xref: /titanic_52/usr/src/uts/common/io/fssnap.c (revision 7aec1d6e253b21f9e9b7ef68b4d81ab9859b51fe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/debug.h>
30 #include <sys/types.h>
31 #include <sys/file.h>
32 #include <sys/errno.h>
33 #include <sys/uio.h>
34 #include <sys/open.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/conf.h>
38 #include <sys/cmn_err.h>
39 #include <sys/modctl.h>
40 #include <sys/disp.h>
41 #include <sys/atomic.h>
42 #include <sys/filio.h>
43 #include <sys/stat.h> /* needed for S_IFBLK and S_IFCHR */
44 #include <sys/kstat.h>
45 
46 #include <sys/ddi.h>
47 #include <sys/devops.h>
48 #include <sys/sunddi.h>
49 #include <sys/priv_names.h>
50 
51 #include <sys/fssnap.h>
52 #include <sys/fssnap_if.h>
53 
54 /*
55  * This module implements the file system snapshot code, which provides a
56  * point-in-time image of a file system for the purposes of online backup.
57  * There are essentially two parts to this project: the driver half and the
58  * file system half.  The driver half is a pseudo device driver called
59  * "fssnap" that represents the snapshot.  Each snapshot is assigned a
60  * number that corresponds to the minor number of the device, and a control
61  * device with a high minor number is used to initiate snapshot creation and
62  * deletion.  For all practical purposes the driver half acts like a
63  * read-only disk device whose contents are exactly the same as the master
64  * file system at the time the snapshot was created.
65  *
66  * The file system half provides interfaces necessary for performing the
67  * file system dependent operations required to create and delete snapshots
68  * and a special driver strategy routine that must always be used by the file
69  * system for snapshots to work correctly.
70  *
71  * When a snapshot is to be created, the user utility will send an ioctl to
72  * the control device of the driver half specifying the file system to be
73  * snapshotted, the file descriptor of a backing-store file which is used to
74  * hold old data before it is overwritten, and other snapshot parameters.
75  * This ioctl is passed on to the file system specified in the original
76  * ioctl request.  The file system is expected to be able to flush
77  * everything out to make the file system consistent and lock it to ensure
78  * no changes occur while the snapshot is being created.  It then calls
79  * fssnap_create() to create state for a new snapshot, from which an opaque
80  * handle is returned with the snapshot locked.  Next, the file system must
81  * populate the "candidate bitmap", which tells the snapshot code which
82  * "chunks" should be considered for copy-on-write (a chunk is the unit of
83  * granularity used for copy-on-write, which is independent of the device
84  * and file system block sizes).  This is typically done by scanning the
85  * file system allocation bitmaps to determine which chunks contain
86  * allocated blocks in the file system at the time the snapshot was created.
87  * If a chunk has no allocated blocks, it does not need to be copied before
88  * being written to.  Once the candidate bitmap is populated with
89  * fssnap_set_candidate(), the file system calls fssnap_create_done() to
90  * complete the snapshot creation and unlock the snapshot.  The file system
91  * may now be unlocked and modifications to it resumed.
92  *
93  * Once a snapshot is created, the file system must perform all writes
94  * through a special strategy routine, fssnap_strategy().  This strategy
95  * routine determines whether the chunks contained by the write must be
96  * copied before being overwritten by consulting the candidate bitmap
97  * described above, and the "hastrans bitmap" which tells it whether the chunk
98  * has been copied already or not.  If the chunk is a candidate but has not
99  * been copied, it reads the old data in and adds it to a queue.  The
100  * old data can then be overwritten with the new data.  An asynchronous
101  * task queue is dispatched for each old chunk read in which writes the old
102  * data to the backing file specified at snapshot creation time.  The
103  * backing file is a sparse file the same size as the file system that
104  * contains the old data at the offset that data originally had in the
105  * file system.  If the queue containing in-memory chunks gets too large,
106  * writes to the file system may be throttled by a semaphore until the
107  * task queues have a chance to push some of the chunks to the backing file.
108  *
109  * With the candidate bitmap, the hastrans bitmap, the data on the master
110  * file system, and the old data in memory and in the backing file, the
111  * snapshot pseudo-driver can piece together the original file system
112  * information to satisfy read requests.  If the requested chunk is not a
113  * candidate, it returns a zeroed buffer.  If the chunk is a candidate but
114  * has not been copied it reads it from the master file system.  If it is a
115  * candidate and has been copied, it either copies the data from the
116  * in-memory queue or it reads it in from the backing file.  The result is
117  * a replication of the original file system that can be backed up, mounted,
118  * or manipulated by other file system utilities that work on a read-only
119  * device.
120  *
121  * This module is divided into three roughly logical sections:
122  *
123  *     - The snapshot driver, which is a character/block driver
124  *       representing the snapshot itself.  These routines are
125  *       prefixed with "snap_".
126  *
127  *     - The library routines that are defined in fssnap_if.h that
128  *       are used by file systems that use this snapshot implementation.
129  *       These functions are prefixed with "fssnap_" and are called through
130  *       a function vector from the file system.
131  *
132  *     - The helper routines used by the snapshot driver and the fssnap
133  *       library routines for managing the translation table and other
134  *       useful functions.  These routines are all static and are
135  *       prefixed with either "fssnap_" or "transtbl_" if they
136  *       are specifically used for translation table activities.
137  */
138 
139 static dev_info_t		*fssnap_dip = NULL;
140 static struct snapshot_id	*snapshot = NULL;
141 static struct snapshot_id	snap_ctl;
142 static int			num_snapshots = 0;
143 static kmutex_t			snapshot_mutex;
144 static char			snapname[] = SNAP_NAME;
145 
146 /* "tunable" parameters */
147 static int		fssnap_taskq_nthreads = FSSNAP_TASKQ_THREADS;
148 static uint_t		fssnap_max_mem_chunks = FSSNAP_MAX_MEM_CHUNKS;
149 static int		fssnap_taskq_maxtasks = FSSNAP_TASKQ_MAXTASKS;
150 
151 /* static function prototypes */
152 
153 /* snapshot driver */
154 static int snap_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
155 static int snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
156 static int snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
157 static int snap_open(dev_t *devp, int flag, int otyp, cred_t *cred);
158 static int snap_close(dev_t dev, int flag, int otyp, cred_t *cred);
159 static int snap_strategy(struct buf *bp);
160 static int snap_read(dev_t dev, struct uio *uiop, cred_t *credp);
161 static int snap_print(dev_t dev, char *str);
162 static int snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
163     cred_t *credp, int *rvalp);
164 static int snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
165     int flags, char *name, caddr_t valuep, int *lengthp);
166 static int snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk,
167     int offset, int len, char *buffer);
168 
169 
170 /* fssnap interface implementations (see fssnap_if.h) */
171 static void fssnap_strategy_impl(void *, struct buf *);
172 static void *fssnap_create_impl(chunknumber_t, uint_t, u_offset_t,
173     struct vnode *, int, struct vnode **, char *, u_offset_t);
174 static void fssnap_set_candidate_impl(void *, chunknumber_t);
175 static int fssnap_is_candidate_impl(void *, u_offset_t);
176 static int fssnap_create_done_impl(void *);
177 static int fssnap_delete_impl(void *);
178 
179 /* fssnap interface support routines */
180 static int  fssnap_translate(struct snapshot_id **, struct buf *);
181 static void fssnap_write_taskq(void *);
182 static void fssnap_create_kstats(snapshot_id_t *, int, const char *,
183     const char *);
184 static int  fssnap_update_kstat_num(kstat_t *, int);
185 static void fssnap_delete_kstats(struct cow_info *);
186 
187 /* translation table prototypes */
188 static cow_map_node_t *transtbl_add(cow_map_t *, chunknumber_t, caddr_t);
189 static cow_map_node_t *transtbl_get(cow_map_t *, chunknumber_t);
190 static void transtbl_delete(cow_map_t *, cow_map_node_t *);
191 static void transtbl_free(cow_map_t *);
192 
193 static kstat_t *fssnap_highwater_kstat;
194 
195 /* ************************************************************************ */
196 
197 /* Device and Module Structures */
198 
199 static struct cb_ops snap_cb_ops = {
200 	snap_open,
201 	snap_close,
202 	snap_strategy,
203 	snap_print,
204 	nodev,		/* no snap_dump */
205 	snap_read,
206 	nodev,		/* no snap_write */
207 	snap_ioctl,
208 	nodev,		/* no snap_devmap */
209 	nodev,		/* no snap_mmap   */
210 	nodev,		/* no snap_segmap */
211 	nochpoll,
212 	snap_prop_op,
213 	NULL,		/* streamtab */
214 	D_64BIT | D_NEW | D_MP, /* driver compatibility */
215 	CB_REV,
216 	nodev,		/* async I/O read entry point */
217 	nodev		/* async I/O write entry point */
218 };
219 
220 static struct dev_ops snap_ops = {
221 	DEVO_REV,
222 	0,			/* ref count */
223 	snap_getinfo,
224 	nulldev,		/* snap_identify obsolete */
225 	nulldev,		/* no snap_probe */
226 	snap_attach,
227 	snap_detach,
228 	nodev,			/* no snap_reset */
229 	&snap_cb_ops,
230 	(struct bus_ops *)NULL,
231 	nulldev			/* no snap_power() */
232 };
233 
234 extern struct mod_ops mod_driverops;
235 
236 static struct modldrv md = {
237 	&mod_driverops, /* Type of module. This is a driver */
238 	"snapshot driver %I%", 	/* Name of the module */
239 	&snap_ops,
240 };
241 
242 static struct modlinkage ml = {
243 	MODREV_1,
244 	&md,
245 	NULL
246 };
247 
248 static void *statep;
249 
250 int
251 _init(void)
252 {
253 	int	error;
254 	kstat_t	*ksp;
255 	kstat_named_t	*ksdata;
256 
257 	error = ddi_soft_state_init(&statep, sizeof (struct snapshot_id *), 1);
258 	if (error) {
259 		cmn_err(CE_WARN, "_init: failed to init ddi_soft_state.");
260 		return (error);
261 	}
262 
263 	error = mod_install(&ml);
264 
265 	if (error) {
266 		cmn_err(CE_WARN, "_init: failed to mod_install.");
267 		ddi_soft_state_fini(&statep);
268 		return (error);
269 	}
270 
271 	/*
272 	 * Fill in the snapshot operations vector for file systems
273 	 * (defined in fssnap_if.c)
274 	 */
275 
276 	snapops.fssnap_create = fssnap_create_impl;
277 	snapops.fssnap_set_candidate = fssnap_set_candidate_impl;
278 	snapops.fssnap_is_candidate = fssnap_is_candidate_impl;
279 	snapops.fssnap_create_done = fssnap_create_done_impl;
280 	snapops.fssnap_delete = fssnap_delete_impl;
281 	snapops.fssnap_strategy = fssnap_strategy_impl;
282 
283 	mutex_init(&snapshot_mutex, NULL, MUTEX_DEFAULT, NULL);
284 
285 	/*
286 	 * Initialize the fssnap highwater kstat
287 	 */
288 	ksp = kstat_create(snapname, 0, FSSNAP_KSTAT_HIGHWATER, "misc",
289 	    KSTAT_TYPE_NAMED, 1, 0);
290 	if (ksp != NULL) {
291 		ksdata = (kstat_named_t *)ksp->ks_data;
292 		kstat_named_init(ksdata, FSSNAP_KSTAT_HIGHWATER,
293 		    KSTAT_DATA_UINT32);
294 		ksdata->value.ui32 = 0;
295 		kstat_install(ksp);
296 	} else {
297 		cmn_err(CE_WARN, "_init: failed to create highwater kstat.");
298 	}
299 	fssnap_highwater_kstat = ksp;
300 
301 	return (0);
302 }
303 
304 int
305 _info(struct modinfo *modinfop)
306 {
307 	return (mod_info(&ml, modinfop));
308 }
309 
310 int
311 _fini(void)
312 {
313 	int	error;
314 
315 	error = mod_remove(&ml);
316 	if (error)
317 		return (error);
318 	ddi_soft_state_fini(&statep);
319 
320 	/*
321 	 * delete the fssnap highwater kstat
322 	 */
323 	kstat_delete(fssnap_highwater_kstat);
324 
325 	mutex_destroy(&snapshot_mutex);
326 
327 	/* Clear out the file system operations vector */
328 	snapops.fssnap_create = NULL;
329 	snapops.fssnap_set_candidate = NULL;
330 	snapops.fssnap_create_done = NULL;
331 	snapops.fssnap_delete = NULL;
332 	snapops.fssnap_strategy = NULL;
333 
334 	return (0);
335 }
336 
337 /* ************************************************************************ */
338 
339 /*
340  * Snapshot Driver Routines
341  *
342  * This section implements the snapshot character and block drivers.  The
343  * device will appear to be a consistent read-only file system to
344  * applications that wish to back it up or mount it.  The snapshot driver
345  * communicates with the file system through the translation table, which
346  * tells the snapshot driver where to find the data necessary to piece
347  * together the frozen file system.  The data may either be on the master
348  * device (no translation exists), in memory (a translation exists but has
349  * not been flushed to the backing store), or in the backing store file.
