xref: /titanic_52/usr/src/uts/common/inet/udp/udp.c (revision 4e5fbfeda6c7dee3dd62538723087263e6de8e18)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/time.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/sdt.h>
57 #include <sys/debug.h>
58 #include <sys/isa_defs.h>
59 #include <sys/random.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/udp.h>
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <inet/common.h>
68 #include <inet/ip.h>
69 #include <inet/ip_impl.h>
70 #include <inet/ip6.h>
71 #include <inet/ip_ire.h>
72 #include <inet/ip_if.h>
73 #include <inet/ip_multi.h>
74 #include <inet/ip_ndp.h>
75 #include <inet/mi.h>
76 #include <inet/mib2.h>
77 #include <inet/nd.h>
78 #include <inet/optcom.h>
79 #include <inet/snmpcom.h>
80 #include <inet/kstatcom.h>
81 #include <inet/udp_impl.h>
82 #include <inet/ipclassifier.h>
83 #include <inet/ipsec_impl.h>
84 #include <inet/ipp_common.h>
85 
86 /*
87  * The ipsec_info.h header file is here since it has the definition for the
88  * M_CTL message types used by IP to convey information to the ULP. The
89  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
90  */
91 #include <net/pfkeyv2.h>
92 #include <inet/ipsec_info.h>
93 
94 #include <sys/tsol/label.h>
95 #include <sys/tsol/tnet.h>
96 #include <rpc/pmap_prot.h>
97 
98 /*
99  * Synchronization notes:
100  *
101  * UDP uses a combination of its internal perimeter, a global lock and
102  * a set of bind hash locks to protect its data structures.  Please see
103  * the note above udp_mode_assertions for details about the internal
104  * perimeter.
105  *
106  * When a UDP endpoint is bound to a local port, it is inserted into
107  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
108  * The size of the array is controlled by the udp_bind_fanout_size variable.
109  * This variable can be changed in /etc/system if the default value is
110  * not large enough.  Each bind hash bucket is protected by a per bucket
111  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
112  * structure.  An UDP endpoint is removed from the bind hash list only
113  * when it is being unbound or being closed.  The per bucket lock also
114  * protects a UDP endpoint's state changes.
115  *
116  * Plumbing notes:
117  *
118  * Both udp and ip are merged, but the streams plumbing is kept unchanged
119  * in that udp is always pushed atop /dev/ip.  This is done to preserve
120  * backwards compatibility for certain applications which rely on such
121  * plumbing geometry to do things such as issuing I_POP on the stream
122  * in order to obtain direct access to /dev/ip, etc.
123  *
124  * All UDP processings happen in the /dev/ip instance; the udp module
125  * instance does not possess any state about the endpoint, and merely
126  * acts as a dummy module whose presence is to keep the streams plumbing
127  * appearance unchanged.  At open time /dev/ip allocates a conn_t that
128  * happens to embed a udp_t.  This stays dormant until the time udp is
129  * pushed, which indicates to /dev/ip that it must convert itself from
130  * an IP to a UDP endpoint.
131  *
132  * We only allow for the following plumbing cases:
133  *
134  * Normal:
135  *	/dev/ip is first opened and later udp is pushed directly on top.
136  *	This is the default action that happens when a udp socket or
137  *	/dev/udp is opened.  The conn_t created by /dev/ip instance is
138  *	now shared and is marked with IPCL_UDP.
139  *
140  * SNMP-only:
141  *	udp is pushed on top of a module other than /dev/ip.  When this
142  *	happens it will support only SNMP semantics.  A new conn_t is
143  *	allocated and marked with IPCL_UDPMOD.
144  *
145  * The above cases imply that we don't support any intermediate module to
146  * reside in between /dev/ip and udp -- in fact, we never supported such
147  * scenario in the past as the inter-layer communication semantics have
148  * always been private.  Also note that the normal case allows for SNMP
149  * requests to be processed in addition to the rest of UDP operations.
150  *
151  * The normal case plumbing is depicted by the following diagram:
152  *
153  *	+---------------+---------------+
154  *	|		|		| udp
155  *	|     udp_wq	|    udp_rq	|
156  *	|		|    UDP_RD	|
157  *	|		|		|
158  *	+---------------+---------------+
159  *		|		^
160  *		v		|
161  *	+---------------+---------------+
162  *	|		|		| /dev/ip
163  *	|     ip_wq	|     ip_rq	| conn_t
164  *	|     UDP_WR	|		|
165  *	|		|		|
166  *	+---------------+---------------+
167  *
168  * Messages arriving at udp_wq from above will end up in ip_wq before
169  * it gets processed, i.e. udp write entry points will advance udp_wq
170  * and use its q_next value as ip_wq in order to use the conn_t that
171  * is stored in its q_ptr.  Likewise, messages generated by ip to the
172  * module above udp will appear as if they are originated from udp_rq,
173  * i.e. putnext() calls to the module above udp is done using the
174  * udp_rq instead of ip_rq in order to avoid udp_rput() which does
175  * nothing more than calling putnext().
176  *
177  * The above implies the following rule of thumb:
178  *
179  *   1. udp_t is obtained from conn_t, which is created by the /dev/ip
180  *	instance and is stored in q_ptr of both ip_wq and ip_rq.  There
181  *	is no direct reference to conn_t from either udp_wq or udp_rq.
182  *
183  *   2. Write-side entry points of udp can obtain the conn_t via the
184  *	Q_TO_CONN() macro, using the queue value obtain from UDP_WR().
185  *
186  *   3. While in /dev/ip context, putnext() to the module above udp can
187  *	be done by supplying the queue value obtained from UDP_RD().
188  *
189  */
190 
191 static queue_t *UDP_WR(queue_t *);
192 static queue_t *UDP_RD(queue_t *);
193 
194 struct kmem_cache *udp_cache;
195 
196 /* For /etc/system control */
197 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
198 
199 #define	NDD_TOO_QUICK_MSG \
200 	"ndd get info rate too high for non-privileged users, try again " \
201 	"later.\n"
202 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
203 
204 /* Option processing attrs */
205 typedef struct udpattrs_s {
206 	union {
207 		ip6_pkt_t	*udpattr_ipp6;	/* For V6 */
208 		ip4_pkt_t 	*udpattr_ipp4;	/* For V4 */
209 	} udpattr_ippu;
210 #define	udpattr_ipp6 udpattr_ippu.udpattr_ipp6
211 #define	udpattr_ipp4 udpattr_ippu.udpattr_ipp4
212 	mblk_t		*udpattr_mb;
213 	boolean_t	udpattr_credset;
214 } udpattrs_t;
215 
216 static void	udp_addr_req(queue_t *q, mblk_t *mp);
217 static void	udp_bind(queue_t *q, mblk_t *mp);
218 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
219 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
220 static int	udp_build_hdrs(queue_t *q, udp_t *udp);
221 static void	udp_capability_req(queue_t *q, mblk_t *mp);
222 static int	udp_close(queue_t *q);
223 static void	udp_connect(queue_t *q, mblk_t *mp);
224 static void	udp_disconnect(queue_t *q, mblk_t *mp);
225 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
226 		    int sys_error);
227 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
228 		    t_scalar_t tlierr, int unixerr);
229 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
230 		    cred_t *cr);
231 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
232 		    char *value, caddr_t cp, cred_t *cr);
233 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
234 		    char *value, caddr_t cp, cred_t *cr);
235 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
236 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
237 static void	udp_info_req(queue_t *q, mblk_t *mp);
238 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
239 		    t_scalar_t addr_length);
240 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
241 		    cred_t *credp);
242 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
243 		    int *errorp, udpattrs_t *udpattrs);
244 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
245 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
246 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
247 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
248 		    cred_t *cr);
249 static void	udp_report_item(mblk_t *mp, udp_t *udp);
250 static void	udp_rput(queue_t *q, mblk_t *mp);
251 static void	udp_rput_other(queue_t *, mblk_t *);
252 static int	udp_rinfop(queue_t *q, infod_t *dp);
253 static int	udp_rrw(queue_t *q, struiod_t *dp);
254 static	void	udp_rput_bind_ack(queue_t *q, mblk_t *mp);
255 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
256 		    cred_t *cr);
257 static void	udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha);
258 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
259 		    t_scalar_t destlen, t_scalar_t err);
260 static void	udp_unbind(queue_t *q, mblk_t *mp);
261 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
262     boolean_t random);
263 static void	udp_wput(queue_t *q, mblk_t *mp);
264 static mblk_t	*udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst,
265 		    uint16_t port, uint_t srcid, int *error);
266 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
267 		    int *error);
268 static void	udp_wput_other(queue_t *q, mblk_t *mp);
269 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
270 static void	udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr,
271 		    socklen_t addrlen);
272 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
273 
274 static void	*udp_stack_init(netstackid_t stackid, netstack_t *ns);
275 static void	udp_stack_fini(netstackid_t stackid, void *arg);
276 
277 static void	*udp_kstat_init(netstackid_t stackid);
278 static void	udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
279 static void	*udp_kstat2_init(netstackid_t, udp_stat_t *);
280 static void	udp_kstat2_fini(netstackid_t, kstat_t *);
281 static int	udp_kstat_update(kstat_t *kp, int rw);
282 static void	udp_input_wrapper(void *arg, mblk_t *mp, void *arg2);
283 static void	udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
284 static void	udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
285 static void	udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2);
286 
287 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
288 		    uint_t pkt_len);
289 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
290 static void	udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t);
291 static void	udp_exit(conn_t *);
292 static void	udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t);
293 #ifdef DEBUG
294 static void	udp_mode_assertions(udp_t *, int);
295 #endif /* DEBUG */
296 
297 major_t UDP6_MAJ;
298 #define	UDP6 "udp6"
299 
300 #define	UDP_RECV_HIWATER	(56 * 1024)
301 #define	UDP_RECV_LOWATER	128
302 #define	UDP_XMIT_HIWATER	(56 * 1024)
303 #define	UDP_XMIT_LOWATER	1024
304 
305 static struct module_info udp_info =  {
306 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
307 };
308 
309 static struct qinit udp_rinit = {
310 	(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL,
311 	&udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
312 };
313 
314 static struct qinit udp_winit = {
315 	(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
316 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
317 };
318 
319 /* Support for just SNMP if UDP is not pushed directly over device IP */
320 struct qinit udp_snmp_rinit = {
321 	(pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL,
322 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
323 };
324 
325 struct qinit udp_snmp_winit = {
326 	(pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL,
327 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
328 };
329 
330 struct streamtab udpinfo = {
331 	&udp_rinit, &udp_winit
332 };
333 
334 static	sin_t	sin_null;	/* Zero address for quick clears */
335 static	sin6_t	sin6_null;	/* Zero address for quick clears */
336 
337 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
338 
339 /* Default structure copied into T_INFO_ACK messages */
340 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
341 	T_INFO_ACK,
342 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
343 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
344 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
345 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
346 	sizeof (sin_t),	/* ADDR_size. */
347 	0,		/* OPT_size - not initialized here */
348 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
349 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
350 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
351 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
352 };
353 
354 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
355 
356 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
357 	T_INFO_ACK,
358 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
359 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
360 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
361 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
362 	sizeof (sin6_t), /* ADDR_size. */
363 	0,		/* OPT_size - not initialized here */
364 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
365 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
366 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
367 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
368 };
369 
370 /* largest UDP port number */
371 #define	UDP_MAX_PORT	65535
372 
373 /*
374  * Table of ND variables supported by udp.  These are loaded into us_nd
375  * in udp_open.
376  * All of these are alterable, within the min/max values given, at run time.
377  */
378 /* BEGIN CSTYLED */
379 udpparam_t udp_param_arr[] = {
380  /*min		max		value		name */
381  { 0L,		256,		32,		"udp_wroff_extra" },
382  { 1L,		255,		255,		"udp_ipv4_ttl" },
383  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
384  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
385  { 0,		1,		1,		"udp_do_checksum" },
386  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
387  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
388  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
389  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
390  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
391  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
392  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
393 };
394 /* END CSTYLED */
395 
396 /* Setable in /etc/system */
397 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
398 uint32_t udp_random_anon_port = 1;
399 
400 /*
401  * Hook functions to enable cluster networking.
402  * On non-clustered systems these vectors must always be NULL
403  */
404 
405 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
406     uint8_t *laddrp, in_port_t lport) = NULL;
407 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
408     uint8_t *laddrp, in_port_t lport) = NULL;
409 
410 typedef union T_primitives *t_primp_t;
411 
412 #define	UDP_ENQUEUE_MP(udp, mp, proc, tag) {			\
413 	ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL);	\
414 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
415 	(mp)->b_queue = (queue_t *)((uintptr_t)tag);		\
416 	(mp)->b_prev = (mblk_t *)proc;				\
417 	if ((udp)->udp_mphead == NULL)				\
418 		(udp)->udp_mphead = (mp);			\
419 	else							\
420 		(udp)->udp_mptail->b_next = (mp);		\
421 	(udp)->udp_mptail = (mp);				\
422 	(udp)->udp_mpcount++;					\
423 }
424 
425 #define	UDP_READERS_INCREF(udp) {				\
426 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
427 	(udp)->udp_reader_count++;				\
428 }
429 
430 #define	UDP_READERS_DECREF(udp) {				\
431 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
432 	(udp)->udp_reader_count--;				\
433 	if ((udp)->udp_reader_count == 0)			\
434 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
435 }
436 
437 #define	UDP_SQUEUE_DECREF(udp) {				\
438 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
439 	(udp)->udp_squeue_count--;				\
440 	if ((udp)->udp_squeue_count == 0)			\
441 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
442 }
443 
444 /*
445  * Notes on UDP endpoint synchronization:
446  *
447  * UDP needs exclusive operation on a per endpoint basis, when executing
448  * functions that modify the endpoint state.  udp_rput_other() deals with
449  * packets with IP options, and processing these packets end up having
450  * to update the endpoint's option related state.  udp_wput_other() deals
451  * with control operations from the top, e.g. connect() that needs to
452  * update the endpoint state.  These could be synchronized using locks,
453  * but the current version uses squeues for this purpose.  squeues may
454  * give performance improvement for certain cases such as connected UDP
455  * sockets; thus the framework allows for using squeues.
456  *
457  * The perimeter routines are described as follows:
458  *
459  * udp_enter():
460  *	Enter the UDP endpoint perimeter.
461  *
462  * udp_become_writer():
463  *	Become exclusive on the UDP endpoint.  Specifies a function
464  *	that will be called exclusively either immediately or later
465  *	when the perimeter is available exclusively.
466  *
467  * udp_exit():
468  *	Exit the UDP perimeter.
469  *
470  * Entering UDP from the top or from the bottom must be done using
471  * udp_enter().  No lock must be held while attempting to enter the UDP
472  * perimeter.  When finished, udp_exit() must be called to get out of
473  * the perimeter.
474  *
475  * UDP operates in either MT_HOT mode or in SQUEUE mode.  In MT_HOT mode,
476  * multiple threads may enter a UDP endpoint concurrently.  This is used
477  * for sending and/or receiving normal data.  Control operations and other
478  * special cases call udp_become_writer() to become exclusive on a per
479  * endpoint basis and this results in transitioning to SQUEUE mode.  squeue
480  * by definition serializes access to the conn_t.  When there are no more
481  * pending messages on the squeue for the UDP connection, the endpoint
482  * reverts to MT_HOT mode.  During the interregnum when not all MT threads
483  * of an endpoint have finished, messages are queued in the UDP endpoint
484  * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode.
485  *
486  * These modes have the following analogs:
487  *
488  *	UDP_MT_HOT/udp_reader_count==0		none
489  *	UDP_MT_HOT/udp_reader_count>0		RW_READ_LOCK
490  *	UDP_MT_QUEUED				RW_WRITE_WANTED
491  *	UDP_SQUEUE or UDP_QUEUED_SQUEUE		RW_WRITE_LOCKED
492  *
493  * Stable modes:	UDP_MT_HOT, UDP_SQUEUE
494  * Transient modes:	UDP_MT_QUEUED, UDP_QUEUED_SQUEUE
495  *
496  * While in stable modes, UDP keeps track of the number of threads
497  * operating on the endpoint.  The udp_reader_count variable represents
498  * the number of threads entering the endpoint as readers while it is
499  * in UDP_MT_HOT mode.  Transitioning to UDP_SQUEUE happens when there
500  * is only a single reader, i.e. when this counter drops to 1.  Likewise,
501  * udp_squeue_count represents the number of threads operating on the
502  * endpoint's squeue while it is in UDP_SQUEUE mode.  The mode transition
503  * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e.
504  * when this counter drops to 0.
505  *
506  * The default mode is set to UDP_MT_HOT and UDP alternates between
507  * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below.
508  *
509  * Mode transition:
510  * ----------------------------------------------------------------
511  * old mode		Event				New mode
512  * ----------------------------------------------------------------
513  * UDP_MT_HOT		Call to udp_become_writer()	UDP_SQUEUE
514  *			and udp_reader_count == 1
515  *
516  * UDP_MT_HOT		Call to udp_become_writer()	UDP_MT_QUEUED
517  *			and udp_reader_count > 1
518  *
519  * UDP_MT_QUEUED	udp_reader_count drops to zero	UDP_QUEUED_SQUEUE
520  *
521  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_SQUEUE
522  *			internal UDP queue successfully
523  *			moved to squeue AND udp_squeue_count != 0
524  *
525  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_MT_HOT
526  *			internal UDP queue successfully
527  *			moved to squeue AND udp_squeue_count
528  *			drops to zero
529  *
530  * UDP_SQUEUE		udp_squeue_count drops to zero	UDP_MT_HOT
531  * ----------------------------------------------------------------
532  */
533 
534 static queue_t *
535 UDP_WR(queue_t *q)
536 {
537 	ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL);
538 	ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL);
539 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next)));
540 
541 	return (_WR(q)->q_next);
542 }
543 
544 static queue_t *
545 UDP_RD(queue_t *q)
546 {
547 	ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL);
548 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(q)));
549 	ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL);
550 
551 	return (_RD(q)->q_next);
552 }
553 
554 #ifdef DEBUG
555 #define	UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller)
556 #else
557 #define	UDP_MODE_ASSERTIONS(udp, caller)
558 #endif
559 
560 /* Invariants */
561 #ifdef DEBUG
562 
563 uint32_t udp_count[4];
564 
565 /* Context of udp_mode_assertions */
566 #define	UDP_ENTER		1
567 #define	UDP_BECOME_WRITER	2
568 #define	UDP_EXIT		3
569 
570 static void
571 udp_mode_assertions(udp_t *udp, int caller)
572 {
573 	ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock));
574 
575 	switch (udp->udp_mode) {
576 	case UDP_MT_HOT:
577 		/*
578 		 * Messages have not yet been enqueued on the internal queue,
579 		 * otherwise we would have switched to UDP_MT_QUEUED. Likewise
580 		 * by definition, there can't be any messages enqueued on the
581 		 * squeue. The UDP could be quiescent, so udp_reader_count
582 		 * could be zero at entry.
583 		 */
584 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 &&
585 		    udp->udp_squeue_count == 0);
586 		ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0);
587 		udp_count[0]++;
588 		break;
589 
590 	case UDP_MT_QUEUED:
591 		/*
592 		 * The last MT thread to exit the udp perimeter empties the
593 		 * internal queue and then switches the UDP to
594 		 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED
595 		 * mode, it means there must be at least 1 MT thread still in
596 		 * the perimeter and at least 1 message on the internal queue.
597 		 */
598 		ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL &&
599 		    udp->udp_mpcount != 0 && udp->udp_squeue_count == 0);
600 		udp_count[1]++;
601 		break;
602 
603 	case UDP_QUEUED_SQUEUE:
604 		/*
605 		 * The switch has happened from MT to SQUEUE. So there can't
606 		 * any MT threads. Messages could still pile up on the internal
607 		 * queue until the transition is complete and we move to
608 		 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count
609 		 * since the squeue could drain any time.
610 		 */
611 		ASSERT(udp->udp_reader_count == 0);
612 		udp_count[2]++;
613 		break;
614 
615 	case UDP_SQUEUE:
616 		/*
617 		 * The transition is complete. Thre can't be any messages on
618 		 * the internal queue. The udp could be quiescent or the squeue
619 		 * could drain any time, so we can't assert on nonzero
620 		 * udp_squeue_count during entry. Nor can we assert that
621 		 * udp_reader_count is zero, since, a reader thread could have
622 		 * directly become writer in line by calling udp_become_writer
623 		 * without going through the queued states.
624 		 */
625 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0);
626 		ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0);
627 		udp_count[3]++;
628 		break;
629 	}
630 }
631 #endif
632 
633 #define	_UDP_ENTER(connp, mp, proc, tag) {				\
634 	udp_t *_udp = (connp)->conn_udp;				\
635 									\
636 	mutex_enter(&(connp)->conn_lock);				\
637 	if ((connp)->conn_state_flags & CONN_CLOSING) {			\
638 		mutex_exit(&(connp)->conn_lock);			\
639 		freemsg(mp);						\
640 	} else {							\
641 		UDP_MODE_ASSERTIONS(_udp, UDP_ENTER);			\
642 									\
643 		switch (_udp->udp_mode) {				\
644 		case UDP_MT_HOT:					\
645 			/* We can execute as reader right away. */	\
646 			UDP_READERS_INCREF(_udp);			\
647 			mutex_exit(&(connp)->conn_lock);		\
648 			(*(proc))(connp, mp, (connp)->conn_sqp);	\
649 			break;						\
650 									\
651 		case UDP_SQUEUE:					\
652 			/*						\
653 			 * We are in squeue mode, send the		\
654 			 * packet to the squeue				\
655 			 */						\
656 			_udp->udp_squeue_count++;			\
657 			CONN_INC_REF_LOCKED(connp);			\
658 			mutex_exit(&(connp)->conn_lock);		\
659 			squeue_enter((connp)->conn_sqp, mp, proc,	\
660 			    connp, tag);				\
661 			break;						\
662 									\
663 		case UDP_MT_QUEUED:					\
664 		case UDP_QUEUED_SQUEUE:					\
665 			/*						\
666 			 * Some messages may have been enqueued		\
667 			 * ahead of us.  Enqueue the new message	\
668 			 * at the tail of the internal queue to		\
669 			 * preserve message ordering.			\
670 			 */						\
671 			UDP_ENQUEUE_MP(_udp, mp, proc, tag);		\
672 			mutex_exit(&(connp)->conn_lock);		\
673 			break;						\
674 		}							\
675 	}								\
676 }
677 
678 static void
679 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
680 {
681 	_UDP_ENTER(connp, mp, proc, tag);
682 }
683 
684 static void
685 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
686 {
687 	udp_t	*udp;
688 
689 	udp = connp->conn_udp;
690 
691 	mutex_enter(&connp->conn_lock);
692 
693 	UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER);
694 
695 	switch (udp->udp_mode) {
696 	case UDP_MT_HOT:
697 		if (udp->udp_reader_count == 1) {
698 			/*
699 			 * We are the only MT thread. Switch to squeue mode
700 			 * immediately.
701 			 */
702 			udp->udp_mode = UDP_SQUEUE;
703 			udp->udp_squeue_count = 1;
704 			CONN_INC_REF_LOCKED(connp);
705 			mutex_exit(&connp->conn_lock);
706 			squeue_enter(connp->conn_sqp, mp, proc, connp, tag);
707 			return;
708 		}
709 		/* FALLTHRU */
710 
711 	case UDP_MT_QUEUED:
712 		/* Enqueue the packet internally in UDP */
713 		udp->udp_mode = UDP_MT_QUEUED;
714 		UDP_ENQUEUE_MP(udp, mp, proc, tag);
715 		mutex_exit(&connp->conn_lock);
716 		return;
717 
718 	case UDP_SQUEUE:
719 	case UDP_QUEUED_SQUEUE:
720 		/*
721 		 * We are already exclusive. i.e. we are already
722 		 * writer. Simply call the desired function.
723 		 */
724 		udp->udp_squeue_count++;
725 		mutex_exit(&connp->conn_lock);
726 		(*proc)(connp, mp, connp->conn_sqp);
727 		return;
728 	}
729 }
730 
731 /*
732  * Transition from MT mode to SQUEUE mode, when the last MT thread
733  * is exiting the UDP perimeter. Move all messages from the internal
734  * udp queue to the squeue. A better way would be to move all the
735  * messages in one shot, this needs more support from the squeue framework
736  */
737 static void
738 udp_switch_to_squeue(udp_t *udp)
739 {
740 	mblk_t *mp;
741 	mblk_t	*mp_next;
742 	sqproc_t proc;
743 	uint8_t	tag;
744 	conn_t	*connp = udp->udp_connp;
745 
746 	ASSERT(MUTEX_HELD(&connp->conn_lock));
747 	ASSERT(udp->udp_mode == UDP_MT_QUEUED);
748 	while (udp->udp_mphead != NULL) {
749 		mp = udp->udp_mphead;
750 		udp->udp_mphead = NULL;
751 		udp->udp_mptail = NULL;
752 		udp->udp_mpcount = 0;
753 		udp->udp_mode = UDP_QUEUED_SQUEUE;
754 		mutex_exit(&connp->conn_lock);
755 		/*
756 		 * It is best not to hold any locks across the calls
757 		 * to squeue functions. Since we drop the lock we
758 		 * need to go back and check the udp_mphead once again
759 		 * after the squeue_fill and hence the while loop at
760 		 * the top of this function
761 		 */
762 		for (; mp != NULL; mp = mp_next) {
763 			mp_next = mp->b_next;
764 			proc = (sqproc_t)mp->b_prev;
765 			tag = (uint8_t)((uintptr_t)mp->b_queue);
766 			mp->b_next = NULL;
767 			mp->b_prev = NULL;
768 			mp->b_queue = NULL;
769 			CONN_INC_REF(connp);
770 			udp->udp_squeue_count++;
771 			squeue_fill(connp->conn_sqp, mp, proc, connp,
772 			    tag);
773 		}
774 		mutex_enter(&connp->conn_lock);
775 	}
776 	/*
777 	 * udp_squeue_count of zero implies that the squeue has drained
778 	 * even before we arrived here (i.e. after the squeue_fill above)
779 	 */
780 	udp->udp_mode = (udp->udp_squeue_count != 0) ?
781 	    UDP_SQUEUE : UDP_MT_HOT;
782 }
783 
784 #define	_UDP_EXIT(connp) {						\
785 	udp_t *_udp = (connp)->conn_udp;				\
786 									\
787 	mutex_enter(&(connp)->conn_lock);				\
788 	UDP_MODE_ASSERTIONS(_udp, UDP_EXIT);				\
789 									\
790 	switch (_udp->udp_mode) {					\
791 	case UDP_MT_HOT:						\
792 		UDP_READERS_DECREF(_udp);				\
793 		mutex_exit(&(connp)->conn_lock);			\
794 		break;							\
795 									\
796 	case UDP_SQUEUE:						\
797 		UDP_SQUEUE_DECREF(_udp);				\
798 		if (_udp->udp_squeue_count == 0)			\
799 		    _udp->udp_mode = UDP_MT_HOT;			\
800 		mutex_exit(&(connp)->conn_lock);			\
801 		break;							\
802 									\
803 	case UDP_MT_QUEUED:						\
804 		/*							\
805 		 * If this is the last MT thread, we need to		\
806 		 * switch to squeue mode				\
807 		 */							\
808 		UDP_READERS_DECREF(_udp);				\
809 		if (_udp->udp_reader_count == 0)			\
810 			udp_switch_to_squeue(_udp);			\
811 		mutex_exit(&(connp)->conn_lock);			\
812 		break;							\
813 									\
814 	case UDP_QUEUED_SQUEUE:						\
815 		UDP_SQUEUE_DECREF(_udp);				\
816 		/*							\
817 		 * Even if the udp_squeue_count drops to zero, we	\
818 		 * don't want to change udp_mode to UDP_MT_HOT here.	\
819 		 * The thread in udp_switch_to_squeue will take care	\
820 		 * of the transition to UDP_MT_HOT, after emptying	\
821 		 * any more new messages that have been enqueued in	\
822 		 * udp_mphead.						\
823 		 */							\
824 		mutex_exit(&(connp)->conn_lock);			\
825 		break;							\
826 	}								\
827 }
828 
829 static void
830 udp_exit(conn_t *connp)
831 {
832 	_UDP_EXIT(connp);
833 }
834 
835 /*
836  * Return the next anonymous port in the privileged port range for
837  * bind checking.
838  *
839  * Trusted Extension (TX) notes: TX allows administrator to mark or
840  * reserve ports as Multilevel ports (MLP). MLP has special function
841  * on TX systems. Once a port is made MLP, it's not available as
842  * ordinary port. This creates "holes" in the port name space. It
843  * may be necessary to skip the "holes" find a suitable anon port.
844  */
845 static in_port_t
846 udp_get_next_priv_port(udp_t *udp)
847 {
848 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
849 	in_port_t nextport;
850 	boolean_t restart = B_FALSE;
851 	udp_stack_t *us = udp->udp_us;
852 
853 retry:
854 	if (next_priv_port < us->us_min_anonpriv_port ||
855 	    next_priv_port >= IPPORT_RESERVED) {
856 		next_priv_port = IPPORT_RESERVED - 1;
857 		if (restart)
858 			return (0);
859 		restart = B_TRUE;
860 	}
861 
862 	if (is_system_labeled() &&
863 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
864 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
865 		next_priv_port = nextport;
866 		goto retry;
867 	}
868 
869 	return (next_priv_port--);
870 }
871 
872 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
873 /* ARGSUSED */
874 static int
875 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
876 {
877 	udp_fanout_t	*udpf;
878 	int		i;
879 	zoneid_t	zoneid;
880 	conn_t		*connp;
881 	udp_t		*udp;
882 	udp_stack_t	*us;
883 
884 	connp = Q_TO_CONN(q);
885 	udp = connp->conn_udp;
886 	us = udp->udp_us;
887 
888 	/* Refer to comments in udp_status_report(). */
889 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
890 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
891 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
892 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
893 			return (0);
894 		}
895 	}
896 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
897 		/* The following may work even if we cannot get a large buf. */
898 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
899 		return (0);
900 	}
901 
902 	(void) mi_mpprintf(mp,
903 	    "UDP     " MI_COL_HDRPAD_STR
904 	/*   12345678[89ABCDEF] */
905 	    " zone lport src addr        dest addr       port  state");
906 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
907 
908 	zoneid = connp->conn_zoneid;
909 
910 	for (i = 0; i < us->us_bind_fanout_size; i++) {
911 		udpf = &us->us_bind_fanout[i];
912 		mutex_enter(&udpf->uf_lock);
913 
914 		/* Print the hash index. */
915 		udp = udpf->uf_udp;
916 		if (zoneid != GLOBAL_ZONEID) {
917 			/* skip to first entry in this zone; might be none */
918 			while (udp != NULL &&
919 			    udp->udp_connp->conn_zoneid != zoneid)
920 				udp = udp->udp_bind_hash;
921 		}
922 		if (udp != NULL) {
923 			uint_t print_len, buf_len;
924 
925 			buf_len = mp->b_cont->b_datap->db_lim -
926 			    mp->b_cont->b_wptr;
927 			print_len = snprintf((char *)mp->b_cont->b_wptr,
928 			    buf_len, "%d\n", i);
929 			if (print_len < buf_len) {
930 				mp->b_cont->b_wptr += print_len;
931 			} else {
932 				mp->b_cont->b_wptr += buf_len;
933 			}
934 			for (; udp != NULL; udp = udp->udp_bind_hash) {
935 				if (zoneid == GLOBAL_ZONEID ||
936 				    zoneid == udp->udp_connp->conn_zoneid)
937 					udp_report_item(mp->b_cont, udp);
938 			}
939 		}
940 		mutex_exit(&udpf->uf_lock);
941 	}
942 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
943 	return (0);
944 }
945 
946 /*
947  * Hash list removal routine for udp_t structures.
948  */
949 static void
950 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
951 {
952 	udp_t	*udpnext;
953 	kmutex_t *lockp;
954 	udp_stack_t *us = udp->udp_us;
955 
956 	if (udp->udp_ptpbhn == NULL)
957 		return;
958 
959 	/*
960 	 * Extract the lock pointer in case there are concurrent
961 	 * hash_remove's for this instance.
962 	 */
963 	ASSERT(udp->udp_port != 0);
964 	if (!caller_holds_lock) {
965 		lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
966 					    us->us_bind_fanout_size)].uf_lock;
967 		ASSERT(lockp != NULL);
968 		mutex_enter(lockp);
969 	}
970 	if (udp->udp_ptpbhn != NULL) {
971 		udpnext = udp->udp_bind_hash;
972 		if (udpnext != NULL) {
973 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
974 			udp->udp_bind_hash = NULL;
975 		}
976 		*udp->udp_ptpbhn = udpnext;
977 		udp->udp_ptpbhn = NULL;
978 	}
979 	if (!caller_holds_lock) {
980 		mutex_exit(lockp);
981 	}
982 }
983 
984 static void
985 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
986 {
987 	udp_t	**udpp;
988 	udp_t	*udpnext;
989 
990 	ASSERT(MUTEX_HELD(&uf->uf_lock));
991 	if (udp->udp_ptpbhn != NULL) {
992 		udp_bind_hash_remove(udp, B_TRUE);
993 	}
994 	udpp = &uf->uf_udp;
995 	udpnext = udpp[0];
996 	if (udpnext != NULL) {
997 		/*
998 		 * If the new udp bound to the INADDR_ANY address
999 		 * and the first one in the list is not bound to
1000 		 * INADDR_ANY we skip all entries until we find the
1001 		 * first one bound to INADDR_ANY.
1002 		 * This makes sure that applications binding to a
1003 		 * specific address get preference over those binding to
1004 		 * INADDR_ANY.
1005 		 */
1006 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
1007 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
1008 			while ((udpnext = udpp[0]) != NULL &&
1009 			    !V6_OR_V4_INADDR_ANY(
1010 			    udpnext->udp_bound_v6src)) {
1011 				udpp = &(udpnext->udp_bind_hash);
1012 			}
1013 			if (udpnext != NULL)
1014 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1015 		} else {
1016 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1017 		}
1018 	}
1019 	udp->udp_bind_hash = udpnext;
1020 	udp->udp_ptpbhn = udpp;
1021 	udpp[0] = udp;
1022 }
1023 
1024 /*
1025  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
1026  * passed to udp_wput.
1027  * It associates a port number and local address with the stream.
1028  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
1029  * protocol type (IPPROTO_UDP) placed in the message following the address.
1030  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
1031  * (Called as writer.)
1032  *
1033  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
1034  * without setting SO_REUSEADDR. This is needed so that they
1035  * can be viewed as two independent transport protocols.
1036  * However, anonymouns ports are allocated from the same range to avoid
1037  * duplicating the us->us_next_port_to_try.
1038  */
1039 static void
1040 udp_bind(queue_t *q, mblk_t *mp)
1041 {
1042 	sin_t		*sin;
1043 	sin6_t		*sin6;
1044 	mblk_t		*mp1;
1045 	in_port_t	port;		/* Host byte order */
1046 	in_port_t	requested_port;	/* Host byte order */
1047 	struct T_bind_req *tbr;
1048 	int		count;
1049 	in6_addr_t	v6src;
1050 	boolean_t	bind_to_req_port_only;
1051 	int		loopmax;
1052 	udp_fanout_t	*udpf;
1053 	in_port_t	lport;		/* Network byte order */
1054 	zoneid_t	zoneid;
1055 	conn_t		*connp;
1056 	udp_t		*udp;
1057 	boolean_t	is_inaddr_any;
1058 	mlp_type_t	addrtype, mlptype;
1059 	udp_stack_t	*us;
1060 
1061 	connp = Q_TO_CONN(q);
1062 	udp = connp->conn_udp;
1063 	us = udp->udp_us;
1064 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
1065 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1066 		    "udp_bind: bad req, len %u",
1067 		    (uint_t)(mp->b_wptr - mp->b_rptr));
1068 		udp_err_ack(q, mp, TPROTO, 0);
1069 		return;
1070 	}
1071 
1072 	if (udp->udp_state != TS_UNBND) {
1073 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1074 		    "udp_bind: bad state, %u", udp->udp_state);
1075 		udp_err_ack(q, mp, TOUTSTATE, 0);
1076 		return;
1077 	}
1078 	/*
1079 	 * Reallocate the message to make sure we have enough room for an
1080 	 * address and the protocol type.
1081 	 */
1082 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
1083 	if (!mp1) {
1084 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1085 		return;
1086 	}
1087 
1088 	mp = mp1;
1089 	tbr = (struct T_bind_req *)mp->b_rptr;
1090 	switch (tbr->ADDR_length) {
1091 	case 0:			/* Request for a generic port */
1092 		tbr->ADDR_offset = sizeof (struct T_bind_req);
1093 		if (udp->udp_family == AF_INET) {
1094 			tbr->ADDR_length = sizeof (sin_t);
1095 			sin = (sin_t *)&tbr[1];
1096 			*sin = sin_null;
1097 			sin->sin_family = AF_INET;
1098 			mp->b_wptr = (uchar_t *)&sin[1];
1099 		} else {
1100 			ASSERT(udp->udp_family == AF_INET6);
1101 			tbr->ADDR_length = sizeof (sin6_t);
1102 			sin6 = (sin6_t *)&tbr[1];
1103 			*sin6 = sin6_null;
1104 			sin6->sin6_family = AF_INET6;
1105 			mp->b_wptr = (uchar_t *)&sin6[1];
1106 		}
1107 		port = 0;
1108 		break;
1109 
1110 	case sizeof (sin_t):	/* Complete IPv4 address */
1111 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
1112 		    sizeof (sin_t));
1113 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1114 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1115 			return;
1116 		}
1117 		if (udp->udp_family != AF_INET ||
1118 		    sin->sin_family != AF_INET) {
1119 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1120 			return;
1121 		}
1122 		port = ntohs(sin->sin_port);
1123 		break;
1124 
1125 	case sizeof (sin6_t):	/* complete IPv6 address */
1126 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
1127 		    sizeof (sin6_t));
1128 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1129 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1130 			return;
1131 		}
1132 		if (udp->udp_family != AF_INET6 ||
1133 		    sin6->sin6_family != AF_INET6) {
1134 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1135 			return;
1136 		}
1137 		port = ntohs(sin6->sin6_port);
1138 		break;
1139 
1140 	default:		/* Invalid request */
1141 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1142 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
1143 		udp_err_ack(q, mp, TBADADDR, 0);
1144 		return;
1145 	}
1146 
1147 	requested_port = port;
1148 
1149 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
1150 		bind_to_req_port_only = B_FALSE;
1151 	else			/* T_BIND_REQ and requested_port != 0 */
1152 		bind_to_req_port_only = B_TRUE;
1153 
1154 	if (requested_port == 0) {
1155 		/*
1156 		 * If the application passed in zero for the port number, it
1157 		 * doesn't care which port number we bind to. Get one in the
1158 		 * valid range.
