1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 const char udp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/pattr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/time.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/strsubr.h> 45 #include <sys/suntpi.h> 46 #include <sys/xti_inet.h> 47 #include <sys/cmn_err.h> 48 #include <sys/kmem.h> 49 #include <sys/policy.h> 50 #include <sys/ucred.h> 51 #include <sys/zone.h> 52 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/vtrace.h> 56 #include <sys/sdt.h> 57 #include <sys/debug.h> 58 #include <sys/isa_defs.h> 59 #include <sys/random.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/udp.h> 64 #include <net/if.h> 65 #include <net/route.h> 66 67 #include <inet/common.h> 68 #include <inet/ip.h> 69 #include <inet/ip_impl.h> 70 #include <inet/ip6.h> 71 #include <inet/ip_ire.h> 72 #include <inet/ip_if.h> 73 #include <inet/ip_multi.h> 74 #include <inet/ip_ndp.h> 75 #include <inet/mi.h> 76 #include <inet/mib2.h> 77 #include <inet/nd.h> 78 #include <inet/optcom.h> 79 #include <inet/snmpcom.h> 80 #include <inet/kstatcom.h> 81 #include <inet/udp_impl.h> 82 #include <inet/ipclassifier.h> 83 #include <inet/ipsec_impl.h> 84 #include <inet/ipp_common.h> 85 86 /* 87 * The ipsec_info.h header file is here since it has the definition for the 88 * M_CTL message types used by IP to convey information to the ULP. The 89 * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence. 90 */ 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 94 #include <sys/tsol/label.h> 95 #include <sys/tsol/tnet.h> 96 #include <rpc/pmap_prot.h> 97 98 /* 99 * Synchronization notes: 100 * 101 * UDP uses a combination of its internal perimeter, a global lock and 102 * a set of bind hash locks to protect its data structures. Please see 103 * the note above udp_mode_assertions for details about the internal 104 * perimeter. 105 * 106 * When a UDP endpoint is bound to a local port, it is inserted into 107 * a bind hash list. The list consists of an array of udp_fanout_t buckets. 108 * The size of the array is controlled by the udp_bind_fanout_size variable. 109 * This variable can be changed in /etc/system if the default value is 110 * not large enough. Each bind hash bucket is protected by a per bucket 111 * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t 112 * structure. An UDP endpoint is removed from the bind hash list only 113 * when it is being unbound or being closed. The per bucket lock also 114 * protects a UDP endpoint's state changes. 115 * 116 * Plumbing notes: 117 * 118 * Both udp and ip are merged, but the streams plumbing is kept unchanged 119 * in that udp is always pushed atop /dev/ip. This is done to preserve 120 * backwards compatibility for certain applications which rely on such 121 * plumbing geometry to do things such as issuing I_POP on the stream 122 * in order to obtain direct access to /dev/ip, etc. 123 * 124 * All UDP processings happen in the /dev/ip instance; the udp module 125 * instance does not possess any state about the endpoint, and merely 126 * acts as a dummy module whose presence is to keep the streams plumbing 127 * appearance unchanged. At open time /dev/ip allocates a conn_t that 128 * happens to embed a udp_t. This stays dormant until the time udp is 129 * pushed, which indicates to /dev/ip that it must convert itself from 130 * an IP to a UDP endpoint. 131 * 132 * We only allow for the following plumbing cases: 133 * 134 * Normal: 135 * /dev/ip is first opened and later udp is pushed directly on top. 136 * This is the default action that happens when a udp socket or 137 * /dev/udp is opened. The conn_t created by /dev/ip instance is 138 * now shared and is marked with IPCL_UDP. 139 * 140 * SNMP-only: 141 * udp is pushed on top of a module other than /dev/ip. When this 142 * happens it will support only SNMP semantics. A new conn_t is 143 * allocated and marked with IPCL_UDPMOD. 144 * 145 * The above cases imply that we don't support any intermediate module to 146 * reside in between /dev/ip and udp -- in fact, we never supported such 147 * scenario in the past as the inter-layer communication semantics have 148 * always been private. Also note that the normal case allows for SNMP 149 * requests to be processed in addition to the rest of UDP operations. 150 * 151 * The normal case plumbing is depicted by the following diagram: 152 * 153 * +---------------+---------------+ 154 * | | | udp 155 * | udp_wq | udp_rq | 156 * | | UDP_RD | 157 * | | | 158 * +---------------+---------------+ 159 * | ^ 160 * v | 161 * +---------------+---------------+ 162 * | | | /dev/ip 163 * | ip_wq | ip_rq | conn_t 164 * | UDP_WR | | 165 * | | | 166 * +---------------+---------------+ 167 * 168 * Messages arriving at udp_wq from above will end up in ip_wq before 169 * it gets processed, i.e. udp write entry points will advance udp_wq 170 * and use its q_next value as ip_wq in order to use the conn_t that 171 * is stored in its q_ptr. Likewise, messages generated by ip to the 172 * module above udp will appear as if they are originated from udp_rq, 173 * i.e. putnext() calls to the module above udp is done using the 174 * udp_rq instead of ip_rq in order to avoid udp_rput() which does 175 * nothing more than calling putnext(). 176 * 177 * The above implies the following rule of thumb: 178 * 179 * 1. udp_t is obtained from conn_t, which is created by the /dev/ip 180 * instance and is stored in q_ptr of both ip_wq and ip_rq. There 181 * is no direct reference to conn_t from either udp_wq or udp_rq. 182 * 183 * 2. Write-side entry points of udp can obtain the conn_t via the 184 * Q_TO_CONN() macro, using the queue value obtain from UDP_WR(). 185 * 186 * 3. While in /dev/ip context, putnext() to the module above udp can 187 * be done by supplying the queue value obtained from UDP_RD(). 188 * 189 */ 190 191 static queue_t *UDP_WR(queue_t *); 192 static queue_t *UDP_RD(queue_t *); 193 194 udp_stat_t udp_statistics = { 195 { "udp_ip_send", KSTAT_DATA_UINT64 }, 196 { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, 197 { "udp_ire_null", KSTAT_DATA_UINT64 }, 198 { "udp_drain", KSTAT_DATA_UINT64 }, 199 { "udp_sock_fallback", KSTAT_DATA_UINT64 }, 200 { "udp_rrw_busy", KSTAT_DATA_UINT64 }, 201 { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, 202 { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, 203 { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 204 { "udp_out_opt", KSTAT_DATA_UINT64 }, 205 { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, 206 { "udp_out_err_output", KSTAT_DATA_UINT64 }, 207 { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, 208 { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, 209 { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, 210 { "udp_in_recvopts", KSTAT_DATA_UINT64 }, 211 { "udp_in_recvif", KSTAT_DATA_UINT64 }, 212 { "udp_in_recvslla", KSTAT_DATA_UINT64 }, 213 { "udp_in_recvucred", KSTAT_DATA_UINT64 }, 214 { "udp_in_recvttl", KSTAT_DATA_UINT64 }, 215 { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, 216 { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, 217 { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, 218 { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, 219 { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, 220 { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, 221 { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, 222 { "udp_in_timestamp", KSTAT_DATA_UINT64 }, 223 #ifdef DEBUG 224 { "udp_data_conn", KSTAT_DATA_UINT64 }, 225 { "udp_data_notconn", KSTAT_DATA_UINT64 }, 226 #endif 227 }; 228 229 static kstat_t *udp_ksp; 230 struct kmem_cache *udp_cache; 231 232 /* 233 * Bind hash list size and hash function. It has to be a power of 2 for 234 * hashing. 235 */ 236 #define UDP_BIND_FANOUT_SIZE 512 237 #define UDP_BIND_HASH(lport) \ 238 ((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1)) 239 240 /* UDP bind fanout hash structure. */ 241 typedef struct udp_fanout_s { 242 udp_t *uf_udp; 243 kmutex_t uf_lock; 244 #if defined(_LP64) || defined(_I32LPx) 245 char uf_pad[48]; 246 #else 247 char uf_pad[56]; 248 #endif 249 } udp_fanout_t; 250 251 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; 252 /* udp_fanout_t *udp_bind_fanout. */ 253 static udp_fanout_t *udp_bind_fanout; 254 255 /* 256 * This controls the rate some ndd info report functions can be used 257 * by non-privileged users. It stores the last time such info is 258 * requested. When those report functions are called again, this 259 * is checked with the current time and compare with the ndd param 260 * udp_ndd_get_info_interval. 261 */ 262 static clock_t udp_last_ndd_get_info_time; 263 #define NDD_TOO_QUICK_MSG \ 264 "ndd get info rate too high for non-privileged users, try again " \ 265 "later.\n" 266 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 267 268 /* Option processing attrs */ 269 typedef struct udpattrs_s { 270 ip6_pkt_t *udpattr_ipp; 271 mblk_t *udpattr_mb; 272 boolean_t udpattr_credset; 273 } udpattrs_t; 274 275 static void udp_addr_req(queue_t *q, mblk_t *mp); 276 static void udp_bind(queue_t *q, mblk_t *mp); 277 static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); 278 static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); 279 static int udp_build_hdrs(queue_t *q, udp_t *udp); 280 static void udp_capability_req(queue_t *q, mblk_t *mp); 281 static int udp_close(queue_t *q); 282 static void udp_connect(queue_t *q, mblk_t *mp); 283 static void udp_disconnect(queue_t *q, mblk_t *mp); 284 static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 285 int sys_error); 286 static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, 287 t_scalar_t tlierr, int unixerr); 288 static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 289 cred_t *cr); 290 static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 291 char *value, caddr_t cp, cred_t *cr); 292 static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 293 char *value, caddr_t cp, cred_t *cr); 294 static void udp_icmp_error(queue_t *q, mblk_t *mp); 295 static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); 296 static void udp_info_req(queue_t *q, mblk_t *mp); 297 static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, 298 t_scalar_t addr_length); 299 static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, 300 cred_t *credp); 301 static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, 302 int *errorp, udpattrs_t *udpattrs); 303 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); 304 static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 305 static boolean_t udp_param_register(udpparam_t *udppa, int cnt); 306 static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 307 cred_t *cr); 308 static void udp_report_item(mblk_t *mp, udp_t *udp); 309 static void udp_rput(queue_t *q, mblk_t *mp); 310 static void udp_rput_other(queue_t *, mblk_t *); 311 static int udp_rinfop(queue_t *q, infod_t *dp); 312 static int udp_rrw(queue_t *q, struiod_t *dp); 313 static void udp_rput_bind_ack(queue_t *q, mblk_t *mp); 314 static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 315 cred_t *cr); 316 static void udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha); 317 static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, 318 t_scalar_t destlen, t_scalar_t err); 319 static void udp_unbind(queue_t *q, mblk_t *mp); 320 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, 321 boolean_t random); 322 static void udp_wput(queue_t *q, mblk_t *mp); 323 static mblk_t *udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst, 324 uint16_t port, uint_t srcid, int *error); 325 static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, 326 int *error); 327 static void udp_wput_other(queue_t *q, mblk_t *mp); 328 static void udp_wput_iocdata(queue_t *q, mblk_t *mp); 329 static void udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, 330 socklen_t addrlen); 331 static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); 332 333 static void udp_kstat_init(void); 334 static void udp_kstat_fini(void); 335 static int udp_kstat_update(kstat_t *kp, int rw); 336 static void udp_input_wrapper(void *arg, mblk_t *mp, void *arg2); 337 static void udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2); 338 static void udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2); 339 static void udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2); 340 341 static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, 342 uint_t pkt_len); 343 static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); 344 static void udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t); 345 static void udp_exit(conn_t *); 346 static void udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t); 347 #ifdef DEBUG 348 static void udp_mode_assertions(udp_t *, int); 349 #endif /* DEBUG */ 350 351 major_t UDP6_MAJ; 352 #define UDP6 "udp6" 353 354 #define UDP_RECV_HIWATER (56 * 1024) 355 #define UDP_RECV_LOWATER 128 356 #define UDP_XMIT_HIWATER (56 * 1024) 357 #define UDP_XMIT_LOWATER 1024 358 359 static struct module_info udp_info = { 360 UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER 361 }; 362 363 static struct qinit udp_rinit = { 364 (pfi_t)udp_rput, NULL, udp_open, udp_close, NULL, 365 &udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 366 }; 367 368 static struct qinit udp_winit = { 369 (pfi_t)udp_wput, NULL, NULL, NULL, NULL, 370 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 371 }; 372 373 static struct qinit winit = { 374 (pfi_t)putnext, NULL, NULL, NULL, NULL, 375 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 376 }; 377 378 /* Support for just SNMP if UDP is not pushed directly over device IP */ 379 struct qinit udp_snmp_rinit = { 380 (pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL, 381 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 382 }; 383 384 struct qinit udp_snmp_winit = { 385 (pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL, 386 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 387 }; 388 389 struct streamtab udpinfo = { 390 &udp_rinit, &winit 391 }; 392 393 static sin_t sin_null; /* Zero address for quick clears */ 394 static sin6_t sin6_null; /* Zero address for quick clears */ 395 396 /* Hint not protected by any lock */ 397 static in_port_t udp_g_next_port_to_try; 398 399 /* 400 * Extra privileged ports. In host byte order. 401 */ 402 #define UDP_NUM_EPRIV_PORTS 64 403 static int udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS; 404 static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 405 406 /* Only modified during _init and _fini thus no locking is needed. */ 407 static IDP udp_g_nd; /* Points to table of UDP ND variables. */ 408 409 /* MIB-2 stuff for SNMP */ 410 static mib2_udp_t udp_mib; /* SNMP fixed size info */ 411 static kstat_t *udp_mibkp; /* kstat exporting udp_mib data */ 412 413 #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) 414 415 /* Default structure copied into T_INFO_ACK messages */ 416 static struct T_info_ack udp_g_t_info_ack_ipv4 = { 417 T_INFO_ACK, 418 UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ 419 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 420 T_INVALID, /* CDATA_size. udp does not support connect data. */ 421 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 422 sizeof (sin_t), /* ADDR_size. */ 423 0, /* OPT_size - not initialized here */ 424 UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ 425 T_CLTS, /* SERV_type. udp supports connection-less. */ 426 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 427 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 428 }; 429 430 #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) 431 432 static struct T_info_ack udp_g_t_info_ack_ipv6 = { 433 T_INFO_ACK, 434 UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ 435 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 436 T_INVALID, /* CDATA_size. udp does not support connect data. */ 437 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 438 sizeof (sin6_t), /* ADDR_size. */ 439 0, /* OPT_size - not initialized here */ 440 UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ 441 T_CLTS, /* SERV_type. udp supports connection-less. */ 442 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 443 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 444 }; 445 446 /* largest UDP port number */ 447 #define UDP_MAX_PORT 65535 448 449 /* 450 * Table of ND variables supported by udp. These are loaded into udp_g_nd 451 * in udp_open. 452 * All of these are alterable, within the min/max values given, at run time. 453 */ 454 /* BEGIN CSTYLED */ 455 udpparam_t udp_param_arr[] = { 456 /*min max value name */ 457 { 0L, 256, 32, "udp_wroff_extra" }, 458 { 1L, 255, 255, "udp_ipv4_ttl" }, 459 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, 460 { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, 461 { 0, 1, 1, "udp_do_checksum" }, 462 { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, 463 { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, 464 { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, 465 { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, 466 { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, 467 { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, 468 { 100, 60000, 1000, "udp_ndd_get_info_interval"}, 469 }; 470 /* END CSTYLED */ 471 472 /* 473 * The smallest anonymous port in the privileged port range which UDP 474 * looks for free port. Use in the option UDP_ANONPRIVBIND. 475 */ 476 static in_port_t udp_min_anonpriv_port = 512; 477 478 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 479 uint32_t udp_random_anon_port = 1; 480 481 /* 482 * Hook functions to enable cluster networking. 483 * On non-clustered systems these vectors must always be NULL 484 */ 485 486 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, 487 uint8_t *laddrp, in_port_t lport) = NULL; 488 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, 489 uint8_t *laddrp, in_port_t lport) = NULL; 490 491 typedef union T_primitives *t_primp_t; 492 493 #define UDP_ENQUEUE_MP(udp, mp, proc, tag) { \ 494 ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL); \ 495 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 496 (mp)->b_queue = (queue_t *)((uintptr_t)tag); \ 497 (mp)->b_prev = (mblk_t *)proc; \ 498 if ((udp)->udp_mphead == NULL) \ 499 (udp)->udp_mphead = (mp); \ 500 else \ 501 (udp)->udp_mptail->b_next = (mp); \ 502 (udp)->udp_mptail = (mp); \ 503 (udp)->udp_mpcount++; \ 504 } 505 506 #define UDP_READERS_INCREF(udp) { \ 507 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 508 (udp)->udp_reader_count++; \ 509 } 510 511 #define UDP_READERS_DECREF(udp) { \ 512 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 513 (udp)->udp_reader_count--; \ 514 if ((udp)->udp_reader_count == 0) \ 515 cv_broadcast(&(udp)->udp_connp->conn_cv); \ 516 } 517 518 #define UDP_SQUEUE_DECREF(udp) { \ 519 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 520 (udp)->udp_squeue_count--; \ 521 if ((udp)->udp_squeue_count == 0) \ 522 cv_broadcast(&(udp)->udp_connp->conn_cv); \ 523 } 524 525 /* 526 * Notes on UDP endpoint synchronization: 527 * 528 * UDP needs exclusive operation on a per endpoint basis, when executing 529 * functions that modify the endpoint state. udp_rput_other() deals with 530 * packets with IP options, and processing these packets end up having 531 * to update the endpoint's option related state. udp_wput_other() deals 532 * with control operations from the top, e.g. connect() that needs to 533 * update the endpoint state. These could be synchronized using locks, 534 * but the current version uses squeues for this purpose. squeues may 535 * give performance improvement for certain cases such as connected UDP 536 * sockets; thus the framework allows for using squeues. 537 * 538 * The perimeter routines are described as follows: 539 * 540 * udp_enter(): 541 * Enter the UDP endpoint perimeter. 542 * 543 * udp_become_writer(): 544 * Become exclusive on the UDP endpoint. Specifies a function 545 * that will be called exclusively either immediately or later 546 * when the perimeter is available exclusively. 547 * 548 * udp_exit(): 549 * Exit the UDP perimeter. 550 * 551 * Entering UDP from the top or from the bottom must be done using 552 * udp_enter(). No lock must be held while attempting to enter the UDP 553 * perimeter. When finished, udp_exit() must be called to get out of 554 * the perimeter. 555 * 556 * UDP operates in either MT_HOT mode or in SQUEUE mode. In MT_HOT mode, 557 * multiple threads may enter a UDP endpoint concurrently. This is used 558 * for sending and/or receiving normal data. Control operations and other 559 * special cases call udp_become_writer() to become exclusive on a per 560 * endpoint basis and this results in transitioning to SQUEUE mode. squeue 561 * by definition serializes access to the conn_t. When there are no more 562 * pending messages on the squeue for the UDP connection, the endpoint 563 * reverts to MT_HOT mode. During the interregnum when not all MT threads 564 * of an endpoint have finished, messages are queued in the UDP endpoint 565 * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode. 566 * 567 * These modes have the following analogs: 568 * 569 * UDP_MT_HOT/udp_reader_count==0 none 570 * UDP_MT_HOT/udp_reader_count>0 RW_READ_LOCK 571 * UDP_MT_QUEUED RW_WRITE_WANTED 572 * UDP_SQUEUE or UDP_QUEUED_SQUEUE RW_WRITE_LOCKED 573 * 574 * Stable modes: UDP_MT_HOT, UDP_SQUEUE 575 * Transient modes: UDP_MT_QUEUED, UDP_QUEUED_SQUEUE 576 * 577 * While in stable modes, UDP keeps track of the number of threads 578 * operating on the endpoint. The udp_reader_count variable represents 579 * the number of threads entering the endpoint as readers while it is 580 * in UDP_MT_HOT mode. Transitioning to UDP_SQUEUE happens when there 581 * is only a single reader, i.e. when this counter drops to 1. Likewise, 582 * udp_squeue_count represents the number of threads operating on the 583 * endpoint's squeue while it is in UDP_SQUEUE mode. The mode transition 584 * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e. 585 * when this counter drops to 0. 586 * 587 * The default mode is set to UDP_MT_HOT and UDP alternates between 588 * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below. 589 * 590 * Mode transition: 591 * ---------------------------------------------------------------- 592 * old mode Event New mode 593 * ---------------------------------------------------------------- 594 * UDP_MT_HOT Call to udp_become_writer() UDP_SQUEUE 595 * and udp_reader_count == 1 596 * 597 * UDP_MT_HOT Call to udp_become_writer() UDP_MT_QUEUED 598 * and udp_reader_count > 1 599 * 600 * UDP_MT_QUEUED udp_reader_count drops to zero UDP_QUEUED_SQUEUE 601 * 602 * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_SQUEUE 603 * internal UDP queue successfully 604 * moved to squeue AND udp_squeue_count != 0 605 * 606 * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_MT_HOT 607 * internal UDP queue successfully 608 * moved to squeue AND udp_squeue_count 609 * drops to zero 610 * 611 * UDP_SQUEUE udp_squeue_count drops to zero UDP_MT_HOT 612 * ---------------------------------------------------------------- 613 */ 614 615 static queue_t * 616 UDP_WR(queue_t *q) 617 { 618 ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL); 619 ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL); 620 ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next))); 621 622 return (_WR(q)->q_next); 623 } 624 625 static queue_t * 626 UDP_RD(queue_t *q) 627 { 628 ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL); 629 ASSERT(IPCL_IS_UDP(Q_TO_CONN(q))); 630 ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL); 631 632 return (_RD(q)->q_next); 633 } 634 635 #ifdef DEBUG 636 #define UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller) 637 #else 638 #define UDP_MODE_ASSERTIONS(udp, caller) 639 #endif 640 641 /* Invariants */ 642 #ifdef DEBUG 643 644 uint32_t udp_count[4]; 645 646 /* Context of udp_mode_assertions */ 647 #define UDP_ENTER 1 648 #define UDP_BECOME_WRITER 2 649 #define UDP_EXIT 3 650 651 static void 652 udp_mode_assertions(udp_t *udp, int caller) 653 { 654 ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock)); 655 656 switch (udp->udp_mode) { 657 case UDP_MT_HOT: 658 /* 659 * Messages have not yet been enqueued on the internal queue, 660 * otherwise we would have switched to UDP_MT_QUEUED. Likewise 661 * by definition, there can't be any messages enqueued on the 662 * squeue. The UDP could be quiescent, so udp_reader_count 663 * could be zero at entry. 664 */ 665 ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 && 666 udp->udp_squeue_count == 0); 667 ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0); 668 udp_count[0]++; 669 break; 670 671 case UDP_MT_QUEUED: 672 /* 673 * The last MT thread to exit the udp perimeter empties the 674 * internal queue and then switches the UDP to 675 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED 676 * mode, it means there must be at least 1 MT thread still in 677 * the perimeter and at least 1 message on the internal queue. 678 */ 679 ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL && 680 udp->udp_mpcount != 0 && udp->udp_squeue_count == 0); 681 udp_count[1]++; 682 break; 683 684 case UDP_QUEUED_SQUEUE: 685 /* 686 * The switch has happened from MT to SQUEUE. So there can't 687 * any MT threads. Messages could still pile up on the internal 688 * queue until the transition is complete and we move to 689 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count 690 * since the squeue could drain any time. 691 */ 692 ASSERT(udp->udp_reader_count == 0); 693 udp_count[2]++; 694 break; 695 696 case UDP_SQUEUE: 697 /* 698 * The transition is complete. Thre can't be any messages on 699 * the internal queue. The udp could be quiescent or the squeue 700 * could drain any time, so we can't assert on nonzero 701 * udp_squeue_count during entry. Nor can we assert that 702 * udp_reader_count is zero, since, a reader thread could have 703 * directly become writer in line by calling udp_become_writer 704 * without going through the queued states. 705 */ 706 ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0); 707 ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0); 708 udp_count[3]++; 709 break; 710 } 711 } 712 #endif 713 714 #define _UDP_ENTER(connp, mp, proc, tag) { \ 715 udp_t *_udp = (connp)->conn_udp; \ 716 \ 717 mutex_enter(&(connp)->conn_lock); \ 718 if ((connp)->conn_state_flags & CONN_CLOSING) { \ 719 mutex_exit(&(connp)->conn_lock); \ 720 freemsg(mp); \ 721 } else { \ 722 UDP_MODE_ASSERTIONS(_udp, UDP_ENTER); \ 723 \ 724 switch (_udp->udp_mode) { \ 725 case UDP_MT_HOT: \ 726 /* We can execute as reader right away. */ \ 727 UDP_READERS_INCREF(_udp); \ 728 mutex_exit(&(connp)->conn_lock); \ 729 (*(proc))(connp, mp, (connp)->conn_sqp); \ 730 break; \ 731 \ 732 case UDP_SQUEUE: \ 733 /* \ 734 * We are in squeue mode, send the \ 735 * packet to the squeue \ 736 */ \ 737 _udp->udp_squeue_count++; \ 738 CONN_INC_REF_LOCKED(connp); \ 739 mutex_exit(&(connp)->conn_lock); \ 740 squeue_enter((connp)->conn_sqp, mp, proc, \ 741 connp, tag); \ 742 break; \ 743 \ 744 case UDP_MT_QUEUED: \ 745 case UDP_QUEUED_SQUEUE: \ 746 /* \ 747 * Some messages may have been enqueued \ 748 * ahead of us. Enqueue the new message \ 749 * at the tail of the internal queue to \ 750 * preserve message ordering. \ 751 */ \ 752 UDP_ENQUEUE_MP(_udp, mp, proc, tag); \ 753 mutex_exit(&(connp)->conn_lock); \ 754 break; \ 755 } \ 756 } \ 757 } 758 759 static void 760 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) 761 { 762 _UDP_ENTER(connp, mp, proc, tag); 763 } 764 765 static void 766 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) 767 { 768 udp_t *udp; 769 770 udp = connp->conn_udp; 771 772 mutex_enter(&connp->conn_lock); 773 774 UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER); 775 776 switch (udp->udp_mode) { 777 case UDP_MT_HOT: 778 if (udp->udp_reader_count == 1) { 779 /* 780 * We are the only MT thread. Switch to squeue mode 781 * immediately. 782 */ 783 udp->udp_mode = UDP_SQUEUE; 784 udp->udp_squeue_count = 1; 785 CONN_INC_REF_LOCKED(connp); 786 mutex_exit(&connp->conn_lock); 787 squeue_enter(connp->conn_sqp, mp, proc, connp, tag); 788 return; 789 } 790 /* FALLTHRU */ 791 792 case UDP_MT_QUEUED: 793 /* Enqueue the packet internally in UDP */ 794 udp->udp_mode = UDP_MT_QUEUED; 795 UDP_ENQUEUE_MP(udp, mp, proc, tag); 796 mutex_exit(&connp->conn_lock); 797 return; 798 799 case UDP_SQUEUE: 800 case UDP_QUEUED_SQUEUE: 801 /* 802 * We are already exclusive. i.e. we are already 803 * writer. Simply call the desired function. 804 */ 805 udp->udp_squeue_count++; 806 mutex_exit(&connp->conn_lock); 807 (*proc)(connp, mp, connp->conn_sqp); 808 return; 809 } 810 } 811 812 /* 813 * Transition from MT mode to SQUEUE mode, when the last MT thread 814 * is exiting the UDP perimeter. Move all messages from the internal 815 * udp queue to the squeue. A better way would be to move all the 816 * messages in one shot, this needs more support from the squeue framework 817 */ 818 static void 819 udp_switch_to_squeue(udp_t *udp) 820 { 821 mblk_t *mp; 822 mblk_t *mp_next; 823 sqproc_t proc; 824 uint8_t tag; 825 conn_t *connp = udp->udp_connp; 826 827 ASSERT(MUTEX_HELD(&connp->conn_lock)); 828 ASSERT(udp->udp_mode == UDP_MT_QUEUED); 829 while (udp->udp_mphead != NULL) { 830 mp = udp->udp_mphead; 831 udp->udp_mphead = NULL; 832 udp->udp_mptail = NULL; 833 udp->udp_mpcount = 0; 834 udp->udp_mode = UDP_QUEUED_SQUEUE; 835 mutex_exit(&connp->conn_lock); 836 /* 837 * It is best not to hold any locks across the calls 838 * to squeue functions. Since we drop the lock we 839 * need to go back and check the udp_mphead once again 840 * after the squeue_fill and hence the while loop at 841 * the top of this function 842 */ 843 for (; mp != NULL; mp = mp_next) { 844 mp_next = mp->b_next; 845 proc = (sqproc_t)mp->b_prev; 846 tag = (uint8_t)((uintptr_t)mp->b_queue); 847 mp->b_next = NULL; 848 mp->b_prev = NULL; 849 mp->b_queue = NULL; 850 CONN_INC_REF(connp); 851 udp->udp_squeue_count++; 852 squeue_fill(connp->conn_sqp, mp, proc, connp, 853 tag); 854 } 855 mutex_enter(&connp->conn_lock); 856 } 857 /* 858 * udp_squeue_count of zero implies that the squeue has drained 859 * even before we arrived here (i.e. after the squeue_fill above) 860 */ 861 udp->udp_mode = (udp->udp_squeue_count != 0) ? 862 UDP_SQUEUE : UDP_MT_HOT; 863 } 864 865 #define _UDP_EXIT(connp) { \ 866 udp_t *_udp = (connp)->conn_udp; \ 867 \ 868 mutex_enter(&(connp)->conn_lock); \ 869 UDP_MODE_ASSERTIONS(_udp, UDP_EXIT); \ 870 \ 871 switch (_udp->udp_mode) { \ 872 case UDP_MT_HOT: \ 873 UDP_READERS_DECREF(_udp); \ 874 mutex_exit(&(connp)->conn_lock); \ 875 break; \ 876 \ 877 case UDP_SQUEUE: \ 878 UDP_SQUEUE_DECREF(_udp); \ 879 if (_udp->udp_squeue_count == 0) \ 880 _udp->udp_mode = UDP_MT_HOT; \ 881 mutex_exit(&(connp)->conn_lock); \ 882 break; \ 883 \ 884 case UDP_MT_QUEUED: \ 885 /* \ 886 * If this is the last MT thread, we need to \ 887 * switch to squeue mode \ 888 */ \ 889 UDP_READERS_DECREF(_udp); \ 890 if (_udp->udp_reader_count == 0) \ 891 udp_switch_to_squeue(_udp); \ 892 mutex_exit(&(connp)->conn_lock); \ 893 break; \ 894 \ 895 case UDP_QUEUED_SQUEUE: \ 896 UDP_SQUEUE_DECREF(_udp); \ 897 /* \ 898 * Even if the udp_squeue_count drops to zero, we \ 899 * don't want to change udp_mode to UDP_MT_HOT here. \ 900 * The thread in udp_switch_to_squeue will take care \ 901 * of the transition to UDP_MT_HOT, after emptying \ 902 * any more new messages that have been enqueued in \ 903 * udp_mphead. \ 904 */ \ 905 mutex_exit(&(connp)->conn_lock); \ 906 break; \ 907 } \ 908 } 909 910 static void 911 udp_exit(conn_t *connp) 912 { 913 _UDP_EXIT(connp); 914 } 915 916 /* 917 * Return the next anonymous port in the privileged port range for 918 * bind checking. 