xref: /titanic_52/usr/src/uts/common/io/e1000api/e1000_ich8lan.c (revision db2417522bcef7cf091649ee369330ecefbaf183)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71 
72 #include "e1000_api.h"
73 
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 					      u8 *mc_addr_list,
85 					      u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 					    bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 					    bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 				   u16 words, u16 *data);
95 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96 				    u16 words, u16 *data);
97 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100 					    u16 *data);
101 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
105 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109 					   u16 *speed, u16 *duplex);
110 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
112 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
113 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
115 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
117 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
118 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123 					  u32 offset, u8 *data);
124 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					  u8 size, u16 *data);
126 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u16 *data);
128 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129 						 u32 offset, u8 byte);
130 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137 
138 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139 /* Offset 04h HSFSTS */
140 union ich8_hws_flash_status {
141 	struct ich8_hsfsts {
142 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
143 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
144 		u16 dael:1; /* bit 2 Direct Access error Log */
145 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147 		u16 reserved1:2; /* bit 13:6 Reserved */
148 		u16 reserved2:6; /* bit 13:6 Reserved */
149 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151 	} hsf_status;
152 	u16 regval;
153 };
154 
155 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156 /* Offset 06h FLCTL */
157 union ich8_hws_flash_ctrl {
158 	struct ich8_hsflctl {
159 		u16 flcgo:1;   /* 0 Flash Cycle Go */
160 		u16 flcycle:2;   /* 2:1 Flash Cycle */
161 		u16 reserved:5;   /* 7:3 Reserved  */
162 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
163 		u16 flockdn:6;   /* 15:10 Reserved */
164 	} hsf_ctrl;
165 	u16 regval;
166 };
167 
168 /* ICH Flash Region Access Permissions */
169 union ich8_hws_flash_regacc {
170 	struct ich8_flracc {
171 		u32 grra:8; /* 0:7 GbE region Read Access */
172 		u32 grwa:8; /* 8:15 GbE region Write Access */
173 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175 	} hsf_flregacc;
176 	u16 regval;
177 };
178 
179 /**
180  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181  *  @hw: pointer to the HW structure
182  *
183  *  Test access to the PHY registers by reading the PHY ID registers.  If
184  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
185  *  otherwise assume the read PHY ID is correct if it is valid.
186  *
187  *  Assumes the sw/fw/hw semaphore is already acquired.
188  **/
189 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190 {
191 	u16 phy_reg = 0;
192 	u32 phy_id = 0;
193 	s32 ret_val = 0;
194 	u16 retry_count;
195 	u32 mac_reg = 0;
196 
197 	for (retry_count = 0; retry_count < 2; retry_count++) {
198 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199 		if (ret_val || (phy_reg == 0xFFFF))
200 			continue;
201 		phy_id = (u32)(phy_reg << 16);
202 
203 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF)) {
205 			phy_id = 0;
206 			continue;
207 		}
208 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209 		break;
210 	}
211 
212 	if (hw->phy.id) {
213 		if  (hw->phy.id == phy_id)
214 			goto out;
215 	} else if (phy_id) {
216 		hw->phy.id = phy_id;
217 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218 		goto out;
219 	}
220 
221 	/* In case the PHY needs to be in mdio slow mode,
222 	 * set slow mode and try to get the PHY id again.
223 	 */
224 	if (hw->mac.type < e1000_pch_lpt) {
225 		hw->phy.ops.release(hw);
226 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
227 		if (!ret_val)
228 			ret_val = e1000_get_phy_id(hw);
229 		hw->phy.ops.acquire(hw);
230 	}
231 
232 	if (ret_val)
233 		return FALSE;
234 out:
235 	if (hw->mac.type == e1000_pch_lpt) {
236 		/* Unforce SMBus mode in PHY */
237 		hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239 		hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240 
241 		/* Unforce SMBus mode in MAC */
242 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245 	}
246 
247 	return TRUE;
248 }
249 
250 /**
251  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252  *  @hw: pointer to the HW structure
253  *
254  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255  *  used to reset the PHY to a quiescent state when necessary.
256  **/
257 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258 {
259 	u32 mac_reg;
260 
261 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262 
263 	/* Set Phy Config Counter to 50msec */
264 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268 
269 	/* Toggle LANPHYPC Value bit */
270 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274 	E1000_WRITE_FLUSH(hw);
275 	usec_delay(10);
276 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278 	E1000_WRITE_FLUSH(hw);
279 
280 	if (hw->mac.type < e1000_pch_lpt) {
281 		msec_delay(50);
282 	} else {
283 		u16 count = 20;
284 
285 		do {
286 			msec_delay(5);
287 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288 			   E1000_CTRL_EXT_LPCD) && count--);
289 
290 		msec_delay(30);
291 	}
292 }
293 
294 /**
295  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296  *  @hw: pointer to the HW structure
297  *
298  *  Workarounds/flow necessary for PHY initialization during driver load
299  *  and resume paths.
300  **/
301 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302 {
303 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304 	s32 ret_val;
305 
306 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307 
308 	/* Gate automatic PHY configuration by hardware on managed and
309 	 * non-managed 82579 and newer adapters.
310 	 */
311 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312 
313 	/* It is not possible to be certain of the current state of ULP
314 	 * so forcibly disable it.
315 	 */
316 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317 	e1000_disable_ulp_lpt_lp(hw, TRUE);
318 
319 	ret_val = hw->phy.ops.acquire(hw);
320 	if (ret_val) {
321 		DEBUGOUT("Failed to initialize PHY flow\n");
322 		goto out;
323 	}
324 
325 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326 	 * inaccessible and resetting the PHY is not blocked, toggle the
327 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 	 */
329 	switch (hw->mac.type) {
330 	case e1000_pch_lpt:
331 		if (e1000_phy_is_accessible_pchlan(hw))
332 			break;
333 
334 		/* Before toggling LANPHYPC, see if PHY is accessible by
335 		 * forcing MAC to SMBus mode first.
336 		 */
337 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340 
341 		/* Wait 50 milliseconds for MAC to finish any retries
342 		 * that it might be trying to perform from previous
343 		 * attempts to acknowledge any phy read requests.
344 		 */
345 		 msec_delay(50);
346 
347 		/* fall-through */
348 	case e1000_pch2lan:
349 		if (e1000_phy_is_accessible_pchlan(hw))
350 			break;
351 
352 		/* fall-through */
353 	case e1000_pchlan:
354 		if ((hw->mac.type == e1000_pchlan) &&
355 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
356 			break;
357 
358 		if (hw->phy.ops.check_reset_block(hw)) {
359 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360 			ret_val = -E1000_ERR_PHY;
361 			break;
362 		}
363 
364 		/* Toggle LANPHYPC Value bit */
365 		e1000_toggle_lanphypc_pch_lpt(hw);
366 		if (hw->mac.type >= e1000_pch_lpt) {
367 			if (e1000_phy_is_accessible_pchlan(hw))
368 				break;
369 
370 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
371 			 * so ensure that the MAC is also out of SMBus mode
372 			 */
373 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376 
377 			if (e1000_phy_is_accessible_pchlan(hw))
378 				break;
379 
380 			ret_val = -E1000_ERR_PHY;
381 		}
382 		break;
383 	default:
384 		break;
385 	}
386 
387 	hw->phy.ops.release(hw);
388 	if (!ret_val) {
389 
390 		/* Check to see if able to reset PHY.  Print error if not */
391 		if (hw->phy.ops.check_reset_block(hw)) {
392 			ERROR_REPORT("Reset blocked by ME\n");
393 			goto out;
394 		}
395 
396 		/* Reset the PHY before any access to it.  Doing so, ensures
397 		 * that the PHY is in a known good state before we read/write
398 		 * PHY registers.  The generic reset is sufficient here,
399 		 * because we haven't determined the PHY type yet.
400 		 */
401 		ret_val = e1000_phy_hw_reset_generic(hw);
402 		if (ret_val)
403 			goto out;
404 
405 		/* On a successful reset, possibly need to wait for the PHY
406 		 * to quiesce to an accessible state before returning control
407 		 * to the calling function.  If the PHY does not quiesce, then
408 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
409 		 *  the PHY is in.
410 		 */
411 		ret_val = hw->phy.ops.check_reset_block(hw);
412 		if (ret_val)
413 			ERROR_REPORT("ME blocked access to PHY after reset\n");
414 	}
415 
416 out:
417 	/* Ungate automatic PHY configuration on non-managed 82579 */
418 	if ((hw->mac.type == e1000_pch2lan) &&
419 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420 		msec_delay(10);
421 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422 	}
423 
424 	return ret_val;
425 }
426 
427 /**
428  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
429  *  @hw: pointer to the HW structure
430  *
431  *  Initialize family-specific PHY parameters and function pointers.
432  **/
433 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434 {
435 	struct e1000_phy_info *phy = &hw->phy;
436 	s32 ret_val;
437 
438 	DEBUGFUNC("e1000_init_phy_params_pchlan");
439 
440 	phy->addr		= 1;
441 	phy->reset_delay_us	= 100;
442 
443 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
444 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
446 	phy->ops.set_page	= e1000_set_page_igp;
447 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
448 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
450 	phy->ops.release	= e1000_release_swflag_ich8lan;
451 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
452 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
455 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
457 	phy->ops.power_up	= e1000_power_up_phy_copper;
458 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
459 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
460 
461 	phy->id = e1000_phy_unknown;
462 
463 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
464 	if (ret_val)
465 		return ret_val;
466 
467 	if (phy->id == e1000_phy_unknown)
468 		switch (hw->mac.type) {
469 		default:
470 			ret_val = e1000_get_phy_id(hw);
471 			if (ret_val)
472 				return ret_val;
473 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474 				break;
475 			/* fall-through */
476 		case e1000_pch2lan:
477 		case e1000_pch_lpt:
478 			/* In case the PHY needs to be in mdio slow mode,
479 			 * set slow mode and try to get the PHY id again.
480 			 */
481 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
482 			if (ret_val)
483 				return ret_val;
484 			ret_val = e1000_get_phy_id(hw);
485 			if (ret_val)
486 				return ret_val;
487 			break;
488 		}
489 	phy->type = e1000_get_phy_type_from_id(phy->id);
490 
491 	switch (phy->type) {
492 	case e1000_phy_82577:
493 	case e1000_phy_82579:
494 	case e1000_phy_i217:
495 		phy->ops.check_polarity = e1000_check_polarity_82577;
496 		phy->ops.force_speed_duplex =
497 			e1000_phy_force_speed_duplex_82577;
498 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
499 		phy->ops.get_info = e1000_get_phy_info_82577;
500 		phy->ops.commit = e1000_phy_sw_reset_generic;
501 		break;
502 	case e1000_phy_82578:
503 		phy->ops.check_polarity = e1000_check_polarity_m88;
504 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
506 		phy->ops.get_info = e1000_get_phy_info_m88;
507 		break;
508 	default:
509 		ret_val = -E1000_ERR_PHY;
510 		break;
511 	}
512 
513 	return ret_val;
514 }
515 
516 /**
517  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518  *  @hw: pointer to the HW structure
519  *
520  *  Initialize family-specific PHY parameters and function pointers.
521  **/
522 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 {
524 	struct e1000_phy_info *phy = &hw->phy;
525 	s32 ret_val;
526 	u16 i = 0;
527 
528 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
529 
530 	phy->addr		= 1;
531 	phy->reset_delay_us	= 100;
532 
533 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
534 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
537 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
538 	phy->ops.release	= e1000_release_swflag_ich8lan;
539 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
540 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
543 	phy->ops.power_up	= e1000_power_up_phy_copper;
544 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
545 
546 	/* We may need to do this twice - once for IGP and if that fails,
547 	 * we'll set BM func pointers and try again
548 	 */
549 	ret_val = e1000_determine_phy_address(hw);
550 	if (ret_val) {
551 		phy->ops.write_reg = e1000_write_phy_reg_bm;
552 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
553 		ret_val = e1000_determine_phy_address(hw);
554 		if (ret_val) {
555 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556 			return ret_val;
557 		}
558 	}
559 
560 	phy->id = 0;
561 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562 	       (i++ < 100)) {
563 		msec_delay(1);
564 		ret_val = e1000_get_phy_id(hw);
565 		if (ret_val)
566 			return ret_val;
567 	}
568 
569 	/* Verify phy id */
570 	switch (phy->id) {
571 	case IGP03E1000_E_PHY_ID:
572 		phy->type = e1000_phy_igp_3;
573 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576 		phy->ops.get_info = e1000_get_phy_info_igp;
577 		phy->ops.check_polarity = e1000_check_polarity_igp;
578 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579 		break;
580 	case IFE_E_PHY_ID:
581 	case IFE_PLUS_E_PHY_ID:
582 	case IFE_C_E_PHY_ID:
583 		phy->type = e1000_phy_ife;
584 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
585 		phy->ops.get_info = e1000_get_phy_info_ife;
586 		phy->ops.check_polarity = e1000_check_polarity_ife;
587 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588 		break;
589 	case BME1000_E_PHY_ID:
590 		phy->type = e1000_phy_bm;
591 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592 		phy->ops.read_reg = e1000_read_phy_reg_bm;
593 		phy->ops.write_reg = e1000_write_phy_reg_bm;
594 		phy->ops.commit = e1000_phy_sw_reset_generic;
595 		phy->ops.get_info = e1000_get_phy_info_m88;
596 		phy->ops.check_polarity = e1000_check_polarity_m88;
597 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598 		break;
599 	default:
600 		return -E1000_ERR_PHY;
601 		break;
602 	}
603 
604 	return E1000_SUCCESS;
605 }
606 
607 /**
608  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609  *  @hw: pointer to the HW structure
610  *
611  *  Initialize family-specific NVM parameters and function
612  *  pointers.
613  **/
614 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615 {
616 	struct e1000_nvm_info *nvm = &hw->nvm;
617 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618 	u32 gfpreg, sector_base_addr, sector_end_addr;
619 	u16 i;
620 
621 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622 
623 	/* Can't read flash registers if the register set isn't mapped. */
624 	nvm->type = e1000_nvm_flash_sw;
625 	if (!hw->flash_address) {
626 		DEBUGOUT("ERROR: Flash registers not mapped\n");
627 		return -E1000_ERR_CONFIG;
628 	}
629 
630 	gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631 
632 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 	 * Add 1 to sector_end_addr since this sector is included in
634 	 * the overall size.
635 	 */
636 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638 
639 	/* flash_base_addr is byte-aligned */
640 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641 
642 	/* find total size of the NVM, then cut in half since the total
643 	 * size represents two separate NVM banks.
644 	 */
645 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646 				<< FLASH_SECTOR_ADDR_SHIFT);
647 	nvm->flash_bank_size /= 2;
648 	/* Adjust to word count */
649 	nvm->flash_bank_size /= sizeof(u16);
650 
651 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
652 
653 	/* Clear shadow ram */
654 	for (i = 0; i < nvm->word_size; i++) {
655 		dev_spec->shadow_ram[i].modified = FALSE;
656 		dev_spec->shadow_ram[i].value    = 0xFFFF;
657 	}
658 
659 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
660 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
661 
662 	/* Function Pointers */
663 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
664 	nvm->ops.release	= e1000_release_nvm_ich8lan;
665 	nvm->ops.read		= e1000_read_nvm_ich8lan;
666 	nvm->ops.update		= e1000_update_nvm_checksum_ich8lan;
667 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
668 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
669 	nvm->ops.write		= e1000_write_nvm_ich8lan;
670 
671 	return E1000_SUCCESS;
672 }
673 
674 /**
675  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
676  *  @hw: pointer to the HW structure
677  *
678  *  Initialize family-specific MAC parameters and function
679  *  pointers.
680  **/
681 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
682 {
683 	struct e1000_mac_info *mac = &hw->mac;
684 
685 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
686 
687 	/* Set media type function pointer */
688 	hw->phy.media_type = e1000_media_type_copper;
689 
690 	/* Set mta register count */
691 	mac->mta_reg_count = 32;
692 	/* Set rar entry count */
693 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
694 	if (mac->type == e1000_ich8lan)
695 		mac->rar_entry_count--;
696 	/* Set if part includes ASF firmware */
697 	mac->asf_firmware_present = TRUE;
698 	/* FWSM register */
699 	mac->has_fwsm = TRUE;
700 	/* ARC subsystem not supported */
701 	mac->arc_subsystem_valid = FALSE;
702 	/* Adaptive IFS supported */
703 	mac->adaptive_ifs = TRUE;
704 
705 	/* Function pointers */
706 
707 	/* bus type/speed/width */
708 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
709 	/* function id */
710 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
711 	/* reset */
712 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
713 	/* hw initialization */
714 	mac->ops.init_hw = e1000_init_hw_ich8lan;
715 	/* link setup */
716 	mac->ops.setup_link = e1000_setup_link_ich8lan;
717 	/* physical interface setup */
718 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
719 	/* check for link */
720 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
721 	/* link info */
722 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
723 	/* multicast address update */
724 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
725 	/* clear hardware counters */
726 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
727 
728 	/* LED and other operations */
729 	switch (mac->type) {
730 	case e1000_ich8lan:
731 	case e1000_ich9lan:
732 	case e1000_ich10lan:
733 		/* check management mode */
734 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
735 		/* ID LED init */
736 		mac->ops.id_led_init = e1000_id_led_init_generic;
737 		/* blink LED */
738 		mac->ops.blink_led = e1000_blink_led_generic;
739 		/* setup LED */
740 		mac->ops.setup_led = e1000_setup_led_generic;
741 		/* cleanup LED */
742 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
743 		/* turn on/off LED */
744 		mac->ops.led_on = e1000_led_on_ich8lan;
745 		mac->ops.led_off = e1000_led_off_ich8lan;
746 		break;
747 	case e1000_pch2lan:
748 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
749 		mac->ops.rar_set = e1000_rar_set_pch2lan;
750 		/* fall-through */
751 	case e1000_pch_lpt:
752 		/* multicast address update for pch2 */
753 		mac->ops.update_mc_addr_list =
754 			e1000_update_mc_addr_list_pch2lan;
755 	case e1000_pchlan:
756 		/* check management mode */
757 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
758 		/* ID LED init */
759 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
760 		/* setup LED */
761 		mac->ops.setup_led = e1000_setup_led_pchlan;
762 		/* cleanup LED */
763 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
764 		/* turn on/off LED */
765 		mac->ops.led_on = e1000_led_on_pchlan;
766 		mac->ops.led_off = e1000_led_off_pchlan;
767 		break;
768 	default:
769 		break;
770 	}
771 
772 	if (mac->type == e1000_pch_lpt) {
773 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
774 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
775 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
776 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
777 	}
778 
779 	/* Enable PCS Lock-loss workaround for ICH8 */
780 	if (mac->type == e1000_ich8lan)
781 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
782 
783 	return E1000_SUCCESS;
784 }
785 
786 /**
787  *  __e1000_access_emi_reg_locked - Read/write EMI register
788  *  @hw: pointer to the HW structure
789  *  @addr: EMI address to program
790  *  @data: pointer to value to read/write from/to the EMI address
791  *  @read: boolean flag to indicate read or write
792  *
793  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
794  **/
795 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
796 					 u16 *data, bool read)
797 {
798 	s32 ret_val;
799 
800 	DEBUGFUNC("__e1000_access_emi_reg_locked");
801 
802 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
803 	if (ret_val)
804 		return ret_val;
805 
806 	if (read)
807 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
808 						      data);
809 	else
810 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
811 						       *data);
812 
813 	return ret_val;
814 }
815 
816 /**
817  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
818  *  @hw: pointer to the HW structure
819  *  @addr: EMI address to program
820  *  @data: value to be read from the EMI address
821  *
822  *  Assumes the SW/FW/HW Semaphore is already acquired.
