xref: /titanic_52/usr/src/uts/common/io/fssnap.c (revision ac88567a7a5bb7f01cf22cf366bc9d6203e24d7a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 #include <sys/debug.h>
28 #include <sys/types.h>
29 #include <sys/file.h>
30 #include <sys/errno.h>
31 #include <sys/uio.h>
32 #include <sys/open.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/conf.h>
36 #include <sys/cmn_err.h>
37 #include <sys/modctl.h>
38 #include <sys/disp.h>
39 #include <sys/atomic.h>
40 #include <sys/filio.h>
41 #include <sys/stat.h> /* needed for S_IFBLK and S_IFCHR */
42 #include <sys/kstat.h>
43 
44 #include <sys/ddi.h>
45 #include <sys/devops.h>
46 #include <sys/sunddi.h>
47 #include <sys/esunddi.h>
48 #include <sys/priv_names.h>
49 
50 #include <sys/fssnap.h>
51 #include <sys/fssnap_if.h>
52 
53 /*
54  * This module implements the file system snapshot code, which provides a
55  * point-in-time image of a file system for the purposes of online backup.
56  * There are essentially two parts to this project: the driver half and the
57  * file system half.  The driver half is a pseudo device driver called
58  * "fssnap" that represents the snapshot.  Each snapshot is assigned a
59  * number that corresponds to the minor number of the device, and a control
60  * device with a high minor number is used to initiate snapshot creation and
61  * deletion.  For all practical purposes the driver half acts like a
62  * read-only disk device whose contents are exactly the same as the master
63  * file system at the time the snapshot was created.
64  *
65  * The file system half provides interfaces necessary for performing the
66  * file system dependent operations required to create and delete snapshots
67  * and a special driver strategy routine that must always be used by the file
68  * system for snapshots to work correctly.
69  *
70  * When a snapshot is to be created, the user utility will send an ioctl to
71  * the control device of the driver half specifying the file system to be
72  * snapshotted, the file descriptor of a backing-store file which is used to
73  * hold old data before it is overwritten, and other snapshot parameters.
74  * This ioctl is passed on to the file system specified in the original
75  * ioctl request.  The file system is expected to be able to flush
76  * everything out to make the file system consistent and lock it to ensure
77  * no changes occur while the snapshot is being created.  It then calls
78  * fssnap_create() to create state for a new snapshot, from which an opaque
79  * handle is returned with the snapshot locked.  Next, the file system must
80  * populate the "candidate bitmap", which tells the snapshot code which
81  * "chunks" should be considered for copy-on-write (a chunk is the unit of
82  * granularity used for copy-on-write, which is independent of the device
83  * and file system block sizes).  This is typically done by scanning the
84  * file system allocation bitmaps to determine which chunks contain
85  * allocated blocks in the file system at the time the snapshot was created.
86  * If a chunk has no allocated blocks, it does not need to be copied before
87  * being written to.  Once the candidate bitmap is populated with
88  * fssnap_set_candidate(), the file system calls fssnap_create_done() to
89  * complete the snapshot creation and unlock the snapshot.  The file system
90  * may now be unlocked and modifications to it resumed.
91  *
92  * Once a snapshot is created, the file system must perform all writes
93  * through a special strategy routine, fssnap_strategy().  This strategy
94  * routine determines whether the chunks contained by the write must be
95  * copied before being overwritten by consulting the candidate bitmap
96  * described above, and the "hastrans bitmap" which tells it whether the chunk
97  * has been copied already or not.  If the chunk is a candidate but has not
98  * been copied, it reads the old data in and adds it to a queue.  The
99  * old data can then be overwritten with the new data.  An asynchronous
100  * task queue is dispatched for each old chunk read in which writes the old
101  * data to the backing file specified at snapshot creation time.  The
102  * backing file is a sparse file the same size as the file system that
103  * contains the old data at the offset that data originally had in the
104  * file system.  If the queue containing in-memory chunks gets too large,
105  * writes to the file system may be throttled by a semaphore until the
106  * task queues have a chance to push some of the chunks to the backing file.
107  *
108  * With the candidate bitmap, the hastrans bitmap, the data on the master
109  * file system, and the old data in memory and in the backing file, the
110  * snapshot pseudo-driver can piece together the original file system
111  * information to satisfy read requests.  If the requested chunk is not a
112  * candidate, it returns a zeroed buffer.  If the chunk is a candidate but
113  * has not been copied it reads it from the master file system.  If it is a
114  * candidate and has been copied, it either copies the data from the
115  * in-memory queue or it reads it in from the backing file.  The result is
116  * a replication of the original file system that can be backed up, mounted,
117  * or manipulated by other file system utilities that work on a read-only
118  * device.
119  *
120  * This module is divided into three roughly logical sections:
121  *
122  *     - The snapshot driver, which is a character/block driver
123  *       representing the snapshot itself.  These routines are
124  *       prefixed with "snap_".
125  *
126  *     - The library routines that are defined in fssnap_if.h that
127  *       are used by file systems that use this snapshot implementation.
128  *       These functions are prefixed with "fssnap_" and are called through
129  *       a function vector from the file system.
130  *
131  *     - The helper routines used by the snapshot driver and the fssnap
132  *       library routines for managing the translation table and other
133  *       useful functions.  These routines are all static and are
134  *       prefixed with either "fssnap_" or "transtbl_" if they
135  *       are specifically used for translation table activities.
136  */
137 
138 static dev_info_t		*fssnap_dip = NULL;
139 static struct snapshot_id	*snapshot = NULL;
140 static struct snapshot_id	snap_ctl;
141 static int			num_snapshots = 0;
142 static kmutex_t			snapshot_mutex;
143 static char			snapname[] = SNAP_NAME;
144 
145 /* "tunable" parameters */
146 static int		fssnap_taskq_nthreads = FSSNAP_TASKQ_THREADS;
147 static uint_t		fssnap_max_mem_chunks = FSSNAP_MAX_MEM_CHUNKS;
148 static int		fssnap_taskq_maxtasks = FSSNAP_TASKQ_MAXTASKS;
149 
150 /* static function prototypes */
151 
152 /* snapshot driver */
153 static int snap_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
154 static int snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
155 static int snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
156 static int snap_open(dev_t *devp, int flag, int otyp, cred_t *cred);
157 static int snap_close(dev_t dev, int flag, int otyp, cred_t *cred);
158 static int snap_strategy(struct buf *bp);
159 static int snap_read(dev_t dev, struct uio *uiop, cred_t *credp);
160 static int snap_print(dev_t dev, char *str);
161 static int snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
162     cred_t *credp, int *rvalp);
163 static int snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
164     int flags, char *name, caddr_t valuep, int *lengthp);
165 static int snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk,
166     int offset, int len, char *buffer);
167 
168 
169 /* fssnap interface implementations (see fssnap_if.h) */
170 static void fssnap_strategy_impl(void *, struct buf *);
171 static void *fssnap_create_impl(chunknumber_t, uint_t, u_offset_t,
172     struct vnode *, int, struct vnode **, char *, u_offset_t);
173 static void fssnap_set_candidate_impl(void *, chunknumber_t);
174 static int fssnap_is_candidate_impl(void *, u_offset_t);
175 static int fssnap_create_done_impl(void *);
176 static int fssnap_delete_impl(void *);
177 
178 /* fssnap interface support routines */
179 static int  fssnap_translate(struct snapshot_id **, struct buf *);
180 static void fssnap_write_taskq(void *);
181 static void fssnap_create_kstats(snapshot_id_t *, int, const char *,
182     const char *);
183 static int  fssnap_update_kstat_num(kstat_t *, int);
184 static void fssnap_delete_kstats(struct cow_info *);
185 
186 /* translation table prototypes */
187 static cow_map_node_t *transtbl_add(cow_map_t *, chunknumber_t, caddr_t);
188 static cow_map_node_t *transtbl_get(cow_map_t *, chunknumber_t);
189 static void transtbl_delete(cow_map_t *, cow_map_node_t *);
190 static void transtbl_free(cow_map_t *);
191 
192 static kstat_t *fssnap_highwater_kstat;
193 
194 /* ************************************************************************ */
195 
196 /* Device and Module Structures */
197 
198 static struct cb_ops snap_cb_ops = {
199 	snap_open,
200 	snap_close,
201 	snap_strategy,
202 	snap_print,
203 	nodev,		/* no snap_dump */
204 	snap_read,
205 	nodev,		/* no snap_write */
206 	snap_ioctl,
207 	nodev,		/* no snap_devmap */
208 	nodev,		/* no snap_mmap   */
209 	nodev,		/* no snap_segmap */
210 	nochpoll,
211 	snap_prop_op,
212 	NULL,		/* streamtab */
213 	D_64BIT | D_NEW | D_MP, /* driver compatibility */
214 	CB_REV,
215 	nodev,		/* async I/O read entry point */
216 	nodev		/* async I/O write entry point */
217 };
218 
219 static struct dev_ops snap_ops = {
220 	DEVO_REV,
221 	0,			/* ref count */
222 	snap_getinfo,
223 	nulldev,		/* snap_identify obsolete */
224 	nulldev,		/* no snap_probe */
225 	snap_attach,
226 	snap_detach,
227 	nodev,			/* no snap_reset */
228 	&snap_cb_ops,
229 	(struct bus_ops *)NULL,
230 	nulldev,		/* no snap_power() */
231 	ddi_quiesce_not_needed,		/* quiesce */
232 };
233 
234 extern struct mod_ops mod_driverops;
235 
236 static struct modldrv md = {
237 	&mod_driverops, /* Type of module. This is a driver */
238 	"snapshot driver", 	/* Name of the module */
239 	&snap_ops,
240 };
241 
242 static struct modlinkage ml = {
243 	MODREV_1,
244 	&md,
245 	NULL
246 };
247 
248 static void *statep;
249 
250 int
251 _init(void)
252 {
253 	int	error;
254 	kstat_t	*ksp;
255 	kstat_named_t	*ksdata;
256 
257 	error = ddi_soft_state_init(&statep, sizeof (struct snapshot_id *), 1);
258 	if (error) {
259 		cmn_err(CE_WARN, "_init: failed to init ddi_soft_state.");
260 		return (error);
261 	}
262 
263 	error = mod_install(&ml);
264 
265 	if (error) {
266 		cmn_err(CE_WARN, "_init: failed to mod_install.");
267 		ddi_soft_state_fini(&statep);
268 		return (error);
269 	}
270 
271 	/*
272 	 * Fill in the snapshot operations vector for file systems
273 	 * (defined in fssnap_if.c)
274 	 */
275 
276 	snapops.fssnap_create = fssnap_create_impl;
277 	snapops.fssnap_set_candidate = fssnap_set_candidate_impl;
278 	snapops.fssnap_is_candidate = fssnap_is_candidate_impl;
279 	snapops.fssnap_create_done = fssnap_create_done_impl;
280 	snapops.fssnap_delete = fssnap_delete_impl;
281 	snapops.fssnap_strategy = fssnap_strategy_impl;
282 
283 	mutex_init(&snapshot_mutex, NULL, MUTEX_DEFAULT, NULL);
284 
285 	/*
286 	 * Initialize the fssnap highwater kstat
287 	 */
288 	ksp = kstat_create(snapname, 0, FSSNAP_KSTAT_HIGHWATER, "misc",
289 	    KSTAT_TYPE_NAMED, 1, 0);
290 	if (ksp != NULL) {
291 		ksdata = (kstat_named_t *)ksp->ks_data;
292 		kstat_named_init(ksdata, FSSNAP_KSTAT_HIGHWATER,
293 		    KSTAT_DATA_UINT32);
294 		ksdata->value.ui32 = 0;
295 		kstat_install(ksp);
296 	} else {
297 		cmn_err(CE_WARN, "_init: failed to create highwater kstat.");
298 	}
299 	fssnap_highwater_kstat = ksp;
300 
301 	return (0);
302 }
303 
304 int
305 _info(struct modinfo *modinfop)
306 {
307 	return (mod_info(&ml, modinfop));
308 }
309 
310 int
311 _fini(void)
312 {
313 	int	error;
314 
315 	error = mod_remove(&ml);
316 	if (error)
317 		return (error);
318 	ddi_soft_state_fini(&statep);
319 
320 	/*
321 	 * delete the fssnap highwater kstat
322 	 */
323 	kstat_delete(fssnap_highwater_kstat);
324 
325 	mutex_destroy(&snapshot_mutex);
326 
327 	/* Clear out the file system operations vector */
328 	snapops.fssnap_create = NULL;
329 	snapops.fssnap_set_candidate = NULL;
330 	snapops.fssnap_create_done = NULL;
331 	snapops.fssnap_delete = NULL;
332 	snapops.fssnap_strategy = NULL;
333 
334 	return (0);
335 }
336 
337 /* ************************************************************************ */
338 
339 /*
340  * Snapshot Driver Routines
341  *
342  * This section implements the snapshot character and block drivers.  The
343  * device will appear to be a consistent read-only file system to
344  * applications that wish to back it up or mount it.  The snapshot driver
345  * communicates with the file system through the translation table, which
346  * tells the snapshot driver where to find the data necessary to piece
347  * together the frozen file system.  The data may either be on the master
348  * device (no translation exists), in memory (a translation exists but has
349  * not been flushed to the backing store), or in the backing store file.
