xref: /titanic_52/usr/src/uts/common/io/e1000g/e1000g_main.c (revision f8a567bdef7790a6a2a9f6123d45d9badb78a8c8)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
28  */
29 
30 /*
31  * **********************************************************************
32  *									*
33  * Module Name:								*
34  *   e1000g_main.c							*
35  *									*
36  * Abstract:								*
37  *   This file contains the interface routines for the solaris OS.	*
38  *   It has all DDI entry point routines and GLD entry point routines.	*
39  *									*
40  *   This file also contains routines that take care of initialization	*
41  *   uninit routine and interrupt routine.				*
42  *									*
43  * **********************************************************************
44  */
45 
46 #include <sys/dlpi.h>
47 #include <sys/mac.h>
48 #include "e1000g_sw.h"
49 #include "e1000g_debug.h"
50 
51 static char ident[] = "Intel PRO/1000 Ethernet";
52 /* LINTED E_STATIC_UNUSED */
53 static char e1000g_version[] = "Driver Ver. 5.3.24";
54 
55 /*
56  * Proto types for DDI entry points
57  */
58 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
59 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
60 static int e1000g_quiesce(dev_info_t *);
61 
62 /*
63  * init and intr routines prototype
64  */
65 static int e1000g_resume(dev_info_t *);
66 static int e1000g_suspend(dev_info_t *);
67 static uint_t e1000g_intr_pciexpress(caddr_t);
68 static uint_t e1000g_intr(caddr_t);
69 static void e1000g_intr_work(struct e1000g *, uint32_t);
70 #pragma inline(e1000g_intr_work)
71 static int e1000g_init(struct e1000g *);
72 static int e1000g_start(struct e1000g *, boolean_t);
73 static void e1000g_stop(struct e1000g *, boolean_t);
74 static int e1000g_m_start(void *);
75 static void e1000g_m_stop(void *);
76 static int e1000g_m_promisc(void *, boolean_t);
77 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
78 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
79 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
80 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
81     uint_t, const void *);
82 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
83 			    uint_t, void *);
84 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
85     mac_prop_info_handle_t);
86 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
87     const void *);
88 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
89 static void e1000g_init_locks(struct e1000g *);
90 static void e1000g_destroy_locks(struct e1000g *);
91 static int e1000g_identify_hardware(struct e1000g *);
92 static int e1000g_regs_map(struct e1000g *);
93 static int e1000g_set_driver_params(struct e1000g *);
94 static void e1000g_set_bufsize(struct e1000g *);
95 static int e1000g_register_mac(struct e1000g *);
96 static boolean_t e1000g_rx_drain(struct e1000g *);
97 static boolean_t e1000g_tx_drain(struct e1000g *);
98 static void e1000g_init_unicst(struct e1000g *);
99 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
100 static int e1000g_alloc_rx_data(struct e1000g *);
101 static void e1000g_release_multicast(struct e1000g *);
102 static void e1000g_pch_limits(struct e1000g *);
103 static uint32_t e1000g_mtu2maxframe(uint32_t);
104 
105 /*
106  * Local routines
107  */
108 static boolean_t e1000g_reset_adapter(struct e1000g *);
109 static void e1000g_tx_clean(struct e1000g *);
110 static void e1000g_rx_clean(struct e1000g *);
111 static void e1000g_link_timer(void *);
112 static void e1000g_local_timer(void *);
113 static boolean_t e1000g_link_check(struct e1000g *);
114 static boolean_t e1000g_stall_check(struct e1000g *);
115 static void e1000g_smartspeed(struct e1000g *);
116 static void e1000g_get_conf(struct e1000g *);
117 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
118     int *);
119 static void enable_watchdog_timer(struct e1000g *);
120 static void disable_watchdog_timer(struct e1000g *);
121 static void start_watchdog_timer(struct e1000g *);
122 static void restart_watchdog_timer(struct e1000g *);
123 static void stop_watchdog_timer(struct e1000g *);
124 static void stop_link_timer(struct e1000g *);
125 static void stop_82547_timer(e1000g_tx_ring_t *);
126 static void e1000g_force_speed_duplex(struct e1000g *);
127 static void e1000g_setup_max_mtu(struct e1000g *);
128 static void e1000g_get_max_frame_size(struct e1000g *);
129 static boolean_t is_valid_mac_addr(uint8_t *);
130 static void e1000g_unattach(dev_info_t *, struct e1000g *);
131 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
132 #ifdef E1000G_DEBUG
133 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
134 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
135 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
137 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
138     struct iocblk *, mblk_t *);
139 #endif
140 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
141     struct iocblk *, mblk_t *);
142 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
143 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
144 static void e1000g_set_internal_loopback(struct e1000g *);
145 static void e1000g_set_external_loopback_1000(struct e1000g *);
146 static void e1000g_set_external_loopback_100(struct e1000g *);
147 static void e1000g_set_external_loopback_10(struct e1000g *);
148 static int e1000g_add_intrs(struct e1000g *);
149 static int e1000g_intr_add(struct e1000g *, int);
150 static int e1000g_rem_intrs(struct e1000g *);
151 static int e1000g_enable_intrs(struct e1000g *);
152 static int e1000g_disable_intrs(struct e1000g *);
153 static boolean_t e1000g_link_up(struct e1000g *);
154 #ifdef __sparc
155 static boolean_t e1000g_find_mac_address(struct e1000g *);
156 #endif
157 static void e1000g_get_phy_state(struct e1000g *);
158 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
159     const void *impl_data);
160 static void e1000g_fm_init(struct e1000g *Adapter);
161 static void e1000g_fm_fini(struct e1000g *Adapter);
162 static void e1000g_param_sync(struct e1000g *);
163 static void e1000g_get_driver_control(struct e1000_hw *);
164 static void e1000g_release_driver_control(struct e1000_hw *);
165 static void e1000g_restore_promisc(struct e1000g *Adapter);
166 
167 char *e1000g_priv_props[] = {
168 	"_tx_bcopy_threshold",
169 	"_tx_interrupt_enable",
170 	"_tx_intr_delay",
171 	"_tx_intr_abs_delay",
172 	"_rx_bcopy_threshold",
173 	"_max_num_rcv_packets",
174 	"_rx_intr_delay",
175 	"_rx_intr_abs_delay",
176 	"_intr_throttling_rate",
177 	"_intr_adaptive",
178 	"_adv_pause_cap",
179 	"_adv_asym_pause_cap",
180 	NULL
181 };
182 
183 static struct cb_ops cb_ws_ops = {
184 	nulldev,		/* cb_open */
185 	nulldev,		/* cb_close */
186 	nodev,			/* cb_strategy */
187 	nodev,			/* cb_print */
188 	nodev,			/* cb_dump */
189 	nodev,			/* cb_read */
190 	nodev,			/* cb_write */
191 	nodev,			/* cb_ioctl */
192 	nodev,			/* cb_devmap */
193 	nodev,			/* cb_mmap */
194 	nodev,			/* cb_segmap */
195 	nochpoll,		/* cb_chpoll */
196 	ddi_prop_op,		/* cb_prop_op */
197 	NULL,			/* cb_stream */
198 	D_MP | D_HOTPLUG,	/* cb_flag */
199 	CB_REV,			/* cb_rev */
200 	nodev,			/* cb_aread */
201 	nodev			/* cb_awrite */
202 };
203 
204 static struct dev_ops ws_ops = {
205 	DEVO_REV,		/* devo_rev */
206 	0,			/* devo_refcnt */
207 	NULL,			/* devo_getinfo */
208 	nulldev,		/* devo_identify */
209 	nulldev,		/* devo_probe */
210 	e1000g_attach,		/* devo_attach */
211 	e1000g_detach,		/* devo_detach */
212 	nodev,			/* devo_reset */
213 	&cb_ws_ops,		/* devo_cb_ops */
214 	NULL,			/* devo_bus_ops */
215 	ddi_power,		/* devo_power */
216 	e1000g_quiesce		/* devo_quiesce */
217 };
218 
219 static struct modldrv modldrv = {
220 	&mod_driverops,		/* Type of module.  This one is a driver */
221 	ident,			/* Discription string */
222 	&ws_ops,		/* driver ops */
223 };
224 
225 static struct modlinkage modlinkage = {
226 	MODREV_1, &modldrv, NULL
227 };
228 
229 /* Access attributes for register mapping */
230 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
231 	DDI_DEVICE_ATTR_V1,
232 	DDI_STRUCTURE_LE_ACC,
233 	DDI_STRICTORDER_ACC,
234 	DDI_FLAGERR_ACC
235 };
236 
237 #define	E1000G_M_CALLBACK_FLAGS \
238 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
239 
240 static mac_callbacks_t e1000g_m_callbacks = {
241 	E1000G_M_CALLBACK_FLAGS,
242 	e1000g_m_stat,
243 	e1000g_m_start,
244 	e1000g_m_stop,
245 	e1000g_m_promisc,
246 	e1000g_m_multicst,
247 	NULL,
248 	e1000g_m_tx,
249 	NULL,
250 	e1000g_m_ioctl,
251 	e1000g_m_getcapab,
252 	NULL,
253 	NULL,
254 	e1000g_m_setprop,
255 	e1000g_m_getprop,
256 	e1000g_m_propinfo
257 };
258 
259 /*
260  * Global variables
261  */
262 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
263 uint32_t e1000g_mblks_pending = 0;
264 /*
265  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
266  * Here we maintain a private dev_info list if e1000g_force_detach is
267  * enabled. If we force the driver to detach while there are still some
268  * rx buffers retained in the upper layer, we have to keep a copy of the
269  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
270  * structure will be freed after the driver is detached. However when we
271  * finally free those rx buffers released by the upper layer, we need to
272  * refer to the dev_info to free the dma buffers. So we save a copy of
273  * the dev_info for this purpose. On x86 platform, we assume this copy
274  * of dev_info is always valid, but on SPARC platform, it could be invalid
275  * after the system board level DR operation. For this reason, the global
276  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
277  */
278 #ifdef __sparc
279 boolean_t e1000g_force_detach = B_FALSE;
280 #else
281 boolean_t e1000g_force_detach = B_TRUE;
282 #endif
283 private_devi_list_t *e1000g_private_devi_list = NULL;
284 
285 /*
286  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
287  * the private dev_info list, and to serialize the processing of rx buffer
288  * freeing and rx buffer recycling.
289  */
290 kmutex_t e1000g_rx_detach_lock;
291 /*
292  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
293  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
294  * If there are many e1000g instances, the system may run out of DVMA
295  * resources during the initialization of the instances, then the flag will
296  * be changed to "USE_DMA". Because different e1000g instances are initialized
297  * in parallel, we need to use this lock to protect the flag.
298  */
299 krwlock_t e1000g_dma_type_lock;
300 
301 /*
302  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
303  * Based on the information from Intel, the 82546 chipset has some hardware
304  * problem. When one port is being reset and the other port is trying to
305  * access the eeprom, it could cause system hang or panic. To workaround this
306  * hardware problem, we use a global mutex to prevent such operations from
307  * happening simultaneously on different instances. This workaround is applied
308  * to all the devices supported by this driver.
309  */
310 kmutex_t e1000g_nvm_lock;
311 
312 /*
313  * Loadable module configuration entry points for the driver
314  */
315 
316 /*
317  * _init - module initialization
318  */
319 int
320 _init(void)
321 {
322 	int status;
323 
324 	mac_init_ops(&ws_ops, WSNAME);
325 	status = mod_install(&modlinkage);
326 	if (status != DDI_SUCCESS)
327 		mac_fini_ops(&ws_ops);
328 	else {
329 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
330 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
331 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
332 	}
333 
334 	return (status);
335 }
336 
337 /*
338  * _fini - module finalization
339  */
340 int
341 _fini(void)
342 {
343 	int status;
344 
345 	if (e1000g_mblks_pending != 0)
346 		return (EBUSY);
347 
348 	status = mod_remove(&modlinkage);
349 	if (status == DDI_SUCCESS) {
350 		mac_fini_ops(&ws_ops);
351 
352 		if (e1000g_force_detach) {
353 			private_devi_list_t *devi_node;
354 
355 			mutex_enter(&e1000g_rx_detach_lock);
356 			while (e1000g_private_devi_list != NULL) {
357 				devi_node = e1000g_private_devi_list;
358 				e1000g_private_devi_list =
359 				    e1000g_private_devi_list->next;
360 
361 				kmem_free(devi_node->priv_dip,
362 				    sizeof (struct dev_info));
363 				kmem_free(devi_node,
364 				    sizeof (private_devi_list_t));
365 			}
366 			mutex_exit(&e1000g_rx_detach_lock);
367 		}
368 
369 		mutex_destroy(&e1000g_rx_detach_lock);
370 		rw_destroy(&e1000g_dma_type_lock);
371 		mutex_destroy(&e1000g_nvm_lock);
372 	}
373 
374 	return (status);
375 }
376 
377 /*
378  * _info - module information
379  */
380 int
381 _info(struct modinfo *modinfop)
382 {
383 	return (mod_info(&modlinkage, modinfop));
384 }
385 
386 /*
387  * e1000g_attach - driver attach
388  *
389  * This function is the device-specific initialization entry
390  * point. This entry point is required and must be written.
391  * The DDI_ATTACH command must be provided in the attach entry
392  * point. When attach() is called with cmd set to DDI_ATTACH,
393  * all normal kernel services (such as kmem_alloc(9F)) are
394  * available for use by the driver.
395  *
396  * The attach() function will be called once for each instance
397  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
398  * Until attach() succeeds, the only driver entry points which
399  * may be called are open(9E) and getinfo(9E).
400  */
401 static int
402 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
403 {
404 	struct e1000g *Adapter;
405 	struct e1000_hw *hw;
406 	struct e1000g_osdep *osdep;
407 	int instance;
408 
409 	switch (cmd) {
410 	default:
411 		e1000g_log(NULL, CE_WARN,
412 		    "Unsupported command send to e1000g_attach... ");
413 		return (DDI_FAILURE);
414 
415 	case DDI_RESUME:
416 		return (e1000g_resume(devinfo));
417 
418 	case DDI_ATTACH:
419 		break;
420 	}
421 
422 	/*
423 	 * get device instance number
424 	 */
425 	instance = ddi_get_instance(devinfo);
426 
427 	/*
428 	 * Allocate soft data structure
429 	 */
430 	Adapter =
431 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
432 
433 	Adapter->dip = devinfo;
434 	Adapter->instance = instance;
435 	Adapter->tx_ring->adapter = Adapter;
436 	Adapter->rx_ring->adapter = Adapter;
437 
438 	hw = &Adapter->shared;
439 	osdep = &Adapter->osdep;
440 	hw->back = osdep;
441 	osdep->adapter = Adapter;
442 
443 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
444 
445 	/*
446 	 * Initialize for fma support
447 	 */
448 	(void) e1000g_get_prop(Adapter, "fm-capable",
449 	    0, 0x0f,
450 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
451 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
452 	    &Adapter->fm_capabilities);
453 	e1000g_fm_init(Adapter);
454 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
455 
456 	/*
457 	 * PCI Configure
458 	 */
459 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
460 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
461 		goto attach_fail;
462 	}
463 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
464 
465 	/*
466 	 * Setup hardware
467 	 */
468 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
469 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
470 		goto attach_fail;
471 	}
472 
473 	/*
474 	 * Map in the device registers.
475 	 */
476 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
477 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
478 		goto attach_fail;
479 	}
480 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
481 
482 	/*
483 	 * Initialize driver parameters
484 	 */
485 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
486 		goto attach_fail;
487 	}
488 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
489 
490 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
491 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
492 		goto attach_fail;
493 	}
494 
495 	/*
496 	 * Initialize interrupts
497 	 */
498 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
499 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
500 		goto attach_fail;
501 	}
502 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
503 
504 	/*
505 	 * Initialize mutex's for this device.
506 	 * Do this before enabling the interrupt handler and
507 	 * register the softint to avoid the condition where
508 	 * interrupt handler can try using uninitialized mutex
509 	 */
510 	e1000g_init_locks(Adapter);
511 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
512 
513 	/*
514 	 * Initialize Driver Counters
515 	 */
516 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
517 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
518 		goto attach_fail;
519 	}
520 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
521 
522 	/*
523 	 * Initialize chip hardware and software structures
524 	 */
525 	rw_enter(&Adapter->chip_lock, RW_WRITER);
526 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
527 		rw_exit(&Adapter->chip_lock);
528 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
529 		goto attach_fail;
530 	}
531 	rw_exit(&Adapter->chip_lock);
532 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
533 
534 	/*
535 	 * Register the driver to the MAC
536 	 */
537 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
538 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
539 		goto attach_fail;
540 	}
541 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
542 
543 	/*
544 	 * Now that mutex locks are initialized, and the chip is also
545 	 * initialized, enable interrupts.
546 	 */
547 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
548 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
549 		goto attach_fail;
550 	}
551 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
552 
553 	/*
554 	 * If e1000g_force_detach is enabled, in global private dip list,
555 	 * we will create a new entry, which maintains the priv_dip for DR
556 	 * supports after driver detached.
557 	 */
558 	if (e1000g_force_detach) {
559 		private_devi_list_t *devi_node;
560 
561 		Adapter->priv_dip =
562 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
563 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
564 		    sizeof (struct dev_info));
565 
566 		devi_node =
567 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
568 
569 		mutex_enter(&e1000g_rx_detach_lock);
570 		devi_node->priv_dip = Adapter->priv_dip;
571 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
572 		devi_node->pending_rx_count = 0;
573 
574 		Adapter->priv_devi_node = devi_node;
575 
576 		if (e1000g_private_devi_list == NULL) {
577 			devi_node->prev = NULL;
578 			devi_node->next = NULL;
579 			e1000g_private_devi_list = devi_node;
580 		} else {
581 			devi_node->prev = NULL;
582 			devi_node->next = e1000g_private_devi_list;
583 			e1000g_private_devi_list->prev = devi_node;
584 			e1000g_private_devi_list = devi_node;
585 		}
586 		mutex_exit(&e1000g_rx_detach_lock);
587 	}
588 
589 	Adapter->e1000g_state = E1000G_INITIALIZED;
590 	return (DDI_SUCCESS);
591 
592 attach_fail:
593 	e1000g_unattach(devinfo, Adapter);
594 	return (DDI_FAILURE);
595 }
596 
597 static int
598 e1000g_register_mac(struct e1000g *Adapter)
599 {
600 	struct e1000_hw *hw = &Adapter->shared;
601 	mac_register_t *mac;
602 	int err;
603 
604 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
605 		return (DDI_FAILURE);
606 
607 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
608 	mac->m_driver = Adapter;
609 	mac->m_dip = Adapter->dip;
610 	mac->m_src_addr = hw->mac.addr;
611 	mac->m_callbacks = &e1000g_m_callbacks;
612 	mac->m_min_sdu = 0;
613 	mac->m_max_sdu = Adapter->default_mtu;
614 	mac->m_margin = VLAN_TAGSZ;
615 	mac->m_priv_props = e1000g_priv_props;
616 	mac->m_v12n = MAC_VIRT_LEVEL1;
617 
618 	err = mac_register(mac, &Adapter->mh);
619 	mac_free(mac);
620 
621 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
622 }
623 
624 static int
625 e1000g_identify_hardware(struct e1000g *Adapter)
626 {
627 	struct e1000_hw *hw = &Adapter->shared;
628 	struct e1000g_osdep *osdep = &Adapter->osdep;
629 
630 	/* Get the device id */
631 	hw->vendor_id =
632 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
633 	hw->device_id =
634 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
635 	hw->revision_id =
636 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
637 	hw->subsystem_device_id =
638 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
639 	hw->subsystem_vendor_id =
640 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
641 
642 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
643 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
644 		    "MAC type could not be set properly.");
645 		return (DDI_FAILURE);
646 	}
647 
648 	return (DDI_SUCCESS);
649 }
650 
651 static int
652 e1000g_regs_map(struct e1000g *Adapter)
653 {
654 	dev_info_t *devinfo = Adapter->dip;
655 	struct e1000_hw *hw = &Adapter->shared;
656 	struct e1000g_osdep *osdep = &Adapter->osdep;
657 	off_t mem_size;
658 	bar_info_t bar_info;
659 	int offset, rnumber;
660 
661 	rnumber = ADAPTER_REG_SET;
662 	/* Get size of adapter register memory */
663 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
664 	    DDI_SUCCESS) {
665 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
666 		    "ddi_dev_regsize for registers failed");
667 		return (DDI_FAILURE);
668 	}
669 
670 	/* Map adapter register memory */
671 	if ((ddi_regs_map_setup(devinfo, rnumber,
672 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
673 	    &osdep->reg_handle)) != DDI_SUCCESS) {
674 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
675 		    "ddi_regs_map_setup for registers failed");
676 		goto regs_map_fail;
677 	}
678 
679 	/* ICH needs to map flash memory */
680 	switch (hw->mac.type) {
681 	case e1000_ich8lan:
682 	case e1000_ich9lan:
683 	case e1000_ich10lan:
684 	case e1000_pchlan:
685 	case e1000_pch2lan:
686 		rnumber = ICH_FLASH_REG_SET;
687 
688 		/* get flash size */
689 		if (ddi_dev_regsize(devinfo, rnumber,
690 		    &mem_size) != DDI_SUCCESS) {
691 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
692 			    "ddi_dev_regsize for ICH flash failed");
693 			goto regs_map_fail;
694 		}
695 
696 		/* map flash in */
697 		if (ddi_regs_map_setup(devinfo, rnumber,
698 		    (caddr_t *)&hw->flash_address, 0,
699 		    mem_size, &e1000g_regs_acc_attr,
700 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
701 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
702 			    "ddi_regs_map_setup for ICH flash failed");
703 			goto regs_map_fail;
704 		}
705 		break;
706 	default:
707 		break;
708 	}
709 
710 	/* map io space */
711 	switch (hw->mac.type) {
712 	case e1000_82544:
713 	case e1000_82540:
714 	case e1000_82545:
715 	case e1000_82546:
716 	case e1000_82541:
717 	case e1000_82541_rev_2:
718 		/* find the IO bar */
719 		rnumber = -1;
720 		for (offset = PCI_CONF_BASE1;
721 		    offset <= PCI_CONF_BASE5; offset += 4) {
722 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
723 			    != DDI_SUCCESS)
724 				continue;
725 			if (bar_info.type == E1000G_BAR_IO) {
726 				rnumber = bar_info.rnumber;
727 				break;
728 			}
729 		}
730 
731 		if (rnumber < 0) {
732 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
733 			    "No io space is found");
734 			goto regs_map_fail;
735 		}
736 
737 		/* get io space size */
738 		if (ddi_dev_regsize(devinfo, rnumber,
739 		    &mem_size) != DDI_SUCCESS) {
740 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
741 			    "ddi_dev_regsize for io space failed");
742 			goto regs_map_fail;
743 		}
744 
745 		/* map io space */
746 		if ((ddi_regs_map_setup(devinfo, rnumber,
747 		    (caddr_t *)&hw->io_base, 0, mem_size,
748 		    &e1000g_regs_acc_attr,
749 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
750 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
751 			    "ddi_regs_map_setup for io space failed");
752 			goto regs_map_fail;
753 		}
754 		break;
755 	default:
756 		hw->io_base = 0;
757 		break;
758 	}
759 
760 	return (DDI_SUCCESS);
761 
762 regs_map_fail:
763 	if (osdep->reg_handle != NULL)
764 		ddi_regs_map_free(&osdep->reg_handle);
765 	if (osdep->ich_flash_handle != NULL)
766 		ddi_regs_map_free(&osdep->ich_flash_handle);
767 	return (DDI_FAILURE);
768 }
769 
770 static int
771 e1000g_set_driver_params(struct e1000g *Adapter)
772 {
773 	struct e1000_hw *hw;
774 
775 	hw = &Adapter->shared;
776 
777 	/* Set MAC type and initialize hardware functions */
778 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
779 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
780 		    "Could not setup hardware functions");
781 		return (DDI_FAILURE);
782 	}
783 
784 	/* Get bus information */
785 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
786 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
787 		    "Could not get bus information");
788 		return (DDI_FAILURE);
789 	}
790 
791 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
792 
793 	hw->mac.autoneg_failed = B_TRUE;
794 
795 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
796 	hw->phy.autoneg_wait_to_complete = B_FALSE;
797 
798 	/* Adaptive IFS related changes */
799 	hw->mac.adaptive_ifs = B_TRUE;
800 
801 	/* Enable phy init script for IGP phy of 82541/82547 */
802 	if ((hw->mac.type == e1000_82547) ||
803 	    (hw->mac.type == e1000_82541) ||
804 	    (hw->mac.type == e1000_82547_rev_2) ||
805 	    (hw->mac.type == e1000_82541_rev_2))
806 		e1000_init_script_state_82541(hw, B_TRUE);
807 
808 	/* Enable the TTL workaround for 82541/82547 */
809 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
810 
811 #ifdef __sparc
812 	Adapter->strip_crc = B_TRUE;
813 #else
814 	Adapter->strip_crc = B_FALSE;
815 #endif
816 
817 	/* setup the maximum MTU size of the chip */
818 	e1000g_setup_max_mtu(Adapter);
819 
820 	/* Get speed/duplex settings in conf file */
821 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
822 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
823 	e1000g_force_speed_duplex(Adapter);
824 
825 	/* Get Jumbo Frames settings in conf file */
826 	e1000g_get_max_frame_size(Adapter);
827 
828 	/* Get conf file properties */
829 	e1000g_get_conf(Adapter);
830 
831 	/* enforce PCH limits */
832 	e1000g_pch_limits(Adapter);
833 
834 	/* Set Rx/Tx buffer size */
835 	e1000g_set_bufsize(Adapter);
836 
837 	/* Master Latency Timer */
838 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
839 
840 	/* copper options */
841 	if (hw->phy.media_type == e1000_media_type_copper) {
842 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
843 		hw->phy.disable_polarity_correction = B_FALSE;
844 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
845 	}
846 
847 	/* The initial link state should be "unknown" */
848 	Adapter->link_state = LINK_STATE_UNKNOWN;
849 
850 	/* Initialize rx parameters */
851 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
852 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
853 
854 	/* Initialize tx parameters */
855 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
856 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
857 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
858 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
859 
860 	/* Initialize rx parameters */
861 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
862 
863 	return (DDI_SUCCESS);
864 }
865 
866 static void
867 e1000g_setup_max_mtu(struct e1000g *Adapter)
868 {
869 	struct e1000_mac_info *mac = &Adapter->shared.mac;
870 	struct e1000_phy_info *phy = &Adapter->shared.phy;
871 
872 	switch (mac->type) {
873 	/* types that do not support jumbo frames */
874 	case e1000_ich8lan:
875 	case e1000_82573:
876 	case e1000_82583:
877 		Adapter->max_mtu = ETHERMTU;
878 		break;
879 	/* ich9 supports jumbo frames except on one phy type */
880 	case e1000_ich9lan:
881 		if (phy->type == e1000_phy_ife)
882 			Adapter->max_mtu = ETHERMTU;
883 		else
884 			Adapter->max_mtu = MAXIMUM_MTU_9K;
885 		break;
886 	/* pch can do jumbo frames up to 4K */
887 	case e1000_pchlan:
888 		Adapter->max_mtu = MAXIMUM_MTU_4K;
889 		break;
890 	/* pch2 can do jumbo frames up to 9K */
891 	case e1000_pch2lan:
892 		Adapter->max_mtu = MAXIMUM_MTU_9K;
893 		break;
894 	/* types with a special limit */
895 	case e1000_82571:
896 	case e1000_82572:
897 	case e1000_82574:
898 	case e1000_80003es2lan:
899 	case e1000_ich10lan:
900 		if (e1000g_jumbo_mtu >= ETHERMTU &&
901 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
902 			Adapter->max_mtu = e1000g_jumbo_mtu;
903 		} else {
904 			Adapter->max_mtu = MAXIMUM_MTU_9K;
905 		}
906 		break;
907 	/* default limit is 16K */
908 	default:
909 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
910 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
911 		break;
912 	}
913 }
914 
915 static void
916 e1000g_set_bufsize(struct e1000g *Adapter)
917 {
918 	struct e1000_mac_info *mac = &Adapter->shared.mac;
919 	uint64_t rx_size;
920 	uint64_t tx_size;
921 
922 	dev_info_t *devinfo = Adapter->dip;
923 #ifdef __sparc
924 	ulong_t iommu_pagesize;
925 #endif
926 	/* Get the system page size */
927 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
928 
929 #ifdef __sparc
930 	iommu_pagesize = dvma_pagesize(devinfo);
931 	if (iommu_pagesize != 0) {
932 		if (Adapter->sys_page_sz == iommu_pagesize) {
933 			if (iommu_pagesize > 0x4000)
934 				Adapter->sys_page_sz = 0x4000;
935 		} else {
936 			if (Adapter->sys_page_sz > iommu_pagesize)
937 				Adapter->sys_page_sz = iommu_pagesize;
938 		}
939 	}
940 	if (Adapter->lso_enable) {
941 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
942 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
943 	} else {
944 		Adapter->dvma_page_num = Adapter->max_frame_size /
945 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
946 	}
947 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
948 #endif
949 
950 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
951 
952 	if (Adapter->mem_workaround_82546 &&
953 	    ((mac->type == e1000_82545) ||
954 	    (mac->type == e1000_82546) ||
955 	    (mac->type == e1000_82546_rev_3))) {
956 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
957 	} else {
958 		rx_size = Adapter->max_frame_size;
959 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
960 		    (rx_size <= FRAME_SIZE_UPTO_4K))
961 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
962 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
963 		    (rx_size <= FRAME_SIZE_UPTO_8K))
964 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
965 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
966 		    (rx_size <= FRAME_SIZE_UPTO_16K))
967 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
968 		else
969 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
970 	}
971 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
972 
973 	tx_size = Adapter->max_frame_size;
974 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
975 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
976 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
977 	    (tx_size <= FRAME_SIZE_UPTO_8K))
978 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
979 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
980 	    (tx_size <= FRAME_SIZE_UPTO_16K))
981 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
982 	else
983 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
984 
985 	/*
986 	 * For Wiseman adapters we have an requirement of having receive
987 	 * buffers aligned at 256 byte boundary. Since Livengood does not
988 	 * require this and forcing it for all hardwares will have
989 	 * performance implications, I am making it applicable only for
990 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
991 	 * it is okay to have normal frames...but it does involve a
992 	 * potential risk where we may loose data if buffer is not
993 	 * aligned...so all wiseman boards to have 256 byte aligned
994 	 * buffers
995 	 */
996 	if (mac->type < e1000_82543)
997 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
998 	else
999 		Adapter->rx_buf_align = 1;
1000 }
1001 
1002 /*
1003  * e1000g_detach - driver detach
1004  *
1005  * The detach() function is the complement of the attach routine.
