1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/cpuvar.h> 27 #include <sys/conf.h> 28 #include <sys/file.h> 29 #include <sys/ddi.h> 30 #include <sys/sunddi.h> 31 #include <sys/modctl.h> 32 33 #include <sys/socket.h> 34 #include <sys/strsubr.h> 35 #include <sys/sysmacros.h> 36 37 #include <sys/socketvar.h> 38 #include <netinet/in.h> 39 40 #include <sys/idm/idm.h> 41 #include <sys/idm/idm_so.h> 42 43 #define IDM_NAME_VERSION "iSCSI Data Mover" 44 45 extern struct mod_ops mod_miscops; 46 extern struct mod_ops mod_miscops; 47 48 static struct modlmisc modlmisc = { 49 &mod_miscops, /* Type of module */ 50 IDM_NAME_VERSION 51 }; 52 53 static struct modlinkage modlinkage = { 54 MODREV_1, (void *)&modlmisc, NULL 55 }; 56 57 extern int idm_task_compare(const void *t1, const void *t2); 58 extern void idm_wd_thread(void *arg); 59 60 static int _idm_init(void); 61 static int _idm_fini(void); 62 static void idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf); 63 static void idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf); 64 static void idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf); 65 static void idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf); 66 static void idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, 67 idm_abort_type_t abort_type); 68 static void idm_task_aborted(idm_task_t *idt, idm_status_t status); 69 static idm_pdu_t *idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, 70 int sleepflag); 71 72 boolean_t idm_conn_logging = 0; 73 boolean_t idm_svc_logging = 0; 74 #ifdef DEBUG 75 boolean_t idm_pattern_checking = 1; 76 #else 77 boolean_t idm_pattern_checking = 0; 78 #endif 79 80 /* 81 * Potential tuneable for the maximum number of tasks. Default to 82 * IDM_TASKIDS_MAX 83 */ 84 85 uint32_t idm_max_taskids = IDM_TASKIDS_MAX; 86 87 /* 88 * Global list of transport handles 89 * These are listed in preferential order, so we can simply take the 90 * first "it_conn_is_capable" hit. Note also that the order maps to 91 * the order of the idm_transport_type_t list. 92 */ 93 idm_transport_t idm_transport_list[] = { 94 95 /* iSER on InfiniBand transport handle */ 96 {IDM_TRANSPORT_TYPE_ISER, /* type */ 97 "/devices/ib/iser@0:iser", /* device path */ 98 NULL, /* LDI handle */ 99 NULL, /* transport ops */ 100 NULL}, /* transport caps */ 101 102 /* IDM native sockets transport handle */ 103 {IDM_TRANSPORT_TYPE_SOCKETS, /* type */ 104 NULL, /* device path */ 105 NULL, /* LDI handle */ 106 NULL, /* transport ops */ 107 NULL} /* transport caps */ 108 109 }; 110 111 int 112 _init(void) 113 { 114 int rc; 115 116 if ((rc = _idm_init()) != 0) { 117 return (rc); 118 } 119 120 return (mod_install(&modlinkage)); 121 } 122 123 int 124 _fini(void) 125 { 126 int rc; 127 128 if ((rc = _idm_fini()) != 0) { 129 return (rc); 130 } 131 132 if ((rc = mod_remove(&modlinkage)) != 0) { 133 return (rc); 134 } 135 136 return (rc); 137 } 138 139 int 140 _info(struct modinfo *modinfop) 141 { 142 return (mod_info(&modlinkage, modinfop)); 143 } 144 145 /* 146 * idm_transport_register() 147 * 148 * Provides a mechanism for an IDM transport driver to register its 149 * transport ops and caps with the IDM kernel module. Invoked during 150 * a transport driver's attach routine. 151 */ 152 idm_status_t 153 idm_transport_register(idm_transport_attr_t *attr) 154 { 155 ASSERT(attr->it_ops != NULL); 156 ASSERT(attr->it_caps != NULL); 157 158 switch (attr->type) { 159 /* All known non-native transports here; for now, iSER */ 160 case IDM_TRANSPORT_TYPE_ISER: 161 idm_transport_list[attr->type].it_ops = attr->it_ops; 162 idm_transport_list[attr->type].it_caps = attr->it_caps; 163 return (IDM_STATUS_SUCCESS); 164 165 default: 166 cmn_err(CE_NOTE, "idm: unknown transport type (0x%x) in " 167 "idm_transport_register", attr->type); 168 return (IDM_STATUS_SUCCESS); 169 } 170 } 171 172 /* 173 * idm_ini_conn_create 174 * 175 * This function is invoked by the iSCSI layer to create a connection context. 176 * This does not actually establish the socket connection. 177 * 178 * cr - Connection request parameters 179 * new_con - Output parameter that contains the new request if successful 180 * 181 */ 182 idm_status_t 183 idm_ini_conn_create(idm_conn_req_t *cr, idm_conn_t **new_con) 184 { 185 idm_transport_t *it; 186 idm_conn_t *ic; 187 int rc; 188 189 it = idm_transport_lookup(cr); 190 191 retry: 192 ic = idm_conn_create_common(CONN_TYPE_INI, it->it_type, 193 &cr->icr_conn_ops); 194 195 bcopy(&cr->cr_ini_dst_addr, &ic->ic_ini_dst_addr, 196 sizeof (cr->cr_ini_dst_addr)); 197 198 /* create the transport-specific connection components */ 199 rc = it->it_ops->it_ini_conn_create(cr, ic); 200 if (rc != IDM_STATUS_SUCCESS) { 201 /* cleanup the failed connection */ 202 idm_conn_destroy_common(ic); 203 204 /* 205 * It is possible for an IB client to connect to 206 * an ethernet-only client via an IB-eth gateway. 207 * Therefore, if we are attempting to use iSER and 208 * fail, retry with sockets before ultimately 209 * failing the connection. 210 */ 211 if (it->it_type == IDM_TRANSPORT_TYPE_ISER) { 212 it = &idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]; 213 goto retry; 214 } 215 216 return (IDM_STATUS_FAIL); 217 } 218 219 *new_con = ic; 220 221 mutex_enter(&idm.idm_global_mutex); 222 list_insert_tail(&idm.idm_ini_conn_list, ic); 223 mutex_exit(&idm.idm_global_mutex); 224 225 return (IDM_STATUS_SUCCESS); 226 } 227 228 /* 229 * idm_ini_conn_destroy 230 * 231 * Releases any resources associated with the connection. This is the 232 * complement to idm_ini_conn_create. 233 * ic - idm_conn_t structure representing the relevant connection 234 * 235 */ 236 void 237 idm_ini_conn_destroy_task(void *ic_void) 238 { 239 idm_conn_t *ic = ic_void; 240 241 ic->ic_transport_ops->it_ini_conn_destroy(ic); 242 idm_conn_destroy_common(ic); 243 } 244 245 void 246 idm_ini_conn_destroy(idm_conn_t *ic) 247 { 248 /* 249 * It's reasonable for the initiator to call idm_ini_conn_destroy 250 * from within the context of the CN_CONNECT_DESTROY notification. 251 * That's a problem since we want to destroy the taskq for the 252 * state machine associated with the connection. Remove the 253 * connection from the list right away then handle the remaining 254 * work via the idm_global_taskq. 255 */ 256 mutex_enter(&idm.idm_global_mutex); 257 list_remove(&idm.idm_ini_conn_list, ic); 258 mutex_exit(&idm.idm_global_mutex); 259 260 if (taskq_dispatch(idm.idm_global_taskq, 261 &idm_ini_conn_destroy_task, ic, TQ_SLEEP) == NULL) { 262 cmn_err(CE_WARN, 263 "idm_ini_conn_destroy: Couldn't dispatch task"); 264 } 265 } 266 267 /* 268 * idm_ini_conn_connect 269 * 270 * Establish connection to the remote system identified in idm_conn_t. 271 * The connection parameters including the remote IP address were established 272 * in the call to idm_ini_conn_create. The IDM state machine will 273 * perform client notifications as necessary to prompt the initiator through 274 * the login process. IDM also keeps a timer running so that if the login 275 * process doesn't complete in a timely manner it will fail. 276 * 277 * ic - idm_conn_t structure representing the relevant connection 278 * 279 * Returns success if the connection was established, otherwise some kind 280 * of meaningful error code. 281 * 282 * Upon return the login has either failed or is loggin in (ffp) 283 */ 284 idm_status_t 285 idm_ini_conn_connect(idm_conn_t *ic) 286 { 287 idm_status_t rc = IDM_STATUS_SUCCESS; 288 289 rc = idm_conn_sm_init(ic); 290 if (rc != IDM_STATUS_SUCCESS) { 291 return (ic->ic_conn_sm_status); 292 } 293 294 /* Hold connection until we return */ 295 idm_conn_hold(ic); 296 297 /* Kick state machine */ 298 idm_conn_event(ic, CE_CONNECT_REQ, NULL); 299 300 /* Wait for login flag */ 301 mutex_enter(&ic->ic_state_mutex); 302 while (!(ic->ic_state_flags & CF_LOGIN_READY) && 303 !(ic->ic_state_flags & CF_ERROR)) { 304 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex); 305 } 306 mutex_exit(&ic->ic_state_mutex); 307 308 if (ic->ic_state_flags & CF_ERROR) { 309 /* ic->ic_conn_sm_status will contains failure status */ 310 idm_conn_rele(ic); 311 return (ic->ic_conn_sm_status); 312 } 313 314 /* Ready to login */ 315 ASSERT(ic->ic_state_flags & CF_LOGIN_READY); 316 (void) idm_notify_client(ic, CN_READY_FOR_LOGIN, NULL); 317 318 idm_conn_rele(ic); 319 320 return (rc); 321 } 322 323 /* 324 * idm_ini_conn_disconnect 325 * 326 * Forces a connection (previously established using idm_ini_conn_connect) 327 * to perform a controlled shutdown, cleaning up any outstanding requests. 