919 * 920 * Trusted Extension (TX) notes: TX allows administrator to mark or 921 * reserve ports as Multilevel ports (MLP). MLP has special function 922 * on TX systems. Once a port is made MLP, it's not available as 923 * ordinary port. This creates "holes" in the port name space. It 924 * may be necessary to skip the "holes" find a suitable anon port. 925 */ 926 static in_port_t 927 udp_get_next_priv_port(udp_t *udp) 928 { 929 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 930 in_port_t nextport; 931 boolean_t restart = B_FALSE; 932 933 retry: 934 if (next_priv_port < udp_min_anonpriv_port || 935 next_priv_port >= IPPORT_RESERVED) { 936 next_priv_port = IPPORT_RESERVED - 1; 937 if (restart) 938 return (0); 939 restart = B_TRUE; 940 } 941 942 if (is_system_labeled() && 943 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 944 next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { 945 next_priv_port = nextport; 946 goto retry; 947 } 948 949 return (next_priv_port--); 950 } 951 952 /* UDP bind hash report triggered via the Named Dispatch mechanism. */ 953 /* ARGSUSED */ 954 static int 955 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 956 { 957 udp_fanout_t *udpf; 958 int i; 959 zoneid_t zoneid; 960 conn_t *connp; 961 udp_t *udp; 962 963 connp = Q_TO_CONN(q); 964 udp = connp->conn_udp; 965 966 /* Refer to comments in udp_status_report(). */ 967 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 968 if (ddi_get_lbolt() - udp_last_ndd_get_info_time < 969 drv_usectohz(udp_ndd_get_info_interval * 1000)) { 970 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 971 return (0); 972 } 973 } 974 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 975 /* The following may work even if we cannot get a large buf. */ 976 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 977 return (0); 978 } 979 980 (void) mi_mpprintf(mp, 981 "UDP " MI_COL_HDRPAD_STR 982 /* 12345678[89ABCDEF] */ 983 " zone lport src addr dest addr port state"); 984 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 985 986 zoneid = connp->conn_zoneid; 987 988 for (i = 0; i < udp_bind_fanout_size; i++) { 989 udpf = &udp_bind_fanout[i]; 990 mutex_enter(&udpf->uf_lock); 991 992 /* Print the hash index. */ 993 udp = udpf->uf_udp; 994 if (zoneid != GLOBAL_ZONEID) { 995 /* skip to first entry in this zone; might be none */ 996 while (udp != NULL && 997 udp->udp_connp->conn_zoneid != zoneid) 998 udp = udp->udp_bind_hash; 999 } 1000 if (udp != NULL) { 1001 uint_t print_len, buf_len; 1002 1003 buf_len = mp->b_cont->b_datap->db_lim - 1004 mp->b_cont->b_wptr; 1005 print_len = snprintf((char *)mp->b_cont->b_wptr, 1006 buf_len, "%d\n", i); 1007 if (print_len < buf_len) { 1008 mp->b_cont->b_wptr += print_len; 1009 } else { 1010 mp->b_cont->b_wptr += buf_len; 1011 } 1012 for (; udp != NULL; udp = udp->udp_bind_hash) { 1013 if (zoneid == GLOBAL_ZONEID || 1014 zoneid == udp->udp_connp->conn_zoneid) 1015 udp_report_item(mp->b_cont, udp); 1016 } 1017 } 1018 mutex_exit(&udpf->uf_lock); 1019 } 1020 udp_last_ndd_get_info_time = ddi_get_lbolt(); 1021 return (0); 1022 } 1023 1024 /* 1025 * Hash list removal routine for udp_t structures. 1026 */ 1027 static void 1028 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) 1029 { 1030 udp_t *udpnext; 1031 kmutex_t *lockp; 1032 1033 if (udp->udp_ptpbhn == NULL) 1034 return; 1035 1036 /* 1037 * Extract the lock pointer in case there are concurrent 1038 * hash_remove's for this instance. 1039 */ 1040 ASSERT(udp->udp_port != 0); 1041 if (!caller_holds_lock) { 1042 lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock; 1043 ASSERT(lockp != NULL); 1044 mutex_enter(lockp); 1045 } 1046 if (udp->udp_ptpbhn != NULL) { 1047 udpnext = udp->udp_bind_hash; 1048 if (udpnext != NULL) { 1049 udpnext->udp_ptpbhn = udp->udp_ptpbhn; 1050 udp->udp_bind_hash = NULL; 1051 } 1052 *udp->udp_ptpbhn = udpnext; 1053 udp->udp_ptpbhn = NULL; 1054 } 1055 if (!caller_holds_lock) { 1056 mutex_exit(lockp); 1057 } 1058 } 1059 1060 static void 1061 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) 1062 { 1063 udp_t **udpp; 1064 udp_t *udpnext; 1065 1066 ASSERT(MUTEX_HELD(&uf->uf_lock)); 1067 if (udp->udp_ptpbhn != NULL) { 1068 udp_bind_hash_remove(udp, B_TRUE); 1069 } 1070 udpp = &uf->uf_udp; 1071 udpnext = udpp[0]; 1072 if (udpnext != NULL) { 1073 /* 1074 * If the new udp bound to the INADDR_ANY address 1075 * and the first one in the list is not bound to 1076 * INADDR_ANY we skip all entries until we find the 1077 * first one bound to INADDR_ANY. 1078 * This makes sure that applications binding to a 1079 * specific address get preference over those binding to 1080 * INADDR_ANY. 1081 */ 1082 if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && 1083 !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { 1084 while ((udpnext = udpp[0]) != NULL && 1085 !V6_OR_V4_INADDR_ANY( 1086 udpnext->udp_bound_v6src)) { 1087 udpp = &(udpnext->udp_bind_hash); 1088 } 1089 if (udpnext != NULL) 1090 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 1091 } else { 1092 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 1093 } 1094 } 1095 udp->udp_bind_hash = udpnext; 1096 udp->udp_ptpbhn = udpp; 1097 udpp[0] = udp; 1098 } 1099 1100 /* 1101 * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message 1102 * passed to udp_wput. 1103 * It associates a port number and local address with the stream. 1104 * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP 1105 * protocol type (IPPROTO_UDP) placed in the message following the address. 1106 * A T_BIND_ACK message is passed upstream when ip acknowledges the request. 1107 * (Called as writer.) 1108 * 1109 * Note that UDP over IPv4 and IPv6 sockets can use the same port number 1110 * without setting SO_REUSEADDR. This is needed so that they 1111 * can be viewed as two independent transport protocols. 1112 * However, anonymouns ports are allocated from the same range to avoid 1113 * duplicating the udp_g_next_port_to_try. 1114 */ 1115 static void 1116 udp_bind(queue_t *q, mblk_t *mp) 1117 { 1118 sin_t *sin; 1119 sin6_t *sin6; 1120 mblk_t *mp1; 1121 in_port_t port; /* Host byte order */ 1122 in_port_t requested_port; /* Host byte order */ 1123 struct T_bind_req *tbr; 1124 int count; 1125 in6_addr_t v6src; 1126 boolean_t bind_to_req_port_only; 1127 int loopmax; 1128 udp_fanout_t *udpf; 1129 in_port_t lport; /* Network byte order */ 1130 zoneid_t zoneid; 1131 conn_t *connp; 1132 udp_t *udp; 1133 boolean_t is_inaddr_any; 1134 mlp_type_t addrtype, mlptype; 1135 1136 connp = Q_TO_CONN(q); 1137 udp = connp->conn_udp; 1138 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 1139 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1140 "udp_bind: bad req, len %u", 1141 (uint_t)(mp->b_wptr - mp->b_rptr)); 1142 udp_err_ack(q, mp, TPROTO, 0); 1143 return; 1144 } 1145 1146 if (udp->udp_state != TS_UNBND) { 1147 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1148 "udp_bind: bad state, %u", udp->udp_state); 1149 udp_err_ack(q, mp, TOUTSTATE, 0); 1150 return; 1151 } 1152 /* 1153 * Reallocate the message to make sure we have enough room for an 1154 * address and the protocol type. 1155 */ 1156 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 1157 if (!mp1) { 1158 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1159 return; 1160 } 1161 1162 mp = mp1; 1163 tbr = (struct T_bind_req *)mp->b_rptr; 1164 switch (tbr->ADDR_length) { 1165 case 0: /* Request for a generic port */ 1166 tbr->ADDR_offset = sizeof (struct T_bind_req); 1167 if (udp->udp_family == AF_INET) { 1168 tbr->ADDR_length = sizeof (sin_t); 1169 sin = (sin_t *)&tbr[1]; 1170 *sin = sin_null; 1171 sin->sin_family = AF_INET; 1172 mp->b_wptr = (uchar_t *)&sin[1]; 1173 } else { 1174 ASSERT(udp->udp_family == AF_INET6); 1175 tbr->ADDR_length = sizeof (sin6_t); 1176 sin6 = (sin6_t *)&tbr[1]; 1177 *sin6 = sin6_null; 1178 sin6->sin6_family = AF_INET6; 1179 mp->b_wptr = (uchar_t *)&sin6[1]; 1180 } 1181 port = 0; 1182 break; 1183 1184 case sizeof (sin_t): /* Complete IPv4 address */ 1185 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 1186 sizeof (sin_t)); 1187 if (sin == NULL || !OK_32PTR((char *)sin)) { 1188 udp_err_ack(q, mp, TSYSERR, EINVAL); 1189 return; 1190 } 1191 if (udp->udp_family != AF_INET || 1192 sin->sin_family != AF_INET) { 1193 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1194 return; 1195 } 1196 port = ntohs(sin->sin_port); 1197 break; 1198 1199 case sizeof (sin6_t): /* complete IPv6 address */ 1200 sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, 1201 sizeof (sin6_t)); 1202 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1203 udp_err_ack(q, mp, TSYSERR, EINVAL); 1204 return; 1205 } 1206 if (udp->udp_family != AF_INET6 || 1207 sin6->sin6_family != AF_INET6) { 1208 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1209 return; 1210 } 1211 port = ntohs(sin6->sin6_port); 1212 break; 1213 1214 default: /* Invalid request */ 1215 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1216 "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); 1217 udp_err_ack(q, mp, TBADADDR, 0); 1218 return; 1219 } 1220 1221 requested_port = port; 1222 1223 if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) 1224 bind_to_req_port_only = B_FALSE; 1225 else /* T_BIND_REQ and requested_port != 0 */ 1226 bind_to_req_port_only = B_TRUE; 1227 1228 if (requested_port == 0) { 1229 /* 1230 * If the application passed in zero for the port number, it 1231 * doesn't care which port number we bind to. Get one in the 1232 * valid range. 1233 */ 1234 if (udp->udp_anon_priv_bind) { 1235 port = udp_get_next_priv_port(udp); 1236 } else { 1237 port = udp_update_next_port(udp, 1238 udp_g_next_port_to_try, B_TRUE); 1239 } 1240 } else { 1241 /* 1242 * If the port is in the well-known privileged range, 1243 * make sure the caller was privileged. 1244 */ 1245 int i; 1246 boolean_t priv = B_FALSE; 1247 1248 if (port < udp_smallest_nonpriv_port) { 1249 priv = B_TRUE; 1250 } else { 1251 for (i = 0; i < udp_g_num_epriv_ports; i++) { 1252 if (port == udp_g_epriv_ports[i]) { 1253 priv = B_TRUE; 1254 break; 1255 } 1256 } 1257 } 1258 1259 if (priv) { 1260 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 1261 1262 if (secpolicy_net_privaddr(cr, port) != 0) { 1263 udp_err_ack(q, mp, TACCES, 0); 1264 return; 1265 } 1266 } 1267 } 1268 1269 if (port == 0) { 1270 udp_err_ack(q, mp, TNOADDR, 0); 1271 return; 1272 } 1273 1274 /* 1275 * Copy the source address into our udp structure. This address 1276 * may still be zero; if so, IP will fill in the correct address 1277 * each time an outbound packet is passed to it. 1278 */ 1279 if (udp->udp_family == AF_INET) { 1280 ASSERT(sin != NULL); 1281 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1282 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1283 udp->udp_ip_snd_options_len; 1284 IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); 1285 } else { 1286 ASSERT(sin6 != NULL); 1287 v6src = sin6->sin6_addr; 1288 if (IN6_IS_ADDR_V4MAPPED(&v6src)) { 1289 udp->udp_ipversion = IPV4_VERSION; 1290 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 1291 UDPH_SIZE + udp->udp_ip_snd_options_len; 1292 } else { 1293 udp->udp_ipversion = IPV6_VERSION; 1294 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1295 } 1296 } 1297 1298 /* 1299 * If udp_reuseaddr is not set, then we have to make sure that 1300 * the IP address and port number the application requested 1301 * (or we selected for the application) is not being used by 1302 * another stream. If another stream is already using the 1303 * requested IP address and port, the behavior depends on 1304 * "bind_to_req_port_only". If set the bind fails; otherwise we 1305 * search for any an unused port to bind to the the stream. 1306 * 1307 * As per the BSD semantics, as modified by the Deering multicast 1308 * changes, if udp_reuseaddr is set, then we allow multiple binds 1309 * to the same port independent of the local IP address. 1310 * 1311 * This is slightly different than in SunOS 4.X which did not 1312 * support IP multicast. Note that the change implemented by the 1313 * Deering multicast code effects all binds - not only binding 1314 * to IP multicast addresses. 1315 * 1316 * Note that when binding to port zero we ignore SO_REUSEADDR in 1317 * order to guarantee a unique port. 1318 */ 1319 1320 count = 0; 1321 if (udp->udp_anon_priv_bind) { 1322 /* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */ 1323 loopmax = IPPORT_RESERVED - udp_min_anonpriv_port; 1324 } else { 1325 loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1; 1326 } 1327 1328 is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); 1329 zoneid = connp->conn_zoneid; 1330 1331 for (;;) { 1332 udp_t *udp1; 1333 boolean_t found_exclbind = B_FALSE; 1334 1335 /* 1336 * Walk through the list of udp streams bound to 1337 * requested port with the same IP address. 1338 */ 1339 lport = htons(port); 1340 udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)]; 1341 mutex_enter(&udpf->uf_lock); 1342 for (udp1 = udpf->uf_udp; udp1 != NULL; 1343 udp1 = udp1->udp_bind_hash) { 1344 if (lport != udp1->udp_port) 1345 continue; 1346 1347 /* 1348 * On a labeled system, we must treat bindings to ports 1349 * on shared IP addresses by sockets with MAC exemption 1350 * privilege as being in all zones, as there's 1351 * otherwise no way to identify the right receiver. 1352 */ 1353 if (zoneid != udp1->udp_connp->conn_zoneid && 1354 !udp->udp_mac_exempt && !udp1->udp_mac_exempt) 1355 continue; 1356 1357 /* 1358 * If UDP_EXCLBIND is set for either the bound or 1359 * binding endpoint, the semantics of bind 1360 * is changed according to the following chart. 1361 * 1362 * spec = specified address (v4 or v6) 1363 * unspec = unspecified address (v4 or v6) 1364 * A = specified addresses are different for endpoints 1365 * 1366 * bound bind to allowed? 1367 * ------------------------------------- 1368 * unspec unspec no 1369 * unspec spec no 1370 * spec unspec no 1371 * spec spec yes if A 1372 * 1373 * For labeled systems, SO_MAC_EXEMPT behaves the same 1374 * as UDP_EXCLBIND, except that zoneid is ignored. 1375 */ 1376 if (udp1->udp_exclbind || udp->udp_exclbind || 1377 udp1->udp_mac_exempt || udp->udp_mac_exempt) { 1378 if (V6_OR_V4_INADDR_ANY( 1379 udp1->udp_bound_v6src) || 1380 is_inaddr_any || 1381 IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 1382 &v6src)) { 1383 found_exclbind = B_TRUE; 1384 break; 1385 } 1386 continue; 1387 } 1388 1389 /* 1390 * Check ipversion to allow IPv4 and IPv6 sockets to 1391 * have disjoint port number spaces. 1392 */ 1393 if (udp->udp_ipversion != udp1->udp_ipversion) { 1394 1395 /* 1396 * On the first time through the loop, if the 1397 * the user intentionally specified a 1398 * particular port number, then ignore any 1399 * bindings of the other protocol that may 1400 * conflict. This allows the user to bind IPv6 1401 * alone and get both v4 and v6, or bind both 1402 * both and get each seperately. On subsequent 1403 * times through the loop, we're checking a 1404 * port that we chose (not the user) and thus 1405 * we do not allow casual duplicate bindings. 1406 */ 1407 if (count == 0 && requested_port != 0) 1408 continue; 1409 } 1410 1411 /* 1412 * No difference depending on SO_REUSEADDR. 1413 * 1414 * If existing port is bound to a 1415 * non-wildcard IP address and 1416 * the requesting stream is bound to 1417 * a distinct different IP addresses 1418 * (non-wildcard, also), keep going. 1419 */ 1420 if (!is_inaddr_any && 1421 !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && 1422 !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 1423 &v6src)) { 1424 continue; 1425 } 1426 break; 1427 } 1428 1429 if (!found_exclbind && 1430 (udp->udp_reuseaddr && requested_port != 0)) { 1431 break; 1432 } 1433 1434 if (udp1 == NULL) { 1435 /* 1436 * No other stream has this IP address 1437 * and port number. We can use it. 1438 */ 1439 break; 1440 } 1441 mutex_exit(&udpf->uf_lock); 1442 if (bind_to_req_port_only) { 1443 /* 1444 * We get here only when requested port 1445 * is bound (and only first of the for() 1446 * loop iteration). 1447 * 1448 * The semantics of this bind request 1449 * require it to fail so we return from 1450 * the routine (and exit the loop). 1451 * 1452 */ 1453 udp_err_ack(q, mp, TADDRBUSY, 0); 1454 return; 1455 } 1456 1457 if (udp->udp_anon_priv_bind) { 1458 port = udp_get_next_priv_port(udp); 1459 } else { 1460 if ((count == 0) && (requested_port != 0)) { 1461 /* 1462 * If the application wants us to find 1463 * a port, get one to start with. Set 1464 * requested_port to 0, so that we will 1465 * update udp_g_next_port_to_try below. 1466 */ 1467 port = udp_update_next_port(udp, 1468 udp_g_next_port_to_try, B_TRUE); 1469 requested_port = 0; 1470 } else { 1471 port = udp_update_next_port(udp, port + 1, 1472 B_FALSE); 1473 } 1474 } 1475 1476 if (port == 0 || ++count >= loopmax) { 1477 /* 1478 * We've tried every possible port number and 1479 * there are none available, so send an error 1480 * to the user. 1481 */ 1482 udp_err_ack(q, mp, TNOADDR, 0); 1483 return; 1484 } 1485 } 1486 1487 /* 1488 * Copy the source address into our udp structure. This address 1489 * may still be zero; if so, ip will fill in the correct address 1490 * each time an outbound packet is passed to it. 1491 * If we are binding to a broadcast or multicast address udp_rput 1492 * will clear the source address when it receives the T_BIND_ACK. 1493 */ 1494 udp->udp_v6src = udp->udp_bound_v6src = v6src; 1495 udp->udp_port = lport; 1496 /* 1497 * Now reset the the next anonymous port if the application requested 1498 * an anonymous port, or we handed out the next anonymous port. 1499 */ 1500 if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { 1501 udp_g_next_port_to_try = port + 1; 1502 } 1503 1504 /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ 1505 if (udp->udp_family == AF_INET) { 1506 sin->sin_port = udp->udp_port; 1507 } else { 1508 int error; 1509 1510 sin6->sin6_port = udp->udp_port; 1511 /* Rebuild the header template */ 1512 error = udp_build_hdrs(q, udp); 1513 if (error != 0) { 1514 mutex_exit(&udpf->uf_lock); 1515 udp_err_ack(q, mp, TSYSERR, error); 1516 return; 1517 } 1518 } 1519 udp->udp_state = TS_IDLE; 1520 udp_bind_hash_insert(udpf, udp); 1521 mutex_exit(&udpf->uf_lock); 1522 1523 if (cl_inet_bind) { 1524 /* 1525 * Running in cluster mode - register bind information 1526 */ 1527 if (udp->udp_ipversion == IPV4_VERSION) { 1528 (*cl_inet_bind)(IPPROTO_UDP, AF_INET, 1529 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 1530 (in_port_t)udp->udp_port); 1531 } else { 1532 (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, 1533 (uint8_t *)&(udp->udp_v6src), 1534 (in_port_t)udp->udp_port); 1535 } 1536 1537 } 1538 1539 connp->conn_anon_port = (is_system_labeled() && requested_port == 0); 1540 if (is_system_labeled() && (!connp->conn_anon_port || 1541 connp->conn_anon_mlp)) { 1542 uint16_t mlpport; 1543 cred_t *cr = connp->conn_cred; 1544 zone_t *zone; 1545 1546 connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth : 1547 mlptSingle; 1548 addrtype = tsol_mlp_addr_type(zoneid, IPV6_VERSION, &v6src); 1549 if (addrtype == mlptSingle) { 1550 udp_err_ack(q, mp, TNOADDR, 0); 1551 connp->conn_anon_port = B_FALSE; 1552 connp->conn_mlp_type = mlptSingle; 1553 return; 1554 } 1555 mlpport = connp->conn_anon_port ? PMAPPORT : port; 1556 zone = crgetzone(cr); 1557 mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, 1558 addrtype); 1559 if (mlptype != mlptSingle && 1560 (connp->conn_mlp_type == mlptSingle || 1561 secpolicy_net_bindmlp(cr) != 0)) { 1562 if (udp->udp_debug) { 1563 (void) strlog(UDP_MOD_ID, 0, 1, 1564 SL_ERROR|SL_TRACE, 1565 "udp_bind: no priv for multilevel port %d", 1566 mlpport); 1567 } 1568 udp_err_ack(q, mp, TACCES, 0); 1569 connp->conn_anon_port = B_FALSE; 1570 connp->conn_mlp_type = mlptSingle; 1571 return; 1572 } 1573 1574 /* 1575 * If we're specifically binding a shared IP address and the 1576 * port is MLP on shared addresses, then check to see if this 1577 * zone actually owns the MLP. Reject if not. 1578 */ 1579 if (mlptype == mlptShared && addrtype == mlptShared) { 1580 zoneid_t mlpzone; 1581 1582 mlpzone = tsol_mlp_findzone(IPPROTO_UDP, 1583 htons(mlpport)); 1584 if (connp->conn_zoneid != mlpzone) { 1585 if (udp->udp_debug) { 1586 (void) strlog(UDP_MOD_ID, 0, 1, 1587 SL_ERROR|SL_TRACE, 1588 "udp_bind: attempt to bind port " 1589 "%d on shared addr in zone %d " 1590 "(should be %d)", 1591 mlpport, connp->conn_zoneid, 1592 mlpzone); 1593 } 1594 udp_err_ack(q, mp, TACCES, 0); 1595 connp->conn_anon_port = B_FALSE; 1596 connp->conn_mlp_type = mlptSingle; 1597 return; 1598 } 1599 } 1600 if (connp->conn_anon_port) { 1601 int error; 1602 1603 error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 1604 port, B_TRUE); 1605 if (error != 0) { 1606 if (udp->udp_debug) { 1607 (void) strlog(UDP_MOD_ID, 0, 1, 1608 SL_ERROR|SL_TRACE, 1609 "udp_bind: cannot establish anon " 1610 "MLP for port %d", port); 1611 } 1612 udp_err_ack(q, mp, TACCES, 0); 1613 connp->conn_anon_port = B_FALSE; 1614 connp->conn_mlp_type = mlptSingle; 1615 return; 1616 } 1617 } 1618 connp->conn_mlp_type = mlptype; 1619 } 1620 1621 /* Pass the protocol number in the message following the address. */ 1622 *mp->b_wptr++ = IPPROTO_UDP; 1623 if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 1624 /* 1625 * Append a request for an IRE if udp_v6src not 1626 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). 1627 */ 1628 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 1629 if (!mp->b_cont) { 1630 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1631 return; 1632 } 1633 mp->b_cont->b_wptr += sizeof (ire_t); 1634 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 1635 } 1636 if (udp->udp_family == AF_INET6) 1637 mp = ip_bind_v6(q, mp, connp, NULL); 1638 else 1639 mp = ip_bind_v4(q, mp, connp); 1640 1641 if (mp != NULL) 1642 udp_rput_other(_RD(q), mp); 1643 else 1644 CONN_INC_REF(connp); 1645 } 1646 1647 1648 void 1649 udp_resume_bind(conn_t *connp, mblk_t *mp) 1650 { 1651 udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY); 1652 } 1653 1654 /* 1655 * This is called from ip_wput_nondata to resume a deferred UDP bind. 1656 */ 1657 /* ARGSUSED */ 1658 static void 1659 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2) 1660 { 1661 conn_t *connp = arg; 1662 1663 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1664 1665 udp_rput_other(connp->conn_rq, mp); 1666 1667 CONN_OPER_PENDING_DONE(connp); 1668 udp_exit(connp); 1669 } 1670 1671 /* 1672 * This routine handles each T_CONN_REQ message passed to udp. It 1673 * associates a default destination address with the stream. 1674 * 1675 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1676 * T_BIND_REQ - specifying local and remote address/port 1677 * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src 1678 * T_OK_ACK - for the T_CONN_REQ 1679 * T_CONN_CON - to keep the TPI user happy 1680 * 1681 * The connect completes in udp_rput. 1682 * When a T_BIND_ACK is received information is extracted from the IRE 1683 * and the two appended messages are sent to the TPI user. 1684 * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert 1685 * it to an error ack for the appropriate primitive. 1686 */ 1687 static void 1688 udp_connect(queue_t *q, mblk_t *mp) 1689 { 1690 sin6_t *sin6; 1691 sin_t *sin; 1692 struct T_conn_req *tcr; 1693 in6_addr_t v6dst; 1694 ipaddr_t v4dst; 1695 uint16_t dstport; 1696 uint32_t flowinfo; 1697 mblk_t *mp1, *mp2; 1698 udp_fanout_t *udpf; 1699 udp_t *udp, *udp1; 1700 1701 udp = Q_TO_UDP(q); 1702 1703 tcr = (struct T_conn_req *)mp->b_rptr; 1704 1705 /* A bit of sanity checking */ 1706 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { 1707 udp_err_ack(q, mp, TPROTO, 0); 1708 return; 1709 } 1710 /* 1711 * This UDP must have bound to a port already before doing 1712 * a connect. 1713 */ 1714 if (udp->udp_state == TS_UNBND) { 1715 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1716 "udp_connect: bad state, %u", udp->udp_state); 1717 udp_err_ack(q, mp, TOUTSTATE, 0); 1718 return; 1719 } 1720 ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); 1721 1722 udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; 1723 1724 if (udp->udp_state == TS_DATA_XFER) { 1725 /* Already connected - clear out state */ 1726 mutex_enter(&udpf->uf_lock); 1727 udp->udp_v6src = udp->udp_bound_v6src; 1728 udp->udp_state = TS_IDLE; 1729 mutex_exit(&udpf->uf_lock); 1730 } 1731 1732 if (tcr->OPT_length != 0) { 1733 udp_err_ack(q, mp, TBADOPT, 0); 1734 return; 1735 } 1736 1737 /* 1738 * Determine packet type based on type of address passed in 1739 * the request should contain an IPv4 or IPv6 address. 1740 * Make sure that address family matches the type of 1741 * family of the the address passed down 1742 */ 1743 switch (tcr->DEST_length) { 1744 default: 1745 udp_err_ack(q, mp, TBADADDR, 0); 1746 return; 1747 1748 case sizeof (sin_t): 1749 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 1750 sizeof (sin_t)); 1751 if (sin == NULL || !OK_32PTR((char *)sin)) { 1752 udp_err_ack(q, mp, TSYSERR, EINVAL); 1753 return; 1754 } 1755 if (udp->udp_family != AF_INET || 1756 sin->sin_family != AF_INET) { 1757 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1758 return; 1759 } 1760 v4dst = sin->sin_addr.s_addr; 1761 dstport = sin->sin_port; 1762 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1763 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1764 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1765 udp->udp_ip_snd_options_len; 1766 break; 1767 1768 case sizeof (sin6_t): 1769 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 1770 sizeof (sin6_t)); 1771 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1772 udp_err_ack(q, mp, TSYSERR, EINVAL); 1773 return; 1774 } 1775 if (udp->udp_family != AF_INET6 || 1776 sin6->sin6_family != AF_INET6) { 1777 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1778 return; 1779 } 1780 v6dst = sin6->sin6_addr; 1781 if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { 1782 IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); 1783 udp->udp_ipversion = IPV4_VERSION; 1784 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 1785 UDPH_SIZE + udp->udp_ip_snd_options_len; 1786 flowinfo = 0; 1787 } else { 1788 udp->udp_ipversion = IPV6_VERSION; 1789 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1790 flowinfo = sin6->sin6_flowinfo; 1791 } 1792 dstport = sin6->sin6_port; 1793 break; 1794 } 1795 if (dstport == 0) { 1796 udp_err_ack(q, mp, TBADADDR, 0); 1797 return; 1798 } 1799 1800 /* 1801 * Create a default IP header with no IP options. 1802 */ 1803 udp->udp_dstport = dstport; 1804 if (udp->udp_ipversion == IPV4_VERSION) { 1805 /* 1806 * Interpret a zero destination to mean loopback. 1807 * Update the T_CONN_REQ (sin/sin6) since it is used to 1808 * generate the T_CONN_CON. 1809 */ 1810 if (v4dst == INADDR_ANY) { 1811 v4dst = htonl(INADDR_LOOPBACK); 1812 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1813 if (udp->udp_family == AF_INET) { 1814 sin->sin_addr.s_addr = v4dst; 1815 } else { 1816 sin6->sin6_addr = v6dst; 1817 } 1818 } 1819 udp->udp_v6dst = v6dst; 1820 udp->udp_flowinfo = 0; 1821 1822 /* 1823 * If the destination address is multicast and 1824 * an outgoing multicast interface has been set, 1825 * use the address of that interface as our 1826 * source address if no source address has been set. 1827 */ 1828 if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && 1829 CLASSD(v4dst) && 1830 udp->udp_multicast_if_addr != INADDR_ANY) { 1831 IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, 1832 &udp->udp_v6src); 1833 } 1834 } else { 1835 ASSERT(udp->udp_ipversion == IPV6_VERSION); 1836 /* 1837 * Interpret a zero destination to mean loopback. 1838 * Update the T_CONN_REQ (sin/sin6) since it is used to 1839 * generate the T_CONN_CON. 1840 */ 1841 if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { 1842 v6dst = ipv6_loopback; 1843 sin6->sin6_addr = v6dst; 1844 } 1845 udp->udp_v6dst = v6dst; 1846 udp->udp_flowinfo = flowinfo; 1847 /* 1848 * If the destination address is multicast and 1849 * an outgoing multicast interface has been set, 1850 * then the ip bind logic will pick the correct source 1851 * address (i.e. matching the outgoing multicast interface). 1852 */ 1853 } 1854 1855 /* 1856 * Verify that the src/port/dst/port is unique for all 1857 * connections in TS_DATA_XFER 1858 */ 1859 mutex_enter(&udpf->uf_lock); 1860 for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { 1861 if (udp1->udp_state != TS_DATA_XFER) 1862 continue; 1863 if (udp->udp_port != udp1->udp_port || 1864 udp->udp_ipversion != udp1->udp_ipversion || 1865 dstport != udp1->udp_dstport || 1866 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || 1867 !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst)) 1868 continue; 1869 mutex_exit(&udpf->uf_lock); 1870 udp_err_ack(q, mp, TBADADDR, 0); 1871 return; 1872 } 1873 udp->udp_state = TS_DATA_XFER; 1874 mutex_exit(&udpf->uf_lock); 1875 1876 /* 1877 * Send down bind to IP to verify that there is a route 1878 * and to determine the source address. 1879 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. 1880 */ 1881 if (udp->udp_family == AF_INET) 1882 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); 1883 else 1884 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 1885 if (mp1 == NULL) { 1886 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1887 bind_failed: 1888 mutex_enter(&udpf->uf_lock); 1889 udp->udp_state = TS_IDLE; 1890 mutex_exit(&udpf->uf_lock); 1891 return; 1892 } 1893 1894 /* 1895 * We also have to send a connection confirmation to 1896 * keep TLI happy. Prepare it for udp_rput. 1897 */ 1898 if (udp->udp_family == AF_INET) 1899 mp2 = mi_tpi_conn_con(NULL, (char *)sin, 1900 sizeof (*sin), NULL, 0); 1901 else 1902 mp2 = mi_tpi_conn_con(NULL, (char *)sin6, 1903 sizeof (*sin6), NULL, 0); 1904 if (mp2 == NULL) { 1905 freemsg(mp1); 1906 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1907 goto bind_failed; 1908 } 1909 1910 mp = mi_tpi_ok_ack_alloc(mp); 1911 if (mp == NULL) { 1912 /* Unable to reuse the T_CONN_REQ for the ack. */ 1913 freemsg(mp2); 1914 udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); 1915 goto bind_failed; 1916 } 1917 1918 /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ 1919 linkb(mp1, mp); 1920 linkb(mp1, mp2); 1921 1922 mblk_setcred(mp1, udp->udp_connp->conn_cred); 1923 if (udp->udp_family == AF_INET) 1924 mp1 = ip_bind_v4(q, mp1, udp->udp_connp); 1925 else 1926 mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); 1927 1928 if (mp1 != NULL) 1929 udp_rput_other(_RD(q), mp1); 1930 else 1931 CONN_INC_REF(udp->udp_connp); 1932 } 1933 1934 static int 1935 udp_close(queue_t *q) 1936 { 1937 conn_t *connp = Q_TO_CONN(UDP_WR(q)); 1938 udp_t *udp; 1939 queue_t *ip_rq = RD(UDP_WR(q)); 1940 1941 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1942 udp = connp->conn_udp; 1943 1944 ip_quiesce_conn(connp); 1945 /* 1946 * Disable read-side synchronous stream 1947 * interface and drain any queued data. 1948 */ 1949 udp_rcv_drain(q, udp, B_TRUE); 1950 ASSERT(!udp->udp_direct_sockfs); 1951 1952 qprocsoff(q); 1953 1954 /* restore IP module's high and low water marks to default values */ 1955 ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat; 1956 WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat; 1957 WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat; 1958 1959 ASSERT(udp->udp_rcv_cnt == 0); 1960 ASSERT(udp->udp_rcv_msgcnt == 0); 1961 ASSERT(udp->udp_rcv_list_head == NULL); 1962 ASSERT(udp->udp_rcv_list_tail == NULL); 1963 1964 udp_close_free(connp); 1965 1966 /* 1967 * Restore connp as an IP endpoint. 1968 * Locking required to prevent a race with udp_snmp_get()/ 1969 * ipcl_get_next_conn(), which selects conn_t which are 1970 * IPCL_UDP and not CONN_CONDEMNED. 