1006  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1007  * state  associated  with  a  given  instance of a device node
1008  * prior to the removal of that instance from the system.
1009  *
1010  * The detach() function will be called once for each  instance
1011  * of the device for which there has been a successful attach()
1012  * once there are no longer  any  opens  on  the  device.
1013  *
1014  * Interrupts routine are disabled, All memory allocated by this
1015  * driver are freed.
1016  */
1017 static int
1018 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1019 {
1020 	struct e1000g *Adapter;
1021 	boolean_t rx_drain;
1022 
1023 	switch (cmd) {
1024 	default:
1025 		return (DDI_FAILURE);
1026 
1027 	case DDI_SUSPEND:
1028 		return (e1000g_suspend(devinfo));
1029 
1030 	case DDI_DETACH:
1031 		break;
1032 	}
1033 
1034 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1035 	if (Adapter == NULL)
1036 		return (DDI_FAILURE);
1037 
1038 	rx_drain = e1000g_rx_drain(Adapter);
1039 	if (!rx_drain && !e1000g_force_detach)
1040 		return (DDI_FAILURE);
1041 
1042 	if (mac_unregister(Adapter->mh) != 0) {
1043 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1044 		return (DDI_FAILURE);
1045 	}
1046 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1047 
1048 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1049 
1050 	if (!e1000g_force_detach && !rx_drain)
1051 		return (DDI_FAILURE);
1052 
1053 	e1000g_unattach(devinfo, Adapter);
1054 
1055 	return (DDI_SUCCESS);
1056 }
1057 
1058 /*
1059  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1060  */
1061 void
1062 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1063 {
1064 	ASSERT(e1000g_private_devi_list != NULL);
1065 	ASSERT(devi_node != NULL);
1066 
1067 	if (devi_node->prev != NULL)
1068 		devi_node->prev->next = devi_node->next;
1069 	if (devi_node->next != NULL)
1070 		devi_node->next->prev = devi_node->prev;
1071 	if (devi_node == e1000g_private_devi_list)
1072 		e1000g_private_devi_list = devi_node->next;
1073 
1074 	kmem_free(devi_node->priv_dip,
1075 	    sizeof (struct dev_info));
1076 	kmem_free(devi_node,
1077 	    sizeof (private_devi_list_t));
1078 }
1079 
1080 static void
1081 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1082 {
1083 	private_devi_list_t *devi_node;
1084 	int result;
1085 
1086 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1087 		(void) e1000g_disable_intrs(Adapter);
1088 	}
1089 
1090 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1091 		(void) mac_unregister(Adapter->mh);
1092 	}
1093 
1094 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1095 		(void) e1000g_rem_intrs(Adapter);
1096 	}
1097 
1098 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1099 		(void) ddi_prop_remove_all(devinfo);
1100 	}
1101 
1102 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1103 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1104 	}
1105 
1106 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1107 		stop_link_timer(Adapter);
1108 
1109 		mutex_enter(&e1000g_nvm_lock);
1110 		result = e1000_reset_hw(&Adapter->shared);
1111 		mutex_exit(&e1000g_nvm_lock);
1112 
1113 		if (result != E1000_SUCCESS) {
1114 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1115 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1116 		}
1117 	}
1118 
1119 	e1000g_release_multicast(Adapter);
1120 
1121 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1122 		if (Adapter->osdep.reg_handle != NULL)
1123 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1124 		if (Adapter->osdep.ich_flash_handle != NULL)
1125 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1126 		if (Adapter->osdep.io_reg_handle != NULL)
1127 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1128 	}
1129 
1130 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1131 		if (Adapter->osdep.cfg_handle != NULL)
1132 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1133 	}
1134 
1135 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1136 		e1000g_destroy_locks(Adapter);
1137 	}
1138 
1139 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1140 		e1000g_fm_fini(Adapter);
1141 	}
1142 
1143 	mutex_enter(&e1000g_rx_detach_lock);
1144 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1145 		devi_node = Adapter->priv_devi_node;
1146 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1147 
1148 		if (devi_node->pending_rx_count == 0) {
1149 			e1000g_free_priv_devi_node(devi_node);
1150 		}
1151 	}
1152 	mutex_exit(&e1000g_rx_detach_lock);
1153 
1154 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1155 
1156 	/*
1157 	 * Another hotplug spec requirement,
1158 	 * run ddi_set_driver_private(devinfo, null);
1159 	 */
1160 	ddi_set_driver_private(devinfo, NULL);
1161 }
1162 
1163 /*
1164  * Get the BAR type and rnumber for a given PCI BAR offset
1165  */
1166 static int
1167 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1168 {
1169 	pci_regspec_t *regs;
1170 	uint_t regs_length;
1171 	int type, rnumber, rcount;
1172 
1173 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1174 	    (bar_offset <= PCI_CONF_BASE5));
1175 
1176 	/*
1177 	 * Get the DDI "reg" property
1178 	 */
1179 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1180 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1181 	    &regs_length) != DDI_PROP_SUCCESS) {
1182 		return (DDI_FAILURE);
1183 	}
1184 
1185 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1186 	/*
1187 	 * Check the BAR offset
1188 	 */
1189 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1190 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1191 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1192 			break;
1193 		}
1194 	}
1195 
1196 	ddi_prop_free(regs);
1197 
1198 	if (rnumber >= rcount)
1199 		return (DDI_FAILURE);
1200 
1201 	switch (type) {
1202 	case PCI_ADDR_CONFIG:
1203 		bar_info->type = E1000G_BAR_CONFIG;
1204 		break;
1205 	case PCI_ADDR_IO:
1206 		bar_info->type = E1000G_BAR_IO;
1207 		break;
1208 	case PCI_ADDR_MEM32:
1209 		bar_info->type = E1000G_BAR_MEM32;
1210 		break;
1211 	case PCI_ADDR_MEM64:
1212 		bar_info->type = E1000G_BAR_MEM64;
1213 		break;
1214 	default:
1215 		return (DDI_FAILURE);
1216 	}
1217 	bar_info->rnumber = rnumber;
1218 	return (DDI_SUCCESS);
1219 }
1220 
1221 static void
1222 e1000g_init_locks(struct e1000g *Adapter)
1223 {
1224 	e1000g_tx_ring_t *tx_ring;
1225 	e1000g_rx_ring_t *rx_ring;
1226 
1227 	rw_init(&Adapter->chip_lock, NULL,
1228 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1229 	mutex_init(&Adapter->link_lock, NULL,
1230 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1231 	mutex_init(&Adapter->watchdog_lock, NULL,
1232 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1233 
1234 	tx_ring = Adapter->tx_ring;
1235 
1236 	mutex_init(&tx_ring->tx_lock, NULL,
1237 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1238 	mutex_init(&tx_ring->usedlist_lock, NULL,
1239 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1240 	mutex_init(&tx_ring->freelist_lock, NULL,
1241 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1242 
1243 	rx_ring = Adapter->rx_ring;
1244 
1245 	mutex_init(&rx_ring->rx_lock, NULL,
1246 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1247 }
1248 
1249 static void
1250 e1000g_destroy_locks(struct e1000g *Adapter)
1251 {
1252 	e1000g_tx_ring_t *tx_ring;
1253 	e1000g_rx_ring_t *rx_ring;
1254 
1255 	tx_ring = Adapter->tx_ring;
1256 	mutex_destroy(&tx_ring->tx_lock);
1257 	mutex_destroy(&tx_ring->usedlist_lock);
1258 	mutex_destroy(&tx_ring->freelist_lock);
1259 
1260 	rx_ring = Adapter->rx_ring;
1261 	mutex_destroy(&rx_ring->rx_lock);
1262 
1263 	mutex_destroy(&Adapter->link_lock);
1264 	mutex_destroy(&Adapter->watchdog_lock);
1265 	rw_destroy(&Adapter->chip_lock);
1266 
1267 	/* destory mutex initialized in shared code */
1268 	e1000_destroy_hw_mutex(&Adapter->shared);
1269 }
1270 
1271 static int
1272 e1000g_resume(dev_info_t *devinfo)
1273 {
1274 	struct e1000g *Adapter;
1275 
1276 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1277 	if (Adapter == NULL)
1278 		e1000g_log(Adapter, CE_PANIC,
1279 		    "Instance pointer is null\n");
1280 
1281 	if (Adapter->dip != devinfo)
1282 		e1000g_log(Adapter, CE_PANIC,
1283 		    "Devinfo is not the same as saved devinfo\n");
1284 
1285 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1286 
1287 	if (Adapter->e1000g_state & E1000G_STARTED) {
1288 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1289 			rw_exit(&Adapter->chip_lock);
1290 			/*
1291 			 * We note the failure, but return success, as the
1292 			 * system is still usable without this controller.
1293 			 */
1294 			e1000g_log(Adapter, CE_WARN,
1295 			    "e1000g_resume: failed to restart controller\n");
1296 			return (DDI_SUCCESS);
1297 		}
1298 		/* Enable and start the watchdog timer */
1299 		enable_watchdog_timer(Adapter);
1300 	}
1301 
1302 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1303 
1304 	rw_exit(&Adapter->chip_lock);
1305 
1306 	return (DDI_SUCCESS);
1307 }
1308 
1309 static int
1310 e1000g_suspend(dev_info_t *devinfo)
1311 {
1312 	struct e1000g *Adapter;
1313 
1314 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1315 	if (Adapter == NULL)
1316 		return (DDI_FAILURE);
1317 
1318 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1319 
1320 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1321 
1322 	/* if the port isn't plumbed, we can simply return */
1323 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1324 		rw_exit(&Adapter->chip_lock);
1325 		return (DDI_SUCCESS);
1326 	}
1327 
1328 	e1000g_stop(Adapter, B_FALSE);
1329 
1330 	rw_exit(&Adapter->chip_lock);
1331 
1332 	/* Disable and stop all the timers */
1333 	disable_watchdog_timer(Adapter);
1334 	stop_link_timer(Adapter);
1335 	stop_82547_timer(Adapter->tx_ring);
1336 
1337 	return (DDI_SUCCESS);
1338 }
1339 
1340 static int
1341 e1000g_init(struct e1000g *Adapter)
1342 {
1343 	uint32_t pba;
1344 	uint32_t high_water;
1345 	struct e1000_hw *hw;
1346 	clock_t link_timeout;
1347 	int result;
1348 
1349 	hw = &Adapter->shared;
1350 
1351 	/*
1352 	 * reset to put the hardware in a known state
1353 	 * before we try to do anything with the eeprom
1354 	 */
1355 	mutex_enter(&e1000g_nvm_lock);
1356 	result = e1000_reset_hw(hw);
1357 	mutex_exit(&e1000g_nvm_lock);
1358 
1359 	if (result != E1000_SUCCESS) {
1360 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1361 		goto init_fail;
1362 	}
1363 
1364 	mutex_enter(&e1000g_nvm_lock);
1365 	result = e1000_validate_nvm_checksum(hw);
1366 	if (result < E1000_SUCCESS) {
1367 		/*
1368 		 * Some PCI-E parts fail the first check due to
1369 		 * the link being in sleep state.  Call it again,
1370 		 * if it fails a second time its a real issue.
1371 		 */
1372 		result = e1000_validate_nvm_checksum(hw);
1373 	}
1374 	mutex_exit(&e1000g_nvm_lock);
1375 
1376 	if (result < E1000_SUCCESS) {
1377 		e1000g_log(Adapter, CE_WARN,
1378 		    "Invalid NVM checksum. Please contact "
1379 		    "the vendor to update the NVM.");
1380 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1381 		goto init_fail;
1382 	}
1383 
1384 	result = 0;
1385 #ifdef __sparc
1386 	/*
1387 	 * First, we try to get the local ethernet address from OBP. If
1388 	 * failed, then we get it from the EEPROM of NIC card.
1389 	 */
1390 	result = e1000g_find_mac_address(Adapter);
1391 #endif
1392 	/* Get the local ethernet address. */
1393 	if (!result) {
1394 		mutex_enter(&e1000g_nvm_lock);
1395 		result = e1000_read_mac_addr(hw);
1396 		mutex_exit(&e1000g_nvm_lock);
1397 	}
1398 
1399 	if (result < E1000_SUCCESS) {
1400 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1401 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1402 		goto init_fail;
1403 	}
1404 
1405 	/* check for valid mac address */
1406 	if (!is_valid_mac_addr(hw->mac.addr)) {
1407 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1408 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1409 		goto init_fail;
1410 	}
1411 
1412 	/* Set LAA state for 82571 chipset */
1413 	e1000_set_laa_state_82571(hw, B_TRUE);
1414 
1415 	/* Master Latency Timer implementation */
1416 	if (Adapter->master_latency_timer) {
1417 		pci_config_put8(Adapter->osdep.cfg_handle,
1418 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1419 	}
1420 
1421 	if (hw->mac.type < e1000_82547) {
1422 		/*
1423 		 * Total FIFO is 64K
1424 		 */
1425 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1426 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1427 		else
1428 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1429 	} else if ((hw->mac.type == e1000_82571) ||
1430 	    (hw->mac.type == e1000_82572) ||
1431 	    (hw->mac.type == e1000_80003es2lan)) {
1432 		/*
1433 		 * Total FIFO is 48K
1434 		 */
1435 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1436 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1437 		else
1438 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1439 	} else if (hw->mac.type == e1000_82573) {
1440 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1441 	} else if (hw->mac.type == e1000_82574) {
1442 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1443 		pba = E1000_READ_REG(hw, E1000_PBA);
1444 	} else if (hw->mac.type == e1000_ich8lan) {
1445 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1446 	} else if (hw->mac.type == e1000_ich9lan) {
1447 		pba = E1000_PBA_10K;
1448 	} else if (hw->mac.type == e1000_ich10lan) {
1449 		pba = E1000_PBA_10K;
1450 	} else if (hw->mac.type == e1000_pchlan) {
1451 		pba = E1000_PBA_26K;
1452 	} else if (hw->mac.type == e1000_pch2lan) {
1453 		pba = E1000_PBA_26K;
1454 	} else {
1455 		/*
1456 		 * Total FIFO is 40K
1457 		 */
1458 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1459 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1460 		else
1461 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1462 	}
1463 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1464 
1465 	/*
1466 	 * These parameters set thresholds for the adapter's generation(Tx)
1467 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1468 	 * settings.  Flow control is enabled or disabled in the configuration
1469 	 * file.
1470 	 * High-water mark is set down from the top of the rx fifo (not
1471 	 * sensitive to max_frame_size) and low-water is set just below
1472 	 * high-water mark.
1473 	 * The high water mark must be low enough to fit one full frame above
1474 	 * it in the rx FIFO.  Should be the lower of:
1475 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1476 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1477 	 * Rx FIFO size minus one full frame.
1478 	 */
1479 	high_water = min(((pba << 10) * 9 / 10),
1480 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1481 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1482 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1483 	    ((pba << 10) - Adapter->max_frame_size)));
1484 
1485 	hw->fc.high_water = high_water & 0xFFF8;
1486 	hw->fc.low_water = hw->fc.high_water - 8;
1487 
1488 	if (hw->mac.type == e1000_80003es2lan)
1489 		hw->fc.pause_time = 0xFFFF;
1490 	else
1491 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1492 	hw->fc.send_xon = B_TRUE;
1493 
1494 	/*
1495 	 * Reset the adapter hardware the second time.
1496 	 */
1497 	mutex_enter(&e1000g_nvm_lock);
1498 	result = e1000_reset_hw(hw);
1499 	mutex_exit(&e1000g_nvm_lock);
1500 
1501 	if (result != E1000_SUCCESS) {
1502 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1503 		goto init_fail;
1504 	}
1505 
1506 	/* disable wakeup control by default */
1507 	if (hw->mac.type >= e1000_82544)
1508 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1509 
1510 	/*
1511 	 * MWI should be disabled on 82546.
1512 	 */
1513 	if (hw->mac.type == e1000_82546)
1514 		e1000_pci_clear_mwi(hw);
1515 	else
1516 		e1000_pci_set_mwi(hw);
1517 
1518 	/*
1519 	 * Configure/Initialize hardware
1520 	 */
1521 	mutex_enter(&e1000g_nvm_lock);
1522 	result = e1000_init_hw(hw);
1523 	mutex_exit(&e1000g_nvm_lock);
1524 
1525 	if (result < E1000_SUCCESS) {
1526 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1527 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1528 		goto init_fail;
1529 	}
1530 
1531 	/*
1532 	 * Restore LED settings to the default from EEPROM
1533 	 * to meet the standard for Sun platforms.
1534 	 */
1535 	(void) e1000_cleanup_led(hw);
1536 
1537 	/* Disable Smart Power Down */
1538 	phy_spd_state(hw, B_FALSE);
1539 
1540 	/* Make sure driver has control */
1541 	e1000g_get_driver_control(hw);
1542 
1543 	/*
1544 	 * Initialize unicast addresses.