328 * 329 * ic - idm_conn_t structure representing the relevant connection 330 * 331 * This is asynchronous and will return before the connection is properly 332 * shutdown 333 */ 334 /* ARGSUSED */ 335 void 336 idm_ini_conn_disconnect(idm_conn_t *ic) 337 { 338 idm_conn_event(ic, CE_TRANSPORT_FAIL, NULL); 339 } 340 341 /* 342 * idm_ini_conn_disconnect_wait 343 * 344 * Forces a connection (previously established using idm_ini_conn_connect) 345 * to perform a controlled shutdown. Blocks until the connection is 346 * disconnected. 347 * 348 * ic - idm_conn_t structure representing the relevant connection 349 */ 350 /* ARGSUSED */ 351 void 352 idm_ini_conn_disconnect_sync(idm_conn_t *ic) 353 { 354 mutex_enter(&ic->ic_state_mutex); 355 if ((ic->ic_state != CS_S9_INIT_ERROR) && 356 (ic->ic_state != CS_S11_COMPLETE)) { 357 idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, NULL, CT_NONE); 358 while ((ic->ic_state != CS_S9_INIT_ERROR) && 359 (ic->ic_state != CS_S11_COMPLETE)) 360 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex); 361 } 362 mutex_exit(&ic->ic_state_mutex); 363 } 364 365 /* 366 * idm_tgt_svc_create 367 * 368 * The target calls this service to obtain a service context for each available 369 * transport, starting a service of each type related to the IP address and port 370 * passed. The idm_svc_req_t contains the service parameters. 371 */ 372 idm_status_t 373 idm_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t **new_svc) 374 { 375 idm_transport_type_t type; 376 idm_transport_t *it; 377 idm_svc_t *is; 378 int rc; 379 380 *new_svc = NULL; 381 is = kmem_zalloc(sizeof (idm_svc_t), KM_SLEEP); 382 383 /* Initialize transport-agnostic components of the service handle */ 384 is->is_svc_req = *sr; 385 mutex_init(&is->is_mutex, NULL, MUTEX_DEFAULT, NULL); 386 cv_init(&is->is_cv, NULL, CV_DEFAULT, NULL); 387 mutex_init(&is->is_count_mutex, NULL, MUTEX_DEFAULT, NULL); 388 cv_init(&is->is_count_cv, NULL, CV_DEFAULT, NULL); 389 idm_refcnt_init(&is->is_refcnt, is); 390 391 /* 392 * Make sure all available transports are setup. We call this now 393 * instead of at initialization time in case IB has become available 394 * since we started (hotplug, etc). 395 */ 396 idm_transport_setup(sr->sr_li); 397 398 /* 399 * Loop through the transports, configuring the transport-specific 400 * components of each one. 401 */ 402 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 403 404 it = &idm_transport_list[type]; 405 /* 406 * If it_ops is NULL then the transport is unconfigured 407 * and we shouldn't try to start the service. 408 */ 409 if (it->it_ops == NULL) { 410 continue; 411 } 412 413 rc = it->it_ops->it_tgt_svc_create(sr, is); 414 if (rc != IDM_STATUS_SUCCESS) { 415 /* Teardown any configured services */ 416 while (type--) { 417 it = &idm_transport_list[type]; 418 if (it->it_ops == NULL) { 419 continue; 420 } 421 it->it_ops->it_tgt_svc_destroy(is); 422 } 423 /* Free the svc context and return */ 424 kmem_free(is, sizeof (idm_svc_t)); 425 return (rc); 426 } 427 } 428 429 *new_svc = is; 430 431 mutex_enter(&idm.idm_global_mutex); 432 list_insert_tail(&idm.idm_tgt_svc_list, is); 433 mutex_exit(&idm.idm_global_mutex); 434 435 return (IDM_STATUS_SUCCESS); 436 } 437 438 /* 439 * idm_tgt_svc_destroy 440 * 441 * is - idm_svc_t returned by the call to idm_tgt_svc_create 442 * 443 * Cleanup any resources associated with the idm_svc_t. 444 */ 445 void 446 idm_tgt_svc_destroy(idm_svc_t *is) 447 { 448 idm_transport_type_t type; 449 idm_transport_t *it; 450 451 mutex_enter(&idm.idm_global_mutex); 452 /* remove this service from the global list */ 453 list_remove(&idm.idm_tgt_svc_list, is); 454 /* wakeup any waiters for service change */ 455 cv_broadcast(&idm.idm_tgt_svc_cv); 456 mutex_exit(&idm.idm_global_mutex); 457 458 /* teardown each transport-specific service */ 459 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 460 it = &idm_transport_list[type]; 461 if (it->it_ops == NULL) { 462 continue; 463 } 464 465 it->it_ops->it_tgt_svc_destroy(is); 466 } 467 468 /* tear down the svc resources */ 469 idm_refcnt_destroy(&is->is_refcnt); 470 cv_destroy(&is->is_count_cv); 471 mutex_destroy(&is->is_count_mutex); 472 cv_destroy(&is->is_cv); 473 mutex_destroy(&is->is_mutex); 474 475 /* free the svc handle */ 476 kmem_free(is, sizeof (idm_svc_t)); 477 } 478 479 void 480 idm_tgt_svc_hold(idm_svc_t *is) 481 { 482 idm_refcnt_hold(&is->is_refcnt); 483 } 484 485 void 486 idm_tgt_svc_rele_and_destroy(idm_svc_t *is) 487 { 488 idm_refcnt_rele_and_destroy(&is->is_refcnt, 489 (idm_refcnt_cb_t *)&idm_tgt_svc_destroy); 490 } 491 492 /* 493 * idm_tgt_svc_online 494 * 495 * is - idm_svc_t returned by the call to idm_tgt_svc_create 496 * 497 * Online each transport service, as we want this target to be accessible 498 * via any configured transport. 499 * 500 * When the initiator establishes a new connection to the target, IDM will 501 * call the "new connect" callback defined in the idm_svc_req_t structure 502 * and it will pass an idm_conn_t structure representing that new connection. 503 */ 504 idm_status_t 505 idm_tgt_svc_online(idm_svc_t *is) 506 { 507 508 idm_transport_type_t type, last_type; 509 idm_transport_t *it; 510 int rc = IDM_STATUS_SUCCESS; 511 512 mutex_enter(&is->is_mutex); 513 if (is->is_online == 0) { 514 /* Walk through each of the transports and online them */ 515 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 516 it = &idm_transport_list[type]; 517 if (it->it_ops == NULL) { 518 /* transport is not registered */ 519 continue; 520 } 521 522 mutex_exit(&is->is_mutex); 523 rc = it->it_ops->it_tgt_svc_online(is); 524 mutex_enter(&is->is_mutex); 525 if (rc != IDM_STATUS_SUCCESS) { 526 last_type = type; 527 break; 528 } 529 } 530 if (rc != IDM_STATUS_SUCCESS) { 531 /* 532 * The last transport failed to online. 533 * Offline any transport onlined above and 534 * do not online the target. 535 */ 536 for (type = 0; type < last_type; type++) { 537 it = &idm_transport_list[type]; 538 if (it->it_ops == NULL) { 539 /* transport is not registered */ 540 continue; 541 } 542 543 mutex_exit(&is->is_mutex); 544 it->it_ops->it_tgt_svc_offline(is); 545 mutex_enter(&is->is_mutex); 546 } 547 } else { 548 /* Target service now online */ 549 is->is_online = 1; 550 } 551 } else { 552 /* Target service already online, just bump the count */ 553 is->is_online++; 554 } 555 mutex_exit(&is->is_mutex); 556 557 return (rc); 558 } 559 560 /* 561 * idm_tgt_svc_offline 562 * 563 * is - idm_svc_t returned by the call to idm_tgt_svc_create 564 * 565 * Shutdown any online target services. 566 */ 567 void 568 idm_tgt_svc_offline(idm_svc_t *is) 569 { 570 idm_transport_type_t type; 571 idm_transport_t *it; 572 573 mutex_enter(&is->is_mutex); 574 is->is_online--; 575 if (is->is_online == 0) { 576 /* Walk through each of the transports and offline them */ 577 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 578 it = &idm_transport_list[type]; 579 if (it->it_ops == NULL) { 580 /* transport is not registered */ 581 continue; 582 } 583 584 mutex_exit(&is->is_mutex); 585 it->it_ops->it_tgt_svc_offline(is); 586 mutex_enter(&is->is_mutex); 587 } 588 } 589 mutex_exit(&is->is_mutex); 590 } 591 592 /* 593 * idm_tgt_svc_lookup 594 * 595 * Lookup a service instance listening on the specified port 596 */ 597 598 idm_svc_t * 599 idm_tgt_svc_lookup(uint16_t port) 600 { 601 idm_svc_t *result; 602 603 retry: 604 mutex_enter(&idm.idm_global_mutex); 605 for (result = list_head(&idm.idm_tgt_svc_list); 606 result != NULL; 607 result = list_next(&idm.idm_tgt_svc_list, result)) { 608 if (result->is_svc_req.sr_port == port) { 609 if (result->is_online == 0) { 610 /* 611 * A service exists on this port, but it 612 * is going away, wait for it to cleanup. 613 */ 614 cv_wait(&idm.idm_tgt_svc_cv, 615 &idm.idm_global_mutex); 616 mutex_exit(&idm.idm_global_mutex); 617 goto retry; 618 } 619 idm_tgt_svc_hold(result); 620 mutex_exit(&idm.idm_global_mutex); 621 return (result); 622 } 623 } 624 mutex_exit(&idm.idm_global_mutex); 625 626 return (NULL); 627 } 628 629 /* 630 * idm_negotiate_key_values() 631 * Give IDM level a chance to negotiate any login parameters it should own. 632 * -- leave unhandled parameters alone on request_nvl 633 * -- move all handled parameters to response_nvl with an appropriate response 634 * -- also add an entry to negotiated_nvl for any accepted parameters 635 */ 636 kv_status_t 637 idm_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl, 638 nvlist_t *response_nvl, nvlist_t *negotiated_nvl) 639 { 640 ASSERT(ic->ic_transport_ops != NULL); 641 return (ic->ic_transport_ops->it_negotiate_key_values(ic, 642 request_nvl, response_nvl, negotiated_nvl)); 643 } 644 645 /* 646 * idm_notice_key_values() 647 * Activate at the IDM level any parameters that have been negotiated. 648 * Passes the set of key value pairs to the transport for activation. 