xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision fe54a78e1aacf39261ad56e9903bce02e3fb6d21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/strsun.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/timod.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/suntpi.h>
41 #include <sys/xti_inet.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/sdt.h>
45 #include <sys/vtrace.h>
46 #include <sys/kmem.h>
47 #include <sys/ethernet.h>
48 #include <sys/cpuvar.h>
49 #include <sys/dlpi.h>
50 #include <sys/multidata.h>
51 #include <sys/multidata_impl.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/sodirect.h>
66 #include <sys/uio.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 
92 #include <inet/ipclassifier.h>
93 #include <inet/ip_ire.h>
94 #include <inet/ip_ftable.h>
95 #include <inet/ip_if.h>
96 #include <inet/ipp_common.h>
97 #include <inet/ip_netinfo.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <rpc/pmap_prot.h>
103 
104 /*
105  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
106  *
107  * (Read the detailed design doc in PSARC case directory)
108  *
109  * The entire tcp state is contained in tcp_t and conn_t structure
110  * which are allocated in tandem using ipcl_conn_create() and passing
111  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
112  * the references on the tcp_t. The tcp_t structure is never compressed
113  * and packets always land on the correct TCP perimeter from the time
114  * eager is created till the time tcp_t dies (as such the old mentat
115  * TCP global queue is not used for detached state and no IPSEC checking
116  * is required). The global queue is still allocated to send out resets
117  * for connection which have no listeners and IP directly calls
118  * tcp_xmit_listeners_reset() which does any policy check.
119  *
120  * Protection and Synchronisation mechanism:
121  *
122  * The tcp data structure does not use any kind of lock for protecting
123  * its state but instead uses 'squeues' for mutual exclusion from various
124  * read and write side threads. To access a tcp member, the thread should
125  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
126  * squeue_fill). Since the squeues allow a direct function call, caller
127  * can pass any tcp function having prototype of edesc_t as argument
128  * (different from traditional STREAMs model where packets come in only
129  * designated entry points). The list of functions that can be directly
130  * called via squeue are listed before the usual function prototype.
131  *
132  * Referencing:
133  *
134  * TCP is MT-Hot and we use a reference based scheme to make sure that the
135  * tcp structure doesn't disappear when its needed. When the application
136  * creates an outgoing connection or accepts an incoming connection, we
137  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
138  * The IP reference is just a symbolic reference since ip_tcpclose()
139  * looks at tcp structure after tcp_close_output() returns which could
140  * have dropped the last TCP reference. So as long as the connection is
141  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
142  * conn_t. The classifier puts its own reference when the connection is
143  * inserted in listen or connected hash. Anytime a thread needs to enter
144  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
145  * on write side or by doing a classify on read side and then puts a
146  * reference on the conn before doing squeue_enter/tryenter/fill. For
147  * read side, the classifier itself puts the reference under fanout lock
148  * to make sure that tcp can't disappear before it gets processed. The
149  * squeue will drop this reference automatically so the called function
150  * doesn't have to do a DEC_REF.
151  *
152  * Opening a new connection:
153  *
154  * The outgoing connection open is pretty simple. tcp_open() does the
155  * work in creating the conn/tcp structure and initializing it. The
156  * squeue assignment is done based on the CPU the application
157  * is running on. So for outbound connections, processing is always done
158  * on application CPU which might be different from the incoming CPU
159  * being interrupted by the NIC. An optimal way would be to figure out
160  * the NIC <-> CPU binding at listen time, and assign the outgoing
161  * connection to the squeue attached to the CPU that will be interrupted
162  * for incoming packets (we know the NIC based on the bind IP address).
163  * This might seem like a problem if more data is going out but the
164  * fact is that in most cases the transmit is ACK driven transmit where
165  * the outgoing data normally sits on TCP's xmit queue waiting to be
166  * transmitted.
167  *
168  * Accepting a connection:
169  *
170  * This is a more interesting case because of various races involved in
171  * establishing a eager in its own perimeter. Read the meta comment on
172  * top of tcp_conn_request(). But briefly, the squeue is picked by
173  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
174  *
175  * Closing a connection:
176  *
177  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
178  * via squeue to do the close and mark the tcp as detached if the connection
179  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
180  * reference but tcp_close() drop IP's reference always. So if tcp was
181  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
182  * and 1 because it is in classifier's connected hash. This is the condition
183  * we use to determine that its OK to clean up the tcp outside of squeue
184  * when time wait expires (check the ref under fanout and conn_lock and
185  * if it is 2, remove it from fanout hash and kill it).
186  *
187  * Although close just drops the necessary references and marks the
188  * tcp_detached state, tcp_close needs to know the tcp_detached has been
189  * set (under squeue) before letting the STREAM go away (because a
190  * inbound packet might attempt to go up the STREAM while the close
191  * has happened and tcp_detached is not set). So a special lock and
192  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
193  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
194  * tcp_detached.
195  *
196  * Special provisions and fast paths:
197  *
198  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
199  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
200  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
201  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
202  * check to send packets directly to tcp_rput_data via squeue. Everyone
203  * else comes through tcp_input() on the read side.
204  *
205  * We also make special provisions for sockfs by marking tcp_issocket
206  * whenever we have only sockfs on top of TCP. This allows us to skip
207  * putting the tcp in acceptor hash since a sockfs listener can never
208  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
209  * since eager has already been allocated and the accept now happens
210  * on acceptor STREAM. There is a big blob of comment on top of
211  * tcp_conn_request explaining the new accept. When socket is POP'd,
212  * sockfs sends us an ioctl to mark the fact and we go back to old
213  * behaviour. Once tcp_issocket is unset, its never set for the
214  * life of that connection.
215  *
216  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
217  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
218  * directly to the socket (sodirect) and start an asynchronous copyout
219  * to a user-land receive-side buffer (uioa) when a blocking socket read
220  * (e.g. read, recv, ...) is pending.
221  *
222  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
223  * NULL so points to an sodirect_t and if marked enabled then we enqueue
224  * all mblk_t's directly to the socket.
225  *
226  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
227  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
228  * copyout will be started directly to the user-land uio buffer. Also, as we
229  * have a pending read, TCP's push logic can take into account the number of
230  * bytes to be received and only awake the blocked read()er when the uioa_t
231  * byte count has been satisfied.
232  *
233  * IPsec notes :
234  *
235  * Since a packet is always executed on the correct TCP perimeter
236  * all IPsec processing is defered to IP including checking new
237  * connections and setting IPSEC policies for new connection. The
238  * only exception is tcp_xmit_listeners_reset() which is called
239  * directly from IP and needs to policy check to see if TH_RST
240  * can be sent out.
241  *
242  * PFHooks notes :
243  *
244  * For mdt case, one meta buffer contains multiple packets. Mblks for every
245  * packet are assembled and passed to the hooks. When packets are blocked,
246  * or boundary of any packet is changed, the mdt processing is stopped, and
247  * packets of the meta buffer are send to the IP path one by one.
248  */
249 
250 /*
251  * Values for squeue switch:
252  * 1: squeue_enter_nodrain
253  * 2: squeue_enter
254  * 3: squeue_fill
255  */
256 int tcp_squeue_close = 2;	/* Setable in /etc/system */
257 int tcp_squeue_wput = 2;
258 
259 squeue_func_t tcp_squeue_close_proc;
260 squeue_func_t tcp_squeue_wput_proc;
261 
262 /*
263  * Macros for sodirect:
264  *
265  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
266  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
267  * if it exists and is enabled, else to NULL. Note, in the current
268  * sodirect implementation the sod_lockp must not be held across any
269  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
270  * will result as sod_lockp is the streamhead stdata.sd_lock.
271  *
272  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
273  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
274  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
275  * being used when sodirect code paths should be.
276  */
277 
278 #define	SOD_PTR_ENTER(tcp, sodp)					\
279 	(sodp) = (tcp)->tcp_sodirect;					\
280 									\
281 	if ((sodp) != NULL) {						\
282 		mutex_enter((sodp)->sod_lockp);				\
283 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
284 			mutex_exit((sodp)->sod_lockp);			\
285 			(sodp) = NULL;					\
286 		}							\
287 	}
288 
289 #define	SOD_NOT_ENABLED(tcp)						\
290 	((tcp)->tcp_sodirect == NULL ||					\
291 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
292 
293 /*
294  * This controls how tiny a write must be before we try to copy it
295  * into the the mblk on the tail of the transmit queue.  Not much
296  * speedup is observed for values larger than sixteen.  Zero will
297  * disable the optimisation.
298  */
299 int tcp_tx_pull_len = 16;
300 
301 /*
302  * TCP Statistics.
303  *
304  * How TCP statistics work.
305  *
306  * There are two types of statistics invoked by two macros.
307  *
308  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
309  * supposed to be used in non MT-hot paths of the code.
310  *
311  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
312  * supposed to be used for DEBUG purposes and may be used on a hot path.
313  *
314  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
315  * (use "kstat tcp" to get them).
316  *
317  * There is also additional debugging facility that marks tcp_clean_death()
318  * instances and saves them in tcp_t structure. It is triggered by
319  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
320  * tcp_clean_death() calls that counts the number of times each tag was hit. It
321  * is triggered by TCP_CLD_COUNTERS define.
322  *
323  * How to add new counters.
324  *
325  * 1) Add a field in the tcp_stat structure describing your counter.
326  * 2) Add a line in the template in tcp_kstat2_init() with the name
327  *    of the counter.
328  *
329  *    IMPORTANT!! - make sure that both are in sync !!
330  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
331  *
332  * Please avoid using private counters which are not kstat-exported.
333  *
334  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
335  * in tcp_t structure.
336  *
337  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
338  */
339 
340 #ifndef TCP_DEBUG_COUNTER
341 #ifdef DEBUG
342 #define	TCP_DEBUG_COUNTER 1
343 #else
344 #define	TCP_DEBUG_COUNTER 0
345 #endif
346 #endif
347 
348 #define	TCP_CLD_COUNTERS 0
349 
350 #define	TCP_TAG_CLEAN_DEATH 1
351 #define	TCP_MAX_CLEAN_DEATH_TAG 32
352 
353 #ifdef lint
354 static int _lint_dummy_;
355 #endif
356 
357 #if TCP_CLD_COUNTERS
358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
359 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
360 #elif defined(lint)
361 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
362 #else
363 #define	TCP_CLD_STAT(x)
364 #endif
365 
366 #if TCP_DEBUG_COUNTER
367 #define	TCP_DBGSTAT(tcps, x)	\
368 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
369 #define	TCP_G_DBGSTAT(x)	\
370 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
371 #elif defined(lint)
372 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
373 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
374 #else
375 #define	TCP_DBGSTAT(tcps, x)
376 #define	TCP_G_DBGSTAT(x)
377 #endif
378 
379 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
380 
381 tcp_g_stat_t	tcp_g_statistics;
382 kstat_t		*tcp_g_kstat;
383 
384 /*
385  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
386  * tcp write side.
387  */
388 #define	CALL_IP_WPUT(connp, q, mp) {					\
389 	tcp_stack_t	*tcps;						\
390 									\
391 	tcps = connp->conn_netstack->netstack_tcp;			\
392 	ASSERT(((q)->q_flag & QREADR) == 0);				\
393 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
394 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
395 }
396 
397 /* Macros for timestamp comparisons */
398 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
399 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
400 
401 /*
402  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
403  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
404  * by adding three components: a time component which grows by 1 every 4096
405  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
406  * a per-connection component which grows by 125000 for every new connection;
407  * and an "extra" component that grows by a random amount centered
408  * approximately on 64000.  This causes the the ISS generator to cycle every
409  * 4.89 hours if no TCP connections are made, and faster if connections are
410  * made.
411  *
412  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
413  * components: a time component which grows by 250000 every second; and
414  * a per-connection component which grows by 125000 for every new connections.
415  *
416  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
417  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
418  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
419  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
420  * password.
421  */
422 #define	ISS_INCR	250000
423 #define	ISS_NSEC_SHT	12
424 
425 static sin_t	sin_null;	/* Zero address for quick clears */
426 static sin6_t	sin6_null;	/* Zero address for quick clears */
427 
428 /*
429  * This implementation follows the 4.3BSD interpretation of the urgent
430  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
431  * incompatible changes in protocols like telnet and rlogin.
432  */
433 #define	TCP_OLD_URP_INTERPRETATION	1
434 
435 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
436 	(TCP_IS_DETACHED(tcp) && \
437 	    (!(tcp)->tcp_hard_binding))
438 
439 /*
440  * TCP reassembly macros.  We hide starting and ending sequence numbers in
441  * b_next and b_prev of messages on the reassembly queue.  The messages are
442  * chained using b_cont.  These macros are used in tcp_reass() so we don't
443  * have to see the ugly casts and assignments.
444  */
445 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
446 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
447 					(mblk_t *)(uintptr_t)(u))
448 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
449 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
450 					(mblk_t *)(uintptr_t)(u))
451 
452 /*
453  * Implementation of TCP Timers.
454  * =============================
455  *
456  * INTERFACE:
457  *
458  * There are two basic functions dealing with tcp timers:
459  *
460  *	timeout_id_t	tcp_timeout(connp, func, time)
461  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
462  *	TCP_TIMER_RESTART(tcp, intvl)
463  *
464  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
465  * after 'time' ticks passed. The function called by timeout() must adhere to
466  * the same restrictions as a driver soft interrupt handler - it must not sleep
467  * or call other functions that might sleep. The value returned is the opaque
468  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
469  * cancel the request. The call to tcp_timeout() may fail in which case it
470  * returns zero. This is different from the timeout(9F) function which never
471  * fails.
472  *
473  * The call-back function 'func' always receives 'connp' as its single
474  * argument. It is always executed in the squeue corresponding to the tcp
475  * structure. The tcp structure is guaranteed to be present at the time the
476  * call-back is called.
477  *
478  * NOTE: The call-back function 'func' is never called if tcp is in
479  * 	the TCPS_CLOSED state.
480  *
481  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
482  * request. locks acquired by the call-back routine should not be held across
483  * the call to tcp_timeout_cancel() or a deadlock may result.
484  *
485  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
486  * Otherwise, it returns an integer value greater than or equal to 0. In
487  * particular, if the call-back function is already placed on the squeue, it can
488  * not be canceled.
489  *
490  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
491  * 	within squeue context corresponding to the tcp instance. Since the
492  *	call-back is also called via the same squeue, there are no race
493  *	conditions described in untimeout(9F) manual page since all calls are
494  *	strictly serialized.
495  *
496  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
497  *	stored in tcp_timer_tid and starts a new one using
498  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
499  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
500  *	field.
501  *
502  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
503  *	call-back may still be called, so it is possible tcp_timer() will be
504  *	called several times. This should not be a problem since tcp_timer()
505  *	should always check the tcp instance state.
506  *
507  *
508  * IMPLEMENTATION:
509  *
510  * TCP timers are implemented using three-stage process. The call to
511  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
512  * when the timer expires. The tcp_timer_callback() arranges the call of the
513  * tcp_timer_handler() function via squeue corresponding to the tcp
514  * instance. The tcp_timer_handler() calls actual requested timeout call-back
515  * and passes tcp instance as an argument to it. Information is passed between
516  * stages using the tcp_timer_t structure which contains the connp pointer, the
517  * tcp call-back to call and the timeout id returned by the timeout(9F).
518  *
519  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
520  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
521  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
522  * returns the pointer to this mblk.
523  *
524  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
525  * looks like a normal mblk without actual dblk attached to it.
526  *
527  * To optimize performance each tcp instance holds a small cache of timer
528  * mblocks. In the current implementation it caches up to two timer mblocks per
529  * tcp instance. The cache is preserved over tcp frees and is only freed when
530  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
531  * timer processing happens on a corresponding squeue, the cache manipulation
532  * does not require any locks. Experiments show that majority of timer mblocks
533  * allocations are satisfied from the tcp cache and do not involve kmem calls.
534  *
535  * The tcp_timeout() places a refhold on the connp instance which guarantees
536  * that it will be present at the time the call-back function fires. The
537  * tcp_timer_handler() drops the reference after calling the call-back, so the
538  * call-back function does not need to manipulate the references explicitly.
539  */
540 
541 typedef struct tcp_timer_s {
542 	conn_t	*connp;
543 	void 	(*tcpt_proc)(void *);
544 	timeout_id_t   tcpt_tid;
545 } tcp_timer_t;
546 
547 static kmem_cache_t *tcp_timercache;
548 kmem_cache_t	*tcp_sack_info_cache;
549 kmem_cache_t	*tcp_iphc_cache;
550 
551 /*
552  * For scalability, we must not run a timer for every TCP connection
553  * in TIME_WAIT state.  To see why, consider (for time wait interval of
554  * 4 minutes):
555  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
556  *
557  * This list is ordered by time, so you need only delete from the head
558  * until you get to entries which aren't old enough to delete yet.
559  * The list consists of only the detached TIME_WAIT connections.
560  *
561  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
562  * becomes detached TIME_WAIT (either by changing the state and already
563  * being detached or the other way around). This means that the TIME_WAIT
564  * state can be extended (up to doubled) if the connection doesn't become
565  * detached for a long time.
566  *
567  * The list manipulations (including tcp_time_wait_next/prev)
568  * are protected by the tcp_time_wait_lock. The content of the
569  * detached TIME_WAIT connections is protected by the normal perimeters.
570  *
571  * This list is per squeue and squeues are shared across the tcp_stack_t's.
572  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
573  * and conn_netstack.
574  * The tcp_t's that are added to tcp_free_list are disassociated and
575  * have NULL tcp_tcps and conn_netstack pointers.
576  */
577 typedef struct tcp_squeue_priv_s {
578 	kmutex_t	tcp_time_wait_lock;
579 	timeout_id_t	tcp_time_wait_tid;
580 	tcp_t		*tcp_time_wait_head;
581 	tcp_t		*tcp_time_wait_tail;
582 	tcp_t		*tcp_free_list;
583 	uint_t		tcp_free_list_cnt;
584 } tcp_squeue_priv_t;
585 
586 /*
587  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
588  * Running it every 5 seconds seems to give the best results.
589  */
590 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
591 
592 /*
593  * To prevent memory hog, limit the number of entries in tcp_free_list
594  * to 1% of available memory / number of cpus
595  */
596 uint_t tcp_free_list_max_cnt = 0;
597 
598 #define	TCP_XMIT_LOWATER	4096
599 #define	TCP_XMIT_HIWATER	49152
600 #define	TCP_RECV_LOWATER	2048
601 #define	TCP_RECV_HIWATER	49152
602 
603 /*
604  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
605  */
606 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
607 
608 #define	TIDUSZ	4096	/* transport interface data unit size */
609 
610 /*
611  * Bind hash list size and has function.  It has to be a power of 2 for
612  * hashing.
613  */
614 #define	TCP_BIND_FANOUT_SIZE	512
615 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
616 /*
617  * Size of listen and acceptor hash list.  It has to be a power of 2 for
618  * hashing.
619  */
620 #define	TCP_FANOUT_SIZE		256
621 
622 #ifdef	_ILP32
623 #define	TCP_ACCEPTOR_HASH(accid)					\
624 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
625 #else
626 #define	TCP_ACCEPTOR_HASH(accid)					\
627 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
628 #endif	/* _ILP32 */
629 
630 #define	IP_ADDR_CACHE_SIZE	2048
631 #define	IP_ADDR_CACHE_HASH(faddr)					\
632 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
633 
634 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
635 #define	TCP_HSP_HASH_SIZE 256
636 
637 #define	TCP_HSP_HASH(addr)					\
638 	(((addr>>24) ^ (addr >>16) ^			\
639 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
640 
641 /*
642  * TCP options struct returned from tcp_parse_options.
643  */
644 typedef struct tcp_opt_s {
645 	uint32_t	tcp_opt_mss;
646 	uint32_t	tcp_opt_wscale;
647 	uint32_t	tcp_opt_ts_val;
648 	uint32_t	tcp_opt_ts_ecr;
649 	tcp_t		*tcp;
650 } tcp_opt_t;
651 
652 /*
653  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
654  */
655 
656 #ifdef _BIG_ENDIAN
657 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
658 	(TCPOPT_TSTAMP << 8) | 10)
659 #else
660 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
661 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
662 #endif
663 
664 /*
665  * Flags returned from tcp_parse_options.
666  */
667 #define	TCP_OPT_MSS_PRESENT	1
668 #define	TCP_OPT_WSCALE_PRESENT	2
669 #define	TCP_OPT_TSTAMP_PRESENT	4
670 #define	TCP_OPT_SACK_OK_PRESENT	8
671 #define	TCP_OPT_SACK_PRESENT	16
672 
673 /* TCP option length */
674 #define	TCPOPT_NOP_LEN		1
675 #define	TCPOPT_MAXSEG_LEN	4
676 #define	TCPOPT_WS_LEN		3
677 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
678 #define	TCPOPT_TSTAMP_LEN	10
679 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
680 #define	TCPOPT_SACK_OK_LEN	2
681 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
682 #define	TCPOPT_REAL_SACK_LEN	4
683 #define	TCPOPT_MAX_SACK_LEN	36
684 #define	TCPOPT_HEADER_LEN	2
685 
686 /* TCP cwnd burst factor. */
687 #define	TCP_CWND_INFINITE	65535
688 #define	TCP_CWND_SS		3
689 #define	TCP_CWND_NORMAL		5
690 
691 /* Maximum TCP initial cwin (start/restart). */
692 #define	TCP_MAX_INIT_CWND	8
693 
694 /*
695  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
696  * either tcp_slow_start_initial or tcp_slow_start_after idle
697  * depending on the caller.  If the upper layer has not used the
698  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
699  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
700  * If the upper layer has changed set the tcp_init_cwnd, just use
701  * it to calculate the tcp_cwnd.
702  */
703 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
704 {									\
705 	if ((tcp)->tcp_init_cwnd == 0) {				\
706 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
707 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
708 	} else {							\
709 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
710 	}								\
711 	tcp->tcp_cwnd_cnt = 0;						\
712 }
713 
714 /* TCP Timer control structure */
715 typedef struct tcpt_s {
716 	pfv_t	tcpt_pfv;	/* The routine we are to call */
717 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
718 } tcpt_t;
719 
720 /* Host Specific Parameter structure */
721 typedef struct tcp_hsp {
722 	struct tcp_hsp	*tcp_hsp_next;
723 	in6_addr_t	tcp_hsp_addr_v6;
724 	in6_addr_t	tcp_hsp_subnet_v6;
725 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
726 	int32_t		tcp_hsp_sendspace;
727 	int32_t		tcp_hsp_recvspace;
728 	int32_t		tcp_hsp_tstamp;
729 } tcp_hsp_t;
730 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
731 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
732 
733 /*
734  * Functions called directly via squeue having a prototype of edesc_t.
735  */
736 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
737 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
738 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
739 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
740 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
741 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
742 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
743 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
744 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
745 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
746 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
747 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
748 
749 
750 /* Prototype for TCP functions */
751 static void	tcp_random_init(void);
752 int		tcp_random(void);
753 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
754 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
755 		    tcp_t *eager);
756 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
757 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
758     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
759     boolean_t user_specified);
760 static void	tcp_closei_local(tcp_t *tcp);
761 static void	tcp_close_detached(tcp_t *tcp);
762 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
763 			mblk_t *idmp, mblk_t **defermp);
764 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
765 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
766 		    in_port_t dstport, uint_t srcid);
767 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
768 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
769 		    uint32_t scope_id);
770 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
771 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
772 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
773 static char	*tcp_display(tcp_t *tcp, char *, char);
774 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
775 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
776 static void	tcp_eager_unlink(tcp_t *tcp);
777 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
778 		    int unixerr);
779 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
780 		    int tlierr, int unixerr);
781 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
782 		    cred_t *cr);
783 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
784 		    char *value, caddr_t cp, cred_t *cr);
785 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
786 		    char *value, caddr_t cp, cred_t *cr);
787 static int	tcp_tpistate(tcp_t *tcp);
788 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
789     int caller_holds_lock);
790 static void	tcp_bind_hash_remove(tcp_t *tcp);
791 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
792 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
793 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
794 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
796 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
797 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
798 void		tcp_g_q_setup(tcp_stack_t *);
799 void		tcp_g_q_create(tcp_stack_t *);
800 void		tcp_g_q_destroy(tcp_stack_t *);
801 static int	tcp_header_init_ipv4(tcp_t *tcp);
802 static int	tcp_header_init_ipv6(tcp_t *tcp);
803 int		tcp_init(tcp_t *tcp, queue_t *q);
804 static int	tcp_init_values(tcp_t *tcp);
805 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
806 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
807 		    t_scalar_t addr_length);
808 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
809 static void	tcp_ip_notify(tcp_t *tcp);
810 static mblk_t	*tcp_ire_mp(mblk_t *mp);
811 static void	tcp_iss_init(tcp_t *tcp);
812 static void	tcp_keepalive_killer(void *arg);
813 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
814 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
815 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
816 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
817 static boolean_t tcp_allow_connopt_set(int level, int name);
818 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
819 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
820 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
821 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
822 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
823 		    mblk_t *mblk);
824 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
825 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
826 		    uchar_t *ptr, uint_t len);
827 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
828 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
829     tcp_stack_t *);
830 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
831 		    caddr_t cp, cred_t *cr);
832 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
833 		    caddr_t cp, cred_t *cr);
834 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
835 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
836 		    caddr_t cp, cred_t *cr);
837 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
838 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
839 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
840 static void	tcp_reinit(tcp_t *tcp);
841 static void	tcp_reinit_values(tcp_t *tcp);
842 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
843 		    tcp_t *thisstream, cred_t *cr);
844 
845 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
846 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
847 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
848 static void	tcp_ss_rexmit(tcp_t *tcp);
849 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
850 static void	tcp_process_options(tcp_t *, tcph_t *);
851 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
852 static void	tcp_rsrv(queue_t *q);
853 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
854 static int	tcp_snmp_state(tcp_t *tcp);
855 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
856 		    cred_t *cr);
857 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
858 		    cred_t *cr);
859 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
860 		    cred_t *cr);
861 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
862 		    cred_t *cr);
863 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
864 		    cred_t *cr);
865 static void	tcp_timer(void *arg);
866 static void	tcp_timer_callback(void *);
867 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
868     boolean_t random);
869 static in_port_t tcp_get_next_priv_port(const tcp_t *);
870 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
871 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
872 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
873 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
874 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
875 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
876 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
877 		    const int num_sack_blk, int *usable, uint_t *snxt,
878 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
879 		    const int mdt_thres);
880 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
881 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
882 		    const int num_sack_blk, int *usable, uint_t *snxt,
883 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
884 		    const int mdt_thres);
885 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
886 		    int num_sack_blk);
887 static void	tcp_wsrv(queue_t *q);
888 static int	tcp_xmit_end(tcp_t *tcp);
889 static void	tcp_ack_timer(void *arg);
890 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
891 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
892 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
893 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
894 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
895 		    uint32_t ack, int ctl);
896 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
897 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
898 static int	setmaxps(queue_t *q, int maxpsz);
899 static void	tcp_set_rto(tcp_t *, time_t);
900 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
901 		    boolean_t, boolean_t);
902 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
903 		    boolean_t ipsec_mctl);
904 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
905 		    char *opt, int optlen);
906 static int	tcp_build_hdrs(queue_t *, tcp_t *);
907 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
908 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
909 		    tcph_t *tcph);
910 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
911 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
912 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
913 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
914 		    const boolean_t, const uint32_t, const uint32_t,
915 		    const uint32_t, const uint32_t, tcp_stack_t *);
916 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
917 		    const uint_t, const uint_t, boolean_t *);
918 static mblk_t	*tcp_lso_info_mp(mblk_t *);
919 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
920 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
921 extern mblk_t	*tcp_timermp_alloc(int);
922 extern void	tcp_timermp_free(tcp_t *);
923 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
924 static void	tcp_stop_lingering(tcp_t *tcp);
925 static void	tcp_close_linger_timeout(void *arg);
926 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
927 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
928 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
929 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
930 static void	tcp_g_kstat_fini(kstat_t *);
931 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
932 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
933 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
934 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
935 static int	tcp_kstat_update(kstat_t *kp, int rw);
936 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
937 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
938 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
939 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
940 			tcph_t *tcph, mblk_t *idmp);
941 static squeue_func_t tcp_squeue_switch(int);
942 
943 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
944 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
945 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
946 static int	tcp_close(queue_t *, int);
947 static int	tcpclose_accept(queue_t *);
948 
949 static void	tcp_squeue_add(squeue_t *);
950 static boolean_t tcp_zcopy_check(tcp_t *);
951 static void	tcp_zcopy_notify(tcp_t *);
952 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
953 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
954 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
955 
956 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
957 
958 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
959 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
960 
961 /*
962  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
963  *
964  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
965  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
966  * (defined in tcp.h) needs to be filled in and passed into the kernel
967  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
968  * structure contains the four-tuple of a TCP connection and a range of TCP
969  * states (specified by ac_start and ac_end). The use of wildcard addresses
970  * and ports is allowed. Connections with a matching four tuple and a state
971  * within the specified range will be aborted. The valid states for the
972  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
973  * inclusive.
974  *
975  * An application which has its connection aborted by this ioctl will receive
976  * an error that is dependent on the connection state at the time of the abort.
977  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
978  * though a RST packet has been received.  If the connection state is equal to
979  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
980  * and all resources associated with the connection will be freed.
981  */
982 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
983 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
984 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
985 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
986 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
987 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
988     boolean_t, tcp_stack_t *);
989 
990 static struct module_info tcp_rinfo =  {
991 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
992 };
993 
994 static struct module_info tcp_winfo =  {
995 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
996 };
997 
998 /*
999  * Entry points for TCP as a device. The normal case which supports
1000  * the TCP functionality.
1001  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1002  */
1003 struct qinit tcp_rinitv4 = {
1004 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
1005 };
1006 
1007 struct qinit tcp_rinitv6 = {
1008 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
1009 };
1010 
1011 struct qinit tcp_winit = {
1012 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1013 };
1014 
1015 /* Initial entry point for TCP in socket mode. */
1016 struct qinit tcp_sock_winit = {
1017 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1018 };
1019 
1020 /*
1021  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1022  * an accept. Avoid allocating data structures since eager has already
1023  * been created.
1024  */
1025 struct qinit tcp_acceptor_rinit = {
1026 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1027 };
1028 
1029 struct qinit tcp_acceptor_winit = {
1030 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1031 };
1032 
1033 /*
1034  * Entry points for TCP loopback (read side only)
1035  * The open routine is only used for reopens, thus no need to
1036  * have a separate one for tcp_openv6.
1037  */
1038 struct qinit tcp_loopback_rinit = {
1039 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1040 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1041 };
1042 
1043 /* For AF_INET aka /dev/tcp */
1044 struct streamtab tcpinfov4 = {
1045 	&tcp_rinitv4, &tcp_winit
1046 };
1047 
1048 /* For AF_INET6 aka /dev/tcp6 */
1049 struct streamtab tcpinfov6 = {
1050 	&tcp_rinitv6, &tcp_winit
1051 };
1052 
1053 /*
1054  * Have to ensure that tcp_g_q_close is not done by an
1055  * interrupt thread.
1056  */
1057 static taskq_t *tcp_taskq;
1058 
1059 /* Setable only in /etc/system. Move to ndd? */
1060 boolean_t tcp_icmp_source_quench = B_FALSE;
1061 
1062 /*
1063  * Following assumes TPI alignment requirements stay along 32 bit
1064  * boundaries
1065  */
1066 #define	ROUNDUP32(x) \
1067 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1068 
1069 /* Template for response to info request. */
1070 static struct T_info_ack tcp_g_t_info_ack = {
1071 	T_INFO_ACK,		/* PRIM_type */
1072 	0,			/* TSDU_size */
1073 	T_INFINITE,		/* ETSDU_size */
1074 	T_INVALID,		/* CDATA_size */
1075 	T_INVALID,		/* DDATA_size */
1076 	sizeof (sin_t),		/* ADDR_size */
1077 	0,			/* OPT_size - not initialized here */
1078 	TIDUSZ,			/* TIDU_size */
1079 	T_COTS_ORD,		/* SERV_type */
1080 	TCPS_IDLE,		/* CURRENT_state */
1081 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1082 };
1083 
1084 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1085 	T_INFO_ACK,		/* PRIM_type */
1086 	0,			/* TSDU_size */
1087 	T_INFINITE,		/* ETSDU_size */
1088 	T_INVALID,		/* CDATA_size */
1089 	T_INVALID,		/* DDATA_size */
1090 	sizeof (sin6_t),	/* ADDR_size */
1091 	0,			/* OPT_size - not initialized here */
1092 	TIDUSZ,		/* TIDU_size */
1093 	T_COTS_ORD,		/* SERV_type */
1094 	TCPS_IDLE,		/* CURRENT_state */
1095 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1096 };
1097 
1098 #define	MS	1L
1099 #define	SECONDS	(1000 * MS)
1100 #define	MINUTES	(60 * SECONDS)
1101 #define	HOURS	(60 * MINUTES)
1102 #define	DAYS	(24 * HOURS)
1103 
1104 #define	PARAM_MAX (~(uint32_t)0)
1105 
1106 /* Max size IP datagram is 64k - 1 */
1107 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1108 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1109 /* Max of the above */
1110 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1111 
1112 /* Largest TCP port number */
1113 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1114 
1115 /*
1116  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1117  * layer header.  It has to be a multiple of 4.
1118  */
1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1120 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1121 
1122 /*
1123  * All of these are alterable, within the min/max values given, at run time.
1124  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1125  * per the TCP spec.
1126  */
1127 /* BEGIN CSTYLED */
1128 static tcpparam_t	lcl_tcp_param_arr[] = {
1129  /*min		max		value		name */
1130  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1131  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1132  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1133  { 1,		1024,		1,		"tcp_conn_req_min" },
1134  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1135  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1136  { 0,		10,		0,		"tcp_debug" },
1137  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1138  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1139  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1140  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1141  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1142  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1143  { 1,		255,		64,		"tcp_ipv4_ttl"},
1144  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1145  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1146  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1147  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1148  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1149  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1150  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1151  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1152  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1153  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1154  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1155  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1156  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1157  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1158  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1159  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1160  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1161  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1162  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1163  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1164  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1165  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1166  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1167 /*
1168  * Question:  What default value should I set for tcp_strong_iss?
1169  */
1170  { 0,		2,		1,		"tcp_strong_iss"},
1171  { 0,		65536,		20,		"tcp_rtt_updates"},
1172  { 0,		1,		1,		"tcp_wscale_always"},
1173  { 0,		1,		0,		"tcp_tstamp_always"},
1174  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1175  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1176  { 0,		16,		2,		"tcp_deferred_acks_max"},
1177  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1178  { 1,		4,		4,		"tcp_slow_start_initial"},
1179  { 0,		2,		2,		"tcp_sack_permitted"},
1180  { 0,		1,		1,		"tcp_compression_enabled"},
1181  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1182  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1183  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1184  { 0,		1,		0,		"tcp_rev_src_routes"},
1185  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1186  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1187  { 0,		16,		8,		"tcp_local_dacks_max"},
1188  { 0,		2,		1,		"tcp_ecn_permitted"},
1189  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1190  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1191  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1192  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1193  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1194 };
1195 /* END CSTYLED */
1196 
1197 /*
1198  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1199  * each header fragment in the header buffer.  Each parameter value has
1200  * to be a multiple of 4 (32-bit aligned).
1201  */
1202 static tcpparam_t lcl_tcp_mdt_head_param =
1203 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1204 static tcpparam_t lcl_tcp_mdt_tail_param =
1205 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1206 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1207 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1208 
1209 /*
1210  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1211  * the maximum number of payload buffers associated per Multidata.
1212  */
1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1214 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1215 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1216 
1217 /* Round up the value to the nearest mss. */
1218 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1219 
1220 /*
1221  * Set ECN capable transport (ECT) code point in IP header.
1222  *
1223  * Note that there are 2 ECT code points '01' and '10', which are called
1224  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1225  * point ECT(0) for TCP as described in RFC 2481.
1226  */
1227 #define	SET_ECT(tcp, iph) \
1228 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1229 		/* We need to clear the code point first. */ \
1230 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1231 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1232 	} else { \
1233 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1234 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1235 	}
1236 
1237 /*
1238  * The format argument to pass to tcp_display().
1239  * DISP_PORT_ONLY means that the returned string has only port info.
1240  * DISP_ADDR_AND_PORT means that the returned string also contains the
1241  * remote and local IP address.
1242  */
1243 #define	DISP_PORT_ONLY		1
1244 #define	DISP_ADDR_AND_PORT	2
1245 
1246 #define	NDD_TOO_QUICK_MSG \
1247 	"ndd get info rate too high for non-privileged users, try again " \
1248 	"later.\n"
1249 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1250 
1251 #define	IS_VMLOANED_MBLK(mp) \
1252 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1253 
1254 
1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1256 boolean_t tcp_mdt_chain = B_TRUE;
1257 
1258 /*
1259  * MDT threshold in the form of effective send MSS multiplier; we take
1260  * the MDT path if the amount of unsent data exceeds the threshold value
1261  * (default threshold is 1*SMSS).
1262  */
1263 uint_t tcp_mdt_smss_threshold = 1;
1264 
1265 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1266 
1267 /*
1268  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1269  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1270  * determined dynamically during tcp_adapt_ire(), which is the default.
1271  */
1272 boolean_t tcp_static_maxpsz = B_FALSE;
1273 
1274 /* Setable in /etc/system */
1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1276 uint32_t tcp_random_anon_port = 1;
1277 
1278 /*
1279  * To reach to an eager in Q0 which can be dropped due to an incoming
1280  * new SYN request when Q0 is full, a new doubly linked list is
1281  * introduced. This list allows to select an eager from Q0 in O(1) time.
1282  * This is needed to avoid spending too much time walking through the
1283  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1284  * this new list has to be a member of Q0.
1285  * This list is headed by listener's tcp_t. When the list is empty,
1286  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1287  * of listener's tcp_t point to listener's tcp_t itself.
1288  *
1289  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1290  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1291  * These macros do not affect the eager's membership to Q0.
1292  */
1293 
1294 
1295 #define	MAKE_DROPPABLE(listener, eager)					\
1296 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1297 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1298 		    = (eager);						\
1299 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1300 		(eager)->tcp_eager_next_drop_q0 =			\
1301 		    (listener)->tcp_eager_next_drop_q0;			\
1302 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1303 	}
1304 
1305 #define	MAKE_UNDROPPABLE(eager)						\
1306 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1307 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1308 		    = (eager)->tcp_eager_prev_drop_q0;			\
1309 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1310 		    = (eager)->tcp_eager_next_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1312 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1313 	}
1314 
1315 /*
1316  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1317  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1318  * data, TCP will not respond with an ACK.  RFC 793 requires that
1319  * TCP responds with an ACK for such a bogus ACK.  By not following
1320  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1321  * an attacker successfully spoofs an acceptable segment to our
1322  * peer; or when our peer is "confused."
1323  */
1324 uint32_t tcp_drop_ack_unsent_cnt = 10;
1325 
1326 /*
1327  * Hook functions to enable cluster networking
1328  * On non-clustered systems these vectors must always be NULL.
1329  */
1330 
1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport) = NULL;
1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport,
1337 			    uint8_t *faddrp, in_port_t fport) = NULL;
1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 
1342 /*
1343  * The following are defined in ip.c
1344  */
1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1346 				uint8_t *laddrp);
1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp, uint8_t *faddrp);
1349 
1350 #define	CL_INET_CONNECT(tcp)		{			\
1351 	if (cl_inet_connect != NULL) {				\
1352 		/*						\
1353 		 * Running in cluster mode - register active connection	\
1354 		 * information						\
1355 		 */							\
1356 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1357 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1358 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1359 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1360 				    (in_port_t)(tcp)->tcp_lport,	\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1362 				    (in_port_t)(tcp)->tcp_fport);	\
1363 			}						\
1364 		} else {						\
1365 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1366 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1367 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1368 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1369 				    (in_port_t)(tcp)->tcp_lport,	\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1371 				    (in_port_t)(tcp)->tcp_fport);	\
1372 			}						\
1373 		}							\
1374 	}								\
1375 }
1376 
1377 #define	CL_INET_DISCONNECT(tcp)	{				\
1378 	if (cl_inet_disconnect != NULL) {				\
1379 		/*							\
1380 		 * Running in cluster mode - deregister active		\
1381 		 * connection information				\
1382 		 */							\
1383 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1384 			if ((tcp)->tcp_ip_src != 0) {			\
1385 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1386 				    AF_INET,				\
1387 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1388 				    (in_port_t)(tcp)->tcp_lport,	\
1389 				    (uint8_t *)				\
1390 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1391 				    (in_port_t)(tcp)->tcp_fport);	\
1392 			}						\
1393 		} else {						\
1394 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1395 			    &(tcp)->tcp_ip_src_v6)) {			\
1396 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1397 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1398 				    (in_port_t)(tcp)->tcp_lport,	\
1399 				    (uint8_t *)				\
1400 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport);	\
1402 			}						\
1403 		}							\
1404 	}								\
1405 }
1406 
1407 /*
1408  * Cluster networking hook for traversing current connection list.
