 		    alignedoffset, MAXBSIZE, 1, srw);
801 		/*
802 		 * Now fault in the pages. This lets us check
803 		 * for errors before we reference mapaddr and
804 		 * try to resolve the fault in bcopy (which would
805 		 * panic instead). And this can easily happen,
806 		 * particularly if you've lofi'd a file over NFS
807 		 * and someone deletes the file on the server.
808 		 */
809 		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
810 		    len, F_SOFTLOCK, srw);
811 		if (error) {
812 			(void) segmap_release(segkmap, mapaddr, 0);
813 			if (FC_CODE(error) == FC_OBJERR)
814 				error = FC_ERRNO(error);
815 			else
816 				error = EIO;
817 			break;
818 		}
819 		/* error may be non-zero for encrypted lofi */
820 		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
821 		    RDWR_BCOPY, mapaddr + mapoffset);
822 		if (error == 0) {
823 			bp->b_resid -= xfersize;
824 			bufaddr += xfersize;
825 			offset += xfersize;
826 		}
827 		smflags = 0;
828 		if (isread) {
829 			smflags |= SM_FREE;
830 			/*
831 			 * If we're reading an entire page starting
832 			 * at a page boundary, there's a good chance
833 			 * we won't need it again. Put it on the
834 			 * head of the freelist.
835 			 */
836 			if (mapoffset == 0 && xfersize == MAXBSIZE)
837 				smflags |= SM_DONTNEED;
838 		} else {
839 			/*
840 			 * Write back good pages, it is okay to
841 			 * always release asynchronous here as we'll
842 			 * follow with VOP_FSYNC for B_SYNC buffers.
843 			 */
844 			if (error == 0)
845 				smflags |= SM_WRITE | SM_ASYNC;
846 		}
847 		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
848 		    len, F_SOFTUNLOCK, srw);
849 		save_error = segmap_release(segkmap, mapaddr, smflags);
850 		if (error == 0)
851 			error = save_error;
852 		/* only the first map may start partial */
853 		mapoffset = 0;
854 		alignedoffset += MAXBSIZE;
855 	} while ((error == 0) && (bp->b_resid > 0) &&
856 	    (offset < lsp->ls_vp_comp_size));
857 
858 	return (error);
859 }
860 
861 /*
862  * Check if segment seg_index is present in the decompressed segment
863  * data cache.
864  *
865  * Returns a pointer to the decompressed segment data cache entry if
866  * found, and NULL when decompressed data for this segment is not yet
867  * cached.
868  */
869 static struct lofi_comp_cache *
870 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
871 {
872 	struct lofi_comp_cache *lc;
873 
874 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
875 
876 	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
877 	    lc = list_next(&lsp->ls_comp_cache, lc)) {
878 		if (lc->lc_index == seg_index) {
879 			/*
880 			 * Decompressed segment data was found in the
881 			 * cache.
882 			 *
883 			 * The cache uses an LRU replacement strategy;
884 			 * move the entry to head of list.
885 			 */
886 			list_remove(&lsp->ls_comp_cache, lc);
887 			list_insert_head(&lsp->ls_comp_cache, lc);
888 			return (lc);
889 		}
890 	}
891 	return (NULL);
892 }
893 
894 /*
895  * Add the data for a decompressed segment at segment index
896  * seg_index to the cache of the decompressed segments.
897  *
898  * Returns a pointer to the cache element structure in case
899  * the data was added to the cache; returns NULL when the data
900  * wasn't cached.
901  */
902 static struct lofi_comp_cache *
903 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
904     uchar_t *data)
905 {
906 	struct lofi_comp_cache *lc;
907 
908 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
909 
910 	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
911 		lc = list_remove_tail(&lsp->ls_comp_cache);
912 		ASSERT(lc != NULL);
913 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
914 		kmem_free(lc, sizeof (struct lofi_comp_cache));
915 		lsp->ls_comp_cache_count--;
916 	}
917 
918 	/*
919 	 * Do not cache when disabled by tunable variable
920 	 */
921 	if (lofi_max_comp_cache == 0)
922 		return (NULL);
923 
924 	/*
925 	 * When the cache has not yet reached the maximum allowed
926 	 * number of segments, allocate a new cache element.
927 	 * Otherwise the cache is full; reuse the last list element
928 	 * (LRU) for caching the decompressed segment data.
929 	 *
930 	 * The cache element for the new decompressed segment data is
931 	 * added to the head of the list.
932 	 */
933 	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
934 		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
935 		lc->lc_data = NULL;
936 		list_insert_head(&lsp->ls_comp_cache, lc);
937 		lsp->ls_comp_cache_count++;
938 	} else {
939 		lc = list_remove_tail(&lsp->ls_comp_cache);
940 		if (lc == NULL)
941 			return (NULL);
942 		list_insert_head(&lsp->ls_comp_cache, lc);
943 	}
944 
945 	/*
946 	 * Free old uncompressed segment data when reusing a cache
947 	 * entry.
948 	 */
949 	if (lc->lc_data != NULL)
950 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
951 
952 	lc->lc_data = data;
953 	lc->lc_index = seg_index;
954 	return (lc);
955 }
956 
957 
958 /*ARGSUSED*/
959 static int
960 gzip_decompress(void *src, size_t srclen, void *dst,
961     size_t *dstlen, int level)
962 {
963 	ASSERT(*dstlen >= srclen);
964 
965 	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
966 		return (-1);
967 	return (0);
968 }
969 
970 #define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
971 /*ARGSUSED*/
972 static int
973 lzma_decompress(void *src, size_t srclen, void *dst,
974 	size_t *dstlen, int level)
975 {
976 	size_t insizepure;
977 	void *actual_src;
978 	ELzmaStatus status;
979 
980 	insizepure = srclen - LZMA_HEADER_SIZE;
981 	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
982 
983 	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
984 	    (const Byte *)actual_src, &insizepure,
985 	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
986 	    &g_Alloc) != SZ_OK) {
987 		return (-1);
988 	}
989 	return (0);
990 }
991 
992 /*
993  * This is basically what strategy used to be before we found we
994  * needed task queues.
995  */
996 static void
997 lofi_strategy_task(void *arg)
998 {
999 	struct buf *bp = (struct buf *)arg;
1000 	int error;
1001 	int syncflag = 0;
1002 	struct lofi_state *lsp;
1003 	offset_t offset;
1004 	caddr_t	bufaddr;
1005 	size_t	len;
1006 	size_t	xfersize;
1007 	boolean_t bufinited = B_FALSE;
1008 
1009 	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1010 	if (lsp == NULL) {
1011 		error = ENXIO;
1012 		goto errout;
1013 	}
1014 	if (lsp->ls_kstat) {
1015 		mutex_enter(lsp->ls_kstat->ks_lock);
1016 		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1017 		mutex_exit(lsp->ls_kstat->ks_lock);
1018 	}
1019 	bp_mapin(bp);
1020 	bufaddr = bp->b_un.b_addr;
1021 	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
1022 	if (lsp->ls_crypto_enabled) {
1023 		/* encrypted data really begins after crypto header */
1024 		offset += lsp->ls_crypto_offset;
1025 	}
1026 	len = bp->b_bcount;
1027 	bufinited = B_TRUE;
1028 
1029 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1030 		error = EIO;
1031 		goto errout;
1032 	}
1033 
1034 	/*
1035 	 * If we're writing and the buffer was not B_ASYNC
1036 	 * we'll follow up with a VOP_FSYNC() to force any
1037 	 * asynchronous I/O to stable storage.
1038 	 */
1039 	if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1040 		syncflag = FSYNC;
1041 
1042 	/*
1043 	 * We used to always use vn_rdwr here, but we cannot do that because
1044 	 * we might decide to read or write from the the underlying
1045 	 * file during this call, which would be a deadlock because
1046 	 * we have the rw_lock. So instead we page, unless it's not
1047 	 * mapable or it's a character device or it's an encrypted lofi.