1159 		 */
1160 		if (udp->udp_anon_priv_bind) {
1161 			port = udp_get_next_priv_port(udp);
1162 		} else {
1163 			port = udp_update_next_port(udp,
1164 			    us->us_next_port_to_try, B_TRUE);
1165 		}
1166 	} else {
1167 		/*
1168 		 * If the port is in the well-known privileged range,
1169 		 * make sure the caller was privileged.
1170 		 */
1171 		int i;
1172 		boolean_t priv = B_FALSE;
1173 
1174 		if (port < us->us_smallest_nonpriv_port) {
1175 			priv = B_TRUE;
1176 		} else {
1177 			for (i = 0; i < us->us_num_epriv_ports; i++) {
1178 				if (port == us->us_epriv_ports[i]) {
1179 					priv = B_TRUE;
1180 					break;
1181 				}
1182 			}
1183 		}
1184 
1185 		if (priv) {
1186 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
1187 
1188 			if (secpolicy_net_privaddr(cr, port) != 0) {
1189 				udp_err_ack(q, mp, TACCES, 0);
1190 				return;
1191 			}
1192 		}
1193 	}
1194 
1195 	if (port == 0) {
1196 		udp_err_ack(q, mp, TNOADDR, 0);
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * Copy the source address into our udp structure. This address
1202 	 * may still be zero; if so, IP will fill in the correct address
1203 	 * each time an outbound packet is passed to it.
1204 	 */
1205 	if (udp->udp_family == AF_INET) {
1206 		ASSERT(sin != NULL);
1207 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1208 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1209 		    udp->udp_ip_snd_options_len;
1210 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
1211 	} else {
1212 		ASSERT(sin6 != NULL);
1213 		v6src = sin6->sin6_addr;
1214 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
1215 			udp->udp_ipversion = IPV4_VERSION;
1216 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1217 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1218 		} else {
1219 			udp->udp_ipversion = IPV6_VERSION;
1220 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * If udp_reuseaddr is not set, then we have to make sure that
1226 	 * the IP address and port number the application requested
1227 	 * (or we selected for the application) is not being used by
1228 	 * another stream.  If another stream is already using the
1229 	 * requested IP address and port, the behavior depends on
1230 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
1231 	 * search for any an unused port to bind to the the stream.
1232 	 *
1233 	 * As per the BSD semantics, as modified by the Deering multicast
1234 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
1235 	 * to the same port independent of the local IP address.
1236 	 *
1237 	 * This is slightly different than in SunOS 4.X which did not
1238 	 * support IP multicast. Note that the change implemented by the
1239 	 * Deering multicast code effects all binds - not only binding
1240 	 * to IP multicast addresses.
1241 	 *
1242 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
1243 	 * order to guarantee a unique port.
1244 	 */
1245 
1246 	count = 0;
1247 	if (udp->udp_anon_priv_bind) {
1248 		/*
1249 		 * loopmax = (IPPORT_RESERVED-1) -
1250 		 *    us->us_min_anonpriv_port + 1
1251 		 */
1252 		loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
1253 	} else {
1254 		loopmax = us->us_largest_anon_port -
1255 		    us->us_smallest_anon_port + 1;
1256 	}
1257 
1258 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
1259 	zoneid = connp->conn_zoneid;
1260 
1261 	for (;;) {
1262 		udp_t		*udp1;
1263 		boolean_t	found_exclbind = B_FALSE;
1264 
1265 		/*
1266 		 * Walk through the list of udp streams bound to
1267 		 * requested port with the same IP address.
1268 		 */
1269 		lport = htons(port);
1270 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
1271 		    us->us_bind_fanout_size)];
1272 		mutex_enter(&udpf->uf_lock);
1273 		for (udp1 = udpf->uf_udp; udp1 != NULL;
1274 		    udp1 = udp1->udp_bind_hash) {
1275 			if (lport != udp1->udp_port)
1276 				continue;
1277 
1278 			/*
1279 			 * On a labeled system, we must treat bindings to ports
1280 			 * on shared IP addresses by sockets with MAC exemption
1281 			 * privilege as being in all zones, as there's
1282 			 * otherwise no way to identify the right receiver.
1283 			 */
1284 			if (zoneid != udp1->udp_connp->conn_zoneid &&
1285 			    !udp->udp_mac_exempt && !udp1->udp_mac_exempt)
1286 				continue;
1287 
1288 			/*
1289 			 * If UDP_EXCLBIND is set for either the bound or
1290 			 * binding endpoint, the semantics of bind
1291 			 * is changed according to the following chart.
1292 			 *
1293 			 * spec = specified address (v4 or v6)
1294 			 * unspec = unspecified address (v4 or v6)
1295 			 * A = specified addresses are different for endpoints
1296 			 *
1297 			 * bound	bind to		allowed?
1298 			 * -------------------------------------
1299 			 * unspec	unspec		no
1300 			 * unspec	spec		no
1301 			 * spec		unspec		no
1302 			 * spec		spec		yes if A
1303 			 *
1304 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
1305 			 * as UDP_EXCLBIND, except that zoneid is ignored.
1306 			 */
1307 			if (udp1->udp_exclbind || udp->udp_exclbind ||
1308 			    udp1->udp_mac_exempt || udp->udp_mac_exempt) {
1309 				if (V6_OR_V4_INADDR_ANY(
1310 				    udp1->udp_bound_v6src) ||
1311 				    is_inaddr_any ||
1312 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1313 				    &v6src)) {
1314 					found_exclbind = B_TRUE;
1315 					break;
1316 				}
1317 				continue;
1318 			}
1319 
1320 			/*
1321 			 * Check ipversion to allow IPv4 and IPv6 sockets to
1322 			 * have disjoint port number spaces.
1323 			 */
1324 			if (udp->udp_ipversion != udp1->udp_ipversion) {
1325 
1326 				/*
1327 				 * On the first time through the loop, if the
1328 				 * the user intentionally specified a
1329 				 * particular port number, then ignore any
1330 				 * bindings of the other protocol that may
1331 				 * conflict. This allows the user to bind IPv6
1332 				 * alone and get both v4 and v6, or bind both
1333 				 * both and get each seperately. On subsequent
1334 				 * times through the loop, we're checking a
1335 				 * port that we chose (not the user) and thus
1336 				 * we do not allow casual duplicate bindings.
1337 				 */
1338 				if (count == 0 && requested_port != 0)
1339 					continue;
1340 			}
1341 
1342 			/*
1343 			 * No difference depending on SO_REUSEADDR.
1344 			 *
1345 			 * If existing port is bound to a
1346 			 * non-wildcard IP address and
1347 			 * the requesting stream is bound to
1348 			 * a distinct different IP addresses
1349 			 * (non-wildcard, also), keep going.
1350 			 */
1351 			if (!is_inaddr_any &&
1352 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
1353 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1354 			    &v6src)) {
1355 				continue;
1356 			}
1357 			break;
1358 		}
1359 
1360 		if (!found_exclbind &&
1361 		    (udp->udp_reuseaddr && requested_port != 0)) {
1362 			break;
1363 		}
1364 
1365 		if (udp1 == NULL) {
1366 			/*
1367 			 * No other stream has this IP address
1368 			 * and port number. We can use it.
1369 			 */
1370 			break;
1371 		}
1372 		mutex_exit(&udpf->uf_lock);
1373 		if (bind_to_req_port_only) {
1374 			/*
1375 			 * We get here only when requested port
1376 			 * is bound (and only first  of the for()
1377 			 * loop iteration).
1378 			 *
1379 			 * The semantics of this bind request
1380 			 * require it to fail so we return from
1381 			 * the routine (and exit the loop).
1382 			 *
1383 			 */
1384 			udp_err_ack(q, mp, TADDRBUSY, 0);
1385 			return;
1386 		}
1387 
1388 		if (udp->udp_anon_priv_bind) {
1389 			port = udp_get_next_priv_port(udp);
1390 		} else {
1391 			if ((count == 0) && (requested_port != 0)) {
1392 				/*
1393 				 * If the application wants us to find
1394 				 * a port, get one to start with. Set
1395 				 * requested_port to 0, so that we will
1396 				 * update us->us_next_port_to_try below.
1397 				 */
1398 				port = udp_update_next_port(udp,
1399 				    us->us_next_port_to_try, B_TRUE);
1400 				requested_port = 0;
1401 			} else {
1402 				port = udp_update_next_port(udp, port + 1,
1403 				    B_FALSE);
1404 			}
1405 		}
1406 
1407 		if (port == 0 || ++count >= loopmax) {
1408 			/*
1409 			 * We've tried every possible port number and
1410 			 * there are none available, so send an error
1411 			 * to the user.
1412 			 */
1413 			udp_err_ack(q, mp, TNOADDR, 0);
1414 			return;
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Copy the source address into our udp structure.  This address
1420 	 * may still be zero; if so, ip will fill in the correct address
1421 	 * each time an outbound packet is passed to it.
1422 	 * If we are binding to a broadcast or multicast address udp_rput
1423 	 * will clear the source address when it receives the T_BIND_ACK.
1424 	 */
1425 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
1426 	udp->udp_port = lport;
1427 	/*
1428 	 * Now reset the the next anonymous port if the application requested
1429 	 * an anonymous port, or we handed out the next anonymous port.
1430 	 */
1431 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
1432 		us->us_next_port_to_try = port + 1;
1433 	}
1434 
1435 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
1436 	if (udp->udp_family == AF_INET) {
1437 		sin->sin_port = udp->udp_port;
1438 	} else {
1439 		int error;
1440 
1441 		sin6->sin6_port = udp->udp_port;
1442 		/* Rebuild the header template */
1443 		error = udp_build_hdrs(q, udp);
1444 		if (error != 0) {
1445 			mutex_exit(&udpf->uf_lock);
1446 			udp_err_ack(q, mp, TSYSERR, error);
1447 			return;
1448 		}
1449 	}
1450 	udp->udp_state = TS_IDLE;
1451 	udp_bind_hash_insert(udpf, udp);
1452 	mutex_exit(&udpf->uf_lock);
1453 
1454 	if (cl_inet_bind) {
1455 		/*
1456 		 * Running in cluster mode - register bind information
1457 		 */
1458 		if (udp->udp_ipversion == IPV4_VERSION) {
1459 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1460 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1461 			    (in_port_t)udp->udp_port);
1462 		} else {
1463 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1464 			    (uint8_t *)&(udp->udp_v6src),
1465 			    (in_port_t)udp->udp_port);
1466 		}
1467 
1468 	}
1469 
1470 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1471 	if (is_system_labeled() && (!connp->conn_anon_port ||
1472 	    connp->conn_anon_mlp)) {
1473 		uint16_t mlpport;
1474 		cred_t *cr = connp->conn_cred;
1475 		zone_t *zone;
1476 
1477 		zone = crgetzone(cr);
1478 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1479 		    mlptSingle;
1480 		addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION,
1481 		    &v6src, udp->udp_us->us_netstack->netstack_ip);
1482 		if (addrtype == mlptSingle) {
1483 			udp_err_ack(q, mp, TNOADDR, 0);
1484 			connp->conn_anon_port = B_FALSE;
1485 			connp->conn_mlp_type = mlptSingle;
1486 			return;
1487 		}
1488 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1489 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1490 		    addrtype);
1491 		if (mlptype != mlptSingle &&
1492 		    (connp->conn_mlp_type == mlptSingle ||
1493 		    secpolicy_net_bindmlp(cr) != 0)) {
1494 			if (udp->udp_debug) {
1495 				(void) strlog(UDP_MOD_ID, 0, 1,
1496 				    SL_ERROR|SL_TRACE,
1497 				    "udp_bind: no priv for multilevel port %d",
1498 				    mlpport);
1499 			}
1500 			udp_err_ack(q, mp, TACCES, 0);
1501 			connp->conn_anon_port = B_FALSE;
1502 			connp->conn_mlp_type = mlptSingle;
1503 			return;
1504 		}
1505 
1506 		/*
1507 		 * If we're specifically binding a shared IP address and the
1508 		 * port is MLP on shared addresses, then check to see if this
1509 		 * zone actually owns the MLP.  Reject if not.
1510 		 */
1511 		if (mlptype == mlptShared && addrtype == mlptShared) {
1512 			/*
1513 			 * No need to handle exclusive-stack zones since
1514 			 * ALL_ZONES only applies to the shared stack.
1515 			 */
1516 			zoneid_t mlpzone;
1517 
1518 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1519 			    htons(mlpport));
1520 			if (connp->conn_zoneid != mlpzone) {
1521 				if (udp->udp_debug) {
1522 					(void) strlog(UDP_MOD_ID, 0, 1,
1523 					    SL_ERROR|SL_TRACE,
1524 					    "udp_bind: attempt to bind port "
1525 					    "%d on shared addr in zone %d "
1526 					    "(should be %d)",
1527 					    mlpport, connp->conn_zoneid,
1528 					    mlpzone);
1529 				}
1530 				udp_err_ack(q, mp, TACCES, 0);
1531 				connp->conn_anon_port = B_FALSE;
1532 				connp->conn_mlp_type = mlptSingle;
1533 				return;
1534 			}
1535 		}
1536 		if (connp->conn_anon_port) {
1537 			int error;
1538 
1539 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1540 			    port, B_TRUE);
1541 			if (error != 0) {
1542 				if (udp->udp_debug) {
1543 					(void) strlog(UDP_MOD_ID, 0, 1,
1544 					    SL_ERROR|SL_TRACE,
1545 					    "udp_bind: cannot establish anon "
1546 					    "MLP for port %d", port);
1547 				}
1548 				udp_err_ack(q, mp, TACCES, 0);
1549 				connp->conn_anon_port = B_FALSE;
1550 				connp->conn_mlp_type = mlptSingle;
1551 				return;
1552 			}
1553 		}
1554 		connp->conn_mlp_type = mlptype;
1555 	}
1556 
1557 	/* Pass the protocol number in the message following the address. */
1558 	*mp->b_wptr++ = IPPROTO_UDP;
1559 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1560 		/*
1561 		 * Append a request for an IRE if udp_v6src not
1562 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1563 		 */
1564 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1565 		if (!mp->b_cont) {
1566 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1567 			return;
1568 		}
1569 		mp->b_cont->b_wptr += sizeof (ire_t);
1570 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1571 	}
1572 	if (udp->udp_family == AF_INET6)
1573 		mp = ip_bind_v6(q, mp, connp, NULL);
1574 	else
1575 		mp = ip_bind_v4(q, mp, connp);
1576 
1577 	if (mp != NULL)
1578 		udp_rput_other(_RD(q), mp);
1579 	else
1580 		CONN_INC_REF(connp);
1581 }
1582 
1583 
1584 void
1585 udp_resume_bind(conn_t *connp, mblk_t *mp)
1586 {
1587 	udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY);
1588 }
1589 
1590 /*
1591  * This is called from ip_wput_nondata to resume a deferred UDP bind.
1592  */
1593 /* ARGSUSED */
1594 static void
1595 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2)
1596 {
1597 	conn_t *connp = arg;
1598 
1599 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1600 
1601 	udp_rput_other(connp->conn_rq, mp);
1602 
1603 	CONN_OPER_PENDING_DONE(connp);
1604 	udp_exit(connp);
1605 }
1606 
1607 /*
1608  * This routine handles each T_CONN_REQ message passed to udp.  It
1609  * associates a default destination address with the stream.
1610  *
1611  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1612  *	T_BIND_REQ	- specifying local and remote address/port
1613  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1614  *	T_OK_ACK	- for the T_CONN_REQ
1615  *	T_CONN_CON	- to keep the TPI user happy
1616  *
1617  * The connect completes in udp_rput.
1618  * When a T_BIND_ACK is received information is extracted from the IRE
1619  * and the two appended messages are sent to the TPI user.
1620  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1621  * it to an error ack for the appropriate primitive.
1622  */
1623 static void
1624 udp_connect(queue_t *q, mblk_t *mp)
1625 {
1626 	sin6_t	*sin6;
1627 	sin_t	*sin;
1628 	struct T_conn_req	*tcr;
1629 	in6_addr_t v6dst;
1630 	ipaddr_t v4dst;
1631 	uint16_t dstport;
1632 	uint32_t flowinfo;
1633 	mblk_t	*mp1, *mp2;
1634 	udp_fanout_t	*udpf;
1635 	udp_t	*udp, *udp1;
1636 	udp_stack_t	*us;
1637 
1638 	udp = Q_TO_UDP(q);
1639 
1640 	tcr = (struct T_conn_req *)mp->b_rptr;
1641 	us = udp->udp_us;
1642 
1643 	/* A bit of sanity checking */
1644 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1645 		udp_err_ack(q, mp, TPROTO, 0);
1646 		return;
1647 	}
1648 	/*
1649 	 * This UDP must have bound to a port already before doing
1650 	 * a connect.
1651 	 */
1652 	if (udp->udp_state == TS_UNBND) {
1653 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1654 		    "udp_connect: bad state, %u", udp->udp_state);
1655 		udp_err_ack(q, mp, TOUTSTATE, 0);
1656 		return;
1657 	}
1658 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1659 
1660 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1661 	    us->us_bind_fanout_size)];
1662 
1663 	if (udp->udp_state == TS_DATA_XFER) {
1664 		/* Already connected - clear out state */
1665 		mutex_enter(&udpf->uf_lock);
1666 		udp->udp_v6src = udp->udp_bound_v6src;
1667 		udp->udp_state = TS_IDLE;
1668 		mutex_exit(&udpf->uf_lock);
1669 	}
1670 
1671 	if (tcr->OPT_length != 0) {
1672 		udp_err_ack(q, mp, TBADOPT, 0);
1673 		return;
1674 	}
1675 
1676 	/*
1677 	 * Determine packet type based on type of address passed in
1678 	 * the request should contain an IPv4 or IPv6 address.
1679 	 * Make sure that address family matches the type of
1680 	 * family of the the address passed down
1681 	 */
1682 	switch (tcr->DEST_length) {
1683 	default:
1684 		udp_err_ack(q, mp, TBADADDR, 0);
1685 		return;
1686 
1687 	case sizeof (sin_t):
1688 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1689 		    sizeof (sin_t));
1690 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1691 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1692 			return;
1693 		}
1694 		if (udp->udp_family != AF_INET ||
1695 		    sin->sin_family != AF_INET) {
1696 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1697 			return;
1698 		}
1699 		v4dst = sin->sin_addr.s_addr;
1700 		dstport = sin->sin_port;
1701 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1702 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1703 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1704 		    udp->udp_ip_snd_options_len;
1705 		break;
1706 
1707 	case sizeof (sin6_t):
1708 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1709 		    sizeof (sin6_t));
1710 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1711 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1712 			return;
1713 		}
1714 		if (udp->udp_family != AF_INET6 ||
1715 		    sin6->sin6_family != AF_INET6) {
1716 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1717 			return;
1718 		}
1719 		v6dst = sin6->sin6_addr;
1720 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1721 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1722 			udp->udp_ipversion = IPV4_VERSION;
1723 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1724 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1725 			flowinfo = 0;
1726 		} else {
1727 			udp->udp_ipversion = IPV6_VERSION;
1728 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1729 			flowinfo = sin6->sin6_flowinfo;
1730 		}
1731 		dstport = sin6->sin6_port;
1732 		break;
1733 	}
1734 	if (dstport == 0) {
1735 		udp_err_ack(q, mp, TBADADDR, 0);
1736 		return;
1737 	}
1738 
1739 	/*
1740 	 * Create a default IP header with no IP options.
1741 	 */
1742 	udp->udp_dstport = dstport;
1743 	if (udp->udp_ipversion == IPV4_VERSION) {
1744 		/*
1745 		 * Interpret a zero destination to mean loopback.
1746 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1747 		 * generate the T_CONN_CON.
1748 		 */
1749 		if (v4dst == INADDR_ANY) {
1750 			v4dst = htonl(INADDR_LOOPBACK);
1751 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1752 			if (udp->udp_family == AF_INET) {
1753 				sin->sin_addr.s_addr = v4dst;
1754 			} else {
1755 				sin6->sin6_addr = v6dst;
1756 			}
1757 		}
1758 		udp->udp_v6dst = v6dst;
1759 		udp->udp_flowinfo = 0;
1760 
1761 		/*
1762 		 * If the destination address is multicast and
1763 		 * an outgoing multicast interface has been set,
1764 		 * use the address of that interface as our
1765 		 * source address if no source address has been set.
1766 		 */
1767 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1768 		    CLASSD(v4dst) &&
1769 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1770 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1771 			    &udp->udp_v6src);
1772 		}
1773 	} else {
1774 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1775 		/*
1776 		 * Interpret a zero destination to mean loopback.
1777 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1778 		 * generate the T_CONN_CON.
1779 		 */
1780 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1781 			v6dst = ipv6_loopback;
1782 			sin6->sin6_addr = v6dst;
1783 		}
1784 		udp->udp_v6dst = v6dst;
1785 		udp->udp_flowinfo = flowinfo;
1786 		/*
1787 		 * If the destination address is multicast and
1788 		 * an outgoing multicast interface has been set,
1789 		 * then the ip bind logic will pick the correct source
1790 		 * address (i.e. matching the outgoing multicast interface).
1791 		 */
1792 	}
1793 
1794 	/*
1795 	 * Verify that the src/port/dst/port is unique for all
1796 	 * connections in TS_DATA_XFER
1797 	 */
1798 	mutex_enter(&udpf->uf_lock);
1799 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1800 		if (udp1->udp_state != TS_DATA_XFER)
1801 			continue;
1802 		if (udp->udp_port != udp1->udp_port ||
1803 		    udp->udp_ipversion != udp1->udp_ipversion ||
1804 		    dstport != udp1->udp_dstport ||
1805 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1806 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst))
1807 			continue;
1808 		mutex_exit(&udpf->uf_lock);
1809 		udp_err_ack(q, mp, TBADADDR, 0);
1810 		return;
1811 	}
1812 	udp->udp_state = TS_DATA_XFER;
1813 	mutex_exit(&udpf->uf_lock);
1814 
1815 	/*
1816 	 * Send down bind to IP to verify that there is a route
1817 	 * and to determine the source address.
1818 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1819 	 */
1820 	if (udp->udp_family == AF_INET)
1821 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1822 	else
1823 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1824 	if (mp1 == NULL) {
1825 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1826 bind_failed:
1827 		mutex_enter(&udpf->uf_lock);
1828 		udp->udp_state = TS_IDLE;
1829 		mutex_exit(&udpf->uf_lock);
1830 		return;
1831 	}
1832 
1833 	/*
1834 	 * We also have to send a connection confirmation to
1835 	 * keep TLI happy. Prepare it for udp_rput.
1836 	 */
1837 	if (udp->udp_family == AF_INET)
1838 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1839 		    sizeof (*sin), NULL, 0);
1840 	else
1841 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1842 		    sizeof (*sin6), NULL, 0);
1843 	if (mp2 == NULL) {
1844 		freemsg(mp1);
1845 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1846 		goto bind_failed;
1847 	}
1848 
1849 	mp = mi_tpi_ok_ack_alloc(mp);
1850 	if (mp == NULL) {
1851 		/* Unable to reuse the T_CONN_REQ for the ack. */
1852 		freemsg(mp2);
1853 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1854 		goto bind_failed;
1855 	}
1856 
1857 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1858 	linkb(mp1, mp);
1859 	linkb(mp1, mp2);
1860 
1861 	mblk_setcred(mp1, udp->udp_connp->conn_cred);
1862 	if (udp->udp_family == AF_INET)
1863 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1864 	else
1865 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1866 
1867 	if (mp1 != NULL)
1868 		udp_rput_other(_RD(q), mp1);
1869 	else
1870 		CONN_INC_REF(udp->udp_connp);
1871 }
1872 
1873 static int
1874 udp_close(queue_t *q)
1875 {
1876 	conn_t	*connp = Q_TO_CONN(UDP_WR(q));
1877 	udp_t	*udp;
1878 	queue_t	*ip_rq = RD(UDP_WR(q));
1879 
1880 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1881 	udp = connp->conn_udp;
1882 
1883 	ip_quiesce_conn(connp);
1884 	/*
1885 	 * Disable read-side synchronous stream
1886 	 * interface and drain any queued data.
1887 	 */
1888 	udp_rcv_drain(q, udp, B_TRUE);
1889 	ASSERT(!udp->udp_direct_sockfs);
1890 
1891 	qprocsoff(q);
1892 
1893 	/* restore IP module's high and low water marks to default values */
1894 	ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat;
1895 	WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat;
1896 	WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat;
1897 
1898 	ASSERT(udp->udp_rcv_cnt == 0);
1899 	ASSERT(udp->udp_rcv_msgcnt == 0);
1900 	ASSERT(udp->udp_rcv_list_head == NULL);
1901 	ASSERT(udp->udp_rcv_list_tail == NULL);
1902 
1903 	udp_close_free(connp);
1904 
1905 	/*
1906 	 * Restore connp as an IP endpoint.
1907 	 * Locking required to prevent a race with udp_snmp_get()/
1908 	 * ipcl_get_next_conn(), which selects conn_t which are
1909 	 * IPCL_UDP and not CONN_CONDEMNED.
1910 	 */
1911 	mutex_enter(&connp->conn_lock);
1912 	connp->conn_flags &= ~IPCL_UDP;
1913 	connp->conn_state_flags &=
1914 	    ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED);
1915 	connp->conn_ulp_labeled = B_FALSE;
1916 	mutex_exit(&connp->conn_lock);
1917 
1918 	return (0);
1919 }
1920 
1921 /*
1922  * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn
1923  */
1924 void
1925 udp_quiesce_conn(conn_t *connp)
1926 {
1927 	udp_t	*udp = connp->conn_udp;
1928 
1929 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1930 		/*
1931 		 * Running in cluster mode - register unbind information
1932 		 */
1933 		if (udp->udp_ipversion == IPV4_VERSION) {
1934 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1935 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1936 			    (in_port_t)udp->udp_port);
1937 		} else {
1938 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1939 			    (uint8_t *)(&(udp->udp_v6src)),
1940 			    (in_port_t)udp->udp_port);
1941 		}
1942 	}
1943 
1944 	udp_bind_hash_remove(udp, B_FALSE);
1945 
1946 	mutex_enter(&connp->conn_lock);
1947 	while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 ||
1948 	    udp->udp_mode != UDP_MT_HOT) {
1949 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1950 	}
1951 	mutex_exit(&connp->conn_lock);
1952 }
1953 
1954 void
1955 udp_close_free(conn_t *connp)
1956 {
1957 	udp_t *udp = connp->conn_udp;
1958 
1959 	/* If there are any options associated with the stream, free them. */
1960 	if (udp->udp_ip_snd_options) {
1961 		mi_free((char *)udp->udp_ip_snd_options);
1962 		udp->udp_ip_snd_options = NULL;
1963 	}
1964 
1965 	if (udp->udp_ip_rcv_options) {
1966 		mi_free((char *)udp->udp_ip_rcv_options);
1967 		udp->udp_ip_rcv_options = NULL;
1968 	}
1969 
1970 	/* Free memory associated with sticky options */
1971 	if (udp->udp_sticky_hdrs_len != 0) {
1972 		kmem_free(udp->udp_sticky_hdrs,
1973 		    udp->udp_sticky_hdrs_len);
1974 		udp->udp_sticky_hdrs = NULL;
1975 		udp->udp_sticky_hdrs_len = 0;
1976 	}
1977 
1978 	ip6_pkt_free(&udp->udp_sticky_ipp);
1979 
1980 	udp->udp_connp = NULL;
1981 	netstack_rele(udp->udp_us->us_netstack);
1982 
1983 	connp->conn_udp = NULL;
1984 	kmem_cache_free(udp_cache, udp);
1985 }
1986 
1987 /*
1988  * This routine handles each T_DISCON_REQ message passed to udp
1989  * as an indicating that UDP is no longer connected. This results
1990  * in sending a T_BIND_REQ to IP to restore the binding to just
1991  * the local address/port.
1992  *
1993  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1994  *	T_BIND_REQ	- specifying just the local address/port
1995  *	T_OK_ACK	- for the T_DISCON_REQ
1996  *
1997  * The disconnect completes in udp_rput.
1998  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1999  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
2000  * it to an error ack for the appropriate primitive.
2001  */
2002 static void
2003 udp_disconnect(queue_t *q, mblk_t *mp)
2004 {
2005 	udp_t	*udp = Q_TO_UDP(q);
2006 	mblk_t	*mp1;
2007 	udp_fanout_t *udpf;
2008 	udp_stack_t *us;
2009 
2010 	us = udp->udp_us;
2011 	if (udp->udp_state != TS_DATA_XFER) {
2012 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
2013 		    "udp_disconnect: bad state, %u", udp->udp_state);
2014 		udp_err_ack(q, mp, TOUTSTATE, 0);
2015 		return;
2016 	}
2017 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
2018 	    us->us_bind_fanout_size)];
2019 	mutex_enter(&udpf->uf_lock);
2020 	udp->udp_v6src = udp->udp_bound_v6src;
2021 	udp->udp_state = TS_IDLE;
2022 	mutex_exit(&udpf->uf_lock);
2023 
2024 	/*
2025 	 * Send down bind to IP to remove the full binding and revert
2026 	 * to the local address binding.
2027 	 */
2028 	if (udp->udp_family == AF_INET)
2029 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
2030 	else
2031 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
2032 	if (mp1 == NULL) {
2033 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2034 		return;
2035 	}
2036 	mp = mi_tpi_ok_ack_alloc(mp);
2037 	if (mp == NULL) {
2038 		/* Unable to reuse the T_DISCON_REQ for the ack. */
2039 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
2040 		return;
2041 	}
2042 
2043 	if (udp->udp_family == AF_INET6) {
2044 		int error;
2045 
2046 		/* Rebuild the header template */
2047 		error = udp_build_hdrs(q, udp);
2048 		if (error != 0) {
2049 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
2050 			freemsg(mp1);
2051 			return;
2052 		}
2053 	}
2054 	mutex_enter(&udpf->uf_lock);
2055 	udp->udp_discon_pending = 1;
2056 	mutex_exit(&udpf->uf_lock);
2057 
2058 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
2059 	linkb(mp1, mp);
2060 
2061 	if (udp->udp_family == AF_INET6)
2062 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
2063 	else
2064 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
2065 
2066 	if (mp1 != NULL)
2067 		udp_rput_other(_RD(q), mp1);
2068 	else
2069 		CONN_INC_REF(udp->udp_connp);
2070 }
2071 
2072 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
2073 static void
2074 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
2075 {
2076 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
2077 		putnext(UDP_RD(q), mp);
2078 }
2079 
2080 /* Shorthand to generate and send TPI error acks to our client */
2081 static void
2082 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
2083     int sys_error)
2084 {
2085 	struct T_error_ack	*teackp;
2086 
2087 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2088 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
2089 		teackp = (struct T_error_ack *)mp->b_rptr;
2090 		teackp->ERROR_prim = primitive;
2091 		teackp->TLI_error = t_error;
2092 		teackp->UNIX_error = sys_error;
2093 		putnext(UDP_RD(q), mp);
2094 	}
2095 }
2096 
2097 /*ARGSUSED*/
2098 static int
2099 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
2100 {
2101 	int i;
2102 	udp_t		*udp = Q_TO_UDP(q);
2103 	udp_stack_t *us = udp->udp_us;
2104 
2105 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2106 		if (us->us_epriv_ports[i] != 0)
2107 			(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
2108 	}
2109 	return (0);
2110 }
2111 
2112 /* ARGSUSED */
2113 static int
2114 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2115     cred_t *cr)
2116 {
2117 	long	new_value;
2118 	int	i;
2119 	udp_t		*udp = Q_TO_UDP(q);
2120 	udp_stack_t *us = udp->udp_us;
2121 
2122 	/*
2123 	 * Fail the request if the new value does not lie within the
2124 	 * port number limits.
2125 	 */
2126 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2127 	    new_value <= 0 || new_value >= 65536) {
2128 		return (EINVAL);
2129 	}
2130 
2131 	/* Check if the value is already in the list */
2132 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2133 		if (new_value == us->us_epriv_ports[i]) {
2134 			return (EEXIST);
2135 		}
2136 	}
2137 	/* Find an empty slot */
2138 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2139 		if (us->us_epriv_ports[i] == 0)
2140 			break;
2141 	}
2142 	if (i == us->us_num_epriv_ports) {
2143 		return (EOVERFLOW);
2144 	}
2145 
2146 	/* Set the new value */
2147 	us->us_epriv_ports[i] = (in_port_t)new_value;
2148 	return (0);
2149 }
2150 
2151 /* ARGSUSED */
2152 static int
2153 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2154     cred_t *cr)
2155 {
2156 	long	new_value;
2157 	int	i;
2158 	udp_t		*udp = Q_TO_UDP(q);
2159 	udp_stack_t *us = udp->udp_us;
2160 
2161 	/*
2162 	 * Fail the request if the new value does not lie within the
2163 	 * port number limits.
2164 	 */
2165 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2166 	    new_value <= 0 || new_value >= 65536) {
2167 		return (EINVAL);
2168 	}
2169 
2170 	/* Check that the value is already in the list */
2171 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2172 		if (us->us_epriv_ports[i] == new_value)
2173 			break;
2174 	}
2175 	if (i == us->us_num_epriv_ports) {
2176 		return (ESRCH);
2177 	}
2178 
2179 	/* Clear the value */
2180 	us->us_epriv_ports[i] = 0;
2181 	return (0);
2182 }
2183 
2184 /* At minimum we need 4 bytes of UDP header */
2185 #define	ICMP_MIN_UDP_HDR	4
2186 
2187 /*
2188  * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
2189  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2190  * Assumes that IP has pulled up everything up to and including the ICMP header.
2191  * An M_CTL could potentially come here from some other module (i.e. if UDP
2192  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2193  * does not have enough ICMP information , following STREAMS conventions,
2194  * we send it upstream assuming it is an M_CTL we don't understand.
2195  */
2196 static void
2197 udp_icmp_error(queue_t *q, mblk_t *mp)
2198 {
2199 	icmph_t *icmph;
2200 	ipha_t	*ipha;
2201 	int	iph_hdr_length;
2202 	udpha_t	*udpha;
2203 	sin_t	sin;
2204 	sin6_t	sin6;
2205 	mblk_t	*mp1;
2206 	int	error = 0;
2207 	size_t	mp_size = MBLKL(mp);
2208 	udp_t	*udp = Q_TO_UDP(q);
2209 
2210 	/*
2211 	 * Assume IP provides aligned packets - otherwise toss
2212 	 */
2213 	if (!OK_32PTR(mp->b_rptr)) {
2214 		freemsg(mp);
2215 		return;
2216 	}
2217 
2218 	/*
2219 	 * Verify that we have a complete IP header and the application has
2220 	 * asked for errors. If not, send it upstream.
2221 	 */
2222 	if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
2223 noticmpv4:
2224 		putnext(UDP_RD(q), mp);
2225 		return;
2226 	}
2227 
2228 	ipha = (ipha_t *)mp->b_rptr;
2229 	/*
2230 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
2231 	 * upstream. ICMPv6  is handled in udp_icmp_error_ipv6.
2232 	 */
2233 	switch (IPH_HDR_VERSION(ipha)) {
2234 	case IPV6_VERSION:
2235 		udp_icmp_error_ipv6(q, mp);
2236 		return;
2237 	case IPV4_VERSION:
2238 		break;
2239 	default:
2240 		goto noticmpv4;
2241 	}
2242 
2243 	/* Skip past the outer IP and ICMP headers */
2244 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2245 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2246 	/*
2247 	 * If we don't have the correct outer IP header length or if the ULP
2248 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
2249 	 * send the packet upstream.
2250 	 */
2251 	if (iph_hdr_length < sizeof (ipha_t) ||
2252 	    ipha->ipha_protocol != IPPROTO_ICMP ||
2253 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
2254 		goto noticmpv4;
2255 	}
2256 	ipha = (ipha_t *)&icmph[1];
2257 
2258 	/* Skip past the inner IP and find the ULP header */
2259 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2260 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
2261 	/*
2262 	 * If we don't have the correct inner IP header length or if the ULP
2263 	 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
2264 	 * bytes of UDP header, send it upstream.
2265 	 */
2266 	if (iph_hdr_length < sizeof (ipha_t) ||
2267 	    ipha->ipha_protocol != IPPROTO_UDP ||
2268 	    (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
2269 		goto noticmpv4;
2270 	}
2271 
2272 	switch (icmph->icmph_type) {
2273 	case ICMP_DEST_UNREACHABLE:
2274 		switch (icmph->icmph_code) {
2275 		case ICMP_FRAGMENTATION_NEEDED:
2276 			/*
2277 			 * IP has already adjusted the path MTU.
2278 			 * XXX Somehow pass MTU indication to application?
2279 			 */
2280 			break;
2281 		case ICMP_PORT_UNREACHABLE:
2282 		case ICMP_PROTOCOL_UNREACHABLE:
2283 			error = ECONNREFUSED;
2284 			break;
2285 		default:
2286 			/* Transient errors */
2287 			break;
2288 		}
2289 		break;
2290 	default:
2291 		/* Transient errors */
2292 		break;
2293 	}
2294 	if (error == 0) {
2295 		freemsg(mp);
2296 		return;
2297 	}
2298 
2299 	switch (udp->udp_family) {
2300 	case AF_INET:
2301 		sin = sin_null;
2302 		sin.sin_family = AF_INET;
2303 		sin.sin_addr.s_addr = ipha->ipha_dst;
2304 		sin.sin_port = udpha->uha_dst_port;
2305 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
2306 		    error);
2307 		break;
2308 	case AF_INET6:
2309 		sin6 = sin6_null;
2310 		sin6.sin6_family = AF_INET6;
2311 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
2312 		sin6.sin6_port = udpha->uha_dst_port;
2313 
2314 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
2315 		    NULL, 0, error);
2316 		break;
2317 	}
2318 	if (mp1)
2319 		putnext(UDP_RD(q), mp1);
2320 	freemsg(mp);
2321 }
2322 
2323 /*
2324  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
2325  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2326  * Assumes that IP has pulled up all the extension headers as well as the
2327  * ICMPv6 header.
