xref: /titanic_52/usr/src/uts/common/io/igb/igb_gld.c (revision b72c368a02e0464faeef362bc5a1cf0fc69981da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #include "igb_sw.h"
32 
33 int
34 igb_m_stat(void *arg, uint_t stat, uint64_t *val)
35 {
36 	igb_t *igb = (igb_t *)arg;
37 	struct e1000_hw *hw = &igb->hw;
38 	igb_stat_t *igb_ks;
39 	uint32_t low_val, high_val;
40 
41 	igb_ks = (igb_stat_t *)igb->igb_ks->ks_data;
42 
43 	mutex_enter(&igb->gen_lock);
44 
45 	if (igb->igb_state & IGB_SUSPENDED) {
46 		mutex_exit(&igb->gen_lock);
47 		return (ECANCELED);
48 	}
49 
50 	switch (stat) {
51 	case MAC_STAT_IFSPEED:
52 		*val = igb->link_speed * 1000000ull;
53 		break;
54 
55 	case MAC_STAT_MULTIRCV:
56 		igb_ks->mprc.value.ui64 +=
57 		    E1000_READ_REG(hw, E1000_MPRC);
58 		*val = igb_ks->mprc.value.ui64;
59 		break;
60 
61 	case MAC_STAT_BRDCSTRCV:
62 		igb_ks->bprc.value.ui64 +=
63 		    E1000_READ_REG(hw, E1000_BPRC);
64 		*val = igb_ks->bprc.value.ui64;
65 		break;
66 
67 	case MAC_STAT_MULTIXMT:
68 		igb_ks->mptc.value.ui64 +=
69 		    E1000_READ_REG(hw, E1000_MPTC);
70 		*val = igb_ks->mptc.value.ui64;
71 		break;
72 
73 	case MAC_STAT_BRDCSTXMT:
74 		igb_ks->bptc.value.ui64 +=
75 		    E1000_READ_REG(hw, E1000_BPTC);
76 		*val = igb_ks->bptc.value.ui64;
77 		break;
78 
79 	case MAC_STAT_NORCVBUF:
80 		igb_ks->rnbc.value.ui64 +=
81 		    E1000_READ_REG(hw, E1000_RNBC);
82 		*val = igb_ks->rnbc.value.ui64;
83 		break;
84 
85 	case MAC_STAT_IERRORS:
86 		igb_ks->rxerrc.value.ui64 +=
87 		    E1000_READ_REG(hw, E1000_RXERRC);
88 		igb_ks->algnerrc.value.ui64 +=
89 		    E1000_READ_REG(hw, E1000_ALGNERRC);
90 		igb_ks->rlec.value.ui64 +=
91 		    E1000_READ_REG(hw, E1000_RLEC);
92 		igb_ks->crcerrs.value.ui64 +=
93 		    E1000_READ_REG(hw, E1000_CRCERRS);
94 		igb_ks->cexterr.value.ui64 +=
95 		    E1000_READ_REG(hw, E1000_CEXTERR);
96 		*val = igb_ks->rxerrc.value.ui64 +
97 		    igb_ks->algnerrc.value.ui64 +
98 		    igb_ks->rlec.value.ui64 +
99 		    igb_ks->crcerrs.value.ui64 +
100 		    igb_ks->cexterr.value.ui64;
101 		break;
102 
103 	case MAC_STAT_NOXMTBUF:
104 		*val = 0;
105 		break;
106 
107 	case MAC_STAT_OERRORS:
108 		igb_ks->ecol.value.ui64 +=
109 		    E1000_READ_REG(hw, E1000_ECOL);
110 		*val = igb_ks->ecol.value.ui64;
111 		break;
112 
113 	case MAC_STAT_COLLISIONS:
114 		igb_ks->colc.value.ui64 +=
115 		    E1000_READ_REG(hw, E1000_COLC);
116 		*val = igb_ks->colc.value.ui64;
117 		break;
118 
119 	case MAC_STAT_RBYTES:
120 		/*
121 		 * The 64-bit register will reset whenever the upper
122 		 * 32 bits are read. So we need to read the lower
123 		 * 32 bits first, then read the upper 32 bits.
