xref: /titanic_52/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 9113a79cf228b8f7bd509b1328adf88659dfe218)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routine for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point		*
37  *   routines.								*
38  *   This file also contains routines that takes care of initialization	*
39  *   uninit routine and interrupt routine				*
40  *									*
41  *									*
42  * Environment:								*
43  *   Kernel Mode -							*
44  *									*
45  * **********************************************************************
46  */
47 
48 #include <sys/dlpi.h>
49 #include <sys/mac.h>
50 #include "e1000g_sw.h"
51 #include "e1000g_debug.h"
52 
53 #define	E1000_RX_INTPT_TIME	128
54 #define	E1000_RX_PKT_CNT	8
55 
56 static char ident[] = "Intel PRO/1000 Ethernet 5.1.6";
57 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
58 static char e1000g_version[] = "Driver Ver. 5.1.6";
59 
60 /*
61  * Proto types for DDI entry points
62  */
63 static int e1000gattach(dev_info_t *, ddi_attach_cmd_t);
64 static int e1000gdetach(dev_info_t *, ddi_detach_cmd_t);
65 
66 /*
67  * init and intr routines prototype
68  */
69 static int e1000g_resume(dev_info_t *devinfo);
70 static int e1000g_suspend(dev_info_t *devinfo);
71 static uint_t e1000g_intr_pciexpress(caddr_t);
72 static uint_t e1000g_intr(caddr_t);
73 static void e1000g_intr_work(struct e1000g *, uint32_t);
74 #pragma inline(e1000g_intr_work)
75 static int e1000g_init(struct e1000g *);
76 static int e1000g_start(struct e1000g *);
77 static void e1000g_stop(struct e1000g *);
78 static boolean_t e1000g_reset(struct e1000g *);
79 static int e1000g_m_start(void *);
80 static void e1000g_m_stop(void *);
81 static int e1000g_m_promisc(void *, boolean_t);
82 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
83 static int e1000g_m_unicst(void *, const uint8_t *);
84 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
85 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
86 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
87 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
88 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
89 static void e1000g_m_blank(void *, time_t, uint32_t);
90 static void e1000g_m_resources(void *);
91 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
92 static void e1000g_init_locks(struct e1000g *Adapter);
93 static void e1000g_destroy_locks(struct e1000g *Adapter);
94 static int e1000g_set_driver_params(struct e1000g *Adapter);
95 static int e1000g_register_mac(struct e1000g *Adapter);
96 static boolean_t e1000g_rx_drain(struct e1000g *Adapter);
97 static boolean_t e1000g_tx_drain(struct e1000g *Adapter);
98 static void e1000g_init_unicst(struct e1000g *Adapter);
99 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
100 
101 /*
102  * Local routines
103  */
104 static void e1000g_LocalTimer(void *);
105 static boolean_t e1000g_LocalTimerWork(struct e1000g *);
106 static boolean_t e1000g_stall_check(struct e1000g *);
107 static void e1000g_smartspeed(struct e1000g *);
108 static void e1000g_getparam(struct e1000g *Adapter);
109 static int e1000g_getprop(struct e1000g *, char *, int, int, int);
110 static void e1000g_error(dev_info_t *dip, char *fmt, char *a1,
111     char *a2, char *a3, char *a4, char *a5, char *a6);
112 static void enable_timeout(struct e1000g *Adapter);
113 static void disable_timeout(struct e1000g *Adapter);
114 static void start_timeout(struct e1000g *Adapter);
115 static void restart_timeout(struct e1000g *Adapter);
116 static void stop_timeout(struct e1000g *Adapter);
117 static void e1000g_force_speed_duplex(struct e1000g *Adapter);
118 static void e1000g_get_max_frame_size(struct e1000g *Adapter);
119 static boolean_t is_valid_mac_addr(uint8_t *mac_addr);
120 static void e1000g_unattach(dev_info_t *, struct e1000g *);
121 static void e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
122 static void e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
123 static void e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
124 static void e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
125 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *e1000gp,
126     struct iocblk *iocp, mblk_t *mp);
127 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *Adapter,
128     struct iocblk *iocp, mblk_t *mp);
129 static boolean_t e1000g_set_loopback_mode(struct e1000g *Adapter,
130     uint32_t mode);
131 static void e1000g_set_internal_loopback(struct e1000g *Adapter);
132 static void e1000g_set_external_loopback_1000(struct e1000g *Adapter);
133 static void e1000g_set_external_loopback_100(struct e1000g *Adapter);
134 static void e1000g_set_external_loopback_10(struct e1000g *Adapter);
135 static int e1000g_add_intrs(struct e1000g *Adapter);
136 static int e1000g_intr_add(struct e1000g *Adapter, int intr_type);
137 static int e1000g_rem_intrs(struct e1000g *Adapter);
138 static int e1000g_enable_intrs(struct e1000g *Adapter);
139 static int e1000g_disable_intrs(struct e1000g *Adapter);
140 static boolean_t e1000g_link_up(struct e1000g *Adapter);
141 #ifdef __sparc
142 static boolean_t e1000g_find_mac_address(struct e1000g *Adapter);
143 #endif
144 
145 static struct cb_ops cb_ws_ops = {
146 	nulldev,		/* cb_open */
147 	nulldev,		/* cb_close */
148 	nodev,			/* cb_strategy */
149 	nodev,			/* cb_print */
150 	nodev,			/* cb_dump */
151 	nodev,			/* cb_read */
152 	nodev,			/* cb_write */
153 	nodev,			/* cb_ioctl */
154 	nodev,			/* cb_devmap */
155 	nodev,			/* cb_mmap */
156 	nodev,			/* cb_segmap */
157 	nochpoll,		/* cb_chpoll */
158 	ddi_prop_op,		/* cb_prop_op */
159 	NULL,			/* cb_stream */
160 	D_MP | D_HOTPLUG,	/* cb_flag */
161 	CB_REV,			/* cb_rev */
162 	nodev,			/* cb_aread */
163 	nodev			/* cb_awrite */
164 };
165 
166 static struct dev_ops ws_ops = {
167 	DEVO_REV,		/* devo_rev */
168 	0,			/* devo_refcnt */
169 	NULL,			/* devo_getinfo */
170 	nulldev,		/* devo_identify */
171 	nulldev,		/* devo_probe */
172 	e1000gattach,		/* devo_attach */
173 	e1000gdetach,		/* devo_detach */
174 	nodev,			/* devo_reset */
175 	&cb_ws_ops,		/* devo_cb_ops */
176 	NULL,			/* devo_bus_ops */
177 	ddi_power		/* devo_power */
178 };
179 
180 static struct modldrv modldrv = {
181 	&mod_driverops,		/* Type of module.  This one is a driver */
182 	ident,			/* Discription string */
183 	&ws_ops,		/* driver ops */
184 };
185 
186 static struct modlinkage modlinkage = {
187 	MODREV_1, &modldrv, NULL
188 };
189 
190 /*
191  * DMA access attributes <Little Endian Card>
192  */
193 static ddi_device_acc_attr_t accattr1 = {
194 	DDI_DEVICE_ATTR_V0,
195 	DDI_STRUCTURE_LE_ACC,
196 	DDI_STRICTORDER_ACC,
197 };
198 
199 #define	E1000G_M_CALLBACK_FLAGS	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB)
200 
201 static mac_callbacks_t e1000g_m_callbacks = {
202 	E1000G_M_CALLBACK_FLAGS,
203 	e1000g_m_stat,
204 	e1000g_m_start,
205 	e1000g_m_stop,
206 	e1000g_m_promisc,
207 	e1000g_m_multicst,
208 	e1000g_m_unicst,
209 	e1000g_m_tx,
210 	e1000g_m_resources,
211 	e1000g_m_ioctl,
212 	e1000g_m_getcapab
213 };
214 
215 /*
216  * Global variables
217  */
218 boolean_t force_detach_enabled = B_FALSE;
219 uint32_t e1000g_mblks_pending = 0;
220 /*
221  * The rwlock is defined to protect the whole processing of rx recycling
222  * and the rx packets release in detach processing to make them mutually
223  * exclusive.
224  * The rx recycling processes different rx packets in different threads,
225  * so it will be protected with RW_READER and it won't block any other rx
226  * recycling threads.
227  * While the detach processing will be protected with RW_WRITER to make
228  * it mutually exclusive with the rx recycling.
229  */
230 krwlock_t e1000g_rx_detach_lock;
231 /*
232  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
233  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
234  * If there are many e1000g instances, the system may run out of DVMA
235  * resources during the initialization of the instances, then the flag will
236  * be changed to "USE_DMA". Because different e1000g instances are initialized
237  * in parallel, we need to use this lock to protect the flag.
238  */
239 krwlock_t e1000g_dma_type_lock;
240 
241 
242 /*
243  * Loadable module configuration entry points for the driver
244  */
245 
246 /*
247  * **********************************************************************
248  * Name:      _init							*
249  *									*
250  * Description:								*
251  *     Initializes a loadable module. It is  called  before		*
252  *     any other routine in a loadable module.				*
253  *     All global locks are intialised here and it returns the retun 	*
254  *     value from mod_install()						*
255  *     This is mandotary function for the driver			*
256  * Parameter Passed:							*
257  *     None								*
258  * Return Value:							*
259  *     0 on success							*
260  * Functions called							*
261  *     mod_install()	     (system call)				*
262  *									*
263  * **********************************************************************
264  */
265 int
266 _init(void)
267 {
268 	int status;
269 
270 	mac_init_ops(&ws_ops, WSNAME);
271 	status = mod_install(&modlinkage);
272 	if (status != DDI_SUCCESS)
273 		mac_fini_ops(&ws_ops);
274 	else {
275 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
276 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
277 	}
278 
279 	return (status);
280 }
281 
282 /*
283  * **********************************************************************
284  *  Name:      _fini							*
285  *									*
286  *  Description:							*
287  *     Prepares a loadable module  for  unloading.   It  is		*
288  *     called  when  the  system  wants to unload a module.		*
289  *     This is mandotary function for the driver			*
290  *  Parameter Passed:							*
291  *     None								*
292  *  Return Value:							*
293  *     0 on success							*
294  *  Functions called							*
295  *     mod_remove()	      (system call)				*
296  *									*
297  *									*
298  *									*
299  * **********************************************************************
300  */
301 int
302 _fini(void)
303 {
304 	int status;
305 
306 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
307 	if (e1000g_mblks_pending != 0) {
308 		rw_exit(&e1000g_rx_detach_lock);
309 		return (EBUSY);
310 	}
311 	rw_exit(&e1000g_rx_detach_lock);
312 
313 	status = mod_remove(&modlinkage);
314 	if (status == DDI_SUCCESS) {
315 		mac_fini_ops(&ws_ops);
316 		rw_destroy(&e1000g_rx_detach_lock);
317 		rw_destroy(&e1000g_dma_type_lock);
318 	}
319 
320 	return (status);
321 }
322 
323 /*
324  * **********************************************************************
325  * Name:      _info							*
326  *									*
327  * Description:								*
328  *     Returns  information  about  a   loadable   module.		*
329  *     This is mandotary function for the driver			*
330  * Parameter Passed:							*
331  *     module info structure						*
332  * Return Value:							*
333  *     0 on success							*
334  * Functions called							*
335  *     mod_info()		(system call)				*
336  *									*
337  *									*
338  * **********************************************************************
339  */
340 int
341 _info(struct modinfo *modinfop)
342 {
343 	return (mod_info(&modlinkage, modinfop));
344 }
345 
346 /*
347  * Interface exists: make available by filling in network interface
348  * record.  System will initialize the interface when it is ready
349  * to accept packets.
350  */
351 
352 /*
353  * **********************************************************************
354  * Name:      e1000gattach						*
355  *									*
356  * Description:								*
357  *     This function is the device-specific  initialization		*
358  *     entry point.  This entry point is required and must be writ-	*
359  *     ten.  The DDI_ATTACH command must be provided in the  attach	*
360  *     entry point. When attach() is called with cmd set to DDI_ATTACH,	*
361  *     all normal kernel services (such as  kmem_alloc(9F))  are	*
362  *     available  for  use by the driver. Device interrupts are not	*
363  *     blocked when attaching a device to the system.			*
364  *									*
365  *     The attach() function will be called once for each  instance	*
366  *     of  the  device  on  the  system with cmd set to DDI_ATTACH.	*
367  *     Until attach() succeeds, the only driver entry points  which	*
368  *     may  be called are open(9E) and getinfo(9E).			*
369  *									*
370  *									*
371  *									*
372  * Parameter Passed:							*
373  *									*
374  * Return Value:							*
375  *									*
376  * Functions called							*
377  *									*
378  *									*
379  * **********************************************************************
380  */
381 static int
382 e1000gattach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
383 {
384 	struct e1000g *Adapter;
385 	struct e1000_hw *hw;
386 	ddi_acc_handle_t handle;
387 	off_t mem_size;
388 	int instance;
389 
390 	switch (cmd) {
391 	default:
392 		e1000g_log(NULL, CE_WARN,
393 		    "Unsupported command send to e1000gattach... ");
394 		return (DDI_FAILURE);
395 
396 	case DDI_RESUME:
397 		return (e1000g_resume(devinfo));
398 
399 	case DDI_ATTACH:
400 		break;
401 	}
402 
403 	/*
404 	 * get device instance number
405 	 */
406 	instance = ddi_get_instance(devinfo);
407 
408 	/*
409 	 * Allocate soft data structure
410 	 */
411 	Adapter =
412 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
413 
414 	Adapter->dip = devinfo;
415 	Adapter->AdapterInstance = instance;
416 	Adapter->tx_ring->adapter = Adapter;
417 	Adapter->rx_ring->adapter = Adapter;
418 
419 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
420 
421 	hw = &Adapter->Shared;
422 
423 	/*
424 	 * Map in the device registers.
425 	 *
426 	 * first get the size of device register to be mapped. The
427 	 * second parameter is the register we are interested. I our
428 	 * wiseman 0 is for config registers and 1 is for memory mapped
429 	 * registers Mem size should have memory mapped region size
430 	 */
431 	ddi_dev_regsize(devinfo, 1, /* register of interest */
432 	    (off_t *)&mem_size);
433 
434 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
435 		(caddr_t *)&hw->hw_addr,
436 		0, mem_size, &accattr1, &Adapter->E1000_handle))
437 		!= DDI_SUCCESS) {
438 		e1000g_log(Adapter, CE_WARN, "ddi_regs_map_setup failed");
439 		goto attach_fail;
440 	}
441 	Adapter->attach_progress |= ATTACH_PROGRESS_REGSMAPPED;
442 
443 	Adapter->osdep.E1000_handle = Adapter->E1000_handle;
444 	hw->back = &Adapter->osdep;
445 
446 	/*
447 	 * PCI Configure
448 	 */
449 	if (pci_config_setup(devinfo, &handle) != DDI_SUCCESS) {
450 		e1000g_log(Adapter, CE_WARN,
451 		    "PCI configuration could not be read.");
452 		goto attach_fail;
453 	}
454 
455 	Adapter->handle = handle;
456 	Adapter->osdep.handle = handle;
457 
458 	hw->vendor_id =
459 	    pci_config_get16(handle, PCI_CONF_VENID);
460 	hw->device_id =
461 	    pci_config_get16(handle, PCI_CONF_DEVID);
462 	hw->revision_id =
463 	    pci_config_get8(handle, PCI_CONF_REVID);
464 	hw->subsystem_id =
465 	    pci_config_get16(handle, PCI_CONF_SUBSYSID);
466 	hw->subsystem_vendor_id =
467 	    pci_config_get16(handle, PCI_CONF_SUBVENID);
468 
469 	Adapter->attach_progress |= ATTACH_PROGRESS_PCICONFIG;
470 
471 	/*
472 	 * Initialize driver parameters
473 	 */
474 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
475 		goto attach_fail;
476 	}
477 	Adapter->attach_progress |= ATTACH_PROGRESS_PROP;
478 
479 	/*
480 	 * Initialize interrupts
481 	 */
482 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
483 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
484 		goto attach_fail;
485 	}
486 	Adapter->tx_softint_pri = DDI_INTR_SOFTPRI_MAX;
487 	Adapter->attach_progress |= ATTACH_PROGRESS_INTRADDED;
488 
489 	/*
490 	 * Initialize mutex's for this device.
491 	 * Do this before enabling the interrupt handler and
492 	 * register the softint to avoid the condition where
493 	 * interrupt handler can try using uninitialized mutex
494 	 */
495 	e1000g_init_locks(Adapter);
496 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
497 
498 	if (ddi_intr_add_softint(devinfo,
499 	    &Adapter->tx_softint_handle, Adapter->tx_softint_pri,
500 	    e1000g_tx_freemsg, (caddr_t)Adapter) != DDI_SUCCESS) {
501 		e1000g_log(Adapter, CE_WARN, "Add soft intr failed");
502 		goto attach_fail;
503 	}
504 	Adapter->attach_progress |= ATTACH_PROGRESS_SOFTINTR;
505 
506 	/*
507 	 * Initialize Driver Counters
508 	 */
509 	if (InitStatsCounters(Adapter) != DDI_SUCCESS) {
510 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
511 		goto attach_fail;
512 	}
513 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
514 
515 	/*
516 	 * Allocate dma resources for descriptors and buffers
517 	 */
518 	if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
519 		e1000g_log(Adapter, CE_WARN, "Alloc dma resources failed");
520 		goto attach_fail;
521 	}
522 	Adapter->attach_progress |= ATTACH_PROGRESS_ALLOC;
523 
524 	/*
525 	 * Initialize chip hardware and software structures
526 	 */
527 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
528 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
529 		goto attach_fail;
530 	}
531 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
532 
533 	/*
534 	 * Initialize NDD parameters
535 	 */
536 	if (e1000g_nd_init(Adapter) != DDI_SUCCESS) {
537 		e1000g_log(Adapter, CE_WARN, "Init NDD failed");
538 		goto attach_fail;
539 	}
540 	Adapter->attach_progress |= ATTACH_PROGRESS_NDD;
541 
542 	/*
543 	 * Register the driver to the MAC
544 	 */
545 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
546 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
547 		goto attach_fail;
548 	}
549 	Adapter->attach_progress |= ATTACH_PROGRESS_MACREGISTERED;
550 
551 	/*
552 	 * Now that mutex locks are initialized, and the chip is also
553 	 * initialized, enable interrupts.