1545 	 */
1546 	e1000g_init_unicst(Adapter);
1547 
1548 	/*
1549 	 * Setup and initialize the mctable structures.  After this routine
1550 	 * completes  Multicast table will be set
1551 	 */
1552 	e1000_update_mc_addr_list(hw,
1553 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1554 	msec_delay(5);
1555 
1556 	/*
1557 	 * Implement Adaptive IFS
1558 	 */
1559 	e1000_reset_adaptive(hw);
1560 
1561 	/* Setup Interrupt Throttling Register */
1562 	if (hw->mac.type >= e1000_82540) {
1563 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1564 	} else
1565 		Adapter->intr_adaptive = B_FALSE;
1566 
1567 	/* Start the timer for link setup */
1568 	if (hw->mac.autoneg)
1569 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1570 	else
1571 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1572 
1573 	mutex_enter(&Adapter->link_lock);
1574 	if (hw->phy.autoneg_wait_to_complete) {
1575 		Adapter->link_complete = B_TRUE;
1576 	} else {
1577 		Adapter->link_complete = B_FALSE;
1578 		Adapter->link_tid = timeout(e1000g_link_timer,
1579 		    (void *)Adapter, link_timeout);
1580 	}
1581 	mutex_exit(&Adapter->link_lock);
1582 
1583 	/* Save the state of the phy */
1584 	e1000g_get_phy_state(Adapter);
1585 
1586 	e1000g_param_sync(Adapter);
1587 
1588 	Adapter->init_count++;
1589 
1590 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1591 		goto init_fail;
1592 	}
1593 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1594 		goto init_fail;
1595 	}
1596 
1597 	Adapter->poll_mode = e1000g_poll_mode;
1598 
1599 	return (DDI_SUCCESS);
1600 
1601 init_fail:
1602 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1603 	return (DDI_FAILURE);
1604 }
1605 
1606 static int
1607 e1000g_alloc_rx_data(struct e1000g *Adapter)
1608 {
1609 	e1000g_rx_ring_t *rx_ring;
1610 	e1000g_rx_data_t *rx_data;
1611 
1612 	rx_ring = Adapter->rx_ring;
1613 
1614 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1615 
1616 	if (rx_data == NULL)
1617 		return (DDI_FAILURE);
1618 
1619 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1620 	rx_data->rx_ring = rx_ring;
1621 
1622 	mutex_init(&rx_data->freelist_lock, NULL,
1623 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1624 	mutex_init(&rx_data->recycle_lock, NULL,
1625 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1626 
1627 	rx_ring->rx_data = rx_data;
1628 
1629 	return (DDI_SUCCESS);
1630 }
1631 
1632 void
1633 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1634 {
1635 	rx_sw_packet_t *packet, *next_packet;
1636 
1637 	if (rx_data == NULL)
1638 		return;
1639 
1640 	packet = rx_data->packet_area;
1641 	while (packet != NULL) {
1642 		next_packet = packet->next;
1643 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1644 		packet = next_packet;
1645 	}
1646 	rx_data->packet_area = NULL;
1647 }
1648 
1649 void
1650 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1651 {
1652 	if (rx_data == NULL)
1653 		return;
1654 
1655 	mutex_destroy(&rx_data->freelist_lock);
1656 	mutex_destroy(&rx_data->recycle_lock);
1657 
1658 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1659 }
1660 
1661 /*
1662  * Check if the link is up
1663  */
1664 static boolean_t
1665 e1000g_link_up(struct e1000g *Adapter)
1666 {
1667 	struct e1000_hw *hw = &Adapter->shared;
1668 	boolean_t link_up = B_FALSE;
1669 
1670 	/*
1671 	 * get_link_status is set in the interrupt handler on link-status-change
1672 	 * or rx sequence error interrupt.  get_link_status will stay
1673 	 * false until the e1000_check_for_link establishes link only
1674 	 * for copper adapters.
1675 	 */
1676 	switch (hw->phy.media_type) {
1677 	case e1000_media_type_copper:
1678 		if (hw->mac.get_link_status) {
1679 			(void) e1000_check_for_link(hw);
1680 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1681 			    E1000_STATUS_LU)) {
1682 				link_up = B_TRUE;
1683 			} else {
1684 				link_up = !hw->mac.get_link_status;
1685 			}
1686 		} else {
1687 			link_up = B_TRUE;
1688 		}
1689 		break;
1690 	case e1000_media_type_fiber:
1691 		(void) e1000_check_for_link(hw);
1692 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1693 		    E1000_STATUS_LU);
1694 		break;
1695 	case e1000_media_type_internal_serdes:
1696 		(void) e1000_check_for_link(hw);
1697 		link_up = hw->mac.serdes_has_link;
1698 		break;
1699 	}
1700 
1701 	return (link_up);
1702 }
1703 
1704 static void
1705 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1706 {
1707 	struct iocblk *iocp;
1708 	struct e1000g *e1000gp;
1709 	enum ioc_reply status;
1710 
1711 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1712 	iocp->ioc_error = 0;
1713 	e1000gp = (struct e1000g *)arg;
1714 
1715 	ASSERT(e1000gp);
1716 	if (e1000gp == NULL) {
1717 		miocnak(q, mp, 0, EINVAL);
1718 		return;
1719 	}
1720 
1721 	rw_enter(&e1000gp->chip_lock, RW_READER);
1722 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1723 		rw_exit(&e1000gp->chip_lock);
1724 		miocnak(q, mp, 0, EINVAL);
1725 		return;
1726 	}
1727 	rw_exit(&e1000gp->chip_lock);
1728 
1729 	switch (iocp->ioc_cmd) {
1730 
1731 	case LB_GET_INFO_SIZE:
1732 	case LB_GET_INFO:
1733 	case LB_GET_MODE:
1734 	case LB_SET_MODE:
1735 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1736 		break;
1737 
1738 
1739 #ifdef E1000G_DEBUG
1740 	case E1000G_IOC_REG_PEEK:
1741 	case E1000G_IOC_REG_POKE:
1742 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1743 		break;
1744 	case E1000G_IOC_CHIP_RESET:
1745 		e1000gp->reset_count++;
1746 		if (e1000g_reset_adapter(e1000gp))
1747 			status = IOC_ACK;
1748 		else
1749 			status = IOC_INVAL;
1750 		break;
1751 #endif
1752 	default:
1753 		status = IOC_INVAL;
1754 		break;
1755 	}
1756 
1757 	/*
1758 	 * Decide how to reply
1759 	 */
1760 	switch (status) {
1761 	default:
1762 	case IOC_INVAL:
1763 		/*
1764 		 * Error, reply with a NAK and EINVAL or the specified error
1765 		 */
1766 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1767 		    EINVAL : iocp->ioc_error);
1768 		break;
1769 
1770 	case IOC_DONE:
1771 		/*
1772 		 * OK, reply already sent
1773 		 */
1774 		break;
1775 
1776 	case IOC_ACK:
1777 		/*
1778 		 * OK, reply with an ACK
1779 		 */
1780 		miocack(q, mp, 0, 0);
1781 		break;
1782 
1783 	case IOC_REPLY:
1784 		/*
1785 		 * OK, send prepared reply as ACK or NAK
1786 		 */
1787 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1788 		    M_IOCACK : M_IOCNAK;
1789 		qreply(q, mp);
1790 		break;
1791 	}
1792 }
1793 
1794 /*
1795  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1796  * capable of supporting only one interrupt and we shouldn't disable
1797  * the physical interrupt. In this case we let the interrupt come and
1798  * we queue the packets in the rx ring itself in case we are in polling
1799  * mode (better latency but slightly lower performance and a very
1800  * high intrrupt count in mpstat which is harmless).
1801  *
1802  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1803  * which can be disabled in poll mode. This gives better overall
1804  * throughput (compared to the mode above), shows very low interrupt
1805  * count but has slightly higher latency since we pick the packets when
1806  * the poll thread does polling.
1807  *
1808  * Currently, this flag should be enabled only while doing performance
1809  * measurement or when it can be guaranteed that entire NIC going
1810  * in poll mode will not harm any traffic like cluster heartbeat etc.
1811  */
1812 int e1000g_poll_mode = 0;
1813 
1814 /*
1815  * Called from the upper layers when driver is in polling mode to
1816  * pick up any queued packets. Care should be taken to not block
1817  * this thread.
1818  */
1819 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1820 {
1821 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1822 	mblk_t			*mp = NULL;
1823 	mblk_t			*tail;
1824 	struct e1000g 		*adapter;
1825 
1826 	adapter = rx_ring->adapter;
1827 
1828 	rw_enter(&adapter->chip_lock, RW_READER);
1829 
1830 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1831 		rw_exit(&adapter->chip_lock);
1832 		return (NULL);
1833 	}
1834 
1835 	mutex_enter(&rx_ring->rx_lock);
1836 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1837 	mutex_exit(&rx_ring->rx_lock);
1838 	rw_exit(&adapter->chip_lock);
1839 	return (mp);
1840 }
1841 
1842 static int
1843 e1000g_m_start(void *arg)
1844 {
1845 	struct e1000g *Adapter = (struct e1000g *)arg;
1846 
1847 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1848 
1849 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1850 		rw_exit(&Adapter->chip_lock);
1851 		return (ECANCELED);
1852 	}
1853 
1854 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1855 		rw_exit(&Adapter->chip_lock);
1856 		return (ENOTACTIVE);
1857 	}
1858 
1859 	Adapter->e1000g_state |= E1000G_STARTED;
1860 
1861 	rw_exit(&Adapter->chip_lock);
1862 
1863 	/* Enable and start the watchdog timer */
1864 	enable_watchdog_timer(Adapter);
1865 
1866 	return (0);
1867 }
1868 
1869 static int
1870 e1000g_start(struct e1000g *Adapter, boolean_t global)
1871 {
1872 	e1000g_rx_data_t *rx_data;
1873 
1874 	if (global) {
1875 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1876 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1877 			goto start_fail;
1878 		}
1879 
1880 		/* Allocate dma resources for descriptors and buffers */
1881 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1882 			e1000g_log(Adapter, CE_WARN,
1883 			    "Alloc DMA resources failed");
1884 			goto start_fail;
1885 		}
1886 		Adapter->rx_buffer_setup = B_FALSE;
1887 	}
1888 
1889 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1890 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1891 			e1000g_log(Adapter, CE_WARN,
1892 			    "Adapter initialization failed");
1893 			goto start_fail;
1894 		}
1895 	}
1896 
1897 	/* Setup and initialize the transmit structures */
1898 	e1000g_tx_setup(Adapter);
1899 	msec_delay(5);
1900 
1901 	/* Setup and initialize the receive structures */
1902 	e1000g_rx_setup(Adapter);
1903 	msec_delay(5);
1904 
1905 	/* Restore the e1000g promiscuous mode */
1906 	e1000g_restore_promisc(Adapter);
1907 
1908 	e1000g_mask_interrupt(Adapter);
1909 
1910 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1911 
1912 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1913 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1914 		goto start_fail;
1915 	}
1916 
1917 	return (DDI_SUCCESS);
1918 
1919 start_fail:
1920 	rx_data = Adapter->rx_ring->rx_data;
1921 
1922 	if (global) {
1923 		e1000g_release_dma_resources(Adapter);
1924 		e1000g_free_rx_pending_buffers(rx_data);
1925 		e1000g_free_rx_data(rx_data);
1926 	}
1927 
1928 	mutex_enter(&e1000g_nvm_lock);
1929 	(void) e1000_reset_hw(&Adapter->shared);
1930 	mutex_exit(&e1000g_nvm_lock);
1931 
1932 	return (DDI_FAILURE);
1933 }
1934 
1935 static void
1936 e1000g_m_stop(void *arg)
1937 {
1938 	struct e1000g *Adapter = (struct e1000g *)arg;
1939 
1940 	/* Drain tx sessions */
1941 	(void) e1000g_tx_drain(Adapter);
1942 
1943 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1944 
1945 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1946 		rw_exit(&Adapter->chip_lock);
1947 		return;
1948 	}
1949 	Adapter->e1000g_state &= ~E1000G_STARTED;
1950 	e1000g_stop(Adapter, B_TRUE);
1951 
1952 	rw_exit(&Adapter->chip_lock);
1953 
1954 	/* Disable and stop all the timers */
1955 	disable_watchdog_timer(Adapter);
1956 	stop_link_timer(Adapter);
1957 	stop_82547_timer(Adapter->tx_ring);
1958 }
1959 
1960 static void
1961 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1962 {
1963 	private_devi_list_t *devi_node;
1964 	e1000g_rx_data_t *rx_data;
1965 	int result;
1966 
1967 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1968 
1969 	/* Stop the chip and release pending resources */
1970 
1971 	/* Tell firmware driver is no longer in control */
1972 	e1000g_release_driver_control(&Adapter->shared);
1973 
1974 	e1000g_clear_all_interrupts(Adapter);
1975 
1976 	mutex_enter(&e1000g_nvm_lock);
1977 	result = e1000_reset_hw(&Adapter->shared);
1978 	mutex_exit(&e1000g_nvm_lock);
1979 
1980 	if (result != E1000_SUCCESS) {
1981 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1982 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1983 	}
1984 
1985 	mutex_enter(&Adapter->link_lock);
1986 	Adapter->link_complete = B_FALSE;
1987 	mutex_exit(&Adapter->link_lock);
1988 
1989 	/* Release resources still held by the TX descriptors */
1990 	e1000g_tx_clean(Adapter);
1991 
1992 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1993 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1994 
1995 	/* Clean the pending rx jumbo packet fragment */
1996 	e1000g_rx_clean(Adapter);
1997 
1998 	if (global) {
1999 		e1000g_release_dma_resources(Adapter);
2000 
2001 		mutex_enter(&e1000g_rx_detach_lock);
2002 		rx_data = Adapter->rx_ring->rx_data;
2003 		rx_data->flag |= E1000G_RX_STOPPED;
2004 
2005 		if (rx_data->pending_count == 0) {
2006 			e1000g_free_rx_pending_buffers(rx_data);
2007 			e1000g_free_rx_data(rx_data);
2008 		} else {
2009 			devi_node = rx_data->priv_devi_node;
2010 			if (devi_node != NULL)
2011 				atomic_inc_32(&devi_node->pending_rx_count);
2012 			else
2013 				atomic_inc_32(&Adapter->pending_rx_count);
2014 		}
2015 		mutex_exit(&e1000g_rx_detach_lock);
2016 	}
2017 
2018 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2019 		Adapter->link_state = LINK_STATE_UNKNOWN;
2020 		if (!Adapter->reset_flag)
2021 			mac_link_update(Adapter->mh, Adapter->link_state);
2022 	}
2023 }
2024 
2025 static void
2026 e1000g_rx_clean(struct e1000g *Adapter)
2027 {
2028 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2029 
2030 	if (rx_data == NULL)
2031 		return;
2032 
2033 	if (rx_data->rx_mblk != NULL) {
2034 		freemsg(rx_data->rx_mblk);
2035 		rx_data->rx_mblk = NULL;
2036 		rx_data->rx_mblk_tail = NULL;
2037 		rx_data->rx_mblk_len = 0;
2038 	}
2039 }
2040 
2041 static void
2042 e1000g_tx_clean(struct e1000g *Adapter)
2043 {
2044 	e1000g_tx_ring_t *tx_ring;
2045 	p_tx_sw_packet_t packet;
2046 	mblk_t *mp;
2047 	mblk_t *nmp;
2048 	uint32_t packet_count;
2049 
2050 	tx_ring = Adapter->tx_ring;
2051 
2052 	/*
2053 	 * Here we don't need to protect the lists using
2054 	 * the usedlist_lock and freelist_lock, for they
2055 	 * have been protected by the chip_lock.
2056 	 */
2057 	mp = NULL;
2058 	nmp = NULL;
2059 	packet_count = 0;
2060 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2061 	while (packet != NULL) {
2062 		if (packet->mp != NULL) {
2063 			/* Assemble the message chain */
2064 			if (mp == NULL) {
2065 				mp = packet->mp;
2066 				nmp = packet->mp;
2067 			} else {
2068 				nmp->b_next = packet->mp;
2069 				nmp = packet->mp;
2070 			}
2071 			/* Disconnect the message from the sw packet */
2072 			packet->mp = NULL;
2073 		}
2074 
2075 		e1000g_free_tx_swpkt(packet);
2076 		packet_count++;
2077 
2078 		packet = (p_tx_sw_packet_t)
2079 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2080 	}
2081 
2082 	if (mp != NULL)
2083 		freemsgchain(mp);
2084 
2085 	if (packet_count > 0) {
2086 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2087 		QUEUE_INIT_LIST(&tx_ring->used_list);
2088 
2089 		/* Setup TX descriptor pointers */
2090 		tx_ring->tbd_next = tx_ring->tbd_first;
2091 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2092 
2093 		/* Setup our HW Tx Head & Tail descriptor pointers */
2094 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2095 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2096 	}
2097 }
2098 
2099 static boolean_t
2100 e1000g_tx_drain(struct e1000g *Adapter)
2101 {
2102 	int i;
2103 	boolean_t done;
2104 	e1000g_tx_ring_t *tx_ring;
2105 
2106 	tx_ring = Adapter->tx_ring;
2107 
2108 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2109 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2110 		mutex_enter(&tx_ring->usedlist_lock);
2111 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2112 		mutex_exit(&tx_ring->usedlist_lock);
2113 
2114 		if (done)
2115 			break;
2116 
2117 		msec_delay(1);
2118 	}
2119 
2120 	return (done);
2121 }
2122 
2123 static boolean_t
2124 e1000g_rx_drain(struct e1000g *Adapter)
2125 {
2126 	int i;
2127 	boolean_t done;
2128 
2129 	/*
2130 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2131 	 */
2132 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2133 		done = (Adapter->pending_rx_count == 0);
2134 
2135 		if (done)
2136 			break;
2137 
2138 		msec_delay(1);
2139 	}
2140 
2141 	return (done);
2142 }
2143 
2144 static boolean_t
2145 e1000g_reset_adapter(struct e1000g *Adapter)
2146 {
2147 	/* Disable and stop all the timers */
2148 	disable_watchdog_timer(Adapter);
2149 	stop_link_timer(Adapter);
2150 	stop_82547_timer(Adapter->tx_ring);
2151 
2152 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2153 
2154 	if (Adapter->stall_flag) {
2155 		Adapter->stall_flag = B_FALSE;
2156 		Adapter->reset_flag = B_TRUE;
2157 	}
2158 
2159 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2160 		rw_exit(&Adapter->chip_lock);
2161 		return (B_TRUE);
2162 	}
2163 
2164 	e1000g_stop(Adapter, B_FALSE);
2165 
2166 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2167 		rw_exit(&Adapter->chip_lock);
2168 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2169 			return (B_FALSE);
2170 	}
2171 
2172 	rw_exit(&Adapter->chip_lock);
2173 
2174 	/* Enable and start the watchdog timer */
2175 	enable_watchdog_timer(Adapter);
2176 
2177 	return (B_TRUE);
2178 }
2179 
2180 boolean_t
2181 e1000g_global_reset(struct e1000g *Adapter)
2182 {
2183 	/* Disable and stop all the timers */
2184 	disable_watchdog_timer(Adapter);
2185 	stop_link_timer(Adapter);
2186 	stop_82547_timer(Adapter->tx_ring);
2187 
2188 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2189 
2190 	e1000g_stop(Adapter, B_TRUE);
2191 
2192 	Adapter->init_count = 0;
2193 
2194 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2195 		rw_exit(&Adapter->chip_lock);
2196 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2197 		return (B_FALSE);
2198 	}
2199 
2200 	rw_exit(&Adapter->chip_lock);
2201 
2202 	/* Enable and start the watchdog timer */
2203 	enable_watchdog_timer(Adapter);
2204 
2205 	return (B_TRUE);
2206 }
2207 
2208 /*
2209  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2210  *
2211  * This interrupt service routine is for PCI-Express adapters.
2212  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2213  * bit is set.
2214  */
2215 static uint_t
2216 e1000g_intr_pciexpress(caddr_t arg)
2217 {
2218 	struct e1000g *Adapter;
2219 	uint32_t icr;
2220 
2221 	Adapter = (struct e1000g *)(uintptr_t)arg;
2222 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2223 
2224 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2225 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2226 		return (DDI_INTR_CLAIMED);
2227 	}
2228 
2229 	if (icr & E1000_ICR_INT_ASSERTED) {
2230 		/*
2231 		 * E1000_ICR_INT_ASSERTED bit was set:
2232 		 * Read(Clear) the ICR, claim this interrupt,
2233 		 * look for work to do.
2234 		 */
2235 		e1000g_intr_work(Adapter, icr);
2236 		return (DDI_INTR_CLAIMED);
2237 	} else {
2238 		/*
2239 		 * E1000_ICR_INT_ASSERTED bit was not set:
2240 		 * Don't claim this interrupt, return immediately.
2241 		 */
2242 		return (DDI_INTR_UNCLAIMED);
2243 	}
2244 }
2245 
2246 /*
2247  * e1000g_intr - ISR for PCI/PCI-X chipsets
2248  *
2249  * This interrupt service routine is for PCI/PCI-X adapters.
2250  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2251  * bit is set or not.
2252  */
2253 static uint_t
2254 e1000g_intr(caddr_t arg)
2255 {
2256 	struct e1000g *Adapter;
2257 	uint32_t icr;
2258 
2259 	Adapter = (struct e1000g *)(uintptr_t)arg;
2260 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2261 
2262 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2263 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2264 		return (DDI_INTR_CLAIMED);
2265 	}
2266 
2267 	if (icr) {
2268 		/*
2269 		 * Any bit was set in ICR:
2270 		 * Read(Clear) the ICR, claim this interrupt,
2271 		 * look for work to do.
2272 		 */
2273 		e1000g_intr_work(Adapter, icr);
2274 		return (DDI_INTR_CLAIMED);
2275 	} else {
2276 		/*
2277 		 * No bit was set in ICR:
2278 		 * Don't claim this interrupt, return immediately.
2279 		 */
2280 		return (DDI_INTR_UNCLAIMED);
2281 	}
2282 }
2283 
2284 /*
2285  * e1000g_intr_work - actual processing of ISR
2286  *
2287  * Read(clear) the ICR contents and call appropriate interrupt
2288  * processing routines.
2289  */
2290 static void
2291 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2292 {
2293 	struct e1000_hw *hw;
2294 	hw = &Adapter->shared;
2295 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2296 
2297 	Adapter->rx_pkt_cnt = 0;
2298 	Adapter->tx_pkt_cnt = 0;
2299 
2300 	rw_enter(&Adapter->chip_lock, RW_READER);
2301 
2302 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2303 		rw_exit(&Adapter->chip_lock);
2304 		return;
2305 	}
2306 	/*
2307 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2308 	 * ensure the receive routine will not execute when the adapter is
2309 	 * being reset.
2310 	 */
2311 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2312 		rw_exit(&Adapter->chip_lock);
2313 		return;
2314 	}
2315 
2316 	if (icr & E1000_ICR_RXT0) {
2317 		mblk_t			*mp = NULL;
2318 		mblk_t			*tail = NULL;
2319 		e1000g_rx_ring_t	*rx_ring;
2320 
2321 		rx_ring = Adapter->rx_ring;
2322 		mutex_enter(&rx_ring->rx_lock);
2323 		/*
2324 		 * Sometimes with legacy interrupts, it possible that
2325 		 * there is a single interrupt for Rx/Tx. In which
2326 		 * case, if poll flag is set, we shouldn't really
2327 		 * be doing Rx processing.
2328 		 */
2329 		if (!rx_ring->poll_flag)
2330 			mp = e1000g_receive(rx_ring, &tail,
2331 			    E1000G_CHAIN_NO_LIMIT);
2332 		mutex_exit(&rx_ring->rx_lock);
2333 		rw_exit(&Adapter->chip_lock);
2334 		if (mp != NULL)
2335 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2336 			    mp, rx_ring->ring_gen_num);
2337 	} else
2338 		rw_exit(&Adapter->chip_lock);
2339 
2340 	if (icr & E1000_ICR_TXDW) {
2341 		if (!Adapter->tx_intr_enable)
2342 			e1000g_clear_tx_interrupt(Adapter);
2343 
2344 		/* Recycle the tx descriptors */
2345 		rw_enter(&Adapter->chip_lock, RW_READER);
2346 		(void) e1000g_recycle(tx_ring);
2347 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2348 		rw_exit(&Adapter->chip_lock);
2349 
2350 		if (tx_ring->resched_needed &&
2351 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2352 			tx_ring->resched_needed = B_FALSE;
2353 			mac_tx_update(Adapter->mh);
2354 			E1000G_STAT(tx_ring->stat_reschedule);
2355 		}
2356 	}
2357 
2358 	/*
2359 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2360 	 * are checked to detect that the cable has been pulled out. For
2361 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2362 	 * are an indication that cable is not connected.
2363 	 */
2364 	if ((icr & E1000_ICR_RXSEQ) ||
2365 	    (icr & E1000_ICR_LSC) ||
2366 	    (icr & E1000_ICR_GPI_EN1)) {
2367 		boolean_t link_changed;
2368 		timeout_id_t tid = 0;
2369 
2370 		stop_watchdog_timer(Adapter);
2371 
2372 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2373 
2374 		/*
2375 		 * Because we got a link-status-change interrupt, force
2376 		 * e1000_check_for_link() to look at phy
2377 		 */
2378 		Adapter->shared.mac.get_link_status = B_TRUE;
2379 
2380 		/* e1000g_link_check takes care of link status change */
2381 		link_changed = e1000g_link_check(Adapter);
2382 
2383 		/* Get new phy state */
2384 		e1000g_get_phy_state(Adapter);
2385 
2386 		/*
2387 		 * If the link timer has not timed out, we'll not notify
2388 		 * the upper layer with any link state until the link is up.