124 		 */
125 		low_val = E1000_READ_REG(hw, E1000_TORL);
126 		high_val = E1000_READ_REG(hw, E1000_TORH);
127 		igb_ks->tor.value.ui64 +=
128 		    (uint64_t)high_val << 32 | (uint64_t)low_val;
129 		*val = igb_ks->tor.value.ui64;
130 		break;
131 
132 	case MAC_STAT_IPACKETS:
133 		igb_ks->tpr.value.ui64 +=
134 		    E1000_READ_REG(hw, E1000_TPR);
135 		*val = igb_ks->tpr.value.ui64;
136 		break;
137 
138 	case MAC_STAT_OBYTES:
139 		/*
140 		 * The 64-bit register will reset whenever the upper
141 		 * 32 bits are read. So we need to read the lower
142 		 * 32 bits first, then read the upper 32 bits.
143 		 */
144 		low_val = E1000_READ_REG(hw, E1000_TOTL);
145 		high_val = E1000_READ_REG(hw, E1000_TOTH);
146 		igb_ks->tot.value.ui64 +=
147 		    (uint64_t)high_val << 32 | (uint64_t)low_val;
148 		*val = igb_ks->tot.value.ui64;
149 		break;
150 
151 	case MAC_STAT_OPACKETS:
152 		igb_ks->tpt.value.ui64 +=
153 		    E1000_READ_REG(hw, E1000_TPT);
154 		*val = igb_ks->tpt.value.ui64;
155 		break;
156 
157 	/* RFC 1643 stats */
158 	case ETHER_STAT_ALIGN_ERRORS:
159 		igb_ks->algnerrc.value.ui64 +=
160 		    E1000_READ_REG(hw, E1000_ALGNERRC);
161 		*val = igb_ks->algnerrc.value.ui64;
162 		break;
163 
164 	case ETHER_STAT_FCS_ERRORS:
165 		igb_ks->crcerrs.value.ui64 +=
166 		    E1000_READ_REG(hw, E1000_CRCERRS);
167 		*val = igb_ks->crcerrs.value.ui64;
168 		break;
169 
170 	case ETHER_STAT_FIRST_COLLISIONS:
171 		igb_ks->scc.value.ui64 +=
172 		    E1000_READ_REG(hw, E1000_SCC);
173 		*val = igb_ks->scc.value.ui64;
174 		break;
175 
176 	case ETHER_STAT_MULTI_COLLISIONS:
177 		igb_ks->mcc.value.ui64 +=
178 		    E1000_READ_REG(hw, E1000_MCC);
179 		*val = igb_ks->mcc.value.ui64;
180 		break;
181 
182 	case ETHER_STAT_SQE_ERRORS:
183 		igb_ks->sec.value.ui64 +=
184 		    E1000_READ_REG(hw, E1000_SEC);
185 		*val = igb_ks->sec.value.ui64;
186 		break;
187 
188 	case ETHER_STAT_DEFER_XMTS:
189 		igb_ks->dc.value.ui64 +=
190 		    E1000_READ_REG(hw, E1000_DC);
191 		*val = igb_ks->dc.value.ui64;
192 		break;
193 
194 	case ETHER_STAT_TX_LATE_COLLISIONS:
195 		igb_ks->latecol.value.ui64 +=
196 		    E1000_READ_REG(hw, E1000_LATECOL);
197 		*val = igb_ks->latecol.value.ui64;
198 		break;
199 
200 	case ETHER_STAT_EX_COLLISIONS:
201 		igb_ks->ecol.value.ui64 +=
202 		    E1000_READ_REG(hw, E1000_ECOL);
203 		*val = igb_ks->ecol.value.ui64;
204 		break;
205 
206 	case ETHER_STAT_MACXMT_ERRORS:
207 		igb_ks->ecol.value.ui64 +=
208 		    E1000_READ_REG(hw, E1000_ECOL);
209 		*val = igb_ks->ecol.value.ui64;
210 		break;
211 
212 	case ETHER_STAT_CARRIER_ERRORS:
213 		igb_ks->cexterr.value.ui64 +=
214 		    E1000_READ_REG(hw, E1000_CEXTERR);