1409  * This routine is used to extract the current list of live connections
1410  * which must continue to to be dispatched to this node.
1411  */
1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1413 
1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1415     void *arg, tcp_stack_t *tcps);
1416 
1417 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1418 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1419 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1420 	    ip6_t *, ip6h, int, 0);
1421 
1422 /*
1423  * Figure out the value of window scale opton.  Note that the rwnd is
1424  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1425  * We cannot find the scale value and then do a round up of tcp_rwnd
1426  * because the scale value may not be correct after that.
1427  *
1428  * Set the compiler flag to make this function inline.
1429  */
1430 static void
1431 tcp_set_ws_value(tcp_t *tcp)
1432 {
1433 	int i;
1434 	uint32_t rwnd = tcp->tcp_rwnd;
1435 
1436 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1437 	    i++, rwnd >>= 1)
1438 		;
1439 	tcp->tcp_rcv_ws = i;
1440 }
1441 
1442 /*
1443  * Remove a connection from the list of detached TIME_WAIT connections.
1444  * It returns B_FALSE if it can't remove the connection from the list
1445  * as the connection has already been removed from the list due to an
1446  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1447  */
1448 static boolean_t
1449 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1450 {
1451 	boolean_t	locked = B_FALSE;
1452 
1453 	if (tcp_time_wait == NULL) {
1454 		tcp_time_wait = *((tcp_squeue_priv_t **)
1455 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1456 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1457 		locked = B_TRUE;
1458 	} else {
1459 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1460 	}
1461 
1462 	if (tcp->tcp_time_wait_expire == 0) {
1463 		ASSERT(tcp->tcp_time_wait_next == NULL);
1464 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1465 		if (locked)
1466 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1467 		return (B_FALSE);
1468 	}
1469 	ASSERT(TCP_IS_DETACHED(tcp));
1470 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1471 
1472 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1473 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1474 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1475 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1476 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1477 			    NULL;
1478 		} else {
1479 			tcp_time_wait->tcp_time_wait_tail = NULL;
1480 		}
1481 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1482 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1483 		ASSERT(tcp->tcp_time_wait_next == NULL);
1484 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1485 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1486 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1487 	} else {
1488 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1489 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1490 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1491 		    tcp->tcp_time_wait_next;
1492 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1493 		    tcp->tcp_time_wait_prev;
1494 	}
1495 	tcp->tcp_time_wait_next = NULL;
1496 	tcp->tcp_time_wait_prev = NULL;
1497 	tcp->tcp_time_wait_expire = 0;
1498 
1499 	if (locked)
1500 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1501 	return (B_TRUE);
1502 }
1503 
1504 /*
1505  * Add a connection to the list of detached TIME_WAIT connections
1506  * and set its time to expire.
1507  */
1508 static void
1509 tcp_time_wait_append(tcp_t *tcp)
1510 {
1511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1512 	tcp_squeue_priv_t *tcp_time_wait =
1513 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1514 	    SQPRIVATE_TCP));
1515 
1516 	tcp_timers_stop(tcp);
1517 
1518 	/* Freed above */
1519 	ASSERT(tcp->tcp_timer_tid == 0);
1520 	ASSERT(tcp->tcp_ack_tid == 0);
1521 
1522 	/* must have happened at the time of detaching the tcp */
1523 	ASSERT(tcp->tcp_ptpahn == NULL);
1524 	ASSERT(tcp->tcp_flow_stopped == 0);
1525 	ASSERT(tcp->tcp_time_wait_next == NULL);
1526 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1527 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1528 	ASSERT(tcp->tcp_listener == NULL);
1529 
1530 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1531 	/*
1532 	 * The value computed below in tcp->tcp_time_wait_expire may
1533 	 * appear negative or wrap around. That is ok since our
1534 	 * interest is only in the difference between the current lbolt
1535 	 * value and tcp->tcp_time_wait_expire. But the value should not
1536 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1537 	 * The corresponding comparison in tcp_time_wait_collector() uses
1538 	 * modular arithmetic.
1539 	 */
1540 	tcp->tcp_time_wait_expire +=
1541 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1542 	if (tcp->tcp_time_wait_expire == 0)
1543 		tcp->tcp_time_wait_expire = 1;
1544 
1545 	ASSERT(TCP_IS_DETACHED(tcp));
1546 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1547 	ASSERT(tcp->tcp_time_wait_next == NULL);
1548 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1549 	TCP_DBGSTAT(tcps, tcp_time_wait);
1550 
1551 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1552 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1553 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1554 		tcp_time_wait->tcp_time_wait_head = tcp;
1555 	} else {
1556 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1557 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1558 		    TCPS_TIME_WAIT);
1559 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1560 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1561 	}
1562 	tcp_time_wait->tcp_time_wait_tail = tcp;
1563 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1564 }
1565 
1566 /* ARGSUSED */
1567 void
1568 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1569 {
1570 	conn_t	*connp = (conn_t *)arg;
1571 	tcp_t	*tcp = connp->conn_tcp;
1572 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1573 
1574 	ASSERT(tcp != NULL);
1575 	if (tcp->tcp_state == TCPS_CLOSED) {
1576 		return;
1577 	}
1578 
1579 	ASSERT((tcp->tcp_family == AF_INET &&
1580 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1581 	    (tcp->tcp_family == AF_INET6 &&
1582 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1583 	    tcp->tcp_ipversion == IPV6_VERSION)));
1584 	ASSERT(!tcp->tcp_listener);
1585 
1586 	TCP_STAT(tcps, tcp_time_wait_reap);
1587 	ASSERT(TCP_IS_DETACHED(tcp));
1588 
1589 	/*
1590 	 * Because they have no upstream client to rebind or tcp_close()
1591 	 * them later, we axe the connection here and now.
1592 	 */
1593 	tcp_close_detached(tcp);
1594 }
1595 
1596 /*
1597  * Remove cached/latched IPsec references.
1598  */
1599 void
1600 tcp_ipsec_cleanup(tcp_t *tcp)
1601 {
1602 	conn_t		*connp = tcp->tcp_connp;
1603 
1604 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1605 
1606 	if (connp->conn_latch != NULL) {
1607 		IPLATCH_REFRELE(connp->conn_latch,
1608 		    connp->conn_netstack);
1609 		connp->conn_latch = NULL;
1610 	}
1611 	if (connp->conn_policy != NULL) {
1612 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1613 		connp->conn_policy = NULL;
1614 	}
1615 }
1616 
1617 /*
1618  * Cleaup before placing on free list.
1619  * Disassociate from the netstack/tcp_stack_t since the freelist
1620  * is per squeue and not per netstack.
1621  */
1622 void
1623 tcp_cleanup(tcp_t *tcp)
1624 {
1625 	mblk_t		*mp;
1626 	char		*tcp_iphc;
1627 	int		tcp_iphc_len;
1628 	int		tcp_hdr_grown;
1629 	tcp_sack_info_t	*tcp_sack_info;
1630 	conn_t		*connp = tcp->tcp_connp;
1631 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1632 	netstack_t	*ns = tcps->tcps_netstack;
1633 	mblk_t		*tcp_rsrv_mp;
1634 
1635 	tcp_bind_hash_remove(tcp);
1636 
1637 	/* Cleanup that which needs the netstack first */
1638 	tcp_ipsec_cleanup(tcp);
1639 
1640 	tcp_free(tcp);
1641 
1642 	/* Release any SSL context */
1643 	if (tcp->tcp_kssl_ent != NULL) {
1644 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1645 		tcp->tcp_kssl_ent = NULL;
1646 	}
1647 
1648 	if (tcp->tcp_kssl_ctx != NULL) {
1649 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1650 		tcp->tcp_kssl_ctx = NULL;
1651 	}
1652 	tcp->tcp_kssl_pending = B_FALSE;
1653 
1654 	conn_delete_ire(connp, NULL);
1655 
1656 	/*
1657 	 * Since we will bzero the entire structure, we need to
1658 	 * remove it and reinsert it in global hash list. We
1659 	 * know the walkers can't get to this conn because we
1660 	 * had set CONDEMNED flag earlier and checked reference
1661 	 * under conn_lock so walker won't pick it and when we
1662 	 * go the ipcl_globalhash_remove() below, no walker
1663 	 * can get to it.
1664 	 */
1665 	ipcl_globalhash_remove(connp);
1666 
1667 	/*
1668 	 * Now it is safe to decrement the reference counts.
1669 	 * This might be the last reference on the netstack and TCPS
1670 	 * in which case it will cause the tcp_g_q_close and
1671 	 * the freeing of the IP Instance.
1672 	 */
1673 	connp->conn_netstack = NULL;
1674 	netstack_rele(ns);
1675 	ASSERT(tcps != NULL);
1676 	tcp->tcp_tcps = NULL;
1677 	TCPS_REFRELE(tcps);
1678 
1679 	/* Save some state */
1680 	mp = tcp->tcp_timercache;
1681 
1682 	tcp_sack_info = tcp->tcp_sack_info;
1683 	tcp_iphc = tcp->tcp_iphc;
1684 	tcp_iphc_len = tcp->tcp_iphc_len;
1685 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1686 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1687 
1688 	if (connp->conn_cred != NULL) {
1689 		crfree(connp->conn_cred);
1690 		connp->conn_cred = NULL;
1691 	}
1692 	if (connp->conn_peercred != NULL) {
1693 		crfree(connp->conn_peercred);
1694 		connp->conn_peercred = NULL;
1695 	}
1696 	ipcl_conn_cleanup(connp);
1697 	connp->conn_flags = IPCL_TCPCONN;
1698 	bzero(tcp, sizeof (tcp_t));
1699 
1700 	/* restore the state */
1701 	tcp->tcp_timercache = mp;
1702 
1703 	tcp->tcp_sack_info = tcp_sack_info;
1704 	tcp->tcp_iphc = tcp_iphc;
1705 	tcp->tcp_iphc_len = tcp_iphc_len;
1706 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1707 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1708 
1709 	tcp->tcp_connp = connp;
1710 
1711 	ASSERT(connp->conn_tcp == tcp);
1712 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1713 	connp->conn_state_flags = CONN_INCIPIENT;
1714 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1715 	ASSERT(connp->conn_ref == 1);
1716 }
1717 
1718 /*
1719  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1720  * is done forwards from the head.
1721  * This walks all stack instances since
1722  * tcp_time_wait remains global across all stacks.
1723  */
1724 /* ARGSUSED */
1725 void
1726 tcp_time_wait_collector(void *arg)
1727 {
1728 	tcp_t *tcp;
1729 	clock_t now;
1730 	mblk_t *mp;
1731 	conn_t *connp;
1732 	kmutex_t *lock;
1733 	boolean_t removed;
1734 
1735 	squeue_t *sqp = (squeue_t *)arg;
1736 	tcp_squeue_priv_t *tcp_time_wait =
1737 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1738 
1739 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1740 	tcp_time_wait->tcp_time_wait_tid = 0;
1741 
1742 	if (tcp_time_wait->tcp_free_list != NULL &&
1743 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1744 		TCP_G_STAT(tcp_freelist_cleanup);
1745 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1746 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1747 			tcp->tcp_time_wait_next = NULL;
1748 			tcp_time_wait->tcp_free_list_cnt--;
1749 			ASSERT(tcp->tcp_tcps == NULL);
1750 			CONN_DEC_REF(tcp->tcp_connp);
1751 		}
1752 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1753 	}
1754 
1755 	/*
1756 	 * In order to reap time waits reliably, we should use a
1757 	 * source of time that is not adjustable by the user -- hence
1758 	 * the call to ddi_get_lbolt().
1759 	 */
1760 	now = ddi_get_lbolt();
1761 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1762 		/*
1763 		 * Compare times using modular arithmetic, since
1764 		 * lbolt can wrapover.
1765 		 */
1766 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1767 			break;
1768 		}
1769 
1770 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1771 		ASSERT(removed);
1772 
1773 		connp = tcp->tcp_connp;
1774 		ASSERT(connp->conn_fanout != NULL);
1775 		lock = &connp->conn_fanout->connf_lock;
1776 		/*
1777 		 * This is essentially a TW reclaim fast path optimization for
1778 		 * performance where the timewait collector checks under the
1779 		 * fanout lock (so that no one else can get access to the
1780 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1781 		 * the classifier hash list. If ref count is indeed 2, we can
1782 		 * just remove the conn under the fanout lock and avoid
1783 		 * cleaning up the conn under the squeue, provided that
1784 		 * clustering callbacks are not enabled. If clustering is
1785 		 * enabled, we need to make the clustering callback before
1786 		 * setting the CONDEMNED flag and after dropping all locks and
1787 		 * so we forego this optimization and fall back to the slow
1788 		 * path. Also please see the comments in tcp_closei_local
1789 		 * regarding the refcnt logic.
1790 		 *
1791 		 * Since we are holding the tcp_time_wait_lock, its better
1792 		 * not to block on the fanout_lock because other connections
1793 		 * can't add themselves to time_wait list. So we do a
1794 		 * tryenter instead of mutex_enter.
1795 		 */
1796 		if (mutex_tryenter(lock)) {
1797 			mutex_enter(&connp->conn_lock);
1798 			if ((connp->conn_ref == 2) &&
1799 			    (cl_inet_disconnect == NULL)) {
1800 				ipcl_hash_remove_locked(connp,
1801 				    connp->conn_fanout);
1802 				/*
1803 				 * Set the CONDEMNED flag now itself so that
1804 				 * the refcnt cannot increase due to any
1805 				 * walker. But we have still not cleaned up
1806 				 * conn_ire_cache. This is still ok since
1807 				 * we are going to clean it up in tcp_cleanup
1808 				 * immediately and any interface unplumb
1809 				 * thread will wait till the ire is blown away
1810 				 */
1811 				connp->conn_state_flags |= CONN_CONDEMNED;
1812 				mutex_exit(lock);
1813 				mutex_exit(&connp->conn_lock);
1814 				if (tcp_time_wait->tcp_free_list_cnt <
1815 				    tcp_free_list_max_cnt) {
1816 					/* Add to head of tcp_free_list */
1817 					mutex_exit(
1818 					    &tcp_time_wait->tcp_time_wait_lock);
1819 					tcp_cleanup(tcp);
1820 					ASSERT(connp->conn_latch == NULL);
1821 					ASSERT(connp->conn_policy == NULL);
1822 					ASSERT(tcp->tcp_tcps == NULL);
1823 					ASSERT(connp->conn_netstack == NULL);
1824 
1825 					mutex_enter(
1826 					    &tcp_time_wait->tcp_time_wait_lock);
1827 					tcp->tcp_time_wait_next =
1828 					    tcp_time_wait->tcp_free_list;
1829 					tcp_time_wait->tcp_free_list = tcp;
1830 					tcp_time_wait->tcp_free_list_cnt++;
1831 					continue;
1832 				} else {
1833 					/* Do not add to tcp_free_list */
1834 					mutex_exit(
1835 					    &tcp_time_wait->tcp_time_wait_lock);
1836 					tcp_bind_hash_remove(tcp);
1837 					conn_delete_ire(tcp->tcp_connp, NULL);
1838 					tcp_ipsec_cleanup(tcp);
1839 					CONN_DEC_REF(tcp->tcp_connp);
1840 				}
1841 			} else {
1842 				CONN_INC_REF_LOCKED(connp);
1843 				mutex_exit(lock);
1844 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1845 				mutex_exit(&connp->conn_lock);
1846 				/*
1847 				 * We can reuse the closemp here since conn has
1848 				 * detached (otherwise we wouldn't even be in
1849 				 * time_wait list). tcp_closemp_used can safely
1850 				 * be changed without taking a lock as no other
1851 				 * thread can concurrently access it at this
1852 				 * point in the connection lifecycle.
1853 				 */
1854 
1855 				if (tcp->tcp_closemp.b_prev == NULL)
1856 					tcp->tcp_closemp_used = B_TRUE;
1857 				else
1858 					cmn_err(CE_PANIC,
1859 					    "tcp_timewait_collector: "
1860 					    "concurrent use of tcp_closemp: "
1861 					    "connp %p tcp %p\n", (void *)connp,
1862 					    (void *)tcp);
1863 
1864 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1865 				mp = &tcp->tcp_closemp;
1866 				squeue_fill(connp->conn_sqp, mp,
1867 				    tcp_timewait_output, connp,
1868 				    SQTAG_TCP_TIMEWAIT);
1869 			}
1870 		} else {
1871 			mutex_enter(&connp->conn_lock);
1872 			CONN_INC_REF_LOCKED(connp);
1873 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1874 			mutex_exit(&connp->conn_lock);
1875 			/*
1876 			 * We can reuse the closemp here since conn has
1877 			 * detached (otherwise we wouldn't even be in
1878 			 * time_wait list). tcp_closemp_used can safely
1879 			 * be changed without taking a lock as no other
1880 			 * thread can concurrently access it at this
1881 			 * point in the connection lifecycle.
1882 			 */
1883 
1884 			if (tcp->tcp_closemp.b_prev == NULL)
1885 				tcp->tcp_closemp_used = B_TRUE;
1886 			else
1887 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1888 				    "concurrent use of tcp_closemp: "
1889 				    "connp %p tcp %p\n", (void *)connp,
1890 				    (void *)tcp);
1891 
1892 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1893 			mp = &tcp->tcp_closemp;
1894 			squeue_fill(connp->conn_sqp, mp,
1895 			    tcp_timewait_output, connp, 0);
1896 		}
1897 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1898 	}
1899 
1900 	if (tcp_time_wait->tcp_free_list != NULL)
1901 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1902 
1903 	tcp_time_wait->tcp_time_wait_tid =
1904 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1905 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1906 }
1907 /*
1908  * Reply to a clients T_CONN_RES TPI message. This function
1909  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1910  * on the acceptor STREAM and processed in tcp_wput_accept().
1911  * Read the block comment on top of tcp_conn_request().
1912  */
1913 static void
1914 tcp_accept(tcp_t *listener, mblk_t *mp)
1915 {
1916 	tcp_t	*acceptor;
1917 	tcp_t	*eager;
1918 	tcp_t   *tcp;
1919 	struct T_conn_res	*tcr;
1920 	t_uscalar_t	acceptor_id;
1921 	t_scalar_t	seqnum;
1922 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1923 	mblk_t	*ok_mp;
1924 	mblk_t	*mp1;
1925 	tcp_stack_t	*tcps = listener->tcp_tcps;
1926 
1927 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1928 		tcp_err_ack(listener, mp, TPROTO, 0);
1929 		return;
1930 	}
1931 	tcr = (struct T_conn_res *)mp->b_rptr;
1932 
1933 	/*
1934 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1935 	 * read side queue of the streams device underneath us i.e. the
1936 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1937 	 * look it up in the queue_hash.  Under LP64 it sends down the
1938 	 * minor_t of the accepting endpoint.
1939 	 *
1940 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1941 	 * fanout hash lock is held.
1942 	 * This prevents any thread from entering the acceptor queue from
1943 	 * below (since it has not been hard bound yet i.e. any inbound
1944 	 * packets will arrive on the listener or default tcp queue and
1945 	 * go through tcp_lookup).
1946 	 * The CONN_INC_REF will prevent the acceptor from closing.
1947 	 *
1948 	 * XXX It is still possible for a tli application to send down data
1949 	 * on the accepting stream while another thread calls t_accept.
1950 	 * This should not be a problem for well-behaved applications since
1951 	 * the T_OK_ACK is sent after the queue swapping is completed.
1952 	 *
1953 	 * If the accepting fd is the same as the listening fd, avoid
1954 	 * queue hash lookup since that will return an eager listener in a
1955 	 * already established state.
1956 	 */
1957 	acceptor_id = tcr->ACCEPTOR_id;
1958 	mutex_enter(&listener->tcp_eager_lock);
1959 	if (listener->tcp_acceptor_id == acceptor_id) {
1960 		eager = listener->tcp_eager_next_q;
1961 		/* only count how many T_CONN_INDs so don't count q0 */
1962 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1963 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1964 			mutex_exit(&listener->tcp_eager_lock);
1965 			tcp_err_ack(listener, mp, TBADF, 0);
1966 			return;
1967 		}
1968 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1969 			/* Throw away all the eagers on q0. */
1970 			tcp_eager_cleanup(listener, 1);
1971 		}
1972 		if (listener->tcp_syn_defense) {
1973 			listener->tcp_syn_defense = B_FALSE;
1974 			if (listener->tcp_ip_addr_cache != NULL) {
1975 				kmem_free(listener->tcp_ip_addr_cache,
1976 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1977 				listener->tcp_ip_addr_cache = NULL;
1978 			}
1979 		}
1980 		/*
1981 		 * Transfer tcp_conn_req_max to the eager so that when
1982 		 * a disconnect occurs we can revert the endpoint to the
1983 		 * listen state.
1984 		 */
1985 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1986 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1987 		/*
1988 		 * Get a reference on the acceptor just like the
1989 		 * tcp_acceptor_hash_lookup below.
1990 		 */
1991 		acceptor = listener;
1992 		CONN_INC_REF(acceptor->tcp_connp);
1993 	} else {
1994 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1995 		if (acceptor == NULL) {
1996 			if (listener->tcp_debug) {
1997 				(void) strlog(TCP_MOD_ID, 0, 1,
1998 				    SL_ERROR|SL_TRACE,
1999 				    "tcp_accept: did not find acceptor 0x%x\n",
2000 				    acceptor_id);
2001 			}
2002 			mutex_exit(&listener->tcp_eager_lock);
2003 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2004 			return;
2005 		}
2006 		/*
2007 		 * Verify acceptor state. The acceptable states for an acceptor
2008 		 * include TCPS_IDLE and TCPS_BOUND.
2009 		 */
2010 		switch (acceptor->tcp_state) {
2011 		case TCPS_IDLE:
2012 			/* FALLTHRU */
2013 		case TCPS_BOUND:
2014 			break;
2015 		default:
2016 			CONN_DEC_REF(acceptor->tcp_connp);
2017 			mutex_exit(&listener->tcp_eager_lock);
2018 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2019 			return;
2020 		}
2021 	}
2022 
2023 	/* The listener must be in TCPS_LISTEN */
2024 	if (listener->tcp_state != TCPS_LISTEN) {
2025 		CONN_DEC_REF(acceptor->tcp_connp);
2026 		mutex_exit(&listener->tcp_eager_lock);
2027 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * Rendezvous with an eager connection request packet hanging off
2033 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2034 	 * tcp structure when the connection packet arrived in
2035 	 * tcp_conn_request().
2036 	 */
2037 	seqnum = tcr->SEQ_number;
2038 	eager = listener;
2039 	do {
2040 		eager = eager->tcp_eager_next_q;
2041 		if (eager == NULL) {
2042 			CONN_DEC_REF(acceptor->tcp_connp);
2043 			mutex_exit(&listener->tcp_eager_lock);
2044 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2045 			return;
2046 		}
2047 	} while (eager->tcp_conn_req_seqnum != seqnum);
2048 	mutex_exit(&listener->tcp_eager_lock);
2049 
2050 	/*
2051 	 * At this point, both acceptor and listener have 2 ref
2052 	 * that they begin with. Acceptor has one additional ref
2053 	 * we placed in lookup while listener has 3 additional
2054 	 * ref for being behind the squeue (tcp_accept() is
2055 	 * done on listener's squeue); being in classifier hash;
2056 	 * and eager's ref on listener.
2057 	 */
2058 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2059 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2060 
2061 	/*
2062 	 * The eager at this point is set in its own squeue and
2063 	 * could easily have been killed (tcp_accept_finish will
2064 	 * deal with that) because of a TH_RST so we can only
2065 	 * ASSERT for a single ref.
2066 	 */
2067 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2068 
2069 	/* Pre allocate the stroptions mblk also */
2070 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2071 	if (opt_mp == NULL) {
2072 		CONN_DEC_REF(acceptor->tcp_connp);
2073 		CONN_DEC_REF(eager->tcp_connp);
2074 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2075 		return;
2076 	}
2077 	DB_TYPE(opt_mp) = M_SETOPTS;
2078 	opt_mp->b_wptr += sizeof (struct stroptions);
2079 
2080 	/*
2081 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2082 	 * from listener to acceptor. The message is chained on opt_mp
2083 	 * which will be sent onto eager's squeue.
2084 	 */
2085 	if (listener->tcp_bound_if != 0) {
2086 		/* allocate optmgmt req */
2087 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2088 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2089 		    sizeof (int));
2090 		if (mp1 != NULL)
2091 			linkb(opt_mp, mp1);
2092 	}
2093 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2094 		uint_t on = 1;
2095 
2096 		/* allocate optmgmt req */
2097 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2098 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2099 		if (mp1 != NULL)
2100 			linkb(opt_mp, mp1);
2101 	}
2102 
2103 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2104 	if ((mp1 = copymsg(mp)) == NULL) {
2105 		CONN_DEC_REF(acceptor->tcp_connp);
2106 		CONN_DEC_REF(eager->tcp_connp);
2107 		freemsg(opt_mp);
2108 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2109 		return;
2110 	}
2111 
2112 	tcr = (struct T_conn_res *)mp1->b_rptr;
2113 
2114 	/*
2115 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2116 	 * which allocates a larger mblk and appends the new
2117 	 * local address to the ok_ack.  The address is copied by
2118 	 * soaccept() for getsockname().
2119 	 */
2120 	{
2121 		int extra;
2122 
2123 		extra = (eager->tcp_family == AF_INET) ?
2124 		    sizeof (sin_t) : sizeof (sin6_t);
2125 
2126 		/*
2127 		 * Try to re-use mp, if possible.  Otherwise, allocate
2128 		 * an mblk and return it as ok_mp.  In any case, mp
2129 		 * is no longer usable upon return.
2130 		 */
2131 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2132 			CONN_DEC_REF(acceptor->tcp_connp);
2133 			CONN_DEC_REF(eager->tcp_connp);
2134 			freemsg(opt_mp);
2135 			/* Original mp has been freed by now, so use mp1 */
2136 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2137 			return;
2138 		}
2139 
2140 		mp = NULL;	/* We should never use mp after this point */
2141 
2142 		switch (extra) {
2143 		case sizeof (sin_t): {
2144 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2145 
2146 				ok_mp->b_wptr += extra;
2147 				sin->sin_family = AF_INET;
2148 				sin->sin_port = eager->tcp_lport;
2149 				sin->sin_addr.s_addr =
2150 				    eager->tcp_ipha->ipha_src;
2151 				break;
2152 			}
2153 		case sizeof (sin6_t): {
2154 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2155 
2156 				ok_mp->b_wptr += extra;
2157 				sin6->sin6_family = AF_INET6;
2158 				sin6->sin6_port = eager->tcp_lport;
2159 				if (eager->tcp_ipversion == IPV4_VERSION) {
2160 					sin6->sin6_flowinfo = 0;
2161 					IN6_IPADDR_TO_V4MAPPED(
2162 					    eager->tcp_ipha->ipha_src,
2163 					    &sin6->sin6_addr);
2164 				} else {
2165 					ASSERT(eager->tcp_ip6h != NULL);
2166 					sin6->sin6_flowinfo =
2167 					    eager->tcp_ip6h->ip6_vcf &
2168 					    ~IPV6_VERS_AND_FLOW_MASK;
2169 					sin6->sin6_addr =
2170 					    eager->tcp_ip6h->ip6_src;
2171 				}
2172 				sin6->sin6_scope_id = 0;
2173 				sin6->__sin6_src_id = 0;
2174 				break;
2175 			}
2176 		default:
2177 			break;
2178 		}
2179 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2180 	}
2181 
2182 	/*
2183 	 * If there are no options we know that the T_CONN_RES will
2184 	 * succeed. However, we can't send the T_OK_ACK upstream until
2185 	 * the tcp_accept_swap is done since it would be dangerous to
2186 	 * let the application start using the new fd prior to the swap.
2187 	 */
2188 	tcp_accept_swap(listener, acceptor, eager);
2189 
2190 	/*
2191 	 * tcp_accept_swap unlinks eager from listener but does not drop
2192 	 * the eager's reference on the listener.
2193 	 */
2194 	ASSERT(eager->tcp_listener == NULL);
2195 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2196 
2197 	/*
2198 	 * The eager is now associated with its own queue. Insert in
2199 	 * the hash so that the connection can be reused for a future
2200 	 * T_CONN_RES.
2201 	 */
2202 	tcp_acceptor_hash_insert(acceptor_id, eager);
2203 
2204 	/*
2205 	 * We now do the processing of options with T_CONN_RES.
2206 	 * We delay till now since we wanted to have queue to pass to
2207 	 * option processing routines that points back to the right
2208 	 * instance structure which does not happen until after
2209 	 * tcp_accept_swap().
2210 	 *
2211 	 * Note:
2212 	 * The sanity of the logic here assumes that whatever options
2213 	 * are appropriate to inherit from listner=>eager are done
2214 	 * before this point, and whatever were to be overridden (or not)
2215 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2216 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2217 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2218 	 * This may not be true at this point in time but can be fixed
2219 	 * independently. This option processing code starts with
2220 	 * the instantiated acceptor instance and the final queue at
2221 	 * this point.
2222 	 */
2223 
2224 	if (tcr->OPT_length != 0) {
2225 		/* Options to process */
2226 		int t_error = 0;
2227 		int sys_error = 0;
2228 		int do_disconnect = 0;
2229 
2230 		if (tcp_conprim_opt_process(eager, mp1,
2231 		    &do_disconnect, &t_error, &sys_error) < 0) {
2232 			eager->tcp_accept_error = 1;
2233 			if (do_disconnect) {
2234 				/*
2235 				 * An option failed which does not allow
2236 				 * connection to be accepted.
2237 				 *
2238 				 * We allow T_CONN_RES to succeed and
2239 				 * put a T_DISCON_IND on the eager queue.
2240 				 */
2241 				ASSERT(t_error == 0 && sys_error == 0);
2242 				eager->tcp_send_discon_ind = 1;
2243 			} else {
2244 				ASSERT(t_error != 0);
2245 				freemsg(ok_mp);
2246 				/*
2247 				 * Original mp was either freed or set
2248 				 * to ok_mp above, so use mp1 instead.
2249 				 */
2250 				tcp_err_ack(listener, mp1, t_error, sys_error);
2251 				goto finish;
2252 			}
2253 		}
2254 		/*
2255 		 * Most likely success in setting options (except if
2256 		 * eager->tcp_send_discon_ind set).
2257 		 * mp1 option buffer represented by OPT_length/offset
2258 		 * potentially modified and contains results of setting
2259 		 * options at this point
2260 		 */
2261 	}
2262 
2263 	/* We no longer need mp1, since all options processing has passed */
2264 	freemsg(mp1);
2265 
2266 	putnext(listener->tcp_rq, ok_mp);
2267 
2268 	mutex_enter(&listener->tcp_eager_lock);
2269 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2270 		tcp_t	*tail;
2271 		mblk_t	*conn_ind;
2272 
2273 		/*
2274 		 * This path should not be executed if listener and
2275 		 * acceptor streams are the same.
2276 		 */
2277 		ASSERT(listener != acceptor);
2278 
2279 		tcp = listener->tcp_eager_prev_q0;
2280 		/*
2281 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2282 		 * deferred T_conn_ind queue. We need to get to the head of
2283 		 * the queue in order to send up T_conn_ind the same order as
2284 		 * how the 3WHS is completed.
2285 		 */
2286 		while (tcp != listener) {
2287 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2288 				break;
2289 			else
2290 				tcp = tcp->tcp_eager_prev_q0;
2291 		}
2292 		ASSERT(tcp != listener);
2293 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2294 		ASSERT(conn_ind != NULL);
2295 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2296 
2297 		/* Move from q0 to q */
2298 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2299 		listener->tcp_conn_req_cnt_q0--;
2300 		listener->tcp_conn_req_cnt_q++;
2301 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2302 		    tcp->tcp_eager_prev_q0;
2303 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2304 		    tcp->tcp_eager_next_q0;
2305 		tcp->tcp_eager_prev_q0 = NULL;
2306 		tcp->tcp_eager_next_q0 = NULL;
2307 		tcp->tcp_conn_def_q0 = B_FALSE;
2308 
2309 		/* Make sure the tcp isn't in the list of droppables */
2310 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2311 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2312 
2313 		/*
2314 		 * Insert at end of the queue because sockfs sends
2315 		 * down T_CONN_RES in chronological order. Leaving
2316 		 * the older conn indications at front of the queue
2317 		 * helps reducing search time.
2318 		 */
2319 		tail = listener->tcp_eager_last_q;
2320 		if (tail != NULL)
2321 			tail->tcp_eager_next_q = tcp;
2322 		else
2323 			listener->tcp_eager_next_q = tcp;
2324 		listener->tcp_eager_last_q = tcp;
2325 		tcp->tcp_eager_next_q = NULL;
2326 		mutex_exit(&listener->tcp_eager_lock);
2327 		putnext(tcp->tcp_rq, conn_ind);
2328 	} else {
2329 		mutex_exit(&listener->tcp_eager_lock);
2330 	}
2331 
2332 	/*
2333 	 * Done with the acceptor - free it
2334 	 *
2335 	 * Note: from this point on, no access to listener should be made
2336 	 * as listener can be equal to acceptor.
2337 	 */
2338 finish:
2339 	ASSERT(acceptor->tcp_detached);
2340 	ASSERT(tcps->tcps_g_q != NULL);
2341 	acceptor->tcp_rq = tcps->tcps_g_q;
2342 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2343 	(void) tcp_clean_death(acceptor, 0, 2);
2344 	CONN_DEC_REF(acceptor->tcp_connp);
2345 
2346 	/*
2347 	 * In case we already received a FIN we have to make tcp_rput send
2348 	 * the ordrel_ind. This will also send up a window update if the window
2349 	 * has opened up.
2350 	 *
2351 	 * In the normal case of a successful connection acceptance
2352 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2353 	 * indication that this was just accepted. This tells tcp_rput to
2354 	 * pass up any data queued in tcp_rcv_list.
2355 	 *
2356 	 * In the fringe case where options sent with T_CONN_RES failed and
2357 	 * we required, we would be indicating a T_DISCON_IND to blow
2358 	 * away this connection.
2359 	 */
2360 
2361 	/*
2362 	 * XXX: we currently have a problem if XTI application closes the
2363 	 * acceptor stream in between. This problem exists in on10-gate also
2364 	 * and is well know but nothing can be done short of major rewrite
2365 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2366 	 * eager same squeue as listener (we can distinguish non socket
2367 	 * listeners at the time of handling a SYN in tcp_conn_request)
2368 	 * and do most of the work that tcp_accept_finish does here itself
2369 	 * and then get behind the acceptor squeue to access the acceptor
2370 	 * queue.
2371 	 */
2372 	/*
2373 	 * We already have a ref on tcp so no need to do one before squeue_fill
2374 	 */
2375 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2376 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2377 }
2378 
2379 /*
2380  * Swap information between the eager and acceptor for a TLI/XTI client.
2381  * The sockfs accept is done on the acceptor stream and control goes
2382  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2383  * called. In either case, both the eager and listener are in their own
2384  * perimeter (squeue) and the code has to deal with potential race.
2385  *
2386  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2387  */
2388 static void
2389 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2390 {
2391 	conn_t	*econnp, *aconnp;
2392 
2393 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2394 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2395 	ASSERT(!eager->tcp_hard_bound);
2396 	ASSERT(!TCP_IS_SOCKET(acceptor));
2397 	ASSERT(!TCP_IS_SOCKET(eager));
2398 	ASSERT(!TCP_IS_SOCKET(listener));
2399 
2400 	acceptor->tcp_detached = B_TRUE;
2401 	/*
2402 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2403 	 * the acceptor id.
2404 	 */
2405 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2406 
2407 	/* remove eager from listen list... */
2408 	mutex_enter(&listener->tcp_eager_lock);
2409 	tcp_eager_unlink(eager);
2410 	ASSERT(eager->tcp_eager_next_q == NULL &&
2411 	    eager->tcp_eager_last_q == NULL);
2412 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2413 	    eager->tcp_eager_prev_q0 == NULL);
2414 	mutex_exit(&listener->tcp_eager_lock);
2415 	eager->tcp_rq = acceptor->tcp_rq;
2416 	eager->tcp_wq = acceptor->tcp_wq;
2417 
2418 	econnp = eager->tcp_connp;
2419 	aconnp = acceptor->tcp_connp;
2420 
2421 	eager->tcp_rq->q_ptr = econnp;
2422 	eager->tcp_wq->q_ptr = econnp;
2423 
2424 	/*
2425 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2426 	 * which might be a different squeue from our peer TCP instance.
2427 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2428 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2429 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2430 	 * above reach global visibility prior to the clearing of tcp_detached.
2431 	 */
2432 	membar_producer();
2433 	eager->tcp_detached = B_FALSE;
2434 
2435 	ASSERT(eager->tcp_ack_tid == 0);
2436 
2437 	econnp->conn_dev = aconnp->conn_dev;
2438 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2439 	ASSERT(econnp->conn_minor_arena != NULL);
2440 	if (eager->tcp_cred != NULL)
2441 		crfree(eager->tcp_cred);
2442 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2443 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2444 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2445 
2446 	aconnp->conn_cred = NULL;
2447 
2448 	econnp->conn_zoneid = aconnp->conn_zoneid;
2449 	econnp->conn_allzones = aconnp->conn_allzones;
2450 
2451 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2452 	aconnp->conn_mac_exempt = B_FALSE;
2453 
2454 	ASSERT(aconnp->conn_peercred == NULL);
2455 
2456 	/* Do the IPC initialization */
2457 	CONN_INC_REF(econnp);
2458 
2459 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2460 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2461 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2462 
2463 	/* Done with old IPC. Drop its ref on its connp */
2464 	CONN_DEC_REF(aconnp);
2465 }
2466 
2467 
2468 /*
2469  * Adapt to the information, such as rtt and rtt_sd, provided from the
2470  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2471  *
2472  * Checks for multicast and broadcast destination address.
2473  * Returns zero on failure; non-zero if ok.
2474  *
2475  * Note that the MSS calculation here is based on the info given in
2476  * the IRE.  We do not do any calculation based on TCP options.  They
2477  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2478  * knows which options to use.
2479  *
2480  * Note on how TCP gets its parameters for a connection.
2481  *
2482  * When a tcp_t structure is allocated, it gets all the default parameters.
2483  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2484  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2485  * default.
2486  *
2487  * An incoming SYN with a multicast or broadcast destination address, is dropped
2488  * in 1 of 2 places.
2489  *
2490  * 1. If the packet was received over the wire it is dropped in
2491  * ip_rput_process_broadcast()
2492  *
2493  * 2. If the packet was received through internal IP loopback, i.e. the packet
2494  * was generated and received on the same machine, it is dropped in
2495  * ip_wput_local()
2496  *
2497  * An incoming SYN with a multicast or broadcast source address is always
2498  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2499  * reject an attempt to connect to a broadcast or multicast (destination)
2500  * address.
2501  */
2502 static int
2503 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2504 {
2505 	tcp_hsp_t	*hsp;
2506 	ire_t		*ire;
2507 	ire_t		*sire = NULL;
2508 	iulp_t		*ire_uinfo = NULL;
2509 	uint32_t	mss_max;
2510 	uint32_t	mss;
2511 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2512 	conn_t		*connp = tcp->tcp_connp;
2513 	boolean_t	ire_cacheable = B_FALSE;
2514 	zoneid_t	zoneid = connp->conn_zoneid;
2515 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2516 	    MATCH_IRE_SECATTR;
2517 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2518 	ill_t		*ill = NULL;
2519 	boolean_t	incoming = (ire_mp == NULL);
2520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2521 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2522 
2523 	ASSERT(connp->conn_ire_cache == NULL);
2524 
2525 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2526 
2527 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2528 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2529 			return (0);
2530 		}
2531 		/*
2532 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2533 		 * for the destination with the nexthop as gateway.