350  * The read request may require the snapshot driver to retrieve data from
351  * several different places and piece it together to look like a single
352  * contiguous read.
353  *
354  * The device minor number corresponds to the snapshot number in the list of
355  * snapshot identifiers.  The soft state for each minor number is simply a
356  * pointer to the snapshot id, which holds all of the snapshot state.  One
357  * minor number is designated as the control device.  All snapshot create
358  * and delete requests go through the control device to ensure this module
359  * is properly loaded and attached before the file system starts calling
360  * routines defined here.
361  */
362 
363 
364 /*
365  * snap_getinfo() - snapshot driver getinfo(9E) routine
366  *
367  */
368 /*ARGSUSED*/
369 static int
370 snap_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
371 {
372 	switch (infocmd) {
373 	case DDI_INFO_DEVT2DEVINFO:
374 		*result = fssnap_dip;
375 		return (DDI_SUCCESS);
376 	case DDI_INFO_DEVT2INSTANCE:
377 		*result = 0;	/* we only have one instance */
378 		return (DDI_SUCCESS);
379 	}
380 	return (DDI_FAILURE);
381 }
382 
383 /*
384  * snap_attach() - snapshot driver attach(9E) routine
385  *
386  *    sets up snapshot control device and control state.  The control state
387  *    is a pointer to an "anonymous" snapshot_id for tracking opens and closes
388  */
389 static int
390 snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
391 {
392 	int			error;
393 
394 	switch (cmd) {
395 	case DDI_ATTACH:
396 		/* create the control device */
397 		error = ddi_create_priv_minor_node(dip, SNAP_CTL_NODE, S_IFCHR,
398 		    SNAP_CTL_MINOR, DDI_PSEUDO, PRIVONLY_DEV,
399 		    PRIV_SYS_CONFIG, PRIV_SYS_CONFIG, 0666);
400 		if (error == DDI_FAILURE) {
401 			return (DDI_FAILURE);
402 		}
403 
404 		rw_init(&snap_ctl.sid_rwlock, NULL, RW_DEFAULT, NULL);
405 		rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
406 		fssnap_dip = dip;
407 		snap_ctl.sid_snapnumber = SNAP_CTL_MINOR;
408 		/* the control sid is not linked into the snapshot list */
409 		snap_ctl.sid_next = NULL;
410 		snap_ctl.sid_cowinfo = NULL;
411 		snap_ctl.sid_flags = 0;
412 		rw_exit(&snap_ctl.sid_rwlock);
413 		ddi_report_dev(dip);
414 
415 		return (DDI_SUCCESS);
416 	case DDI_PM_RESUME:
417 		return (DDI_SUCCESS);
418 
419 	case DDI_RESUME:
420 		return (DDI_SUCCESS);
421 
422 	default:
423 		return (DDI_FAILURE);
424 	}
425 }
426 
427 /*
428  * snap_detach() - snapshot driver detach(9E) routine
429  *
430  *    destroys snapshot control device and control state.  If any snapshots
431  *    are active (ie. num_snapshots != 0), the device will refuse to detach.
432  */
433 static int
434 snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
435 {
436 	struct snapshot_id *sidp, *sidnextp;
437 
438 	switch (cmd) {
439 	case DDI_DETACH:
440 		/* do not detach if the device is active */
441 		mutex_enter(&snapshot_mutex);
442 		if ((num_snapshots != 0) ||
443 		    ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0)) {
444 			mutex_exit(&snapshot_mutex);
445 			return (DDI_FAILURE);
446 		}
447 
448 		/* free up the snapshot list */
449 		for (sidp = snapshot; sidp != NULL; sidp = sidnextp) {
450 			ASSERT(SID_AVAILABLE(sidp) &&
451 			    !RW_LOCK_HELD(&sidp->sid_rwlock));
452 			sidnextp = sidp->sid_next;
453 			rw_destroy(&sidp->sid_rwlock);
454 			kmem_free(sidp, sizeof (struct snapshot_id));
455 		}
456 		snapshot = NULL;
457 
458 		/* delete the control device */
459 		ddi_remove_minor_node(dip, SNAP_CTL_NODE);
460 		fssnap_dip = NULL;
461 
462 		ASSERT((snap_ctl.sid_flags & SID_CHAR_BUSY) == 0);
463 		rw_destroy(&snap_ctl.sid_rwlock);
464 		mutex_exit(&snapshot_mutex);
465 
466 		return (DDI_SUCCESS);
467 
468 	default:
469 		return (DDI_FAILURE);
470 	}
471 }
472 
473 /*
474  * snap_open() - snapshot driver open(9E) routine
475  *
476  *     marks the snapshot id as busy so it will not be recycled when deleted
477  *     until the snapshot is closed.
478  */
479 /* ARGSUSED */
480 static int
481 snap_open(dev_t *devp, int flag, int otyp, cred_t *cred)
482 {
483 	minor_t	minor;
484 	struct snapshot_id **sidpp, *sidp;
485 
486 	/* snapshots are read-only */
487 	if (flag & FWRITE)
488 		return (EROFS);
489 
490 	minor = getminor(*devp);
491 
492 	if (minor == SNAP_CTL_MINOR) {
493 		/* control device must be opened exclusively */
494 		if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR))
495 			return (EINVAL);
496 
497 		rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
498 		if ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0) {
499 			rw_exit(&snap_ctl.sid_rwlock);
500 			return (EBUSY);
501 		}
502 
503 		snap_ctl.sid_flags |= SID_CHAR_BUSY;
504 		rw_exit(&snap_ctl.sid_rwlock);
505 
506 		return (0);
507 	}
508 
509 	sidpp = ddi_get_soft_state(statep, minor);
510 	if (sidpp == NULL || *sidpp == NULL)
511 		return (ENXIO);
512 	sidp = *sidpp;
513 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
514 
515 	if ((flag & FEXCL) && SID_BUSY(sidp)) {
516 		rw_exit(&sidp->sid_rwlock);
517 		return (EAGAIN);
518 	}
519 
520 	ASSERT(sidpp != NULL && sidp != NULL);
521 	/* check to see if this snapshot has been killed on us */
522 	if (SID_INACTIVE(sidp)) {
523 		cmn_err(CE_WARN, "snap_open: snapshot %d does not exist.",
524 		    minor);
525 		rw_exit(&sidp->sid_rwlock);
526 		return (ENXIO);
527 	}
528 
529 	switch (otyp) {
530 	case OTYP_CHR:
531 		sidp->sid_flags |= SID_CHAR_BUSY;
532 		break;
533 	case OTYP_BLK:
534 		sidp->sid_flags |= SID_BLOCK_BUSY;
535 		break;
536 	default:
537 		rw_exit(&sidp->sid_rwlock);
538 		return (EINVAL);
539 	}
540 
541 	rw_exit(&sidp->sid_rwlock);
542 
543 	/*
544 	 * at this point if a valid snapshot was found then it has
545 	 * been marked busy and we can use it.
546 	 */
547 	return (0);
548 }
549 
550 /*
551  * snap_close() - snapshot driver close(9E) routine
552  *
553  *    unsets the busy bits in the snapshot id.  If the snapshot has been
554  *    deleted while the snapshot device was open, the close call will clean
555  *    up the remaining state information.
556  */
557 /* ARGSUSED */
558 static int
559 snap_close(dev_t dev, int flag, int otyp, cred_t *cred)
560 {
561 	struct snapshot_id	**sidpp, *sidp;
562 	minor_t			minor;
563 	char			name[20];
564 
565 	minor = getminor(dev);
566 
567 	/* if this is the control device, close it and return */
568 	if (minor == SNAP_CTL_MINOR) {
569 		rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
570 		snap_ctl.sid_flags &= ~(SID_CHAR_BUSY);
571 		rw_exit(&snap_ctl.sid_rwlock);
572 		return (0);
573 	}
574 
575 	sidpp = ddi_get_soft_state(statep, minor);
576 	if (sidpp == NULL || *sidpp == NULL) {
577 		cmn_err(CE_WARN, "snap_close: could not find state for "
578 		    "snapshot %d.", minor);
579 		return (ENXIO);
580 	}
581 	sidp = *sidpp;
582 	mutex_enter(&snapshot_mutex);
583 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
584 
585 	/* Mark the snapshot as not being busy anymore */
586 	switch (otyp) {
587 	case OTYP_CHR:
588 		sidp->sid_flags &= ~(SID_CHAR_BUSY);
589 		break;
590 	case OTYP_BLK:
591 		sidp->sid_flags &= ~(SID_BLOCK_BUSY);
592 		break;
593 	default:
594 		mutex_exit(&snapshot_mutex);
595 		rw_exit(&sidp->sid_rwlock);
596 		return (EINVAL);
597 	}
598 
599 	if (SID_AVAILABLE(sidp)) {
600 		/*
601 		 * if this is the last close on a snapshot that has been
602 		 * deleted, then free up the soft state.  The snapdelete
603 		 * ioctl does not free this when the device is in use so
604 		 * we do it here after the last reference goes away.
605 		 */
606 
607 		/* remove the device nodes */
608 		ASSERT(fssnap_dip != NULL);
609 		(void) snprintf(name, sizeof (name), "%d",
610 		    sidp->sid_snapnumber);
611 		ddi_remove_minor_node(fssnap_dip, name);
612 		(void) snprintf(name, sizeof (name), "%d,raw",
613 		    sidp->sid_snapnumber);
614 		ddi_remove_minor_node(fssnap_dip, name);
615 
616 		/* delete the state structure */
617 		ddi_soft_state_free(statep, sidp->sid_snapnumber);
618 		num_snapshots--;
619 	}
620 
621 	mutex_exit(&snapshot_mutex);
622 	rw_exit(&sidp->sid_rwlock);
623 
624 	return (0);
625 }
626 
627 /*
628  * snap_read() - snapshot driver read(9E) routine
629  *
630  *    reads data from the snapshot by calling snap_strategy() through physio()
631  */
632 /* ARGSUSED */
633 static int
634 snap_read(dev_t dev, struct uio *uiop, cred_t *credp)
635 {
636 	minor_t		minor;
637 	struct snapshot_id **sidpp;
638 
639 	minor = getminor(dev);
640 	sidpp = ddi_get_soft_state(statep, minor);
641 	if (sidpp == NULL || *sidpp == NULL) {
642 		cmn_err(CE_WARN,
643 		    "snap_read: could not find state for snapshot %d.", minor);
644 		return (ENXIO);
645 	}
646 	return (physio(snap_strategy, NULL, dev, B_READ, minphys, uiop));
647 }
648 
649 /*
650  * snap_strategy() - snapshot driver strategy(9E) routine
651  *
652  *    cycles through each chunk in the requested buffer and calls
653  *    snap_getchunk() on each chunk to retrieve it from the appropriate
654  *    place.  Once all of the parts are put together the requested buffer
655  *    is returned.  The snapshot driver is read-only, so a write is invalid.