215 		*val = igb_ks->cexterr.value.ui64;
216 		break;
217 
218 	case ETHER_STAT_TOOLONG_ERRORS:
219 		igb_ks->roc.value.ui64 +=
220 		    E1000_READ_REG(hw, E1000_ROC);
221 		*val = igb_ks->roc.value.ui64;
222 		break;
223 
224 	case ETHER_STAT_MACRCV_ERRORS:
225 		igb_ks->rxerrc.value.ui64 +=
226 		    E1000_READ_REG(hw, E1000_RXERRC);
227 		*val = igb_ks->rxerrc.value.ui64;
228 		break;
229 
230 	/* MII/GMII stats */
231 	case ETHER_STAT_XCVR_ADDR:
232 		/* The Internal PHY's MDI address for each MAC is 1 */
233 		*val = 1;
234 		break;
235 
236 	case ETHER_STAT_XCVR_ID:
237 		*val = hw->phy.id | hw->phy.revision;
238 		break;
239 
240 	case ETHER_STAT_XCVR_INUSE:
241 		switch (igb->link_speed) {
242 		case SPEED_1000:
243 			*val =
244 			    (hw->phy.media_type == e1000_media_type_copper) ?
245 			    XCVR_1000T : XCVR_1000X;
246 			break;
247 		case SPEED_100:
248 			*val =
249 			    (hw->phy.media_type == e1000_media_type_copper) ?
250 			    (igb->param_100t4_cap == 1) ?
251 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
252 			break;
253 		case SPEED_10:
254 			*val = XCVR_10;
255 			break;
256 		default:
257 			*val = XCVR_NONE;
258 			break;
259 		}
260 		break;
261 
262 	case ETHER_STAT_CAP_1000FDX:
263 		*val = igb->param_1000fdx_cap;
264 		break;
265 
266 	case ETHER_STAT_CAP_1000HDX:
267 		*val = igb->param_1000hdx_cap;
268 		break;
269 
270 	case ETHER_STAT_CAP_100FDX:
271 		*val = igb->param_100fdx_cap;
272 		break;
273 
274 	case ETHER_STAT_CAP_100HDX:
275 		*val = igb->param_100hdx_cap;
276 		break;
277 
278 	case ETHER_STAT_CAP_10FDX:
279 		*val = igb->param_10fdx_cap;
280 		break;
281 
282 	case ETHER_STAT_CAP_10HDX:
283 		*val = igb->param_10hdx_cap;
284 		break;
285 
286 	case ETHER_STAT_CAP_ASMPAUSE:
287 		*val = igb->param_asym_pause_cap;
288 		break;
289 
290 	case ETHER_STAT_CAP_PAUSE:
291 		*val = igb->param_pause_cap;
292 		break;
293 
294 	case ETHER_STAT_CAP_AUTONEG:
295 		*val = igb->param_autoneg_cap;
296 		break;
297 
298 	case ETHER_STAT_ADV_CAP_1000FDX:
299 		*val = igb->param_adv_1000fdx_cap;
300 		break;
301 
302 	case ETHER_STAT_ADV_CAP_1000HDX:
303 		*val = igb->param_adv_1000hdx_cap;
304 		break;
305 
306 	case ETHER_STAT_ADV_CAP_100FDX:
307 		*val = igb->param_adv_100fdx_cap;
308 		break;
309 
310 	case ETHER_STAT_ADV_CAP_100HDX:
311 		*val = igb->param_adv_100hdx_cap;
312 		break;
313 
314 	case ETHER_STAT_ADV_CAP_10FDX:
315 		*val = igb->param_adv_10fdx_cap;
316 		break;
317 
318 	case ETHER_STAT_ADV_CAP_10HDX:
319 		*val = igb->param_adv_10hdx_cap;
320 		break;
321 
322 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
323 		*val = igb->param_adv_asym_pause_cap;
324 		break;
325 
326 	case ETHER_STAT_ADV_CAP_PAUSE:
