xref: /titanic_52/usr/src/uts/common/io/e1000g/e1000g_main.c (revision c7158ae983f5a04c4a998f468ecefba6d23ba721)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routines for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point routines.	*
37  *									*
38  *   This file also contains routines that take care of initialization	*
39  *   uninit routine and interrupt routine.				*
40  *									*
41  * **********************************************************************
42  */
43 
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include <sys/dld.h>
47 #include "e1000g_sw.h"
48 #include "e1000g_debug.h"
49 
50 static char ident[] = "Intel PRO/1000 Ethernet 5.2.7";
51 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
52 static char e1000g_version[] = "Driver Ver. 5.2.7";
53 
54 /*
55  * Proto types for DDI entry points
56  */
57 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
58 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
59 
60 /*
61  * init and intr routines prototype
62  */
63 static int e1000g_resume(dev_info_t *);
64 static int e1000g_suspend(dev_info_t *);
65 static uint_t e1000g_intr_pciexpress(caddr_t);
66 static uint_t e1000g_intr(caddr_t);
67 static void e1000g_intr_work(struct e1000g *, uint32_t);
68 #pragma inline(e1000g_intr_work)
69 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
70 #pragma inline(e1000g_get_itr)
71 static int e1000g_init(struct e1000g *);
72 static int e1000g_start(struct e1000g *, boolean_t);
73 static void e1000g_stop(struct e1000g *, boolean_t);
74 static int e1000g_m_start(void *);
75 static void e1000g_m_stop(void *);
76 static int e1000g_m_promisc(void *, boolean_t);
77 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
78 static int e1000g_m_unicst(void *, const uint8_t *);
79 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
80 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
81 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
82 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
83 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
84 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
85 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
86     uint_t, const void *);
87 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
88     uint_t, uint_t, void *);
89 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
90     const void *);
91 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
92     uint_t, void *);
93 static void e1000g_init_locks(struct e1000g *);
94 static void e1000g_destroy_locks(struct e1000g *);
95 static int e1000g_identify_hardware(struct e1000g *);
96 static int e1000g_regs_map(struct e1000g *);
97 static int e1000g_set_driver_params(struct e1000g *);
98 static void e1000g_set_bufsize(struct e1000g *);
99 static int e1000g_register_mac(struct e1000g *);
100 static boolean_t e1000g_rx_drain(struct e1000g *);
101 static boolean_t e1000g_tx_drain(struct e1000g *);
102 static void e1000g_init_unicst(struct e1000g *);
103 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
104 
105 /*
106  * Local routines
107  */
108 static void e1000g_tx_clean(struct e1000g *);
109 static void e1000g_rx_clean(struct e1000g *);
110 static void e1000g_link_timer(void *);
111 static void e1000g_local_timer(void *);
112 static boolean_t e1000g_link_check(struct e1000g *);
113 static boolean_t e1000g_stall_check(struct e1000g *);
114 static void e1000g_smartspeed(struct e1000g *);
115 static void e1000g_get_conf(struct e1000g *);
116 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
117 static void enable_watchdog_timer(struct e1000g *);
118 static void disable_watchdog_timer(struct e1000g *);
119 static void start_watchdog_timer(struct e1000g *);
120 static void restart_watchdog_timer(struct e1000g *);
121 static void stop_watchdog_timer(struct e1000g *);
122 static void stop_link_timer(struct e1000g *);
123 static void stop_82547_timer(e1000g_tx_ring_t *);
124 static void e1000g_force_speed_duplex(struct e1000g *);
125 static void e1000g_get_max_frame_size(struct e1000g *);
126 static boolean_t is_valid_mac_addr(uint8_t *);
127 static void e1000g_unattach(dev_info_t *, struct e1000g *);
128 #ifdef E1000G_DEBUG
129 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
133 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
134     struct iocblk *, mblk_t *);
135 #endif
136 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
137     struct iocblk *, mblk_t *);
138 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
139 static void e1000g_set_internal_loopback(struct e1000g *);
140 static void e1000g_set_external_loopback_1000(struct e1000g *);
141 static void e1000g_set_external_loopback_100(struct e1000g *);
142 static void e1000g_set_external_loopback_10(struct e1000g *);
143 static int e1000g_add_intrs(struct e1000g *);
144 static int e1000g_intr_add(struct e1000g *, int);
145 static int e1000g_rem_intrs(struct e1000g *);
146 static int e1000g_enable_intrs(struct e1000g *);
147 static int e1000g_disable_intrs(struct e1000g *);
148 static boolean_t e1000g_link_up(struct e1000g *);
149 #ifdef __sparc
150 static boolean_t e1000g_find_mac_address(struct e1000g *);
151 #endif
152 static void e1000g_get_phy_state(struct e1000g *);
153 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
154 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
155     const void *impl_data);
156 static void e1000g_fm_init(struct e1000g *Adapter);
157 static void e1000g_fm_fini(struct e1000g *Adapter);
158 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
159 static void e1000g_param_sync(struct e1000g *);
160 
161 mac_priv_prop_t e1000g_priv_props[] = {
162 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
164 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
167 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
168 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
169 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
170 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
171 	{"_intr_adaptive", MAC_PROP_PERM_RW},
172 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
173 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
174 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
175 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
176 };
177 #define	E1000G_MAX_PRIV_PROPS	\
178 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
179 
180 
181 static struct cb_ops cb_ws_ops = {
182 	nulldev,		/* cb_open */
183 	nulldev,		/* cb_close */
184 	nodev,			/* cb_strategy */
185 	nodev,			/* cb_print */
186 	nodev,			/* cb_dump */
187 	nodev,			/* cb_read */
188 	nodev,			/* cb_write */
189 	nodev,			/* cb_ioctl */
190 	nodev,			/* cb_devmap */
191 	nodev,			/* cb_mmap */
192 	nodev,			/* cb_segmap */
193 	nochpoll,		/* cb_chpoll */
194 	ddi_prop_op,		/* cb_prop_op */
195 	NULL,			/* cb_stream */
196 	D_MP | D_HOTPLUG,	/* cb_flag */
197 	CB_REV,			/* cb_rev */
198 	nodev,			/* cb_aread */
199 	nodev			/* cb_awrite */
200 };
201 
202 static struct dev_ops ws_ops = {
203 	DEVO_REV,		/* devo_rev */
204 	0,			/* devo_refcnt */
205 	NULL,			/* devo_getinfo */
206 	nulldev,		/* devo_identify */
207 	nulldev,		/* devo_probe */
208 	e1000g_attach,		/* devo_attach */
209 	e1000g_detach,		/* devo_detach */
210 	nodev,			/* devo_reset */
211 	&cb_ws_ops,		/* devo_cb_ops */
212 	NULL,			/* devo_bus_ops */
213 	ddi_power		/* devo_power */
214 };
215 
216 static struct modldrv modldrv = {
217 	&mod_driverops,		/* Type of module.  This one is a driver */
218 	ident,			/* Discription string */
219 	&ws_ops,		/* driver ops */
220 };
221 
222 static struct modlinkage modlinkage = {
223 	MODREV_1, &modldrv, NULL
224 };
225 
226 /* Access attributes for register mapping */
227 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
228 	DDI_DEVICE_ATTR_V0,
229 	DDI_STRUCTURE_LE_ACC,
230 	DDI_STRICTORDER_ACC,
231 	DDI_FLAGERR_ACC
232 };
233 
234 #define	E1000G_M_CALLBACK_FLAGS \
235 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
236 
237 static mac_callbacks_t e1000g_m_callbacks = {
238 	E1000G_M_CALLBACK_FLAGS,
239 	e1000g_m_stat,
240 	e1000g_m_start,
241 	e1000g_m_stop,
242 	e1000g_m_promisc,
243 	e1000g_m_multicst,
244 	e1000g_m_unicst,
245 	e1000g_m_tx,
246 	NULL,
247 	e1000g_m_ioctl,
248 	e1000g_m_getcapab,
249 	NULL,
250 	NULL,
251 	e1000g_m_setprop,
252 	e1000g_m_getprop
253 };
254 
255 /*
256  * Global variables
257  */
258 uint32_t e1000g_mblks_pending = 0;
259 /*
260  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
261  * Here we maintain a private dev_info list if e1000g_force_detach is
262  * enabled. If we force the driver to detach while there are still some
263  * rx buffers retained in the upper layer, we have to keep a copy of the
264  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
265  * structure will be freed after the driver is detached. However when we
266  * finally free those rx buffers released by the upper layer, we need to
267  * refer to the dev_info to free the dma buffers. So we save a copy of
268  * the dev_info for this purpose. On x86 platform, we assume this copy
269  * of dev_info is always valid, but on SPARC platform, it could be invalid
270  * after the system board level DR operation. For this reason, the global
271  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
272  */
273 #ifdef __sparc
274 boolean_t e1000g_force_detach = B_FALSE;
275 #else
276 boolean_t e1000g_force_detach = B_TRUE;
277 #endif
278 private_devi_list_t *e1000g_private_devi_list = NULL;
279 
280 /*
281  * The rwlock is defined to protect the whole processing of rx recycling
282  * and the rx packets release in detach processing to make them mutually
283  * exclusive.
284  * The rx recycling processes different rx packets in different threads,
285  * so it will be protected with RW_READER and it won't block any other rx
286  * recycling threads.
287  * While the detach processing will be protected with RW_WRITER to make
288  * it mutually exclusive with the rx recycling.
289  */
290 krwlock_t e1000g_rx_detach_lock;
291 /*
292  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
293  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
294  * If there are many e1000g instances, the system may run out of DVMA
295  * resources during the initialization of the instances, then the flag will
296  * be changed to "USE_DMA". Because different e1000g instances are initialized
297  * in parallel, we need to use this lock to protect the flag.
298  */
299 krwlock_t e1000g_dma_type_lock;
300 
301 
302 /*
303  * Loadable module configuration entry points for the driver
304  */
305 
306 /*
307  * _init - module initialization
308  */
309 int
310 _init(void)
311 {
312 	int status;
313 
314 	mac_init_ops(&ws_ops, WSNAME);
315 	status = mod_install(&modlinkage);
316 	if (status != DDI_SUCCESS)
317 		mac_fini_ops(&ws_ops);
318 	else {
319 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
320 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
321 	}
322 
323 	return (status);
324 }
325 
326 /*
327  * _fini - module finalization
328  */
329 int
330 _fini(void)
331 {
332 	int status;
333 
334 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
335 	if (e1000g_mblks_pending != 0) {
336 		rw_exit(&e1000g_rx_detach_lock);
337 		return (EBUSY);
338 	}
339 	rw_exit(&e1000g_rx_detach_lock);
340 
341 	status = mod_remove(&modlinkage);
342 	if (status == DDI_SUCCESS) {
343 		mac_fini_ops(&ws_ops);
344 
345 		if (e1000g_force_detach) {
346 			private_devi_list_t *devi_node;
347 
348 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
349 			while (e1000g_private_devi_list != NULL) {
350 				devi_node = e1000g_private_devi_list;
351 				e1000g_private_devi_list =
352 				    e1000g_private_devi_list->next;
353 
354 				kmem_free(devi_node->priv_dip,
355 				    sizeof (struct dev_info));
356 				kmem_free(devi_node,
357 				    sizeof (private_devi_list_t));
358 			}
359 			rw_exit(&e1000g_rx_detach_lock);
360 		}
361 
362 		rw_destroy(&e1000g_rx_detach_lock);
363 		rw_destroy(&e1000g_dma_type_lock);
364 	}
365 
366 	return (status);
367 }
368 
369 /*
370  * _info - module information
371  */
372 int
373 _info(struct modinfo *modinfop)
374 {
375 	return (mod_info(&modlinkage, modinfop));
376 }
377 
378 /*
379  * e1000g_attach - driver attach
380  *
381  * This function is the device-specific initialization entry
382  * point. This entry point is required and must be written.
383  * The DDI_ATTACH command must be provided in the attach entry
384  * point. When attach() is called with cmd set to DDI_ATTACH,
385  * all normal kernel services (such as kmem_alloc(9F)) are
386  * available for use by the driver.
387  *
388  * The attach() function will be called once for each instance
389  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
390  * Until attach() succeeds, the only driver entry points which
391  * may be called are open(9E) and getinfo(9E).
392  */
393 static int
394 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
395 {
396 	struct e1000g *Adapter;
397 	struct e1000_hw *hw;
398 	struct e1000g_osdep *osdep;
399 	int instance;
400 
401 	switch (cmd) {
402 	default:
403 		e1000g_log(NULL, CE_WARN,
404 		    "Unsupported command send to e1000g_attach... ");
405 		return (DDI_FAILURE);
406 
407 	case DDI_RESUME:
408 		return (e1000g_resume(devinfo));
409 
410 	case DDI_ATTACH:
411 		break;
412 	}
413 
414 	/*
415 	 * get device instance number
416 	 */
417 	instance = ddi_get_instance(devinfo);
418 
419 	/*
420 	 * Allocate soft data structure
421 	 */
422 	Adapter =
423 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
424 
425 	Adapter->dip = devinfo;
426 	Adapter->instance = instance;
427 	Adapter->tx_ring->adapter = Adapter;
428 	Adapter->rx_ring->adapter = Adapter;
429 
430 	hw = &Adapter->shared;
431 	osdep = &Adapter->osdep;
432 	hw->back = osdep;
433 	osdep->adapter = Adapter;
434 
435 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
436 
437 	/*
438 	 * Initialize for fma support
439 	 */
440 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
441 	    0, 0x0f,
442 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
443 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
444 	e1000g_fm_init(Adapter);
445 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
446 
447 	/*
448 	 * PCI Configure
449 	 */
450 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
451 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
452 		goto attach_fail;
453 	}
454 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
455 
456 	/*
457 	 * Setup hardware
458 	 */
459 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
460 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
461 		goto attach_fail;
462 	}
463 
464 	/*
465 	 * Map in the device registers.
466 	 */
467 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
468 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
469 		goto attach_fail;
470 	}
471 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
472 
473 	/*
474 	 * Initialize driver parameters
475 	 */
476 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
477 		goto attach_fail;
478 	}
479 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
480 
481 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
482 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
483 		goto attach_fail;
484 	}
485 
486 	/*
487 	 * Initialize interrupts
488 	 */
489 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
490 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
491 		goto attach_fail;
492 	}
493 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
494 
495 	/*
496 	 * Initialize mutex's for this device.
497 	 * Do this before enabling the interrupt handler and
498 	 * register the softint to avoid the condition where
499 	 * interrupt handler can try using uninitialized mutex
500 	 */
501 	e1000g_init_locks(Adapter);
502 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
503 
504 	/*
505 	 * Initialize Driver Counters
506 	 */
507 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
508 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
509 		goto attach_fail;
510 	}
511 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
512 
513 	/*
514 	 * Initialize chip hardware and software structures
515 	 */
516 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
517 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
518 		goto attach_fail;
519 	}
520 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
521 
522 	/*
523 	 * Register the driver to the MAC
524 	 */
525 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
526 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
527 		goto attach_fail;
528 	}
529 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
530 
531 	/*
532 	 * Now that mutex locks are initialized, and the chip is also
533 	 * initialized, enable interrupts.
534 	 */
535 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
536 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
537 		goto attach_fail;
538 	}
539 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
540 
541 	/*
542 	 * If e1000g_force_detach is enabled, in global private dip list,
543 	 * we will create a new entry, which maintains the priv_dip for DR
544 	 * supports after driver detached.
545 	 */
546 	if (e1000g_force_detach) {
547 		private_devi_list_t *devi_node;
548 
549 		Adapter->priv_dip =
550 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
551 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
552 		    sizeof (struct dev_info));
553 
554 		devi_node =
555 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
556 
557 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
558 		devi_node->priv_dip = Adapter->priv_dip;
559 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
560 		devi_node->next = e1000g_private_devi_list;
561 		e1000g_private_devi_list = devi_node;
562 		rw_exit(&e1000g_rx_detach_lock);
563 	}
564 
565 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
566 
567 	return (DDI_SUCCESS);
568 
569 attach_fail:
570 	e1000g_unattach(devinfo, Adapter);
571 	return (DDI_FAILURE);
572 }
573 
574 static int
575 e1000g_register_mac(struct e1000g *Adapter)
576 {
577 	struct e1000_hw *hw = &Adapter->shared;
578 	mac_register_t *mac;
579 	int err;
580 
581 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
582 		return (DDI_FAILURE);
583 
584 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
585 	mac->m_driver = Adapter;
586 	mac->m_dip = Adapter->dip;
587 	mac->m_src_addr = hw->mac.addr;
588 	mac->m_callbacks = &e1000g_m_callbacks;
589 	mac->m_min_sdu = 0;
590 	mac->m_max_sdu = Adapter->default_mtu;
591 	mac->m_margin = VLAN_TAGSZ;
592 	mac->m_priv_props = e1000g_priv_props;
593 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
594 
595 	err = mac_register(mac, &Adapter->mh);
596 	mac_free(mac);
597 
598 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
599 }
600 
601 static int
602 e1000g_identify_hardware(struct e1000g *Adapter)
603 {
604 	struct e1000_hw *hw = &Adapter->shared;
605 	struct e1000g_osdep *osdep = &Adapter->osdep;
606 
607 	/* Get the device id */
608 	hw->vendor_id =
609 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
610 	hw->device_id =
611 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
612 	hw->revision_id =
613 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
614 	hw->subsystem_device_id =
615 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
616 	hw->subsystem_vendor_id =
617 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
618 
619 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
620 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
621 		    "MAC type could not be set properly.");
622 		return (DDI_FAILURE);
623 	}
624 
625 	return (DDI_SUCCESS);
626 }
627 
628 static int
629 e1000g_regs_map(struct e1000g *Adapter)
630 {
631 	dev_info_t *devinfo = Adapter->dip;
632 	struct e1000_hw *hw = &Adapter->shared;
633 	struct e1000g_osdep *osdep = &Adapter->osdep;
634 	off_t mem_size;
635 
636 	/*
637 	 * first get the size of device register to be mapped. The
638 	 * second parameter is the register we are interested. I our
639 	 * wiseman 0 is for config registers and 1 is for memory mapped
640 	 * registers Mem size should have memory mapped region size
641 	 */
642 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
643 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
644 		    "ddi_dev_regsize for registers failed");
645 		return (DDI_FAILURE);
646 	}
647 
648 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
649 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
650 	    &osdep->reg_handle)) != DDI_SUCCESS) {
651 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
652 		    "ddi_regs_map_setup for registers failed");
653 		goto regs_map_fail;
654 	}
655 
656 	/* ICH needs to map flash memory */
657 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
658 		/* get flash size */
659 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
660 		    &mem_size) != DDI_SUCCESS) {
661 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
662 			    "ddi_dev_regsize for ICH flash failed");
663 			goto regs_map_fail;
664 		}
665 
666 		/* map flash in */
667 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
668 		    (caddr_t *)&hw->flash_address, 0,
669 		    mem_size, &e1000g_regs_acc_attr,
670 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
671 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 			    "ddi_regs_map_setup for ICH flash failed");
673 			goto regs_map_fail;
674 		}
675 	}
676 
677 	return (DDI_SUCCESS);
678 
679 regs_map_fail:
680 	if (osdep->reg_handle != NULL)
681 		ddi_regs_map_free(&osdep->reg_handle);
682 
683 	return (DDI_FAILURE);
684 }
685 
686 static int
687 e1000g_set_driver_params(struct e1000g *Adapter)
688 {
689 	struct e1000_hw *hw;
690 	e1000g_tx_ring_t *tx_ring;
691 	uint32_t mem_bar, io_bar, bar64;
692 
693 	hw = &Adapter->shared;
694 
695 	/* Set MAC type and initialize hardware functions */
696 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
697 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
698 		    "Could not setup hardware functions");
699 		return (DDI_FAILURE);
700 	}
701 
702 	/* Get bus information */
703 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
704 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
705 		    "Could not get bus information");
706 		return (DDI_FAILURE);
707 	}
708 
709 	/* get mem_base addr */
710 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
711 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
712 
713 	/* get io_base addr */
714 	if (hw->mac.type >= e1000_82544) {
715 		if (bar64) {
716 			/* IO BAR is different for 64 bit BAR mode */
717 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
718 			    PCI_CONF_BASE4);
719 		} else {
720 			/* normal 32-bit BAR mode */
721 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
722 			    PCI_CONF_BASE2);
723 		}
724 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
725 	} else {
726 		/* no I/O access for adapters prior to 82544 */
727 		hw->io_base = 0x0;
728 	}
729 
730 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
731 
732 	hw->mac.autoneg_failed = B_TRUE;
733 
734 	/* Set the wait_for_link flag to B_FALSE */
735 	hw->phy.wait_for_link = B_FALSE;
736 
737 	/* Adaptive IFS related changes */
738 	hw->mac.adaptive_ifs = B_TRUE;
739 
740 	/* Enable phy init script for IGP phy of 82541/82547 */
741 	if ((hw->mac.type == e1000_82547) ||
742 	    (hw->mac.type == e1000_82541) ||
743 	    (hw->mac.type == e1000_82547_rev_2) ||
744 	    (hw->mac.type == e1000_82541_rev_2))
745 		e1000_init_script_state_82541(hw, B_TRUE);
746 
747 	/* Enable the TTL workaround for 82541/82547 */
748 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
749 
750 #ifdef __sparc
751 	Adapter->strip_crc = B_TRUE;
752 #else
753 	Adapter->strip_crc = B_FALSE;
754 #endif
755 
756 	/* Get conf file properties */
757 	e1000g_get_conf(Adapter);
758 
759 	/* Get speed/duplex settings in conf file */
760 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
761 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
762 	e1000g_force_speed_duplex(Adapter);
763 
764 	/* Get Jumbo Frames settings in conf file */
765 	e1000g_get_max_frame_size(Adapter);
766 
767 	/* Set Rx/Tx buffer size */
768 	e1000g_set_bufsize(Adapter);
769 
770 	/* Master Latency Timer */
771 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
772 
773 	/* copper options */
774 	if (hw->media_type == e1000_media_type_copper) {
775 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
776 		hw->phy.disable_polarity_correction = B_FALSE;
777 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
778 	}
779 
780 	/* The initial link state should be "unknown" */
781 	Adapter->link_state = LINK_STATE_UNKNOWN;
782 
783 	/* Initialize rx parameters */
784 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
785 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
786 
787 	/* Initialize tx parameters */
788 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
789 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
790 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
791 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
792 
793 	tx_ring = Adapter->tx_ring;
794 	tx_ring->frags_limit =
795 	    (hw->mac.max_frame_size / Adapter->tx_bcopy_thresh) + 2;
796 	if (tx_ring->frags_limit > (MAX_TX_DESC_PER_PACKET >> 1))
797 		tx_ring->frags_limit = (MAX_TX_DESC_PER_PACKET >> 1);
798 
799 	/* Initialize rx parameters */
800 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
801 
802 	return (DDI_SUCCESS);
803 }
804 
805 static void
806 e1000g_set_bufsize(struct e1000g *Adapter)
807 {
808 	struct e1000_mac_info *mac = &Adapter->shared.mac;
809 	uint64_t rx_size;
810 	uint64_t tx_size;
811 
812 #ifdef __sparc
813 	dev_info_t *devinfo = Adapter->dip;
814 	ulong_t iommu_pagesize;
815 
816 	/* Get the system page size */
817 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
818 	iommu_pagesize = dvma_pagesize(devinfo);
819 	if (iommu_pagesize != 0) {
820 		if (Adapter->sys_page_sz == iommu_pagesize) {
821 			if (iommu_pagesize > 0x4000)
822 				Adapter->sys_page_sz = 0x4000;
823 		} else {
824 			if (Adapter->sys_page_sz > iommu_pagesize)
825 				Adapter->sys_page_sz = iommu_pagesize;
826 		}
827 	}
828 	Adapter->dvma_page_num = mac->max_frame_size /
829 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
830 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
831 #endif
832 
833 	mac->min_frame_size = ETHERMIN + ETHERFCSL;
834 
835 	rx_size = mac->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
836 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
837 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
838 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
839 	    (rx_size <= FRAME_SIZE_UPTO_8K))
840 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
841 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
842 	    (rx_size <= FRAME_SIZE_UPTO_16K))
843 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
844 	else
845 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
846 
847 	tx_size = mac->max_frame_size;
848 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
849 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
850 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
851 	    (tx_size <= FRAME_SIZE_UPTO_8K))
852 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
853 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
854 	    (tx_size <= FRAME_SIZE_UPTO_16K))
855 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
856 	else
857 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
858 
859 #ifndef NO_82542_SUPPORT
860 	/*
861 	 * For Wiseman adapters we have an requirement of having receive
862 	 * buffers aligned at 256 byte boundary. Since Livengood does not
863 	 * require this and forcing it for all hardwares will have
864 	 * performance implications, I am making it applicable only for
865 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
866 	 * it is okay to have normal frames...but it does involve a
867 	 * potential risk where we may loose data if buffer is not
868 	 * aligned...so all wiseman boards to have 256 byte aligned
869 	 * buffers
870 	 */
871 	if (mac->type < e1000_82543)
872 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
873 	else
874 		Adapter->rx_buf_align = 1;
875 #endif
876 }
877 
878 /*
879  * e1000g_detach - driver detach
880  *
881  * The detach() function is the complement of the attach routine.