2328  * An M_CTL could potentially come here from some other module (i.e. if UDP
2329  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2330  * does not have enough ICMP information , following STREAMS conventions,
2331  * we send it upstream assuming it is an M_CTL we don't understand. The reason
2332  * it might get here is if the non-ICMP M_CTL accidently has 6 in the version
2333  * field (when cast to ipha_t in udp_icmp_error).
2334  */
2335 static void
2336 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
2337 {
2338 	icmp6_t		*icmp6;
2339 	ip6_t		*ip6h, *outer_ip6h;
2340 	uint16_t	hdr_length;
2341 	uint8_t		*nexthdrp;
2342 	udpha_t		*udpha;
2343 	sin6_t		sin6;
2344 	mblk_t		*mp1;
2345 	int		error = 0;
2346 	size_t		mp_size = MBLKL(mp);
2347 	udp_t		*udp = Q_TO_UDP(q);
2348 
2349 	/*
2350 	 * Verify that we have a complete IP header. If not, send it upstream.
2351 	 */
2352 	if (mp_size < sizeof (ip6_t)) {
2353 noticmpv6:
2354 		putnext(UDP_RD(q), mp);
2355 		return;
2356 	}
2357 
2358 	outer_ip6h = (ip6_t *)mp->b_rptr;
2359 	/*
2360 	 * Verify this is an ICMPV6 packet, else send it upstream
2361 	 */
2362 	if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
2363 		hdr_length = IPV6_HDR_LEN;
2364 	} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
2365 	    &nexthdrp) ||
2366 	    *nexthdrp != IPPROTO_ICMPV6) {
2367 		goto noticmpv6;
2368 	}
2369 	icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
2370 	ip6h = (ip6_t *)&icmp6[1];
2371 	/*
2372 	 * Verify we have a complete ICMP and inner IP header.
2373 	 */
2374 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
2375 		goto noticmpv6;
2376 
2377 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
2378 		goto noticmpv6;
2379 	udpha = (udpha_t *)((char *)ip6h + hdr_length);
2380 	/*
2381 	 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
2382 	 * have at least ICMP_MIN_UDP_HDR bytes of  UDP header send the
2383 	 * packet upstream.
2384 	 */
2385 	if ((*nexthdrp != IPPROTO_UDP) ||
2386 	    ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
2387 		goto noticmpv6;
2388 	}
2389 
2390 	switch (icmp6->icmp6_type) {
2391 	case ICMP6_DST_UNREACH:
2392 		switch (icmp6->icmp6_code) {
2393 		case ICMP6_DST_UNREACH_NOPORT:
2394 			error = ECONNREFUSED;
2395 			break;
2396 		case ICMP6_DST_UNREACH_ADMIN:
2397 		case ICMP6_DST_UNREACH_NOROUTE:
2398 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
2399 		case ICMP6_DST_UNREACH_ADDR:
2400 			/* Transient errors */
2401 			break;
2402 		default:
2403 			break;
2404 		}
2405 		break;
2406 	case ICMP6_PACKET_TOO_BIG: {
2407 		struct T_unitdata_ind	*tudi;
2408 		struct T_opthdr		*toh;
2409 		size_t			udi_size;
2410 		mblk_t			*newmp;
2411 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
2412 		    sizeof (struct ip6_mtuinfo);
2413 		sin6_t			*sin6;
2414 		struct ip6_mtuinfo	*mtuinfo;
2415 
2416 		/*
2417 		 * If the application has requested to receive path mtu
2418 		 * information, send up an empty message containing an
2419 		 * IPV6_PATHMTU ancillary data item.
2420 		 */
2421 		if (!udp->udp_ipv6_recvpathmtu)
2422 			break;
2423 
2424 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
2425 		    opt_length;
2426 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
2427 			BUMP_MIB(&udp->udp_mib, udpInErrors);
2428 			break;
2429 		}
2430 
2431 		/*
2432 		 * newmp->b_cont is left to NULL on purpose.  This is an
2433 		 * empty message containing only ancillary data.
2434 		 */
2435 		newmp->b_datap->db_type = M_PROTO;
2436 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
2437 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
2438 		tudi->PRIM_type = T_UNITDATA_IND;
2439 		tudi->SRC_length = sizeof (sin6_t);
2440 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
2441 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
2442 		tudi->OPT_length = opt_length;
2443 
2444 		sin6 = (sin6_t *)&tudi[1];
2445 		bzero(sin6, sizeof (sin6_t));
2446 		sin6->sin6_family = AF_INET6;
2447 		sin6->sin6_addr = udp->udp_v6dst;
2448 
2449 		toh = (struct T_opthdr *)&sin6[1];
2450 		toh->level = IPPROTO_IPV6;
2451 		toh->name = IPV6_PATHMTU;
2452 		toh->len = opt_length;
2453 		toh->status = 0;
2454 
2455 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
2456 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
2457 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
2458 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
2459 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
2460 		/*
2461 		 * We've consumed everything we need from the original
2462 		 * message.  Free it, then send our empty message.
2463 		 */
2464 		freemsg(mp);
2465 		putnext(UDP_RD(q), newmp);
2466 		return;
2467 	}
2468 	case ICMP6_TIME_EXCEEDED:
2469 		/* Transient errors */
2470 		break;
2471 	case ICMP6_PARAM_PROB:
2472 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
2473 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
2474 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
2475 		    (uchar_t *)nexthdrp) {
2476 			error = ECONNREFUSED;
2477 			break;
2478 		}
2479 		break;
2480 	}
2481 	if (error == 0) {
2482 		freemsg(mp);
2483 		return;
2484 	}
2485 
2486 	sin6 = sin6_null;
2487 	sin6.sin6_family = AF_INET6;
2488 	sin6.sin6_addr = ip6h->ip6_dst;
2489 	sin6.sin6_port = udpha->uha_dst_port;
2490 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2491 
2492 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2493 	    error);
2494 	if (mp1)
2495 		putnext(UDP_RD(q), mp1);
2496 	freemsg(mp);
2497 }
2498 
2499 /*
2500  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2501  * The local address is filled in if endpoint is bound. The remote address
2502  * is filled in if remote address has been precified ("connected endpoint")
2503  * (The concept of connected CLTS sockets is alien to published TPI
2504  *  but we support it anyway).
2505  */
2506 static void
2507 udp_addr_req(queue_t *q, mblk_t *mp)
2508 {
2509 	sin_t	*sin;
2510 	sin6_t	*sin6;
2511 	mblk_t	*ackmp;
2512 	struct T_addr_ack *taa;
2513 	udp_t	*udp = Q_TO_UDP(q);
2514 
2515 	/* Make it large enough for worst case */
2516 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2517 	    2 * sizeof (sin6_t), 1);
2518 	if (ackmp == NULL) {
2519 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2520 		return;
2521 	}
2522 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2523 
2524 	bzero(taa, sizeof (struct T_addr_ack));
2525 	ackmp->b_wptr = (uchar_t *)&taa[1];
2526 
2527 	taa->PRIM_type = T_ADDR_ACK;
2528 	ackmp->b_datap->db_type = M_PCPROTO;
2529 	/*
2530 	 * Note: Following code assumes 32 bit alignment of basic
2531 	 * data structures like sin_t and struct T_addr_ack.
2532 	 */
2533 	if (udp->udp_state != TS_UNBND) {
2534 		/*
2535 		 * Fill in local address first
2536 		 */
2537 		taa->LOCADDR_offset = sizeof (*taa);
2538 		if (udp->udp_family == AF_INET) {
2539 			taa->LOCADDR_length = sizeof (sin_t);
2540 			sin = (sin_t *)&taa[1];
2541 			/* Fill zeroes and then initialize non-zero fields */
2542 			*sin = sin_null;
2543 			sin->sin_family = AF_INET;
2544 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2545 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2546 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2547 				    sin->sin_addr.s_addr);
2548 			} else {
2549 				/*
2550 				 * INADDR_ANY
2551 				 * udp_v6src is not set, we might be bound to
2552 				 * broadcast/multicast. Use udp_bound_v6src as
2553 				 * local address instead (that could
2554 				 * also still be INADDR_ANY)
2555 				 */
2556 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2557 				    sin->sin_addr.s_addr);
2558 			}
2559 			sin->sin_port = udp->udp_port;
2560 			ackmp->b_wptr = (uchar_t *)&sin[1];
2561 			if (udp->udp_state == TS_DATA_XFER) {
2562 				/*
2563 				 * connected, fill remote address too
2564 				 */
2565 				taa->REMADDR_length = sizeof (sin_t);
2566 				/* assumed 32-bit alignment */
2567 				taa->REMADDR_offset = taa->LOCADDR_offset +
2568 				    taa->LOCADDR_length;
2569 
2570 				sin = (sin_t *)(ackmp->b_rptr +
2571 				    taa->REMADDR_offset);
2572 				/* initialize */
2573 				*sin = sin_null;
2574 				sin->sin_family = AF_INET;
2575 				sin->sin_addr.s_addr =
2576 				    V4_PART_OF_V6(udp->udp_v6dst);
2577 				sin->sin_port = udp->udp_dstport;
2578 				ackmp->b_wptr = (uchar_t *)&sin[1];
2579 			}
2580 		} else {
2581 			taa->LOCADDR_length = sizeof (sin6_t);
2582 			sin6 = (sin6_t *)&taa[1];
2583 			/* Fill zeroes and then initialize non-zero fields */
2584 			*sin6 = sin6_null;
2585 			sin6->sin6_family = AF_INET6;
2586 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2587 				sin6->sin6_addr = udp->udp_v6src;
2588 			} else {
2589 				/*
2590 				 * UNSPECIFIED
2591 				 * udp_v6src is not set, we might be bound to
2592 				 * broadcast/multicast. Use udp_bound_v6src as
2593 				 * local address instead (that could
2594 				 * also still be UNSPECIFIED)
2595 				 */
2596 				sin6->sin6_addr =
2597 				    udp->udp_bound_v6src;
2598 			}
2599 			sin6->sin6_port = udp->udp_port;
2600 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2601 			if (udp->udp_state == TS_DATA_XFER) {
2602 				/*
2603 				 * connected, fill remote address too
2604 				 */
2605 				taa->REMADDR_length = sizeof (sin6_t);
2606 				/* assumed 32-bit alignment */
2607 				taa->REMADDR_offset = taa->LOCADDR_offset +
2608 				    taa->LOCADDR_length;
2609 
2610 				sin6 = (sin6_t *)(ackmp->b_rptr +
2611 				    taa->REMADDR_offset);
2612 				/* initialize */
2613 				*sin6 = sin6_null;
2614 				sin6->sin6_family = AF_INET6;
2615 				sin6->sin6_addr = udp->udp_v6dst;
2616 				sin6->sin6_port =  udp->udp_dstport;
2617 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2618 			}
2619 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2620 		}
2621 	}
2622 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2623 	putnext(UDP_RD(q), ackmp);
2624 }
2625 
2626 static void
2627 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2628 {
2629 	if (udp->udp_family == AF_INET) {
2630 		*tap = udp_g_t_info_ack_ipv4;
2631 	} else {
2632 		*tap = udp_g_t_info_ack_ipv6;
2633 	}
2634 	tap->CURRENT_state = udp->udp_state;
2635 	tap->OPT_size = udp_max_optsize;
2636 }
2637 
2638 /*
2639  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2640  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2641  * udp_g_t_info_ack.  The current state of the stream is copied from
2642  * udp_state.
2643  */
2644 static void
2645 udp_capability_req(queue_t *q, mblk_t *mp)
2646 {
2647 	t_uscalar_t		cap_bits1;
2648 	struct T_capability_ack	*tcap;
2649 	udp_t	*udp = Q_TO_UDP(q);
2650 
2651 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2652 
2653 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2654 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2655 	if (!mp)
2656 		return;
2657 
2658 	tcap = (struct T_capability_ack *)mp->b_rptr;
2659 	tcap->CAP_bits1 = 0;
2660 
2661 	if (cap_bits1 & TC1_INFO) {
2662 		udp_copy_info(&tcap->INFO_ack, udp);
2663 		tcap->CAP_bits1 |= TC1_INFO;
2664 	}
2665 
2666 	putnext(UDP_RD(q), mp);
2667 }
2668 
2669 /*
2670  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2671  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2672  * The current state of the stream is copied from udp_state.
2673  */
2674 static void
2675 udp_info_req(queue_t *q, mblk_t *mp)
2676 {
2677 	udp_t *udp = Q_TO_UDP(q);
2678 
2679 	/* Create a T_INFO_ACK message. */
2680 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2681 	    T_INFO_ACK);
2682 	if (!mp)
2683 		return;
2684 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2685 	putnext(UDP_RD(q), mp);
2686 }
2687 
2688 /*
2689  * IP recognizes seven kinds of bind requests:
2690  *
2691  * - A zero-length address binds only to the protocol number.
2692  *
2693  * - A 4-byte address is treated as a request to
2694  * validate that the address is a valid local IPv4
2695  * address, appropriate for an application to bind to.
2696  * IP does the verification, but does not make any note
2697  * of the address at this time.
2698  *
2699  * - A 16-byte address contains is treated as a request
2700  * to validate a local IPv6 address, as the 4-byte
2701  * address case above.
2702  *
2703  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2704  * use it for the inbound fanout of packets.
2705  *
2706  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2707  * use it for the inbound fanout of packets.
2708  *
2709  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2710  * information consisting of local and remote addresses
2711  * and ports.  In this case, the addresses are both
2712  * validated as appropriate for this operation, and, if
2713  * so, the information is retained for use in the
2714  * inbound fanout.
2715  *
2716  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2717  * fanout information, like the 12-byte case above.
2718  *
2719  * IP will also fill in the IRE request mblk with information
2720  * regarding our peer.  In all cases, we notify IP of our protocol
2721  * type by appending a single protocol byte to the bind request.
2722  */
2723 static mblk_t *
2724 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2725 {
2726 	char	*cp;
2727 	mblk_t	*mp;
2728 	struct T_bind_req *tbr;
2729 	ipa_conn_t	*ac;
2730 	ipa6_conn_t	*ac6;
2731 	sin_t		*sin;
2732 	sin6_t		*sin6;
2733 
2734 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2735 
2736 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2737 	if (!mp)
2738 		return (mp);
2739 	mp->b_datap->db_type = M_PROTO;
2740 	tbr = (struct T_bind_req *)mp->b_rptr;
2741 	tbr->PRIM_type = bind_prim;
2742 	tbr->ADDR_offset = sizeof (*tbr);
2743 	tbr->CONIND_number = 0;
2744 	tbr->ADDR_length = addr_length;
2745 	cp = (char *)&tbr[1];
2746 	switch (addr_length) {
2747 	case sizeof (ipa_conn_t):
2748 		ASSERT(udp->udp_family == AF_INET);
2749 		/* Append a request for an IRE */
2750 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2751 		if (!mp->b_cont) {
2752 			freemsg(mp);
2753 			return (NULL);
2754 		}
2755 		mp->b_cont->b_wptr += sizeof (ire_t);
2756 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2757 
2758 		/* cp known to be 32 bit aligned */
2759 		ac = (ipa_conn_t *)cp;
2760 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2761 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2762 		ac->ac_fport = udp->udp_dstport;
2763 		ac->ac_lport = udp->udp_port;
2764 		break;
2765 
2766 	case sizeof (ipa6_conn_t):
2767 		ASSERT(udp->udp_family == AF_INET6);
2768 		/* Append a request for an IRE */
2769 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2770 		if (!mp->b_cont) {
2771 			freemsg(mp);
2772 			return (NULL);
2773 		}
2774 		mp->b_cont->b_wptr += sizeof (ire_t);
2775 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2776 
2777 		/* cp known to be 32 bit aligned */
2778 		ac6 = (ipa6_conn_t *)cp;
2779 		ac6->ac6_laddr = udp->udp_v6src;
2780 		ac6->ac6_faddr = udp->udp_v6dst;
2781 		ac6->ac6_fport = udp->udp_dstport;
2782 		ac6->ac6_lport = udp->udp_port;
2783 		break;
2784 
2785 	case sizeof (sin_t):
2786 		ASSERT(udp->udp_family == AF_INET);
2787 		/* Append a request for an IRE */
2788 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2789 		if (!mp->b_cont) {
2790 			freemsg(mp);
2791 			return (NULL);
2792 		}
2793 		mp->b_cont->b_wptr += sizeof (ire_t);
2794 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2795 
2796 		sin = (sin_t *)cp;
2797 		*sin = sin_null;
2798 		sin->sin_family = AF_INET;
2799 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2800 		sin->sin_port = udp->udp_port;
2801 		break;
2802 
2803 	case sizeof (sin6_t):
2804 		ASSERT(udp->udp_family == AF_INET6);
2805 		/* Append a request for an IRE */
2806 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2807 		if (!mp->b_cont) {
2808 			freemsg(mp);
2809 			return (NULL);
2810 		}
2811 		mp->b_cont->b_wptr += sizeof (ire_t);
2812 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2813 
2814 		sin6 = (sin6_t *)cp;
2815 		*sin6 = sin6_null;
2816 		sin6->sin6_family = AF_INET6;
2817 		sin6->sin6_addr = udp->udp_bound_v6src;
2818 		sin6->sin6_port = udp->udp_port;
2819 		break;
2820 	}
2821 	/* Add protocol number to end */
2822 	cp[addr_length] = (char)IPPROTO_UDP;
2823 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2824 	return (mp);
2825 }
2826 
2827 /*
2828  * This is the open routine for udp.  It allocates a udp_t structure for
2829  * the stream and, on the first open of the module, creates an ND table.
2830  */
2831 /* ARGSUSED */
2832 static int
2833 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2834 {
2835 	int	err;
2836 	udp_t	*udp;
2837 	conn_t *connp;
2838 	queue_t	*ip_wq;
2839 	zoneid_t zoneid;
2840 	netstack_t *ns;
2841 	udp_stack_t *us;
2842 
2843 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2844 
2845 	/* If the stream is already open, return immediately. */
2846 	if (q->q_ptr != NULL)
2847 		return (0);
2848 
2849 	/* If this is not a push of udp as a module, fail. */
2850 	if (sflag != MODOPEN)
2851 		return (EINVAL);
2852 
2853 	ns = netstack_find_by_cred(credp);
2854 	ASSERT(ns != NULL);
2855 	us = ns->netstack_udp;
2856 	ASSERT(us != NULL);
2857 
2858 	/*
2859 	 * For exclusive stacks we set the zoneid to zero
2860 	 * to make UDP operate as if in the global zone.
2861 	 */
2862 	if (us->us_netstack->netstack_stackid != GLOBAL_NETSTACKID)
2863 		zoneid = GLOBAL_ZONEID;
2864 	else
2865 		zoneid = crgetzoneid(credp);
2866 
2867 	q->q_hiwat = us->us_recv_hiwat;
2868 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2869 	WR(q)->q_lowat = us->us_xmit_lowat;
2870 
2871 	/* Insert ourselves in the stream since we're about to walk q_next */
2872 	qprocson(q);
2873 
2874 	udp = kmem_cache_alloc(udp_cache, KM_SLEEP);
2875 	bzero(udp, sizeof (*udp));
2876 
2877 	/*
2878 	 * UDP is supported only as a module and it has to be pushed directly
2879 	 * above the device instance of IP. If UDP is pushed anywhere else
2880 	 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the
2881 	 * sake of MIB browsers and fail everything else.
2882 	 */
2883 	ip_wq = WR(q)->q_next;
2884 	if (NOT_OVER_IP(ip_wq)) {
2885 		/* Support just SNMP for MIB browsers */
2886 		connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP,
2887 		    us->us_netstack);
2888 		connp->conn_rq = q;
2889 		connp->conn_wq = WR(q);
2890 		connp->conn_flags |= IPCL_UDPMOD;
2891 		connp->conn_cred = credp;
2892 		connp->conn_zoneid = zoneid;
2893 		connp->conn_udp = udp;
2894 		udp->udp_us = us;
2895 		udp->udp_connp = connp;
2896 		q->q_ptr = WR(q)->q_ptr = connp;
2897 		crhold(credp);
2898 		q->q_qinfo = &udp_snmp_rinit;
2899 		WR(q)->q_qinfo = &udp_snmp_winit;
2900 		return (0);
2901 	}
2902 
2903 	/*
2904 	 * Initialize the udp_t structure for this stream.
2905 	 */
2906 	q = RD(ip_wq);
2907 	connp = Q_TO_CONN(q);
2908 	mutex_enter(&connp->conn_lock);
2909 	connp->conn_proto = IPPROTO_UDP;
2910 	connp->conn_flags |= IPCL_UDP;
2911 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
2912 	connp->conn_udp = udp;
2913 
2914 	/* Set the initial state of the stream and the privilege status. */
2915 	udp->udp_connp = connp;
2916 	udp->udp_state = TS_UNBND;
2917 	udp->udp_mode = UDP_MT_HOT;
2918 	if (getmajor(*devp) == (major_t)UDP6_MAJ) {
2919 		udp->udp_family = AF_INET6;
2920 		udp->udp_ipversion = IPV6_VERSION;
2921 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2922 		udp->udp_ttl = us->us_ipv6_hoplimit;
2923 		connp->conn_af_isv6 = B_TRUE;
2924 		connp->conn_flags |= IPCL_ISV6;
2925 	} else {
2926 		udp->udp_family = AF_INET;
2927 		udp->udp_ipversion = IPV4_VERSION;
2928 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2929 		udp->udp_ttl = us->us_ipv4_ttl;
2930 		connp->conn_af_isv6 = B_FALSE;
2931 		connp->conn_flags &= ~IPCL_ISV6;
2932 	}
2933 
2934 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2935 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2936 	connp->conn_zoneid = zoneid;
2937 
2938 	udp->udp_open_time = lbolt64;
2939 	udp->udp_open_pid = curproc->p_pid;
2940 
2941 	/*
2942 	 * If the caller has the process-wide flag set, then default to MAC
2943 	 * exempt mode.  This allows read-down to unlabeled hosts.
2944 	 */
2945 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2946 		udp->udp_mac_exempt = B_TRUE;
2947 
2948 	if (connp->conn_flags & IPCL_SOCKET) {
2949 		udp->udp_issocket = B_TRUE;
2950 		udp->udp_direct_sockfs = B_TRUE;
2951 	}
2952 
2953 	connp->conn_ulp_labeled = is_system_labeled();
2954 
2955 	mutex_exit(&connp->conn_lock);
2956 	udp->udp_us = us;
2957 
2958 	/*
2959 	 * The transmit hiwat/lowat is only looked at on IP's queue.
2960 	 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF
2961 	 * getsockopts.
2962 	 */
2963 	q->q_hiwat = us->us_recv_hiwat;
2964 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2965 	WR(q)->q_lowat = us->us_xmit_lowat;
2966 
2967 	if (udp->udp_family == AF_INET6) {
2968 		/* Build initial header template for transmit */
2969 		if ((err = udp_build_hdrs(q, udp)) != 0) {
2970 			/* XXX missing free of connp? crfree? netstack_rele? */
2971 			qprocsoff(UDP_RD(q));
2972 			udp->udp_connp = NULL;
2973 			connp->conn_udp = NULL;
2974 			kmem_cache_free(udp_cache, udp);
2975 			return (err);
2976 		}
2977 	}
2978 
2979 	/* Set the Stream head write offset and high watermark. */
2980 	(void) mi_set_sth_wroff(UDP_RD(q),
2981 	    udp->udp_max_hdr_len + us->us_wroff_extra);
2982 	(void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat));
2983 
2984 	return (0);
2985 }
2986 
2987 /*
2988  * Which UDP options OK to set through T_UNITDATA_REQ...
2989  */
2990 /* ARGSUSED */
2991 static boolean_t
2992 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2993 {
2994 	return (B_TRUE);
2995 }
2996 
2997 /*
2998  * This routine gets default values of certain options whose default
2999  * values are maintained by protcol specific code
3000  */
3001 /* ARGSUSED */
3002 int
3003 udp_opt_default(queue_t	*q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3004 {
3005 	udp_t		*udp = Q_TO_UDP(q);
3006 	udp_stack_t *us = udp->udp_us;
3007 	int *i1 = (int *)ptr;
3008 
3009 	switch (level) {
3010 	case IPPROTO_IP:
3011 		switch (name) {
3012 		case IP_MULTICAST_TTL:
3013 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
3014 			return (sizeof (uchar_t));
3015 		case IP_MULTICAST_LOOP:
3016 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
3017 			return (sizeof (uchar_t));
3018 		}
3019 		break;
3020 	case IPPROTO_IPV6:
3021 		switch (name) {
3022 		case IPV6_MULTICAST_HOPS:
3023 			*i1 = IP_DEFAULT_MULTICAST_TTL;
3024 			return (sizeof (int));
3025 		case IPV6_MULTICAST_LOOP:
3026 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
3027 			return (sizeof (int));
3028 		case IPV6_UNICAST_HOPS:
3029 			*i1 = us->us_ipv6_hoplimit;
3030 			return (sizeof (int));
3031 		}
3032 		break;
3033 	}
3034 	return (-1);
3035 }
3036 
3037 /*
3038  * This routine retrieves the current status of socket options
3039  * and expects the caller to pass in the queue pointer of the
3040  * upper instance.  It returns the size of the option retrieved.
3041  */
3042 int
3043 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3044 {
3045 	int	*i1 = (int *)ptr;
3046 	conn_t	*connp;
3047 	udp_t	*udp;
3048 	ip6_pkt_t *ipp;
3049 	int	len;
3050 	udp_stack_t	*us;
3051 
3052 	q = UDP_WR(q);
3053 	connp = Q_TO_CONN(q);
3054 	udp = connp->conn_udp;
3055 	ipp = &udp->udp_sticky_ipp;
3056 	us = udp->udp_us;
3057 
3058 	switch (level) {
3059 	case SOL_SOCKET:
3060 		switch (name) {
3061 		case SO_DEBUG:
3062 			*i1 = udp->udp_debug;
3063 			break;	/* goto sizeof (int) option return */
3064 		case SO_REUSEADDR:
3065 			*i1 = udp->udp_reuseaddr;
3066 			break;	/* goto sizeof (int) option return */
3067 		case SO_TYPE:
3068 			*i1 = SOCK_DGRAM;
3069 			break;	/* goto sizeof (int) option return */
3070 
3071 		/*
3072 		 * The following three items are available here,
3073 		 * but are only meaningful to IP.
3074 		 */
3075 		case SO_DONTROUTE:
3076 			*i1 = udp->udp_dontroute;
3077 			break;	/* goto sizeof (int) option return */
3078 		case SO_USELOOPBACK:
3079 			*i1 = udp->udp_useloopback;
3080 			break;	/* goto sizeof (int) option return */
3081 		case SO_BROADCAST:
3082 			*i1 = udp->udp_broadcast;
3083 			break;	/* goto sizeof (int) option return */
3084 
3085 		case SO_SNDBUF:
3086 			*i1 = q->q_hiwat;
3087 			break;	/* goto sizeof (int) option return */
3088 		case SO_RCVBUF:
3089 			*i1 = RD(q)->q_hiwat;
3090 			break;	/* goto sizeof (int) option return */
3091 		case SO_DGRAM_ERRIND:
3092 			*i1 = udp->udp_dgram_errind;
3093 			break;	/* goto sizeof (int) option return */
3094 		case SO_RECVUCRED:
3095 			*i1 = udp->udp_recvucred;
3096 			break;	/* goto sizeof (int) option return */
3097 		case SO_TIMESTAMP:
3098 			*i1 = udp->udp_timestamp;
3099 			break;	/* goto sizeof (int) option return */
3100 		case SO_ANON_MLP:
3101 			*i1 = udp->udp_anon_mlp;
3102 			break;	/* goto sizeof (int) option return */
3103 		case SO_MAC_EXEMPT:
3104 			*i1 = udp->udp_mac_exempt;
3105 			break;	/* goto sizeof (int) option return */
3106 		case SO_ALLZONES:
3107 			*i1 = connp->conn_allzones;
3108 			break;	/* goto sizeof (int) option return */
3109 		case SO_EXCLBIND:
3110 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
3111 			break;
3112 		case SO_PROTOTYPE:
3113 			*i1 = IPPROTO_UDP;
3114 			break;
3115 		case SO_DOMAIN:
3116 			*i1 = udp->udp_family;
3117 			break;
3118 		default:
3119 			return (-1);
3120 		}
3121 		break;
3122 	case IPPROTO_IP:
3123 		if (udp->udp_family != AF_INET)
3124 			return (-1);
3125 		switch (name) {
3126 		case IP_OPTIONS:
3127 		case T_IP_OPTIONS:
3128 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
3129 			if (len > 0) {
3130 				bcopy(udp->udp_ip_rcv_options +
3131 				    udp->udp_label_len, ptr, len);
3132 			}
3133 			return (len);
3134 		case IP_TOS:
3135 		case T_IP_TOS:
3136 			*i1 = (int)udp->udp_type_of_service;
3137 			break;	/* goto sizeof (int) option return */
3138 		case IP_TTL:
3139 			*i1 = (int)udp->udp_ttl;
3140 			break;	/* goto sizeof (int) option return */
3141 		case IP_NEXTHOP:
3142 		case IP_RECVPKTINFO:
3143 			/*
3144 			 * This also handles IP_PKTINFO.
3145 			 * IP_PKTINFO and IP_RECVPKTINFO have the same value.
3146 			 * Differentiation is based on the size of the argument
3147 			 * passed in.
3148 			 * This option is handled in IP which will return an
3149 			 * error for IP_PKTINFO as it's not supported as a
3150 			 * sticky option.
3151 			 */
3152 			return (-EINVAL);
3153 		case IP_MULTICAST_IF:
3154 			/* 0 address if not set */
3155 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
3156 			return (sizeof (ipaddr_t));
3157 		case IP_MULTICAST_TTL:
3158 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
3159 			return (sizeof (uchar_t));
3160 		case IP_MULTICAST_LOOP:
3161 			*ptr = connp->conn_multicast_loop;
3162 			return (sizeof (uint8_t));
3163 		case IP_RECVOPTS:
3164 			*i1 = udp->udp_recvopts;
3165 			break;	/* goto sizeof (int) option return */
3166 		case IP_RECVDSTADDR:
3167 			*i1 = udp->udp_recvdstaddr;
3168 			break;	/* goto sizeof (int) option return */
3169 		case IP_RECVIF:
3170 			*i1 = udp->udp_recvif;
3171 			break;	/* goto sizeof (int) option return */
3172 		case IP_RECVSLLA:
3173 			*i1 = udp->udp_recvslla;
3174 			break;	/* goto sizeof (int) option return */
3175 		case IP_RECVTTL:
3176 			*i1 = udp->udp_recvttl;
3177 			break;	/* goto sizeof (int) option return */
3178 		case IP_ADD_MEMBERSHIP:
3179 		case IP_DROP_MEMBERSHIP:
3180 		case IP_BLOCK_SOURCE:
3181 		case IP_UNBLOCK_SOURCE:
3182 		case IP_ADD_SOURCE_MEMBERSHIP:
3183 		case IP_DROP_SOURCE_MEMBERSHIP:
3184 		case MCAST_JOIN_GROUP:
3185 		case MCAST_LEAVE_GROUP:
3186 		case MCAST_BLOCK_SOURCE:
3187 		case MCAST_UNBLOCK_SOURCE:
3188 		case MCAST_JOIN_SOURCE_GROUP:
3189 		case MCAST_LEAVE_SOURCE_GROUP:
3190 		case IP_DONTFAILOVER_IF:
3191 			/* cannot "get" the value for these */
3192 			return (-1);
3193 		case IP_BOUND_IF:
3194 			/* Zero if not set */
3195 			*i1 = udp->udp_bound_if;
3196 			break;	/* goto sizeof (int) option return */
3197 		case IP_UNSPEC_SRC:
3198 			*i1 = udp->udp_unspec_source;
3199 			break;	/* goto sizeof (int) option return */
3200 		case IP_XMIT_IF:
3201 			*i1 = udp->udp_xmit_if;
3202 			break; /* goto sizeof (int) option return */
3203 		default:
3204 			return (-1);
3205 		}
3206 		break;
3207 	case IPPROTO_IPV6:
3208 		if (udp->udp_family != AF_INET6)
3209 			return (-1);
3210 		switch (name) {
3211 		case IPV6_UNICAST_HOPS:
3212 			*i1 = (unsigned int)udp->udp_ttl;
3213 			break;	/* goto sizeof (int) option return */
3214 		case IPV6_MULTICAST_IF:
3215 			/* 0 index if not set */
3216 			*i1 = udp->udp_multicast_if_index;
3217 			break;	/* goto sizeof (int) option return */
3218 		case IPV6_MULTICAST_HOPS:
3219 			*i1 = udp->udp_multicast_ttl;
3220 			break;	/* goto sizeof (int) option return */
3221 		case IPV6_MULTICAST_LOOP:
3222 			*i1 = connp->conn_multicast_loop;
3223 			break;	/* goto sizeof (int) option return */
3224 		case IPV6_JOIN_GROUP:
3225 		case IPV6_LEAVE_GROUP:
3226 		case MCAST_JOIN_GROUP:
3227 		case MCAST_LEAVE_GROUP:
3228 		case MCAST_BLOCK_SOURCE:
3229 		case MCAST_UNBLOCK_SOURCE:
3230 		case MCAST_JOIN_SOURCE_GROUP:
3231 		case MCAST_LEAVE_SOURCE_GROUP:
3232 			/* cannot "get" the value for these */
3233 			return (-1);
3234 		case IPV6_BOUND_IF:
3235 			/* Zero if not set */
3236 			*i1 = udp->udp_bound_if;
3237 			break;	/* goto sizeof (int) option return */
3238 		case IPV6_UNSPEC_SRC:
3239 			*i1 = udp->udp_unspec_source;
3240 			break;	/* goto sizeof (int) option return */
3241 		case IPV6_RECVPKTINFO:
3242 			*i1 = udp->udp_ip_recvpktinfo;
3243 			break;	/* goto sizeof (int) option return */
3244 		case IPV6_RECVTCLASS:
3245 			*i1 = udp->udp_ipv6_recvtclass;
3246 			break;	/* goto sizeof (int) option return */
3247 		case IPV6_RECVPATHMTU:
3248 			*i1 = udp->udp_ipv6_recvpathmtu;
3249 			break;	/* goto sizeof (int) option return */
3250 		case IPV6_RECVHOPLIMIT:
3251 			*i1 = udp->udp_ipv6_recvhoplimit;
3252 			break;	/* goto sizeof (int) option return */
3253 		case IPV6_RECVHOPOPTS:
3254 			*i1 = udp->udp_ipv6_recvhopopts;
3255 			break;	/* goto sizeof (int) option return */
3256 		case IPV6_RECVDSTOPTS:
3257 			*i1 = udp->udp_ipv6_recvdstopts;
3258 			break;	/* goto sizeof (int) option return */
3259 		case _OLD_IPV6_RECVDSTOPTS:
3260 			*i1 = udp->udp_old_ipv6_recvdstopts;
3261 			break;	/* goto sizeof (int) option return */
3262 		case IPV6_RECVRTHDRDSTOPTS:
3263 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
3264 			break;	/* goto sizeof (int) option return */
3265 		case IPV6_RECVRTHDR:
3266 			*i1 = udp->udp_ipv6_recvrthdr;
3267 			break;	/* goto sizeof (int) option return */
3268 		case IPV6_PKTINFO: {
3269 			/* XXX assumes that caller has room for max size! */
3270 			struct in6_pktinfo *pkti;
3271 
3272 			pkti = (struct in6_pktinfo *)ptr;
3273 			if (ipp->ipp_fields & IPPF_IFINDEX)
3274 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
3275 			else
3276 				pkti->ipi6_ifindex = 0;
3277 			if (ipp->ipp_fields & IPPF_ADDR)
3278 				pkti->ipi6_addr = ipp->ipp_addr;
3279 			else
3280 				pkti->ipi6_addr = ipv6_all_zeros;
3281 			return (sizeof (struct in6_pktinfo));
3282 		}
3283 		case IPV6_TCLASS:
3284 			if (ipp->ipp_fields & IPPF_TCLASS)
3285 				*i1 = ipp->ipp_tclass;
3286 			else
3287 				*i1 = IPV6_FLOW_TCLASS(
3288 				    IPV6_DEFAULT_VERS_AND_FLOW);
3289 			break;	/* goto sizeof (int) option return */
3290 		case IPV6_NEXTHOP: {
3291 			sin6_t *sin6 = (sin6_t *)ptr;
3292 
3293 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
3294 				return (0);
3295 			*sin6 = sin6_null;
3296 			sin6->sin6_family = AF_INET6;
3297 			sin6->sin6_addr = ipp->ipp_nexthop;
3298 			return (sizeof (sin6_t));
3299 		}
3300 		case IPV6_HOPOPTS:
3301 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
3302 				return (0);
3303 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
3304 				return (0);
3305 			/*
3306 			 * The cipso/label option is added by kernel.
3307 			 * User is not usually aware of this option.
3308 			 * We copy out the hbh opt after the label option.
