xref: /titanic_52/usr/src/uts/common/io/bge/bge_impl.h (revision 9b6cddcfb35f476ab090ca2318bb30d98c21ecb2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010-2013, by Broadcom, Inc.
24  * All Rights Reserved.
25  */
26 
27 /*
28  * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29  * All rights reserved.
30  */
31 
32 #ifndef _BGE_IMPL_H
33 #define	_BGE_IMPL_H
34 
35 
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39 
40 #include <sys/types.h>
41 #include <sys/stream.h>
42 #include <sys/strsun.h>
43 #include <sys/strsubr.h>
44 #include <sys/stat.h>
45 #include <sys/pci.h>
46 #include <sys/note.h>
47 #include <sys/modctl.h>
48 #include <sys/crc32.h>
49 #ifdef	__sparcv9
50 #include <v9/sys/membar.h>
51 #endif	/* __sparcv9 */
52 #include <sys/kstat.h>
53 #include <sys/ethernet.h>
54 #include <sys/errno.h>
55 #include <sys/dlpi.h>
56 #include <sys/devops.h>
57 #include <sys/debug.h>
58 #include <sys/conf.h>
59 
60 #include <netinet/ip6.h>
61 
62 #include <inet/common.h>
63 #include <inet/ip.h>
64 #include <inet/mi.h>
65 #include <inet/nd.h>
66 #include <sys/pattr.h>
67 
68 #include <sys/disp.h>
69 #include <sys/cmn_err.h>
70 #include <sys/ddi.h>
71 #include <sys/sunddi.h>
72 
73 #include <sys/ddifm.h>
74 #include <sys/fm/protocol.h>
75 #include <sys/fm/util.h>
76 #include <sys/fm/io/ddi.h>
77 
78 #include <sys/mac_provider.h>
79 #include <sys/mac_ether.h>
80 
81 #ifdef __amd64
82 #include <sys/x86_archext.h>
83 #endif
84 
85 #ifndef VLAN_TAGSZ
86 #define VLAN_TAGSZ 4
87 #endif
88 
89 #define BGE_STR_SIZE 32
90 
91 #ifndef OFFSETOF
92 #define OFFSETOF(_s, _f) \
93     ((uint32_t)((uint8_t *)(&((_s *)0)->_f) - \
94                 (uint8_t *)((uint8_t *) 0)))
95 #endif
96 
97 /*
98  * <sys/ethernet.h> *may* already have provided the typedef ether_addr_t;
99  * but of course C doesn't provide a way to check this directly.  So here
100  * we rely on the fact that the symbol ETHERTYPE_AT was added to the
101  * header file (as a #define, which we *can* test for) at the same time
102  * as the typedef for ether_addr_t ;-!
103  */
104 #ifndef	ETHERTYPE_AT
105 typedef uchar_t ether_addr_t[ETHERADDRL];
106 #endif	/* ETHERTYPE_AT */
107 
108 /*
109  * Reconfiguring the network devices requires the net_config privilege
110  * in Solaris 10+.
111  */
112 extern int secpolicy_net_config(const cred_t *, boolean_t);
113 
114 #include <sys/miiregs.h>		/* by fjlite out of intel 	*/
115 
116 #include "bge.h"
117 #include "bge_hw.h"
118 
119 /*
120  * Compile-time feature switches ...
121  */
122 #define	BGE_DO_PPIO		0	/* peek/poke ioctls		*/
123 #define	BGE_RX_SOFTINT		0	/* softint per receive ring	*/
124 #define	BGE_CHOOSE_SEND_METHOD	0	/* send by copying only		*/
125 
126 /*
127  * NOTES:
128  *
129  * #defines:
130  *
131  *	BGE_PCI_CONFIG_RNUMBER and BGE_PCI_OPREGS_RNUMBER are the
132  *	register-set numbers to use for the config space registers
133  *	and the operating registers respectively.  On an OBP-based
134  *	machine, regset 0 refers to CONFIG space, and regset 1 will
135  *	be the operating registers in MEMORY space.  If an expansion
136  *	ROM is fitted, it may appear as a further register set.
137  *
138  *	BGE_DMA_MODE defines the mode (STREAMING/CONSISTENT) used
139  *	for the data buffers.  The descriptors are always set up
140  *	in CONSISTENT mode.
141  *
142  *	BGE_HEADROOM defines how much space we'll leave in allocated
143  *	mblks before the first valid data byte.  This should be chosen
144  *	to be 2 modulo 4, so that once the ethernet header (14 bytes)
145  *	has been stripped off, the packet data will be 4-byte aligned.
146  *	The remaining space can be used by upstream modules to prepend
147  *	any headers required.
148  */
149 
150 #define	BGE_PCI_CONFIG_RNUMBER	0
151 #define	BGE_PCI_OPREGS_RNUMBER	1
152 #define	BGE_PCI_APEREGS_RNUMBER	2
153 #define	BGE_DMA_MODE		DDI_DMA_STREAMING
154 #define	BGE_HEADROOM		34
155 
156 /*
157  *	BGE_HALFTICK is half the period of the cyclic callback (in
158  *	nanoseconds), chosen so that 0.5s <= cyclic period <= 1s.
159  *	Other time values are derived as odd multiples of this value
160  *	so that there's little chance of ambiguity w.r.t. which tick
161  *	a timeout expires on.
162  *
163  *	BGE_PHY_STABLE_TIME is the period for which the contents of the
164  *	PHY's status register must remain unchanging before we accept
165  *	that the link has come up.  [Sometimes the link comes up, only
166  *	to go down again within a short time as the autonegotiation
167  *	process cycles through various options before finding the best
168  *	compatible mode.  We don't want to report repeated link up/down
169  *	cycles, so we wait until we think it's stable.]
170  *
171  *	BGE_SERDES_STABLE_TIME is the analogous value for the SerDes
172  *	interface.  It's much shorter, 'cos the SerDes doesn't show
173  *	these effects as much as the copper PHY.
174  *
175  *	BGE_LINK_SETTLE_TIME is the period during which we regard link
176  *	up/down cycles as an normal event after resetting/reprogramming
177  *	the PHY.  During this time, link up/down messages are sent to
178  *	the log only, not the console.  At any other time, link change
179  *	events are regarded as unexpected and sent to both console & log.
180  *
181  *	These latter two values have no theoretical justification, but
182  *	are derived from observations and heuristics - the values below
183  *	just seem to work quite well.
184  */
185 
186 #define	BGE_HALFTICK		268435456LL		/* 2**28 ns!	*/
187 #define	BGE_CYCLIC_PERIOD	(4*BGE_HALFTICK)	/*    ~1.0s	*/
188 #define	BGE_CYCLIC_TIMEOUT	(drv_usectohz(1000000))	/*    ~1.0s	*/
189 #define	BGE_SERDES_STABLE_TIME	(3*BGE_HALFTICK)	/*    ~0.8s	*/
190 #define	BGE_PHY_STABLE_TIME	(11*BGE_HALFTICK)	/*    ~3.0s	*/
191 #define	BGE_LINK_SETTLE_TIME	(111*BGE_HALFTICK)	/*   ~30.0s	*/
192 
193 /*
194  * Indices used to identify the different buffer rings internally
195  */
196 #define	BGE_STD_BUFF_RING	0
197 #define	BGE_JUMBO_BUFF_RING	1
198 #define	BGE_MINI_BUFF_RING	2
199 
200 /*
201  * Current implementation limits
202  */
203 #define	BGE_BUFF_RINGS_USED	2		/* std & jumbo ring	*/
204 						/* for now		*/
205 #define	BGE_RECV_RINGS_USED	16		/* up to 16 rtn rings	*/
206 						/* for now		*/
207 #define	BGE_SEND_RINGS_USED	4		/* up to 4 tx rings	*/
208 						/* for now		*/
209 #define	BGE_HASH_TABLE_SIZE	128		/* may be 256 later	*/
210 
211 /*
212  * Ring/buffer size parameters
213  *
214  * All of the (up to) 16 TX rings & and the corresponding buffers are the
215  * same size.