656  */
657 static int
658 snap_strategy(struct buf *bp)
659 {
660 	struct snapshot_id **sidpp, *sidp;
661 	minor_t		minor;
662 	chunknumber_t	chunk;
663 	int		off, len;
664 	u_longlong_t	reqptr;
665 	int		error = 0;
666 	size_t		chunksz;
667 	caddr_t		buf;
668 
669 	/* snapshot device is read-only */
670 	if (bp->b_flags & B_WRITE) {
671 		bioerror(bp, EROFS);
672 		bp->b_resid = bp->b_bcount;
673 		biodone(bp);
674 		return (0);
675 	}
676 
677 	minor = getminor(bp->b_edev);
678 	sidpp = ddi_get_soft_state(statep, minor);
679 	if (sidpp == NULL || *sidpp == NULL) {
680 		cmn_err(CE_WARN,
681 		    "snap_strategy: could not find state for snapshot %d.",
682 		    minor);
683 		bioerror(bp, ENXIO);
684 		bp->b_resid = bp->b_bcount;
685 		biodone(bp);
686 		return (0);
687 	}
688 	sidp = *sidpp;
689 	ASSERT(sidp);
690 	rw_enter(&sidp->sid_rwlock, RW_READER);
691 
692 	if (SID_INACTIVE(sidp)) {
693 		bioerror(bp, ENXIO);
694 		bp->b_resid = bp->b_bcount;
695 		biodone(bp);
696 		rw_exit(&sidp->sid_rwlock);
697 		return (0);
698 	}
699 
700 	if (bp->b_flags & (B_PAGEIO|B_PHYS))
701 		bp_mapin(bp);
702 
703 	bp->b_resid = bp->b_bcount;
704 	ASSERT(bp->b_un.b_addr);
705 	buf = bp->b_un.b_addr;
706 
707 	chunksz = sidp->sid_cowinfo->cow_map.cmap_chunksz;
708 
709 	/* reqptr is the current DEV_BSIZE offset into the device */
710 	/* chunk is the chunk containing reqptr */
711 	/* len is the length of the request (in the current chunk) in bytes */
712 	/* off is the byte offset into the current chunk */
713 	reqptr = bp->b_lblkno;
714 	while (bp->b_resid > 0) {
715 		chunk = dbtocowchunk(&sidp->sid_cowinfo->cow_map, reqptr);
716 		off = (reqptr % (chunksz >> DEV_BSHIFT)) << DEV_BSHIFT;
717 		len = min(chunksz - off, bp->b_resid);
718 		ASSERT((off + len) <= chunksz);
719 
720 		if ((error = snap_getchunk(sidp, chunk, off, len, buf)) != 0) {
721 			/*
722 			 * EINVAL means the user tried to go out of range.
723 			 * Anything else means it's likely that we're
724 			 * confused.
725 			 */
726 			if (error != EINVAL) {
727 				cmn_err(CE_WARN, "snap_strategy: error "
728 				    "calling snap_getchunk, chunk = %llu, "
729 				    "offset = %d, len = %d, resid = %lu, "
730 				    "error = %d.",
731 				    chunk, off, len, bp->b_resid, error);
732 			}
733 			bioerror(bp, error);
734 			biodone(bp);
735 			rw_exit(&sidp->sid_rwlock);
736 			return (0);
737 		}
738 		bp->b_resid -= len;
739 		reqptr += (len >> DEV_BSHIFT);
740 		buf += len;
741 	}
742 
743 	ASSERT(bp->b_resid == 0);
744 	biodone(bp);
745 
746 	rw_exit(&sidp->sid_rwlock);
747 	return (0);
748 }
749 
750 /*
751  * snap_getchunk() - helper function for snap_strategy()
752  *
753  *    gets the requested data from the appropriate place and fills in the
754  *    buffer.  chunk is the chunk number of the request, offset is the
755  *    offset into that chunk and must be less than the chunk size.  len is
756  *    the length of the request starting at offset, and must not exceed a
757  *    chunk boundary.  buffer is the address to copy the data to.  len
758  *    bytes are copied into the buffer starting at the location specified.
759  *
760  *    A chunk is located according to the following algorithm:
761  *        - If the chunk does not have a translation or is not a candidate
762  *          for translation, it is read straight from the master device.
763  *        - If the chunk does have a translation, then it is either on
764  *          disk or in memory:
765  *            o If it is in memory the requested data is simply copied out
766  *              of the in-memory buffer.
767  *            o If it is in the backing store, it is read from there.
768  *
769  *    This function does the real work of the snapshot driver.
770  */
771 static int
772 snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, int offset,
773     int len, char *buffer)
774 {
775 	cow_map_t	*cmap = &sidp->sid_cowinfo->cow_map;
776 	cow_map_node_t	*cmn;
777 	struct buf	*snapbuf;
778 	int		error = 0;
779 	char		*newbuffer;
780 	int		newlen = 0;
781 	int		partial = 0;
782 
783 	ASSERT(RW_READ_HELD(&sidp->sid_rwlock));
784 	ASSERT(offset + len <= cmap->cmap_chunksz);
785 
786 	/*
787 	 * Check if the chunk number is out of range and if so bail out
788 	 */
789 	if (chunk >= (cmap->cmap_bmsize * NBBY)) {
790 		return (EINVAL);
791 	}
792 
793 	/*
794 	 * If the chunk is not a candidate for translation, then the chunk
795 	 * was not allocated when the snapshot was taken.  Since it does
796 	 * not contain data associated with this snapshot, just return a
797 	 * zero buffer instead.
798 	 */
799 	if (isclr(cmap->cmap_candidate, chunk)) {
800 		bzero(buffer, len);
801 		return (0);
802 	}
803 
804 	/*
805 	 * if the chunk is a candidate for translation but a
806 	 * translation does not exist, then read through to the
807 	 * original file system.  The rwlock is held until the read
808 	 * completes if it hasn't been translated to make sure the
809 	 * file system does not translate the block before we
810 	 * access it. If it has already been translated we don't
811 	 * need the lock, because the translation will never go away.
812 	 */
813 	rw_enter(&cmap->cmap_rwlock, RW_READER);
814 	if (isclr(cmap->cmap_hastrans, chunk)) {
815 		snapbuf = getrbuf(KM_SLEEP);
816 		/*
817 		 * Reading into the buffer saves having to do a copy,
818 		 * but gets tricky if the request size is not a
819 		 * multiple of DEV_BSIZE.  However, we are filling the
820 		 * buffer left to right, so future reads will write
821 		 * over any extra data we might have read.
822 		 */
823 
824 		partial = len % DEV_BSIZE;
825 
826 		snapbuf->b_bcount = len;
827 		snapbuf->b_lblkno = lbtodb(chunk * cmap->cmap_chunksz + offset);
828 		snapbuf->b_un.b_addr = buffer;
829 
830 		snapbuf->b_iodone = NULL;
831 		snapbuf->b_proc = NULL;		/* i.e. the kernel */
832 		snapbuf->b_flags = B_READ | B_BUSY;
833 		snapbuf->b_edev = sidp->sid_fvp->v_vfsp->vfs_dev;
834 
835 		if (partial) {
836 			/*
837 			 * Partial block read in progress.
838 			 * This is bad as modules further down the line
839 			 * assume buf's are exact multiples of DEV_BSIZE
840 			 * and we end up with fewer, or zero, bytes read.
841 			 * To get round this we need to round up to the
842 			 * nearest full block read and then return only
843 			 * len bytes.
844 			 */
845 			newlen = (len - partial) + DEV_BSIZE;
846 			newbuffer = kmem_alloc(newlen, KM_SLEEP);
847 
848 			snapbuf->b_bcount = newlen;
849 			snapbuf->b_un.b_addr = newbuffer;
850 		}
851 
852 		(void) bdev_strategy(snapbuf);
853 		(void) biowait(snapbuf);
854 
855 		error = geterror(snapbuf);
856 
857 		if (partial) {
858 			/*
859 			 * Partial block read. Now we need to bcopy the
860 			 * correct number of bytes back into the
861 			 * supplied buffer, and tidy up our temp
862 			 * buffer.
863 			 */
864 			bcopy(newbuffer, buffer, len);
865 			kmem_free(newbuffer, newlen);
866 		}
867 
868 		freerbuf(snapbuf);
869 		rw_exit(&cmap->cmap_rwlock);
870 
871 		return (error);
872 	}
873 
874 	/*
875 	 * finally, if the chunk is a candidate for translation and it
876 	 * has been translated, then we clone the chunk of the buffer
877 	 * that was copied aside by the file system.
878 	 * The cmap_rwlock does not need to be held after we know the
879 	 * data has already been copied. Once a chunk has been copied
880 	 * to the backing file, it is stable read only data.
881 	 */
882 	cmn = transtbl_get(cmap, chunk);
883 
884 	/* check whether the data is in memory or in the backing file */
885 	if (cmn != NULL) {
886 		ASSERT(cmn->cmn_buf);
887 		/* already in memory */
888 		bcopy(cmn->cmn_buf + offset, buffer, len);
889 		rw_exit(&cmap->cmap_rwlock);
890 	} else {
891 		ssize_t resid = len;
892 		int	bf_index;
893 		/*
894 		 * can cause deadlock with writer if we don't drop the
895 		 * cmap_rwlock before trying to get the backing store file
896 		 * vnode rwlock.
897 		 */
898 		rw_exit(&cmap->cmap_rwlock);
899 
900 		bf_index = chunk / cmap->cmap_chunksperbf;
901 
902 		/* read buffer from backing file */
903 		error = vn_rdwr(UIO_READ,
904 		    (sidp->sid_cowinfo->cow_backfile_array)[bf_index],
905 		    buffer, len, ((chunk % cmap->cmap_chunksperbf) *
906 		    cmap->cmap_chunksz) + offset, UIO_SYSSPACE, 0,
907 		    RLIM64_INFINITY, kcred, &resid);
908 	}
909 
910 	return (error);
911 }
912 
913 /*
914  * snap_print() - snapshot driver print(9E) routine
915  *
916  *    prints the device identification string.
917  */
918 static int
919 snap_print(dev_t dev, char *str)
920 {
921 	struct snapshot_id **sidpp;
922 	minor_t		minor;
923 
924 	minor = getminor(dev);
925 	sidpp = ddi_get_soft_state(statep, minor);
926 	if (sidpp == NULL || *sidpp == NULL) {
927 		cmn_err(CE_WARN,
928 		    "snap_print: could not find state for snapshot %d.", minor);
929 		return (ENXIO);
930 	}
931 
932 	cmn_err(CE_NOTE, "snap_print: snapshot %d: %s",  minor, str);
933 
934 	return (0);
935 }
936 
937 /*
938  * snap_prop_op() - snapshot driver prop_op(9E) routine
939  *
940  *    get 32-bit and 64-bit values for size (character driver) and nblocks
941  *    (block driver).
942  */
943 static int
944 snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
945     int flags, char *name, caddr_t valuep, int *lengthp)
946 {
947 	int		minor;
948 	struct snapshot_id **sidpp;
949 	dev_t		mdev;
950 	dev_info_t	*mdip;
951 	int		error;
952 
953 	minor = getminor(dev);
954 
955 	/*
956 	 * If this is the control device just check for .conf properties,
957 	 * if the wildcard DDI_DEV_T_ANY was passed in via the dev_t
958 	 * just fall back to the defaults.
