xref: /titanic_52/usr/src/uts/common/io/e1000g/e1000g_main.c (revision e79c98e6c943cb3032f272714ff4ce6137d40394)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routines for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point routines.	*
37  *									*
38  *   This file also contains routines that take care of initialization	*
39  *   uninit routine and interrupt routine.				*
40  *									*
41  * **********************************************************************
42  */
43 
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include "e1000g_sw.h"
47 #include "e1000g_debug.h"
48 
49 static char ident[] = "Intel PRO/1000 Ethernet 5.2.4";
50 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
51 static char e1000g_version[] = "Driver Ver. 5.2.4";
52 
53 /*
54  * Proto types for DDI entry points
55  */
56 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
57 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
58 
59 /*
60  * init and intr routines prototype
61  */
62 static int e1000g_resume(dev_info_t *);
63 static int e1000g_suspend(dev_info_t *);
64 static uint_t e1000g_intr_pciexpress(caddr_t);
65 static uint_t e1000g_intr(caddr_t);
66 static void e1000g_intr_work(struct e1000g *, uint32_t);
67 #pragma inline(e1000g_intr_work)
68 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
69 #pragma inline(e1000g_get_itr)
70 static int e1000g_init(struct e1000g *);
71 static int e1000g_start(struct e1000g *, boolean_t);
72 static void e1000g_stop(struct e1000g *, boolean_t);
73 static int e1000g_m_start(void *);
74 static void e1000g_m_stop(void *);
75 static int e1000g_m_promisc(void *, boolean_t);
76 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
77 static int e1000g_m_unicst(void *, const uint8_t *);
78 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
79 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
80 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
81 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
82 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
83 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
84 static void e1000g_init_locks(struct e1000g *);
85 static void e1000g_destroy_locks(struct e1000g *);
86 static int e1000g_identify_hardware(struct e1000g *);
87 static int e1000g_regs_map(struct e1000g *);
88 static int e1000g_set_driver_params(struct e1000g *);
89 static int e1000g_register_mac(struct e1000g *);
90 static boolean_t e1000g_rx_drain(struct e1000g *);
91 static boolean_t e1000g_tx_drain(struct e1000g *);
92 static void e1000g_init_unicst(struct e1000g *);
93 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
94 
95 /*
96  * Local routines
97  */
98 static void e1000g_tx_clean(struct e1000g *);
99 static void e1000g_rx_clean(struct e1000g *);
100 static void e1000g_link_timer(void *);
101 static void e1000g_local_timer(void *);
102 static boolean_t e1000g_link_check(struct e1000g *);
103 static boolean_t e1000g_stall_check(struct e1000g *);
104 static void e1000g_smartspeed(struct e1000g *);
105 static void e1000g_get_conf(struct e1000g *);
106 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
107 static void enable_watchdog_timer(struct e1000g *);
108 static void disable_watchdog_timer(struct e1000g *);
109 static void start_watchdog_timer(struct e1000g *);
110 static void restart_watchdog_timer(struct e1000g *);
111 static void stop_watchdog_timer(struct e1000g *);
112 static void stop_link_timer(struct e1000g *);
113 static void stop_82547_timer(e1000g_tx_ring_t *);
114 static void e1000g_force_speed_duplex(struct e1000g *);
115 static void e1000g_get_max_frame_size(struct e1000g *);
116 static boolean_t is_valid_mac_addr(uint8_t *);
117 static void e1000g_unattach(dev_info_t *, struct e1000g *);
118 #ifdef E1000G_DEBUG
119 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
120 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
121 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
122 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
123 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
124     struct iocblk *, mblk_t *);
125 #endif
126 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
127     struct iocblk *, mblk_t *);
128 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
129 static void e1000g_set_internal_loopback(struct e1000g *);
130 static void e1000g_set_external_loopback_1000(struct e1000g *);
131 static void e1000g_set_external_loopback_100(struct e1000g *);
132 static void e1000g_set_external_loopback_10(struct e1000g *);
133 static int e1000g_add_intrs(struct e1000g *);
134 static int e1000g_intr_add(struct e1000g *, int);
135 static int e1000g_rem_intrs(struct e1000g *);
136 static int e1000g_enable_intrs(struct e1000g *);
137 static int e1000g_disable_intrs(struct e1000g *);
138 static boolean_t e1000g_link_up(struct e1000g *);
139 #ifdef __sparc
140 static boolean_t e1000g_find_mac_address(struct e1000g *);
141 #endif
142 static void e1000g_get_phy_state(struct e1000g *);
143 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
144 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
145     const void *impl_data);
146 static void e1000g_fm_init(struct e1000g *Adapter);
147 static void e1000g_fm_fini(struct e1000g *Adapter);
148 
149 static struct cb_ops cb_ws_ops = {
150 	nulldev,		/* cb_open */
151 	nulldev,		/* cb_close */
152 	nodev,			/* cb_strategy */
153 	nodev,			/* cb_print */
154 	nodev,			/* cb_dump */
155 	nodev,			/* cb_read */
156 	nodev,			/* cb_write */
157 	nodev,			/* cb_ioctl */
158 	nodev,			/* cb_devmap */
159 	nodev,			/* cb_mmap */
160 	nodev,			/* cb_segmap */
161 	nochpoll,		/* cb_chpoll */
162 	ddi_prop_op,		/* cb_prop_op */
163 	NULL,			/* cb_stream */
164 	D_MP | D_HOTPLUG,	/* cb_flag */
165 	CB_REV,			/* cb_rev */
166 	nodev,			/* cb_aread */
167 	nodev			/* cb_awrite */
168 };
169 
170 static struct dev_ops ws_ops = {
171 	DEVO_REV,		/* devo_rev */
172 	0,			/* devo_refcnt */
173 	NULL,			/* devo_getinfo */
174 	nulldev,		/* devo_identify */
175 	nulldev,		/* devo_probe */
176 	e1000g_attach,		/* devo_attach */
177 	e1000g_detach,		/* devo_detach */
178 	nodev,			/* devo_reset */
179 	&cb_ws_ops,		/* devo_cb_ops */
180 	NULL,			/* devo_bus_ops */
181 	ddi_power		/* devo_power */
182 };
183 
184 static struct modldrv modldrv = {
185 	&mod_driverops,		/* Type of module.  This one is a driver */
186 	ident,			/* Discription string */
187 	&ws_ops,		/* driver ops */
188 };
189 
190 static struct modlinkage modlinkage = {
191 	MODREV_1, &modldrv, NULL
192 };
193 
194 /* Access attributes for register mapping */
195 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
196 	DDI_DEVICE_ATTR_V0,
197 	DDI_STRUCTURE_LE_ACC,
198 	DDI_STRICTORDER_ACC,
199 	DDI_FLAGERR_ACC
200 };
201 
202 #define	E1000G_M_CALLBACK_FLAGS	(MC_IOCTL | MC_GETCAPAB)
203 
204 static mac_callbacks_t e1000g_m_callbacks = {
205 	E1000G_M_CALLBACK_FLAGS,
206 	e1000g_m_stat,
207 	e1000g_m_start,
208 	e1000g_m_stop,
209 	e1000g_m_promisc,
210 	e1000g_m_multicst,
211 	e1000g_m_unicst,
212 	e1000g_m_tx,
213 	NULL,
214 	e1000g_m_ioctl,
215 	e1000g_m_getcapab
216 };
217 
218 /*
219  * Global variables
220  */
221 uint32_t e1000g_mblks_pending = 0;
222 /*
223  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
224  * Here we maintain a private dev_info list if e1000g_force_detach is
225  * enabled. If we force the driver to detach while there are still some
226  * rx buffers retained in the upper layer, we have to keep a copy of the
227  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
228  * structure will be freed after the driver is detached. However when we
229  * finally free those rx buffers released by the upper layer, we need to
230  * refer to the dev_info to free the dma buffers. So we save a copy of
231  * the dev_info for this purpose. On x86 platform, we assume this copy
232  * of dev_info is always valid, but on SPARC platform, it could be invalid
233  * after the system board level DR operation. For this reason, the global
234  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
235  */
236 #ifdef __sparc
237 boolean_t e1000g_force_detach = B_FALSE;
238 #else
239 boolean_t e1000g_force_detach = B_TRUE;
240 #endif
241 private_devi_list_t *e1000g_private_devi_list = NULL;
242 
243 /*
244  * The rwlock is defined to protect the whole processing of rx recycling
245  * and the rx packets release in detach processing to make them mutually
246  * exclusive.
247  * The rx recycling processes different rx packets in different threads,
248  * so it will be protected with RW_READER and it won't block any other rx
249  * recycling threads.
250  * While the detach processing will be protected with RW_WRITER to make
251  * it mutually exclusive with the rx recycling.
252  */
253 krwlock_t e1000g_rx_detach_lock;
254 /*
255  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
256  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
257  * If there are many e1000g instances, the system may run out of DVMA
258  * resources during the initialization of the instances, then the flag will
259  * be changed to "USE_DMA". Because different e1000g instances are initialized
260  * in parallel, we need to use this lock to protect the flag.
261  */
262 krwlock_t e1000g_dma_type_lock;
263 
264 
265 /*
266  * Loadable module configuration entry points for the driver
267  */
268 
269 /*
270  * _init - module initialization
271  */
272 int
273 _init(void)
274 {
275 	int status;
276 
277 	mac_init_ops(&ws_ops, WSNAME);
278 	status = mod_install(&modlinkage);
279 	if (status != DDI_SUCCESS)
280 		mac_fini_ops(&ws_ops);
281 	else {
282 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
283 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
284 	}
285 
286 	return (status);
287 }
288 
289 /*
290  * _fini - module finalization
291  */
292 int
293 _fini(void)
294 {
295 	int status;
296 
297 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
298 	if (e1000g_mblks_pending != 0) {
299 		rw_exit(&e1000g_rx_detach_lock);
300 		return (EBUSY);
301 	}
302 	rw_exit(&e1000g_rx_detach_lock);
303 
304 	status = mod_remove(&modlinkage);
305 	if (status == DDI_SUCCESS) {
306 		mac_fini_ops(&ws_ops);
307 
308 		if (e1000g_force_detach) {
309 			private_devi_list_t *devi_node;
310 
311 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
312 			while (e1000g_private_devi_list != NULL) {
313 				devi_node = e1000g_private_devi_list;
314 				e1000g_private_devi_list =
315 				    e1000g_private_devi_list->next;
316 
317 				kmem_free(devi_node->priv_dip,
318 				    sizeof (struct dev_info));
319 				kmem_free(devi_node,
320 				    sizeof (private_devi_list_t));
321 			}
322 			rw_exit(&e1000g_rx_detach_lock);
323 		}
324 
325 		rw_destroy(&e1000g_rx_detach_lock);
326 		rw_destroy(&e1000g_dma_type_lock);
327 	}
328 
329 	return (status);
330 }
331 
332 /*
333  * _info - module information
334  */
335 int
336 _info(struct modinfo *modinfop)
337 {
338 	return (mod_info(&modlinkage, modinfop));
339 }
340 
341 /*
342  * e1000g_attach - driver attach
343  *
344  * This function is the device-specific initialization entry
345  * point. This entry point is required and must be written.
346  * The DDI_ATTACH command must be provided in the attach entry
347  * point. When attach() is called with cmd set to DDI_ATTACH,
348  * all normal kernel services (such as kmem_alloc(9F)) are
349  * available for use by the driver.
350  *
351  * The attach() function will be called once for each instance
352  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
353  * Until attach() succeeds, the only driver entry points which
354  * may be called are open(9E) and getinfo(9E).
355  */
356 static int
357 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
358 {
359 	struct e1000g *Adapter;
360 	struct e1000_hw *hw;
361 	struct e1000g_osdep *osdep;
362 	int instance;
363 
364 	switch (cmd) {
365 	default:
366 		e1000g_log(NULL, CE_WARN,
367 		    "Unsupported command send to e1000g_attach... ");
368 		return (DDI_FAILURE);
369 
370 	case DDI_RESUME:
371 		return (e1000g_resume(devinfo));
372 
373 	case DDI_ATTACH:
374 		break;
375 	}
376 
377 	/*
378 	 * get device instance number
379 	 */
380 	instance = ddi_get_instance(devinfo);
381 
382 	/*
383 	 * Allocate soft data structure
384 	 */
385 	Adapter =
386 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
387 
388 	Adapter->dip = devinfo;
389 	Adapter->instance = instance;
390 	Adapter->tx_ring->adapter = Adapter;
391 	Adapter->rx_ring->adapter = Adapter;
392 
393 	hw = &Adapter->shared;
394 	osdep = &Adapter->osdep;
395 	hw->back = osdep;
396 	osdep->adapter = Adapter;
397 
398 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
399 
400 	/*
401 	 * Initialize for fma support
402 	 */
403 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
404 	    0, 0x0f,
405 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
406 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
407 	e1000g_fm_init(Adapter);
408 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
409 
410 	/*
411 	 * PCI Configure
412 	 */
413 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
414 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
415 		goto attach_fail;
416 	}
417 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
418 
419 	/*
420 	 * Setup hardware
421 	 */
422 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
423 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
424 		goto attach_fail;
425 	}
426 
427 	/*
428 	 * Map in the device registers.
429 	 */
430 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
431 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
432 		goto attach_fail;
433 	}
434 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
435 
436 	/*
437 	 * Initialize driver parameters
438 	 */
439 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
440 		goto attach_fail;
441 	}
442 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
443 
444 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
445 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
446 		goto attach_fail;
447 	}
448 
449 	/*
450 	 * Initialize interrupts
451 	 */
452 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
453 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
454 		goto attach_fail;
455 	}
456 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
457 
458 	/*
459 	 * Initialize mutex's for this device.
460 	 * Do this before enabling the interrupt handler and
461 	 * register the softint to avoid the condition where
462 	 * interrupt handler can try using uninitialized mutex
463 	 */
464 	e1000g_init_locks(Adapter);
465 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
466 
467 	/*
468 	 * Initialize Driver Counters
469 	 */
470 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
471 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
472 		goto attach_fail;
473 	}
474 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
475 
476 	/*
477 	 * Initialize chip hardware and software structures
478 	 */
479 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
480 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
481 		goto attach_fail;
482 	}
483 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
484 
485 	/*
486 	 * Initialize NDD parameters
487 	 */
488 	if (e1000g_nd_init(Adapter) != DDI_SUCCESS) {
489 		e1000g_log(Adapter, CE_WARN, "Init ndd failed");
490 		goto attach_fail;
491 	}
492 	Adapter->attach_progress |= ATTACH_PROGRESS_NDD;
493 
494 	/*
495 	 * Register the driver to the MAC
496 	 */
497 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
498 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
499 		goto attach_fail;
500 	}
501 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
502 
503 	/*
504 	 * Now that mutex locks are initialized, and the chip is also
505 	 * initialized, enable interrupts.
506 	 */
507 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
508 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
509 		goto attach_fail;
510 	}
511 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
512 
513 	/*
514 	 * If e1000g_force_detach is enabled, in global private dip list,
515 	 * we will create a new entry, which maintains the priv_dip for DR
516 	 * supports after driver detached.
517 	 */
518 	if (e1000g_force_detach) {
519 		private_devi_list_t *devi_node;
520 
521 		Adapter->priv_dip =
522 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
523 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
524 		    sizeof (struct dev_info));
525 
526 		devi_node =
527 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
528 
529 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
530 		devi_node->priv_dip = Adapter->priv_dip;
531 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
532 		devi_node->next = e1000g_private_devi_list;
533 		e1000g_private_devi_list = devi_node;
534 		rw_exit(&e1000g_rx_detach_lock);
535 	}
536 
537 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
538 
539 	return (DDI_SUCCESS);
540 
541 attach_fail:
542 	e1000g_unattach(devinfo, Adapter);
543 	return (DDI_FAILURE);
544 }
545 
546 static int
547 e1000g_register_mac(struct e1000g *Adapter)
548 {
549 	struct e1000_hw *hw = &Adapter->shared;
550 	mac_register_t *mac;
551 	int err;
552 
553 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
554 		return (DDI_FAILURE);
555 
556 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
557 	mac->m_driver = Adapter;
558 	mac->m_dip = Adapter->dip;
559 	mac->m_src_addr = hw->mac.addr;
560 	mac->m_callbacks = &e1000g_m_callbacks;
561 	mac->m_min_sdu = 0;
562 	mac->m_max_sdu =
563 	    (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K) ?
564 	    hw->mac.max_frame_size - 256 :
565 	    (hw->mac.max_frame_size != ETHERMAX) ?
