xref: /titanic_52/usr/src/uts/common/io/asy.c (revision b0a27161a17f3895896e339e1786b15a1dcee3b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
23 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
24 /*	  All Rights Reserved					*/
25 
26 /*
27  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 /*
34  * Serial I/O driver for 8250/16450/16550A/16650/16750 chips.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/signal.h>
40 #include <sys/stream.h>
41 #include <sys/termio.h>
42 #include <sys/errno.h>
43 #include <sys/file.h>
44 #include <sys/cmn_err.h>
45 #include <sys/stropts.h>
46 #include <sys/strsubr.h>
47 #include <sys/strtty.h>
48 #include <sys/debug.h>
49 #include <sys/kbio.h>
50 #include <sys/cred.h>
51 #include <sys/stat.h>
52 #include <sys/consdev.h>
53 #include <sys/mkdev.h>
54 #include <sys/kmem.h>
55 #include <sys/cred.h>
56 #include <sys/strsun.h>
57 #ifdef DEBUG
58 #include <sys/promif.h>
59 #endif
60 #include <sys/modctl.h>
61 #include <sys/ddi.h>
62 #include <sys/sunddi.h>
63 #include <sys/pci.h>
64 #include <sys/asy.h>
65 #include <sys/policy.h>
66 
67 /*
68  * set the RX FIFO trigger_level to half the RX FIFO size for now
69  * we may want to make this configurable later.
70  */
71 static	int asy_trig_level = FIFO_TRIG_8;
72 
73 int asy_drain_check = 15000000;		/* tunable: exit drain check time */
74 int asy_min_dtr_low = 500000;		/* tunable: minimum DTR down time */
75 int asy_min_utbrk = 100000;		/* tunable: minumum untimed brk time */
76 
77 int asymaxchip = ASY16750;	/* tunable: limit chip support we look for */
78 
79 /*
80  * Just in case someone has a chip with broken loopback mode, we provide a
81  * means to disable the loopback test. By default, we only loopback test
82  * UARTs which look like they have FIFOs bigger than 16 bytes.
83  * Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
84  */
85 int asy_fifo_test = 1;		/* tunable: set to 0, 1, or 2 */
86 
87 /*
88  * Allow ability to switch off testing of the scratch register.
89  * Some UART emulators might not have it. This will also disable the test
90  * for Exar/Startech ST16C650, as that requires use of the SCR register.
91  */
92 int asy_scr_test = 1;		/* tunable: set to 0 to disable SCR reg test */
93 
94 /*
95  * As we don't yet support on-chip flow control, it's a bad idea to put a
96  * large number of characters in the TX FIFO, since if other end tells us
97  * to stop transmitting, we can only stop filling the TX FIFO, but it will
98  * still carry on draining by itself, so remote end still gets what's left
99  * in the FIFO.
100  */
101 int asy_max_tx_fifo = 16;	/* tunable: max fill of TX FIFO */
102 
103 #define	async_stopc	async_ttycommon.t_stopc
104 #define	async_startc	async_ttycommon.t_startc
105 
106 #define	ASY_INIT	1
107 #define	ASY_NOINIT	0
108 
109 /* enum value for sw and hw flow control action */
110 typedef enum {
111 	FLOW_CHECK,
112 	FLOW_STOP,
113 	FLOW_START
114 } async_flowc_action;
115 
116 #ifdef DEBUG
117 #define	ASY_DEBUG_INIT	0x0001	/* Output msgs during driver initialization. */
118 #define	ASY_DEBUG_INPUT	0x0002	/* Report characters received during int. */
119 #define	ASY_DEBUG_EOT	0x0004	/* Output msgs when wait for xmit to finish. */
120 #define	ASY_DEBUG_CLOSE	0x0008	/* Output msgs when driver open/close called */
121 #define	ASY_DEBUG_HFLOW	0x0010	/* Output msgs when H/W flowcontrol is active */
122 #define	ASY_DEBUG_PROCS	0x0020	/* Output each proc name as it is entered. */
123 #define	ASY_DEBUG_STATE	0x0040	/* Output value of Interrupt Service Reg. */
124 #define	ASY_DEBUG_INTR	0x0080	/* Output value of Interrupt Service Reg. */
125 #define	ASY_DEBUG_OUT	0x0100	/* Output msgs about output events. */
126 #define	ASY_DEBUG_BUSY	0x0200	/* Output msgs when xmit is enabled/disabled */
127 #define	ASY_DEBUG_MODEM	0x0400	/* Output msgs about modem status & control. */
128 #define	ASY_DEBUG_MODM2	0x0800	/* Output msgs about modem status & control. */
129 #define	ASY_DEBUG_IOCTL	0x1000	/* Output msgs about ioctl messages. */
130 #define	ASY_DEBUG_CHIP	0x2000	/* Output msgs about chip identification. */
131 #define	ASY_DEBUG_SFLOW	0x4000	/* Output msgs when S/W flowcontrol is active */
132 #define	ASY_DEBUG(x) (debug & (x))
133 static	int debug  = 0;
134 #else
135 #define	ASY_DEBUG(x) B_FALSE
136 #endif
137 
138 /* pnpISA compressed device ids */
139 #define	pnpMTS0219 0xb6930219	/* Multitech MT5634ZTX modem */
140 
141 /*
142  * PPS (Pulse Per Second) support.
143  */
144 void ddi_hardpps();
145 /*
146  * This is protected by the asy_excl_hi of the port on which PPS event
147  * handling is enabled.  Note that only one port should have this enabled at
148  * any one time.  Enabling PPS handling on multiple ports will result in
149  * unpredictable (but benign) results.
150  */
151 static struct ppsclockev asy_ppsev;
152 
153 #ifdef PPSCLOCKLED
154 /* XXX Use these to observe PPS latencies and jitter on a scope */
155 #define	LED_ON
156 #define	LED_OFF
157 #else
158 #define	LED_ON
159 #define	LED_OFF
160 #endif
161 
162 static	int max_asy_instance = -1;
163 
164 static	uint_t	asysoftintr(caddr_t intarg);
165 static	uint_t	asyintr(caddr_t argasy);
166 
167 static boolean_t abort_charseq_recognize(uchar_t ch);
168 
169 /* The async interrupt entry points */
170 static void	async_txint(struct asycom *asy);
171 static void	async_rxint(struct asycom *asy, uchar_t lsr);
172 static void	async_msint(struct asycom *asy);
173 static void	async_softint(struct asycom *asy);
174 
175 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
176 static void	async_reioctl(void *unit);
177 static void	async_iocdata(queue_t *q, mblk_t *mp);
178 static void	async_restart(void *arg);
179 static void	async_start(struct asyncline *async);
180 static void	async_nstart(struct asyncline *async, int mode);
181 static void	async_resume(struct asyncline *async);
182 static void	asy_program(struct asycom *asy, int mode);
183 static void	asyinit(struct asycom *asy);
184 static void	asy_waiteot(struct asycom *asy);
185 static void	asyputchar(cons_polledio_arg_t, uchar_t c);
186 static int	asygetchar(cons_polledio_arg_t);
187 static boolean_t	asyischar(cons_polledio_arg_t);
188 
189 static int	asymctl(struct asycom *, int, int);
190 static int	asytodm(int, int);
191 static int	dmtoasy(int);
192 /*PRINTFLIKE2*/
193 static void	asyerror(int level, const char *fmt, ...) __KPRINTFLIKE(2);
194 static void	asy_parse_mode(dev_info_t *devi, struct asycom *asy);
195 static void	asy_soft_state_free(struct asycom *);
196 static char	*asy_hw_name(struct asycom *asy);
197 static void	async_hold_utbrk(void *arg);
198 static void	async_resume_utbrk(struct asyncline *async);
199 static void	async_dtr_free(struct asyncline *async);
200 static int	asy_identify_chip(dev_info_t *devi, struct asycom *asy);
201 static void	asy_reset_fifo(struct asycom *asy, uchar_t flags);
202 static int	asy_getproperty(dev_info_t *devi, struct asycom *asy,
203 		    const char *property);
204 static boolean_t	async_flowcontrol_sw_input(struct asycom *asy,
205 			    async_flowc_action onoff, int type);
206 static void	async_flowcontrol_sw_output(struct asycom *asy,
207 		    async_flowc_action onoff);
208 static void	async_flowcontrol_hw_input(struct asycom *asy,
209 		    async_flowc_action onoff, int type);
210 static void	async_flowcontrol_hw_output(struct asycom *asy,
211 		    async_flowc_action onoff);
212 
213 #define	GET_PROP(devi, pname, pflag, pval, plen) \
214 		(ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
215 		(pflag), (pname), (caddr_t)(pval), (plen)))
216 
217 static ddi_iblock_cookie_t asy_soft_iblock;
218 ddi_softintr_t asy_softintr_id;
219 static	int asy_addedsoft = 0;
220 int	asysoftpend;	/* soft interrupt pending */
221 kmutex_t asy_soft_lock;	/* lock protecting asysoftpend */
222 kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
223 void *asy_soft_state;
224 
225 /* Standard COM port I/O addresses */
226 static const int standard_com_ports[] = {
227 	COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
228 };
229 
230 static int *com_ports;
231 static uint_t num_com_ports;
232 
233 #ifdef	DEBUG
234 /*
235  * Set this to true to make the driver pretend to do a suspend.  Useful
236  * for debugging suspend/resume code with a serial debugger.
237  */
238 boolean_t	asy_nosuspend = B_FALSE;
239 #endif
240 
241 
242 /*
243  * Baud rate table. Indexed by #defines found in sys/termios.h
244  */
245 ushort_t asyspdtab[] = {
246 	0,	/* 0 baud rate */
247 	0x900,	/* 50 baud rate */
248 	0x600,	/* 75 baud rate */
249 	0x417,	/* 110 baud rate (%0.026) */
250 	0x359,	/* 134 baud rate (%0.058) */
251 	0x300,	/* 150 baud rate */
252 	0x240,	/* 200 baud rate */
253 	0x180,	/* 300 baud rate */
254 	0x0c0,	/* 600 baud rate */
255 	0x060,	/* 1200 baud rate */
256 	0x040,	/* 1800 baud rate */
257 	0x030,	/* 2400 baud rate */
258 	0x018,	/* 4800 baud rate */
259 	0x00c,	/* 9600 baud rate */
260 	0x006,	/* 19200 baud rate */
261 	0x003,	/* 38400 baud rate */
262 
263 	0x002,	/* 57600 baud rate */
264 	0x0,	/* 76800 baud rate not supported */
265 	0x001,	/* 115200 baud rate */
266 	0x0,	/* 153600 baud rate not supported */
267 	0x0,	/* 0x8002 (SMC chip) 230400 baud rate not supported */
268 	0x0,	/* 307200 baud rate not supported */
269 	0x0,	/* 0x8001 (SMC chip) 460800 baud rate not supported */
270 	0x0,	/* unused */
271 	0x0,	/* unused */
272 	0x0,	/* unused */
273 	0x0,	/* unused */
274 	0x0,	/* unused */
275 	0x0,	/* unused */
276 	0x0,	/* unused */
277 	0x0,	/* unused */
278 	0x0,	/* unused */
279 };
280 
281 static int asyrsrv(queue_t *q);
282 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
283 static int asyclose(queue_t *q, int flag, cred_t *credp);
284 static int asywputdo(queue_t *q, mblk_t *mp, boolean_t);
285 static int asywput(queue_t *q, mblk_t *mp);
286 
287 struct module_info asy_info = {
288 	0,
289 	"asy",
290 	0,
291 	INFPSZ,
292 	4096,
293 	128
294 };
295 
296 static struct qinit asy_rint = {
297 	putq,
298 	asyrsrv,
299 	asyopen,
300 	asyclose,
301 	NULL,
302 	&asy_info,
303 	NULL
304 };
305 
306 static struct qinit asy_wint = {
307 	asywput,
308 	NULL,
309 	NULL,
310 	NULL,
311 	NULL,
312 	&asy_info,
313 	NULL
314 };
315 
316 struct streamtab asy_str_info = {
317 	&asy_rint,
318 	&asy_wint,
319 	NULL,
320 	NULL
321 };
322 
323 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
324 		void **result);
325 static int asyprobe(dev_info_t *);
326 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
327 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
328 
329 static 	struct cb_ops cb_asy_ops = {
330 	nodev,			/* cb_open */
331 	nodev,			/* cb_close */
332 	nodev,			/* cb_strategy */
333 	nodev,			/* cb_print */
334 	nodev,			/* cb_dump */
335 	nodev,			/* cb_read */
336 	nodev,			/* cb_write */
337 	nodev,			/* cb_ioctl */
338 	nodev,			/* cb_devmap */
339 	nodev,			/* cb_mmap */
340 	nodev,			/* cb_segmap */
341 	nochpoll,		/* cb_chpoll */
342 	ddi_prop_op,		/* cb_prop_op */
343 	&asy_str_info,		/* cb_stream */
344 	D_MP			/* cb_flag */
345 };
346 
347 struct dev_ops asy_ops = {
348 	DEVO_REV,		/* devo_rev */
349 	0,			/* devo_refcnt */
350 	asyinfo,		/* devo_getinfo */
351 	nulldev,		/* devo_identify */
352 	asyprobe,		/* devo_probe */
353 	asyattach,		/* devo_attach */
354 	asydetach,		/* devo_detach */
355 	nodev,			/* devo_reset */
356 	&cb_asy_ops,		/* devo_cb_ops */
357 };
358 
359 static struct modldrv modldrv = {
360 	&mod_driverops, /* Type of module.  This one is a driver */
361 	"ASY driver %I%",
362 	&asy_ops,	/* driver ops */
363 };
364 
365 static struct modlinkage modlinkage = {
366 	MODREV_1,
367 	(void *)&modldrv,
368 	NULL
369 };
370 
371 int
372 _init(void)
373 {
374 	int i;
375 
376 	i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
377 	if (i == 0) {
378 		mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
379 		if ((i = mod_install(&modlinkage)) != 0) {
380 			mutex_destroy(&asy_glob_lock);
381 			ddi_soft_state_fini(&asy_soft_state);
382 		} else {
383 			DEBUGCONT2(ASY_DEBUG_INIT, "%s, debug = %x\n",
384 			    modldrv.drv_linkinfo, debug);
385 		}
386 	}
387 	return (i);
388 }
389 
390 int
391 _fini(void)
392 {
393 	int i;
394 
395 	if ((i = mod_remove(&modlinkage)) == 0) {
396 		DEBUGCONT1(ASY_DEBUG_INIT, "%s unloading\n",
397 		    modldrv.drv_linkinfo);
398 		ASSERT(max_asy_instance == -1);
399 		mutex_destroy(&asy_glob_lock);
400 		if (asy_addedsoft)
401 			ddi_remove_softintr(asy_softintr_id);
402 		asy_addedsoft = 0;
403 		/* free "motherboard-serial-ports" property if allocated */
404 		if (com_ports != NULL && com_ports != (int *)standard_com_ports)
405 			ddi_prop_free(com_ports);
406 		com_ports = NULL;
407 		mutex_destroy(&asy_soft_lock);
408 		ddi_soft_state_fini(&asy_soft_state);
409 	}
410 	return (i);
411 }
412 
413 int
414 _info(struct modinfo *modinfop)
415 {
416 	return (mod_info(&modlinkage, modinfop));
417 }
418 
419 void
420 async_put_suspq(struct asycom *asy, mblk_t *mp)
421 {
422 	struct asyncline *async = asy->asy_priv;
423 
424 	ASSERT(mutex_owned(&asy->asy_excl));
425 
426 	if (async->async_suspqf == NULL)
427 		async->async_suspqf = mp;
428 	else
429 		async->async_suspqb->b_next = mp;
430 
431 	async->async_suspqb = mp;
432 }
433 
434 static mblk_t *
435 async_get_suspq(struct asycom *asy)
436 {
437 	struct asyncline *async = asy->asy_priv;
438 	mblk_t *mp;
439 
440 	ASSERT(mutex_owned(&asy->asy_excl));
441 
442 	if ((mp = async->async_suspqf) != NULL) {
443 		async->async_suspqf = mp->b_next;
444 		mp->b_next = NULL;
445 	} else {
446 		async->async_suspqb = NULL;
447 	}
448 	return (mp);
449 }
450 
451 static void
452 async_process_suspq(struct asycom *asy)
453 {
454 	struct asyncline *async = asy->asy_priv;
455 	mblk_t *mp;
456 
457 	ASSERT(mutex_owned(&asy->asy_excl));
458 
459 	while ((mp = async_get_suspq(asy)) != NULL) {
460 		queue_t *q;
461 
462 		q = async->async_ttycommon.t_writeq;
463 		ASSERT(q != NULL);
464 		mutex_exit(&asy->asy_excl);
465 		(void) asywputdo(q, mp, B_FALSE);
466 		mutex_enter(&asy->asy_excl);
467 	}
468 	async->async_flags &= ~ASYNC_DDI_SUSPENDED;
469 	cv_broadcast(&async->async_flags_cv);
470 }
471 
472 static int
473 asy_get_bus_type(dev_info_t *devinfo)
474 {
475 	char	parent_type[16];
476 	int	parentlen;
477 
478 	parentlen = sizeof (parent_type);
479 
480 	if (ddi_prop_op(DDI_DEV_T_ANY, devinfo, PROP_LEN_AND_VAL_BUF, 0,
481 	    "device_type", (caddr_t)parent_type, &parentlen)
482 	    != DDI_PROP_SUCCESS && ddi_prop_op(DDI_DEV_T_ANY, devinfo,
483 	    PROP_LEN_AND_VAL_BUF, 0, "bus-type", (caddr_t)parent_type,
484 	    &parentlen) != DDI_PROP_SUCCESS) {
485 			cmn_err(CE_WARN,
486 			    "asy: can't figure out device type for"
487 			    " parent \"%s\"",
488 			    ddi_get_name(ddi_get_parent(devinfo)));
489 			return (ASY_BUS_UNKNOWN);
490 	}
491 	if (strcmp(parent_type, "isa") == 0)
492 		return (ASY_BUS_ISA);
493 	else if (strcmp(parent_type, "pci") == 0)
494 		return (ASY_BUS_PCI);
495 	else
496 		return (ASY_BUS_UNKNOWN);
497 }
498 
499 static int
500 asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy)
501 {
502 	int reglen, nregs;
503 	int regnum, i;
504 	uint64_t size;
505 	struct pci_phys_spec *reglist;
506 
507 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
508 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
509 		cmn_err(CE_WARN, "asy_get_io_regnum_pci: reg property"
510 		    " not found in devices property list");
511 		return (-1);
512 	}
513 
514 	/*
515 	 * PCI devices are assumed to not have broken FIFOs;
516 	 * Agere/Lucent Venus PCI modem chipsets are an example
517 	 */
518 	if (asy)
519 		asy->asy_flags2 |= ASY2_NO_LOOPBACK;
520 
521 	regnum = -1;
522 	nregs = reglen / sizeof (*reglist);
523 	for (i = 0; i < nregs; i++) {
524 		switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) {
525 		case PCI_ADDR_IO:		/* I/O bus reg property */
526 			if (regnum == -1) /* use only the first one */
527 				regnum = i;
528 			break;
529 
530 		default:
531 			break;
532 		}
533 	}
534 
535 	/* check for valid count of registers */
536 	if (regnum >= 0) {
537 		size = ((uint64_t)reglist[regnum].pci_size_low) |
538 		    ((uint64_t)reglist[regnum].pci_size_hi) << 32;
539 		if (size < 8)
540 			regnum = -1;
541 	}
542 	kmem_free(reglist, reglen);
543 	return (regnum);
544 }
545 
546 static int
547 asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy)
548 {
549 	int reglen, nregs;
550 	int regnum, i;
551 	struct {
552 		uint_t bustype;
553 		int base;
554 		int size;
555 	} *reglist;
556 
557 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
558 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
559 		cmn_err(CE_WARN, "asy_get_io_regnum: reg property not found "
560 		    "in devices property list");
561 		return (-1);
562 	}
563 
564 	regnum = -1;
565 	nregs = reglen / sizeof (*reglist);
566 	for (i = 0; i < nregs; i++) {
567 		switch (reglist[i].bustype) {
568 		case 1:			/* I/O bus reg property */
569 			if (regnum == -1) /* only use the first one */
570 				regnum = i;
571 			break;
572 
573 		case pnpMTS0219:	/* Multitech MT5634ZTX modem */
574 			/* Venus chipset can't do loopback test */
575 			if (asy)
576 				asy->asy_flags2 |= ASY2_NO_LOOPBACK;
577 			break;
578 
579 		default:
580 			break;
581 		}
582 	}
583 
584 	/* check for valid count of registers */
585 	if ((regnum < 0) || (reglist[regnum].size < 8))
586 		regnum = -1;
587 	kmem_free(reglist, reglen);
588 	return (regnum);
589 }
590 
591 static int
592 asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy)
593 {
594 	switch (asy_get_bus_type(devinfo)) {
595 	case ASY_BUS_ISA:
596 		return (asy_get_io_regnum_isa(devinfo, asy));
597 	case ASY_BUS_PCI:
598 		return (asy_get_io_regnum_pci(devinfo, asy));
599 	default:
600 		return (-1);
601 	}
602 }
603 
604 static int
605 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
606 {
607 	int instance;
608 	struct asycom *asy;
609 	struct asyncline *async;
610 
611 	instance = ddi_get_instance(devi);	/* find out which unit */
612 
613 	asy = ddi_get_soft_state(asy_soft_state, instance);
614 	if (asy == NULL)
615 		return (DDI_FAILURE);
616 	async = asy->asy_priv;
617 
618 	switch (cmd) {
619 	case DDI_DETACH:
620 		DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: %s shutdown.",
621 		    instance, asy_hw_name(asy));
622 
623 		/* cancel DTR hold timeout */
624 		if (async->async_dtrtid != 0) {
625 			(void) untimeout(async->async_dtrtid);
626 			async->async_dtrtid = 0;
627 		}
628 
629 		/* remove all minor device node(s) for this device */
630 		ddi_remove_minor_node(devi, NULL);
631 
632 		mutex_destroy(&asy->asy_excl);
633 		mutex_destroy(&asy->asy_excl_hi);
634 		cv_destroy(&async->async_flags_cv);
635 		ddi_remove_intr(devi, 0, asy->asy_iblock);
636 		ddi_regs_map_free(&asy->asy_iohandle);
637 		asy_soft_state_free(asy);
638 		DEBUGNOTE1(ASY_DEBUG_INIT, "asy%d: shutdown complete",
639 		    instance);
640 		break;
641 	case DDI_SUSPEND:
642 		{
643 		unsigned i;
644 		uchar_t lsr;
645 
646 #ifdef	DEBUG
647 		if (asy_nosuspend)
648 			return (DDI_SUCCESS);
649 #endif
650 		mutex_enter(&asy->asy_excl);
651 
652 		ASSERT(async->async_ops >= 0);
653 		while (async->async_ops > 0)
654 			cv_wait(&async->async_ops_cv, &asy->asy_excl);
655 
656 		async->async_flags |= ASYNC_DDI_SUSPENDED;
657 
658 		/* Wait for timed break and delay to complete */
659 		while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) {
660 			if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl)
661 			    == 0) {
662 				async_process_suspq(asy);
663 				mutex_exit(&asy->asy_excl);
664 				return (DDI_FAILURE);
665 			}
666 		}
667 
668 		/* Clear untimed break */
669 		if (async->async_flags & ASYNC_OUT_SUSPEND)
670 			async_resume_utbrk(async);
671 
672 		mutex_exit(&asy->asy_excl);
673 
674 		mutex_enter(&asy->asy_soft_sr);
675 		mutex_enter(&asy->asy_excl);
676 		if (async->async_wbufcid != 0) {
677 			bufcall_id_t bcid = async->async_wbufcid;
678 			async->async_wbufcid = 0;
679 			async->async_flags |= ASYNC_RESUME_BUFCALL;
680 			mutex_exit(&asy->asy_excl);
681 			unbufcall(bcid);
682 			mutex_enter(&asy->asy_excl);
683 		}
684 		mutex_enter(&asy->asy_excl_hi);
685 
686 		/* Disable interrupts from chip */
687 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
688 		asy->asy_flags |= ASY_DDI_SUSPENDED;
689 
690 		/* Process remaining RX characters and RX errors, if any */
691 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
692 		async_rxint(asy, lsr);
693 
694 		/* Wait for TX to drain */
695 		for (i = 1000; i > 0; i--) {
696 			lsr = ddi_get8(asy->asy_iohandle,
697 			    asy->asy_ioaddr + LSR);
698 			if ((lsr & (XSRE | XHRE)) == (XSRE | XHRE))
699 				break;
700 			delay(drv_usectohz(10000));
701 		}
702 		if (i == 0)
703 			cmn_err(CE_WARN,
704 			    "asy: transmitter wasn't drained before "
705 			    "driver was suspended");
706 
707 		mutex_exit(&asy->asy_excl_hi);
708 		mutex_exit(&asy->asy_excl);
709 		mutex_exit(&asy->asy_soft_sr);
710 		break;
711 	}
712 	default:
713 		return (DDI_FAILURE);
714 	}
715 
716 	return (DDI_SUCCESS);
717 }
718 
719 /*
720  * asyprobe
721  * We don't bother probing for the hardware, as since Solaris 2.6, device
722  * nodes are only created for auto-detected hardware or nodes explicitly
723  * created by the user, e.g. via the DCA. However, we should check the
724  * device node is at least vaguely usable, i.e. we have a block of 8 i/o
725  * ports. This prevents attempting to attach to bogus serial ports which
726  * some BIOSs still partially report when they are disabled in the BIOS.