959 	 */
960 	if ((minor == SNAP_CTL_MINOR) || (dev == DDI_DEV_T_ANY))
961 		return (ddi_prop_op(dev, dip, prop_op, flags, name,
962 		    valuep, lengthp));
963 
964 	/* check to see if there is a master device plumbed */
965 	sidpp = ddi_get_soft_state(statep, minor);
966 	if (sidpp == NULL || *sidpp == NULL) {
967 		cmn_err(CE_WARN,
968 		    "snap_prop_op: could not find state for "
969 		    "snapshot %d.", minor);
970 		return (DDI_PROP_NOT_FOUND);
971 	}
972 
973 	if (((*sidpp)->sid_fvp == NULL) || ((*sidpp)->sid_fvp->v_vfsp == NULL))
974 		return (ddi_prop_op(dev, dip, prop_op, flags, name,
975 		    valuep, lengthp));
976 
977 	/* hold master device and pass operation down */
978 	mdev = (*sidpp)->sid_fvp->v_vfsp->vfs_dev;
979 	if (mdip = e_ddi_hold_devi_by_dev(mdev, 0)) {
980 
981 		/* get size information from the master device. */
982 		error = cdev_prop_op(mdev, mdip,
983 		    prop_op, flags, name, valuep, lengthp);
984 		ddi_release_devi(mdip);
985 		if (error == DDI_PROP_SUCCESS)
986 			return (error);
987 	}
988 
989 	/* master device did not service the request, try framework */
990 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
991 
992 }
993 
994 /*
995  * snap_ioctl() - snapshot driver ioctl(9E) routine
996  *
997  *    only applies to the control device.  The control device accepts two
998  *    ioctl requests: create a snapshot or delete a snapshot.  In either
999  *    case, the vnode for the requested file system is extracted, and the
1000  *    request is passed on to the file system via the same ioctl.  The file
1001  *    system is responsible for doing the things necessary for creating or
1002  *    destroying a snapshot, including any file system specific operations
1003  *    that must be performed as well as setting up and deleting the snapshot
1004  *    state through the fssnap interfaces.
1005  */
1006 static int
1007 snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
1008 int *rvalp)
1009 {
1010 	minor_t	minor;
1011 	int error = 0;
1012 
1013 	minor = getminor(dev);
1014 
1015 	if (minor != SNAP_CTL_MINOR) {
1016 		return (EINVAL);
1017 	}
1018 
1019 	switch (cmd) {
1020 	case _FIOSNAPSHOTCREATE:
1021 	{
1022 		struct fiosnapcreate	fc;
1023 		struct file		*fp;
1024 		struct vnode		*vp;
1025 
1026 		if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
1027 			return (EFAULT);
1028 
1029 		/* get vnode for file system mount point */
1030 		if ((fp = getf(fc.rootfiledesc)) == NULL)
1031 			return (EBADF);
1032 
1033 		ASSERT(fp->f_vnode);
1034 		vp = fp->f_vnode;
1035 		VN_HOLD(vp);
1036 		releasef(fc.rootfiledesc);
1037 
1038 		/* pass ioctl request to file system */
1039 		error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL);
1040 		VN_RELE(vp);
1041 		break;
1042 	}
1043 	case _FIOSNAPSHOTCREATE_MULTI:
1044 	{
1045 		struct fiosnapcreate_multi	fc;
1046 		struct file		*fp;
1047 		struct vnode		*vp;
1048 
1049 		if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
1050 			return (EFAULT);
1051 
1052 		/* get vnode for file system mount point */
1053 		if ((fp = getf(fc.rootfiledesc)) == NULL)
1054 			return (EBADF);
1055 
1056 		ASSERT(fp->f_vnode);
1057 		vp = fp->f_vnode;
1058 		VN_HOLD(vp);
1059 		releasef(fc.rootfiledesc);
1060 
1061 		/* pass ioctl request to file system */
1062 		error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL);
1063 		VN_RELE(vp);
1064 		break;
1065 	}
1066 	case _FIOSNAPSHOTDELETE:
1067 	{
1068 		major_t			major;
1069 		struct fiosnapdelete	fc;
1070 		snapshot_id_t		*sidp = NULL;
1071 		snapshot_id_t		*sidnextp = NULL;
1072 		struct file		*fp = NULL;
1073 		struct vnode		*vp = NULL;
1074 		struct vfs 		*vfsp = NULL;
1075 		vfsops_t		*vfsops = EIO_vfsops;
1076 
1077 		if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
1078 			return (EFAULT);
1079 
1080 		/* get vnode for file system mount point */
1081 		if ((fp = getf(fc.rootfiledesc)) == NULL)
1082 			return (EBADF);
1083 
1084 		ASSERT(fp->f_vnode);
1085 		vp = fp->f_vnode;
1086 		VN_HOLD(vp);
1087 		releasef(fc.rootfiledesc);
1088 		/*
1089 		 * Test for two formats of delete and set correct minor/vp:
1090 		 * pseudo device:
1091 		 * fssnap -d [/dev/fssnap/x]
1092 		 * or
1093 		 * mount point:
1094 		 * fssnap -d [/mntpt]
1095 		 * Note that minor is verified to be equal to SNAP_CTL_MINOR
1096 		 * at this point which is an invalid minor number.
1097 		 */
1098 		ASSERT(fssnap_dip != NULL);
1099 		major = ddi_driver_major(fssnap_dip);
1100 		mutex_enter(&snapshot_mutex);
1101 		for (sidp = snapshot; sidp != NULL; sidp = sidnextp) {
1102 			rw_enter(&sidp->sid_rwlock, RW_READER);
1103 			sidnextp = sidp->sid_next;
1104 			/* pseudo device: */
1105 			if (major == getmajor(vp->v_rdev)) {
1106 				minor = getminor(vp->v_rdev);
1107 				if (sidp->sid_snapnumber == (uint_t)minor &&
1108 				    sidp->sid_fvp) {
1109 					VN_RELE(vp);
1110 					vp = sidp->sid_fvp;
1111 					VN_HOLD(vp);
1112 					rw_exit(&sidp->sid_rwlock);
1113 					break;
1114 				}
1115 			/* Mount point: */
1116 			} else {
1117 				if (sidp->sid_fvp == vp) {
1118 					minor = sidp->sid_snapnumber;
1119 					rw_exit(&sidp->sid_rwlock);
1120 					break;
1121 				}
1122 			}
1123 			rw_exit(&sidp->sid_rwlock);
1124 		}
1125 		mutex_exit(&snapshot_mutex);
1126 		/* Verify minor got set correctly above */
1127 		if (minor == SNAP_CTL_MINOR) {
1128 			VN_RELE(vp);
1129 			return (EINVAL);
1130 		}
1131 		dev = makedevice(major, minor);
1132 		/*
1133 		 * Create dummy vfs entry
1134 		 * to use as a locking semaphore across the IOCTL
1135 		 * for mount in progress cases...
1136 		 */
1137 		vfsp = vfs_alloc(KM_SLEEP);
1138 		VFS_INIT(vfsp, vfsops, NULL);
1139 		VFS_HOLD(vfsp);
1140 		vfs_addmip(dev, vfsp);
1141 		if ((vfs_devmounting(dev, vfsp)) ||
1142 		    (vfs_devismounted(dev))) {
1143 			vfs_delmip(vfsp);
1144 			VFS_RELE(vfsp);
1145 			VN_RELE(vp);
1146 			return (EBUSY);
1147 		}
1148 		/*
1149 		 * Nobody mounted but do not release mount in progress lock
1150 		 * until IOCTL complete to prohibit a mount sneaking
1151 		 * in
1152 		 */
1153 		error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL);
1154 		vfs_delmip(vfsp);
1155 		VFS_RELE(vfsp);
1156 		VN_RELE(vp);
1157 		break;
1158 	}
1159 	default:
1160 		cmn_err(CE_WARN, "snap_ioctl: Invalid ioctl cmd %d, minor %d.",
1161 		    cmd, minor);
1162 		return (EINVAL);
1163 	}
1164 
1165 	return (error);
1166 }
1167 
1168 
1169 /* ************************************************************************ */
1170 
1171 /*
1172  * Translation Table Routines
1173  *
1174  *    These support routines implement a simple doubly linked list
1175  *    to keep track of chunks that are currently in memory.  The maximum
1176  *    size of the list is determined by the fssnap_max_mem_chunks variable.
1177  *    The cmap_rwlock is used to protect the linkage of the list.
1178  */
1179 
1180 /*
1181  * transtbl_add() - add a node to the translation table
1182  *
1183  *    allocates a new node and points it at the buffer passed in.  The node
1184  *    is added to the beginning of the doubly linked list and the head of
1185  *    the list is moved.  The cmap_rwlock must be held as a writer through
1186  *    this operation.
1187  */
1188 static cow_map_node_t *
1189 transtbl_add(cow_map_t *cmap, chunknumber_t chunk, caddr_t buf)
1190 {
1191 	cow_map_node_t	*cmnode;
1192 
1193 	ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
1194 
1195 	cmnode = kmem_alloc(sizeof (cow_map_node_t), KM_SLEEP);
1196 
1197 	/*
1198 	 * insert new translations at the beginning so cmn_table is always
1199 	 * the first node.
1200 	 */
1201 	cmnode->cmn_chunk = chunk;
1202 	cmnode->cmn_buf = buf;
1203 	cmnode->cmn_prev = NULL;
1204 	cmnode->cmn_next = cmap->cmap_table;
1205 	if (cmnode->cmn_next)
1206 		cmnode->cmn_next->cmn_prev = cmnode;
1207 	cmap->cmap_table = cmnode;
1208 
1209 	return (cmnode);
1210 }
1211 
1212 /*
1213  * transtbl_get() - look up a node in the translation table
1214  *
1215  *    called by the snapshot driver to find data that has been translated.
1216  *    The lookup is done by the chunk number, and the node is returned.
1217  *    If the node was not found, NULL is returned.
1218  */
1219 static cow_map_node_t *
1220 transtbl_get(cow_map_t *cmap, chunknumber_t chunk)
1221 {
1222 	cow_map_node_t *cmn;
1223 
1224 	ASSERT(RW_READ_HELD(&cmap->cmap_rwlock));
1225 	ASSERT(cmap);
1226 
1227 	/* search the translation table */
1228 	for (cmn = cmap->cmap_table; cmn != NULL; cmn = cmn->cmn_next) {
1229 		if (cmn->cmn_chunk == chunk)
1230 			return (cmn);
1231 	}
1232 
1233 	/* not found */
1234 	return (NULL);
1235 }
1236 
1237 /*
1238  * transtbl_delete() - delete a node from the translation table
1239  *
1240  *    called when a node's data has been written out to disk.  The
1241  *    cmap_rwlock must be held as a writer for this operation.  If the node
1242  *    being deleted is the head of the list, then the head is moved to the
1243  *    next node.  Both the node's data and the node itself are freed.