2534 		 * ire_ctable_lookup() is used because this particular
2535 		 * ire, if it exists, will be marked private.
2536 		 * If that is not available, use the interface ire
2537 		 * for the nexthop.
2538 		 *
2539 		 * TSol: tcp_update_label will detect label mismatches based
2540 		 * only on the destination's label, but that would not
2541 		 * detect label mismatches based on the security attributes
2542 		 * of routes or next hop gateway. Hence we need to pass the
2543 		 * label to ire_ftable_lookup below in order to locate the
2544 		 * right prefix (and/or) ire cache. Similarly we also need
2545 		 * pass the label to the ire_cache_lookup below to locate
2546 		 * the right ire that also matches on the label.
2547 		 */
2548 		if (tcp->tcp_connp->conn_nexthop_set) {
2549 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2550 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2551 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2552 			    ipst);
2553 			if (ire == NULL) {
2554 				ire = ire_ftable_lookup(
2555 				    tcp->tcp_connp->conn_nexthop_v4,
2556 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2557 				    tsl, match_flags, ipst);
2558 				if (ire == NULL)
2559 					return (0);
2560 			} else {
2561 				ire_uinfo = &ire->ire_uinfo;
2562 			}
2563 		} else {
2564 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2565 			    zoneid, tsl, ipst);
2566 			if (ire != NULL) {
2567 				ire_cacheable = B_TRUE;
2568 				ire_uinfo = (ire_mp != NULL) ?
2569 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2570 				    &ire->ire_uinfo;
2571 
2572 			} else {
2573 				if (ire_mp == NULL) {
2574 					ire = ire_ftable_lookup(
2575 					    tcp->tcp_connp->conn_rem,
2576 					    0, 0, 0, NULL, &sire, zoneid, 0,
2577 					    tsl, (MATCH_IRE_RECURSIVE |
2578 					    MATCH_IRE_DEFAULT), ipst);
2579 					if (ire == NULL)
2580 						return (0);
2581 					ire_uinfo = (sire != NULL) ?
2582 					    &sire->ire_uinfo :
2583 					    &ire->ire_uinfo;
2584 				} else {
2585 					ire = (ire_t *)ire_mp->b_rptr;
2586 					ire_uinfo =
2587 					    &((ire_t *)
2588 					    ire_mp->b_rptr)->ire_uinfo;
2589 				}
2590 			}
2591 		}
2592 		ASSERT(ire != NULL);
2593 
2594 		if ((ire->ire_src_addr == INADDR_ANY) ||
2595 		    (ire->ire_type & IRE_BROADCAST)) {
2596 			/*
2597 			 * ire->ire_mp is non null when ire_mp passed in is used
2598 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2599 			 */
2600 			if (ire->ire_mp == NULL)
2601 				ire_refrele(ire);
2602 			if (sire != NULL)
2603 				ire_refrele(sire);
2604 			return (0);
2605 		}
2606 
2607 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2608 			ipaddr_t src_addr;
2609 
2610 			/*
2611 			 * ip_bind_connected() has stored the correct source
2612 			 * address in conn_src.
2613 			 */
2614 			src_addr = tcp->tcp_connp->conn_src;
2615 			tcp->tcp_ipha->ipha_src = src_addr;
2616 			/*
2617 			 * Copy of the src addr. in tcp_t is needed
2618 			 * for the lookup funcs.
2619 			 */
2620 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2621 		}
2622 		/*
2623 		 * Set the fragment bit so that IP will tell us if the MTU
2624 		 * should change. IP tells us the latest setting of
2625 		 * ip_path_mtu_discovery through ire_frag_flag.
2626 		 */
2627 		if (ipst->ips_ip_path_mtu_discovery) {
2628 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2629 			    htons(IPH_DF);
2630 		}
2631 		/*
2632 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2633 		 * for IP_NEXTHOP. No cache ire has been found for the
2634 		 * destination and we are working with the nexthop's
2635 		 * interface ire. Since we need to forward all packets
2636 		 * to the nexthop first, we "blindly" set tcp_localnet
2637 		 * to false, eventhough the destination may also be
2638 		 * onlink.
2639 		 */
2640 		if (ire_uinfo == NULL)
2641 			tcp->tcp_localnet = 0;
2642 		else
2643 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2644 	} else {
2645 		/*
2646 		 * For incoming connection ire_mp = NULL
2647 		 * For outgoing connection ire_mp != NULL
2648 		 * Technically we should check conn_incoming_ill
2649 		 * when ire_mp is NULL and conn_outgoing_ill when
2650 		 * ire_mp is non-NULL. But this is performance
2651 		 * critical path and for IPV*_BOUND_IF, outgoing
2652 		 * and incoming ill are always set to the same value.
2653 		 */
2654 		ill_t	*dst_ill = NULL;
2655 		ipif_t  *dst_ipif = NULL;
2656 
2657 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2658 
2659 		if (connp->conn_outgoing_ill != NULL) {
2660 			/* Outgoing or incoming path */
2661 			int   err;
2662 
2663 			dst_ill = conn_get_held_ill(connp,
2664 			    &connp->conn_outgoing_ill, &err);
2665 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2666 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2667 				return (0);
2668 			}
2669 			match_flags |= MATCH_IRE_ILL;
2670 			dst_ipif = dst_ill->ill_ipif;
2671 		}
2672 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2673 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2674 
2675 		if (ire != NULL) {
2676 			ire_cacheable = B_TRUE;
2677 			ire_uinfo = (ire_mp != NULL) ?
2678 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2679 			    &ire->ire_uinfo;
2680 		} else {
2681 			if (ire_mp == NULL) {
2682 				ire = ire_ftable_lookup_v6(
2683 				    &tcp->tcp_connp->conn_remv6,
2684 				    0, 0, 0, dst_ipif, &sire, zoneid,
2685 				    0, tsl, match_flags, ipst);
2686 				if (ire == NULL) {
2687 					if (dst_ill != NULL)
2688 						ill_refrele(dst_ill);
2689 					return (0);
2690 				}
2691 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2692 				    &ire->ire_uinfo;
2693 			} else {
2694 				ire = (ire_t *)ire_mp->b_rptr;
2695 				ire_uinfo =
2696 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2697 			}
2698 		}
2699 		if (dst_ill != NULL)
2700 			ill_refrele(dst_ill);
2701 
2702 		ASSERT(ire != NULL);
2703 		ASSERT(ire_uinfo != NULL);
2704 
2705 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2706 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2707 			/*
2708 			 * ire->ire_mp is non null when ire_mp passed in is used
2709 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2710 			 */
2711 			if (ire->ire_mp == NULL)
2712 				ire_refrele(ire);
2713 			if (sire != NULL)
2714 				ire_refrele(sire);
2715 			return (0);
2716 		}
2717 
2718 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2719 			in6_addr_t	src_addr;
2720 
2721 			/*
2722 			 * ip_bind_connected_v6() has stored the correct source
2723 			 * address per IPv6 addr. selection policy in
2724 			 * conn_src_v6.
2725 			 */
2726 			src_addr = tcp->tcp_connp->conn_srcv6;
2727 
2728 			tcp->tcp_ip6h->ip6_src = src_addr;
2729 			/*
2730 			 * Copy of the src addr. in tcp_t is needed
2731 			 * for the lookup funcs.
2732 			 */
2733 			tcp->tcp_ip_src_v6 = src_addr;
2734 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2735 			    &connp->conn_srcv6));
2736 		}
2737 		tcp->tcp_localnet =
2738 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2739 	}
2740 
2741 	/*
2742 	 * This allows applications to fail quickly when connections are made
2743 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2744 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2745 	 */
2746 	if ((ire->ire_flags & RTF_REJECT) &&
2747 	    (ire->ire_flags & RTF_PRIVATE))
2748 		goto error;
2749 
2750 	/*
2751 	 * Make use of the cached rtt and rtt_sd values to calculate the
2752 	 * initial RTO.  Note that they are already initialized in
2753 	 * tcp_init_values().
2754 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2755 	 * IP_NEXTHOP, but instead are using the interface ire for the
2756 	 * nexthop, then we do not use the ire_uinfo from that ire to
2757 	 * do any initializations.
2758 	 */
2759 	if (ire_uinfo != NULL) {
2760 		if (ire_uinfo->iulp_rtt != 0) {
2761 			clock_t	rto;
2762 
2763 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2764 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2765 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2766 			    tcps->tcps_rexmit_interval_extra +
2767 			    (tcp->tcp_rtt_sa >> 5);
2768 
2769 			if (rto > tcps->tcps_rexmit_interval_max) {
2770 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2771 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2772 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2773 			} else {
2774 				tcp->tcp_rto = rto;
2775 			}
2776 		}
2777 		if (ire_uinfo->iulp_ssthresh != 0)
2778 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2779 		else
2780 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2781 		if (ire_uinfo->iulp_spipe > 0) {
2782 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2783 			    tcps->tcps_max_buf);
2784 			if (tcps->tcps_snd_lowat_fraction != 0)
2785 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2786 				    tcps->tcps_snd_lowat_fraction;
2787 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2788 		}
2789 		/*
2790 		 * Note that up till now, acceptor always inherits receive
2791 		 * window from the listener.  But if there is a metrics
2792 		 * associated with a host, we should use that instead of
2793 		 * inheriting it from listener. Thus we need to pass this
2794 		 * info back to the caller.
2795 		 */
2796 		if (ire_uinfo->iulp_rpipe > 0) {
2797 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2798 			    tcps->tcps_max_buf);
2799 		}
2800 
2801 		if (ire_uinfo->iulp_rtomax > 0) {
2802 			tcp->tcp_second_timer_threshold =
2803 			    ire_uinfo->iulp_rtomax;
2804 		}
2805 
2806 		/*
2807 		 * Use the metric option settings, iulp_tstamp_ok and
2808 		 * iulp_wscale_ok, only for active open. What this means
2809 		 * is that if the other side uses timestamp or window
2810 		 * scale option, TCP will also use those options. That
2811 		 * is for passive open.  If the application sets a
2812 		 * large window, window scale is enabled regardless of
2813 		 * the value in iulp_wscale_ok.  This is the behavior
2814 		 * since 2.6.  So we keep it.
2815 		 * The only case left in passive open processing is the
2816 		 * check for SACK.
2817 		 * For ECN, it should probably be like SACK.  But the
2818 		 * current value is binary, so we treat it like the other
2819 		 * cases.  The metric only controls active open.For passive
2820 		 * open, the ndd param, tcp_ecn_permitted, controls the
2821 		 * behavior.
2822 		 */
2823 		if (!tcp_detached) {
2824 			/*
2825 			 * The if check means that the following can only
2826 			 * be turned on by the metrics only IRE, but not off.
2827 			 */
2828 			if (ire_uinfo->iulp_tstamp_ok)
2829 				tcp->tcp_snd_ts_ok = B_TRUE;
2830 			if (ire_uinfo->iulp_wscale_ok)
2831 				tcp->tcp_snd_ws_ok = B_TRUE;
2832 			if (ire_uinfo->iulp_sack == 2)
2833 				tcp->tcp_snd_sack_ok = B_TRUE;
2834 			if (ire_uinfo->iulp_ecn_ok)
2835 				tcp->tcp_ecn_ok = B_TRUE;
2836 		} else {
2837 			/*
2838 			 * Passive open.
2839 			 *
2840 			 * As above, the if check means that SACK can only be
2841 			 * turned on by the metric only IRE.
2842 			 */
2843 			if (ire_uinfo->iulp_sack > 0) {
2844 				tcp->tcp_snd_sack_ok = B_TRUE;
2845 			}
2846 		}
2847 	}
2848 
2849 
2850 	/*
2851 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2852 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2853 	 * length of all those options exceeds 28 bytes.  But because
2854 	 * of the tcp_mss_min check below, we may not have a problem if
2855 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2856 	 * the negative problem still exists.  And the check defeats PMTUd.
2857 	 * In fact, if PMTUd finds that the MSS should be smaller than
2858 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2859 	 * value.
2860 	 *
2861 	 * We do not deal with that now.  All those problems related to
2862 	 * PMTUd will be fixed later.
2863 	 */
2864 	ASSERT(ire->ire_max_frag != 0);
2865 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2866 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2867 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2868 			mss = MIN(mss, IPV6_MIN_MTU);
2869 		}
2870 	}
2871 
2872 	/* Sanity check for MSS value. */
2873 	if (tcp->tcp_ipversion == IPV4_VERSION)
2874 		mss_max = tcps->tcps_mss_max_ipv4;
2875 	else
2876 		mss_max = tcps->tcps_mss_max_ipv6;
2877 
2878 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2879 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2880 		/*
2881 		 * After receiving an ICMPv6 "packet too big" message with a
2882 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2883 		 * will insert a 8-byte fragment header in every packet; we
2884 		 * reduce the MSS by that amount here.
2885 		 */
2886 		mss -= sizeof (ip6_frag_t);
2887 	}
2888 
2889 	if (tcp->tcp_ipsec_overhead == 0)
2890 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2891 
2892 	mss -= tcp->tcp_ipsec_overhead;
2893 
2894 	if (mss < tcps->tcps_mss_min)
2895 		mss = tcps->tcps_mss_min;
2896 	if (mss > mss_max)
2897 		mss = mss_max;
2898 
2899 	/* Note that this is the maximum MSS, excluding all options. */
2900 	tcp->tcp_mss = mss;
2901 
2902 	/*
2903 	 * Initialize the ISS here now that we have the full connection ID.
2904 	 * The RFC 1948 method of initial sequence number generation requires
2905 	 * knowledge of the full connection ID before setting the ISS.
2906 	 */
2907 
2908 	tcp_iss_init(tcp);
2909 
2910 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2911 		tcp->tcp_loopback = B_TRUE;
2912 
2913 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2914 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2915 	} else {
2916 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2917 	}
2918 
2919 	if (hsp != NULL) {
2920 		/* Only modify if we're going to make them bigger */
2921 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2922 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2923 			if (tcps->tcps_snd_lowat_fraction != 0)
2924 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2925 				    tcps->tcps_snd_lowat_fraction;
2926 		}
2927 
2928 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2929 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2930 		}
2931 
2932 		/* Copy timestamp flag only for active open */
2933 		if (!tcp_detached)
2934 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2935 	}
2936 
2937 	if (sire != NULL)
2938 		IRE_REFRELE(sire);
2939 
2940 	/*
2941 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2942 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2943 	 */
2944 	if (tcp->tcp_loopback ||
2945 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2946 		/*
2947 		 * For incoming, see if this tcp may be MDT-capable.  For
2948 		 * outgoing, this process has been taken care of through
2949 		 * tcp_rput_other.
2950 		 */
2951 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2952 		tcp->tcp_ire_ill_check_done = B_TRUE;
2953 	}
2954 
2955 	mutex_enter(&connp->conn_lock);
2956 	/*
2957 	 * Make sure that conn is not marked incipient
2958 	 * for incoming connections. A blind
2959 	 * removal of incipient flag is cheaper than
2960 	 * check and removal.
2961 	 */
2962 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2963 
2964 	/*
2965 	 * Must not cache forwarding table routes
2966 	 * or recache an IRE after the conn_t has
2967 	 * had conn_ire_cache cleared and is flagged
2968 	 * unusable, (see the CONN_CACHE_IRE() macro).
2969 	 */
2970 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2971 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2972 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2973 			connp->conn_ire_cache = ire;
2974 			IRE_UNTRACE_REF(ire);
2975 			rw_exit(&ire->ire_bucket->irb_lock);
2976 			mutex_exit(&connp->conn_lock);
2977 			return (1);
2978 		}
2979 		rw_exit(&ire->ire_bucket->irb_lock);
2980 	}
2981 	mutex_exit(&connp->conn_lock);
2982 
2983 	if (ire->ire_mp == NULL)
2984 		ire_refrele(ire);
2985 	return (1);
2986 
2987 error:
2988 	if (ire->ire_mp == NULL)
2989 		ire_refrele(ire);
2990 	if (sire != NULL)
2991 		ire_refrele(sire);
2992 	return (0);
2993 }
2994 
2995 /*
2996  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2997  * O_T_BIND_REQ/T_BIND_REQ message.
2998  */
2999 static void
3000 tcp_bind(tcp_t *tcp, mblk_t *mp)
3001 {
3002 	sin_t	*sin;
3003 	sin6_t	*sin6;
3004 	mblk_t	*mp1;
3005 	in_port_t requested_port;
3006 	in_port_t allocated_port;
3007 	struct T_bind_req *tbr;
3008 	boolean_t	bind_to_req_port_only;
3009 	boolean_t	backlog_update = B_FALSE;
3010 	boolean_t	user_specified;
3011 	in6_addr_t	v6addr;
3012 	ipaddr_t	v4addr;
3013 	uint_t	origipversion;
3014 	int	err;
3015 	queue_t *q = tcp->tcp_wq;
3016 	conn_t	*connp = tcp->tcp_connp;
3017 	mlp_type_t addrtype, mlptype;
3018 	zone_t	*zone;
3019 	cred_t	*cr;
3020 	in_port_t mlp_port;
3021 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3022 
3023 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3024 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3025 		if (tcp->tcp_debug) {
3026 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3027 			    "tcp_bind: bad req, len %u",
3028 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3029 		}
3030 		tcp_err_ack(tcp, mp, TPROTO, 0);
3031 		return;
3032 	}
3033 	/* Make sure the largest address fits */
3034 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3035 	if (mp1 == NULL) {
3036 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3037 		return;
3038 	}
3039 	mp = mp1;
3040 	tbr = (struct T_bind_req *)mp->b_rptr;
3041 	if (tcp->tcp_state >= TCPS_BOUND) {
3042 		if ((tcp->tcp_state == TCPS_BOUND ||
3043 		    tcp->tcp_state == TCPS_LISTEN) &&
3044 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3045 		    tbr->CONIND_number > 0) {
3046 			/*
3047 			 * Handle listen() increasing CONIND_number.
3048 			 * This is more "liberal" then what the TPI spec
3049 			 * requires but is needed to avoid a t_unbind
3050 			 * when handling listen() since the port number
3051 			 * might be "stolen" between the unbind and bind.
3052 			 */
3053 			backlog_update = B_TRUE;
3054 			goto do_bind;
3055 		}
3056 		if (tcp->tcp_debug) {
3057 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3058 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3059 		}
3060 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3061 		return;
3062 	}
3063 	origipversion = tcp->tcp_ipversion;
3064 
3065 	switch (tbr->ADDR_length) {
3066 	case 0:			/* request for a generic port */
3067 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3068 		if (tcp->tcp_family == AF_INET) {
3069 			tbr->ADDR_length = sizeof (sin_t);
3070 			sin = (sin_t *)&tbr[1];
3071 			*sin = sin_null;
3072 			sin->sin_family = AF_INET;
3073 			mp->b_wptr = (uchar_t *)&sin[1];
3074 			tcp->tcp_ipversion = IPV4_VERSION;
3075 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3076 		} else {
3077 			ASSERT(tcp->tcp_family == AF_INET6);
3078 			tbr->ADDR_length = sizeof (sin6_t);
3079 			sin6 = (sin6_t *)&tbr[1];
3080 			*sin6 = sin6_null;
3081 			sin6->sin6_family = AF_INET6;
3082 			mp->b_wptr = (uchar_t *)&sin6[1];
3083 			tcp->tcp_ipversion = IPV6_VERSION;
3084 			V6_SET_ZERO(v6addr);
3085 		}
3086 		requested_port = 0;
3087 		break;
3088 
3089 	case sizeof (sin_t):	/* Complete IPv4 address */
3090 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3091 		    sizeof (sin_t));
3092 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3093 			if (tcp->tcp_debug) {
3094 				(void) strlog(TCP_MOD_ID, 0, 1,
3095 				    SL_ERROR|SL_TRACE,
3096 				    "tcp_bind: bad address parameter, "
3097 				    "offset %d, len %d",
3098 				    tbr->ADDR_offset, tbr->ADDR_length);
3099 			}
3100 			tcp_err_ack(tcp, mp, TPROTO, 0);
3101 			return;
3102 		}
3103 		/*
3104 		 * With sockets sockfs will accept bogus sin_family in
3105 		 * bind() and replace it with the family used in the socket
3106 		 * call.
3107 		 */
3108 		if (sin->sin_family != AF_INET ||
3109 		    tcp->tcp_family != AF_INET) {
3110 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3111 			return;
3112 		}
3113 		requested_port = ntohs(sin->sin_port);
3114 		tcp->tcp_ipversion = IPV4_VERSION;
3115 		v4addr = sin->sin_addr.s_addr;
3116 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3117 		break;
3118 
3119 	case sizeof (sin6_t): /* Complete IPv6 address */
3120 		sin6 = (sin6_t *)mi_offset_param(mp,
3121 		    tbr->ADDR_offset, sizeof (sin6_t));
3122 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3123 			if (tcp->tcp_debug) {
3124 				(void) strlog(TCP_MOD_ID, 0, 1,
3125 				    SL_ERROR|SL_TRACE,
3126 				    "tcp_bind: bad IPv6 address parameter, "
3127 				    "offset %d, len %d", tbr->ADDR_offset,
3128 				    tbr->ADDR_length);
3129 			}
3130 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3131 			return;
3132 		}
3133 		if (sin6->sin6_family != AF_INET6 ||
3134 		    tcp->tcp_family != AF_INET6) {
3135 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3136 			return;
3137 		}
3138 		requested_port = ntohs(sin6->sin6_port);
3139 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3140 		    IPV4_VERSION : IPV6_VERSION;
3141 		v6addr = sin6->sin6_addr;
3142 		break;
3143 
3144 	default:
3145 		if (tcp->tcp_debug) {
3146 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3147 			    "tcp_bind: bad address length, %d",
3148 			    tbr->ADDR_length);
3149 		}
3150 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3151 		return;
3152 	}
3153 	tcp->tcp_bound_source_v6 = v6addr;
3154 
3155 	/* Check for change in ipversion */
3156 	if (origipversion != tcp->tcp_ipversion) {
3157 		ASSERT(tcp->tcp_family == AF_INET6);
3158 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3159 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3160 		if (err) {
3161 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3162 			return;
3163 		}
3164 	}
3165 
3166 	/*
3167 	 * Initialize family specific fields. Copy of the src addr.
3168 	 * in tcp_t is needed for the lookup funcs.
3169 	 */
3170 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3171 		tcp->tcp_ip6h->ip6_src = v6addr;
3172 	} else {
3173 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3174 	}
3175 	tcp->tcp_ip_src_v6 = v6addr;
3176 
3177 	/*
3178 	 * For O_T_BIND_REQ:
3179 	 * Verify that the target port/addr is available, or choose
3180 	 * another.
3181 	 * For  T_BIND_REQ:
3182 	 * Verify that the target port/addr is available or fail.
3183 	 * In both cases when it succeeds the tcp is inserted in the
3184 	 * bind hash table. This ensures that the operation is atomic
3185 	 * under the lock on the hash bucket.
3186 	 */
3187 	bind_to_req_port_only = requested_port != 0 &&
3188 	    tbr->PRIM_type != O_T_BIND_REQ;
3189 	/*
3190 	 * Get a valid port (within the anonymous range and should not
3191 	 * be a privileged one) to use if the user has not given a port.
3192 	 * If multiple threads are here, they may all start with
3193 	 * with the same initial port. But, it should be fine as long as
3194 	 * tcp_bindi will ensure that no two threads will be assigned
3195 	 * the same port.
3196 	 *
3197 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3198 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3199 	 * unless TCP_ANONPRIVBIND option is set.
3200 	 */
3201 	mlptype = mlptSingle;
3202 	mlp_port = requested_port;
3203 	if (requested_port == 0) {
3204 		requested_port = tcp->tcp_anon_priv_bind ?
3205 		    tcp_get_next_priv_port(tcp) :
3206 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3207 		    tcp, B_TRUE);
3208 		if (requested_port == 0) {
3209 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3210 			return;
3211 		}
3212 		user_specified = B_FALSE;
3213 
3214 		/*
3215 		 * If the user went through one of the RPC interfaces to create
3216 		 * this socket and RPC is MLP in this zone, then give him an
3217 		 * anonymous MLP.
3218 		 */
3219 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3220 		if (connp->conn_anon_mlp && is_system_labeled()) {
3221 			zone = crgetzone(cr);
3222 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3223 			    IPV6_VERSION, &v6addr,
3224 			    tcps->tcps_netstack->netstack_ip);
3225 			if (addrtype == mlptSingle) {
3226 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3227 				return;
3228 			}
3229 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3230 			    PMAPPORT, addrtype);
3231 			mlp_port = PMAPPORT;
3232 		}
3233 	} else {
3234 		int i;
3235 		boolean_t priv = B_FALSE;
3236 
3237 		/*
3238 		 * If the requested_port is in the well-known privileged range,
3239 		 * verify that the stream was opened by a privileged user.
3240 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3241 		 * but instead the code relies on:
3242 		 * - the fact that the address of the array and its size never
3243 		 *   changes
3244 		 * - the atomic assignment of the elements of the array
3245 		 */
3246 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3247 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3248 			priv = B_TRUE;
3249 		} else {
3250 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3251 				if (requested_port ==
3252 				    tcps->tcps_g_epriv_ports[i]) {
3253 					priv = B_TRUE;
3254 					break;
3255 				}
3256 			}
3257 		}
3258 		if (priv) {
3259 			if (secpolicy_net_privaddr(cr, requested_port,
3260 			    IPPROTO_TCP) != 0) {
3261 				if (tcp->tcp_debug) {
3262 					(void) strlog(TCP_MOD_ID, 0, 1,
3263 					    SL_ERROR|SL_TRACE,
3264 					    "tcp_bind: no priv for port %d",
3265 					    requested_port);
3266 				}
3267 				tcp_err_ack(tcp, mp, TACCES, 0);
3268 				return;
3269 			}
3270 		}
3271 		user_specified = B_TRUE;
3272 
3273 		if (is_system_labeled()) {
3274 			zone = crgetzone(cr);
3275 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3276 			    IPV6_VERSION, &v6addr,
3277 			    tcps->tcps_netstack->netstack_ip);
3278 			if (addrtype == mlptSingle) {
3279 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3280 				return;
3281 			}
3282 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3283 			    requested_port, addrtype);
3284 		}
3285 	}
3286 
3287 	if (mlptype != mlptSingle) {
3288 		if (secpolicy_net_bindmlp(cr) != 0) {
3289 			if (tcp->tcp_debug) {
3290 				(void) strlog(TCP_MOD_ID, 0, 1,
3291 				    SL_ERROR|SL_TRACE,
3292 				    "tcp_bind: no priv for multilevel port %d",
3293 				    requested_port);
3294 			}
3295 			tcp_err_ack(tcp, mp, TACCES, 0);
3296 			return;
3297 		}
3298 
3299 		/*
3300 		 * If we're specifically binding a shared IP address and the
3301 		 * port is MLP on shared addresses, then check to see if this
3302 		 * zone actually owns the MLP.  Reject if not.
3303 		 */
3304 		if (mlptype == mlptShared && addrtype == mlptShared) {
3305 			/*
3306 			 * No need to handle exclusive-stack zones since
3307 			 * ALL_ZONES only applies to the shared stack.
3308 			 */
3309 			zoneid_t mlpzone;
3310 
3311 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3312 			    htons(mlp_port));
3313 			if (connp->conn_zoneid != mlpzone) {
3314 				if (tcp->tcp_debug) {
3315 					(void) strlog(TCP_MOD_ID, 0, 1,
3316 					    SL_ERROR|SL_TRACE,
3317 					    "tcp_bind: attempt to bind port "
3318 					    "%d on shared addr in zone %d "
3319 					    "(should be %d)",
3320 					    mlp_port, connp->conn_zoneid,
3321 					    mlpzone);
3322 				}
3323 				tcp_err_ack(tcp, mp, TACCES, 0);
3324 				return;
3325 			}
3326 		}
3327 
3328 		if (!user_specified) {
3329 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3330 			    requested_port, B_TRUE);
3331 			if (err != 0) {
3332 				if (tcp->tcp_debug) {
3333 					(void) strlog(TCP_MOD_ID, 0, 1,
3334 					    SL_ERROR|SL_TRACE,
3335 					    "tcp_bind: cannot establish anon "
3336 					    "MLP for port %d",
3337 					    requested_port);
3338 				}
3339 				tcp_err_ack(tcp, mp, TSYSERR, err);
3340 				return;
3341 			}
3342 			connp->conn_anon_port = B_TRUE;
3343 		}
3344 		connp->conn_mlp_type = mlptype;
3345 	}
3346 
3347 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3348 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3349 
3350 	if (allocated_port == 0) {
3351 		connp->conn_mlp_type = mlptSingle;
3352 		if (connp->conn_anon_port) {
3353 			connp->conn_anon_port = B_FALSE;
3354 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3355 			    requested_port, B_FALSE);
3356 		}
3357 		if (bind_to_req_port_only) {
3358 			if (tcp->tcp_debug) {
3359 				(void) strlog(TCP_MOD_ID, 0, 1,
3360 				    SL_ERROR|SL_TRACE,
3361 				    "tcp_bind: requested addr busy");
3362 			}
3363 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3364 		} else {
3365 			/* If we are out of ports, fail the bind. */
3366 			if (tcp->tcp_debug) {
3367 				(void) strlog(TCP_MOD_ID, 0, 1,
3368 				    SL_ERROR|SL_TRACE,
3369 				    "tcp_bind: out of ports?");
3370 			}
3371 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3372 		}
3373 		return;
3374 	}
3375 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3376 do_bind:
3377 	if (!backlog_update) {
3378 		if (tcp->tcp_family == AF_INET)
3379 			sin->sin_port = htons(allocated_port);
3380 		else
3381 			sin6->sin6_port = htons(allocated_port);
3382 	}
3383 	if (tcp->tcp_family == AF_INET) {
3384 		if (tbr->CONIND_number != 0) {
3385 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3386 			    sizeof (sin_t));
3387 		} else {
3388 			/* Just verify the local IP address */
3389 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3390 		}
3391 	} else {
3392 		if (tbr->CONIND_number != 0) {
3393 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3394 			    sizeof (sin6_t));
3395 		} else {
3396 			/* Just verify the local IP address */
3397 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3398 			    IPV6_ADDR_LEN);
3399 		}
3400 	}
3401 	if (mp1 == NULL) {
3402 		if (connp->conn_anon_port) {
3403 			connp->conn_anon_port = B_FALSE;
3404 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3405 			    requested_port, B_FALSE);
3406 		}
3407 		connp->conn_mlp_type = mlptSingle;
3408 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3409 		return;
3410 	}
3411 
3412 	tbr->PRIM_type = T_BIND_ACK;
3413 	mp->b_datap->db_type = M_PCPROTO;
3414 
3415 	/* Chain in the reply mp for tcp_rput() */
3416 	mp1->b_cont = mp;
3417 	mp = mp1;
3418 
3419 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3420 	if (tcp->tcp_conn_req_max) {
3421 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3422 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3423 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3424 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3425 		/*
3426 		 * If this is a listener, do not reset the eager list
3427 		 * and other stuffs.  Note that we don't check if the
3428 		 * existing eager list meets the new tcp_conn_req_max
3429 		 * requirement.
3430 		 */
3431 		if (tcp->tcp_state != TCPS_LISTEN) {
3432 			tcp->tcp_state = TCPS_LISTEN;
3433 			/* Initialize the chain. Don't need the eager_lock */
3434 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3435 			tcp->tcp_eager_next_drop_q0 = tcp;
3436 			tcp->tcp_eager_prev_drop_q0 = tcp;
3437 			tcp->tcp_second_ctimer_threshold =
3438 			    tcps->tcps_ip_abort_linterval;
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3444 	 * processing continues in tcp_rput_other().
3445 	 *
3446 	 * We need to make sure that the conn_recv is set to a non-null
3447 	 * value before we insert the conn into the classifier table.
3448 	 * This is to avoid a race with an incoming packet which does an
3449 	 * ipcl_classify().
3450 	 */
3451 	connp->conn_recv = tcp_conn_request;
3452 	if (tcp->tcp_family == AF_INET6) {
3453 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3454 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3455 	} else {
3456 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3457 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3458 	}
3459 	/*
3460 	 * If the bind cannot complete immediately
3461 	 * IP will arrange to call tcp_rput_other
3462 	 * when the bind completes.
3463 	 */
3464 	if (mp != NULL) {
3465 		tcp_rput_other(tcp, mp);
3466 	} else {
3467 		/*
3468 		 * Bind will be resumed later. Need to ensure
3469 		 * that conn doesn't disappear when that happens.
3470 		 * This will be decremented in ip_resume_tcp_bind().
3471 		 */
3472 		CONN_INC_REF(tcp->tcp_connp);
3473 	}
3474 }
3475 
3476 
3477 /*
3478  * If the "bind_to_req_port_only" parameter is set, if the requested port
3479  * number is available, return it, If not return 0
3480  *
3481  * If "bind_to_req_port_only" parameter is not set and
3482  * If the requested port number is available, return it.  If not, return
3483  * the first anonymous port we happen across.  If no anonymous ports are
3484  * available, return 0. addr is the requested local address, if any.
3485  *
3486  * In either case, when succeeding update the tcp_t to record the port number
3487  * and insert it in the bind hash table.
3488  *
3489  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3490  * without setting SO_REUSEADDR. This is needed so that they
3491  * can be viewed as two independent transport protocols.
3492  */
3493 static in_port_t
3494 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3495     int reuseaddr, boolean_t quick_connect,
3496     boolean_t bind_to_req_port_only, boolean_t user_specified)
3497 {
3498 	/* number of times we have run around the loop */
3499 	int count = 0;
3500 	/* maximum number of times to run around the loop */
3501 	int loopmax;
3502 	conn_t *connp = tcp->tcp_connp;
3503 	zoneid_t zoneid = connp->conn_zoneid;
3504 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3505 
3506 	/*
3507 	 * Lookup for free addresses is done in a loop and "loopmax"
3508 	 * influences how long we spin in the loop
3509 	 */
3510 	if (bind_to_req_port_only) {
3511 		/*
3512 		 * If the requested port is busy, don't bother to look
3513 		 * for a new one. Setting loop maximum count to 1 has
3514 		 * that effect.
3515 		 */
3516 		loopmax = 1;
3517 	} else {
3518 		/*
3519 		 * If the requested port is busy, look for a free one
3520 		 * in the anonymous port range.
3521 		 * Set loopmax appropriately so that one does not look
3522 		 * forever in the case all of the anonymous ports are in use.
3523 		 */
3524 		if (tcp->tcp_anon_priv_bind) {
3525 			/*
3526 			 * loopmax =
3527 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3528 			 */
3529 			loopmax = IPPORT_RESERVED -
3530 			    tcps->tcps_min_anonpriv_port;
3531 		} else {
3532 			loopmax = (tcps->tcps_largest_anon_port -
3533 			    tcps->tcps_smallest_anon_port + 1);
3534 		}
3535 	}
3536 	do {
3537 		uint16_t	lport;
3538 		tf_t		*tbf;
3539 		tcp_t		*ltcp;
3540 		conn_t		*lconnp;
3541 
3542 		lport = htons(port);
3543 
3544 		/*
3545 		 * Ensure that the tcp_t is not currently in the bind hash.
3546 		 * Hold the lock on the hash bucket to ensure that
3547 		 * the duplicate check plus the insertion is an atomic
3548 		 * operation.
3549 		 *
3550 		 * This function does an inline lookup on the bind hash list
3551 		 * Make sure that we access only members of tcp_t
3552 		 * and that we don't look at tcp_tcp, since we are not
3553 		 * doing a CONN_INC_REF.
3554 		 */
3555 		tcp_bind_hash_remove(tcp);
3556 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3557 		mutex_enter(&tbf->tf_lock);
3558 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3559 		    ltcp = ltcp->tcp_bind_hash) {
3560 			boolean_t not_socket;
3561 			boolean_t exclbind;
3562 
3563 			if (lport != ltcp->tcp_lport)
3564 				continue;
3565 
3566 			lconnp = ltcp->tcp_connp;
3567 
3568 			/*
3569 			 * On a labeled system, we must treat bindings to ports
3570 			 * on shared IP addresses by sockets with MAC exemption
3571 			 * privilege as being in all zones, as there's
3572 			 * otherwise no way to identify the right receiver.
3573 			 */
3574 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3575 			    IPCL_ZONE_MATCH(connp,
3576 			    ltcp->tcp_connp->conn_zoneid)) &&
3577 			    !lconnp->conn_mac_exempt &&
3578 			    !connp->conn_mac_exempt)
3579 				continue;
3580 
3581 			/*
3582 			 * If TCP_EXCLBIND is set for either the bound or
3583 			 * binding endpoint, the semantics of bind
3584 			 * is changed according to the following.
3585 			 *
3586 			 * spec = specified address (v4 or v6)
3587 			 * unspec = unspecified address (v4 or v6)
3588 			 * A = specified addresses are different for endpoints
3589 			 *
3590 			 * bound	bind to		allowed
3591 			 * -------------------------------------
3592 			 * unspec	unspec		no
3593 			 * unspec	spec		no
3594 			 * spec		unspec		no
3595 			 * spec		spec		yes if A
3596 			 *
3597 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3598 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3599 			 *
3600 			 * Note:
3601 			 *
3602 			 * 1. Because of TLI semantics, an endpoint can go
3603 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3604 			 * TCPS_BOUND, depending on whether it is originally
3605 			 * a listener or not.  That is why we need to check
3606 			 * for states greater than or equal to TCPS_BOUND
3607 			 * here.
3608 			 *
3609 			 * 2. Ideally, we should only check for state equals
3610 			 * to TCPS_LISTEN. And the following check should be
3611 			 * added.
3612 			 *
3613 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3614 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3615 			 *		...
3616 			 * }
3617 			 *
3618 			 * The semantics will be changed to this.  If the
3619 			 * endpoint on the list is in state not equal to
3620 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3621 			 * set, let the bind succeed.
3622 			 *
3623 			 * Because of (1), we cannot do that for TLI
3624 			 * endpoints.  But we can do that for socket endpoints.
3625 			 * If in future, we can change this going back
3626 			 * semantics, we can use the above check for TLI also.
3627 			 */
3628 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3629 			    TCP_IS_SOCKET(tcp));
3630 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3631 
3632 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3633 			    (exclbind && (not_socket ||
3634 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3635 				if (V6_OR_V4_INADDR_ANY(
3636 				    ltcp->tcp_bound_source_v6) ||
3637 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3638 				    IN6_ARE_ADDR_EQUAL(laddr,
3639 				    &ltcp->tcp_bound_source_v6)) {
3640 					break;
3641 				}
3642 				continue;
3643 			}
3644 
3645 			/*
3646 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3647 			 * have disjoint port number spaces, if *_EXCLBIND
3648 			 * is not set and only if the application binds to a
3649 			 * specific port. We use the same autoassigned port
3650 			 * number space for IPv4 and IPv6 sockets.
3651 			 */
3652 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3653 			    bind_to_req_port_only)
3654 				continue;
3655 
3656 			/*
3657 			 * Ideally, we should make sure that the source
3658 			 * address, remote address, and remote port in the
3659 			 * four tuple for this tcp-connection is unique.
3660 			 * However, trying to find out the local source
3661 			 * address would require too much code duplication
3662 			 * with IP, since IP needs needs to have that code
3663 			 * to support userland TCP implementations.
3664 			 */
3665 			if (quick_connect &&
3666 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3667 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3668 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3669 			    &ltcp->tcp_remote_v6)))
3670 				continue;
3671 
3672 			if (!reuseaddr) {
3673 				/*
3674 				 * No socket option SO_REUSEADDR.
3675 				 * If existing port is bound to
3676 				 * a non-wildcard IP address
3677 				 * and the requesting stream is
3678 				 * bound to a distinct
3679 				 * different IP addresses
3680 				 * (non-wildcard, also), keep
3681 				 * going.