554 	 */
555 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
556 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
557 		goto attach_fail;
558 	}
559 	Adapter->attach_progress |= ATTACH_PROGRESS_INTRENABLED;
560 
561 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
562 
563 	/*
564 	 * Tell the world about the link state of e1000g
565 	 */
566 	mac_link_update(Adapter->mh,
567 	    (Adapter->LinkIsActive) ? LINK_STATE_UP : LINK_STATE_DOWN);
568 
569 	return (DDI_SUCCESS);
570 
571 attach_fail:
572 	e1000g_unattach(devinfo, Adapter);
573 	return (DDI_FAILURE);
574 }
575 
576 static int
577 e1000g_register_mac(struct e1000g *Adapter)
578 {
579 	struct e1000_hw *hw = &Adapter->Shared;
580 	mac_register_t *mac;
581 	int err;
582 
583 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
584 		return (DDI_FAILURE);
585 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
586 	mac->m_driver = Adapter;
587 	mac->m_dip = Adapter->dip;
588 	mac->m_src_addr = hw->mac_addr;
589 	mac->m_callbacks = &e1000g_m_callbacks;
590 	mac->m_min_sdu = 0;
591 	mac->m_max_sdu =
592 	    (hw->max_frame_size > FRAME_SIZE_UPTO_8K) ?
593 	    hw->max_frame_size - 256 :
594 	    (hw->max_frame_size != ETHERMAX) ?
595 	    hw->max_frame_size - 24 : ETHERMTU;
596 	err = mac_register(mac, &Adapter->mh);
597 	mac_free(mac);
598 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
599 }
600 
601 static int
602 e1000g_set_driver_params(struct e1000g *Adapter)
603 {
604 	dev_info_t *devinfo;
605 	ddi_acc_handle_t handle;
606 	struct e1000_hw *hw;
607 	uint32_t mem_bar, io_bar;
608 #ifdef __sparc
609 	ulong_t iommu_pagesize;
610 #endif
611 
612 	devinfo = Adapter->dip;
613 	handle = Adapter->handle;
614 	hw = &Adapter->Shared;
615 
616 	/* Set Mac Type */
617 	if (e1000_set_mac_type(hw) != 0) {
618 		e1000g_log(Adapter, CE_WARN,
619 		    "Could not identify hardware");
620 		return (DDI_FAILURE);
621 	}
622 
623 	/* ich8 needs to map flash memory */
624 	if (hw->mac_type == e1000_ich8lan) {
625 		/* get flash size */
626 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
627 		    &Adapter->osdep.ich_flash_size) != DDI_SUCCESS) {
628 			e1000g_log(Adapter, CE_WARN,
629 			    "ddi_dev_regsize for ich8 flash failed");
630 			return (DDI_FAILURE);
631 		}
632 
633 		/* map flash in */
634 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
635 		    &Adapter->osdep.ich_flash_base, 0,
636 		    Adapter->osdep.ich_flash_size,
637 		    &accattr1,
638 		    &Adapter->osdep.ich_flash_handle) != DDI_SUCCESS) {
639 			e1000g_log(Adapter, CE_WARN,
640 			    "ddi_regs_map_setup for for ich8 flash failed");
641 			return (DDI_FAILURE);
642 		}
643 	}
644 
645 	/* get mem_base addr */
646 	mem_bar = pci_config_get32(handle, PCI_CONF_BASE0);
647 	Adapter->bar64 = mem_bar & PCI_BASE_TYPE_ALL;
648 
649 	/* get io_base addr */
650 	if (hw->mac_type >= e1000_82544) {
651 		if (Adapter->bar64) {
652 			/* IO BAR is different for 64 bit BAR mode */
653 			io_bar = pci_config_get32(handle, PCI_CONF_BASE4);
654 		} else {
655 			/* normal 32-bit BAR mode */
656 			io_bar = pci_config_get32(handle, PCI_CONF_BASE2);
657 		}
658 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
659 	} else {
660 		/* no I/O access for adapters prior to 82544 */
661 		hw->io_base = 0x0;
662 	}
663 
664 	e1000_read_pci_cfg(hw,
665 	    PCI_COMMAND_REGISTER, &(hw->pci_cmd_word));
666 
667 	/* Set the wait_autoneg_complete flag to B_FALSE */
668 	hw->wait_autoneg_complete = B_FALSE;
669 
670 	/* Adaptive IFS related changes */
671 	hw->adaptive_ifs = B_TRUE;
672 
673 	/* set phy init script revision */
674 	if ((hw->mac_type == e1000_82547) ||
675 	    (hw->mac_type == e1000_82541) ||
676 	    (hw->mac_type == e1000_82547_rev_2) ||
677 	    (hw->mac_type == e1000_82541_rev_2))
678 		hw->phy_init_script = 1;
679 
680 	/* Enable the TTL workaround for TnT: DCR 49 */
681 	hw->ttl_wa_activation = 1;
682 
683 	if (hw->mac_type == e1000_82571)
684 		hw->laa_is_present = B_TRUE;
685 
686 	/* Get conf file properties */
687 	e1000g_getparam(Adapter);
688 
689 	e1000g_force_speed_duplex(Adapter);
690 
691 	e1000g_get_max_frame_size(Adapter);
692 	hw->min_frame_size =
693 	    MINIMUM_ETHERNET_PACKET_SIZE + CRC_LENGTH;
694 
695 #ifdef __sparc
696 	/* Get the system page size */
697 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
698 	iommu_pagesize = dvma_pagesize(devinfo);
699 	if (iommu_pagesize != 0) {
700 		if (Adapter->sys_page_sz == iommu_pagesize) {
701 			if (iommu_pagesize > 0x4000)
702 				Adapter->sys_page_sz = 0x4000;
703 		} else {
704 			if (Adapter->sys_page_sz > iommu_pagesize)
705 				Adapter->sys_page_sz = iommu_pagesize;
706 		}
707 	}
708 	Adapter->dvma_page_num = hw->max_frame_size /
709 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
710 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
711 #endif
712 
713 	/* Set Rx/Tx buffer size */
714 	switch (hw->max_frame_size) {
715 	case ETHERMAX:
716 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_2K;
717 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_2K;
718 		break;
719 	case FRAME_SIZE_UPTO_4K:
720 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_4K;
721 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_4K;
722 		break;
723 	case FRAME_SIZE_UPTO_8K:
724 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_8K;
725 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_8K;
726 		break;
727 	case FRAME_SIZE_UPTO_10K:
728 	case FRAME_SIZE_UPTO_16K:
729 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_16K;
730 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_16K;
731 		break;
732 	default:
733 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_2K;
734 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_2K;
735 		break;
736 	}
737 	Adapter->RxBufferSize += E1000G_IPALIGNPRESERVEROOM;
738 
739 	/*
740 	 * For Wiseman adapters we have an requirement of having receive
741 	 * buffers aligned at 256 byte boundary. Since Livengood does not
742 	 * require this and forcing it for all hardwares will have
743 	 * performance implications, I am making it applicable only for
744 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
745 	 * it is okay to have normal frames...but it does involve a
746 	 * potential risk where we may loose data if buffer is not
747 	 * aligned...so all wiseman boards to have 256 byte aligned
748 	 * buffers
749 	 */
750 	if (hw->mac_type < e1000_82543)
751 		Adapter->RcvBufferAlignment = RECEIVE_BUFFER_ALIGN_SIZE;
752 	else
753 		/*
754 		 * For livengood, there is no such Rcv buf alignment
755 		 * requirement
756 		 */
757 		Adapter->RcvBufferAlignment = 1;
758 
759 	/* DmaFairness */
760 	if (hw->mac_type <= e1000_82543)
761 		hw->dma_fairness = DEFAULTRXPCIPRIORITYVAL;
762 	else
763 		hw->dma_fairness = 0;
764 
765 	/* MasterLatencyTimer */
766 	Adapter->MasterLatencyTimer = DEFAULTMASTERLATENCYTIMERVAL;
767 
768 	/* MWIEnable */
769 	Adapter->MWIEnable = DEFAULTMWIENABLEVAL;
770 
771 	/* profile jumbo traffic */
772 	Adapter->ProfileJumboTraffic = DEFAULTPROFILEJUMBOTRAFFIC;
773 
774 	e1000_set_media_type(hw);
775 	/* copper options */
776 	if (hw->media_type == e1000_media_type_copper) {
777 		hw->mdix = 0;	/* AUTO_ALL_MODES */
778 		hw->disable_polarity_correction = B_FALSE;
779 		hw->master_slave = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
780 	}
781 
782 	return (DDI_SUCCESS);
783 }
784 
785 /*
786  * **********************************************************************
787  * Name:      e1000gdettach						*
788  *									*
789  * Description:								*
790  *    The detach() function is the complement of the attach routine.	*
791  *    If cmd is set to DDI_DETACH, detach() is used to remove  the	*
792  *    state  associated  with  a  given  instance of a device node	*
793  *    prior to the removal of that instance from the system.		*
794  *									*
795  *    The detach() function will be called once for each  instance	*
796  *    of the device for which there has been a successful attach()	*
797  *    once there are no longer  any  opens  on  the  device.		*
798  *									*
799  *    Interrupts routine are disabled, All memory allocated by this	*
800  *    driver are freed.							*
801  *									*
802  * Parameter Passed:							*
803  *    devinfo structure, cmd						*
804  *									*
805  * Return Value:							*
806  *    DDI_SUCCESS on success						*
807  *									*
808  * Functions called							*
809  *									*
810  *									*
811  * **********************************************************************
812  */
813 static int
814 e1000gdetach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
815 {
816 	struct e1000g *Adapter;
817 
818 	switch (cmd) {
819 	default:
820 		return (DDI_FAILURE);
821 
822 	case DDI_SUSPEND:
823 		return (e1000g_suspend(devinfo));
824 
825 	case DDI_DETACH:
826 		break;
827 	}
828 
829 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
830 	if (Adapter == NULL)
831 		return (DDI_FAILURE);
832 
833 	if (Adapter->started)
834 		e1000g_stop(Adapter);
835 
836 	if (!e1000g_rx_drain(Adapter)) {
837 		if (!force_detach_enabled)
838 			return (DDI_FAILURE);
839 	}
840 
841 	if (e1000g_disable_intrs(Adapter) != DDI_SUCCESS) {
842 		e1000g_log(Adapter, CE_WARN,
843 		    "Disable DDI interrupts failed");
844 		return (DDI_FAILURE);
845 	}
846 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INTRENABLED;
847 
848 	if (mac_unregister(Adapter->mh) != 0) {
849 		e1000g_log(Adapter, CE_WARN,
850 		    "Unregister MAC failed");
851 		return (DDI_FAILURE);
852 	}
853 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MACREGISTERED;
854 
855 	e1000g_unattach(devinfo, Adapter);
856 
857 	return (DDI_SUCCESS);
858 }
859 
860 static void
861 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
862 {
863 	if (Adapter->attach_progress & ATTACH_PROGRESS_INTRENABLED) {
864 		(void) e1000g_disable_intrs(Adapter);
865 	}
866 
867 	if (Adapter->attach_progress & ATTACH_PROGRESS_MACREGISTERED) {
868 		(void) mac_unregister(Adapter->mh);
869 	}
870 
871 	if (Adapter->attach_progress & ATTACH_PROGRESS_NDD) {
872 		e1000g_nd_cleanup(Adapter);
873 	}
874 
875 	if (Adapter->attach_progress & ATTACH_PROGRESS_INTRADDED) {
876 		(void) e1000g_rem_intrs(Adapter);
877 	}
878 
879 	if (Adapter->attach_progress & ATTACH_PROGRESS_SOFTINTR) {
880 		(void) ddi_intr_remove_softint(Adapter->tx_softint_handle);
881 	}
882 
883 	if (Adapter->attach_progress & ATTACH_PROGRESS_PROP) {
884 		(void) ddi_prop_remove_all(devinfo);
885 	}
886 
887 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
888 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
889 	}
890 
891 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
892 		e1000_reset_hw(&Adapter->Shared);
893 	}
894 
895 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGSMAPPED) {
896 		ddi_regs_map_free(&Adapter->E1000_handle);
897 	}
898 
899 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCICONFIG) {
900 		pci_config_teardown(&Adapter->handle);
901 	}
902 
903 	if (Adapter->attach_progress & ATTACH_PROGRESS_ALLOC) {
904 		e1000g_release_dma_resources(Adapter);
905 	}
906 
907 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
908 		e1000g_destroy_locks(Adapter);
909 	}
910 
911 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
912 
913 	/*
914 	 * Another hotplug spec requirement,
915 	 * run ddi_set_driver_private(devinfo, null);
916 	 */
917 	ddi_set_driver_private(devinfo, NULL);
918 }
919 
920 static void
921 e1000g_init_locks(struct e1000g *Adapter)
922 {
923 	e1000g_tx_ring_t *tx_ring;
924 	e1000g_rx_ring_t *rx_ring;
925 
926 	rw_init(&Adapter->chip_lock, NULL,
927 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
928 	mutex_init(&Adapter->e1000g_linklock, NULL,
929 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
930 	mutex_init(&Adapter->e1000g_timeout_lock, NULL,
931 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
932 	mutex_init(&Adapter->TbiCntrMutex, NULL,
933 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
934 
935 	mutex_init(&Adapter->tx_msg_chain->lock, NULL,
936 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->tx_softint_pri));
937 
938 	tx_ring = Adapter->tx_ring;
939 
940 	mutex_init(&tx_ring->tx_lock, NULL,
941 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
942 	mutex_init(&tx_ring->usedlist_lock, NULL,
943 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
944 	mutex_init(&tx_ring->freelist_lock, NULL,
945 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
946 
947 	rx_ring = Adapter->rx_ring;
948 
949 	mutex_init(&rx_ring->rx_lock, NULL,
950 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
951 	mutex_init(&rx_ring->freelist_lock, NULL,
952 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
953 }
954 
955 static void
956 e1000g_destroy_locks(struct e1000g *Adapter)
957 {
958 	e1000g_tx_ring_t *tx_ring;
959 	e1000g_rx_ring_t *rx_ring;
960 
961 	tx_ring = Adapter->tx_ring;
962 	mutex_destroy(&tx_ring->tx_lock);
963 	mutex_destroy(&tx_ring->usedlist_lock);
964 	mutex_destroy(&tx_ring->freelist_lock);
965 
966 	rx_ring = Adapter->rx_ring;
967 	mutex_destroy(&rx_ring->rx_lock);
968 	mutex_destroy(&rx_ring->freelist_lock);
969 
970 	mutex_destroy(&Adapter->tx_msg_chain->lock);
971 	mutex_destroy(&Adapter->e1000g_linklock);
972 	mutex_destroy(&Adapter->TbiCntrMutex);
973 	mutex_destroy(&Adapter->e1000g_timeout_lock);
974 	rw_destroy(&Adapter->chip_lock);
975 }
976 
977 static int
978 e1000g_resume(dev_info_t *devinfo)
979 {
980 	struct e1000g *Adapter;
981 
982 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
983 	if (Adapter == NULL)
984 		return (DDI_FAILURE);
985 
986 	if (e1000g_start(Adapter))
987 		return (DDI_FAILURE);
988 
989 	return (DDI_SUCCESS);
990 }
991 
992 static int
993 e1000g_suspend(dev_info_t *devinfo)
994 {
995 	struct e1000g *Adapter;
996 
997 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
998 	if (Adapter == NULL)
999 		return (DDI_FAILURE);
1000 
1001 	e1000g_stop(Adapter);
1002 
1003 	return (DDI_SUCCESS);
1004 }
1005 
1006 static int
1007 e1000g_init(struct e1000g *Adapter)
1008 {
1009 	UINT16 LineSpeed, Duplex;
1010 	uint32_t pba;
1011 	uint32_t ctrl;
1012 	struct e1000_hw *hw;
1013 
1014 	hw = &Adapter->Shared;
1015 
1016 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1017 
1018 	/* Preserve manageability features */
1019 	e1000_check_phy_reset_block(hw);
1020 
1021 	/*
1022 	 * reset to put the hardware in a known state
1023 	 * before we try to do anything with the eeprom
1024 	 */
1025 	(void) e1000_reset_hw(hw);
1026 
1027 	(void) e1000_init_eeprom_params(hw);
1028 
1029 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1030 		e1000g_log(Adapter, CE_WARN, "Eeprom checksum failed");
1031 		goto init_fail;
1032 	}
1033 
1034 #ifdef __sparc
1035 	/*
1036 	 * Firstly, we try to get the local ethernet address from OBP. If
1037 	 * fail, we get from EEPROM of NIC card.