727  */
728 static int
729 asyprobe(dev_info_t *devi)
730 {
731 	return ((asy_get_io_regnum(devi, NULL) < 0) ?
732 	    DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE);
733 }
734 
735 static int
736 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
737 {
738 	int instance;
739 	int mcr;
740 	int ret;
741 	int regnum = 0;
742 	int i;
743 	struct asycom *asy;
744 	char name[ASY_MINOR_LEN];
745 	int status;
746 	static ddi_device_acc_attr_t ioattr = {
747 		DDI_DEVICE_ATTR_V0,
748 		DDI_NEVERSWAP_ACC,
749 		DDI_STRICTORDER_ACC,
750 	};
751 
752 	instance = ddi_get_instance(devi);	/* find out which unit */
753 
754 	switch (cmd) {
755 	case DDI_ATTACH:
756 		break;
757 	case DDI_RESUME:
758 	{
759 		struct asyncline *async;
760 
761 #ifdef	DEBUG
762 		if (asy_nosuspend)
763 			return (DDI_SUCCESS);
764 #endif
765 		asy = ddi_get_soft_state(asy_soft_state, instance);
766 		if (asy == NULL)
767 			return (DDI_FAILURE);
768 
769 		mutex_enter(&asy->asy_soft_sr);
770 		mutex_enter(&asy->asy_excl);
771 		mutex_enter(&asy->asy_excl_hi);
772 
773 		async = asy->asy_priv;
774 		/* Disable interrupts */
775 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
776 		if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
777 			mutex_exit(&asy->asy_excl_hi);
778 			mutex_exit(&asy->asy_excl);
779 			mutex_exit(&asy->asy_soft_sr);
780 			cmn_err(CE_WARN, "Cannot identify UART chip at %p\n",
781 			    (void *)asy->asy_ioaddr);
782 			return (DDI_FAILURE);
783 		}
784 		asy->asy_flags &= ~ASY_DDI_SUSPENDED;
785 		if (async->async_flags & ASYNC_ISOPEN) {
786 			asy_program(asy, ASY_INIT);
787 			/* Kick off output */
788 			if (async->async_ocnt > 0) {
789 				async_resume(async);
790 			} else {
791 				mutex_exit(&asy->asy_excl_hi);
792 				if (async->async_xmitblk)
793 					freeb(async->async_xmitblk);
794 				async->async_xmitblk = NULL;
795 				async_start(async);
796 				mutex_enter(&asy->asy_excl_hi);
797 			}
798 			ASYSETSOFT(asy);
799 		}
800 		mutex_exit(&asy->asy_excl_hi);
801 		mutex_exit(&asy->asy_excl);
802 		mutex_exit(&asy->asy_soft_sr);
803 
804 		mutex_enter(&asy->asy_excl);
805 		if (async->async_flags & ASYNC_RESUME_BUFCALL) {
806 			async->async_wbufcid = bufcall(async->async_wbufcds,
807 			    BPRI_HI, (void (*)(void *)) async_reioctl,
808 			    (void *)(intptr_t)async->async_common->asy_unit);
809 			async->async_flags &= ~ASYNC_RESUME_BUFCALL;
810 		}
811 		async_process_suspq(asy);
812 		mutex_exit(&asy->asy_excl);
813 		return (DDI_SUCCESS);
814 	}
815 	default:
816 		return (DDI_FAILURE);
817 	}
818 
819 	ret = ddi_soft_state_zalloc(asy_soft_state, instance);
820 	if (ret != DDI_SUCCESS)
821 		return (DDI_FAILURE);
822 	asy = ddi_get_soft_state(asy_soft_state, instance);
823 	ASSERT(asy != NULL);	/* can't fail - we only just allocated it */
824 	asy->asy_unit = instance;
825 	mutex_enter(&asy_glob_lock);
826 	if (instance > max_asy_instance)
827 		max_asy_instance = instance;
828 	mutex_exit(&asy_glob_lock);
829 
830 	regnum = asy_get_io_regnum(devi, asy);
831 
832 	if (regnum < 0 ||
833 	    ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
834 	    (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
835 	    != DDI_SUCCESS) {
836 		cmn_err(CE_WARN, "asy%d: could not map UART registers @ %p",
837 		    instance, (void *)asy->asy_ioaddr);
838 
839 		asy_soft_state_free(asy);
840 		return (DDI_FAILURE);
841 	}
842 
843 	DEBUGCONT2(ASY_DEBUG_INIT, "asy%dattach: UART @ %p\n",
844 	    instance, (void *)asy->asy_ioaddr);
845 
846 	mutex_enter(&asy_glob_lock);
847 	if (com_ports == NULL) {	/* need to initialize com_ports */
848 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
849 		    "motherboard-serial-ports", &com_ports, &num_com_ports) !=
850 		    DDI_PROP_SUCCESS) {
851 			/* Use our built-in COM[1234] values */
852 			com_ports = (int *)standard_com_ports;
853 			num_com_ports = sizeof (standard_com_ports) /
854 			    sizeof (standard_com_ports[0]);
855 		}
856 		if (num_com_ports > 10) {
857 			/* We run out of single digits for device properties */
858 			num_com_ports = 10;
859 			cmn_err(CE_WARN,
860 			    "More than %d motherboard-serial-ports",
861 			    num_com_ports);
862 		}
863 	}
864 	mutex_exit(&asy_glob_lock);
865 
866 	/*
867 	 * Lookup the i/o address to see if this is a standard COM port
868 	 * in which case we assign it the correct tty[a-d] to match the
869 	 * COM port number, or some other i/o address in which case it
870 	 * will be assigned /dev/term/[0123...] in some rather arbitrary
871 	 * fashion.
872 	 */
873 
874 	for (i = 0; i < num_com_ports; i++) {
875 		if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
876 			asy->asy_com_port = i + 1;
877 			break;
878 		}
879 	}
880 
881 	/*
882 	 * It appears that there was async hardware that on reset
883 	 * did not clear ICR.  Hence when we get to
884 	 * ddi_get_iblock_cookie below, this hardware would cause
885 	 * the system to hang if there was input available.
886 	 */
887 
888 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0x00);
889 
890 	/* establish default usage */
891 	asy->asy_mcr |= RTS|DTR;		/* do use RTS/DTR after open */
892 	asy->asy_lcr = STOP1|BITS8;		/* default to 1 stop 8 bits */
893 	asy->asy_bidx = B9600;			/* default to 9600  */
894 #ifdef DEBUG
895 	asy->asy_msint_cnt = 0;			/* # of times in async_msint */
896 #endif
897 	mcr = 0;				/* don't enable until open */
898 
899 	if (asy->asy_com_port != 0) {
900 		/*
901 		 * For motherboard ports, emulate tty eeprom properties.
902 		 * Actually, we can't tell if a port is motherboard or not,
903 		 * so for "motherboard ports", read standard DOS COM ports.
904 		 */
905 		switch (asy_getproperty(devi, asy, "ignore-cd")) {
906 		case 0:				/* *-ignore-cd=False */
907 			DEBUGCONT1(ASY_DEBUG_MODEM,
908 			    "asy%dattach: clear ASY_IGNORE_CD\n", instance);
909 			asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
910 			break;
911 		case 1:				/* *-ignore-cd=True */
912 			/*FALLTHRU*/
913 		default:			/* *-ignore-cd not defined */
914 			/*
915 			 * We set rather silly defaults of soft carrier on
916 			 * and DTR/RTS raised here because it might be that
917 			 * one of the motherboard ports is the system console.
918 			 */
919 			DEBUGCONT1(ASY_DEBUG_MODEM,
920 			    "asy%dattach: set ASY_IGNORE_CD, set RTS & DTR\n",
921 			    instance);
922 			mcr = asy->asy_mcr;		/* rts/dtr on */
923 			asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
924 			break;
925 		}
926 
927 		/* Property for not raising DTR/RTS */
928 		switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
929 		case 0:				/* *-rts-dtr-off=False */
930 			asy->asy_flags |= ASY_RTS_DTR_OFF;	/* OFF */
931 			mcr = asy->asy_mcr;		/* rts/dtr on */
932 			DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: "
933 			    "ASY_RTS_DTR_OFF set and DTR & RTS set\n",
934 			    instance);
935 			break;
936 		case 1:				/* *-rts-dtr-off=True */
937 			/*FALLTHRU*/
938 		default:			/* *-rts-dtr-off undefined */
939 			break;
940 		}
941 
942 		/* Parse property for tty modes */
943 		asy_parse_mode(devi, asy);
944 	} else {
945 		DEBUGCONT1(ASY_DEBUG_MODEM,
946 		    "asy%dattach: clear ASY_IGNORE_CD, clear RTS & DTR\n",
947 		    instance);
948 		asy->asy_flags &= ~ASY_IGNORE_CD;	/* wait for cd */
949 	}
950 
951 	/*
952 	 * Initialize the port with default settings.
953 	 */
954 
955 	asy->asy_fifo_buf = 1;
956 	asy->asy_use_fifo = FIFO_OFF;
957 
958 	/*
959 	 * Get icookie for mutexes initialization
960 	 */
961 	if ((ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) !=
962 	    DDI_SUCCESS) ||
963 	    (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_MED,
964 	    &asy_soft_iblock) != DDI_SUCCESS)) {
965 		ddi_regs_map_free(&asy->asy_iohandle);
966 		cmn_err(CE_CONT,
967 		    "asy%d: could not hook interrupt for UART @ %p\n",
968 		    instance, (void *)asy->asy_ioaddr);
969 		asy_soft_state_free(asy);
970 		return (DDI_FAILURE);
971 	}
972 
973 	/*
974 	 * Initialize mutexes before accessing the hardware
975 	 */
976 	mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, asy_soft_iblock);
977 	mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
978 	    (void *)asy->asy_iblock);
979 	mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER, asy_soft_iblock);
980 
981 	mutex_enter(&asy->asy_excl);
982 	mutex_enter(&asy->asy_excl_hi);
983 
984 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
985 		mutex_exit(&asy->asy_excl_hi);
986 		mutex_exit(&asy->asy_excl);
987 		mutex_destroy(&asy->asy_excl);
988 		mutex_destroy(&asy->asy_excl_hi);
989 		mutex_destroy(&asy->asy_soft_sr);
990 		ddi_regs_map_free(&asy->asy_iohandle);
991 		cmn_err(CE_CONT, "Cannot identify UART chip at %p\n",
992 		    (void *)asy->asy_ioaddr);
993 		asy_soft_state_free(asy);
994 		return (DDI_FAILURE);
995 	}
996 
997 	/* disable all interrupts */
998 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
999 	/* select baud rate generator */
1000 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
1001 	/* Set the baud rate to 9600 */
1002 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLL),
1003 	    asyspdtab[asy->asy_bidx] & 0xff);
1004 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLH),
1005 	    (asyspdtab[asy->asy_bidx] >> 8) & 0xff);
1006 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, asy->asy_lcr);
1007 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1008 
1009 	mutex_exit(&asy->asy_excl_hi);
1010 	mutex_exit(&asy->asy_excl);
1011 
1012 	/*
1013 	 * Set up the other components of the asycom structure for this port.
1014 	 */
1015 	asy->asy_dip = devi;
1016 
1017 	mutex_enter(&asy_glob_lock);
1018 	if (asy_addedsoft == 0) { /* install the soft interrupt handler */
1019 		if (ddi_add_softintr(devi, DDI_SOFTINT_MED,
1020 		    &asy_softintr_id, NULL, 0, asysoftintr,
1021 		    (caddr_t)0) != DDI_SUCCESS) {
1022 			mutex_destroy(&asy->asy_excl);
1023 			mutex_destroy(&asy->asy_excl_hi);
1024 			ddi_regs_map_free(&asy->asy_iohandle);
1025 			mutex_exit(&asy_glob_lock);
1026 			cmn_err(CE_CONT,
1027 			    "Can not set soft interrupt for ASY driver\n");
1028 			asy_soft_state_free(asy);
1029 			return (DDI_FAILURE);
1030 		}
1031 		mutex_init(&asy_soft_lock, NULL, MUTEX_DRIVER,
1032 		    (void *)asy->asy_iblock);
1033 		asy_addedsoft++;
1034 	}
1035 	mutex_exit(&asy_glob_lock);
1036 
1037 	mutex_enter(&asy->asy_excl);
1038 	mutex_enter(&asy->asy_excl_hi);
1039 
1040 	/*
1041 	 * Install interrupt handler for this device.
1042 	 */
1043 	if (ddi_add_intr(devi, 0, NULL, 0, asyintr,
1044 	    (caddr_t)asy) != DDI_SUCCESS) {
1045 		mutex_exit(&asy->asy_excl_hi);
1046 		mutex_exit(&asy->asy_excl);
1047 		mutex_destroy(&asy->asy_excl);
1048 		mutex_destroy(&asy->asy_excl_hi);
1049 		ddi_regs_map_free(&asy->asy_iohandle);
1050 		cmn_err(CE_CONT,
1051 		    "Can not set device interrupt for ASY driver\n");
1052 		asy_soft_state_free(asy);
1053 		return (DDI_FAILURE);
1054 	}
1055 
1056 	mutex_exit(&asy->asy_excl_hi);
1057 	mutex_exit(&asy->asy_excl);
1058 
1059 	asyinit(asy);	/* initialize the asyncline structure */
1060 
1061 	/* create minor device nodes for this device */
1062 	if (asy->asy_com_port != 0) {
1063 		/*
1064 		 * For DOS COM ports, add letter suffix so
1065 		 * devfsadm can create correct link names.
1066 		 */
1067 		name[0] = asy->asy_com_port + 'a' - 1;
1068 		name[1] = '\0';
1069 	} else {
1070 		/*
1071 		 * asy port which isn't a standard DOS COM
1072 		 * port gets a numeric name based on instance
1073 		 */
1074 		(void) snprintf(name, ASY_MINOR_LEN, "%d", instance);
1075 	}
1076 	status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
1077 	    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, NULL);
1078 	if (status == DDI_SUCCESS) {
1079 		(void) strcat(name, ",cu");
1080 		status = ddi_create_minor_node(devi, name, S_IFCHR,
1081 		    OUTLINE | instance,
1082 		    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
1083 		    DDI_NT_SERIAL_DO, NULL);
1084 	}
1085 
1086 	if (status != DDI_SUCCESS) {
1087 		struct asyncline *async = asy->asy_priv;
1088 
1089 		ddi_remove_minor_node(devi, NULL);
1090 		ddi_remove_intr(devi, 0, asy->asy_iblock);
1091 		mutex_destroy(&asy->asy_excl);
1092 		mutex_destroy(&asy->asy_excl_hi);
1093 		cv_destroy(&async->async_flags_cv);
1094 		ddi_regs_map_free(&asy->asy_iohandle);
1095 		asy_soft_state_free(asy);
1096 		return (DDI_FAILURE);
1097 	}
1098 
1099 	/*
1100 	 * Fill in the polled I/O structure.
1101 	 */
1102 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
1103 	asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
1104 	asy->polledio.cons_polledio_putchar = asyputchar;
1105 	asy->polledio.cons_polledio_getchar = asygetchar;
1106 	asy->polledio.cons_polledio_ischar = asyischar;
1107 	asy->polledio.cons_polledio_enter = NULL;
1108 	asy->polledio.cons_polledio_exit = NULL;
1109 
1110 	ddi_report_dev(devi);
1111 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dattach: done\n", instance);
1112 	return (DDI_SUCCESS);
1113 }
1114 
1115 /*ARGSUSED*/
1116 static int
1117 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1118 	void **result)
1119 {
1120 	dev_t dev = (dev_t)arg;
1121 	int instance, error;
1122 	struct asycom *asy;
1123 
1124 	instance = UNIT(dev);
1125 
1126 	switch (infocmd) {
1127 	case DDI_INFO_DEVT2DEVINFO:
1128 		asy = ddi_get_soft_state(asy_soft_state, instance);
1129 		if ((asy == NULL) || (asy->asy_dip == NULL))
1130 			error = DDI_FAILURE;
1131 		else {
1132 			*result = (void *) asy->asy_dip;
1133 			error = DDI_SUCCESS;
1134 		}
1135 		break;
1136 	case DDI_INFO_DEVT2INSTANCE:
1137 		*result = (void *)(intptr_t)instance;
1138 		error = DDI_SUCCESS;
1139 		break;
1140 	default:
1141 		error = DDI_FAILURE;
1142 	}
1143 	return (error);
1144 }
1145 
1146 /* asy_getproperty -- walk through all name variants until we find a match */
1147 
1148 static int
1149 asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
1150 {
1151 	int len;
1152 	int ret;
1153 	char letter = asy->asy_com_port + 'a' - 1;	/* for ttya */
1154 	char number = asy->asy_com_port + '0';		/* for COM1 */
1155 	char val[40];
1156 	char name[40];
1157 
1158 	/* Property for ignoring DCD */
1159 	(void) sprintf(name, "tty%c-%s", letter, property);
1160 	len = sizeof (val);
1161 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1162 	if (ret != DDI_PROP_SUCCESS) {
1163 		(void) sprintf(name, "com%c-%s", number, property);
1164 		len = sizeof (val);
1165 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1166 	}
1167 	if (ret != DDI_PROP_SUCCESS) {
1168 		(void) sprintf(name, "tty0%c-%s", number, property);
1169 		len = sizeof (val);
1170 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1171 	}
1172 	if (ret != DDI_PROP_SUCCESS) {
1173 		(void) sprintf(name, "port-%c-%s", letter, property);
1174 		len = sizeof (val);
1175 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1176 	}
1177 	if (ret != DDI_PROP_SUCCESS)
1178 		return (-1);		/* property non-existant */
1179 	if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
1180 		return (0);		/* property false/0 */
1181 	return (1);			/* property true/!0 */
1182 }
1183 
1184 /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
1185 
1186 static void
1187 asy_soft_state_free(struct asycom *asy)
1188 {
1189 	mutex_enter(&asy_glob_lock);
1190 	/* If we were the max_asy_instance, work out new value */
1191 	if (asy->asy_unit == max_asy_instance) {
1192 		while (--max_asy_instance >= 0) {
1193 			if (ddi_get_soft_state(asy_soft_state,
1194 			    max_asy_instance) != NULL)
1195 				break;
1196 		}
1197 	}
1198 	mutex_exit(&asy_glob_lock);
1199 
1200 	if (asy->asy_priv != NULL) {
1201 		kmem_free(asy->asy_priv, sizeof (struct asyncline));
1202 		asy->asy_priv = NULL;
1203 	}
1204 	ddi_soft_state_free(asy_soft_state, asy->asy_unit);
1205 }
1206 
1207 static char *
1208 asy_hw_name(struct asycom *asy)
1209 {
1210 	switch (asy->asy_hwtype) {
1211 	case ASY8250A:
1212 		return ("8250A/16450");
1213 	case ASY16550:
1214 		return ("16550");
1215 	case ASY16550A:
1216 		return ("16550A");
1217 	case ASY16650:
1218 		return ("16650");
1219 	case ASY16750:
1220 		return ("16750");
1221 	default:
1222 		DEBUGNOTE2(ASY_DEBUG_INIT,
1223 		    "asy%d: asy_hw_name: unknown asy_hwtype: %d",
1224 		    asy->asy_unit, asy->asy_hwtype);
1225 		return ("?");
1226 	}
1227 }
1228 
1229 static int
1230 asy_identify_chip(dev_info_t *devi, struct asycom *asy)
1231 {
1232 	int ret;
1233 	int mcr;
1234 	dev_t dev;
1235 	uint_t hwtype;
1236 
1237 	if (asy_scr_test) {
1238 		/* Check scratch register works. */
1239 
1240 		/* write to scratch register */
1241 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, SCRTEST);
1242 		/* make sure that pattern doesn't just linger on the bus */
1243 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00);
1244 		/* read data back from scratch register */
1245 		ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1246 		if (ret != SCRTEST) {
1247 			/*
1248 			 * Scratch register not working.
