xref: /titanic_52/usr/src/uts/common/io/bge/bge_chip2.c (revision c1ecd8b9404ee0d96d93f02e82c441b9bb149a3d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	1	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 boolean_t bge_enable_msi = B_TRUE;
49 
50 /*
51  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
52  */
53 boolean_t bge_relaxed_ordering = B_TRUE;
54 
55 /*
56  * Property names
57  */
58 static char knownids_propname[] = "bge-known-subsystems";
59 
60 /*
61  * Patchable globals:
62  *
63  *	bge_autorecover
64  *		Enables/disables automatic recovery after fault detection
65  *
66  *	bge_mlcr_default
67  *		Value to program into the MLCR; controls the chip's GPIO pins
68  *
69  *	bge_dma_{rd,wr}prio
70  *		Relative priorities of DMA reads & DMA writes respectively.
71  *		These may each be patched to any value 0-3.  Equal values
72  *		will give "fair" (round-robin) arbitration for PCI access.
73  *		Unequal values will give one or the other function priority.
74  *
75  *	bge_dma_rwctrl
76  *		Value to put in the Read/Write DMA control register.  See
77  *	        the Broadcom PRM for things you can fiddle with in this
78  *		register ...
79  *
80  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
81  *		Send/receive interrupt coalescing parameters.  Counts are
82  *		#s of descriptors, ticks are in microseconds.  *norm* values
83  *		apply between status updates/interrupts; the *intr* values
84  *		refer to the 'during-interrupt' versions - see the PRM.
85  *
86  *		NOTE: these values have been determined by measurement. They
87  *		differ significantly from the values recommended in the PRM.
88  */
89 static uint32_t bge_autorecover = 1;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91 
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98 
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103 
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108 
109 /*
110  * Memory pool configuration parameters.
111  *
112  * These are generally specific to each member of the chip family, since
113  * each one may have a different memory size/configuration.
114  *
115  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116  * the driver from programming the various registers; instead they are left
117  * at their hardware defaults.  This is the preferred option for later chips
118  * (5705+), whereas the older chips *required* these registers to be set,
119  * since the h/w default was 0 ;-(
120  */
121 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
128 static uint32_t bge_mbuf_pool_len_5721	= 0;
129 
130 /*
131  * Various high and low water marks, thresholds, etc ...
132  *
133  * Note: these are taken from revision 7 of the PRM, and some are different
134  * from both the values in earlier PRMs *and* those determined experimentally
135  * and used in earlier versions of this driver ...
136  */
137 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
140 
141 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
144 
145 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
148 
149 static uint32_t	bge_watchdog_count	= 1 << 16;
150 static uint16_t bge_dma_miss_limit	= 20;
151 
152 static uint32_t bge_stop_start_on_sync	= 0;
153 
154 boolean_t bge_jumbo_enable		= B_TRUE;
155 
156 /*
157  * bge_intr_max_loop controls the maximum loop number within bge_intr.
158  * When loading NIC with heavy network traffic, it is useful.
159  * Increasing this value could have positive effect to throughput,
160  * but it might also increase ticks of a bge ISR stick on CPU, which might
161  * lead to bad UI interactive experience. So tune this with caution.
162  */
163 static int bge_intr_max_loop = 1;
164 
165 /*
166  * ========== Low-level chip & ring buffer manipulation ==========
167  */
168 
169 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
170 
171 
172 /*
173  * Config space read-modify-write routines
174  */
175 
176 #if	BGE_CFG_IO8
177 
178 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
179 #pragma	inline(bge_cfg_clr16)
180 
181 static void
182 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
183 {
184 	uint16_t regval;
185 
186 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
187 	    (void *)bgep, regno, bits));
188 
189 	regval = pci_config_get16(bgep->cfg_handle, regno);
190 
191 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
192 	    (void *)bgep, regno, bits, regval, regval & ~bits));
193 
194 	regval &= ~bits;
195 	pci_config_put16(bgep->cfg_handle, regno, regval);
196 }
197 
198 #endif	/* BGE_CFG_IO8 */
199 
200 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
201 #pragma	inline(bge_cfg_clr32)
202 
203 static void
204 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
205 {
206 	uint32_t regval;
207 
208 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
209 	    (void *)bgep, regno, bits));
210 
211 	regval = pci_config_get32(bgep->cfg_handle, regno);
212 
213 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
214 	    (void *)bgep, regno, bits, regval, regval & ~bits));
215 
216 	regval &= ~bits;
217 	pci_config_put32(bgep->cfg_handle, regno, regval);
218 }
219 
220 #if	BGE_IND_IO32
221 
222 /*
223  * Indirect access to registers & RISC scratchpads, using config space
224  * accesses only.
225  *
226  * This isn't currently used, but someday we might want to use it for
227  * restoring the Subsystem Device/Vendor registers (which aren't directly
228  * writable in Config Space), or for downloading firmware into the RISCs
229  *
230  * In any case there are endian issues to be resolved before this code is
231  * enabled; the bizarre way that bytes get twisted by this chip AND by
232  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
233  * it's been thoroughly tested for all access sizes on all supported
234  * architectures (SPARC *and* x86!).
235  */
236 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
237 #pragma	inline(bge_ind_get32)
238 
239 uint32_t
240 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
241 {
242 	uint32_t val;
243 
244 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
245 
246 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
247 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
248 
249 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
250 	    (void *)bgep, regno, val));
251 
252 	val = LE_32(val);
253 
254 	return (val);
255 }
256 
257 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
258 #pragma	inline(bge_ind_put32)
259 
260 void
261 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
262 {
263 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
264 	    (void *)bgep, regno, val));
265 
266 	val = LE_32(val);
267 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
268 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
269 }
270 
271 #endif	/* BGE_IND_IO32 */
272 
273 #if	BGE_DEBUGGING
274 
275 static void bge_pci_check(bge_t *bgep);
276 #pragma	no_inline(bge_pci_check)
277 
278 static void
279 bge_pci_check(bge_t *bgep)
280 {
281 	uint16_t pcistatus;
282 
283 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
284 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
285 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
286 		    (void *)bgep, pcistatus));
287 }
288 
289 #endif	/* BGE_DEBUGGING */
290 
291 /*
292  * Perform first-stage chip (re-)initialisation, using only config-space
293  * accesses:
294  *
295  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
296  *   returning the data in the structure pointed to by <idp>.
297  * + Configure the target-mode endianness (swap) options.
298  * + Disable interrupts and enable Memory Space accesses.
299  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
300  *
301  * This sequence is adapted from Broadcom document 570X-PG102-R,
302  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
303  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
304  *
305  * This function MUST be called before any non-config-space accesses
306  * are made; on this first call <enable_dma> is B_FALSE, and it
307  * effectively performs steps 3-1(!) of the initialisation sequence
308  * (the rest are not required but should be harmless).
309  *
310  * It MUST also be called after a chip reset, as this disables
311  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
312  * it is effectively performing steps 6-8.
313  */
314 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
315 #pragma	no_inline(bge_chip_cfg_init)
316 
317 void
318 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
319 {
320 	ddi_acc_handle_t handle;
321 	uint16_t command;
322 	uint32_t mhcr;
323 	uint16_t value16;
324 	int i;
325 
326 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
327 	    (void *)bgep, (void *)cidp, enable_dma));
328 
329 	/*
330 	 * Step 3: save PCI cache line size and subsystem vendor ID
331 	 *
332 	 * Read all the config-space registers that characterise the
333 	 * chip, specifically vendor/device/revision/subsystem vendor
334 	 * and subsystem device id.  We expect (but don't check) that
335 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
336 	 *
337 	 * Also save all bus-transaction related registers (cache-line
338 	 * size, bus-grant/latency parameters, etc).  Some of these are
339 	 * cleared by reset, so we'll have to restore them later.  This
340 	 * comes from the Broadcom document 570X-PG102-R ...
341 	 *
342 	 * Note: Broadcom document 570X-PG102-R seems to be in error
343 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
344 	 * Subsystem (Device) ID registers, which are the opposite way
345 	 * round according to the PCI standard.  For good measure, we
346 	 * save/restore both anyway.
347 	 */
348 	handle = bgep->cfg_handle;
349 
350 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
351 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
352 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
353 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
354 
355 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
356 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
357 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
358 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
359 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
360 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
361 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
362 
363 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
364 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
365 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
366 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
367 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
368 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
369 	    cidp->vendor, cidp->device, cidp->revision));
370 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
371 	    cidp->subven, cidp->subdev, cidp->asic_rev));
372 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
373 	    cidp->clsize, cidp->latency, cidp->command));
374 
375 	/*
376 	 * Step 2 (also step 6): disable and clear interrupts.
377 	 * Steps 11-13: configure PIO endianness options, and enable
378 	 * indirect register access.  We'll also select any other
379 	 * options controlled by the MHCR (e.g. tagged status, mask
380 	 * interrupt mode) at this stage ...
381 	 *
382 	 * Note: internally, the chip is 64-bit and BIG-endian, but
383 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
384 	 * it normally swaps bytes around at the PCI interface.
385 	 * However, the PCI host bridge on SPARC systems normally
386 	 * swaps the byte lanes around too, since SPARCs are also
387 	 * BIG-endian.  So it turns out that on SPARC, the right
388 	 * option is to tell the chip to swap (and the host bridge
389 	 * will swap back again), whereas on x86 we ask the chip
390 	 * NOT to swap, so the natural little-endianness of the
391 	 * PCI bus is assumed.  Then the only thing that doesn't
392 	 * automatically work right is access to an 8-byte register
393 	 * by a little-endian host; but we don't want to set the
394 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
395 	 * accesses don't go where expected ;-(  So we live with
396 	 * that, and perform word-swaps in software in the few cases
397 	 * where a chip register is defined as an 8-byte value --
398 	 * see the code below for details ...
399 	 *
400 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
401 	 * very clear in the register description in the PRM, but
402 	 * Broadcom document 570X-PG104-R page 248 explains a little
403 	 * more (under "Broadcom Mask Mode").  The bit changes the way
404 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
405 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
406 	 * way as the 5700 did, which isn't very convenient.  Setting
407 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
408 	 * bit do just what its name says -- MASK the PCI #INTA output
409 	 * (i.e. deassert the signal at the pin) leaving all internal
410 	 * state unchanged.  This is much more convenient for our
411 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
412 	 *
413 	 * Note: the inconvenient semantics of the interrupt mailbox
414 	 * (nonzero disables and acknowledges/clears the interrupt,
415 	 * zero enables AND CLEARS it) would make race conditions
416 	 * likely in the interrupt handler:
417 	 *
418 	 * (1)	acknowledge & disable interrupts
419 	 * (2)	while (more to do)
420 	 * 		process packets
421 	 * (3)	enable interrupts -- also clears pending
422 	 *
423 	 * If the chip received more packets and internally generated
424 	 * an interrupt between the check at (2) and the mbox write
425 	 * at (3), this interrupt would be lost :-(
426 	 *
427 	 * The best way to avoid this is to use TAGGED STATUS mode,
428 	 * where the chip includes a unique tag in each status block
429 	 * update, and the host, when re-enabling interrupts, passes
430 	 * the last tag it saw back to the chip; then the chip can
431 	 * see whether the host is truly up to date, and regenerate
432 	 * its interrupt if not.
433 	 */
434 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
435 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
436 	    MHCR_MASK_INTERRUPT_MODE |
437 	    MHCR_CLEAR_INTERRUPT_INTA;
438 
439 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
440 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
441 
442 #ifdef	_BIG_ENDIAN
443 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
444 #endif	/* _BIG_ENDIAN */
445 
446 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
447 
448 #ifdef BGE_IPMI_ASF
449 	bgep->asf_wordswapped = B_FALSE;
450 #endif
451 	/*
452 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
453 	 *			 Disable Memory Write/Invalidate
454 	 *			 Enable or disable Bus Mastering
455 	 *
456 	 * Note that all other bits are taken from the original value saved
457 	 * the first time through here, rather than from the current register
458 	 * value, 'cos that will have been cleared by a soft RESET since.
459 	 * In this way we preserve the OBP/nexus-parent's preferred settings
460 	 * of the parity-error and system-error enable bits across multiple
461 	 * chip RESETs.
462 	 */
463 	command = bgep->chipid.command | PCI_COMM_MAE;
464 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
465 	if (enable_dma)
466 		command |= PCI_COMM_ME;
467 	/*
468 	 * on BCM5714 revision A0, false parity error gets generated
469 	 * due to a logic bug. Provide a workaround by disabling parity
470 	 * error.
471 	 */
472 	if (((cidp->device == DEVICE_ID_5714C) ||
473 	    (cidp->device == DEVICE_ID_5714S)) &&
474 	    (cidp->revision == REVISION_ID_5714_A0)) {
475 		command &= ~PCI_COMM_PARITY_DETECT;
476 	}
477 	pci_config_put16(handle, PCI_CONF_COMM, command);
478 
479 	/*
480 	 * On some PCI-E device, there were instances when
481 	 * the device was still link training.
482 	 */
483 	if (bgep->chipid.pci_type == BGE_PCI_E) {
484 		i = 0;
485 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
486 		while ((value16 != command) && (i < 100)) {
487 			drv_usecwait(200);
488 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
489 			++i;
490 		}
491 	}
492 
493 	/*
494 	 * Clear any remaining error status bits
495 	 */
496 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
497 
498 	/*
499 	 * Do following if and only if the device is NOT BCM5714C OR
500 	 * BCM5715C
501 	 */
502 	if (!((cidp->device == DEVICE_ID_5714C) ||
503 	    (cidp->device == DEVICE_ID_5715C))) {
504 		/*
505 		 * Make sure these indirect-access registers are sane
506 		 * rather than random after power-up or reset
507 		 */
508 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
509 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
510 	}
511 	/*
512 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
513 	 */
514 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
515 
516 	if (cidp->pci_type == BGE_PCI_E)
517 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
518 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
519 }
520 
521 #ifdef __amd64
522 /*
523  * Distinguish CPU types
524  *
525  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
526  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
527  * for PCI-Express based network interface card. This is the work-around
528  * for those nics.
529  */
530 static boolean_t bge_get_em64t_type(void);
531 #pragma	inline(bge_get_em64t_type)
532 
533 static boolean_t
534 bge_get_em64t_type(void)
535 {
536 
537 	return (x86_vendor == X86_VENDOR_Intel);
538 }
539 #endif
540 
541 /*
542  * Operating register get/set access routines
543  */
544 
545 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
546 #pragma	inline(bge_reg_get32)
547 
548 uint32_t
549 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
550 {
551 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
552 	    (void *)bgep, regno));
553 
554 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
555 }
556 
557 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
558 #pragma	inline(bge_reg_put32)
559 
560 void
561 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
562 {
563 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
564 	    (void *)bgep, regno, data));
565 
566 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
567 	BGE_PCICHK(bgep);
568 }
569 
570 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
571 #pragma	inline(bge_reg_set32)
572 
573 void
574 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
575 {
576 	uint32_t regval;
577 
578 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
579 	    (void *)bgep, regno, bits));
580 
581 	regval = bge_reg_get32(bgep, regno);
582 	regval |= bits;
583 	bge_reg_put32(bgep, regno, regval);
584 }
585 
586 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
587 #pragma	inline(bge_reg_clr32)
588 
589 void
590 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
591 {
592 	uint32_t regval;
593 
594 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
595 	    (void *)bgep, regno, bits));
596 
597 	regval = bge_reg_get32(bgep, regno);
598 	regval &= ~bits;
599 	bge_reg_put32(bgep, regno, regval);
600 }
601 
602 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
603 #pragma	inline(bge_reg_get64)
604 
605 static uint64_t
606 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
607 {
608 	uint64_t regval;
609 
610 #ifdef	__amd64
611 	if (bge_get_em64t_type()) {
612 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
613 		regval <<= 32;
614 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
615 	} else {
616 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
617 	}
618 #else
619 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
620 #endif
621 
622 #ifdef	_LITTLE_ENDIAN
623 	regval = (regval >> 32) | (regval << 32);
624 #endif	/* _LITTLE_ENDIAN */
625 
626 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
627 	    (void *)bgep, regno, regval));
628 
629 	return (regval);
630 }
631 
632 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
633 #pragma	inline(bge_reg_put64)
634 
635 static void
636 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
637 {
638 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
639 	    (void *)bgep, regno, data));
640 
641 #ifdef	_LITTLE_ENDIAN
642 	data = ((data >> 32) | (data << 32));
643 #endif	/* _LITTLE_ENDIAN */
644 
645 #ifdef	__amd64
646 	if (bge_get_em64t_type()) {
647 		ddi_put32(bgep->io_handle,
648 		    PIO_ADDR(bgep, regno), (uint32_t)data);
649 		BGE_PCICHK(bgep);
650 		ddi_put32(bgep->io_handle,
651 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
652 
653 	} else {
654 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
655 	}
656 #else
657 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
658 #endif
659 
660 	BGE_PCICHK(bgep);
661 }
662 
663 /*
664  * The DDI doesn't provide get/put functions for 128 bit data
665  * so we put RCBs out as two 64-bit chunks instead.
666  */
667 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
668 #pragma	inline(bge_reg_putrcb)
669 
670 static void
671 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
672 {
673 	uint64_t *p;
674 
675 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
676 	    (void *)bgep, addr, rcbp->host_ring_addr,
677 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
678 
679 	ASSERT((addr % sizeof (*rcbp)) == 0);
680 
681 	p = (void *)rcbp;
682 	bge_reg_put64(bgep, addr, *p++);
683 	bge_reg_put64(bgep, addr+8, *p);
684 }
685 
686 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
687 #pragma	inline(bge_mbx_put)
688 
689 void
690 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
691 {
692 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
693 	    (void *)bgep, regno, data));
694 
695 	/*
696 	 * Mailbox registers are nominally 64 bits on the 5701, but
697 	 * the MSW isn't used.  On the 5703, they're only 32 bits
698 	 * anyway.  So here we just write the lower(!) 32 bits -
699 	 * remembering that the chip is big-endian, even though the
700 	 * PCI bus is little-endian ...
701 	 */
702 #ifdef	_BIG_ENDIAN
703 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
704 #else
705 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
706 #endif	/* _BIG_ENDIAN */
707 	BGE_PCICHK(bgep);
708 }
709 
710 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
711 #pragma inline(bge_mbx_get)
712 
713 uint32_t
714 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
715 {
716 	uint32_t val32;
717 
718 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
719 	    (void *)bgep, regno));
720 
721 #ifdef	_BIG_ENDIAN
722 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
723 #else
724 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
725 #endif	/* _BIG_ENDIAN */
726 	BGE_PCICHK(bgep);
727 
728 	return (val32);
729 }
730 
731 
732 #if	BGE_DEBUGGING
733 
734 void bge_led_mark(bge_t *bgep);
735 #pragma	no_inline(bge_led_mark)
736 
737 void
738 bge_led_mark(bge_t *bgep)
739 {
740 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
741 	    LED_CONTROL_1000MBPS_LED |
742 	    LED_CONTROL_100MBPS_LED |
743 	    LED_CONTROL_10MBPS_LED;
744 
745 	/*
746 	 * Blink all three LINK LEDs on simultaneously, then all off,
747 	 * then restore to automatic hardware control.  This is used
748 	 * in laboratory testing to trigger a logic analyser or scope.
749 	 */
750 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
751 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
752 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
753 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
754 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
755 }
756 
757 #endif	/* BGE_DEBUGGING */
758 
759 /*
760  * NIC on-chip memory access routines
761  *
762  * Only 32K of NIC memory is visible at a time, controlled by the
763  * Memory Window Base Address Register (in PCI config space).  Once
764  * this is set, the 32K region of NIC-local memory that it refers
765  * to can be directly addressed in the upper 32K of the 64K of PCI
766  * memory space used for the device.
767  */
768 
769 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
770 #pragma	inline(bge_nic_setwin)
771 
772 static void
773 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
774 {
775 	chip_id_t *cidp;
776 
777 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
778 	    (void *)bgep, base));
779 
780 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
781 
782 	/*
783 	 * Don't do repeated zero data writes,
784 	 * if the device is BCM5714C/15C.