823  **/
824 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
825 {
826 	DEBUGFUNC("e1000_read_emi_reg_locked");
827 
828 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
829 }
830 
831 /**
832  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
833  *  @hw: pointer to the HW structure
834  *  @addr: EMI address to program
835  *  @data: value to be written to the EMI address
836  *
837  *  Assumes the SW/FW/HW Semaphore is already acquired.
838  **/
839 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
840 {
841 	DEBUGFUNC("e1000_read_emi_reg_locked");
842 
843 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
844 }
845 
846 /**
847  *  e1000_set_eee_pchlan - Enable/disable EEE support
848  *  @hw: pointer to the HW structure
849  *
850  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
851  *  the link and the EEE capabilities of the link partner.  The LPI Control
852  *  register bits will remain set only if/when link is up.
853  *
854  *  EEE LPI must not be asserted earlier than one second after link is up.
855  *  On 82579, EEE LPI should not be enabled until such time otherwise there
856  *  can be link issues with some switches.  Other devices can have EEE LPI
857  *  enabled immediately upon link up since they have a timer in hardware which
858  *  prevents LPI from being asserted too early.
859  **/
860 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
861 {
862 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
863 	s32 ret_val;
864 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
865 
866 	DEBUGFUNC("e1000_set_eee_pchlan");
867 
868 	switch (hw->phy.type) {
869 	case e1000_phy_82579:
870 		lpa = I82579_EEE_LP_ABILITY;
871 		pcs_status = I82579_EEE_PCS_STATUS;
872 		adv_addr = I82579_EEE_ADVERTISEMENT;
873 		break;
874 	case e1000_phy_i217:
875 		lpa = I217_EEE_LP_ABILITY;
876 		pcs_status = I217_EEE_PCS_STATUS;
877 		adv_addr = I217_EEE_ADVERTISEMENT;
878 		break;
879 	default:
880 		return E1000_SUCCESS;
881 	}
882 
883 	ret_val = hw->phy.ops.acquire(hw);
884 	if (ret_val)
885 		return ret_val;
886 
887 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
888 	if (ret_val)
889 		goto release;
890 
891 	/* Clear bits that enable EEE in various speeds */
892 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
893 
894 	/* Enable EEE if not disabled by user */
895 	if (!dev_spec->eee_disable) {
896 		/* Save off link partner's EEE ability */
897 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
898 						    &dev_spec->eee_lp_ability);
899 		if (ret_val)
900 			goto release;
901 
902 		/* Read EEE advertisement */
903 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
904 		if (ret_val)
905 			goto release;
906 
907 		/* Enable EEE only for speeds in which the link partner is
908 		 * EEE capable and for which we advertise EEE.
909 		 */
910 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
911 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
912 
913 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
914 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
915 			if (data & NWAY_LPAR_100TX_FD_CAPS)
916 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
917 			else
918 				/* EEE is not supported in 100Half, so ignore
919 				 * partner's EEE in 100 ability if full-duplex
920 				 * is not advertised.
921 				 */
922 				dev_spec->eee_lp_ability &=
923 				    ~I82579_EEE_100_SUPPORTED;
924 		}
925 	}
926 
927 	if (hw->phy.type == e1000_phy_82579) {
928 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
929 						    &data);
930 		if (ret_val)
931 			goto release;
932 
933 		data &= ~I82579_LPI_100_PLL_SHUT;
934 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
935 						     data);
936 	}
937 
938 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
939 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
940 	if (ret_val)
941 		goto release;
942 
943 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
944 release:
945 	hw->phy.ops.release(hw);
946 
947 	return ret_val;
948 }
949 
950 /**
951  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
952  *  @hw:   pointer to the HW structure
953  *  @link: link up bool flag
954  *
955  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
956  *  preventing further DMA write requests.  Workaround the issue by disabling
957  *  the de-assertion of the clock request when in 1Gpbs mode.
958  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
959  *  speeds in order to avoid Tx hangs.
960  **/
961 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
962 {
963 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
964 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
965 	s32 ret_val = E1000_SUCCESS;
966 	u16 reg;
967 
968 	if (link && (status & E1000_STATUS_SPEED_1000)) {
969 		ret_val = hw->phy.ops.acquire(hw);
970 		if (ret_val)
971 			return ret_val;
972 
973 		ret_val =
974 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
975 					       &reg);
976 		if (ret_val)
977 			goto release;
978 
979 		ret_val =
980 		    e1000_write_kmrn_reg_locked(hw,
981 						E1000_KMRNCTRLSTA_K1_CONFIG,
982 						reg &
983 						~E1000_KMRNCTRLSTA_K1_ENABLE);
984 		if (ret_val)
985 			goto release;
986 
987 		usec_delay(10);
988 
989 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
990 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
991 
992 		ret_val =
993 		    e1000_write_kmrn_reg_locked(hw,
994 						E1000_KMRNCTRLSTA_K1_CONFIG,
995 						reg);
996 release:
997 		hw->phy.ops.release(hw);
998 	} else {
999 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1000 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1001 
1002 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
1003 			      (status & E1000_STATUS_FD)))
1004 			goto update_fextnvm6;
1005 
1006 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1007 		if (ret_val)
1008 			return ret_val;
1009 
1010 		/* Clear link status transmit timeout */
1011 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1012 
1013 		if (status & E1000_STATUS_SPEED_100) {
1014 			/* Set inband Tx timeout to 5x10us for 100Half */
1015 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1016 
1017 			/* Do not extend the K1 entry latency for 100Half */
1018 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1019 		} else {
1020 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1021 			reg |= 50 <<
1022 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1023 
1024 			/* Extend the K1 entry latency for 10 Mbps */
1025 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1026 		}
1027 
1028 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1029 		if (ret_val)
1030 			return ret_val;
1031 
1032 update_fextnvm6:
1033 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1034 	}
1035 
1036 	return ret_val;
1037 }
1038 
1039 static u64 e1000_ltr2ns(u16 ltr)
1040 {
1041 	u32 value, scale;
1042 
1043 	/* Determine the latency in nsec based on the LTR value & scale */
1044 	value = ltr & E1000_LTRV_VALUE_MASK;
1045 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1046 
1047 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1048 }
1049 
1050 /**
1051  *  e1000_platform_pm_pch_lpt - Set platform power management values
1052  *  @hw: pointer to the HW structure
1053  *  @link: bool indicating link status
1054  *
1055  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1056  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1057  *  when link is up (which must not exceed the maximum latency supported
1058  *  by the platform), otherwise specify there is no LTR requirement.
1059  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1060  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1061  *  Capability register set, on this device LTR is set by writing the
1062  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1063  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1064  *  message to the PMC.
1065  *
1066  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1067  *  high-water mark.
1068  **/
1069 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1070 {
1071 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1072 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1073 	u16 lat_enc = 0;	/* latency encoded */
1074 	s32 obff_hwm = 0;
1075 
1076 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1077 
1078 	if (link) {
1079 		u16 speed, duplex, scale = 0;
1080 		u16 max_snoop, max_nosnoop;
1081 		u16 max_ltr_enc;	/* max LTR latency encoded */
1082 		s64 lat_ns;		/* latency (ns) */
1083 		s64 value;
1084 		u32 rxa;
1085 
1086 		if (!hw->mac.max_frame_size) {
1087 			DEBUGOUT("max_frame_size not set.\n");
1088 			return -E1000_ERR_CONFIG;
1089 		}
1090 
1091 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1092 		if (!speed) {
1093 			DEBUGOUT("Speed not set.\n");
1094 			return -E1000_ERR_CONFIG;
1095 		}
1096 
1097 		/* Rx Packet Buffer Allocation size (KB) */
1098 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1099 
1100 		/* Determine the maximum latency tolerated by the device.
1101 		 *
1102 		 * Per the PCIe spec, the tolerated latencies are encoded as
1103 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1104 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1105 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1106 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1107 		 */
1108 		lat_ns = ((s64)rxa * 1024 -
1109 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1110 		if (lat_ns < 0)
1111 			lat_ns = 0;
1112 		else
1113 			lat_ns /= speed;
1114 
1115 		value = lat_ns;
1116 		while (value > E1000_LTRV_VALUE_MASK) {
1117 			scale++;
1118 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1119 		}
1120 		if (scale > E1000_LTRV_SCALE_MAX) {
1121 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1122 			return -E1000_ERR_CONFIG;
1123 		}
1124 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1125 
1126 		/* Determine the maximum latency tolerated by the platform */
1127 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1128 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1129 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1130 
1131 		if (lat_enc > max_ltr_enc) {
1132 			lat_enc = max_ltr_enc;
1133 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1134 		}
1135 
1136 		if (lat_ns) {
1137 			lat_ns *= speed * 1000;
1138 			lat_ns /= 8;
1139 			lat_ns /= 1000000000;
1140 			obff_hwm = (s32)(rxa - lat_ns);
1141 		}
1142 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1143 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1144 			return -E1000_ERR_CONFIG;
1145 		}
1146 	}
1147 
1148 	/* Set Snoop and No-Snoop latencies the same */
1149 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1150 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1151 
1152 	/* Set OBFF high water mark */
1153 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1154 	reg |= obff_hwm;
1155 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1156 
1157 	/* Enable OBFF */
1158 	reg = E1000_READ_REG(hw, E1000_SVCR);
1159 	reg |= E1000_SVCR_OFF_EN;
1160 	/* Always unblock interrupts to the CPU even when the system is
1161 	 * in OBFF mode. This ensures that small round-robin traffic
1162 	 * (like ping) does not get dropped or experience long latency.
1163 	 */
1164 	reg |= E1000_SVCR_OFF_MASKINT;
1165 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1166 
1167 	return E1000_SUCCESS;
1168 }
1169 
1170 /**
1171  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1172  *  @hw: pointer to the HW structure
1173  *  @itr: interrupt throttling rate
1174  *
1175  *  Configure OBFF with the updated interrupt rate.
1176  **/
1177 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1178 {
1179 	u32 svcr;
1180 	s32 timer;
1181 
1182 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1183 
1184 	/* Convert ITR value into microseconds for OBFF timer */
1185 	timer = itr & E1000_ITR_MASK;
1186 	timer = (timer * E1000_ITR_MULT) / 1000;
1187 
1188 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1189 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1190 		return -E1000_ERR_CONFIG;
1191 	}
1192 
1193 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1194 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1195 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1196 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1197 
1198 	return E1000_SUCCESS;
1199 }
1200 
1201 /**
1202  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1203  *  @hw: pointer to the HW structure
1204  *  @to_sx: boolean indicating a system power state transition to Sx
1205  *
1206  *  When link is down, configure ULP mode to significantly reduce the power
1207  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1208  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1209  *  system, configure the ULP mode by software.
1210  */
1211 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1212 {
1213 	u32 mac_reg;
1214 	s32 ret_val = E1000_SUCCESS;
1215 	u16 phy_reg;
1216 
1217 	if ((hw->mac.type < e1000_pch_lpt) ||
1218 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1219 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1220 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1221 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1222 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1223 		return 0;
1224 
1225 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1226 		/* Request ME configure ULP mode in the PHY */
1227 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1228 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1229 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1230 
1231 		goto out;
1232 	}
1233 
1234 	if (!to_sx) {
1235 		int i = 0;
1236 
1237 		/* Poll up to 5 seconds for Cable Disconnected indication */
1238 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1239 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1240 			/* Bail if link is re-acquired */
1241 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1242 				return -E1000_ERR_PHY;
1243 
1244 			if (i++ == 100)
1245 				break;
1246 
1247 			msec_delay(50);
1248 		}
1249 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1250 			 (E1000_READ_REG(hw, E1000_FEXT) &
1251 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1252 			 i * 50);
1253 	}
1254 
1255 	ret_val = hw->phy.ops.acquire(hw);
1256 	if (ret_val)
1257 		goto out;
1258 
1259 	/* Force SMBus mode in PHY */
1260 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1261 	if (ret_val)
1262 		goto release;
1263 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1264 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1265 
1266 	/* Force SMBus mode in MAC */
1267 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1268 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1269 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1270 
1271 	/* Set Inband ULP Exit, Reset to SMBus mode and
1272 	 * Disable SMBus Release on PERST# in PHY
1273 	 */
1274 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1275 	if (ret_val)
1276 		goto release;
1277 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1278 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1279 	if (to_sx) {
1280 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1281 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1282 
1283 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1284 	} else {
1285 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1286 	}
1287 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1288 
1289 	/* Set Disable SMBus Release on PERST# in MAC */
1290 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1291 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1292 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1293 
1294 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1295 	phy_reg |= I218_ULP_CONFIG1_START;
1296 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1297 release:
1298 	hw->phy.ops.release(hw);
1299 out:
1300 	if (ret_val) {
1301 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1302 	} else
1303 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1304 
1305 	return ret_val;
1306 }
1307 
1308 /**
1309  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1310  *  @hw: pointer to the HW structure
1311  *  @force: boolean indicating whether or not to force disabling ULP
1312  *
1313  *  Un-configure ULP mode when link is up, the system is transitioned from
1314  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1315  *  system, poll for an indication from ME that ULP has been un-configured.
1316  *  If not on an ME enabled system, un-configure the ULP mode by software.
1317  *
1318  *  During nominal operation, this function is called when link is acquired
1319  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1320  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1321  *  to forcibly disable ULP.
1322  */
1323 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1324 {
1325 	s32 ret_val = E1000_SUCCESS;
1326 	u32 mac_reg;
1327 	u16 phy_reg;
1328 	int i = 0;
1329 
1330 	if ((hw->mac.type < e1000_pch_lpt) ||
1331 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1332 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1333 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1334 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1335 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1336 		return 0;
1337 
1338 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1339 		if (force) {
1340 			/* Request ME un-configure ULP mode in the PHY */
1341 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1342 			mac_reg &= ~E1000_H2ME_ULP;
1343 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1344 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1345 		}
1346 
1347 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1348 		while (E1000_READ_REG(hw, E1000_FWSM) &
1349 		       E1000_FWSM_ULP_CFG_DONE) {
1350 			if (i++ == 10) {
1351 				ret_val = -E1000_ERR_PHY;
1352 				goto out;
1353 			}
1354 
1355 			msec_delay(10);
1356 		}
1357 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1358 
1359 		if (force) {
1360 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1361 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1362 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1363 		} else {
1364 			/* Clear H2ME.ULP after ME ULP configuration */
1365 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1366 			mac_reg &= ~E1000_H2ME_ULP;
1367 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1368 		}
1369 
1370 		goto out;
1371 	}
1372 
1373 	ret_val = hw->phy.ops.acquire(hw);
1374 	if (ret_val)
1375 		goto out;
1376 
1377 	if (force)
1378 		/* Toggle LANPHYPC Value bit */
1379 		e1000_toggle_lanphypc_pch_lpt(hw);
1380 
1381 	/* Unforce SMBus mode in PHY */
1382 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1383 	if (ret_val) {
1384 		/* The MAC might be in PCIe mode, so temporarily force to
1385 		 * SMBus mode in order to access the PHY.
1386 		 */
1387 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1388 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1389 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1390 
1391 		msec_delay(50);
1392 
1393 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1394 						       &phy_reg);
1395 		if (ret_val)
1396 			goto release;
1397 	}
1398 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1399 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1400 
1401 	/* Unforce SMBus mode in MAC */
1402 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1403 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1404 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1405 
1406 	/* When ULP mode was previously entered, K1 was disabled by the
1407 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1408 	 */
1409 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1410 	if (ret_val)
1411 		goto release;
1412 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1413 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1414 
1415 	/* Clear ULP enabled configuration */
1416 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1417 	if (ret_val)
1418 		goto release;
1419 		phy_reg &= ~(I218_ULP_CONFIG1_IND |
1420 			     I218_ULP_CONFIG1_STICKY_ULP |
1421 			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1422 			     I218_ULP_CONFIG1_WOL_HOST |
1423 			     I218_ULP_CONFIG1_INBAND_EXIT |
1424 			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1425 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1426 
1427 		/* Commit ULP changes by starting auto ULP configuration */
1428 		phy_reg |= I218_ULP_CONFIG1_START;
1429 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1430 
1431 		/* Clear Disable SMBus Release on PERST# in MAC */
1432 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1433 		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1434 		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1435 
1436 release:
1437 	hw->phy.ops.release(hw);
1438 	if (force) {
1439 		hw->phy.ops.reset(hw);
1440 		msec_delay(50);
1441 	}
1442 out:
1443 	if (ret_val) {
1444 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1445 	} else
1446 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1447 
1448 	return ret_val;
1449 }
1450 
1451 /**
1452  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1453  *  @hw: pointer to the HW structure
1454  *
1455  *  Checks to see of the link status of the hardware has changed.  If a
1456  *  change in link status has been detected, then we read the PHY registers
1457  *  to get the current speed/duplex if link exists.