3309 			 */
3310 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
3311 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3312 			if (udp->udp_label_len_v6 > 0) {
3313 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
3314 				ptr[1] = (ipp->ipp_hopoptslen -
3315 				    udp->udp_label_len_v6 + 7) / 8 - 1;
3316 			}
3317 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3318 		case IPV6_RTHDRDSTOPTS:
3319 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
3320 				return (0);
3321 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
3322 			return (ipp->ipp_rtdstoptslen);
3323 		case IPV6_RTHDR:
3324 			if (!(ipp->ipp_fields & IPPF_RTHDR))
3325 				return (0);
3326 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
3327 			return (ipp->ipp_rthdrlen);
3328 		case IPV6_DSTOPTS:
3329 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
3330 				return (0);
3331 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
3332 			return (ipp->ipp_dstoptslen);
3333 		case IPV6_PATHMTU:
3334 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
3335 				udp->udp_dstport, (struct ip6_mtuinfo *)ptr,
3336 				us->us_netstack));
3337 		default:
3338 			return (-1);
3339 		}
3340 		break;
3341 	case IPPROTO_UDP:
3342 		switch (name) {
3343 		case UDP_ANONPRIVBIND:
3344 			*i1 = udp->udp_anon_priv_bind;
3345 			break;
3346 		case UDP_EXCLBIND:
3347 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
3348 			break;
3349 		case UDP_RCVHDR:
3350 			*i1 = udp->udp_rcvhdr ? 1 : 0;
3351 			break;
3352 		default:
3353 			return (-1);
3354 		}
3355 		break;
3356 	default:
3357 		return (-1);
3358 	}
3359 	return (sizeof (int));
3360 }
3361 
3362 /*
3363  * This routine sets socket options; it expects the caller
3364  * to pass in the queue pointer of the upper instance.
3365  */
3366 /* ARGSUSED */
3367 int
3368 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3369     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3370     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3371 {
3372 	udpattrs_t *attrs = thisdg_attrs;
3373 	int	*i1 = (int *)invalp;
3374 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
3375 	boolean_t checkonly;
3376 	int	error;
3377 	conn_t	*connp;
3378 	udp_t	*udp;
3379 	uint_t	newlen;
3380 	udp_stack_t *us;
3381 
3382 	q = UDP_WR(q);
3383 	connp = Q_TO_CONN(q);
3384 	udp = connp->conn_udp;
3385 	us = udp->udp_us;
3386 
3387 	switch (optset_context) {
3388 	case SETFN_OPTCOM_CHECKONLY:
3389 		checkonly = B_TRUE;
3390 		/*
3391 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
3392 		 * inlen != 0 implies value supplied and
3393 		 * 	we have to "pretend" to set it.
3394 		 * inlen == 0 implies that there is no
3395 		 * 	value part in T_CHECK request and just validation
3396 		 * done elsewhere should be enough, we just return here.
3397 		 */
3398 		if (inlen == 0) {
3399 			*outlenp = 0;
3400 			return (0);
3401 		}
3402 		break;
3403 	case SETFN_OPTCOM_NEGOTIATE:
3404 		checkonly = B_FALSE;
3405 		break;
3406 	case SETFN_UD_NEGOTIATE:
3407 	case SETFN_CONN_NEGOTIATE:
3408 		checkonly = B_FALSE;
3409 		/*
3410 		 * Negotiating local and "association-related" options
3411 		 * through T_UNITDATA_REQ.
3412 		 *
3413 		 * Following routine can filter out ones we do not
3414 		 * want to be "set" this way.
3415 		 */
3416 		if (!udp_opt_allow_udr_set(level, name)) {
3417 			*outlenp = 0;
3418 			return (EINVAL);
3419 		}
3420 		break;
3421 	default:
3422 		/*
3423 		 * We should never get here
3424 		 */
3425 		*outlenp = 0;
3426 		return (EINVAL);
3427 	}
3428 
3429 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
3430 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
3431 
3432 	/*
3433 	 * For fixed length options, no sanity check
3434 	 * of passed in length is done. It is assumed *_optcom_req()
3435 	 * routines do the right thing.
3436 	 */
3437 
3438 	switch (level) {
3439 	case SOL_SOCKET:
3440 		switch (name) {
3441 		case SO_REUSEADDR:
3442 			if (!checkonly)
3443 				udp->udp_reuseaddr = onoff;
3444 			break;
3445 		case SO_DEBUG:
3446 			if (!checkonly)
3447 				udp->udp_debug = onoff;
3448 			break;
3449 		/*
3450 		 * The following three items are available here,
3451 		 * but are only meaningful to IP.
3452 		 */
3453 		case SO_DONTROUTE:
3454 			if (!checkonly)
3455 				udp->udp_dontroute = onoff;
3456 			break;
3457 		case SO_USELOOPBACK:
3458 			if (!checkonly)
3459 				udp->udp_useloopback = onoff;
3460 			break;
3461 		case SO_BROADCAST:
3462 			if (!checkonly)
3463 				udp->udp_broadcast = onoff;
3464 			break;
3465 
3466 		case SO_SNDBUF:
3467 			if (*i1 > us->us_max_buf) {
3468 				*outlenp = 0;
3469 				return (ENOBUFS);
3470 			}
3471 			if (!checkonly) {
3472 				q->q_hiwat = *i1;
3473 				WR(UDP_RD(q))->q_hiwat = *i1;
3474 			}
3475 			break;
3476 		case SO_RCVBUF:
3477 			if (*i1 > us->us_max_buf) {
3478 				*outlenp = 0;
3479 				return (ENOBUFS);
3480 			}
3481 			if (!checkonly) {
3482 				RD(q)->q_hiwat = *i1;
3483 				UDP_RD(q)->q_hiwat = *i1;
3484 				(void) mi_set_sth_hiwat(UDP_RD(q),
3485 				    udp_set_rcv_hiwat(udp, *i1));
3486 			}
3487 			break;
3488 		case SO_DGRAM_ERRIND:
3489 			if (!checkonly)
3490 				udp->udp_dgram_errind = onoff;
3491 			break;
3492 		case SO_RECVUCRED:
3493 			if (!checkonly)
3494 				udp->udp_recvucred = onoff;
3495 			break;
3496 		case SO_ALLZONES:
3497 			/*
3498 			 * "soft" error (negative)
3499 			 * option not handled at this level
3500 			 * Do not modify *outlenp.
3501 			 */
3502 			return (-EINVAL);
3503 		case SO_TIMESTAMP:
3504 			if (!checkonly)
3505 				udp->udp_timestamp = onoff;
3506 			break;
3507 		case SO_ANON_MLP:
3508 			if (!checkonly)
3509 				udp->udp_anon_mlp = onoff;
3510 			break;
3511 		case SO_MAC_EXEMPT:
3512 			if (secpolicy_net_mac_aware(cr) != 0 ||
3513 			    udp->udp_state != TS_UNBND)
3514 				return (EACCES);
3515 			if (!checkonly)
3516 				udp->udp_mac_exempt = onoff;
3517 			break;
3518 		case SCM_UCRED: {
3519 			struct ucred_s *ucr;
3520 			cred_t *cr, *newcr;
3521 			ts_label_t *tsl;
3522 
3523 			/*
3524 			 * Only sockets that have proper privileges and are
3525 			 * bound to MLPs will have any other value here, so
3526 			 * this implicitly tests for privilege to set label.
3527 			 */
3528 			if (connp->conn_mlp_type == mlptSingle)
3529 				break;
3530 			ucr = (struct ucred_s *)invalp;
3531 			if (inlen != ucredsize ||
3532 			    ucr->uc_labeloff < sizeof (*ucr) ||
3533 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3534 				return (EINVAL);
3535 			if (!checkonly) {
3536 				mblk_t *mb;
3537 
3538 				if (attrs == NULL ||
3539 				    (mb = attrs->udpattr_mb) == NULL)
3540 					return (EINVAL);
3541 				if ((cr = DB_CRED(mb)) == NULL)
3542 					cr = udp->udp_connp->conn_cred;
3543 				ASSERT(cr != NULL);
3544 				if ((tsl = crgetlabel(cr)) == NULL)
3545 					return (EINVAL);
3546 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3547 				    tsl->tsl_doi, KM_NOSLEEP);
3548 				if (newcr == NULL)
3549 					return (ENOSR);
3550 				mblk_setcred(mb, newcr);
3551 				attrs->udpattr_credset = B_TRUE;
3552 				crfree(newcr);
3553 			}
3554 			break;
3555 		}
3556 		case SO_EXCLBIND:
3557 			if (!checkonly)
3558 				udp->udp_exclbind = onoff;
3559 			break;
3560 		default:
3561 			*outlenp = 0;
3562 			return (EINVAL);
3563 		}
3564 		break;
3565 	case IPPROTO_IP:
3566 		if (udp->udp_family != AF_INET) {
3567 			*outlenp = 0;
3568 			return (ENOPROTOOPT);
3569 		}
3570 		switch (name) {
3571 		case IP_OPTIONS:
3572 		case T_IP_OPTIONS:
3573 			/* Save options for use by IP. */
3574 			newlen = inlen + udp->udp_label_len;
3575 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3576 				*outlenp = 0;
3577 				return (EINVAL);
3578 			}
3579 			if (checkonly)
3580 				break;
3581 
3582 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3583 			    &udp->udp_ip_snd_options_len,
3584 			    udp->udp_label_len, invalp, inlen)) {
3585 				*outlenp = 0;
3586 				return (ENOMEM);
3587 			}
3588 
3589 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3590 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3591 			(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
3592 			    us->us_wroff_extra);
3593 			break;
3594 
3595 		case IP_TTL:
3596 			if (!checkonly) {
3597 				udp->udp_ttl = (uchar_t)*i1;
3598 			}
3599 			break;
3600 		case IP_TOS:
3601 		case T_IP_TOS:
3602 			if (!checkonly) {
3603 				udp->udp_type_of_service = (uchar_t)*i1;
3604 			}
3605 			break;
3606 		case IP_MULTICAST_IF: {
3607 			/*
3608 			 * TODO should check OPTMGMT reply and undo this if
3609 			 * there is an error.
3610 			 */
3611 			struct in_addr *inap = (struct in_addr *)invalp;
3612 			if (!checkonly) {
3613 				udp->udp_multicast_if_addr =
3614 				    inap->s_addr;
3615 			}
3616 			break;
3617 		}
3618 		case IP_MULTICAST_TTL:
3619 			if (!checkonly)
3620 				udp->udp_multicast_ttl = *invalp;
3621 			break;
3622 		case IP_MULTICAST_LOOP:
3623 			if (!checkonly)
3624 				connp->conn_multicast_loop = *invalp;
3625 			break;
3626 		case IP_RECVOPTS:
3627 			if (!checkonly)
3628 				udp->udp_recvopts = onoff;
3629 			break;
3630 		case IP_RECVDSTADDR:
3631 			if (!checkonly)
3632 				udp->udp_recvdstaddr = onoff;
3633 			break;
3634 		case IP_RECVIF:
3635 			if (!checkonly)
3636 				udp->udp_recvif = onoff;
3637 			break;
3638 		case IP_RECVSLLA:
3639 			if (!checkonly)
3640 				udp->udp_recvslla = onoff;
3641 			break;
3642 		case IP_RECVTTL:
3643 			if (!checkonly)
3644 				udp->udp_recvttl = onoff;
3645 			break;
3646 		case IP_PKTINFO: {
3647 			/*
3648 			 * This also handles IP_RECVPKTINFO.
3649 			 * IP_PKTINFO and IP_RECVPKTINFO have same value.
3650 			 * Differentiation is based on the size of the
3651 			 * argument passed in.
3652 			 */
3653 			struct in_pktinfo *pktinfop;
3654 			ip4_pkt_t *attr_pktinfop;
3655 
3656 			if (checkonly)
3657 				break;
3658 
3659 			if (inlen == sizeof (int)) {
3660 				/*
3661 				 * This is IP_RECVPKTINFO option.
3662 				 * Keep a local copy of whether this option is
3663 				 * set or not and pass it down to IP for
3664 				 * processing.
3665 				 */
3666 
3667 				udp->udp_ip_recvpktinfo = onoff;
3668 				return (-EINVAL);
3669 			}
3670 
3671 			if (attrs == NULL ||
3672 			    (attr_pktinfop = attrs->udpattr_ipp4) == NULL) {
3673 				/*
3674 				 * sticky option or no buffer to return
3675 				 * the results.
3676 				 */
3677 				return (EINVAL);
3678 			}
3679 
3680 			if (inlen != sizeof (struct in_pktinfo))
3681 				return (EINVAL);
3682 
3683 			pktinfop = (struct in_pktinfo *)invalp;
3684 
3685 			/*
3686 			 * At least one of the values should be specified
3687 			 */
3688 			if (pktinfop->ipi_ifindex == 0 &&
3689 			    pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) {
3690 				return (EINVAL);
3691 			}
3692 
3693 			attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr;
3694 			attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex;
3695 
3696 			break;
3697 		}
3698 		case IP_ADD_MEMBERSHIP:
3699 		case IP_DROP_MEMBERSHIP:
3700 		case IP_BLOCK_SOURCE:
3701 		case IP_UNBLOCK_SOURCE:
3702 		case IP_ADD_SOURCE_MEMBERSHIP:
3703 		case IP_DROP_SOURCE_MEMBERSHIP:
3704 		case MCAST_JOIN_GROUP:
3705 		case MCAST_LEAVE_GROUP:
3706 		case MCAST_BLOCK_SOURCE:
3707 		case MCAST_UNBLOCK_SOURCE:
3708 		case MCAST_JOIN_SOURCE_GROUP:
3709 		case MCAST_LEAVE_SOURCE_GROUP:
3710 		case IP_SEC_OPT:
3711 		case IP_NEXTHOP:
3712 			/*
3713 			 * "soft" error (negative)
3714 			 * option not handled at this level
3715 			 * Do not modify *outlenp.
3716 			 */
3717 			return (-EINVAL);
3718 		case IP_BOUND_IF:
3719 			if (!checkonly)
3720 				udp->udp_bound_if = *i1;
3721 			break;
3722 		case IP_UNSPEC_SRC:
3723 			if (!checkonly)
3724 				udp->udp_unspec_source = onoff;
3725 			break;
3726 		case IP_XMIT_IF:
3727 			if (!checkonly)
3728 				udp->udp_xmit_if = *i1;
3729 			break;
3730 		default:
3731 			*outlenp = 0;
3732 			return (EINVAL);
3733 		}
3734 		break;
3735 	case IPPROTO_IPV6: {
3736 		ip6_pkt_t		*ipp;
3737 		boolean_t		sticky;
3738 
3739 		if (udp->udp_family != AF_INET6) {
3740 			*outlenp = 0;
3741 			return (ENOPROTOOPT);
3742 		}
3743 		/*
3744 		 * Deal with both sticky options and ancillary data
3745 		 */
3746 		sticky = B_FALSE;
3747 		if (attrs == NULL || (ipp = attrs->udpattr_ipp6) ==
3748 		    NULL) {
3749 			/* sticky options, or none */
3750 			ipp = &udp->udp_sticky_ipp;
3751 			sticky = B_TRUE;
3752 		}
3753 
3754 		switch (name) {
3755 		case IPV6_MULTICAST_IF:
3756 			if (!checkonly)
3757 				udp->udp_multicast_if_index = *i1;
3758 			break;
3759 		case IPV6_UNICAST_HOPS:
3760 			/* -1 means use default */
3761 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3762 				*outlenp = 0;
3763 				return (EINVAL);
3764 			}
3765 			if (!checkonly) {
3766 				if (*i1 == -1) {
3767 					udp->udp_ttl = ipp->ipp_unicast_hops =
3768 					    us->us_ipv6_hoplimit;
3769 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3770 					/* Pass modified value to IP. */
3771 					*i1 = udp->udp_ttl;
3772 				} else {
3773 					udp->udp_ttl = ipp->ipp_unicast_hops =
3774 					    (uint8_t)*i1;
3775 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3776 				}
3777 				/* Rebuild the header template */
3778 				error = udp_build_hdrs(q, udp);
3779 				if (error != 0) {
3780 					*outlenp = 0;
3781 					return (error);
3782 				}
3783 			}
3784 			break;
3785 		case IPV6_MULTICAST_HOPS:
3786 			/* -1 means use default */
3787 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3788 				*outlenp = 0;
3789 				return (EINVAL);
3790 			}
3791 			if (!checkonly) {
3792 				if (*i1 == -1) {
3793 					udp->udp_multicast_ttl =
3794 					    ipp->ipp_multicast_hops =
3795 					    IP_DEFAULT_MULTICAST_TTL;
3796 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3797 					/* Pass modified value to IP. */
3798 					*i1 = udp->udp_multicast_ttl;
3799 				} else {
3800 					udp->udp_multicast_ttl =
3801 					    ipp->ipp_multicast_hops =
3802 					    (uint8_t)*i1;
3803 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3804 				}
3805 			}
3806 			break;
3807 		case IPV6_MULTICAST_LOOP:
3808 			if (*i1 != 0 && *i1 != 1) {
3809 				*outlenp = 0;
3810 				return (EINVAL);
3811 			}
3812 			if (!checkonly)
3813 				connp->conn_multicast_loop = *i1;
3814 			break;
3815 		case IPV6_JOIN_GROUP:
3816 		case IPV6_LEAVE_GROUP:
3817 		case MCAST_JOIN_GROUP:
3818 		case MCAST_LEAVE_GROUP:
3819 		case MCAST_BLOCK_SOURCE:
3820 		case MCAST_UNBLOCK_SOURCE:
3821 		case MCAST_JOIN_SOURCE_GROUP:
3822 		case MCAST_LEAVE_SOURCE_GROUP:
3823 			/*
3824 			 * "soft" error (negative)
3825 			 * option not handled at this level
3826 			 * Note: Do not modify *outlenp
3827 			 */
3828 			return (-EINVAL);
3829 		case IPV6_BOUND_IF:
3830 			if (!checkonly)
3831 				udp->udp_bound_if = *i1;
3832 			break;
3833 		case IPV6_UNSPEC_SRC:
3834 			if (!checkonly)
3835 				udp->udp_unspec_source = onoff;
3836 			break;
3837 		/*
3838 		 * Set boolean switches for ancillary data delivery
3839 		 */
3840 		case IPV6_RECVPKTINFO:
3841 			if (!checkonly)
3842 				udp->udp_ip_recvpktinfo = onoff;
3843 			break;
3844 		case IPV6_RECVTCLASS:
3845 			if (!checkonly) {
3846 				udp->udp_ipv6_recvtclass = onoff;
3847 			}
3848 			break;
3849 		case IPV6_RECVPATHMTU:
3850 			if (!checkonly) {
3851 				udp->udp_ipv6_recvpathmtu = onoff;
3852 			}
3853 			break;
3854 		case IPV6_RECVHOPLIMIT:
3855 			if (!checkonly)
3856 				udp->udp_ipv6_recvhoplimit = onoff;
3857 			break;
3858 		case IPV6_RECVHOPOPTS:
3859 			if (!checkonly)
3860 				udp->udp_ipv6_recvhopopts = onoff;
3861 			break;
3862 		case IPV6_RECVDSTOPTS:
3863 			if (!checkonly)
3864 				udp->udp_ipv6_recvdstopts = onoff;
3865 			break;
3866 		case _OLD_IPV6_RECVDSTOPTS:
3867 			if (!checkonly)
3868 				udp->udp_old_ipv6_recvdstopts = onoff;
3869 			break;
3870 		case IPV6_RECVRTHDRDSTOPTS:
3871 			if (!checkonly)
3872 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3873 			break;
3874 		case IPV6_RECVRTHDR:
3875 			if (!checkonly)
3876 				udp->udp_ipv6_recvrthdr = onoff;
3877 			break;
3878 		/*
3879 		 * Set sticky options or ancillary data.
3880 		 * If sticky options, (re)build any extension headers
3881 		 * that might be needed as a result.
3882 		 */
3883 		case IPV6_PKTINFO:
3884 			/*
3885 			 * The source address and ifindex are verified
3886 			 * in ip_opt_set(). For ancillary data the
3887 			 * source address is checked in ip_wput_v6.
3888 			 */
3889 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3890 				return (EINVAL);
3891 			if (checkonly)
3892 				break;
3893 
3894 			if (inlen == 0) {
3895 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3896 				ipp->ipp_sticky_ignored |=
3897 				    (IPPF_IFINDEX|IPPF_ADDR);
3898 			} else {
3899 				struct in6_pktinfo *pkti;
3900 
3901 				pkti = (struct in6_pktinfo *)invalp;
3902 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3903 				ipp->ipp_addr = pkti->ipi6_addr;
3904 				if (ipp->ipp_ifindex != 0)
3905 					ipp->ipp_fields |= IPPF_IFINDEX;
3906 				else
3907 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3908 				if (!IN6_IS_ADDR_UNSPECIFIED(
3909 				    &ipp->ipp_addr))
3910 					ipp->ipp_fields |= IPPF_ADDR;
3911 				else
3912 					ipp->ipp_fields &= ~IPPF_ADDR;
3913 			}
3914 			if (sticky) {
3915 				error = udp_build_hdrs(q, udp);
3916 				if (error != 0)
3917 					return (error);
3918 			}
3919 			break;
3920 		case IPV6_HOPLIMIT:
3921 			if (sticky)
3922 				return (EINVAL);
3923 			if (inlen != 0 && inlen != sizeof (int))
3924 				return (EINVAL);
3925 			if (checkonly)
3926 				break;
3927 
3928 			if (inlen == 0) {
3929 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3930 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3931 			} else {
3932 				if (*i1 > 255 || *i1 < -1)
3933 					return (EINVAL);
3934 				if (*i1 == -1)
3935 					ipp->ipp_hoplimit =
3936 					    us->us_ipv6_hoplimit;
3937 				else
3938 					ipp->ipp_hoplimit = *i1;
3939 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3940 			}
3941 			break;
3942 		case IPV6_TCLASS:
3943 			if (inlen != 0 && inlen != sizeof (int))
3944 				return (EINVAL);
3945 			if (checkonly)
3946 				break;
3947 
3948 			if (inlen == 0) {
3949 				ipp->ipp_fields &= ~IPPF_TCLASS;
3950 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3951 			} else {
3952 				if (*i1 > 255 || *i1 < -1)
3953 					return (EINVAL);
3954 				if (*i1 == -1)
3955 					ipp->ipp_tclass = 0;
3956 				else
3957 					ipp->ipp_tclass = *i1;
3958 				ipp->ipp_fields |= IPPF_TCLASS;
3959 			}
3960 			if (sticky) {
3961 				error = udp_build_hdrs(q, udp);
3962 				if (error != 0)
3963 					return (error);
3964 			}
3965 			break;
3966 		case IPV6_NEXTHOP:
3967 			/*
3968 			 * IP will verify that the nexthop is reachable
3969 			 * and fail for sticky options.
3970 			 */
3971 			if (inlen != 0 && inlen != sizeof (sin6_t))
3972 				return (EINVAL);
3973 			if (checkonly)
3974 				break;
3975 
3976 			if (inlen == 0) {
3977 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3978 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3979 			} else {
3980 				sin6_t *sin6 = (sin6_t *)invalp;
3981 
3982 				if (sin6->sin6_family != AF_INET6)
3983 					return (EAFNOSUPPORT);
3984 				if (IN6_IS_ADDR_V4MAPPED(
3985 				    &sin6->sin6_addr))
3986 					return (EADDRNOTAVAIL);
3987 				ipp->ipp_nexthop = sin6->sin6_addr;
3988 				if (!IN6_IS_ADDR_UNSPECIFIED(
3989 				    &ipp->ipp_nexthop))
3990 					ipp->ipp_fields |= IPPF_NEXTHOP;
3991 				else
3992 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3993 			}
3994 			if (sticky) {
3995 				error = udp_build_hdrs(q, udp);
3996 				if (error != 0)
3997 					return (error);
3998 			}
3999 			break;
4000 		case IPV6_HOPOPTS: {
4001 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
4002 			/*
4003 			 * Sanity checks - minimum size, size a multiple of
4004 			 * eight bytes, and matching size passed in.
4005 			 */
4006 			if (inlen != 0 &&
4007 			    inlen != (8 * (hopts->ip6h_len + 1)))
4008 				return (EINVAL);
4009 
4010 			if (checkonly)
4011 				break;
4012 
4013 			error = optcom_pkt_set(invalp, inlen, sticky,
4014 			    (uchar_t **)&ipp->ipp_hopopts,
4015 			    &ipp->ipp_hopoptslen,
4016 			    sticky ? udp->udp_label_len_v6 : 0);
4017 			if (error != 0)
4018 				return (error);
4019 			if (ipp->ipp_hopoptslen == 0) {
4020 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
4021 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
4022 			} else {
4023 				ipp->ipp_fields |= IPPF_HOPOPTS;
4024 			}
4025 			if (sticky) {
4026 				error = udp_build_hdrs(q, udp);
4027 				if (error != 0)
4028 					return (error);
4029 			}
4030 			break;
4031 		}
4032 		case IPV6_RTHDRDSTOPTS: {
4033 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
4034 
4035 			/*
4036 			 * Sanity checks - minimum size, size a multiple of
4037 			 * eight bytes, and matching size passed in.
4038 			 */
4039 			if (inlen != 0 &&
4040 			    inlen != (8 * (dopts->ip6d_len + 1)))
4041 				return (EINVAL);
4042 
4043 			if (checkonly)
4044 				break;
4045 
4046 			if (inlen == 0) {
4047 				if (sticky &&
4048 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
4049 					kmem_free(ipp->ipp_rtdstopts,
4050 					    ipp->ipp_rtdstoptslen);
4051 					ipp->ipp_rtdstopts = NULL;
4052 					ipp->ipp_rtdstoptslen = 0;
4053 				}
4054 
4055 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
4056 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
4057 			} else {
4058 				error = optcom_pkt_set(invalp, inlen, sticky,
4059 				    (uchar_t **)&ipp->ipp_rtdstopts,
4060 				    &ipp->ipp_rtdstoptslen, 0);
4061 				if (error != 0)
4062 					return (error);
4063 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
4064 			}
4065 			if (sticky) {
4066 				error = udp_build_hdrs(q, udp);
4067 				if (error != 0)
4068 					return (error);
4069 			}
4070 			break;
4071 		}
4072 		case IPV6_DSTOPTS: {
4073 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
4074 
4075 			/*
4076 			 * Sanity checks - minimum size, size a multiple of
4077 			 * eight bytes, and matching size passed in.
4078 			 */
4079 			if (inlen != 0 &&
4080 			    inlen != (8 * (dopts->ip6d_len + 1)))
4081 				return (EINVAL);
4082 
4083 			if (checkonly)
4084 				break;
4085 
4086 			if (inlen == 0) {
4087 				if (sticky &&
4088 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
4089 					kmem_free(ipp->ipp_dstopts,
4090 					    ipp->ipp_dstoptslen);
4091 					ipp->ipp_dstopts = NULL;
4092 					ipp->ipp_dstoptslen = 0;
4093 				}
4094 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
4095 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
4096 			} else {
4097 				error = optcom_pkt_set(invalp, inlen, sticky,
4098 				    (uchar_t **)&ipp->ipp_dstopts,
4099 				    &ipp->ipp_dstoptslen, 0);
4100 				if (error != 0)
4101 					return (error);
4102 				ipp->ipp_fields |= IPPF_DSTOPTS;
4103 			}
4104 			if (sticky) {
4105 				error = udp_build_hdrs(q, udp);
4106 				if (error != 0)
4107 					return (error);
4108 			}
4109 			break;
4110 		}
4111 		case IPV6_RTHDR: {
4112 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
4113 
4114 			/*
4115 			 * Sanity checks - minimum size, size a multiple of
4116 			 * eight bytes, and matching size passed in.
4117 			 */
4118 			if (inlen != 0 &&
4119 			    inlen != (8 * (rt->ip6r_len + 1)))
4120 				return (EINVAL);
4121 
4122 			if (checkonly)
4123 				break;
4124 
4125 			if (inlen == 0) {
4126 				if (sticky &&
4127 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
4128 					kmem_free(ipp->ipp_rthdr,
4129 					    ipp->ipp_rthdrlen);
4130 					ipp->ipp_rthdr = NULL;
4131 					ipp->ipp_rthdrlen = 0;
4132 				}
4133 				ipp->ipp_fields &= ~IPPF_RTHDR;
4134 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
4135 			} else {
4136 				error = optcom_pkt_set(invalp, inlen, sticky,
4137 				    (uchar_t **)&ipp->ipp_rthdr,
4138 				    &ipp->ipp_rthdrlen, 0);
4139 				if (error != 0)
4140 					return (error);
4141 				ipp->ipp_fields |= IPPF_RTHDR;
4142 			}
4143 			if (sticky) {
4144 				error = udp_build_hdrs(q, udp);
4145 				if (error != 0)
4146 					return (error);
4147 			}
4148 			break;
4149 		}
4150 
4151 		case IPV6_DONTFRAG:
4152 			if (checkonly)
4153 				break;
4154 
4155 			if (onoff) {
4156 				ipp->ipp_fields |= IPPF_DONTFRAG;
4157 			} else {
4158 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
4159 			}
4160 			break;
4161 
4162 		case IPV6_USE_MIN_MTU:
4163 			if (inlen != sizeof (int))
4164 				return (EINVAL);
4165 
4166 			if (*i1 < -1 || *i1 > 1)
4167 				return (EINVAL);
4168 
4169 			if (checkonly)
4170 				break;
4171 
4172 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
4173 			ipp->ipp_use_min_mtu = *i1;
4174 			break;
4175 
4176 		case IPV6_BOUND_PIF:
4177 		case IPV6_SEC_OPT:
4178 		case IPV6_DONTFAILOVER_IF:
4179 		case IPV6_SRC_PREFERENCES:
4180 		case IPV6_V6ONLY:
4181 			/* Handled at the IP level */
4182 			return (-EINVAL);
4183 		default:
4184 			*outlenp = 0;
4185 			return (EINVAL);
4186 		}
4187 		break;
4188 		}		/* end IPPROTO_IPV6 */
4189 	case IPPROTO_UDP:
4190 		switch (name) {
4191 		case UDP_ANONPRIVBIND:
4192 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
4193 				*outlenp = 0;
4194 				return (error);
4195 			}
4196 			if (!checkonly) {
4197 				udp->udp_anon_priv_bind = onoff;
4198 			}
4199 			break;
4200 		case UDP_EXCLBIND:
4201 			if (!checkonly)
4202 				udp->udp_exclbind = onoff;
4203 			break;
4204 		case UDP_RCVHDR:
4205 			if (!checkonly)
4206 				udp->udp_rcvhdr = onoff;
4207 			break;
4208 		default:
4209 			*outlenp = 0;
4210 			return (EINVAL);
4211 		}
4212 		break;
4213 	default:
4214 		*outlenp = 0;
4215 		return (EINVAL);
4216 	}
4217 	/*
4218 	 * Common case of OK return with outval same as inval.
4219 	 */
4220 	if (invalp != outvalp) {
4221 		/* don't trust bcopy for identical src/dst */
4222 		(void) bcopy(invalp, outvalp, inlen);
4223 	}
4224 	*outlenp = inlen;
4225 	return (0);
4226 }
4227 
4228 /*
4229  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
4230  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
4231  * headers, and the udp header.
4232  * Returns failure if can't allocate memory.
4233  */
4234 static int
4235 udp_build_hdrs(queue_t *q, udp_t *udp)
4236 {
4237 	udp_stack_t *us = udp->udp_us;
4238 	uchar_t	*hdrs;
4239 	uint_t	hdrs_len;
4240 	ip6_t	*ip6h;
4241 	ip6i_t	*ip6i;
4242 	udpha_t	*udpha;
4243 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
4244 
4245 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
4246 	ASSERT(hdrs_len != 0);
4247 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
4248 		/* Need to reallocate */
4249 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
4250 		if (hdrs == NULL)
4251 			return (ENOMEM);
4252 
4253 		if (udp->udp_sticky_hdrs_len != 0) {
4254 			kmem_free(udp->udp_sticky_hdrs,
4255 			    udp->udp_sticky_hdrs_len);
4256 		}
4257 		udp->udp_sticky_hdrs = hdrs;
4258 		udp->udp_sticky_hdrs_len = hdrs_len;
4259 	}
4260 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
4261 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
4262 
4263 	/* Set header fields not in ipp */
4264 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
4265 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
4266 		ip6h = (ip6_t *)&ip6i[1];
4267 	} else {
4268 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
4269 	}
4270 
4271 	if (!(ipp->ipp_fields & IPPF_ADDR))
4272 		ip6h->ip6_src = udp->udp_v6src;
4273 
4274 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
4275 	udpha->uha_src_port = udp->udp_port;
4276 
4277 	/* Try to get everything in a single mblk */
4278 	if (hdrs_len > udp->udp_max_hdr_len) {
4279 		udp->udp_max_hdr_len = hdrs_len;
4280 		(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
4281 		    us->us_wroff_extra);
4282 	}
4283 	return (0);
4284 }
4285 
4286 /*
4287  * This routine retrieves the value of an ND variable in a udpparam_t
4288  * structure.  It is called through nd_getset when a user reads the
4289  * variable.
4290  */
4291 /* ARGSUSED */
4292 static int
4293 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
4294 {
4295 	udpparam_t *udppa = (udpparam_t *)cp;
4296 
4297 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
4298 	return (0);
4299 }
4300 
4301 /*
4302  * Walk through the param array specified registering each element with the
4303  * named dispatch (ND) handler.
4304  */
4305 static boolean_t
4306 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
4307 {
4308 	for (; cnt-- > 0; udppa++) {
4309 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
4310 			if (!nd_load(ndp, udppa->udp_param_name,
4311 			    udp_param_get, udp_param_set,
4312 			    (caddr_t)udppa)) {
4313 				nd_free(ndp);
4314 				return (B_FALSE);
4315 			}
4316 		}
4317 	}
4318 	if (!nd_load(ndp, "udp_extra_priv_ports",
4319 	    udp_extra_priv_ports_get, NULL, NULL)) {
4320 		nd_free(ndp);
4321 		return (B_FALSE);
4322 	}
4323 	if (!nd_load(ndp, "udp_extra_priv_ports_add",
4324 	    NULL, udp_extra_priv_ports_add, NULL)) {
4325 		nd_free(ndp);
4326 		return (B_FALSE);
4327 	}
4328 	if (!nd_load(ndp, "udp_extra_priv_ports_del",
4329 	    NULL, udp_extra_priv_ports_del, NULL)) {
4330 		nd_free(ndp);
4331 		return (B_FALSE);
4332 	}
4333 	if (!nd_load(ndp, "udp_status", udp_status_report, NULL,
4334 	    NULL)) {
4335 		nd_free(ndp);
4336 		return (B_FALSE);
4337 	}
4338 	if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL,
4339 	    NULL)) {
4340 		nd_free(ndp);
4341 		return (B_FALSE);
4342 	}
4343 	return (B_TRUE);
4344 }
4345 
4346 /* This routine sets an ND variable in a udpparam_t structure. */
4347 /* ARGSUSED */
4348 static int
4349 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
4350 {
4351 	long		new_value;
4352 	udpparam_t	*udppa = (udpparam_t *)cp;
4353 
4354 	/*
4355 	 * Fail the request if the new value does not lie within the
4356 	 * required bounds.
4357 	 */
4358 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
4359 	    new_value < udppa->udp_param_min ||
4360 	    new_value > udppa->udp_param_max) {
4361 		return (EINVAL);
4362 	}
4363 
4364 	/* Set the new value */
4365 	udppa->udp_param_value = new_value;
4366 	return (0);
4367 }
4368 
4369 /*
4370  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
4371  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
4372  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
4373  * then it's assumed to be allocated to be large enough.
4374  *
4375  * Returns zero if trimming of the security option causes all options to go
4376  * away.
4377  */
4378 static size_t
4379 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
4380 {
4381 	struct T_opthdr *toh;
4382 	size_t hol = ipp->ipp_hopoptslen;
4383 	ip6_hbh_t *dstopt = NULL;
4384 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
4385 	size_t tlen, olen, plen;
4386 	boolean_t deleting;
4387 	const struct ip6_opt *sopt, *lastpad;
4388 	struct ip6_opt *dopt;
4389 
4390 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4391 		toh->level = IPPROTO_IPV6;
4392 		toh->name = IPV6_HOPOPTS;
4393 		toh->status = 0;
4394 		dstopt = (ip6_hbh_t *)(toh + 1);
4395 	}
4396 
4397 	/*
4398 	 * If labeling is enabled, then skip the label option
4399 	 * but get other options if there are any.
4400 	 */
4401 	if (is_system_labeled()) {
4402 		dopt = NULL;
4403 		if (dstopt != NULL) {
4404 			/* will fill in ip6h_len later */
4405 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4406 			dopt = (struct ip6_opt *)(dstopt + 1);
4407 		}
4408 		sopt = (const struct ip6_opt *)(srcopt + 1);
4409 		hol -= sizeof (*srcopt);
4410 		tlen = sizeof (*dstopt);
4411 		lastpad = NULL;
4412 		deleting = B_FALSE;
4413 		/*
4414 		 * This loop finds the first (lastpad pointer) of any number of
4415 		 * pads that preceeds the security option, then treats the
4416 		 * security option as though it were a pad, and then finds the
4417 		 * next non-pad option (or end of list).
4418 		 *
4419 		 * It then treats the entire block as one big pad.  To preserve
4420 		 * alignment of any options that follow, or just the end of the
4421 		 * list, it computes a minimal new padding size that keeps the
4422 		 * same alignment for the next option.
4423 		 *
4424 		 * If it encounters just a sequence of pads with no security
4425 		 * option, those are copied as-is rather than collapsed.
4426 		 *
4427 		 * Note that to handle the end of list case, the code makes one
4428 		 * loop with 'hol' set to zero.
4429 		 */
4430 		for (;;) {
4431 			if (hol > 0) {
4432 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4433 					if (lastpad == NULL)
4434 						lastpad = sopt;
4435 					sopt = (const struct ip6_opt *)
4436 					    &sopt->ip6o_len;
4437 					hol--;
4438 					continue;
4439 				}
4440 				olen = sopt->ip6o_len + sizeof (*sopt);
4441 				if (olen > hol)
4442 					olen = hol;
4443 				if (sopt->ip6o_type == IP6OPT_PADN ||
4444 				    sopt->ip6o_type == ip6opt_ls) {
4445 					if (sopt->ip6o_type == ip6opt_ls)
4446 						deleting = B_TRUE;
4447 					if (lastpad == NULL)
4448 						lastpad = sopt;
4449 					sopt = (const struct ip6_opt *)
4450 					    ((const char *)sopt + olen);
4451 					hol -= olen;
4452 					continue;
4453 				}
4454 			} else {
4455 				/* if nothing was copied at all, then delete */
4456 				if (tlen == sizeof (*dstopt))
4457 					return (0);
4458 				/* last pass; pick up any trailing padding */
4459 				olen = 0;
4460 			}
4461 			if (deleting) {
4462 				/*
4463 				 * compute aligning effect of deleted material
4464 				 * to reproduce with pad.