1038 	 */
1039 	if (!e1000g_find_mac_address(Adapter)) {
1040 		if (e1000_read_mac_addr(hw) < 0) {
1041 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1042 			goto init_fail;
1043 		}
1044 	}
1045 #else
1046 	/* Get the local ethernet address. */
1047 	if (e1000_read_mac_addr(hw) < 0) {
1048 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1049 		goto init_fail;
1050 	}
1051 #endif
1052 
1053 	/* check for valid mac address */
1054 	if (!is_valid_mac_addr(hw->mac_addr)) {
1055 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1056 		goto init_fail;
1057 	}
1058 
1059 	e1000_get_bus_info(hw);
1060 
1061 	/* Master Latency Timer implementation */
1062 	if (Adapter->MasterLatencyTimer) {
1063 		pci_config_put8(Adapter->handle, PCI_CONF_LATENCY_TIMER,
1064 		    Adapter->MasterLatencyTimer);
1065 	}
1066 
1067 	if (hw->mac_type < e1000_82547) {
1068 		/*
1069 		 * Total FIFO is 64K
1070 		 */
1071 		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
1072 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1073 		else
1074 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1075 	} else if (hw->mac_type >= e1000_82571 &&
1076 			hw->mac_type <= e1000_82572) {
1077 		/*
1078 		 * Total FIFO is 48K
1079 		 */
1080 		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
1081 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1082 		else
1083 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1084 	} else if (hw->mac_type == e1000_ich8lan) {
1085 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1086 	} else {
1087 		/*
1088 		 * Total FIFO is 40K
1089 		 */
1090 		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
1091 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1092 		else
1093 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1094 	}
1095 	E1000_WRITE_REG(hw, PBA, pba);
1096 
1097 	/*
1098 	 * These parameters set thresholds for the adapter's generation(Tx)
1099 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1100 	 * settings.  Flow control is enabled or disabled in the configuration
1101 	 * file.
1102 	 * High-water mark is set down from the top of the rx fifo (not
1103 	 * sensitive to max_frame_size) and low-water is set just below
1104 	 * high-water mark.
1105 	 */
1106 	hw->fc_high_water =
1107 	    ((pba & E1000_PBA_MASK) << E1000_PBA_SHIFT) -
1108 	    E1000_FC_HIGH_DIFF;
1109 	hw->fc_low_water =
1110 	    ((pba & E1000_PBA_MASK) << E1000_PBA_SHIFT) -
1111 	    E1000_FC_LOW_DIFF;
1112 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
1113 	hw->fc_send_xon = B_TRUE;
1114 
1115 	/*
1116 	 * Reset the adapter hardware the second time.
1117 	 */
1118 	(void) e1000_reset_hw(hw);
1119 
1120 	/* disable wakeup control by default */
1121 	if (hw->mac_type >= e1000_82544)
1122 		E1000_WRITE_REG(hw, WUC, 0);
1123 
1124 	/* MWI setup */
1125 	if (Adapter->MWIEnable) {
1126 		hw->pci_cmd_word |= CMD_MEM_WRT_INVALIDATE;
1127 		e1000_pci_set_mwi(hw);
1128 	} else
1129 		e1000_pci_clear_mwi(hw);
1130 
1131 	/*
1132 	 * Configure/Initialize hardware
1133 	 */
1134 	if (e1000_init_hw(hw) < 0) {
1135 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1136 		goto init_fail;
1137 	}
1138 
1139 	/* Disable Smart Power Down */
1140 	phy_spd_state(hw, B_FALSE);
1141 
1142 	/*
1143 	 * Initialize unicast addresses.
1144 	 */
1145 	e1000g_init_unicst(Adapter);
1146 
1147 	/*
1148 	 * Setup and initialize the transmit structures.
1149 	 */
1150 	SetupTransmitStructures(Adapter);
1151 	DelayInMilliseconds(5);
1152 
1153 	/*
1154 	 * Setup and initialize the mctable structures.  After this routine
1155 	 * completes  Multicast table will be set
1156 	 */
1157 	SetupMulticastTable(Adapter);
1158 	DelayInMilliseconds(5);
1159 
1160 	/*
1161 	 * Setup and initialize the receive structures.  After this routine
1162 	 * completes we can receive packets off of the wire.
1163 	 */
1164 	SetupReceiveStructures(Adapter);
1165 	DelayInMilliseconds(5);
1166 
1167 	/*
1168 	 * Implement Adaptive IFS
1169 	 */
1170 	e1000_reset_adaptive(hw);
1171 
1172 	/* Setup Interrupt Throttling Register */
1173 	E1000_WRITE_REG(hw, ITR, Adapter->intr_throttling_rate);
1174 
1175 	/*
1176 	 * Check for link status
1177 	 */
1178 	if (e1000g_link_up(Adapter)) {
1179 		e1000_get_speed_and_duplex(hw, &LineSpeed, &Duplex);
1180 		Adapter->link_speed = LineSpeed;
1181 		Adapter->link_duplex = Duplex;
1182 		Adapter->LinkIsActive = B_TRUE;
1183 	} else {
1184 		Adapter->link_speed = 0;
1185 		Adapter->link_duplex = 0;
1186 		Adapter->LinkIsActive = B_FALSE;
1187 	}
1188 
1189 	/* Enable PCI-Ex master */
1190 	if (hw->bus_type == e1000_bus_type_pci_express) {
1191 		e1000_enable_pciex_master(hw);
1192 	}
1193 
1194 	Adapter->init_count++;
1195 
1196 	rw_exit(&Adapter->chip_lock);
1197 
1198 	return (DDI_SUCCESS);
1199 
1200 init_fail:
1201 	rw_exit(&Adapter->chip_lock);
1202 	return (DDI_FAILURE);
1203 }
1204 
1205 /*
1206  * Check if the link is up
1207  */
1208 static boolean_t
1209 e1000g_link_up(struct e1000g *Adapter)
1210 {
1211 	struct e1000_hw *hw;
1212 	boolean_t link_up;
1213 
1214 	hw = &Adapter->Shared;
1215 
1216 	/* Ensure this is set to get accurate copper link status */
1217 	hw->get_link_status = B_TRUE;
1218 
1219 	e1000_check_for_link(hw);
1220 
1221 	if ((E1000_READ_REG(hw, STATUS) & E1000_STATUS_LU) ||
1222 	    ((!hw->get_link_status) && (hw->mac_type == e1000_82543)) ||
1223 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
1224 		(!hw->serdes_link_down))) {
1225 		link_up = B_TRUE;
1226 	} else {
1227 		link_up = B_FALSE;
1228 	}
1229 
1230 	return (link_up);
1231 }
1232 
1233 static void
1234 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1235 {
1236 	struct iocblk *iocp;
1237 	struct e1000g *e1000gp;
1238 	enum ioc_reply status;
1239 	int err;
1240 
1241 	iocp = (struct iocblk *)mp->b_rptr;
1242 	iocp->ioc_error = 0;
1243 	e1000gp = (struct e1000g *)arg;
1244 
1245 	ASSERT(e1000gp);
1246 	if (e1000gp == NULL) {
1247 		miocnak(q, mp, 0, EINVAL);
1248 		return;
1249 	}
1250 
1251 	switch (iocp->ioc_cmd) {
1252 
1253 	case LB_GET_INFO_SIZE:
1254 	case LB_GET_INFO:
1255 	case LB_GET_MODE:
1256 	case LB_SET_MODE:
1257 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1258 		break;
1259 
1260 	case ND_GET:
1261 	case ND_SET:
1262 		status = e1000g_nd_ioctl(e1000gp, q, mp, iocp);
1263 		break;
1264 
1265 	case E1000G_IOC_REG_PEEK:
1266 	case E1000G_IOC_REG_POKE:
1267 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1268 		break;
1269 	case E1000G_IOC_CHIP_RESET:
1270 		e1000gp->reset_count++;
1271 		if (e1000g_reset(e1000gp))
1272 			status = IOC_ACK;
1273 		else
1274 			status = IOC_INVAL;
1275 		break;
1276 	default:
1277 		status = IOC_INVAL;
1278 		break;
1279 	}
1280 
1281 	/*
1282 	 * Decide how to reply
1283 	 */
1284 	switch (status) {
1285 	default:
1286 	case IOC_INVAL:
1287 		/*
1288 		 * Error, reply with a NAK and EINVAL or the specified error
1289 		 */
1290 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1291 			EINVAL : iocp->ioc_error);
1292 		break;
1293 
1294 	case IOC_DONE:
1295 		/*
1296 		 * OK, reply already sent
1297 		 */
1298 		break;
1299 
1300 	case IOC_ACK:
1301 		/*
1302 		 * OK, reply with an ACK
1303 		 */
1304 		miocack(q, mp, 0, 0);
1305 		break;
1306 
1307 	case IOC_REPLY:
1308 		/*
1309 		 * OK, send prepared reply as ACK or NAK
1310 		 */
1311 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1312 			M_IOCACK : M_IOCNAK;
1313 		qreply(q, mp);
1314 		break;
1315 	}
1316 }
1317 
1318 static void e1000g_m_blank(void *arg, time_t ticks, uint32_t count)
1319 {
1320 	struct e1000g *Adapter;
1321 
1322 	Adapter = (struct e1000g *)arg;
1323 
1324 	/*
1325 	 * Adjust ITR (Interrupt Throttling Register) to coalesce
1326 	 * interrupts. This formula and its coefficient come from
1327 	 * our experiments.
1328 	 */
1329 	if (Adapter->intr_adaptive) {
1330 		Adapter->intr_throttling_rate = count << 5;
1331 		E1000_WRITE_REG(&Adapter->Shared, ITR,
1332 		    Adapter->intr_throttling_rate);
1333 	}
1334 }
1335 
1336 static void
1337 e1000g_m_resources(void *arg)
1338 {
1339 	struct e1000g *adapter = (struct e1000g *)arg;
1340 	mac_rx_fifo_t mrf;
1341 
1342 	mrf.mrf_type = MAC_RX_FIFO;
1343 	mrf.mrf_blank = e1000g_m_blank;
1344 	mrf.mrf_arg = (void *)adapter;
1345 	mrf.mrf_normal_blank_time = E1000_RX_INTPT_TIME;
1346 	mrf.mrf_normal_pkt_count = E1000_RX_PKT_CNT;
1347 
1348 	adapter->mrh = mac_resource_add(adapter->mh, (mac_resource_t *)&mrf);
1349 }
1350 
1351 static int
1352 e1000g_m_start(void *arg)
1353 {
1354 	struct e1000g *Adapter = (struct e1000g *)arg;
1355 
1356 	return (e1000g_start(Adapter));
1357 }
1358 
1359 static int
1360 e1000g_start(struct e1000g *Adapter)
1361 {
1362 	/*
1363 	 * We set Adapter->PseudoLinkChanged here, so that e1000g_LocalTimer
1364 	 * will tell the upper network modules about the link state of e1000g
1365 	 */
1366 	Adapter->PseudoLinkChanged = B_TRUE;
1367 
1368 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1369 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1370 			e1000g_log(Adapter, CE_WARN,
1371 			    "Adapter initialization failed");
1372 			return (ENOTACTIVE);
1373 		}
1374 	}
1375 
1376 	enable_timeout(Adapter);
1377 
1378 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1379 
1380 	e1000g_EnableInterrupt(Adapter);
1381 	if (Adapter->tx_intr_enable)
1382 		e1000g_EnableTxInterrupt(Adapter);
1383 
1384 	Adapter->started = B_TRUE;
1385 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1386 
1387 	rw_exit(&Adapter->chip_lock);
1388 
1389 	return (0);
1390 }
1391 
1392 static void
1393 e1000g_m_stop(void *arg)
1394 {
1395 	struct e1000g *Adapter = (struct e1000g *)arg;
1396 
1397 	e1000g_stop(Adapter);
1398 }
1399 
1400 static void
1401 e1000g_stop(struct e1000g *Adapter)
1402 {
1403 	PTX_SW_PACKET packet;
1404 	timeout_id_t tid;
1405 	e1000g_tx_ring_t *tx_ring;
1406 	e1000g_msg_chain_t *msg_chain;
1407 	mblk_t *mp;
1408 	mblk_t *nmp;
1409 
1410 	tx_ring = Adapter->tx_ring;
1411 
1412 	/* Set stop flags */
1413 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1414 
1415 	Adapter->started = B_FALSE;
1416 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1417 
1418 	rw_exit(&Adapter->chip_lock);
1419 
1420 	/* Drain tx sessions */
1421 	(void) e1000g_tx_drain(Adapter);
1422 
1423 	/* Disable timers */
1424 	disable_timeout(Adapter);
1425 
1426 	mutex_enter(&tx_ring->tx_lock);
1427 
1428 	tx_ring->timer_enable_82547 = B_FALSE;
1429 	tid = tx_ring->timer_id_82547;
1430 	tx_ring->timer_id_82547 = 0;
1431 
1432 	mutex_exit(&tx_ring->tx_lock);
1433 
1434 	if (tid != 0)
1435 		(void) untimeout(tid);
1436 
1437 	/* Stop the chip and release pending resources */
1438 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1439 
1440 	e1000g_DisableAllInterrupts(Adapter);
1441 
1442 	e1000_reset_hw(&Adapter->Shared);
1443 
1444 	/* Release resources still held by the TX descriptors */
1445 	/*
1446 	 * Here we don't need to protect the lists using
1447 	 * the usedlist_lock and freelist_lock, for they
1448 	 * have been protected by the chip_lock.
1449 	 */
1450 	mp = NULL;
1451 	nmp = NULL;
1452 	packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&tx_ring->used_list);
1453 	while (packet != NULL) {
1454 		if (packet->mp != NULL) {
1455 			/* Assemble the message chain */
1456 			if (mp == NULL) {
1457 				mp = packet->mp;
1458 				nmp = packet->mp;
1459 			} else {
1460 				nmp->b_next = packet->mp;
1461 				nmp = packet->mp;
1462 			}
1463 			/* Disconnect the message from the sw packet */
1464 			packet->mp = NULL;
1465 		}
1466 
1467 		FreeTxSwPacket(packet);
1468 
1469 		packet = (PTX_SW_PACKET)
1470 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1471 	}
1472 
1473 	if (mp != NULL) {
1474 		msg_chain = Adapter->tx_msg_chain;
1475 		mutex_enter(&msg_chain->lock);
1476 		if (msg_chain->head == NULL) {
1477 			msg_chain->head = mp;
1478 			msg_chain->tail = nmp;
1479 		} else {
1480 			msg_chain->tail->b_next = mp;
1481 			msg_chain->tail = nmp;
1482 		}
1483 		mutex_exit(&msg_chain->lock);
1484 	}
1485 
1486 	QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1487 	QUEUE_INIT_LIST(&tx_ring->used_list);
1488 
1489 	/* Clean the pending rx jumbo packet fragment */
1490 	if (Adapter->rx_mblk != NULL) {
1491 		freemsg(Adapter->rx_mblk);
1492 		Adapter->rx_mblk = NULL;
1493 		Adapter->rx_mblk_tail = NULL;
1494 		Adapter->rx_packet_len = 0;
1495 	}
1496 
1497 	rw_exit(&Adapter->chip_lock);
1498 
1499 	(void) e1000g_tx_freemsg((caddr_t)Adapter, NULL);
1500 }
1501 
1502 static boolean_t
1503 e1000g_tx_drain(struct e1000g *Adapter)
1504 {
1505 	int i;
1506 	boolean_t done;
1507 	e1000g_tx_ring_t *tx_ring;
1508 
1509 	tx_ring = Adapter->tx_ring;
1510 
1511 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1512 	for (i = 0; i < WSDRAINTIME; i++) {
1513 		mutex_enter(&tx_ring->usedlist_lock);
1514 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1515 		mutex_exit(&tx_ring->usedlist_lock);
1516 
1517 		if (done)
1518 			break;
1519 
1520 		msec_delay(1);
1521 	}
1522 
1523 	return (done);
1524 }
1525 
1526 static boolean_t
1527 e1000g_rx_drain(struct e1000g *Adapter)
1528 {
1529 	boolean_t done;
1530 
1531 	mutex_enter(&Adapter->rx_ring->freelist_lock);
1532 	done = (Adapter->rx_avail_freepkt == Adapter->NumRxFreeList);
1533 	mutex_exit(&Adapter->rx_ring->freelist_lock);
1534 
1535 	return (done);
1536 }
1537 
1538 static boolean_t
1539 e1000g_reset(struct e1000g *Adapter)
1540 {
1541 	e1000g_stop(Adapter);
1542 
1543 	if (e1000g_start(Adapter)) {
1544 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1545 		return (B_FALSE);
1546 	}
1547 
1548 	return (B_TRUE);
1549 }
1550 
1551 /*
1552  * **********************************************************************
1553  * Name:	e1000g_intr_pciexpress					*
1554  *									*
1555  * Description:								*
1556  *	This interrupt service routine is for PCI-Express adapters.	*
1557  *	The ICR contents is valid only when the E1000_ICR_INT_ASSERTED	*
1558  *	bit is set.							*
1559  *									*
1560  * Parameter Passed:							*
1561  *									*
1562  * Return Value:							*
1563  *									*
1564  * Functions called:							*
1565  *	e1000g_intr_work						*
1566  *									*
1567  * **********************************************************************
1568  */
1569 static uint_t
1570 e1000g_intr_pciexpress(caddr_t arg)
1571 {
1572 	struct e1000g *Adapter;
1573 	uint32_t ICRContents;
1574 
1575 	Adapter = (struct e1000g *)arg;
1576 	ICRContents = E1000_READ_REG(&Adapter->Shared, ICR);
1577 
1578 	if (ICRContents & E1000_ICR_INT_ASSERTED) {
1579 		/*
1580 		 * E1000_ICR_INT_ASSERTED bit was set:
1581 		 * Read(Clear) the ICR, claim this interrupt,
1582 		 * look for work to do.