649 * This will be invoked as the connection is entering full-feature mode. 650 */ 651 void 652 idm_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl) 653 { 654 ASSERT(ic->ic_transport_ops != NULL); 655 ic->ic_transport_ops->it_notice_key_values(ic, negotiated_nvl); 656 } 657 658 /* 659 * idm_buf_tx_to_ini 660 * 661 * This is IDM's implementation of the 'Put_Data' operational primitive. 662 * 663 * This function is invoked by a target iSCSI layer to request its local 664 * Datamover layer to transmit the Data-In PDU to the peer iSCSI layer 665 * on the remote iSCSI node. The I/O buffer represented by 'idb' is 666 * transferred to the initiator associated with task 'idt'. The connection 667 * info, contents of the Data-In PDU header, the DataDescriptorIn, BHS, 668 * and the callback (idb->idb_buf_cb) at transfer completion are 669 * provided as input. 670 * 671 * This data transfer takes place transparently to the remote iSCSI layer, 672 * i.e. without its participation. 673 * 674 * Using sockets, IDM implements the data transfer by segmenting the data 675 * buffer into appropriately sized iSCSI PDUs and transmitting them to the 676 * initiator. iSER performs the transfer using RDMA write. 677 * 678 */ 679 idm_status_t 680 idm_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb, 681 uint32_t offset, uint32_t xfer_len, 682 idm_buf_cb_t idb_buf_cb, void *cb_arg) 683 { 684 idm_status_t rc; 685 686 idb->idb_bufoffset = offset; 687 idb->idb_xfer_len = xfer_len; 688 idb->idb_buf_cb = idb_buf_cb; 689 idb->idb_cb_arg = cb_arg; 690 gethrestime(&idb->idb_xfer_start); 691 692 /* 693 * Buffer should not contain the pattern. If the pattern is 694 * present then we've been asked to transmit initialized data 695 */ 696 IDM_BUFPAT_CHECK(idb, xfer_len, BP_CHECK_ASSERT); 697 698 mutex_enter(&idt->idt_mutex); 699 switch (idt->idt_state) { 700 case TASK_ACTIVE: 701 idt->idt_tx_to_ini_start++; 702 idm_task_hold(idt); 703 idm_buf_bind_in_locked(idt, idb); 704 idb->idb_in_transport = B_TRUE; 705 rc = (*idt->idt_ic->ic_transport_ops->it_buf_tx_to_ini) 706 (idt, idb); 707 return (rc); 708 709 case TASK_SUSPENDING: 710 case TASK_SUSPENDED: 711 /* 712 * Bind buffer but don't start a transfer since the task 713 * is suspended 714 */ 715 idm_buf_bind_in_locked(idt, idb); 716 mutex_exit(&idt->idt_mutex); 717 return (IDM_STATUS_SUCCESS); 718 719 case TASK_ABORTING: 720 case TASK_ABORTED: 721 /* 722 * Once the task is aborted, any buffers added to the 723 * idt_inbufv will never get cleaned up, so just return 724 * SUCCESS. The buffer should get cleaned up by the 725 * client or framework once task_aborted has completed. 726 */ 727 mutex_exit(&idt->idt_mutex); 728 return (IDM_STATUS_SUCCESS); 729 730 default: 731 ASSERT(0); 732 break; 733 } 734 mutex_exit(&idt->idt_mutex); 735 736 return (IDM_STATUS_FAIL); 737 } 738 739 /* 740 * idm_buf_rx_from_ini 741 * 742 * This is IDM's implementation of the 'Get_Data' operational primitive. 743 * 744 * This function is invoked by a target iSCSI layer to request its local 745 * Datamover layer to retrieve certain data identified by the R2T PDU from the 746 * peer iSCSI layer on the remote node. The retrieved Data-Out PDU will be 747 * mapped to the respective buffer by the task tags (ITT & TTT). 748 * The connection information, contents of an R2T PDU, DataDescriptor, BHS, and 749 * the callback (idb->idb_buf_cb) notification for data transfer completion are 750 * are provided as input. 751 * 752 * When an iSCSI node sends an R2T PDU to its local Datamover layer, the local 753 * Datamover layer, the local and remote Datamover layers transparently bring 754 * about the data transfer requested by the R2T PDU, without the participation 755 * of the iSCSI layers. 756 * 757 * Using sockets, IDM transmits an R2T PDU for each buffer and the rx_data_out() 758 * assembles the Data-Out PDUs into the buffer. iSER uses RDMA read. 759 * 760 */ 761 idm_status_t 762 idm_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb, 763 uint32_t offset, uint32_t xfer_len, 764 idm_buf_cb_t idb_buf_cb, void *cb_arg) 765 { 766 idm_status_t rc; 767 768 idb->idb_bufoffset = offset; 769 idb->idb_xfer_len = xfer_len; 770 idb->idb_buf_cb = idb_buf_cb; 771 idb->idb_cb_arg = cb_arg; 772 gethrestime(&idb->idb_xfer_start); 773 774 /* 775 * "In" buf list is for "Data In" PDU's, "Out" buf list is for 776 * "Data Out" PDU's 777 */ 778 mutex_enter(&idt->idt_mutex); 779 switch (idt->idt_state) { 780 case TASK_ACTIVE: 781 idt->idt_rx_from_ini_start++; 782 idm_task_hold(idt); 783 idm_buf_bind_out_locked(idt, idb); 784 idb->idb_in_transport = B_TRUE; 785 rc = (*idt->idt_ic->ic_transport_ops->it_buf_rx_from_ini) 786 (idt, idb); 787 return (rc); 788 case TASK_SUSPENDING: 789 case TASK_SUSPENDED: 790 case TASK_ABORTING: 791 case TASK_ABORTED: 792 /* 793 * Bind buffer but don't start a transfer since the task 794 * is suspended 795 */ 796 idm_buf_bind_out_locked(idt, idb); 797 mutex_exit(&idt->idt_mutex); 798 return (IDM_STATUS_SUCCESS); 799 default: 800 ASSERT(0); 801 break; 802 } 803 mutex_exit(&idt->idt_mutex); 804 805 return (IDM_STATUS_FAIL); 806 } 807 808 /* 809 * idm_buf_tx_to_ini_done 810 * 811 * The transport calls this after it has completed a transfer requested by 812 * a call to transport_buf_tx_to_ini 813 * 814 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning. 815 * idt may be freed after the call to idb->idb_buf_cb. 816 */ 817 void 818 idm_buf_tx_to_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status) 819 { 820 ASSERT(mutex_owned(&idt->idt_mutex)); 821 idb->idb_in_transport = B_FALSE; 822 idb->idb_tx_thread = B_FALSE; 823 idt->idt_tx_to_ini_done++; 824 gethrestime(&idb->idb_xfer_done); 825 826 /* 827 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or 828 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes 829 * to 0. 830 */ 831 idm_task_rele(idt); 832 idb->idb_status = status; 833 834 switch (idt->idt_state) { 835 case TASK_ACTIVE: 836 idm_buf_unbind_in_locked(idt, idb); 837 mutex_exit(&idt->idt_mutex); 838 (*idb->idb_buf_cb)(idb, status); 839 return; 840 case TASK_SUSPENDING: 841 case TASK_SUSPENDED: 842 case TASK_ABORTING: 843 case TASK_ABORTED: 844 /* 845 * To keep things simple we will ignore the case where the 846 * transfer was successful and leave all buffers bound to the 847 * task. This allows us to also ignore the case where we've 848 * been asked to abort a task but the last transfer of the 849 * task has completed. IDM has no idea whether this was, in 850 * fact, the last transfer of the task so it would be difficult 851 * to handle this case. Everything should get sorted out again 852 * after task reassignment is complete. 853 * 854 * In the case of TASK_ABORTING we could conceivably call the 855 * buffer callback here but the timing of when the client's 856 * client_task_aborted callback is invoked vs. when the client's 857 * buffer callback gets invoked gets sticky. We don't want 858 * the client to here from us again after the call to 859 * client_task_aborted() but we don't want to give it a bunch 860 * of failed buffer transfers until we've called 861 * client_task_aborted(). Instead we'll just leave all the 862 * buffers bound and allow the client to cleanup. 863 */ 864 break; 865 default: 866 ASSERT(0); 867 } 868 mutex_exit(&idt->idt_mutex); 869 } 870 871 /* 872 * idm_buf_rx_from_ini_done 873 * 874 * The transport calls this after it has completed a transfer requested by 875 * a call totransport_buf_tx_to_ini 876 * 877 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning. 878 * idt may be freed after the call to idb->idb_buf_cb. 879 */ 880 void 881 idm_buf_rx_from_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status) 882 { 883 ASSERT(mutex_owned(&idt->idt_mutex)); 884 idb->idb_in_transport = B_FALSE; 885 idt->idt_rx_from_ini_done++; 886 gethrestime(&idb->idb_xfer_done); 887 888 /* 889 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or 890 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes 891 * to 0. 892 */ 893 idm_task_rele(idt); 894 idb->idb_status = status; 895 896 if (status == IDM_STATUS_SUCCESS) { 897 /* 898 * Buffer should not contain the pattern. If it does then 899 * we did not get the data from the remote host. 900 */ 901 IDM_BUFPAT_CHECK(idb, idb->idb_xfer_len, BP_CHECK_ASSERT); 902 } 903 904 switch (idt->idt_state) { 905 case TASK_ACTIVE: 906 idm_buf_unbind_out_locked(idt, idb); 907 mutex_exit(&idt->idt_mutex); 908 (*idb->idb_buf_cb)(idb, status); 909 return; 910 case TASK_SUSPENDING: 911 case TASK_SUSPENDED: 912 case TASK_ABORTING: 913 case TASK_ABORTED: 914 /* 915 * To keep things simple we will ignore the case where the 916 * transfer was successful and leave all buffers bound to the 917 * task. This allows us to also ignore the case where we've 918 * been asked to abort a task but the last transfer of the 919 * task has completed. IDM has no idea whether this was, in 920 * fact, the last transfer of the task so it would be difficult 921 * to handle this case. Everything should get sorted out again 922 * after task reassignment is complete. 