3682 				 */
3683 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3684 				    !V6_OR_V4_INADDR_ANY(
3685 				    ltcp->tcp_bound_source_v6) &&
3686 				    !IN6_ARE_ADDR_EQUAL(laddr,
3687 				    &ltcp->tcp_bound_source_v6))
3688 					continue;
3689 				if (ltcp->tcp_state >= TCPS_BOUND) {
3690 					/*
3691 					 * This port is being used and
3692 					 * its state is >= TCPS_BOUND,
3693 					 * so we can't bind to it.
3694 					 */
3695 					break;
3696 				}
3697 			} else {
3698 				/*
3699 				 * socket option SO_REUSEADDR is set on the
3700 				 * binding tcp_t.
3701 				 *
3702 				 * If two streams are bound to
3703 				 * same IP address or both addr
3704 				 * and bound source are wildcards
3705 				 * (INADDR_ANY), we want to stop
3706 				 * searching.
3707 				 * We have found a match of IP source
3708 				 * address and source port, which is
3709 				 * refused regardless of the
3710 				 * SO_REUSEADDR setting, so we break.
3711 				 */
3712 				if (IN6_ARE_ADDR_EQUAL(laddr,
3713 				    &ltcp->tcp_bound_source_v6) &&
3714 				    (ltcp->tcp_state == TCPS_LISTEN ||
3715 				    ltcp->tcp_state == TCPS_BOUND))
3716 					break;
3717 			}
3718 		}
3719 		if (ltcp != NULL) {
3720 			/* The port number is busy */
3721 			mutex_exit(&tbf->tf_lock);
3722 		} else {
3723 			/*
3724 			 * This port is ours. Insert in fanout and mark as
3725 			 * bound to prevent others from getting the port
3726 			 * number.
3727 			 */
3728 			tcp->tcp_state = TCPS_BOUND;
3729 			tcp->tcp_lport = htons(port);
3730 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3731 
3732 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3733 			    tcp->tcp_lport)] == tbf);
3734 			tcp_bind_hash_insert(tbf, tcp, 1);
3735 
3736 			mutex_exit(&tbf->tf_lock);
3737 
3738 			/*
3739 			 * We don't want tcp_next_port_to_try to "inherit"
3740 			 * a port number supplied by the user in a bind.
3741 			 */
3742 			if (user_specified)
3743 				return (port);
3744 
3745 			/*
3746 			 * This is the only place where tcp_next_port_to_try
3747 			 * is updated. After the update, it may or may not
3748 			 * be in the valid range.
3749 			 */
3750 			if (!tcp->tcp_anon_priv_bind)
3751 				tcps->tcps_next_port_to_try = port + 1;
3752 			return (port);
3753 		}
3754 
3755 		if (tcp->tcp_anon_priv_bind) {
3756 			port = tcp_get_next_priv_port(tcp);
3757 		} else {
3758 			if (count == 0 && user_specified) {
3759 				/*
3760 				 * We may have to return an anonymous port. So
3761 				 * get one to start with.
3762 				 */
3763 				port =
3764 				    tcp_update_next_port(
3765 				    tcps->tcps_next_port_to_try,
3766 				    tcp, B_TRUE);
3767 				user_specified = B_FALSE;
3768 			} else {
3769 				port = tcp_update_next_port(port + 1, tcp,
3770 				    B_FALSE);
3771 			}
3772 		}
3773 		if (port == 0)
3774 			break;
3775 
3776 		/*
3777 		 * Don't let this loop run forever in the case where
3778 		 * all of the anonymous ports are in use.
3779 		 */
3780 	} while (++count < loopmax);
3781 	return (0);
3782 }
3783 
3784 /*
3785  * tcp_clean_death / tcp_close_detached must not be called more than once
3786  * on a tcp. Thus every function that potentially calls tcp_clean_death
3787  * must check for the tcp state before calling tcp_clean_death.
3788  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3789  * tcp_timer_handler, all check for the tcp state.
3790  */
3791 /* ARGSUSED */
3792 void
3793 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3794 {
3795 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3796 
3797 	freemsg(mp);
3798 	if (tcp->tcp_state > TCPS_BOUND)
3799 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3800 		    ETIMEDOUT, 5);
3801 }
3802 
3803 /*
3804  * We are dying for some reason.  Try to do it gracefully.  (May be called
3805  * as writer.)
3806  *
3807  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3808  * done by a service procedure).
3809  * TBD - Should the return value distinguish between the tcp_t being
3810  * freed and it being reinitialized?
3811  */
3812 static int
3813 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3814 {
3815 	mblk_t	*mp;
3816 	queue_t	*q;
3817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3818 	sodirect_t	*sodp;
3819 
3820 	TCP_CLD_STAT(tag);
3821 
3822 #if TCP_TAG_CLEAN_DEATH
3823 	tcp->tcp_cleandeathtag = tag;
3824 #endif
3825 
3826 	if (tcp->tcp_fused)
3827 		tcp_unfuse(tcp);
3828 
3829 	if (tcp->tcp_linger_tid != 0 &&
3830 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3831 		tcp_stop_lingering(tcp);
3832 	}
3833 
3834 	ASSERT(tcp != NULL);
3835 	ASSERT((tcp->tcp_family == AF_INET &&
3836 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3837 	    (tcp->tcp_family == AF_INET6 &&
3838 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3839 	    tcp->tcp_ipversion == IPV6_VERSION)));
3840 
3841 	if (TCP_IS_DETACHED(tcp)) {
3842 		if (tcp->tcp_hard_binding) {
3843 			/*
3844 			 * Its an eager that we are dealing with. We close the
3845 			 * eager but in case a conn_ind has already gone to the
3846 			 * listener, let tcp_accept_finish() send a discon_ind
3847 			 * to the listener and drop the last reference. If the
3848 			 * listener doesn't even know about the eager i.e. the
3849 			 * conn_ind hasn't gone up, blow away the eager and drop
3850 			 * the last reference as well. If the conn_ind has gone
3851 			 * up, state should be BOUND. tcp_accept_finish
3852 			 * will figure out that the connection has received a
3853 			 * RST and will send a DISCON_IND to the application.
3854 			 */
3855 			tcp_closei_local(tcp);
3856 			if (!tcp->tcp_tconnind_started) {
3857 				CONN_DEC_REF(tcp->tcp_connp);
3858 			} else {
3859 				tcp->tcp_state = TCPS_BOUND;
3860 			}
3861 		} else {
3862 			tcp_close_detached(tcp);
3863 		}
3864 		return (0);
3865 	}
3866 
3867 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3868 
3869 	/* If sodirect, not anymore */
3870 	SOD_PTR_ENTER(tcp, sodp);
3871 	if (sodp != NULL) {
3872 		tcp->tcp_sodirect = NULL;
3873 		mutex_exit(sodp->sod_lockp);
3874 	}
3875 
3876 	q = tcp->tcp_rq;
3877 
3878 	/* Trash all inbound data */
3879 	flushq(q, FLUSHALL);
3880 
3881 	/*
3882 	 * If we are at least part way open and there is error
3883 	 * (err==0 implies no error)
3884 	 * notify our client by a T_DISCON_IND.
3885 	 */
3886 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3887 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3888 		    !TCP_IS_SOCKET(tcp)) {
3889 			/*
3890 			 * Send M_FLUSH according to TPI. Because sockets will
3891 			 * (and must) ignore FLUSHR we do that only for TPI
3892 			 * endpoints and sockets in STREAMS mode.
3893 			 */
3894 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3895 		}
3896 		if (tcp->tcp_debug) {
3897 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3898 			    "tcp_clean_death: discon err %d", err);
3899 		}
3900 		mp = mi_tpi_discon_ind(NULL, err, 0);
3901 		if (mp != NULL) {
3902 			putnext(q, mp);
3903 		} else {
3904 			if (tcp->tcp_debug) {
3905 				(void) strlog(TCP_MOD_ID, 0, 1,
3906 				    SL_ERROR|SL_TRACE,
3907 				    "tcp_clean_death, sending M_ERROR");
3908 			}
3909 			(void) putnextctl1(q, M_ERROR, EPROTO);
3910 		}
3911 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3912 			/* SYN_SENT or SYN_RCVD */
3913 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3914 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3915 			/* ESTABLISHED or CLOSE_WAIT */
3916 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3917 		}
3918 	}
3919 
3920 	tcp_reinit(tcp);
3921 	return (-1);
3922 }
3923 
3924 /*
3925  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3926  * to expire, stop the wait and finish the close.
3927  */
3928 static void
3929 tcp_stop_lingering(tcp_t *tcp)
3930 {
3931 	clock_t	delta = 0;
3932 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3933 
3934 	tcp->tcp_linger_tid = 0;
3935 	if (tcp->tcp_state > TCPS_LISTEN) {
3936 		tcp_acceptor_hash_remove(tcp);
3937 		mutex_enter(&tcp->tcp_non_sq_lock);
3938 		if (tcp->tcp_flow_stopped) {
3939 			tcp_clrqfull(tcp);
3940 		}
3941 		mutex_exit(&tcp->tcp_non_sq_lock);
3942 
3943 		if (tcp->tcp_timer_tid != 0) {
3944 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3945 			tcp->tcp_timer_tid = 0;
3946 		}
3947 		/*
3948 		 * Need to cancel those timers which will not be used when
3949 		 * TCP is detached.  This has to be done before the tcp_wq
3950 		 * is set to the global queue.
3951 		 */
3952 		tcp_timers_stop(tcp);
3953 
3954 
3955 		tcp->tcp_detached = B_TRUE;
3956 		ASSERT(tcps->tcps_g_q != NULL);
3957 		tcp->tcp_rq = tcps->tcps_g_q;
3958 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3959 
3960 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3961 			tcp_time_wait_append(tcp);
3962 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3963 			goto finish;
3964 		}
3965 
3966 		/*
3967 		 * If delta is zero the timer event wasn't executed and was
3968 		 * successfully canceled. In this case we need to restart it
3969 		 * with the minimal delta possible.
3970 		 */
3971 		if (delta >= 0) {
3972 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3973 			    delta ? delta : 1);
3974 		}
3975 	} else {
3976 		tcp_closei_local(tcp);
3977 		CONN_DEC_REF(tcp->tcp_connp);
3978 	}
3979 finish:
3980 	/* Signal closing thread that it can complete close */
3981 	mutex_enter(&tcp->tcp_closelock);
3982 	tcp->tcp_detached = B_TRUE;
3983 	ASSERT(tcps->tcps_g_q != NULL);
3984 	tcp->tcp_rq = tcps->tcps_g_q;
3985 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3986 	tcp->tcp_closed = 1;
3987 	cv_signal(&tcp->tcp_closecv);
3988 	mutex_exit(&tcp->tcp_closelock);
3989 }
3990 
3991 /*
3992  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3993  * expires.
3994  */
3995 static void
3996 tcp_close_linger_timeout(void *arg)
3997 {
3998 	conn_t	*connp = (conn_t *)arg;
3999 	tcp_t 	*tcp = connp->conn_tcp;
4000 
4001 	tcp->tcp_client_errno = ETIMEDOUT;
4002 	tcp_stop_lingering(tcp);
4003 }
4004 
4005 static int
4006 tcp_close(queue_t *q, int flags)
4007 {
4008 	conn_t		*connp = Q_TO_CONN(q);
4009 	tcp_t		*tcp = connp->conn_tcp;
4010 	mblk_t 		*mp = &tcp->tcp_closemp;
4011 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4012 	mblk_t		*bp;
4013 
4014 	ASSERT(WR(q)->q_next == NULL);
4015 	ASSERT(connp->conn_ref >= 2);
4016 
4017 	/*
4018 	 * We are being closed as /dev/tcp or /dev/tcp6.
4019 	 *
4020 	 * Mark the conn as closing. ill_pending_mp_add will not
4021 	 * add any mp to the pending mp list, after this conn has
4022 	 * started closing. Same for sq_pending_mp_add
4023 	 */
4024 	mutex_enter(&connp->conn_lock);
4025 	connp->conn_state_flags |= CONN_CLOSING;
4026 	if (connp->conn_oper_pending_ill != NULL)
4027 		conn_ioctl_cleanup_reqd = B_TRUE;
4028 	CONN_INC_REF_LOCKED(connp);
4029 	mutex_exit(&connp->conn_lock);
4030 	tcp->tcp_closeflags = (uint8_t)flags;
4031 	ASSERT(connp->conn_ref >= 3);
4032 
4033 	/*
4034 	 * tcp_closemp_used is used below without any protection of a lock
4035 	 * as we don't expect any one else to use it concurrently at this
4036 	 * point otherwise it would be a major defect.
4037 	 */
4038 
4039 	if (mp->b_prev == NULL)
4040 		tcp->tcp_closemp_used = B_TRUE;
4041 	else
4042 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4043 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4044 
4045 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4046 
4047 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4048 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4049 
4050 	mutex_enter(&tcp->tcp_closelock);
4051 	while (!tcp->tcp_closed) {
4052 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4053 			/*
4054 			 * The cv_wait_sig() was interrupted. We now do the
4055 			 * following:
4056 			 *
4057 			 * 1) If the endpoint was lingering, we allow this
4058 			 * to be interrupted by cancelling the linger timeout
4059 			 * and closing normally.
4060 			 *
4061 			 * 2) Revert to calling cv_wait()
4062 			 *
4063 			 * We revert to using cv_wait() to avoid an
4064 			 * infinite loop which can occur if the calling
4065 			 * thread is higher priority than the squeue worker
4066 			 * thread and is bound to the same cpu.
4067 			 */
4068 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4069 				mutex_exit(&tcp->tcp_closelock);
4070 				/* Entering squeue, bump ref count. */
4071 				CONN_INC_REF(connp);
4072 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4073 				squeue_enter(connp->conn_sqp, bp,
4074 				    tcp_linger_interrupted, connp,
4075 				    SQTAG_IP_TCP_CLOSE);
4076 				mutex_enter(&tcp->tcp_closelock);
4077 			}
4078 			break;
4079 		}
4080 	}
4081 	while (!tcp->tcp_closed)
4082 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4083 	mutex_exit(&tcp->tcp_closelock);
4084 
4085 	/*
4086 	 * In the case of listener streams that have eagers in the q or q0
4087 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4088 	 * tcp_wq of the eagers point to our queues. By waiting for the
4089 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4090 	 * up their queue pointers and also dropped their references to us.
4091 	 */
4092 	if (tcp->tcp_wait_for_eagers) {
4093 		mutex_enter(&connp->conn_lock);
4094 		while (connp->conn_ref != 1) {
4095 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4096 		}
4097 		mutex_exit(&connp->conn_lock);
4098 	}
4099 	/*
4100 	 * ioctl cleanup. The mp is queued in the
4101 	 * ill_pending_mp or in the sq_pending_mp.
4102 	 */
4103 	if (conn_ioctl_cleanup_reqd)
4104 		conn_ioctl_cleanup(connp);
4105 
4106 	qprocsoff(q);
4107 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4108 
4109 	tcp->tcp_cpid = -1;
4110 
4111 	/*
4112 	 * Drop IP's reference on the conn. This is the last reference
4113 	 * on the connp if the state was less than established. If the
4114 	 * connection has gone into timewait state, then we will have
4115 	 * one ref for the TCP and one more ref (total of two) for the
4116 	 * classifier connected hash list (a timewait connections stays
4117 	 * in connected hash till closed).
4118 	 *
4119 	 * We can't assert the references because there might be other
4120 	 * transient reference places because of some walkers or queued
4121 	 * packets in squeue for the timewait state.
4122 	 */
4123 	CONN_DEC_REF(connp);
4124 	q->q_ptr = WR(q)->q_ptr = NULL;
4125 	return (0);
4126 }
4127 
4128 static int
4129 tcpclose_accept(queue_t *q)
4130 {
4131 	vmem_t	*minor_arena;
4132 	dev_t	conn_dev;
4133 
4134 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4135 
4136 	/*
4137 	 * We had opened an acceptor STREAM for sockfs which is
4138 	 * now being closed due to some error.
4139 	 */
4140 	qprocsoff(q);
4141 
4142 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4143 	conn_dev = (dev_t)RD(q)->q_ptr;
4144 	ASSERT(minor_arena != NULL);
4145 	ASSERT(conn_dev != 0);
4146 	inet_minor_free(minor_arena, conn_dev);
4147 	q->q_ptr = WR(q)->q_ptr = NULL;
4148 	return (0);
4149 }
4150 
4151 /*
4152  * Called by tcp_close() routine via squeue when lingering is
4153  * interrupted by a signal.
4154  */
4155 
4156 /* ARGSUSED */
4157 static void
4158 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4159 {
4160 	conn_t	*connp = (conn_t *)arg;
4161 	tcp_t	*tcp = connp->conn_tcp;
4162 
4163 	freeb(mp);
4164 	if (tcp->tcp_linger_tid != 0 &&
4165 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4166 		tcp_stop_lingering(tcp);
4167 		tcp->tcp_client_errno = EINTR;
4168 	}
4169 }
4170 
4171 /*
4172  * Called by streams close routine via squeues when our client blows off her
4173  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4174  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4175  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4176  * acked.
4177  *
4178  * NOTE: tcp_close potentially returns error when lingering.
4179  * However, the stream head currently does not pass these errors
4180  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4181  * errors to the application (from tsleep()) and not errors
4182  * like ECONNRESET caused by receiving a reset packet.
4183  */
4184 
4185 /* ARGSUSED */
4186 static void
4187 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4188 {
4189 	char	*msg;
4190 	conn_t	*connp = (conn_t *)arg;
4191 	tcp_t	*tcp = connp->conn_tcp;
4192 	clock_t	delta = 0;
4193 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4194 
4195 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4196 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4197 
4198 	/* End point has closed this TCP, no need to send up T_ordrel_ind. */
4199 	if (tcp->tcp_ordrel_mp != NULL) {
4200 		freeb(tcp->tcp_ordrel_mp);
4201 		tcp->tcp_ordrel_mp = NULL;
4202 	}
4203 
4204 	mutex_enter(&tcp->tcp_eager_lock);
4205 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4206 		/* Cleanup for listener */
4207 		tcp_eager_cleanup(tcp, 0);
4208 		tcp->tcp_wait_for_eagers = 1;
4209 	}
4210 	mutex_exit(&tcp->tcp_eager_lock);
4211 
4212 	connp->conn_mdt_ok = B_FALSE;
4213 	tcp->tcp_mdt = B_FALSE;
4214 
4215 	connp->conn_lso_ok = B_FALSE;
4216 	tcp->tcp_lso = B_FALSE;
4217 
4218 	msg = NULL;
4219 	switch (tcp->tcp_state) {
4220 	case TCPS_CLOSED:
4221 	case TCPS_IDLE:
4222 	case TCPS_BOUND:
4223 	case TCPS_LISTEN:
4224 		break;
4225 	case TCPS_SYN_SENT:
4226 		msg = "tcp_close, during connect";
4227 		break;
4228 	case TCPS_SYN_RCVD:
4229 		/*
4230 		 * Close during the connect 3-way handshake
4231 		 * but here there may or may not be pending data
4232 		 * already on queue. Process almost same as in
4233 		 * the ESTABLISHED state.
4234 		 */
4235 		/* FALLTHRU */
4236 	default:
4237 		if (tcp->tcp_sodirect != NULL) {
4238 			/* Ok, no more sodirect */
4239 			tcp->tcp_sodirect = NULL;
4240 		}
4241 
4242 		if (tcp->tcp_fused)
4243 			tcp_unfuse(tcp);
4244 
4245 		/*
4246 		 * If SO_LINGER has set a zero linger time, abort the
4247 		 * connection with a reset.
4248 		 */
4249 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4250 			msg = "tcp_close, zero lingertime";
4251 			break;
4252 		}
4253 
4254 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4255 		/*
4256 		 * Abort connection if there is unread data queued.
4257 		 */
4258 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4259 			msg = "tcp_close, unread data";
4260 			break;
4261 		}
4262 		/*
4263 		 * tcp_hard_bound is now cleared thus all packets go through
4264 		 * tcp_lookup. This fact is used by tcp_detach below.
4265 		 *
4266 		 * We have done a qwait() above which could have possibly
4267 		 * drained more messages in turn causing transition to a
4268 		 * different state. Check whether we have to do the rest
4269 		 * of the processing or not.
4270 		 */
4271 		if (tcp->tcp_state <= TCPS_LISTEN)
4272 			break;
4273 
4274 		/*
4275 		 * Transmit the FIN before detaching the tcp_t.
4276 		 * After tcp_detach returns this queue/perimeter
4277 		 * no longer owns the tcp_t thus others can modify it.
4278 		 */
4279 		(void) tcp_xmit_end(tcp);
4280 
4281 		/*
4282 		 * If lingering on close then wait until the fin is acked,
4283 		 * the SO_LINGER time passes, or a reset is sent/received.
4284 		 */
4285 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4286 		    !(tcp->tcp_fin_acked) &&
4287 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4288 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4289 				tcp->tcp_client_errno = EWOULDBLOCK;
4290 			} else if (tcp->tcp_client_errno == 0) {
4291 
4292 				ASSERT(tcp->tcp_linger_tid == 0);
4293 
4294 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4295 				    tcp_close_linger_timeout,
4296 				    tcp->tcp_lingertime * hz);
4297 
4298 				/* tcp_close_linger_timeout will finish close */
4299 				if (tcp->tcp_linger_tid == 0)
4300 					tcp->tcp_client_errno = ENOSR;
4301 				else
4302 					return;
4303 			}
4304 
4305 			/*
4306 			 * Check if we need to detach or just close
4307 			 * the instance.
4308 			 */
4309 			if (tcp->tcp_state <= TCPS_LISTEN)
4310 				break;
4311 		}
4312 
4313 		/*
4314 		 * Make sure that no other thread will access the tcp_rq of
4315 		 * this instance (through lookups etc.) as tcp_rq will go
4316 		 * away shortly.
4317 		 */
4318 		tcp_acceptor_hash_remove(tcp);
4319 
4320 		mutex_enter(&tcp->tcp_non_sq_lock);
4321 		if (tcp->tcp_flow_stopped) {
4322 			tcp_clrqfull(tcp);
4323 		}
4324 		mutex_exit(&tcp->tcp_non_sq_lock);
4325 
4326 		if (tcp->tcp_timer_tid != 0) {
4327 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4328 			tcp->tcp_timer_tid = 0;
4329 		}
4330 		/*
4331 		 * Need to cancel those timers which will not be used when
4332 		 * TCP is detached.  This has to be done before the tcp_wq
4333 		 * is set to the global queue.
4334 		 */
4335 		tcp_timers_stop(tcp);
4336 
4337 		tcp->tcp_detached = B_TRUE;
4338 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4339 			tcp_time_wait_append(tcp);
4340 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4341 			ASSERT(connp->conn_ref >= 3);
4342 			goto finish;
4343 		}
4344 
4345 		/*
4346 		 * If delta is zero the timer event wasn't executed and was
4347 		 * successfully canceled. In this case we need to restart it
4348 		 * with the minimal delta possible.
4349 		 */
4350 		if (delta >= 0)
4351 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4352 			    delta ? delta : 1);
4353 
4354 		ASSERT(connp->conn_ref >= 3);
4355 		goto finish;
4356 	}
4357 
4358 	/* Detach did not complete. Still need to remove q from stream. */
4359 	if (msg) {
4360 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4361 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4362 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4363 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4364 		    tcp->tcp_state == TCPS_SYN_RCVD)
4365 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4366 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4367 	}
4368 
4369 	tcp_closei_local(tcp);
4370 	CONN_DEC_REF(connp);
4371 	ASSERT(connp->conn_ref >= 2);
4372 
4373 finish:
4374 	/*
4375 	 * Although packets are always processed on the correct
4376 	 * tcp's perimeter and access is serialized via squeue's,
4377 	 * IP still needs a queue when sending packets in time_wait
4378 	 * state so use WR(tcps_g_q) till ip_output() can be
4379 	 * changed to deal with just connp. For read side, we
4380 	 * could have set tcp_rq to NULL but there are some cases
4381 	 * in tcp_rput_data() from early days of this code which
4382 	 * do a putnext without checking if tcp is closed. Those
4383 	 * need to be identified before both tcp_rq and tcp_wq
4384 	 * can be set to NULL and tcps_g_q can disappear forever.
4385 	 */
4386 	mutex_enter(&tcp->tcp_closelock);
4387 	/*
4388 	 * Don't change the queues in the case of a listener that has
4389 	 * eagers in its q or q0. It could surprise the eagers.
4390 	 * Instead wait for the eagers outside the squeue.
4391 	 */
4392 	if (!tcp->tcp_wait_for_eagers) {
4393 		tcp->tcp_detached = B_TRUE;
4394 		/*
4395 		 * When default queue is closing we set tcps_g_q to NULL
4396 		 * after the close is done.
4397 		 */
4398 		ASSERT(tcps->tcps_g_q != NULL);
4399 		tcp->tcp_rq = tcps->tcps_g_q;
4400 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4401 	}
4402 
4403 	/* Signal tcp_close() to finish closing. */
4404 	tcp->tcp_closed = 1;
4405 	cv_signal(&tcp->tcp_closecv);
4406 	mutex_exit(&tcp->tcp_closelock);
4407 }
4408 
4409 
4410 /*
4411  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4412  * Some stream heads get upset if they see these later on as anything but NULL.
4413  */
4414 static void
4415 tcp_close_mpp(mblk_t **mpp)
4416 {
4417 	mblk_t	*mp;
4418 
4419 	if ((mp = *mpp) != NULL) {
4420 		do {
4421 			mp->b_next = NULL;
4422 			mp->b_prev = NULL;
4423 		} while ((mp = mp->b_cont) != NULL);
4424 
4425 		mp = *mpp;
4426 		*mpp = NULL;
4427 		freemsg(mp);
4428 	}
4429 }
4430 
4431 /* Do detached close. */
4432 static void
4433 tcp_close_detached(tcp_t *tcp)
4434 {
4435 	if (tcp->tcp_fused)
4436 		tcp_unfuse(tcp);
4437 
4438 	/*
4439 	 * Clustering code serializes TCP disconnect callbacks and
4440 	 * cluster tcp list walks by blocking a TCP disconnect callback
4441 	 * if a cluster tcp list walk is in progress. This ensures
4442 	 * accurate accounting of TCPs in the cluster code even though
4443 	 * the TCP list walk itself is not atomic.
4444 	 */
4445 	tcp_closei_local(tcp);
4446 	CONN_DEC_REF(tcp->tcp_connp);
4447 }
4448 
4449 /*
4450  * Stop all TCP timers, and free the timer mblks if requested.
4451  */
4452 void
4453 tcp_timers_stop(tcp_t *tcp)
4454 {
4455 	if (tcp->tcp_timer_tid != 0) {
4456 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4457 		tcp->tcp_timer_tid = 0;
4458 	}
4459 	if (tcp->tcp_ka_tid != 0) {
4460 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4461 		tcp->tcp_ka_tid = 0;
4462 	}
4463 	if (tcp->tcp_ack_tid != 0) {
4464 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4465 		tcp->tcp_ack_tid = 0;
4466 	}
4467 	if (tcp->tcp_push_tid != 0) {
4468 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4469 		tcp->tcp_push_tid = 0;
4470 	}
4471 }
4472 
4473 /*
4474  * The tcp_t is going away. Remove it from all lists and set it
4475  * to TCPS_CLOSED. The freeing up of memory is deferred until
4476  * tcp_inactive. This is needed since a thread in tcp_rput might have
4477  * done a CONN_INC_REF on this structure before it was removed from the
4478  * hashes.
4479  */
4480 static void
4481 tcp_closei_local(tcp_t *tcp)
4482 {
4483 	ire_t 	*ire;
4484 	conn_t	*connp = tcp->tcp_connp;
4485 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4486 
4487 	if (!TCP_IS_SOCKET(tcp))
4488 		tcp_acceptor_hash_remove(tcp);
4489 
4490 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4491 	tcp->tcp_ibsegs = 0;
4492 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4493 	tcp->tcp_obsegs = 0;
4494 
4495 	/*
4496 	 * If we are an eager connection hanging off a listener that
4497 	 * hasn't formally accepted the connection yet, get off his
4498 	 * list and blow off any data that we have accumulated.
4499 	 */
4500 	if (tcp->tcp_listener != NULL) {
4501 		tcp_t	*listener = tcp->tcp_listener;
4502 		mutex_enter(&listener->tcp_eager_lock);
4503 		/*
4504 		 * tcp_tconnind_started == B_TRUE means that the
4505 		 * conn_ind has already gone to listener. At
4506 		 * this point, eager will be closed but we
4507 		 * leave it in listeners eager list so that
4508 		 * if listener decides to close without doing
4509 		 * accept, we can clean this up. In tcp_wput_accept
4510 		 * we take care of the case of accept on closed
4511 		 * eager.
4512 		 */
4513 		if (!tcp->tcp_tconnind_started) {
4514 			tcp_eager_unlink(tcp);
4515 			mutex_exit(&listener->tcp_eager_lock);
4516 			/*
4517 			 * We don't want to have any pointers to the
4518 			 * listener queue, after we have released our
4519 			 * reference on the listener
4520 			 */
4521 			ASSERT(tcps->tcps_g_q != NULL);
4522 			tcp->tcp_rq = tcps->tcps_g_q;
4523 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4524 			CONN_DEC_REF(listener->tcp_connp);
4525 		} else {
4526 			mutex_exit(&listener->tcp_eager_lock);
4527 		}
4528 	}
4529 
4530 	/* Stop all the timers */
4531 	tcp_timers_stop(tcp);
4532 
4533 	if (tcp->tcp_state == TCPS_LISTEN) {
4534 		if (tcp->tcp_ip_addr_cache) {
4535 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4536 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4537 			tcp->tcp_ip_addr_cache = NULL;
4538 		}
4539 	}
4540 	mutex_enter(&tcp->tcp_non_sq_lock);
4541 	if (tcp->tcp_flow_stopped)
4542 		tcp_clrqfull(tcp);
4543 	mutex_exit(&tcp->tcp_non_sq_lock);
4544 
4545 	tcp_bind_hash_remove(tcp);
4546 	/*
4547 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4548 	 * is trying to remove this tcp from the time wait list, we will
4549 	 * block in tcp_time_wait_remove while trying to acquire the
4550 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4551 	 * requires the ipcl_hash_remove to be ordered after the
4552 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4553 	 */
4554 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4555 		(void) tcp_time_wait_remove(tcp, NULL);
4556 	CL_INET_DISCONNECT(tcp);
4557 	ipcl_hash_remove(connp);
4558 
4559 	/*
4560 	 * Delete the cached ire in conn_ire_cache and also mark
4561 	 * the conn as CONDEMNED
4562 	 */
4563 	mutex_enter(&connp->conn_lock);
4564 	connp->conn_state_flags |= CONN_CONDEMNED;
4565 	ire = connp->conn_ire_cache;
4566 	connp->conn_ire_cache = NULL;
4567 	mutex_exit(&connp->conn_lock);
4568 	if (ire != NULL)
4569 		IRE_REFRELE_NOTR(ire);
4570 
4571 	/* Need to cleanup any pending ioctls */
4572 	ASSERT(tcp->tcp_time_wait_next == NULL);
4573 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4574 	ASSERT(tcp->tcp_time_wait_expire == 0);
4575 	tcp->tcp_state = TCPS_CLOSED;
4576 
4577 	/* Release any SSL context */
4578 	if (tcp->tcp_kssl_ent != NULL) {
4579 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4580 		tcp->tcp_kssl_ent = NULL;
4581 	}
4582 	if (tcp->tcp_kssl_ctx != NULL) {
4583 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4584 		tcp->tcp_kssl_ctx = NULL;
4585 	}
4586 	tcp->tcp_kssl_pending = B_FALSE;
4587 
4588 	tcp_ipsec_cleanup(tcp);
4589 }
4590 
4591 /*
4592  * tcp is dying (called from ipcl_conn_destroy and error cases).
4593  * Free the tcp_t in either case.
4594  */
4595 void
4596 tcp_free(tcp_t *tcp)
4597 {
4598 	mblk_t	*mp;
4599 	ip6_pkt_t	*ipp;
4600 
4601 	ASSERT(tcp != NULL);
4602 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4603 
4604 	tcp->tcp_rq = NULL;
4605 	tcp->tcp_wq = NULL;
4606 
4607 	tcp_close_mpp(&tcp->tcp_xmit_head);
4608 	tcp_close_mpp(&tcp->tcp_reass_head);
4609 	if (tcp->tcp_rcv_list != NULL) {
4610 		/* Free b_next chain */
4611 		tcp_close_mpp(&tcp->tcp_rcv_list);
4612 	}
4613 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4614 		freemsg(mp);
4615 	}
4616 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4617 		freemsg(mp);
4618 	}
4619 
4620 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4621 		freeb(tcp->tcp_fused_sigurg_mp);
4622 		tcp->tcp_fused_sigurg_mp = NULL;
4623 	}
4624 
4625 	if (tcp->tcp_sack_info != NULL) {
4626 		if (tcp->tcp_notsack_list != NULL) {
4627 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4628 		}
4629 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4630 	}
4631 
4632 	if (tcp->tcp_hopopts != NULL) {
4633 		mi_free(tcp->tcp_hopopts);
4634 		tcp->tcp_hopopts = NULL;
4635 		tcp->tcp_hopoptslen = 0;
4636 	}
4637 	ASSERT(tcp->tcp_hopoptslen == 0);
4638 	if (tcp->tcp_dstopts != NULL) {
4639 		mi_free(tcp->tcp_dstopts);
4640 		tcp->tcp_dstopts = NULL;
4641 		tcp->tcp_dstoptslen = 0;
4642 	}
4643 	ASSERT(tcp->tcp_dstoptslen == 0);
4644 	if (tcp->tcp_rtdstopts != NULL) {
4645 		mi_free(tcp->tcp_rtdstopts);
4646 		tcp->tcp_rtdstopts = NULL;
4647 		tcp->tcp_rtdstoptslen = 0;
4648 	}
4649 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4650 	if (tcp->tcp_rthdr != NULL) {
4651 		mi_free(tcp->tcp_rthdr);
4652 		tcp->tcp_rthdr = NULL;
4653 		tcp->tcp_rthdrlen = 0;
4654 	}
4655 	ASSERT(tcp->tcp_rthdrlen == 0);
4656 
4657 	ipp = &tcp->tcp_sticky_ipp;
4658 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4659 	    IPPF_RTHDR))
4660 		ip6_pkt_free(ipp);
4661 
4662 	/*
4663 	 * Free memory associated with the tcp/ip header template.
4664 	 */
4665 
4666 	if (tcp->tcp_iphc != NULL)
4667 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4668 
4669 	/*
4670 	 * Following is really a blowing away a union.
4671 	 * It happens to have exactly two members of identical size
4672 	 * the following code is enough.
4673 	 */
4674 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4675 }
4676 
4677 
4678 /*
4679  * Put a connection confirmation message upstream built from the
4680  * address information within 'iph' and 'tcph'.  Report our success or failure.
4681  */
4682 static boolean_t
4683 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4684     mblk_t **defermp)
4685 {
4686 	sin_t	sin;
4687 	sin6_t	sin6;
4688 	mblk_t	*mp;
4689 	char	*optp = NULL;
4690 	int	optlen = 0;
4691 	cred_t	*cr;
4692 
4693 	if (defermp != NULL)
4694 		*defermp = NULL;
4695 
4696 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4697 		/*
4698 		 * Return in T_CONN_CON results of option negotiation through
4699 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4700 		 * negotiation, then what is received from remote end needs
4701 		 * to be taken into account but there is no such thing (yet?)
4702 		 * in our TCP/IP.
4703 		 * Note: We do not use mi_offset_param() here as
4704 		 * tcp_opts_conn_req contents do not directly come from
4705 		 * an application and are either generated in kernel or
4706 		 * from user input that was already verified.
4707 		 */
4708 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4709 		optp = (char *)(mp->b_rptr +
4710 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4711 		optlen = (int)
4712 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4713 	}
4714 
4715 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4716 		ipha_t *ipha = (ipha_t *)iphdr;
4717 
4718 		/* packet is IPv4 */
4719 		if (tcp->tcp_family == AF_INET) {
4720 			sin = sin_null;
4721 			sin.sin_addr.s_addr = ipha->ipha_src;
4722 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4723 			sin.sin_family = AF_INET;
4724 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4725 			    (int)sizeof (sin_t), optp, optlen);
4726 		} else {
4727 			sin6 = sin6_null;
4728 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4729 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4730 			sin6.sin6_family = AF_INET6;
4731 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4732 			    (int)sizeof (sin6_t), optp, optlen);
4733 
4734 		}
4735 	} else {
4736 		ip6_t	*ip6h = (ip6_t *)iphdr;
4737 
4738 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4739 		ASSERT(tcp->tcp_family == AF_INET6);
4740 		sin6 = sin6_null;
4741 		sin6.sin6_addr = ip6h->ip6_src;
4742 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4743 		sin6.sin6_family = AF_INET6;
4744 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4745 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4746 		    (int)sizeof (sin6_t), optp, optlen);
4747 	}
4748 
4749 	if (!mp)
4750 		return (B_FALSE);
4751 
4752 	if ((cr = DB_CRED(idmp)) != NULL) {
4753 		mblk_setcred(mp, cr);
4754 		DB_CPID(mp) = DB_CPID(idmp);
4755 	}
4756 
4757 	if (defermp == NULL)
4758 		putnext(tcp->tcp_rq, mp);
4759 	else
4760 		*defermp = mp;
4761 
4762 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4763 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4764 	return (B_TRUE);
4765 }
4766 
4767 /*
4768  * Defense for the SYN attack -
4769  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4770  *    one from the list of droppable eagers. This list is a subset of q0.
4771  *    see comments before the definition of MAKE_DROPPABLE().
4772  * 2. Don't drop a SYN request before its first timeout. This gives every
4773  *    request at least til the first timeout to complete its 3-way handshake.
4774  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4775  *    requests currently on the queue that has timed out. This will be used
4776  *    as an indicator of whether an attack is under way, so that appropriate
4777  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4778  *    either when eager goes into ESTABLISHED, or gets freed up.)
4779  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4780  *    # of timeout drops back to <= q0len/32 => SYN alert off
4781  */
4782 static boolean_t
4783 tcp_drop_q0(tcp_t *tcp)
4784 {
4785 	tcp_t	*eager;
4786 	mblk_t	*mp;
4787 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4788 
4789 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4790 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4791 
4792 	/* Pick oldest eager from the list of droppable eagers */
4793 	eager = tcp->tcp_eager_prev_drop_q0;
4794 
4795 	/* If list is empty. return B_FALSE */
4796 	if (eager == tcp) {
4797 		return (B_FALSE);
4798 	}
4799 
4800 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4801 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4802 		return (B_FALSE);
4803 
4804 	/*
4805 	 * Take this eager out from the list of droppable eagers since we are
4806 	 * going to drop it.