566 	    hw->mac.max_frame_size - 24 : ETHERMTU;
567 
568 	err = mac_register(mac, &Adapter->mh);
569 	mac_free(mac);
570 
571 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
572 }
573 
574 static int
575 e1000g_identify_hardware(struct e1000g *Adapter)
576 {
577 	struct e1000_hw *hw = &Adapter->shared;
578 	struct e1000g_osdep *osdep = &Adapter->osdep;
579 
580 	/* Get the device id */
581 	hw->vendor_id =
582 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
583 	hw->device_id =
584 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
585 	hw->revision_id =
586 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
587 	hw->subsystem_device_id =
588 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
589 	hw->subsystem_vendor_id =
590 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
591 
592 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
593 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
594 		    "MAC type could not be set properly.");
595 		return (DDI_FAILURE);
596 	}
597 
598 	return (DDI_SUCCESS);
599 }
600 
601 static int
602 e1000g_regs_map(struct e1000g *Adapter)
603 {
604 	dev_info_t *devinfo = Adapter->dip;
605 	struct e1000_hw *hw = &Adapter->shared;
606 	struct e1000g_osdep *osdep = &Adapter->osdep;
607 	off_t mem_size;
608 
609 	/*
610 	 * first get the size of device register to be mapped. The
611 	 * second parameter is the register we are interested. I our
612 	 * wiseman 0 is for config registers and 1 is for memory mapped
613 	 * registers Mem size should have memory mapped region size
614 	 */
615 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
616 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
617 		    "ddi_dev_regsize for registers failed");
618 		return (DDI_FAILURE);
619 	}
620 
621 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
622 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
623 	    &osdep->reg_handle)) != DDI_SUCCESS) {
624 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
625 		    "ddi_regs_map_setup for registers failed");
626 		goto regs_map_fail;
627 	}
628 
629 	/* ICH needs to map flash memory */
630 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
631 		/* get flash size */
632 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
633 		    &mem_size) != DDI_SUCCESS) {
634 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
635 			    "ddi_dev_regsize for ICH flash failed");
636 			goto regs_map_fail;
637 		}
638 
639 		/* map flash in */
640 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
641 		    (caddr_t *)&hw->flash_address, 0,
642 		    mem_size, &e1000g_regs_acc_attr,
643 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
644 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
645 			    "ddi_regs_map_setup for ICH flash failed");
646 			goto regs_map_fail;
647 		}
648 	}
649 
650 	return (DDI_SUCCESS);
651 
652 regs_map_fail:
653 	if (osdep->reg_handle != NULL)
654 		ddi_regs_map_free(&osdep->reg_handle);
655 
656 	return (DDI_FAILURE);
657 }
658 
659 static int
660 e1000g_set_driver_params(struct e1000g *Adapter)
661 {
662 	struct e1000_hw *hw;
663 	e1000g_tx_ring_t *tx_ring;
664 	uint32_t mem_bar, io_bar, bar64;
665 #ifdef __sparc
666 	dev_info_t *devinfo = Adapter->dip;
667 	ulong_t iommu_pagesize;
668 #endif
669 
670 	hw = &Adapter->shared;
671 
672 	/* Set MAC type and initialize hardware functions */
673 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
674 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
675 		    "Could not setup hardware functions");
676 		return (DDI_FAILURE);
677 	}
678 
679 	/* Get bus information */
680 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
681 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 		    "Could not get bus information");
683 		return (DDI_FAILURE);
684 	}
685 
686 	/* get mem_base addr */
687 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
688 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
689 
690 	/* get io_base addr */
691 	if (hw->mac.type >= e1000_82544) {
692 		if (bar64) {
693 			/* IO BAR is different for 64 bit BAR mode */
694 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
695 			    PCI_CONF_BASE4);
696 		} else {
697 			/* normal 32-bit BAR mode */
698 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
699 			    PCI_CONF_BASE2);
700 		}
701 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
702 	} else {
703 		/* no I/O access for adapters prior to 82544 */
704 		hw->io_base = 0x0;
705 	}
706 
707 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
708 
709 	hw->mac.autoneg_failed = B_TRUE;
710 
711 	/* Set the wait_for_link flag to B_FALSE */
712 	hw->phy.wait_for_link = B_FALSE;
713 
714 	/* Adaptive IFS related changes */
715 	hw->mac.adaptive_ifs = B_TRUE;
716 
717 	/* Enable phy init script for IGP phy of 82541/82547 */
718 	if ((hw->mac.type == e1000_82547) ||
719 	    (hw->mac.type == e1000_82541) ||
720 	    (hw->mac.type == e1000_82547_rev_2) ||
721 	    (hw->mac.type == e1000_82541_rev_2))
722 		e1000_init_script_state_82541(hw, B_TRUE);
723 
724 	/* Enable the TTL workaround for 82541/82547 */
725 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
726 
727 #ifdef __sparc
728 	Adapter->strip_crc = B_TRUE;
729 #else
730 	Adapter->strip_crc = B_FALSE;
731 #endif
732 
733 	/* Get conf file properties */
734 	e1000g_get_conf(Adapter);
735 
736 	/* Get speed/duplex settings in conf file */
737 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
738 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
739 	e1000g_force_speed_duplex(Adapter);
740 
741 	/* Get Jumbo Frames settings in conf file */
742 	e1000g_get_max_frame_size(Adapter);
743 	hw->mac.min_frame_size =
744 	    MINIMUM_ETHERNET_PACKET_SIZE + CRC_LENGTH;
745 
746 #ifdef __sparc
747 	/* Get the system page size */
748 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
749 	iommu_pagesize = dvma_pagesize(devinfo);
750 	if (iommu_pagesize != 0) {
751 		if (Adapter->sys_page_sz == iommu_pagesize) {
752 			if (iommu_pagesize > 0x4000)
753 				Adapter->sys_page_sz = 0x4000;
754 		} else {
755 			if (Adapter->sys_page_sz > iommu_pagesize)
756 				Adapter->sys_page_sz = iommu_pagesize;
757 		}
758 	}
759 	Adapter->dvma_page_num = hw->mac.max_frame_size /
760 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
761 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
762 #endif
763 
764 	/* Set Rx/Tx buffer size */
765 	switch (hw->mac.max_frame_size) {
766 	case ETHERMAX:
767 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
768 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
769 		break;
770 	case FRAME_SIZE_UPTO_4K:
771 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
772 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
773 		break;
774 	case FRAME_SIZE_UPTO_8K:
775 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
776 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
777 		break;
778 	case FRAME_SIZE_UPTO_9K:
779 	case FRAME_SIZE_UPTO_16K:
780 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
781 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
782 		break;
783 	default:
784 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
785 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
786 		break;
787 	}
788 	Adapter->rx_buffer_size += E1000G_IPALIGNPRESERVEROOM;
789 
790 #ifndef NO_82542_SUPPORT
791 	/*
792 	 * For Wiseman adapters we have an requirement of having receive
793 	 * buffers aligned at 256 byte boundary. Since Livengood does not
794 	 * require this and forcing it for all hardwares will have
795 	 * performance implications, I am making it applicable only for
796 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
797 	 * it is okay to have normal frames...but it does involve a
798 	 * potential risk where we may loose data if buffer is not
799 	 * aligned...so all wiseman boards to have 256 byte aligned
800 	 * buffers
801 	 */
802 	if (hw->mac.type < e1000_82543)
803 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
804 	else
805 		Adapter->rx_buf_align = 1;
806 #endif
807 
808 	/* Master Latency Timer */
809 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
810 
811 	/* copper options */
812 	if (hw->media_type == e1000_media_type_copper) {
813 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
814 		hw->phy.disable_polarity_correction = B_FALSE;
815 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
816 	}
817 
818 	/* The initial link state should be "unknown" */
819 	Adapter->link_state = LINK_STATE_UNKNOWN;
820 
821 	/* Initialize rx parameters */
822 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
823 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
824 
825 	/* Initialize tx parameters */
826 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
827 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
828 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
829 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
830 
831 	tx_ring = Adapter->tx_ring;
832 	tx_ring->frags_limit =
833 	    (hw->mac.max_frame_size / Adapter->tx_bcopy_thresh) + 2;
834 	if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
835 		tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
836 
837 	/* Initialize rx parameters */
838 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
839 
840 	return (DDI_SUCCESS);
841 }
842 
843 /*
844  * e1000g_detach - driver detach
845  *
846  * The detach() function is the complement of the attach routine.
847  * If cmd is set to DDI_DETACH, detach() is used to remove  the
848  * state  associated  with  a  given  instance of a device node
849  * prior to the removal of that instance from the system.
850  *
851  * The detach() function will be called once for each  instance
852  * of the device for which there has been a successful attach()
853  * once there are no longer  any  opens  on  the  device.
854  *
855  * Interrupts routine are disabled, All memory allocated by this
856  * driver are freed.
857  */
858 static int
859 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
860 {
861 	struct e1000g *Adapter;
862 	boolean_t rx_drain;
863 
864 	switch (cmd) {
865 	default:
866 		return (DDI_FAILURE);
867 
868 	case DDI_SUSPEND:
869 		return (e1000g_suspend(devinfo));
870 
871 	case DDI_DETACH:
872 		break;
873 	}
874 
875 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
876 	if (Adapter == NULL)
877 		return (DDI_FAILURE);
878 
879 	if (mac_unregister(Adapter->mh) != 0) {
880 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
881 		return (DDI_FAILURE);
882 	}
883 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
884 
885 
886 	if (Adapter->chip_state != E1000G_STOP)
887 		e1000g_stop(Adapter, B_TRUE);
888 
889 	rx_drain = e1000g_rx_drain(Adapter);
890 
891 	/*
892 	 * If e1000g_force_detach is enabled, driver detach is safe.
893 	 * We will let e1000g_free_priv_devi_node routine determine
894 	 * whether we need to free the priv_dip entry for current
895 	 * driver instance.
896 	 */
897 	if (e1000g_force_detach) {
898 		e1000g_free_priv_devi_node(Adapter, rx_drain);
899 	} else {
900 		if (!rx_drain)
901 			return (DDI_FAILURE);
902 	}
903 
904 	e1000g_unattach(devinfo, Adapter);
905 
906 	return (DDI_SUCCESS);
907 }
908 
909 /*
910  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
911  *
912  * If free_flag is true, that indicates the upper layer is not holding
913  * the rx buffers, we could free the priv_dip entry safely.
914  *
915  * Otherwise, we have to keep this entry even after driver detached,
916  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
917  * so that driver could free it while all of rx buffers are returned
918  * by upper layer later.
919  */
920 static void
921 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
922 {
923 	private_devi_list_t *devi_node, *devi_del;
924 
925 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
926 	ASSERT(e1000g_private_devi_list != NULL);
927 	ASSERT(Adapter->priv_dip != NULL);
928 
929 	devi_node = e1000g_private_devi_list;
930 	if (devi_node->priv_dip == Adapter->priv_dip) {
931 		if (free_flag) {
932 			e1000g_private_devi_list =
933 			    devi_node->next;
934 			kmem_free(devi_node->priv_dip,
935 			    sizeof (struct dev_info));
936 			kmem_free(devi_node,
937 			    sizeof (private_devi_list_t));
938 		} else {
939 			ASSERT(e1000g_mblks_pending != 0);
940 			devi_node->flag =
941 			    E1000G_PRIV_DEVI_DETACH;
942 		}
943 		rw_exit(&e1000g_rx_detach_lock);
944 		return;
945 	}
946 
947 	devi_node = e1000g_private_devi_list;
948 	while (devi_node->next != NULL) {
949 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
950 			if (free_flag) {
951 				devi_del = devi_node->next;
952 				devi_node->next = devi_del->next;
953 				kmem_free(devi_del->priv_dip,
954 				    sizeof (struct dev_info));
955 				kmem_free(devi_del,
956 				    sizeof (private_devi_list_t));
957 			} else {
958 				ASSERT(e1000g_mblks_pending != 0);
959 				devi_node->next->flag =
960 				    E1000G_PRIV_DEVI_DETACH;
961 			}
962 			break;
963 		}
964 		devi_node = devi_node->next;
965 	}
966 	rw_exit(&e1000g_rx_detach_lock);
967 }
968 
969 static void
970 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
971 {
972 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
973 		(void) e1000g_disable_intrs(Adapter);
974 	}
975 
976 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
977 		(void) mac_unregister(Adapter->mh);
978 	}
979 
980 	if (Adapter->attach_progress & ATTACH_PROGRESS_NDD) {
981 		e1000g_nd_cleanup(Adapter);
982 	}
983 
984 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
985 		(void) e1000g_rem_intrs(Adapter);
986 	}
987 
988 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
989 		(void) ddi_prop_remove_all(devinfo);
990 	}
991 
992 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
993 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
994 	}
995 
996 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
997 		stop_link_timer(Adapter);
998 		if (e1000_reset_hw(&Adapter->shared) != 0) {
999 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1000 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1001 		}
1002 	}
1003 
1004 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1005 		if (Adapter->osdep.reg_handle != NULL)
1006 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1007 		if (Adapter->osdep.ich_flash_handle != NULL)
1008 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1009 	}
1010 
1011 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1012 		if (Adapter->osdep.cfg_handle != NULL)
1013 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1014 	}
1015 
1016 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1017 		e1000g_destroy_locks(Adapter);
1018 	}
1019 
1020 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1021 		e1000g_fm_fini(Adapter);
1022 	}
1023 
1024 	e1000_remove_device(&Adapter->shared);
1025 
1026 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1027 
1028 	/*
1029 	 * Another hotplug spec requirement,
1030 	 * run ddi_set_driver_private(devinfo, null);
1031 	 */
1032 	ddi_set_driver_private(devinfo, NULL);
1033 }
1034 
1035 static void
1036 e1000g_init_locks(struct e1000g *Adapter)
1037 {
1038 	e1000g_tx_ring_t *tx_ring;
1039 	e1000g_rx_ring_t *rx_ring;
1040 
1041 	rw_init(&Adapter->chip_lock, NULL,
1042 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1043 	mutex_init(&Adapter->link_lock, NULL,
1044 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1045 	mutex_init(&Adapter->watchdog_lock, NULL,
1046 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1047 
1048 	tx_ring = Adapter->tx_ring;
1049 
1050 	mutex_init(&tx_ring->tx_lock, NULL,
1051 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1052 	mutex_init(&tx_ring->usedlist_lock, NULL,
1053 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1054 	mutex_init(&tx_ring->freelist_lock, NULL,
1055 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1056 
1057 	rx_ring = Adapter->rx_ring;
1058 
1059 	mutex_init(&rx_ring->freelist_lock, NULL,
1060 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1061 }
1062 
1063 static void
1064 e1000g_destroy_locks(struct e1000g *Adapter)
1065 {
1066 	e1000g_tx_ring_t *tx_ring;
1067 	e1000g_rx_ring_t *rx_ring;
1068 
1069 	tx_ring = Adapter->tx_ring;
1070 	mutex_destroy(&tx_ring->tx_lock);
1071 	mutex_destroy(&tx_ring->usedlist_lock);
1072 	mutex_destroy(&tx_ring->freelist_lock);
1073 
1074 	rx_ring = Adapter->rx_ring;
1075 	mutex_destroy(&rx_ring->freelist_lock);
1076 
1077 	mutex_destroy(&Adapter->link_lock);
1078 	mutex_destroy(&Adapter->watchdog_lock);
1079 	rw_destroy(&Adapter->chip_lock);
1080 }
1081 
1082 static int
1083 e1000g_resume(dev_info_t *devinfo)
1084 {
1085 	struct e1000g *Adapter;
1086 
1087 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1088 	if (Adapter == NULL)
1089 		return (DDI_FAILURE);
1090 
1091 	if (e1000g_start(Adapter, B_TRUE))
1092 		return (DDI_FAILURE);
1093 
1094 	return (DDI_SUCCESS);
1095 }
1096 
1097 static int
1098 e1000g_suspend(dev_info_t *devinfo)
1099 {
1100 	struct e1000g *Adapter;
1101 
1102 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1103 	if (Adapter == NULL)
1104 		return (DDI_FAILURE);
1105 
1106 	e1000g_stop(Adapter, B_TRUE);
1107 
1108 	return (DDI_SUCCESS);
1109 }
1110 
1111 static int
1112 e1000g_init(struct e1000g *Adapter)
1113 {
1114 	uint32_t pba;
1115 	uint32_t high_water;
1116 	struct e1000_hw *hw;
1117 	clock_t link_timeout;
1118 
1119 	hw = &Adapter->shared;
1120 
1121 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1122 
1123 	/*
1124 	 * reset to put the hardware in a known state
1125 	 * before we try to do anything with the eeprom
1126 	 */
1127 	if (e1000_reset_hw(hw) != 0) {
1128 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1129 		goto init_fail;
1130 	}
1131 
1132 	if (e1000_validate_nvm_checksum(hw) < 0) {
1133 		/*
1134 		 * Some PCI-E parts fail the first check due to
1135 		 * the link being in sleep state.  Call it again,
1136 		 * if it fails a second time its a real issue.
1137 		 */
1138 		if (e1000_validate_nvm_checksum(hw) < 0) {
1139 			e1000g_log(Adapter, CE_WARN,
1140 			    "Invalid NVM checksum. Please contact "
1141 			    "the vendor to update the NVM.");
1142 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1143 			goto init_fail;
1144 		}
1145 	}
1146 
1147 #ifdef __sparc
1148 	/*
1149 	 * Firstly, we try to get the local ethernet address from OBP. If
1150 	 * fail, we get from EEPROM of NIC card.