4465 				 */
4466 				plen = ((const char *)sopt -
4467 				    (const char *)lastpad) & 7;
4468 				tlen += plen;
4469 				if (dopt != NULL) {
4470 					if (plen == 1) {
4471 						dopt->ip6o_type = IP6OPT_PAD1;
4472 					} else if (plen > 1) {
4473 						plen -= sizeof (*dopt);
4474 						dopt->ip6o_type = IP6OPT_PADN;
4475 						dopt->ip6o_len = plen;
4476 						if (plen > 0)
4477 							bzero(dopt + 1, plen);
4478 					}
4479 					dopt = (struct ip6_opt *)
4480 					    ((char *)dopt + plen);
4481 				}
4482 				deleting = B_FALSE;
4483 				lastpad = NULL;
4484 			}
4485 			/* if there's uncopied padding, then copy that now */
4486 			if (lastpad != NULL) {
4487 				olen += (const char *)sopt -
4488 				    (const char *)lastpad;
4489 				sopt = lastpad;
4490 				lastpad = NULL;
4491 			}
4492 			if (dopt != NULL && olen > 0) {
4493 				bcopy(sopt, dopt, olen);
4494 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4495 			}
4496 			if (hol == 0)
4497 				break;
4498 			tlen += olen;
4499 			sopt = (const struct ip6_opt *)
4500 			    ((const char *)sopt + olen);
4501 			hol -= olen;
4502 		}
4503 		/* go back and patch up the length value, rounded upward */
4504 		if (dstopt != NULL)
4505 			dstopt->ip6h_len = (tlen - 1) >> 3;
4506 	} else {
4507 		tlen = hol;
4508 		if (dstopt != NULL)
4509 			bcopy(srcopt, dstopt, hol);
4510 	}
4511 
4512 	tlen += sizeof (*toh);
4513 	if (toh != NULL)
4514 		toh->len = tlen;
4515 
4516 	return (tlen);
4517 }
4518 
4519 static void
4520 udp_input(conn_t *connp, mblk_t *mp)
4521 {
4522 	struct T_unitdata_ind	*tudi;
4523 	uchar_t			*rptr;		/* Pointer to IP header */
4524 	int			hdr_length;	/* Length of IP+UDP headers */
4525 	int			udi_size;	/* Size of T_unitdata_ind */
4526 	int			mp_len;
4527 	udp_t			*udp;
4528 	udpha_t			*udpha;
4529 	int			ipversion;
4530 	ip6_pkt_t		ipp;
4531 	ip6_t			*ip6h;
4532 	ip6i_t			*ip6i;
4533 	mblk_t			*mp1;
4534 	mblk_t			*options_mp = NULL;
4535 	ip_pktinfo_t		*pinfo = NULL;
4536 	cred_t			*cr = NULL;
4537 	queue_t			*q = connp->conn_rq;
4538 	pid_t			cpid;
4539 	cred_t			*rcr = connp->conn_cred;
4540 	udp_stack_t *us;
4541 
4542 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4543 	    "udp_rput_start: q %p mp %p", q, mp);
4544 
4545 	udp = connp->conn_udp;
4546 	us = udp->udp_us;
4547 	rptr = mp->b_rptr;
4548 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4549 	ASSERT(OK_32PTR(rptr));
4550 
4551 	/*
4552 	 * IP should have prepended the options data in an M_CTL
4553 	 * Check M_CTL "type" to make sure are not here bcos of
4554 	 * a valid ICMP message
4555 	 */
4556 	if (DB_TYPE(mp) == M_CTL) {
4557 		if (MBLKL(mp) == sizeof (ip_pktinfo_t) &&
4558 		    ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type ==
4559 		    IN_PKTINFO) {
4560 			/*
4561 			 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information
4562 			 * has been appended to the packet by IP. We need to
4563 			 * extract the mblk and adjust the rptr
4564 			 */
4565 			pinfo = (ip_pktinfo_t *)mp->b_rptr;
4566 			options_mp = mp;
4567 			mp = mp->b_cont;
4568 			rptr = mp->b_rptr;
4569 			UDP_STAT(us, udp_in_pktinfo);
4570 		} else {
4571 			/*
4572 			 * ICMP messages.
4573 			 */
4574 			udp_icmp_error(q, mp);
4575 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4576 				"udp_rput_end: q %p (%S)", q, "m_ctl");
4577 			return;
4578 		}
4579 	}
4580 
4581 	mp_len = msgdsize(mp);
4582 	/*
4583 	 * This is the inbound data path.
4584 	 * First, we check to make sure the IP version number is correct,
4585 	 * and then pull the IP and UDP headers into the first mblk.
4586 	 * Assume IP provides aligned packets - otherwise toss.
4587 	 * Also, check if we have a complete IP header.
4588 	 */
4589 
4590 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4591 	ipp.ipp_fields = 0;
4592 
4593 	ipversion = IPH_HDR_VERSION(rptr);
4594 	switch (ipversion) {
4595 	case IPV4_VERSION:
4596 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4597 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4598 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4599 		if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
4600 		    (udp->udp_ip_rcv_options_len)) {
4601 			/*
4602 			 * Handle IPv4 packets with options outside of the
4603 			 * main data path. Not needed for AF_INET6 sockets
4604 			 * since they don't support a getsockopt of IP_OPTIONS.
4605 			 */
4606 			if (udp->udp_family == AF_INET6)
4607 				break;
4608 			/*
4609 			 * UDP length check performed for IPv4 packets with
4610 			 * options to check whether UDP length specified in
4611 			 * the header is the same as the physical length of
4612 			 * the packet.
4613 			 */
4614 			udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4615 			if (mp_len != (ntohs(udpha->uha_length) +
4616 			    hdr_length - UDPH_SIZE)) {
4617 				goto tossit;
4618 			}
4619 			/*
4620 			 * Handle the case where the packet has IP options
4621 			 * and the IP_RECVSLLA & IP_RECVIF are set
4622 			 */
4623 			if (pinfo != NULL)
4624 				mp = options_mp;
4625 			udp_become_writer(connp, mp, udp_rput_other_wrapper,
4626 			    SQTAG_UDP_INPUT);
4627 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4628 				"udp_rput_end: q %p (%S)", q, "end");
4629 			return;
4630 		}
4631 
4632 		/* Handle IPV6_RECVHOPLIMIT. */
4633 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4634 		    udp->udp_ip_recvpktinfo) {
4635 			if (pinfo->ip_pkt_flags & IPF_RECVIF) {
4636 				ipp.ipp_fields |= IPPF_IFINDEX;
4637 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
4638 			}
4639 		}
4640 		break;
4641 	case IPV6_VERSION:
4642 		/*
4643 		 * IPv6 packets can only be received by applications
4644 		 * that are prepared to receive IPv6 addresses.
4645 		 * The IP fanout must ensure this.
4646 		 */
4647 		ASSERT(udp->udp_family == AF_INET6);
4648 
4649 		ip6h = (ip6_t *)rptr;
4650 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4651 
4652 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4653 			uint8_t nexthdrp;
4654 			/* Look for ifindex information */
4655 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4656 				ip6i = (ip6i_t *)ip6h;
4657 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4658 					goto tossit;
4659 
4660 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4661 					ASSERT(ip6i->ip6i_ifindex != 0);
4662 					ipp.ipp_fields |= IPPF_IFINDEX;
4663 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4664 				}
4665 				rptr = (uchar_t *)&ip6i[1];
4666 				mp->b_rptr = rptr;
4667 				if (rptr == mp->b_wptr) {
4668 					mp1 = mp->b_cont;
4669 					freeb(mp);
4670 					mp = mp1;
4671 					rptr = mp->b_rptr;
4672 				}
4673 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4674 					goto tossit;
4675 				ip6h = (ip6_t *)rptr;
4676 				mp_len = msgdsize(mp);
4677 			}
4678 			/*
4679 			 * Find any potentially interesting extension headers
4680 			 * as well as the length of the IPv6 + extension
4681 			 * headers.
4682 			 */
4683 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4684 			    UDPH_SIZE;
4685 			ASSERT(nexthdrp == IPPROTO_UDP);
4686 		} else {
4687 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4688 			ip6i = NULL;
4689 		}
4690 		break;
4691 	default:
4692 		ASSERT(0);
4693 	}
4694 
4695 	/*
4696 	 * IP inspected the UDP header thus all of it must be in the mblk.
4697 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4698 	 * without options to check if the size of the packet as specified
4699 	 * by the header is the same as the physical size of the packet.
4700 	 */
4701 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4702 	if ((MBLKL(mp) < hdr_length) ||
4703 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4704 		goto tossit;
4705 	}
4706 
4707 	/* Walk past the headers. */
4708 	if (!udp->udp_rcvhdr) {
4709 		mp->b_rptr = rptr + hdr_length;
4710 		mp_len -= hdr_length;
4711 	}
4712 
4713 	/*
4714 	 * This is the inbound data path.  Packets are passed upstream as
4715 	 * T_UNITDATA_IND messages with full IP headers still attached.
4716 	 */
4717 	if (udp->udp_family == AF_INET) {
4718 		sin_t *sin;
4719 
4720 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4721 
4722 		/*
4723 		 * Normally only send up the address.
4724 		 * If IP_RECVDSTADDR is set we include the destination IP
4725 		 * address as an option. With IP_RECVOPTS we include all
4726 		 * the IP options. Only ip_rput_other() handles packets
4727 		 * that contain IP options.
4728 		 */
4729 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4730 		if (udp->udp_recvdstaddr) {
4731 			udi_size += sizeof (struct T_opthdr) +
4732 			    sizeof (struct in_addr);
4733 			UDP_STAT(us, udp_in_recvdstaddr);
4734 		}
4735 
4736 		if (udp->udp_ip_recvpktinfo && (pinfo != NULL) &&
4737 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4738 			udi_size += sizeof (struct T_opthdr) +
4739 			    sizeof (struct in_pktinfo);
4740 			UDP_STAT(us, udp_ip_recvpktinfo);
4741 		}
4742 
4743 		/*
4744 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4745 		 * space accordingly
4746 		 */
4747 		if (udp->udp_recvif && (pinfo != NULL) &&
4748 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4749 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4750 			UDP_STAT(us, udp_in_recvif);
4751 		}
4752 
4753 		if (udp->udp_recvslla && (pinfo != NULL) &&
4754 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4755 			udi_size += sizeof (struct T_opthdr) +
4756 			    sizeof (struct sockaddr_dl);
4757 			UDP_STAT(us, udp_in_recvslla);
4758 		}
4759 
4760 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4761 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4762 			cpid = DB_CPID(mp);
4763 			UDP_STAT(us, udp_in_recvucred);
4764 		}
4765 
4766 		/*
4767 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4768 		 * buffer. Since gethrestime() expects a pointer aligned
4769 		 * argument, we allocate space necessary for extra
4770 		 * alignment (even though it might not be used).
4771 		 */
4772 		if (udp->udp_timestamp) {
4773 			udi_size += sizeof (struct T_opthdr) +
4774 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4775 			UDP_STAT(us, udp_in_timestamp);
4776 		}
4777 
4778 		/*
4779 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4780 		 */
4781 		if (udp->udp_recvttl) {
4782 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4783 			UDP_STAT(us, udp_in_recvttl);
4784 		}
4785 		ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
4786 
4787 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4788 		mp1 = allocb(udi_size, BPRI_MED);
4789 		if (mp1 == NULL) {
4790 			freemsg(mp);
4791 			if (options_mp != NULL)
4792 				freeb(options_mp);
4793 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4794 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4795 			BUMP_MIB(&udp->udp_mib, udpInErrors);
4796 			return;
4797 		}
4798 		mp1->b_cont = mp;
4799 		mp = mp1;
4800 		mp->b_datap->db_type = M_PROTO;
4801 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4802 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4803 		tudi->PRIM_type = T_UNITDATA_IND;
4804 		tudi->SRC_length = sizeof (sin_t);
4805 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4806 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4807 		    sizeof (sin_t);
4808 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4809 		tudi->OPT_length = udi_size;
4810 		sin = (sin_t *)&tudi[1];
4811 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4812 		sin->sin_port =	udpha->uha_src_port;
4813 		sin->sin_family = udp->udp_family;
4814 		*(uint32_t *)&sin->sin_zero[0] = 0;
4815 		*(uint32_t *)&sin->sin_zero[4] = 0;
4816 
4817 		/*
4818 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4819 		 * IP_RECVTTL has been set.
4820 		 */
4821 		if (udi_size != 0) {
4822 			/*
4823 			 * Copy in destination address before options to avoid
4824 			 * any padding issues.
4825 			 */
4826 			char *dstopt;
4827 
4828 			dstopt = (char *)&sin[1];
4829 			if (udp->udp_recvdstaddr) {
4830 				struct T_opthdr *toh;
4831 				ipaddr_t *dstptr;
4832 
4833 				toh = (struct T_opthdr *)dstopt;
4834 				toh->level = IPPROTO_IP;
4835 				toh->name = IP_RECVDSTADDR;
4836 				toh->len = sizeof (struct T_opthdr) +
4837 				    sizeof (ipaddr_t);
4838 				toh->status = 0;
4839 				dstopt += sizeof (struct T_opthdr);
4840 				dstptr = (ipaddr_t *)dstopt;
4841 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4842 				dstopt = (char *)toh + toh->len;
4843 				udi_size -= toh->len;
4844 			}
4845 
4846 			if (udp->udp_ip_recvpktinfo && (pinfo != NULL) &&
4847 			    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4848 				struct T_opthdr *toh;
4849 				struct in_pktinfo *pktinfop;
4850 
4851 				toh = (struct T_opthdr *)dstopt;
4852 				toh->level = IPPROTO_IP;
4853 				toh->name = IP_PKTINFO;
4854 				toh->len = sizeof (struct T_opthdr) +
4855 				    sizeof (*pktinfop);
4856 				toh->status = 0;
4857 				dstopt += sizeof (struct T_opthdr);
4858 				pktinfop = (struct in_pktinfo *)dstopt;
4859 				pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
4860 				pktinfop->ipi_spec_dst =
4861 				    pinfo->ip_pkt_match_addr;
4862 				pktinfop->ipi_addr.s_addr =
4863 				    ((ipha_t *)rptr)->ipha_dst;
4864 
4865 				dstopt += sizeof (struct in_pktinfo);
4866 				udi_size -= toh->len;
4867 			}
4868 
4869 			if (udp->udp_recvslla && (pinfo != NULL) &&
4870 			    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4871 
4872 				struct T_opthdr *toh;
4873 				struct sockaddr_dl	*dstptr;
4874 
4875 				toh = (struct T_opthdr *)dstopt;
4876 				toh->level = IPPROTO_IP;
4877 				toh->name = IP_RECVSLLA;
4878 				toh->len = sizeof (struct T_opthdr) +
4879 					sizeof (struct sockaddr_dl);
4880 				toh->status = 0;
4881 				dstopt += sizeof (struct T_opthdr);
4882 				dstptr = (struct sockaddr_dl *)dstopt;
4883 				bcopy(&pinfo->ip_pkt_slla, dstptr,
4884 				    sizeof (struct sockaddr_dl));
4885 				dstopt = (char *)toh + toh->len;
4886 				udi_size -= toh->len;
4887 			}
4888 
4889 			if (udp->udp_recvif && (pinfo != NULL) &&
4890 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4891 
4892 				struct T_opthdr *toh;
4893 				uint_t		*dstptr;
4894 
4895 				toh = (struct T_opthdr *)dstopt;
4896 				toh->level = IPPROTO_IP;
4897 				toh->name = IP_RECVIF;
4898 				toh->len = sizeof (struct T_opthdr) +
4899 					sizeof (uint_t);
4900 				toh->status = 0;
4901 				dstopt += sizeof (struct T_opthdr);
4902 				dstptr = (uint_t *)dstopt;
4903 				*dstptr = pinfo->ip_pkt_ifindex;
4904 				dstopt = (char *)toh + toh->len;
4905 				udi_size -= toh->len;
4906 			}
4907 
4908 			if (cr != NULL) {
4909 				struct T_opthdr *toh;
4910 
4911 				toh = (struct T_opthdr *)dstopt;
4912 				toh->level = SOL_SOCKET;
4913 				toh->name = SCM_UCRED;
4914 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4915 				toh->status = 0;
4916 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4917 				dstopt = (char *)toh + toh->len;
4918 				udi_size -= toh->len;
4919 			}
4920 
4921 			if (udp->udp_timestamp) {
4922 				struct	T_opthdr *toh;
4923 
4924 				toh = (struct T_opthdr *)dstopt;
4925 				toh->level = SOL_SOCKET;
4926 				toh->name = SCM_TIMESTAMP;
4927 				toh->len = sizeof (struct T_opthdr) +
4928 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4929 				toh->status = 0;
4930 				dstopt += sizeof (struct T_opthdr);
4931 				/* Align for gethrestime() */
4932 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4933 				    sizeof (intptr_t));
4934 				gethrestime((timestruc_t *)dstopt);
4935 				dstopt = (char *)toh + toh->len;
4936 				udi_size -= toh->len;
4937 			}
4938 
4939 			/*
4940 			 * CAUTION:
4941 			 * Due to aligment issues
4942 			 * Processing of IP_RECVTTL option
4943 			 * should always be the last. Adding
4944 			 * any option processing after this will
4945 			 * cause alignment panic.
4946 			 */
4947 			if (udp->udp_recvttl) {
4948 				struct	T_opthdr *toh;
4949 				uint8_t	*dstptr;
4950 
4951 				toh = (struct T_opthdr *)dstopt;
4952 				toh->level = IPPROTO_IP;
4953 				toh->name = IP_RECVTTL;
4954 				toh->len = sizeof (struct T_opthdr) +
4955 				    sizeof (uint8_t);
4956 				toh->status = 0;
4957 				dstopt += sizeof (struct T_opthdr);
4958 				dstptr = (uint8_t *)dstopt;
4959 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4960 				dstopt = (char *)toh + toh->len;
4961 				udi_size -= toh->len;
4962 			}
4963 
4964 			/* Consumed all of allocated space */
4965 			ASSERT(udi_size == 0);
4966 		}
4967 	} else {
4968 		sin6_t *sin6;
4969 
4970 		/*
4971 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4972 		 *
4973 		 * Normally we only send up the address. If receiving of any
4974 		 * optional receive side information is enabled, we also send
4975 		 * that up as options.
4976 		 * [ Only udp_rput_other() handles packets that contain IP
4977 		 * options so code to account for does not appear immediately
4978 		 * below but elsewhere ]
4979 		 */
4980 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4981 
4982 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4983 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4984 			if (udp->udp_ipv6_recvhopopts &&
4985 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4986 				size_t hlen;
4987 
4988 				UDP_STAT(us, udp_in_recvhopopts);
4989 				hlen = copy_hop_opts(&ipp, NULL);
4990 				if (hlen == 0)
4991 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4992 				udi_size += hlen;
4993 			}
4994 			if ((udp->udp_ipv6_recvdstopts ||
4995 				udp->udp_old_ipv6_recvdstopts) &&
4996 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4997 				udi_size += sizeof (struct T_opthdr) +
4998 				    ipp.ipp_dstoptslen;
4999 				UDP_STAT(us, udp_in_recvdstopts);
5000 			}
5001 			if (((udp->udp_ipv6_recvdstopts &&
5002 			    udp->udp_ipv6_recvrthdr &&
5003 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
5004 			    udp->udp_ipv6_recvrthdrdstopts) &&
5005 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
5006 				udi_size += sizeof (struct T_opthdr) +
5007 				    ipp.ipp_rtdstoptslen;
5008 				UDP_STAT(us, udp_in_recvrtdstopts);
5009 			}
5010 			if (udp->udp_ipv6_recvrthdr &&
5011 			    (ipp.ipp_fields & IPPF_RTHDR)) {
5012 				udi_size += sizeof (struct T_opthdr) +
5013 				    ipp.ipp_rthdrlen;
5014 				UDP_STAT(us, udp_in_recvrthdr);
5015 			}
5016 			if (udp->udp_ip_recvpktinfo &&
5017 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
5018 				udi_size += sizeof (struct T_opthdr) +
5019 				    sizeof (struct in6_pktinfo);
5020 				UDP_STAT(us, udp_in_recvpktinfo);
5021 			}
5022 
5023 		}
5024 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5025 			udi_size += sizeof (struct T_opthdr) + ucredsize;
5026 			cpid = DB_CPID(mp);
5027 			UDP_STAT(us, udp_in_recvucred);
5028 		}
5029 
5030 		if (udp->udp_ipv6_recvhoplimit) {
5031 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
5032 			UDP_STAT(us, udp_in_recvhoplimit);
5033 		}
5034 
5035 		if (udp->udp_ipv6_recvtclass) {
5036 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
5037 			UDP_STAT(us, udp_in_recvtclass);
5038 		}
5039 
5040 		mp1 = allocb(udi_size, BPRI_MED);
5041 		if (mp1 == NULL) {
5042 			freemsg(mp);
5043 			if (options_mp != NULL)
5044 				freeb(options_mp);
5045 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5046 				"udp_rput_end: q %p (%S)", q, "allocbfail");
5047 			BUMP_MIB(&udp->udp_mib, udpInErrors);
5048 			return;
5049 		}
5050 		mp1->b_cont = mp;
5051 		mp = mp1;
5052 		mp->b_datap->db_type = M_PROTO;
5053 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
5054 		mp->b_wptr = (uchar_t *)tudi + udi_size;
5055 		tudi->PRIM_type = T_UNITDATA_IND;
5056 		tudi->SRC_length = sizeof (sin6_t);
5057 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5058 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
5059 		    sizeof (sin6_t);
5060 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
5061 		tudi->OPT_length = udi_size;
5062 		sin6 = (sin6_t *)&tudi[1];
5063 		if (ipversion == IPV4_VERSION) {
5064 			in6_addr_t v6dst;
5065 
5066 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
5067 			    &sin6->sin6_addr);
5068 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
5069 			    &v6dst);
5070 			sin6->sin6_flowinfo = 0;
5071 			sin6->sin6_scope_id = 0;
5072 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
5073 			    connp->conn_zoneid, us->us_netstack);
5074 		} else {
5075 			sin6->sin6_addr = ip6h->ip6_src;
5076 			/* No sin6_flowinfo per API */
5077 			sin6->sin6_flowinfo = 0;
5078 			/* For link-scope source pass up scope id */
5079 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
5080 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
5081 				sin6->sin6_scope_id = ipp.ipp_ifindex;
5082 			else
5083 				sin6->sin6_scope_id = 0;
5084 			sin6->__sin6_src_id = ip_srcid_find_addr(
5085 			    &ip6h->ip6_dst, connp->conn_zoneid,
5086 			    us->us_netstack);
5087 		}
5088 		sin6->sin6_port = udpha->uha_src_port;
5089 		sin6->sin6_family = udp->udp_family;
5090 
5091 		if (udi_size != 0) {
5092 			uchar_t *dstopt;
5093 
5094 			dstopt = (uchar_t *)&sin6[1];
5095 			if (udp->udp_ip_recvpktinfo &&
5096 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
5097 				struct T_opthdr *toh;
5098 				struct in6_pktinfo *pkti;
5099 
5100 				toh = (struct T_opthdr *)dstopt;
5101 				toh->level = IPPROTO_IPV6;
5102 				toh->name = IPV6_PKTINFO;
5103 				toh->len = sizeof (struct T_opthdr) +
5104 				    sizeof (*pkti);
5105 				toh->status = 0;
5106 				dstopt += sizeof (struct T_opthdr);
5107 				pkti = (struct in6_pktinfo *)dstopt;
5108 				if (ipversion == IPV6_VERSION)
5109 					pkti->ipi6_addr = ip6h->ip6_dst;
5110 				else
5111 					IN6_IPADDR_TO_V4MAPPED(
5112 						((ipha_t *)rptr)->ipha_dst,
5113 						    &pkti->ipi6_addr);
5114 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
5115 				dstopt += sizeof (*pkti);
5116 				udi_size -= toh->len;
5117 			}
5118 			if (udp->udp_ipv6_recvhoplimit) {
5119 				struct T_opthdr *toh;
5120 
5121 				toh = (struct T_opthdr *)dstopt;
5122 				toh->level = IPPROTO_IPV6;
5123 				toh->name = IPV6_HOPLIMIT;
5124 				toh->len = sizeof (struct T_opthdr) +
5125 				    sizeof (uint_t);
5126 				toh->status = 0;
5127 				dstopt += sizeof (struct T_opthdr);
5128 				if (ipversion == IPV6_VERSION)
5129 					*(uint_t *)dstopt = ip6h->ip6_hops;
5130 				else
5131 					*(uint_t *)dstopt =
5132 					    ((ipha_t *)rptr)->ipha_ttl;
5133 				dstopt += sizeof (uint_t);
5134 				udi_size -= toh->len;
5135 			}
5136 			if (udp->udp_ipv6_recvtclass) {
5137 				struct T_opthdr *toh;
5138 
5139 				toh = (struct T_opthdr *)dstopt;
5140 				toh->level = IPPROTO_IPV6;
5141 				toh->name = IPV6_TCLASS;
5142 				toh->len = sizeof (struct T_opthdr) +
5143 				    sizeof (uint_t);
5144 				toh->status = 0;
5145 				dstopt += sizeof (struct T_opthdr);
5146 				if (ipversion == IPV6_VERSION) {
5147 					*(uint_t *)dstopt =
5148 					IPV6_FLOW_TCLASS(ip6h->ip6_flow);
5149 				} else {
5150 					ipha_t *ipha = (ipha_t *)rptr;
5151 					*(uint_t *)dstopt =
5152 					    ipha->ipha_type_of_service;
5153 				}
5154 				dstopt += sizeof (uint_t);
5155 				udi_size -= toh->len;
5156 			}
5157 			if (udp->udp_ipv6_recvhopopts &&
5158 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
5159 				size_t hlen;
5160 
5161 				hlen = copy_hop_opts(&ipp, dstopt);
5162 				dstopt += hlen;
5163 				udi_size -= hlen;
5164 			}
5165 			if (udp->udp_ipv6_recvdstopts &&
5166 			    udp->udp_ipv6_recvrthdr &&
5167 			    (ipp.ipp_fields & IPPF_RTHDR) &&
5168 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
5169 				struct T_opthdr *toh;
5170 
5171 				toh = (struct T_opthdr *)dstopt;
5172 				toh->level = IPPROTO_IPV6;
5173 				toh->name = IPV6_DSTOPTS;
5174 				toh->len = sizeof (struct T_opthdr) +
5175 				    ipp.ipp_rtdstoptslen;
5176 				toh->status = 0;
5177 				dstopt += sizeof (struct T_opthdr);
5178 				bcopy(ipp.ipp_rtdstopts, dstopt,
5179 				    ipp.ipp_rtdstoptslen);
5180 				dstopt += ipp.ipp_rtdstoptslen;
5181 				udi_size -= toh->len;
5182 			}
5183 			if (udp->udp_ipv6_recvrthdr &&
5184 			    (ipp.ipp_fields & IPPF_RTHDR)) {
5185 				struct T_opthdr *toh;
5186 
5187 				toh = (struct T_opthdr *)dstopt;
5188 				toh->level = IPPROTO_IPV6;
5189 				toh->name = IPV6_RTHDR;
5190 				toh->len = sizeof (struct T_opthdr) +
5191 				    ipp.ipp_rthdrlen;
5192 				toh->status = 0;
5193 				dstopt += sizeof (struct T_opthdr);
5194 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
5195 				dstopt += ipp.ipp_rthdrlen;
5196 				udi_size -= toh->len;
5197 			}
5198 			if (udp->udp_ipv6_recvdstopts &&
5199 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
5200 				struct T_opthdr *toh;
5201 
5202 				toh = (struct T_opthdr *)dstopt;
5203 				toh->level = IPPROTO_IPV6;
5204 				toh->name = IPV6_DSTOPTS;
5205 				toh->len = sizeof (struct T_opthdr) +
5206 				    ipp.ipp_dstoptslen;
5207 				toh->status = 0;
5208 				dstopt += sizeof (struct T_opthdr);
5209 				bcopy(ipp.ipp_dstopts, dstopt,
5210 				    ipp.ipp_dstoptslen);
5211 				dstopt += ipp.ipp_dstoptslen;
5212 				udi_size -= toh->len;
5213 			}
5214 
5215 			if (cr != NULL) {
5216 				struct T_opthdr *toh;
5217 
5218 				toh = (struct T_opthdr *)dstopt;
5219 				toh->level = SOL_SOCKET;
5220 				toh->name = SCM_UCRED;
5221 				toh->len = sizeof (struct T_opthdr) + ucredsize;
5222 				toh->status = 0;
5223 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
5224 				dstopt += toh->len;
5225 				udi_size -= toh->len;
5226 			}
5227 			/* Consumed all of allocated space */
5228 			ASSERT(udi_size == 0);
5229 		}
5230 #undef	sin6
5231 		/* No IP_RECVDSTADDR for IPv6. */
5232 	}
5233 
5234 	BUMP_MIB(&udp->udp_mib, udpHCInDatagrams);
5235 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5236 		"udp_rput_end: q %p (%S)", q, "end");
5237 	if (options_mp != NULL)
5238 		freeb(options_mp);
5239 
5240 	if (udp->udp_direct_sockfs) {
5241 		/*
5242 		 * There is nothing above us except for the stream head;
5243 		 * use the read-side synchronous stream interface in
5244 		 * order to reduce the time spent in interrupt thread.
5245 		 */
5246 		ASSERT(udp->udp_issocket);
5247 		udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len);
5248 	} else {
5249 		/*
5250 		 * Use regular STREAMS interface to pass data upstream
5251 		 * if this is not a socket endpoint, or if we have
5252 		 * switched over to the slow mode due to sockmod being
5253 		 * popped or a module being pushed on top of us.
5254 		 */
5255 		putnext(UDP_RD(q), mp);
5256 	}
5257 	return;
5258 
5259 tossit:
5260 	freemsg(mp);
5261 	if (options_mp != NULL)
5262 		freeb(options_mp);
5263 	BUMP_MIB(&udp->udp_mib, udpInErrors);
5264 }
5265 
5266 void
5267 udp_conn_recv(conn_t *connp, mblk_t *mp)
5268 {
5269 	_UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT);
5270 }
5271 
5272 /* ARGSUSED */
5273 static void
5274 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2)
5275 {
5276 	udp_input((conn_t *)arg, mp);
5277 	_UDP_EXIT((conn_t *)arg);
5278 }
5279 
5280 /*
5281  * Process non-M_DATA messages as well as M_DATA messages that requires
5282  * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
5283  */
5284 static void
5285 udp_rput_other(queue_t *q, mblk_t *mp)
5286 {
5287 	struct T_unitdata_ind	*tudi;
5288 	mblk_t			*mp1;
5289 	uchar_t			*rptr;
5290 	uchar_t			*new_rptr;
5291 	int			hdr_length;
5292 	int			udi_size;	/* Size of T_unitdata_ind */
5293 	int			opt_len;	/* Length of IP options */
5294 	sin_t			*sin;
5295 	struct T_error_ack	*tea;
5296 	mblk_t			*options_mp = NULL;
5297 	ip_pktinfo_t		*pinfo;
5298 	boolean_t		recv_on = B_FALSE;
5299 	cred_t			*cr = NULL;
5300 	udp_t			*udp = Q_TO_UDP(q);
5301 	pid_t			cpid;
5302 	cred_t			*rcr = udp->udp_connp->conn_cred;
5303 	udp_stack_t		*us = udp->udp_us;
5304 
5305 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
5306 	    "udp_rput_other: q %p mp %p", q, mp);
5307 
5308 	ASSERT(OK_32PTR(mp->b_rptr));
5309 	rptr = mp->b_rptr;
5310 
5311 	switch (mp->b_datap->db_type) {
5312 	case M_CTL:
5313 		/*
5314 		 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set
5315 		 */
5316 		recv_on = B_TRUE;
5317 		options_mp = mp;
5318 		pinfo = (ip_pktinfo_t *)options_mp->b_rptr;
5319 
5320 		/*
5321 		 * The actual data is in mp->b_cont
5322 		 */
5323 		mp = mp->b_cont;
5324 		ASSERT(OK_32PTR(mp->b_rptr));
5325 		rptr = mp->b_rptr;
5326 		break;
5327 	case M_DATA:
5328 		/*
5329 		 * M_DATA messages contain IPv4 datagrams.  They are handled
5330 		 * after this switch.
5331 		 */
5332 		break;
5333 	case M_PROTO:
5334 	case M_PCPROTO:
5335 		/* M_PROTO messages contain some type of TPI message. */
5336 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
5337 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
5338 			freemsg(mp);
5339 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5340 			    "udp_rput_other_end: q %p (%S)", q, "protoshort");
5341 			return;
5342 		}
5343 		tea = (struct T_error_ack *)rptr;
5344 
5345 		switch (tea->PRIM_type) {
5346 		case T_ERROR_ACK:
5347 			switch (tea->ERROR_prim) {
5348 			case O_T_BIND_REQ:
5349 			case T_BIND_REQ: {
5350 				/*
5351 				 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5352 				 * clear out the associated port and source
5353 				 * address before passing the message
5354 				 * upstream. If this was caused by a T_CONN_REQ
5355 				 * revert back to bound state.
5356 				 */
5357 				udp_fanout_t	*udpf;
5358 
5359 				udpf = &us->us_bind_fanout[
5360 				    UDP_BIND_HASH(udp->udp_port,
5361 					us->us_bind_fanout_size)];
5362 				mutex_enter(&udpf->uf_lock);
5363 				if (udp->udp_state == TS_DATA_XFER) {
5364 					/* Connect failed */
5365 					tea->ERROR_prim = T_CONN_REQ;
5366 					/* Revert back to the bound source */
5367 					udp->udp_v6src = udp->udp_bound_v6src;
5368 					udp->udp_state = TS_IDLE;
5369 					mutex_exit(&udpf->uf_lock);
5370 					if (udp->udp_family == AF_INET6)
5371 						(void) udp_build_hdrs(q, udp);
5372 					break;
5373 				}
5374 
5375 				if (udp->udp_discon_pending) {
5376 					tea->ERROR_prim = T_DISCON_REQ;
5377 					udp->udp_discon_pending = 0;
5378 				}
5379 					V6_SET_ZERO(udp->udp_v6src);
5380 					V6_SET_ZERO(udp->udp_bound_v6src);
5381 					udp->udp_state = TS_UNBND;
5382 					udp_bind_hash_remove(udp, B_TRUE);
5383 					udp->udp_port = 0;
5384 					mutex_exit(&udpf->uf_lock);
5385 					if (udp->udp_family == AF_INET6)
5386 						(void) udp_build_hdrs(q, udp);
5387 					break;
5388 				}
5389 			default:
5390 				break;
5391 			}
5392 			break;
5393 		case T_BIND_ACK:
5394 			udp_rput_bind_ack(q, mp);
5395 			return;
5396 
5397 		case T_OPTMGMT_ACK:
5398 		case T_OK_ACK:
5399 			break;
5400 		default:
5401 			freemsg(mp);
5402 			return;
5403 		}
5404 		putnext(UDP_RD(q), mp);
5405 		return;
5406 	}
5407 
5408 	/*
5409 	 * This is the inbound data path.
5410 	 * First, we make sure the data contains both IP and UDP headers.
5411 	 *
5412 	 * This handle IPv4 packets for only AF_INET sockets.
5413 	 * AF_INET6 sockets can never access udp_ip_rcv_options thus there
5414 	 * is no need saving the options.
5415 	 */
5416 	ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
5417 	hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
5418 	if (mp->b_wptr - rptr < hdr_length) {
5419 		if (!pullupmsg(mp, hdr_length)) {
5420 			freemsg(mp);
5421 			if (options_mp != NULL)
5422 				freeb(options_mp);
5423 			BUMP_MIB(&udp->udp_mib, udpInErrors);
5424 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5425 			    "udp_rput_other_end: q %p (%S)", q, "hdrshort");
5426 			return;
5427 		}
5428 		rptr = mp->b_rptr;
5429 	}
5430 	/* Walk past the headers. */
5431 	new_rptr = rptr + hdr_length;
5432 	if (!udp->udp_rcvhdr)
5433 		mp->b_rptr = new_rptr;
5434 
5435 	/* Save the options if any */
5436 	opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
5437 	if (opt_len > 0) {
5438 		if (opt_len > udp->udp_ip_rcv_options_len) {
5439 			if (udp->udp_ip_rcv_options_len)
5440 				mi_free((char *)udp->udp_ip_rcv_options);
5441 			udp->udp_ip_rcv_options_len = 0;
5442 			udp->udp_ip_rcv_options =
5443 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
5444 			if (udp->udp_ip_rcv_options)
5445 				udp->udp_ip_rcv_options_len = opt_len;
5446 		}
5447 		if (udp->udp_ip_rcv_options_len) {
5448 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
5449 			    udp->udp_ip_rcv_options, opt_len);
5450 			/* Adjust length if we are resusing the space */
5451 			udp->udp_ip_rcv_options_len = opt_len;
5452 		}
5453 	} else if (udp->udp_ip_rcv_options_len) {
5454 		mi_free((char *)udp->udp_ip_rcv_options);
5455 		udp->udp_ip_rcv_options = NULL;
5456 		udp->udp_ip_rcv_options_len = 0;
5457 	}
5458 
5459 	/*
5460 	 * Normally only send up the address.
5461 	 * If IP_RECVDSTADDR is set we include the destination IP
5462 	 * address as an option. With IP_RECVOPTS we include all
5463 	 * the IP options.