216  *
217  * Each of the (up to) 3 receive producer (aka buffer) rings is a different
218  * size and has different sized buffers associated with it too.
219  *
220  * The (up to) 16 receive return rings have no buffers associated with them.
221  * The number of slots per receive return ring must be 2048 if the mini
222  * ring is enabled, otherwise it may be 1024.  See Broadcom document
223  * 570X-PG102-R page 56.
224  *
225  * Note: only the 5700 supported external memory (and therefore the mini
226  * ring); the 5702/3/4 don't.  This driver doesn't support the original
227  * 5700, so we won't ever use the mini ring capability.
228  */
229 
230 #define	BGE_SEND_RINGS_DEFAULT		1
231 #define	BGE_RECV_RINGS_DEFAULT		1
232 
233 #define	BGE_SEND_BUFF_SIZE_DEFAULT	1536
234 #define	BGE_SEND_BUFF_SIZE_JUMBO	9022
235 #define	BGE_SEND_SLOTS_USED	512
236 
237 #define	BGE_STD_BUFF_SIZE	1536		/* 0x600		*/
238 #define	BGE_STD_SLOTS_USED	512
239 
240 #define	BGE_JUMBO_BUFF_SIZE	9022		/* 9k			*/
241 #define	BGE_JUMBO_SLOTS_USED	256
242 
243 #define	BGE_MINI_BUFF_SIZE	128		/* 64? 256?		*/
244 #define	BGE_MINI_SLOTS_USED	0		/* must be 0; see above	*/
245 
246 #define	BGE_RECV_BUFF_SIZE	0
247 #if	BGE_MINI_SLOTS_USED > 0
248 #define	BGE_RECV_SLOTS_USED	2048		/* required		*/
249 #else
250 #define	BGE_RECV_SLOTS_USED	1024		/* could be 2048 anyway	*/
251 #endif
252 
253 #define	BGE_SEND_BUF_NUM	512
254 #define	BGE_SEND_BUF_ARRAY	16
255 #define	BGE_SEND_BUF_ARRAY_JUMBO	3
256 #define	BGE_SEND_BUF_MAX	(BGE_SEND_BUF_NUM*BGE_SEND_BUF_ARRAY)
257 
258 /*
259  * PCI type. PCI-Express or PCI/PCIX
260  */
261 #define	BGE_PCI		0
262 #define	BGE_PCI_E	1
263 #define	BGE_PCI_X	2
264 
265 /*
266  * Statistic type. There are two type of statistic:
267  * statistic block and statistic registers
268  */
269 #define	BGE_STAT_BLK	1
270 #define	BGE_STAT_REG	2
271 
272 /*
273  * MTU.for all chipsets ,the default is 1500 ,and some chipsets
274  * support 9k jumbo frames size
275  */
276 #define	BGE_DEFAULT_MTU		1500
277 #define	BGE_MAXIMUM_MTU		9000
278 
279 /*
280  * Pad the h/w defined status block (which can be up to 80 bytes long)
281  * to a power-of-two boundary
282  */
283 #define	BGE_STATUS_PADDING	(128 - sizeof (bge_status_t))
284 
285 /*
286  * On platforms which support DVMA, we can simply allocate one big piece
287  * of memory for all the Tx buffers and another for the Rx buffers, and
288  * then carve them up as required.  It doesn't matter if they aren't just
289  * one physically contiguous piece each, because both the CPU *and* the
290  * I/O device can see them *as though they were*.
291  *
292  * However, if only physically-addressed DMA is possible, this doesn't
293  * work; we can't expect to get enough contiguously-addressed memory for
294  * all the buffers of each type, so in this case we request a number of
295  * smaller pieces, each still large enough for several buffers but small
296  * enough to fit within "an I/O page" (e.g. 64K).
297  *
298  * The #define below specifies how many pieces of memory are to be used;
299  * 16 has been shown to work on an i86pc architecture but this could be
300  * different on other non-DVMA platforms ...
301  */
302 #ifdef	_DMA_USES_VIRTADDR
303 #define	BGE_SPLIT		1		/* no split required	*/
304 #else
305 #if ((BGE_BUFF_RINGS_USED > 1) || (BGE_SEND_RINGS_USED > 1) || \
306 	(BGE_RECV_RINGS_USED > 1))
307 #define	BGE_SPLIT		128		/* split 128 ways	*/
308 #else
309 #define	BGE_SPLIT		16		/* split 16 ways	*/
310 #endif
311 #endif	/* _DMA_USES_VIRTADDR */
312 
313 #define	BGE_RECV_RINGS_SPLIT	(BGE_RECV_RINGS_MAX + 1)
314 
315 /*
316  * STREAMS parameters
317  */
318 #define	BGE_IDNUM		0		/* zero seems to work	*/
319 #define	BGE_LOWAT		(256)
320 #define	BGE_HIWAT		(256*1024)
321 
322 /*
323  * Basic data types, for clarity in distinguishing 'numbers'
324  * used for different purposes ...
325  *
326  * A <bge_regno_t> is a register 'address' (offset) in any one of
327  * various address spaces (PCI config space, PCI memory-mapped I/O
328  * register space, MII registers, etc).  None of these exceeds 64K,
329  * so we could use a 16-bit representation but pointer-sized objects
330  * are more "natural" in most architectures; they seem to be handled
331  * more efficiently on SPARC and no worse on x86.
332  *
333  * BGE_REGNO_NONE represents the non-existent value in this space.
334  */
335 typedef uintptr_t bge_regno_t;			/* register # (offset)	*/
336 #define	BGE_REGNO_NONE		(~(uintptr_t)0u)
337 
338 /*
339  * Describes one chunk of allocated DMA-able memory
340  *
341  * In some cases, this is a single chunk as allocated from the system;
342  * but we also use this structure to represent slices carved off such
343  * a chunk.  Even when we don't really need all the information, we
344  * use this structure as a convenient way of correlating the various
345  * ways of looking at a piece of memory (kernel VA, IO space DVMA,
346  * handle+offset, etc).
347  */
348 typedef struct {
349 	ddi_acc_handle_t	acc_hdl;	/* handle for memory	*/
350 	void			*mem_va;	/* CPU VA of memory	*/
351 	uint32_t		nslots;		/* number of slots	*/
352 	uint32_t		size;		/* size per slot	*/
353 	size_t			alength;	/* allocated size	*/
354 						/* >= product of above	*/
355 
356 	ddi_dma_handle_t	dma_hdl;	/* DMA handle		*/
357 	offset_t		offset;		/* relative to handle	*/
358 	ddi_dma_cookie_t	cookie;		/* associated cookie	*/
359 	uint32_t		ncookies;	/* must be 1		*/
360 	uint32_t		token;		/* arbitrary identifier	*/
361 } dma_area_t;					/* 0x50 (80) bytes	*/
362 
363 typedef struct bge_queue_item {
364 	struct bge_queue_item	*next;
365 	void			*item;
366 } bge_queue_item_t;
367 
368 typedef struct bge_queue {
369 	bge_queue_item_t	*head;
370 	uint32_t		count;
371 	kmutex_t		*lock;
372 } bge_queue_t;
373 /*
374  * Software version of the Receive Buffer Descriptor
375  * There's one of these for each receive buffer (up to 256/512/1024 per ring).