1458  **/
1459 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1460 {
1461 	struct e1000_mac_info *mac = &hw->mac;
1462 	s32 ret_val;
1463 	bool link;
1464 	u16 phy_reg;
1465 
1466 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1467 
1468 	/* We only want to go out to the PHY registers to see if Auto-Neg
1469 	 * has completed and/or if our link status has changed.  The
1470 	 * get_link_status flag is set upon receiving a Link Status
1471 	 * Change or Rx Sequence Error interrupt.
1472 	 */
1473 	if (!mac->get_link_status)
1474 		return E1000_SUCCESS;
1475 
1476 		/* First we want to see if the MII Status Register reports
1477 		 * link.  If so, then we want to get the current speed/duplex
1478 		 * of the PHY.
1479 		 */
1480 		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1481 		if (ret_val)
1482 			return ret_val;
1483 
1484 	if (hw->mac.type == e1000_pchlan) {
1485 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1486 		if (ret_val)
1487 			return ret_val;
1488 	}
1489 
1490 	/* When connected at 10Mbps half-duplex, some parts are excessively
1491 	 * aggressive resulting in many collisions. To avoid this, increase
1492 	 * the IPG and reduce Rx latency in the PHY.
1493 	 */
1494 	if (((hw->mac.type == e1000_pch2lan) ||
1495 	     (hw->mac.type == e1000_pch_lpt)) && link) {
1496 		u32 reg;
1497 		reg = E1000_READ_REG(hw, E1000_STATUS);
1498 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1499 			u16 emi_addr;
1500 
1501 			reg = E1000_READ_REG(hw, E1000_TIPG);
1502 			reg &= ~E1000_TIPG_IPGT_MASK;
1503 			reg |= 0xFF;
1504 			E1000_WRITE_REG(hw, E1000_TIPG, reg);
1505 
1506 			/* Reduce Rx latency in analog PHY */
1507 			ret_val = hw->phy.ops.acquire(hw);
1508 			if (ret_val)
1509 				return ret_val;
1510 
1511 			if (hw->mac.type == e1000_pch2lan)
1512 				emi_addr = I82579_RX_CONFIG;
1513 			else
1514 				emi_addr = I217_RX_CONFIG;
1515 			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1516 
1517 			hw->phy.ops.release(hw);
1518 
1519 			if (ret_val)
1520 				return ret_val;
1521 		}
1522 	}
1523 
1524 	/* Work-around I218 hang issue */
1525 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1526 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1527 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1528 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1529 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1530 		if (ret_val)
1531 			return ret_val;
1532 	}
1533 	if (hw->mac.type == e1000_pch_lpt) {
1534 		/* Set platform power management values for
1535 		 * Latency Tolerance Reporting (LTR)
1536 		 * Optimized Buffer Flush/Fill (OBFF)
1537 		 */
1538 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1539 		if (ret_val)
1540 			return ret_val;
1541 	}
1542 
1543 	/* Clear link partner's EEE ability */
1544 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1545 
1546 	if (!link)
1547 		return E1000_SUCCESS; /* No link detected */
1548 
1549 	mac->get_link_status = FALSE;
1550 
1551 	switch (hw->mac.type) {
1552 	case e1000_pch2lan:
1553 		ret_val = e1000_k1_workaround_lv(hw);
1554 		if (ret_val)
1555 			return ret_val;
1556 		/* fall-thru */
1557 	case e1000_pchlan:
1558 		if (hw->phy.type == e1000_phy_82578) {
1559 			ret_val = e1000_link_stall_workaround_hv(hw);
1560 			if (ret_val)
1561 				return ret_val;
1562 		}
1563 
1564 		/* Workaround for PCHx parts in half-duplex:
1565 		 * Set the number of preambles removed from the packet
1566 		 * when it is passed from the PHY to the MAC to prevent
1567 		 * the MAC from misinterpreting the packet type.
1568 		 */
1569 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1570 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1571 
1572 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1573 		    E1000_STATUS_FD)
1574 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1575 
1576 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1577 		break;
1578 	default:
1579 		break;
1580 	}
1581 
1582 	/* Check if there was DownShift, must be checked
1583 	 * immediately after link-up
1584 	 */
1585 	e1000_check_downshift_generic(hw);
1586 
1587 	/* Enable/Disable EEE after link up */
1588 	if (hw->phy.type > e1000_phy_82579) {
1589 		ret_val = e1000_set_eee_pchlan(hw);
1590 		if (ret_val)
1591 			return ret_val;
1592 	}
1593 
1594 	/* If we are forcing speed/duplex, then we simply return since
1595 	 * we have already determined whether we have link or not.
1596 	 */
1597 	if (!mac->autoneg)
1598 		return -E1000_ERR_CONFIG;
1599 
1600 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1601 	 * of MAC speed/duplex configuration.  So we only need to
1602 	 * configure Collision Distance in the MAC.
1603 	 */
1604 	mac->ops.config_collision_dist(hw);
1605 
1606 	/* Configure Flow Control now that Auto-Neg has completed.
1607 	 * First, we need to restore the desired flow control
1608 	 * settings because we may have had to re-autoneg with a
1609 	 * different link partner.
1610 	 */
1611 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1612 	if (ret_val)
1613 		DEBUGOUT("Error configuring flow control\n");
1614 
1615 	return ret_val;
1616 }
1617 
1618 /**
1619  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1620  *  @hw: pointer to the HW structure
1621  *
1622  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1623  **/
1624 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1625 {
1626 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1627 
1628 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1629 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1630 	switch (hw->mac.type) {
1631 	case e1000_ich8lan:
1632 	case e1000_ich9lan:
1633 	case e1000_ich10lan:
1634 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1635 		break;
1636 	case e1000_pchlan:
1637 	case e1000_pch2lan:
1638 	case e1000_pch_lpt:
1639 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1640 		break;
1641 	default:
1642 		break;
1643 	}
1644 }
1645 
1646 /**
1647  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1648  *  @hw: pointer to the HW structure
1649  *
1650  *  Acquires the mutex for performing NVM operations.
1651  **/
1652 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1653 {
1654 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1655 
1656 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1657 
1658 	return E1000_SUCCESS;
1659 }
1660 
1661 /**
1662  *  e1000_release_nvm_ich8lan - Release NVM mutex
1663  *  @hw: pointer to the HW structure
1664  *
1665  *  Releases the mutex used while performing NVM operations.
1666  **/
1667 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1668 {
1669 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1670 
1671 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1672 
1673 	return;
1674 }
1675 
1676 /**
1677  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1678  *  @hw: pointer to the HW structure
1679  *
1680  *  Acquires the software control flag for performing PHY and select
1681  *  MAC CSR accesses.
1682  **/
1683 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1684 {
1685 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1686 	s32 ret_val = E1000_SUCCESS;
1687 
1688 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1689 
1690 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1691 
1692 	while (timeout) {
1693 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1694 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1695 			break;
1696 
1697 		msec_delay_irq(1);
1698 		timeout--;
1699 	}
1700 
1701 	if (!timeout) {
1702 		DEBUGOUT("SW has already locked the resource.\n");
1703 		ret_val = -E1000_ERR_CONFIG;
1704 		goto out;
1705 	}
1706 
1707 	timeout = SW_FLAG_TIMEOUT;
1708 
1709 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1710 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1711 
1712 	while (timeout) {
1713 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1714 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1715 			break;
1716 
1717 		msec_delay_irq(1);
1718 		timeout--;
1719 	}
1720 
1721 	if (!timeout) {
1722 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1723 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1724 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1725 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1726 		ret_val = -E1000_ERR_CONFIG;
1727 		goto out;
1728 	}
1729 
1730 out:
1731 	if (ret_val)
1732 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1733 
1734 	return ret_val;
1735 }
1736 
1737 /**
1738  *  e1000_release_swflag_ich8lan - Release software control flag
1739  *  @hw: pointer to the HW structure
1740  *
1741  *  Releases the software control flag for performing PHY and select
1742  *  MAC CSR accesses.
1743  **/
1744 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1745 {
1746 	u32 extcnf_ctrl;
1747 
1748 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1749 
1750 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1751 
1752 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1753 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1754 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1755 	} else {
1756 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1757 	}
1758 
1759 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1760 
1761 	return;
1762 }
1763 
1764 /**
1765  *  e1000_check_mng_mode_ich8lan - Checks management mode
1766  *  @hw: pointer to the HW structure
1767  *
1768  *  This checks if the adapter has any manageability enabled.
1769  *  This is a function pointer entry point only called by read/write
1770  *  routines for the PHY and NVM parts.
1771  **/
1772 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1773 {
1774 	u32 fwsm;
1775 
1776 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1777 
1778 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1779 
1780 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1781 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1782 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1783 }
1784 
1785 /**
1786  *  e1000_check_mng_mode_pchlan - Checks management mode
1787  *  @hw: pointer to the HW structure
1788  *
1789  *  This checks if the adapter has iAMT enabled.
1790  *  This is a function pointer entry point only called by read/write
1791  *  routines for the PHY and NVM parts.
1792  **/
1793 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1794 {
1795 	u32 fwsm;
1796 
1797 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1798 
1799 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1800 
1801 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1802 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1803 }
1804 
1805 /**
1806  *  e1000_rar_set_pch2lan - Set receive address register
1807  *  @hw: pointer to the HW structure
1808  *  @addr: pointer to the receive address
1809  *  @index: receive address array register
1810  *
1811  *  Sets the receive address array register at index to the address passed
1812  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1813  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1814  *  Use SHRA[0-3] in place of those reserved for ME.
1815  **/
1816 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1817 {
1818 	u32 rar_low, rar_high;
1819 
1820 	DEBUGFUNC("e1000_rar_set_pch2lan");
1821 
1822 	/* HW expects these in little endian so we reverse the byte order
1823 	 * from network order (big endian) to little endian
1824 	 */
1825 	rar_low = ((u32) addr[0] |
1826 		   ((u32) addr[1] << 8) |
1827 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1828 
1829 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1830 
1831 	/* If MAC address zero, no need to set the AV bit */
1832 	if (rar_low || rar_high)
1833 		rar_high |= E1000_RAH_AV;
1834 
1835 	if (index == 0) {
1836 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1837 		E1000_WRITE_FLUSH(hw);
1838 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1839 		E1000_WRITE_FLUSH(hw);
1840 		return E1000_SUCCESS;
1841 	}
1842 
1843 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1844 	 * next address into the SHRA register array.
1845 	 */
1846 	if (index < (u32) (hw->mac.rar_entry_count)) {
1847 		s32 ret_val;
1848 
1849 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1850 		if (ret_val)
1851 			goto out;
1852 
1853 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1854 		E1000_WRITE_FLUSH(hw);
1855 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1856 		E1000_WRITE_FLUSH(hw);
1857 
1858 		e1000_release_swflag_ich8lan(hw);
1859 
1860 		/* verify the register updates */
1861 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1862 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1863 			return E1000_SUCCESS;
1864 
1865 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1866 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1867 	}
1868 
1869 out:
1870 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
1871 	return -E1000_ERR_CONFIG;
1872 }
1873 
1874 /**
1875  *  e1000_rar_set_pch_lpt - Set receive address registers
1876  *  @hw: pointer to the HW structure
1877  *  @addr: pointer to the receive address
1878  *  @index: receive address array register
1879  *
1880  *  Sets the receive address register array at index to the address passed
1881  *  in by addr. For LPT, RAR[0] is the base address register that is to
1882  *  contain the MAC address. SHRA[0-10] are the shared receive address
1883  *  registers that are shared between the Host and manageability engine (ME).
1884  **/
1885 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1886 {
1887 	u32 rar_low, rar_high;
1888 	u32 wlock_mac;
1889 
1890 	DEBUGFUNC("e1000_rar_set_pch_lpt");
1891 
1892 	/* HW expects these in little endian so we reverse the byte order
1893 	 * from network order (big endian) to little endian
1894 	 */
1895 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1896 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1897 
1898 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1899 
1900 	/* If MAC address zero, no need to set the AV bit */
1901 	if (rar_low || rar_high)
1902 		rar_high |= E1000_RAH_AV;
1903 
1904 	if (index == 0) {
1905 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1906 		E1000_WRITE_FLUSH(hw);
1907 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1908 		E1000_WRITE_FLUSH(hw);
1909 		return E1000_SUCCESS;
1910 	}
1911 
1912 	/* The manageability engine (ME) can lock certain SHRAR registers that
1913 	 * it is using - those registers are unavailable for use.
1914 	 */
1915 	if (index < hw->mac.rar_entry_count) {
1916 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1917 			    E1000_FWSM_WLOCK_MAC_MASK;
1918 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1919 
1920 		/* Check if all SHRAR registers are locked */
1921 		if (wlock_mac == 1)
1922 			goto out;
1923 
1924 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1925 			s32 ret_val;
1926 
1927 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1928 
1929 			if (ret_val)
1930 				goto out;
1931 
1932 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1933 					rar_low);
1934 			E1000_WRITE_FLUSH(hw);
1935 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1936 					rar_high);
1937 			E1000_WRITE_FLUSH(hw);
1938 
1939 			e1000_release_swflag_ich8lan(hw);
1940 
1941 			/* verify the register updates */
1942 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1943 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1944 				return E1000_SUCCESS;
1945 		}
1946 	}
1947 
1948 out:
1949 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
1950 	return -E1000_ERR_CONFIG;
1951 }
1952 
1953 /**
1954  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1955  *  @hw: pointer to the HW structure
1956  *  @mc_addr_list: array of multicast addresses to program
1957  *  @mc_addr_count: number of multicast addresses to program
1958  *
1959  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1960  *  The caller must have a packed mc_addr_list of multicast addresses.
1961  **/
1962 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1963 					      u8 *mc_addr_list,
1964 					      u32 mc_addr_count)
1965 {
1966 	u16 phy_reg = 0;
1967 	int i;
1968 	s32 ret_val;
1969 
1970 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1971 
1972 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1973 
1974 	ret_val = hw->phy.ops.acquire(hw);
1975 	if (ret_val)
1976 		return;
1977 
1978 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1979 	if (ret_val)
1980 		goto release;
1981 
1982 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
1983 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1984 					   (u16)(hw->mac.mta_shadow[i] &
1985 						 0xFFFF));
1986 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1987 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
1988 						 0xFFFF));
1989 	}
1990 
1991 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1992 
1993 release:
1994 	hw->phy.ops.release(hw);
1995 }
1996 
1997 /**
1998  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1999  *  @hw: pointer to the HW structure
2000  *
2001  *  Checks if firmware is blocking the reset of the PHY.
2002  *  This is a function pointer entry point only called by
2003  *  reset routines.
2004  **/
2005 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2006 {
2007 	u32 fwsm;
2008 	bool blocked = FALSE;
2009 	int i = 0;
2010 
2011 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2012 
2013 	do {
2014 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2015 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2016 			blocked = TRUE;
2017 			msec_delay(10);
2018 			continue;
2019 		}
2020 		blocked = FALSE;
2021 	} while (blocked && (i++ < 10));
2022 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2023 }
2024 
2025 /**
2026  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2027  *  @hw: pointer to the HW structure
2028  *
2029  *  Assumes semaphore already acquired.
2030  *
2031  **/
2032 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2033 {
2034 	u16 phy_data;
2035 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2036 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2037 		E1000_STRAP_SMT_FREQ_SHIFT;
2038 	s32 ret_val;
2039 
2040 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2041 
2042 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2043 	if (ret_val)
2044 		return ret_val;
2045 
2046 	phy_data &= ~HV_SMB_ADDR_MASK;
2047 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2048 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2049 
2050 	if (hw->phy.type == e1000_phy_i217) {
2051 		/* Restore SMBus frequency */
2052 		if (freq--) {
2053 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2054 			phy_data |= (freq & (1 << 0)) <<
2055 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2056 			phy_data |= (freq & (1 << 1)) <<
2057 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2058 		} else {
2059 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2060 		}
2061 	}
2062 
2063 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2064 }
2065 
2066 /**
2067  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2068  *  @hw:   pointer to the HW structure
2069  *
2070  *  SW should configure the LCD from the NVM extended configuration region
2071  *  as a workaround for certain parts.
2072  **/
2073 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2074 {
2075 	struct e1000_phy_info *phy = &hw->phy;
2076 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2077 	s32 ret_val = E1000_SUCCESS;
2078 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2079 
2080 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2081 
2082 	/* Initialize the PHY from the NVM on ICH platforms.  This
2083 	 * is needed due to an issue where the NVM configuration is
2084 	 * not properly autoloaded after power transitions.
2085 	 * Therefore, after each PHY reset, we will load the
2086 	 * configuration data out of the NVM manually.
2087 	 */
2088 	switch (hw->mac.type) {
2089 	case e1000_ich8lan:
2090 		if (phy->type != e1000_phy_igp_3)
2091 			return ret_val;
2092 
2093 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2094 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2095 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2096 			break;
2097 		}
2098 		/* Fall-thru */
2099 	case e1000_pchlan:
2100 	case e1000_pch2lan:
2101 	case e1000_pch_lpt:
2102 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2103 		break;
2104 	default:
2105 		return ret_val;
2106 	}
2107 
2108 	ret_val = hw->phy.ops.acquire(hw);
2109 	if (ret_val)
2110 		return ret_val;
2111 
2112 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2113 	if (!(data & sw_cfg_mask))
2114 		goto release;
2115 
2116 	/* Make sure HW does not configure LCD from PHY
2117 	 * extended configuration before SW configuration
2118 	 */
2119 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2120 	if ((hw->mac.type < e1000_pch2lan) &&
2121 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2122 			goto release;
2123 
2124 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2125 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2126 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2127 	if (!cnf_size)
2128 		goto release;
2129 
2130 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2131 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2132 
2133 	if (((hw->mac.type == e1000_pchlan) &&
2134 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2135 	    (hw->mac.type > e1000_pchlan)) {
2136 		/* HW configures the SMBus address and LEDs when the
2137 		 * OEM and LCD Write Enable bits are set in the NVM.
