xref: /titanic_52/usr/src/uts/common/io/e1000g/e1000g_main.c (revision dce9588a00eb374231f56db53a208a90ea2dc82b)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2017, Joyent, Inc.
29  */
30 
31 /*
32  * **********************************************************************
33  *									*
34  * Module Name:								*
35  *   e1000g_main.c							*
36  *									*
37  * Abstract:								*
38  *   This file contains the interface routines for the solaris OS.	*
39  *   It has all DDI entry point routines and GLD entry point routines.	*
40  *									*
41  *   This file also contains routines that take care of initialization	*
42  *   uninit routine and interrupt routine.				*
43  *									*
44  * **********************************************************************
45  */
46 
47 #include <sys/dlpi.h>
48 #include <sys/mac.h>
49 #include "e1000g_sw.h"
50 #include "e1000g_debug.h"
51 
52 static char ident[] = "Intel PRO/1000 Ethernet";
53 /* LINTED E_STATIC_UNUSED */
54 static char e1000g_version[] = "Driver Ver. 5.3.24";
55 
56 /*
57  * Proto types for DDI entry points
58  */
59 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
61 static int e1000g_quiesce(dev_info_t *);
62 
63 /*
64  * init and intr routines prototype
65  */
66 static int e1000g_resume(dev_info_t *);
67 static int e1000g_suspend(dev_info_t *);
68 static uint_t e1000g_intr_pciexpress(caddr_t);
69 static uint_t e1000g_intr(caddr_t);
70 static void e1000g_intr_work(struct e1000g *, uint32_t);
71 #pragma inline(e1000g_intr_work)
72 static int e1000g_init(struct e1000g *);
73 static int e1000g_start(struct e1000g *, boolean_t);
74 static void e1000g_stop(struct e1000g *, boolean_t);
75 static int e1000g_m_start(void *);
76 static void e1000g_m_stop(void *);
77 static int e1000g_m_promisc(void *, boolean_t);
78 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
79 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
80 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
81 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
82     uint_t, const void *);
83 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
84 			    uint_t, void *);
85 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
86     mac_prop_info_handle_t);
87 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
88     const void *);
89 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
90 static void e1000g_init_locks(struct e1000g *);
91 static void e1000g_destroy_locks(struct e1000g *);
92 static int e1000g_identify_hardware(struct e1000g *);
93 static int e1000g_regs_map(struct e1000g *);
94 static int e1000g_set_driver_params(struct e1000g *);
95 static void e1000g_set_bufsize(struct e1000g *);
96 static int e1000g_register_mac(struct e1000g *);
97 static boolean_t e1000g_rx_drain(struct e1000g *);
98 static boolean_t e1000g_tx_drain(struct e1000g *);
99 static void e1000g_init_unicst(struct e1000g *);
100 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
101 static int e1000g_alloc_rx_data(struct e1000g *);
102 static void e1000g_release_multicast(struct e1000g *);
103 static void e1000g_pch_limits(struct e1000g *);
104 static uint32_t e1000g_mtu2maxframe(uint32_t);
105 
106 /*
107  * Local routines
108  */
109 static boolean_t e1000g_reset_adapter(struct e1000g *);
110 static void e1000g_tx_clean(struct e1000g *);
111 static void e1000g_rx_clean(struct e1000g *);
112 static void e1000g_link_timer(void *);
113 static void e1000g_local_timer(void *);
114 static boolean_t e1000g_link_check(struct e1000g *);
115 static boolean_t e1000g_stall_check(struct e1000g *);
116 static void e1000g_smartspeed(struct e1000g *);
117 static void e1000g_get_conf(struct e1000g *);
118 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
119     int *);
120 static void enable_watchdog_timer(struct e1000g *);
121 static void disable_watchdog_timer(struct e1000g *);
122 static void start_watchdog_timer(struct e1000g *);
123 static void restart_watchdog_timer(struct e1000g *);
124 static void stop_watchdog_timer(struct e1000g *);
125 static void stop_link_timer(struct e1000g *);
126 static void stop_82547_timer(e1000g_tx_ring_t *);
127 static void e1000g_force_speed_duplex(struct e1000g *);
128 static void e1000g_setup_max_mtu(struct e1000g *);
129 static void e1000g_get_max_frame_size(struct e1000g *);
130 static boolean_t is_valid_mac_addr(uint8_t *);
131 static void e1000g_unattach(dev_info_t *, struct e1000g *);
132 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
133 #ifdef E1000G_DEBUG
134 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
135 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
137 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
138 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
139     struct iocblk *, mblk_t *);
140 #endif
141 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
142     struct iocblk *, mblk_t *);
143 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
144 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
145 static void e1000g_set_internal_loopback(struct e1000g *);
146 static void e1000g_set_external_loopback_1000(struct e1000g *);
147 static void e1000g_set_external_loopback_100(struct e1000g *);
148 static void e1000g_set_external_loopback_10(struct e1000g *);
149 static int e1000g_add_intrs(struct e1000g *);
150 static int e1000g_intr_add(struct e1000g *, int);
151 static int e1000g_rem_intrs(struct e1000g *);
152 static int e1000g_enable_intrs(struct e1000g *);
153 static int e1000g_disable_intrs(struct e1000g *);
154 static boolean_t e1000g_link_up(struct e1000g *);
155 #ifdef __sparc
156 static boolean_t e1000g_find_mac_address(struct e1000g *);
157 #endif
158 static void e1000g_get_phy_state(struct e1000g *);
159 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
160     const void *impl_data);
161 static void e1000g_fm_init(struct e1000g *Adapter);
162 static void e1000g_fm_fini(struct e1000g *Adapter);
163 static void e1000g_param_sync(struct e1000g *);
164 static void e1000g_get_driver_control(struct e1000_hw *);
165 static void e1000g_release_driver_control(struct e1000_hw *);
166 static void e1000g_restore_promisc(struct e1000g *Adapter);
167 
168 char *e1000g_priv_props[] = {
169 	"_tx_bcopy_threshold",
170 	"_tx_interrupt_enable",
171 	"_tx_intr_delay",
172 	"_tx_intr_abs_delay",
173 	"_rx_bcopy_threshold",
174 	"_max_num_rcv_packets",
175 	"_rx_intr_delay",
176 	"_rx_intr_abs_delay",
177 	"_intr_throttling_rate",
178 	"_intr_adaptive",
179 	"_adv_pause_cap",
180 	"_adv_asym_pause_cap",
181 	NULL
182 };
183 
184 static struct cb_ops cb_ws_ops = {
185 	nulldev,		/* cb_open */
186 	nulldev,		/* cb_close */
187 	nodev,			/* cb_strategy */
188 	nodev,			/* cb_print */
189 	nodev,			/* cb_dump */
190 	nodev,			/* cb_read */
191 	nodev,			/* cb_write */
192 	nodev,			/* cb_ioctl */
193 	nodev,			/* cb_devmap */
194 	nodev,			/* cb_mmap */
195 	nodev,			/* cb_segmap */
196 	nochpoll,		/* cb_chpoll */
197 	ddi_prop_op,		/* cb_prop_op */
198 	NULL,			/* cb_stream */
199 	D_MP | D_HOTPLUG,	/* cb_flag */
200 	CB_REV,			/* cb_rev */
201 	nodev,			/* cb_aread */
202 	nodev			/* cb_awrite */
203 };
204 
205 static struct dev_ops ws_ops = {
206 	DEVO_REV,		/* devo_rev */
207 	0,			/* devo_refcnt */
208 	NULL,			/* devo_getinfo */
209 	nulldev,		/* devo_identify */
210 	nulldev,		/* devo_probe */
211 	e1000g_attach,		/* devo_attach */
212 	e1000g_detach,		/* devo_detach */
213 	nodev,			/* devo_reset */
214 	&cb_ws_ops,		/* devo_cb_ops */
215 	NULL,			/* devo_bus_ops */
216 	ddi_power,		/* devo_power */
217 	e1000g_quiesce		/* devo_quiesce */
218 };
219 
220 static struct modldrv modldrv = {
221 	&mod_driverops,		/* Type of module.  This one is a driver */
222 	ident,			/* Discription string */
223 	&ws_ops,		/* driver ops */
224 };
225 
226 static struct modlinkage modlinkage = {
227 	MODREV_1, &modldrv, NULL
228 };
229 
230 /* Access attributes for register mapping */
231 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
232 	DDI_DEVICE_ATTR_V1,
233 	DDI_STRUCTURE_LE_ACC,
234 	DDI_STRICTORDER_ACC,
235 	DDI_FLAGERR_ACC
236 };
237 
238 #define	E1000G_M_CALLBACK_FLAGS \
239 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
240 
241 static mac_callbacks_t e1000g_m_callbacks = {
242 	E1000G_M_CALLBACK_FLAGS,
243 	e1000g_m_stat,
244 	e1000g_m_start,
245 	e1000g_m_stop,
246 	e1000g_m_promisc,
247 	e1000g_m_multicst,
248 	NULL,
249 	e1000g_m_tx,
250 	NULL,
251 	e1000g_m_ioctl,
252 	e1000g_m_getcapab,
253 	NULL,
254 	NULL,
255 	e1000g_m_setprop,
256 	e1000g_m_getprop,
257 	e1000g_m_propinfo
258 };
259 
260 /*
261  * Global variables
262  */
263 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
264 uint32_t e1000g_mblks_pending = 0;
265 /*
266  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
267  * Here we maintain a private dev_info list if e1000g_force_detach is
268  * enabled. If we force the driver to detach while there are still some
269  * rx buffers retained in the upper layer, we have to keep a copy of the
270  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
271  * structure will be freed after the driver is detached. However when we
272  * finally free those rx buffers released by the upper layer, we need to
273  * refer to the dev_info to free the dma buffers. So we save a copy of
274  * the dev_info for this purpose. On x86 platform, we assume this copy
275  * of dev_info is always valid, but on SPARC platform, it could be invalid
276  * after the system board level DR operation. For this reason, the global
277  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
278  */
279 #ifdef __sparc
280 boolean_t e1000g_force_detach = B_FALSE;
281 #else
282 boolean_t e1000g_force_detach = B_TRUE;
283 #endif
284 private_devi_list_t *e1000g_private_devi_list = NULL;
285 
286 /*
287  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
288  * the private dev_info list, and to serialize the processing of rx buffer
289  * freeing and rx buffer recycling.
290  */
291 kmutex_t e1000g_rx_detach_lock;
292 /*
293  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
294  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
295  * If there are many e1000g instances, the system may run out of DVMA
296  * resources during the initialization of the instances, then the flag will
297  * be changed to "USE_DMA". Because different e1000g instances are initialized
298  * in parallel, we need to use this lock to protect the flag.
299  */
300 krwlock_t e1000g_dma_type_lock;
301 
302 /*
303  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
304  * Based on the information from Intel, the 82546 chipset has some hardware
305  * problem. When one port is being reset and the other port is trying to
306  * access the eeprom, it could cause system hang or panic. To workaround this
307  * hardware problem, we use a global mutex to prevent such operations from
308  * happening simultaneously on different instances. This workaround is applied
309  * to all the devices supported by this driver.
310  */
311 kmutex_t e1000g_nvm_lock;
312 
313 /*
314  * Loadable module configuration entry points for the driver
315  */
316 
317 /*
318  * _init - module initialization
319  */
320 int
321 _init(void)
322 {
323 	int status;
324 
325 	mac_init_ops(&ws_ops, WSNAME);
326 	status = mod_install(&modlinkage);
327 	if (status != DDI_SUCCESS)
328 		mac_fini_ops(&ws_ops);
329 	else {
330 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
331 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
332 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
333 	}
334 
335 	return (status);
336 }
337 
338 /*
339  * _fini - module finalization
340  */
341 int
342 _fini(void)
343 {
344 	int status;
345 
346 	if (e1000g_mblks_pending != 0)
347 		return (EBUSY);
348 
349 	status = mod_remove(&modlinkage);
350 	if (status == DDI_SUCCESS) {
351 		mac_fini_ops(&ws_ops);
352 
353 		if (e1000g_force_detach) {
354 			private_devi_list_t *devi_node;
355 
356 			mutex_enter(&e1000g_rx_detach_lock);
357 			while (e1000g_private_devi_list != NULL) {
358 				devi_node = e1000g_private_devi_list;
359 				e1000g_private_devi_list =
360 				    e1000g_private_devi_list->next;
361 
362 				kmem_free(devi_node->priv_dip,
363 				    sizeof (struct dev_info));
364 				kmem_free(devi_node,
365 				    sizeof (private_devi_list_t));
366 			}
367 			mutex_exit(&e1000g_rx_detach_lock);
368 		}
369 
370 		mutex_destroy(&e1000g_rx_detach_lock);
371 		rw_destroy(&e1000g_dma_type_lock);
372 		mutex_destroy(&e1000g_nvm_lock);
373 	}
374 
375 	return (status);
376 }
377 
378 /*
379  * _info - module information
380  */
381 int
382 _info(struct modinfo *modinfop)
383 {
384 	return (mod_info(&modlinkage, modinfop));
385 }
386 
387 /*
388  * e1000g_attach - driver attach
389  *
390  * This function is the device-specific initialization entry
391  * point. This entry point is required and must be written.
392  * The DDI_ATTACH command must be provided in the attach entry
393  * point. When attach() is called with cmd set to DDI_ATTACH,
394  * all normal kernel services (such as kmem_alloc(9F)) are
395  * available for use by the driver.
396  *
397  * The attach() function will be called once for each instance
398  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
399  * Until attach() succeeds, the only driver entry points which
400  * may be called are open(9E) and getinfo(9E).
401  */
402 static int
403 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
404 {
405 	struct e1000g *Adapter;
406 	struct e1000_hw *hw;
407 	struct e1000g_osdep *osdep;
408 	int instance;
409 
410 	switch (cmd) {
411 	default:
412 		e1000g_log(NULL, CE_WARN,
413 		    "Unsupported command send to e1000g_attach... ");
414 		return (DDI_FAILURE);
415 
416 	case DDI_RESUME:
417 		return (e1000g_resume(devinfo));
418 
419 	case DDI_ATTACH:
420 		break;
421 	}
422 
423 	/*
424 	 * get device instance number
425 	 */
426 	instance = ddi_get_instance(devinfo);
427 
428 	/*
429 	 * Allocate soft data structure
430 	 */
431 	Adapter =
432 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
433 
434 	Adapter->dip = devinfo;
435 	Adapter->instance = instance;
436 	Adapter->tx_ring->adapter = Adapter;
437 	Adapter->rx_ring->adapter = Adapter;
438 
439 	hw = &Adapter->shared;
440 	osdep = &Adapter->osdep;
441 	hw->back = osdep;
442 	osdep->adapter = Adapter;
443 
444 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
445 
446 	/*
447 	 * Initialize for fma support
448 	 */
449 	(void) e1000g_get_prop(Adapter, "fm-capable",
450 	    0, 0x0f,
451 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
452 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
453 	    &Adapter->fm_capabilities);
454 	e1000g_fm_init(Adapter);
455 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
456 
457 	/*
458 	 * PCI Configure
459 	 */
460 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
461 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
462 		goto attach_fail;
463 	}
464 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
465 
466 	/*
467 	 * Setup hardware
468 	 */
469 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
470 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
471 		goto attach_fail;
472 	}
473 
474 	/*
475 	 * Map in the device registers.
476 	 */
477 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
478 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
479 		goto attach_fail;
480 	}
481 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
482 
483 	/*
484 	 * Initialize driver parameters
485 	 */
486 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
487 		goto attach_fail;
488 	}
489 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
490 
491 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
492 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
493 		goto attach_fail;
494 	}
495 
496 	/*
497 	 * Disable ULP support
498 	 */
499 	(void) e1000_disable_ulp_lpt_lp(hw, TRUE);
500 
501 	/*
502 	 * Initialize interrupts
503 	 */
504 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
505 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
506 		goto attach_fail;
507 	}
508 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
509 
510 	/*
511 	 * Initialize mutex's for this device.
512 	 * Do this before enabling the interrupt handler and
513 	 * register the softint to avoid the condition where
514 	 * interrupt handler can try using uninitialized mutex
515 	 */
516 	e1000g_init_locks(Adapter);
517 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
518 
519 	/*
520 	 * Initialize Driver Counters
521 	 */
522 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
523 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
524 		goto attach_fail;
525 	}
526 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
527 
528 	/*
529 	 * Initialize chip hardware and software structures
530 	 */
531 	rw_enter(&Adapter->chip_lock, RW_WRITER);
532 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
533 		rw_exit(&Adapter->chip_lock);
534 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
535 		goto attach_fail;
536 	}
537 	rw_exit(&Adapter->chip_lock);
538 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
539 
540 	/*
541 	 * Register the driver to the MAC
542 	 */
543 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
544 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
545 		goto attach_fail;
546 	}
547 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
548 
549 	/*
550 	 * Now that mutex locks are initialized, and the chip is also
551 	 * initialized, enable interrupts.
552 	 */
553 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
554 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
555 		goto attach_fail;
556 	}
557 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
558 
559 	/*
560 	 * If e1000g_force_detach is enabled, in global private dip list,
561 	 * we will create a new entry, which maintains the priv_dip for DR
562 	 * supports after driver detached.
563 	 */
564 	if (e1000g_force_detach) {
565 		private_devi_list_t *devi_node;
566 
567 		Adapter->priv_dip =
568 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
569 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
570 		    sizeof (struct dev_info));
571 
572 		devi_node =
573 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
574 
575 		mutex_enter(&e1000g_rx_detach_lock);
576 		devi_node->priv_dip = Adapter->priv_dip;
577 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
578 		devi_node->pending_rx_count = 0;
579 
580 		Adapter->priv_devi_node = devi_node;
581 
582 		if (e1000g_private_devi_list == NULL) {
583 			devi_node->prev = NULL;
584 			devi_node->next = NULL;
585 			e1000g_private_devi_list = devi_node;
586 		} else {
587 			devi_node->prev = NULL;
588 			devi_node->next = e1000g_private_devi_list;
589 			e1000g_private_devi_list->prev = devi_node;
590 			e1000g_private_devi_list = devi_node;
591 		}
592 		mutex_exit(&e1000g_rx_detach_lock);
593 	}
594 
595 	Adapter->e1000g_state = E1000G_INITIALIZED;
596 	return (DDI_SUCCESS);
597 
598 attach_fail:
599 	e1000g_unattach(devinfo, Adapter);
600 	return (DDI_FAILURE);
601 }
602 
603 static int
604 e1000g_register_mac(struct e1000g *Adapter)
605 {
606 	struct e1000_hw *hw = &Adapter->shared;
607 	mac_register_t *mac;
608 	int err;
609 
610 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
611 		return (DDI_FAILURE);
612 
613 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
614 	mac->m_driver = Adapter;
615 	mac->m_dip = Adapter->dip;
616 	mac->m_src_addr = hw->mac.addr;
617 	mac->m_callbacks = &e1000g_m_callbacks;
618 	mac->m_min_sdu = 0;
619 	mac->m_max_sdu = Adapter->default_mtu;
620 	mac->m_margin = VLAN_TAGSZ;
621 	mac->m_priv_props = e1000g_priv_props;
622 	mac->m_v12n = MAC_VIRT_LEVEL1;
623 
624 	err = mac_register(mac, &Adapter->mh);
625 	mac_free(mac);
626 
627 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
628 }
629 
630 static int
631 e1000g_identify_hardware(struct e1000g *Adapter)
632 {
633 	struct e1000_hw *hw = &Adapter->shared;
634 	struct e1000g_osdep *osdep = &Adapter->osdep;
635 
636 	/* Get the device id */
637 	hw->vendor_id =
638 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
639 	hw->device_id =
640 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
641 	hw->revision_id =
642 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
643 	hw->subsystem_device_id =
644 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
645 	hw->subsystem_vendor_id =
646 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
647 
648 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
649 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
650 		    "MAC type could not be set properly.");
651 		return (DDI_FAILURE);
652 	}
653 
654 	return (DDI_SUCCESS);
655 }
656 
657 static int
658 e1000g_regs_map(struct e1000g *Adapter)
659 {
660 	dev_info_t *devinfo = Adapter->dip;
661 	struct e1000_hw *hw = &Adapter->shared;
662 	struct e1000g_osdep *osdep = &Adapter->osdep;
663 	off_t mem_size;
664 	bar_info_t bar_info;
665 	int offset, rnumber;
666 
667 	rnumber = ADAPTER_REG_SET;
668 	/* Get size of adapter register memory */
669 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
670 	    DDI_SUCCESS) {
671 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 		    "ddi_dev_regsize for registers failed");
673 		return (DDI_FAILURE);
674 	}
675 
676 	/* Map adapter register memory */
677 	if ((ddi_regs_map_setup(devinfo, rnumber,
678 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
679 	    &osdep->reg_handle)) != DDI_SUCCESS) {
680 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
681 		    "ddi_regs_map_setup for registers failed");
682 		goto regs_map_fail;
683 	}
684 
685 	/* ICH needs to map flash memory */
686 	switch (hw->mac.type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 	case e1000_pchlan:
691 	case e1000_pch2lan:
692 	case e1000_pch_lpt:
693 		rnumber = ICH_FLASH_REG_SET;
694 
695 		/* get flash size */
696 		if (ddi_dev_regsize(devinfo, rnumber,
697 		    &mem_size) != DDI_SUCCESS) {
698 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
699 			    "ddi_dev_regsize for ICH flash failed");
700 			goto regs_map_fail;
701 		}
702 
703 		/* map flash in */
704 		if (ddi_regs_map_setup(devinfo, rnumber,
705 		    (caddr_t *)&hw->flash_address, 0,
706 		    mem_size, &e1000g_regs_acc_attr,
707 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
708 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
709 			    "ddi_regs_map_setup for ICH flash failed");
710 			goto regs_map_fail;
711 		}
712 		break;
713 	case e1000_pch_spt:
714 		/*
715 		 * On the SPT, the device flash is actually in BAR0, not a
716 		 * separate BAR. Therefore we end up setting the
717 		 * ich_flash_handle to be the same as the register handle.
718 		 * We mark the same to reduce the confusion in the other
719 		 * functions and macros. Though this does make the set up and
720 		 * tear-down path slightly more complicated.