4807 	 */
4808 	MAKE_UNDROPPABLE(eager);
4809 
4810 	if (tcp->tcp_debug) {
4811 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4812 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4813 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4814 		    tcp->tcp_conn_req_cnt_q0,
4815 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4816 	}
4817 
4818 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4819 
4820 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4821 	CONN_INC_REF(eager->tcp_connp);
4822 
4823 	/* Mark the IRE created for this SYN request temporary */
4824 	tcp_ip_ire_mark_advice(eager);
4825 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4826 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4827 
4828 	return (B_TRUE);
4829 }
4830 
4831 int
4832 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4833     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4834 {
4835 	tcp_t 		*ltcp = lconnp->conn_tcp;
4836 	tcp_t		*tcp = connp->conn_tcp;
4837 	mblk_t		*tpi_mp;
4838 	ipha_t		*ipha;
4839 	ip6_t		*ip6h;
4840 	sin6_t 		sin6;
4841 	in6_addr_t 	v6dst;
4842 	int		err;
4843 	int		ifindex = 0;
4844 	cred_t		*cr;
4845 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4846 
4847 	if (ipvers == IPV4_VERSION) {
4848 		ipha = (ipha_t *)mp->b_rptr;
4849 
4850 		connp->conn_send = ip_output;
4851 		connp->conn_recv = tcp_input;
4852 
4853 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4854 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4855 
4856 		sin6 = sin6_null;
4857 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4858 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4859 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4860 		sin6.sin6_family = AF_INET6;
4861 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4862 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4863 		if (tcp->tcp_recvdstaddr) {
4864 			sin6_t	sin6d;
4865 
4866 			sin6d = sin6_null;
4867 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4868 			    &sin6d.sin6_addr);
4869 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4870 			sin6d.sin6_family = AF_INET;
4871 			tpi_mp = mi_tpi_extconn_ind(NULL,
4872 			    (char *)&sin6d, sizeof (sin6_t),
4873 			    (char *)&tcp,
4874 			    (t_scalar_t)sizeof (intptr_t),
4875 			    (char *)&sin6d, sizeof (sin6_t),
4876 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4877 		} else {
4878 			tpi_mp = mi_tpi_conn_ind(NULL,
4879 			    (char *)&sin6, sizeof (sin6_t),
4880 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4881 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4882 		}
4883 	} else {
4884 		ip6h = (ip6_t *)mp->b_rptr;
4885 
4886 		connp->conn_send = ip_output_v6;
4887 		connp->conn_recv = tcp_input;
4888 
4889 		connp->conn_srcv6 = ip6h->ip6_dst;
4890 		connp->conn_remv6 = ip6h->ip6_src;
4891 
4892 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4893 		ifindex = (int)DB_CKSUMSTUFF(mp);
4894 		DB_CKSUMSTUFF(mp) = 0;
4895 
4896 		sin6 = sin6_null;
4897 		sin6.sin6_addr = ip6h->ip6_src;
4898 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4899 		sin6.sin6_family = AF_INET6;
4900 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4901 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4902 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4903 
4904 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4905 			/* Pass up the scope_id of remote addr */
4906 			sin6.sin6_scope_id = ifindex;
4907 		} else {
4908 			sin6.sin6_scope_id = 0;
4909 		}
4910 		if (tcp->tcp_recvdstaddr) {
4911 			sin6_t	sin6d;
4912 
4913 			sin6d = sin6_null;
4914 			sin6.sin6_addr = ip6h->ip6_dst;
4915 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4916 			sin6d.sin6_family = AF_INET;
4917 			tpi_mp = mi_tpi_extconn_ind(NULL,
4918 			    (char *)&sin6d, sizeof (sin6_t),
4919 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4920 			    (char *)&sin6d, sizeof (sin6_t),
4921 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4922 		} else {
4923 			tpi_mp = mi_tpi_conn_ind(NULL,
4924 			    (char *)&sin6, sizeof (sin6_t),
4925 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4926 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4927 		}
4928 	}
4929 
4930 	if (tpi_mp == NULL)
4931 		return (ENOMEM);
4932 
4933 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4934 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4935 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4936 	connp->conn_fully_bound = B_FALSE;
4937 
4938 	/* Inherit information from the "parent" */
4939 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4940 	tcp->tcp_family = ltcp->tcp_family;
4941 	tcp->tcp_wq = ltcp->tcp_wq;
4942 	tcp->tcp_rq = ltcp->tcp_rq;
4943 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4944 	tcp->tcp_detached = B_TRUE;
4945 	if ((err = tcp_init_values(tcp)) != 0) {
4946 		freemsg(tpi_mp);
4947 		return (err);
4948 	}
4949 
4950 	if (ipvers == IPV4_VERSION) {
4951 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4952 			freemsg(tpi_mp);
4953 			return (err);
4954 		}
4955 		ASSERT(tcp->tcp_ipha != NULL);
4956 	} else {
4957 		/* ifindex must be already set */
4958 		ASSERT(ifindex != 0);
4959 
4960 		if (ltcp->tcp_bound_if != 0) {
4961 			/*
4962 			 * Set newtcp's bound_if equal to
4963 			 * listener's value. If ifindex is
4964 			 * not the same as ltcp->tcp_bound_if,
4965 			 * it must be a packet for the ipmp group
4966 			 * of interfaces
4967 			 */
4968 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4969 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4970 			tcp->tcp_bound_if = ifindex;
4971 		}
4972 
4973 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4974 		tcp->tcp_recvifindex = 0;
4975 		tcp->tcp_recvhops = 0xffffffffU;
4976 		ASSERT(tcp->tcp_ip6h != NULL);
4977 	}
4978 
4979 	tcp->tcp_lport = ltcp->tcp_lport;
4980 
4981 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4982 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4983 			/*
4984 			 * Listener had options of some sort; eager inherits.
4985 			 * Free up the eager template and allocate one
4986 			 * of the right size.
4987 			 */
4988 			if (tcp->tcp_hdr_grown) {
4989 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4990 			} else {
4991 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4992 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4993 			}
4994 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4995 			    KM_NOSLEEP);
4996 			if (tcp->tcp_iphc == NULL) {
4997 				tcp->tcp_iphc_len = 0;
4998 				freemsg(tpi_mp);
4999 				return (ENOMEM);
5000 			}
5001 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5002 			tcp->tcp_hdr_grown = B_TRUE;
5003 		}
5004 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5005 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5006 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5007 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5008 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5009 
5010 		/*
5011 		 * Copy the IP+TCP header template from listener to eager
5012 		 */
5013 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5014 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5015 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5016 			    IPPROTO_RAW) {
5017 				tcp->tcp_ip6h =
5018 				    (ip6_t *)(tcp->tcp_iphc +
5019 				    sizeof (ip6i_t));
5020 			} else {
5021 				tcp->tcp_ip6h =
5022 				    (ip6_t *)(tcp->tcp_iphc);
5023 			}
5024 			tcp->tcp_ipha = NULL;
5025 		} else {
5026 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5027 			tcp->tcp_ip6h = NULL;
5028 		}
5029 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5030 		    tcp->tcp_ip_hdr_len);
5031 	} else {
5032 		/*
5033 		 * only valid case when ipversion of listener and
5034 		 * eager differ is when listener is IPv6 and
5035 		 * eager is IPv4.
5036 		 * Eager header template has been initialized to the
5037 		 * maximum v4 header sizes, which includes space for
5038 		 * TCP and IP options.
5039 		 */
5040 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5041 		    (tcp->tcp_ipversion == IPV4_VERSION));
5042 		ASSERT(tcp->tcp_iphc_len >=
5043 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5044 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5045 		/* copy IP header fields individually */
5046 		tcp->tcp_ipha->ipha_ttl =
5047 		    ltcp->tcp_ip6h->ip6_hops;
5048 		bcopy(ltcp->tcp_tcph->th_lport,
5049 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5050 	}
5051 
5052 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5053 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5054 	    sizeof (in_port_t));
5055 
5056 	if (ltcp->tcp_lport == 0) {
5057 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5058 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5059 		    sizeof (in_port_t));
5060 	}
5061 
5062 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5063 		ASSERT(ipha != NULL);
5064 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5065 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5066 
5067 		/* Source routing option copyover (reverse it) */
5068 		if (tcps->tcps_rev_src_routes)
5069 			tcp_opt_reverse(tcp, ipha);
5070 	} else {
5071 		ASSERT(ip6h != NULL);
5072 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5073 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5074 	}
5075 
5076 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5077 	ASSERT(!tcp->tcp_tconnind_started);
5078 	/*
5079 	 * If the SYN contains a credential, it's a loopback packet; attach
5080 	 * the credential to the TPI message.
5081 	 */
5082 	if ((cr = DB_CRED(idmp)) != NULL) {
5083 		mblk_setcred(tpi_mp, cr);
5084 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5085 	}
5086 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5087 
5088 	/* Inherit the listener's SSL protection state */
5089 
5090 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5091 		kssl_hold_ent(tcp->tcp_kssl_ent);
5092 		tcp->tcp_kssl_pending = B_TRUE;
5093 	}
5094 
5095 	return (0);
5096 }
5097 
5098 
5099 int
5100 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5101     tcph_t *tcph, mblk_t *idmp)
5102 {
5103 	tcp_t 		*ltcp = lconnp->conn_tcp;
5104 	tcp_t		*tcp = connp->conn_tcp;
5105 	sin_t		sin;
5106 	mblk_t		*tpi_mp = NULL;
5107 	int		err;
5108 	cred_t		*cr;
5109 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5110 
5111 	sin = sin_null;
5112 	sin.sin_addr.s_addr = ipha->ipha_src;
5113 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5114 	sin.sin_family = AF_INET;
5115 	if (ltcp->tcp_recvdstaddr) {
5116 		sin_t	sind;
5117 
5118 		sind = sin_null;
5119 		sind.sin_addr.s_addr = ipha->ipha_dst;
5120 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5121 		sind.sin_family = AF_INET;
5122 		tpi_mp = mi_tpi_extconn_ind(NULL,
5123 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5124 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5125 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5126 	} else {
5127 		tpi_mp = mi_tpi_conn_ind(NULL,
5128 		    (char *)&sin, sizeof (sin_t),
5129 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5130 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5131 	}
5132 
5133 	if (tpi_mp == NULL) {
5134 		return (ENOMEM);
5135 	}
5136 
5137 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5138 	connp->conn_send = ip_output;
5139 	connp->conn_recv = tcp_input;
5140 	connp->conn_fully_bound = B_FALSE;
5141 
5142 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5143 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5144 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5145 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5146 
5147 	/* Inherit information from the "parent" */
5148 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5149 	tcp->tcp_family = ltcp->tcp_family;
5150 	tcp->tcp_wq = ltcp->tcp_wq;
5151 	tcp->tcp_rq = ltcp->tcp_rq;
5152 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5153 	tcp->tcp_detached = B_TRUE;
5154 	if ((err = tcp_init_values(tcp)) != 0) {
5155 		freemsg(tpi_mp);
5156 		return (err);
5157 	}
5158 
5159 	/*
5160 	 * Let's make sure that eager tcp template has enough space to
5161 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5162 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5163 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5164 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5165 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5166 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5167 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5168 	 */
5169 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5170 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5171 
5172 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5173 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5174 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5175 	tcp->tcp_ttl = ltcp->tcp_ttl;
5176 	tcp->tcp_tos = ltcp->tcp_tos;
5177 
5178 	/* Copy the IP+TCP header template from listener to eager */
5179 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5180 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5181 	tcp->tcp_ip6h = NULL;
5182 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5183 	    tcp->tcp_ip_hdr_len);
5184 
5185 	/* Initialize the IP addresses and Ports */
5186 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5187 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5188 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5189 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5190 
5191 	/* Source routing option copyover (reverse it) */
5192 	if (tcps->tcps_rev_src_routes)
5193 		tcp_opt_reverse(tcp, ipha);
5194 
5195 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5196 	ASSERT(!tcp->tcp_tconnind_started);
5197 
5198 	/*
5199 	 * If the SYN contains a credential, it's a loopback packet; attach
5200 	 * the credential to the TPI message.
5201 	 */
5202 	if ((cr = DB_CRED(idmp)) != NULL) {
5203 		mblk_setcred(tpi_mp, cr);
5204 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5205 	}
5206 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5207 
5208 	/* Inherit the listener's SSL protection state */
5209 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5210 		kssl_hold_ent(tcp->tcp_kssl_ent);
5211 		tcp->tcp_kssl_pending = B_TRUE;
5212 	}
5213 
5214 	return (0);
5215 }
5216 
5217 /*
5218  * sets up conn for ipsec.
5219  * if the first mblk is M_CTL it is consumed and mpp is updated.
5220  * in case of error mpp is freed.
5221  */
5222 conn_t *
5223 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5224 {
5225 	conn_t 		*connp = tcp->tcp_connp;
5226 	conn_t 		*econnp;
5227 	squeue_t 	*new_sqp;
5228 	mblk_t 		*first_mp = *mpp;
5229 	mblk_t		*mp = *mpp;
5230 	boolean_t	mctl_present = B_FALSE;
5231 	uint_t		ipvers;
5232 
5233 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5234 	if (econnp == NULL) {
5235 		freemsg(first_mp);
5236 		return (NULL);
5237 	}
5238 	if (DB_TYPE(mp) == M_CTL) {
5239 		if (mp->b_cont == NULL ||
5240 		    mp->b_cont->b_datap->db_type != M_DATA) {
5241 			freemsg(first_mp);
5242 			return (NULL);
5243 		}
5244 		mp = mp->b_cont;
5245 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5246 			freemsg(first_mp);
5247 			return (NULL);
5248 		}
5249 
5250 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5251 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5252 		mctl_present = B_TRUE;
5253 	} else {
5254 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5255 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5256 	}
5257 
5258 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5259 	DB_CKSUMSTART(mp) = 0;
5260 
5261 	ASSERT(OK_32PTR(mp->b_rptr));
5262 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5263 	if (ipvers == IPV4_VERSION) {
5264 		uint16_t  	*up;
5265 		uint32_t	ports;
5266 		ipha_t		*ipha;
5267 
5268 		ipha = (ipha_t *)mp->b_rptr;
5269 		up = (uint16_t *)((uchar_t *)ipha +
5270 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5271 		ports = *(uint32_t *)up;
5272 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5273 		    ipha->ipha_dst, ipha->ipha_src, ports);
5274 	} else {
5275 		uint16_t  	*up;
5276 		uint32_t	ports;
5277 		uint16_t	ip_hdr_len;
5278 		uint8_t		*nexthdrp;
5279 		ip6_t 		*ip6h;
5280 		tcph_t		*tcph;
5281 
5282 		ip6h = (ip6_t *)mp->b_rptr;
5283 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5284 			ip_hdr_len = IPV6_HDR_LEN;
5285 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5286 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5287 			CONN_DEC_REF(econnp);
5288 			freemsg(first_mp);
5289 			return (NULL);
5290 		}
5291 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5292 		up = (uint16_t *)tcph->th_lport;
5293 		ports = *(uint32_t *)up;
5294 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5295 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5296 	}
5297 
5298 	/*
5299 	 * The caller already ensured that there is a sqp present.
5300 	 */
5301 	econnp->conn_sqp = new_sqp;
5302 
5303 	if (connp->conn_policy != NULL) {
5304 		ipsec_in_t *ii;
5305 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5306 		ASSERT(ii->ipsec_in_policy == NULL);
5307 		IPPH_REFHOLD(connp->conn_policy);
5308 		ii->ipsec_in_policy = connp->conn_policy;
5309 
5310 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5311 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5312 			CONN_DEC_REF(econnp);
5313 			freemsg(first_mp);
5314 			return (NULL);
5315 		}
5316 	}
5317 
5318 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5319 		CONN_DEC_REF(econnp);
5320 		freemsg(first_mp);
5321 		return (NULL);
5322 	}
5323 
5324 	/*
5325 	 * If we know we have some policy, pass the "IPSEC"
5326 	 * options size TCP uses this adjust the MSS.
5327 	 */
5328 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5329 	if (mctl_present) {
5330 		freeb(first_mp);
5331 		*mpp = mp;
5332 	}
5333 
5334 	return (econnp);
5335 }
5336 
5337 /*
5338  * tcp_get_conn/tcp_free_conn
5339  *
5340  * tcp_get_conn is used to get a clean tcp connection structure.
5341  * It tries to reuse the connections put on the freelist by the
5342  * time_wait_collector failing which it goes to kmem_cache. This
5343  * way has two benefits compared to just allocating from and
5344  * freeing to kmem_cache.
5345  * 1) The time_wait_collector can free (which includes the cleanup)
5346  * outside the squeue. So when the interrupt comes, we have a clean
5347  * connection sitting in the freelist. Obviously, this buys us
5348  * performance.
5349  *
5350  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5351  * has multiple disadvantages - tying up the squeue during alloc, and the
5352  * fact that IPSec policy initialization has to happen here which
5353  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5354  * But allocating the conn/tcp in IP land is also not the best since
5355  * we can't check the 'q' and 'q0' which are protected by squeue and
5356  * blindly allocate memory which might have to be freed here if we are
5357  * not allowed to accept the connection. By using the freelist and
5358  * putting the conn/tcp back in freelist, we don't pay a penalty for
5359  * allocating memory without checking 'q/q0' and freeing it if we can't
5360  * accept the connection.
5361  *
5362  * Care should be taken to put the conn back in the same squeue's freelist
5363  * from which it was allocated. Best results are obtained if conn is
5364  * allocated from listener's squeue and freed to the same. Time wait
5365  * collector will free up the freelist is the connection ends up sitting
5366  * there for too long.
5367  */
5368 void *
5369 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5370 {
5371 	tcp_t			*tcp = NULL;
5372 	conn_t			*connp = NULL;
5373 	squeue_t		*sqp = (squeue_t *)arg;
5374 	tcp_squeue_priv_t 	*tcp_time_wait;
5375 	netstack_t		*ns;
5376 
5377 	tcp_time_wait =
5378 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5379 
5380 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5381 	tcp = tcp_time_wait->tcp_free_list;
5382 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5383 	if (tcp != NULL) {
5384 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5385 		tcp_time_wait->tcp_free_list_cnt--;
5386 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5387 		tcp->tcp_time_wait_next = NULL;
5388 		connp = tcp->tcp_connp;
5389 		connp->conn_flags |= IPCL_REUSED;
5390 
5391 		ASSERT(tcp->tcp_tcps == NULL);
5392 		ASSERT(connp->conn_netstack == NULL);
5393 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5394 		ns = tcps->tcps_netstack;
5395 		netstack_hold(ns);
5396 		connp->conn_netstack = ns;
5397 		tcp->tcp_tcps = tcps;
5398 		TCPS_REFHOLD(tcps);
5399 		ipcl_globalhash_insert(connp);
5400 		return ((void *)connp);
5401 	}
5402 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5403 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5404 	    tcps->tcps_netstack)) == NULL)
5405 		return (NULL);
5406 	tcp = connp->conn_tcp;
5407 	/*
5408 	 * Pre-allocate the tcp_rsrv_mp.  This mblk will not be freed
5409 	 * until this conn_t/tcp_t is freed at ipcl_conn_destroy().
5410 	 */
5411 	if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5412 		ipcl_conn_destroy(connp);
5413 		return (NULL);
5414 	}
5415 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5416 	tcp->tcp_tcps = tcps;
5417 	TCPS_REFHOLD(tcps);
5418 
5419 	return ((void *)connp);
5420 }
5421 
5422 /*
5423  * Update the cached label for the given tcp_t.  This should be called once per
5424  * connection, and before any packets are sent or tcp_process_options is
5425  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5426  */
5427 static boolean_t
5428 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5429 {
5430 	conn_t *connp = tcp->tcp_connp;
5431 
5432 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5433 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5434 		int added;
5435 
5436 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5437 		    connp->conn_mac_exempt,
5438 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5439 			return (B_FALSE);
5440 
5441 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5442 		if (added == -1)
5443 			return (B_FALSE);
5444 		tcp->tcp_hdr_len += added;
5445 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5446 		tcp->tcp_ip_hdr_len += added;
5447 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5448 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5449 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5450 			    tcp->tcp_hdr_len);
5451 			if (added == -1)
5452 				return (B_FALSE);
5453 			tcp->tcp_hdr_len += added;
5454 			tcp->tcp_tcph = (tcph_t *)
5455 			    ((uchar_t *)tcp->tcp_tcph + added);
5456 			tcp->tcp_ip_hdr_len += added;
5457 		}
5458 	} else {
5459 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5460 
5461 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5462 		    connp->conn_mac_exempt,
5463 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5464 			return (B_FALSE);
5465 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5466 		    &tcp->tcp_label_len, optbuf) != 0)
5467 			return (B_FALSE);
5468 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5469 			return (B_FALSE);
5470 	}
5471 
5472 	connp->conn_ulp_labeled = 1;
5473 
5474 	return (B_TRUE);
5475 }
5476 
5477 /* BEGIN CSTYLED */
5478 /*
5479  *
5480  * The sockfs ACCEPT path:
5481  * =======================
5482  *
5483  * The eager is now established in its own perimeter as soon as SYN is
5484  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5485  * completes the accept processing on the acceptor STREAM. The sending
5486  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5487  * listener but a TLI/XTI listener completes the accept processing
5488  * on the listener perimeter.
5489  *
5490  * Common control flow for 3 way handshake:
5491  * ----------------------------------------
5492  *
5493  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5494  *					-> tcp_conn_request()
5495  *
5496  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5497  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5498  *
5499  * Sockfs ACCEPT Path:
5500  * -------------------
5501  *
5502  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5503  * as STREAM entry point)
5504  *
5505  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5506  *
5507  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5508  * association (we are not behind eager's squeue but sockfs is protecting us
5509  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5510  * is changed to point at tcp_wput().
5511  *
5512  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5513  * listener (done on listener's perimeter).
5514  *
5515  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5516  * accept.
5517  *
5518  * TLI/XTI client ACCEPT path:
5519  * ---------------------------
5520  *
5521  * soaccept() sends T_CONN_RES on the listener STREAM.
5522  *
5523  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5524  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5525  *
5526  * Locks:
5527  * ======
5528  *
5529  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5530  * and listeners->tcp_eager_next_q.
5531  *
5532  * Referencing:
5533  * ============
5534  *
5535  * 1) We start out in tcp_conn_request by eager placing a ref on
5536  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5537  *
5538  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5539  * doing so we place a ref on the eager. This ref is finally dropped at the
5540  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5541  * reference is dropped by the squeue framework.
5542  *
5543  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5544  *
5545  * The reference must be released by the same entity that added the reference
5546  * In the above scheme, the eager is the entity that adds and releases the
5547  * references. Note that tcp_accept_finish executes in the squeue of the eager
5548  * (albeit after it is attached to the acceptor stream). Though 1. executes
5549  * in the listener's squeue, the eager is nascent at this point and the
5550  * reference can be considered to have been added on behalf of the eager.
5551  *
5552  * Eager getting a Reset or listener closing:
5553  * ==========================================
5554  *
5555  * Once the listener and eager are linked, the listener never does the unlink.
5556  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5557  * a message on all eager perimeter. The eager then does the unlink, clears
5558  * any pointers to the listener's queue and drops the reference to the
5559  * listener. The listener waits in tcp_close outside the squeue until its
5560  * refcount has dropped to 1. This ensures that the listener has waited for
5561  * all eagers to clear their association with the listener.
5562  *
5563  * Similarly, if eager decides to go away, it can unlink itself and close.
5564  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5565  * the reference to eager is still valid because of the extra ref we put
5566  * in tcp_send_conn_ind.
5567  *
5568  * Listener can always locate the eager under the protection
5569  * of the listener->tcp_eager_lock, and then do a refhold
5570  * on the eager during the accept processing.
5571  *
5572  * The acceptor stream accesses the eager in the accept processing
5573  * based on the ref placed on eager before sending T_conn_ind.
5574  * The only entity that can negate this refhold is a listener close
5575  * which is mutually exclusive with an active acceptor stream.
5576  *
5577  * Eager's reference on the listener
5578  * ===================================
5579  *
5580  * If the accept happens (even on a closed eager) the eager drops its
5581  * reference on the listener at the start of tcp_accept_finish. If the
5582  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5583  * the reference is dropped in tcp_closei_local. If the listener closes,
5584  * the reference is dropped in tcp_eager_kill. In all cases the reference
5585  * is dropped while executing in the eager's context (squeue).
5586  */
5587 /* END CSTYLED */
5588 
5589 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5590 
5591 /*
5592  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5593  * tcp_rput_data will not see any SYN packets.
5594  */
5595 /* ARGSUSED */
5596 void
5597 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5598 {
5599 	tcph_t		*tcph;
5600 	uint32_t	seg_seq;
5601 	tcp_t		*eager;
5602 	uint_t		ipvers;
5603 	ipha_t		*ipha;
5604 	ip6_t		*ip6h;
5605 	int		err;
5606 	conn_t		*econnp = NULL;
5607 	squeue_t	*new_sqp;
5608 	mblk_t		*mp1;
5609 	uint_t 		ip_hdr_len;
5610 	conn_t		*connp = (conn_t *)arg;
5611 	tcp_t		*tcp = connp->conn_tcp;
5612 	cred_t		*credp;
5613 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5614 	ip_stack_t	*ipst;
5615 
5616 	if (tcp->tcp_state != TCPS_LISTEN)
5617 		goto error2;
5618 
5619 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5620 
5621 	mutex_enter(&tcp->tcp_eager_lock);
5622 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5623 		mutex_exit(&tcp->tcp_eager_lock);
5624 		TCP_STAT(tcps, tcp_listendrop);
5625 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5626 		if (tcp->tcp_debug) {
5627 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5628 			    "tcp_conn_request: listen backlog (max=%d) "
5629 			    "overflow (%d pending) on %s",
5630 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5631 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5632 		}
5633 		goto error2;
5634 	}
5635 
5636 	if (tcp->tcp_conn_req_cnt_q0 >=
5637 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5638 		/*
5639 		 * Q0 is full. Drop a pending half-open req from the queue
5640 		 * to make room for the new SYN req. Also mark the time we
5641 		 * drop a SYN.
5642 		 *
5643 		 * A more aggressive defense against SYN attack will
5644 		 * be to set the "tcp_syn_defense" flag now.
5645 		 */
5646 		TCP_STAT(tcps, tcp_listendropq0);
5647 		tcp->tcp_last_rcv_lbolt = lbolt64;
5648 		if (!tcp_drop_q0(tcp)) {
5649 			mutex_exit(&tcp->tcp_eager_lock);
5650 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5651 			if (tcp->tcp_debug) {
5652 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5653 				    "tcp_conn_request: listen half-open queue "
5654 				    "(max=%d) full (%d pending) on %s",
5655 				    tcps->tcps_conn_req_max_q0,
5656 				    tcp->tcp_conn_req_cnt_q0,
5657 				    tcp_display(tcp, NULL,
5658 				    DISP_PORT_ONLY));
5659 			}
5660 			goto error2;
5661 		}
5662 	}
5663 	mutex_exit(&tcp->tcp_eager_lock);
5664 
5665 	/*
5666 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5667 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5668 	 * link local address.  If IPSec is enabled, db_struioflag has
5669 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5670 	 * otherwise an error case if neither of them is set.
5671 	 */
5672 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5673 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5674 		DB_CKSUMSTART(mp) = 0;
5675 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5676 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5677 		if (econnp == NULL)
5678 			goto error2;
5679 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5680 		econnp->conn_sqp = new_sqp;
5681 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5682 		/*
5683 		 * mp is updated in tcp_get_ipsec_conn().
5684 		 */
5685 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5686 		if (econnp == NULL) {
5687 			/*
5688 			 * mp freed by tcp_get_ipsec_conn.
5689 			 */
5690 			return;
5691 		}
5692 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5693 	} else {
5694 		goto error2;
5695 	}
5696 
5697 	ASSERT(DB_TYPE(mp) == M_DATA);
5698 
5699 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5700 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5701 	ASSERT(OK_32PTR(mp->b_rptr));
5702 	if (ipvers == IPV4_VERSION) {
5703 		ipha = (ipha_t *)mp->b_rptr;
5704 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5705 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5706 	} else {
5707 		ip6h = (ip6_t *)mp->b_rptr;
5708 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5709 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5710 	}
5711 
5712 	if (tcp->tcp_family == AF_INET) {
5713 		ASSERT(ipvers == IPV4_VERSION);
5714 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5715 	} else {
5716 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5717 	}
5718 
5719 	if (err)
5720 		goto error3;
5721 
5722 	eager = econnp->conn_tcp;
5723 
5724 	/*
5725 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5726 	 * will always have that to send up.  Otherwise, we need to do
5727 	 * special handling in case the allocation fails at that time.
5728 	 */
5729 	ASSERT(eager->tcp_ordrel_mp == NULL);
5730 	if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5731 		goto error3;
5732 
5733 	/* Inherit various TCP parameters from the listener */
5734 	eager->tcp_naglim = tcp->tcp_naglim;
5735 	eager->tcp_first_timer_threshold =
5736 	    tcp->tcp_first_timer_threshold;
5737 	eager->tcp_second_timer_threshold =
5738 	    tcp->tcp_second_timer_threshold;
5739 
5740 	eager->tcp_first_ctimer_threshold =
5741 	    tcp->tcp_first_ctimer_threshold;
5742 	eager->tcp_second_ctimer_threshold =
5743 	    tcp->tcp_second_ctimer_threshold;
5744 
5745 	/*
5746 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5747 	 * If it does not, the eager's receive window will be set to the
5748 	 * listener's receive window later in this function.
5749 	 */
5750 	eager->tcp_rwnd = 0;
5751 
5752 	/*
5753 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5754 	 * calling tcp_process_options() where tcp_mss_set() is called
5755 	 * to set the initial cwnd.
5756 	 */
5757 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5758 
5759 	/*
5760 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5761 	 * zone id before the accept is completed in tcp_wput_accept().
5762 	 */
5763 	econnp->conn_zoneid = connp->conn_zoneid;
5764 	econnp->conn_allzones = connp->conn_allzones;
5765 
5766 	/* Copy nexthop information from listener to eager */
5767 	if (connp->conn_nexthop_set) {
5768 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5769 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5770 	}
5771 
5772 	/*
5773 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5774 	 * eager is accepted
5775 	 */
5776 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5777 	crhold(credp);
5778 
5779 	/*
5780 	 * If the caller has the process-wide flag set, then default to MAC
5781 	 * exempt mode.  This allows read-down to unlabeled hosts.
5782 	 */
5783 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5784 		econnp->conn_mac_exempt = B_TRUE;
5785 
5786 	if (is_system_labeled()) {
5787 		cred_t *cr;
5788 
5789 		if (connp->conn_mlp_type != mlptSingle) {
5790 			cr = econnp->conn_peercred = DB_CRED(mp);
5791 			if (cr != NULL)
5792 				crhold(cr);
5793 			else
5794 				cr = econnp->conn_cred;
5795 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5796 			    econnp, cred_t *, cr)
5797 		} else {
5798 			cr = econnp->conn_cred;
5799 			DTRACE_PROBE2(syn_accept, conn_t *,
5800 			    econnp, cred_t *, cr)
5801 		}
5802 
5803 		if (!tcp_update_label(eager, cr)) {
5804 			DTRACE_PROBE3(
5805 			    tx__ip__log__error__connrequest__tcp,
5806 			    char *, "eager connp(1) label on SYN mp(2) failed",
5807 			    conn_t *, econnp, mblk_t *, mp);
5808 			goto error3;
5809 		}
5810 	}
5811 
5812 	eager->tcp_hard_binding = B_TRUE;
5813 
5814 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5815 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5816 
5817 	CL_INET_CONNECT(eager);
5818 
5819 	/*
5820 	 * No need to check for multicast destination since ip will only pass
5821 	 * up multicasts to those that have expressed interest
5822 	 * TODO: what about rejecting broadcasts?
5823 	 * Also check that source is not a multicast or broadcast address.
5824 	 */
5825 	eager->tcp_state = TCPS_SYN_RCVD;
5826 
5827 
5828 	/*
5829 	 * There should be no ire in the mp as we are being called after
5830 	 * receiving the SYN.
5831 	 */
5832 	ASSERT(tcp_ire_mp(mp) == NULL);
5833 
5834 	/*
5835 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5836 	 */
5837 
5838 	if (tcp_adapt_ire(eager, NULL) == 0) {
5839 		/* Undo the bind_hash_insert */
5840 		tcp_bind_hash_remove(eager);
5841 		goto error3;
5842 	}
5843 
5844 	/* Process all TCP options. */
5845 	tcp_process_options(eager, tcph);
5846 
5847 	/* Is the other end ECN capable? */
5848 	if (tcps->tcps_ecn_permitted >= 1 &&
5849 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5850 		eager->tcp_ecn_ok = B_TRUE;
5851 	}
5852 
5853 	/*
5854 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5855 	 * window size changed via SO_RCVBUF option.  First round up the
5856 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5857 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5858 	 * setting.
5859 	 *
5860 	 * Note if there is a rpipe metric associated with the remote host,
5861 	 * we should not inherit receive window size from listener.
5862 	 */
5863 	eager->tcp_rwnd = MSS_ROUNDUP(
5864 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5865 	    eager->tcp_rwnd), eager->tcp_mss);
5866 	if (eager->tcp_snd_ws_ok)
5867 		tcp_set_ws_value(eager);
5868 	/*
5869 	 * Note that this is the only place tcp_rwnd_set() is called for
5870 	 * accepting a connection.  We need to call it here instead of
5871 	 * after the 3-way handshake because we need to tell the other
5872 	 * side our rwnd in the SYN-ACK segment.
5873 	 */
5874 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5875 
5876 	/*
5877 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5878 	 * via soaccept()->soinheritoptions() which essentially applies
5879 	 * all the listener options to the new STREAM. The options that we
5880 	 * need to take care of are:
5881 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5882 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5883 	 * SO_SNDBUF, SO_RCVBUF.
5884 	 *
5885 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5886 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5887 	 *		tcp_maxpsz_set() gets called later from
5888 	 *		tcp_accept_finish(), the option takes effect.
5889 	 *
5890 	 */
5891 	/* Set the TCP options */
5892 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5893 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5894 	eager->tcp_oobinline = tcp->tcp_oobinline;
5895 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5896 	eager->tcp_broadcast = tcp->tcp_broadcast;
5897 	eager->tcp_useloopback = tcp->tcp_useloopback;
5898 	eager->tcp_dontroute = tcp->tcp_dontroute;
5899 	eager->tcp_linger = tcp->tcp_linger;
5900 	eager->tcp_lingertime = tcp->tcp_lingertime;
5901 	if (tcp->tcp_ka_enabled)
5902 		eager->tcp_ka_enabled = 1;
5903 
5904 	/* Set the IP options */
5905 	econnp->conn_broadcast = connp->conn_broadcast;
5906 	econnp->conn_loopback = connp->conn_loopback;
5907 	econnp->conn_dontroute = connp->conn_dontroute;
5908 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5909 
5910 	/* Put a ref on the listener for the eager. */
5911 	CONN_INC_REF(connp);
5912 	mutex_enter(&tcp->tcp_eager_lock);
5913 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5914 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5915 	tcp->tcp_eager_next_q0 = eager;
5916 	eager->tcp_eager_prev_q0 = tcp;
5917 
5918 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5919 	eager->tcp_listener = tcp;
5920 	eager->tcp_saved_listener = tcp;
5921 
5922 	/*
5923 	 * Tag this detached tcp vector for later retrieval
5924 	 * by our listener client in tcp_accept().
5925 	 */
5926 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5927 	tcp->tcp_conn_req_cnt_q0++;
5928 	if (++tcp->tcp_conn_req_seqnum == -1) {
5929 		/*
5930 		 * -1 is "special" and defined in TPI as something
5931 		 * that should never be used in T_CONN_IND
5932 		 */
5933 		++tcp->tcp_conn_req_seqnum;
5934 	}
5935 	mutex_exit(&tcp->tcp_eager_lock);
5936 
5937 	if (tcp->tcp_syn_defense) {
5938 		/* Don't drop the SYN that comes from a good IP source */
5939 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5940 		if (addr_cache != NULL && eager->tcp_remote ==
5941 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5942 			eager->tcp_dontdrop = B_TRUE;
5943 		}
5944 	}
5945 
5946 	/*
5947 	 * We need to insert the eager in its own perimeter but as soon
5948 	 * as we do that, we expose the eager to the classifier and
5949 	 * should not touch any field outside the eager's perimeter.
5950 	 * So do all the work necessary before inserting the eager
5951 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5952 	 * will succeed but undo everything if it fails.
5953 	 */
5954 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5955 	eager->tcp_irs = seg_seq;
5956 	eager->tcp_rack = seg_seq;
5957 	eager->tcp_rnxt = seg_seq + 1;
5958 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5959 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5960 	eager->tcp_state = TCPS_SYN_RCVD;
5961 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5962 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5963 	if (mp1 == NULL) {
5964 		/*
5965 		 * Increment the ref count as we are going to
5966 		 * enqueueing an mp in squeue
5967 		 */
5968 		CONN_INC_REF(econnp);
5969 		goto error;
5970 	}
5971 	DB_CPID(mp1) = tcp->tcp_cpid;
5972 	eager->tcp_cpid = tcp->tcp_cpid;
5973 	eager->tcp_open_time = lbolt64;
5974 
5975 	/*
5976 	 * We need to start the rto timer. In normal case, we start
5977 	 * the timer after sending the packet on the wire (or at
5978 	 * least believing that packet was sent by waiting for
5979 	 * CALL_IP_WPUT() to return). Since this is the first packet
5980 	 * being sent on the wire for the eager, our initial tcp_rto
5981 	 * is at least tcp_rexmit_interval_min which is a fairly
5982 	 * large value to allow the algorithm to adjust slowly to large
5983 	 * fluctuations of RTT during first few transmissions.
5984 	 *
5985 	 * Starting the timer first and then sending the packet in this
5986 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5987 	 * is of the order of several 100ms and starting the timer
5988 	 * first and then sending the packet will result in difference
5989 	 * of few micro seconds.
5990 	 *
5991 	 * Without this optimization, we are forced to hold the fanout
5992 	 * lock across the ipcl_bind_insert() and sending the packet
5993 	 * so that we don't race against an incoming packet (maybe RST)
5994 	 * for this eager.
5995 	 *
5996 	 * It is necessary to acquire an extra reference on the eager
5997 	 * at this point and hold it until after tcp_send_data() to
5998 	 * ensure against an eager close race.
5999 	 */
6000 
6001 	CONN_INC_REF(eager->tcp_connp);
6002 
6003 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
6004 
6005 	/*
6006 	 * Insert the eager in its own perimeter now. We are ready to deal
6007 	 * with any packets on eager.
6008 	 */
6009 	if (eager->tcp_ipversion == IPV4_VERSION) {
6010 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6011 			goto error;
6012 		}
6013 	} else {
6014 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6015 			goto error;
6016 		}
6017 	}
6018 
6019 	/* mark conn as fully-bound */
6020 	econnp->conn_fully_bound = B_TRUE;
6021 
6022 	/* Send the SYN-ACK */
6023 	tcp_send_data(eager, eager->tcp_wq, mp1);
6024 	CONN_DEC_REF(eager->tcp_connp);
6025 	freemsg(mp);
6026 
6027 	return;
6028 error:
6029 	freemsg(mp1);
6030 	eager->tcp_closemp_used = B_TRUE;
6031 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6032 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6033 	    econnp, SQTAG_TCP_CONN_REQ_2);
6034 
6035 	/*
6036 	 * If a connection already exists, send the mp to that connections so
6037 	 * that it can be appropriately dealt with.
6038 	 */
6039 	ipst = tcps->tcps_netstack->netstack_ip;
6040 
6041 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6042 		if (!IPCL_IS_CONNECTED(econnp)) {
6043 			/*
6044 			 * Something bad happened. ipcl_conn_insert()
6045 			 * failed because a connection already existed
6046 			 * in connected hash but we can't find it
6047 			 * anymore (someone blew it away). Just
6048 			 * free this message and hopefully remote
6049 			 * will retransmit at which time the SYN can be
6050 			 * treated as a new connection or dealth with
6051 			 * a TH_RST if a connection already exists.
6052 			 */
6053 			CONN_DEC_REF(econnp);
6054 			freemsg(mp);
6055 		} else {
6056 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6057 			    econnp, SQTAG_TCP_CONN_REQ_1);
6058 		}
6059 	} else {
6060 		/* Nobody wants this packet */
6061 		freemsg(mp);
6062 	}
6063 	return;
6064 error3:
6065 	CONN_DEC_REF(econnp);
6066 error2:
6067 	freemsg(mp);
6068 }
6069 
6070 /*
6071  * In an ideal case of vertical partition in NUMA architecture, its
6072  * beneficial to have the listener and all the incoming connections
6073  * tied to the same squeue. The other constraint is that incoming
6074  * connections should be tied to the squeue attached to interrupted
6075  * CPU for obvious locality reason so this leaves the listener to
6076  * be tied to the same squeue. Our only problem is that when listener
6077  * is binding, the CPU that will get interrupted by the NIC whose
6078  * IP address the listener is binding to is not even known. So
6079  * the code below allows us to change that binding at the time the
6080  * CPU is interrupted by virtue of incoming connection's squeue.
6081  *
6082  * This is usefull only in case of a listener bound to a specific IP
6083  * address. For other kind of listeners, they get bound the
6084  * very first time and there is no attempt to rebind them.