376  */
377 typedef struct sw_rbd {
378 	dma_area_t		pbuf;		/* (const) related	*/
379 						/* buffer area		*/
380 } sw_rbd_t;					/* 0x50 (80) bytes	*/
381 
382 /*
383  * Software Receive Buffer (Producer) Ring Control Block
384  * There's one of these for each receiver producer ring (up to 3),
385  * but each holds buffers of a different size.
386  */
387 typedef struct buff_ring {
388 	dma_area_t		desc;		/* (const) related h/w	*/
389 						/* descriptor area	*/
390 	dma_area_t		buf[BGE_SPLIT];	/* (const) related	*/
391 						/* buffer area(s)	*/
392 	bge_rcb_t		hw_rcb;		/* (const) image of h/w	*/
393 						/* RCB, and used to	*/
394 	struct bge		*bgep;		/* (const) containing	*/
395 						/* driver soft state	*/
396 						/* initialise same	*/
397 	volatile uint16_t	*cons_index_p;	/* (const) ptr to h/w	*/
398 						/* "consumer index"	*/
399 						/* (in status block)	*/
400 
401 	/*
402 	 * The rf_lock must be held when updating the h/w producer index
403 	 * mailbox register (*chip_mbox_reg), or the s/w producer index
404 	 * (rf_next).
405 	 */
406 	bge_regno_t		chip_mbx_reg;	/* (const) h/w producer	*/
407 						/* index mailbox offset	*/
408 	kmutex_t		rf_lock[1];	/* serialize refill	*/
409 	uint64_t		rf_next;	/* next slot to refill	*/
410 						/* ("producer index")	*/
411 
412 	sw_rbd_t		*sw_rbds; 	/* software descriptors	*/
413 	void			*spare[4];	/* padding		*/
414 } buff_ring_t;					/* 0x100 (256) bytes	*/
415 
416 typedef struct bge_multi_mac {
417 	int		naddr;		/* total supported addresses */
418 	int		naddrfree;	/* free addresses slots */
419 	ether_addr_t	mac_addr[MAC_ADDRESS_REGS_MAX];
420 	boolean_t	mac_addr_set[MAC_ADDRESS_REGS_MAX];
421 } bge_multi_mac_t;
422 
423 /*
424  * Software Receive (Return) Ring Control Block
425  * There's one of these for each receiver return ring (up to 16).
426  */
427 typedef struct recv_ring {
428 	/*
429 	 * The elements flagged (const) in the comments below are
430 	 * set up once during initialiation and thereafter unchanged.
431 	 */
432 	dma_area_t		desc;		/* (const) related h/w	*/
433 						/* descriptor area	*/
434 	bge_rcb_t		hw_rcb;		/* (const) image of h/w	*/
435 						/* RCB, and used to	*/
436 						/* initialise same	*/
437 	struct bge		*bgep;		/* (const) containing	*/
438 						/* driver soft state	*/
439 	ddi_softintr_t		rx_softint;	/* (const) per-ring	*/
440 						/* receive callback	*/
441 	volatile uint16_t	*prod_index_p;	/* (const) ptr to h/w	*/
442 						/* "producer index"	*/
443 						/* (in status block)	*/
444 	/*
445 	 * The rx_lock must be held when updating the h/w consumer index
446 	 * mailbox register (*chip_mbox_reg), or the s/w consumer index
447 	 * (rx_next).
448 	 */
449 	bge_regno_t		chip_mbx_reg;	/* (const) h/w consumer	*/
450 						/* index mailbox offset	*/
451 	kmutex_t		rx_lock[1];	/* serialize receive	*/
452 	uint64_t		rx_next;	/* next slot to examine	*/
453 
454 	mac_ring_handle_t	ring_handle;
455 	mac_group_handle_t	ring_group_handle;
456 	uint64_t		ring_gen_num;
457 	bge_rule_info_t		*mac_addr_rule;
458 	uint8_t			mac_addr_val[ETHERADDRL];
459 	int			poll_flag;	/* Polling flag		*/
460 
461 	/* Per-ring statistics */
462 	uint64_t		rx_pkts;	/* Received Packets Count */
463 	uint64_t		rx_bytes;	/* Received Bytes Count */
464 } recv_ring_t;
465 
466 
467 /*
468  * Send packet structure
469  */
470 typedef struct send_pkt {
471 	uint16_t		vlan_tci;
472 	uint32_t		pflags;
473 	boolean_t		tx_ready;
474 	bge_queue_item_t	*txbuf_item;
475 } send_pkt_t;
476 
477 /*
478  * Software version of tx buffer structure
479  */
480 typedef struct sw_txbuf {
481 	dma_area_t		buf;
482 	uint32_t		copy_len;
483 } sw_txbuf_t;
484 
485 /*
486  * Software version of the Send Buffer Descriptor
487  * There's one of these for each send buffer (up to 512 per ring)
488  */
489 typedef struct sw_sbd {
490 	dma_area_t		desc;		/* (const) related h/w	*/
491 						/* descriptor area	*/
492 	bge_queue_item_t	*pbuf;		/* (const) related	*/
493 						/* buffer area		*/
494 } sw_sbd_t;
495 
496 /*
497  * Software Send Ring Control Block
498  * There's one of these for each of (up to) 16 send rings
499  */
500 typedef struct send_ring {
501 	/*
502 	 * The elements flagged (const) in the comments below are
503 	 * set up once during initialiation and thereafter unchanged.
504 	 */
505 	dma_area_t		desc;		/* (const) related h/w	*/
506 						/* descriptor area	*/
507 	dma_area_t		buf[BGE_SEND_BUF_ARRAY][BGE_SPLIT];
508 						/* buffer area(s)	*/
509 	bge_rcb_t		hw_rcb;		/* (const) image of h/w	*/
510 						/* RCB, and used to	*/
511 						/* initialise same	*/
512 	struct bge		*bgep;		/* (const) containing	*/
513 						/* driver soft state	*/
514 	volatile uint16_t	*cons_index_p;	/* (const) ptr to h/w	*/
515 						/* "consumer index"	*/
516 						/* (in status block)	*/
517 
518 	bge_regno_t		chip_mbx_reg;	/* (const) h/w producer	*/
519 						/* index mailbox offset	*/
520 	/*
521 	 * Tx buffer queue
522 	 */
523 	bge_queue_t		txbuf_queue;
524 	bge_queue_t		freetxbuf_queue;
525 	bge_queue_t		*txbuf_push_queue;
526 	bge_queue_t		*txbuf_pop_queue;
527 	kmutex_t		txbuf_lock[1];
528 	kmutex_t		freetxbuf_lock[1];
529 	bge_queue_item_t	*txbuf_head;
530 	send_pkt_t		*pktp;
531 	uint64_t		txpkt_next;
532 	uint64_t		txfill_next;
533 	sw_txbuf_t		*txbuf;
534 	uint32_t		tx_buffers;
535 	uint32_t		tx_buffers_low;
536 	uint32_t		tx_array_max;
537 	uint32_t		tx_array;
538 	kmutex_t		tx_lock[1];	/* serialize h/w update	*/
539 						/* ("producer index")	*/
540 	uint64_t		tx_next;	/* next slot to use	*/
541 	uint64_t		tx_flow;	/* # concurrent sends	*/
542 	uint64_t		tx_block;
543 	uint64_t		tx_nobd;
544 	uint64_t		tx_nobuf;
545 	uint64_t		tx_alloc_fail;
546 
547 	/*
548 	 * These counters/indexes are manipulated in the transmit
549 	 * path using atomics rather than mutexes for speed
550 	 */
551 	uint64_t		tx_free;	/* # of slots available	*/
552 
553 	/*
554 	 * The tc_lock must be held while manipulating the s/w consumer
555 	 * index (tc_next).
