xref: /titanic_52/usr/src/uts/common/io/e1000api/e1000_api.c (revision 5fd03bc0f2e00e7ba02316c2e08f45d52aab15db)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2013, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 		mac->type = e1000_pch_lpt;
297 		break;
298 	case E1000_DEV_ID_82575EB_COPPER:
299 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
300 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
301 		mac->type = e1000_82575;
302 		break;
303 	case E1000_DEV_ID_82576:
304 	case E1000_DEV_ID_82576_FIBER:
305 	case E1000_DEV_ID_82576_SERDES:
306 	case E1000_DEV_ID_82576_QUAD_COPPER:
307 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
308 	case E1000_DEV_ID_82576_NS:
309 	case E1000_DEV_ID_82576_NS_SERDES:
310 	case E1000_DEV_ID_82576_SERDES_QUAD:
311 		mac->type = e1000_82576;
312 		break;
313 	case E1000_DEV_ID_82580_COPPER:
314 	case E1000_DEV_ID_82580_FIBER:
315 	case E1000_DEV_ID_82580_SERDES:
316 	case E1000_DEV_ID_82580_SGMII:
317 	case E1000_DEV_ID_82580_COPPER_DUAL:
318 	case E1000_DEV_ID_82580_QUAD_FIBER:
319 	case E1000_DEV_ID_DH89XXCC_SGMII:
320 	case E1000_DEV_ID_DH89XXCC_SERDES:
321 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
322 	case E1000_DEV_ID_DH89XXCC_SFP:
323 		mac->type = e1000_82580;
324 		break;
325 	case E1000_DEV_ID_I350_COPPER:
326 	case E1000_DEV_ID_I350_FIBER:
327 	case E1000_DEV_ID_I350_SERDES:
328 	case E1000_DEV_ID_I350_SGMII:
329 	case E1000_DEV_ID_I350_DA4:
330 		mac->type = e1000_i350;
331 		break;
332 #if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW)
333 	case E1000_DEV_ID_I210_NVMLESS:
334 #endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */
335 	case E1000_DEV_ID_I210_COPPER:
336 	case E1000_DEV_ID_I210_COPPER_OEM1:
337 	case E1000_DEV_ID_I210_COPPER_IT:
338 	case E1000_DEV_ID_I210_FIBER:
339 	case E1000_DEV_ID_I210_SERDES:
340 	case E1000_DEV_ID_I210_SGMII:
341 		mac->type = e1000_i210;
342 		break;
343 	case E1000_DEV_ID_I211_COPPER:
344 		mac->type = e1000_i211;
345 		break;
346 	case E1000_DEV_ID_82576_VF:
347 	case E1000_DEV_ID_82576_VF_HV:
348 		mac->type = e1000_vfadapt;
349 		break;
350 	case E1000_DEV_ID_I350_VF:
351 	case E1000_DEV_ID_I350_VF_HV:
352 		mac->type = e1000_vfadapt_i350;
353 		break;
354 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
355 	case E1000_DEV_ID_I354_SGMII:
356 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
357 		mac->type = e1000_i354;
358 		break;
359 
360 	default:
361 		/* Should never have loaded on this device */
362 		ret_val = -E1000_ERR_MAC_INIT;
363 		break;
364 	}
365 
366 	return ret_val;
367 }
368 
369 /**
370  *  e1000_setup_init_funcs - Initializes function pointers
371  *  @hw: pointer to the HW structure
372  *  @init_device: TRUE will initialize the rest of the function pointers
373  *		  getting the device ready for use.  FALSE will only set
374  *		  MAC type and the function pointers for the other init
375  *		  functions.  Passing FALSE will not generate any hardware
376  *		  reads or writes.
377  *
378  *  This function must be called by a driver in order to use the rest
379  *  of the 'shared' code files. Called by drivers only.
380  **/
381 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
382 {
383 	s32 ret_val;
384 
385 	/* Can't do much good without knowing the MAC type. */
386 	ret_val = e1000_set_mac_type(hw);
387 	if (ret_val) {
388 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
389 		goto out;
390 	}
391 
392 	if (!hw->hw_addr) {
393 		DEBUGOUT("ERROR: Registers not mapped\n");
394 		ret_val = -E1000_ERR_CONFIG;
395 		goto out;
396 	}
397 
398 	/*
399 	 * Init function pointers to generic implementations. We do this first
400 	 * allowing a driver module to override it afterward.