1583 		 */
1584 		e1000g_intr_work(Adapter, ICRContents);
1585 		return (DDI_INTR_CLAIMED);
1586 	} else {
1587 		/*
1588 		 * E1000_ICR_INT_ASSERTED bit was not set:
1589 		 * Don't claim this interrupt, return immediately.
1590 		 */
1591 		return (DDI_INTR_UNCLAIMED);
1592 	}
1593 }
1594 
1595 /*
1596  * **********************************************************************
1597  * Name:	e1000g_intr						*
1598  *									*
1599  * Description:								*
1600  *	This interrupt service routine is for PCI/PCI-X adapters.	*
1601  *	We check the ICR contents no matter the E1000_ICR_INT_ASSERTED	*
1602  *	bit is set or not.						*
1603  *									*
1604  * Parameter Passed:							*
1605  *									*
1606  * Return Value:							*
1607  *									*
1608  * Functions called:							*
1609  *	e1000g_intr_work						*
1610  *									*
1611  * **********************************************************************
1612  */
1613 static uint_t
1614 e1000g_intr(caddr_t arg)
1615 {
1616 	struct e1000g *Adapter;
1617 	uint32_t ICRContents;
1618 
1619 	Adapter = (struct e1000g *)arg;
1620 	ICRContents = E1000_READ_REG(&Adapter->Shared, ICR);
1621 
1622 	if (ICRContents) {
1623 		/*
1624 		 * Any bit was set in ICR:
1625 		 * Read(Clear) the ICR, claim this interrupt,
1626 		 * look for work to do.
1627 		 */
1628 		e1000g_intr_work(Adapter, ICRContents);
1629 		return (DDI_INTR_CLAIMED);
1630 	} else {
1631 		/*
1632 		 * No bit was set in ICR:
1633 		 * Don't claim this interrupt, return immediately.
1634 		 */
1635 		return (DDI_INTR_UNCLAIMED);
1636 	}
1637 }
1638 
1639 /*
1640  * **********************************************************************
1641  * Name:	e1000g_intr_work					*
1642  *									*
1643  * Description:								*
1644  *	Called from interrupt service routines.				*
1645  *	Read(clear) the ICR contents and call appropriate interrupt	*
1646  *	processing routines.						*
1647  *									*
1648  * Parameter Passed:							*
1649  *									*
1650  * Return Value:							*
1651  *									*
1652  * Functions called:							*
1653  *	ProcessRxInterruptArray						*
1654  *	e1000g_LocalTimerWork						*
1655  *									*
1656  * **********************************************************************
1657  */
1658 static void
1659 e1000g_intr_work(struct e1000g *Adapter, uint32_t ICRContents)
1660 {
1661 	if (ICRContents & E1000_ICR_RXT0) {
1662 		mblk_t *mp;
1663 
1664 		rw_enter(&Adapter->chip_lock, RW_READER);
1665 		/*
1666 		 * Here we need to check the "started" flag to ensure the
1667 		 * receive routine will not execute when the adapter is
1668 		 * stopped or being reset.
1669 		 */
1670 		if (Adapter->started) {
1671 			mutex_enter(&Adapter->rx_ring->rx_lock);
1672 			mp = e1000g_receive(Adapter);
1673 			mutex_exit(&Adapter->rx_ring->rx_lock);
1674 
1675 			rw_exit(&Adapter->chip_lock);
1676 
1677 			if (mp != NULL)
1678 				mac_rx(Adapter->mh, Adapter->mrh, mp);
1679 		} else {
1680 			rw_exit(&Adapter->chip_lock);
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1686 	 * are checked to detect that the cable has been pulled out. For
1687 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1688 	 * are an indication that cable is not connected.
1689 	 */
1690 	if ((ICRContents & E1000_ICR_RXSEQ) ||
1691 	    (ICRContents & E1000_ICR_LSC) ||
1692 	    (ICRContents & E1000_ICR_GPI_EN1)) {
1693 		boolean_t linkstate_changed;
1694 
1695 		/*
1696 		 * Encountered RX Sequence Error!!! Link maybe forced and
1697 		 * the cable may have just been disconnected so we will
1698 		 * read the LOS to see.
1699 		 */
1700 		if (ICRContents & E1000_ICR_RXSEQ)
1701 			Adapter->rx_seq_intr++;
1702 
1703 		stop_timeout(Adapter);
1704 
1705 		mutex_enter(&Adapter->e1000g_linklock);
1706 		/* e1000g_LocalTimerWork takes care of link status change */
1707 		linkstate_changed = e1000g_LocalTimerWork(Adapter);
1708 		mutex_exit(&Adapter->e1000g_linklock);
1709 
1710 		if (linkstate_changed) {
1711 			mac_link_update(Adapter->mh,
1712 			    (Adapter->LinkIsActive) ?
1713 				LINK_STATE_UP : LINK_STATE_DOWN);
1714 		}
1715 
1716 		start_timeout(Adapter);
1717 	}
1718 
1719 	if (ICRContents & E1000G_ICR_TX_INTR) {
1720 		if (!Adapter->tx_intr_enable)
1721 			e1000g_DisableTxInterrupt(Adapter);
1722 		/* Schedule the re-transmit */
1723 		if (Adapter->resched_needed) {
1724 			Adapter->tx_reschedule++;
1725 			Adapter->resched_needed = B_FALSE;
1726 			mac_tx_update(Adapter->mh);
1727 		}
1728 		if (Adapter->tx_intr_enable) {
1729 			/* Recycle the tx descriptors */
1730 			rw_enter(&Adapter->chip_lock, RW_READER);
1731 			Adapter->tx_recycle_intr++;
1732 			e1000g_recycle(Adapter->tx_ring);
1733 			rw_exit(&Adapter->chip_lock);
1734 			/* Free the recycled messages */
1735 			ddi_intr_trigger_softint(Adapter->tx_softint_handle,
1736 			    NULL);
1737 		}
1738 	}
1739 }
1740 
1741 static void
1742 e1000g_init_unicst(struct e1000g *Adapter)
1743 {
1744 	struct e1000_hw *hw;
1745 	int slot;
1746 
1747 	hw = &Adapter->Shared;
1748 
1749 	if (Adapter->init_count == 0) {
1750 		/* Initialize the multiple unicast addresses */
1751 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1752 
1753 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1754 			Adapter->unicst_total--;
1755 
1756 		Adapter->unicst_avail = Adapter->unicst_total - 1;
1757 
1758 		/* Store the default mac address */
1759 		e1000_rar_set(hw, hw->mac_addr, 0);
1760 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1761 			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
1762 
1763 		bcopy(hw->mac_addr, Adapter->unicst_addr[0].mac.addr,
1764 		    ETHERADDRL);
1765 		Adapter->unicst_addr[0].mac.set = 1;
1766 
1767 		for (slot = 1; slot < Adapter->unicst_total; slot++)
1768 			Adapter->unicst_addr[slot].mac.set = 0;
1769 	} else {
1770 		/* Recover the default mac address */
1771 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac_addr,
1772 		    ETHERADDRL);
1773 
1774 		/* Store the default mac address */
1775 		e1000_rar_set(hw, hw->mac_addr, 0);
1776 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1777 			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
1778 
1779 		/* Re-configure the RAR registers */
1780 		for (slot = 1; slot < Adapter->unicst_total; slot++)
1781 			e1000_rar_set(hw,
1782 			    Adapter->unicst_addr[slot].mac.addr, slot);
1783 	}
1784 }
1785 
1786 static int
1787 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
1788 {
1789 	struct e1000g *Adapter;
1790 
1791 	Adapter = (struct e1000g *)arg;
1792 
1793 	/* Store the default MAC address */
1794 	bcopy(mac_addr, Adapter->Shared.mac_addr, ETHERADDRL);
1795 
1796 	/* Set MAC address in address slot 0, which is the default address */
1797 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
1798 }
1799 
1800 static int
1801 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
1802     mac_addr_slot_t slot)
1803 {
1804 	struct e1000_hw *hw;
1805 
1806 	hw = &Adapter->Shared;
1807 
1808 	/*
1809 	 * Error if the address specified is a multicast or broadcast
1810 	 * address.
1811 	 */
1812 	if (((mac_addr[0] & 01) == 1) ||
1813 	    (bcmp(mac_addr, &etherbroadcastaddr, ETHERADDRL) == 0))
1814 		return (EINVAL);
1815 
1816 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1817 
1818 	/*
1819 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
1820 	 * that requires the receiver to be in reset when any of the
1821 	 * receive address registers (RAR regs) are accessed.  The first
1822 	 * rev of Wiseman silicon also requires MWI to be disabled when
1823 	 * a global reset or a receive reset is issued.  So before we
1824 	 * initialize the RARs, we check the rev of the Wiseman controller
1825 	 * and work around any necessary HW errata.
1826 	 */
1827 	if (hw->mac_type == e1000_82542_rev2_0) {
1828 		e1000_pci_clear_mwi(hw);
1829 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1830 		DelayInMilliseconds(5);
1831 	}
1832 
1833 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
1834 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
1835 
1836 	if (slot == 0) {
1837 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1838 			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
1839 	}
1840 
1841 	/*
1842 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
1843 	 * put the receive in reset, and disabled MWI, to work around some
1844 	 * HW errata.  Now we should take the receiver out of reset, and
1845 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
1846 	 */
1847 	if (hw->mac_type == e1000_82542_rev2_0) {
1848 		E1000_WRITE_REG(hw, RCTL, 0);
1849 		DelayInMilliseconds(1);
1850 		if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1851 			e1000_pci_set_mwi(hw);
1852 		SetupReceiveStructures(Adapter);
1853 	}
1854 
1855 	rw_exit(&Adapter->chip_lock);
1856 
1857 	return (0);
1858 }
1859 
1860 /*
1861  * e1000g_m_unicst_add() - will find an unused address slot, set the
1862  * address value to the one specified, reserve that slot and enable
1863  * the NIC to start filtering on the new MAC address.
1864  * Returns 0 on success.
1865  */
1866 static int
1867 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
1868 {
1869 	struct e1000g *Adapter = (struct e1000g *)arg;
1870 	mac_addr_slot_t slot;
1871 	int err;
1872 
1873 	if (mac_unicst_verify(Adapter->mh,
1874 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
1875 		return (EINVAL);
1876 
1877 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1878 	if (Adapter->unicst_avail == 0) {
1879 		/* no slots available */
1880 		rw_exit(&Adapter->chip_lock);
1881 		return (ENOSPC);
1882 	}
1883 
1884 	/*
1885 	 * Primary/default address is in slot 0. The next addresses
1886 	 * are the multiple MAC addresses. So multiple MAC address 0
1887 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
1888 	 * MAC address resides in slot 1.
1889 	 */
1890 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
1891 		if (Adapter->unicst_addr[slot].mac.set == 0) {
1892 			Adapter->unicst_addr[slot].mac.set = 1;
1893 			break;
1894 		}
1895 	}
1896 
1897 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
1898 
1899 	Adapter->unicst_avail--;
1900 	rw_exit(&Adapter->chip_lock);
1901 
1902 	maddr->mma_slot = slot;
1903 
1904 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
1905 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1906 		Adapter->unicst_addr[slot].mac.set = 0;
1907 		Adapter->unicst_avail++;
1908 		rw_exit(&Adapter->chip_lock);
1909 	}
1910 
1911 	return (err);
1912 }
1913 
1914 /*
1915  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
1916  * call to e1000g_m_unicst_add(). The slot number that was returned in
1917  * e1000g_m_unicst_add() is passed in the call to remove the address.
1918  * Returns 0 on success.
1919  */
1920 static int
1921 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
1922 {
1923 	struct e1000g *Adapter = (struct e1000g *)arg;
1924 	int err;
1925 
1926 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
1927 		return (EINVAL);
1928 
1929 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1930 	if (Adapter->unicst_addr[slot].mac.set == 1) {
1931 		Adapter->unicst_addr[slot].mac.set = 0;
1932 		Adapter->unicst_avail++;
1933 		rw_exit(&Adapter->chip_lock);
1934 
1935 		/* Copy the default address to the passed slot */
1936 		if (err = e1000g_unicst_set(Adapter,
1937 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
1938 			rw_enter(&Adapter->chip_lock, RW_WRITER);
1939 			Adapter->unicst_addr[slot].mac.set = 1;
1940 			Adapter->unicst_avail--;
1941 			rw_exit(&Adapter->chip_lock);
1942 		}
1943 		return (err);
1944 	}
1945 	rw_exit(&Adapter->chip_lock);
1946 
1947 	return (EINVAL);
1948 }
1949 
1950 /*
1951  * e1000g_m_unicst_modify() - modifies the value of an address that
1952  * has been added by e1000g_m_unicst_add(). The new address, address
1953  * length and the slot number that was returned in the call to add
1954  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
1955  * set to 0. Returns 0 on success.
1956  */
1957 static int
1958 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
1959 {
1960 	struct e1000g *Adapter = (struct e1000g *)arg;
1961 	mac_addr_slot_t slot;
1962 
1963 	if (mac_unicst_verify(Adapter->mh,
1964 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
1965 		return (EINVAL);
1966 
1967 	slot = maddr->mma_slot;
1968 
1969 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
1970 		return (EINVAL);
1971 
1972 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1973 	if (Adapter->unicst_addr[slot].mac.set == 1) {
1974 		rw_exit(&Adapter->chip_lock);
1975 
1976 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
1977 	}
1978 	rw_exit(&Adapter->chip_lock);
1979 
1980 	return (EINVAL);
1981 }
1982 
1983 /*
1984  * e1000g_m_unicst_get() - will get the MAC address and all other
1985  * information related to the address slot passed in mac_multi_addr_t.
1986  * mma_flags should be set to 0 in the call.
1987  * On return, mma_flags can take the following values:
1988  * 1) MMAC_SLOT_UNUSED
1989  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
1990  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
1991  * 4) MMAC_SLOT_USED
1992  */
1993 static int
1994 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
1995 {
1996 	struct e1000g *Adapter = (struct e1000g *)arg;
1997 	mac_addr_slot_t slot;
1998 
1999 	slot = maddr->mma_slot;
2000 
2001 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2002 		return (EINVAL);
2003 
2004 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2005 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2006 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2007 		    maddr->mma_addr, ETHERADDRL);
2008 		maddr->mma_flags = MMAC_SLOT_USED;
2009 	} else {
2010 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2011 	}
2012 	rw_exit(&Adapter->chip_lock);
2013 
2014 	return (0);
2015 }
2016 
2017 static int
2018 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2019 {
2020 	unsigned i;
2021 	int res = 0;
2022 
2023 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2024 
2025 	if ((multiaddr[0] & 01) == 0) {
2026 		res = EINVAL;
2027 		goto done;
2028 	}
2029 
2030 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2031 		res = ENOENT;
2032 		goto done;
2033 	}
2034 
2035 	bcopy(multiaddr,
2036 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2037 	Adapter->mcast_count++;
2038 
2039 	/*
2040 	 * Update the MC table in the hardware
2041 	 */
2042 	e1000g_DisableInterrupt(Adapter);
2043 
2044 	SetupMulticastTable(Adapter);
2045 
2046 	if (Adapter->Shared.mac_type == e1000_82542_rev2_0)
2047 		SetupReceiveStructures(Adapter);
2048 
2049 	e1000g_EnableInterrupt(Adapter);
2050 
2051 done:
2052 	rw_exit(&Adapter->chip_lock);
2053 	return (res);
2054 }
2055 
2056 static int
2057 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2058 {
2059 	unsigned i;
2060 
2061 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2062 
2063 	for (i = 0; i < Adapter->mcast_count; i++) {
2064 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2065 		    ETHERADDRL) == 0) {
2066 			for (i++; i < Adapter->mcast_count; i++) {
2067 				Adapter->mcast_table[i - 1] =
2068 				    Adapter->mcast_table[i];
2069 			}
2070 			Adapter->mcast_count--;
2071 			break;
2072 		}
2073 	}
2074 
2075 	/*
2076 	 * Update the MC table in the hardware
2077 	 */
2078 	e1000g_DisableInterrupt(Adapter);
2079 
2080 	SetupMulticastTable(Adapter);
2081 
2082 	if (Adapter->Shared.mac_type == e1000_82542_rev2_0)
2083 		SetupReceiveStructures(Adapter);
2084 
2085 	e1000g_EnableInterrupt(Adapter);
2086 
2087 done:
2088 	rw_exit(&Adapter->chip_lock);
2089 	return (0);
2090 }
2091 
2092 int
2093 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2094 {
2095 	struct e1000g *Adapter = (struct e1000g *)arg;
2096 
2097 	return ((add) ? multicst_add(Adapter, addr)
2098 		: multicst_remove(Adapter, addr));
2099 }
2100 
2101 int
2102 e1000g_m_promisc(void *arg, boolean_t on)
2103 {
2104 	struct e1000g *Adapter = (struct e1000g *)arg;
2105 	ULONG RctlRegValue;
2106 
2107 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2108 
2109 	RctlRegValue = E1000_READ_REG(&Adapter->Shared, RCTL);
2110 
2111 	if (on)
2112 		RctlRegValue |=
2113 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2114 	else
2115 		RctlRegValue &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2116 
2117 	E1000_WRITE_REG(&Adapter->Shared, RCTL, RctlRegValue);
2118 
2119 	Adapter->e1000g_promisc = on;
2120 
2121 	rw_exit(&Adapter->chip_lock);
2122 
2123 	return (0);
2124 }
2125 
2126 static boolean_t
2127 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2128 {
2129 	struct e1000g *Adapter = (struct e1000g *)arg;
2130 
2131 	switch (cap) {
2132 	case MAC_CAPAB_HCKSUM: {
2133 		uint32_t *txflags = cap_data;
2134 
2135 		/*
2136 		 * In Jumbo mode, enabling hardware checksum will cause
2137 		 * port hang.
