1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/debug.h> 33 #include <sys/cmn_err.h> 34 #include <sys/tihdr.h> 35 36 #include <inet/common.h> 37 #include <inet/ip.h> 38 #include <inet/ip_impl.h> 39 #include <inet/tcp.h> 40 #include <inet/tcp_impl.h> 41 #include <inet/ipsec_impl.h> 42 #include <inet/ipclassifier.h> 43 #include <inet/ipp_common.h> 44 45 /* 46 * This file implements TCP fusion - a protocol-less data path for TCP 47 * loopback connections. The fusion of two local TCP endpoints occurs 48 * at connection establishment time. Various conditions (see details 49 * in tcp_fuse()) need to be met for fusion to be successful. If it 50 * fails, we fall back to the regular TCP data path; if it succeeds, 51 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 52 * tcp_fuse_output() enqueues application data directly onto the peer's 53 * receive queue; no protocol processing is involved. After enqueueing 54 * the data, the sender can either push (putnext) data up the receiver's 55 * read queue; or the sender can simply return and let the receiver 56 * retrieve the enqueued data via the synchronous streams entry point 57 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 58 * enabled (the default). It is disabled if sockfs no longer resides 59 * directly on top of tcp module due to a module insertion or removal. 60 * It also needs to be temporarily disabled when sending urgent data 61 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 62 * by strsock_proto() hook. 63 * 64 * Sychronization is handled by squeue and the mutex tcp_fuse_lock. 65 * One of the requirements for fusion to succeed is that both endpoints 66 * need to be using the same squeue. This ensures that neither side 67 * can disappear while the other side is still sending data. By itself, 68 * squeue is not sufficient for guaranteeing safety when synchronous 69 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 70 * the squeue and its access to tcp_rcv_list and other fusion-related 71 * fields needs to be sychronized with the sender. tcp_fuse_lock is 72 * used for this purpose. When there is urgent data, the sender needs 73 * to push the data up the receiver's streams read queue. In order to 74 * avoid holding the tcp_fuse_lock across putnext(), the sender sets 75 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_fuse_lock 76 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 77 * after this point, it will see that synchronous streams is plugged and 78 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 79 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 80 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 81 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 82 * getq_noenab() to dequeue data from the stream head instead. Once the 83 * data on the stream head has been consumed, tcp_fuse_rrw() may again 84 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 85 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 86 * effectively disabling synchronous streams. 87 * 88 * The following note applies only to the synchronous streams mode. 89 * 90 * Flow control is done by checking the size of receive buffer and 91 * the number of data blocks, both set to different limits. This is 92 * different than regular streams flow control where cumulative size 93 * check dominates block count check -- streams queue high water mark 94 * typically represents bytes. Each enqueue triggers notifications 95 * to the receiving process; a build up of data blocks indicates a 96 * slow receiver and the sender should be blocked or informed at the 97 * earliest moment instead of further wasting system resources. In 98 * effect, this is equivalent to limiting the number of outstanding 99 * segments in flight. 100 */ 101 102 /* 103 * Macros that determine whether or not IP processing is needed for TCP. 104 */ 105 #define TCP_IPOPT_POLICY_V4(tcp) \ 106 ((tcp)->tcp_ipversion == IPV4_VERSION && \ 107 ((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH || \ 108 CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) || \ 109 CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp))) 110 111 #define TCP_IPOPT_POLICY_V6(tcp) \ 112 ((tcp)->tcp_ipversion == IPV6_VERSION && \ 113 ((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN || \ 114 CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) || \ 115 CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp))) 116 117 #define TCP_LOOPBACK_IP(tcp) \ 118 (TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) || \ 119 !CONN_IS_MD_FASTPATH((tcp)->tcp_connp)) 120 121 /* 122 * Setting this to false means we disable fusion altogether and 123 * loopback connections would go through the protocol paths. 124 */ 125 boolean_t do_tcp_fusion = B_TRUE; 126 127 /* 128 * Enabling this flag allows sockfs to retrieve data directly 129 * from a fused tcp endpoint using synchronous streams interface. 