401 	 */
402 	e1000_init_mac_ops_generic(hw);
403 	e1000_init_phy_ops_generic(hw);
404 	e1000_init_nvm_ops_generic(hw);
405 	e1000_init_mbx_ops_generic(hw);
406 
407 	/*
408 	 * Set up the init function pointers. These are functions within the
409 	 * adapter family file that sets up function pointers for the rest of
410 	 * the functions in that family.
411 	 */
412 	switch (hw->mac.type) {
413 	case e1000_82542:
414 		e1000_init_function_pointers_82542(hw);
415 		break;
416 	case e1000_82543:
417 	case e1000_82544:
418 		e1000_init_function_pointers_82543(hw);
419 		break;
420 	case e1000_82540:
421 	case e1000_82545:
422 	case e1000_82545_rev_3:
423 	case e1000_82546:
424 	case e1000_82546_rev_3:
425 		e1000_init_function_pointers_82540(hw);
426 		break;
427 	case e1000_82541:
428 	case e1000_82541_rev_2:
429 	case e1000_82547:
430 	case e1000_82547_rev_2:
431 		e1000_init_function_pointers_82541(hw);
432 		break;
433 	case e1000_82571:
434 	case e1000_82572:
435 	case e1000_82573:
436 	case e1000_82574:
437 	case e1000_82583:
438 		e1000_init_function_pointers_82571(hw);
439 		break;
440 	case e1000_80003es2lan:
441 		e1000_init_function_pointers_80003es2lan(hw);
442 		break;
443 	case e1000_ich8lan:
444 	case e1000_ich9lan:
445 	case e1000_ich10lan:
446 	case e1000_pchlan:
447 	case e1000_pch2lan:
448 	case e1000_pch_lpt:
449 		e1000_init_function_pointers_ich8lan(hw);
450 		break;
451 	case e1000_82575:
452 	case e1000_82576:
453 	case e1000_82580:
454 	case e1000_i350:
455 	case e1000_i354:
456 		e1000_init_function_pointers_82575(hw);
457 		break;
458 	case e1000_i210:
459 	case e1000_i211:
460 		e1000_init_function_pointers_i210(hw);
461 		break;
462 	case e1000_vfadapt:
463 		e1000_init_function_pointers_vf(hw);
464 		break;
465 	case e1000_vfadapt_i350:
466 		e1000_init_function_pointers_vf(hw);
467 		break;
468 	default:
469 		DEBUGOUT("Hardware not supported\n");
470 		ret_val = -E1000_ERR_CONFIG;
471 		break;
472 	}
473 
474 	/*
475 	 * Initialize the rest of the function pointers. These require some
476 	 * register reads/writes in some cases.
477 	 */
478 	if (!(ret_val) && init_device) {
479 		ret_val = e1000_init_mac_params(hw);
480 		if (ret_val)
481 			goto out;
482 
483 		ret_val = e1000_init_nvm_params(hw);
484 		if (ret_val)
485 			goto out;
486 
487 		ret_val = e1000_init_phy_params(hw);
488 		if (ret_val)
489 			goto out;
490 
491 		ret_val = e1000_init_mbx_params(hw);
492 		if (ret_val)
493 			goto out;
494 	}
495 
496 out:
497 	return ret_val;
498 }
499 
500 /**
501  *  e1000_get_bus_info - Obtain bus information for adapter
502  *  @hw: pointer to the HW structure
503  *
504  *  This will obtain information about the HW bus for which the
505  *  adapter is attached and stores it in the hw structure. This is a
506  *  function pointer entry point called by drivers.
507  **/
508 s32 e1000_get_bus_info(struct e1000_hw *hw)
509 {
510 	if (hw->mac.ops.get_bus_info)
511 		return hw->mac.ops.get_bus_info(hw);
512 
513 	return E1000_SUCCESS;
514 }
515 
516 /**
517  *  e1000_clear_vfta - Clear VLAN filter table
518  *  @hw: pointer to the HW structure
519  *
520  *  This clears the VLAN filter table on the adapter. This is a function
521  *  pointer entry point called by drivers.
522  **/
523 void e1000_clear_vfta(struct e1000_hw *hw)
524 {
525 	if (hw->mac.ops.clear_vfta)
526 		hw->mac.ops.clear_vfta(hw);
527 }
528 
529 /**
530  *  e1000_write_vfta - Write value to VLAN filter table
531  *  @hw: pointer to the HW structure
532  *  @offset: the 32-bit offset in which to write the value to.
