xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 275c9da86e89f8abf71135cf63d9fc23671b2e60)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/debug.h>
33 #include <sys/sdt.h>
34 #include <sys/cmn_err.h>
35 #include <sys/tihdr.h>
36 
37 #include <inet/common.h>
38 #include <inet/optcom.h>
39 #include <inet/ip.h>
40 #include <inet/ip_impl.h>
41 #include <inet/tcp.h>
42 #include <inet/tcp_impl.h>
43 #include <inet/ipsec_impl.h>
44 #include <inet/ipclassifier.h>
45 #include <inet/ipp_common.h>
46 
47 /*
48  * This file implements TCP fusion - a protocol-less data path for TCP
49  * loopback connections.  The fusion of two local TCP endpoints occurs
50  * at connection establishment time.  Various conditions (see details
51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
52  * fails, we fall back to the regular TCP data path; if it succeeds,
53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
54  * tcp_fuse_output() enqueues application data directly onto the peer's
55  * receive queue; no protocol processing is involved.  After enqueueing
56  * the data, the sender can either push (putnext) data up the receiver's
57  * read queue; or the sender can simply return and let the receiver
58  * retrieve the enqueued data via the synchronous streams entry point
59  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
60  * enabled (the default).  It is disabled if sockfs no longer resides
61  * directly on top of tcp module due to a module insertion or removal.
62  * It also needs to be temporarily disabled when sending urgent data
63  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
64  * by strsock_proto() hook.
65  *
66  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
67  * One of the requirements for fusion to succeed is that both endpoints
68  * need to be using the same squeue.  This ensures that neither side
69  * can disappear while the other side is still sending data.  By itself,
70  * squeue is not sufficient for guaranteeing safety when synchronous
71  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
72  * the squeue and its access to tcp_rcv_list and other fusion-related
73  * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
74  * used for this purpose.  When there is urgent data, the sender needs
75  * to push the data up the receiver's streams read queue.  In order to
76  * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
77  * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
78  * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
79  * after this point, it will see that synchronous streams is plugged and
80  * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
81  * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
82  * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
83  * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
84  * getq_noenab() to dequeue data from the stream head instead.  Once the
85  * data on the stream head has been consumed, tcp_fuse_rrw() may again
86  * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
87  * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
88  * effectively disabling synchronous streams.
89  *
90  * The following note applies only to the synchronous streams mode.
91  *
92  * Flow control is done by checking the size of receive buffer and
93  * the number of data blocks, both set to different limits.  This is
94  * different than regular streams flow control where cumulative size
95  * check dominates block count check -- streams queue high water mark
96  * typically represents bytes.  Each enqueue triggers notifications
97  * to the receiving process; a build up of data blocks indicates a
98  * slow receiver and the sender should be blocked or informed at the
99  * earliest moment instead of further wasting system resources.  In
100  * effect, this is equivalent to limiting the number of outstanding
101  * segments in flight.
102  */
103 
104 /*
105  * Setting this to false means we disable fusion altogether and
106  * loopback connections would go through the protocol paths.
107  */
108 boolean_t do_tcp_fusion = B_TRUE;
109 
110 /*
111  * Enabling this flag allows sockfs to retrieve data directly
112  * from a fused tcp endpoint using synchronous streams interface.
113  */
114 boolean_t do_tcp_direct_sockfs = B_TRUE;
115 
116 /*
117  * This is the minimum amount of outstanding writes allowed on
118  * a synchronous streams-enabled receiving endpoint before the
119  * sender gets flow-controlled.  Setting this value to 0 means
120  * that the data block limit is equivalent to the byte count
121  * limit, which essentially disables the check.
122  */
123 #define	TCP_FUSION_RCV_UNREAD_MIN	8
124 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
125 
126 static void	tcp_fuse_syncstr_enable(tcp_t *);
127 static void	tcp_fuse_syncstr_disable(tcp_t *);
128 static void	strrput_sig(queue_t *, boolean_t);
129 
130 /*
131  * Return true if this connection needs some IP functionality
132  */
133 static boolean_t
134 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
135 {
136 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
137 
138 	/*
139 	 * If ire is not cached, do not use fusion
140 	 */
141 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
142 		/*
143 		 * There is no need to hold conn_lock here because when called
144 		 * from tcp_fuse() there can be no window where conn_ire_cache
145 		 * can change. This is not true whe called from
146 		 * tcp_fuse_output(). conn_ire_cache can become null just
147 		 * after the check, but it's ok if a few packets are delivered
148 		 * in the fused state.
149 		 */
150 		return (B_TRUE);
151 	}
152 	if (tcp->tcp_ipversion == IPV4_VERSION) {
153 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
154 			return (B_TRUE);
155 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
156 			return (B_TRUE);
157 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
158 			return (B_TRUE);
159 	} else {
160 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
161 			return (B_TRUE);
162 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
163 			return (B_TRUE);
164 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
165 			return (B_TRUE);
166 	}
167 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
168 		return (B_TRUE);
169 	return (B_FALSE);
170 }
171 
172 
173 /*
174  * This routine gets called by the eager tcp upon changing state from
175  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
176  * and the active connect tcp such that the regular tcp processings
177  * may be bypassed under allowable circumstances.  Because the fusion
178  * requires both endpoints to be in the same squeue, it does not work
179  * for simultaneous active connects because there is no easy way to
180  * switch from one squeue to another once the connection is created.
181  * This is different from the eager tcp case where we assign it the
182  * same squeue as the one given to the active connect tcp during open.