1048 	 */
1049 	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1050 	    lsp->ls_crypto_enabled) {
1051 		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1052 		    NULL);
1053 	} else if (lsp->ls_uncomp_seg_sz == 0) {
1054 		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1055 	} else {
1056 		uchar_t *compressed_seg = NULL, *cmpbuf;
1057 		uchar_t *uncompressed_seg = NULL;
1058 		lofi_compress_info_t *li;
1059 		size_t oblkcount;
1060 		ulong_t seglen;
1061 		uint64_t sblkno, eblkno, cmpbytes;
1062 		uint64_t uncompressed_seg_index;
1063 		struct lofi_comp_cache *lc;
1064 		offset_t sblkoff, eblkoff;
1065 		u_offset_t salign, ealign;
1066 		u_offset_t sdiff;
1067 		uint32_t comp_data_sz;
1068 		uint64_t i;
1069 		int j;
1070 
1071 		/*
1072 		 * From here on we're dealing primarily with compressed files
1073 		 */
1074 		ASSERT(!lsp->ls_crypto_enabled);
1075 
1076 		/*
1077 		 * Compressed files can only be read from and
1078 		 * not written to
1079 		 */
1080 		if (!(bp->b_flags & B_READ)) {
1081 			bp->b_resid = bp->b_bcount;
1082 			error = EROFS;
1083 			goto done;
1084 		}
1085 
1086 		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1087 		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1088 		/*
1089 		 * Compute starting and ending compressed segment numbers
1090 		 * We use only bitwise operations avoiding division and
1091 		 * modulus because we enforce the compression segment size
1092 		 * to a power of 2
1093 		 */
1094 		sblkno = offset >> lsp->ls_comp_seg_shift;
1095 		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1096 		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1097 		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1098 
1099 		/*
1100 		 * Check the decompressed segment cache.
1101 		 *
1102 		 * The cache is used only when the requested data
1103 		 * is within a segment. Requests that cross
1104 		 * segment boundaries bypass the cache.
1105 		 */
1106 		if (sblkno == eblkno ||
1107 		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1108 			/*
1109 			 * Request doesn't cross a segment boundary,
1110 			 * now check the cache.
1111 			 */
1112 			mutex_enter(&lsp->ls_comp_cache_lock);
1113 			lc = lofi_find_comp_data(lsp, sblkno);
1114 			if (lc != NULL) {
1115 				/*
1116 				 * We've found the decompressed segment
1117 				 * data in the cache; reuse it.
1118 				 */
1119 				bcopy(lc->lc_data + sblkoff, bufaddr,
1120 				    bp->b_bcount);
1121 				mutex_exit(&lsp->ls_comp_cache_lock);
1122 				bp->b_resid = 0;
1123 				error = 0;
1124 				goto done;
1125 			}
1126 			mutex_exit(&lsp->ls_comp_cache_lock);
1127 		}
1128 
1129 		/*
1130 		 * Align start offset to block boundary for segmap
1131 		 */
1132 		salign = lsp->ls_comp_seg_index[sblkno];
1133 		sdiff = salign & (DEV_BSIZE - 1);
1134 		salign -= sdiff;
1135 		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1136 			/*
1137 			 * We're dealing with the last segment of
1138 			 * the compressed file -- the size of this
1139 			 * segment *may not* be the same as the
1140 			 * segment size for the file
1141 			 */
1142 			eblkoff = (offset + bp->b_bcount) &
1143 			    (lsp->ls_uncomp_last_seg_sz - 1);
1144 			ealign = lsp->ls_vp_comp_size;
1145 		} else {
1146 			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1147 		}
1148 
1149 		/*
1150 		 * Preserve original request paramaters
1151 		 */
1152 		oblkcount = bp->b_bcount;
1153 
1154 		/*
1155 		 * Assign the calculated parameters
1156 		 */
1157 		comp_data_sz = ealign - salign;
1158 		bp->b_bcount = comp_data_sz;
1159 
1160 		/*
1161 		 * Buffers to hold compressed segments are pre-allocated
1162 		 * on a per-thread basis. Find a pre-allocated buffer
1163 		 * that is not currently in use and mark it for use.
1164 		 */
1165 		mutex_enter(&lsp->ls_comp_bufs_lock);
1166 		for (j = 0; j < lofi_taskq_nthreads; j++) {
1167 			if (lsp->ls_comp_bufs[j].inuse == 0) {
1168 				lsp->ls_comp_bufs[j].inuse = 1;
1169 				break;
1170 			}
1171 		}
1172 
1173 		mutex_exit(&lsp->ls_comp_bufs_lock);
1174 		ASSERT(j < lofi_taskq_nthreads);
1175 
1176 		/*
1177 		 * If the pre-allocated buffer size does not match
1178 		 * the size of the I/O request, re-allocate it with
1179 		 * the appropriate size
1180 		 */
1181 		if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1182 			if (lsp->ls_comp_bufs[j].bufsize > 0)
1183 				kmem_free(lsp->ls_comp_bufs[j].buf,
1184 				    lsp->ls_comp_bufs[j].bufsize);
1185 			lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1186 			    KM_SLEEP);
1187 			lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1188 		}
1189 		compressed_seg = lsp->ls_comp_bufs[j].buf;
1190 
1191 		/*
1192 		 * Map in the calculated number of blocks
1193 		 */
1194 		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1195 		    bp, lsp);
1196 
1197 		bp->b_bcount = oblkcount;
1198 		bp->b_resid = oblkcount;
1199 		if (error != 0)
1200 			goto done;
1201 
1202 		/*
1203 		 * decompress compressed blocks start
1204 		 */
1205 		cmpbuf = compressed_seg + sdiff;
1206 		for (i = sblkno; i <= eblkno; i++) {
1207 			ASSERT(i < lsp->ls_comp_index_sz - 1);
1208 			uchar_t *useg;
1209 
1210 			/*
1211 			 * The last segment is special in that it is
1212 			 * most likely not going to be the same
1213 			 * (uncompressed) size as the other segments.
1214 			 */
1215 			if (i == (lsp->ls_comp_index_sz - 2)) {
1216 				seglen = lsp->ls_uncomp_last_seg_sz;
1217 			} else {
1218 				seglen = lsp->ls_uncomp_seg_sz;
1219 			}
1220 
1221 			/*
1222 			 * Each of the segment index entries contains
1223 			 * the starting block number for that segment.
1224 			 * The number of compressed bytes in a segment
1225 			 * is thus the difference between the starting
1226 			 * block number of this segment and the starting
1227 			 * block number of the next segment.
1228 			 */
1229 			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1230 			    lsp->ls_comp_seg_index[i];
1231 
1232 			/*
1233 			 * The first byte in a compressed segment is a flag
1234 			 * that indicates whether this segment is compressed
1235 			 * at all.
1236 			 *
1237 			 * The variable 'useg' is used (instead of
1238 			 * uncompressed_seg) in this loop to keep a
1239 			 * reference to the uncompressed segment.
1240 			 *
1241 			 * N.B. If 'useg' is replaced with uncompressed_seg,
1242 			 * it leads to memory leaks and heap corruption in
1243 			 * corner cases where compressed segments lie
1244 			 * adjacent to uncompressed segments.
1245 			 */
1246 			if (*cmpbuf == UNCOMPRESSED) {
1247 				useg = cmpbuf + SEGHDR;
1248 			} else {
1249 				if (uncompressed_seg == NULL)
1250 					uncompressed_seg =
1251 					    kmem_alloc(lsp->ls_uncomp_seg_sz,
1252 					    KM_SLEEP);
1253 				useg = uncompressed_seg;
1254 				uncompressed_seg_index = i;
1255 
1256 				if (li->l_decompress((cmpbuf + SEGHDR),
1257 				    (cmpbytes - SEGHDR), uncompressed_seg,
1258 				    &seglen, li->l_level) != 0) {
1259 					error = EIO;
1260 					goto done;
1261 				}
1262 			}
1263 
1264 			/*
1265 			 * Determine how much uncompressed data we
1266 			 * have to copy and copy it
1267 			 */
1268 			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1269 			if (i == eblkno)
1270 				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1271 
1272 			bcopy((useg + sblkoff), bufaddr, xfersize);
1273 
1274 			cmpbuf += cmpbytes;
1275 			bufaddr += xfersize;
1276 			bp->b_resid -= xfersize;
1277 			sblkoff = 0;
1278 
1279 			if (bp->b_resid == 0)
1280 				break;
1281 		} /* decompress compressed blocks ends */
1282 
1283 		/*
1284 		 * Skip to done if there is no uncompressed data to cache
1285 		 */
1286 		if (uncompressed_seg == NULL)
1287 			goto done;
1288 
1289 		/*
1290 		 * Add the data for the last decompressed segment to
1291 		 * the cache.