2389 		 */
2390 		if (link_changed && !Adapter->link_complete) {
2391 			if (Adapter->link_state == LINK_STATE_UP) {
2392 				mutex_enter(&Adapter->link_lock);
2393 				Adapter->link_complete = B_TRUE;
2394 				tid = Adapter->link_tid;
2395 				Adapter->link_tid = 0;
2396 				mutex_exit(&Adapter->link_lock);
2397 			} else {
2398 				link_changed = B_FALSE;
2399 			}
2400 		}
2401 		rw_exit(&Adapter->chip_lock);
2402 
2403 		if (link_changed) {
2404 			if (tid != 0)
2405 				(void) untimeout(tid);
2406 
2407 			/*
2408 			 * Workaround for esb2. Data stuck in fifo on a link
2409 			 * down event. Stop receiver here and reset in watchdog.
2410 			 */
2411 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2412 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2413 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2414 				E1000_WRITE_REG(hw, E1000_RCTL,
2415 				    rctl & ~E1000_RCTL_EN);
2416 				e1000g_log(Adapter, CE_WARN,
2417 				    "ESB2 receiver disabled");
2418 				Adapter->esb2_workaround = B_TRUE;
2419 			}
2420 			if (!Adapter->reset_flag)
2421 				mac_link_update(Adapter->mh,
2422 				    Adapter->link_state);
2423 			if (Adapter->link_state == LINK_STATE_UP)
2424 				Adapter->reset_flag = B_FALSE;
2425 		}
2426 
2427 		start_watchdog_timer(Adapter);
2428 	}
2429 }
2430 
2431 static void
2432 e1000g_init_unicst(struct e1000g *Adapter)
2433 {
2434 	struct e1000_hw *hw;
2435 	int slot;
2436 
2437 	hw = &Adapter->shared;
2438 
2439 	if (Adapter->init_count == 0) {
2440 		/* Initialize the multiple unicast addresses */
2441 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2442 
2443 		/* Workaround for an erratum of 82571 chipst */
2444 		if ((hw->mac.type == e1000_82571) &&
2445 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2446 			Adapter->unicst_total--;
2447 
2448 		/* VMware doesn't support multiple mac addresses properly */
2449 		if (hw->subsystem_vendor_id == 0x15ad)
2450 			Adapter->unicst_total = 1;
2451 
2452 		Adapter->unicst_avail = Adapter->unicst_total;
2453 
2454 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2455 			/* Clear both the flag and MAC address */
2456 			Adapter->unicst_addr[slot].reg.high = 0;
2457 			Adapter->unicst_addr[slot].reg.low = 0;
2458 		}
2459 	} else {
2460 		/* Workaround for an erratum of 82571 chipst */
2461 		if ((hw->mac.type == e1000_82571) &&
2462 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2463 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2464 
2465 		/* Re-configure the RAR registers */
2466 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2467 			if (Adapter->unicst_addr[slot].mac.set == 1)
2468 				e1000_rar_set(hw,
2469 				    Adapter->unicst_addr[slot].mac.addr, slot);
2470 	}
2471 
2472 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2473 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2474 }
2475 
2476 static int
2477 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2478     int slot)
2479 {
2480 	struct e1000_hw *hw;
2481 
2482 	hw = &Adapter->shared;
2483 
2484 	/*
2485 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2486 	 * that requires the receiver to be in reset when any of the
2487 	 * receive address registers (RAR regs) are accessed.  The first
2488 	 * rev of Wiseman silicon also requires MWI to be disabled when
2489 	 * a global reset or a receive reset is issued.  So before we
2490 	 * initialize the RARs, we check the rev of the Wiseman controller
2491 	 * and work around any necessary HW errata.
2492 	 */
2493 	if ((hw->mac.type == e1000_82542) &&
2494 	    (hw->revision_id == E1000_REVISION_2)) {
2495 		e1000_pci_clear_mwi(hw);
2496 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2497 		msec_delay(5);
2498 	}
2499 	if (mac_addr == NULL) {
2500 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2501 		E1000_WRITE_FLUSH(hw);
2502 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2503 		E1000_WRITE_FLUSH(hw);
2504 		/* Clear both the flag and MAC address */
2505 		Adapter->unicst_addr[slot].reg.high = 0;
2506 		Adapter->unicst_addr[slot].reg.low = 0;
2507 	} else {
2508 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2509 		    ETHERADDRL);
2510 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2511 		Adapter->unicst_addr[slot].mac.set = 1;
2512 	}
2513 
2514 	/* Workaround for an erratum of 82571 chipst */
2515 	if (slot == 0) {
2516 		if ((hw->mac.type == e1000_82571) &&
2517 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2518 			if (mac_addr == NULL) {
2519 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2520 				    slot << 1, 0);
2521 				E1000_WRITE_FLUSH(hw);
2522 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2523 				    (slot << 1) + 1, 0);
2524 				E1000_WRITE_FLUSH(hw);
2525 			} else {
2526 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2527 				    LAST_RAR_ENTRY);
2528 			}
2529 	}
2530 
2531 	/*
2532 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2533 	 * put the receive in reset, and disabled MWI, to work around some
2534 	 * HW errata.  Now we should take the receiver out of reset, and
2535 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2536 	 */
2537 	if ((hw->mac.type == e1000_82542) &&
2538 	    (hw->revision_id == E1000_REVISION_2)) {
2539 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2540 		msec_delay(1);
2541 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2542 			e1000_pci_set_mwi(hw);
2543 		e1000g_rx_setup(Adapter);
2544 	}
2545 
2546 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2547 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2548 		return (EIO);
2549 	}
2550 
2551 	return (0);
2552 }
2553 
2554 static int
2555 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2556 {
2557 	struct e1000_hw *hw = &Adapter->shared;
2558 	struct ether_addr *newtable;
2559 	size_t new_len;
2560 	size_t old_len;
2561 	int res = 0;
2562 
2563 	if ((multiaddr[0] & 01) == 0) {
2564 		res = EINVAL;
2565 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2566 		goto done;
2567 	}
2568 
2569 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2570 		res = ENOENT;
2571 		e1000g_log(Adapter, CE_WARN,
2572 		    "Adapter requested more than %d mcast addresses",
2573 		    Adapter->mcast_max_num);
2574 		goto done;
2575 	}
2576 
2577 
2578 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2579 		old_len = Adapter->mcast_alloc_count *
2580 		    sizeof (struct ether_addr);
2581 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2582 		    sizeof (struct ether_addr);
2583 
2584 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2585 		if (newtable == NULL) {
2586 			res = ENOMEM;
2587 			e1000g_log(Adapter, CE_WARN,
2588 			    "Not enough memory to alloc mcast table");
2589 			goto done;
2590 		}
2591 
2592 		if (Adapter->mcast_table != NULL) {
2593 			bcopy(Adapter->mcast_table, newtable, old_len);
2594 			kmem_free(Adapter->mcast_table, old_len);
2595 		}
2596 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2597 		Adapter->mcast_table = newtable;
2598 	}
2599 
2600 	bcopy(multiaddr,
2601 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2602 	Adapter->mcast_count++;
2603 
2604 	/*
2605 	 * Update the MC table in the hardware
2606 	 */
2607 	e1000g_clear_interrupt(Adapter);
2608 
2609 	e1000_update_mc_addr_list(hw,
2610 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2611 
2612 	e1000g_mask_interrupt(Adapter);
2613 
2614 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2615 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2616 		res = EIO;
2617 	}
2618 
2619 done:
2620 	return (res);
2621 }
2622 
2623 static int
2624 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2625 {
2626 	struct e1000_hw *hw = &Adapter->shared;
2627 	struct ether_addr *newtable;
2628 	size_t new_len;
2629 	size_t old_len;
2630 	unsigned i;
2631 
2632 	for (i = 0; i < Adapter->mcast_count; i++) {
2633 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2634 		    ETHERADDRL) == 0) {
2635 			for (i++; i < Adapter->mcast_count; i++) {
2636 				Adapter->mcast_table[i - 1] =
2637 				    Adapter->mcast_table[i];
2638 			}
2639 			Adapter->mcast_count--;
2640 			break;
2641 		}
2642 	}
2643 
2644 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2645 	    MCAST_ALLOC_SIZE) {
2646 		old_len = Adapter->mcast_alloc_count *
2647 		    sizeof (struct ether_addr);
2648 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2649 		    sizeof (struct ether_addr);
2650 
2651 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2652 		if (newtable != NULL) {
2653 			bcopy(Adapter->mcast_table, newtable, new_len);
2654 			kmem_free(Adapter->mcast_table, old_len);
2655 
2656 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2657 			Adapter->mcast_table = newtable;
2658 		}
2659 	}
2660 
2661 	/*
2662 	 * Update the MC table in the hardware
2663 	 */
2664 	e1000g_clear_interrupt(Adapter);
2665 
2666 	e1000_update_mc_addr_list(hw,
2667 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2668 
2669 	e1000g_mask_interrupt(Adapter);
2670 
2671 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2672 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2673 		return (EIO);
2674 	}
2675 
2676 	return (0);
2677 }
2678 
2679 static void
2680 e1000g_release_multicast(struct e1000g *Adapter)
2681 {
2682 	if (Adapter->mcast_table != NULL) {
2683 		kmem_free(Adapter->mcast_table,
2684 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2685 		Adapter->mcast_table = NULL;
2686 	}
2687 }
2688 
2689 int
2690 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2691 {
2692 	struct e1000g *Adapter = (struct e1000g *)arg;
2693 	int result;
2694 
2695 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2696 
2697 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2698 		result = ECANCELED;
2699 		goto done;
2700 	}
2701 
2702 	result = (add) ? multicst_add(Adapter, addr)
2703 	    : multicst_remove(Adapter, addr);
2704 
2705 done:
2706 	rw_exit(&Adapter->chip_lock);
2707 	return (result);
2708 
2709 }
2710 
2711 int
2712 e1000g_m_promisc(void *arg, boolean_t on)
2713 {
2714 	struct e1000g *Adapter = (struct e1000g *)arg;
2715 	uint32_t rctl;
2716 
2717 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2718 
2719 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2720 		rw_exit(&Adapter->chip_lock);
2721 		return (ECANCELED);
2722 	}
2723 
2724 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2725 
2726 	if (on)
2727 		rctl |=
2728 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2729 	else
2730 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2731 
2732 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2733 
2734 	Adapter->e1000g_promisc = on;
2735 
2736 	rw_exit(&Adapter->chip_lock);
2737 
2738 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2739 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2740 		return (EIO);
2741 	}
2742 
2743 	return (0);
2744 }
2745 
2746 /*
2747  * Entry points to enable and disable interrupts at the granularity of
2748  * a group.
2749  * Turns the poll_mode for the whole adapter on and off to enable or
2750  * override the ring level polling control over the hardware interrupts.
2751  */
2752 static int
2753 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2754 {
2755 	struct e1000g		*adapter = (struct e1000g *)arg;
2756 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2757 
2758 	/*
2759 	 * Later interrupts at the granularity of the this ring will
2760 	 * invoke mac_rx() with NULL, indicating the need for another
2761 	 * software classification.
2762 	 * We have a single ring usable per adapter now, so we only need to
2763 	 * reset the rx handle for that one.
2764 	 * When more RX rings can be used, we should update each one of them.
2765 	 */
2766 	mutex_enter(&rx_ring->rx_lock);
2767 	rx_ring->mrh = NULL;
2768 	adapter->poll_mode = B_FALSE;
2769 	mutex_exit(&rx_ring->rx_lock);
2770 	return (0);
2771 }
2772 
2773 static int
2774 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2775 {
2776 	struct e1000g *adapter = (struct e1000g *)arg;
2777 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2778 
2779 	mutex_enter(&rx_ring->rx_lock);
2780 
2781 	/*
2782 	 * Later interrupts at the granularity of the this ring will
2783 	 * invoke mac_rx() with the handle for this ring;
2784 	 */
2785 	adapter->poll_mode = B_TRUE;
2786 	rx_ring->mrh = rx_ring->mrh_init;
2787 	mutex_exit(&rx_ring->rx_lock);
2788 	return (0);
2789 }
2790 
2791 /*
2792  * Entry points to enable and disable interrupts at the granularity of
2793  * a ring.
2794  * adapter poll_mode controls whether we actually proceed with hardware
2795  * interrupt toggling.
2796  */
2797 static int
2798 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2799 {
2800 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2801 	struct e1000g 		*adapter = rx_ring->adapter;
2802 	struct e1000_hw 	*hw = &adapter->shared;
2803 	uint32_t		intr_mask;
2804 
2805 	rw_enter(&adapter->chip_lock, RW_READER);
2806 
2807 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2808 		rw_exit(&adapter->chip_lock);
2809 		return (0);
2810 	}
2811 
2812 	mutex_enter(&rx_ring->rx_lock);
2813 	rx_ring->poll_flag = 0;
2814 	mutex_exit(&rx_ring->rx_lock);
2815 
2816 	/* Rx interrupt enabling for MSI and legacy */
2817 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2818 	intr_mask |= E1000_IMS_RXT0;
2819 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2820 	E1000_WRITE_FLUSH(hw);
2821 
2822 	/* Trigger a Rx interrupt to check Rx ring */
2823 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2824 	E1000_WRITE_FLUSH(hw);
2825 
2826 	rw_exit(&adapter->chip_lock);
2827 	return (0);
2828 }
2829 
2830 static int
2831 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2832 {
2833 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2834 	struct e1000g 		*adapter = rx_ring->adapter;
2835 	struct e1000_hw 	*hw = &adapter->shared;
2836 
2837 	rw_enter(&adapter->chip_lock, RW_READER);
2838 
2839 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2840 		rw_exit(&adapter->chip_lock);
2841 		return (0);
2842 	}
2843 	mutex_enter(&rx_ring->rx_lock);
2844 	rx_ring->poll_flag = 1;
2845 	mutex_exit(&rx_ring->rx_lock);
2846 
2847 	/* Rx interrupt disabling for MSI and legacy */
2848 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2849 	E1000_WRITE_FLUSH(hw);
2850 
2851 	rw_exit(&adapter->chip_lock);
2852 	return (0);
2853 }
2854 
2855 /*
2856  * e1000g_unicst_find - Find the slot for the specified unicast address
2857  */
2858 static int
2859 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2860 {
2861 	int slot;
2862 
2863 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2864 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2865 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2866 		    mac_addr, ETHERADDRL) == 0))
2867 				return (slot);
2868 	}
2869 
2870 	return (-1);
2871 }
2872 
2873 /*
2874  * Entry points to add and remove a MAC address to a ring group.
2875  * The caller takes care of adding and removing the MAC addresses
2876  * to the filter via these two routines.
2877  */
2878 
2879 static int
2880 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2881 {
2882 	struct e1000g *Adapter = (struct e1000g *)arg;
2883 	int slot, err;
2884 
2885 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2886 
2887 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2888 		rw_exit(&Adapter->chip_lock);
2889 		return (ECANCELED);
2890 	}
2891 
2892 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2893 		/* The same address is already in slot */
2894 		rw_exit(&Adapter->chip_lock);
2895 		return (0);
2896 	}
2897 
2898 	if (Adapter->unicst_avail == 0) {
2899 		/* no slots available */
2900 		rw_exit(&Adapter->chip_lock);
2901 		return (ENOSPC);
2902 	}
2903 
2904 	/* Search for a free slot */
2905 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2906 		if (Adapter->unicst_addr[slot].mac.set == 0)
2907 			break;
2908 	}
2909 	ASSERT(slot < Adapter->unicst_total);
2910 
2911 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2912 	if (err == 0)
2913 		Adapter->unicst_avail--;
2914 
2915 	rw_exit(&Adapter->chip_lock);
2916 
2917 	return (err);
2918 }
2919 
2920 static int
2921 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2922 {
2923 	struct e1000g *Adapter = (struct e1000g *)arg;
2924 	int slot, err;
2925 
2926 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2927 
2928 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2929 		rw_exit(&Adapter->chip_lock);
2930 		return (ECANCELED);
2931 	}
2932 
2933 	slot = e1000g_unicst_find(Adapter, mac_addr);
2934 	if (slot == -1) {
2935 		rw_exit(&Adapter->chip_lock);
2936 		return (EINVAL);
2937 	}
2938 
2939 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2940 
2941 	/* Clear this slot */
2942 	err = e1000g_unicst_set(Adapter, NULL, slot);
2943 	if (err == 0)
2944 		Adapter->unicst_avail++;
2945 
2946 	rw_exit(&Adapter->chip_lock);
2947 
2948 	return (err);
2949 }
2950 
2951 static int
2952 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2953 {
2954 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2955 
2956 	mutex_enter(&rx_ring->rx_lock);
2957 	rx_ring->ring_gen_num = mr_gen_num;
2958 	mutex_exit(&rx_ring->rx_lock);
2959 	return (0);
2960 }
2961 
2962 /*
2963  * Callback funtion for MAC layer to register all rings.
2964  *
2965  * The hardware supports a single group with currently only one ring
2966  * available.
2967  * Though not offering virtualization ability per se, exposing the
2968  * group/ring still enables the polling and interrupt toggling.
2969  */
2970 /* ARGSUSED */
2971 void
2972 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2973     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2974 {
2975 	struct e1000g *Adapter = (struct e1000g *)arg;
2976 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2977 	mac_intr_t *mintr;
2978 
2979 	/*
2980 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2981 	 * ask for any thing else.
2982 	 */
2983 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2984 
2985 	rx_ring->mrh = rx_ring->mrh_init = rh;
2986 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2987 	infop->mri_start = e1000g_ring_start;
2988 	infop->mri_stop = NULL;
2989 	infop->mri_poll = e1000g_poll_ring;
2990 	infop->mri_stat = e1000g_rx_ring_stat;
2991 
2992 	/* Ring level interrupts */
2993 	mintr = &infop->mri_intr;
2994 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2995 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2996 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2997 	if (Adapter->msi_enable)
2998 		mintr->mi_ddi_handle = Adapter->htable[0];
2999 }
3000 
3001 /* ARGSUSED */
3002 static void
3003 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3004     mac_group_info_t *infop, mac_group_handle_t gh)
3005 {
3006 	struct e1000g *Adapter = (struct e1000g *)arg;
3007 	mac_intr_t *mintr;
3008 
3009 	/*
3010 	 * We advertised a single RX ring. Getting a request for anything else
3011 	 * signifies a bug in the MAC framework.
3012 	 */
3013 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3014 
3015 	Adapter->rx_group = gh;
3016 
3017 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3018 	infop->mgi_start = NULL;
3019 	infop->mgi_stop = NULL;
3020 	infop->mgi_addmac = e1000g_addmac;
3021 	infop->mgi_remmac = e1000g_remmac;
3022 	infop->mgi_count = 1;
3023 
3024 	/* Group level interrupts */
3025 	mintr = &infop->mgi_intr;
3026 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3027 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3028 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3029 }
3030 
3031 static boolean_t
3032 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3033 {
3034 	struct e1000g *Adapter = (struct e1000g *)arg;
3035 
3036 	switch (cap) {
3037 	case MAC_CAPAB_HCKSUM: {
3038 		uint32_t *txflags = cap_data;
3039 
3040 		if (Adapter->tx_hcksum_enable)
3041 			*txflags = HCKSUM_IPHDRCKSUM |
3042 			    HCKSUM_INET_PARTIAL;
3043 		else
3044 			return (B_FALSE);
3045 		break;
3046 	}
3047 
3048 	case MAC_CAPAB_LSO: {
3049 		mac_capab_lso_t *cap_lso = cap_data;
3050 
3051 		if (Adapter->lso_enable) {
3052 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3053 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3054 			    E1000_LSO_MAXLEN;
3055 		} else
3056 			return (B_FALSE);
3057 		break;
3058 	}
3059 	case MAC_CAPAB_RINGS: {
3060 		mac_capab_rings_t *cap_rings = cap_data;
3061 
3062 		/* No TX rings exposed yet */
3063 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3064 			return (B_FALSE);
3065 
3066 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3067 		cap_rings->mr_rnum = 1;
3068 		cap_rings->mr_gnum = 1;
3069 		cap_rings->mr_rget = e1000g_fill_ring;
3070 		cap_rings->mr_gget = e1000g_fill_group;
3071 		break;
3072 	}
3073 	default:
3074 		return (B_FALSE);
3075 	}
3076 	return (B_TRUE);
3077 }
3078 
3079 static boolean_t
3080 e1000g_param_locked(mac_prop_id_t pr_num)
3081 {
3082 	/*
3083 	 * All en_* parameters are locked (read-only) while
3084 	 * the device is in any sort of loopback mode ...
3085 	 */
3086 	switch (pr_num) {
3087 		case MAC_PROP_EN_1000FDX_CAP:
3088 		case MAC_PROP_EN_1000HDX_CAP:
3089 		case MAC_PROP_EN_100FDX_CAP:
3090 		case MAC_PROP_EN_100HDX_CAP:
3091 		case MAC_PROP_EN_10FDX_CAP:
3092 		case MAC_PROP_EN_10HDX_CAP:
3093 		case MAC_PROP_AUTONEG:
3094 		case MAC_PROP_FLOWCTRL:
3095 			return (B_TRUE);
3096 	}
3097 	return (B_FALSE);
3098 }
3099 
3100 /*
3101  * callback function for set/get of properties
3102  */
3103 static int
3104 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3105     uint_t pr_valsize, const void *pr_val)
3106 {
3107 	struct e1000g *Adapter = arg;
3108 	struct e1000_hw *hw = &Adapter->shared;
3109 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3110 	int err = 0;
3111 	link_flowctrl_t flowctrl;
3112 	uint32_t cur_mtu, new_mtu;
3113 
3114 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3115 
3116 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3117 		rw_exit(&Adapter->chip_lock);
3118 		return (ECANCELED);
3119 	}
3120 
3121 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3122 	    e1000g_param_locked(pr_num)) {
3123 		/*
3124 		 * All en_* parameters are locked (read-only)
3125 		 * while the device is in any sort of loopback mode.