533  *  @value: the 32-bit value to write at location offset.
534  *
535  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
536  *  table. This is a function pointer entry point called by drivers.
537  **/
538 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
539 {
540 	if (hw->mac.ops.write_vfta)
541 		hw->mac.ops.write_vfta(hw, offset, value);
542 }
543 
544 /**
545  *  e1000_update_mc_addr_list - Update Multicast addresses
546  *  @hw: pointer to the HW structure
547  *  @mc_addr_list: array of multicast addresses to program
548  *  @mc_addr_count: number of multicast addresses to program
549  *
550  *  Updates the Multicast Table Array.
551  *  The caller must have a packed mc_addr_list of multicast addresses.
552  **/
553 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
554 			       u32 mc_addr_count)
555 {
556 	if (hw->mac.ops.update_mc_addr_list)
557 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
558 						mc_addr_count);
559 }
560 
561 /**
562  *  e1000_force_mac_fc - Force MAC flow control
563  *  @hw: pointer to the HW structure
564  *
565  *  Force the MAC's flow control settings. Currently no func pointer exists
566  *  and all implementations are handled in the generic version of this
567  *  function.
568  **/
569 s32 e1000_force_mac_fc(struct e1000_hw *hw)
570 {
571 	return e1000_force_mac_fc_generic(hw);
572 }
573 
574 /**
575  *  e1000_check_for_link - Check/Store link connection
576  *  @hw: pointer to the HW structure
577  *
578  *  This checks the link condition of the adapter and stores the
579  *  results in the hw->mac structure. This is a function pointer entry
580  *  point called by drivers.
581  **/
582 s32 e1000_check_for_link(struct e1000_hw *hw)
583 {
584 	if (hw->mac.ops.check_for_link)
585 		return hw->mac.ops.check_for_link(hw);
586 
587 	return -E1000_ERR_CONFIG;
588 }
589 
590 /**
591  *  e1000_check_mng_mode - Check management mode
592  *  @hw: pointer to the HW structure
593  *
594  *  This checks if the adapter has manageability enabled.
595  *  This is a function pointer entry point called by drivers.
596  **/
597 bool e1000_check_mng_mode(struct e1000_hw *hw)
598 {
599 	if (hw->mac.ops.check_mng_mode)
600 		return hw->mac.ops.check_mng_mode(hw);
601 
602 	return FALSE;
603 }
604 
605 /**
606  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
607  *  @hw: pointer to the HW structure
608  *  @buffer: pointer to the host interface
609  *  @length: size of the buffer
610  *
611  *  Writes the DHCP information to the host interface.
612  **/
613 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
614 {
615 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
616 }
617 
618 /**
619  *  e1000_reset_hw - Reset hardware
620  *  @hw: pointer to the HW structure
621  *
622  *  This resets the hardware into a known state. This is a function pointer
623  *  entry point called by drivers.
624  **/
625 s32 e1000_reset_hw(struct e1000_hw *hw)
626 {
627 	if (hw->mac.ops.reset_hw)
628 		return hw->mac.ops.reset_hw(hw);
629 
630 	return -E1000_ERR_CONFIG;
631 }
632 
633 /**
634  *  e1000_init_hw - Initialize hardware
635  *  @hw: pointer to the HW structure
636  *
637  *  This inits the hardware readying it for operation. This is a function
638  *  pointer entry point called by drivers.
639  **/
640 s32 e1000_init_hw(struct e1000_hw *hw)
641 {
642 	if (hw->mac.ops.init_hw)
643 		return hw->mac.ops.init_hw(hw);
644 
645 	return -E1000_ERR_CONFIG;
646 }
647 
648 /**
649  *  e1000_setup_link - Configures link and flow control
650  *  @hw: pointer to the HW structure
651  *
652  *  This configures link and flow control settings for the adapter. This
653  *  is a function pointer entry point called by drivers. While modules can
654  *  also call this, they probably call their own version of this function.
655  **/
656 s32 e1000_setup_link(struct e1000_hw *hw)
657 {
658 	if (hw->mac.ops.setup_link)
659 		return hw->mac.ops.setup_link(hw);
660 
661 	return -E1000_ERR_CONFIG;
662 }
663 
664 /**
665  *  e1000_get_speed_and_duplex - Returns current speed and duplex
666  *  @hw: pointer to the HW structure
667  *  @speed: pointer to a 16-bit value to store the speed
668  *  @duplex: pointer to a 16-bit value to store the duplex.