1244  */
1245 static void
1246 transtbl_delete(cow_map_t *cmap, cow_map_node_t *cmn)
1247 {
1248 	ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
1249 	ASSERT(cmn);
1250 	ASSERT(cmap->cmap_table);
1251 
1252 	/* if the head of the list is being deleted, then move the head up */
1253 	if (cmap->cmap_table == cmn) {
1254 		ASSERT(cmn->cmn_prev == NULL);
1255 		cmap->cmap_table = cmn->cmn_next;
1256 	}
1257 
1258 
1259 	/* make previous node's next pointer skip over current node */
1260 	if (cmn->cmn_prev != NULL) {
1261 		ASSERT(cmn->cmn_prev->cmn_next == cmn);
1262 		cmn->cmn_prev->cmn_next = cmn->cmn_next;
1263 	}
1264 
1265 	/* make next node's previous pointer skip over current node */
1266 	if (cmn->cmn_next != NULL) {
1267 		ASSERT(cmn->cmn_next->cmn_prev == cmn);
1268 		cmn->cmn_next->cmn_prev = cmn->cmn_prev;
1269 	}
1270 
1271 	/* free the data and the node */
1272 	ASSERT(cmn->cmn_buf);
1273 	kmem_free(cmn->cmn_buf, cmap->cmap_chunksz);
1274 	kmem_free(cmn, sizeof (cow_map_node_t));
1275 }
1276 
1277 /*
1278  * transtbl_free() - free the entire translation table
1279  *
1280  *    called when the snapshot is deleted.  This frees all of the nodes in
1281  *    the translation table (but not the bitmaps).
1282  */
1283 static void
1284 transtbl_free(cow_map_t *cmap)
1285 {
1286 	cow_map_node_t	*curnode;
1287 	cow_map_node_t	*tempnode;
1288 
1289 	for (curnode = cmap->cmap_table; curnode != NULL; curnode = tempnode) {
1290 		tempnode = curnode->cmn_next;
1291 
1292 		kmem_free(curnode->cmn_buf, cmap->cmap_chunksz);
1293 		kmem_free(curnode, sizeof (cow_map_node_t));
1294 	}
1295 }
1296 
1297 
1298 /* ************************************************************************ */
1299 
1300 /*
1301  * Interface Implementation Routines
1302  *
1303  * The following functions implement snapshot interface routines that are
1304  * called by the file system to create, delete, and use a snapshot.  The
1305  * interfaces are defined in fssnap_if.c and are filled in by this driver
1306  * when it is loaded.  This technique allows the file system to depend on
1307  * the interface module without having to load the full implementation and
1308  * snapshot device drivers.
1309  */
1310 
1311 /*
1312  * fssnap_strategy_impl() - strategy routine called by the file system
1313  *
1314  *    called by the file system to handle copy-on-write when necessary.  All
1315  *    reads and writes that the file system performs should go through this
1316  *    function.  If the file system calls the underlying device's strategy
1317  *    routine without going through fssnap_strategy() (eg. by calling
1318  *    bdev_strategy()), the snapshot may not be consistent.
1319  *
1320  *    This function starts by doing significant sanity checking to insure
1321  *    the snapshot was not deleted out from under it or deleted and then
1322  *    recreated.  To do this, it checks the actual pointer passed into it
1323  *    (ie. the handle held by the file system).  NOTE that the parameter is
1324  *    a POINTER TO A POINTER to the snapshot id.  Once the snapshot id is
1325  *    locked, it knows things are ok and that this snapshot is really for
1326  *    this file system.
1327  *
1328  *    If the request is a write, fssnap_translate() is called to determine
1329  *    whether a copy-on-write is required.  If it is a read, the read is
1330  *    simply passed on to the underlying device.
1331  */
1332 static void
1333 fssnap_strategy_impl(void *snapshot_id, buf_t *bp)
1334 {
1335 	struct snapshot_id **sidpp;
1336 	struct snapshot_id *sidp;
1337 	int error;
1338 
1339 	/* read requests are always passed through */
1340 	if (bp->b_flags & B_READ) {
1341 		(void) bdev_strategy(bp);
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * Because we were not able to take the snapshot read lock BEFORE
1347 	 * checking for a snapshot back in the file system, things may have
1348 	 * drastically changed out from under us.  For instance, the snapshot
1349 	 * may have been deleted, deleted and recreated, or worse yet, deleted
1350 	 * for this file system but now the snapshot number is in use by another
1351 	 * file system.
1352 	 *
1353 	 * Having a pointer to the file system's snapshot id pointer allows us
1354 	 * to sanity check most of this, though it assumes the file system is
1355 	 * keeping track of a pointer to the snapshot_id somewhere.
1356 	 */
1357 	sidpp = (struct snapshot_id **)snapshot_id;
1358 	sidp = *sidpp;
1359 
1360 	/*
1361 	 * if this file system's snapshot was disabled, just pass the
1362 	 * request through.
1363 	 */
1364 	if (sidp == NULL) {
1365 		(void) bdev_strategy(bp);
1366 		return;
1367 	}
1368 
1369 	/*
1370 	 * Once we have the reader lock the snapshot will not magically go
1371 	 * away.  But things may have changed on us before this so double check.
1372 	 */
1373 	rw_enter(&sidp->sid_rwlock, RW_READER);
1374 
1375 	/*
1376 	 * if an error was founds somewhere the DELETE flag will be
1377 	 * set to indicate the snapshot should be deleted and no new
1378 	 * translations should occur.
1379 	 */
1380 	if (sidp->sid_flags & SID_DELETE) {
1381 		rw_exit(&sidp->sid_rwlock);
1382 		(void) fssnap_delete_impl(sidpp);
1383 		(void) bdev_strategy(bp);
1384 		return;
1385 	}
1386 
1387 	/*
1388 	 * If the file system is no longer pointing to the snapshot we were
1389 	 * called with, then it should not attempt to translate this buffer as
1390 	 * it may be going to a snapshot for a different file system.
1391 	 * Even if the file system snapshot pointer is still the same, the
1392 	 * snapshot may have been disabled before we got the reader lock.
1393 	 */
1394 	if (sidp != *sidpp || SID_INACTIVE(sidp)) {
1395 		rw_exit(&sidp->sid_rwlock);
1396 		(void) bdev_strategy(bp);
1397 		return;
1398 	}
1399 
1400 	/*
1401 	 * At this point we're sure the snapshot will not go away while the
1402 	 * reader lock is held, and we are reasonably certain that we are
1403 	 * writing to the correct snapshot.
1404 	 */
1405 	if ((error = fssnap_translate(sidpp, bp)) != 0) {
1406 		/*
1407 		 * fssnap_translate can release the reader lock if it
1408 		 * has to wait for a semaphore.  In this case it is possible
1409 		 * for the snapshot to be deleted in this time frame.  If this
1410 		 * happens just sent the buf thru to the filesystems device.
1411 		 */
1412 		if (sidp != *sidpp || SID_INACTIVE(sidp)) {
1413 			rw_exit(&sidp->sid_rwlock);
1414 			(void) bdev_strategy(bp);
1415 			return;
1416 		}
1417 		bioerror(bp, error);
1418 		biodone(bp);
1419 	}
1420 	rw_exit(&sidp->sid_rwlock);
1421 }
1422 
1423 /*
1424  * fssnap_translate() - helper function for fssnap_strategy()
1425  *
1426  *    performs the actual copy-on-write for write requests, if required.
1427  *    This function does the real work of the file system side of things.
1428  *
1429  *    It first checks the candidate bitmap to quickly determine whether any
1430  *    action is necessary.  If the candidate bitmap indicates the chunk was
1431  *    allocated when the snapshot was created, then it checks to see whether
1432  *    a translation already exists.  If a translation already exists then no
1433  *    action is required.  If the chunk is a candidate for copy-on-write,
1434  *    and a translation does not already exist, then the chunk is read in
1435  *    and a node is added to the translation table.
1436  *
1437  *    Once all of the chunks in the request range have been copied (if they
1438  *    needed to be), then the original request can be satisfied and the old
1439  *    data can be overwritten.
1440  */
1441 static int
1442 fssnap_translate(struct snapshot_id **sidpp, struct buf *wbp)
1443 {
1444 	snapshot_id_t	*sidp = *sidpp;
1445 	struct buf	*oldbp;	/* buffer to store old data in */
1446 	struct cow_info	*cowp = sidp->sid_cowinfo;
1447 	cow_map_t	*cmap = &cowp->cow_map;
1448 	cow_map_node_t	*cmn;
1449 	chunknumber_t	cowchunk, startchunk, endchunk;
1450 	int		error;
1451 	int	throttle_write = 0;
1452 
1453 	/* make sure the snapshot is active */
1454 	ASSERT(RW_READ_HELD(&sidp->sid_rwlock));
1455 
1456 	startchunk = dbtocowchunk(cmap, wbp->b_lblkno);
1457 	endchunk   = dbtocowchunk(cmap, wbp->b_lblkno +
1458 	    ((wbp->b_bcount-1) >> DEV_BSHIFT));
1459 
1460 	/*
1461 	 * Do not throttle the writes of the fssnap taskq thread and
1462 	 * the log roll (trans_roll) thread. Furthermore the writes to
1463 	 * the on-disk log are also not subject to throttling.
1464 	 * The fssnap_write_taskq thread's write can block on the throttling
1465 	 * semaphore which leads to self-deadlock as this same thread
1466 	 * releases the throttling semaphore after completing the IO.
1467 	 * If the trans_roll thread's write is throttled then we can deadlock
1468 	 * because the fssnap_taskq_thread which releases the throttling
1469 	 * semaphore can block waiting for log space which can only be
1470 	 * released by the trans_roll thread.
1471 	 */
1472 
1473 	throttle_write = !(taskq_member(cowp->cow_taskq, curthread) ||
1474 	    tsd_get(bypass_snapshot_throttle_key));
1475 
1476 	/*
1477 	 * Iterate through all chunks covered by this write and perform the
1478 	 * copy-aside if necessary.  Once all chunks have been safely
1479 	 * stowed away, the new data may be written in a single sweep.
1480 	 *
1481 	 * For each chunk in the range, the following sequence is performed:
1482 	 *	- Is the chunk a candidate for translation?
1483 	 *		o If not, then no translation is necessary, continue
1484 	 *	- If it is a candidate, then does it already have a translation?
1485 	 *		o If so, then no translation is necessary, continue
1486 	 *	- If it is a candidate, but does not yet have a translation,
1487 	 *	  then read the old data and schedule an asynchronous taskq
1488 	 *	  to write the old data to the backing file.
1489 	 *
1490 	 * Once this has been performed over the entire range of chunks, then
1491 	 * it is safe to overwrite the data that is there.
1492 	 *
1493 	 * Note that no lock is required to check the candidate bitmap because
1494 	 * it never changes once the snapshot is created.  The reader lock is
1495 	 * taken to check the hastrans bitmap since it may change.  If it
1496 	 * turns out a copy is required, then the lock is upgraded to a
1497 	 * writer, and the bitmap is re-checked as it may have changed while
1498 	 * the lock was released.  Finally, the write lock is held while
1499 	 * reading the old data to make sure it is not translated out from
1500 	 * under us.
1501 	 *
1502 	 * This locking mechanism should be sufficient to handle multiple
1503 	 * threads writing to overlapping chunks simultaneously.
1504 	 */
1505 	for (cowchunk = startchunk; cowchunk <= endchunk; cowchunk++) {
1506 		/*
1507 		 * If the cowchunk is outside of the range of our
1508 		 * candidate maps, then simply break out of the
1509 		 * loop and pass the I/O through to bdev_strategy.
1510 		 * This would occur if the file system has grown
1511 		 * larger since the snapshot was taken.
1512 		 */
1513 		if (cowchunk >= (cmap->cmap_bmsize * NBBY))
1514 			break;
1515 
1516 		/*
1517 		 * If no disk blocks were allocated in this chunk when the
1518 		 * snapshot was created then no copy-on-write will be
1519 		 * required.  Since this bitmap is read-only no locks are
1520 		 * necessary.
1521 		 */
1522 		if (isclr(cmap->cmap_candidate, cowchunk)) {
1523 			continue;
1524 		}
1525 
1526 		/*
1527 		 * If a translation already exists, the data can be written
1528 		 * through since the old data has already been saved off.
1529 		 */
1530 		if (isset(cmap->cmap_hastrans, cowchunk)) {
1531 			continue;
1532 		}
1533 
1534 
1535 		/*
1536 		 * Throttle translations if there are too many outstanding
1537 		 * chunks in memory.  The semaphore is sema_v'd by the taskq.