721 		 */
722 		osdep->ich_flash_handle = osdep->reg_handle;
723 		hw->flash_address = hw->hw_addr;
724 	default:
725 		break;
726 	}
727 
728 	/* map io space */
729 	switch (hw->mac.type) {
730 	case e1000_82544:
731 	case e1000_82540:
732 	case e1000_82545:
733 	case e1000_82546:
734 	case e1000_82541:
735 	case e1000_82541_rev_2:
736 		/* find the IO bar */
737 		rnumber = -1;
738 		for (offset = PCI_CONF_BASE1;
739 		    offset <= PCI_CONF_BASE5; offset += 4) {
740 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
741 			    != DDI_SUCCESS)
742 				continue;
743 			if (bar_info.type == E1000G_BAR_IO) {
744 				rnumber = bar_info.rnumber;
745 				break;
746 			}
747 		}
748 
749 		if (rnumber < 0) {
750 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
751 			    "No io space is found");
752 			goto regs_map_fail;
753 		}
754 
755 		/* get io space size */
756 		if (ddi_dev_regsize(devinfo, rnumber,
757 		    &mem_size) != DDI_SUCCESS) {
758 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
759 			    "ddi_dev_regsize for io space failed");
760 			goto regs_map_fail;
761 		}
762 
763 		/* map io space */
764 		if ((ddi_regs_map_setup(devinfo, rnumber,
765 		    (caddr_t *)&hw->io_base, 0, mem_size,
766 		    &e1000g_regs_acc_attr,
767 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
768 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
769 			    "ddi_regs_map_setup for io space failed");
770 			goto regs_map_fail;
771 		}
772 		break;
773 	default:
774 		hw->io_base = 0;
775 		break;
776 	}
777 
778 	return (DDI_SUCCESS);
779 
780 regs_map_fail:
781 	if (osdep->reg_handle != NULL)
782 		ddi_regs_map_free(&osdep->reg_handle);
783 	if (osdep->ich_flash_handle != NULL && hw->mac.type != e1000_pch_spt)
784 		ddi_regs_map_free(&osdep->ich_flash_handle);
785 	return (DDI_FAILURE);
786 }
787 
788 static int
789 e1000g_set_driver_params(struct e1000g *Adapter)
790 {
791 	struct e1000_hw *hw;
792 
793 	hw = &Adapter->shared;
794 
795 	/* Set MAC type and initialize hardware functions */
796 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
797 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
798 		    "Could not setup hardware functions");
799 		return (DDI_FAILURE);
800 	}
801 
802 	/* Get bus information */
803 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
804 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
805 		    "Could not get bus information");
806 		return (DDI_FAILURE);
807 	}
808 
809 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
810 
811 	hw->mac.autoneg_failed = B_TRUE;
812 
813 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
814 	hw->phy.autoneg_wait_to_complete = B_FALSE;
815 
816 	/* Adaptive IFS related changes */
817 	hw->mac.adaptive_ifs = B_TRUE;
818 
819 	/* Enable phy init script for IGP phy of 82541/82547 */
820 	if ((hw->mac.type == e1000_82547) ||
821 	    (hw->mac.type == e1000_82541) ||
822 	    (hw->mac.type == e1000_82547_rev_2) ||
823 	    (hw->mac.type == e1000_82541_rev_2))
824 		e1000_init_script_state_82541(hw, B_TRUE);
825 
826 	/* Enable the TTL workaround for 82541/82547 */
827 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
828 
829 #ifdef __sparc
830 	Adapter->strip_crc = B_TRUE;
831 #else
832 	Adapter->strip_crc = B_FALSE;
833 #endif
834 
835 	/* setup the maximum MTU size of the chip */
836 	e1000g_setup_max_mtu(Adapter);
837 
838 	/* Get speed/duplex settings in conf file */
839 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
840 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
841 	e1000g_force_speed_duplex(Adapter);
842 
843 	/* Get Jumbo Frames settings in conf file */
844 	e1000g_get_max_frame_size(Adapter);
845 
846 	/* Get conf file properties */
847 	e1000g_get_conf(Adapter);
848 
849 	/* enforce PCH limits */
850 	e1000g_pch_limits(Adapter);
851 
852 	/* Set Rx/Tx buffer size */
853 	e1000g_set_bufsize(Adapter);
854 
855 	/* Master Latency Timer */
856 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
857 
858 	/* copper options */
859 	if (hw->phy.media_type == e1000_media_type_copper) {
860 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
861 		hw->phy.disable_polarity_correction = B_FALSE;
862 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
863 	}
864 
865 	/* The initial link state should be "unknown" */
866 	Adapter->link_state = LINK_STATE_UNKNOWN;
867 
868 	/* Initialize rx parameters */
869 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
870 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
871 
872 	/* Initialize tx parameters */
873 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
874 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
875 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
876 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
877 
878 	/* Initialize rx parameters */
879 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
880 
881 	return (DDI_SUCCESS);
882 }
883 
884 static void
885 e1000g_setup_max_mtu(struct e1000g *Adapter)
886 {
887 	struct e1000_mac_info *mac = &Adapter->shared.mac;
888 	struct e1000_phy_info *phy = &Adapter->shared.phy;
889 
890 	switch (mac->type) {
891 	/* types that do not support jumbo frames */
892 	case e1000_ich8lan:
893 	case e1000_82573:
894 	case e1000_82583:
895 		Adapter->max_mtu = ETHERMTU;
896 		break;
897 	/* ich9 supports jumbo frames except on one phy type */
898 	case e1000_ich9lan:
899 		if (phy->type == e1000_phy_ife)
900 			Adapter->max_mtu = ETHERMTU;
901 		else
902 			Adapter->max_mtu = MAXIMUM_MTU_9K;
903 		break;
904 	/* pch can do jumbo frames up to 4K */
905 	case e1000_pchlan:
906 		Adapter->max_mtu = MAXIMUM_MTU_4K;
907 		break;
908 	/* pch2 can do jumbo frames up to 9K */
909 	case e1000_pch2lan:
910 	case e1000_pch_lpt:
911 	case e1000_pch_spt:
912 		Adapter->max_mtu = MAXIMUM_MTU_9K;
913 		break;
914 	/* types with a special limit */
915 	case e1000_82571:
916 	case e1000_82572:
917 	case e1000_82574:
918 	case e1000_80003es2lan:
919 	case e1000_ich10lan:
920 		if (e1000g_jumbo_mtu >= ETHERMTU &&
921 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
922 			Adapter->max_mtu = e1000g_jumbo_mtu;
923 		} else {
924 			Adapter->max_mtu = MAXIMUM_MTU_9K;
925 		}
926 		break;
927 	/* default limit is 16K */
928 	default:
929 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
930 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
931 		break;
932 	}
933 }
934 
935 static void
936 e1000g_set_bufsize(struct e1000g *Adapter)
937 {
938 	struct e1000_mac_info *mac = &Adapter->shared.mac;
939 	uint64_t rx_size;
940 	uint64_t tx_size;
941 
942 	dev_info_t *devinfo = Adapter->dip;
943 #ifdef __sparc
944 	ulong_t iommu_pagesize;
945 #endif
946 	/* Get the system page size */
947 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
948 
949 #ifdef __sparc
950 	iommu_pagesize = dvma_pagesize(devinfo);
951 	if (iommu_pagesize != 0) {
952 		if (Adapter->sys_page_sz == iommu_pagesize) {
953 			if (iommu_pagesize > 0x4000)
954 				Adapter->sys_page_sz = 0x4000;
955 		} else {
956 			if (Adapter->sys_page_sz > iommu_pagesize)
957 				Adapter->sys_page_sz = iommu_pagesize;
958 		}
959 	}
960 	if (Adapter->lso_enable) {
961 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
962 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
963 	} else {
964 		Adapter->dvma_page_num = Adapter->max_frame_size /
965 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
966 	}
967 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
968 #endif
969 
970 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
971 
972 	if (Adapter->mem_workaround_82546 &&
973 	    ((mac->type == e1000_82545) ||
974 	    (mac->type == e1000_82546) ||
975 	    (mac->type == e1000_82546_rev_3))) {
976 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
977 	} else {
978 		rx_size = Adapter->max_frame_size;
979 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
980 		    (rx_size <= FRAME_SIZE_UPTO_4K))
981 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
982 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
983 		    (rx_size <= FRAME_SIZE_UPTO_8K))
984 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
985 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
986 		    (rx_size <= FRAME_SIZE_UPTO_16K))
987 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
988 		else
989 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
990 	}
991 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
992 
993 	tx_size = Adapter->max_frame_size;
994 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
995 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
996 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
997 	    (tx_size <= FRAME_SIZE_UPTO_8K))
998 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
999 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
1000 	    (tx_size <= FRAME_SIZE_UPTO_16K))
1001 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
1002 	else
1003 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
1004 
1005 	/*
1006 	 * For Wiseman adapters we have an requirement of having receive
1007 	 * buffers aligned at 256 byte boundary. Since Livengood does not
1008 	 * require this and forcing it for all hardwares will have
1009 	 * performance implications, I am making it applicable only for
1010 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
1011 	 * it is okay to have normal frames...but it does involve a
1012 	 * potential risk where we may loose data if buffer is not
1013 	 * aligned...so all wiseman boards to have 256 byte aligned
1014 	 * buffers
1015 	 */
1016 	if (mac->type < e1000_82543)
1017 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
1018 	else
1019 		Adapter->rx_buf_align = 1;
1020 }
1021 
1022 /*
1023  * e1000g_detach - driver detach
1024  *
1025  * The detach() function is the complement of the attach routine.
1026  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1027  * state  associated  with  a  given  instance of a device node
1028  * prior to the removal of that instance from the system.
1029  *
1030  * The detach() function will be called once for each  instance
1031  * of the device for which there has been a successful attach()
1032  * once there are no longer  any  opens  on  the  device.
1033  *
1034  * Interrupts routine are disabled, All memory allocated by this
1035  * driver are freed.
1036  */
1037 static int
1038 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1039 {
1040 	struct e1000g *Adapter;
1041 	boolean_t rx_drain;
1042 
1043 	switch (cmd) {
1044 	default:
1045 		return (DDI_FAILURE);
1046 
1047 	case DDI_SUSPEND:
1048 		return (e1000g_suspend(devinfo));
1049 
1050 	case DDI_DETACH:
1051 		break;
1052 	}
1053 
1054 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1055 	if (Adapter == NULL)
1056 		return (DDI_FAILURE);
1057 
1058 	rx_drain = e1000g_rx_drain(Adapter);
1059 	if (!rx_drain && !e1000g_force_detach)
1060 		return (DDI_FAILURE);
1061 
1062 	if (mac_unregister(Adapter->mh) != 0) {
1063 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1064 		return (DDI_FAILURE);
1065 	}
1066 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1067 
1068 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1069 
1070 	if (!e1000g_force_detach && !rx_drain)
1071 		return (DDI_FAILURE);
1072 
1073 	e1000g_unattach(devinfo, Adapter);
1074 
1075 	return (DDI_SUCCESS);
1076 }
1077 
1078 /*
1079  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1080  */
1081 void
1082 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1083 {
1084 	ASSERT(e1000g_private_devi_list != NULL);
1085 	ASSERT(devi_node != NULL);
1086 
1087 	if (devi_node->prev != NULL)
1088 		devi_node->prev->next = devi_node->next;
1089 	if (devi_node->next != NULL)
1090 		devi_node->next->prev = devi_node->prev;
1091 	if (devi_node == e1000g_private_devi_list)
1092 		e1000g_private_devi_list = devi_node->next;
1093 
1094 	kmem_free(devi_node->priv_dip,
1095 	    sizeof (struct dev_info));
1096 	kmem_free(devi_node,
1097 	    sizeof (private_devi_list_t));
1098 }
1099 
1100 static void
1101 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1102 {
1103 	private_devi_list_t *devi_node;
1104 	int result;
1105 
1106 	if (Adapter->e1000g_blink != NULL) {
1107 		ddi_periodic_delete(Adapter->e1000g_blink);
1108 		Adapter->e1000g_blink = NULL;
1109 	}
1110 
1111 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1112 		(void) e1000g_disable_intrs(Adapter);
1113 	}
1114 
1115 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1116 		(void) mac_unregister(Adapter->mh);
1117 	}
1118 
1119 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1120 		(void) e1000g_rem_intrs(Adapter);
1121 	}
1122 
1123 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1124 		(void) ddi_prop_remove_all(devinfo);
1125 	}
1126 
1127 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1128 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1129 	}
1130 
1131 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1132 		stop_link_timer(Adapter);
1133 
1134 		mutex_enter(&e1000g_nvm_lock);
1135 		result = e1000_reset_hw(&Adapter->shared);
1136 		mutex_exit(&e1000g_nvm_lock);
1137 
1138 		if (result != E1000_SUCCESS) {
1139 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1140 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1141 		}
1142 	}
1143 
1144 	e1000g_release_multicast(Adapter);
1145 
1146 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1147 		if (Adapter->osdep.reg_handle != NULL)
1148 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1149 		if (Adapter->osdep.ich_flash_handle != NULL &&
1150 		    Adapter->shared.mac.type != e1000_pch_spt)
1151 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1152 		if (Adapter->osdep.io_reg_handle != NULL)
1153 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1154 	}
1155 
1156 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1157 		if (Adapter->osdep.cfg_handle != NULL)
1158 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1159 	}
1160 
1161 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1162 		e1000g_destroy_locks(Adapter);
1163 	}
1164 
1165 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1166 		e1000g_fm_fini(Adapter);
1167 	}
1168 
1169 	mutex_enter(&e1000g_rx_detach_lock);
1170 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1171 		devi_node = Adapter->priv_devi_node;
1172 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1173 
1174 		if (devi_node->pending_rx_count == 0) {
1175 			e1000g_free_priv_devi_node(devi_node);
1176 		}
1177 	}
1178 	mutex_exit(&e1000g_rx_detach_lock);
1179 
1180 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1181 
1182 	/*
1183 	 * Another hotplug spec requirement,
1184 	 * run ddi_set_driver_private(devinfo, null);
1185 	 */
1186 	ddi_set_driver_private(devinfo, NULL);
1187 }
1188 
1189 /*
1190  * Get the BAR type and rnumber for a given PCI BAR offset
1191  */
1192 static int
1193 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1194 {
1195 	pci_regspec_t *regs;
1196 	uint_t regs_length;
1197 	int type, rnumber, rcount;
1198 
1199 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1200 	    (bar_offset <= PCI_CONF_BASE5));
1201 
1202 	/*
1203 	 * Get the DDI "reg" property
1204 	 */
1205 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1206 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1207 	    &regs_length) != DDI_PROP_SUCCESS) {
1208 		return (DDI_FAILURE);
1209 	}
1210 
1211 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1212 	/*
1213 	 * Check the BAR offset
1214 	 */
1215 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1216 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1217 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1218 			break;
1219 		}
1220 	}
1221 
1222 	ddi_prop_free(regs);
1223 
1224 	if (rnumber >= rcount)
1225 		return (DDI_FAILURE);
1226 
1227 	switch (type) {
1228 	case PCI_ADDR_CONFIG:
1229 		bar_info->type = E1000G_BAR_CONFIG;
1230 		break;
1231 	case PCI_ADDR_IO:
1232 		bar_info->type = E1000G_BAR_IO;
1233 		break;
1234 	case PCI_ADDR_MEM32:
1235 		bar_info->type = E1000G_BAR_MEM32;
1236 		break;
1237 	case PCI_ADDR_MEM64:
1238 		bar_info->type = E1000G_BAR_MEM64;
1239 		break;
1240 	default:
1241 		return (DDI_FAILURE);
1242 	}
1243 	bar_info->rnumber = rnumber;
1244 	return (DDI_SUCCESS);
1245 }
1246 
1247 static void
1248 e1000g_init_locks(struct e1000g *Adapter)
1249 {
1250 	e1000g_tx_ring_t *tx_ring;
1251 	e1000g_rx_ring_t *rx_ring;
1252 
1253 	rw_init(&Adapter->chip_lock, NULL,
1254 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1255 	mutex_init(&Adapter->link_lock, NULL,
1256 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1257 	mutex_init(&Adapter->watchdog_lock, NULL,
1258 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1259 
1260 	tx_ring = Adapter->tx_ring;
1261 
1262 	mutex_init(&tx_ring->tx_lock, NULL,
1263 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1264 	mutex_init(&tx_ring->usedlist_lock, NULL,
1265 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1266 	mutex_init(&tx_ring->freelist_lock, NULL,
1267 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1268 
1269 	rx_ring = Adapter->rx_ring;
1270 
1271 	mutex_init(&rx_ring->rx_lock, NULL,
1272 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1273 
1274 	mutex_init(&Adapter->e1000g_led_lock, NULL,
1275 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1276 }
1277 
1278 static void
1279 e1000g_destroy_locks(struct e1000g *Adapter)
1280 {
1281 	e1000g_tx_ring_t *tx_ring;
1282 	e1000g_rx_ring_t *rx_ring;
1283 
1284 	mutex_destroy(&Adapter->e1000g_led_lock);
1285 
1286 	tx_ring = Adapter->tx_ring;
1287 	mutex_destroy(&tx_ring->tx_lock);
1288 	mutex_destroy(&tx_ring->usedlist_lock);
1289 	mutex_destroy(&tx_ring->freelist_lock);
1290 
1291 	rx_ring = Adapter->rx_ring;
1292 	mutex_destroy(&rx_ring->rx_lock);
1293 
1294 	mutex_destroy(&Adapter->link_lock);
1295 	mutex_destroy(&Adapter->watchdog_lock);
1296 	rw_destroy(&Adapter->chip_lock);
1297 
1298 	/* destory mutex initialized in shared code */
1299 	e1000_destroy_hw_mutex(&Adapter->shared);
1300 }
1301 
1302 static int
1303 e1000g_resume(dev_info_t *devinfo)
1304 {
1305 	struct e1000g *Adapter;
1306 
1307 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1308 	if (Adapter == NULL)
1309 		e1000g_log(Adapter, CE_PANIC,
1310 		    "Instance pointer is null\n");
1311 
1312 	if (Adapter->dip != devinfo)
1313 		e1000g_log(Adapter, CE_PANIC,
1314 		    "Devinfo is not the same as saved devinfo\n");
1315 
1316 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1317 
1318 	if (Adapter->e1000g_state & E1000G_STARTED) {
1319 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1320 			rw_exit(&Adapter->chip_lock);
1321 			/*
1322 			 * We note the failure, but return success, as the
1323 			 * system is still usable without this controller.
1324 			 */
1325 			e1000g_log(Adapter, CE_WARN,
1326 			    "e1000g_resume: failed to restart controller\n");
1327 			return (DDI_SUCCESS);
1328 		}
1329 		/* Enable and start the watchdog timer */
1330 		enable_watchdog_timer(Adapter);
1331 	}
1332 
1333 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1334 
1335 	rw_exit(&Adapter->chip_lock);
1336 
1337 	return (DDI_SUCCESS);
1338 }
1339 
1340 static int
1341 e1000g_suspend(dev_info_t *devinfo)
1342 {
1343 	struct e1000g *Adapter;
1344 
1345 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1346 	if (Adapter == NULL)
1347 		return (DDI_FAILURE);
1348 
1349 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1350 
1351 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1352 
1353 	/* if the port isn't plumbed, we can simply return */
1354 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1355 		rw_exit(&Adapter->chip_lock);
1356 		return (DDI_SUCCESS);
1357 	}
1358 
1359 	e1000g_stop(Adapter, B_FALSE);
1360 
1361 	rw_exit(&Adapter->chip_lock);
1362 
1363 	/* Disable and stop all the timers */
1364 	disable_watchdog_timer(Adapter);
1365 	stop_link_timer(Adapter);
1366 	stop_82547_timer(Adapter->tx_ring);
1367 
1368 	return (DDI_SUCCESS);
1369 }
1370 
1371 static int
1372 e1000g_init(struct e1000g *Adapter)
1373 {
1374 	uint32_t pba;
1375 	uint32_t high_water;
1376 	struct e1000_hw *hw;
1377 	clock_t link_timeout;
1378 	int result;
1379 
1380 	hw = &Adapter->shared;
1381 
1382 	/*
1383 	 * reset to put the hardware in a known state
1384 	 * before we try to do anything with the eeprom
1385 	 */
1386 	mutex_enter(&e1000g_nvm_lock);
1387 	result = e1000_reset_hw(hw);
1388 	mutex_exit(&e1000g_nvm_lock);
1389 
1390 	if (result != E1000_SUCCESS) {
1391 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1392 		goto init_fail;
1393 	}
1394 
1395 	mutex_enter(&e1000g_nvm_lock);
1396 	result = e1000_validate_nvm_checksum(hw);
1397 	if (result < E1000_SUCCESS) {
1398 		/*
1399 		 * Some PCI-E parts fail the first check due to
1400 		 * the link being in sleep state.  Call it again,
1401 		 * if it fails a second time its a real issue.
1402 		 */
1403 		result = e1000_validate_nvm_checksum(hw);
1404 	}
1405 	mutex_exit(&e1000g_nvm_lock);
1406 
1407 	if (result < E1000_SUCCESS) {
1408 		e1000g_log(Adapter, CE_WARN,
1409 		    "Invalid NVM checksum. Please contact "
1410 		    "the vendor to update the NVM.");
1411 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1412 		goto init_fail;
1413 	}
1414 
1415 	result = 0;
1416 #ifdef __sparc
1417 	/*
1418 	 * First, we try to get the local ethernet address from OBP. If
1419 	 * failed, then we get it from the EEPROM of NIC card.
1420 	 */
1421 	result = e1000g_find_mac_address(Adapter);
1422 #endif
1423 	/* Get the local ethernet address. */
1424 	if (!result) {
1425 		mutex_enter(&e1000g_nvm_lock);
1426 		result = e1000_read_mac_addr(hw);
1427 		mutex_exit(&e1000g_nvm_lock);
1428 	}
1429 
1430 	if (result < E1000_SUCCESS) {
1431 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1432 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1433 		goto init_fail;
1434 	}
1435 
1436 	/* check for valid mac address */
1437 	if (!is_valid_mac_addr(hw->mac.addr)) {
1438 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1439 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1440 		goto init_fail;
1441 	}
1442 
1443 	/* Set LAA state for 82571 chipset */
1444 	e1000_set_laa_state_82571(hw, B_TRUE);
1445 
1446 	/* Master Latency Timer implementation */
1447 	if (Adapter->master_latency_timer) {
1448 		pci_config_put8(Adapter->osdep.cfg_handle,
1449 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1450 	}
1451 
1452 	if (hw->mac.type < e1000_82547) {
1453 		/*
1454 		 * Total FIFO is 64K
1455 		 */
1456 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1457 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1458 		else
1459 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1460 	} else if ((hw->mac.type == e1000_82571) ||
1461 	    (hw->mac.type == e1000_82572) ||
1462 	    (hw->mac.type == e1000_80003es2lan)) {
1463 		/*
1464 		 * Total FIFO is 48K
1465 		 */
1466 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1467 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1468 		else
1469 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1470 	} else if (hw->mac.type == e1000_82573) {
1471 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1472 	} else if (hw->mac.type == e1000_82574) {
1473 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1474 		pba = E1000_READ_REG(hw, E1000_PBA);
1475 	} else if (hw->mac.type == e1000_ich8lan) {
1476 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1477 	} else if (hw->mac.type == e1000_ich9lan) {
1478 		pba = E1000_PBA_10K;
1479 	} else if (hw->mac.type == e1000_ich10lan) {
1480 		pba = E1000_PBA_10K;
1481 	} else if (hw->mac.type == e1000_pchlan) {
1482 		pba = E1000_PBA_26K;
1483 	} else if (hw->mac.type == e1000_pch2lan) {
1484 		pba = E1000_PBA_26K;
1485 	} else if (hw->mac.type == e1000_pch_lpt) {
1486 		pba = E1000_PBA_26K;
1487 	} else if (hw->mac.type == e1000_pch_spt) {
1488 		pba = E1000_PBA_26K;
1489 	} else {
1490 		/*
1491 		 * Total FIFO is 40K
1492 		 */
1493 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1494 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1495 		else
1496 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1497 	}
1498 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1499 
1500 	/*
1501 	 * These parameters set thresholds for the adapter's generation(Tx)
1502 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1503 	 * settings.  Flow control is enabled or disabled in the configuration
1504 	 * file.
1505 	 * High-water mark is set down from the top of the rx fifo (not
1506 	 * sensitive to max_frame_size) and low-water is set just below
1507 	 * high-water mark.
1508 	 * The high water mark must be low enough to fit one full frame above
1509 	 * it in the rx FIFO.  Should be the lower of:
1510 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1511 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1512 	 * Rx FIFO size minus one full frame.
1513 	 */
1514 	high_water = min(((pba << 10) * 9 / 10),
1515 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1516 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1517 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1518 	    ((pba << 10) - Adapter->max_frame_size)));
1519 
1520 	hw->fc.high_water = high_water & 0xFFF8;
1521 	hw->fc.low_water = hw->fc.high_water - 8;
1522 
1523 	if (hw->mac.type == e1000_80003es2lan)
1524 		hw->fc.pause_time = 0xFFFF;
1525 	else
1526 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1527 	hw->fc.send_xon = B_TRUE;
1528 
1529 	/*
1530 	 * Reset the adapter hardware the second time.
1531 	 */
1532 	mutex_enter(&e1000g_nvm_lock);
1533 	result = e1000_reset_hw(hw);
1534 	mutex_exit(&e1000g_nvm_lock);
1535 
1536 	if (result != E1000_SUCCESS) {
1537 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1538 		goto init_fail;
1539 	}
1540 
1541 	/* disable wakeup control by default */
1542 	if (hw->mac.type >= e1000_82544)
1543 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1544 
1545 	/*
1546 	 * MWI should be disabled on 82546.
1547 	 */
1548 	if (hw->mac.type == e1000_82546)
1549 		e1000_pci_clear_mwi(hw);
1550 	else
1551 		e1000_pci_set_mwi(hw);
1552 
1553 	/*
1554 	 * Configure/Initialize hardware
1555 	 */
1556 	mutex_enter(&e1000g_nvm_lock);
1557 	result = e1000_init_hw(hw);
1558 	mutex_exit(&e1000g_nvm_lock);
1559 
1560 	if (result < E1000_SUCCESS) {
1561 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1562 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1563 		goto init_fail;
1564 	}
1565 
1566 	/*
1567 	 * Restore LED settings to the default from EEPROM
1568 	 * to meet the standard for Sun platforms.
1569 	 */
1570 	(void) e1000_cleanup_led(hw);
1571 
1572 	/* Disable Smart Power Down */
1573 	phy_spd_state(hw, B_FALSE);
1574 
1575 	/* Make sure driver has control */
1576 	e1000g_get_driver_control(hw);
1577 
1578 	/*
1579 	 * Initialize unicast addresses.
1580 	 */
1581 	e1000g_init_unicst(Adapter);
1582 
1583 	/*
1584 	 * Setup and initialize the mctable structures.  After this routine
1585 	 * completes  Multicast table will be set
1586 	 */
1587 	e1000_update_mc_addr_list(hw,
1588 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1589 	msec_delay(5);
1590 
1591 	/*
1592 	 * Implement Adaptive IFS
1593 	 */
1594 	e1000_reset_adaptive(hw);
1595 
1596 	/* Setup Interrupt Throttling Register */
1597 	if (hw->mac.type >= e1000_82540) {
1598 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1599 	} else
1600 		Adapter->intr_adaptive = B_FALSE;
1601 
1602 	/* Start the timer for link setup */
1603 	if (hw->mac.autoneg)
1604 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1605 	else
1606 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1607 
1608 	mutex_enter(&Adapter->link_lock);
1609 	if (hw->phy.autoneg_wait_to_complete) {
1610 		Adapter->link_complete = B_TRUE;
1611 	} else {
1612 		Adapter->link_complete = B_FALSE;
1613 		Adapter->link_tid = timeout(e1000g_link_timer,
1614 		    (void *)Adapter, link_timeout);
1615 	}
1616 	mutex_exit(&Adapter->link_lock);
1617 
1618 	/* Save the state of the phy */
1619 	e1000g_get_phy_state(Adapter);
1620 
1621 	e1000g_param_sync(Adapter);
1622 
1623 	Adapter->init_count++;
1624 
1625 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1626 		goto init_fail;
1627 	}
1628 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1629 		goto init_fail;
1630 	}
1631 
1632 	Adapter->poll_mode = e1000g_poll_mode;
1633 
1634 	return (DDI_SUCCESS);
1635 
1636 init_fail:
1637 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1638 	return (DDI_FAILURE);
1639 }
1640 
1641 static int
1642 e1000g_alloc_rx_data(struct e1000g *Adapter)
1643 {
1644 	e1000g_rx_ring_t *rx_ring;
1645 	e1000g_rx_data_t *rx_data;
1646 
1647 	rx_ring = Adapter->rx_ring;
1648 
1649 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1650 
1651 	if (rx_data == NULL)
1652 		return (DDI_FAILURE);
1653 
1654 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1655 	rx_data->rx_ring = rx_ring;
1656 
1657 	mutex_init(&rx_data->freelist_lock, NULL,
1658 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1659 	mutex_init(&rx_data->recycle_lock, NULL,
1660 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1661 
1662 	rx_ring->rx_data = rx_data;
1663 
1664 	return (DDI_SUCCESS);
1665 }
1666 
1667 void
1668 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1669 {
1670 	rx_sw_packet_t *packet, *next_packet;
1671 
1672 	if (rx_data == NULL)
1673 		return;
1674 
1675 	packet = rx_data->packet_area;
1676 	while (packet != NULL) {
1677 		next_packet = packet->next;
1678 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1679 		packet = next_packet;
1680 	}
1681 	rx_data->packet_area = NULL;
1682 }
1683 
1684 void
1685 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1686 {
1687 	if (rx_data == NULL)
1688 		return;
1689 
1690 	mutex_destroy(&rx_data->freelist_lock);
1691 	mutex_destroy(&rx_data->recycle_lock);
1692 
1693 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1694 }
1695 
1696 /*
1697  * Check if the link is up
1698  */
1699 static boolean_t
1700 e1000g_link_up(struct e1000g *Adapter)
1701 {
1702 	struct e1000_hw *hw = &Adapter->shared;
1703 	boolean_t link_up = B_FALSE;
1704 
1705 	/*
1706 	 * get_link_status is set in the interrupt handler on link-status-change
1707 	 * or rx sequence error interrupt.  get_link_status will stay
1708 	 * false until the e1000_check_for_link establishes link only
1709 	 * for copper adapters.