130 */ 131 boolean_t do_tcp_direct_sockfs = B_TRUE; 132 133 /* 134 * This is the minimum amount of outstanding writes allowed on 135 * a synchronous streams-enabled receiving endpoint before the 136 * sender gets flow-controlled. Setting this value to 0 means 137 * that the data block limit is equivalent to the byte count 138 * limit, which essentially disables the check. 139 */ 140 #define TCP_FUSION_RCV_UNREAD_MIN 8 141 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 142 143 static void tcp_fuse_syncstr_enable(tcp_t *); 144 static void tcp_fuse_syncstr_disable(tcp_t *); 145 static void strrput_sig(queue_t *, boolean_t); 146 147 /* 148 * This routine gets called by the eager tcp upon changing state from 149 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 150 * and the active connect tcp such that the regular tcp processings 151 * may be bypassed under allowable circumstances. Because the fusion 152 * requires both endpoints to be in the same squeue, it does not work 153 * for simultaneous active connects because there is no easy way to 154 * switch from one squeue to another once the connection is created. 155 * This is different from the eager tcp case where we assign it the 156 * same squeue as the one given to the active connect tcp during open. 157 */ 158 void 159 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 160 { 161 conn_t *peer_connp, *connp = tcp->tcp_connp; 162 tcp_t *peer_tcp; 163 164 ASSERT(!tcp->tcp_fused); 165 ASSERT(tcp->tcp_loopback); 166 ASSERT(tcp->tcp_loopback_peer == NULL); 167 /* 168 * We need to inherit q_hiwat of the listener tcp, but we can't 169 * really use tcp_listener since we get here after sending up 170 * T_CONN_IND and tcp_wput_accept() may be called independently, 171 * at which point tcp_listener is cleared; this is why we use 172 * tcp_saved_listener. The listener itself is guaranteed to be 173 * around until tcp_accept_finish() is called on this eager -- 174 * this won't happen until we're done since we're inside the 175 * eager's perimeter now. 176 */ 177 ASSERT(tcp->tcp_saved_listener != NULL); 178 179 /* 180 * Lookup peer endpoint; search for the remote endpoint having 181 * the reversed address-port quadruplet in ESTABLISHED state, 182 * which is guaranteed to be unique in the system. Zone check 183 * is applied accordingly for loopback address, but not for 184 * local address since we want fusion to happen across Zones. 185 */ 186 if (tcp->tcp_ipversion == IPV4_VERSION) { 187 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 188 (ipha_t *)iphdr, tcph); 189 } else { 190 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 191 (ip6_t *)iphdr, tcph); 192 } 193 194 /* 195 * We can only proceed if peer exists, resides in the same squeue 196 * as our conn and is not raw-socket. The squeue assignment of 197 * this eager tcp was done earlier at the time of SYN processing 198 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 199 * doesn't guarantee a safe condition to fuse, hence we perform 200 * additional tests below. 201 */ 202 ASSERT(peer_connp == NULL || peer_connp != connp); 203 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 204 !IPCL_IS_TCP(peer_connp)) { 205 if (peer_connp != NULL) { 206 TCP_STAT(tcp_fusion_unqualified); 207 CONN_DEC_REF(peer_connp); 208 } 209 return; 210 } 211 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 212 213 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 214 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 215 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 216 217 /* 218 * Fuse the endpoints; we perform further checks against both 219 * tcp endpoints to ensure that a fusion is allowed to happen. 220 * In particular we bail out for non-simple TCP/IP or if IPsec/ 221 * IPQoS policy/kernel SSL exists. 222 */ 223 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 224 !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) && 225 tcp->tcp_kssl_ent == NULL && 226 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 227 mblk_t *mp; 228 struct stroptions *stropt; 229 queue_t *peer_rq = peer_tcp->tcp_rq; 230 231 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 232 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 233 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 234 ASSERT(tcp->tcp_kssl_ctx == NULL); 235 236 /* 237 * We need to drain data on both endpoints during unfuse. 238 * If we need to send up SIGURG at the time of draining, 239 * we want to be sure that an mblk is readily available. 240 * This is why we pre-allocate the M_PCSIG mblks for both 241 * endpoints which will only be used during/after unfuse. 