1292 		 *
1293 		 * In case the uncompressed segment data was added to (and
1294 		 * is referenced by) the cache, make sure we don't free it
1295 		 * here.
1296 		 */
1297 		mutex_enter(&lsp->ls_comp_cache_lock);
1298 		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1299 		    uncompressed_seg)) != NULL) {
1300 			uncompressed_seg = NULL;
1301 		}
1302 		mutex_exit(&lsp->ls_comp_cache_lock);
1303 
1304 done:
1305 		if (compressed_seg != NULL) {
1306 			mutex_enter(&lsp->ls_comp_bufs_lock);
1307 			lsp->ls_comp_bufs[j].inuse = 0;
1308 			mutex_exit(&lsp->ls_comp_bufs_lock);
1309 		}
1310 		if (uncompressed_seg != NULL)
1311 			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1312 	} /* end of handling compressed files */
1313 
1314 	if ((error == 0) && (syncflag != 0))
1315 		error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1316 
1317 errout:
1318 	if (bufinited && lsp->ls_kstat) {
1319 		size_t n_done = bp->b_bcount - bp->b_resid;
1320 		kstat_io_t *kioptr;
1321 
1322 		mutex_enter(lsp->ls_kstat->ks_lock);
1323 		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1324 		if (bp->b_flags & B_READ) {
1325 			kioptr->nread += n_done;
1326 			kioptr->reads++;
1327 		} else {
1328 			kioptr->nwritten += n_done;
1329 			kioptr->writes++;
1330 		}
1331 		kstat_runq_exit(kioptr);
1332 		mutex_exit(lsp->ls_kstat->ks_lock);
1333 	}
1334 
1335 	mutex_enter(&lsp->ls_vp_lock);
1336 	if (--lsp->ls_vp_iocount == 0)
1337 		cv_broadcast(&lsp->ls_vp_cv);
1338 	mutex_exit(&lsp->ls_vp_lock);
1339 
1340 	bioerror(bp, error);
1341 	biodone(bp);
1342 }
1343 
1344 static int
1345 lofi_strategy(struct buf *bp)
1346 {
1347 	struct lofi_state *lsp;
1348 	offset_t	offset;
1349 
1350 	/*
1351 	 * We cannot just do I/O here, because the current thread
1352 	 * _might_ end up back in here because the underlying filesystem
1353 	 * wants a buffer, which eventually gets into bio_recycle and
1354 	 * might call into lofi to write out a delayed-write buffer.
1355 	 * This is bad if the filesystem above lofi is the same as below.
1356 	 *
1357 	 * We could come up with a complex strategy using threads to
1358 	 * do the I/O asynchronously, or we could use task queues. task
1359 	 * queues were incredibly easy so they win.
1360 	 */
1361 	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1362 	if (lsp == NULL) {
1363 		bioerror(bp, ENXIO);
1364 		biodone(bp);
1365 		return (0);
1366 	}
1367 
1368 	mutex_enter(&lsp->ls_vp_lock);
1369 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1370 		bioerror(bp, EIO);
1371 		biodone(bp);
1372 		mutex_exit(&lsp->ls_vp_lock);
1373 		return (0);
1374 	}
1375 
1376 	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
1377 	if (lsp->ls_crypto_enabled) {
1378 		/* encrypted data really begins after crypto header */
1379 		offset += lsp->ls_crypto_offset;
1380 	}
1381 	if (offset == lsp->ls_vp_size) {
1382 		/* EOF */
1383 		if ((bp->b_flags & B_READ) != 0) {
1384 			bp->b_resid = bp->b_bcount;
1385 			bioerror(bp, 0);
1386 		} else {
1387 			/* writes should fail */
1388 			bioerror(bp, ENXIO);
1389 		}
1390 		biodone(bp);
1391 		mutex_exit(&lsp->ls_vp_lock);
1392 		return (0);
1393 	}
1394 	if (offset > lsp->ls_vp_size) {
1395 		bioerror(bp, ENXIO);
1396 		biodone(bp);
1397 		mutex_exit(&lsp->ls_vp_lock);
1398 		return (0);
1399 	}
1400 	lsp->ls_vp_iocount++;
1401 	mutex_exit(&lsp->ls_vp_lock);
1402 
1403 	if (lsp->ls_kstat) {
1404 		mutex_enter(lsp->ls_kstat->ks_lock);
1405 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1406 		mutex_exit(lsp->ls_kstat->ks_lock);
1407 	}
1408 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1409 	return (0);
1410 }
1411 
1412 /*ARGSUSED2*/
1413 static int
1414 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1415 {
1416 	if (getminor(dev) == 0)
1417 		return (EINVAL);
1418 	UIO_CHECK(uio);
1419 	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1420 }
1421 
1422 /*ARGSUSED2*/
1423 static int
1424 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1425 {
1426 	if (getminor(dev) == 0)
1427 		return (EINVAL);
1428 	UIO_CHECK(uio);
1429 	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1430 }
1431 
1432 /*ARGSUSED2*/
1433 static int
1434 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1435 {
1436 	if (getminor(dev) == 0)
1437 		return (EINVAL);
1438 	UIO_CHECK(aio->aio_uio);
1439 	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1440 }
1441 
1442 /*ARGSUSED2*/
1443 static int
1444 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1445 {
1446 	if (getminor(dev) == 0)
1447 		return (EINVAL);
1448 	UIO_CHECK(aio->aio_uio);
1449 	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1450 }
1451 
1452 /*ARGSUSED*/
1453 static int
1454 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1455 {
1456 	switch (infocmd) {
1457 	case DDI_INFO_DEVT2DEVINFO:
1458 		*result = lofi_dip;
1459 		return (DDI_SUCCESS);
1460 	case DDI_INFO_DEVT2INSTANCE:
1461 		*result = 0;
1462 		return (DDI_SUCCESS);
1463 	}
1464 	return (DDI_FAILURE);
1465 }
1466 
1467 static int
1468 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1469 {
1470 	int	error;
1471 
1472 	if (cmd != DDI_ATTACH)
1473 		return (DDI_FAILURE);
1474 
1475 	lofi_minor_id = id_space_create("lofi_minor_id", 1, L_MAXMIN32 + 1);
1476 
1477 	if (!lofi_minor_id)
1478 		return (DDI_FAILURE);
1479 
1480 	error = ddi_soft_state_zalloc(lofi_statep, 0);
1481 	if (error == DDI_FAILURE) {
1482 		id_space_destroy(lofi_minor_id);
1483 		return (DDI_FAILURE);
1484 	}
1485 	error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1486 	    DDI_PSEUDO, NULL);
1487 	if (error == DDI_FAILURE) {
1488 		ddi_soft_state_free(lofi_statep, 0);
1489 		id_space_destroy(lofi_minor_id);
1490 		return (DDI_FAILURE);
1491 	}
1492 	/* driver handles kernel-issued IOCTLs */
1493 	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1494 	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1495 		ddi_remove_minor_node(dip, NULL);
1496 		ddi_soft_state_free(lofi_statep, 0);
1497 		id_space_destroy(lofi_minor_id);
1498 		return (DDI_FAILURE);
1499 	}
1500 
1501 	zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
1502 
1503 	lofi_dip = dip;
1504 	ddi_report_dev(dip);
1505 	return (DDI_SUCCESS);
1506 }
1507 
1508 static int
1509 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1510 {
1511 	if (cmd != DDI_DETACH)
1512 		return (DDI_FAILURE);
1513 
1514 	mutex_enter(&lofi_lock);
1515 
1516 	if (!list_is_empty(&lofi_list)) {
1517 		mutex_exit(&lofi_lock);
1518 		return (DDI_FAILURE);
1519 	}
1520 
1521 	lofi_dip = NULL;
1522 	ddi_remove_minor_node(dip, NULL);
1523 	ddi_prop_remove_all(dip);
1524 
1525 	mutex_exit(&lofi_lock);
1526 
1527 	if (zone_key_delete(lofi_zone_key) != 0)
1528 		cmn_err(CE_WARN, "failed to delete zone key");
1529 
1530 	ddi_soft_state_free(lofi_statep, 0);
1531 
1532 	id_space_destroy(lofi_minor_id);
1533 
1534 	return (DDI_SUCCESS);
1535 }
1536 
1537 /*
1538  * With addition of encryption, be careful that encryption key is wiped before
1539  * kernel memory structures are freed, and also that key is not accidentally
1540  * passed out into userland structures.