923 * 924 * In the case of TASK_ABORTING we could conceivably call the 925 * buffer callback here but the timing of when the client's 926 * client_task_aborted callback is invoked vs. when the client's 927 * buffer callback gets invoked gets sticky. We don't want 928 * the client to here from us again after the call to 929 * client_task_aborted() but we don't want to give it a bunch 930 * of failed buffer transfers until we've called 931 * client_task_aborted(). Instead we'll just leave all the 932 * buffers bound and allow the client to cleanup. 933 */ 934 break; 935 default: 936 ASSERT(0); 937 } 938 mutex_exit(&idt->idt_mutex); 939 } 940 941 /* 942 * idm_buf_alloc 943 * 944 * Allocates a buffer handle and registers it for use with the transport 945 * layer. If a buffer is not passed on bufptr, the buffer will be allocated 946 * as well as the handle. 947 * 948 * ic - connection on which the buffer will be transferred 949 * bufptr - allocate memory for buffer if NULL, else assign to buffer 950 * buflen - length of buffer 951 * 952 * Returns idm_buf_t handle if successful, otherwise NULL 953 */ 954 idm_buf_t * 955 idm_buf_alloc(idm_conn_t *ic, void *bufptr, uint64_t buflen) 956 { 957 idm_buf_t *buf = NULL; 958 int rc; 959 960 ASSERT(ic != NULL); 961 ASSERT(idm.idm_buf_cache != NULL); 962 ASSERT(buflen > 0); 963 964 /* Don't allocate new buffers if we are not in FFP */ 965 mutex_enter(&ic->ic_state_mutex); 966 if (!ic->ic_ffp) { 967 mutex_exit(&ic->ic_state_mutex); 968 return (NULL); 969 } 970 971 972 idm_conn_hold(ic); 973 mutex_exit(&ic->ic_state_mutex); 974 975 buf = kmem_cache_alloc(idm.idm_buf_cache, KM_NOSLEEP); 976 if (buf == NULL) { 977 idm_conn_rele(ic); 978 return (NULL); 979 } 980 981 buf->idb_ic = ic; 982 buf->idb_buflen = buflen; 983 buf->idb_exp_offset = 0; 984 buf->idb_bufoffset = 0; 985 buf->idb_xfer_len = 0; 986 buf->idb_magic = IDM_BUF_MAGIC; 987 buf->idb_in_transport = B_FALSE; 988 buf->idb_bufbcopy = B_FALSE; 989 990 /* 991 * If bufptr is NULL, we have an implicit request to allocate 992 * memory for this IDM buffer handle and register it for use 993 * with the transport. To simplify this, and to give more freedom 994 * to the transport layer for it's own buffer management, both of 995 * these actions will take place in the transport layer. 996 * If bufptr is set, then the caller has allocated memory (or more 997 * likely it's been passed from an upper layer), and we need only 998 * register the buffer for use with the transport layer. 999 */ 1000 if (bufptr == NULL) { 1001 /* 1002 * Allocate a buffer from the transport layer (which 1003 * will also register the buffer for use). 1004 */ 1005 rc = ic->ic_transport_ops->it_buf_alloc(buf, buflen); 1006 if (rc != 0) { 1007 idm_conn_rele(ic); 1008 kmem_cache_free(idm.idm_buf_cache, buf); 1009 return (NULL); 1010 } 1011 /* Set the bufalloc'd flag */ 1012 buf->idb_bufalloc = B_TRUE; 1013 } else { 1014 /* 1015 * For large transfers, Set the passed bufptr into 1016 * the buf handle, and register the handle with the 1017 * transport layer. As memory registration with the 1018 * transport layer is a time/cpu intensive operation, 1019 * for small transfers (up to a pre-defined bcopy 1020 * threshold), use pre-registered memory buffers 1021 * and bcopy data at the appropriate time. 1022 */ 1023 buf->idb_buf = bufptr; 1024 1025 rc = ic->ic_transport_ops->it_buf_setup(buf); 1026 if (rc != 0) { 1027 idm_conn_rele(ic); 1028 kmem_cache_free(idm.idm_buf_cache, buf); 1029 return (NULL); 1030 } 1031 /* 1032 * The transport layer is now expected to set the idb_bufalloc 1033 * correctly to indicate if resources have been allocated. 1034 */ 1035 } 1036 1037 IDM_BUFPAT_SET(buf); 1038 1039 return (buf); 1040 } 1041 1042 /* 1043 * idm_buf_free 1044 * 1045 * Release a buffer handle along with the associated buffer that was allocated 1046 * or assigned with idm_buf_alloc 1047 */ 1048 void 1049 idm_buf_free(idm_buf_t *buf) 1050 { 1051 idm_conn_t *ic = buf->idb_ic; 1052 1053 1054 buf->idb_task_binding = NULL; 1055 1056 if (buf->idb_bufalloc) { 1057 ic->ic_transport_ops->it_buf_free(buf); 1058 } else { 1059 ic->ic_transport_ops->it_buf_teardown(buf); 1060 } 1061 kmem_cache_free(idm.idm_buf_cache, buf); 1062 idm_conn_rele(ic); 1063 } 1064 1065 /* 1066 * idm_buf_bind_in 1067 * 1068 * This function associates a buffer with a task. This is only for use by the 1069 * iSCSI initiator that will have only one buffer per transfer direction 1070 * 1071 */ 1072 void 1073 idm_buf_bind_in(idm_task_t *idt, idm_buf_t *buf) 1074 { 1075 mutex_enter(&idt->idt_mutex); 1076 idm_buf_bind_in_locked(idt, buf); 1077 mutex_exit(&idt->idt_mutex); 1078 } 1079 1080 static void 1081 idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf) 1082 { 1083 buf->idb_task_binding = idt; 1084 buf->idb_ic = idt->idt_ic; 1085 idm_listbuf_insert(&idt->idt_inbufv, buf); 1086 } 1087 1088 void 1089 idm_buf_bind_out(idm_task_t *idt, idm_buf_t *buf) 1090 { 1091 /* 1092 * For small transfers, the iSER transport delegates the IDM 1093 * layer to bcopy the SCSI Write data for faster IOPS. 1094 */ 1095 if (buf->idb_bufbcopy == B_TRUE) { 1096 1097 bcopy(buf->idb_bufptr, buf->idb_buf, buf->idb_buflen); 1098 } 1099 mutex_enter(&idt->idt_mutex); 1100 idm_buf_bind_out_locked(idt, buf); 1101 mutex_exit(&idt->idt_mutex); 1102 } 1103 1104 static void 1105 idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf) 1106 { 1107 buf->idb_task_binding = idt; 1108 buf->idb_ic = idt->idt_ic; 1109 idm_listbuf_insert(&idt->idt_outbufv, buf); 1110 } 1111 1112 void 1113 idm_buf_unbind_in(idm_task_t *idt, idm_buf_t *buf) 1114 { 1115 /* 1116 * For small transfers, the iSER transport delegates the IDM 1117 * layer to bcopy the SCSI Read data into the read buufer 1118 * for faster IOPS. 1119 */ 1120 if (buf->idb_bufbcopy == B_TRUE) { 1121 bcopy(buf->idb_buf, buf->idb_bufptr, buf->idb_buflen); 1122 } 1123 mutex_enter(&idt->idt_mutex); 1124 idm_buf_unbind_in_locked(idt, buf); 1125 mutex_exit(&idt->idt_mutex); 1126 } 1127 1128 static void 1129 idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf) 1130 { 1131 list_remove(&idt->idt_inbufv, buf); 1132 } 1133 1134 void 1135 idm_buf_unbind_out(idm_task_t *idt, idm_buf_t *buf) 1136 { 1137 mutex_enter(&idt->idt_mutex); 1138 idm_buf_unbind_out_locked(idt, buf); 1139 mutex_exit(&idt->idt_mutex); 1140 } 1141 1142 static void 1143 idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf) 1144 { 1145 list_remove(&idt->idt_outbufv, buf); 1146 } 1147 1148 /* 1149 * idm_buf_find() will lookup the idm_buf_t based on the relative offset in the 1150 * iSCSI PDU 1151 */ 1152 idm_buf_t * 1153 idm_buf_find(void *lbuf, size_t data_offset) 1154 { 1155 idm_buf_t *idb; 1156 list_t *lst = (list_t *)lbuf; 1157 1158 /* iterate through the list to find the buffer */ 1159 for (idb = list_head(lst); idb != NULL; idb = list_next(lst, idb)) { 1160 1161 ASSERT((idb->idb_ic->ic_conn_type == CONN_TYPE_TGT) || 1162 (idb->idb_bufoffset == 0)); 1163 1164 if ((data_offset >= idb->idb_bufoffset) && 1165 (data_offset < (idb->idb_bufoffset + idb->idb_buflen))) { 1166 1167 return (idb); 1168 } 1169 } 1170 1171 return (NULL); 1172 } 1173 1174 void 1175 idm_bufpat_set(idm_buf_t *idb) 1176 { 1177 idm_bufpat_t *bufpat; 1178 int len, i; 1179 1180 len = idb->idb_buflen; 1181 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t); 1182 1183 bufpat = idb->idb_buf; 1184 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) { 1185 bufpat->bufpat_idb = idb; 1186 bufpat->bufpat_bufmagic = IDM_BUF_MAGIC; 1187 bufpat->bufpat_offset = i; 1188 bufpat++; 1189 } 1190 } 1191 1192 boolean_t 1193 idm_bufpat_check(idm_buf_t *idb, int check_len, idm_bufpat_check_type_t type) 1194 { 1195 idm_bufpat_t *bufpat; 1196 int len, i; 1197 1198 len = (type == BP_CHECK_QUICK) ? sizeof (idm_bufpat_t) : check_len; 1199 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t); 1200 ASSERT(len <= idb->idb_buflen); 1201 bufpat = idb->idb_buf; 1202 1203 /* 1204 * Don't check the pattern in buffers that came from outside IDM 1205 * (these will be buffers from the initiator that we opted not 1206 * to double-buffer) 1207 */ 1208 if (!idb->idb_bufalloc) 1209 return (B_FALSE); 1210 1211 /* 1212 * Return true if we find the pattern anywhere in the buffer 1213 */ 1214 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) { 1215 if (BUFPAT_MATCH(bufpat, idb)) { 1216 IDM_CONN_LOG(CE_WARN, "idm_bufpat_check found: " 1217 "idb %p bufpat %p " 1218 "bufpat_idb=%p bufmagic=%08x offset=%08x", 1219 (void *)idb, (void *)bufpat, bufpat->bufpat_idb, 1220 bufpat->bufpat_bufmagic, bufpat->bufpat_offset); 1221 DTRACE_PROBE2(bufpat__pattern__found, 1222 idm_buf_t *, idb, idm_bufpat_t *, bufpat); 1223 if (type == BP_CHECK_ASSERT) { 1224 ASSERT(0); 1225 } 1226 return (B_TRUE); 1227 } 1228 bufpat++; 1229 } 1230 1231 return (B_FALSE); 1232 } 1233 1234 /* 1235 * idm_task_alloc 1236 * 1237 * This function will allocate a idm_task_t structure. A task tag is also 1238 * generated and saved in idt_tt. The task is not active. 