1710 	 */
1711 	switch (hw->phy.media_type) {
1712 	case e1000_media_type_copper:
1713 		if (hw->mac.get_link_status) {
1714 			/*
1715 			 * SPT devices need a bit of extra time before we ask
1716 			 * them.
1717 			 */
1718 			if (hw->mac.type == e1000_pch_spt)
1719 				msec_delay(50);
1720 			(void) e1000_check_for_link(hw);
1721 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1722 			    E1000_STATUS_LU)) {
1723 				link_up = B_TRUE;
1724 			} else {
1725 				link_up = !hw->mac.get_link_status;
1726 			}
1727 		} else {
1728 			link_up = B_TRUE;
1729 		}
1730 		break;
1731 	case e1000_media_type_fiber:
1732 		(void) e1000_check_for_link(hw);
1733 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1734 		    E1000_STATUS_LU);
1735 		break;
1736 	case e1000_media_type_internal_serdes:
1737 		(void) e1000_check_for_link(hw);
1738 		link_up = hw->mac.serdes_has_link;
1739 		break;
1740 	}
1741 
1742 	return (link_up);
1743 }
1744 
1745 static void
1746 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1747 {
1748 	struct iocblk *iocp;
1749 	struct e1000g *e1000gp;
1750 	enum ioc_reply status;
1751 
1752 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1753 	iocp->ioc_error = 0;
1754 	e1000gp = (struct e1000g *)arg;
1755 
1756 	ASSERT(e1000gp);
1757 	if (e1000gp == NULL) {
1758 		miocnak(q, mp, 0, EINVAL);
1759 		return;
1760 	}
1761 
1762 	rw_enter(&e1000gp->chip_lock, RW_READER);
1763 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1764 		rw_exit(&e1000gp->chip_lock);
1765 		miocnak(q, mp, 0, EINVAL);
1766 		return;
1767 	}
1768 	rw_exit(&e1000gp->chip_lock);
1769 
1770 	switch (iocp->ioc_cmd) {
1771 
1772 	case LB_GET_INFO_SIZE:
1773 	case LB_GET_INFO:
1774 	case LB_GET_MODE:
1775 	case LB_SET_MODE:
1776 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1777 		break;
1778 
1779 
1780 #ifdef E1000G_DEBUG
1781 	case E1000G_IOC_REG_PEEK:
1782 	case E1000G_IOC_REG_POKE:
1783 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1784 		break;
1785 	case E1000G_IOC_CHIP_RESET:
1786 		e1000gp->reset_count++;
1787 		if (e1000g_reset_adapter(e1000gp))
1788 			status = IOC_ACK;
1789 		else
1790 			status = IOC_INVAL;
1791 		break;
1792 #endif
1793 	default:
1794 		status = IOC_INVAL;
1795 		break;
1796 	}
1797 
1798 	/*
1799 	 * Decide how to reply
1800 	 */
1801 	switch (status) {
1802 	default:
1803 	case IOC_INVAL:
1804 		/*
1805 		 * Error, reply with a NAK and EINVAL or the specified error
1806 		 */
1807 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1808 		    EINVAL : iocp->ioc_error);
1809 		break;
1810 
1811 	case IOC_DONE:
1812 		/*
1813 		 * OK, reply already sent
1814 		 */
1815 		break;
1816 
1817 	case IOC_ACK:
1818 		/*
1819 		 * OK, reply with an ACK
1820 		 */
1821 		miocack(q, mp, 0, 0);
1822 		break;
1823 
1824 	case IOC_REPLY:
1825 		/*
1826 		 * OK, send prepared reply as ACK or NAK
1827 		 */
1828 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1829 		    M_IOCACK : M_IOCNAK;
1830 		qreply(q, mp);
1831 		break;
1832 	}
1833 }
1834 
1835 /*
1836  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1837  * capable of supporting only one interrupt and we shouldn't disable
1838  * the physical interrupt. In this case we let the interrupt come and
1839  * we queue the packets in the rx ring itself in case we are in polling
1840  * mode (better latency but slightly lower performance and a very
1841  * high intrrupt count in mpstat which is harmless).
1842  *
1843  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1844  * which can be disabled in poll mode. This gives better overall
1845  * throughput (compared to the mode above), shows very low interrupt
1846  * count but has slightly higher latency since we pick the packets when
1847  * the poll thread does polling.
1848  *
1849  * Currently, this flag should be enabled only while doing performance
1850  * measurement or when it can be guaranteed that entire NIC going
1851  * in poll mode will not harm any traffic like cluster heartbeat etc.
1852  */
1853 int e1000g_poll_mode = 0;
1854 
1855 /*
1856  * Called from the upper layers when driver is in polling mode to
1857  * pick up any queued packets. Care should be taken to not block
1858  * this thread.
1859  */
1860 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1861 {
1862 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1863 	mblk_t			*mp = NULL;
1864 	mblk_t			*tail;
1865 	struct e1000g 		*adapter;
1866 
1867 	adapter = rx_ring->adapter;
1868 
1869 	rw_enter(&adapter->chip_lock, RW_READER);
1870 
1871 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1872 		rw_exit(&adapter->chip_lock);
1873 		return (NULL);
1874 	}
1875 
1876 	mutex_enter(&rx_ring->rx_lock);
1877 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1878 	mutex_exit(&rx_ring->rx_lock);
1879 	rw_exit(&adapter->chip_lock);
1880 	return (mp);
1881 }
1882 
1883 static int
1884 e1000g_m_start(void *arg)
1885 {
1886 	struct e1000g *Adapter = (struct e1000g *)arg;
1887 
1888 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1889 
1890 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1891 		rw_exit(&Adapter->chip_lock);
1892 		return (ECANCELED);
1893 	}
1894 
1895 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1896 		rw_exit(&Adapter->chip_lock);
1897 		return (ENOTACTIVE);
1898 	}
1899 
1900 	Adapter->e1000g_state |= E1000G_STARTED;
1901 
1902 	rw_exit(&Adapter->chip_lock);
1903 
1904 	/* Enable and start the watchdog timer */
1905 	enable_watchdog_timer(Adapter);
1906 
1907 	return (0);
1908 }
1909 
1910 static int
1911 e1000g_start(struct e1000g *Adapter, boolean_t global)
1912 {
1913 	e1000g_rx_data_t *rx_data;
1914 
1915 	if (global) {
1916 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1917 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1918 			goto start_fail;
1919 		}
1920 
1921 		/* Allocate dma resources for descriptors and buffers */
1922 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1923 			e1000g_log(Adapter, CE_WARN,
1924 			    "Alloc DMA resources failed");
1925 			goto start_fail;
1926 		}
1927 		Adapter->rx_buffer_setup = B_FALSE;
1928 	}
1929 
1930 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1931 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1932 			e1000g_log(Adapter, CE_WARN,
1933 			    "Adapter initialization failed");
1934 			goto start_fail;
1935 		}
1936 	}
1937 
1938 	/* Setup and initialize the transmit structures */
1939 	e1000g_tx_setup(Adapter);
1940 	msec_delay(5);
1941 
1942 	/* Setup and initialize the receive structures */
1943 	e1000g_rx_setup(Adapter);
1944 	msec_delay(5);
1945 
1946 	/* Restore the e1000g promiscuous mode */
1947 	e1000g_restore_promisc(Adapter);
1948 
1949 	e1000g_mask_interrupt(Adapter);
1950 
1951 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1952 
1953 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1954 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1955 		goto start_fail;
1956 	}
1957 
1958 	return (DDI_SUCCESS);
1959 
1960 start_fail:
1961 	rx_data = Adapter->rx_ring->rx_data;
1962 
1963 	if (global) {
1964 		e1000g_release_dma_resources(Adapter);
1965 		e1000g_free_rx_pending_buffers(rx_data);
1966 		e1000g_free_rx_data(rx_data);
1967 	}
1968 
1969 	mutex_enter(&e1000g_nvm_lock);
1970 	(void) e1000_reset_hw(&Adapter->shared);
1971 	mutex_exit(&e1000g_nvm_lock);
1972 
1973 	return (DDI_FAILURE);
1974 }
1975 
1976 /*
1977  * The I219 has the curious property that if the descriptor rings are not
1978  * emptied before resetting the hardware or before changing the device state
1979  * based on runtime power management, it'll cause the card to hang. This can
1980  * then only be fixed by a PCI reset. As such, for the I219 and it alone, we
1981  * have to flush the rings if we're in this state.
1982  */
1983 static void
1984 e1000g_flush_desc_rings(struct e1000g *Adapter)
1985 {
1986 	struct e1000_hw	*hw = &Adapter->shared;
1987 	u16		hang_state;
1988 	u32		fext_nvm11, tdlen;
1989 
1990 	/* First, disable MULR fix in FEXTNVM11 */
1991 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
1992 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1993 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
1994 
1995 	/* do nothing if we're not in faulty state, or if the queue is empty */
1996 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
1997 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
1998 	    PCICFG_DESC_RING_STATUS);
1999 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2000 		return;
2001 	e1000g_flush_tx_ring(Adapter);
2002 
2003 	/* recheck, maybe the fault is caused by the rx ring */
2004 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2005 	    PCICFG_DESC_RING_STATUS);
2006 	if (hang_state & FLUSH_DESC_REQUIRED)
2007 		e1000g_flush_rx_ring(Adapter);
2008 
2009 }
2010 
2011 static void
2012 e1000g_m_stop(void *arg)
2013 {
2014 	struct e1000g *Adapter = (struct e1000g *)arg;
2015 
2016 	/* Drain tx sessions */
2017 	(void) e1000g_tx_drain(Adapter);
2018 
2019 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2020 
2021 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2022 		rw_exit(&Adapter->chip_lock);
2023 		return;
2024 	}
2025 	Adapter->e1000g_state &= ~E1000G_STARTED;
2026 	e1000g_stop(Adapter, B_TRUE);
2027 
2028 	rw_exit(&Adapter->chip_lock);
2029 
2030 	/* Disable and stop all the timers */
2031 	disable_watchdog_timer(Adapter);
2032 	stop_link_timer(Adapter);
2033 	stop_82547_timer(Adapter->tx_ring);
2034 }
2035 
2036 static void
2037 e1000g_stop(struct e1000g *Adapter, boolean_t global)
2038 {
2039 	private_devi_list_t *devi_node;
2040 	e1000g_rx_data_t *rx_data;
2041 	int result;
2042 
2043 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
2044 
2045 	/* Stop the chip and release pending resources */
2046 
2047 	/* Tell firmware driver is no longer in control */
2048 	e1000g_release_driver_control(&Adapter->shared);
2049 
2050 	e1000g_clear_all_interrupts(Adapter);
2051 
2052 	mutex_enter(&e1000g_nvm_lock);
2053 	result = e1000_reset_hw(&Adapter->shared);
2054 	mutex_exit(&e1000g_nvm_lock);
2055 
2056 	if (result != E1000_SUCCESS) {
2057 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
2058 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2059 	}
2060 
2061 	mutex_enter(&Adapter->link_lock);
2062 	Adapter->link_complete = B_FALSE;
2063 	mutex_exit(&Adapter->link_lock);
2064 
2065 	/* Release resources still held by the TX descriptors */
2066 	e1000g_tx_clean(Adapter);
2067 
2068 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2069 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2070 
2071 	/* Clean the pending rx jumbo packet fragment */
2072 	e1000g_rx_clean(Adapter);
2073 
2074 	/*
2075 	 * The I219, eg. the pch_spt, has bugs such that we must ensure that
2076 	 * rings are flushed before we do anything else. This must be done
2077 	 * before we release DMA resources.
2078 	 */
2079 	if (Adapter->shared.mac.type == e1000_pch_spt)
2080 		e1000g_flush_desc_rings(Adapter);
2081 
2082 	if (global) {
2083 		e1000g_release_dma_resources(Adapter);
2084 
2085 		mutex_enter(&e1000g_rx_detach_lock);
2086 		rx_data = Adapter->rx_ring->rx_data;
2087 		rx_data->flag |= E1000G_RX_STOPPED;
2088 
2089 		if (rx_data->pending_count == 0) {
2090 			e1000g_free_rx_pending_buffers(rx_data);
2091 			e1000g_free_rx_data(rx_data);
2092 		} else {
2093 			devi_node = rx_data->priv_devi_node;
2094 			if (devi_node != NULL)
2095 				atomic_inc_32(&devi_node->pending_rx_count);
2096 			else
2097 				atomic_inc_32(&Adapter->pending_rx_count);
2098 		}
2099 		mutex_exit(&e1000g_rx_detach_lock);
2100 	}
2101 
2102 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2103 		Adapter->link_state = LINK_STATE_UNKNOWN;
2104 		if (!Adapter->reset_flag)
2105 			mac_link_update(Adapter->mh, Adapter->link_state);
2106 	}
2107 }
2108 
2109 static void
2110 e1000g_rx_clean(struct e1000g *Adapter)
2111 {
2112 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2113 
2114 	if (rx_data == NULL)
2115 		return;
2116 
2117 	if (rx_data->rx_mblk != NULL) {
2118 		freemsg(rx_data->rx_mblk);
2119 		rx_data->rx_mblk = NULL;
2120 		rx_data->rx_mblk_tail = NULL;
2121 		rx_data->rx_mblk_len = 0;
2122 	}
2123 }
2124 
2125 static void
2126 e1000g_tx_clean(struct e1000g *Adapter)
2127 {
2128 	e1000g_tx_ring_t *tx_ring;
2129 	p_tx_sw_packet_t packet;
2130 	mblk_t *mp;
2131 	mblk_t *nmp;
2132 	uint32_t packet_count;
2133 
2134 	tx_ring = Adapter->tx_ring;
2135 
2136 	/*
2137 	 * Here we don't need to protect the lists using
2138 	 * the usedlist_lock and freelist_lock, for they
2139 	 * have been protected by the chip_lock.
2140 	 */
2141 	mp = NULL;
2142 	nmp = NULL;
2143 	packet_count = 0;
2144 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2145 	while (packet != NULL) {
2146 		if (packet->mp != NULL) {
2147 			/* Assemble the message chain */
2148 			if (mp == NULL) {
2149 				mp = packet->mp;
2150 				nmp = packet->mp;
2151 			} else {
2152 				nmp->b_next = packet->mp;
2153 				nmp = packet->mp;
2154 			}
2155 			/* Disconnect the message from the sw packet */
2156 			packet->mp = NULL;
2157 		}
2158 
2159 		e1000g_free_tx_swpkt(packet);
2160 		packet_count++;
2161 
2162 		packet = (p_tx_sw_packet_t)
2163 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2164 	}
2165 
2166 	if (mp != NULL)
2167 		freemsgchain(mp);
2168 
2169 	if (packet_count > 0) {
2170 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2171 		QUEUE_INIT_LIST(&tx_ring->used_list);
2172 
2173 		/* Setup TX descriptor pointers */
2174 		tx_ring->tbd_next = tx_ring->tbd_first;
2175 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2176 
2177 		/* Setup our HW Tx Head & Tail descriptor pointers */
2178 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2179 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2180 	}
2181 }
2182 
2183 static boolean_t
2184 e1000g_tx_drain(struct e1000g *Adapter)
2185 {
2186 	int i;
2187 	boolean_t done;
2188 	e1000g_tx_ring_t *tx_ring;
2189 
2190 	tx_ring = Adapter->tx_ring;
2191 
2192 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2193 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2194 		mutex_enter(&tx_ring->usedlist_lock);
2195 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2196 		mutex_exit(&tx_ring->usedlist_lock);
2197 
2198 		if (done)
2199 			break;
2200 
2201 		msec_delay(1);
2202 	}
2203 
2204 	return (done);
2205 }
2206 
2207 static boolean_t
2208 e1000g_rx_drain(struct e1000g *Adapter)
2209 {
2210 	int i;
2211 	boolean_t done;
2212 
2213 	/*
2214 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2215 	 */
2216 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2217 		done = (Adapter->pending_rx_count == 0);
2218 
2219 		if (done)
2220 			break;
2221 
2222 		msec_delay(1);
2223 	}
2224 
2225 	return (done);
2226 }
2227 
2228 static boolean_t
2229 e1000g_reset_adapter(struct e1000g *Adapter)
2230 {
2231 	/* Disable and stop all the timers */
2232 	disable_watchdog_timer(Adapter);
2233 	stop_link_timer(Adapter);
2234 	stop_82547_timer(Adapter->tx_ring);
2235 
2236 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2237 
2238 	if (Adapter->stall_flag) {
2239 		Adapter->stall_flag = B_FALSE;
2240 		Adapter->reset_flag = B_TRUE;
2241 	}
2242 
2243 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2244 		rw_exit(&Adapter->chip_lock);
2245 		return (B_TRUE);
2246 	}
2247 
2248 	e1000g_stop(Adapter, B_FALSE);
2249 
2250 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2251 		rw_exit(&Adapter->chip_lock);
2252 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2253 			return (B_FALSE);
2254 	}
2255 
2256 	rw_exit(&Adapter->chip_lock);
2257 
2258 	/* Enable and start the watchdog timer */
2259 	enable_watchdog_timer(Adapter);
2260 
2261 	return (B_TRUE);
2262 }
2263 
2264 boolean_t
2265 e1000g_global_reset(struct e1000g *Adapter)
2266 {
2267 	/* Disable and stop all the timers */
2268 	disable_watchdog_timer(Adapter);
2269 	stop_link_timer(Adapter);
2270 	stop_82547_timer(Adapter->tx_ring);
2271 
2272 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2273 
2274 	e1000g_stop(Adapter, B_TRUE);
2275 
2276 	Adapter->init_count = 0;
2277 
2278 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2279 		rw_exit(&Adapter->chip_lock);
2280 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2281 		return (B_FALSE);
2282 	}
2283 
2284 	rw_exit(&Adapter->chip_lock);
2285 
2286 	/* Enable and start the watchdog timer */
2287 	enable_watchdog_timer(Adapter);
2288 
2289 	return (B_TRUE);
2290 }
2291 
2292 /*
2293  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2294  *
2295  * This interrupt service routine is for PCI-Express adapters.
2296  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2297  * bit is set.
2298  */
2299 static uint_t
2300 e1000g_intr_pciexpress(caddr_t arg)
2301 {
2302 	struct e1000g *Adapter;
2303 	uint32_t icr;
2304 
2305 	Adapter = (struct e1000g *)(uintptr_t)arg;
2306 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2307 
2308 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2309 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2310 		return (DDI_INTR_CLAIMED);
2311 	}
2312 
2313 	if (icr & E1000_ICR_INT_ASSERTED) {
2314 		/*
2315 		 * E1000_ICR_INT_ASSERTED bit was set:
2316 		 * Read(Clear) the ICR, claim this interrupt,
2317 		 * look for work to do.
2318 		 */
2319 		e1000g_intr_work(Adapter, icr);
2320 		return (DDI_INTR_CLAIMED);
2321 	} else {
2322 		/*
2323 		 * E1000_ICR_INT_ASSERTED bit was not set:
2324 		 * Don't claim this interrupt, return immediately.
2325 		 */
2326 		return (DDI_INTR_UNCLAIMED);
2327 	}
2328 }
2329 
2330 /*
2331  * e1000g_intr - ISR for PCI/PCI-X chipsets
2332  *
2333  * This interrupt service routine is for PCI/PCI-X adapters.
2334  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2335  * bit is set or not.
2336  */
2337 static uint_t
2338 e1000g_intr(caddr_t arg)
2339 {
2340 	struct e1000g *Adapter;
2341 	uint32_t icr;
2342 
2343 	Adapter = (struct e1000g *)(uintptr_t)arg;
2344 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2345 
2346 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2347 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2348 		return (DDI_INTR_CLAIMED);
2349 	}
2350 
2351 	if (icr) {
2352 		/*
2353 		 * Any bit was set in ICR:
2354 		 * Read(Clear) the ICR, claim this interrupt,
2355 		 * look for work to do.
2356 		 */
2357 		e1000g_intr_work(Adapter, icr);
2358 		return (DDI_INTR_CLAIMED);
2359 	} else {
2360 		/*
2361 		 * No bit was set in ICR:
2362 		 * Don't claim this interrupt, return immediately.
2363 		 */
2364 		return (DDI_INTR_UNCLAIMED);
2365 	}
2366 }
2367 
2368 /*
2369  * e1000g_intr_work - actual processing of ISR
2370  *
2371  * Read(clear) the ICR contents and call appropriate interrupt
2372  * processing routines.
2373  */
2374 static void
2375 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2376 {
2377 	struct e1000_hw *hw;
2378 	hw = &Adapter->shared;
2379 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2380 
2381 	Adapter->rx_pkt_cnt = 0;
2382 	Adapter->tx_pkt_cnt = 0;
2383 
2384 	rw_enter(&Adapter->chip_lock, RW_READER);
2385 
2386 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2387 		rw_exit(&Adapter->chip_lock);
2388 		return;
2389 	}
2390 	/*
2391 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2392 	 * ensure the receive routine will not execute when the adapter is
2393 	 * being reset.
2394 	 */
2395 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2396 		rw_exit(&Adapter->chip_lock);
2397 		return;
2398 	}
2399 
2400 	if (icr & E1000_ICR_RXT0) {
2401 		mblk_t			*mp = NULL;
2402 		mblk_t			*tail = NULL;
2403 		e1000g_rx_ring_t	*rx_ring;
2404 
2405 		rx_ring = Adapter->rx_ring;
2406 		mutex_enter(&rx_ring->rx_lock);
2407 		/*
2408 		 * Sometimes with legacy interrupts, it possible that
2409 		 * there is a single interrupt for Rx/Tx. In which
2410 		 * case, if poll flag is set, we shouldn't really
2411 		 * be doing Rx processing.
2412 		 */
2413 		if (!rx_ring->poll_flag)
2414 			mp = e1000g_receive(rx_ring, &tail,
2415 			    E1000G_CHAIN_NO_LIMIT);
2416 		mutex_exit(&rx_ring->rx_lock);
2417 		rw_exit(&Adapter->chip_lock);
2418 		if (mp != NULL)
2419 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2420 			    mp, rx_ring->ring_gen_num);
2421 	} else
2422 		rw_exit(&Adapter->chip_lock);
2423 
2424 	if (icr & E1000_ICR_TXDW) {
2425 		if (!Adapter->tx_intr_enable)
2426 			e1000g_clear_tx_interrupt(Adapter);
2427 
2428 		/* Recycle the tx descriptors */
2429 		rw_enter(&Adapter->chip_lock, RW_READER);
2430 		(void) e1000g_recycle(tx_ring);
2431 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2432 		rw_exit(&Adapter->chip_lock);
2433 
2434 		if (tx_ring->resched_needed &&
2435 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2436 			tx_ring->resched_needed = B_FALSE;
2437 			mac_tx_update(Adapter->mh);
2438 			E1000G_STAT(tx_ring->stat_reschedule);
2439 		}
2440 	}
2441 
2442 	/*
2443 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2444 	 * are checked to detect that the cable has been pulled out. For
2445 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2446 	 * are an indication that cable is not connected.
2447 	 */
2448 	if ((icr & E1000_ICR_RXSEQ) ||
2449 	    (icr & E1000_ICR_LSC) ||
2450 	    (icr & E1000_ICR_GPI_EN1)) {
2451 		boolean_t link_changed;
2452 		timeout_id_t tid = 0;
2453 
2454 		stop_watchdog_timer(Adapter);
2455 
2456 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2457 
2458 		/*
2459 		 * Because we got a link-status-change interrupt, force
2460 		 * e1000_check_for_link() to look at phy
2461 		 */
2462 		Adapter->shared.mac.get_link_status = B_TRUE;
2463 
2464 		/* e1000g_link_check takes care of link status change */
2465 		link_changed = e1000g_link_check(Adapter);
2466 
2467 		/* Get new phy state */
2468 		e1000g_get_phy_state(Adapter);
2469 
2470 		/*
2471 		 * If the link timer has not timed out, we'll not notify
2472 		 * the upper layer with any link state until the link is up.
2473 		 */
2474 		if (link_changed && !Adapter->link_complete) {
2475 			if (Adapter->link_state == LINK_STATE_UP) {
2476 				mutex_enter(&Adapter->link_lock);
2477 				Adapter->link_complete = B_TRUE;
2478 				tid = Adapter->link_tid;
2479 				Adapter->link_tid = 0;
2480 				mutex_exit(&Adapter->link_lock);
2481 			} else {
2482 				link_changed = B_FALSE;
2483 			}
2484 		}
2485 		rw_exit(&Adapter->chip_lock);
2486 
2487 		if (link_changed) {
2488 			if (tid != 0)
2489 				(void) untimeout(tid);
2490 
2491 			/*
2492 			 * Workaround for esb2. Data stuck in fifo on a link
2493 			 * down event. Stop receiver here and reset in watchdog.