882  * If cmd is set to DDI_DETACH, detach() is used to remove  the
883  * state  associated  with  a  given  instance of a device node
884  * prior to the removal of that instance from the system.
885  *
886  * The detach() function will be called once for each  instance
887  * of the device for which there has been a successful attach()
888  * once there are no longer  any  opens  on  the  device.
889  *
890  * Interrupts routine are disabled, All memory allocated by this
891  * driver are freed.
892  */
893 static int
894 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
895 {
896 	struct e1000g *Adapter;
897 	boolean_t rx_drain;
898 
899 	switch (cmd) {
900 	default:
901 		return (DDI_FAILURE);
902 
903 	case DDI_SUSPEND:
904 		return (e1000g_suspend(devinfo));
905 
906 	case DDI_DETACH:
907 		break;
908 	}
909 
910 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
911 	if (Adapter == NULL)
912 		return (DDI_FAILURE);
913 
914 	if (mac_unregister(Adapter->mh) != 0) {
915 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
916 		return (DDI_FAILURE);
917 	}
918 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
919 
920 
921 	if (Adapter->chip_state != E1000G_STOP)
922 		e1000g_stop(Adapter, B_TRUE);
923 
924 	rx_drain = e1000g_rx_drain(Adapter);
925 
926 	/*
927 	 * If e1000g_force_detach is enabled, driver detach is safe.
928 	 * We will let e1000g_free_priv_devi_node routine determine
929 	 * whether we need to free the priv_dip entry for current
930 	 * driver instance.
931 	 */
932 	if (e1000g_force_detach) {
933 		e1000g_free_priv_devi_node(Adapter, rx_drain);
934 	} else {
935 		if (!rx_drain)
936 			return (DDI_FAILURE);
937 	}
938 
939 	e1000g_unattach(devinfo, Adapter);
940 
941 	return (DDI_SUCCESS);
942 }
943 
944 /*
945  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
946  *
947  * If free_flag is true, that indicates the upper layer is not holding
948  * the rx buffers, we could free the priv_dip entry safely.
949  *
950  * Otherwise, we have to keep this entry even after driver detached,
951  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
952  * so that driver could free it while all of rx buffers are returned
953  * by upper layer later.
954  */
955 static void
956 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
957 {
958 	private_devi_list_t *devi_node, *devi_del;
959 
960 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
961 	ASSERT(e1000g_private_devi_list != NULL);
962 	ASSERT(Adapter->priv_dip != NULL);
963 
964 	devi_node = e1000g_private_devi_list;
965 	if (devi_node->priv_dip == Adapter->priv_dip) {
966 		if (free_flag) {
967 			e1000g_private_devi_list =
968 			    devi_node->next;
969 			kmem_free(devi_node->priv_dip,
970 			    sizeof (struct dev_info));
971 			kmem_free(devi_node,
972 			    sizeof (private_devi_list_t));
973 		} else {
974 			ASSERT(e1000g_mblks_pending != 0);
975 			devi_node->flag =
976 			    E1000G_PRIV_DEVI_DETACH;
977 		}
978 		rw_exit(&e1000g_rx_detach_lock);
979 		return;
980 	}
981 
982 	devi_node = e1000g_private_devi_list;
983 	while (devi_node->next != NULL) {
984 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
985 			if (free_flag) {
986 				devi_del = devi_node->next;
987 				devi_node->next = devi_del->next;
988 				kmem_free(devi_del->priv_dip,
989 				    sizeof (struct dev_info));
990 				kmem_free(devi_del,
991 				    sizeof (private_devi_list_t));
992 			} else {
993 				ASSERT(e1000g_mblks_pending != 0);
994 				devi_node->next->flag =
995 				    E1000G_PRIV_DEVI_DETACH;
996 			}
997 			break;
998 		}
999 		devi_node = devi_node->next;
1000 	}
1001 	rw_exit(&e1000g_rx_detach_lock);
1002 }
1003 
1004 static void
1005 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1006 {
1007 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1008 		(void) e1000g_disable_intrs(Adapter);
1009 	}
1010 
1011 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1012 		(void) mac_unregister(Adapter->mh);
1013 	}
1014 
1015 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1016 		(void) e1000g_rem_intrs(Adapter);
1017 	}
1018 
1019 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1020 		(void) ddi_prop_remove_all(devinfo);
1021 	}
1022 
1023 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1024 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1025 	}
1026 
1027 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1028 		stop_link_timer(Adapter);
1029 		if (e1000_reset_hw(&Adapter->shared) != 0) {
1030 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1031 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1032 		}
1033 	}
1034 
1035 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1036 		if (Adapter->osdep.reg_handle != NULL)
1037 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1038 		if (Adapter->osdep.ich_flash_handle != NULL)
1039 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1040 	}
1041 
1042 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1043 		if (Adapter->osdep.cfg_handle != NULL)
1044 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1045 	}
1046 
1047 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1048 		e1000g_destroy_locks(Adapter);
1049 	}
1050 
1051 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1052 		e1000g_fm_fini(Adapter);
1053 	}
1054 
1055 	e1000_remove_device(&Adapter->shared);
1056 
1057 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1058 
1059 	/*
1060 	 * Another hotplug spec requirement,
1061 	 * run ddi_set_driver_private(devinfo, null);
1062 	 */
1063 	ddi_set_driver_private(devinfo, NULL);
1064 }
1065 
1066 static void
1067 e1000g_init_locks(struct e1000g *Adapter)
1068 {
1069 	e1000g_tx_ring_t *tx_ring;
1070 	e1000g_rx_ring_t *rx_ring;
1071 
1072 	rw_init(&Adapter->chip_lock, NULL,
1073 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1074 	mutex_init(&Adapter->link_lock, NULL,
1075 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1076 	mutex_init(&Adapter->watchdog_lock, NULL,
1077 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1078 
1079 	tx_ring = Adapter->tx_ring;
1080 
1081 	mutex_init(&tx_ring->tx_lock, NULL,
1082 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1083 	mutex_init(&tx_ring->usedlist_lock, NULL,
1084 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1085 	mutex_init(&tx_ring->freelist_lock, NULL,
1086 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1087 
1088 	rx_ring = Adapter->rx_ring;
1089 
1090 	mutex_init(&rx_ring->freelist_lock, NULL,
1091 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1092 }
1093 
1094 static void
1095 e1000g_destroy_locks(struct e1000g *Adapter)
1096 {
1097 	e1000g_tx_ring_t *tx_ring;
1098 	e1000g_rx_ring_t *rx_ring;
1099 
1100 	tx_ring = Adapter->tx_ring;
1101 	mutex_destroy(&tx_ring->tx_lock);
1102 	mutex_destroy(&tx_ring->usedlist_lock);
1103 	mutex_destroy(&tx_ring->freelist_lock);
1104 
1105 	rx_ring = Adapter->rx_ring;
1106 	mutex_destroy(&rx_ring->freelist_lock);
1107 
1108 	mutex_destroy(&Adapter->link_lock);
1109 	mutex_destroy(&Adapter->watchdog_lock);
1110 	rw_destroy(&Adapter->chip_lock);
1111 }
1112 
1113 static int
1114 e1000g_resume(dev_info_t *devinfo)
1115 {
1116 	struct e1000g *Adapter;
1117 
1118 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1119 	if (Adapter == NULL)
1120 		return (DDI_FAILURE);
1121 
1122 	if (e1000g_start(Adapter, B_TRUE))
1123 		return (DDI_FAILURE);
1124 
1125 	return (DDI_SUCCESS);
1126 }
1127 
1128 static int
1129 e1000g_suspend(dev_info_t *devinfo)
1130 {
1131 	struct e1000g *Adapter;
1132 
1133 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1134 	if (Adapter == NULL)
1135 		return (DDI_FAILURE);
1136 
1137 	e1000g_stop(Adapter, B_TRUE);
1138 
1139 	return (DDI_SUCCESS);
1140 }
1141 
1142 static int
1143 e1000g_init(struct e1000g *Adapter)
1144 {
1145 	uint32_t pba;
1146 	uint32_t high_water;
1147 	struct e1000_hw *hw;
1148 	clock_t link_timeout;
1149 
1150 	hw = &Adapter->shared;
1151 
1152 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1153 
1154 	/*
1155 	 * reset to put the hardware in a known state
1156 	 * before we try to do anything with the eeprom
1157 	 */
1158 	if (e1000_reset_hw(hw) != 0) {
1159 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1160 		goto init_fail;
1161 	}
1162 
1163 	if (e1000_validate_nvm_checksum(hw) < 0) {
1164 		/*
1165 		 * Some PCI-E parts fail the first check due to
1166 		 * the link being in sleep state.  Call it again,
1167 		 * if it fails a second time its a real issue.
1168 		 */
1169 		if (e1000_validate_nvm_checksum(hw) < 0) {
1170 			e1000g_log(Adapter, CE_WARN,
1171 			    "Invalid NVM checksum. Please contact "
1172 			    "the vendor to update the NVM.");
1173 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1174 			goto init_fail;
1175 		}
1176 	}
1177 
1178 #ifdef __sparc
1179 	/*
1180 	 * Firstly, we try to get the local ethernet address from OBP. If
1181 	 * fail, we get from EEPROM of NIC card.
1182 	 */
1183 	if (!e1000g_find_mac_address(Adapter)) {
1184 		if (e1000_read_mac_addr(hw) < 0) {
1185 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1186 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1187 			goto init_fail;
1188 		}
1189 	}
1190 #else
1191 	/* Get the local ethernet address. */
1192 	if (e1000_read_mac_addr(hw) < 0) {
1193 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1194 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1195 		goto init_fail;
1196 	}
1197 #endif
1198 
1199 	/* check for valid mac address */
1200 	if (!is_valid_mac_addr(hw->mac.addr)) {
1201 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1202 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1203 		goto init_fail;
1204 	}
1205 
1206 	/* Set LAA state for 82571 chipset */
1207 	e1000_set_laa_state_82571(hw, B_TRUE);
1208 
1209 	/* Master Latency Timer implementation */
1210 	if (Adapter->master_latency_timer) {
1211 		pci_config_put8(Adapter->osdep.cfg_handle,
1212 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1213 	}
1214 
1215 	if (hw->mac.type < e1000_82547) {
1216 		/*
1217 		 * Total FIFO is 64K
1218 		 */
1219 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1220 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1221 		else
1222 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1223 	} else if (hw->mac.type >= e1000_82571 &&
1224 	    hw->mac.type <= e1000_82572) {
1225 		/*
1226 		 * Total FIFO is 48K
1227 		 */
1228 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1229 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1230 		else
1231 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1232 	} else if (hw->mac.type == e1000_ich8lan) {
1233 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1234 	} else if (hw->mac.type == e1000_ich9lan) {
1235 		pba = E1000_PBA_12K;
1236 	} else {
1237 		/*
1238 		 * Total FIFO is 40K
1239 		 */
1240 		if (hw->mac.max_frame_size > FRAME_SIZE_UPTO_8K)
1241 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1242 		else
1243 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1244 	}
1245 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1246 
1247 	/*
1248 	 * These parameters set thresholds for the adapter's generation(Tx)
1249 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1250 	 * settings.  Flow control is enabled or disabled in the configuration
1251 	 * file.
1252 	 * High-water mark is set down from the top of the rx fifo (not
1253 	 * sensitive to max_frame_size) and low-water is set just below
1254 	 * high-water mark.
1255 	 * The high water mark must be low enough to fit one full frame above
1256 	 * it in the rx FIFO.  Should be the lower of:
1257 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1258 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1259 	 * Rx FIFO size minus one full frame.
1260 	 */
1261 	high_water = min(((pba << 10) * 9 / 10),
1262 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1263 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1264 	    ((pba << 10) - hw->mac.max_frame_size)));
1265 
1266 	hw->mac.fc_high_water = high_water & 0xFFF8;
1267 	hw->mac.fc_low_water = hw->mac.fc_high_water - 8;
1268 
1269 	if (hw->mac.type == e1000_80003es2lan)
1270 		hw->mac.fc_pause_time = 0xFFFF;
1271 	else
1272 		hw->mac.fc_pause_time = E1000_FC_PAUSE_TIME;
1273 	hw->mac.fc_send_xon = B_TRUE;
1274 	hw->mac.fc = hw->mac.original_fc;
1275 
1276 	/*
1277 	 * Reset the adapter hardware the second time.
1278 	 */
1279 	if (e1000_reset_hw(hw) != 0) {
1280 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1281 		goto init_fail;
1282 	}
1283 
1284 	/* disable wakeup control by default */
1285 	if (hw->mac.type >= e1000_82544)
1286 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1287 
1288 	/* MWI setup */
1289 	e1000_pci_set_mwi(hw);
1290 
1291 	/*
1292 	 * Configure/Initialize hardware
1293 	 */
1294 	if (e1000_init_hw(hw) < 0) {
1295 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1296 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1297 		goto init_fail;
1298 	}
1299 
1300 	/* Disable Smart Power Down */
1301 	phy_spd_state(hw, B_FALSE);
1302 
1303 	/* Make sure driver has control */
1304 	e1000g_get_driver_control(hw);
1305 
1306 	/*
1307 	 * Initialize unicast addresses.