669  *
670  *  This returns the speed and duplex of the adapter in the two 'out'
671  *  variables passed in. This is a function pointer entry point called
672  *  by drivers.
673  **/
674 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
675 {
676 	if (hw->mac.ops.get_link_up_info)
677 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
678 
679 	return -E1000_ERR_CONFIG;
680 }
681 
682 /**
683  *  e1000_setup_led - Configures SW controllable LED
684  *  @hw: pointer to the HW structure
685  *
686  *  This prepares the SW controllable LED for use and saves the current state
687  *  of the LED so it can be later restored. This is a function pointer entry
688  *  point called by drivers.
689  **/
690 s32 e1000_setup_led(struct e1000_hw *hw)
691 {
692 	if (hw->mac.ops.setup_led)
693 		return hw->mac.ops.setup_led(hw);
694 
695 	return E1000_SUCCESS;
696 }
697 
698 /**
699  *  e1000_cleanup_led - Restores SW controllable LED
700  *  @hw: pointer to the HW structure
701  *
702  *  This restores the SW controllable LED to the value saved off by
703  *  e1000_setup_led. This is a function pointer entry point called by drivers.
704  **/
705 s32 e1000_cleanup_led(struct e1000_hw *hw)
706 {
707 	if (hw->mac.ops.cleanup_led)
708 		return hw->mac.ops.cleanup_led(hw);
709 
710 	return E1000_SUCCESS;
711 }
712 
713 /**
714  *  e1000_blink_led - Blink SW controllable LED
715  *  @hw: pointer to the HW structure
716  *
717  *  This starts the adapter LED blinking. Request the LED to be setup first
718  *  and cleaned up after. This is a function pointer entry point called by
719  *  drivers.
720  **/
721 s32 e1000_blink_led(struct e1000_hw *hw)
722 {
723 	if (hw->mac.ops.blink_led)
724 		return hw->mac.ops.blink_led(hw);
725 
726 	return E1000_SUCCESS;
727 }
728 
729 /**
730  *  e1000_id_led_init - store LED configurations in SW
731  *  @hw: pointer to the HW structure
732  *
733  *  Initializes the LED config in SW. This is a function pointer entry point
734  *  called by drivers.
735  **/
736 s32 e1000_id_led_init(struct e1000_hw *hw)
737 {
738 	if (hw->mac.ops.id_led_init)
739 		return hw->mac.ops.id_led_init(hw);
740 
741 	return E1000_SUCCESS;
742 }
743 
744 /**
745  *  e1000_led_on - Turn on SW controllable LED
746  *  @hw: pointer to the HW structure
747  *
748  *  Turns the SW defined LED on. This is a function pointer entry point
749  *  called by drivers.
750  **/
751 s32 e1000_led_on(struct e1000_hw *hw)
752 {
753 	if (hw->mac.ops.led_on)
754 		return hw->mac.ops.led_on(hw);
755 
756 	return E1000_SUCCESS;
757 }
758 
759 /**
760  *  e1000_led_off - Turn off SW controllable LED
761  *  @hw: pointer to the HW structure
762  *
763  *  Turns the SW defined LED off. This is a function pointer entry point
764  *  called by drivers.
765  **/
766 s32 e1000_led_off(struct e1000_hw *hw)
767 {
768 	if (hw->mac.ops.led_off)
769 		return hw->mac.ops.led_off(hw);
770 
771 	return E1000_SUCCESS;
772 }
773 
774 /**
775  *  e1000_reset_adaptive - Reset adaptive IFS
776  *  @hw: pointer to the HW structure
777  *
778  *  Resets the adaptive IFS. Currently no func pointer exists and all
779  *  implementations are handled in the generic version of this function.
780  **/
781 void e1000_reset_adaptive(struct e1000_hw *hw)
782 {
783 	e1000_reset_adaptive_generic(hw);
784 }
785 
786 /**
787  *  e1000_update_adaptive - Update adaptive IFS
788  *  @hw: pointer to the HW structure
789  *
790  *  Updates adapter IFS. Currently no func pointer exists and all
791  *  implementations are handled in the generic version of this function.