1151 	 */
1152 	if (!e1000g_find_mac_address(Adapter)) {
1153 		if (e1000_read_mac_addr(hw) < 0) {
1154 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1155 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1156 			goto init_fail;
1157 		}
1158 	}
1159 #else
1160 	/* Get the local ethernet address. */
1161 	if (e1000_read_mac_addr(hw) < 0) {
1162 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1163 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1164 		goto init_fail;
1165 	}
1166 #endif
1167 
1168 	/* check for valid mac address */
1169 	if (!is_valid_mac_addr(hw->mac.addr)) {
1170 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1171 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1172 		goto init_fail;
1173 	}
1174 
1175 	/* Set LAA state for 82571 chipset */
1176 	e1000_set_laa_state_82571(hw, B_TRUE);
1177 
1178 	/* Master Latency Timer implementation */
1179 	if (Adapter->master_latency_timer) {
1180 		pci_config_put8(Adapter->osdep.cfg_handle,
1181 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1182 	}
1183 
1184 	if (hw->mac.type < e1000_82547) {
1185 		/*
1186 		 * Total FIFO is 64K
1187 		 */
1188 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1189 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1190 		else
1191 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1192 	} else if (hw->mac.type >= e1000_82571 &&
1193 	    hw->mac.type <= e1000_82572) {
1194 		/*
1195 		 * Total FIFO is 48K
1196 		 */
1197 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1198 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1199 		else
1200 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1201 	} else if (hw->mac.type == e1000_ich8lan) {
1202 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1203 	} else if (hw->mac.type == e1000_ich9lan) {
1204 		pba = E1000_PBA_12K;
1205 	} else {
1206 		/*
1207 		 * Total FIFO is 40K
1208 		 */
1209 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1210 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1211 		else
1212 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1213 	}
1214 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1215 
1216 	/*
1217 	 * These parameters set thresholds for the adapter's generation(Tx)
1218 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1219 	 * settings.  Flow control is enabled or disabled in the configuration
1220 	 * file.
1221 	 * High-water mark is set down from the top of the rx fifo (not
1222 	 * sensitive to max_frame_size) and low-water is set just below
1223 	 * high-water mark.
1224 	 * The high water mark must be low enough to fit one full frame above
1225 	 * it in the rx FIFO.  Should be the lower of:
1226 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1227 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1228 	 * Rx FIFO size minus one full frame.
1229 	 */
1230 	high_water = min(((pba << 10) * 9 / 10),
1231 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1232 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1233 	    ((pba << 10) - hw->mac.max_frame_size)));
1234 
1235 	hw->mac.fc_high_water = high_water & 0xFFF8;
1236 	hw->mac.fc_low_water = hw->mac.fc_high_water - 8;
1237 
1238 	if (hw->mac.type == e1000_80003es2lan)
1239 		hw->mac.fc_pause_time = 0xFFFF;
1240 	else
1241 		hw->mac.fc_pause_time = E1000_FC_PAUSE_TIME;
1242 	hw->mac.fc_send_xon = B_TRUE;
1243 	hw->mac.fc = hw->mac.original_fc;
1244 
1245 	/*
1246 	 * Reset the adapter hardware the second time.
1247 	 */
1248 	if (e1000_reset_hw(hw) != 0) {
1249 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1250 		goto init_fail;
1251 	}
1252 
1253 	/* disable wakeup control by default */
1254 	if (hw->mac.type >= e1000_82544)
1255 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1256 
1257 	/* MWI setup */
1258 	e1000_pci_set_mwi(hw);
1259 
1260 	/*
1261 	 * Configure/Initialize hardware
1262 	 */
1263 	if (e1000_init_hw(hw) < 0) {
1264 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1265 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1266 		goto init_fail;
1267 	}
1268 
1269 	/* Disable Smart Power Down */
1270 	phy_spd_state(hw, B_FALSE);
1271 
1272 	/* Make sure driver has control */
1273 	e1000g_get_driver_control(hw);
1274 
1275 	/*
1276 	 * Initialize unicast addresses.
1277 	 */
1278 	e1000g_init_unicst(Adapter);
1279 
1280 	/*
1281 	 * Setup and initialize the mctable structures.  After this routine
1282 	 * completes  Multicast table will be set
1283 	 */
1284 	e1000g_setup_multicast(Adapter);
1285 	msec_delay(5);
1286 
1287 	/*
1288 	 * Implement Adaptive IFS
1289 	 */
1290 	e1000_reset_adaptive(hw);
1291 
1292 	/* Setup Interrupt Throttling Register */
1293 	if (hw->mac.type >= e1000_82540) {
1294 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1295 	} else
1296 		Adapter->intr_adaptive = B_FALSE;
1297 
1298 	/* Start the timer for link setup */
1299 	if (hw->mac.autoneg)
1300 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1301 	else
1302 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1303 
1304 	mutex_enter(&Adapter->link_lock);
1305 	if (hw->phy.wait_for_link) {
1306 		Adapter->link_complete = B_TRUE;
1307 	} else {
1308 		Adapter->link_complete = B_FALSE;
1309 		Adapter->link_tid = timeout(e1000g_link_timer,
1310 		    (void *)Adapter, link_timeout);
1311 	}
1312 	mutex_exit(&Adapter->link_lock);
1313 
1314 	/* Enable PCI-Ex master */
1315 	if (hw->bus.type == e1000_bus_type_pci_express) {
1316 		e1000_enable_pciex_master(hw);
1317 	}
1318 
1319 	/* Save the state of the phy */
1320 	e1000g_get_phy_state(Adapter);
1321 
1322 	Adapter->init_count++;
1323 
1324 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1325 		goto init_fail;
1326 	}
1327 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1328 		goto init_fail;
1329 	}
1330 
1331 	rw_exit(&Adapter->chip_lock);
1332 
1333 	return (DDI_SUCCESS);
1334 
1335 init_fail:
1336 	rw_exit(&Adapter->chip_lock);
1337 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1338 	return (DDI_FAILURE);
1339 }
1340 
1341 /*
1342  * Check if the link is up
1343  */
1344 static boolean_t
1345 e1000g_link_up(struct e1000g *Adapter)
1346 {
1347 	struct e1000_hw *hw;
1348 	boolean_t link_up;
1349 
1350 	hw = &Adapter->shared;
1351 
1352 	e1000_check_for_link(hw);
1353 
1354 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1355 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1356 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
1357 	    (hw->mac.serdes_has_link))) {
1358 		link_up = B_TRUE;
1359 	} else {
1360 		link_up = B_FALSE;
1361 	}
1362 
1363 	return (link_up);
1364 }
1365 
1366 static void
1367 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1368 {
1369 	struct iocblk *iocp;
1370 	struct e1000g *e1000gp;
1371 	enum ioc_reply status;
1372 	int err;
1373 
1374 	iocp = (struct iocblk *)mp->b_rptr;
1375 	iocp->ioc_error = 0;
1376 	e1000gp = (struct e1000g *)arg;
1377 
1378 	ASSERT(e1000gp);
1379 	if (e1000gp == NULL) {
1380 		miocnak(q, mp, 0, EINVAL);
1381 		return;
1382 	}
1383 
1384 	switch (iocp->ioc_cmd) {
1385 
1386 	case LB_GET_INFO_SIZE:
1387 	case LB_GET_INFO:
1388 	case LB_GET_MODE:
1389 	case LB_SET_MODE:
1390 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1391 		break;
1392 
1393 	case ND_GET:
1394 	case ND_SET:
1395 		status = e1000g_nd_ioctl(e1000gp, q, mp, iocp);
1396 		break;
1397 
1398 #ifdef E1000G_DEBUG
1399 	case E1000G_IOC_REG_PEEK:
1400 	case E1000G_IOC_REG_POKE:
1401 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1402 		break;
1403 	case E1000G_IOC_CHIP_RESET:
1404 		e1000gp->reset_count++;
1405 		if (e1000g_reset(e1000gp))
1406 			status = IOC_ACK;
1407 		else
1408 			status = IOC_INVAL;
1409 		break;
1410 #endif
1411 	default:
1412 		status = IOC_INVAL;
1413 		break;
1414 	}
1415 
1416 	/*
1417 	 * Decide how to reply
1418 	 */
1419 	switch (status) {
1420 	default:
1421 	case IOC_INVAL:
1422 		/*
1423 		 * Error, reply with a NAK and EINVAL or the specified error
1424 		 */
1425 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1426 		    EINVAL : iocp->ioc_error);
1427 		break;
1428 
1429 	case IOC_DONE:
1430 		/*
1431 		 * OK, reply already sent
1432 		 */
1433 		break;
1434 
1435 	case IOC_ACK:
1436 		/*
1437 		 * OK, reply with an ACK
1438 		 */
1439 		miocack(q, mp, 0, 0);
1440 		break;
1441 
1442 	case IOC_REPLY:
1443 		/*
1444 		 * OK, send prepared reply as ACK or NAK
1445 		 */
1446 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1447 		    M_IOCACK : M_IOCNAK;
1448 		qreply(q, mp);
1449 		break;
1450 	}
1451 }
1452 
1453 static int
1454 e1000g_m_start(void *arg)
1455 {
1456 	struct e1000g *Adapter = (struct e1000g *)arg;
1457 
1458 	return (e1000g_start(Adapter, B_TRUE));
1459 }
1460 
1461 static int
1462 e1000g_start(struct e1000g *Adapter, boolean_t global)
1463 {
1464 	if (global) {
1465 		/* Allocate dma resources for descriptors and buffers */
1466 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1467 			e1000g_log(Adapter, CE_WARN,
1468 			    "Alloc DMA resources failed");
1469 			return (ENOTACTIVE);
1470 		}
1471 		Adapter->rx_buffer_setup = B_FALSE;
1472 	}
1473 
1474 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1475 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1476 			e1000g_log(Adapter, CE_WARN,
1477 			    "Adapter initialization failed");
1478 			if (global)
1479 				e1000g_release_dma_resources(Adapter);
1480 			return (ENOTACTIVE);
1481 		}
1482 	}
1483 
1484 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1485 
1486 	/* Setup and initialize the transmit structures */
1487 	e1000g_tx_setup(Adapter);
1488 	msec_delay(5);
1489 
1490 	/* Setup and initialize the receive structures */
1491 	e1000g_rx_setup(Adapter);
1492 	msec_delay(5);
1493 
1494 	e1000g_mask_interrupt(Adapter);
1495 
1496 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1497 		rw_exit(&Adapter->chip_lock);
1498 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1499 		return (ENOTACTIVE);
1500 	}
1501 
1502 	Adapter->chip_state = E1000G_START;
1503 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1504 
1505 	rw_exit(&Adapter->chip_lock);
1506 
1507 	/* Enable and start the watchdog timer */
1508 	enable_watchdog_timer(Adapter);
1509 
1510 	return (0);
1511 }
1512 
1513 static void
1514 e1000g_m_stop(void *arg)
1515 {
1516 	struct e1000g *Adapter = (struct e1000g *)arg;
1517 
1518 	e1000g_stop(Adapter, B_TRUE);
1519 }
1520 
1521 static void
1522 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1523 {
1524 	/* Set stop flags */
1525 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1526 
1527 	Adapter->chip_state = E1000G_STOP;
1528 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1529 
1530 	rw_exit(&Adapter->chip_lock);
1531 
1532 	/* Drain tx sessions */
1533 	(void) e1000g_tx_drain(Adapter);
1534 
1535 	/* Disable and stop all the timers */
1536 	disable_watchdog_timer(Adapter);
1537 	stop_link_timer(Adapter);
1538 	stop_82547_timer(Adapter->tx_ring);
1539 
1540 	/* Stop the chip and release pending resources */
1541 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1542 
1543 	e1000g_clear_all_interrupts(Adapter);
1544 	if (e1000_reset_hw(&Adapter->shared) != 0) {
1545 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1546 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1547 	}
1548 
1549 	/* Release resources still held by the TX descriptors */
1550 	e1000g_tx_clean(Adapter);
1551 
1552 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1553 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1554 
1555 	/* Clean the pending rx jumbo packet fragment */
1556 	e1000g_rx_clean(Adapter);
1557 
1558 	rw_exit(&Adapter->chip_lock);
1559 
1560 	if (global)
1561 		e1000g_release_dma_resources(Adapter);
1562 }
1563 
1564 static void
1565 e1000g_rx_clean(struct e1000g *Adapter)
1566 {
1567 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1568 
1569 	if (rx_ring->rx_mblk != NULL) {
1570 		freemsg(rx_ring->rx_mblk);
1571 		rx_ring->rx_mblk = NULL;
1572 		rx_ring->rx_mblk_tail = NULL;
1573 		rx_ring->rx_mblk_len = 0;
1574 	}
1575 }
1576 
1577 static void
1578 e1000g_tx_clean(struct e1000g *Adapter)
1579 {
1580 	e1000g_tx_ring_t *tx_ring;
1581 	p_tx_sw_packet_t packet;
1582 	mblk_t *mp;
1583 	mblk_t *nmp;
1584 	uint32_t packet_count;
1585 
1586 	tx_ring = Adapter->tx_ring;
1587 
1588 	/*
1589 	 * Here we don't need to protect the lists using
1590 	 * the usedlist_lock and freelist_lock, for they
1591 	 * have been protected by the chip_lock.
1592 	 */
1593 	mp = NULL;
1594 	nmp = NULL;
1595 	packet_count = 0;
1596 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1597 	while (packet != NULL) {
1598 		if (packet->mp != NULL) {
1599 			/* Assemble the message chain */
1600 			if (mp == NULL) {
1601 				mp = packet->mp;
1602 				nmp = packet->mp;
1603 			} else {
1604 				nmp->b_next = packet->mp;
1605 				nmp = packet->mp;
1606 			}
1607 			/* Disconnect the message from the sw packet */
1608 			packet->mp = NULL;
1609 		}
1610 
1611 		e1000g_free_tx_swpkt(packet);
1612 		packet_count++;
1613 
1614 		packet = (p_tx_sw_packet_t)
1615 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1616 	}
1617 
1618 	if (mp != NULL)
1619 		freemsgchain(mp);
1620 
1621 	if (packet_count > 0) {
1622 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1623 		QUEUE_INIT_LIST(&tx_ring->used_list);
1624 
1625 		/* Setup TX descriptor pointers */
1626 		tx_ring->tbd_next = tx_ring->tbd_first;
1627 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1628 
1629 		/* Setup our HW Tx Head & Tail descriptor pointers */
1630 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH, 0);
1631 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT, 0);
1632 	}
1633 }
1634 
1635 static boolean_t
1636 e1000g_tx_drain(struct e1000g *Adapter)
1637 {
1638 	int i;
1639 	boolean_t done;
1640 	e1000g_tx_ring_t *tx_ring;
1641 
1642 	tx_ring = Adapter->tx_ring;
1643 
1644 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1645 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1646 		mutex_enter(&tx_ring->usedlist_lock);
1647 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1648 		mutex_exit(&tx_ring->usedlist_lock);
1649 
1650 		if (done)
1651 			break;
1652 
1653 		msec_delay(1);
1654 	}
1655 
1656 	return (done);
1657 }
1658 
1659 static boolean_t
1660 e1000g_rx_drain(struct e1000g *Adapter)
1661 {
1662 	e1000g_rx_ring_t *rx_ring;
1663 	p_rx_sw_packet_t packet;
1664 	boolean_t done;
1665 
1666 	rx_ring = Adapter->rx_ring;
1667 	done = B_TRUE;
1668 
1669 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1670 
1671 	while (rx_ring->pending_list != NULL) {
1672 		packet = rx_ring->pending_list;
1673 		rx_ring->pending_list =
1674 		    rx_ring->pending_list->next;
1675 
1676 		if (packet->flag == E1000G_RX_SW_STOP) {
1677 			packet->flag = E1000G_RX_SW_DETACH;
1678 			done = B_FALSE;
1679 		} else {
1680 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1681 			ASSERT(packet->mp == NULL);
1682 			e1000g_free_rx_sw_packet(packet);
1683 		}
1684 	}
1685 
1686 	rw_exit(&e1000g_rx_detach_lock);
1687 
1688 	return (done);
1689 }
1690 
1691 boolean_t
1692 e1000g_reset(struct e1000g *Adapter)
1693 {
1694 	e1000g_stop(Adapter, B_FALSE);
1695 
1696 	if (e1000g_start(Adapter, B_FALSE)) {
1697 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1698 		return (B_FALSE);
1699 	}
1700 
1701 	return (B_TRUE);
1702 }
1703 
1704 boolean_t
1705 e1000g_global_reset(struct e1000g *Adapter)
1706 {
1707 	e1000g_stop(Adapter, B_TRUE);
1708 
1709 	Adapter->init_count = 0;
1710 
1711 	if (e1000g_start(Adapter, B_TRUE)) {
1712 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1713 		return (B_FALSE);
1714 	}
1715 
1716 	return (B_TRUE);
1717 }
1718 
1719 /*
1720  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1721  *
1722  * This interrupt service routine is for PCI-Express adapters.
1723  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1724  * bit is set.
1725  */
1726 static uint_t
1727 e1000g_intr_pciexpress(caddr_t arg)
1728 {
1729 	struct e1000g *Adapter;
1730 	uint32_t icr;
1731 
1732 	Adapter = (struct e1000g *)arg;
1733 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1734 
1735 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1736 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1737 
1738 	if (icr & E1000_ICR_INT_ASSERTED) {
1739 		/*
1740 		 * E1000_ICR_INT_ASSERTED bit was set:
1741 		 * Read(Clear) the ICR, claim this interrupt,
1742 		 * look for work to do.