350  * The read request may require the snapshot driver to retreive data from
351  * several different places and piece it together to look like a single
352  * contiguous read.
353  *
354  * The device minor number corresponds to the snapshot number in the list of
355  * snapshot identifiers.  The soft state for each minor number is simply a
356  * pointer to the snapshot id, which holds all of the snapshot state.  One
357  * minor number is designated as the control device.  All snapshot create
358  * and delete requests go through the control device to ensure this module
359  * is properly loaded and attached before the file system starts calling
360  * routines defined here.
361  */
362 
363 
364 /*
365  * snap_getinfo() - snapshot driver getinfo(9E) routine
366  *
367  */
368 /*ARGSUSED*/
369 static int
370 snap_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
371 {
372 	switch (infocmd) {
373 	case DDI_INFO_DEVT2DEVINFO:
374 		*result = fssnap_dip;
375 		return (DDI_SUCCESS);
376 	case DDI_INFO_DEVT2INSTANCE:
377 		*result = 0;	/* we only have one instance */
378 		return (DDI_SUCCESS);
379 	}
380 	return (DDI_FAILURE);
381 }
382 
383 /*
384  * snap_attach() - snapshot driver attach(9E) routine
385  *
386  *    sets up snapshot control device and control state.  The control state
387  *    is a pointer to an "anonymous" snapshot_id for tracking opens and closes
388  */
389 static int
390 snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
391 {
392 	int			error;
393 
394 	switch (cmd) {
395 	case DDI_ATTACH:
396 		/* create the control device */
397 		error = ddi_create_priv_minor_node(dip, SNAP_CTL_NODE, S_IFCHR,
398 		    SNAP_CTL_MINOR, DDI_PSEUDO, PRIVONLY_DEV,
399 		    PRIV_SYS_CONFIG, PRIV_SYS_CONFIG, 0666);
400 		if (error == DDI_FAILURE) {
401 			return (DDI_FAILURE);
402 		}
403 
404 		rw_init(&snap_ctl.sid_rwlock, NULL, RW_DEFAULT, NULL);
405 		rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
406 		fssnap_dip = dip;
407 		snap_ctl.sid_snapnumber = SNAP_CTL_MINOR;
408 		/* the control sid is not linked into the snapshot list */
409 		snap_ctl.sid_next = NULL;
410 		snap_ctl.sid_cowinfo = NULL;
411 		snap_ctl.sid_flags = 0;
412 		rw_exit(&snap_ctl.sid_rwlock);
413 		ddi_report_dev(dip);
414 
415 		return (DDI_SUCCESS);
416 	case DDI_PM_RESUME:
417 		return (DDI_SUCCESS);
418 
419 	case DDI_RESUME:
420 		return (DDI_SUCCESS);
421 
422 	default:
423 		return (DDI_FAILURE);
424 	}
425 }
426 
427 /*
428  * snap_detach() - snapshot driver detach(9E) routine
429  *
430  *    destroys snapshot control device and control state.  If any snapshots
431  *    are active (ie. num_snapshots != 0), the device will refuse to detach.
432  */
433 static int
434 snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
435 {
436 	struct snapshot_id *sidp, *sidnextp;
437 
438 	switch (cmd) {
439 	case DDI_DETACH:
440 		/* do not detach if the device is active */
441 		mutex_enter(&snapshot_mutex);
442 		if ((num_snapshots != 0) ||
443 		    ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0)) {
444 			mutex_exit(&snapshot_mutex);
445 			return (DDI_FAILURE);
446 		}
447 
448 		/* free up the snapshot list */
449 		for (sidp = snapshot; sidp != NULL; sidp = sidnextp) {
450 			ASSERT(SID_AVAILABLE(sidp) &&
451 			    !RW_LOCK_HELD(&sidp->sid_rwlock));
452 			sidnextp = sidp->sid_next;
453 			rw_destroy(&sidp->sid_rwlock);
454 			kmem_free(sidp, sizeof (struct snapshot_id));
455 		}
456 		snapshot = NULL;
457 
458 		/* delete the control device */
459 		ddi_remove_minor_node(dip, SNAP_CTL_NODE);
460 		fssnap_dip = NULL;
461 
462 		ASSERT((snap_ctl.sid_flags & SID_CHAR_BUSY) == 0);
463 		rw_destroy(&snap_ctl.sid_rwlock);
464 		mutex_exit(&snapshot_mutex);
465 
466 		return (DDI_SUCCESS);
467 
468 	default:
469 		return (DDI_FAILURE);
470 	}
471 }
472 
473 /*
474  * snap_open() - snapshot driver open(9E) routine
475  *
476  *     marks the snapshot id as busy so it will not be recycled when deleted
477  *     until the snapshot is closed.
478  */
479 /* ARGSUSED */
480 static int
481 snap_open(dev_t *devp, int flag, int otyp, cred_t *cred)
482 {
483 	minor_t	minor;
484 	struct snapshot_id **sidpp, *sidp;
485 
486 	/* snapshots are read-only */
487 	if (flag & FWRITE)
488 		return (EROFS);
489 
490 	minor = getminor(*devp);
491 
492 	if (minor == SNAP_CTL_MINOR) {
493 		/* control device must be opened exclusively */
494 		if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR))
495 			return (EINVAL);
496 
497 		rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
498 		if ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0) {
499 			rw_exit(&snap_ctl.sid_rwlock);
500 			return (EBUSY);
501 		}
502 
503 		snap_ctl.sid_flags |= SID_CHAR_BUSY;
504 		rw_exit(&snap_ctl.sid_rwlock);
505 
506 		return (0);
507 	}
508 
509 	sidpp = ddi_get_soft_state(statep, minor);
510 	if (sidpp == NULL || *sidpp == NULL)
511 		return (ENXIO);
512 	sidp = *sidpp;
513 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
514 
515 	if ((flag & FEXCL) && SID_BUSY(sidp)) {
516 		rw_exit(&sidp->sid_rwlock);
517 		return (EAGAIN);
518 	}
519 
520 	ASSERT(sidpp != NULL && sidp != NULL);
521 	/* check to see if this snapshot has been killed on us */
522 	if (SID_INACTIVE(sidp)) {
523 		cmn_err(CE_WARN, "snap_open: snapshot %d does not exist.",
524 		    minor);
525 		rw_exit(&sidp->sid_rwlock);
526 		return (ENXIO);
527 	}
528 
529 	switch (otyp) {
530 	case OTYP_CHR:
531 		sidp->sid_flags |= SID_CHAR_BUSY;
532 		break;
533 	case OTYP_BLK:
534 		sidp->sid_flags |= SID_BLOCK_BUSY;
535 		break;
536 	default:
537 		rw_exit(&sidp->sid_rwlock);
538 		return (EINVAL);
539 	}
540 
541 	rw_exit(&sidp->sid_rwlock);
542 
543 	/*
544 	 * at this point if a valid snapshot was found then it has
545 	 * been marked busy and we can use it.
546 	 */
547 	return (0);
548 }
549 
550 /*
551  * snap_close() - snapshot driver close(9E) routine
552  *
553  *    unsets the busy bits in the snapshot id.  If the snapshot has been
554  *    deleted while the snapshot device was open, the close call will clean
555  *    up the remaining state information.
556  */
557 /* ARGSUSED */
558 static int
559 snap_close(dev_t dev, int flag, int otyp, cred_t *cred)
560 {
561 	struct snapshot_id	**sidpp, *sidp;
562 	minor_t			minor;
563 	char			name[20];
564 
565 	minor = getminor(dev);
566 
567 	/* if this is the control device, close it and return */
568 	if (minor == SNAP_CTL_MINOR) {
569 		rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
570 		snap_ctl.sid_flags &= ~(SID_CHAR_BUSY);
571 		rw_exit(&snap_ctl.sid_rwlock);
572 		return (0);
573 	}
574 
575 	sidpp = ddi_get_soft_state(statep, minor);
576 	if (sidpp == NULL || *sidpp == NULL) {
577 		cmn_err(CE_WARN, "snap_close: could not find state for "
578 		    "snapshot %d.", minor);
579 		return (ENXIO);
580 	}
581 	sidp = *sidpp;
582 	mutex_enter(&snapshot_mutex);
583 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
584 
585 	/* Mark the snapshot as not being busy anymore */
586 	switch (otyp) {
587 	case OTYP_CHR:
588 		sidp->sid_flags &= ~(SID_CHAR_BUSY);
589 		break;
590 	case OTYP_BLK:
591 		sidp->sid_flags &= ~(SID_BLOCK_BUSY);
592 		break;
593 	default:
594 		mutex_exit(&snapshot_mutex);
595 		rw_exit(&sidp->sid_rwlock);
596 		return (EINVAL);
597 	}
598 
599 	if (SID_AVAILABLE(sidp)) {
600 		/*
601 		 * if this is the last close on a snapshot that has been
602 		 * deleted, then free up the soft state.  The snapdelete
603 		 * ioctl does not free this when the device is in use so
604 		 * we do it here after the last reference goes away.
605 		 */
606 
607 		/* remove the device nodes */
608 		ASSERT(fssnap_dip != NULL);
609 		(void) snprintf(name, sizeof (name), "%d",
610 		    sidp->sid_snapnumber);
611 		ddi_remove_minor_node(fssnap_dip, name);
612 		(void) snprintf(name, sizeof (name), "%d,raw",
613 		    sidp->sid_snapnumber);
614 		ddi_remove_minor_node(fssnap_dip, name);
615 
616 		/* delete the state structure */
617 		ddi_soft_state_free(statep, sidp->sid_snapnumber);
618 		num_snapshots--;
619 	}
620 
621 	mutex_exit(&snapshot_mutex);
622 	rw_exit(&sidp->sid_rwlock);
623 
624 	return (0);
625 }
626 
627 /*
628  * snap_read() - snapshot driver read(9E) routine
629  *
630  *    reads data from the snapshot by calling snap_strategy() through physio()
631  */
632 /* ARGSUSED */
633 static int
634 snap_read(dev_t dev, struct uio *uiop, cred_t *credp)
635 {
636 	minor_t		minor;
637 	struct snapshot_id **sidpp;
638 
639 	minor = getminor(dev);
640 	sidpp = ddi_get_soft_state(statep, minor);
641 	if (sidpp == NULL || *sidpp == NULL) {
642 		cmn_err(CE_WARN,
643 		    "snap_read: could not find state for snapshot %d.", minor);
644 		return (ENXIO);
645 	}
646 	return (physio(snap_strategy, NULL, dev, B_READ, minphys, uiop));
647 }
648 
649 /*
650  * snap_strategy() - snapshot driver strategy(9E) routine
651  *
652  *    cycles through each chunk in the requested buffer and calls
653  *    snap_getchunk() on each chunk to retrieve it from the appropriate
654  *    place.  Once all of the parts are put together the requested buffer
655  *    is returned.  The snapshot driver is read-only, so a write is invalid.