5464 	 */
5465 	udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5466 	if (udp->udp_recvdstaddr) {
5467 		udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
5468 		UDP_STAT(us, udp_in_recvdstaddr);
5469 	}
5470 
5471 	if (udp->udp_ip_recvpktinfo && recv_on &&
5472 	    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
5473 		udi_size += sizeof (struct T_opthdr) +
5474 		    sizeof (struct in_pktinfo);
5475 		UDP_STAT(us, udp_ip_recvpktinfo);
5476 	}
5477 
5478 	if (udp->udp_recvopts && opt_len > 0) {
5479 		udi_size += sizeof (struct T_opthdr) + opt_len;
5480 		UDP_STAT(us, udp_in_recvopts);
5481 	}
5482 
5483 	/*
5484 	 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
5485 	 * space accordingly
5486 	 */
5487 	if (udp->udp_recvif && recv_on &&
5488 	    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
5489 		udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
5490 		UDP_STAT(us, udp_in_recvif);
5491 	}
5492 
5493 	if (udp->udp_recvslla && recv_on &&
5494 	    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
5495 		udi_size += sizeof (struct T_opthdr) +
5496 		    sizeof (struct sockaddr_dl);
5497 		UDP_STAT(us, udp_in_recvslla);
5498 	}
5499 
5500 	if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5501 		udi_size += sizeof (struct T_opthdr) + ucredsize;
5502 		cpid = DB_CPID(mp);
5503 		UDP_STAT(us, udp_in_recvucred);
5504 	}
5505 	/*
5506 	 * If IP_RECVTTL is set allocate the appropriate sized buffer
5507 	 */
5508 	if (udp->udp_recvttl) {
5509 		udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
5510 		UDP_STAT(us, udp_in_recvttl);
5511 	}
5512 
5513 	/* Allocate a message block for the T_UNITDATA_IND structure. */
5514 	mp1 = allocb(udi_size, BPRI_MED);
5515 	if (mp1 == NULL) {
5516 		freemsg(mp);
5517 		if (options_mp != NULL)
5518 			freeb(options_mp);
5519 		TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5520 			"udp_rput_other_end: q %p (%S)", q, "allocbfail");
5521 		BUMP_MIB(&udp->udp_mib, udpInErrors);
5522 		return;
5523 	}
5524 	mp1->b_cont = mp;
5525 	mp = mp1;
5526 	mp->b_datap->db_type = M_PROTO;
5527 	tudi = (struct T_unitdata_ind *)mp->b_rptr;
5528 	mp->b_wptr = (uchar_t *)tudi + udi_size;
5529 	tudi->PRIM_type = T_UNITDATA_IND;
5530 	tudi->SRC_length = sizeof (sin_t);
5531 	tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5532 	tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5533 	udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
5534 	tudi->OPT_length = udi_size;
5535 
5536 	sin = (sin_t *)&tudi[1];
5537 	sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
5538 	sin->sin_port =	((in_port_t *)
5539 	    new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
5540 	sin->sin_family = AF_INET;
5541 	*(uint32_t *)&sin->sin_zero[0] = 0;
5542 	*(uint32_t *)&sin->sin_zero[4] = 0;
5543 
5544 	/*
5545 	 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
5546 	 * IP_RECVTTL has been set.
5547 	 */
5548 	if (udi_size != 0) {
5549 		/*
5550 		 * Copy in destination address before options to avoid any
5551 		 * padding issues.
5552 		 */
5553 		char *dstopt;
5554 
5555 		dstopt = (char *)&sin[1];
5556 		if (udp->udp_recvdstaddr) {
5557 			struct T_opthdr *toh;
5558 			ipaddr_t *dstptr;
5559 
5560 			toh = (struct T_opthdr *)dstopt;
5561 			toh->level = IPPROTO_IP;
5562 			toh->name = IP_RECVDSTADDR;
5563 			toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
5564 			toh->status = 0;
5565 			dstopt += sizeof (struct T_opthdr);
5566 			dstptr = (ipaddr_t *)dstopt;
5567 			*dstptr = (((ipaddr_t *)rptr)[4]);
5568 			dstopt += sizeof (ipaddr_t);
5569 			udi_size -= toh->len;
5570 		}
5571 		if (udp->udp_recvopts && udi_size != 0) {
5572 			struct T_opthdr *toh;
5573 
5574 			toh = (struct T_opthdr *)dstopt;
5575 			toh->level = IPPROTO_IP;
5576 			toh->name = IP_RECVOPTS;
5577 			toh->len = sizeof (struct T_opthdr) + opt_len;
5578 			toh->status = 0;
5579 			dstopt += sizeof (struct T_opthdr);
5580 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
5581 			dstopt += opt_len;
5582 			udi_size -= toh->len;
5583 		}
5584 		if (udp->udp_ip_recvpktinfo && recv_on &&
5585 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
5586 
5587 			struct T_opthdr *toh;
5588 			struct in_pktinfo *pktinfop;
5589 
5590 			toh = (struct T_opthdr *)dstopt;
5591 			toh->level = IPPROTO_IP;
5592 			toh->name = IP_PKTINFO;
5593 			toh->len = sizeof (struct T_opthdr) +
5594 			sizeof (*pktinfop);
5595 			toh->status = 0;
5596 			dstopt += sizeof (struct T_opthdr);
5597 			pktinfop = (struct in_pktinfo *)dstopt;
5598 			pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
5599 			pktinfop->ipi_spec_dst = pinfo->ip_pkt_match_addr;
5600 
5601 			pktinfop->ipi_addr.s_addr = ((ipha_t *)rptr)->ipha_dst;
5602 
5603 			dstopt += sizeof (struct in_pktinfo);
5604 			udi_size -= toh->len;
5605 		}
5606 
5607 		if (udp->udp_recvslla && recv_on &&
5608 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
5609 
5610 			struct T_opthdr *toh;
5611 			struct sockaddr_dl	*dstptr;
5612 
5613 			toh = (struct T_opthdr *)dstopt;
5614 			toh->level = IPPROTO_IP;
5615 			toh->name = IP_RECVSLLA;
5616 			toh->len = sizeof (struct T_opthdr) +
5617 			    sizeof (struct sockaddr_dl);
5618 			toh->status = 0;
5619 			dstopt += sizeof (struct T_opthdr);
5620 			dstptr = (struct sockaddr_dl *)dstopt;
5621 			bcopy(&pinfo->ip_pkt_slla, dstptr,
5622 			    sizeof (struct sockaddr_dl));
5623 			dstopt += sizeof (struct sockaddr_dl);
5624 			udi_size -= toh->len;
5625 		}
5626 
5627 		if (udp->udp_recvif && recv_on &&
5628 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
5629 
5630 			struct T_opthdr *toh;
5631 			uint_t		*dstptr;
5632 
5633 			toh = (struct T_opthdr *)dstopt;
5634 			toh->level = IPPROTO_IP;
5635 			toh->name = IP_RECVIF;
5636 			toh->len = sizeof (struct T_opthdr) +
5637 			    sizeof (uint_t);
5638 			toh->status = 0;
5639 			dstopt += sizeof (struct T_opthdr);
5640 			dstptr = (uint_t *)dstopt;
5641 			*dstptr = pinfo->ip_pkt_ifindex;
5642 			dstopt += sizeof (uint_t);
5643 			udi_size -= toh->len;
5644 		}
5645 
5646 		if (cr != NULL) {
5647 			struct T_opthdr *toh;
5648 
5649 			toh = (struct T_opthdr *)dstopt;
5650 			toh->level = SOL_SOCKET;
5651 			toh->name = SCM_UCRED;
5652 			toh->len = sizeof (struct T_opthdr) + ucredsize;
5653 			toh->status = 0;
5654 			(void) cred2ucred(cr, cpid, &toh[1], rcr);
5655 			dstopt += toh->len;
5656 			udi_size -= toh->len;
5657 		}
5658 
5659 		if (udp->udp_recvttl) {
5660 			struct	T_opthdr *toh;
5661 			uint8_t	*dstptr;
5662 
5663 			toh = (struct T_opthdr *)dstopt;
5664 			toh->level = IPPROTO_IP;
5665 			toh->name = IP_RECVTTL;
5666 			toh->len = sizeof (struct T_opthdr) +
5667 			    sizeof (uint8_t);
5668 			toh->status = 0;
5669 			dstopt += sizeof (struct T_opthdr);
5670 			dstptr = (uint8_t *)dstopt;
5671 			*dstptr = ((ipha_t *)rptr)->ipha_ttl;
5672 			dstopt += sizeof (uint8_t);
5673 			udi_size -= toh->len;
5674 		}
5675 
5676 		ASSERT(udi_size == 0);	/* "Consumed" all of allocated space */
5677 	}
5678 	BUMP_MIB(&udp->udp_mib, udpHCInDatagrams);
5679 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5680 	    "udp_rput_other_end: q %p (%S)", q, "end");
5681 	if (options_mp != NULL)
5682 		freeb(options_mp);
5683 
5684 	if (udp->udp_direct_sockfs) {
5685 		/*
5686 		 * There is nothing above us except for the stream head;
5687 		 * use the read-side synchronous stream interface in
5688 		 * order to reduce the time spent in interrupt thread.
5689 		 */
5690 		ASSERT(udp->udp_issocket);
5691 		udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp));
5692 	} else {
5693 		/*
5694 		 * Use regular STREAMS interface to pass data upstream
5695 		 * if this is not a socket endpoint, or if we have
5696 		 * switched over to the slow mode due to sockmod being
5697 		 * popped or a module being pushed on top of us.
5698 		 */
5699 		putnext(UDP_RD(q), mp);
5700 	}
5701 }
5702 
5703 /* ARGSUSED */
5704 static void
5705 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
5706 {
5707 	conn_t *connp = arg;
5708 
5709 	udp_rput_other(connp->conn_rq, mp);
5710 	udp_exit(connp);
5711 }
5712 
5713 /*
5714  * Process a T_BIND_ACK
5715  */
5716 static void
5717 udp_rput_bind_ack(queue_t *q, mblk_t *mp)
5718 {
5719 	udp_t	*udp = Q_TO_UDP(q);
5720 	mblk_t	*mp1;
5721 	ire_t	*ire;
5722 	struct T_bind_ack *tba;
5723 	uchar_t *addrp;
5724 	ipa_conn_t	*ac;
5725 	ipa6_conn_t	*ac6;
5726 
5727 	if (udp->udp_discon_pending)
5728 		udp->udp_discon_pending = 0;
5729 
5730 	/*
5731 	 * If a broadcast/multicast address was bound set
5732 	 * the source address to 0.
5733 	 * This ensures no datagrams with broadcast address
5734 	 * as source address are emitted (which would violate
5735 	 * RFC1122 - Hosts requirements)
5736 	 *
5737 	 * Note that when connecting the returned IRE is
5738 	 * for the destination address and we only perform
5739 	 * the broadcast check for the source address (it
5740 	 * is OK to connect to a broadcast/multicast address.)
5741 	 */
5742 	mp1 = mp->b_cont;
5743 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5744 		ire = (ire_t *)mp1->b_rptr;
5745 
5746 		/*
5747 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5748 		 * local address.
5749 		 */
5750 		if (ire->ire_type == IRE_BROADCAST &&
5751 		    udp->udp_state != TS_DATA_XFER) {
5752 			/* This was just a local bind to a broadcast addr */
5753 			V6_SET_ZERO(udp->udp_v6src);
5754 			if (udp->udp_family == AF_INET6)
5755 				(void) udp_build_hdrs(q, udp);
5756 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5757 			/*
5758 			 * Local address not yet set - pick it from the
5759 			 * T_bind_ack
5760 			 */
5761 			tba = (struct T_bind_ack *)mp->b_rptr;
5762 			addrp = &mp->b_rptr[tba->ADDR_offset];
5763 			switch (udp->udp_family) {
5764 			case AF_INET:
5765 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5766 					ac = (ipa_conn_t *)addrp;
5767 				} else {
5768 					ASSERT(tba->ADDR_length ==
5769 					    sizeof (ipa_conn_x_t));
5770 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5771 				}
5772 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5773 				    &udp->udp_v6src);
5774 				break;
5775 			case AF_INET6:
5776 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5777 					ac6 = (ipa6_conn_t *)addrp;
5778 				} else {
5779 					ASSERT(tba->ADDR_length ==
5780 					    sizeof (ipa6_conn_x_t));
5781 					ac6 = &((ipa6_conn_x_t *)
5782 					    addrp)->ac6x_conn;
5783 				}
5784 				udp->udp_v6src = ac6->ac6_laddr;
5785 				(void) udp_build_hdrs(q, udp);
5786 				break;
5787 			}
5788 		}
5789 		mp1 = mp1->b_cont;
5790 	}
5791 	/*
5792 	 * Look for one or more appended ACK message added by
5793 	 * udp_connect or udp_disconnect.
5794 	 * If none found just send up the T_BIND_ACK.
5795 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5796 	 * udp_disconnect has appended a T_OK_ACK.
5797 	 */
5798 	if (mp1 != NULL) {
5799 		if (mp->b_cont == mp1)
5800 			mp->b_cont = NULL;
5801 		else {
5802 			ASSERT(mp->b_cont->b_cont == mp1);
5803 			mp->b_cont->b_cont = NULL;
5804 		}
5805 		freemsg(mp);
5806 		mp = mp1;
5807 		while (mp != NULL) {
5808 			mp1 = mp->b_cont;
5809 			mp->b_cont = NULL;
5810 			putnext(UDP_RD(q), mp);
5811 			mp = mp1;
5812 		}
5813 		return;
5814 	}
5815 	freemsg(mp->b_cont);
5816 	mp->b_cont = NULL;
5817 	putnext(UDP_RD(q), mp);
5818 }
5819 
5820 /*
5821  * return SNMP stuff in buffer in mpdata
5822  */
5823 int
5824 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5825 {
5826 	mblk_t			*mpdata;
5827 	mblk_t			*mp_conn_ctl;
5828 	mblk_t			*mp_attr_ctl;
5829 	mblk_t			*mp6_conn_ctl;
5830 	mblk_t			*mp6_attr_ctl;
5831 	mblk_t			*mp_conn_tail;
5832 	mblk_t			*mp_attr_tail;
5833 	mblk_t			*mp6_conn_tail;
5834 	mblk_t			*mp6_attr_tail;
5835 	struct opthdr		*optp;
5836 	mib2_udpEntry_t		ude;
5837 	mib2_udp6Entry_t	ude6;
5838 	mib2_transportMLPEntry_t mlp;
5839 	int			state;
5840 	zoneid_t		zoneid;
5841 	int			i;
5842 	connf_t			*connfp;
5843 	conn_t			*connp = Q_TO_CONN(q);
5844 	udp_t			*udp = connp->conn_udp;
5845 	int			v4_conn_idx;
5846 	int			v6_conn_idx;
5847 	boolean_t		needattr;
5848 	ip_stack_t		*ipst = connp->conn_netstack->netstack_ip;
5849 
5850 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5851 	if (mpctl == NULL ||
5852 	    (mpdata = mpctl->b_cont) == NULL ||
5853 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5854 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5855 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5856 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5857 		freemsg(mp_conn_ctl);
5858 		freemsg(mp_attr_ctl);
5859 		freemsg(mp6_conn_ctl);
5860 		return (0);
5861 	}
5862 
5863 	zoneid = connp->conn_zoneid;
5864 
5865 	/* fixed length structure for IPv4 and IPv6 counters */
5866 	SET_MIB(udp->udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5867 	SET_MIB(udp->udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5868 	/* synchronize 64- and 32-bit counters */
5869 	SYNC32_MIB(&udp->udp_mib, udpInDatagrams, udpHCInDatagrams);
5870 	SYNC32_MIB(&udp->udp_mib, udpOutDatagrams, udpHCOutDatagrams);
5871 
5872 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5873 	optp->level = MIB2_UDP;
5874 	optp->name = 0;
5875 	(void) snmp_append_data(mpdata, (char *)&udp->udp_mib,
5876 	    sizeof (udp->udp_mib));
5877 	optp->len = msgdsize(mpdata);
5878 	qreply(q, mpctl);
5879 
5880 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5881 	v4_conn_idx = v6_conn_idx = 0;
5882 
5883 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5884 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5885 		connp = NULL;
5886 
5887 		while ((connp = ipcl_get_next_conn(connfp, connp,
5888 		    IPCL_UDP))) {
5889 			udp = connp->conn_udp;
5890 			if (zoneid != connp->conn_zoneid)
5891 				continue;
5892 
5893 			/*
5894 			 * Note that the port numbers are sent in
5895 			 * host byte order
5896 			 */
5897 
5898 			if (udp->udp_state == TS_UNBND)
5899 				state = MIB2_UDP_unbound;
5900 			else if (udp->udp_state == TS_IDLE)
5901 				state = MIB2_UDP_idle;
5902 			else if (udp->udp_state == TS_DATA_XFER)
5903 				state = MIB2_UDP_connected;
5904 			else
5905 				state = MIB2_UDP_unknown;
5906 
5907 			needattr = B_FALSE;
5908 			bzero(&mlp, sizeof (mlp));
5909 			if (connp->conn_mlp_type != mlptSingle) {
5910 				if (connp->conn_mlp_type == mlptShared ||
5911 				    connp->conn_mlp_type == mlptBoth)
5912 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5913 				if (connp->conn_mlp_type == mlptPrivate ||
5914 				    connp->conn_mlp_type == mlptBoth)
5915 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5916 				needattr = B_TRUE;
5917 			}
5918 
5919 			/*
5920 			 * Create an IPv4 table entry for IPv4 entries and also
5921 			 * any IPv6 entries which are bound to in6addr_any
5922 			 * (i.e. anything a IPv4 peer could connect/send to).
5923 			 */
5924 			if (udp->udp_ipversion == IPV4_VERSION ||
5925 			    (udp->udp_state <= TS_IDLE &&
5926 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5927 				ude.udpEntryInfo.ue_state = state;
5928 				/*
5929 				 * If in6addr_any this will set it to
5930 				 * INADDR_ANY
5931 				 */
5932 				ude.udpLocalAddress =
5933 				    V4_PART_OF_V6(udp->udp_v6src);
5934 				ude.udpLocalPort = ntohs(udp->udp_port);
5935 				if (udp->udp_state == TS_DATA_XFER) {
5936 					/*
5937 					 * Can potentially get here for
5938 					 * v6 socket if another process
5939 					 * (say, ping) has just done a
5940 					 * sendto(), changing the state
5941 					 * from the TS_IDLE above to
5942 					 * TS_DATA_XFER by the time we hit
5943 					 * this part of the code.
5944 					 */
5945 					ude.udpEntryInfo.ue_RemoteAddress =
5946 					    V4_PART_OF_V6(udp->udp_v6dst);
5947 					ude.udpEntryInfo.ue_RemotePort =
5948 					    ntohs(udp->udp_dstport);
5949 				} else {
5950 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5951 					ude.udpEntryInfo.ue_RemotePort = 0;
5952 				}
5953 
5954 				/*
5955 				 * We make the assumption that all udp_t
5956 				 * structs will be created within an address
5957 				 * region no larger than 32-bits.
5958 				 */
5959 				ude.udpInstance = (uint32_t)(uintptr_t)udp;
5960 				ude.udpCreationProcess =
5961 				    (udp->udp_open_pid < 0) ?
5962 				    MIB2_UNKNOWN_PROCESS :
5963 				    udp->udp_open_pid;
5964 				ude.udpCreationTime = udp->udp_open_time;
5965 
5966 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5967 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5968 				mlp.tme_connidx = v4_conn_idx++;
5969 				if (needattr)
5970 					(void) snmp_append_data2(
5971 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5972 					    (char *)&mlp, sizeof (mlp));
5973 			}
5974 			if (udp->udp_ipversion == IPV6_VERSION) {
5975 				ude6.udp6EntryInfo.ue_state  = state;
5976 				ude6.udp6LocalAddress = udp->udp_v6src;
5977 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5978 				ude6.udp6IfIndex = udp->udp_bound_if;
5979 				if (udp->udp_state == TS_DATA_XFER) {
5980 					ude6.udp6EntryInfo.ue_RemoteAddress =
5981 					    udp->udp_v6dst;
5982 					ude6.udp6EntryInfo.ue_RemotePort =
5983 					    ntohs(udp->udp_dstport);
5984 				} else {
5985 					ude6.udp6EntryInfo.ue_RemoteAddress =
5986 					    sin6_null.sin6_addr;
5987 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5988 				}
5989 				/*
5990 				 * We make the assumption that all udp_t
5991 				 * structs will be created within an address
5992 				 * region no larger than 32-bits.
5993 				 */
5994 				ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
5995 				ude6.udp6CreationProcess =
5996 				    (udp->udp_open_pid < 0) ?
5997 				    MIB2_UNKNOWN_PROCESS :
5998 				    udp->udp_open_pid;
5999 				ude6.udp6CreationTime = udp->udp_open_time;
6000 
6001 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
6002 				    &mp6_conn_tail, (char *)&ude6,
6003 				    sizeof (ude6));
6004 				mlp.tme_connidx = v6_conn_idx++;
6005 				if (needattr)
6006 					(void) snmp_append_data2(
6007 					    mp6_attr_ctl->b_cont,
6008 					    &mp6_attr_tail, (char *)&mlp,
6009 					    sizeof (mlp));
6010 			}
6011 		}
6012 	}
6013 
6014 	/* IPv4 UDP endpoints */
6015 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
6016 	    sizeof (struct T_optmgmt_ack)];
6017 	optp->level = MIB2_UDP;
6018 	optp->name = MIB2_UDP_ENTRY;
6019 	optp->len = msgdsize(mp_conn_ctl->b_cont);
6020 	qreply(q, mp_conn_ctl);
6021 
6022 	/* table of MLP attributes... */
6023 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
6024 	    sizeof (struct T_optmgmt_ack)];
6025 	optp->level = MIB2_UDP;
6026 	optp->name = EXPER_XPORT_MLP;
6027 	optp->len = msgdsize(mp_attr_ctl->b_cont);
6028 	if (optp->len == 0)
6029 		freemsg(mp_attr_ctl);
6030 	else
6031 		qreply(q, mp_attr_ctl);
6032 
6033 	/* IPv6 UDP endpoints */
6034 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
6035 	    sizeof (struct T_optmgmt_ack)];
6036 	optp->level = MIB2_UDP6;
6037 	optp->name = MIB2_UDP6_ENTRY;
6038 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
6039 	qreply(q, mp6_conn_ctl);
6040 
6041 	/* table of MLP attributes... */
6042 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
6043 	    sizeof (struct T_optmgmt_ack)];
6044 	optp->level = MIB2_UDP6;
6045 	optp->name = EXPER_XPORT_MLP;
6046 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
6047 	if (optp->len == 0)
6048 		freemsg(mp6_attr_ctl);
6049 	else
6050 		qreply(q, mp6_attr_ctl);
6051 
6052 	return (1);
6053 }
6054 
6055 /*
6056  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
6057  * NOTE: Per MIB-II, UDP has no writable data.
6058  * TODO:  If this ever actually tries to set anything, it needs to be
6059  * to do the appropriate locking.
6060  */
6061 /* ARGSUSED */
6062 int
6063 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
6064     uchar_t *ptr, int len)
6065 {
6066 	switch (level) {
6067 	case MIB2_UDP:
6068 		return (0);
6069 	default:
6070 		return (1);
6071 	}
6072 }
6073 
6074 static void
6075 udp_report_item(mblk_t *mp, udp_t *udp)
6076 {
6077 	char *state;
6078 	char addrbuf1[INET6_ADDRSTRLEN];
6079 	char addrbuf2[INET6_ADDRSTRLEN];
6080 	uint_t print_len, buf_len;
6081 
6082 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
6083 	ASSERT(buf_len >= 0);
6084 	if (buf_len == 0)
6085 		return;
6086 
6087 	if (udp->udp_state == TS_UNBND)
6088 		state = "UNBOUND";
6089 	else if (udp->udp_state == TS_IDLE)
6090 		state = "IDLE";
6091 	else if (udp->udp_state == TS_DATA_XFER)
6092 		state = "CONNECTED";
6093 	else
6094 		state = "UnkState";
6095 	print_len = snprintf((char *)mp->b_wptr, buf_len,
6096 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
6097 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
6098 	    inet_ntop(AF_INET6, &udp->udp_v6src,
6099 		addrbuf1, sizeof (addrbuf1)),
6100 	    inet_ntop(AF_INET6, &udp->udp_v6dst,
6101 		addrbuf2, sizeof (addrbuf2)),
6102 	    ntohs(udp->udp_dstport), state);
6103 	if (print_len < buf_len) {
6104 		mp->b_wptr += print_len;
6105 	} else {
6106 		mp->b_wptr += buf_len;
6107 	}
6108 }
6109 
6110 /* Report for ndd "udp_status" */
6111 /* ARGSUSED */
6112 static int
6113 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
6114 {
6115 	zoneid_t zoneid;
6116 	connf_t	*connfp;
6117 	conn_t	*connp = Q_TO_CONN(q);
6118 	udp_t	*udp = connp->conn_udp;
6119 	int	i;
6120 	udp_stack_t *us = udp->udp_us;
6121 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6122 
6123 	/*
6124 	 * Because of the ndd constraint, at most we can have 64K buffer
6125 	 * to put in all UDP info.  So to be more efficient, just
6126 	 * allocate a 64K buffer here, assuming we need that large buffer.
6127 	 * This may be a problem as any user can read udp_status.  Therefore
6128 	 * we limit the rate of doing this using us_ndd_get_info_interval.
6129 	 * This should be OK as normal users should not do this too often.
6130 	 */
6131 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
6132 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
6133 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
6134 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
6135 			return (0);
6136 		}
6137 	}
6138 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
6139 		/* The following may work even if we cannot get a large buf. */
6140 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
6141 		return (0);
6142 	}
6143 	(void) mi_mpprintf(mp,
6144 	    "UDP     " MI_COL_HDRPAD_STR
6145 	/*   12345678[89ABCDEF] */
6146 	    " zone lport src addr        dest addr       port  state");
6147 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
6148 
6149 	zoneid = connp->conn_zoneid;
6150 
6151 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
6152 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
6153 		connp = NULL;
6154 
6155 		while ((connp = ipcl_get_next_conn(connfp, connp,
6156 		    IPCL_UDP))) {
6157 			udp = connp->conn_udp;
6158 			if (zoneid != GLOBAL_ZONEID &&
6159 			    zoneid != connp->conn_zoneid)
6160 				continue;
6161 
6162 			udp_report_item(mp->b_cont, udp);
6163 		}
6164 	}
6165 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
6166 	return (0);
6167 }
6168 
6169 /*
6170  * This routine creates a T_UDERROR_IND message and passes it upstream.
6171  * The address and options are copied from the T_UNITDATA_REQ message
6172  * passed in mp.  This message is freed.
6173  */
6174 static void
6175 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
6176     t_scalar_t err)
6177 {
6178 	struct T_unitdata_req *tudr;
6179 	mblk_t	*mp1;
6180 	uchar_t	*optaddr;
6181 	t_scalar_t optlen;
6182 
6183 	if (DB_TYPE(mp) == M_DATA) {
6184 		ASSERT(destaddr != NULL && destlen != 0);
6185 		optaddr = NULL;
6186 		optlen = 0;
6187 	} else {
6188 		if ((mp->b_wptr < mp->b_rptr) ||
6189 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
6190 			goto done;
6191 		}
6192 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6193 		destaddr = mp->b_rptr + tudr->DEST_offset;
6194 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
6195 		    destaddr + tudr->DEST_length < mp->b_rptr ||
6196 		    destaddr + tudr->DEST_length > mp->b_wptr) {
6197 			goto done;
6198 		}
6199 		optaddr = mp->b_rptr + tudr->OPT_offset;
6200 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
6201 		    optaddr + tudr->OPT_length < mp->b_rptr ||
6202 		    optaddr + tudr->OPT_length > mp->b_wptr) {
6203 			goto done;
6204 		}
6205 		destlen = tudr->DEST_length;
6206 		optlen = tudr->OPT_length;
6207 	}
6208 
6209 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
6210 	    (char *)optaddr, optlen, err);
6211 	if (mp1 != NULL)
6212 		putnext(UDP_RD(q), mp1);
6213 
6214 done:
6215 	freemsg(mp);
6216 }
6217 
6218 /*
6219  * This routine removes a port number association from a stream.  It
6220  * is called by udp_wput to handle T_UNBIND_REQ messages.
6221  */
6222 static void
6223 udp_unbind(queue_t *q, mblk_t *mp)
6224 {
6225 	udp_t *udp = Q_TO_UDP(q);
6226 
6227 	/* If a bind has not been done, we can't unbind. */
6228 	if (udp->udp_state == TS_UNBND) {
6229 		udp_err_ack(q, mp, TOUTSTATE, 0);
6230 		return;
6231 	}
6232 	if (cl_inet_unbind != NULL) {
6233 		/*
6234 		 * Running in cluster mode - register unbind information
6235 		 */
6236 		if (udp->udp_ipversion == IPV4_VERSION) {
6237 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
6238 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
6239 			    (in_port_t)udp->udp_port);
6240 		} else {
6241 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
6242 			    (uint8_t *)&(udp->udp_v6src),
6243 			    (in_port_t)udp->udp_port);
6244 		}
6245 	}
6246 
6247 	udp_bind_hash_remove(udp, B_FALSE);
6248 	V6_SET_ZERO(udp->udp_v6src);
6249 	V6_SET_ZERO(udp->udp_bound_v6src);
6250 	udp->udp_port = 0;
6251 	udp->udp_state = TS_UNBND;
6252 
6253 	if (udp->udp_family == AF_INET6) {
6254 		int error;
6255 
6256 		/* Rebuild the header template */
6257 		error = udp_build_hdrs(q, udp);
6258 		if (error != 0) {
6259 			udp_err_ack(q, mp, TSYSERR, error);
6260 			return;
6261 		}
6262 	}
6263 	/*
6264 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
6265 	 * and therefore ip_unbind must never return NULL.
6266 	 */
6267 	mp = ip_unbind(q, mp);
6268 	ASSERT(mp != NULL);
6269 	putnext(UDP_RD(q), mp);
6270 }
6271 
6272 /*
6273  * Don't let port fall into the privileged range.
6274  * Since the extra privileged ports can be arbitrary we also
6275  * ensure that we exclude those from consideration.
6276  * us->us_epriv_ports is not sorted thus we loop over it until
6277  * there are no changes.
6278  */
6279 static in_port_t
6280 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
6281 {
6282 	int i;
6283 	in_port_t nextport;
6284 	boolean_t restart = B_FALSE;
6285 	udp_stack_t *us = udp->udp_us;
6286 
6287 	if (random && udp_random_anon_port != 0) {
6288 		(void) random_get_pseudo_bytes((uint8_t *)&port,
6289 		    sizeof (in_port_t));
6290 		/*
6291 		 * Unless changed by a sys admin, the smallest anon port
6292 		 * is 32768 and the largest anon port is 65535.  It is
6293 		 * very likely (50%) for the random port to be smaller
6294 		 * than the smallest anon port.  When that happens,
6295 		 * add port % (anon port range) to the smallest anon
6296 		 * port to get the random port.  It should fall into the
6297 		 * valid anon port range.
6298 		 */
6299 		if (port < us->us_smallest_anon_port) {
6300 			port = us->us_smallest_anon_port +
6301 			    port % (us->us_largest_anon_port -
6302 			    us->us_smallest_anon_port);
6303 		}
6304 	}
6305 
6306 retry:
6307 	if (port < us->us_smallest_anon_port)
6308 		port = us->us_smallest_anon_port;
6309 
6310 	if (port > us->us_largest_anon_port) {
6311 		port = us->us_smallest_anon_port;
6312 		if (restart)
6313 			return (0);
6314 		restart = B_TRUE;
6315 	}
6316 
6317 	if (port < us->us_smallest_nonpriv_port)
6318 		port = us->us_smallest_nonpriv_port;
6319 
6320 	for (i = 0; i < us->us_num_epriv_ports; i++) {
6321 		if (port == us->us_epriv_ports[i]) {
6322 			port++;
6323 			/*
6324 			 * Make sure that the port is in the
6325 			 * valid range.
6326 			 */
6327 			goto retry;
6328 		}
6329 	}
6330 
6331 	if (is_system_labeled() &&
6332 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
6333 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
6334 		port = nextport;
6335 		goto retry;
6336 	}
6337 
6338 	return (port);
6339 }
6340 
6341 static int
6342 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
6343 {
6344 	int err;
6345 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
6346 	udp_t *udp = Q_TO_UDP(wq);
6347 
6348 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
6349 	    opt_storage, udp->udp_mac_exempt,
6350 	    udp->udp_us->us_netstack->netstack_ip);
6351 	if (err == 0) {
6352 		err = tsol_update_options(&udp->udp_ip_snd_options,
6353 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
6354 		    opt_storage);
6355 	}
6356 	if (err != 0) {
6357 		DTRACE_PROBE4(
6358 		    tx__ip__log__info__updatelabel__udp,
6359 		    char *, "queue(1) failed to update options(2) on mp(3)",
6360 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6361 	} else {
6362 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
6363 	}
6364 	return (err);
6365 }
6366 
6367 static mblk_t *
6368 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
6369     uint_t srcid, int *error)
6370 {
6371 	udp_t	*udp = connp->conn_udp;
6372 	queue_t	*q = connp->conn_wq;
6373 	mblk_t	*mp1 = mp;
6374 	mblk_t	*mp2;
6375 	ipha_t	*ipha;
6376 	int	ip_hdr_length;
6377 	uint32_t ip_len;
6378 	udpha_t	*udpha;
6379 	udpattrs_t	attrs;
6380 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
6381 	uint32_t	ip_snd_opt_len = 0;
6382 	ip4_pkt_t  pktinfo;
6383 	ip4_pkt_t  *pktinfop = &pktinfo;
6384 	ip_opt_info_t optinfo;
6385 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6386 	udp_stack_t	*us = udp->udp_us;
6387 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6388 
6389 
6390 	*error = 0;
6391 	pktinfop->ip4_ill_index = 0;
6392 	pktinfop->ip4_addr = INADDR_ANY;
6393 	optinfo.ip_opt_flags = 0;
6394 	optinfo.ip_opt_ill_index = 0;
6395 
6396 	if (v4dst == INADDR_ANY)
6397 		v4dst = htonl(INADDR_LOOPBACK);
6398 
6399 	/*
6400 	 * If options passed in, feed it for verification and handling
6401 	 */
6402 	attrs.udpattr_credset = B_FALSE;
6403 	if (DB_TYPE(mp) != M_DATA) {
6404 		mp1 = mp->b_cont;
6405 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6406 			attrs.udpattr_ipp4 = pktinfop;
6407 			attrs.udpattr_mb = mp;
6408 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
6409 				goto done;
6410 			/*
6411 			 * Note: success in processing options.
6412 			 * mp option buffer represented by
6413 			 * OPT_length/offset now potentially modified
6414 			 * and contain option setting results
6415 			 */
6416 			ASSERT(*error == 0);
6417 		}
6418 	}
6419 
6420 	/* mp1 points to the M_DATA mblk carrying the packet */
6421 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6422 
6423 	/*
6424 	 * Check if our saved options are valid; update if not
6425 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6426 	 * to different destination may require different labels.
6427 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
6428 	 * and ip_snd_options_len are consistent for the current
6429 	 * destination and are updated atomically.
6430 	 */
6431 	mutex_enter(&connp->conn_lock);
6432 	if (is_system_labeled()) {
6433 		/* Using UDP MLP requires SCM_UCRED from user */
6434 		if (connp->conn_mlp_type != mlptSingle &&
6435 		    !attrs.udpattr_credset) {
6436 			mutex_exit(&connp->conn_lock);
6437 			DTRACE_PROBE4(
6438 			    tx__ip__log__info__output__udp,
6439 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6440 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6441 			*error = ECONNREFUSED;
6442 			goto done;
6443 		}
6444 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
6445 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst) &&
6446 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
6447 			mutex_exit(&connp->conn_lock);
6448 			goto done;
6449 		}
6450 	}
6451 	if (udp->udp_ip_snd_options_len > 0) {
6452 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
6453 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
6454 	}
6455 	mutex_exit(&connp->conn_lock);
6456 
6457 	/* Add an IP header */
6458 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len;
6459 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
6460 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
6461 	    !OK_32PTR(ipha)) {
6462 		mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO);
6463 		if (mp2 == NULL) {
6464 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6465 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
6466 			*error = ENOMEM;
6467 			goto done;
6468 		}
6469 		mp2->b_wptr = DB_LIM(mp2);
6470 		mp2->b_cont = mp1;
6471 		mp1 = mp2;
6472 		if (DB_TYPE(mp) != M_DATA)
6473 			mp->b_cont = mp1;
6474 		else
6475 			mp = mp1;
6476 
6477 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
6478 	}
6479 	ip_hdr_length -= UDPH_SIZE;
6480 #ifdef	_BIG_ENDIAN
6481 	/* Set version, header length, and tos */
6482 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6483 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
6484 		udp->udp_type_of_service);
6485 	/* Set ttl and protocol */
6486 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
6487 #else
6488 	/* Set version, header length, and tos */
6489 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6490 		((udp->udp_type_of_service << 8) |
6491 		    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
6492 	/* Set ttl and protocol */
6493 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
6494 #endif
6495 	if (pktinfop->ip4_addr != INADDR_ANY) {
6496 		ipha->ipha_src = pktinfop->ip4_addr;
6497 		optinfo.ip_opt_flags = IP_VERIFY_SRC;
6498 	} else {
6499 		/*
6500 		 * Copy our address into the packet.  If this is zero,
6501 		 * first look at __sin6_src_id for a hint. If we leave the
6502 		 * source as INADDR_ANY then ip will fill in the real source
6503 		 * address.
6504 		 */
6505 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
6506 		if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
6507 			in6_addr_t v6src;
6508 
6509 			ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid,
6510 			    us->us_netstack);
6511 			IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
6512 		}
6513 	}
6514 
6515 	if (pktinfop->ip4_ill_index != 0) {
6516 		optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index;
6517 	}
6518 
6519 	ipha->ipha_fragment_offset_and_flags = 0;
6520 	ipha->ipha_ident = 0;
6521 
6522 	mp1->b_rptr = (uchar_t *)ipha;
6523 
6524 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
6525 	    (uintptr_t)UINT_MAX);
6526 
6527 	/* Determine length of packet */
6528 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
6529 	if ((mp2 = mp1->b_cont) != NULL) {
6530 		do {
6531 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
6532 			ip_len += (uint32_t)MBLKL(mp2);
6533 		} while ((mp2 = mp2->b_cont) != NULL);
6534 	}
6535 	/*
6536 	 * If the size of the packet is greater than the maximum allowed by
6537 	 * ip, return an error. Passing this down could cause panics because
6538 	 * the size will have wrapped and be inconsistent with the msg size.