1971 */ 1972 mutex_enter(&connp->conn_lock); 1973 connp->conn_flags &= ~IPCL_UDP; 1974 connp->conn_state_flags &= 1975 ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED); 1976 connp->conn_ulp_labeled = B_FALSE; 1977 mutex_exit(&connp->conn_lock); 1978 1979 return (0); 1980 } 1981 1982 /* 1983 * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn 1984 */ 1985 void 1986 udp_quiesce_conn(conn_t *connp) 1987 { 1988 udp_t *udp = connp->conn_udp; 1989 1990 if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { 1991 /* 1992 * Running in cluster mode - register unbind information 1993 */ 1994 if (udp->udp_ipversion == IPV4_VERSION) { 1995 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 1996 (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), 1997 (in_port_t)udp->udp_port); 1998 } else { 1999 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 2000 (uint8_t *)(&(udp->udp_v6src)), 2001 (in_port_t)udp->udp_port); 2002 } 2003 } 2004 2005 udp_bind_hash_remove(udp, B_FALSE); 2006 2007 mutex_enter(&connp->conn_lock); 2008 while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 || 2009 udp->udp_mode != UDP_MT_HOT) { 2010 cv_wait(&connp->conn_cv, &connp->conn_lock); 2011 } 2012 mutex_exit(&connp->conn_lock); 2013 } 2014 2015 void 2016 udp_close_free(conn_t *connp) 2017 { 2018 udp_t *udp = connp->conn_udp; 2019 2020 /* If there are any options associated with the stream, free them. */ 2021 if (udp->udp_ip_snd_options) { 2022 mi_free((char *)udp->udp_ip_snd_options); 2023 udp->udp_ip_snd_options = NULL; 2024 } 2025 2026 if (udp->udp_ip_rcv_options) { 2027 mi_free((char *)udp->udp_ip_rcv_options); 2028 udp->udp_ip_rcv_options = NULL; 2029 } 2030 2031 /* Free memory associated with sticky options */ 2032 if (udp->udp_sticky_hdrs_len != 0) { 2033 kmem_free(udp->udp_sticky_hdrs, 2034 udp->udp_sticky_hdrs_len); 2035 udp->udp_sticky_hdrs = NULL; 2036 udp->udp_sticky_hdrs_len = 0; 2037 } 2038 2039 ip6_pkt_free(&udp->udp_sticky_ipp); 2040 2041 udp->udp_connp = NULL; 2042 connp->conn_udp = NULL; 2043 kmem_cache_free(udp_cache, udp); 2044 } 2045 2046 /* 2047 * This routine handles each T_DISCON_REQ message passed to udp 2048 * as an indicating that UDP is no longer connected. This results 2049 * in sending a T_BIND_REQ to IP to restore the binding to just 2050 * the local address/port. 2051 * 2052 * This routine sends down a T_BIND_REQ to IP with the following mblks: 2053 * T_BIND_REQ - specifying just the local address/port 2054 * T_OK_ACK - for the T_DISCON_REQ 2055 * 2056 * The disconnect completes in udp_rput. 2057 * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. 2058 * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert 2059 * it to an error ack for the appropriate primitive. 2060 */ 2061 static void 2062 udp_disconnect(queue_t *q, mblk_t *mp) 2063 { 2064 udp_t *udp = Q_TO_UDP(q); 2065 mblk_t *mp1; 2066 udp_fanout_t *udpf; 2067 2068 if (udp->udp_state != TS_DATA_XFER) { 2069 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 2070 "udp_disconnect: bad state, %u", udp->udp_state); 2071 udp_err_ack(q, mp, TOUTSTATE, 0); 2072 return; 2073 } 2074 udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; 2075 mutex_enter(&udpf->uf_lock); 2076 udp->udp_v6src = udp->udp_bound_v6src; 2077 udp->udp_state = TS_IDLE; 2078 mutex_exit(&udpf->uf_lock); 2079 2080 /* 2081 * Send down bind to IP to remove the full binding and revert 2082 * to the local address binding. 2083 */ 2084 if (udp->udp_family == AF_INET) 2085 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); 2086 else 2087 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); 2088 if (mp1 == NULL) { 2089 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2090 return; 2091 } 2092 mp = mi_tpi_ok_ack_alloc(mp); 2093 if (mp == NULL) { 2094 /* Unable to reuse the T_DISCON_REQ for the ack. */ 2095 udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); 2096 return; 2097 } 2098 2099 if (udp->udp_family == AF_INET6) { 2100 int error; 2101 2102 /* Rebuild the header template */ 2103 error = udp_build_hdrs(q, udp); 2104 if (error != 0) { 2105 udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); 2106 freemsg(mp1); 2107 return; 2108 } 2109 } 2110 mutex_enter(&udpf->uf_lock); 2111 udp->udp_discon_pending = 1; 2112 mutex_exit(&udpf->uf_lock); 2113 2114 /* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */ 2115 linkb(mp1, mp); 2116 2117 if (udp->udp_family == AF_INET6) 2118 mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); 2119 else 2120 mp1 = ip_bind_v4(q, mp1, udp->udp_connp); 2121 2122 if (mp1 != NULL) 2123 udp_rput_other(_RD(q), mp1); 2124 else 2125 CONN_INC_REF(udp->udp_connp); 2126 } 2127 2128 /* This routine creates a T_ERROR_ACK message and passes it upstream. */ 2129 static void 2130 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 2131 { 2132 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 2133 putnext(UDP_RD(q), mp); 2134 } 2135 2136 /* Shorthand to generate and send TPI error acks to our client */ 2137 static void 2138 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, 2139 int sys_error) 2140 { 2141 struct T_error_ack *teackp; 2142 2143 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 2144 M_PCPROTO, T_ERROR_ACK)) != NULL) { 2145 teackp = (struct T_error_ack *)mp->b_rptr; 2146 teackp->ERROR_prim = primitive; 2147 teackp->TLI_error = t_error; 2148 teackp->UNIX_error = sys_error; 2149 putnext(UDP_RD(q), mp); 2150 } 2151 } 2152 2153 /*ARGSUSED*/ 2154 static int 2155 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 2156 { 2157 int i; 2158 2159 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2160 if (udp_g_epriv_ports[i] != 0) 2161 (void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]); 2162 } 2163 return (0); 2164 } 2165 2166 /* ARGSUSED */ 2167 static int 2168 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 2169 cred_t *cr) 2170 { 2171 long new_value; 2172 int i; 2173 2174 /* 2175 * Fail the request if the new value does not lie within the 2176 * port number limits. 2177 */ 2178 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 2179 new_value <= 0 || new_value >= 65536) { 2180 return (EINVAL); 2181 } 2182 2183 /* Check if the value is already in the list */ 2184 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2185 if (new_value == udp_g_epriv_ports[i]) { 2186 return (EEXIST); 2187 } 2188 } 2189 /* Find an empty slot */ 2190 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2191 if (udp_g_epriv_ports[i] == 0) 2192 break; 2193 } 2194 if (i == udp_g_num_epriv_ports) { 2195 return (EOVERFLOW); 2196 } 2197 2198 /* Set the new value */ 2199 udp_g_epriv_ports[i] = (in_port_t)new_value; 2200 return (0); 2201 } 2202 2203 /* ARGSUSED */ 2204 static int 2205 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 2206 cred_t *cr) 2207 { 2208 long new_value; 2209 int i; 2210 2211 /* 2212 * Fail the request if the new value does not lie within the 2213 * port number limits. 2214 */ 2215 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 2216 new_value <= 0 || new_value >= 65536) { 2217 return (EINVAL); 2218 } 2219 2220 /* Check that the value is already in the list */ 2221 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2222 if (udp_g_epriv_ports[i] == new_value) 2223 break; 2224 } 2225 if (i == udp_g_num_epriv_ports) { 2226 return (ESRCH); 2227 } 2228 2229 /* Clear the value */ 2230 udp_g_epriv_ports[i] = 0; 2231 return (0); 2232 } 2233 2234 /* At minimum we need 4 bytes of UDP header */ 2235 #define ICMP_MIN_UDP_HDR 4 2236 2237 /* 2238 * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP. 2239 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 2240 * Assumes that IP has pulled up everything up to and including the ICMP header. 2241 * An M_CTL could potentially come here from some other module (i.e. if UDP 2242 * is pushed on some module other than IP). Thus, if we find that the M_CTL 2243 * does not have enough ICMP information , following STREAMS conventions, 2244 * we send it upstream assuming it is an M_CTL we don't understand. 2245 */ 2246 static void 2247 udp_icmp_error(queue_t *q, mblk_t *mp) 2248 { 2249 icmph_t *icmph; 2250 ipha_t *ipha; 2251 int iph_hdr_length; 2252 udpha_t *udpha; 2253 sin_t sin; 2254 sin6_t sin6; 2255 mblk_t *mp1; 2256 int error = 0; 2257 size_t mp_size = MBLKL(mp); 2258 udp_t *udp = Q_TO_UDP(q); 2259 2260 /* 2261 * Assume IP provides aligned packets - otherwise toss 2262 */ 2263 if (!OK_32PTR(mp->b_rptr)) { 2264 freemsg(mp); 2265 return; 2266 } 2267 2268 /* 2269 * Verify that we have a complete IP header and the application has 2270 * asked for errors. If not, send it upstream. 2271 */ 2272 if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) { 2273 noticmpv4: 2274 putnext(UDP_RD(q), mp); 2275 return; 2276 } 2277 2278 ipha = (ipha_t *)mp->b_rptr; 2279 /* 2280 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 2281 * upstream. ICMPv6 is handled in udp_icmp_error_ipv6. 2282 */ 2283 switch (IPH_HDR_VERSION(ipha)) { 2284 case IPV6_VERSION: 2285 udp_icmp_error_ipv6(q, mp); 2286 return; 2287 case IPV4_VERSION: 2288 break; 2289 default: 2290 goto noticmpv4; 2291 } 2292 2293 /* Skip past the outer IP and ICMP headers */ 2294 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2295 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2296 /* 2297 * If we don't have the correct outer IP header length or if the ULP 2298 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 2299 * send the packet upstream. 2300 */ 2301 if (iph_hdr_length < sizeof (ipha_t) || 2302 ipha->ipha_protocol != IPPROTO_ICMP || 2303 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 2304 goto noticmpv4; 2305 } 2306 ipha = (ipha_t *)&icmph[1]; 2307 2308 /* Skip past the inner IP and find the ULP header */ 2309 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2310 udpha = (udpha_t *)((char *)ipha + iph_hdr_length); 2311 /* 2312 * If we don't have the correct inner IP header length or if the ULP 2313 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR 2314 * bytes of UDP header, send it upstream. 2315 */ 2316 if (iph_hdr_length < sizeof (ipha_t) || 2317 ipha->ipha_protocol != IPPROTO_UDP || 2318 (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) { 2319 goto noticmpv4; 2320 } 2321 2322 switch (icmph->icmph_type) { 2323 case ICMP_DEST_UNREACHABLE: 2324 switch (icmph->icmph_code) { 2325 case ICMP_FRAGMENTATION_NEEDED: 2326 /* 2327 * IP has already adjusted the path MTU. 2328 * XXX Somehow pass MTU indication to application? 2329 */ 2330 break; 2331 case ICMP_PORT_UNREACHABLE: 2332 case ICMP_PROTOCOL_UNREACHABLE: 2333 error = ECONNREFUSED; 2334 break; 2335 default: 2336 /* Transient errors */ 2337 break; 2338 } 2339 break; 2340 default: 2341 /* Transient errors */ 2342 break; 2343 } 2344 if (error == 0) { 2345 freemsg(mp); 2346 return; 2347 } 2348 2349 switch (udp->udp_family) { 2350 case AF_INET: 2351 sin = sin_null; 2352 sin.sin_family = AF_INET; 2353 sin.sin_addr.s_addr = ipha->ipha_dst; 2354 sin.sin_port = udpha->uha_dst_port; 2355 mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, 2356 error); 2357 break; 2358 case AF_INET6: 2359 sin6 = sin6_null; 2360 sin6.sin6_family = AF_INET6; 2361 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); 2362 sin6.sin6_port = udpha->uha_dst_port; 2363 2364 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), 2365 NULL, 0, error); 2366 break; 2367 } 2368 if (mp1) 2369 putnext(UDP_RD(q), mp1); 2370 freemsg(mp); 2371 } 2372 2373 /* 2374 * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. 2375 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 2376 * Assumes that IP has pulled up all the extension headers as well as the 2377 * ICMPv6 header. 2378 * An M_CTL could potentially come here from some other module (i.e. if UDP 2379 * is pushed on some module other than IP). Thus, if we find that the M_CTL 2380 * does not have enough ICMP information , following STREAMS conventions, 2381 * we send it upstream assuming it is an M_CTL we don't understand. The reason 2382 * it might get here is if the non-ICMP M_CTL accidently has 6 in the version 2383 * field (when cast to ipha_t in udp_icmp_error). 2384 */ 2385 static void 2386 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) 2387 { 2388 icmp6_t *icmp6; 2389 ip6_t *ip6h, *outer_ip6h; 2390 uint16_t hdr_length; 2391 uint8_t *nexthdrp; 2392 udpha_t *udpha; 2393 sin6_t sin6; 2394 mblk_t *mp1; 2395 int error = 0; 2396 size_t mp_size = MBLKL(mp); 2397 udp_t *udp = Q_TO_UDP(q); 2398 2399 /* 2400 * Verify that we have a complete IP header. If not, send it upstream. 2401 */ 2402 if (mp_size < sizeof (ip6_t)) { 2403 noticmpv6: 2404 putnext(UDP_RD(q), mp); 2405 return; 2406 } 2407 2408 outer_ip6h = (ip6_t *)mp->b_rptr; 2409 /* 2410 * Verify this is an ICMPV6 packet, else send it upstream 2411 */ 2412 if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) { 2413 hdr_length = IPV6_HDR_LEN; 2414 } else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length, 2415 &nexthdrp) || 2416 *nexthdrp != IPPROTO_ICMPV6) { 2417 goto noticmpv6; 2418 } 2419 icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length]; 2420 ip6h = (ip6_t *)&icmp6[1]; 2421 /* 2422 * Verify we have a complete ICMP and inner IP header. 2423 */ 2424 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 2425 goto noticmpv6; 2426 2427 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) 2428 goto noticmpv6; 2429 udpha = (udpha_t *)((char *)ip6h + hdr_length); 2430 /* 2431 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't 2432 * have at least ICMP_MIN_UDP_HDR bytes of UDP header send the 2433 * packet upstream. 2434 */ 2435 if ((*nexthdrp != IPPROTO_UDP) || 2436 ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) { 2437 goto noticmpv6; 2438 } 2439 2440 switch (icmp6->icmp6_type) { 2441 case ICMP6_DST_UNREACH: 2442 switch (icmp6->icmp6_code) { 2443 case ICMP6_DST_UNREACH_NOPORT: 2444 error = ECONNREFUSED; 2445 break; 2446 case ICMP6_DST_UNREACH_ADMIN: 2447 case ICMP6_DST_UNREACH_NOROUTE: 2448 case ICMP6_DST_UNREACH_BEYONDSCOPE: 2449 case ICMP6_DST_UNREACH_ADDR: 2450 /* Transient errors */ 2451 break; 2452 default: 2453 break; 2454 } 2455 break; 2456 case ICMP6_PACKET_TOO_BIG: { 2457 struct T_unitdata_ind *tudi; 2458 struct T_opthdr *toh; 2459 size_t udi_size; 2460 mblk_t *newmp; 2461 t_scalar_t opt_length = sizeof (struct T_opthdr) + 2462 sizeof (struct ip6_mtuinfo); 2463 sin6_t *sin6; 2464 struct ip6_mtuinfo *mtuinfo; 2465 2466 /* 2467 * If the application has requested to receive path mtu 2468 * information, send up an empty message containing an 2469 * IPV6_PATHMTU ancillary data item. 2470 */ 2471 if (!udp->udp_ipv6_recvpathmtu) 2472 break; 2473 2474 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + 2475 opt_length; 2476 if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { 2477 BUMP_MIB(&udp_mib, udpInErrors); 2478 break; 2479 } 2480 2481 /* 2482 * newmp->b_cont is left to NULL on purpose. This is an 2483 * empty message containing only ancillary data. 2484 */ 2485 newmp->b_datap->db_type = M_PROTO; 2486 tudi = (struct T_unitdata_ind *)newmp->b_rptr; 2487 newmp->b_wptr = (uchar_t *)tudi + udi_size; 2488 tudi->PRIM_type = T_UNITDATA_IND; 2489 tudi->SRC_length = sizeof (sin6_t); 2490 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 2491 tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); 2492 tudi->OPT_length = opt_length; 2493 2494 sin6 = (sin6_t *)&tudi[1]; 2495 bzero(sin6, sizeof (sin6_t)); 2496 sin6->sin6_family = AF_INET6; 2497 sin6->sin6_addr = udp->udp_v6dst; 2498 2499 toh = (struct T_opthdr *)&sin6[1]; 2500 toh->level = IPPROTO_IPV6; 2501 toh->name = IPV6_PATHMTU; 2502 toh->len = opt_length; 2503 toh->status = 0; 2504 2505 mtuinfo = (struct ip6_mtuinfo *)&toh[1]; 2506 bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); 2507 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 2508 mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; 2509 mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; 2510 /* 2511 * We've consumed everything we need from the original 2512 * message. Free it, then send our empty message. 2513 */ 2514 freemsg(mp); 2515 putnext(UDP_RD(q), newmp); 2516 return; 2517 } 2518 case ICMP6_TIME_EXCEEDED: 2519 /* Transient errors */ 2520 break; 2521 case ICMP6_PARAM_PROB: 2522 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 2523 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 2524 (uchar_t *)ip6h + icmp6->icmp6_pptr == 2525 (uchar_t *)nexthdrp) { 2526 error = ECONNREFUSED; 2527 break; 2528 } 2529 break; 2530 } 2531 if (error == 0) { 2532 freemsg(mp); 2533 return; 2534 } 2535 2536 sin6 = sin6_null; 2537 sin6.sin6_family = AF_INET6; 2538 sin6.sin6_addr = ip6h->ip6_dst; 2539 sin6.sin6_port = udpha->uha_dst_port; 2540 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 2541 2542 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, 2543 error); 2544 if (mp1) 2545 putnext(UDP_RD(q), mp1); 2546 freemsg(mp); 2547 } 2548 2549 /* 2550 * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. 2551 * The local address is filled in if endpoint is bound. The remote address 2552 * is filled in if remote address has been precified ("connected endpoint") 2553 * (The concept of connected CLTS sockets is alien to published TPI 2554 * but we support it anyway). 2555 */ 2556 static void 2557 udp_addr_req(queue_t *q, mblk_t *mp) 2558 { 2559 sin_t *sin; 2560 sin6_t *sin6; 2561 mblk_t *ackmp; 2562 struct T_addr_ack *taa; 2563 udp_t *udp = Q_TO_UDP(q); 2564 2565 /* Make it large enough for worst case */ 2566 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2567 2 * sizeof (sin6_t), 1); 2568 if (ackmp == NULL) { 2569 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2570 return; 2571 } 2572 taa = (struct T_addr_ack *)ackmp->b_rptr; 2573 2574 bzero(taa, sizeof (struct T_addr_ack)); 2575 ackmp->b_wptr = (uchar_t *)&taa[1]; 2576 2577 taa->PRIM_type = T_ADDR_ACK; 2578 ackmp->b_datap->db_type = M_PCPROTO; 2579 /* 2580 * Note: Following code assumes 32 bit alignment of basic 2581 * data structures like sin_t and struct T_addr_ack. 2582 */ 2583 if (udp->udp_state != TS_UNBND) { 2584 /* 2585 * Fill in local address first 2586 */ 2587 taa->LOCADDR_offset = sizeof (*taa); 2588 if (udp->udp_family == AF_INET) { 2589 taa->LOCADDR_length = sizeof (sin_t); 2590 sin = (sin_t *)&taa[1]; 2591 /* Fill zeroes and then initialize non-zero fields */ 2592 *sin = sin_null; 2593 sin->sin_family = AF_INET; 2594 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 2595 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2596 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, 2597 sin->sin_addr.s_addr); 2598 } else { 2599 /* 2600 * INADDR_ANY 2601 * udp_v6src is not set, we might be bound to 2602 * broadcast/multicast. Use udp_bound_v6src as 2603 * local address instead (that could 2604 * also still be INADDR_ANY) 2605 */ 2606 IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, 2607 sin->sin_addr.s_addr); 2608 } 2609 sin->sin_port = udp->udp_port; 2610 ackmp->b_wptr = (uchar_t *)&sin[1]; 2611 if (udp->udp_state == TS_DATA_XFER) { 2612 /* 2613 * connected, fill remote address too 2614 */ 2615 taa->REMADDR_length = sizeof (sin_t); 2616 /* assumed 32-bit alignment */ 2617 taa->REMADDR_offset = taa->LOCADDR_offset + 2618 taa->LOCADDR_length; 2619 2620 sin = (sin_t *)(ackmp->b_rptr + 2621 taa->REMADDR_offset); 2622 /* initialize */ 2623 *sin = sin_null; 2624 sin->sin_family = AF_INET; 2625 sin->sin_addr.s_addr = 2626 V4_PART_OF_V6(udp->udp_v6dst); 2627 sin->sin_port = udp->udp_dstport; 2628 ackmp->b_wptr = (uchar_t *)&sin[1]; 2629 } 2630 } else { 2631 taa->LOCADDR_length = sizeof (sin6_t); 2632 sin6 = (sin6_t *)&taa[1]; 2633 /* Fill zeroes and then initialize non-zero fields */ 2634 *sin6 = sin6_null; 2635 sin6->sin6_family = AF_INET6; 2636 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2637 sin6->sin6_addr = udp->udp_v6src; 2638 } else { 2639 /* 2640 * UNSPECIFIED 2641 * udp_v6src is not set, we might be bound to 2642 * broadcast/multicast. Use udp_bound_v6src as 2643 * local address instead (that could 2644 * also still be UNSPECIFIED) 2645 */ 2646 sin6->sin6_addr = 2647 udp->udp_bound_v6src; 2648 } 2649 sin6->sin6_port = udp->udp_port; 2650 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2651 if (udp->udp_state == TS_DATA_XFER) { 2652 /* 2653 * connected, fill remote address too 2654 */ 2655 taa->REMADDR_length = sizeof (sin6_t); 2656 /* assumed 32-bit alignment */ 2657 taa->REMADDR_offset = taa->LOCADDR_offset + 2658 taa->LOCADDR_length; 2659 2660 sin6 = (sin6_t *)(ackmp->b_rptr + 2661 taa->REMADDR_offset); 2662 /* initialize */ 2663 *sin6 = sin6_null; 2664 sin6->sin6_family = AF_INET6; 2665 sin6->sin6_addr = udp->udp_v6dst; 2666 sin6->sin6_port = udp->udp_dstport; 2667 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2668 } 2669 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2670 } 2671 } 2672 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 2673 putnext(UDP_RD(q), ackmp); 2674 } 2675 2676 static void 2677 udp_copy_info(struct T_info_ack *tap, udp_t *udp) 2678 { 2679 if (udp->udp_family == AF_INET) { 2680 *tap = udp_g_t_info_ack_ipv4; 2681 } else { 2682 *tap = udp_g_t_info_ack_ipv6; 2683 } 2684 tap->CURRENT_state = udp->udp_state; 2685 tap->OPT_size = udp_max_optsize; 2686 } 2687 2688 /* 2689 * This routine responds to T_CAPABILITY_REQ messages. It is called by 2690 * udp_wput. Much of the T_CAPABILITY_ACK information is copied from 2691 * udp_g_t_info_ack. The current state of the stream is copied from 2692 * udp_state. 2693 */ 2694 static void 2695 udp_capability_req(queue_t *q, mblk_t *mp) 2696 { 2697 t_uscalar_t cap_bits1; 2698 struct T_capability_ack *tcap; 2699 udp_t *udp = Q_TO_UDP(q); 2700 2701 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 2702 2703 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 2704 mp->b_datap->db_type, T_CAPABILITY_ACK); 2705 if (!mp) 2706 return; 2707 2708 tcap = (struct T_capability_ack *)mp->b_rptr; 2709 tcap->CAP_bits1 = 0; 2710 2711 if (cap_bits1 & TC1_INFO) { 2712 udp_copy_info(&tcap->INFO_ack, udp); 2713 tcap->CAP_bits1 |= TC1_INFO; 2714 } 2715 2716 putnext(UDP_RD(q), mp); 2717 } 2718 2719 /* 2720 * This routine responds to T_INFO_REQ messages. It is called by udp_wput. 2721 * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. 2722 * The current state of the stream is copied from udp_state. 2723 */ 2724 static void 2725 udp_info_req(queue_t *q, mblk_t *mp) 2726 { 2727 udp_t *udp = Q_TO_UDP(q); 2728 2729 /* Create a T_INFO_ACK message. */ 2730 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 2731 T_INFO_ACK); 2732 if (!mp) 2733 return; 2734 udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); 2735 putnext(UDP_RD(q), mp); 2736 } 2737 2738 /* 2739 * IP recognizes seven kinds of bind requests: 2740 * 2741 * - A zero-length address binds only to the protocol number. 2742 * 2743 * - A 4-byte address is treated as a request to 2744 * validate that the address is a valid local IPv4 2745 * address, appropriate for an application to bind to. 2746 * IP does the verification, but does not make any note 2747 * of the address at this time. 2748 * 2749 * - A 16-byte address contains is treated as a request 2750 * to validate a local IPv6 address, as the 4-byte 2751 * address case above. 2752 * 2753 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 2754 * use it for the inbound fanout of packets. 2755 * 2756 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 2757 * use it for the inbound fanout of packets. 2758 * 2759 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 2760 * information consisting of local and remote addresses 2761 * and ports. In this case, the addresses are both 2762 * validated as appropriate for this operation, and, if 2763 * so, the information is retained for use in the 2764 * inbound fanout. 2765 * 2766 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 2767 * fanout information, like the 12-byte case above. 2768 * 2769 * IP will also fill in the IRE request mblk with information 2770 * regarding our peer. In all cases, we notify IP of our protocol 2771 * type by appending a single protocol byte to the bind request. 2772 */ 2773 static mblk_t * 2774 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) 2775 { 2776 char *cp; 2777 mblk_t *mp; 2778 struct T_bind_req *tbr; 2779 ipa_conn_t *ac; 2780 ipa6_conn_t *ac6; 2781 sin_t *sin; 2782 sin6_t *sin6; 2783 2784 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 2785 2786 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 2787 if (!mp) 2788 return (mp); 2789 mp->b_datap->db_type = M_PROTO; 2790 tbr = (struct T_bind_req *)mp->b_rptr; 2791 tbr->PRIM_type = bind_prim; 2792 tbr->ADDR_offset = sizeof (*tbr); 2793 tbr->CONIND_number = 0; 2794 tbr->ADDR_length = addr_length; 2795 cp = (char *)&tbr[1]; 2796 switch (addr_length) { 2797 case sizeof (ipa_conn_t): 2798 ASSERT(udp->udp_family == AF_INET); 2799 /* Append a request for an IRE */ 2800 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2801 if (!mp->b_cont) { 2802 freemsg(mp); 2803 return (NULL); 2804 } 2805 mp->b_cont->b_wptr += sizeof (ire_t); 2806 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2807 2808 /* cp known to be 32 bit aligned */ 2809 ac = (ipa_conn_t *)cp; 2810 ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); 2811 ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); 2812 ac->ac_fport = udp->udp_dstport; 2813 ac->ac_lport = udp->udp_port; 2814 break; 2815 2816 case sizeof (ipa6_conn_t): 2817 ASSERT(udp->udp_family == AF_INET6); 2818 /* Append a request for an IRE */ 2819 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2820 if (!mp->b_cont) { 2821 freemsg(mp); 2822 return (NULL); 2823 } 2824 mp->b_cont->b_wptr += sizeof (ire_t); 2825 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2826 2827 /* cp known to be 32 bit aligned */ 2828 ac6 = (ipa6_conn_t *)cp; 2829 ac6->ac6_laddr = udp->udp_v6src; 2830 ac6->ac6_faddr = udp->udp_v6dst; 2831 ac6->ac6_fport = udp->udp_dstport; 2832 ac6->ac6_lport = udp->udp_port; 2833 break; 2834 2835 case sizeof (sin_t): 2836 ASSERT(udp->udp_family == AF_INET); 2837 /* Append a request for an IRE */ 2838 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2839 if (!mp->b_cont) { 2840 freemsg(mp); 2841 return (NULL); 2842 } 2843 mp->b_cont->b_wptr += sizeof (ire_t); 2844 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2845 2846 sin = (sin_t *)cp; 2847 *sin = sin_null; 2848 sin->sin_family = AF_INET; 2849 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); 2850 sin->sin_port = udp->udp_port; 2851 break; 2852 2853 case sizeof (sin6_t): 2854 ASSERT(udp->udp_family == AF_INET6); 2855 /* Append a request for an IRE */ 2856 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2857 if (!mp->b_cont) { 2858 freemsg(mp); 2859 return (NULL); 2860 } 2861 mp->b_cont->b_wptr += sizeof (ire_t); 2862 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2863 2864 sin6 = (sin6_t *)cp; 2865 *sin6 = sin6_null; 2866 sin6->sin6_family = AF_INET6; 2867 sin6->sin6_addr = udp->udp_bound_v6src; 2868 sin6->sin6_port = udp->udp_port; 2869 break; 2870 } 2871 /* Add protocol number to end */ 2872 cp[addr_length] = (char)IPPROTO_UDP; 2873 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 2874 return (mp); 2875 } 2876 2877 /* 2878 * This is the open routine for udp. It allocates a udp_t structure for 2879 * the stream and, on the first open of the module, creates an ND table. 2880 */ 2881 /* ARGSUSED */ 2882 static int 2883 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2884 { 2885 int err; 2886 udp_t *udp; 2887 conn_t *connp; 2888 zoneid_t zoneid = getzoneid(); 2889 queue_t *ip_wq; 2890 char *name; 2891 2892 TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); 2893 2894 /* If the stream is already open, return immediately. */ 2895 if (q->q_ptr != NULL) 2896 return (0); 2897 2898 /* If this is not a push of udp as a module, fail. */ 2899 if (sflag != MODOPEN) 2900 return (EINVAL); 2901 2902 q->q_hiwat = udp_recv_hiwat; 2903 WR(q)->q_hiwat = udp_xmit_hiwat; 2904 WR(q)->q_lowat = udp_xmit_lowat; 2905 2906 /* Insert ourselves in the stream since we're about to walk q_next */ 2907 qprocson(q); 2908 2909 udp = kmem_cache_alloc(udp_cache, KM_SLEEP); 2910 bzero(udp, sizeof (*udp)); 2911 2912 /* 2913 * UDP is supported only as a module and it has to be pushed directly 2914 * above the device instance of IP. If UDP is pushed anywhere else 2915 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the 2916 * sake of MIB browsers and fail everything else. 2917 */ 2918 ip_wq = WR(q)->q_next; 2919 if (ip_wq->q_next != NULL || 2920 (name = ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || 2921 strcmp(name, IP_MOD_NAME) != 0 || 2922 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) { 2923 /* Support just SNMP for MIB browsers */ 2924 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 2925 connp->conn_rq = q; 2926 connp->conn_wq = WR(q); 2927 connp->conn_flags |= IPCL_UDPMOD; 2928 connp->conn_cred = credp; 2929 connp->conn_zoneid = zoneid; 2930 connp->conn_udp = udp; 2931 udp->udp_connp = connp; 2932 q->q_ptr = WR(q)->q_ptr = connp; 2933 crhold(credp); 2934 q->q_qinfo = &udp_snmp_rinit; 2935 WR(q)->q_qinfo = &udp_snmp_winit; 2936 return (0); 2937 } 2938 2939 /* 2940 * Initialize the udp_t structure for this stream. 2941 */ 2942 q = RD(ip_wq); 2943 connp = Q_TO_CONN(q); 2944 mutex_enter(&connp->conn_lock); 2945 connp->conn_proto = IPPROTO_UDP; 2946 connp->conn_flags |= IPCL_UDP; 2947 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 2948 connp->conn_udp = udp; 2949 2950 /* Set the initial state of the stream and the privilege status. */ 2951 udp->udp_connp = connp; 2952 udp->udp_state = TS_UNBND; 2953 udp->udp_mode = UDP_MT_HOT; 2954 if (getmajor(*devp) == (major_t)UDP6_MAJ) { 2955 udp->udp_family = AF_INET6; 2956 udp->udp_ipversion = IPV6_VERSION; 2957 udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 2958 udp->udp_ttl = udp_ipv6_hoplimit; 2959 connp->conn_af_isv6 = B_TRUE; 2960 connp->conn_flags |= IPCL_ISV6; 2961 } else { 2962 udp->udp_family = AF_INET; 2963 udp->udp_ipversion = IPV4_VERSION; 2964 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; 2965 udp->udp_ttl = udp_ipv4_ttl; 2966 connp->conn_af_isv6 = B_FALSE; 2967 connp->conn_flags &= ~IPCL_ISV6; 2968 } 2969 2970 udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2971 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 2972 connp->conn_zoneid = zoneid; 2973 2974 /* 2975 * If the caller has the process-wide flag set, then default to MAC 2976 * exempt mode. This allows read-down to unlabeled hosts. 2977 */ 2978 if (getpflags(NET_MAC_AWARE, credp) != 0) 2979 udp->udp_mac_exempt = B_TRUE; 2980 2981 if (connp->conn_flags & IPCL_SOCKET) { 2982 udp->udp_issocket = B_TRUE; 2983 udp->udp_direct_sockfs = B_TRUE; 2984 } 2985 2986 connp->conn_ulp_labeled = is_system_labeled(); 2987 2988 mutex_exit(&connp->conn_lock); 2989 2990 /* 2991 * The transmit hiwat/lowat is only looked at on IP's queue. 2992 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF 2993 * getsockopts. 2994 */ 2995 q->q_hiwat = udp_recv_hiwat; 2996 WR(q)->q_hiwat = udp_xmit_hiwat; 2997 WR(q)->q_lowat = udp_xmit_lowat; 2998 2999 if (udp->udp_family == AF_INET6) { 3000 /* Build initial header template for transmit */ 3001 if ((err = udp_build_hdrs(q, udp)) != 0) { 3002 error: 3003 qprocsoff(UDP_RD(q)); 3004 udp->udp_connp = NULL; 3005 connp->conn_udp = NULL; 3006 kmem_cache_free(udp_cache, udp); 3007 return (err); 3008 } 3009 } 3010 3011 /* Set the Stream head write offset and high watermark. */ 3012 (void) mi_set_sth_wroff(UDP_RD(q), 3013 udp->udp_max_hdr_len + udp_wroff_extra); 3014 (void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat)); 3015 3016 WR(UDP_RD(q))->q_qinfo = &udp_winit; 3017 3018 return (0); 3019 } 3020 3021 /* 3022 * Which UDP options OK to set through T_UNITDATA_REQ... 3023 */ 3024 /* ARGSUSED */ 3025 static boolean_t 3026 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) 3027 { 3028 return (B_TRUE); 3029 } 3030 3031 /* 3032 * This routine gets default values of certain options whose default 3033 * values are maintained by protcol specific code 3034 */ 3035 /* ARGSUSED */ 3036 int 3037 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 3038 { 3039 int *i1 = (int *)ptr; 3040 3041 switch (level) { 3042 case IPPROTO_IP: 3043 switch (name) { 3044 case IP_MULTICAST_TTL: 3045 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 3046 return (sizeof (uchar_t)); 3047 case IP_MULTICAST_LOOP: 3048 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 3049 return (sizeof (uchar_t)); 3050 } 3051 break; 3052 case IPPROTO_IPV6: 3053 switch (name) { 3054 case IPV6_MULTICAST_HOPS: 3055 *i1 = IP_DEFAULT_MULTICAST_TTL; 3056 return (sizeof (int)); 3057 case IPV6_MULTICAST_LOOP: 3058 *i1 = IP_DEFAULT_MULTICAST_LOOP; 3059 return (sizeof (int)); 3060 case IPV6_UNICAST_HOPS: 3061 *i1 = udp_ipv6_hoplimit; 3062 return (sizeof (int)); 3063 } 3064 break; 3065 } 3066 return (-1); 3067 } 3068 3069 /* 3070 * This routine retrieves the current status of socket options 3071 * and expects the caller to pass in the queue pointer of the 3072 * upper instance. It returns the size of the option retrieved. 