785 	 */
786 	cidp = &bgep->chipid;
787 	if ((cidp->device == DEVICE_ID_5714C) ||
788 	    (cidp->device == DEVICE_ID_5715C)) {
789 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
790 			return;
791 		/* Adjust lastWriteZeroData */
792 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
793 		    B_TRUE : B_FALSE);
794 	}
795 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
796 }
797 
798 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
799 #pragma	inline(bge_nic_get32)
800 
801 static uint32_t
802 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
803 {
804 	uint32_t data;
805 
806 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
807 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
808 		/* workaround for word swap error */
809 		if (addr & 4)
810 			addr = addr - 4;
811 		else
812 			addr = addr + 4;
813 	}
814 #endif
815 
816 #ifdef __sparc
817 	data = bge_nic_read32(bgep, addr);
818 #else
819 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
820 	addr &= MWBAR_GRANULE_MASK;
821 	addr += NIC_MEM_WINDOW_OFFSET;
822 
823 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
824 #endif
825 
826 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
827 	    (void *)bgep, addr, data));
828 
829 	return (data);
830 }
831 
832 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
833 #pragma inline(bge_nic_put32)
834 
835 void
836 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
837 {
838 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
839 	    (void *)bgep, addr, data));
840 
841 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
842 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
843 		/* workaround for word swap error */
844 		if (addr & 4)
845 			addr = addr - 4;
846 		else
847 			addr = addr + 4;
848 	}
849 #endif
850 
851 #ifdef __sparc
852 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
853 	data = LE_32(data);
854 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
855 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
856 #else
857 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
858 	addr &= MWBAR_GRANULE_MASK;
859 	addr += NIC_MEM_WINDOW_OFFSET;
860 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
861 	BGE_PCICHK(bgep);
862 #endif
863 }
864 
865 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
866 #pragma	inline(bge_nic_get64)
867 
868 static uint64_t
869 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
870 {
871 	uint64_t data;
872 
873 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
874 	addr &= MWBAR_GRANULE_MASK;
875 	addr += NIC_MEM_WINDOW_OFFSET;
876 
877 #ifdef	__amd64
878 		if (bge_get_em64t_type()) {
879 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
880 			data <<= 32;
881 			data |= ddi_get32(bgep->io_handle,
882 			    PIO_ADDR(bgep, addr + 4));
883 		} else {
884 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
885 		}
886 #else
887 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
888 #endif
889 
890 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
891 	    (void *)bgep, addr, data));
892 
893 	return (data);
894 }
895 
896 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
897 #pragma	inline(bge_nic_put64)
898 
899 static void
900 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
901 {
902 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
903 	    (void *)bgep, addr, data));
904 
905 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
906 	addr &= MWBAR_GRANULE_MASK;
907 	addr += NIC_MEM_WINDOW_OFFSET;
908 
909 #ifdef	__amd64
910 	if (bge_get_em64t_type()) {
911 		ddi_put32(bgep->io_handle,
912 		    PIO_ADDR(bgep, addr), (uint32_t)data);
913 		BGE_PCICHK(bgep);
914 		ddi_put32(bgep->io_handle,
915 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
916 	} else {
917 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
918 	}
919 #else
920 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
921 #endif
922 
923 	BGE_PCICHK(bgep);
924 }
925 
926 /*
927  * The DDI doesn't provide get/put functions for 128 bit data
928  * so we put RCBs out as two 64-bit chunks instead.
929  */
930 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
931 #pragma	inline(bge_nic_putrcb)
932 
933 static void
934 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
935 {
936 	uint64_t *p;
937 
938 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
939 	    (void *)bgep, addr, rcbp->host_ring_addr,
940 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
941 
942 	ASSERT((addr % sizeof (*rcbp)) == 0);
943 
944 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
945 	addr &= MWBAR_GRANULE_MASK;
946 	addr += NIC_MEM_WINDOW_OFFSET;
947 
948 	p = (void *)rcbp;
949 #ifdef	__amd64
950 	if (bge_get_em64t_type()) {
951 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
952 		    (uint32_t)(*p));
953 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
954 		    (uint32_t)(*p >> 32));
955 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
956 		    (uint32_t)(*(p + 1)));
957 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
958 		    (uint32_t)(*p >> 32));
959 
960 	} else {
961 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
962 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
963 	}
964 #else
965 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
966 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
967 #endif
968 
969 	BGE_PCICHK(bgep);
970 }
971 
972 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
973 #pragma	inline(bge_nic_zero)
974 
975 static void
976 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
977 {
978 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
979 	    (void *)bgep, addr, nbytes));
980 
981 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
982 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
983 
984 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
985 	addr &= MWBAR_GRANULE_MASK;
986 	addr += NIC_MEM_WINDOW_OFFSET;
987 
988 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
989 	    nbytes, 1, DDI_DATA_SZ08_ACC);
990 	BGE_PCICHK(bgep);
991 }
992 
993 /*
994  * MII (PHY) register get/set access routines
995  *
996  * These use the chip's MII auto-access method, controlled by the
997  * MII Communication register at 0x044c, so the CPU doesn't have
998  * to fiddle with the individual bits.
999  */
1000 
1001 #undef	BGE_DBG
1002 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1003 
1004 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1005 				uint16_t data, uint32_t cmd);
1006 #pragma	no_inline(bge_mii_access)
1007 
1008 static uint16_t
1009 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1010 {
1011 	uint32_t timeout;
1012 	uint32_t regval1;
1013 	uint32_t regval2;
1014 
1015 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1016 	    (void *)bgep, regno, data, cmd));
1017 
1018 	ASSERT(mutex_owned(bgep->genlock));
1019 
1020 	/*
1021 	 * Assemble the command ...
1022 	 */
1023 	cmd |= data << MI_COMMS_DATA_SHIFT;
1024 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1025 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1026 	cmd |= MI_COMMS_START;
1027 
1028 	/*
1029 	 * Wait for any command already in progress ...
1030 	 *
1031 	 * Note: this *shouldn't* ever find that there is a command
1032 	 * in progress, because we already hold the <genlock> mutex.
1033 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1034 	 * bit set here -- it seems that the chip can initiate MII
1035 	 * accesses internally, even with polling OFF.
1036 	 */
1037 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1038 	for (timeout = 100; ; ) {
1039 		if ((regval2 & MI_COMMS_START) == 0) {
1040 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1041 			break;
1042 		}
1043 		if (--timeout == 0)
1044 			break;
1045 		drv_usecwait(10);
1046 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1047 	}
1048 
1049 	if (timeout == 0)
1050 		return ((uint16_t)~0u);
1051 
1052 	if (timeout != 100)
1053 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1054 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1055 		    cmd, 10*(100-timeout), regval1, regval2));
1056 
1057 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1058 	for (timeout = 1000; ; ) {
1059 		if ((regval1 & MI_COMMS_START) == 0)
1060 			break;
1061 		if (--timeout == 0)
1062 			break;
1063 		drv_usecwait(10);
1064 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1065 	}
1066 
1067 	/*
1068 	 * Drop out early if the READ FAILED bit is set -- this chip
1069 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1070 	 */
1071 	if (regval2 & MI_COMMS_READ_FAILED)
1072 		return ((uint16_t)~0u);
1073 
1074 	if (timeout == 0)
1075 		return ((uint16_t)~0u);
1076 
1077 	/*
1078 	 * The PRM says to wait 5us after seeing the START bit clear
1079 	 * and then re-read the register to get the final value of the
1080 	 * data field, in order to avoid a race condition where the
1081 	 * START bit is clear but the data field isn't yet valid.
1082 	 *
1083 	 * Note: we don't actually seem to be encounter this race;
1084 	 * except when the START bit is seen set again (see below),
1085 	 * the data field doesn't change during this 5us interval.
1086 	 */
1087 	drv_usecwait(5);
1088 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1089 
1090 	/*
1091 	 * Unfortunately, when following the PRMs instructions above,
1092 	 * we have occasionally seen the START bit set again(!) in the
1093 	 * value read after the 5us delay. This seems to be due to the
1094 	 * chip autonomously starting another MII access internally.
1095 	 * In such cases, the command/data/etc fields relate to the
1096 	 * internal command, rather than the one that we thought had
1097 	 * just finished.  So in this case, we fall back to returning
1098 	 * the data from the original read that showed START clear.
1099 	 */
1100 	if (regval2 & MI_COMMS_START) {
1101 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1102 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1103 		    cmd, regval1, regval2));
1104 		regval2 = regval1;
1105 	}
1106 
1107 	if (regval2 & MI_COMMS_START)
1108 		return ((uint16_t)~0u);
1109 
1110 	if (regval2 & MI_COMMS_READ_FAILED)
1111 		return ((uint16_t)~0u);
1112 
1113 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1114 }
1115 
1116 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1117 #pragma	no_inline(bge_mii_get16)
1118 
1119 uint16_t
1120 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1121 {
1122 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1123 	    (void *)bgep, regno));
1124 
1125 	ASSERT(mutex_owned(bgep->genlock));
1126 
1127 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1128 }
1129 
1130 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1131 #pragma	no_inline(bge_mii_put16)
1132 
1133 void
1134 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1135 {
1136 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1137 	    (void *)bgep, regno, data));
1138 
1139 	ASSERT(mutex_owned(bgep->genlock));
1140 
1141 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1142 }
1143 
1144 #undef	BGE_DBG
1145 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1146 
1147 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1148 
1149 /*
1150  * Basic SEEPROM get/set access routine
1151  *
1152  * This uses the chip's SEEPROM auto-access method, controlled by the
1153  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1154  * doesn't have to fiddle with the individual bits.
1155  *
1156  * The caller should hold <genlock> and *also* have already acquired
1157  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1158  *
1159  * Return value:
1160  *	0 on success,
1161  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1162  *	EPROTO on other h/w or s/w errors.
1163  *
1164  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1165  * from a (successful) SEEPROM_ACCESS_READ.
1166  */
1167 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1168 				uint32_t *dp);
1169 #pragma	no_inline(bge_seeprom_access)
1170 
1171 static int
1172 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1173 {
1174 	uint32_t tries;
1175 	uint32_t regval;
1176 
1177 	ASSERT(mutex_owned(bgep->genlock));
1178 
1179 	/*
1180 	 * On the newer chips that support both SEEPROM & Flash, we need
1181 	 * to specifically enable SEEPROM access (Flash is the default).
1182 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1183 	 * and the NVM control registers don't exist ...
1184 	 */
1185 	switch (bgep->chipid.nvtype) {
1186 	case BGE_NVTYPE_NONE:
1187 	case BGE_NVTYPE_UNKNOWN:
1188 		_NOTE(NOTREACHED)
1189 	case BGE_NVTYPE_SEEPROM:
1190 		break;
1191 
1192 	case BGE_NVTYPE_LEGACY_SEEPROM:
1193 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1194 	case BGE_NVTYPE_BUFFERED_FLASH:
1195 	default:
1196 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1197 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1198 		break;
1199 	}
1200 
1201 	/*
1202 	 * Check there's no command in progress.
1203 	 *
1204 	 * Note: this *shouldn't* ever find that there is a command
1205 	 * in progress, because we already hold the <genlock> mutex.
1206 	 * Also, to ensure we don't have a conflict with the chip's
1207 	 * internal firmware or a process accessing the same (shared)
1208 	 * SEEPROM through the other port of a 5704, we've already
1209 	 * been through the "software arbitration" protocol.
1210 	 * So this is just a final consistency check: we shouldn't
1211 	 * see EITHER the START bit (command started but not complete)
1212 	 * OR the COMPLETE bit (command completed but not cleared).
1213 	 */
1214 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1215 	if (regval & SEEPROM_ACCESS_START)
1216 		return (EPROTO);
1217 	if (regval & SEEPROM_ACCESS_COMPLETE)
1218 		return (EPROTO);
1219 
1220 	/*
1221 	 * Assemble the command ...
1222 	 */
1223 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1224 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1225 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1226 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1227 	cmd |= SEEPROM_ACCESS_START;
1228 	cmd |= SEEPROM_ACCESS_COMPLETE;
1229 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1230 
1231 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1232 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1233 
1234 	/*
1235 	 * By observation, a successful access takes ~20us on a 5703/4,
1236 	 * but apparently much longer (up to 1000us) on the obsolescent
1237 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1238 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1239 	 * out interrupts for longer than necessary. So we'll allow up
1240 	 * to 1000us ...
1241 	 */
1242 	for (tries = 0; tries < 1000; ++tries) {
1243 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1244 		if (regval & SEEPROM_ACCESS_COMPLETE)
1245 			break;
1246 		drv_usecwait(1);
1247 	}
1248 
1249 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1250 		/*
1251 		 * All OK; read the SEEPROM data register, then write back
1252 		 * the value read from the address register in order to
1253 		 * clear the <complete> bit and leave the SEEPROM access
1254 		 * state machine idle, ready for the next access ...
1255 		 */
1256 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1257 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1258 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1259 		return (0);
1260 	}
1261 
1262 	/*
1263 	 * Hmm ... what happened here?
1264 	 *
1265 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1266 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1267 	 * and didn't respond to being addressed. Either way, it's left
1268 	 * the SEEPROM access state machine wedged. So we'll reset it
1269 	 * before we leave, so it's ready for next time ...
1270 	 */
1271 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1272 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1273 	return (ENODATA);
1274 }
1275 
1276 /*
1277  * Basic Flash get/set access routine
1278  *
1279  * These use the chip's Flash auto-access method, controlled by the
1280  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1281  * fiddle with the individual bits.
1282  *
1283  * The caller should hold <genlock> and *also* have already acquired
1284  * the right to access the Flash, via bge_nvmem_acquire() above.
1285  *
1286  * Return value:
1287  *	0 on success,
1288  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1289  *	ENODEV if the NVmem device is missing or otherwise unusable
1290  *
1291  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1292  * from a (successful) NVM_FLASH_CMD_RD.
1293  */
1294 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1295 				uint32_t *dp);
1296 #pragma	no_inline(bge_flash_access)
1297 
1298 static int
1299 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1300 {
1301 	uint32_t tries;
1302 	uint32_t regval;
1303 
1304 	ASSERT(mutex_owned(bgep->genlock));
1305 
1306 	/*
1307 	 * On the newer chips that support both SEEPROM & Flash, we need
1308 	 * to specifically disable SEEPROM access while accessing Flash.
1309 	 * The older chips don't support Flash, and the NVM registers don't
1310 	 * exist, so we shouldn't be here at all!
1311 	 */
1312 	switch (bgep->chipid.nvtype) {
1313 	case BGE_NVTYPE_NONE:
1314 	case BGE_NVTYPE_UNKNOWN:
1315 		_NOTE(NOTREACHED)
1316 	case BGE_NVTYPE_SEEPROM:
1317 		return (ENODEV);
1318 
1319 	case BGE_NVTYPE_LEGACY_SEEPROM:
1320 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1321 	case BGE_NVTYPE_BUFFERED_FLASH:
1322 	default:
1323 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1324 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1325 		break;
1326 	}
1327 
1328 	/*
1329 	 * Assemble the command ...
1330 	 */
1331 	addr &= NVM_FLASH_ADDR_MASK;
1332 	cmd |= NVM_FLASH_CMD_DOIT;
1333 	cmd |= NVM_FLASH_CMD_FIRST;
1334 	cmd |= NVM_FLASH_CMD_LAST;
1335 	cmd |= NVM_FLASH_CMD_DONE;
1336 
1337 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1338 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1339 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1340 
1341 	/*
1342 	 * Allow up to 1000ms ...
1343 	 */
1344 	for (tries = 0; tries < 1000; ++tries) {
1345 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1346 		if (regval & NVM_FLASH_CMD_DONE)
1347 			break;
1348 		drv_usecwait(1);
1349 	}
1350 
1351 	if (regval & NVM_FLASH_CMD_DONE) {
1352 		/*
1353 		 * All OK; read the data from the Flash read register
1354 		 */
1355 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1356 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1357 		return (0);
1358 	}
1359 
1360 	/*
1361 	 * Hmm ... what happened here?
1362 	 *
1363 	 * Most likely, the user addressed a non-existent Flash. Or
1364 	 * maybe the Flash was busy internally (e.g. processing a write)
1365 	 * and didn't respond to being addressed. Either way, there's
1366 	 * nothing we can here ...
1367 	 */
1368 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1369 	return (ENODATA);
1370 }
1371 
1372 /*
1373  * The next two functions regulate access to the NVram (if fitted).
1374  *
1375  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1376  * (SPI) interface, but they can be accessed through either port. These
1377  * are managed by different instance of this driver and have no software
1378  * state in common.
1379  *
1380  * In addition (and even on a single core chip) the chip's internal
1381  * firmware can access the SEEPROM/Flash, most notably after a RESET
1382  * when it may download code to run internally.
1383  *
1384  * So we need to arbitrate between these various software agents.  For
1385  * this purpose, the chip provides the Software Arbitration Register,
1386  * which implements hardware(!) arbitration.
1387  *
1388  * This functionality didn't exist on older (5700/5701) chips, so there's
1389  * nothing we can do by way of arbitration on those; also, if there's no
1390  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1391  * nothing to do.
1392  *
1393  * The internal firmware appears to use Request 0, which is the highest
1394  * priority.  So we'd like to use Request 2, leaving one higher and one
1395  * lower for any future developments ... but apparently this doesn't
1396  * always work.  So for now, the code uses Request 1 ;-(
1397  */
1398 
1399 #define	NVM_READ_REQ	NVM_READ_REQ1
1400 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1401 #define	NVM_SET_REQ	NVM_SET_REQ1
1402 
1403 static void bge_nvmem_relinquish(bge_t *bgep);
1404 #pragma	no_inline(bge_nvmem_relinquish)
1405 
1406 static void
1407 bge_nvmem_relinquish(bge_t *bgep)
1408 {
1409 	ASSERT(mutex_owned(bgep->genlock));
1410 
1411 	switch (bgep->chipid.nvtype) {
1412 	case BGE_NVTYPE_NONE:
1413 	case BGE_NVTYPE_UNKNOWN:
1414 		_NOTE(NOTREACHED)
1415 		return;
1416 
1417 	case BGE_NVTYPE_SEEPROM:
1418 		/*
1419 		 * No arbitration performed, no release needed
1420 		 */
1421 		return;
1422 
1423 	case BGE_NVTYPE_LEGACY_SEEPROM:
1424 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1425 	case BGE_NVTYPE_BUFFERED_FLASH:
1426 	default:
1427 		break;
1428 	}
1429 
1430 	/*
1431 	 * Our own request should be present (whether or not granted) ...
1432 	 */
1433 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1434 
1435 	/*
1436 	 * ... this will make it go away.
1437 	 */
1438 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1439 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1440 }
1441 
1442 /*
1443  * Arbitrate for access to the NVmem, if necessary
1444  *
1445  * Return value:
1446  *	0 on success
1447  *	EAGAIN if the device is in use (retryable)
1448  *	ENODEV if the NVmem device is missing or otherwise unusable
1449  */
1450 static int bge_nvmem_acquire(bge_t *bgep);
1451 #pragma	no_inline(bge_nvmem_acquire)
1452 
1453 static int
1454 bge_nvmem_acquire(bge_t *bgep)
1455 {
1456 	uint32_t regval;
1457 	uint32_t tries;
1458 
1459 	ASSERT(mutex_owned(bgep->genlock));
1460 
1461 	switch (bgep->chipid.nvtype) {
1462 	case BGE_NVTYPE_NONE:
1463 	case BGE_NVTYPE_UNKNOWN:
1464 		/*
1465 		 * Access denied: no (recognisable) device fitted
1466 		 */
1467 		return (ENODEV);
1468 
1469 	case BGE_NVTYPE_SEEPROM:
1470 		/*
1471 		 * Access granted: no arbitration needed (or possible)
1472 		 */
1473 		return (0);
1474 
1475 	case BGE_NVTYPE_LEGACY_SEEPROM:
1476 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1477 	case BGE_NVTYPE_BUFFERED_FLASH:
1478 	default:
1479 		/*
1480 		 * Access conditional: conduct arbitration protocol
1481 		 */
1482 		break;
1483 	}
1484 
1485 	/*
1486 	 * We're holding the per-port mutex <genlock>, so no-one other
1487 	 * thread can be attempting to access the NVmem through *this*
1488 	 * port. But it could be in use by the *other* port (of a 5704),
1489 	 * or by the chip's internal firmware, so we have to go through
1490 	 * the full (hardware) arbitration protocol ...