556 	 */
557 	kmutex_t		tc_lock[1];	/* serialize recycle	*/
558 	uint64_t		tc_next;	/* next slot to recycle	*/
559 						/* ("consumer index")	*/
560 
561 	sw_sbd_t		*sw_sbds; 	/* software descriptors	*/
562 	uint64_t		mac_resid;	/* special per resource id */
563 	uint64_t		pushed_bytes;
564 } send_ring_t;					/* 0x100 (256) bytes	*/
565 
566 typedef struct {
567 	ether_addr_t		addr;		/* in canonical form	*/
568 	uint8_t			spare;
569 	boolean_t		set;		/* B_TRUE => valid	*/
570 } bge_mac_addr_t;
571 
572 /*
573  * The original 5700/01 supported only SEEPROMs.  Later chips (5702+)
574  * support both SEEPROMs (using the same 2-wire CLK/DATA interface for
575  * the hardware and a backwards-compatible software access method), and
576  * buffered or unbuffered FLASH devices connected to the 4-wire SPI bus
577  * and using a new software access method.
578  *
579  * The access methods for SEEPROM and Flash are generally similar, with
580  * the chip handling the serialisation/deserialisation and handshaking,
581  * but the registers used are different, as are a few details of the
582  * protocol, and the timing, so we have to determine which (if any) is
583  * fitted.
584  *
585  * The value UNKNOWN means just that; we haven't yet tried to determine
586  * the device type.
587  *
588  * The value NONE can indicate either that a real and definite absence of
589  * any NVmem has been detected, or that there may be NVmem but we can't
590  * determine its type, perhaps because the NVconfig pins on the chip have
591  * been wired up incorrectly.  In either case, access to the NVmem (if any)
592  * is not supported.
593  */
594 enum bge_nvmem_type {
595 	BGE_NVTYPE_NONE = -1,			/* (or indeterminable)	*/
596 	BGE_NVTYPE_UNKNOWN,			/* not yet checked	*/
597 	BGE_NVTYPE_SEEPROM,			/* BCM5700/5701 only	*/
598 	BGE_NVTYPE_LEGACY_SEEPROM,		/* 5702+		*/
599 	BGE_NVTYPE_UNBUFFERED_FLASH,		/* 5702+		*/
600 	BGE_NVTYPE_BUFFERED_FLASH		/* 5702+		*/
601 };
602 
603 /*
604  * Describes the characteristics of a specific chip
605  *
606  * Note: elements from <businfo> to <latency> are filled in by during
607  * the first phase of chip initialisation (see bge_chip_cfg_init()).
608  * The remaining ones are determined just after the first RESET, in
609  * bge_poll_firmware().  Thereafter, the entire structure is readonly.
610  */
611 typedef struct {
612 	uint32_t		asic_rev;	/* masked from MHCR	*/
613 	uint32_t		asic_rev_prod_id; /* new revision ID format */
614 	uint32_t		businfo;	/* from private reg	*/
615 	uint16_t		command;	/* saved during attach	*/
616 
617 	uint16_t		vendor;		/* vendor-id		*/
618 	uint16_t		device;		/* device-id		*/
619 	uint16_t		subven;		/* subsystem-vendor-id	*/
620 	uint16_t		subdev;		/* subsystem-id		*/
621 	uint8_t			revision;	/* revision-id		*/
622 	uint8_t			clsize;		/* cache-line-size	*/
623 	uint8_t			latency;	/* latency-timer	*/
624 
625 	uint8_t			flags;
626 	uint16_t		chip_label;	/* numeric part only	*/
627 						/* (e.g. 5703/5794/etc)	*/
628 	uint32_t		mbuf_base;	/* Mbuf pool parameters */
629 	uint32_t		mbuf_length;	/* depend on chiptype	*/
630 	uint32_t		pci_type;
631 	uint32_t		statistic_type;
632 	uint32_t		bge_dma_rwctrl;
633 	uint32_t		bge_mlcr_default;
634 	uint32_t		recv_slots;	/* receive ring size    */
635 	enum bge_nvmem_type	nvtype;		/* SEEPROM or Flash	*/
636 
637 	uint16_t		jumbo_slots;
638 	uint16_t		ethmax_size;
639 	uint16_t		snd_buff_size;
640 	uint16_t		recv_jumbo_size;
641 	uint16_t		std_buf_size;
642 	uint32_t		mbuf_hi_water;
643 	uint32_t		mbuf_lo_water_rmac;
644 	uint32_t		mbuf_lo_water_rdma;
645 
646 	uint32_t		rx_rings;	/* from bge.conf	*/
647 	uint32_t		tx_rings;	/* from bge.conf	*/
648 	uint32_t		eee;		/* from bge.conf	*/
649 	uint32_t		default_mtu;	/* from bge.conf	*/
650 
651 	uint64_t		hw_mac_addr;	/* from chip register	*/
652 	bge_mac_addr_t		vendor_addr;	/* transform of same	*/
653 	boolean_t		msi_enabled;	/* default to true */
654 
655 	uint32_t		rx_ticks_norm;
656 	uint32_t		rx_count_norm;
657 	uint32_t		tx_ticks_norm;
658 	uint32_t		tx_count_norm;
659 	uint32_t		mask_pci_int;
660 } chip_id_t;
661 
662 #define	CHIP_FLAG_SUPPORTED	0x80
663 #define	CHIP_FLAG_SERDES	0x40
664 #define	CHIP_FLAG_PARTIAL_CSUM	0x20
665 #define	CHIP_FLAG_NO_JUMBO	0x1
666 
667 /*
668  * Collection of physical-layer functions to:
669  *	(re)initialise the physical layer
670  *	update it to match software settings
671  *	check for link status change
672  */
673 typedef struct {
674 	int			(*phys_restart)(struct bge *, boolean_t);
675 	int			(*phys_update)(struct bge *);
676 	boolean_t		(*phys_check)(struct bge *, boolean_t);
677 } phys_ops_t;
678 
679 
680 /*
681  * Actual state of the BCM570x chip
682  */
683 enum bge_chip_state {
684 	BGE_CHIP_FAULT = -2,			/* fault, need reset	*/
685 	BGE_CHIP_ERROR,				/* error, want reset	*/
686 	BGE_CHIP_INITIAL,			/* Initial state only	*/
687 	BGE_CHIP_RESET,				/* reset, need init	*/
688 	BGE_CHIP_STOPPED,			/* Tx/Rx stopped	*/
689 	BGE_CHIP_RUNNING			/* with interrupts	*/
690 };
691 
692 enum bge_mac_state {
693 	BGE_MAC_STOPPED = 0,
694 	BGE_MAC_STARTED
695 };
696 
697 /*
698  * (Internal) return values from ioctl subroutines
699  */
700 enum ioc_reply {
701 	IOC_INVAL = -1,				/* bad, NAK with EINVAL	*/
702 	IOC_DONE,				/* OK, reply sent	*/
703 	IOC_ACK,				/* OK, just send ACK	*/
704 	IOC_REPLY,				/* OK, just send reply	*/
705 	IOC_RESTART_ACK,			/* OK, restart & ACK	*/
706 	IOC_RESTART_REPLY			/* OK, restart & reply	*/
707 };
708 
709 /*
710  * (Internal) return values from send_msg subroutines
711  */
712 enum send_status {
713 	SEND_FAIL = -1,				/* Not OK		*/
714 	SEND_KEEP,				/* OK, msg queued	*/
715 	SEND_FREE				/* OK, free msg		*/
716 };
717 
718 /*
719  * (Internal) enumeration of this driver's kstats
720  */
721 enum {
722 	BGE_KSTAT_RAW = 0,
723 	BGE_KSTAT_STATS,
724 	BGE_KSTAT_CHIPID,
725 	BGE_KSTAT_DRIVER,
726 	BGE_KSTAT_PHYS,
727 
728 	BGE_KSTAT_COUNT
729 };
730 
731 #define	BGE_MAX_RESOURCES 255
732 
733 /*
734  * Per-instance soft-state structure
735  */
736 typedef struct bge {
737 	/*
738 	 * These fields are set by attach() and unchanged thereafter ...