242 */ 243 if ((mp = allocb(1, BPRI_HI)) == NULL) 244 goto failed; 245 246 tcp->tcp_fused_sigurg_mp = mp; 247 248 if ((mp = allocb(1, BPRI_HI)) == NULL) 249 goto failed; 250 251 peer_tcp->tcp_fused_sigurg_mp = mp; 252 253 /* Allocate M_SETOPTS mblk */ 254 if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL) 255 goto failed; 256 257 /* Fuse both endpoints */ 258 peer_tcp->tcp_loopback_peer = tcp; 259 tcp->tcp_loopback_peer = peer_tcp; 260 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 261 262 /* 263 * We never use regular tcp paths in fusion and should 264 * therefore clear tcp_unsent on both endpoints. Having 265 * them set to non-zero values means asking for trouble 266 * especially after unfuse, where we may end up sending 267 * through regular tcp paths which expect xmit_list and 268 * friends to be correctly setup. 269 */ 270 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 271 272 tcp_timers_stop(tcp); 273 tcp_timers_stop(peer_tcp); 274 275 /* 276 * At this point we are a detached eager tcp and therefore 277 * don't have a queue assigned to us until accept happens. 278 * In the mean time the peer endpoint may immediately send 279 * us data as soon as fusion is finished, and we need to be 280 * able to flow control it in case it sends down huge amount 281 * of data while we're still detached. To prevent that we 282 * inherit the listener's q_hiwat value; this is temporary 283 * since we'll repeat the process in tcp_accept_finish(). 284 */ 285 (void) tcp_fuse_set_rcv_hiwat(tcp, 286 tcp->tcp_saved_listener->tcp_rq->q_hiwat); 287 288 /* 289 * Set the stream head's write offset value to zero since we 290 * won't be needing any room for TCP/IP headers; tell it to 291 * not break up the writes (this would reduce the amount of 292 * work done by kmem); and configure our receive buffer. 293 * Note that we can only do this for the active connect tcp 294 * since our eager is still detached; it will be dealt with 295 * later in tcp_accept_finish(). 296 */ 297 DB_TYPE(mp) = M_SETOPTS; 298 mp->b_wptr += sizeof (*stropt); 299 300 stropt = (struct stroptions *)mp->b_rptr; 301 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 302 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 303 stropt->so_wroff = 0; 304 305 /* 306 * Record the stream head's high water mark for 307 * peer endpoint; this is used for flow-control 308 * purposes in tcp_fuse_output(). 309 */ 310 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp, 311 peer_rq->q_hiwat); 312 313 /* Send the options up */ 314 putnext(peer_rq, mp); 315 } else { 316 TCP_STAT(tcp_fusion_unqualified); 317 } 318 CONN_DEC_REF(peer_connp); 319 return; 320 321 failed: 322 if (tcp->tcp_fused_sigurg_mp != NULL) { 323 freeb(tcp->tcp_fused_sigurg_mp); 324 tcp->tcp_fused_sigurg_mp = NULL; 325 } 326 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 327 freeb(peer_tcp->tcp_fused_sigurg_mp); 328 peer_tcp->tcp_fused_sigurg_mp = NULL; 329 } 330 CONN_DEC_REF(peer_connp); 331 } 332 333 /* 334 * Unfuse a previously-fused pair of tcp loopback endpoints. 335 */ 336 void 337 tcp_unfuse(tcp_t *tcp) 338 { 339 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 340 341 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 342 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 343 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 344 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 345 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 346 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 347 348 /* 349 * We disable synchronous streams, drain any queued data and 350 * clear tcp_direct_sockfs. The synchronous streams entry 351 * points will become no-ops after this point. 352 */ 353 tcp_fuse_disable_pair(tcp, B_TRUE); 354 355 /* 356 * Update th_seq and th_ack in the header template 357 */ 358 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 359 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 360 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 361 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 362 363 /* Unfuse the endpoints */ 364 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 365 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 366 } 367 368 /* 369 * Fusion output routine for urgent data. This routine is called by 370 * tcp_fuse_output() for handling non-M_DATA mblks. 371 */ 372 void 373 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 374 { 375 mblk_t *mp1; 376 struct T_exdata_ind *tei; 377 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 378 mblk_t *head, *prev_head = NULL; 379 380 ASSERT(tcp->tcp_fused); 381 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 382 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 383 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 384 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 385 386 /* 387 * Urgent data arrives in the form of T_EXDATA_REQ from above. 