1541  */
1542 static void
1543 free_lofi_ioctl(struct lofi_ioctl *klip)
1544 {
1545 	/* Make sure this encryption key doesn't stick around */
1546 	bzero(klip->li_key, sizeof (klip->li_key));
1547 	kmem_free(klip, sizeof (struct lofi_ioctl));
1548 }
1549 
1550 /*
1551  * These two just simplify the rest of the ioctls that need to copyin/out
1552  * the lofi_ioctl structure.
1553  */
1554 int
1555 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
1556     int flag)
1557 {
1558 	struct lofi_ioctl *klip;
1559 	int	error;
1560 
1561 	klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
1562 	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
1563 	if (error)
1564 		goto err;
1565 
1566 	/* ensure NULL termination */
1567 	klip->li_filename[MAXPATHLEN-1] = '\0';
1568 	klip->li_algorithm[MAXALGLEN-1] = '\0';
1569 	klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1570 	klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1571 
1572 	if (klip->li_minor > L_MAXMIN32) {
1573 		error = EINVAL;
1574 		goto err;
1575 	}
1576 
1577 	return (0);
1578 
1579 err:
1580 	free_lofi_ioctl(klip);
1581 	return (error);
1582 }
1583 
1584 int
1585 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
1586 	int flag)
1587 {
1588 	int	error;
1589 
1590 	/*
1591 	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
1592 	 * This ensures that an attacker can't trivially find the
1593 	 * key for a mapping just by issuing the ioctl.
1594 	 *
1595 	 * It can still be found by poking around in kmem with mdb(1),
1596 	 * but there is no point in making it easy when the info isn't
1597 	 * of any use in this direction anyway.
1598 	 *
1599 	 * Either way we don't actually have the raw key stored in
1600 	 * a form that we can get it anyway, since we just used it
1601 	 * to create a ctx template and didn't keep "the original".
1602 	 */
1603 	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
1604 	if (error)
1605 		return (EFAULT);
1606 	return (0);
1607 }
1608 
1609 static int
1610 lofi_access(struct lofi_state *lsp)
1611 {
1612 	ASSERT(MUTEX_HELD(&lofi_lock));
1613 	if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
1614 		return (0);
1615 	return (EPERM);
1616 }
1617 
1618 /*
1619  * Find the lofi state for the given filename. We compare by vnode to
1620  * allow the global zone visibility into NGZ lofi nodes.
1621  */
1622 static int
1623 file_to_lofi_nocheck(char *filename, struct lofi_state **lspp)
1624 {
1625 	struct lofi_state *lsp;
1626 	vnode_t *vp = NULL;
1627 	int err = 0;
1628 
1629 	ASSERT(MUTEX_HELD(&lofi_lock));
1630 
1631 	if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
1632 	    NULLVPP, &vp)) != 0)
1633 		goto out;
1634 
1635 	if (vp->v_type == VREG) {
1636 		vnode_t *realvp;
1637 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
1638 			VN_HOLD(realvp);
1639 			VN_RELE(vp);
1640 			vp = realvp;
1641 		}
1642 	}
1643 
1644 	for (lsp = list_head(&lofi_list); lsp != NULL;
1645 	    lsp = list_next(&lofi_list, lsp)) {
1646 		if (lsp->ls_vp == vp) {
1647 			if (lspp != NULL)
1648 				*lspp = lsp;
1649 			goto out;
1650 		}
1651 	}
1652 
1653 	err = ENOENT;
1654 
1655 out:
1656 	if (vp != NULL)
1657 		VN_RELE(vp);
1658 	return (err);
1659 }
1660 
1661 /*
1662  * Find the minor for the given filename, checking the zone can access
1663  * it.
1664  */
1665 static int
1666 file_to_lofi(char *filename, struct lofi_state **lspp)
1667 {
1668 	int err = 0;
1669 
1670 	ASSERT(MUTEX_HELD(&lofi_lock));
1671 
1672 	if ((err = file_to_lofi_nocheck(filename, lspp)) != 0)
1673 		return (err);
1674 
1675 	if ((err = lofi_access(*lspp)) != 0)
1676 		return (err);
1677 
1678 	return (0);
1679 }
1680 
1681 /*
1682  * Fakes up a disk geometry, and one big partition, based on the size
1683  * of the file. This is needed because we allow newfs'ing the device,
1684  * and newfs will do several disk ioctls to figure out the geometry and
1685  * partition information. It uses that information to determine the parameters
1686  * to pass to mkfs. Geometry is pretty much irrelevant these days, but we
1687  * have to support it.
1688  */
1689 static void
1690 fake_disk_geometry(struct lofi_state *lsp)
1691 {
1692 	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
1693 
1694 	/* dk_geom - see dkio(7I) */
1695 	/*
1696 	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
1697 	 * of sectors), but that breaks programs like fdisk which want to
1698 	 * partition a disk by cylinder. With one cylinder, you can't create
1699 	 * an fdisk partition and put pcfs on it for testing (hard to pick
1700 	 * a number between one and one).
1701 	 *
1702 	 * The cheezy floppy test is an attempt to not have too few cylinders
1703 	 * for a small file, or so many on a big file that you waste space
1704 	 * for backup superblocks or cylinder group structures.
1705 	 */
1706 	if (dsize < (2 * 1024 * 1024)) /* floppy? */
1707 		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
1708 	else
1709 		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
1710 	/* in case file file is < 100k */
1711 	if (lsp->ls_dkg.dkg_ncyl == 0)
1712 		lsp->ls_dkg.dkg_ncyl = 1;
1713 	lsp->ls_dkg.dkg_acyl = 0;
1714 	lsp->ls_dkg.dkg_bcyl = 0;
1715 	lsp->ls_dkg.dkg_nhead = 1;
1716 	lsp->ls_dkg.dkg_obs1 = 0;
1717 	lsp->ls_dkg.dkg_intrlv = 0;
1718 	lsp->ls_dkg.dkg_obs2 = 0;
1719 	lsp->ls_dkg.dkg_obs3 = 0;
1720 	lsp->ls_dkg.dkg_apc = 0;
1721 	lsp->ls_dkg.dkg_rpm = 7200;
1722 	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl;
1723 	lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl);
1724 	lsp->ls_dkg.dkg_write_reinstruct = 0;
1725 	lsp->ls_dkg.dkg_read_reinstruct = 0;
1726 
1727 	/* vtoc - see dkio(7I) */
1728 	bzero(&lsp->ls_vtoc, sizeof (struct vtoc));
1729 	lsp->ls_vtoc.v_sanity = VTOC_SANE;
1730 	lsp->ls_vtoc.v_version = V_VERSION;
1731 	(void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME,
1732 	    sizeof (lsp->ls_vtoc.v_volume));
1733 	lsp->ls_vtoc.v_sectorsz = DEV_BSIZE;
1734 	lsp->ls_vtoc.v_nparts = 1;
1735 	lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED;
1736 
1737 	/*
1738 	 * A compressed file is read-only, other files can
1739 	 * be read-write
1740 	 */
1741 	if (lsp->ls_uncomp_seg_sz > 0) {
1742 		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY;
1743 	} else {
1744 		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT;
1745 	}
1746 	lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0;
1747 	/*
1748 	 * The partition size cannot just be the number of sectors, because
1749 	 * that might not end on a cylinder boundary. And if that's the case,
1750 	 * newfs/mkfs will print a scary warning. So just figure the size
1751 	 * based on the number of cylinders and sectors/cylinder.
1752 	 */
1753 	lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
1754 	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
1755 
1756 	/* dk_cinfo - see dkio(7I) */
1757 	bzero(&lsp->ls_ci, sizeof (struct dk_cinfo));
1758 	(void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME);
1759 	lsp->ls_ci.dki_ctype = DKC_MD;
1760 	lsp->ls_ci.dki_flags = 0;
1761 	lsp->ls_ci.dki_cnum = 0;
1762 	lsp->ls_ci.dki_addr = 0;
1763 	lsp->ls_ci.dki_space = 0;
1764 	lsp->ls_ci.dki_prio = 0;
1765 	lsp->ls_ci.dki_vec = 0;
1766 	(void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME);
1767 	lsp->ls_ci.dki_unit = 0;
1768 	lsp->ls_ci.dki_slave = 0;
1769 	lsp->ls_ci.dki_partition = 0;
1770 	/*
1771 	 * newfs uses this to set maxcontig. Must not be < 16, or it
1772 	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
1773 	 * it by the block size. Then tunefs doesn't work because
1774 	 * maxcontig is 0.