1743 		 */
1744 		e1000g_intr_work(Adapter, icr);
1745 		return (DDI_INTR_CLAIMED);
1746 	} else {
1747 		/*
1748 		 * E1000_ICR_INT_ASSERTED bit was not set:
1749 		 * Don't claim this interrupt, return immediately.
1750 		 */
1751 		return (DDI_INTR_UNCLAIMED);
1752 	}
1753 }
1754 
1755 /*
1756  * e1000g_intr - ISR for PCI/PCI-X chipsets
1757  *
1758  * This interrupt service routine is for PCI/PCI-X adapters.
1759  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1760  * bit is set or not.
1761  */
1762 static uint_t
1763 e1000g_intr(caddr_t arg)
1764 {
1765 	struct e1000g *Adapter;
1766 	uint32_t icr;
1767 
1768 	Adapter = (struct e1000g *)arg;
1769 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1770 
1771 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1772 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1773 
1774 	if (icr) {
1775 		/*
1776 		 * Any bit was set in ICR:
1777 		 * Read(Clear) the ICR, claim this interrupt,
1778 		 * look for work to do.
1779 		 */
1780 		e1000g_intr_work(Adapter, icr);
1781 		return (DDI_INTR_CLAIMED);
1782 	} else {
1783 		/*
1784 		 * No bit was set in ICR:
1785 		 * Don't claim this interrupt, return immediately.
1786 		 */
1787 		return (DDI_INTR_UNCLAIMED);
1788 	}
1789 }
1790 
1791 /*
1792  * e1000g_intr_work - actual processing of ISR
1793  *
1794  * Read(clear) the ICR contents and call appropriate interrupt
1795  * processing routines.
1796  */
1797 static void
1798 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1799 {
1800 	struct e1000_hw *hw;
1801 	hw = &Adapter->shared;
1802 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1803 	uint32_t itr;
1804 
1805 	Adapter->rx_pkt_cnt = 0;
1806 	Adapter->tx_pkt_cnt = 0;
1807 
1808 	rw_enter(&Adapter->chip_lock, RW_READER);
1809 	/*
1810 	 * Here we need to check the "chip_state" flag within the chip_lock to
1811 	 * ensure the receive routine will not execute when the adapter is
1812 	 * being reset.
1813 	 */
1814 	if (Adapter->chip_state != E1000G_START) {
1815 		rw_exit(&Adapter->chip_lock);
1816 		return;
1817 	}
1818 
1819 	if (icr & E1000_ICR_RXT0) {
1820 		mblk_t *mp;
1821 
1822 		mp = e1000g_receive(Adapter);
1823 
1824 		rw_exit(&Adapter->chip_lock);
1825 
1826 		if (mp != NULL)
1827 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1828 	} else
1829 		rw_exit(&Adapter->chip_lock);
1830 
1831 	if (icr & E1000_ICR_TXDW) {
1832 		if (!Adapter->tx_intr_enable)
1833 			e1000g_clear_tx_interrupt(Adapter);
1834 
1835 		/* Recycle the tx descriptors */
1836 		rw_enter(&Adapter->chip_lock, RW_READER);
1837 		e1000g_recycle(tx_ring);
1838 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1839 		rw_exit(&Adapter->chip_lock);
1840 
1841 		/* Schedule the re-transmit */
1842 		if (tx_ring->resched_needed &&
1843 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1844 			tx_ring->resched_needed = B_FALSE;
1845 			mac_tx_update(Adapter->mh);
1846 			E1000G_STAT(tx_ring->stat_reschedule);
1847 		}
1848 	}
1849 
1850 	if (Adapter->intr_adaptive) {
1851 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1852 		    Adapter->intr_throttling_rate);
1853 		if (itr) {
1854 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1855 			Adapter->intr_throttling_rate = itr;
1856 		}
1857 	}
1858 
1859 	/*
1860 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1861 	 * are checked to detect that the cable has been pulled out. For
1862 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1863 	 * are an indication that cable is not connected.
1864 	 */
1865 	if ((icr & E1000_ICR_RXSEQ) ||
1866 	    (icr & E1000_ICR_LSC) ||
1867 	    (icr & E1000_ICR_GPI_EN1)) {
1868 		boolean_t link_changed;
1869 		timeout_id_t tid = 0;
1870 
1871 		stop_watchdog_timer(Adapter);
1872 
1873 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1874 
1875 		/*
1876 		 * Because we got a link-status-change interrupt, force
1877 		 * e1000_check_for_link() to look at phy
1878 		 */
1879 		Adapter->shared.mac.get_link_status = B_TRUE;
1880 
1881 		/* e1000g_link_check takes care of link status change */
1882 		link_changed = e1000g_link_check(Adapter);
1883 
1884 		/* Get new phy state */
1885 		e1000g_get_phy_state(Adapter);
1886 
1887 		/*
1888 		 * If the link timer has not timed out, we'll not notify
1889 		 * the upper layer with any link state until the link is up.
1890 		 */
1891 		if (link_changed && !Adapter->link_complete) {
1892 			if (Adapter->link_state == LINK_STATE_UP) {
1893 				mutex_enter(&Adapter->link_lock);
1894 				Adapter->link_complete = B_TRUE;
1895 				tid = Adapter->link_tid;
1896 				Adapter->link_tid = 0;
1897 				mutex_exit(&Adapter->link_lock);
1898 			} else {
1899 				link_changed = B_FALSE;
1900 			}
1901 		}
1902 		rw_exit(&Adapter->chip_lock);
1903 
1904 		if (link_changed) {
1905 			if (tid != 0)
1906 				(void) untimeout(tid);
1907 
1908 			/*
1909 			 * Workaround for esb2. Data stuck in fifo on a link
1910 			 * down event. Reset the adapter to recover it.
1911 			 */
1912 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1913 			    (Adapter->shared.mac.type == e1000_80003es2lan))
1914 				(void) e1000g_reset(Adapter);
1915 
1916 			mac_link_update(Adapter->mh, Adapter->link_state);
1917 		}
1918 
1919 		start_watchdog_timer(Adapter);
1920 	}
1921 }
1922 
1923 static uint32_t
1924 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
1925 {
1926 	uint32_t new_itr;
1927 
1928 	/*
1929 	 * Determine a propper itr according to rx/tx packet count
1930 	 * per interrupt, the value of itr are based on document
1931 	 * and testing.
1932 	 */
1933 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
1934 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
1935 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1936 		goto itr_done;
1937 	}
1938 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
1939 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
1940 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1941 		goto itr_done;
1942 	}
1943 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
1944 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
1945 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
1946 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1947 	} else
1948 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1949 
1950 itr_done:
1951 	if (cur_itr == new_itr)
1952 		return (0);
1953 	else
1954 		return (new_itr);
1955 }
1956 
1957 static void
1958 e1000g_init_unicst(struct e1000g *Adapter)
1959 {
1960 	struct e1000_hw *hw;
1961 	int slot;
1962 
1963 	hw = &Adapter->shared;
1964 
1965 	if (!Adapter->unicst_init) {
1966 		/* Initialize the multiple unicast addresses */
1967 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1968 
1969 		if ((hw->mac.type == e1000_82571) &&
1970 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1971 			Adapter->unicst_total--;
1972 
1973 		Adapter->unicst_avail = Adapter->unicst_total - 1;
1974 
1975 		/* Store the default mac address */
1976 		e1000_rar_set(hw, hw->mac.addr, 0);
1977 		if ((hw->mac.type == e1000_82571) &&
1978 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1979 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
1980 
1981 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
1982 		    ETHERADDRL);
1983 		Adapter->unicst_addr[0].mac.set = 1;
1984 
1985 		for (slot = 1; slot < Adapter->unicst_total; slot++)
1986 			Adapter->unicst_addr[slot].mac.set = 0;
1987 
1988 		Adapter->unicst_init = B_TRUE;
1989 	} else {
1990 		/* Recover the default mac address */
1991 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
1992 		    ETHERADDRL);
1993 
1994 		/* Store the default mac address */
1995 		e1000_rar_set(hw, hw->mac.addr, 0);
1996 		if ((hw->mac.type == e1000_82571) &&
1997 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
1998 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
1999 
2000 		/* Re-configure the RAR registers */
2001 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2002 			e1000_rar_set(hw,
2003 			    Adapter->unicst_addr[slot].mac.addr, slot);
2004 	}
2005 
2006 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2007 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2008 }
2009 
2010 static int
2011 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2012 {
2013 	struct e1000g *Adapter;
2014 
2015 	Adapter = (struct e1000g *)arg;
2016 
2017 	/* Store the default MAC address */
2018 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2019 
2020 	/* Set MAC address in address slot 0, which is the default address */
2021 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2022 }
2023 
2024 static int
2025 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2026     mac_addr_slot_t slot)
2027 {
2028 	struct e1000_hw *hw;
2029 
2030 	hw = &Adapter->shared;
2031 
2032 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2033 
2034 #ifndef NO_82542_SUPPORT
2035 	/*
2036 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2037 	 * that requires the receiver to be in reset when any of the
2038 	 * receive address registers (RAR regs) are accessed.  The first
2039 	 * rev of Wiseman silicon also requires MWI to be disabled when
2040 	 * a global reset or a receive reset is issued.  So before we
2041 	 * initialize the RARs, we check the rev of the Wiseman controller
2042 	 * and work around any necessary HW errata.
2043 	 */
2044 	if ((hw->mac.type == e1000_82542) &&
2045 	    (hw->revision_id == E1000_REVISION_2)) {
2046 		e1000_pci_clear_mwi(hw);
2047 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2048 		msec_delay(5);
2049 	}
2050 #endif
2051 
2052 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2053 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2054 
2055 	if (slot == 0) {
2056 		if ((hw->mac.type == e1000_82571) &&
2057 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2058 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2059 	}
2060 
2061 #ifndef NO_82542_SUPPORT
2062 	/*
2063 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2064 	 * put the receive in reset, and disabled MWI, to work around some
2065 	 * HW errata.  Now we should take the receiver out of reset, and
2066 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2067 	 */
2068 	if ((hw->mac.type == e1000_82542) &&
2069 	    (hw->revision_id == E1000_REVISION_2)) {
2070 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2071 		msec_delay(1);
2072 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2073 			e1000_pci_set_mwi(hw);
2074 		e1000g_rx_setup(Adapter);
2075 	}
2076 #endif
2077 
2078 	rw_exit(&Adapter->chip_lock);
2079 
2080 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2081 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2082 		return (EIO);
2083 	}
2084 
2085 	return (0);
2086 }
2087 
2088 /*
2089  * e1000g_m_unicst_add() - will find an unused address slot, set the
2090  * address value to the one specified, reserve that slot and enable
2091  * the NIC to start filtering on the new MAC address.
2092  * Returns 0 on success.
2093  */
2094 static int
2095 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2096 {
2097 	struct e1000g *Adapter = (struct e1000g *)arg;
2098 	mac_addr_slot_t slot;
2099 	int err;
2100 
2101 	if (mac_unicst_verify(Adapter->mh,
2102 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2103 		return (EINVAL);
2104 
2105 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2106 	if (Adapter->unicst_avail == 0) {
2107 		/* no slots available */
2108 		rw_exit(&Adapter->chip_lock);
2109 		return (ENOSPC);
2110 	}
2111 
2112 	/*
2113 	 * Primary/default address is in slot 0. The next addresses
2114 	 * are the multiple MAC addresses. So multiple MAC address 0
2115 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2116 	 * MAC address resides in slot 1.
2117 	 */
2118 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2119 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2120 			Adapter->unicst_addr[slot].mac.set = 1;
2121 			break;
2122 		}
2123 	}
2124 
2125 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2126 
2127 	Adapter->unicst_avail--;
2128 	rw_exit(&Adapter->chip_lock);
2129 
2130 	maddr->mma_slot = slot;
2131 
2132 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2133 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2134 		Adapter->unicst_addr[slot].mac.set = 0;
2135 		Adapter->unicst_avail++;
2136 		rw_exit(&Adapter->chip_lock);
2137 	}
2138 
2139 	return (err);
2140 }
2141 
2142 /*
2143  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2144  * call to e1000g_m_unicst_add(). The slot number that was returned in
2145  * e1000g_m_unicst_add() is passed in the call to remove the address.
2146  * Returns 0 on success.
2147  */
2148 static int
2149 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2150 {
2151 	struct e1000g *Adapter = (struct e1000g *)arg;
2152 	int err;
2153 
2154 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2155 		return (EINVAL);
2156 
2157 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2158 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2159 		Adapter->unicst_addr[slot].mac.set = 0;
2160 		Adapter->unicst_avail++;
2161 		rw_exit(&Adapter->chip_lock);
2162 
2163 		/* Copy the default address to the passed slot */
2164 		if (err = e1000g_unicst_set(Adapter,
2165 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
2166 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2167 			Adapter->unicst_addr[slot].mac.set = 1;
2168 			Adapter->unicst_avail--;
2169 			rw_exit(&Adapter->chip_lock);
2170 		}
2171 		return (err);
2172 	}
2173 	rw_exit(&Adapter->chip_lock);
2174 
2175 	return (EINVAL);
2176 }
2177 
2178 /*
2179  * e1000g_m_unicst_modify() - modifies the value of an address that
2180  * has been added by e1000g_m_unicst_add(). The new address, address
2181  * length and the slot number that was returned in the call to add
2182  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2183  * set to 0. Returns 0 on success.
2184  */
2185 static int
2186 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2187 {
2188 	struct e1000g *Adapter = (struct e1000g *)arg;
2189 	mac_addr_slot_t slot;
2190 
2191 	if (mac_unicst_verify(Adapter->mh,
2192 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2193 		return (EINVAL);
2194 
2195 	slot = maddr->mma_slot;
2196 
2197 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2198 		return (EINVAL);
2199 
2200 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2201 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2202 		rw_exit(&Adapter->chip_lock);
2203 
2204 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2205 	}
2206 	rw_exit(&Adapter->chip_lock);
2207 
2208 	return (EINVAL);
2209 }
2210 
2211 /*
2212  * e1000g_m_unicst_get() - will get the MAC address and all other
2213  * information related to the address slot passed in mac_multi_addr_t.
2214  * mma_flags should be set to 0 in the call.
2215  * On return, mma_flags can take the following values:
2216  * 1) MMAC_SLOT_UNUSED
2217  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2218  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2219  * 4) MMAC_SLOT_USED
2220  */
2221 static int
2222 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2223 {
2224 	struct e1000g *Adapter = (struct e1000g *)arg;
2225 	mac_addr_slot_t slot;
2226 
2227 	slot = maddr->mma_slot;
2228 
2229 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2230 		return (EINVAL);
2231 
2232 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2233 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2234 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2235 		    maddr->mma_addr, ETHERADDRL);
2236 		maddr->mma_flags = MMAC_SLOT_USED;
2237 	} else {
2238 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2239 	}
2240 	rw_exit(&Adapter->chip_lock);
2241 
2242 	return (0);
2243 }
2244 
2245 static int
2246 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2247 {
2248 	struct e1000_hw *hw = &Adapter->shared;
2249 	unsigned i;
2250 	int res = 0;
2251 
2252 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2253 
2254 	if ((multiaddr[0] & 01) == 0) {
2255 		res = EINVAL;
2256 		goto done;
2257 	}
2258 
2259 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2260 		res = ENOENT;
2261 		goto done;
2262 	}
2263 
2264 	bcopy(multiaddr,
2265 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2266 	Adapter->mcast_count++;
2267 
2268 	/*
2269 	 * Update the MC table in the hardware
2270 	 */
2271 	e1000g_clear_interrupt(Adapter);
2272 
2273 	e1000g_setup_multicast(Adapter);
2274 
2275 #ifndef NO_82542_SUPPORT
2276 	if ((hw->mac.type == e1000_82542) &&
2277 	    (hw->revision_id == E1000_REVISION_2))
2278 		e1000g_rx_setup(Adapter);
2279 #endif
2280 
2281 	e1000g_mask_interrupt(Adapter);
2282 
2283 done:
2284 	rw_exit(&Adapter->chip_lock);
2285 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2286 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2287 		res = EIO;
2288 	}
2289 
2290 	return (res);
2291 }
2292 
2293 static int
2294 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2295 {
2296 	struct e1000_hw *hw = &Adapter->shared;
2297 	unsigned i;
2298 
2299 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2300 
2301 	for (i = 0; i < Adapter->mcast_count; i++) {
2302 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2303 		    ETHERADDRL) == 0) {
2304 			for (i++; i < Adapter->mcast_count; i++) {
2305 				Adapter->mcast_table[i - 1] =
2306 				    Adapter->mcast_table[i];
2307 			}
2308 			Adapter->mcast_count--;
2309 			break;
2310 		}
2311 	}
2312 
2313 	/*
2314 	 * Update the MC table in the hardware
2315 	 */
2316 	e1000g_clear_interrupt(Adapter);
2317 
2318 	e1000g_setup_multicast(Adapter);
2319 
2320 #ifndef NO_82542_SUPPORT
2321 	if ((hw->mac.type == e1000_82542) &&
2322 	    (hw->revision_id == E1000_REVISION_2))
2323 		e1000g_rx_setup(Adapter);
2324 #endif
2325 
2326 	e1000g_mask_interrupt(Adapter);
2327 
2328 done:
2329 	rw_exit(&Adapter->chip_lock);
2330 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2331 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2332 		return (EIO);
2333 	}
2334 
2335 	return (0);
2336 }
2337 
2338 /*
2339  * e1000g_setup_multicast - setup multicast data structures
2340  *
2341  * This routine initializes all of the multicast related structures.