792  **/
793 void e1000_update_adaptive(struct e1000_hw *hw)
794 {
795 	e1000_update_adaptive_generic(hw);
796 }
797 
798 /**
799  *  e1000_disable_pcie_master - Disable PCI-Express master access
800  *  @hw: pointer to the HW structure
801  *
802  *  Disables PCI-Express master access and verifies there are no pending
803  *  requests. Currently no func pointer exists and all implementations are
804  *  handled in the generic version of this function.
805  **/
806 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
807 {
808 	return e1000_disable_pcie_master_generic(hw);
809 }
810 
811 /**
812  *  e1000_config_collision_dist - Configure collision distance
813  *  @hw: pointer to the HW structure
814  *
815  *  Configures the collision distance to the default value and is used
816  *  during link setup.
817  **/
818 void e1000_config_collision_dist(struct e1000_hw *hw)
819 {
820 	if (hw->mac.ops.config_collision_dist)
821 		hw->mac.ops.config_collision_dist(hw);
822 }
823 
824 /**
825  *  e1000_rar_set - Sets a receive address register
826  *  @hw: pointer to the HW structure
827  *  @addr: address to set the RAR to
828  *  @index: the RAR to set
829  *
830  *  Sets a Receive Address Register (RAR) to the specified address.
831  **/
832 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
833 {
834 	if (hw->mac.ops.rar_set)
835 		hw->mac.ops.rar_set(hw, addr, index);
836 }
837 
838 /**
839  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
840  *  @hw: pointer to the HW structure
841  *
842  *  Ensures that the MDI/MDIX SW state is valid.
843  **/
844 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
845 {
846 	if (hw->mac.ops.validate_mdi_setting)
847 		return hw->mac.ops.validate_mdi_setting(hw);
848 
849 	return E1000_SUCCESS;
850 }
851 
852 /**
853  *  e1000_hash_mc_addr - Determines address location in multicast table
854  *  @hw: pointer to the HW structure
855  *  @mc_addr: Multicast address to hash.
856  *
857  *  This hashes an address to determine its location in the multicast
858  *  table. Currently no func pointer exists and all implementations
859  *  are handled in the generic version of this function.
860  **/
861 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
862 {
863 	return e1000_hash_mc_addr_generic(hw, mc_addr);
864 }
865 
866 /**
867  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
868  *  @hw: pointer to the HW structure
869  *
870  *  Enables packet filtering on transmit packets if manageability is enabled
871  *  and host interface is enabled.
872  *  Currently no func pointer exists and all implementations are handled in the
873  *  generic version of this function.
874  **/
875 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
876 {
877 	return e1000_enable_tx_pkt_filtering_generic(hw);
878 }
879 
880 /**
881  *  e1000_mng_host_if_write - Writes to the manageability host interface
882  *  @hw: pointer to the HW structure
883  *  @buffer: pointer to the host interface buffer
884  *  @length: size of the buffer
885  *  @offset: location in the buffer to write to
886  *  @sum: sum of the data (not checksum)
887  *
888  *  This function writes the buffer content at the offset given on the host if.
889  *  It also does alignment considerations to do the writes in most efficient
890  *  way.  Also fills up the sum of the buffer in *buffer parameter.
891  **/
892 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
893 			    u16 offset, u8 *sum)
894 {
895 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
896 }
897 
898 /**
899  *  e1000_mng_write_cmd_header - Writes manageability command header
900  *  @hw: pointer to the HW structure
901  *  @hdr: pointer to the host interface command header
902  *
903  *  Writes the command header after does the checksum calculation.
904  **/
905 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
906 			       struct e1000_host_mng_command_header *hdr)
907 {
908 	return e1000_mng_write_cmd_header_generic(hw, hdr);
909 }
910 
911 /**
912  *  e1000_mng_enable_host_if - Checks host interface is enabled
913  *  @hw: pointer to the HW structure
914  *
915  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
916  *
917  *  This function checks whether the HOST IF is enabled for command operation
918  *  and also checks whether the previous command is completed.  It busy waits
919  *  in case of previous command is not completed.
920  **/
921 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
922 {
923 	return e1000_mng_enable_host_if_generic(hw);
924 }
925 
926 /**
927  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
928  *  @hw: pointer to the HW structure
929  *  @itr: u32 indicating itr value
930  *
931  *  Set the OBFF timer based on the given interrupt rate.