388 * Each occurence denotes a new urgent pointer. For each new 389 * urgent pointer we signal (SIGURG) the receiving app to indicate 390 * that it needs to go into urgent mode. This is similar to the 391 * urgent data handling in the regular tcp. We don't need to keep 392 * track of where the urgent pointer is, because each T_EXDATA_REQ 393 * "advances" the urgent pointer for us. 394 * 395 * The actual urgent data carried by T_EXDATA_REQ is then prepended 396 * by a T_EXDATA_IND before being enqueued behind any existing data 397 * destined for the receiving app. There is only a single urgent 398 * pointer (out-of-band mark) for a given tcp. If the new urgent 399 * data arrives before the receiving app reads some existing urgent 400 * data, the previous marker is lost. This behavior is emulated 401 * accordingly below, by removing any existing T_EXDATA_IND messages 402 * and essentially converting old urgent data into non-urgent. 403 */ 404 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 405 /* Let sender get out of urgent mode */ 406 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 407 408 /* 409 * This flag indicates that a signal needs to be sent up. 410 * This flag will only get cleared once SIGURG is delivered and 411 * is not affected by the tcp_fused flag -- delivery will still 412 * happen even after an endpoint is unfused, to handle the case 413 * where the sending endpoint immediately closes/unfuses after 414 * sending urgent data and the accept is not yet finished. 415 */ 416 peer_tcp->tcp_fused_sigurg = B_TRUE; 417 418 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 419 DB_TYPE(mp) = M_PROTO; 420 tei = (struct T_exdata_ind *)mp->b_rptr; 421 tei->PRIM_type = T_EXDATA_IND; 422 tei->MORE_flag = 0; 423 mp->b_wptr = (uchar_t *)&tei[1]; 424 425 TCP_STAT(tcp_fusion_urg); 426 BUMP_MIB(&tcp_mib, tcpOutUrg); 427 428 head = peer_tcp->tcp_rcv_list; 429 while (head != NULL) { 430 /* 431 * Remove existing T_EXDATA_IND, keep the data which follows 432 * it and relink our list. Note that we don't modify the 433 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 434 */ 435 if (DB_TYPE(head) != M_DATA) { 436 mp1 = head; 437 438 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 439 head = mp1->b_cont; 440 mp1->b_cont = NULL; 441 head->b_next = mp1->b_next; 442 mp1->b_next = NULL; 443 if (prev_head != NULL) 444 prev_head->b_next = head; 445 if (peer_tcp->tcp_rcv_list == mp1) 446 peer_tcp->tcp_rcv_list = head; 447 if (peer_tcp->tcp_rcv_last_head == mp1) 448 peer_tcp->tcp_rcv_last_head = head; 449 freeb(mp1); 450 } 451 prev_head = head; 452 head = head->b_next; 453 } 454 } 455 456 /* 457 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 458 */ 459 boolean_t 460 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 461 { 462 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 463 uint_t max_unread; 464 boolean_t flow_stopped; 465 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 466 467 ASSERT(tcp->tcp_fused); 468 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 469 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 470 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 471 DB_TYPE(mp) == M_PCPROTO); 472 473 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 474 475 /* If this connection requires IP, unfuse and use regular path */ 476 if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) || 477 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 478 TCP_STAT(tcp_fusion_aborted); 479 tcp_unfuse(tcp); 480 return (B_FALSE); 481 } 482 483 if (send_size == 0) { 484 freemsg(mp); 485 return (B_TRUE); 486 } 487 488 /* 489 * Handle urgent data; we either send up SIGURG to the peer now 490 * or do it later when we drain, in case the peer is detached 491 * or if we're short of memory for M_PCSIG mblk. 492 */ 493 if (urgent) { 494 /* 495 * We stop synchronous streams when we have urgent data 496 * queued to prevent tcp_fuse_rrw() from pulling it. If 497 * for some reasons the urgent data can't be delivered 498 * below, synchronous streams will remain stopped until 499 * someone drains the tcp_rcv_list. 500 */ 501 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 502 tcp_fuse_output_urg(tcp, mp); 503 } 504 505 mutex_enter(&peer_tcp->tcp_fuse_lock); 506 /* 507 * Wake up and signal the peer; it is okay to do this before 508 * enqueueing because we are holding the lock. One of the 509 * advantages of synchronous streams is the ability for us to 510 * find out when the application performs a read on the socket, 511 * by way of tcp_fuse_rrw() entry point being called. Every 512 * data that gets enqueued onto the receiver is treated as if 513 * it has arrived at the receiving endpoint, thus generating 514 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 515 * case. However, we only wake up the application when necessary, 516 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 517 * it will send everything upstream. 