183  */
184 void
185 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
186 {
187 	conn_t *peer_connp, *connp = tcp->tcp_connp;
188 	tcp_t *peer_tcp;
189 	tcp_stack_t	*tcps = tcp->tcp_tcps;
190 	netstack_t	*ns;
191 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
192 
193 	ASSERT(!tcp->tcp_fused);
194 	ASSERT(tcp->tcp_loopback);
195 	ASSERT(tcp->tcp_loopback_peer == NULL);
196 	/*
197 	 * We need to inherit q_hiwat of the listener tcp, but we can't
198 	 * really use tcp_listener since we get here after sending up
199 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
200 	 * at which point tcp_listener is cleared; this is why we use
201 	 * tcp_saved_listener.  The listener itself is guaranteed to be
202 	 * around until tcp_accept_finish() is called on this eager --
203 	 * this won't happen until we're done since we're inside the
204 	 * eager's perimeter now.
205 	 */
206 	ASSERT(tcp->tcp_saved_listener != NULL);
207 
208 	/*
209 	 * Lookup peer endpoint; search for the remote endpoint having
210 	 * the reversed address-port quadruplet in ESTABLISHED state,
211 	 * which is guaranteed to be unique in the system.  Zone check
212 	 * is applied accordingly for loopback address, but not for
213 	 * local address since we want fusion to happen across Zones.
214 	 */
215 	if (tcp->tcp_ipversion == IPV4_VERSION) {
216 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
217 		    (ipha_t *)iphdr, tcph, ipst);
218 	} else {
219 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
220 		    (ip6_t *)iphdr, tcph, ipst);
221 	}
222 
223 	/*
224 	 * We can only proceed if peer exists, resides in the same squeue
225 	 * as our conn and is not raw-socket.  The squeue assignment of
226 	 * this eager tcp was done earlier at the time of SYN processing
227 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
228 	 * doesn't guarantee a safe condition to fuse, hence we perform
229 	 * additional tests below.
230 	 */
231 	ASSERT(peer_connp == NULL || peer_connp != connp);
232 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
233 	    !IPCL_IS_TCP(peer_connp)) {
234 		if (peer_connp != NULL) {
235 			TCP_STAT(tcps, tcp_fusion_unqualified);
236 			CONN_DEC_REF(peer_connp);
237 		}
238 		return;
239 	}
240 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
241 
242 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
243 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
244 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
245 
246 	/*
247 	 * Fuse the endpoints; we perform further checks against both
248 	 * tcp endpoints to ensure that a fusion is allowed to happen.
249 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
250 	 * IPQoS policy/kernel SSL exists.
251 	 */
252 	ns = tcps->tcps_netstack;
253 	ipst = ns->netstack_ip;
254 
255 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
256 	    !tcp_loopback_needs_ip(tcp, ns) &&
257 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
258 	    tcp->tcp_kssl_ent == NULL &&
259 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
260 		mblk_t *mp;
261 		struct stroptions *stropt;
262 		queue_t *peer_rq = peer_tcp->tcp_rq;
263 
264 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
265 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
266 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
267 		ASSERT(tcp->tcp_kssl_ctx == NULL);
268 
269 		/*
270 		 * We need to drain data on both endpoints during unfuse.
271 		 * If we need to send up SIGURG at the time of draining,
272 		 * we want to be sure that an mblk is readily available.
273 		 * This is why we pre-allocate the M_PCSIG mblks for both
274 		 * endpoints which will only be used during/after unfuse.
275 		 */
276 		if ((mp = allocb(1, BPRI_HI)) == NULL)
277 			goto failed;
278 
279 		tcp->tcp_fused_sigurg_mp = mp;
280 
281 		if ((mp = allocb(1, BPRI_HI)) == NULL)
282 			goto failed;
283 
284 		peer_tcp->tcp_fused_sigurg_mp = mp;
285 
286 		/* Allocate M_SETOPTS mblk */
287 		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
288 			goto failed;
289 
290 		/* Fuse both endpoints */
291 		peer_tcp->tcp_loopback_peer = tcp;
292 		tcp->tcp_loopback_peer = peer_tcp;
293 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
294 
295 		/*
296 		 * We never use regular tcp paths in fusion and should
297 		 * therefore clear tcp_unsent on both endpoints.  Having
298 		 * them set to non-zero values means asking for trouble
299 		 * especially after unfuse, where we may end up sending
300 		 * through regular tcp paths which expect xmit_list and
301 		 * friends to be correctly setup.
302 		 */
303 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
304 
305 		tcp_timers_stop(tcp);
306 		tcp_timers_stop(peer_tcp);
307 
308 		/*
309 		 * At this point we are a detached eager tcp and therefore
310 		 * don't have a queue assigned to us until accept happens.
311 		 * In the mean time the peer endpoint may immediately send
312 		 * us data as soon as fusion is finished, and we need to be
313 		 * able to flow control it in case it sends down huge amount
314 		 * of data while we're still detached.  To prevent that we
315 		 * inherit the listener's q_hiwat value; this is temporary
316 		 * since we'll repeat the process in tcp_accept_finish().
317 		 */
318 		(void) tcp_fuse_set_rcv_hiwat(tcp,
319 		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
320 
321 		/*
322 		 * Set the stream head's write offset value to zero since we
323 		 * won't be needing any room for TCP/IP headers; tell it to
324 		 * not break up the writes (this would reduce the amount of
325 		 * work done by kmem); and configure our receive buffer.
326 		 * Note that we can only do this for the active connect tcp
327 		 * since our eager is still detached; it will be dealt with
328 		 * later in tcp_accept_finish().
329 		 */
330 		DB_TYPE(mp) = M_SETOPTS;
331 		mp->b_wptr += sizeof (*stropt);
332 
333 		stropt = (struct stroptions *)mp->b_rptr;
334 		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
335 		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
336 		stropt->so_wroff = 0;
337 
338 		/*
339 		 * Record the stream head's high water mark for
340 		 * peer endpoint; this is used for flow-control
341 		 * purposes in tcp_fuse_output().