1775 	 */
1776 	lsp->ls_ci.dki_maxtransfer = 16;
1777 }
1778 
1779 /*
1780  * map in a compressed file
1781  *
1782  * Read in the header and the index that follows.
1783  *
1784  * The header is as follows -
1785  *
1786  * Signature (name of the compression algorithm)
1787  * Compression segment size (a multiple of 512)
1788  * Number of index entries
1789  * Size of the last block
1790  * The array containing the index entries
1791  *
1792  * The header information is always stored in
1793  * network byte order on disk.
1794  */
1795 static int
1796 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
1797 {
1798 	uint32_t index_sz, header_len, i;
1799 	ssize_t	resid;
1800 	enum uio_rw rw;
1801 	char *tbuf = buf;
1802 	int error;
1803 
1804 	/* The signature has already been read */
1805 	tbuf += sizeof (lsp->ls_comp_algorithm);
1806 	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
1807 	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
1808 
1809 	/*
1810 	 * The compressed segment size must be a power of 2
1811 	 */
1812 	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
1813 	    !ISP2(lsp->ls_uncomp_seg_sz))
1814 		return (EINVAL);
1815 
1816 	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
1817 		;
1818 
1819 	lsp->ls_comp_seg_shift = i;
1820 
1821 	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
1822 	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
1823 	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
1824 
1825 	tbuf += sizeof (lsp->ls_comp_index_sz);
1826 	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
1827 	    sizeof (lsp->ls_uncomp_last_seg_sz));
1828 	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
1829 
1830 	/*
1831 	 * Compute the total size of the uncompressed data
1832 	 * for use in fake_disk_geometry and other calculations.
1833 	 * Disk geometry has to be faked with respect to the
1834 	 * actual uncompressed data size rather than the
1835 	 * compressed file size.
1836 	 */
1837 	lsp->ls_vp_size =
1838 	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
1839 	    + lsp->ls_uncomp_last_seg_sz;
1840 
1841 	/*
1842 	 * Index size is rounded up to DEV_BSIZE for ease
1843 	 * of segmapping
1844 	 */
1845 	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
1846 	header_len = sizeof (lsp->ls_comp_algorithm) +
1847 	    sizeof (lsp->ls_uncomp_seg_sz) +
1848 	    sizeof (lsp->ls_comp_index_sz) +
1849 	    sizeof (lsp->ls_uncomp_last_seg_sz);
1850 	lsp->ls_comp_offbase = header_len + index_sz;
1851 
1852 	index_sz += header_len;
1853 	index_sz = roundup(index_sz, DEV_BSIZE);
1854 
1855 	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
1856 	lsp->ls_comp_index_data_sz = index_sz;
1857 
1858 	/*
1859 	 * Read in the index -- this has a side-effect
1860 	 * of reading in the header as well
1861 	 */
1862 	rw = UIO_READ;
1863 	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
1864 	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1865 
1866 	if (error != 0)
1867 		return (error);
1868 
1869 	/* Skip the header, this is where the index really begins */
1870 	lsp->ls_comp_seg_index =
1871 	    /*LINTED*/
1872 	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
1873 
1874 	/*
1875 	 * Now recompute offsets in the index to account for
1876 	 * the header length
1877 	 */
1878 	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
1879 		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
1880 		    BE_64(lsp->ls_comp_seg_index[i]);
1881 	}
1882 
1883 	return (error);
1884 }
1885 
1886 static int
1887 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
1888 {
1889 	struct crypto_meta chead;
1890 	char buf[DEV_BSIZE];
1891 	ssize_t	resid;
1892 	char *marker;
1893 	int error;
1894 	int ret;
1895 	int i;
1896 
1897 	if (!klip->li_crypto_enabled)
1898 		return (0);
1899 
1900 	/*
1901 	 * All current algorithms have a max of 448 bits.
1902 	 */
1903 	if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
1904 		return (EINVAL);
1905 
1906 	if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
1907 		return (EINVAL);
1908 
1909 	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
1910 
1911 	mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
1912 
1913 	lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
1914 	if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
1915 		cmn_err(CE_WARN, "invalid cipher %s requested for %s",
1916 		    klip->li_cipher, klip->li_filename);
1917 		return (EINVAL);
1918 	}
1919 
1920 	/* this is just initialization here */
1921 	lsp->ls_mech.cm_param = NULL;
1922 	lsp->ls_mech.cm_param_len = 0;
1923 
1924 	lsp->ls_iv_type = klip->li_iv_type;
1925 	lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
1926 	if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
1927 		cmn_err(CE_WARN, "invalid iv cipher %s requested"
1928 		    " for %s", klip->li_iv_cipher, klip->li_filename);
1929 		return (EINVAL);
1930 	}
1931 
1932 	/* iv mech must itself take a null iv */
1933 	lsp->ls_iv_mech.cm_param = NULL;
1934 	lsp->ls_iv_mech.cm_param_len = 0;
1935 	lsp->ls_iv_len = klip->li_iv_len;
1936 
1937 	/*
1938 	 * Create ctx using li_cipher & the raw li_key after checking
1939 	 * that it isn't a weak key.
1940 	 */
1941 	lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
1942 	lsp->ls_key.ck_length = klip->li_key_len;
1943 	lsp->ls_key.ck_data = kmem_alloc(
1944 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
1945 	bcopy(klip->li_key, lsp->ls_key.ck_data,
1946 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
1947 
1948 	ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
1949 	if (ret != CRYPTO_SUCCESS) {
1950 		cmn_err(CE_WARN, "weak key check failed for cipher "
1951 		    "%s on file %s (0x%x)", klip->li_cipher,
1952 		    klip->li_filename, ret);
1953 		return (EINVAL);
1954 	}
1955 
1956 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
1957 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1958 	if (error != 0)
1959 		return (error);
1960 
1961 	/*
1962 	 * This is the case where the header in the lofi image is already
1963 	 * initialized to indicate it is encrypted.
1964 	 */
1965 	if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
1966 		/*
1967 		 * The encryption header information is laid out this way:
1968 		 *	6 bytes:	hex "CFLOFI"
1969 		 *	2 bytes:	version = 0 ... for now
1970 		 *	96 bytes:	reserved1 (not implemented yet)
1971 		 *	4 bytes:	data_sector = 2 ... for now
1972 		 *	more...		not implemented yet
1973 		 */
1974 
1975 		marker = buf;
1976 
1977 		/* copy the magic */
1978 		bcopy(marker, lsp->ls_crypto.magic,
1979 		    sizeof (lsp->ls_crypto.magic));
1980 		marker += sizeof (lsp->ls_crypto.magic);
1981 
1982 		/* read the encryption version number */
1983 		bcopy(marker, &(lsp->ls_crypto.version),
1984 		    sizeof (lsp->ls_crypto.version));
1985 		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
1986 		marker += sizeof (lsp->ls_crypto.version);
1987 
1988 		/* read a chunk of reserved data */
1989 		bcopy(marker, lsp->ls_crypto.reserved1,
1990 		    sizeof (lsp->ls_crypto.reserved1));
1991 		marker += sizeof (lsp->ls_crypto.reserved1);
1992 
1993 		/* read block number where encrypted data begins */
1994 		bcopy(marker, &(lsp->ls_crypto.data_sector),
1995 		    sizeof (lsp->ls_crypto.data_sector));
1996 		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
1997 		marker += sizeof (lsp->ls_crypto.data_sector);
1998 
1999 		/* and ignore the rest until it is implemented */
2000 
2001 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2002 		return (0);
2003 	}
2004 
2005 	/*
2006 	 * We've requested encryption, but no magic was found, so it must be
2007 	 * a new image.