327 		*val = igb->param_adv_pause_cap;
328 		break;
329 
330 	case ETHER_STAT_ADV_CAP_AUTONEG:
331 		*val = hw->mac.autoneg;
332 		break;
333 
334 	case ETHER_STAT_LP_CAP_1000FDX:
335 		*val = igb->param_lp_1000fdx_cap;
336 		break;
337 
338 	case ETHER_STAT_LP_CAP_1000HDX:
339 		*val = igb->param_lp_1000hdx_cap;
340 		break;
341 
342 	case ETHER_STAT_LP_CAP_100FDX:
343 		*val = igb->param_lp_100fdx_cap;
344 		break;
345 
346 	case ETHER_STAT_LP_CAP_100HDX:
347 		*val = igb->param_lp_100hdx_cap;
348 		break;
349 
350 	case ETHER_STAT_LP_CAP_10FDX:
351 		*val = igb->param_lp_10fdx_cap;
352 		break;
353 
354 	case ETHER_STAT_LP_CAP_10HDX:
355 		*val = igb->param_lp_10hdx_cap;
356 		break;
357 
358 	case ETHER_STAT_LP_CAP_ASMPAUSE:
359 		*val = igb->param_lp_asym_pause_cap;
360 		break;
361 
362 	case ETHER_STAT_LP_CAP_PAUSE:
363 		*val = igb->param_lp_pause_cap;
364 		break;
365 
366 	case ETHER_STAT_LP_CAP_AUTONEG:
367 		*val = igb->param_lp_autoneg_cap;
368 		break;
369 
370 	case ETHER_STAT_LINK_ASMPAUSE:
371 		*val = igb->param_asym_pause_cap;
372 		break;
373 
374 	case ETHER_STAT_LINK_PAUSE:
375 		*val = igb->param_pause_cap;
376 		break;
377 
378 	case ETHER_STAT_LINK_AUTONEG:
379 		*val = hw->mac.autoneg;
380 		break;
381 
382 	case ETHER_STAT_LINK_DUPLEX:
383 		*val = (igb->link_duplex == FULL_DUPLEX) ?
384 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
385 		break;
386 
387 	case ETHER_STAT_TOOSHORT_ERRORS:
388 		igb_ks->ruc.value.ui64 +=
389 		    E1000_READ_REG(hw, E1000_RUC);
390 		*val = igb_ks->ruc.value.ui64;
391 		break;
392 
393 	case ETHER_STAT_CAP_REMFAULT:
394 		*val = igb->param_rem_fault;
395 		break;
396 
397 	case ETHER_STAT_ADV_REMFAULT:
398 		*val = igb->param_adv_rem_fault;
399 		break;
400 
401 	case ETHER_STAT_LP_REMFAULT:
402 		*val = igb->param_lp_rem_fault;
403 		break;
404 
405 	case ETHER_STAT_JABBER_ERRORS:
406 		igb_ks->rjc.value.ui64 +=
407 		    E1000_READ_REG(hw, E1000_RJC);
408 		*val = igb_ks->rjc.value.ui64;
409 		break;
410 
411 	case ETHER_STAT_CAP_100T4:
412 		*val = igb->param_100t4_cap;
413 		break;
414 
415 	case ETHER_STAT_ADV_CAP_100T4:
416 		*val = igb->param_adv_100t4_cap;
417 		break;
418 
419 	case ETHER_STAT_LP_CAP_100T4:
420 		*val = igb->param_lp_100t4_cap;
421 		break;
422 
423 	default:
424 		mutex_exit(&igb->gen_lock);
425 		return (ENOTSUP);
426 	}
427 
428 	mutex_exit(&igb->gen_lock);
429 
430 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
431 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
432 		return (EIO);
433 	}
434 
435 	return (0);
436 }
437 
438 /*
439  * Bring the device out of the reset/quiesced state that it
440  * was in when the interface was registered.