932  **/
933 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
934 {
935 	if (hw->mac.ops.set_obff_timer)
936 		return hw->mac.ops.set_obff_timer(hw, itr);
937 
938 	return E1000_SUCCESS;
939 }
940 
941 /**
942  *  e1000_check_reset_block - Verifies PHY can be reset
943  *  @hw: pointer to the HW structure
944  *
945  *  Checks if the PHY is in a state that can be reset or if manageability
946  *  has it tied up. This is a function pointer entry point called by drivers.
947  **/
948 s32 e1000_check_reset_block(struct e1000_hw *hw)
949 {
950 	if (hw->phy.ops.check_reset_block)
951 		return hw->phy.ops.check_reset_block(hw);
952 
953 	return E1000_SUCCESS;
954 }
955 
956 /**
957  *  e1000_read_phy_reg - Reads PHY register
958  *  @hw: pointer to the HW structure
959  *  @offset: the register to read
960  *  @data: the buffer to store the 16-bit read.
961  *
962  *  Reads the PHY register and returns the value in data.
963  *  This is a function pointer entry point called by drivers.
964  **/
965 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
966 {
967 	if (hw->phy.ops.read_reg)
968 		return hw->phy.ops.read_reg(hw, offset, data);
969 
970 	return E1000_SUCCESS;
971 }
972 
973 /**
974  *  e1000_write_phy_reg - Writes PHY register
975  *  @hw: pointer to the HW structure
976  *  @offset: the register to write
977  *  @data: the value to write.
978  *
979  *  Writes the PHY register at offset with the value in data.
980  *  This is a function pointer entry point called by drivers.
981  **/
982 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
983 {
984 	if (hw->phy.ops.write_reg)
985 		return hw->phy.ops.write_reg(hw, offset, data);
986 
987 	return E1000_SUCCESS;
988 }
989 
990 /**
991  *  e1000_release_phy - Generic release PHY
992  *  @hw: pointer to the HW structure
993  *
994  *  Return if silicon family does not require a semaphore when accessing the
995  *  PHY.
996  **/
997 void e1000_release_phy(struct e1000_hw *hw)
998 {
999 	if (hw->phy.ops.release)
1000 		hw->phy.ops.release(hw);
1001 }
1002 
1003 /**
1004  *  e1000_acquire_phy - Generic acquire PHY
1005  *  @hw: pointer to the HW structure
1006  *
1007  *  Return success if silicon family does not require a semaphore when
1008  *  accessing the PHY.
1009  **/
1010 s32 e1000_acquire_phy(struct e1000_hw *hw)
1011 {
1012 	if (hw->phy.ops.acquire)
1013 		return hw->phy.ops.acquire(hw);
1014 
1015 	return E1000_SUCCESS;
1016 }
1017 
1018 /**
1019  *  e1000_cfg_on_link_up - Configure PHY upon link up
1020  *  @hw: pointer to the HW structure
1021  **/
1022 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1023 {
1024 	if (hw->phy.ops.cfg_on_link_up)
1025 		return hw->phy.ops.cfg_on_link_up(hw);
1026 
1027 	return E1000_SUCCESS;
1028 }
1029 
1030 /**
1031  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1032  *  @hw: pointer to the HW structure
1033  *  @offset: the register to read
1034  *  @data: the location to store the 16-bit value read.
1035  *
1036  *  Reads a register out of the Kumeran interface. Currently no func pointer
1037  *  exists and all implementations are handled in the generic version of
1038  *  this function.
1039  **/
1040 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1041 {
1042 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1043 }
1044 
1045 /**
1046  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1047  *  @hw: pointer to the HW structure
1048  *  @offset: the register to write
1049  *  @data: the value to write.
1050  *
1051  *  Writes a register to the Kumeran interface. Currently no func pointer
1052  *  exists and all implementations are handled in the generic version of
1053  *  this function.
1054  **/
1055 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1056 {
1057 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1058 }
1059 
1060 /**
1061  *  e1000_get_cable_length - Retrieves cable length estimation
1062  *  @hw: pointer to the HW structure
1063  *
1064  *  This function estimates the cable length and stores them in
1065  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1066  *  entry point called by drivers.
1067  **/
1068 s32 e1000_get_cable_length(struct e1000_hw *hw)
1069 {
1070 	if (hw->phy.ops.get_cable_length)
1071 		return hw->phy.ops.get_cable_length(hw);
1072 
1073 	return E1000_SUCCESS;
1074 }
1075 
1076 /**
1077  *  e1000_get_phy_info - Retrieves PHY information from registers
1078  *  @hw: pointer to the HW structure
1079  *
1080  *  This function gets some information from various PHY registers and
1081  *  populates hw->phy values with it. This is a function pointer entry
1082  *  point called by drivers.