3073 */ 3074 int 3075 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 3076 { 3077 int *i1 = (int *)ptr; 3078 conn_t *connp; 3079 udp_t *udp; 3080 ip6_pkt_t *ipp; 3081 int len; 3082 3083 q = UDP_WR(q); 3084 connp = Q_TO_CONN(q); 3085 udp = connp->conn_udp; 3086 ipp = &udp->udp_sticky_ipp; 3087 3088 switch (level) { 3089 case SOL_SOCKET: 3090 switch (name) { 3091 case SO_DEBUG: 3092 *i1 = udp->udp_debug; 3093 break; /* goto sizeof (int) option return */ 3094 case SO_REUSEADDR: 3095 *i1 = udp->udp_reuseaddr; 3096 break; /* goto sizeof (int) option return */ 3097 case SO_TYPE: 3098 *i1 = SOCK_DGRAM; 3099 break; /* goto sizeof (int) option return */ 3100 3101 /* 3102 * The following three items are available here, 3103 * but are only meaningful to IP. 3104 */ 3105 case SO_DONTROUTE: 3106 *i1 = udp->udp_dontroute; 3107 break; /* goto sizeof (int) option return */ 3108 case SO_USELOOPBACK: 3109 *i1 = udp->udp_useloopback; 3110 break; /* goto sizeof (int) option return */ 3111 case SO_BROADCAST: 3112 *i1 = udp->udp_broadcast; 3113 break; /* goto sizeof (int) option return */ 3114 3115 case SO_SNDBUF: 3116 *i1 = q->q_hiwat; 3117 break; /* goto sizeof (int) option return */ 3118 case SO_RCVBUF: 3119 *i1 = RD(q)->q_hiwat; 3120 break; /* goto sizeof (int) option return */ 3121 case SO_DGRAM_ERRIND: 3122 *i1 = udp->udp_dgram_errind; 3123 break; /* goto sizeof (int) option return */ 3124 case SO_RECVUCRED: 3125 *i1 = udp->udp_recvucred; 3126 break; /* goto sizeof (int) option return */ 3127 case SO_TIMESTAMP: 3128 *i1 = udp->udp_timestamp; 3129 break; /* goto sizeof (int) option return */ 3130 case SO_ANON_MLP: 3131 *i1 = udp->udp_anon_mlp; 3132 break; /* goto sizeof (int) option return */ 3133 case SO_MAC_EXEMPT: 3134 *i1 = udp->udp_mac_exempt; 3135 break; /* goto sizeof (int) option return */ 3136 case SO_ALLZONES: 3137 *i1 = connp->conn_allzones; 3138 break; /* goto sizeof (int) option return */ 3139 case SO_EXCLBIND: 3140 *i1 = udp->udp_exclbind ? SO_EXCLBIND : 0; 3141 break; 3142 default: 3143 return (-1); 3144 } 3145 break; 3146 case IPPROTO_IP: 3147 if (udp->udp_family != AF_INET) 3148 return (-1); 3149 switch (name) { 3150 case IP_OPTIONS: 3151 case T_IP_OPTIONS: 3152 len = udp->udp_ip_rcv_options_len - udp->udp_label_len; 3153 if (len > 0) { 3154 bcopy(udp->udp_ip_rcv_options + 3155 udp->udp_label_len, ptr, len); 3156 } 3157 return (len); 3158 case IP_TOS: 3159 case T_IP_TOS: 3160 *i1 = (int)udp->udp_type_of_service; 3161 break; /* goto sizeof (int) option return */ 3162 case IP_TTL: 3163 *i1 = (int)udp->udp_ttl; 3164 break; /* goto sizeof (int) option return */ 3165 case IP_NEXTHOP: 3166 /* Handled at IP level */ 3167 return (-EINVAL); 3168 case IP_MULTICAST_IF: 3169 /* 0 address if not set */ 3170 *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; 3171 return (sizeof (ipaddr_t)); 3172 case IP_MULTICAST_TTL: 3173 *(uchar_t *)ptr = udp->udp_multicast_ttl; 3174 return (sizeof (uchar_t)); 3175 case IP_MULTICAST_LOOP: 3176 *ptr = connp->conn_multicast_loop; 3177 return (sizeof (uint8_t)); 3178 case IP_RECVOPTS: 3179 *i1 = udp->udp_recvopts; 3180 break; /* goto sizeof (int) option return */ 3181 case IP_RECVDSTADDR: 3182 *i1 = udp->udp_recvdstaddr; 3183 break; /* goto sizeof (int) option return */ 3184 case IP_RECVIF: 3185 *i1 = udp->udp_recvif; 3186 break; /* goto sizeof (int) option return */ 3187 case IP_RECVSLLA: 3188 *i1 = udp->udp_recvslla; 3189 break; /* goto sizeof (int) option return */ 3190 case IP_RECVTTL: 3191 *i1 = udp->udp_recvttl; 3192 break; /* goto sizeof (int) option return */ 3193 case IP_ADD_MEMBERSHIP: 3194 case IP_DROP_MEMBERSHIP: 3195 case IP_BLOCK_SOURCE: 3196 case IP_UNBLOCK_SOURCE: 3197 case IP_ADD_SOURCE_MEMBERSHIP: 3198 case IP_DROP_SOURCE_MEMBERSHIP: 3199 case MCAST_JOIN_GROUP: 3200 case MCAST_LEAVE_GROUP: 3201 case MCAST_BLOCK_SOURCE: 3202 case MCAST_UNBLOCK_SOURCE: 3203 case MCAST_JOIN_SOURCE_GROUP: 3204 case MCAST_LEAVE_SOURCE_GROUP: 3205 case IP_DONTFAILOVER_IF: 3206 /* cannot "get" the value for these */ 3207 return (-1); 3208 case IP_BOUND_IF: 3209 /* Zero if not set */ 3210 *i1 = udp->udp_bound_if; 3211 break; /* goto sizeof (int) option return */ 3212 case IP_UNSPEC_SRC: 3213 *i1 = udp->udp_unspec_source; 3214 break; /* goto sizeof (int) option return */ 3215 case IP_XMIT_IF: 3216 *i1 = udp->udp_xmit_if; 3217 break; /* goto sizeof (int) option return */ 3218 default: 3219 return (-1); 3220 } 3221 break; 3222 case IPPROTO_IPV6: 3223 if (udp->udp_family != AF_INET6) 3224 return (-1); 3225 switch (name) { 3226 case IPV6_UNICAST_HOPS: 3227 *i1 = (unsigned int)udp->udp_ttl; 3228 break; /* goto sizeof (int) option return */ 3229 case IPV6_MULTICAST_IF: 3230 /* 0 index if not set */ 3231 *i1 = udp->udp_multicast_if_index; 3232 break; /* goto sizeof (int) option return */ 3233 case IPV6_MULTICAST_HOPS: 3234 *i1 = udp->udp_multicast_ttl; 3235 break; /* goto sizeof (int) option return */ 3236 case IPV6_MULTICAST_LOOP: 3237 *i1 = connp->conn_multicast_loop; 3238 break; /* goto sizeof (int) option return */ 3239 case IPV6_JOIN_GROUP: 3240 case IPV6_LEAVE_GROUP: 3241 case MCAST_JOIN_GROUP: 3242 case MCAST_LEAVE_GROUP: 3243 case MCAST_BLOCK_SOURCE: 3244 case MCAST_UNBLOCK_SOURCE: 3245 case MCAST_JOIN_SOURCE_GROUP: 3246 case MCAST_LEAVE_SOURCE_GROUP: 3247 /* cannot "get" the value for these */ 3248 return (-1); 3249 case IPV6_BOUND_IF: 3250 /* Zero if not set */ 3251 *i1 = udp->udp_bound_if; 3252 break; /* goto sizeof (int) option return */ 3253 case IPV6_UNSPEC_SRC: 3254 *i1 = udp->udp_unspec_source; 3255 break; /* goto sizeof (int) option return */ 3256 case IPV6_RECVPKTINFO: 3257 *i1 = udp->udp_ipv6_recvpktinfo; 3258 break; /* goto sizeof (int) option return */ 3259 case IPV6_RECVTCLASS: 3260 *i1 = udp->udp_ipv6_recvtclass; 3261 break; /* goto sizeof (int) option return */ 3262 case IPV6_RECVPATHMTU: 3263 *i1 = udp->udp_ipv6_recvpathmtu; 3264 break; /* goto sizeof (int) option return */ 3265 case IPV6_RECVHOPLIMIT: 3266 *i1 = udp->udp_ipv6_recvhoplimit; 3267 break; /* goto sizeof (int) option return */ 3268 case IPV6_RECVHOPOPTS: 3269 *i1 = udp->udp_ipv6_recvhopopts; 3270 break; /* goto sizeof (int) option return */ 3271 case IPV6_RECVDSTOPTS: 3272 *i1 = udp->udp_ipv6_recvdstopts; 3273 break; /* goto sizeof (int) option return */ 3274 case _OLD_IPV6_RECVDSTOPTS: 3275 *i1 = udp->udp_old_ipv6_recvdstopts; 3276 break; /* goto sizeof (int) option return */ 3277 case IPV6_RECVRTHDRDSTOPTS: 3278 *i1 = udp->udp_ipv6_recvrthdrdstopts; 3279 break; /* goto sizeof (int) option return */ 3280 case IPV6_RECVRTHDR: 3281 *i1 = udp->udp_ipv6_recvrthdr; 3282 break; /* goto sizeof (int) option return */ 3283 case IPV6_PKTINFO: { 3284 /* XXX assumes that caller has room for max size! */ 3285 struct in6_pktinfo *pkti; 3286 3287 pkti = (struct in6_pktinfo *)ptr; 3288 if (ipp->ipp_fields & IPPF_IFINDEX) 3289 pkti->ipi6_ifindex = ipp->ipp_ifindex; 3290 else 3291 pkti->ipi6_ifindex = 0; 3292 if (ipp->ipp_fields & IPPF_ADDR) 3293 pkti->ipi6_addr = ipp->ipp_addr; 3294 else 3295 pkti->ipi6_addr = ipv6_all_zeros; 3296 return (sizeof (struct in6_pktinfo)); 3297 } 3298 case IPV6_TCLASS: 3299 if (ipp->ipp_fields & IPPF_TCLASS) 3300 *i1 = ipp->ipp_tclass; 3301 else 3302 *i1 = IPV6_FLOW_TCLASS( 3303 IPV6_DEFAULT_VERS_AND_FLOW); 3304 break; /* goto sizeof (int) option return */ 3305 case IPV6_NEXTHOP: { 3306 sin6_t *sin6 = (sin6_t *)ptr; 3307 3308 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 3309 return (0); 3310 *sin6 = sin6_null; 3311 sin6->sin6_family = AF_INET6; 3312 sin6->sin6_addr = ipp->ipp_nexthop; 3313 return (sizeof (sin6_t)); 3314 } 3315 case IPV6_HOPOPTS: 3316 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 3317 return (0); 3318 if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6) 3319 return (0); 3320 /* 3321 * The cipso/label option is added by kernel. 3322 * User is not usually aware of this option. 3323 * We copy out the hbh opt after the label option. 3324 */ 3325 bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6, 3326 ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6); 3327 if (udp->udp_label_len_v6 > 0) { 3328 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 3329 ptr[1] = (ipp->ipp_hopoptslen - 3330 udp->udp_label_len_v6 + 7) / 8 - 1; 3331 } 3332 return (ipp->ipp_hopoptslen - udp->udp_label_len_v6); 3333 case IPV6_RTHDRDSTOPTS: 3334 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 3335 return (0); 3336 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 3337 return (ipp->ipp_rtdstoptslen); 3338 case IPV6_RTHDR: 3339 if (!(ipp->ipp_fields & IPPF_RTHDR)) 3340 return (0); 3341 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 3342 return (ipp->ipp_rthdrlen); 3343 case IPV6_DSTOPTS: 3344 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 3345 return (0); 3346 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 3347 return (ipp->ipp_dstoptslen); 3348 case IPV6_PATHMTU: 3349 return (ip_fill_mtuinfo(&udp->udp_v6dst, 3350 udp->udp_dstport, (struct ip6_mtuinfo *)ptr)); 3351 default: 3352 return (-1); 3353 } 3354 break; 3355 case IPPROTO_UDP: 3356 switch (name) { 3357 case UDP_ANONPRIVBIND: 3358 *i1 = udp->udp_anon_priv_bind; 3359 break; 3360 case UDP_EXCLBIND: 3361 *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; 3362 break; 3363 case UDP_RCVHDR: 3364 *i1 = udp->udp_rcvhdr ? 1 : 0; 3365 break; 3366 default: 3367 return (-1); 3368 } 3369 break; 3370 default: 3371 return (-1); 3372 } 3373 return (sizeof (int)); 3374 } 3375 3376 /* 3377 * This routine sets socket options; it expects the caller 3378 * to pass in the queue pointer of the upper instance. 3379 */ 3380 /* ARGSUSED */ 3381 int 3382 udp_opt_set(queue_t *q, uint_t optset_context, int level, 3383 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 3384 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 3385 { 3386 udpattrs_t *attrs = thisdg_attrs; 3387 int *i1 = (int *)invalp; 3388 boolean_t onoff = (*i1 == 0) ? 0 : 1; 3389 boolean_t checkonly; 3390 int error; 3391 conn_t *connp; 3392 udp_t *udp; 3393 uint_t newlen; 3394 3395 q = UDP_WR(q); 3396 connp = Q_TO_CONN(q); 3397 udp = connp->conn_udp; 3398 3399 switch (optset_context) { 3400 case SETFN_OPTCOM_CHECKONLY: 3401 checkonly = B_TRUE; 3402 /* 3403 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 3404 * inlen != 0 implies value supplied and 3405 * we have to "pretend" to set it. 3406 * inlen == 0 implies that there is no 3407 * value part in T_CHECK request and just validation 3408 * done elsewhere should be enough, we just return here. 3409 */ 3410 if (inlen == 0) { 3411 *outlenp = 0; 3412 return (0); 3413 } 3414 break; 3415 case SETFN_OPTCOM_NEGOTIATE: 3416 checkonly = B_FALSE; 3417 break; 3418 case SETFN_UD_NEGOTIATE: 3419 case SETFN_CONN_NEGOTIATE: 3420 checkonly = B_FALSE; 3421 /* 3422 * Negotiating local and "association-related" options 3423 * through T_UNITDATA_REQ. 3424 * 3425 * Following routine can filter out ones we do not 3426 * want to be "set" this way. 3427 */ 3428 if (!udp_opt_allow_udr_set(level, name)) { 3429 *outlenp = 0; 3430 return (EINVAL); 3431 } 3432 break; 3433 default: 3434 /* 3435 * We should never get here 3436 */ 3437 *outlenp = 0; 3438 return (EINVAL); 3439 } 3440 3441 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 3442 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 3443 3444 /* 3445 * For fixed length options, no sanity check 3446 * of passed in length is done. It is assumed *_optcom_req() 3447 * routines do the right thing. 3448 */ 3449 3450 switch (level) { 3451 case SOL_SOCKET: 3452 switch (name) { 3453 case SO_REUSEADDR: 3454 if (!checkonly) 3455 udp->udp_reuseaddr = onoff; 3456 break; 3457 case SO_DEBUG: 3458 if (!checkonly) 3459 udp->udp_debug = onoff; 3460 break; 3461 /* 3462 * The following three items are available here, 3463 * but are only meaningful to IP. 3464 */ 3465 case SO_DONTROUTE: 3466 if (!checkonly) 3467 udp->udp_dontroute = onoff; 3468 break; 3469 case SO_USELOOPBACK: 3470 if (!checkonly) 3471 udp->udp_useloopback = onoff; 3472 break; 3473 case SO_BROADCAST: 3474 if (!checkonly) 3475 udp->udp_broadcast = onoff; 3476 break; 3477 3478 case SO_SNDBUF: 3479 if (*i1 > udp_max_buf) { 3480 *outlenp = 0; 3481 return (ENOBUFS); 3482 } 3483 if (!checkonly) { 3484 q->q_hiwat = *i1; 3485 WR(UDP_RD(q))->q_hiwat = *i1; 3486 } 3487 break; 3488 case SO_RCVBUF: 3489 if (*i1 > udp_max_buf) { 3490 *outlenp = 0; 3491 return (ENOBUFS); 3492 } 3493 if (!checkonly) { 3494 RD(q)->q_hiwat = *i1; 3495 UDP_RD(q)->q_hiwat = *i1; 3496 (void) mi_set_sth_hiwat(UDP_RD(q), 3497 udp_set_rcv_hiwat(udp, *i1)); 3498 } 3499 break; 3500 case SO_DGRAM_ERRIND: 3501 if (!checkonly) 3502 udp->udp_dgram_errind = onoff; 3503 break; 3504 case SO_RECVUCRED: 3505 if (!checkonly) 3506 udp->udp_recvucred = onoff; 3507 break; 3508 case SO_ALLZONES: 3509 /* 3510 * "soft" error (negative) 3511 * option not handled at this level 3512 * Do not modify *outlenp. 3513 */ 3514 return (-EINVAL); 3515 case SO_TIMESTAMP: 3516 if (!checkonly) 3517 udp->udp_timestamp = onoff; 3518 break; 3519 case SO_ANON_MLP: 3520 if (!checkonly) 3521 udp->udp_anon_mlp = onoff; 3522 break; 3523 case SO_MAC_EXEMPT: 3524 if (secpolicy_net_mac_aware(cr) != 0 || 3525 udp->udp_state != TS_UNBND) 3526 return (EACCES); 3527 if (!checkonly) 3528 udp->udp_mac_exempt = onoff; 3529 break; 3530 case SCM_UCRED: { 3531 struct ucred_s *ucr; 3532 cred_t *cr, *newcr; 3533 ts_label_t *tsl; 3534 3535 /* 3536 * Only sockets that have proper privileges and are 3537 * bound to MLPs will have any other value here, so 3538 * this implicitly tests for privilege to set label. 3539 */ 3540 if (connp->conn_mlp_type == mlptSingle) 3541 break; 3542 ucr = (struct ucred_s *)invalp; 3543 if (inlen != ucredsize || 3544 ucr->uc_labeloff < sizeof (*ucr) || 3545 ucr->uc_labeloff + sizeof (bslabel_t) > inlen) 3546 return (EINVAL); 3547 if (!checkonly) { 3548 mblk_t *mb; 3549 3550 if (attrs == NULL || 3551 (mb = attrs->udpattr_mb) == NULL) 3552 return (EINVAL); 3553 if ((cr = DB_CRED(mb)) == NULL) 3554 cr = udp->udp_connp->conn_cred; 3555 ASSERT(cr != NULL); 3556 if ((tsl = crgetlabel(cr)) == NULL) 3557 return (EINVAL); 3558 newcr = copycred_from_bslabel(cr, UCLABEL(ucr), 3559 tsl->tsl_doi, KM_NOSLEEP); 3560 if (newcr == NULL) 3561 return (ENOSR); 3562 mblk_setcred(mb, newcr); 3563 attrs->udpattr_credset = B_TRUE; 3564 crfree(newcr); 3565 } 3566 break; 3567 } 3568 case SO_EXCLBIND: 3569 if (!checkonly) 3570 udp->udp_exclbind = onoff; 3571 break; 3572 default: 3573 *outlenp = 0; 3574 return (EINVAL); 3575 } 3576 break; 3577 case IPPROTO_IP: 3578 if (udp->udp_family != AF_INET) { 3579 *outlenp = 0; 3580 return (ENOPROTOOPT); 3581 } 3582 switch (name) { 3583 case IP_OPTIONS: 3584 case T_IP_OPTIONS: 3585 /* Save options for use by IP. */ 3586 newlen = inlen + udp->udp_label_len; 3587 if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) { 3588 *outlenp = 0; 3589 return (EINVAL); 3590 } 3591 if (checkonly) 3592 break; 3593 3594 if (!tsol_option_set(&udp->udp_ip_snd_options, 3595 &udp->udp_ip_snd_options_len, 3596 udp->udp_label_len, invalp, inlen)) { 3597 *outlenp = 0; 3598 return (ENOMEM); 3599 } 3600 3601 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3602 UDPH_SIZE + udp->udp_ip_snd_options_len; 3603 (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + 3604 udp_wroff_extra); 3605 break; 3606 3607 case IP_TTL: 3608 if (!checkonly) { 3609 udp->udp_ttl = (uchar_t)*i1; 3610 } 3611 break; 3612 case IP_TOS: 3613 case T_IP_TOS: 3614 if (!checkonly) { 3615 udp->udp_type_of_service = (uchar_t)*i1; 3616 } 3617 break; 3618 case IP_MULTICAST_IF: { 3619 /* 3620 * TODO should check OPTMGMT reply and undo this if 3621 * there is an error. 3622 */ 3623 struct in_addr *inap = (struct in_addr *)invalp; 3624 if (!checkonly) { 3625 udp->udp_multicast_if_addr = 3626 inap->s_addr; 3627 } 3628 break; 3629 } 3630 case IP_MULTICAST_TTL: 3631 if (!checkonly) 3632 udp->udp_multicast_ttl = *invalp; 3633 break; 3634 case IP_MULTICAST_LOOP: 3635 if (!checkonly) 3636 connp->conn_multicast_loop = *invalp; 3637 break; 3638 case IP_RECVOPTS: 3639 if (!checkonly) 3640 udp->udp_recvopts = onoff; 3641 break; 3642 case IP_RECVDSTADDR: 3643 if (!checkonly) 3644 udp->udp_recvdstaddr = onoff; 3645 break; 3646 case IP_RECVIF: 3647 if (!checkonly) 3648 udp->udp_recvif = onoff; 3649 break; 3650 case IP_RECVSLLA: 3651 if (!checkonly) 3652 udp->udp_recvslla = onoff; 3653 break; 3654 case IP_RECVTTL: 3655 if (!checkonly) 3656 udp->udp_recvttl = onoff; 3657 break; 3658 case IP_ADD_MEMBERSHIP: 3659 case IP_DROP_MEMBERSHIP: 3660 case IP_BLOCK_SOURCE: 3661 case IP_UNBLOCK_SOURCE: 3662 case IP_ADD_SOURCE_MEMBERSHIP: 3663 case IP_DROP_SOURCE_MEMBERSHIP: 3664 case MCAST_JOIN_GROUP: 3665 case MCAST_LEAVE_GROUP: 3666 case MCAST_BLOCK_SOURCE: 3667 case MCAST_UNBLOCK_SOURCE: 3668 case MCAST_JOIN_SOURCE_GROUP: 3669 case MCAST_LEAVE_SOURCE_GROUP: 3670 case IP_SEC_OPT: 3671 case IP_NEXTHOP: 3672 /* 3673 * "soft" error (negative) 3674 * option not handled at this level 3675 * Do not modify *outlenp. 3676 */ 3677 return (-EINVAL); 3678 case IP_BOUND_IF: 3679 if (!checkonly) 3680 udp->udp_bound_if = *i1; 3681 break; 3682 case IP_UNSPEC_SRC: 3683 if (!checkonly) 3684 udp->udp_unspec_source = onoff; 3685 break; 3686 case IP_XMIT_IF: 3687 if (!checkonly) 3688 udp->udp_xmit_if = *i1; 3689 break; 3690 default: 3691 *outlenp = 0; 3692 return (EINVAL); 3693 } 3694 break; 3695 case IPPROTO_IPV6: { 3696 ip6_pkt_t *ipp; 3697 boolean_t sticky; 3698 3699 if (udp->udp_family != AF_INET6) { 3700 *outlenp = 0; 3701 return (ENOPROTOOPT); 3702 } 3703 /* 3704 * Deal with both sticky options and ancillary data 3705 */ 3706 sticky = B_FALSE; 3707 if (attrs == NULL || (ipp = attrs->udpattr_ipp) == NULL) { 3708 /* sticky options, or none */ 3709 ipp = &udp->udp_sticky_ipp; 3710 sticky = B_TRUE; 3711 } 3712 3713 switch (name) { 3714 case IPV6_MULTICAST_IF: 3715 if (!checkonly) 3716 udp->udp_multicast_if_index = *i1; 3717 break; 3718 case IPV6_UNICAST_HOPS: 3719 /* -1 means use default */ 3720 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3721 *outlenp = 0; 3722 return (EINVAL); 3723 } 3724 if (!checkonly) { 3725 if (*i1 == -1) { 3726 udp->udp_ttl = ipp->ipp_unicast_hops = 3727 udp_ipv6_hoplimit; 3728 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 3729 /* Pass modified value to IP. */ 3730 *i1 = udp->udp_ttl; 3731 } else { 3732 udp->udp_ttl = ipp->ipp_unicast_hops = 3733 (uint8_t)*i1; 3734 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 3735 } 3736 /* Rebuild the header template */ 3737 error = udp_build_hdrs(q, udp); 3738 if (error != 0) { 3739 *outlenp = 0; 3740 return (error); 3741 } 3742 } 3743 break; 3744 case IPV6_MULTICAST_HOPS: 3745 /* -1 means use default */ 3746 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3747 *outlenp = 0; 3748 return (EINVAL); 3749 } 3750 if (!checkonly) { 3751 if (*i1 == -1) { 3752 udp->udp_multicast_ttl = 3753 ipp->ipp_multicast_hops = 3754 IP_DEFAULT_MULTICAST_TTL; 3755 ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; 3756 /* Pass modified value to IP. */ 3757 *i1 = udp->udp_multicast_ttl; 3758 } else { 3759 udp->udp_multicast_ttl = 3760 ipp->ipp_multicast_hops = 3761 (uint8_t)*i1; 3762 ipp->ipp_fields |= IPPF_MULTICAST_HOPS; 3763 } 3764 } 3765 break; 3766 case IPV6_MULTICAST_LOOP: 3767 if (*i1 != 0 && *i1 != 1) { 3768 *outlenp = 0; 3769 return (EINVAL); 3770 } 3771 if (!checkonly) 3772 connp->conn_multicast_loop = *i1; 3773 break; 3774 case IPV6_JOIN_GROUP: 3775 case IPV6_LEAVE_GROUP: 3776 case MCAST_JOIN_GROUP: 3777 case MCAST_LEAVE_GROUP: 3778 case MCAST_BLOCK_SOURCE: 3779 case MCAST_UNBLOCK_SOURCE: 3780 case MCAST_JOIN_SOURCE_GROUP: 3781 case MCAST_LEAVE_SOURCE_GROUP: 3782 /* 3783 * "soft" error (negative) 3784 * option not handled at this level 3785 * Note: Do not modify *outlenp 3786 */ 3787 return (-EINVAL); 3788 case IPV6_BOUND_IF: 3789 if (!checkonly) 3790 udp->udp_bound_if = *i1; 3791 break; 3792 case IPV6_UNSPEC_SRC: 3793 if (!checkonly) 3794 udp->udp_unspec_source = onoff; 3795 break; 3796 /* 3797 * Set boolean switches for ancillary data delivery 3798 */ 3799 case IPV6_RECVPKTINFO: 3800 if (!checkonly) 3801 udp->udp_ipv6_recvpktinfo = onoff; 3802 break; 3803 case IPV6_RECVTCLASS: 3804 if (!checkonly) { 3805 udp->udp_ipv6_recvtclass = onoff; 3806 } 3807 break; 3808 case IPV6_RECVPATHMTU: 3809 if (!checkonly) { 3810 udp->udp_ipv6_recvpathmtu = onoff; 3811 } 3812 break; 3813 case IPV6_RECVHOPLIMIT: 3814 if (!checkonly) 3815 udp->udp_ipv6_recvhoplimit = onoff; 3816 break; 3817 case IPV6_RECVHOPOPTS: 3818 if (!checkonly) 3819 udp->udp_ipv6_recvhopopts = onoff; 3820 break; 3821 case IPV6_RECVDSTOPTS: 3822 if (!checkonly) 3823 udp->udp_ipv6_recvdstopts = onoff; 3824 break; 3825 case _OLD_IPV6_RECVDSTOPTS: 3826 if (!checkonly) 3827 udp->udp_old_ipv6_recvdstopts = onoff; 3828 break; 3829 case IPV6_RECVRTHDRDSTOPTS: 3830 if (!checkonly) 3831 udp->udp_ipv6_recvrthdrdstopts = onoff; 3832 break; 3833 case IPV6_RECVRTHDR: 3834 if (!checkonly) 3835 udp->udp_ipv6_recvrthdr = onoff; 3836 break; 3837 /* 3838 * Set sticky options or ancillary data. 3839 * If sticky options, (re)build any extension headers 3840 * that might be needed as a result. 3841 */ 3842 case IPV6_PKTINFO: 3843 /* 3844 * The source address and ifindex are verified 3845 * in ip_opt_set(). For ancillary data the 3846 * source address is checked in ip_wput_v6. 3847 */ 3848 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 3849 return (EINVAL); 3850 if (checkonly) 3851 break; 3852 3853 if (inlen == 0) { 3854 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 3855 ipp->ipp_sticky_ignored |= 3856 (IPPF_IFINDEX|IPPF_ADDR); 3857 } else { 3858 struct in6_pktinfo *pkti; 3859 3860 pkti = (struct in6_pktinfo *)invalp; 3861 ipp->ipp_ifindex = pkti->ipi6_ifindex; 3862 ipp->ipp_addr = pkti->ipi6_addr; 3863 if (ipp->ipp_ifindex != 0) 3864 ipp->ipp_fields |= IPPF_IFINDEX; 3865 else 3866 ipp->ipp_fields &= ~IPPF_IFINDEX; 3867 if (!IN6_IS_ADDR_UNSPECIFIED( 3868 &ipp->ipp_addr)) 3869 ipp->ipp_fields |= IPPF_ADDR; 3870 else 3871 ipp->ipp_fields &= ~IPPF_ADDR; 3872 } 3873 if (sticky) { 3874 error = udp_build_hdrs(q, udp); 3875 if (error != 0) 3876 return (error); 3877 } 3878 break; 3879 case IPV6_HOPLIMIT: 3880 if (sticky) 3881 return (EINVAL); 3882 if (inlen != 0 && inlen != sizeof (int)) 3883 return (EINVAL); 3884 if (checkonly) 3885 break; 3886 3887 if (inlen == 0) { 3888 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 3889 ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; 3890 } else { 3891 if (*i1 > 255 || *i1 < -1) 3892 return (EINVAL); 3893 if (*i1 == -1) 3894 ipp->ipp_hoplimit = udp_ipv6_hoplimit; 3895 else 3896 ipp->ipp_hoplimit = *i1; 3897 ipp->ipp_fields |= IPPF_HOPLIMIT; 3898 } 3899 break; 3900 case IPV6_TCLASS: 3901 if (inlen != 0 && inlen != sizeof (int)) 3902 return (EINVAL); 3903 if (checkonly) 3904 break; 3905 3906 if (inlen == 0) { 3907 ipp->ipp_fields &= ~IPPF_TCLASS; 3908 ipp->ipp_sticky_ignored |= IPPF_TCLASS; 3909 } else { 3910 if (*i1 > 255 || *i1 < -1) 3911 return (EINVAL); 3912 if (*i1 == -1) 3913 ipp->ipp_tclass = 0; 3914 else 3915 ipp->ipp_tclass = *i1; 3916 ipp->ipp_fields |= IPPF_TCLASS; 3917 } 3918 if (sticky) { 3919 error = udp_build_hdrs(q, udp); 3920 if (error != 0) 3921 return (error); 3922 } 3923 break; 3924 case IPV6_NEXTHOP: 3925 /* 3926 * IP will verify that the nexthop is reachable 3927 * and fail for sticky options. 3928 */ 3929 if (inlen != 0 && inlen != sizeof (sin6_t)) 3930 return (EINVAL); 3931 if (checkonly) 3932 break; 3933 3934 if (inlen == 0) { 3935 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3936 ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; 3937 } else { 3938 sin6_t *sin6 = (sin6_t *)invalp; 3939 3940 if (sin6->sin6_family != AF_INET6) 3941 return (EAFNOSUPPORT); 3942 if (IN6_IS_ADDR_V4MAPPED( 3943 &sin6->sin6_addr)) 3944 return (EADDRNOTAVAIL); 3945 ipp->ipp_nexthop = sin6->sin6_addr; 3946 if (!IN6_IS_ADDR_UNSPECIFIED( 3947 &ipp->ipp_nexthop)) 3948 ipp->ipp_fields |= IPPF_NEXTHOP; 3949 else 3950 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3951 } 3952 if (sticky) { 3953 error = udp_build_hdrs(q, udp); 3954 if (error != 0) 3955 return (error); 3956 } 3957 break; 3958 case IPV6_HOPOPTS: { 3959 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 3960 /* 3961 * Sanity checks - minimum size, size a multiple of 3962 * eight bytes, and matching size passed in. 3963 */ 3964 if (inlen != 0 && 3965 inlen != (8 * (hopts->ip6h_len + 1))) 3966 return (EINVAL); 3967 3968 if (checkonly) 3969 break; 3970 3971 error = optcom_pkt_set(invalp, inlen, sticky, 3972 (uchar_t **)&ipp->ipp_hopopts, 3973 &ipp->ipp_hopoptslen, 3974 sticky ? udp->udp_label_len_v6 : 0); 3975 if (error != 0) 3976 return (error); 3977 if (ipp->ipp_hopoptslen == 0) { 3978 ipp->ipp_fields &= ~IPPF_HOPOPTS; 3979 ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; 3980 } else { 3981 ipp->ipp_fields |= IPPF_HOPOPTS; 3982 } 3983 if (sticky) { 3984 error = udp_build_hdrs(q, udp); 3985 if (error != 0) 3986 return (error); 3987 } 3988 break; 3989 } 3990 case IPV6_RTHDRDSTOPTS: { 3991 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 3992 3993 /* 3994 * Sanity checks - minimum size, size a multiple of 3995 * eight bytes, and matching size passed in. 3996 */ 3997 if (inlen != 0 && 3998 inlen != (8 * (dopts->ip6d_len + 1))) 3999 return (EINVAL); 4000 4001 if (checkonly) 4002 break; 4003 4004 if (inlen == 0) { 4005 if (sticky && 4006 (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4007 kmem_free(ipp->ipp_rtdstopts, 4008 ipp->ipp_rtdstoptslen); 4009 ipp->ipp_rtdstopts = NULL; 4010 ipp->ipp_rtdstoptslen = 0; 4011 } 4012 4013 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 4014 ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; 4015 } else { 4016 error = optcom_pkt_set(invalp, inlen, sticky, 4017 (uchar_t **)&ipp->ipp_rtdstopts, 4018 &ipp->ipp_rtdstoptslen, 0); 4019 if (error != 0) 4020 return (error); 4021 ipp->ipp_fields |= IPPF_RTDSTOPTS; 4022 } 4023 if (sticky) { 4024 error = udp_build_hdrs(q, udp); 4025 if (error != 0) 4026 return (error); 4027 } 4028 break; 4029 } 4030 case IPV6_DSTOPTS: { 4031 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 4032 4033 /* 4034 * Sanity checks - minimum size, size a multiple of 4035 * eight bytes, and matching size passed in. 4036 */ 4037 if (inlen != 0 && 4038 inlen != (8 * (dopts->ip6d_len + 1))) 4039 return (EINVAL); 4040 4041 if (checkonly) 4042 break; 4043 4044 if (inlen == 0) { 4045 if (sticky && 4046 (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4047 kmem_free(ipp->ipp_dstopts, 4048 ipp->ipp_dstoptslen); 4049 ipp->ipp_dstopts = NULL; 4050 ipp->ipp_dstoptslen = 0; 4051 } 4052 ipp->ipp_fields &= ~IPPF_DSTOPTS; 4053 ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; 4054 } else { 4055 error = optcom_pkt_set(invalp, inlen, sticky, 4056 (uchar_t **)&ipp->ipp_dstopts, 4057 &ipp->ipp_dstoptslen, 0); 4058 if (error != 0) 4059 return (error); 4060 ipp->ipp_fields |= IPPF_DSTOPTS; 4061 } 4062 if (sticky) { 4063 error = udp_build_hdrs(q, udp); 4064 if (error != 0) 4065 return (error); 4066 } 4067 break; 4068 } 4069 case IPV6_RTHDR: { 4070 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 4071 4072 /* 4073 * Sanity checks - minimum size, size a multiple of 4074 * eight bytes, and matching size passed in. 4075 */ 4076 if (inlen != 0 && 4077 inlen != (8 * (rt->ip6r_len + 1))) 4078 return (EINVAL); 4079 4080 if (checkonly) 4081 break; 4082 4083 if (inlen == 0) { 4084 if (sticky && 4085 (ipp->ipp_fields & IPPF_RTHDR) != 0) { 4086 kmem_free(ipp->ipp_rthdr, 4087 ipp->ipp_rthdrlen); 4088 ipp->ipp_rthdr = NULL; 4089 ipp->ipp_rthdrlen = 0; 4090 } 4091 ipp->ipp_fields &= ~IPPF_RTHDR; 4092 ipp->ipp_sticky_ignored |= IPPF_RTHDR; 4093 } else { 4094 error = optcom_pkt_set(invalp, inlen, sticky, 4095 (uchar_t **)&ipp->ipp_rthdr, 4096 &ipp->ipp_rthdrlen, 0); 4097 if (error != 0) 4098 return (error); 4099 ipp->ipp_fields |= IPPF_RTHDR; 4100 } 4101 if (sticky) { 4102 error = udp_build_hdrs(q, udp); 4103 if (error != 0) 4104 return (error); 4105 } 4106 break; 4107 } 4108 4109 case IPV6_DONTFRAG: 4110 if (checkonly) 4111 break; 4112 4113 if (onoff) { 4114 ipp->ipp_fields |= IPPF_DONTFRAG; 4115 } else { 4116 ipp->ipp_fields &= ~IPPF_DONTFRAG; 4117 } 4118 break; 4119 4120 case IPV6_USE_MIN_MTU: 4121 if (inlen != sizeof (int)) 4122 return (EINVAL); 4123 4124 if (*i1 < -1 || *i1 > 1) 4125 return (EINVAL); 4126 4127 if (checkonly) 4128 break; 4129 4130 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 4131 ipp->ipp_use_min_mtu = *i1; 4132 break; 4133 4134 case IPV6_BOUND_PIF: 4135 case IPV6_SEC_OPT: 4136 case IPV6_DONTFAILOVER_IF: 4137 case IPV6_SRC_PREFERENCES: 4138 case IPV6_V6ONLY: 4139 /* Handled at the IP level */ 4140 return (-EINVAL); 4141 default: 4142 *outlenp = 0; 4143 return (EINVAL); 4144 } 4145 break; 4146 } /* end IPPROTO_IPV6 */ 4147 case IPPROTO_UDP: 4148 switch (name) { 4149 case UDP_ANONPRIVBIND: 4150 if ((error = secpolicy_net_privaddr(cr, 0)) != 0) { 4151 *outlenp = 0; 4152 return (error); 4153 } 4154 if (!checkonly) { 4155 udp->udp_anon_priv_bind = onoff; 4156 } 4157 break; 4158 case UDP_EXCLBIND: 4159 if (!checkonly) 4160 udp->udp_exclbind = onoff; 4161 break; 4162 case UDP_RCVHDR: 4163 if (!checkonly) 4164 udp->udp_rcvhdr = onoff; 4165 break; 4166 default: 4167 *outlenp = 0; 4168 return (EINVAL); 4169 } 4170 break; 4171 default: 4172 *outlenp = 0; 4173 return (EINVAL); 4174 } 4175 /* 4176 * Common case of OK return with outval same as inval. 4177 */ 4178 if (invalp != outvalp) { 4179 /* don't trust bcopy for identical src/dst */ 4180 (void) bcopy(invalp, outvalp, inlen); 4181 } 4182 *outlenp = inlen; 4183 return (0); 4184 } 4185 4186 /* 4187 * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl. 4188 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 4189 * headers, and the udp header. 4190 * Returns failure if can't allocate memory. 4191 */ 4192 static int 4193 udp_build_hdrs(queue_t *q, udp_t *udp) 4194 { 4195 uchar_t *hdrs; 4196 uint_t hdrs_len; 4197 ip6_t *ip6h; 4198 ip6i_t *ip6i; 4199 udpha_t *udpha; 4200 ip6_pkt_t *ipp = &udp->udp_sticky_ipp; 4201 4202 hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE; 4203 ASSERT(hdrs_len != 0); 4204 if (hdrs_len != udp->udp_sticky_hdrs_len) { 4205 /* Need to reallocate */ 4206 hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); 4207 if (hdrs == NULL) 4208 return (ENOMEM); 4209 4210 if (udp->udp_sticky_hdrs_len != 0) { 4211 kmem_free(udp->udp_sticky_hdrs, 4212 udp->udp_sticky_hdrs_len); 4213 } 4214 udp->udp_sticky_hdrs = hdrs; 4215 udp->udp_sticky_hdrs_len = hdrs_len; 4216 } 4217 ip_build_hdrs_v6(udp->udp_sticky_hdrs, 4218 udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP); 4219 4220 /* Set header fields not in ipp */ 4221 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 4222 ip6i = (ip6i_t *)udp->udp_sticky_hdrs; 4223 ip6h = (ip6_t *)&ip6i[1]; 4224 } else { 4225 ip6h = (ip6_t *)udp->udp_sticky_hdrs; 4226 } 4227 4228 if (!