739 	 */
740 	char			version[BGE_STR_SIZE];
741 #define BGE_FW_VER_SIZE 32
742 	char			fw_version[BGE_FW_VER_SIZE];
743 	dev_info_t		*devinfo;	/* device instance	*/
744 	uint32_t		pci_bus;	/* from "regs" prop */
745 	uint32_t		pci_dev;	/* from "regs" prop */
746 	uint32_t		pci_func;	/* from "regs" prop */
747 	mac_handle_t		mh;		/* mac module handle	*/
748 	ddi_acc_handle_t	cfg_handle;	/* DDI I/O handle	*/
749 	ddi_acc_handle_t	io_handle;	/* DDI I/O handle	*/
750 	void			*io_regs;	/* mapped registers	*/
751 	ddi_acc_handle_t	ape_handle;	/* DDI I/O handle	*/
752 	void			*ape_regs;	/* mapped registers	*/
753 	boolean_t		ape_enabled;
754 	boolean_t		ape_has_ncsi;
755 
756 	ddi_periodic_t		periodic_id;	/* periodical callback	*/
757 	ddi_softintr_t		factotum_id;	/* factotum callback	*/
758 	ddi_softintr_t		drain_id;	/* reschedule callback	*/
759 
760 	ddi_intr_handle_t 	*htable;	/* For array of interrupts */
761 	int			intr_type;	/* What type of interrupt */
762 	int			intr_cnt;	/* # of intrs count returned */
763 	uint_t			intr_pri;	/* Interrupt priority	*/
764 	int			intr_cap;	/* Interrupt capabilities */
765 	uint32_t		progress;	/* attach tracking	*/
766 	uint32_t		debug;		/* per-instance debug	*/
767 	chip_id_t		chipid;
768 	const phys_ops_t	*physops;
769 	char			ifname[8];	/* "bge0" ... "bge999"	*/
770 
771 	int			fm_capabilities;	/* FMA capabilities */
772 
773 	/*
774 	 * These structures describe the blocks of memory allocated during
775 	 * attach().  They remain unchanged thereafter, although the memory
776 	 * they describe is carved up into various separate regions and may
777 	 * therefore be described by other structures as well.
778 	 */
779 	dma_area_t		tx_desc;	/* transmit descriptors	*/
780 	dma_area_t		rx_desc[BGE_RECV_RINGS_SPLIT];
781 						/* receive descriptors	*/
782 	dma_area_t		tx_buff[BGE_SPLIT];
783 	dma_area_t		rx_buff[BGE_SPLIT];
784 
785 	/*
786 	 * The memory described by the <dma_area> structures above
787 	 * is carved up into various pieces, which are described by
788 	 * the structures below.
789 	 */
790 	dma_area_t		statistics;	/* describes hardware	*/
791 						/* statistics area	*/
792 	dma_area_t		status_block;	/* describes hardware	*/
793 						/* status block		*/
794 	/*
795 	 * For the BCM5705/5788/5721/5751/5752/5714 and 5715,
796 	 * the statistic block is not available,the statistic counter must
797 	 * be gotten from statistic registers.And bge_statistics_reg_t record
798 	 * the statistic registers value
799 	 */
800 	bge_statistics_reg_t	*pstats;
801 
802 	/*
803 	 * Runtime read-write data starts here ...
804 	 *
805 	 * 3 Buffer Rings (std/jumbo/mini)
806 	 * 16 Receive (Return) Rings
807 	 * 16 Send Rings
808 	 *
809 	 * Note: they're not necessarily all used.
810 	 */
811 	buff_ring_t		buff[BGE_BUFF_RINGS_MAX]; /*  3*0x0100	*/
812 
813 	/* may be obsoleted */
814 	recv_ring_t		recv[BGE_RECV_RINGS_MAX]; /* 16*0x0090	*/
815 	send_ring_t		send[BGE_SEND_RINGS_MAX]; /* 16*0x0100	*/
816 
817 	mac_resource_handle_t macRxResourceHandles[BGE_RECV_RINGS_MAX];
818 
819 	/*
820 	 * Locks:
821 	 *
822 	 * Each buffer ring contains its own <rf_lock> which regulates
823 	 *	ring refilling.
824 	 *
825 	 * Each receive (return) ring contains its own <rx_lock> which
826 	 *	protects the critical cyclic counters etc.
827 	 *
828 	 * Each send ring contains two locks: <tx_lock> for the send-path
829 	 * 	protocol data and <tc_lock> for send-buffer recycling.
830 	 *
831 	 * Finally <genlock> is a general lock, protecting most other
832 	 *	operational data in the state structure and chip register
833 	 *	accesses.  It is acquired by the interrupt handler and
834 	 *	most "mode-control" routines.
835 	 *
836 	 * Any of the locks can be acquired singly, but where multiple
837 	 * locks are acquired, they *must* be in the order:
838 	 *
839 	 *	genlock >>> rx_lock >>> rf_lock >>> tx_lock >>> tc_lock.
840 	 *
841 	 * and within any one class of lock the rings must be locked in
842 	 * ascending order (send[0].tc_lock >>> send[1].tc_lock), etc.
843 	 *
844 	 * Note: actually I don't believe there's any need to acquire
845 	 * locks on multiple rings, or even locks of all these classes
846 	 * concurrently; but I've set out the above order so there is a
847 	 * clear definition of lock hierarchy in case it's ever needed.