656  */
657 static int
658 snap_strategy(struct buf *bp)
659 {
660 	struct snapshot_id **sidpp, *sidp;
661 	minor_t		minor;
662 	chunknumber_t	chunk;
663 	int		off, len;
664 	u_longlong_t	reqptr;
665 	int		error = 0;
666 	size_t		chunksz;
667 	caddr_t		buf;
668 
669 	/* snapshot device is read-only */
670 	if (bp->b_flags & B_WRITE) {
671 		bioerror(bp, EROFS);
672 		bp->b_resid = bp->b_bcount;
673 		biodone(bp);
674 		return (0);
675 	}
676 
677 	minor = getminor(bp->b_edev);
678 	sidpp = ddi_get_soft_state(statep, minor);
679 	if (sidpp == NULL || *sidpp == NULL) {
680 		cmn_err(CE_WARN,
681 		    "snap_strategy: could not find state for snapshot %d.",
682 		    minor);
683 		bioerror(bp, ENXIO);
684 		bp->b_resid = bp->b_bcount;
685 		biodone(bp);
686 		return (0);
687 	}
688 	sidp = *sidpp;
689 	ASSERT(sidp);
690 	rw_enter(&sidp->sid_rwlock, RW_READER);
691 
692 	if (SID_INACTIVE(sidp)) {
693 		bioerror(bp, ENXIO);
694 		bp->b_resid = bp->b_bcount;
695 		biodone(bp);
696 		rw_exit(&sidp->sid_rwlock);
697 		return (0);
698 	}
699 
700 	if (bp->b_flags & (B_PAGEIO|B_PHYS))
701 		bp_mapin(bp);
702 
703 	bp->b_resid = bp->b_bcount;
704 	ASSERT(bp->b_un.b_addr);
705 	buf = bp->b_un.b_addr;
706 
707 	chunksz = sidp->sid_cowinfo->cow_map.cmap_chunksz;
708 
709 	/* reqptr is the current DEV_BSIZE offset into the device */
710 	/* chunk is the chunk containing reqptr */
711 	/* len is the length of the request (in the current chunk) in bytes */
712 	/* off is the byte offset into the current chunk */
713 	reqptr = bp->b_lblkno;
714 	while (bp->b_resid > 0) {
715 		chunk = dbtocowchunk(&sidp->sid_cowinfo->cow_map, reqptr);
716 		off = (reqptr % (chunksz >> DEV_BSHIFT)) << DEV_BSHIFT;
717 		len = min(chunksz - off, bp->b_resid);
718 		ASSERT((off + len) <= chunksz);
719 
720 		if ((error = snap_getchunk(sidp, chunk, off, len, buf)) != 0) {
721 			/*
722 			 * EINVAL means the user tried to go out of range.
723 			 * Anything else means it's likely that we're
724 			 * confused.
725 			 */
726 			if (error != EINVAL) {
727 				cmn_err(CE_WARN, "snap_strategy: error "
728 				    "calling snap_getchunk, chunk = %llu, "
729 				    "offset = %d, len = %d, resid = %lu, "
730 				    "error = %d.",
731 				    chunk, off, len, bp->b_resid, error);
732 			}
733 			bioerror(bp, error);
734 			biodone(bp);
735 			rw_exit(&sidp->sid_rwlock);
736 			return (0);
737 		}
738 		bp->b_resid -= len;
739 		reqptr += (len >> DEV_BSHIFT);
740 		buf += len;
741 	}
742 
743 	ASSERT(bp->b_resid == 0);
744 	biodone(bp);
745 
746 	rw_exit(&sidp->sid_rwlock);
747 	return (0);
748 }
749 
750 /*
751  * snap_getchunk() - helper function for snap_strategy()
752  *
753  *    gets the requested data from the appropriate place and fills in the
754  *    buffer.  chunk is the chunk number of the request, offset is the
755  *    offset into that chunk and must be less than the chunk size.  len is
756  *    the length of the request starting at offset, and must not exceed a
757  *    chunk boundary.  buffer is the address to copy the data to.  len
758  *    bytes are copied into the buffer starting at the location specified.
759  *
760  *    A chunk is located according to the following algorithm:
761  *        - If the chunk does not have a translation or is not a candidate
762  *          for translation, it is read straight from the master device.
763  *        - If the chunk does have a translation, then it is either on
764  *          disk or in memory:
765  *            o If it is in memory the requested data is simply copied out
766  *              of the in-memory buffer.
767  *            o If it is in the backing store, it is read from there.
768  *
769  *    This function does the real work of the snapshot driver.
770  */
771 static int
772 snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, int offset,
773     int len, char *buffer)
774 {
775 	cow_map_t	*cmap = &sidp->sid_cowinfo->cow_map;
776 	cow_map_node_t	*cmn;
777 	struct buf	*snapbuf;
778 	int		error = 0;
779 	char		*newbuffer;
780 	int		newlen = 0;
781 	int		partial = 0;
782 
783 	ASSERT(RW_READ_HELD(&sidp->sid_rwlock));
784 	ASSERT(offset + len <= cmap->cmap_chunksz);
785 
786 	/*
787 	 * Check if the chunk number is out of range and if so bail out
788 	 */
789 	if (chunk >= (cmap->cmap_bmsize * NBBY)) {
790 		return (EINVAL);
791 	}
792 
793 	/*
794 	 * If the chunk is not a candidate for translation, then the chunk
795 	 * was not allocated when the snapshot was taken.  Since it does
796 	 * not contain data associated with this snapshot, just return a
797 	 * zero buffer instead.
798 	 */
799 	if (isclr(cmap->cmap_candidate, chunk)) {
800 		bzero(buffer, len);
801 		return (0);
802 	}
803 
804 	/*
805 	 * if the chunk is a candidate for translation but a
806 	 * translation does not exist, then read through to the
807 	 * original file system.  The rwlock is held until the read
808 	 * completes if it hasn't been translated to make sure the
809 	 * file system does not translate the block before we
810 	 * access it. If it has already been translated we don't
811 	 * need the lock, because the translation will never go away.
812 	 */
813 	rw_enter(&cmap->cmap_rwlock, RW_READER);
814 	if (isclr(cmap->cmap_hastrans, chunk)) {
815 		snapbuf = getrbuf(KM_SLEEP);
816 		/*
817 		 * Reading into the buffer saves having to do a copy,
818 		 * but gets tricky if the request size is not a
819 		 * multiple of DEV_BSIZE.  However, we are filling the
820 		 * buffer left to right, so future reads will write
821 		 * over any extra data we might have read.
822 		 */
823 
824 		partial = len % DEV_BSIZE;
825 
826 		snapbuf->b_bcount = len;
827 		snapbuf->b_lblkno = lbtodb(chunk * cmap->cmap_chunksz + offset);
828 		snapbuf->b_un.b_addr = buffer;
829 
830 		snapbuf->b_iodone = NULL;
831 		snapbuf->b_proc = NULL;		/* i.e. the kernel */
832 		snapbuf->b_flags = B_READ | B_BUSY;
833 		snapbuf->b_edev = sidp->sid_fvp->v_vfsp->vfs_dev;
834 
835 		if (partial) {
836 			/*
837 			 * Partial block read in progress.
838 			 * This is bad as modules further down the line
839 			 * assume buf's are exact multiples of DEV_BSIZE
840 			 * and we end up with fewer, or zero, bytes read.
841 			 * To get round this we need to round up to the
842 			 * nearest full block read and then return only
843 			 * len bytes.
844 			 */
845 			newlen = (len - partial) + DEV_BSIZE;
846 			newbuffer = kmem_alloc(newlen, KM_SLEEP);
847 
848 			snapbuf->b_bcount = newlen;
849 			snapbuf->b_un.b_addr = newbuffer;
850 		}
851 
852 		(void) bdev_strategy(snapbuf);
853 		(void) biowait(snapbuf);
854 
855 		error = geterror(snapbuf);
856 
857 		if (partial) {
858 			/*
859 			 * Partial block read. Now we need to bcopy the
860 			 * correct number of bytes back into the
861 			 * supplied buffer, and tidy up our temp
862 			 * buffer.
863 			 */
864 			bcopy(newbuffer, buffer, len);
865 			kmem_free(newbuffer, newlen);
866 		}
867 
868 		freerbuf(snapbuf);
869 		rw_exit(&cmap->cmap_rwlock);
870 
871 		return (error);
872 	}
873 
874 	/*
875 	 * finally, if the chunk is a candidate for translation and it
876 	 * has been translated, then we clone the chunk of the buffer
877 	 * that was copied aside by the file system.
878 	 * The cmap_rwlock does not need to be held after we know the
879 	 * data has already been copied. Once a chunk has been copied
880 	 * to the backing file, it is stable read only data.
881 	 */
882 	cmn = transtbl_get(cmap, chunk);
883 
884 	/* check whether the data is in memory or in the backing file */
885 	if (cmn != NULL) {
886 		ASSERT(cmn->cmn_buf);
887 		/* already in memory */
888 		bcopy(cmn->cmn_buf + offset, buffer, len);
889 		rw_exit(&cmap->cmap_rwlock);
890 	} else {
891 		ssize_t resid = len;
892 		int	bf_index;
893 		/*
894 		 * can cause deadlock with writer if we don't drop the
895 		 * cmap_rwlock before trying to get the backing store file
896 		 * vnode rwlock.
897 		 */
898 		rw_exit(&cmap->cmap_rwlock);
899 
900 		bf_index = chunk / cmap->cmap_chunksperbf;
901 
902 		/* read buffer from backing file */
903 		error = vn_rdwr(UIO_READ,
904 		    (sidp->sid_cowinfo->cow_backfile_array)[bf_index],
905 		    buffer, len, ((chunk % cmap->cmap_chunksperbf) *
906 		    cmap->cmap_chunksz) + offset, UIO_SYSSPACE, 0,
907 		    RLIM64_INFINITY, kcred, &resid);
908 	}
909 
910 	return (error);
911 }
912 
913 /*
914  * snap_print() - snapshot driver print(9E) routine
915  *
916  *    prints the device identification string.
917  */
918 static int
919 snap_print(dev_t dev, char *str)
920 {
921 	struct snapshot_id **sidpp;
922 	minor_t		minor;
923 
924 	minor = getminor(dev);
925 	sidpp = ddi_get_soft_state(statep, minor);
926 	if (sidpp == NULL || *sidpp == NULL) {
927 		cmn_err(CE_WARN,
928 		    "snap_print: could not find state for snapshot %d.", minor);
929 		return (ENXIO);
930 	}
931 
932 	cmn_err(CE_NOTE, "snap_print: snapshot %d: %s",  minor, str);
933 
934 	return (0);
935 }
936 
937 /*
938  * snap_prop_op() - snapshot driver prop_op(9E) routine
939  *
940  *    get 32-bit and 64-bit values for size (character driver) and nblocks
941  *    (block driver).
942  */
943 static int
944 snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
945     int flags, char *name, caddr_t valuep, int *lengthp)
946 {
947 	struct snapshot_id **sidpp;
948 	int		length, km_flags;
949 	int		nblocks, size;
950 	uint64_t	Size, Nblocks;
951 	caddr_t		buffer;
952 	int		minor;
953 	dev_t		mdev;
954 
955 	minor = getminor(dev);
956 	length = *lengthp;		/* Get callers length */
957 
958 	/* if this is the control device just check for .conf properties */
959 	if (minor == SNAP_CTL_MINOR)
960 		return (ddi_prop_op(dev, dip, prop_op, flags, name,
961 			valuep, lengthp));
962 	/* check to see if there is a master device plumbed */
963 	sidpp = ddi_get_soft_state(statep, minor);
964 	if (sidpp == NULL || *sidpp == NULL) {
965 		cmn_err(CE_WARN,
966 		    "snap_prop_op: could not find state for "
967 		    "snapshot %d.", minor);
968 		return (DDI_PROP_NOT_FOUND);
969 	}
970 
971 	if (((*sidpp)->sid_fvp == NULL) || ((*sidpp)->sid_fvp->v_vfsp == NULL))
972 		return (ddi_prop_op(dev, dip, prop_op, flags, name,
973 			valuep, lengthp));
974 	mdev = (*sidpp)->sid_fvp->v_vfsp->vfs_dev;
975 
976 	/* get size information from the master device. */
977 
978 	if (strcmp(name, "nblocks") == 0) {
979 		nblocks = bdev_size(mdev);
980 		*lengthp = sizeof (nblocks);	/* Set callers length */
981 	} else if (strcmp(name, "Nblocks") == 0) {
982 		Nblocks = bdev_Size(mdev);
983 		*lengthp = sizeof (Nblocks);	/* Set callers length */
984 	} else if (strcmp(name, "size") == 0) {
985 		size = cdev_size(mdev);
986 		*lengthp = sizeof (size);	/* Set callers length */
987 	} else if (strcmp(name, "Size") == 0) {
988 		Size = cdev_Size(mdev);
989 		*lengthp = sizeof (Size);	/* Set callers length */
990 	} else {	/* not for us */
991 		return (ddi_prop_op(dev, dip, prop_op, flags, name,
992 		    valuep, lengthp));
993 	}
994 
995 	/*
996 	 * If length only request, just return the length.