1249 			 * Probably not an async chip.
1250 			 * 8250 and 8250B don't have scratch registers,
1251 			 * but only worked in ancient PC XT's anyway.
1252 			 */
1253 			cmn_err(CE_CONT, "asy%d: UART @ %p "
1254 			    "scratch register: expected 0x5a, got 0x%02x\n",
1255 			    asy->asy_unit, (void *)asy->asy_ioaddr, ret);
1256 			return (DDI_FAILURE);
1257 		}
1258 	}
1259 	/*
1260 	 * Use 16550 fifo reset sequence specified in NS application
1261 	 * note. Disable fifos until chip is initialized.
1262 	 */
1263 	ddi_put8(asy->asy_iohandle,
1264 	    asy->asy_ioaddr + FIFOR, 0x00);	/* clear */
1265 	ddi_put8(asy->asy_iohandle,
1266 	    asy->asy_ioaddr + FIFOR, FIFO_ON);	/* enable */
1267 	ddi_put8(asy->asy_iohandle,
1268 	    asy->asy_ioaddr + FIFOR, FIFO_ON | FIFORXFLSH);
1269 						/* reset */
1270 	if (asymaxchip >= ASY16650 && asy_scr_test) {
1271 		/*
1272 		 * Reset 16650 enhanced regs also, in case we have one of these
1273 		 */
1274 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1275 		    EFRACCESS);
1276 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1277 		    0);
1278 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1279 		    STOP1|BITS8);
1280 	}
1281 
1282 	/*
1283 	 * See what sort of FIFO we have.
1284 	 * Try enabling it and see what chip makes of this.
1285 	 */
1286 
1287 	asy->asy_fifor = 0;
1288 	asy->asy_hwtype = asymaxchip; /* just for asy_reset_fifo() */
1289 	if (asymaxchip >= ASY16550A)
1290 		asy->asy_fifor |=
1291 		    FIFO_ON | FIFODMA | (asy_trig_level & 0xff);
1292 	if (asymaxchip >= ASY16650)
1293 		asy->asy_fifor |= FIFOEXTRA1 | FIFOEXTRA2;
1294 
1295 	asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1296 
1297 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1298 	ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
1299 	DEBUGCONT4(ASY_DEBUG_CHIP,
1300 	    "asy%d: probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1301 	    asy->asy_unit, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH,
1302 	    ret, mcr);
1303 	switch (ret & 0xf0) {
1304 	case 0x40:
1305 		hwtype = ASY16550; /* 16550 with broken FIFO */
1306 		asy->asy_fifor = 0;
1307 		break;
1308 	case 0xc0:
1309 		hwtype = ASY16550A;
1310 		asy->asy_fifo_buf = 16;
1311 		asy->asy_use_fifo = FIFO_ON;
1312 		asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1313 		break;
1314 	case 0xe0:
1315 		hwtype = ASY16650;
1316 		asy->asy_fifo_buf = 32;
1317 		asy->asy_use_fifo = FIFO_ON;
1318 		asy->asy_fifor &= ~(FIFOEXTRA1);
1319 		break;
1320 	case 0xf0:
1321 		/*
1322 		 * Note we get 0xff if chip didn't return us anything,
1323 		 * e.g. if there's no chip there.
1324 		 */
1325 		if (ret == 0xff) {
1326 			cmn_err(CE_CONT, "asy%d: UART @ %p "
1327 			    "interrupt register: got 0xff\n",
1328 			    asy->asy_unit, (void *)asy->asy_ioaddr);
1329 			return (DDI_FAILURE);
1330 		}
1331 		/*FALLTHRU*/
1332 	case 0xd0:
1333 		hwtype = ASY16750;
1334 		asy->asy_fifo_buf = 64;
1335 		asy->asy_use_fifo = FIFO_ON;
1336 		break;
1337 	default:
1338 		hwtype = ASY8250A; /* No FIFO */
1339 		asy->asy_fifor = 0;
1340 	}
1341 
1342 	if (hwtype > asymaxchip) {
1343 		cmn_err(CE_CONT, "asy%d: UART @ %p "
1344 		    "unexpected probe result: "
1345 		    "FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1346 		    asy->asy_unit, (void *)asy->asy_ioaddr,
1347 		    asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr);
1348 		return (DDI_FAILURE);
1349 	}
1350 
1351 	/*
1352 	 * Now reset the FIFO operation appropriate for the chip type.
1353 	 * Note we must call asy_reset_fifo() before any possible
1354 	 * downgrade of the asy->asy_hwtype, or it may not disable
1355 	 * the more advanced features we specifically want downgraded.
1356 	 */
1357 	asy_reset_fifo(asy, 0);
1358 	asy->asy_hwtype = hwtype;
1359 
1360 	/*
1361 	 * Check for Exar/Startech ST16C650, which will still look like a
1362 	 * 16550A until we enable its enhanced mode.
1363 	 */
1364 	if (asy->asy_hwtype == ASY16550A && asymaxchip >= ASY16650 &&
1365 	    asy_scr_test) {
1366 		/* Enable enhanced mode register access */
1367 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1368 		    EFRACCESS);
1369 		/* zero scratch register (not scratch register if enhanced) */
1370 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, 0);
1371 		/* Disable enhanced mode register access */
1372 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1373 		    STOP1|BITS8);
1374 		/* read back scratch register */
1375 		ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1376 		if (ret == SCRTEST) {
1377 			/* looks like we have an ST16650 -- enable it */
1378 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1379 			    EFRACCESS);
1380 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1381 			    ENHENABLE);
1382 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1383 			    STOP1|BITS8);
1384 			asy->asy_hwtype = ASY16650;
1385 			asy->asy_fifo_buf = 32;
1386 			asy->asy_fifor |= 0x10; /* 24 byte txfifo trigger */
1387 			asy_reset_fifo(asy, 0);
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * If we think we might have a FIFO larger than 16 characters,
1393 	 * measure FIFO size and check it against expected.
1394 	 */
1395 	if (asy_fifo_test > 0 &&
1396 	    !(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
1397 	    (asy->asy_fifo_buf > 16 ||
1398 	    (asy_fifo_test > 1 && asy->asy_use_fifo == FIFO_ON) ||
1399 	    ASY_DEBUG(ASY_DEBUG_CHIP))) {
1400 		int i;
1401 
1402 		/* Set baud rate to 57600 (fairly arbitrary choice) */
1403 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1404 		    DLAB);
1405 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
1406 		    asyspdtab[B57600] & 0xff);
1407 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1408 		    (asyspdtab[B57600] >> 8) & 0xff);
1409 		/* Set 8 bits, 1 stop bit */
1410 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1411 		    STOP1|BITS8);
1412 		/* Set loopback mode */
1413 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1414 		    DTR | RTS | ASY_LOOP | OUT1 | OUT2);
1415 
1416 		/* Overfill fifo */
1417 		for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
1418 			ddi_put8(asy->asy_iohandle,
1419 			    asy->asy_ioaddr + DAT, i);
1420 		}
1421 		/*
1422 		 * Now there's an interesting question here about which
1423 		 * FIFO we're testing the size of, RX or TX. We just
1424 		 * filled the TX FIFO much faster than it can empty,
1425 		 * although it is possible one or two characters may
1426 		 * have gone from it to the TX shift register.
1427 		 * We wait for enough time for all the characters to
1428 		 * move into the RX FIFO and any excess characters to
1429 		 * have been lost, and then read all the RX FIFO. So
1430 		 * the answer we finally get will be the size which is
1431 		 * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
1432 		 * one is actually the TX FIFO, because if we overfill
1433 		 * it in normal operation, the excess characters are
1434 		 * lost with no warning.
1435 		 */
1436 		/*
1437 		 * Wait for characters to move into RX FIFO.
1438 		 * In theory, 200 * asy->asy_fifo_buf * 2 should be
1439 		 * enough. However, in practice it isn't always, so we
1440 		 * increase to 400 so some slow 16550A's finish, and we
1441 		 * increase to 3 so we spot more characters coming back
1442 		 * than we sent, in case that should ever happen.
1443 		 */
1444 		delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
1445 
1446 		/* Now see how many characters we can read back */
1447 		for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
1448 			ret = ddi_get8(asy->asy_iohandle,
1449 			    asy->asy_ioaddr + LSR);
1450 			if (!(ret & RCA))
1451 				break;	/* FIFO emptied */
1452 			(void) ddi_get8(asy->asy_iohandle,
1453 			    asy->asy_ioaddr + DAT); /* lose another */
1454 		}
1455 
1456 		DEBUGCONT3(ASY_DEBUG_CHIP,
1457 		    "asy%d FIFO size: expected=%d, measured=%d\n",
1458 		    asy->asy_unit, asy->asy_fifo_buf, i);
1459 
1460 		hwtype = asy->asy_hwtype;
1461 		if (i < asy->asy_fifo_buf) {
1462 			/*
1463 			 * FIFO is somewhat smaller than we anticipated.
1464 			 * If we have 16 characters usable, then this
1465 			 * UART will probably work well enough in
1466 			 * 16550A mode. If less than 16 characters,
1467 			 * then we'd better not use it at all.
1468 			 * UARTs with busted FIFOs do crop up.
1469 			 */
1470 			if (i >= 16 && asy->asy_fifo_buf >= 16) {
1471 				/* fall back to a 16550A */
1472 				hwtype = ASY16550A;
1473 				asy->asy_fifo_buf = 16;
1474 				asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1475 			} else {
1476 				/* fall back to no FIFO at all */
1477 				hwtype = ASY16550;
1478 				asy->asy_fifo_buf = 1;
1479 				asy->asy_use_fifo = FIFO_OFF;
1480 				asy->asy_fifor &=
1481 				    ~(FIFO_ON | FIFOEXTRA1 | FIFOEXTRA2);
1482 			}
1483 		}
1484 		/*
1485 		 * We will need to reprogram the FIFO if we changed
1486 		 * our mind about how to drive it above, and in any
1487 		 * case, it would be a good idea to flush any garbage
1488 		 * out incase the loopback test left anything behind.
1489 		 * Again as earlier above, we must call asy_reset_fifo()
1490 		 * before any possible downgrade of asy->asy_hwtype.
1491 		 */
1492 		if (asy->asy_hwtype >= ASY16650 && hwtype < ASY16650) {
1493 			/* Disable 16650 enhanced mode */
1494 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1495 			    EFRACCESS);
1496 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1497 			    0);
1498 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1499 			    STOP1|BITS8);
1500 		}
1501 		asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1502 		asy->asy_hwtype = hwtype;
1503 
1504 		/* Clear loopback mode and restore DTR/RTS */
1505 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1506 	}
1507 
1508 	DEBUGNOTE3(ASY_DEBUG_CHIP, "asy%d %s @ %p",
1509 	    asy->asy_unit, asy_hw_name(asy), (void *)asy->asy_ioaddr);
1510 
1511 	/* Make UART type visible in device tree for prtconf, etc */
1512 	dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
1513 	(void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
1514 
1515 	if (asy->asy_hwtype == ASY16550)	/* for broken 16550's, */
1516 		asy->asy_hwtype = ASY8250A;	/* drive them as 8250A */
1517 
1518 	return (DDI_SUCCESS);
1519 }
1520 
1521 /*
1522  * asyinit() initializes the TTY protocol-private data for this channel
1523  * before enabling the interrupts.
1524  */
1525 static void
1526 asyinit(struct asycom *asy)
1527 {
1528 	struct asyncline *async;
1529 
1530 	asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
1531 	async = asy->asy_priv;
1532 	mutex_enter(&asy->asy_excl);
1533 	async->async_common = asy;
1534 	cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
1535 	mutex_exit(&asy->asy_excl);
1536 }
1537 
1538 /*ARGSUSED3*/
1539 static int
1540 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
1541 {
1542 	struct asycom	*asy;
1543 	struct asyncline *async;
1544 	int		mcr;
1545 	int		unit;
1546 	int 		len;
1547 	struct termios 	*termiosp;
1548 
1549 	unit = UNIT(*dev);
1550 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dopen\n", unit);
1551 	asy = ddi_get_soft_state(asy_soft_state, unit);
1552 	if (asy == NULL)
1553 		return (ENXIO);		/* unit not configured */
1554 	async = asy->asy_priv;
1555 	mutex_enter(&asy->asy_excl);
1556 
1557 again:
1558 	mutex_enter(&asy->asy_excl_hi);
1559 
1560 	/*
1561 	 * Block waiting for carrier to come up, unless this is a no-delay open.
1562 	 */
1563 	if (!(async->async_flags & ASYNC_ISOPEN)) {
1564 		/*
1565 		 * Set the default termios settings (cflag).
1566 		 * Others are set in ldterm.
1567 		 */
1568 		mutex_exit(&asy->asy_excl_hi);
1569 
1570 		if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
1571 		    0, "ttymodes",
1572 		    (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
1573 		    len == sizeof (struct termios)) {
1574 			async->async_ttycommon.t_cflag = termiosp->c_cflag;
1575 			kmem_free(termiosp, len);
1576 		} else
1577 			cmn_err(CE_WARN,
1578 			    "asy: couldn't get ttymodes property!");
1579 		mutex_enter(&asy->asy_excl_hi);
1580 
1581 		/* eeprom mode support - respect properties */
1582 		if (asy->asy_cflag)
1583 			async->async_ttycommon.t_cflag = asy->asy_cflag;
1584 
1585 		async->async_ttycommon.t_iflag = 0;
1586 		async->async_ttycommon.t_iocpending = NULL;
1587 		async->async_ttycommon.t_size.ws_row = 0;
1588 		async->async_ttycommon.t_size.ws_col = 0;
1589 		async->async_ttycommon.t_size.ws_xpixel = 0;
1590 		async->async_ttycommon.t_size.ws_ypixel = 0;
1591 		async->async_dev = *dev;
1592 		async->async_wbufcid = 0;
1593 
1594 		async->async_startc = CSTART;
1595 		async->async_stopc = CSTOP;
1596 		asy_program(asy, ASY_INIT);
1597 	} else
1598 		if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
1599 		    secpolicy_excl_open(cr) != 0) {
1600 		mutex_exit(&asy->asy_excl_hi);
1601 		mutex_exit(&asy->asy_excl);
1602 		return (EBUSY);
1603 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
1604 		mutex_exit(&asy->asy_excl_hi);
1605 		mutex_exit(&asy->asy_excl);
1606 		return (EBUSY);
1607 	}
1608 
1609 	if (*dev & OUTLINE)
1610 		async->async_flags |= ASYNC_OUT;
1611 
1612 	/* Raise DTR on every open, but delay if it was just lowered. */
1613 	while (async->async_flags & ASYNC_DTR_DELAY) {
1614 		DEBUGCONT1(ASY_DEBUG_MODEM,
1615 		    "asy%dopen: waiting for the ASYNC_DTR_DELAY to be clear\n",
1616 		    unit);
1617 		mutex_exit(&asy->asy_excl_hi);
1618 		if (cv_wait_sig(&async->async_flags_cv,
1619 		    &asy->asy_excl) == 0) {
1620 			DEBUGCONT1(ASY_DEBUG_MODEM,
1621 			    "asy%dopen: interrupted by signal, exiting\n",
1622 			    unit);
1623 			mutex_exit(&asy->asy_excl);
1624 			return (EINTR);
1625 		}
1626 		mutex_enter(&asy->asy_excl_hi);
1627 	}
1628 
1629 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1630 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1631 	    mcr|(asy->asy_mcr&DTR));
1632 
1633 	DEBUGCONT3(ASY_DEBUG_INIT,
1634 	    "asy%dopen: \"Raise DTR on every open\": make mcr = %x, "
1635 	    "make TS_SOFTCAR = %s\n",
1636 	    unit, mcr|(asy->asy_mcr&DTR),
1637 	    (asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
1638 
1639 	if (asy->asy_flags & ASY_IGNORE_CD) {
1640 		DEBUGCONT1(ASY_DEBUG_MODEM,
1641 		    "asy%dopen: ASY_IGNORE_CD set, set TS_SOFTCAR\n",
1642 		    unit);
1643 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
1644 	}
1645 	else
1646 		async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
1647 
1648 	/*
1649 	 * Check carrier.
1650 	 */
1651 	asy->asy_msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
1652 	DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: TS_SOFTCAR is %s, "
1653 	    "MSR & DCD is %s\n",
1654 	    unit,
1655 	    (async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
1656 	    (asy->asy_msr & DCD) ? "set" : "clear");
1657 
1658 	if (asy->asy_msr & DCD)
1659 		async->async_flags |= ASYNC_CARR_ON;
1660 	else
1661 		async->async_flags &= ~ASYNC_CARR_ON;
1662 	mutex_exit(&asy->asy_excl_hi);
1663 
1664 	/*
1665 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
1666 	 * Quit on interrupt.
1667 	 */
1668 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
1669 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
1670 		if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
1671 		    !(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
1672 		    ((async->async_flags & ASYNC_OUT) &&
1673 		    !(*dev & OUTLINE))) {
1674 			async->async_flags |= ASYNC_WOPEN;
1675 			if (cv_wait_sig(&async->async_flags_cv,
1676 			    &asy->asy_excl) == B_FALSE) {
1677 				async->async_flags &= ~ASYNC_WOPEN;
1678 				mutex_exit(&asy->asy_excl);
1679 				return (EINTR);
1680 			}
1681 			async->async_flags &= ~ASYNC_WOPEN;
1682 			goto again;
1683 		}
1684 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1685 		mutex_exit(&asy->asy_excl);
1686 		return (EBUSY);
1687 	}
1688 
1689 	async->async_ttycommon.t_readq = rq;
1690 	async->async_ttycommon.t_writeq = WR(rq);
1691 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1692 	mutex_exit(&asy->asy_excl);
1693 	/*
1694 	 * Caution here -- qprocson sets the pointers that are used by canput
1695 	 * called by async_softint.  ASYNC_ISOPEN must *not* be set until those
1696 	 * pointers are valid.
1697 	 */
1698 	qprocson(rq);
1699 	async->async_flags |= ASYNC_ISOPEN;
1700 	async->async_polltid = 0;
1701 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dopen: done\n", unit);
1702 	return (0);
1703 }
1704 
1705 static void
1706 async_progress_check(void *arg)
1707 {
1708 	struct asyncline *async = arg;
1709 	struct asycom	 *asy = async->async_common;
1710 	mblk_t *bp;
1711 
1712 	/*
1713 	 * We define "progress" as either waiting on a timed break or delay, or
1714 	 * having had at least one transmitter interrupt.  If none of these are
1715 	 * true, then just terminate the output and wake up that close thread.
1716 	 */
1717 	mutex_enter(&asy->asy_excl);
1718 	mutex_enter(&asy->asy_excl_hi);
1719 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1720 		async->async_ocnt = 0;
1721 		async->async_flags &= ~ASYNC_BUSY;
1722 		async->async_timer = 0;
1723 		bp = async->async_xmitblk;
1724 		async->async_xmitblk = NULL;
1725 		mutex_exit(&asy->asy_excl_hi);
1726 		if (bp != NULL)
1727 			freeb(bp);
1728 		/*
1729 		 * Since this timer is running, we know that we're in exit(2).
1730 		 * That means that the user can't possibly be waiting on any
1731 		 * valid ioctl(2) completion anymore, and we should just flush
1732 		 * everything.
1733 		 */
1734 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1735 		cv_broadcast(&async->async_flags_cv);
1736 	} else {
1737 		async->async_flags &= ~ASYNC_PROGRESS;
1738 		async->async_timer = timeout(async_progress_check, async,
1739 		    drv_usectohz(asy_drain_check));
1740 		mutex_exit(&asy->asy_excl_hi);
1741 	}
1742 	mutex_exit(&asy->asy_excl);
1743 }
1744 
1745 /*
1746  * Release DTR so that asyopen() can raise it.