342 		 */
343 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
344 		    peer_rq->q_hiwat);
345 
346 		/* Send the options up */
347 		putnext(peer_rq, mp);
348 	} else {
349 		TCP_STAT(tcps, tcp_fusion_unqualified);
350 	}
351 	CONN_DEC_REF(peer_connp);
352 	return;
353 
354 failed:
355 	if (tcp->tcp_fused_sigurg_mp != NULL) {
356 		freeb(tcp->tcp_fused_sigurg_mp);
357 		tcp->tcp_fused_sigurg_mp = NULL;
358 	}
359 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
360 		freeb(peer_tcp->tcp_fused_sigurg_mp);
361 		peer_tcp->tcp_fused_sigurg_mp = NULL;
362 	}
363 	CONN_DEC_REF(peer_connp);
364 }
365 
366 /*
367  * Unfuse a previously-fused pair of tcp loopback endpoints.
368  */
369 void
370 tcp_unfuse(tcp_t *tcp)
371 {
372 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
373 
374 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
375 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
376 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
377 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
378 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
379 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
380 
381 	/*
382 	 * We disable synchronous streams, drain any queued data and
383 	 * clear tcp_direct_sockfs.  The synchronous streams entry
384 	 * points will become no-ops after this point.
385 	 */
386 	tcp_fuse_disable_pair(tcp, B_TRUE);
387 
388 	/*
389 	 * Update th_seq and th_ack in the header template
390 	 */
391 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
392 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
393 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
394 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
395 
396 	/* Unfuse the endpoints */
397 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
398 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
399 }
400 
401 /*
402  * Fusion output routine for urgent data.  This routine is called by
403  * tcp_fuse_output() for handling non-M_DATA mblks.
404  */
405 void
406 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
407 {
408 	mblk_t *mp1;
409 	struct T_exdata_ind *tei;
410 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
411 	mblk_t *head, *prev_head = NULL;
412 	tcp_stack_t	*tcps = tcp->tcp_tcps;
413 
414 	ASSERT(tcp->tcp_fused);
415 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
416 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
417 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
418 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
419 
420 	/*
421 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
422 	 * Each occurence denotes a new urgent pointer.  For each new
423 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
424 	 * that it needs to go into urgent mode.  This is similar to the
425 	 * urgent data handling in the regular tcp.  We don't need to keep
426 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
427 	 * "advances" the urgent pointer for us.
428 	 *
429 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
430 	 * by a T_EXDATA_IND before being enqueued behind any existing data
431 	 * destined for the receiving app.  There is only a single urgent
432 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
433 	 * data arrives before the receiving app reads some existing urgent
434 	 * data, the previous marker is lost.  This behavior is emulated
435 	 * accordingly below, by removing any existing T_EXDATA_IND messages
436 	 * and essentially converting old urgent data into non-urgent.
437 	 */
438 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
439 	/* Let sender get out of urgent mode */
440 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
441 
442 	/*
443 	 * This flag indicates that a signal needs to be sent up.
444 	 * This flag will only get cleared once SIGURG is delivered and
445 	 * is not affected by the tcp_fused flag -- delivery will still
446 	 * happen even after an endpoint is unfused, to handle the case
447 	 * where the sending endpoint immediately closes/unfuses after
448 	 * sending urgent data and the accept is not yet finished.
449 	 */
450 	peer_tcp->tcp_fused_sigurg = B_TRUE;
451 
452 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
453 	DB_TYPE(mp) = M_PROTO;
454 	tei = (struct T_exdata_ind *)mp->b_rptr;
455 	tei->PRIM_type = T_EXDATA_IND;
456 	tei->MORE_flag = 0;
457 	mp->b_wptr = (uchar_t *)&tei[1];
458 
459 	TCP_STAT(tcps, tcp_fusion_urg);
460 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
461 
462 	head = peer_tcp->tcp_rcv_list;
463 	while (head != NULL) {
464 		/*
465 		 * Remove existing T_EXDATA_IND, keep the data which follows
466 		 * it and relink our list.  Note that we don't modify the
467 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
468 		 */
469 		if (DB_TYPE(head) != M_DATA) {
470 			mp1 = head;
471 
472 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
473 			head = mp1->b_cont;
474 			mp1->b_cont = NULL;
475 			head->b_next = mp1->b_next;
476 			mp1->b_next = NULL;
477 			if (prev_head != NULL)
478 				prev_head->b_next = head;
479 			if (peer_tcp->tcp_rcv_list == mp1)
480 				peer_tcp->tcp_rcv_list = head;
481 			if (peer_tcp->tcp_rcv_last_head == mp1)
482 				peer_tcp->tcp_rcv_last_head = head;
483 			freeb(mp1);
484 		}
485 		prev_head = head;
486 		head = head->b_next;
487 	}
488 }
489 
490 /*
491  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
492  * If we are modifying any member that can be changed outside the squeue,
493  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
494  */
495 boolean_t
496 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
497 {
498 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
499 	uint_t max_unread;
500 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
501 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
502 	mblk_t *mp1 = mp;
503 	ill_t *ilp, *olp;
504 	ipha_t *ipha;
505 	ip6_t *ip6h;
506 	tcph_t *tcph;
507 	uint_t ip_hdr_len;
508 	uint32_t seq;
509 	uint32_t recv_size = send_size;
510 	tcp_stack_t	*tcps = tcp->tcp_tcps;
511 	netstack_t	*ns = tcps->tcps_netstack;
512 	ip_stack_t	*ipst = ns->netstack_ip;
513 
514 	ASSERT(tcp->tcp_fused);
515 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
516 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
517 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
518 	    DB_TYPE(mp) == M_PCPROTO);
519 
520 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
521 
522 	/* If this connection requires IP, unfuse and use regular path */
523 	if (tcp_loopback_needs_ip(tcp, ns) ||
524 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
525 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
526 		TCP_STAT(tcps, tcp_fusion_aborted);
527 		goto unfuse;
528 	}
529 
530 	if (send_size == 0) {
531 		freemsg(mp);
532 		return (B_TRUE);
533 	}
534 
535 	/*
536 	 * Handle urgent data; we either send up SIGURG to the peer now
537 	 * or do it later when we drain, in case the peer is detached
538 	 * or if we're short of memory for M_PCSIG mblk.