2342  */
2343 void
2344 e1000g_setup_multicast(struct e1000g *Adapter)
2345 {
2346 	uint8_t *mc_addr_list;
2347 	uint32_t mc_addr_count;
2348 	uint32_t rctl;
2349 	struct e1000_hw *hw;
2350 
2351 	hw = &Adapter->shared;
2352 
2353 	/*
2354 	 * The e1000g has the ability to do perfect filtering of 16
2355 	 * addresses. The driver uses one of the e1000g's 16 receive
2356 	 * address registers for its node/network/mac/individual address.
2357 	 * So, we have room for up to 15 multicast addresses in the CAM,
2358 	 * additional MC addresses are handled by the MTA (Multicast Table
2359 	 * Array)
2360 	 */
2361 
2362 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2363 
2364 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2365 
2366 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2367 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2368 		    "Adapter requested more than %d MC Addresses.\n",
2369 		    MAX_NUM_MULTICAST_ADDRESSES);
2370 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2371 	} else {
2372 		/*
2373 		 * Set the number of MC addresses that we are being
2374 		 * requested to use
2375 		 */
2376 		mc_addr_count = Adapter->mcast_count;
2377 	}
2378 #ifndef NO_82542_SUPPORT
2379 	/*
2380 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2381 	 * hang  while writing to the receive address registers if the receiver
2382 	 * is not in reset before writing to the registers. Updating the RAR
2383 	 * is done during the setting up of the multicast table, hence the
2384 	 * receiver has to be put in reset before updating the multicast table
2385 	 * and then taken out of reset at the end
2386 	 */
2387 	/*
2388 	 * if WMI was enabled then dis able it before issueing the global
2389 	 * reset to the hardware.
2390 	 */
2391 	/*
2392 	 * Only required for WISEMAN_2_0
2393 	 */
2394 	if ((hw->mac.type == e1000_82542) &&
2395 	    (hw->revision_id == E1000_REVISION_2)) {
2396 		e1000_pci_clear_mwi(hw);
2397 		/*
2398 		 * The e1000g must be in reset before changing any RA
2399 		 * registers. Reset receive unit.  The chip will remain in
2400 		 * the reset state until software explicitly restarts it.
2401 		 */
2402 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2403 		/* Allow receiver time to go in to reset */
2404 		msec_delay(5);
2405 	}
2406 #endif
2407 
2408 	e1000_mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
2409 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2410 
2411 #ifndef NO_82542_SUPPORT
2412 	/*
2413 	 * Only for Wiseman_2_0
2414 	 * If MWI was enabled then re-enable it after issueing (as we
2415 	 * disabled it up there) the receive reset command.
2416 	 * Wainwright does not have a receive reset command and only thing
2417 	 * close to it is global reset which will require tx setup also
2418 	 */
2419 	if ((hw->mac.type == e1000_82542) &&
2420 	    (hw->revision_id == E1000_REVISION_2)) {
2421 		/*
2422 		 * if WMI was enabled then reenable it after issueing the
2423 		 * global or receive reset to the hardware.
2424 		 */
2425 
2426 		/*
2427 		 * Take receiver out of reset
2428 		 * clear E1000_RCTL_RST bit (and all others)
2429 		 */
2430 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2431 		msec_delay(5);
2432 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2433 			e1000_pci_set_mwi(hw);
2434 	}
2435 #endif
2436 
2437 	/*
2438 	 * Restore original value
2439 	 */
2440 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2441 }
2442 
2443 int
2444 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2445 {
2446 	struct e1000g *Adapter = (struct e1000g *)arg;
2447 
2448 	return ((add) ? multicst_add(Adapter, addr)
2449 	    : multicst_remove(Adapter, addr));
2450 }
2451 
2452 int
2453 e1000g_m_promisc(void *arg, boolean_t on)
2454 {
2455 	struct e1000g *Adapter = (struct e1000g *)arg;
2456 	uint32_t rctl;
2457 
2458 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2459 
2460 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2461 
2462 	if (on)
2463 		rctl |=
2464 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2465 	else
2466 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2467 
2468 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2469 
2470 	Adapter->e1000g_promisc = on;
2471 
2472 	rw_exit(&Adapter->chip_lock);
2473 
2474 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2475 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2476 		return (EIO);
2477 	}
2478 
2479 	return (0);
2480 }
2481 
2482 static boolean_t
2483 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2484 {
2485 	struct e1000g *Adapter = (struct e1000g *)arg;
2486 	struct e1000_hw *hw = &Adapter->shared;
2487 
2488 	switch (cap) {
2489 	case MAC_CAPAB_HCKSUM: {
2490 		uint32_t *txflags = cap_data;
2491 		/*
2492 		 * Checksum on/off selection via global parameters.
2493 		 *
2494 		 * If the chip is flagged as not capable of (correctly)
2495 		 * handling checksumming, we don't enable it on either
2496 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2497 		 * from the patchable global defaults.
2498 		 *
2499 		 * We advertise our capabilities only if TX offload is
2500 		 * enabled.  On receive, the stack will accept checksummed
2501 		 * packets anyway, even if we haven't said we can deliver
2502 		 * them.
2503 		 */
2504 		switch (hw->mac.type) {
2505 		case e1000_82540:
2506 		case e1000_82544:
2507 		case e1000_82545:
2508 		case e1000_82545_rev_3:
2509 		case e1000_82546:
2510 		case e1000_82546_rev_3:
2511 		case e1000_82571:
2512 		case e1000_82572:
2513 		case e1000_82573:
2514 		case e1000_80003es2lan:
2515 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
2516 			break;
2517 
2518 		/*
2519 		 * For the following Intel PRO/1000 chipsets, we have not
2520 		 * tested the hardware checksum offload capability, so we
2521 		 * disable the capability for them.
2522 		 *	e1000_82542,
2523 		 *	e1000_82543,
2524 		 *	e1000_82541,
2525 		 *	e1000_82541_rev_2,
2526 		 *	e1000_82547,
2527 		 *	e1000_82547_rev_2,
2528 		 */
2529 		default:
2530 			return (B_FALSE);
2531 		}
2532 
2533 		break;
2534 	}
2535 	case MAC_CAPAB_POLL:
2536 		/*
2537 		 * There's nothing for us to fill in, simply returning
2538 		 * B_TRUE stating that we support polling is sufficient.
2539 		 */
2540 		break;
2541 
2542 	case MAC_CAPAB_MULTIADDRESS: {
2543 		multiaddress_capab_t *mmacp = cap_data;
2544 
2545 		/*
2546 		 * The number of MAC addresses made available by
2547 		 * this capability is one less than the total as
2548 		 * the primary address in slot 0 is counted in
2549 		 * the total.
2550 		 */
2551 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2552 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2553 		/* No multiple factory addresses, set mma_flag to 0 */
2554 		mmacp->maddr_flag = 0;
2555 		mmacp->maddr_handle = Adapter;
2556 		mmacp->maddr_add = e1000g_m_unicst_add;
2557 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2558 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2559 		mmacp->maddr_get = e1000g_m_unicst_get;
2560 		mmacp->maddr_reserve = NULL;
2561 		break;
2562 	}
2563 	default:
2564 		return (B_FALSE);
2565 	}
2566 	return (B_TRUE);
2567 }
2568 
2569 /*
2570  * e1000g_get_conf - get configurations set in e1000g.conf
2571  *
2572  * This routine gets user-configured values out of the configuration
2573  * file e1000g.conf.
2574  *
2575  * For each configurable value, there is a minimum, a maximum, and a
2576  * default.
2577  * If user does not configure a value, use the default.
2578  * If user configures below the minimum, use the minumum.
2579  * If user configures above the maximum, use the maxumum.
2580  */
2581 static void
2582 e1000g_get_conf(struct e1000g *Adapter)
2583 {
2584 	struct e1000_hw *hw = &Adapter->shared;
2585 	boolean_t tbi_compatibility = B_FALSE;
2586 
2587 	/*
2588 	 * get each configurable property from e1000g.conf
2589 	 */
2590 
2591 	/*
2592 	 * NumTxDescriptors
2593 	 */
2594 	Adapter->tx_desc_num =
2595 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
2596 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
2597 	    DEFAULT_NUM_TX_DESCRIPTOR);
2598 
2599 	/*
2600 	 * NumRxDescriptors
2601 	 */
2602 	Adapter->rx_desc_num =
2603 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
2604 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
2605 	    DEFAULT_NUM_RX_DESCRIPTOR);
2606 
2607 	/*
2608 	 * NumRxFreeList
2609 	 */
2610 	Adapter->rx_freelist_num =
2611 	    e1000g_get_prop(Adapter, "NumRxFreeList",
2612 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
2613 	    DEFAULT_NUM_RX_FREELIST);
2614 
2615 	/*
2616 	 * NumTxPacketList
2617 	 */
2618 	Adapter->tx_freelist_num =
2619 	    e1000g_get_prop(Adapter, "NumTxPacketList",
2620 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
2621 	    DEFAULT_NUM_TX_FREELIST);
2622 
2623 	/*
2624 	 * FlowControl
2625 	 */
2626 	hw->mac.fc_send_xon = B_TRUE;
2627 	hw->mac.fc =
2628 	    e1000g_get_prop(Adapter, "FlowControl",
2629 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
2630 	/* 4 is the setting that says "let the eeprom decide" */
2631 	if (hw->mac.fc == 4)
2632 		hw->mac.fc = e1000_fc_default;
2633 
2634 	/*
2635 	 * Max Num Receive Packets on Interrupt
2636 	 */
2637 	Adapter->rx_limit_onintr =
2638 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
2639 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
2640 	    DEFAULT_RX_LIMIT_ON_INTR);
2641 
2642 	/*
2643 	 * PHY master slave setting
2644 	 */
2645 	hw->phy.ms_type =
2646 	    e1000g_get_prop(Adapter, "SetMasterSlave",
2647 	    e1000_ms_hw_default, e1000_ms_auto,
2648 	    e1000_ms_hw_default);
2649 
2650 	/*
2651 	 * Parameter which controls TBI mode workaround, which is only
2652 	 * needed on certain switches such as Cisco 6500/Foundry
2653 	 */
2654 	tbi_compatibility =
2655 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
2656 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
2657 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
2658 
2659 	/*
2660 	 * MSI Enable
2661 	 */
2662 	Adapter->msi_enabled =
2663 	    e1000g_get_prop(Adapter, "MSIEnable",
2664 	    0, 1, DEFAULT_MSI_ENABLE);
2665 
2666 	/*
2667 	 * Interrupt Throttling Rate
2668 	 */
2669 	Adapter->intr_throttling_rate =
2670 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
2671 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
2672 	    DEFAULT_INTR_THROTTLING);
2673 
2674 	/*
2675 	 * Adaptive Interrupt Blanking Enable/Disable
2676 	 * It is enabled by default
2677 	 */
2678 	Adapter->intr_adaptive =
2679 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
2680 	    B_TRUE : B_FALSE;
2681 
2682 	/*
2683 	 * Tx recycle threshold
2684 	 */
2685 	Adapter->tx_recycle_thresh =
2686 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
2687 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2688 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2689 
2690 	/*
2691 	 * Tx recycle descriptor number
2692 	 */
2693 	Adapter->tx_recycle_num =
2694 	    e1000g_get_prop(Adapter, "tx_recycle_num",
2695 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
2696 	    DEFAULT_TX_RECYCLE_NUM);
2697 }
2698 
2699 /*
2700  * e1000g_get_prop - routine to read properties
2701  *
2702  * Get a user-configure property value out of the configuration
2703  * file e1000g.conf.
2704  *
2705  * Caller provides name of the property, a default value, a minimum
2706  * value, and a maximum value.
2707  *
2708  * Return configured value of the property, with default, minimum and
2709  * maximum properly applied.
2710  */
2711 static int
2712 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
2713     char *propname,		/* name of the property */
2714     int minval,			/* minimum acceptable value */
2715     int maxval,			/* maximim acceptable value */
2716     int defval)			/* default value */
2717 {
2718 	int propval;		/* value returned for requested property */
2719 	int *props;		/* point to array of properties returned */
2720 	uint_t nprops;		/* number of property value returned */
2721 
2722 	/*
2723 	 * get the array of properties from the config file
2724 	 */
2725 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
2726 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
2727 		/* got some properties, test if we got enough */
2728 		if (Adapter->instance < nprops) {
2729 			propval = props[Adapter->instance];
2730 		} else {
2731 			/* not enough properties configured */
2732 			propval = defval;
2733 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2734 			    "Not Enough %s values found in e1000g.conf"
2735 			    " - set to %d\n",
2736 			    propname, propval);
2737 		}
2738 
2739 		/* free memory allocated for properties */
2740 		ddi_prop_free(props);
2741 
2742 	} else {
2743 		propval = defval;
2744 	}
2745 
2746 	/*
2747 	 * enforce limits
2748 	 */
2749 	if (propval > maxval) {
2750 		propval = maxval;
2751 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2752 		    "Too High %s value in e1000g.conf - set to %d\n",
2753 		    propname, propval);
2754 	}
2755 
2756 	if (propval < minval) {
2757 		propval = minval;
2758 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
2759 		    "Too Low %s value in e1000g.conf - set to %d\n",
2760 		    propname, propval);
2761 	}
2762 
2763 	return (propval);
2764 }
2765 
2766 static boolean_t
2767 e1000g_link_check(struct e1000g *Adapter)
2768 {
2769 	uint16_t speed, duplex, phydata;
2770 	boolean_t link_changed = B_FALSE;
2771 	struct e1000_hw *hw;
2772 	uint32_t reg_tarc;
2773 
2774 	hw = &Adapter->shared;
2775 
2776 	if (e1000g_link_up(Adapter)) {
2777 		/*
2778 		 * The Link is up, check whether it was marked as down earlier
2779 		 */
2780 		if (Adapter->link_state != LINK_STATE_UP) {
2781 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
2782 			Adapter->link_speed = speed;
2783 			Adapter->link_duplex = duplex;
2784 			Adapter->link_state = LINK_STATE_UP;
2785 			link_changed = B_TRUE;
2786 
2787 			Adapter->tx_link_down_timeout = 0;
2788 
2789 			if ((hw->mac.type == e1000_82571) ||
2790 			    (hw->mac.type == e1000_82572)) {
2791 				reg_tarc = E1000_READ_REG(hw, E1000_TARC0);
2792 				if (speed == SPEED_1000)
2793 					reg_tarc |= (1 << 21);
2794 				else
2795 					reg_tarc &= ~(1 << 21);
2796 				E1000_WRITE_REG(hw, E1000_TARC0, reg_tarc);
2797 			}
2798 		}
2799 		Adapter->smartspeed = 0;
2800 	} else {
2801 		if (Adapter->link_state != LINK_STATE_DOWN) {
2802 			Adapter->link_speed = 0;
2803 			Adapter->link_duplex = 0;
2804 			Adapter->link_state = LINK_STATE_DOWN;
2805 			link_changed = B_TRUE;
2806 
2807 			/*
2808 			 * SmartSpeed workaround for Tabor/TanaX, When the
2809 			 * driver loses link disable auto master/slave
2810 			 * resolution.