2008 	 */
2009 
2010 	for (i = 0; i < sizeof (struct crypto_meta); i++) {
2011 		if (buf[i] != '\0')
2012 			return (EINVAL);
2013 	}
2014 
2015 	marker = buf;
2016 	bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2017 	marker += sizeof (lofi_crypto_magic);
2018 	chead.version = htons(LOFI_CRYPTO_VERSION);
2019 	bcopy(&(chead.version), marker, sizeof (chead.version));
2020 	marker += sizeof (chead.version);
2021 	marker += sizeof (chead.reserved1);
2022 	chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2023 	bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2024 
2025 	/* write the header */
2026 	error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2027 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2028 	if (error != 0)
2029 		return (error);
2030 
2031 	/* fix things up so it looks like we read this info */
2032 	bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2033 	    sizeof (lofi_crypto_magic));
2034 	lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2035 	lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2036 	lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2037 	return (0);
2038 }
2039 
2040 /*
2041  * Check to see if the passed in signature is a valid one.  If it is
2042  * valid, return the index into lofi_compress_table.
2043  *
2044  * Return -1 if it is invalid
2045  */
2046 static int
2047 lofi_compress_select(const char *signature)
2048 {
2049 	int i;
2050 
2051 	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2052 		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2053 			return (i);
2054 	}
2055 
2056 	return (-1);
2057 }
2058 
2059 static int
2060 lofi_init_compress(struct lofi_state *lsp)
2061 {
2062 	char buf[DEV_BSIZE];
2063 	int compress_index;
2064 	ssize_t	resid;
2065 	int error;
2066 
2067 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2068 	    0, RLIM64_INFINITY, kcred, &resid);
2069 
2070 	if (error != 0)
2071 		return (error);
2072 
2073 	if ((compress_index = lofi_compress_select(buf)) == -1)
2074 		return (0);
2075 
2076 	/* compression and encryption are mutually exclusive */
2077 	if (lsp->ls_crypto_enabled)
2078 		return (ENOTSUP);
2079 
2080 	/* initialize compression info for compressed lofi */
2081 	lsp->ls_comp_algorithm_index = compress_index;
2082 	(void) strlcpy(lsp->ls_comp_algorithm,
2083 	    lofi_compress_table[compress_index].l_name,
2084 	    sizeof (lsp->ls_comp_algorithm));
2085 
2086 	/* Finally setup per-thread pre-allocated buffers */
2087 	lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2088 	    sizeof (struct compbuf), KM_SLEEP);
2089 
2090 	return (lofi_map_compressed_file(lsp, buf));
2091 }
2092 
2093 /*
2094  * map a file to a minor number. Return the minor number.
2095  */
2096 static int
2097 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2098     int *rvalp, struct cred *credp, int ioctl_flag)
2099 {
2100 	minor_t	minor = (minor_t)-1;
2101 	struct lofi_state *lsp = NULL;
2102 	struct lofi_ioctl *klip;
2103 	int	error;
2104 	struct vnode *vp = NULL;
2105 	vattr_t	vattr;
2106 	int	flag;
2107 	dev_t	newdev;
2108 	char	namebuf[50];
2109 
2110 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2111 	if (error != 0)
2112 		return (error);
2113 
2114 	mutex_enter(&lofi_lock);
2115 
2116 	mutex_enter(&curproc->p_lock);
2117 	if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
2118 		mutex_exit(&curproc->p_lock);
2119 		mutex_exit(&lofi_lock);
2120 		free_lofi_ioctl(klip);
2121 		return (error);
2122 	}
2123 	mutex_exit(&curproc->p_lock);
2124 
2125 	if (file_to_lofi_nocheck(klip->li_filename, NULL) == 0) {
2126 		error = EBUSY;
2127 		goto err;
2128 	}
2129 
2130 	if (pickminor) {
2131 		minor = (minor_t)id_allocff_nosleep(lofi_minor_id);
2132 		if (minor == (minor_t)-1) {
2133 			error = EAGAIN;
2134 			goto err;
2135 		}
2136 	} else {
2137 		if (ddi_get_soft_state(lofi_statep, klip->li_minor) != NULL) {
2138 			error = EEXIST;
2139 			goto err;
2140 		}
2141 
2142 		minor = (minor_t)
2143 		    id_alloc_specific_nosleep(lofi_minor_id, klip->li_minor);
2144 		ASSERT(minor != (minor_t)-1);
2145 	}
2146 
2147 	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2148 	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2149 	if (error) {
2150 		/* try read-only */
2151 		flag &= ~FWRITE;
2152 		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2153 		    &vp, 0, 0);
2154 		if (error)
2155 			goto err;
2156 	}
2157 
2158 	if (!V_ISLOFIABLE(vp->v_type)) {
2159 		error = EINVAL;
2160 		goto err;
2161 	}
2162 
2163 	vattr.va_mask = AT_SIZE;
2164 	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2165 	if (error)
2166 		goto err;
2167 
2168 	/* the file needs to be a multiple of the block size */
2169 	if ((vattr.va_size % DEV_BSIZE) != 0) {
2170 		error = EINVAL;
2171 		goto err;
2172 	}
2173 
2174 	/* lsp alloc+init */
2175 
2176 	error = ddi_soft_state_zalloc(lofi_statep, minor);
2177 	if (error == DDI_FAILURE) {
2178 		error = ENOMEM;
2179 		goto err;
2180 	}
2181 
2182 	lsp = ddi_get_soft_state(lofi_statep, minor);
2183 	list_insert_tail(&lofi_list, lsp);
2184 
2185 	newdev = makedevice(getmajor(dev), minor);
2186 	lsp->ls_dev = newdev;
2187 	zone_init_ref(&lsp->ls_zone);
2188 	zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
2189 	lsp->ls_uncomp_seg_sz = 0;
2190 	lsp->ls_comp_algorithm[0] = '\0';
2191 	lsp->ls_crypto_offset = 0;
2192 
2193 	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
2194 	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
2195 	mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
2196 	mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
2197 	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
2198 
2199 	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2200 	    LOFI_DRIVER_NAME, minor);
2201 	lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2202 	    minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2203 
2204 	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2205 	    offsetof(struct lofi_comp_cache, lc_list));
2206 
2207 	/*
2208 	 * save open mode so file can be closed properly and vnode counts
2209 	 * updated correctly.
2210 	 */
2211 	lsp->ls_openflag = flag;
2212 
2213 	lsp->ls_vp = vp;
2214 	lsp->ls_stacked_vp = vp;
2215 	/*
2216 	 * Try to handle stacked lofs vnodes.
2217 	 */
2218 	if (vp->v_type == VREG) {
2219 		vnode_t *realvp;
2220 
2221 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2222 			/*
2223 			 * We need to use the realvp for uniqueness
2224 			 * checking, but keep the stacked vp for
2225 			 * LOFI_GET_FILENAME display.
2226 			 */
2227 			VN_HOLD(realvp);
2228 			lsp->ls_vp = realvp;
2229 		}
2230 	}
2231 
2232 	lsp->ls_vp_size = vattr.va_size;
2233 	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2234 
2235 	lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, minor,
2236 	    NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
2237 
2238 	if (lsp->ls_kstat == NULL) {
2239 		error = ENOMEM;
2240 		goto err;
2241 	}
2242 
2243 	lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
2244 	kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
2245 
2246 	if ((error = lofi_init_crypto(lsp, klip)) != 0)
2247 		goto err;
2248 
2249 	if ((error = lofi_init_compress(lsp)) != 0)
2250 		goto err;
2251 
2252 	fake_disk_geometry(lsp);
2253 
2254 	/* create minor nodes */
2255 
2256 	(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2257 	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, minor,
2258 	    DDI_PSEUDO, NULL);
2259 	if (error != DDI_SUCCESS) {
2260 		error = ENXIO;
2261 		goto err;
2262 	}
2263 
2264 	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
2265 	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, minor,
2266 	    DDI_PSEUDO, NULL);
2267 	if (error != DDI_SUCCESS) {
2268 		/* remove block node */
2269 		(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2270 		ddi_remove_minor_node(lofi_dip, namebuf);
2271 		error = ENXIO;
2272 		goto err;
2273 	}
2274 
2275 	/* create DDI properties */
2276 
2277 	if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME,
2278 	    lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) {
2279 		error = EINVAL;
2280 		goto nodeerr;
2281 	}
2282 
2283 	if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME,
2284 	    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE))
2285 	    != DDI_PROP_SUCCESS) {
2286 		error = EINVAL;
2287 		goto nodeerr;
2288 	}
2289 
2290 	if (ddi_prop_update_string(newdev, lofi_dip, ZONE_PROP_NAME,
2291 	    (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
2292 		error = EINVAL;
2293 		goto nodeerr;
2294 	}
2295 
2296 	kstat_install(lsp->ls_kstat);
2297 
2298 	mutex_exit(&lofi_lock);
2299 
2300 	if (rvalp)
2301 		*rvalp = (int)minor;
2302 	klip->li_minor = minor;
2303 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2304 	free_lofi_ioctl(klip);
2305 	return (0);
2306 
2307 nodeerr:
2308 	lofi_free_dev(newdev);
2309 err:
2310 	if (lsp != NULL) {
2311 		lofi_destroy(lsp, credp);
2312 	} else {
2313 		if (vp != NULL) {
2314 			(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2315 			VN_RELE(vp);
2316 		}
2317 
2318 		if (minor != (minor_t)-1)
2319 			id_free(lofi_minor_id, minor);
2320 
2321 		rctl_decr_lofi(curproc->p_zone, 1);
2322 	}
2323 
2324 	mutex_exit(&lofi_lock);
2325 	free_lofi_ioctl(klip);
2326 	return (error);
2327 }
2328 
2329 /*
2330  * unmap a file.