3126 		 */
3127 		rw_exit(&Adapter->chip_lock);
3128 		return (EBUSY);
3129 	}
3130 
3131 	switch (pr_num) {
3132 		case MAC_PROP_EN_1000FDX_CAP:
3133 			if (hw->phy.media_type != e1000_media_type_copper) {
3134 				err = ENOTSUP;
3135 				break;
3136 			}
3137 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3138 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3139 			goto reset;
3140 		case MAC_PROP_EN_100FDX_CAP:
3141 			if (hw->phy.media_type != e1000_media_type_copper) {
3142 				err = ENOTSUP;
3143 				break;
3144 			}
3145 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3146 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3147 			goto reset;
3148 		case MAC_PROP_EN_100HDX_CAP:
3149 			if (hw->phy.media_type != e1000_media_type_copper) {
3150 				err = ENOTSUP;
3151 				break;
3152 			}
3153 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3154 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3155 			goto reset;
3156 		case MAC_PROP_EN_10FDX_CAP:
3157 			if (hw->phy.media_type != e1000_media_type_copper) {
3158 				err = ENOTSUP;
3159 				break;
3160 			}
3161 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3162 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3163 			goto reset;
3164 		case MAC_PROP_EN_10HDX_CAP:
3165 			if (hw->phy.media_type != e1000_media_type_copper) {
3166 				err = ENOTSUP;
3167 				break;
3168 			}
3169 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3170 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3171 			goto reset;
3172 		case MAC_PROP_AUTONEG:
3173 			if (hw->phy.media_type != e1000_media_type_copper) {
3174 				err = ENOTSUP;
3175 				break;
3176 			}
3177 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3178 			goto reset;
3179 		case MAC_PROP_FLOWCTRL:
3180 			fc->send_xon = B_TRUE;
3181 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3182 
3183 			switch (flowctrl) {
3184 			default:
3185 				err = EINVAL;
3186 				break;
3187 			case LINK_FLOWCTRL_NONE:
3188 				fc->requested_mode = e1000_fc_none;
3189 				break;
3190 			case LINK_FLOWCTRL_RX:
3191 				fc->requested_mode = e1000_fc_rx_pause;
3192 				break;
3193 			case LINK_FLOWCTRL_TX:
3194 				fc->requested_mode = e1000_fc_tx_pause;
3195 				break;
3196 			case LINK_FLOWCTRL_BI:
3197 				fc->requested_mode = e1000_fc_full;
3198 				break;
3199 			}
3200 reset:
3201 			if (err == 0) {
3202 				/* check PCH limits & reset the link */
3203 				e1000g_pch_limits(Adapter);
3204 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3205 					err = EINVAL;
3206 			}
3207 			break;
3208 		case MAC_PROP_ADV_1000FDX_CAP:
3209 		case MAC_PROP_ADV_1000HDX_CAP:
3210 		case MAC_PROP_ADV_100FDX_CAP:
3211 		case MAC_PROP_ADV_100HDX_CAP:
3212 		case MAC_PROP_ADV_10FDX_CAP:
3213 		case MAC_PROP_ADV_10HDX_CAP:
3214 		case MAC_PROP_EN_1000HDX_CAP:
3215 		case MAC_PROP_STATUS:
3216 		case MAC_PROP_SPEED:
3217 		case MAC_PROP_DUPLEX:
3218 			err = ENOTSUP; /* read-only prop. Can't set this. */
3219 			break;
3220 		case MAC_PROP_MTU:
3221 			/* adapter must be stopped for an MTU change */
3222 			if (Adapter->e1000g_state & E1000G_STARTED) {
3223 				err = EBUSY;
3224 				break;
3225 			}
3226 
3227 			cur_mtu = Adapter->default_mtu;
3228 
3229 			/* get new requested MTU */
3230 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3231 			if (new_mtu == cur_mtu) {
3232 				err = 0;
3233 				break;
3234 			}
3235 
3236 			if ((new_mtu < DEFAULT_MTU) ||
3237 			    (new_mtu > Adapter->max_mtu)) {
3238 				err = EINVAL;
3239 				break;
3240 			}
3241 
3242 			/* inform MAC framework of new MTU */
3243 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3244 
3245 			if (err == 0) {
3246 				Adapter->default_mtu = new_mtu;
3247 				Adapter->max_frame_size =
3248 				    e1000g_mtu2maxframe(new_mtu);
3249 
3250 				/*
3251 				 * check PCH limits & set buffer sizes to
3252 				 * match new MTU
3253 				 */
3254 				e1000g_pch_limits(Adapter);
3255 				e1000g_set_bufsize(Adapter);
3256 
3257 				/*
3258 				 * decrease the number of descriptors and free
3259 				 * packets for jumbo frames to reduce tx/rx
3260 				 * resource consumption
3261 				 */
3262 				if (Adapter->max_frame_size >=
3263 				    (FRAME_SIZE_UPTO_4K)) {
3264 					if (Adapter->tx_desc_num_flag == 0)
3265 						Adapter->tx_desc_num =
3266 						    DEFAULT_JUMBO_NUM_TX_DESC;
3267 
3268 					if (Adapter->rx_desc_num_flag == 0)
3269 						Adapter->rx_desc_num =
3270 						    DEFAULT_JUMBO_NUM_RX_DESC;
3271 
3272 					if (Adapter->tx_buf_num_flag == 0)
3273 						Adapter->tx_freelist_num =
3274 						    DEFAULT_JUMBO_NUM_TX_BUF;
3275 
3276 					if (Adapter->rx_buf_num_flag == 0)
3277 						Adapter->rx_freelist_limit =
3278 						    DEFAULT_JUMBO_NUM_RX_BUF;
3279 				} else {
3280 					if (Adapter->tx_desc_num_flag == 0)
3281 						Adapter->tx_desc_num =
3282 						    DEFAULT_NUM_TX_DESCRIPTOR;
3283 
3284 					if (Adapter->rx_desc_num_flag == 0)
3285 						Adapter->rx_desc_num =
3286 						    DEFAULT_NUM_RX_DESCRIPTOR;
3287 
3288 					if (Adapter->tx_buf_num_flag == 0)
3289 						Adapter->tx_freelist_num =
3290 						    DEFAULT_NUM_TX_FREELIST;
3291 
3292 					if (Adapter->rx_buf_num_flag == 0)
3293 						Adapter->rx_freelist_limit =
3294 						    DEFAULT_NUM_RX_FREELIST;
3295 				}
3296 			}
3297 			break;
3298 		case MAC_PROP_PRIVATE:
3299 			err = e1000g_set_priv_prop(Adapter, pr_name,
3300 			    pr_valsize, pr_val);
3301 			break;
3302 		default:
3303 			err = ENOTSUP;
3304 			break;
3305 	}
3306 	rw_exit(&Adapter->chip_lock);
3307 	return (err);
3308 }
3309 
3310 static int
3311 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3312     uint_t pr_valsize, void *pr_val)
3313 {
3314 	struct e1000g *Adapter = arg;
3315 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3316 	int err = 0;
3317 	link_flowctrl_t flowctrl;
3318 	uint64_t tmp = 0;
3319 
3320 	switch (pr_num) {
3321 		case MAC_PROP_DUPLEX:
3322 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3323 			bcopy(&Adapter->link_duplex, pr_val,
3324 			    sizeof (link_duplex_t));
3325 			break;
3326 		case MAC_PROP_SPEED:
3327 			ASSERT(pr_valsize >= sizeof (uint64_t));
3328 			tmp = Adapter->link_speed * 1000000ull;
3329 			bcopy(&tmp, pr_val, sizeof (tmp));
3330 			break;
3331 		case MAC_PROP_AUTONEG:
3332 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3333 			break;
3334 		case MAC_PROP_FLOWCTRL:
3335 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3336 			switch (fc->current_mode) {
3337 				case e1000_fc_none:
3338 					flowctrl = LINK_FLOWCTRL_NONE;
3339 					break;
3340 				case e1000_fc_rx_pause:
3341 					flowctrl = LINK_FLOWCTRL_RX;
3342 					break;
3343 				case e1000_fc_tx_pause:
3344 					flowctrl = LINK_FLOWCTRL_TX;
3345 					break;
3346 				case e1000_fc_full:
3347 					flowctrl = LINK_FLOWCTRL_BI;
3348 					break;
3349 			}
3350 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3351 			break;
3352 		case MAC_PROP_ADV_1000FDX_CAP:
3353 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3354 			break;
3355 		case MAC_PROP_EN_1000FDX_CAP:
3356 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3357 			break;
3358 		case MAC_PROP_ADV_1000HDX_CAP:
3359 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3360 			break;
3361 		case MAC_PROP_EN_1000HDX_CAP:
3362 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3363 			break;
3364 		case MAC_PROP_ADV_100FDX_CAP:
3365 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3366 			break;
3367 		case MAC_PROP_EN_100FDX_CAP:
3368 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3369 			break;
3370 		case MAC_PROP_ADV_100HDX_CAP:
3371 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3372 			break;
3373 		case MAC_PROP_EN_100HDX_CAP:
3374 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3375 			break;
3376 		case MAC_PROP_ADV_10FDX_CAP:
3377 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3378 			break;
3379 		case MAC_PROP_EN_10FDX_CAP:
3380 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3381 			break;
3382 		case MAC_PROP_ADV_10HDX_CAP:
3383 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3384 			break;
3385 		case MAC_PROP_EN_10HDX_CAP:
3386 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3387 			break;
3388 		case MAC_PROP_ADV_100T4_CAP:
3389 		case MAC_PROP_EN_100T4_CAP:
3390 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3391 			break;
3392 		case MAC_PROP_PRIVATE:
3393 			err = e1000g_get_priv_prop(Adapter, pr_name,
3394 			    pr_valsize, pr_val);
3395 			break;
3396 		default:
3397 			err = ENOTSUP;
3398 			break;
3399 	}
3400 
3401 	return (err);
3402 }
3403 
3404 static void
3405 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3406     mac_prop_info_handle_t prh)
3407 {
3408 	struct e1000g *Adapter = arg;
3409 	struct e1000_hw *hw = &Adapter->shared;
3410 
3411 	switch (pr_num) {
3412 	case MAC_PROP_DUPLEX:
3413 	case MAC_PROP_SPEED:
3414 	case MAC_PROP_ADV_1000FDX_CAP:
3415 	case MAC_PROP_ADV_1000HDX_CAP:
3416 	case MAC_PROP_ADV_100FDX_CAP:
3417 	case MAC_PROP_ADV_100HDX_CAP:
3418 	case MAC_PROP_ADV_10FDX_CAP:
3419 	case MAC_PROP_ADV_10HDX_CAP:
3420 	case MAC_PROP_ADV_100T4_CAP:
3421 	case MAC_PROP_EN_100T4_CAP:
3422 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3423 		break;
3424 
3425 	case MAC_PROP_EN_1000FDX_CAP:
3426 		if (hw->phy.media_type != e1000_media_type_copper) {
3427 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3428 		} else {
3429 			mac_prop_info_set_default_uint8(prh,
3430 			    ((Adapter->phy_ext_status &
3431 			    IEEE_ESR_1000T_FD_CAPS) ||
3432 			    (Adapter->phy_ext_status &
3433 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3434 		}
3435 		break;
3436 
3437 	case MAC_PROP_EN_100FDX_CAP:
3438 		if (hw->phy.media_type != e1000_media_type_copper) {
3439 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3440 		} else {
3441 			mac_prop_info_set_default_uint8(prh,
3442 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3443 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3444 			    ? 1 : 0);
3445 		}
3446 		break;
3447 
3448 	case MAC_PROP_EN_100HDX_CAP:
3449 		if (hw->phy.media_type != e1000_media_type_copper) {
3450 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3451 		} else {
3452 			mac_prop_info_set_default_uint8(prh,
3453 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3454 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3455 			    ? 1 : 0);
3456 		}
3457 		break;
3458 
3459 	case MAC_PROP_EN_10FDX_CAP:
3460 		if (hw->phy.media_type != e1000_media_type_copper) {
3461 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3462 		} else {
3463 			mac_prop_info_set_default_uint8(prh,
3464 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3465 		}
3466 		break;
3467 
3468 	case MAC_PROP_EN_10HDX_CAP:
3469 		if (hw->phy.media_type != e1000_media_type_copper) {
3470 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3471 		} else {
3472 			mac_prop_info_set_default_uint8(prh,
3473 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3474 		}
3475 		break;
3476 
3477 	case MAC_PROP_EN_1000HDX_CAP:
3478 		if (hw->phy.media_type != e1000_media_type_copper)
3479 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3480 		break;
3481 
3482 	case MAC_PROP_AUTONEG:
3483 		if (hw->phy.media_type != e1000_media_type_copper) {
3484 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3485 		} else {
3486 			mac_prop_info_set_default_uint8(prh,
3487 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3488 			    ? 1 : 0);
3489 		}
3490 		break;
3491 
3492 	case MAC_PROP_FLOWCTRL:
3493 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3494 		break;
3495 
3496 	case MAC_PROP_MTU: {
3497 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3498 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3499 		uint32_t max;
3500 
3501 		/* some MAC types do not support jumbo frames */
3502 		if ((mac->type == e1000_ich8lan) ||
3503 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3504 		    e1000_phy_ife))) {
3505 			max = DEFAULT_MTU;
3506 		} else {
3507 			max = Adapter->max_mtu;
3508 		}
3509 
3510 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3511 		break;
3512 	}
3513 	case MAC_PROP_PRIVATE: {
3514 		char valstr[64];
3515 		int value;
3516 
3517 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3518 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3519 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3520 			return;
3521 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3522 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3523 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3524 			value = DEFAULT_TX_INTR_ENABLE;
3525 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3526 			value = DEFAULT_TX_INTR_DELAY;
3527 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3528 			value = DEFAULT_TX_INTR_ABS_DELAY;
3529 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3530 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3531 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3532 			value = DEFAULT_RX_LIMIT_ON_INTR;
3533 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3534 			value = DEFAULT_RX_INTR_DELAY;
3535 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3536 			value = DEFAULT_RX_INTR_ABS_DELAY;
3537 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3538 			value = DEFAULT_INTR_THROTTLING;
3539 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3540 			value = 1;
3541 		} else {
3542 			return;
3543 		}
3544 
3545 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3546 		mac_prop_info_set_default_str(prh, valstr);
3547 		break;
3548 	}
3549 	}
3550 }
3551 
3552 /* ARGSUSED2 */
3553 static int
3554 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3555     uint_t pr_valsize, const void *pr_val)
3556 {
3557 	int err = 0;
3558 	long result;
3559 	struct e1000_hw *hw = &Adapter->shared;
3560 
3561 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3562 		if (pr_val == NULL) {
3563 			err = EINVAL;
3564 			return (err);
3565 		}
3566 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3567 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3568 		    result > MAX_TX_BCOPY_THRESHOLD)
3569 			err = EINVAL;
3570 		else {
3571 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3572 		}
3573 		return (err);
3574 	}
3575 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3576 		if (pr_val == NULL) {
3577 			err = EINVAL;
3578 			return (err);
3579 		}
3580 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3581 		if (result < 0 || result > 1)
3582 			err = EINVAL;
3583 		else {
3584 			Adapter->tx_intr_enable = (result == 1) ?
3585 			    B_TRUE: B_FALSE;
3586 			if (Adapter->tx_intr_enable)
3587 				e1000g_mask_tx_interrupt(Adapter);
3588 			else
3589 				e1000g_clear_tx_interrupt(Adapter);
3590 			if (e1000g_check_acc_handle(
3591 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3592 				ddi_fm_service_impact(Adapter->dip,
3593 				    DDI_SERVICE_DEGRADED);
3594 				err = EIO;
3595 			}
3596 		}
3597 		return (err);
3598 	}
3599 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3600 		if (pr_val == NULL) {
3601 			err = EINVAL;
3602 			return (err);
3603 		}
3604 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3605 		if (result < MIN_TX_INTR_DELAY ||
3606 		    result > MAX_TX_INTR_DELAY)
3607 			err = EINVAL;
3608 		else {
3609 			Adapter->tx_intr_delay = (uint32_t)result;
3610 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3611 			if (e1000g_check_acc_handle(
3612 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3613 				ddi_fm_service_impact(Adapter->dip,
3614 				    DDI_SERVICE_DEGRADED);
3615 				err = EIO;
3616 			}
3617 		}
3618 		return (err);
3619 	}
3620 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3621 		if (pr_val == NULL) {
3622 			err = EINVAL;
3623 			return (err);
3624 		}
3625 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3626 		if (result < MIN_TX_INTR_ABS_DELAY ||
3627 		    result > MAX_TX_INTR_ABS_DELAY)
3628 			err = EINVAL;
3629 		else {
3630 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3631 			E1000_WRITE_REG(hw, E1000_TADV,
3632 			    Adapter->tx_intr_abs_delay);
3633 			if (e1000g_check_acc_handle(
3634 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3635 				ddi_fm_service_impact(Adapter->dip,
3636 				    DDI_SERVICE_DEGRADED);
3637 				err = EIO;
3638 			}
3639 		}
3640 		return (err);
3641 	}
3642 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3643 		if (pr_val == NULL) {
3644 			err = EINVAL;
3645 			return (err);
3646 		}
3647 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3648 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3649 		    result > MAX_RX_BCOPY_THRESHOLD)
3650 			err = EINVAL;
3651 		else
3652 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3653 		return (err);
3654 	}
3655 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3656 		if (pr_val == NULL) {
3657 			err = EINVAL;
3658 			return (err);
3659 		}
3660 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3661 		if (result < MIN_RX_LIMIT_ON_INTR ||
3662 		    result > MAX_RX_LIMIT_ON_INTR)
3663 			err = EINVAL;
3664 		else
3665 			Adapter->rx_limit_onintr = (uint32_t)result;
3666 		return (err);
3667 	}
3668 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3669 		if (pr_val == NULL) {
3670 			err = EINVAL;
3671 			return (err);
3672 		}
3673 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3674 		if (result < MIN_RX_INTR_DELAY ||
3675 		    result > MAX_RX_INTR_DELAY)
3676 			err = EINVAL;
3677 		else {
3678 			Adapter->rx_intr_delay = (uint32_t)result;
3679 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3680 			if (e1000g_check_acc_handle(
3681 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3682 				ddi_fm_service_impact(Adapter->dip,
3683 				    DDI_SERVICE_DEGRADED);
3684 				err = EIO;
3685 			}
3686 		}
3687 		return (err);
3688 	}
3689 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3690 		if (pr_val == NULL) {
3691 			err = EINVAL;
3692 			return (err);
3693 		}
3694 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3695 		if (result < MIN_RX_INTR_ABS_DELAY ||
3696 		    result > MAX_RX_INTR_ABS_DELAY)
3697 			err = EINVAL;
3698 		else {
3699 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3700 			E1000_WRITE_REG(hw, E1000_RADV,
3701 			    Adapter->rx_intr_abs_delay);
3702 			if (e1000g_check_acc_handle(
3703 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3704 				ddi_fm_service_impact(Adapter->dip,
3705 				    DDI_SERVICE_DEGRADED);
3706 				err = EIO;
3707 			}
3708 		}
3709 		return (err);
3710 	}
3711 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3712 		if (pr_val == NULL) {
3713 			err = EINVAL;
3714 			return (err);
3715 		}
3716 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3717 		if (result < MIN_INTR_THROTTLING ||
3718 		    result > MAX_INTR_THROTTLING)
3719 			err = EINVAL;
3720 		else {
3721 			if (hw->mac.type >= e1000_82540) {
3722 				Adapter->intr_throttling_rate =
3723 				    (uint32_t)result;
3724 				E1000_WRITE_REG(hw, E1000_ITR,
3725 				    Adapter->intr_throttling_rate);
3726 				if (e1000g_check_acc_handle(
3727 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3728 					ddi_fm_service_impact(Adapter->dip,
3729 					    DDI_SERVICE_DEGRADED);
3730 					err = EIO;
3731 				}
3732 			} else
3733 				err = EINVAL;
3734 		}
3735 		return (err);
3736 	}
3737 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3738 		if (pr_val == NULL) {
3739 			err = EINVAL;
3740 			return (err);
3741 		}
3742 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3743 		if (result < 0 || result > 1)
3744 			err = EINVAL;
3745 		else {
3746 			if (hw->mac.type >= e1000_82540) {
3747 				Adapter->intr_adaptive = (result == 1) ?
3748 				    B_TRUE : B_FALSE;
3749 			} else {
3750 				err = EINVAL;
3751 			}
3752 		}
3753 		return (err);
3754 	}
3755 	return (ENOTSUP);
3756 }
3757 
3758 static int
3759 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3760     uint_t pr_valsize, void *pr_val)
3761 {
3762 	int err = ENOTSUP;
3763 	int value;
3764 
3765 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3766 		value = Adapter->param_adv_pause;
3767 		err = 0;
3768 		goto done;
3769 	}
3770 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3771 		value = Adapter->param_adv_asym_pause;
3772 		err = 0;
3773 		goto done;
3774 	}
3775 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3776 		value = Adapter->tx_bcopy_thresh;
3777 		err = 0;
3778 		goto done;
3779 	}
3780 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3781 		value = Adapter->tx_intr_enable;
3782 		err = 0;
3783 		goto done;
3784 	}
3785 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3786 		value = Adapter->tx_intr_delay;
3787 		err = 0;
3788 		goto done;
3789 	}
3790 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3791 		value = Adapter->tx_intr_abs_delay;
3792 		err = 0;
3793 		goto done;
3794 	}
3795 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3796 		value = Adapter->rx_bcopy_thresh;
3797 		err = 0;
3798 		goto done;
3799 	}
3800 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3801 		value = Adapter->rx_limit_onintr;
3802 		err = 0;
3803 		goto done;
3804 	}
3805 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3806 		value = Adapter->rx_intr_delay;
3807 		err = 0;
3808 		goto done;
3809 	}
3810 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3811 		value = Adapter->rx_intr_abs_delay;
3812 		err = 0;
3813 		goto done;
3814 	}
3815 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3816 		value = Adapter->intr_throttling_rate;
3817 		err = 0;
3818 		goto done;
3819 	}
3820 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3821 		value = Adapter->intr_adaptive;
3822 		err = 0;
3823 		goto done;
3824 	}
3825 done:
3826 	if (err == 0) {
3827 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3828 	}
3829 	return (err);
3830 }
3831 
3832 /*
3833  * e1000g_get_conf - get configurations set in e1000g.conf
3834  * This routine gets user-configured values out of the configuration
3835  * file e1000g.conf.
3836  *
3837  * For each configurable value, there is a minimum, a maximum, and a
3838  * default.
3839  * If user does not configure a value, use the default.
3840  * If user configures below the minimum, use the minumum.
3841  * If user configures above the maximum, use the maxumum.
3842  */
3843 static void
3844 e1000g_get_conf(struct e1000g *Adapter)
3845 {
3846 	struct e1000_hw *hw = &Adapter->shared;
3847 	boolean_t tbi_compatibility = B_FALSE;
3848 	boolean_t is_jumbo = B_FALSE;
3849 	int propval;
3850 	/*
3851 	 * decrease the number of descriptors and free packets
3852 	 * for jumbo frames to reduce tx/rx resource consumption
3853 	 */
3854 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
3855 		is_jumbo = B_TRUE;
3856 	}
3857 
3858 	/*
3859 	 * get each configurable property from e1000g.conf
3860 	 */
3861 
3862 	/*
3863 	 * NumTxDescriptors
3864 	 */
3865 	Adapter->tx_desc_num_flag =
3866 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3867 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3868 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
3869 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
3870 	Adapter->tx_desc_num = propval;
3871 
3872 	/*
3873 	 * NumRxDescriptors
3874 	 */
3875 	Adapter->rx_desc_num_flag =
3876 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3877 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3878 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
3879 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
3880 	Adapter->rx_desc_num = propval;
3881 
3882 	/*
3883 	 * NumRxFreeList
3884 	 */
3885 	Adapter->rx_buf_num_flag =
3886 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3887 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3888 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
3889 	    : DEFAULT_NUM_RX_FREELIST, &propval);
3890 	Adapter->rx_freelist_limit = propval;
3891 
3892 	/*
3893 	 * NumTxPacketList
3894 	 */
3895 	Adapter->tx_buf_num_flag =
3896 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3897 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3898 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
3899 	    : DEFAULT_NUM_TX_FREELIST, &propval);
3900 	Adapter->tx_freelist_num = propval;
3901 
3902 	/*
3903 	 * FlowControl
3904 	 */
3905 	hw->fc.send_xon = B_TRUE;
3906 	(void) e1000g_get_prop(Adapter, "FlowControl",
3907 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
3908 	hw->fc.requested_mode = propval;
3909 	/* 4 is the setting that says "let the eeprom decide" */
3910 	if (hw->fc.requested_mode == 4)
3911 		hw->fc.requested_mode = e1000_fc_default;
3912 
3913 	/*
3914 	 * Max Num Receive Packets on Interrupt
3915 	 */
3916 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3917 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3918 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
3919 	Adapter->rx_limit_onintr = propval;
3920 
3921 	/*
3922 	 * PHY master slave setting
3923 	 */
3924 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
3925 	    e1000_ms_hw_default, e1000_ms_auto,
3926 	    e1000_ms_hw_default, &propval);
3927 	hw->phy.ms_type = propval;
3928 
3929 	/*
3930 	 * Parameter which controls TBI mode workaround, which is only
3931 	 * needed on certain switches such as Cisco 6500/Foundry
3932 	 */
3933 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3934 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
3935 	tbi_compatibility = (propval == 1);
3936 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3937 
3938 	/*
3939 	 * MSI Enable
3940 	 */
3941 	(void) e1000g_get_prop(Adapter, "MSIEnable",
3942 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
3943 	Adapter->msi_enable = (propval == 1);
3944 
3945 	/*
3946 	 * Interrupt Throttling Rate
3947 	 */
3948 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
3949 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3950 	    DEFAULT_INTR_THROTTLING, &propval);
3951 	Adapter->intr_throttling_rate = propval;
3952 
3953 	/*
3954 	 * Adaptive Interrupt Blanking Enable/Disable
3955 	 * It is enabled by default
3956 	 */
3957 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
3958 	    &propval);
3959 	Adapter->intr_adaptive = (propval == 1);
3960 
3961 	/*
3962 	 * Hardware checksum enable/disable parameter
3963 	 */
3964 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
3965 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
3966 	Adapter->tx_hcksum_enable = (propval == 1);
3967 	/*
3968 	 * Checksum on/off selection via global parameters.