2811 			 */
2812 			if (hw->phy.type == e1000_phy_igp) {
2813 				e1000_read_phy_reg(hw,
2814 				    PHY_1000T_CTRL, &phydata);
2815 				phydata |= CR_1000T_MS_ENABLE;
2816 				e1000_write_phy_reg(hw,
2817 				    PHY_1000T_CTRL, phydata);
2818 			}
2819 		} else {
2820 			e1000g_smartspeed(Adapter);
2821 		}
2822 
2823 		if (Adapter->chip_state == E1000G_START) {
2824 			if (Adapter->tx_link_down_timeout <
2825 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2826 				Adapter->tx_link_down_timeout++;
2827 			} else if (Adapter->tx_link_down_timeout ==
2828 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2829 				e1000g_tx_clean(Adapter);
2830 				Adapter->tx_link_down_timeout++;
2831 			}
2832 		}
2833 	}
2834 
2835 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2836 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2837 
2838 	return (link_changed);
2839 }
2840 
2841 static void
2842 e1000g_local_timer(void *ws)
2843 {
2844 	struct e1000g *Adapter = (struct e1000g *)ws;
2845 	struct e1000_hw *hw;
2846 	e1000g_ether_addr_t ether_addr;
2847 	boolean_t link_changed;
2848 
2849 	hw = &Adapter->shared;
2850 
2851 	if (Adapter->chip_state == E1000G_ERROR) {
2852 		Adapter->reset_count++;
2853 		if (e1000g_global_reset(Adapter))
2854 			ddi_fm_service_impact(Adapter->dip,
2855 			    DDI_SERVICE_RESTORED);
2856 		else
2857 			ddi_fm_service_impact(Adapter->dip,
2858 			    DDI_SERVICE_LOST);
2859 		return;
2860 	}
2861 
2862 	if (e1000g_stall_check(Adapter)) {
2863 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
2864 		    "Tx stall detected. Activate automatic recovery.\n");
2865 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
2866 		Adapter->reset_count++;
2867 		if (e1000g_reset(Adapter))
2868 			ddi_fm_service_impact(Adapter->dip,
2869 			    DDI_SERVICE_RESTORED);
2870 		else
2871 			ddi_fm_service_impact(Adapter->dip,
2872 			    DDI_SERVICE_LOST);
2873 		return;
2874 	}
2875 
2876 	link_changed = B_FALSE;
2877 	rw_enter(&Adapter->chip_lock, RW_READER);
2878 	if (Adapter->link_complete)
2879 		link_changed = e1000g_link_check(Adapter);
2880 	rw_exit(&Adapter->chip_lock);
2881 
2882 	if (link_changed) {
2883 		/*
2884 		 * Workaround for esb2. Data stuck in fifo on a link
2885 		 * down event. Reset the adapter to recover it.
2886 		 */
2887 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
2888 		    (hw->mac.type == e1000_80003es2lan))
2889 			(void) e1000g_reset(Adapter);
2890 
2891 		mac_link_update(Adapter->mh, Adapter->link_state);
2892 	}
2893 
2894 	/*
2895 	 * With 82571 controllers, any locally administered address will
2896 	 * be overwritten when there is a reset on the other port.
2897 	 * Detect this circumstance and correct it.
2898 	 */
2899 	if ((hw->mac.type == e1000_82571) &&
2900 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
2901 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
2902 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
2903 
2904 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
2905 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
2906 
2907 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
2908 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
2909 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
2910 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
2911 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
2912 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
2913 			e1000_rar_set(hw, hw->mac.addr, 0);
2914 		}
2915 	}
2916 
2917 	/*
2918 	 * Long TTL workaround for 82541/82547
2919 	 */
2920 	e1000_igp_ttl_workaround_82547(hw);
2921 
2922 	/*
2923 	 * Check for Adaptive IFS settings If there are lots of collisions
2924 	 * change the value in steps...
2925 	 * These properties should only be set for 10/100
2926 	 */
2927 	if ((hw->media_type == e1000_media_type_copper) &&
2928 	    ((Adapter->link_speed == SPEED_100) ||
2929 	    (Adapter->link_speed == SPEED_10))) {
2930 		e1000_update_adaptive(hw);
2931 	}
2932 	/*
2933 	 * Set Timer Interrupts
2934 	 */
2935 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2936 
2937 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2938 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2939 
2940 	restart_watchdog_timer(Adapter);
2941 }
2942 
2943 /*
2944  * The function e1000g_link_timer() is called when the timer for link setup
2945  * is expired, which indicates the completion of the link setup. The link
2946  * state will not be updated until the link setup is completed. And the
2947  * link state will not be sent to the upper layer through mac_link_update()
2948  * in this function. It will be updated in the local timer routine or the
2949  * interrupt service routine after the interface is started (plumbed).
2950  */
2951 static void
2952 e1000g_link_timer(void *arg)
2953 {
2954 	struct e1000g *Adapter = (struct e1000g *)arg;
2955 
2956 	mutex_enter(&Adapter->link_lock);
2957 	Adapter->link_complete = B_TRUE;
2958 	Adapter->link_tid = 0;
2959 	mutex_exit(&Adapter->link_lock);
2960 }
2961 
2962 /*
2963  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
2964  *
2965  * This function read the forced speed and duplex for 10/100 Mbps speeds
2966  * and also for 1000 Mbps speeds from the e1000g.conf file
2967  */
2968 static void
2969 e1000g_force_speed_duplex(struct e1000g *Adapter)
2970 {
2971 	int forced;
2972 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2973 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2974 
2975 	/*
2976 	 * get value out of config file
2977 	 */
2978 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
2979 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
2980 
2981 	switch (forced) {
2982 	case GDIAG_10_HALF:
2983 		/*
2984 		 * Disable Auto Negotiation
2985 		 */
2986 		mac->autoneg = B_FALSE;
2987 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
2988 		break;
2989 	case GDIAG_10_FULL:
2990 		/*
2991 		 * Disable Auto Negotiation
2992 		 */
2993 		mac->autoneg = B_FALSE;
2994 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
2995 		break;
2996 	case GDIAG_100_HALF:
2997 		/*
2998 		 * Disable Auto Negotiation
2999 		 */
3000 		mac->autoneg = B_FALSE;
3001 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3002 		break;
3003 	case GDIAG_100_FULL:
3004 		/*
3005 		 * Disable Auto Negotiation
3006 		 */
3007 		mac->autoneg = B_FALSE;
3008 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3009 		break;
3010 	case GDIAG_1000_FULL:
3011 		/*
3012 		 * The gigabit spec requires autonegotiation.  Therefore,
3013 		 * when the user wants to force the speed to 1000Mbps, we
3014 		 * enable AutoNeg, but only allow the harware to advertise
3015 		 * 1000Mbps.  This is different from 10/100 operation, where
3016 		 * we are allowed to link without any negotiation.
3017 		 */
3018 		mac->autoneg = B_TRUE;
3019 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3020 		break;
3021 	default:	/* obey the setting of AutoNegAdvertised */
3022 		mac->autoneg = B_TRUE;
3023 		phy->autoneg_advertised =
3024 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3025 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3026 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3027 		break;
3028 	}	/* switch */
3029 }
3030 
3031 /*
3032  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3033  *
3034  * This function reads MaxFrameSize from e1000g.conf
3035  */
3036 static void
3037 e1000g_get_max_frame_size(struct e1000g *Adapter)
3038 {
3039 	int max_frame;
3040 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3041 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3042 
3043 	/*
3044 	 * get value out of config file
3045 	 */
3046 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3047 
3048 	switch (max_frame) {
3049 	case 0:
3050 		mac->max_frame_size = ETHERMAX;
3051 		break;
3052 	case 1:
3053 		mac->max_frame_size = FRAME_SIZE_UPTO_4K;
3054 		break;
3055 	case 2:
3056 		mac->max_frame_size = FRAME_SIZE_UPTO_8K;
3057 		break;
3058 	case 3:
3059 		if (mac->type < e1000_82571)
3060 			mac->max_frame_size = FRAME_SIZE_UPTO_16K;
3061 		else
3062 			mac->max_frame_size = FRAME_SIZE_UPTO_9K;
3063 		break;
3064 	default:
3065 		mac->max_frame_size = ETHERMAX;
3066 		break;
3067 	}	/* switch */
3068 
3069 	/* ich8 does not do jumbo frames */
3070 	if (mac->type == e1000_ich8lan) {
3071 		mac->max_frame_size = ETHERMAX;
3072 	}
3073 
3074 	/* ich9 does not do jumbo frames on one phy type */
3075 	if ((mac->type == e1000_ich9lan) &&
3076 	    (phy->type == e1000_phy_ife)) {
3077 		mac->max_frame_size = ETHERMAX;
3078 	}
3079 }
3080 
3081 static void
3082 arm_watchdog_timer(struct e1000g *Adapter)
3083 {
3084 	Adapter->watchdog_tid =
3085 	    timeout(e1000g_local_timer,
3086 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3087 }
3088 #pragma inline(arm_watchdog_timer)
3089 
3090 static void
3091 enable_watchdog_timer(struct e1000g *Adapter)
3092 {
3093 	mutex_enter(&Adapter->watchdog_lock);
3094 
3095 	if (!Adapter->watchdog_timer_enabled) {
3096 		Adapter->watchdog_timer_enabled = B_TRUE;
3097 		Adapter->watchdog_timer_started = B_TRUE;
3098 		arm_watchdog_timer(Adapter);
3099 	}
3100 
3101 	mutex_exit(&Adapter->watchdog_lock);
3102 }
3103 
3104 static void
3105 disable_watchdog_timer(struct e1000g *Adapter)
3106 {
3107 	timeout_id_t tid;
3108 
3109 	mutex_enter(&Adapter->watchdog_lock);
3110 
3111 	Adapter->watchdog_timer_enabled = B_FALSE;
3112 	Adapter->watchdog_timer_started = B_FALSE;
3113 	tid = Adapter->watchdog_tid;
3114 	Adapter->watchdog_tid = 0;
3115 
3116 	mutex_exit(&Adapter->watchdog_lock);
3117 
3118 	if (tid != 0)
3119 		(void) untimeout(tid);
3120 }
3121 
3122 static void
3123 start_watchdog_timer(struct e1000g *Adapter)
3124 {
3125 	mutex_enter(&Adapter->watchdog_lock);
3126 
3127 	if (Adapter->watchdog_timer_enabled) {
3128 		if (!Adapter->watchdog_timer_started) {
3129 			Adapter->watchdog_timer_started = B_TRUE;
3130 			arm_watchdog_timer(Adapter);
3131 		}
3132 	}
3133 
3134 	mutex_exit(&Adapter->watchdog_lock);
3135 }
3136 
3137 static void
3138 restart_watchdog_timer(struct e1000g *Adapter)
3139 {
3140 	mutex_enter(&Adapter->watchdog_lock);
3141 
3142 	if (Adapter->watchdog_timer_started)
3143 		arm_watchdog_timer(Adapter);
3144 
3145 	mutex_exit(&Adapter->watchdog_lock);
3146 }
3147 
3148 static void
3149 stop_watchdog_timer(struct e1000g *Adapter)
3150 {
3151 	timeout_id_t tid;
3152 
3153 	mutex_enter(&Adapter->watchdog_lock);
3154 
3155 	Adapter->watchdog_timer_started = B_FALSE;
3156 	tid = Adapter->watchdog_tid;
3157 	Adapter->watchdog_tid = 0;
3158 
3159 	mutex_exit(&Adapter->watchdog_lock);
3160 
3161 	if (tid != 0)
3162 		(void) untimeout(tid);
3163 }
3164 
3165 static void
3166 stop_link_timer(struct e1000g *Adapter)
3167 {
3168 	timeout_id_t tid;
3169 
3170 	/* Disable the link timer */
3171 	mutex_enter(&Adapter->link_lock);
3172 
3173 	tid = Adapter->link_tid;
3174 	Adapter->link_tid = 0;
3175 
3176 	mutex_exit(&Adapter->link_lock);
3177 
3178 	if (tid != 0)
3179 		(void) untimeout(tid);
3180 }
3181 
3182 static void
3183 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3184 {
3185 	timeout_id_t tid;
3186 
3187 	/* Disable the tx timer for 82547 chipset */
3188 	mutex_enter(&tx_ring->tx_lock);
3189 
3190 	tx_ring->timer_enable_82547 = B_FALSE;
3191 	tid = tx_ring->timer_id_82547;
3192 	tx_ring->timer_id_82547 = 0;
3193 
3194 	mutex_exit(&tx_ring->tx_lock);
3195 
3196 	if (tid != 0)
3197 		(void) untimeout(tid);
3198 }
3199 
3200 void
3201 e1000g_clear_interrupt(struct e1000g *Adapter)
3202 {
3203 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
3204 	    0xffffffff & ~E1000_IMS_RXSEQ);
3205 }
3206 
3207 void
3208 e1000g_mask_interrupt(struct e1000g *Adapter)
3209 {
3210 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
3211 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
3212 
3213 	if (Adapter->tx_intr_enable)
3214 		e1000g_mask_tx_interrupt(Adapter);
3215 }
3216 
3217 void
3218 e1000g_clear_all_interrupts(struct e1000g *Adapter)
3219 {
3220 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
3221 }
3222 
3223 void
3224 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
3225 {
3226 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
3227 }
3228 
3229 void
3230 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
3231 {
3232 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
3233 }
3234 
3235 static void
3236 e1000g_smartspeed(struct e1000g *Adapter)
3237 {
3238 	struct e1000_hw *hw = &Adapter->shared;
3239 	uint16_t phy_status;
3240 	uint16_t phy_ctrl;
3241 
3242 	/*
3243 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
3244 	 * advertising 1000Full, we don't even use the workaround
3245 	 */
3246 	if ((hw->phy.type != e1000_phy_igp) ||
3247 	    !hw->mac.autoneg ||
3248 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
3249 		return;
3250 
3251 	/*
3252 	 * True if this is the first call of this function or after every
3253 	 * 30 seconds of not having link
3254 	 */
3255 	if (Adapter->smartspeed == 0) {
3256 		/*
3257 		 * If Master/Slave config fault is asserted twice, we
3258 		 * assume back-to-back
3259 		 */
3260 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3261 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3262 			return;
3263 
3264 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3265 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3266 			return;
3267 		/*
3268 		 * We're assuming back-2-back because our status register
3269 		 * insists! there's a fault in the master/slave
3270 		 * relationship that was "negotiated"
3271 		 */
3272 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3273 		/*
3274 		 * Is the phy configured for manual configuration of
3275 		 * master/slave?
3276 		 */
3277 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
3278 			/*
3279 			 * Yes.  Then disable manual configuration (enable
3280 			 * auto configuration) of master/slave
3281 			 */
3282 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
3283 			e1000_write_phy_reg(hw,
3284 			    PHY_1000T_CTRL, phy_ctrl);
3285 			/*
3286 			 * Effectively starting the clock
3287 			 */
3288 			Adapter->smartspeed++;
3289 			/*
3290 			 * Restart autonegotiation
3291 			 */
3292 			if (!e1000_phy_setup_autoneg(hw) &&
3293 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
3294 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3295 				    MII_CR_RESTART_AUTO_NEG);
3296 				e1000_write_phy_reg(hw,
3297 				    PHY_CONTROL, phy_ctrl);
3298 			}
3299 		}
3300 		return;
3301 		/*
3302 		 * Has 6 seconds transpired still without link? Remember,
3303 		 * you should reset the smartspeed counter once you obtain
3304 		 * link
3305 		 */
3306 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3307 		/*
3308 		 * Yes.  Remember, we did at the start determine that
3309 		 * there's a master/slave configuration fault, so we're
3310 		 * still assuming there's someone on the other end, but we
3311 		 * just haven't yet been able to talk to it. We then
3312 		 * re-enable auto configuration of master/slave to see if
3313 		 * we're running 2/3 pair cables.
3314 		 */
3315 		/*
3316 		 * If still no link, perhaps using 2/3 pair cable
3317 		 */
3318 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
3319 		phy_ctrl |= CR_1000T_MS_ENABLE;
3320 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
3321 		/*
3322 		 * Restart autoneg with phy enabled for manual
3323 		 * configuration of master/slave
3324 		 */
3325 		if (!e1000_phy_setup_autoneg(hw) &&
3326 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
3327 			phy_ctrl |=
3328 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3329 			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3330 		}
3331 		/*
3332 		 * Hopefully, there are no more faults and we've obtained
3333 		 * link as a result.
3334 		 */
3335 	}
3336 	/*
3337 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
3338 	 * seconds)
3339 	 */
3340 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3341 		Adapter->smartspeed = 0;
3342 }
3343 
3344 static boolean_t
3345 is_valid_mac_addr(uint8_t *mac_addr)
3346 {
3347 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3348 	const uint8_t addr_test2[6] =
3349 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3350 
3351 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3352 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3353 		return (B_FALSE);
3354 
3355 	return (B_TRUE);
3356 }
3357 
3358 /*
3359  * e1000g_stall_check - check for tx stall
3360  *
3361  * This function checks if the adapter is stalled (in transmit).
3362  *
3363  * It is called each time the watchdog timeout is invoked.
3364  * If the transmit descriptor reclaim continuously fails,
3365  * the watchdog value will increment by 1. If the watchdog
3366  * value exceeds the threshold, the adapter is assumed to
3367  * have stalled and need to be reset.