2138 		 */
2139 		if (Adapter->Shared.max_frame_size > ETHERMAX)
2140 			return (B_FALSE);
2141 
2142 		/*
2143 		 * Checksum on/off selection via global parameters.
2144 		 *
2145 		 * If the chip is flagged as not capable of (correctly)
2146 		 * handling FULL checksumming, we don't enable it on either
2147 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2148 		 * from the patchable global defaults.
2149 		 *
2150 		 * We advertise our capabilities only if TX offload is
2151 		 * enabled.  On receive, the stack will accept checksummed
2152 		 * packets anyway, even if we haven't said we can deliver
2153 		 * them.
2154 		 */
2155 		switch (Adapter->Shared.mac_type) {
2156 		/*
2157 		 * Switch on hardware checksum offload of
2158 		 * chip 82540, 82545, 82546
2159 		 */
2160 		case e1000_82540:
2161 		case e1000_82544:	/* pci8086,1008 */
2162 		case e1000_82545:
2163 		case e1000_82545_rev_3:	/* pci8086,1026 */
2164 		case e1000_82571:
2165 		case e1000_82572:
2166 		case e1000_82573:
2167 		case e1000_80003es2lan:
2168 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
2169 			break;
2170 
2171 		case e1000_82546:	/* 82546EB. devID: 1010, 101d */
2172 		case e1000_82546_rev_3:	/* 82546GB. devID: 1079, 107a */
2173 #if !defined(__sparc) && !defined(__amd64)
2174 			/* Workaround for Galaxy on 32bit */
2175 			return (B_FALSE);
2176 #else
2177 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
2178 			break;
2179 #endif
2180 
2181 		/*
2182 		 * We don't have the following PRO 1000 chip types at
2183 		 * hand and haven't tested their hardware checksum
2184 		 * offload capability.  We had better switch them off.
2185 		 *	e1000_undefined = 0,
2186 		 *	e1000_82542_rev2_0,
2187 		 *	e1000_82542_rev2_1,
2188 		 *	e1000_82543,
2189 		 *	e1000_82541,
2190 		 *	e1000_82541_rev_2,
2191 		 *	e1000_82547,
2192 		 *	e1000_82547_rev_2,
2193 		 *	e1000_num_macs
2194 		 */
2195 		default:
2196 			return (B_FALSE);
2197 		}
2198 
2199 		break;
2200 	}
2201 	case MAC_CAPAB_POLL:
2202 		/*
2203 		 * There's nothing for us to fill in, simply returning
2204 		 * B_TRUE stating that we support polling is sufficient.
2205 		 */
2206 		break;
2207 
2208 	case MAC_CAPAB_MULTIADDRESS: {
2209 		multiaddress_capab_t *mmacp = cap_data;
2210 
2211 		/*
2212 		 * The number of MAC addresses made available by
2213 		 * this capability is one less than the total as
2214 		 * the primary address in slot 0 is counted in
2215 		 * the total.
2216 		 */
2217 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2218 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2219 		/* No multiple factory addresses, set mma_flag to 0 */
2220 		mmacp->maddr_flag = 0;
2221 		mmacp->maddr_handle = Adapter;
2222 		mmacp->maddr_add = e1000g_m_unicst_add;
2223 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2224 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2225 		mmacp->maddr_get = e1000g_m_unicst_get;
2226 		mmacp->maddr_reserve = NULL;
2227 		break;
2228 	}
2229 	default:
2230 		return (B_FALSE);
2231 	}
2232 	return (B_TRUE);
2233 }
2234 
2235 /*
2236  * **********************************************************************
2237  * Name:	 e1000g_getparam					*
2238  *									*
2239  * Description: This routine gets user-configured values out of the	*
2240  *	      configuration file e1000g.conf.				*
2241  * For each configurable value, there is a minimum, a maximum, and a	*
2242  * default.								*
2243  * If user does not configure a value, use the default.			*
2244  * If user configures below the minimum, use the minumum.		*
2245  * If user configures above the maximum, use the maxumum.		*
2246  *									*
2247  * Arguments:								*
2248  *      Adapter - A pointer to our adapter structure			*
2249  *									*
2250  * Returns:     None							*
2251  * **********************************************************************
2252  */
2253 static void
2254 e1000g_getparam(struct e1000g *Adapter)
2255 {
2256 	/*
2257 	 * get each configurable property from e1000g.conf
2258 	 */
2259 
2260 	/*
2261 	 * NumTxDescriptors
2262 	 */
2263 	Adapter->NumTxDescriptors =
2264 	    e1000g_getprop(Adapter, "NumTxDescriptors",
2265 		MINNUMTXDESCRIPTOR, MAXNUMTXDESCRIPTOR,
2266 		DEFAULTNUMTXDESCRIPTOR);
2267 
2268 	/*
2269 	 * NumRxDescriptors
2270 	 */
2271 	Adapter->NumRxDescriptors =
2272 	    e1000g_getprop(Adapter, "NumRxDescriptors",
2273 		MINNUMRXDESCRIPTOR, MAXNUMRXDESCRIPTOR,
2274 		DEFAULTNUMRXDESCRIPTOR);
2275 
2276 	/*
2277 	 * NumRxFreeList
2278 	 */
2279 	Adapter->NumRxFreeList =
2280 	    e1000g_getprop(Adapter, "NumRxFreeList",
2281 		MINNUMRXFREELIST, MAXNUMRXFREELIST,
2282 		DEFAULTNUMRXFREELIST);
2283 
2284 	/*
2285 	 * NumTxPacketList
2286 	 */
2287 	Adapter->NumTxSwPacket =
2288 	    e1000g_getprop(Adapter, "NumTxPacketList",
2289 		MINNUMTXSWPACKET, MAXNUMTXSWPACKET,
2290 		DEFAULTNUMTXSWPACKET);
2291 
2292 	/*
2293 	 * FlowControl
2294 	 */
2295 	Adapter->Shared.fc_send_xon = B_TRUE;
2296 	Adapter->Shared.fc =
2297 	    e1000g_getprop(Adapter, "FlowControl",
2298 	    E1000_FC_NONE, 4, DEFAULTFLOWCONTROLVAL);
2299 	/* 4 is the setting that says "let the eeprom decide" */
2300 	if (Adapter->Shared.fc == 4)
2301 		Adapter->Shared.fc = E1000_FC_DEFAULT;
2302 
2303 	/*
2304 	 * MaxNumReceivePackets
2305 	 */
2306 	Adapter->MaxNumReceivePackets =
2307 	    e1000g_getprop(Adapter, "MaxNumReceivePackets",
2308 	    MINNUMRCVPKTONINTR, MAXNUMRCVPKTONINTR,
2309 	    DEFAULTMAXNUMRCVPKTONINTR);
2310 
2311 	/*
2312 	 * TxInterruptDelay
2313 	 */
2314 	Adapter->TxInterruptDelay =
2315 	    e1000g_getprop(Adapter, "TxInterruptDelay",
2316 	    MINTXINTERRUPTDELAYVAL, MAXTXINTERRUPTDELAYVAL,
2317 	    DEFAULTTXINTERRUPTDELAYVAL);
2318 
2319 	/*
2320 	 * PHY master slave setting
2321 	 */
2322 	Adapter->Shared.master_slave =
2323 	    e1000g_getprop(Adapter, "SetMasterSlave",
2324 	    e1000_ms_hw_default, e1000_ms_auto,
2325 	    e1000_ms_hw_default);
2326 
2327 	/*
2328 	 * Parameter which controls TBI mode workaround, which is only
2329 	 * needed on certain switches such as Cisco 6500/Foundry
2330 	 */
2331 	Adapter->Shared.tbi_compatibility_en =
2332 	    e1000g_getprop(Adapter, "TbiCompatibilityEnable",
2333 	    0, 1, DEFAULTTBICOMPATIBILITYENABLE);
2334 
2335 	/*
2336 	 * MSI Enable
2337 	 */
2338 	Adapter->msi_enabled =
2339 	    e1000g_getprop(Adapter, "MSIEnable",
2340 	    0, 1, DEFAULTMSIENABLE);
2341 
2342 	/*
2343 	 * Interrupt Throttling Rate
2344 	 */
2345 	Adapter->intr_throttling_rate =
2346 	    e1000g_getprop(Adapter, "intr_throttling_rate",
2347 	    MININTERRUPTTHROTTLINGVAL, MAXINTERRUPTTHROTTLINGVAL,
2348 	    DEFAULTINTERRUPTTHROTTLINGVAL);
2349 
2350 	/*
2351 	 * Adaptive Interrupt Blanking Enable/Disable
2352 	 * It is enabled by default
2353 	 */
2354 	Adapter->intr_adaptive =
2355 	    (e1000g_getprop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
2356 	    B_TRUE : B_FALSE;
2357 }
2358 
2359 /*
2360  * **********************************************************************
2361  * Name:	 e1000g_getprop						*
2362  *									*
2363  * Description: get a user-configure property value out of the		*
2364  *   configuration file e1000g.conf.					*
2365  *   Caller provides name of the property, a default value, a		*
2366  *   minimum value, and a maximum value.				*
2367  *									*
2368  * Returns: configured value of the property, with default, minimum and	*
2369  *   maximum properly applied.						*
2370  * **********************************************************************
2371  */
2372 static int
2373 e1000g_getprop(struct e1000g *Adapter,	/* point to per-adapter structure */
2374     char *propname,		/* name of the property */
2375     int minval,			/* minimum acceptable value */
2376     int maxval,			/* maximim acceptable value */
2377     int defval)			/* default value */
2378 {
2379 	int propval;		/* value returned for requested property */
2380 	int *props;		/* point to array of properties returned */
2381 	uint_t nprops;		/* number of property value returned */
2382 
2383 	/*
2384 	 * get the array of properties from the config file
2385 	 */
2386 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
2387 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
2388 		/* got some properties, test if we got enough */
2389 		if (Adapter->AdapterInstance < nprops) {
2390 			propval = props[Adapter->AdapterInstance];
2391 		} else {
2392 			/* not enough properties configured */
2393 			propval = defval;
2394 			e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
2395 			    "Not Enough %s values found in e1000g.conf"
2396 			    " - set to %d\n",
2397 			    propname, propval);
2398 		}
2399 
2400 		/* free memory allocated for properties */
2401 		ddi_prop_free(props);
2402 
2403 	} else {
2404 		propval = defval;
2405 	}
2406 
2407 	/*
2408 	 * enforce limits
2409 	 */
2410 	if (propval > maxval) {
2411 		propval = maxval;
2412 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
2413 		    "Too High %s value in e1000g.conf - set to %d\n",
2414 		    propname, propval);
2415 	}
2416 
2417 	if (propval < minval) {
2418 		propval = minval;
2419 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
2420 		    "Too Low %s value in e1000g.conf - set to %d\n",
2421 		    propname, propval);
2422 	}
2423 
2424 	return (propval);
2425 }
2426 
2427 static boolean_t
2428 e1000g_LocalTimerWork(struct e1000g *Adapter)
2429 {
2430 	UINT16 LineSpeed, Duplex, phydata;
2431 	boolean_t linkstate_changed = B_FALSE;
2432 	struct e1000_hw *hw;
2433 	e1000g_ether_addr_t ether_addr;
2434 	uint32_t reg_tarc;
2435 
2436 	hw = &Adapter->Shared;
2437 
2438 	if (e1000g_link_up(Adapter)) {
2439 		/*
2440 		 * The Link is up, check whether it was marked as down earlier
2441 		 */
2442 		if (!Adapter->LinkIsActive) {
2443 			e1000_get_speed_and_duplex(hw, &LineSpeed, &Duplex);
2444 			Adapter->link_speed = LineSpeed;
2445 			Adapter->link_duplex = Duplex;
2446 
2447 			if (!Adapter->PseudoLinkChanged) {
2448 				if ((hw->mac_type == e1000_82571) ||
2449 				    (hw->mac_type == e1000_82572)) {
2450 					reg_tarc = E1000_READ_REG(hw, TARC0);
2451 					if (LineSpeed == SPEED_1000)
2452 						reg_tarc |= (1 << 21);
2453 					else
2454 						reg_tarc &= ~(1 << 21);
2455 					E1000_WRITE_REG(hw, TARC0, reg_tarc);
2456 				}
2457 
2458 				e1000g_log(Adapter, CE_NOTE,
2459 				    "Adapter %dMbps %s %s link is up.",
2460 				    LineSpeed,
2461 				    ((Duplex == FULL_DUPLEX) ?
2462 					"full duplex" : "half duplex"),
2463 				    ((hw->media_type ==
2464 					e1000_media_type_copper) ?
2465 					"copper" : "fiber"));
2466 			}
2467 
2468 			Adapter->LinkIsActive = B_TRUE;
2469 			linkstate_changed = B_TRUE;
2470 		}
2471 		Adapter->smartspeed = 0;
2472 	} else {
2473 		if (Adapter->LinkIsActive) {
2474 			Adapter->link_speed = 0;
2475 			Adapter->link_duplex = 0;
2476 
2477 			if (!Adapter->PseudoLinkChanged) {
2478 				e1000g_log(Adapter, CE_NOTE,
2479 				    "Adapter %s link is down.",
2480 				    ((hw->media_type ==
2481 					e1000_media_type_copper) ?
2482 					"copper" : "fiber"));
2483 			}
2484 
2485 			Adapter->LinkIsActive = B_FALSE;
2486 			linkstate_changed = B_TRUE;
2487 			/*
2488 			 * SmartSpeed workaround for Tabor/TanaX, When the
2489 			 * driver loses link disable auto master/slave
2490 			 * resolution.
2491 			 */
2492 			if (hw->phy_type == e1000_phy_igp) {
2493 				e1000_read_phy_reg(hw,
2494 				    PHY_1000T_CTRL, &phydata);
2495 				phydata |= CR_1000T_MS_ENABLE;
2496 				e1000_write_phy_reg(hw,
2497 				    PHY_1000T_CTRL, phydata);
2498 			}
2499 			/*
2500 			 * Workaround for esb2. Data stuck in fifo on a link
2501 			 * down event. Reset the adapter to recover it.
2502 			 */
2503 			if (hw->mac_type == e1000_80003es2lan) {
2504 				(void) e1000g_reset(Adapter);
2505 			}
2506 		} else {
2507 			e1000g_smartspeed(Adapter);
2508 		}
2509 	}
2510 
2511 	/*
2512 	 * With 82571 controllers, any locally administered address will
2513 	 * be overwritten when there is a reset on the other port.
2514 	 * Detect this circumstance and correct it.
2515 	 */
2516 	if ((hw->mac_type == e1000_82571) && hw->laa_is_present) {
2517 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, RA, 0);
2518 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, RA, 1);
2519 
2520 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
2521 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
2522 
2523 		if ((ether_addr.mac.addr[5] != hw->mac_addr[0]) ||
2524 		    (ether_addr.mac.addr[4] != hw->mac_addr[1]) ||
2525 		    (ether_addr.mac.addr[3] != hw->mac_addr[2]) ||
2526 		    (ether_addr.mac.addr[2] != hw->mac_addr[3]) ||
2527 		    (ether_addr.mac.addr[1] != hw->mac_addr[4]) ||
2528 		    (ether_addr.mac.addr[0] != hw->mac_addr[5])) {
2529 			e1000_rar_set(hw, hw->mac_addr, 0);
2530 		}
2531 	}
2532 
2533 	/*
2534 	 * RP: ttl_workaround : DCR 49
2535 	 */
2536 	e1000_igp_ttl_workaround(hw);
2537 
2538 	/*
2539 	 * Check for Adaptive IFS settings If there are lots of collisions
2540 	 * change the value in steps...
2541 	 * These properties should only be set for 10/100
2542 	 */
2543 	if ((hw->media_type == e1000_media_type_copper) &&
2544 	    (Adapter->link_speed != SPEED_1000)) {
2545 		e1000_update_adaptive(hw);
2546 	}
2547 	/*
2548 	 * Set Timer Interrupts
2549 	 */
2550 	E1000_WRITE_REG(hw, ICS, E1000_IMS_RXT0);
2551 
2552 	return (linkstate_changed);
2553 }
2554 
2555 static void
2556 e1000g_LocalTimer(void *ws)
2557 {
2558 	struct e1000g *Adapter = (struct e1000g *)ws;
2559 	boolean_t linkstate_changed;
2560 
2561 	(void) e1000g_tx_freemsg((caddr_t)Adapter, NULL);
2562 
2563 	if (e1000g_stall_check(Adapter)) {
2564 		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
2565 		    "Tx stall detected. Activate automatic recovery.\n");
2566 		Adapter->StallWatchdog = 0;
2567 		Adapter->tx_recycle_fail = 0;
2568 		Adapter->reset_count++;
2569 		(void) e1000g_reset(Adapter);
2570 	}
2571 
2572 	mutex_enter(&Adapter->e1000g_linklock);
2573 	linkstate_changed = e1000g_LocalTimerWork(Adapter);
2574 	mutex_exit(&Adapter->e1000g_linklock);
2575 
2576 	if (linkstate_changed || Adapter->PseudoLinkChanged) {
2577 		mac_link_update(Adapter->mh,
2578 		    (Adapter->LinkIsActive) ?