6085  */
6086 void
6087 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6088 {
6089 	conn_t		*connp = (conn_t *)arg;
6090 	squeue_t	*sqp = (squeue_t *)arg2;
6091 	squeue_t	*new_sqp;
6092 	uint32_t	conn_flags;
6093 
6094 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6095 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6096 	} else {
6097 		goto done;
6098 	}
6099 
6100 	if (connp->conn_fanout == NULL)
6101 		goto done;
6102 
6103 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6104 		mutex_enter(&connp->conn_fanout->connf_lock);
6105 		mutex_enter(&connp->conn_lock);
6106 		/*
6107 		 * No one from read or write side can access us now
6108 		 * except for already queued packets on this squeue.
6109 		 * But since we haven't changed the squeue yet, they
6110 		 * can't execute. If they are processed after we have
6111 		 * changed the squeue, they are sent back to the
6112 		 * correct squeue down below.
6113 		 * But a listner close can race with processing of
6114 		 * incoming SYN. If incoming SYN processing changes
6115 		 * the squeue then the listener close which is waiting
6116 		 * to enter the squeue would operate on the wrong
6117 		 * squeue. Hence we don't change the squeue here unless
6118 		 * the refcount is exactly the minimum refcount. The
6119 		 * minimum refcount of 4 is counted as - 1 each for
6120 		 * TCP and IP, 1 for being in the classifier hash, and
6121 		 * 1 for the mblk being processed.
6122 		 */
6123 
6124 		if (connp->conn_ref != 4 ||
6125 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6126 			mutex_exit(&connp->conn_lock);
6127 			mutex_exit(&connp->conn_fanout->connf_lock);
6128 			goto done;
6129 		}
6130 		if (connp->conn_sqp != new_sqp) {
6131 			while (connp->conn_sqp != new_sqp)
6132 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6133 		}
6134 
6135 		do {
6136 			conn_flags = connp->conn_flags;
6137 			conn_flags |= IPCL_FULLY_BOUND;
6138 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6139 			    conn_flags);
6140 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6141 
6142 		mutex_exit(&connp->conn_fanout->connf_lock);
6143 		mutex_exit(&connp->conn_lock);
6144 	}
6145 
6146 done:
6147 	if (connp->conn_sqp != sqp) {
6148 		CONN_INC_REF(connp);
6149 		squeue_fill(connp->conn_sqp, mp,
6150 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6151 	} else {
6152 		tcp_conn_request(connp, mp, sqp);
6153 	}
6154 }
6155 
6156 /*
6157  * Successful connect request processing begins when our client passes
6158  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6159  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6160  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6161  *   upstream <- tcp_rput()                <- IP
6162  * After various error checks are completed, tcp_connect() lays
6163  * the target address and port into the composite header template,
6164  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6165  * request followed by an IRE request, and passes the three mblk message
6166  * down to IP looking like this:
6167  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6168  * Processing continues in tcp_rput() when we receive the following message:
6169  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6170  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6171  * to fire off the connection request, and then passes the T_OK_ACK mblk
6172  * upstream that we filled in below.  There are, of course, numerous
6173  * error conditions along the way which truncate the processing described
6174  * above.
6175  */
6176 static void
6177 tcp_connect(tcp_t *tcp, mblk_t *mp)
6178 {
6179 	sin_t		*sin;
6180 	sin6_t		*sin6;
6181 	queue_t		*q = tcp->tcp_wq;
6182 	struct T_conn_req	*tcr;
6183 	ipaddr_t	*dstaddrp;
6184 	in_port_t	dstport;
6185 	uint_t		srcid;
6186 
6187 	tcr = (struct T_conn_req *)mp->b_rptr;
6188 
6189 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6190 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6191 		tcp_err_ack(tcp, mp, TPROTO, 0);
6192 		return;
6193 	}
6194 
6195 	/*
6196 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
6197 	 * will always have that to send up.  Otherwise, we need to do
6198 	 * special handling in case the allocation fails at that time.
6199 	 */
6200 	ASSERT(tcp->tcp_ordrel_mp == NULL);
6201 	if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
6202 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6203 		return;
6204 	}
6205 
6206 	/*
6207 	 * Determine packet type based on type of address passed in
6208 	 * the request should contain an IPv4 or IPv6 address.
6209 	 * Make sure that address family matches the type of
6210 	 * family of the the address passed down
6211 	 */
6212 	switch (tcr->DEST_length) {
6213 	default:
6214 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6215 		return;
6216 
6217 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6218 		/*
6219 		 * XXX: The check for valid DEST_length was not there
6220 		 * in earlier releases and some buggy
6221 		 * TLI apps (e.g Sybase) got away with not feeding
6222 		 * in sin_zero part of address.
6223 		 * We allow that bug to keep those buggy apps humming.
6224 		 * Test suites require the check on DEST_length.
6225 		 * We construct a new mblk with valid DEST_length
6226 		 * free the original so the rest of the code does
6227 		 * not have to keep track of this special shorter
6228 		 * length address case.
6229 		 */
6230 		mblk_t *nmp;
6231 		struct T_conn_req *ntcr;
6232 		sin_t *nsin;
6233 
6234 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6235 		    tcr->OPT_length, BPRI_HI);
6236 		if (nmp == NULL) {
6237 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6238 			return;
6239 		}
6240 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6241 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6242 		ntcr->PRIM_type = T_CONN_REQ;
6243 		ntcr->DEST_length = sizeof (sin_t);
6244 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6245 
6246 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6247 		*nsin = sin_null;
6248 		/* Get pointer to shorter address to copy from original mp */
6249 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6250 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6251 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6252 			freemsg(nmp);
6253 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6254 			return;
6255 		}
6256 		nsin->sin_family = sin->sin_family;
6257 		nsin->sin_port = sin->sin_port;
6258 		nsin->sin_addr = sin->sin_addr;
6259 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6260 		nmp->b_wptr = (uchar_t *)&nsin[1];
6261 		if (tcr->OPT_length != 0) {
6262 			ntcr->OPT_length = tcr->OPT_length;
6263 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6264 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6265 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6266 			    tcr->OPT_length);
6267 			nmp->b_wptr += tcr->OPT_length;
6268 		}
6269 		freemsg(mp);	/* original mp freed */
6270 		mp = nmp;	/* re-initialize original variables */
6271 		tcr = ntcr;
6272 	}
6273 	/* FALLTHRU */
6274 
6275 	case sizeof (sin_t):
6276 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6277 		    sizeof (sin_t));
6278 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6279 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6280 			return;
6281 		}
6282 		if (tcp->tcp_family != AF_INET ||
6283 		    sin->sin_family != AF_INET) {
6284 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6285 			return;
6286 		}
6287 		if (sin->sin_port == 0) {
6288 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6289 			return;
6290 		}
6291 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6292 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6293 			return;
6294 		}
6295 
6296 		break;
6297 
6298 	case sizeof (sin6_t):
6299 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6300 		    sizeof (sin6_t));
6301 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6302 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6303 			return;
6304 		}
6305 		if (tcp->tcp_family != AF_INET6 ||
6306 		    sin6->sin6_family != AF_INET6) {
6307 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6308 			return;
6309 		}
6310 		if (sin6->sin6_port == 0) {
6311 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6312 			return;
6313 		}
6314 		break;
6315 	}
6316 	/*
6317 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6318 	 * should key on their sequence number and cut them loose.
6319 	 */
6320 
6321 	/*
6322 	 * If options passed in, feed it for verification and handling
6323 	 */
6324 	if (tcr->OPT_length != 0) {
6325 		mblk_t	*ok_mp;
6326 		mblk_t	*discon_mp;
6327 		mblk_t  *conn_opts_mp;
6328 		int t_error, sys_error, do_disconnect;
6329 
6330 		conn_opts_mp = NULL;
6331 
6332 		if (tcp_conprim_opt_process(tcp, mp,
6333 		    &do_disconnect, &t_error, &sys_error) < 0) {
6334 			if (do_disconnect) {
6335 				ASSERT(t_error == 0 && sys_error == 0);
6336 				discon_mp = mi_tpi_discon_ind(NULL,
6337 				    ECONNREFUSED, 0);
6338 				if (!discon_mp) {
6339 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6340 					    TSYSERR, ENOMEM);
6341 					return;
6342 				}
6343 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6344 				if (!ok_mp) {
6345 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6346 					    TSYSERR, ENOMEM);
6347 					return;
6348 				}
6349 				qreply(q, ok_mp);
6350 				qreply(q, discon_mp); /* no flush! */
6351 			} else {
6352 				ASSERT(t_error != 0);
6353 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6354 				    sys_error);
6355 			}
6356 			return;
6357 		}
6358 		/*
6359 		 * Success in setting options, the mp option buffer represented
6360 		 * by OPT_length/offset has been potentially modified and
6361 		 * contains results of option processing. We copy it in
6362 		 * another mp to save it for potentially influencing returning
6363 		 * it in T_CONN_CONN.
6364 		 */
6365 		if (tcr->OPT_length != 0) { /* there are resulting options */
6366 			conn_opts_mp = copyb(mp);
6367 			if (!conn_opts_mp) {
6368 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6369 				    TSYSERR, ENOMEM);
6370 				return;
6371 			}
6372 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6373 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6374 			/*
6375 			 * Note:
6376 			 * These resulting option negotiation can include any
6377 			 * end-to-end negotiation options but there no such
6378 			 * thing (yet?) in our TCP/IP.
6379 			 */
6380 		}
6381 	}
6382 
6383 	/*
6384 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6385 	 * make sure that the template IP header in the tcp structure is an
6386 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6387 	 * need to this before we call tcp_bindi() so that the port lookup
6388 	 * code will look for ports in the correct port space (IPv4 and
6389 	 * IPv6 have separate port spaces).
6390 	 */
6391 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6392 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6393 		int err = 0;
6394 
6395 		err = tcp_header_init_ipv4(tcp);
6396 		if (err != 0) {
6397 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6398 			goto connect_failed;
6399 		}
6400 		if (tcp->tcp_lport != 0)
6401 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6402 	}
6403 
6404 	if (tcp->tcp_issocket) {
6405 		/*
6406 		 * TCP is _D_SODIRECT and sockfs is directly above so save
6407 		 * the shared sonode sodirect_t pointer (if any) to enable
6408 		 * TCP sodirect.
6409 		 */
6410 		tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq);
6411 	}
6412 
6413 	switch (tcp->tcp_state) {
6414 	case TCPS_IDLE:
6415 		/*
6416 		 * We support quick connect, refer to comments in
6417 		 * tcp_connect_*()
6418 		 */
6419 		/* FALLTHRU */
6420 	case TCPS_BOUND:
6421 	case TCPS_LISTEN:
6422 		if (tcp->tcp_family == AF_INET6) {
6423 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6424 				tcp_connect_ipv6(tcp, mp,
6425 				    &sin6->sin6_addr,
6426 				    sin6->sin6_port, sin6->sin6_flowinfo,
6427 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6428 				return;
6429 			}
6430 			/*
6431 			 * Destination adress is mapped IPv6 address.
6432 			 * Source bound address should be unspecified or
6433 			 * IPv6 mapped address as well.
6434 			 */
6435 			if (!IN6_IS_ADDR_UNSPECIFIED(
6436 			    &tcp->tcp_bound_source_v6) &&
6437 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6438 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6439 				    EADDRNOTAVAIL);
6440 				break;
6441 			}
6442 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6443 			dstport = sin6->sin6_port;
6444 			srcid = sin6->__sin6_src_id;
6445 		} else {
6446 			dstaddrp = &sin->sin_addr.s_addr;
6447 			dstport = sin->sin_port;
6448 			srcid = 0;
6449 		}
6450 
6451 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6452 		return;
6453 	default:
6454 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6455 		break;
6456 	}
6457 	/*
6458 	 * Note: Code below is the "failure" case
6459 	 */
6460 	/* return error ack and blow away saved option results if any */
6461 connect_failed:
6462 	if (mp != NULL)
6463 		putnext(tcp->tcp_rq, mp);
6464 	else {
6465 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6466 		    TSYSERR, ENOMEM);
6467 	}
6468 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6469 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6470 }
6471 
6472 /*
6473  * Handle connect to IPv4 destinations, including connections for AF_INET6
6474  * sockets connecting to IPv4 mapped IPv6 destinations.
6475  */
6476 static void
6477 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6478     uint_t srcid)
6479 {
6480 	tcph_t	*tcph;
6481 	mblk_t	*mp1;
6482 	ipaddr_t dstaddr = *dstaddrp;
6483 	int32_t	oldstate;
6484 	uint16_t lport;
6485 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6486 
6487 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6488 
6489 	/* Check for attempt to connect to INADDR_ANY */
6490 	if (dstaddr == INADDR_ANY)  {
6491 		/*
6492 		 * SunOS 4.x and 4.3 BSD allow an application
6493 		 * to connect a TCP socket to INADDR_ANY.
6494 		 * When they do this, the kernel picks the
6495 		 * address of one interface and uses it
6496 		 * instead.  The kernel usually ends up
6497 		 * picking the address of the loopback
6498 		 * interface.  This is an undocumented feature.
6499 		 * However, we provide the same thing here
6500 		 * in order to have source and binary
6501 		 * compatibility with SunOS 4.x.
6502 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6503 		 * generate the T_CONN_CON.
6504 		 */
6505 		dstaddr = htonl(INADDR_LOOPBACK);
6506 		*dstaddrp = dstaddr;
6507 	}
6508 
6509 	/* Handle __sin6_src_id if socket not bound to an IP address */
6510 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6511 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6512 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6513 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6514 		    tcp->tcp_ipha->ipha_src);
6515 	}
6516 
6517 	/*
6518 	 * Don't let an endpoint connect to itself.  Note that
6519 	 * the test here does not catch the case where the
6520 	 * source IP addr was left unspecified by the user. In
6521 	 * this case, the source addr is set in tcp_adapt_ire()
6522 	 * using the reply to the T_BIND message that we send
6523 	 * down to IP here and the check is repeated in tcp_rput_other.
6524 	 */
6525 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6526 	    dstport == tcp->tcp_lport) {
6527 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6528 		goto failed;
6529 	}
6530 
6531 	tcp->tcp_ipha->ipha_dst = dstaddr;
6532 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6533 
6534 	/*
6535 	 * Massage a source route if any putting the first hop
6536 	 * in iph_dst. Compute a starting value for the checksum which
6537 	 * takes into account that the original iph_dst should be
6538 	 * included in the checksum but that ip will include the
6539 	 * first hop in the source route in the tcp checksum.
6540 	 */
6541 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6542 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6543 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6544 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6545 	if ((int)tcp->tcp_sum < 0)
6546 		tcp->tcp_sum--;
6547 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6548 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6549 	    (tcp->tcp_sum >> 16));
6550 	tcph = tcp->tcp_tcph;
6551 	*(uint16_t *)tcph->th_fport = dstport;
6552 	tcp->tcp_fport = dstport;
6553 
6554 	oldstate = tcp->tcp_state;
6555 	/*
6556 	 * At this point the remote destination address and remote port fields
6557 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6558 	 * have to see which state tcp was in so we can take apropriate action.
6559 	 */
6560 	if (oldstate == TCPS_IDLE) {
6561 		/*
6562 		 * We support a quick connect capability here, allowing
6563 		 * clients to transition directly from IDLE to SYN_SENT
6564 		 * tcp_bindi will pick an unused port, insert the connection
6565 		 * in the bind hash and transition to BOUND state.
6566 		 */
6567 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6568 		    tcp, B_TRUE);
6569 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6570 		    B_FALSE, B_FALSE);
6571 		if (lport == 0) {
6572 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6573 			goto failed;
6574 		}
6575 	}
6576 	tcp->tcp_state = TCPS_SYN_SENT;
6577 
6578 	/*
6579 	 * TODO: allow data with connect requests
6580 	 * by unlinking M_DATA trailers here and
6581 	 * linking them in behind the T_OK_ACK mblk.
6582 	 * The tcp_rput() bind ack handler would then
6583 	 * feed them to tcp_wput_data() rather than call
6584 	 * tcp_timer().
6585 	 */
6586 	mp = mi_tpi_ok_ack_alloc(mp);
6587 	if (!mp) {
6588 		tcp->tcp_state = oldstate;
6589 		goto failed;
6590 	}
6591 	if (tcp->tcp_family == AF_INET) {
6592 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6593 		    sizeof (ipa_conn_t));
6594 	} else {
6595 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6596 		    sizeof (ipa6_conn_t));
6597 	}
6598 	if (mp1) {
6599 		/*
6600 		 * We need to make sure that the conn_recv is set to a non-null
6601 		 * value before we insert the conn_t into the classifier table.
6602 		 * This is to avoid a race with an incoming packet which does
6603 		 * an ipcl_classify().
6604 		 */
6605 		tcp->tcp_connp->conn_recv = tcp_input;
6606 
6607 		/* Hang onto the T_OK_ACK for later. */
6608 		linkb(mp1, mp);
6609 		mblk_setcred(mp1, tcp->tcp_cred);
6610 		if (tcp->tcp_family == AF_INET)
6611 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6612 		else {
6613 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6614 			    &tcp->tcp_sticky_ipp);
6615 		}
6616 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6617 		tcp->tcp_active_open = 1;
6618 		/*
6619 		 * If the bind cannot complete immediately
6620 		 * IP will arrange to call tcp_rput_other
6621 		 * when the bind completes.
6622 		 */
6623 		if (mp1 != NULL)
6624 			tcp_rput_other(tcp, mp1);
6625 		return;
6626 	}
6627 	/* Error case */
6628 	tcp->tcp_state = oldstate;
6629 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6630 
6631 failed:
6632 	/* return error ack and blow away saved option results if any */
6633 	if (mp != NULL)
6634 		putnext(tcp->tcp_rq, mp);
6635 	else {
6636 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6637 		    TSYSERR, ENOMEM);
6638 	}
6639 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6640 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6641 
6642 }
6643 
6644 /*
6645  * Handle connect to IPv6 destinations.
6646  */
6647 static void
6648 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6649     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6650 {
6651 	tcph_t	*tcph;
6652 	mblk_t	*mp1;
6653 	ip6_rthdr_t *rth;
6654 	int32_t  oldstate;
6655 	uint16_t lport;
6656 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6657 
6658 	ASSERT(tcp->tcp_family == AF_INET6);
6659 
6660 	/*
6661 	 * If we're here, it means that the destination address is a native
6662 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6663 	 * reason why it might not be IPv6 is if the socket was bound to an
6664 	 * IPv4-mapped IPv6 address.
6665 	 */
6666 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6667 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6668 		goto failed;
6669 	}
6670 
6671 	/*
6672 	 * Interpret a zero destination to mean loopback.
6673 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6674 	 * generate the T_CONN_CON.
6675 	 */
6676 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6677 		*dstaddrp = ipv6_loopback;
6678 	}
6679 
6680 	/* Handle __sin6_src_id if socket not bound to an IP address */
6681 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6682 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6683 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6684 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6685 	}
6686 
6687 	/*
6688 	 * Take care of the scope_id now and add ip6i_t
6689 	 * if ip6i_t is not already allocated through TCP
6690 	 * sticky options. At this point tcp_ip6h does not
6691 	 * have dst info, thus use dstaddrp.
6692 	 */
6693 	if (scope_id != 0 &&
6694 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6695 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6696 		ip6i_t  *ip6i;
6697 
6698 		ipp->ipp_ifindex = scope_id;
6699 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6700 
6701 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6702 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6703 			/* Already allocated */
6704 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6705 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6706 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6707 		} else {
6708 			int reterr;
6709 
6710 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6711 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6712 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6713 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6714 			if (reterr != 0)
6715 				goto failed;
6716 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6717 		}
6718 	}
6719 
6720 	/*
6721 	 * Don't let an endpoint connect to itself.  Note that
6722 	 * the test here does not catch the case where the
6723 	 * source IP addr was left unspecified by the user. In
6724 	 * this case, the source addr is set in tcp_adapt_ire()
6725 	 * using the reply to the T_BIND message that we send
6726 	 * down to IP here and the check is repeated in tcp_rput_other.
6727 	 */
6728 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6729 	    (dstport == tcp->tcp_lport)) {
6730 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6731 		goto failed;
6732 	}
6733 
6734 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6735 	tcp->tcp_remote_v6 = *dstaddrp;
6736 	tcp->tcp_ip6h->ip6_vcf =
6737 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6738 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6739 
6740 
6741 	/*
6742 	 * Massage a routing header (if present) putting the first hop
6743 	 * in ip6_dst. Compute a starting value for the checksum which
6744 	 * takes into account that the original ip6_dst should be
6745 	 * included in the checksum but that ip will include the
6746 	 * first hop in the source route in the tcp checksum.
6747 	 */
6748 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6749 	if (rth != NULL) {
6750 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6751 		    tcps->tcps_netstack);
6752 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6753 		    (tcp->tcp_sum >> 16));
6754 	} else {
6755 		tcp->tcp_sum = 0;
6756 	}
6757 
6758 	tcph = tcp->tcp_tcph;
6759 	*(uint16_t *)tcph->th_fport = dstport;
6760 	tcp->tcp_fport = dstport;
6761 
6762 	oldstate = tcp->tcp_state;
6763 	/*
6764 	 * At this point the remote destination address and remote port fields
6765 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6766 	 * have to see which state tcp was in so we can take apropriate action.
6767 	 */
6768 	if (oldstate == TCPS_IDLE) {
6769 		/*
6770 		 * We support a quick connect capability here, allowing
6771 		 * clients to transition directly from IDLE to SYN_SENT
6772 		 * tcp_bindi will pick an unused port, insert the connection
6773 		 * in the bind hash and transition to BOUND state.
6774 		 */
6775 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6776 		    tcp, B_TRUE);
6777 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6778 		    B_FALSE, B_FALSE);
6779 		if (lport == 0) {
6780 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6781 			goto failed;
6782 		}
6783 	}
6784 	tcp->tcp_state = TCPS_SYN_SENT;
6785 	/*
6786 	 * TODO: allow data with connect requests
6787 	 * by unlinking M_DATA trailers here and
6788 	 * linking them in behind the T_OK_ACK mblk.
6789 	 * The tcp_rput() bind ack handler would then
6790 	 * feed them to tcp_wput_data() rather than call
6791 	 * tcp_timer().
6792 	 */
6793 	mp = mi_tpi_ok_ack_alloc(mp);
6794 	if (!mp) {
6795 		tcp->tcp_state = oldstate;
6796 		goto failed;
6797 	}
6798 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6799 	if (mp1) {
6800 		/*
6801 		 * We need to make sure that the conn_recv is set to a non-null
6802 		 * value before we insert the conn_t into the classifier table.
6803 		 * This is to avoid a race with an incoming packet which does
6804 		 * an ipcl_classify().
6805 		 */
6806 		tcp->tcp_connp->conn_recv = tcp_input;
6807 
6808 		/* Hang onto the T_OK_ACK for later. */
6809 		linkb(mp1, mp);
6810 		mblk_setcred(mp1, tcp->tcp_cred);
6811 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6812 		    &tcp->tcp_sticky_ipp);
6813 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6814 		tcp->tcp_active_open = 1;
6815 		/* ip_bind_v6() may return ACK or ERROR */
6816 		if (mp1 != NULL)
6817 			tcp_rput_other(tcp, mp1);
6818 		return;
6819 	}
6820 	/* Error case */
6821 	tcp->tcp_state = oldstate;
6822 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6823 
6824 failed:
6825 	/* return error ack and blow away saved option results if any */
6826 	if (mp != NULL)
6827 		putnext(tcp->tcp_rq, mp);
6828 	else {
6829 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6830 		    TSYSERR, ENOMEM);
6831 	}
6832 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6833 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6834 }
6835 
6836 /*
6837  * We need a stream q for detached closing tcp connections
6838  * to use.  Our client hereby indicates that this q is the
6839  * one to use.
6840  */
6841 static void
6842 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6843 {
6844 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6845 	queue_t	*q = tcp->tcp_wq;
6846 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6847 
6848 #ifdef NS_DEBUG
6849 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6850 	    tcps->tcps_netstack->netstack_stackid);
6851 #endif
6852 	mp->b_datap->db_type = M_IOCACK;
6853 	iocp->ioc_count = 0;
6854 	mutex_enter(&tcps->tcps_g_q_lock);
6855 	if (tcps->tcps_g_q != NULL) {
6856 		mutex_exit(&tcps->tcps_g_q_lock);
6857 		iocp->ioc_error = EALREADY;
6858 	} else {
6859 		mblk_t *mp1;
6860 
6861 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6862 		if (mp1 == NULL) {
6863 			mutex_exit(&tcps->tcps_g_q_lock);
6864 			iocp->ioc_error = ENOMEM;
6865 		} else {
6866 			tcps->tcps_g_q = tcp->tcp_rq;
6867 			mutex_exit(&tcps->tcps_g_q_lock);
6868 			iocp->ioc_error = 0;
6869 			iocp->ioc_rval = 0;
6870 			/*
6871 			 * We are passing tcp_sticky_ipp as NULL
6872 			 * as it is not useful for tcp_default queue
6873 			 *
6874 			 * Set conn_recv just in case.
6875 			 */
6876 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6877 
6878 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6879 			if (mp1 != NULL)
6880 				tcp_rput_other(tcp, mp1);
6881 		}
6882 	}
6883 	qreply(q, mp);
6884 }
6885 
6886 /*
6887  * Our client hereby directs us to reject the connection request
6888  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6889  * of sending the appropriate RST, not an ICMP error.
6890  */
6891 static void
6892 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6893 {
6894 	tcp_t	*ltcp = NULL;
6895 	t_scalar_t seqnum;
6896 	conn_t	*connp;
6897 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6898 
6899 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6900 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6901 		tcp_err_ack(tcp, mp, TPROTO, 0);
6902 		return;
6903 	}
6904 
6905 	/*
6906 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6907 	 * when the stream is in BOUND state. Do not send a reset,
6908 	 * since the destination IP address is not valid, and it can
6909 	 * be the initialized value of all zeros (broadcast address).
6910 	 *
6911 	 * If TCP has sent down a bind request to IP and has not
6912 	 * received the reply, reject the request.  Otherwise, TCP
6913 	 * will be confused.
6914 	 */
6915 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6916 		if (tcp->tcp_debug) {
6917 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6918 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6919 		}
6920 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6921 		return;
6922 	}
6923 
6924 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6925 
6926 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6927 
6928 		/*
6929 		 * According to TPI, for non-listeners, ignore seqnum
6930 		 * and disconnect.
6931 		 * Following interpretation of -1 seqnum is historical
6932 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6933 		 * a valid seqnum should not be -1).
6934 		 *
6935 		 *	-1 means disconnect everything
6936 		 *	regardless even on a listener.
6937 		 */
6938 
6939 		int old_state = tcp->tcp_state;
6940 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6941 
6942 		/*
6943 		 * The connection can't be on the tcp_time_wait_head list
6944 		 * since it is not detached.
6945 		 */
6946 		ASSERT(tcp->tcp_time_wait_next == NULL);
6947 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6948 		ASSERT(tcp->tcp_time_wait_expire == 0);
6949 		ltcp = NULL;
6950 		/*
6951 		 * If it used to be a listener, check to make sure no one else
6952 		 * has taken the port before switching back to LISTEN state.
6953 		 */
6954 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6955 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6956 			    tcp->tcp_ipha->ipha_src,
6957 			    tcp->tcp_connp->conn_zoneid, ipst);
6958 			if (connp != NULL)
6959 				ltcp = connp->conn_tcp;
6960 		} else {
6961 			/* Allow tcp_bound_if listeners? */
6962 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6963 			    &tcp->tcp_ip6h->ip6_src, 0,
6964 			    tcp->tcp_connp->conn_zoneid, ipst);
6965 			if (connp != NULL)
6966 				ltcp = connp->conn_tcp;
6967 		}
6968 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6969 			tcp->tcp_state = TCPS_LISTEN;
6970 		} else if (old_state > TCPS_BOUND) {
6971 			tcp->tcp_conn_req_max = 0;
6972 			tcp->tcp_state = TCPS_BOUND;
6973 		}
6974 		if (ltcp != NULL)
6975 			CONN_DEC_REF(ltcp->tcp_connp);
6976 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6977 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6978 		} else if (old_state == TCPS_ESTABLISHED ||
6979 		    old_state == TCPS_CLOSE_WAIT) {
6980 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6981 		}
6982 
6983 		if (tcp->tcp_fused)
6984 			tcp_unfuse(tcp);
6985 
6986 		mutex_enter(&tcp->tcp_eager_lock);
6987 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6988 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6989 			tcp_eager_cleanup(tcp, 0);
6990 		}
6991 		mutex_exit(&tcp->tcp_eager_lock);
6992 
6993 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6994 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6995 
6996 		tcp_reinit(tcp);
6997 
6998 		if (old_state >= TCPS_ESTABLISHED) {
6999 			/* Send M_FLUSH according to TPI */
7000 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7001 		}
7002 		mp = mi_tpi_ok_ack_alloc(mp);
7003 		if (mp)
7004 			putnext(tcp->tcp_rq, mp);
7005 		return;
7006 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
7007 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
7008 		return;
7009 	}
7010 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
7011 		/* Send M_FLUSH according to TPI */
7012 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7013 	}
7014 	mp = mi_tpi_ok_ack_alloc(mp);
7015 	if (mp)
7016 		putnext(tcp->tcp_rq, mp);
7017 }
7018 
7019 /*
7020  * Diagnostic routine used to return a string associated with the tcp state.
7021  * Note that if the caller does not supply a buffer, it will use an internal
7022  * static string.  This means that if multiple threads call this function at
7023  * the same time, output can be corrupted...  Note also that this function
7024  * does not check the size of the supplied buffer.  The caller has to make
7025  * sure that it is big enough.
7026  */
7027 static char *
7028 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7029 {
7030 	char		buf1[30];
7031 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7032 	char		*buf;
7033 	char		*cp;
7034 	in6_addr_t	local, remote;
7035 	char		local_addrbuf[INET6_ADDRSTRLEN];
7036 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7037 
7038 	if (sup_buf != NULL)
7039 		buf = sup_buf;
7040 	else
7041 		buf = priv_buf;
7042 
7043 	if (tcp == NULL)
7044 		return ("NULL_TCP");
7045 	switch (tcp->tcp_state) {
7046 	case TCPS_CLOSED:
7047 		cp = "TCP_CLOSED";
7048 		break;
7049 	case TCPS_IDLE:
7050 		cp = "TCP_IDLE";
7051 		break;
7052 	case TCPS_BOUND:
7053 		cp = "TCP_BOUND";
7054 		break;
7055 	case TCPS_LISTEN:
7056 		cp = "TCP_LISTEN";
7057 		break;
7058 	case TCPS_SYN_SENT:
7059 		cp = "TCP_SYN_SENT";
7060 		break;
7061 	case TCPS_SYN_RCVD:
7062 		cp = "TCP_SYN_RCVD";
7063 		break;
7064 	case TCPS_ESTABLISHED:
7065 		cp = "TCP_ESTABLISHED";
7066 		break;
7067 	case TCPS_CLOSE_WAIT:
7068 		cp = "TCP_CLOSE_WAIT";
7069 		break;
7070 	case TCPS_FIN_WAIT_1:
7071 		cp = "TCP_FIN_WAIT_1";
7072 		break;
7073 	case TCPS_CLOSING:
7074 		cp = "TCP_CLOSING";
7075 		break;
7076 	case TCPS_LAST_ACK:
7077 		cp = "TCP_LAST_ACK";
7078 		break;
7079 	case TCPS_FIN_WAIT_2:
7080 		cp = "TCP_FIN_WAIT_2";
7081 		break;
7082 	case TCPS_TIME_WAIT:
7083 		cp = "TCP_TIME_WAIT";
7084 		break;
7085 	default:
7086 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7087 		cp = buf1;
7088 		break;
7089 	}
7090 	switch (format) {
7091 	case DISP_ADDR_AND_PORT:
7092 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7093 			/*
7094 			 * Note that we use the remote address in the tcp_b
7095 			 * structure.  This means that it will print out
7096 			 * the real destination address, not the next hop's
7097 			 * address if source routing is used.
7098 			 */
7099 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7100 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7101 
7102 		} else {
7103 			local = tcp->tcp_ip_src_v6;
7104 			remote = tcp->tcp_remote_v6;
7105 		}
7106 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7107 		    sizeof (local_addrbuf));
7108 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7109 		    sizeof (remote_addrbuf));
7110 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7111 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7112 		    ntohs(tcp->tcp_fport), cp);
7113 		break;
7114 	case DISP_PORT_ONLY:
7115 	default:
7116 		(void) mi_sprintf(buf, "[%u, %u] %s",
7117 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7118 		break;
7119 	}
7120 
7121 	return (buf);
7122 }
7123 
7124 /*
7125  * Called via squeue to get on to eager's perimeter. It sends a
7126  * TH_RST if eager is in the fanout table. The listener wants the
7127  * eager to disappear either by means of tcp_eager_blowoff() or
7128  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7129  * called (via squeue) if the eager cannot be inserted in the
7130  * fanout table in tcp_conn_request().
7131  */
7132 /* ARGSUSED */
7133 void
7134 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7135 {
7136 	conn_t	*econnp = (conn_t *)arg;
7137 	tcp_t	*eager = econnp->conn_tcp;
7138 	tcp_t	*listener = eager->tcp_listener;
7139 	tcp_stack_t	*tcps = eager->tcp_tcps;
7140 
7141 	/*
7142 	 * We could be called because listener is closing. Since
7143 	 * the eager is using listener's queue's, its not safe.
7144 	 * Better use the default queue just to send the TH_RST
7145 	 * out.
7146 	 */
7147 	ASSERT(tcps->tcps_g_q != NULL);
7148 	eager->tcp_rq = tcps->tcps_g_q;
7149 	eager->tcp_wq = WR(tcps->tcps_g_q);
7150 
7151 	/*
7152 	 * An eager's conn_fanout will be NULL if it's a duplicate
7153 	 * for an existing 4-tuples in the conn fanout table.
7154 	 * We don't want to send an RST out in such case.
7155 	 */
7156 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7157 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7158 		    eager, eager->tcp_snxt, 0, TH_RST);
7159 	}
7160 
7161 	/* We are here because listener wants this eager gone */
7162 	if (listener != NULL) {
7163 		mutex_enter(&listener->tcp_eager_lock);
7164 		tcp_eager_unlink(eager);
7165 		if (eager->tcp_tconnind_started) {
7166 			/*
7167 			 * The eager has sent a conn_ind up to the
7168 			 * listener but listener decides to close
7169 			 * instead. We need to drop the extra ref
7170 			 * placed on eager in tcp_rput_data() before
7171 			 * sending the conn_ind to listener.
7172 			 */
7173 			CONN_DEC_REF(econnp);
7174 		}
7175 		mutex_exit(&listener->tcp_eager_lock);
7176 		CONN_DEC_REF(listener->tcp_connp);
7177 	}
7178 
7179 	if (eager->tcp_state > TCPS_BOUND)
7180 		tcp_close_detached(eager);
7181 }
7182 
7183 /*
7184  * Reset any eager connection hanging off this listener marked
7185  * with 'seqnum' and then reclaim it's resources.
7186  */
7187 static boolean_t
7188 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7189 {
7190 	tcp_t	*eager;
7191 	mblk_t 	*mp;
7192 	tcp_stack_t	*tcps = listener->tcp_tcps;
7193 
7194 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7195 	eager = listener;
7196 	mutex_enter(&listener->tcp_eager_lock);
7197 	do {
7198 		eager = eager->tcp_eager_next_q;
7199 		if (eager == NULL) {
7200 			mutex_exit(&listener->tcp_eager_lock);
7201 			return (B_FALSE);
7202 		}
7203 	} while (eager->tcp_conn_req_seqnum != seqnum);
7204 
7205 	if (eager->tcp_closemp_used) {
7206 		mutex_exit(&listener->tcp_eager_lock);
7207 		return (B_TRUE);
7208 	}
7209 	eager->tcp_closemp_used = B_TRUE;
7210 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7211 	CONN_INC_REF(eager->tcp_connp);
7212 	mutex_exit(&listener->tcp_eager_lock);
7213 	mp = &eager->tcp_closemp;
7214 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7215 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7216 	return (B_TRUE);
7217 }
7218 
7219 /*
7220  * Reset any eager connection hanging off this listener
7221  * and then reclaim it's resources.
7222  */
7223 static void
7224 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7225 {
7226 	tcp_t	*eager;
7227 	mblk_t	*mp;
7228 	tcp_stack_t	*tcps = listener->tcp_tcps;
7229 
7230 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7231 
7232 	if (!q0_only) {
7233 		/* First cleanup q */
7234 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7235 		eager = listener->tcp_eager_next_q;
7236 		while (eager != NULL) {
7237 			if (!eager->tcp_closemp_used) {
7238 				eager->tcp_closemp_used = B_TRUE;
7239 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7240 				CONN_INC_REF(eager->tcp_connp);
7241 				mp = &eager->tcp_closemp;
7242 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7243 				    tcp_eager_kill, eager->tcp_connp,
7244 				    SQTAG_TCP_EAGER_CLEANUP);
7245 			}
7246 			eager = eager->tcp_eager_next_q;
7247 		}
7248 	}
7249 	/* Then cleanup q0 */
7250 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7251 	eager = listener->tcp_eager_next_q0;
7252 	while (eager != listener) {
7253 		if (!eager->tcp_closemp_used) {
7254 			eager->tcp_closemp_used = B_TRUE;
7255 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7256 			CONN_INC_REF(eager->tcp_connp);
7257 			mp = &eager->tcp_closemp;
7258 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7259 			    tcp_eager_kill, eager->tcp_connp,
7260 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7261 		}
7262 		eager = eager->tcp_eager_next_q0;
7263 	}
7264 }
7265 
7266 /*
7267  * If we are an eager connection hanging off a listener that hasn't
7268  * formally accepted the connection yet, get off his list and blow off
7269  * any data that we have accumulated.
7270  */
7271 static void
7272 tcp_eager_unlink(tcp_t *tcp)
7273 {
7274 	tcp_t	*listener = tcp->tcp_listener;
7275 
7276 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7277 	ASSERT(listener != NULL);
7278 	if (tcp->tcp_eager_next_q0 != NULL) {
7279 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7280 
7281 		/* Remove the eager tcp from q0 */
7282 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7283 		    tcp->tcp_eager_prev_q0;
7284 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7285 		    tcp->tcp_eager_next_q0;
7286 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7287 		listener->tcp_conn_req_cnt_q0--;
7288 
7289 		tcp->tcp_eager_next_q0 = NULL;
7290 		tcp->tcp_eager_prev_q0 = NULL;
7291 
7292 		/*
7293 		 * Take the eager out, if it is in the list of droppable
7294 		 * eagers.
7295 		 */
7296 		MAKE_UNDROPPABLE(tcp);
7297 
7298 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7299 			/* we have timed out before */
7300 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7301 			listener->tcp_syn_rcvd_timeout--;
7302 		}
7303 	} else {
7304 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7305 		tcp_t	*prev = NULL;
7306 
7307 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7308 			if (tcpp[0] == tcp) {
7309 				if (listener->tcp_eager_last_q == tcp) {
7310 					/*
7311 					 * If we are unlinking the last
7312 					 * element on the list, adjust
7313 					 * tail pointer. Set tail pointer
7314 					 * to nil when list is empty.
7315 					 */
7316 					ASSERT(tcp->tcp_eager_next_q == NULL);
7317 					if (listener->tcp_eager_last_q ==
7318 					    listener->tcp_eager_next_q) {
7319 						listener->tcp_eager_last_q =
7320 						    NULL;
7321 					} else {
7322 						/*
7323 						 * We won't get here if there
7324 						 * is only one eager in the
7325 						 * list.