1308 	 */
1309 	e1000g_init_unicst(Adapter);
1310 
1311 	/*
1312 	 * Setup and initialize the mctable structures.  After this routine
1313 	 * completes  Multicast table will be set
1314 	 */
1315 	e1000g_setup_multicast(Adapter);
1316 	msec_delay(5);
1317 
1318 	/*
1319 	 * Implement Adaptive IFS
1320 	 */
1321 	e1000_reset_adaptive(hw);
1322 
1323 	/* Setup Interrupt Throttling Register */
1324 	if (hw->mac.type >= e1000_82540) {
1325 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1326 	} else
1327 		Adapter->intr_adaptive = B_FALSE;
1328 
1329 	/* Start the timer for link setup */
1330 	if (hw->mac.autoneg)
1331 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1332 	else
1333 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1334 
1335 	mutex_enter(&Adapter->link_lock);
1336 	if (hw->phy.wait_for_link) {
1337 		Adapter->link_complete = B_TRUE;
1338 	} else {
1339 		Adapter->link_complete = B_FALSE;
1340 		Adapter->link_tid = timeout(e1000g_link_timer,
1341 		    (void *)Adapter, link_timeout);
1342 	}
1343 	mutex_exit(&Adapter->link_lock);
1344 
1345 	/* Enable PCI-Ex master */
1346 	if (hw->bus.type == e1000_bus_type_pci_express) {
1347 		e1000_enable_pciex_master(hw);
1348 	}
1349 
1350 	/* Save the state of the phy */
1351 	e1000g_get_phy_state(Adapter);
1352 
1353 	e1000g_param_sync(Adapter);
1354 
1355 	Adapter->init_count++;
1356 
1357 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1358 		goto init_fail;
1359 	}
1360 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1361 		goto init_fail;
1362 	}
1363 
1364 	rw_exit(&Adapter->chip_lock);
1365 
1366 	return (DDI_SUCCESS);
1367 
1368 init_fail:
1369 	rw_exit(&Adapter->chip_lock);
1370 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1371 	return (DDI_FAILURE);
1372 }
1373 
1374 /*
1375  * Check if the link is up
1376  */
1377 static boolean_t
1378 e1000g_link_up(struct e1000g *Adapter)
1379 {
1380 	struct e1000_hw *hw;
1381 	boolean_t link_up;
1382 
1383 	hw = &Adapter->shared;
1384 
1385 	e1000_check_for_link(hw);
1386 
1387 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1388 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1389 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
1390 	    (hw->mac.serdes_has_link))) {
1391 		link_up = B_TRUE;
1392 	} else {
1393 		link_up = B_FALSE;
1394 	}
1395 
1396 	return (link_up);
1397 }
1398 
1399 static void
1400 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1401 {
1402 	struct iocblk *iocp;
1403 	struct e1000g *e1000gp;
1404 	enum ioc_reply status;
1405 	int err;
1406 
1407 	iocp = (struct iocblk *)mp->b_rptr;
1408 	iocp->ioc_error = 0;
1409 	e1000gp = (struct e1000g *)arg;
1410 
1411 	ASSERT(e1000gp);
1412 	if (e1000gp == NULL) {
1413 		miocnak(q, mp, 0, EINVAL);
1414 		return;
1415 	}
1416 
1417 	switch (iocp->ioc_cmd) {
1418 
1419 	case LB_GET_INFO_SIZE:
1420 	case LB_GET_INFO:
1421 	case LB_GET_MODE:
1422 	case LB_SET_MODE:
1423 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1424 		break;
1425 
1426 
1427 #ifdef E1000G_DEBUG
1428 	case E1000G_IOC_REG_PEEK:
1429 	case E1000G_IOC_REG_POKE:
1430 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1431 		break;
1432 	case E1000G_IOC_CHIP_RESET:
1433 		e1000gp->reset_count++;
1434 		if (e1000g_reset(e1000gp))
1435 			status = IOC_ACK;
1436 		else
1437 			status = IOC_INVAL;
1438 		break;
1439 #endif
1440 	default:
1441 		status = IOC_INVAL;
1442 		break;
1443 	}
1444 
1445 	/*
1446 	 * Decide how to reply
1447 	 */
1448 	switch (status) {
1449 	default:
1450 	case IOC_INVAL:
1451 		/*
1452 		 * Error, reply with a NAK and EINVAL or the specified error
1453 		 */
1454 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1455 		    EINVAL : iocp->ioc_error);
1456 		break;
1457 
1458 	case IOC_DONE:
1459 		/*
1460 		 * OK, reply already sent
1461 		 */
1462 		break;
1463 
1464 	case IOC_ACK:
1465 		/*
1466 		 * OK, reply with an ACK
1467 		 */
1468 		miocack(q, mp, 0, 0);
1469 		break;
1470 
1471 	case IOC_REPLY:
1472 		/*
1473 		 * OK, send prepared reply as ACK or NAK
1474 		 */
1475 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1476 		    M_IOCACK : M_IOCNAK;
1477 		qreply(q, mp);
1478 		break;
1479 	}
1480 }
1481 
1482 static int
1483 e1000g_m_start(void *arg)
1484 {
1485 	struct e1000g *Adapter = (struct e1000g *)arg;
1486 
1487 	return (e1000g_start(Adapter, B_TRUE));
1488 }
1489 
1490 static int
1491 e1000g_start(struct e1000g *Adapter, boolean_t global)
1492 {
1493 	if (global) {
1494 		/* Allocate dma resources for descriptors and buffers */
1495 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1496 			e1000g_log(Adapter, CE_WARN,
1497 			    "Alloc DMA resources failed");
1498 			return (ENOTACTIVE);
1499 		}
1500 		Adapter->rx_buffer_setup = B_FALSE;
1501 	}
1502 
1503 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1504 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1505 			e1000g_log(Adapter, CE_WARN,
1506 			    "Adapter initialization failed");
1507 			if (global)
1508 				e1000g_release_dma_resources(Adapter);
1509 			return (ENOTACTIVE);
1510 		}
1511 	}
1512 
1513 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1514 
1515 	/* Setup and initialize the transmit structures */
1516 	e1000g_tx_setup(Adapter);
1517 	msec_delay(5);
1518 
1519 	/* Setup and initialize the receive structures */
1520 	e1000g_rx_setup(Adapter);
1521 	msec_delay(5);
1522 
1523 	e1000g_mask_interrupt(Adapter);
1524 
1525 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1526 		rw_exit(&Adapter->chip_lock);
1527 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1528 		return (ENOTACTIVE);
1529 	}
1530 
1531 	Adapter->chip_state = E1000G_START;
1532 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1533 
1534 	rw_exit(&Adapter->chip_lock);
1535 
1536 	/* Enable and start the watchdog timer */
1537 	enable_watchdog_timer(Adapter);
1538 
1539 	return (0);
1540 }
1541 
1542 static void
1543 e1000g_m_stop(void *arg)
1544 {
1545 	struct e1000g *Adapter = (struct e1000g *)arg;
1546 
1547 	e1000g_stop(Adapter, B_TRUE);
1548 }
1549 
1550 static void
1551 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1552 {
1553 	/* Set stop flags */
1554 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1555 
1556 	Adapter->chip_state = E1000G_STOP;
1557 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1558 
1559 	rw_exit(&Adapter->chip_lock);
1560 
1561 	/* Drain tx sessions */
1562 	(void) e1000g_tx_drain(Adapter);
1563 
1564 	/* Disable and stop all the timers */
1565 	disable_watchdog_timer(Adapter);
1566 	stop_link_timer(Adapter);
1567 	stop_82547_timer(Adapter->tx_ring);
1568 
1569 	/* Stop the chip and release pending resources */
1570 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1571 
1572 	e1000g_clear_all_interrupts(Adapter);
1573 	if (e1000_reset_hw(&Adapter->shared) != 0) {
1574 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1575 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1576 	}
1577 
1578 	/* Release resources still held by the TX descriptors */
1579 	e1000g_tx_clean(Adapter);
1580 
1581 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1582 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1583 
1584 	/* Clean the pending rx jumbo packet fragment */
1585 	e1000g_rx_clean(Adapter);
1586 
1587 	rw_exit(&Adapter->chip_lock);
1588 
1589 	if (global)
1590 		e1000g_release_dma_resources(Adapter);
1591 }
1592 
1593 static void
1594 e1000g_rx_clean(struct e1000g *Adapter)
1595 {
1596 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1597 
1598 	if (rx_ring->rx_mblk != NULL) {
1599 		freemsg(rx_ring->rx_mblk);
1600 		rx_ring->rx_mblk = NULL;
1601 		rx_ring->rx_mblk_tail = NULL;
1602 		rx_ring->rx_mblk_len = 0;
1603 	}
1604 }
1605 
1606 static void
1607 e1000g_tx_clean(struct e1000g *Adapter)
1608 {
1609 	e1000g_tx_ring_t *tx_ring;
1610 	p_tx_sw_packet_t packet;
1611 	mblk_t *mp;
1612 	mblk_t *nmp;
1613 	uint32_t packet_count;
1614 
1615 	tx_ring = Adapter->tx_ring;
1616 
1617 	/*
1618 	 * Here we don't need to protect the lists using
1619 	 * the usedlist_lock and freelist_lock, for they
1620 	 * have been protected by the chip_lock.
1621 	 */
1622 	mp = NULL;
1623 	nmp = NULL;
1624 	packet_count = 0;
1625 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1626 	while (packet != NULL) {
1627 		if (packet->mp != NULL) {
1628 			/* Assemble the message chain */
1629 			if (mp == NULL) {
1630 				mp = packet->mp;
1631 				nmp = packet->mp;
1632 			} else {
1633 				nmp->b_next = packet->mp;
1634 				nmp = packet->mp;
1635 			}
1636 			/* Disconnect the message from the sw packet */
1637 			packet->mp = NULL;
1638 		}
1639 
1640 		e1000g_free_tx_swpkt(packet);
1641 		packet_count++;
1642 
1643 		packet = (p_tx_sw_packet_t)
1644 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1645 	}
1646 
1647 	if (mp != NULL)
1648 		freemsgchain(mp);
1649 
1650 	if (packet_count > 0) {
1651 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1652 		QUEUE_INIT_LIST(&tx_ring->used_list);
1653 
1654 		/* Setup TX descriptor pointers */
1655 		tx_ring->tbd_next = tx_ring->tbd_first;
1656 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1657 
1658 		/* Setup our HW Tx Head & Tail descriptor pointers */
1659 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH, 0);
1660 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT, 0);
1661 	}
1662 }
1663 
1664 static boolean_t
1665 e1000g_tx_drain(struct e1000g *Adapter)
1666 {
1667 	int i;
1668 	boolean_t done;
1669 	e1000g_tx_ring_t *tx_ring;
1670 
1671 	tx_ring = Adapter->tx_ring;
1672 
1673 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1674 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1675 		mutex_enter(&tx_ring->usedlist_lock);
1676 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1677 		mutex_exit(&tx_ring->usedlist_lock);
1678 
1679 		if (done)
1680 			break;
1681 
1682 		msec_delay(1);
1683 	}
1684 
1685 	return (done);
1686 }
1687 
1688 static boolean_t
1689 e1000g_rx_drain(struct e1000g *Adapter)
1690 {
1691 	e1000g_rx_ring_t *rx_ring;
1692 	p_rx_sw_packet_t packet;
1693 	boolean_t done;
1694 
1695 	rx_ring = Adapter->rx_ring;
1696 	done = B_TRUE;
1697 
1698 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1699 
1700 	while (rx_ring->pending_list != NULL) {
1701 		packet = rx_ring->pending_list;
1702 		rx_ring->pending_list =
1703 		    rx_ring->pending_list->next;
1704 
1705 		if (packet->flag == E1000G_RX_SW_STOP) {
1706 			packet->flag = E1000G_RX_SW_DETACH;
1707 			done = B_FALSE;
1708 		} else {
1709 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1710 			ASSERT(packet->mp == NULL);
1711 			e1000g_free_rx_sw_packet(packet);
1712 		}
1713 	}
1714 
1715 	rw_exit(&e1000g_rx_detach_lock);
1716 
1717 	return (done);
1718 }
1719 
1720 boolean_t
1721 e1000g_reset(struct e1000g *Adapter)
1722 {
1723 	e1000g_stop(Adapter, B_FALSE);
1724 
1725 	if (e1000g_start(Adapter, B_FALSE)) {
1726 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1727 		return (B_FALSE);
1728 	}
1729 
1730 	return (B_TRUE);
1731 }
1732 
1733 boolean_t
1734 e1000g_global_reset(struct e1000g *Adapter)
1735 {
1736 	e1000g_stop(Adapter, B_TRUE);
1737 
1738 	Adapter->init_count = 0;
1739 
1740 	if (e1000g_start(Adapter, B_TRUE)) {
1741 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1742 		return (B_FALSE);
1743 	}
1744 
1745 	return (B_TRUE);
1746 }
1747 
1748 /*
1749  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1750  *
1751  * This interrupt service routine is for PCI-Express adapters.
1752  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1753  * bit is set.
1754  */
1755 static uint_t
1756 e1000g_intr_pciexpress(caddr_t arg)
1757 {
1758 	struct e1000g *Adapter;
1759 	uint32_t icr;
1760 
1761 	Adapter = (struct e1000g *)arg;
1762 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1763 
1764 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1765 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1766 
1767 	if (icr & E1000_ICR_INT_ASSERTED) {
1768 		/*
1769 		 * E1000_ICR_INT_ASSERTED bit was set:
1770 		 * Read(Clear) the ICR, claim this interrupt,
1771 		 * look for work to do.
1772 		 */
1773 		e1000g_intr_work(Adapter, icr);
1774 		return (DDI_INTR_CLAIMED);
1775 	} else {
1776 		/*
1777 		 * E1000_ICR_INT_ASSERTED bit was not set:
1778 		 * Don't claim this interrupt, return immediately.
1779 		 */
1780 		return (DDI_INTR_UNCLAIMED);
1781 	}
1782 }
1783 
1784 /*
1785  * e1000g_intr - ISR for PCI/PCI-X chipsets
1786  *
1787  * This interrupt service routine is for PCI/PCI-X adapters.
1788  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1789  * bit is set or not.
1790  */
1791 static uint_t
1792 e1000g_intr(caddr_t arg)
1793 {
1794 	struct e1000g *Adapter;
1795 	uint32_t icr;
1796 
1797 	Adapter = (struct e1000g *)arg;
1798 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1799 
1800 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1801 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1802 
1803 	if (icr) {
1804 		/*
1805 		 * Any bit was set in ICR:
1806 		 * Read(Clear) the ICR, claim this interrupt,
1807 		 * look for work to do.
1808 		 */
1809 		e1000g_intr_work(Adapter, icr);
1810 		return (DDI_INTR_CLAIMED);
1811 	} else {
1812 		/*
1813 		 * No bit was set in ICR:
1814 		 * Don't claim this interrupt, return immediately.
1815 		 */
1816 		return (DDI_INTR_UNCLAIMED);
1817 	}
1818 }
1819 
1820 /*
1821  * e1000g_intr_work - actual processing of ISR
1822  *
1823  * Read(clear) the ICR contents and call appropriate interrupt
1824  * processing routines.
1825  */
1826 static void
1827 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1828 {
1829 	struct e1000_hw *hw;
1830 	hw = &Adapter->shared;
1831 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1832 	uint32_t itr;
1833 
1834 	Adapter->rx_pkt_cnt = 0;
1835 	Adapter->tx_pkt_cnt = 0;
1836 
1837 	rw_enter(&Adapter->chip_lock, RW_READER);
1838 	/*
1839 	 * Here we need to check the "chip_state" flag within the chip_lock to
1840 	 * ensure the receive routine will not execute when the adapter is
1841 	 * being reset.
1842 	 */
1843 	if (Adapter->chip_state != E1000G_START) {
1844 		rw_exit(&Adapter->chip_lock);
1845 		return;
1846 	}
1847 
1848 	if (icr & E1000_ICR_RXT0) {
1849 		mblk_t *mp;
1850 
1851 		mp = e1000g_receive(Adapter);
1852 
1853 		rw_exit(&Adapter->chip_lock);
1854 
1855 		if (mp != NULL)
1856 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1857 	} else
1858 		rw_exit(&Adapter->chip_lock);
1859 
1860 	if (icr & E1000_ICR_TXDW) {
1861 		if (!Adapter->tx_intr_enable)
1862 			e1000g_clear_tx_interrupt(Adapter);
1863 
1864 		/* Recycle the tx descriptors */
1865 		rw_enter(&Adapter->chip_lock, RW_READER);
1866 		e1000g_recycle(tx_ring);
1867 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1868 		rw_exit(&Adapter->chip_lock);
1869 
1870 		/* Schedule the re-transmit */
1871 		if (tx_ring->resched_needed &&
1872 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1873 			tx_ring->resched_needed = B_FALSE;
1874 			mac_tx_update(Adapter->mh);
1875 			E1000G_STAT(tx_ring->stat_reschedule);
1876 		}
1877 	}
1878 
1879 	if (Adapter->intr_adaptive) {
1880 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1881 		    Adapter->intr_throttling_rate);
1882 		if (itr) {
1883 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1884 			Adapter->intr_throttling_rate = itr;
1885 		}
1886 	}
1887 
1888 	/*
1889 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1890 	 * are checked to detect that the cable has been pulled out. For
1891 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1892 	 * are an indication that cable is not connected.
1893 	 */
1894 	if ((icr & E1000_ICR_RXSEQ) ||
1895 	    (icr & E1000_ICR_LSC) ||
1896 	    (icr & E1000_ICR_GPI_EN1)) {
1897 		boolean_t link_changed;
1898 		timeout_id_t tid = 0;
1899 
1900 		stop_watchdog_timer(Adapter);
1901 
1902 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1903 
1904 		/*
1905 		 * Because we got a link-status-change interrupt, force
1906 		 * e1000_check_for_link() to look at phy
1907 		 */
1908 		Adapter->shared.mac.get_link_status = B_TRUE;
1909 
1910 		/* e1000g_link_check takes care of link status change */
1911 		link_changed = e1000g_link_check(Adapter);
1912 
1913 		/* Get new phy state */
1914 		e1000g_get_phy_state(Adapter);
1915 
1916 		/*
1917 		 * If the link timer has not timed out, we'll not notify
1918 		 * the upper layer with any link state until the link is up.
1919 		 */
1920 		if (link_changed && !Adapter->link_complete) {
1921 			if (Adapter->link_state == LINK_STATE_UP) {
1922 				mutex_enter(&Adapter->link_lock);
1923 				Adapter->link_complete = B_TRUE;
1924 				tid = Adapter->link_tid;
1925 				Adapter->link_tid = 0;
1926 				mutex_exit(&Adapter->link_lock);
1927 			} else {
1928 				link_changed = B_FALSE;
1929 			}
1930 		}
1931 		rw_exit(&Adapter->chip_lock);
1932 
1933 		if (link_changed) {
1934 			if (tid != 0)
1935 				(void) untimeout(tid);
1936 
1937 			/*
1938 			 * Workaround for esb2. Data stuck in fifo on a link
1939 			 * down event. Reset the adapter to recover it.
1940 			 */
1941 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1942 			    (Adapter->shared.mac.type == e1000_80003es2lan))
1943 				(void) e1000g_reset(Adapter);
1944 
1945 			mac_link_update(Adapter->mh, Adapter->link_state);
1946 		}
1947 
1948 		start_watchdog_timer(Adapter);
1949 	}
1950 }
1951 
1952 static uint32_t
1953 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
1954 {
1955 	uint32_t new_itr;
1956 
1957 	/*
1958 	 * Determine a propper itr according to rx/tx packet count
1959 	 * per interrupt, the value of itr are based on document
1960 	 * and testing.
1961 	 */
1962 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
1963 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
1964 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1965 		goto itr_done;
1966 	}
1967 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
1968 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
1969 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
1970 		goto itr_done;
1971 	}
1972 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
1973 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
1974 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
1975 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1976 	} else
1977 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
1978 
1979 itr_done:
1980 	if (cur_itr == new_itr)
1981 		return (0);
1982 	else
1983 		return (new_itr);
1984 }
1985 
1986 static void
1987 e1000g_init_unicst(struct e1000g *Adapter)
1988 {
1989 	struct e1000_hw *hw;
1990 	int slot;
1991 
1992 	hw = &Adapter->shared;
1993 
1994 	if (!Adapter->unicst_init) {
1995 		/* Initialize the multiple unicast addresses */
1996 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1997 
1998 		if ((hw->mac.type == e1000_82571) &&
1999 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2000 			Adapter->unicst_total--;
2001 
2002 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2003 
2004 		/* Store the default mac address */
2005 		e1000_rar_set(hw, hw->mac.addr, 0);
2006 		if ((hw->mac.type == e1000_82571) &&
2007 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2008 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2009 
2010 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2011 		    ETHERADDRL);
2012 		Adapter->unicst_addr[0].mac.set = 1;
2013 
2014 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2015 			Adapter->unicst_addr[slot].mac.set = 0;
2016 
2017 		Adapter->unicst_init = B_TRUE;
2018 	} else {
2019 		/* Recover the default mac address */
2020 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2021 		    ETHERADDRL);
2022 
2023 		/* Store the default mac address */
2024 		e1000_rar_set(hw, hw->mac.addr, 0);
2025 		if ((hw->mac.type == e1000_82571) &&
2026 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2027 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2028 
2029 		/* Re-configure the RAR registers */
2030 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2031 			e1000_rar_set(hw,
2032 			    Adapter->unicst_addr[slot].mac.addr, slot);
2033 	}
2034 
2035 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2036 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2037 }
2038 
2039 static int
2040 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2041 {
2042 	struct e1000g *Adapter;
2043 
2044 	Adapter = (struct e1000g *)arg;
2045 
2046 	/* Store the default MAC address */
2047 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2048 
2049 	/* Set MAC address in address slot 0, which is the default address */
2050 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2051 }
2052 
2053 static int
2054 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2055     mac_addr_slot_t slot)
2056 {
2057 	struct e1000_hw *hw;
2058 
2059 	hw = &Adapter->shared;
2060 
2061 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2062 
2063 #ifndef NO_82542_SUPPORT
2064 	/*
2065 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2066 	 * that requires the receiver to be in reset when any of the
2067 	 * receive address registers (RAR regs) are accessed.  The first
2068 	 * rev of Wiseman silicon also requires MWI to be disabled when
2069 	 * a global reset or a receive reset is issued.  So before we
2070 	 * initialize the RARs, we check the rev of the Wiseman controller
2071 	 * and work around any necessary HW errata.