6539 	 */
6540 	if (ip_len > IP_MAXPACKET) {
6541 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6542 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
6543 		*error = EMSGSIZE;
6544 		goto done;
6545 	}
6546 	ipha->ipha_length = htons((uint16_t)ip_len);
6547 	ip_len -= ip_hdr_length;
6548 	ip_len = htons((uint16_t)ip_len);
6549 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
6550 
6551 	/*
6552 	 * Copy in the destination address
6553 	 */
6554 	ipha->ipha_dst = v4dst;
6555 
6556 	/*
6557 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
6558 	 */
6559 	if (CLASSD(v4dst))
6560 		ipha->ipha_ttl = udp->udp_multicast_ttl;
6561 
6562 	udpha->uha_dst_port = port;
6563 	udpha->uha_src_port = udp->udp_port;
6564 
6565 	if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) {
6566 		uint32_t	cksum;
6567 
6568 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
6569 		/*
6570 		 * Massage source route putting first source route in ipha_dst.
6571 		 * Ignore the destination in T_unitdata_req.
6572 		 * Create a checksum adjustment for a source route, if any.
6573 		 */
6574 		cksum = ip_massage_options(ipha, us->us_netstack);
6575 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6576 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
6577 		    (ipha->ipha_dst & 0xFFFF);
6578 		if ((int)cksum < 0)
6579 			cksum--;
6580 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6581 		/*
6582 		 * IP does the checksum if uha_checksum is non-zero,
6583 		 * We make it easy for IP to include our pseudo header
6584 		 * by putting our length in uha_checksum.
6585 		 */
6586 		cksum += ip_len;
6587 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6588 		/* There might be a carry. */
6589 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6590 #ifdef _LITTLE_ENDIAN
6591 		if (us->us_do_checksum)
6592 			ip_len = (cksum << 16) | ip_len;
6593 #else
6594 		if (us->us_do_checksum)
6595 			ip_len = (ip_len << 16) | cksum;
6596 		else
6597 			ip_len <<= 16;
6598 #endif
6599 	} else {
6600 		/*
6601 		 * IP does the checksum if uha_checksum is non-zero,
6602 		 * We make it easy for IP to include our pseudo header
6603 		 * by putting our length in uha_checksum.
6604 		 */
6605 		if (us->us_do_checksum)
6606 			ip_len |= (ip_len << 16);
6607 #ifndef _LITTLE_ENDIAN
6608 		else
6609 			ip_len <<= 16;
6610 #endif
6611 	}
6612 
6613 	/* Set UDP length and checksum */
6614 	*((uint32_t *)&udpha->uha_length) = ip_len;
6615 	if (DB_CRED(mp) != NULL)
6616 		mblk_setcred(mp1, DB_CRED(mp));
6617 
6618 	if (DB_TYPE(mp) != M_DATA) {
6619 		ASSERT(mp != mp1);
6620 		freeb(mp);
6621 	}
6622 
6623 	/* mp has been consumed and we'll return success */
6624 	ASSERT(*error == 0);
6625 	mp = NULL;
6626 
6627 	/* We're done.  Pass the packet to ip. */
6628 	BUMP_MIB(&udp->udp_mib, udpHCOutDatagrams);
6629 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6630 		"udp_wput_end: q %p (%S)", q, "end");
6631 
6632 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6633 	    CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) ||
6634 	    connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
6635 	    connp->conn_nofailover_ill != NULL ||
6636 	    connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 ||
6637 	    optinfo.ip_opt_ill_index != 0 ||
6638 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6639 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst) ||
6640 	    ipst->ips_ip_g_mrouter != NULL) {
6641 		UDP_STAT(us, udp_ip_send);
6642 		ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT,
6643 		    &optinfo);
6644 	} else {
6645 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6646 	}
6647 
6648 done:
6649 	if (*error != 0) {
6650 		ASSERT(mp != NULL);
6651 		BUMP_MIB(&udp->udp_mib, udpOutErrors);
6652 	}
6653 	return (mp);
6654 }
6655 
6656 static void
6657 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6658 {
6659 	conn_t	*connp = udp->udp_connp;
6660 	ipaddr_t src, dst;
6661 	ill_t	*ill;
6662 	ire_t	*ire;
6663 	ipif_t	*ipif = NULL;
6664 	mblk_t	*ire_fp_mp;
6665 	uint_t	ire_fp_mp_len;
6666 	uint16_t *up;
6667 	uint32_t cksum, hcksum_txflags;
6668 	queue_t	*dev_q;
6669 	boolean_t retry_caching;
6670 	udp_stack_t *us = udp->udp_us;
6671 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6672 
6673 	dst = ipha->ipha_dst;
6674 	src = ipha->ipha_src;
6675 	ASSERT(ipha->ipha_ident == 0);
6676 
6677 	if (CLASSD(dst)) {
6678 		int err;
6679 
6680 		ipif = conn_get_held_ipif(connp,
6681 		    &connp->conn_multicast_ipif, &err);
6682 
6683 		if (ipif == NULL || ipif->ipif_isv6 ||
6684 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6685 		    PHYI_LOOPBACK)) {
6686 			if (ipif != NULL)
6687 				ipif_refrele(ipif);
6688 			UDP_STAT(us, udp_ip_send);
6689 			ip_output(connp, mp, q, IP_WPUT);
6690 			return;
6691 		}
6692 	}
6693 
6694 	retry_caching = B_FALSE;
6695 	mutex_enter(&connp->conn_lock);
6696 	ire = connp->conn_ire_cache;
6697 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6698 
6699 	if (ire == NULL || ire->ire_addr != dst ||
6700 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6701 		retry_caching = B_TRUE;
6702 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6703 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6704 
6705 		ASSERT(ipif != NULL);
6706 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6707 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6708 			retry_caching = B_TRUE;
6709 	}
6710 
6711 	if (!retry_caching) {
6712 		ASSERT(ire != NULL);
6713 		IRE_REFHOLD(ire);
6714 		mutex_exit(&connp->conn_lock);
6715 	} else {
6716 		boolean_t cached = B_FALSE;
6717 
6718 		connp->conn_ire_cache = NULL;
6719 		mutex_exit(&connp->conn_lock);
6720 
6721 		/* Release the old ire */
6722 		if (ire != NULL) {
6723 			IRE_REFRELE_NOTR(ire);
6724 			ire = NULL;
6725 		}
6726 
6727 		if (CLASSD(dst)) {
6728 			ASSERT(ipif != NULL);
6729 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6730 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6731 			    MATCH_IRE_ILL_GROUP, ipst);
6732 		} else {
6733 			ASSERT(ipif == NULL);
6734 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6735 			    MBLK_GETLABEL(mp), ipst);
6736 		}
6737 
6738 		if (ire == NULL) {
6739 			if (ipif != NULL)
6740 				ipif_refrele(ipif);
6741 			UDP_STAT(us, udp_ire_null);
6742 			ip_output(connp, mp, q, IP_WPUT);
6743 			return;
6744 		}
6745 		IRE_REFHOLD_NOTR(ire);
6746 
6747 		mutex_enter(&connp->conn_lock);
6748 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) {
6749 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
6750 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6751 				connp->conn_ire_cache = ire;
6752 				cached = B_TRUE;
6753 			}
6754 			rw_exit(&ire->ire_bucket->irb_lock);
6755 		}
6756 		mutex_exit(&connp->conn_lock);
6757 
6758 		/*
6759 		 * We can continue to use the ire but since it was not
6760 		 * cached, we should drop the extra reference.
6761 		 */
6762 		if (!cached)
6763 			IRE_REFRELE_NOTR(ire);
6764 	}
6765 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6766 	ASSERT(!CLASSD(dst) || ipif != NULL);
6767 
6768 	/*
6769 	 * Check if we can take the fast-path.
6770 	 * Note that "incomplete" ire's (where the link-layer for next hop
6771 	 * is not resolved, or where the fast-path header in nce_fp_mp is not
6772 	 * available yet) are sent down the legacy (slow) path
6773 	 */
6774 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6775 	    (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) ||
6776 	    (ire->ire_max_frag < ntohs(ipha->ipha_length)) ||
6777 	    (connp->conn_nexthop_set) ||
6778 	    (ire->ire_nce == NULL) ||
6779 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
6780 	    ((ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp))) {
6781 		if (ipif != NULL)
6782 			ipif_refrele(ipif);
6783 		UDP_STAT(us, udp_ip_ire_send);
6784 		IRE_REFRELE(ire);
6785 		ip_output(connp, mp, q, IP_WPUT);
6786 		return;
6787 	}
6788 
6789 	ill = ire_to_ill(ire);
6790 	ASSERT(ill != NULL);
6791 
6792 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
6793 
6794 	dev_q = ire->ire_stq->q_next;
6795 	ASSERT(dev_q != NULL);
6796 	/*
6797 	 * If the service thread is already running, or if the driver
6798 	 * queue is currently flow-controlled, queue this packet.
6799 	 */
6800 	if ((q->q_first != NULL || connp->conn_draining) ||
6801 	    ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) {
6802 		if (ipst->ips_ip_output_queue) {
6803 			(void) putq(q, mp);
6804 		} else {
6805 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
6806 			freemsg(mp);
6807 		}
6808 		if (ipif != NULL)
6809 			ipif_refrele(ipif);
6810 		IRE_REFRELE(ire);
6811 		return;
6812 	}
6813 
6814 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6815 #ifndef _BIG_ENDIAN
6816 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6817 #endif
6818 
6819 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6820 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6821 			src = ipha->ipha_src = ipif->ipif_src_addr;
6822 		else
6823 			src = ipha->ipha_src = ire->ire_src_addr;
6824 	}
6825 
6826 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6827 		ASSERT(ill->ill_hcksum_capab != NULL);
6828 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6829 	} else {
6830 		hcksum_txflags = 0;
6831 	}
6832 
6833 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6834 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6835 
6836 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6837 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6838 	if (*up != 0) {
6839 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6840 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6841 		    ntohs(ipha->ipha_length), cksum);
6842 
6843 		/* Software checksum? */
6844 		if (DB_CKSUMFLAGS(mp) == 0) {
6845 			UDP_STAT(us, udp_out_sw_cksum);
6846 			UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes,
6847 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6848 		}
6849 	}
6850 
6851 	ipha->ipha_fragment_offset_and_flags |=
6852 	    (uint32_t)htons(ire->ire_frag_flag);
6853 
6854 	/* Calculate IP header checksum if hardware isn't capable */
6855 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6856 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6857 		    ((uint16_t *)ipha)[4]);
6858 	}
6859 
6860 	if (CLASSD(dst)) {
6861 		ilm_t *ilm;
6862 
6863 		ILM_WALKER_HOLD(ill);
6864 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6865 		ILM_WALKER_RELE(ill);
6866 		if (ilm != NULL) {
6867 			ip_multicast_loopback(q, ill, mp,
6868 			    connp->conn_multicast_loop ? 0 :
6869 			    IP_FF_NO_MCAST_LOOP, connp->conn_zoneid);
6870 		}
6871 
6872 		/* If multicast TTL is 0 then we are done */
6873 		if (ipha->ipha_ttl == 0) {
6874 			if (ipif != NULL)
6875 				ipif_refrele(ipif);
6876 			freemsg(mp);
6877 			IRE_REFRELE(ire);
6878 			return;
6879 		}
6880 	}
6881 
6882 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6883 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6884 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6885 
6886 	UPDATE_OB_PKT_COUNT(ire);
6887 	ire->ire_last_used_time = lbolt;
6888 
6889 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
6890 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
6891 	    ntohs(ipha->ipha_length));
6892 
6893 	if (ILL_DLS_CAPABLE(ill)) {
6894 		/*
6895 		 * Send the packet directly to DLD, where it may be queued
6896 		 * depending on the availability of transmit resources at
6897 		 * the media layer.
6898 		 */
6899 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
6900 	} else {
6901 		DTRACE_PROBE4(ip4__physical__out__start,
6902 		    ill_t *, NULL, ill_t *, ill,
6903 		    ipha_t *, ipha, mblk_t *, mp);
6904 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
6905 		    ipst->ips_ipv4firewall_physical_out,
6906 		    NULL, ill, ipha, mp, mp, ipst);
6907 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
6908 		if (mp != NULL)
6909 			putnext(ire->ire_stq, mp);
6910 	}
6911 
6912 	if (ipif != NULL)
6913 		ipif_refrele(ipif);
6914 	IRE_REFRELE(ire);
6915 }
6916 
6917 static boolean_t
6918 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6919 {
6920 	udp_t *udp = Q_TO_UDP(wq);
6921 	int err;
6922 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6923 
6924 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6925 	    dst, opt_storage, udp->udp_mac_exempt,
6926 	    udp->udp_us->us_netstack->netstack_ip);
6927 	if (err == 0) {
6928 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6929 		    &udp->udp_label_len_v6, opt_storage);
6930 	}
6931 	if (err != 0) {
6932 		DTRACE_PROBE4(
6933 		    tx__ip__log__drop__updatelabel__udp6,
6934 		    char *, "queue(1) failed to update options(2) on mp(3)",
6935 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6936 	} else {
6937 		udp->udp_v6lastdst = *dst;
6938 	}
6939 	return (err);
6940 }
6941 
6942 /*
6943  * This routine handles all messages passed downstream.  It either
6944  * consumes the message or passes it downstream; it never queues a
6945  * a message.
6946  */
6947 static void
6948 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6949 {
6950 	sin6_t		*sin6;
6951 	sin_t		*sin;
6952 	ipaddr_t	v4dst;
6953 	uint16_t	port;
6954 	uint_t		srcid;
6955 	queue_t		*q = connp->conn_wq;
6956 	udp_t		*udp = connp->conn_udp;
6957 	int		error = 0;
6958 	struct sockaddr_storage ss;
6959 	udp_stack_t *us = udp->udp_us;
6960 
6961 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6962 	    "udp_wput_start: connp %p mp %p", connp, mp);
6963 
6964 	/*
6965 	 * We directly handle several cases here: T_UNITDATA_REQ message
6966 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both
6967 	 * connected and non-connected socket.  The latter carries the
6968 	 * address structure along when this routine gets called.
6969 	 */
6970 	switch (DB_TYPE(mp)) {
6971 	case M_DATA:
6972 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6973 			if (!udp->udp_direct_sockfs ||
6974 			    addr == NULL || addrlen == 0) {
6975 				/* Not connected; address is required */
6976 				BUMP_MIB(&udp->udp_mib, udpOutErrors);
6977 				UDP_STAT(us, udp_out_err_notconn);
6978 				freemsg(mp);
6979 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6980 				    "udp_wput_end: connp %p (%S)", connp,
6981 				    "not-connected; address required");
6982 				return;
6983 			}
6984 			ASSERT(udp->udp_issocket);
6985 			UDP_DBGSTAT(us, udp_data_notconn);
6986 			/* Not connected; do some more checks below */
6987 			break;
6988 		}
6989 		/* M_DATA for connected socket */
6990 		UDP_DBGSTAT(us, udp_data_conn);
6991 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6992 
6993 		/* Initialize addr and addrlen as if they're passed in */
6994 		if (udp->udp_family == AF_INET) {
6995 			sin = (sin_t *)&ss;
6996 			sin->sin_family = AF_INET;
6997 			sin->sin_port = udp->udp_dstport;
6998 			sin->sin_addr.s_addr = v4dst;
6999 			addr = (struct sockaddr *)sin;
7000 			addrlen = sizeof (*sin);
7001 		} else {
7002 			sin6 = (sin6_t *)&ss;
7003 			sin6->sin6_family = AF_INET6;
7004 			sin6->sin6_port = udp->udp_dstport;
7005 			sin6->sin6_flowinfo = udp->udp_flowinfo;
7006 			sin6->sin6_addr = udp->udp_v6dst;
7007 			sin6->sin6_scope_id = 0;
7008 			sin6->__sin6_src_id = 0;
7009 			addr = (struct sockaddr *)sin6;
7010 			addrlen = sizeof (*sin6);
7011 		}
7012 
7013 		if (udp->udp_family == AF_INET ||
7014 		    IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) {
7015 			/*
7016 			 * Handle both AF_INET and AF_INET6; the latter
7017 			 * for IPV4 mapped destination addresses.  Note
7018 			 * here that both addr and addrlen point to the
7019 			 * corresponding struct depending on the address
7020 			 * family of the socket.
7021 			 */
7022 			mp = udp_output_v4(connp, mp, v4dst,
7023 			    udp->udp_dstport, 0, &error);
7024 		} else {
7025 			mp = udp_output_v6(connp, mp, sin6, &error);
7026 		}
7027 		if (error != 0) {
7028 			ASSERT(addr != NULL && addrlen != 0);
7029 			goto ud_error;
7030 		}
7031 		return;
7032 	case M_PROTO:
7033 	case M_PCPROTO: {
7034 		struct T_unitdata_req *tudr;
7035 
7036 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
7037 		tudr = (struct T_unitdata_req *)mp->b_rptr;
7038 
7039 		/* Handle valid T_UNITDATA_REQ here */
7040 		if (MBLKL(mp) >= sizeof (*tudr) &&
7041 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
7042 			if (mp->b_cont == NULL) {
7043 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7044 				    "udp_wput_end: q %p (%S)", q, "badaddr");
7045 				error = EPROTO;
7046 				goto ud_error;
7047 			}
7048 
7049 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
7050 			    tudr->DEST_length)) {
7051 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7052 				    "udp_wput_end: q %p (%S)", q, "badaddr");
7053 				error = EADDRNOTAVAIL;
7054 				goto ud_error;
7055 			}
7056 			/*
7057 			 * If a port has not been bound to the stream, fail.
7058 			 * This is not a problem when sockfs is directly
7059 			 * above us, because it will ensure that the socket
7060 			 * is first bound before allowing data to be sent.
7061 			 */
7062 			if (udp->udp_state == TS_UNBND) {
7063 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7064 				    "udp_wput_end: q %p (%S)", q, "outstate");
7065 				error = EPROTO;
7066 				goto ud_error;
7067 			}
7068 			addr = (struct sockaddr *)
7069 			    &mp->b_rptr[tudr->DEST_offset];
7070 			addrlen = tudr->DEST_length;
7071 			if (tudr->OPT_length != 0)
7072 				UDP_STAT(us, udp_out_opt);
7073 			break;
7074 		}
7075 		/* FALLTHRU */
7076 	}
7077 	default:
7078 		udp_become_writer(connp, mp, udp_wput_other_wrapper,
7079 		    SQTAG_UDP_OUTPUT);
7080 		return;
7081 	}
7082 	ASSERT(addr != NULL);
7083 
7084 	switch (udp->udp_family) {
7085 	case AF_INET6:
7086 		sin6 = (sin6_t *)addr;
7087 		if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) ||
7088 		    sin6->sin6_family != AF_INET6) {
7089 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7090 			    "udp_wput_end: q %p (%S)", q, "badaddr");
7091 			error = EADDRNOTAVAIL;
7092 			goto ud_error;
7093 		}
7094 
7095 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
7096 			/*
7097 			 * Destination is a non-IPv4-compatible IPv6 address.
7098 			 * Send out an IPv6 format packet.
7099 			 */
7100 			mp = udp_output_v6(connp, mp, sin6, &error);
7101 			if (error != 0)
7102 				goto ud_error;
7103 
7104 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7105 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
7106 			return;
7107 		}
7108 		/*
7109 		 * If the local address is not zero or a mapped address
7110 		 * return an error.  It would be possible to send an IPv4
7111 		 * packet but the response would never make it back to the
7112 		 * application since it is bound to a non-mapped address.
7113 		 */
7114 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
7115 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7116 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7117 			    "udp_wput_end: q %p (%S)", q, "badaddr");
7118 			error = EADDRNOTAVAIL;
7119 			goto ud_error;
7120 		}
7121 		/* Send IPv4 packet without modifying udp_ipversion */
7122 		/* Extract port and ipaddr */
7123 		port = sin6->sin6_port;
7124 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
7125 		srcid = sin6->__sin6_src_id;
7126 		break;
7127 
7128 	case AF_INET:
7129 		sin = (sin_t *)addr;
7130 		if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) ||
7131 		    sin->sin_family != AF_INET) {
7132 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7133 			    "udp_wput_end: q %p (%S)", q, "badaddr");
7134 			error = EADDRNOTAVAIL;
7135 			goto ud_error;
7136 		}
7137 		/* Extract port and ipaddr */
7138 		port = sin->sin_port;
7139 		v4dst = sin->sin_addr.s_addr;
7140 		srcid = 0;
7141 		break;
7142 	}
7143 
7144 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error);
7145 	if (error != 0) {
7146 ud_error:
7147 		UDP_STAT(us, udp_out_err_output);
7148 		ASSERT(mp != NULL);
7149 		/* mp is freed by the following routine */
7150 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
7151 		    (t_scalar_t)error);
7152 	}
7153 }
7154 
7155 /* ARGSUSED */
7156 static void
7157 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2)
7158 {
7159 	udp_output((conn_t *)arg, mp, NULL, 0);
7160 	_UDP_EXIT((conn_t *)arg);
7161 }
7162 
7163 static void
7164 udp_wput(queue_t *q, mblk_t *mp)
7165 {
7166 	_UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper,
7167 	    SQTAG_UDP_WPUT);
7168 }
7169 
7170 /*
7171  * Allocate and prepare a T_UNITDATA_REQ message.
7172  */
7173 static mblk_t *
7174 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen)
7175 {
7176 	struct T_unitdata_req *tudr;
7177 	mblk_t *mp;
7178 
7179 	mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED);
7180 	if (mp != NULL) {
7181 		mp->b_wptr += sizeof (*tudr) + addrlen;
7182 		DB_TYPE(mp) = M_PROTO;
7183 
7184 		tudr = (struct T_unitdata_req *)mp->b_rptr;
7185 		tudr->PRIM_type = T_UNITDATA_REQ;
7186 		tudr->DEST_length = addrlen;
7187 		tudr->DEST_offset = (t_scalar_t)sizeof (*tudr);
7188 		tudr->OPT_length = 0;
7189 		tudr->OPT_offset = 0;
7190 		bcopy(addr, tudr+1, addrlen);
7191 	}
7192 	return (mp);
7193 }
7194 
7195 /*
7196  * Entry point for sockfs when udp is in "direct sockfs" mode.  This mode
7197  * is valid when we are directly beneath the stream head, and thus sockfs
7198  * is able to bypass STREAMS and directly call us, passing along the sockaddr
7199  * structure without the cumbersome T_UNITDATA_REQ interface.  Note that
7200  * this is done for both connected and non-connected endpoint.
7201  */
7202 void
7203 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
7204 {
7205 	conn_t	*connp;
7206 	udp_t	*udp;
7207 	udp_stack_t *us;
7208 
7209 	q = UDP_WR(q);
7210 	connp = Q_TO_CONN(q);
7211 	udp = connp->conn_udp;
7212 	us = udp->udp_us;
7213 
7214 	/* udpsockfs should only send down M_DATA for this entry point */
7215 	ASSERT(DB_TYPE(mp) == M_DATA);
7216 
7217 	mutex_enter(&connp->conn_lock);
7218 	UDP_MODE_ASSERTIONS(udp, UDP_ENTER);
7219 
7220 	if (udp->udp_mode != UDP_MT_HOT) {
7221 		/*
7222 		 * We can't enter this conn right away because another
7223 		 * thread is currently executing as writer; therefore we
7224 		 * need to deposit the message into the squeue to be
7225 		 * drained later.  If a socket address is present, we
7226 		 * need to create a T_UNITDATA_REQ message as placeholder.
7227 		 */
7228 		if (addr != NULL && addrlen != 0) {
7229 			mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen);
7230 
7231 			if (tudr_mp == NULL) {
7232 				mutex_exit(&connp->conn_lock);
7233 				BUMP_MIB(&udp->udp_mib, udpOutErrors);
7234 				UDP_STAT(us, udp_out_err_tudr);
7235 				freemsg(mp);
7236 				return;
7237 			}
7238 			/* Tag the packet with T_UNITDATA_REQ */
7239 			tudr_mp->b_cont = mp;
7240 			mp = tudr_mp;
7241 		}
7242 		mutex_exit(&connp->conn_lock);
7243 		udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT);
7244 		return;
7245 	}
7246 
7247 	/* We can execute as reader right away. */
7248 	UDP_READERS_INCREF(udp);
7249 	mutex_exit(&connp->conn_lock);
7250 
7251 	udp_output(connp, mp, addr, addrlen);
7252 
7253 	udp_exit(connp);
7254 }
7255 
7256 /*
7257  * udp_output_v6():
7258  * Assumes that udp_wput did some sanity checking on the destination
7259  * address.
7260  */
7261 static mblk_t *
7262 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
7263 {
7264 	ip6_t		*ip6h;
7265 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
7266 	mblk_t		*mp1 = mp;
7267 	mblk_t		*mp2;
7268 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
7269 	size_t		ip_len;
7270 	udpha_t		*udph;
7271 	udp_t		*udp = connp->conn_udp;
7272 	queue_t		*q = connp->conn_wq;
7273 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
7274 	ip6_pkt_t	*ipp = &ipp_s;
7275 	ip6_pkt_t	*tipp;	/* temporary ipp */
7276 	uint32_t	csum = 0;
7277 	uint_t		ignore = 0;
7278 	uint_t		option_exists = 0, is_sticky = 0;
7279 	uint8_t		*cp;
7280 	uint8_t		*nxthdr_ptr;
7281 	in6_addr_t	ip6_dst;
7282 	udpattrs_t	attrs;
7283 	boolean_t	opt_present;
7284 	ip6_hbh_t	*hopoptsptr = NULL;
7285 	uint_t		hopoptslen = 0;
7286 	boolean_t	is_ancillary = B_FALSE;
7287 	udp_stack_t	*us = udp->udp_us;
7288 
7289 	*error = 0;
7290 
7291 	/*
7292 	 * If the local address is a mapped address return
7293 	 * an error.
7294 	 * It would be possible to send an IPv6 packet but the
7295 	 * response would never make it back to the application
7296 	 * since it is bound to a mapped address.
7297 	 */
7298 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
7299 		*error = EADDRNOTAVAIL;
7300 		goto done;
7301 	}
7302 
7303 	ipp->ipp_fields = 0;
7304 	ipp->ipp_sticky_ignored = 0;
7305 
7306 	/*
7307 	 * If TPI options passed in, feed it for verification and handling
7308 	 */
7309 	attrs.udpattr_credset = B_FALSE;
7310 	opt_present = B_FALSE;
7311 	if (DB_TYPE(mp) != M_DATA) {
7312 		mp1 = mp->b_cont;
7313 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
7314 			attrs.udpattr_ipp6 = ipp;
7315 			attrs.udpattr_mb = mp;
7316 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
7317 				goto done;
7318 			ASSERT(*error == 0);
7319 			opt_present = B_TRUE;
7320 		}
7321 	}
7322 	ignore = ipp->ipp_sticky_ignored;
7323 
7324 	/* mp1 points to the M_DATA mblk carrying the packet */
7325 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
7326 
7327 	if (sin6->sin6_scope_id != 0 &&
7328 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
7329 		/*
7330 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
7331 		 * option nor ancillary data.  It needs to be
7332 		 * explicitly set in options_exists.
7333 		 */
7334 		option_exists |= IPPF_SCOPE_ID;
7335 	}
7336 
7337 	/*
7338 	 * Compute the destination address
7339 	 */
7340 	ip6_dst = sin6->sin6_addr;
7341 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
7342 		ip6_dst = ipv6_loopback;
7343 
7344 	/*
7345 	 * If we're not going to the same destination as last time, then
7346 	 * recompute the label required.  This is done in a separate routine to
7347 	 * avoid blowing up our stack here.
7348 	 *
7349 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
7350 	 * to different destination may require different labels.
7351 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
7352 	 * and sticky ipp_hopoptslen are consistent for the current
7353 	 * destination and are updated atomically.
7354 	 */
7355 	mutex_enter(&connp->conn_lock);
7356 	if (is_system_labeled()) {
7357 		/* Using UDP MLP requires SCM_UCRED from user */
7358 		if (connp->conn_mlp_type != mlptSingle &&
7359 		    !attrs.udpattr_credset) {
7360 			DTRACE_PROBE4(
7361 			    tx__ip__log__info__output__udp6,
7362 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
7363 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
7364 			*error = ECONNREFUSED;
7365 			mutex_exit(&connp->conn_lock);
7366 			goto done;
7367 		}
7368 		if ((opt_present ||
7369 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst)) &&
7370 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
7371 			mutex_exit(&connp->conn_lock);
7372 			goto done;
7373 		}
7374 	}
7375 
7376 	/*
7377 	 * If there's a security label here, then we ignore any options the
7378 	 * user may try to set.  We keep the peer's label as a hidden sticky
7379 	 * option. We make a private copy of this label before releasing the
7380 	 * lock so that label is kept consistent with the destination addr.
7381 	 */
7382 	if (udp->udp_label_len_v6 > 0) {
7383 		ignore &= ~IPPF_HOPOPTS;
7384 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
7385 	}
7386 
7387 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
7388 		/* No sticky options nor ancillary data. */
7389 		mutex_exit(&connp->conn_lock);
7390 		goto no_options;
7391 	}
7392 
7393 	/*
7394 	 * Go through the options figuring out where each is going to
7395 	 * come from and build two masks.  The first mask indicates if
7396 	 * the option exists at all.  The second mask indicates if the
7397 	 * option is sticky or ancillary.
7398 	 */
7399 	if (!(ignore & IPPF_HOPOPTS)) {
7400 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
7401 			option_exists |= IPPF_HOPOPTS;
7402 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
7403 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
7404 			option_exists |= IPPF_HOPOPTS;
7405 			is_sticky |= IPPF_HOPOPTS;
7406 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
7407 			hopoptsptr = kmem_alloc(
7408 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
7409 			if (hopoptsptr == NULL) {
7410 				*error = ENOMEM;
7411 				mutex_exit(&connp->conn_lock);
7412 				goto done;
7413 			}
7414 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
7415 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
7416 			    hopoptslen);
7417 			udp_ip_hdr_len += hopoptslen;
7418 		}
7419 	}
7420 	mutex_exit(&connp->conn_lock);
7421 
7422 	if (!(ignore & IPPF_RTHDR)) {
7423 		if (ipp->ipp_fields & IPPF_RTHDR) {
7424 			option_exists |= IPPF_RTHDR;
7425 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
7426 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
7427 			option_exists |= IPPF_RTHDR;
7428 			is_sticky |= IPPF_RTHDR;
7429 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
7430 		}
7431 	}
7432 
7433 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
7434 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
7435 			option_exists |= IPPF_RTDSTOPTS;
7436 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
7437 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
7438 			option_exists |= IPPF_RTDSTOPTS;
7439 			is_sticky |= IPPF_RTDSTOPTS;
7440 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
7441 		}
7442 	}
7443 
7444 	if (!(ignore & IPPF_DSTOPTS)) {
7445 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
7446 			option_exists |= IPPF_DSTOPTS;
7447 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
7448 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
7449 			option_exists |= IPPF_DSTOPTS;
7450 			is_sticky |= IPPF_DSTOPTS;
7451 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
7452 		}
7453 	}
7454 
7455 	if (!(ignore & IPPF_IFINDEX)) {
7456 		if (ipp->ipp_fields & IPPF_IFINDEX) {
7457 			option_exists |= IPPF_IFINDEX;
7458 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
7459 			option_exists |= IPPF_IFINDEX;
7460 			is_sticky |= IPPF_IFINDEX;
7461 		}
7462 	}
7463 
7464 	if (!(ignore & IPPF_ADDR)) {
7465 		if (ipp->ipp_fields & IPPF_ADDR) {
7466 			option_exists |= IPPF_ADDR;
7467 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
7468 			option_exists |= IPPF_ADDR;
7469 			is_sticky |= IPPF_ADDR;
7470 		}
7471 	}
7472 
7473 	if (!(ignore & IPPF_DONTFRAG)) {
7474 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
7475 			option_exists |= IPPF_DONTFRAG;
7476 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
7477 			option_exists |= IPPF_DONTFRAG;
7478 			is_sticky |= IPPF_DONTFRAG;
7479 		}
7480 	}
7481 
7482 	if (!(ignore & IPPF_USE_MIN_MTU)) {
7483 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
7484 			option_exists |= IPPF_USE_MIN_MTU;
7485 		} else if (udp->udp_sticky_ipp.ipp_fields &
7486 		    IPPF_USE_MIN_MTU) {
7487 			option_exists |= IPPF_USE_MIN_MTU;
7488 			is_sticky |= IPPF_USE_MIN_MTU;
7489 		}
7490 	}
7491 
7492 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
7493 		option_exists |= IPPF_HOPLIMIT;
7494 	/* IPV6_HOPLIMIT can never be sticky */
7495 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
7496 
7497 	if (!(ignore & IPPF_UNICAST_HOPS) &&
7498 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
7499 		option_exists |= IPPF_UNICAST_HOPS;
7500 		is_sticky |= IPPF_UNICAST_HOPS;
7501 	}
7502 
7503 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
7504 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
7505 		option_exists |= IPPF_MULTICAST_HOPS;
7506 		is_sticky |= IPPF_MULTICAST_HOPS;
7507 	}
7508 
7509 	if (!(ignore & IPPF_TCLASS)) {
7510 		if (ipp->ipp_fields & IPPF_TCLASS) {
7511 			option_exists |= IPPF_TCLASS;
7512 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
7513 			option_exists |= IPPF_TCLASS;
7514 			is_sticky |= IPPF_TCLASS;
7515 		}
7516 	}
7517 
7518 	if (!(ignore & IPPF_NEXTHOP) &&
7519 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) {
7520 		option_exists |= IPPF_NEXTHOP;
7521 		is_sticky |= IPPF_NEXTHOP;
7522 	}
7523 
7524 no_options:
7525 
7526 	/*
7527 	 * If any options carried in the ip6i_t were specified, we
7528 	 * need to account for the ip6i_t in the data we'll be sending
7529 	 * down.
7530 	 */
7531 	if (option_exists & IPPF_HAS_IP6I)
7532 		udp_ip_hdr_len += sizeof (ip6i_t);
7533 
7534 	/* check/fix buffer config, setup pointers into it */
7535 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
7536 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
7537 	    !OK_32PTR(ip6h)) {
7538 		/* Try to get everything in a single mblk next time */
7539 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
7540 			udp->udp_max_hdr_len = udp_ip_hdr_len;
7541 			(void) mi_set_sth_wroff(UDP_RD(q),
7542 			    udp->udp_max_hdr_len + us->us_wroff_extra);
7543 		}
7544 		mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO);
7545 		if (mp2 == NULL) {
7546 			*error = ENOMEM;
7547 			goto done;
7548 		}
7549 		mp2->b_wptr = DB_LIM(mp2);
7550 		mp2->b_cont = mp1;
7551 		mp1 = mp2;
7552 		if (DB_TYPE(mp) != M_DATA)
7553 			mp->b_cont = mp1;
7554 		else
7555 			mp = mp1;
7556 
7557 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
7558 	}
7559 	mp1->b_rptr = (unsigned char *)ip6h;
7560 	ip6i = (ip6i_t *)ip6h;
7561 
7562 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
7563 	if (option_exists & IPPF_HAS_IP6I) {
7564 		ip6h = (ip6_t *)&ip6i[1];
7565 		ip6i->ip6i_flags = 0;
7566 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7567 
7568 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
7569 		if (option_exists & IPPF_SCOPE_ID) {
7570 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7571 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
7572 		} else if (option_exists & IPPF_IFINDEX) {
7573 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
7574 			ASSERT(tipp->ipp_ifindex != 0);
7575 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7576 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
7577 		}
7578 
7579 		if (option_exists & IPPF_ADDR) {
7580 			/*
7581 			 * Enable per-packet source address verification if
7582 			 * IPV6_PKTINFO specified the source address.
7583 			 * ip6_src is set in the transport's _wput function.
7584 			 */
7585 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
7586 		}
7587 
7588 		if (option_exists & IPPF_DONTFRAG) {
7589 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
7590 		}
7591 
7592 		if (option_exists & IPPF_USE_MIN_MTU) {
7593 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7594 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7595 		}
7596 
7597 		if (option_exists & IPPF_NEXTHOP) {
7598 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7599 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7600 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7601 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7602 		}
7603 
7604 		/*
7605 		 * tell IP this is an ip6i_t private header
7606 		 */
7607 		ip6i->ip6i_nxt = IPPROTO_RAW;
7608 	}
7609 
7610 	/* Initialize IPv6 header */
7611 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7612 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7613 
7614 	/* Set the hoplimit of the outgoing packet. */
7615 	if (option_exists & IPPF_HOPLIMIT) {
7616 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7617 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7618 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7619 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7620 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7621 		if (option_exists & IPPF_MULTICAST_HOPS)
7622 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7623 	} else {
7624 		ip6h->ip6_hops = udp->udp_ttl;
7625 		if (option_exists & IPPF_UNICAST_HOPS)
7626 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7627 	}
7628 
7629 	if (option_exists & IPPF_ADDR) {
7630 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7631 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7632 		ip6h->ip6_src = tipp->ipp_addr;
7633 	} else {
7634 		/*
7635 		 * The source address was not set using IPV6_PKTINFO.
7636 		 * First look at the bound source.
7637 		 * If unspecified fallback to __sin6_src_id.
7638 		 */
7639 		ip6h->ip6_src = udp->udp_v6src;
7640 		if (sin6->__sin6_src_id != 0 &&
7641 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7642 			ip_srcid_find_id(sin6->__sin6_src_id,
7643 			    &ip6h->ip6_src, connp->conn_zoneid,
7644 			    us->us_netstack);
7645 		}
7646 	}
7647 
7648 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7649 	cp = (uint8_t *)&ip6h[1];
7650 
7651 	/*
7652 	 * Here's where we have to start stringing together
7653 	 * any extension headers in the right order:
7654 	 * Hop-by-hop, destination, routing, and final destination opts.