(ipp->ipp_fields & IPPF_ADDR)) 4229 ip6h->ip6_src = udp->udp_v6src; 4230 4231 udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE); 4232 udpha->uha_src_port = udp->udp_port; 4233 4234 /* Try to get everything in a single mblk */ 4235 if (hdrs_len > udp->udp_max_hdr_len) { 4236 udp->udp_max_hdr_len = hdrs_len; 4237 (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + 4238 udp_wroff_extra); 4239 } 4240 return (0); 4241 } 4242 4243 /* 4244 * This routine retrieves the value of an ND variable in a udpparam_t 4245 * structure. It is called through nd_getset when a user reads the 4246 * variable. 4247 */ 4248 /* ARGSUSED */ 4249 static int 4250 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 4251 { 4252 udpparam_t *udppa = (udpparam_t *)cp; 4253 4254 (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); 4255 return (0); 4256 } 4257 4258 /* 4259 * Walk through the param array specified registering each element with the 4260 * named dispatch (ND) handler. 4261 */ 4262 static boolean_t 4263 udp_param_register(udpparam_t *udppa, int cnt) 4264 { 4265 for (; cnt-- > 0; udppa++) { 4266 if (udppa->udp_param_name && udppa->udp_param_name[0]) { 4267 if (!nd_load(&udp_g_nd, udppa->udp_param_name, 4268 udp_param_get, udp_param_set, 4269 (caddr_t)udppa)) { 4270 nd_free(&udp_g_nd); 4271 return (B_FALSE); 4272 } 4273 } 4274 } 4275 if (!nd_load(&udp_g_nd, "udp_extra_priv_ports", 4276 udp_extra_priv_ports_get, NULL, NULL)) { 4277 nd_free(&udp_g_nd); 4278 return (B_FALSE); 4279 } 4280 if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add", 4281 NULL, udp_extra_priv_ports_add, NULL)) { 4282 nd_free(&udp_g_nd); 4283 return (B_FALSE); 4284 } 4285 if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del", 4286 NULL, udp_extra_priv_ports_del, NULL)) { 4287 nd_free(&udp_g_nd); 4288 return (B_FALSE); 4289 } 4290 if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL, 4291 NULL)) { 4292 nd_free(&udp_g_nd); 4293 return (B_FALSE); 4294 } 4295 if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL, 4296 NULL)) { 4297 nd_free(&udp_g_nd); 4298 return (B_FALSE); 4299 } 4300 return (B_TRUE); 4301 } 4302 4303 /* This routine sets an ND variable in a udpparam_t structure. */ 4304 /* ARGSUSED */ 4305 static int 4306 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 4307 { 4308 long new_value; 4309 udpparam_t *udppa = (udpparam_t *)cp; 4310 4311 /* 4312 * Fail the request if the new value does not lie within the 4313 * required bounds. 4314 */ 4315 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 4316 new_value < udppa->udp_param_min || 4317 new_value > udppa->udp_param_max) { 4318 return (EINVAL); 4319 } 4320 4321 /* Set the new value */ 4322 udppa->udp_param_value = new_value; 4323 return (0); 4324 } 4325 4326 /* 4327 * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with 4328 * T_opthdr) and return the number of bytes copied. 'dbuf' may be NULL to 4329 * just count the length needed for allocation. If 'dbuf' is non-NULL, 4330 * then it's assumed to be allocated to be large enough. 4331 * 4332 * Returns zero if trimming of the security option causes all options to go 4333 * away. 4334 */ 4335 static size_t 4336 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf) 4337 { 4338 struct T_opthdr *toh; 4339 size_t hol = ipp->ipp_hopoptslen; 4340 ip6_hbh_t *dstopt = NULL; 4341 const ip6_hbh_t *srcopt = ipp->ipp_hopopts; 4342 size_t tlen, olen, plen; 4343 boolean_t deleting; 4344 const struct ip6_opt *sopt, *lastpad; 4345 struct ip6_opt *dopt; 4346 4347 if ((toh = (struct T_opthdr *)dbuf) != NULL) { 4348 toh->level = IPPROTO_IPV6; 4349 toh->name = IPV6_HOPOPTS; 4350 toh->status = 0; 4351 dstopt = (ip6_hbh_t *)(toh + 1); 4352 } 4353 4354 /* 4355 * If labeling is enabled, then skip the label option 4356 * but get other options if there are any. 4357 */ 4358 if (is_system_labeled()) { 4359 dopt = NULL; 4360 if (dstopt != NULL) { 4361 /* will fill in ip6h_len later */ 4362 dstopt->ip6h_nxt = srcopt->ip6h_nxt; 4363 dopt = (struct ip6_opt *)(dstopt + 1); 4364 } 4365 sopt = (const struct ip6_opt *)(srcopt + 1); 4366 hol -= sizeof (*srcopt); 4367 tlen = sizeof (*dstopt); 4368 lastpad = NULL; 4369 deleting = B_FALSE; 4370 /* 4371 * This loop finds the first (lastpad pointer) of any number of 4372 * pads that preceeds the security option, then treats the 4373 * security option as though it were a pad, and then finds the 4374 * next non-pad option (or end of list). 4375 * 4376 * It then treats the entire block as one big pad. To preserve 4377 * alignment of any options that follow, or just the end of the 4378 * list, it computes a minimal new padding size that keeps the 4379 * same alignment for the next option. 4380 * 4381 * If it encounters just a sequence of pads with no security 4382 * option, those are copied as-is rather than collapsed. 4383 * 4384 * Note that to handle the end of list case, the code makes one 4385 * loop with 'hol' set to zero. 4386 */ 4387 for (;;) { 4388 if (hol > 0) { 4389 if (sopt->ip6o_type == IP6OPT_PAD1) { 4390 if (lastpad == NULL) 4391 lastpad = sopt; 4392 sopt = (const struct ip6_opt *) 4393 &sopt->ip6o_len; 4394 hol--; 4395 continue; 4396 } 4397 olen = sopt->ip6o_len + sizeof (*sopt); 4398 if (olen > hol) 4399 olen = hol; 4400 if (sopt->ip6o_type == IP6OPT_PADN || 4401 sopt->ip6o_type == ip6opt_ls) { 4402 if (sopt->ip6o_type == ip6opt_ls) 4403 deleting = B_TRUE; 4404 if (lastpad == NULL) 4405 lastpad = sopt; 4406 sopt = (const struct ip6_opt *) 4407 ((const char *)sopt + olen); 4408 hol -= olen; 4409 continue; 4410 } 4411 } else { 4412 /* if nothing was copied at all, then delete */ 4413 if (tlen == sizeof (*dstopt)) 4414 return (0); 4415 /* last pass; pick up any trailing padding */ 4416 olen = 0; 4417 } 4418 if (deleting) { 4419 /* 4420 * compute aligning effect of deleted material 4421 * to reproduce with pad. 4422 */ 4423 plen = ((const char *)sopt - 4424 (const char *)lastpad) & 7; 4425 tlen += plen; 4426 if (dopt != NULL) { 4427 if (plen == 1) { 4428 dopt->ip6o_type = IP6OPT_PAD1; 4429 } else if (plen > 1) { 4430 plen -= sizeof (*dopt); 4431 dopt->ip6o_type = IP6OPT_PADN; 4432 dopt->ip6o_len = plen; 4433 if (plen > 0) 4434 bzero(dopt + 1, plen); 4435 } 4436 dopt = (struct ip6_opt *) 4437 ((char *)dopt + plen); 4438 } 4439 deleting = B_FALSE; 4440 lastpad = NULL; 4441 } 4442 /* if there's uncopied padding, then copy that now */ 4443 if (lastpad != NULL) { 4444 olen += (const char *)sopt - 4445 (const char *)lastpad; 4446 sopt = lastpad; 4447 lastpad = NULL; 4448 } 4449 if (dopt != NULL && olen > 0) { 4450 bcopy(sopt, dopt, olen); 4451 dopt = (struct ip6_opt *)((char *)dopt + olen); 4452 } 4453 if (hol == 0) 4454 break; 4455 tlen += olen; 4456 sopt = (const struct ip6_opt *) 4457 ((const char *)sopt + olen); 4458 hol -= olen; 4459 } 4460 /* go back and patch up the length value, rounded upward */ 4461 if (dstopt != NULL) 4462 dstopt->ip6h_len = (tlen - 1) >> 3; 4463 } else { 4464 tlen = hol; 4465 if (dstopt != NULL) 4466 bcopy(srcopt, dstopt, hol); 4467 } 4468 4469 tlen += sizeof (*toh); 4470 if (toh != NULL) 4471 toh->len = tlen; 4472 4473 return (tlen); 4474 } 4475 4476 static void 4477 udp_input(conn_t *connp, mblk_t *mp) 4478 { 4479 struct T_unitdata_ind *tudi; 4480 uchar_t *rptr; /* Pointer to IP header */ 4481 int hdr_length; /* Length of IP+UDP headers */ 4482 int udi_size; /* Size of T_unitdata_ind */ 4483 int mp_len; 4484 udp_t *udp; 4485 udpha_t *udpha; 4486 int ipversion; 4487 ip6_pkt_t ipp; 4488 ip6_t *ip6h; 4489 ip6i_t *ip6i; 4490 mblk_t *mp1; 4491 mblk_t *options_mp = NULL; 4492 in_pktinfo_t *pinfo = NULL; 4493 cred_t *cr = NULL; 4494 queue_t *q = connp->conn_rq; 4495 pid_t cpid; 4496 cred_t *rcr = connp->conn_cred; 4497 4498 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, 4499 "udp_rput_start: q %p mp %p", q, mp); 4500 4501 udp = connp->conn_udp; 4502 rptr = mp->b_rptr; 4503 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); 4504 ASSERT(OK_32PTR(rptr)); 4505 4506 /* 4507 * IP should have prepended the options data in an M_CTL 4508 * Check M_CTL "type" to make sure are not here bcos of 4509 * a valid ICMP message 4510 */ 4511 if (DB_TYPE(mp) == M_CTL) { 4512 if (MBLKL(mp) == sizeof (in_pktinfo_t) && 4513 ((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type == 4514 IN_PKTINFO) { 4515 /* 4516 * IP_RECVIF or IP_RECVSLLA information has been 4517 * appended to the packet by IP. We need to 4518 * extract the mblk and adjust the rptr 4519 */ 4520 pinfo = (in_pktinfo_t *)mp->b_rptr; 4521 options_mp = mp; 4522 mp = mp->b_cont; 4523 rptr = mp->b_rptr; 4524 UDP_STAT(udp_in_pktinfo); 4525 } else { 4526 /* 4527 * ICMP messages. 4528 */ 4529 udp_icmp_error(q, mp); 4530 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4531 "udp_rput_end: q %p (%S)", q, "m_ctl"); 4532 return; 4533 } 4534 } 4535 4536 mp_len = msgdsize(mp); 4537 /* 4538 * This is the inbound data path. 4539 * First, we check to make sure the IP version number is correct, 4540 * and then pull the IP and UDP headers into the first mblk. 4541 * Assume IP provides aligned packets - otherwise toss. 4542 * Also, check if we have a complete IP header. 4543 */ 4544 4545 /* Initialize regardless if ipversion is IPv4 or IPv6 */ 4546 ipp.ipp_fields = 0; 4547 4548 ipversion = IPH_HDR_VERSION(rptr); 4549 switch (ipversion) { 4550 case IPV4_VERSION: 4551 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 4552 ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); 4553 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 4554 if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) || 4555 (udp->udp_ip_rcv_options_len)) { 4556 /* 4557 * Handle IPv4 packets with options outside of the 4558 * main data path. Not needed for AF_INET6 sockets 4559 * since they don't support a getsockopt of IP_OPTIONS. 4560 */ 4561 if (udp->udp_family == AF_INET6) 4562 break; 4563 /* 4564 * UDP length check performed for IPv4 packets with 4565 * options to check whether UDP length specified in 4566 * the header is the same as the physical length of 4567 * the packet. 4568 */ 4569 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4570 if (mp_len != (ntohs(udpha->uha_length) + 4571 hdr_length - UDPH_SIZE)) { 4572 goto tossit; 4573 } 4574 /* 4575 * Handle the case where the packet has IP options 4576 * and the IP_RECVSLLA & IP_RECVIF are set 4577 */ 4578 if (pinfo != NULL) 4579 mp = options_mp; 4580 udp_become_writer(connp, mp, udp_rput_other_wrapper, 4581 SQTAG_UDP_INPUT); 4582 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4583 "udp_rput_end: q %p (%S)", q, "end"); 4584 return; 4585 } 4586 4587 /* Handle IPV6_RECVHOPLIMIT. */ 4588 if ((udp->udp_family == AF_INET6) && (pinfo != NULL) && 4589 udp->udp_ipv6_recvpktinfo) { 4590 if (pinfo->in_pkt_flags & IPF_RECVIF) { 4591 ipp.ipp_fields |= IPPF_IFINDEX; 4592 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 4593 } 4594 } 4595 break; 4596 case IPV6_VERSION: 4597 /* 4598 * IPv6 packets can only be received by applications 4599 * that are prepared to receive IPv6 addresses. 4600 * The IP fanout must ensure this. 4601 */ 4602 ASSERT(udp->udp_family == AF_INET6); 4603 4604 ip6h = (ip6_t *)rptr; 4605 ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr); 4606 4607 if (ip6h->ip6_nxt != IPPROTO_UDP) { 4608 uint8_t nexthdrp; 4609 /* Look for ifindex information */ 4610 if (ip6h->ip6_nxt == IPPROTO_RAW) { 4611 ip6i = (ip6i_t *)ip6h; 4612 if ((uchar_t *)&ip6i[1] > mp->b_wptr) 4613 goto tossit; 4614 4615 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 4616 ASSERT(ip6i->ip6i_ifindex != 0); 4617 ipp.ipp_fields |= IPPF_IFINDEX; 4618 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 4619 } 4620 rptr = (uchar_t *)&ip6i[1]; 4621 mp->b_rptr = rptr; 4622 if (rptr == mp->b_wptr) { 4623 mp1 = mp->b_cont; 4624 freeb(mp); 4625 mp = mp1; 4626 rptr = mp->b_rptr; 4627 } 4628 if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE)) 4629 goto tossit; 4630 ip6h = (ip6_t *)rptr; 4631 mp_len = msgdsize(mp); 4632 } 4633 /* 4634 * Find any potentially interesting extension headers 4635 * as well as the length of the IPv6 + extension 4636 * headers. 4637 */ 4638 hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) + 4639 UDPH_SIZE; 4640 ASSERT(nexthdrp == IPPROTO_UDP); 4641 } else { 4642 hdr_length = IPV6_HDR_LEN + UDPH_SIZE; 4643 ip6i = NULL; 4644 } 4645 break; 4646 default: 4647 ASSERT(0); 4648 } 4649 4650 /* 4651 * IP inspected the UDP header thus all of it must be in the mblk. 4652 * UDP length check is performed for IPv6 packets and IPv4 packets 4653 * without options to check if the size of the packet as specified 4654 * by the header is the same as the physical size of the packet. 4655 */ 4656 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4657 if ((MBLKL(mp) < hdr_length) || 4658 (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) { 4659 goto tossit; 4660 } 4661 4662 /* Walk past the headers. */ 4663 if (!udp->udp_rcvhdr) { 4664 mp->b_rptr = rptr + hdr_length; 4665 mp_len -= hdr_length; 4666 } 4667 4668 /* 4669 * This is the inbound data path. Packets are passed upstream as 4670 * T_UNITDATA_IND messages with full IP headers still attached. 4671 */ 4672 if (udp->udp_family == AF_INET) { 4673 sin_t *sin; 4674 4675 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 4676 4677 /* 4678 * Normally only send up the address. 4679 * If IP_RECVDSTADDR is set we include the destination IP 4680 * address as an option. With IP_RECVOPTS we include all 4681 * the IP options. Only ip_rput_other() handles packets 4682 * that contain IP options. 4683 */ 4684 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 4685 if (udp->udp_recvdstaddr) { 4686 udi_size += sizeof (struct T_opthdr) + 4687 sizeof (struct in_addr); 4688 UDP_STAT(udp_in_recvdstaddr); 4689 } 4690 4691 /* 4692 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 4693 * space accordingly 4694 */ 4695 if (udp->udp_recvif && (pinfo != NULL) && 4696 (pinfo->in_pkt_flags & IPF_RECVIF)) { 4697 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 4698 UDP_STAT(udp_in_recvif); 4699 } 4700 4701 if (udp->udp_recvslla && (pinfo != NULL) && 4702 (pinfo->in_pkt_flags & IPF_RECVSLLA)) { 4703 udi_size += sizeof (struct T_opthdr) + 4704 sizeof (struct sockaddr_dl); 4705 UDP_STAT(udp_in_recvslla); 4706 } 4707 4708 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 4709 udi_size += sizeof (struct T_opthdr) + ucredsize; 4710 cpid = DB_CPID(mp); 4711 UDP_STAT(udp_in_recvucred); 4712 } 4713 4714 /* 4715 * If SO_TIMESTAMP is set allocate the appropriate sized 4716 * buffer. Since gethrestime() expects a pointer aligned 4717 * argument, we allocate space necessary for extra 4718 * alignment (even though it might not be used). 4719 */ 4720 if (udp->udp_timestamp) { 4721 udi_size += sizeof (struct T_opthdr) + 4722 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4723 UDP_STAT(udp_in_timestamp); 4724 } 4725 4726 /* 4727 * If IP_RECVTTL is set allocate the appropriate sized buffer 4728 */ 4729 if (udp->udp_recvttl) { 4730 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 4731 UDP_STAT(udp_in_recvttl); 4732 } 4733 ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH); 4734 4735 /* Allocate a message block for the T_UNITDATA_IND structure. */ 4736 mp1 = allocb(udi_size, BPRI_MED); 4737 if (mp1 == NULL) { 4738 freemsg(mp); 4739 if (options_mp != NULL) 4740 freeb(options_mp); 4741 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4742 "udp_rput_end: q %p (%S)", q, "allocbfail"); 4743 BUMP_MIB(&udp_mib, udpInErrors); 4744 return; 4745 } 4746 mp1->b_cont = mp; 4747 mp = mp1; 4748 mp->b_datap->db_type = M_PROTO; 4749 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4750 mp->b_wptr = (uchar_t *)tudi + udi_size; 4751 tudi->PRIM_type = T_UNITDATA_IND; 4752 tudi->SRC_length = sizeof (sin_t); 4753 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4754 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4755 sizeof (sin_t); 4756 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 4757 tudi->OPT_length = udi_size; 4758 sin = (sin_t *)&tudi[1]; 4759 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 4760 sin->sin_port = udpha->uha_src_port; 4761 sin->sin_family = udp->udp_family; 4762 *(uint32_t *)&sin->sin_zero[0] = 0; 4763 *(uint32_t *)&sin->sin_zero[4] = 0; 4764 4765 /* 4766 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 4767 * IP_RECVTTL has been set. 4768 */ 4769 if (udi_size != 0) { 4770 /* 4771 * Copy in destination address before options to avoid 4772 * any padding issues. 4773 */ 4774 char *dstopt; 4775 4776 dstopt = (char *)&sin[1]; 4777 if (udp->udp_recvdstaddr) { 4778 struct T_opthdr *toh; 4779 ipaddr_t *dstptr; 4780 4781 toh = (struct T_opthdr *)dstopt; 4782 toh->level = IPPROTO_IP; 4783 toh->name = IP_RECVDSTADDR; 4784 toh->len = sizeof (struct T_opthdr) + 4785 sizeof (ipaddr_t); 4786 toh->status = 0; 4787 dstopt += sizeof (struct T_opthdr); 4788 dstptr = (ipaddr_t *)dstopt; 4789 *dstptr = ((ipha_t *)rptr)->ipha_dst; 4790 dstopt = (char *)toh + toh->len; 4791 udi_size -= toh->len; 4792 } 4793 4794 if (udp->udp_recvslla && (pinfo != NULL) && 4795 (pinfo->in_pkt_flags & IPF_RECVSLLA)) { 4796 4797 struct T_opthdr *toh; 4798 struct sockaddr_dl *dstptr; 4799 4800 toh = (struct T_opthdr *)dstopt; 4801 toh->level = IPPROTO_IP; 4802 toh->name = IP_RECVSLLA; 4803 toh->len = sizeof (struct T_opthdr) + 4804 sizeof (struct sockaddr_dl); 4805 toh->status = 0; 4806 dstopt += sizeof (struct T_opthdr); 4807 dstptr = (struct sockaddr_dl *)dstopt; 4808 bcopy(&pinfo->in_pkt_slla, dstptr, 4809 sizeof (struct sockaddr_dl)); 4810 dstopt = (char *)toh + toh->len; 4811 udi_size -= toh->len; 4812 } 4813 4814 if (udp->udp_recvif && (pinfo != NULL) && 4815 (pinfo->in_pkt_flags & IPF_RECVIF)) { 4816 4817 struct T_opthdr *toh; 4818 uint_t *dstptr; 4819 4820 toh = (struct T_opthdr *)dstopt; 4821 toh->level = IPPROTO_IP; 4822 toh->name = IP_RECVIF; 4823 toh->len = sizeof (struct T_opthdr) + 4824 sizeof (uint_t); 4825 toh->status = 0; 4826 dstopt += sizeof (struct T_opthdr); 4827 dstptr = (uint_t *)dstopt; 4828 *dstptr = pinfo->in_pkt_ifindex; 4829 dstopt = (char *)toh + toh->len; 4830 udi_size -= toh->len; 4831 } 4832 4833 if (cr != NULL) { 4834 struct T_opthdr *toh; 4835 4836 toh = (struct T_opthdr *)dstopt; 4837 toh->level = SOL_SOCKET; 4838 toh->name = SCM_UCRED; 4839 toh->len = sizeof (struct T_opthdr) + ucredsize; 4840 toh->status = 0; 4841 (void) cred2ucred(cr, cpid, &toh[1], rcr); 4842 dstopt = (char *)toh + toh->len; 4843 udi_size -= toh->len; 4844 } 4845 4846 if (udp->udp_timestamp) { 4847 struct T_opthdr *toh; 4848 4849 toh = (struct T_opthdr *)dstopt; 4850 toh->level = SOL_SOCKET; 4851 toh->name = SCM_TIMESTAMP; 4852 toh->len = sizeof (struct T_opthdr) + 4853 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4854 toh->status = 0; 4855 dstopt += sizeof (struct T_opthdr); 4856 /* Align for gethrestime() */ 4857 dstopt = (char *)P2ROUNDUP((intptr_t)dstopt, 4858 sizeof (intptr_t)); 4859 gethrestime((timestruc_t *)dstopt); 4860 dstopt = (char *)toh + toh->len; 4861 udi_size -= toh->len; 4862 } 4863 4864 /* 4865 * CAUTION: 4866 * Due to aligment issues 4867 * Processing of IP_RECVTTL option 4868 * should always be the last. Adding 4869 * any option processing after this will 4870 * cause alignment panic. 4871 */ 4872 if (udp->udp_recvttl) { 4873 struct T_opthdr *toh; 4874 uint8_t *dstptr; 4875 4876 toh = (struct T_opthdr *)dstopt; 4877 toh->level = IPPROTO_IP; 4878 toh->name = IP_RECVTTL; 4879 toh->len = sizeof (struct T_opthdr) + 4880 sizeof (uint8_t); 4881 toh->status = 0; 4882 dstopt += sizeof (struct T_opthdr); 4883 dstptr = (uint8_t *)dstopt; 4884 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 4885 dstopt = (char *)toh + toh->len; 4886 udi_size -= toh->len; 4887 } 4888 4889 /* Consumed all of allocated space */ 4890 ASSERT(udi_size == 0); 4891 } 4892 } else { 4893 sin6_t *sin6; 4894 4895 /* 4896 * Handle both IPv4 and IPv6 packets for IPv6 sockets. 4897 * 4898 * Normally we only send up the address. If receiving of any 4899 * optional receive side information is enabled, we also send 4900 * that up as options. 4901 * [ Only udp_rput_other() handles packets that contain IP 4902 * options so code to account for does not appear immediately 4903 * below but elsewhere ] 4904 */ 4905 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); 4906 4907 if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| 4908 IPPF_RTHDR|IPPF_IFINDEX)) { 4909 if (udp->udp_ipv6_recvhopopts && 4910 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4911 size_t hlen; 4912 4913 UDP_STAT(udp_in_recvhopopts); 4914 hlen = copy_hop_opts(&ipp, NULL); 4915 if (hlen == 0) 4916 ipp.ipp_fields &= ~IPPF_HOPOPTS; 4917 udi_size += hlen; 4918 } 4919 if ((udp->udp_ipv6_recvdstopts || 4920 udp->udp_old_ipv6_recvdstopts) && 4921 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4922 udi_size += sizeof (struct T_opthdr) + 4923 ipp.ipp_dstoptslen; 4924 UDP_STAT(udp_in_recvdstopts); 4925 } 4926 if (((udp->udp_ipv6_recvdstopts && 4927 udp->udp_ipv6_recvrthdr && 4928 (ipp.ipp_fields & IPPF_RTHDR)) || 4929 udp->udp_ipv6_recvrthdrdstopts) && 4930 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 4931 udi_size += sizeof (struct T_opthdr) + 4932 ipp.ipp_rtdstoptslen; 4933 UDP_STAT(udp_in_recvrtdstopts); 4934 } 4935 if (udp->udp_ipv6_recvrthdr && 4936 (ipp.ipp_fields & IPPF_RTHDR)) { 4937 udi_size += sizeof (struct T_opthdr) + 4938 ipp.ipp_rthdrlen; 4939 UDP_STAT(udp_in_recvrthdr); 4940 } 4941 if (udp->udp_ipv6_recvpktinfo && 4942 (ipp.ipp_fields & IPPF_IFINDEX)) { 4943 udi_size += sizeof (struct T_opthdr) + 4944 sizeof (struct in6_pktinfo); 4945 UDP_STAT(udp_in_recvpktinfo); 4946 } 4947 4948 } 4949 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 4950 udi_size += sizeof (struct T_opthdr) + ucredsize; 4951 cpid = DB_CPID(mp); 4952 UDP_STAT(udp_in_recvucred); 4953 } 4954 4955 if (udp->udp_ipv6_recvhoplimit) { 4956 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4957 UDP_STAT(udp_in_recvhoplimit); 4958 } 4959 4960 if (udp->udp_ipv6_recvtclass) { 4961 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4962 UDP_STAT(udp_in_recvtclass); 4963 } 4964 4965 mp1 = allocb(udi_size, BPRI_MED); 4966 if (mp1 == NULL) { 4967 freemsg(mp); 4968 if (options_mp != NULL) 4969 freeb(options_mp); 4970 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4971 "udp_rput_end: q %p (%S)", q, "allocbfail"); 4972 BUMP_MIB(&udp_mib, udpInErrors); 4973 return; 4974 } 4975 mp1->b_cont = mp; 4976 mp = mp1; 4977 mp->b_datap->db_type = M_PROTO; 4978 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4979 mp->b_wptr = (uchar_t *)tudi + udi_size; 4980 tudi->PRIM_type = T_UNITDATA_IND; 4981 tudi->SRC_length = sizeof (sin6_t); 4982 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4983 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4984 sizeof (sin6_t); 4985 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); 4986 tudi->OPT_length = udi_size; 4987 sin6 = (sin6_t *)&tudi[1]; 4988 if (ipversion == IPV4_VERSION) { 4989 in6_addr_t v6dst; 4990 4991 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, 4992 &sin6->sin6_addr); 4993 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, 4994 &v6dst); 4995 sin6->sin6_flowinfo = 0; 4996 sin6->sin6_scope_id = 0; 4997 sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, 4998 connp->conn_zoneid); 4999 } else { 5000 sin6->sin6_addr = ip6h->ip6_src; 5001 /* No sin6_flowinfo per API */ 5002 sin6->sin6_flowinfo = 0; 5003 /* For link-scope source pass up scope id */ 5004 if ((ipp.ipp_fields & IPPF_IFINDEX) && 5005 IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 5006 sin6->sin6_scope_id = ipp.ipp_ifindex; 5007 else 5008 sin6->sin6_scope_id = 0; 5009 sin6->__sin6_src_id = ip_srcid_find_addr( 5010 &ip6h->ip6_dst, connp->conn_zoneid); 5011 } 5012 sin6->sin6_port = udpha->uha_src_port; 5013 sin6->sin6_family = udp->udp_family; 5014 5015 if (udi_size != 0) { 5016 uchar_t *dstopt; 5017 5018 dstopt = (uchar_t *)&sin6[1]; 5019 if (udp->udp_ipv6_recvpktinfo && 5020 (ipp.ipp_fields & IPPF_IFINDEX)) { 5021 struct T_opthdr *toh; 5022 struct in6_pktinfo *pkti; 5023 5024 toh = (struct T_opthdr *)dstopt; 5025 toh->level = IPPROTO_IPV6; 5026 toh->name = IPV6_PKTINFO; 5027 toh->len = sizeof (struct T_opthdr) + 5028 sizeof (*pkti); 5029 toh->status = 0; 5030 dstopt += sizeof (struct T_opthdr); 5031 pkti = (struct in6_pktinfo *)dstopt; 5032 if (ipversion == IPV6_VERSION) 5033 pkti->ipi6_addr = ip6h->ip6_dst; 5034 else 5035 IN6_IPADDR_TO_V4MAPPED( 5036 ((ipha_t *)rptr)->ipha_dst, 5037 &pkti->ipi6_addr); 5038 pkti->ipi6_ifindex = ipp.ipp_ifindex; 5039 dstopt += sizeof (*pkti); 5040 udi_size -= toh->len; 5041 } 5042 if (udp->udp_ipv6_recvhoplimit) { 5043 struct T_opthdr *toh; 5044 5045 toh = (struct T_opthdr *)dstopt; 5046 toh->level = IPPROTO_IPV6; 5047 toh->name = IPV6_HOPLIMIT; 5048 toh->len = sizeof (struct T_opthdr) + 5049 sizeof (uint_t); 5050 toh->status = 0; 5051 dstopt += sizeof (struct T_opthdr); 5052 if (ipversion == IPV6_VERSION) 5053 *(uint_t *)dstopt = ip6h->ip6_hops; 5054 else 5055 *(uint_t *)dstopt = 5056 ((ipha_t *)rptr)->ipha_ttl; 5057 dstopt += sizeof (uint_t); 5058 udi_size -= toh->len; 5059 } 5060 if (udp->udp_ipv6_recvtclass) { 5061 struct T_opthdr *toh; 5062 5063 toh = (struct T_opthdr *)dstopt; 5064 toh->level = IPPROTO_IPV6; 5065 toh->name = IPV6_TCLASS; 5066 toh->len = sizeof (struct T_opthdr) + 5067 sizeof (uint_t); 5068 toh->status = 0; 5069 dstopt += sizeof (struct T_opthdr); 5070 if (ipversion == IPV6_VERSION) { 5071 *(uint_t *)dstopt = 5072 IPV6_FLOW_TCLASS(ip6h->ip6_flow); 5073 } else { 5074 ipha_t *ipha = (ipha_t *)rptr; 5075 *(uint_t *)dstopt = 5076 ipha->ipha_type_of_service; 5077 } 5078 dstopt += sizeof (uint_t); 5079 udi_size -= toh->len; 5080 } 5081 if (udp->udp_ipv6_recvhopopts && 5082 (ipp.ipp_fields & IPPF_HOPOPTS)) { 5083 size_t hlen; 5084 5085 hlen = copy_hop_opts(&ipp, dstopt); 5086 dstopt += hlen; 5087 udi_size -= hlen; 5088 } 5089 if (udp->udp_ipv6_recvdstopts && 5090 udp->udp_ipv6_recvrthdr && 5091 (ipp.ipp_fields & IPPF_RTHDR) && 5092 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 5093 struct T_opthdr *toh; 5094 5095 toh = (struct T_opthdr *)dstopt; 5096 toh->level = IPPROTO_IPV6; 5097 toh->name = IPV6_DSTOPTS; 5098 toh->len = sizeof (struct T_opthdr) + 5099 ipp.ipp_rtdstoptslen; 5100 toh->status = 0; 5101 dstopt += sizeof (struct T_opthdr); 5102 bcopy(ipp.ipp_rtdstopts, dstopt, 5103 ipp.ipp_rtdstoptslen); 5104 dstopt += ipp.ipp_rtdstoptslen; 5105 udi_size -= toh->len; 5106 } 5107 if (udp->udp_ipv6_recvrthdr && 5108 (ipp.ipp_fields & IPPF_RTHDR)) { 5109 struct T_opthdr *toh; 5110 5111 toh = (struct T_opthdr *)dstopt; 5112 toh->level = IPPROTO_IPV6; 5113 toh->name = IPV6_RTHDR; 5114 toh->len = sizeof (struct T_opthdr) + 5115 ipp.ipp_rthdrlen; 5116 toh->status = 0; 5117 dstopt += sizeof (struct T_opthdr); 5118 bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); 5119 dstopt += ipp.ipp_rthdrlen; 5120 udi_size -= toh->len; 5121 } 5122 if (udp->udp_ipv6_recvdstopts && 5123 (ipp.ipp_fields & IPPF_DSTOPTS)) { 5124 struct T_opthdr *toh; 5125 5126 toh = (struct T_opthdr *)dstopt; 5127 toh->level = IPPROTO_IPV6; 5128 toh->name = IPV6_DSTOPTS; 5129 toh->len = sizeof (struct T_opthdr) + 5130 ipp.ipp_dstoptslen; 5131 toh->status = 0; 5132 dstopt += sizeof (struct T_opthdr); 5133 bcopy(ipp.ipp_dstopts, dstopt, 5134 ipp.ipp_dstoptslen); 5135 dstopt += ipp.ipp_dstoptslen; 5136 udi_size -= toh->len; 5137 } 5138 5139 if (cr != NULL) { 5140 struct T_opthdr *toh; 5141 5142 toh = (struct T_opthdr *)dstopt; 5143 toh->level = SOL_SOCKET; 5144 toh->name = SCM_UCRED; 5145 toh->len = sizeof (struct T_opthdr) + ucredsize; 5146 toh->status = 0; 5147 (void) cred2ucred(cr, cpid, &toh[1], rcr); 5148 dstopt += toh->len; 5149 udi_size -= toh->len; 5150 } 5151 /* Consumed all of allocated space */ 5152 ASSERT(udi_size == 0); 5153 } 5154 #undef sin6 5155 /* No IP_RECVDSTADDR for IPv6. */ 5156 } 5157 5158 BUMP_MIB(&udp_mib, udpInDatagrams); 5159 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5160 "udp_rput_end: q %p (%S)", q, "end"); 5161 if (options_mp != NULL) 5162 freeb(options_mp); 5163 5164 if (udp->udp_direct_sockfs) { 5165 /* 5166 * There is nothing above us except for the stream head; 5167 * use the read-side synchronous stream interface in 5168 * order to reduce the time spent in interrupt thread. 5169 */ 5170 ASSERT(udp->udp_issocket); 5171 udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len); 5172 } else { 5173 /* 5174 * Use regular STREAMS interface to pass data upstream 5175 * if this is not a socket endpoint, or if we have 5176 * switched over to the slow mode due to sockmod being 5177 * popped or a module being pushed on top of us. 5178 */ 5179 putnext(UDP_RD(q), mp); 5180 } 5181 return; 5182 5183 tossit: 5184 freemsg(mp); 5185 if (options_mp != NULL) 5186 freeb(options_mp); 5187 BUMP_MIB(&udp_mib, udpInErrors); 5188 } 5189 5190 void 5191 udp_conn_recv(conn_t *connp, mblk_t *mp) 5192 { 5193 _UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT); 5194 } 5195 5196 /* ARGSUSED */ 5197 static void 5198 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2) 5199 { 5200 udp_input((conn_t *)arg, mp); 5201 _UDP_EXIT((conn_t *)arg); 5202 } 5203 5204 /* 5205 * Process non-M_DATA messages as well as M_DATA messages that requires 5206 * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options. 5207 */ 5208 static void 5209 udp_rput_other(queue_t *q, mblk_t *mp) 5210 { 5211 struct T_unitdata_ind *tudi; 5212 mblk_t *mp1; 5213 uchar_t *rptr; 5214 uchar_t *new_rptr; 5215 int hdr_length; 5216 int udi_size; /* Size of T_unitdata_ind */ 5217 int opt_len; /* Length of IP options */ 5218 sin_t *sin; 5219 struct T_error_ack *tea; 5220 mblk_t *options_mp = NULL; 5221 in_pktinfo_t *pinfo; 5222 boolean_t recv_on = B_FALSE; 5223 cred_t *cr = NULL; 5224 udp_t *udp = Q_TO_UDP(q); 5225 pid_t cpid; 5226 cred_t *rcr = udp->udp_connp->conn_cred; 5227 5228 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, 5229 "udp_rput_other: q %p mp %p", q, mp); 5230 5231 ASSERT(OK_32PTR(mp->b_rptr)); 5232 rptr = mp->b_rptr; 5233 5234 switch (mp->b_datap->db_type) { 5235 case M_CTL: 5236 /* 5237 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set 5238 */ 5239 recv_on = B_TRUE; 5240 options_mp = mp; 5241 pinfo = (in_pktinfo_t *)options_mp->b_rptr; 5242 5243 /* 5244 * The actual data is in mp->b_cont 5245 */ 5246 mp = mp->b_cont; 5247 ASSERT(OK_32PTR(mp->b_rptr)); 5248 rptr = mp->b_rptr; 5249 break; 5250 case M_DATA: 5251 /* 5252 * M_DATA messages contain IPv4 datagrams. They are handled 5253 * after this switch. 5254 */ 5255 break; 5256 case M_PROTO: 5257 case M_PCPROTO: 5258 /* M_PROTO messages contain some type of TPI message. */ 5259 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 5260 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 5261 freemsg(mp); 5262 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5263 "udp_rput_other_end: q %p (%S)", q, "protoshort"); 5264 return; 5265 } 5266 tea = (struct T_error_ack *)rptr; 5267 5268 switch (tea->PRIM_type) { 5269 case T_ERROR_ACK: 5270 switch (tea->ERROR_prim) { 5271 case O_T_BIND_REQ: 5272 case T_BIND_REQ: { 5273 /* 5274 * If our O_T_BIND_REQ/T_BIND_REQ fails, 5275 * clear out the associated port and source 5276 * address before passing the message 5277 * upstream. If this was caused by a T_CONN_REQ 5278 * revert back to bound state. 5279 */ 5280 udp_fanout_t *udpf; 5281 5282 udpf = &udp_bind_fanout[ 5283 UDP_BIND_HASH(udp->udp_port)]; 5284 mutex_enter(&udpf->uf_lock); 5285 if (udp->udp_state == TS_DATA_XFER) { 5286 /* Connect failed */ 5287 tea->ERROR_prim = T_CONN_REQ; 5288 /* Revert back to the bound source */ 5289 udp->udp_v6src = udp->udp_bound_v6src; 5290 udp->udp_state = TS_IDLE; 5291 mutex_exit(&udpf->uf_lock); 5292 if (udp->udp_family == AF_INET6) 5293 (void) udp_build_hdrs(q, udp); 5294 break; 5295 } 5296 5297 if (udp->udp_discon_pending) { 5298 tea->ERROR_prim = T_DISCON_REQ; 5299 udp->udp_discon_pending = 0; 5300 } 5301 V6_SET_ZERO(udp->udp_v6src); 5302 V6_SET_ZERO(udp->udp_bound_v6src); 5303 udp->udp_state = TS_UNBND; 5304 udp_bind_hash_remove(udp, B_TRUE); 5305 udp->udp_port = 0; 5306 mutex_exit(&udpf->uf_lock); 5307 if (udp->udp_family == AF_INET6) 5308 (void) udp_build_hdrs(q, udp); 5309 break; 5310 } 5311 default: 5312 break; 5313 } 5314 break; 5315 case T_BIND_ACK: 5316 udp_rput_bind_ack(q, mp); 5317 return; 5318 5319 case T_OPTMGMT_ACK: 5320 case T_OK_ACK: 5321 break; 5322 default: 5323 freemsg(mp); 5324 return; 5325 } 5326 putnext(UDP_RD(q), mp); 5327 return; 5328 } 5329 5330 /* 5331 * This is the inbound data path. 5332 * First, we make sure the data contains both IP and UDP headers. 