2138 		 * When both NVM bits are cleared, SW will configure
2139 		 * them instead.
2140 		 */
2141 		ret_val = e1000_write_smbus_addr(hw);
2142 		if (ret_val)
2143 			goto release;
2144 
2145 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2146 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2147 							(u16)data);
2148 		if (ret_val)
2149 			goto release;
2150 	}
2151 
2152 	/* Configure LCD from extended configuration region. */
2153 
2154 	/* cnf_base_addr is in DWORD */
2155 	word_addr = (u16)(cnf_base_addr << 1);
2156 
2157 	for (i = 0; i < cnf_size; i++) {
2158 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2159 					   &reg_data);
2160 		if (ret_val)
2161 			goto release;
2162 
2163 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2164 					   1, &reg_addr);
2165 		if (ret_val)
2166 			goto release;
2167 
2168 		/* Save off the PHY page for future writes. */
2169 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2170 			phy_page = reg_data;
2171 			continue;
2172 		}
2173 
2174 		reg_addr &= PHY_REG_MASK;
2175 		reg_addr |= phy_page;
2176 
2177 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2178 						    reg_data);
2179 		if (ret_val)
2180 			goto release;
2181 	}
2182 
2183 release:
2184 	hw->phy.ops.release(hw);
2185 	return ret_val;
2186 }
2187 
2188 /**
2189  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2190  *  @hw:   pointer to the HW structure
2191  *  @link: link up bool flag
2192  *
2193  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2194  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2195  *  If link is down, the function will restore the default K1 setting located
2196  *  in the NVM.
2197  **/
2198 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2199 {
2200 	s32 ret_val = E1000_SUCCESS;
2201 	u16 status_reg = 0;
2202 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2203 
2204 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2205 
2206 	if (hw->mac.type != e1000_pchlan)
2207 		return E1000_SUCCESS;
2208 
2209 	/* Wrap the whole flow with the sw flag */
2210 	ret_val = hw->phy.ops.acquire(hw);
2211 	if (ret_val)
2212 		return ret_val;
2213 
2214 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2215 	if (link) {
2216 		if (hw->phy.type == e1000_phy_82578) {
2217 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2218 							      &status_reg);
2219 			if (ret_val)
2220 				goto release;
2221 
2222 			status_reg &= (BM_CS_STATUS_LINK_UP |
2223 				       BM_CS_STATUS_RESOLVED |
2224 				       BM_CS_STATUS_SPEED_MASK);
2225 
2226 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2227 					   BM_CS_STATUS_RESOLVED |
2228 					   BM_CS_STATUS_SPEED_1000))
2229 				k1_enable = FALSE;
2230 		}
2231 
2232 		if (hw->phy.type == e1000_phy_82577) {
2233 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2234 							      &status_reg);
2235 			if (ret_val)
2236 				goto release;
2237 
2238 			status_reg &= (HV_M_STATUS_LINK_UP |
2239 				       HV_M_STATUS_AUTONEG_COMPLETE |
2240 				       HV_M_STATUS_SPEED_MASK);
2241 
2242 			if (status_reg == (HV_M_STATUS_LINK_UP |
2243 					   HV_M_STATUS_AUTONEG_COMPLETE |
2244 					   HV_M_STATUS_SPEED_1000))
2245 				k1_enable = FALSE;
2246 		}
2247 
2248 		/* Link stall fix for link up */
2249 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2250 						       0x0100);
2251 		if (ret_val)
2252 			goto release;
2253 
2254 	} else {
2255 		/* Link stall fix for link down */
2256 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2257 						       0x4100);
2258 		if (ret_val)
2259 			goto release;
2260 	}
2261 
2262 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2263 
2264 release:
2265 	hw->phy.ops.release(hw);
2266 
2267 	return ret_val;
2268 }
2269 
2270 /**
2271  *  e1000_configure_k1_ich8lan - Configure K1 power state
2272  *  @hw: pointer to the HW structure
2273  *  @enable: K1 state to configure
2274  *
2275  *  Configure the K1 power state based on the provided parameter.
2276  *  Assumes semaphore already acquired.
2277  *
2278  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2279  **/
2280 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2281 {
2282 	s32 ret_val;
2283 	u32 ctrl_reg = 0;
2284 	u32 ctrl_ext = 0;
2285 	u32 reg = 0;
2286 	u16 kmrn_reg = 0;
2287 
2288 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2289 
2290 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2291 					     &kmrn_reg);
2292 	if (ret_val)
2293 		return ret_val;
2294 
2295 	if (k1_enable)
2296 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2297 	else
2298 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2299 
2300 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2301 					      kmrn_reg);
2302 	if (ret_val)
2303 		return ret_val;
2304 
2305 	usec_delay(20);
2306 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2307 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2308 
2309 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2310 	reg |= E1000_CTRL_FRCSPD;
2311 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2312 
2313 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2314 	E1000_WRITE_FLUSH(hw);
2315 	usec_delay(20);
2316 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2317 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2318 	E1000_WRITE_FLUSH(hw);
2319 	usec_delay(20);
2320 
2321 	return E1000_SUCCESS;
2322 }
2323 
2324 /**
2325  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2326  *  @hw:       pointer to the HW structure
2327  *  @d0_state: boolean if entering d0 or d3 device state
2328  *
2329  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2330  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2331  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2332  **/
2333 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2334 {
2335 	s32 ret_val = 0;
2336 	u32 mac_reg;
2337 	u16 oem_reg;
2338 
2339 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2340 
2341 	if (hw->mac.type < e1000_pchlan)
2342 		return ret_val;
2343 
2344 	ret_val = hw->phy.ops.acquire(hw);
2345 	if (ret_val)
2346 		return ret_val;
2347 
2348 	if (hw->mac.type == e1000_pchlan) {
2349 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2350 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2351 			goto release;
2352 	}
2353 
2354 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2355 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2356 		goto release;
2357 
2358 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2359 
2360 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2361 	if (ret_val)
2362 		goto release;
2363 
2364 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2365 
2366 	if (d0_state) {
2367 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2368 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2369 
2370 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2371 			oem_reg |= HV_OEM_BITS_LPLU;
2372 	} else {
2373 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2374 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2375 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2376 
2377 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2378 		    E1000_PHY_CTRL_NOND0A_LPLU))
2379 			oem_reg |= HV_OEM_BITS_LPLU;
2380 	}
2381 
2382 	/* Set Restart auto-neg to activate the bits */
2383 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2384 	    !hw->phy.ops.check_reset_block(hw))
2385 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2386 
2387 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2388 
2389 release:
2390 	hw->phy.ops.release(hw);
2391 
2392 	return ret_val;
2393 }
2394 
2395 
2396 /**
2397  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2398  *  @hw:   pointer to the HW structure
2399  **/
2400 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2401 {
2402 	s32 ret_val;
2403 	u16 data;
2404 
2405 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2406 
2407 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2408 	if (ret_val)
2409 		return ret_val;
2410 
2411 	data |= HV_KMRN_MDIO_SLOW;
2412 
2413 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2414 
2415 	return ret_val;
2416 }
2417 
2418 /**
2419  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2420  *  done after every PHY reset.
2421  **/
2422 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2423 {
2424 	s32 ret_val = E1000_SUCCESS;
2425 	u16 phy_data;
2426 
2427 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2428 
2429 	if (hw->mac.type != e1000_pchlan)
2430 		return E1000_SUCCESS;
2431 
2432 	/* Set MDIO slow mode before any other MDIO access */
2433 	if (hw->phy.type == e1000_phy_82577) {
2434 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2435 		if (ret_val)
2436 			return ret_val;
2437 	}
2438 
2439 	if (((hw->phy.type == e1000_phy_82577) &&
2440 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2441 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2442 		/* Disable generation of early preamble */
2443 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2444 		if (ret_val)
2445 			return ret_val;
2446 
2447 		/* Preamble tuning for SSC */
2448 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2449 						0xA204);
2450 		if (ret_val)
2451 			return ret_val;
2452 	}
2453 
2454 	if (hw->phy.type == e1000_phy_82578) {
2455 		/* Return registers to default by doing a soft reset then
2456 		 * writing 0x3140 to the control register.
2457 		 */
2458 		if (hw->phy.revision < 2) {
2459 			e1000_phy_sw_reset_generic(hw);
2460 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2461 							0x3140);
2462 		}
2463 	}
2464 
2465 	/* Select page 0 */
2466 	ret_val = hw->phy.ops.acquire(hw);
2467 	if (ret_val)
2468 		return ret_val;
2469 
2470 	hw->phy.addr = 1;
2471 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2472 	hw->phy.ops.release(hw);
2473 	if (ret_val)
2474 		return ret_val;
2475 
2476 	/* Configure the K1 Si workaround during phy reset assuming there is
2477 	 * link so that it disables K1 if link is in 1Gbps.
2478 	 */
2479 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2480 	if (ret_val)
2481 		return ret_val;
2482 
2483 	/* Workaround for link disconnects on a busy hub in half duplex */
2484 	ret_val = hw->phy.ops.acquire(hw);
2485 	if (ret_val)
2486 		return ret_val;
2487 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2488 	if (ret_val)
2489 		goto release;
2490 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2491 					       phy_data & 0x00FF);
2492 	if (ret_val)
2493 		goto release;
2494 
2495 	/* set MSE higher to enable link to stay up when noise is high */
2496 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2497 release:
2498 	hw->phy.ops.release(hw);
2499 
2500 	return ret_val;
2501 }
2502 
2503 /**
2504  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2505  *  @hw:   pointer to the HW structure
2506  **/
2507 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2508 {
2509 	u32 mac_reg;
2510 	u16 i, phy_reg = 0;
2511 	s32 ret_val;
2512 
2513 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2514 
2515 	ret_val = hw->phy.ops.acquire(hw);
2516 	if (ret_val)
2517 		return;
2518 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2519 	if (ret_val)
2520 		goto release;
2521 
2522 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2523 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2524 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2525 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2526 					   (u16)(mac_reg & 0xFFFF));
2527 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2528 					   (u16)((mac_reg >> 16) & 0xFFFF));
2529 
2530 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2531 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2532 					   (u16)(mac_reg & 0xFFFF));
2533 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2534 					   (u16)((mac_reg & E1000_RAH_AV)
2535 						 >> 16));
2536 	}
2537 
2538 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2539 
2540 release:
2541 	hw->phy.ops.release(hw);
2542 }
2543 
2544 static u32 e1000_calc_rx_da_crc(u8 mac[])
2545 {
2546 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2547 	u32 i, j, mask, crc;
2548 
2549 	DEBUGFUNC("e1000_calc_rx_da_crc");
2550 
2551 	crc = 0xffffffff;
2552 	for (i = 0; i < 6; i++) {
2553 		crc = crc ^ mac[i];
2554 		for (j = 8; j > 0; j--) {
2555 			mask = (crc & 1) * (-1);
2556 			crc = (crc >> 1) ^ (poly & mask);
2557 		}
2558 	}
2559 	return ~crc;
2560 }
2561 
2562 /**
2563  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2564  *  with 82579 PHY
2565  *  @hw: pointer to the HW structure
2566  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2567  **/
2568 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2569 {
2570 	s32 ret_val = E1000_SUCCESS;
2571 	u16 phy_reg, data;
2572 	u32 mac_reg;
2573 	u16 i;
2574 
2575 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2576 
2577 	if (hw->mac.type < e1000_pch2lan)
2578 		return E1000_SUCCESS;
2579 
2580 	/* disable Rx path while enabling/disabling workaround */
2581 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2582 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2583 					phy_reg | (1 << 14));
2584 	if (ret_val)
2585 		return ret_val;
2586 
2587 	if (enable) {
2588 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2589 		 * SHRAL/H) and initial CRC values to the MAC
2590 		 */
2591 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2592 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2593 			u32 addr_high, addr_low;
2594 
2595 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2596 			if (!(addr_high & E1000_RAH_AV))
2597 				continue;
2598 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2599 			mac_addr[0] = (addr_low & 0xFF);
2600 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2601 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2602 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2603 			mac_addr[4] = (addr_high & 0xFF);
2604 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2605 
2606 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2607 					e1000_calc_rx_da_crc(mac_addr));
2608 		}
2609 
2610 		/* Write Rx addresses to the PHY */
2611 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2612 
2613 		/* Enable jumbo frame workaround in the MAC */
2614 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2615 		mac_reg &= ~(1 << 14);
2616 		mac_reg |= (7 << 15);
2617 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2618 
2619 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2620 		mac_reg |= E1000_RCTL_SECRC;
2621 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2622 
2623 		ret_val = e1000_read_kmrn_reg_generic(hw,
2624 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2625 						&data);
2626 		if (ret_val)
2627 			return ret_val;
2628 		ret_val = e1000_write_kmrn_reg_generic(hw,
2629 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630 						data | (1 << 0));
2631 		if (ret_val)
2632 			return ret_val;
2633 		ret_val = e1000_read_kmrn_reg_generic(hw,
2634 						E1000_KMRNCTRLSTA_HD_CTRL,
2635 						&data);
2636 		if (ret_val)
2637 			return ret_val;
2638 		data &= ~(0xF << 8);
2639 		data |= (0xB << 8);
2640 		ret_val = e1000_write_kmrn_reg_generic(hw,
2641 						E1000_KMRNCTRLSTA_HD_CTRL,
2642 						data);
2643 		if (ret_val)
2644 			return ret_val;
2645 
2646 		/* Enable jumbo frame workaround in the PHY */
2647 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2648 		data &= ~(0x7F << 5);
2649 		data |= (0x37 << 5);
2650 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2651 		if (ret_val)
2652 			return ret_val;
2653 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2654 		data &= ~(1 << 13);
2655 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2656 		if (ret_val)
2657 			return ret_val;
2658 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2659 		data &= ~(0x3FF << 2);
2660 		data |= (E1000_TX_PTR_GAP << 2);
2661 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2662 		if (ret_val)
2663 			return ret_val;
2664 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2665 		if (ret_val)
2666 			return ret_val;
2667 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2668 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2669 						(1 << 10));
2670 		if (ret_val)
2671 			return ret_val;
2672 	} else {
2673 		/* Write MAC register values back to h/w defaults */
2674 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2675 		mac_reg &= ~(0xF << 14);
2676 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2677 
2678 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2679 		mac_reg &= ~E1000_RCTL_SECRC;
2680 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2681 
2682 		ret_val = e1000_read_kmrn_reg_generic(hw,
2683 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2684 						&data);
2685 		if (ret_val)
2686 			return ret_val;
2687 		ret_val = e1000_write_kmrn_reg_generic(hw,
2688 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2689 						data & ~(1 << 0));
2690 		if (ret_val)
2691 			return ret_val;
2692 		ret_val = e1000_read_kmrn_reg_generic(hw,
2693 						E1000_KMRNCTRLSTA_HD_CTRL,
2694 						&data);
2695 		if (ret_val)
2696 			return ret_val;
2697 		data &= ~(0xF << 8);
2698 		data |= (0xB << 8);
2699 		ret_val = e1000_write_kmrn_reg_generic(hw,
2700 						E1000_KMRNCTRLSTA_HD_CTRL,
2701 						data);
2702 		if (ret_val)
2703 			return ret_val;
2704 
2705 		/* Write PHY register values back to h/w defaults */
2706 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2707 		data &= ~(0x7F << 5);
2708 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2709 		if (ret_val)
2710 			return ret_val;
2711 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2712 		data |= (1 << 13);
2713 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2714 		if (ret_val)
2715 			return ret_val;
2716 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2717 		data &= ~(0x3FF << 2);
2718 		data |= (0x8 << 2);
2719 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2720 		if (ret_val)
2721 			return ret_val;
2722 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2723 		if (ret_val)
2724 			return ret_val;
2725 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2726 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2727 						~(1 << 10));
2728 		if (ret_val)
2729 			return ret_val;
2730 	}
2731 
2732 	/* re-enable Rx path after enabling/disabling workaround */
2733 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2734 				     ~(1 << 14));
2735 }
2736 
2737 /**
2738  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2739  *  done after every PHY reset.
2740  **/
2741 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2742 {
2743 	s32 ret_val = E1000_SUCCESS;
2744 
2745 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2746 
2747 	if (hw->mac.type != e1000_pch2lan)
2748 		return E1000_SUCCESS;
2749 
2750 	/* Set MDIO slow mode before any other MDIO access */
2751 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2752 	if (ret_val)
2753 		return ret_val;
2754 
2755 	ret_val = hw->phy.ops.acquire(hw);
2756 	if (ret_val)
2757 		return ret_val;
2758 	/* set MSE higher to enable link to stay up when noise is high */
2759 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2760 	if (ret_val)
2761 		goto release;
2762 	/* drop link after 5 times MSE threshold was reached */
2763 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2764 release:
2765 	hw->phy.ops.release(hw);
2766 
2767 	return ret_val;
2768 }
2769 
2770 /**
2771  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2772  *  @hw:   pointer to the HW structure
2773  *
2774  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2775  *  Disable K1 for 1000 and 100 speeds
2776  **/
2777 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2778 {
2779 	s32 ret_val = E1000_SUCCESS;
2780 	u16 status_reg = 0;
2781 
2782 	DEBUGFUNC("e1000_k1_workaround_lv");
2783 
2784 	if (hw->mac.type != e1000_pch2lan)
2785 		return E1000_SUCCESS;
2786 
2787 	/* Set K1 beacon duration based on 10Mbs speed */
2788 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2789 	if (ret_val)
2790 		return ret_val;
2791 
2792 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794 		if (status_reg &
2795 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2796 			u16 pm_phy_reg;
2797 
2798 			/* LV 1G/100 Packet drop issue wa  */
2799 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2800 						       &pm_phy_reg);
2801 			if (ret_val)
2802 				return ret_val;
2803 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2804 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2805 							pm_phy_reg);
2806 			if (ret_val)
2807 				return ret_val;
2808 		} else {
2809 			u32 mac_reg;
2810 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2811 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2812 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2813 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2814 		}
2815 	}
2816 
2817 	return ret_val;
2818 }
2819 
2820 /**
2821  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2822  *  @hw:   pointer to the HW structure
2823  *  @gate: boolean set to TRUE to gate, FALSE to ungate
2824  *
2825  *  Gate/ungate the automatic PHY configuration via hardware; perform
2826  *  the configuration via software instead.