2494 			 */
2495 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2496 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2497 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2498 				E1000_WRITE_REG(hw, E1000_RCTL,
2499 				    rctl & ~E1000_RCTL_EN);
2500 				e1000g_log(Adapter, CE_WARN,
2501 				    "ESB2 receiver disabled");
2502 				Adapter->esb2_workaround = B_TRUE;
2503 			}
2504 			if (!Adapter->reset_flag)
2505 				mac_link_update(Adapter->mh,
2506 				    Adapter->link_state);
2507 			if (Adapter->link_state == LINK_STATE_UP)
2508 				Adapter->reset_flag = B_FALSE;
2509 		}
2510 
2511 		start_watchdog_timer(Adapter);
2512 	}
2513 }
2514 
2515 static void
2516 e1000g_init_unicst(struct e1000g *Adapter)
2517 {
2518 	struct e1000_hw *hw;
2519 	int slot;
2520 
2521 	hw = &Adapter->shared;
2522 
2523 	if (Adapter->init_count == 0) {
2524 		/* Initialize the multiple unicast addresses */
2525 		Adapter->unicst_total = min(hw->mac.rar_entry_count,
2526 		    MAX_NUM_UNICAST_ADDRESSES);
2527 
2528 		/*
2529 		 * The common code does not correctly calculate the number of
2530 		 * rar's that could be reserved by firmware for the pch_lpt and
2531 		 * pch_spt macs. The interface has one primary rar, and 11
2532 		 * additional ones. Those 11 additional ones are not always
2533 		 * available.  According to the datasheet, we need to check a
2534 		 * few of the bits set in the FWSM register. If the value is
2535 		 * zero, everything is available. If the value is 1, none of the
2536 		 * additional registers are available. If the value is 2-7, only
2537 		 * that number are available.
2538 		 */
2539 		if (hw->mac.type == e1000_pch_lpt ||
2540 		    hw->mac.type == e1000_pch_spt) {
2541 			uint32_t locked, rar;
2542 
2543 			locked = E1000_READ_REG(hw, E1000_FWSM) &
2544 			    E1000_FWSM_WLOCK_MAC_MASK;
2545 			locked >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2546 			rar = 1;
2547 			if (locked == 0)
2548 				rar += 11;
2549 			else if (locked == 1)
2550 				rar += 0;
2551 			else
2552 				rar += locked;
2553 			Adapter->unicst_total = min(rar,
2554 			    MAX_NUM_UNICAST_ADDRESSES);
2555 		}
2556 
2557 		/* Workaround for an erratum of 82571 chipst */
2558 		if ((hw->mac.type == e1000_82571) &&
2559 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2560 			Adapter->unicst_total--;
2561 
2562 		/* VMware doesn't support multiple mac addresses properly */
2563 		if (hw->subsystem_vendor_id == 0x15ad)
2564 			Adapter->unicst_total = 1;
2565 
2566 		Adapter->unicst_avail = Adapter->unicst_total;
2567 
2568 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2569 			/* Clear both the flag and MAC address */
2570 			Adapter->unicst_addr[slot].reg.high = 0;
2571 			Adapter->unicst_addr[slot].reg.low = 0;
2572 		}
2573 	} else {
2574 		/* Workaround for an erratum of 82571 chipst */
2575 		if ((hw->mac.type == e1000_82571) &&
2576 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2577 			(void) e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2578 
2579 		/* Re-configure the RAR registers */
2580 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2581 			if (Adapter->unicst_addr[slot].mac.set == 1)
2582 				(void) e1000_rar_set(hw,
2583 				    Adapter->unicst_addr[slot].mac.addr, slot);
2584 	}
2585 
2586 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2587 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2588 }
2589 
2590 static int
2591 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2592     int slot)
2593 {
2594 	struct e1000_hw *hw;
2595 
2596 	hw = &Adapter->shared;
2597 
2598 	/*
2599 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2600 	 * that requires the receiver to be in reset when any of the
2601 	 * receive address registers (RAR regs) are accessed.  The first
2602 	 * rev of Wiseman silicon also requires MWI to be disabled when
2603 	 * a global reset or a receive reset is issued.  So before we
2604 	 * initialize the RARs, we check the rev of the Wiseman controller
2605 	 * and work around any necessary HW errata.
2606 	 */
2607 	if ((hw->mac.type == e1000_82542) &&
2608 	    (hw->revision_id == E1000_REVISION_2)) {
2609 		e1000_pci_clear_mwi(hw);
2610 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2611 		msec_delay(5);
2612 	}
2613 	if (mac_addr == NULL) {
2614 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2615 		E1000_WRITE_FLUSH(hw);
2616 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2617 		E1000_WRITE_FLUSH(hw);
2618 		/* Clear both the flag and MAC address */
2619 		Adapter->unicst_addr[slot].reg.high = 0;
2620 		Adapter->unicst_addr[slot].reg.low = 0;
2621 	} else {
2622 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2623 		    ETHERADDRL);
2624 		(void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2625 		Adapter->unicst_addr[slot].mac.set = 1;
2626 	}
2627 
2628 	/* Workaround for an erratum of 82571 chipst */
2629 	if (slot == 0) {
2630 		if ((hw->mac.type == e1000_82571) &&
2631 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2632 			if (mac_addr == NULL) {
2633 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2634 				    slot << 1, 0);
2635 				E1000_WRITE_FLUSH(hw);
2636 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2637 				    (slot << 1) + 1, 0);
2638 				E1000_WRITE_FLUSH(hw);
2639 			} else {
2640 				(void) e1000_rar_set(hw, (uint8_t *)mac_addr,
2641 				    LAST_RAR_ENTRY);
2642 			}
2643 	}
2644 
2645 	/*
2646 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2647 	 * put the receive in reset, and disabled MWI, to work around some
2648 	 * HW errata.  Now we should take the receiver out of reset, and
2649 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2650 	 */
2651 	if ((hw->mac.type == e1000_82542) &&
2652 	    (hw->revision_id == E1000_REVISION_2)) {
2653 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2654 		msec_delay(1);
2655 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2656 			e1000_pci_set_mwi(hw);
2657 		e1000g_rx_setup(Adapter);
2658 	}
2659 
2660 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2661 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2662 		return (EIO);
2663 	}
2664 
2665 	return (0);
2666 }
2667 
2668 static int
2669 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2670 {
2671 	struct e1000_hw *hw = &Adapter->shared;
2672 	struct ether_addr *newtable;
2673 	size_t new_len;
2674 	size_t old_len;
2675 	int res = 0;
2676 
2677 	if ((multiaddr[0] & 01) == 0) {
2678 		res = EINVAL;
2679 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2680 		goto done;
2681 	}
2682 
2683 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2684 		res = ENOENT;
2685 		e1000g_log(Adapter, CE_WARN,
2686 		    "Adapter requested more than %d mcast addresses",
2687 		    Adapter->mcast_max_num);
2688 		goto done;
2689 	}
2690 
2691 
2692 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2693 		old_len = Adapter->mcast_alloc_count *
2694 		    sizeof (struct ether_addr);
2695 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2696 		    sizeof (struct ether_addr);
2697 
2698 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2699 		if (newtable == NULL) {
2700 			res = ENOMEM;
2701 			e1000g_log(Adapter, CE_WARN,
2702 			    "Not enough memory to alloc mcast table");
2703 			goto done;
2704 		}
2705 
2706 		if (Adapter->mcast_table != NULL) {
2707 			bcopy(Adapter->mcast_table, newtable, old_len);
2708 			kmem_free(Adapter->mcast_table, old_len);
2709 		}
2710 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2711 		Adapter->mcast_table = newtable;
2712 	}
2713 
2714 	bcopy(multiaddr,
2715 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2716 	Adapter->mcast_count++;
2717 
2718 	/*
2719 	 * Update the MC table in the hardware
2720 	 */
2721 	e1000g_clear_interrupt(Adapter);
2722 
2723 	e1000_update_mc_addr_list(hw,
2724 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2725 
2726 	e1000g_mask_interrupt(Adapter);
2727 
2728 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2729 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2730 		res = EIO;
2731 	}
2732 
2733 done:
2734 	return (res);
2735 }
2736 
2737 static int
2738 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2739 {
2740 	struct e1000_hw *hw = &Adapter->shared;
2741 	struct ether_addr *newtable;
2742 	size_t new_len;
2743 	size_t old_len;
2744 	unsigned i;
2745 
2746 	for (i = 0; i < Adapter->mcast_count; i++) {
2747 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2748 		    ETHERADDRL) == 0) {
2749 			for (i++; i < Adapter->mcast_count; i++) {
2750 				Adapter->mcast_table[i - 1] =
2751 				    Adapter->mcast_table[i];
2752 			}
2753 			Adapter->mcast_count--;
2754 			break;
2755 		}
2756 	}
2757 
2758 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2759 	    MCAST_ALLOC_SIZE) {
2760 		old_len = Adapter->mcast_alloc_count *
2761 		    sizeof (struct ether_addr);
2762 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2763 		    sizeof (struct ether_addr);
2764 
2765 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2766 		if (newtable != NULL) {
2767 			bcopy(Adapter->mcast_table, newtable, new_len);
2768 			kmem_free(Adapter->mcast_table, old_len);
2769 
2770 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2771 			Adapter->mcast_table = newtable;
2772 		}
2773 	}
2774 
2775 	/*
2776 	 * Update the MC table in the hardware
2777 	 */
2778 	e1000g_clear_interrupt(Adapter);
2779 
2780 	e1000_update_mc_addr_list(hw,
2781 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2782 
2783 	e1000g_mask_interrupt(Adapter);
2784 
2785 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2786 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2787 		return (EIO);
2788 	}
2789 
2790 	return (0);
2791 }
2792 
2793 static void
2794 e1000g_release_multicast(struct e1000g *Adapter)
2795 {
2796 	if (Adapter->mcast_table != NULL) {
2797 		kmem_free(Adapter->mcast_table,
2798 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2799 		Adapter->mcast_table = NULL;
2800 	}
2801 }
2802 
2803 int
2804 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2805 {
2806 	struct e1000g *Adapter = (struct e1000g *)arg;
2807 	int result;
2808 
2809 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2810 
2811 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2812 		result = ECANCELED;
2813 		goto done;
2814 	}
2815 
2816 	result = (add) ? multicst_add(Adapter, addr)
2817 	    : multicst_remove(Adapter, addr);
2818 
2819 done:
2820 	rw_exit(&Adapter->chip_lock);
2821 	return (result);
2822 
2823 }
2824 
2825 int
2826 e1000g_m_promisc(void *arg, boolean_t on)
2827 {
2828 	struct e1000g *Adapter = (struct e1000g *)arg;
2829 	uint32_t rctl;
2830 
2831 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2832 
2833 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2834 		rw_exit(&Adapter->chip_lock);
2835 		return (ECANCELED);
2836 	}
2837 
2838 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2839 
2840 	if (on)
2841 		rctl |=
2842 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2843 	else
2844 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2845 
2846 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2847 
2848 	Adapter->e1000g_promisc = on;
2849 
2850 	rw_exit(&Adapter->chip_lock);
2851 
2852 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2853 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2854 		return (EIO);
2855 	}
2856 
2857 	return (0);
2858 }
2859 
2860 /*
2861  * Entry points to enable and disable interrupts at the granularity of
2862  * a group.
2863  * Turns the poll_mode for the whole adapter on and off to enable or
2864  * override the ring level polling control over the hardware interrupts.
2865  */
2866 static int
2867 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2868 {
2869 	struct e1000g		*adapter = (struct e1000g *)arg;
2870 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2871 
2872 	/*
2873 	 * Later interrupts at the granularity of the this ring will
2874 	 * invoke mac_rx() with NULL, indicating the need for another
2875 	 * software classification.
2876 	 * We have a single ring usable per adapter now, so we only need to
2877 	 * reset the rx handle for that one.
2878 	 * When more RX rings can be used, we should update each one of them.
2879 	 */
2880 	mutex_enter(&rx_ring->rx_lock);
2881 	rx_ring->mrh = NULL;
2882 	adapter->poll_mode = B_FALSE;
2883 	mutex_exit(&rx_ring->rx_lock);
2884 	return (0);
2885 }
2886 
2887 static int
2888 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2889 {
2890 	struct e1000g *adapter = (struct e1000g *)arg;
2891 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2892 
2893 	mutex_enter(&rx_ring->rx_lock);
2894 
2895 	/*
2896 	 * Later interrupts at the granularity of the this ring will
2897 	 * invoke mac_rx() with the handle for this ring;
2898 	 */
2899 	adapter->poll_mode = B_TRUE;
2900 	rx_ring->mrh = rx_ring->mrh_init;
2901 	mutex_exit(&rx_ring->rx_lock);
2902 	return (0);
2903 }
2904 
2905 /*
2906  * Entry points to enable and disable interrupts at the granularity of
2907  * a ring.
2908  * adapter poll_mode controls whether we actually proceed with hardware
2909  * interrupt toggling.
2910  */
2911 static int
2912 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2913 {
2914 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2915 	struct e1000g 		*adapter = rx_ring->adapter;
2916 	struct e1000_hw 	*hw = &adapter->shared;
2917 	uint32_t		intr_mask;
2918 
2919 	rw_enter(&adapter->chip_lock, RW_READER);
2920 
2921 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2922 		rw_exit(&adapter->chip_lock);
2923 		return (0);
2924 	}
2925 
2926 	mutex_enter(&rx_ring->rx_lock);
2927 	rx_ring->poll_flag = 0;
2928 	mutex_exit(&rx_ring->rx_lock);
2929 
2930 	/* Rx interrupt enabling for MSI and legacy */
2931 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2932 	intr_mask |= E1000_IMS_RXT0;
2933 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2934 	E1000_WRITE_FLUSH(hw);
2935 
2936 	/* Trigger a Rx interrupt to check Rx ring */
2937 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2938 	E1000_WRITE_FLUSH(hw);
2939 
2940 	rw_exit(&adapter->chip_lock);
2941 	return (0);
2942 }
2943 
2944 static int
2945 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2946 {
2947 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2948 	struct e1000g 		*adapter = rx_ring->adapter;
2949 	struct e1000_hw 	*hw = &adapter->shared;
2950 
2951 	rw_enter(&adapter->chip_lock, RW_READER);
2952 
2953 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2954 		rw_exit(&adapter->chip_lock);
2955 		return (0);
2956 	}
2957 	mutex_enter(&rx_ring->rx_lock);
2958 	rx_ring->poll_flag = 1;
2959 	mutex_exit(&rx_ring->rx_lock);
2960 
2961 	/* Rx interrupt disabling for MSI and legacy */
2962 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2963 	E1000_WRITE_FLUSH(hw);
2964 
2965 	rw_exit(&adapter->chip_lock);
2966 	return (0);
2967 }
2968 
2969 /*
2970  * e1000g_unicst_find - Find the slot for the specified unicast address
2971  */
2972 static int
2973 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2974 {
2975 	int slot;
2976 
2977 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2978 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2979 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2980 		    mac_addr, ETHERADDRL) == 0))
2981 				return (slot);
2982 	}
2983 
2984 	return (-1);
2985 }
2986 
2987 /*
2988  * Entry points to add and remove a MAC address to a ring group.
2989  * The caller takes care of adding and removing the MAC addresses
2990  * to the filter via these two routines.
2991  */
2992 
2993 static int
2994 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2995 {
2996 	struct e1000g *Adapter = (struct e1000g *)arg;
2997 	int slot, err;
2998 
2999 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3000 
3001 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3002 		rw_exit(&Adapter->chip_lock);
3003 		return (ECANCELED);
3004 	}
3005 
3006 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
3007 		/* The same address is already in slot */
3008 		rw_exit(&Adapter->chip_lock);
3009 		return (0);
3010 	}
3011 
3012 	if (Adapter->unicst_avail == 0) {
3013 		/* no slots available */
3014 		rw_exit(&Adapter->chip_lock);
3015 		return (ENOSPC);
3016 	}
3017 
3018 	/* Search for a free slot */
3019 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
3020 		if (Adapter->unicst_addr[slot].mac.set == 0)
3021 			break;
3022 	}
3023 	ASSERT(slot < Adapter->unicst_total);
3024 
3025 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
3026 	if (err == 0)
3027 		Adapter->unicst_avail--;
3028 
3029 	rw_exit(&Adapter->chip_lock);
3030 
3031 	return (err);
3032 }
3033 
3034 static int
3035 e1000g_remmac(void *arg, const uint8_t *mac_addr)
3036 {
3037 	struct e1000g *Adapter = (struct e1000g *)arg;
3038 	int slot, err;
3039 
3040 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3041 
3042 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3043 		rw_exit(&Adapter->chip_lock);
3044 		return (ECANCELED);
3045 	}
3046 
3047 	slot = e1000g_unicst_find(Adapter, mac_addr);
3048 	if (slot == -1) {
3049 		rw_exit(&Adapter->chip_lock);
3050 		return (EINVAL);
3051 	}
3052 
3053 	ASSERT(Adapter->unicst_addr[slot].mac.set);
3054 
3055 	/* Clear this slot */
3056 	err = e1000g_unicst_set(Adapter, NULL, slot);
3057 	if (err == 0)
3058 		Adapter->unicst_avail++;
3059 
3060 	rw_exit(&Adapter->chip_lock);
3061 
3062 	return (err);
3063 }
3064 
3065 static int
3066 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
3067 {
3068 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
3069 
3070 	mutex_enter(&rx_ring->rx_lock);
3071 	rx_ring->ring_gen_num = mr_gen_num;
3072 	mutex_exit(&rx_ring->rx_lock);
3073 	return (0);
3074 }
3075 
3076 /*
3077  * Callback funtion for MAC layer to register all rings.
3078  *
3079  * The hardware supports a single group with currently only one ring
3080  * available.
3081  * Though not offering virtualization ability per se, exposing the
3082  * group/ring still enables the polling and interrupt toggling.
3083  */
3084 /* ARGSUSED */
3085 void
3086 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
3087     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
3088 {
3089 	struct e1000g *Adapter = (struct e1000g *)arg;
3090 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
3091 	mac_intr_t *mintr;
3092 
3093 	/*
3094 	 * We advertised only RX group/rings, so the MAC framework shouldn't
3095 	 * ask for any thing else.
3096 	 */
3097 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
3098 
3099 	rx_ring->mrh = rx_ring->mrh_init = rh;
3100 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
3101 	infop->mri_start = e1000g_ring_start;
3102 	infop->mri_stop = NULL;
3103 	infop->mri_poll = e1000g_poll_ring;
3104 	infop->mri_stat = e1000g_rx_ring_stat;
3105 
3106 	/* Ring level interrupts */
3107 	mintr = &infop->mri_intr;
3108 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
3109 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
3110 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
3111 	if (Adapter->msi_enable)
3112 		mintr->mi_ddi_handle = Adapter->htable[0];
3113 }
3114 
3115 /* ARGSUSED */
3116 static void
3117 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3118     mac_group_info_t *infop, mac_group_handle_t gh)
3119 {
3120 	struct e1000g *Adapter = (struct e1000g *)arg;
3121 	mac_intr_t *mintr;
3122 
3123 	/*
3124 	 * We advertised a single RX ring. Getting a request for anything else
3125 	 * signifies a bug in the MAC framework.
3126 	 */
3127 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3128 
3129 	Adapter->rx_group = gh;
3130 
3131 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3132 	infop->mgi_start = NULL;
3133 	infop->mgi_stop = NULL;
3134 	infop->mgi_addmac = e1000g_addmac;
3135 	infop->mgi_remmac = e1000g_remmac;
3136 	infop->mgi_count = 1;
3137 
3138 	/* Group level interrupts */
3139 	mintr = &infop->mgi_intr;
3140 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3141 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3142 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3143 }
3144 
3145 static void
3146 e1000g_led_blink(void *arg)
3147 {
3148 	e1000g_t *e1000g = arg;
3149 
3150 	mutex_enter(&e1000g->e1000g_led_lock);
3151 	VERIFY(e1000g->e1000g_emul_blink);
3152 	if (e1000g->e1000g_emul_state) {
3153 		(void) e1000_led_on(&e1000g->shared);
3154 	} else {
3155 		(void) e1000_led_off(&e1000g->shared);
3156 	}
3157 	e1000g->e1000g_emul_state = !e1000g->e1000g_emul_state;
3158 	mutex_exit(&e1000g->e1000g_led_lock);
3159 }
3160 
3161 static int
3162 e1000g_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
3163 {
3164 	e1000g_t *e1000g = arg;
3165 
3166 	if (flags != 0)
3167 		return (EINVAL);
3168 
3169 	if (mode != MAC_LED_DEFAULT &&
3170 	    mode != MAC_LED_IDENT &&
3171 	    mode != MAC_LED_OFF &&
3172 	    mode != MAC_LED_ON)
3173 		return (ENOTSUP);
3174 
3175 	mutex_enter(&e1000g->e1000g_led_lock);
3176 
3177 	if ((mode == MAC_LED_IDENT || mode == MAC_LED_OFF ||
3178 	    mode == MAC_LED_ON) &&
3179 	    !e1000g->e1000g_led_setup) {
3180 		if (e1000_setup_led(&e1000g->shared) != E1000_SUCCESS) {
3181 			mutex_exit(&e1000g->e1000g_led_lock);
3182 			return (EIO);
3183 		}
3184 
3185 		e1000g->e1000g_led_setup = B_TRUE;
3186 	}
3187 
3188 	if (mode != MAC_LED_IDENT && e1000g->e1000g_blink != NULL) {
3189 		ddi_periodic_t id = e1000g->e1000g_blink;
3190 		e1000g->e1000g_blink = NULL;
3191 		mutex_exit(&e1000g->e1000g_led_lock);
3192 		ddi_periodic_delete(id);
3193 		mutex_enter(&e1000g->e1000g_led_lock);
3194 	}
3195 
3196 	switch (mode) {
3197 	case MAC_LED_DEFAULT:
3198 		if (e1000g->e1000g_led_setup) {
3199 			if (e1000_cleanup_led(&e1000g->shared) !=
3200 			    E1000_SUCCESS) {
3201 				mutex_exit(&e1000g->e1000g_led_lock);
3202 				return (EIO);
3203 			}
3204 			e1000g->e1000g_led_setup = B_FALSE;
3205 		}
3206 		break;
3207 	case MAC_LED_IDENT:
3208 		if (e1000g->e1000g_emul_blink) {
3209 			if (e1000g->e1000g_blink != NULL)
3210 				break;
3211 
3212 			/*
3213 			 * Note, we use a 200 ms period here as that's what
3214 			 * section 10.1.3 8254x Intel Manual (PCI/PCI-X Family
3215 			 * of Gigabit Ethernet Controllers Software Developer's
3216 			 * Manual) indicates that the optional blink hardware
3217 			 * operates at.
3218 			 */
3219 			e1000g->e1000g_blink =
3220 			    ddi_periodic_add(e1000g_led_blink, e1000g,
3221 			    200ULL * (NANOSEC / MILLISEC), DDI_IPL_0);
3222 		} else if (e1000_blink_led(&e1000g->shared) != E1000_SUCCESS) {
3223 			mutex_exit(&e1000g->e1000g_led_lock);
3224 			return (EIO);
3225 		}
3226 		break;
3227 	case MAC_LED_OFF:
3228 		if (e1000_led_off(&e1000g->shared) != E1000_SUCCESS) {
3229 			mutex_exit(&e1000g->e1000g_led_lock);
3230 			return (EIO);
3231 		}
3232 		break;
3233 	case MAC_LED_ON:
3234 		if (e1000_led_on(&e1000g->shared) != E1000_SUCCESS) {
3235 			mutex_exit(&e1000g->e1000g_led_lock);
3236 			return (EIO);
3237 		}
3238 		break;
3239 	default:
3240 		mutex_exit(&e1000g->e1000g_led_lock);
3241 		return (ENOTSUP);
3242 	}
3243 
3244 	mutex_exit(&e1000g->e1000g_led_lock);
3245 	return (0);
3246 
3247 }
3248 
3249 static boolean_t
3250 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3251 {
3252 	struct e1000g *Adapter = (struct e1000g *)arg;
3253 
3254 	switch (cap) {
3255 	case MAC_CAPAB_HCKSUM: {
3256 		uint32_t *txflags = cap_data;
3257 
3258 		if (Adapter->tx_hcksum_enable)
3259 			*txflags = HCKSUM_IPHDRCKSUM |
3260 			    HCKSUM_INET_PARTIAL;
3261 		else
3262 			return (B_FALSE);
3263 		break;
3264 	}
3265 
3266 	case MAC_CAPAB_LSO: {
3267 		mac_capab_lso_t *cap_lso = cap_data;
3268 
3269 		if (Adapter->lso_enable) {
3270 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3271 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3272 			    E1000_LSO_MAXLEN;
3273 		} else
3274 			return (B_FALSE);
3275 		break;
3276 	}
3277 	case MAC_CAPAB_RINGS: {
3278 		mac_capab_rings_t *cap_rings = cap_data;
3279 
3280 		/* No TX rings exposed yet */
3281 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3282 			return (B_FALSE);
3283 
3284 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3285 		cap_rings->mr_rnum = 1;
3286 		cap_rings->mr_gnum = 1;
3287 		cap_rings->mr_rget = e1000g_fill_ring;
3288 		cap_rings->mr_gget = e1000g_fill_group;
3289 		break;
3290 	}
3291 	case MAC_CAPAB_LED: {
3292 		mac_capab_led_t *cap_led = cap_data;
3293 
3294 		cap_led->mcl_flags = 0;
3295 		cap_led->mcl_modes = MAC_LED_DEFAULT;
3296 		if (Adapter->shared.mac.ops.blink_led != NULL &&
3297 		    Adapter->shared.mac.ops.blink_led !=
3298 		    e1000_null_ops_generic) {
3299 			cap_led->mcl_modes |= MAC_LED_IDENT;
3300 		}
3301 
3302 		if (Adapter->shared.mac.ops.led_off != NULL &&
3303 		    Adapter->shared.mac.ops.led_off !=
3304 		    e1000_null_ops_generic) {
3305 			cap_led->mcl_modes |= MAC_LED_OFF;
3306 		}
3307 
3308 		if (Adapter->shared.mac.ops.led_on != NULL &&
3309 		    Adapter->shared.mac.ops.led_on !=
3310 		    e1000_null_ops_generic) {
3311 			cap_led->mcl_modes |= MAC_LED_ON;
3312 		}
3313 
3314 		/*
3315 		 * Some hardware doesn't support blinking natively as they're
3316 		 * missing the optional blink circuit. If they have both off and
3317 		 * on then we'll emulate it ourselves.