441  */
442 int
443 igb_m_start(void *arg)
444 {
445 	igb_t *igb = (igb_t *)arg;
446 
447 	mutex_enter(&igb->gen_lock);
448 
449 	if (igb->igb_state & IGB_SUSPENDED) {
450 		mutex_exit(&igb->gen_lock);
451 		return (ECANCELED);
452 	}
453 
454 	if (igb_start(igb) != IGB_SUCCESS) {
455 		mutex_exit(&igb->gen_lock);
456 		return (EIO);
457 	}
458 
459 	atomic_or_32(&igb->igb_state, IGB_STARTED);
460 
461 	mutex_exit(&igb->gen_lock);
462 
463 	/*
464 	 * Enable and start the watchdog timer
465 	 */
466 	igb_enable_watchdog_timer(igb);
467 
468 	return (0);
469 }
470 
471 /*
472  * Stop the device and put it in a reset/quiesced state such
473  * that the interface can be unregistered.
474  */
475 void
476 igb_m_stop(void *arg)
477 {
478 	igb_t *igb = (igb_t *)arg;
479 
480 	mutex_enter(&igb->gen_lock);
481 
482 	if (igb->igb_state & IGB_SUSPENDED) {
483 		mutex_exit(&igb->gen_lock);
484 		return;
485 	}
486 
487 	atomic_and_32(&igb->igb_state, ~IGB_STARTED);
488 
489 	igb_stop(igb);
490 
491 	mutex_exit(&igb->gen_lock);
492 
493 	/*
494 	 * Disable and stop the watchdog timer
495 	 */
496 	igb_disable_watchdog_timer(igb);
497 }
498 
499 /*
500  * Set the promiscuity of the device.
501  */
502 int
503 igb_m_promisc(void *arg, boolean_t on)
504 {
505 	igb_t *igb = (igb_t *)arg;
506 	uint32_t reg_val;
507 
508 	mutex_enter(&igb->gen_lock);
509 
510 	if (igb->igb_state & IGB_SUSPENDED) {
511 		mutex_exit(&igb->gen_lock);
512 		return (ECANCELED);
513 	}
514 
515 	reg_val = E1000_READ_REG(&igb->hw, E1000_RCTL);
516 
517 	if (on)
518 		reg_val |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
519 	else
520 		reg_val &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
521 
522 	E1000_WRITE_REG(&igb->hw, E1000_RCTL, reg_val);
523 
524 	mutex_exit(&igb->gen_lock);
525 
526 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
527 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
528 		return (EIO);
529 	}
530 
531 	return (0);
532 }
533 
534 /*
535  * Add/remove the addresses to/from the set of multicast
536  * addresses for which the device will receive packets.
537  */
538 int
539 igb_m_multicst(void *arg, boolean_t add, const uint8_t *mcst_addr)
540 {
541 	igb_t *igb = (igb_t *)arg;
542 	int result;
543 
544 	mutex_enter(&igb->gen_lock);
545 
546 	if (igb->igb_state & IGB_SUSPENDED) {
547 		mutex_exit(&igb->gen_lock);
548 		return (ECANCELED);
549 	}
550 
551 	result = (add) ? igb_multicst_add(igb, mcst_addr)
552 	    : igb_multicst_remove(igb, mcst_addr);
553 
554 	mutex_exit(&igb->gen_lock);
555 
556 	return (result);
557 }
558 
559 /*
560  * Pass on M_IOCTL messages passed to the DLD, and support
561  * private IOCTLs for debugging and ndd.
562  */
563 void
564 igb_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
565 {
566 	igb_t *igb = (igb_t *)arg;
567 	struct iocblk *iocp;
568 	enum ioc_reply status;
569 
570 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
571 	iocp->ioc_error = 0;
572 
573 	switch (iocp->ioc_cmd) {
574 	case LB_GET_INFO_SIZE:
575 	case LB_GET_INFO:
576 	case LB_GET_MODE:
577 	case LB_SET_MODE:
578 		status = igb_loopback_ioctl(igb, iocp, mp);
579 		break;
580 
581 	case ND_GET:
582 	case ND_SET:
583 		status = igb_nd_ioctl(igb, q, mp, iocp);
584 		break;
585 
586 	default:
587 		status = IOC_INVAL;
588 		break;
589 	}
590 
591 	/*
592 	 * Decide how to reply
593 	 */
594 	switch (status) {
595 	default:
596 	case IOC_INVAL:
597 		/*
598 		 * Error, reply with a NAK and EINVAL or the specified error
599 		 */
600 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
601 		    EINVAL : iocp->ioc_error);
602 		break;
603 
604 	case IOC_DONE:
605 		/*
606 		 * OK, reply already sent
607 		 */
608 		break;
609 
610 	case IOC_ACK:
611 		/*
612 		 * OK, reply with an ACK
613 		 */
614 		miocack(q, mp, 0, 0);
615 		break;
616 
617 	case IOC_REPLY:
618 		/*
619 		 * OK, send prepared reply as ACK or NAK
620 		 */
621 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
622 		    M_IOCACK : M_IOCNAK;
623 		qreply(q, mp);
624 		break;
625 	}
626 }
627 
628 /*
629  * Add a MAC address to the target RX group.