1538 		 *
1539 		 * You can't keep the sid_rwlock if you would go to sleep.
1540 		 * This will result in deadlock when someone tries to delete
1541 		 * the snapshot (wants the sid_rwlock as a writer, but can't
1542 		 * get it).
1543 		 */
1544 		if (throttle_write) {
1545 			if (sema_tryp(&cmap->cmap_throttle_sem) == 0) {
1546 				rw_exit(&sidp->sid_rwlock);
1547 				atomic_add_32(&cmap->cmap_waiters, 1);
1548 				sema_p(&cmap->cmap_throttle_sem);
1549 				atomic_add_32(&cmap->cmap_waiters, -1);
1550 				rw_enter(&sidp->sid_rwlock, RW_READER);
1551 
1552 			/*
1553 			 * Now since we released the sid_rwlock the state may
1554 			 * have transitioned underneath us. so check that again.
1555 			 */
1556 				if (sidp != *sidpp || SID_INACTIVE(sidp)) {
1557 					sema_v(&cmap->cmap_throttle_sem);
1558 					return (ENXIO);
1559 				}
1560 			}
1561 		}
1562 
1563 		/*
1564 		 * Acquire the lock as a writer and check to see if a
1565 		 * translation has been added in the meantime.
1566 		 */
1567 		rw_enter(&cmap->cmap_rwlock, RW_WRITER);
1568 		if (isset(cmap->cmap_hastrans, cowchunk)) {
1569 			if (throttle_write)
1570 				sema_v(&cmap->cmap_throttle_sem);
1571 			rw_exit(&cmap->cmap_rwlock);
1572 			continue; /* go to the next chunk */
1573 		}
1574 
1575 		/*
1576 		 * read a full chunk of data from the requested offset rounded
1577 		 * down to the nearest chunk size.
1578 		 */
1579 		oldbp = getrbuf(KM_SLEEP);
1580 		oldbp->b_lblkno = cowchunktodb(cmap, cowchunk);
1581 		oldbp->b_edev = wbp->b_edev;
1582 		oldbp->b_bcount = cmap->cmap_chunksz;
1583 		oldbp->b_bufsize = cmap->cmap_chunksz;
1584 		oldbp->b_iodone = NULL;
1585 		oldbp->b_proc = NULL;
1586 		oldbp->b_flags = B_READ;
1587 		oldbp->b_un.b_addr = kmem_alloc(cmap->cmap_chunksz, KM_SLEEP);
1588 
1589 		(void) bdev_strategy(oldbp);
1590 		(void) biowait(oldbp);
1591 
1592 		/*
1593 		 * It's ok to bail in the middle of translating the range
1594 		 * because the extra copy-asides will not hurt anything
1595 		 * (except by using extra space in the backing store).
1596 		 */
1597 		if ((error = geterror(oldbp)) != 0) {
1598 			cmn_err(CE_WARN, "fssnap_translate: error reading "
1599 			    "old data for snapshot %d, chunk %llu, disk block "
1600 			    "%lld, size %lu, error %d.", sidp->sid_snapnumber,
1601 			    cowchunk, oldbp->b_lblkno, oldbp->b_bcount, error);
1602 			kmem_free(oldbp->b_un.b_addr, cmap->cmap_chunksz);
1603 			freerbuf(oldbp);
1604 			rw_exit(&cmap->cmap_rwlock);
1605 			if (throttle_write)
1606 				sema_v(&cmap->cmap_throttle_sem);
1607 			return (error);
1608 		}
1609 
1610 		/*
1611 		 * add the node to the translation table and save a reference
1612 		 * to pass to the taskq for writing out to the backing file
1613 		 */
1614 		cmn = transtbl_add(cmap, cowchunk, oldbp->b_un.b_addr);
1615 		freerbuf(oldbp);
1616 
1617 		/*
1618 		 * Add a reference to the snapshot id so the lower level
1619 		 * processing (ie. the taskq) can get back to the state
1620 		 * information.
1621 		 */
1622 		cmn->cmn_sid = sidp;
1623 		cmn->release_sem = throttle_write;
1624 		setbit(cmap->cmap_hastrans, cowchunk);
1625 
1626 		rw_exit(&cmap->cmap_rwlock);
1627 
1628 		/*
1629 		 * schedule the asynchronous write to the backing file
1630 		 */
1631 		if (cowp->cow_backfile_array != NULL)
1632 			(void) taskq_dispatch(cowp->cow_taskq,
1633 			    fssnap_write_taskq, cmn, TQ_SLEEP);
1634 	}
1635 
1636 	/*
1637 	 * Write new data in place of the old data.  At this point all of the
1638 	 * chunks touched by this write have been copied aside and so the new
1639 	 * data can be written out all at once.
1640 	 */
1641 	(void) bdev_strategy(wbp);
1642 
1643 	return (0);
1644 }
1645 
1646 /*
1647  * fssnap_write_taskq() - write in-memory translations to the backing file
1648  *
1649  *    writes in-memory translations to the backing file asynchronously.  A
1650  *    task is dispatched each time a new translation is created.  The task
1651  *    writes the data to the backing file and removes it from the memory
1652  *    list. The throttling semaphore is released only if the particular
1653  *    translation was throttled in fssnap_translate.
1654  */
1655 static void
1656 fssnap_write_taskq(void *arg)
1657 {
1658 	cow_map_node_t	*cmn = (cow_map_node_t *)arg;
1659 	snapshot_id_t	*sidp = cmn->cmn_sid;
1660 	cow_info_t	*cowp = sidp->sid_cowinfo;
1661 	cow_map_t	*cmap = &cowp->cow_map;
1662 	int		error;
1663 	int		bf_index;
1664 	int		release_sem = cmn->release_sem;
1665 
1666 	/*
1667 	 * The sid_rwlock does not need to be held here because the taskqs
1668 	 * are destroyed explicitly by fssnap_delete (with the sid_rwlock
1669 	 * held as a writer).  taskq_destroy() will flush all of the tasks
1670 	 * out before fssnap_delete frees up all of the structures.
1671 	 */
1672 
1673 	/* if the snapshot was disabled from under us, drop the request. */
1674 	rw_enter(&sidp->sid_rwlock, RW_READER);
1675 	if (SID_INACTIVE(sidp)) {
1676 		rw_exit(&sidp->sid_rwlock);
1677 		if (release_sem)
1678 			sema_v(&cmap->cmap_throttle_sem);
1679 		return;
1680 	}
1681 	rw_exit(&sidp->sid_rwlock);
1682 
1683 	atomic_add_64((uint64_t *)&cmap->cmap_nchunks, 1);
1684 
1685 	if ((cmap->cmap_maxsize != 0) &&
1686 	    ((cmap->cmap_nchunks * cmap->cmap_chunksz) > cmap->cmap_maxsize)) {
1687 		cmn_err(CE_WARN, "fssnap_write_taskq: snapshot %d (%s) has "
1688 		    "reached the maximum backing file size specified (%llu "
1689 		    "bytes) and will be deleted.", sidp->sid_snapnumber,
1690 		    (char *)cowp->cow_kstat_mntpt->ks_data,
1691 		    cmap->cmap_maxsize);
1692 		if (release_sem)
1693 			sema_v(&cmap->cmap_throttle_sem);
1694 		atomic_or_uint(&sidp->sid_flags, SID_DELETE);
1695 		return;
1696 	}
1697 
1698 	/* perform the write */
1699 	bf_index = cmn->cmn_chunk / cmap->cmap_chunksperbf;
1700 
1701 	if (error = vn_rdwr(UIO_WRITE, (cowp->cow_backfile_array)[bf_index],
1702 	    cmn->cmn_buf, cmap->cmap_chunksz,
1703 	    (cmn->cmn_chunk % cmap->cmap_chunksperbf) * cmap->cmap_chunksz,
1704 	    UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, (ssize_t *)NULL)) {
1705 		cmn_err(CE_WARN, "fssnap_write_taskq: error writing to "
1706 		    "backing file.  DELETING SNAPSHOT %d, backing file path "
1707 		    "%s, offset %llu bytes, error %d.", sidp->sid_snapnumber,
1708 		    (char *)cowp->cow_kstat_bfname->ks_data,
1709 		    cmn->cmn_chunk * cmap->cmap_chunksz, error);
1710 		if (release_sem)
1711 			sema_v(&cmap->cmap_throttle_sem);
1712 		atomic_or_uint(&sidp->sid_flags, SID_DELETE);
1713 		return;
1714 	}
1715 
1716 	/*
1717 	 * now remove the node and buffer from memory
1718 	 */
1719 	rw_enter(&cmap->cmap_rwlock, RW_WRITER);
1720 	transtbl_delete(cmap, cmn);
1721 	rw_exit(&cmap->cmap_rwlock);
1722 
1723 	/* Allow more translations */
1724 	if (release_sem)
1725 		sema_v(&cmap->cmap_throttle_sem);
1726 
1727 }
1728 
1729 /*
1730  * fssnap_create_impl() - called from the file system to create a new snapshot
1731  *
1732  *    allocates and initializes the structures needed for a new snapshot.
1733  *    This is called by the file system when it receives an ioctl request to
1734  *    create a new snapshot.  An unused snapshot identifier is either found
1735  *    or created, and eventually returned as the opaque handle the file
1736  *    system will use to identify this snapshot.  The snapshot number
1737  *    associated with the snapshot identifier is the same as the minor
1738  *    number for the snapshot device that is used to access that snapshot.
1739  *
1740  *    The snapshot can not be used until the candidate bitmap is populated
1741  *    by the file system (see fssnap_set_candidate_impl()), and the file
1742  *    system finishes the setup process by calling fssnap_create_done().
1743  *    Nearly all of the snapshot locks are held for the duration of the
1744  *    create, and are not released until fssnap_create_done is called().
1745  */
1746 static void *
1747 fssnap_create_impl(chunknumber_t nchunks, uint_t chunksz, u_offset_t maxsize,
1748     struct vnode *fsvp, int backfilecount, struct vnode **bfvpp, char *backpath,
1749     u_offset_t max_backfile_size)
1750 {
1751 	refstr_t *mountpoint;
1752 	char taskqname[50];
1753 	struct cow_info *cowp;
1754 	struct cow_map	*cmap;
1755 	struct snapshot_id *sidp;
1756 	int lastsnap;
1757 
1758 	/*
1759 	 * Sanity check the parameters we care about
1760 	 * (we don't care about the informational parameters)
1761 	 */
1762 	if ((nchunks == 0) ||
1763 	    ((chunksz % DEV_BSIZE) != 0) ||
1764 	    (bfvpp == NULL)) {
1765 		return (NULL);
1766 	}
1767 
1768 	/*
1769 	 * Look for unused snapshot identifiers.  Snapshot ids are never
1770 	 * freed, but deleted snapshot ids will be recycled as needed.
1771 	 */
1772 	mutex_enter(&snapshot_mutex);
1773 
1774 findagain:
1775 	lastsnap = 0;
1776 	for (sidp = snapshot; sidp != NULL; sidp = sidp->sid_next) {
1777 		if (sidp->sid_snapnumber > lastsnap)
1778 			lastsnap = sidp->sid_snapnumber;
1779 
1780 		/*
1781 		 * The sid_rwlock is taken as a reader initially so that
1782 		 * activity on each snapshot is not stalled while searching
1783 		 * for a free snapshot id.
1784 		 */
1785 		rw_enter(&sidp->sid_rwlock, RW_READER);
1786 
1787 		/*
1788 		 * If the snapshot has been deleted and nobody is using the
1789 		 * snapshot device than we can reuse this snapshot_id.  If
1790 		 * the snapshot is marked to be deleted (SID_DELETE), then
1791 		 * it hasn't been deleted yet so don't reuse it.