3318 		 */
3319 		if (((cap_led->mcl_modes & MAC_LED_IDENT) == 0) &&
3320 		    ((cap_led->mcl_modes & MAC_LED_OFF) != 0) &&
3321 		    ((cap_led->mcl_modes & MAC_LED_ON) != 0)) {
3322 			cap_led->mcl_modes |= MAC_LED_IDENT;
3323 			Adapter->e1000g_emul_blink = B_TRUE;
3324 		}
3325 
3326 		cap_led->mcl_set = e1000g_led_set;
3327 		break;
3328 	}
3329 	default:
3330 		return (B_FALSE);
3331 	}
3332 	return (B_TRUE);
3333 }
3334 
3335 static boolean_t
3336 e1000g_param_locked(mac_prop_id_t pr_num)
3337 {
3338 	/*
3339 	 * All en_* parameters are locked (read-only) while
3340 	 * the device is in any sort of loopback mode ...
3341 	 */
3342 	switch (pr_num) {
3343 		case MAC_PROP_EN_1000FDX_CAP:
3344 		case MAC_PROP_EN_1000HDX_CAP:
3345 		case MAC_PROP_EN_100FDX_CAP:
3346 		case MAC_PROP_EN_100HDX_CAP:
3347 		case MAC_PROP_EN_10FDX_CAP:
3348 		case MAC_PROP_EN_10HDX_CAP:
3349 		case MAC_PROP_AUTONEG:
3350 		case MAC_PROP_FLOWCTRL:
3351 			return (B_TRUE);
3352 	}
3353 	return (B_FALSE);
3354 }
3355 
3356 /*
3357  * callback function for set/get of properties
3358  */
3359 static int
3360 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3361     uint_t pr_valsize, const void *pr_val)
3362 {
3363 	struct e1000g *Adapter = arg;
3364 	struct e1000_hw *hw = &Adapter->shared;
3365 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3366 	int err = 0;
3367 	link_flowctrl_t flowctrl;
3368 	uint32_t cur_mtu, new_mtu;
3369 
3370 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3371 
3372 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3373 		rw_exit(&Adapter->chip_lock);
3374 		return (ECANCELED);
3375 	}
3376 
3377 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3378 	    e1000g_param_locked(pr_num)) {
3379 		/*
3380 		 * All en_* parameters are locked (read-only)
3381 		 * while the device is in any sort of loopback mode.
3382 		 */
3383 		rw_exit(&Adapter->chip_lock);
3384 		return (EBUSY);
3385 	}
3386 
3387 	switch (pr_num) {
3388 		case MAC_PROP_EN_1000FDX_CAP:
3389 			if (hw->phy.media_type != e1000_media_type_copper) {
3390 				err = ENOTSUP;
3391 				break;
3392 			}
3393 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3394 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3395 			goto reset;
3396 		case MAC_PROP_EN_100FDX_CAP:
3397 			if (hw->phy.media_type != e1000_media_type_copper) {
3398 				err = ENOTSUP;
3399 				break;
3400 			}
3401 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3402 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3403 			goto reset;
3404 		case MAC_PROP_EN_100HDX_CAP:
3405 			if (hw->phy.media_type != e1000_media_type_copper) {
3406 				err = ENOTSUP;
3407 				break;
3408 			}
3409 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3410 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3411 			goto reset;
3412 		case MAC_PROP_EN_10FDX_CAP:
3413 			if (hw->phy.media_type != e1000_media_type_copper) {
3414 				err = ENOTSUP;
3415 				break;
3416 			}
3417 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3418 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3419 			goto reset;
3420 		case MAC_PROP_EN_10HDX_CAP:
3421 			if (hw->phy.media_type != e1000_media_type_copper) {
3422 				err = ENOTSUP;
3423 				break;
3424 			}
3425 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3426 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3427 			goto reset;
3428 		case MAC_PROP_AUTONEG:
3429 			if (hw->phy.media_type != e1000_media_type_copper) {
3430 				err = ENOTSUP;
3431 				break;
3432 			}
3433 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3434 			goto reset;
3435 		case MAC_PROP_FLOWCTRL:
3436 			fc->send_xon = B_TRUE;
3437 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3438 
3439 			switch (flowctrl) {
3440 			default:
3441 				err = EINVAL;
3442 				break;
3443 			case LINK_FLOWCTRL_NONE:
3444 				fc->requested_mode = e1000_fc_none;
3445 				break;
3446 			case LINK_FLOWCTRL_RX:
3447 				fc->requested_mode = e1000_fc_rx_pause;
3448 				break;
3449 			case LINK_FLOWCTRL_TX:
3450 				fc->requested_mode = e1000_fc_tx_pause;
3451 				break;
3452 			case LINK_FLOWCTRL_BI:
3453 				fc->requested_mode = e1000_fc_full;
3454 				break;
3455 			}
3456 reset:
3457 			if (err == 0) {
3458 				/* check PCH limits & reset the link */
3459 				e1000g_pch_limits(Adapter);
3460 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3461 					err = EINVAL;
3462 			}
3463 			break;
3464 		case MAC_PROP_ADV_1000FDX_CAP:
3465 		case MAC_PROP_ADV_1000HDX_CAP:
3466 		case MAC_PROP_ADV_100FDX_CAP:
3467 		case MAC_PROP_ADV_100HDX_CAP:
3468 		case MAC_PROP_ADV_10FDX_CAP:
3469 		case MAC_PROP_ADV_10HDX_CAP:
3470 		case MAC_PROP_EN_1000HDX_CAP:
3471 		case MAC_PROP_STATUS:
3472 		case MAC_PROP_SPEED:
3473 		case MAC_PROP_DUPLEX:
3474 			err = ENOTSUP; /* read-only prop. Can't set this. */
3475 			break;
3476 		case MAC_PROP_MTU:
3477 			/* adapter must be stopped for an MTU change */
3478 			if (Adapter->e1000g_state & E1000G_STARTED) {
3479 				err = EBUSY;
3480 				break;
3481 			}
3482 
3483 			cur_mtu = Adapter->default_mtu;
3484 
3485 			/* get new requested MTU */
3486 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3487 			if (new_mtu == cur_mtu) {
3488 				err = 0;
3489 				break;
3490 			}
3491 
3492 			if ((new_mtu < DEFAULT_MTU) ||
3493 			    (new_mtu > Adapter->max_mtu)) {
3494 				err = EINVAL;
3495 				break;
3496 			}
3497 
3498 			/* inform MAC framework of new MTU */
3499 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3500 
3501 			if (err == 0) {
3502 				Adapter->default_mtu = new_mtu;
3503 				Adapter->max_frame_size =
3504 				    e1000g_mtu2maxframe(new_mtu);
3505 
3506 				/*
3507 				 * check PCH limits & set buffer sizes to
3508 				 * match new MTU
3509 				 */
3510 				e1000g_pch_limits(Adapter);
3511 				e1000g_set_bufsize(Adapter);
3512 
3513 				/*
3514 				 * decrease the number of descriptors and free
3515 				 * packets for jumbo frames to reduce tx/rx
3516 				 * resource consumption
3517 				 */
3518 				if (Adapter->max_frame_size >=
3519 				    (FRAME_SIZE_UPTO_4K)) {
3520 					if (Adapter->tx_desc_num_flag == 0)
3521 						Adapter->tx_desc_num =
3522 						    DEFAULT_JUMBO_NUM_TX_DESC;
3523 
3524 					if (Adapter->rx_desc_num_flag == 0)
3525 						Adapter->rx_desc_num =
3526 						    DEFAULT_JUMBO_NUM_RX_DESC;
3527 
3528 					if (Adapter->tx_buf_num_flag == 0)
3529 						Adapter->tx_freelist_num =
3530 						    DEFAULT_JUMBO_NUM_TX_BUF;
3531 
3532 					if (Adapter->rx_buf_num_flag == 0)
3533 						Adapter->rx_freelist_limit =
3534 						    DEFAULT_JUMBO_NUM_RX_BUF;
3535 				} else {
3536 					if (Adapter->tx_desc_num_flag == 0)
3537 						Adapter->tx_desc_num =
3538 						    DEFAULT_NUM_TX_DESCRIPTOR;
3539 
3540 					if (Adapter->rx_desc_num_flag == 0)
3541 						Adapter->rx_desc_num =
3542 						    DEFAULT_NUM_RX_DESCRIPTOR;
3543 
3544 					if (Adapter->tx_buf_num_flag == 0)
3545 						Adapter->tx_freelist_num =
3546 						    DEFAULT_NUM_TX_FREELIST;
3547 
3548 					if (Adapter->rx_buf_num_flag == 0)
3549 						Adapter->rx_freelist_limit =
3550 						    DEFAULT_NUM_RX_FREELIST;
3551 				}
3552 			}
3553 			break;
3554 		case MAC_PROP_PRIVATE:
3555 			err = e1000g_set_priv_prop(Adapter, pr_name,
3556 			    pr_valsize, pr_val);
3557 			break;
3558 		default:
3559 			err = ENOTSUP;
3560 			break;
3561 	}
3562 	rw_exit(&Adapter->chip_lock);
3563 	return (err);
3564 }
3565 
3566 static int
3567 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3568     uint_t pr_valsize, void *pr_val)
3569 {
3570 	struct e1000g *Adapter = arg;
3571 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3572 	int err = 0;
3573 	link_flowctrl_t flowctrl;
3574 	uint64_t tmp = 0;
3575 
3576 	switch (pr_num) {
3577 		case MAC_PROP_DUPLEX:
3578 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3579 			bcopy(&Adapter->link_duplex, pr_val,
3580 			    sizeof (link_duplex_t));
3581 			break;
3582 		case MAC_PROP_SPEED:
3583 			ASSERT(pr_valsize >= sizeof (uint64_t));
3584 			tmp = Adapter->link_speed * 1000000ull;
3585 			bcopy(&tmp, pr_val, sizeof (tmp));
3586 			break;
3587 		case MAC_PROP_AUTONEG:
3588 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3589 			break;
3590 		case MAC_PROP_FLOWCTRL:
3591 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3592 			switch (fc->current_mode) {
3593 				case e1000_fc_none:
3594 					flowctrl = LINK_FLOWCTRL_NONE;
3595 					break;
3596 				case e1000_fc_rx_pause:
3597 					flowctrl = LINK_FLOWCTRL_RX;
3598 					break;
3599 				case e1000_fc_tx_pause:
3600 					flowctrl = LINK_FLOWCTRL_TX;
3601 					break;
3602 				case e1000_fc_full:
3603 					flowctrl = LINK_FLOWCTRL_BI;
3604 					break;
3605 			}
3606 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3607 			break;
3608 		case MAC_PROP_ADV_1000FDX_CAP:
3609 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3610 			break;
3611 		case MAC_PROP_EN_1000FDX_CAP:
3612 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3613 			break;
3614 		case MAC_PROP_ADV_1000HDX_CAP:
3615 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3616 			break;
3617 		case MAC_PROP_EN_1000HDX_CAP:
3618 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3619 			break;
3620 		case MAC_PROP_ADV_100FDX_CAP:
3621 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3622 			break;
3623 		case MAC_PROP_EN_100FDX_CAP:
3624 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3625 			break;
3626 		case MAC_PROP_ADV_100HDX_CAP:
3627 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3628 			break;
3629 		case MAC_PROP_EN_100HDX_CAP:
3630 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3631 			break;
3632 		case MAC_PROP_ADV_10FDX_CAP:
3633 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3634 			break;
3635 		case MAC_PROP_EN_10FDX_CAP:
3636 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3637 			break;
3638 		case MAC_PROP_ADV_10HDX_CAP:
3639 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3640 			break;
3641 		case MAC_PROP_EN_10HDX_CAP:
3642 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3643 			break;
3644 		case MAC_PROP_ADV_100T4_CAP:
3645 		case MAC_PROP_EN_100T4_CAP:
3646 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3647 			break;
3648 		case MAC_PROP_PRIVATE:
3649 			err = e1000g_get_priv_prop(Adapter, pr_name,
3650 			    pr_valsize, pr_val);
3651 			break;
3652 		default:
3653 			err = ENOTSUP;
3654 			break;
3655 	}
3656 
3657 	return (err);
3658 }
3659 
3660 static void
3661 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3662     mac_prop_info_handle_t prh)
3663 {
3664 	struct e1000g *Adapter = arg;
3665 	struct e1000_hw *hw = &Adapter->shared;
3666 
3667 	switch (pr_num) {
3668 	case MAC_PROP_DUPLEX:
3669 	case MAC_PROP_SPEED:
3670 	case MAC_PROP_ADV_1000FDX_CAP:
3671 	case MAC_PROP_ADV_1000HDX_CAP:
3672 	case MAC_PROP_ADV_100FDX_CAP:
3673 	case MAC_PROP_ADV_100HDX_CAP:
3674 	case MAC_PROP_ADV_10FDX_CAP:
3675 	case MAC_PROP_ADV_10HDX_CAP:
3676 	case MAC_PROP_ADV_100T4_CAP:
3677 	case MAC_PROP_EN_100T4_CAP:
3678 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3679 		break;
3680 
3681 	case MAC_PROP_EN_1000FDX_CAP:
3682 		if (hw->phy.media_type != e1000_media_type_copper) {
3683 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3684 		} else {
3685 			mac_prop_info_set_default_uint8(prh,
3686 			    ((Adapter->phy_ext_status &
3687 			    IEEE_ESR_1000T_FD_CAPS) ||
3688 			    (Adapter->phy_ext_status &
3689 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3690 		}
3691 		break;
3692 
3693 	case MAC_PROP_EN_100FDX_CAP:
3694 		if (hw->phy.media_type != e1000_media_type_copper) {
3695 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3696 		} else {
3697 			mac_prop_info_set_default_uint8(prh,
3698 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3699 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3700 			    ? 1 : 0);
3701 		}
3702 		break;
3703 
3704 	case MAC_PROP_EN_100HDX_CAP:
3705 		if (hw->phy.media_type != e1000_media_type_copper) {
3706 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3707 		} else {
3708 			mac_prop_info_set_default_uint8(prh,
3709 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3710 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3711 			    ? 1 : 0);
3712 		}
3713 		break;
3714 
3715 	case MAC_PROP_EN_10FDX_CAP:
3716 		if (hw->phy.media_type != e1000_media_type_copper) {
3717 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3718 		} else {
3719 			mac_prop_info_set_default_uint8(prh,
3720 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3721 		}
3722 		break;
3723 
3724 	case MAC_PROP_EN_10HDX_CAP:
3725 		if (hw->phy.media_type != e1000_media_type_copper) {
3726 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3727 		} else {
3728 			mac_prop_info_set_default_uint8(prh,
3729 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3730 		}
3731 		break;
3732 
3733 	case MAC_PROP_EN_1000HDX_CAP:
3734 		if (hw->phy.media_type != e1000_media_type_copper)
3735 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3736 		break;
3737 
3738 	case MAC_PROP_AUTONEG:
3739 		if (hw->phy.media_type != e1000_media_type_copper) {
3740 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3741 		} else {
3742 			mac_prop_info_set_default_uint8(prh,
3743 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3744 			    ? 1 : 0);
3745 		}
3746 		break;
3747 
3748 	case MAC_PROP_FLOWCTRL:
3749 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3750 		break;
3751 
3752 	case MAC_PROP_MTU: {
3753 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3754 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3755 		uint32_t max;
3756 
3757 		/* some MAC types do not support jumbo frames */
3758 		if ((mac->type == e1000_ich8lan) ||
3759 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3760 		    e1000_phy_ife))) {
3761 			max = DEFAULT_MTU;
3762 		} else {
3763 			max = Adapter->max_mtu;
3764 		}
3765 
3766 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3767 		break;
3768 	}
3769 	case MAC_PROP_PRIVATE: {
3770 		char valstr[64];
3771 		int value;
3772 
3773 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3774 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3775 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3776 			return;
3777 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3778 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3779 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3780 			value = DEFAULT_TX_INTR_ENABLE;
3781 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3782 			value = DEFAULT_TX_INTR_DELAY;
3783 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3784 			value = DEFAULT_TX_INTR_ABS_DELAY;
3785 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3786 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3787 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3788 			value = DEFAULT_RX_LIMIT_ON_INTR;
3789 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3790 			value = DEFAULT_RX_INTR_DELAY;
3791 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3792 			value = DEFAULT_RX_INTR_ABS_DELAY;
3793 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3794 			value = DEFAULT_INTR_THROTTLING;
3795 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3796 			value = 1;
3797 		} else {
3798 			return;
3799 		}
3800 
3801 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3802 		mac_prop_info_set_default_str(prh, valstr);
3803 		break;
3804 	}
3805 	}
3806 }
3807 
3808 /* ARGSUSED2 */
3809 static int
3810 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3811     uint_t pr_valsize, const void *pr_val)
3812 {
3813 	int err = 0;
3814 	long result;
3815 	struct e1000_hw *hw = &Adapter->shared;
3816 
3817 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3818 		if (pr_val == NULL) {
3819 			err = EINVAL;
3820 			return (err);
3821 		}
3822 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3823 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3824 		    result > MAX_TX_BCOPY_THRESHOLD)
3825 			err = EINVAL;
3826 		else {
3827 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3828 		}
3829 		return (err);
3830 	}
3831 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3832 		if (pr_val == NULL) {
3833 			err = EINVAL;
3834 			return (err);
3835 		}
3836 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3837 		if (result < 0 || result > 1)
3838 			err = EINVAL;
3839 		else {
3840 			Adapter->tx_intr_enable = (result == 1) ?
3841 			    B_TRUE: B_FALSE;
3842 			if (Adapter->tx_intr_enable)
3843 				e1000g_mask_tx_interrupt(Adapter);
3844 			else
3845 				e1000g_clear_tx_interrupt(Adapter);
3846 			if (e1000g_check_acc_handle(
3847 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3848 				ddi_fm_service_impact(Adapter->dip,
3849 				    DDI_SERVICE_DEGRADED);
3850 				err = EIO;
3851 			}
3852 		}
3853 		return (err);
3854 	}
3855 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3856 		if (pr_val == NULL) {
3857 			err = EINVAL;
3858 			return (err);
3859 		}
3860 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3861 		if (result < MIN_TX_INTR_DELAY ||
3862 		    result > MAX_TX_INTR_DELAY)
3863 			err = EINVAL;
3864 		else {
3865 			Adapter->tx_intr_delay = (uint32_t)result;
3866 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3867 			if (e1000g_check_acc_handle(
3868 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3869 				ddi_fm_service_impact(Adapter->dip,
3870 				    DDI_SERVICE_DEGRADED);
3871 				err = EIO;
3872 			}
3873 		}
3874 		return (err);
3875 	}
3876 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3877 		if (pr_val == NULL) {
3878 			err = EINVAL;
3879 			return (err);
3880 		}
3881 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3882 		if (result < MIN_TX_INTR_ABS_DELAY ||
3883 		    result > MAX_TX_INTR_ABS_DELAY)
3884 			err = EINVAL;
3885 		else {
3886 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3887 			E1000_WRITE_REG(hw, E1000_TADV,
3888 			    Adapter->tx_intr_abs_delay);
3889 			if (e1000g_check_acc_handle(
3890 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3891 				ddi_fm_service_impact(Adapter->dip,
3892 				    DDI_SERVICE_DEGRADED);
3893 				err = EIO;
3894 			}
3895 		}
3896 		return (err);
3897 	}
3898 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3899 		if (pr_val == NULL) {
3900 			err = EINVAL;
3901 			return (err);
3902 		}
3903 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3904 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3905 		    result > MAX_RX_BCOPY_THRESHOLD)
3906 			err = EINVAL;
3907 		else
3908 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3909 		return (err);
3910 	}
3911 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3912 		if (pr_val == NULL) {
3913 			err = EINVAL;
3914 			return (err);
3915 		}
3916 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3917 		if (result < MIN_RX_LIMIT_ON_INTR ||
3918 		    result > MAX_RX_LIMIT_ON_INTR)
3919 			err = EINVAL;
3920 		else
3921 			Adapter->rx_limit_onintr = (uint32_t)result;
3922 		return (err);
3923 	}
3924 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3925 		if (pr_val == NULL) {
3926 			err = EINVAL;
3927 			return (err);
3928 		}
3929 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3930 		if (result < MIN_RX_INTR_DELAY ||
3931 		    result > MAX_RX_INTR_DELAY)
3932 			err = EINVAL;
3933 		else {
3934 			Adapter->rx_intr_delay = (uint32_t)result;
3935 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3936 			if (e1000g_check_acc_handle(
3937 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3938 				ddi_fm_service_impact(Adapter->dip,
3939 				    DDI_SERVICE_DEGRADED);
3940 				err = EIO;
3941 			}
3942 		}
3943 		return (err);
3944 	}
3945 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3946 		if (pr_val == NULL) {
3947 			err = EINVAL;
3948 			return (err);
3949 		}
3950 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3951 		if (result < MIN_RX_INTR_ABS_DELAY ||
3952 		    result > MAX_RX_INTR_ABS_DELAY)
3953 			err = EINVAL;
3954 		else {
3955 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3956 			E1000_WRITE_REG(hw, E1000_RADV,
3957 			    Adapter->rx_intr_abs_delay);
3958 			if (e1000g_check_acc_handle(
3959 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3960 				ddi_fm_service_impact(Adapter->dip,
3961 				    DDI_SERVICE_DEGRADED);
3962 				err = EIO;
3963 			}
3964 		}
3965 		return (err);
3966 	}
3967 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3968 		if (pr_val == NULL) {
3969 			err = EINVAL;
3970 			return (err);
3971 		}
3972 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3973 		if (result < MIN_INTR_THROTTLING ||
3974 		    result > MAX_INTR_THROTTLING)
3975 			err = EINVAL;
3976 		else {
3977 			if (hw->mac.type >= e1000_82540) {
3978 				Adapter->intr_throttling_rate =
3979 				    (uint32_t)result;
3980 				E1000_WRITE_REG(hw, E1000_ITR,
3981 				    Adapter->intr_throttling_rate);
3982 				if (e1000g_check_acc_handle(
3983 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3984 					ddi_fm_service_impact(Adapter->dip,
3985 					    DDI_SERVICE_DEGRADED);
3986 					err = EIO;
3987 				}
3988 			} else
3989 				err = EINVAL;
3990 		}
3991 		return (err);
3992 	}
3993 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3994 		if (pr_val == NULL) {
3995 			err = EINVAL;
3996 			return (err);
3997 		}
3998 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3999 		if (result < 0 || result > 1)
4000 			err = EINVAL;
4001 		else {
4002 			if (hw->mac.type >= e1000_82540) {
4003 				Adapter->intr_adaptive = (result == 1) ?
4004 				    B_TRUE : B_FALSE;
4005 			} else {
4006 				err = EINVAL;
4007 			}
4008 		}
4009 		return (err);
4010 	}
4011 	return (ENOTSUP);
4012 }
4013 
4014 static int
4015 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
4016     uint_t pr_valsize, void *pr_val)
4017 {
4018 	int err = ENOTSUP;
4019 	int value;
4020 
4021 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
4022 		value = Adapter->param_adv_pause;
4023 		err = 0;
4024 		goto done;
4025 	}
4026 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
4027 		value = Adapter->param_adv_asym_pause;
4028 		err = 0;
4029 		goto done;
4030 	}
4031 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
4032 		value = Adapter->tx_bcopy_thresh;
4033 		err = 0;
4034 		goto done;
4035 	}
4036 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
4037 		value = Adapter->tx_intr_enable;
4038 		err = 0;
4039 		goto done;
4040 	}
4041 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
4042 		value = Adapter->tx_intr_delay;
4043 		err = 0;
4044 		goto done;
4045 	}
4046 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
4047 		value = Adapter->tx_intr_abs_delay;
4048 		err = 0;
4049 		goto done;
4050 	}
4051 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
4052 		value = Adapter->rx_bcopy_thresh;
4053 		err = 0;
4054 		goto done;
4055 	}
4056 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
4057 		value = Adapter->rx_limit_onintr;
4058 		err = 0;
4059 		goto done;
4060 	}
4061 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
4062 		value = Adapter->rx_intr_delay;
4063 		err = 0;
4064 		goto done;
4065 	}
4066 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
4067 		value = Adapter->rx_intr_abs_delay;
4068 		err = 0;
4069 		goto done;
4070 	}
4071 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4072 		value = Adapter->intr_throttling_rate;
4073 		err = 0;
4074 		goto done;
4075 	}
4076 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4077 		value = Adapter->intr_adaptive;
4078 		err = 0;
4079 		goto done;
4080 	}
4081 done:
4082 	if (err == 0) {
4083 		(void) snprintf(pr_val, pr_valsize, "%d", value);
4084 	}
4085 	return (err);
4086 }
4087 
4088 /*
4089  * e1000g_get_conf - get configurations set in e1000g.conf
4090  * This routine gets user-configured values out of the configuration
4091  * file e1000g.conf.
