xref: /titanic_52/usr/src/uts/common/io/e1000g/e1000g_rx.c (revision 8bab47abcb471dffa36ddbf409a8ef5303398ddf)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_rx.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains some routines that take care of Receive		*
34  *   interrupt and also for the received packets it sends up to		*
35  *   upper layer.							*
36  *   It tries to do a zero copy if free buffers are available in	*
37  *   the pool.								*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include "e1000g_sw.h"
43 #include "e1000g_debug.h"
44 
45 static p_rx_sw_packet_t e1000g_get_buf(e1000g_rx_data_t *rx_data);
46 #pragma	inline(e1000g_get_buf)
47 
48 /*
49  * e1000g_rxfree_func - the call-back function to reclaim rx buffer
50  *
51  * This function is called when an mp is freed by the user thru
52  * freeb call (Only for mp constructed through desballoc call)
53  * It returns back the freed buffer to the freelist
54  */
55 void
56 e1000g_rxfree_func(p_rx_sw_packet_t packet)
57 {
58 	e1000g_rx_data_t *rx_data;
59 	private_devi_list_t *devi_node;
60 	struct e1000g *Adapter;
61 	uint32_t ring_cnt;
62 	uint32_t ref_cnt;
63 	unsigned char *address;
64 
65 	if (packet->ref_cnt == 0) {
66 		/*
67 		 * This case only happens when rx buffers are being freed
68 		 * in e1000g_stop() and freemsg() is called.
69 		 */
70 		return;
71 	}
72 
73 	rx_data = (e1000g_rx_data_t *)(uintptr_t)packet->rx_data;
74 
75 	if (packet->mp == NULL) {
76 		/*
77 		 * Allocate a mblk that binds to the data buffer
78 		 */
79 		address = (unsigned char *)packet->rx_buf->address;
80 		if (address != NULL) {
81 			packet->mp = desballoc((unsigned char *)
82 			    address, packet->rx_buf->size,
83 			    BPRI_MED, &packet->free_rtn);
84 		}
85 	}
86 
87 	/*
88 	 * Enqueue the recycled packets in a recycle queue. When freelist
89 	 * dries up, move the entire chain of packets from recycle queue
90 	 * to freelist. This helps in avoiding per packet mutex contention
91 	 * around freelist.
92 	 */
93 	mutex_enter(&rx_data->recycle_lock);
94 	QUEUE_PUSH_TAIL(&rx_data->recycle_list, &packet->Link);
95 	rx_data->recycle_freepkt++;
96 	mutex_exit(&rx_data->recycle_lock);
97 
98 	ref_cnt = atomic_dec_32_nv(&packet->ref_cnt);
99 	if (ref_cnt == 0) {
100 		mutex_enter(&e1000g_rx_detach_lock);
101 		e1000g_free_rx_sw_packet(packet, B_FALSE);
102 
103 		atomic_dec_32(&rx_data->pending_count);
104 		atomic_dec_32(&e1000g_mblks_pending);
105 
106 		if ((rx_data->pending_count == 0) &&
107 		    (rx_data->flag & E1000G_RX_STOPPED)) {
108 			devi_node = rx_data->priv_devi_node;
109 
110 			if (devi_node != NULL) {
111 				ring_cnt = atomic_dec_32_nv(
112 				    &devi_node->pending_rx_count);
113 				if ((ring_cnt == 0) &&
114 				    (devi_node->flag &
115 				    E1000G_PRIV_DEVI_DETACH)) {
116 					e1000g_free_priv_devi_node(
117 					    devi_node);
118 				}
119 			} else {
120 				Adapter = rx_data->rx_ring->adapter;
121 				atomic_dec_32(
122 				    &Adapter->pending_rx_count);
123 			}
124 
125 			e1000g_free_rx_pending_buffers(rx_data);
126 			e1000g_free_rx_data(rx_data);
127 		}
128 		mutex_exit(&e1000g_rx_detach_lock);
129 	}
130 }
131 
132 /*
133  * e1000g_rx_setup - setup rx data structures
134  *
135  * This routine initializes all of the receive related
136  * structures. This includes the receive descriptors, the
137  * actual receive buffers, and the rx_sw_packet software
138  * structures.