1083  **/
1084 s32 e1000_get_phy_info(struct e1000_hw *hw)
1085 {
1086 	if (hw->phy.ops.get_info)
1087 		return hw->phy.ops.get_info(hw);
1088 
1089 	return E1000_SUCCESS;
1090 }
1091 
1092 /**
1093  *  e1000_phy_hw_reset - Hard PHY reset
1094  *  @hw: pointer to the HW structure
1095  *
1096  *  Performs a hard PHY reset. This is a function pointer entry point called
1097  *  by drivers.
1098  **/
1099 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1100 {
1101 	if (hw->phy.ops.reset)
1102 		return hw->phy.ops.reset(hw);
1103 
1104 	return E1000_SUCCESS;
1105 }
1106 
1107 /**
1108  *  e1000_phy_commit - Soft PHY reset
1109  *  @hw: pointer to the HW structure
1110  *
1111  *  Performs a soft PHY reset on those that apply. This is a function pointer
1112  *  entry point called by drivers.
1113  **/
1114 s32 e1000_phy_commit(struct e1000_hw *hw)
1115 {
1116 	if (hw->phy.ops.commit)
1117 		return hw->phy.ops.commit(hw);
1118 
1119 	return E1000_SUCCESS;
1120 }
1121 
1122 /**
1123  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1124  *  @hw: pointer to the HW structure
1125  *  @active: boolean used to enable/disable lplu
1126  *
1127  *  Success returns 0, Failure returns 1
1128  *
1129  *  The low power link up (lplu) state is set to the power management level D0
1130  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1131  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1132  *  is used during Dx states where the power conservation is most important.
1133  *  During driver activity, SmartSpeed should be enabled so performance is
1134  *  maintained.  This is a function pointer entry point called by drivers.
1135  **/
1136 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1137 {
1138 	if (hw->phy.ops.set_d0_lplu_state)
1139 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1140 
1141 	return E1000_SUCCESS;
1142 }
1143 
1144 /**
1145  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1146  *  @hw: pointer to the HW structure
1147  *  @active: boolean used to enable/disable lplu
1148  *
1149  *  Success returns 0, Failure returns 1
1150  *
1151  *  The low power link up (lplu) state is set to the power management level D3
1152  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1153  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1154  *  is used during Dx states where the power conservation is most important.
1155  *  During driver activity, SmartSpeed should be enabled so performance is
1156  *  maintained.  This is a function pointer entry point called by drivers.
1157  **/
1158 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1159 {
1160 	if (hw->phy.ops.set_d3_lplu_state)
1161 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1162 
1163 	return E1000_SUCCESS;
1164 }
1165 
1166 /**
1167  *  e1000_read_mac_addr - Reads MAC address
1168  *  @hw: pointer to the HW structure
1169  *
1170  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1171  *  Currently no func pointer exists and all implementations are handled in the
1172  *  generic version of this function.
1173  **/
1174 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1175 {
1176 	if (hw->mac.ops.read_mac_addr)
1177 		return hw->mac.ops.read_mac_addr(hw);
1178 
1179 	return e1000_read_mac_addr_generic(hw);
1180 }
1181 
1182 /**
1183  *  e1000_read_pba_string - Read device part number string
1184  *  @hw: pointer to the HW structure
1185  *  @pba_num: pointer to device part number
1186  *  @pba_num_size: size of part number buffer
1187  *
1188  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1189  *  the value in pba_num.
1190  *  Currently no func pointer exists and all implementations are handled in the
1191  *  generic version of this function.
1192  **/
1193 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1194 {
1195 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1196 }
1197 
1198 /**
1199  *  e1000_read_pba_length - Read device part number string length
1200  *  @hw: pointer to the HW structure
1201  *  @pba_num_size: size of part number buffer
1202  *
1203  *  Reads the product board assembly (PBA) number length from the EEPROM and
1204  *  stores the value in pba_num.
1205  *  Currently no func pointer exists and all implementations are handled in the
1206  *  generic version of this function.
1207  **/
1208 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1209 {
1210 	return e1000_read_pba_length_generic(hw, pba_num_size);
1211 }
1212 
1213 /**
1214  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1215  *  @hw: pointer to the HW structure
1216  *
1217  *  Validates the NVM checksum is correct. This is a function pointer entry
1218  *  point called by drivers.