539 	 */
540 	if (urgent) {
541 		/*
542 		 * We stop synchronous streams when we have urgent data
543 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
544 		 * for some reasons the urgent data can't be delivered
545 		 * below, synchronous streams will remain stopped until
546 		 * someone drains the tcp_rcv_list.
547 		 */
548 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
549 		tcp_fuse_output_urg(tcp, mp);
550 
551 		mp1 = mp->b_cont;
552 	}
553 
554 	if (tcp->tcp_ipversion == IPV4_VERSION &&
555 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
556 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
557 	    tcp->tcp_ipversion == IPV6_VERSION &&
558 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
559 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
560 		/*
561 		 * Build ip and tcp header to satisfy FW_HOOKS.
562 		 * We only build it when any hook is present.
563 		 */
564 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
565 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
566 			/* If tcp_xmit_mp fails, use regular path */
567 			goto unfuse;
568 
569 		ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
570 		olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
571 		/* PFHooks: LOOPBACK_OUT */
572 		if (tcp->tcp_ipversion == IPV4_VERSION) {
573 			ipha = (ipha_t *)mp1->b_rptr;
574 
575 			DTRACE_PROBE4(ip4__loopback__out__start,
576 			    ill_t *, NULL, ill_t *, olp,
577 			    ipha_t *, ipha, mblk_t *, mp1);
578 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
579 			    ipst->ips_ipv4firewall_loopback_out,
580 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
581 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
582 		} else {
583 			ip6h = (ip6_t *)mp1->b_rptr;
584 
585 			DTRACE_PROBE4(ip6__loopback__out__start,
586 			    ill_t *, NULL, ill_t *, olp,
587 			    ip6_t *, ip6h, mblk_t *, mp1);
588 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
589 			    ipst->ips_ipv6firewall_loopback_out,
590 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
591 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
592 		}
593 		if (mp1 == NULL)
594 			goto unfuse;
595 
596 
597 		/* PFHooks: LOOPBACK_IN */
598 		ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
599 		ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
600 
601 		if (tcp->tcp_ipversion == IPV4_VERSION) {
602 			DTRACE_PROBE4(ip4__loopback__in__start,
603 			    ill_t *, ilp, ill_t *, NULL,
604 			    ipha_t *, ipha, mblk_t *, mp1);
605 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
606 			    ipst->ips_ipv4firewall_loopback_in,
607 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
608 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
609 			if (mp1 == NULL)
610 				goto unfuse;
611 
612 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
613 		} else {
614 			DTRACE_PROBE4(ip6__loopback__in__start,
615 			    ill_t *, ilp, ill_t *, NULL,
616 			    ip6_t *, ip6h, mblk_t *, mp1);
617 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
618 			    ipst->ips_ipv6firewall_loopback_in,
619 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
620 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
621 			if (mp1 == NULL)
622 				goto unfuse;
623 
624 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
625 		}
626 
627 		/* Data length might be changed by FW_HOOKS */
628 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
629 		seq = ABE32_TO_U32(tcph->th_seq);
630 		recv_size += seq - tcp->tcp_snxt;
631 
632 		/*
633 		 * The message duplicated by tcp_xmit_mp is freed.
634 		 * Note: the original message passed in remains unchanged.
635 		 */
636 		freemsg(mp1);
637 	}
638 
639 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
640 	/*
641 	 * Wake up and signal the peer; it is okay to do this before
642 	 * enqueueing because we are holding the lock.  One of the
643 	 * advantages of synchronous streams is the ability for us to
644 	 * find out when the application performs a read on the socket,
645 	 * by way of tcp_fuse_rrw() entry point being called.  Every
646 	 * data that gets enqueued onto the receiver is treated as if
647 	 * it has arrived at the receiving endpoint, thus generating
648 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
649 	 * case.  However, we only wake up the application when necessary,
650 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
651 	 * it will send everything upstream.
652 	 */
653 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
654 	    !TCP_IS_DETACHED(peer_tcp)) {
655 		if (peer_tcp->tcp_rcv_list == NULL)
656 			STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
657 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
658 		STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
659 	}
660 
661 	/*
662 	 * Enqueue data into the peer's receive list; we may or may not
663 	 * drain the contents depending on the conditions below.
664 	 */
665 	tcp_rcv_enqueue(peer_tcp, mp, recv_size);
666 
667 	/* In case it wrapped around and also to keep it constant */
668 	peer_tcp->tcp_rwnd += recv_size;
669 
670 	/*
671 	 * Exercise flow-control when needed; we will get back-enabled
672 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
673 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
674 	 * we emulate streams flow control by checking the peer's queue
675 	 * size and high water mark; otherwise we simply use canputnext()
676 	 * to decide if we need to stop our flow.
677 	 *
678 	 * The outstanding unread data block check does not apply for a
679 	 * detached receiver; this is to avoid unnecessary blocking of the
680 	 * sender while the accept is currently in progress and is quite
681 	 * similar to the regular tcp.