1491 	 *
1492 	 * Note that *because* we're holding <genlock>, the interrupt handler
1493 	 * won't be able to progress.  So we're only willing to spin for a
1494 	 * fairly short time.  Specifically:
1495 	 *
1496 	 *	We *must* wait long enough for the hardware to resolve all
1497 	 *	requests and determine the winner.  Fortunately, this is
1498 	 *	"almost instantaneous", even as observed by GHz CPUs.
1499 	 *
1500 	 *	A successful access by another Solaris thread (via either
1501 	 *	port) typically takes ~20us.  So waiting a bit longer than
1502 	 *	that will give a good chance of success, if the other user
1503 	 *	*is* another thread on the other port.
1504 	 *
1505 	 *	However, the internal firmware can hold on to the NVmem
1506 	 *	for *much* longer: at least 10 milliseconds just after a
1507 	 *	RESET, and maybe even longer if the NVmem actually contains
1508 	 *	code to download and run on the internal CPUs.
1509 	 *
1510 	 * So, we'll allow 50us; if that's not enough then it's up to the
1511 	 * caller to retry later (hence the choice of return code EAGAIN).
1512 	 */
1513 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1514 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1515 
1516 	for (tries = 0; tries < 50; ++tries) {
1517 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1518 		if (regval & NVM_WON_REQ1)
1519 			break;
1520 		drv_usecwait(1);
1521 	}
1522 
1523 	if (regval & NVM_WON_REQ1) {
1524 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1525 		return (0);
1526 	}
1527 
1528 	/*
1529 	 * Somebody else must be accessing the NVmem, so abandon our
1530 	 * attempt take control of it.  The caller can try again later ...
1531 	 */
1532 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1533 	bge_nvmem_relinquish(bgep);
1534 	return (EAGAIN);
1535 }
1536 
1537 /*
1538  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1539  * write protect line in such a way that the NVmem is protected when
1540  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1541  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1542  *
1543  * Note: there's only one set of GPIO pins on a 5704, even though they
1544  * can be accessed through either port.  So the chip has to resolve what
1545  * happens if the two ports program a single pin differently ... the rule
1546  * it uses is that if the ports disagree about the *direction* of a pin,
1547  * "output" wins over "input", but if they disagree about its *value* as
1548  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1549  * wins, and the external signal does whatever the external circuitry
1550  * defines as the default -- which we've assumed is the PROTECTED state.
1551  * So, we always change GPIO1 back to being an *input* whenever we're not
1552  * specifically using it to unprotect the NVmem. This allows either port
1553  * to update the NVmem, although obviously only one at a time!
1554  *
1555  * The caller should hold <genlock> and *also* have already acquired the
1556  * right to access the NVmem, via bge_nvmem_acquire() above.
1557  */
1558 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1559 #pragma	inline(bge_nvmem_protect)
1560 
1561 static void
1562 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1563 {
1564 	uint32_t regval;
1565 
1566 	ASSERT(mutex_owned(bgep->genlock));
1567 
1568 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1569 	if (protect) {
1570 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1571 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1572 	} else {
1573 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1574 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1575 	}
1576 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1577 }
1578 
1579 /*
1580  * Now put it all together ...
1581  *
1582  * Try to acquire control of the NVmem; if successful, then:
1583  *	unprotect it (if we want to write to it)
1584  *	perform the requested access
1585  *	reprotect it (after a write)
1586  *	relinquish control
1587  *
1588  * Return value:
1589  *	0 on success,
1590  *	EAGAIN if the device is in use (retryable)
1591  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1592  *	ENODEV if the NVmem device is missing or otherwise unusable
1593  *	EPROTO on other h/w or s/w errors.
1594  */
1595 static int
1596 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1597 {
1598 	int err;
1599 
1600 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1601 		switch (cmd) {
1602 		case BGE_SEE_READ:
1603 			err = bge_seeprom_access(bgep,
1604 			    SEEPROM_ACCESS_READ, addr, dp);
1605 			break;
1606 
1607 		case BGE_SEE_WRITE:
1608 			bge_nvmem_protect(bgep, B_FALSE);
1609 			err = bge_seeprom_access(bgep,
1610 			    SEEPROM_ACCESS_WRITE, addr, dp);
1611 			bge_nvmem_protect(bgep, B_TRUE);
1612 			break;
1613 
1614 		case BGE_FLASH_READ:
1615 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1616 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1617 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1618 				    NVM_ACCESS_ENABLE);
1619 			}
1620 			err = bge_flash_access(bgep,
1621 			    NVM_FLASH_CMD_RD, addr, dp);
1622 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1623 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1624 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1625 				    NVM_ACCESS_ENABLE);
1626 			}
1627 			break;
1628 
1629 		case BGE_FLASH_WRITE:
1630 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1631 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1632 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1633 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1634 			}
1635 			bge_nvmem_protect(bgep, B_FALSE);
1636 			err = bge_flash_access(bgep,
1637 			    NVM_FLASH_CMD_WR, addr, dp);
1638 			bge_nvmem_protect(bgep, B_TRUE);
1639 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1640 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1641 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1642 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1643 			}
1644 
1645 			break;
1646 
1647 		default:
1648 			_NOTE(NOTREACHED)
1649 			break;
1650 		}
1651 		bge_nvmem_relinquish(bgep);
1652 	}
1653 
1654 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1655 	return (err);
1656 }
1657 
1658 /*
1659  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1660  */
1661 static uint64_t bge_get_nvmac(bge_t *bgep);
1662 #pragma no_inline(bge_get_nvmac)
1663 
1664 static uint64_t
1665 bge_get_nvmac(bge_t *bgep)
1666 {
1667 	uint32_t mac_high;
1668 	uint32_t mac_low;
1669 	uint32_t addr;
1670 	uint32_t cmd;
1671 	uint64_t mac;
1672 
1673 	BGE_TRACE(("bge_get_nvmac($%p)",
1674 	    (void *)bgep));
1675 
1676 	switch (bgep->chipid.nvtype) {
1677 	case BGE_NVTYPE_NONE:
1678 	case BGE_NVTYPE_UNKNOWN:
1679 	default:
1680 		return (0ULL);
1681 
1682 	case BGE_NVTYPE_SEEPROM:
1683 	case BGE_NVTYPE_LEGACY_SEEPROM:
1684 		cmd = BGE_SEE_READ;
1685 		break;
1686 
1687 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1688 	case BGE_NVTYPE_BUFFERED_FLASH:
1689 		cmd = BGE_FLASH_READ;
1690 		break;
1691 	}
1692 
1693 	addr = NVMEM_DATA_MAC_ADDRESS;
1694 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1695 		return (0ULL);
1696 	addr += 4;
1697 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1698 		return (0ULL);
1699 
1700 	/*
1701 	 * The Broadcom chip is natively BIG-endian, so that's how the
1702 	 * MAC address is represented in NVmem.  We may need to swap it
1703 	 * around on a little-endian host ...
1704 	 */
1705 #ifdef	_BIG_ENDIAN
1706 	mac = mac_high;
1707 	mac = mac << 32;
1708 	mac |= mac_low;
1709 #else
1710 	mac = BGE_BSWAP_32(mac_high);
1711 	mac = mac << 32;
1712 	mac |= BGE_BSWAP_32(mac_low);
1713 #endif	/* _BIG_ENDIAN */
1714 
1715 	return (mac);
1716 }
1717 
1718 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1719 
1720 /*
1721  * Dummy version for when we're not supporting NVmem access
1722  */
1723 static uint64_t bge_get_nvmac(bge_t *bgep);
1724 #pragma inline(bge_get_nvmac)
1725 
1726 static uint64_t
1727 bge_get_nvmac(bge_t *bgep)
1728 {
1729 	_NOTE(ARGUNUSED(bgep))
1730 	return (0ULL);
1731 }
1732 
1733 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1734 
1735 /*
1736  * Determine the type of NVmem that is (or may be) attached to this chip,
1737  */
1738 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1739 #pragma no_inline(bge_nvmem_id)
1740 
1741 static enum bge_nvmem_type
1742 bge_nvmem_id(bge_t *bgep)
1743 {
1744 	enum bge_nvmem_type nvtype;
1745 	uint32_t config1;
1746 
1747 	BGE_TRACE(("bge_nvmem_id($%p)",
1748 	    (void *)bgep));
1749 
1750 	switch (bgep->chipid.device) {
1751 	default:
1752 		/*
1753 		 * We shouldn't get here; it means we don't recognise
1754 		 * the chip, which means we don't know how to determine
1755 		 * what sort of NVmem (if any) it has.  So we'll say
1756 		 * NONE, to disable the NVmem access code ...
1757 		 */
1758 		nvtype = BGE_NVTYPE_NONE;
1759 		break;
1760 
1761 	case DEVICE_ID_5700:
1762 	case DEVICE_ID_5700x:
1763 	case DEVICE_ID_5701:
1764 		/*
1765 		 * These devices support *only* SEEPROMs
1766 		 */
1767 		nvtype = BGE_NVTYPE_SEEPROM;
1768 		break;
1769 
1770 	case DEVICE_ID_5702:
1771 	case DEVICE_ID_5702fe:
1772 	case DEVICE_ID_5703C:
1773 	case DEVICE_ID_5703S:
1774 	case DEVICE_ID_5704C:
1775 	case DEVICE_ID_5704S:
1776 	case DEVICE_ID_5704:
1777 	case DEVICE_ID_5705M:
1778 	case DEVICE_ID_5705C:
1779 	case DEVICE_ID_5705_2:
1780 	case DEVICE_ID_5706:
1781 	case DEVICE_ID_5782:
1782 	case DEVICE_ID_5787:
1783 	case DEVICE_ID_5787M:
1784 	case DEVICE_ID_5788:
1785 	case DEVICE_ID_5789:
1786 	case DEVICE_ID_5751:
1787 	case DEVICE_ID_5751M:
1788 	case DEVICE_ID_5752:
1789 	case DEVICE_ID_5752M:
1790 	case DEVICE_ID_5754:
1791 	case DEVICE_ID_5755:
1792 	case DEVICE_ID_5755M:
1793 	case DEVICE_ID_5721:
1794 	case DEVICE_ID_5714C:
1795 	case DEVICE_ID_5714S:
1796 	case DEVICE_ID_5715C:
1797 	case DEVICE_ID_5715S:
1798 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1799 		if (config1 & NVM_CFG1_FLASH_MODE)
1800 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1801 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1802 			else
1803 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1804 		else
1805 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1806 		break;
1807 	}
1808 
1809 	return (nvtype);
1810 }
1811 
1812 #undef	BGE_DBG
1813 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1814 
1815 static void
1816 bge_init_recv_rule(bge_t *bgep)
1817 {
1818 	bge_recv_rule_t *rulep;
1819 	uint32_t i;
1820 
1821 	/*
1822 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1823 	 * 1. to direct UDP traffic, set:
1824 	 * 	rulep->control = RULE_PROTO_CONTROL;
1825 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1826 	 * 2. to direct ICMP traffic, set:
1827 	 * 	rulep->control = RULE_PROTO_CONTROL;
1828 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1829 	 * 3. to direct traffic by source ip, set:
1830 	 * 	rulep->control = RULE_SIP_CONTROL;
1831 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1832 	 */
1833 	rulep = bgep->recv_rules;
1834 	rulep->control = RULE_PROTO_CONTROL;
1835 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1836 
1837 	/*
1838 	 * set receive rule registers
1839 	 */
1840 	rulep = bgep->recv_rules;
1841 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1842 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1843 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1844 	}
1845 }
1846 
1847 /*
1848  * Using the values captured by bge_chip_cfg_init(), and additional probes
1849  * as required, characterise the chip fully: determine the label by which
1850  * to refer to this chip, the correct settings for various registers, and
1851  * of course whether the device and/or subsystem are supported!
1852  */
1853 int bge_chip_id_init(bge_t *bgep);
1854 #pragma	no_inline(bge_chip_id_init)
1855 
1856 int
1857 bge_chip_id_init(bge_t *bgep)
1858 {
1859 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1860 	boolean_t sys_ok;
1861 	boolean_t dev_ok;
1862 	chip_id_t *cidp;
1863 	uint32_t subid;
1864 	char *devname;
1865 	char *sysname;
1866 	int *ids;
1867 	int err;
1868 	uint_t i;
1869 
1870 	sys_ok = dev_ok = B_FALSE;
1871 	cidp = &bgep->chipid;
1872 
1873 	/*
1874 	 * Check the PCI device ID to determine the generic chip type and
1875 	 * select parameters that depend on this.
1876 	 *
1877 	 * Note: because the SPARC platforms in general don't fit the
1878 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1879 	 * as zero - which is why we use <asic_rev> rather than <revision>
1880 	 * below ...
1881 	 *
1882 	 * Note: in general we can't distinguish between the Copper/SerDes
1883 	 * versions by ID alone, as some Copper devices (e.g. some but not
1884 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1885 	 * treat them the same here, and the MII code works out the media
1886 	 * type later on ...
1887 	 */
1888 	cidp->mbuf_base = bge_mbuf_pool_base;
1889 	cidp->mbuf_length = bge_mbuf_pool_len;
1890 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1891 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1892 	cidp->pci_type = BGE_PCI_X;
1893 	cidp->statistic_type = BGE_STAT_BLK;
1894 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1895 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1896 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1897 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1898 	cidp->rx_count_norm = bge_rx_count_norm;
1899 
1900 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1901 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1902 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1903 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1904 
1905 	cidp->msi_enabled = B_FALSE;
1906 
1907 	switch (cidp->device) {
1908 	case DEVICE_ID_5700:
1909 	case DEVICE_ID_5700x:
1910 		cidp->chip_label = 5700;
1911 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1912 		break;
1913 
1914 	case DEVICE_ID_5701:
1915 		cidp->chip_label = 5701;
1916 		dev_ok = B_TRUE;
1917 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1918 		break;
1919 
1920 	case DEVICE_ID_5702:
1921 	case DEVICE_ID_5702fe:
1922 		cidp->chip_label = 5702;
1923 		dev_ok = B_TRUE;
1924 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1925 		cidp->pci_type = BGE_PCI;
1926 		break;
1927 
1928 	case DEVICE_ID_5703C:
1929 	case DEVICE_ID_5703S:
1930 	case DEVICE_ID_5703:
1931 		/*
1932 		 * Revision A0 of the 5703/5793 had various errata
1933 		 * that we can't or don't work around, so it's not
1934 		 * supported, but all later versions are
1935 		 */
1936 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
1937 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
1938 			dev_ok = B_TRUE;
1939 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1940 		break;
1941 
1942 	case DEVICE_ID_5704C:
1943 	case DEVICE_ID_5704S:
1944 	case DEVICE_ID_5704:
1945 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
1946 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
1947 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
1948 		dev_ok = B_TRUE;
1949 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1950 		break;
1951 
1952 	case DEVICE_ID_5705C:
1953 	case DEVICE_ID_5705M:
1954 	case DEVICE_ID_5705MA3:
1955 	case DEVICE_ID_5705F:
1956 	case DEVICE_ID_5705_2:
1957 	case DEVICE_ID_5754:
1958 		if (cidp->device == DEVICE_ID_5754) {
1959 			cidp->chip_label = 5754;
1960 			cidp->pci_type = BGE_PCI_E;
1961 		} else {
1962 			cidp->chip_label = 5705;
1963 			cidp->pci_type = BGE_PCI;
1964 		}
1965 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
1966 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
1967 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
1968 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1969 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1970 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1971 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
1972 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
1973 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1974 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1975 		cidp->statistic_type = BGE_STAT_REG;
1976 		dev_ok = B_TRUE;
1977 		break;
1978 
1979 	case DEVICE_ID_5753:
1980 		cidp->chip_label = 5753;
1981 		cidp->pci_type = BGE_PCI_E;
1982 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
1983 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
1984 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
1985 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1986 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1987 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1988 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1989 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
1990 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
1991 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1992 		cidp->statistic_type = BGE_STAT_REG;
1993 		dev_ok = B_TRUE;
1994 		break;
1995 
1996 	case DEVICE_ID_5755:
1997 	case DEVICE_ID_5755M:
1998 		cidp->chip_label = 5755;
1999 		cidp->pci_type = BGE_PCI_E;
2000 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2001 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2002 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2003 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2004 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2005 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2006 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2007 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2008 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2009 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2010 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2011 		cidp->statistic_type = BGE_STAT_REG;
2012 		dev_ok = B_TRUE;
2013 		break;
2014 
2015 	case DEVICE_ID_5787:
2016 	case DEVICE_ID_5787M:
2017 		cidp->chip_label = 5787;
2018 		cidp->pci_type = BGE_PCI_E;
2019 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2020 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2021 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2022 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2023 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2024 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2025 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2026 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2027 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2028 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2029 		cidp->statistic_type = BGE_STAT_REG;
2030 		dev_ok = B_TRUE;
2031 		break;
2032 
2033 	case DEVICE_ID_5706:
2034 		cidp->chip_label = 5706;
2035 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2036 		break;
2037 
2038 	case DEVICE_ID_5782:
2039 		/*
2040 		 * Apart from the label, we treat this as a 5705(?)
2041 		 */
2042 		cidp->chip_label = 5782;
2043 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2044 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2045 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2046 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2047 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2048 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2049 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2050 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2051 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2052 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2053 		cidp->statistic_type = BGE_STAT_REG;
2054 		dev_ok = B_TRUE;
2055 		break;
2056 
2057 	case DEVICE_ID_5788:
2058 		/*
2059 		 * Apart from the label, we treat this as a 5705(?)
2060 		 */
2061 		cidp->chip_label = 5788;
2062 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2063 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2064 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2065 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2066 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2067 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2068 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2069 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2070 		cidp->statistic_type = BGE_STAT_REG;
2071 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2072 		dev_ok = B_TRUE;
2073 		break;
2074 
2075 	case DEVICE_ID_5714C:
2076 		if (cidp->revision >= REVISION_ID_5714_A2)
2077 			cidp->msi_enabled = bge_enable_msi;
2078 		/* FALLTHRU */
2079 	case DEVICE_ID_5714S:
2080 		cidp->chip_label = 5714;
2081 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2082 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2083 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2084 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2085 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2086 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2087 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2088 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2089 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2090 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2091 		cidp->pci_type = BGE_PCI_E;
2092 		cidp->statistic_type = BGE_STAT_REG;
2093 		dev_ok = B_TRUE;
2094 		break;
2095 
2096 	case DEVICE_ID_5715C:
2097 	case DEVICE_ID_5715S:
2098 		cidp->chip_label = 5715;
2099 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2100 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2101 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2102 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2103 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2104 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2105 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2106 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2107 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2108 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2109 		cidp->pci_type = BGE_PCI_E;
2110 		cidp->statistic_type = BGE_STAT_REG;
2111 		if (cidp->revision >= REVISION_ID_5715_A2)
2112 			cidp->msi_enabled = bge_enable_msi;
2113 		dev_ok = B_TRUE;
2114 		break;
2115 
2116 	case DEVICE_ID_5721:
2117 		cidp->chip_label = 5721;
2118 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2119 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2120 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2121 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2122 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2123 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2124 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2125 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2126 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2127 		cidp->pci_type = BGE_PCI_E;
2128 		cidp->statistic_type = BGE_STAT_REG;
2129 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2130 		dev_ok = B_TRUE;
2131 		break;
2132 
2133 	case DEVICE_ID_5751:
2134 	case DEVICE_ID_5751M:
2135 		cidp->chip_label = 5751;
2136 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2137 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2138 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2139 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2140 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2141 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2142 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2143 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2144 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2145 		cidp->pci_type = BGE_PCI_E;
2146 		cidp->statistic_type = BGE_STAT_REG;
2147 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2148 		dev_ok = B_TRUE;
2149 		break;
2150 
2151 	case DEVICE_ID_5752:
2152 	case DEVICE_ID_5752M:
2153 		cidp->chip_label = 5752;
2154 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2155 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2156 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2157 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2158 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2159 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2160 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2161 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2162 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2163 		cidp->pci_type = BGE_PCI_E;
2164 		cidp->statistic_type = BGE_STAT_REG;
2165 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2166 		dev_ok = B_TRUE;
2167 		break;
2168 
2169 	case DEVICE_ID_5789:
2170 		cidp->chip_label = 5789;
2171 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2172 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2173 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2174 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2175 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2176 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2177 		cidp->pci_type = BGE_PCI_E;
2178 		cidp->statistic_type = BGE_STAT_REG;
2179 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2180 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2181 		cidp->msi_enabled = B_TRUE;
2182 		dev_ok = B_TRUE;
2183 		break;
2184 
2185 	}
2186 
2187 	/*
2188 	 * Setup the default jumbo parameter.