5333 * 5334 * This handle IPv4 packets for only AF_INET sockets. 5335 * AF_INET6 sockets can never access udp_ip_rcv_options thus there 5336 * is no need saving the options. 5337 */ 5338 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 5339 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 5340 if (mp->b_wptr - rptr < hdr_length) { 5341 if (!pullupmsg(mp, hdr_length)) { 5342 freemsg(mp); 5343 if (options_mp != NULL) 5344 freeb(options_mp); 5345 BUMP_MIB(&udp_mib, udpInErrors); 5346 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5347 "udp_rput_other_end: q %p (%S)", q, "hdrshort"); 5348 BUMP_MIB(&udp_mib, udpInErrors); 5349 return; 5350 } 5351 rptr = mp->b_rptr; 5352 } 5353 /* Walk past the headers. */ 5354 new_rptr = rptr + hdr_length; 5355 if (!udp->udp_rcvhdr) 5356 mp->b_rptr = new_rptr; 5357 5358 /* Save the options if any */ 5359 opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE); 5360 if (opt_len > 0) { 5361 if (opt_len > udp->udp_ip_rcv_options_len) { 5362 if (udp->udp_ip_rcv_options_len) 5363 mi_free((char *)udp->udp_ip_rcv_options); 5364 udp->udp_ip_rcv_options_len = 0; 5365 udp->udp_ip_rcv_options = 5366 (uchar_t *)mi_alloc(opt_len, BPRI_HI); 5367 if (udp->udp_ip_rcv_options) 5368 udp->udp_ip_rcv_options_len = opt_len; 5369 } 5370 if (udp->udp_ip_rcv_options_len) { 5371 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, 5372 udp->udp_ip_rcv_options, opt_len); 5373 /* Adjust length if we are resusing the space */ 5374 udp->udp_ip_rcv_options_len = opt_len; 5375 } 5376 } else if (udp->udp_ip_rcv_options_len) { 5377 mi_free((char *)udp->udp_ip_rcv_options); 5378 udp->udp_ip_rcv_options = NULL; 5379 udp->udp_ip_rcv_options_len = 0; 5380 } 5381 5382 /* 5383 * Normally only send up the address. 5384 * If IP_RECVDSTADDR is set we include the destination IP 5385 * address as an option. With IP_RECVOPTS we include all 5386 * the IP options. 5387 */ 5388 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 5389 if (udp->udp_recvdstaddr) { 5390 udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr); 5391 UDP_STAT(udp_in_recvdstaddr); 5392 } 5393 if (udp->udp_recvopts && opt_len > 0) { 5394 udi_size += sizeof (struct T_opthdr) + opt_len; 5395 UDP_STAT(udp_in_recvopts); 5396 } 5397 5398 /* 5399 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 5400 * space accordingly 5401 */ 5402 if (udp->udp_recvif && recv_on && 5403 (pinfo->in_pkt_flags & IPF_RECVIF)) { 5404 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 5405 UDP_STAT(udp_in_recvif); 5406 } 5407 5408 if (udp->udp_recvslla && recv_on && 5409 (pinfo->in_pkt_flags & IPF_RECVSLLA)) { 5410 udi_size += sizeof (struct T_opthdr) + 5411 sizeof (struct sockaddr_dl); 5412 UDP_STAT(udp_in_recvslla); 5413 } 5414 5415 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 5416 udi_size += sizeof (struct T_opthdr) + ucredsize; 5417 cpid = DB_CPID(mp); 5418 UDP_STAT(udp_in_recvucred); 5419 } 5420 /* 5421 * If IP_RECVTTL is set allocate the appropriate sized buffer 5422 */ 5423 if (udp->udp_recvttl) { 5424 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 5425 UDP_STAT(udp_in_recvttl); 5426 } 5427 5428 /* Allocate a message block for the T_UNITDATA_IND structure. */ 5429 mp1 = allocb(udi_size, BPRI_MED); 5430 if (mp1 == NULL) { 5431 freemsg(mp); 5432 if (options_mp != NULL) 5433 freeb(options_mp); 5434 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5435 "udp_rput_other_end: q %p (%S)", q, "allocbfail"); 5436 BUMP_MIB(&udp_mib, udpInErrors); 5437 return; 5438 } 5439 mp1->b_cont = mp; 5440 mp = mp1; 5441 mp->b_datap->db_type = M_PROTO; 5442 tudi = (struct T_unitdata_ind *)mp->b_rptr; 5443 mp->b_wptr = (uchar_t *)tudi + udi_size; 5444 tudi->PRIM_type = T_UNITDATA_IND; 5445 tudi->SRC_length = sizeof (sin_t); 5446 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 5447 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 5448 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 5449 tudi->OPT_length = udi_size; 5450 5451 sin = (sin_t *)&tudi[1]; 5452 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 5453 sin->sin_port = ((in_port_t *) 5454 new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))]; 5455 sin->sin_family = AF_INET; 5456 *(uint32_t *)&sin->sin_zero[0] = 0; 5457 *(uint32_t *)&sin->sin_zero[4] = 0; 5458 5459 /* 5460 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 5461 * IP_RECVTTL has been set. 5462 */ 5463 if (udi_size != 0) { 5464 /* 5465 * Copy in destination address before options to avoid any 5466 * padding issues. 5467 */ 5468 char *dstopt; 5469 5470 dstopt = (char *)&sin[1]; 5471 if (udp->udp_recvdstaddr) { 5472 struct T_opthdr *toh; 5473 ipaddr_t *dstptr; 5474 5475 toh = (struct T_opthdr *)dstopt; 5476 toh->level = IPPROTO_IP; 5477 toh->name = IP_RECVDSTADDR; 5478 toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t); 5479 toh->status = 0; 5480 dstopt += sizeof (struct T_opthdr); 5481 dstptr = (ipaddr_t *)dstopt; 5482 *dstptr = (((ipaddr_t *)rptr)[4]); 5483 dstopt += sizeof (ipaddr_t); 5484 udi_size -= toh->len; 5485 } 5486 if (udp->udp_recvopts && udi_size != 0) { 5487 struct T_opthdr *toh; 5488 5489 toh = (struct T_opthdr *)dstopt; 5490 toh->level = IPPROTO_IP; 5491 toh->name = IP_RECVOPTS; 5492 toh->len = sizeof (struct T_opthdr) + opt_len; 5493 toh->status = 0; 5494 dstopt += sizeof (struct T_opthdr); 5495 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len); 5496 dstopt += opt_len; 5497 udi_size -= toh->len; 5498 } 5499 5500 if (udp->udp_recvslla && recv_on && 5501 (pinfo->in_pkt_flags & IPF_RECVSLLA)) { 5502 5503 struct T_opthdr *toh; 5504 struct sockaddr_dl *dstptr; 5505 5506 toh = (struct T_opthdr *)dstopt; 5507 toh->level = IPPROTO_IP; 5508 toh->name = IP_RECVSLLA; 5509 toh->len = sizeof (struct T_opthdr) + 5510 sizeof (struct sockaddr_dl); 5511 toh->status = 0; 5512 dstopt += sizeof (struct T_opthdr); 5513 dstptr = (struct sockaddr_dl *)dstopt; 5514 bcopy(&pinfo->in_pkt_slla, dstptr, 5515 sizeof (struct sockaddr_dl)); 5516 dstopt += sizeof (struct sockaddr_dl); 5517 udi_size -= toh->len; 5518 } 5519 5520 if (udp->udp_recvif && recv_on && 5521 (pinfo->in_pkt_flags & IPF_RECVIF)) { 5522 5523 struct T_opthdr *toh; 5524 uint_t *dstptr; 5525 5526 toh = (struct T_opthdr *)dstopt; 5527 toh->level = IPPROTO_IP; 5528 toh->name = IP_RECVIF; 5529 toh->len = sizeof (struct T_opthdr) + 5530 sizeof (uint_t); 5531 toh->status = 0; 5532 dstopt += sizeof (struct T_opthdr); 5533 dstptr = (uint_t *)dstopt; 5534 *dstptr = pinfo->in_pkt_ifindex; 5535 dstopt += sizeof (uint_t); 5536 udi_size -= toh->len; 5537 } 5538 5539 if (cr != NULL) { 5540 struct T_opthdr *toh; 5541 5542 toh = (struct T_opthdr *)dstopt; 5543 toh->level = SOL_SOCKET; 5544 toh->name = SCM_UCRED; 5545 toh->len = sizeof (struct T_opthdr) + ucredsize; 5546 toh->status = 0; 5547 (void) cred2ucred(cr, cpid, &toh[1], rcr); 5548 dstopt += toh->len; 5549 udi_size -= toh->len; 5550 } 5551 5552 if (udp->udp_recvttl) { 5553 struct T_opthdr *toh; 5554 uint8_t *dstptr; 5555 5556 toh = (struct T_opthdr *)dstopt; 5557 toh->level = IPPROTO_IP; 5558 toh->name = IP_RECVTTL; 5559 toh->len = sizeof (struct T_opthdr) + 5560 sizeof (uint8_t); 5561 toh->status = 0; 5562 dstopt += sizeof (struct T_opthdr); 5563 dstptr = (uint8_t *)dstopt; 5564 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 5565 dstopt += sizeof (uint8_t); 5566 udi_size -= toh->len; 5567 } 5568 5569 ASSERT(udi_size == 0); /* "Consumed" all of allocated space */ 5570 } 5571 BUMP_MIB(&udp_mib, udpInDatagrams); 5572 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5573 "udp_rput_other_end: q %p (%S)", q, "end"); 5574 if (options_mp != NULL) 5575 freeb(options_mp); 5576 5577 if (udp->udp_direct_sockfs) { 5578 /* 5579 * There is nothing above us except for the stream head; 5580 * use the read-side synchronous stream interface in 5581 * order to reduce the time spent in interrupt thread. 5582 */ 5583 ASSERT(udp->udp_issocket); 5584 udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp)); 5585 } else { 5586 /* 5587 * Use regular STREAMS interface to pass data upstream 5588 * if this is not a socket endpoint, or if we have 5589 * switched over to the slow mode due to sockmod being 5590 * popped or a module being pushed on top of us. 5591 */ 5592 putnext(UDP_RD(q), mp); 5593 } 5594 } 5595 5596 /* ARGSUSED */ 5597 static void 5598 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2) 5599 { 5600 conn_t *connp = arg; 5601 5602 udp_rput_other(connp->conn_rq, mp); 5603 udp_exit(connp); 5604 } 5605 5606 /* 5607 * Process a T_BIND_ACK 5608 */ 5609 static void 5610 udp_rput_bind_ack(queue_t *q, mblk_t *mp) 5611 { 5612 udp_t *udp = Q_TO_UDP(q); 5613 mblk_t *mp1; 5614 ire_t *ire; 5615 struct T_bind_ack *tba; 5616 uchar_t *addrp; 5617 ipa_conn_t *ac; 5618 ipa6_conn_t *ac6; 5619 5620 if (udp->udp_discon_pending) 5621 udp->udp_discon_pending = 0; 5622 5623 /* 5624 * If a broadcast/multicast address was bound set 5625 * the source address to 0. 5626 * This ensures no datagrams with broadcast address 5627 * as source address are emitted (which would violate 5628 * RFC1122 - Hosts requirements) 5629 * 5630 * Note that when connecting the returned IRE is 5631 * for the destination address and we only perform 5632 * the broadcast check for the source address (it 5633 * is OK to connect to a broadcast/multicast address.) 5634 */ 5635 mp1 = mp->b_cont; 5636 if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { 5637 ire = (ire_t *)mp1->b_rptr; 5638 5639 /* 5640 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast 5641 * local address. 5642 */ 5643 if (ire->ire_type == IRE_BROADCAST && 5644 udp->udp_state != TS_DATA_XFER) { 5645 /* This was just a local bind to a broadcast addr */ 5646 V6_SET_ZERO(udp->udp_v6src); 5647 if (udp->udp_family == AF_INET6) 5648 (void) udp_build_hdrs(q, udp); 5649 } else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 5650 /* 5651 * Local address not yet set - pick it from the 5652 * T_bind_ack 5653 */ 5654 tba = (struct T_bind_ack *)mp->b_rptr; 5655 addrp = &mp->b_rptr[tba->ADDR_offset]; 5656 switch (udp->udp_family) { 5657 case AF_INET: 5658 if (tba->ADDR_length == sizeof (ipa_conn_t)) { 5659 ac = (ipa_conn_t *)addrp; 5660 } else { 5661 ASSERT(tba->ADDR_length == 5662 sizeof (ipa_conn_x_t)); 5663 ac = &((ipa_conn_x_t *)addrp)->acx_conn; 5664 } 5665 IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, 5666 &udp->udp_v6src); 5667 break; 5668 case AF_INET6: 5669 if (tba->ADDR_length == sizeof (ipa6_conn_t)) { 5670 ac6 = (ipa6_conn_t *)addrp; 5671 } else { 5672 ASSERT(tba->ADDR_length == 5673 sizeof (ipa6_conn_x_t)); 5674 ac6 = &((ipa6_conn_x_t *) 5675 addrp)->ac6x_conn; 5676 } 5677 udp->udp_v6src = ac6->ac6_laddr; 5678 (void) udp_build_hdrs(q, udp); 5679 break; 5680 } 5681 } 5682 mp1 = mp1->b_cont; 5683 } 5684 /* 5685 * Look for one or more appended ACK message added by 5686 * udp_connect or udp_disconnect. 5687 * If none found just send up the T_BIND_ACK. 5688 * udp_connect has appended a T_OK_ACK and a T_CONN_CON. 5689 * udp_disconnect has appended a T_OK_ACK. 5690 */ 5691 if (mp1 != NULL) { 5692 if (mp->b_cont == mp1) 5693 mp->b_cont = NULL; 5694 else { 5695 ASSERT(mp->b_cont->b_cont == mp1); 5696 mp->b_cont->b_cont = NULL; 5697 } 5698 freemsg(mp); 5699 mp = mp1; 5700 while (mp != NULL) { 5701 mp1 = mp->b_cont; 5702 mp->b_cont = NULL; 5703 putnext(UDP_RD(q), mp); 5704 mp = mp1; 5705 } 5706 return; 5707 } 5708 freemsg(mp->b_cont); 5709 mp->b_cont = NULL; 5710 putnext(UDP_RD(q), mp); 5711 } 5712 5713 /* 5714 * return SNMP stuff in buffer in mpdata 5715 */ 5716 int 5717 udp_snmp_get(queue_t *q, mblk_t *mpctl) 5718 { 5719 mblk_t *mpdata; 5720 mblk_t *mp_conn_ctl; 5721 mblk_t *mp_attr_ctl; 5722 mblk_t *mp6_conn_ctl; 5723 mblk_t *mp6_attr_ctl; 5724 mblk_t *mp_conn_tail; 5725 mblk_t *mp_attr_tail; 5726 mblk_t *mp6_conn_tail; 5727 mblk_t *mp6_attr_tail; 5728 struct opthdr *optp; 5729 mib2_udpEntry_t ude; 5730 mib2_udp6Entry_t ude6; 5731 mib2_transportMLPEntry_t mlp; 5732 int state; 5733 zoneid_t zoneid; 5734 int i; 5735 connf_t *connfp; 5736 conn_t *connp = Q_TO_CONN(q); 5737 udp_t *udp = connp->conn_udp; 5738 int v4_conn_idx; 5739 int v6_conn_idx; 5740 boolean_t needattr; 5741 5742 mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL; 5743 if (mpctl == NULL || 5744 (mpdata = mpctl->b_cont) == NULL || 5745 (mp_conn_ctl = copymsg(mpctl)) == NULL || 5746 (mp_attr_ctl = copymsg(mpctl)) == NULL || 5747 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 5748 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 5749 freemsg(mp_conn_ctl); 5750 freemsg(mp_attr_ctl); 5751 freemsg(mp6_conn_ctl); 5752 return (0); 5753 } 5754 5755 zoneid = connp->conn_zoneid; 5756 5757 /* fixed length structure for IPv4 and IPv6 counters */ 5758 SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); 5759 SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); 5760 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 5761 optp->level = MIB2_UDP; 5762 optp->name = 0; 5763 (void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib)); 5764 optp->len = msgdsize(mpdata); 5765 qreply(q, mpctl); 5766 5767 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 5768 v4_conn_idx = v6_conn_idx = 0; 5769 5770 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5771 connfp = &ipcl_globalhash_fanout[i]; 5772 connp = NULL; 5773 5774 while ((connp = ipcl_get_next_conn(connfp, connp, 5775 IPCL_UDP))) { 5776 udp = connp->conn_udp; 5777 if (zoneid != connp->conn_zoneid) 5778 continue; 5779 5780 /* 5781 * Note that the port numbers are sent in 5782 * host byte order 5783 */ 5784 5785 if (udp->udp_state == TS_UNBND) 5786 state = MIB2_UDP_unbound; 5787 else if (udp->udp_state == TS_IDLE) 5788 state = MIB2_UDP_idle; 5789 else if (udp->udp_state == TS_DATA_XFER) 5790 state = MIB2_UDP_connected; 5791 else 5792 state = MIB2_UDP_unknown; 5793 5794 needattr = B_FALSE; 5795 bzero(&mlp, sizeof (mlp)); 5796 if (connp->conn_mlp_type != mlptSingle) { 5797 if (connp->conn_mlp_type == mlptShared || 5798 connp->conn_mlp_type == mlptBoth) 5799 mlp.tme_flags |= MIB2_TMEF_SHARED; 5800 if (connp->conn_mlp_type == mlptPrivate || 5801 connp->conn_mlp_type == mlptBoth) 5802 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 5803 needattr = B_TRUE; 5804 } 5805 5806 /* 5807 * Create an IPv4 table entry for IPv4 entries and also 5808 * any IPv6 entries which are bound to in6addr_any 5809 * (i.e. anything a IPv4 peer could connect/send to). 5810 */ 5811 if (udp->udp_ipversion == IPV4_VERSION || 5812 (udp->udp_state <= TS_IDLE && 5813 IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) { 5814 ude.udpEntryInfo.ue_state = state; 5815 /* 5816 * If in6addr_any this will set it to 5817 * INADDR_ANY 5818 */ 5819 ude.udpLocalAddress = 5820 V4_PART_OF_V6(udp->udp_v6src); 5821 ude.udpLocalPort = ntohs(udp->udp_port); 5822 if (udp->udp_state == TS_DATA_XFER) { 5823 /* 5824 * Can potentially get here for 5825 * v6 socket if another process 5826 * (say, ping) has just done a 5827 * sendto(), changing the state 5828 * from the TS_IDLE above to 5829 * TS_DATA_XFER by the time we hit 5830 * this part of the code. 5831 */ 5832 ude.udpEntryInfo.ue_RemoteAddress = 5833 V4_PART_OF_V6(udp->udp_v6dst); 5834 ude.udpEntryInfo.ue_RemotePort = 5835 ntohs(udp->udp_dstport); 5836 } else { 5837 ude.udpEntryInfo.ue_RemoteAddress = 0; 5838 ude.udpEntryInfo.ue_RemotePort = 0; 5839 } 5840 (void) snmp_append_data2(mp_conn_ctl->b_cont, 5841 &mp_conn_tail, (char *)&ude, sizeof (ude)); 5842 mlp.tme_connidx = v4_conn_idx++; 5843 if (needattr) 5844 (void) snmp_append_data2( 5845 mp_attr_ctl->b_cont, &mp_attr_tail, 5846 (char *)&mlp, sizeof (mlp)); 5847 } 5848 if (udp->udp_ipversion == IPV6_VERSION) { 5849 ude6.udp6EntryInfo.ue_state = state; 5850 ude6.udp6LocalAddress = udp->udp_v6src; 5851 ude6.udp6LocalPort = ntohs(udp->udp_port); 5852 ude6.udp6IfIndex = udp->udp_bound_if; 5853 if (udp->udp_state == TS_DATA_XFER) { 5854 ude6.udp6EntryInfo.ue_RemoteAddress = 5855 udp->udp_v6dst; 5856 ude6.udp6EntryInfo.ue_RemotePort = 5857 ntohs(udp->udp_dstport); 5858 } else { 5859 ude6.udp6EntryInfo.ue_RemoteAddress = 5860 sin6_null.sin6_addr; 5861 ude6.udp6EntryInfo.ue_RemotePort = 0; 5862 } 5863 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 5864 &mp6_conn_tail, (char *)&ude6, 5865 sizeof (ude6)); 5866 mlp.tme_connidx = v6_conn_idx++; 5867 if (needattr) 5868 (void) snmp_append_data2( 5869 mp6_attr_ctl->b_cont, 5870 &mp6_attr_tail, (char *)&mlp, 5871 sizeof (mlp)); 5872 } 5873 } 5874 } 5875 5876 /* IPv4 UDP endpoints */ 5877 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 5878 sizeof (struct T_optmgmt_ack)]; 5879 optp->level = MIB2_UDP; 5880 optp->name = MIB2_UDP_ENTRY; 5881 optp->len = msgdsize(mp_conn_ctl->b_cont); 5882 qreply(q, mp_conn_ctl); 5883 5884 /* table of MLP attributes... */ 5885 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 5886 sizeof (struct T_optmgmt_ack)]; 5887 optp->level = MIB2_UDP; 5888 optp->name = EXPER_XPORT_MLP; 5889 optp->len = msgdsize(mp_attr_ctl->b_cont); 5890 if (optp->len == 0) 5891 freemsg(mp_attr_ctl); 5892 else 5893 qreply(q, mp_attr_ctl); 5894 5895 /* IPv6 UDP endpoints */ 5896 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 5897 sizeof (struct T_optmgmt_ack)]; 5898 optp->level = MIB2_UDP6; 5899 optp->name = MIB2_UDP6_ENTRY; 5900 optp->len = msgdsize(mp6_conn_ctl->b_cont); 5901 qreply(q, mp6_conn_ctl); 5902 5903 /* table of MLP attributes... */ 5904 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 5905 sizeof (struct T_optmgmt_ack)]; 5906 optp->level = MIB2_UDP6; 5907 optp->name = EXPER_XPORT_MLP; 5908 optp->len = msgdsize(mp6_attr_ctl->b_cont); 5909 if (optp->len == 0) 5910 freemsg(mp6_attr_ctl); 5911 else 5912 qreply(q, mp6_attr_ctl); 5913 5914 return (1); 5915 } 5916 5917 /* 5918 * Return 0 if invalid set request, 1 otherwise, including non-udp requests. 5919 * NOTE: Per MIB-II, UDP has no writable data. 5920 * TODO: If this ever actually tries to set anything, it needs to be 5921 * to do the appropriate locking. 5922 */ 5923 /* ARGSUSED */ 5924 int 5925 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, 5926 uchar_t *ptr, int len) 5927 { 5928 switch (level) { 5929 case MIB2_UDP: 5930 return (0); 5931 default: 5932 return (1); 5933 } 5934 } 5935 5936 static void 5937 udp_report_item(mblk_t *mp, udp_t *udp) 5938 { 5939 char *state; 5940 char addrbuf1[INET6_ADDRSTRLEN]; 5941 char addrbuf2[INET6_ADDRSTRLEN]; 5942 uint_t print_len, buf_len; 5943 5944 buf_len = mp->b_datap->db_lim - mp->b_wptr; 5945 ASSERT(buf_len >= 0); 5946 if (buf_len == 0) 5947 return; 5948 5949 if (udp->udp_state == TS_UNBND) 5950 state = "UNBOUND"; 5951 else if (udp->udp_state == TS_IDLE) 5952 state = "IDLE"; 5953 else if (udp->udp_state == TS_DATA_XFER) 5954 state = "CONNECTED"; 5955 else 5956 state = "UnkState"; 5957 print_len = snprintf((char *)mp->b_wptr, buf_len, 5958 MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n", 5959 (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port), 5960 inet_ntop(AF_INET6, &udp->udp_v6src, 5961 addrbuf1, sizeof (addrbuf1)), 5962 inet_ntop(AF_INET6, &udp->udp_v6dst, 5963 addrbuf2, sizeof (addrbuf2)), 5964 ntohs(udp->udp_dstport), state); 5965 if (print_len < buf_len) { 5966 mp->b_wptr += print_len; 5967 } else { 5968 mp->b_wptr += buf_len; 5969 } 5970 } 5971 5972 /* Report for ndd "udp_status" */ 5973 /* ARGSUSED */ 5974 static int 5975 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 5976 { 5977 zoneid_t zoneid; 5978 connf_t *connfp; 5979 conn_t *connp = Q_TO_CONN(q); 5980 udp_t *udp = connp->conn_udp; 5981 int i; 5982 5983 /* 5984 * Because of the ndd constraint, at most we can have 64K buffer 5985 * to put in all UDP info. So to be more efficient, just 5986 * allocate a 64K buffer here, assuming we need that large buffer. 5987 * This may be a problem as any user can read udp_status. Therefore 5988 * we limit the rate of doing this using udp_ndd_get_info_interval. 5989 * This should be OK as normal users should not do this too often. 5990 */ 5991 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 5992 if (ddi_get_lbolt() - udp_last_ndd_get_info_time < 5993 drv_usectohz(udp_ndd_get_info_interval * 1000)) { 5994 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 5995 return (0); 5996 } 5997 } 5998 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 5999 /* The following may work even if we cannot get a large buf. */ 6000 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 6001 return (0); 6002 } 6003 (void) mi_mpprintf(mp, 6004 "UDP " MI_COL_HDRPAD_STR 6005 /* 12345678[89ABCDEF] */ 6006 " zone lport src addr dest addr port state"); 6007 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 6008 6009 zoneid = connp->conn_zoneid; 6010 6011 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 6012 connfp = &ipcl_globalhash_fanout[i]; 6013 connp = NULL; 6014 6015 while ((connp = ipcl_get_next_conn(connfp, connp, 6016 IPCL_UDP))) { 6017 udp = connp->conn_udp; 6018 if (zoneid != GLOBAL_ZONEID && 6019 zoneid != connp->conn_zoneid) 6020 continue; 6021 6022 udp_report_item(mp->b_cont, udp); 6023 } 6024 } 6025 udp_last_ndd_get_info_time = ddi_get_lbolt(); 6026 return (0); 6027 } 6028 6029 /* 6030 * This routine creates a T_UDERROR_IND message and passes it upstream. 6031 * The address and options are copied from the T_UNITDATA_REQ message 6032 * passed in mp. This message is freed. 6033 */ 6034 static void 6035 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, 6036 t_scalar_t err) 6037 { 6038 struct T_unitdata_req *tudr; 6039 mblk_t *mp1; 6040 uchar_t *optaddr; 6041 t_scalar_t optlen; 6042 6043 if (DB_TYPE(mp) == M_DATA) { 6044 ASSERT(destaddr != NULL && destlen != 0); 6045 optaddr = NULL; 6046 optlen = 0; 6047 } else { 6048 if ((mp->b_wptr < mp->b_rptr) || 6049 (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { 6050 goto done; 6051 } 6052 tudr = (struct T_unitdata_req *)mp->b_rptr; 6053 destaddr = mp->b_rptr + tudr->DEST_offset; 6054 if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || 6055 destaddr + tudr->DEST_length < mp->b_rptr || 6056 destaddr + tudr->DEST_length > mp->b_wptr) { 6057 goto done; 6058 } 6059 optaddr = mp->b_rptr + tudr->OPT_offset; 6060 if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || 6061 optaddr + tudr->OPT_length < mp->b_rptr || 6062 optaddr + tudr->OPT_length > mp->b_wptr) { 6063 goto done; 6064 } 6065 destlen = tudr->DEST_length; 6066 optlen = tudr->OPT_length; 6067 } 6068 6069 mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, 6070 (char *)optaddr, optlen, err); 6071 if (mp1 != NULL) 6072 putnext(UDP_RD(q), mp1); 6073 6074 done: 6075 freemsg(mp); 6076 } 6077 6078 /* 6079 * This routine removes a port number association from a stream. It 6080 * is called by udp_wput to handle T_UNBIND_REQ messages. 6081 */ 6082 static void 6083 udp_unbind(queue_t *q, mblk_t *mp) 6084 { 6085 udp_t *udp = Q_TO_UDP(q); 6086 6087 /* If a bind has not been done, we can't unbind. */ 6088 if (udp->udp_state == TS_UNBND) { 6089 udp_err_ack(q, mp, TOUTSTATE, 0); 6090 return; 6091 } 6092 if (cl_inet_unbind != NULL) { 6093 /* 6094 * Running in cluster mode - register unbind information 6095 */ 6096 if (udp->udp_ipversion == IPV4_VERSION) { 6097 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 6098 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 6099 (in_port_t)udp->udp_port); 6100 } else { 6101 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 6102 (uint8_t *)&(udp->udp_v6src), 6103 (in_port_t)udp->udp_port); 6104 } 6105 } 6106 6107 udp_bind_hash_remove(udp, B_FALSE); 6108 V6_SET_ZERO(udp->udp_v6src); 6109 V6_SET_ZERO(udp->udp_bound_v6src); 6110 udp->udp_port = 0; 6111 udp->udp_state = TS_UNBND; 6112 6113 if (udp->udp_family == AF_INET6) { 6114 int error; 6115 6116 /* Rebuild the header template */ 6117 error = udp_build_hdrs(q, udp); 6118 if (error != 0) { 6119 udp_err_ack(q, mp, TSYSERR, error); 6120 return; 6121 } 6122 } 6123 /* 6124 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK 6125 * and therefore ip_unbind must never return NULL. 6126 */ 6127 mp = ip_unbind(q, mp); 6128 ASSERT(mp != NULL); 6129 putnext(UDP_RD(q), mp); 6130 } 6131 6132 /* 6133 * Don't let port fall into the privileged range. 6134 * Since the extra privileged ports can be arbitrary we also 6135 * ensure that we exclude those from consideration. 6136 * udp_g_epriv_ports is not sorted thus we loop over it until 6137 * there are no changes. 6138 */ 6139 static in_port_t 6140 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random) 6141 { 6142 int i; 6143 in_port_t nextport; 6144 boolean_t restart = B_FALSE; 6145 6146 if (random && udp_random_anon_port != 0) { 6147 (void) random_get_pseudo_bytes((uint8_t *)&port, 6148 sizeof (in_port_t)); 6149 /* 6150 * Unless changed by a sys admin, the smallest anon port 6151 * is 32768 and the largest anon port is 65535. It is 6152 * very likely (50%) for the random port to be smaller 6153 * than the smallest anon port. When that happens, 6154 * add port % (anon port range) to the smallest anon 6155 * port to get the random port. It should fall into the 6156 * valid anon port range. 6157 */ 6158 if (port < udp_smallest_anon_port) { 6159 port = udp_smallest_anon_port + 6160 port % (udp_largest_anon_port - 6161 udp_smallest_anon_port); 6162 } 6163 } 6164 6165 retry: 6166 if (port < udp_smallest_anon_port) 6167 port = udp_smallest_anon_port; 6168 6169 if (port > udp_largest_anon_port) { 6170 port = udp_smallest_anon_port; 6171 if (restart) 6172 return (0); 6173 restart = B_TRUE; 6174 } 6175 6176 if (port < udp_smallest_nonpriv_port) 6177 port = udp_smallest_nonpriv_port; 6178 6179 for (i = 0; i < udp_g_num_epriv_ports; i++) { 6180 if (port == udp_g_epriv_ports[i]) { 6181 port++; 6182 /* 6183 * Make sure that the port is in the 6184 * valid range. 6185 */ 6186 goto retry; 6187 } 6188 } 6189 6190 if (is_system_labeled() && 6191 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 6192 port, IPPROTO_UDP, B_TRUE)) != 0) { 6193 port = nextport; 6194 goto retry; 6195 } 6196 6197 return (port); 6198 } 6199 6200 static int 6201 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst) 6202 { 6203 int err; 6204 uchar_t opt_storage[IP_MAX_OPT_LENGTH]; 6205 udp_t *udp = Q_TO_UDP(wq); 6206 6207 err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst, 6208 opt_storage, udp->udp_mac_exempt); 6209 if (err == 0) { 6210 err = tsol_update_options(&udp->udp_ip_snd_options, 6211 &udp->udp_ip_snd_options_len, &udp->udp_label_len, 6212 opt_storage); 6213 } 6214 if (err != 0) { 6215 DTRACE_PROBE4( 6216 tx__ip__log__info__updatelabel__udp, 6217 char *, "queue(1) failed to update options(2) on mp(3)", 6218 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6219 } else { 6220 IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst); 6221 } 6222 return (err); 6223 } 6224 6225 static mblk_t * 6226 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port, 6227 uint_t srcid, int *error) 6228 { 6229 udp_t *udp = connp->conn_udp; 6230 queue_t *q = connp->conn_wq; 6231 mblk_t *mp1 = mp; 6232 mblk_t *mp2; 6233 ipha_t *ipha; 6234 int ip_hdr_length; 6235 uint32_t ip_len; 6236 udpha_t *udpha; 6237 udpattrs_t attrs; 6238 uchar_t ip_snd_opt[IP_MAX_OPT_LENGTH]; 6239 uint32_t ip_snd_opt_len = 0; 6240 6241 *error = 0; 6242 6243 if (v4dst == INADDR_ANY) 6244 v4dst = htonl(INADDR_LOOPBACK); 6245 6246 /* 6247 * If options passed in, feed it for verification and handling 6248 */ 6249 attrs.udpattr_credset = B_FALSE; 6250 if (DB_TYPE(mp) != M_DATA) { 6251 mp1 = mp->b_cont; 6252 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 6253 attrs.udpattr_ipp = NULL; 6254 attrs.udpattr_mb = mp; 6255 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 6256 goto done; 6257 /* 6258 * Note: success in processing options. 6259 * mp option buffer represented by 6260 * OPT_length/offset now potentially modified 6261 * and contain option setting results 6262 */ 6263 ASSERT(*error == 0); 6264 } 6265 } 6266 6267 /* mp1 points to the M_DATA mblk carrying the packet */ 6268 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 6269 6270 /* 6271 * Check if our saved options are valid; update if not 6272 * TSOL Note: Since we are not in WRITER mode, UDP packets 6273 * to different destination may require different labels. 6274 * We use conn_lock to ensure that lastdst, ip_snd_options, 6275 * and ip_snd_options_len are consistent for the current 6276 * destination and are updated atomically. 6277 */ 6278 mutex_enter(&connp->conn_lock); 6279 if (is_system_labeled()) { 6280 /* Using UDP MLP requires SCM_UCRED from user */ 6281 if (connp->conn_mlp_type != mlptSingle && 6282 !attrs.udpattr_credset) { 6283 mutex_exit(&connp->conn_lock); 6284 DTRACE_PROBE4( 6285 tx__ip__log__info__output__udp, 6286 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 6287 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 6288 *error = ECONNREFUSED; 6289 goto done; 6290 } 6291 if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) || 6292 V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst) && 6293 (*error = udp_update_label(q, mp, v4dst)) != 0) { 6294 mutex_exit(&connp->conn_lock); 6295 goto done; 6296 } 6297 } 6298 if (udp->udp_ip_snd_options_len > 0) { 6299 ip_snd_opt_len = udp->udp_ip_snd_options_len; 6300 bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len); 6301 } 6302 mutex_exit(&connp->conn_lock); 6303 6304 /* Add an IP header */ 6305 ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len; 6306 ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; 6307 if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) || 6308 !OK_32PTR(ipha)) { 6309 mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO); 6310 if (mp2 == NULL) { 6311 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6312 "udp_wput_end: q %p (%S)", q, "allocbfail2"); 6313 *error = ENOMEM; 6314 goto done; 6315 } 6316 mp2->b_wptr = DB_LIM(mp2); 6317 mp2->b_cont = mp1; 6318 mp1 = mp2; 6319 if (DB_TYPE(mp) != M_DATA) 6320 mp->b_cont = mp1; 6321 else 6322 mp = mp1; 6323 6324 ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length); 6325 } 6326 ip_hdr_length -= UDPH_SIZE; 6327 #ifdef _BIG_ENDIAN 6328 /* Set version, header length, and tos */ 6329 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 6330 ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | 6331 udp->udp_type_of_service); 6332 /* Set ttl and protocol */ 6333 *(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP; 6334 #else 6335 /* Set version, header length, and tos */ 6336 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 6337 ((udp->udp_type_of_service << 8) | 6338 ((IP_VERSION << 4) | (ip_hdr_length>>2))); 6339 /* Set ttl and protocol */ 6340 *(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl; 6341 #endif 6342 /* 6343 * Copy our address into the packet. If this is zero, 6344 * first look at __sin6_src_id for a hint. If we leave the source 6345 * as INADDR_ANY then ip will fill in the real source address. 