630  */
631 static int
632 igb_addmac(void *arg, const uint8_t *mac_addr)
633 {
634 	igb_rx_group_t *rx_group = (igb_rx_group_t *)arg;
635 	igb_t *igb = rx_group->igb;
636 	struct e1000_hw *hw = &igb->hw;
637 	int i, slot;
638 
639 	mutex_enter(&igb->gen_lock);
640 
641 	if (igb->igb_state & IGB_SUSPENDED) {
642 		mutex_exit(&igb->gen_lock);
643 		return (ECANCELED);
644 	}
645 
646 	if (igb->unicst_avail == 0) {
647 		/* no slots available */
648 		mutex_exit(&igb->gen_lock);
649 		return (ENOSPC);
650 	}
651 
652 	/*
653 	 * The slots from 0 to igb->num_rx_groups are reserved slots which
654 	 * are 1 to 1 mapped with group index directly. The other slots are
655 	 * shared between the all of groups. While adding a MAC address,
656 	 * it will try to set the reserved slots first, then the shared slots.
657 	 */
658 	slot = -1;
659 	if (igb->unicst_addr[rx_group->index].mac.set == 1) {
660 		/*
661 		 * The reserved slot for current group is used, find the free
662 		 * slots in the shared slots.
663 		 */
664 		for (i = igb->num_rx_groups; i < igb->unicst_total; i++) {
665 			if (igb->unicst_addr[i].mac.set == 0) {
666 				slot = i;
667 				break;
668 			}
669 		}
670 	} else
671 		slot = rx_group->index;
672 
673 	if (slot == -1) {
674 		/* no slots available in the shared slots */
675 		mutex_exit(&igb->gen_lock);
676 		return (ENOSPC);
677 	}
678 
679 	/* Set VMDq according to the mode supported by hardware. */
680 	e1000_rar_set_vmdq(hw, mac_addr, slot, igb->vmdq_mode, rx_group->index);
681 
682 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
683 	igb->unicst_addr[slot].mac.group_index = rx_group->index;
684 	igb->unicst_addr[slot].mac.set = 1;
685 	igb->unicst_avail--;
686 
687 	mutex_exit(&igb->gen_lock);
688 
689 	return (0);
690 }
691 
692 /*
693  * Remove a MAC address from the specified RX group.
694  */
695 static int
696 igb_remmac(void *arg, const uint8_t *mac_addr)
697 {
698 	igb_rx_group_t *rx_group = (igb_rx_group_t *)arg;
699 	igb_t *igb = rx_group->igb;
700 	struct e1000_hw *hw = &igb->hw;
701 	int slot;
702 
703 	mutex_enter(&igb->gen_lock);
704 
705 	if (igb->igb_state & IGB_SUSPENDED) {
706 		mutex_exit(&igb->gen_lock);
707 		return (ECANCELED);
708 	}
709 
710 	slot = igb_unicst_find(igb, mac_addr);
711 	if (slot == -1) {
712 		mutex_exit(&igb->gen_lock);
713 		return (EINVAL);
714 	}
715 
716 	if (igb->unicst_addr[slot].mac.set == 0) {
717 		mutex_exit(&igb->gen_lock);
718 		return (EINVAL);
719 	}
720 
721 	/* Clear the MAC ddress in the slot */
722 	e1000_rar_clear(hw, slot);
723 	igb->unicst_addr[slot].mac.set = 0;
724 	igb->unicst_avail++;
725 
726 	mutex_exit(&igb->gen_lock);
727 
728 	return (0);
729 }
730 
731 /*
732  * Enable interrupt on the specificed rx ring.