4092  *
4093  * For each configurable value, there is a minimum, a maximum, and a
4094  * default.
4095  * If user does not configure a value, use the default.
4096  * If user configures below the minimum, use the minumum.
4097  * If user configures above the maximum, use the maxumum.
4098  */
4099 static void
4100 e1000g_get_conf(struct e1000g *Adapter)
4101 {
4102 	struct e1000_hw *hw = &Adapter->shared;
4103 	boolean_t tbi_compatibility = B_FALSE;
4104 	boolean_t is_jumbo = B_FALSE;
4105 	int propval;
4106 	/*
4107 	 * decrease the number of descriptors and free packets
4108 	 * for jumbo frames to reduce tx/rx resource consumption
4109 	 */
4110 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
4111 		is_jumbo = B_TRUE;
4112 	}
4113 
4114 	/*
4115 	 * get each configurable property from e1000g.conf
4116 	 */
4117 
4118 	/*
4119 	 * NumTxDescriptors
4120 	 */
4121 	Adapter->tx_desc_num_flag =
4122 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
4123 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
4124 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
4125 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
4126 	Adapter->tx_desc_num = propval;
4127 
4128 	/*
4129 	 * NumRxDescriptors
4130 	 */
4131 	Adapter->rx_desc_num_flag =
4132 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
4133 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
4134 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
4135 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
4136 	Adapter->rx_desc_num = propval;
4137 
4138 	/*
4139 	 * NumRxFreeList
4140 	 */
4141 	Adapter->rx_buf_num_flag =
4142 	    e1000g_get_prop(Adapter, "NumRxFreeList",
4143 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
4144 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
4145 	    : DEFAULT_NUM_RX_FREELIST, &propval);
4146 	Adapter->rx_freelist_limit = propval;
4147 
4148 	/*
4149 	 * NumTxPacketList
4150 	 */
4151 	Adapter->tx_buf_num_flag =
4152 	    e1000g_get_prop(Adapter, "NumTxPacketList",
4153 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
4154 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
4155 	    : DEFAULT_NUM_TX_FREELIST, &propval);
4156 	Adapter->tx_freelist_num = propval;
4157 
4158 	/*
4159 	 * FlowControl
4160 	 */
4161 	hw->fc.send_xon = B_TRUE;
4162 	(void) e1000g_get_prop(Adapter, "FlowControl",
4163 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
4164 	hw->fc.requested_mode = propval;
4165 	/* 4 is the setting that says "let the eeprom decide" */
4166 	if (hw->fc.requested_mode == 4)
4167 		hw->fc.requested_mode = e1000_fc_default;
4168 
4169 	/*
4170 	 * Max Num Receive Packets on Interrupt
4171 	 */
4172 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
4173 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
4174 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
4175 	Adapter->rx_limit_onintr = propval;
4176 
4177 	/*
4178 	 * PHY master slave setting
4179 	 */
4180 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
4181 	    e1000_ms_hw_default, e1000_ms_auto,
4182 	    e1000_ms_hw_default, &propval);
4183 	hw->phy.ms_type = propval;
4184 
4185 	/*
4186 	 * Parameter which controls TBI mode workaround, which is only
4187 	 * needed on certain switches such as Cisco 6500/Foundry
4188 	 */
4189 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
4190 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
4191 	tbi_compatibility = (propval == 1);
4192 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
4193 
4194 	/*
4195 	 * MSI Enable
4196 	 */
4197 	(void) e1000g_get_prop(Adapter, "MSIEnable",
4198 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
4199 	Adapter->msi_enable = (propval == 1);
4200 
4201 	/*
4202 	 * Interrupt Throttling Rate
4203 	 */
4204 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
4205 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
4206 	    DEFAULT_INTR_THROTTLING, &propval);
4207 	Adapter->intr_throttling_rate = propval;
4208 
4209 	/*
4210 	 * Adaptive Interrupt Blanking Enable/Disable
4211 	 * It is enabled by default
4212 	 */
4213 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
4214 	    &propval);
4215 	Adapter->intr_adaptive = (propval == 1);
4216 
4217 	/*
4218 	 * Hardware checksum enable/disable parameter
4219 	 */
4220 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
4221 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
4222 	Adapter->tx_hcksum_enable = (propval == 1);
4223 	/*
4224 	 * Checksum on/off selection via global parameters.
4225 	 *
4226 	 * If the chip is flagged as not capable of (correctly)
4227 	 * handling checksumming, we don't enable it on either
4228 	 * Rx or Tx side.  Otherwise, we take this chip's settings
4229 	 * from the patchable global defaults.
4230 	 *
4231 	 * We advertise our capabilities only if TX offload is
4232 	 * enabled.  On receive, the stack will accept checksummed
4233 	 * packets anyway, even if we haven't said we can deliver
4234 	 * them.
4235 	 */
4236 	switch (hw->mac.type) {
4237 		case e1000_82540:
4238 		case e1000_82544:
4239 		case e1000_82545:
4240 		case e1000_82545_rev_3:
4241 		case e1000_82546:
4242 		case e1000_82546_rev_3:
4243 		case e1000_82571:
4244 		case e1000_82572:
4245 		case e1000_82573:
4246 		case e1000_80003es2lan:
4247 			break;
4248 		/*
4249 		 * For the following Intel PRO/1000 chipsets, we have not
4250 		 * tested the hardware checksum offload capability, so we
4251 		 * disable the capability for them.
4252 		 *	e1000_82542,
4253 		 *	e1000_82543,
4254 		 *	e1000_82541,
4255 		 *	e1000_82541_rev_2,
4256 		 *	e1000_82547,
4257 		 *	e1000_82547_rev_2,
4258 		 */
4259 		default:
4260 			Adapter->tx_hcksum_enable = B_FALSE;
4261 	}
4262 
4263 	/*
4264 	 * Large Send Offloading(LSO) Enable/Disable
4265 	 * If the tx hardware checksum is not enabled, LSO should be
4266 	 * disabled.
4267 	 */
4268 	(void) e1000g_get_prop(Adapter, "lso_enable",
4269 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4270 	Adapter->lso_enable = (propval == 1);
4271 
4272 	switch (hw->mac.type) {
4273 		case e1000_82546:
4274 		case e1000_82546_rev_3:
4275 			if (Adapter->lso_enable)
4276 				Adapter->lso_premature_issue = B_TRUE;
4277 			/* FALLTHRU */
4278 		case e1000_82571:
4279 		case e1000_82572:
4280 		case e1000_82573:
4281 		case e1000_80003es2lan:
4282 			break;
4283 		default:
4284 			Adapter->lso_enable = B_FALSE;
4285 	}
4286 
4287 	if (!Adapter->tx_hcksum_enable) {
4288 		Adapter->lso_premature_issue = B_FALSE;
4289 		Adapter->lso_enable = B_FALSE;
4290 	}
4291 
4292 	/*
4293 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4294 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4295 	 * will not cross 64k boundary.
4296 	 */
4297 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4298 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4299 	Adapter->mem_workaround_82546 = (propval == 1);
4300 
4301 	/*
4302 	 * Max number of multicast addresses
4303 	 */
4304 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4305 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4306 	    &propval);
4307 	Adapter->mcast_max_num = propval;
4308 }
4309 
4310 /*
4311  * e1000g_get_prop - routine to read properties
4312  *
4313  * Get a user-configure property value out of the configuration
4314  * file e1000g.conf.
4315  *
4316  * Caller provides name of the property, a default value, a minimum
4317  * value, a maximum value and a pointer to the returned property
4318  * value.
4319  *
4320  * Return B_TRUE if the configured value of the property is not a default
4321  * value, otherwise return B_FALSE.
4322  */
4323 static boolean_t
4324 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4325     char *propname,		/* name of the property */
4326     int minval,			/* minimum acceptable value */
4327     int maxval,			/* maximim acceptable value */
4328     int defval,			/* default value */
4329     int *propvalue)		/* property value return to caller */
4330 {
4331 	int propval;		/* value returned for requested property */
4332 	int *props;		/* point to array of properties returned */
4333 	uint_t nprops;		/* number of property value returned */
4334 	boolean_t ret = B_TRUE;
4335 
4336 	/*
4337 	 * get the array of properties from the config file
4338 	 */
4339 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4340 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4341 		/* got some properties, test if we got enough */
4342 		if (Adapter->instance < nprops) {
4343 			propval = props[Adapter->instance];
4344 		} else {
4345 			/* not enough properties configured */
4346 			propval = defval;
4347 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4348 			    "Not Enough %s values found in e1000g.conf"
4349 			    " - set to %d\n",
4350 			    propname, propval);
4351 			ret = B_FALSE;
4352 		}
4353 
4354 		/* free memory allocated for properties */
4355 		ddi_prop_free(props);
4356 
4357 	} else {
4358 		propval = defval;
4359 		ret = B_FALSE;
4360 	}
4361 
4362 	/*
4363 	 * enforce limits
4364 	 */
4365 	if (propval > maxval) {
4366 		propval = maxval;
4367 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4368 		    "Too High %s value in e1000g.conf - set to %d\n",
4369 		    propname, propval);
4370 	}
4371 
4372 	if (propval < minval) {
4373 		propval = minval;
4374 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4375 		    "Too Low %s value in e1000g.conf - set to %d\n",
4376 		    propname, propval);
4377 	}
4378 
4379 	*propvalue = propval;
4380 	return (ret);
4381 }
4382 
4383 static boolean_t
4384 e1000g_link_check(struct e1000g *Adapter)
4385 {
4386 	uint16_t speed, duplex, phydata;
4387 	boolean_t link_changed = B_FALSE;
4388 	struct e1000_hw *hw;
4389 	uint32_t reg_tarc;
4390 
4391 	hw = &Adapter->shared;
4392 
4393 	if (e1000g_link_up(Adapter)) {
4394 		/*
4395 		 * The Link is up, check whether it was marked as down earlier
4396 		 */
4397 		if (Adapter->link_state != LINK_STATE_UP) {
4398 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4399 			Adapter->link_speed = speed;
4400 			Adapter->link_duplex = duplex;
4401 			Adapter->link_state = LINK_STATE_UP;
4402 			link_changed = B_TRUE;
4403 
4404 			if (Adapter->link_speed == SPEED_1000)
4405 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4406 			else
4407 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4408 
4409 			Adapter->tx_link_down_timeout = 0;
4410 
4411 			if ((hw->mac.type == e1000_82571) ||
4412 			    (hw->mac.type == e1000_82572)) {
4413 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4414 				if (speed == SPEED_1000)
4415 					reg_tarc |= (1 << 21);
4416 				else
4417 					reg_tarc &= ~(1 << 21);
4418 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4419 			}
4420 		}
4421 		Adapter->smartspeed = 0;
4422 	} else {
4423 		if (Adapter->link_state != LINK_STATE_DOWN) {
4424 			Adapter->link_speed = 0;
4425 			Adapter->link_duplex = 0;
4426 			Adapter->link_state = LINK_STATE_DOWN;
4427 			link_changed = B_TRUE;
4428 
4429 			/*
4430 			 * SmartSpeed workaround for Tabor/TanaX, When the
4431 			 * driver loses link disable auto master/slave
4432 			 * resolution.
4433 			 */
4434 			if (hw->phy.type == e1000_phy_igp) {
4435 				(void) e1000_read_phy_reg(hw,
4436 				    PHY_1000T_CTRL, &phydata);
4437 				phydata |= CR_1000T_MS_ENABLE;
4438 				(void) e1000_write_phy_reg(hw,
4439 				    PHY_1000T_CTRL, phydata);
4440 			}
4441 		} else {
4442 			e1000g_smartspeed(Adapter);
4443 		}
4444 
4445 		if (Adapter->e1000g_state & E1000G_STARTED) {
4446 			if (Adapter->tx_link_down_timeout <
4447 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4448 				Adapter->tx_link_down_timeout++;
4449 			} else if (Adapter->tx_link_down_timeout ==
4450 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4451 				e1000g_tx_clean(Adapter);
4452 				Adapter->tx_link_down_timeout++;
4453 			}
4454 		}
4455 	}
4456 
4457 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4458 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4459 
4460 	return (link_changed);
4461 }
4462 
4463 /*
4464  * e1000g_reset_link - Using the link properties to setup the link
4465  */
4466 int
4467 e1000g_reset_link(struct e1000g *Adapter)
4468 {
4469 	struct e1000_mac_info *mac;
4470 	struct e1000_phy_info *phy;
4471 	struct e1000_hw *hw;
4472 	boolean_t invalid;
4473 
4474 	mac = &Adapter->shared.mac;
4475 	phy = &Adapter->shared.phy;
4476 	hw = &Adapter->shared;
4477 	invalid = B_FALSE;
4478 
4479 	if (hw->phy.media_type != e1000_media_type_copper)
4480 		goto out;
4481 
4482 	if (Adapter->param_adv_autoneg == 1) {
4483 		mac->autoneg = B_TRUE;
4484 		phy->autoneg_advertised = 0;
4485 
4486 		/*
4487 		 * 1000hdx is not supported for autonegotiation
4488 		 */
4489 		if (Adapter->param_adv_1000fdx == 1)
4490 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4491 
4492 		if (Adapter->param_adv_100fdx == 1)
4493 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4494 
4495 		if (Adapter->param_adv_100hdx == 1)
4496 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4497 
4498 		if (Adapter->param_adv_10fdx == 1)
4499 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4500 
4501 		if (Adapter->param_adv_10hdx == 1)
4502 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4503 
4504 		if (phy->autoneg_advertised == 0)
4505 			invalid = B_TRUE;
4506 	} else {
4507 		mac->autoneg = B_FALSE;
4508 
4509 		/*
4510 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4511 		 * supported for forced link
4512 		 */
4513 		if (Adapter->param_adv_100fdx == 1)
4514 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4515 		else if (Adapter->param_adv_100hdx == 1)
4516 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4517 		else if (Adapter->param_adv_10fdx == 1)
4518 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4519 		else if (Adapter->param_adv_10hdx == 1)
4520 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4521 		else
4522 			invalid = B_TRUE;
4523 
4524 	}
4525 
4526 	if (invalid) {
4527 		e1000g_log(Adapter, CE_WARN,
4528 		    "Invalid link settings. Setup link to "
4529 		    "support autonegotiation with all link capabilities.");
4530 		mac->autoneg = B_TRUE;
4531 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4532 	}
4533 
4534 out:
4535 	return (e1000_setup_link(&Adapter->shared));
4536 }
4537 
4538 static void
4539 e1000g_timer_tx_resched(struct e1000g *Adapter)
4540 {
4541 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4542 
4543 	rw_enter(&Adapter->chip_lock, RW_READER);
4544 
4545 	if (tx_ring->resched_needed &&
4546 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4547 	    drv_usectohz(1000000)) &&
4548 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4549 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4550 		tx_ring->resched_needed = B_FALSE;
4551 		mac_tx_update(Adapter->mh);
4552 		E1000G_STAT(tx_ring->stat_reschedule);
4553 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4554 	}
4555 
4556 	rw_exit(&Adapter->chip_lock);
4557 }
4558 
4559 static void
4560 e1000g_local_timer(void *ws)
4561 {
4562 	struct e1000g *Adapter = (struct e1000g *)ws;
4563 	struct e1000_hw *hw;
4564 	e1000g_ether_addr_t ether_addr;
4565 	boolean_t link_changed;
4566 
4567 	hw = &Adapter->shared;
4568 
4569 	if (Adapter->e1000g_state & E1000G_ERROR) {
4570 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4571 		Adapter->e1000g_state &= ~E1000G_ERROR;
4572 		rw_exit(&Adapter->chip_lock);
4573 
4574 		Adapter->reset_count++;
4575 		if (e1000g_global_reset(Adapter)) {
4576 			ddi_fm_service_impact(Adapter->dip,
4577 			    DDI_SERVICE_RESTORED);
4578 			e1000g_timer_tx_resched(Adapter);
4579 		} else
4580 			ddi_fm_service_impact(Adapter->dip,
4581 			    DDI_SERVICE_LOST);
4582 		return;
4583 	}
4584 
4585 	if (e1000g_stall_check(Adapter)) {
4586 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4587 		    "Tx stall detected. Activate automatic recovery.\n");
4588 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4589 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4590 		Adapter->reset_count++;
4591 		if (e1000g_reset_adapter(Adapter)) {
4592 			ddi_fm_service_impact(Adapter->dip,
4593 			    DDI_SERVICE_RESTORED);
4594 			e1000g_timer_tx_resched(Adapter);
4595 		}
4596 		return;
4597 	}
4598 
4599 	link_changed = B_FALSE;
4600 	rw_enter(&Adapter->chip_lock, RW_READER);
4601 	if (Adapter->link_complete)
4602 		link_changed = e1000g_link_check(Adapter);
4603 	rw_exit(&Adapter->chip_lock);
4604 
4605 	if (link_changed) {
4606 		if (!Adapter->reset_flag &&
4607 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4608 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4609 			mac_link_update(Adapter->mh, Adapter->link_state);
4610 		if (Adapter->link_state == LINK_STATE_UP)
4611 			Adapter->reset_flag = B_FALSE;
4612 	}
4613 	/*
4614 	 * Workaround for esb2. Data stuck in fifo on a link
4615 	 * down event. Reset the adapter to recover it.
4616 	 */
4617 	if (Adapter->esb2_workaround) {
4618 		Adapter->esb2_workaround = B_FALSE;
4619 		(void) e1000g_reset_adapter(Adapter);
4620 		return;
4621 	}
4622 
4623 	/*
4624 	 * With 82571 controllers, any locally administered address will
4625 	 * be overwritten when there is a reset on the other port.
4626 	 * Detect this circumstance and correct it.
4627 	 */
4628 	if ((hw->mac.type == e1000_82571) &&
4629 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4630 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4631 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4632 
4633 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4634 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4635 
4636 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4637 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4638 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4639 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4640 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4641 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4642 			(void) e1000_rar_set(hw, hw->mac.addr, 0);
4643 		}
4644 	}
4645 
4646 	/*
4647 	 * Long TTL workaround for 82541/82547
4648 	 */
4649 	(void) e1000_igp_ttl_workaround_82547(hw);
4650 
4651 	/*
4652 	 * Check for Adaptive IFS settings If there are lots of collisions
4653 	 * change the value in steps...
4654 	 * These properties should only be set for 10/100
4655 	 */
4656 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4657 	    ((Adapter->link_speed == SPEED_100) ||
4658 	    (Adapter->link_speed == SPEED_10))) {
4659 		e1000_update_adaptive(hw);
4660 	}
4661 	/*
4662 	 * Set Timer Interrupts
4663 	 */
4664 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4665 
4666 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4667 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4668 	else
4669 		e1000g_timer_tx_resched(Adapter);
4670 
4671 	restart_watchdog_timer(Adapter);
4672 }
4673 
4674 /*
4675  * The function e1000g_link_timer() is called when the timer for link setup
4676  * is expired, which indicates the completion of the link setup. The link
4677  * state will not be updated until the link setup is completed. And the
4678  * link state will not be sent to the upper layer through mac_link_update()
4679  * in this function. It will be updated in the local timer routine or the
4680  * interrupt service routine after the interface is started (plumbed).
4681  */
4682 static void
4683 e1000g_link_timer(void *arg)
4684 {
4685 	struct e1000g *Adapter = (struct e1000g *)arg;
4686 
4687 	mutex_enter(&Adapter->link_lock);
4688 	Adapter->link_complete = B_TRUE;
4689 	Adapter->link_tid = 0;
4690 	mutex_exit(&Adapter->link_lock);
4691 }
4692 
4693 /*
4694  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4695  *
4696  * This function read the forced speed and duplex for 10/100 Mbps speeds
4697  * and also for 1000 Mbps speeds from the e1000g.conf file
4698  */
4699 static void
4700 e1000g_force_speed_duplex(struct e1000g *Adapter)
4701 {
4702 	int forced;
4703 	int propval;
4704 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4705 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4706 
4707 	/*
4708 	 * get value out of config file
4709 	 */
4710 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4711 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4712 
4713 	switch (forced) {
4714 	case GDIAG_10_HALF:
4715 		/*
4716 		 * Disable Auto Negotiation
4717 		 */
4718 		mac->autoneg = B_FALSE;
4719 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4720 		break;
4721 	case GDIAG_10_FULL:
4722 		/*
4723 		 * Disable Auto Negotiation
4724 		 */
4725 		mac->autoneg = B_FALSE;
4726 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4727 		break;
4728 	case GDIAG_100_HALF:
4729 		/*
4730 		 * Disable Auto Negotiation
4731 		 */
4732 		mac->autoneg = B_FALSE;
4733 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4734 		break;
4735 	case GDIAG_100_FULL:
4736 		/*
4737 		 * Disable Auto Negotiation
4738 		 */
4739 		mac->autoneg = B_FALSE;
4740 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4741 		break;
4742 	case GDIAG_1000_FULL:
4743 		/*
4744 		 * The gigabit spec requires autonegotiation.  Therefore,
4745 		 * when the user wants to force the speed to 1000Mbps, we
4746 		 * enable AutoNeg, but only allow the harware to advertise
4747 		 * 1000Mbps.  This is different from 10/100 operation, where
4748 		 * we are allowed to link without any negotiation.
4749 		 */
4750 		mac->autoneg = B_TRUE;
4751 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4752 		break;
4753 	default:	/* obey the setting of AutoNegAdvertised */
4754 		mac->autoneg = B_TRUE;
4755 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4756 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4757 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4758 		phy->autoneg_advertised = (uint16_t)propval;
4759 		break;
4760 	}	/* switch */
4761 }
4762 
4763 /*
4764  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4765  *
4766  * This function reads MaxFrameSize from e1000g.conf
4767  */
4768 static void
4769 e1000g_get_max_frame_size(struct e1000g *Adapter)
4770 {
4771 	int max_frame;
4772 
4773 	/*
4774 	 * get value out of config file
4775 	 */
4776 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4777 	    &max_frame);
4778 
4779 	switch (max_frame) {
4780 	case 0:
4781 		Adapter->default_mtu = ETHERMTU;
4782 		break;
4783 	case 1:
4784 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4785 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4786 		break;
4787 	case 2:
4788 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4789 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4790 		break;
4791 	case 3:
4792 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4793 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4794 		break;
4795 	default:
4796 		Adapter->default_mtu = ETHERMTU;
4797 		break;
4798 	}	/* switch */
4799 
4800 	/*
4801 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4802 	 * the MTU is set to the deivce's maximum value.
4803 	 */
4804 	if (Adapter->default_mtu > Adapter->max_mtu)
4805 		Adapter->default_mtu = Adapter->max_mtu;
4806 
4807 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4808 }
4809 
4810 /*
4811  * e1000g_pch_limits - Apply limits of the PCH silicon type
4812  *
4813  * At any frame size larger than the ethernet default,
4814  * prevent linking at 10/100 speeds.
4815  */
4816 static void
4817 e1000g_pch_limits(struct e1000g *Adapter)
4818 {
4819 	struct e1000_hw *hw = &Adapter->shared;
4820 
4821 	/* only applies to PCH silicon type */
4822 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4823 		return;
4824 
4825 	/* only applies to frames larger than ethernet default */
4826 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4827 		hw->mac.autoneg = B_TRUE;
4828 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4829 
4830 		Adapter->param_adv_autoneg = 1;
4831 		Adapter->param_adv_1000fdx = 1;
4832 
4833 		Adapter->param_adv_100fdx = 0;
4834 		Adapter->param_adv_100hdx = 0;
4835 		Adapter->param_adv_10fdx = 0;
4836 		Adapter->param_adv_10hdx = 0;
4837 
4838 		e1000g_param_sync(Adapter);
4839 	}
4840 }
4841 
4842 /*
4843  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4844  */
4845 static uint32_t
4846 e1000g_mtu2maxframe(uint32_t mtu)
4847 {
4848 	uint32_t maxframe;
4849 
4850 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4851 
4852 	return (maxframe);
4853 }
4854 
4855 static void
4856 arm_watchdog_timer(struct e1000g *Adapter)
4857 {
4858 	Adapter->watchdog_tid =
4859 	    timeout(e1000g_local_timer,
4860 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4861 }
4862 #pragma inline(arm_watchdog_timer)
4863 
4864 static void
4865 enable_watchdog_timer(struct e1000g *Adapter)
4866 {
4867 	mutex_enter(&Adapter->watchdog_lock);
4868 
4869 	if (!Adapter->watchdog_timer_enabled) {
4870 		Adapter->watchdog_timer_enabled = B_TRUE;
4871 		Adapter->watchdog_timer_started = B_TRUE;
4872 		arm_watchdog_timer(Adapter);
4873 	}
4874 
4875 	mutex_exit(&Adapter->watchdog_lock);
4876 }
4877 
4878 static void
4879 disable_watchdog_timer(struct e1000g *Adapter)
4880 {
4881 	timeout_id_t tid;
4882 
4883 	mutex_enter(&Adapter->watchdog_lock);
4884 
4885 	Adapter->watchdog_timer_enabled = B_FALSE;
4886 	Adapter->watchdog_timer_started = B_FALSE;
4887 	tid = Adapter->watchdog_tid;
4888 	Adapter->watchdog_tid = 0;
4889 
4890 	mutex_exit(&Adapter->watchdog_lock);
4891 
4892 	if (tid != 0)
4893 		(void) untimeout(tid);
4894 }
4895 
4896 static void
4897 start_watchdog_timer(struct e1000g *Adapter)
4898 {
4899 	mutex_enter(&Adapter->watchdog_lock);
4900 
4901 	if (Adapter->watchdog_timer_enabled) {
4902 		if (!Adapter->watchdog_timer_started) {
4903 			Adapter->watchdog_timer_started = B_TRUE;
4904 			arm_watchdog_timer(Adapter);
4905 		}
4906 	}
4907 
4908 	mutex_exit(&Adapter->watchdog_lock);
4909 }
4910 
4911 static void
4912 restart_watchdog_timer(struct e1000g *Adapter)
4913 {
4914 	mutex_enter(&Adapter->watchdog_lock);
4915 
4916 	if (Adapter->watchdog_timer_started)
4917 		arm_watchdog_timer(Adapter);
4918 
4919 	mutex_exit(&Adapter->watchdog_lock);
4920 }
4921 
4922 static void
4923 stop_watchdog_timer(struct e1000g *Adapter)
4924 {
4925 	timeout_id_t tid;
4926 
4927 	mutex_enter(&Adapter->watchdog_lock);
4928 
4929 	Adapter->watchdog_timer_started = B_FALSE;
4930 	tid = Adapter->watchdog_tid;
4931 	Adapter->watchdog_tid = 0;
4932 
4933 	mutex_exit(&Adapter->watchdog_lock);
4934 
4935 	if (tid != 0)
4936 		(void) untimeout(tid);
4937 }
4938 
4939 static void
4940 stop_link_timer(struct e1000g *Adapter)
4941 {
4942 	timeout_id_t tid;
4943 
4944 	/* Disable the link timer */
4945 	mutex_enter(&Adapter->link_lock);
4946 
4947 	tid = Adapter->link_tid;
4948 	Adapter->link_tid = 0;
4949 
4950 	mutex_exit(&Adapter->link_lock);
4951 
4952 	if (tid != 0)
4953 		(void) untimeout(tid);
4954 }
4955 
4956 static void
4957 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4958 {
4959 	timeout_id_t tid;
4960 
4961 	/* Disable the tx timer for 82547 chipset */
4962 	mutex_enter(&tx_ring->tx_lock);
4963 
4964 	tx_ring->timer_enable_82547 = B_FALSE;
4965 	tid = tx_ring->timer_id_82547;
4966 	tx_ring->timer_id_82547 = 0;
4967 
4968 	mutex_exit(&tx_ring->tx_lock);
4969 
4970 	if (tid != 0)
4971 		(void) untimeout(tid);
4972 }
4973 
4974 void
4975 e1000g_clear_interrupt(struct e1000g *Adapter)
4976 {
4977 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4978 	    0xffffffff & ~E1000_IMS_RXSEQ);
4979 }
4980 
4981 void
4982 e1000g_mask_interrupt(struct e1000g *Adapter)
4983 {
4984 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4985 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4986 
4987 	if (Adapter->tx_intr_enable)
4988 		e1000g_mask_tx_interrupt(Adapter);
4989 }
4990 
4991 /*
4992  * This routine is called by e1000g_quiesce(), therefore must not block.