2189 	 */
2190 	cidp->ethmax_size = ETHERMAX;
2191 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2192 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2193 
2194 	/*
2195 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2196 	 * setup below jumbo specific parameters.
2197 	 *
2198 	 * For BCM5714/5715, there is only one standard receive ring. So the
2199 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2200 	 * feature is enabled.
2201 	 */
2202 	if (bge_jumbo_enable &&
2203 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2204 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2205 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2206 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2207 			cidp->mbuf_lo_water_rdma =
2208 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2209 			cidp->mbuf_lo_water_rmac =
2210 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2211 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2212 			cidp->jumbo_slots = 0;
2213 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2214 		} else {
2215 			cidp->mbuf_lo_water_rdma =
2216 			    RDMA_MBUF_LOWAT_JUMBO;
2217 			cidp->mbuf_lo_water_rmac =
2218 			    MAC_RX_MBUF_LOWAT_JUMBO;
2219 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2220 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2221 		}
2222 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2223 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2224 		cidp->ethmax_size = cidp->default_mtu +
2225 		    sizeof (struct ether_header);
2226 	}
2227 
2228 	/*
2229 	 * Identify the NV memory type: SEEPROM or Flash?
2230 	 */
2231 	cidp->nvtype = bge_nvmem_id(bgep);
2232 
2233 	/*
2234 	 * Now, we want to check whether this device is part of a
2235 	 * supported subsystem (e.g., on the motherboard of a Sun
2236 	 * branded platform).
2237 	 *
2238 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2239 	 */
2240 	if (cidp->subven == VENDOR_ID_SUN)
2241 		sys_ok = B_TRUE;
2242 
2243 	/*
2244 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2245 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2246 	 * doesn't enforce that.
2247 	 */
2248 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2249 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2250 	if (err == DDI_PROP_SUCCESS) {
2251 		/*
2252 		 * Got the list; scan for a matching subsystem vendor/device
2253 		 */
2254 		subid = (cidp->subven << 16) | cidp->subdev;
2255 		while (i--)
2256 			if (ids[i] == subid)
2257 				sys_ok = B_TRUE;
2258 		ddi_prop_free(ids);
2259 	}
2260 
2261 	/*
2262 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2263 	 *
2264 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2265 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2266 	 * we have to check specially for the exact device paths to the
2267 	 * motherboard devices on those platforms ;-(
2268 	 *
2269 	 * Note: we can't just use the "supported-subsystems" mechanism
2270 	 * above, because the entry would have to be 0x14e41647 -- which
2271 	 * would then accept *any* plugin card that *didn't* contain a
2272 	 * (valid) SEEPROM ;-(
2273 	 */
2274 	sysname = ddi_node_name(ddi_root_node());
2275 	devname = ddi_pathname(bgep->devinfo, buf);
2276 	ASSERT(strlen(devname) > 0);
2277 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2278 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2279 			sys_ok = B_TRUE;
2280 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2281 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2282 			sys_ok = B_TRUE;
2283 
2284 	/*
2285 	 * Now check what we've discovered: is this truly a supported
2286 	 * chip on (the motherboard of) a supported platform?
2287 	 *
2288 	 * Possible problems here:
2289 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2290 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2291 	 * 3)	it's a chip we would support if it were on the motherboard
2292 	 *	of a Sun platform, but this one isn't ;-(
2293 	 */
2294 	if (cidp->chip_label == 0)
2295 		bge_problem(bgep,
2296 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2297 		    cidp->vendor, cidp->device, cidp->device);
2298 	else if (!dev_ok)
2299 		bge_problem(bgep,
2300 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2301 		    cidp->vendor, cidp->device, cidp->chip_label,
2302 		    cidp->revision);
2303 #if	BGE_DEBUGGING
2304 	else if (!sys_ok)
2305 		bge_problem(bgep,
2306 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2307 		    cidp->chip_label, cidp->subven, cidp->subdev);
2308 #endif
2309 	else
2310 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2311 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2312 		return (EIO);
2313 	return (0);
2314 }
2315 
2316 void
2317 bge_chip_msi_trig(bge_t *bgep)
2318 {
2319 	uint32_t	regval;
2320 
2321 	regval = bgep->param_msi_cnt<<4;
2322 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2323 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2324 }
2325 
2326 /*
2327  * Various registers that control the chip's internal engines (state
2328  * machines) have a <reset> and <enable> bits (fortunately, in the
2329  * same place in each such register :-).
2330  *
2331  * To reset the state machine, the <reset> bit must be written with 1;
2332  * it will then read back as 1 while the reset is in progress, but
2333  * self-clear to 0 when the reset completes.
2334  *
2335  * To enable a state machine, one must set the <enable> bit, which
2336  * will continue to read back as 0 until the state machine is running.
2337  *
2338  * To disable a state machine, the <enable> bit must be cleared, but
2339  * it will continue to read back as 1 until the state machine actually
2340  * stops.
2341  *
2342  * This routine implements polling for completion of a reset, enable
2343  * or disable operation, returning B_TRUE on success (bit reached the
2344  * required state) or B_FALSE on timeout (200*100us == 20ms).
2345  */
2346 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2347 					uint32_t mask, uint32_t val);
2348 #pragma	no_inline(bge_chip_poll_engine)
2349 
2350 static boolean_t
2351 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2352 	uint32_t mask, uint32_t val)
2353 {
2354 	uint32_t regval;
2355 	uint32_t n;
2356 
2357 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2358 	    (void *)bgep, regno, mask, val));
2359 
2360 	for (n = 200; n; --n) {
2361 		regval = bge_reg_get32(bgep, regno);
2362 		if ((regval & mask) == val)
2363 			return (B_TRUE);
2364 		drv_usecwait(100);
2365 	}
2366 
2367 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2368 	return (B_FALSE);
2369 }
2370 
2371 /*
2372  * Various registers that control the chip's internal engines (state
2373  * machines) have a <reset> bit (fortunately, in the same place in
2374  * each such register :-).  To reset the state machine, this bit must
2375  * be written with 1; it will then read back as 1 while the reset is
2376  * in progress, but self-clear to 0 when the reset completes.
2377  *
2378  * This code sets the bit, then polls for it to read back as zero.
2379  * The return value is B_TRUE on success (reset bit cleared itself),
2380  * or B_FALSE if the state machine didn't recover :(
2381  *
2382  * NOTE: the Core reset is similar to other resets, except that we
2383  * can't poll for completion, since the Core reset disables memory
2384  * access!  So we just have to assume that it will all complete in
2385  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2386  */
2387 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2388 #pragma	no_inline(bge_chip_reset_engine)
2389 
2390 static boolean_t
2391 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2392 {
2393 	uint32_t regval;
2394 	uint32_t val32;
2395 
2396 	regval = bge_reg_get32(bgep, regno);
2397 
2398 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2399 	    (void *)bgep, regno));
2400 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2401 	    regno, regval));
2402 
2403 	regval |= STATE_MACHINE_RESET_BIT;
2404 
2405 	switch (regno) {
2406 	case MISC_CONFIG_REG:
2407 		/*
2408 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2409 		 * resetting PCIE block and bringing PCIE link down, bit 29
2410 		 * in the register needs to be set first, and then set it again
2411 		 * while the reset bit is written.
2412 		 * See:P500 of 57xx-PG102-RDS.pdf.
2413 		 */
2414 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2415 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2416 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2417 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2418 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2419 				if (bgep->chipid.asic_rev ==
2420 				    MHCR_CHIP_REV_5751_A0 ||
2421 				    bgep->chipid.asic_rev ==
2422 				    MHCR_CHIP_REV_5721_A0 ||
2423 				    bgep->chipid.asic_rev ==
2424 				    MHCR_CHIP_REV_5755_A0) {
2425 					val32 = bge_reg_get32(bgep,
2426 					    PHY_TEST_CTRL_REG);
2427 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2428 					    PHY_PCIE_LTASS_MODE))
2429 						bge_reg_put32(bgep,
2430 						    PHY_TEST_CTRL_REG,
2431 						    PHY_PCIE_SCRAM_MODE);
2432 					val32 = pci_config_get32
2433 					    (bgep->cfg_handle,
2434 					    PCI_CONF_BGE_CLKCTL);
2435 					val32 |= CLKCTL_PCIE_A0_FIX;
2436 					pci_config_put32(bgep->cfg_handle,
2437 					    PCI_CONF_BGE_CLKCTL, val32);
2438 				}
2439 				bge_reg_set32(bgep, regno,
2440 				    MISC_CONFIG_GRC_RESET_DISABLE);
2441 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2442 			}
2443 		}
2444 
2445 		/*
2446 		 * Special case - causes Core reset
2447 		 *
2448 		 * On SPARC v9 we want to ensure that we don't start
2449 		 * timing until the I/O access has actually reached
2450 		 * the chip, otherwise we might make the next access
2451 		 * too early.  And we can't just force the write out
2452 		 * by following it with a read (even to config space)
2453 		 * because that would cause the fault we're trying
2454 		 * to avoid.  Hence the need for membar_sync() here.
2455 		 */
2456 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2457 #ifdef	__sparcv9
2458 		membar_sync();
2459 #endif	/* __sparcv9 */
2460 		/*
2461 		 * On some platforms,system need about 300us for
2462 		 * link setup.
2463 		 */
2464 		drv_usecwait(300);
2465 
2466 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2467 			/* PCI-E device need more reset time */
2468 			drv_usecwait(120000);
2469 
2470 			/* Set PCIE max payload size and clear error status. */
2471 			if ((bgep->chipid.chip_label == 5721) ||
2472 			    (bgep->chipid.chip_label == 5751) ||
2473 			    (bgep->chipid.chip_label == 5752) ||
2474 			    (bgep->chipid.chip_label == 5789)) {
2475 				pci_config_put16(bgep->cfg_handle,
2476 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2477 				pci_config_put16(bgep->cfg_handle,
2478 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2479 			}
2480 		}
2481 
2482 		BGE_PCICHK(bgep);
2483 		return (B_TRUE);
2484 
2485 	default:
2486 		bge_reg_put32(bgep, regno, regval);
2487 		return (bge_chip_poll_engine(bgep, regno,
2488 		    STATE_MACHINE_RESET_BIT, 0));
2489 	}
2490 }
2491 
2492 /*
2493  * Various registers that control the chip's internal engines (state
2494  * machines) have an <enable> bit (fortunately, in the same place in
2495  * each such register :-).  To stop the state machine, this bit must
2496  * be written with 0, then polled to see when the state machine has
2497  * actually stopped.
2498  *
2499  * The return value is B_TRUE on success (enable bit cleared), or
2500  * B_FALSE if the state machine didn't stop :(
2501  */
2502 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2503 						uint32_t morebits);
2504 #pragma	no_inline(bge_chip_disable_engine)
2505 
2506 static boolean_t
2507 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2508 {
2509 	uint32_t regval;
2510 
2511 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2512 	    (void *)bgep, regno, morebits));
2513 
2514 	switch (regno) {
2515 	case FTQ_RESET_REG:
2516 		/*
2517 		 * For Schumacher's bugfix CR6490108
2518 		 */
2519 #ifdef BGE_IPMI_ASF
2520 #ifdef BGE_NETCONSOLE
2521 		if (bgep->asf_enabled)
2522 			return (B_TRUE);
2523 #endif
2524 #endif
2525 		/*
2526 		 * Not quite like the others; it doesn't
2527 		 * have an <enable> bit, but instead we
2528 		 * have to set and then clear all the bits
2529 		 */
2530 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2531 		drv_usecwait(100);
2532 		bge_reg_put32(bgep, regno, 0);
2533 		return (B_TRUE);
2534 
2535 	default:
2536 		regval = bge_reg_get32(bgep, regno);
2537 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2538 		regval &= ~morebits;
2539 		bge_reg_put32(bgep, regno, regval);
2540 		return (bge_chip_poll_engine(bgep, regno,
2541 		    STATE_MACHINE_ENABLE_BIT, 0));
2542 	}
2543 }
2544 
2545 /*
2546  * Various registers that control the chip's internal engines (state
2547  * machines) have an <enable> bit (fortunately, in the same place in
2548  * each such register :-).  To start the state machine, this bit must
2549  * be written with 1, then polled to see when the state machine has
2550  * actually started.
2551  *
2552  * The return value is B_TRUE on success (enable bit set), or
2553  * B_FALSE if the state machine didn't start :(
2554  */
2555 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2556 					uint32_t morebits);
2557 #pragma	no_inline(bge_chip_enable_engine)
2558 
2559 static boolean_t
2560 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2561 {
2562 	uint32_t regval;
2563 
2564 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2565 	    (void *)bgep, regno, morebits));
2566 
2567 	switch (regno) {
2568 	case FTQ_RESET_REG:
2569 #ifdef BGE_IPMI_ASF
2570 #ifdef BGE_NETCONSOLE
2571 		if (bgep->asf_enabled)
2572 			return (B_TRUE);
2573 #endif
2574 #endif
2575 		/*
2576 		 * Not quite like the others; it doesn't
2577 		 * have an <enable> bit, but instead we
2578 		 * have to set and then clear all the bits
2579 		 */
2580 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2581 		drv_usecwait(100);
2582 		bge_reg_put32(bgep, regno, 0);
2583 		return (B_TRUE);
2584 
2585 	default:
2586 		regval = bge_reg_get32(bgep, regno);
2587 		regval |= STATE_MACHINE_ENABLE_BIT;
2588 		regval |= morebits;
2589 		bge_reg_put32(bgep, regno, regval);
2590 		return (bge_chip_poll_engine(bgep, regno,
2591 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2592 	}
2593 }
2594 
2595 /*
2596  * Reprogram the Ethernet, Transmit, and Receive MAC
2597  * modes to match the param_* variables
2598  */
2599 void bge_sync_mac_modes(bge_t *bgep);
2600 #pragma	no_inline(bge_sync_mac_modes)
2601 
2602 void
2603 bge_sync_mac_modes(bge_t *bgep)
2604 {
2605 	uint32_t macmode;
2606 	uint32_t regval;
2607 
2608 	ASSERT(mutex_owned(bgep->genlock));
2609 
2610 	/*
2611 	 * Reprogram the Ethernet MAC mode ...
2612 	 */
2613 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2614 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2615 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2616 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2617 	else
2618 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2619 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2620 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2621 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2622 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2623 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2624 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2625 	else
2626 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2627 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2628 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2629 	else
2630 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2631 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2632 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2633 	else
2634 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2635 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2636 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2637 	    (void *)bgep, regval, macmode));
2638 
2639 	/*
2640 	 * ... the Transmit MAC mode ...
2641 	 */
2642 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2643 	if (bgep->param_link_tx_pause)
2644 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2645 	else
2646 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2647 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2648 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2649 	    (void *)bgep, regval, macmode));
2650 
2651 	/*
2652 	 * ... and the Receive MAC mode
2653 	 */
2654 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2655 	if (bgep->param_link_rx_pause)
2656 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2657 	else
2658 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2659 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2660 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2661 	    (void *)bgep, regval, macmode));
2662 }
2663 
2664 /*
2665  * bge_chip_sync() -- program the chip with the unicast MAC address,
2666  * the multicast hash table, the required level of promiscuity, and
2667  * the current loopback mode ...
2668  */
2669 #ifdef BGE_IPMI_ASF
2670 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2671 #else
2672 int bge_chip_sync(bge_t *bgep);
2673 #endif
2674 #pragma	no_inline(bge_chip_sync)
2675 
2676 int
2677 #ifdef BGE_IPMI_ASF
2678 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2679 #else
2680 bge_chip_sync(bge_t *bgep)
2681 #endif
2682 {
2683 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2684 	boolean_t promisc;
2685 	uint64_t macaddr;
2686 	uint32_t fill;
2687 	int i, j;
2688 	int retval = DDI_SUCCESS;
2689 
2690 	BGE_TRACE(("bge_chip_sync($%p)",
2691 	    (void *)bgep));
2692 
2693 	ASSERT(mutex_owned(bgep->genlock));
2694 
2695 	promisc = B_FALSE;
2696 	fill = ~(uint32_t)0;
2697 
2698 	if (bgep->promisc)
2699 		promisc = B_TRUE;
2700 	else
2701 		fill = (uint32_t)0;
2702 
2703 	/*
2704 	 * If the TX/RX MAC engines are already running, we should stop
2705 	 * them (and reset the RX engine) before changing the parameters.
2706 	 * If they're not running, this will have no effect ...
2707 	 *
2708 	 * NOTE: this is currently disabled by default because stopping
2709 	 * and restarting the Tx engine may cause an outgoing packet in
2710 	 * transit to be truncated.  Also, stopping and restarting the
2711 	 * Rx engine seems to not work correctly on the 5705.  Testing
2712 	 * has not (yet!) revealed any problems with NOT stopping and
2713 	 * restarting these engines (and Broadcom say their drivers don't
2714 	 * do this), but if it is found to cause problems, this variable
2715 	 * can be patched to re-enable the old behaviour ...
2716 	 */
2717 	if (bge_stop_start_on_sync) {
2718 #ifdef BGE_IPMI_ASF
2719 		if (!bgep->asf_enabled) {
2720 			if (!bge_chip_disable_engine(bgep,
2721 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2722 				retval = DDI_FAILURE;
2723 		} else {
2724 			if (!bge_chip_disable_engine(bgep,
2725 			    RECEIVE_MAC_MODE_REG, 0))
2726 				retval = DDI_FAILURE;
2727 		}
2728 #else
2729 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2730 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2731 			retval = DDI_FAILURE;
2732 #endif
2733 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2734 			retval = DDI_FAILURE;
2735 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2736 			retval = DDI_FAILURE;
2737 	}
2738 
2739 	/*
2740 	 * Reprogram the hashed multicast address table ...
2741 	 */
2742 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2743 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
2744 
2745 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2746 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2747 			bgep->mcast_hash[i] | fill);
2748 
2749 #ifdef BGE_IPMI_ASF
2750 	if (!bgep->asf_enabled || !asf_keeplive) {
2751 #endif
2752 		/*
2753 		 * Transform the MAC address(es) from host to chip format, then
2754 		 * reprogram the transmit random backoff seed and the unicast
2755 		 * MAC address(es) ...
2756 		 */
2757 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2758 			for (i = 0, fill = 0, macaddr = 0ull;
2759 			    i < ETHERADDRL; ++i) {
2760 				macaddr <<= 8;
2761 				macaddr |= bgep->curr_addr[j].addr[i];
2762 				fill += bgep->curr_addr[j].addr[i];
2763 			}
2764 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2765 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2766 		}
2767 
2768 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2769 			(void *)bgep, macaddr));
2770 #ifdef BGE_IPMI_ASF
2771 	}
2772 #endif
2773 
2774 	/*
2775 	 * Set or clear the PROMISCUOUS mode bit
2776 	 */
2777 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2778 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2779 
2780 	/*
2781 	 * Sync the rest of the MAC modes too ...
2782 	 */
2783 	bge_sync_mac_modes(bgep);
2784 
2785 	/*
2786 	 * Restart RX/TX MAC engines if required ...