518 */ 519 if (peer_tcp->tcp_direct_sockfs && !urgent && 520 !TCP_IS_DETACHED(peer_tcp)) { 521 if (peer_tcp->tcp_rcv_list == NULL) 522 STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq)); 523 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 524 STR_SENDSIG(STREAM(peer_tcp->tcp_rq)); 525 } 526 527 /* 528 * Enqueue data into the peer's receive list; we may or may not 529 * drain the contents depending on the conditions below. 530 */ 531 tcp_rcv_enqueue(peer_tcp, mp, send_size); 532 533 /* In case it wrapped around and also to keep it constant */ 534 peer_tcp->tcp_rwnd += send_size; 535 536 /* 537 * Exercise flow-control when needed; we will get back-enabled 538 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 539 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 540 * we emulate streams flow control by checking the peer's queue 541 * size and high water mark; otherwise we simply use canputnext() 542 * to decide if we need to stop our flow. 543 * 544 * The outstanding unread data block check does not apply for a 545 * detached receiver; this is to avoid unnecessary blocking of the 546 * sender while the accept is currently in progress and is quite 547 * similar to the regular tcp. 548 */ 549 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 550 max_unread = UINT_MAX; 551 552 flow_stopped = tcp->tcp_flow_stopped; 553 if (!flow_stopped && 554 (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 555 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 556 ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 557 (!peer_tcp->tcp_direct_sockfs && 558 !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) { 559 tcp_setqfull(tcp); 560 flow_stopped = B_TRUE; 561 TCP_STAT(tcp_fusion_flowctl); 562 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 563 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 564 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 565 } else if (flow_stopped && 566 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 567 tcp_clrqfull(tcp); 568 flow_stopped = B_FALSE; 569 } 570 571 loopback_packets++; 572 tcp->tcp_last_sent_len = send_size; 573 574 /* Need to adjust the following SNMP MIB-related variables */ 575 tcp->tcp_snxt += send_size; 576 tcp->tcp_suna = tcp->tcp_snxt; 577 peer_tcp->tcp_rnxt += send_size; 578 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 579 580 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 581 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size); 582 583 BUMP_MIB(&tcp_mib, tcpInSegs); 584 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 585 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size); 586 587 BUMP_LOCAL(tcp->tcp_obsegs); 588 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 589 590 mutex_exit(&peer_tcp->tcp_fuse_lock); 591 592 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 593 594 if (!TCP_IS_DETACHED(peer_tcp)) { 595 /* 596 * Drain the peer's receive queue it has urgent data or if 597 * we're not flow-controlled. There is no need for draining 598 * normal data when tcp_direct_sockfs is on because the peer 599 * will pull the data via tcp_fuse_rrw(). 600 */ 601 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 602 ASSERT(peer_tcp->tcp_rcv_list != NULL); 603 /* 604 * For TLI-based streams, a thread in tcp_accept_swap() 605 * can race with us. That thread will ensure that the 606 * correct peer_tcp->tcp_rq is globally visible before 607 * peer_tcp->tcp_detached is visible as clear, but we 608 * must also ensure that the load of tcp_rq cannot be 609 * reordered to be before the tcp_detached check. 610 */ 611 membar_consumer(); 612 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 613 NULL); 614 /* 615 * If synchronous streams was stopped above due 616 * to the presence of urgent data, re-enable it. 617 */ 618 if (urgent) 619 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 620 } 621 } 622 return (B_TRUE); 623 } 624 625 /* 626 * This routine gets called to deliver data upstream on a fused or 627 * previously fused tcp loopback endpoint; the latter happens only 628 * when there is a pending SIGURG signal plus urgent data that can't 629 * be sent upstream in the past. 630 */ 631 boolean_t 632 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 633 { 634 mblk_t *mp; 635 #ifdef DEBUG 636 uint_t cnt = 0; 637 #endif 638 639 ASSERT(tcp->tcp_loopback); 640 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 641 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 642 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 643 644 /* No need for the push timer now, in case it was scheduled */ 645 if (tcp->tcp_push_tid != 0) { 646 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 647 tcp->tcp_push_tid = 0; 648 } 649 /* 650 * If there's urgent data sitting in receive list and we didn't 651 * get a chance to send up a SIGURG signal, make sure we send 652 * it first before draining in order to ensure that SIOCATMARK 653 * works properly. 