2579 			LINK_STATE_UP : LINK_STATE_DOWN);
2580 		Adapter->PseudoLinkChanged = B_FALSE;
2581 	}
2582 
2583 	restart_timeout(Adapter);
2584 }
2585 
2586 /*
2587  * **********************************************************************
2588  * Name:      e1000g_force_speed_duplex					*
2589  *									*
2590  * Description:								*
2591  *   This function forces speed and duplex for 10/100 Mbps speeds	*
2592  *   and also for 1000 Mbps speeds, it advertises half or full duplex	*
2593  *									*
2594  * Parameter Passed:							*
2595  *   struct e1000g* (information of adpater)				*
2596  *									*
2597  * Return Value:							*
2598  *									*
2599  * Functions called:							*
2600  * **********************************************************************
2601  */
2602 static void
2603 e1000g_force_speed_duplex(struct e1000g *Adapter)
2604 {
2605 	int forced;
2606 
2607 	/*
2608 	 * get value out of config file
2609 	 */
2610 	forced = e1000g_getprop(Adapter, "ForceSpeedDuplex",
2611 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
2612 
2613 	switch (forced) {
2614 	case GDIAG_10_HALF:
2615 		/*
2616 		 * Disable Auto Negotiation
2617 		 */
2618 		Adapter->Shared.autoneg = B_FALSE;
2619 		Adapter->Shared.forced_speed_duplex = e1000_10_half;
2620 		break;
2621 	case GDIAG_10_FULL:
2622 		/*
2623 		 * Disable Auto Negotiation
2624 		 */
2625 		Adapter->Shared.autoneg = B_FALSE;
2626 		Adapter->Shared.forced_speed_duplex = e1000_10_full;
2627 		break;
2628 	case GDIAG_100_HALF:
2629 		/*
2630 		 * Disable Auto Negotiation
2631 		 */
2632 		Adapter->Shared.autoneg = B_FALSE;
2633 		Adapter->Shared.forced_speed_duplex = e1000_100_half;
2634 		break;
2635 	case GDIAG_100_FULL:
2636 		/*
2637 		 * Disable Auto Negotiation
2638 		 */
2639 		Adapter->Shared.autoneg = B_FALSE;
2640 		Adapter->Shared.forced_speed_duplex = e1000_100_full;
2641 		break;
2642 	case GDIAG_1000_FULL:
2643 		/*
2644 		 * The gigabit spec requires autonegotiation.  Therefore,
2645 		 * when the user wants to force the speed to 1000Mbps, we
2646 		 * enable AutoNeg, but only allow the harware to advertise
2647 		 * 1000Mbps.  This is different from 10/100 operation, where
2648 		 * we are allowed to link without any negotiation.
2649 		 */
2650 		Adapter->Shared.autoneg = B_TRUE;
2651 		Adapter->Shared.autoneg_advertised = ADVERTISE_1000_FULL;
2652 		break;
2653 	default:	/* obey the setting of AutoNegAdvertised */
2654 		Adapter->Shared.autoneg = B_TRUE;
2655 		Adapter->Shared.autoneg_advertised =
2656 		    (uint16_t)e1000g_getprop(Adapter, "AutoNegAdvertised",
2657 			0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
2658 			AUTONEG_ADVERTISE_SPEED_DEFAULT);
2659 		break;
2660 	}	/* switch */
2661 }
2662 
2663 /*
2664  * **********************************************************************
2665  * Name:      e1000g_get_max_frame_size					*
2666  *									*
2667  * Description:								*
2668  *   This function reads MaxFrameSize from e1000g.conf and sets it for	*
2669  *   adapter.								*
2670  *									*
2671  * Parameter Passed:							*
2672  *   struct e1000g* (information of adpater)				*
2673  *									*
2674  * Return Value:							*
2675  *									*
2676  * Functions called:							*
2677  * **********************************************************************
2678  */
2679 static void
2680 e1000g_get_max_frame_size(struct e1000g *Adapter)
2681 {
2682 	int max_frame;
2683 
2684 	/*
2685 	 * get value out of config file
2686 	 */
2687 	max_frame = e1000g_getprop(Adapter, "MaxFrameSize", 0, 3, 0);
2688 
2689 	switch (max_frame) {
2690 	case 0:
2691 		Adapter->Shared.max_frame_size = ETHERMAX;
2692 		break;
2693 	case 1:
2694 		Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_4K;
2695 		break;
2696 	case 2:
2697 		Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_8K;
2698 		break;
2699 	case 3:
2700 		if (Adapter->Shared.mac_type < e1000_82571)
2701 			Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_16K;
2702 		else
2703 			Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_10K;
2704 		break;
2705 	default:
2706 		Adapter->Shared.max_frame_size = ETHERMAX;
2707 		break;
2708 	}	/* switch */
2709 
2710 	/* ich8 does not do jumbo frames */
2711 	if (Adapter->Shared.mac_type == e1000_ich8lan) {
2712 		Adapter->Shared.max_frame_size = ETHERMAX;
2713 	}
2714 }
2715 
2716 static void
2717 arm_timer(struct e1000g *Adapter)
2718 {
2719 	Adapter->WatchDogTimer_id =
2720 	    timeout(e1000g_LocalTimer,
2721 	    (void *)Adapter, 1 * drv_usectohz(1000000));
2722 }
2723 
2724 static void
2725 enable_timeout(struct e1000g *Adapter)
2726 {
2727 	mutex_enter(&Adapter->e1000g_timeout_lock);
2728 
2729 	if (!Adapter->timeout_enabled) {
2730 		Adapter->timeout_enabled = B_TRUE;
2731 		Adapter->timeout_started = B_TRUE;
2732 
2733 		arm_timer(Adapter);
2734 	}
2735 
2736 	mutex_exit(&Adapter->e1000g_timeout_lock);
2737 }
2738 
2739 static void
2740 disable_timeout(struct e1000g *Adapter)
2741 {
2742 	timeout_id_t tid;
2743 
2744 	mutex_enter(&Adapter->e1000g_timeout_lock);
2745 
2746 	Adapter->timeout_enabled = B_FALSE;
2747 	Adapter->timeout_started = B_FALSE;
2748 
2749 	tid = Adapter->WatchDogTimer_id;
2750 	Adapter->WatchDogTimer_id = 0;
2751 
2752 	mutex_exit(&Adapter->e1000g_timeout_lock);
2753 
2754 	if (tid != 0)
2755 		(void) untimeout(tid);
2756 }
2757 
2758 static void
2759 start_timeout(struct e1000g *Adapter)
2760 {
2761 	mutex_enter(&Adapter->e1000g_timeout_lock);
2762 
2763 	if (Adapter->timeout_enabled) {
2764 		if (!Adapter->timeout_started) {
2765 			Adapter->timeout_started = B_TRUE;
2766 			arm_timer(Adapter);
2767 		}
2768 	}
2769 
2770 	mutex_exit(&Adapter->e1000g_timeout_lock);
2771 }
2772 
2773 static void
2774 restart_timeout(struct e1000g *Adapter)
2775 {
2776 	mutex_enter(&Adapter->e1000g_timeout_lock);
2777 
2778 	if (Adapter->timeout_started)
2779 		arm_timer(Adapter);
2780 
2781 	mutex_exit(&Adapter->e1000g_timeout_lock);
2782 }
2783 
2784 static void
2785 stop_timeout(struct e1000g *Adapter)
2786 {
2787 	timeout_id_t tid;
2788 
2789 	mutex_enter(&Adapter->e1000g_timeout_lock);
2790 
2791 	Adapter->timeout_started = B_FALSE;
2792 
2793 	tid = Adapter->WatchDogTimer_id;
2794 	Adapter->WatchDogTimer_id = 0;
2795 
2796 	mutex_exit(&Adapter->e1000g_timeout_lock);
2797 
2798 	if (tid != 0)
2799 		(void) untimeout(tid);
2800 }
2801 
2802 void
2803 e1000g_DisableInterrupt(struct e1000g *Adapter)
2804 {
2805 	E1000_WRITE_REG(&Adapter->Shared, IMC,
2806 	    0xffffffff & ~E1000_IMC_RXSEQ);
2807 }
2808 
2809 void
2810 e1000g_EnableInterrupt(struct e1000g *Adapter)
2811 {
2812 	E1000_WRITE_REG(&Adapter->Shared, IMS,
2813 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW & ~E1000_IMS_TXQE);
2814 }
2815 
2816 void
2817 e1000g_DisableAllInterrupts(struct e1000g *Adapter)
2818 {
2819 	E1000_WRITE_REG(&Adapter->Shared, IMC, 0xffffffff)
2820 }
2821 
2822 void
2823 e1000g_EnableTxInterrupt(struct e1000g *Adapter)
2824 {
2825 	E1000_WRITE_REG(&Adapter->Shared, IMS, E1000G_IMS_TX_INTR);
2826 }
2827 
2828 void
2829 e1000g_DisableTxInterrupt(struct e1000g *Adapter)
2830 {
2831 	E1000_WRITE_REG(&Adapter->Shared, IMC, E1000G_IMC_TX_INTR);
2832 }
2833 
2834 void
2835 e1000_pci_set_mwi(struct e1000_hw *hw)
2836 {
2837 	uint16_t val = hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE;
2838 	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
2839 }
2840 
2841 void
2842 e1000_pci_clear_mwi(struct e1000_hw *hw)
2843 {
2844 	uint16_t val = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
2845 	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
2846 }
2847 
2848 void
2849 e1000_write_pci_cfg(struct e1000_hw *adapter,
2850     uint32_t reg, uint16_t *value)
2851 {
2852 	pci_config_put16(((struct e1000g_osdep *)(adapter->back))->handle,
2853 	    reg, *value);
2854 }
2855 
2856 void
2857 e1000_read_pci_cfg(struct e1000_hw *adapter,
2858     uint32_t reg, uint16_t *value)
2859 {
2860 	*value =
2861 	    pci_config_get16(((struct e1000g_osdep *)(adapter->back))->
2862 	    handle, reg);
2863 }
2864 
2865 #ifndef __sparc
2866 void
2867 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2868 {
2869 	outl(port, value);
2870 }
2871 
2872 uint32_t
2873 e1000_io_read(struct e1000_hw *hw, unsigned long port)
2874 {
2875 	return (inl(port));
2876 }
2877 #endif
2878 
2879 static void
2880 e1000g_smartspeed(struct e1000g *adapter)
2881 {
2882 	uint16_t phy_status;
2883 	uint16_t phy_ctrl;
2884 
2885 	/*
2886 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
2887 	 * advertising 1000Full, we don't even use the workaround
2888 	 */
2889 	if ((adapter->Shared.phy_type != e1000_phy_igp) ||
2890 	    !adapter->Shared.autoneg ||
2891 	    !(adapter->Shared.autoneg_advertised & ADVERTISE_1000_FULL))
2892 		return;
2893 
2894 	/*
2895 	 * True if this is the first call of this function or after every
2896 	 * 30 seconds of not having link
2897 	 */
2898 	if (adapter->smartspeed == 0) {
2899 		/*
2900 		 * If Master/Slave config fault is asserted twice, we
2901 		 * assume back-to-back
2902 		 */
2903 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_STATUS,
2904 		    &phy_status);
2905 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
2906 			return;
2907 
2908 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_STATUS,
2909 		    &phy_status);
2910 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
2911 			return;
2912 		/*
2913 		 * We're assuming back-2-back because our status register
2914 		 * insists! there's a fault in the master/slave
2915 		 * relationship that was "negotiated"
2916 		 */
2917 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
2918 		    &phy_ctrl);
2919 		/*
2920 		 * Is the phy configured for manual configuration of
2921 		 * master/slave?
2922 		 */
2923 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
2924 			/*
2925 			 * Yes.  Then disable manual configuration (enable
2926 			 * auto configuration) of master/slave
2927 			 */
2928 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
2929 			e1000_write_phy_reg(&adapter->Shared,
2930 			    PHY_1000T_CTRL, phy_ctrl);
2931 			/*
2932 			 * Effectively starting the clock
2933 			 */
2934 			adapter->smartspeed++;
2935 			/*
2936 			 * Restart autonegotiation
2937 			 */
2938 			if (!e1000_phy_setup_autoneg(&adapter->Shared) &&
2939 			    !e1000_read_phy_reg(&adapter->Shared, PHY_CTRL,
2940 				&phy_ctrl)) {
2941 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2942 				    MII_CR_RESTART_AUTO_NEG);
2943 				e1000_write_phy_reg(&adapter->Shared,
2944 				    PHY_CTRL, phy_ctrl);
2945 			}
2946 		}
2947 		return;
2948 		/*
2949 		 * Has 6 seconds transpired still without link? Remember,
2950 		 * you should reset the smartspeed counter once you obtain
2951 		 * link
2952 		 */
2953 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
2954 		/*
2955 		 * Yes.  Remember, we did at the start determine that
2956 		 * there's a master/slave configuration fault, so we're
2957 		 * still assuming there's someone on the other end, but we
2958 		 * just haven't yet been able to talk to it. We then
2959 		 * re-enable auto configuration of master/slave to see if
2960 		 * we're running 2/3 pair cables.
2961 		 */
2962 		/*
2963 		 * If still no link, perhaps using 2/3 pair cable
2964 		 */
2965 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
2966 		    &phy_ctrl);
2967 		phy_ctrl |= CR_1000T_MS_ENABLE;
2968 		e1000_write_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
2969 		    phy_ctrl);
2970 		/*
2971 		 * Restart autoneg with phy enabled for manual
2972 		 * configuration of master/slave
2973 		 */
2974 		if (!e1000_phy_setup_autoneg(&adapter->Shared) &&
2975 		    !e1000_read_phy_reg(&adapter->Shared, PHY_CTRL,
2976 			&phy_ctrl)) {
2977 			phy_ctrl |=
2978 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2979 			e1000_write_phy_reg(&adapter->Shared, PHY_CTRL,
2980 			    phy_ctrl);
2981 		}
2982 		/*
2983 		 * Hopefully, there are no more faults and we've obtained
2984 		 * link as a result.
2985 		 */
2986 	}
2987 	/*
2988 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
2989 	 * seconds)
2990 	 */
2991 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
2992 		adapter->smartspeed = 0;
2993 }
2994 
2995 static boolean_t
2996 is_valid_mac_addr(uint8_t *mac_addr)
2997 {
2998 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
2999 	const uint8_t addr_test2[6] =
3000 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3001 
3002 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3003 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3004 		return (B_FALSE);
3005 
3006 	return (B_TRUE);
3007 }
3008 
3009 /*
3010  * **********************************************************************
3011  * Name:								*
3012  *	e1000g_stall_check						*
3013  *									*
3014  * Description:								*
3015  *	This function checks if the adapter is stalled. (In transmit)	*
3016  *									*
3017  *	It is called each time the timeout is invoked.			*
3018  *	If the transmit descriptor reclaim continuously fails,		*
3019  *	the watchdog value will increment by 1. If the watchdog		*
3020  *	value exceeds the threshold, the adapter is assumed to		*
3021  *	have stalled and need to be reset.				*
3022  *									*
3023  * Arguments:								*
3024  *	Adapter - A pointer to our context sensitive "Adapter"		*
3025  *	structure.							*
3026  *									*
3027  * Returns:								*
3028  *	B_TRUE - The dapter is assumed to have stalled.			*
3029  *	B_FALSE								*
3030  *									*
3031  * **********************************************************************
3032  */
3033 static boolean_t
3034 e1000g_stall_check(struct e1000g *Adapter)
3035 {
3036 	if (!Adapter->LinkIsActive)
3037 		return (B_FALSE);
3038 
3039 	if (Adapter->tx_recycle_fail > 0)
3040 		Adapter->StallWatchdog++;
3041 	else
3042 		Adapter->StallWatchdog = 0;
3043 
3044 	if (Adapter->StallWatchdog < E1000G_STALL_WATCHDOG_COUNT)
3045 		return (B_FALSE);
3046 
3047 	return (B_TRUE);
3048 }
3049 
3050 
3051 static enum ioc_reply
3052 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
3053 {
3054 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
3055 	e1000g_peekpoke_t *ppd;
3056 	uint64_t mem_va;
3057 	uint64_t maxoff;
3058 	boolean_t peek;
3059 
3060 	switch (iocp->ioc_cmd) {
3061 
3062 	case E1000G_IOC_REG_PEEK:
3063 		peek = B_TRUE;
3064 		break;
3065 
3066 	case E1000G_IOC_REG_POKE:
3067 		peek = B_FALSE;
3068 		break;
3069 
3070 	deault:
3071 		e1000g_DEBUGLOG_1(e1000gp, e1000g_INFO_LEVEL,
3072 			"e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
3073 			iocp->ioc_cmd);
3074 		return (IOC_INVAL);
3075 	}
3076 
3077 	/*
3078 	 * Validate format of ioctl
3079 	 */
3080 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
3081 		return (IOC_INVAL);
3082 	if (mp->b_cont == NULL)
3083 		return (IOC_INVAL);
3084 
3085 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
3086 
3087 	/*
3088 	 * Validate request parameters
3089 	 */
3090 	switch (ppd->pp_acc_space) {
3091 
3092 	default:
3093 		e1000g_DEBUGLOG_1(e1000gp, e1000g_INFO_LEVEL,
3094 			"e1000g_diag_ioctl: invalid access space 0x%X\n",
3095 			ppd->pp_acc_space);
3096 		return (IOC_INVAL);
3097 
3098 	case E1000G_PP_SPACE_REG:
3099 		/*
3100 		 * Memory-mapped I/O space
3101 		 */
3102 		ASSERT(ppd->pp_acc_size == 4);
3103 		if (ppd->pp_acc_size != 4)
3104 			return (IOC_INVAL);
3105 
3106 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
3107 			return (IOC_INVAL);
3108 
3109 		mem_va = 0;
3110 		maxoff = 0x10000;
3111 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
3112 		break;
3113 
3114 	case E1000G_PP_SPACE_E1000G:
3115 		/*
3116 		 * E1000g data structure!