1239 */ 1240 idm_task_t * 1241 idm_task_alloc(idm_conn_t *ic) 1242 { 1243 idm_task_t *idt; 1244 1245 ASSERT(ic != NULL); 1246 1247 /* Don't allocate new tasks if we are not in FFP */ 1248 mutex_enter(&ic->ic_state_mutex); 1249 if (!ic->ic_ffp) { 1250 mutex_exit(&ic->ic_state_mutex); 1251 return (NULL); 1252 } 1253 idt = kmem_cache_alloc(idm.idm_task_cache, KM_NOSLEEP); 1254 if (idt == NULL) { 1255 mutex_exit(&ic->ic_state_mutex); 1256 return (NULL); 1257 } 1258 1259 ASSERT(list_is_empty(&idt->idt_inbufv)); 1260 ASSERT(list_is_empty(&idt->idt_outbufv)); 1261 1262 idm_conn_hold(ic); 1263 mutex_exit(&ic->ic_state_mutex); 1264 1265 idt->idt_state = TASK_IDLE; 1266 idt->idt_ic = ic; 1267 idt->idt_private = NULL; 1268 idt->idt_exp_datasn = 0; 1269 idt->idt_exp_rttsn = 0; 1270 1271 return (idt); 1272 } 1273 1274 /* 1275 * idm_task_start 1276 * 1277 * Mark the task active and initialize some stats. The caller 1278 * sets up the idm_task_t structure with a prior call to idm_task_alloc(). 1279 * The task service does not function as a task/work engine, it is the 1280 * responsibility of the initiator to start the data transfer and free the 1281 * resources. 1282 */ 1283 void 1284 idm_task_start(idm_task_t *idt, uintptr_t handle) 1285 { 1286 ASSERT(idt != NULL); 1287 1288 /* mark the task as ACTIVE */ 1289 idt->idt_state = TASK_ACTIVE; 1290 idt->idt_client_handle = handle; 1291 idt->idt_tx_to_ini_start = idt->idt_tx_to_ini_done = 1292 idt->idt_rx_from_ini_start = idt->idt_rx_from_ini_done = 1293 idt->idt_tx_bytes = idt->idt_rx_bytes = 0; 1294 } 1295 1296 /* 1297 * idm_task_done 1298 * 1299 * This function sets the state to indicate that the task is no longer active. 1300 */ 1301 void 1302 idm_task_done(idm_task_t *idt) 1303 { 1304 ASSERT(idt != NULL); 1305 1306 mutex_enter(&idt->idt_mutex); 1307 idt->idt_state = TASK_IDLE; 1308 mutex_exit(&idt->idt_mutex); 1309 1310 /* 1311 * Although unlikely it is possible for a reference to come in after 1312 * the client has decided the task is over but before we've marked 1313 * the task idle. One specific unavoidable scenario is the case where 1314 * received PDU with the matching ITT/TTT results in a successful 1315 * lookup of this task. We are at the mercy of the remote node in 1316 * that case so we need to handle it. Now that the task state 1317 * has changed no more references will occur so a simple call to 1318 * idm_refcnt_wait_ref should deal with the situation. 1319 */ 1320 idm_refcnt_wait_ref(&idt->idt_refcnt); 1321 idm_refcnt_reset(&idt->idt_refcnt); 1322 } 1323 1324 /* 1325 * idm_task_free 1326 * 1327 * This function will free the Task Tag and the memory allocated for the task 1328 * idm_task_done should be called prior to this call 1329 */ 1330 void 1331 idm_task_free(idm_task_t *idt) 1332 { 1333 idm_conn_t *ic; 1334 1335 ASSERT(idt != NULL); 1336 ASSERT(idt->idt_refcnt.ir_refcnt == 0); 1337 ASSERT(idt->idt_state == TASK_IDLE); 1338 1339 ic = idt->idt_ic; 1340 1341 /* 1342 * It's possible for items to still be in the idt_inbufv list if 1343 * they were added after idm_task_cleanup was called. We rely on 1344 * STMF to free all buffers associated with the task however STMF 1345 * doesn't know that we have this reference to the buffers. 1346 * Use list_create so that we don't end up with stale references 1347 * to these buffers. 1348 */ 1349 list_create(&idt->idt_inbufv, sizeof (idm_buf_t), 1350 offsetof(idm_buf_t, idb_buflink)); 1351 list_create(&idt->idt_outbufv, sizeof (idm_buf_t), 1352 offsetof(idm_buf_t, idb_buflink)); 1353 1354 kmem_cache_free(idm.idm_task_cache, idt); 1355 1356 idm_conn_rele(ic); 1357 } 1358 1359 /* 1360 * idm_task_find_common 1361 * common code for idm_task_find() and idm_task_find_and_complete() 1362 */ 1363 /*ARGSUSED*/ 1364 static idm_task_t * 1365 idm_task_find_common(idm_conn_t *ic, uint32_t itt, uint32_t ttt, 1366 boolean_t complete) 1367 { 1368 uint32_t tt, client_handle; 1369 idm_task_t *idt; 1370 1371 /* 1372 * Must match both itt and ttt. The table is indexed by itt 1373 * for initiator connections and ttt for target connections. 1374 */ 1375 if (IDM_CONN_ISTGT(ic)) { 1376 tt = ttt; 1377 client_handle = itt; 1378 } else { 1379 tt = itt; 1380 client_handle = ttt; 1381 } 1382 1383 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1384 if (tt >= idm.idm_taskid_max) { 1385 rw_exit(&idm.idm_taskid_table_lock); 1386 return (NULL); 1387 } 1388 1389 idt = idm.idm_taskid_table[tt]; 1390 1391 if (idt != NULL) { 1392 mutex_enter(&idt->idt_mutex); 1393 if ((idt->idt_state != TASK_ACTIVE) || 1394 (idt->idt_ic != ic) || 1395 (IDM_CONN_ISTGT(ic) && 1396 (idt->idt_client_handle != client_handle))) { 1397 /* 1398 * Task doesn't match or task is aborting and 1399 * we don't want any more references. 1400 */ 1401 if ((idt->idt_ic != ic) && 1402 (idt->idt_state == TASK_ACTIVE) && 1403 (IDM_CONN_ISINI(ic) || idt->idt_client_handle == 1404 client_handle)) { 1405 IDM_CONN_LOG(CE_WARN, 1406 "idm_task_find: wrong connection %p != %p", 1407 (void *)ic, (void *)idt->idt_ic); 1408 } 1409 mutex_exit(&idt->idt_mutex); 1410 rw_exit(&idm.idm_taskid_table_lock); 1411 return (NULL); 1412 } 1413 idm_task_hold(idt); 1414 /* 1415 * Set the task state to TASK_COMPLETE so it can no longer 1416 * be found or aborted. 1417 */ 1418 if (B_TRUE == complete) 1419 idt->idt_state = TASK_COMPLETE; 1420 mutex_exit(&idt->idt_mutex); 1421 } 1422 rw_exit(&idm.idm_taskid_table_lock); 1423 1424 return (idt); 1425 } 1426 1427 /* 1428 * This function looks up a task by task tag. 1429 */ 1430 idm_task_t * 1431 idm_task_find(idm_conn_t *ic, uint32_t itt, uint32_t ttt) 1432 { 1433 return (idm_task_find_common(ic, itt, ttt, B_FALSE)); 1434 } 1435 1436 /* 1437 * This function looks up a task by task tag. If found, the task state 1438 * is atomically set to TASK_COMPLETE so it can longer be found or aborted. 1439 */ 1440 idm_task_t * 1441 idm_task_find_and_complete(idm_conn_t *ic, uint32_t itt, uint32_t ttt) 1442 { 1443 return (idm_task_find_common(ic, itt, ttt, B_TRUE)); 1444 } 1445 1446 /* 1447 * idm_task_find_by_handle 1448 * 1449 * This function looks up a task by the client-private idt_client_handle. 1450 * 1451 * This function should NEVER be called in the performance path. It is 1452 * intended strictly for error recovery/task management. 1453 */ 1454 /*ARGSUSED*/ 1455 void * 1456 idm_task_find_by_handle(idm_conn_t *ic, uintptr_t handle) 1457 { 1458 idm_task_t *idt = NULL; 1459 int idx = 0; 1460 1461 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1462 1463 for (idx = 0; idx < idm.idm_taskid_max; idx++) { 1464 idt = idm.idm_taskid_table[idx]; 1465 1466 if (idt == NULL) 1467 continue; 1468 1469 mutex_enter(&idt->idt_mutex); 1470 1471 if (idt->idt_state != TASK_ACTIVE) { 1472 /* 1473 * Task is either in suspend, abort, or already 1474 * complete. 1475 */ 1476 mutex_exit(&idt->idt_mutex); 1477 continue; 1478 } 1479 1480 if (idt->idt_client_handle == handle) { 1481 idm_task_hold(idt); 1482 mutex_exit(&idt->idt_mutex); 1483 break; 1484 } 1485 1486 mutex_exit(&idt->idt_mutex); 1487 } 1488 1489 rw_exit(&idm.idm_taskid_table_lock); 1490 1491 if ((idt == NULL) || (idx == idm.idm_taskid_max)) 1492 return (NULL); 1493 1494 return (idt->idt_private); 1495 } 1496 1497 void 1498 idm_task_hold(idm_task_t *idt) 1499 { 1500 idm_refcnt_hold(&idt->idt_refcnt); 1501 } 1502 1503 void 1504 idm_task_rele(idm_task_t *idt) 1505 { 1506 idm_refcnt_rele(&idt->idt_refcnt); 1507 } 1508 1509 void 1510 idm_task_abort(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type) 1511 { 1512 idm_task_t *task; 1513 int idx; 1514 1515 /* 1516 * Passing NULL as the task indicates that all tasks 1517 * for this connection should be aborted. 