654 */ 655 if (tcp->tcp_fused_sigurg) { 656 /* 657 * sigurg_mpp is normally NULL, i.e. when we're still 658 * fused and didn't get here because of tcp_unfuse(). 659 * In this case try hard to allocate the M_PCSIG mblk. 660 */ 661 if (sigurg_mpp == NULL && 662 (mp = allocb(1, BPRI_HI)) == NULL && 663 (mp = allocb_tryhard(1)) == NULL) { 664 /* Alloc failed; try again next time */ 665 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 666 MSEC_TO_TICK(tcp_push_timer_interval)); 667 return (B_TRUE); 668 } else if (sigurg_mpp != NULL) { 669 /* 670 * Use the supplied M_PCSIG mblk; it means we're 671 * either unfused or in the process of unfusing, 672 * and the drain must happen now. 673 */ 674 mp = *sigurg_mpp; 675 *sigurg_mpp = NULL; 676 } 677 ASSERT(mp != NULL); 678 679 tcp->tcp_fused_sigurg = B_FALSE; 680 /* Send up the signal */ 681 DB_TYPE(mp) = M_PCSIG; 682 *mp->b_wptr++ = (uchar_t)SIGURG; 683 putnext(q, mp); 684 /* 685 * Let the regular tcp_rcv_drain() path handle 686 * draining the data if we're no longer fused. 687 */ 688 if (!tcp->tcp_fused) 689 return (B_FALSE); 690 } 691 692 /* 693 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 694 * each M_DATA that gets enqueued onto the receiver. At this point 695 * we are about to drain any queued data via putnext(). In order 696 * to avoid extraneous signal generation from strrput(), we set 697 * STRGETINPROG flag at the stream head prior to the draining and 698 * restore it afterwards. This masks out signal generation only 699 * for M_DATA messages and does not affect urgent data. 700 */ 701 if (tcp->tcp_direct_sockfs) 702 strrput_sig(q, B_FALSE); 703 704 /* Drain the data */ 705 while ((mp = tcp->tcp_rcv_list) != NULL) { 706 tcp->tcp_rcv_list = mp->b_next; 707 mp->b_next = NULL; 708 #ifdef DEBUG 709 cnt += msgdsize(mp); 710 #endif 711 putnext(q, mp); 712 TCP_STAT(tcp_fusion_putnext); 713 } 714 715 if (tcp->tcp_direct_sockfs) 716 strrput_sig(q, B_TRUE); 717 718 ASSERT(cnt == tcp->tcp_rcv_cnt); 719 tcp->tcp_rcv_last_head = NULL; 720 tcp->tcp_rcv_last_tail = NULL; 721 tcp->tcp_rcv_cnt = 0; 722 tcp->tcp_fuse_rcv_unread_cnt = 0; 723 tcp->tcp_rwnd = q->q_hiwat; 724 725 return (B_TRUE); 726 } 727 728 /* 729 * Synchronous stream entry point for sockfs to retrieve 730 * data directly from tcp_rcv_list. 731 */ 732 int 733 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 734 { 735 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 736 mblk_t *mp; 737 738 mutex_enter(&tcp->tcp_fuse_lock); 739 740 /* 741 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 742 * the underlying data to the stream head. We need to wait until it's 743 * done, then return EBUSY so that strget() will dequeue data from the 744 * stream head to ensure data is drained in-order. 745 */ 746 if (tcp->tcp_fuse_syncstr_plugged) { 747 do { 748 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_fuse_lock); 749 } while (tcp->tcp_fuse_syncstr_plugged); 750 751 mutex_exit(&tcp->tcp_fuse_lock); 752 TCP_STAT(tcp_fusion_rrw_plugged); 753 TCP_STAT(tcp_fusion_rrw_busy); 754 return (EBUSY); 755 } 756 757 /* 758 * If someone had turned off tcp_direct_sockfs or if synchronous 759 * streams is stopped, we return EBUSY. This causes strget() to 760 * dequeue data from the stream head instead. 761 */ 762 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 763 mutex_exit(&tcp->tcp_fuse_lock); 764 TCP_STAT(tcp_fusion_rrw_busy); 765 return (EBUSY); 766 } 767 768 if ((mp = tcp->tcp_rcv_list) != NULL) { 769 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 770 771 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 772 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 773 774 tcp->tcp_rcv_list = NULL; 775 TCP_STAT(tcp_fusion_rrw_msgcnt); 776 777 /* 778 * At this point nothing should be left in tcp_rcv_list. 779 * The only possible case where we would have a chain of 780 * b_next-linked messages is urgent data, but we wouldn't 781 * be here if that's true since urgent data is delivered 782 * via putnext() and synchronous streams is stopped until 783 * tcp_fuse_rcv_drain() is finished. 784 */ 785 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 786 787 tcp->tcp_rcv_last_head = NULL; 788 tcp->tcp_rcv_last_tail = NULL; 789 tcp->tcp_rcv_cnt = 0; 790 tcp->tcp_fuse_rcv_unread_cnt = 0; 791 792 if (peer_tcp->tcp_flow_stopped) { 793 tcp_clrqfull(peer_tcp); 794 TCP_STAT(tcp_fusion_backenabled); 795 } 796 } 797 798 /* 799 * Either we just dequeued everything or we get here from sockfs 800 * and have nothing to return; in this case clear RSLEEP. 