2827  **/
2828 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2829 {
2830 	u32 extcnf_ctrl;
2831 
2832 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2833 
2834 	if (hw->mac.type < e1000_pch2lan)
2835 		return;
2836 
2837 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2838 
2839 	if (gate)
2840 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2841 	else
2842 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2843 
2844 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2845 }
2846 
2847 /**
2848  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2849  *  @hw: pointer to the HW structure
2850  *
2851  *  Check the appropriate indication the MAC has finished configuring the
2852  *  PHY after a software reset.
2853  **/
2854 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2855 {
2856 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2857 
2858 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
2859 
2860 	/* Wait for basic configuration completes before proceeding */
2861 	do {
2862 		data = E1000_READ_REG(hw, E1000_STATUS);
2863 		data &= E1000_STATUS_LAN_INIT_DONE;
2864 		usec_delay(100);
2865 	} while ((!data) && --loop);
2866 
2867 	/* If basic configuration is incomplete before the above loop
2868 	 * count reaches 0, loading the configuration from NVM will
2869 	 * leave the PHY in a bad state possibly resulting in no link.
2870 	 */
2871 	if (loop == 0)
2872 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2873 
2874 	/* Clear the Init Done bit for the next init event */
2875 	data = E1000_READ_REG(hw, E1000_STATUS);
2876 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2877 	E1000_WRITE_REG(hw, E1000_STATUS, data);
2878 }
2879 
2880 /**
2881  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2882  *  @hw: pointer to the HW structure
2883  **/
2884 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2885 {
2886 	s32 ret_val = E1000_SUCCESS;
2887 	u16 reg;
2888 
2889 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2890 
2891 	if (hw->phy.ops.check_reset_block(hw))
2892 		return E1000_SUCCESS;
2893 
2894 	/* Allow time for h/w to get to quiescent state after reset */
2895 	msec_delay(10);
2896 
2897 	/* Perform any necessary post-reset workarounds */
2898 	switch (hw->mac.type) {
2899 	case e1000_pchlan:
2900 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2901 		if (ret_val)
2902 			return ret_val;
2903 		break;
2904 	case e1000_pch2lan:
2905 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2906 		if (ret_val)
2907 			return ret_val;
2908 		break;
2909 	default:
2910 		break;
2911 	}
2912 
2913 	/* Clear the host wakeup bit after lcd reset */
2914 	if (hw->mac.type >= e1000_pchlan) {
2915 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2916 		reg &= ~BM_WUC_HOST_WU_BIT;
2917 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2918 	}
2919 
2920 	/* Configure the LCD with the extended configuration region in NVM */
2921 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2922 	if (ret_val)
2923 		return ret_val;
2924 
2925 	/* Configure the LCD with the OEM bits in NVM */
2926 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2927 
2928 	if (hw->mac.type == e1000_pch2lan) {
2929 		/* Ungate automatic PHY configuration on non-managed 82579 */
2930 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
2931 		    E1000_ICH_FWSM_FW_VALID)) {
2932 			msec_delay(10);
2933 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2934 		}
2935 
2936 		/* Set EEE LPI Update Timer to 200usec */
2937 		ret_val = hw->phy.ops.acquire(hw);
2938 		if (ret_val)
2939 			return ret_val;
2940 		ret_val = e1000_write_emi_reg_locked(hw,
2941 						     I82579_LPI_UPDATE_TIMER,
2942 						     0x1387);
2943 		hw->phy.ops.release(hw);
2944 	}
2945 
2946 	return ret_val;
2947 }
2948 
2949 /**
2950  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2951  *  @hw: pointer to the HW structure
2952  *
2953  *  Resets the PHY
2954  *  This is a function pointer entry point called by drivers
2955  *  or other shared routines.
2956  **/
2957 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2958 {
2959 	s32 ret_val = E1000_SUCCESS;
2960 
2961 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2962 
2963 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2964 	if ((hw->mac.type == e1000_pch2lan) &&
2965 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2966 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2967 
2968 	ret_val = e1000_phy_hw_reset_generic(hw);
2969 	if (ret_val)
2970 		return ret_val;
2971 
2972 	return e1000_post_phy_reset_ich8lan(hw);
2973 }
2974 
2975 /**
2976  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2977  *  @hw: pointer to the HW structure
2978  *  @active: TRUE to enable LPLU, FALSE to disable
2979  *
2980  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2981  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2982  *  the phy speed. This function will manually set the LPLU bit and restart
2983  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2984  *  since it configures the same bit.
2985  **/
2986 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2987 {
2988 	s32 ret_val;
2989 	u16 oem_reg;
2990 
2991 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
2992 
2993 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
2994 	if (ret_val)
2995 		return ret_val;
2996 
2997 	if (active)
2998 		oem_reg |= HV_OEM_BITS_LPLU;
2999 	else
3000 		oem_reg &= ~HV_OEM_BITS_LPLU;
3001 
3002 	if (!hw->phy.ops.check_reset_block(hw))
3003 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3004 
3005 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3006 }
3007 
3008 /**
3009  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3010  *  @hw: pointer to the HW structure
3011  *  @active: TRUE to enable LPLU, FALSE to disable
3012  *
3013  *  Sets the LPLU D0 state according to the active flag.  When
3014  *  activating LPLU this function also disables smart speed
3015  *  and vice versa.  LPLU will not be activated unless the
3016  *  device autonegotiation advertisement meets standards of
3017  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3018  *  This is a function pointer entry point only called by
3019  *  PHY setup routines.
3020  **/
3021 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3022 {
3023 	struct e1000_phy_info *phy = &hw->phy;
3024 	u32 phy_ctrl;
3025 	s32 ret_val = E1000_SUCCESS;
3026 	u16 data;
3027 
3028 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3029 
3030 	if (phy->type == e1000_phy_ife)
3031 		return E1000_SUCCESS;
3032 
3033 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3034 
3035 	if (active) {
3036 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3037 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3038 
3039 		if (phy->type != e1000_phy_igp_3)
3040 			return E1000_SUCCESS;
3041 
3042 		/* Call gig speed drop workaround on LPLU before accessing
3043 		 * any PHY registers
3044 		 */
3045 		if (hw->mac.type == e1000_ich8lan)
3046 			e1000_gig_downshift_workaround_ich8lan(hw);
3047 
3048 		/* When LPLU is enabled, we should disable SmartSpeed */
3049 		ret_val = phy->ops.read_reg(hw,
3050 					    IGP01E1000_PHY_PORT_CONFIG,
3051 					    &data);
3052 		if (ret_val)
3053 			return ret_val;
3054 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3055 		ret_val = phy->ops.write_reg(hw,
3056 					     IGP01E1000_PHY_PORT_CONFIG,
3057 					     data);
3058 		if (ret_val)
3059 			return ret_val;
3060 	} else {
3061 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3062 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3063 
3064 		if (phy->type != e1000_phy_igp_3)
3065 			return E1000_SUCCESS;
3066 
3067 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3068 		 * during Dx states where the power conservation is most
3069 		 * important.  During driver activity we should enable
3070 		 * SmartSpeed, so performance is maintained.
3071 		 */
3072 		if (phy->smart_speed == e1000_smart_speed_on) {
3073 			ret_val = phy->ops.read_reg(hw,
3074 						    IGP01E1000_PHY_PORT_CONFIG,
3075 						    &data);
3076 			if (ret_val)
3077 				return ret_val;
3078 
3079 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3080 			ret_val = phy->ops.write_reg(hw,
3081 						     IGP01E1000_PHY_PORT_CONFIG,
3082 						     data);
3083 			if (ret_val)
3084 				return ret_val;
3085 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3086 			ret_val = phy->ops.read_reg(hw,
3087 						    IGP01E1000_PHY_PORT_CONFIG,
3088 						    &data);
3089 			if (ret_val)
3090 				return ret_val;
3091 
3092 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3093 			ret_val = phy->ops.write_reg(hw,
3094 						     IGP01E1000_PHY_PORT_CONFIG,
3095 						     data);
3096 			if (ret_val)
3097 				return ret_val;
3098 		}
3099 	}
3100 
3101 	return E1000_SUCCESS;
3102 }
3103 
3104 /**
3105  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3106  *  @hw: pointer to the HW structure
3107  *  @active: TRUE to enable LPLU, FALSE to disable
3108  *
3109  *  Sets the LPLU D3 state according to the active flag.  When
3110  *  activating LPLU this function also disables smart speed
3111  *  and vice versa.  LPLU will not be activated unless the
3112  *  device autonegotiation advertisement meets standards of
3113  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3114  *  This is a function pointer entry point only called by
3115  *  PHY setup routines.
3116  **/
3117 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3118 {
3119 	struct e1000_phy_info *phy = &hw->phy;
3120 	u32 phy_ctrl;
3121 	s32 ret_val = E1000_SUCCESS;
3122 	u16 data;
3123 
3124 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3125 
3126 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3127 
3128 	if (!active) {
3129 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3130 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3131 
3132 		if (phy->type != e1000_phy_igp_3)
3133 			return E1000_SUCCESS;
3134 
3135 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3136 		 * during Dx states where the power conservation is most
3137 		 * important.  During driver activity we should enable
3138 		 * SmartSpeed, so performance is maintained.
3139 		 */
3140 		if (phy->smart_speed == e1000_smart_speed_on) {
3141 			ret_val = phy->ops.read_reg(hw,
3142 						    IGP01E1000_PHY_PORT_CONFIG,
3143 						    &data);
3144 			if (ret_val)
3145 				return ret_val;
3146 
3147 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3148 			ret_val = phy->ops.write_reg(hw,
3149 						     IGP01E1000_PHY_PORT_CONFIG,
3150 						     data);
3151 			if (ret_val)
3152 				return ret_val;
3153 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3154 			ret_val = phy->ops.read_reg(hw,
3155 						    IGP01E1000_PHY_PORT_CONFIG,
3156 						    &data);
3157 			if (ret_val)
3158 				return ret_val;
3159 
3160 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3161 			ret_val = phy->ops.write_reg(hw,
3162 						     IGP01E1000_PHY_PORT_CONFIG,
3163 						     data);
3164 			if (ret_val)
3165 				return ret_val;
3166 		}
3167 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3168 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3169 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3170 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3171 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3172 
3173 		if (phy->type != e1000_phy_igp_3)
3174 			return E1000_SUCCESS;
3175 
3176 		/* Call gig speed drop workaround on LPLU before accessing
3177 		 * any PHY registers
3178 		 */
3179 		if (hw->mac.type == e1000_ich8lan)
3180 			e1000_gig_downshift_workaround_ich8lan(hw);
3181 
3182 		/* When LPLU is enabled, we should disable SmartSpeed */
3183 		ret_val = phy->ops.read_reg(hw,
3184 					    IGP01E1000_PHY_PORT_CONFIG,
3185 					    &data);
3186 		if (ret_val)
3187 			return ret_val;
3188 
3189 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3190 		ret_val = phy->ops.write_reg(hw,
3191 					     IGP01E1000_PHY_PORT_CONFIG,
3192 					     data);
3193 	}
3194 
3195 	return ret_val;
3196 }
3197 
3198 /**
3199  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3200  *  @hw: pointer to the HW structure
3201  *  @bank:  pointer to the variable that returns the active bank
3202  *
3203  *  Reads signature byte from the NVM using the flash access registers.
3204  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3205  **/
3206 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3207 {
3208 	u32 eecd;
3209 	struct e1000_nvm_info *nvm = &hw->nvm;
3210 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3211 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3212 	u8 sig_byte = 0;
3213 	s32 ret_val;
3214 
3215 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3216 
3217 	switch (hw->mac.type) {
3218 	case e1000_ich8lan:
3219 	case e1000_ich9lan:
3220 		eecd = E1000_READ_REG(hw, E1000_EECD);
3221 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3222 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3223 			if (eecd & E1000_EECD_SEC1VAL)
3224 				*bank = 1;
3225 			else
3226 				*bank = 0;
3227 
3228 			return E1000_SUCCESS;
3229 		}
3230 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3231 		/* fall-thru */
3232 	default:
3233 		/* set bank to 0 in case flash read fails */
3234 		*bank = 0;
3235 
3236 		/* Check bank 0 */
3237 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3238 							&sig_byte);
3239 		if (ret_val)
3240 			return ret_val;
3241 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3242 		    E1000_ICH_NVM_SIG_VALUE) {
3243 			*bank = 0;
3244 			return E1000_SUCCESS;
3245 		}
3246 
3247 		/* Check bank 1 */
3248 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3249 							bank1_offset,
3250 							&sig_byte);
3251 		if (ret_val)
3252 			return ret_val;
3253 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3254 		    E1000_ICH_NVM_SIG_VALUE) {
3255 			*bank = 1;
3256 			return E1000_SUCCESS;
3257 		}
3258 
3259 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3260 		return -E1000_ERR_NVM;
3261 	}
3262 }
3263 
3264 /**
3265  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3266  *  @hw: pointer to the HW structure
3267  *  @offset: The offset (in bytes) of the word(s) to read.
3268  *  @words: Size of data to read in words
3269  *  @data: Pointer to the word(s) to read at offset.
3270  *
3271  *  Reads a word(s) from the NVM using the flash access registers.
3272  **/
3273 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3274 				  u16 *data)
3275 {
3276 	struct e1000_nvm_info *nvm = &hw->nvm;
3277 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3278 	u32 act_offset;
3279 	s32 ret_val = E1000_SUCCESS;
3280 	u32 bank = 0;
3281 	u16 i, word;
3282 
3283 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3284 
3285 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3286 	    (words == 0)) {
3287 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3288 		ret_val = -E1000_ERR_NVM;
3289 		goto out;
3290 	}
3291 
3292 	nvm->ops.acquire(hw);
3293 
3294 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3295 	if (ret_val != E1000_SUCCESS) {
3296 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3297 		bank = 0;
3298 	}
3299 
3300 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3301 	act_offset += offset;
3302 
3303 	ret_val = E1000_SUCCESS;
3304 	for (i = 0; i < words; i++) {
3305 		if (dev_spec->shadow_ram[offset+i].modified) {
3306 			data[i] = dev_spec->shadow_ram[offset+i].value;
3307 		} else {
3308 			ret_val = e1000_read_flash_word_ich8lan(hw,
3309 								act_offset + i,
3310 								&word);
3311 			if (ret_val)
3312 				break;
3313 			data[i] = word;
3314 		}
3315 	}
3316 
3317 	nvm->ops.release(hw);
3318 
3319 out:
3320 	if (ret_val)
3321 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3322 
3323 	return ret_val;
3324 }
3325 
3326 /**
3327  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3328  *  @hw: pointer to the HW structure
3329  *
3330  *  This function does initial flash setup so that a new read/write/erase cycle
3331  *  can be started.
3332  **/
3333 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3334 {
3335 	union ich8_hws_flash_status hsfsts;
3336 	s32 ret_val = -E1000_ERR_NVM;
3337 
3338 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3339 
3340 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3341 
3342 	/* Check if the flash descriptor is valid */
3343 	if (!hsfsts.hsf_status.fldesvalid) {
3344 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3345 		return -E1000_ERR_NVM;
3346 	}
3347 
3348 	/* Clear FCERR and DAEL in hw status by writing 1 */
3349 	hsfsts.hsf_status.flcerr = 1;
3350 	hsfsts.hsf_status.dael = 1;
3351 	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3352 
3353 	/* Either we should have a hardware SPI cycle in progress
3354 	 * bit to check against, in order to start a new cycle or
3355 	 * FDONE bit should be changed in the hardware so that it
3356 	 * is 1 after hardware reset, which can then be used as an
3357 	 * indication whether a cycle is in progress or has been
3358 	 * completed.
3359 	 */
3360 
3361 	if (!hsfsts.hsf_status.flcinprog) {
3362 		/* There is no cycle running at present,
3363 		 * so we can start a cycle.
3364 		 * Begin by setting Flash Cycle Done.
3365 		 */
3366 		hsfsts.hsf_status.flcdone = 1;
3367 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3368 		ret_val = E1000_SUCCESS;
3369 	} else {
3370 		s32 i;
3371 
3372 		/* Otherwise poll for sometime so the current
3373 		 * cycle has a chance to end before giving up.
3374 		 */
3375 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3376 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3377 							      ICH_FLASH_HSFSTS);
3378 			if (!hsfsts.hsf_status.flcinprog) {
3379 				ret_val = E1000_SUCCESS;
3380 				break;
3381 			}
3382 			usec_delay(1);
3383 		}
3384 		if (ret_val == E1000_SUCCESS) {
3385 			/* Successful in waiting for previous cycle to timeout,
3386 			 * now set the Flash Cycle Done.
3387 			 */
3388 			hsfsts.hsf_status.flcdone = 1;
3389 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3390 						hsfsts.regval);
3391 		} else {
3392 			DEBUGOUT("Flash controller busy, cannot get access\n");
3393 		}
3394 	}
3395 
3396 	return ret_val;
3397 }
3398 
3399 /**
3400  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3401  *  @hw: pointer to the HW structure
3402  *  @timeout: maximum time to wait for completion
3403  *
3404  *  This function starts a flash cycle and waits for its completion.
3405  **/
3406 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3407 {
3408 	union ich8_hws_flash_ctrl hsflctl;
3409 	union ich8_hws_flash_status hsfsts;
3410 	u32 i = 0;
3411 
3412 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3413 
3414 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3415 	hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3416 	hsflctl.hsf_ctrl.flcgo = 1;
3417 
3418 	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3419 
3420 	/* wait till FDONE bit is set to 1 */
3421 	do {
3422 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3423 		if (hsfsts.hsf_status.flcdone)
3424 			break;
3425 		usec_delay(1);
3426 	} while (i++ < timeout);
3427 
3428 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3429 		return E1000_SUCCESS;
3430 
3431 	return -E1000_ERR_NVM;
3432 }
3433 
3434 /**
3435  *  e1000_read_flash_word_ich8lan - Read word from flash
3436  *  @hw: pointer to the HW structure
3437  *  @offset: offset to data location
3438  *  @data: pointer to the location for storing the data
3439  *
3440  *  Reads the flash word at offset into data.  Offset is converted
3441  *  to bytes before read.