1518 */ 1519 if (idt == NULL) { 1520 /* 1521 * Only the connection state machine should ask for 1522 * all tasks to abort and this should never happen in FFP. 1523 */ 1524 ASSERT(!ic->ic_ffp); 1525 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1526 for (idx = 0; idx < idm.idm_taskid_max; idx++) { 1527 task = idm.idm_taskid_table[idx]; 1528 if (task == NULL) 1529 continue; 1530 mutex_enter(&task->idt_mutex); 1531 if ((task->idt_state != TASK_IDLE) && 1532 (task->idt_state != TASK_COMPLETE) && 1533 (task->idt_ic == ic)) { 1534 rw_exit(&idm.idm_taskid_table_lock); 1535 idm_task_abort_one(ic, task, abort_type); 1536 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1537 } else 1538 mutex_exit(&task->idt_mutex); 1539 } 1540 rw_exit(&idm.idm_taskid_table_lock); 1541 } else { 1542 mutex_enter(&idt->idt_mutex); 1543 idm_task_abort_one(ic, idt, abort_type); 1544 } 1545 } 1546 1547 static void 1548 idm_task_abort_unref_cb(void *ref) 1549 { 1550 idm_task_t *idt = ref; 1551 1552 mutex_enter(&idt->idt_mutex); 1553 switch (idt->idt_state) { 1554 case TASK_SUSPENDING: 1555 idt->idt_state = TASK_SUSPENDED; 1556 mutex_exit(&idt->idt_mutex); 1557 idm_task_aborted(idt, IDM_STATUS_SUSPENDED); 1558 return; 1559 case TASK_ABORTING: 1560 idt->idt_state = TASK_ABORTED; 1561 mutex_exit(&idt->idt_mutex); 1562 idm_task_aborted(idt, IDM_STATUS_ABORTED); 1563 return; 1564 default: 1565 mutex_exit(&idt->idt_mutex); 1566 ASSERT(0); 1567 break; 1568 } 1569 } 1570 1571 /* 1572 * Abort the idm task. 1573 * Caller must hold the task mutex, which will be released before return 1574 */ 1575 static void 1576 idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type) 1577 { 1578 /* Caller must hold connection mutex */ 1579 ASSERT(mutex_owned(&idt->idt_mutex)); 1580 switch (idt->idt_state) { 1581 case TASK_ACTIVE: 1582 switch (abort_type) { 1583 case AT_INTERNAL_SUSPEND: 1584 /* Call transport to release any resources */ 1585 idt->idt_state = TASK_SUSPENDING; 1586 mutex_exit(&idt->idt_mutex); 1587 ic->ic_transport_ops->it_free_task_rsrc(idt); 1588 1589 /* 1590 * Wait for outstanding references. When all 1591 * references are released the callback will call 1592 * idm_task_aborted(). 1593 */ 1594 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1595 &idm_task_abort_unref_cb); 1596 return; 1597 case AT_INTERNAL_ABORT: 1598 case AT_TASK_MGMT_ABORT: 1599 idt->idt_state = TASK_ABORTING; 1600 mutex_exit(&idt->idt_mutex); 1601 ic->ic_transport_ops->it_free_task_rsrc(idt); 1602 1603 /* 1604 * Wait for outstanding references. When all 1605 * references are released the callback will call 1606 * idm_task_aborted(). 1607 */ 1608 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1609 &idm_task_abort_unref_cb); 1610 return; 1611 default: 1612 ASSERT(0); 1613 } 1614 break; 1615 case TASK_SUSPENDING: 1616 /* Already called transport_free_task_rsrc(); */ 1617 switch (abort_type) { 1618 case AT_INTERNAL_SUSPEND: 1619 /* Already doing it */ 1620 break; 1621 case AT_INTERNAL_ABORT: 1622 case AT_TASK_MGMT_ABORT: 1623 idt->idt_state = TASK_ABORTING; 1624 break; 1625 default: 1626 ASSERT(0); 1627 } 1628 break; 1629 case TASK_SUSPENDED: 1630 /* Already called transport_free_task_rsrc(); */ 1631 switch (abort_type) { 1632 case AT_INTERNAL_SUSPEND: 1633 /* Already doing it */ 1634 break; 1635 case AT_INTERNAL_ABORT: 1636 case AT_TASK_MGMT_ABORT: 1637 idt->idt_state = TASK_ABORTING; 1638 mutex_exit(&idt->idt_mutex); 1639 1640 /* 1641 * We could probably call idm_task_aborted directly 1642 * here but we may be holding the conn lock. It's 1643 * easier to just switch contexts. Even though 1644 * we shouldn't really have any references we'll 1645 * set the state to TASK_ABORTING instead of 1646 * TASK_ABORTED so we can use the same code path. 1647 */ 1648 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1649 &idm_task_abort_unref_cb); 1650 return; 1651 default: 1652 ASSERT(0); 1653 } 1654 break; 1655 case TASK_ABORTING: 1656 case TASK_ABORTED: 1657 switch (abort_type) { 1658 case AT_INTERNAL_SUSPEND: 1659 /* We're already past this point... */ 1660 case AT_INTERNAL_ABORT: 1661 case AT_TASK_MGMT_ABORT: 1662 /* Already doing it */ 1663 break; 1664 default: 1665 ASSERT(0); 1666 } 1667 break; 1668 case TASK_COMPLETE: 1669 /* 1670 * In this case, let it go. The status has already been 1671 * sent (which may or may not get successfully transmitted) 1672 * and we don't want to end up in a race between completing 1673 * the status PDU and marking the task suspended. 1674 */ 1675 break; 1676 default: 1677 ASSERT(0); 1678 } 1679 mutex_exit(&idt->idt_mutex); 1680 } 1681 1682 static void 1683 idm_task_aborted(idm_task_t *idt, idm_status_t status) 1684 { 1685 (*idt->idt_ic->ic_conn_ops.icb_task_aborted)(idt, status); 1686 } 1687 1688 void 1689 idm_task_cleanup(idm_task_t *idt) 1690 { 1691 idm_buf_t *idb, *next_idb; 1692 list_t tmp_buflist; 1693 ASSERT((idt->idt_state == TASK_SUSPENDED) || 1694 (idt->idt_state == TASK_ABORTED)); 1695 1696 list_create(&tmp_buflist, sizeof (idm_buf_t), 1697 offsetof(idm_buf_t, idb_buflink)); 1698 1699 /* 1700 * Remove all the buffers from the task and add them to a 1701 * temporary local list -- we do this so that we can hold 1702 * the task lock and prevent the task from going away if 1703 * the client decides to call idm_task_done/idm_task_free. 1704 * This could happen during abort in iscsit. 1705 */ 1706 mutex_enter(&idt->idt_mutex); 1707 for (idb = list_head(&idt->idt_inbufv); 1708 idb != NULL; 1709 idb = next_idb) { 1710 next_idb = list_next(&idt->idt_inbufv, idb); 1711 idm_buf_unbind_in_locked(idt, idb); 1712 list_insert_tail(&tmp_buflist, idb); 1713 } 1714 1715 for (idb = list_head(&idt->idt_outbufv); 1716 idb != NULL; 1717 idb = next_idb) { 1718 next_idb = list_next(&idt->idt_outbufv, idb); 1719 idm_buf_unbind_out_locked(idt, idb); 1720 list_insert_tail(&tmp_buflist, idb); 1721 } 1722 mutex_exit(&idt->idt_mutex); 1723 1724 for (idb = list_head(&tmp_buflist); idb != NULL; idb = next_idb) { 1725 next_idb = list_next(&tmp_buflist, idb); 1726 list_remove(&tmp_buflist, idb); 1727 (*idb->idb_buf_cb)(idb, IDM_STATUS_ABORTED); 1728 } 1729 list_destroy(&tmp_buflist); 1730 } 1731 1732 1733 /* 1734 * idm_pdu_tx 1735 * 1736 * This is IDM's implementation of the 'Send_Control' operational primitive. 1737 * This function is invoked by an initiator iSCSI layer requesting the transfer 1738 * of a iSCSI command PDU or a target iSCSI layer requesting the transfer of a 1739 * iSCSI response PDU. The PDU will be transmitted as-is by the local Datamover 1740 * layer to the peer iSCSI layer in the remote iSCSI node. The connection info 1741 * and iSCSI PDU-specific qualifiers namely BHS, AHS, DataDescriptor and Size 1742 * are provided as input. 1743 * 1744 */ 1745 void 1746 idm_pdu_tx(idm_pdu_t *pdu) 1747 { 1748 idm_conn_t *ic = pdu->isp_ic; 1749 iscsi_async_evt_hdr_t *async_evt; 1750 1751 /* 1752 * If we are in full-featured mode then route SCSI-related 1753 * commands to the appropriate function vector without checking 1754 * the connection state. We will only be in full-feature mode 1755 * when we are in an acceptable state for SCSI PDU's. 1756 * 1757 * We also need to ensure that there are no PDU events outstanding 1758 * on the state machine. Any non-SCSI PDU's received in full-feature 1759 * mode will result in PDU events and until these have been handled 1760 * we need to route all PDU's through the state machine as PDU 1761 * events to maintain ordering. 1762 * 1763 * Note that IDM cannot enter FFP mode until it processes in 1764 * its state machine the last xmit of the login process. 1765 * Hence, checking the IDM_PDU_LOGIN_TX flag here would be 1766 * superfluous. 1767 */ 1768 mutex_enter(&ic->ic_state_mutex); 1769 if (ic->ic_ffp && (ic->ic_pdu_events == 0)) { 1770 mutex_exit(&ic->ic_state_mutex); 1771 switch (IDM_PDU_OPCODE(pdu)) { 1772 case ISCSI_OP_SCSI_RSP: 1773 /* Target only */ 1774 idm_pdu_tx_forward(ic, pdu); 1775 return; 1776 case ISCSI_OP_SCSI_TASK_MGT_RSP: 1777 /* Target only */ 1778 idm_pdu_tx_forward(ic, pdu); 1779 return; 1780 case ISCSI_OP_SCSI_DATA_RSP: 1781 /* Target only */ 1782 idm_pdu_tx_forward(ic, pdu); 1783 return; 1784 case ISCSI_OP_RTT_RSP: 1785 /* Target only */ 1786 idm_pdu_tx_forward(ic, pdu); 1787 return; 1788 case ISCSI_OP_NOOP_IN: 1789 /* Target only */ 1790 idm_pdu_tx_forward(ic, pdu); 1791 return; 1792 case ISCSI_OP_TEXT_RSP: 1793 /* Target only */ 1794 idm_pdu_tx_forward(ic, pdu); 1795 return; 1796 case ISCSI_OP_TEXT_CMD: 1797 case ISCSI_OP_NOOP_OUT: 1798 case ISCSI_OP_SCSI_CMD: 1799 case ISCSI_OP_SCSI_DATA: 1800 case ISCSI_OP_SCSI_TASK_MGT_MSG: 1801 /* Initiator only */ 1802 idm_pdu_tx_forward(ic, pdu); 1803 return; 1804 default: 1805 break; 1806 } 1807 1808 mutex_enter(&ic->ic_state_mutex); 1809 } 1810 1811 /* 1812 * Any PDU's processed outside of full-feature mode and non-SCSI 1813 * PDU's in full-feature mode are handled by generating an 1814 * event to the connection state machine. The state machine 1815 * will validate the PDU against the current state and either 1816 * transmit the PDU if the opcode is allowed or handle an 1817 * error if the PDU is not allowed. 