1792 		 */
1793 		if (SID_AVAILABLE(sidp))
1794 			break; /* This spot is unused, so take it */
1795 		rw_exit(&sidp->sid_rwlock);
1796 	}
1797 
1798 	/*
1799 	 * add a new snapshot identifier if there are no deleted
1800 	 * entries.  Since it doesn't matter what order the entries
1801 	 * are in we can just add it to the beginning of the list.
1802 	 */
1803 	if (sidp) {
1804 		if (rw_tryupgrade(&sidp->sid_rwlock) == 0) {
1805 			/* someone else grabbed it as a writer, try again */
1806 			rw_exit(&sidp->sid_rwlock);
1807 			goto findagain;
1808 		}
1809 	} else {
1810 		/* Create a new node if we didn't find an unused one */
1811 		sidp = kmem_alloc(sizeof (struct snapshot_id), KM_SLEEP);
1812 		rw_init(&sidp->sid_rwlock, NULL, RW_DEFAULT, NULL);
1813 		rw_enter(&sidp->sid_rwlock, RW_WRITER);
1814 		sidp->sid_snapnumber = (snapshot == NULL) ? 0 : lastsnap + 1;
1815 		sidp->sid_cowinfo = NULL;
1816 		sidp->sid_flags = 0;
1817 		sidp->sid_next = snapshot;
1818 		snapshot = sidp;
1819 	}
1820 
1821 	ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
1822 	ASSERT(sidp->sid_cowinfo == NULL);
1823 	ASSERT(sidp->sid_snapnumber <= (lastsnap + 1));
1824 
1825 	sidp->sid_flags |= SID_CREATING;
1826 	/* The root vnode is held until snap_delete_impl() is called */
1827 	VN_HOLD(fsvp);
1828 	sidp->sid_fvp = fsvp;
1829 	num_snapshots++;
1830 
1831 	/* allocate and initialize structures */
1832 
1833 	cowp = kmem_zalloc(sizeof (struct cow_info), KM_SLEEP);
1834 
1835 	cowp->cow_backfile_array = bfvpp;
1836 	cowp->cow_backcount = backfilecount;
1837 	cowp->cow_backfile_sz = max_backfile_size;
1838 
1839 	/*
1840 	 * Initialize task queues for this snapshot.  Only a small number
1841 	 * of threads are required because they will be serialized on the
1842 	 * backing file's reader/writer lock anyway.
1843 	 */
1844 	(void) snprintf(taskqname, sizeof (taskqname), "%s_taskq_%d", snapname,
1845 	    sidp->sid_snapnumber);
1846 	cowp->cow_taskq = taskq_create(taskqname, fssnap_taskq_nthreads,
1847 	    minclsyspri, 1,  fssnap_taskq_maxtasks, 0);
1848 
1849 	/* don't allow tasks to start until after everything is ready */
1850 	taskq_suspend(cowp->cow_taskq);
1851 
1852 	/* initialize translation table */
1853 	cmap = &cowp->cow_map;
1854 	rw_init(&cmap->cmap_rwlock, NULL, RW_DEFAULT, NULL);
1855 	rw_enter(&cmap->cmap_rwlock, RW_WRITER);
1856 
1857 	sema_init(&cmap->cmap_throttle_sem, fssnap_max_mem_chunks, NULL,
1858 	    SEMA_DEFAULT, NULL);
1859 
1860 	cmap->cmap_chunksz = chunksz;
1861 	cmap->cmap_maxsize = maxsize;
1862 	cmap->cmap_chunksperbf = max_backfile_size / chunksz;
1863 
1864 	/*
1865 	 * allocate one bit per chunk for the bitmaps, round up
1866 	 */
1867 	cmap->cmap_bmsize = (nchunks + (NBBY - 1)) / NBBY;
1868 	cmap->cmap_hastrans  = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP);
1869 	cmap->cmap_candidate = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP);
1870 
1871 	sidp->sid_cowinfo = cowp;
1872 
1873 	/* initialize kstats for this snapshot */
1874 	mountpoint = vfs_getmntpoint(fsvp->v_vfsp);
1875 	fssnap_create_kstats(sidp, sidp->sid_snapnumber,
1876 	    refstr_value(mountpoint), backpath);
1877 	refstr_rele(mountpoint);
1878 
1879 	mutex_exit(&snapshot_mutex);
1880 
1881 	/*
1882 	 * return with snapshot id rwlock held as a writer until
1883 	 * fssnap_create_done is called
1884 	 */
1885 	return (sidp);
1886 }
1887 
1888 /*
1889  * fssnap_set_candidate_impl() - mark a chunk as a candidate for copy-on-write
1890  *
1891  *    sets a bit in the candidate bitmap that indicates that a chunk is a
1892  *    candidate for copy-on-write.  Typically, chunks that are allocated on
1893  *    the file system at the time the snapshot is taken are candidates,
1894  *    while chunks that have no allocated data do not need to be copied.
1895  *    Chunks containing metadata must be marked as candidates as well.
1896  */
1897 static void
1898 fssnap_set_candidate_impl(void *snapshot_id, chunknumber_t chunknumber)
1899 {
1900 	struct snapshot_id	*sid = snapshot_id;
1901 	struct cow_info *cowp = sid->sid_cowinfo;
1902 	struct cow_map	*cmap = &cowp->cow_map;
1903 
1904 	/* simple bitmap operation for now */
1905 	ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY));
1906 	setbit(cmap->cmap_candidate, chunknumber);
1907 }
1908 
1909 /*
1910  * fssnap_is_candidate_impl() - check whether a chunk is a candidate
1911  *
1912  *    returns 0 if the chunk is not a candidate and 1 if the chunk is a
1913  *    candidate.  This can be used by the file system to change behavior for
1914  *    chunks that might induce a copy-on-write.  The offset is specified in
1915  *    bytes since the chunk size may not be known by the file system.
1916  */
1917 static int
1918 fssnap_is_candidate_impl(void *snapshot_id, u_offset_t off)
1919 {
1920 	struct snapshot_id	*sid = snapshot_id;
1921 	struct cow_info *cowp = sid->sid_cowinfo;
1922 	struct cow_map	*cmap = &cowp->cow_map;
1923 	ulong_t chunknumber = off / cmap->cmap_chunksz;
1924 
1925 	/* simple bitmap operation for now */
1926 	ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY));
1927 	return (isset(cmap->cmap_candidate, chunknumber));
1928 }
1929 
1930 /*
1931  * fssnap_create_done_impl() - complete the snapshot setup process
1932  *
1933  *    called when the file system is done populating the candidate bitmap
1934  *    and it is ready to start using the snapshot.  This routine releases
1935  *    the snapshot locks, allows taskq tasks to start processing, and
1936  *    creates the device minor nodes associated with the snapshot.
1937  */
1938 static int
1939 fssnap_create_done_impl(void *snapshot_id)
1940 {
1941 	struct snapshot_id	**sidpp, *sidp = snapshot_id;
1942 	struct cow_info		*cowp;
1943 	struct cow_map		*cmap;
1944 	int			snapnumber = -1;
1945 	char			name[20];
1946 
1947 	/* sid rwlock and cmap rwlock should be taken from fssnap_create */
1948 	ASSERT(sidp);
1949 	ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
1950 	ASSERT(sidp->sid_cowinfo);
1951 
1952 	cowp = sidp->sid_cowinfo;
1953 	cmap = &cowp->cow_map;
1954 
1955 	ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
1956 
1957 	sidp->sid_flags &= ~(SID_CREATING | SID_DISABLED);
1958 	snapnumber = sidp->sid_snapnumber;
1959 
1960 	/* allocate state structure and find new snapshot id */
1961 	if (ddi_soft_state_zalloc(statep, snapnumber) != DDI_SUCCESS) {
1962 		cmn_err(CE_WARN,
1963 		    "snap_ioctl: create: could not allocate "
1964 		    "state for snapshot %d.", snapnumber);
1965 		snapnumber = -1;
1966 		goto out;
1967 	}
1968 
1969 	sidpp = ddi_get_soft_state(statep, snapnumber);
1970 	*sidpp = sidp;
1971 
1972 	/* create minor node based on snapshot number */
1973 	ASSERT(fssnap_dip != NULL);
1974 	(void) snprintf(name, sizeof (name), "%d", snapnumber);
1975 	if (ddi_create_minor_node(fssnap_dip, name, S_IFBLK,
1976 	    snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) {
1977 		cmn_err(CE_WARN, "snap_ioctl: could not create "
1978 		    "block minor node for snapshot %d.", snapnumber);
1979 		snapnumber = -1;
1980 		goto out;
1981 	}
1982 
1983 	(void) snprintf(name, sizeof (name), "%d,raw", snapnumber);
1984 	if (ddi_create_minor_node(fssnap_dip, name, S_IFCHR,
1985 	    snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) {
1986 		cmn_err(CE_WARN, "snap_ioctl: could not create "
1987 		    "character minor node for snapshot %d.", snapnumber);
1988 		snapnumber = -1;
1989 	}
1990 
1991 out:
1992 	rw_exit(&sidp->sid_rwlock);
1993 	rw_exit(&cmap->cmap_rwlock);
1994 
1995 	/* let the taskq threads start processing */
1996 	taskq_resume(cowp->cow_taskq);
1997 
1998 	return (snapnumber);
1999 }
2000 
2001 /*
2002  * fssnap_delete_impl() - delete a snapshot
2003  *
2004  *    used when a snapshot is no longer needed.  This is called by the file
2005  *    system when it receives an ioctl request to delete a snapshot.  It is
2006  *    also called internally when error conditions such as disk full, errors
2007  *    writing to the backing file, or backing file maxsize exceeded occur.
2008  *    If the snapshot device is busy when the delete request is received,
2009  *    all state will be deleted except for the soft state and device files
2010  *    associated with the snapshot; they will be deleted when the snapshot
2011  *    device is closed.
2012  *
2013  *    NOTE this function takes a POINTER TO A POINTER to the snapshot id,
2014  *    and expects to be able to set the handle held by the file system to
2015  *    NULL.  This depends on the file system checking that variable for NULL
2016  *    before calling fssnap_strategy().
2017  */
2018 static int
2019 fssnap_delete_impl(void *snapshot_id)
2020 {
2021 	struct snapshot_id	**sidpp = (struct snapshot_id **)snapshot_id;
2022 	struct snapshot_id	*sidp;
2023 	struct snapshot_id	**statesidpp;
2024 	struct cow_info		*cowp;
2025 	struct cow_map		*cmap;
2026 	char			name[20];
2027 	int			snapnumber = -1;
2028 	vnode_t			**vpp;
2029 
2030 	/*
2031 	 * sidp is guaranteed to be valid if sidpp is valid because
2032 	 * the snapshot list is append-only.
2033 	 */
2034 	if (sidpp == NULL) {
2035 		return (-1);
2036 	}
2037 
2038 	sidp = *sidpp;
2039 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
2040 
2041 	ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
2042 
2043 	/*
2044 	 * double check that the snapshot is still valid for THIS file system
2045 	 */
2046 	if (*sidpp == NULL) {
2047 		rw_exit(&sidp->sid_rwlock);
2048 		return (-1);
2049 	}
2050 
2051 	/*
2052 	 * Now we know the snapshot is still valid and will not go away
2053 	 * because we have the write lock.  Once the state is transitioned
2054 	 * to "disabling", the sid_rwlock can be released.  Any pending I/O
2055 	 * waiting for the lock as a reader will check for this state and
2056 	 * abort without touching data that may be getting freed.