139  */
140 void
141 e1000g_rx_setup(struct e1000g *Adapter)
142 {
143 	struct e1000_hw *hw;
144 	p_rx_sw_packet_t packet;
145 	struct e1000_rx_desc *descriptor;
146 	uint32_t buf_low;
147 	uint32_t buf_high;
148 	uint32_t reg_val;
149 	uint32_t rctl;
150 	uint32_t rxdctl;
151 	uint32_t ert;
152 	int i;
153 	int size;
154 	e1000g_rx_data_t *rx_data;
155 
156 	hw = &Adapter->shared;
157 	rx_data = Adapter->rx_ring->rx_data;
158 
159 	/*
160 	 * zero out all of the receive buffer descriptor memory
161 	 * assures any previous data or status is erased
162 	 */
163 	bzero(rx_data->rbd_area,
164 	    sizeof (struct e1000_rx_desc) * Adapter->rx_desc_num);
165 
166 	if (!Adapter->rx_buffer_setup) {
167 		/* Init the list of "Receive Buffer" */
168 		QUEUE_INIT_LIST(&rx_data->recv_list);
169 
170 		/* Init the list of "Free Receive Buffer" */
171 		QUEUE_INIT_LIST(&rx_data->free_list);
172 
173 		/* Init the list of "Free Receive Buffer" */
174 		QUEUE_INIT_LIST(&rx_data->recycle_list);
175 		/*
176 		 * Setup Receive list and the Free list. Note that
177 		 * the both were allocated in one packet area.
178 		 */
179 		packet = rx_data->packet_area;
180 		descriptor = rx_data->rbd_first;
181 
182 		for (i = 0; i < Adapter->rx_desc_num;
183 		    i++, packet = packet->next, descriptor++) {
184 			ASSERT(packet != NULL);
185 			ASSERT(descriptor != NULL);
186 			descriptor->buffer_addr =
187 			    packet->rx_buf->dma_address;
188 
189 			/* Add this rx_sw_packet to the receive list */
190 			QUEUE_PUSH_TAIL(&rx_data->recv_list,
191 			    &packet->Link);
192 		}
193 
194 		for (i = 0; i < Adapter->rx_freelist_num;
195 		    i++, packet = packet->next) {
196 			ASSERT(packet != NULL);
197 			/* Add this rx_sw_packet to the free list */
198 			QUEUE_PUSH_TAIL(&rx_data->free_list,
199 			    &packet->Link);
200 		}
201 		rx_data->avail_freepkt = Adapter->rx_freelist_num;
202 		rx_data->recycle_freepkt = 0;
203 
204 		Adapter->rx_buffer_setup = B_TRUE;
205 	} else {
206 		/* Setup the initial pointer to the first rx descriptor */
207 		packet = (p_rx_sw_packet_t)
208 		    QUEUE_GET_HEAD(&rx_data->recv_list);
209 		descriptor = rx_data->rbd_first;
210 
211 		for (i = 0; i < Adapter->rx_desc_num; i++) {
212 			ASSERT(packet != NULL);
213 			ASSERT(descriptor != NULL);
214 			descriptor->buffer_addr =
215 			    packet->rx_buf->dma_address;
216 
217 			/* Get next rx_sw_packet */
218 			packet = (p_rx_sw_packet_t)
219 			    QUEUE_GET_NEXT(&rx_data->recv_list, &packet->Link);
220 			descriptor++;
221 		}
222 	}
223 
224 	E1000_WRITE_REG(&Adapter->shared, E1000_RDTR, Adapter->rx_intr_delay);
225 	E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL,
226 	    "E1000_RDTR: 0x%x\n", Adapter->rx_intr_delay);
227 	if (hw->mac.type >= e1000_82540) {
228 		E1000_WRITE_REG(&Adapter->shared, E1000_RADV,
229 		    Adapter->rx_intr_abs_delay);