682 	 */
683 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
684 		max_unread = UINT_MAX;
685 
686 	/*
687 	 * Since we are accessing our tcp_flow_stopped and might modify it,
688 	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
689 	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
690 	 * not be an issue here since we are within the squeue and the peer
691 	 * won't disappear.
692 	 */
693 	if (tcp > peer_tcp) {
694 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
695 		mutex_enter(&tcp->tcp_non_sq_lock);
696 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
697 	} else {
698 		mutex_enter(&tcp->tcp_non_sq_lock);
699 	}
700 	flow_stopped = tcp->tcp_flow_stopped;
701 	if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
702 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
703 	    ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
704 	    (!peer_tcp->tcp_direct_sockfs &&
705 	    !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq))) {
706 		peer_data_queued = B_TRUE;
707 	}
708 
709 	if (!flow_stopped && (peer_data_queued ||
710 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
711 		tcp_setqfull(tcp);
712 		flow_stopped = B_TRUE;
713 		TCP_STAT(tcps, tcp_fusion_flowctl);
714 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
715 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
716 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
717 	} else if (flow_stopped && !peer_data_queued &&
718 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
719 		tcp_clrqfull(tcp);
720 		flow_stopped = B_FALSE;
721 	}
722 	mutex_exit(&tcp->tcp_non_sq_lock);
723 	ipst->ips_loopback_packets++;
724 	tcp->tcp_last_sent_len = send_size;
725 
726 	/* Need to adjust the following SNMP MIB-related variables */
727 	tcp->tcp_snxt += send_size;
728 	tcp->tcp_suna = tcp->tcp_snxt;
729 	peer_tcp->tcp_rnxt += recv_size;
730 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
731 
732 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
733 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
734 
735 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
736 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
737 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
738 
739 	BUMP_LOCAL(tcp->tcp_obsegs);
740 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
741 
742 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
743 
744 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
745 
746 	if (!TCP_IS_DETACHED(peer_tcp)) {
747 		/*
748 		 * Drain the peer's receive queue it has urgent data or if
749 		 * we're not flow-controlled.  There is no need for draining
750 		 * normal data when tcp_direct_sockfs is on because the peer
751 		 * will pull the data via tcp_fuse_rrw().
752 		 */
753 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
754 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
755 			/*
756 			 * For TLI-based streams, a thread in tcp_accept_swap()
757 			 * can race with us.  That thread will ensure that the
758 			 * correct peer_tcp->tcp_rq is globally visible before
759 			 * peer_tcp->tcp_detached is visible as clear, but we
760 			 * must also ensure that the load of tcp_rq cannot be
761 			 * reordered to be before the tcp_detached check.
762 			 */
763 			membar_consumer();
764 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
765 			    NULL);
766 			/*
767 			 * If synchronous streams was stopped above due
768 			 * to the presence of urgent data, re-enable it.
769 			 */
770 			if (urgent)
771 				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
772 		}
773 	}
774 	return (B_TRUE);
775 unfuse:
776 	tcp_unfuse(tcp);
777 	return (B_FALSE);
778 }
779 
780 /*
781  * This routine gets called to deliver data upstream on a fused or
782  * previously fused tcp loopback endpoint; the latter happens only
783  * when there is a pending SIGURG signal plus urgent data that can't
784  * be sent upstream in the past.
785  */
786 boolean_t
787 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
788 {
789 	mblk_t *mp;
790 #ifdef DEBUG
791 	uint_t cnt = 0;
792 #endif
793 	tcp_stack_t	*tcps = tcp->tcp_tcps;
794 
795 	ASSERT(tcp->tcp_loopback);
796 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
797 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
798 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
799 
800 	/* No need for the push timer now, in case it was scheduled */
801 	if (tcp->tcp_push_tid != 0) {
802 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
803 		tcp->tcp_push_tid = 0;
804 	}
805 	/*
806 	 * If there's urgent data sitting in receive list and we didn't
807 	 * get a chance to send up a SIGURG signal, make sure we send
808 	 * it first before draining in order to ensure that SIOCATMARK
809 	 * works properly.
810 	 */
811 	if (tcp->tcp_fused_sigurg) {
812 		/*
813 		 * sigurg_mpp is normally NULL, i.e. when we're still
814 		 * fused and didn't get here because of tcp_unfuse().
815 		 * In this case try hard to allocate the M_PCSIG mblk.
816 		 */
817 		if (sigurg_mpp == NULL &&
818 		    (mp = allocb(1, BPRI_HI)) == NULL &&
819 		    (mp = allocb_tryhard(1)) == NULL) {
820 			/* Alloc failed; try again next time */
821 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
822 			    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
823 			return (B_TRUE);
824 		} else if (sigurg_mpp != NULL) {
825 			/*
826 			 * Use the supplied M_PCSIG mblk; it means we're
827 			 * either unfused or in the process of unfusing,
828 			 * and the drain must happen now.
829 			 */
830 			mp = *sigurg_mpp;
831 			*sigurg_mpp = NULL;
832 		}
833 		ASSERT(mp != NULL);
834 
835 		tcp->tcp_fused_sigurg = B_FALSE;
836 		/* Send up the signal */
837 		DB_TYPE(mp) = M_PCSIG;
838 		*mp->b_wptr++ = (uchar_t)SIGURG;
839 		putnext(q, mp);
840 		/*
841 		 * Let the regular tcp_rcv_drain() path handle
842 		 * draining the data if we're no longer fused.