7655 	 */
7656 	if (option_exists & IPPF_HOPOPTS) {
7657 		/* Hop-by-hop options */
7658 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7659 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7660 		if (hopoptslen == 0) {
7661 			hopoptsptr = tipp->ipp_hopopts;
7662 			hopoptslen = tipp->ipp_hopoptslen;
7663 			is_ancillary = B_TRUE;
7664 		}
7665 
7666 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7667 		nxthdr_ptr = &hbh->ip6h_nxt;
7668 
7669 		bcopy(hopoptsptr, cp, hopoptslen);
7670 		cp += hopoptslen;
7671 
7672 		if (hopoptsptr != NULL && !is_ancillary) {
7673 			kmem_free(hopoptsptr, hopoptslen);
7674 			hopoptsptr = NULL;
7675 			hopoptslen = 0;
7676 		}
7677 	}
7678 	/*
7679 	 * En-route destination options
7680 	 * Only do them if there's a routing header as well
7681 	 */
7682 	if (option_exists & IPPF_RTDSTOPTS) {
7683 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7684 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7685 
7686 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7687 		nxthdr_ptr = &dst->ip6d_nxt;
7688 
7689 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7690 		cp += tipp->ipp_rtdstoptslen;
7691 	}
7692 	/*
7693 	 * Routing header next
7694 	 */
7695 	if (option_exists & IPPF_RTHDR) {
7696 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7697 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7698 
7699 		*nxthdr_ptr = IPPROTO_ROUTING;
7700 		nxthdr_ptr = &rt->ip6r_nxt;
7701 
7702 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7703 		cp += tipp->ipp_rthdrlen;
7704 	}
7705 	/*
7706 	 * Do ultimate destination options
7707 	 */
7708 	if (option_exists & IPPF_DSTOPTS) {
7709 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7710 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7711 
7712 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7713 		nxthdr_ptr = &dest->ip6d_nxt;
7714 
7715 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7716 		cp += tipp->ipp_dstoptslen;
7717 	}
7718 	/*
7719 	 * Now set the last header pointer to the proto passed in
7720 	 */
7721 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7722 	*nxthdr_ptr = IPPROTO_UDP;
7723 
7724 	/* Update UDP header */
7725 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7726 	udph->uha_dst_port = sin6->sin6_port;
7727 	udph->uha_src_port = udp->udp_port;
7728 
7729 	/*
7730 	 * Copy in the destination address
7731 	 */
7732 	ip6h->ip6_dst = ip6_dst;
7733 
7734 	ip6h->ip6_vcf =
7735 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7736 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7737 
7738 	if (option_exists & IPPF_TCLASS) {
7739 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7740 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7741 		    tipp->ipp_tclass);
7742 	}
7743 
7744 	if (option_exists & IPPF_RTHDR) {
7745 		ip6_rthdr_t	*rth;
7746 
7747 		/*
7748 		 * Perform any processing needed for source routing.
7749 		 * We know that all extension headers will be in the same mblk
7750 		 * as the IPv6 header.
7751 		 */
7752 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7753 		if (rth != NULL && rth->ip6r_segleft != 0) {
7754 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7755 				/*
7756 				 * Drop packet - only support Type 0 routing.
7757 				 * Notify the application as well.
7758 				 */
7759 				*error = EPROTO;
7760 				goto done;
7761 			}
7762 
7763 			/*
7764 			 * rth->ip6r_len is twice the number of
7765 			 * addresses in the header. Thus it must be even.
7766 			 */
7767 			if (rth->ip6r_len & 0x1) {
7768 				*error = EPROTO;
7769 				goto done;
7770 			}
7771 			/*
7772 			 * Shuffle the routing header and ip6_dst
7773 			 * addresses, and get the checksum difference
7774 			 * between the first hop (in ip6_dst) and
7775 			 * the destination (in the last routing hdr entry).
7776 			 */
7777 			csum = ip_massage_options_v6(ip6h, rth,
7778 			    us->us_netstack);
7779 			/*
7780 			 * Verify that the first hop isn't a mapped address.
7781 			 * Routers along the path need to do this verification
7782 			 * for subsequent hops.
7783 			 */
7784 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7785 				*error = EADDRNOTAVAIL;
7786 				goto done;
7787 			}
7788 
7789 			cp += (rth->ip6r_len + 1)*8;
7790 		}
7791 	}
7792 
7793 	/* count up length of UDP packet */
7794 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7795 	if ((mp2 = mp1->b_cont) != NULL) {
7796 		do {
7797 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7798 			ip_len += (uint32_t)MBLKL(mp2);
7799 		} while ((mp2 = mp2->b_cont) != NULL);
7800 	}
7801 
7802 	/*
7803 	 * If the size of the packet is greater than the maximum allowed by
7804 	 * ip, return an error. Passing this down could cause panics because
7805 	 * the size will have wrapped and be inconsistent with the msg size.
7806 	 */
7807 	if (ip_len > IP_MAXPACKET) {
7808 		*error = EMSGSIZE;
7809 		goto done;
7810 	}
7811 
7812 	/* Store the UDP length. Subtract length of extension hdrs */
7813 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7814 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7815 
7816 	/*
7817 	 * We make it easy for IP to include our pseudo header
7818 	 * by putting our length in uh_checksum, modified (if
7819 	 * we have a routing header) by the checksum difference
7820 	 * between the ultimate destination and first hop addresses.
7821 	 * Note: UDP over IPv6 must always checksum the packet.
7822 	 */
7823 	csum += udph->uha_length;
7824 	csum = (csum & 0xFFFF) + (csum >> 16);
7825 	udph->uha_checksum = (uint16_t)csum;
7826 
7827 #ifdef _LITTLE_ENDIAN
7828 	ip_len = htons(ip_len);
7829 #endif
7830 	ip6h->ip6_plen = ip_len;
7831 	if (DB_CRED(mp) != NULL)
7832 		mblk_setcred(mp1, DB_CRED(mp));
7833 
7834 	if (DB_TYPE(mp) != M_DATA) {
7835 		ASSERT(mp != mp1);
7836 		freeb(mp);
7837 	}
7838 
7839 	/* mp has been consumed and we'll return success */
7840 	ASSERT(*error == 0);
7841 	mp = NULL;
7842 
7843 	/* We're done. Pass the packet to IP */
7844 	BUMP_MIB(&udp->udp_mib, udpHCOutDatagrams);
7845 	ip_output_v6(connp, mp1, q, IP_WPUT);
7846 
7847 done:
7848 	if (hopoptsptr != NULL && !is_ancillary) {
7849 		kmem_free(hopoptsptr, hopoptslen);
7850 		hopoptsptr = NULL;
7851 	}
7852 	if (*error != 0) {
7853 		ASSERT(mp != NULL);
7854 		BUMP_MIB(&udp->udp_mib, udpOutErrors);
7855 	}
7856 	return (mp);
7857 }
7858 
7859 static void
7860 udp_wput_other(queue_t *q, mblk_t *mp)
7861 {
7862 	uchar_t	*rptr = mp->b_rptr;
7863 	struct datab *db;
7864 	struct iocblk *iocp;
7865 	cred_t	*cr;
7866 	conn_t	*connp = Q_TO_CONN(q);
7867 	udp_t	*udp = connp->conn_udp;
7868 	udp_stack_t *us;
7869 
7870 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7871 		"udp_wput_other_start: q %p", q);
7872 
7873 	us = udp->udp_us;
7874 	db = mp->b_datap;
7875 
7876 	cr = DB_CREDDEF(mp, connp->conn_cred);
7877 
7878 	switch (db->db_type) {
7879 	case M_PROTO:
7880 	case M_PCPROTO:
7881 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7882 			freemsg(mp);
7883 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7884 				"udp_wput_other_end: q %p (%S)",
7885 				q, "protoshort");
7886 			return;
7887 		}
7888 		switch (((t_primp_t)rptr)->type) {
7889 		case T_ADDR_REQ:
7890 			udp_addr_req(q, mp);
7891 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7892 				"udp_wput_other_end: q %p (%S)", q, "addrreq");
7893 			return;
7894 		case O_T_BIND_REQ:
7895 		case T_BIND_REQ:
7896 			udp_bind(q, mp);
7897 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7898 				"udp_wput_other_end: q %p (%S)", q, "bindreq");
7899 			return;
7900 		case T_CONN_REQ:
7901 			udp_connect(q, mp);
7902 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7903 				"udp_wput_other_end: q %p (%S)", q, "connreq");
7904 			return;
7905 		case T_CAPABILITY_REQ:
7906 			udp_capability_req(q, mp);
7907 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7908 				"udp_wput_other_end: q %p (%S)", q, "capabreq");
7909 			return;
7910 		case T_INFO_REQ:
7911 			udp_info_req(q, mp);
7912 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7913 				"udp_wput_other_end: q %p (%S)", q, "inforeq");
7914 			return;
7915 		case T_UNITDATA_REQ:
7916 			/*
7917 			 * If a T_UNITDATA_REQ gets here, the address must
7918 			 * be bad.  Valid T_UNITDATA_REQs are handled
7919 			 * in udp_wput.
7920 			 */
7921 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7922 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7923 				"udp_wput_other_end: q %p (%S)",
7924 				q, "unitdatareq");
7925 			return;
7926 		case T_UNBIND_REQ:
7927 			udp_unbind(q, mp);
7928 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7929 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7930 			return;
7931 		case T_SVR4_OPTMGMT_REQ:
7932 			if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
7933 				/*
7934 				 * Use upper queue for option processing in
7935 				 * case the request is not handled at this
7936 				 * level and needs to be passed down to IP.
7937 				 */
7938 				(void) svr4_optcom_req(_WR(UDP_RD(q)),
7939 				    mp, cr, &udp_opt_obj);
7940 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7941 			    "udp_wput_other_end: q %p (%S)",
7942 			    q, "optmgmtreq");
7943 			return;
7944 
7945 		case T_OPTMGMT_REQ:
7946 			/*
7947 			 * Use upper queue for option processing in
7948 			 * case the request is not handled at this
7949 			 * level and needs to be passed down to IP.
7950 			 */
7951 			(void) tpi_optcom_req(_WR(UDP_RD(q)),
7952 			    mp, cr, &udp_opt_obj);
7953 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7954 				"udp_wput_other_end: q %p (%S)",
7955 				q, "optmgmtreq");
7956 			return;
7957 
7958 		case T_DISCON_REQ:
7959 			udp_disconnect(q, mp);
7960 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7961 				"udp_wput_other_end: q %p (%S)",
7962 				q, "disconreq");
7963 			return;
7964 
7965 		/* The following TPI message is not supported by udp. */
7966 		case O_T_CONN_RES:
7967 		case T_CONN_RES:
7968 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7969 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7970 				"udp_wput_other_end: q %p (%S)",
7971 				q, "connres/disconreq");
7972 			return;
7973 
7974 		/* The following 3 TPI messages are illegal for udp. */
7975 		case T_DATA_REQ:
7976 		case T_EXDATA_REQ:
7977 		case T_ORDREL_REQ:
7978 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7979 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7980 				"udp_wput_other_end: q %p (%S)",
7981 				q, "data/exdata/ordrel");
7982 			return;
7983 		default:
7984 			break;
7985 		}
7986 		break;
7987 	case M_FLUSH:
7988 		if (*rptr & FLUSHW)
7989 			flushq(q, FLUSHDATA);
7990 		break;
7991 	case M_IOCTL:
7992 		iocp = (struct iocblk *)mp->b_rptr;
7993 		switch (iocp->ioc_cmd) {
7994 		case TI_GETPEERNAME:
7995 			if (udp->udp_state != TS_DATA_XFER) {
7996 				/*
7997 				 * If a default destination address has not
7998 				 * been associated with the stream, then we
7999 				 * don't know the peer's name.
8000 				 */
8001 				iocp->ioc_error = ENOTCONN;
8002 				iocp->ioc_count = 0;
8003 				mp->b_datap->db_type = M_IOCACK;
8004 				putnext(UDP_RD(q), mp);
8005 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8006 					"udp_wput_other_end: q %p (%S)",
8007 					q, "getpeername");
8008 				return;
8009 			}
8010 			/* FALLTHRU */
8011 		case TI_GETMYNAME: {
8012 			/*
8013 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
8014 			 * need to copyin the user's strbuf structure.
8015 			 * Processing will continue in the M_IOCDATA case
8016 			 * below.
8017 			 */
8018 			mi_copyin(q, mp, NULL,
8019 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
8020 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8021 				"udp_wput_other_end: q %p (%S)",
8022 				q, "getmyname");
8023 			return;
8024 			}
8025 		case ND_SET:
8026 			/* nd_getset performs the necessary checking */
8027 		case ND_GET:
8028 			if (nd_getset(q, us->us_nd, mp)) {
8029 				putnext(UDP_RD(q), mp);
8030 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8031 					"udp_wput_other_end: q %p (%S)",
8032 					q, "get");
8033 				return;
8034 			}
8035 			break;
8036 		case _SIOCSOCKFALLBACK:
8037 			/*
8038 			 * Either sockmod is about to be popped and the
8039 			 * socket would now be treated as a plain stream,
8040 			 * or a module is about to be pushed so we could
8041 			 * no longer use read-side synchronous stream.
8042 			 * Drain any queued data and disable direct sockfs
8043 			 * interface from now on.
8044 			 */
8045 			if (!udp->udp_issocket) {
8046 				DB_TYPE(mp) = M_IOCNAK;
8047 				iocp->ioc_error = EINVAL;
8048 			} else {
8049 				udp->udp_issocket = B_FALSE;
8050 				if (udp->udp_direct_sockfs) {
8051 					/*
8052 					 * Disable read-side synchronous
8053 					 * stream interface and drain any
8054 					 * queued data.
8055 					 */
8056 					udp_rcv_drain(UDP_RD(q), udp,
8057 					    B_FALSE);
8058 					ASSERT(!udp->udp_direct_sockfs);
8059 					UDP_STAT(us, udp_sock_fallback);
8060 				}
8061 				DB_TYPE(mp) = M_IOCACK;
8062 				iocp->ioc_error = 0;
8063 			}
8064 			iocp->ioc_count = 0;
8065 			iocp->ioc_rval = 0;
8066 			putnext(UDP_RD(q), mp);
8067 			return;
8068 		default:
8069 			break;
8070 		}
8071 		break;
8072 	case M_IOCDATA:
8073 		udp_wput_iocdata(q, mp);
8074 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8075 			"udp_wput_other_end: q %p (%S)", q, "iocdata");
8076 		return;
8077 	default:
8078 		/* Unrecognized messages are passed through without change. */
8079 		break;
8080 	}
8081 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8082 		"udp_wput_other_end: q %p (%S)", q, "end");
8083 	ip_output(connp, mp, q, IP_WPUT);
8084 }
8085 
8086 /* ARGSUSED */
8087 static void
8088 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
8089 {
8090 	udp_wput_other(((conn_t *)arg)->conn_wq, mp);
8091 	udp_exit((conn_t *)arg);
8092 }
8093 
8094 /*
8095  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
8096  * messages.
8097  */
8098 static void
8099 udp_wput_iocdata(queue_t *q, mblk_t *mp)
8100 {
8101 	mblk_t	*mp1;
8102 	STRUCT_HANDLE(strbuf, sb);
8103 	uint16_t port;
8104 	in6_addr_t	v6addr;
8105 	ipaddr_t	v4addr;
8106 	uint32_t	flowinfo = 0;
8107 	int		addrlen;
8108 	udp_t		*udp = Q_TO_UDP(q);
8109 
8110 	/* Make sure it is one of ours. */
8111 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
8112 	case TI_GETMYNAME:
8113 	case TI_GETPEERNAME:
8114 		break;
8115 	default:
8116 		ip_output(udp->udp_connp, mp, q, IP_WPUT);
8117 		return;
8118 	}
8119 
8120 	q = WR(UDP_RD(q));
8121 	switch (mi_copy_state(q, mp, &mp1)) {
8122 	case -1:
8123 		return;
8124 	case MI_COPY_CASE(MI_COPY_IN, 1):
8125 		break;
8126 	case MI_COPY_CASE(MI_COPY_OUT, 1):
8127 		/*
8128 		 * The address has been copied out, so now
8129 		 * copyout the strbuf.
8130 		 */
8131 		mi_copyout(q, mp);
8132 		return;
8133 	case MI_COPY_CASE(MI_COPY_OUT, 2):
8134 		/*
8135 		 * The address and strbuf have been copied out.
8136 		 * We're done, so just acknowledge the original
8137 		 * M_IOCTL.
8138 		 */
8139 		mi_copy_done(q, mp, 0);
8140 		return;
8141 	default:
8142 		/*
8143 		 * Something strange has happened, so acknowledge
8144 		 * the original M_IOCTL with an EPROTO error.
8145 		 */
8146 		mi_copy_done(q, mp, EPROTO);
8147 		return;
8148 	}
8149 
8150 	/*
8151 	 * Now we have the strbuf structure for TI_GETMYNAME
8152 	 * and TI_GETPEERNAME.  Next we copyout the requested
8153 	 * address and then we'll copyout the strbuf.
8154 	 */
8155 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
8156 	    (void *)mp1->b_rptr);
8157 	if (udp->udp_family == AF_INET)
8158 		addrlen = sizeof (sin_t);
8159 	else
8160 		addrlen = sizeof (sin6_t);
8161 
8162 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
8163 		mi_copy_done(q, mp, EINVAL);
8164 		return;
8165 	}
8166 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
8167 	case TI_GETMYNAME:
8168 		if (udp->udp_family == AF_INET) {
8169 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
8170 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
8171 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
8172 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
8173 			} else {
8174 				/*
8175 				 * INADDR_ANY
8176 				 * udp_v6src is not set, we might be bound to
8177 				 * broadcast/multicast. Use udp_bound_v6src as
8178 				 * local address instead (that could
8179 				 * also still be INADDR_ANY)
8180 				 */
8181 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
8182 			}
8183 		} else {
8184 			/* udp->udp_family == AF_INET6 */
8185 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
8186 				v6addr = udp->udp_v6src;
8187 			} else {
8188 				/*
8189 				 * UNSPECIFIED
8190 				 * udp_v6src is not set, we might be bound to
8191 				 * broadcast/multicast. Use udp_bound_v6src as
8192 				 * local address instead (that could
8193 				 * also still be UNSPECIFIED)
8194 				 */
8195 				v6addr = udp->udp_bound_v6src;
8196 			}
8197 		}
8198 		port = udp->udp_port;
8199 		break;
8200 	case TI_GETPEERNAME:
8201 		if (udp->udp_state != TS_DATA_XFER) {
8202 			mi_copy_done(q, mp, ENOTCONN);
8203 			return;
8204 		}
8205 		if (udp->udp_family == AF_INET) {
8206 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
8207 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
8208 		} else {
8209 			/* udp->udp_family == AF_INET6) */
8210 			v6addr = udp->udp_v6dst;
8211 			flowinfo = udp->udp_flowinfo;
8212 		}
8213 		port = udp->udp_dstport;
8214 		break;
8215 	default:
8216 		mi_copy_done(q, mp, EPROTO);
8217 		return;
8218 	}
8219 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
8220 	if (!mp1)
8221 		return;
8222 
8223 	if (udp->udp_family == AF_INET) {
8224 		sin_t *sin;
8225 
8226 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
8227 		sin = (sin_t *)mp1->b_rptr;
8228 		mp1->b_wptr = (uchar_t *)&sin[1];
8229 		*sin = sin_null;
8230 		sin->sin_family = AF_INET;
8231 		sin->sin_addr.s_addr = v4addr;
8232 		sin->sin_port = port;
8233 	} else {
8234 		/* udp->udp_family == AF_INET6 */
8235 		sin6_t *sin6;
8236 
8237 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
8238 		sin6 = (sin6_t *)mp1->b_rptr;
8239 		mp1->b_wptr = (uchar_t *)&sin6[1];
8240 		*sin6 = sin6_null;
8241 		sin6->sin6_family = AF_INET6;
8242 		sin6->sin6_flowinfo = flowinfo;
8243 		sin6->sin6_addr = v6addr;
8244 		sin6->sin6_port = port;
8245 	}
8246 	/* Copy out the address */
8247 	mi_copyout(q, mp);
8248 }
8249 
8250 
8251 static int
8252 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
8253     udpattrs_t *udpattrs)
8254 {
8255 	struct T_unitdata_req *udreqp;
8256 	int is_absreq_failure;
8257 	cred_t *cr;
8258 	conn_t	*connp = Q_TO_CONN(q);
8259 
8260 	ASSERT(((t_primp_t)mp->b_rptr)->type);
8261 
8262 	cr = DB_CREDDEF(mp, connp->conn_cred);
8263 
8264 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
8265 
8266 	/*
8267 	 * Use upper queue for option processing since the callback
8268 	 * routines expect to be called in UDP instance instead of IP.
8269 	 */
8270 	*errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length,
8271 	    udreqp->OPT_offset, cr, &udp_opt_obj,
8272 	    udpattrs, &is_absreq_failure);
8273 
8274 	if (*errorp != 0) {
8275 		/*
8276 		 * Note: No special action needed in this
8277 		 * module for "is_absreq_failure"
8278 		 */
8279 		return (-1);		/* failure */
8280 	}
8281 	ASSERT(is_absreq_failure == 0);
8282 	return (0);	/* success */
8283 }
8284 
8285 void
8286 udp_ddi_init(void)
8287 {
8288 	UDP6_MAJ = ddi_name_to_major(UDP6);
8289 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
8290 	    udp_opt_obj.odb_opt_arr_cnt);
8291 
8292 	udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t),
8293 	    CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0);
8294 
8295 	/*
8296 	 * We want to be informed each time a stack is created or
8297 	 * destroyed in the kernel, so we can maintain the
8298 	 * set of udp_stack_t's.
8299 	 */
8300 	netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
8301 }
8302 
8303 void
8304 udp_ddi_destroy(void)
8305 {
8306 	netstack_unregister(NS_UDP);
8307 
8308 	kmem_cache_destroy(udp_cache);
8309 }
8310 
8311 /*
8312  * Initialize the UDP stack instance.
8313  */
8314 static void *
8315 udp_stack_init(netstackid_t stackid, netstack_t *ns)
8316 {
8317 	udp_stack_t	*us;
8318 	udpparam_t	*pa;
8319 	int		i;
8320 
8321 	us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
8322 	us->us_netstack = ns;
8323 
8324 	us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
8325 	us->us_epriv_ports[0] = 2049;
8326 	us->us_epriv_ports[1] = 4045;
8327 
8328 	/*
8329 	 * The smallest anonymous port in the priviledged port range which UDP
8330 	 * looks for free port.  Use in the option UDP_ANONPRIVBIND.
8331 	 */
8332 	us->us_min_anonpriv_port = 512;
8333 
8334 	us->us_bind_fanout_size = udp_bind_fanout_size;
8335 
8336 	/* Roundup variable that might have been modified in /etc/system */
8337 	if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
8338 		/* Not a power of two. Round up to nearest power of two */
8339 		for (i = 0; i < 31; i++) {
8340 			if (us->us_bind_fanout_size < (1 << i))
8341 				break;
8342 		}
8343 		us->us_bind_fanout_size = 1 << i;
8344 	}
8345 	us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
8346 	    sizeof (udp_fanout_t), KM_SLEEP);
8347 	for (i = 0; i < us->us_bind_fanout_size; i++) {
8348 		mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
8349 		    NULL);
8350 	}
8351 
8352 	pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
8353 
8354 	us->us_param_arr = pa;
8355 	bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
8356 
8357 	(void) udp_param_register(&us->us_nd,
8358 	    us->us_param_arr, A_CNT(udp_param_arr));
8359 
8360 	us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
8361 	us->us_mibkp = udp_kstat_init(stackid);
8362 	return (us);
8363 }
8364 
8365 /*
8366  * Free the UDP stack instance.
8367  */
8368 static void
8369 udp_stack_fini(netstackid_t stackid, void *arg)
8370 {
8371 	udp_stack_t *us = (udp_stack_t *)arg;
8372 	int i;
8373 
8374 	for (i = 0; i < us->us_bind_fanout_size; i++) {
8375 		mutex_destroy(&us->us_bind_fanout[i].uf_lock);
8376 	}
8377 
8378 	kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
8379 	    sizeof (udp_fanout_t));
8380 
8381 	us->us_bind_fanout = NULL;
8382 
8383 	nd_free(&us->us_nd);
8384 	kmem_free(us->us_param_arr, sizeof (udp_param_arr));
8385 	us->us_param_arr = NULL;
8386 
8387 	udp_kstat_fini(stackid, us->us_mibkp);
8388 	us->us_mibkp = NULL;
8389 
8390 	udp_kstat2_fini(stackid, us->us_kstat);
8391 	us->us_kstat = NULL;
8392 	bzero(&us->us_statistics, sizeof (us->us_statistics));
8393 	kmem_free(us, sizeof (*us));
8394 }
8395 
8396 static void *
8397 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
8398 {
8399 	kstat_t *ksp;
8400 
8401 	udp_stat_t template = {
8402 		{ "udp_ip_send",		KSTAT_DATA_UINT64 },
8403 		{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
8404 		{ "udp_ire_null",		KSTAT_DATA_UINT64 },
8405 		{ "udp_drain",			KSTAT_DATA_UINT64 },
8406 		{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
8407 		{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
8408 		{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
8409 		{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
8410 		{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
8411 		{ "udp_out_opt",		KSTAT_DATA_UINT64 },
8412 		{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
8413 		{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
8414 		{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
8415 		{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
8416 		{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
8417 		{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
8418 		{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
8419 		{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
8420 		{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
8421 		{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
8422 		{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
8423 		{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
8424 		{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
8425 		{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
8426 		{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
8427 		{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
8428 		{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
8429 		{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
8430 #ifdef DEBUG
8431 		{ "udp_data_conn",		KSTAT_DATA_UINT64 },
8432 		{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
8433 #endif
8434 	};
8435 
8436 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
8437 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
8438 	    KSTAT_FLAG_VIRTUAL, stackid);
8439 
8440 	if (ksp == NULL)
8441 		return (NULL);
8442 
8443 	bcopy(&template, us_statisticsp, sizeof (template));
8444 	ksp->ks_data = (void *)us_statisticsp;
8445 	ksp->ks_private = (void *)(uintptr_t)stackid;
8446 
8447 	kstat_install(ksp);
8448 	return (ksp);
8449 }
8450 
8451 static void
8452 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
8453 {
8454 	if (ksp != NULL) {
8455 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
8456 		kstat_delete_netstack(ksp, stackid);
8457 	}
8458 }
8459 
8460 static void *
8461 udp_kstat_init(netstackid_t stackid)
8462 {
8463 	kstat_t	*ksp;
8464 
8465 	udp_named_kstat_t template = {
8466 		{ "inDatagrams",	KSTAT_DATA_UINT64, 0 },
8467 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
8468 		{ "outDatagrams",	KSTAT_DATA_UINT64, 0 },
8469 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
8470 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
8471 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
8472 	};
8473 
8474 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
8475 	    KSTAT_TYPE_NAMED,
8476 	    NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
8477 
8478 	if (ksp == NULL || ksp->ks_data == NULL)
8479 		return (NULL);
8480 
8481 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
8482 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
8483 
8484 	bcopy(&template, ksp->ks_data, sizeof (template));
8485 	ksp->ks_update = udp_kstat_update;
8486 	ksp->ks_private = (void *)(uintptr_t)stackid;
8487 
8488 	kstat_install(ksp);
8489 	return (ksp);
8490 }
8491 
8492 static void
8493 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
8494 {
8495 	if (ksp != NULL) {
8496 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
8497 		kstat_delete_netstack(ksp, stackid);
8498 	}
8499 }
8500 
8501 static int
8502 udp_kstat_update(kstat_t *kp, int rw)
8503 {
8504 	udp_named_kstat_t *udpkp;
8505 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
8506 	netstack_t	*ns;
8507 	udp_stack_t	*us;
8508 
8509 	if ((kp == NULL) || (kp->ks_data == NULL))
8510 		return (EIO);
8511 
8512 	if (rw == KSTAT_WRITE)
8513 		return (EACCES);
8514 
8515 	ns = netstack_find_by_stackid(stackid);
8516 	if (ns == NULL)
8517 		return (-1);
8518 	us = ns->netstack_udp;
8519 	if (us == NULL) {
8520 		netstack_rele(ns);
8521 		return (-1);
8522 	}
8523 	udpkp = (udp_named_kstat_t *)kp->ks_data;
8524 
8525 	udpkp->inDatagrams.value.ui32 =	us->us_udp_mib.udpHCInDatagrams;
8526 	udpkp->inErrors.value.ui32 =	us->us_udp_mib.udpInErrors;
8527 	udpkp->outDatagrams.value.ui32 = us->us_udp_mib.udpHCOutDatagrams;
8528 	udpkp->outErrors.value.ui32 =	us->us_udp_mib.udpOutErrors;
8529 	netstack_rele(ns);
8530 	return (0);
8531 }
8532 
8533 /* ARGSUSED */
8534 static void
8535 udp_rput(queue_t *q, mblk_t *mp)
8536 {
8537 	/*
8538 	 * We get here whenever we do qreply() from IP,
8539 	 * i.e as part of handlings ioctls, etc.
8540 	 */
8541 	putnext(q, mp);
8542 }
8543 
8544 /*
8545  * Read-side synchronous stream info entry point, called as a
8546  * result of handling certain STREAMS ioctl operations.
8547  */
8548 static int
8549 udp_rinfop(queue_t *q, infod_t *dp)
8550 {
8551 	mblk_t	*mp;
8552 	uint_t	cmd = dp->d_cmd;
8553 	int	res = 0;
8554 	int	error = 0;
8555 	udp_t	*udp = Q_TO_UDP(RD(UDP_WR(q)));
8556 	struct stdata *stp = STREAM(q);
8557 
8558 	mutex_enter(&udp->udp_drain_lock);
8559 	/* If shutdown on read has happened, return nothing */
8560 	mutex_enter(&stp->sd_lock);
8561 	if (stp->sd_flag & STREOF) {
8562 		mutex_exit(&stp->sd_lock);
8563 		goto done;
8564 	}
8565 	mutex_exit(&stp->sd_lock);
8566 
8567 	if ((mp = udp->udp_rcv_list_head) == NULL)
8568 		goto done;
8569 
8570 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
8571 
8572 	if (cmd & INFOD_COUNT) {
8573 		/*
8574 		 * Return the number of messages.
8575 		 */
8576 		dp->d_count += udp->udp_rcv_msgcnt;
8577 		res |= INFOD_COUNT;
8578 	}
8579 	if (cmd & INFOD_BYTES) {
8580 		/*
8581 		 * Return size of all data messages.
8582 		 */
8583 		dp->d_bytes += udp->udp_rcv_cnt;
8584 		res |= INFOD_BYTES;
8585 	}
8586 	if (cmd & INFOD_FIRSTBYTES) {
8587 		/*
8588 		 * Return size of first data message.
8589 		 */
8590 		dp->d_bytes = msgdsize(mp);
8591 		res |= INFOD_FIRSTBYTES;
8592 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
8593 	}
8594 	if (cmd & INFOD_COPYOUT) {
8595 		mblk_t *mp1 = mp->b_cont;
8596 		int n;
8597 		/*
8598 		 * Return data contents of first message.
8599 		 */
8600 		ASSERT(DB_TYPE(mp1) == M_DATA);
8601 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
8602 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
8603 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
8604 			    UIO_READ, dp->d_uiop)) != 0) {
8605 				goto done;
8606 			}
8607 			mp1 = mp1->b_cont;
8608 		}
8609 		res |= INFOD_COPYOUT;
8610 		dp->d_cmd &= ~INFOD_COPYOUT;
8611 	}
8612 done:
8613 	mutex_exit(&udp->udp_drain_lock);
8614 
8615 	dp->d_res |= res;
8616 
8617 	return (error);
8618 }
8619 
8620 /*
8621  * Read-side synchronous stream entry point.  This is called as a result
8622  * of recv/read operation done at sockfs, and is guaranteed to execute
8623  * outside of the interrupt thread context.  It returns a single datagram
8624  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
8625  */
8626 static int
8627 udp_rrw(queue_t *q, struiod_t *dp)
8628 {
8629 	mblk_t	*mp;
8630 	udp_t	*udp = Q_TO_UDP(_RD(UDP_WR(q)));
8631 	udp_stack_t *us = udp->udp_us;
8632 
8633 	/* We should never get here when we're in SNMP mode */
8634 	ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD));
8635 
8636 	/*
8637 	 * Dequeue datagram from the head of the list and return
8638 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8639 	 * set/cleared depending on whether or not there's data
8640 	 * remaining in the list.
8641 	 */
8642 	mutex_enter(&udp->udp_drain_lock);
8643 	if (!udp->udp_direct_sockfs) {
8644 		mutex_exit(&udp->udp_drain_lock);
8645 		UDP_STAT(us, udp_rrw_busy);
8646 		return (EBUSY);
8647 	}
8648 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8649 		uint_t size = msgdsize(mp);
8650 
8651 		/* Last datagram in the list? */
8652 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8653 			udp->udp_rcv_list_tail = NULL;
8654 		mp->b_next = NULL;
8655 
8656 		udp->udp_rcv_cnt -= size;
8657 		udp->udp_rcv_msgcnt--;
8658 		UDP_STAT(us, udp_rrw_msgcnt);
8659 
8660 		/* No longer flow-controlling? */
8661 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8662 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8663 			udp->udp_drain_qfull = B_FALSE;
8664 	}
8665 	if (udp->udp_rcv_list_head == NULL) {
8666 		/*
8667 		 * Either we just dequeued the last datagram or
8668 		 * we get here from sockfs and have nothing to
8669 		 * return; in this case clear RSLEEP.
8670 		 */
8671 		ASSERT(udp->udp_rcv_cnt == 0);
8672 		ASSERT(udp->udp_rcv_msgcnt == 0);
8673 		ASSERT(udp->udp_rcv_list_tail == NULL);
8674 		STR_WAKEUP_CLEAR(STREAM(q));
8675 	} else {
8676 		/*
8677 		 * More data follows; we need udp_rrw() to be
8678 		 * called in future to pick up the rest.
8679 		 */
8680 		STR_WAKEUP_SET(STREAM(q));
8681 	}
8682 	mutex_exit(&udp->udp_drain_lock);
8683 	dp->d_mp = mp;
8684 	return (0);
8685 }
8686 
8687 /*
8688  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8689  * list; this is typically executed within the interrupt thread context
8690  * and so we do things as quickly as possible.
8691  */
8692 static void
8693 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8694 {
8695 	ASSERT(q == RD(q));
8696 	ASSERT(pkt_len == msgdsize(mp));
8697 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8698 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8699 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8700 
8701 	mutex_enter(&udp->udp_drain_lock);
8702 	/*
8703 	 * Wake up and signal the receiving app; it is okay to do this
8704 	 * before enqueueing the mp because we are holding the drain lock.
8705 	 * One of the advantages of synchronous stream is the ability for
8706 	 * us to find out when the application performs a read on the
8707 	 * socket by way of udp_rrw() entry point being called.  We need
8708 	 * to generate SIGPOLL/SIGIO for each received data in the case
8709 	 * of asynchronous socket just as in the strrput() case.  However,
8710 	 * we only wake the application up when necessary, i.e. during the
8711 	 * first enqueue.  When udp_rrw() is called, we send up a single
8712 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8713 	 * are still data remaining in our receive queue.
8714 	 */
8715 	if (udp->udp_rcv_list_head == NULL) {
8716 		STR_WAKEUP_SET(STREAM(q));
8717 		udp->udp_rcv_list_head = mp;
8718 	} else {
8719 		udp->udp_rcv_list_tail->b_next = mp;
8720 	}
8721 	udp->udp_rcv_list_tail = mp;
8722 	udp->udp_rcv_cnt += pkt_len;
8723 	udp->udp_rcv_msgcnt++;
8724 
8725 	/* Need to flow-control? */
8726 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8727 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8728 		udp->udp_drain_qfull = B_TRUE;
8729 
8730 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
8731 	STR_SENDSIG(STREAM(q));
8732 	mutex_exit(&udp->udp_drain_lock);
8733 }
8734 
8735 /*
8736  * Drain the contents of receive list to the module upstream; we do
8737  * this during close or when we fallback to the slow mode due to
8738  * sockmod being popped or a module being pushed on top of us.
8739  */
8740 static void
8741 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8742 {
8743 	mblk_t *mp;
8744 	udp_stack_t *us = udp->udp_us;
8745 
8746 	ASSERT(q == RD(q));
8747 
8748 	mutex_enter(&udp->udp_drain_lock);
8749 	/*
8750 	 * There is no race with a concurrent udp_input() sending
8751 	 * up packets using putnext() after we have cleared the
8752 	 * udp_direct_sockfs flag but before we have completed
8753 	 * sending up the packets in udp_rcv_list, since we are
8754 	 * either a writer or we have quiesced the conn.
8755 	 */
8756 	udp->udp_direct_sockfs = B_FALSE;
8757 	mutex_exit(&udp->udp_drain_lock);
8758 
8759 	if (udp->udp_rcv_list_head != NULL)
8760 		UDP_STAT(us, udp_drain);
8761 
8762 	/*
8763 	 * Send up everything via putnext(); note here that we
8764 	 * don't need the udp_drain_lock to protect us since
8765 	 * nothing can enter udp_rrw() and that we currently
8766 	 * have exclusive access to this udp.
8767 	 */
8768 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8769 		udp->udp_rcv_list_head = mp->b_next;
8770 		mp->b_next = NULL;
8771 		udp->udp_rcv_cnt -= msgdsize(mp);
8772 		udp->udp_rcv_msgcnt--;
8773 		if (closing) {
8774 			freemsg(mp);
8775 		} else {
8776 			putnext(q, mp);
8777 		}
8778 	}
8779 	ASSERT(udp->udp_rcv_cnt == 0);
8780 	ASSERT(udp->udp_rcv_msgcnt == 0);
8781 	ASSERT(udp->udp_rcv_list_head == NULL);
8782 	udp->udp_rcv_list_tail = NULL;
8783 	udp->udp_drain_qfull = B_FALSE;
8784 }
8785 
8786 static size_t
8787 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8788 {
8789 	udp_stack_t *us = udp->udp_us;
8790 
8791 	/* We add a bit of extra buffering */
8792 	size += size >> 1;
8793 	if (size > us->us_max_buf)
8794 		size = us->us_max_buf;
8795 
8796 	udp->udp_rcv_hiwat = size;
8797 	return (size);
8798 }
8799 
8800 /*
8801  * Little helper for IPsec's NAT-T processing.
8802  */
8803 boolean_t
8804 udp_compute_checksum(netstack_t *ns)
8805 {
8806 	udp_stack_t *us = ns->netstack_udp;
8807 
8808 	return (us->us_do_checksum);
8809 }
8810