230 		E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL,
231 		    "E1000_RADV: 0x%x\n", Adapter->rx_intr_abs_delay);
232 	}
233 
234 	/*
235 	 * Setup our descriptor pointers
236 	 */
237 	rx_data->rbd_next = rx_data->rbd_first;
238 
239 	size = Adapter->rx_desc_num * sizeof (struct e1000_rx_desc);
240 	E1000_WRITE_REG(hw, E1000_RDLEN(0), size);
241 	size = E1000_READ_REG(hw, E1000_RDLEN(0));
242 
243 	/* To get lower order bits */
244 	buf_low = (uint32_t)rx_data->rbd_dma_addr;
245 	/* To get the higher order bits */
246 	buf_high = (uint32_t)(rx_data->rbd_dma_addr >> 32);
247 
248 	E1000_WRITE_REG(hw, E1000_RDBAH(0), buf_high);
249 	E1000_WRITE_REG(hw, E1000_RDBAL(0), buf_low);
250 
251 	/*
252 	 * Setup our HW Rx Head & Tail descriptor pointers
253 	 */
254 	E1000_WRITE_REG(hw, E1000_RDT(0),
255 	    (uint32_t)(rx_data->rbd_last - rx_data->rbd_first));
256 	E1000_WRITE_REG(hw, E1000_RDH(0), 0);
257 
258 	/*
259 	 * Setup the Receive Control Register (RCTL), and ENABLE the
260 	 * receiver. The initial configuration is to: Enable the receiver,
261 	 * accept broadcasts, discard bad packets (and long packets),
262 	 * disable VLAN filter checking, set the receive descriptor
263 	 * minimum threshold size to 1/2, and the receive buffer size to
264 	 * 2k.
265 	 */
266 	rctl = E1000_RCTL_EN |		/* Enable Receive Unit */
267 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
268 	    E1000_RCTL_LPE |		/* Large Packet Enable bit */
269 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
270 	    E1000_RCTL_RDMTS_HALF |
271 	    E1000_RCTL_LBM_NO;		/* Loopback Mode = none */
272 
273 	if (Adapter->strip_crc)
274 		rctl |= E1000_RCTL_SECRC;	/* Strip Ethernet CRC */
275 
276 	if (Adapter->mem_workaround_82546 &&
277 	    ((hw->mac.type == e1000_82545) ||
278 	    (hw->mac.type == e1000_82546) ||
279 	    (hw->mac.type == e1000_82546_rev_3))) {
280 		rctl |= E1000_RCTL_SZ_2048;
281 	} else {
282 		if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_2K) &&
283 		    (Adapter->max_frame_size <= FRAME_SIZE_UPTO_4K))
284 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
285 		else if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_4K) &&
286 		    (Adapter->max_frame_size <= FRAME_SIZE_UPTO_8K))
287 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
288 		else if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_8K) &&
289 		    (Adapter->max_frame_size <= FRAME_SIZE_UPTO_16K))
290 			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
291 		else
292 			rctl |= E1000_RCTL_SZ_2048;
293 	}
294 
295 	if (e1000_tbi_sbp_enabled_82543(hw))
296 		rctl |= E1000_RCTL_SBP;
297 
298 	/*
299 	 * Enable Early Receive Threshold (ERT) on supported devices.
300 	 * Only takes effect when packet size is equal or larger than the
301 	 * specified value (in 8 byte units), e.g. using jumbo frames.