7326 						 */
7327 						ASSERT(prev != NULL);
7328 						listener->tcp_eager_last_q =
7329 						    prev;
7330 					}
7331 				}
7332 				tcpp[0] = tcp->tcp_eager_next_q;
7333 				tcp->tcp_eager_next_q = NULL;
7334 				tcp->tcp_eager_last_q = NULL;
7335 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7336 				listener->tcp_conn_req_cnt_q--;
7337 				break;
7338 			}
7339 			prev = tcpp[0];
7340 		}
7341 	}
7342 	tcp->tcp_listener = NULL;
7343 }
7344 
7345 /* Shorthand to generate and send TPI error acks to our client */
7346 static void
7347 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7348 {
7349 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7350 		putnext(tcp->tcp_rq, mp);
7351 }
7352 
7353 /* Shorthand to generate and send TPI error acks to our client */
7354 static void
7355 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7356     int t_error, int sys_error)
7357 {
7358 	struct T_error_ack	*teackp;
7359 
7360 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7361 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7362 		teackp = (struct T_error_ack *)mp->b_rptr;
7363 		teackp->ERROR_prim = primitive;
7364 		teackp->TLI_error = t_error;
7365 		teackp->UNIX_error = sys_error;
7366 		putnext(tcp->tcp_rq, mp);
7367 	}
7368 }
7369 
7370 /*
7371  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7372  * but instead the code relies on:
7373  * - the fact that the address of the array and its size never changes
7374  * - the atomic assignment of the elements of the array
7375  */
7376 /* ARGSUSED */
7377 static int
7378 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7379 {
7380 	int i;
7381 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7382 
7383 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7384 		if (tcps->tcps_g_epriv_ports[i] != 0)
7385 			(void) mi_mpprintf(mp, "%d ",
7386 			    tcps->tcps_g_epriv_ports[i]);
7387 	}
7388 	return (0);
7389 }
7390 
7391 /*
7392  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7393  * threads from changing it at the same time.
7394  */
7395 /* ARGSUSED */
7396 static int
7397 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7398     cred_t *cr)
7399 {
7400 	long	new_value;
7401 	int	i;
7402 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7403 
7404 	/*
7405 	 * Fail the request if the new value does not lie within the
7406 	 * port number limits.
7407 	 */
7408 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7409 	    new_value <= 0 || new_value >= 65536) {
7410 		return (EINVAL);
7411 	}
7412 
7413 	mutex_enter(&tcps->tcps_epriv_port_lock);
7414 	/* Check if the value is already in the list */
7415 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7416 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7417 			mutex_exit(&tcps->tcps_epriv_port_lock);
7418 			return (EEXIST);
7419 		}
7420 	}
7421 	/* Find an empty slot */
7422 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7423 		if (tcps->tcps_g_epriv_ports[i] == 0)
7424 			break;
7425 	}
7426 	if (i == tcps->tcps_g_num_epriv_ports) {
7427 		mutex_exit(&tcps->tcps_epriv_port_lock);
7428 		return (EOVERFLOW);
7429 	}
7430 	/* Set the new value */
7431 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7432 	mutex_exit(&tcps->tcps_epriv_port_lock);
7433 	return (0);
7434 }
7435 
7436 /*
7437  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7438  * threads from changing it at the same time.
7439  */
7440 /* ARGSUSED */
7441 static int
7442 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7443     cred_t *cr)
7444 {
7445 	long	new_value;
7446 	int	i;
7447 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7448 
7449 	/*
7450 	 * Fail the request if the new value does not lie within the
7451 	 * port number limits.
7452 	 */
7453 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7454 	    new_value >= 65536) {
7455 		return (EINVAL);
7456 	}
7457 
7458 	mutex_enter(&tcps->tcps_epriv_port_lock);
7459 	/* Check that the value is already in the list */
7460 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7461 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7462 			break;
7463 	}
7464 	if (i == tcps->tcps_g_num_epriv_ports) {
7465 		mutex_exit(&tcps->tcps_epriv_port_lock);
7466 		return (ESRCH);
7467 	}
7468 	/* Clear the value */
7469 	tcps->tcps_g_epriv_ports[i] = 0;
7470 	mutex_exit(&tcps->tcps_epriv_port_lock);
7471 	return (0);
7472 }
7473 
7474 /* Return the TPI/TLI equivalent of our current tcp_state */
7475 static int
7476 tcp_tpistate(tcp_t *tcp)
7477 {
7478 	switch (tcp->tcp_state) {
7479 	case TCPS_IDLE:
7480 		return (TS_UNBND);
7481 	case TCPS_LISTEN:
7482 		/*
7483 		 * Return whether there are outstanding T_CONN_IND waiting
7484 		 * for the matching T_CONN_RES. Therefore don't count q0.
7485 		 */
7486 		if (tcp->tcp_conn_req_cnt_q > 0)
7487 			return (TS_WRES_CIND);
7488 		else
7489 			return (TS_IDLE);
7490 	case TCPS_BOUND:
7491 		return (TS_IDLE);
7492 	case TCPS_SYN_SENT:
7493 		return (TS_WCON_CREQ);
7494 	case TCPS_SYN_RCVD:
7495 		/*
7496 		 * Note: assumption: this has to the active open SYN_RCVD.
7497 		 * The passive instance is detached in SYN_RCVD stage of
7498 		 * incoming connection processing so we cannot get request
7499 		 * for T_info_ack on it.
7500 		 */
7501 		return (TS_WACK_CRES);
7502 	case TCPS_ESTABLISHED:
7503 		return (TS_DATA_XFER);
7504 	case TCPS_CLOSE_WAIT:
7505 		return (TS_WREQ_ORDREL);
7506 	case TCPS_FIN_WAIT_1:
7507 		return (TS_WIND_ORDREL);
7508 	case TCPS_FIN_WAIT_2:
7509 		return (TS_WIND_ORDREL);
7510 
7511 	case TCPS_CLOSING:
7512 	case TCPS_LAST_ACK:
7513 	case TCPS_TIME_WAIT:
7514 	case TCPS_CLOSED:
7515 		/*
7516 		 * Following TS_WACK_DREQ7 is a rendition of "not
7517 		 * yet TS_IDLE" TPI state. There is no best match to any
7518 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7519 		 * choose a value chosen that will map to TLI/XTI level
7520 		 * state of TSTATECHNG (state is process of changing) which
7521 		 * captures what this dummy state represents.
7522 		 */
7523 		return (TS_WACK_DREQ7);
7524 	default:
7525 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7526 		    tcp->tcp_state, tcp_display(tcp, NULL,
7527 		    DISP_PORT_ONLY));
7528 		return (TS_UNBND);
7529 	}
7530 }
7531 
7532 static void
7533 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7534 {
7535 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7536 
7537 	if (tcp->tcp_family == AF_INET6)
7538 		*tia = tcp_g_t_info_ack_v6;
7539 	else
7540 		*tia = tcp_g_t_info_ack;
7541 	tia->CURRENT_state = tcp_tpistate(tcp);
7542 	tia->OPT_size = tcp_max_optsize;
7543 	if (tcp->tcp_mss == 0) {
7544 		/* Not yet set - tcp_open does not set mss */
7545 		if (tcp->tcp_ipversion == IPV4_VERSION)
7546 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7547 		else
7548 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7549 	} else {
7550 		tia->TIDU_size = tcp->tcp_mss;
7551 	}
7552 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7553 }
7554 
7555 /*
7556  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7557  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7558  * tcp_g_t_info_ack.  The current state of the stream is copied from
7559  * tcp_state.
7560  */
7561 static void
7562 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7563 {
7564 	t_uscalar_t		cap_bits1;
7565 	struct T_capability_ack	*tcap;
7566 
7567 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7568 		freemsg(mp);
7569 		return;
7570 	}
7571 
7572 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7573 
7574 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7575 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7576 	if (mp == NULL)
7577 		return;
7578 
7579 	tcap = (struct T_capability_ack *)mp->b_rptr;
7580 	tcap->CAP_bits1 = 0;
7581 
7582 	if (cap_bits1 & TC1_INFO) {
7583 		tcp_copy_info(&tcap->INFO_ack, tcp);
7584 		tcap->CAP_bits1 |= TC1_INFO;
7585 	}
7586 
7587 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7588 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7589 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7590 	}
7591 
7592 	putnext(tcp->tcp_rq, mp);
7593 }
7594 
7595 /*
7596  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7597  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7598  * The current state of the stream is copied from tcp_state.
7599  */
7600 static void
7601 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7602 {
7603 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7604 	    T_INFO_ACK);
7605 	if (!mp) {
7606 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7607 		return;
7608 	}
7609 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7610 	putnext(tcp->tcp_rq, mp);
7611 }
7612 
7613 /* Respond to the TPI addr request */
7614 static void
7615 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7616 {
7617 	sin_t	*sin;
7618 	mblk_t	*ackmp;
7619 	struct T_addr_ack *taa;
7620 
7621 	/* Make it large enough for worst case */
7622 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7623 	    2 * sizeof (sin6_t), 1);
7624 	if (ackmp == NULL) {
7625 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7626 		return;
7627 	}
7628 
7629 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7630 		tcp_addr_req_ipv6(tcp, ackmp);
7631 		return;
7632 	}
7633 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7634 
7635 	bzero(taa, sizeof (struct T_addr_ack));
7636 	ackmp->b_wptr = (uchar_t *)&taa[1];
7637 
7638 	taa->PRIM_type = T_ADDR_ACK;
7639 	ackmp->b_datap->db_type = M_PCPROTO;
7640 
7641 	/*
7642 	 * Note: Following code assumes 32 bit alignment of basic
7643 	 * data structures like sin_t and struct T_addr_ack.
7644 	 */
7645 	if (tcp->tcp_state >= TCPS_BOUND) {
7646 		/*
7647 		 * Fill in local address
7648 		 */
7649 		taa->LOCADDR_length = sizeof (sin_t);
7650 		taa->LOCADDR_offset = sizeof (*taa);
7651 
7652 		sin = (sin_t *)&taa[1];
7653 
7654 		/* Fill zeroes and then intialize non-zero fields */
7655 		*sin = sin_null;
7656 
7657 		sin->sin_family = AF_INET;
7658 
7659 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7660 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7661 
7662 		ackmp->b_wptr = (uchar_t *)&sin[1];
7663 
7664 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7665 			/*
7666 			 * Fill in Remote address
7667 			 */
7668 			taa->REMADDR_length = sizeof (sin_t);
7669 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7670 			    taa->LOCADDR_length);
7671 
7672 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7673 			*sin = sin_null;
7674 			sin->sin_family = AF_INET;
7675 			sin->sin_addr.s_addr = tcp->tcp_remote;
7676 			sin->sin_port = tcp->tcp_fport;
7677 
7678 			ackmp->b_wptr = (uchar_t *)&sin[1];
7679 		}
7680 	}
7681 	putnext(tcp->tcp_rq, ackmp);
7682 }
7683 
7684 /* Assumes that tcp_addr_req gets enough space and alignment */
7685 static void
7686 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7687 {
7688 	sin6_t	*sin6;
7689 	struct T_addr_ack *taa;
7690 
7691 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7692 	ASSERT(OK_32PTR(ackmp->b_rptr));
7693 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7694 	    2 * sizeof (sin6_t));
7695 
7696 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7697 
7698 	bzero(taa, sizeof (struct T_addr_ack));
7699 	ackmp->b_wptr = (uchar_t *)&taa[1];
7700 
7701 	taa->PRIM_type = T_ADDR_ACK;
7702 	ackmp->b_datap->db_type = M_PCPROTO;
7703 
7704 	/*
7705 	 * Note: Following code assumes 32 bit alignment of basic
7706 	 * data structures like sin6_t and struct T_addr_ack.
7707 	 */
7708 	if (tcp->tcp_state >= TCPS_BOUND) {
7709 		/*
7710 		 * Fill in local address
7711 		 */
7712 		taa->LOCADDR_length = sizeof (sin6_t);
7713 		taa->LOCADDR_offset = sizeof (*taa);
7714 
7715 		sin6 = (sin6_t *)&taa[1];
7716 		*sin6 = sin6_null;
7717 
7718 		sin6->sin6_family = AF_INET6;
7719 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7720 		sin6->sin6_port = tcp->tcp_lport;
7721 
7722 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7723 
7724 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7725 			/*
7726 			 * Fill in Remote address
7727 			 */
7728 			taa->REMADDR_length = sizeof (sin6_t);
7729 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7730 			    taa->LOCADDR_length);
7731 
7732 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7733 			*sin6 = sin6_null;
7734 			sin6->sin6_family = AF_INET6;
7735 			sin6->sin6_flowinfo =
7736 			    tcp->tcp_ip6h->ip6_vcf &
7737 			    ~IPV6_VERS_AND_FLOW_MASK;
7738 			sin6->sin6_addr = tcp->tcp_remote_v6;
7739 			sin6->sin6_port = tcp->tcp_fport;
7740 
7741 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7742 		}
7743 	}
7744 	putnext(tcp->tcp_rq, ackmp);
7745 }
7746 
7747 /*
7748  * Handle reinitialization of a tcp structure.
7749  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7750  */
7751 static void
7752 tcp_reinit(tcp_t *tcp)
7753 {
7754 	mblk_t	*mp;
7755 	int 	err;
7756 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7757 
7758 	TCP_STAT(tcps, tcp_reinit_calls);
7759 
7760 	/* tcp_reinit should never be called for detached tcp_t's */
7761 	ASSERT(tcp->tcp_listener == NULL);
7762 	ASSERT((tcp->tcp_family == AF_INET &&
7763 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7764 	    (tcp->tcp_family == AF_INET6 &&
7765 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7766 	    tcp->tcp_ipversion == IPV6_VERSION)));
7767 
7768 	/* Cancel outstanding timers */
7769 	tcp_timers_stop(tcp);
7770 
7771 	/*
7772 	 * Reset everything in the state vector, after updating global
7773 	 * MIB data from instance counters.
7774 	 */
7775 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7776 	tcp->tcp_ibsegs = 0;
7777 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7778 	tcp->tcp_obsegs = 0;
7779 
7780 	tcp_close_mpp(&tcp->tcp_xmit_head);
7781 	if (tcp->tcp_snd_zcopy_aware)
7782 		tcp_zcopy_notify(tcp);
7783 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7784 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7785 	mutex_enter(&tcp->tcp_non_sq_lock);
7786 	if (tcp->tcp_flow_stopped &&
7787 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7788 		tcp_clrqfull(tcp);
7789 	}
7790 	mutex_exit(&tcp->tcp_non_sq_lock);
7791 	tcp_close_mpp(&tcp->tcp_reass_head);
7792 	tcp->tcp_reass_tail = NULL;
7793 	if (tcp->tcp_rcv_list != NULL) {
7794 		/* Free b_next chain */
7795 		tcp_close_mpp(&tcp->tcp_rcv_list);
7796 		tcp->tcp_rcv_last_head = NULL;
7797 		tcp->tcp_rcv_last_tail = NULL;
7798 		tcp->tcp_rcv_cnt = 0;
7799 	}
7800 	tcp->tcp_rcv_last_tail = NULL;
7801 
7802 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7803 		freemsg(mp);
7804 		tcp->tcp_urp_mp = NULL;
7805 	}
7806 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7807 		freemsg(mp);
7808 		tcp->tcp_urp_mark_mp = NULL;
7809 	}
7810 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7811 		freeb(tcp->tcp_fused_sigurg_mp);
7812 		tcp->tcp_fused_sigurg_mp = NULL;
7813 	}
7814 	if (tcp->tcp_ordrel_mp != NULL) {
7815 		freeb(tcp->tcp_ordrel_mp);
7816 		tcp->tcp_ordrel_mp = NULL;
7817 	}
7818 
7819 	/*
7820 	 * Following is a union with two members which are
7821 	 * identical types and size so the following cleanup
7822 	 * is enough.
7823 	 */
7824 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7825 
7826 	CL_INET_DISCONNECT(tcp);
7827 
7828 	/*
7829 	 * The connection can't be on the tcp_time_wait_head list
7830 	 * since it is not detached.
7831 	 */
7832 	ASSERT(tcp->tcp_time_wait_next == NULL);
7833 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7834 	ASSERT(tcp->tcp_time_wait_expire == 0);
7835 
7836 	if (tcp->tcp_kssl_pending) {
7837 		tcp->tcp_kssl_pending = B_FALSE;
7838 
7839 		/* Don't reset if the initialized by bind. */
7840 		if (tcp->tcp_kssl_ent != NULL) {
7841 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7842 			    KSSL_NO_PROXY);
7843 		}
7844 	}
7845 	if (tcp->tcp_kssl_ctx != NULL) {
7846 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7847 		tcp->tcp_kssl_ctx = NULL;
7848 	}
7849 
7850 	/*
7851 	 * Reset/preserve other values
7852 	 */
7853 	tcp_reinit_values(tcp);
7854 	ipcl_hash_remove(tcp->tcp_connp);
7855 	conn_delete_ire(tcp->tcp_connp, NULL);
7856 	tcp_ipsec_cleanup(tcp);
7857 
7858 	if (tcp->tcp_conn_req_max != 0) {
7859 		/*
7860 		 * This is the case when a TLI program uses the same
7861 		 * transport end point to accept a connection.  This
7862 		 * makes the TCP both a listener and acceptor.  When
7863 		 * this connection is closed, we need to set the state
7864 		 * back to TCPS_LISTEN.  Make sure that the eager list
7865 		 * is reinitialized.
7866 		 *
7867 		 * Note that this stream is still bound to the four
7868 		 * tuples of the previous connection in IP.  If a new
7869 		 * SYN with different foreign address comes in, IP will
7870 		 * not find it and will send it to the global queue.  In
7871 		 * the global queue, TCP will do a tcp_lookup_listener()
7872 		 * to find this stream.  This works because this stream
7873 		 * is only removed from connected hash.
7874 		 *
7875 		 */
7876 		tcp->tcp_state = TCPS_LISTEN;
7877 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7878 		tcp->tcp_eager_next_drop_q0 = tcp;
7879 		tcp->tcp_eager_prev_drop_q0 = tcp;
7880 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7881 		if (tcp->tcp_family == AF_INET6) {
7882 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7883 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7884 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7885 		} else {
7886 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7887 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7888 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7889 		}
7890 	} else {
7891 		tcp->tcp_state = TCPS_BOUND;
7892 	}
7893 
7894 	/*
7895 	 * Initialize to default values
7896 	 * Can't fail since enough header template space already allocated
7897 	 * at open().
7898 	 */
7899 	err = tcp_init_values(tcp);
7900 	ASSERT(err == 0);
7901 	/* Restore state in tcp_tcph */
7902 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7903 	if (tcp->tcp_ipversion == IPV4_VERSION)
7904 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7905 	else
7906 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7907 	/*
7908 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7909 	 * since the lookup funcs can only lookup on tcp_t
7910 	 */
7911 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7912 
7913 	ASSERT(tcp->tcp_ptpbhn != NULL);
7914 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7915 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7916 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7917 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7918 }
7919 
7920 /*
7921  * Force values to zero that need be zero.
7922  * Do not touch values asociated with the BOUND or LISTEN state
7923  * since the connection will end up in that state after the reinit.
7924  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7925  * structure!
7926  */
7927 static void
7928 tcp_reinit_values(tcp)
7929 	tcp_t *tcp;
7930 {
7931 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7932 
7933 #ifndef	lint
7934 #define	DONTCARE(x)
7935 #define	PRESERVE(x)
7936 #else
7937 #define	DONTCARE(x)	((x) = (x))
7938 #define	PRESERVE(x)	((x) = (x))
7939 #endif	/* lint */
7940 
7941 	PRESERVE(tcp->tcp_bind_hash);
7942 	PRESERVE(tcp->tcp_ptpbhn);
7943 	PRESERVE(tcp->tcp_acceptor_hash);
7944 	PRESERVE(tcp->tcp_ptpahn);
7945 
7946 	/* Should be ASSERT NULL on these with new code! */
7947 	ASSERT(tcp->tcp_time_wait_next == NULL);
7948 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7949 	ASSERT(tcp->tcp_time_wait_expire == 0);
7950 	PRESERVE(tcp->tcp_state);
7951 	PRESERVE(tcp->tcp_rq);
7952 	PRESERVE(tcp->tcp_wq);
7953 
7954 	ASSERT(tcp->tcp_xmit_head == NULL);
7955 	ASSERT(tcp->tcp_xmit_last == NULL);
7956 	ASSERT(tcp->tcp_unsent == 0);
7957 	ASSERT(tcp->tcp_xmit_tail == NULL);
7958 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7959 
7960 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7961 	tcp->tcp_suna = 0;			/* Displayed in mib */
7962 	tcp->tcp_swnd = 0;
7963 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7964 
7965 	ASSERT(tcp->tcp_ibsegs == 0);
7966 	ASSERT(tcp->tcp_obsegs == 0);
7967 
7968 	if (tcp->tcp_iphc != NULL) {
7969 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7970 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7971 	}
7972 
7973 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7974 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7975 	DONTCARE(tcp->tcp_ipha);
7976 	DONTCARE(tcp->tcp_ip6h);
7977 	DONTCARE(tcp->tcp_ip_hdr_len);
7978 	DONTCARE(tcp->tcp_tcph);
7979 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7980 	tcp->tcp_valid_bits = 0;
7981 
7982 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7983 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7984 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7985 	tcp->tcp_last_rcv_lbolt = 0;
7986 
7987 	tcp->tcp_init_cwnd = 0;
7988 
7989 	tcp->tcp_urp_last_valid = 0;
7990 	tcp->tcp_hard_binding = 0;
7991 	tcp->tcp_hard_bound = 0;
7992 	PRESERVE(tcp->tcp_cred);
7993 	PRESERVE(tcp->tcp_cpid);
7994 	PRESERVE(tcp->tcp_open_time);
7995 	PRESERVE(tcp->tcp_exclbind);
7996 
7997 	tcp->tcp_fin_acked = 0;
7998 	tcp->tcp_fin_rcvd = 0;
7999 	tcp->tcp_fin_sent = 0;
8000 	tcp->tcp_ordrel_done = 0;
8001 
8002 	tcp->tcp_debug = 0;
8003 	tcp->tcp_dontroute = 0;
8004 	tcp->tcp_broadcast = 0;
8005 
8006 	tcp->tcp_useloopback = 0;
8007 	tcp->tcp_reuseaddr = 0;
8008 	tcp->tcp_oobinline = 0;
8009 	tcp->tcp_dgram_errind = 0;
8010 
8011 	tcp->tcp_detached = 0;
8012 	tcp->tcp_bind_pending = 0;
8013 	tcp->tcp_unbind_pending = 0;
8014 
8015 	tcp->tcp_snd_ws_ok = B_FALSE;
8016 	tcp->tcp_snd_ts_ok = B_FALSE;
8017 	tcp->tcp_linger = 0;
8018 	tcp->tcp_ka_enabled = 0;
8019 	tcp->tcp_zero_win_probe = 0;
8020 
8021 	tcp->tcp_loopback = 0;
8022 	tcp->tcp_refuse = 0;
8023 	tcp->tcp_localnet = 0;
8024 	tcp->tcp_syn_defense = 0;
8025 	tcp->tcp_set_timer = 0;
8026 
8027 	tcp->tcp_active_open = 0;
8028 	tcp->tcp_rexmit = B_FALSE;
8029 	tcp->tcp_xmit_zc_clean = B_FALSE;
8030 
8031 	tcp->tcp_snd_sack_ok = B_FALSE;
8032 	PRESERVE(tcp->tcp_recvdstaddr);
8033 	tcp->tcp_hwcksum = B_FALSE;
8034 
8035 	tcp->tcp_ire_ill_check_done = B_FALSE;
8036 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8037 
8038 	tcp->tcp_mdt = B_FALSE;
8039 	tcp->tcp_mdt_hdr_head = 0;
8040 	tcp->tcp_mdt_hdr_tail = 0;
8041 
8042 	tcp->tcp_conn_def_q0 = 0;
8043 	tcp->tcp_ip_forward_progress = B_FALSE;
8044 	tcp->tcp_anon_priv_bind = 0;
8045 	tcp->tcp_ecn_ok = B_FALSE;
8046 
8047 	tcp->tcp_cwr = B_FALSE;
8048 	tcp->tcp_ecn_echo_on = B_FALSE;
8049 
8050 	if (tcp->tcp_sack_info != NULL) {
8051 		if (tcp->tcp_notsack_list != NULL) {
8052 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8053 		}
8054 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8055 		tcp->tcp_sack_info = NULL;
8056 	}
8057 
8058 	tcp->tcp_rcv_ws = 0;
8059 	tcp->tcp_snd_ws = 0;
8060 	tcp->tcp_ts_recent = 0;
8061 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8062 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8063 	tcp->tcp_if_mtu = 0;
8064 
8065 	ASSERT(tcp->tcp_reass_head == NULL);
8066 	ASSERT(tcp->tcp_reass_tail == NULL);
8067 
8068 	tcp->tcp_cwnd_cnt = 0;
8069 
8070 	ASSERT(tcp->tcp_rcv_list == NULL);
8071 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8072 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8073 	ASSERT(tcp->tcp_rcv_cnt == 0);
8074 
8075 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8076 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8077 	tcp->tcp_csuna = 0;
8078 
8079 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8080 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8081 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8082 	tcp->tcp_rtt_update = 0;
8083 
8084 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8085 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8086 
8087 	tcp->tcp_rack = 0;			/* Displayed in mib */
8088 	tcp->tcp_rack_cnt = 0;
8089 	tcp->tcp_rack_cur_max = 0;
8090 	tcp->tcp_rack_abs_max = 0;
8091 
8092 	tcp->tcp_max_swnd = 0;
8093 
8094 	ASSERT(tcp->tcp_listener == NULL);
8095 
8096 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8097 
8098 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8099 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8100 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8101 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8102 
8103 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8104 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8105 	PRESERVE(tcp->tcp_conn_req_max);
8106 	PRESERVE(tcp->tcp_conn_req_seqnum);
8107 
8108 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8109 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8110 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8111 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8112 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8113 
8114 	tcp->tcp_lingertime = 0;
8115 
8116 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8117 	ASSERT(tcp->tcp_urp_mp == NULL);
8118 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8119 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8120 
8121 	ASSERT(tcp->tcp_eager_next_q == NULL);
8122 	ASSERT(tcp->tcp_eager_last_q == NULL);
8123 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8124 	    tcp->tcp_eager_prev_q0 == NULL) ||
8125 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8126 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8127 
8128 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8129 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8130 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8131 
8132 	tcp->tcp_client_errno = 0;
8133 
8134 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8135 
8136 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8137 
8138 	PRESERVE(tcp->tcp_bound_source_v6);
8139 	tcp->tcp_last_sent_len = 0;
8140 	tcp->tcp_dupack_cnt = 0;
8141 
8142 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8143 	PRESERVE(tcp->tcp_lport);
8144 
8145 	PRESERVE(tcp->tcp_acceptor_lockp);
8146 
8147 	ASSERT(tcp->tcp_ordrel_mp == NULL);
8148 	PRESERVE(tcp->tcp_acceptor_id);
8149 	DONTCARE(tcp->tcp_ipsec_overhead);
8150 
8151 	PRESERVE(tcp->tcp_family);
8152 	if (tcp->tcp_family == AF_INET6) {
8153 		tcp->tcp_ipversion = IPV6_VERSION;
8154 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8155 	} else {
8156 		tcp->tcp_ipversion = IPV4_VERSION;
8157 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8158 	}
8159 
8160 	tcp->tcp_bound_if = 0;
8161 	tcp->tcp_ipv6_recvancillary = 0;
8162 	tcp->tcp_recvifindex = 0;
8163 	tcp->tcp_recvhops = 0;
8164 	tcp->tcp_closed = 0;
8165 	tcp->tcp_cleandeathtag = 0;
8166 	if (tcp->tcp_hopopts != NULL) {
8167 		mi_free(tcp->tcp_hopopts);
8168 		tcp->tcp_hopopts = NULL;
8169 		tcp->tcp_hopoptslen = 0;
8170 	}
8171 	ASSERT(tcp->tcp_hopoptslen == 0);
8172 	if (tcp->tcp_dstopts != NULL) {
8173 		mi_free(tcp->tcp_dstopts);
8174 		tcp->tcp_dstopts = NULL;
8175 		tcp->tcp_dstoptslen = 0;
8176 	}
8177 	ASSERT(tcp->tcp_dstoptslen == 0);
8178 	if (tcp->tcp_rtdstopts != NULL) {
8179 		mi_free(tcp->tcp_rtdstopts);
8180 		tcp->tcp_rtdstopts = NULL;
8181 		tcp->tcp_rtdstoptslen = 0;
8182 	}
8183 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8184 	if (tcp->tcp_rthdr != NULL) {
8185 		mi_free(tcp->tcp_rthdr);
8186 		tcp->tcp_rthdr = NULL;
8187 		tcp->tcp_rthdrlen = 0;
8188 	}
8189 	ASSERT(tcp->tcp_rthdrlen == 0);
8190 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8191 
8192 	/* Reset fusion-related fields */
8193 	tcp->tcp_fused = B_FALSE;
8194 	tcp->tcp_unfusable = B_FALSE;
8195 	tcp->tcp_fused_sigurg = B_FALSE;
8196 	tcp->tcp_direct_sockfs = B_FALSE;
8197 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8198 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8199 	tcp->tcp_loopback_peer = NULL;
8200 	tcp->tcp_fuse_rcv_hiwater = 0;
8201 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8202 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8203 
8204 	tcp->tcp_lso = B_FALSE;
8205 
8206 	tcp->tcp_in_ack_unsent = 0;
8207 	tcp->tcp_cork = B_FALSE;
8208 	tcp->tcp_tconnind_started = B_FALSE;
8209 
8210 	PRESERVE(tcp->tcp_squeue_bytes);
8211 
8212 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8213 	ASSERT(!tcp->tcp_kssl_pending);
8214 	PRESERVE(tcp->tcp_kssl_ent);
8215 
8216 	/* Sodirect */
8217 	tcp->tcp_sodirect = NULL;
8218 
8219 	tcp->tcp_closemp_used = B_FALSE;
8220 
8221 	PRESERVE(tcp->tcp_rsrv_mp);
8222 	PRESERVE(tcp->tcp_rsrv_mp_lock);
8223 
8224 #ifdef DEBUG
8225 	DONTCARE(tcp->tcmp_stk[0]);
8226 #endif
8227 
8228 
8229 #undef	DONTCARE
8230 #undef	PRESERVE
8231 }
8232 
8233 /*
8234  * Allocate necessary resources and initialize state vector.
8235  * Guaranteed not to fail so that when an error is returned,
8236  * the caller doesn't need to do any additional cleanup.
8237  */
8238 int
8239 tcp_init(tcp_t *tcp, queue_t *q)
8240 {
8241 	int	err;
8242 
8243 	tcp->tcp_rq = q;
8244 	tcp->tcp_wq = WR(q);
8245 	tcp->tcp_state = TCPS_IDLE;
8246 	if ((err = tcp_init_values(tcp)) != 0)
8247 		tcp_timers_stop(tcp);
8248 	return (err);
8249 }
8250 
8251 static int
8252 tcp_init_values(tcp_t *tcp)
8253 {
8254 	int	err;
8255 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8256 
8257 	ASSERT((tcp->tcp_family == AF_INET &&
8258 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8259 	    (tcp->tcp_family == AF_INET6 &&
8260 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8261 	    tcp->tcp_ipversion == IPV6_VERSION)));
8262 
8263 	/*
8264 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8265 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8266 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8267 	 * during first few transmissions of a connection as seen in slow
8268 	 * links.
8269 	 */
8270 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8271 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8272 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8273 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8274 	    tcps->tcps_conn_grace_period;
8275 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8276 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8277 	tcp->tcp_timer_backoff = 0;
8278 	tcp->tcp_ms_we_have_waited = 0;
8279 	tcp->tcp_last_recv_time = lbolt;
8280 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8281 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8282 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8283 
8284 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8285 
8286 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8287 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8288 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8289 	/*
8290 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8291 	 * passive open.
8292 	 */
8293 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8294 
8295 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8296 
8297 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8298 
8299 	tcp->tcp_mdt_hdr_head = 0;
8300 	tcp->tcp_mdt_hdr_tail = 0;
8301 
8302 	/* Reset fusion-related fields */
8303 	tcp->tcp_fused = B_FALSE;
8304 	tcp->tcp_unfusable = B_FALSE;
8305 	tcp->tcp_fused_sigurg = B_FALSE;
8306 	tcp->tcp_direct_sockfs = B_FALSE;
8307 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8308 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8309 	tcp->tcp_loopback_peer = NULL;
8310 	tcp->tcp_fuse_rcv_hiwater = 0;
8311 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8312 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8313 
8314 	/* Sodirect */
8315 	tcp->tcp_sodirect = NULL;
8316 
8317 	/* Initialize the header template */
8318 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8319 		err = tcp_header_init_ipv4(tcp);
8320 	} else {
8321 		err = tcp_header_init_ipv6(tcp);
8322 	}
8323 	if (err)
8324 		return (err);
8325 
8326 	/*
8327 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8328 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8329 	 */
8330 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8331 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8332 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8333 
8334 	tcp->tcp_cork = B_FALSE;
8335 	/*
8336 	 * Init the tcp_debug option.  This value determines whether TCP
8337 	 * calls strlog() to print out debug messages.  Doing this
8338 	 * initialization here means that this value is not inherited thru
8339 	 * tcp_reinit().
8340 	 */
8341 	tcp->tcp_debug = tcps->tcps_dbg;
8342 
8343 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8344 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8345 
8346 	return (0);
8347 }
8348 
8349 /*
8350  * Initialize the IPv4 header. Loses any record of any IP options.
8351  */
8352 static int
8353 tcp_header_init_ipv4(tcp_t *tcp)
8354 {
8355 	tcph_t		*tcph;
8356 	uint32_t	sum;
8357 	conn_t		*connp;
8358 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8359 
8360 	/*
8361 	 * This is a simple initialization. If there's
8362 	 * already a template, it should never be too small,
8363 	 * so reuse it.  Otherwise, allocate space for the new one.
8364 	 */
8365 	if (tcp->tcp_iphc == NULL) {
8366 		ASSERT(tcp->tcp_iphc_len == 0);
8367 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8368 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8369 		if (tcp->tcp_iphc == NULL) {
8370 			tcp->tcp_iphc_len = 0;
8371 			return (ENOMEM);
8372 		}
8373 	}
8374 
8375 	/* options are gone; may need a new label */
8376 	connp = tcp->tcp_connp;
8377 	connp->conn_mlp_type = mlptSingle;
8378 	connp->conn_ulp_labeled = !is_system_labeled();
8379 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8380 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8381 	tcp->tcp_ip6h = NULL;
8382 	tcp->tcp_ipversion = IPV4_VERSION;
8383 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8384 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8385 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8386 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8387 	tcp->tcp_ipha->ipha_version_and_hdr_length
8388 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8389 	tcp->tcp_ipha->ipha_ident = 0;
8390 
8391 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8392 	tcp->tcp_tos = 0;
8393 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8394 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8395 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8396 
8397 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8398 	tcp->tcp_tcph = tcph;
8399 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8400 	/*
8401 	 * IP wants our header length in the checksum field to
8402 	 * allow it to perform a single pseudo-header+checksum
8403 	 * calculation on behalf of TCP.
8404 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8405 	 */
8406 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8407 	sum = (sum >> 16) + (sum & 0xFFFF);
8408 	U16_TO_ABE16(sum, tcph->th_sum);
8409 	return (0);
8410 }
8411 
8412 /*
8413  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8414  */
8415 static int
8416 tcp_header_init_ipv6(tcp_t *tcp)
8417 {
8418 	tcph_t	*tcph;
8419 	uint32_t	sum;
8420 	conn_t	*connp;
8421 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8422 
8423 	/*
8424 	 * This is a simple initialization. If there's
8425 	 * already a template, it should never be too small,
8426 	 * so reuse it. Otherwise, allocate space for the new one.
8427 	 * Ensure that there is enough space to "downgrade" the tcp_t
8428 	 * to an IPv4 tcp_t. This requires having space for a full load
8429 	 * of IPv4 options, as well as a full load of TCP options
8430 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8431 	 * than a v6 header and a TCP header with a full load of TCP options
8432 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8433 	 * We want to avoid reallocation in the "downgraded" case when
8434 	 * processing outbound IPv4 options.
8435 	 */
8436 	if (tcp->tcp_iphc == NULL) {
8437 		ASSERT(tcp->tcp_iphc_len == 0);
8438 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8439 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8440 		if (tcp->tcp_iphc == NULL) {
8441 			tcp->tcp_iphc_len = 0;
8442 			return (ENOMEM);
8443 		}
8444 	}
8445 
8446 	/* options are gone; may need a new label */
8447 	connp = tcp->tcp_connp;
8448 	connp->conn_mlp_type = mlptSingle;
8449 	connp->conn_ulp_labeled = !is_system_labeled();
8450 
8451 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8452 	tcp->tcp_ipversion = IPV6_VERSION;
8453 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8454 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8455 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8456 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8457 	tcp->tcp_ipha = NULL;
8458 
8459 	/* Initialize the header template */
8460 
8461 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8462 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8463 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8464 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8465 
8466 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8467 	tcp->tcp_tcph = tcph;
8468 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8469 	/*
8470 	 * IP wants our header length in the checksum field to
8471 	 * allow it to perform a single psuedo-header+checksum
8472 	 * calculation on behalf of TCP.
8473 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8474 	 */
8475 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8476 	sum = (sum >> 16) + (sum & 0xFFFF);
8477 	U16_TO_ABE16(sum, tcph->th_sum);
8478 	return (0);
8479 }
8480 
8481 /* At minimum we need 8 bytes in the TCP header for the lookup */
8482 #define	ICMP_MIN_TCP_HDR	8
8483 
8484 /*
8485  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8486  * passed up by IP. The message is always received on the correct tcp_t.
8487  * Assumes that IP has pulled up everything up to and including the ICMP header.
8488  */
8489 void
8490 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8491 {
8492 	icmph_t *icmph;
8493 	ipha_t	*ipha;
8494 	int	iph_hdr_length;
8495 	tcph_t	*tcph;
8496 	boolean_t ipsec_mctl = B_FALSE;
8497 	boolean_t secure;
8498 	mblk_t *first_mp = mp;
8499 	uint32_t new_mss;
8500 	uint32_t ratio;
8501 	size_t mp_size = MBLKL(mp);
8502 	uint32_t seg_seq;
8503 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8504 
8505 	/* Assume IP provides aligned packets - otherwise toss */
8506 	if (!OK_32PTR(mp->b_rptr)) {
8507 		freemsg(mp);
8508 		return;
8509 	}
8510 
8511 	/*
8512 	 * Since ICMP errors are normal data marked with M_CTL when sent
8513 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8514 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8515 	 */
8516 	if ((mp_size == sizeof (ipsec_info_t)) &&
8517 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8518 		ASSERT(mp->b_cont != NULL);
8519 		mp = mp->b_cont;
8520 		/* IP should have done this */
8521 		ASSERT(OK_32PTR(mp->b_rptr));
8522 		mp_size = MBLKL(mp);
8523 		ipsec_mctl = B_TRUE;
8524 	}
8525 
8526 	/*
8527 	 * Verify that we have a complete outer IP header. If not, drop it.
8528 	 */
8529 	if (mp_size < sizeof (ipha_t)) {
8530 noticmpv4:
8531 		freemsg(first_mp);
8532 		return;
8533 	}
8534 
8535 	ipha = (ipha_t *)mp->b_rptr;
8536 	/*
8537 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8538 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8539 	 */
8540 	switch (IPH_HDR_VERSION(ipha)) {
8541 	case IPV6_VERSION:
8542 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8543 		return;
8544 	case IPV4_VERSION:
8545 		break;
8546 	default:
8547 		goto noticmpv4;
8548 	}
8549 
8550 	/* Skip past the outer IP and ICMP headers */
8551 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8552 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8553 	/*
8554 	 * If we don't have the correct outer IP header length or if the ULP
8555 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8556 	 * send it upstream.
8557 	 */
8558 	if (iph_hdr_length < sizeof (ipha_t) ||
8559 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8560 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8561 		goto noticmpv4;
8562 	}
8563 	ipha = (ipha_t *)&icmph[1];
8564 
8565 	/* Skip past the inner IP and find the ULP header */
8566 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8567 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8568 	/*
8569 	 * If we don't have the correct inner IP header length or if the ULP
8570 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8571 	 * bytes of TCP header, drop it.
8572 	 */
8573 	if (iph_hdr_length < sizeof (ipha_t) ||
8574 	    ipha->ipha_protocol != IPPROTO_TCP ||
8575 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8576 		goto noticmpv4;
8577 	}
8578 
8579 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8580 		if (ipsec_mctl) {
8581 			secure = ipsec_in_is_secure(first_mp);
8582 		} else {
8583 			secure = B_FALSE;
8584 		}
8585 		if (secure) {
8586 			/*
8587 			 * If we are willing to accept this in clear
8588 			 * we don't have to verify policy.