997 	 */
998 	if (prop_op == PROP_LEN)  {
999 		return (DDI_PROP_SUCCESS);
1000 	}
1001 
1002 	/*
1003 	 * Allocate buffer, if required.  Either way, set `buffer' variable.
1004 	 */
1005 	switch (prop_op)  {
1006 	case PROP_LEN_AND_VAL_ALLOC:
1007 
1008 		km_flags = KM_NOSLEEP;
1009 
1010 		if (flags & DDI_PROP_CANSLEEP)
1011 			km_flags = KM_SLEEP;
1012 
1013 		buffer = kmem_alloc(*lengthp, km_flags);
1014 		if (buffer == NULL)  {
1015 			cmn_err(CE_WARN, "snap_get_prop: no mem for "
1016 			"property %s.", name);
1017 			return (DDI_PROP_NO_MEMORY);
1018 		}
1019 		*(caddr_t *)valuep = buffer; /* Set callers buf ptr */
1020 		break;
1021 
1022 	case PROP_LEN_AND_VAL_BUF:
1023 
1024 		if (*lengthp > length)
1025 			return (DDI_PROP_BUF_TOO_SMALL);
1026 
1027 		buffer = valuep; /* get callers buf ptr */
1028 		break;
1029 	}
1030 
1031 	if (strcmp(name, "nblocks") == 0) {
1032 		*((uint_t *)buffer) = nblocks;
1033 	} else if (strcmp(name, "Nblocks") == 0) {
1034 		*((uint64_t *)buffer) = Nblocks;
1035 	} else if (strcmp(name, "size") == 0) {
1036 		*((uint_t *)buffer) = size;
1037 	} else if (strcmp(name, "Size") == 0) {
1038 		*((uint64_t *)buffer) = Size;
1039 	}
1040 
1041 	return (DDI_PROP_SUCCESS);
1042 }
1043 
1044 /*
1045  * snap_ioctl() - snapshot driver ioctl(9E) routine
1046  *
1047  *    only applies to the control device.  The control device accepts two
1048  *    ioctl requests: create a snapshot or delete a snapshot.  In either
1049  *    case, the vnode for the requested file system is extracted, and the
1050  *    request is passed on to the file system via the same ioctl.  The file
1051  *    system is responsible for doing the things necessary for creating or
1052  *    destroying a snapshot, including any file system specific operations
1053  *    that must be performed as well as setting up and deleting the snapshot
1054  *    state through the fssnap interfaces.
1055  */
1056 static int
1057 snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
1058 int *rvalp)
1059 {
1060 	minor_t	minor;
1061 	int error = 0;
1062 
1063 	minor = getminor(dev);
1064 
1065 	if (minor != SNAP_CTL_MINOR) {
1066 		return (EINVAL);
1067 	}
1068 
1069 	switch (cmd) {
1070 	case _FIOSNAPSHOTCREATE:
1071 	{
1072 		struct fiosnapcreate	fc;
1073 		struct file		*fp;
1074 		struct vnode		*vp;
1075 
1076 		if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
1077 			return (EFAULT);
1078 
1079 		/* get vnode for file system mount point */
1080 		if ((fp = getf(fc.rootfiledesc)) == NULL)
1081 			return (EBADF);
1082 
1083 		ASSERT(fp->f_vnode);
1084 		vp = fp->f_vnode;
1085 		VN_HOLD(vp);
1086 		releasef(fc.rootfiledesc);
1087 
1088 		/* pass ioctl request to file system */
1089 		error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp);
1090 		VN_RELE(vp);
1091 		break;
1092 	}
1093 	case _FIOSNAPSHOTCREATE_MULTI:
1094 	{
1095 		struct fiosnapcreate_multi	fc;
1096 		struct file		*fp;
1097 		struct vnode		*vp;
1098 
1099 		if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
1100 			return (EFAULT);
1101 
1102 		/* get vnode for file system mount point */
1103 		if ((fp = getf(fc.rootfiledesc)) == NULL)
1104 			return (EBADF);
1105 
1106 		ASSERT(fp->f_vnode);
1107 		vp = fp->f_vnode;
1108 		VN_HOLD(vp);
1109 		releasef(fc.rootfiledesc);
1110 
1111 		/* pass ioctl request to file system */
1112 		error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp);
1113 		VN_RELE(vp);
1114 		break;
1115 	}
1116 	case _FIOSNAPSHOTDELETE:
1117 	{
1118 		major_t			major;
1119 		struct fiosnapdelete	fc;
1120 		snapshot_id_t		*sidp = NULL;
1121 		snapshot_id_t		*sidnextp = NULL;
1122 		struct file		*fp = NULL;
1123 		struct vnode		*vp = NULL;
1124 		struct vfs 		*vfsp = NULL;
1125 		vfsops_t		*vfsops = EIO_vfsops;
1126 
1127 		if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
1128 			return (EFAULT);
1129 
1130 		/* get vnode for file system mount point */
1131 		if ((fp = getf(fc.rootfiledesc)) == NULL)
1132 			return (EBADF);
1133 
1134 		ASSERT(fp->f_vnode);
1135 		vp = fp->f_vnode;
1136 		VN_HOLD(vp);
1137 		releasef(fc.rootfiledesc);
1138 		/*
1139 		 * Test for two formats of delete and set correct minor/vp:
1140 		 * pseudo device:
1141 		 * fssnap -d [/dev/fssnap/x]
1142 		 * or
1143 		 * mount point:
1144 		 * fssnap -d [/mntpt]
1145 		 * Note that minor is verified to be equal to SNAP_CTL_MINOR
1146 		 * at this point which is an invalid minor number.
1147 		 */
1148 		ASSERT(fssnap_dip != NULL);
1149 		major = ddi_driver_major(fssnap_dip);
1150 		mutex_enter(&snapshot_mutex);
1151 		for (sidp = snapshot; sidp != NULL; sidp = sidnextp) {
1152 			rw_enter(&sidp->sid_rwlock, RW_READER);
1153 			sidnextp = sidp->sid_next;
1154 			/* pseudo device: */
1155 			if (major == getmajor(vp->v_rdev)) {
1156 				minor = getminor(vp->v_rdev);
1157 				if (sidp->sid_snapnumber == (uint_t)minor &&
1158 				    sidp->sid_fvp) {
1159 					VN_RELE(vp);
1160 					vp = sidp->sid_fvp;
1161 					VN_HOLD(vp);
1162 					rw_exit(&sidp->sid_rwlock);
1163 					break;
1164 				}
1165 			/* Mount point: */
1166 			} else {
1167 				if (sidp->sid_fvp == vp) {
1168 					minor = sidp->sid_snapnumber;
1169 					rw_exit(&sidp->sid_rwlock);
1170 					break;
1171 				}
1172 			}
1173 			rw_exit(&sidp->sid_rwlock);
1174 		}
1175 		mutex_exit(&snapshot_mutex);
1176 		/* Verify minor got set correctly above */
1177 		if (minor == SNAP_CTL_MINOR) {
1178 			VN_RELE(vp);
1179 			return (EINVAL);
1180 		}
1181 		dev = makedevice(major, minor);
1182 		/*
1183 		 * Create dummy vfs entry
1184 		 * to use as a locking semaphore across the IOCTL
1185 		 * for mount in progress cases...
1186 		 */
1187 		vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP);
1188 		VFS_INIT(vfsp, vfsops, NULL);
1189 		vfs_addmip(dev, vfsp);
1190 		if ((vfs_devmounting(dev, vfsp)) ||
1191 		    (vfs_devismounted(dev))) {
1192 			vfs_delmip(vfsp);
1193 			kmem_free(vfsp, sizeof (struct vfs));
1194 			VN_RELE(vp);
1195 			return (EBUSY);
1196 		}
1197 		/*
1198 		 * Nobody mounted but do not release mount in progress lock
1199 		 * until IOCTL complete to prohibit a mount sneaking
1200 		 * in
1201 		 */
1202 		error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp);
1203 		vfs_delmip(vfsp);
1204 		kmem_free(vfsp, sizeof (struct vfs));
1205 		VN_RELE(vp);
1206 		break;
1207 	}
1208 	default:
1209 		cmn_err(CE_WARN, "snap_ioctl: Invalid ioctl cmd %d, minor %d.",
1210 		    cmd, minor);
1211 		return (EINVAL);
1212 	}
1213 
1214 	return (error);
1215 }
1216 
1217 
1218 /* ************************************************************************ */
1219 
1220 /*
1221  * Translation Table Routines
1222  *
1223  *    These support routines implement a simple doubly linked list
1224  *    to keep track of chunks that are currently in memory.  The maximum
1225  *    size of the list is determined by the fssnap_max_mem_chunks variable.
1226  *    The cmap_rwlock is used to protect the linkage of the list.
1227  */
1228 
1229 /*
1230  * transtbl_add() - add a node to the translation table
1231  *
1232  *    allocates a new node and points it at the buffer passed in.  The node
1233  *    is added to the beginning of the doubly linked list and the head of
1234  *    the list is moved.  The cmap_rwlock must be held as a writer through
1235  *    this operation.
1236  */
1237 static cow_map_node_t *
1238 transtbl_add(cow_map_t *cmap, chunknumber_t chunk, caddr_t buf)
1239 {
1240 	cow_map_node_t	*cmnode;
1241 
1242 	ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
1243 
1244 	cmnode = kmem_alloc(sizeof (cow_map_node_t), KM_SLEEP);
1245 
1246 	/*
1247 	 * insert new translations at the beginning so cmn_table is always
1248 	 * the first node.
1249 	 */
1250 	cmnode->cmn_chunk = chunk;
1251 	cmnode->cmn_buf = buf;
1252 	cmnode->cmn_prev = NULL;
1253 	cmnode->cmn_next = cmap->cmap_table;
1254 	if (cmnode->cmn_next)
1255 		cmnode->cmn_next->cmn_prev = cmnode;
1256 	cmap->cmap_table = cmnode;
1257 
1258 	return (cmnode);
1259 }
1260 
1261 /*
1262  * transtbl_get() - look up a node in the translation table
1263  *
1264  *    called by the snapshot driver to find data that has been translated.
1265  *    The lookup is done by the chunk number, and the node is returned.
1266  *    If the node was not found, NULL is returned.
1267  */
1268 static cow_map_node_t *
1269 transtbl_get(cow_map_t *cmap, chunknumber_t chunk)
1270 {
1271 	cow_map_node_t *cmn;
1272 
1273 	ASSERT(RW_READ_HELD(&cmap->cmap_rwlock));
1274 	ASSERT(cmap);
1275 
1276 	/* search the translation table */
1277 	for (cmn = cmap->cmap_table; cmn != NULL; cmn = cmn->cmn_next) {
1278 		if (cmn->cmn_chunk == chunk)
1279 			return (cmn);
1280 	}
1281 
1282 	/* not found */
1283 	return (NULL);
1284 }
1285 
1286 /*
1287  * transtbl_delete() - delete a node from the translation table
1288  *
1289  *    called when a node's data has been written out to disk.  The
1290  *    cmap_rwlock must be held as a writer for this operation.  If the node
1291  *    being deleted is the head of the list, then the head is moved to the
1292  *    next node.  Both the node's data and the node itself are freed.