302 	 */
303 	if ((hw->mac.type == e1000_82573) ||
304 	    (hw->mac.type == e1000_82574) ||
305 	    (hw->mac.type == e1000_ich9lan) ||
306 	    (hw->mac.type == e1000_ich10lan)) {
307 
308 		ert = E1000_ERT_2048;
309 
310 		/*
311 		 * Special modification when ERT and
312 		 * jumbo frames are enabled
313 		 */
314 		if (Adapter->default_mtu > ETHERMTU) {
315 			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
316 			E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 0x3);
317 			ert |= (1 << 13);
318 		}
319 
320 		E1000_WRITE_REG(hw, E1000_ERT, ert);
321 	}
322 
323 	reg_val =
324 	    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum offload Enable */
325 	    E1000_RXCSUM_IPOFL;		/* IP checksum offload Enable */
326 
327 	E1000_WRITE_REG(hw, E1000_RXCSUM, reg_val);
328 
329 	/*
330 	 * Workaround: Set bit 16 (IPv6_ExDIS) to disable the
331 	 * processing of received IPV6 extension headers
332 	 */
333 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
334 		reg_val = E1000_READ_REG(hw, E1000_RFCTL);
335 		reg_val |= (E1000_RFCTL_IPV6_EX_DIS |
336 		    E1000_RFCTL_NEW_IPV6_EXT_DIS);
337 		E1000_WRITE_REG(hw, E1000_RFCTL, reg_val);
338 	}
339 
340 	/* Write to enable the receive unit */
341 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
342 }
343 
344 /*
345  * e1000g_get_buf - get an rx sw packet from the free_list
346  */
347 static p_rx_sw_packet_t
348 e1000g_get_buf(e1000g_rx_data_t *rx_data)
349 {
350 	p_rx_sw_packet_t packet;
351 
352 	mutex_enter(&rx_data->freelist_lock);
353 	packet = (p_rx_sw_packet_t)
354 	    QUEUE_POP_HEAD(&rx_data->free_list);
355 	if (packet != NULL) {
356 		rx_data->avail_freepkt--;
357 	} else {
358 		/*
359 		 * If the freelist has no packets, check the recycle list
360 		 * to see if there are any available descriptor there.
361 		 */
362 		mutex_enter(&rx_data->recycle_lock);
363 		QUEUE_SWITCH(&rx_data->free_list, &rx_data->recycle_list);
364 		rx_data->avail_freepkt = rx_data->recycle_freepkt;
365 		rx_data->recycle_freepkt = 0;
366 		mutex_exit(&rx_data->recycle_lock);
367 		packet = (p_rx_sw_packet_t)
368 		    QUEUE_POP_HEAD(&rx_data->free_list);
369 		if (packet != NULL)
370 			rx_data->avail_freepkt--;
371 	}
372 	mutex_exit(&rx_data->freelist_lock);
373 
374 	return (packet);
375 }
376 
377 /*
378  * e1000g_receive - main receive routine
379  *
380  * This routine will process packets received in an interrupt
381  */
382 mblk_t *
383 e1000g_receive(e1000g_rx_ring_t *rx_ring, mblk_t **tail, uint_t sz)
384 {
385 	struct e1000_hw *hw;
386 	mblk_t *nmp;
387 	mblk_t *ret_mp;
388 	mblk_t *ret_nmp;
389 	struct e1000_rx_desc *current_desc;
390 	struct e1000_rx_desc *last_desc;
391 	p_rx_sw_packet_t packet;
392 	p_rx_sw_packet_t newpkt;
393 	uint16_t length;
394 	uint32_t pkt_count;
395 	uint32_t desc_count;
396 	boolean_t accept_frame;
397 	boolean_t end_of_packet;
398 	boolean_t need_copy;
399 	struct e1000g *Adapter;
400 	dma_buffer_t *rx_buf;
401 	uint16_t cksumflags;
402 	uint_t chain_sz = 0;
403 	e1000g_rx_data_t *rx_data;
404 	uint32_t max_size;
405 	uint32_t min_size;
406 
407 	ret_mp = NULL;
408 	ret_nmp = NULL;
409 	pkt_count = 0;
410 	desc_count = 0;
411 	cksumflags = 0;
412 
413 	Adapter = rx_ring->adapter;
414 	rx_data = rx_ring->rx_data;
415 	hw = &Adapter->shared;
416 
417 	/* Sync the Rx descriptor DMA buffers */
418 	(void) ddi_dma_sync(rx_data->rbd_dma_handle,
419 	    0, 0, DDI_DMA_SYNC_FORKERNEL);
420 
421 	if (e1000g_check_dma_handle(rx_data->rbd_dma_handle) != DDI_FM_OK) {
422 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
423 		Adapter->e1000g_state |= E1000G_ERROR;
424 	}
425 
426 	current_desc = rx_data->rbd_next;
427 	if (!(current_desc->status & E1000_RXD_STAT_DD)) {
428 		/*
429 		 * don't send anything up. just clear the RFD
430 		 */
431 		E1000G_DEBUG_STAT(rx_ring->stat_none);
432 		return (ret_mp);
433 	}
434 
435 	max_size = Adapter->max_frame_size - ETHERFCSL - VLAN_TAGSZ;
436 	min_size = ETHERMIN;
437 
438 	/*
439 	 * Loop through the receive descriptors starting at the last known
440 	 * descriptor owned by the hardware that begins a packet.