2072 	 */
2073 	if ((hw->mac.type == e1000_82542) &&
2074 	    (hw->revision_id == E1000_REVISION_2)) {
2075 		e1000_pci_clear_mwi(hw);
2076 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2077 		msec_delay(5);
2078 	}
2079 #endif
2080 
2081 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2082 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2083 
2084 	if (slot == 0) {
2085 		if ((hw->mac.type == e1000_82571) &&
2086 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2087 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2088 	}
2089 
2090 #ifndef NO_82542_SUPPORT
2091 	/*
2092 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2093 	 * put the receive in reset, and disabled MWI, to work around some
2094 	 * HW errata.  Now we should take the receiver out of reset, and
2095 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2096 	 */
2097 	if ((hw->mac.type == e1000_82542) &&
2098 	    (hw->revision_id == E1000_REVISION_2)) {
2099 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2100 		msec_delay(1);
2101 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2102 			e1000_pci_set_mwi(hw);
2103 		e1000g_rx_setup(Adapter);
2104 	}
2105 #endif
2106 
2107 	rw_exit(&Adapter->chip_lock);
2108 
2109 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2110 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2111 		return (EIO);
2112 	}
2113 
2114 	return (0);
2115 }
2116 
2117 /*
2118  * e1000g_m_unicst_add() - will find an unused address slot, set the
2119  * address value to the one specified, reserve that slot and enable
2120  * the NIC to start filtering on the new MAC address.
2121  * Returns 0 on success.
2122  */
2123 static int
2124 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2125 {
2126 	struct e1000g *Adapter = (struct e1000g *)arg;
2127 	mac_addr_slot_t slot;
2128 	int err;
2129 
2130 	if (mac_unicst_verify(Adapter->mh,
2131 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2132 		return (EINVAL);
2133 
2134 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2135 	if (Adapter->unicst_avail == 0) {
2136 		/* no slots available */
2137 		rw_exit(&Adapter->chip_lock);
2138 		return (ENOSPC);
2139 	}
2140 
2141 	/*
2142 	 * Primary/default address is in slot 0. The next addresses
2143 	 * are the multiple MAC addresses. So multiple MAC address 0
2144 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2145 	 * MAC address resides in slot 1.
2146 	 */
2147 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2148 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2149 			Adapter->unicst_addr[slot].mac.set = 1;
2150 			break;
2151 		}
2152 	}
2153 
2154 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2155 
2156 	Adapter->unicst_avail--;
2157 	rw_exit(&Adapter->chip_lock);
2158 
2159 	maddr->mma_slot = slot;
2160 
2161 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2162 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2163 		Adapter->unicst_addr[slot].mac.set = 0;
2164 		Adapter->unicst_avail++;
2165 		rw_exit(&Adapter->chip_lock);
2166 	}
2167 
2168 	return (err);
2169 }
2170 
2171 /*
2172  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2173  * call to e1000g_m_unicst_add(). The slot number that was returned in
2174  * e1000g_m_unicst_add() is passed in the call to remove the address.
2175  * Returns 0 on success.
2176  */
2177 static int
2178 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2179 {
2180 	struct e1000g *Adapter = (struct e1000g *)arg;
2181 	int err;
2182 
2183 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2184 		return (EINVAL);
2185 
2186 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2187 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2188 		Adapter->unicst_addr[slot].mac.set = 0;
2189 		Adapter->unicst_avail++;
2190 		rw_exit(&Adapter->chip_lock);
2191 
2192 		/* Copy the default address to the passed slot */
2193 		if (err = e1000g_unicst_set(Adapter,
2194 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
2195 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2196 			Adapter->unicst_addr[slot].mac.set = 1;
2197 			Adapter->unicst_avail--;
2198 			rw_exit(&Adapter->chip_lock);
2199 		}
2200 		return (err);
2201 	}
2202 	rw_exit(&Adapter->chip_lock);
2203 
2204 	return (EINVAL);
2205 }
2206 
2207 /*
2208  * e1000g_m_unicst_modify() - modifies the value of an address that
2209  * has been added by e1000g_m_unicst_add(). The new address, address
2210  * length and the slot number that was returned in the call to add
2211  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2212  * set to 0. Returns 0 on success.
2213  */
2214 static int
2215 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2216 {
2217 	struct e1000g *Adapter = (struct e1000g *)arg;
2218 	mac_addr_slot_t slot;
2219 
2220 	if (mac_unicst_verify(Adapter->mh,
2221 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2222 		return (EINVAL);
2223 
2224 	slot = maddr->mma_slot;
2225 
2226 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2227 		return (EINVAL);
2228 
2229 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2230 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2231 		rw_exit(&Adapter->chip_lock);
2232 
2233 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2234 	}
2235 	rw_exit(&Adapter->chip_lock);
2236 
2237 	return (EINVAL);
2238 }
2239 
2240 /*
2241  * e1000g_m_unicst_get() - will get the MAC address and all other
2242  * information related to the address slot passed in mac_multi_addr_t.
2243  * mma_flags should be set to 0 in the call.
2244  * On return, mma_flags can take the following values:
2245  * 1) MMAC_SLOT_UNUSED
2246  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2247  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2248  * 4) MMAC_SLOT_USED
2249  */
2250 static int
2251 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2252 {
2253 	struct e1000g *Adapter = (struct e1000g *)arg;
2254 	mac_addr_slot_t slot;
2255 
2256 	slot = maddr->mma_slot;
2257 
2258 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2259 		return (EINVAL);
2260 
2261 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2262 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2263 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2264 		    maddr->mma_addr, ETHERADDRL);
2265 		maddr->mma_flags = MMAC_SLOT_USED;
2266 	} else {
2267 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2268 	}
2269 	rw_exit(&Adapter->chip_lock);
2270 
2271 	return (0);
2272 }
2273 
2274 static int
2275 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2276 {
2277 	struct e1000_hw *hw = &Adapter->shared;
2278 	unsigned i;
2279 	int res = 0;
2280 
2281 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2282 
2283 	if ((multiaddr[0] & 01) == 0) {
2284 		res = EINVAL;
2285 		goto done;
2286 	}
2287 
2288 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2289 		res = ENOENT;
2290 		goto done;
2291 	}
2292 
2293 	bcopy(multiaddr,
2294 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2295 	Adapter->mcast_count++;
2296 
2297 	/*
2298 	 * Update the MC table in the hardware
2299 	 */
2300 	e1000g_clear_interrupt(Adapter);
2301 
2302 	e1000g_setup_multicast(Adapter);
2303 
2304 #ifndef NO_82542_SUPPORT
2305 	if ((hw->mac.type == e1000_82542) &&
2306 	    (hw->revision_id == E1000_REVISION_2))
2307 		e1000g_rx_setup(Adapter);
2308 #endif
2309 
2310 	e1000g_mask_interrupt(Adapter);
2311 
2312 done:
2313 	rw_exit(&Adapter->chip_lock);
2314 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2315 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2316 		res = EIO;
2317 	}
2318 
2319 	return (res);
2320 }
2321 
2322 static int
2323 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2324 {
2325 	struct e1000_hw *hw = &Adapter->shared;
2326 	unsigned i;
2327 
2328 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2329 
2330 	for (i = 0; i < Adapter->mcast_count; i++) {
2331 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2332 		    ETHERADDRL) == 0) {
2333 			for (i++; i < Adapter->mcast_count; i++) {
2334 				Adapter->mcast_table[i - 1] =
2335 				    Adapter->mcast_table[i];
2336 			}
2337 			Adapter->mcast_count--;
2338 			break;
2339 		}
2340 	}
2341 
2342 	/*
2343 	 * Update the MC table in the hardware
2344 	 */
2345 	e1000g_clear_interrupt(Adapter);
2346 
2347 	e1000g_setup_multicast(Adapter);
2348 
2349 #ifndef NO_82542_SUPPORT
2350 	if ((hw->mac.type == e1000_82542) &&
2351 	    (hw->revision_id == E1000_REVISION_2))
2352 		e1000g_rx_setup(Adapter);
2353 #endif
2354 
2355 	e1000g_mask_interrupt(Adapter);
2356 
2357 done:
2358 	rw_exit(&Adapter->chip_lock);
2359 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2360 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2361 		return (EIO);
2362 	}
2363 
2364 	return (0);
2365 }
2366 
2367 /*
2368  * e1000g_setup_multicast - setup multicast data structures
2369  *
2370  * This routine initializes all of the multicast related structures.
2371  */
2372 void
2373 e1000g_setup_multicast(struct e1000g *Adapter)
2374 {
2375 	uint8_t *mc_addr_list;
2376 	uint32_t mc_addr_count;
2377 	uint32_t rctl;
2378 	struct e1000_hw *hw;
2379 
2380 	hw = &Adapter->shared;
2381 
2382 	/*
2383 	 * The e1000g has the ability to do perfect filtering of 16
2384 	 * addresses. The driver uses one of the e1000g's 16 receive
2385 	 * address registers for its node/network/mac/individual address.
2386 	 * So, we have room for up to 15 multicast addresses in the CAM,
2387 	 * additional MC addresses are handled by the MTA (Multicast Table
2388 	 * Array)
2389 	 */
2390 
2391 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2392 
2393 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2394 
2395 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2396 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2397 		    "Adapter requested more than %d MC Addresses.\n",
2398 		    MAX_NUM_MULTICAST_ADDRESSES);
2399 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2400 	} else {
2401 		/*
2402 		 * Set the number of MC addresses that we are being
2403 		 * requested to use
2404 		 */
2405 		mc_addr_count = Adapter->mcast_count;
2406 	}
2407 #ifndef NO_82542_SUPPORT
2408 	/*
2409 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2410 	 * hang  while writing to the receive address registers if the receiver
2411 	 * is not in reset before writing to the registers. Updating the RAR
2412 	 * is done during the setting up of the multicast table, hence the
2413 	 * receiver has to be put in reset before updating the multicast table
2414 	 * and then taken out of reset at the end
2415 	 */
2416 	/*
2417 	 * if WMI was enabled then dis able it before issueing the global
2418 	 * reset to the hardware.
2419 	 */
2420 	/*
2421 	 * Only required for WISEMAN_2_0
2422 	 */
2423 	if ((hw->mac.type == e1000_82542) &&
2424 	    (hw->revision_id == E1000_REVISION_2)) {
2425 		e1000_pci_clear_mwi(hw);
2426 		/*
2427 		 * The e1000g must be in reset before changing any RA
2428 		 * registers. Reset receive unit.  The chip will remain in
2429 		 * the reset state until software explicitly restarts it.
2430 		 */
2431 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2432 		/* Allow receiver time to go in to reset */
2433 		msec_delay(5);
2434 	}
2435 #endif
2436 
2437 	e1000_mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
2438 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2439 
2440 #ifndef NO_82542_SUPPORT
2441 	/*
2442 	 * Only for Wiseman_2_0
2443 	 * If MWI was enabled then re-enable it after issueing (as we
2444 	 * disabled it up there) the receive reset command.
2445 	 * Wainwright does not have a receive reset command and only thing
2446 	 * close to it is global reset which will require tx setup also
2447 	 */
2448 	if ((hw->mac.type == e1000_82542) &&
2449 	    (hw->revision_id == E1000_REVISION_2)) {
2450 		/*
2451 		 * if WMI was enabled then reenable it after issueing the
2452 		 * global or receive reset to the hardware.
2453 		 */
2454 
2455 		/*
2456 		 * Take receiver out of reset
2457 		 * clear E1000_RCTL_RST bit (and all others)
2458 		 */
2459 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2460 		msec_delay(5);
2461 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2462 			e1000_pci_set_mwi(hw);
2463 	}
2464 #endif
2465 
2466 	/*
2467 	 * Restore original value
2468 	 */
2469 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2470 }
2471 
2472 int
2473 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2474 {
2475 	struct e1000g *Adapter = (struct e1000g *)arg;
2476 
2477 	return ((add) ? multicst_add(Adapter, addr)
2478 	    : multicst_remove(Adapter, addr));
2479 }
2480 
2481 int
2482 e1000g_m_promisc(void *arg, boolean_t on)
2483 {
2484 	struct e1000g *Adapter = (struct e1000g *)arg;
2485 	uint32_t rctl;
2486 
2487 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2488 
2489 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2490 
2491 	if (on)
2492 		rctl |=
2493 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2494 	else
2495 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2496 
2497 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2498 
2499 	Adapter->e1000g_promisc = on;
2500 
2501 	rw_exit(&Adapter->chip_lock);
2502 
2503 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2504 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2505 		return (EIO);
2506 	}
2507 
2508 	return (0);
2509 }
2510 
2511 static boolean_t
2512 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2513 {
2514 	struct e1000g *Adapter = (struct e1000g *)arg;
2515 	struct e1000_hw *hw = &Adapter->shared;
2516 
2517 	switch (cap) {
2518 	case MAC_CAPAB_HCKSUM: {
2519 		uint32_t *txflags = cap_data;
2520 		/*
2521 		 * Checksum on/off selection via global parameters.
2522 		 *
2523 		 * If the chip is flagged as not capable of (correctly)
2524 		 * handling checksumming, we don't enable it on either
2525 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2526 		 * from the patchable global defaults.
2527 		 *
2528 		 * We advertise our capabilities only if TX offload is
2529 		 * enabled.  On receive, the stack will accept checksummed
2530 		 * packets anyway, even if we haven't said we can deliver
2531 		 * them.
2532 		 */
2533 		switch (hw->mac.type) {
2534 		case e1000_82540:
2535 		case e1000_82544:
2536 		case e1000_82545:
2537 		case e1000_82545_rev_3:
2538 		case e1000_82546:
2539 		case e1000_82546_rev_3:
2540 		case e1000_82571:
2541 		case e1000_82572:
2542 		case e1000_82573:
2543 		case e1000_80003es2lan:
2544 			if (Adapter->tx_hcksum_enabled)
2545 				*txflags = HCKSUM_IPHDRCKSUM |
2546 				    HCKSUM_INET_PARTIAL;
2547 			else
2548 				return (B_FALSE);
2549 			break;
2550 
2551 		/*
2552 		 * For the following Intel PRO/1000 chipsets, we have not
2553 		 * tested the hardware checksum offload capability, so we
2554 		 * disable the capability for them.
2555 		 *	e1000_82542,
2556 		 *	e1000_82543,
2557 		 *	e1000_82541,
2558 		 *	e1000_82541_rev_2,
2559 		 *	e1000_82547,
2560 		 *	e1000_82547_rev_2,
2561 		 */
2562 		default:
2563 			return (B_FALSE);
2564 		}
2565 
2566 		break;
2567 	}
2568 	case MAC_CAPAB_POLL:
2569 		/*
2570 		 * There's nothing for us to fill in, simply returning
2571 		 * B_TRUE stating that we support polling is sufficient.
2572 		 */
2573 		break;
2574 
2575 	case MAC_CAPAB_MULTIADDRESS: {
2576 		multiaddress_capab_t *mmacp = cap_data;
2577 
2578 		/*
2579 		 * The number of MAC addresses made available by
2580 		 * this capability is one less than the total as
2581 		 * the primary address in slot 0 is counted in
2582 		 * the total.
2583 		 */
2584 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2585 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2586 		/* No multiple factory addresses, set mma_flag to 0 */
2587 		mmacp->maddr_flag = 0;
2588 		mmacp->maddr_handle = Adapter;
2589 		mmacp->maddr_add = e1000g_m_unicst_add;
2590 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2591 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2592 		mmacp->maddr_get = e1000g_m_unicst_get;
2593 		mmacp->maddr_reserve = NULL;
2594 		break;
2595 	}
2596 	default:
2597 		return (B_FALSE);
2598 	}
2599 	return (B_TRUE);
2600 }
2601 
2602 static boolean_t
2603 e1000g_param_locked(mac_prop_id_t pr_num)
2604 {
2605 	/*
2606 	 * All en_* parameters are locked (read-only) while
2607 	 * the device is in any sort of loopback mode ...
2608 	 */
2609 	switch (pr_num) {
2610 		case DLD_PROP_EN_1000FDX_CAP:
2611 		case DLD_PROP_EN_1000HDX_CAP:
2612 		case DLD_PROP_EN_100FDX_CAP:
2613 		case DLD_PROP_EN_100HDX_CAP:
2614 		case DLD_PROP_EN_10FDX_CAP:
2615 		case DLD_PROP_EN_10HDX_CAP:
2616 		case DLD_PROP_AUTONEG:
2617 		case DLD_PROP_FLOWCTRL:
2618 			return (B_TRUE);
2619 	}
2620 	return (B_FALSE);
2621 }
2622 
2623 /*
2624  * callback function for set/get of properties
2625  */
2626 static int
2627 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2628     uint_t pr_valsize, const void *pr_val)
2629 {
2630 	struct e1000g *Adapter = arg;
2631 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2632 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2633 	e1000g_tx_ring_t *tx_ring;
2634 	int err = 0;
2635 	link_flowctrl_t fc;
2636 	uint32_t cur_mtu, new_mtu;
2637 	uint64_t tmp = 0;
2638 
2639 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2640 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2641 	    e1000g_param_locked(pr_num)) {
2642 		/*
2643 		 * All en_* parameters are locked (read-only)
2644 		 * while the device is in any sort of loopback mode.