1747  */
1748 static void
1749 async_dtr_free(struct asyncline *async)
1750 {
1751 	struct asycom *asy = async->async_common;
1752 
1753 	DEBUGCONT0(ASY_DEBUG_MODEM,
1754 	    "async_dtr_free, clearing ASYNC_DTR_DELAY\n");
1755 	mutex_enter(&asy->asy_excl);
1756 	async->async_flags &= ~ASYNC_DTR_DELAY;
1757 	async->async_dtrtid = 0;
1758 	cv_broadcast(&async->async_flags_cv);
1759 	mutex_exit(&asy->asy_excl);
1760 }
1761 
1762 /*
1763  * Close routine.
1764  */
1765 /*ARGSUSED2*/
1766 static int
1767 asyclose(queue_t *q, int flag, cred_t *credp)
1768 {
1769 	struct asyncline *async;
1770 	struct asycom	 *asy;
1771 	int icr, lcr;
1772 #ifdef DEBUG
1773 	int instance;
1774 #endif
1775 
1776 	async = (struct asyncline *)q->q_ptr;
1777 	ASSERT(async != NULL);
1778 #ifdef DEBUG
1779 	instance = UNIT(async->async_dev);
1780 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose\n", instance);
1781 #endif
1782 	asy = async->async_common;
1783 
1784 	mutex_enter(&asy->asy_excl);
1785 	async->async_flags |= ASYNC_CLOSING;
1786 
1787 	/*
1788 	 * Turn off PPS handling early to avoid events occuring during
1789 	 * close.  Also reset the DCD edge monitoring bit.
1790 	 */
1791 	mutex_enter(&asy->asy_excl_hi);
1792 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1793 	mutex_exit(&asy->asy_excl_hi);
1794 
1795 	/*
1796 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1797 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1798 	 * write queue and there's a timer running, so we don't have to worry
1799 	 * about them.  For the untimed case, though, the user obviously made a
1800 	 * mistake, because these are handled immediately.  We'll terminate the
1801 	 * break now and honor his implicit request by discarding the rest of
1802 	 * the data.
1803 	 */
1804 	if (async->async_flags & ASYNC_OUT_SUSPEND) {
1805 		if (async->async_utbrktid != 0) {
1806 			(void) untimeout(async->async_utbrktid);
1807 			async->async_utbrktid = 0;
1808 		}
1809 		mutex_enter(&asy->asy_excl_hi);
1810 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1811 		ddi_put8(asy->asy_iohandle,
1812 		    asy->asy_ioaddr + LCR, (lcr & ~SETBREAK));
1813 		mutex_exit(&asy->asy_excl_hi);
1814 		async->async_flags &= ~ASYNC_OUT_SUSPEND;
1815 		goto nodrain;
1816 	}
1817 
1818 	/*
1819 	 * If the user told us not to delay the close ("non-blocking"), then
1820 	 * don't bother trying to drain.
1821 	 *
1822 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1823 	 * getting an M_START (since these messages aren't enqueued), and the
1824 	 * only other way to clear the stop condition is by loss of DCD, which
1825 	 * would discard the queue data.  Thus, we drop the output data if
1826 	 * ASYNC_STOPPED is set.
1827 	 */
1828 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1829 	    (async->async_flags & ASYNC_STOPPED)) {
1830 		goto nodrain;
1831 	}
1832 
1833 	/*
1834 	 * If there's any pending output, then we have to try to drain it.
1835 	 * There are two main cases to be handled:
1836 	 *	- called by close(2): need to drain until done or until
1837 	 *	  a signal is received.  No timeout.
1838 	 *	- called by exit(2): need to drain while making progress
1839 	 *	  or until a timeout occurs.  No signals.
1840 	 *
1841 	 * If we can't rely on receiving a signal to get us out of a hung
1842 	 * session, then we have to use a timer.  In this case, we set a timer
1843 	 * to check for progress in sending the output data -- all that we ask
1844 	 * (at each interval) is that there's been some progress made.  Since
1845 	 * the interrupt routine grabs buffers from the write queue, we can't
1846 	 * trust changes in async_ocnt.  Instead, we use a progress flag.
1847 	 *
1848 	 * Note that loss of carrier will cause the output queue to be flushed,
1849 	 * and we'll wake up again and finish normally.
1850 	 */
1851 	if (!ddi_can_receive_sig() && asy_drain_check != 0) {
1852 		async->async_flags &= ~ASYNC_PROGRESS;
1853 		async->async_timer = timeout(async_progress_check, async,
1854 		    drv_usectohz(asy_drain_check));
1855 	}
1856 	while (async->async_ocnt > 0 ||
1857 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1858 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1859 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
1860 			break;
1861 	}
1862 	if (async->async_timer != 0) {
1863 		(void) untimeout(async->async_timer);
1864 		async->async_timer = 0;
1865 	}
1866 
1867 nodrain:
1868 	async->async_ocnt = 0;
1869 	if (async->async_xmitblk != NULL)
1870 		freeb(async->async_xmitblk);
1871 	async->async_xmitblk = NULL;
1872 
1873 	/*
1874 	 * If line has HUPCL set or is incompletely opened fix up the modem
1875 	 * lines.
1876 	 */
1877 	DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dclose: next check HUPCL flag\n",
1878 	    instance);
1879 	mutex_enter(&asy->asy_excl_hi);
1880 	if ((async->async_ttycommon.t_cflag & HUPCL) ||
1881 	    (async->async_flags & ASYNC_WOPEN)) {
1882 		DEBUGCONT3(ASY_DEBUG_MODEM,
1883 		    "asy%dclose: HUPCL flag = %x, ASYNC_WOPEN flag = %x\n",
1884 		    instance,
1885 		    async->async_ttycommon.t_cflag & HUPCL,
1886 		    async->async_ttycommon.t_cflag & ASYNC_WOPEN);
1887 		async->async_flags |= ASYNC_DTR_DELAY;
1888 
1889 		/* turn off DTR, RTS but NOT interrupt to 386 */
1890 		if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
1891 			DEBUGCONT3(ASY_DEBUG_MODEM,
1892 			    "asy%dclose: ASY_IGNORE_CD flag = %x, "
1893 			    "ASY_RTS_DTR_OFF flag = %x\n",
1894 			    instance,
1895 			    asy->asy_flags & ASY_IGNORE_CD,
1896 			    asy->asy_flags & ASY_RTS_DTR_OFF);
1897 
1898 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1899 			    asy->asy_mcr|OUT2);
1900 		} else {
1901 			DEBUGCONT1(ASY_DEBUG_MODEM,
1902 			    "asy%dclose: Dropping DTR and RTS\n", instance);
1903 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1904 			    OUT2);
1905 		}
1906 		async->async_dtrtid =
1907 		    timeout((void (*)())async_dtr_free,
1908 		    (caddr_t)async, drv_usectohz(asy_min_dtr_low));
1909 	}
1910 	/*
1911 	 * If nobody's using it now, turn off receiver interrupts.
1912 	 */
1913 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1914 		icr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ICR);
1915 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1916 		    (icr & ~RIEN));
1917 	}
1918 	mutex_exit(&asy->asy_excl_hi);
1919 out:
1920 	ttycommon_close(&async->async_ttycommon);
1921 
1922 	/*
1923 	 * Cancel outstanding "bufcall" request.
1924 	 */
1925 	if (async->async_wbufcid != 0) {
1926 		unbufcall(async->async_wbufcid);
1927 		async->async_wbufcid = 0;
1928 	}
1929 
1930 	/* Note that qprocsoff can't be done until after interrupts are off */
1931 	qprocsoff(q);
1932 	q->q_ptr = WR(q)->q_ptr = NULL;
1933 	async->async_ttycommon.t_readq = NULL;
1934 	async->async_ttycommon.t_writeq = NULL;
1935 
1936 	/*
1937 	 * Clear out device state, except persistant device property flags.
1938 	 */
1939 	async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
1940 	cv_broadcast(&async->async_flags_cv);
1941 	mutex_exit(&asy->asy_excl);
1942 
1943 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose: done\n", instance);
1944 	return (0);
1945 }
1946 
1947 static boolean_t
1948 asy_isbusy(struct asycom *asy)
1949 {
1950 	struct asyncline *async;
1951 
1952 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_isbusy\n");
1953 	async = asy->asy_priv;
1954 	ASSERT(mutex_owned(&asy->asy_excl));
1955 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1956 /*
1957  * XXXX this should be recoded
1958  */
1959 	return ((async->async_ocnt > 0) ||
1960 	    ((ddi_get8(asy->asy_iohandle,
1961 	    asy->asy_ioaddr + LSR) & (XSRE|XHRE)) == 0));
1962 }
1963 
1964 static void
1965 asy_waiteot(struct asycom *asy)
1966 {
1967 	/*
1968 	 * Wait for the current transmission block and the
1969 	 * current fifo data to transmit. Once this is done
1970 	 * we may go on.
1971 	 */
1972 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_waiteot\n");
1973 	ASSERT(mutex_owned(&asy->asy_excl));
1974 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1975 	while (asy_isbusy(asy)) {
1976 		mutex_exit(&asy->asy_excl_hi);
1977 		mutex_exit(&asy->asy_excl);
1978 		drv_usecwait(10000);		/* wait .01 */
1979 		mutex_enter(&asy->asy_excl);
1980 		mutex_enter(&asy->asy_excl_hi);
1981 	}
1982 }
1983 
1984 /* asy_reset_fifo -- flush fifos and [re]program fifo control register */
1985 static void
1986 asy_reset_fifo(struct asycom *asy, uchar_t flush)
1987 {
1988 	uchar_t lcr;
1989 
1990 	/* On a 16750, we have to set DLAB in order to set FIFOEXTRA. */
1991 
1992 	if (asy->asy_hwtype >= ASY16750) {
1993 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1994 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1995 		    lcr | DLAB);
1996 	}
1997 
1998 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR,
1999 	    asy->asy_fifor | flush);
2000 
2001 	/* Clear DLAB */
2002 
2003 	if (asy->asy_hwtype >= ASY16750) {
2004 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2005 	}
2006 }
2007 
2008 /*
2009  * Program the ASY port. Most of the async operation is based on the values
2010  * of 'c_iflag' and 'c_cflag'.
2011  */
2012 
2013 #define	BAUDINDEX(cflg)	(((cflg) & CBAUDEXT) ? \
2014 			(((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
2015 
2016 static void
2017 asy_program(struct asycom *asy, int mode)
2018 {
2019 	struct asyncline *async;
2020 	int baudrate, c_flag;
2021 	int icr, lcr;
2022 	int flush_reg;
2023 	int ocflags;
2024 #ifdef DEBUG
2025 	int instance;
2026 #endif
2027 
2028 	ASSERT(mutex_owned(&asy->asy_excl));
2029 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2030 
2031 	async = asy->asy_priv;
2032 #ifdef DEBUG
2033 	instance = UNIT(async->async_dev);
2034 	DEBUGCONT2(ASY_DEBUG_PROCS,
2035 	    "asy%d_program: mode = 0x%08X, enter\n", instance, mode);
2036 #endif
2037 
2038 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2039 
2040 	async->async_ttycommon.t_cflag &= ~(CIBAUD);
2041 
2042 	if (baudrate > CBAUD) {
2043 		async->async_ttycommon.t_cflag |= CIBAUDEXT;
2044 		async->async_ttycommon.t_cflag |=
2045 		    (((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
2046 	} else {
2047 		async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
2048 		async->async_ttycommon.t_cflag |=
2049 		    ((baudrate << IBSHIFT) & CIBAUD);
2050 	}
2051 
2052 	c_flag = async->async_ttycommon.t_cflag &
2053 	    (CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
2054 
2055 	/* disable interrupts */
2056 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
2057 
2058 	ocflags = asy->asy_ocflag;
2059 
2060 	/* flush/reset the status registers */
2061 	(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
2062 	(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2063 	asy->asy_msr = flush_reg = ddi_get8(asy->asy_iohandle,
2064 	    asy->asy_ioaddr + MSR);
2065 	/*
2066 	 * The device is programmed in the open sequence, if we
2067 	 * have to hardware handshake, then this is a good time
2068 	 * to check if the device can receive any data.
2069 	 */
2070 
2071 	if ((CRTSCTS & async->async_ttycommon.t_cflag) && !(flush_reg & CTS)) {
2072 		async_flowcontrol_hw_output(asy, FLOW_STOP);
2073 	} else {
2074 		/*
2075 		 * We can not use async_flowcontrol_hw_output(asy, FLOW_START)
2076 		 * here, because if CRTSCTS is clear, we need clear
2077 		 * ASYNC_HW_OUT_FLW bit.
2078 		 */
2079 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
2080 	}
2081 
2082 	/*
2083 	 * If IXON is not set, clear ASYNC_SW_OUT_FLW;
2084 	 * If IXON is set, no matter what IXON flag is before this
2085 	 * function call to asy_program,
2086 	 * we will use the old ASYNC_SW_OUT_FLW status.
2087 	 * Because of handling IXON in the driver, we also should re-calculate
2088 	 * the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
2089 	 * the TCSET* commands which call asy_program
2090 	 * are put into the write queue, so there is no output needed to
2091 	 * be resumed at this point.
2092 	 */
2093 	if (!(IXON & async->async_ttycommon.t_iflag))
2094 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
2095 
2096 	/* manually flush receive buffer or fifo (workaround for buggy fifos) */
2097 	if (mode == ASY_INIT)
2098 		if (asy->asy_use_fifo == FIFO_ON) {
2099 			for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
2100 				(void) ddi_get8(asy->asy_iohandle,
2101 				    asy->asy_ioaddr + DAT);
2102 			}
2103 		} else {
2104 			flush_reg = ddi_get8(asy->asy_iohandle,
2105 			    asy->asy_ioaddr + DAT);
2106 		}
2107 
2108 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
2109 		/* Set line control */
2110 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
2111 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
2112 
2113 		if (c_flag & CSTOPB)
2114 			lcr |= STB;	/* 2 stop bits */
2115 
2116 		if (c_flag & PARENB)
2117 			lcr |= PEN;
2118 
2119 		if ((c_flag & PARODD) == 0)
2120 			lcr |= EPS;
2121 
2122 		switch (c_flag & CSIZE) {
2123 		case CS5:
2124 			lcr |= BITS5;
2125 			break;
2126 		case CS6:
2127 			lcr |= BITS6;
2128 			break;
2129 		case CS7:
2130 			lcr |= BITS7;
2131 			break;
2132 		case CS8:
2133 			lcr |= BITS8;
2134 			break;
2135 		}
2136 
2137 		/* set the baud rate, unless it is "0" */
2138 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
2139 
2140 		if (baudrate != 0) {
2141 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
2142 			    asyspdtab[baudrate] & 0xff);
2143 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
2144 			    (asyspdtab[baudrate] >> 8) & 0xff);
2145 		}
2146 		/* set the line control modes */
2147 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2148 
2149 		/*
2150 		 * If we have a FIFO buffer, enable/flush
2151 		 * at intialize time, flush if transitioning from
2152 		 * CREAD off to CREAD on.
2153 		 */
2154 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD) ||
2155 		    mode == ASY_INIT)
2156 			if (asy->asy_use_fifo == FIFO_ON)
2157 				asy_reset_fifo(asy, FIFORXFLSH);
2158 
2159 		/* remember the new cflags */
2160 		asy->asy_ocflag = c_flag & ~CLOCAL;
2161 	}
2162 
2163 	if (baudrate == 0)
2164 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2165 		    (asy->asy_mcr & RTS) | OUT2);
2166 	else
2167 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2168 		    asy->asy_mcr | OUT2);
2169 
2170 	/*
2171 	 * Call the modem status interrupt handler to check for the carrier
2172 	 * in case CLOCAL was turned off after the carrier came on.
2173 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
2174 	 */
2175 	async_msint(asy);
2176 
2177 	/* Set interrupt control */
2178 	DEBUGCONT3(ASY_DEBUG_MODM2,
2179 	    "asy%d_program: c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x\n",
2180 	    instance, c_flag & CLOCAL,
2181 	    async->async_ttycommon.t_cflag & CRTSCTS);
2182 
2183 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
2184 		/*
2185 		 * direct-wired line ignores DCD, so we don't enable modem
2186 		 * status interrupts.
2187 		 */
2188 		icr = (TIEN | SIEN);
2189 	else
2190 		icr = (TIEN | SIEN | MIEN);
2191 
2192 	if (c_flag & CREAD)
2193 		icr |= RIEN;
2194 
2195 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, icr);
2196 	DEBUGCONT1(ASY_DEBUG_PROCS, "asy%d_program: done\n", instance);
2197 }
2198 
2199 static boolean_t
2200 asy_baudok(struct asycom *asy)
2201 {
2202 	struct asyncline *async = asy->asy_priv;
2203 	int baudrate;
2204 
2205 
2206 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2207 
2208 	if (baudrate >= sizeof (asyspdtab)/sizeof (*asyspdtab))
2209 		return (0);
2210 
2211 	return (baudrate == 0 || asyspdtab[baudrate]);
2212 }
2213 
2214 /*
2215  * asyintr() is the High Level Interrupt Handler.
2216  *
2217  * There are four different interrupt types indexed by ISR register values:
2218  *		0: modem
2219  *		1: Tx holding register is empty, ready for next char
2220  *		2: Rx register now holds a char to be picked up
2221  *		3: error or break on line
2222  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
2223  * the interrupt is from this port.
2224  */
2225 uint_t
2226 asyintr(caddr_t argasy)
2227 {
2228 	struct asycom		*asy = (struct asycom *)argasy;
2229 	struct asyncline	*async;
2230 	int			ret_status = DDI_INTR_UNCLAIMED;
2231 	uchar_t			interrupt_id, lsr;
2232 
2233 	interrupt_id = ddi_get8(asy->asy_iohandle,
2234 	    asy->asy_ioaddr + ISR) & 0x0F;
2235 	async = asy->asy_priv;
2236 
2237 	if ((async == NULL) || asy_addedsoft == 0 ||
2238 	    !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
2239 		if (interrupt_id & NOINTERRUPT)
2240 			return (DDI_INTR_UNCLAIMED);
2241 		else {
2242 			/*
2243 			 * reset the device by:
2244 			 *	reading line status
2245 			 *	reading any data from data status register
2246 			 *	reading modem status
2247 			 */
2248 			(void) ddi_get8(asy->asy_iohandle,
2249 			    asy->asy_ioaddr + LSR);
2250 			(void) ddi_get8(asy->asy_iohandle,
2251 			    asy->asy_ioaddr + DAT);
2252 			asy->asy_msr = ddi_get8(asy->asy_iohandle,
2253 			    asy->asy_ioaddr + MSR);
2254 			return (DDI_INTR_CLAIMED);
2255 		}
2256 	}
2257 
2258 	mutex_enter(&asy->asy_excl_hi);
2259 	/*
2260 	 * We will loop until the interrupt line is pulled low. asy
2261 	 * interrupt is edge triggered.
2262 	 */
2263 	/* CSTYLED */
2264 	for (;; interrupt_id =
2265 	    (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR) & 0x0F)) {
2266 
2267 		if (interrupt_id & NOINTERRUPT)
2268 			break;
2269 		ret_status = DDI_INTR_CLAIMED;
2270 
2271 		DEBUGCONT1(ASY_DEBUG_INTR, "asyintr: interrupt_id = 0x%d\n",
2272 		    interrupt_id);
2273 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2274 		switch (interrupt_id) {
2275 		case RxRDY:
2276 		case RSTATUS:
2277 		case FFTMOUT:
2278 			/* receiver interrupt or receiver errors */
2279 			async_rxint(asy, lsr);
2280 			break;
2281 		case TxRDY:
2282 			/* transmit interrupt */
2283 			async_txint(asy);
2284 			continue;
2285 		case MSTATUS:
2286 			/* modem status interrupt */
2287 			async_msint(asy);
2288 			break;
2289 		}
2290 		if ((lsr & XHRE) && (async->async_flags & ASYNC_BUSY) &&
2291 		    (async->async_ocnt > 0))
2292 			async_txint(asy);
2293 	}
2294 	mutex_exit(&asy->asy_excl_hi);
2295 	return (ret_status);
2296 }
2297 
2298 /*
2299  * Transmitter interrupt service routine.
2300  * If there is more data to transmit in the current pseudo-DMA block,
2301  * send the next character if output is not stopped or draining.
2302  * Otherwise, queue up a soft interrupt.
2303  *
2304  * XXX -  Needs review for HW FIFOs.
2305  */
2306 static void
2307 async_txint(struct asycom *asy)
2308 {
2309 	struct asyncline *async = asy->asy_priv;
2310 	int		fifo_len;
2311 
2312 	/*
2313 	 * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
2314 	 * asyintr()'s context to claim the interrupt without performing
2315 	 * any action. No character will be loaded into FIFO/THR until
2316 	 * timed or untimed break is removed
2317 	 */
2318 	if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
2319 		return;
2320 
2321 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2322 	if (fifo_len > asy_max_tx_fifo)
2323 		fifo_len = asy_max_tx_fifo;
2324 
2325 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
2326 		fifo_len--;
2327 
2328 	if (async->async_ocnt > 0 && fifo_len > 0 &&
2329 	    !(async->async_flags &
2330 	    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
2331 		while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
2332 			ddi_put8(asy->asy_iohandle,
2333 			    asy->asy_ioaddr + DAT, *async->async_optr++);
2334 		}
2335 		async->async_flags |= ASYNC_PROGRESS;
2336 	}
2337 
2338 	if (fifo_len <= 0)
2339 		return;
2340 
2341 	ASYSETSOFT(asy);
2342 }
2343 
2344 /*
2345  * Interrupt on port: handle PPS event.  This function is only called
2346  * for a port on which PPS event handling has been enabled.