441 	 */
442 	while ((current_desc->status & E1000_RXD_STAT_DD) &&
443 	    (pkt_count < Adapter->rx_limit_onintr) &&
444 	    ((sz == E1000G_CHAIN_NO_LIMIT) || (chain_sz <= sz))) {
445 
446 		desc_count++;
447 		/*
448 		 * Now this can happen in Jumbo frame situation.
449 		 */
450 		if (current_desc->status & E1000_RXD_STAT_EOP) {
451 			/* packet has EOP set */
452 			end_of_packet = B_TRUE;
453 		} else {
454 			/*
455 			 * If this received buffer does not have the
456 			 * End-Of-Packet bit set, the received packet
457 			 * will consume multiple buffers. We won't send this
458 			 * packet upstack till we get all the related buffers.
459 			 */
460 			end_of_packet = B_FALSE;
461 		}
462 
463 		/*
464 		 * Get a pointer to the actual receive buffer
465 		 * The mp->b_rptr is mapped to The CurrentDescriptor
466 		 * Buffer Address.
467 		 */
468 		packet =
469 		    (p_rx_sw_packet_t)QUEUE_GET_HEAD(&rx_data->recv_list);
470 		ASSERT(packet != NULL);
471 
472 		rx_buf = packet->rx_buf;
473 
474 		length = current_desc->length;
475 
476 #ifdef __sparc
477 		if (packet->dma_type == USE_DVMA)
478 			dvma_sync(rx_buf->dma_handle, 0,
479 			    DDI_DMA_SYNC_FORKERNEL);
480 		else
481 			(void) ddi_dma_sync(rx_buf->dma_handle,
482 			    E1000G_IPALIGNROOM, length,
483 			    DDI_DMA_SYNC_FORKERNEL);
484 #else
485 		(void) ddi_dma_sync(rx_buf->dma_handle,
486 		    E1000G_IPALIGNROOM, length,
487 		    DDI_DMA_SYNC_FORKERNEL);
488 #endif
489 
490 		if (e1000g_check_dma_handle(
491 		    rx_buf->dma_handle) != DDI_FM_OK) {
492 			ddi_fm_service_impact(Adapter->dip,
493 			    DDI_SERVICE_DEGRADED);
494 			Adapter->e1000g_state |= E1000G_ERROR;
495 		}
496 
497 		accept_frame = (current_desc->errors == 0) ||
498 		    ((current_desc->errors &
499 		    (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) != 0);
500 
501 		if (hw->mac.type == e1000_82543) {
502 			unsigned char last_byte;
503 
504 			last_byte =
505 			    *((unsigned char *)rx_buf->address + length - 1);
506 
507 			if (TBI_ACCEPT(hw,
508 			    current_desc->status, current_desc->errors,
509 			    current_desc->length, last_byte,
510 			    Adapter->min_frame_size, Adapter->max_frame_size)) {
511 
512 				e1000_tbi_adjust_stats(Adapter,
513 				    length, hw->mac.addr);
514 
515 				length--;
516 				accept_frame = B_TRUE;
517 			} else if (e1000_tbi_sbp_enabled_82543(hw) &&
518 			    (current_desc->errors == E1000_RXD_ERR_CE)) {
519 				accept_frame = B_TRUE;
520 			}
521 		}
522 
523 		/*
524 		 * Indicate the packet to the NOS if it was good.
525 		 * Normally, hardware will discard bad packets for us.
526 		 * Check for the packet to be a valid Ethernet packet
527 		 */
528 		if (!accept_frame) {
529 			/*
530 			 * error in incoming packet, either the packet is not a
531 			 * ethernet size packet, or the packet has an error. In
532 			 * either case, the packet will simply be discarded.