1293  */
1294 static void
1295 transtbl_delete(cow_map_t *cmap, cow_map_node_t *cmn)
1296 {
1297 	ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
1298 	ASSERT(cmn);
1299 	ASSERT(cmap->cmap_table);
1300 
1301 	/* if the head of the list is being deleted, then move the head up */
1302 	if (cmap->cmap_table == cmn) {
1303 		ASSERT(cmn->cmn_prev == NULL);
1304 		cmap->cmap_table = cmn->cmn_next;
1305 	}
1306 
1307 
1308 	/* make previous node's next pointer skip over current node */
1309 	if (cmn->cmn_prev != NULL) {
1310 		ASSERT(cmn->cmn_prev->cmn_next == cmn);
1311 		cmn->cmn_prev->cmn_next = cmn->cmn_next;
1312 	}
1313 
1314 	/* make next node's previous pointer skip over current node */
1315 	if (cmn->cmn_next != NULL) {
1316 		ASSERT(cmn->cmn_next->cmn_prev == cmn);
1317 		cmn->cmn_next->cmn_prev = cmn->cmn_prev;
1318 	}
1319 
1320 	/* free the data and the node */
1321 	ASSERT(cmn->cmn_buf);
1322 	kmem_free(cmn->cmn_buf, cmap->cmap_chunksz);
1323 	kmem_free(cmn, sizeof (cow_map_node_t));
1324 }
1325 
1326 /*
1327  * transtbl_free() - free the entire translation table
1328  *
1329  *    called when the snapshot is deleted.  This frees all of the nodes in
1330  *    the translation table (but not the bitmaps).
1331  */
1332 static void
1333 transtbl_free(cow_map_t *cmap)
1334 {
1335 	cow_map_node_t	*curnode;
1336 	cow_map_node_t	*tempnode;
1337 
1338 	for (curnode = cmap->cmap_table; curnode != NULL; curnode = tempnode) {
1339 		tempnode = curnode->cmn_next;
1340 
1341 		kmem_free(curnode->cmn_buf, cmap->cmap_chunksz);
1342 		kmem_free(curnode, sizeof (cow_map_node_t));
1343 	}
1344 }
1345 
1346 
1347 /* ************************************************************************ */
1348 
1349 /*
1350  * Interface Implementation Routines
1351  *
1352  * The following functions implement snapshot interface routines that are
1353  * called by the file system to create, delete, and use a snapshot.  The
1354  * interfaces are defined in fssnap_if.c and are filled in by this driver
1355  * when it is loaded.  This technique allows the file system to depend on
1356  * the interface module without having to load the full implementation and
1357  * snapshot device drivers.
1358  */
1359 
1360 /*
1361  * fssnap_strategy_impl() - strategy routine called by the file system
1362  *
1363  *    called by the file system to handle copy-on-write when necessary.  All
1364  *    reads and writes that the file system performs should go through this
1365  *    function.  If the file system calls the underlying device's strategy
1366  *    routine without going through fssnap_strategy() (eg. by calling
1367  *    bdev_strategy()), the snapshot may not be consistent.
1368  *
1369  *    This function starts by doing significant sanity checking to insure
1370  *    the snapshot was not deleted out from under it or deleted and then
1371  *    recreated.  To do this, it checks the actual pointer passed into it
1372  *    (ie. the handle held by the file system).  NOTE that the parameter is
1373  *    a POINTER TO A POINTER to the snapshot id.  Once the snapshot id is
1374  *    locked, it knows things are ok and that this snapshot is really for
1375  *    this file system.
1376  *
1377  *    If the request is a write, fssnap_translate() is called to determine
1378  *    whether a copy-on-write is required.  If it is a read, the read is
1379  *    simply passed on to the underlying device.
1380  */
1381 static void
1382 fssnap_strategy_impl(void *snapshot_id, buf_t *bp)
1383 {
1384 	struct snapshot_id **sidpp;
1385 	struct snapshot_id *sidp;
1386 	int error;
1387 
1388 	/* read requests are always passed through */
1389 	if (bp->b_flags & B_READ) {
1390 		(void) bdev_strategy(bp);
1391 		return;
1392 	}
1393 
1394 	/*
1395 	 * Because we were not able to take the snapshot read lock BEFORE
1396 	 * checking for a snapshot back in the file system, things may have
1397 	 * drastically changed out from under us.  For instance, the snapshot
1398 	 * may have been deleted, deleted and recreated, or worse yet, deleted
1399 	 * for this file system but now the snapshot number is in use by another
1400 	 * file system.
1401 	 *
1402 	 * Having a pointer to the file system's snapshot id pointer allows us
1403 	 * to sanity check most of this, though it assumes the file system is
1404 	 * keeping track of a pointer to the snapshot_id somewhere.
1405 	 */
1406 	sidpp = (struct snapshot_id **)snapshot_id;
1407 	sidp = *sidpp;
1408 
1409 	/*
1410 	 * if this file system's snapshot was disabled, just pass the
1411 	 * request through.
1412 	 */
1413 	if (sidp == NULL) {
1414 		(void) bdev_strategy(bp);
1415 		return;
1416 	}
1417 
1418 	/*
1419 	 * Once we have the reader lock the snapshot will not magically go
1420 	 * away.  But things may have changed on us before this so double check.
1421 	 */
1422 	rw_enter(&sidp->sid_rwlock, RW_READER);
1423 
1424 	/*
1425 	 * if an error was founds somewhere the DELETE flag will be
1426 	 * set to indicate the snapshot should be deleted and no new
1427 	 * translations should occur.
1428 	 */
1429 	if (sidp->sid_flags & SID_DELETE) {
1430 		rw_exit(&sidp->sid_rwlock);
1431 		(void) fssnap_delete_impl(sidpp);
1432 		(void) bdev_strategy(bp);
1433 		return;
1434 	}
1435 
1436 	/*
1437 	 * If the file system is no longer pointing to the snapshot we were
1438 	 * called with, then it should not attempt to translate this buffer as
1439 	 * it may be going to a snapshot for a different file system.
1440 	 * Even if the file system snapshot pointer is still the same, the
1441 	 * snapshot may have been disabled before we got the reader lock.
1442 	 */
1443 	if (sidp != *sidpp || SID_INACTIVE(sidp)) {
1444 		rw_exit(&sidp->sid_rwlock);
1445 		(void) bdev_strategy(bp);
1446 		return;
1447 	}
1448 
1449 	/*
1450 	 * At this point we're sure the snapshot will not go away while the
1451 	 * reader lock is held, and we are reasonably certain that we are
1452 	 * writing to the correct snapshot.
1453 	 */
1454 	if ((error = fssnap_translate(sidpp, bp)) != 0) {
1455 		/*
1456 		 * fssnap_translate can release the reader lock if it
1457 		 * has to wait for a semaphore.  In this case it is possible
1458 		 * for the snapshot to be deleted in this time frame.  If this
1459 		 * happens just sent the buf thru to the filesystems device.
1460 		 */
1461 		if (sidp != *sidpp || SID_INACTIVE(sidp)) {
1462 			rw_exit(&sidp->sid_rwlock);
1463 			(void) bdev_strategy(bp);
1464 			return;
1465 		}
1466 		bioerror(bp, error);
1467 		biodone(bp);
1468 	}
1469 	rw_exit(&sidp->sid_rwlock);
1470 }
1471 
1472 /*
1473  * fssnap_translate() - helper function for fssnap_strategy()
1474  *
1475  *    performs the actual copy-on-write for write requests, if required.
1476  *    This function does the real work of the file system side of things.
1477  *
1478  *    It first checks the candidate bitmap to quickly determine whether any
1479  *    action is necessary.  If the candidate bitmap indicates the chunk was
1480  *    allocated when the snapshot was created, then it checks to see whether
1481  *    a translation already exists.  If a translation already exists then no
1482  *    action is required.  If the chunk is a candidate for copy-on-write,
1483  *    and a translation does not already exist, then the chunk is read in
1484  *    and a node is added to the translation table.
1485  *
1486  *    Once all of the chunks in the request range have been copied (if they
1487  *    needed to be), then the original request can be satisfied and the old
1488  *    data can be overwritten.
1489  */
1490 static int
1491 fssnap_translate(struct snapshot_id **sidpp, struct buf *wbp)
1492 {
1493 	snapshot_id_t	*sidp = *sidpp;
1494 	struct buf	*oldbp;	/* buffer to store old data in */
1495 	struct cow_info	*cowp = sidp->sid_cowinfo;
1496 	cow_map_t	*cmap = &cowp->cow_map;
1497 	cow_map_node_t	*cmn;
1498 	chunknumber_t	cowchunk, startchunk, endchunk;
1499 	int		error;
1500 	int	throttle_write = 0;
1501 
1502 	/* make sure the snapshot is active */
1503 	ASSERT(RW_READ_HELD(&sidp->sid_rwlock));
1504 
1505 	startchunk = dbtocowchunk(cmap, wbp->b_lblkno);
1506 	endchunk   = dbtocowchunk(cmap, wbp->b_lblkno +
1507 	    ((wbp->b_bcount-1) >> DEV_BSHIFT));
1508 
1509 	/*
1510 	 * Do not throttle the writes of the fssnap taskq thread and
1511 	 * the log roll (trans_roll) thread. Furthermore the writes to
1512 	 * the on-disk log are also not subject to throttling.
1513 	 * The fssnap_write_taskq thread's write can block on the throttling
1514 	 * semaphore which leads to self-deadlock as this same thread
1515 	 * releases the throttling semaphore after completing the IO.
1516 	 * If the trans_roll thread's write is throttled then we can deadlock
1517 	 * because the fssnap_taskq_thread which releases the throttling
1518 	 * semaphore can block waiting for log space which can only be
1519 	 * released by the trans_roll thread.
1520 	 */
1521 
1522 	throttle_write = !(taskq_member(cowp->cow_taskq, curthread) ||
1523 				    tsd_get(bypass_snapshot_throttle_key));
1524 
1525 	/*
1526 	 * Iterate through all chunks covered by this write and perform the
1527 	 * copy-aside if necessary.  Once all chunks have been safely
1528 	 * stowed away, the new data may be written in a single sweep.
1529 	 *
1530 	 * For each chunk in the range, the following sequence is performed:
1531 	 *	- Is the chunk a candidate for translation?
1532 	 *		o If not, then no translation is necessary, continue
1533 	 *	- If it is a candidate, then does it already have a translation?
1534 	 *		o If so, then no translation is necessary, continue
1535 	 *	- If it is a candidate, but does not yet have a translation,
1536 	 *	  then read the old data and schedule an asynchronous taskq
1537 	 *	  to write the old data to the backing file.
1538 	 *
1539 	 * Once this has been performed over the entire range of chunks, then
1540 	 * it is safe to overwrite the data that is there.
1541 	 *
1542 	 * Note that no lock is required to check the candidate bitmap because
1543 	 * it never changes once the snapshot is created.  The reader lock is
1544 	 * taken to check the hastrans bitmap since it may change.  If it
1545 	 * turns out a copy is required, then the lock is upgraded to a
1546 	 * writer, and the bitmap is re-checked as it may have changed while
1547 	 * the lock was released.  Finally, the write lock is held while
1548 	 * reading the old data to make sure it is not translated out from
1549 	 * under us.
1550 	 *
1551 	 * This locking mechanism should be sufficient to handle multiple
1552 	 * threads writing to overlapping chunks simultaneously.
1553 	 */
1554 	for (cowchunk = startchunk; cowchunk <= endchunk; cowchunk++) {
1555 		/*
1556 		 * If the cowchunk is outside of the range of our
1557 		 * candidate maps, then simply break out of the
1558 		 * loop and pass the I/O through to bdev_strategy.
1559 		 * This would occur if the file system has grown
1560 		 * larger since the snapshot was taken.