2787 	 */
2788 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2789 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2790 			retval = DDI_FAILURE;
2791 #ifdef BGE_IPMI_ASF
2792 		if (!bgep->asf_enabled) {
2793 			if (!bge_chip_enable_engine(bgep,
2794 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2795 				retval = DDI_FAILURE;
2796 		} else {
2797 			if (!bge_chip_enable_engine(bgep,
2798 			    RECEIVE_MAC_MODE_REG, 0))
2799 				retval = DDI_FAILURE;
2800 		}
2801 #else
2802 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2803 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2804 			retval = DDI_FAILURE;
2805 #endif
2806 	}
2807 	return (retval);
2808 }
2809 
2810 /*
2811  * This array defines the sequence of state machine control registers
2812  * in which the <enable> bit must be cleared to bring the chip to a
2813  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2814  */
2815 static bge_regno_t shutdown_engine_regs[] = {
2816 	RECEIVE_MAC_MODE_REG,
2817 	RCV_BD_INITIATOR_MODE_REG,
2818 	RCV_LIST_PLACEMENT_MODE_REG,
2819 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2820 	RCV_DATA_BD_INITIATOR_MODE_REG,
2821 	RCV_DATA_COMPLETION_MODE_REG,
2822 	RCV_BD_COMPLETION_MODE_REG,
2823 
2824 	SEND_BD_SELECTOR_MODE_REG,
2825 	SEND_BD_INITIATOR_MODE_REG,
2826 	SEND_DATA_INITIATOR_MODE_REG,
2827 	READ_DMA_MODE_REG,
2828 	SEND_DATA_COMPLETION_MODE_REG,
2829 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2830 	SEND_BD_COMPLETION_MODE_REG,
2831 	TRANSMIT_MAC_MODE_REG,
2832 
2833 	HOST_COALESCE_MODE_REG,
2834 	WRITE_DMA_MODE_REG,
2835 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2836 	FTQ_RESET_REG,		/* special - see code	*/
2837 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2838 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2839 	BGE_REGNO_NONE		/* terminator		*/
2840 };
2841 
2842 /*
2843  * bge_chip_stop() -- stop all chip processing
2844  *
2845  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2846  * we've detected a problem internally; otherwise, this is a normal
2847  * (clean) stop (at user request i.e. the last STREAM has been closed).
2848  */
2849 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2850 #pragma	no_inline(bge_chip_stop)
2851 
2852 void
2853 bge_chip_stop(bge_t *bgep, boolean_t fault)
2854 {
2855 	bge_regno_t regno;
2856 	bge_regno_t *rbp;
2857 	boolean_t ok;
2858 
2859 	BGE_TRACE(("bge_chip_stop($%p)",
2860 	    (void *)bgep));
2861 
2862 	ASSERT(mutex_owned(bgep->genlock));
2863 
2864 	rbp = shutdown_engine_regs;
2865 	/*
2866 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2867 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2868 	 * -ory arbiter should not be disabled.
2869 	 */
2870 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2871 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2872 				ok &= bge_chip_disable_engine(bgep, regno, 0);
2873 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2874 			    (regno != DMA_COMPLETION_MODE_REG) &&
2875 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2876 			    (regno != BUFFER_MANAGER_MODE_REG) &&
2877 			    (regno != MEMORY_ARBITER_MODE_REG))
2878 				ok &= bge_chip_disable_engine(bgep,
2879 				    regno, 0);
2880 	}
2881 
2882 	if (!ok && !fault)
2883 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2884 
2885 	/*
2886 	 * Finally, disable (all) MAC events & clear the MAC status
2887 	 */
2888 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2889 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2890 
2891 	/*
2892 	 * if we're stopping the chip because of a detected fault then do
2893 	 * appropriate actions
2894 	 */
2895 	if (fault) {
2896 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2897 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2898 			if (!bgep->manual_reset)
2899 				ddi_fm_service_impact(bgep->devinfo,
2900 				    DDI_SERVICE_LOST);
2901 			if (bgep->bge_dma_error) {
2902 				/*
2903 				 * need to free buffers in case the fault was
2904 				 * due to a memory error in a buffer - got to
2905 				 * do a fair bit of tidying first
2906 				 */
2907 				if (bgep->progress & PROGRESS_KSTATS) {
2908 					bge_fini_kstats(bgep);
2909 					bgep->progress &= ~PROGRESS_KSTATS;
2910 				}
2911 				if (bgep->progress & PROGRESS_INTR) {
2912 					bge_intr_disable(bgep);
2913 					rw_enter(bgep->errlock, RW_WRITER);
2914 					bge_fini_rings(bgep);
2915 					rw_exit(bgep->errlock);
2916 					bgep->progress &= ~PROGRESS_INTR;
2917 				}
2918 				if (bgep->progress & PROGRESS_BUFS) {
2919 					bge_free_bufs(bgep);
2920 					bgep->progress &= ~PROGRESS_BUFS;
2921 				}
2922 				bgep->bge_dma_error = B_FALSE;
2923 			}
2924 		}
2925 	} else
2926 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2927 }
2928 
2929 /*
2930  * Poll for completion of chip's ROM firmware; also, at least on the
2931  * first time through, find and return the hardware MAC address, if any.
2932  */
2933 static uint64_t bge_poll_firmware(bge_t *bgep);
2934 #pragma	no_inline(bge_poll_firmware)
2935 
2936 static uint64_t
2937 bge_poll_firmware(bge_t *bgep)
2938 {
2939 	uint64_t magic;
2940 	uint64_t mac;
2941 	uint32_t gen;
2942 	uint32_t i;
2943 
2944 	/*
2945 	 * Step 19: poll for firmware completion (GENCOMM port set
2946 	 * to the ones complement of T3_MAGIC_NUMBER).
2947 	 *
2948 	 * While we're at it, we also read the MAC address register;
2949 	 * at some stage the firmware will load this with the
2950 	 * factory-set value.
2951 	 *
2952 	 * When both the magic number and the MAC address are set,
2953 	 * we're done; but we impose a time limit of one second
2954 	 * (1000*1000us) in case the firmware fails in some fashion
2955 	 * or the SEEPROM that provides that MAC address isn't fitted.
2956 	 *
2957 	 * After the first time through (chip state != INITIAL), we
2958 	 * don't need the MAC address to be set (we've already got it
2959 	 * or not, from the first time), so we don't wait for it, but
2960 	 * we still have to wait for the T3_MAGIC_NUMBER.
2961 	 *
2962 	 * Note: the magic number is only a 32-bit quantity, but the NIC
2963 	 * memory is 64-bit (and big-endian) internally.  Addressing the
2964 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
2965 	 * it work correctly on both big- and little-endian hosts.
2966 	 */
2967 	for (i = 0; i < 1000; ++i) {
2968 		drv_usecwait(1000);
2969 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
2970 		if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
2971 			drv_usecwait(100000);
2972 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
2973 #ifdef BGE_IPMI_ASF
2974 		if (!bgep->asf_enabled) {
2975 #endif
2976 			if (gen != ~T3_MAGIC_NUMBER)
2977 				continue;
2978 #ifdef BGE_IPMI_ASF
2979 		}
2980 #endif
2981 		if (mac != 0ULL)
2982 			break;
2983 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
2984 			break;
2985 	}
2986 
2987 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
2988 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
2989 	    (void *)bgep, gen, i));
2990 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
2991 	    mac, magic));
2992 
2993 	return (mac);
2994 }
2995 
2996 /*
2997  * Maximum times of trying to get the NVRAM access lock
2998  * by calling bge_nvmem_acquire()
2999  */
3000 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3001 
3002 #ifdef BGE_IPMI_ASF
3003 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3004 #else
3005 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3006 #endif
3007 #pragma	no_inline(bge_chip_reset)
3008 
3009 int
3010 #ifdef BGE_IPMI_ASF
3011 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3012 #else
3013 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3014 #endif
3015 {
3016 	chip_id_t chipid;
3017 	uint64_t mac;
3018 	uint64_t magic;
3019 	uint32_t modeflags;
3020 	uint32_t mhcr;
3021 	uint32_t sx0;
3022 	uint32_t i, tries;
3023 #ifdef BGE_IPMI_ASF
3024 	uint32_t mailbox;
3025 #endif
3026 	int retval = DDI_SUCCESS;
3027 
3028 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3029 		(void *)bgep, enable_dma));
3030 
3031 	ASSERT(mutex_owned(bgep->genlock));
3032 
3033 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3034 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3035 
3036 	/*
3037 	 * Do we need to stop the chip cleanly before resetting?
3038 	 */
3039 	switch (bgep->bge_chip_state) {
3040 	default:
3041 		_NOTE(NOTREACHED)
3042 		return (DDI_FAILURE);
3043 
3044 	case BGE_CHIP_INITIAL:
3045 	case BGE_CHIP_STOPPED:
3046 	case BGE_CHIP_RESET:
3047 		break;
3048 
3049 	case BGE_CHIP_RUNNING:
3050 	case BGE_CHIP_ERROR:
3051 	case BGE_CHIP_FAULT:
3052 		bge_chip_stop(bgep, B_FALSE);
3053 		break;
3054 	}
3055 
3056 #ifdef BGE_IPMI_ASF
3057 	if (bgep->asf_enabled) {
3058 #ifdef __sparc
3059 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3060 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3061 			MHCR_MASK_INTERRUPT_MODE |
3062 			MHCR_MASK_PCI_INT_OUTPUT |
3063 			MHCR_CLEAR_INTERRUPT_INTA |
3064 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3065 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3066 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3067 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3068 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3069 			MEMORY_ARBITER_ENABLE);
3070 #endif
3071 		if (asf_mode == ASF_MODE_INIT) {
3072 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3073 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3074 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3075 		}
3076 	}
3077 #endif
3078 	/*
3079 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3080 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3081 	 *
3082 	 * Before reset Core clock,it is
3083 	 * also required to initialize the Memory Arbiter as specified in step9
3084 	 * and Misc Host Control Register as specified in step-13
3085 	 * Step 4-5: reset Core clock & wait for completion
3086 	 * Steps 6-8: are done by bge_chip_cfg_init()
3087 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3088 	 */
3089 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3090 		retval = DDI_FAILURE;
3091 
3092 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3093 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3094 	    MHCR_MASK_INTERRUPT_MODE |
3095 	    MHCR_MASK_PCI_INT_OUTPUT |
3096 	    MHCR_CLEAR_INTERRUPT_INTA;
3097 #ifdef  _BIG_ENDIAN
3098 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3099 #endif  /* _BIG_ENDIAN */
3100 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3101 #ifdef BGE_IPMI_ASF
3102 	if (bgep->asf_enabled)
3103 		bgep->asf_wordswapped = B_FALSE;
3104 #endif
3105 	/*
3106 	 * NVRAM Corruption Workaround
3107 	 */
3108 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3109 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3110 			break;
3111 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3112 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3113 			bgep->ifname));
3114 
3115 #ifdef BGE_IPMI_ASF
3116 	if (!bgep->asf_enabled) {
3117 #endif
3118 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3119 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3120 #ifdef BGE_IPMI_ASF
3121 	}
3122 #endif
3123 
3124 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3125 		retval = DDI_FAILURE;
3126 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3127 
3128 	/*
3129 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3130 	 * a bit set to avoid a fifo overflow/underflow bug.
3131 	 */
3132 	if ((bgep->chipid.chip_label == 5721) ||
3133 		(bgep->chipid.chip_label == 5751) ||
3134 		(bgep->chipid.chip_label == 5752) ||
3135 		(bgep->chipid.chip_label == 5755) ||
3136 		(bgep->chipid.chip_label == 5789))
3137 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3138 
3139 
3140 	/*
3141 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3142 	 * not be changed.
3143 	 */
3144 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3145 		retval = DDI_FAILURE;
3146 
3147 	/*
3148 	 * Steps 10-11: configure PIO endianness options and
3149 	 * enable indirect register access -- already done
3150 	 * Steps 12-13: enable writing to the PCI state & clock
3151 	 * control registers -- not required; we aren't going to
3152 	 * use those features.
3153 	 * Steps 14-15: Configure DMA endianness options.  See
3154 	 * the comments on the setting of the MHCR above.
3155 	 */
3156 #ifdef	_BIG_ENDIAN
3157 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3158 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3159 #else
3160 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3161 #endif	/* _BIG_ENDIAN */
3162 #ifdef BGE_IPMI_ASF
3163 	if (bgep->asf_enabled)
3164 		modeflags |= MODE_HOST_STACK_UP;
3165 #endif
3166 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3167 
3168 #ifdef BGE_IPMI_ASF
3169 	if (bgep->asf_enabled) {
3170 #ifdef __sparc
3171 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3172 			MEMORY_ARBITER_ENABLE |
3173 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3174 #endif
3175 
3176 #ifdef  BGE_NETCONSOLE
3177 		if (!bgep->asf_newhandshake) {
3178 			if ((asf_mode == ASF_MODE_INIT) ||
3179 			(asf_mode == ASF_MODE_POST_INIT)) {
3180 				bge_asf_post_reset_old_mode(bgep,
3181 					BGE_INIT_RESET);
3182 			} else {
3183 				bge_asf_post_reset_old_mode(bgep,
3184 					BGE_SHUTDOWN_RESET);
3185 			}
3186 		}
3187 #endif
3188 
3189 		/* Wait for NVRAM init */
3190 		i = 0;
3191 		drv_usecwait(5000);
3192 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3193 
3194 		while ((mailbox != (uint32_t)
3195 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3196 			(i < 10000)) {
3197 			drv_usecwait(100);
3198 			mailbox = bge_nic_get32(bgep,
3199 				BGE_FIRMWARE_MAILBOX);
3200 			i++;
3201 		}
3202 
3203 #ifndef BGE_NETCONSOLE
3204 		if (!bgep->asf_newhandshake) {
3205 			if ((asf_mode == ASF_MODE_INIT) ||
3206 				(asf_mode == ASF_MODE_POST_INIT)) {
3207 
3208 				bge_asf_post_reset_old_mode(bgep,
3209 					BGE_INIT_RESET);
3210 			} else {
3211 				bge_asf_post_reset_old_mode(bgep,
3212 					BGE_SHUTDOWN_RESET);
3213 			}
3214 		}
3215 #endif
3216 	}
3217 #endif
3218 	/*
3219 	 * Steps 16-17: poll for firmware completion
3220 	 */
3221 	mac = bge_poll_firmware(bgep);
3222 
3223 	/*
3224 	 * Step 18: enable external memory -- doesn't apply.
3225 	 *
3226 	 * However we take the opportunity to set the MLCR anyway, as
3227 	 * this register also controls the SEEPROM auto-access method
3228 	 * which we may want to use later ...
3229 	 *
3230 	 * The proper value here depends on the way the chip is wired
3231 	 * into the circuit board, as this register *also* controls which
3232 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3233 	 * values driven onto those pins!
3234 	 *
3235 	 * See also step 74 in the PRM ...
3236 	 */
3237 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3238 	    bgep->chipid.bge_mlcr_default);
3239 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3240 
3241 	/*
3242 	 * Step 20: clear the Ethernet MAC mode register
3243 	 */
3244 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3245 
3246 	/*
3247 	 * Step 21: restore cache-line-size, latency timer, and
3248 	 * subsystem ID registers to their original values (not
3249 	 * those read into the local structure <chipid>, 'cos
3250 	 * that was after they were cleared by the RESET).
3251 	 *
3252 	 * Note: the Subsystem Vendor/Device ID registers are not
3253 	 * directly writable in config space, so we use the shadow
3254 	 * copy in "Page Zero" of register space to restore them
3255 	 * both in one go ...
3256 	 */
3257 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3258 		bgep->chipid.clsize);
3259 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3260 		bgep->chipid.latency);
3261 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3262 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3263 
3264 	/*
3265 	 * The SEND INDEX registers should be reset to zero by the
3266 	 * global chip reset; if they're not, there'll be trouble
3267 	 * later on.
3268 	 */
3269 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3270 	if (sx0 != 0) {
3271 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3272 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3273 		retval = DDI_FAILURE;
3274 	}
3275 
3276 	/* Enable MSI code */
3277 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3278 		bge_reg_set32(bgep, MSI_MODE_REG,
3279 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3280 
3281 	/*
3282 	 * On the first time through, save the factory-set MAC address
3283 	 * (if any).  If bge_poll_firmware() above didn't return one
3284 	 * (from a chip register) consider looking in the attached NV
3285 	 * memory device, if any.  Once we have it, we save it in both
3286 	 * register-image (64-bit) and byte-array forms.  All-zero and
3287 	 * all-one addresses are not valid, and we refuse to stash those.
3288 	 */
3289 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3290 		if (mac == 0ULL)
3291 			mac = bge_get_nvmac(bgep);
3292 		if (mac != 0ULL && mac != ~0ULL) {
3293 			bgep->chipid.hw_mac_addr = mac;
3294 			for (i = ETHERADDRL; i-- != 0; ) {
3295 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3296 				mac >>= 8;
3297 			}
3298 			bgep->chipid.vendor_addr.set = B_TRUE;
3299 		}
3300 	}
3301 
3302 #ifdef BGE_IPMI_ASF
3303 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3304 		if (asf_mode != ASF_MODE_NONE) {
3305 			if ((asf_mode == ASF_MODE_INIT) ||
3306 				(asf_mode == ASF_MODE_POST_INIT)) {
3307 
3308 				bge_asf_post_reset_new_mode(bgep,
3309 					BGE_INIT_RESET);
3310 			} else {
3311 				bge_asf_post_reset_new_mode(bgep,
3312 					BGE_SHUTDOWN_RESET);
3313 			}
3314 		}
3315 	}
3316 #endif
3317 
3318 	/*
3319 	 * Record the new state
3320 	 */
3321 	bgep->chip_resets += 1;
3322 	bgep->bge_chip_state = BGE_CHIP_RESET;
3323 	return (retval);
3324 }
3325 
3326 /*
3327  * bge_chip_start() -- start the chip transmitting and/or receiving,
3328  * including enabling interrupts
3329  */
3330 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3331 #pragma	no_inline(bge_chip_start)
3332 
3333 int
3334 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3335 {
3336 	uint32_t coalmode;
3337 	uint32_t ledctl;
3338 	uint32_t mtu;
3339 	uint32_t maxring;
3340 	uint32_t stats_mask;
3341 	uint32_t dma_wrprio;
3342 	uint64_t ring;
3343 	int retval = DDI_SUCCESS;
3344 
3345 	BGE_TRACE(("bge_chip_start($%p)",
3346 	    (void *)bgep));
3347 
3348 	ASSERT(mutex_owned(bgep->genlock));
3349 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3350 
3351 	/*
3352 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3353 	 * The document specifies 95 separate steps to fully
3354 	 * initialise the chip!!!!
3355 	 *
3356 	 * The reset code above has already got us as far as step
3357 	 * 21, so we continue with ...
3358 	 *
3359 	 * Step 22: clear the MAC statistics block
3360 	 * (0x0300-0x0aff in NIC-local memory)
3361 	 */
3362 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3363 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3364 		    NIC_MEM_STATISTICS_SIZE);
3365 
3366 	/*
3367 	 * Step 23: clear the status block (in host memory)
3368 	 */
3369 	DMA_ZERO(bgep->status_block);
3370 
3371 	/*
3372 	 * Step 24: set DMA read/write control register
3373 	 */
3374 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3375 	    bgep->chipid.bge_dma_rwctrl);
3376 
3377 	/*
3378 	 * Step 25: Configure DMA endianness -- already done (16/17)
3379 	 * Step 26: Configure Host-Based Send Rings
3380 	 * Step 27: Indicate Host Stack Up
3381 	 */
3382 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3383 	    MODE_HOST_SEND_BDS |
3384 	    MODE_HOST_STACK_UP);
3385 
3386 	/*
3387 	 * Step 28: Configure checksum options:
3388 	 *	Solaris supports the hardware default checksum options.
3389 	 *
3390 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3391 	 */
3392 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3393 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3394 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3395 
3396 	/*
3397 	 * Step 29: configure Timer Prescaler.  The value is always the
3398 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3399 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3400 	 * for the whole chip!
3401 	 */
3402 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3403 
3404 	/*
3405 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3406 	 *
3407 	 * If the mbuf_length is specified as 0, we just leave these at
3408 	 * their hardware defaults, rather than explicitly setting them.