1818 * 1819 * This code-path will also generate any events that are implied 1820 * by the PDU opcode. For example a "login response" with success 1821 * status generates a CE_LOGOUT_SUCCESS_SND event. 1822 */ 1823 switch (IDM_PDU_OPCODE(pdu)) { 1824 case ISCSI_OP_LOGIN_CMD: 1825 idm_conn_tx_pdu_event(ic, CE_LOGIN_SND, (uintptr_t)pdu); 1826 break; 1827 case ISCSI_OP_LOGIN_RSP: 1828 idm_parse_login_rsp(ic, pdu, /* Is RX */ B_FALSE); 1829 break; 1830 case ISCSI_OP_LOGOUT_CMD: 1831 idm_parse_logout_req(ic, pdu, /* Is RX */ B_FALSE); 1832 break; 1833 case ISCSI_OP_LOGOUT_RSP: 1834 idm_parse_logout_rsp(ic, pdu, /* Is RX */ B_FALSE); 1835 break; 1836 case ISCSI_OP_ASYNC_EVENT: 1837 async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr; 1838 switch (async_evt->async_event) { 1839 case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT: 1840 idm_conn_tx_pdu_event(ic, CE_ASYNC_LOGOUT_SND, 1841 (uintptr_t)pdu); 1842 break; 1843 case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION: 1844 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_CONN_SND, 1845 (uintptr_t)pdu); 1846 break; 1847 case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS: 1848 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_SND, 1849 (uintptr_t)pdu); 1850 break; 1851 case ISCSI_ASYNC_EVENT_SCSI_EVENT: 1852 case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION: 1853 default: 1854 idm_conn_tx_pdu_event(ic, CE_MISC_TX, 1855 (uintptr_t)pdu); 1856 break; 1857 } 1858 break; 1859 case ISCSI_OP_SCSI_RSP: 1860 /* Target only */ 1861 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1862 break; 1863 case ISCSI_OP_SCSI_TASK_MGT_RSP: 1864 /* Target only */ 1865 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1866 break; 1867 case ISCSI_OP_SCSI_DATA_RSP: 1868 /* Target only */ 1869 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1870 break; 1871 case ISCSI_OP_RTT_RSP: 1872 /* Target only */ 1873 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1874 break; 1875 case ISCSI_OP_NOOP_IN: 1876 /* Target only */ 1877 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1878 break; 1879 case ISCSI_OP_TEXT_RSP: 1880 /* Target only */ 1881 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1882 break; 1883 /* Initiator only */ 1884 case ISCSI_OP_SCSI_CMD: 1885 case ISCSI_OP_SCSI_TASK_MGT_MSG: 1886 case ISCSI_OP_SCSI_DATA: 1887 case ISCSI_OP_NOOP_OUT: 1888 case ISCSI_OP_TEXT_CMD: 1889 case ISCSI_OP_SNACK_CMD: 1890 case ISCSI_OP_REJECT_MSG: 1891 default: 1892 /* 1893 * Connection state machine will validate these PDU's against 1894 * the current state. A PDU not allowed in the current 1895 * state will cause a protocol error. 1896 */ 1897 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1898 break; 1899 } 1900 mutex_exit(&ic->ic_state_mutex); 1901 } 1902 1903 /* 1904 * Common allocation of a PDU along with memory for header and data. 1905 */ 1906 static idm_pdu_t * 1907 idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, int sleepflag) 1908 { 1909 idm_pdu_t *result; 1910 1911 /* 1912 * IDM clients should cache these structures for performance 1913 * critical paths. We can't cache effectively in IDM because we 1914 * don't know the correct header and data size. 1915 * 1916 * Valid header length is assumed to be hdrlen and valid data 1917 * length is assumed to be datalen. isp_hdrlen and isp_datalen 1918 * can be adjusted after the PDU is returned if necessary. 1919 */ 1920 result = kmem_zalloc(sizeof (idm_pdu_t) + hdrlen + datalen, sleepflag); 1921 if (result != NULL) { 1922 /* For idm_pdu_free sanity check */ 1923 result->isp_flags |= IDM_PDU_ALLOC; 1924 /* pointer arithmetic */ 1925 result->isp_hdr = (iscsi_hdr_t *)(result + 1); 1926 result->isp_hdrlen = hdrlen; 1927 result->isp_hdrbuflen = hdrlen; 1928 result->isp_transport_hdrlen = 0; 1929 result->isp_data = (uint8_t *)result->isp_hdr + hdrlen; 1930 result->isp_datalen = datalen; 1931 result->isp_databuflen = datalen; 1932 result->isp_magic = IDM_PDU_MAGIC; 1933 } 1934 1935 return (result); 1936 } 1937 1938 /* 1939 * Typical idm_pdu_alloc invocation, will block for resources. 1940 */ 1941 idm_pdu_t * 1942 idm_pdu_alloc(uint_t hdrlen, uint_t datalen) 1943 { 1944 return (idm_pdu_alloc_common(hdrlen, datalen, KM_SLEEP)); 1945 } 1946 1947 /* 1948 * Non-blocking idm_pdu_alloc implementation, returns NULL if resources 1949 * are not available. Needed for transport-layer allocations which may 1950 * be invoking in interrupt context. 1951 */ 1952 idm_pdu_t * 1953 idm_pdu_alloc_nosleep(uint_t hdrlen, uint_t datalen) 1954 { 1955 return (idm_pdu_alloc_common(hdrlen, datalen, KM_NOSLEEP)); 1956 } 1957 1958 /* 1959 * Free a PDU previously allocated with idm_pdu_alloc() including any 1960 * header and data space allocated as part of the original request. 1961 * Additional memory regions referenced by subsequent modification of 1962 * the isp_hdr and/or isp_data fields will not be freed. 1963 */ 1964 void 1965 idm_pdu_free(idm_pdu_t *pdu) 1966 { 1967 /* Make sure the structure was allocated using idm_pdu_alloc() */ 1968 ASSERT(pdu->isp_flags & IDM_PDU_ALLOC); 1969 kmem_free(pdu, 1970 sizeof (idm_pdu_t) + pdu->isp_hdrbuflen + pdu->isp_databuflen); 1971 } 1972 1973 /* 1974 * Initialize the connection, private and callback fields in a PDU. 1975 */ 1976 void 1977 idm_pdu_init(idm_pdu_t *pdu, idm_conn_t *ic, void *private, idm_pdu_cb_t *cb) 1978 { 1979 /* 1980 * idm_pdu_complete() will call idm_pdu_free if the callback is 1981 * NULL. This will only work if the PDU was originally allocated 1982 * with idm_pdu_alloc(). 1983 */ 1984 ASSERT((pdu->isp_flags & IDM_PDU_ALLOC) || 1985 (cb != NULL)); 1986 pdu->isp_magic = IDM_PDU_MAGIC; 1987 pdu->isp_ic = ic; 1988 pdu->isp_private = private; 1989 pdu->isp_callback = cb; 1990 } 1991 1992 /* 1993 * Initialize the header and header length field. This function should 1994 * not be used to adjust the header length in a buffer allocated via 1995 * pdu_pdu_alloc since it overwrites the existing header pointer. 1996 */ 1997 void 1998 idm_pdu_init_hdr(idm_pdu_t *pdu, uint8_t *hdr, uint_t hdrlen) 1999 { 2000 pdu->isp_hdr = (iscsi_hdr_t *)((void *)hdr); 2001 pdu->isp_hdrlen = hdrlen; 2002 } 2003 2004 /* 2005 * Initialize the data and data length fields. This function should 2006 * not be used to adjust the data length of a buffer allocated via 2007 * idm_pdu_alloc since it overwrites the existing data pointer. 2008 */ 2009 void 2010 idm_pdu_init_data(idm_pdu_t *pdu, uint8_t *data, uint_t datalen) 2011 { 2012 pdu->isp_data = data; 2013 pdu->isp_datalen = datalen; 2014 } 2015 2016 void 2017 idm_pdu_complete(idm_pdu_t *pdu, idm_status_t status) 2018 { 2019 if (pdu->isp_callback) { 2020 pdu->isp_status = status; 2021 (*pdu->isp_callback)(pdu, status); 2022 } else { 2023 idm_pdu_free(pdu); 2024 } 2025 } 2026 2027 /* 2028 * State machine auditing 2029 */ 2030 2031 void 2032 idm_sm_audit_init(sm_audit_buf_t *audit_buf) 2033 { 2034 bzero(audit_buf, sizeof (sm_audit_buf_t)); 2035 audit_buf->sab_max_index = SM_AUDIT_BUF_MAX_REC - 1; 2036 } 2037 2038 static 2039 sm_audit_record_t * 2040 idm_sm_audit_common(sm_audit_buf_t *audit_buf, sm_audit_record_type_t r_type, 2041 sm_audit_sm_type_t sm_type, 2042 int current_state) 2043 { 2044 sm_audit_record_t *sar; 2045 2046 sar = audit_buf->sab_records; 2047 sar += audit_buf->sab_index; 2048 audit_buf->sab_index++; 2049 audit_buf->sab_index &= audit_buf->sab_max_index; 2050 2051 sar->sar_type = r_type; 2052 gethrestime(&sar->sar_timestamp); 2053 sar->sar_sm_type = sm_type; 2054 sar->sar_state = current_state; 2055 2056 return (sar); 2057 } 2058 2059 void 2060 idm_sm_audit_event(sm_audit_buf_t *audit_buf, 2061 sm_audit_sm_type_t sm_type, int current_state, 2062 int event, uintptr_t event_info) 2063 { 2064 sm_audit_record_t *sar; 2065 2066 sar = idm_sm_audit_common(audit_buf, SAR_STATE_EVENT, 2067 sm_type, current_state); 2068 sar->sar_event = event; 2069 sar->sar_event_info = event_info; 2070 } 2071 2072 void 2073 idm_sm_audit_state_change(sm_audit_buf_t *audit_buf, 2074 sm_audit_sm_type_t sm_type, int current_state, int new_state) 2075 { 2076 sm_audit_record_t *sar; 2077 2078 sar = idm_sm_audit_common(audit_buf, SAR_STATE_CHANGE, 2079 sm_type, current_state); 2080 sar->sar_new_state = new_state; 2081 } 2082 2083 2084 /* 2085 * Object reference tracking 2086 */ 2087 2088 void 2089 idm_refcnt_init(idm_refcnt_t *refcnt, void *referenced_obj) 2090 { 2091 bzero(refcnt, sizeof (*refcnt)); 2092 idm_refcnt_reset(refcnt); 2093 refcnt->ir_referenced_obj = referenced_obj; 2094 bzero(&refcnt->ir_audit_buf, sizeof (refcnt_audit_buf_t)); 2095 refcnt->ir_audit_buf.anb_max_index = REFCNT_AUDIT_BUF_MAX_REC - 1; 2096 mutex_init(&refcnt->ir_mutex, NULL, MUTEX_DEFAULT, NULL); 2097 cv_init(&refcnt->ir_cv, NULL, CV_DEFAULT, NULL); 2098 } 2099 2100 void 2101 idm_refcnt_destroy(idm_refcnt_t *refcnt) 2102 { 2103 ASSERT(refcnt->ir_refcnt == 0); 2104 cv_destroy(&refcnt->ir_cv); 2105 mutex_destroy(&refcnt->ir_mutex); 2106 } 2107 2108 void 2109 idm_refcnt_reset(idm_refcnt_t *refcnt) 2110 { 2111 refcnt->ir_waiting = REF_NOWAIT; 2112 refcnt->ir_refcnt = 0; 2113 } 2114 2115 void 2116 idm_refcnt_hold(idm_refcnt_t *refcnt) 2117 { 2118 /* 2119 * Nothing should take a hold on an object after a call to 2120 * idm_refcnt_wait_ref or idm_refcnd_async_wait_ref 2121 */ 2122 ASSERT(refcnt->ir_waiting == REF_NOWAIT); 2123 2124 mutex_enter(&refcnt->ir_mutex); 2125 refcnt->ir_refcnt++; 2126 REFCNT_AUDIT(refcnt); 2127 mutex_exit(&refcnt->ir_mutex); 2128 } 2129 2130 static void 2131 idm_refcnt_unref_task(void *refcnt_void) 2132 { 2133 idm_refcnt_t *refcnt = refcnt_void; 2134 2135 REFCNT_AUDIT(refcnt); 2136 (*refcnt->ir_cb)(refcnt->ir_referenced_obj); 2137 } 2138 2139 void 2140 idm_refcnt_rele(idm_refcnt_t *refcnt) 2141 { 2142 mutex_enter(&refcnt->ir_mutex); 2143 ASSERT(refcnt->ir_refcnt > 0); 2144 refcnt->ir_refcnt--; 2145 REFCNT_AUDIT(refcnt); 2146 if (refcnt->ir_waiting == REF_NOWAIT) { 2147 /* No one is waiting on this object */ 2148 mutex_exit(&refcnt->ir_mutex); 2149 return; 2150 } 2151 2152 /* 2153 * Someone is waiting for this object to go idle so check if 2154 * refcnt is 0. Waiting on an object then later grabbing another 2155 * reference is not allowed so we don't need to handle that case. 2156 */ 2157 if (refcnt->ir_refcnt == 0) { 2158 if (refcnt->ir_waiting == REF_WAIT_ASYNC) { 2159 if (taskq_dispatch(idm.idm_global_taskq, 2160 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) { 2161 cmn_err(CE_WARN, 2162 "idm_refcnt_rele: Couldn't dispatch task"); 2163 } 2164 } else if (refcnt->ir_waiting == REF_WAIT_SYNC) { 2165 cv_signal(&refcnt->ir_cv); 2166 } 2167 } 2168 mutex_exit(&refcnt->ir_mutex); 2169 } 2170 2171 void 2172 idm_refcnt_rele_and_destroy(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func) 2173 { 2174 mutex_enter(&refcnt->ir_mutex); 2175 ASSERT(refcnt->ir_refcnt > 0); 2176 refcnt->ir_refcnt--; 2177 REFCNT_AUDIT(refcnt); 2178 2179 /* 2180 * Someone is waiting for this object to go idle so check if 2181 * refcnt is 0. Waiting on an object then later grabbing another 2182 * reference is not allowed so we don't need to handle that case. 2183 */ 2184 if (refcnt->ir_refcnt == 0) { 2185 refcnt->ir_cb = cb_func; 2186 refcnt->ir_waiting = REF_WAIT_ASYNC; 2187 if (taskq_dispatch(idm.idm_global_taskq, 2188 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) { 2189 cmn_err(CE_WARN, 2190 "idm_refcnt_rele: Couldn't dispatch task"); 2191 } 2192 } 2193 mutex_exit(&refcnt->ir_mutex); 2194 } 2195 2196 void 2197 idm_refcnt_wait_ref(idm_refcnt_t *refcnt) 2198 { 2199 mutex_enter(&refcnt->ir_mutex); 2200 refcnt->ir_waiting = REF_WAIT_SYNC; 2201 REFCNT_AUDIT(refcnt); 2202 while (refcnt->ir_refcnt != 0) 2203 cv_wait(&refcnt->ir_cv, &refcnt->ir_mutex); 2204 mutex_exit(&refcnt->ir_mutex); 2205 } 2206 2207 void 2208 idm_refcnt_async_wait_ref(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func) 2209 { 2210 mutex_enter(&refcnt->ir_mutex); 2211 refcnt->ir_waiting = REF_WAIT_ASYNC; 2212 refcnt->ir_cb = cb_func; 2213 REFCNT_AUDIT(refcnt); 2214 /* 2215 * It's possible we don't have any references. To make things easier 2216 * on the caller use a taskq to call the callback instead of 2217 * calling it synchronously 2218 */ 2219 if (refcnt->ir_refcnt == 0) { 2220 if (taskq_dispatch(idm.idm_global_taskq, 2221 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) { 2222 cmn_err(CE_WARN, 2223 "idm_refcnt_async_wait_ref: " 2224 "Couldn't dispatch task"); 2225 } 2226 } 2227 mutex_exit(&refcnt->ir_mutex); 2228 } 2229 2230 void 2231 idm_refcnt_destroy_unref_obj(idm_refcnt_t *refcnt, 2232 idm_refcnt_cb_t *cb_func) 2233 { 2234 mutex_enter(&refcnt->ir_mutex); 2235 if (refcnt->ir_refcnt == 0) { 2236 mutex_exit(&refcnt->ir_mutex); 2237 (*cb_func)(refcnt->ir_referenced_obj); 2238 return; 2239 } 2240 mutex_exit(&refcnt->ir_mutex); 2241 } 2242 2243 void 2244 idm_conn_hold(idm_conn_t *ic) 2245 { 2246 idm_refcnt_hold(&ic->ic_refcnt); 2247 } 2248 2249 void 2250 idm_conn_rele(idm_conn_t *ic) 2251 { 2252 idm_refcnt_rele(&ic->ic_refcnt); 2253 } 2254 2255 2256 static int 2257 _idm_init(void) 2258 { 2259 /* Initialize the rwlock for the taskid table */ 2260 rw_init(&idm.idm_taskid_table_lock, NULL, RW_DRIVER, NULL); 2261 2262 /* Initialize the global mutex and taskq */ 2263 mutex_init(&idm.idm_global_mutex, NULL, MUTEX_DEFAULT, NULL); 2264 2265 cv_init(&idm.idm_tgt_svc_cv, NULL, CV_DEFAULT, NULL); 2266 cv_init(&idm.idm_wd_cv, NULL, CV_DEFAULT, NULL); 2267 2268 /* 2269 * The maximum allocation needs to be high here since there can be 2270 * many concurrent tasks using the global taskq. 2271 */ 2272 idm.idm_global_taskq = taskq_create("idm_global_taskq", 1, minclsyspri, 2273 128, 16384, TASKQ_PREPOPULATE); 2274 if (idm.idm_global_taskq == NULL) { 2275 cv_destroy(&idm.idm_wd_cv); 2276 cv_destroy(&idm.idm_tgt_svc_cv); 2277 mutex_destroy(&idm.idm_global_mutex); 2278 rw_destroy(&idm.idm_taskid_table_lock); 2279 return (ENOMEM); 2280 } 2281 2282 /* Start watchdog thread */ 2283 idm.idm_wd_thread = thread_create(NULL, 0, 2284 idm_wd_thread, NULL, 0, &p0, TS_RUN, minclsyspri); 2285 if (idm.idm_wd_thread == NULL) { 2286 /* Couldn't create the watchdog thread */ 2287 taskq_destroy(idm.idm_global_taskq); 2288 cv_destroy(&idm.idm_wd_cv); 2289 cv_destroy(&idm.idm_tgt_svc_cv); 2290 mutex_destroy(&idm.idm_global_mutex); 2291 rw_destroy(&idm.idm_taskid_table_lock); 2292 return (ENOMEM); 2293 } 2294 2295 /* Pause until the watchdog thread is running */ 2296 mutex_enter(&idm.idm_global_mutex); 2297 while (!idm.idm_wd_thread_running) 2298 cv_wait(&idm.idm_wd_cv, &idm.idm_global_mutex); 2299 mutex_exit(&idm.idm_global_mutex); 2300 2301 /* 2302 * Allocate the task ID table and set "next" to 0. 2303 */ 2304 2305 idm.idm_taskid_max = idm_max_taskids; 2306 idm.idm_taskid_table = (idm_task_t **) 2307 kmem_zalloc(idm.idm_taskid_max * sizeof (idm_task_t *), KM_SLEEP); 2308 idm.idm_taskid_next = 0; 2309 2310 /* Create the global buffer and task kmem caches */ 2311 idm.idm_buf_cache = kmem_cache_create("idm_buf_cache", 2312 sizeof (idm_buf_t), 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP); 2313 2314 /* 2315 * Note, we're explicitly allocating an additional iSER header- 2316 * sized chunk for each of these elements. See idm_task_constructor(). 2317 */ 2318 idm.idm_task_cache = kmem_cache_create("idm_task_cache", 2319 sizeof (idm_task_t) + IDM_TRANSPORT_HEADER_LENGTH, 8, 2320 &idm_task_constructor, &idm_task_destructor, 2321 NULL, NULL, NULL, KM_SLEEP); 2322 2323 /* Create the service and connection context lists */ 2324 list_create(&idm.idm_tgt_svc_list, sizeof (idm_svc_t), 2325 offsetof(idm_svc_t, is_list_node)); 2326 list_create(&idm.idm_tgt_conn_list, sizeof (idm_conn_t), 2327 offsetof(idm_conn_t, ic_list_node)); 2328 list_create(&idm.idm_ini_conn_list, sizeof (idm_conn_t), 2329 offsetof(idm_conn_t, ic_list_node)); 2330 2331 /* Initialize the native sockets transport */ 2332 idm_so_init(&idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]); 2333 2334 /* Create connection ID pool */ 2335 (void) idm_idpool_create(&idm.idm_conn_id_pool); 2336 2337 return (DDI_SUCCESS); 2338 } 2339 2340 static int 2341 _idm_fini(void) 2342 { 2343 if (!list_is_empty(&idm.idm_ini_conn_list) || 2344 !list_is_empty(&idm.idm_tgt_conn_list) || 2345 !list_is_empty(&idm.idm_tgt_svc_list)) { 2346 return (EBUSY); 2347 } 2348 2349 mutex_enter(&idm.idm_global_mutex); 2350 idm.idm_wd_thread_running = B_FALSE; 2351 cv_signal(&idm.idm_wd_cv); 2352 mutex_exit(&idm.idm_global_mutex); 2353 2354 thread_join(idm.idm_wd_thread_did); 2355 2356 idm_idpool_destroy(&idm.idm_conn_id_pool); 2357 2358 /* Close any LDI handles we have open on transport drivers */ 2359 mutex_enter(&idm.idm_global_mutex); 2360 idm_transport_teardown(); 2361 mutex_exit(&idm.idm_global_mutex); 2362 2363 /* Teardown the native sockets transport */ 2364 idm_so_fini(); 2365 2366 list_destroy(&idm.idm_ini_conn_list); 2367 list_destroy(&idm.idm_tgt_conn_list); 2368 list_destroy(&idm.idm_tgt_svc_list); 2369 kmem_cache_destroy(idm.idm_task_cache); 2370 kmem_cache_destroy(idm.idm_buf_cache); 2371 kmem_free(idm.idm_taskid_table, 2372 idm.idm_taskid_max * sizeof (idm_task_t *)); 2373 mutex_destroy(&idm.idm_global_mutex); 2374 cv_destroy(&idm.idm_wd_cv); 2375 cv_destroy(&idm.idm_tgt_svc_cv); 2376 rw_destroy(&idm.idm_taskid_table_lock); 2377 2378 return (0); 2379 } 2380