2347  */
2348 static void
2349 asy_ppsevent(struct asycom *asy, int msr)
2350 {
2351 	if (asy->asy_flags & ASY_PPS_EDGE) {
2352 		/* Have seen leading edge, now look for and record drop */
2353 		if ((msr & DCD) == 0)
2354 			asy->asy_flags &= ~ASY_PPS_EDGE;
2355 		/*
2356 		 * Waiting for leading edge, look for rise; stamp event and
2357 		 * calibrate kernel clock.
2358 		 */
2359 	} else if (msr & DCD) {
2360 			/*
2361 			 * This code captures a timestamp at the designated
2362 			 * transition of the PPS signal (DCD asserted).  The
2363 			 * code provides a pointer to the timestamp, as well
2364 			 * as the hardware counter value at the capture.
2365 			 *
2366 			 * Note: the kernel has nano based time values while
2367 			 * NTP requires micro based, an in-line fast algorithm
2368 			 * to convert nsec to usec is used here -- see hrt2ts()
2369 			 * in common/os/timers.c for a full description.
2370 			 */
2371 			struct timeval *tvp = &asy_ppsev.tv;
2372 			timestruc_t ts;
2373 			long nsec, usec;
2374 
2375 			asy->asy_flags |= ASY_PPS_EDGE;
2376 			LED_OFF;
2377 			gethrestime(&ts);
2378 			LED_ON;
2379 			nsec = ts.tv_nsec;
2380 			usec = nsec + (nsec >> 2);
2381 			usec = nsec + (usec >> 1);
2382 			usec = nsec + (usec >> 2);
2383 			usec = nsec + (usec >> 4);
2384 			usec = nsec - (usec >> 3);
2385 			usec = nsec + (usec >> 2);
2386 			usec = nsec + (usec >> 3);
2387 			usec = nsec + (usec >> 4);
2388 			usec = nsec + (usec >> 1);
2389 			usec = nsec + (usec >> 6);
2390 			tvp->tv_usec = usec >> 10;
2391 			tvp->tv_sec = ts.tv_sec;
2392 
2393 			++asy_ppsev.serial;
2394 
2395 			/*
2396 			 * Because the kernel keeps a high-resolution time,
2397 			 * pass the current highres timestamp in tvp and zero
2398 			 * in usec.
2399 			 */
2400 			ddi_hardpps(tvp, 0);
2401 	}
2402 }
2403 
2404 /*
2405  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
2406  * error interrupt.
2407  * Try to put the character into the circular buffer for this line; if it
2408  * overflows, indicate a circular buffer overrun. If this port is always
2409  * to be serviced immediately, or the character is a STOP character, or
2410  * more than 15 characters have arrived, queue up a soft interrupt to
2411  * drain the circular buffer.
2412  * XXX - needs review for hw FIFOs support.
2413  */
2414 
2415 static void
2416 async_rxint(struct asycom *asy, uchar_t lsr)
2417 {
2418 	struct asyncline *async = asy->asy_priv;
2419 	uchar_t c;
2420 	uint_t s, needsoft = 0;
2421 	tty_common_t *tp;
2422 	int looplim = asy->asy_fifo_buf * 2;
2423 
2424 	tp = &async->async_ttycommon;
2425 	if (!(tp->t_cflag & CREAD)) {
2426 		while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2427 			(void) (ddi_get8(asy->asy_iohandle,
2428 			    asy->asy_ioaddr + DAT) & 0xff);
2429 			lsr = ddi_get8(asy->asy_iohandle,
2430 			    asy->asy_ioaddr + LSR);
2431 			if (looplim-- < 0)		/* limit loop */
2432 				break;
2433 		}
2434 		return; /* line is not open for read? */
2435 	}
2436 
2437 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2438 		c = 0;
2439 		s = 0;				/* reset error status */
2440 		if (lsr & RCA) {
2441 			c = ddi_get8(asy->asy_iohandle,
2442 			    asy->asy_ioaddr + DAT) & 0xff;
2443 
2444 			/*
2445 			 * We handle XON/XOFF char if IXON is set,
2446 			 * but if received char is _POSIX_VDISABLE,
2447 			 * we left it to the up level module.
2448 			 */
2449 			if (tp->t_iflag & IXON) {
2450 				if ((c == async->async_stopc) &&
2451 				    (c != _POSIX_VDISABLE)) {
2452 					async_flowcontrol_sw_output(asy,
2453 					    FLOW_STOP);
2454 					goto check_looplim;
2455 				} else if ((c == async->async_startc) &&
2456 				    (c != _POSIX_VDISABLE)) {
2457 					async_flowcontrol_sw_output(asy,
2458 					    FLOW_START);
2459 					needsoft = 1;
2460 					goto check_looplim;
2461 				}
2462 				if ((tp->t_iflag & IXANY) &&
2463 				    (async->async_flags & ASYNC_SW_OUT_FLW)) {
2464 					async_flowcontrol_sw_output(asy,
2465 					    FLOW_START);
2466 					needsoft = 1;
2467 				}
2468 			}
2469 		}
2470 
2471 		/*
2472 		 * Check for character break sequence
2473 		 */
2474 		if ((abort_enable == KIOCABORTALTERNATE) &&
2475 		    (asy->asy_flags & ASY_CONSOLE)) {
2476 			if (abort_charseq_recognize(c))
2477 				abort_sequence_enter((char *)NULL);
2478 		}
2479 
2480 		/* Handle framing errors */
2481 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
2482 			if (lsr & PARERR) {
2483 				if (tp->t_iflag & INPCK) /* parity enabled */
2484 					s |= PERROR;
2485 			}
2486 
2487 			if (lsr & (FRMERR|BRKDET))
2488 				s |= FRERROR;
2489 			if (lsr & OVRRUN) {
2490 				async->async_hw_overrun = 1;
2491 				s |= OVERRUN;
2492 			}
2493 		}
2494 
2495 		if (s == 0)
2496 			if ((tp->t_iflag & PARMRK) &&
2497 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
2498 			    (c == 0377))
2499 				if (RING_POK(async, 2)) {
2500 					RING_PUT(async, 0377);
2501 					RING_PUT(async, c);
2502 				} else
2503 					async->async_sw_overrun = 1;
2504 			else
2505 				if (RING_POK(async, 1))
2506 					RING_PUT(async, c);
2507 				else
2508 					async->async_sw_overrun = 1;
2509 		else
2510 			if (s & FRERROR) /* Handle framing errors */
2511 				if (c == 0)
2512 					if ((asy->asy_flags & ASY_CONSOLE) &&
2513 					    (abort_enable !=
2514 					    KIOCABORTALTERNATE))
2515 						abort_sequence_enter((char *)0);
2516 					else
2517 						async->async_break++;
2518 				else
2519 					if (RING_POK(async, 1))
2520 						RING_MARK(async, c, s);
2521 					else
2522 						async->async_sw_overrun = 1;
2523 			else /* Parity errors are handled by ldterm */
2524 				if (RING_POK(async, 1))
2525 					RING_MARK(async, c, s);
2526 				else
2527 					async->async_sw_overrun = 1;
2528 check_looplim:
2529 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2530 		if (looplim-- < 0)		/* limit loop */
2531 			break;
2532 	}
2533 	if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
2534 	    !(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2535 		async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
2536 		(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2537 		    IN_FLOW_RINGBUFF);
2538 	}
2539 
2540 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
2541 	    (RING_FRAC(async)) || (async->async_polltid == 0))
2542 		ASYSETSOFT(asy);	/* need a soft interrupt */
2543 }
2544 
2545 /*
2546  * Modem status interrupt.
2547  *
2548  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
2549  */
2550 
2551 static void
2552 async_msint(struct asycom *asy)
2553 {
2554 	struct asyncline *async = asy->asy_priv;
2555 	int msr, t_cflag = async->async_ttycommon.t_cflag;
2556 #ifdef DEBUG
2557 	int instance = UNIT(async->async_dev);
2558 #endif
2559 
2560 async_msint_retry:
2561 	/* this resets the interrupt */
2562 	msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2563 	DEBUGCONT10(ASY_DEBUG_STATE,
2564 	    "async%d_msint call #%d:\n"
2565 	    "   transition: %3s %3s %3s %3s\n"
2566 	    "current state: %3s %3s %3s %3s\n",
2567 	    instance,
2568 	    ++(asy->asy_msint_cnt),
2569 	    (msr & DCTS) ? "DCTS" : "    ",
2570 	    (msr & DDSR) ? "DDSR" : "    ",
2571 	    (msr & DRI)  ? "DRI " : "    ",
2572 	    (msr & DDCD) ? "DDCD" : "    ",
2573 	    (msr & CTS)  ? "CTS " : "    ",
2574 	    (msr & DSR)  ? "DSR " : "    ",
2575 	    (msr & RI)   ? "RI  " : "    ",
2576 	    (msr & DCD)  ? "DCD " : "    ");
2577 
2578 	/* If CTS status is changed, do H/W output flow control */
2579 	if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & CTS) != 0))
2580 		async_flowcontrol_hw_output(asy,
2581 		    msr & CTS ? FLOW_START : FLOW_STOP);
2582 	/*
2583 	 * Reading MSR resets the interrupt, we save the
2584 	 * value of msr so that other functions could examine MSR by
2585 	 * looking at asy_msr.
2586 	 */
2587 	asy->asy_msr = (uchar_t)msr;
2588 
2589 	/* Handle PPS event */
2590 	if (asy->asy_flags & ASY_PPS)
2591 		asy_ppsevent(asy, msr);
2592 
2593 	async->async_ext++;
2594 	ASYSETSOFT(asy);
2595 	/*
2596 	 * We will make sure that the modem status presented to us
2597 	 * during the previous read has not changed. If the chip samples
2598 	 * the modem status on the falling edge of the interrupt line,
2599 	 * and uses this state as the base for detecting change of modem
2600 	 * status, we would miss a change of modem status event that occured
2601 	 * after we initiated a read MSR operation.
2602 	 */
2603 	msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2604 	if (STATES(msr) != STATES(asy->asy_msr))
2605 		goto	async_msint_retry;
2606 }
2607 
2608 /*
2609  * Handle a second-stage interrupt.
2610  */
2611 /*ARGSUSED*/
2612 uint_t
2613 asysoftintr(caddr_t intarg)
2614 {
2615 	struct asycom *asy;
2616 	int rv;
2617 	int instance;
2618 
2619 	/*
2620 	 * Test and clear soft interrupt.
2621 	 */
2622 	mutex_enter(&asy_soft_lock);
2623 	DEBUGCONT0(ASY_DEBUG_PROCS, "asysoftintr: enter\n");
2624 	rv = asysoftpend;
2625 	if (rv != 0)
2626 		asysoftpend = 0;
2627 	mutex_exit(&asy_soft_lock);
2628 
2629 	if (rv) {
2630 		/*
2631 		 * Note - we can optimize the loop by remembering the last
2632 		 * device that requested soft interrupt
2633 		 */
2634 		for (instance = 0; instance <= max_asy_instance; instance++) {
2635 			asy = ddi_get_soft_state(asy_soft_state, instance);
2636 			if (asy == NULL || asy->asy_priv == NULL)
2637 				continue;
2638 			mutex_enter(&asy_soft_lock);
2639 			if (asy->asy_flags & ASY_NEEDSOFT) {
2640 				asy->asy_flags &= ~ASY_NEEDSOFT;
2641 				mutex_exit(&asy_soft_lock);
2642 				async_softint(asy);
2643 			} else
2644 				mutex_exit(&asy_soft_lock);
2645 		}
2646 	}
2647 	return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2648 }
2649 
2650 /*
2651  * Handle a software interrupt.
2652  */
2653 static void
2654 async_softint(struct asycom *asy)
2655 {
2656 	struct asyncline *async = asy->asy_priv;
2657 	short	cc;
2658 	mblk_t	*bp;
2659 	queue_t	*q;
2660 	uchar_t	val;
2661 	uchar_t	c;
2662 	tty_common_t	*tp;
2663 	int nb;
2664 	int instance = UNIT(async->async_dev);
2665 
2666 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint\n", instance);
2667 	mutex_enter(&asy_soft_lock);
2668 	if (asy->asy_flags & ASY_DOINGSOFT) {
2669 		asy->asy_flags |= ASY_DOINGSOFT_RETRY;
2670 		mutex_exit(&asy_soft_lock);
2671 		return;
2672 	}
2673 	asy->asy_flags |= ASY_DOINGSOFT;
2674 begin:
2675 	asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
2676 	mutex_exit(&asy_soft_lock);
2677 	mutex_enter(&asy->asy_excl);
2678 	tp = &async->async_ttycommon;
2679 	q = tp->t_readq;
2680 	if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
2681 		if (async->async_ocnt > 0) {
2682 			mutex_enter(&asy->asy_excl_hi);
2683 			async_resume(async);
2684 			mutex_exit(&asy->asy_excl_hi);
2685 		} else {
2686 			if (async->async_xmitblk)
2687 				freeb(async->async_xmitblk);
2688 			async->async_xmitblk = NULL;
2689 			async_start(async);
2690 		}
2691 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
2692 	}
2693 	mutex_enter(&asy->asy_excl_hi);
2694 	if (async->async_ext) {
2695 		async->async_ext = 0;
2696 		/* check for carrier up */
2697 		DEBUGCONT3(ASY_DEBUG_MODM2,
2698 		    "async%d_softint: asy_msr & DCD = %x, "
2699 		    "tp->t_flags & TS_SOFTCAR = %x\n",
2700 		    instance, asy->asy_msr & DCD, tp->t_flags & TS_SOFTCAR);
2701 
2702 		if (asy->asy_msr & DCD) {
2703 			/* carrier present */
2704 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
2705 				DEBUGCONT1(ASY_DEBUG_MODM2,
2706 				    "async%d_softint: set ASYNC_CARR_ON\n",
2707 				    instance);
2708 				async->async_flags |= ASYNC_CARR_ON;
2709 				if (async->async_flags & ASYNC_ISOPEN) {
2710 					mutex_exit(&asy->asy_excl_hi);
2711 					mutex_exit(&asy->asy_excl);
2712 					(void) putctl(q, M_UNHANGUP);
2713 					mutex_enter(&asy->asy_excl);
2714 					mutex_enter(&asy->asy_excl_hi);
2715 				}
2716 				cv_broadcast(&async->async_flags_cv);
2717 			}
2718 		} else {
2719 			if ((async->async_flags & ASYNC_CARR_ON) &&
2720 			    !(tp->t_cflag & CLOCAL) &&
2721 			    !(tp->t_flags & TS_SOFTCAR)) {
2722 				int flushflag;
2723 
2724 				DEBUGCONT1(ASY_DEBUG_MODEM,
2725 				    "async%d_softint: carrier dropped, "
2726 				    "so drop DTR\n",
2727 				    instance);
2728 				/*
2729 				 * Carrier went away.
2730 				 * Drop DTR, abort any output in
2731 				 * progress, indicate that output is
2732 				 * not stopped, and send a hangup
2733 				 * notification upstream.
2734 				 */
2735 				val = ddi_get8(asy->asy_iohandle,
2736 				    asy->asy_ioaddr + MCR);
2737 				ddi_put8(asy->asy_iohandle,
2738 				    asy->asy_ioaddr + MCR, (val & ~DTR));
2739 
2740 				if (async->async_flags & ASYNC_BUSY) {
2741 					DEBUGCONT0(ASY_DEBUG_BUSY,
2742 					    "async_softint: "
2743 					    "Carrier dropped.  "
2744 					    "Clearing async_ocnt\n");
2745 					async->async_ocnt = 0;
2746 				}	/* if */
2747 
2748 				async->async_flags &= ~ASYNC_STOPPED;
2749 				if (async->async_flags & ASYNC_ISOPEN) {
2750 					mutex_exit(&asy->asy_excl_hi);
2751 					mutex_exit(&asy->asy_excl);
2752 					(void) putctl(q, M_HANGUP);
2753 					mutex_enter(&asy->asy_excl);
2754 					DEBUGCONT1(ASY_DEBUG_MODEM,
2755 					    "async%d_softint: "
2756 					    "putctl(q, M_HANGUP)\n",
2757 					    instance);
2758 					/*
2759 					 * Flush FIFO buffers
2760 					 * Any data left in there is invalid now
2761 					 */
2762 					if (asy->asy_use_fifo == FIFO_ON)
2763 						asy_reset_fifo(asy, FIFOTXFLSH);
2764 					/*
2765 					 * Flush our write queue if we have one.
2766 					 * If we're in the midst of close, then
2767 					 * flush everything. Don't leave stale
2768 					 * ioctls lying about.
2769 					 */
2770 					flushflag = (async->async_flags &
2771 					    ASYNC_CLOSING) ? FLUSHALL :
2772 					    FLUSHDATA;
2773 					flushq(tp->t_writeq, flushflag);
2774 
2775 					/* active msg */
2776 					bp = async->async_xmitblk;
2777 					if (bp != NULL) {
2778 						freeb(bp);
2779 						async->async_xmitblk = NULL;
2780 					}
2781 
2782 					mutex_enter(&asy->asy_excl_hi);
2783 					async->async_flags &= ~ASYNC_BUSY;
2784 					/*
2785 					 * This message warns of Carrier loss
2786 					 * with data left to transmit can hang
2787 					 * the system.
2788 					 */
2789 					DEBUGCONT0(ASY_DEBUG_MODEM,
2790 					    "async_softint: Flushing to "
2791 					    "prevent HUPCL hanging\n");
2792 				}	/* if (ASYNC_ISOPEN) */
2793 			}	/* if (ASYNC_CARR_ON && CLOCAL) */
2794 			async->async_flags &= ~ASYNC_CARR_ON;
2795 			cv_broadcast(&async->async_flags_cv);
2796 		}	/* else */
2797 	}	/* if (async->async_ext) */
2798 
2799 	mutex_exit(&asy->asy_excl_hi);
2800 
2801 	/*
2802 	 * If data has been added to the circular buffer, remove
2803 	 * it from the buffer, and send it up the stream if there's
2804 	 * somebody listening. Try to do it 16 bytes at a time. If we
2805 	 * have more than 16 bytes to move, move 16 byte chunks and
2806 	 * leave the rest for next time around (maybe it will grow).
2807 	 */
2808 	mutex_enter(&asy->asy_excl_hi);
2809 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2810 		RING_INIT(async);
2811 		goto rv;
2812 	}
2813 	if ((cc = RING_CNT(async)) <= 0)
2814 		goto rv;
2815 	mutex_exit(&asy->asy_excl_hi);
2816 
2817 	if (!canput(q)) {
2818 		mutex_enter(&asy->asy_excl_hi);
2819 		if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
2820 			async_flowcontrol_hw_input(asy, FLOW_STOP,
2821 			    IN_FLOW_STREAMS);
2822 			(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2823 			    IN_FLOW_STREAMS);
2824 		}
2825 		goto rv;
2826 	}
2827 	if (async->async_inflow_source & IN_FLOW_STREAMS) {
2828 		mutex_enter(&asy->asy_excl_hi);
2829 		async_flowcontrol_hw_input(asy, FLOW_START,
2830 		    IN_FLOW_STREAMS);
2831 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2832 		    IN_FLOW_STREAMS);
2833 		mutex_exit(&asy->asy_excl_hi);
2834 	}
2835 
2836 	DEBUGCONT2(ASY_DEBUG_INPUT, "async%d_softint: %d char(s) in queue.\n",
2837 	    instance, cc);
2838 
2839 	if (!(bp = allocb(cc, BPRI_MED))) {
2840 		mutex_exit(&asy->asy_excl);
2841 		ttycommon_qfull(&async->async_ttycommon, q);
2842 		mutex_enter(&asy->asy_excl);
2843 		mutex_enter(&asy->asy_excl_hi);
2844 		goto rv;
2845 	}
2846 	mutex_enter(&asy->asy_excl_hi);
2847 	do {
2848 		if (RING_ERR(async, S_ERRORS)) {
2849 			RING_UNMARK(async);
2850 			c = RING_GET(async);
2851 			break;
2852 		} else
2853 			*bp->b_wptr++ = RING_GET(async);
2854 	} while (--cc);
2855 	mutex_exit(&asy->asy_excl_hi);
2856 	mutex_exit(&asy->asy_excl);
2857 	if (bp->b_wptr > bp->b_rptr) {
2858 			if (!canput(q)) {
2859 				asyerror(CE_NOTE, "asy%d: local queue full",
2860 				    instance);
2861 				freemsg(bp);
2862 			} else
2863 				(void) putq(q, bp);
2864 	} else
2865 		freemsg(bp);
2866 	/*
2867 	 * If we have a parity error, then send
2868 	 * up an M_BREAK with the "bad"
2869 	 * character as an argument. Let ldterm
2870 	 * figure out what to do with the error.
2871 	 */
2872 	if (cc) {
2873 		(void) putctl1(q, M_BREAK, c);
2874 		ASYSETSOFT(async->async_common);	/* finish cc chars */
2875 	}
2876 	mutex_enter(&asy->asy_excl);
2877 	mutex_enter(&asy->asy_excl_hi);
2878 rv:
2879 	if ((RING_CNT(async) < (RINGSIZE/4)) &&
2880 	    (async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2881 		async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
2882 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2883 		    IN_FLOW_RINGBUFF);
2884 	}
2885 
2886 	/*
2887 	 * If a transmission has finished, indicate that it's finished,
2888 	 * and start that line up again.