1219  **/
1220 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1221 {
1222 	if (hw->nvm.ops.validate)
1223 		return hw->nvm.ops.validate(hw);
1224 
1225 	return -E1000_ERR_CONFIG;
1226 }
1227 
1228 /**
1229  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1230  *  @hw: pointer to the HW structure
1231  *
1232  *  Updates the NVM checksum. Currently no func pointer exists and all
1233  *  implementations are handled in the generic version of this function.
1234  **/
1235 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1236 {
1237 	if (hw->nvm.ops.update)
1238 		return hw->nvm.ops.update(hw);
1239 
1240 	return -E1000_ERR_CONFIG;
1241 }
1242 
1243 /**
1244  *  e1000_reload_nvm - Reloads EEPROM
1245  *  @hw: pointer to the HW structure
1246  *
1247  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1248  *  extended control register.
1249  **/
1250 void e1000_reload_nvm(struct e1000_hw *hw)
1251 {
1252 	if (hw->nvm.ops.reload)
1253 		hw->nvm.ops.reload(hw);
1254 }
1255 
1256 /**
1257  *  e1000_read_nvm - Reads NVM (EEPROM)
1258  *  @hw: pointer to the HW structure
1259  *  @offset: the word offset to read
1260  *  @words: number of 16-bit words to read
1261  *  @data: pointer to the properly sized buffer for the data.
1262  *
1263  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1264  *  pointer entry point called by drivers.
1265  **/
1266 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1267 {
1268 	if (hw->nvm.ops.read)
1269 		return hw->nvm.ops.read(hw, offset, words, data);
1270 
1271 	return -E1000_ERR_CONFIG;
1272 }
1273 
1274 /**
1275  *  e1000_write_nvm - Writes to NVM (EEPROM)
1276  *  @hw: pointer to the HW structure
1277  *  @offset: the word offset to read
1278  *  @words: number of 16-bit words to write
1279  *  @data: pointer to the properly sized buffer for the data.
1280  *
1281  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1282  *  pointer entry point called by drivers.
1283  **/
1284 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1285 {
1286 	if (hw->nvm.ops.write)
1287 		return hw->nvm.ops.write(hw, offset, words, data);
1288 
1289 	return E1000_SUCCESS;
1290 }
1291 
1292 /**
1293  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1294  *  @hw: pointer to the HW structure
1295  *  @reg: 32bit register offset
1296  *  @offset: the register to write
1297  *  @data: the value to write.
1298  *
1299  *  Writes the PHY register at offset with the value in data.
1300  *  This is a function pointer entry point called by drivers.
1301  **/
1302 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1303 			      u8 data)
1304 {
1305 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1306 }
1307 
1308 /**
1309  * e1000_power_up_phy - Restores link in case of PHY power down
1310  * @hw: pointer to the HW structure
1311  *
1312  * The phy may be powered down to save power, to turn off link when the
1313  * driver is unloaded, or wake on lan is not enabled (among others).
1314  **/
1315 void e1000_power_up_phy(struct e1000_hw *hw)
1316 {
1317 	if (hw->phy.ops.power_up)
1318 		hw->phy.ops.power_up(hw);
1319 
1320 	e1000_setup_link(hw);
1321 }
1322 
1323 /**
1324  * e1000_power_down_phy - Power down PHY
1325  * @hw: pointer to the HW structure
1326  *
1327  * The phy may be powered down to save power, to turn off link when the
1328  * driver is unloaded, or wake on lan is not enabled (among others).
1329  **/
1330 void e1000_power_down_phy(struct e1000_hw *hw)
1331 {
1332 	if (hw->phy.ops.power_down)
1333 		hw->phy.ops.power_down(hw);
1334 }
1335 
1336 /**
1337  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1338  *  @hw: pointer to the HW structure
1339  *
1340  *  Power on the optics and PCS.
1341  **/
1342 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1343 {
1344 	if (hw->mac.ops.power_up_serdes)
1345 		hw->mac.ops.power_up_serdes(hw);
1346 }
1347 
1348 /**
1349  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1350  *  @hw: pointer to the HW structure
1351  *
1352  *  Shutdown the optics and PCS on driver unload.
1353  **/
1354 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1355 {
1356 	if (hw->mac.ops.shutdown_serdes)
1357 		hw->mac.ops.shutdown_serdes(hw);
1358 }
1359 
1360