533 			 */
534 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
535 			    "Process Receive Interrupts: Error in Packet\n");
536 
537 			E1000G_STAT(rx_ring->stat_error);
538 			/*
539 			 * Returning here as we are done here. There is
540 			 * no point in waiting for while loop to elapse
541 			 * and the things which were done. More efficient
542 			 * and less error prone...
543 			 */
544 			goto rx_drop;
545 		}
546 
547 		/*
548 		 * If the Ethernet CRC is not stripped by the hardware,
549 		 * we need to strip it before sending it up to the stack.
550 		 */
551 		if (end_of_packet && !Adapter->strip_crc) {
552 			if (length > ETHERFCSL) {
553 				length -= ETHERFCSL;
554 			} else {
555 				/*
556 				 * If the fragment is smaller than the CRC,
557 				 * drop this fragment, do the processing of
558 				 * the end of the packet.
559 				 */
560 				ASSERT(rx_data->rx_mblk_tail != NULL);
561 				rx_data->rx_mblk_tail->b_wptr -=
562 				    ETHERFCSL - length;
563 				rx_data->rx_mblk_len -=
564 				    ETHERFCSL - length;
565 
566 				QUEUE_POP_HEAD(&rx_data->recv_list);
567 
568 				goto rx_end_of_packet;
569 			}
570 		}
571 
572 		need_copy = B_TRUE;
573 
574 		if (length <= Adapter->rx_bcopy_thresh)
575 			goto rx_copy;
576 
577 		/*
578 		 * Get the pre-constructed mblk that was associated
579 		 * to the receive data buffer.
580 		 */
581 		if (packet->mp == NULL) {
582 			packet->mp = desballoc((unsigned char *)
583 			    rx_buf->address, length,
584 			    BPRI_MED, &packet->free_rtn);
585 		}
586 
587 		if (packet->mp != NULL) {
588 			/*
589 			 * We have two sets of buffer pool. One associated with
590 			 * the Rxdescriptors and other a freelist buffer pool.
591 			 * Each time we get a good packet, Try to get a buffer
592 			 * from the freelist pool using e1000g_get_buf. If we
593 			 * get free buffer, then replace the descriptor buffer
594 			 * address with the free buffer we just got, and pass
595 			 * the pre-constructed mblk upstack. (note no copying)
596 			 *
597 			 * If we failed to get a free buffer, then try to
598 			 * allocate a new buffer(mp) and copy the recv buffer
599 			 * content to our newly allocated buffer(mp). Don't
600 			 * disturb the desriptor buffer address. (note copying)
601 			 */
602 			newpkt = e1000g_get_buf(rx_data);
603 
604 			if (newpkt != NULL) {
605 				/*
606 				 * Get the mblk associated to the data,
607 				 * and strip it off the sw packet.
608 				 */
609 				nmp = packet->mp;
610 				packet->mp = NULL;
611 				atomic_inc_32(&packet->ref_cnt);
612 
613 				/*
614 				 * Now replace old buffer with the new
615 				 * one we got from free list
616 				 * Both the RxSwPacket as well as the
617 				 * Receive Buffer Descriptor will now
618 				 * point to this new packet.
619 				 */
620 				packet = newpkt;
621 
622 				current_desc->buffer_addr =
623 				    newpkt->rx_buf->dma_address;
624 
625 				need_copy = B_FALSE;
626 			} else {
627 				E1000G_DEBUG_STAT(rx_ring->stat_no_freepkt);
628 			}
629 		}
630 
631 rx_copy:
632 		if (need_copy) {
633 			/*
634 			 * No buffers available on free list,
635 			 * bcopy the data from the buffer and
636 			 * keep the original buffer. Dont want to
637 			 * do this.. Yack but no other way
638 			 */
639 			if ((nmp = allocb(length + E1000G_IPALIGNROOM,
640 			    BPRI_MED)) == NULL) {
641 				/*
642 				 * The system has no buffers available
643 				 * to send up the incoming packet, hence
644 				 * the packet will have to be processed
645 				 * when there're more buffers available.