1561 		 */
1562 		if (cowchunk >= (cmap->cmap_bmsize * NBBY))
1563 			break;
1564 
1565 		/*
1566 		 * If no disk blocks were allocated in this chunk when the
1567 		 * snapshot was created then no copy-on-write will be
1568 		 * required.  Since this bitmap is read-only no locks are
1569 		 * necessary.
1570 		 */
1571 		if (isclr(cmap->cmap_candidate, cowchunk)) {
1572 			continue;
1573 		}
1574 
1575 		/*
1576 		 * If a translation already exists, the data can be written
1577 		 * through since the old data has already been saved off.
1578 		 */
1579 		if (isset(cmap->cmap_hastrans, cowchunk)) {
1580 			continue;
1581 		}
1582 
1583 
1584 		/*
1585 		 * Throttle translations if there are too many outstanding
1586 		 * chunks in memory.  The semaphore is sema_v'd by the taskq.
1587 		 *
1588 		 * You can't keep the sid_rwlock if you would go to sleep.
1589 		 * This will result in deadlock when someone tries to delete
1590 		 * the snapshot (wants the sid_rwlock as a writer, but can't
1591 		 * get it).
1592 		 */
1593 		if (throttle_write) {
1594 			if (sema_tryp(&cmap->cmap_throttle_sem) == 0) {
1595 				rw_exit(&sidp->sid_rwlock);
1596 				atomic_add_32(&cmap->cmap_waiters, 1);
1597 				sema_p(&cmap->cmap_throttle_sem);
1598 				atomic_add_32(&cmap->cmap_waiters, -1);
1599 				rw_enter(&sidp->sid_rwlock, RW_READER);
1600 
1601 			/*
1602 			 * Now since we released the sid_rwlock the state may
1603 			 * have transitioned underneath us. so check that again.
1604 			 */
1605 				if (sidp != *sidpp || SID_INACTIVE(sidp)) {
1606 					sema_v(&cmap->cmap_throttle_sem);
1607 					return (ENXIO);
1608 				}
1609 			}
1610 		}
1611 
1612 		/*
1613 		 * Acquire the lock as a writer and check to see if a
1614 		 * translation has been added in the meantime.
1615 		 */
1616 		rw_enter(&cmap->cmap_rwlock, RW_WRITER);
1617 		if (isset(cmap->cmap_hastrans, cowchunk)) {
1618 			if (throttle_write)
1619 				sema_v(&cmap->cmap_throttle_sem);
1620 			rw_exit(&cmap->cmap_rwlock);
1621 			continue; /* go to the next chunk */
1622 		}
1623 
1624 		/*
1625 		 * read a full chunk of data from the requested offset rounded
1626 		 * down to the nearest chunk size.
1627 		 */
1628 		oldbp = getrbuf(KM_SLEEP);
1629 		oldbp->b_lblkno = cowchunktodb(cmap, cowchunk);
1630 		oldbp->b_edev = wbp->b_edev;
1631 		oldbp->b_bcount = cmap->cmap_chunksz;
1632 		oldbp->b_bufsize = cmap->cmap_chunksz;
1633 		oldbp->b_iodone = NULL;
1634 		oldbp->b_proc = NULL;
1635 		oldbp->b_flags = B_READ;
1636 		oldbp->b_un.b_addr = kmem_alloc(cmap->cmap_chunksz, KM_SLEEP);
1637 
1638 		(void) bdev_strategy(oldbp);
1639 		(void) biowait(oldbp);
1640 
1641 		/*
1642 		 * It's ok to bail in the middle of translating the range
1643 		 * because the extra copy-asides will not hurt anything
1644 		 * (except by using extra space in the backing store).
1645 		 */
1646 		if ((error = geterror(oldbp)) != 0) {
1647 			cmn_err(CE_WARN, "fssnap_translate: error reading "
1648 			    "old data for snapshot %d, chunk %llu, disk block "
1649 			    "%lld, size %lu, error %d.", sidp->sid_snapnumber,
1650 			    cowchunk, oldbp->b_lblkno, oldbp->b_bcount, error);
1651 			kmem_free(oldbp->b_un.b_addr, cmap->cmap_chunksz);
1652 			freerbuf(oldbp);
1653 			rw_exit(&cmap->cmap_rwlock);
1654 			if (throttle_write)
1655 				sema_v(&cmap->cmap_throttle_sem);
1656 			return (error);
1657 		}
1658 
1659 		/*
1660 		 * add the node to the translation table and save a reference
1661 		 * to pass to the taskq for writing out to the backing file
1662 		 */
1663 		cmn = transtbl_add(cmap, cowchunk, oldbp->b_un.b_addr);
1664 		freerbuf(oldbp);
1665 
1666 		/*
1667 		 * Add a reference to the snapshot id so the lower level
1668 		 * processing (ie. the taskq) can get back to the state
1669 		 * information.
1670 		 */
1671 		cmn->cmn_sid = sidp;
1672 		cmn->release_sem = throttle_write;
1673 		setbit(cmap->cmap_hastrans, cowchunk);
1674 
1675 		rw_exit(&cmap->cmap_rwlock);
1676 
1677 		/*
1678 		 * schedule the asynchronous write to the backing file
1679 		 */
1680 		if (cowp->cow_backfile_array != NULL)
1681 			(void) taskq_dispatch(cowp->cow_taskq,
1682 			    fssnap_write_taskq, cmn, TQ_SLEEP);
1683 	}
1684 
1685 	/*
1686 	 * Write new data in place of the old data.  At this point all of the
1687 	 * chunks touched by this write have been copied aside and so the new
1688 	 * data can be written out all at once.
1689 	 */
1690 	(void) bdev_strategy(wbp);
1691 
1692 	return (0);
1693 }
1694 
1695 /*
1696  * fssnap_write_taskq() - write in-memory translations to the backing file
1697  *
1698  *    writes in-memory translations to the backing file asynchronously.  A
1699  *    task is dispatched each time a new translation is created.  The task
1700  *    writes the data to the backing file and removes it from the memory
1701  *    list. The throttling semaphore is released only if the particular
1702  *    translation was throttled in fssnap_translate.
1703  */
1704 static void
1705 fssnap_write_taskq(void *arg)
1706 {
1707 	cow_map_node_t	*cmn = (cow_map_node_t *)arg;
1708 	snapshot_id_t	*sidp = cmn->cmn_sid;
1709 	cow_info_t	*cowp = sidp->sid_cowinfo;
1710 	cow_map_t	*cmap = &cowp->cow_map;
1711 	int		error;
1712 	int		bf_index;
1713 	int		release_sem = cmn->release_sem;
1714 
1715 	/*
1716 	 * The sid_rwlock does not need to be held here because the taskqs
1717 	 * are destroyed explicitly by fssnap_delete (with the sid_rwlock
1718 	 * held as a writer).  taskq_destroy() will flush all of the tasks
1719 	 * out before fssnap_delete frees up all of the structures.
1720 	 */
1721 
1722 	/* if the snapshot was disabled from under us, drop the request. */
1723 	rw_enter(&sidp->sid_rwlock, RW_READER);
1724 	if (SID_INACTIVE(sidp)) {
1725 		rw_exit(&sidp->sid_rwlock);
1726 		if (release_sem)
1727 			sema_v(&cmap->cmap_throttle_sem);
1728 		return;
1729 	}
1730 	rw_exit(&sidp->sid_rwlock);
1731 
1732 	atomic_add_64((uint64_t *)&cmap->cmap_nchunks, 1);
1733 
1734 	if ((cmap->cmap_maxsize != 0) &&
1735 	    ((cmap->cmap_nchunks * cmap->cmap_chunksz) > cmap->cmap_maxsize)) {
1736 		cmn_err(CE_WARN, "fssnap_write_taskq: snapshot %d (%s) has "
1737 		    "reached the maximum backing file size specified (%llu "
1738 		    "bytes) and will be deleted.", sidp->sid_snapnumber,
1739 		    (char *)cowp->cow_kstat_mntpt->ks_data,
1740 		    cmap->cmap_maxsize);
1741 		if (release_sem)
1742 			sema_v(&cmap->cmap_throttle_sem);
1743 		atomic_or_uint(&sidp->sid_flags, SID_DELETE);
1744 		return;
1745 	}
1746 
1747 	/* perform the write */
1748 	bf_index = cmn->cmn_chunk / cmap->cmap_chunksperbf;
1749 
1750 	if (error = vn_rdwr(UIO_WRITE, (cowp->cow_backfile_array)[bf_index],
1751 	    cmn->cmn_buf, cmap->cmap_chunksz,
1752 	    (cmn->cmn_chunk % cmap->cmap_chunksperbf) * cmap->cmap_chunksz,
1753 	    UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, (ssize_t *)NULL)) {
1754 		cmn_err(CE_WARN, "fssnap_write_taskq: error writing to "
1755 		    "backing file.  DELETING SNAPSHOT %d, backing file path "
1756 		    "%s, offset %llu bytes, error %d.", sidp->sid_snapnumber,
1757 		    (char *)cowp->cow_kstat_bfname->ks_data,
1758 		    cmn->cmn_chunk * cmap->cmap_chunksz, error);
1759 		if (release_sem)
1760 			sema_v(&cmap->cmap_throttle_sem);
1761 		atomic_or_uint(&sidp->sid_flags, SID_DELETE);
1762 		return;
1763 	}
1764 
1765 	/*
1766 	 * now remove the node and buffer from memory
1767 	 */
1768 	rw_enter(&cmap->cmap_rwlock, RW_WRITER);
1769 	transtbl_delete(cmap, cmn);
1770 	rw_exit(&cmap->cmap_rwlock);
1771 
1772 	/* Allow more translations */
1773 	if (release_sem)
1774 		sema_v(&cmap->cmap_throttle_sem);
1775 
1776 }
1777 
1778 /*
1779  * fssnap_create_impl() - called from the file system to create a new snapshot
1780  *
1781  *    allocates and initializes the structures needed for a new snapshot.
1782  *    This is called by the file system when it receives an ioctl request to
1783  *    create a new snapshot.  An unused snapshot identifier is either found
1784  *    or created, and eventually returned as the opaque handle the file
1785  *    system will use to identify this snapshot.  The snapshot number
1786  *    associated with the snapshot identifier is the same as the minor
1787  *    number for the snapshot device that is used to access that snapshot.
1788  *
1789  *    The snapshot can not be used until the candidate bitmap is populated
1790  *    by the file system (see fssnap_set_candidate_impl()), and the file
1791  *    system finishes the setup process by calling fssnap_create_done().
1792  *    Nearly all of the snapshot locks are held for the duration of the
1793  *    create, and are not released until fssnap_create_done is called().
1794  */
1795 static void *
1796 fssnap_create_impl(chunknumber_t nchunks, uint_t chunksz, u_offset_t maxsize,
1797     struct vnode *fsvp, int backfilecount, struct vnode **bfvpp, char *backpath,
1798     u_offset_t max_backfile_size)
1799 {
1800 	refstr_t *mountpoint;
1801 	char taskqname[50];
1802 	struct cow_info *cowp;
1803 	struct cow_map	*cmap;
1804 	struct snapshot_id *sidp;
1805 	int lastsnap;
1806 
1807 	/*
1808 	 * Sanity check the parameters we care about
1809 	 * (we don't care about the informational parameters)
1810 	 */
1811 	if ((nchunks == 0) ||
1812 	    ((chunksz % DEV_BSIZE) != 0) ||
1813 	    (bfvpp == NULL)) {
1814 		return (NULL);
1815 	}
1816 
1817 	/*
1818 	 * Look for unused snapshot identifiers.  Snapshot ids are never
1819 	 * freed, but deleted snapshot ids will be recycled as needed.
1820 	 */
1821 	mutex_enter(&snapshot_mutex);
1822 
1823 findagain:
1824 	lastsnap = 0;
1825 	for (sidp = snapshot; sidp != NULL; sidp = sidp->sid_next) {
1826 		if (sidp->sid_snapnumber > lastsnap)
1827 			lastsnap = sidp->sid_snapnumber;
1828 
1829 		/*
1830 		 * The sid_rwlock is taken as a reader initially so that
1831 		 * activity on each snapshot is not stalled while searching
1832 		 * for a free snapshot id.