843 		 */
844 		if (!tcp->tcp_fused)
845 			return (B_FALSE);
846 	}
847 
848 	/*
849 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
850 	 * each M_DATA that gets enqueued onto the receiver.  At this point
851 	 * we are about to drain any queued data via putnext().  In order
852 	 * to avoid extraneous signal generation from strrput(), we set
853 	 * STRGETINPROG flag at the stream head prior to the draining and
854 	 * restore it afterwards.  This masks out signal generation only
855 	 * for M_DATA messages and does not affect urgent data.
856 	 */
857 	if (tcp->tcp_direct_sockfs)
858 		strrput_sig(q, B_FALSE);
859 
860 	/* Drain the data */
861 	while ((mp = tcp->tcp_rcv_list) != NULL) {
862 		tcp->tcp_rcv_list = mp->b_next;
863 		mp->b_next = NULL;
864 #ifdef DEBUG
865 		cnt += msgdsize(mp);
866 #endif
867 		putnext(q, mp);
868 		TCP_STAT(tcps, tcp_fusion_putnext);
869 	}
870 
871 	if (tcp->tcp_direct_sockfs)
872 		strrput_sig(q, B_TRUE);
873 
874 	ASSERT(cnt == tcp->tcp_rcv_cnt);
875 	tcp->tcp_rcv_last_head = NULL;
876 	tcp->tcp_rcv_last_tail = NULL;
877 	tcp->tcp_rcv_cnt = 0;
878 	tcp->tcp_fuse_rcv_unread_cnt = 0;
879 	tcp->tcp_rwnd = q->q_hiwat;
880 
881 	return (B_TRUE);
882 }
883 
884 /*
885  * Synchronous stream entry point for sockfs to retrieve
886  * data directly from tcp_rcv_list.
887  * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
888  * for which it  must take the tcp_non_sq_lock of the peer as well
889  * making any change. The order of taking the locks is based on
890  * the TCP pointer itself. Before we get the peer we need to take
891  * our tcp_non_sq_lock so that the peer doesn't disappear. However,
892  * we cannot drop the lock if we have to grab the peer's lock (because
893  * of ordering), since the peer might disappear in the interim. So,
894  * we take our tcp_non_sq_lock, get the peer, increment the ref on the
895  * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
896  * desired order. Incrementing the conn ref on the peer means that the
897  * peer won't disappear when we drop our tcp_non_sq_lock.
898  */
899 int
900 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
901 {
902 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
903 	mblk_t *mp;
904 	tcp_t *peer_tcp;
905 	tcp_stack_t	*tcps = tcp->tcp_tcps;
906 
907 	mutex_enter(&tcp->tcp_non_sq_lock);
908 
909 	/*
910 	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
911 	 * the underlying data to the stream head.  We need to wait until it's
912 	 * done, then return EBUSY so that strget() will dequeue data from the
913 	 * stream head to ensure data is drained in-order.
914 	 */
915 plugged:
916 	if (tcp->tcp_fuse_syncstr_plugged) {
917 		do {
918 			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
919 		} while (tcp->tcp_fuse_syncstr_plugged);
920 
921 		mutex_exit(&tcp->tcp_non_sq_lock);
922 		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
923 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
924 		return (EBUSY);
925 	}
926 
927 	peer_tcp = tcp->tcp_loopback_peer;
928 
929 	/*
930 	 * If someone had turned off tcp_direct_sockfs or if synchronous
931 	 * streams is stopped, we return EBUSY.  This causes strget() to
932 	 * dequeue data from the stream head instead.
933 	 */
934 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
935 		mutex_exit(&tcp->tcp_non_sq_lock);
936 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
937 		return (EBUSY);
938 	}
939 
940 	/*
941 	 * Grab lock in order. The highest addressed tcp is locked first.
942 	 * We don't do this within the tcp_rcv_list check since if we
943 	 * have to drop the lock, for ordering, then the tcp_rcv_list
944 	 * could change.
945 	 */
946 	if (peer_tcp > tcp) {
947 		CONN_INC_REF(peer_tcp->tcp_connp);
948 		mutex_exit(&tcp->tcp_non_sq_lock);
949 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
950 		mutex_enter(&tcp->tcp_non_sq_lock);
951 		/*
952 		 * This might have changed in the interim
953 		 * Once read-side tcp_non_sq_lock is dropped above
954 		 * anything can happen, we need to check all
955 		 * known conditions again once we reaquire
956 		 * read-side tcp_non_sq_lock.
957 		 */
958 		if (tcp->tcp_fuse_syncstr_plugged) {
959 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
960 			CONN_DEC_REF(peer_tcp->tcp_connp);
961 			goto plugged;
962 		}
963 		if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
964 			mutex_exit(&tcp->tcp_non_sq_lock);
965 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
966 			CONN_DEC_REF(peer_tcp->tcp_connp);
967 			TCP_STAT(tcps, tcp_fusion_rrw_busy);
968 			return (EBUSY);
969 		}
970 		CONN_DEC_REF(peer_tcp->tcp_connp);
971 	} else {
972 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
973 	}
974 
975 	if ((mp = tcp->tcp_rcv_list) != NULL) {
976 
977 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
978 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
979 
980 		tcp->tcp_rcv_list = NULL;
981 		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
982 
983 		/*
984 		 * At this point nothing should be left in tcp_rcv_list.
985 		 * The only possible case where we would have a chain of
986 		 * b_next-linked messages is urgent data, but we wouldn't
987 		 * be here if that's true since urgent data is delivered
988 		 * via putnext() and synchronous streams is stopped until
989 		 * tcp_fuse_rcv_drain() is finished.