2645 		 */
2646 		rw_exit(&Adapter->chip_lock);
2647 		return (EBUSY);
2648 	}
2649 
2650 	switch (pr_num) {
2651 		case DLD_PROP_EN_1000FDX_CAP:
2652 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2653 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2654 			goto reset;
2655 		case DLD_PROP_EN_1000HDX_CAP:
2656 			Adapter->param_en_1000hdx = *(uint8_t *)pr_val;
2657 			Adapter->param_adv_1000hdx = *(uint8_t *)pr_val;
2658 			goto reset;
2659 		case DLD_PROP_EN_100FDX_CAP:
2660 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2661 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2662 			goto reset;
2663 		case DLD_PROP_EN_100HDX_CAP:
2664 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2665 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2666 			goto reset;
2667 		case DLD_PROP_EN_10FDX_CAP:
2668 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2669 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2670 			goto reset;
2671 		case DLD_PROP_EN_10HDX_CAP:
2672 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2673 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2674 			goto reset;
2675 		case DLD_PROP_AUTONEG:
2676 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2677 			goto reset;
2678 		case DLD_PROP_FLOWCTRL:
2679 			mac->fc_send_xon = B_TRUE;
2680 			bcopy(pr_val, &fc, sizeof (fc));
2681 
2682 			switch (fc) {
2683 			default:
2684 				err = EINVAL;
2685 				break;
2686 			case LINK_FLOWCTRL_NONE:
2687 				mac->fc = e1000_fc_none;
2688 				break;
2689 			case LINK_FLOWCTRL_RX:
2690 				mac->fc = e1000_fc_rx_pause;
2691 				break;
2692 			case LINK_FLOWCTRL_TX:
2693 				mac->fc = e1000_fc_tx_pause;
2694 				break;
2695 			case LINK_FLOWCTRL_BI:
2696 				mac->fc = e1000_fc_full;
2697 				break;
2698 			}
2699 reset:
2700 			if (err == 0) {
2701 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2702 					err = EINVAL;
2703 			}
2704 			break;
2705 		case DLD_PROP_ADV_1000FDX_CAP:
2706 		case DLD_PROP_ADV_1000HDX_CAP:
2707 		case DLD_PROP_ADV_100FDX_CAP:
2708 		case DLD_PROP_ADV_100HDX_CAP:
2709 		case DLD_PROP_ADV_10FDX_CAP:
2710 		case DLD_PROP_ADV_10HDX_CAP:
2711 		case DLD_PROP_STATUS:
2712 		case DLD_PROP_SPEED:
2713 		case DLD_PROP_DUPLEX:
2714 			err = ENOTSUP; /* read-only prop. Can't set this. */
2715 			break;
2716 		case DLD_PROP_MTU:
2717 			cur_mtu = Adapter->default_mtu;
2718 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2719 			if (new_mtu == cur_mtu) {
2720 				err = 0;
2721 				break;
2722 			}
2723 
2724 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2725 			    ETHERFCSL;
2726 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2727 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2728 				err = EINVAL;
2729 				break;
2730 			}
2731 
2732 			/* ich8 doed not support jumbo frames */
2733 			if ((mac->type == e1000_ich8lan) &&
2734 			    (tmp > DEFAULT_FRAME_SIZE)) {
2735 				err = EINVAL;
2736 				break;
2737 			}
2738 			/* ich9 does not do jumbo frames on one phy type */
2739 			if ((mac->type == e1000_ich9lan) &&
2740 			    (phy->type == e1000_phy_ife) &&
2741 			    (tmp > DEFAULT_FRAME_SIZE)) {
2742 				err = EINVAL;
2743 				break;
2744 			}
2745 			if (Adapter->chip_state != E1000G_STOP) {
2746 				err = EBUSY;
2747 				break;
2748 			}
2749 
2750 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2751 			if (err == 0) {
2752 				mac->max_frame_size = tmp;
2753 				Adapter->default_mtu = new_mtu;
2754 				e1000g_set_bufsize(Adapter);
2755 				tx_ring = Adapter->tx_ring;
2756 				tx_ring->frags_limit = (mac->max_frame_size /
2757 				    Adapter->tx_bcopy_thresh) + 2;
2758 				if (tx_ring->frags_limit >
2759 				    (MAX_TX_DESC_PER_PACKET >> 1))
2760 				tx_ring->frags_limit =
2761 				    (MAX_TX_DESC_PER_PACKET >> 1);
2762 			}
2763 			break;
2764 		case DLD_PROP_PRIVATE:
2765 			err = e1000g_set_priv_prop(Adapter, pr_name,
2766 			    pr_valsize, pr_val);
2767 			break;
2768 		default:
2769 			err = ENOTSUP;
2770 			break;
2771 	}
2772 	rw_exit(&Adapter->chip_lock);
2773 	return (err);
2774 }
2775 
2776 static int
2777 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2778     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
2779 {
2780 	struct e1000g *Adapter = arg;
2781 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2782 	int err = 0;
2783 	link_flowctrl_t fc;
2784 	uint64_t tmp = 0;
2785 
2786 	if (pr_valsize == 0)
2787 		return (EINVAL);
2788 
2789 	bzero(pr_val, pr_valsize);
2790 	if ((pr_flags & DLD_DEFAULT) && (pr_num != DLD_PROP_PRIVATE)) {
2791 		return (e1000g_get_def_val(Adapter, pr_num,
2792 		    pr_valsize, pr_val));
2793 	}
2794 
2795 	switch (pr_num) {
2796 		case DLD_PROP_DUPLEX:
2797 			if (pr_valsize >= sizeof (link_duplex_t)) {
2798 				bcopy(&Adapter->link_duplex, pr_val,
2799 				    sizeof (link_duplex_t));
2800 			} else
2801 				err = EINVAL;
2802 			break;
2803 		case DLD_PROP_SPEED:
2804 			if (pr_valsize >= sizeof (uint64_t)) {
2805 				tmp = Adapter->link_speed * 1000000ull;
2806 				bcopy(&tmp, pr_val, sizeof (tmp));
2807 			} else
2808 				err = EINVAL;
2809 			break;
2810 		case DLD_PROP_AUTONEG:
2811 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2812 			break;
2813 		case DLD_PROP_FLOWCTRL:
2814 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2815 				switch (mac->fc) {
2816 					case e1000_fc_none:
2817 						fc = LINK_FLOWCTRL_NONE;
2818 						break;
2819 					case e1000_fc_rx_pause:
2820 						fc = LINK_FLOWCTRL_RX;
2821 						break;
2822 					case e1000_fc_tx_pause:
2823 						fc = LINK_FLOWCTRL_TX;
2824 						break;
2825 					case e1000_fc_full:
2826 						fc = LINK_FLOWCTRL_BI;
2827 						break;
2828 				}
2829 				bcopy(&fc, pr_val, sizeof (fc));
2830 			} else
2831 				err = EINVAL;
2832 			break;
2833 		case DLD_PROP_ADV_1000FDX_CAP:
2834 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2835 			break;
2836 		case DLD_PROP_EN_1000FDX_CAP:
2837 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2838 			break;
2839 		case DLD_PROP_ADV_1000HDX_CAP:
2840 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2841 			break;
2842 		case DLD_PROP_EN_1000HDX_CAP:
2843 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2844 			break;
2845 		case DLD_PROP_ADV_100FDX_CAP:
2846 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2847 			break;
2848 		case DLD_PROP_EN_100FDX_CAP:
2849 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2850 			break;
2851 		case DLD_PROP_ADV_100HDX_CAP:
2852 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2853 			break;
2854 		case DLD_PROP_EN_100HDX_CAP:
2855 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2856 			break;
2857 		case DLD_PROP_ADV_10FDX_CAP:
2858 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2859 			break;
2860 		case DLD_PROP_EN_10FDX_CAP:
2861 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2862 			break;
2863 		case DLD_PROP_ADV_10HDX_CAP:
2864 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2865 			break;
2866 		case DLD_PROP_EN_10HDX_CAP:
2867 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2868 			break;
2869 		case DLD_PROP_ADV_100T4_CAP:
2870 		case DLD_PROP_EN_100T4_CAP:
2871 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2872 			break;
2873 		case DLD_PROP_PRIVATE:
2874 			err = e1000g_get_priv_prop(Adapter, pr_name,
2875 			    pr_flags, pr_valsize, pr_val);
2876 			break;
2877 		default:
2878 			err = ENOTSUP;
2879 			break;
2880 	}
2881 	return (err);
2882 }
2883 
2884 /* ARGUSED */
2885 static int
2886 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2887     uint_t pr_valsize, const void *pr_val)
2888 {
2889 	int err = 0;
2890 	long result;
2891 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2892 	struct e1000_hw *hw = &Adapter->shared;
2893 
2894 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2895 		if (pr_val == NULL) {
2896 			err = EINVAL;
2897 			return (err);
2898 		}
2899 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2900 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2901 		    result > MAX_TX_BCOPY_THRESHOLD)
2902 			err = EINVAL;
2903 		else {
2904 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2905 			tx_ring->frags_limit = (hw->mac.max_frame_size /
2906 			    Adapter->tx_bcopy_thresh) + 2;
2907 			if (tx_ring->frags_limit >
2908 			    (MAX_TX_DESC_PER_PACKET >> 1))
2909 				tx_ring->frags_limit =
2910 				    (MAX_TX_DESC_PER_PACKET >> 1);
2911 		}
2912 		return (err);
2913 	}
2914 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2915 		if (pr_val == NULL) {
2916 			err = EINVAL;
2917 			return (err);
2918 		}
2919 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2920 		if (result < 0 || result > 1)
2921 			err = EINVAL;
2922 		else {
2923 			Adapter->tx_intr_enable = (result == 1) ?
2924 			    B_TRUE: B_FALSE;
2925 			if (Adapter->tx_intr_enable)
2926 				e1000g_mask_tx_interrupt(Adapter);
2927 			else
2928 				e1000g_clear_tx_interrupt(Adapter);
2929 			if (e1000g_check_acc_handle(
2930 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2931 				ddi_fm_service_impact(Adapter->dip,
2932 				    DDI_SERVICE_DEGRADED);
2933 		}
2934 		return (err);
2935 	}
2936 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2937 		if (pr_val == NULL) {
2938 			err = EINVAL;
2939 			return (err);
2940 		}
2941 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2942 		if (result < MIN_TX_INTR_DELAY ||
2943 		    result > MAX_TX_INTR_DELAY)
2944 			err = EINVAL;
2945 		else {
2946 			Adapter->tx_intr_delay = (uint32_t)result;
2947 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2948 			if (e1000g_check_acc_handle(
2949 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2950 				ddi_fm_service_impact(Adapter->dip,
2951 				    DDI_SERVICE_DEGRADED);
2952 		}
2953 		return (err);
2954 	}
2955 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2956 		if (pr_val == NULL) {
2957 			err = EINVAL;
2958 			return (err);
2959 		}
2960 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2961 		if (result < MIN_TX_INTR_ABS_DELAY ||
2962 		    result > MAX_TX_INTR_ABS_DELAY)
2963 			err = EINVAL;
2964 		else {
2965 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2966 			E1000_WRITE_REG(hw, E1000_TADV,
2967 			    Adapter->tx_intr_abs_delay);
2968 			if (e1000g_check_acc_handle(
2969 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2970 				ddi_fm_service_impact(Adapter->dip,
2971 				    DDI_SERVICE_DEGRADED);
2972 		}
2973 		return (err);
2974 	}
2975 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2976 		if (pr_val == NULL) {
2977 			err = EINVAL;
2978 			return (err);
2979 		}
2980 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2981 		if (result < MIN_RX_BCOPY_THRESHOLD ||
2982 		    result > MAX_RX_BCOPY_THRESHOLD)
2983 			err = EINVAL;
2984 		else
2985 			Adapter->rx_bcopy_thresh = (uint32_t)result;
2986 		return (err);
2987 	}
2988 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
2989 		if (pr_val == NULL) {
2990 			err = EINVAL;
2991 			return (err);
2992 		}
2993 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2994 		if (result < MIN_RX_LIMIT_ON_INTR ||
2995 		    result > MAX_RX_LIMIT_ON_INTR)
2996 			err = EINVAL;
2997 		else
2998 			Adapter->rx_limit_onintr = (uint32_t)result;
2999 		return (err);
3000 	}
3001 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3002 		if (pr_val == NULL) {
3003 			err = EINVAL;
3004 			return (err);
3005 		}
3006 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3007 		if (result < MIN_RX_INTR_DELAY ||
3008 		    result > MAX_RX_INTR_DELAY)
3009 			err = EINVAL;
3010 		else {
3011 			Adapter->rx_intr_delay = (uint32_t)result;
3012 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3013 			if (e1000g_check_acc_handle(
3014 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3015 				ddi_fm_service_impact(Adapter->dip,
3016 				    DDI_SERVICE_DEGRADED);
3017 		}
3018 		return (err);
3019 	}
3020 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3021 		if (pr_val == NULL) {
3022 			err = EINVAL;
3023 			return (err);
3024 		}
3025 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3026 		if (result < MIN_RX_INTR_ABS_DELAY ||
3027 		    result > MAX_RX_INTR_ABS_DELAY)
3028 			err = EINVAL;
3029 		else {
3030 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3031 			E1000_WRITE_REG(hw, E1000_RADV,
3032 			    Adapter->rx_intr_abs_delay);
3033 			if (e1000g_check_acc_handle(
3034 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3035 				ddi_fm_service_impact(Adapter->dip,
3036 				    DDI_SERVICE_DEGRADED);
3037 		}
3038 		return (err);
3039 	}
3040 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3041 		if (pr_val == NULL) {
3042 			err = EINVAL;
3043 			return (err);
3044 		}
3045 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3046 		if (result < MIN_INTR_THROTTLING ||
3047 		    result > MAX_INTR_THROTTLING)
3048 			err = EINVAL;
3049 		else {
3050 			if (hw->mac.type >= e1000_82540) {
3051 				Adapter->intr_throttling_rate =
3052 				    (uint32_t)result;
3053 				E1000_WRITE_REG(hw, E1000_ITR,
3054 				    Adapter->intr_throttling_rate);
3055 				if (e1000g_check_acc_handle(
3056 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3057 					ddi_fm_service_impact(Adapter->dip,
3058 					    DDI_SERVICE_DEGRADED);
3059 			} else
3060 				err = EINVAL;
3061 		}
3062 		return (err);
3063 	}
3064 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3065 		if (pr_val == NULL) {
3066 			err = EINVAL;
3067 			return (err);
3068 		}
3069 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3070 		if (result < 0 || result > 1)
3071 			err = EINVAL;
3072 		else {
3073 			if (hw->mac.type >= e1000_82540) {
3074 				Adapter->intr_adaptive = (result == 1) ?
3075 				    B_TRUE : B_FALSE;
3076 			} else {
3077 				err = EINVAL;
3078 			}
3079 		}
3080 		return (err);
3081 	}
3082 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3083 		if (pr_val == NULL) {
3084 			err = EINVAL;
3085 			return (err);
3086 		}
3087 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3088 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3089 		    result > MAX_TX_RECYCLE_THRESHOLD)
3090 			err = EINVAL;
3091 		else
3092 			Adapter->tx_recycle_thresh = (uint32_t)result;
3093 		return (err);
3094 	}
3095 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3096 		if (pr_val == NULL) {
3097 			err = EINVAL;
3098 			return (err);
3099 		}
3100 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3101 		if (result < MIN_TX_RECYCLE_NUM ||
3102 		    result > MAX_TX_RECYCLE_NUM)
3103 			err = EINVAL;
3104 		else
3105 			Adapter->tx_recycle_num = (uint32_t)result;
3106 		return (err);
3107 	}
3108 	return (ENOTSUP);
3109 }
3110 
3111 static int
3112 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3113     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
3114 {
3115 	char valstr[MAXNAMELEN];
3116 	int err = ENOTSUP;
3117 	uint_t strsize;
3118 	boolean_t is_default = (pr_flags & DLD_DEFAULT);
3119 	int value;
3120 
3121 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3122 		if (is_default)
3123 			goto done;
3124 		value = Adapter->param_adv_pause;
3125 		err = 0;
3126 		goto done;
3127 	}
3128 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3129 		if (is_default)
3130 			goto done;
3131 		value = Adapter->param_adv_asym_pause;
3132 		err = 0;
3133 		goto done;
3134 	}
3135 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3136 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3137 		    Adapter->tx_bcopy_thresh);
3138 		err = 0;
3139 		goto done;
3140 	}
3141 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3142 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3143 		    Adapter->tx_intr_enable);
3144 		err = 0;
3145 		goto done;
3146 	}
3147 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3148 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3149 		    Adapter->tx_intr_delay);
3150 		err = 0;
3151 		goto done;
3152 	}
3153 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3154 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3155 		    Adapter->tx_intr_abs_delay);
3156 		err = 0;
3157 		goto done;
3158 	}
3159 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3160 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3161 		    Adapter->rx_bcopy_thresh);
3162 		err = 0;
3163 		goto done;
3164 	}
3165 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3166 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3167 		    Adapter->rx_limit_onintr);
3168 		err = 0;
3169 		goto done;
3170 	}
3171 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3172 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3173 		    Adapter->rx_intr_delay);
3174 		err = 0;
3175 		goto done;
3176 	}
3177 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3178 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3179 		    Adapter->rx_intr_abs_delay);
3180 		err = 0;
3181 		goto done;
3182 	}
3183 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3184 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3185 		    Adapter->intr_throttling_rate);
3186 		err = 0;
3187 		goto done;
3188 	}
3189 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3190 		value = (is_default ? 1 : Adapter->intr_adaptive);
3191 		err = 0;
3192 		goto done;
3193 	}
3194 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3195 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3196 		    Adapter->tx_recycle_thresh);
3197 		err = 0;
3198 		goto done;
3199 	}
3200 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3201 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3202 		    Adapter->tx_recycle_num);
3203 		err = 0;
3204 		goto done;
3205 	}
3206 done:
3207 	if (err == 0) {
3208 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3209 	}
3210 	return (err);
3211 }
3212 
3213 /*
3214  * e1000g_get_conf - get configurations set in e1000g.conf
3215  * This routine gets user-configured values out of the configuration
3216  * file e1000g.conf.
3217  *
3218  * For each configurable value, there is a minimum, a maximum, and a
3219  * default.
3220  * If user does not configure a value, use the default.
3221  * If user configures below the minimum, use the minumum.
3222  * If user configures above the maximum, use the maxumum.
3223  */
3224 static void
3225 e1000g_get_conf(struct e1000g *Adapter)
3226 {
3227 	struct e1000_hw *hw = &Adapter->shared;
3228 	boolean_t tbi_compatibility = B_FALSE;
3229 
3230 	/*
3231 	 * get each configurable property from e1000g.conf
3232 	 */
3233 
3234 	/*
3235 	 * NumTxDescriptors
3236 	 */
3237 	Adapter->tx_desc_num =
3238 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3239 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3240 	    DEFAULT_NUM_TX_DESCRIPTOR);
3241 
3242 	/*
3243 	 * NumRxDescriptors
3244 	 */
3245 	Adapter->rx_desc_num =
3246 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3247 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3248 	    DEFAULT_NUM_RX_DESCRIPTOR);
3249 
3250 	/*
3251 	 * NumRxFreeList
3252 	 */
3253 	Adapter->rx_freelist_num =
3254 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3255 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3256 	    DEFAULT_NUM_RX_FREELIST);
3257 
3258 	/*
3259 	 * NumTxPacketList
3260 	 */
3261 	Adapter->tx_freelist_num =
3262 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3263 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3264 	    DEFAULT_NUM_TX_FREELIST);
3265 
3266 	/*
3267 	 * FlowControl
3268 	 */
3269 	hw->mac.fc_send_xon = B_TRUE;
3270 	hw->mac.fc =
3271 	    e1000g_get_prop(Adapter, "FlowControl",
3272 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3273 	/* 4 is the setting that says "let the eeprom decide" */
3274 	if (hw->mac.fc == 4)
3275 		hw->mac.fc = e1000_fc_default;
3276 
3277 	/*
3278 	 * Max Num Receive Packets on Interrupt
3279 	 */
3280 	Adapter->rx_limit_onintr =
3281 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3282 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3283 	    DEFAULT_RX_LIMIT_ON_INTR);
3284 
3285 	/*
3286 	 * PHY master slave setting
3287 	 */
3288 	hw->phy.ms_type =
3289 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3290 	    e1000_ms_hw_default, e1000_ms_auto,
3291 	    e1000_ms_hw_default);
3292 
3293 	/*
3294 	 * Parameter which controls TBI mode workaround, which is only
3295 	 * needed on certain switches such as Cisco 6500/Foundry
3296 	 */
3297 	tbi_compatibility =
3298 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3299 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3300 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3301 
3302 	/*
3303 	 * MSI Enable
3304 	 */
3305 	Adapter->msi_enabled =
3306 	    e1000g_get_prop(Adapter, "MSIEnable",
3307 	    0, 1, DEFAULT_MSI_ENABLE);
3308 
3309 	/*
3310 	 * Interrupt Throttling Rate
3311 	 */
3312 	Adapter->intr_throttling_rate =
3313 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3314 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3315 	    DEFAULT_INTR_THROTTLING);
3316 
3317 	/*
3318 	 * Adaptive Interrupt Blanking Enable/Disable
3319 	 * It is enabled by default
3320 	 */
3321 	Adapter->intr_adaptive =
3322 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3323 	    B_TRUE : B_FALSE;
3324 
3325 	/*
3326 	 * Tx recycle threshold
3327 	 */
3328 	Adapter->tx_recycle_thresh =
3329 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3330 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3331 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3332 
3333 	/*
3334 	 * Tx recycle descriptor number
3335 	 */
3336 	Adapter->tx_recycle_num =
3337 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3338 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3339 	    DEFAULT_TX_RECYCLE_NUM);
3340 
3341 	/*
3342 	 * Hardware checksum enable/disable parameter
3343 	 */
3344 	Adapter->tx_hcksum_enabled =
3345 	    e1000g_get_prop(Adapter, "tx_hcksum_enabled",
3346 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3347 
3348 }
3349 
3350 /*
3351  * e1000g_get_prop - routine to read properties
3352  *
3353  * Get a user-configure property value out of the configuration
3354  * file e1000g.conf.
3355  *
3356  * Caller provides name of the property, a default value, a minimum
3357  * value, and a maximum value.
3358  *
3359  * Return configured value of the property, with default, minimum and
3360  * maximum properly applied.