2331  */
2332 static int
2333 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2334     struct cred *credp, int ioctl_flag)
2335 {
2336 	struct lofi_state *lsp;
2337 	struct lofi_ioctl *klip;
2338 	int err;
2339 
2340 	err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2341 	if (err != 0)
2342 		return (err);
2343 
2344 	mutex_enter(&lofi_lock);
2345 	if (byfilename) {
2346 		if ((err = file_to_lofi(klip->li_filename, &lsp)) != 0) {
2347 			mutex_exit(&lofi_lock);
2348 			return (err);
2349 		}
2350 	} else if (klip->li_minor == 0) {
2351 		mutex_exit(&lofi_lock);
2352 		free_lofi_ioctl(klip);
2353 		return (ENXIO);
2354 	} else {
2355 		lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2356 	}
2357 
2358 	if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2359 		mutex_exit(&lofi_lock);
2360 		free_lofi_ioctl(klip);
2361 		return (ENXIO);
2362 	}
2363 
2364 	klip->li_minor = getminor(lsp->ls_dev);
2365 
2366 	/*
2367 	 * If it's still held open, we'll do one of three things:
2368 	 *
2369 	 * If no flag is set, just return EBUSY.
2370 	 *
2371 	 * If the 'cleanup' flag is set, unmap and remove the device when
2372 	 * the last user finishes.
2373 	 *
2374 	 * If the 'force' flag is set, then we forcibly close the underlying
2375 	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
2376 	 * will return DKIO_DEV_GONE.  When the device is last closed, the
2377 	 * device will be cleaned up appropriately.
2378 	 *
2379 	 * This is complicated by the fact that we may have outstanding
2380 	 * dispatched I/Os.  Rather than having a single mutex to serialize all
2381 	 * I/O, we keep a count of the number of outstanding I/O requests
2382 	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
2383 	 * should be dispatched (ls_vp_closereq).
2384 	 *
2385 	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
2386 	 * and then close the underlying vnode.
2387 	 */
2388 	if (is_opened(lsp)) {
2389 		if (klip->li_force) {
2390 			mutex_enter(&lsp->ls_vp_lock);
2391 			lsp->ls_vp_closereq = B_TRUE;
2392 			/* wake up any threads waiting on dkiocstate */
2393 			cv_broadcast(&lsp->ls_vp_cv);
2394 			while (lsp->ls_vp_iocount > 0)
2395 				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
2396 			mutex_exit(&lsp->ls_vp_lock);
2397 
2398 			goto out;
2399 		} else if (klip->li_cleanup) {
2400 			lsp->ls_cleanup = 1;
2401 			mutex_exit(&lofi_lock);
2402 			free_lofi_ioctl(klip);
2403 			return (0);
2404 		}
2405 
2406 		mutex_exit(&lofi_lock);
2407 		free_lofi_ioctl(klip);
2408 		return (EBUSY);
2409 	}
2410 
2411 out:
2412 	lofi_free_dev(lsp->ls_dev);
2413 	lofi_destroy(lsp, credp);
2414 
2415 	mutex_exit(&lofi_lock);
2416 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2417 	free_lofi_ioctl(klip);
2418 	return (0);
2419 }
2420 
2421 /*
2422  * get the filename given the minor number, or the minor number given
2423  * the name.
2424  */
2425 /*ARGSUSED*/
2426 static int
2427 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
2428     struct cred *credp, int ioctl_flag)
2429 {
2430 	struct lofi_ioctl *klip;
2431 	struct lofi_state *lsp;
2432 	int	error;
2433 
2434 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2435 	if (error != 0)
2436 		return (error);
2437 
2438 	switch (which) {
2439 	case LOFI_GET_FILENAME:
2440 		if (klip->li_minor == 0) {
2441 			free_lofi_ioctl(klip);
2442 			return (EINVAL);
2443 		}
2444 
2445 		mutex_enter(&lofi_lock);
2446 		lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2447 		if (lsp == NULL || lofi_access(lsp) != 0) {
2448 			mutex_exit(&lofi_lock);
2449 			free_lofi_ioctl(klip);
2450 			return (ENXIO);
2451 		}
2452 
2453 		/*
2454 		 * This may fail if, for example, we're trying to look
2455 		 * up a zoned NFS path from the global zone.
2456 		 */
2457 		if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
2458 		    sizeof (klip->li_filename), CRED()) != 0) {
2459 			(void) strlcpy(klip->li_filename, "?",
2460 			    sizeof (klip->li_filename));
2461 		}
2462 
2463 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2464 		    sizeof (klip->li_algorithm));
2465 		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
2466 		mutex_exit(&lofi_lock);
2467 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2468 		free_lofi_ioctl(klip);
2469 		return (error);
2470 	case LOFI_GET_MINOR:
2471 		mutex_enter(&lofi_lock);
2472 		error = file_to_lofi(klip->li_filename, &lsp);
2473 		if (error == 0)
2474 			klip->li_minor = getminor(lsp->ls_dev);
2475 		mutex_exit(&lofi_lock);
2476 
2477 		if (error == 0)
2478 			error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2479 
2480 		free_lofi_ioctl(klip);
2481 		return (error);
2482 	case LOFI_CHECK_COMPRESSED:
2483 		mutex_enter(&lofi_lock);
2484 		error = file_to_lofi(klip->li_filename, &lsp);
2485 		if (error != 0) {
2486 			mutex_exit(&lofi_lock);
2487 			free_lofi_ioctl(klip);
2488 			return (error);
2489 		}
2490 
2491 		klip->li_minor = getminor(lsp->ls_dev);
2492 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2493 		    sizeof (klip->li_algorithm));
2494 
2495 		mutex_exit(&lofi_lock);
2496 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2497 		free_lofi_ioctl(klip);
2498 		return (error);
2499 	default:
2500 		free_lofi_ioctl(klip);
2501 		return (EINVAL);
2502 	}
2503 }
2504 
2505 static int
2506 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
2507     int *rvalp)
2508 {
2509 	int	error;
2510 	enum dkio_state dkstate;
2511 	struct lofi_state *lsp;
2512 	minor_t	minor;
2513 
2514 	minor = getminor(dev);
2515 	/* lofi ioctls only apply to the master device */
2516 	if (minor == 0) {
2517 		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
2518 
2519 		/*
2520 		 * the query command only need read-access - i.e., normal
2521 		 * users are allowed to do those on the ctl device as
2522 		 * long as they can open it read-only.
2523 		 */
2524 		switch (cmd) {
2525 		case LOFI_MAP_FILE:
2526 			if ((flag & FWRITE) == 0)
2527 				return (EPERM);
2528 			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
2529 		case LOFI_MAP_FILE_MINOR:
2530 			if ((flag & FWRITE) == 0)
2531 				return (EPERM);
2532 			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
2533 		case LOFI_UNMAP_FILE:
2534 			if ((flag & FWRITE) == 0)
2535 				return (EPERM);
2536 			return (lofi_unmap_file(lip, 1, credp, flag));
2537 		case LOFI_UNMAP_FILE_MINOR:
2538 			if ((flag & FWRITE) == 0)
2539 				return (EPERM);
2540 			return (lofi_unmap_file(lip, 0, credp, flag));
2541 		case LOFI_GET_FILENAME:
2542 			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
2543 			    credp, flag));
2544 		case LOFI_GET_MINOR:
2545 			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
2546 			    credp, flag));
2547 
2548 		/*
2549 		 * This API made limited sense when this value was fixed
2550 		 * at LOFI_MAX_FILES.  However, its use to iterate
2551 		 * across all possible devices in lofiadm means we don't
2552 		 * want to return L_MAXMIN32, but the highest
2553 		 * *allocated* minor.