2889 	 */
2890 	if (async->async_break > 0) {
2891 		nb = async->async_break;
2892 		async->async_break = 0;
2893 		if (async->async_flags & ASYNC_ISOPEN) {
2894 			mutex_exit(&asy->asy_excl_hi);
2895 			mutex_exit(&asy->asy_excl);
2896 			for (; nb > 0; nb--)
2897 				(void) putctl(q, M_BREAK);
2898 			mutex_enter(&asy->asy_excl);
2899 			mutex_enter(&asy->asy_excl_hi);
2900 		}
2901 	}
2902 	if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
2903 		DEBUGCONT2(ASY_DEBUG_BUSY,
2904 		    "async%d_softint: Clearing ASYNC_BUSY.  async_ocnt=%d\n",
2905 		    instance,
2906 		    async->async_ocnt);
2907 		async->async_flags &= ~ASYNC_BUSY;
2908 		mutex_exit(&asy->asy_excl_hi);
2909 		if (async->async_xmitblk)
2910 			freeb(async->async_xmitblk);
2911 		async->async_xmitblk = NULL;
2912 		async_start(async);
2913 		/*
2914 		 * If the flag isn't set after doing the async_start above, we
2915 		 * may have finished all the queued output.  Signal any thread
2916 		 * stuck in close.
2917 		 */
2918 		if (!(async->async_flags & ASYNC_BUSY))
2919 			cv_broadcast(&async->async_flags_cv);
2920 		mutex_enter(&asy->asy_excl_hi);
2921 	}
2922 	/*
2923 	 * A note about these overrun bits: all they do is *tell* someone
2924 	 * about an error- They do not track multiple errors. In fact,
2925 	 * you could consider them latched register bits if you like.
2926 	 * We are only interested in printing the error message once for
2927 	 * any cluster of overrun errrors.
2928 	 */
2929 	if (async->async_hw_overrun) {
2930 		if (async->async_flags & ASYNC_ISOPEN) {
2931 			mutex_exit(&asy->asy_excl_hi);
2932 			mutex_exit(&asy->asy_excl);
2933 			asyerror(CE_NOTE, "asy%d: silo overflow", instance);
2934 			mutex_enter(&asy->asy_excl);
2935 			mutex_enter(&asy->asy_excl_hi);
2936 		}
2937 		async->async_hw_overrun = 0;
2938 	}
2939 	if (async->async_sw_overrun) {
2940 		if (async->async_flags & ASYNC_ISOPEN) {
2941 			mutex_exit(&asy->asy_excl_hi);
2942 			mutex_exit(&asy->asy_excl);
2943 			asyerror(CE_NOTE, "asy%d: ring buffer overflow",
2944 			    instance);
2945 			mutex_enter(&asy->asy_excl);
2946 			mutex_enter(&asy->asy_excl_hi);
2947 		}
2948 		async->async_sw_overrun = 0;
2949 	}
2950 	mutex_exit(&asy->asy_excl_hi);
2951 	mutex_exit(&asy->asy_excl);
2952 	mutex_enter(&asy_soft_lock);
2953 	if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
2954 		goto begin;
2955 	}
2956 	asy->asy_flags &= ~ASY_DOINGSOFT;
2957 	mutex_exit(&asy_soft_lock);
2958 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint: done\n", instance);
2959 }
2960 
2961 /*
2962  * Restart output on a line after a delay or break timer expired.
2963  */
2964 static void
2965 async_restart(void *arg)
2966 {
2967 	struct asyncline *async = (struct asyncline *)arg;
2968 	struct asycom *asy = async->async_common;
2969 	uchar_t lcr;
2970 
2971 	/*
2972 	 * If break timer expired, turn off the break bit.
2973 	 */
2974 #ifdef DEBUG
2975 	int instance = UNIT(async->async_dev);
2976 
2977 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_restart\n", instance);
2978 #endif
2979 	mutex_enter(&asy->asy_excl);
2980 	/*
2981 	 * If ASYNC_OUT_SUSPEND is also set, we don't really
2982 	 * clean the HW break, TIOCCBRK is responsible for this.
2983 	 */
2984 	if ((async->async_flags & ASYNC_BREAK) &&
2985 	    !(async->async_flags & ASYNC_OUT_SUSPEND)) {
2986 		mutex_enter(&asy->asy_excl_hi);
2987 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
2988 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
2989 		    (lcr & ~SETBREAK));
2990 		mutex_exit(&asy->asy_excl_hi);
2991 	}
2992 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
2993 	cv_broadcast(&async->async_flags_cv);
2994 	async_start(async);
2995 
2996 	mutex_exit(&asy->asy_excl);
2997 }
2998 
2999 static void
3000 async_start(struct asyncline *async)
3001 {
3002 	async_nstart(async, 0);
3003 }
3004 
3005 /*
3006  * Start output on a line, unless it's busy, frozen, or otherwise.
3007  */
3008 /*ARGSUSED*/
3009 static void
3010 async_nstart(struct asyncline *async, int mode)
3011 {
3012 	struct asycom *asy = async->async_common;
3013 	int cc;
3014 	queue_t *q;
3015 	mblk_t *bp;
3016 	uchar_t *xmit_addr;
3017 	uchar_t	val;
3018 	int	fifo_len = 1;
3019 	boolean_t didsome;
3020 	mblk_t *nbp;
3021 
3022 #ifdef DEBUG
3023 	int instance = UNIT(async->async_dev);
3024 
3025 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_nstart\n", instance);
3026 #endif
3027 	if (asy->asy_use_fifo == FIFO_ON) {
3028 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3029 		if (fifo_len > asy_max_tx_fifo)
3030 			fifo_len = asy_max_tx_fifo;
3031 	}
3032 
3033 	ASSERT(mutex_owned(&asy->asy_excl));
3034 
3035 	/*
3036 	 * If the chip is busy (i.e., we're waiting for a break timeout
3037 	 * to expire, or for the current transmission to finish, or for
3038 	 * output to finish draining from chip), don't grab anything new.
3039 	 */
3040 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
3041 		DEBUGCONT2((mode? ASY_DEBUG_OUT : 0),
3042 		    "async%d_nstart: start %s.\n",
3043 		    instance,
3044 		    async->async_flags & ASYNC_BREAK ? "break" : "busy");
3045 		return;
3046 	}
3047 
3048 	/*
3049 	 * Check only pended sw input flow control.
3050 	 */
3051 	mutex_enter(&asy->asy_excl_hi);
3052 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3053 		fifo_len--;
3054 	mutex_exit(&asy->asy_excl_hi);
3055 
3056 	/*
3057 	 * If we're waiting for a delay timeout to expire, don't grab
3058 	 * anything new.
3059 	 */
3060 	if (async->async_flags & ASYNC_DELAY) {
3061 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3062 		    "async%d_nstart: start ASYNC_DELAY.\n", instance);
3063 		return;
3064 	}
3065 
3066 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3067 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3068 		    "async%d_nstart: start writeq is null.\n", instance);
3069 		return;	/* not attached to a stream */
3070 	}
3071 
3072 	for (;;) {
3073 		if ((bp = getq(q)) == NULL)
3074 			return;	/* no data to transmit */
3075 
3076 		/*
3077 		 * We have a message block to work on.
3078 		 * Check whether it's a break, a delay, or an ioctl (the latter
3079 		 * occurs if the ioctl in question was waiting for the output
3080 		 * to drain).  If it's one of those, process it immediately.
3081 		 */
3082 		switch (bp->b_datap->db_type) {
3083 
3084 		case M_BREAK:
3085 			/*
3086 			 * Set the break bit, and arrange for "async_restart"
3087 			 * to be called in 1/4 second; it will turn the
3088 			 * break bit off, and call "async_start" to grab
3089 			 * the next message.
3090 			 */
3091 			mutex_enter(&asy->asy_excl_hi);
3092 			val = ddi_get8(asy->asy_iohandle,
3093 			    asy->asy_ioaddr + LCR);
3094 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3095 			    (val | SETBREAK));
3096 			mutex_exit(&asy->asy_excl_hi);
3097 			async->async_flags |= ASYNC_BREAK;
3098 			(void) timeout(async_restart, (caddr_t)async,
3099 			    drv_usectohz(1000000)/4);
3100 			freemsg(bp);
3101 			return;	/* wait for this to finish */
3102 
3103 		case M_DELAY:
3104 			/*
3105 			 * Arrange for "async_restart" to be called when the
3106 			 * delay expires; it will turn ASYNC_DELAY off,
3107 			 * and call "async_start" to grab the next message.
3108 			 */
3109 			(void) timeout(async_restart, (caddr_t)async,
3110 			    (int)(*(unsigned char *)bp->b_rptr + 6));
3111 			async->async_flags |= ASYNC_DELAY;
3112 			freemsg(bp);
3113 			return;	/* wait for this to finish */
3114 
3115 		case M_IOCTL:
3116 			/*
3117 			 * This ioctl was waiting for the output ahead of
3118 			 * it to drain; obviously, it has.  Do it, and
3119 			 * then grab the next message after it.
3120 			 */
3121 			mutex_exit(&asy->asy_excl);
3122 			async_ioctl(async, q, bp);
3123 			mutex_enter(&asy->asy_excl);
3124 			continue;
3125 		}
3126 
3127 		while (bp != NULL && ((cc = MBLKL(bp)) == 0)) {
3128 			nbp = bp->b_cont;
3129 			freeb(bp);
3130 			bp = nbp;
3131 		}
3132 		if (bp != NULL)
3133 			break;
3134 	}
3135 
3136 	/*
3137 	 * We have data to transmit.  If output is stopped, put
3138 	 * it back and try again later.
3139 	 */
3140 	if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
3141 	    ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
3142 		(void) putbq(q, bp);
3143 		return;
3144 	}
3145 
3146 	async->async_xmitblk = bp;
3147 	xmit_addr = bp->b_rptr;
3148 	bp = bp->b_cont;
3149 	if (bp != NULL)
3150 		(void) putbq(q, bp);	/* not done with this message yet */
3151 
3152 	/*
3153 	 * In 5-bit mode, the high order bits are used
3154 	 * to indicate character sizes less than five,
3155 	 * so we need to explicitly mask before transmitting
3156 	 */
3157 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
3158 		unsigned char *p = xmit_addr;
3159 		int cnt = cc;
3160 
3161 		while (cnt--)
3162 			*p++ &= (unsigned char) 0x1f;
3163 	}
3164 
3165 	/*
3166 	 * Set up this block for pseudo-DMA.
3167 	 */
3168 	mutex_enter(&asy->asy_excl_hi);
3169 	/*
3170 	 * If the transmitter is ready, shove the first
3171 	 * character out.
3172 	 */
3173 	didsome = B_FALSE;
3174 	while (--fifo_len >= 0 && cc > 0) {
3175 		if (!(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) &
3176 		    XHRE))
3177 			break;
3178 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
3179 		    *xmit_addr++);
3180 		cc--;
3181 		didsome = B_TRUE;
3182 	}
3183 	async->async_optr = xmit_addr;
3184 	async->async_ocnt = cc;
3185 	if (didsome)
3186 		async->async_flags |= ASYNC_PROGRESS;
3187 	DEBUGCONT2(ASY_DEBUG_BUSY,
3188 	    "async%d_nstart: Set ASYNC_BUSY.  async_ocnt=%d\n",
3189 	    instance, async->async_ocnt);
3190 	async->async_flags |= ASYNC_BUSY;
3191 	mutex_exit(&asy->asy_excl_hi);
3192 }
3193 
3194 /*
3195  * Resume output by poking the transmitter.
3196  */
3197 static void
3198 async_resume(struct asyncline *async)
3199 {
3200 	struct asycom *asy = async->async_common;
3201 #ifdef DEBUG
3202 	int instance;
3203 #endif
3204 
3205 	ASSERT(mutex_owned(&asy->asy_excl_hi));
3206 #ifdef DEBUG
3207 	instance = UNIT(async->async_dev);
3208 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_resume\n", instance);
3209 #endif
3210 
3211 	if (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) {
3212 		if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3213 			return;
3214 		if (async->async_ocnt > 0 &&
3215 		    !(async->async_flags &
3216 		    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
3217 			ddi_put8(asy->asy_iohandle,
3218 			    asy->asy_ioaddr + DAT, *async->async_optr++);
3219 			async->async_ocnt--;
3220 			async->async_flags |= ASYNC_PROGRESS;
3221 		}
3222 	}
3223 }
3224 
3225 /*
3226  * Hold the untimed break to last the minimum time.
3227  */
3228 static void
3229 async_hold_utbrk(void *arg)
3230 {
3231 	struct asyncline *async = arg;
3232 	struct asycom *asy = async->async_common;
3233 
3234 	mutex_enter(&asy->asy_excl);
3235 	async->async_flags &= ~ASYNC_HOLD_UTBRK;
3236 	cv_broadcast(&async->async_flags_cv);
3237 	async->async_utbrktid = 0;
3238 	mutex_exit(&asy->asy_excl);
3239 }
3240 
3241 /*
3242  * Resume the untimed break.
3243  */
3244 static void
3245 async_resume_utbrk(struct asyncline *async)
3246 {
3247 	uchar_t	val;
3248 	struct asycom *asy = async->async_common;
3249 	ASSERT(mutex_owned(&asy->asy_excl));
3250 
3251 	/*
3252 	 * Because the wait time is very short,
3253 	 * so we use uninterruptably wait.
3254 	 */
3255 	while (async->async_flags & ASYNC_HOLD_UTBRK) {
3256 		cv_wait(&async->async_flags_cv, &asy->asy_excl);
3257 	}
3258 	mutex_enter(&asy->asy_excl_hi);
3259 	/*
3260 	 * Timed break and untimed break can exist simultaneously,
3261 	 * if ASYNC_BREAK is also set at here, we don't
3262 	 * really clean the HW break.
3263 	 */
3264 	if (!(async->async_flags & ASYNC_BREAK)) {
3265 		val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3266 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3267 		    (val & ~SETBREAK));
3268 	}
3269 	async->async_flags &= ~ASYNC_OUT_SUSPEND;
3270 	cv_broadcast(&async->async_flags_cv);
3271 	if (async->async_ocnt > 0) {
3272 		async_resume(async);
3273 		mutex_exit(&asy->asy_excl_hi);
3274 	} else {
3275 		async->async_flags &= ~ASYNC_BUSY;
3276 		mutex_exit(&asy->asy_excl_hi);
3277 		if (async->async_xmitblk != NULL) {
3278 			freeb(async->async_xmitblk);
3279 			async->async_xmitblk = NULL;
3280 		}
3281 		async_start(async);
3282 	}
3283 }
3284 
3285 /*
3286  * Process an "ioctl" message sent down to us.
3287  * Note that we don't need to get any locks until we are ready to access
3288  * the hardware.  Nothing we access until then is going to be altered
3289  * outside of the STREAMS framework, so we should be safe.
3290  */
3291 int asydelay = 10000;
3292 static void
3293 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
3294 {
3295 	struct asycom *asy = async->async_common;
3296 	tty_common_t  *tp = &async->async_ttycommon;
3297 	struct iocblk *iocp;
3298 	unsigned datasize;
3299 	int error = 0;
3300 	uchar_t val;
3301 	mblk_t *datamp;
3302 	unsigned int index;
3303 
3304 #ifdef DEBUG
3305 	int instance = UNIT(async->async_dev);
3306 
3307 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl\n", instance);
3308 #endif
3309 
3310 	if (tp->t_iocpending != NULL) {
3311 		/*
3312 		 * We were holding an "ioctl" response pending the
3313 		 * availability of an "mblk" to hold data to be passed up;
3314 		 * another "ioctl" came through, which means that "ioctl"
3315 		 * must have timed out or been aborted.
3316 		 */
3317 		freemsg(async->async_ttycommon.t_iocpending);
3318 		async->async_ttycommon.t_iocpending = NULL;
3319 	}
3320 
3321 	iocp = (struct iocblk *)mp->b_rptr;
3322 
3323 	/*
3324 	 * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
3325 	 * because this function frees up the message block (mp->b_cont) that
3326 	 * contains the user location where we pass back the results.
3327 	 *
3328 	 * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
3329 	 * zaps.  We know that ttycommon_ioctl doesn't know any CONS*
3330 	 * ioctls, so keep the others safe too.
3331 	 */
3332 	DEBUGCONT2(ASY_DEBUG_IOCTL, "async%d_ioctl: %s\n",
3333 	    instance,
3334 	    iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
3335 	    iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
3336 	    iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
3337 	    iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
3338 	    "other");
3339 
3340 	switch (iocp->ioc_cmd) {
3341 	case TIOCMGET:
3342 	case TIOCGPPS:
3343 	case TIOCSPPS:
3344 	case TIOCGPPSEV:
3345 	case CONSOPENPOLLEDIO:
3346 	case CONSCLOSEPOLLEDIO:
3347 	case CONSSETABORTENABLE:
3348 	case CONSGETABORTENABLE:
3349 		error = -1; /* Do Nothing */
3350 		break;
3351 	default:
3352 
3353 		/*
3354 		 * The only way in which "ttycommon_ioctl" can fail is if the
3355 		 * "ioctl" requires a response containing data to be returned
3356 		 * to the user, and no mblk could be allocated for the data.
3357 		 * No such "ioctl" alters our state.  Thus, we always go ahead
3358 		 * and do any state-changes the "ioctl" calls for.  If we
3359 		 * couldn't allocate the data, "ttycommon_ioctl" has stashed
3360 		 * the "ioctl" away safely, so we just call "bufcall" to
3361 		 * request that we be called back when we stand a better
3362 		 * chance of allocating the data.
3363 		 */
3364 		if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
3365 			if (async->async_wbufcid)
3366 				unbufcall(async->async_wbufcid);
3367 			async->async_wbufcid = bufcall(datasize, BPRI_HI,
3368 			    (void (*)(void *)) async_reioctl,
3369 			    (void *)(intptr_t)async->async_common->asy_unit);
3370 			return;
3371 		}
3372 	}
3373 
3374 	mutex_enter(&asy->asy_excl);
3375 
3376 	if (error == 0) {
3377 		/*
3378 		 * "ttycommon_ioctl" did most of the work; we just use the
3379 		 * data it set up.
3380 		 */
3381 		switch (iocp->ioc_cmd) {
3382 
3383 		case TCSETS:
3384 			mutex_enter(&asy->asy_excl_hi);
3385 			if (asy_baudok(asy))
3386 				asy_program(asy, ASY_NOINIT);
3387 			else
3388 				error = EINVAL;
3389 			mutex_exit(&asy->asy_excl_hi);
3390 			break;
3391 		case TCSETSF:
3392 		case TCSETSW:
3393 		case TCSETA:
3394 		case TCSETAW:
3395 		case TCSETAF:
3396 			mutex_enter(&asy->asy_excl_hi);
3397 			if (!asy_baudok(asy))
3398 				error = EINVAL;
3399 			else {
3400 				if (asy_isbusy(asy))
3401 					asy_waiteot(asy);
3402 				asy_program(asy, ASY_NOINIT);
3403 			}
3404 			mutex_exit(&asy->asy_excl_hi);
3405 			break;
3406 		}
3407 	} else if (error < 0) {
3408 		/*
3409 		 * "ttycommon_ioctl" didn't do anything; we process it here.
3410 		 */
3411 		error = 0;
3412 		switch (iocp->ioc_cmd) {
3413 
3414 		case TIOCGPPS:
3415 			/*
3416 			 * Get PPS on/off.
3417 			 */
3418 			if (mp->b_cont != NULL)
3419 				freemsg(mp->b_cont);
3420 
3421 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
3422 			if (mp->b_cont == NULL) {
3423 				error = ENOMEM;
3424 				break;
3425 			}
3426 			if (asy->asy_flags & ASY_PPS)
3427 				*(int *)mp->b_cont->b_wptr = 1;
3428 			else
3429 				*(int *)mp->b_cont->b_wptr = 0;
3430 			mp->b_cont->b_wptr += sizeof (int);
3431 			mp->b_datap->db_type = M_IOCACK;
3432 			iocp->ioc_count = sizeof (int);
3433 			break;
3434 
3435 		case TIOCSPPS:
3436 			/*
3437 			 * Set PPS on/off.
3438 			 */
3439 			error = miocpullup(mp, sizeof (int));
3440 			if (error != 0)
3441 				break;
3442 
3443 			mutex_enter(&asy->asy_excl_hi);
3444 			if (*(int *)mp->b_cont->b_rptr)
3445 				asy->asy_flags |= ASY_PPS;
3446 			else
3447 				asy->asy_flags &= ~ASY_PPS;
3448 			/* Reset edge sense */
3449 			asy->asy_flags &= ~ASY_PPS_EDGE;
3450 			mutex_exit(&asy->asy_excl_hi);
3451 			mp->b_datap->db_type = M_IOCACK;
3452 			break;
3453 
3454 		case TIOCGPPSEV:
3455 		{
3456 			/*
3457 			 * Get PPS event data.
3458 			 */
3459 			mblk_t *bp;
3460 			void *buf;
3461 #ifdef _SYSCALL32_IMPL
3462 			struct ppsclockev32 p32;
3463 #endif
3464 			struct ppsclockev ppsclockev;
3465 
3466 			if (mp->b_cont != NULL) {
3467 				freemsg(mp->b_cont);
3468 				mp->b_cont = NULL;
3469 			}
3470 
3471 			if ((asy->asy_flags & ASY_PPS) == 0) {
3472 				error = ENXIO;
3473 				break;
3474 			}
3475 
3476 			/* Protect from incomplete asy_ppsev */
3477 			mutex_enter(&asy->asy_excl_hi);
3478 			ppsclockev = asy_ppsev;
3479 			mutex_exit(&asy->asy_excl_hi);
3480 
3481 #ifdef _SYSCALL32_IMPL
3482 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
3483 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
3484 				p32.serial = ppsclockev.serial;
3485 				buf = &p32;
3486 				iocp->ioc_count = sizeof (struct ppsclockev32);
3487 			} else
3488 #endif
3489 			{
3490 				buf = &ppsclockev;
3491 				iocp->ioc_count = sizeof (struct ppsclockev);
3492 			}
3493 
3494 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
3495 				error = ENOMEM;
3496 				break;
3497 			}
3498 			mp->b_cont = bp;
3499 
3500 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
3501 			bp->b_wptr += iocp->ioc_count;
3502 			mp->b_datap->db_type = M_IOCACK;
3503 			break;
3504 		}
3505 
3506 		case TCSBRK:
3507 			error = miocpullup(mp, sizeof (int));
3508 			if (error != 0)
3509 				break;
3510 
3511 			if (*(int *)mp->b_cont->b_rptr == 0) {
3512 
3513 				/*
3514 				 * XXX Arrangements to ensure that a break
3515 				 * isn't in progress should be sufficient.