3361  */
3362 static int
3363 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3364     char *propname,		/* name of the property */
3365     int minval,			/* minimum acceptable value */
3366     int maxval,			/* maximim acceptable value */
3367     int defval)			/* default value */
3368 {
3369 	int propval;		/* value returned for requested property */
3370 	int *props;		/* point to array of properties returned */
3371 	uint_t nprops;		/* number of property value returned */
3372 
3373 	/*
3374 	 * get the array of properties from the config file
3375 	 */
3376 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3377 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3378 		/* got some properties, test if we got enough */
3379 		if (Adapter->instance < nprops) {
3380 			propval = props[Adapter->instance];
3381 		} else {
3382 			/* not enough properties configured */
3383 			propval = defval;
3384 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3385 			    "Not Enough %s values found in e1000g.conf"
3386 			    " - set to %d\n",
3387 			    propname, propval);
3388 		}
3389 
3390 		/* free memory allocated for properties */
3391 		ddi_prop_free(props);
3392 
3393 	} else {
3394 		propval = defval;
3395 	}
3396 
3397 	/*
3398 	 * enforce limits
3399 	 */
3400 	if (propval > maxval) {
3401 		propval = maxval;
3402 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3403 		    "Too High %s value in e1000g.conf - set to %d\n",
3404 		    propname, propval);
3405 	}
3406 
3407 	if (propval < minval) {
3408 		propval = minval;
3409 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3410 		    "Too Low %s value in e1000g.conf - set to %d\n",
3411 		    propname, propval);
3412 	}
3413 
3414 	return (propval);
3415 }
3416 
3417 static boolean_t
3418 e1000g_link_check(struct e1000g *Adapter)
3419 {
3420 	uint16_t speed, duplex, phydata;
3421 	boolean_t link_changed = B_FALSE;
3422 	struct e1000_hw *hw;
3423 	uint32_t reg_tarc;
3424 
3425 	hw = &Adapter->shared;
3426 
3427 	if (e1000g_link_up(Adapter)) {
3428 		/*
3429 		 * The Link is up, check whether it was marked as down earlier
3430 		 */
3431 		if (Adapter->link_state != LINK_STATE_UP) {
3432 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3433 			Adapter->link_speed = speed;
3434 			Adapter->link_duplex = duplex;
3435 			Adapter->link_state = LINK_STATE_UP;
3436 			link_changed = B_TRUE;
3437 
3438 			Adapter->tx_link_down_timeout = 0;
3439 
3440 			if ((hw->mac.type == e1000_82571) ||
3441 			    (hw->mac.type == e1000_82572)) {
3442 				reg_tarc = E1000_READ_REG(hw, E1000_TARC0);
3443 				if (speed == SPEED_1000)
3444 					reg_tarc |= (1 << 21);
3445 				else
3446 					reg_tarc &= ~(1 << 21);
3447 				E1000_WRITE_REG(hw, E1000_TARC0, reg_tarc);
3448 			}
3449 		}
3450 		Adapter->smartspeed = 0;
3451 	} else {
3452 		if (Adapter->link_state != LINK_STATE_DOWN) {
3453 			Adapter->link_speed = 0;
3454 			Adapter->link_duplex = 0;
3455 			Adapter->link_state = LINK_STATE_DOWN;
3456 			link_changed = B_TRUE;
3457 
3458 			/*
3459 			 * SmartSpeed workaround for Tabor/TanaX, When the
3460 			 * driver loses link disable auto master/slave
3461 			 * resolution.
3462 			 */
3463 			if (hw->phy.type == e1000_phy_igp) {
3464 				e1000_read_phy_reg(hw,
3465 				    PHY_1000T_CTRL, &phydata);
3466 				phydata |= CR_1000T_MS_ENABLE;
3467 				e1000_write_phy_reg(hw,
3468 				    PHY_1000T_CTRL, phydata);
3469 			}
3470 		} else {
3471 			e1000g_smartspeed(Adapter);
3472 		}
3473 
3474 		if (Adapter->chip_state == E1000G_START) {
3475 			if (Adapter->tx_link_down_timeout <
3476 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3477 				Adapter->tx_link_down_timeout++;
3478 			} else if (Adapter->tx_link_down_timeout ==
3479 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3480 				e1000g_tx_clean(Adapter);
3481 				Adapter->tx_link_down_timeout++;
3482 			}
3483 		}
3484 	}
3485 
3486 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3487 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3488 
3489 	return (link_changed);
3490 }
3491 
3492 /*
3493  * e1000g_reset_link - Using the link properties to setup the link
3494  */
3495 int
3496 e1000g_reset_link(struct e1000g *Adapter)
3497 {
3498 	struct e1000_mac_info *mac;
3499 	struct e1000_phy_info *phy;
3500 	boolean_t invalid;
3501 
3502 	mac = &Adapter->shared.mac;
3503 	phy = &Adapter->shared.phy;
3504 	invalid = B_FALSE;
3505 
3506 	if (Adapter->param_adv_autoneg == 1) {
3507 		mac->autoneg = B_TRUE;
3508 		phy->autoneg_advertised = 0;
3509 
3510 		/*
3511 		 * 1000hdx is not supported for autonegotiation
3512 		 */
3513 		if (Adapter->param_adv_1000fdx == 1)
3514 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3515 
3516 		if (Adapter->param_adv_100fdx == 1)
3517 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3518 
3519 		if (Adapter->param_adv_100hdx == 1)
3520 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3521 
3522 		if (Adapter->param_adv_10fdx == 1)
3523 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3524 
3525 		if (Adapter->param_adv_10hdx == 1)
3526 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3527 
3528 		if (phy->autoneg_advertised == 0)
3529 			invalid = B_TRUE;
3530 	} else {
3531 		mac->autoneg = B_FALSE;
3532 
3533 		/*
3534 		 * 1000fdx and 1000hdx are not supported for forced link
3535 		 */
3536 		if (Adapter->param_adv_100fdx == 1)
3537 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3538 		else if (Adapter->param_adv_100hdx == 1)
3539 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3540 		else if (Adapter->param_adv_10fdx == 1)
3541 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3542 		else if (Adapter->param_adv_10hdx == 1)
3543 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3544 		else
3545 			invalid = B_TRUE;
3546 
3547 	}
3548 
3549 	if (invalid) {
3550 		e1000g_log(Adapter, CE_WARN,
3551 		    "Invalid link sets. Setup link to"
3552 		    "support autonegotiation with all link capabilities.");
3553 		mac->autoneg = B_TRUE;
3554 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3555 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3556 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3557 	}
3558 
3559 	return (e1000_setup_link(&Adapter->shared));
3560 }
3561 
3562 static void
3563 e1000g_local_timer(void *ws)
3564 {
3565 	struct e1000g *Adapter = (struct e1000g *)ws;
3566 	struct e1000_hw *hw;
3567 	e1000g_ether_addr_t ether_addr;
3568 	boolean_t link_changed;
3569 
3570 	hw = &Adapter->shared;
3571 
3572 	if (Adapter->chip_state == E1000G_ERROR) {
3573 		Adapter->reset_count++;
3574 		if (e1000g_global_reset(Adapter))
3575 			ddi_fm_service_impact(Adapter->dip,
3576 			    DDI_SERVICE_RESTORED);
3577 		else
3578 			ddi_fm_service_impact(Adapter->dip,
3579 			    DDI_SERVICE_LOST);
3580 		return;
3581 	}
3582 
3583 	if (e1000g_stall_check(Adapter)) {
3584 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3585 		    "Tx stall detected. Activate automatic recovery.\n");
3586 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3587 		Adapter->reset_count++;
3588 		if (e1000g_reset(Adapter))
3589 			ddi_fm_service_impact(Adapter->dip,
3590 			    DDI_SERVICE_RESTORED);
3591 		else
3592 			ddi_fm_service_impact(Adapter->dip,
3593 			    DDI_SERVICE_LOST);
3594 		return;
3595 	}
3596 
3597 	link_changed = B_FALSE;
3598 	rw_enter(&Adapter->chip_lock, RW_READER);
3599 	if (Adapter->link_complete)
3600 		link_changed = e1000g_link_check(Adapter);
3601 	rw_exit(&Adapter->chip_lock);
3602 
3603 	if (link_changed) {
3604 		/*
3605 		 * Workaround for esb2. Data stuck in fifo on a link
3606 		 * down event. Reset the adapter to recover it.
3607 		 */
3608 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
3609 		    (hw->mac.type == e1000_80003es2lan))
3610 			(void) e1000g_reset(Adapter);
3611 
3612 		mac_link_update(Adapter->mh, Adapter->link_state);
3613 	}
3614 
3615 	/*
3616 	 * With 82571 controllers, any locally administered address will
3617 	 * be overwritten when there is a reset on the other port.
3618 	 * Detect this circumstance and correct it.
3619 	 */
3620 	if ((hw->mac.type == e1000_82571) &&
3621 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3622 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3623 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3624 
3625 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3626 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3627 
3628 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3629 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3630 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3631 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3632 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3633 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3634 			e1000_rar_set(hw, hw->mac.addr, 0);
3635 		}
3636 	}
3637 
3638 	/*
3639 	 * Long TTL workaround for 82541/82547
3640 	 */
3641 	e1000_igp_ttl_workaround_82547(hw);
3642 
3643 	/*
3644 	 * Check for Adaptive IFS settings If there are lots of collisions
3645 	 * change the value in steps...
3646 	 * These properties should only be set for 10/100
3647 	 */
3648 	if ((hw->media_type == e1000_media_type_copper) &&
3649 	    ((Adapter->link_speed == SPEED_100) ||
3650 	    (Adapter->link_speed == SPEED_10))) {
3651 		e1000_update_adaptive(hw);
3652 	}
3653 	/*
3654 	 * Set Timer Interrupts
3655 	 */
3656 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3657 
3658 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3659 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3660 
3661 	restart_watchdog_timer(Adapter);
3662 }
3663 
3664 /*
3665  * The function e1000g_link_timer() is called when the timer for link setup
3666  * is expired, which indicates the completion of the link setup. The link
3667  * state will not be updated until the link setup is completed. And the
3668  * link state will not be sent to the upper layer through mac_link_update()
3669  * in this function. It will be updated in the local timer routine or the
3670  * interrupt service routine after the interface is started (plumbed).
3671  */
3672 static void
3673 e1000g_link_timer(void *arg)
3674 {
3675 	struct e1000g *Adapter = (struct e1000g *)arg;
3676 
3677 	mutex_enter(&Adapter->link_lock);
3678 	Adapter->link_complete = B_TRUE;
3679 	Adapter->link_tid = 0;
3680 	mutex_exit(&Adapter->link_lock);
3681 }
3682 
3683 /*
3684  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3685  *
3686  * This function read the forced speed and duplex for 10/100 Mbps speeds
3687  * and also for 1000 Mbps speeds from the e1000g.conf file
3688  */
3689 static void
3690 e1000g_force_speed_duplex(struct e1000g *Adapter)
3691 {
3692 	int forced;
3693 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3694 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3695 
3696 	/*
3697 	 * get value out of config file
3698 	 */
3699 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3700 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3701 
3702 	switch (forced) {
3703 	case GDIAG_10_HALF:
3704 		/*
3705 		 * Disable Auto Negotiation
3706 		 */
3707 		mac->autoneg = B_FALSE;
3708 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3709 		break;
3710 	case GDIAG_10_FULL:
3711 		/*
3712 		 * Disable Auto Negotiation
3713 		 */
3714 		mac->autoneg = B_FALSE;
3715 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3716 		break;
3717 	case GDIAG_100_HALF:
3718 		/*
3719 		 * Disable Auto Negotiation
3720 		 */
3721 		mac->autoneg = B_FALSE;
3722 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3723 		break;
3724 	case GDIAG_100_FULL:
3725 		/*
3726 		 * Disable Auto Negotiation
3727 		 */
3728 		mac->autoneg = B_FALSE;
3729 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3730 		break;
3731 	case GDIAG_1000_FULL:
3732 		/*
3733 		 * The gigabit spec requires autonegotiation.  Therefore,
3734 		 * when the user wants to force the speed to 1000Mbps, we
3735 		 * enable AutoNeg, but only allow the harware to advertise
3736 		 * 1000Mbps.  This is different from 10/100 operation, where
3737 		 * we are allowed to link without any negotiation.
3738 		 */
3739 		mac->autoneg = B_TRUE;
3740 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3741 		break;
3742 	default:	/* obey the setting of AutoNegAdvertised */
3743 		mac->autoneg = B_TRUE;
3744 		phy->autoneg_advertised =
3745 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3746 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3747 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3748 		break;
3749 	}	/* switch */
3750 }
3751 
3752 /*
3753  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3754  *
3755  * This function reads MaxFrameSize from e1000g.conf
3756  */
3757 static void
3758 e1000g_get_max_frame_size(struct e1000g *Adapter)
3759 {
3760 	int max_frame;
3761 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3762 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3763 
3764 	/*
3765 	 * get value out of config file
3766 	 */
3767 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3768 
3769 	switch (max_frame) {
3770 	case 0:
3771 		Adapter->default_mtu = ETHERMTU;
3772 		break;
3773 	/*
3774 	 * To avoid excessive memory allocation for rx buffers,
3775 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3776 	 */
3777 	case 1:
3778 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3779 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3780 		    E1000G_IPALIGNPRESERVEROOM;
3781 		break;
3782 	case 2:
3783 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3784 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3785 		    E1000G_IPALIGNPRESERVEROOM;
3786 		break;
3787 	case 3:
3788 		if (mac->type >= e1000_82571)
3789 			Adapter->default_mtu = MAXIMUM_MTU;
3790 		else
3791 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3792 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3793 			    E1000G_IPALIGNPRESERVEROOM;
3794 		break;
3795 	default:
3796 		Adapter->default_mtu = ETHERMTU;
3797 		break;
3798 	}	/* switch */
3799 
3800 	mac->max_frame_size = Adapter->default_mtu +
3801 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3802 
3803 	/* ich8 does not do jumbo frames */
3804 	if (mac->type == e1000_ich8lan) {
3805 		mac->max_frame_size = ETHERMAX;
3806 	}
3807 
3808 	/* ich9 does not do jumbo frames on one phy type */
3809 	if ((mac->type == e1000_ich9lan) &&
3810 	    (phy->type == e1000_phy_ife)) {
3811 		mac->max_frame_size = ETHERMAX;
3812 	}
3813 }
3814 
3815 static void
3816 arm_watchdog_timer(struct e1000g *Adapter)
3817 {
3818 	Adapter->watchdog_tid =
3819 	    timeout(e1000g_local_timer,
3820 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3821 }
3822 #pragma inline(arm_watchdog_timer)
3823 
3824 static void
3825 enable_watchdog_timer(struct e1000g *Adapter)
3826 {
3827 	mutex_enter(&Adapter->watchdog_lock);
3828 
3829 	if (!Adapter->watchdog_timer_enabled) {
3830 		Adapter->watchdog_timer_enabled = B_TRUE;
3831 		Adapter->watchdog_timer_started = B_TRUE;
3832 		arm_watchdog_timer(Adapter);
3833 	}
3834 
3835 	mutex_exit(&Adapter->watchdog_lock);
3836 }
3837 
3838 static void
3839 disable_watchdog_timer(struct e1000g *Adapter)
3840 {
3841 	timeout_id_t tid;
3842 
3843 	mutex_enter(&Adapter->watchdog_lock);
3844 
3845 	Adapter->watchdog_timer_enabled = B_FALSE;
3846 	Adapter->watchdog_timer_started = B_FALSE;
3847 	tid = Adapter->watchdog_tid;
3848 	Adapter->watchdog_tid = 0;
3849 
3850 	mutex_exit(&Adapter->watchdog_lock);
3851 
3852 	if (tid != 0)
3853 		(void) untimeout(tid);
3854 }
3855 
3856 static void
3857 start_watchdog_timer(struct e1000g *Adapter)
3858 {
3859 	mutex_enter(&Adapter->watchdog_lock);
3860 
3861 	if (Adapter->watchdog_timer_enabled) {
3862 		if (!Adapter->watchdog_timer_started) {
3863 			Adapter->watchdog_timer_started = B_TRUE;
3864 			arm_watchdog_timer(Adapter);
3865 		}
3866 	}
3867 
3868 	mutex_exit(&Adapter->watchdog_lock);
3869 }
3870 
3871 static void
3872 restart_watchdog_timer(struct e1000g *Adapter)
3873 {
3874 	mutex_enter(&Adapter->watchdog_lock);
3875 
3876 	if (Adapter->watchdog_timer_started)
3877 		arm_watchdog_timer(Adapter);
3878 
3879 	mutex_exit(&Adapter->watchdog_lock);
3880 }
3881 
3882 static void
3883 stop_watchdog_timer(struct e1000g *Adapter)
3884 {
3885 	timeout_id_t tid;
3886 
3887 	mutex_enter(&Adapter->watchdog_lock);
3888 
3889 	Adapter->watchdog_timer_started = B_FALSE;
3890 	tid = Adapter->watchdog_tid;
3891 	Adapter->watchdog_tid = 0;
3892 
3893 	mutex_exit(&Adapter->watchdog_lock);
3894 
3895 	if (tid != 0)
3896 		(void) untimeout(tid);
3897 }
3898 
3899 static void
3900 stop_link_timer(struct e1000g *Adapter)
3901 {
3902 	timeout_id_t tid;
3903 
3904 	/* Disable the link timer */
3905 	mutex_enter(&Adapter->link_lock);
3906 
3907 	tid = Adapter->link_tid;
3908 	Adapter->link_tid = 0;
3909 
3910 	mutex_exit(&Adapter->link_lock);
3911 
3912 	if (tid != 0)
3913 		(void) untimeout(tid);
3914 }
3915 
3916 static void
3917 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3918 {
3919 	timeout_id_t tid;
3920 
3921 	/* Disable the tx timer for 82547 chipset */
3922 	mutex_enter(&tx_ring->tx_lock);
3923 
3924 	tx_ring->timer_enable_82547 = B_FALSE;
3925 	tid = tx_ring->timer_id_82547;
3926 	tx_ring->timer_id_82547 = 0;
3927 
3928 	mutex_exit(&tx_ring->tx_lock);
3929 
3930 	if (tid != 0)
3931 		(void) untimeout(tid);
3932 }
3933 
3934 void
3935 e1000g_clear_interrupt(struct e1000g *Adapter)
3936 {
3937 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
3938 	    0xffffffff & ~E1000_IMS_RXSEQ);
3939 }
3940 
3941 void
3942 e1000g_mask_interrupt(struct e1000g *Adapter)
3943 {
3944 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
3945 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
3946 
3947 	if (Adapter->tx_intr_enable)
3948 		e1000g_mask_tx_interrupt(Adapter);
3949 }
3950 
3951 void
3952 e1000g_clear_all_interrupts(struct e1000g *Adapter)
3953 {
3954 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
3955 }
3956 
3957 void
3958 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
3959 {
3960 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
3961 }
3962 
3963 void
3964 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
3965 {
3966 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
3967 }
3968 
3969 static void
3970 e1000g_smartspeed(struct e1000g *Adapter)
3971 {
3972 	struct e1000_hw *hw = &Adapter->shared;
3973 	uint16_t phy_status;
3974 	uint16_t phy_ctrl;
3975 
3976 	/*
3977 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
3978 	 * advertising 1000Full, we don't even use the workaround
3979 	 */
3980 	if ((hw->phy.type != e1000_phy_igp) ||
3981 	    !hw->mac.autoneg ||
3982 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
3983 		return;
3984 
3985 	/*
3986 	 * True if this is the first call of this function or after every
3987 	 * 30 seconds of not having link
3988 	 */
3989 	if (Adapter->smartspeed == 0) {
3990 		/*
3991 		 * If Master/Slave config fault is asserted twice, we
3992 		 * assume back-to-back
3993 		 */
3994 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3995 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3996 			return;
3997 
3998 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
3999 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4000 			return;
4001 		/*
4002 		 * We're assuming back-2-back because our status register
4003 		 * insists! there's a fault in the master/slave
4004 		 * relationship that was "negotiated"
4005 		 */
4006 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4007 		/*
4008 		 * Is the phy configured for manual configuration of
4009 		 * master/slave?
4010 		 */
4011 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4012 			/*
4013 			 * Yes.  Then disable manual configuration (enable
4014 			 * auto configuration) of master/slave
4015 			 */
4016 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4017 			e1000_write_phy_reg(hw,
4018 			    PHY_1000T_CTRL, phy_ctrl);
4019 			/*
4020 			 * Effectively starting the clock
4021 			 */
4022 			Adapter->smartspeed++;
4023 			/*
4024 			 * Restart autonegotiation
4025 			 */
4026 			if (!e1000_phy_setup_autoneg(hw) &&
4027 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4028 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4029 				    MII_CR_RESTART_AUTO_NEG);
4030 				e1000_write_phy_reg(hw,
4031 				    PHY_CONTROL, phy_ctrl);
4032 			}
4033 		}
4034 		return;
4035 		/*
4036 		 * Has 6 seconds transpired still without link? Remember,
4037 		 * you should reset the smartspeed counter once you obtain
4038 		 * link
4039 		 */
4040 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4041 		/*
4042 		 * Yes.  Remember, we did at the start determine that
4043 		 * there's a master/slave configuration fault, so we're
4044 		 * still assuming there's someone on the other end, but we
4045 		 * just haven't yet been able to talk to it. We then
4046 		 * re-enable auto configuration of master/slave to see if
4047 		 * we're running 2/3 pair cables.