3117 		 */
3118 		mem_va = (uintptr_t)e1000gp;
3119 		maxoff = sizeof (struct e1000g);
3120 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
3121 		break;
3122 
3123 	}
3124 
3125 	if (ppd->pp_acc_offset >= maxoff)
3126 		return (IOC_INVAL);
3127 
3128 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
3129 		return (IOC_INVAL);
3130 
3131 	/*
3132 	 * All OK - go!
3133 	 */
3134 	ppd->pp_acc_offset += mem_va;
3135 	(*ppfn)(e1000gp, ppd);
3136 	return (peek ? IOC_REPLY : IOC_ACK);
3137 }
3138 
3139 static void
3140 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3141 {
3142 	ddi_acc_handle_t handle;
3143 	uint32_t *regaddr;
3144 
3145 	handle =
3146 	    ((struct e1000g_osdep *)(&e1000gp->Shared)->back)->E1000_handle,
3147 	regaddr =
3148 	    (uint32_t *)((&e1000gp->Shared)->hw_addr + ppd->pp_acc_offset);
3149 
3150 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
3151 }
3152 
3153 static void
3154 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3155 {
3156 	ddi_acc_handle_t handle;
3157 	uint32_t *regaddr;
3158 	uint32_t value;
3159 
3160 	handle =
3161 	    ((struct e1000g_osdep *)(&e1000gp->Shared)->back)->E1000_handle,
3162 	regaddr =
3163 	    (uint32_t *)((&e1000gp->Shared)->hw_addr + ppd->pp_acc_offset);
3164 	value = (uint32_t)ppd->pp_acc_data;
3165 
3166 	ddi_put32(handle, regaddr, value);
3167 }
3168 
3169 static void
3170 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3171 {
3172 	uint64_t value;
3173 	void *vaddr;
3174 
3175 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3176 
3177 	switch (ppd->pp_acc_size) {
3178 	case 1:
3179 		value = *(uint8_t *)vaddr;
3180 		break;
3181 
3182 	case 2:
3183 		value = *(uint16_t *)vaddr;
3184 		break;
3185 
3186 	case 4:
3187 		value = *(uint32_t *)vaddr;
3188 		break;
3189 
3190 	case 8:
3191 		value = *(uint64_t *)vaddr;
3192 		break;
3193 	}
3194 
3195 	e1000g_DEBUGLOG_4(e1000gp, e1000g_INFO_LEVEL,
3196 		"e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
3197 		(void *)e1000gp, (void *)ppd, value, vaddr);
3198 
3199 	ppd->pp_acc_data = value;
3200 }
3201 
3202 static void
3203 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3204 {
3205 	uint64_t value;
3206 	void *vaddr;
3207 
3208 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3209 	value = ppd->pp_acc_data;
3210 
3211 	e1000g_DEBUGLOG_4(e1000gp, e1000g_INFO_LEVEL,
3212 		"e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
3213 		(void *)e1000gp, (void *)ppd, value, vaddr);
3214 
3215 	switch (ppd->pp_acc_size) {
3216 	case 1:
3217 		*(uint8_t *)vaddr = (uint8_t)value;
3218 		break;
3219 
3220 	case 2:
3221 		*(uint16_t *)vaddr = (uint16_t)value;
3222 		break;
3223 
3224 	case 4:
3225 		*(uint32_t *)vaddr = (uint32_t)value;
3226 		break;
3227 
3228 	case 8:
3229 		*(uint64_t *)vaddr = (uint64_t)value;
3230 		break;
3231 	}
3232 }
3233 
3234 /*
3235  * Loopback Support
3236  */
3237 static lb_property_t lb_normal =
3238 	{ normal,	"normal",	E1000G_LB_NONE		};
3239 static lb_property_t lb_external1000 =
3240 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
3241 static lb_property_t lb_external100 =
3242 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
3243 static lb_property_t lb_external10 =
3244 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
3245 static lb_property_t lb_phy =
3246 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
3247 
3248 static enum ioc_reply
3249 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
3250 {
3251 	lb_info_sz_t *lbsp;
3252 	lb_property_t *lbpp;
3253 	struct e1000_hw *hw;
3254 	uint32_t *lbmp;
3255 	uint32_t size;
3256 	uint32_t value;
3257 	uint16_t phy_status;
3258 	uint16_t phy_ext_status;
3259 
3260 	hw = &Adapter->Shared;
3261 
3262 	if (mp->b_cont == NULL)
3263 		return (IOC_INVAL);
3264 
3265 	switch (iocp->ioc_cmd) {
3266 	default:
3267 		return (IOC_INVAL);
3268 
3269 	case LB_GET_INFO_SIZE:
3270 		size = sizeof (lb_info_sz_t);
3271 		if (iocp->ioc_count != size)
3272 			return (IOC_INVAL);
3273 
3274 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
3275 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3276 
3277 		value = sizeof (lb_normal);
3278 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3279 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3280 		    (hw->media_type == e1000_media_type_fiber) ||
3281 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3282 			value += sizeof (lb_phy);
3283 			switch (hw->mac_type) {
3284 			case e1000_82571:
3285 			case e1000_82572:
3286 				value += sizeof (lb_external1000);
3287 				break;
3288 			}
3289 		}
3290 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3291 		    (phy_status & MII_SR_100T2_FD_CAPS))
3292 			value += sizeof (lb_external100);
3293 		if (phy_status & MII_SR_10T_FD_CAPS)
3294 			value += sizeof (lb_external10);
3295 
3296 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
3297 		*lbsp = value;
3298 		break;
3299 
3300 	case LB_GET_INFO:
3301 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
3302 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3303 
3304 		value = sizeof (lb_normal);
3305 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3306 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3307 		    (hw->media_type == e1000_media_type_fiber) ||
3308 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3309 			value += sizeof (lb_phy);
3310 			switch (hw->mac_type) {
3311 			case e1000_82571:
3312 			case e1000_82572:
3313 				value += sizeof (lb_external1000);
3314 				break;
3315 			}
3316 		}
3317 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3318 		    (phy_status & MII_SR_100T2_FD_CAPS))
3319 			value += sizeof (lb_external100);
3320 		if (phy_status & MII_SR_10T_FD_CAPS)
3321 			value += sizeof (lb_external10);
3322 
3323 		size = value;
3324 		if (iocp->ioc_count != size)
3325 			return (IOC_INVAL);
3326 
3327 		value = 0;
3328 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
3329 		lbpp[value++] = lb_normal;
3330 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3331 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3332 		    (hw->media_type == e1000_media_type_fiber) ||
3333 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3334 			lbpp[value++] = lb_phy;
3335 			switch (hw->mac_type) {
3336 			case e1000_82571:
3337 			case e1000_82572:
3338 				lbpp[value++] = lb_external1000;
3339 				break;
3340 			}
3341 		}
3342 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3343 		    (phy_status & MII_SR_100T2_FD_CAPS))
3344 			lbpp[value++] = lb_external100;
3345 		if (phy_status & MII_SR_10T_FD_CAPS)
3346 			lbpp[value++] = lb_external10;
3347 		break;
3348 
3349 	case LB_GET_MODE:
3350 		size = sizeof (uint32_t);
3351 		if (iocp->ioc_count != size)
3352 			return (IOC_INVAL);
3353 
3354 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3355 		*lbmp = Adapter->loopback_mode;
3356 		break;
3357 
3358 	case LB_SET_MODE:
3359 		size = 0;
3360 		if (iocp->ioc_count != sizeof (uint32_t))
3361 			return (IOC_INVAL);
3362 
3363 		Adapter->PseudoLinkChanged = B_TRUE;
3364 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3365 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
3366 			return (IOC_INVAL);
3367 		break;
3368 	}
3369 
3370 	iocp->ioc_count = size;
3371 	iocp->ioc_error = 0;
3372 
3373 	return (IOC_REPLY);
3374 }
3375 
3376 static boolean_t
3377 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
3378 {
3379 	struct e1000_hw *hw;
3380 #ifndef __sparc
3381 	uint32_t reg_rctl;
3382 #endif
3383 	int i, times;
3384 
3385 	if (mode == Adapter->loopback_mode)
3386 		return (B_TRUE);
3387 
3388 	hw = &Adapter->Shared;
3389 	times = 0;
3390 
3391 again:
3392 	switch (mode) {
3393 	default:
3394 		return (B_FALSE);
3395 
3396 	case E1000G_LB_NONE:
3397 		/* Get original speed and duplex settings */
3398 		e1000g_force_speed_duplex(Adapter);
3399 		/* Reset the chip */
3400 		hw->wait_autoneg_complete = B_TRUE;
3401 		(void) e1000g_reset(Adapter);
3402 		hw->wait_autoneg_complete = B_FALSE;
3403 		break;
3404 
3405 	case E1000G_LB_EXTERNAL_1000:
3406 		e1000g_set_external_loopback_1000(Adapter);
3407 		break;
3408 
3409 	case E1000G_LB_EXTERNAL_100:
3410 		e1000g_set_external_loopback_100(Adapter);
3411 		break;
3412 
3413 	case E1000G_LB_EXTERNAL_10:
3414 		e1000g_set_external_loopback_10(Adapter);
3415 		break;
3416 
3417 	case E1000G_LB_INTERNAL_PHY:
3418 		e1000g_set_internal_loopback(Adapter);
3419 		break;
3420 	}
3421 
3422 	times++;
3423 
3424 	switch (mode) {
3425 	case E1000G_LB_EXTERNAL_1000:
3426 	case E1000G_LB_EXTERNAL_100:
3427 	case E1000G_LB_EXTERNAL_10:
3428 	case E1000G_LB_INTERNAL_PHY:
3429 #ifndef __sparc
3430 		/* Enable the CRC stripping for loopback */
3431 		reg_rctl = E1000_READ_REG(hw, RCTL);
3432 		reg_rctl |= E1000_RCTL_SECRC;
3433 		E1000_WRITE_REG(hw, RCTL, reg_rctl);
3434 #endif
3435 		/* Wait for link up */
3436 		for (i = (PHY_FORCE_TIME * 2); i > 0; i--)
3437 			msec_delay(100);
3438 
3439 		if (!e1000g_link_up(Adapter)) {
3440 			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3441 			    "Failed to get the link up");
3442 			if (times < 2) {
3443 				/* Reset the link */
3444 				e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3445 				    "Reset the link ...");
3446 				(void) e1000g_reset(Adapter);
3447 				goto again;
3448 			}
3449 		}
3450 		break;
3451 	}
3452 
3453 	Adapter->loopback_mode = mode;
3454 
3455 	return (B_TRUE);
3456 }
3457 
3458 /*
3459  * The following loopback settings are from Intel's technical
3460  * document - "How To Loopback". All the register settings and
3461  * time delay values are directly inherited from the document
3462  * without more explanations available.
3463  */
3464 static void
3465 e1000g_set_internal_loopback(struct e1000g *Adapter)
3466 {
3467 	struct e1000_hw *hw;
3468 	uint32_t ctrl;
3469 	uint32_t status;
3470 	uint16_t phy_ctrl;
3471 
3472 	hw = &Adapter->Shared;
3473 
3474 	/* Disable Smart Power Down */
3475 	phy_spd_state(hw, B_FALSE);
3476 
3477 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl);
3478 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
3479 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
3480 
3481 	switch (hw->mac_type) {
3482 	case e1000_82540:
3483 	case e1000_82545:
3484 	case e1000_82545_rev_3:
3485 	case e1000_82546:
3486 	case e1000_82546_rev_3:
3487 	case e1000_82573:
3488 		/* Auto-MDI/MDIX off */
3489 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
3490 		/* Reset PHY to update Auto-MDI/MDIX */
3491 		e1000_write_phy_reg(hw, PHY_CTRL,
3492 			phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
3493 		/* Reset PHY to auto-neg off and force 1000 */
3494 		e1000_write_phy_reg(hw, PHY_CTRL,
3495 			phy_ctrl | MII_CR_RESET);
3496 		break;
3497 	}
3498 
3499 	/* Set loopback */
3500 	e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl | MII_CR_LOOPBACK);
3501 
3502 	msec_delay(250);
3503 
3504 	/* Now set up the MAC to the same speed/duplex as the PHY. */
3505 	ctrl = E1000_READ_REG(hw, CTRL);
3506 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3507 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3508 		E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
3509 		E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
3510 		E1000_CTRL_FD);		/* Force Duplex to FULL */
3511 
3512 	switch (hw->mac_type) {
3513 	case e1000_82540:
3514 	case e1000_82545:
3515 	case e1000_82545_rev_3:
3516 	case e1000_82546:
3517 	case e1000_82546_rev_3:
3518 		/*
3519 		 * For some serdes we'll need to commit the writes now
3520 		 * so that the status is updated on link
3521 		 */
3522 		if (hw->media_type == e1000_media_type_internal_serdes) {
3523 			E1000_WRITE_REG(hw, CTRL, ctrl);
3524 			msec_delay(100);
3525 			ctrl = E1000_READ_REG(hw, CTRL);
3526 		}
3527 
3528 		if (hw->media_type == e1000_media_type_copper) {
3529 			/* Invert Loss of Signal */
3530 			ctrl |= E1000_CTRL_ILOS;
3531 		} else {
3532 			/* Set ILOS on fiber nic if half duplex is detected */
3533 			status = E1000_READ_REG(hw, STATUS);
3534 			if ((status & E1000_STATUS_FD) == 0)
3535 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3536 		}
3537 		break;
3538 
3539 	case e1000_82571:
3540 	case e1000_82572:
3541 		if (hw->media_type != e1000_media_type_copper) {
3542 			/* Set ILOS on fiber nic if half duplex is detected */
3543 			status = E1000_READ_REG(hw, STATUS);
3544 			if ((status & E1000_STATUS_FD) == 0)
3545 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3546 		}
3547 		break;
3548 
3549 	case e1000_82573:
3550 		ctrl |= E1000_CTRL_ILOS;
3551 		break;
3552 	}
3553 
3554 	E1000_WRITE_REG(hw, CTRL, ctrl);
3555 
3556 	/*
3557 	 * Disable PHY receiver for 82540/545/546 and 82573 Family.
3558 	 * For background, see comments above e1000g_set_internal_loopback().
3559 	 */
3560 	switch (hw->mac_type) {
3561 	case e1000_82540:
3562 	case e1000_82545:
3563 	case e1000_82545_rev_3:
3564 	case e1000_82546:
3565 	case e1000_82546_rev_3:
3566 	case e1000_82573:
3567 		e1000_write_phy_reg(hw, 29, 0x001F);
3568 		e1000_write_phy_reg(hw, 30, 0x8FFC);
3569 		e1000_write_phy_reg(hw, 29, 0x001A);
3570 		e1000_write_phy_reg(hw, 30, 0x8FF0);
3571 		break;
3572 	}
3573 }
3574 
3575 static void
3576 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
3577 {
3578 	struct e1000_hw *hw;
3579 	uint32_t rctl;
3580 	uint32_t ctrl_ext;
3581 	uint32_t ctrl;
3582 	uint32_t status;
3583 	uint32_t txcw;
3584 
3585 	hw = &Adapter->Shared;
3586 
3587 	/* Disable Smart Power Down */
3588 	phy_spd_state(hw, B_FALSE);
3589 
3590 	switch (hw->media_type) {
3591 	case e1000_media_type_copper:
3592 		/* Force link up (Must be done before the PHY writes) */
3593 		ctrl = E1000_READ_REG(hw, CTRL);
3594 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
3595 		E1000_WRITE_REG(hw, CTRL, ctrl);
3596 
3597 		rctl = E1000_READ_REG(hw, RCTL);
3598 		rctl |= (E1000_RCTL_EN |
3599 			E1000_RCTL_SBP |
3600 			E1000_RCTL_UPE |
3601 			E1000_RCTL_MPE |
3602 			E1000_RCTL_LPE |
3603 			E1000_RCTL_BAM);		/* 0x803E */
3604 		E1000_WRITE_REG(hw, RCTL, rctl);
3605 
3606 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3607 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
3608 			E1000_CTRL_EXT_SDP6_DATA |
3609 			E1000_CTRL_EXT_SDP7_DATA |
3610 			E1000_CTRL_EXT_SDP4_DIR |
3611 			E1000_CTRL_EXT_SDP6_DIR |
3612 			E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
3613 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3614 
3615 		/*
3616 		 * This sequence tunes the PHY's SDP and no customer
3617 		 * settable values. For background, see comments above
3618 		 * e1000g_set_internal_loopback().