733  */
734 int
735 igb_rx_ring_intr_enable(mac_intr_handle_t intrh)
736 {
737 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)intrh;
738 	igb_t *igb = rx_ring->igb;
739 	struct e1000_hw *hw = &igb->hw;
740 	uint32_t index = rx_ring->index;
741 
742 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
743 		/* Interrupt enabling for MSI-X */
744 		igb->eims_mask |= (E1000_EICR_RX_QUEUE0 << index);
745 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
746 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
747 	} else {
748 		ASSERT(index == 0);
749 		/* Interrupt enabling for MSI and legacy */
750 		igb->ims_mask |= E1000_IMS_RXT0;
751 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
752 	}
753 
754 	E1000_WRITE_FLUSH(hw);
755 
756 	return (0);
757 }
758 
759 /*
760  * Disable interrupt on the specificed rx ring.
761  */
762 int
763 igb_rx_ring_intr_disable(mac_intr_handle_t intrh)
764 {
765 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)intrh;
766 	igb_t *igb = rx_ring->igb;
767 	struct e1000_hw *hw = &igb->hw;
768 	uint32_t index = rx_ring->index;
769 
770 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
771 		/* Interrupt disabling for MSI-X */
772 		igb->eims_mask &= ~(E1000_EICR_RX_QUEUE0 << index);
773 		E1000_WRITE_REG(hw, E1000_EIMC,
774 		    (E1000_EICR_RX_QUEUE0 << index));
775 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
776 	} else {
777 		ASSERT(index == 0);
778 		/* Interrupt disabling for MSI and legacy */
779 		igb->ims_mask &= ~E1000_IMS_RXT0;
780 		E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
781 	}
782 
783 	E1000_WRITE_FLUSH(hw);
784 
785 	return (0);
786 }
787 
788 /*
789  * Get the global ring index by a ring index within a group.
790  */
791 int
792 igb_get_rx_ring_index(igb_t *igb, int gindex, int rindex)
793 {
794 	igb_rx_ring_t *rx_ring;
795 	int i;
796 
797 	for (i = 0; i < igb->num_rx_rings; i++) {
798 		rx_ring = &igb->rx_rings[i];
799 		if (rx_ring->group_index == gindex)
800 			rindex--;
801 		if (rindex < 0)
802 			return (i);
803 	}
804 
805 	return (-1);
806 }
807 
808 static int
809 igb_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
810 {
811 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)rh;
812 
813 	mutex_enter(&rx_ring->rx_lock);
814 	rx_ring->ring_gen_num = mr_gen_num;
815 	mutex_exit(&rx_ring->rx_lock);
816 	return (0);
817 }
818 
819 /*
820  * Callback funtion for MAC layer to register all rings.
821  */
822 /* ARGSUSED */
823 void
824 igb_fill_ring(void *arg, mac_ring_type_t rtype, const int rg_index,
825     const int index, mac_ring_info_t *infop, mac_ring_handle_t rh)
826 {
827 	igb_t *igb = (igb_t *)arg;
828 	mac_intr_t *mintr = &infop->mri_intr;
829 
830 	switch (rtype) {
831 	case MAC_RING_TYPE_RX: {
832 		igb_rx_ring_t *rx_ring;
833 		int global_index;
834 
835 		/*
836 		 * 'index' is the ring index within the group.
837 		 * We need the global ring index by searching in group.