3969 	 *
3970 	 * If the chip is flagged as not capable of (correctly)
3971 	 * handling checksumming, we don't enable it on either
3972 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3973 	 * from the patchable global defaults.
3974 	 *
3975 	 * We advertise our capabilities only if TX offload is
3976 	 * enabled.  On receive, the stack will accept checksummed
3977 	 * packets anyway, even if we haven't said we can deliver
3978 	 * them.
3979 	 */
3980 	switch (hw->mac.type) {
3981 		case e1000_82540:
3982 		case e1000_82544:
3983 		case e1000_82545:
3984 		case e1000_82545_rev_3:
3985 		case e1000_82546:
3986 		case e1000_82546_rev_3:
3987 		case e1000_82571:
3988 		case e1000_82572:
3989 		case e1000_82573:
3990 		case e1000_80003es2lan:
3991 			break;
3992 		/*
3993 		 * For the following Intel PRO/1000 chipsets, we have not
3994 		 * tested the hardware checksum offload capability, so we
3995 		 * disable the capability for them.
3996 		 *	e1000_82542,
3997 		 *	e1000_82543,
3998 		 *	e1000_82541,
3999 		 *	e1000_82541_rev_2,
4000 		 *	e1000_82547,
4001 		 *	e1000_82547_rev_2,
4002 		 */
4003 		default:
4004 			Adapter->tx_hcksum_enable = B_FALSE;
4005 	}
4006 
4007 	/*
4008 	 * Large Send Offloading(LSO) Enable/Disable
4009 	 * If the tx hardware checksum is not enabled, LSO should be
4010 	 * disabled.
4011 	 */
4012 	(void) e1000g_get_prop(Adapter, "lso_enable",
4013 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4014 	Adapter->lso_enable = (propval == 1);
4015 
4016 	switch (hw->mac.type) {
4017 		case e1000_82546:
4018 		case e1000_82546_rev_3:
4019 			if (Adapter->lso_enable)
4020 				Adapter->lso_premature_issue = B_TRUE;
4021 			/* FALLTHRU */
4022 		case e1000_82571:
4023 		case e1000_82572:
4024 		case e1000_82573:
4025 		case e1000_80003es2lan:
4026 			break;
4027 		default:
4028 			Adapter->lso_enable = B_FALSE;
4029 	}
4030 
4031 	if (!Adapter->tx_hcksum_enable) {
4032 		Adapter->lso_premature_issue = B_FALSE;
4033 		Adapter->lso_enable = B_FALSE;
4034 	}
4035 
4036 	/*
4037 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4038 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4039 	 * will not cross 64k boundary.
4040 	 */
4041 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4042 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4043 	Adapter->mem_workaround_82546 = (propval == 1);
4044 
4045 	/*
4046 	 * Max number of multicast addresses
4047 	 */
4048 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4049 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4050 	    &propval);
4051 	Adapter->mcast_max_num = propval;
4052 }
4053 
4054 /*
4055  * e1000g_get_prop - routine to read properties
4056  *
4057  * Get a user-configure property value out of the configuration
4058  * file e1000g.conf.
4059  *
4060  * Caller provides name of the property, a default value, a minimum
4061  * value, a maximum value and a pointer to the returned property
4062  * value.
4063  *
4064  * Return B_TRUE if the configured value of the property is not a default
4065  * value, otherwise return B_FALSE.
4066  */
4067 static boolean_t
4068 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4069     char *propname,		/* name of the property */
4070     int minval,			/* minimum acceptable value */
4071     int maxval,			/* maximim acceptable value */
4072     int defval,			/* default value */
4073     int *propvalue)		/* property value return to caller */
4074 {
4075 	int propval;		/* value returned for requested property */
4076 	int *props;		/* point to array of properties returned */
4077 	uint_t nprops;		/* number of property value returned */
4078 	boolean_t ret = B_TRUE;
4079 
4080 	/*
4081 	 * get the array of properties from the config file
4082 	 */
4083 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4084 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4085 		/* got some properties, test if we got enough */
4086 		if (Adapter->instance < nprops) {
4087 			propval = props[Adapter->instance];
4088 		} else {
4089 			/* not enough properties configured */
4090 			propval = defval;
4091 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4092 			    "Not Enough %s values found in e1000g.conf"
4093 			    " - set to %d\n",
4094 			    propname, propval);
4095 			ret = B_FALSE;
4096 		}
4097 
4098 		/* free memory allocated for properties */
4099 		ddi_prop_free(props);
4100 
4101 	} else {
4102 		propval = defval;
4103 		ret = B_FALSE;
4104 	}
4105 
4106 	/*
4107 	 * enforce limits
4108 	 */
4109 	if (propval > maxval) {
4110 		propval = maxval;
4111 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4112 		    "Too High %s value in e1000g.conf - set to %d\n",
4113 		    propname, propval);
4114 	}
4115 
4116 	if (propval < minval) {
4117 		propval = minval;
4118 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4119 		    "Too Low %s value in e1000g.conf - set to %d\n",
4120 		    propname, propval);
4121 	}
4122 
4123 	*propvalue = propval;
4124 	return (ret);
4125 }
4126 
4127 static boolean_t
4128 e1000g_link_check(struct e1000g *Adapter)
4129 {
4130 	uint16_t speed, duplex, phydata;
4131 	boolean_t link_changed = B_FALSE;
4132 	struct e1000_hw *hw;
4133 	uint32_t reg_tarc;
4134 
4135 	hw = &Adapter->shared;
4136 
4137 	if (e1000g_link_up(Adapter)) {
4138 		/*
4139 		 * The Link is up, check whether it was marked as down earlier
4140 		 */
4141 		if (Adapter->link_state != LINK_STATE_UP) {
4142 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4143 			Adapter->link_speed = speed;
4144 			Adapter->link_duplex = duplex;
4145 			Adapter->link_state = LINK_STATE_UP;
4146 			link_changed = B_TRUE;
4147 
4148 			if (Adapter->link_speed == SPEED_1000)
4149 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4150 			else
4151 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4152 
4153 			Adapter->tx_link_down_timeout = 0;
4154 
4155 			if ((hw->mac.type == e1000_82571) ||
4156 			    (hw->mac.type == e1000_82572)) {
4157 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4158 				if (speed == SPEED_1000)
4159 					reg_tarc |= (1 << 21);
4160 				else
4161 					reg_tarc &= ~(1 << 21);
4162 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4163 			}
4164 		}
4165 		Adapter->smartspeed = 0;
4166 	} else {
4167 		if (Adapter->link_state != LINK_STATE_DOWN) {
4168 			Adapter->link_speed = 0;
4169 			Adapter->link_duplex = 0;
4170 			Adapter->link_state = LINK_STATE_DOWN;
4171 			link_changed = B_TRUE;
4172 
4173 			/*
4174 			 * SmartSpeed workaround for Tabor/TanaX, When the
4175 			 * driver loses link disable auto master/slave
4176 			 * resolution.
4177 			 */
4178 			if (hw->phy.type == e1000_phy_igp) {
4179 				(void) e1000_read_phy_reg(hw,
4180 				    PHY_1000T_CTRL, &phydata);
4181 				phydata |= CR_1000T_MS_ENABLE;
4182 				(void) e1000_write_phy_reg(hw,
4183 				    PHY_1000T_CTRL, phydata);
4184 			}
4185 		} else {
4186 			e1000g_smartspeed(Adapter);
4187 		}
4188 
4189 		if (Adapter->e1000g_state & E1000G_STARTED) {
4190 			if (Adapter->tx_link_down_timeout <
4191 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4192 				Adapter->tx_link_down_timeout++;
4193 			} else if (Adapter->tx_link_down_timeout ==
4194 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4195 				e1000g_tx_clean(Adapter);
4196 				Adapter->tx_link_down_timeout++;
4197 			}
4198 		}
4199 	}
4200 
4201 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4202 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4203 
4204 	return (link_changed);
4205 }
4206 
4207 /*
4208  * e1000g_reset_link - Using the link properties to setup the link
4209  */
4210 int
4211 e1000g_reset_link(struct e1000g *Adapter)
4212 {
4213 	struct e1000_mac_info *mac;
4214 	struct e1000_phy_info *phy;
4215 	struct e1000_hw *hw;
4216 	boolean_t invalid;
4217 
4218 	mac = &Adapter->shared.mac;
4219 	phy = &Adapter->shared.phy;
4220 	hw = &Adapter->shared;
4221 	invalid = B_FALSE;
4222 
4223 	if (hw->phy.media_type != e1000_media_type_copper)
4224 		goto out;
4225 
4226 	if (Adapter->param_adv_autoneg == 1) {
4227 		mac->autoneg = B_TRUE;
4228 		phy->autoneg_advertised = 0;
4229 
4230 		/*
4231 		 * 1000hdx is not supported for autonegotiation
4232 		 */
4233 		if (Adapter->param_adv_1000fdx == 1)
4234 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4235 
4236 		if (Adapter->param_adv_100fdx == 1)
4237 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4238 
4239 		if (Adapter->param_adv_100hdx == 1)
4240 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4241 
4242 		if (Adapter->param_adv_10fdx == 1)
4243 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4244 
4245 		if (Adapter->param_adv_10hdx == 1)
4246 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4247 
4248 		if (phy->autoneg_advertised == 0)
4249 			invalid = B_TRUE;
4250 	} else {
4251 		mac->autoneg = B_FALSE;
4252 
4253 		/*
4254 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4255 		 * supported for forced link
4256 		 */
4257 		if (Adapter->param_adv_100fdx == 1)
4258 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4259 		else if (Adapter->param_adv_100hdx == 1)
4260 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4261 		else if (Adapter->param_adv_10fdx == 1)
4262 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4263 		else if (Adapter->param_adv_10hdx == 1)
4264 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4265 		else
4266 			invalid = B_TRUE;
4267 
4268 	}
4269 
4270 	if (invalid) {
4271 		e1000g_log(Adapter, CE_WARN,
4272 		    "Invalid link settings. Setup link to "
4273 		    "support autonegotiation with all link capabilities.");
4274 		mac->autoneg = B_TRUE;
4275 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4276 	}
4277 
4278 out:
4279 	return (e1000_setup_link(&Adapter->shared));
4280 }
4281 
4282 static void
4283 e1000g_timer_tx_resched(struct e1000g *Adapter)
4284 {
4285 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4286 
4287 	rw_enter(&Adapter->chip_lock, RW_READER);
4288 
4289 	if (tx_ring->resched_needed &&
4290 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4291 	    drv_usectohz(1000000)) &&
4292 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4293 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4294 		tx_ring->resched_needed = B_FALSE;
4295 		mac_tx_update(Adapter->mh);
4296 		E1000G_STAT(tx_ring->stat_reschedule);
4297 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4298 	}
4299 
4300 	rw_exit(&Adapter->chip_lock);
4301 }
4302 
4303 static void
4304 e1000g_local_timer(void *ws)
4305 {
4306 	struct e1000g *Adapter = (struct e1000g *)ws;
4307 	struct e1000_hw *hw;
4308 	e1000g_ether_addr_t ether_addr;
4309 	boolean_t link_changed;
4310 
4311 	hw = &Adapter->shared;
4312 
4313 	if (Adapter->e1000g_state & E1000G_ERROR) {
4314 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4315 		Adapter->e1000g_state &= ~E1000G_ERROR;
4316 		rw_exit(&Adapter->chip_lock);
4317 
4318 		Adapter->reset_count++;
4319 		if (e1000g_global_reset(Adapter)) {
4320 			ddi_fm_service_impact(Adapter->dip,
4321 			    DDI_SERVICE_RESTORED);
4322 			e1000g_timer_tx_resched(Adapter);
4323 		} else
4324 			ddi_fm_service_impact(Adapter->dip,
4325 			    DDI_SERVICE_LOST);
4326 		return;
4327 	}
4328 
4329 	if (e1000g_stall_check(Adapter)) {
4330 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4331 		    "Tx stall detected. Activate automatic recovery.\n");
4332 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4333 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4334 		Adapter->reset_count++;
4335 		if (e1000g_reset_adapter(Adapter)) {
4336 			ddi_fm_service_impact(Adapter->dip,
4337 			    DDI_SERVICE_RESTORED);
4338 			e1000g_timer_tx_resched(Adapter);
4339 		}
4340 		return;
4341 	}
4342 
4343 	link_changed = B_FALSE;
4344 	rw_enter(&Adapter->chip_lock, RW_READER);
4345 	if (Adapter->link_complete)
4346 		link_changed = e1000g_link_check(Adapter);
4347 	rw_exit(&Adapter->chip_lock);
4348 
4349 	if (link_changed) {
4350 		if (!Adapter->reset_flag &&
4351 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4352 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4353 			mac_link_update(Adapter->mh, Adapter->link_state);
4354 		if (Adapter->link_state == LINK_STATE_UP)
4355 			Adapter->reset_flag = B_FALSE;
4356 	}
4357 	/*
4358 	 * Workaround for esb2. Data stuck in fifo on a link
4359 	 * down event. Reset the adapter to recover it.
4360 	 */
4361 	if (Adapter->esb2_workaround) {
4362 		Adapter->esb2_workaround = B_FALSE;
4363 		(void) e1000g_reset_adapter(Adapter);
4364 		return;
4365 	}
4366 
4367 	/*
4368 	 * With 82571 controllers, any locally administered address will
4369 	 * be overwritten when there is a reset on the other port.
4370 	 * Detect this circumstance and correct it.
4371 	 */
4372 	if ((hw->mac.type == e1000_82571) &&
4373 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4374 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4375 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4376 
4377 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4378 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4379 
4380 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4381 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4382 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4383 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4384 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4385 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4386 			e1000_rar_set(hw, hw->mac.addr, 0);
4387 		}
4388 	}
4389 
4390 	/*
4391 	 * Long TTL workaround for 82541/82547
4392 	 */
4393 	(void) e1000_igp_ttl_workaround_82547(hw);
4394 
4395 	/*
4396 	 * Check for Adaptive IFS settings If there are lots of collisions
4397 	 * change the value in steps...
4398 	 * These properties should only be set for 10/100
4399 	 */
4400 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4401 	    ((Adapter->link_speed == SPEED_100) ||
4402 	    (Adapter->link_speed == SPEED_10))) {
4403 		e1000_update_adaptive(hw);
4404 	}
4405 	/*
4406 	 * Set Timer Interrupts
4407 	 */
4408 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4409 
4410 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4411 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4412 	else
4413 		e1000g_timer_tx_resched(Adapter);
4414 
4415 	restart_watchdog_timer(Adapter);
4416 }
4417 
4418 /*
4419  * The function e1000g_link_timer() is called when the timer for link setup
4420  * is expired, which indicates the completion of the link setup. The link
4421  * state will not be updated until the link setup is completed. And the
4422  * link state will not be sent to the upper layer through mac_link_update()
4423  * in this function. It will be updated in the local timer routine or the
4424  * interrupt service routine after the interface is started (plumbed).
4425  */
4426 static void
4427 e1000g_link_timer(void *arg)
4428 {
4429 	struct e1000g *Adapter = (struct e1000g *)arg;
4430 
4431 	mutex_enter(&Adapter->link_lock);
4432 	Adapter->link_complete = B_TRUE;
4433 	Adapter->link_tid = 0;
4434 	mutex_exit(&Adapter->link_lock);
4435 }
4436 
4437 /*
4438  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4439  *
4440  * This function read the forced speed and duplex for 10/100 Mbps speeds
4441  * and also for 1000 Mbps speeds from the e1000g.conf file
4442  */
4443 static void
4444 e1000g_force_speed_duplex(struct e1000g *Adapter)
4445 {
4446 	int forced;
4447 	int propval;
4448 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4449 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4450 
4451 	/*
4452 	 * get value out of config file
4453 	 */
4454 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4455 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4456 
4457 	switch (forced) {
4458 	case GDIAG_10_HALF:
4459 		/*
4460 		 * Disable Auto Negotiation
4461 		 */
4462 		mac->autoneg = B_FALSE;
4463 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4464 		break;
4465 	case GDIAG_10_FULL:
4466 		/*
4467 		 * Disable Auto Negotiation
4468 		 */
4469 		mac->autoneg = B_FALSE;
4470 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4471 		break;
4472 	case GDIAG_100_HALF:
4473 		/*
4474 		 * Disable Auto Negotiation
4475 		 */
4476 		mac->autoneg = B_FALSE;
4477 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4478 		break;
4479 	case GDIAG_100_FULL:
4480 		/*
4481 		 * Disable Auto Negotiation
4482 		 */
4483 		mac->autoneg = B_FALSE;
4484 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4485 		break;
4486 	case GDIAG_1000_FULL:
4487 		/*
4488 		 * The gigabit spec requires autonegotiation.  Therefore,
4489 		 * when the user wants to force the speed to 1000Mbps, we
4490 		 * enable AutoNeg, but only allow the harware to advertise
4491 		 * 1000Mbps.  This is different from 10/100 operation, where
4492 		 * we are allowed to link without any negotiation.
4493 		 */
4494 		mac->autoneg = B_TRUE;
4495 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4496 		break;
4497 	default:	/* obey the setting of AutoNegAdvertised */
4498 		mac->autoneg = B_TRUE;
4499 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4500 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4501 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4502 		phy->autoneg_advertised = (uint16_t)propval;
4503 		break;
4504 	}	/* switch */
4505 }
4506 
4507 /*
4508  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4509  *
4510  * This function reads MaxFrameSize from e1000g.conf
4511  */
4512 static void
4513 e1000g_get_max_frame_size(struct e1000g *Adapter)
4514 {
4515 	int max_frame;
4516 
4517 	/*
4518 	 * get value out of config file
4519 	 */
4520 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4521 	    &max_frame);
4522 
4523 	switch (max_frame) {
4524 	case 0:
4525 		Adapter->default_mtu = ETHERMTU;
4526 		break;
4527 	case 1:
4528 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4529 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4530 		break;
4531 	case 2:
4532 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4533 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4534 		break;
4535 	case 3:
4536 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4537 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4538 		break;
4539 	default:
4540 		Adapter->default_mtu = ETHERMTU;
4541 		break;
4542 	}	/* switch */
4543 
4544 	/*
4545 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4546 	 * the MTU is set to the deivce's maximum value.
4547 	 */
4548 	if (Adapter->default_mtu > Adapter->max_mtu)
4549 		Adapter->default_mtu = Adapter->max_mtu;
4550 
4551 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4552 }
4553 
4554 /*
4555  * e1000g_pch_limits - Apply limits of the PCH silicon type
4556  *
4557  * At any frame size larger than the ethernet default,
4558  * prevent linking at 10/100 speeds.
4559  */
4560 static void
4561 e1000g_pch_limits(struct e1000g *Adapter)
4562 {
4563 	struct e1000_hw *hw = &Adapter->shared;
4564 
4565 	/* only applies to PCH silicon type */
4566 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4567 		return;
4568 
4569 	/* only applies to frames larger than ethernet default */
4570 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4571 		hw->mac.autoneg = B_TRUE;
4572 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4573 
4574 		Adapter->param_adv_autoneg = 1;
4575 		Adapter->param_adv_1000fdx = 1;
4576 
4577 		Adapter->param_adv_100fdx = 0;
4578 		Adapter->param_adv_100hdx = 0;
4579 		Adapter->param_adv_10fdx = 0;
4580 		Adapter->param_adv_10hdx = 0;
4581 
4582 		e1000g_param_sync(Adapter);
4583 	}
4584 }
4585 
4586 /*
4587  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4588  */
4589 static uint32_t
4590 e1000g_mtu2maxframe(uint32_t mtu)
4591 {
4592 	uint32_t maxframe;
4593 
4594 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4595 
4596 	return (maxframe);
4597 }
4598 
4599 static void
4600 arm_watchdog_timer(struct e1000g *Adapter)
4601 {
4602 	Adapter->watchdog_tid =
4603 	    timeout(e1000g_local_timer,
4604 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4605 }
4606 #pragma inline(arm_watchdog_timer)
4607 
4608 static void
4609 enable_watchdog_timer(struct e1000g *Adapter)
4610 {
4611 	mutex_enter(&Adapter->watchdog_lock);
4612 
4613 	if (!Adapter->watchdog_timer_enabled) {
4614 		Adapter->watchdog_timer_enabled = B_TRUE;
4615 		Adapter->watchdog_timer_started = B_TRUE;
4616 		arm_watchdog_timer(Adapter);
4617 	}
4618 
4619 	mutex_exit(&Adapter->watchdog_lock);
4620 }
4621 
4622 static void
4623 disable_watchdog_timer(struct e1000g *Adapter)
4624 {
4625 	timeout_id_t tid;
4626 
4627 	mutex_enter(&Adapter->watchdog_lock);
4628 
4629 	Adapter->watchdog_timer_enabled = B_FALSE;
4630 	Adapter->watchdog_timer_started = B_FALSE;
4631 	tid = Adapter->watchdog_tid;
4632 	Adapter->watchdog_tid = 0;
4633 
4634 	mutex_exit(&Adapter->watchdog_lock);
4635 
4636 	if (tid != 0)
4637 		(void) untimeout(tid);
4638 }
4639 
4640 static void
4641 start_watchdog_timer(struct e1000g *Adapter)
4642 {
4643 	mutex_enter(&Adapter->watchdog_lock);
4644 
4645 	if (Adapter->watchdog_timer_enabled) {
4646 		if (!Adapter->watchdog_timer_started) {
4647 			Adapter->watchdog_timer_started = B_TRUE;
4648 			arm_watchdog_timer(Adapter);
4649 		}
4650 	}
4651 
4652 	mutex_exit(&Adapter->watchdog_lock);
4653 }
4654 
4655 static void
4656 restart_watchdog_timer(struct e1000g *Adapter)
4657 {
4658 	mutex_enter(&Adapter->watchdog_lock);
4659 
4660 	if (Adapter->watchdog_timer_started)
4661 		arm_watchdog_timer(Adapter);
4662 
4663 	mutex_exit(&Adapter->watchdog_lock);
4664 }
4665 
4666 static void
4667 stop_watchdog_timer(struct e1000g *Adapter)
4668 {
4669 	timeout_id_t tid;
4670 
4671 	mutex_enter(&Adapter->watchdog_lock);
4672 
4673 	Adapter->watchdog_timer_started = B_FALSE;
4674 	tid = Adapter->watchdog_tid;
4675 	Adapter->watchdog_tid = 0;
4676 
4677 	mutex_exit(&Adapter->watchdog_lock);
4678 
4679 	if (tid != 0)
4680 		(void) untimeout(tid);
4681 }
4682 
4683 static void
4684 stop_link_timer(struct e1000g *Adapter)
4685 {
4686 	timeout_id_t tid;
4687 
4688 	/* Disable the link timer */
4689 	mutex_enter(&Adapter->link_lock);
4690 
4691 	tid = Adapter->link_tid;
4692 	Adapter->link_tid = 0;
4693 
4694 	mutex_exit(&Adapter->link_lock);
4695 
4696 	if (tid != 0)
4697 		(void) untimeout(tid);
4698 }
4699 
4700 static void
4701 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4702 {
4703 	timeout_id_t tid;
4704 
4705 	/* Disable the tx timer for 82547 chipset */
4706 	mutex_enter(&tx_ring->tx_lock);
4707 
4708 	tx_ring->timer_enable_82547 = B_FALSE;
4709 	tid = tx_ring->timer_id_82547;
4710 	tx_ring->timer_id_82547 = 0;
4711 
4712 	mutex_exit(&tx_ring->tx_lock);
4713 
4714 	if (tid != 0)
4715 		(void) untimeout(tid);
4716 }
4717 
4718 void
4719 e1000g_clear_interrupt(struct e1000g *Adapter)
4720 {
4721 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4722 	    0xffffffff & ~E1000_IMS_RXSEQ);
4723 }
4724 
4725 void
4726 e1000g_mask_interrupt(struct e1000g *Adapter)
4727 {
4728 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4729 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4730 
4731 	if (Adapter->tx_intr_enable)
4732 		e1000g_mask_tx_interrupt(Adapter);
4733 }
4734 
4735 /*
4736  * This routine is called by e1000g_quiesce(), therefore must not block.