990 		 */
991 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
992 
993 		tcp->tcp_rcv_last_head = NULL;
994 		tcp->tcp_rcv_last_tail = NULL;
995 		tcp->tcp_rcv_cnt = 0;
996 		tcp->tcp_fuse_rcv_unread_cnt = 0;
997 
998 		if (peer_tcp->tcp_flow_stopped &&
999 		    (TCP_UNSENT_BYTES(peer_tcp) <=
1000 		    peer_tcp->tcp_xmit_lowater)) {
1001 			tcp_clrqfull(peer_tcp);
1002 			TCP_STAT(tcps, tcp_fusion_backenabled);
1003 		}
1004 	}
1005 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1006 	/*
1007 	 * Either we just dequeued everything or we get here from sockfs
1008 	 * and have nothing to return; in this case clear RSLEEP.
1009 	 */
1010 	ASSERT(tcp->tcp_rcv_last_head == NULL);
1011 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
1012 	ASSERT(tcp->tcp_rcv_cnt == 0);
1013 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
1014 	STR_WAKEUP_CLEAR(STREAM(q));
1015 
1016 	mutex_exit(&tcp->tcp_non_sq_lock);
1017 	dp->d_mp = mp;
1018 	return (0);
1019 }
1020 
1021 /*
1022  * Synchronous stream entry point used by certain ioctls to retrieve
1023  * information about or peek into the tcp_rcv_list.
1024  */
1025 int
1026 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
1027 {
1028 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
1029 	mblk_t	*mp;
1030 	uint_t	cmd = dp->d_cmd;
1031 	int	res = 0;
1032 	int	error = 0;
1033 	struct stdata *stp = STREAM(q);
1034 
1035 	mutex_enter(&tcp->tcp_non_sq_lock);
1036 	/* If shutdown on read has happened, return nothing */
1037 	mutex_enter(&stp->sd_lock);
1038 	if (stp->sd_flag & STREOF) {
1039 		mutex_exit(&stp->sd_lock);
1040 		goto done;
1041 	}
1042 	mutex_exit(&stp->sd_lock);
1043 
1044 	/*
1045 	 * It is OK not to return an answer if tcp_rcv_list is
1046 	 * currently not accessible.
1047 	 */
1048 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1049 	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1050 		goto done;
1051 
1052 	if (cmd & INFOD_COUNT) {
1053 		/*
1054 		 * We have at least one message and
1055 		 * could return only one at a time.
1056 		 */
1057 		dp->d_count++;
1058 		res |= INFOD_COUNT;
1059 	}
1060 	if (cmd & INFOD_BYTES) {
1061 		/*
1062 		 * Return size of all data messages.
1063 		 */
1064 		dp->d_bytes += tcp->tcp_rcv_cnt;
1065 		res |= INFOD_BYTES;
1066 	}
1067 	if (cmd & INFOD_FIRSTBYTES) {
1068 		/*
1069 		 * Return size of first data message.
1070 		 */
1071 		dp->d_bytes = msgdsize(mp);
1072 		res |= INFOD_FIRSTBYTES;
1073 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1074 	}
1075 	if (cmd & INFOD_COPYOUT) {
1076 		mblk_t *mp1;
1077 		int n;
1078 
1079 		if (DB_TYPE(mp) == M_DATA) {
1080 			mp1 = mp;
1081 		} else {
1082 			mp1 = mp->b_cont;
1083 			ASSERT(mp1 != NULL);
1084 		}
1085 
1086 		/*
1087 		 * Return data contents of first message.
1088 		 */
1089 		ASSERT(DB_TYPE(mp1) == M_DATA);
1090 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1091 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1092 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1093 			    UIO_READ, dp->d_uiop)) != 0) {
1094 				goto done;
1095 			}
1096 			mp1 = mp1->b_cont;
1097 		}
1098 		res |= INFOD_COPYOUT;
1099 		dp->d_cmd &= ~INFOD_COPYOUT;
1100 	}
1101 done:
1102 	mutex_exit(&tcp->tcp_non_sq_lock);
1103 
1104 	dp->d_res |= res;
1105 
1106 	return (error);
1107 }
1108 
1109 /*
1110  * Enable synchronous streams on a fused tcp loopback endpoint.
1111  */
1112 static void
1113 tcp_fuse_syncstr_enable(tcp_t *tcp)
1114 {
1115 	queue_t *rq = tcp->tcp_rq;
1116 	struct stdata *stp = STREAM(rq);
1117 
1118 	/* We can only enable synchronous streams for sockfs mode */
1119 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1120 
1121 	if (!tcp->tcp_direct_sockfs)
1122 		return;
1123 
1124 	mutex_enter(&stp->sd_lock);
1125 	mutex_enter(QLOCK(rq));
1126 
1127 	/*
1128 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1129 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1130 	 * for every enqueued data in tcp_fuse_output().
1131 	 */
1132 	rq->q_qinfo = &tcp_loopback_rinit;
1133 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1134 	stp->sd_struiordq = rq;
1135 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1136 
1137 	mutex_exit(QLOCK(rq));
1138 	mutex_exit(&stp->sd_lock);
1139 }
1140 
1141 /*
1142  * Disable synchronous streams on a fused tcp loopback endpoint.
1143  */
1144 static void
1145 tcp_fuse_syncstr_disable(tcp_t *tcp)
1146 {
1147 	queue_t *rq = tcp->tcp_rq;
1148 	struct stdata *stp = STREAM(rq);
1149 
1150 	if (!tcp->tcp_direct_sockfs)
1151 		return;
1152 
1153 	mutex_enter(&stp->sd_lock);
1154 	mutex_enter(QLOCK(rq));
1155 
1156 	/*
1157 	 * Reset q_qinfo to point to the default tcp entry points.
1158 	 * Also restore SR_SIGALLDATA so that strrput() can generate
1159 	 * the signals again for future M_DATA messages.