3368  */
3369 static boolean_t
3370 e1000g_stall_check(struct e1000g *Adapter)
3371 {
3372 	e1000g_tx_ring_t *tx_ring;
3373 
3374 	tx_ring = Adapter->tx_ring;
3375 
3376 	if (Adapter->link_state != LINK_STATE_UP)
3377 		return (B_FALSE);
3378 
3379 	if (tx_ring->recycle_fail > 0)
3380 		tx_ring->stall_watchdog++;
3381 	else
3382 		tx_ring->stall_watchdog = 0;
3383 
3384 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
3385 		return (B_FALSE);
3386 
3387 	tx_ring->stall_watchdog = 0;
3388 	tx_ring->recycle_fail = 0;
3389 
3390 	return (B_TRUE);
3391 }
3392 
3393 #ifdef E1000G_DEBUG
3394 static enum ioc_reply
3395 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
3396 {
3397 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
3398 	e1000g_peekpoke_t *ppd;
3399 	uint64_t mem_va;
3400 	uint64_t maxoff;
3401 	boolean_t peek;
3402 
3403 	switch (iocp->ioc_cmd) {
3404 
3405 	case E1000G_IOC_REG_PEEK:
3406 		peek = B_TRUE;
3407 		break;
3408 
3409 	case E1000G_IOC_REG_POKE:
3410 		peek = B_FALSE;
3411 		break;
3412 
3413 	deault:
3414 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
3415 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
3416 		    iocp->ioc_cmd);
3417 		return (IOC_INVAL);
3418 	}
3419 
3420 	/*
3421 	 * Validate format of ioctl
3422 	 */
3423 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
3424 		return (IOC_INVAL);
3425 	if (mp->b_cont == NULL)
3426 		return (IOC_INVAL);
3427 
3428 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
3429 
3430 	/*
3431 	 * Validate request parameters
3432 	 */
3433 	switch (ppd->pp_acc_space) {
3434 
3435 	default:
3436 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
3437 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
3438 		    ppd->pp_acc_space);
3439 		return (IOC_INVAL);
3440 
3441 	case E1000G_PP_SPACE_REG:
3442 		/*
3443 		 * Memory-mapped I/O space
3444 		 */
3445 		ASSERT(ppd->pp_acc_size == 4);
3446 		if (ppd->pp_acc_size != 4)
3447 			return (IOC_INVAL);
3448 
3449 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
3450 			return (IOC_INVAL);
3451 
3452 		mem_va = 0;
3453 		maxoff = 0x10000;
3454 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
3455 		break;
3456 
3457 	case E1000G_PP_SPACE_E1000G:
3458 		/*
3459 		 * E1000g data structure!
3460 		 */
3461 		mem_va = (uintptr_t)e1000gp;
3462 		maxoff = sizeof (struct e1000g);
3463 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
3464 		break;
3465 
3466 	}
3467 
3468 	if (ppd->pp_acc_offset >= maxoff)
3469 		return (IOC_INVAL);
3470 
3471 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
3472 		return (IOC_INVAL);
3473 
3474 	/*
3475 	 * All OK - go!
3476 	 */
3477 	ppd->pp_acc_offset += mem_va;
3478 	(*ppfn)(e1000gp, ppd);
3479 	return (peek ? IOC_REPLY : IOC_ACK);
3480 }
3481 
3482 static void
3483 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3484 {
3485 	ddi_acc_handle_t handle;
3486 	uint32_t *regaddr;
3487 
3488 	handle = e1000gp->osdep.reg_handle;
3489 	regaddr =
3490 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
3491 
3492 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
3493 }
3494 
3495 static void
3496 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3497 {
3498 	ddi_acc_handle_t handle;
3499 	uint32_t *regaddr;
3500 	uint32_t value;
3501 
3502 	handle = e1000gp->osdep.reg_handle;
3503 	regaddr =
3504 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
3505 	value = (uint32_t)ppd->pp_acc_data;
3506 
3507 	ddi_put32(handle, regaddr, value);
3508 }
3509 
3510 static void
3511 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3512 {
3513 	uint64_t value;
3514 	void *vaddr;
3515 
3516 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3517 
3518 	switch (ppd->pp_acc_size) {
3519 	case 1:
3520 		value = *(uint8_t *)vaddr;
3521 		break;
3522 
3523 	case 2:
3524 		value = *(uint16_t *)vaddr;
3525 		break;
3526 
3527 	case 4:
3528 		value = *(uint32_t *)vaddr;
3529 		break;
3530 
3531 	case 8:
3532 		value = *(uint64_t *)vaddr;
3533 		break;
3534 	}
3535 
3536 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
3537 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
3538 	    (void *)e1000gp, (void *)ppd, value, vaddr);
3539 
3540 	ppd->pp_acc_data = value;
3541 }
3542 
3543 static void
3544 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3545 {
3546 	uint64_t value;
3547 	void *vaddr;
3548 
3549 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3550 	value = ppd->pp_acc_data;
3551 
3552 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
3553 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
3554 	    (void *)e1000gp, (void *)ppd, value, vaddr);
3555 
3556 	switch (ppd->pp_acc_size) {
3557 	case 1:
3558 		*(uint8_t *)vaddr = (uint8_t)value;
3559 		break;
3560 
3561 	case 2:
3562 		*(uint16_t *)vaddr = (uint16_t)value;
3563 		break;
3564 
3565 	case 4:
3566 		*(uint32_t *)vaddr = (uint32_t)value;
3567 		break;
3568 
3569 	case 8:
3570 		*(uint64_t *)vaddr = (uint64_t)value;
3571 		break;
3572 	}
3573 }
3574 #endif
3575 
3576 /*
3577  * Loopback Support
3578  */
3579 static lb_property_t lb_normal =
3580 	{ normal,	"normal",	E1000G_LB_NONE		};
3581 static lb_property_t lb_external1000 =
3582 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
3583 static lb_property_t lb_external100 =
3584 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
3585 static lb_property_t lb_external10 =
3586 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
3587 static lb_property_t lb_phy =
3588 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
3589 
3590 static enum ioc_reply
3591 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
3592 {
3593 	lb_info_sz_t *lbsp;
3594 	lb_property_t *lbpp;
3595 	struct e1000_hw *hw;
3596 	uint32_t *lbmp;
3597 	uint32_t size;
3598 	uint32_t value;
3599 
3600 	hw = &Adapter->shared;
3601 
3602 	if (mp->b_cont == NULL)
3603 		return (IOC_INVAL);
3604 
3605 	switch (iocp->ioc_cmd) {
3606 	default:
3607 		return (IOC_INVAL);
3608 
3609 	case LB_GET_INFO_SIZE:
3610 		size = sizeof (lb_info_sz_t);
3611 		if (iocp->ioc_count != size)
3612 			return (IOC_INVAL);
3613 
3614 		rw_enter(&Adapter->chip_lock, RW_WRITER);
3615 		e1000g_get_phy_state(Adapter);
3616 
3617 		/*
3618 		 * Workaround for hardware faults. In order to get a stable
3619 		 * state of phy, we will wait for a specific interval and
3620 		 * try again. The time delay is an experiential value based
3621 		 * on our testing.
3622 		 */
3623 		msec_delay(100);
3624 		e1000g_get_phy_state(Adapter);
3625 		rw_exit(&Adapter->chip_lock);
3626 
3627 		value = sizeof (lb_normal);
3628 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3629 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3630 		    (hw->media_type == e1000_media_type_fiber) ||
3631 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3632 			value += sizeof (lb_phy);
3633 			switch (hw->mac.type) {
3634 			case e1000_82571:
3635 			case e1000_82572:
3636 				value += sizeof (lb_external1000);
3637 				break;
3638 			}
3639 		}
3640 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3641 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3642 			value += sizeof (lb_external100);
3643 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
3644 			value += sizeof (lb_external10);
3645 
3646 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
3647 		*lbsp = value;
3648 		break;
3649 
3650 	case LB_GET_INFO:
3651 		value = sizeof (lb_normal);
3652 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3653 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3654 		    (hw->media_type == e1000_media_type_fiber) ||
3655 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3656 			value += sizeof (lb_phy);
3657 			switch (hw->mac.type) {
3658 			case e1000_82571:
3659 			case e1000_82572:
3660 				value += sizeof (lb_external1000);
3661 				break;
3662 			}
3663 		}
3664 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3665 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3666 			value += sizeof (lb_external100);
3667 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
3668 			value += sizeof (lb_external10);
3669 
3670 		size = value;
3671 		if (iocp->ioc_count != size)
3672 			return (IOC_INVAL);
3673 
3674 		value = 0;
3675 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
3676 		lbpp[value++] = lb_normal;
3677 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3678 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3679 		    (hw->media_type == e1000_media_type_fiber) ||
3680 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3681 			lbpp[value++] = lb_phy;
3682 			switch (hw->mac.type) {
3683 			case e1000_82571:
3684 			case e1000_82572:
3685 				lbpp[value++] = lb_external1000;
3686 				break;
3687 			}
3688 		}
3689 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3690 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3691 			lbpp[value++] = lb_external100;
3692 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
3693 			lbpp[value++] = lb_external10;
3694 		break;
3695 
3696 	case LB_GET_MODE:
3697 		size = sizeof (uint32_t);
3698 		if (iocp->ioc_count != size)
3699 			return (IOC_INVAL);
3700 
3701 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3702 		*lbmp = Adapter->loopback_mode;
3703 		break;
3704 
3705 	case LB_SET_MODE:
3706 		size = 0;
3707 		if (iocp->ioc_count != sizeof (uint32_t))
3708 			return (IOC_INVAL);
3709 
3710 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3711 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
3712 			return (IOC_INVAL);
3713 		break;
3714 	}
3715 
3716 	iocp->ioc_count = size;
3717 	iocp->ioc_error = 0;
3718 
3719 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
3720 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3721 		return (IOC_INVAL);
3722 	}
3723 
3724 	return (IOC_REPLY);
3725 }
3726 
3727 static boolean_t
3728 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
3729 {
3730 	struct e1000_hw *hw;
3731 	int i, times;
3732 	boolean_t link_up;
3733 
3734 	if (mode == Adapter->loopback_mode)
3735 		return (B_TRUE);
3736 
3737 	hw = &Adapter->shared;
3738 	times = 0;
3739 
3740 	Adapter->loopback_mode = mode;
3741 
3742 	if (mode == E1000G_LB_NONE) {
3743 		/* Reset the chip */
3744 		hw->phy.wait_for_link = B_TRUE;
3745 		(void) e1000g_reset(Adapter);
3746 		hw->phy.wait_for_link = B_FALSE;
3747 		return (B_TRUE);
3748 	}
3749 
3750 again:
3751 
3752 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3753 
3754 	switch (mode) {
3755 	default:
3756 		rw_exit(&Adapter->chip_lock);
3757 		return (B_FALSE);
3758 
3759 	case E1000G_LB_EXTERNAL_1000:
3760 		e1000g_set_external_loopback_1000(Adapter);
3761 		break;
3762 
3763 	case E1000G_LB_EXTERNAL_100:
3764 		e1000g_set_external_loopback_100(Adapter);
3765 		break;
3766 
3767 	case E1000G_LB_EXTERNAL_10:
3768 		e1000g_set_external_loopback_10(Adapter);
3769 		break;
3770 
3771 	case E1000G_LB_INTERNAL_PHY:
3772 		e1000g_set_internal_loopback(Adapter);
3773 		break;
3774 	}
3775 
3776 	times++;
3777 
3778 	rw_exit(&Adapter->chip_lock);
3779 
3780 	/* Wait for link up */
3781 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
3782 		msec_delay(100);
3783 
3784 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3785 
3786 	link_up = e1000g_link_up(Adapter);
3787 
3788 	rw_exit(&Adapter->chip_lock);
3789 
3790 	if (!link_up) {
3791 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3792 		    "Failed to get the link up");
3793 		if (times < 2) {
3794 			/* Reset the link */
3795 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3796 			    "Reset the link ...");
3797 			(void) e1000g_reset(Adapter);
3798 			goto again;
3799 		}
3800 	}
3801 
3802 	return (B_TRUE);
3803 }
3804 
3805 /*
3806  * The following loopback settings are from Intel's technical
3807  * document - "How To Loopback". All the register settings and
3808  * time delay values are directly inherited from the document
3809  * without more explanations available.
3810  */
3811 static void
3812 e1000g_set_internal_loopback(struct e1000g *Adapter)
3813 {
3814 	struct e1000_hw *hw;
3815 	uint32_t ctrl;
3816 	uint32_t status;
3817 	uint16_t phy_ctrl;
3818 	uint32_t txcw;
3819 
3820 	hw = &Adapter->shared;
3821 
3822 	/* Disable Smart Power Down */
3823 	phy_spd_state(hw, B_FALSE);
3824 
3825 	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
3826 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
3827 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
3828 
3829 	switch (hw->mac.type) {
3830 	case e1000_82540:
3831 	case e1000_82545:
3832 	case e1000_82545_rev_3:
3833 	case e1000_82546:
3834 	case e1000_82546_rev_3:
3835 	case e1000_82573:
3836 		/* Auto-MDI/MDIX off */
3837 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
3838 		/* Reset PHY to update Auto-MDI/MDIX */
3839 		e1000_write_phy_reg(hw, PHY_CONTROL,
3840 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
3841 		/* Reset PHY to auto-neg off and force 1000 */
3842 		e1000_write_phy_reg(hw, PHY_CONTROL,
3843 		    phy_ctrl | MII_CR_RESET);
3844 		/*
3845 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
3846 		 * See comments above e1000g_set_internal_loopback() for the
3847 		 * background.
3848 		 */
3849 		e1000_write_phy_reg(hw, 29, 0x001F);
3850 		e1000_write_phy_reg(hw, 30, 0x8FFC);
3851 		e1000_write_phy_reg(hw, 29, 0x001A);
3852 		e1000_write_phy_reg(hw, 30, 0x8FF0);
3853 		break;
3854 	}
3855 
3856 	/* Set loopback */
3857 	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
3858 
3859 	msec_delay(250);
3860 
3861 	/* Now set up the MAC to the same speed/duplex as the PHY. */
3862 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3863 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3864 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3865 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
3866 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
3867 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
3868 
3869 	switch (hw->mac.type) {
3870 	case e1000_82540:
3871 	case e1000_82545:
3872 	case e1000_82545_rev_3:
3873 	case e1000_82546:
3874 	case e1000_82546_rev_3:
3875 		/*
3876 		 * For some serdes we'll need to commit the writes now
3877 		 * so that the status is updated on link
3878 		 */
3879 		if (hw->media_type == e1000_media_type_internal_serdes) {
3880 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3881 			msec_delay(100);
3882 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
3883 		}
3884 
3885 		if (hw->media_type == e1000_media_type_copper) {
3886 			/* Invert Loss of Signal */
3887 			ctrl |= E1000_CTRL_ILOS;
3888 		} else {
3889 			/* Set ILOS on fiber nic if half duplex is detected */
3890 			status = E1000_READ_REG(hw, E1000_STATUS);
3891 			if ((status & E1000_STATUS_FD) == 0)
3892 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3893 		}
3894 		break;
3895 
3896 	case e1000_82571:
3897 	case e1000_82572:
3898 		/*
3899 		 * The fiber/SerDes versions of this adapter do not contain an
3900 		 * accessible PHY. Therefore, loopback beyond MAC must be done
3901 		 * using SerDes analog loopback.
3902 		 */
3903 		if (hw->media_type != e1000_media_type_copper) {
3904 			status = E1000_READ_REG(hw, E1000_STATUS);
3905 			/* Set ILOS on fiber nic if half duplex is detected */
3906 			if (((status & E1000_STATUS_LU) == 0) ||
3907 			    ((status & E1000_STATUS_FD) == 0) ||
3908 			    (hw->media_type ==
3909 			    e1000_media_type_internal_serdes))
3910 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3911 
3912 			/* Disable autoneg by setting bit 31 of TXCW to zero */
3913 			txcw = E1000_READ_REG(hw, E1000_TXCW);
3914 			txcw &= ~((uint32_t)1 << 31);
3915 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
3916 
3917 			/*
3918 			 * Write 0x410 to Serdes Control register
3919 			 * to enable Serdes analog loopback
3920 			 */
3921 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
3922 			msec_delay(10);
3923 		}
3924 		break;
3925 
3926 	case e1000_82573:
3927 		ctrl |= E1000_CTRL_ILOS;
3928 		break;
3929 	}
3930 
3931 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3932 
3933 }
3934 
3935 static void
3936 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
3937 {
3938 	struct e1000_hw *hw;
3939 	uint32_t rctl;
3940 	uint32_t ctrl_ext;
3941 	uint32_t ctrl;
3942 	uint32_t status;
3943 	uint32_t txcw;
3944 
3945 	hw = &Adapter->shared;
3946 
3947 	/* Disable Smart Power Down */
3948 	phy_spd_state(hw, B_FALSE);
3949 
3950 	switch (hw->media_type) {
3951 	case e1000_media_type_copper:
3952 		/* Force link up (Must be done before the PHY writes) */
3953 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
3954 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
3955 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3956 
3957 		rctl = E1000_READ_REG(hw, E1000_RCTL);
3958 		rctl |= (E1000_RCTL_EN |
3959 		    E1000_RCTL_SBP |
3960 		    E1000_RCTL_UPE |
3961 		    E1000_RCTL_MPE |
3962 		    E1000_RCTL_LPE |
3963 		    E1000_RCTL_BAM);		/* 0x803E */
3964 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3965 
3966 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3967 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
3968 		    E1000_CTRL_EXT_SDP6_DATA |
3969 		    E1000_CTRL_EXT_SDP7_DATA |
3970 		    E1000_CTRL_EXT_SDP4_DIR |
3971 		    E1000_CTRL_EXT_SDP6_DIR |
3972 		    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
3973 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3974 
3975 		/*
3976 		 * This sequence tunes the PHY's SDP and no customer
3977 		 * settable values. For background, see comments above
3978 		 * e1000g_set_internal_loopback().