801 */ 802 ASSERT(tcp->tcp_rcv_last_head == NULL); 803 ASSERT(tcp->tcp_rcv_last_tail == NULL); 804 ASSERT(tcp->tcp_rcv_cnt == 0); 805 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 806 STR_WAKEUP_CLEAR(STREAM(q)); 807 808 mutex_exit(&tcp->tcp_fuse_lock); 809 dp->d_mp = mp; 810 return (0); 811 } 812 813 /* 814 * Synchronous stream entry point used by certain ioctls to retrieve 815 * information about or peek into the tcp_rcv_list. 816 */ 817 int 818 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 819 { 820 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 821 mblk_t *mp; 822 uint_t cmd = dp->d_cmd; 823 int res = 0; 824 int error = 0; 825 struct stdata *stp = STREAM(q); 826 827 mutex_enter(&tcp->tcp_fuse_lock); 828 /* If shutdown on read has happened, return nothing */ 829 mutex_enter(&stp->sd_lock); 830 if (stp->sd_flag & STREOF) { 831 mutex_exit(&stp->sd_lock); 832 goto done; 833 } 834 mutex_exit(&stp->sd_lock); 835 836 /* 837 * It is OK not to return an answer if tcp_rcv_list is 838 * currently not accessible. 839 */ 840 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 841 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 842 goto done; 843 844 if (cmd & INFOD_COUNT) { 845 /* 846 * We have at least one message and 847 * could return only one at a time. 848 */ 849 dp->d_count++; 850 res |= INFOD_COUNT; 851 } 852 if (cmd & INFOD_BYTES) { 853 /* 854 * Return size of all data messages. 855 */ 856 dp->d_bytes += tcp->tcp_rcv_cnt; 857 res |= INFOD_BYTES; 858 } 859 if (cmd & INFOD_FIRSTBYTES) { 860 /* 861 * Return size of first data message. 862 */ 863 dp->d_bytes = msgdsize(mp); 864 res |= INFOD_FIRSTBYTES; 865 dp->d_cmd &= ~INFOD_FIRSTBYTES; 866 } 867 if (cmd & INFOD_COPYOUT) { 868 mblk_t *mp1; 869 int n; 870 871 if (DB_TYPE(mp) == M_DATA) { 872 mp1 = mp; 873 } else { 874 mp1 = mp->b_cont; 875 ASSERT(mp1 != NULL); 876 } 877 878 /* 879 * Return data contents of first message. 880 */ 881 ASSERT(DB_TYPE(mp1) == M_DATA); 882 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 883 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 884 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 885 UIO_READ, dp->d_uiop)) != 0) { 886 goto done; 887 } 888 mp1 = mp1->b_cont; 889 } 890 res |= INFOD_COPYOUT; 891 dp->d_cmd &= ~INFOD_COPYOUT; 892 } 893 done: 894 mutex_exit(&tcp->tcp_fuse_lock); 895 896 dp->d_res |= res; 897 898 return (error); 899 } 900 901 /* 902 * Enable synchronous streams on a fused tcp loopback endpoint. 903 */ 904 static void 905 tcp_fuse_syncstr_enable(tcp_t *tcp) 906 { 907 queue_t *rq = tcp->tcp_rq; 908 struct stdata *stp = STREAM(rq); 909 910 /* We can only enable synchronous streams for sockfs mode */ 911 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 912 913 if (!tcp->tcp_direct_sockfs) 914 return; 915 916 mutex_enter(&stp->sd_lock); 917 mutex_enter(QLOCK(rq)); 918 919 /* 920 * We replace our q_qinfo with one that has the qi_rwp entry point. 921 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 922 * for every enqueued data in tcp_fuse_output(). 923 */ 924 rq->q_qinfo = &tcp_loopback_rinit; 925 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 926 stp->sd_struiordq = rq; 927 stp->sd_rput_opt &= ~SR_SIGALLDATA; 928 929 mutex_exit(QLOCK(rq)); 930 mutex_exit(&stp->sd_lock); 931 } 932 933 /* 934 * Disable synchronous streams on a fused tcp loopback endpoint. 935 */ 936 static void 937 tcp_fuse_syncstr_disable(tcp_t *tcp) 938 { 939 queue_t *rq = tcp->tcp_rq; 940 struct stdata *stp = STREAM(rq); 941 942 if (!tcp->tcp_direct_sockfs) 943 return; 944 945 mutex_enter(&stp->sd_lock); 946 mutex_enter(QLOCK(rq)); 947 948 /* 949 * Reset q_qinfo to point to the default tcp entry points. 950 * Also restore SR_SIGALLDATA so that strrput() can generate 951 * the signals again for future M_DATA messages. 952 */ 953 rq->q_qinfo = &tcp_rinit; 954 rq->q_struiot = tcp_rinit.qi_struiot; 955 stp->sd_struiordq = NULL; 956 stp->sd_rput_opt |= SR_SIGALLDATA; 957 tcp->tcp_direct_sockfs = B_FALSE; 958 959 mutex_exit(QLOCK(rq)); 960 mutex_exit(&stp->sd_lock); 961 } 962 963 /* 964 * Enable synchronous streams on a pair of fused tcp endpoints. 965 */ 966 void 967 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 968 { 969 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 970 971 ASSERT(tcp->tcp_fused); 972 ASSERT(peer_tcp != NULL); 973 974 tcp_fuse_syncstr_enable(tcp); 975 tcp_fuse_syncstr_enable(peer_tcp); 976 } 977 978 /* 979 * Allow or disallow signals to be generated by strrput(). 