646 				 */
647 				E1000G_STAT(rx_ring->stat_allocb_fail);
648 				goto rx_drop;
649 			}
650 			nmp->b_rptr += E1000G_IPALIGNROOM;
651 			nmp->b_wptr += E1000G_IPALIGNROOM;
652 			/*
653 			 * The free list did not have any buffers
654 			 * available, so, the received packet will
655 			 * have to be copied into a mp and the original
656 			 * buffer will have to be retained for future
657 			 * packet reception.
658 			 */
659 			bcopy(rx_buf->address, nmp->b_wptr, length);
660 		}
661 
662 		/*
663 		 * The rx_sw_packet MUST be popped off the
664 		 * RxSwPacketList before either a putnext or freemsg
665 		 * is done on the mp that has now been created by the
666 		 * desballoc. If not, it is possible that the free
667 		 * routine will get called from the interrupt context
668 		 * and try to put this packet on the free list
669 		 */
670 		(p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_data->recv_list);
671 
672 		ASSERT(nmp != NULL);
673 		nmp->b_wptr += length;
674 
675 		if (rx_data->rx_mblk == NULL) {
676 			/*
677 			 *  TCP/UDP checksum offload and
678 			 *  IP checksum offload
679 			 */
680 			if (!(current_desc->status & E1000_RXD_STAT_IXSM)) {
681 				/*
682 				 * Check TCP/UDP checksum
683 				 */
684 				if ((current_desc->status &
685 				    E1000_RXD_STAT_TCPCS) &&
686 				    !(current_desc->errors &
687 				    E1000_RXD_ERR_TCPE))
688 					cksumflags |= HCK_FULLCKSUM |
689 					    HCK_FULLCKSUM_OK;
690 				/*
691 				 * Check IP Checksum
692 				 */
693 				if ((current_desc->status &
694 				    E1000_RXD_STAT_IPCS) &&
695 				    !(current_desc->errors &
696 				    E1000_RXD_ERR_IPE))
697 					cksumflags |= HCK_IPV4_HDRCKSUM;
698 			}
699 		}
700 
701 		/*
702 		 * We need to maintain our packet chain in the global
703 		 * Adapter structure, for the Rx processing can end
704 		 * with a fragment that has no EOP set.
705 		 */
706 		if (rx_data->rx_mblk == NULL) {
707 			/* Get the head of the message chain */
708 			rx_data->rx_mblk = nmp;
709 			rx_data->rx_mblk_tail = nmp;
710 			rx_data->rx_mblk_len = length;
711 		} else {	/* Not the first packet */
712 			/* Continue adding buffers */
713 			rx_data->rx_mblk_tail->b_cont = nmp;
714 			rx_data->rx_mblk_tail = nmp;
715 			rx_data->rx_mblk_len += length;
716 		}
717 		ASSERT(rx_data->rx_mblk != NULL);
718 		ASSERT(rx_data->rx_mblk_tail != NULL);
719 		ASSERT(rx_data->rx_mblk_tail->b_cont == NULL);
720 
721 		/*
722 		 * Now this MP is ready to travel upwards but some more
723 		 * fragments are coming.
724 		 * We will send packet upwards as soon as we get EOP
725 		 * set on the packet.
726 		 */
727 		if (!end_of_packet) {
728 			/*
729 			 * continue to get the next descriptor,
730 			 * Tail would be advanced at the end
731 			 */
732 			goto rx_next_desc;
733 		}
734 
735 rx_end_of_packet:
736 		if (E1000G_IS_VLAN_PACKET(rx_data->rx_mblk->b_rptr))
737 			max_size = Adapter->max_frame_size - ETHERFCSL;
738 
739 		if ((rx_data->rx_mblk_len > max_size) ||
740 		    (rx_data->rx_mblk_len < min_size)) {
741 			E1000G_STAT(rx_ring->stat_size_error);
742 			goto rx_drop;
743 		}
744 
745 		/*
746 		 * Found packet with EOP
747 		 * Process the last fragment.