6346 */ 6347 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src); 6348 if (srcid != 0 && ipha->ipha_src == INADDR_ANY) { 6349 in6_addr_t v6src; 6350 6351 ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid); 6352 IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src); 6353 } 6354 6355 ipha->ipha_fragment_offset_and_flags = 0; 6356 ipha->ipha_ident = 0; 6357 6358 mp1->b_rptr = (uchar_t *)ipha; 6359 6360 ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <= 6361 (uintptr_t)UINT_MAX); 6362 6363 /* Determine length of packet */ 6364 ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha); 6365 if ((mp2 = mp1->b_cont) != NULL) { 6366 do { 6367 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 6368 ip_len += (uint32_t)MBLKL(mp2); 6369 } while ((mp2 = mp2->b_cont) != NULL); 6370 } 6371 /* 6372 * If the size of the packet is greater than the maximum allowed by 6373 * ip, return an error. Passing this down could cause panics because 6374 * the size will have wrapped and be inconsistent with the msg size. 6375 */ 6376 if (ip_len > IP_MAXPACKET) { 6377 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6378 "udp_wput_end: q %p (%S)", q, "IP length exceeded"); 6379 *error = EMSGSIZE; 6380 goto done; 6381 } 6382 ipha->ipha_length = htons((uint16_t)ip_len); 6383 ip_len -= ip_hdr_length; 6384 ip_len = htons((uint16_t)ip_len); 6385 udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length); 6386 6387 /* 6388 * Copy in the destination address 6389 */ 6390 ipha->ipha_dst = v4dst; 6391 6392 /* 6393 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. 6394 */ 6395 if (CLASSD(v4dst)) 6396 ipha->ipha_ttl = udp->udp_multicast_ttl; 6397 6398 udpha->uha_dst_port = port; 6399 udpha->uha_src_port = udp->udp_port; 6400 6401 if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) { 6402 uint32_t cksum; 6403 6404 bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len); 6405 /* 6406 * Massage source route putting first source route in ipha_dst. 6407 * Ignore the destination in T_unitdata_req. 6408 * Create a checksum adjustment for a source route, if any. 6409 */ 6410 cksum = ip_massage_options(ipha); 6411 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6412 cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) + 6413 (ipha->ipha_dst & 0xFFFF); 6414 if ((int)cksum < 0) 6415 cksum--; 6416 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6417 /* 6418 * IP does the checksum if uha_checksum is non-zero, 6419 * We make it easy for IP to include our pseudo header 6420 * by putting our length in uha_checksum. 6421 */ 6422 cksum += ip_len; 6423 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6424 /* There might be a carry. */ 6425 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6426 #ifdef _LITTLE_ENDIAN 6427 if (udp_do_checksum) 6428 ip_len = (cksum << 16) | ip_len; 6429 #else 6430 if (udp_do_checksum) 6431 ip_len = (ip_len << 16) | cksum; 6432 else 6433 ip_len <<= 16; 6434 #endif 6435 } else { 6436 /* 6437 * IP does the checksum if uha_checksum is non-zero, 6438 * We make it easy for IP to include our pseudo header 6439 * by putting our length in uha_checksum. 6440 */ 6441 if (udp_do_checksum) 6442 ip_len |= (ip_len << 16); 6443 #ifndef _LITTLE_ENDIAN 6444 else 6445 ip_len <<= 16; 6446 #endif 6447 } 6448 /* Set UDP length and checksum */ 6449 *((uint32_t *)&udpha->uha_length) = ip_len; 6450 if (DB_CRED(mp) != NULL) 6451 mblk_setcred(mp1, DB_CRED(mp)); 6452 6453 if (DB_TYPE(mp) != M_DATA) { 6454 ASSERT(mp != mp1); 6455 freeb(mp); 6456 } 6457 6458 /* mp has been consumed and we'll return success */ 6459 ASSERT(*error == 0); 6460 mp = NULL; 6461 6462 /* We're done. Pass the packet to ip. */ 6463 BUMP_MIB(&udp_mib, udpOutDatagrams); 6464 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6465 "udp_wput_end: q %p (%S)", q, "end"); 6466 6467 if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 6468 CONN_OUTBOUND_POLICY_PRESENT(connp) || 6469 connp->conn_dontroute || connp->conn_xmit_if_ill != NULL || 6470 connp->conn_nofailover_ill != NULL || 6471 connp->conn_outgoing_ill != NULL || 6472 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 6473 IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) { 6474 UDP_STAT(udp_ip_send); 6475 ip_output(connp, mp1, connp->conn_wq, IP_WPUT); 6476 } else { 6477 udp_send_data(udp, connp->conn_wq, mp1, ipha); 6478 } 6479 6480 done: 6481 if (*error != 0) { 6482 ASSERT(mp != NULL); 6483 BUMP_MIB(&udp_mib, udpOutErrors); 6484 } 6485 return (mp); 6486 } 6487 6488 static void 6489 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha) 6490 { 6491 conn_t *connp = udp->udp_connp; 6492 ipaddr_t src, dst; 6493 ill_t *ill; 6494 ire_t *ire; 6495 ipif_t *ipif = NULL; 6496 mblk_t *ire_fp_mp; 6497 uint_t ire_fp_mp_len; 6498 uint16_t *up; 6499 uint32_t cksum, hcksum_txflags; 6500 queue_t *dev_q; 6501 boolean_t retry_caching; 6502 6503 dst = ipha->ipha_dst; 6504 src = ipha->ipha_src; 6505 ASSERT(ipha->ipha_ident == 0); 6506 6507 if (CLASSD(dst)) { 6508 int err; 6509 6510 ipif = conn_get_held_ipif(connp, 6511 &connp->conn_multicast_ipif, &err); 6512 6513 if (ipif == NULL || ipif->ipif_isv6 || 6514 (ipif->ipif_ill->ill_phyint->phyint_flags & 6515 PHYI_LOOPBACK)) { 6516 if (ipif != NULL) 6517 ipif_refrele(ipif); 6518 UDP_STAT(udp_ip_send); 6519 ip_output(connp, mp, q, IP_WPUT); 6520 return; 6521 } 6522 } 6523 6524 retry_caching = B_FALSE; 6525 mutex_enter(&connp->conn_lock); 6526 ire = connp->conn_ire_cache; 6527 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 6528 6529 if (ire == NULL || ire->ire_addr != dst || 6530 (ire->ire_marks & IRE_MARK_CONDEMNED)) { 6531 retry_caching = B_TRUE; 6532 } else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) { 6533 ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr; 6534 6535 ASSERT(ipif != NULL); 6536 if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL || 6537 stq_ill->ill_group != ipif->ipif_ill->ill_group)) 6538 retry_caching = B_TRUE; 6539 } 6540 6541 if (!retry_caching) { 6542 ASSERT(ire != NULL); 6543 IRE_REFHOLD(ire); 6544 mutex_exit(&connp->conn_lock); 6545 } else { 6546 boolean_t cached = B_FALSE; 6547 6548 connp->conn_ire_cache = NULL; 6549 mutex_exit(&connp->conn_lock); 6550 6551 /* Release the old ire */ 6552 if (ire != NULL) { 6553 IRE_REFRELE_NOTR(ire); 6554 ire = NULL; 6555 } 6556 6557 if (CLASSD(dst)) { 6558 ASSERT(ipif != NULL); 6559 ire = ire_ctable_lookup(dst, 0, 0, ipif, 6560 connp->conn_zoneid, MBLK_GETLABEL(mp), 6561 MATCH_IRE_ILL_GROUP); 6562 } else { 6563 ASSERT(ipif == NULL); 6564 ire = ire_cache_lookup(dst, connp->conn_zoneid, 6565 MBLK_GETLABEL(mp)); 6566 } 6567 6568 if (ire == NULL) { 6569 if (ipif != NULL) 6570 ipif_refrele(ipif); 6571 UDP_STAT(udp_ire_null); 6572 ip_output(connp, mp, q, IP_WPUT); 6573 return; 6574 } 6575 IRE_REFHOLD_NOTR(ire); 6576 6577 mutex_enter(&connp->conn_lock); 6578 if (!(connp->conn_state_flags & CONN_CLOSING) && 6579 connp->conn_ire_cache == NULL) { 6580 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 6581 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 6582 connp->conn_ire_cache = ire; 6583 cached = B_TRUE; 6584 } 6585 rw_exit(&ire->ire_bucket->irb_lock); 6586 } 6587 mutex_exit(&connp->conn_lock); 6588 6589 /* 6590 * We can continue to use the ire but since it was not 6591 * cached, we should drop the extra reference. 6592 */ 6593 if (!cached) 6594 IRE_REFRELE_NOTR(ire); 6595 } 6596 ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION); 6597 ASSERT(!CLASSD(dst) || ipif != NULL); 6598 6599 /* 6600 * Check if we can take the fast-path. 6601 * Note that "incomplete" ire's (where the link-layer for next hop 6602 * is not resolved, or where the fast-path header in nce_fp_mp is not 6603 * available yet) are sent down the legacy (slow) path 6604 */ 6605 if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) || 6606 (ire->ire_flags & RTF_MULTIRT) || ire->ire_stq == NULL || 6607 ire->ire_max_frag < ntohs(ipha->ipha_length) || 6608 (ire->ire_nce != NULL && 6609 (ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 6610 (connp->conn_nexthop_set) || 6611 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 6612 if (ipif != NULL) 6613 ipif_refrele(ipif); 6614 UDP_STAT(udp_ip_ire_send); 6615 IRE_REFRELE(ire); 6616 ip_output(connp, mp, q, IP_WPUT); 6617 return; 6618 } 6619 6620 BUMP_MIB(&ip_mib, ipOutRequests); 6621 6622 ill = ire_to_ill(ire); 6623 ASSERT(ill != NULL); 6624 6625 dev_q = ire->ire_stq->q_next; 6626 ASSERT(dev_q != NULL); 6627 /* 6628 * If the service thread is already running, or if the driver 6629 * queue is currently flow-controlled, queue this packet. 6630 */ 6631 if ((q->q_first != NULL || connp->conn_draining) || 6632 ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) { 6633 if (ip_output_queue) { 6634 (void) putq(q, mp); 6635 } else { 6636 BUMP_MIB(&ip_mib, ipOutDiscards); 6637 freemsg(mp); 6638 } 6639 if (ipif != NULL) 6640 ipif_refrele(ipif); 6641 IRE_REFRELE(ire); 6642 return; 6643 } 6644 6645 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 6646 #ifndef _BIG_ENDIAN 6647 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 6648 #endif 6649 6650 if (src == INADDR_ANY && !connp->conn_unspec_src) { 6651 if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC)) 6652 src = ipha->ipha_src = ipif->ipif_src_addr; 6653 else 6654 src = ipha->ipha_src = ire->ire_src_addr; 6655 } 6656 6657 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 6658 ASSERT(ill->ill_hcksum_capab != NULL); 6659 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 6660 } else { 6661 hcksum_txflags = 0; 6662 } 6663 6664 /* pseudo-header checksum (do it in parts for IP header checksum) */ 6665 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 6666 6667 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 6668 up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 6669 if (*up != 0) { 6670 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, 6671 mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 6672 ntohs(ipha->ipha_length), cksum); 6673 6674 /* Software checksum? */ 6675 if (DB_CKSUMFLAGS(mp) == 0) { 6676 UDP_STAT(udp_out_sw_cksum); 6677 UDP_STAT_UPDATE(udp_out_sw_cksum_bytes, 6678 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 6679 } 6680 } 6681 6682 ipha->ipha_fragment_offset_and_flags |= 6683 (uint32_t)htons(ire->ire_frag_flag); 6684 6685 /* Calculate IP header checksum if hardware isn't capable */ 6686 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 6687 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 6688 ((uint16_t *)ipha)[4]); 6689 } 6690 6691 if (CLASSD(dst)) { 6692 ilm_t *ilm; 6693 6694 ILM_WALKER_HOLD(ill); 6695 ilm = ilm_lookup_ill(ill, dst, ALL_ZONES); 6696 ILM_WALKER_RELE(ill); 6697 if (ilm != NULL) { 6698 ip_multicast_loopback(q, ill, mp, 6699 connp->conn_multicast_loop ? 0 : 6700 IP_FF_NO_MCAST_LOOP, connp->conn_zoneid); 6701 } 6702 6703 /* If multicast TTL is 0 then we are done */ 6704 if (ipha->ipha_ttl == 0) { 6705 if (ipif != NULL) 6706 ipif_refrele(ipif); 6707 freemsg(mp); 6708 IRE_REFRELE(ire); 6709 return; 6710 } 6711 } 6712 6713 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 6714 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 6715 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 6716 6717 UPDATE_OB_PKT_COUNT(ire); 6718 ire->ire_last_used_time = lbolt; 6719 6720 if (ILL_DLS_CAPABLE(ill)) { 6721 /* 6722 * Send the packet directly to DLD, where it may be queued 6723 * depending on the availability of transmit resources at 6724 * the media layer. 6725 */ 6726 IP_DLS_ILL_TX(ill, ipha, mp); 6727 } else { 6728 DTRACE_PROBE4(ip4__physical__out__start, 6729 ill_t *, NULL, ill_t *, ill, 6730 ipha_t *, ipha, mblk_t *, mp); 6731 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 6732 NULL, ill, ipha, mp, mp); 6733 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 6734 if (mp != NULL) 6735 putnext(ire->ire_stq, mp); 6736 } 6737 6738 if (ipif != NULL) 6739 ipif_refrele(ipif); 6740 IRE_REFRELE(ire); 6741 } 6742 6743 static boolean_t 6744 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst) 6745 { 6746 udp_t *udp = Q_TO_UDP(wq); 6747 int err; 6748 uchar_t opt_storage[TSOL_MAX_IPV6_OPTION]; 6749 6750 err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred), 6751 dst, opt_storage, udp->udp_mac_exempt); 6752 if (err == 0) { 6753 err = tsol_update_sticky(&udp->udp_sticky_ipp, 6754 &udp->udp_label_len_v6, opt_storage); 6755 } 6756 if (err != 0) { 6757 DTRACE_PROBE4( 6758 tx__ip__log__drop__updatelabel__udp6, 6759 char *, "queue(1) failed to update options(2) on mp(3)", 6760 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6761 } else { 6762 udp->udp_v6lastdst = *dst; 6763 } 6764 return (err); 6765 } 6766 6767 /* 6768 * This routine handles all messages passed downstream. It either 6769 * consumes the message or passes it downstream; it never queues a 6770 * a message. 6771 */ 6772 static void 6773 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) 6774 { 6775 sin6_t *sin6; 6776 sin_t *sin; 6777 ipaddr_t v4dst; 6778 uint16_t port; 6779 uint_t srcid; 6780 queue_t *q = connp->conn_wq; 6781 udp_t *udp = connp->conn_udp; 6782 int error = 0; 6783 struct sockaddr_storage ss; 6784 6785 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START, 6786 "udp_wput_start: connp %p mp %p", connp, mp); 6787 6788 /* 6789 * We directly handle several cases here: T_UNITDATA_REQ message 6790 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both 6791 * connected and non-connected socket. The latter carries the 6792 * address structure along when this routine gets called. 6793 */ 6794 switch (DB_TYPE(mp)) { 6795 case M_DATA: 6796 if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) { 6797 if (!udp->udp_direct_sockfs || 6798 addr == NULL || addrlen == 0) { 6799 /* Not connected; address is required */ 6800 BUMP_MIB(&udp_mib, udpOutErrors); 6801 UDP_STAT(udp_out_err_notconn); 6802 freemsg(mp); 6803 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6804 "udp_wput_end: connp %p (%S)", connp, 6805 "not-connected; address required"); 6806 return; 6807 } 6808 ASSERT(udp->udp_issocket); 6809 UDP_DBGSTAT(udp_data_notconn); 6810 /* Not connected; do some more checks below */ 6811 break; 6812 } 6813 /* M_DATA for connected socket */ 6814 UDP_DBGSTAT(udp_data_conn); 6815 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst); 6816 6817 /* Initialize addr and addrlen as if they're passed in */ 6818 if (udp->udp_family == AF_INET) { 6819 sin = (sin_t *)&ss; 6820 sin->sin_family = AF_INET; 6821 sin->sin_port = udp->udp_dstport; 6822 sin->sin_addr.s_addr = v4dst; 6823 addr = (struct sockaddr *)sin; 6824 addrlen = sizeof (*sin); 6825 } else { 6826 sin6 = (sin6_t *)&ss; 6827 sin6->sin6_family = AF_INET6; 6828 sin6->sin6_port = udp->udp_dstport; 6829 sin6->sin6_flowinfo = udp->udp_flowinfo; 6830 sin6->sin6_addr = udp->udp_v6dst; 6831 sin6->sin6_scope_id = 0; 6832 sin6->__sin6_src_id = 0; 6833 addr = (struct sockaddr *)sin6; 6834 addrlen = sizeof (*sin6); 6835 } 6836 6837 if (udp->udp_family == AF_INET || 6838 IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) { 6839 /* 6840 * Handle both AF_INET and AF_INET6; the latter 6841 * for IPV4 mapped destination addresses. Note 6842 * here that both addr and addrlen point to the 6843 * corresponding struct depending on the address 6844 * family of the socket. 6845 */ 6846 mp = udp_output_v4(connp, mp, v4dst, 6847 udp->udp_dstport, 0, &error); 6848 } else { 6849 mp = udp_output_v6(connp, mp, sin6, &error); 6850 } 6851 if (error != 0) { 6852 ASSERT(addr != NULL && addrlen != 0); 6853 goto ud_error; 6854 } 6855 return; 6856 case M_PROTO: 6857 case M_PCPROTO: { 6858 struct T_unitdata_req *tudr; 6859 6860 ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX); 6861 tudr = (struct T_unitdata_req *)mp->b_rptr; 6862 6863 /* Handle valid T_UNITDATA_REQ here */ 6864 if (MBLKL(mp) >= sizeof (*tudr) && 6865 ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) { 6866 if (mp->b_cont == NULL) { 6867 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6868 "udp_wput_end: q %p (%S)", q, "badaddr"); 6869 error = EPROTO; 6870 goto ud_error; 6871 } 6872 6873 if (!MBLKIN(mp, 0, tudr->DEST_offset + 6874 tudr->DEST_length)) { 6875 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6876 "udp_wput_end: q %p (%S)", q, "badaddr"); 6877 error = EADDRNOTAVAIL; 6878 goto ud_error; 6879 } 6880 /* 6881 * If a port has not been bound to the stream, fail. 6882 * This is not a problem when sockfs is directly 6883 * above us, because it will ensure that the socket 6884 * is first bound before allowing data to be sent. 6885 */ 6886 if (udp->udp_state == TS_UNBND) { 6887 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6888 "udp_wput_end: q %p (%S)", q, "outstate"); 6889 error = EPROTO; 6890 goto ud_error; 6891 } 6892 addr = (struct sockaddr *) 6893 &mp->b_rptr[tudr->DEST_offset]; 6894 addrlen = tudr->DEST_length; 6895 if (tudr->OPT_length != 0) 6896 UDP_STAT(udp_out_opt); 6897 break; 6898 } 6899 /* FALLTHRU */ 6900 } 6901 default: 6902 udp_become_writer(connp, mp, udp_wput_other_wrapper, 6903 SQTAG_UDP_OUTPUT); 6904 return; 6905 } 6906 ASSERT(addr != NULL); 6907 6908 switch (udp->udp_family) { 6909 case AF_INET6: 6910 sin6 = (sin6_t *)addr; 6911 if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) || 6912 sin6->sin6_family != AF_INET6) { 6913 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6914 "udp_wput_end: q %p (%S)", q, "badaddr"); 6915 error = EADDRNOTAVAIL; 6916 goto ud_error; 6917 } 6918 6919 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6920 /* 6921 * Destination is a non-IPv4-compatible IPv6 address. 6922 * Send out an IPv6 format packet. 6923 */ 6924 mp = udp_output_v6(connp, mp, sin6, &error); 6925 if (error != 0) 6926 goto ud_error; 6927 6928 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6929 "udp_wput_end: q %p (%S)", q, "udp_output_v6"); 6930 return; 6931 } 6932 /* 6933 * If the local address is not zero or a mapped address 6934 * return an error. It would be possible to send an IPv4 6935 * packet but the response would never make it back to the 6936 * application since it is bound to a non-mapped address. 6937 */ 6938 if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) && 6939 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 6940 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6941 "udp_wput_end: q %p (%S)", q, "badaddr"); 6942 error = EADDRNOTAVAIL; 6943 goto ud_error; 6944 } 6945 /* Send IPv4 packet without modifying udp_ipversion */ 6946 /* Extract port and ipaddr */ 6947 port = sin6->sin6_port; 6948 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst); 6949 srcid = sin6->__sin6_src_id; 6950 break; 6951 6952 case AF_INET: 6953 sin = (sin_t *)addr; 6954 if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) || 6955 sin->sin_family != AF_INET) { 6956 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6957 "udp_wput_end: q %p (%S)", q, "badaddr"); 6958 error = EADDRNOTAVAIL; 6959 goto ud_error; 6960 } 6961 /* Extract port and ipaddr */ 6962 port = sin->sin_port; 6963 v4dst = sin->sin_addr.s_addr; 6964 srcid = 0; 6965 break; 6966 } 6967 6968 mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error); 6969 if (error != 0) { 6970 ud_error: 6971 UDP_STAT(udp_out_err_output); 6972 ASSERT(mp != NULL); 6973 /* mp is freed by the following routine */ 6974 udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 6975 (t_scalar_t)error); 6976 } 6977 } 6978 6979 /* ARGSUSED */ 6980 static void 6981 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2) 6982 { 6983 udp_output((conn_t *)arg, mp, NULL, 0); 6984 _UDP_EXIT((conn_t *)arg); 6985 } 6986 6987 static void 6988 udp_wput(queue_t *q, mblk_t *mp) 6989 { 6990 _UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper, 6991 SQTAG_UDP_WPUT); 6992 } 6993 6994 /* 6995 * Allocate and prepare a T_UNITDATA_REQ message. 6996 */ 6997 static mblk_t * 6998 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen) 6999 { 7000 struct T_unitdata_req *tudr; 7001 mblk_t *mp; 7002 7003 mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED); 7004 if (mp != NULL) { 7005 mp->b_wptr += sizeof (*tudr) + addrlen; 7006 DB_TYPE(mp) = M_PROTO; 7007 7008 tudr = (struct T_unitdata_req *)mp->b_rptr; 7009 tudr->PRIM_type = T_UNITDATA_REQ; 7010 tudr->DEST_length = addrlen; 7011 tudr->DEST_offset = (t_scalar_t)sizeof (*tudr); 7012 tudr->OPT_length = 0; 7013 tudr->OPT_offset = 0; 7014 bcopy(addr, tudr+1, addrlen); 7015 } 7016 return (mp); 7017 } 7018 7019 /* 7020 * Entry point for sockfs when udp is in "direct sockfs" mode. This mode 7021 * is valid when we are directly beneath the stream head, and thus sockfs 7022 * is able to bypass STREAMS and directly call us, passing along the sockaddr 7023 * structure without the cumbersome T_UNITDATA_REQ interface. Note that 7024 * this is done for both connected and non-connected endpoint. 7025 */ 7026 void 7027 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) 7028 { 7029 conn_t *connp; 7030 udp_t *udp; 7031 7032 q = UDP_WR(q); 7033 connp = Q_TO_CONN(q); 7034 udp = connp->conn_udp; 7035 7036 /* udpsockfs should only send down M_DATA for this entry point */ 7037 ASSERT(DB_TYPE(mp) == M_DATA); 7038 7039 mutex_enter(&connp->conn_lock); 7040 UDP_MODE_ASSERTIONS(udp, UDP_ENTER); 7041 7042 if (udp->udp_mode != UDP_MT_HOT) { 7043 /* 7044 * We can't enter this conn right away because another 7045 * thread is currently executing as writer; therefore we 7046 * need to deposit the message into the squeue to be 7047 * drained later. If a socket address is present, we 7048 * need to create a T_UNITDATA_REQ message as placeholder. 7049 */ 7050 if (addr != NULL && addrlen != 0) { 7051 mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen); 7052 7053 if (tudr_mp == NULL) { 7054 mutex_exit(&connp->conn_lock); 7055 BUMP_MIB(&udp_mib, udpOutErrors); 7056 UDP_STAT(udp_out_err_tudr); 7057 freemsg(mp); 7058 return; 7059 } 7060 /* Tag the packet with T_UNITDATA_REQ */ 7061 tudr_mp->b_cont = mp; 7062 mp = tudr_mp; 7063 } 7064 mutex_exit(&connp->conn_lock); 7065 udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT); 7066 return; 7067 } 7068 7069 /* We can execute as reader right away. */ 7070 UDP_READERS_INCREF(udp); 7071 mutex_exit(&connp->conn_lock); 7072 7073 udp_output(connp, mp, addr, addrlen); 7074 7075 udp_exit(connp); 7076 } 7077 7078 /* 7079 * udp_output_v6(): 7080 * Assumes that udp_wput did some sanity checking on the destination 7081 * address. 7082 */ 7083 static mblk_t * 7084 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error) 7085 { 7086 ip6_t *ip6h; 7087 ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ 7088 mblk_t *mp1 = mp; 7089 mblk_t *mp2; 7090 int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 7091 size_t ip_len; 7092 udpha_t *udph; 7093 udp_t *udp = connp->conn_udp; 7094 queue_t *q = connp->conn_wq; 7095 ip6_pkt_t ipp_s; /* For ancillary data options */ 7096 ip6_pkt_t *ipp = &ipp_s; 7097 ip6_pkt_t *tipp; /* temporary ipp */ 7098 uint32_t csum = 0; 7099 uint_t ignore = 0; 7100 uint_t option_exists = 0, is_sticky = 0; 7101 uint8_t *cp; 7102 uint8_t *nxthdr_ptr; 7103 in6_addr_t ip6_dst; 7104 udpattrs_t attrs; 7105 boolean_t opt_present; 7106 ip6_hbh_t *hopoptsptr = NULL; 7107 uint_t hopoptslen = 0; 7108 boolean_t is_ancillary = B_FALSE; 7109 7110 *error = 0; 7111 7112 /* 7113 * If the local address is a mapped address return 7114 * an error. 7115 * It would be possible to send an IPv6 packet but the 7116 * response would never make it back to the application 7117 * since it is bound to a mapped address. 7118 */ 7119 if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) { 7120 *error = EADDRNOTAVAIL; 7121 goto done; 7122 } 7123 7124 ipp->ipp_fields = 0; 7125 ipp->ipp_sticky_ignored = 0; 7126 7127 /* 7128 * If TPI options passed in, feed it for verification and handling 7129 */ 7130 attrs.udpattr_credset = B_FALSE; 7131 opt_present = B_FALSE; 7132 if (DB_TYPE(mp) != M_DATA) { 7133 mp1 = mp->b_cont; 7134 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 7135 attrs.udpattr_ipp = ipp; 7136 attrs.udpattr_mb = mp; 7137 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 7138 goto done; 7139 ASSERT(*error == 0); 7140 opt_present = B_TRUE; 7141 } 7142 } 7143 ignore = ipp->ipp_sticky_ignored; 7144 7145 /* mp1 points to the M_DATA mblk carrying the packet */ 7146 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 7147 7148 if (sin6->sin6_scope_id != 0 && 7149 IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 7150 /* 7151 * IPPF_SCOPE_ID is special. It's neither a sticky 7152 * option nor ancillary data. It needs to be 7153 * explicitly set in options_exists. 7154 */ 7155 option_exists |= IPPF_SCOPE_ID; 7156 } 7157 7158 /* 7159 * Compute the destination address 7160 */ 7161 ip6_dst = sin6->sin6_addr; 7162 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 7163 ip6_dst = ipv6_loopback; 7164 7165 /* 7166 * If we're not going to the same destination as last time, then 7167 * recompute the label required. This is done in a separate routine to 7168 * avoid blowing up our stack here. 7169 * 7170 * TSOL Note: Since we are not in WRITER mode, UDP packets 7171 * to different destination may require different labels. 7172 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts, 7173 * and sticky ipp_hopoptslen are consistent for the current 7174 * destination and are updated atomically. 7175 */ 7176 mutex_enter(&connp->conn_lock); 7177 if (is_system_labeled()) { 7178 /* Using UDP MLP requires SCM_UCRED from user */ 7179 if (connp->conn_mlp_type != mlptSingle && 7180 !attrs.udpattr_credset) { 7181 DTRACE_PROBE4( 7182 tx__ip__log__info__output__udp6, 7183 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 7184 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 7185 *error = ECONNREFUSED; 7186 mutex_exit(&connp->conn_lock); 7187 goto done; 7188 } 7189 if ((opt_present || 7190 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst)) && 7191 (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) { 7192 mutex_exit(&connp->conn_lock); 7193 goto done; 7194 } 7195 } 7196 7197 /* 7198 * If there's a security label here, then we ignore any options the 7199 * user may try to set. We keep the peer's label as a hidden sticky 7200 * option. We make a private copy of this label before releasing the 7201 * lock so that label is kept consistent with the destination addr. 7202 */ 7203 if (udp->udp_label_len_v6 > 0) { 7204 ignore &= ~IPPF_HOPOPTS; 7205 ipp->ipp_fields &= ~IPPF_HOPOPTS; 7206 } 7207 7208 if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { 7209 /* No sticky options nor ancillary data. */ 7210 mutex_exit(&connp->conn_lock); 7211 goto no_options; 7212 } 7213 7214 /* 7215 * Go through the options figuring out where each is going to 7216 * come from and build two masks. The first mask indicates if 7217 * the option exists at all. The second mask indicates if the 7218 * option is sticky or ancillary. 7219 */ 7220 if (!(ignore & IPPF_HOPOPTS)) { 7221 if (ipp->ipp_fields & IPPF_HOPOPTS) { 7222 option_exists |= IPPF_HOPOPTS; 7223 udp_ip_hdr_len += ipp->ipp_hopoptslen; 7224 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { 7225 option_exists |= IPPF_HOPOPTS; 7226 is_sticky |= IPPF_HOPOPTS; 7227 ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0); 7228 hopoptsptr = kmem_alloc( 7229 udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP); 7230 if (hopoptsptr == NULL) { 7231 *error = ENOMEM; 7232 mutex_exit(&connp->conn_lock); 7233 goto done; 7234 } 7235 hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen; 7236 bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr, 7237 hopoptslen); 7238 udp_ip_hdr_len += hopoptslen; 7239 } 7240 } 7241 mutex_exit(&connp->conn_lock); 7242 7243 if (!(ignore & IPPF_RTHDR)) { 7244 if (ipp->ipp_fields & IPPF_RTHDR) { 7245 option_exists |= IPPF_RTHDR; 7246 udp_ip_hdr_len += ipp->ipp_rthdrlen; 7247 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { 7248 option_exists |= IPPF_RTHDR; 7249 is_sticky |= IPPF_RTHDR; 7250 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen; 7251 } 7252 } 7253 7254 if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { 7255 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 7256 option_exists |= IPPF_RTDSTOPTS; 7257 udp_ip_hdr_len += ipp->ipp_rtdstoptslen; 7258 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { 7259 option_exists |= IPPF_RTDSTOPTS; 7260 is_sticky |= IPPF_RTDSTOPTS; 7261 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen; 7262 } 7263 } 7264 7265 if (!(ignore & IPPF_DSTOPTS)) { 7266 if (ipp->ipp_fields & IPPF_DSTOPTS) { 7267 option_exists |= IPPF_DSTOPTS; 7268 udp_ip_hdr_len += ipp->ipp_dstoptslen; 7269 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { 7270 option_exists |= IPPF_DSTOPTS; 7271 is_sticky |= IPPF_DSTOPTS; 7272 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen; 7273 } 7274 } 7275 7276 if (!(ignore & IPPF_IFINDEX)) { 7277 if (ipp->ipp_fields & IPPF_IFINDEX) { 7278 option_exists |= IPPF_IFINDEX; 7279 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { 7280 option_exists |= IPPF_IFINDEX; 7281 is_sticky |= IPPF_IFINDEX; 7282 } 7283 } 7284 7285 if (!(ignore & IPPF_ADDR)) { 7286 if (ipp->ipp_fields & IPPF_ADDR) { 7287 option_exists |= IPPF_ADDR; 7288 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) { 7289 option_exists |= IPPF_ADDR; 7290 is_sticky |= IPPF_ADDR; 7291 } 7292 } 7293 7294 if (!(ignore & IPPF_DONTFRAG)) { 7295 if (ipp->ipp_fields & IPPF_DONTFRAG) { 7296 option_exists |= IPPF_DONTFRAG; 7297 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { 7298 option_exists |= IPPF_DONTFRAG; 7299 is_sticky |= IPPF_DONTFRAG; 7300 } 7301 } 7302 7303 if (!(ignore & IPPF_USE_MIN_MTU)) { 7304 if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { 7305 option_exists |= IPPF_USE_MIN_MTU; 7306 } else if (udp->udp_sticky_ipp.ipp_fields & 7307 IPPF_USE_MIN_MTU) { 7308 option_exists |= IPPF_USE_MIN_MTU; 7309 is_sticky |= IPPF_USE_MIN_MTU; 7310 } 7311 } 7312 7313 if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) 7314 option_exists |= IPPF_HOPLIMIT; 7315 /* IPV6_HOPLIMIT can never be sticky */ 7316 ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); 7317 7318 if (!(ignore & IPPF_UNICAST_HOPS) && 7319 (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { 7320 option_exists |= IPPF_UNICAST_HOPS; 7321 is_sticky |= IPPF_UNICAST_HOPS; 7322 } 7323 7324 if (!(ignore & IPPF_MULTICAST_HOPS) && 7325 (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { 7326 option_exists |= IPPF_MULTICAST_HOPS; 7327 is_sticky |= IPPF_MULTICAST_HOPS; 7328 } 7329 7330 if (!(ignore & IPPF_TCLASS)) { 7331 if (ipp->ipp_fields & IPPF_TCLASS) { 7332 option_exists |= IPPF_TCLASS; 7333 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) { 7334 option_exists |= IPPF_TCLASS; 7335 is_sticky |= IPPF_TCLASS; 7336 } 7337 } 7338 7339 if (!(ignore & IPPF_NEXTHOP) && 7340 (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) { 7341 option_exists |= IPPF_NEXTHOP; 7342 is_sticky |= IPPF_NEXTHOP; 7343 } 7344 7345 no_options: 7346 7347 /* 7348 * If any options carried in the ip6i_t were specified, we 7349 * need to account for the ip6i_t in the data we'll be sending 7350 * down. 7351 */ 7352 if (option_exists & IPPF_HAS_IP6I) 7353 udp_ip_hdr_len += sizeof (ip6i_t); 7354 7355 /* check/fix buffer config, setup pointers into it */ 7356 ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len]; 7357 if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) || 7358 !OK_32PTR(ip6h)) { 7359 /* Try to get everything in a single mblk next time */ 7360 if (udp_ip_hdr_len > udp->udp_max_hdr_len) { 7361 udp->udp_max_hdr_len = udp_ip_hdr_len; 7362 (void) mi_set_sth_wroff(UDP_RD(q), 7363 udp->udp_max_hdr_len + udp_wroff_extra); 7364 } 7365 mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO); 7366 if (mp2 == NULL) { 7367 *error = ENOMEM; 7368 goto done; 7369 } 7370 mp2->b_wptr = DB_LIM(mp2); 7371 mp2->b_cont = mp1; 7372 mp1 = mp2; 7373 if (DB_TYPE(mp) != M_DATA) 7374 mp->b_cont = mp1; 7375 else 7376 mp = mp1; 7377 7378 ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len); 7379 } 7380 mp1->b_rptr = (unsigned char *)ip6h; 7381 ip6i = (ip6i_t *)ip6h; 7382 7383 #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp) 7384 if (option_exists & IPPF_HAS_IP6I) { 7385 ip6h = (ip6_t *)&ip6i[1]; 7386 ip6i->ip6i_flags = 0; 7387 ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7388 7389 /* sin6_scope_id takes precendence over IPPF_IFINDEX */ 7390 if (option_exists & IPPF_SCOPE_ID) { 7391 ip6i->ip6i_flags |= IP6I_IFINDEX; 7392 ip6i->ip6i_ifindex = sin6->sin6_scope_id; 7393 } else if (option_exists & IPPF_IFINDEX) { 7394 tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); 7395 ASSERT(tipp->ipp_ifindex != 0); 7396 ip6i->ip6i_flags |= IP6I_IFINDEX; 7397 ip6i->ip6i_ifindex = tipp->ipp_ifindex; 7398 } 7399 7400 if (option_exists & IPPF_ADDR) { 7401 /* 7402 * Enable per-packet source address verification if 7403 * IPV6_PKTINFO specified the source address. 