3442  **/
3443 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3444 					 u16 *data)
3445 {
3446 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3447 
3448 	if (!data)
3449 		return -E1000_ERR_NVM;
3450 
3451 	/* Must convert offset into bytes. */
3452 	offset <<= 1;
3453 
3454 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3455 }
3456 
3457 /**
3458  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3459  *  @hw: pointer to the HW structure
3460  *  @offset: The offset of the byte to read.
3461  *  @data: Pointer to a byte to store the value read.
3462  *
3463  *  Reads a single byte from the NVM using the flash access registers.
3464  **/
3465 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3466 					 u8 *data)
3467 {
3468 	s32 ret_val;
3469 	u16 word = 0;
3470 
3471 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3472 
3473 	if (ret_val)
3474 		return ret_val;
3475 
3476 	*data = (u8)word;
3477 
3478 	return E1000_SUCCESS;
3479 }
3480 
3481 /**
3482  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3483  *  @hw: pointer to the HW structure
3484  *  @offset: The offset (in bytes) of the byte or word to read.
3485  *  @size: Size of data to read, 1=byte 2=word
3486  *  @data: Pointer to the word to store the value read.
3487  *
3488  *  Reads a byte or word from the NVM using the flash access registers.
3489  **/
3490 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3491 					 u8 size, u16 *data)
3492 {
3493 	union ich8_hws_flash_status hsfsts;
3494 	union ich8_hws_flash_ctrl hsflctl;
3495 	u32 flash_linear_addr;
3496 	u32 flash_data = 0;
3497 	s32 ret_val = -E1000_ERR_NVM;
3498 	u8 count = 0;
3499 
3500 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3501 
3502 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3503 		return -E1000_ERR_NVM;
3504 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3505 			     hw->nvm.flash_base_addr);
3506 
3507 	do {
3508 		usec_delay(1);
3509 		/* Steps */
3510 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3511 		if (ret_val != E1000_SUCCESS)
3512 			break;
3513 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3514 
3515 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3516 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3517 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3518 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3519 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3520 
3521 		ret_val = e1000_flash_cycle_ich8lan(hw,
3522 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3523 
3524 		/* Check if FCERR is set to 1, if set to 1, clear it
3525 		 * and try the whole sequence a few more times, else
3526 		 * read in (shift in) the Flash Data0, the order is
3527 		 * least significant byte first msb to lsb
3528 		 */
3529 		if (ret_val == E1000_SUCCESS) {
3530 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3531 			if (size == 1)
3532 				*data = (u8)(flash_data & 0x000000FF);
3533 			else if (size == 2)
3534 				*data = (u16)(flash_data & 0x0000FFFF);
3535 			break;
3536 		} else {
3537 			/* If we've gotten here, then things are probably
3538 			 * completely hosed, but if the error condition is
3539 			 * detected, it won't hurt to give it another try...
3540 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3541 			 */
3542 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3543 							      ICH_FLASH_HSFSTS);
3544 			if (hsfsts.hsf_status.flcerr) {
3545 				/* Repeat for some time before giving up. */
3546 				continue;
3547 			} else if (!hsfsts.hsf_status.flcdone) {
3548 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3549 				break;
3550 			}
3551 		}
3552 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3553 
3554 	return ret_val;
3555 }
3556 
3557 
3558 /**
3559  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3560  *  @hw: pointer to the HW structure
3561  *  @offset: The offset (in bytes) of the word(s) to write.
3562  *  @words: Size of data to write in words
3563  *  @data: Pointer to the word(s) to write at offset.
3564  *
3565  *  Writes a byte or word to the NVM using the flash access registers.
3566  **/
3567 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3568 				   u16 *data)
3569 {
3570 	struct e1000_nvm_info *nvm = &hw->nvm;
3571 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3572 	u16 i;
3573 
3574 	DEBUGFUNC("e1000_write_nvm_ich8lan");
3575 
3576 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3577 	    (words == 0)) {
3578 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3579 		return -E1000_ERR_NVM;
3580 	}
3581 
3582 	nvm->ops.acquire(hw);
3583 
3584 	for (i = 0; i < words; i++) {
3585 		dev_spec->shadow_ram[offset+i].modified = TRUE;
3586 		dev_spec->shadow_ram[offset+i].value = data[i];
3587 	}
3588 
3589 	nvm->ops.release(hw);
3590 
3591 	return E1000_SUCCESS;
3592 }
3593 
3594 /**
3595  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3596  *  @hw: pointer to the HW structure
3597  *
3598  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3599  *  which writes the checksum to the shadow ram.  The changes in the shadow
3600  *  ram are then committed to the EEPROM by processing each bank at a time
3601  *  checking for the modified bit and writing only the pending changes.
3602  *  After a successful commit, the shadow ram is cleared and is ready for
3603  *  future writes.
3604  **/
3605 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3606 {
3607 	struct e1000_nvm_info *nvm = &hw->nvm;
3608 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3609 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3610 	s32 ret_val;
3611 	u16 data = 0;
3612 
3613 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3614 
3615 	ret_val = e1000_update_nvm_checksum_generic(hw);
3616 	if (ret_val)
3617 		goto out;
3618 
3619 	if (nvm->type != e1000_nvm_flash_sw)
3620 		goto out;
3621 
3622 	nvm->ops.acquire(hw);
3623 
3624 	/* We're writing to the opposite bank so if we're on bank 1,
3625 	 * write to bank 0 etc.  We also need to erase the segment that
3626 	 * is going to be written
3627 	 */
3628 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3629 	if (ret_val != E1000_SUCCESS) {
3630 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3631 		bank = 0;
3632 	}
3633 
3634 	if (bank == 0) {
3635 		new_bank_offset = nvm->flash_bank_size;
3636 		old_bank_offset = 0;
3637 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3638 		if (ret_val)
3639 			goto release;
3640 	} else {
3641 		old_bank_offset = nvm->flash_bank_size;
3642 		new_bank_offset = 0;
3643 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3644 		if (ret_val)
3645 			goto release;
3646 	}
3647 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3648 		if (dev_spec->shadow_ram[i].modified) {
3649 			data = dev_spec->shadow_ram[i].value;
3650 		} else {
3651 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3652 								old_bank_offset,
3653 								&data);
3654 			if (ret_val)
3655 				break;
3656 		}
3657 		/* If the word is 0x13, then make sure the signature bits
3658 		 * (15:14) are 11b until the commit has completed.
3659 		 * This will allow us to write 10b which indicates the
3660 		 * signature is valid.  We want to do this after the write
3661 		 * has completed so that we don't mark the segment valid
3662 		 * while the write is still in progress
3663 		 */
3664 		if (i == E1000_ICH_NVM_SIG_WORD)
3665 			data |= E1000_ICH_NVM_SIG_MASK;
3666 
3667 		/* Convert offset to bytes. */
3668 		act_offset = (i + new_bank_offset) << 1;
3669 
3670 		usec_delay(100);
3671 
3672 		/* Write the bytes to the new bank. */
3673 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3674 							       act_offset,
3675 							       (u8)data);
3676 		if (ret_val)
3677 			break;
3678 
3679 		usec_delay(100);
3680 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3681 							  act_offset + 1,
3682 							  (u8)(data >> 8));
3683 		if (ret_val)
3684 			break;
3685 	 }
3686 
3687 	/* Don't bother writing the segment valid bits if sector
3688 	 * programming failed.
3689 	 */
3690 	if (ret_val) {
3691 		DEBUGOUT("Flash commit failed.\n");
3692 		goto release;
3693 	}
3694 
3695 	/* Finally validate the new segment by setting bit 15:14
3696 	 * to 10b in word 0x13 , this can be done without an
3697 	 * erase as well since these bits are 11 to start with
3698 	 * and we need to change bit 14 to 0b
3699 	 */
3700 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3701 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3702 	if (ret_val)
3703 		goto release;
3704 
3705 	data &= 0xBFFF;
3706 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3707 						       (u8)(data >> 8));
3708 	if (ret_val)
3709 		goto release;
3710 
3711 	/* And invalidate the previously valid segment by setting
3712 	 * its signature word (0x13) high_byte to 0b. This can be
3713 	 * done without an erase because flash erase sets all bits
3714 	 * to 1's. We can write 1's to 0's without an erase
3715 	 */
3716 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3717 
3718 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3719 
3720 	if (ret_val)
3721 		goto release;
3722 
3723 	/* Great!  Everything worked, we can now clear the cached entries. */
3724 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3725 		dev_spec->shadow_ram[i].modified = FALSE;
3726 		dev_spec->shadow_ram[i].value = 0xFFFF;
3727 	}
3728 
3729 release:
3730 	nvm->ops.release(hw);
3731 
3732 	/* Reload the EEPROM, or else modifications will not appear
3733 	 * until after the next adapter reset.
3734 	 */
3735 	if (!ret_val) {
3736 		nvm->ops.reload(hw);
3737 		msec_delay(10);
3738 	}
3739 
3740 out:
3741 	if (ret_val)
3742 		DEBUGOUT1("NVM update error: %d\n", ret_val);
3743 
3744 	return ret_val;
3745 }
3746 
3747 /**
3748  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3749  *  @hw: pointer to the HW structure
3750  *
3751  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3752  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3753  *  calculated, in which case we need to calculate the checksum and set bit 6.
3754  **/
3755 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3756 {
3757 	s32 ret_val;
3758 	u16 data;
3759 	u16 word;
3760 	u16 valid_csum_mask;
3761 
3762 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3763 
3764 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3765 	 * the checksum needs to be fixed.  This bit is an indication that
3766 	 * the NVM was prepared by OEM software and did not calculate
3767 	 * the checksum...a likely scenario.
3768 	 */
3769 	switch (hw->mac.type) {
3770 	case e1000_pch_lpt:
3771 		word = NVM_COMPAT;
3772 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3773 		break;
3774 	default:
3775 		word = NVM_FUTURE_INIT_WORD1;
3776 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3777 		break;
3778 	}
3779 
3780 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3781 	if (ret_val)
3782 		return ret_val;
3783 
3784 	if (!(data & valid_csum_mask)) {
3785 		data |= valid_csum_mask;
3786 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3787 		if (ret_val)
3788 			return ret_val;
3789 		ret_val = hw->nvm.ops.update(hw);
3790 		if (ret_val)
3791 			return ret_val;
3792 	}
3793 
3794 	return e1000_validate_nvm_checksum_generic(hw);
3795 }
3796 
3797 /**
3798  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3799  *  @hw: pointer to the HW structure
3800  *  @offset: The offset (in bytes) of the byte/word to read.
3801  *  @size: Size of data to read, 1=byte 2=word
3802  *  @data: The byte(s) to write to the NVM.
3803  *
3804  *  Writes one/two bytes to the NVM using the flash access registers.
3805  **/
3806 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3807 					  u8 size, u16 data)
3808 {
3809 	union ich8_hws_flash_status hsfsts;
3810 	union ich8_hws_flash_ctrl hsflctl;
3811 	u32 flash_linear_addr;
3812 	u32 flash_data = 0;
3813 	s32 ret_val;
3814 	u8 count = 0;
3815 
3816 	DEBUGFUNC("e1000_write_ich8_data");
3817 
3818 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3819 		return -E1000_ERR_NVM;
3820 
3821 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3822 			     hw->nvm.flash_base_addr);
3823 
3824 	do {
3825 		usec_delay(1);
3826 		/* Steps */
3827 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3828 		if (ret_val != E1000_SUCCESS)
3829 			break;
3830 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3831 
3832 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3833 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3834 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3835 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3836 
3837 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3838 
3839 		if (size == 1)
3840 			flash_data = (u32)data & 0x00FF;
3841 		else
3842 			flash_data = (u32)data;
3843 
3844 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3845 
3846 		/* check if FCERR is set to 1 , if set to 1, clear it
3847 		 * and try the whole sequence a few more times else done
3848 		 */
3849 		ret_val =
3850 		    e1000_flash_cycle_ich8lan(hw,
3851 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3852 		if (ret_val == E1000_SUCCESS)
3853 			break;
3854 
3855 		/* If we're here, then things are most likely
3856 		 * completely hosed, but if the error condition
3857 		 * is detected, it won't hurt to give it another
3858 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3859 		 */
3860 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3861 		if (hsfsts.hsf_status.flcerr)
3862 			/* Repeat for some time before giving up. */
3863 			continue;
3864 		if (!hsfsts.hsf_status.flcdone) {
3865 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3866 			break;
3867 		}
3868 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3869 
3870 	return ret_val;
3871 }
3872 
3873 
3874 /**
3875  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3876  *  @hw: pointer to the HW structure
3877  *  @offset: The index of the byte to read.
3878  *  @data: The byte to write to the NVM.
3879  *
3880  *  Writes a single byte to the NVM using the flash access registers.
3881  **/
3882 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3883 					  u8 data)
3884 {
3885 	u16 word = (u16)data;
3886 
3887 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3888 
3889 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3890 }
3891 
3892 
3893 
3894 /**
3895  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3896  *  @hw: pointer to the HW structure
3897  *  @offset: The offset of the byte to write.
3898  *  @byte: The byte to write to the NVM.
3899  *
3900  *  Writes a single byte to the NVM using the flash access registers.
3901  *  Goes through a retry algorithm before giving up.
3902  **/
3903 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3904 						u32 offset, u8 byte)
3905 {
3906 	s32 ret_val;
3907 	u16 program_retries;
3908 
3909 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3910 
3911 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3912 	if (!ret_val)
3913 		return ret_val;
3914 
3915 	for (program_retries = 0; program_retries < 100; program_retries++) {
3916 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3917 		usec_delay(100);
3918 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3919 		if (ret_val == E1000_SUCCESS)
3920 			break;
3921 	}
3922 	if (program_retries == 100)
3923 		return -E1000_ERR_NVM;
3924 
3925 	return E1000_SUCCESS;
3926 }
3927 
3928 /**
3929  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3930  *  @hw: pointer to the HW structure
3931  *  @bank: 0 for first bank, 1 for second bank, etc.
3932  *
3933  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3934  *  bank N is 4096 * N + flash_reg_addr.
3935  **/
3936 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3937 {
3938 	struct e1000_nvm_info *nvm = &hw->nvm;
3939 	union ich8_hws_flash_status hsfsts;
3940 	union ich8_hws_flash_ctrl hsflctl;
3941 	u32 flash_linear_addr;
3942 	/* bank size is in 16bit words - adjust to bytes */
3943 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3944 	s32 ret_val;
3945 	s32 count = 0;
3946 	s32 j, iteration, sector_size;
3947 
3948 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3949 
3950 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3951 
3952 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3953 	 * register
3954 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3955 	 *     consecutive sectors.  The start index for the nth Hw sector
3956 	 *     can be calculated as = bank * 4096 + n * 256
3957 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3958 	 *     The start index for the nth Hw sector can be calculated
3959 	 *     as = bank * 4096
3960 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3961 	 *     (ich9 only, otherwise error condition)
3962 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3963 	 */
3964 	switch (hsfsts.hsf_status.berasesz) {
3965 	case 0:
3966 		/* Hw sector size 256 */
3967 		sector_size = ICH_FLASH_SEG_SIZE_256;
3968 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3969 		break;
3970 	case 1:
3971 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3972 		iteration = 1;
3973 		break;
3974 	case 2:
3975 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3976 		iteration = 1;
3977 		break;
3978 	case 3:
3979 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3980 		iteration = 1;
3981 		break;
3982 	default:
3983 		return -E1000_ERR_NVM;
3984 	}
3985 
3986 	/* Start with the base address, then add the sector offset. */
3987 	flash_linear_addr = hw->nvm.flash_base_addr;
3988 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3989 
3990 	for (j = 0; j < iteration; j++) {
3991 		do {
3992 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3993 
3994 			/* Steps */
3995 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3996 			if (ret_val)
3997 				return ret_val;
3998 
3999 			/* Write a value 11 (block Erase) in Flash
4000 			 * Cycle field in hw flash control
4001 			 */
4002 			hsflctl.regval =
4003 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4004 
4005 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4006 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4007 						hsflctl.regval);
4008 
4009 			/* Write the last 24 bits of an index within the
4010 			 * block into Flash Linear address field in Flash
4011 			 * Address.
4012 			 */
4013 			flash_linear_addr += (j * sector_size);
4014 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4015 					      flash_linear_addr);
4016 
4017 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4018 			if (ret_val == E1000_SUCCESS)
4019 				break;
4020 
4021 			/* Check if FCERR is set to 1.  If 1,
4022 			 * clear it and try the whole sequence
4023 			 * a few more times else Done
4024 			 */
4025 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4026 						      ICH_FLASH_HSFSTS);
4027 			if (hsfsts.hsf_status.flcerr)
4028 				/* repeat for some time before giving up */
4029 				continue;
4030 			else if (!hsfsts.hsf_status.flcdone)
4031 				return ret_val;
4032 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4033 	}
4034 
4035 	return E1000_SUCCESS;
4036 }
4037 
4038 /**
4039  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4040  *  @hw: pointer to the HW structure
4041  *  @data: Pointer to the LED settings
4042  *
4043  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4044  *  settings is all 0's or F's, set the LED default to a valid LED default
4045  *  setting.
4046  **/
4047 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4048 {
4049 	s32 ret_val;
4050 
4051 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4052 
4053 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4054 	if (ret_val) {
4055 		DEBUGOUT("NVM Read Error\n");
4056 		return ret_val;
4057 	}
4058 
4059 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4060 		*data = ID_LED_DEFAULT_ICH8LAN;
4061 
4062 	return E1000_SUCCESS;
4063 }
4064 
4065 /**
4066  *  e1000_id_led_init_pchlan - store LED configurations
4067  *  @hw: pointer to the HW structure
4068  *
4069  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4070  *  the PHY LED configuration register.
4071  *
4072  *  PCH also does not have an "always on" or "always off" mode which
4073  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4074  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4075  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4076  *  link based on logic in e1000_led_[on|off]_pchlan().