4048 		 */
4049 		/*
4050 		 * If still no link, perhaps using 2/3 pair cable
4051 		 */
4052 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4053 		phy_ctrl |= CR_1000T_MS_ENABLE;
4054 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4055 		/*
4056 		 * Restart autoneg with phy enabled for manual
4057 		 * configuration of master/slave
4058 		 */
4059 		if (!e1000_phy_setup_autoneg(hw) &&
4060 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4061 			phy_ctrl |=
4062 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4063 			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4064 		}
4065 		/*
4066 		 * Hopefully, there are no more faults and we've obtained
4067 		 * link as a result.
4068 		 */
4069 	}
4070 	/*
4071 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4072 	 * seconds)
4073 	 */
4074 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4075 		Adapter->smartspeed = 0;
4076 }
4077 
4078 static boolean_t
4079 is_valid_mac_addr(uint8_t *mac_addr)
4080 {
4081 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4082 	const uint8_t addr_test2[6] =
4083 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4084 
4085 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4086 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4087 		return (B_FALSE);
4088 
4089 	return (B_TRUE);
4090 }
4091 
4092 /*
4093  * e1000g_stall_check - check for tx stall
4094  *
4095  * This function checks if the adapter is stalled (in transmit).
4096  *
4097  * It is called each time the watchdog timeout is invoked.
4098  * If the transmit descriptor reclaim continuously fails,
4099  * the watchdog value will increment by 1. If the watchdog
4100  * value exceeds the threshold, the adapter is assumed to
4101  * have stalled and need to be reset.
4102  */
4103 static boolean_t
4104 e1000g_stall_check(struct e1000g *Adapter)
4105 {
4106 	e1000g_tx_ring_t *tx_ring;
4107 
4108 	tx_ring = Adapter->tx_ring;
4109 
4110 	if (Adapter->link_state != LINK_STATE_UP)
4111 		return (B_FALSE);
4112 
4113 	if (tx_ring->recycle_fail > 0)
4114 		tx_ring->stall_watchdog++;
4115 	else
4116 		tx_ring->stall_watchdog = 0;
4117 
4118 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4119 		return (B_FALSE);
4120 
4121 	tx_ring->stall_watchdog = 0;
4122 	tx_ring->recycle_fail = 0;
4123 
4124 	return (B_TRUE);
4125 }
4126 
4127 #ifdef E1000G_DEBUG
4128 static enum ioc_reply
4129 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4130 {
4131 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4132 	e1000g_peekpoke_t *ppd;
4133 	uint64_t mem_va;
4134 	uint64_t maxoff;
4135 	boolean_t peek;
4136 
4137 	switch (iocp->ioc_cmd) {
4138 
4139 	case E1000G_IOC_REG_PEEK:
4140 		peek = B_TRUE;
4141 		break;
4142 
4143 	case E1000G_IOC_REG_POKE:
4144 		peek = B_FALSE;
4145 		break;
4146 
4147 	deault:
4148 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4149 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4150 		    iocp->ioc_cmd);
4151 		return (IOC_INVAL);
4152 	}
4153 
4154 	/*
4155 	 * Validate format of ioctl
4156 	 */
4157 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4158 		return (IOC_INVAL);
4159 	if (mp->b_cont == NULL)
4160 		return (IOC_INVAL);
4161 
4162 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
4163 
4164 	/*
4165 	 * Validate request parameters
4166 	 */
4167 	switch (ppd->pp_acc_space) {
4168 
4169 	default:
4170 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4171 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4172 		    ppd->pp_acc_space);
4173 		return (IOC_INVAL);
4174 
4175 	case E1000G_PP_SPACE_REG:
4176 		/*
4177 		 * Memory-mapped I/O space
4178 		 */
4179 		ASSERT(ppd->pp_acc_size == 4);
4180 		if (ppd->pp_acc_size != 4)
4181 			return (IOC_INVAL);
4182 
4183 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4184 			return (IOC_INVAL);
4185 
4186 		mem_va = 0;
4187 		maxoff = 0x10000;
4188 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4189 		break;
4190 
4191 	case E1000G_PP_SPACE_E1000G:
4192 		/*
4193 		 * E1000g data structure!
4194 		 */
4195 		mem_va = (uintptr_t)e1000gp;
4196 		maxoff = sizeof (struct e1000g);
4197 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4198 		break;
4199 
4200 	}
4201 
4202 	if (ppd->pp_acc_offset >= maxoff)
4203 		return (IOC_INVAL);
4204 
4205 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4206 		return (IOC_INVAL);
4207 
4208 	/*
4209 	 * All OK - go!
4210 	 */
4211 	ppd->pp_acc_offset += mem_va;
4212 	(*ppfn)(e1000gp, ppd);
4213 	return (peek ? IOC_REPLY : IOC_ACK);
4214 }
4215 
4216 static void
4217 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4218 {
4219 	ddi_acc_handle_t handle;
4220 	uint32_t *regaddr;
4221 
4222 	handle = e1000gp->osdep.reg_handle;
4223 	regaddr =
4224 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4225 
4226 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4227 }
4228 
4229 static void
4230 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4231 {
4232 	ddi_acc_handle_t handle;
4233 	uint32_t *regaddr;
4234 	uint32_t value;
4235 
4236 	handle = e1000gp->osdep.reg_handle;
4237 	regaddr =
4238 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4239 	value = (uint32_t)ppd->pp_acc_data;
4240 
4241 	ddi_put32(handle, regaddr, value);
4242 }
4243 
4244 static void
4245 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4246 {
4247 	uint64_t value;
4248 	void *vaddr;
4249 
4250 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4251 
4252 	switch (ppd->pp_acc_size) {
4253 	case 1:
4254 		value = *(uint8_t *)vaddr;
4255 		break;
4256 
4257 	case 2:
4258 		value = *(uint16_t *)vaddr;
4259 		break;
4260 
4261 	case 4:
4262 		value = *(uint32_t *)vaddr;
4263 		break;
4264 
4265 	case 8:
4266 		value = *(uint64_t *)vaddr;
4267 		break;
4268 	}
4269 
4270 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4271 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4272 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4273 
4274 	ppd->pp_acc_data = value;
4275 }
4276 
4277 static void
4278 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4279 {
4280 	uint64_t value;
4281 	void *vaddr;
4282 
4283 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4284 	value = ppd->pp_acc_data;
4285 
4286 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4287 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4288 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4289 
4290 	switch (ppd->pp_acc_size) {
4291 	case 1:
4292 		*(uint8_t *)vaddr = (uint8_t)value;
4293 		break;
4294 
4295 	case 2:
4296 		*(uint16_t *)vaddr = (uint16_t)value;
4297 		break;
4298 
4299 	case 4:
4300 		*(uint32_t *)vaddr = (uint32_t)value;
4301 		break;
4302 
4303 	case 8:
4304 		*(uint64_t *)vaddr = (uint64_t)value;
4305 		break;
4306 	}
4307 }
4308 #endif
4309 
4310 /*
4311  * Loopback Support
4312  */
4313 static lb_property_t lb_normal =
4314 	{ normal,	"normal",	E1000G_LB_NONE		};
4315 static lb_property_t lb_external1000 =
4316 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4317 static lb_property_t lb_external100 =
4318 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4319 static lb_property_t lb_external10 =
4320 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4321 static lb_property_t lb_phy =
4322 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4323 
4324 static enum ioc_reply
4325 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4326 {
4327 	lb_info_sz_t *lbsp;
4328 	lb_property_t *lbpp;
4329 	struct e1000_hw *hw;
4330 	uint32_t *lbmp;
4331 	uint32_t size;
4332 	uint32_t value;
4333 
4334 	hw = &Adapter->shared;
4335 
4336 	if (mp->b_cont == NULL)
4337 		return (IOC_INVAL);
4338 
4339 	switch (iocp->ioc_cmd) {
4340 	default:
4341 		return (IOC_INVAL);
4342 
4343 	case LB_GET_INFO_SIZE:
4344 		size = sizeof (lb_info_sz_t);
4345 		if (iocp->ioc_count != size)
4346 			return (IOC_INVAL);
4347 
4348 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4349 		e1000g_get_phy_state(Adapter);
4350 
4351 		/*
4352 		 * Workaround for hardware faults. In order to get a stable
4353 		 * state of phy, we will wait for a specific interval and
4354 		 * try again. The time delay is an experiential value based
4355 		 * on our testing.
4356 		 */
4357 		msec_delay(100);
4358 		e1000g_get_phy_state(Adapter);
4359 		rw_exit(&Adapter->chip_lock);
4360 
4361 		value = sizeof (lb_normal);
4362 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4363 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4364 		    (hw->media_type == e1000_media_type_fiber) ||
4365 		    (hw->media_type == e1000_media_type_internal_serdes)) {
4366 			value += sizeof (lb_phy);
4367 			switch (hw->mac.type) {
4368 			case e1000_82571:
4369 			case e1000_82572:
4370 				value += sizeof (lb_external1000);
4371 				break;
4372 			}
4373 		}
4374 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4375 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4376 			value += sizeof (lb_external100);
4377 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4378 			value += sizeof (lb_external10);
4379 
4380 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
4381 		*lbsp = value;
4382 		break;
4383 
4384 	case LB_GET_INFO:
4385 		value = sizeof (lb_normal);
4386 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4387 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4388 		    (hw->media_type == e1000_media_type_fiber) ||
4389 		    (hw->media_type == e1000_media_type_internal_serdes)) {
4390 			value += sizeof (lb_phy);
4391 			switch (hw->mac.type) {
4392 			case e1000_82571:
4393 			case e1000_82572:
4394 				value += sizeof (lb_external1000);
4395 				break;
4396 			}
4397 		}
4398 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4399 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4400 			value += sizeof (lb_external100);
4401 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4402 			value += sizeof (lb_external10);
4403 
4404 		size = value;
4405 		if (iocp->ioc_count != size)
4406 			return (IOC_INVAL);
4407 
4408 		value = 0;
4409 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
4410 		lbpp[value++] = lb_normal;
4411 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4412 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4413 		    (hw->media_type == e1000_media_type_fiber) ||
4414 		    (hw->media_type == e1000_media_type_internal_serdes)) {
4415 			lbpp[value++] = lb_phy;
4416 			switch (hw->mac.type) {
4417 			case e1000_82571:
4418 			case e1000_82572:
4419 				lbpp[value++] = lb_external1000;
4420 				break;
4421 			}
4422 		}
4423 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4424 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4425 			lbpp[value++] = lb_external100;
4426 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4427 			lbpp[value++] = lb_external10;
4428 		break;
4429 
4430 	case LB_GET_MODE:
4431 		size = sizeof (uint32_t);
4432 		if (iocp->ioc_count != size)
4433 			return (IOC_INVAL);
4434 
4435 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4436 		*lbmp = Adapter->loopback_mode;
4437 		break;
4438 
4439 	case LB_SET_MODE:
4440 		size = 0;
4441 		if (iocp->ioc_count != sizeof (uint32_t))
4442 			return (IOC_INVAL);
4443 
4444 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4445 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4446 			return (IOC_INVAL);
4447 		break;
4448 	}
4449 
4450 	iocp->ioc_count = size;
4451 	iocp->ioc_error = 0;
4452 
4453 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4454 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4455 		return (IOC_INVAL);
4456 	}
4457 
4458 	return (IOC_REPLY);
4459 }
4460 
4461 static boolean_t
4462 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4463 {
4464 	struct e1000_hw *hw;
4465 	int i, times;
4466 	boolean_t link_up;
4467 
4468 	if (mode == Adapter->loopback_mode)
4469 		return (B_TRUE);
4470 
4471 	hw = &Adapter->shared;
4472 	times = 0;
4473 
4474 	Adapter->loopback_mode = mode;
4475 
4476 	if (mode == E1000G_LB_NONE) {
4477 		/* Reset the chip */
4478 		hw->phy.wait_for_link = B_TRUE;
4479 		(void) e1000g_reset(Adapter);
4480 		hw->phy.wait_for_link = B_FALSE;
4481 		return (B_TRUE);
4482 	}
4483 
4484 again:
4485 
4486 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4487 
4488 	switch (mode) {
4489 	default:
4490 		rw_exit(&Adapter->chip_lock);
4491 		return (B_FALSE);
4492 
4493 	case E1000G_LB_EXTERNAL_1000:
4494 		e1000g_set_external_loopback_1000(Adapter);
4495 		break;
4496 
4497 	case E1000G_LB_EXTERNAL_100:
4498 		e1000g_set_external_loopback_100(Adapter);
4499 		break;
4500 
4501 	case E1000G_LB_EXTERNAL_10:
4502 		e1000g_set_external_loopback_10(Adapter);
4503 		break;
4504 
4505 	case E1000G_LB_INTERNAL_PHY:
4506 		e1000g_set_internal_loopback(Adapter);
4507 		break;
4508 	}
4509 
4510 	times++;
4511 
4512 	rw_exit(&Adapter->chip_lock);
4513 
4514 	/* Wait for link up */
4515 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4516 		msec_delay(100);
4517 
4518 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4519 
4520 	link_up = e1000g_link_up(Adapter);
4521 
4522 	rw_exit(&Adapter->chip_lock);
4523 
4524 	if (!link_up) {
4525 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4526 		    "Failed to get the link up");
4527 		if (times < 2) {
4528 			/* Reset the link */
4529 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4530 			    "Reset the link ...");
4531 			(void) e1000g_reset(Adapter);
4532 			goto again;
4533 		}
4534 	}
4535 
4536 	return (B_TRUE);
4537 }
4538 
4539 /*
4540  * The following loopback settings are from Intel's technical
4541  * document - "How To Loopback". All the register settings and
4542  * time delay values are directly inherited from the document
4543  * without more explanations available.
4544  */
4545 static void
4546 e1000g_set_internal_loopback(struct e1000g *Adapter)
4547 {
4548 	struct e1000_hw *hw;
4549 	uint32_t ctrl;
4550 	uint32_t status;
4551 	uint16_t phy_ctrl;
4552 	uint32_t txcw;
4553 
4554 	hw = &Adapter->shared;
4555 
4556 	/* Disable Smart Power Down */
4557 	phy_spd_state(hw, B_FALSE);
4558 
4559 	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4560 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4561 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4562 
4563 	switch (hw->mac.type) {
4564 	case e1000_82540:
4565 	case e1000_82545:
4566 	case e1000_82545_rev_3:
4567 	case e1000_82546:
4568 	case e1000_82546_rev_3:
4569 	case e1000_82573:
4570 		/* Auto-MDI/MDIX off */
4571 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4572 		/* Reset PHY to update Auto-MDI/MDIX */
4573 		e1000_write_phy_reg(hw, PHY_CONTROL,
4574 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4575 		/* Reset PHY to auto-neg off and force 1000 */
4576 		e1000_write_phy_reg(hw, PHY_CONTROL,
4577 		    phy_ctrl | MII_CR_RESET);
4578 		/*
4579 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4580 		 * See comments above e1000g_set_internal_loopback() for the
4581 		 * background.
4582 		 */
4583 		e1000_write_phy_reg(hw, 29, 0x001F);
4584 		e1000_write_phy_reg(hw, 30, 0x8FFC);
4585 		e1000_write_phy_reg(hw, 29, 0x001A);
4586 		e1000_write_phy_reg(hw, 30, 0x8FF0);
4587 		break;
4588 	}
4589 
4590 	/* Set loopback */
4591 	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4592 
4593 	msec_delay(250);
4594 
4595 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4596 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4597 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4598 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4599 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4600 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4601 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4602 
4603 	switch (hw->mac.type) {
4604 	case e1000_82540:
4605 	case e1000_82545:
4606 	case e1000_82545_rev_3:
4607 	case e1000_82546:
4608 	case e1000_82546_rev_3:
4609 		/*
4610 		 * For some serdes we'll need to commit the writes now
4611 		 * so that the status is updated on link
4612 		 */
4613 		if (hw->media_type == e1000_media_type_internal_serdes) {
4614 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4615 			msec_delay(100);
4616 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4617 		}
4618 
4619 		if (hw->media_type == e1000_media_type_copper) {
4620 			/* Invert Loss of Signal */
4621 			ctrl |= E1000_CTRL_ILOS;
4622 		} else {
4623 			/* Set ILOS on fiber nic if half duplex is detected */
4624 			status = E1000_READ_REG(hw, E1000_STATUS);
4625 			if ((status & E1000_STATUS_FD) == 0)
4626 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4627 		}
4628 		break;
4629 
4630 	case e1000_82571:
4631 	case e1000_82572:
4632 		/*
4633 		 * The fiber/SerDes versions of this adapter do not contain an
4634 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4635 		 * using SerDes analog loopback.
4636 		 */
4637 		if (hw->media_type != e1000_media_type_copper) {
4638 			status = E1000_READ_REG(hw, E1000_STATUS);
4639 			/* Set ILOS on fiber nic if half duplex is detected */
4640 			if (((status & E1000_STATUS_LU) == 0) ||
4641 			    ((status & E1000_STATUS_FD) == 0) ||
4642 			    (hw->media_type ==
4643 			    e1000_media_type_internal_serdes))
4644 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4645 
4646 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4647 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4648 			txcw &= ~((uint32_t)1 << 31);
4649 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4650 
4651 			/*
4652 			 * Write 0x410 to Serdes Control register
4653 			 * to enable Serdes analog loopback
4654 			 */
4655 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4656 			msec_delay(10);
4657 		}
4658 		break;
4659 
4660 	case e1000_82573:
4661 		ctrl |= E1000_CTRL_ILOS;
4662 		break;
4663 	}
4664 
4665 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4666 
4667 }
4668 
4669 static void
4670 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4671 {
4672 	struct e1000_hw *hw;
4673 	uint32_t rctl;
4674 	uint32_t ctrl_ext;
4675 	uint32_t ctrl;
4676 	uint32_t status;
4677 	uint32_t txcw;
4678 
4679 	hw = &Adapter->shared;
4680 
4681 	/* Disable Smart Power Down */
4682 	phy_spd_state(hw, B_FALSE);
4683 
4684 	switch (hw->media_type) {
4685 	case e1000_media_type_copper:
4686 		/* Force link up (Must be done before the PHY writes) */
4687 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
4688 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4689 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4690 
4691 		rctl = E1000_READ_REG(hw, E1000_RCTL);
4692 		rctl |= (E1000_RCTL_EN |
4693 		    E1000_RCTL_SBP |
4694 		    E1000_RCTL_UPE |
4695 		    E1000_RCTL_MPE |
4696 		    E1000_RCTL_LPE |
4697 		    E1000_RCTL_BAM);		/* 0x803E */
4698 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4699 
4700 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4701 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4702 		    E1000_CTRL_EXT_SDP6_DATA |
4703 		    E1000_CTRL_EXT_SDP7_DATA |
4704 		    E1000_CTRL_EXT_SDP4_DIR |
4705 		    E1000_CTRL_EXT_SDP6_DIR |
4706 		    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4707 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4708 
4709 		/*
4710 		 * This sequence tunes the PHY's SDP and no customer
4711 		 * settable values. For background, see comments above
4712 		 * e1000g_set_internal_loopback().