3516 				 * This ugly delay() is the only thing
3517 				 * that seems to work on the NCR Worldmark.
3518 				 * It should be replaced. Note that an
3519 				 * asy_waiteot() also does not work.
3520 				 */
3521 				if (asydelay)
3522 					delay(drv_usectohz(asydelay));
3523 
3524 				while (async->async_flags & ASYNC_BREAK) {
3525 					cv_wait(&async->async_flags_cv,
3526 					    &asy->asy_excl);
3527 				}
3528 				mutex_enter(&asy->asy_excl_hi);
3529 				/*
3530 				 * We loop until the TSR is empty and then
3531 				 * set the break.  ASYNC_BREAK has been set
3532 				 * to ensure that no characters are
3533 				 * transmitted while the TSR is being
3534 				 * flushed and SOUT is being used for the
3535 				 * break signal.
3536 				 *
3537 				 * The wait period is equal to
3538 				 * clock / (baud * 16) * 16 * 2.
3539 				 */
3540 				index = BAUDINDEX(
3541 				    async->async_ttycommon.t_cflag);
3542 				async->async_flags |= ASYNC_BREAK;
3543 
3544 				while ((ddi_get8(asy->asy_iohandle,
3545 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3546 					mutex_exit(&asy->asy_excl_hi);
3547 					mutex_exit(&asy->asy_excl);
3548 					drv_usecwait(
3549 					    32*asyspdtab[index] & 0xfff);
3550 					mutex_enter(&asy->asy_excl);
3551 					mutex_enter(&asy->asy_excl_hi);
3552 				}
3553 				/*
3554 				 * Arrange for "async_restart"
3555 				 * to be called in 1/4 second;
3556 				 * it will turn the break bit off, and call
3557 				 * "async_start" to grab the next message.
3558 				 */
3559 				val = ddi_get8(asy->asy_iohandle,
3560 				    asy->asy_ioaddr + LCR);
3561 				ddi_put8(asy->asy_iohandle,
3562 				    asy->asy_ioaddr + LCR,
3563 				    (val | SETBREAK));
3564 				mutex_exit(&asy->asy_excl_hi);
3565 				(void) timeout(async_restart, (caddr_t)async,
3566 				    drv_usectohz(1000000)/4);
3567 			} else {
3568 				DEBUGCONT1(ASY_DEBUG_OUT,
3569 				    "async%d_ioctl: wait for flush.\n",
3570 				    instance);
3571 				mutex_enter(&asy->asy_excl_hi);
3572 				asy_waiteot(asy);
3573 				mutex_exit(&asy->asy_excl_hi);
3574 				DEBUGCONT1(ASY_DEBUG_OUT,
3575 				    "async%d_ioctl: ldterm satisfied.\n",
3576 				    instance);
3577 			}
3578 			break;
3579 
3580 		case TIOCSBRK:
3581 			if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
3582 				mutex_enter(&asy->asy_excl_hi);
3583 				async->async_flags |= ASYNC_OUT_SUSPEND;
3584 				async->async_flags |= ASYNC_HOLD_UTBRK;
3585 				index = BAUDINDEX(
3586 				    async->async_ttycommon.t_cflag);
3587 				while ((ddi_get8(asy->asy_iohandle,
3588 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3589 					mutex_exit(&asy->asy_excl_hi);
3590 					mutex_exit(&asy->asy_excl);
3591 					drv_usecwait(
3592 					    32*asyspdtab[index] & 0xfff);
3593 					mutex_enter(&asy->asy_excl);
3594 					mutex_enter(&asy->asy_excl_hi);
3595 				}
3596 				val = ddi_get8(asy->asy_iohandle,
3597 				    asy->asy_ioaddr + LCR);
3598 				ddi_put8(asy->asy_iohandle,
3599 				    asy->asy_ioaddr + LCR, (val | SETBREAK));
3600 				mutex_exit(&asy->asy_excl_hi);
3601 				/* wait for 100ms to hold BREAK */
3602 				async->async_utbrktid =
3603 				    timeout((void (*)())async_hold_utbrk,
3604 				    (caddr_t)async,
3605 				    drv_usectohz(asy_min_utbrk));
3606 			}
3607 			mioc2ack(mp, NULL, 0, 0);
3608 			break;
3609 
3610 		case TIOCCBRK:
3611 			if (async->async_flags & ASYNC_OUT_SUSPEND)
3612 				async_resume_utbrk(async);
3613 			mioc2ack(mp, NULL, 0, 0);
3614 			break;
3615 
3616 		case TIOCMSET:
3617 		case TIOCMBIS:
3618 		case TIOCMBIC:
3619 			if (iocp->ioc_count != TRANSPARENT) {
3620 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3621 				    "non-transparent\n", instance);
3622 
3623 				error = miocpullup(mp, sizeof (int));
3624 				if (error != 0)
3625 					break;
3626 
3627 				mutex_enter(&asy->asy_excl_hi);
3628 				(void) asymctl(asy,
3629 				    dmtoasy(*(int *)mp->b_cont->b_rptr),
3630 				    iocp->ioc_cmd);
3631 				mutex_exit(&asy->asy_excl_hi);
3632 				iocp->ioc_error = 0;
3633 				mp->b_datap->db_type = M_IOCACK;
3634 			} else {
3635 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3636 				    "transparent\n", instance);
3637 				mcopyin(mp, NULL, sizeof (int), NULL);
3638 			}
3639 			break;
3640 
3641 		case TIOCMGET:
3642 			datamp = allocb(sizeof (int), BPRI_MED);
3643 			if (datamp == NULL) {
3644 				error = EAGAIN;
3645 				break;
3646 			}
3647 
3648 			mutex_enter(&asy->asy_excl_hi);
3649 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3650 			mutex_exit(&asy->asy_excl_hi);
3651 
3652 			if (iocp->ioc_count == TRANSPARENT) {
3653 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3654 				    "transparent\n", instance);
3655 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3656 			} else {
3657 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3658 				    "non-transparent\n", instance);
3659 				mioc2ack(mp, datamp, sizeof (int), 0);
3660 			}
3661 			break;
3662 
3663 		case CONSOPENPOLLEDIO:
3664 			error = miocpullup(mp, sizeof (struct cons_polledio *));
3665 			if (error != 0)
3666 				break;
3667 
3668 			*(struct cons_polledio **)mp->b_cont->b_rptr =
3669 			    &asy->polledio;
3670 
3671 			mp->b_datap->db_type = M_IOCACK;
3672 			break;
3673 
3674 		case CONSCLOSEPOLLEDIO:
3675 			mp->b_datap->db_type = M_IOCACK;
3676 			iocp->ioc_error = 0;
3677 			iocp->ioc_rval = 0;
3678 			break;
3679 
3680 		case CONSSETABORTENABLE:
3681 			error = secpolicy_console(iocp->ioc_cr);
3682 			if (error != 0)
3683 				break;
3684 
3685 			if (iocp->ioc_count != TRANSPARENT) {
3686 				error = EINVAL;
3687 				break;
3688 			}
3689 
3690 			if (*(intptr_t *)mp->b_cont->b_rptr)
3691 				asy->asy_flags |= ASY_CONSOLE;
3692 			else
3693 				asy->asy_flags &= ~ASY_CONSOLE;
3694 
3695 			mp->b_datap->db_type = M_IOCACK;
3696 			iocp->ioc_error = 0;
3697 			iocp->ioc_rval = 0;
3698 			break;
3699 
3700 		case CONSGETABORTENABLE:
3701 			/*CONSTANTCONDITION*/
3702 			ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
3703 			/*
3704 			 * Store the return value right in the payload
3705 			 * we were passed.  Crude.
3706 			 */
3707 			mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
3708 			*(boolean_t *)mp->b_cont->b_rptr =
3709 			    (asy->asy_flags & ASY_CONSOLE) != 0;
3710 			break;
3711 
3712 		default:
3713 			/*
3714 			 * If we don't understand it, it's an error.  NAK it.
3715 			 */
3716 			error = EINVAL;
3717 			break;
3718 		}
3719 	}
3720 	if (error != 0) {
3721 		iocp->ioc_error = error;
3722 		mp->b_datap->db_type = M_IOCNAK;
3723 	}
3724 	mutex_exit(&asy->asy_excl);
3725 	qreply(wq, mp);
3726 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl: done\n", instance);
3727 }
3728 
3729 static int
3730 asyrsrv(queue_t *q)
3731 {
3732 	mblk_t *bp;
3733 	struct asyncline *async;
3734 
3735 	async = (struct asyncline *)q->q_ptr;
3736 
3737 	while (canputnext(q) && (bp = getq(q)))
3738 		putnext(q, bp);
3739 	ASYSETSOFT(async->async_common);
3740 	async->async_polltid = 0;
3741 	return (0);
3742 }
3743 
3744 /*
3745  * The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should
3746  * handle messages as though the driver is operating normally or is
3747  * suspended.  In the suspended case, some or all of the processing may have
3748  * to be delayed until the driver is resumed.
3749  */
3750 #define	ASYWPUTDO_NOT_SUSP(async, wput) \
3751 	!((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED))
3752 
3753 /*
3754  * Processing for write queue put procedure.
3755  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3756  * set the flow control character for M_STOPI and M_STARTI messages;
3757  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3758  * by the start routine, and then call the start routine; discard
3759  * everything else.  Note that this driver does not incorporate any
3760  * mechanism to negotiate to handle the canonicalization process.
3761  * It expects that these functions are handled in upper module(s),
3762  * as we do in ldterm.
3763  */
3764 static int
3765 asywputdo(queue_t *q, mblk_t *mp, boolean_t wput)
3766 {
3767 	struct asyncline *async;
3768 	struct asycom *asy;
3769 #ifdef DEBUG
3770 	int instance;
3771 #endif
3772 	int error;
3773 
3774 	async = (struct asyncline *)q->q_ptr;
3775 
3776 #ifdef DEBUG
3777 	instance = UNIT(async->async_dev);
3778 #endif
3779 	asy = async->async_common;
3780 
3781 	switch (mp->b_datap->db_type) {
3782 
3783 	case M_STOP:
3784 		/*
3785 		 * Since we don't do real DMA, we can just let the
3786 		 * chip coast to a stop after applying the brakes.
3787 		 */
3788 		mutex_enter(&asy->asy_excl);
3789 		async->async_flags |= ASYNC_STOPPED;
3790 		mutex_exit(&asy->asy_excl);
3791 		freemsg(mp);
3792 		break;
3793 
3794 	case M_START:
3795 		mutex_enter(&asy->asy_excl);
3796 		if (async->async_flags & ASYNC_STOPPED) {
3797 			async->async_flags &= ~ASYNC_STOPPED;
3798 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3799 				/*
3800 				 * If an output operation is in progress,
3801 				 * resume it.  Otherwise, prod the start
3802 				 * routine.
3803 				 */
3804 				if (async->async_ocnt > 0) {
3805 					mutex_enter(&asy->asy_excl_hi);
3806 					async_resume(async);
3807 					mutex_exit(&asy->asy_excl_hi);
3808 				} else {
3809 					async_start(async);
3810 				}
3811 			}
3812 		}
3813 		mutex_exit(&asy->asy_excl);
3814 		freemsg(mp);
3815 		break;
3816 
3817 	case M_IOCTL:
3818 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3819 
3820 		case TCSBRK:
3821 			error = miocpullup(mp, sizeof (int));
3822 			if (error != 0) {
3823 				miocnak(q, mp, 0, error);
3824 				return (0);
3825 			}
3826 
3827 			if (*(int *)mp->b_cont->b_rptr != 0) {
3828 				DEBUGCONT1(ASY_DEBUG_OUT,
3829 				    "async%d_ioctl: flush request.\n",
3830 				    instance);
3831 				(void) putq(q, mp);
3832 
3833 				mutex_enter(&asy->asy_excl);
3834 				if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3835 					/*
3836 					 * If an TIOCSBRK is in progress,
3837 					 * clean it as TIOCCBRK does,
3838 					 * then kick off output.
3839 					 * If TIOCSBRK is not in progress,
3840 					 * just kick off output.
3841 					 */
3842 					async_resume_utbrk(async);
3843 				}
3844 				mutex_exit(&asy->asy_excl);
3845 				break;
3846 			}
3847 			/*FALLTHROUGH*/
3848 		case TCSETSW:
3849 		case TCSETSF:
3850 		case TCSETAW:
3851 		case TCSETAF:
3852 			/*
3853 			 * The changes do not take effect until all
3854 			 * output queued before them is drained.
3855 			 * Put this message on the queue, so that
3856 			 * "async_start" will see it when it's done
3857 			 * with the output before it.  Poke the
3858 			 * start routine, just in case.
3859 			 */
3860 			(void) putq(q, mp);
3861 
3862 			mutex_enter(&asy->asy_excl);
3863 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3864 				/*
3865 				 * If an TIOCSBRK is in progress,
3866 				 * clean it as TIOCCBRK does.
3867 				 * then kick off output.
3868 				 * If TIOCSBRK is not in progress,
3869 				 * just kick off output.
3870 				 */
3871 				async_resume_utbrk(async);
3872 			}
3873 			mutex_exit(&asy->asy_excl);
3874 			break;
3875 
3876 		default:
3877 			/*
3878 			 * Do it now.
3879 			 */
3880 			mutex_enter(&asy->asy_excl);
3881 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3882 				mutex_exit(&asy->asy_excl);
3883 				async_ioctl(async, q, mp);
3884 				break;
3885 			}
3886 			async_put_suspq(asy, mp);
3887 			mutex_exit(&asy->asy_excl);
3888 			break;
3889 		}
3890 		break;
3891 
3892 	case M_FLUSH:
3893 		if (*mp->b_rptr & FLUSHW) {
3894 			mutex_enter(&asy->asy_excl);
3895 
3896 			/*
3897 			 * Abort any output in progress.
3898 			 */
3899 			mutex_enter(&asy->asy_excl_hi);
3900 			if (async->async_flags & ASYNC_BUSY) {
3901 				DEBUGCONT1(ASY_DEBUG_BUSY, "asy%dwput: "
3902 				    "Clearing async_ocnt, "
3903 				    "leaving ASYNC_BUSY set\n",
3904 				    instance);
3905 				async->async_ocnt = 0;
3906 				async->async_flags &= ~ASYNC_BUSY;
3907 			} /* if */
3908 
3909 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3910 				/* Flush FIFO buffers */
3911 				if (asy->asy_use_fifo == FIFO_ON) {
3912 					asy_reset_fifo(asy, FIFOTXFLSH);
3913 				}
3914 			}
3915 			mutex_exit(&asy->asy_excl_hi);
3916 
3917 			/* Flush FIFO buffers */
3918 			if (asy->asy_use_fifo == FIFO_ON) {
3919 				asy_reset_fifo(asy, FIFOTXFLSH);
3920 			}
3921 
3922 			/*
3923 			 * Flush our write queue.
3924 			 */
3925 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3926 			if (async->async_xmitblk != NULL) {
3927 				freeb(async->async_xmitblk);
3928 				async->async_xmitblk = NULL;
3929 			}
3930 			mutex_exit(&asy->asy_excl);
3931 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3932 		}
3933 		if (*mp->b_rptr & FLUSHR) {
3934 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3935 				/* Flush FIFO buffers */
3936 				if (asy->asy_use_fifo == FIFO_ON) {
3937 					asy_reset_fifo(asy, FIFORXFLSH);
3938 				}
3939 			}
3940 			flushq(RD(q), FLUSHDATA);
3941 			qreply(q, mp);	/* give the read queues a crack at it */
3942 		} else {
3943 			freemsg(mp);
3944 		}
3945 
3946 		/*
3947 		 * We must make sure we process messages that survive the
3948 		 * write-side flush.
3949 		 */
3950 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3951 			mutex_enter(&asy->asy_excl);
3952 			async_start(async);
3953 			mutex_exit(&asy->asy_excl);
3954 		}
3955 		break;
3956 
3957 	case M_BREAK:
3958 	case M_DELAY:
3959 	case M_DATA:
3960 		/*
3961 		 * Queue the message up to be transmitted,
3962 		 * and poke the start routine.
3963 		 */
3964 		(void) putq(q, mp);
3965 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3966 			mutex_enter(&asy->asy_excl);
3967 			async_start(async);
3968 			mutex_exit(&asy->asy_excl);
3969 		}
3970 		break;
3971 
3972 	case M_STOPI:
3973 		mutex_enter(&asy->asy_excl);
3974 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3975 			mutex_enter(&asy->asy_excl_hi);
3976 			if (!(async->async_inflow_source & IN_FLOW_USER)) {
3977 				async_flowcontrol_hw_input(asy, FLOW_STOP,
3978 				    IN_FLOW_USER);
3979 				(void) async_flowcontrol_sw_input(asy,
3980 				    FLOW_STOP, IN_FLOW_USER);
3981 			}
3982 			mutex_exit(&asy->asy_excl_hi);
3983 			mutex_exit(&asy->asy_excl);
3984 			freemsg(mp);
3985 			break;
3986 		}
3987 		async_put_suspq(asy, mp);
3988 		mutex_exit(&asy->asy_excl);
3989 		break;
3990 
3991 	case M_STARTI:
3992 		mutex_enter(&asy->asy_excl);
3993 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3994 			mutex_enter(&asy->asy_excl_hi);
3995 			if (async->async_inflow_source & IN_FLOW_USER) {
3996 				async_flowcontrol_hw_input(asy, FLOW_START,
3997 				    IN_FLOW_USER);
3998 				(void) async_flowcontrol_sw_input(asy,
3999 				    FLOW_START, IN_FLOW_USER);
4000 			}
4001 			mutex_exit(&asy->asy_excl_hi);
4002 			mutex_exit(&asy->asy_excl);
4003 			freemsg(mp);
4004 			break;
4005 		}
4006 		async_put_suspq(asy, mp);
4007 		mutex_exit(&asy->asy_excl);
4008 		break;
4009 
4010 	case M_CTL:
4011 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
4012 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
4013 			mutex_enter(&asy->asy_excl);
4014 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4015 				((struct iocblk *)mp->b_rptr)->ioc_cmd =
4016 				    MC_HAS_POSIX;
4017 				mutex_exit(&asy->asy_excl);
4018 				qreply(q, mp);
4019 				break;
4020 			} else {
4021 				async_put_suspq(asy, mp);
4022 			}
4023 		} else {
4024 			/*
4025 			 * These MC_SERVICE type messages are used by upper
4026 			 * modules to tell this driver to send input up
4027 			 * immediately, or that it can wait for normal
4028 			 * processing that may or may not be done.  Sun
4029 			 * requires these for the mouse module.
4030 			 * (XXX - for x86?)
4031 			 */
4032 			mutex_enter(&asy->asy_excl);
4033 			switch (*mp->b_rptr) {
4034 
4035 			case MC_SERVICEIMM:
4036 				async->async_flags |= ASYNC_SERVICEIMM;
4037 				break;
4038 
4039 			case MC_SERVICEDEF:
4040 				async->async_flags &= ~ASYNC_SERVICEIMM;
4041 				break;
4042 			}
4043 			mutex_exit(&asy->asy_excl);
4044 			freemsg(mp);
4045 		}
4046 		break;
4047 
4048 	case M_IOCDATA:
4049 		mutex_enter(&asy->asy_excl);
4050 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4051 			mutex_exit(&asy->asy_excl);
4052 			async_iocdata(q, mp);
4053 			break;
4054 		}
4055 		async_put_suspq(asy, mp);
4056 		mutex_exit(&asy->asy_excl);
4057 		break;
4058 
4059 	default:
4060 		freemsg(mp);
4061 		break;
4062 	}
4063 	return (0);
4064 }
4065 
4066 static int
4067 asywput(queue_t *q, mblk_t *mp)
4068 {
4069 	return (asywputdo(q, mp, B_TRUE));
4070 }
4071 
4072 /*
4073  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
4074  * the buffer we need.
4075  */
4076 static void
4077 async_reioctl(void *unit)
4078 {
4079 	int instance = (uintptr_t)unit;
4080 	struct asyncline *async;
4081 	struct asycom *asy;
4082 	queue_t	*q;
4083 	mblk_t	*mp;
4084 
4085 	asy = ddi_get_soft_state(asy_soft_state, instance);
4086 	ASSERT(asy != NULL);
4087 	async = asy->asy_priv;
4088 
4089 	/*
4090 	 * The bufcall is no longer pending.