4077  **/
4078 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4079 {
4080 	struct e1000_mac_info *mac = &hw->mac;
4081 	s32 ret_val;
4082 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4083 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4084 	u16 data, i, temp, shift;
4085 
4086 	DEBUGFUNC("e1000_id_led_init_pchlan");
4087 
4088 	/* Get default ID LED modes */
4089 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4090 	if (ret_val)
4091 		return ret_val;
4092 
4093 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4094 	mac->ledctl_mode1 = mac->ledctl_default;
4095 	mac->ledctl_mode2 = mac->ledctl_default;
4096 
4097 	for (i = 0; i < 4; i++) {
4098 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4099 		shift = (i * 5);
4100 		switch (temp) {
4101 		case ID_LED_ON1_DEF2:
4102 		case ID_LED_ON1_ON2:
4103 		case ID_LED_ON1_OFF2:
4104 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4105 			mac->ledctl_mode1 |= (ledctl_on << shift);
4106 			break;
4107 		case ID_LED_OFF1_DEF2:
4108 		case ID_LED_OFF1_ON2:
4109 		case ID_LED_OFF1_OFF2:
4110 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4111 			mac->ledctl_mode1 |= (ledctl_off << shift);
4112 			break;
4113 		default:
4114 			/* Do nothing */
4115 			break;
4116 		}
4117 		switch (temp) {
4118 		case ID_LED_DEF1_ON2:
4119 		case ID_LED_ON1_ON2:
4120 		case ID_LED_OFF1_ON2:
4121 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4122 			mac->ledctl_mode2 |= (ledctl_on << shift);
4123 			break;
4124 		case ID_LED_DEF1_OFF2:
4125 		case ID_LED_ON1_OFF2:
4126 		case ID_LED_OFF1_OFF2:
4127 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4128 			mac->ledctl_mode2 |= (ledctl_off << shift);
4129 			break;
4130 		default:
4131 			/* Do nothing */
4132 			break;
4133 		}
4134 	}
4135 
4136 	return E1000_SUCCESS;
4137 }
4138 
4139 /**
4140  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4141  *  @hw: pointer to the HW structure
4142  *
4143  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4144  *  register, so the the bus width is hard coded.
4145  **/
4146 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4147 {
4148 	struct e1000_bus_info *bus = &hw->bus;
4149 	s32 ret_val;
4150 
4151 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4152 
4153 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4154 
4155 	/* ICH devices are "PCI Express"-ish.  They have
4156 	 * a configuration space, but do not contain
4157 	 * PCI Express Capability registers, so bus width
4158 	 * must be hardcoded.
4159 	 */
4160 	if (bus->width == e1000_bus_width_unknown)
4161 		bus->width = e1000_bus_width_pcie_x1;
4162 
4163 	return ret_val;
4164 }
4165 
4166 /**
4167  *  e1000_reset_hw_ich8lan - Reset the hardware
4168  *  @hw: pointer to the HW structure
4169  *
4170  *  Does a full reset of the hardware which includes a reset of the PHY and
4171  *  MAC.
4172  **/
4173 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4174 {
4175 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4176 	u16 kum_cfg;
4177 	u32 ctrl, reg;
4178 	s32 ret_val;
4179 
4180 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4181 
4182 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4183 	 * on the last TLP read/write transaction when MAC is reset.
4184 	 */
4185 	ret_val = e1000_disable_pcie_master_generic(hw);
4186 	if (ret_val)
4187 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4188 
4189 	DEBUGOUT("Masking off all interrupts\n");
4190 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4191 
4192 	/* Disable the Transmit and Receive units.  Then delay to allow
4193 	 * any pending transactions to complete before we hit the MAC
4194 	 * with the global reset.
4195 	 */
4196 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4197 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4198 	E1000_WRITE_FLUSH(hw);
4199 
4200 	msec_delay(10);
4201 
4202 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4203 	if (hw->mac.type == e1000_ich8lan) {
4204 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4205 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4206 		/* Set Packet Buffer Size to 16k. */
4207 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4208 	}
4209 
4210 	if (hw->mac.type == e1000_pchlan) {
4211 		/* Save the NVM K1 bit setting*/
4212 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4213 		if (ret_val)
4214 			return ret_val;
4215 
4216 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4217 			dev_spec->nvm_k1_enabled = TRUE;
4218 		else
4219 			dev_spec->nvm_k1_enabled = FALSE;
4220 	}
4221 
4222 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4223 
4224 	if (!hw->phy.ops.check_reset_block(hw)) {
4225 		/* Full-chip reset requires MAC and PHY reset at the same
4226 		 * time to make sure the interface between MAC and the
4227 		 * external PHY is reset.
4228 		 */
4229 		ctrl |= E1000_CTRL_PHY_RST;
4230 
4231 		/* Gate automatic PHY configuration by hardware on
4232 		 * non-managed 82579
4233 		 */
4234 		if ((hw->mac.type == e1000_pch2lan) &&
4235 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4236 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4237 	}
4238 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4239 	DEBUGOUT("Issuing a global reset to ich8lan\n");
4240 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4241 	/* cannot issue a flush here because it hangs the hardware */
4242 	msec_delay(20);
4243 
4244 	/* Set Phy Config Counter to 50msec */
4245 	if (hw->mac.type == e1000_pch2lan) {
4246 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4247 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4248 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4249 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4250 	}
4251 
4252 	if (!ret_val)
4253 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4254 
4255 	if (ctrl & E1000_CTRL_PHY_RST) {
4256 		ret_val = hw->phy.ops.get_cfg_done(hw);
4257 		if (ret_val)
4258 			return ret_val;
4259 
4260 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4261 		if (ret_val)
4262 			return ret_val;
4263 	}
4264 
4265 	/* For PCH, this write will make sure that any noise
4266 	 * will be detected as a CRC error and be dropped rather than show up
4267 	 * as a bad packet to the DMA engine.
4268 	 */
4269 	if (hw->mac.type == e1000_pchlan)
4270 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4271 
4272 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4273 	E1000_READ_REG(hw, E1000_ICR);
4274 
4275 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
4276 	reg |= E1000_KABGTXD_BGSQLBIAS;
4277 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4278 
4279 	return E1000_SUCCESS;
4280 }
4281 
4282 /**
4283  *  e1000_init_hw_ich8lan - Initialize the hardware
4284  *  @hw: pointer to the HW structure
4285  *
4286  *  Prepares the hardware for transmit and receive by doing the following:
4287  *   - initialize hardware bits
4288  *   - initialize LED identification
4289  *   - setup receive address registers
4290  *   - setup flow control
4291  *   - setup transmit descriptors
4292  *   - clear statistics
4293  **/
4294 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4295 {
4296 	struct e1000_mac_info *mac = &hw->mac;
4297 	u32 ctrl_ext, txdctl, snoop;
4298 	s32 ret_val;
4299 	u16 i;
4300 
4301 	DEBUGFUNC("e1000_init_hw_ich8lan");
4302 
4303 	e1000_initialize_hw_bits_ich8lan(hw);
4304 
4305 	/* Initialize identification LED */
4306 	ret_val = mac->ops.id_led_init(hw);
4307 	/* An error is not fatal and we should not stop init due to this */
4308 	if (ret_val)
4309 		DEBUGOUT("Error initializing identification LED\n");
4310 
4311 	/* Setup the receive address. */
4312 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4313 
4314 	/* Zero out the Multicast HASH table */
4315 	DEBUGOUT("Zeroing the MTA\n");
4316 	for (i = 0; i < mac->mta_reg_count; i++)
4317 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4318 
4319 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4320 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4321 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4322 	 */
4323 	if (hw->phy.type == e1000_phy_82578) {
4324 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4325 		i &= ~BM_WUC_HOST_WU_BIT;
4326 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4327 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4328 		if (ret_val)
4329 			return ret_val;
4330 	}
4331 
4332 	/* Setup link and flow control */
4333 	ret_val = mac->ops.setup_link(hw);
4334 
4335 	/* Set the transmit descriptor write-back policy for both queues */
4336 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4337 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4338 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4339 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4340 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4341 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4342 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4343 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4344 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4345 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4346 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4347 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4348 
4349 	/* ICH8 has opposite polarity of no_snoop bits.
4350 	 * By default, we should use snoop behavior.
4351 	 */
4352 	if (mac->type == e1000_ich8lan)
4353 		snoop = PCIE_ICH8_SNOOP_ALL;
4354 	else
4355 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4356 	e1000_set_pcie_no_snoop_generic(hw, snoop);
4357 
4358 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4359 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4360 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4361 
4362 	/* Clear all of the statistics registers (clear on read).  It is
4363 	 * important that we do this after we have tried to establish link
4364 	 * because the symbol error count will increment wildly if there
4365 	 * is no link.
4366 	 */
4367 	e1000_clear_hw_cntrs_ich8lan(hw);
4368 
4369 	return ret_val;
4370 }
4371 
4372 /**
4373  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4374  *  @hw: pointer to the HW structure
4375  *
4376  *  Sets/Clears required hardware bits necessary for correctly setting up the
4377  *  hardware for transmit and receive.
4378  **/
4379 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4380 {
4381 	u32 reg;
4382 
4383 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4384 
4385 	/* Extended Device Control */
4386 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4387 	reg |= (1 << 22);
4388 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4389 	if (hw->mac.type >= e1000_pchlan)
4390 		reg |= E1000_CTRL_EXT_PHYPDEN;
4391 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4392 
4393 	/* Transmit Descriptor Control 0 */
4394 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4395 	reg |= (1 << 22);
4396 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4397 
4398 	/* Transmit Descriptor Control 1 */
4399 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4400 	reg |= (1 << 22);
4401 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4402 
4403 	/* Transmit Arbitration Control 0 */
4404 	reg = E1000_READ_REG(hw, E1000_TARC(0));
4405 	if (hw->mac.type == e1000_ich8lan)
4406 		reg |= (1 << 28) | (1 << 29);
4407 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4408 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4409 
4410 	/* Transmit Arbitration Control 1 */
4411 	reg = E1000_READ_REG(hw, E1000_TARC(1));
4412 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4413 		reg &= ~(1 << 28);
4414 	else
4415 		reg |= (1 << 28);
4416 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4417 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4418 
4419 	/* Device Status */
4420 	if (hw->mac.type == e1000_ich8lan) {
4421 		reg = E1000_READ_REG(hw, E1000_STATUS);
4422 		reg &= ~(1UL << 31);
4423 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
4424 	}
4425 
4426 	/* work-around descriptor data corruption issue during nfs v2 udp
4427 	 * traffic, just disable the nfs filtering capability
4428 	 */
4429 	reg = E1000_READ_REG(hw, E1000_RFCTL);
4430 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4431 
4432 	/* Disable IPv6 extension header parsing because some malformed
4433 	 * IPv6 headers can hang the Rx.
4434 	 */
4435 	if (hw->mac.type == e1000_ich8lan)
4436 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4437 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4438 
4439 	/* Enable ECC on Lynxpoint */
4440 	if (hw->mac.type == e1000_pch_lpt) {
4441 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4442 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4443 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4444 
4445 		reg = E1000_READ_REG(hw, E1000_CTRL);
4446 		reg |= E1000_CTRL_MEHE;
4447 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
4448 	}
4449 
4450 	return;
4451 }
4452 
4453 /**
4454  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4455  *  @hw: pointer to the HW structure
4456  *
4457  *  Determines which flow control settings to use, then configures flow
4458  *  control.  Calls the appropriate media-specific link configuration
4459  *  function.  Assuming the adapter has a valid link partner, a valid link
4460  *  should be established.  Assumes the hardware has previously been reset
4461  *  and the transmitter and receiver are not enabled.
4462  **/
4463 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4464 {
4465 	s32 ret_val;
4466 
4467 	DEBUGFUNC("e1000_setup_link_ich8lan");
4468 
4469 	if (hw->phy.ops.check_reset_block(hw))
4470 		return E1000_SUCCESS;
4471 
4472 	/* ICH parts do not have a word in the NVM to determine
4473 	 * the default flow control setting, so we explicitly
4474 	 * set it to full.
4475 	 */
4476 	if (hw->fc.requested_mode == e1000_fc_default)
4477 		hw->fc.requested_mode = e1000_fc_full;
4478 
4479 	/* Save off the requested flow control mode for use later.  Depending
4480 	 * on the link partner's capabilities, we may or may not use this mode.
4481 	 */
4482 	hw->fc.current_mode = hw->fc.requested_mode;
4483 
4484 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4485 		hw->fc.current_mode);
4486 
4487 	/* Continue to configure the copper link. */
4488 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4489 	if (ret_val)
4490 		return ret_val;
4491 
4492 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4493 	if ((hw->phy.type == e1000_phy_82578) ||
4494 	    (hw->phy.type == e1000_phy_82579) ||
4495 	    (hw->phy.type == e1000_phy_i217) ||
4496 	    (hw->phy.type == e1000_phy_82577)) {
4497 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4498 
4499 		ret_val = hw->phy.ops.write_reg(hw,
4500 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
4501 					     hw->fc.pause_time);
4502 		if (ret_val)
4503 			return ret_val;
4504 	}
4505 
4506 	return e1000_set_fc_watermarks_generic(hw);
4507 }
4508 
4509 /**
4510  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4511  *  @hw: pointer to the HW structure
4512  *
4513  *  Configures the kumeran interface to the PHY to wait the appropriate time
4514  *  when polling the PHY, then call the generic setup_copper_link to finish
4515  *  configuring the copper link.
4516  **/
4517 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4518 {
4519 	u32 ctrl;
4520 	s32 ret_val;
4521 	u16 reg_data;
4522 
4523 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4524 
4525 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4526 	ctrl |= E1000_CTRL_SLU;
4527 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4528 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4529 
4530 	/* Set the mac to wait the maximum time between each iteration
4531 	 * and increase the max iterations when polling the phy;
4532 	 * this fixes erroneous timeouts at 10Mbps.
4533 	 */
4534 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4535 					       0xFFFF);
4536 	if (ret_val)
4537 		return ret_val;
4538 	ret_val = e1000_read_kmrn_reg_generic(hw,
4539 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
4540 					      &reg_data);
4541 	if (ret_val)
4542 		return ret_val;
4543 	reg_data |= 0x3F;
4544 	ret_val = e1000_write_kmrn_reg_generic(hw,
4545 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
4546 					       reg_data);
4547 	if (ret_val)
4548 		return ret_val;
4549 
4550 	switch (hw->phy.type) {
4551 	case e1000_phy_igp_3:
4552 		ret_val = e1000_copper_link_setup_igp(hw);
4553 		if (ret_val)
4554 			return ret_val;
4555 		break;
4556 	case e1000_phy_bm:
4557 	case e1000_phy_82578:
4558 		ret_val = e1000_copper_link_setup_m88(hw);
4559 		if (ret_val)
4560 			return ret_val;
4561 		break;
4562 	case e1000_phy_82577:
4563 	case e1000_phy_82579:
4564 		ret_val = e1000_copper_link_setup_82577(hw);
4565 		if (ret_val)
4566 			return ret_val;
4567 		break;
4568 	case e1000_phy_ife:
4569 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4570 					       &reg_data);
4571 		if (ret_val)
4572 			return ret_val;
4573 
4574 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4575 
4576 		switch (hw->phy.mdix) {
4577 		case 1:
4578 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4579 			break;
4580 		case 2:
4581 			reg_data |= IFE_PMC_FORCE_MDIX;
4582 			break;
4583 		case 0:
4584 		default:
4585 			reg_data |= IFE_PMC_AUTO_MDIX;
4586 			break;
4587 		}
4588 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4589 						reg_data);
4590 		if (ret_val)
4591 			return ret_val;
4592 		break;
4593 	default:
4594 		break;
4595 	}
4596 
4597 	return e1000_setup_copper_link_generic(hw);
4598 }
4599 
4600 /**
4601  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4602  *  @hw: pointer to the HW structure
4603  *
4604  *  Calls the PHY specific link setup function and then calls the
4605  *  generic setup_copper_link to finish configuring the link for
4606  *  Lynxpoint PCH devices
4607  **/
4608 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4609 {
4610 	u32 ctrl;
4611 	s32 ret_val;
4612 
4613 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4614 
4615 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4616 	ctrl |= E1000_CTRL_SLU;
4617 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4618 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4619 
4620 	ret_val = e1000_copper_link_setup_82577(hw);
4621 	if (ret_val)
4622 		return ret_val;
4623 
4624 	return e1000_setup_copper_link_generic(hw);
4625 }
4626 
4627 /**
4628  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4629  *  @hw: pointer to the HW structure
4630  *  @speed: pointer to store current link speed
4631  *  @duplex: pointer to store the current link duplex
4632  *
4633  *  Calls the generic get_speed_and_duplex to retrieve the current link
4634  *  information and then calls the Kumeran lock loss workaround for links at
4635  *  gigabit speeds.
4636  **/
4637 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4638 					  u16 *duplex)
4639 {
4640 	s32 ret_val;
4641 
4642 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4643 
4644 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4645 	if (ret_val)
4646 		return ret_val;
4647 
4648 	if ((hw->mac.type == e1000_ich8lan) &&
4649 	    (hw->phy.type == e1000_phy_igp_3) &&
4650 	    (*speed == SPEED_1000)) {
4651 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4652 	}
4653 
4654 	return ret_val;
4655 }
4656 
4657 /**
4658  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4659  *  @hw: pointer to the HW structure
4660  *
4661  *  Work-around for 82566 Kumeran PCS lock loss:
4662  *  On link status change (i.e. PCI reset, speed change) and link is up and
4663  *  speed is gigabit-
4664  *    0) if workaround is optionally disabled do nothing
4665  *    1) wait 1ms for Kumeran link to come up
4666  *    2) check Kumeran Diagnostic register PCS lock loss bit
4667  *    3) if not set the link is locked (all is good), otherwise...
4668  *    4) reset the PHY
4669  *    5) repeat up to 10 times
4670  *  Note: this is only called for IGP3 copper when speed is 1gb.
4671  **/
4672 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4673 {
4674 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4675 	u32 phy_ctrl;
4676 	s32 ret_val;
4677 	u16 i, data;
4678 	bool link;
4679 
4680 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4681 
4682 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4683 		return E1000_SUCCESS;
4684 
4685 	/* Make sure link is up before proceeding.  If not just return.