3409 	 * As the Broadcom HRM,driver better not change the parameters
3410 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3411 	 */
3412 	if ((bgep->chipid.mbuf_length != 0) &&
3413 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3414 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3415 			    bgep->chipid.mbuf_base);
3416 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3417 			    bgep->chipid.mbuf_length);
3418 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3419 			    DMAD_POOL_BASE_DEFAULT);
3420 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3421 			    DMAD_POOL_LENGTH_DEFAULT);
3422 	}
3423 
3424 	/*
3425 	 * Step 32: configure MAC memory pool watermarks
3426 	 */
3427 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3428 	    bgep->chipid.mbuf_lo_water_rdma);
3429 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3430 	    bgep->chipid.mbuf_lo_water_rmac);
3431 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3432 	    bgep->chipid.mbuf_hi_water);
3433 
3434 	/*
3435 	 * Step 33: configure DMA resource watermarks
3436 	 */
3437 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3438 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3439 		    bge_dmad_lo_water);
3440 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3441 		    bge_dmad_hi_water);
3442 	}
3443 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3444 
3445 	/*
3446 	 * Steps 34-36: enable buffer manager & internal h/w queues
3447 	 */
3448 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3449 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3450 		retval = DDI_FAILURE;
3451 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3452 		retval = DDI_FAILURE;
3453 
3454 	/*
3455 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3456 	 */
3457 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3458 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3459 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3460 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3461 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3462 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3463 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3464 	}
3465 
3466 	/*
3467 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3468 	 */
3469 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3470 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3471 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3472 		    bge_replenish_jumbo);
3473 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3474 		    bge_replenish_mini);
3475 	}
3476 
3477 	/*
3478 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3479 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3480 	 */
3481 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3482 		maxring = BGE_SEND_RINGS_MAX;
3483 	else
3484 		maxring = BGE_SEND_RINGS_MAX_5705;
3485 	for (ring = 0; ring < maxring; ++ring) {
3486 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3487 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3488 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3489 		    &bgep->send[ring].hw_rcb);
3490 	}
3491 
3492 	/*
3493 	 * Steps 44-45: initialise Receive Return Rings
3494 	 * (0x0200-0x02ff in NIC-local memory)
3495 	 */
3496 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3497 		maxring = BGE_RECV_RINGS_MAX;
3498 	else
3499 		maxring = BGE_RECV_RINGS_MAX_5705;
3500 	for (ring = 0; ring < maxring; ++ring)
3501 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3502 		    &bgep->recv[ring].hw_rcb);
3503 
3504 	/*
3505 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3506 	 */
3507 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3508 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3509 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3510 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3511 	}
3512 	/*
3513 	 * Step 47: configure the MAC unicast address
3514 	 * Step 48: configure the random backoff seed
3515 	 * Step 96: set up multicast filters
3516 	 */
3517 #ifdef BGE_IPMI_ASF
3518 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3519 #else
3520 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3521 #endif
3522 		retval = DDI_FAILURE;
3523 
3524 	/*
3525 	 * Step 49: configure the MTU
3526 	 */
3527 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3528 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3529 
3530 	/*
3531 	 * Step 50: configure the IPG et al
3532 	 */
3533 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3534 
3535 	/*
3536 	 * Step 51: configure the default Rx Return Ring
3537 	 */
3538 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3539 
3540 	/*
3541 	 * Steps 52-54: configure Receive List Placement,
3542 	 * and enable Receive List Placement Statistics
3543 	 */
3544 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3545 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3546 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3547 	case MHCR_CHIP_ASIC_REV_5700:
3548 	case MHCR_CHIP_ASIC_REV_5701:
3549 	case MHCR_CHIP_ASIC_REV_5703:
3550 	case MHCR_CHIP_ASIC_REV_5704:
3551 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3552 		break;
3553 	case MHCR_CHIP_ASIC_REV_5705:
3554 		break;
3555 	default:
3556 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3557 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3558 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3559 		break;
3560 	}
3561 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3562 
3563 	if (bgep->chipid.rx_rings > 1)
3564 		bge_init_recv_rule(bgep);
3565 
3566 	/*
3567 	 * Steps 55-56: enable Send Data Initiator Statistics
3568 	 */
3569 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3570 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3571 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3572 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3573 	} else {
3574 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3575 		    SEND_INIT_STATS_ENABLE);
3576 	}
3577 	/*
3578 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3579 	 */
3580 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3581 		retval = DDI_FAILURE;
3582 
3583 	/*
3584 	 * Steps 59-62: initialise Host Coalescing parameters
3585 	 */
3586 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3587 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3588 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3589 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3590 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3591 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3592 		    bge_tx_count_intr);
3593 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3594 		    bge_tx_ticks_intr);
3595 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3596 		    bge_rx_count_intr);
3597 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3598 		    bge_rx_ticks_intr);
3599 	}
3600 
3601 	/*
3602 	 * Steps 63-64: initialise status block & statistics
3603 	 * host memory addresses
3604 	 * The statistic block does not exist in some chipsets
3605 	 * Step 65: initialise Statistics Coalescing Tick Counter
3606 	 */
3607 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3608 	    bgep->status_block.cookie.dmac_laddress);
3609 
3610 	/*
3611 	 * Steps 66-67: initialise status block & statistics
3612 	 * NIC-local memory addresses
3613 	 */
3614 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3615 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3616 		    bgep->statistics.cookie.dmac_laddress);
3617 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3618 		    STATISTICS_TICKS_DEFAULT);
3619 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3620 		    NIC_MEM_STATUS_BLOCK);
3621 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3622 		    NIC_MEM_STATISTICS);
3623 	}
3624 
3625 	/*
3626 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3627 	 * Completion Engine, the Receive List Placement Engine, and the
3628 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3629 	 * and BCM5715.
3630 	 */
3631 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3632 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3633 		coalmode = COALESCE_64_BYTE_STATUS;
3634 	else
3635 		coalmode = 0;
3636 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3637 		retval = DDI_FAILURE;
3638 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3639 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3640 		retval = DDI_FAILURE;
3641 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3642 		retval = DDI_FAILURE;
3643 
3644 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3645 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3646 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3647 			retval = DDI_FAILURE;
3648 
3649 	/*
3650 	 * Step 72: Enable MAC DMA engines
3651 	 * Step 73: Clear & enable MAC statistics
3652 	 */
3653 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3654 	    ETHERNET_MODE_ENABLE_FHDE |
3655 	    ETHERNET_MODE_ENABLE_RDE |
3656 	    ETHERNET_MODE_ENABLE_TDE);
3657 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3658 	    ETHERNET_MODE_ENABLE_TX_STATS |
3659 	    ETHERNET_MODE_ENABLE_RX_STATS |
3660 	    ETHERNET_MODE_CLEAR_TX_STATS |
3661 	    ETHERNET_MODE_CLEAR_RX_STATS);
3662 
3663 	/*
3664 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3665 	 * Register); not required, as we set up the MLCR in step 10
3666 	 * (part of the reset code) above.
3667 	 *
3668 	 * Step 75: clear Interrupt Mailbox 0
3669 	 */
3670 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3671 
3672 	/*
3673 	 * Steps 76-87: Gentlemen, start your engines ...
3674 	 *
3675 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3676 	 * the Read DMA Engine, Receive Data Completion Engine,
3677 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3678 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3679 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3680 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3681 	 *
3682 	 * Beware exhaust fumes?
3683 	 */
3684 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3685 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3686 			retval = DDI_FAILURE;
3687 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3688 	    ALL_DMA_ATTN_BITS;
3689 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3690 	    MHCR_CHIP_ASIC_REV_5755) {
3691 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3692 	}
3693 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3694 	    dma_wrprio))
3695 		retval = DDI_FAILURE;
3696 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3697 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3698 		retval = DDI_FAILURE;
3699 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3700 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3701 		retval = DDI_FAILURE;
3702 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3703 		if (!bge_chip_enable_engine(bgep,
3704 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3705 			retval = DDI_FAILURE;
3706 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3707 		retval = DDI_FAILURE;
3708 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3709 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3710 		retval = DDI_FAILURE;
3711 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3712 	    RCV_BD_DISABLED_RING_ATTN))
3713 		retval = DDI_FAILURE;
3714 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3715 	    RCV_DATA_BD_ILL_RING_ATTN))
3716 		retval = DDI_FAILURE;
3717 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3718 		retval = DDI_FAILURE;
3719 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3720 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3721 		retval = DDI_FAILURE;
3722 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3723 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3724 		retval = DDI_FAILURE;
3725 
3726 	/*
3727 	 * Step 88: download firmware -- doesn't apply
3728 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3729 	 */
3730 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3731 		retval = DDI_FAILURE;
3732 #ifdef BGE_IPMI_ASF
3733 	if (!bgep->asf_enabled) {
3734 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3735 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3736 			retval = DDI_FAILURE;
3737 	} else {
3738 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3739 			retval = DDI_FAILURE;
3740 	}
3741 #else
3742 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3743 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3744 		retval = DDI_FAILURE;
3745 #endif
3746 
3747 	/*
3748 	 * Step 91: disable auto-polling of PHY status
3749 	 */
3750 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3751 
3752 	/*
3753 	 * Step 92: configure D0 power state (not required)
3754 	 * Step 93: initialise LED control register ()
3755 	 */
3756 	ledctl = LED_CONTROL_DEFAULT;
3757 	switch (bgep->chipid.device) {
3758 	case DEVICE_ID_5700:
3759 	case DEVICE_ID_5700x:
3760 	case DEVICE_ID_5701:
3761 		/*
3762 		 * Switch to 5700 (MAC) mode on these older chips
3763 		 */
3764 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3765 		ledctl |= LED_CONTROL_LED_MODE_5700;
3766 		break;
3767 
3768 	default:
3769 		break;
3770 	}
3771 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3772 
3773 	/*
3774 	 * Step 94: activate link
3775 	 */
3776 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3777 
3778 	/*
3779 	 * Step 95: set up physical layer (PHY/SerDes)
3780 	 * restart autoneg (if required)
3781 	 */
3782 	if (reset_phys)
3783 		if (bge_phys_update(bgep) == DDI_FAILURE)
3784 			retval = DDI_FAILURE;
3785 
3786 	/*
3787 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3788 	 */
3789 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3790 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3791 		    bgep->buff[ring].rf_next);
3792 
3793 	/*
3794 	 * MSI bits:The least significant MSI 16-bit word.
3795 	 * ISR will be triggered different.
3796 	 */
3797 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3798 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3799 
3800 	/*
3801 	 * Extra step (DSG): select which interrupts are enabled
3802 	 *
3803 	 * Program the Ethernet MAC engine to signal attention on
3804 	 * Link Change events, then enable interrupts on MAC, DMA,
3805 	 * and FLOW attention signals.
3806 	 */
3807 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3808 	    ETHERNET_EVENT_LINK_INT |
3809 	    ETHERNET_STATUS_PCS_ERROR_INT);
3810 #ifdef BGE_IPMI_ASF
3811 	if (bgep->asf_enabled) {
3812 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3813 		    MODE_INT_ON_FLOW_ATTN |
3814 		    MODE_INT_ON_DMA_ATTN |
3815 		    MODE_HOST_STACK_UP|
3816 		    MODE_INT_ON_MAC_ATTN);
3817 	} else {
3818 #endif
3819 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3820 		    MODE_INT_ON_FLOW_ATTN |
3821 		    MODE_INT_ON_DMA_ATTN |
3822 		    MODE_INT_ON_MAC_ATTN);
3823 #ifdef BGE_IPMI_ASF
3824 	}
3825 #endif
3826 
3827 	/*
3828 	 * Step 97: enable PCI interrupts!!!
3829 	 */
3830 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3831 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3832 		    MHCR_MASK_PCI_INT_OUTPUT);
3833 
3834 	/*
3835 	 * All done!
3836 	 */
3837 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3838 	return (retval);
3839 }
3840 
3841 
3842 /*
3843  * ========== Hardware interrupt handler ==========
3844  */
3845 
3846 #undef	BGE_DBG
3847 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3848 
3849 /*
3850  * Sync the status block, then atomically clear the specified bits in
3851  * the <flags-and-tag> field of the status block.
3852  * the <flags> word of the status block, returning the value of the
3853  * <tag> and the <flags> before the bits were cleared.
3854  */
3855 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3856 #pragma	inline(bge_status_sync)
3857 
3858 static int
3859 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3860 {
3861 	bge_status_t *bsp;
3862 	int retval;
3863 
3864 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3865 	    (void *)bgep, bits));
3866 
3867 	ASSERT(bgep->bge_guard == BGE_GUARD);
3868 
3869 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3870 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3871 	if (retval != DDI_FM_OK)
3872 		return (retval);
3873 
3874 	bsp = DMA_VPTR(bgep->status_block);
3875 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3876 
3877 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3878 	    (void *)bgep, bits, *flags));
3879 
3880 	return (retval);
3881 }
3882 
3883 void bge_wake_factotum(bge_t *bgep);
3884 #pragma	inline(bge_wake_factotum)
3885 
3886 void
3887 bge_wake_factotum(bge_t *bgep)
3888 {
3889 	mutex_enter(bgep->softintrlock);
3890 	if (bgep->factotum_flag == 0) {
3891 		bgep->factotum_flag = 1;
3892 		ddi_trigger_softintr(bgep->factotum_id);
3893 	}
3894 	mutex_exit(bgep->softintrlock);
3895 }
3896 
3897 /*
3898  *	bge_intr() -- handle chip interrupts
3899  */
3900 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3901 #pragma	no_inline(bge_intr)
3902 
3903 uint_t
3904 bge_intr(caddr_t arg1, caddr_t arg2)
3905 {
3906 	bge_t *bgep = (void *)arg1;		/* private device info	*/
3907 	bge_status_t *bsp;
3908 	uint64_t flags;
3909 	uint32_t regval;
3910 	uint_t result;
3911 	int retval, loop_cnt = 0;
3912 
3913 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3914 
3915 	/*
3916 	 * GLD v2 checks that s/w setup is complete before passing
3917 	 * interrupts to this routine, thus eliminating the old
3918 	 * (and well-known) race condition around ddi_add_intr()
3919 	 */
3920 	ASSERT(bgep->progress & PROGRESS_HWINT);
3921 
3922 	result = DDI_INTR_UNCLAIMED;
3923 	mutex_enter(bgep->genlock);
3924 
3925 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3926 		/*
3927 		 * Check whether chip's says it's asserting #INTA;
3928 		 * if not, don't process or claim the interrupt.
3929 		 *
3930 		 * Note that the PCI signal is active low, so the
3931 		 * bit is *zero* when the interrupt is asserted.
3932 		 */
3933 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3934 		if (regval & MLCR_INTA_STATE) {
3935 			if (bge_check_acc_handle(bgep, bgep->io_handle)
3936 			    != DDI_FM_OK)
3937 				goto chip_stop;
3938 			mutex_exit(bgep->genlock);
3939 			return (result);
3940 		}
3941 
3942 		/*
3943 		 * Block further PCI interrupts ...
3944 		 */
3945 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3946 		    MHCR_MASK_PCI_INT_OUTPUT);
3947 
3948 	} else {
3949 		/*
3950 		 * Check MSI status
3951 		 */
3952 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
3953 		if (regval & MSI_ERROR_ATTENTION) {
3954 			BGE_REPORT((bgep, "msi error attention,"
3955 			    " status=0x%x", regval));
3956 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
3957 		}
3958 	}
3959 
3960 	result = DDI_INTR_CLAIMED;
3961 
3962 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
3963 
3964 	/*
3965 	 * Sync the status block and grab the flags-n-tag from it.
3966 	 * We count the number of interrupts where there doesn't
3967 	 * seem to have been a DMA update of the status block; if
3968 	 * it *has* been updated, the counter will be cleared in
3969 	 * the while() loop below ...
3970 	 */
3971 	bgep->missed_dmas += 1;
3972 	bsp = DMA_VPTR(bgep->status_block);
3973 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
3974 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
3975 			/*
3976 			 * bge_chip_stop() may have freed dma area etc
3977 			 * while we were in this interrupt handler -
3978 			 * better not call bge_status_sync()
3979 			 */
3980 			(void) bge_check_acc_handle(bgep,
3981 			    bgep->io_handle);
3982 			mutex_exit(bgep->genlock);
3983 			return (DDI_INTR_CLAIMED);
3984 		}
3985 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
3986 		    &flags);
3987 		if (retval != DDI_FM_OK) {
3988 			bgep->bge_dma_error = B_TRUE;
3989 			goto chip_stop;
3990 		}
3991 
3992 		if (!(flags & STATUS_FLAG_UPDATED))
3993 			break;
3994 
3995 		/*
3996 		 * Tell the chip that we're processing the interrupt
3997 		 */
3998 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3999 		    INTERRUPT_MBOX_DISABLE(flags));
4000 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4001 		    DDI_FM_OK)
4002 			goto chip_stop;
4003 
4004 		/*
4005 		 * Drop the mutex while we:
4006 		 * 	Receive any newly-arrived packets
4007 		 *	Recycle any newly-finished send buffers
4008 		 */
4009 		bgep->bge_intr_running = B_TRUE;
4010 		mutex_exit(bgep->genlock);
4011 		bge_receive(bgep, bsp);
4012 		bge_recycle(bgep, bsp);
4013 		mutex_enter(bgep->genlock);
4014 		bgep->bge_intr_running = B_FALSE;
4015 
4016 		/*
4017 		 * Tell the chip we've finished processing, and
4018 		 * give it the tag that we got from the status
4019 		 * block earlier, so that it knows just how far
4020 		 * we've gone.  If it's got more for us to do,
4021 		 * it will now update the status block and try
4022 		 * to assert an interrupt (but we've got the
4023 		 * #INTA blocked at present).  If we see the
4024 		 * update, we'll loop around to do some more.
4025 		 * Eventually we'll get out of here ...
4026 		 */
4027 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4028 		    INTERRUPT_MBOX_ENABLE(flags));
4029 		if (bgep->chipid.pci_type == BGE_PCI_E)
4030 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4031 		bgep->missed_dmas = 0;
4032 	}
4033 
4034 	/*
4035 	 * Check for exceptional conditions that we need to handle
4036 	 *
4037 	 * Link status changed
4038 	 * Status block not updated
4039 	 */
4040 	if (flags & STATUS_FLAG_LINK_CHANGED)
4041 		bge_wake_factotum(bgep);
4042 
4043 	if (bgep->missed_dmas) {
4044 		/*
4045 		 * Probably due to the internal status tag not
4046 		 * being reset.  Force a status block update now;
4047 		 * this should ensure that we get an update and
4048 		 * a new interrupt.  After that, we should be in
4049 		 * sync again ...
4050 		 */
4051 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4052 		    "not updated?", flags));
4053 		bgep->missed_updates++;
4054 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4055 		    COALESCE_NOW);
4056 
4057 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4058 			/*
4059 			 * If this happens multiple times in a row,
4060 			 * it means DMA is just not working.  Maybe
4061 			 * the chip's failed, or maybe there's a
4062 			 * problem on the PCI bus or in the host-PCI
4063 			 * bridge (Tomatillo).
4064 			 *
4065 			 * At all events, we want to stop further
4066 			 * interrupts and let the recovery code take
4067 			 * over to see whether anything can be done
4068 			 * about it ...
4069 			 */
4070 			bge_fm_ereport(bgep,
4071 			    DDI_FM_DEVICE_BADINT_LIMIT);
4072 			goto chip_stop;
4073 		}
4074 	}
4075 
4076 	/*
4077 	 * Reenable assertion of #INTA, unless there's a DMA fault
4078 	 */
4079 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4080 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4081 		    MHCR_MASK_PCI_INT_OUTPUT);
4082 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4083 		    DDI_FM_OK)
4084 			goto chip_stop;
4085 	}
4086 
4087 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4088 		goto chip_stop;
4089 
4090 	mutex_exit(bgep->genlock);
4091 	return (result);
4092 
4093 chip_stop:
4094 #ifdef BGE_IPMI_ASF
4095 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4096 		/*
4097 		 * We must stop ASF heart beat before
4098 		 * bge_chip_stop(), otherwise some
4099 		 * computers (ex. IBM HS20 blade
4100 		 * server) may crash.
4101 		 */
4102 		bge_asf_update_status(bgep);
4103 		bge_asf_stop_timer(bgep);
4104 		bgep->asf_status = ASF_STAT_STOP;
4105 
4106 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4107 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4108 	}
4109 #endif
4110 	bge_chip_stop(bgep, B_TRUE);
4111 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4112 	mutex_exit(bgep->genlock);
4113 	return (result);
4114 }
4115 
4116 /*
4117  * ========== Factotum, implemented as a softint handler ==========
4118  */
4119 
4120 #undef	BGE_DBG
4121 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4122 
4123 static void bge_factotum_error_handler(bge_t *bgep);
4124 #pragma	no_inline(bge_factotum_error_handler)
4125 
4126 static void
4127 bge_factotum_error_handler(bge_t *bgep)
4128 {
4129 	uint32_t flow;
4130 	uint32_t rdma;
4131 	uint32_t wdma;
4132 	uint32_t tmac;
4133 	uint32_t rmac;
4134 	uint32_t rxrs;
4135 	uint32_t txrs = 0;
4136 
4137 	ASSERT(mutex_owned(bgep->genlock));
4138 
4139 	/*
4140 	 * Read all the registers that show the possible
4141 	 * reasons for the ERROR bit to be asserted
4142 	 */
4143 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4144 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4145 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4146 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4147 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4148 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4149 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4150 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4151 
4152 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4153 	    (void *)bgep, flow, rdma, wdma));
4154 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4155 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4156 
4157 	/*
4158 	 * For now, just clear all the errors ...