1833 		 */
1834 		rw_enter(&sidp->sid_rwlock, RW_READER);
1835 
1836 		/*
1837 		 * If the snapshot has been deleted and nobody is using the
1838 		 * snapshot device than we can reuse this snapshot_id.  If
1839 		 * the snapshot is marked to be deleted (SID_DELETE), then
1840 		 * it hasn't been deleted yet so don't reuse it.
1841 		 */
1842 		if (SID_AVAILABLE(sidp))
1843 			break; /* This spot is unused, so take it */
1844 		rw_exit(&sidp->sid_rwlock);
1845 	}
1846 
1847 	/*
1848 	 * add a new snapshot identifier if there are no deleted
1849 	 * entries.  Since it doesn't matter what order the entries
1850 	 * are in we can just add it to the beginning of the list.
1851 	 */
1852 	if (sidp) {
1853 		if (rw_tryupgrade(&sidp->sid_rwlock) == 0) {
1854 			/* someone else grabbed it as a writer, try again */
1855 			rw_exit(&sidp->sid_rwlock);
1856 			goto findagain;
1857 		}
1858 	} else {
1859 		/* Create a new node if we didn't find an unused one */
1860 		sidp = kmem_alloc(sizeof (struct snapshot_id), KM_SLEEP);
1861 		rw_init(&sidp->sid_rwlock, NULL, RW_DEFAULT, NULL);
1862 		rw_enter(&sidp->sid_rwlock, RW_WRITER);
1863 		sidp->sid_snapnumber = (snapshot == NULL) ? 0 : lastsnap + 1;
1864 		sidp->sid_cowinfo = NULL;
1865 		sidp->sid_flags = 0;
1866 		sidp->sid_next = snapshot;
1867 		snapshot = sidp;
1868 	}
1869 
1870 	ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
1871 	ASSERT(sidp->sid_cowinfo == NULL);
1872 	ASSERT(sidp->sid_snapnumber <= (lastsnap + 1));
1873 
1874 	sidp->sid_flags |= SID_CREATING;
1875 	/* The root vnode is held until snap_delete_impl() is called */
1876 	VN_HOLD(fsvp);
1877 	sidp->sid_fvp = fsvp;
1878 	num_snapshots++;
1879 
1880 	/* allocate and initialize structures */
1881 
1882 	cowp = kmem_zalloc(sizeof (struct cow_info), KM_SLEEP);
1883 
1884 	cowp->cow_backfile_array = bfvpp;
1885 	cowp->cow_backcount = backfilecount;
1886 	cowp->cow_backfile_sz = max_backfile_size;
1887 
1888 	/*
1889 	 * Initialize task queues for this snapshot.  Only a small number
1890 	 * of threads are required because they will be serialized on the
1891 	 * backing file's reader/writer lock anyway.
1892 	 */
1893 	(void) snprintf(taskqname, sizeof (taskqname), "%s_taskq_%d", snapname,
1894 	    sidp->sid_snapnumber);
1895 	cowp->cow_taskq = taskq_create(taskqname, fssnap_taskq_nthreads,
1896 	    minclsyspri, 1,  fssnap_taskq_maxtasks, 0);
1897 
1898 	/* don't allow tasks to start until after everything is ready */
1899 	taskq_suspend(cowp->cow_taskq);
1900 
1901 	/* initialize translation table */
1902 	cmap = &cowp->cow_map;
1903 	rw_init(&cmap->cmap_rwlock, NULL, RW_DEFAULT, NULL);
1904 	rw_enter(&cmap->cmap_rwlock, RW_WRITER);
1905 
1906 	sema_init(&cmap->cmap_throttle_sem, fssnap_max_mem_chunks, NULL,
1907 	    SEMA_DEFAULT, NULL);
1908 
1909 	cmap->cmap_chunksz = chunksz;
1910 	cmap->cmap_maxsize = maxsize;
1911 	cmap->cmap_chunksperbf = max_backfile_size / chunksz;
1912 
1913 	/*
1914 	 * allocate one bit per chunk for the bitmaps, round up
1915 	 */
1916 	cmap->cmap_bmsize = (nchunks + (NBBY - 1)) / NBBY;
1917 	cmap->cmap_hastrans  = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP);
1918 	cmap->cmap_candidate = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP);
1919 
1920 	sidp->sid_cowinfo = cowp;
1921 
1922 	/* initialize kstats for this snapshot */
1923 	mountpoint = vfs_getmntpoint(fsvp->v_vfsp);
1924 	fssnap_create_kstats(sidp, sidp->sid_snapnumber,
1925 	    refstr_value(mountpoint), backpath);
1926 	refstr_rele(mountpoint);
1927 
1928 	mutex_exit(&snapshot_mutex);
1929 
1930 	/*
1931 	 * return with snapshot id rwlock held as a writer until
1932 	 * fssnap_create_done is called
1933 	 */
1934 	return (sidp);
1935 }
1936 
1937 /*
1938  * fssnap_set_candidate_impl() - mark a chunk as a candidate for copy-on-write
1939  *
1940  *    sets a bit in the candidate bitmap that indicates that a chunk is a
1941  *    candidate for copy-on-write.  Typically, chunks that are allocated on
1942  *    the file system at the time the snapshot is taken are candidates,
1943  *    while chunks that have no allocated data do not need to be copied.
1944  *    Chunks containing metadata must be marked as candidates as well.
1945  */
1946 static void
1947 fssnap_set_candidate_impl(void *snapshot_id, chunknumber_t chunknumber)
1948 {
1949 	struct snapshot_id	*sid = snapshot_id;
1950 	struct cow_info *cowp = sid->sid_cowinfo;
1951 	struct cow_map	*cmap = &cowp->cow_map;
1952 
1953 	/* simple bitmap operation for now */
1954 	ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY));
1955 	setbit(cmap->cmap_candidate, chunknumber);
1956 }
1957 
1958 /*
1959  * fssnap_is_candidate_impl() - check whether a chunk is a candidate
1960  *
1961  *    returns 0 if the chunk is not a candidate and 1 if the chunk is a
1962  *    candidate.  This can be used by the file system to change behavior for
1963  *    chunks that might induce a copy-on-write.  The offset is specified in
1964  *    bytes since the chunk size may not be known by the file system.
1965  */
1966 static int
1967 fssnap_is_candidate_impl(void *snapshot_id, u_offset_t off)
1968 {
1969 	struct snapshot_id	*sid = snapshot_id;
1970 	struct cow_info *cowp = sid->sid_cowinfo;
1971 	struct cow_map	*cmap = &cowp->cow_map;
1972 	ulong_t chunknumber = off / cmap->cmap_chunksz;
1973 
1974 	/* simple bitmap operation for now */
1975 	ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY));
1976 	return (isset(cmap->cmap_candidate, chunknumber));
1977 }
1978 
1979 /*
1980  * fssnap_create_done_impl() - complete the snapshot setup process
1981  *
1982  *    called when the file system is done populating the candidate bitmap
1983  *    and it is ready to start using the snapshot.  This routine releases
1984  *    the snapshot locks, allows taskq tasks to start processing, and
1985  *    creates the device minor nodes associated with the snapshot.
1986  */
1987 static int
1988 fssnap_create_done_impl(void *snapshot_id)
1989 {
1990 	struct snapshot_id	**sidpp, *sidp = snapshot_id;
1991 	struct cow_info		*cowp;
1992 	struct cow_map		*cmap;
1993 	int			snapnumber = -1;
1994 	char			name[20];
1995 
1996 	/* sid rwlock and cmap rwlock should be taken from fssnap_create */
1997 	ASSERT(sidp);
1998 	ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
1999 	ASSERT(sidp->sid_cowinfo);
2000 
2001 	cowp = sidp->sid_cowinfo;
2002 	cmap = &cowp->cow_map;
2003 
2004 	ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
2005 
2006 	sidp->sid_flags &= ~(SID_CREATING | SID_DISABLED);
2007 	snapnumber = sidp->sid_snapnumber;
2008 
2009 	/* allocate state structure and find new snapshot id */
2010 	if (ddi_soft_state_zalloc(statep, snapnumber) != DDI_SUCCESS) {
2011 		cmn_err(CE_WARN,
2012 		    "snap_ioctl: create: could not allocate "
2013 		    "state for snapshot %d.", snapnumber);
2014 		snapnumber = -1;
2015 		goto out;
2016 	}
2017 
2018 	sidpp = ddi_get_soft_state(statep, snapnumber);
2019 	*sidpp = sidp;
2020 
2021 	/* create minor node based on snapshot number */
2022 	ASSERT(fssnap_dip != NULL);
2023 	(void) snprintf(name, sizeof (name), "%d", snapnumber);
2024 	if (ddi_create_minor_node(fssnap_dip, name, S_IFBLK,
2025 	    snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) {
2026 		cmn_err(CE_WARN, "snap_ioctl: could not create "
2027 		    "block minor node for snapshot %d.", snapnumber);
2028 		snapnumber = -1;
2029 		goto out;
2030 	}
2031 
2032 	(void) snprintf(name, sizeof (name), "%d,raw", snapnumber);
2033 	if (ddi_create_minor_node(fssnap_dip, name, S_IFCHR,
2034 	    snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) {
2035 		cmn_err(CE_WARN, "snap_ioctl: could not create "
2036 		    "character minor node for snapshot %d.", snapnumber);
2037 		snapnumber = -1;
2038 	}
2039 
2040 out:
2041 	rw_exit(&sidp->sid_rwlock);
2042 	rw_exit(&cmap->cmap_rwlock);
2043 
2044 	/* let the taskq threads start processing */
2045 	taskq_resume(cowp->cow_taskq);
2046 
2047 	return (snapnumber);
2048 }
2049 
2050 /*
2051  * fssnap_delete_impl() - delete a snapshot
2052  *
2053  *    used when a snapshot is no longer needed.  This is called by the file
2054  *    system when it receives an ioctl request to delete a snapshot.  It is
2055  *    also called internally when error conditions such as disk full, errors
2056  *    writing to the backing file, or backing file maxsize exceeded occur.
2057  *    If the snapshot device is busy when the delete request is received,
2058  *    all state will be deleted except for the soft state and device files
2059  *    associated with the snapshot; they will be deleted when the snapshot
2060  *    device is closed.
2061  *
2062  *    NOTE this function takes a POINTER TO A POINTER to the snapshot id,
2063  *    and expects to be able to set the handle held by the file system to
2064  *    NULL.  This depends on the file system checking that variable for NULL
2065  *    before calling fssnap_strategy().
2066  */
2067 static int
2068 fssnap_delete_impl(void *snapshot_id)
2069 {
2070 	struct snapshot_id	**sidpp = (struct snapshot_id **)snapshot_id;
2071 	struct snapshot_id	*sidp;
2072 	struct snapshot_id	**statesidpp;
2073 	struct cow_info		*cowp;
2074 	struct cow_map		*cmap;
2075 	char			name[20];
2076 	int			snapnumber = -1;
2077 	vnode_t			**vpp;
2078 
2079 	/*
2080 	 * sidp is guaranteed to be valid if sidpp is valid because
2081 	 * the snapshot list is append-only.
2082 	 */
2083 	if (sidpp == NULL) {
2084 		return (-1);
2085 	}
2086 
2087 	sidp = *sidpp;
2088 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
2089 
2090 	ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
2091 
2092 	/*
2093 	 * double check that the snapshot is still valid for THIS file system
2094 	 */
2095 	if (*sidpp == NULL) {
2096 		rw_exit(&sidp->sid_rwlock);
2097 		return (-1);
2098 	}
2099 
2100 	/*
2101 	 * Now we know the snapshot is still valid and will not go away
2102 	 * because we have the write lock.  Once the state is transitioned
2103 	 * to "disabling", the sid_rwlock can be released.  Any pending I/O
2104 	 * waiting for the lock as a reader will check for this state and
2105 	 * abort without touching data that may be getting freed.