4686 	 * Attempting this while link is negotiating fouled up link
4687 	 * stability
4688 	 */
4689 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4690 	if (!link)
4691 		return E1000_SUCCESS;
4692 
4693 	for (i = 0; i < 10; i++) {
4694 		/* read once to clear */
4695 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4696 		if (ret_val)
4697 			return ret_val;
4698 		/* and again to get new status */
4699 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4700 		if (ret_val)
4701 			return ret_val;
4702 
4703 		/* check for PCS lock */
4704 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4705 			return E1000_SUCCESS;
4706 
4707 		/* Issue PHY reset */
4708 		hw->phy.ops.reset(hw);
4709 		msec_delay_irq(5);
4710 	}
4711 	/* Disable GigE link negotiation */
4712 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4713 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4714 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4715 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4716 
4717 	/* Call gig speed drop workaround on Gig disable before accessing
4718 	 * any PHY registers
4719 	 */
4720 	e1000_gig_downshift_workaround_ich8lan(hw);
4721 
4722 	/* unable to acquire PCS lock */
4723 	return -E1000_ERR_PHY;
4724 }
4725 
4726 /**
4727  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4728  *  @hw: pointer to the HW structure
4729  *  @state: boolean value used to set the current Kumeran workaround state
4730  *
4731  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
4732  *  /disabled - FALSE).
4733  **/
4734 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4735 						 bool state)
4736 {
4737 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4738 
4739 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4740 
4741 	if (hw->mac.type != e1000_ich8lan) {
4742 		DEBUGOUT("Workaround applies to ICH8 only.\n");
4743 		return;
4744 	}
4745 
4746 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4747 
4748 	return;
4749 }
4750 
4751 /**
4752  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4753  *  @hw: pointer to the HW structure
4754  *
4755  *  Workaround for 82566 power-down on D3 entry:
4756  *    1) disable gigabit link
4757  *    2) write VR power-down enable
4758  *    3) read it back
4759  *  Continue if successful, else issue LCD reset and repeat
4760  **/
4761 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4762 {
4763 	u32 reg;
4764 	u16 data;
4765 	u8  retry = 0;
4766 
4767 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4768 
4769 	if (hw->phy.type != e1000_phy_igp_3)
4770 		return;
4771 
4772 	/* Try the workaround twice (if needed) */
4773 	do {
4774 		/* Disable link */
4775 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4776 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4777 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4778 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4779 
4780 		/* Call gig speed drop workaround on Gig disable before
4781 		 * accessing any PHY registers
4782 		 */
4783 		if (hw->mac.type == e1000_ich8lan)
4784 			e1000_gig_downshift_workaround_ich8lan(hw);
4785 
4786 		/* Write VR power-down enable */
4787 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4788 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4789 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4790 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4791 
4792 		/* Read it back and test */
4793 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4794 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4795 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4796 			break;
4797 
4798 		/* Issue PHY reset and repeat at most one more time */
4799 		reg = E1000_READ_REG(hw, E1000_CTRL);
4800 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4801 		retry++;
4802 	} while (retry);
4803 }
4804 
4805 /**
4806  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4807  *  @hw: pointer to the HW structure
4808  *
4809  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4810  *  LPLU, Gig disable, MDIC PHY reset):
4811  *    1) Set Kumeran Near-end loopback
4812  *    2) Clear Kumeran Near-end loopback
4813  *  Should only be called for ICH8[m] devices with any 1G Phy.
4814  **/
4815 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4816 {
4817 	s32 ret_val;
4818 	u16 reg_data;
4819 
4820 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4821 
4822 	if ((hw->mac.type != e1000_ich8lan) ||
4823 	    (hw->phy.type == e1000_phy_ife))
4824 		return;
4825 
4826 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4827 					      &reg_data);
4828 	if (ret_val)
4829 		return;
4830 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4831 	ret_val = e1000_write_kmrn_reg_generic(hw,
4832 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
4833 					       reg_data);
4834 	if (ret_val)
4835 		return;
4836 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4837 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4838 				     reg_data);
4839 }
4840 
4841 /**
4842  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4843  *  @hw: pointer to the HW structure
4844  *
4845  *  During S0 to Sx transition, it is possible the link remains at gig
4846  *  instead of negotiating to a lower speed.  Before going to Sx, set
4847  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4848  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4849  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4850  *  needs to be written.
4851  *  Parts that support (and are linked to a partner which support) EEE in
4852  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4853  *  than 10Mbps w/o EEE.
4854  **/
4855 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4856 {
4857 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4858 	u32 phy_ctrl;
4859 	s32 ret_val;
4860 
4861 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4862 
4863 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4864 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4865 
4866 	if (hw->phy.type == e1000_phy_i217) {
4867 		u16 phy_reg, device_id = hw->device_id;
4868 
4869 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4870 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4871 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4872 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4873 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4874 
4875 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4876 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4877 		}
4878 
4879 		ret_val = hw->phy.ops.acquire(hw);
4880 		if (ret_val)
4881 			goto out;
4882 
4883 		if (!dev_spec->eee_disable) {
4884 			u16 eee_advert;
4885 
4886 			ret_val =
4887 			    e1000_read_emi_reg_locked(hw,
4888 						      I217_EEE_ADVERTISEMENT,
4889 						      &eee_advert);
4890 			if (ret_val)
4891 				goto release;
4892 
4893 			/* Disable LPLU if both link partners support 100BaseT
4894 			 * EEE and 100Full is advertised on both ends of the
4895 			 * link, and enable Auto Enable LPI since there will
4896 			 * be no driver to enable LPI while in Sx.
4897 			 */
4898 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4899 			    (dev_spec->eee_lp_ability &
4900 			     I82579_EEE_100_SUPPORTED) &&
4901 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4902 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4903 					      E1000_PHY_CTRL_NOND0A_LPLU);
4904 
4905 				/* Set Auto Enable LPI after link up */
4906 				hw->phy.ops.read_reg_locked(hw,
4907 							    I217_LPI_GPIO_CTRL,
4908 							    &phy_reg);
4909 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4910 				hw->phy.ops.write_reg_locked(hw,
4911 							     I217_LPI_GPIO_CTRL,
4912 							     phy_reg);
4913 			}
4914 		}
4915 
4916 		/* For i217 Intel Rapid Start Technology support,
4917 		 * when the system is going into Sx and no manageability engine
4918 		 * is present, the driver must configure proxy to reset only on
4919 		 * power good.  LPI (Low Power Idle) state must also reset only
4920 		 * on power good, as well as the MTA (Multicast table array).
4921 		 * The SMBus release must also be disabled on LCD reset.
4922 		 */
4923 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
4924 		      E1000_ICH_FWSM_FW_VALID)) {
4925 			/* Enable proxy to reset only on power good. */
4926 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4927 						    &phy_reg);
4928 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4929 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4930 						     phy_reg);
4931 
4932 			/* Set bit enable LPI (EEE) to reset only on
4933 			 * power good.
4934 			*/
4935 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4936 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4937 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4938 
4939 			/* Disable the SMB release on LCD reset. */
4940 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4941 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4942 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4943 		}
4944 
4945 		/* Enable MTA to reset for Intel Rapid Start Technology
4946 		 * Support
4947 		 */
4948 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4949 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4950 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4951 
4952 release:
4953 		hw->phy.ops.release(hw);
4954 	}
4955 out:
4956 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4957 
4958 	if (hw->mac.type == e1000_ich8lan)
4959 		e1000_gig_downshift_workaround_ich8lan(hw);
4960 
4961 	if (hw->mac.type >= e1000_pchlan) {
4962 		e1000_oem_bits_config_ich8lan(hw, FALSE);
4963 
4964 		/* Reset PHY to activate OEM bits on 82577/8 */
4965 		if (hw->mac.type == e1000_pchlan)
4966 			e1000_phy_hw_reset_generic(hw);
4967 
4968 		ret_val = hw->phy.ops.acquire(hw);
4969 		if (ret_val)
4970 			return;
4971 		e1000_write_smbus_addr(hw);
4972 		hw->phy.ops.release(hw);
4973 	}
4974 
4975 	return;
4976 }
4977 
4978 /**
4979  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4980  *  @hw: pointer to the HW structure
4981  *
4982  *  During Sx to S0 transitions on non-managed devices or managed devices
4983  *  on which PHY resets are not blocked, if the PHY registers cannot be
4984  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4985  *  the PHY.
4986  *  On i217, setup Intel Rapid Start Technology.
4987  **/
4988 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4989 {
4990 	s32 ret_val;
4991 
4992 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
4993 
4994 	if (hw->mac.type < e1000_pch2lan)
4995 		return;
4996 
4997 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4998 	if (ret_val) {
4999 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5000 		return;
5001 	}
5002 
5003 	/* For i217 Intel Rapid Start Technology support when the system
5004 	 * is transitioning from Sx and no manageability engine is present
5005 	 * configure SMBus to restore on reset, disable proxy, and enable
5006 	 * the reset on MTA (Multicast table array).
5007 	 */
5008 	if (hw->phy.type == e1000_phy_i217) {
5009 		u16 phy_reg;
5010 
5011 		ret_val = hw->phy.ops.acquire(hw);
5012 		if (ret_val) {
5013 			DEBUGOUT("Failed to setup iRST\n");
5014 			return;
5015 		}
5016 
5017 		/* Clear Auto Enable LPI after link up */
5018 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5019 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5020 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5021 
5022 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5023 		    E1000_ICH_FWSM_FW_VALID)) {
5024 			/* Restore clear on SMB if no manageability engine
5025 			 * is present
5026 			 */
5027 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5028 							      &phy_reg);
5029 			if (ret_val)
5030 				goto release;
5031 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5032 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5033 
5034 			/* Disable Proxy */
5035 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5036 		}
5037 		/* Enable reset on MTA */
5038 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5039 						      &phy_reg);
5040 		if (ret_val)
5041 			goto release;
5042 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5043 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5044 release:
5045 		if (ret_val)
5046 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5047 		hw->phy.ops.release(hw);
5048 	}
5049 }
5050 
5051 /**
5052  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5053  *  @hw: pointer to the HW structure
5054  *
5055  *  Return the LED back to the default configuration.
5056  **/
5057 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5058 {
5059 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5060 
5061 	if (hw->phy.type == e1000_phy_ife)
5062 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5063 					     0);
5064 
5065 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5066 	return E1000_SUCCESS;
5067 }
5068 
5069 /**
5070  *  e1000_led_on_ich8lan - Turn LEDs on
5071  *  @hw: pointer to the HW structure
5072  *
5073  *  Turn on the LEDs.
5074  **/
5075 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5076 {
5077 	DEBUGFUNC("e1000_led_on_ich8lan");
5078 
5079 	if (hw->phy.type == e1000_phy_ife)
5080 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5081 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5082 
5083 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5084 	return E1000_SUCCESS;
5085 }
5086 
5087 /**
5088  *  e1000_led_off_ich8lan - Turn LEDs off
5089  *  @hw: pointer to the HW structure
5090  *
5091  *  Turn off the LEDs.
5092  **/
5093 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5094 {
5095 	DEBUGFUNC("e1000_led_off_ich8lan");
5096 
5097 	if (hw->phy.type == e1000_phy_ife)
5098 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5099 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5100 
5101 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5102 	return E1000_SUCCESS;
5103 }
5104 
5105 /**
5106  *  e1000_setup_led_pchlan - Configures SW controllable LED
5107  *  @hw: pointer to the HW structure
5108  *
5109  *  This prepares the SW controllable LED for use.
5110  **/
5111 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5112 {
5113 	DEBUGFUNC("e1000_setup_led_pchlan");
5114 
5115 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5116 				     (u16)hw->mac.ledctl_mode1);
5117 }
5118 
5119 /**
5120  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5121  *  @hw: pointer to the HW structure
5122  *
5123  *  Return the LED back to the default configuration.
5124  **/
5125 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5126 {
5127 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5128 
5129 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5130 				     (u16)hw->mac.ledctl_default);
5131 }
5132 
5133 /**
5134  *  e1000_led_on_pchlan - Turn LEDs on
5135  *  @hw: pointer to the HW structure
5136  *
5137  *  Turn on the LEDs.
5138  **/
5139 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5140 {
5141 	u16 data = (u16)hw->mac.ledctl_mode2;
5142 	u32 i, led;
5143 
5144 	DEBUGFUNC("e1000_led_on_pchlan");
5145 
5146 	/* If no link, then turn LED on by setting the invert bit
5147 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5148 	 */
5149 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5150 		for (i = 0; i < 3; i++) {
5151 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5152 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5153 			    E1000_LEDCTL_MODE_LINK_UP)
5154 				continue;
5155 			if (led & E1000_PHY_LED0_IVRT)
5156 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5157 			else
5158 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5159 		}
5160 	}
5161 
5162 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5163 }
5164 
5165 /**
5166  *  e1000_led_off_pchlan - Turn LEDs off
5167  *  @hw: pointer to the HW structure
5168  *
5169  *  Turn off the LEDs.
5170  **/
5171 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5172 {
5173 	u16 data = (u16)hw->mac.ledctl_mode1;
5174 	u32 i, led;
5175 
5176 	DEBUGFUNC("e1000_led_off_pchlan");
5177 
5178 	/* If no link, then turn LED off by clearing the invert bit
5179 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5180 	 */
5181 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5182 		for (i = 0; i < 3; i++) {
5183 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5184 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5185 			    E1000_LEDCTL_MODE_LINK_UP)
5186 				continue;
5187 			if (led & E1000_PHY_LED0_IVRT)
5188 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5189 			else
5190 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5191 		}
5192 	}
5193 
5194 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5195 }
5196 
5197 /**
5198  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5199  *  @hw: pointer to the HW structure
5200  *
5201  *  Read appropriate register for the config done bit for completion status
5202  *  and configure the PHY through s/w for EEPROM-less parts.
5203  *
5204  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5205  *  config done bit, so only an error is logged and continues.  If we were
5206  *  to return with error, EEPROM-less silicon would not be able to be reset
5207  *  or change link.
5208  **/
5209 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5210 {
5211 	s32 ret_val = E1000_SUCCESS;
5212 	u32 bank = 0;
5213 	u32 status;
5214 
5215 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5216 
5217 	e1000_get_cfg_done_generic(hw);
5218 
5219 	/* Wait for indication from h/w that it has completed basic config */
5220 	if (hw->mac.type >= e1000_ich10lan) {
5221 		e1000_lan_init_done_ich8lan(hw);
5222 	} else {
5223 		ret_val = e1000_get_auto_rd_done_generic(hw);
5224 		if (ret_val) {
5225 			/* When auto config read does not complete, do not
5226 			 * return with an error. This can happen in situations
5227 			 * where there is no eeprom and prevents getting link.
5228 			 */
5229 			DEBUGOUT("Auto Read Done did not complete\n");
5230 			ret_val = E1000_SUCCESS;
5231 		}
5232 	}
5233 
5234 	/* Clear PHY Reset Asserted bit */
5235 	status = E1000_READ_REG(hw, E1000_STATUS);
5236 	if (status & E1000_STATUS_PHYRA) {
5237 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5238 	} else {
5239 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5240 	}
5241 
5242 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5243 	if (hw->mac.type <= e1000_ich9lan) {
5244 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5245 		    (hw->phy.type == e1000_phy_igp_3)) {
5246 			e1000_phy_init_script_igp3(hw);
5247 		}
5248 	} else {
5249 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5250 			/* Maybe we should do a basic PHY config */
5251 			DEBUGOUT("EEPROM not present\n");
5252 			ret_val = -E1000_ERR_CONFIG;
5253 		}
5254 	}
5255 
5256 	return ret_val;
5257 }
5258 
5259 /**
5260  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5261  * @hw: pointer to the HW structure
5262  *
5263  * In the case of a PHY power down to save power, or to turn off link during a
5264  * driver unload, or wake on lan is not enabled, remove the link.
5265  **/
5266 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5267 {
5268 	/* If the management interface is not enabled, then power down */
5269 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5270 	      hw->phy.ops.check_reset_block(hw)))
5271 		e1000_power_down_phy_copper(hw);
5272 
5273 	return;
5274 }
5275 
5276 /**
5277  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5278  *  @hw: pointer to the HW structure
5279  *
5280  *  Clears hardware counters specific to the silicon family and calls
5281  *  clear_hw_cntrs_generic to clear all general purpose counters.
5282  **/
5283 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5284 {
5285 	u16 phy_data;
5286 	s32 ret_val;
5287 
5288 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5289 
5290 	e1000_clear_hw_cntrs_base_generic(hw);
5291 
5292 	E1000_READ_REG(hw, E1000_ALGNERRC);
5293 	E1000_READ_REG(hw, E1000_RXERRC);
5294 	E1000_READ_REG(hw, E1000_TNCRS);
5295 	E1000_READ_REG(hw, E1000_CEXTERR);
5296 	E1000_READ_REG(hw, E1000_TSCTC);
5297 	E1000_READ_REG(hw, E1000_TSCTFC);
5298 
5299 	E1000_READ_REG(hw, E1000_MGTPRC);
5300 	E1000_READ_REG(hw, E1000_MGTPDC);
5301 	E1000_READ_REG(hw, E1000_MGTPTC);
5302 
5303 	E1000_READ_REG(hw, E1000_IAC);
5304 	E1000_READ_REG(hw, E1000_ICRXOC);
5305 
5306 	/* Clear PHY statistics registers */
5307 	if ((hw->phy.type == e1000_phy_82578) ||
5308 	    (hw->phy.type == e1000_phy_82579) ||
5309 	    (hw->phy.type == e1000_phy_i217) ||
5310 	    (hw->phy.type == e1000_phy_82577)) {
5311 		ret_val = hw->phy.ops.acquire(hw);
5312 		if (ret_val)
5313 			return;
5314 		ret_val = hw->phy.ops.set_page(hw,
5315 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5316 		if (ret_val)
5317 			goto release;
5318 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5319 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5320 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5321 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5322 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5323 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5324 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5325 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5326 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5327 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5328 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5329 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5330 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5331 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5332 release:
5333 		hw->phy.ops.release(hw);
5334 	}
5335 }
5336 
5337