980 */ 981 static void 982 strrput_sig(queue_t *q, boolean_t on) 983 { 984 struct stdata *stp = STREAM(q); 985 986 mutex_enter(&stp->sd_lock); 987 if (on) 988 stp->sd_flag &= ~STRGETINPROG; 989 else 990 stp->sd_flag |= STRGETINPROG; 991 mutex_exit(&stp->sd_lock); 992 } 993 994 /* 995 * Disable synchronous streams on a pair of fused tcp endpoints and drain 996 * any queued data; called either during unfuse or upon transitioning from 997 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 998 */ 999 void 1000 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1001 { 1002 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1003 1004 ASSERT(tcp->tcp_fused); 1005 ASSERT(peer_tcp != NULL); 1006 1007 /* 1008 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1009 * onto the stream head. 1010 */ 1011 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1012 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1013 1014 /* 1015 * Drain any pending data; the detached check is needed because 1016 * we may be called as a result of a tcp_unfuse() triggered by 1017 * tcp_fuse_output(). Note that in case of a detached tcp, the 1018 * draining will happen later after the tcp is unfused. For non- 1019 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1020 * If we have urgent data sitting in the receive list, we will 1021 * need to send up a SIGURG signal first before draining the data. 1022 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1023 * when called from tcp_rcv_drain(). 1024 */ 1025 if (!TCP_IS_DETACHED(tcp)) { 1026 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1027 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1028 } 1029 if (!TCP_IS_DETACHED(peer_tcp)) { 1030 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1031 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1032 } 1033 1034 /* 1035 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1036 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1037 * a given stream must be stopped prior to being unplugged (but the 1038 * ordering of operations between the streams is unimportant). 1039 */ 1040 TCP_FUSE_SYNCSTR_STOP(tcp); 1041 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1042 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1043 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1044 1045 /* Lift up any flow-control conditions */ 1046 if (tcp->tcp_flow_stopped) { 1047 tcp_clrqfull(tcp); 1048 TCP_STAT(tcp_fusion_backenabled); 1049 } 1050 if (peer_tcp->tcp_flow_stopped) { 1051 tcp_clrqfull(peer_tcp); 1052 TCP_STAT(tcp_fusion_backenabled); 1053 } 1054 1055 /* Disable synchronous streams */ 1056 tcp_fuse_syncstr_disable(tcp); 1057 tcp_fuse_syncstr_disable(peer_tcp); 1058 } 1059 1060 /* 1061 * Calculate the size of receive buffer for a fused tcp endpoint. 1062 */ 1063 size_t 1064 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1065 { 1066 ASSERT(tcp->tcp_fused); 1067 1068 /* Ensure that value is within the maximum upper bound */ 1069 if (rwnd > tcp_max_buf) 1070 rwnd = tcp_max_buf; 1071 1072 /* Obey the absolute minimum tcp receive high water mark */ 1073 if (rwnd < tcp_sth_rcv_hiwat) 1074 rwnd = tcp_sth_rcv_hiwat; 1075 1076 /* 1077 * Round up to system page size in case SO_RCVBUF is modified 1078 * after SO_SNDBUF; the latter is also similarly rounded up. 1079 */ 1080 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1081 tcp->tcp_fuse_rcv_hiwater = rwnd; 1082 return (rwnd); 1083 } 1084 1085 /* 1086 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1087 */ 1088 int 1089 tcp_fuse_maxpsz_set(tcp_t *tcp) 1090 { 1091 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1092 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1093 uint_t maxpsz = sndbuf; 1094 1095 ASSERT(tcp->tcp_fused); 1096 ASSERT(peer_tcp != NULL); 1097 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1098 /* 1099 * In the fused loopback case, we want the stream head to split 1100 * up larger writes into smaller chunks for a more accurate flow- 1101 * control accounting. Our maxpsz is half of the sender's send 1102 * buffer or the receiver's receive buffer, whichever is smaller. 1103 * We round up the buffer to system page size due to the lack of 1104 * TCP MSS concept in Fusion. 1105 */ 1106 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1107 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1108 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1109 1110 /* 1111 * Calculate the peer's limit for the number of outstanding unread 1112 * data block. This is the amount of data blocks that are allowed 1113 * to reside in the receiver's queue before the sender gets flow 1114 * controlled. It is used only in the synchronous streams mode as 1115 * a way to throttle the sender when it performs consecutive writes 1116 * faster than can be read. The value is derived from SO_SNDBUF in 1117 * order to give the sender some control; we divide it with a large 1118 * value (16KB) to produce a fairly low initial limit. 1119 */ 1120 if (tcp_fusion_rcv_unread_min == 0) { 1121 /* A value of 0 means that we disable the check */ 1122 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1123 } else { 1124 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1125 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1126 } 1127 return (maxpsz); 1128 } 1129