4159 	 */
4160 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4161 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4162 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4163 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4164 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4165 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4166 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4167 }
4168 
4169 /*
4170  * Handler for hardware link state change.
4171  *
4172  * When this routine is called, the hardware link state has changed
4173  * and the new state is reflected in the param_* variables.  Here
4174  * we must update the softstate and reprogram the MAC to match.
4175  */
4176 static void bge_factotum_link_handler(bge_t *bgep);
4177 #pragma	no_inline(bge_factotum_link_handler)
4178 
4179 static void
4180 bge_factotum_link_handler(bge_t *bgep)
4181 {
4182 	ASSERT(mutex_owned(bgep->genlock));
4183 
4184 	/*
4185 	 * Update the s/w link_state
4186 	 */
4187 	if (bgep->param_link_up)
4188 		bgep->link_state = LINK_STATE_UP;
4189 	else
4190 		bgep->link_state = LINK_STATE_DOWN;
4191 
4192 	/*
4193 	 * Reprogram the MAC modes to match
4194 	 */
4195 	bge_sync_mac_modes(bgep);
4196 }
4197 
4198 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4199 #pragma	no_inline(bge_factotum_link_check)
4200 
4201 static boolean_t
4202 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4203 {
4204 	boolean_t check;
4205 	uint64_t flags;
4206 	uint32_t tmac_status;
4207 
4208 	ASSERT(mutex_owned(bgep->genlock));
4209 
4210 	/*
4211 	 * Get & clear the writable status bits in the Tx status register
4212 	 * (some bits are write-1-to-clear, others are just readonly).
4213 	 */
4214 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4215 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4216 
4217 	/*
4218 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4219 	 */
4220 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4221 	    STATUS_FLAG_LINK_CHANGED, &flags);
4222 	if (*dma_state != DDI_FM_OK)
4223 		return (B_FALSE);
4224 
4225 	/*
4226 	 * Clear any errors flagged in the status block ...
4227 	 */
4228 	if (flags & STATUS_FLAG_ERROR)
4229 		bge_factotum_error_handler(bgep);
4230 
4231 	/*
4232 	 * We need to check the link status if:
4233 	 *	the status block says there's been a link change
4234 	 *	or there's any discrepancy between the various
4235 	 *	flags indicating the link state (link_state,
4236 	 *	param_link_up, and the LINK STATE bit in the
4237 	 *	Transmit MAC status register).
4238 	 */
4239 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4240 	switch (bgep->link_state) {
4241 	case LINK_STATE_UP:
4242 		check |= (bgep->param_link_up == B_FALSE);
4243 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4244 		break;
4245 
4246 	case LINK_STATE_DOWN:
4247 		check |= (bgep->param_link_up != B_FALSE);
4248 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4249 		break;
4250 
4251 	default:
4252 		check = B_TRUE;
4253 		break;
4254 	}
4255 
4256 	/*
4257 	 * If <check> is false, we're sure the link hasn't changed.
4258 	 * If true, however, it's not yet definitive; we have to call
4259 	 * bge_phys_check() to determine whether the link has settled
4260 	 * into a new state yet ... and if it has, then call the link
4261 	 * state change handler.But when the chip is 5700 in Dell 6650
4262 	 * ,even if check is false, the link may have changed.So we
4263 	 * have to call bge_phys_check() to determine the link state.
4264 	 */
4265 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4266 		check = bge_phys_check(bgep);
4267 		if (check)
4268 			bge_factotum_link_handler(bgep);
4269 	}
4270 
4271 	return (check);
4272 }
4273 
4274 /*
4275  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4276  */
4277 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4278 #pragma	no_inline(bge_factotum_stall_check)
4279 
4280 static boolean_t
4281 bge_factotum_stall_check(bge_t *bgep)
4282 {
4283 	uint32_t dogval;
4284 
4285 	ASSERT(mutex_owned(bgep->genlock));
4286 
4287 	/*
4288 	 * Specific check for Tx stall ...
4289 	 *
4290 	 * The 'watchdog' counter is incremented whenever a packet
4291 	 * is queued, reset to 1 when some (but not all) buffers
4292 	 * are reclaimed, reset to 0 (disabled) when all buffers
4293 	 * are reclaimed, and shifted left here.  If it exceeds the
4294 	 * threshold value, the chip is assumed to have stalled and
4295 	 * is put into the ERROR state.  The factotum will then reset
4296 	 * it on the next pass.
4297 	 *
4298 	 * All of which should ensure that we don't get into a state
4299 	 * where packets are left pending indefinitely!
4300 	 */
4301 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4302 	if (dogval < bge_watchdog_count)
4303 		return (B_FALSE);
4304 
4305 #if !defined(BGE_NETCONSOLE)
4306 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4307 #endif
4308 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4309 	return (B_TRUE);
4310 }
4311 
4312 /*
4313  * The factotum is woken up when there's something to do that we'd rather
4314  * not do from inside a hardware interrupt handler or high-level cyclic.
4315  * Its two main tasks are:
4316  *	reset & restart the chip after an error
4317  *	check the link status whenever necessary
4318  */
4319 uint_t bge_chip_factotum(caddr_t arg);
4320 #pragma	no_inline(bge_chip_factotum)
4321 
4322 uint_t
4323 bge_chip_factotum(caddr_t arg)
4324 {
4325 	bge_t *bgep;
4326 	uint_t result;
4327 	boolean_t error;
4328 	boolean_t linkchg;
4329 	int dma_state;
4330 
4331 	bgep = (void *)arg;
4332 
4333 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4334 
4335 	mutex_enter(bgep->softintrlock);
4336 	if (bgep->factotum_flag == 0) {
4337 		mutex_exit(bgep->softintrlock);
4338 		return (DDI_INTR_UNCLAIMED);
4339 	}
4340 	bgep->factotum_flag = 0;
4341 	mutex_exit(bgep->softintrlock);
4342 
4343 	result = DDI_INTR_CLAIMED;
4344 	error = B_FALSE;
4345 	linkchg = B_FALSE;
4346 
4347 	mutex_enter(bgep->genlock);
4348 	switch (bgep->bge_chip_state) {
4349 	default:
4350 		break;
4351 
4352 	case BGE_CHIP_RUNNING:
4353 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4354 		error = bge_factotum_stall_check(bgep);
4355 		if (dma_state != DDI_FM_OK) {
4356 			bgep->bge_dma_error = B_TRUE;
4357 			error = B_TRUE;
4358 		}
4359 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4360 			error = B_TRUE;
4361 		if (error)
4362 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4363 		break;
4364 
4365 	case BGE_CHIP_ERROR:
4366 		error = B_TRUE;
4367 		break;
4368 
4369 	case BGE_CHIP_FAULT:
4370 		/*
4371 		 * Fault detected, time to reset ...
4372 		 */
4373 		if (bge_autorecover) {
4374 			if (!(bgep->progress & PROGRESS_BUFS)) {
4375 				/*
4376 				 * if we can't allocate the ring buffers,
4377 				 * try later
4378 				 */
4379 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4380 					mutex_exit(bgep->genlock);
4381 					return (result);
4382 				}
4383 				bgep->progress |= PROGRESS_BUFS;
4384 			}
4385 			if (!(bgep->progress & PROGRESS_INTR)) {
4386 				bge_init_rings(bgep);
4387 				bge_intr_enable(bgep);
4388 				bgep->progress |= PROGRESS_INTR;
4389 			}
4390 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4391 				bge_init_kstats(bgep,
4392 				    ddi_get_instance(bgep->devinfo));
4393 				bgep->progress |= PROGRESS_KSTATS;
4394 			}
4395 
4396 			BGE_REPORT((bgep, "automatic recovery activated"));
4397 
4398 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4399 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4400 				error = B_TRUE;
4401 			}
4402 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4403 			    DDI_FM_OK) {
4404 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4405 				error = B_TRUE;
4406 			}
4407 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4408 			    DDI_FM_OK) {
4409 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4410 				error = B_TRUE;
4411 			}
4412 			if (error == B_FALSE) {
4413 #ifdef BGE_IPMI_ASF
4414 				if (bgep->asf_enabled &&
4415 				    bgep->asf_status != ASF_STAT_RUN) {
4416 					bgep->asf_timeout_id = timeout(
4417 					    bge_asf_heartbeat, (void *)bgep,
4418 					    drv_usectohz(
4419 					    BGE_ASF_HEARTBEAT_INTERVAL));
4420 					bgep->asf_status = ASF_STAT_RUN;
4421 				}
4422 #endif
4423 				if (!bgep->manual_reset) {
4424 					ddi_fm_service_impact(bgep->devinfo,
4425 					    DDI_SERVICE_RESTORED);
4426 				}
4427 			}
4428 		}
4429 		break;
4430 	}
4431 
4432 
4433 	/*
4434 	 * If an error is detected, stop the chip now, marking it as
4435 	 * faulty, so that it will be reset next time through ...
4436 	 *
4437 	 * Note that if intr_running is set, then bge_intr() has dropped
4438 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4439 	 * this point so have to wait until the next time the factotum runs.
4440 	 */
4441 	if (error && !bgep->bge_intr_running) {
4442 #ifdef BGE_IPMI_ASF
4443 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4444 			/*
4445 			 * We must stop ASF heart beat before bge_chip_stop(),
4446 			 * otherwise some computers (ex. IBM HS20 blade server)
4447 			 * may crash.
4448 			 */
4449 			bge_asf_update_status(bgep);
4450 			bge_asf_stop_timer(bgep);
4451 			bgep->asf_status = ASF_STAT_STOP;
4452 
4453 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4454 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4455 		}
4456 #endif
4457 		bge_chip_stop(bgep, B_TRUE);
4458 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4459 	}
4460 	mutex_exit(bgep->genlock);
4461 
4462 	/*
4463 	 * If the link state changed, tell the world about it.
4464 	 * Note: can't do this while still holding the mutex.
4465 	 */
4466 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4467 	    bgep->link_state != LINK_STATE_UNKNOWN)
4468 		linkchg = B_TRUE;
4469 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4470 	    bgep->link_state == LINK_STATE_DOWN)
4471 		linkchg = B_FALSE;
4472 
4473 	if (linkchg) {
4474 		mac_link_update(bgep->mh, bgep->link_state);
4475 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4476 	}
4477 	if (bgep->manual_reset) {
4478 		bgep->manual_reset = B_FALSE;
4479 	}
4480 
4481 	return (result);
4482 }
4483 
4484 /*
4485  * High-level cyclic handler
4486  *
4487  * This routine schedules a (low-level) softint callback to the
4488  * factotum, and prods the chip to update the status block (which
4489  * will cause a hardware interrupt when complete).
4490  */
4491 void bge_chip_cyclic(void *arg);
4492 #pragma	no_inline(bge_chip_cyclic)
4493 
4494 void
4495 bge_chip_cyclic(void *arg)
4496 {
4497 	bge_t *bgep;
4498 
4499 	bgep = arg;
4500 
4501 	switch (bgep->bge_chip_state) {
4502 	default:
4503 		return;
4504 
4505 	case BGE_CHIP_RUNNING:
4506 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4507 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4508 			ddi_fm_service_impact(bgep->devinfo,
4509 			    DDI_SERVICE_UNAFFECTED);
4510 
4511 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4512 			bgep->link_update_timer++;
4513 
4514 		break;
4515 
4516 	case BGE_CHIP_FAULT:
4517 	case BGE_CHIP_ERROR:
4518 		break;
4519 	}
4520 
4521 	bge_wake_factotum(bgep);
4522 }
4523 
4524 
4525 /*
4526  * ========== Ioctl subfunctions ==========
4527  */
4528 
4529 #undef	BGE_DBG
4530 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4531 
4532 #if	BGE_DEBUGGING || BGE_DO_PPIO
4533 
4534 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4535 #pragma	no_inline(bge_chip_peek_cfg)
4536 
4537 static void
4538 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4539 {
4540 	uint64_t regval;
4541 	uint64_t regno;
4542 
4543 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4544 	    (void *)bgep, (void *)ppd));
4545 
4546 	regno = ppd->pp_acc_offset;
4547 
4548 	switch (ppd->pp_acc_size) {
4549 	case 1:
4550 		regval = pci_config_get8(bgep->cfg_handle, regno);
4551 		break;
4552 
4553 	case 2:
4554 		regval = pci_config_get16(bgep->cfg_handle, regno);
4555 		break;
4556 
4557 	case 4:
4558 		regval = pci_config_get32(bgep->cfg_handle, regno);
4559 		break;
4560 
4561 	case 8:
4562 		regval = pci_config_get64(bgep->cfg_handle, regno);
4563 		break;
4564 	}
4565 
4566 	ppd->pp_acc_data = regval;
4567 }
4568 
4569 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4570 #pragma	no_inline(bge_chip_poke_cfg)
4571 
4572 static void
4573 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4574 {
4575 	uint64_t regval;
4576 	uint64_t regno;
4577 
4578 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4579 	    (void *)bgep, (void *)ppd));
4580 
4581 	regno = ppd->pp_acc_offset;
4582 	regval = ppd->pp_acc_data;
4583 
4584 	switch (ppd->pp_acc_size) {
4585 	case 1:
4586 		pci_config_put8(bgep->cfg_handle, regno, regval);
4587 		break;
4588 
4589 	case 2:
4590 		pci_config_put16(bgep->cfg_handle, regno, regval);
4591 		break;
4592 
4593 	case 4:
4594 		pci_config_put32(bgep->cfg_handle, regno, regval);
4595 		break;
4596 
4597 	case 8:
4598 		pci_config_put64(bgep->cfg_handle, regno, regval);
4599 		break;
4600 	}
4601 }
4602 
4603 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4604 #pragma	no_inline(bge_chip_peek_reg)
4605 
4606 static void
4607 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4608 {
4609 	uint64_t regval;
4610 	void *regaddr;
4611 
4612 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4613 	    (void *)bgep, (void *)ppd));
4614 
4615 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4616 
4617 	switch (ppd->pp_acc_size) {
4618 	case 1:
4619 		regval = ddi_get8(bgep->io_handle, regaddr);
4620 		break;
4621 
4622 	case 2:
4623 		regval = ddi_get16(bgep->io_handle, regaddr);
4624 		break;
4625 
4626 	case 4:
4627 		regval = ddi_get32(bgep->io_handle, regaddr);
4628 		break;
4629 
4630 	case 8:
4631 		regval = ddi_get64(bgep->io_handle, regaddr);
4632 		break;
4633 	}
4634 
4635 	ppd->pp_acc_data = regval;
4636 }
4637 
4638 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4639 #pragma	no_inline(bge_chip_peek_reg)
4640 
4641 static void
4642 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4643 {
4644 	uint64_t regval;
4645 	void *regaddr;
4646 
4647 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4648 	    (void *)bgep, (void *)ppd));
4649 
4650 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4651 	regval = ppd->pp_acc_data;
4652 
4653 	switch (ppd->pp_acc_size) {
4654 	case 1:
4655 		ddi_put8(bgep->io_handle, regaddr, regval);
4656 		break;
4657 
4658 	case 2:
4659 		ddi_put16(bgep->io_handle, regaddr, regval);
4660 		break;
4661 
4662 	case 4:
4663 		ddi_put32(bgep->io_handle, regaddr, regval);
4664 		break;
4665 
4666 	case 8:
4667 		ddi_put64(bgep->io_handle, regaddr, regval);
4668 		break;
4669 	}
4670 	BGE_PCICHK(bgep);
4671 }
4672 
4673 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4674 #pragma	no_inline(bge_chip_peek_nic)
4675 
4676 static void
4677 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4678 {
4679 	uint64_t regoff;
4680 	uint64_t regval;
4681 	void *regaddr;
4682 
4683 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4684 	    (void *)bgep, (void *)ppd));
4685 
4686 	regoff = ppd->pp_acc_offset;
4687 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4688 	regoff &= MWBAR_GRANULE_MASK;
4689 	regoff += NIC_MEM_WINDOW_OFFSET;
4690 	regaddr = PIO_ADDR(bgep, regoff);
4691 
4692 	switch (ppd->pp_acc_size) {
4693 	case 1:
4694 		regval = ddi_get8(bgep->io_handle, regaddr);
4695 		break;
4696 
4697 	case 2:
4698 		regval = ddi_get16(bgep->io_handle, regaddr);
4699 		break;
4700 
4701 	case 4:
4702 		regval = ddi_get32(bgep->io_handle, regaddr);
4703 		break;
4704 
4705 	case 8:
4706 		regval = ddi_get64(bgep->io_handle, regaddr);
4707 		break;
4708 	}
4709 
4710 	ppd->pp_acc_data = regval;
4711 }
4712 
4713 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4714 #pragma	no_inline(bge_chip_poke_nic)
4715 
4716 static void
4717 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4718 {
4719 	uint64_t regoff;
4720 	uint64_t regval;
4721 	void *regaddr;
4722 
4723 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4724 	    (void *)bgep, (void *)ppd));
4725 
4726 	regoff = ppd->pp_acc_offset;
4727 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4728 	regoff &= MWBAR_GRANULE_MASK;
4729 	regoff += NIC_MEM_WINDOW_OFFSET;
4730 	regaddr = PIO_ADDR(bgep, regoff);
4731 	regval = ppd->pp_acc_data;
4732 
4733 	switch (ppd->pp_acc_size) {
4734 	case 1:
4735 		ddi_put8(bgep->io_handle, regaddr, regval);
4736 		break;
4737 
4738 	case 2:
4739 		ddi_put16(bgep->io_handle, regaddr, regval);
4740 		break;
4741 
4742 	case 4:
4743 		ddi_put32(bgep->io_handle, regaddr, regval);
4744 		break;
4745 
4746 	case 8:
4747 		ddi_put64(bgep->io_handle, regaddr, regval);
4748 		break;
4749 	}
4750 	BGE_PCICHK(bgep);
4751 }
4752 
4753 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4754 #pragma	no_inline(bge_chip_peek_mii)
4755 
4756 static void
4757 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4758 {
4759 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4760 	    (void *)bgep, (void *)ppd));
4761 
4762 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4763 }
4764 
4765 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4766 #pragma	no_inline(bge_chip_poke_mii)
4767 
4768 static void
4769 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4770 {
4771 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4772 	    (void *)bgep, (void *)ppd));
4773 
4774 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4775 }
4776 
4777 #if	BGE_SEE_IO32
4778 
4779 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4780 #pragma	no_inline(bge_chip_peek_seeprom)
4781 
4782 static void
4783 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4784 {
4785 	uint32_t data;
4786 	int err;
4787 
4788 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4789 	    (void *)bgep, (void *)ppd));
4790 
4791 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4792 	ppd->pp_acc_data = err ? ~0ull : data;
4793 }
4794 
4795 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4796 #pragma	no_inline(bge_chip_poke_seeprom)
4797 
4798 static void
4799 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4800 {
4801 	uint32_t data;
4802 
4803 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4804 	    (void *)bgep, (void *)ppd));
4805 
4806 	data = ppd->pp_acc_data;
4807 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4808 }
4809 #endif	/* BGE_SEE_IO32 */
4810 
4811 #if	BGE_FLASH_IO32
4812 
4813 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4814 #pragma	no_inline(bge_chip_peek_flash)
4815 
4816 static void
4817 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4818 {
4819 	uint32_t data;
4820 	int err;
4821 
4822 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4823 	    (void *)bgep, (void *)ppd));
4824 
4825 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4826 	ppd->pp_acc_data = err ? ~0ull : data;
4827 }
4828 
4829 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4830 #pragma	no_inline(bge_chip_poke_flash)
4831 
4832 static void
4833 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4834 {
4835 	uint32_t data;
4836 
4837 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4838 	    (void *)bgep, (void *)ppd));
4839 
4840 	data = ppd->pp_acc_data;
4841 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4842 	    ppd->pp_acc_offset, &data);
4843 }
4844 #endif	/* BGE_FLASH_IO32 */
4845 
4846 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4847 #pragma	no_inline(bge_chip_peek_mem)
4848 
4849 static void
4850 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4851 {
4852 	uint64_t regval;
4853 	void *vaddr;
4854 
4855 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4856 	    (void *)bgep, (void *)ppd));
4857 
4858 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4859 
4860 	switch (ppd->pp_acc_size) {
4861 	case 1:
4862 		regval = *(uint8_t *)vaddr;
4863 		break;
4864 
4865 	case 2:
4866 		regval = *(uint16_t *)vaddr;
4867 		break;
4868 
4869 	case 4:
4870 		regval = *(uint32_t *)vaddr;
4871 		break;
4872 
4873 	case 8:
4874 		regval = *(uint64_t *)vaddr;
4875 		break;
4876 	}
4877 
4878 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4879 	    (void *)bgep, (void *)ppd, regval, vaddr));
4880 
4881 	ppd->pp_acc_data = regval;
4882 }
4883 
4884 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4885 #pragma	no_inline(bge_chip_poke_mem)
4886 
4887 static void
4888 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4889 {
4890 	uint64_t regval;
4891 	void *vaddr;
4892 
4893 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4894 	    (void *)bgep, (void *)ppd));
4895 
4896 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4897 	regval = ppd->pp_acc_data;
4898 
4899 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4900 	    (void *)bgep, (void *)ppd, regval, vaddr));
4901 
4902 	switch (ppd->pp_acc_size) {
4903 	case 1:
4904 		*(uint8_t *)vaddr = (uint8_t)regval;
4905 		break;
4906 
4907 	case 2:
4908 		*(uint16_t *)vaddr = (uint16_t)regval;
4909 		break;
4910 
4911 	case 4:
4912 		*(uint32_t *)vaddr = (uint32_t)regval;
4913 		break;
4914 
4915 	case 8:
4916 		*(uint64_t *)vaddr = (uint64_t)regval;
4917 		break;
4918 	}
4919 }
4920 
4921 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4922 					struct iocblk *iocp);
4923 #pragma	no_inline(bge_pp_ioctl)
4924 
4925 static enum ioc_reply
4926 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4927 {
4928 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4929 	bge_peekpoke_t *ppd;
4930 	dma_area_t *areap;
4931 	uint64_t sizemask;
4932 	uint64_t mem_va;
4933 	uint64_t maxoff;
4934 	boolean_t peek;
4935 
4936 	switch (cmd) {
4937 	default:
4938 		/* NOTREACHED */
4939 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4940 		return (IOC_INVAL);
4941 
4942 	case BGE_PEEK:
4943 		peek = B_TRUE;
4944 		break;
4945 
4946 	case BGE_POKE:
4947 		peek = B_FALSE;
4948 		break;
4949 	}
4950 
4951 	/*
4952 	 * Validate format of ioctl
4953 	 */
4954 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4955 		return (IOC_INVAL);
4956 	if (mp->b_cont == NULL)
4957 		return (IOC_INVAL);
4958 	ppd = (void *)mp->b_cont->b_rptr;
4959 
4960 	/*
4961 	 * Validate request parameters
4962 	 */
4963 	switch (ppd->pp_acc_space) {
4964 	default:
4965 		return (IOC_INVAL);
4966 
4967 	case BGE_PP_SPACE_CFG:
4968 		/*
4969 		 * Config space
4970 		 */
4971 		sizemask = 8|4|2|1;
4972 		mem_va = 0;
4973 		maxoff = PCI_CONF_HDR_SIZE;
4974 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
4975 		break;
4976 
4977 	case BGE_PP_SPACE_REG:
4978 		/*
4979 		 * Memory-mapped I/O space
4980 		 */
4981 		sizemask = 8|4|2|1;
4982 		mem_va = 0;
4983 		maxoff = RIAAR_REGISTER_MAX;
4984 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
4985 		break;
4986 
4987 	case BGE_PP_SPACE_NIC:
4988 		/*
4989 		 * NIC on-chip memory
4990 		 */
4991 		sizemask = 8|4|2|1;
4992 		mem_va = 0;
4993 		maxoff = MWBAR_ONCHIP_MAX;
4994 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
4995 		break;
4996 
4997 	case BGE_PP_SPACE_MII:
4998 		/*
4999 		 * PHY's MII registers
5000 		 * NB: all PHY registers are two bytes, but the
5001 		 * addresses increment in ones (word addressing).