4091 	 */
4092 	mutex_enter(&asy->asy_excl);
4093 	async->async_wbufcid = 0;
4094 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
4095 		mutex_exit(&asy->asy_excl);
4096 		return;
4097 	}
4098 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
4099 		/* not pending any more */
4100 		async->async_ttycommon.t_iocpending = NULL;
4101 		mutex_exit(&asy->asy_excl);
4102 		async_ioctl(async, q, mp);
4103 	} else
4104 		mutex_exit(&asy->asy_excl);
4105 }
4106 
4107 static void
4108 async_iocdata(queue_t *q, mblk_t *mp)
4109 {
4110 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
4111 	struct asycom		*asy;
4112 	struct iocblk *ip;
4113 	struct copyresp *csp;
4114 #ifdef DEBUG
4115 	int instance = UNIT(async->async_dev);
4116 #endif
4117 
4118 	asy = async->async_common;
4119 	ip = (struct iocblk *)mp->b_rptr;
4120 	csp = (struct copyresp *)mp->b_rptr;
4121 
4122 	if (csp->cp_rval != 0) {
4123 		if (csp->cp_private)
4124 			freemsg(csp->cp_private);
4125 		freemsg(mp);
4126 		return;
4127 	}
4128 
4129 	mutex_enter(&asy->asy_excl);
4130 	DEBUGCONT2(ASY_DEBUG_MODEM, "async%d_iocdata: case %s\n",
4131 	    instance,
4132 	    csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
4133 	    csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
4134 	    csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
4135 	    "TIOCMBIC");
4136 	switch (csp->cp_cmd) {
4137 
4138 	case TIOCMGET:
4139 		if (mp->b_cont) {
4140 			freemsg(mp->b_cont);
4141 			mp->b_cont = NULL;
4142 		}
4143 		mp->b_datap->db_type = M_IOCACK;
4144 		ip->ioc_error = 0;
4145 		ip->ioc_count = 0;
4146 		ip->ioc_rval = 0;
4147 		mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
4148 		break;
4149 
4150 	case TIOCMSET:
4151 	case TIOCMBIS:
4152 	case TIOCMBIC:
4153 		mutex_enter(&asy->asy_excl_hi);
4154 		(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
4155 		    csp->cp_cmd);
4156 		mutex_exit(&asy->asy_excl_hi);
4157 		mioc2ack(mp, NULL, 0, 0);
4158 		break;
4159 
4160 	default:
4161 		mp->b_datap->db_type = M_IOCNAK;
4162 		ip->ioc_error = EINVAL;
4163 		break;
4164 	}
4165 	qreply(q, mp);
4166 	mutex_exit(&asy->asy_excl);
4167 }
4168 
4169 /*
4170  * debugger/console support routines.
4171  */
4172 
4173 /*
4174  * put a character out
4175  * Do not use interrupts.  If char is LF, put out CR, LF.
4176  */
4177 static void
4178 asyputchar(cons_polledio_arg_t arg, uchar_t c)
4179 {
4180 	struct asycom *asy = (struct asycom *)arg;
4181 
4182 	if (c == '\n')
4183 		asyputchar(arg, '\r');
4184 
4185 	while ((ddi_get8(asy->asy_iohandle,
4186 	    asy->asy_ioaddr + LSR) & XHRE) == 0) {
4187 		/* wait for xmit to finish */
4188 		drv_usecwait(10);
4189 	}
4190 
4191 	/* put the character out */
4192 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, c);
4193 }
4194 
4195 /*
4196  * See if there's a character available. If no character is
4197  * available, return 0. Run in polled mode, no interrupts.
4198  */
4199 static boolean_t
4200 asyischar(cons_polledio_arg_t arg)
4201 {
4202 	struct asycom *asy = (struct asycom *)arg;
4203 
4204 	return ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & RCA)
4205 	    != 0);
4206 }
4207 
4208 /*
4209  * Get a character. Run in polled mode, no interrupts.
4210  */
4211 static int
4212 asygetchar(cons_polledio_arg_t arg)
4213 {
4214 	struct asycom *asy = (struct asycom *)arg;
4215 
4216 	while (!asyischar(arg))
4217 		drv_usecwait(10);
4218 	return (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT));
4219 }
4220 
4221 /*
4222  * Set or get the modem control status.
4223  */
4224 static int
4225 asymctl(struct asycom *asy, int bits, int how)
4226 {
4227 	int mcr_r, msr_r;
4228 	int instance = asy->asy_unit;
4229 
4230 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4231 	ASSERT(mutex_owned(&asy->asy_excl));
4232 
4233 	/* Read Modem Control Registers */
4234 	mcr_r = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4235 
4236 	switch (how) {
4237 
4238 	case TIOCMSET:
4239 		DEBUGCONT2(ASY_DEBUG_MODEM,
4240 		    "asy%dmctl: TIOCMSET, bits = %x\n", instance, bits);
4241 		mcr_r = bits;		/* Set bits	*/
4242 		break;
4243 
4244 	case TIOCMBIS:
4245 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIS, bits = %x\n",
4246 		    instance, bits);
4247 		mcr_r |= bits;		/* Mask in bits	*/
4248 		break;
4249 
4250 	case TIOCMBIC:
4251 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIC, bits = %x\n",
4252 		    instance, bits);
4253 		mcr_r &= ~bits;		/* Mask out bits */
4254 		break;
4255 
4256 	case TIOCMGET:
4257 		/* Read Modem Status Registers */
4258 		/*
4259 		 * If modem interrupts are enabled, we return the
4260 		 * saved value of msr. We read MSR only in async_msint()
4261 		 */
4262 		if (ddi_get8(asy->asy_iohandle,
4263 		    asy->asy_ioaddr + ICR) & MIEN) {
4264 			msr_r = asy->asy_msr;
4265 			DEBUGCONT2(ASY_DEBUG_MODEM,
4266 			    "asy%dmctl: TIOCMGET, read msr_r = %x\n",
4267 			    instance, msr_r);
4268 		} else {
4269 			msr_r = ddi_get8(asy->asy_iohandle,
4270 			    asy->asy_ioaddr + MSR);
4271 			DEBUGCONT2(ASY_DEBUG_MODEM,
4272 			    "asy%dmctl: TIOCMGET, read MSR = %x\n",
4273 			    instance, msr_r);
4274 		}
4275 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dtodm: modem_lines = %x\n",
4276 		    instance, asytodm(mcr_r, msr_r));
4277 		return (asytodm(mcr_r, msr_r));
4278 	}
4279 
4280 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr_r);
4281 
4282 	return (mcr_r);
4283 }
4284 
4285 static int
4286 asytodm(int mcr_r, int msr_r)
4287 {
4288 	int b = 0;
4289 
4290 	/* MCR registers */
4291 	if (mcr_r & RTS)
4292 		b |= TIOCM_RTS;
4293 
4294 	if (mcr_r & DTR)
4295 		b |= TIOCM_DTR;
4296 
4297 	/* MSR registers */
4298 	if (msr_r & DCD)
4299 		b |= TIOCM_CAR;
4300 
4301 	if (msr_r & CTS)
4302 		b |= TIOCM_CTS;
4303 
4304 	if (msr_r & DSR)
4305 		b |= TIOCM_DSR;
4306 
4307 	if (msr_r & RI)
4308 		b |= TIOCM_RNG;
4309 	return (b);
4310 }
4311 
4312 static int
4313 dmtoasy(int bits)
4314 {
4315 	int b = 0;
4316 
4317 	DEBUGCONT1(ASY_DEBUG_MODEM, "dmtoasy: bits = %x\n", bits);
4318 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
4319 	if (bits & TIOCM_CAR)
4320 		b |= DCD;
4321 	if (bits & TIOCM_CTS)
4322 		b |= CTS;
4323 	if (bits & TIOCM_DSR)
4324 		b |= DSR;
4325 	if (bits & TIOCM_RNG)
4326 		b |= RI;
4327 #endif
4328 
4329 	if (bits & TIOCM_RTS) {
4330 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & RTS\n");
4331 		b |= RTS;
4332 	}
4333 	if (bits & TIOCM_DTR) {
4334 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & DTR\n");
4335 		b |= DTR;
4336 	}
4337 
4338 	return (b);
4339 }
4340 
4341 static void
4342 asyerror(int level, const char *fmt, ...)
4343 {
4344 	va_list adx;
4345 	static	time_t	last;
4346 	static	const char *lastfmt;
4347 	time_t	now;
4348 
4349 	/*
4350 	 * Don't print the same error message too often.
4351 	 * Print the message only if we have not printed the
4352 	 * message within the last second.
4353 	 * Note: that fmt cannot be a pointer to a string
4354 	 * stored on the stack. The fmt pointer
4355 	 * must be in the data segment otherwise lastfmt would point
4356 	 * to non-sense.
4357 	 */
4358 	now = gethrestime_sec();
4359 	if (last == now && lastfmt == fmt)
4360 		return;
4361 
4362 	last = now;
4363 	lastfmt = fmt;
4364 
4365 	va_start(adx, fmt);
4366 	vcmn_err(level, fmt, adx);
4367 	va_end(adx);
4368 }
4369 
4370 /*
4371  * asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4372  * The value of this property is in the form of "9600,8,n,1,-"
4373  * 1) speed: 9600, 4800, ...
4374  * 2) data bits
4375  * 3) parity: n(none), e(even), o(odd)
4376  * 4) stop bits
4377  * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
4378  *
4379  * This parsing came from a SPARCstation eeprom.
4380  */
4381 static void
4382 asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4383 {
4384 	char		name[40];
4385 	char		val[40];
4386 	int		len;
4387 	int		ret;
4388 	char		*p;
4389 	char		*p1;
4390 
4391 	ASSERT(asy->asy_com_port != 0);
4392 
4393 	/*
4394 	 * Parse the ttyx-mode property
4395 	 */
4396 	(void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
4397 	len = sizeof (val);
4398 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4399 	if (ret != DDI_PROP_SUCCESS) {
4400 		(void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
4401 		len = sizeof (val);
4402 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4403 	}
4404 
4405 	/* no property to parse */
4406 	asy->asy_cflag = 0;
4407 	if (ret != DDI_PROP_SUCCESS)
4408 		return;
4409 
4410 	p = val;
4411 	/* ---- baud rate ---- */
4412 	asy->asy_cflag = CREAD|B9600;		/* initial default */
4413 	if (p && (p1 = strchr(p, ',')) != 0) {
4414 		*p1++ = '\0';
4415 	} else {
4416 		asy->asy_cflag |= BITS8;	/* add default bits */
4417 		return;
4418 	}
4419 
4420 	if (strcmp(p, "110") == 0)
4421 		asy->asy_bidx = B110;
4422 	else if (strcmp(p, "150") == 0)
4423 		asy->asy_bidx = B150;
4424 	else if (strcmp(p, "300") == 0)
4425 		asy->asy_bidx = B300;
4426 	else if (strcmp(p, "600") == 0)
4427 		asy->asy_bidx = B600;
4428 	else if (strcmp(p, "1200") == 0)
4429 		asy->asy_bidx = B1200;
4430 	else if (strcmp(p, "2400") == 0)
4431 		asy->asy_bidx = B2400;
4432 	else if (strcmp(p, "4800") == 0)
4433 		asy->asy_bidx = B4800;
4434 	else if (strcmp(p, "9600") == 0)
4435 		asy->asy_bidx = B9600;
4436 	else if (strcmp(p, "19200") == 0)
4437 		asy->asy_bidx = B19200;
4438 	else if (strcmp(p, "38400") == 0)
4439 		asy->asy_bidx = B38400;
4440 	else if (strcmp(p, "57600") == 0)
4441 		asy->asy_bidx = B57600;
4442 	else if (strcmp(p, "115200") == 0)
4443 		asy->asy_bidx = B115200;
4444 	else
4445 		asy->asy_bidx = B9600;
4446 
4447 	asy->asy_cflag &= ~CBAUD;
4448 	if (asy->asy_bidx > CBAUD) {	/* > 38400 uses the CBAUDEXT bit */
4449 		asy->asy_cflag |= CBAUDEXT;
4450 		asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
4451 	} else {
4452 		asy->asy_cflag |= asy->asy_bidx;
4453 	}
4454 
4455 	ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
4456 
4457 	/* ---- Next item is data bits ---- */
4458 	p = p1;
4459 	if (p && (p1 = strchr(p, ',')) != 0)  {
4460 		*p1++ = '\0';
4461 	} else {
4462 		asy->asy_cflag |= BITS8;	/* add default bits */
4463 		return;
4464 	}
4465 	switch (*p) {
4466 		default:
4467 		case '8':
4468 			asy->asy_cflag |= CS8;
4469 			asy->asy_lcr = BITS8;
4470 			break;
4471 		case '7':
4472 			asy->asy_cflag |= CS7;
4473 			asy->asy_lcr = BITS7;
4474 			break;
4475 		case '6':
4476 			asy->asy_cflag |= CS6;
4477 			asy->asy_lcr = BITS6;
4478 			break;
4479 		case '5':
4480 			/* LINTED: CS5 is currently zero (but might change) */
4481 			asy->asy_cflag |= CS5;
4482 			asy->asy_lcr = BITS5;
4483 			break;
4484 	}
4485 
4486 	/* ---- Parity info ---- */
4487 	p = p1;
4488 	if (p && (p1 = strchr(p, ',')) != 0)  {
4489 		*p1++ = '\0';
4490 	} else {
4491 		return;
4492 	}
4493 	switch (*p)  {
4494 		default:
4495 		case 'n':
4496 			break;
4497 		case 'e':
4498 			asy->asy_cflag |= PARENB;
4499 			asy->asy_lcr |= PEN; break;
4500 		case 'o':
4501 			asy->asy_cflag |= PARENB|PARODD;
4502 			asy->asy_lcr |= PEN|EPS;
4503 			break;
4504 	}
4505 
4506 	/* ---- Find stop bits ---- */
4507 	p = p1;
4508 	if (p && (p1 = strchr(p, ',')) != 0)  {
4509 		*p1++ = '\0';
4510 	} else {
4511 		return;
4512 	}
4513 	if (*p == '2') {
4514 		asy->asy_cflag |= CSTOPB;
4515 		asy->asy_lcr |= STB;
4516 	}
4517 
4518 	/* ---- handshake is next ---- */
4519 	p = p1;
4520 	if (p) {
4521 		if ((p1 = strchr(p, ',')) != 0)
4522 			*p1++ = '\0';
4523 
4524 		if (*p == 'h')
4525 			asy->asy_cflag |= CRTSCTS;
4526 		else if (*p == 's')
4527 			asy->asy_cflag |= CRTSXOFF;
4528 	}
4529 }
4530 
4531 /*
4532  * Check for abort character sequence
4533  */
4534 static boolean_t
4535 abort_charseq_recognize(uchar_t ch)
4536 {
4537 	static int state = 0;
4538 #define	CNTRL(c) ((c)&037)
4539 	static char sequence[] = { '\r', '~', CNTRL('b') };
4540 
4541 	if (ch == sequence[state]) {
4542 		if (++state >= sizeof (sequence)) {
4543 			state = 0;
4544 			return (B_TRUE);
4545 		}
4546 	} else {
4547 		state = (ch == sequence[0]) ? 1 : 0;
4548 	}
4549 	return (B_FALSE);
4550 }
4551 
4552 /*
4553  * Flow control functions
4554  */
4555 /*
4556  * Software input flow control
4557  * This function can execute software input flow control sucessfully
4558  * at most of situations except that the line is in BREAK status
4559  * (timed and untimed break).
4560  * INPUT VALUE of onoff:
4561  *               FLOW_START means to send out a XON char
4562  *                          and clear SW input flow control flag.
4563  *               FLOW_STOP means to send out a XOFF char
4564  *                          and set SW input flow control flag.
4565  *               FLOW_CHECK means to check whether there is pending XON/XOFF
4566  *                          if it is true, send it out.
4567  * INPUT VALUE of type:
4568  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4569  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4570  *		 IN_FLOW_USER means flow control is due to user's commands
4571  * RETURN VALUE: B_FALSE means no flow control char is sent
4572  *               B_TRUE means one flow control char is sent
4573  */
4574 static boolean_t
4575 async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
4576     int type)
4577 {
4578 	struct asyncline *async = asy->asy_priv;
4579 	int instance = UNIT(async->async_dev);
4580 	int rval = B_FALSE;
4581 
4582 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4583 
4584 	if (!(async->async_ttycommon.t_iflag & IXOFF))
4585 		return (rval);
4586 
4587 	/*
4588 	 * If we get this far, then we know IXOFF is set.
4589 	 */
4590 	switch (onoff) {
4591 	case FLOW_STOP:
4592 		async->async_inflow_source |= type;
4593 
4594 		/*
4595 		 * We'll send an XOFF character for each of up to
4596 		 * three different input flow control attempts to stop input.
4597 		 * If we already send out one XOFF, but FLOW_STOP comes again,
4598 		 * it seems that input flow control becomes more serious,
4599 		 * then send XOFF again.
4600 		 */
4601 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4602 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4603 			async->async_flags |= ASYNC_SW_IN_FLOW |
4604 			    ASYNC_SW_IN_NEEDED;
4605 		DEBUGCONT2(ASY_DEBUG_SFLOW, "async%d: input sflow stop, "
4606 		    "type = %x\n", instance, async->async_inflow_source);
4607 		break;
4608 	case FLOW_START:
4609 		async->async_inflow_source &= ~type;
4610 		if (async->async_inflow_source == 0) {
4611 			async->async_flags = (async->async_flags &
4612 			    ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
4613 			DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: "
4614 			    "input sflow start\n", instance);
4615 		}
4616 		break;
4617 	default:
4618 		break;
4619 	}
4620 
4621 	if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
4622 	    ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
4623 	    (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) {
4624 		/*
4625 		 * If we get this far, then we know we need to send out
4626 		 * XON or XOFF char.
4627 		 */
4628 		async->async_flags = (async->async_flags &
4629 		    ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
4630 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
4631 		    async->async_flags & ASYNC_SW_IN_FLOW ?
4632 		    async->async_stopc : async->async_startc);
4633 		rval = B_TRUE;
4634 	}
4635 	return (rval);
4636 }
4637 
4638 /*
4639  * Software output flow control
4640  * This function can be executed sucessfully at any situation.
4641  * It does not handle HW, and just change the SW output flow control flag.
4642  * INPUT VALUE of onoff:
4643  *                 FLOW_START means to clear SW output flow control flag,
4644  *			also combine with HW output flow control status to
4645  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4646  *                 FLOW_STOP means to set SW output flow control flag,
4647  *			also clear ASYNC_OUT_FLW_RESUME.
4648  */
4649 static void
4650 async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
4651 {
4652 	struct asyncline *async = asy->asy_priv;
4653 	int instance = UNIT(async->async_dev);
4654 
4655 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4656 
4657 	if (!(async->async_ttycommon.t_iflag & IXON))
4658 		return;
4659 
4660 	switch (onoff) {
4661 	case FLOW_STOP:
4662 		async->async_flags |= ASYNC_SW_OUT_FLW;
4663 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4664 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow stop\n",
4665 		    instance);
4666 		break;
4667 	case FLOW_START:
4668 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
4669 		if (!(async->async_flags & ASYNC_HW_OUT_FLW))
4670 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4671 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow start\n",
4672 		    instance);
4673 		break;
4674 	default:
4675 		break;
4676 	}
4677 }
4678 
4679 /*
4680  * Hardware input flow control
4681  * This function can be executed sucessfully at any situation.
4682  * It directly changes RTS depending on input parameter onoff.
4683  * INPUT VALUE of onoff:
4684  *       FLOW_START means to clear HW input flow control flag,
4685  *                  and pull up RTS if it is low.
4686  *       FLOW_STOP means to set HW input flow control flag,
4687  *                  and low RTS if it is high.
4688  * INPUT VALUE of type:
4689  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4690  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4691  *		 IN_FLOW_USER means flow control is due to user's commands
4692  */
4693 static void
4694 async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
4695     int type)
4696 {
4697 	uchar_t	mcr;
4698 	uchar_t	flag;
4699 	struct asyncline *async = asy->asy_priv;
4700 	int instance = UNIT(async->async_dev);
4701 
4702 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4703 
4704 	if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
4705 		return;
4706 
4707 	switch (onoff) {
4708 	case FLOW_STOP:
4709 		async->async_inflow_source |= type;
4710 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4711 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4712 			async->async_flags |= ASYNC_HW_IN_FLOW;
4713 		DEBUGCONT2(ASY_DEBUG_HFLOW, "async%d: input hflow stop, "
4714 		    "type = %x\n", instance, async->async_inflow_source);
4715 		break;
4716 	case FLOW_START:
4717 		async->async_inflow_source &= ~type;
4718 		if (async->async_inflow_source == 0) {
4719 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
4720 			DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: "
4721 			    "input hflow start\n", instance);
4722 		}
4723 		break;
4724 	default:
4725 		break;
4726 	}
4727 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4728 	flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
4729 
4730 	if (((mcr ^ flag) & RTS) != 0) {
4731 		ddi_put8(asy->asy_iohandle,
4732 		    asy->asy_ioaddr + MCR, (mcr ^ RTS));
4733 	}
4734 }
4735 
4736 /*
4737  * Hardware output flow control
4738  * This function can execute HW output flow control sucessfully
4739  * at any situation.
4740  * It doesn't really change RTS, and just change
4741  * HW output flow control flag depending on CTS status.
4742  * INPUT VALUE of onoff:
4743  *                FLOW_START means to clear HW output flow control flag.
4744  *			also combine with SW output flow control status to
4745  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4746  *                FLOW_STOP means to set HW output flow control flag.
4747  *			also clear ASYNC_OUT_FLW_RESUME.
4748  */
4749 static void
4750 async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
4751 {
4752 	struct asyncline *async = asy->asy_priv;
4753 	int instance = UNIT(async->async_dev);
4754 
4755 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4756 
4757 	if (!(async->async_ttycommon.t_cflag & CRTSCTS))
4758 		return;
4759 
4760 	switch (onoff) {
4761 	case FLOW_STOP:
4762 		async->async_flags |= ASYNC_HW_OUT_FLW;
4763 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4764 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow stop\n",
4765 		    instance);
4766 		break;
4767 	case FLOW_START:
4768 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
4769 		if (!(async->async_flags & ASYNC_SW_OUT_FLW))
4770 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4771 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow start\n",
4772 		    instance);
4773 		break;
4774 	default:
4775 		break;
4776 	}
4777 }
4778