848 	 *
849 	 * Note: the combinations of locks that are actually held
850 	 * concurrently are:
851 	 *
852 	 *	genlock >>>			(bge_chip_interrupt())
853 	 *		rx_lock[i] >>>		(bge_receive())
854 	 *			rf_lock[n]	(bge_refill())
855 	 *		tc_lock[i]		(bge_recycle())
856 	 */
857 	kmutex_t		genlock[1];
858 	krwlock_t		errlock[1];
859 	kmutex_t		softintrlock[1];
860 
861 	/*
862 	 * Current Ethernet addresses and multicast hash (bitmap) and
863 	 * refcount tables, protected by <genlock>
864 	 */
865 	bge_mac_addr_t		curr_addr[MAC_ADDRESS_REGS_MAX];
866 	uint32_t		mcast_hash[BGE_HASH_TABLE_SIZE/32];
867 	uint8_t			mcast_refs[BGE_HASH_TABLE_SIZE];
868 	uint32_t		unicst_addr_total; /* total unicst addresses */
869 	uint32_t		unicst_addr_avail;
870 					/* unused unicst addr slots */
871 
872 	/*
873 	 * Link state data (protected by genlock)
874 	 */
875 	link_state_t		link_state;
876 
877 	/*
878 	 * Physical layer: copper only
879 	 */
880 	bge_regno_t		phy_mii_addr;	/* should be (const) 1!	*/
881 	uint16_t		phy_gen_status;
882 	uint16_t		phy_aux_status;
883 
884 	/*
885 	 * Physical layer: serdes only
886 	 */
887 	uint32_t		serdes_status;
888 	uint32_t		serdes_advert;
889 	uint32_t		serdes_lpadv;
890 
891 	/*
892 	 * Driver kstats, protected by <genlock> where necessary
893 	 */
894 	kstat_t			*bge_kstats[BGE_KSTAT_COUNT];
895 
896 	/*
897 	 * Miscellaneous operating variables (protected by genlock)
898 	 */
899 	uint64_t		chip_resets;	/* # of chip RESETs	*/
900 	uint64_t		missed_dmas;	/* # of missed DMAs	*/
901 	uint64_t		missed_updates;	/* # of missed updates	*/
902 	enum bge_mac_state	bge_mac_state;	/* definitions above	*/
903 	enum bge_chip_state	bge_chip_state;	/* definitions above	*/
904 	boolean_t		send_hw_tcp_csum;
905 	boolean_t		recv_hw_tcp_csum;
906 	boolean_t		promisc;
907 	boolean_t		manual_reset;
908 
909 	/*
910 	 * Miscellaneous operating variables (not synchronised)
911 	 */
912 	uint32_t		watchdog;	/* watches for Tx stall	*/
913 	boolean_t		bge_intr_running;
914 	boolean_t		bge_dma_error;
915 	boolean_t		tx_resched_needed;
916 	uint64_t		tx_resched;
917 	uint32_t		factotum_flag;	/* softint pending	*/
918 	uintptr_t		pagemask;
919 	boolean_t		rdma_length_bug_on_5719;
920 
921 	/*
922 	 * NDD parameters (protected by genlock)
923 	 */
924 	caddr_t			nd_data_p;
925 
926 	/*
927 	 * A flag to prevent excessive config space accesses
928 	 * on platforms having BCM5714C/15C
929 	 */
930 	boolean_t		lastWriteZeroData;
931 
932 	/*
933 	 * Spare space, plus guard element used to check data integrity
934 	 */
935 	uint64_t		spare[5];
936 	uint64_t		bge_guard;
937 
938 	/*
939 	 * Receive rules configure
940 	 */
941 	bge_recv_rule_t	recv_rules[RECV_RULES_NUM_MAX];
942 
943 #ifdef BGE_IPMI_ASF
944 	boolean_t		asf_enabled;
945 	boolean_t		asf_wordswapped;
946 	boolean_t		asf_newhandshake;
947 	boolean_t		asf_pseudostop;
948 
949 	uint32_t		asf_status;
950 	timeout_id_t		asf_timeout_id;
951 #endif
952 	uint32_t		param_en_pause:1,
953 				param_en_asym_pause:1,
954 				param_en_1000hdx:1,
955 				param_en_1000fdx:1,
956 				param_en_100fdx:1,
957 				param_en_100hdx:1,
958 				param_en_10fdx:1,
959 				param_en_10hdx:1,
960 				param_adv_autoneg:1,
961 				param_adv_1000fdx:1,
962 				param_adv_1000hdx:1,
963 				param_adv_100fdx:1,
964 				param_adv_100hdx:1,
965 				param_adv_10fdx:1,
966 				param_adv_10hdx:1,
967 				param_lp_autoneg:1,
968 				param_lp_pause:1,
969 				param_lp_asym_pause:1,
970 				param_lp_1000fdx:1,
971 				param_lp_1000hdx:1,
972 				param_lp_100fdx:1,
973 				param_lp_100hdx:1,
974 				param_lp_10fdx:1,
975 				param_lp_10hdx:1,
976 				param_link_up:1,
977 				param_link_autoneg:1,
978 				param_adv_pause:1,
979 				param_adv_asym_pause:1,
980 				param_link_rx_pause:1,
981 				param_link_tx_pause:1,
982 				param_pad_to_32:2;
983 
984 	uint32_t		param_loop_mode;
985 	uint32_t		param_msi_cnt;
986 	uint32_t 		param_drain_max;
987 	uint64_t		param_link_speed;
988 	link_duplex_t		param_link_duplex;
989 	uint32_t		eee_lpi_wait;
990 
991 	uint64_t		timestamp;
992 } bge_t;
993 
994 #define CATC_TRIGGER(bgep, data) bge_reg_put32(bgep, 0x0a00, (data))
995 
996 /*
997  * 'Progress' bit flags ...
998  */
999 #define	PROGRESS_CFG		0x0001	/* config space mapped		*/
1000 #define	PROGRESS_REGS		0x0002	/* registers mapped		*/
1001 #define	PROGRESS_BUFS		0x0004	/* ring buffers allocated	*/
1002 #define	PROGRESS_RESCHED	0x0010	/* resched softint registered	*/
1003 #define	PROGRESS_FACTOTUM	0x0020	/* factotum softint registered	*/
1004 #define	PROGRESS_HWINT		0x0040	/* h/w interrupt registered	*/
1005 					/* and mutexen initialised	*/
1006 #define	PROGRESS_INTR		0x0080	/* Intrs enabled		*/
1007 #define	PROGRESS_PHY		0x0100	/* PHY initialised		*/
1008 #define	PROGRESS_NDD		0x1000	/* NDD parameters set up	*/
1009 #define	PROGRESS_KSTATS		0x2000	/* kstats created		*/
1010 #define	PROGRESS_READY		0x8000	/* ready for work		*/
1011 
1012 
1013 /*
1014  * Sync a DMA area described by a dma_area_t
1015  */
1016 #define	DMA_SYNC(area, flag)	((void) ddi_dma_sync((area).dma_hdl,	\
1017 				    (area).offset, (area).alength, (flag)))
1018 
1019 /*
1020  * Find the (kernel virtual) address of block of memory
1021  * described by a dma_area_t
1022  */
1023 #define	DMA_VPTR(area)		((area).mem_va)
1024 
1025 /*
1026  * Zero a block of memory described by a dma_area_t
1027  */
1028 #define	DMA_ZERO(area)		bzero(DMA_VPTR(area), (area).alength)
1029 
1030 /*
1031  * Next value of a cyclic index
1032  */
1033 #define	NEXT(index, limit)	((index)+1 < (limit) ? (index)+1 : 0)
1034 
1035 /*
1036  * Property lookups
1037  */
1038 #define	BGE_PROP_EXISTS(d, n)	ddi_prop_exists(DDI_DEV_T_ANY, (d),	\
1039 					DDI_PROP_DONTPASS, (n))
1040 #define	BGE_PROP_GET_INT(d, n)	ddi_prop_get_int(DDI_DEV_T_ANY, (d),	\
1041 					DDI_PROP_DONTPASS, (n), -1)
1042 
1043 /*
1044  * Copy an ethernet address
1045  */
1046 #define	ethaddr_copy(src, dst)	bcopy((src), (dst), ETHERADDRL)
1047 
1048 /*
1049  * Endian swap
1050  */
1051 /* BEGIN CSTYLED */
1052 #define BGE_BSWAP_32(x)		((((x) & 0xff000000) >> 24)  |		\
1053                                  (((x) & 0x00ff0000) >> 8)   |		\
1054                                  (((x) & 0x0000ff00) << 8)   |		\
1055                                  (((x) & 0x000000ff) << 24))
1056 /* END CSTYLED */
1057 
1058 /*
1059  * Marker value placed at the end of the driver's state
1060  */
1061 #define	BGE_GUARD		0x1919306009031802
1062 
1063 /*
1064  * Bit flags in the 'debug' word ...