2057 	 */
2058 	sidp->sid_flags |= SID_DISABLING;
2059 	if (sidp->sid_flags & SID_DELETE) {
2060 		cmn_err(CE_WARN, "Snapshot %d automatically deleted.",
2061 		    sidp->sid_snapnumber);
2062 		sidp->sid_flags &= ~(SID_DELETE);
2063 	}
2064 
2065 
2066 	/*
2067 	 * This is pointing into file system specific data!  The assumption is
2068 	 * that fssnap_strategy() gets called from the file system based on
2069 	 * whether this reference to the snapshot_id is NULL or not.  So
2070 	 * setting this to NULL should disable snapshots for the file system.
2071 	 */
2072 	*sidpp = NULL;
2073 
2074 	/* remove cowinfo */
2075 	cowp = sidp->sid_cowinfo;
2076 	if (cowp == NULL) {
2077 		rw_exit(&sidp->sid_rwlock);
2078 		return (-1);
2079 	}
2080 	rw_exit(&sidp->sid_rwlock);
2081 
2082 	/* destroy task queues first so they don't reference freed data. */
2083 	if (cowp->cow_taskq) {
2084 		taskq_destroy(cowp->cow_taskq);
2085 		cowp->cow_taskq = NULL;
2086 	}
2087 
2088 	if (cowp->cow_backfile_array != NULL) {
2089 		for (vpp = cowp->cow_backfile_array; *vpp; vpp++)
2090 			VN_RELE(*vpp);
2091 		kmem_free(cowp->cow_backfile_array,
2092 		    (cowp->cow_backcount + 1) * sizeof (vnode_t *));
2093 		cowp->cow_backfile_array = NULL;
2094 	}
2095 
2096 	sidp->sid_cowinfo = NULL;
2097 
2098 	/* remove cmap */
2099 	cmap = &cowp->cow_map;
2100 	ASSERT(cmap);
2101 
2102 	if (cmap->cmap_candidate)
2103 		kmem_free(cmap->cmap_candidate, cmap->cmap_bmsize);
2104 
2105 	if (cmap->cmap_hastrans)
2106 		kmem_free(cmap->cmap_hastrans, cmap->cmap_bmsize);
2107 
2108 	if (cmap->cmap_table)
2109 		transtbl_free(&cowp->cow_map);
2110 
2111 	rw_destroy(&cmap->cmap_rwlock);
2112 
2113 	while (cmap->cmap_waiters) {
2114 		sema_p(&cmap->cmap_throttle_sem);
2115 		sema_v(&cmap->cmap_throttle_sem);
2116 	}
2117 	sema_destroy(&cmap->cmap_throttle_sem);
2118 
2119 	/* remove kstats */
2120 	fssnap_delete_kstats(cowp);
2121 
2122 	kmem_free(cowp, sizeof (struct cow_info));
2123 
2124 	statesidpp = ddi_get_soft_state(statep, sidp->sid_snapnumber);
2125 	if (statesidpp == NULL || *statesidpp == NULL) {
2126 		cmn_err(CE_WARN,
2127 		    "fssnap_delete_impl: could not find state for snapshot %d.",
2128 		    sidp->sid_snapnumber);
2129 	}
2130 	ASSERT(*statesidpp == sidp);
2131 
2132 	/*
2133 	 * Leave the node in the list marked DISABLED so it can be reused
2134 	 * and avoid many race conditions.  Return the snapshot number
2135 	 * that was deleted.
2136 	 */
2137 	mutex_enter(&snapshot_mutex);
2138 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
2139 	sidp->sid_flags &= ~(SID_DISABLING);
2140 	sidp->sid_flags |= SID_DISABLED;
2141 	VN_RELE(sidp->sid_fvp);
2142 	sidp->sid_fvp = NULL;
2143 	snapnumber = sidp->sid_snapnumber;
2144 
2145 	/*
2146 	 * If the snapshot is not busy, free the device info now.  Otherwise
2147 	 * the device nodes are freed in snap_close() when the device is
2148 	 * closed.  The sid will not be reused until the device is not busy.
2149 	 */
2150 	if (SID_AVAILABLE(sidp)) {
2151 		/* remove the device nodes */
2152 		ASSERT(fssnap_dip != NULL);
2153 		(void) snprintf(name, sizeof (name), "%d",
2154 		    sidp->sid_snapnumber);
2155 		ddi_remove_minor_node(fssnap_dip, name);
2156 		(void) snprintf(name, sizeof (name), "%d,raw",
2157 		    sidp->sid_snapnumber);
2158 		ddi_remove_minor_node(fssnap_dip, name);
2159 
2160 		/* delete the state structure */
2161 		ddi_soft_state_free(statep, sidp->sid_snapnumber);
2162 		num_snapshots--;
2163 	}
2164 
2165 	mutex_exit(&snapshot_mutex);
2166 	rw_exit(&sidp->sid_rwlock);
2167 
2168 	return (snapnumber);
2169 }
2170 
2171 /*
2172  * fssnap_create_kstats() - allocate and initialize snapshot kstats
2173  *
2174  */
2175 static void
2176 fssnap_create_kstats(snapshot_id_t *sidp, int snapnum,
2177     const char *mountpoint, const char *backfilename)
2178 {
2179 	kstat_t *num, *mntpoint, *bfname;
2180 	kstat_named_t *hw;
2181 	struct cow_info *cowp = sidp->sid_cowinfo;
2182 	struct cow_kstat_num *stats;
2183 
2184 	/* update the high water mark */
2185 	if (fssnap_highwater_kstat == NULL) {
2186 		cmn_err(CE_WARN, "fssnap_create_kstats: failed to lookup "
2187 		    "high water mark kstat.");
2188 		return;
2189 	}
2190 
2191 	hw = (kstat_named_t *)fssnap_highwater_kstat->ks_data;
2192 	if (hw->value.ui32 < snapnum)
2193 		hw->value.ui32 = snapnum;
2194 
2195 	/* initialize the mount point kstat */
2196 	kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_MNTPT);
2197 
2198 	if (mountpoint != NULL) {
2199 		mntpoint = kstat_create(snapname, snapnum, FSSNAP_KSTAT_MNTPT,
2200 		    "misc", KSTAT_TYPE_RAW, strlen(mountpoint) + 1, 0);
2201 		if (mntpoint == NULL) {
2202 			cowp->cow_kstat_mntpt = NULL;
2203 			cmn_err(CE_WARN, "fssnap_create_kstats: failed to "
2204 			    "create mount point kstat");
2205 		} else {
2206 			(void) strncpy(mntpoint->ks_data, mountpoint,
2207 			    strlen(mountpoint));
2208 			cowp->cow_kstat_mntpt = mntpoint;
2209 			kstat_install(mntpoint);
2210 		}
2211 	} else {
2212 		cowp->cow_kstat_mntpt = NULL;
2213 		cmn_err(CE_WARN, "fssnap_create_kstats: mount point not "
2214 		    "specified.");
2215 	}
2216 
2217 	/* initialize the backing file kstat */
2218 	kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_BFNAME);
2219 
2220 	if (backfilename == NULL) {
2221 		cowp->cow_kstat_bfname = NULL;
2222 	} else {
2223 		bfname = kstat_create(snapname, snapnum, FSSNAP_KSTAT_BFNAME,
2224 		    "misc", KSTAT_TYPE_RAW, strlen(backfilename) + 1, 0);
2225 		if (bfname != NULL) {
2226 			(void) strncpy(bfname->ks_data, backfilename,
2227 			    strlen(backfilename));
2228 			cowp->cow_kstat_bfname = bfname;
2229 			kstat_install(bfname);
2230 		} else {
2231 			cowp->cow_kstat_bfname = NULL;
2232 			cmn_err(CE_WARN, "fssnap_create_kstats: failed to "
2233 			    "create backing file name kstat");
2234 		}
2235 	}
2236 
2237 	/* initialize numeric kstats */
2238 	kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_NUM);
2239 
2240 	num = kstat_create(snapname, snapnum, FSSNAP_KSTAT_NUM,
2241 	    "misc", KSTAT_TYPE_NAMED,
2242 	    sizeof (struct cow_kstat_num) / sizeof (kstat_named_t),
2243 	    0);
2244 	if (num == NULL) {
2245 		cmn_err(CE_WARN, "fssnap_create_kstats: failed to create "
2246 		    "numeric kstats");
2247 		cowp->cow_kstat_num = NULL;
2248 		return;
2249 	}
2250 
2251 	cowp->cow_kstat_num = num;
2252 	stats = num->ks_data;
2253 	num->ks_update = fssnap_update_kstat_num;
2254 	num->ks_private = sidp;
2255 
2256 	kstat_named_init(&stats->ckn_state, FSSNAP_KSTAT_NUM_STATE,
2257 	    KSTAT_DATA_INT32);
2258 	kstat_named_init(&stats->ckn_bfsize, FSSNAP_KSTAT_NUM_BFSIZE,
2259 	    KSTAT_DATA_UINT64);
2260 	kstat_named_init(&stats->ckn_maxsize, FSSNAP_KSTAT_NUM_MAXSIZE,
2261 	    KSTAT_DATA_UINT64);
2262 	kstat_named_init(&stats->ckn_createtime, FSSNAP_KSTAT_NUM_CREATETIME,
2263 	    KSTAT_DATA_LONG);
2264 	kstat_named_init(&stats->ckn_chunksize, FSSNAP_KSTAT_NUM_CHUNKSIZE,
2265 	    KSTAT_DATA_UINT32);
2266 
2267 	/* initialize the static kstats */
2268 	stats->ckn_chunksize.value.ui32 = cowp->cow_map.cmap_chunksz;
2269 	stats->ckn_maxsize.value.ui64 = cowp->cow_map.cmap_maxsize;
2270 	stats->ckn_createtime.value.l = gethrestime_sec();
2271 
2272 	kstat_install(num);
2273 }
2274 
2275 /*
2276  * fssnap_update_kstat_num() - update a numerical snapshot kstat value
2277  *
2278  */
2279 int
2280 fssnap_update_kstat_num(kstat_t *ksp, int rw)
2281 {
2282 	snapshot_id_t *sidp = (snapshot_id_t *)ksp->ks_private;
2283 	struct cow_info *cowp = sidp->sid_cowinfo;
2284 	struct cow_kstat_num *stats = ksp->ks_data;
2285 
2286 	if (rw == KSTAT_WRITE)
2287 		return (EACCES);
2288 
2289 	/* state */
2290 	if (sidp->sid_flags & SID_CREATING)
2291 		stats->ckn_state.value.i32 = COWSTATE_CREATING;
2292 	else if (SID_INACTIVE(sidp))
2293 		stats->ckn_state.value.i32 = COWSTATE_DISABLED;
2294 	else if (SID_BUSY(sidp))
2295 		stats->ckn_state.value.i32 = COWSTATE_ACTIVE;
2296 	else
2297 		stats->ckn_state.value.i32 = COWSTATE_IDLE;
2298 
2299 	/* bfsize */
2300 	stats->ckn_bfsize.value.ui64 = cowp->cow_map.cmap_nchunks *
2301 	    cowp->cow_map.cmap_chunksz;
2302 
2303 	return (0);
2304 }
2305 
2306 /*
2307  * fssnap_delete_kstats() - deallocate snapshot kstats
2308  *
2309  */
2310 void
2311 fssnap_delete_kstats(struct cow_info *cowp)
2312 {
2313 	if (cowp->cow_kstat_num != NULL) {
2314 		kstat_delete(cowp->cow_kstat_num);
2315 		cowp->cow_kstat_num = NULL;
2316 	}
2317 	if (cowp->cow_kstat_mntpt != NULL) {
2318 		kstat_delete(cowp->cow_kstat_mntpt);
2319 		cowp->cow_kstat_mntpt = NULL;
2320 	}
2321 	if (cowp->cow_kstat_bfname != NULL) {
2322 		kstat_delete(cowp->cow_kstat_bfname);
2323 		cowp->cow_kstat_bfname = NULL;
2324 	}
2325 }
2326