748 		 */
749 		if (cksumflags != 0) {
750 			(void) hcksum_assoc(rx_data->rx_mblk,
751 			    NULL, NULL, 0, 0, 0, 0, cksumflags, 0);
752 			cksumflags = 0;
753 		}
754 
755 		/*
756 		 * Count packets that span multi-descriptors
757 		 */
758 		E1000G_DEBUG_STAT_COND(rx_ring->stat_multi_desc,
759 		    (rx_data->rx_mblk->b_cont != NULL));
760 
761 		/*
762 		 * Append to list to send upstream
763 		 */
764 		if (ret_mp == NULL) {
765 			ret_mp = ret_nmp = rx_data->rx_mblk;
766 		} else {
767 			ret_nmp->b_next = rx_data->rx_mblk;
768 			ret_nmp = rx_data->rx_mblk;
769 		}
770 		ret_nmp->b_next = NULL;
771 		*tail = ret_nmp;
772 		chain_sz += length;
773 
774 		rx_data->rx_mblk = NULL;
775 		rx_data->rx_mblk_tail = NULL;
776 		rx_data->rx_mblk_len = 0;
777 
778 		pkt_count++;
779 
780 rx_next_desc:
781 		/*
782 		 * Zero out the receive descriptors status
783 		 */
784 		current_desc->status = 0;
785 
786 		if (current_desc == rx_data->rbd_last)
787 			rx_data->rbd_next = rx_data->rbd_first;
788 		else
789 			rx_data->rbd_next++;
790 
791 		last_desc = current_desc;
792 		current_desc = rx_data->rbd_next;
793 
794 		/*
795 		 * Put the buffer that we just indicated back
796 		 * at the end of our list
797 		 */
798 		QUEUE_PUSH_TAIL(&rx_data->recv_list,
799 		    &packet->Link);
800 	}	/* while loop */
801 
802 	/* Sync the Rx descriptor DMA buffers */
803 	(void) ddi_dma_sync(rx_data->rbd_dma_handle,
804 	    0, 0, DDI_DMA_SYNC_FORDEV);
805 
806 	/*
807 	 * Advance the E1000's Receive Queue #0 "Tail Pointer".
808 	 */
809 	E1000_WRITE_REG(hw, E1000_RDT(0),
810 	    (uint32_t)(last_desc - rx_data->rbd_first));
811 
812 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
813 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
814 		Adapter->e1000g_state |= E1000G_ERROR;
815 	}
816 
817 	Adapter->rx_pkt_cnt = pkt_count;
818 
819 	return (ret_mp);
820 
821 rx_drop:
822 	/*
823 	 * Zero out the receive descriptors status
824 	 */
825 	current_desc->status = 0;
826 
827 	/* Sync the Rx descriptor DMA buffers */
828 	(void) ddi_dma_sync(rx_data->rbd_dma_handle,
829 	    0, 0, DDI_DMA_SYNC_FORDEV);
830 
831 	if (current_desc == rx_data->rbd_last)
832 		rx_data->rbd_next = rx_data->rbd_first;
833 	else
834 		rx_data->rbd_next++;
835 
836 	last_desc = current_desc;
837 
838 	(p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_data->recv_list);
839 
840 	QUEUE_PUSH_TAIL(&rx_data->recv_list, &packet->Link);
841 	/*
842 	 * Reclaim all old buffers already allocated during
843 	 * Jumbo receives.....for incomplete reception
844 	 */
845 	if (rx_data->rx_mblk != NULL) {
846 		freemsg(rx_data->rx_mblk);
847 		rx_data->rx_mblk = NULL;
848 		rx_data->rx_mblk_tail = NULL;
849 		rx_data->rx_mblk_len = 0;
850 	}
851 	/*
852 	 * Advance the E1000's Receive Queue #0 "Tail Pointer".
853 	 */
854 	E1000_WRITE_REG(hw, E1000_RDT(0),
855 	    (uint32_t)(last_desc - rx_data->rbd_first));
856 
857 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
858 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
859 		Adapter->e1000g_state |= E1000G_ERROR;
860 	}
861 
862 	return (ret_mp);
863 }
864