2554 		 */
2555 		case LOFI_GET_MAXMINOR:
2556 			minor = 0;
2557 
2558 			mutex_enter(&lofi_lock);
2559 
2560 			for (lsp = list_head(&lofi_list); lsp != NULL;
2561 			    lsp = list_next(&lofi_list, lsp)) {
2562 				if (lofi_access(lsp) != 0)
2563 					continue;
2564 
2565 				if (getminor(lsp->ls_dev) > minor)
2566 					minor = getminor(lsp->ls_dev);
2567 			}
2568 
2569 			mutex_exit(&lofi_lock);
2570 
2571 			error = ddi_copyout(&minor, &lip->li_minor,
2572 			    sizeof (minor), flag);
2573 			if (error)
2574 				return (EFAULT);
2575 			return (0);
2576 
2577 		case LOFI_CHECK_COMPRESSED:
2578 			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
2579 			    credp, flag));
2580 		default:
2581 			return (EINVAL);
2582 		}
2583 	}
2584 
2585 	mutex_enter(&lofi_lock);
2586 	lsp = ddi_get_soft_state(lofi_statep, minor);
2587 	if (lsp == NULL || lsp->ls_vp_closereq) {
2588 		mutex_exit(&lofi_lock);
2589 		return (ENXIO);
2590 	}
2591 	mutex_exit(&lofi_lock);
2592 
2593 	/*
2594 	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
2595 	 * EIO as if the device was no longer present.
2596 	 */
2597 	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
2598 		return (EIO);
2599 
2600 	/* these are for faking out utilities like newfs */
2601 	switch (cmd) {
2602 	case DKIOCGVTOC:
2603 		switch (ddi_model_convert_from(flag & FMODELS)) {
2604 		case DDI_MODEL_ILP32: {
2605 			struct vtoc32 vtoc32;
2606 
2607 			vtoctovtoc32(lsp->ls_vtoc, vtoc32);
2608 			if (ddi_copyout(&vtoc32, (void *)arg,
2609 			    sizeof (struct vtoc32), flag))
2610 				return (EFAULT);
2611 			break;
2612 			}
2613 
2614 		case DDI_MODEL_NONE:
2615 			if (ddi_copyout(&lsp->ls_vtoc, (void *)arg,
2616 			    sizeof (struct vtoc), flag))
2617 				return (EFAULT);
2618 			break;
2619 		}
2620 		return (0);
2621 	case DKIOCINFO:
2622 		error = ddi_copyout(&lsp->ls_ci, (void *)arg,
2623 		    sizeof (struct dk_cinfo), flag);
2624 		if (error)
2625 			return (EFAULT);
2626 		return (0);
2627 	case DKIOCG_VIRTGEOM:
2628 	case DKIOCG_PHYGEOM:
2629 	case DKIOCGGEOM:
2630 		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
2631 		    sizeof (struct dk_geom), flag);
2632 		if (error)
2633 			return (EFAULT);
2634 		return (0);
2635 	case DKIOCSTATE:
2636 		/*
2637 		 * Normally, lofi devices are always in the INSERTED state.  If
2638 		 * a device is forcefully unmapped, then the device transitions
2639 		 * to the DKIO_DEV_GONE state.
2640 		 */
2641 		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
2642 		    flag) != 0)
2643 			return (EFAULT);
2644 
2645 		mutex_enter(&lsp->ls_vp_lock);
2646 		lsp->ls_vp_iocount++;
2647 		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
2648 		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
2649 		    !lsp->ls_vp_closereq) {
2650 			/*
2651 			 * By virtue of having the device open, we know that
2652 			 * 'lsp' will remain valid when we return.
2653 			 */
2654 			if (!cv_wait_sig(&lsp->ls_vp_cv,
2655 			    &lsp->ls_vp_lock)) {
2656 				lsp->ls_vp_iocount--;
2657 				cv_broadcast(&lsp->ls_vp_cv);
2658 				mutex_exit(&lsp->ls_vp_lock);
2659 				return (EINTR);
2660 			}
2661 		}
2662 
2663 		dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
2664 		    DKIO_INSERTED : DKIO_DEV_GONE);
2665 		lsp->ls_vp_iocount--;
2666 		cv_broadcast(&lsp->ls_vp_cv);
2667 		mutex_exit(&lsp->ls_vp_lock);
2668 
2669 		if (ddi_copyout(&dkstate, (void *)arg,
2670 		    sizeof (dkstate), flag) != 0)
2671 			return (EFAULT);
2672 		return (0);
2673 	default:
2674 		return (ENOTTY);
2675 	}
2676 }
2677 
2678 static struct cb_ops lofi_cb_ops = {
2679 	lofi_open,		/* open */
2680 	lofi_close,		/* close */
2681 	lofi_strategy,		/* strategy */
2682 	nodev,			/* print */
2683 	nodev,			/* dump */
2684 	lofi_read,		/* read */
2685 	lofi_write,		/* write */
2686 	lofi_ioctl,		/* ioctl */
2687 	nodev,			/* devmap */
2688 	nodev,			/* mmap */
2689 	nodev,			/* segmap */
2690 	nochpoll,		/* poll */
2691 	ddi_prop_op,		/* prop_op */
2692 	0,			/* streamtab  */
2693 	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
2694 	CB_REV,
2695 	lofi_aread,
2696 	lofi_awrite
2697 };
2698 
2699 static struct dev_ops lofi_ops = {
2700 	DEVO_REV,		/* devo_rev, */
2701 	0,			/* refcnt  */
2702 	lofi_info,		/* info */
2703 	nulldev,		/* identify */
2704 	nulldev,		/* probe */
2705 	lofi_attach,		/* attach */
2706 	lofi_detach,		/* detach */
2707 	nodev,			/* reset */
2708 	&lofi_cb_ops,		/* driver operations */
2709 	NULL,			/* no bus operations */
2710 	NULL,			/* power */
2711 	ddi_quiesce_not_needed,	/* quiesce */
2712 };
2713 
2714 static struct modldrv modldrv = {
2715 	&mod_driverops,
2716 	"loopback file driver",
2717 	&lofi_ops,
2718 };
2719 
2720 static struct modlinkage modlinkage = {
2721 	MODREV_1,
2722 	&modldrv,
2723 	NULL
2724 };
2725 
2726 int
2727 _init(void)
2728 {
2729 	int error;
2730 
2731 	list_create(&lofi_list, sizeof (struct lofi_state),
2732 	    offsetof(struct lofi_state, ls_list));
2733 
2734 	error = ddi_soft_state_init(&lofi_statep,
2735 	    sizeof (struct lofi_state), 0);
2736 	if (error)
2737 		return (error);
2738 
2739 	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
2740 
2741 	error = mod_install(&modlinkage);
2742 	if (error) {
2743 		mutex_destroy(&lofi_lock);
2744 		ddi_soft_state_fini(&lofi_statep);
2745 		list_destroy(&lofi_list);
2746 	}
2747 
2748 	return (error);
2749 }
2750 
2751 int
2752 _fini(void)
2753 {
2754 	int	error;
2755 
2756 	mutex_enter(&lofi_lock);
2757 
2758 	if (!list_is_empty(&lofi_list)) {
2759 		mutex_exit(&lofi_lock);
2760 		return (EBUSY);
2761 	}
2762 
2763 	mutex_exit(&lofi_lock);
2764 
2765 	error = mod_remove(&modlinkage);
2766 	if (error)
2767 		return (error);
2768 
2769 	mutex_destroy(&lofi_lock);
2770 	ddi_soft_state_fini(&lofi_statep);
2771 	list_destroy(&lofi_list);
2772 
2773 	return (error);
2774 }
2775 
2776 int
2777 _info(struct modinfo *modinfop)
2778 {
2779 	return (mod_info(&modlinkage, modinfop));
2780 }
2781