4737  */
4738 void
4739 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4740 {
4741 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4742 }
4743 
4744 void
4745 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4746 {
4747 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4748 }
4749 
4750 void
4751 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4752 {
4753 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4754 }
4755 
4756 static void
4757 e1000g_smartspeed(struct e1000g *Adapter)
4758 {
4759 	struct e1000_hw *hw = &Adapter->shared;
4760 	uint16_t phy_status;
4761 	uint16_t phy_ctrl;
4762 
4763 	/*
4764 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4765 	 * advertising 1000Full, we don't even use the workaround
4766 	 */
4767 	if ((hw->phy.type != e1000_phy_igp) ||
4768 	    !hw->mac.autoneg ||
4769 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4770 		return;
4771 
4772 	/*
4773 	 * True if this is the first call of this function or after every
4774 	 * 30 seconds of not having link
4775 	 */
4776 	if (Adapter->smartspeed == 0) {
4777 		/*
4778 		 * If Master/Slave config fault is asserted twice, we
4779 		 * assume back-to-back
4780 		 */
4781 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4782 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4783 			return;
4784 
4785 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4786 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4787 			return;
4788 		/*
4789 		 * We're assuming back-2-back because our status register
4790 		 * insists! there's a fault in the master/slave
4791 		 * relationship that was "negotiated"
4792 		 */
4793 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4794 		/*
4795 		 * Is the phy configured for manual configuration of
4796 		 * master/slave?
4797 		 */
4798 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4799 			/*
4800 			 * Yes.  Then disable manual configuration (enable
4801 			 * auto configuration) of master/slave
4802 			 */
4803 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4804 			(void) e1000_write_phy_reg(hw,
4805 			    PHY_1000T_CTRL, phy_ctrl);
4806 			/*
4807 			 * Effectively starting the clock
4808 			 */
4809 			Adapter->smartspeed++;
4810 			/*
4811 			 * Restart autonegotiation
4812 			 */
4813 			if (!e1000_phy_setup_autoneg(hw) &&
4814 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4815 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4816 				    MII_CR_RESTART_AUTO_NEG);
4817 				(void) e1000_write_phy_reg(hw,
4818 				    PHY_CONTROL, phy_ctrl);
4819 			}
4820 		}
4821 		return;
4822 		/*
4823 		 * Has 6 seconds transpired still without link? Remember,
4824 		 * you should reset the smartspeed counter once you obtain
4825 		 * link
4826 		 */
4827 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4828 		/*
4829 		 * Yes.  Remember, we did at the start determine that
4830 		 * there's a master/slave configuration fault, so we're
4831 		 * still assuming there's someone on the other end, but we
4832 		 * just haven't yet been able to talk to it. We then
4833 		 * re-enable auto configuration of master/slave to see if
4834 		 * we're running 2/3 pair cables.
4835 		 */
4836 		/*
4837 		 * If still no link, perhaps using 2/3 pair cable
4838 		 */
4839 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4840 		phy_ctrl |= CR_1000T_MS_ENABLE;
4841 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4842 		/*
4843 		 * Restart autoneg with phy enabled for manual
4844 		 * configuration of master/slave
4845 		 */
4846 		if (!e1000_phy_setup_autoneg(hw) &&
4847 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4848 			phy_ctrl |=
4849 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4850 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4851 		}
4852 		/*
4853 		 * Hopefully, there are no more faults and we've obtained
4854 		 * link as a result.
4855 		 */
4856 	}
4857 	/*
4858 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4859 	 * seconds)
4860 	 */
4861 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4862 		Adapter->smartspeed = 0;
4863 }
4864 
4865 static boolean_t
4866 is_valid_mac_addr(uint8_t *mac_addr)
4867 {
4868 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4869 	const uint8_t addr_test2[6] =
4870 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4871 
4872 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4873 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4874 		return (B_FALSE);
4875 
4876 	return (B_TRUE);
4877 }
4878 
4879 /*
4880  * e1000g_stall_check - check for tx stall
4881  *
4882  * This function checks if the adapter is stalled (in transmit).
4883  *
4884  * It is called each time the watchdog timeout is invoked.
4885  * If the transmit descriptor reclaim continuously fails,
4886  * the watchdog value will increment by 1. If the watchdog
4887  * value exceeds the threshold, the adapter is assumed to
4888  * have stalled and need to be reset.
4889  */
4890 static boolean_t
4891 e1000g_stall_check(struct e1000g *Adapter)
4892 {
4893 	e1000g_tx_ring_t *tx_ring;
4894 
4895 	tx_ring = Adapter->tx_ring;
4896 
4897 	if (Adapter->link_state != LINK_STATE_UP)
4898 		return (B_FALSE);
4899 
4900 	(void) e1000g_recycle(tx_ring);
4901 
4902 	if (Adapter->stall_flag)
4903 		return (B_TRUE);
4904 
4905 	return (B_FALSE);
4906 }
4907 
4908 #ifdef E1000G_DEBUG
4909 static enum ioc_reply
4910 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4911 {
4912 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4913 	e1000g_peekpoke_t *ppd;
4914 	uint64_t mem_va;
4915 	uint64_t maxoff;
4916 	boolean_t peek;
4917 
4918 	switch (iocp->ioc_cmd) {
4919 
4920 	case E1000G_IOC_REG_PEEK:
4921 		peek = B_TRUE;
4922 		break;
4923 
4924 	case E1000G_IOC_REG_POKE:
4925 		peek = B_FALSE;
4926 		break;
4927 
4928 	deault:
4929 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4930 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4931 		    iocp->ioc_cmd);
4932 		return (IOC_INVAL);
4933 	}
4934 
4935 	/*
4936 	 * Validate format of ioctl
4937 	 */
4938 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4939 		return (IOC_INVAL);
4940 	if (mp->b_cont == NULL)
4941 		return (IOC_INVAL);
4942 
4943 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4944 
4945 	/*
4946 	 * Validate request parameters
4947 	 */
4948 	switch (ppd->pp_acc_space) {
4949 
4950 	default:
4951 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4952 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4953 		    ppd->pp_acc_space);
4954 		return (IOC_INVAL);
4955 
4956 	case E1000G_PP_SPACE_REG:
4957 		/*
4958 		 * Memory-mapped I/O space
4959 		 */
4960 		ASSERT(ppd->pp_acc_size == 4);
4961 		if (ppd->pp_acc_size != 4)
4962 			return (IOC_INVAL);
4963 
4964 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4965 			return (IOC_INVAL);
4966 
4967 		mem_va = 0;
4968 		maxoff = 0x10000;
4969 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4970 		break;
4971 
4972 	case E1000G_PP_SPACE_E1000G:
4973 		/*
4974 		 * E1000g data structure!
4975 		 */
4976 		mem_va = (uintptr_t)e1000gp;
4977 		maxoff = sizeof (struct e1000g);
4978 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4979 		break;
4980 
4981 	}
4982 
4983 	if (ppd->pp_acc_offset >= maxoff)
4984 		return (IOC_INVAL);
4985 
4986 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4987 		return (IOC_INVAL);
4988 
4989 	/*
4990 	 * All OK - go!
4991 	 */
4992 	ppd->pp_acc_offset += mem_va;
4993 	(*ppfn)(e1000gp, ppd);
4994 	return (peek ? IOC_REPLY : IOC_ACK);
4995 }
4996 
4997 static void
4998 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4999 {
5000 	ddi_acc_handle_t handle;
5001 	uint32_t *regaddr;
5002 
5003 	handle = e1000gp->osdep.reg_handle;
5004 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5005 	    (uintptr_t)ppd->pp_acc_offset);
5006 
5007 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5008 }
5009 
5010 static void
5011 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5012 {
5013 	ddi_acc_handle_t handle;
5014 	uint32_t *regaddr;
5015 	uint32_t value;
5016 
5017 	handle = e1000gp->osdep.reg_handle;
5018 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5019 	    (uintptr_t)ppd->pp_acc_offset);
5020 	value = (uint32_t)ppd->pp_acc_data;
5021 
5022 	ddi_put32(handle, regaddr, value);
5023 }
5024 
5025 static void
5026 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5027 {
5028 	uint64_t value;
5029 	void *vaddr;
5030 
5031 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5032 
5033 	switch (ppd->pp_acc_size) {
5034 	case 1:
5035 		value = *(uint8_t *)vaddr;
5036 		break;
5037 
5038 	case 2:
5039 		value = *(uint16_t *)vaddr;
5040 		break;
5041 
5042 	case 4:
5043 		value = *(uint32_t *)vaddr;
5044 		break;
5045 
5046 	case 8:
5047 		value = *(uint64_t *)vaddr;
5048 		break;
5049 	}
5050 
5051 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5052 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5053 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5054 
5055 	ppd->pp_acc_data = value;
5056 }
5057 
5058 static void
5059 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5060 {
5061 	uint64_t value;
5062 	void *vaddr;
5063 
5064 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5065 	value = ppd->pp_acc_data;
5066 
5067 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5068 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5069 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5070 
5071 	switch (ppd->pp_acc_size) {
5072 	case 1:
5073 		*(uint8_t *)vaddr = (uint8_t)value;
5074 		break;
5075 
5076 	case 2:
5077 		*(uint16_t *)vaddr = (uint16_t)value;
5078 		break;
5079 
5080 	case 4:
5081 		*(uint32_t *)vaddr = (uint32_t)value;
5082 		break;
5083 
5084 	case 8:
5085 		*(uint64_t *)vaddr = (uint64_t)value;
5086 		break;
5087 	}
5088 }
5089 #endif
5090 
5091 /*
5092  * Loopback Support
5093  */
5094 static lb_property_t lb_normal =
5095 	{ normal,	"normal",	E1000G_LB_NONE		};
5096 static lb_property_t lb_external1000 =
5097 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5098 static lb_property_t lb_external100 =
5099 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5100 static lb_property_t lb_external10 =
5101 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5102 static lb_property_t lb_phy =
5103 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5104 
5105 static enum ioc_reply
5106 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5107 {
5108 	lb_info_sz_t *lbsp;
5109 	lb_property_t *lbpp;
5110 	struct e1000_hw *hw;
5111 	uint32_t *lbmp;
5112 	uint32_t size;
5113 	uint32_t value;
5114 
5115 	hw = &Adapter->shared;
5116 
5117 	if (mp->b_cont == NULL)
5118 		return (IOC_INVAL);
5119 
5120 	if (!e1000g_check_loopback_support(hw)) {
5121 		e1000g_log(NULL, CE_WARN,
5122 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5123 		return (IOC_INVAL);
5124 	}
5125 
5126 	switch (iocp->ioc_cmd) {
5127 	default:
5128 		return (IOC_INVAL);
5129 
5130 	case LB_GET_INFO_SIZE:
5131 		size = sizeof (lb_info_sz_t);
5132 		if (iocp->ioc_count != size)
5133 			return (IOC_INVAL);
5134 
5135 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5136 		e1000g_get_phy_state(Adapter);
5137 
5138 		/*
5139 		 * Workaround for hardware faults. In order to get a stable
5140 		 * state of phy, we will wait for a specific interval and
5141 		 * try again. The time delay is an experiential value based
5142 		 * on our testing.
5143 		 */
5144 		msec_delay(100);
5145 		e1000g_get_phy_state(Adapter);
5146 		rw_exit(&Adapter->chip_lock);
5147 
5148 		value = sizeof (lb_normal);
5149 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5150 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5151 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5152 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5153 			value += sizeof (lb_phy);
5154 			switch (hw->mac.type) {
5155 			case e1000_82571:
5156 			case e1000_82572:
5157 			case e1000_80003es2lan:
5158 				value += sizeof (lb_external1000);
5159 				break;
5160 			}
5161 		}
5162 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5163 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5164 			value += sizeof (lb_external100);
5165 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5166 			value += sizeof (lb_external10);
5167 
5168 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5169 		*lbsp = value;
5170 		break;
5171 
5172 	case LB_GET_INFO:
5173 		value = sizeof (lb_normal);
5174 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5175 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5176 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5177 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5178 			value += sizeof (lb_phy);
5179 			switch (hw->mac.type) {
5180 			case e1000_82571:
5181 			case e1000_82572:
5182 			case e1000_80003es2lan:
5183 				value += sizeof (lb_external1000);
5184 				break;
5185 			}
5186 		}
5187 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5188 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5189 			value += sizeof (lb_external100);
5190 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5191 			value += sizeof (lb_external10);
5192 
5193 		size = value;
5194 		if (iocp->ioc_count != size)
5195 			return (IOC_INVAL);
5196 
5197 		value = 0;
5198 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5199 		lbpp[value++] = lb_normal;
5200 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5201 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5202 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5203 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5204 			lbpp[value++] = lb_phy;
5205 			switch (hw->mac.type) {
5206 			case e1000_82571:
5207 			case e1000_82572:
5208 			case e1000_80003es2lan:
5209 				lbpp[value++] = lb_external1000;
5210 				break;
5211 			}
5212 		}
5213 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5214 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5215 			lbpp[value++] = lb_external100;
5216 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5217 			lbpp[value++] = lb_external10;
5218 		break;
5219 
5220 	case LB_GET_MODE:
5221 		size = sizeof (uint32_t);
5222 		if (iocp->ioc_count != size)
5223 			return (IOC_INVAL);
5224 
5225 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5226 		*lbmp = Adapter->loopback_mode;
5227 		break;
5228 
5229 	case LB_SET_MODE:
5230 		size = 0;
5231 		if (iocp->ioc_count != sizeof (uint32_t))
5232 			return (IOC_INVAL);
5233 
5234 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5235 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5236 			return (IOC_INVAL);
5237 		break;
5238 	}
5239 
5240 	iocp->ioc_count = size;
5241 	iocp->ioc_error = 0;
5242 
5243 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5244 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5245 		return (IOC_INVAL);
5246 	}
5247 
5248 	return (IOC_REPLY);
5249 }
5250 
5251 static boolean_t
5252 e1000g_check_loopback_support(struct e1000_hw *hw)
5253 {
5254 	switch (hw->mac.type) {
5255 	case e1000_82540:
5256 	case e1000_82545:
5257 	case e1000_82545_rev_3:
5258 	case e1000_82546:
5259 	case e1000_82546_rev_3:
5260 	case e1000_82541:
5261 	case e1000_82541_rev_2:
5262 	case e1000_82547:
5263 	case e1000_82547_rev_2:
5264 	case e1000_82571:
5265 	case e1000_82572:
5266 	case e1000_82573:
5267 	case e1000_82574:
5268 	case e1000_80003es2lan:
5269 	case e1000_ich9lan:
5270 	case e1000_ich10lan:
5271 		return (B_TRUE);
5272 	}
5273 	return (B_FALSE);
5274 }
5275 
5276 static boolean_t
5277 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5278 {
5279 	struct e1000_hw *hw;
5280 	int i, times;
5281 	boolean_t link_up;
5282 
5283 	if (mode == Adapter->loopback_mode)
5284 		return (B_TRUE);
5285 
5286 	hw = &Adapter->shared;
5287 	times = 0;
5288 
5289 	Adapter->loopback_mode = mode;
5290 
5291 	if (mode == E1000G_LB_NONE) {
5292 		/* Reset the chip */
5293 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5294 		(void) e1000g_reset_adapter(Adapter);
5295 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5296 		return (B_TRUE);
5297 	}
5298 
5299 again:
5300 
5301 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5302 
5303 	switch (mode) {
5304 	default:
5305 		rw_exit(&Adapter->chip_lock);
5306 		return (B_FALSE);
5307 
5308 	case E1000G_LB_EXTERNAL_1000:
5309 		e1000g_set_external_loopback_1000(Adapter);
5310 		break;
5311 
5312 	case E1000G_LB_EXTERNAL_100:
5313 		e1000g_set_external_loopback_100(Adapter);
5314 		break;
5315 
5316 	case E1000G_LB_EXTERNAL_10:
5317 		e1000g_set_external_loopback_10(Adapter);
5318 		break;
5319 
5320 	case E1000G_LB_INTERNAL_PHY:
5321 		e1000g_set_internal_loopback(Adapter);
5322 		break;
5323 	}
5324 
5325 	times++;
5326 
5327 	rw_exit(&Adapter->chip_lock);
5328 
5329 	/* Wait for link up */
5330 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5331 		msec_delay(100);
5332 
5333 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5334 
5335 	link_up = e1000g_link_up(Adapter);
5336 
5337 	rw_exit(&Adapter->chip_lock);
5338 
5339 	if (!link_up) {
5340 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5341 		    "Failed to get the link up");
5342 		if (times < 2) {
5343 			/* Reset the link */
5344 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5345 			    "Reset the link ...");
5346 			(void) e1000g_reset_adapter(Adapter);
5347 			goto again;
5348 		}
5349 
5350 		/*
5351 		 * Reset driver to loopback none when set loopback failed
5352 		 * for the second time.
5353 		 */
5354 		Adapter->loopback_mode = E1000G_LB_NONE;
5355 
5356 		/* Reset the chip */
5357 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5358 		(void) e1000g_reset_adapter(Adapter);
5359 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5360 
5361 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5362 		    "Set loopback mode failed, reset to loopback none");
5363 
5364 		return (B_FALSE);
5365 	}
5366 
5367 	return (B_TRUE);
5368 }
5369 
5370 /*
5371  * The following loopback settings are from Intel's technical
5372  * document - "How To Loopback". All the register settings and
5373  * time delay values are directly inherited from the document
5374  * without more explanations available.
5375  */
5376 static void
5377 e1000g_set_internal_loopback(struct e1000g *Adapter)
5378 {
5379 	struct e1000_hw *hw;
5380 	uint32_t ctrl;
5381 	uint32_t status;
5382 	uint16_t phy_ctrl;
5383 	uint16_t phy_reg;
5384 	uint32_t txcw;
5385 
5386 	hw = &Adapter->shared;
5387 
5388 	/* Disable Smart Power Down */
5389 	phy_spd_state(hw, B_FALSE);
5390 
5391 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5392 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5393 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5394 
5395 	switch (hw->mac.type) {
5396 	case e1000_82540:
5397 	case e1000_82545:
5398 	case e1000_82545_rev_3:
5399 	case e1000_82546:
5400 	case e1000_82546_rev_3:
5401 	case e1000_82573:
5402 		/* Auto-MDI/MDIX off */
5403 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5404 		/* Reset PHY to update Auto-MDI/MDIX */
5405 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5406 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5407 		/* Reset PHY to auto-neg off and force 1000 */
5408 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5409 		    phy_ctrl | MII_CR_RESET);
5410 		/*
5411 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5412 		 * See comments above e1000g_set_internal_loopback() for the
5413 		 * background.
5414 		 */
5415 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5416 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5417 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5418 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5419 		break;
5420 	case e1000_80003es2lan:
5421 		/* Force Link Up */
5422 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5423 		    0x1CC);
5424 		/* Sets PCS loopback at 1Gbs */
5425 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5426 		    0x1046);
5427 		break;
5428 	}
5429 
5430 	/*
5431 	 * The following registers should be set for e1000_phy_bm phy type.
5432 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5433 	 * For others, we do not need to set these registers.
5434 	 */
5435 	if (hw->phy.type == e1000_phy_bm) {
5436 		/* Set Default MAC Interface speed to 1GB */
5437 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5438 		phy_reg &= ~0x0007;
5439 		phy_reg |= 0x006;
5440 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5441 		/* Assert SW reset for above settings to take effect */
5442 		(void) e1000_phy_commit(hw);
5443 		msec_delay(1);
5444 		/* Force Full Duplex */
5445 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5446 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5447 		    phy_reg | 0x000C);
5448 		/* Set Link Up (in force link) */
5449 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5450 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5451 		    phy_reg | 0x0040);
5452 		/* Force Link */
5453 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5454 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5455 		    phy_reg | 0x0040);
5456 		/* Set Early Link Enable */
5457 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5458 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5459 		    phy_reg | 0x0400);
5460 	}
5461 
5462 	/* Set loopback */
5463 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5464 
5465 	msec_delay(250);
5466 
5467 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5468 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5469 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5470 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5471 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5472 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5473 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5474 
5475 	switch (hw->mac.type) {
5476 	case e1000_82540:
5477 	case e1000_82545:
5478 	case e1000_82545_rev_3:
5479 	case e1000_82546:
5480 	case e1000_82546_rev_3:
5481 		/*
5482 		 * For some serdes we'll need to commit the writes now
5483 		 * so that the status is updated on link
5484 		 */
5485 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5486 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5487 			msec_delay(100);
5488 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5489 		}
5490 
5491 		if (hw->phy.media_type == e1000_media_type_copper) {
5492 			/* Invert Loss of Signal */
5493 			ctrl |= E1000_CTRL_ILOS;
5494 		} else {
5495 			/* Set ILOS on fiber nic if half duplex is detected */
5496 			status = E1000_READ_REG(hw, E1000_STATUS);
5497 			if ((status & E1000_STATUS_FD) == 0)
5498 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5499 		}
5500 		break;
5501 
5502 	case e1000_82571:
5503 	case e1000_82572:
5504 		/*
5505 		 * The fiber/SerDes versions of this adapter do not contain an
5506 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5507 		 * using SerDes analog loopback.
5508 		 */
5509 		if (hw->phy.media_type != e1000_media_type_copper) {
5510 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5511 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5512 			txcw &= ~((uint32_t)1 << 31);
5513 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5514 
5515 			/*
5516 			 * Write 0x410 to Serdes Control register
5517 			 * to enable Serdes analog loopback
5518 			 */
5519 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5520 			msec_delay(10);
5521 		}
5522 
5523 		status = E1000_READ_REG(hw, E1000_STATUS);
5524 		/* Set ILOS on fiber nic if half duplex is detected */
5525 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5526 		    ((status & E1000_STATUS_FD) == 0 ||
5527 		    (status & E1000_STATUS_LU) == 0))
5528 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5529 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5530 			ctrl |= E1000_CTRL_SLU;
5531 		break;
5532 
5533 	case e1000_82573:
5534 		ctrl |= E1000_CTRL_ILOS;
5535 		break;
5536 	case e1000_ich9lan:
5537 	case e1000_ich10lan:
5538 		ctrl |= E1000_CTRL_SLU;
5539 		break;
5540 	}
5541 	if (hw->phy.type == e1000_phy_bm)
5542 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5543 
5544 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5545 }
5546 
5547 static void
5548 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5549 {
5550 	struct e1000_hw *hw;
5551 	uint32_t rctl;
5552 	uint32_t ctrl_ext;
5553 	uint32_t ctrl;
5554 	uint32_t status;
5555 	uint32_t txcw;
5556 	uint16_t phydata;
5557 
5558 	hw = &Adapter->shared;
5559 
5560 	/* Disable Smart Power Down */
5561 	phy_spd_state(hw, B_FALSE);
5562 
5563 	switch (hw->mac.type) {
5564 	case e1000_82571:
5565 	case e1000_82572:
5566 		switch (hw->phy.media_type) {
5567 		case e1000_media_type_copper:
5568 			/* Force link up (Must be done before the PHY writes) */
5569 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5570 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5571 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5572 
5573 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5574 			rctl |= (E1000_RCTL_EN |
5575 			    E1000_RCTL_SBP |
5576 			    E1000_RCTL_UPE |
5577 			    E1000_RCTL_MPE |
5578 			    E1000_RCTL_LPE |
5579 			    E1000_RCTL_BAM);		/* 0x803E */
5580 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5581 
5582 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5583 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5584 			    E1000_CTRL_EXT_SDP6_DATA |
5585 			    E1000_CTRL_EXT_SDP3_DATA |
5586 			    E1000_CTRL_EXT_SDP4_DIR |
5587 			    E1000_CTRL_EXT_SDP6_DIR |
5588 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5589 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5590 
5591 			/*
5592 			 * This sequence tunes the PHY's SDP and no customer
5593 			 * settable values. For background, see comments above
5594 			 * e1000g_set_internal_loopback().