4993  */
4994 void
4995 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4996 {
4997 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4998 }
4999 
5000 void
5001 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
5002 {
5003 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
5004 }
5005 
5006 void
5007 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
5008 {
5009 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
5010 }
5011 
5012 static void
5013 e1000g_smartspeed(struct e1000g *Adapter)
5014 {
5015 	struct e1000_hw *hw = &Adapter->shared;
5016 	uint16_t phy_status;
5017 	uint16_t phy_ctrl;
5018 
5019 	/*
5020 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
5021 	 * advertising 1000Full, we don't even use the workaround
5022 	 */
5023 	if ((hw->phy.type != e1000_phy_igp) ||
5024 	    !hw->mac.autoneg ||
5025 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
5026 		return;
5027 
5028 	/*
5029 	 * True if this is the first call of this function or after every
5030 	 * 30 seconds of not having link
5031 	 */
5032 	if (Adapter->smartspeed == 0) {
5033 		/*
5034 		 * If Master/Slave config fault is asserted twice, we
5035 		 * assume back-to-back
5036 		 */
5037 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5038 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5039 			return;
5040 
5041 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5042 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5043 			return;
5044 		/*
5045 		 * We're assuming back-2-back because our status register
5046 		 * insists! there's a fault in the master/slave
5047 		 * relationship that was "negotiated"
5048 		 */
5049 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5050 		/*
5051 		 * Is the phy configured for manual configuration of
5052 		 * master/slave?
5053 		 */
5054 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
5055 			/*
5056 			 * Yes.  Then disable manual configuration (enable
5057 			 * auto configuration) of master/slave
5058 			 */
5059 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
5060 			(void) e1000_write_phy_reg(hw,
5061 			    PHY_1000T_CTRL, phy_ctrl);
5062 			/*
5063 			 * Effectively starting the clock
5064 			 */
5065 			Adapter->smartspeed++;
5066 			/*
5067 			 * Restart autonegotiation
5068 			 */
5069 			if (!e1000_phy_setup_autoneg(hw) &&
5070 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5071 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
5072 				    MII_CR_RESTART_AUTO_NEG);
5073 				(void) e1000_write_phy_reg(hw,
5074 				    PHY_CONTROL, phy_ctrl);
5075 			}
5076 		}
5077 		return;
5078 		/*
5079 		 * Has 6 seconds transpired still without link? Remember,
5080 		 * you should reset the smartspeed counter once you obtain
5081 		 * link
5082 		 */
5083 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
5084 		/*
5085 		 * Yes.  Remember, we did at the start determine that
5086 		 * there's a master/slave configuration fault, so we're
5087 		 * still assuming there's someone on the other end, but we
5088 		 * just haven't yet been able to talk to it. We then
5089 		 * re-enable auto configuration of master/slave to see if
5090 		 * we're running 2/3 pair cables.
5091 		 */
5092 		/*
5093 		 * If still no link, perhaps using 2/3 pair cable
5094 		 */
5095 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5096 		phy_ctrl |= CR_1000T_MS_ENABLE;
5097 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
5098 		/*
5099 		 * Restart autoneg with phy enabled for manual
5100 		 * configuration of master/slave
5101 		 */
5102 		if (!e1000_phy_setup_autoneg(hw) &&
5103 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5104 			phy_ctrl |=
5105 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
5106 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
5107 		}
5108 		/*
5109 		 * Hopefully, there are no more faults and we've obtained
5110 		 * link as a result.
5111 		 */
5112 	}
5113 	/*
5114 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
5115 	 * seconds)
5116 	 */
5117 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
5118 		Adapter->smartspeed = 0;
5119 }
5120 
5121 static boolean_t
5122 is_valid_mac_addr(uint8_t *mac_addr)
5123 {
5124 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
5125 	const uint8_t addr_test2[6] =
5126 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5127 
5128 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
5129 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
5130 		return (B_FALSE);
5131 
5132 	return (B_TRUE);
5133 }
5134 
5135 /*
5136  * e1000g_stall_check - check for tx stall
5137  *
5138  * This function checks if the adapter is stalled (in transmit).
5139  *
5140  * It is called each time the watchdog timeout is invoked.
5141  * If the transmit descriptor reclaim continuously fails,
5142  * the watchdog value will increment by 1. If the watchdog
5143  * value exceeds the threshold, the adapter is assumed to
5144  * have stalled and need to be reset.
5145  */
5146 static boolean_t
5147 e1000g_stall_check(struct e1000g *Adapter)
5148 {
5149 	e1000g_tx_ring_t *tx_ring;
5150 
5151 	tx_ring = Adapter->tx_ring;
5152 
5153 	if (Adapter->link_state != LINK_STATE_UP)
5154 		return (B_FALSE);
5155 
5156 	(void) e1000g_recycle(tx_ring);
5157 
5158 	if (Adapter->stall_flag)
5159 		return (B_TRUE);
5160 
5161 	return (B_FALSE);
5162 }
5163 
5164 #ifdef E1000G_DEBUG
5165 static enum ioc_reply
5166 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
5167 {
5168 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
5169 	e1000g_peekpoke_t *ppd;
5170 	uint64_t mem_va;
5171 	uint64_t maxoff;
5172 	boolean_t peek;
5173 
5174 	switch (iocp->ioc_cmd) {
5175 
5176 	case E1000G_IOC_REG_PEEK:
5177 		peek = B_TRUE;
5178 		break;
5179 
5180 	case E1000G_IOC_REG_POKE:
5181 		peek = B_FALSE;
5182 		break;
5183 
5184 	deault:
5185 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5186 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
5187 		    iocp->ioc_cmd);
5188 		return (IOC_INVAL);
5189 	}
5190 
5191 	/*
5192 	 * Validate format of ioctl
5193 	 */
5194 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
5195 		return (IOC_INVAL);
5196 	if (mp->b_cont == NULL)
5197 		return (IOC_INVAL);
5198 
5199 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
5200 
5201 	/*
5202 	 * Validate request parameters
5203 	 */
5204 	switch (ppd->pp_acc_space) {
5205 
5206 	default:
5207 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5208 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
5209 		    ppd->pp_acc_space);
5210 		return (IOC_INVAL);
5211 
5212 	case E1000G_PP_SPACE_REG:
5213 		/*
5214 		 * Memory-mapped I/O space
5215 		 */
5216 		ASSERT(ppd->pp_acc_size == 4);
5217 		if (ppd->pp_acc_size != 4)
5218 			return (IOC_INVAL);
5219 
5220 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5221 			return (IOC_INVAL);
5222 
5223 		mem_va = 0;
5224 		maxoff = 0x10000;
5225 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
5226 		break;
5227 
5228 	case E1000G_PP_SPACE_E1000G:
5229 		/*
5230 		 * E1000g data structure!
5231 		 */
5232 		mem_va = (uintptr_t)e1000gp;
5233 		maxoff = sizeof (struct e1000g);
5234 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
5235 		break;
5236 
5237 	}
5238 
5239 	if (ppd->pp_acc_offset >= maxoff)
5240 		return (IOC_INVAL);
5241 
5242 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
5243 		return (IOC_INVAL);
5244 
5245 	/*
5246 	 * All OK - go!
5247 	 */
5248 	ppd->pp_acc_offset += mem_va;
5249 	(*ppfn)(e1000gp, ppd);
5250 	return (peek ? IOC_REPLY : IOC_ACK);
5251 }
5252 
5253 static void
5254 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5255 {
5256 	ddi_acc_handle_t handle;
5257 	uint32_t *regaddr;
5258 
5259 	handle = e1000gp->osdep.reg_handle;
5260 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5261 	    (uintptr_t)ppd->pp_acc_offset);
5262 
5263 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5264 }
5265 
5266 static void
5267 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5268 {
5269 	ddi_acc_handle_t handle;
5270 	uint32_t *regaddr;
5271 	uint32_t value;
5272 
5273 	handle = e1000gp->osdep.reg_handle;
5274 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5275 	    (uintptr_t)ppd->pp_acc_offset);
5276 	value = (uint32_t)ppd->pp_acc_data;
5277 
5278 	ddi_put32(handle, regaddr, value);
5279 }
5280 
5281 static void
5282 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5283 {
5284 	uint64_t value;
5285 	void *vaddr;
5286 
5287 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5288 
5289 	switch (ppd->pp_acc_size) {
5290 	case 1:
5291 		value = *(uint8_t *)vaddr;
5292 		break;
5293 
5294 	case 2:
5295 		value = *(uint16_t *)vaddr;
5296 		break;
5297 
5298 	case 4:
5299 		value = *(uint32_t *)vaddr;
5300 		break;
5301 
5302 	case 8:
5303 		value = *(uint64_t *)vaddr;
5304 		break;
5305 	}
5306 
5307 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5308 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5309 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5310 
5311 	ppd->pp_acc_data = value;
5312 }
5313 
5314 static void
5315 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5316 {
5317 	uint64_t value;
5318 	void *vaddr;
5319 
5320 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5321 	value = ppd->pp_acc_data;
5322 
5323 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5324 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5325 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5326 
5327 	switch (ppd->pp_acc_size) {
5328 	case 1:
5329 		*(uint8_t *)vaddr = (uint8_t)value;
5330 		break;
5331 
5332 	case 2:
5333 		*(uint16_t *)vaddr = (uint16_t)value;
5334 		break;
5335 
5336 	case 4:
5337 		*(uint32_t *)vaddr = (uint32_t)value;
5338 		break;
5339 
5340 	case 8:
5341 		*(uint64_t *)vaddr = (uint64_t)value;
5342 		break;
5343 	}
5344 }
5345 #endif
5346 
5347 /*
5348  * Loopback Support
5349  */
5350 static lb_property_t lb_normal =
5351 	{ normal,	"normal",	E1000G_LB_NONE		};
5352 static lb_property_t lb_external1000 =
5353 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5354 static lb_property_t lb_external100 =
5355 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5356 static lb_property_t lb_external10 =
5357 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5358 static lb_property_t lb_phy =
5359 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5360 
5361 static enum ioc_reply
5362 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5363 {
5364 	lb_info_sz_t *lbsp;
5365 	lb_property_t *lbpp;
5366 	struct e1000_hw *hw;
5367 	uint32_t *lbmp;
5368 	uint32_t size;
5369 	uint32_t value;
5370 
5371 	hw = &Adapter->shared;
5372 
5373 	if (mp->b_cont == NULL)
5374 		return (IOC_INVAL);
5375 
5376 	if (!e1000g_check_loopback_support(hw)) {
5377 		e1000g_log(NULL, CE_WARN,
5378 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5379 		return (IOC_INVAL);
5380 	}
5381 
5382 	switch (iocp->ioc_cmd) {
5383 	default:
5384 		return (IOC_INVAL);
5385 
5386 	case LB_GET_INFO_SIZE:
5387 		size = sizeof (lb_info_sz_t);
5388 		if (iocp->ioc_count != size)
5389 			return (IOC_INVAL);
5390 
5391 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5392 		e1000g_get_phy_state(Adapter);
5393 
5394 		/*
5395 		 * Workaround for hardware faults. In order to get a stable
5396 		 * state of phy, we will wait for a specific interval and
5397 		 * try again. The time delay is an experiential value based
5398 		 * on our testing.
5399 		 */
5400 		msec_delay(100);
5401 		e1000g_get_phy_state(Adapter);
5402 		rw_exit(&Adapter->chip_lock);
5403 
5404 		value = sizeof (lb_normal);
5405 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5406 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5407 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5408 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5409 			value += sizeof (lb_phy);
5410 			switch (hw->mac.type) {
5411 			case e1000_82571:
5412 			case e1000_82572:
5413 			case e1000_80003es2lan:
5414 				value += sizeof (lb_external1000);
5415 				break;
5416 			}
5417 		}
5418 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5419 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5420 			value += sizeof (lb_external100);
5421 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5422 			value += sizeof (lb_external10);
5423 
5424 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5425 		*lbsp = value;
5426 		break;
5427 
5428 	case LB_GET_INFO:
5429 		value = sizeof (lb_normal);
5430 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5431 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5432 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5433 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5434 			value += sizeof (lb_phy);
5435 			switch (hw->mac.type) {
5436 			case e1000_82571:
5437 			case e1000_82572:
5438 			case e1000_80003es2lan:
5439 				value += sizeof (lb_external1000);
5440 				break;
5441 			}
5442 		}
5443 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5444 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5445 			value += sizeof (lb_external100);
5446 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5447 			value += sizeof (lb_external10);
5448 
5449 		size = value;
5450 		if (iocp->ioc_count != size)
5451 			return (IOC_INVAL);
5452 
5453 		value = 0;
5454 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5455 		lbpp[value++] = lb_normal;
5456 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5457 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5458 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5459 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5460 			lbpp[value++] = lb_phy;
5461 			switch (hw->mac.type) {
5462 			case e1000_82571:
5463 			case e1000_82572:
5464 			case e1000_80003es2lan:
5465 				lbpp[value++] = lb_external1000;
5466 				break;
5467 			}
5468 		}
5469 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5470 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5471 			lbpp[value++] = lb_external100;
5472 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5473 			lbpp[value++] = lb_external10;
5474 		break;
5475 
5476 	case LB_GET_MODE:
5477 		size = sizeof (uint32_t);
5478 		if (iocp->ioc_count != size)
5479 			return (IOC_INVAL);
5480 
5481 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5482 		*lbmp = Adapter->loopback_mode;
5483 		break;
5484 
5485 	case LB_SET_MODE:
5486 		size = 0;
5487 		if (iocp->ioc_count != sizeof (uint32_t))
5488 			return (IOC_INVAL);
5489 
5490 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5491 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5492 			return (IOC_INVAL);
5493 		break;
5494 	}
5495 
5496 	iocp->ioc_count = size;
5497 	iocp->ioc_error = 0;
5498 
5499 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5500 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5501 		return (IOC_INVAL);
5502 	}
5503 
5504 	return (IOC_REPLY);
5505 }
5506 
5507 static boolean_t
5508 e1000g_check_loopback_support(struct e1000_hw *hw)
5509 {
5510 	switch (hw->mac.type) {
5511 	case e1000_82540:
5512 	case e1000_82545:
5513 	case e1000_82545_rev_3:
5514 	case e1000_82546:
5515 	case e1000_82546_rev_3:
5516 	case e1000_82541:
5517 	case e1000_82541_rev_2:
5518 	case e1000_82547:
5519 	case e1000_82547_rev_2:
5520 	case e1000_82571:
5521 	case e1000_82572:
5522 	case e1000_82573:
5523 	case e1000_82574:
5524 	case e1000_80003es2lan:
5525 	case e1000_ich9lan:
5526 	case e1000_ich10lan:
5527 		return (B_TRUE);
5528 	}
5529 	return (B_FALSE);
5530 }
5531 
5532 static boolean_t
5533 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5534 {
5535 	struct e1000_hw *hw;
5536 	int i, times;
5537 	boolean_t link_up;
5538 
5539 	if (mode == Adapter->loopback_mode)
5540 		return (B_TRUE);
5541 
5542 	hw = &Adapter->shared;
5543 	times = 0;
5544 
5545 	Adapter->loopback_mode = mode;
5546 
5547 	if (mode == E1000G_LB_NONE) {
5548 		/* Reset the chip */
5549 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5550 		(void) e1000g_reset_adapter(Adapter);
5551 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5552 		return (B_TRUE);
5553 	}
5554 
5555 again:
5556 
5557 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5558 
5559 	switch (mode) {
5560 	default:
5561 		rw_exit(&Adapter->chip_lock);
5562 		return (B_FALSE);
5563 
5564 	case E1000G_LB_EXTERNAL_1000:
5565 		e1000g_set_external_loopback_1000(Adapter);
5566 		break;
5567 
5568 	case E1000G_LB_EXTERNAL_100:
5569 		e1000g_set_external_loopback_100(Adapter);
5570 		break;
5571 
5572 	case E1000G_LB_EXTERNAL_10:
5573 		e1000g_set_external_loopback_10(Adapter);
5574 		break;
5575 
5576 	case E1000G_LB_INTERNAL_PHY:
5577 		e1000g_set_internal_loopback(Adapter);
5578 		break;
5579 	}
5580 
5581 	times++;
5582 
5583 	rw_exit(&Adapter->chip_lock);
5584 
5585 	/* Wait for link up */
5586 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5587 		msec_delay(100);
5588 
5589 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5590 
5591 	link_up = e1000g_link_up(Adapter);
5592 
5593 	rw_exit(&Adapter->chip_lock);
5594 
5595 	if (!link_up) {
5596 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5597 		    "Failed to get the link up");
5598 		if (times < 2) {
5599 			/* Reset the link */
5600 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5601 			    "Reset the link ...");
5602 			(void) e1000g_reset_adapter(Adapter);
5603 			goto again;
5604 		}
5605 
5606 		/*
5607 		 * Reset driver to loopback none when set loopback failed
5608 		 * for the second time.
5609 		 */
5610 		Adapter->loopback_mode = E1000G_LB_NONE;
5611 
5612 		/* Reset the chip */
5613 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5614 		(void) e1000g_reset_adapter(Adapter);
5615 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5616 
5617 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5618 		    "Set loopback mode failed, reset to loopback none");
5619 
5620 		return (B_FALSE);
5621 	}
5622 
5623 	return (B_TRUE);
5624 }
5625 
5626 /*
5627  * The following loopback settings are from Intel's technical
5628  * document - "How To Loopback". All the register settings and
5629  * time delay values are directly inherited from the document
5630  * without more explanations available.
5631  */
5632 static void
5633 e1000g_set_internal_loopback(struct e1000g *Adapter)
5634 {
5635 	struct e1000_hw *hw;
5636 	uint32_t ctrl;
5637 	uint32_t status;
5638 	uint16_t phy_ctrl;
5639 	uint16_t phy_reg;
5640 	uint32_t txcw;
5641 
5642 	hw = &Adapter->shared;
5643 
5644 	/* Disable Smart Power Down */
5645 	phy_spd_state(hw, B_FALSE);
5646 
5647 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5648 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5649 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5650 
5651 	switch (hw->mac.type) {
5652 	case e1000_82540:
5653 	case e1000_82545:
5654 	case e1000_82545_rev_3:
5655 	case e1000_82546:
5656 	case e1000_82546_rev_3:
5657 	case e1000_82573:
5658 		/* Auto-MDI/MDIX off */
5659 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5660 		/* Reset PHY to update Auto-MDI/MDIX */
5661 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5662 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5663 		/* Reset PHY to auto-neg off and force 1000 */
5664 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5665 		    phy_ctrl | MII_CR_RESET);
5666 		/*
5667 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5668 		 * See comments above e1000g_set_internal_loopback() for the
5669 		 * background.
5670 		 */
5671 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5672 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5673 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5674 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5675 		break;
5676 	case e1000_80003es2lan:
5677 		/* Force Link Up */
5678 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5679 		    0x1CC);
5680 		/* Sets PCS loopback at 1Gbs */
5681 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5682 		    0x1046);
5683 		break;
5684 	}
5685 
5686 	/*
5687 	 * The following registers should be set for e1000_phy_bm phy type.
5688 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5689 	 * For others, we do not need to set these registers.
5690 	 */
5691 	if (hw->phy.type == e1000_phy_bm) {
5692 		/* Set Default MAC Interface speed to 1GB */
5693 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5694 		phy_reg &= ~0x0007;
5695 		phy_reg |= 0x006;
5696 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5697 		/* Assert SW reset for above settings to take effect */
5698 		(void) e1000_phy_commit(hw);
5699 		msec_delay(1);
5700 		/* Force Full Duplex */
5701 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5702 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5703 		    phy_reg | 0x000C);
5704 		/* Set Link Up (in force link) */
5705 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5706 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5707 		    phy_reg | 0x0040);
5708 		/* Force Link */
5709 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5710 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5711 		    phy_reg | 0x0040);
5712 		/* Set Early Link Enable */
5713 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5714 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5715 		    phy_reg | 0x0400);
5716 	}
5717 
5718 	/* Set loopback */
5719 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5720 
5721 	msec_delay(250);
5722 
5723 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5724 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5725 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5726 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5727 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5728 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5729 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5730 
5731 	switch (hw->mac.type) {
5732 	case e1000_82540:
5733 	case e1000_82545:
5734 	case e1000_82545_rev_3:
5735 	case e1000_82546:
5736 	case e1000_82546_rev_3:
5737 		/*
5738 		 * For some serdes we'll need to commit the writes now
5739 		 * so that the status is updated on link
5740 		 */
5741 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5742 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5743 			msec_delay(100);
5744 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5745 		}
5746 
5747 		if (hw->phy.media_type == e1000_media_type_copper) {
5748 			/* Invert Loss of Signal */
5749 			ctrl |= E1000_CTRL_ILOS;
5750 		} else {
5751 			/* Set ILOS on fiber nic if half duplex is detected */
5752 			status = E1000_READ_REG(hw, E1000_STATUS);
5753 			if ((status & E1000_STATUS_FD) == 0)
5754 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5755 		}
5756 		break;
5757 
5758 	case e1000_82571:
5759 	case e1000_82572:
5760 		/*
5761 		 * The fiber/SerDes versions of this adapter do not contain an
5762 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5763 		 * using SerDes analog loopback.
5764 		 */
5765 		if (hw->phy.media_type != e1000_media_type_copper) {
5766 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5767 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5768 			txcw &= ~((uint32_t)1 << 31);
5769 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5770 
5771 			/*
5772 			 * Write 0x410 to Serdes Control register
5773 			 * to enable Serdes analog loopback
5774 			 */
5775 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5776 			msec_delay(10);
5777 		}
5778 
5779 		status = E1000_READ_REG(hw, E1000_STATUS);
5780 		/* Set ILOS on fiber nic if half duplex is detected */
5781 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5782 		    ((status & E1000_STATUS_FD) == 0 ||
5783 		    (status & E1000_STATUS_LU) == 0))
5784 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5785 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5786 			ctrl |= E1000_CTRL_SLU;
5787 		break;
5788 
5789 	case e1000_82573:
5790 		ctrl |= E1000_CTRL_ILOS;
5791 		break;
5792 	case e1000_ich9lan:
5793 	case e1000_ich10lan:
5794 		ctrl |= E1000_CTRL_SLU;
5795 		break;
5796 	}
5797 	if (hw->phy.type == e1000_phy_bm)
5798 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5799 
5800 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5801 }
5802 
5803 static void
5804 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5805 {
5806 	struct e1000_hw *hw;
5807 	uint32_t rctl;
5808 	uint32_t ctrl_ext;
5809 	uint32_t ctrl;
5810 	uint32_t status;
5811 	uint32_t txcw;
5812 	uint16_t phydata;
5813 
5814 	hw = &Adapter->shared;
5815 
5816 	/* Disable Smart Power Down */
5817 	phy_spd_state(hw, B_FALSE);
5818 
5819 	switch (hw->mac.type) {
5820 	case e1000_82571:
5821 	case e1000_82572:
5822 		switch (hw->phy.media_type) {
5823 		case e1000_media_type_copper:
5824 			/* Force link up (Must be done before the PHY writes) */
5825 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5826 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5827 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5828 
5829 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5830 			rctl |= (E1000_RCTL_EN |
5831 			    E1000_RCTL_SBP |
5832 			    E1000_RCTL_UPE |
5833 			    E1000_RCTL_MPE |
5834 			    E1000_RCTL_LPE |
5835 			    E1000_RCTL_BAM);		/* 0x803E */
5836 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5837 
5838 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5839 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5840 			    E1000_CTRL_EXT_SDP6_DATA |
5841 			    E1000_CTRL_EXT_SDP3_DATA |
5842 			    E1000_CTRL_EXT_SDP4_DIR |
5843 			    E1000_CTRL_EXT_SDP6_DIR |
5844 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5845 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5846 
5847 			/*
5848 			 * This sequence tunes the PHY's SDP and no customer
5849 			 * settable values. For background, see comments above
5850 			 * e1000g_set_internal_loopback().