1160 	 */
1161 	rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
1162 	rq->q_struiot = tcp_rinitv4.qi_struiot;
1163 	stp->sd_struiordq = NULL;
1164 	stp->sd_rput_opt |= SR_SIGALLDATA;
1165 	tcp->tcp_direct_sockfs = B_FALSE;
1166 
1167 	mutex_exit(QLOCK(rq));
1168 	mutex_exit(&stp->sd_lock);
1169 }
1170 
1171 /*
1172  * Enable synchronous streams on a pair of fused tcp endpoints.
1173  */
1174 void
1175 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1176 {
1177 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1178 
1179 	ASSERT(tcp->tcp_fused);
1180 	ASSERT(peer_tcp != NULL);
1181 
1182 	tcp_fuse_syncstr_enable(tcp);
1183 	tcp_fuse_syncstr_enable(peer_tcp);
1184 }
1185 
1186 /*
1187  * Allow or disallow signals to be generated by strrput().
1188  */
1189 static void
1190 strrput_sig(queue_t *q, boolean_t on)
1191 {
1192 	struct stdata *stp = STREAM(q);
1193 
1194 	mutex_enter(&stp->sd_lock);
1195 	if (on)
1196 		stp->sd_flag &= ~STRGETINPROG;
1197 	else
1198 		stp->sd_flag |= STRGETINPROG;
1199 	mutex_exit(&stp->sd_lock);
1200 }
1201 
1202 /*
1203  * Disable synchronous streams on a pair of fused tcp endpoints and drain
1204  * any queued data; called either during unfuse or upon transitioning from
1205  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1206  */
1207 void
1208 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1209 {
1210 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1211 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1212 
1213 	ASSERT(tcp->tcp_fused);
1214 	ASSERT(peer_tcp != NULL);
1215 
1216 	/*
1217 	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1218 	 * onto the stream head.
1219 	 */
1220 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1221 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1222 
1223 	/*
1224 	 * Drain any pending data; the detached check is needed because
1225 	 * we may be called as a result of a tcp_unfuse() triggered by
1226 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1227 	 * draining will happen later after the tcp is unfused.  For non-
1228 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1229 	 * If we have urgent data sitting in the receive list, we will
1230 	 * need to send up a SIGURG signal first before draining the data.
1231 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1232 	 * when called from tcp_rcv_drain().
1233 	 */
1234 	if (!TCP_IS_DETACHED(tcp)) {
1235 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1236 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1237 	}
1238 	if (!TCP_IS_DETACHED(peer_tcp)) {
1239 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1240 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1241 	}
1242 
1243 	/*
1244 	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1245 	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1246 	 * a given stream must be stopped prior to being unplugged (but the
1247 	 * ordering of operations between the streams is unimportant).
1248 	 */
1249 	TCP_FUSE_SYNCSTR_STOP(tcp);
1250 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1251 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1252 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1253 
1254 	/* Lift up any flow-control conditions */
1255 	if (tcp->tcp_flow_stopped) {
1256 		tcp_clrqfull(tcp);
1257 		TCP_STAT(tcps, tcp_fusion_backenabled);
1258 	}
1259 	if (peer_tcp->tcp_flow_stopped) {
1260 		tcp_clrqfull(peer_tcp);
1261 		TCP_STAT(tcps, tcp_fusion_backenabled);
1262 	}
1263 
1264 	/* Disable synchronous streams */
1265 	tcp_fuse_syncstr_disable(tcp);
1266 	tcp_fuse_syncstr_disable(peer_tcp);
1267 }
1268 
1269 /*
1270  * Calculate the size of receive buffer for a fused tcp endpoint.
1271  */
1272 size_t
1273 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1274 {
1275 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1276 
1277 	ASSERT(tcp->tcp_fused);
1278 
1279 	/* Ensure that value is within the maximum upper bound */
1280 	if (rwnd > tcps->tcps_max_buf)
1281 		rwnd = tcps->tcps_max_buf;
1282 
1283 	/* Obey the absolute minimum tcp receive high water mark */
1284 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1285 		rwnd = tcps->tcps_sth_rcv_hiwat;
1286 
1287 	/*
1288 	 * Round up to system page size in case SO_RCVBUF is modified
1289 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1290 	 */
1291 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1292 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1293 	return (rwnd);
1294 }
1295 
1296 /*
1297  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1298  */
1299 int
1300 tcp_fuse_maxpsz_set(tcp_t *tcp)
1301 {
1302 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1303 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1304 	uint_t maxpsz = sndbuf;
1305 
1306 	ASSERT(tcp->tcp_fused);
1307 	ASSERT(peer_tcp != NULL);
1308 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1309 	/*
1310 	 * In the fused loopback case, we want the stream head to split
1311 	 * up larger writes into smaller chunks for a more accurate flow-
1312 	 * control accounting.  Our maxpsz is half of the sender's send
1313 	 * buffer or the receiver's receive buffer, whichever is smaller.
1314 	 * We round up the buffer to system page size due to the lack of
1315 	 * TCP MSS concept in Fusion.
1316 	 */
1317 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1318 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1319 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1320 
1321 	/*
1322 	 * Calculate the peer's limit for the number of outstanding unread
1323 	 * data block.  This is the amount of data blocks that are allowed
1324 	 * to reside in the receiver's queue before the sender gets flow
1325 	 * controlled.  It is used only in the synchronous streams mode as
1326 	 * a way to throttle the sender when it performs consecutive writes
1327 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1328 	 * order to give the sender some control; we divide it with a large
1329 	 * value (16KB) to produce a fairly low initial limit.
1330 	 */
1331 	if (tcp_fusion_rcv_unread_min == 0) {
1332 		/* A value of 0 means that we disable the check */
1333 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1334 	} else {
1335 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1336 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1337 	}
1338 	return (maxpsz);
1339 }
1340