3619 		 */
3620 		e1000_write_phy_reg(hw, 0x0, 0x140);
3621 		msec_delay(10);
3622 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
3623 		e1000_write_phy_reg(hw, 0x12, 0xC10);
3624 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
3625 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
3626 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
3627 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
3628 
3629 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
3630 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
3631 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
3632 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
3633 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
3634 
3635 		msec_delay(50);
3636 		break;
3637 	case e1000_media_type_fiber:
3638 	case e1000_media_type_internal_serdes:
3639 		status = E1000_READ_REG(hw, STATUS);
3640 		if (((status & E1000_STATUS_LU) == 0) ||
3641 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3642 			ctrl = E1000_READ_REG(hw, CTRL);
3643 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3644 			E1000_WRITE_REG(hw, CTRL, ctrl);
3645 		}
3646 
3647 		/* Disable autoneg by setting bit 31 of TXCW to zero */
3648 		txcw = E1000_READ_REG(hw, TXCW);
3649 		txcw &= ~((uint32_t)1 << 31);
3650 		E1000_WRITE_REG(hw, TXCW, txcw);
3651 
3652 		/*
3653 		 * Write 0x410 to Serdes Control register
3654 		 * to enable Serdes analog loopback
3655 		 */
3656 		E1000_WRITE_REG(hw, SCTL, 0x0410);
3657 		msec_delay(10);
3658 		break;
3659 	default:
3660 		break;
3661 	}
3662 }
3663 
3664 static void
3665 e1000g_set_external_loopback_100(struct e1000g *Adapter)
3666 {
3667 	struct e1000_hw *hw;
3668 	uint32_t ctrl;
3669 	uint16_t phy_ctrl;
3670 
3671 	hw = &Adapter->Shared;
3672 
3673 	/* Disable Smart Power Down */
3674 	phy_spd_state(hw, B_FALSE);
3675 
3676 	phy_ctrl = (MII_CR_FULL_DUPLEX |
3677 		MII_CR_SPEED_100);
3678 
3679 	/* Force 100/FD, reset PHY */
3680 	e1000_write_phy_reg(hw, PHY_CTRL,
3681 		phy_ctrl | MII_CR_RESET);	/* 0xA100 */
3682 	msec_delay(10);
3683 
3684 	/* Force 100/FD */
3685 	e1000_write_phy_reg(hw, PHY_CTRL,
3686 		phy_ctrl);			/* 0x2100 */
3687 	msec_delay(10);
3688 
3689 	/* Now setup the MAC to the same speed/duplex as the PHY. */
3690 	ctrl = E1000_READ_REG(hw, CTRL);
3691 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3692 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
3693 		E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3694 		E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
3695 		E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
3696 		E1000_CTRL_FD);		/* Force Duplex to FULL */
3697 
3698 	E1000_WRITE_REG(hw, CTRL, ctrl);
3699 }
3700 
3701 static void
3702 e1000g_set_external_loopback_10(struct e1000g *Adapter)
3703 {
3704 	struct e1000_hw *hw;
3705 	uint32_t ctrl;
3706 	uint16_t phy_ctrl;
3707 
3708 	hw = &Adapter->Shared;
3709 
3710 	/* Disable Smart Power Down */
3711 	phy_spd_state(hw, B_FALSE);
3712 
3713 	phy_ctrl = (MII_CR_FULL_DUPLEX |
3714 		MII_CR_SPEED_10);
3715 
3716 	/* Force 10/FD, reset PHY */
3717 	e1000_write_phy_reg(hw, PHY_CTRL,
3718 		phy_ctrl | MII_CR_RESET);	/* 0x8100 */
3719 	msec_delay(10);
3720 
3721 	/* Force 10/FD */
3722 	e1000_write_phy_reg(hw, PHY_CTRL,
3723 		phy_ctrl);			/* 0x0100 */
3724 	msec_delay(10);
3725 
3726 	/* Now setup the MAC to the same speed/duplex as the PHY. */
3727 	ctrl = E1000_READ_REG(hw, CTRL);
3728 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3729 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
3730 		E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3731 		E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
3732 		E1000_CTRL_SPD_10 |	/* Force Speed to 10 */
3733 		E1000_CTRL_FD);		/* Force Duplex to FULL */
3734 
3735 	E1000_WRITE_REG(hw, CTRL, ctrl);
3736 }
3737 
3738 #ifdef __sparc
3739 static boolean_t
3740 e1000g_find_mac_address(struct e1000g *Adapter)
3741 {
3742 	uchar_t *bytes;
3743 	struct ether_addr sysaddr;
3744 	uint_t nelts;
3745 	int err;
3746 	boolean_t found = B_FALSE;
3747 
3748 	/*
3749 	 * The "vendor's factory-set address" may already have
3750 	 * been extracted from the chip, but if the property
3751 	 * "local-mac-address" is set we use that instead.
3752 	 *
3753 	 * We check whether it looks like an array of 6
3754 	 * bytes (which it should, if OBP set it).  If we can't
3755 	 * make sense of it this way, we'll ignore it.
3756 	 */
3757 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
3758 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3759 	if (err == DDI_PROP_SUCCESS) {
3760 		if (nelts == ETHERADDRL) {
3761 			while (nelts--)
3762 				Adapter->Shared.mac_addr[nelts] = bytes[nelts];
3763 			found = B_TRUE;
3764 		}
3765 		ddi_prop_free(bytes);
3766 	}
3767 
3768 	/*
3769 	 * Look up the OBP property "local-mac-address?". If the user has set
3770 	 * 'local-mac-address? = false', use "the system address" instead.
3771 	 */
3772 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
3773 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3774 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3775 			if (localetheraddr(NULL, &sysaddr) != 0) {
3776 				bcopy(&sysaddr, Adapter->Shared.mac_addr,
3777 				    ETHERADDRL);
3778 				found = B_TRUE;
3779 			}
3780 		}
3781 		ddi_prop_free(bytes);
3782 	}
3783 
3784 	/*
3785 	 * Finally(!), if there's a valid "mac-address" property (created
3786 	 * if we netbooted from this interface), we must use this instead
3787 	 * of any of the above to ensure that the NFS/install server doesn't
3788 	 * get confused by the address changing as Solaris takes over!
3789 	 */
3790 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
3791 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3792 	if (err == DDI_PROP_SUCCESS) {
3793 		if (nelts == ETHERADDRL) {
3794 			while (nelts--)
3795 				Adapter->Shared.mac_addr[nelts] = bytes[nelts];
3796 			found = B_TRUE;
3797 		}
3798 		ddi_prop_free(bytes);
3799 	}
3800 
3801 	if (found) {
3802 		bcopy(Adapter->Shared.mac_addr, Adapter->Shared.perm_mac_addr,
3803 		    ETHERADDRL);
3804 	}
3805 
3806 	return (found);
3807 }
3808 #endif
3809 
3810 static int
3811 e1000g_add_intrs(struct e1000g *Adapter)
3812 {
3813 	dev_info_t *devinfo;
3814 	int intr_types;
3815 	int rc;
3816 
3817 	devinfo = Adapter->dip;
3818 
3819 	/* Get supported interrupt types */
3820 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
3821 
3822 	if (rc != DDI_SUCCESS) {
3823 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
3824 		    "Get supported interrupt types failed: %d\n", rc);
3825 		return (DDI_FAILURE);
3826 	}
3827 
3828 	/*
3829 	 * Based on Intel Technical Advisory document (TA-160), there are some
3830 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
3831 	 * that it supports MSI, but in fact has problems.
3832 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
3833 	 * PCI/PCI-X NICs.
3834 	 */
3835 	if (Adapter->Shared.mac_type < e1000_82571)
3836 		Adapter->msi_enabled = B_FALSE;
3837 
3838 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
3839 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
3840 
3841 		if (rc != DDI_SUCCESS) {
3842 			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3843 			    "Add MSI failed, trying Legacy interrupts\n");
3844 		} else {
3845 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
3846 		}
3847 	}
3848 
3849 	if ((Adapter->intr_type == 0) &&
3850 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3851 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
3852 
3853 		if (rc != DDI_SUCCESS) {
3854 			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3855 			    "Add Legacy interrupts failed\n");
3856 			return (DDI_FAILURE);
3857 		}
3858 
3859 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
3860 	}
3861 
3862 	if (Adapter->intr_type == 0) {
3863 		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3864 		    "No interrupts registered\n");
3865 		return (DDI_FAILURE);
3866 	}
3867 
3868 	return (DDI_SUCCESS);
3869 }
3870 
3871 /*
3872  * e1000g_intr_add() handles MSI/Legacy interrupts
3873  */
3874 static int
3875 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
3876 {
3877 	dev_info_t *devinfo;
3878 	int count, avail, actual;
3879 	int x, y, rc, inum = 0;
3880 	int flag;
3881 	ddi_intr_handler_t *intr_handler;
3882 
3883 	devinfo = Adapter->dip;
3884 
3885 	/* get number of interrupts */
3886 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
3887 	if ((rc != DDI_SUCCESS) || (count == 0)) {
3888 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
3889 		    "Get interrupt number failed. Return: %d, count: %d\n",
3890 		    rc, count);
3891 		return (DDI_FAILURE);
3892 	}
3893 
3894 	/* get number of available interrupts */
3895 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
3896 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
3897 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
3898 		    "Get interrupt available number failed. "
3899 		    "Return: %d, available: %d\n", rc, avail);
3900 		return (DDI_FAILURE);
3901 	}
3902 
3903 	if (avail < count) {
3904 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
3905 		    "Interrupts count: %d, available: %d\n",
3906 		    count, avail);
3907 	}
3908 
3909 	/* Allocate an array of interrupt handles */
3910 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
3911 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
3912 
3913 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
3914 	flag = DDI_INTR_ALLOC_NORMAL;
3915 
3916 	/* call ddi_intr_alloc() */
3917 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
3918 	    count, &actual, flag);
3919 
3920 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
3921 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
3922 		    "Allocate interrupts failed: %d\n", rc);
3923 
3924 		kmem_free(Adapter->htable, Adapter->intr_size);
3925 		return (DDI_FAILURE);
3926 	}
3927 
3928 	if (actual < count) {
3929 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
3930 		    "Interrupts requested: %d, received: %d\n",
3931 		    count, actual);
3932 	}
3933 
3934 	Adapter->intr_cnt = actual;
3935 
3936 	/* Get priority for first msi, assume remaining are all the same */
3937 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
3938 
3939 	if (rc != DDI_SUCCESS) {
3940 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
3941 		    "Get interrupt priority failed: %d\n", rc);
3942 
3943 		/* Free already allocated intr */
3944 		for (y = 0; y < actual; y++)
3945 			(void) ddi_intr_free(Adapter->htable[y]);
3946 
3947 		kmem_free(Adapter->htable, Adapter->intr_size);
3948 		return (DDI_FAILURE);
3949 	}
3950 
3951 	/*
3952 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
3953 	 * use the interrupt service routine e1000g_intr_pciexpress()
3954 	 * to avoid interrupt stealing when sharing interrupt with other
3955 	 * devices.
3956 	 */
3957 	if (Adapter->Shared.mac_type < e1000_82571)
3958 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
3959 	else
3960 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
3961 
3962 	/* Call ddi_intr_add_handler() */
3963 	for (x = 0; x < actual; x++) {
3964 		rc = ddi_intr_add_handler(Adapter->htable[x],
3965 		    intr_handler, (caddr_t)Adapter, NULL);
3966 
3967 		if (rc != DDI_SUCCESS) {
3968 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
3969 			    "Add interrupt handler failed: %d\n", rc);
3970 
3971 			/* Remove already added handler */
3972 			for (y = 0; y < x; y++)
3973 				(void) ddi_intr_remove_handler(
3974 				    Adapter->htable[y]);
3975 
3976 			/* Free already allocated intr */
3977 			for (y = 0; y < actual; y++)
3978 				(void) ddi_intr_free(Adapter->htable[y]);
3979 
3980 			kmem_free(Adapter->htable, Adapter->intr_size);
3981 			return (DDI_FAILURE);
3982 		}
3983 	}
3984 
3985 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
3986 
3987 	if (rc != DDI_SUCCESS) {
3988 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
3989 		    "Get interrupt cap failed: %d\n", rc);
3990 
3991 		/* Free already allocated intr */
3992 		for (y = 0; y < actual; y++) {
3993 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
3994 			(void) ddi_intr_free(Adapter->htable[y]);
3995 		}
3996 
3997 		kmem_free(Adapter->htable, Adapter->intr_size);
3998 		return (DDI_FAILURE);
3999 	}
4000 
4001 	return (DDI_SUCCESS);
4002 }
4003 
4004 static int
4005 e1000g_rem_intrs(struct e1000g *Adapter)
4006 {
4007 	int x;
4008 	int rc;
4009 
4010 	for (x = 0; x < Adapter->intr_cnt; x++) {
4011 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
4012 		if (rc != DDI_SUCCESS) {
4013 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4014 			    "Remove intr handler failed: %d\n", rc);
4015 			return (DDI_FAILURE);
4016 		}
4017 
4018 		rc = ddi_intr_free(Adapter->htable[x]);
4019 		if (rc != DDI_SUCCESS) {
4020 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4021 			    "Free intr failed: %d\n", rc);
4022 			return (DDI_FAILURE);
4023 		}
4024 	}
4025 
4026 	kmem_free(Adapter->htable, Adapter->intr_size);
4027 
4028 	return (DDI_SUCCESS);
4029 }
4030 
4031 static int
4032 e1000g_enable_intrs(struct e1000g *Adapter)
4033 {
4034 	int x;
4035 	int rc;
4036 
4037 	/* Enable interrupts */
4038 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4039 		/* Call ddi_intr_block_enable() for MSI */
4040 		rc = ddi_intr_block_enable(Adapter->htable,
4041 		    Adapter->intr_cnt);
4042 		if (rc != DDI_SUCCESS) {
4043 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4044 			    "Enable block intr failed: %d\n", rc);
4045 			return (DDI_FAILURE);
4046 		}
4047 	} else {
4048 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4049 		for (x = 0; x < Adapter->intr_cnt; x++) {
4050 			rc = ddi_intr_enable(Adapter->htable[x]);
4051 			if (rc != DDI_SUCCESS) {
4052 				e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4053 				    "Enable intr failed: %d\n", rc);
4054 				return (DDI_FAILURE);
4055 			}
4056 		}
4057 	}
4058 
4059 	return (DDI_SUCCESS);
4060 }
4061 
4062 static int
4063 e1000g_disable_intrs(struct e1000g *Adapter)
4064 {
4065 	int x;
4066 	int rc;
4067 
4068 	/* Disable all interrupts */
4069 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4070 		rc = ddi_intr_block_disable(Adapter->htable,
4071 		    Adapter->intr_cnt);
4072 		if (rc != DDI_SUCCESS) {
4073 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4074 			    "Disable block intr failed: %d\n", rc);
4075 			return (DDI_FAILURE);
4076 		}
4077 	} else {
4078 		for (x = 0; x < Adapter->intr_cnt; x++) {
4079 			rc = ddi_intr_disable(Adapter->htable[x]);
4080 			if (rc != DDI_SUCCESS) {
4081 				e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4082 				    "Disable intr failed: %d\n", rc);
4083 				return (DDI_FAILURE);
4084 			}
4085 		}
4086 	}
4087 
4088 	return (DDI_SUCCESS);
4089 }
4090 
4091 /*
4092  * phy_spd_state - set smart-power-down (SPD) state
4093  *
4094  * This only acts on the 82541/47 family and the 82571/72 family.
4095  * For any others, return without doing anything.
4096  */
4097 void
4098 phy_spd_state(struct e1000_hw *hw, boolean_t enable)
4099 {
4100 	int32_t offset;		/* offset to register */
4101 	uint16_t spd_bit;	/* bit to be set */
4102 	uint16_t reg;		/* register contents */
4103 
4104 	switch (hw->mac_type) {
4105 	case e1000_82541:
4106 	case e1000_82547:
4107 	case e1000_82541_rev_2:
4108 	case e1000_82547_rev_2:
4109 		offset = IGP01E1000_GMII_FIFO;
4110 		spd_bit = IGP01E1000_GMII_SPD;
4111 		break;
4112 	case e1000_82571:
4113 	case e1000_82572:
4114 		offset = IGP02E1000_PHY_POWER_MGMT;
4115 		spd_bit = IGP02E1000_PM_SPD;
4116 		break;
4117 	default:
4118 		return;		/* no action */
4119 	}
4120 
4121 	e1000_read_phy_reg(hw, offset, &reg);
4122 
4123 	if (enable)
4124 		reg |= spd_bit;		/* enable: set the spd bit */
4125 	else
4126 		reg &= ~spd_bit;	/* disable: clear the spd bit */
4127 
4128 	e1000_write_phy_reg(hw, offset, reg);
4129 }
4130 
4131 /*
4132  * The real intent of this routine is to return the value from pci-e
4133  * config space at offset reg into the capability space.
4134  * ICH devices are "PCI Express"-ish.  They have a configuration space,
4135  * but do not contain PCI Express Capability registers, so this returns
4136  * the equivalent of "not supported"
4137  */
4138 int32_t
4139 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4140 {
4141 	*value = pci_config_get16(((struct e1000g_osdep *)hw->back)->handle,
4142 		PCI_EX_CONF_CAP + reg);
4143 
4144 	return (0);
4145 }
4146 
4147 /*
4148  * Enables PCI-Express master access.
4149  *
4150  * hw: Struct containing variables accessed by shared code
4151  *
4152  * returns: - none.
4153  */
4154 void
4155 e1000_enable_pciex_master(struct e1000_hw *hw)
4156 {
4157 	uint32_t ctrl;
4158 
4159 	if (hw->bus_type != e1000_bus_type_pci_express)
4160 		return;
4161 
4162 	ctrl = E1000_READ_REG(hw, CTRL);
4163 	ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
4164 	E1000_WRITE_REG(hw, CTRL, ctrl);
4165 }
4166