5002 		 * So we scale the address here, then undo the
5003 		 * transformation inside the peek/poke functions.
5004 		 */
5005 		ppd->pp_acc_offset *= 2;
5006 		sizemask = 2;
5007 		mem_va = 0;
5008 		maxoff = (MII_MAXREG+1)*2;
5009 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5010 		break;
5011 
5012 #if	BGE_SEE_IO32
5013 	case BGE_PP_SPACE_SEEPROM:
5014 		/*
5015 		 * Attached SEEPROM(s), if any.
5016 		 * NB: we use the high-order bits of the 'address' as
5017 		 * a device select to accommodate multiple SEEPROMS,
5018 		 * If each one is the maximum size (64kbytes), this
5019 		 * makes them appear contiguous.  Otherwise, there may
5020 		 * be holes in the mapping.  ENxS doesn't have any
5021 		 * SEEPROMs anyway ...
5022 		 */
5023 		sizemask = 4;
5024 		mem_va = 0;
5025 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5026 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5027 		break;
5028 #endif	/* BGE_SEE_IO32 */
5029 
5030 #if	BGE_FLASH_IO32
5031 	case BGE_PP_SPACE_FLASH:
5032 		/*
5033 		 * Attached Flash device (if any); a maximum of one device
5034 		 * is currently supported.  But it can be up to 1MB (unlike
5035 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5036 		 */
5037 		sizemask = 4;
5038 		mem_va = 0;
5039 		maxoff = NVM_FLASH_ADDR_MASK;
5040 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5041 		break;
5042 #endif	/* BGE_FLASH_IO32 */
5043 
5044 	case BGE_PP_SPACE_BGE:
5045 		/*
5046 		 * BGE data structure!
5047 		 */
5048 		sizemask = 8|4|2|1;
5049 		mem_va = (uintptr_t)bgep;
5050 		maxoff = sizeof (*bgep);
5051 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5052 		break;
5053 
5054 	case BGE_PP_SPACE_STATUS:
5055 	case BGE_PP_SPACE_STATISTICS:
5056 	case BGE_PP_SPACE_TXDESC:
5057 	case BGE_PP_SPACE_TXBUFF:
5058 	case BGE_PP_SPACE_RXDESC:
5059 	case BGE_PP_SPACE_RXBUFF:
5060 		/*
5061 		 * Various DMA_AREAs
5062 		 */
5063 		switch (ppd->pp_acc_space) {
5064 		case BGE_PP_SPACE_TXDESC:
5065 			areap = &bgep->tx_desc;
5066 			break;
5067 		case BGE_PP_SPACE_TXBUFF:
5068 			areap = &bgep->tx_buff[0];
5069 			break;
5070 		case BGE_PP_SPACE_RXDESC:
5071 			areap = &bgep->rx_desc[0];
5072 			break;
5073 		case BGE_PP_SPACE_RXBUFF:
5074 			areap = &bgep->rx_buff[0];
5075 			break;
5076 		case BGE_PP_SPACE_STATUS:
5077 			areap = &bgep->status_block;
5078 			break;
5079 		case BGE_PP_SPACE_STATISTICS:
5080 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5081 				areap = &bgep->statistics;
5082 			break;
5083 		}
5084 
5085 		sizemask = 8|4|2|1;
5086 		mem_va = (uintptr_t)areap->mem_va;
5087 		maxoff = areap->alength;
5088 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5089 		break;
5090 	}
5091 
5092 	switch (ppd->pp_acc_size) {
5093 	default:
5094 		return (IOC_INVAL);
5095 
5096 	case 8:
5097 	case 4:
5098 	case 2:
5099 	case 1:
5100 		if ((ppd->pp_acc_size & sizemask) == 0)
5101 			return (IOC_INVAL);
5102 		break;
5103 	}
5104 
5105 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5106 		return (IOC_INVAL);
5107 
5108 	if (ppd->pp_acc_offset >= maxoff)
5109 		return (IOC_INVAL);
5110 
5111 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5112 		return (IOC_INVAL);
5113 
5114 	/*
5115 	 * All OK - go do it!
5116 	 */
5117 	ppd->pp_acc_offset += mem_va;
5118 	(*ppfn)(bgep, ppd);
5119 	return (peek ? IOC_REPLY : IOC_ACK);
5120 }
5121 
5122 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5123 					struct iocblk *iocp);
5124 #pragma	no_inline(bge_diag_ioctl)
5125 
5126 static enum ioc_reply
5127 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5128 {
5129 	ASSERT(mutex_owned(bgep->genlock));
5130 
5131 	switch (cmd) {
5132 	default:
5133 		/* NOTREACHED */
5134 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5135 		return (IOC_INVAL);
5136 
5137 	case BGE_DIAG:
5138 		/*
5139 		 * Currently a no-op
5140 		 */
5141 		return (IOC_ACK);
5142 
5143 	case BGE_PEEK:
5144 	case BGE_POKE:
5145 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5146 
5147 	case BGE_PHY_RESET:
5148 		return (IOC_RESTART_ACK);
5149 
5150 	case BGE_SOFT_RESET:
5151 	case BGE_HARD_RESET:
5152 		/*
5153 		 * Reset and reinitialise the 570x hardware
5154 		 */
5155 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5156 		ddi_trigger_softintr(bgep->factotum_id);
5157 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5158 		return (IOC_ACK);
5159 	}
5160 
5161 	/* NOTREACHED */
5162 }
5163 
5164 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5165 
5166 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5167 				    struct iocblk *iocp);
5168 #pragma	no_inline(bge_mii_ioctl)
5169 
5170 static enum ioc_reply
5171 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5172 {
5173 	struct bge_mii_rw *miirwp;
5174 
5175 	/*
5176 	 * Validate format of ioctl
5177 	 */
5178 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5179 		return (IOC_INVAL);
5180 	if (mp->b_cont == NULL)
5181 		return (IOC_INVAL);
5182 	miirwp = (void *)mp->b_cont->b_rptr;
5183 
5184 	/*
5185 	 * Validate request parameters ...
5186 	 */
5187 	if (miirwp->mii_reg > MII_MAXREG)
5188 		return (IOC_INVAL);
5189 
5190 	switch (cmd) {
5191 	default:
5192 		/* NOTREACHED */
5193 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5194 		return (IOC_INVAL);
5195 
5196 	case BGE_MII_READ:
5197 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5198 		return (IOC_REPLY);
5199 
5200 	case BGE_MII_WRITE:
5201 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5202 		return (IOC_ACK);
5203 	}
5204 
5205 	/* NOTREACHED */
5206 }
5207 
5208 #if	BGE_SEE_IO32
5209 
5210 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5211 				    struct iocblk *iocp);
5212 #pragma	no_inline(bge_see_ioctl)
5213 
5214 static enum ioc_reply
5215 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5216 {
5217 	struct bge_see_rw *seerwp;
5218 
5219 	/*
5220 	 * Validate format of ioctl
5221 	 */
5222 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5223 		return (IOC_INVAL);
5224 	if (mp->b_cont == NULL)
5225 		return (IOC_INVAL);
5226 	seerwp = (void *)mp->b_cont->b_rptr;
5227 
5228 	/*
5229 	 * Validate request parameters ...
5230 	 */
5231 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5232 		return (IOC_INVAL);
5233 
5234 	switch (cmd) {
5235 	default:
5236 		/* NOTREACHED */
5237 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5238 		return (IOC_INVAL);
5239 
5240 	case BGE_SEE_READ:
5241 	case BGE_SEE_WRITE:
5242 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5243 		    seerwp->see_addr, &seerwp->see_data);
5244 		return (IOC_REPLY);
5245 	}
5246 
5247 	/* NOTREACHED */
5248 }
5249 
5250 #endif	/* BGE_SEE_IO32 */
5251 
5252 #if	BGE_FLASH_IO32
5253 
5254 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5255 				    struct iocblk *iocp);
5256 #pragma	no_inline(bge_flash_ioctl)
5257 
5258 static enum ioc_reply
5259 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5260 {
5261 	struct bge_flash_rw *flashrwp;
5262 
5263 	/*
5264 	 * Validate format of ioctl
5265 	 */
5266 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5267 		return (IOC_INVAL);
5268 	if (mp->b_cont == NULL)
5269 		return (IOC_INVAL);
5270 	flashrwp = (void *)mp->b_cont->b_rptr;
5271 
5272 	/*
5273 	 * Validate request parameters ...
5274 	 */
5275 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5276 		return (IOC_INVAL);
5277 
5278 	switch (cmd) {
5279 	default:
5280 		/* NOTREACHED */
5281 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5282 		return (IOC_INVAL);
5283 
5284 	case BGE_FLASH_READ:
5285 	case BGE_FLASH_WRITE:
5286 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5287 		    flashrwp->flash_addr, &flashrwp->flash_data);
5288 		return (IOC_REPLY);
5289 	}
5290 
5291 	/* NOTREACHED */
5292 }
5293 
5294 #endif	/* BGE_FLASH_IO32 */
5295 
5296 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5297 				struct iocblk *iocp);
5298 #pragma	no_inline(bge_chip_ioctl)
5299 
5300 enum ioc_reply
5301 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5302 {
5303 	int cmd;
5304 
5305 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5306 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5307 
5308 	ASSERT(mutex_owned(bgep->genlock));
5309 
5310 	cmd = iocp->ioc_cmd;
5311 	switch (cmd) {
5312 	default:
5313 		/* NOTREACHED */
5314 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5315 		return (IOC_INVAL);
5316 
5317 	case BGE_DIAG:
5318 	case BGE_PEEK:
5319 	case BGE_POKE:
5320 	case BGE_PHY_RESET:
5321 	case BGE_SOFT_RESET:
5322 	case BGE_HARD_RESET:
5323 #if	BGE_DEBUGGING || BGE_DO_PPIO
5324 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5325 #else
5326 		return (IOC_INVAL);
5327 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5328 
5329 	case BGE_MII_READ:
5330 	case BGE_MII_WRITE:
5331 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5332 
5333 #if	BGE_SEE_IO32
5334 	case BGE_SEE_READ:
5335 	case BGE_SEE_WRITE:
5336 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5337 #endif	/* BGE_SEE_IO32 */
5338 
5339 #if	BGE_FLASH_IO32
5340 	case BGE_FLASH_READ:
5341 	case BGE_FLASH_WRITE:
5342 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5343 #endif	/* BGE_FLASH_IO32 */
5344 	}
5345 
5346 	/* NOTREACHED */
5347 }
5348 
5349 void
5350 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5351 {
5352 	bge_t *bgep = arg;
5353 
5354 	mutex_enter(bgep->genlock);
5355 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5356 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5357 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5358 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5359 	mutex_exit(bgep->genlock);
5360 }
5361 
5362 #ifdef BGE_IPMI_ASF
5363 
5364 uint32_t
5365 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5366 {
5367 	uint32_t data;
5368 
5369 #ifndef __sparc
5370 	if (!bgep->asf_wordswapped) {
5371 		/* a workaround word swap error */
5372 		if (addr & 4)
5373 			addr = addr - 4;
5374 		else
5375 			addr = addr + 4;
5376 	}
5377 #endif
5378 
5379 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5380 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5381 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5382 
5383 	data = LE_32(data);
5384 	return (data);
5385 }
5386 
5387 void
5388 bge_asf_update_status(bge_t *bgep)
5389 {
5390 	uint32_t event;
5391 
5392 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5393 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5394 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5395 
5396 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5397 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5398 }
5399 
5400 
5401 /*
5402  * The driver is supposed to notify ASF that the OS is still running
5403  * every three seconds, otherwise the management server may attempt
5404  * to reboot the machine.  If it hasn't actually failed, this is
5405  * not a desirable result.  However, this isn't running as a real-time
5406  * thread, and even if it were, it might not be able to generate the
5407  * heartbeat in a timely manner due to system load.  As it isn't a
5408  * significant strain on the machine, we will set the interval to half
5409  * of the required value.
5410  */
5411 void
5412 bge_asf_heartbeat(void *arg)
5413 {
5414 	bge_t *bgep = (bge_t *)arg;
5415 
5416 	mutex_enter(bgep->genlock);
5417 	bge_asf_update_status((bge_t *)bgep);
5418 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5419 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5420 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5421 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5422 	mutex_exit(bgep->genlock);
5423 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5424 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5425 }
5426 
5427 
5428 void
5429 bge_asf_stop_timer(bge_t *bgep)
5430 {
5431 	timeout_id_t tmp_id = 0;
5432 
5433 	while ((bgep->asf_timeout_id != 0) &&
5434 	    (tmp_id != bgep->asf_timeout_id)) {
5435 		tmp_id = bgep->asf_timeout_id;
5436 		(void) untimeout(tmp_id);
5437 	}
5438 	bgep->asf_timeout_id = 0;
5439 }
5440 
5441 
5442 
5443 /*
5444  * This function should be placed at the earliest position of bge_attach().
5445  */
5446 void
5447 bge_asf_get_config(bge_t *bgep)
5448 {
5449 	uint32_t nicsig;
5450 	uint32_t niccfg;
5451 
5452 	bgep->asf_enabled = B_FALSE;
5453 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5454 	if (nicsig == BGE_NIC_DATA_SIG) {
5455 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5456 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5457 			/*
5458 			 * Here, we don't consider BAXTER, because BGE haven't
5459 			 * supported BAXTER (that is 5752). Also, as I know,
5460 			 * BAXTER doesn't support ASF feature.
5461 			 */
5462 			bgep->asf_enabled = B_TRUE;
5463 		else
5464 			bgep->asf_enabled = B_FALSE;
5465 	} else
5466 		bgep->asf_enabled = B_FALSE;
5467 }
5468 
5469 
5470 void
5471 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5472 {
5473 	uint32_t tries;
5474 	uint32_t event;
5475 
5476 	ASSERT(bgep->asf_enabled);
5477 
5478 	/* Issues "pause firmware" command and wait for ACK */
5479 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5480 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5481 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5482 
5483 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5484 	tries = 0;
5485 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5486 		drv_usecwait(1);
5487 		tries ++;
5488 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5489 	}
5490 
5491 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5492 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5493 
5494 	if (bgep->asf_newhandshake) {
5495 		switch (mode) {
5496 		case BGE_INIT_RESET:
5497 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5498 			    BGE_DRV_STATE_START);
5499 			break;
5500 		case BGE_SHUTDOWN_RESET:
5501 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5502 			    BGE_DRV_STATE_UNLOAD);
5503 			break;
5504 		case BGE_SUSPEND_RESET:
5505 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5506 			    BGE_DRV_STATE_SUSPEND);
5507 			break;
5508 		default:
5509 			break;
5510 		}
5511 	}
5512 }
5513 
5514 
5515 void
5516 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5517 {
5518 	switch (mode) {
5519 	case BGE_INIT_RESET:
5520 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5521 		    BGE_DRV_STATE_START);
5522 		break;
5523 	case BGE_SHUTDOWN_RESET:
5524 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5525 		    BGE_DRV_STATE_UNLOAD);
5526 		break;
5527 	case BGE_SUSPEND_RESET:
5528 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5529 		    BGE_DRV_STATE_SUSPEND);
5530 		break;
5531 	default:
5532 		break;
5533 	}
5534 }
5535 
5536 
5537 void
5538 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5539 {
5540 	switch (mode) {
5541 	case BGE_INIT_RESET:
5542 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5543 		    BGE_DRV_STATE_START_DONE);
5544 		break;
5545 	case BGE_SHUTDOWN_RESET:
5546 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5547 		    BGE_DRV_STATE_UNLOAD_DONE);
5548 		break;
5549 	default:
5550 		break;
5551 	}
5552 }
5553 
5554 #endif /* BGE_IPMI_ASF */
5555