7404 * ip6_src is set in the transport's _wput function. 7405 */ 7406 ip6i->ip6i_flags |= IP6I_VERIFY_SRC; 7407 } 7408 7409 if (option_exists & IPPF_DONTFRAG) { 7410 ip6i->ip6i_flags |= IP6I_DONTFRAG; 7411 } 7412 7413 if (option_exists & IPPF_USE_MIN_MTU) { 7414 ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( 7415 ip6i->ip6i_flags, ipp->ipp_use_min_mtu); 7416 } 7417 7418 if (option_exists & IPPF_NEXTHOP) { 7419 tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); 7420 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); 7421 ip6i->ip6i_flags |= IP6I_NEXTHOP; 7422 ip6i->ip6i_nexthop = tipp->ipp_nexthop; 7423 } 7424 7425 /* 7426 * tell IP this is an ip6i_t private header 7427 */ 7428 ip6i->ip6i_nxt = IPPROTO_RAW; 7429 } 7430 7431 /* Initialize IPv6 header */ 7432 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7433 bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); 7434 7435 /* Set the hoplimit of the outgoing packet. */ 7436 if (option_exists & IPPF_HOPLIMIT) { 7437 /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ 7438 ip6h->ip6_hops = ipp->ipp_hoplimit; 7439 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7440 } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 7441 ip6h->ip6_hops = udp->udp_multicast_ttl; 7442 if (option_exists & IPPF_MULTICAST_HOPS) 7443 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7444 } else { 7445 ip6h->ip6_hops = udp->udp_ttl; 7446 if (option_exists & IPPF_UNICAST_HOPS) 7447 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7448 } 7449 7450 if (option_exists & IPPF_ADDR) { 7451 tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); 7452 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); 7453 ip6h->ip6_src = tipp->ipp_addr; 7454 } else { 7455 /* 7456 * The source address was not set using IPV6_PKTINFO. 7457 * First look at the bound source. 7458 * If unspecified fallback to __sin6_src_id. 7459 */ 7460 ip6h->ip6_src = udp->udp_v6src; 7461 if (sin6->__sin6_src_id != 0 && 7462 IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 7463 ip_srcid_find_id(sin6->__sin6_src_id, 7464 &ip6h->ip6_src, connp->conn_zoneid); 7465 } 7466 } 7467 7468 nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; 7469 cp = (uint8_t *)&ip6h[1]; 7470 7471 /* 7472 * Here's where we have to start stringing together 7473 * any extension headers in the right order: 7474 * Hop-by-hop, destination, routing, and final destination opts. 7475 */ 7476 if (option_exists & IPPF_HOPOPTS) { 7477 /* Hop-by-hop options */ 7478 ip6_hbh_t *hbh = (ip6_hbh_t *)cp; 7479 tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); 7480 if (hopoptslen == 0) { 7481 hopoptsptr = tipp->ipp_hopopts; 7482 hopoptslen = tipp->ipp_hopoptslen; 7483 is_ancillary = B_TRUE; 7484 } 7485 7486 *nxthdr_ptr = IPPROTO_HOPOPTS; 7487 nxthdr_ptr = &hbh->ip6h_nxt; 7488 7489 bcopy(hopoptsptr, cp, hopoptslen); 7490 cp += hopoptslen; 7491 7492 if (hopoptsptr != NULL && !is_ancillary) { 7493 kmem_free(hopoptsptr, hopoptslen); 7494 hopoptsptr = NULL; 7495 hopoptslen = 0; 7496 } 7497 } 7498 /* 7499 * En-route destination options 7500 * Only do them if there's a routing header as well 7501 */ 7502 if (option_exists & IPPF_RTDSTOPTS) { 7503 ip6_dest_t *dst = (ip6_dest_t *)cp; 7504 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); 7505 7506 *nxthdr_ptr = IPPROTO_DSTOPTS; 7507 nxthdr_ptr = &dst->ip6d_nxt; 7508 7509 bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); 7510 cp += tipp->ipp_rtdstoptslen; 7511 } 7512 /* 7513 * Routing header next 7514 */ 7515 if (option_exists & IPPF_RTHDR) { 7516 ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; 7517 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); 7518 7519 *nxthdr_ptr = IPPROTO_ROUTING; 7520 nxthdr_ptr = &rt->ip6r_nxt; 7521 7522 bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); 7523 cp += tipp->ipp_rthdrlen; 7524 } 7525 /* 7526 * Do ultimate destination options 7527 */ 7528 if (option_exists & IPPF_DSTOPTS) { 7529 ip6_dest_t *dest = (ip6_dest_t *)cp; 7530 tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); 7531 7532 *nxthdr_ptr = IPPROTO_DSTOPTS; 7533 nxthdr_ptr = &dest->ip6d_nxt; 7534 7535 bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); 7536 cp += tipp->ipp_dstoptslen; 7537 } 7538 /* 7539 * Now set the last header pointer to the proto passed in 7540 */ 7541 ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE)); 7542 *nxthdr_ptr = IPPROTO_UDP; 7543 7544 /* Update UDP header */ 7545 udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE); 7546 udph->uha_dst_port = sin6->sin6_port; 7547 udph->uha_src_port = udp->udp_port; 7548 7549 /* 7550 * Copy in the destination address 7551 */ 7552 ip6h->ip6_dst = ip6_dst; 7553 7554 ip6h->ip6_vcf = 7555 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7556 (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7557 7558 if (option_exists & IPPF_TCLASS) { 7559 tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); 7560 ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, 7561 tipp->ipp_tclass); 7562 } 7563 7564 if (option_exists & IPPF_RTHDR) { 7565 ip6_rthdr_t *rth; 7566 7567 /* 7568 * Perform any processing needed for source routing. 7569 * We know that all extension headers will be in the same mblk 7570 * as the IPv6 header. 7571 */ 7572 rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); 7573 if (rth != NULL && rth->ip6r_segleft != 0) { 7574 if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { 7575 /* 7576 * Drop packet - only support Type 0 routing. 7577 * Notify the application as well. 7578 */ 7579 *error = EPROTO; 7580 goto done; 7581 } 7582 7583 /* 7584 * rth->ip6r_len is twice the number of 7585 * addresses in the header. Thus it must be even. 7586 */ 7587 if (rth->ip6r_len & 0x1) { 7588 *error = EPROTO; 7589 goto done; 7590 } 7591 /* 7592 * Shuffle the routing header and ip6_dst 7593 * addresses, and get the checksum difference 7594 * between the first hop (in ip6_dst) and 7595 * the destination (in the last routing hdr entry). 7596 */ 7597 csum = ip_massage_options_v6(ip6h, rth); 7598 /* 7599 * Verify that the first hop isn't a mapped address. 7600 * Routers along the path need to do this verification 7601 * for subsequent hops. 7602 */ 7603 if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { 7604 *error = EADDRNOTAVAIL; 7605 goto done; 7606 } 7607 7608 cp += (rth->ip6r_len + 1)*8; 7609 } 7610 } 7611 7612 /* count up length of UDP packet */ 7613 ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN; 7614 if ((mp2 = mp1->b_cont) != NULL) { 7615 do { 7616 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 7617 ip_len += (uint32_t)MBLKL(mp2); 7618 } while ((mp2 = mp2->b_cont) != NULL); 7619 } 7620 7621 /* 7622 * If the size of the packet is greater than the maximum allowed by 7623 * ip, return an error. Passing this down could cause panics because 7624 * the size will have wrapped and be inconsistent with the msg size. 7625 */ 7626 if (ip_len > IP_MAXPACKET) { 7627 *error = EMSGSIZE; 7628 goto done; 7629 } 7630 7631 /* Store the UDP length. Subtract length of extension hdrs */ 7632 udph->uha_length = htons(ip_len + IPV6_HDR_LEN - 7633 (int)((uchar_t *)udph - (uchar_t *)ip6h)); 7634 7635 /* 7636 * We make it easy for IP to include our pseudo header 7637 * by putting our length in uh_checksum, modified (if 7638 * we have a routing header) by the checksum difference 7639 * between the ultimate destination and first hop addresses. 7640 * Note: UDP over IPv6 must always checksum the packet. 7641 */ 7642 csum += udph->uha_length; 7643 csum = (csum & 0xFFFF) + (csum >> 16); 7644 udph->uha_checksum = (uint16_t)csum; 7645 7646 #ifdef _LITTLE_ENDIAN 7647 ip_len = htons(ip_len); 7648 #endif 7649 ip6h->ip6_plen = ip_len; 7650 if (DB_CRED(mp) != NULL) 7651 mblk_setcred(mp1, DB_CRED(mp)); 7652 7653 if (DB_TYPE(mp) != M_DATA) { 7654 ASSERT(mp != mp1); 7655 freeb(mp); 7656 } 7657 7658 /* mp has been consumed and we'll return success */ 7659 ASSERT(*error == 0); 7660 mp = NULL; 7661 7662 /* We're done. Pass the packet to IP */ 7663 BUMP_MIB(&udp_mib, udpOutDatagrams); 7664 ip_output_v6(connp, mp1, q, IP_WPUT); 7665 7666 done: 7667 if (hopoptsptr != NULL && !is_ancillary) { 7668 kmem_free(hopoptsptr, hopoptslen); 7669 hopoptsptr = NULL; 7670 } 7671 if (*error != 0) { 7672 ASSERT(mp != NULL); 7673 BUMP_MIB(&udp_mib, udpOutErrors); 7674 } 7675 return (mp); 7676 } 7677 7678 static void 7679 udp_wput_other(queue_t *q, mblk_t *mp) 7680 { 7681 uchar_t *rptr = mp->b_rptr; 7682 struct datab *db; 7683 struct iocblk *iocp; 7684 cred_t *cr; 7685 conn_t *connp = Q_TO_CONN(q); 7686 udp_t *udp = connp->conn_udp; 7687 7688 TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START, 7689 "udp_wput_other_start: q %p", q); 7690 7691 db = mp->b_datap; 7692 7693 cr = DB_CREDDEF(mp, connp->conn_cred); 7694 7695 switch (db->db_type) { 7696 case M_PROTO: 7697 case M_PCPROTO: 7698 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 7699 freemsg(mp); 7700 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7701 "udp_wput_other_end: q %p (%S)", 7702 q, "protoshort"); 7703 return; 7704 } 7705 switch (((t_primp_t)rptr)->type) { 7706 case T_ADDR_REQ: 7707 udp_addr_req(q, mp); 7708 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7709 "udp_wput_other_end: q %p (%S)", q, "addrreq"); 7710 return; 7711 case O_T_BIND_REQ: 7712 case T_BIND_REQ: 7713 udp_bind(q, mp); 7714 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7715 "udp_wput_other_end: q %p (%S)", q, "bindreq"); 7716 return; 7717 case T_CONN_REQ: 7718 udp_connect(q, mp); 7719 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7720 "udp_wput_other_end: q %p (%S)", q, "connreq"); 7721 return; 7722 case T_CAPABILITY_REQ: 7723 udp_capability_req(q, mp); 7724 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7725 "udp_wput_other_end: q %p (%S)", q, "capabreq"); 7726 return; 7727 case T_INFO_REQ: 7728 udp_info_req(q, mp); 7729 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7730 "udp_wput_other_end: q %p (%S)", q, "inforeq"); 7731 return; 7732 case T_UNITDATA_REQ: 7733 /* 7734 * If a T_UNITDATA_REQ gets here, the address must 7735 * be bad. Valid T_UNITDATA_REQs are handled 7736 * in udp_wput. 7737 */ 7738 udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL); 7739 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7740 "udp_wput_other_end: q %p (%S)", 7741 q, "unitdatareq"); 7742 return; 7743 case T_UNBIND_REQ: 7744 udp_unbind(q, mp); 7745 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7746 "udp_wput_other_end: q %p (%S)", q, "unbindreq"); 7747 return; 7748 case T_SVR4_OPTMGMT_REQ: 7749 if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr)) 7750 /* 7751 * Use upper queue for option processing in 7752 * case the request is not handled at this 7753 * level and needs to be passed down to IP. 7754 */ 7755 (void) svr4_optcom_req(_WR(UDP_RD(q)), 7756 mp, cr, &udp_opt_obj); 7757 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7758 "udp_wput_other_end: q %p (%S)", 7759 q, "optmgmtreq"); 7760 return; 7761 7762 case T_OPTMGMT_REQ: 7763 /* 7764 * Use upper queue for option processing in 7765 * case the request is not handled at this 7766 * level and needs to be passed down to IP. 7767 */ 7768 (void) tpi_optcom_req(_WR(UDP_RD(q)), 7769 mp, cr, &udp_opt_obj); 7770 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7771 "udp_wput_other_end: q %p (%S)", 7772 q, "optmgmtreq"); 7773 return; 7774 7775 case T_DISCON_REQ: 7776 udp_disconnect(q, mp); 7777 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7778 "udp_wput_other_end: q %p (%S)", 7779 q, "disconreq"); 7780 return; 7781 7782 /* The following TPI message is not supported by udp. */ 7783 case O_T_CONN_RES: 7784 case T_CONN_RES: 7785 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7786 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7787 "udp_wput_other_end: q %p (%S)", 7788 q, "connres/disconreq"); 7789 return; 7790 7791 /* The following 3 TPI messages are illegal for udp. */ 7792 case T_DATA_REQ: 7793 case T_EXDATA_REQ: 7794 case T_ORDREL_REQ: 7795 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7796 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7797 "udp_wput_other_end: q %p (%S)", 7798 q, "data/exdata/ordrel"); 7799 return; 7800 default: 7801 break; 7802 } 7803 break; 7804 case M_FLUSH: 7805 if (*rptr & FLUSHW) 7806 flushq(q, FLUSHDATA); 7807 break; 7808 case M_IOCTL: 7809 iocp = (struct iocblk *)mp->b_rptr; 7810 switch (iocp->ioc_cmd) { 7811 case TI_GETPEERNAME: 7812 if (udp->udp_state != TS_DATA_XFER) { 7813 /* 7814 * If a default destination address has not 7815 * been associated with the stream, then we 7816 * don't know the peer's name. 7817 */ 7818 iocp->ioc_error = ENOTCONN; 7819 iocp->ioc_count = 0; 7820 mp->b_datap->db_type = M_IOCACK; 7821 putnext(UDP_RD(q), mp); 7822 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7823 "udp_wput_other_end: q %p (%S)", 7824 q, "getpeername"); 7825 return; 7826 } 7827 /* FALLTHRU */ 7828 case TI_GETMYNAME: { 7829 /* 7830 * For TI_GETPEERNAME and TI_GETMYNAME, we first 7831 * need to copyin the user's strbuf structure. 7832 * Processing will continue in the M_IOCDATA case 7833 * below. 7834 */ 7835 mi_copyin(q, mp, NULL, 7836 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 7837 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7838 "udp_wput_other_end: q %p (%S)", 7839 q, "getmyname"); 7840 return; 7841 } 7842 case ND_SET: 7843 /* nd_getset performs the necessary checking */ 7844 case ND_GET: 7845 if (nd_getset(q, udp_g_nd, mp)) { 7846 putnext(UDP_RD(q), mp); 7847 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7848 "udp_wput_other_end: q %p (%S)", 7849 q, "get"); 7850 return; 7851 } 7852 break; 7853 case _SIOCSOCKFALLBACK: 7854 /* 7855 * Either sockmod is about to be popped and the 7856 * socket would now be treated as a plain stream, 7857 * or a module is about to be pushed so we could 7858 * no longer use read-side synchronous stream. 7859 * Drain any queued data and disable direct sockfs 7860 * interface from now on. 7861 */ 7862 if (!udp->udp_issocket) { 7863 DB_TYPE(mp) = M_IOCNAK; 7864 iocp->ioc_error = EINVAL; 7865 } else { 7866 udp->udp_issocket = B_FALSE; 7867 if (udp->udp_direct_sockfs) { 7868 /* 7869 * Disable read-side synchronous 7870 * stream interface and drain any 7871 * queued data. 7872 */ 7873 udp_rcv_drain(UDP_RD(q), udp, 7874 B_FALSE); 7875 ASSERT(!udp->udp_direct_sockfs); 7876 UDP_STAT(udp_sock_fallback); 7877 } 7878 DB_TYPE(mp) = M_IOCACK; 7879 iocp->ioc_error = 0; 7880 } 7881 iocp->ioc_count = 0; 7882 iocp->ioc_rval = 0; 7883 putnext(UDP_RD(q), mp); 7884 return; 7885 default: 7886 break; 7887 } 7888 break; 7889 case M_IOCDATA: 7890 udp_wput_iocdata(q, mp); 7891 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7892 "udp_wput_other_end: q %p (%S)", q, "iocdata"); 7893 return; 7894 default: 7895 /* Unrecognized messages are passed through without change. */ 7896 break; 7897 } 7898 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7899 "udp_wput_other_end: q %p (%S)", q, "end"); 7900 ip_output(connp, mp, q, IP_WPUT); 7901 } 7902 7903 /* ARGSUSED */ 7904 static void 7905 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2) 7906 { 7907 udp_wput_other(((conn_t *)arg)->conn_wq, mp); 7908 udp_exit((conn_t *)arg); 7909 } 7910 7911 /* 7912 * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA 7913 * messages. 7914 */ 7915 static void 7916 udp_wput_iocdata(queue_t *q, mblk_t *mp) 7917 { 7918 mblk_t *mp1; 7919 STRUCT_HANDLE(strbuf, sb); 7920 uint16_t port; 7921 in6_addr_t v6addr; 7922 ipaddr_t v4addr; 7923 uint32_t flowinfo = 0; 7924 int addrlen; 7925 udp_t *udp = Q_TO_UDP(q); 7926 7927 /* Make sure it is one of ours. */ 7928 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 7929 case TI_GETMYNAME: 7930 case TI_GETPEERNAME: 7931 break; 7932 default: 7933 ip_output(udp->udp_connp, mp, q, IP_WPUT); 7934 return; 7935 } 7936 7937 q = WR(UDP_RD(q)); 7938 switch (mi_copy_state(q, mp, &mp1)) { 7939 case -1: 7940 return; 7941 case MI_COPY_CASE(MI_COPY_IN, 1): 7942 break; 7943 case MI_COPY_CASE(MI_COPY_OUT, 1): 7944 /* 7945 * The address has been copied out, so now 7946 * copyout the strbuf. 7947 */ 7948 mi_copyout(q, mp); 7949 return; 7950 case MI_COPY_CASE(MI_COPY_OUT, 2): 7951 /* 7952 * The address and strbuf have been copied out. 7953 * We're done, so just acknowledge the original 7954 * M_IOCTL. 7955 */ 7956 mi_copy_done(q, mp, 0); 7957 return; 7958 default: 7959 /* 7960 * Something strange has happened, so acknowledge 7961 * the original M_IOCTL with an EPROTO error. 7962 */ 7963 mi_copy_done(q, mp, EPROTO); 7964 return; 7965 } 7966 7967 /* 7968 * Now we have the strbuf structure for TI_GETMYNAME 7969 * and TI_GETPEERNAME. Next we copyout the requested 7970 * address and then we'll copyout the strbuf. 7971 */ 7972 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 7973 (void *)mp1->b_rptr); 7974 if (udp->udp_family == AF_INET) 7975 addrlen = sizeof (sin_t); 7976 else 7977 addrlen = sizeof (sin6_t); 7978 7979 if (STRUCT_FGET(sb, maxlen) < addrlen) { 7980 mi_copy_done(q, mp, EINVAL); 7981 return; 7982 } 7983 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 7984 case TI_GETMYNAME: 7985 if (udp->udp_family == AF_INET) { 7986 ASSERT(udp->udp_ipversion == IPV4_VERSION); 7987 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 7988 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7989 v4addr = V4_PART_OF_V6(udp->udp_v6src); 7990 } else { 7991 /* 7992 * INADDR_ANY 7993 * udp_v6src is not set, we might be bound to 7994 * broadcast/multicast. Use udp_bound_v6src as 7995 * local address instead (that could 7996 * also still be INADDR_ANY) 7997 */ 7998 v4addr = V4_PART_OF_V6(udp->udp_bound_v6src); 7999 } 8000 } else { 8001 /* udp->udp_family == AF_INET6 */ 8002 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 8003 v6addr = udp->udp_v6src; 8004 } else { 8005 /* 8006 * UNSPECIFIED 8007 * udp_v6src is not set, we might be bound to 8008 * broadcast/multicast. Use udp_bound_v6src as 8009 * local address instead (that could 8010 * also still be UNSPECIFIED) 8011 */ 8012 v6addr = udp->udp_bound_v6src; 8013 } 8014 } 8015 port = udp->udp_port; 8016 break; 8017 case TI_GETPEERNAME: 8018 if (udp->udp_state != TS_DATA_XFER) { 8019 mi_copy_done(q, mp, ENOTCONN); 8020 return; 8021 } 8022 if (udp->udp_family == AF_INET) { 8023 ASSERT(udp->udp_ipversion == IPV4_VERSION); 8024 v4addr = V4_PART_OF_V6(udp->udp_v6dst); 8025 } else { 8026 /* udp->udp_family == AF_INET6) */ 8027 v6addr = udp->udp_v6dst; 8028 flowinfo = udp->udp_flowinfo; 8029 } 8030 port = udp->udp_dstport; 8031 break; 8032 default: 8033 mi_copy_done(q, mp, EPROTO); 8034 return; 8035 } 8036 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 8037 if (!mp1) 8038 return; 8039 8040 if (udp->udp_family == AF_INET) { 8041 sin_t *sin; 8042 8043 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 8044 sin = (sin_t *)mp1->b_rptr; 8045 mp1->b_wptr = (uchar_t *)&sin[1]; 8046 *sin = sin_null; 8047 sin->sin_family = AF_INET; 8048 sin->sin_addr.s_addr = v4addr; 8049 sin->sin_port = port; 8050 } else { 8051 /* udp->udp_family == AF_INET6 */ 8052 sin6_t *sin6; 8053 8054 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 8055 sin6 = (sin6_t *)mp1->b_rptr; 8056 mp1->b_wptr = (uchar_t *)&sin6[1]; 8057 *sin6 = sin6_null; 8058 sin6->sin6_family = AF_INET6; 8059 sin6->sin6_flowinfo = flowinfo; 8060 sin6->sin6_addr = v6addr; 8061 sin6->sin6_port = port; 8062 } 8063 /* Copy out the address */ 8064 mi_copyout(q, mp); 8065 } 8066 8067 8068 static int 8069 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, 8070 udpattrs_t *udpattrs) 8071 { 8072 struct T_unitdata_req *udreqp; 8073 int is_absreq_failure; 8074 cred_t *cr; 8075 conn_t *connp = Q_TO_CONN(q); 8076 8077 ASSERT(((t_primp_t)mp->b_rptr)->type); 8078 8079 cr = DB_CREDDEF(mp, connp->conn_cred); 8080 8081 udreqp = (struct T_unitdata_req *)mp->b_rptr; 8082 8083 /* 8084 * Use upper queue for option processing since the callback 8085 * routines expect to be called in UDP instance instead of IP. 8086 */ 8087 *errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length, 8088 udreqp->OPT_offset, cr, &udp_opt_obj, 8089 udpattrs, &is_absreq_failure); 8090 8091 if (*errorp != 0) { 8092 /* 8093 * Note: No special action needed in this 8094 * module for "is_absreq_failure" 8095 */ 8096 return (-1); /* failure */ 8097 } 8098 ASSERT(is_absreq_failure == 0); 8099 return (0); /* success */ 8100 } 8101 8102 void 8103 udp_ddi_init(void) 8104 { 8105 int i; 8106 8107 UDP6_MAJ = ddi_name_to_major(UDP6); 8108 8109 udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, 8110 udp_opt_obj.odb_opt_arr_cnt); 8111 8112 if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) { 8113 /* Not a power of two. Round up to nearest power of two */ 8114 for (i = 0; i < 31; i++) { 8115 if (udp_bind_fanout_size < (1 << i)) 8116 break; 8117 } 8118 udp_bind_fanout_size = 1 << i; 8119 } 8120 udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size * 8121 sizeof (udp_fanout_t), KM_SLEEP); 8122 for (i = 0; i < udp_bind_fanout_size; i++) { 8123 mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, 8124 NULL); 8125 } 8126 (void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr)); 8127 8128 udp_kstat_init(); 8129 8130 udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t), 8131 CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0); 8132 } 8133 8134 void 8135 udp_ddi_destroy(void) 8136 { 8137 int i; 8138 8139 nd_free(&udp_g_nd); 8140 8141 for (i = 0; i < udp_bind_fanout_size; i++) { 8142 mutex_destroy(&udp_bind_fanout[i].uf_lock); 8143 } 8144 8145 kmem_free(udp_bind_fanout, udp_bind_fanout_size * 8146 sizeof (udp_fanout_t)); 8147 8148 udp_kstat_fini(); 8149 8150 kmem_cache_destroy(udp_cache); 8151 } 8152 8153 static void 8154 udp_kstat_init(void) 8155 { 8156 udp_named_kstat_t template = { 8157 { "inDatagrams", KSTAT_DATA_UINT32, 0 }, 8158 { "inErrors", KSTAT_DATA_UINT32, 0 }, 8159 { "outDatagrams", KSTAT_DATA_UINT32, 0 }, 8160 { "entrySize", KSTAT_DATA_INT32, 0 }, 8161 { "entry6Size", KSTAT_DATA_INT32, 0 }, 8162 { "outErrors", KSTAT_DATA_UINT32, 0 }, 8163 }; 8164 8165 udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME, 8166 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0); 8167 8168 if (udp_mibkp == NULL) 8169 return; 8170 8171 template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); 8172 template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); 8173 8174 bcopy(&template, udp_mibkp->ks_data, sizeof (template)); 8175 8176 udp_mibkp->ks_update = udp_kstat_update; 8177 8178 kstat_install(udp_mibkp); 8179 8180 if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat", 8181 "net", KSTAT_TYPE_NAMED, 8182 sizeof (udp_statistics) / sizeof (kstat_named_t), 8183 KSTAT_FLAG_VIRTUAL)) != NULL) { 8184 udp_ksp->ks_data = &udp_statistics; 8185 kstat_install(udp_ksp); 8186 } 8187 } 8188 8189 static void 8190 udp_kstat_fini(void) 8191 { 8192 if (udp_ksp != NULL) { 8193 kstat_delete(udp_ksp); 8194 udp_ksp = NULL; 8195 } 8196 if (udp_mibkp != NULL) { 8197 kstat_delete(udp_mibkp); 8198 udp_mibkp = NULL; 8199 } 8200 } 8201 8202 static int 8203 udp_kstat_update(kstat_t *kp, int rw) 8204 { 8205 udp_named_kstat_t *udpkp; 8206 8207 if ((kp == NULL) || (kp->ks_data == NULL)) 8208 return (EIO); 8209 8210 if (rw == KSTAT_WRITE) 8211 return (EACCES); 8212 8213 udpkp = (udp_named_kstat_t *)kp->ks_data; 8214 8215 udpkp->inDatagrams.value.ui32 = udp_mib.udpInDatagrams; 8216 udpkp->inErrors.value.ui32 = udp_mib.udpInErrors; 8217 udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams; 8218 udpkp->outErrors.value.ui32 = udp_mib.udpOutErrors; 8219 8220 return (0); 8221 } 8222 8223 /* ARGSUSED */ 8224 static void 8225 udp_rput(queue_t *q, mblk_t *mp) 8226 { 8227 /* 8228 * We get here whenever we do qreply() from IP, 8229 * i.e as part of handlings ioctls, etc. 8230 */ 8231 putnext(q, mp); 8232 } 8233 8234 /* 8235 * Read-side synchronous stream info entry point, called as a 8236 * result of handling certain STREAMS ioctl operations. 8237 */ 8238 static int 8239 udp_rinfop(queue_t *q, infod_t *dp) 8240 { 8241 mblk_t *mp; 8242 uint_t cmd = dp->d_cmd; 8243 int res = 0; 8244 int error = 0; 8245 udp_t *udp = Q_TO_UDP(RD(UDP_WR(q))); 8246 struct stdata *stp = STREAM(q); 8247 8248 mutex_enter(&udp->udp_drain_lock); 8249 /* If shutdown on read has happened, return nothing */ 8250 mutex_enter(&stp->sd_lock); 8251 if (stp->sd_flag & STREOF) { 8252 mutex_exit(&stp->sd_lock); 8253 goto done; 8254 } 8255 mutex_exit(&stp->sd_lock); 8256 8257 if ((mp = udp->udp_rcv_list_head) == NULL) 8258 goto done; 8259 8260 ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL); 8261 8262 if (cmd & INFOD_COUNT) { 8263 /* 8264 * Return the number of messages. 8265 */ 8266 dp->d_count += udp->udp_rcv_msgcnt; 8267 res |= INFOD_COUNT; 8268 } 8269 if (cmd & INFOD_BYTES) { 8270 /* 8271 * Return size of all data messages. 8272 */ 8273 dp->d_bytes += udp->udp_rcv_cnt; 8274 res |= INFOD_BYTES; 8275 } 8276 if (cmd & INFOD_FIRSTBYTES) { 8277 /* 8278 * Return size of first data message. 8279 */ 8280 dp->d_bytes = msgdsize(mp); 8281 res |= INFOD_FIRSTBYTES; 8282 dp->d_cmd &= ~INFOD_FIRSTBYTES; 8283 } 8284 if (cmd & INFOD_COPYOUT) { 8285 mblk_t *mp1 = mp->b_cont; 8286 int n; 8287 /* 8288 * Return data contents of first message. 8289 */ 8290 ASSERT(DB_TYPE(mp1) == M_DATA); 8291 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 8292 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 8293 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 8294 UIO_READ, dp->d_uiop)) != 0) { 8295 goto done; 8296 } 8297 mp1 = mp1->b_cont; 8298 } 8299 res |= INFOD_COPYOUT; 8300 dp->d_cmd &= ~INFOD_COPYOUT; 8301 } 8302 done: 8303 mutex_exit(&udp->udp_drain_lock); 8304 8305 dp->d_res |= res; 8306 8307 return (error); 8308 } 8309 8310 /* 8311 * Read-side synchronous stream entry point. This is called as a result 8312 * of recv/read operation done at sockfs, and is guaranteed to execute 8313 * outside of the interrupt thread context. It returns a single datagram 8314 * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer. 8315 */ 8316 static int 8317 udp_rrw(queue_t *q, struiod_t *dp) 8318 { 8319 mblk_t *mp; 8320 udp_t *udp = Q_TO_UDP(_RD(UDP_WR(q))); 8321 8322 /* We should never get here when we're in SNMP mode */ 8323 ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD)); 8324 8325 /* 8326 * Dequeue datagram from the head of the list and return 8327 * it to caller; also ensure that RSLEEP sd_wakeq flag is 8328 * set/cleared depending on whether or not there's data 8329 * remaining in the list. 8330 */ 8331 mutex_enter(&udp->udp_drain_lock); 8332 if (!udp->udp_direct_sockfs) { 8333 mutex_exit(&udp->udp_drain_lock); 8334 UDP_STAT(udp_rrw_busy); 8335 return (EBUSY); 8336 } 8337 if ((mp = udp->udp_rcv_list_head) != NULL) { 8338 uint_t size = msgdsize(mp); 8339 8340 /* Last datagram in the list? */ 8341 if ((udp->udp_rcv_list_head = mp->b_next) == NULL) 8342 udp->udp_rcv_list_tail = NULL; 8343 mp->b_next = NULL; 8344 8345 udp->udp_rcv_cnt -= size; 8346 udp->udp_rcv_msgcnt--; 8347 UDP_STAT(udp_rrw_msgcnt); 8348 8349 /* No longer flow-controlling? */ 8350 if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat && 8351 udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat) 8352 udp->udp_drain_qfull = B_FALSE; 8353 } 8354 if (udp->udp_rcv_list_head == NULL) { 8355 /* 8356 * Either we just dequeued the last datagram or 8357 * we get here from sockfs and have nothing to 8358 * return; in this case clear RSLEEP. 8359 */ 8360 ASSERT(udp->udp_rcv_cnt == 0); 8361 ASSERT(udp->udp_rcv_msgcnt == 0); 8362 ASSERT(udp->udp_rcv_list_tail == NULL); 8363 STR_WAKEUP_CLEAR(STREAM(q)); 8364 } else { 8365 /* 8366 * More data follows; we need udp_rrw() to be 8367 * called in future to pick up the rest. 8368 */ 8369 STR_WAKEUP_SET(STREAM(q)); 8370 } 8371 mutex_exit(&udp->udp_drain_lock); 8372 dp->d_mp = mp; 8373 return (0); 8374 } 8375 8376 /* 8377 * Enqueue a completely-built T_UNITDATA_IND message into the receive 8378 * list; this is typically executed within the interrupt thread context 8379 * and so we do things as quickly as possible. 8380 */ 8381 static void 8382 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len) 8383 { 8384 ASSERT(q == RD(q)); 8385 ASSERT(pkt_len == msgdsize(mp)); 8386 ASSERT(mp->b_next == NULL && mp->b_cont != NULL); 8387 ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA); 8388 ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind)); 8389 8390 mutex_enter(&udp->udp_drain_lock); 8391 /* 8392 * Wake up and signal the receiving app; it is okay to do this 8393 * before enqueueing the mp because we are holding the drain lock. 8394 * One of the advantages of synchronous stream is the ability for 8395 * us to find out when the application performs a read on the 8396 * socket by way of udp_rrw() entry point being called. We need 8397 * to generate SIGPOLL/SIGIO for each received data in the case 8398 * of asynchronous socket just as in the strrput() case. However, 8399 * we only wake the application up when necessary, i.e. during the 8400 * first enqueue. When udp_rrw() is called, we send up a single 8401 * datagram upstream and call STR_WAKEUP_SET() again when there 8402 * are still data remaining in our receive queue. 8403 */ 8404 if (udp->udp_rcv_list_head == NULL) { 8405 STR_WAKEUP_SET(STREAM(q)); 8406 udp->udp_rcv_list_head = mp; 8407 } else { 8408 udp->udp_rcv_list_tail->b_next = mp; 8409 } 8410 udp->udp_rcv_list_tail = mp; 8411 udp->udp_rcv_cnt += pkt_len; 8412 udp->udp_rcv_msgcnt++; 8413 8414 /* Need to flow-control? */ 8415 if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat || 8416 udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat) 8417 udp->udp_drain_qfull = B_TRUE; 8418 8419 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 8420 STR_SENDSIG(STREAM(q)); 8421 mutex_exit(&udp->udp_drain_lock); 8422 } 8423 8424 /* 8425 * Drain the contents of receive list to the module upstream; we do 8426 * this during close or when we fallback to the slow mode due to 8427 * sockmod being popped or a module being pushed on top of us. 8428 */ 8429 static void 8430 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing) 8431 { 8432 mblk_t *mp; 8433 8434 ASSERT(q == RD(q)); 8435 8436 mutex_enter(&udp->udp_drain_lock); 8437 /* 8438 * There is no race with a concurrent udp_input() sending 8439 * up packets using putnext() after we have cleared the 8440 * udp_direct_sockfs flag but before we have completed 8441 * sending up the packets in udp_rcv_list, since we are 8442 * either a writer or we have quiesced the conn. 8443 */ 8444 udp->udp_direct_sockfs = B_FALSE; 8445 mutex_exit(&udp->udp_drain_lock); 8446 8447 if (udp->udp_rcv_list_head != NULL) 8448 UDP_STAT(udp_drain); 8449 8450 /* 8451 * Send up everything via putnext(); note here that we 8452 * don't need the udp_drain_lock to protect us since 8453 * nothing can enter udp_rrw() and that we currently 8454 * have exclusive access to this udp. 8455 */ 8456 while ((mp = udp->udp_rcv_list_head) != NULL) { 8457 udp->udp_rcv_list_head = mp->b_next; 8458 mp->b_next = NULL; 8459 udp->udp_rcv_cnt -= msgdsize(mp); 8460 udp->udp_rcv_msgcnt--; 8461 if (closing) { 8462 freemsg(mp); 8463 } else { 8464 putnext(q, mp); 8465 } 8466 } 8467 ASSERT(udp->udp_rcv_cnt == 0); 8468 ASSERT(udp->udp_rcv_msgcnt == 0); 8469 ASSERT(udp->udp_rcv_list_head == NULL); 8470 udp->udp_rcv_list_tail = NULL; 8471 udp->udp_drain_qfull = B_FALSE; 8472 } 8473 8474 static size_t 8475 udp_set_rcv_hiwat(udp_t *udp, size_t size) 8476 { 8477 /* We add a bit of extra buffering */ 8478 size += size >> 1; 8479 if (size > udp_max_buf) 8480 size = udp_max_buf; 8481 8482 udp->udp_rcv_hiwat = size; 8483 return (size); 8484 } 8485 8486 /* 8487 * Little helper for IPsec's NAT-T processing. 8488 */ 8489 boolean_t 8490 udp_compute_checksum(void) 8491 { 8492 return (udp_do_checksum); 8493 } 8494