3979 		 */
3980 		e1000_write_phy_reg(hw, 0x0, 0x140);
3981 		msec_delay(10);
3982 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
3983 		e1000_write_phy_reg(hw, 0x12, 0xC10);
3984 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
3985 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
3986 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
3987 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
3988 
3989 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
3990 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
3991 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
3992 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
3993 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
3994 
3995 		msec_delay(50);
3996 		break;
3997 	case e1000_media_type_fiber:
3998 	case e1000_media_type_internal_serdes:
3999 		status = E1000_READ_REG(hw, E1000_STATUS);
4000 		if (((status & E1000_STATUS_LU) == 0) ||
4001 		    (hw->media_type == e1000_media_type_internal_serdes)) {
4002 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4003 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4004 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4005 		}
4006 
4007 		/* Disable autoneg by setting bit 31 of TXCW to zero */
4008 		txcw = E1000_READ_REG(hw, E1000_TXCW);
4009 		txcw &= ~((uint32_t)1 << 31);
4010 		E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4011 
4012 		/*
4013 		 * Write 0x410 to Serdes Control register
4014 		 * to enable Serdes analog loopback
4015 		 */
4016 		E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4017 		msec_delay(10);
4018 		break;
4019 	default:
4020 		break;
4021 	}
4022 }
4023 
4024 static void
4025 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4026 {
4027 	struct e1000_hw *hw;
4028 	uint32_t ctrl;
4029 	uint16_t phy_ctrl;
4030 
4031 	hw = &Adapter->shared;
4032 
4033 	/* Disable Smart Power Down */
4034 	phy_spd_state(hw, B_FALSE);
4035 
4036 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4037 	    MII_CR_SPEED_100);
4038 
4039 	/* Force 100/FD, reset PHY */
4040 	e1000_write_phy_reg(hw, PHY_CONTROL,
4041 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4042 	msec_delay(10);
4043 
4044 	/* Force 100/FD */
4045 	e1000_write_phy_reg(hw, PHY_CONTROL,
4046 	    phy_ctrl);			/* 0x2100 */
4047 	msec_delay(10);
4048 
4049 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4050 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4051 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4052 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4053 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4054 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4055 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4056 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4057 
4058 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4059 }
4060 
4061 static void
4062 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4063 {
4064 	struct e1000_hw *hw;
4065 	uint32_t ctrl;
4066 	uint16_t phy_ctrl;
4067 
4068 	hw = &Adapter->shared;
4069 
4070 	/* Disable Smart Power Down */
4071 	phy_spd_state(hw, B_FALSE);
4072 
4073 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4074 	    MII_CR_SPEED_10);
4075 
4076 	/* Force 10/FD, reset PHY */
4077 	e1000_write_phy_reg(hw, PHY_CONTROL,
4078 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4079 	msec_delay(10);
4080 
4081 	/* Force 10/FD */
4082 	e1000_write_phy_reg(hw, PHY_CONTROL,
4083 	    phy_ctrl);			/* 0x0100 */
4084 	msec_delay(10);
4085 
4086 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4087 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4088 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4089 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4090 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4091 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4092 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4093 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4094 
4095 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4096 }
4097 
4098 #ifdef __sparc
4099 static boolean_t
4100 e1000g_find_mac_address(struct e1000g *Adapter)
4101 {
4102 	struct e1000_hw *hw = &Adapter->shared;
4103 	uchar_t *bytes;
4104 	struct ether_addr sysaddr;
4105 	uint_t nelts;
4106 	int err;
4107 	boolean_t found = B_FALSE;
4108 
4109 	/*
4110 	 * The "vendor's factory-set address" may already have
4111 	 * been extracted from the chip, but if the property
4112 	 * "local-mac-address" is set we use that instead.
4113 	 *
4114 	 * We check whether it looks like an array of 6
4115 	 * bytes (which it should, if OBP set it).  If we can't
4116 	 * make sense of it this way, we'll ignore it.
4117 	 */
4118 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4119 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4120 	if (err == DDI_PROP_SUCCESS) {
4121 		if (nelts == ETHERADDRL) {
4122 			while (nelts--)
4123 				hw->mac.addr[nelts] = bytes[nelts];
4124 			found = B_TRUE;
4125 		}
4126 		ddi_prop_free(bytes);
4127 	}
4128 
4129 	/*
4130 	 * Look up the OBP property "local-mac-address?". If the user has set
4131 	 * 'local-mac-address? = false', use "the system address" instead.
4132 	 */
4133 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4134 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
4135 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
4136 			if (localetheraddr(NULL, &sysaddr) != 0) {
4137 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
4138 				found = B_TRUE;
4139 			}
4140 		}
4141 		ddi_prop_free(bytes);
4142 	}
4143 
4144 	/*
4145 	 * Finally(!), if there's a valid "mac-address" property (created
4146 	 * if we netbooted from this interface), we must use this instead
4147 	 * of any of the above to ensure that the NFS/install server doesn't
4148 	 * get confused by the address changing as Solaris takes over!
4149 	 */
4150 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4151 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
4152 	if (err == DDI_PROP_SUCCESS) {
4153 		if (nelts == ETHERADDRL) {
4154 			while (nelts--)
4155 				hw->mac.addr[nelts] = bytes[nelts];
4156 			found = B_TRUE;
4157 		}
4158 		ddi_prop_free(bytes);
4159 	}
4160 
4161 	if (found) {
4162 		bcopy(hw->mac.addr, hw->mac.perm_addr,
4163 		    ETHERADDRL);
4164 	}
4165 
4166 	return (found);
4167 }
4168 #endif
4169 
4170 static int
4171 e1000g_add_intrs(struct e1000g *Adapter)
4172 {
4173 	dev_info_t *devinfo;
4174 	int intr_types;
4175 	int rc;
4176 
4177 	devinfo = Adapter->dip;
4178 
4179 	/* Get supported interrupt types */
4180 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4181 
4182 	if (rc != DDI_SUCCESS) {
4183 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4184 		    "Get supported interrupt types failed: %d\n", rc);
4185 		return (DDI_FAILURE);
4186 	}
4187 
4188 	/*
4189 	 * Based on Intel Technical Advisory document (TA-160), there are some
4190 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
4191 	 * that it supports MSI, but in fact has problems.
4192 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
4193 	 * PCI/PCI-X NICs.
4194 	 */
4195 	if (Adapter->shared.mac.type < e1000_82571)
4196 		Adapter->msi_enabled = B_FALSE;
4197 
4198 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
4199 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
4200 
4201 		if (rc != DDI_SUCCESS) {
4202 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4203 			    "Add MSI failed, trying Legacy interrupts\n");
4204 		} else {
4205 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
4206 		}
4207 	}
4208 
4209 	if ((Adapter->intr_type == 0) &&
4210 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
4211 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
4212 
4213 		if (rc != DDI_SUCCESS) {
4214 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4215 			    "Add Legacy interrupts failed\n");
4216 			return (DDI_FAILURE);
4217 		}
4218 
4219 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
4220 	}
4221 
4222 	if (Adapter->intr_type == 0) {
4223 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4224 		    "No interrupts registered\n");
4225 		return (DDI_FAILURE);
4226 	}
4227 
4228 	return (DDI_SUCCESS);
4229 }
4230 
4231 /*
4232  * e1000g_intr_add() handles MSI/Legacy interrupts
4233  */
4234 static int
4235 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
4236 {
4237 	dev_info_t *devinfo;
4238 	int count, avail, actual;
4239 	int x, y, rc, inum = 0;
4240 	int flag;
4241 	ddi_intr_handler_t *intr_handler;
4242 
4243 	devinfo = Adapter->dip;
4244 
4245 	/* get number of interrupts */
4246 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4247 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4248 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4249 		    "Get interrupt number failed. Return: %d, count: %d\n",
4250 		    rc, count);
4251 		return (DDI_FAILURE);
4252 	}
4253 
4254 	/* get number of available interrupts */
4255 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4256 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
4257 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4258 		    "Get interrupt available number failed. "
4259 		    "Return: %d, available: %d\n", rc, avail);
4260 		return (DDI_FAILURE);
4261 	}
4262 
4263 	if (avail < count) {
4264 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4265 		    "Interrupts count: %d, available: %d\n",
4266 		    count, avail);
4267 	}
4268 
4269 	/* Allocate an array of interrupt handles */
4270 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
4271 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
4272 
4273 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
4274 	flag = DDI_INTR_ALLOC_NORMAL;
4275 
4276 	/* call ddi_intr_alloc() */
4277 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
4278 	    count, &actual, flag);
4279 
4280 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
4281 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4282 		    "Allocate interrupts failed: %d\n", rc);
4283 
4284 		kmem_free(Adapter->htable, Adapter->intr_size);
4285 		return (DDI_FAILURE);
4286 	}
4287 
4288 	if (actual < count) {
4289 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4290 		    "Interrupts requested: %d, received: %d\n",
4291 		    count, actual);
4292 	}
4293 
4294 	Adapter->intr_cnt = actual;
4295 
4296 	/* Get priority for first msi, assume remaining are all the same */
4297 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
4298 
4299 	if (rc != DDI_SUCCESS) {
4300 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4301 		    "Get interrupt priority failed: %d\n", rc);
4302 
4303 		/* Free already allocated intr */
4304 		for (y = 0; y < actual; y++)
4305 			(void) ddi_intr_free(Adapter->htable[y]);
4306 
4307 		kmem_free(Adapter->htable, Adapter->intr_size);
4308 		return (DDI_FAILURE);
4309 	}
4310 
4311 	/*
4312 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
4313 	 * use the interrupt service routine e1000g_intr_pciexpress()
4314 	 * to avoid interrupt stealing when sharing interrupt with other
4315 	 * devices.
4316 	 */
4317 	if (Adapter->shared.mac.type < e1000_82571)
4318 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
4319 	else
4320 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
4321 
4322 	/* Call ddi_intr_add_handler() */
4323 	for (x = 0; x < actual; x++) {
4324 		rc = ddi_intr_add_handler(Adapter->htable[x],
4325 		    intr_handler, (caddr_t)Adapter, NULL);
4326 
4327 		if (rc != DDI_SUCCESS) {
4328 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4329 			    "Add interrupt handler failed: %d\n", rc);
4330 
4331 			/* Remove already added handler */
4332 			for (y = 0; y < x; y++)
4333 				(void) ddi_intr_remove_handler(
4334 				    Adapter->htable[y]);
4335 
4336 			/* Free already allocated intr */
4337 			for (y = 0; y < actual; y++)
4338 				(void) ddi_intr_free(Adapter->htable[y]);
4339 
4340 			kmem_free(Adapter->htable, Adapter->intr_size);
4341 			return (DDI_FAILURE);
4342 		}
4343 	}
4344 
4345 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
4346 
4347 	if (rc != DDI_SUCCESS) {
4348 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4349 		    "Get interrupt cap failed: %d\n", rc);
4350 
4351 		/* Free already allocated intr */
4352 		for (y = 0; y < actual; y++) {
4353 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
4354 			(void) ddi_intr_free(Adapter->htable[y]);
4355 		}
4356 
4357 		kmem_free(Adapter->htable, Adapter->intr_size);
4358 		return (DDI_FAILURE);
4359 	}
4360 
4361 	return (DDI_SUCCESS);
4362 }
4363 
4364 static int
4365 e1000g_rem_intrs(struct e1000g *Adapter)
4366 {
4367 	int x;
4368 	int rc;
4369 
4370 	for (x = 0; x < Adapter->intr_cnt; x++) {
4371 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
4372 		if (rc != DDI_SUCCESS) {
4373 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4374 			    "Remove intr handler failed: %d\n", rc);
4375 			return (DDI_FAILURE);
4376 		}
4377 
4378 		rc = ddi_intr_free(Adapter->htable[x]);
4379 		if (rc != DDI_SUCCESS) {
4380 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4381 			    "Free intr failed: %d\n", rc);
4382 			return (DDI_FAILURE);
4383 		}
4384 	}
4385 
4386 	kmem_free(Adapter->htable, Adapter->intr_size);
4387 
4388 	return (DDI_SUCCESS);
4389 }
4390 
4391 static int
4392 e1000g_enable_intrs(struct e1000g *Adapter)
4393 {
4394 	int x;
4395 	int rc;
4396 
4397 	/* Enable interrupts */
4398 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4399 		/* Call ddi_intr_block_enable() for MSI */
4400 		rc = ddi_intr_block_enable(Adapter->htable,
4401 		    Adapter->intr_cnt);
4402 		if (rc != DDI_SUCCESS) {
4403 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4404 			    "Enable block intr failed: %d\n", rc);
4405 			return (DDI_FAILURE);
4406 		}
4407 	} else {
4408 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4409 		for (x = 0; x < Adapter->intr_cnt; x++) {
4410 			rc = ddi_intr_enable(Adapter->htable[x]);
4411 			if (rc != DDI_SUCCESS) {
4412 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4413 				    "Enable intr failed: %d\n", rc);
4414 				return (DDI_FAILURE);
4415 			}
4416 		}
4417 	}
4418 
4419 	return (DDI_SUCCESS);
4420 }
4421 
4422 static int
4423 e1000g_disable_intrs(struct e1000g *Adapter)
4424 {
4425 	int x;
4426 	int rc;
4427 
4428 	/* Disable all interrupts */
4429 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4430 		rc = ddi_intr_block_disable(Adapter->htable,
4431 		    Adapter->intr_cnt);
4432 		if (rc != DDI_SUCCESS) {
4433 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4434 			    "Disable block intr failed: %d\n", rc);
4435 			return (DDI_FAILURE);
4436 		}
4437 	} else {
4438 		for (x = 0; x < Adapter->intr_cnt; x++) {
4439 			rc = ddi_intr_disable(Adapter->htable[x]);
4440 			if (rc != DDI_SUCCESS) {
4441 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4442 				    "Disable intr failed: %d\n", rc);
4443 				return (DDI_FAILURE);
4444 			}
4445 		}
4446 	}
4447 
4448 	return (DDI_SUCCESS);
4449 }
4450 
4451 /*
4452  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
4453  */
4454 static void
4455 e1000g_get_phy_state(struct e1000g *Adapter)
4456 {
4457 	struct e1000_hw *hw = &Adapter->shared;
4458 
4459 	e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
4460 	e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
4461 	e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
4462 	e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
4463 	e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
4464 	e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
4465 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &Adapter->phy_1000t_status);
4466 	e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
4467 }
4468 
4469 /*
4470  * FMA support
4471  */
4472 
4473 int
4474 e1000g_check_acc_handle(ddi_acc_handle_t handle)
4475 {
4476 	ddi_fm_error_t de;
4477 
4478 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4479 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
4480 	return (de.fme_status);
4481 }
4482 
4483 int
4484 e1000g_check_dma_handle(ddi_dma_handle_t handle)
4485 {
4486 	ddi_fm_error_t de;
4487 
4488 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4489 	return (de.fme_status);
4490 }
4491 
4492 /*
4493  * The IO fault service error handling callback function
4494  */
4495 static int
4496 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4497 {
4498 	/*
4499 	 * as the driver can always deal with an error in any dma or
4500 	 * access handle, we can just return the fme_status value.
4501 	 */
4502 	pci_ereport_post(dip, err, NULL);
4503 	return (err->fme_status);
4504 }
4505 
4506 static void
4507 e1000g_fm_init(struct e1000g *Adapter)
4508 {
4509 	ddi_iblock_cookie_t iblk;
4510 	int fma_acc_flag, fma_dma_flag;
4511 
4512 	/* Only register with IO Fault Services if we have some capability */
4513 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
4514 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4515 		fma_acc_flag = 1;
4516 	} else {
4517 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4518 		fma_acc_flag = 0;
4519 	}
4520 
4521 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
4522 		fma_dma_flag = 1;
4523 	} else {
4524 		fma_dma_flag = 0;
4525 	}
4526 
4527 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
4528 
4529 	if (Adapter->fm_capabilities) {
4530 
4531 		/* Register capabilities with IO Fault Services */
4532 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
4533 
4534 		/*
4535 		 * Initialize pci ereport capabilities if ereport capable
4536 		 */
4537 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
4538 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4539 			pci_ereport_setup(Adapter->dip);
4540 
4541 		/*
4542 		 * Register error callback if error callback capable
4543 		 */
4544 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4545 			ddi_fm_handler_register(Adapter->dip,
4546 			    e1000g_fm_error_cb, (void*) Adapter);
4547 	}
4548 }
4549 
4550 static void
4551 e1000g_fm_fini(struct e1000g *Adapter)
4552 {
4553 	/* Only unregister FMA capabilities if we registered some */
4554 	if (Adapter->fm_capabilities) {
4555 
4556 		/*
4557 		 * Release any resources allocated by pci_ereport_setup()
4558 		 */
4559 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
4560 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4561 			pci_ereport_teardown(Adapter->dip);
4562 
4563 		/*
4564 		 * Un-register error callback if error callback capable
4565 		 */
4566 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
4567 			ddi_fm_handler_unregister(Adapter->dip);
4568 
4569 		/* Unregister from IO Fault Services */
4570 		ddi_fm_fini(Adapter->dip);
4571 	}
4572 }
4573 
4574 void
4575 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
4576 {
4577 	uint64_t ena;
4578 	char buf[FM_MAX_CLASS];
4579 
4580 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4581 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4582 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
4583 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
4584 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
4585 	}
4586 }
4587