1065  */
1066 #define	BGE_DBG_STOP		0x00000001	/* early debug_enter()	*/
1067 #define	BGE_DBG_TRACE		0x00000002	/* general flow tracing	*/
1068 #define	BGE_DBG_APE		0x00000004	/* low-level APE access	*/
1069 #define	BGE_DBG_HPSD		0x00000008	/* low-level HPSD access*/
1070 #define	BGE_DBG_REGS		0x00000010	/* low-level accesses	*/
1071 #define	BGE_DBG_MII		0x00000020	/* low-level MII access	*/
1072 #define	BGE_DBG_SEEPROM		0x00000040	/* low-level SEEPROM IO	*/
1073 #define	BGE_DBG_CHIP		0x00000080	/* low(ish)-level code	*/
1074 #define	BGE_DBG_RECV		0x00000100	/* receive-side code	*/
1075 #define	BGE_DBG_SEND		0x00000200	/* packet-send code	*/
1076 #define	BGE_DBG_INT		0x00001000	/* interrupt handler	*/
1077 #define	BGE_DBG_FACT		0x00002000	/* factotum (softint)	*/
1078 #define	BGE_DBG_PHY		0x00010000	/* Copper PHY code	*/
1079 #define	BGE_DBG_SERDES		0x00020000	/* SerDes code		*/
1080 #define	BGE_DBG_PHYS		0x00040000	/* Physical layer code	*/
1081 #define	BGE_DBG_LINK		0x00080000	/* Link status check	*/
1082 #define	BGE_DBG_INIT		0x00100000	/* initialisation	*/
1083 #define	BGE_DBG_NEMO		0x00200000	/* nemo interaction	*/
1084 #define	BGE_DBG_ADDR		0x00400000	/* address-setting code	*/
1085 #define	BGE_DBG_STATS		0x00800000	/* statistics		*/
1086 #define	BGE_DBG_IOCTL		0x01000000	/* ioctl handling	*/
1087 #define	BGE_DBG_LOOP		0x02000000	/* loopback ioctl code	*/
1088 #define	BGE_DBG_PPIO		0x04000000	/* Peek/poke ioctls	*/
1089 #define	BGE_DBG_BADIOC		0x08000000	/* unknown ioctls	*/
1090 #define	BGE_DBG_MCTL		0x10000000	/* mctl (csum) code	*/
1091 #define	BGE_DBG_NDD		0x20000000	/* NDD operations	*/
1092 #define	BGE_DBG_MEM		0x40000000	/* memory allocations and chunking */
1093 
1094 /*
1095  * Debugging ...
1096  */
1097 #ifdef	DEBUG
1098 #define	BGE_DEBUGGING		1
1099 #else
1100 #define	BGE_DEBUGGING		0
1101 #endif	/* DEBUG */
1102 
1103 
1104 /*
1105  * 'Do-if-debugging' macro.  The parameter <command> should be one or more
1106  * C statements (but without the *final* semicolon), which will either be
1107  * compiled inline or completely ignored, depending on the BGE_DEBUGGING
1108  * compile-time flag.
1109  *
1110  * You should get a compile-time error (at least on a DEBUG build) if
1111  * your statement isn't actually a statement, rather than unexpected
1112  * run-time behaviour caused by unintended matching of if-then-elses etc.
1113  *
1114  * Note that the BGE_DDB() macro itself can only be used as a statement,
1115  * not an expression, and should always be followed by a semicolon.
1116  */
1117 #if	BGE_DEBUGGING
1118 #define	BGE_DDB(command)	do {					\
1119 					{ command; }			\
1120 					_NOTE(CONSTANTCONDITION)	\
1121 				} while (0)
1122 #else 	/* BGE_DEBUGGING */
1123 #define	BGE_DDB(command)	do {					\
1124 					{ _NOTE(EMPTY); }		\
1125 					_NOTE(CONSTANTCONDITION)	\
1126 				} while (0)
1127 #endif	/* BGE_DEBUGGING */
1128 
1129 /*
1130  * 'Internal' macros used to construct the TRACE/DEBUG macros below.
1131  * These provide the primitive conditional-call capability required.
1132  * Note: the parameter <args> is a parenthesised list of the actual
1133  * printf-style arguments to be passed to the debug function ...
1134  */
1135 #define	BGE_XDB(b, w, f, args)	BGE_DDB(if ((b) & (w)) f args)
1136 #define	BGE_GDB(b, args)	BGE_XDB(b, bge_debug, (*bge_gdb()), args)
1137 #define	BGE_LDB(b, args)	BGE_XDB(b, bgep->debug, (*bge_db(bgep)), args)
1138 #define	BGE_CDB(f, args)	BGE_XDB(BGE_DBG, bgep->debug, f, args)
1139 
1140 #define DEVNAME(_sc) ((_sc)->ifname)
1141 #define DPRINTF(f, ...) do { cmn_err(CE_NOTE, (f), __VA_ARGS__); } while (0)
1142 
1143 /*
1144  * Conditional-print macros.
1145  *
1146  * Define BGE_DBG to be the relevant member of the set of BGE_DBG_* values
1147  * above before using the BGE_GDEBUG() or BGE_DEBUG() macros.  The 'G'
1148  * versions look at the Global debug flag word (bge_debug); the non-G
1149  * versions look in the per-instance data (bgep->debug) and so require a
1150  * variable called 'bgep' to be in scope (and initialised!) before use.
1151  *
1152  * You could redefine BGE_TRC too if you really need two different
1153  * flavours of debugging output in the same area of code, but I don't
1154  * really recommend it.
1155  *
1156  * Note: the parameter <args> is a parenthesised list of the actual
1157  * arguments to be passed to the debug function, usually a printf-style
1158  * format string and corresponding values to be formatted.
1159  */
1160 
1161 #define	BGE_TRC			BGE_DBG_TRACE	/* default 'trace' bit	*/
1162 #define	BGE_GTRACE(args)	BGE_GDB(BGE_TRC, args)
1163 #define	BGE_GDEBUG(args)	BGE_GDB(BGE_DBG, args)
1164 #define	BGE_TRACE(args)		BGE_LDB(BGE_TRC, args)
1165 #define	BGE_DEBUG(args)		BGE_LDB(BGE_DBG, args)
1166 
1167 /*
1168  * Debug-only action macros
1169  */
1170 #define	BGE_BRKPT(bgep, s)	BGE_DDB(bge_dbg_enter(bgep, s))
1171 #define	BGE_MARK(bgep)		BGE_DDB(bge_led_mark(bgep))
1172 #define	BGE_PCICHK(bgep)	BGE_DDB(bge_pci_check(bgep))
1173 #define	BGE_PKTDUMP(args)	BGE_DDB(bge_pkt_dump args)
1174 #define	BGE_REPORT(args)	BGE_DDB(bge_log args)
1175 
1176 /*
1177  * Inter-source-file linkage ...