5595 			 */
5596 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5597 			msec_delay(10);
5598 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5599 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5600 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5601 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5602 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5603 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5604 
5605 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5606 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5607 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5608 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5609 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5610 
5611 			msec_delay(50);
5612 			break;
5613 		case e1000_media_type_fiber:
5614 		case e1000_media_type_internal_serdes:
5615 			status = E1000_READ_REG(hw, E1000_STATUS);
5616 			if (((status & E1000_STATUS_LU) == 0) ||
5617 			    (hw->phy.media_type ==
5618 			    e1000_media_type_internal_serdes)) {
5619 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5620 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5621 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5622 			}
5623 
5624 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5625 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5626 			txcw &= ~((uint32_t)1 << 31);
5627 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5628 
5629 			/*
5630 			 * Write 0x410 to Serdes Control register
5631 			 * to enable Serdes analog loopback
5632 			 */
5633 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5634 			msec_delay(10);
5635 			break;
5636 		default:
5637 			break;
5638 		}
5639 		break;
5640 	case e1000_82574:
5641 	case e1000_80003es2lan:
5642 	case e1000_ich9lan:
5643 	case e1000_ich10lan:
5644 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5645 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5646 		    phydata | (1 << 5));
5647 		Adapter->param_adv_autoneg = 1;
5648 		Adapter->param_adv_1000fdx = 1;
5649 		(void) e1000g_reset_link(Adapter);
5650 		break;
5651 	}
5652 }
5653 
5654 static void
5655 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5656 {
5657 	struct e1000_hw *hw;
5658 	uint32_t ctrl;
5659 	uint16_t phy_ctrl;
5660 
5661 	hw = &Adapter->shared;
5662 
5663 	/* Disable Smart Power Down */
5664 	phy_spd_state(hw, B_FALSE);
5665 
5666 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5667 	    MII_CR_SPEED_100);
5668 
5669 	/* Force 100/FD, reset PHY */
5670 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5671 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5672 	msec_delay(10);
5673 
5674 	/* Force 100/FD */
5675 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5676 	    phy_ctrl);			/* 0x2100 */
5677 	msec_delay(10);
5678 
5679 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5680 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5681 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5682 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5683 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5684 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5685 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5686 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5687 
5688 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5689 }
5690 
5691 static void
5692 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5693 {
5694 	struct e1000_hw *hw;
5695 	uint32_t ctrl;
5696 	uint16_t phy_ctrl;
5697 
5698 	hw = &Adapter->shared;
5699 
5700 	/* Disable Smart Power Down */
5701 	phy_spd_state(hw, B_FALSE);
5702 
5703 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5704 	    MII_CR_SPEED_10);
5705 
5706 	/* Force 10/FD, reset PHY */
5707 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5708 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5709 	msec_delay(10);
5710 
5711 	/* Force 10/FD */
5712 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5713 	    phy_ctrl);			/* 0x0100 */
5714 	msec_delay(10);
5715 
5716 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5717 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5718 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5719 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5720 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5721 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5722 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5723 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5724 
5725 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5726 }
5727 
5728 #ifdef __sparc
5729 static boolean_t
5730 e1000g_find_mac_address(struct e1000g *Adapter)
5731 {
5732 	struct e1000_hw *hw = &Adapter->shared;
5733 	uchar_t *bytes;
5734 	struct ether_addr sysaddr;
5735 	uint_t nelts;
5736 	int err;
5737 	boolean_t found = B_FALSE;
5738 
5739 	/*
5740 	 * The "vendor's factory-set address" may already have
5741 	 * been extracted from the chip, but if the property
5742 	 * "local-mac-address" is set we use that instead.
5743 	 *
5744 	 * We check whether it looks like an array of 6
5745 	 * bytes (which it should, if OBP set it).  If we can't
5746 	 * make sense of it this way, we'll ignore it.
5747 	 */
5748 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5749 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5750 	if (err == DDI_PROP_SUCCESS) {
5751 		if (nelts == ETHERADDRL) {
5752 			while (nelts--)
5753 				hw->mac.addr[nelts] = bytes[nelts];
5754 			found = B_TRUE;
5755 		}
5756 		ddi_prop_free(bytes);
5757 	}
5758 
5759 	/*
5760 	 * Look up the OBP property "local-mac-address?". If the user has set
5761 	 * 'local-mac-address? = false', use "the system address" instead.
5762 	 */
5763 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5764 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5765 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5766 			if (localetheraddr(NULL, &sysaddr) != 0) {
5767 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5768 				found = B_TRUE;
5769 			}
5770 		}
5771 		ddi_prop_free(bytes);
5772 	}
5773 
5774 	/*
5775 	 * Finally(!), if there's a valid "mac-address" property (created
5776 	 * if we netbooted from this interface), we must use this instead
5777 	 * of any of the above to ensure that the NFS/install server doesn't
5778 	 * get confused by the address changing as Solaris takes over!
5779 	 */
5780 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5781 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5782 	if (err == DDI_PROP_SUCCESS) {
5783 		if (nelts == ETHERADDRL) {
5784 			while (nelts--)
5785 				hw->mac.addr[nelts] = bytes[nelts];
5786 			found = B_TRUE;
5787 		}
5788 		ddi_prop_free(bytes);
5789 	}
5790 
5791 	if (found) {
5792 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5793 		    ETHERADDRL);
5794 	}
5795 
5796 	return (found);
5797 }
5798 #endif
5799 
5800 static int
5801 e1000g_add_intrs(struct e1000g *Adapter)
5802 {
5803 	dev_info_t *devinfo;
5804 	int intr_types;
5805 	int rc;
5806 
5807 	devinfo = Adapter->dip;
5808 
5809 	/* Get supported interrupt types */
5810 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5811 
5812 	if (rc != DDI_SUCCESS) {
5813 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5814 		    "Get supported interrupt types failed: %d\n", rc);
5815 		return (DDI_FAILURE);
5816 	}
5817 
5818 	/*
5819 	 * Based on Intel Technical Advisory document (TA-160), there are some
5820 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5821 	 * that it supports MSI, but in fact has problems.
5822 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5823 	 * PCI/PCI-X NICs.
5824 	 */
5825 	if (Adapter->shared.mac.type < e1000_82571)
5826 		Adapter->msi_enable = B_FALSE;
5827 
5828 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5829 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5830 
5831 		if (rc != DDI_SUCCESS) {
5832 			/* EMPTY */
5833 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5834 			    "Add MSI failed, trying Legacy interrupts\n");
5835 		} else {
5836 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5837 		}
5838 	}
5839 
5840 	if ((Adapter->intr_type == 0) &&
5841 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5842 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5843 
5844 		if (rc != DDI_SUCCESS) {
5845 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5846 			    "Add Legacy interrupts failed\n");
5847 			return (DDI_FAILURE);
5848 		}
5849 
5850 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5851 	}
5852 
5853 	if (Adapter->intr_type == 0) {
5854 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5855 		    "No interrupts registered\n");
5856 		return (DDI_FAILURE);
5857 	}
5858 
5859 	return (DDI_SUCCESS);
5860 }
5861 
5862 /*
5863  * e1000g_intr_add() handles MSI/Legacy interrupts
5864  */
5865 static int
5866 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5867 {
5868 	dev_info_t *devinfo;
5869 	int count, avail, actual;
5870 	int x, y, rc, inum = 0;
5871 	int flag;
5872 	ddi_intr_handler_t *intr_handler;
5873 
5874 	devinfo = Adapter->dip;
5875 
5876 	/* get number of interrupts */
5877 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5878 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5879 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5880 		    "Get interrupt number failed. Return: %d, count: %d\n",
5881 		    rc, count);
5882 		return (DDI_FAILURE);
5883 	}
5884 
5885 	/* get number of available interrupts */
5886 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5887 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5888 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5889 		    "Get interrupt available number failed. "
5890 		    "Return: %d, available: %d\n", rc, avail);
5891 		return (DDI_FAILURE);
5892 	}
5893 
5894 	if (avail < count) {
5895 		/* EMPTY */
5896 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5897 		    "Interrupts count: %d, available: %d\n",
5898 		    count, avail);
5899 	}
5900 
5901 	/* Allocate an array of interrupt handles */
5902 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5903 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5904 
5905 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5906 	flag = DDI_INTR_ALLOC_NORMAL;
5907 
5908 	/* call ddi_intr_alloc() */
5909 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5910 	    count, &actual, flag);
5911 
5912 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5913 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5914 		    "Allocate interrupts failed: %d\n", rc);
5915 
5916 		kmem_free(Adapter->htable, Adapter->intr_size);
5917 		return (DDI_FAILURE);
5918 	}
5919 
5920 	if (actual < count) {
5921 		/* EMPTY */
5922 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5923 		    "Interrupts requested: %d, received: %d\n",
5924 		    count, actual);
5925 	}
5926 
5927 	Adapter->intr_cnt = actual;
5928 
5929 	/* Get priority for first msi, assume remaining are all the same */
5930 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5931 
5932 	if (rc != DDI_SUCCESS) {
5933 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5934 		    "Get interrupt priority failed: %d\n", rc);
5935 
5936 		/* Free already allocated intr */
5937 		for (y = 0; y < actual; y++)
5938 			(void) ddi_intr_free(Adapter->htable[y]);
5939 
5940 		kmem_free(Adapter->htable, Adapter->intr_size);
5941 		return (DDI_FAILURE);
5942 	}
5943 
5944 	/*
5945 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5946 	 * use the interrupt service routine e1000g_intr_pciexpress()
5947 	 * to avoid interrupt stealing when sharing interrupt with other
5948 	 * devices.
5949 	 */
5950 	if (Adapter->shared.mac.type < e1000_82571)
5951 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5952 	else
5953 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5954 
5955 	/* Call ddi_intr_add_handler() */
5956 	for (x = 0; x < actual; x++) {
5957 		rc = ddi_intr_add_handler(Adapter->htable[x],
5958 		    intr_handler, (caddr_t)Adapter, NULL);
5959 
5960 		if (rc != DDI_SUCCESS) {
5961 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5962 			    "Add interrupt handler failed: %d\n", rc);
5963 
5964 			/* Remove already added handler */
5965 			for (y = 0; y < x; y++)
5966 				(void) ddi_intr_remove_handler(
5967 				    Adapter->htable[y]);
5968 
5969 			/* Free already allocated intr */
5970 			for (y = 0; y < actual; y++)
5971 				(void) ddi_intr_free(Adapter->htable[y]);
5972 
5973 			kmem_free(Adapter->htable, Adapter->intr_size);
5974 			return (DDI_FAILURE);
5975 		}
5976 	}
5977 
5978 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5979 
5980 	if (rc != DDI_SUCCESS) {
5981 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5982 		    "Get interrupt cap failed: %d\n", rc);
5983 
5984 		/* Free already allocated intr */
5985 		for (y = 0; y < actual; y++) {
5986 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5987 			(void) ddi_intr_free(Adapter->htable[y]);
5988 		}
5989 
5990 		kmem_free(Adapter->htable, Adapter->intr_size);
5991 		return (DDI_FAILURE);
5992 	}
5993 
5994 	return (DDI_SUCCESS);
5995 }
5996 
5997 static int
5998 e1000g_rem_intrs(struct e1000g *Adapter)
5999 {
6000 	int x;
6001 	int rc;
6002 
6003 	for (x = 0; x < Adapter->intr_cnt; x++) {
6004 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6005 		if (rc != DDI_SUCCESS) {
6006 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6007 			    "Remove intr handler failed: %d\n", rc);
6008 			return (DDI_FAILURE);
6009 		}
6010 
6011 		rc = ddi_intr_free(Adapter->htable[x]);
6012 		if (rc != DDI_SUCCESS) {
6013 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6014 			    "Free intr failed: %d\n", rc);
6015 			return (DDI_FAILURE);
6016 		}
6017 	}
6018 
6019 	kmem_free(Adapter->htable, Adapter->intr_size);
6020 
6021 	return (DDI_SUCCESS);
6022 }
6023 
6024 static int
6025 e1000g_enable_intrs(struct e1000g *Adapter)
6026 {
6027 	int x;
6028 	int rc;
6029 
6030 	/* Enable interrupts */
6031 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6032 		/* Call ddi_intr_block_enable() for MSI */
6033 		rc = ddi_intr_block_enable(Adapter->htable,
6034 		    Adapter->intr_cnt);
6035 		if (rc != DDI_SUCCESS) {
6036 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6037 			    "Enable block intr failed: %d\n", rc);
6038 			return (DDI_FAILURE);
6039 		}
6040 	} else {
6041 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6042 		for (x = 0; x < Adapter->intr_cnt; x++) {
6043 			rc = ddi_intr_enable(Adapter->htable[x]);
6044 			if (rc != DDI_SUCCESS) {
6045 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6046 				    "Enable intr failed: %d\n", rc);
6047 				return (DDI_FAILURE);
6048 			}
6049 		}
6050 	}
6051 
6052 	return (DDI_SUCCESS);
6053 }
6054 
6055 static int
6056 e1000g_disable_intrs(struct e1000g *Adapter)
6057 {
6058 	int x;
6059 	int rc;
6060 
6061 	/* Disable all interrupts */
6062 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6063 		rc = ddi_intr_block_disable(Adapter->htable,
6064 		    Adapter->intr_cnt);
6065 		if (rc != DDI_SUCCESS) {
6066 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6067 			    "Disable block intr failed: %d\n", rc);
6068 			return (DDI_FAILURE);
6069 		}
6070 	} else {
6071 		for (x = 0; x < Adapter->intr_cnt; x++) {
6072 			rc = ddi_intr_disable(Adapter->htable[x]);
6073 			if (rc != DDI_SUCCESS) {
6074 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6075 				    "Disable intr failed: %d\n", rc);
6076 				return (DDI_FAILURE);
6077 			}
6078 		}
6079 	}
6080 
6081 	return (DDI_SUCCESS);
6082 }
6083 
6084 /*
6085  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6086  */
6087 static void
6088 e1000g_get_phy_state(struct e1000g *Adapter)
6089 {
6090 	struct e1000_hw *hw = &Adapter->shared;
6091 
6092 	if (hw->phy.media_type == e1000_media_type_copper) {
6093 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6094 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6095 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6096 		    &Adapter->phy_an_adv);
6097 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6098 		    &Adapter->phy_an_exp);
6099 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6100 		    &Adapter->phy_ext_status);
6101 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6102 		    &Adapter->phy_1000t_ctrl);
6103 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6104 		    &Adapter->phy_1000t_status);
6105 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6106 		    &Adapter->phy_lp_able);
6107 
6108 		Adapter->param_autoneg_cap =
6109 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6110 		Adapter->param_pause_cap =
6111 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6112 		Adapter->param_asym_pause_cap =
6113 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6114 		Adapter->param_1000fdx_cap =
6115 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6116 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6117 		Adapter->param_1000hdx_cap =
6118 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6119 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6120 		Adapter->param_100t4_cap =
6121 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6122 		Adapter->param_100fdx_cap =
6123 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6124 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6125 		Adapter->param_100hdx_cap =
6126 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6127 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6128 		Adapter->param_10fdx_cap =
6129 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6130 		Adapter->param_10hdx_cap =
6131 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6132 
6133 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6134 		Adapter->param_adv_pause =
6135 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6136 		Adapter->param_adv_asym_pause =
6137 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6138 		Adapter->param_adv_1000hdx =
6139 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6140 		Adapter->param_adv_100t4 =
6141 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6142 		if (Adapter->param_adv_autoneg == 1) {
6143 			Adapter->param_adv_1000fdx =
6144 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6145 			    ? 1 : 0;
6146 			Adapter->param_adv_100fdx =
6147 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6148 			    ? 1 : 0;
6149 			Adapter->param_adv_100hdx =
6150 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6151 			    ? 1 : 0;
6152 			Adapter->param_adv_10fdx =
6153 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6154 			Adapter->param_adv_10hdx =
6155 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6156 		}
6157 
6158 		Adapter->param_lp_autoneg =
6159 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6160 		Adapter->param_lp_pause =
6161 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6162 		Adapter->param_lp_asym_pause =
6163 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6164 		Adapter->param_lp_1000fdx =
6165 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6166 		Adapter->param_lp_1000hdx =
6167 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6168 		Adapter->param_lp_100t4 =
6169 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6170 		Adapter->param_lp_100fdx =
6171 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6172 		Adapter->param_lp_100hdx =
6173 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6174 		Adapter->param_lp_10fdx =
6175 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6176 		Adapter->param_lp_10hdx =
6177 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6178 	} else {
6179 		/*
6180 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6181 		 * it can only work with 1Gig Full Duplex Link Partner.
6182 		 */
6183 		Adapter->param_autoneg_cap = 0;
6184 		Adapter->param_pause_cap = 1;
6185 		Adapter->param_asym_pause_cap = 1;
6186 		Adapter->param_1000fdx_cap = 1;
6187 		Adapter->param_1000hdx_cap = 0;
6188 		Adapter->param_100t4_cap = 0;
6189 		Adapter->param_100fdx_cap = 0;
6190 		Adapter->param_100hdx_cap = 0;
6191 		Adapter->param_10fdx_cap = 0;
6192 		Adapter->param_10hdx_cap = 0;
6193 
6194 		Adapter->param_adv_autoneg = 0;
6195 		Adapter->param_adv_pause = 1;
6196 		Adapter->param_adv_asym_pause = 1;
6197 		Adapter->param_adv_1000fdx = 1;
6198 		Adapter->param_adv_1000hdx = 0;
6199 		Adapter->param_adv_100t4 = 0;
6200 		Adapter->param_adv_100fdx = 0;
6201 		Adapter->param_adv_100hdx = 0;
6202 		Adapter->param_adv_10fdx = 0;
6203 		Adapter->param_adv_10hdx = 0;
6204 
6205 		Adapter->param_lp_autoneg = 0;
6206 		Adapter->param_lp_pause = 0;
6207 		Adapter->param_lp_asym_pause = 0;
6208 		Adapter->param_lp_1000fdx = 0;
6209 		Adapter->param_lp_1000hdx = 0;
6210 		Adapter->param_lp_100t4 = 0;
6211 		Adapter->param_lp_100fdx = 0;
6212 		Adapter->param_lp_100hdx = 0;
6213 		Adapter->param_lp_10fdx = 0;
6214 		Adapter->param_lp_10hdx = 0;
6215 	}
6216 }
6217 
6218 /*
6219  * FMA support
6220  */
6221 
6222 int
6223 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6224 {
6225 	ddi_fm_error_t de;
6226 
6227 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6228 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6229 	return (de.fme_status);
6230 }
6231 
6232 int
6233 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6234 {
6235 	ddi_fm_error_t de;
6236 
6237 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6238 	return (de.fme_status);
6239 }
6240 
6241 /*
6242  * The IO fault service error handling callback function
6243  */
6244 /* ARGSUSED2 */
6245 static int
6246 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6247 {
6248 	/*
6249 	 * as the driver can always deal with an error in any dma or
6250 	 * access handle, we can just return the fme_status value.
6251 	 */
6252 	pci_ereport_post(dip, err, NULL);
6253 	return (err->fme_status);
6254 }
6255 
6256 static void
6257 e1000g_fm_init(struct e1000g *Adapter)
6258 {
6259 	ddi_iblock_cookie_t iblk;
6260 	int fma_dma_flag;
6261 
6262 	/* Only register with IO Fault Services if we have some capability */
6263 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6264 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6265 	} else {
6266 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6267 	}
6268 
6269 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6270 		fma_dma_flag = 1;
6271 	} else {
6272 		fma_dma_flag = 0;
6273 	}
6274 
6275 	(void) e1000g_set_fma_flags(fma_dma_flag);
6276 
6277 	if (Adapter->fm_capabilities) {
6278 
6279 		/* Register capabilities with IO Fault Services */
6280 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6281 
6282 		/*
6283 		 * Initialize pci ereport capabilities if ereport capable
6284 		 */
6285 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6286 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6287 			pci_ereport_setup(Adapter->dip);
6288 
6289 		/*
6290 		 * Register error callback if error callback capable
6291 		 */
6292 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6293 			ddi_fm_handler_register(Adapter->dip,
6294 			    e1000g_fm_error_cb, (void*) Adapter);
6295 	}
6296 }
6297 
6298 static void
6299 e1000g_fm_fini(struct e1000g *Adapter)
6300 {
6301 	/* Only unregister FMA capabilities if we registered some */
6302 	if (Adapter->fm_capabilities) {
6303 
6304 		/*
6305 		 * Release any resources allocated by pci_ereport_setup()
6306 		 */
6307 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6308 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6309 			pci_ereport_teardown(Adapter->dip);
6310 
6311 		/*
6312 		 * Un-register error callback if error callback capable
6313 		 */
6314 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6315 			ddi_fm_handler_unregister(Adapter->dip);
6316 
6317 		/* Unregister from IO Fault Services */
6318 		mutex_enter(&e1000g_rx_detach_lock);
6319 		ddi_fm_fini(Adapter->dip);
6320 		if (Adapter->priv_dip != NULL) {
6321 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6322 		}
6323 		mutex_exit(&e1000g_rx_detach_lock);
6324 	}
6325 }
6326 
6327 void
6328 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6329 {
6330 	uint64_t ena;
6331 	char buf[FM_MAX_CLASS];
6332 
6333 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6334 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6335 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6336 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6337 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6338 	}
6339 }
6340 
6341 /*
6342  * quiesce(9E) entry point.
6343  *
6344  * This function is called when the system is single-threaded at high
6345  * PIL with preemption disabled. Therefore, this function must not be
6346  * blocked.
6347  *
6348  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6349  * DDI_FAILURE indicates an error condition and should almost never happen.
6350  */
6351 static int
6352 e1000g_quiesce(dev_info_t *devinfo)
6353 {
6354 	struct e1000g *Adapter;
6355 
6356 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6357 
6358 	if (Adapter == NULL)
6359 		return (DDI_FAILURE);
6360 
6361 	e1000g_clear_all_interrupts(Adapter);
6362 
6363 	(void) e1000_reset_hw(&Adapter->shared);
6364 
6365 	/* Setup our HW Tx Head & Tail descriptor pointers */
6366 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6367 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6368 
6369 	/* Setup our HW Rx Head & Tail descriptor pointers */
6370 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6371 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6372 
6373 	return (DDI_SUCCESS);
6374 }
6375 
6376 /*
6377  * synchronize the adv* and en* parameters.
6378  *
6379  * See comments in <sys/dld.h> for details of the *_en_*
6380  * parameters. The usage of ndd for setting adv parameters will
6381  * synchronize all the en parameters with the e1000g parameters,
6382  * implicitly disabling any settings made via dladm.
6383  */
6384 static void
6385 e1000g_param_sync(struct e1000g *Adapter)
6386 {
6387 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6388 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6389 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6390 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6391 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6392 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6393 }
6394 
6395 /*
6396  * e1000g_get_driver_control - tell manageability firmware that the driver
6397  * has control.
6398  */
6399 static void
6400 e1000g_get_driver_control(struct e1000_hw *hw)
6401 {
6402 	uint32_t ctrl_ext;
6403 	uint32_t swsm;
6404 
6405 	/* tell manageability firmware the driver has taken over */
6406 	switch (hw->mac.type) {
6407 	case e1000_82573:
6408 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6409 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6410 		break;
6411 	case e1000_82571:
6412 	case e1000_82572:
6413 	case e1000_82574:
6414 	case e1000_80003es2lan:
6415 	case e1000_ich8lan:
6416 	case e1000_ich9lan:
6417 	case e1000_ich10lan:
6418 	case e1000_pchlan:
6419 	case e1000_pch2lan:
6420 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6421 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6422 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6423 		break;
6424 	default:
6425 		/* no manageability firmware: do nothing */
6426 		break;
6427 	}
6428 }
6429 
6430 /*
6431  * e1000g_release_driver_control - tell manageability firmware that the driver
6432  * has released control.
6433  */
6434 static void
6435 e1000g_release_driver_control(struct e1000_hw *hw)
6436 {
6437 	uint32_t ctrl_ext;
6438 	uint32_t swsm;
6439 
6440 	/* tell manageability firmware the driver has released control */
6441 	switch (hw->mac.type) {
6442 	case e1000_82573:
6443 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6444 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6445 		break;
6446 	case e1000_82571:
6447 	case e1000_82572:
6448 	case e1000_82574:
6449 	case e1000_80003es2lan:
6450 	case e1000_ich8lan:
6451 	case e1000_ich9lan:
6452 	case e1000_ich10lan:
6453 	case e1000_pchlan:
6454 	case e1000_pch2lan:
6455 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6456 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6457 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6458 		break;
6459 	default:
6460 		/* no manageability firmware: do nothing */
6461 		break;
6462 	}
6463 }
6464 
6465 /*
6466  * Restore e1000g promiscuous mode.
6467  */
6468 static void
6469 e1000g_restore_promisc(struct e1000g *Adapter)
6470 {
6471 	if (Adapter->e1000g_promisc) {
6472 		uint32_t rctl;
6473 
6474 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6475 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6476 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6477 	}
6478 }
6479