5851 			 */
5852 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5853 			msec_delay(10);
5854 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5855 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5856 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5857 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5858 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5859 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5860 
5861 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5862 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5863 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5864 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5865 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5866 
5867 			msec_delay(50);
5868 			break;
5869 		case e1000_media_type_fiber:
5870 		case e1000_media_type_internal_serdes:
5871 			status = E1000_READ_REG(hw, E1000_STATUS);
5872 			if (((status & E1000_STATUS_LU) == 0) ||
5873 			    (hw->phy.media_type ==
5874 			    e1000_media_type_internal_serdes)) {
5875 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5876 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5877 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5878 			}
5879 
5880 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5881 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5882 			txcw &= ~((uint32_t)1 << 31);
5883 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5884 
5885 			/*
5886 			 * Write 0x410 to Serdes Control register
5887 			 * to enable Serdes analog loopback
5888 			 */
5889 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5890 			msec_delay(10);
5891 			break;
5892 		default:
5893 			break;
5894 		}
5895 		break;
5896 	case e1000_82574:
5897 	case e1000_80003es2lan:
5898 	case e1000_ich9lan:
5899 	case e1000_ich10lan:
5900 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5901 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5902 		    phydata | (1 << 5));
5903 		Adapter->param_adv_autoneg = 1;
5904 		Adapter->param_adv_1000fdx = 1;
5905 		(void) e1000g_reset_link(Adapter);
5906 		break;
5907 	}
5908 }
5909 
5910 static void
5911 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5912 {
5913 	struct e1000_hw *hw;
5914 	uint32_t ctrl;
5915 	uint16_t phy_ctrl;
5916 
5917 	hw = &Adapter->shared;
5918 
5919 	/* Disable Smart Power Down */
5920 	phy_spd_state(hw, B_FALSE);
5921 
5922 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5923 	    MII_CR_SPEED_100);
5924 
5925 	/* Force 100/FD, reset PHY */
5926 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5927 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5928 	msec_delay(10);
5929 
5930 	/* Force 100/FD */
5931 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5932 	    phy_ctrl);			/* 0x2100 */
5933 	msec_delay(10);
5934 
5935 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5936 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5937 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5938 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5939 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5940 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5941 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5942 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5943 
5944 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5945 }
5946 
5947 static void
5948 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5949 {
5950 	struct e1000_hw *hw;
5951 	uint32_t ctrl;
5952 	uint16_t phy_ctrl;
5953 
5954 	hw = &Adapter->shared;
5955 
5956 	/* Disable Smart Power Down */
5957 	phy_spd_state(hw, B_FALSE);
5958 
5959 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5960 	    MII_CR_SPEED_10);
5961 
5962 	/* Force 10/FD, reset PHY */
5963 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5964 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5965 	msec_delay(10);
5966 
5967 	/* Force 10/FD */
5968 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5969 	    phy_ctrl);			/* 0x0100 */
5970 	msec_delay(10);
5971 
5972 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5973 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5974 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5975 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5976 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5977 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5978 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5979 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5980 
5981 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5982 }
5983 
5984 #ifdef __sparc
5985 static boolean_t
5986 e1000g_find_mac_address(struct e1000g *Adapter)
5987 {
5988 	struct e1000_hw *hw = &Adapter->shared;
5989 	uchar_t *bytes;
5990 	struct ether_addr sysaddr;
5991 	uint_t nelts;
5992 	int err;
5993 	boolean_t found = B_FALSE;
5994 
5995 	/*
5996 	 * The "vendor's factory-set address" may already have
5997 	 * been extracted from the chip, but if the property
5998 	 * "local-mac-address" is set we use that instead.
5999 	 *
6000 	 * We check whether it looks like an array of 6
6001 	 * bytes (which it should, if OBP set it).  If we can't
6002 	 * make sense of it this way, we'll ignore it.
6003 	 */
6004 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6005 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
6006 	if (err == DDI_PROP_SUCCESS) {
6007 		if (nelts == ETHERADDRL) {
6008 			while (nelts--)
6009 				hw->mac.addr[nelts] = bytes[nelts];
6010 			found = B_TRUE;
6011 		}
6012 		ddi_prop_free(bytes);
6013 	}
6014 
6015 	/*
6016 	 * Look up the OBP property "local-mac-address?". If the user has set
6017 	 * 'local-mac-address? = false', use "the system address" instead.
6018 	 */
6019 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
6020 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
6021 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
6022 			if (localetheraddr(NULL, &sysaddr) != 0) {
6023 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
6024 				found = B_TRUE;
6025 			}
6026 		}
6027 		ddi_prop_free(bytes);
6028 	}
6029 
6030 	/*
6031 	 * Finally(!), if there's a valid "mac-address" property (created
6032 	 * if we netbooted from this interface), we must use this instead
6033 	 * of any of the above to ensure that the NFS/install server doesn't
6034 	 * get confused by the address changing as Solaris takes over!
6035 	 */
6036 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6037 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
6038 	if (err == DDI_PROP_SUCCESS) {
6039 		if (nelts == ETHERADDRL) {
6040 			while (nelts--)
6041 				hw->mac.addr[nelts] = bytes[nelts];
6042 			found = B_TRUE;
6043 		}
6044 		ddi_prop_free(bytes);
6045 	}
6046 
6047 	if (found) {
6048 		bcopy(hw->mac.addr, hw->mac.perm_addr,
6049 		    ETHERADDRL);
6050 	}
6051 
6052 	return (found);
6053 }
6054 #endif
6055 
6056 static int
6057 e1000g_add_intrs(struct e1000g *Adapter)
6058 {
6059 	dev_info_t *devinfo;
6060 	int intr_types;
6061 	int rc;
6062 
6063 	devinfo = Adapter->dip;
6064 
6065 	/* Get supported interrupt types */
6066 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
6067 
6068 	if (rc != DDI_SUCCESS) {
6069 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6070 		    "Get supported interrupt types failed: %d\n", rc);
6071 		return (DDI_FAILURE);
6072 	}
6073 
6074 	/*
6075 	 * Based on Intel Technical Advisory document (TA-160), there are some
6076 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
6077 	 * that it supports MSI, but in fact has problems.
6078 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
6079 	 * PCI/PCI-X NICs.
6080 	 */
6081 	if (Adapter->shared.mac.type < e1000_82571)
6082 		Adapter->msi_enable = B_FALSE;
6083 
6084 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
6085 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
6086 
6087 		if (rc != DDI_SUCCESS) {
6088 			/* EMPTY */
6089 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6090 			    "Add MSI failed, trying Legacy interrupts\n");
6091 		} else {
6092 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
6093 		}
6094 	}
6095 
6096 	if ((Adapter->intr_type == 0) &&
6097 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
6098 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
6099 
6100 		if (rc != DDI_SUCCESS) {
6101 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6102 			    "Add Legacy interrupts failed\n");
6103 			return (DDI_FAILURE);
6104 		}
6105 
6106 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
6107 	}
6108 
6109 	if (Adapter->intr_type == 0) {
6110 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6111 		    "No interrupts registered\n");
6112 		return (DDI_FAILURE);
6113 	}
6114 
6115 	return (DDI_SUCCESS);
6116 }
6117 
6118 /*
6119  * e1000g_intr_add() handles MSI/Legacy interrupts
6120  */
6121 static int
6122 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
6123 {
6124 	dev_info_t *devinfo;
6125 	int count, avail, actual;
6126 	int x, y, rc, inum = 0;
6127 	int flag;
6128 	ddi_intr_handler_t *intr_handler;
6129 
6130 	devinfo = Adapter->dip;
6131 
6132 	/* get number of interrupts */
6133 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
6134 	if ((rc != DDI_SUCCESS) || (count == 0)) {
6135 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6136 		    "Get interrupt number failed. Return: %d, count: %d\n",
6137 		    rc, count);
6138 		return (DDI_FAILURE);
6139 	}
6140 
6141 	/* get number of available interrupts */
6142 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
6143 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
6144 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6145 		    "Get interrupt available number failed. "
6146 		    "Return: %d, available: %d\n", rc, avail);
6147 		return (DDI_FAILURE);
6148 	}
6149 
6150 	if (avail < count) {
6151 		/* EMPTY */
6152 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6153 		    "Interrupts count: %d, available: %d\n",
6154 		    count, avail);
6155 	}
6156 
6157 	/* Allocate an array of interrupt handles */
6158 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
6159 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
6160 
6161 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
6162 	flag = DDI_INTR_ALLOC_NORMAL;
6163 
6164 	/* call ddi_intr_alloc() */
6165 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
6166 	    count, &actual, flag);
6167 
6168 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
6169 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6170 		    "Allocate interrupts failed: %d\n", rc);
6171 
6172 		kmem_free(Adapter->htable, Adapter->intr_size);
6173 		return (DDI_FAILURE);
6174 	}
6175 
6176 	if (actual < count) {
6177 		/* EMPTY */
6178 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6179 		    "Interrupts requested: %d, received: %d\n",
6180 		    count, actual);
6181 	}
6182 
6183 	Adapter->intr_cnt = actual;
6184 
6185 	/* Get priority for first msi, assume remaining are all the same */
6186 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
6187 
6188 	if (rc != DDI_SUCCESS) {
6189 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6190 		    "Get interrupt priority failed: %d\n", rc);
6191 
6192 		/* Free already allocated intr */
6193 		for (y = 0; y < actual; y++)
6194 			(void) ddi_intr_free(Adapter->htable[y]);
6195 
6196 		kmem_free(Adapter->htable, Adapter->intr_size);
6197 		return (DDI_FAILURE);
6198 	}
6199 
6200 	/*
6201 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
6202 	 * use the interrupt service routine e1000g_intr_pciexpress()
6203 	 * to avoid interrupt stealing when sharing interrupt with other
6204 	 * devices.
6205 	 */
6206 	if (Adapter->shared.mac.type < e1000_82571)
6207 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
6208 	else
6209 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
6210 
6211 	/* Call ddi_intr_add_handler() */
6212 	for (x = 0; x < actual; x++) {
6213 		rc = ddi_intr_add_handler(Adapter->htable[x],
6214 		    intr_handler, (caddr_t)Adapter, NULL);
6215 
6216 		if (rc != DDI_SUCCESS) {
6217 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6218 			    "Add interrupt handler failed: %d\n", rc);
6219 
6220 			/* Remove already added handler */
6221 			for (y = 0; y < x; y++)
6222 				(void) ddi_intr_remove_handler(
6223 				    Adapter->htable[y]);
6224 
6225 			/* Free already allocated intr */
6226 			for (y = 0; y < actual; y++)
6227 				(void) ddi_intr_free(Adapter->htable[y]);
6228 
6229 			kmem_free(Adapter->htable, Adapter->intr_size);
6230 			return (DDI_FAILURE);
6231 		}
6232 	}
6233 
6234 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
6235 
6236 	if (rc != DDI_SUCCESS) {
6237 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6238 		    "Get interrupt cap failed: %d\n", rc);
6239 
6240 		/* Free already allocated intr */
6241 		for (y = 0; y < actual; y++) {
6242 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
6243 			(void) ddi_intr_free(Adapter->htable[y]);
6244 		}
6245 
6246 		kmem_free(Adapter->htable, Adapter->intr_size);
6247 		return (DDI_FAILURE);
6248 	}
6249 
6250 	return (DDI_SUCCESS);
6251 }
6252 
6253 static int
6254 e1000g_rem_intrs(struct e1000g *Adapter)
6255 {
6256 	int x;
6257 	int rc;
6258 
6259 	for (x = 0; x < Adapter->intr_cnt; x++) {
6260 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6261 		if (rc != DDI_SUCCESS) {
6262 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6263 			    "Remove intr handler failed: %d\n", rc);
6264 			return (DDI_FAILURE);
6265 		}
6266 
6267 		rc = ddi_intr_free(Adapter->htable[x]);
6268 		if (rc != DDI_SUCCESS) {
6269 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6270 			    "Free intr failed: %d\n", rc);
6271 			return (DDI_FAILURE);
6272 		}
6273 	}
6274 
6275 	kmem_free(Adapter->htable, Adapter->intr_size);
6276 
6277 	return (DDI_SUCCESS);
6278 }
6279 
6280 static int
6281 e1000g_enable_intrs(struct e1000g *Adapter)
6282 {
6283 	int x;
6284 	int rc;
6285 
6286 	/* Enable interrupts */
6287 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6288 		/* Call ddi_intr_block_enable() for MSI */
6289 		rc = ddi_intr_block_enable(Adapter->htable,
6290 		    Adapter->intr_cnt);
6291 		if (rc != DDI_SUCCESS) {
6292 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6293 			    "Enable block intr failed: %d\n", rc);
6294 			return (DDI_FAILURE);
6295 		}
6296 	} else {
6297 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6298 		for (x = 0; x < Adapter->intr_cnt; x++) {
6299 			rc = ddi_intr_enable(Adapter->htable[x]);
6300 			if (rc != DDI_SUCCESS) {
6301 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6302 				    "Enable intr failed: %d\n", rc);
6303 				return (DDI_FAILURE);
6304 			}
6305 		}
6306 	}
6307 
6308 	return (DDI_SUCCESS);
6309 }
6310 
6311 static int
6312 e1000g_disable_intrs(struct e1000g *Adapter)
6313 {
6314 	int x;
6315 	int rc;
6316 
6317 	/* Disable all interrupts */
6318 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6319 		rc = ddi_intr_block_disable(Adapter->htable,
6320 		    Adapter->intr_cnt);
6321 		if (rc != DDI_SUCCESS) {
6322 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6323 			    "Disable block intr failed: %d\n", rc);
6324 			return (DDI_FAILURE);
6325 		}
6326 	} else {
6327 		for (x = 0; x < Adapter->intr_cnt; x++) {
6328 			rc = ddi_intr_disable(Adapter->htable[x]);
6329 			if (rc != DDI_SUCCESS) {
6330 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6331 				    "Disable intr failed: %d\n", rc);
6332 				return (DDI_FAILURE);
6333 			}
6334 		}
6335 	}
6336 
6337 	return (DDI_SUCCESS);
6338 }
6339 
6340 /*
6341  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6342  */
6343 static void
6344 e1000g_get_phy_state(struct e1000g *Adapter)
6345 {
6346 	struct e1000_hw *hw = &Adapter->shared;
6347 
6348 	if (hw->phy.media_type == e1000_media_type_copper) {
6349 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6350 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6351 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6352 		    &Adapter->phy_an_adv);
6353 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6354 		    &Adapter->phy_an_exp);
6355 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6356 		    &Adapter->phy_ext_status);
6357 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6358 		    &Adapter->phy_1000t_ctrl);
6359 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6360 		    &Adapter->phy_1000t_status);
6361 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6362 		    &Adapter->phy_lp_able);
6363 
6364 		Adapter->param_autoneg_cap =
6365 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6366 		Adapter->param_pause_cap =
6367 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6368 		Adapter->param_asym_pause_cap =
6369 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6370 		Adapter->param_1000fdx_cap =
6371 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6372 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6373 		Adapter->param_1000hdx_cap =
6374 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6375 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6376 		Adapter->param_100t4_cap =
6377 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6378 		Adapter->param_100fdx_cap =
6379 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6380 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6381 		Adapter->param_100hdx_cap =
6382 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6383 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6384 		Adapter->param_10fdx_cap =
6385 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6386 		Adapter->param_10hdx_cap =
6387 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6388 
6389 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6390 		Adapter->param_adv_pause =
6391 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6392 		Adapter->param_adv_asym_pause =
6393 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6394 		Adapter->param_adv_1000hdx =
6395 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6396 		Adapter->param_adv_100t4 =
6397 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6398 		if (Adapter->param_adv_autoneg == 1) {
6399 			Adapter->param_adv_1000fdx =
6400 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6401 			    ? 1 : 0;
6402 			Adapter->param_adv_100fdx =
6403 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6404 			    ? 1 : 0;
6405 			Adapter->param_adv_100hdx =
6406 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6407 			    ? 1 : 0;
6408 			Adapter->param_adv_10fdx =
6409 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6410 			Adapter->param_adv_10hdx =
6411 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6412 		}
6413 
6414 		Adapter->param_lp_autoneg =
6415 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6416 		Adapter->param_lp_pause =
6417 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6418 		Adapter->param_lp_asym_pause =
6419 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6420 		Adapter->param_lp_1000fdx =
6421 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6422 		Adapter->param_lp_1000hdx =
6423 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6424 		Adapter->param_lp_100t4 =
6425 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6426 		Adapter->param_lp_100fdx =
6427 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6428 		Adapter->param_lp_100hdx =
6429 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6430 		Adapter->param_lp_10fdx =
6431 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6432 		Adapter->param_lp_10hdx =
6433 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6434 	} else {
6435 		/*
6436 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6437 		 * it can only work with 1Gig Full Duplex Link Partner.
6438 		 */
6439 		Adapter->param_autoneg_cap = 0;
6440 		Adapter->param_pause_cap = 1;
6441 		Adapter->param_asym_pause_cap = 1;
6442 		Adapter->param_1000fdx_cap = 1;
6443 		Adapter->param_1000hdx_cap = 0;
6444 		Adapter->param_100t4_cap = 0;
6445 		Adapter->param_100fdx_cap = 0;
6446 		Adapter->param_100hdx_cap = 0;
6447 		Adapter->param_10fdx_cap = 0;
6448 		Adapter->param_10hdx_cap = 0;
6449 
6450 		Adapter->param_adv_autoneg = 0;
6451 		Adapter->param_adv_pause = 1;
6452 		Adapter->param_adv_asym_pause = 1;
6453 		Adapter->param_adv_1000fdx = 1;
6454 		Adapter->param_adv_1000hdx = 0;
6455 		Adapter->param_adv_100t4 = 0;
6456 		Adapter->param_adv_100fdx = 0;
6457 		Adapter->param_adv_100hdx = 0;
6458 		Adapter->param_adv_10fdx = 0;
6459 		Adapter->param_adv_10hdx = 0;
6460 
6461 		Adapter->param_lp_autoneg = 0;
6462 		Adapter->param_lp_pause = 0;
6463 		Adapter->param_lp_asym_pause = 0;
6464 		Adapter->param_lp_1000fdx = 0;
6465 		Adapter->param_lp_1000hdx = 0;
6466 		Adapter->param_lp_100t4 = 0;
6467 		Adapter->param_lp_100fdx = 0;
6468 		Adapter->param_lp_100hdx = 0;
6469 		Adapter->param_lp_10fdx = 0;
6470 		Adapter->param_lp_10hdx = 0;
6471 	}
6472 }
6473 
6474 /*
6475  * FMA support
6476  */
6477 
6478 int
6479 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6480 {
6481 	ddi_fm_error_t de;
6482 
6483 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6484 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6485 	return (de.fme_status);
6486 }
6487 
6488 int
6489 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6490 {
6491 	ddi_fm_error_t de;
6492 
6493 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6494 	return (de.fme_status);
6495 }
6496 
6497 /*
6498  * The IO fault service error handling callback function
6499  */
6500 /* ARGSUSED2 */
6501 static int
6502 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6503 {
6504 	/*
6505 	 * as the driver can always deal with an error in any dma or
6506 	 * access handle, we can just return the fme_status value.
6507 	 */
6508 	pci_ereport_post(dip, err, NULL);
6509 	return (err->fme_status);
6510 }
6511 
6512 static void
6513 e1000g_fm_init(struct e1000g *Adapter)
6514 {
6515 	ddi_iblock_cookie_t iblk;
6516 	int fma_dma_flag;
6517 
6518 	/* Only register with IO Fault Services if we have some capability */
6519 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6520 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6521 	} else {
6522 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6523 	}
6524 
6525 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6526 		fma_dma_flag = 1;
6527 	} else {
6528 		fma_dma_flag = 0;
6529 	}
6530 
6531 	(void) e1000g_set_fma_flags(fma_dma_flag);
6532 
6533 	if (Adapter->fm_capabilities) {
6534 
6535 		/* Register capabilities with IO Fault Services */
6536 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6537 
6538 		/*
6539 		 * Initialize pci ereport capabilities if ereport capable
6540 		 */
6541 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6542 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6543 			pci_ereport_setup(Adapter->dip);
6544 
6545 		/*
6546 		 * Register error callback if error callback capable
6547 		 */
6548 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6549 			ddi_fm_handler_register(Adapter->dip,
6550 			    e1000g_fm_error_cb, (void*) Adapter);
6551 	}
6552 }
6553 
6554 static void
6555 e1000g_fm_fini(struct e1000g *Adapter)
6556 {
6557 	/* Only unregister FMA capabilities if we registered some */
6558 	if (Adapter->fm_capabilities) {
6559 
6560 		/*
6561 		 * Release any resources allocated by pci_ereport_setup()
6562 		 */
6563 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6564 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6565 			pci_ereport_teardown(Adapter->dip);
6566 
6567 		/*
6568 		 * Un-register error callback if error callback capable
6569 		 */
6570 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6571 			ddi_fm_handler_unregister(Adapter->dip);
6572 
6573 		/* Unregister from IO Fault Services */
6574 		mutex_enter(&e1000g_rx_detach_lock);
6575 		ddi_fm_fini(Adapter->dip);
6576 		if (Adapter->priv_dip != NULL) {
6577 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6578 		}
6579 		mutex_exit(&e1000g_rx_detach_lock);
6580 	}
6581 }
6582 
6583 void
6584 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6585 {
6586 	uint64_t ena;
6587 	char buf[FM_MAX_CLASS];
6588 
6589 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6590 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6591 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6592 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6593 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6594 	}
6595 }
6596 
6597 /*
6598  * quiesce(9E) entry point.
6599  *
6600  * This function is called when the system is single-threaded at high
6601  * PIL with preemption disabled. Therefore, this function must not be
6602  * blocked.
6603  *
6604  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6605  * DDI_FAILURE indicates an error condition and should almost never happen.
6606  */
6607 static int
6608 e1000g_quiesce(dev_info_t *devinfo)
6609 {
6610 	struct e1000g *Adapter;
6611 
6612 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6613 
6614 	if (Adapter == NULL)
6615 		return (DDI_FAILURE);
6616 
6617 	e1000g_clear_all_interrupts(Adapter);
6618 
6619 	(void) e1000_reset_hw(&Adapter->shared);
6620 
6621 	/* Setup our HW Tx Head & Tail descriptor pointers */
6622 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6623 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6624 
6625 	/* Setup our HW Rx Head & Tail descriptor pointers */
6626 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6627 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6628 
6629 	return (DDI_SUCCESS);
6630 }
6631 
6632 /*
6633  * synchronize the adv* and en* parameters.
6634  *
6635  * See comments in <sys/dld.h> for details of the *_en_*
6636  * parameters. The usage of ndd for setting adv parameters will
6637  * synchronize all the en parameters with the e1000g parameters,
6638  * implicitly disabling any settings made via dladm.
6639  */
6640 static void
6641 e1000g_param_sync(struct e1000g *Adapter)
6642 {
6643 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6644 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6645 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6646 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6647 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6648 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6649 }
6650 
6651 /*
6652  * e1000g_get_driver_control - tell manageability firmware that the driver
6653  * has control.
6654  */
6655 static void
6656 e1000g_get_driver_control(struct e1000_hw *hw)
6657 {
6658 	uint32_t ctrl_ext;
6659 	uint32_t swsm;
6660 
6661 	/* tell manageability firmware the driver has taken over */
6662 	switch (hw->mac.type) {
6663 	case e1000_82573:
6664 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6665 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6666 		break;
6667 	case e1000_82571:
6668 	case e1000_82572:
6669 	case e1000_82574:
6670 	case e1000_80003es2lan:
6671 	case e1000_ich8lan:
6672 	case e1000_ich9lan:
6673 	case e1000_ich10lan:
6674 	case e1000_pchlan:
6675 	case e1000_pch2lan:
6676 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6677 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6678 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6679 		break;
6680 	default:
6681 		/* no manageability firmware: do nothing */
6682 		break;
6683 	}
6684 }
6685 
6686 /*
6687  * e1000g_release_driver_control - tell manageability firmware that the driver
6688  * has released control.
6689  */
6690 static void
6691 e1000g_release_driver_control(struct e1000_hw *hw)
6692 {
6693 	uint32_t ctrl_ext;
6694 	uint32_t swsm;
6695 
6696 	/* tell manageability firmware the driver has released control */
6697 	switch (hw->mac.type) {
6698 	case e1000_82573:
6699 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6700 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6701 		break;
6702 	case e1000_82571:
6703 	case e1000_82572:
6704 	case e1000_82574:
6705 	case e1000_80003es2lan:
6706 	case e1000_ich8lan:
6707 	case e1000_ich9lan:
6708 	case e1000_ich10lan:
6709 	case e1000_pchlan:
6710 	case e1000_pch2lan:
6711 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6712 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6713 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6714 		break;
6715 	default:
6716 		/* no manageability firmware: do nothing */
6717 		break;
6718 	}
6719 }
6720 
6721 /*
6722  * Restore e1000g promiscuous mode.
6723  */
6724 static void
6725 e1000g_restore_promisc(struct e1000g *Adapter)
6726 {
6727 	if (Adapter->e1000g_promisc) {
6728 		uint32_t rctl;
6729 
6730 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6731 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6732 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6733 	}
6734 }
6735