1178  */
1179 
1180 /* bge_chip.c */
1181 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1182 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t value);
1183 uint16_t bge_phydsp_read(bge_t *bgep, bge_regno_t regno);
1184 void bge_phydsp_write(bge_t *bgep, bge_regno_t regno, uint16_t value);
1185 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
1186 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t value);
1187 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
1188 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
1189 uint32_t bge_ape_get32(bge_t *bgep, bge_regno_t regno);
1190 void bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t value);
1191 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t value);
1192 void bge_ape_lock_init(bge_t *bgep);
1193 int bge_ape_scratchpad_read(bge_t *bgep, uint32_t *data, uint32_t base_off, uint32_t lenToRead);
1194 int bge_ape_scratchpad_write(bge_t *bgep, uint32_t dstoff, uint32_t *data, uint32_t lenToWrite);
1195 int bge_nvmem_read32(bge_t *bgep, bge_regno_t addr, uint32_t *dp);
1196 int bge_nvmem_write32(bge_t *bgep, bge_regno_t addr, uint32_t *dp);
1197 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
1198 int bge_chip_id_init(bge_t *bgep);
1199 void bge_chip_coalesce_update(bge_t *bgep);
1200 int bge_chip_start(bge_t *bgep, boolean_t reset_phy);
1201 void bge_chip_stop(bge_t *bgep, boolean_t fault);
1202 #ifndef __sparc
1203 void bge_chip_stop_nonblocking(bge_t *bgep);
1204 #endif
1205 #ifdef BGE_IPMI_ASF
1206 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
1207 #pragma	inline(bge_nic_put32)
1208 uint32_t bge_nic_read32(bge_t *bgep, bge_regno_t addr);
1209 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
1210 #pragma inline(bge_ind_put32)
1211 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
1212 #pragma inline(bge_ind_get32)
1213 void bge_asf_update_status(bge_t *bgep);
1214 void bge_asf_heartbeat(void *bgep);
1215 void bge_asf_stop_timer(bge_t *bgep);
1216 void bge_asf_get_config(bge_t *bgep);
1217 void bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode);
1218 void bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode);
1219 void bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode);
1220 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
1221 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
1222 #else
1223 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
1224 int bge_chip_sync(bge_t *bgep);
1225 #endif
1226 void bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
1227 extern mblk_t *bge_poll_ring(void *, int);
1228 uint_t bge_chip_factotum(caddr_t arg);
1229 void bge_chip_cyclic(void *arg);
1230 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
1231 	struct iocblk *iocp);
1232 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
1233 void bge_sync_mac_modes(bge_t *);
1234 extern uint32_t bge_rx_ticks_norm;
1235 extern uint32_t bge_tx_ticks_norm;
1236 extern uint32_t bge_rx_count_norm;
1237 extern uint32_t bge_tx_count_norm;
1238 extern boolean_t bge_relaxed_ordering;
1239 
1240 void   bge_chip_msi_trig(bge_t *bgep);
1241 
1242 /* bge_kstats.c */
1243 void bge_init_kstats(bge_t *bgep, int instance);
1244 void bge_fini_kstats(bge_t *bgep);
1245 int bge_m_stat(void *arg, uint_t stat, uint64_t *val);
1246 int bge_rx_ring_stat(mac_ring_driver_t, uint_t, uint64_t *);
1247 
1248 /* bge_log.c */
1249 #if	BGE_DEBUGGING
1250 void (*bge_db(bge_t *bgep))(const char *fmt, ...);
1251 void (*bge_gdb(void))(const char *fmt, ...);
1252 void bge_pkt_dump(bge_t *bgep, bge_rbd_t *hbp, sw_rbd_t *sdp, const char *msg);
1253 void bge_dbg_enter(bge_t *bgep, const char *msg);
1254 #endif	/* BGE_DEBUGGING */
1255 void bge_problem(bge_t *bgep, const char *fmt, ...);
1256 void bge_log(bge_t *bgep, const char *fmt, ...);
1257 void bge_error(bge_t *bgep, const char *fmt, ...);
1258 void bge_fm_ereport(bge_t *bgep, char *detail);
1259 extern kmutex_t bge_log_mutex[1];
1260 extern uint32_t bge_debug;
1261 
1262 /* bge_main.c */
1263 int bge_restart(bge_t *bgep, boolean_t reset_phy);
1264 int bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle);
1265 int bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle);
1266 void bge_init_rings(bge_t *bgep);
1267 void bge_fini_rings(bge_t *bgep);
1268 bge_queue_item_t *bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp);
1269 void bge_free_txbuf_arrays(send_ring_t *srp);
1270 int bge_alloc_bufs(bge_t *bgep);
1271 void bge_free_bufs(bge_t *bgep);
1272 void bge_intr_enable(bge_t *bgep);
1273 void bge_intr_disable(bge_t *bgep);
1274 int bge_reprogram(bge_t *);
1275 
1276 /* bge_mii.c */
1277 void bge_eee_init(bge_t *bgep);
1278 void bge_eee_enable(bge_t * bgep);
1279 int bge_phys_init(bge_t *bgep);
1280 void bge_phys_reset(bge_t *bgep);
1281 int bge_phys_idle(bge_t *bgep);
1282 int bge_phys_update(bge_t *bgep);
1283 boolean_t bge_phys_check(bge_t *bgep);
1284 
1285 /* bge_ndd.c */
1286 int bge_nd_init(bge_t *bgep);
1287 
1288 /* bge_recv.c */
1289 void bge_receive(bge_t *bgep, bge_status_t *bsp);
1290 
1291 /* bge_send.c */
1292 mblk_t *bge_m_tx(void *arg, mblk_t *mp);
1293 mblk_t *bge_ring_tx(void *arg, mblk_t *mp);
1294 boolean_t bge_recycle(bge_t *bgep, bge_status_t *bsp);
1295 uint_t bge_send_drain(caddr_t arg);
1296 
1297 /* bge_atomic.c */
1298 uint64_t bge_atomic_reserve(uint64_t *count_p, uint64_t n);
1299 void bge_atomic_renounce(uint64_t *count_p, uint64_t n);
1300 uint64_t bge_atomic_claim(uint64_t *count_p, uint64_t limit);
1301 uint64_t bge_atomic_next(uint64_t *sp, uint64_t limit);
1302 void bge_atomic_sub64(uint64_t *count_p, uint64_t n);
1303 uint64_t bge_atomic_clr64(uint64_t *sp, uint64_t bits);
1304 uint32_t bge_atomic_shl32(uint32_t *sp, uint_t count);
1305 
1306 /* bge_mii_5906.c */
1307 void bge_adj_volt_5906(bge_t *bgep);
1308 
1309 /*
1310  * Reset type
1311  */
1312 #define	BGE_SHUTDOWN_RESET	0
1313 #define	BGE_INIT_RESET		1
1314 #define	BGE_SUSPEND_RESET	2
1315 
1316 /* For asf_status */
1317 #define	ASF_STAT_NONE		0
1318 #define	ASF_STAT_STOP		1
1319 #define	ASF_STAT_RUN		2
1320 #define	ASF_STAT_RUN_INIT	3	/* attached but don't plumb */
1321 
1322 /* ASF modes for bge_reset() and bge_chip_reset() */
1323 #define	ASF_MODE_NONE		0	/* don't launch asf	 */
1324 #define	ASF_MODE_SHUTDOWN	1	/* asf shutdown mode	 */
1325 #define	ASF_MODE_INIT		2	/* asf init mode	 */
1326 #define	ASF_MODE_POST_SHUTDOWN	3	/* only do post-shutdown */
1327 #define	ASF_MODE_POST_INIT	4	/* only do post-init	 */
1328 
1329 #define	BGE_ASF_HEARTBEAT_INTERVAL		1500000
1330 
1331 #ifdef __cplusplus
1332 }
1333 #endif
1334 
1335 #endif	/* _BGE_IMPL_H */
1336