838 		 */
839 		global_index = igb_get_rx_ring_index(igb, rg_index, index);
840 
841 		ASSERT(global_index >= 0);
842 
843 		rx_ring = &igb->rx_rings[global_index];
844 		rx_ring->ring_handle = rh;
845 
846 		infop->mri_driver = (mac_ring_driver_t)rx_ring;
847 		infop->mri_start = igb_ring_start;
848 		infop->mri_stop = NULL;
849 		infop->mri_poll = (mac_ring_poll_t)igb_rx_ring_poll;
850 
851 		mintr->mi_handle = (mac_intr_handle_t)rx_ring;
852 		mintr->mi_enable = igb_rx_ring_intr_enable;
853 		mintr->mi_disable = igb_rx_ring_intr_disable;
854 
855 		break;
856 	}
857 	case MAC_RING_TYPE_TX: {
858 		ASSERT(index < igb->num_tx_rings);
859 
860 		igb_tx_ring_t *tx_ring = &igb->tx_rings[index];
861 		tx_ring->ring_handle = rh;
862 
863 		infop->mri_driver = (mac_ring_driver_t)tx_ring;
864 		infop->mri_start = NULL;
865 		infop->mri_stop = NULL;
866 		infop->mri_tx = igb_tx_ring_send;
867 
868 		break;
869 	}
870 	default:
871 		break;
872 	}
873 }
874 
875 void
876 igb_fill_group(void *arg, mac_ring_type_t rtype, const int index,
877     mac_group_info_t *infop, mac_group_handle_t gh)
878 {
879 	igb_t *igb = (igb_t *)arg;
880 
881 	switch (rtype) {
882 	case MAC_RING_TYPE_RX: {
883 		igb_rx_group_t *rx_group;
884 
885 		ASSERT((index >= 0) && (index < igb->num_rx_groups));
886 
887 		rx_group = &igb->rx_groups[index];
888 		rx_group->group_handle = gh;
889 
890 		infop->mgi_driver = (mac_group_driver_t)rx_group;
891 		infop->mgi_start = NULL;
892 		infop->mgi_stop = NULL;
893 		infop->mgi_addmac = igb_addmac;
894 		infop->mgi_remmac = igb_remmac;
895 		infop->mgi_count = (igb->num_rx_rings / igb->num_rx_groups);
896 
897 		break;
898 	}
899 	case MAC_RING_TYPE_TX:
900 		break;
901 	default:
902 		break;
903 	}
904 }
905 
906 /*
907  * Obtain the MAC's capabilities and associated data from
908  * the driver.
909  */
910 boolean_t
911 igb_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
912 {
913 	igb_t *igb = (igb_t *)arg;
914 
915 	switch (cap) {
916 	case MAC_CAPAB_HCKSUM: {
917 		uint32_t *tx_hcksum_flags = cap_data;
918 
919 		/*
920 		 * We advertise our capabilities only if tx hcksum offload is
921 		 * enabled.  On receive, the stack will accept checksummed
922 		 * packets anyway, even if we haven't said we can deliver
923 		 * them.
924 		 */
925 		if (!igb->tx_hcksum_enable)
926 			return (B_FALSE);
927 
928 		*tx_hcksum_flags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM;
929 		break;
930 	}
931 	case MAC_CAPAB_LSO: {
932 		mac_capab_lso_t *cap_lso = cap_data;
933 
934 		if (igb->lso_enable) {
935 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
936 			cap_lso->lso_basic_tcp_ipv4.lso_max = IGB_LSO_MAXLEN;
937 			break;
938 		} else {
939 			return (B_FALSE);
940 		}
941 	}
942 	case MAC_CAPAB_RINGS: {
943 		mac_capab_rings_t *cap_rings = cap_data;
944 
945 		switch (cap_rings->mr_type) {
946 		case MAC_RING_TYPE_RX:
947 			cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
948 			cap_rings->mr_rnum = igb->num_rx_rings;
949 			cap_rings->mr_gnum = igb->num_rx_groups;
950 			cap_rings->mr_rget = igb_fill_ring;
951 			cap_rings->mr_gget = igb_fill_group;
952 			cap_rings->mr_gaddring = NULL;
953 			cap_rings->mr_gremring = NULL;
954 
955 			break;
956 		case MAC_RING_TYPE_TX:
957 			cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
958 			cap_rings->mr_rnum = igb->num_tx_rings;
959 			cap_rings->mr_gnum = 0;
960 			cap_rings->mr_rget = igb_fill_ring;
961 			cap_rings->mr_gget = NULL;
962 
963 			break;
964 		default:
965 			break;
966 		}
967 		break;
968 	}
969 
970 	default:
971 		return (B_FALSE);
972 	}
973 	return (B_TRUE);
974 }
975