4713 		 */
4714 		e1000_write_phy_reg(hw, 0x0, 0x140);
4715 		msec_delay(10);
4716 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
4717 		e1000_write_phy_reg(hw, 0x12, 0xC10);
4718 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
4719 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
4720 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
4721 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
4722 
4723 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
4724 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4725 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4726 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4727 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4728 
4729 		msec_delay(50);
4730 		break;
4731 	case e1000_media_type_fiber:
4732 	case e1000_media_type_internal_serdes:
4733 		status = E1000_READ_REG(hw, E1000_STATUS);
4734 		if (((status & E1000_STATUS_LU) == 0) ||
4735 		    (hw->media_type == e1000_media_type_internal_serdes)) {
4736 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4737 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4738 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4739 		}
4740 
4741 		/* Disable autoneg by setting bit 31 of TXCW to zero */
4742 		txcw = E1000_READ_REG(hw, E1000_TXCW);
4743 		txcw &= ~((uint32_t)1 << 31);
4744 		E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4745 
4746 		/*
4747 		 * Write 0x410 to Serdes Control register
4748 		 * to enable Serdes analog loopback
4749 		 */
4750 		E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4751 		msec_delay(10);
4752 		break;
4753 	default:
4754 		break;
4755 	}
4756 }
4757 
4758 static void
4759 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4760 {
4761 	struct e1000_hw *hw;
4762 	uint32_t ctrl;
4763 	uint16_t phy_ctrl;
4764 
4765 	hw = &Adapter->shared;
4766 
4767 	/* Disable Smart Power Down */
4768 	phy_spd_state(hw, B_FALSE);
4769 
4770 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4771 	    MII_CR_SPEED_100);
4772 
4773 	/* Force 100/FD, reset PHY */
4774 	e1000_write_phy_reg(hw, PHY_CONTROL,
4775 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4776 	msec_delay(10);
4777 
4778 	/* Force 100/FD */
4779 	e1000_write_phy_reg(hw, PHY_CONTROL,
4780 	    phy_ctrl);			/* 0x2100 */
4781 	msec_delay(10);
4782 
4783 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4784 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4785 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4786 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4787 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4788 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4789 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4790 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4791 
4792 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4793 }
4794 
4795 static void
4796 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4797 {
4798 	struct e1000_hw *hw;
4799 	uint32_t ctrl;
4800 	uint16_t phy_ctrl;
4801 
4802 	hw = &Adapter->shared;
4803 
4804 	/* Disable Smart Power Down */
4805 	phy_spd_state(hw, B_FALSE);
4806 
4807 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4808 	    MII_CR_SPEED_10);
4809 
4810 	/* Force 10/FD, reset PHY */
4811 	e1000_write_phy_reg(hw, PHY_CONTROL,
4812 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4813 	msec_delay(10);
4814 
4815 	/* Force 10/FD */
4816 	e1000_write_phy_reg(hw, PHY_CONTROL,
4817 	    phy_ctrl);			/* 0x0100 */
4818 	msec_delay(10);
4819 
4820 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4821 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4822 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4823 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4824 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4825 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4826 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4827 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4828 
4829 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4830 }
4831 
4832 #ifdef __sparc
4833 static boolean_t
4834 e1000g_find_mac_address(struct e1000g *Adapter)
4835 {
4836 	struct e1000_hw *hw = &Adapter->shared;
4837 	uchar_t *bytes;
4838 	struct ether_addr sysaddr;
4839 	uint_t nelts;
4840 	int err;
4841 	boolean_t found = B_FALSE;
4842 
4843 	/*
4844 	 * The "vendor's factory-set address" may already have
4845 	 * been extracted from the chip, but if the property
4846 	 * "local-mac-address" is set we use that instead.
4847 	 *
4848 	 * We check whether it looks like an array of 6
4849 	 * bytes (which it should, if OBP set it).  If we can't
4850 	 * make sense of it this way, we'll ignore it.
4851 	 */
4852 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4853 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4854 	if (err == DDI_PROP_SUCCESS) {
4855 		if (nelts == ETHERADDRL) {
4856 			while (nelts--)
4857 				hw->mac.addr[nelts] = bytes[nelts];
4858 			found = B_TRUE;
4859 		}
4860 		ddi_prop_free(bytes);
4861 	}
4862 
4863 	/*
4864 	 * Look up the OBP property "local-mac-address?". If the user has set
4865 	 * 'local-mac-address? = false', use "the system address" instead.
4866 	 */
4867 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4868 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
4869 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
4870 			if (localetheraddr(NULL, &sysaddr) != 0) {
4871 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
4872 				found = B_TRUE;
4873 			}
4874 		}
4875 		ddi_prop_free(bytes);
4876 	}
4877 
4878 	/*
4879 	 * Finally(!), if there's a valid "mac-address" property (created
4880 	 * if we netbooted from this interface), we must use this instead
4881 	 * of any of the above to ensure that the NFS/install server doesn't
4882 	 * get confused by the address changing as Solaris takes over!
4883 	 */
4884 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4885 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
4886 	if (err == DDI_PROP_SUCCESS) {
4887 		if (nelts == ETHERADDRL) {
4888 			while (nelts--)
4889 				hw->mac.addr[nelts] = bytes[nelts];
4890 			found = B_TRUE;
4891 		}
4892 		ddi_prop_free(bytes);
4893 	}
4894 
4895 	if (found) {
4896 		bcopy(hw->mac.addr, hw->mac.perm_addr,
4897 		    ETHERADDRL);
4898 	}
4899 
4900 	return (found);
4901 }
4902 #endif
4903 
4904 static int
4905 e1000g_add_intrs(struct e1000g *Adapter)
4906 {
4907 	dev_info_t *devinfo;
4908 	int intr_types;
4909 	int rc;
4910 
4911 	devinfo = Adapter->dip;
4912 
4913 	/* Get supported interrupt types */
4914 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4915 
4916 	if (rc != DDI_SUCCESS) {
4917 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
4918 		    "Get supported interrupt types failed: %d\n", rc);
4919 		return (DDI_FAILURE);
4920 	}
4921 
4922 	/*
4923 	 * Based on Intel Technical Advisory document (TA-160), there are some
4924 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
4925 	 * that it supports MSI, but in fact has problems.
4926 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
4927 	 * PCI/PCI-X NICs.
4928 	 */
4929 	if (Adapter->shared.mac.type < e1000_82571)
4930 		Adapter->msi_enabled = B_FALSE;
4931 
4932 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
4933 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
4934 
4935 		if (rc != DDI_SUCCESS) {
4936 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4937 			    "Add MSI failed, trying Legacy interrupts\n");
4938 		} else {
4939 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
4940 		}
4941 	}
4942 
4943 	if ((Adapter->intr_type == 0) &&
4944 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
4945 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
4946 
4947 		if (rc != DDI_SUCCESS) {
4948 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4949 			    "Add Legacy interrupts failed\n");
4950 			return (DDI_FAILURE);
4951 		}
4952 
4953 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
4954 	}
4955 
4956 	if (Adapter->intr_type == 0) {
4957 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
4958 		    "No interrupts registered\n");
4959 		return (DDI_FAILURE);
4960 	}
4961 
4962 	return (DDI_SUCCESS);
4963 }
4964 
4965 /*
4966  * e1000g_intr_add() handles MSI/Legacy interrupts
4967  */
4968 static int
4969 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
4970 {
4971 	dev_info_t *devinfo;
4972 	int count, avail, actual;
4973 	int x, y, rc, inum = 0;
4974 	int flag;
4975 	ddi_intr_handler_t *intr_handler;
4976 
4977 	devinfo = Adapter->dip;
4978 
4979 	/* get number of interrupts */
4980 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4981 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4982 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4983 		    "Get interrupt number failed. Return: %d, count: %d\n",
4984 		    rc, count);
4985 		return (DDI_FAILURE);
4986 	}
4987 
4988 	/* get number of available interrupts */
4989 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4990 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
4991 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4992 		    "Get interrupt available number failed. "
4993 		    "Return: %d, available: %d\n", rc, avail);
4994 		return (DDI_FAILURE);
4995 	}
4996 
4997 	if (avail < count) {
4998 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
4999 		    "Interrupts count: %d, available: %d\n",
5000 		    count, avail);
5001 	}
5002 
5003 	/* Allocate an array of interrupt handles */
5004 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5005 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5006 
5007 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5008 	flag = DDI_INTR_ALLOC_NORMAL;
5009 
5010 	/* call ddi_intr_alloc() */
5011 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5012 	    count, &actual, flag);
5013 
5014 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5015 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5016 		    "Allocate interrupts failed: %d\n", rc);
5017 
5018 		kmem_free(Adapter->htable, Adapter->intr_size);
5019 		return (DDI_FAILURE);
5020 	}
5021 
5022 	if (actual < count) {
5023 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5024 		    "Interrupts requested: %d, received: %d\n",
5025 		    count, actual);
5026 	}
5027 
5028 	Adapter->intr_cnt = actual;
5029 
5030 	/* Get priority for first msi, assume remaining are all the same */
5031 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5032 
5033 	if (rc != DDI_SUCCESS) {
5034 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5035 		    "Get interrupt priority failed: %d\n", rc);
5036 
5037 		/* Free already allocated intr */
5038 		for (y = 0; y < actual; y++)
5039 			(void) ddi_intr_free(Adapter->htable[y]);
5040 
5041 		kmem_free(Adapter->htable, Adapter->intr_size);
5042 		return (DDI_FAILURE);
5043 	}
5044 
5045 	/*
5046 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5047 	 * use the interrupt service routine e1000g_intr_pciexpress()
5048 	 * to avoid interrupt stealing when sharing interrupt with other
5049 	 * devices.
5050 	 */
5051 	if (Adapter->shared.mac.type < e1000_82571)
5052 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5053 	else
5054 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5055 
5056 	/* Call ddi_intr_add_handler() */
5057 	for (x = 0; x < actual; x++) {
5058 		rc = ddi_intr_add_handler(Adapter->htable[x],
5059 		    intr_handler, (caddr_t)Adapter, NULL);
5060 
5061 		if (rc != DDI_SUCCESS) {
5062 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5063 			    "Add interrupt handler failed: %d\n", rc);
5064 
5065 			/* Remove already added handler */
5066 			for (y = 0; y < x; y++)
5067 				(void) ddi_intr_remove_handler(
5068 				    Adapter->htable[y]);
5069 
5070 			/* Free already allocated intr */
5071 			for (y = 0; y < actual; y++)
5072 				(void) ddi_intr_free(Adapter->htable[y]);
5073 
5074 			kmem_free(Adapter->htable, Adapter->intr_size);
5075 			return (DDI_FAILURE);
5076 		}
5077 	}
5078 
5079 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5080 
5081 	if (rc != DDI_SUCCESS) {
5082 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5083 		    "Get interrupt cap failed: %d\n", rc);
5084 
5085 		/* Free already allocated intr */
5086 		for (y = 0; y < actual; y++) {
5087 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5088 			(void) ddi_intr_free(Adapter->htable[y]);
5089 		}
5090 
5091 		kmem_free(Adapter->htable, Adapter->intr_size);
5092 		return (DDI_FAILURE);
5093 	}
5094 
5095 	return (DDI_SUCCESS);
5096 }
5097 
5098 static int
5099 e1000g_rem_intrs(struct e1000g *Adapter)
5100 {
5101 	int x;
5102 	int rc;
5103 
5104 	for (x = 0; x < Adapter->intr_cnt; x++) {
5105 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5106 		if (rc != DDI_SUCCESS) {
5107 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5108 			    "Remove intr handler failed: %d\n", rc);
5109 			return (DDI_FAILURE);
5110 		}
5111 
5112 		rc = ddi_intr_free(Adapter->htable[x]);
5113 		if (rc != DDI_SUCCESS) {
5114 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5115 			    "Free intr failed: %d\n", rc);
5116 			return (DDI_FAILURE);
5117 		}
5118 	}
5119 
5120 	kmem_free(Adapter->htable, Adapter->intr_size);
5121 
5122 	return (DDI_SUCCESS);
5123 }
5124 
5125 static int
5126 e1000g_enable_intrs(struct e1000g *Adapter)
5127 {
5128 	int x;
5129 	int rc;
5130 
5131 	/* Enable interrupts */
5132 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5133 		/* Call ddi_intr_block_enable() for MSI */
5134 		rc = ddi_intr_block_enable(Adapter->htable,
5135 		    Adapter->intr_cnt);
5136 		if (rc != DDI_SUCCESS) {
5137 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5138 			    "Enable block intr failed: %d\n", rc);
5139 			return (DDI_FAILURE);
5140 		}
5141 	} else {
5142 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5143 		for (x = 0; x < Adapter->intr_cnt; x++) {
5144 			rc = ddi_intr_enable(Adapter->htable[x]);
5145 			if (rc != DDI_SUCCESS) {
5146 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5147 				    "Enable intr failed: %d\n", rc);
5148 				return (DDI_FAILURE);
5149 			}
5150 		}
5151 	}
5152 
5153 	return (DDI_SUCCESS);
5154 }
5155 
5156 static int
5157 e1000g_disable_intrs(struct e1000g *Adapter)
5158 {
5159 	int x;
5160 	int rc;
5161 
5162 	/* Disable all interrupts */
5163 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5164 		rc = ddi_intr_block_disable(Adapter->htable,
5165 		    Adapter->intr_cnt);
5166 		if (rc != DDI_SUCCESS) {
5167 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5168 			    "Disable block intr failed: %d\n", rc);
5169 			return (DDI_FAILURE);
5170 		}
5171 	} else {
5172 		for (x = 0; x < Adapter->intr_cnt; x++) {
5173 			rc = ddi_intr_disable(Adapter->htable[x]);
5174 			if (rc != DDI_SUCCESS) {
5175 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5176 				    "Disable intr failed: %d\n", rc);
5177 				return (DDI_FAILURE);
5178 			}
5179 		}
5180 	}
5181 
5182 	return (DDI_SUCCESS);
5183 }
5184 
5185 /*
5186  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5187  */
5188 static void
5189 e1000g_get_phy_state(struct e1000g *Adapter)
5190 {
5191 	struct e1000_hw *hw = &Adapter->shared;
5192 
5193 	e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5194 	e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5195 	e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5196 	e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5197 	e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5198 	e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5199 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &Adapter->phy_1000t_status);
5200 	e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5201 
5202 	Adapter->param_autoneg_cap =
5203 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5204 	Adapter->param_pause_cap =
5205 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5206 	Adapter->param_asym_pause_cap =
5207 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5208 	Adapter->param_1000fdx_cap =
5209 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5210 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5211 	Adapter->param_1000hdx_cap =
5212 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5213 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5214 	Adapter->param_100t4_cap =
5215 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5216 	Adapter->param_100fdx_cap =
5217 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5218 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5219 	Adapter->param_100hdx_cap =
5220 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5221 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5222 	Adapter->param_10fdx_cap =
5223 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5224 	Adapter->param_10hdx_cap =
5225 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5226 
5227 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5228 	Adapter->param_adv_pause =
5229 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5230 	Adapter->param_adv_asym_pause =
5231 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5232 	Adapter->param_adv_1000hdx =
5233 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5234 	Adapter->param_adv_100t4 =
5235 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5236 	if (Adapter->param_adv_autoneg == 1) {
5237 		Adapter->param_adv_1000fdx =
5238 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5239 		Adapter->param_adv_100fdx =
5240 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5241 		Adapter->param_adv_100hdx =
5242 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5243 		Adapter->param_adv_10fdx =
5244 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5245 		Adapter->param_adv_10hdx =
5246 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5247 	}
5248 
5249 	Adapter->param_lp_autoneg =
5250 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5251 	Adapter->param_lp_pause =
5252 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5253 	Adapter->param_lp_asym_pause =
5254 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5255 	Adapter->param_lp_1000fdx =
5256 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5257 	Adapter->param_lp_1000hdx =
5258 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5259 	Adapter->param_lp_100t4 =
5260 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5261 	Adapter->param_lp_100fdx =
5262 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5263 	Adapter->param_lp_100hdx =
5264 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5265 	Adapter->param_lp_10fdx =
5266 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5267 	Adapter->param_lp_10hdx =
5268 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5269 }
5270 
5271 /*
5272  * FMA support
5273  */
5274 
5275 int
5276 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5277 {
5278 	ddi_fm_error_t de;
5279 
5280 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5281 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5282 	return (de.fme_status);
5283 }
5284 
5285 int
5286 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5287 {
5288 	ddi_fm_error_t de;
5289 
5290 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5291 	return (de.fme_status);
5292 }
5293 
5294 /*
5295  * The IO fault service error handling callback function
5296  */
5297 static int
5298 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5299 {
5300 	/*
5301 	 * as the driver can always deal with an error in any dma or
5302 	 * access handle, we can just return the fme_status value.
5303 	 */
5304 	pci_ereport_post(dip, err, NULL);
5305 	return (err->fme_status);
5306 }
5307 
5308 static void
5309 e1000g_fm_init(struct e1000g *Adapter)
5310 {
5311 	ddi_iblock_cookie_t iblk;
5312 	int fma_acc_flag, fma_dma_flag;
5313 
5314 	/* Only register with IO Fault Services if we have some capability */
5315 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5316 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5317 		fma_acc_flag = 1;
5318 	} else {
5319 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5320 		fma_acc_flag = 0;
5321 	}
5322 
5323 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5324 		fma_dma_flag = 1;
5325 	} else {
5326 		fma_dma_flag = 0;
5327 	}
5328 
5329 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5330 
5331 	if (Adapter->fm_capabilities) {
5332 
5333 		/* Register capabilities with IO Fault Services */
5334 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5335 
5336 		/*
5337 		 * Initialize pci ereport capabilities if ereport capable
5338 		 */
5339 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5340 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5341 			pci_ereport_setup(Adapter->dip);
5342 
5343 		/*
5344 		 * Register error callback if error callback capable
5345 		 */
5346 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5347 			ddi_fm_handler_register(Adapter->dip,
5348 			    e1000g_fm_error_cb, (void*) Adapter);
5349 	}
5350 }
5351 
5352 static void
5353 e1000g_fm_fini(struct e1000g *Adapter)
5354 {
5355 	/* Only unregister FMA capabilities if we registered some */
5356 	if (Adapter->fm_capabilities) {
5357 
5358 		/*
5359 		 * Release any resources allocated by pci_ereport_setup()
5360 		 */
5361 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5362 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5363 			pci_ereport_teardown(Adapter->dip);
5364 
5365 		/*
5366 		 * Un-register error callback if error callback capable
5367 		 */
5368 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5369 			ddi_fm_handler_unregister(Adapter->dip);
5370 
5371 		/* Unregister from IO Fault Services */
5372 		ddi_fm_fini(Adapter->dip);
5373 	}
5374 }
5375 
5376 void
5377 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5378 {
5379 	uint64_t ena;
5380 	char buf[FM_MAX_CLASS];
5381 
5382 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5383 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5384 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5385 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5386 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5387 	}
5388 }
5389 
5390 static int
5391 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5392     uint_t pr_valsize, void *pr_val)
5393 {
5394 	link_flowctrl_t fl;
5395 	uint32_t fc;
5396 	int err = 0;
5397 
5398 	ASSERT(pr_valsize > 0);
5399 	switch (pr_num) {
5400 	case DLD_PROP_AUTONEG:
5401 		*(uint8_t *)pr_val =
5402 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5403 		break;
5404 	case DLD_PROP_FLOWCTRL:
5405 		if (pr_valsize < sizeof (link_flowctrl_t))
5406 			return (EINVAL);
5407 		fl = LINK_FLOWCTRL_BI;
5408 		bcopy(&fl, pr_val, sizeof (fl));
5409 		break;
5410 	case DLD_PROP_ADV_1000FDX_CAP:
5411 	case DLD_PROP_EN_1000FDX_CAP:
5412 		*(uint8_t *)pr_val =
5413 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5414 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5415 		break;
5416 	case DLD_PROP_ADV_1000HDX_CAP:
5417 	case DLD_PROP_EN_1000HDX_CAP:
5418 		*(uint8_t *)pr_val =
5419 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5420 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5421 		break;
5422 	case DLD_PROP_ADV_100FDX_CAP:
5423 	case DLD_PROP_EN_100FDX_CAP:
5424 		*(uint8_t *)pr_val =
5425 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5426 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5427 	case DLD_PROP_ADV_100HDX_CAP:
5428 	case DLD_PROP_EN_100HDX_CAP:
5429 		*(uint8_t *)pr_val =
5430 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5431 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5432 		break;
5433 	case DLD_PROP_ADV_10FDX_CAP:
5434 	case DLD_PROP_EN_10FDX_CAP:
5435 		*(uint8_t *)pr_val =
5436 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5437 		break;
5438 	case DLD_PROP_ADV_10HDX_CAP:
5439 	case DLD_PROP_EN_10HDX_CAP:
5440 		*(uint8_t *)pr_val =
5441 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5442 		break;
5443 	default:
5444 		err = ENOTSUP;
5445 		break;
5446 	}
5447 	return (err);
5448 }
5449 
5450 /*
5451  * synchronize the adv* and en* parameters.
5452  *
5453  * See comments in <sys/dld.h> for details of the *_en_*
5454  * parameters. The usage of ndd for setting adv parameters will
5455  * synchronize all the en parameters with the e1000g parameters,
5456  * implicity disalbing any settings made via dladm.
5457  */
5458 static void
5459 e1000g_param_sync(struct e1000g *Adapter)
5460 {
5461 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5462 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5463 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5464 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5465 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5466 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5467 }
5468