2106 	 */
2107 	sidp->sid_flags |= SID_DISABLING;
2108 	if (sidp->sid_flags & SID_DELETE) {
2109 		cmn_err(CE_WARN, "Snapshot %d automatically deleted.",
2110 		    sidp->sid_snapnumber);
2111 		sidp->sid_flags &= ~(SID_DELETE);
2112 	}
2113 
2114 
2115 	/*
2116 	 * This is pointing into file system specific data!  The assumption is
2117 	 * that fssnap_strategy() gets called from the file system based on
2118 	 * whether this reference to the snapshot_id is NULL or not.  So
2119 	 * setting this to NULL should disable snapshots for the file system.
2120 	 */
2121 	*sidpp = NULL;
2122 
2123 	/* remove cowinfo */
2124 	cowp = sidp->sid_cowinfo;
2125 	if (cowp == NULL) {
2126 		rw_exit(&sidp->sid_rwlock);
2127 		return (-1);
2128 	}
2129 	rw_exit(&sidp->sid_rwlock);
2130 
2131 	/* destroy task queues first so they don't reference freed data. */
2132 	if (cowp->cow_taskq) {
2133 		taskq_destroy(cowp->cow_taskq);
2134 		cowp->cow_taskq = NULL;
2135 	}
2136 
2137 	if (cowp->cow_backfile_array != NULL) {
2138 		for (vpp = cowp->cow_backfile_array; *vpp; vpp++)
2139 			VN_RELE(*vpp);
2140 		kmem_free(cowp->cow_backfile_array,
2141 		    (cowp->cow_backcount + 1) * sizeof (vnode_t *));
2142 		cowp->cow_backfile_array = NULL;
2143 	}
2144 
2145 	sidp->sid_cowinfo = NULL;
2146 
2147 	/* remove cmap */
2148 	cmap = &cowp->cow_map;
2149 	ASSERT(cmap);
2150 
2151 	if (cmap->cmap_candidate)
2152 		kmem_free(cmap->cmap_candidate, cmap->cmap_bmsize);
2153 
2154 	if (cmap->cmap_hastrans)
2155 		kmem_free(cmap->cmap_hastrans, cmap->cmap_bmsize);
2156 
2157 	if (cmap->cmap_table)
2158 		transtbl_free(&cowp->cow_map);
2159 
2160 	rw_destroy(&cmap->cmap_rwlock);
2161 
2162 	while (cmap->cmap_waiters) {
2163 		sema_p(&cmap->cmap_throttle_sem);
2164 		sema_v(&cmap->cmap_throttle_sem);
2165 	}
2166 	sema_destroy(&cmap->cmap_throttle_sem);
2167 
2168 	/* remove kstats */
2169 	fssnap_delete_kstats(cowp);
2170 
2171 	kmem_free(cowp, sizeof (struct cow_info));
2172 
2173 	statesidpp = ddi_get_soft_state(statep, sidp->sid_snapnumber);
2174 	if (statesidpp == NULL || *statesidpp == NULL) {
2175 		cmn_err(CE_WARN,
2176 		    "fssnap_delete_impl: could not find state for snapshot %d.",
2177 		    sidp->sid_snapnumber);
2178 	}
2179 	ASSERT(*statesidpp == sidp);
2180 
2181 	/*
2182 	 * Leave the node in the list marked DISABLED so it can be reused
2183 	 * and avoid many race conditions.  Return the snapshot number
2184 	 * that was deleted.
2185 	 */
2186 	mutex_enter(&snapshot_mutex);
2187 	rw_enter(&sidp->sid_rwlock, RW_WRITER);
2188 	sidp->sid_flags &= ~(SID_DISABLING);
2189 	sidp->sid_flags |= SID_DISABLED;
2190 	VN_RELE(sidp->sid_fvp);
2191 	sidp->sid_fvp = NULL;
2192 	snapnumber = sidp->sid_snapnumber;
2193 
2194 	/*
2195 	 * If the snapshot is not busy, free the device info now.  Otherwise
2196 	 * the device nodes are freed in snap_close() when the device is
2197 	 * closed.  The sid will not be reused until the device is not busy.
2198 	 */
2199 	if (SID_AVAILABLE(sidp)) {
2200 		/* remove the device nodes */
2201 		ASSERT(fssnap_dip != NULL);
2202 		(void) snprintf(name, sizeof (name), "%d",
2203 		    sidp->sid_snapnumber);
2204 		ddi_remove_minor_node(fssnap_dip, name);
2205 		(void) snprintf(name, sizeof (name), "%d,raw",
2206 		    sidp->sid_snapnumber);
2207 		ddi_remove_minor_node(fssnap_dip, name);
2208 
2209 		/* delete the state structure */
2210 		ddi_soft_state_free(statep, sidp->sid_snapnumber);
2211 		num_snapshots--;
2212 	}
2213 
2214 	mutex_exit(&snapshot_mutex);
2215 	rw_exit(&sidp->sid_rwlock);
2216 
2217 	return (snapnumber);
2218 }
2219 
2220 /*
2221  * fssnap_create_kstats() - allocate and initialize snapshot kstats
2222  *
2223  */
2224 static void
2225 fssnap_create_kstats(snapshot_id_t *sidp, int snapnum,
2226     const char *mountpoint, const char *backfilename)
2227 {
2228 	kstat_t *num, *mntpoint, *bfname;
2229 	kstat_named_t *hw;
2230 	struct cow_info *cowp = sidp->sid_cowinfo;
2231 	struct cow_kstat_num *stats;
2232 
2233 	/* update the high water mark */
2234 	if (fssnap_highwater_kstat == NULL) {
2235 		cmn_err(CE_WARN, "fssnap_create_kstats: failed to lookup "
2236 		    "high water mark kstat.");
2237 		return;
2238 	}
2239 
2240 	hw = (kstat_named_t *)fssnap_highwater_kstat->ks_data;
2241 	if (hw->value.ui32 < snapnum)
2242 		hw->value.ui32 = snapnum;
2243 
2244 	/* initialize the mount point kstat */
2245 	kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_MNTPT);
2246 
2247 	if (mountpoint != NULL) {
2248 		mntpoint = kstat_create(snapname, snapnum, FSSNAP_KSTAT_MNTPT,
2249 		    "misc", KSTAT_TYPE_RAW, strlen(mountpoint) + 1, 0);
2250 		if (mntpoint == NULL) {
2251 			cowp->cow_kstat_mntpt = NULL;
2252 			cmn_err(CE_WARN, "fssnap_create_kstats: failed to "
2253 			    "create mount point kstat");
2254 		} else {
2255 			(void) strncpy(mntpoint->ks_data, mountpoint,
2256 			    strlen(mountpoint));
2257 			cowp->cow_kstat_mntpt = mntpoint;
2258 			kstat_install(mntpoint);
2259 		}
2260 	} else {
2261 		cowp->cow_kstat_mntpt = NULL;
2262 		cmn_err(CE_WARN, "fssnap_create_kstats: mount point not "
2263 		    "specified.");
2264 	}
2265 
2266 	/* initialize the backing file kstat */
2267 	kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_BFNAME);
2268 
2269 	if (backfilename == NULL) {
2270 		cowp->cow_kstat_bfname = NULL;
2271 	} else {
2272 		bfname = kstat_create(snapname, snapnum, FSSNAP_KSTAT_BFNAME,
2273 		    "misc", KSTAT_TYPE_RAW, strlen(backfilename) + 1, 0);
2274 		if (bfname != NULL) {
2275 			(void) strncpy(bfname->ks_data, backfilename,
2276 			    strlen(backfilename));
2277 			cowp->cow_kstat_bfname = bfname;
2278 			kstat_install(bfname);
2279 		} else {
2280 			cowp->cow_kstat_bfname = NULL;
2281 			cmn_err(CE_WARN, "fssnap_create_kstats: failed to "
2282 			    "create backing file name kstat");
2283 		}
2284 	}
2285 
2286 	/* initialize numeric kstats */
2287 	kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_NUM);
2288 
2289 	num = kstat_create(snapname, snapnum, FSSNAP_KSTAT_NUM,
2290 	    "misc", KSTAT_TYPE_NAMED,
2291 	    sizeof (struct cow_kstat_num) / sizeof (kstat_named_t),
2292 	    0);
2293 	if (num == NULL) {
2294 		cmn_err(CE_WARN, "fssnap_create_kstats: failed to create "
2295 		    "numeric kstats");
2296 		cowp->cow_kstat_num = NULL;
2297 		return;
2298 	}
2299 
2300 	cowp->cow_kstat_num = num;
2301 	stats = num->ks_data;
2302 	num->ks_update = fssnap_update_kstat_num;
2303 	num->ks_private = sidp;
2304 
2305 	kstat_named_init(&stats->ckn_state, FSSNAP_KSTAT_NUM_STATE,
2306 	    KSTAT_DATA_INT32);
2307 	kstat_named_init(&stats->ckn_bfsize, FSSNAP_KSTAT_NUM_BFSIZE,
2308 	    KSTAT_DATA_UINT64);
2309 	kstat_named_init(&stats->ckn_maxsize, FSSNAP_KSTAT_NUM_MAXSIZE,
2310 	    KSTAT_DATA_UINT64);
2311 	kstat_named_init(&stats->ckn_createtime, FSSNAP_KSTAT_NUM_CREATETIME,
2312 	    KSTAT_DATA_LONG);
2313 	kstat_named_init(&stats->ckn_chunksize, FSSNAP_KSTAT_NUM_CHUNKSIZE,
2314 	    KSTAT_DATA_UINT32);
2315 
2316 	/* initialize the static kstats */
2317 	stats->ckn_chunksize.value.ui32 = cowp->cow_map.cmap_chunksz;
2318 	stats->ckn_maxsize.value.ui64 = cowp->cow_map.cmap_maxsize;
2319 	stats->ckn_createtime.value.l = gethrestime_sec();
2320 
2321 	kstat_install(num);
2322 }
2323 
2324 /*
2325  * fssnap_update_kstat_num() - update a numerical snapshot kstat value
2326  *
2327  */
2328 int
2329 fssnap_update_kstat_num(kstat_t *ksp, int rw)
2330 {
2331 	snapshot_id_t *sidp = (snapshot_id_t *)ksp->ks_private;
2332 	struct cow_info *cowp = sidp->sid_cowinfo;
2333 	struct cow_kstat_num *stats = ksp->ks_data;
2334 
2335 	if (rw == KSTAT_WRITE)
2336 		return (EACCES);
2337 
2338 	/* state */
2339 	if (sidp->sid_flags & SID_CREATING)
2340 		stats->ckn_state.value.i32 = COWSTATE_CREATING;
2341 	else if (SID_INACTIVE(sidp))
2342 		stats->ckn_state.value.i32 = COWSTATE_DISABLED;
2343 	else if (SID_BUSY(sidp))
2344 		stats->ckn_state.value.i32 = COWSTATE_ACTIVE;
2345 	else
2346 		stats->ckn_state.value.i32 = COWSTATE_IDLE;
2347 
2348 	/* bfsize */
2349 	stats->ckn_bfsize.value.ui64 = cowp->cow_map.cmap_nchunks *
2350 	    cowp->cow_map.cmap_chunksz;
2351 
2352 	return (0);
2353 }
2354 
2355 /*
2356  * fssnap_delete_kstats() - deallocate snapshot kstats
2357  *
2358  */
2359 void
2360 fssnap_delete_kstats(struct cow_info *cowp)
2361 {
2362 	if (cowp->cow_kstat_num != NULL) {
2363 		kstat_delete(cowp->cow_kstat_num);
2364 		cowp->cow_kstat_num = NULL;
2365 	}
2366 	if (cowp->cow_kstat_mntpt != NULL) {
2367 		kstat_delete(cowp->cow_kstat_mntpt);
2368 		cowp->cow_kstat_mntpt = NULL;
2369 	}
2370 	if (cowp->cow_kstat_bfname != NULL) {
2371 		kstat_delete(cowp->cow_kstat_bfname);
2372 		cowp->cow_kstat_bfname = NULL;
2373 	}
2374 }
2375