8589 			 */
8590 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8591 				if (!tcp_check_policy(tcp, first_mp,
8592 				    ipha, NULL, secure, ipsec_mctl)) {
8593 					/*
8594 					 * tcp_check_policy called
8595 					 * ip_drop_packet() on failure.
8596 					 */
8597 					return;
8598 				}
8599 			}
8600 		}
8601 	} else if (ipsec_mctl) {
8602 		/*
8603 		 * This is a hard_bound connection. IP has already
8604 		 * verified policy. We don't have to do it again.
8605 		 */
8606 		freeb(first_mp);
8607 		first_mp = mp;
8608 		ipsec_mctl = B_FALSE;
8609 	}
8610 
8611 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8612 	/*
8613 	 * TCP SHOULD check that the TCP sequence number contained in
8614 	 * payload of the ICMP error message is within the range
8615 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8616 	 */
8617 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8618 		/*
8619 		 * If the ICMP message is bogus, should we kill the
8620 		 * connection, or should we just drop the bogus ICMP
8621 		 * message? It would probably make more sense to just
8622 		 * drop the message so that if this one managed to get
8623 		 * in, the real connection should not suffer.
8624 		 */
8625 		goto noticmpv4;
8626 	}
8627 
8628 	switch (icmph->icmph_type) {
8629 	case ICMP_DEST_UNREACHABLE:
8630 		switch (icmph->icmph_code) {
8631 		case ICMP_FRAGMENTATION_NEEDED:
8632 			/*
8633 			 * Reduce the MSS based on the new MTU.  This will
8634 			 * eliminate any fragmentation locally.
8635 			 * N.B.  There may well be some funny side-effects on
8636 			 * the local send policy and the remote receive policy.
8637 			 * Pending further research, we provide
8638 			 * tcp_ignore_path_mtu just in case this proves
8639 			 * disastrous somewhere.
8640 			 *
8641 			 * After updating the MSS, retransmit part of the
8642 			 * dropped segment using the new mss by calling
8643 			 * tcp_wput_data().  Need to adjust all those
8644 			 * params to make sure tcp_wput_data() work properly.
8645 			 */
8646 			if (tcps->tcps_ignore_path_mtu)
8647 				break;
8648 
8649 			/*
8650 			 * Decrease the MSS by time stamp options
8651 			 * IP options and IPSEC options. tcp_hdr_len
8652 			 * includes time stamp option and IP option
8653 			 * length.
8654 			 */
8655 
8656 			new_mss = ntohs(icmph->icmph_du_mtu) -
8657 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8658 
8659 			/*
8660 			 * Only update the MSS if the new one is
8661 			 * smaller than the previous one.  This is
8662 			 * to avoid problems when getting multiple
8663 			 * ICMP errors for the same MTU.
8664 			 */
8665 			if (new_mss >= tcp->tcp_mss)
8666 				break;
8667 
8668 			/*
8669 			 * Stop doing PMTU if new_mss is less than 68
8670 			 * or less than tcp_mss_min.
8671 			 * The value 68 comes from rfc 1191.
8672 			 */
8673 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8674 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8675 				    0;
8676 
8677 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8678 			ASSERT(ratio >= 1);
8679 			tcp_mss_set(tcp, new_mss, B_TRUE);
8680 
8681 			/*
8682 			 * Make sure we have something to
8683 			 * send.
8684 			 */
8685 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8686 			    (tcp->tcp_xmit_head != NULL)) {
8687 				/*
8688 				 * Shrink tcp_cwnd in
8689 				 * proportion to the old MSS/new MSS.
8690 				 */
8691 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8692 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8693 				    (tcp->tcp_unsent == 0)) {
8694 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8695 				} else {
8696 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8697 				}
8698 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8699 				tcp->tcp_rexmit = B_TRUE;
8700 				tcp->tcp_dupack_cnt = 0;
8701 				tcp->tcp_snd_burst = TCP_CWND_SS;
8702 				tcp_ss_rexmit(tcp);
8703 			}
8704 			break;
8705 		case ICMP_PORT_UNREACHABLE:
8706 		case ICMP_PROTOCOL_UNREACHABLE:
8707 			switch (tcp->tcp_state) {
8708 			case TCPS_SYN_SENT:
8709 			case TCPS_SYN_RCVD:
8710 				/*
8711 				 * ICMP can snipe away incipient
8712 				 * TCP connections as long as
8713 				 * seq number is same as initial
8714 				 * send seq number.
8715 				 */
8716 				if (seg_seq == tcp->tcp_iss) {
8717 					(void) tcp_clean_death(tcp,
8718 					    ECONNREFUSED, 6);
8719 				}
8720 				break;
8721 			}
8722 			break;
8723 		case ICMP_HOST_UNREACHABLE:
8724 		case ICMP_NET_UNREACHABLE:
8725 			/* Record the error in case we finally time out. */
8726 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8727 				tcp->tcp_client_errno = EHOSTUNREACH;
8728 			else
8729 				tcp->tcp_client_errno = ENETUNREACH;
8730 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8731 				if (tcp->tcp_listener != NULL &&
8732 				    tcp->tcp_listener->tcp_syn_defense) {
8733 					/*
8734 					 * Ditch the half-open connection if we
8735 					 * suspect a SYN attack is under way.
8736 					 */
8737 					tcp_ip_ire_mark_advice(tcp);
8738 					(void) tcp_clean_death(tcp,
8739 					    tcp->tcp_client_errno, 7);
8740 				}
8741 			}
8742 			break;
8743 		default:
8744 			break;
8745 		}
8746 		break;
8747 	case ICMP_SOURCE_QUENCH: {
8748 		/*
8749 		 * use a global boolean to control
8750 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8751 		 * The default is false.
8752 		 */
8753 		if (tcp_icmp_source_quench) {
8754 			/*
8755 			 * Reduce the sending rate as if we got a
8756 			 * retransmit timeout
8757 			 */
8758 			uint32_t npkt;
8759 
8760 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8761 			    tcp->tcp_mss;
8762 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8763 			tcp->tcp_cwnd = tcp->tcp_mss;
8764 			tcp->tcp_cwnd_cnt = 0;
8765 		}
8766 		break;
8767 	}
8768 	}
8769 	freemsg(first_mp);
8770 }
8771 
8772 /*
8773  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8774  * error messages passed up by IP.
8775  * Assumes that IP has pulled up all the extension headers as well
8776  * as the ICMPv6 header.
8777  */
8778 static void
8779 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8780 {
8781 	icmp6_t *icmp6;
8782 	ip6_t	*ip6h;
8783 	uint16_t	iph_hdr_length;
8784 	tcpha_t	*tcpha;
8785 	uint8_t	*nexthdrp;
8786 	uint32_t new_mss;
8787 	uint32_t ratio;
8788 	boolean_t secure;
8789 	mblk_t *first_mp = mp;
8790 	size_t mp_size;
8791 	uint32_t seg_seq;
8792 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8793 
8794 	/*
8795 	 * The caller has determined if this is an IPSEC_IN packet and
8796 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8797 	 */
8798 	if (ipsec_mctl)
8799 		mp = mp->b_cont;
8800 
8801 	mp_size = MBLKL(mp);
8802 
8803 	/*
8804 	 * Verify that we have a complete IP header. If not, send it upstream.
8805 	 */
8806 	if (mp_size < sizeof (ip6_t)) {
8807 noticmpv6:
8808 		freemsg(first_mp);
8809 		return;
8810 	}
8811 
8812 	/*
8813 	 * Verify this is an ICMPV6 packet, else send it upstream.
8814 	 */
8815 	ip6h = (ip6_t *)mp->b_rptr;
8816 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8817 		iph_hdr_length = IPV6_HDR_LEN;
8818 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8819 	    &nexthdrp) ||
8820 	    *nexthdrp != IPPROTO_ICMPV6) {
8821 		goto noticmpv6;
8822 	}
8823 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8824 	ip6h = (ip6_t *)&icmp6[1];
8825 	/*
8826 	 * Verify if we have a complete ICMP and inner IP header.
8827 	 */
8828 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8829 		goto noticmpv6;
8830 
8831 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8832 		goto noticmpv6;
8833 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8834 	/*
8835 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8836 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8837 	 * packet.
8838 	 */
8839 	if ((*nexthdrp != IPPROTO_TCP) ||
8840 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8841 		goto noticmpv6;
8842 	}
8843 
8844 	/*
8845 	 * ICMP errors come on the right queue or come on
8846 	 * listener/global queue for detached connections and
8847 	 * get switched to the right queue. If it comes on the
8848 	 * right queue, policy check has already been done by IP
8849 	 * and thus free the first_mp without verifying the policy.
8850 	 * If it has come for a non-hard bound connection, we need
8851 	 * to verify policy as IP may not have done it.
8852 	 */
8853 	if (!tcp->tcp_hard_bound) {
8854 		if (ipsec_mctl) {
8855 			secure = ipsec_in_is_secure(first_mp);
8856 		} else {
8857 			secure = B_FALSE;
8858 		}
8859 		if (secure) {
8860 			/*
8861 			 * If we are willing to accept this in clear
8862 			 * we don't have to verify policy.
8863 			 */
8864 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8865 				if (!tcp_check_policy(tcp, first_mp,
8866 				    NULL, ip6h, secure, ipsec_mctl)) {
8867 					/*
8868 					 * tcp_check_policy called
8869 					 * ip_drop_packet() on failure.
8870 					 */
8871 					return;
8872 				}
8873 			}
8874 		}
8875 	} else if (ipsec_mctl) {
8876 		/*
8877 		 * This is a hard_bound connection. IP has already
8878 		 * verified policy. We don't have to do it again.
8879 		 */
8880 		freeb(first_mp);
8881 		first_mp = mp;
8882 		ipsec_mctl = B_FALSE;
8883 	}
8884 
8885 	seg_seq = ntohl(tcpha->tha_seq);
8886 	/*
8887 	 * TCP SHOULD check that the TCP sequence number contained in
8888 	 * payload of the ICMP error message is within the range
8889 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8890 	 */
8891 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8892 		/*
8893 		 * If the ICMP message is bogus, should we kill the
8894 		 * connection, or should we just drop the bogus ICMP
8895 		 * message? It would probably make more sense to just
8896 		 * drop the message so that if this one managed to get
8897 		 * in, the real connection should not suffer.
8898 		 */
8899 		goto noticmpv6;
8900 	}
8901 
8902 	switch (icmp6->icmp6_type) {
8903 	case ICMP6_PACKET_TOO_BIG:
8904 		/*
8905 		 * Reduce the MSS based on the new MTU.  This will
8906 		 * eliminate any fragmentation locally.
8907 		 * N.B.  There may well be some funny side-effects on
8908 		 * the local send policy and the remote receive policy.
8909 		 * Pending further research, we provide
8910 		 * tcp_ignore_path_mtu just in case this proves
8911 		 * disastrous somewhere.
8912 		 *
8913 		 * After updating the MSS, retransmit part of the
8914 		 * dropped segment using the new mss by calling
8915 		 * tcp_wput_data().  Need to adjust all those
8916 		 * params to make sure tcp_wput_data() work properly.
8917 		 */
8918 		if (tcps->tcps_ignore_path_mtu)
8919 			break;
8920 
8921 		/*
8922 		 * Decrease the MSS by time stamp options
8923 		 * IP options and IPSEC options. tcp_hdr_len
8924 		 * includes time stamp option and IP option
8925 		 * length.
8926 		 */
8927 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8928 		    tcp->tcp_ipsec_overhead;
8929 
8930 		/*
8931 		 * Only update the MSS if the new one is
8932 		 * smaller than the previous one.  This is
8933 		 * to avoid problems when getting multiple
8934 		 * ICMP errors for the same MTU.
8935 		 */
8936 		if (new_mss >= tcp->tcp_mss)
8937 			break;
8938 
8939 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8940 		ASSERT(ratio >= 1);
8941 		tcp_mss_set(tcp, new_mss, B_TRUE);
8942 
8943 		/*
8944 		 * Make sure we have something to
8945 		 * send.
8946 		 */
8947 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8948 		    (tcp->tcp_xmit_head != NULL)) {
8949 			/*
8950 			 * Shrink tcp_cwnd in
8951 			 * proportion to the old MSS/new MSS.
8952 			 */
8953 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8954 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8955 			    (tcp->tcp_unsent == 0)) {
8956 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8957 			} else {
8958 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8959 			}
8960 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8961 			tcp->tcp_rexmit = B_TRUE;
8962 			tcp->tcp_dupack_cnt = 0;
8963 			tcp->tcp_snd_burst = TCP_CWND_SS;
8964 			tcp_ss_rexmit(tcp);
8965 		}
8966 		break;
8967 
8968 	case ICMP6_DST_UNREACH:
8969 		switch (icmp6->icmp6_code) {
8970 		case ICMP6_DST_UNREACH_NOPORT:
8971 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8972 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8973 			    (seg_seq == tcp->tcp_iss)) {
8974 				(void) tcp_clean_death(tcp,
8975 				    ECONNREFUSED, 8);
8976 			}
8977 			break;
8978 
8979 		case ICMP6_DST_UNREACH_ADMIN:
8980 		case ICMP6_DST_UNREACH_NOROUTE:
8981 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8982 		case ICMP6_DST_UNREACH_ADDR:
8983 			/* Record the error in case we finally time out. */
8984 			tcp->tcp_client_errno = EHOSTUNREACH;
8985 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8986 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8987 			    (seg_seq == tcp->tcp_iss)) {
8988 				if (tcp->tcp_listener != NULL &&
8989 				    tcp->tcp_listener->tcp_syn_defense) {
8990 					/*
8991 					 * Ditch the half-open connection if we
8992 					 * suspect a SYN attack is under way.
8993 					 */
8994 					tcp_ip_ire_mark_advice(tcp);
8995 					(void) tcp_clean_death(tcp,
8996 					    tcp->tcp_client_errno, 9);
8997 				}
8998 			}
8999 
9000 
9001 			break;
9002 		default:
9003 			break;
9004 		}
9005 		break;
9006 
9007 	case ICMP6_PARAM_PROB:
9008 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
9009 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
9010 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
9011 		    (uchar_t *)nexthdrp) {
9012 			if (tcp->tcp_state == TCPS_SYN_SENT ||
9013 			    tcp->tcp_state == TCPS_SYN_RCVD) {
9014 				(void) tcp_clean_death(tcp,
9015 				    ECONNREFUSED, 10);
9016 			}
9017 			break;
9018 		}
9019 		break;
9020 
9021 	case ICMP6_TIME_EXCEEDED:
9022 	default:
9023 		break;
9024 	}
9025 	freemsg(first_mp);
9026 }
9027 
9028 /*
9029  * IP recognizes seven kinds of bind requests:
9030  *
9031  * - A zero-length address binds only to the protocol number.
9032  *
9033  * - A 4-byte address is treated as a request to
9034  * validate that the address is a valid local IPv4
9035  * address, appropriate for an application to bind to.
9036  * IP does the verification, but does not make any note
9037  * of the address at this time.
9038  *
9039  * - A 16-byte address contains is treated as a request
9040  * to validate a local IPv6 address, as the 4-byte
9041  * address case above.
9042  *
9043  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9044  * use it for the inbound fanout of packets.
9045  *
9046  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9047  * use it for the inbound fanout of packets.
9048  *
9049  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9050  * information consisting of local and remote addresses
9051  * and ports.  In this case, the addresses are both
9052  * validated as appropriate for this operation, and, if
9053  * so, the information is retained for use in the
9054  * inbound fanout.
9055  *
9056  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9057  * fanout information, like the 12-byte case above.
9058  *
9059  * IP will also fill in the IRE request mblk with information
9060  * regarding our peer.  In all cases, we notify IP of our protocol
9061  * type by appending a single protocol byte to the bind request.
9062  */
9063 static mblk_t *
9064 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9065 {
9066 	char	*cp;
9067 	mblk_t	*mp;
9068 	struct T_bind_req *tbr;
9069 	ipa_conn_t	*ac;
9070 	ipa6_conn_t	*ac6;
9071 	sin_t		*sin;
9072 	sin6_t		*sin6;
9073 
9074 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9075 	ASSERT((tcp->tcp_family == AF_INET &&
9076 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9077 	    (tcp->tcp_family == AF_INET6 &&
9078 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9079 	    tcp->tcp_ipversion == IPV6_VERSION)));
9080 
9081 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9082 	if (!mp)
9083 		return (mp);
9084 	mp->b_datap->db_type = M_PROTO;
9085 	tbr = (struct T_bind_req *)mp->b_rptr;
9086 	tbr->PRIM_type = bind_prim;
9087 	tbr->ADDR_offset = sizeof (*tbr);
9088 	tbr->CONIND_number = 0;
9089 	tbr->ADDR_length = addr_length;
9090 	cp = (char *)&tbr[1];
9091 	switch (addr_length) {
9092 	case sizeof (ipa_conn_t):
9093 		ASSERT(tcp->tcp_family == AF_INET);
9094 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9095 
9096 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9097 		if (mp->b_cont == NULL) {
9098 			freemsg(mp);
9099 			return (NULL);
9100 		}
9101 		mp->b_cont->b_wptr += sizeof (ire_t);
9102 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9103 
9104 		/* cp known to be 32 bit aligned */
9105 		ac = (ipa_conn_t *)cp;
9106 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9107 		ac->ac_faddr = tcp->tcp_remote;
9108 		ac->ac_fport = tcp->tcp_fport;
9109 		ac->ac_lport = tcp->tcp_lport;
9110 		tcp->tcp_hard_binding = 1;
9111 		break;
9112 
9113 	case sizeof (ipa6_conn_t):
9114 		ASSERT(tcp->tcp_family == AF_INET6);
9115 
9116 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9117 		if (mp->b_cont == NULL) {
9118 			freemsg(mp);
9119 			return (NULL);
9120 		}
9121 		mp->b_cont->b_wptr += sizeof (ire_t);
9122 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9123 
9124 		/* cp known to be 32 bit aligned */
9125 		ac6 = (ipa6_conn_t *)cp;
9126 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9127 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9128 			    &ac6->ac6_laddr);
9129 		} else {
9130 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9131 		}
9132 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9133 		ac6->ac6_fport = tcp->tcp_fport;
9134 		ac6->ac6_lport = tcp->tcp_lport;
9135 		tcp->tcp_hard_binding = 1;
9136 		break;
9137 
9138 	case sizeof (sin_t):
9139 		/*
9140 		 * NOTE: IPV6_ADDR_LEN also has same size.
9141 		 * Use family to discriminate.
9142 		 */
9143 		if (tcp->tcp_family == AF_INET) {
9144 			sin = (sin_t *)cp;
9145 
9146 			*sin = sin_null;
9147 			sin->sin_family = AF_INET;
9148 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9149 			sin->sin_port = tcp->tcp_lport;
9150 			break;
9151 		} else {
9152 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9153 		}
9154 		break;
9155 
9156 	case sizeof (sin6_t):
9157 		ASSERT(tcp->tcp_family == AF_INET6);
9158 		sin6 = (sin6_t *)cp;
9159 
9160 		*sin6 = sin6_null;
9161 		sin6->sin6_family = AF_INET6;
9162 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9163 		sin6->sin6_port = tcp->tcp_lport;
9164 		break;
9165 
9166 	case IP_ADDR_LEN:
9167 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9168 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9169 		break;
9170 
9171 	}
9172 	/* Add protocol number to end */
9173 	cp[addr_length] = (char)IPPROTO_TCP;
9174 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9175 	return (mp);
9176 }
9177 
9178 /*
9179  * Notify IP that we are having trouble with this connection.  IP should
9180  * blow the IRE away and start over.
9181  */
9182 static void
9183 tcp_ip_notify(tcp_t *tcp)
9184 {
9185 	struct iocblk	*iocp;
9186 	ipid_t	*ipid;
9187 	mblk_t	*mp;
9188 
9189 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9190 	if (tcp->tcp_ipversion == IPV6_VERSION)
9191 		return;
9192 
9193 	mp = mkiocb(IP_IOCTL);
9194 	if (mp == NULL)
9195 		return;
9196 
9197 	iocp = (struct iocblk *)mp->b_rptr;
9198 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9199 
9200 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9201 	if (!mp->b_cont) {
9202 		freeb(mp);
9203 		return;
9204 	}
9205 
9206 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9207 	mp->b_cont->b_wptr += iocp->ioc_count;
9208 	bzero(ipid, sizeof (*ipid));
9209 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9210 	ipid->ipid_ire_type = IRE_CACHE;
9211 	ipid->ipid_addr_offset = sizeof (ipid_t);
9212 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9213 	/*
9214 	 * Note: in the case of source routing we want to blow away the
9215 	 * route to the first source route hop.
9216 	 */
9217 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9218 	    sizeof (tcp->tcp_ipha->ipha_dst));
9219 
9220 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9221 }
9222 
9223 /* Unlink and return any mblk that looks like it contains an ire */
9224 static mblk_t *
9225 tcp_ire_mp(mblk_t *mp)
9226 {
9227 	mblk_t	*prev_mp;
9228 
9229 	for (;;) {
9230 		prev_mp = mp;
9231 		mp = mp->b_cont;
9232 		if (mp == NULL)
9233 			break;
9234 		switch (DB_TYPE(mp)) {
9235 		case IRE_DB_TYPE:
9236 		case IRE_DB_REQ_TYPE:
9237 			if (prev_mp != NULL)
9238 				prev_mp->b_cont = mp->b_cont;
9239 			mp->b_cont = NULL;
9240 			return (mp);
9241 		default:
9242 			break;
9243 		}
9244 	}
9245 	return (mp);
9246 }
9247 
9248 /*
9249  * Timer callback routine for keepalive probe.  We do a fake resend of
9250  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9251  * check to see if we have heard anything from the other end for the last
9252  * RTO period.  If we have, set the timer to expire for another
9253  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9254  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9255  * the timeout if we have not heard from the other side.  If for more than
9256  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9257  * kill the connection unless the keepalive abort threshold is 0.  In
9258  * that case, we will probe "forever."
9259  */
9260 static void
9261 tcp_keepalive_killer(void *arg)
9262 {
9263 	mblk_t	*mp;
9264 	conn_t	*connp = (conn_t *)arg;
9265 	tcp_t  	*tcp = connp->conn_tcp;
9266 	int32_t	firetime;
9267 	int32_t	idletime;
9268 	int32_t	ka_intrvl;
9269 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9270 
9271 	tcp->tcp_ka_tid = 0;
9272 
9273 	if (tcp->tcp_fused)
9274 		return;
9275 
9276 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9277 	ka_intrvl = tcp->tcp_ka_interval;
9278 
9279 	/*
9280 	 * Keepalive probe should only be sent if the application has not
9281 	 * done a close on the connection.
9282 	 */
9283 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9284 		return;
9285 	}
9286 	/* Timer fired too early, restart it. */
9287 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9288 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9289 		    MSEC_TO_TICK(ka_intrvl));
9290 		return;
9291 	}
9292 
9293 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9294 	/*
9295 	 * If we have not heard from the other side for a long
9296 	 * time, kill the connection unless the keepalive abort
9297 	 * threshold is 0.  In that case, we will probe "forever."
9298 	 */
9299 	if (tcp->tcp_ka_abort_thres != 0 &&
9300 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9301 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9302 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9303 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9304 		return;
9305 	}
9306 
9307 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9308 	    idletime >= ka_intrvl) {
9309 		/* Fake resend of last ACKed byte. */
9310 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9311 
9312 		if (mp1 != NULL) {
9313 			*mp1->b_wptr++ = '\0';
9314 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9315 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9316 			freeb(mp1);
9317 			/*
9318 			 * if allocation failed, fall through to start the
9319 			 * timer back.
9320 			 */
9321 			if (mp != NULL) {
9322 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9323 				BUMP_MIB(&tcps->tcps_mib,
9324 				    tcpTimKeepaliveProbe);
9325 				if (tcp->tcp_ka_last_intrvl != 0) {
9326 					int max;
9327 					/*
9328 					 * We should probe again at least
9329 					 * in ka_intrvl, but not more than
9330 					 * tcp_rexmit_interval_max.
9331 					 */
9332 					max = tcps->tcps_rexmit_interval_max;
9333 					firetime = MIN(ka_intrvl - 1,
9334 					    tcp->tcp_ka_last_intrvl << 1);
9335 					if (firetime > max)
9336 						firetime = max;
9337 				} else {
9338 					firetime = tcp->tcp_rto;
9339 				}
9340 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9341 				    tcp_keepalive_killer,
9342 				    MSEC_TO_TICK(firetime));
9343 				tcp->tcp_ka_last_intrvl = firetime;
9344 				return;
9345 			}
9346 		}
9347 	} else {
9348 		tcp->tcp_ka_last_intrvl = 0;
9349 	}
9350 
9351 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9352 	if ((firetime = ka_intrvl - idletime) < 0) {
9353 		firetime = ka_intrvl;
9354 	}
9355 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9356 	    MSEC_TO_TICK(firetime));
9357 }
9358 
9359 int
9360 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9361 {
9362 	queue_t	*q = tcp->tcp_rq;
9363 	int32_t	mss = tcp->tcp_mss;
9364 	int	maxpsz;
9365 
9366 	if (TCP_IS_DETACHED(tcp))
9367 		return (mss);
9368 
9369 	if (tcp->tcp_fused) {
9370 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9371 		mss = INFPSZ;
9372 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9373 		/*
9374 		 * Set the sd_qn_maxpsz according to the socket send buffer
9375 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9376 		 * instruct the stream head to copyin user data into contiguous
9377 		 * kernel-allocated buffers without breaking it up into smaller
9378 		 * chunks.  We round up the buffer size to the nearest SMSS.
9379 		 */
9380 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9381 		if (tcp->tcp_kssl_ctx == NULL)
9382 			mss = INFPSZ;
9383 		else
9384 			mss = SSL3_MAX_RECORD_LEN;
9385 	} else {
9386 		/*
9387 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9388 		 * (and a multiple of the mss).  This instructs the stream
9389 		 * head to break down larger than SMSS writes into SMSS-
9390 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9391 		 */
9392 		maxpsz = tcp->tcp_maxpsz * mss;
9393 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9394 			maxpsz = tcp->tcp_xmit_hiwater/2;
9395 			/* Round up to nearest mss */
9396 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9397 		}
9398 	}
9399 	(void) setmaxps(q, maxpsz);
9400 	tcp->tcp_wq->q_maxpsz = maxpsz;
9401 
9402 	if (set_maxblk)
9403 		(void) mi_set_sth_maxblk(q, mss);
9404 
9405 	return (mss);
9406 }
9407 
9408 /*
9409  * Extract option values from a tcp header.  We put any found values into the
9410  * tcpopt struct and return a bitmask saying which options were found.
9411  */
9412 static int
9413 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9414 {
9415 	uchar_t		*endp;
9416 	int		len;
9417 	uint32_t	mss;
9418 	uchar_t		*up = (uchar_t *)tcph;
9419 	int		found = 0;
9420 	int32_t		sack_len;
9421 	tcp_seq		sack_begin, sack_end;
9422 	tcp_t		*tcp;
9423 
9424 	endp = up + TCP_HDR_LENGTH(tcph);
9425 	up += TCP_MIN_HEADER_LENGTH;
9426 	while (up < endp) {
9427 		len = endp - up;
9428 		switch (*up) {
9429 		case TCPOPT_EOL:
9430 			break;
9431 
9432 		case TCPOPT_NOP:
9433 			up++;
9434 			continue;
9435 
9436 		case TCPOPT_MAXSEG:
9437 			if (len < TCPOPT_MAXSEG_LEN ||
9438 			    up[1] != TCPOPT_MAXSEG_LEN)
9439 				break;
9440 
9441 			mss = BE16_TO_U16(up+2);
9442 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9443 			tcpopt->tcp_opt_mss = mss;
9444 			found |= TCP_OPT_MSS_PRESENT;
9445 
9446 			up += TCPOPT_MAXSEG_LEN;
9447 			continue;
9448 
9449 		case TCPOPT_WSCALE:
9450 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9451 				break;
9452 
9453 			if (up[2] > TCP_MAX_WINSHIFT)
9454 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9455 			else
9456 				tcpopt->tcp_opt_wscale = up[2];
9457 			found |= TCP_OPT_WSCALE_PRESENT;
9458 
9459 			up += TCPOPT_WS_LEN;
9460 			continue;
9461 
9462 		case TCPOPT_SACK_PERMITTED:
9463 			if (len < TCPOPT_SACK_OK_LEN ||
9464 			    up[1] != TCPOPT_SACK_OK_LEN)
9465 				break;
9466 			found |= TCP_OPT_SACK_OK_PRESENT;
9467 			up += TCPOPT_SACK_OK_LEN;
9468 			continue;
9469 
9470 		case TCPOPT_SACK:
9471 			if (len <= 2 || up[1] <= 2 || len < up[1])
9472 				break;
9473 
9474 			/* If TCP is not interested in SACK blks... */
9475 			if ((tcp = tcpopt->tcp) == NULL) {
9476 				up += up[1];
9477 				continue;
9478 			}
9479 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9480 			up += TCPOPT_HEADER_LEN;
9481 
9482 			/*
9483 			 * If the list is empty, allocate one and assume
9484 			 * nothing is sack'ed.
9485 			 */
9486 			ASSERT(tcp->tcp_sack_info != NULL);
9487 			if (tcp->tcp_notsack_list == NULL) {
9488 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9489 				    tcp->tcp_suna, tcp->tcp_snxt,
9490 				    &(tcp->tcp_num_notsack_blk),
9491 				    &(tcp->tcp_cnt_notsack_list));
9492 
9493 				/*
9494 				 * Make sure tcp_notsack_list is not NULL.
9495 				 * This happens when kmem_alloc(KM_NOSLEEP)
9496 				 * returns NULL.
9497 				 */
9498 				if (tcp->tcp_notsack_list == NULL) {
9499 					up += sack_len;
9500 					continue;
9501 				}
9502 				tcp->tcp_fack = tcp->tcp_suna;
9503 			}
9504 
9505 			while (sack_len > 0) {
9506 				if (up + 8 > endp) {
9507 					up = endp;
9508 					break;
9509 				}
9510 				sack_begin = BE32_TO_U32(up);
9511 				up += 4;
9512 				sack_end = BE32_TO_U32(up);
9513 				up += 4;
9514 				sack_len -= 8;
9515 				/*
9516 				 * Bounds checking.  Make sure the SACK
9517 				 * info is within tcp_suna and tcp_snxt.
9518 				 * If this SACK blk is out of bound, ignore
9519 				 * it but continue to parse the following
9520 				 * blks.
9521 				 */
9522 				if (SEQ_LEQ(sack_end, sack_begin) ||
9523 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9524 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9525 					continue;
9526 				}
9527 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9528 				    sack_begin, sack_end,
9529 				    &(tcp->tcp_num_notsack_blk),
9530 				    &(tcp->tcp_cnt_notsack_list));
9531 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9532 					tcp->tcp_fack = sack_end;
9533 				}
9534 			}
9535 			found |= TCP_OPT_SACK_PRESENT;
9536 			continue;
9537 
9538 		case TCPOPT_TSTAMP:
9539 			if (len < TCPOPT_TSTAMP_LEN ||
9540 			    up[1] != TCPOPT_TSTAMP_LEN)
9541 				break;
9542 
9543 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9544 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9545 
9546 			found |= TCP_OPT_TSTAMP_PRESENT;
9547 
9548 			up += TCPOPT_TSTAMP_LEN;
9549 			continue;
9550 
9551 		default:
9552 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9553 				break;
9554 			up += up[1];
9555 			continue;
9556 		}
9557 		break;
9558 	}
9559 	return (found);
9560 }
9561 
9562 /*
9563  * Set the mss associated with a particular tcp based on its current value,
9564  * and a new one passed in. Observe minimums and maximums, and reset
9565  * other state variables that we want to view as multiples of mss.
9566  *
9567  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9568  * highwater marks etc. need to be initialized or adjusted.
9569  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9570  *    packet arrives.
9571  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9572  *    ICMP6_PACKET_TOO_BIG arrives.
9573  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9574  *    to increase the MSS to use the extra bytes available.
9575  *
9576  * Callers except tcp_paws_check() ensure that they only reduce mss.
9577  */
9578 static void
9579 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9580 {
9581 	uint32_t	mss_max;
9582 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9583 
9584 	if (tcp->tcp_ipversion == IPV4_VERSION)
9585 		mss_max = tcps->tcps_mss_max_ipv4;
9586 	else
9587 		mss_max = tcps->tcps_mss_max_ipv6;
9588 
9589 	if (mss < tcps->tcps_mss_min)
9590 		mss = tcps->tcps_mss_min;
9591 	if (mss > mss_max)
9592 		mss = mss_max;
9593 	/*
9594 	 * Unless naglim has been set by our client to
9595 	 * a non-mss value, force naglim to track mss.
9596 	 * This can help to aggregate small writes.
9597 	 */
9598 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9599 		tcp->tcp_naglim = mss;
9600 	/*
9601 	 * TCP should be able to buffer at least 4 MSS data for obvious
9602 	 * performance reason.
9603 	 */
9604 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9605 		tcp->tcp_xmit_hiwater = mss << 2;
9606 
9607 	if (do_ss) {
9608 		/*
9609 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9610 		 * changing due to a reduction in MTU, presumably as a
9611 		 * result of a new path component, reset cwnd to its
9612 		 * "initial" value, as a multiple of the new mss.
9613 		 */
9614 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9615 	} else {
9616 		/*
9617 		 * Called by tcp_paws_check(), the mss increased
9618 		 * marginally to allow use of space previously taken
9619 		 * by the timestamp option. It would be inappropriate
9620 		 * to apply slow start or tcp_init_cwnd values to
9621 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9622 		 */
9623 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9624 		tcp->tcp_cwnd_cnt = 0;
9625 	}
9626 	tcp->tcp_mss = mss;
9627 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9628 }
9629 
9630 /* For /dev/tcp aka AF_INET open */
9631 static int
9632 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9633 {
9634 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9635 }
9636 
9637 /* For /dev/tcp6 aka AF_INET6 open */
9638 static int
9639 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9640 {
9641 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9642 }
9643 
9644 static int
9645 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9646     boolean_t isv6)
9647 {
9648 	tcp_t		*tcp = NULL;
9649 	conn_t		*connp;
9650 	int		err;
9651 	vmem_t		*minor_arena = NULL;
9652 	dev_t		conn_dev;
9653 	zoneid_t	zoneid;
9654 	tcp_stack_t	*tcps = NULL;
9655 
9656 	if (q->q_ptr != NULL)
9657 		return (0);
9658 
9659 	if (sflag == MODOPEN)
9660 		return (EINVAL);
9661 
9662 	if (!(flag & SO_ACCEPTOR)) {
9663 		/*
9664 		 * Special case for install: miniroot needs to be able to
9665 		 * access files via NFS as though it were always in the
9666 		 * global zone.
9667 		 */
9668 		if (credp == kcred && nfs_global_client_only != 0) {
9669 			zoneid = GLOBAL_ZONEID;
9670 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9671 			    netstack_tcp;
9672 			ASSERT(tcps != NULL);
9673 		} else {
9674 			netstack_t *ns;
9675 
9676 			ns = netstack_find_by_cred(credp);
9677 			ASSERT(ns != NULL);
9678 			tcps = ns->netstack_tcp;
9679 			ASSERT(tcps != NULL);
9680 
9681 			/*
9682 			 * For exclusive stacks we set the zoneid to zero
9683 			 * to make TCP operate as if in the global zone.
9684 			 */
9685 			if (tcps->tcps_netstack->netstack_stackid !=
9686 			    GLOBAL_NETSTACKID)
9687 				zoneid = GLOBAL_ZONEID;
9688 			else
9689 				zoneid = crgetzoneid(credp);
9690 		}
9691 		/*
9692 		 * For stackid zero this is done from strplumb.c, but
9693 		 * non-zero stackids are handled here.
9694 		 */
9695 		if (tcps->tcps_g_q == NULL &&
9696 		    tcps->tcps_netstack->netstack_stackid !=
9697 		    GLOBAL_NETSTACKID) {
9698 			tcp_g_q_setup(tcps);
9699 		}
9700 	}
9701 
9702 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9703 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9704 		minor_arena = ip_minor_arena_la;
9705 	} else {
9706 		/*
9707 		 * Either minor numbers in the large arena were exhausted
9708 		 * or a non socket application is doing the open.
9709 		 * Try to allocate from the small arena.
9710 		 */
9711 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9712 			if (tcps != NULL)
9713 				netstack_rele(tcps->tcps_netstack);
9714 			return (EBUSY);
9715 		}
9716 		minor_arena = ip_minor_arena_sa;
9717 	}
9718 	ASSERT(minor_arena != NULL);
9719 
9720 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9721 
9722 	if (flag & SO_ACCEPTOR) {
9723 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9724 		ASSERT(tcps == NULL);
9725 		q->q_qinfo = &tcp_acceptor_rinit;
9726 		/*
9727 		 * the conn_dev and minor_arena will be subsequently used by
9728 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9729 		 * minor device number for this connection from the q_ptr.
9730 		 */
9731 		RD(q)->q_ptr = (void *)conn_dev;
9732 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9733 		WR(q)->q_ptr = (void *)minor_arena;
9734 		qprocson(q);
9735 		return (0);
9736 	}
9737 
9738 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9739 	/*
9740 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9741 	 * so we drop it by one.
9742 	 */
9743 	netstack_rele(tcps->tcps_netstack);
9744 	if (connp == NULL) {
9745 		inet_minor_free(minor_arena, conn_dev);
9746 		q->q_ptr = NULL;
9747 		return (ENOSR);
9748 	}
9749 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9750 	tcp = connp->conn_tcp;
9751 
9752 	q->q_ptr = WR(q)->q_ptr = connp;
9753 	if (isv6) {
9754 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9755 		connp->conn_send = ip_output_v6;
9756 		connp->conn_af_isv6 = B_TRUE;
9757 		connp->conn_pkt_isv6 = B_TRUE;
9758 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9759 		tcp->tcp_ipversion = IPV6_VERSION;
9760 		tcp->tcp_family = AF_INET6;
9761 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9762 	} else {
9763 		connp->conn_flags |= IPCL_TCP4;
9764 		connp->conn_send = ip_output;
9765 		connp->conn_af_isv6 = B_FALSE;
9766 		connp->conn_pkt_isv6 = B_FALSE;
9767 		tcp->tcp_ipversion = IPV4_VERSION;
9768 		tcp->tcp_family = AF_INET;
9769 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9770 	}
9771 
9772 	/*
9773 	 * TCP keeps a copy of cred for cache locality reasons but
9774 	 * we put a reference only once. If connp->conn_cred
9775 	 * becomes invalid, tcp_cred should also be set to NULL.
9776 	 */
9777 	tcp->tcp_cred = connp->conn_cred = credp;
9778 	crhold(connp->conn_cred);
9779 	tcp->tcp_cpid = curproc->p_pid;
9780 	tcp->tcp_open_time = lbolt64;
9781 	connp->conn_zoneid = zoneid;
9782 	connp->conn_mlp_type = mlptSingle;
9783 	connp->conn_ulp_labeled = !is_system_labeled();
9784 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9785 	ASSERT(tcp->tcp_tcps == tcps);
9786 
9787 	/*
9788 	 * If the caller has the process-wide flag set, then default to MAC
9789 	 * exempt mode.  This allows read-down to unlabeled hosts.
9790 	 */
9791 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9792 		connp->conn_mac_exempt = B_TRUE;
9793 
9794 	connp->conn_dev = conn_dev;
9795 	connp->conn_minor_arena = minor_arena;
9796 
9797 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9798 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9799 
9800 	if (flag & SO_SOCKSTR) {
9801 		/*
9802 		 * No need to insert a socket in tcp acceptor hash.
9803 		 * If it was a socket acceptor stream, we dealt with
9804 		 * it above. A socket listener can never accept a
9805 		 * connection and doesn't need acceptor_id.
9806 		 */
9807 		connp->conn_flags |= IPCL_SOCKET;
9808 		tcp->tcp_issocket = 1;
9809 		WR(q)->q_qinfo = &tcp_sock_winit;
9810 	} else {
9811 #ifdef	_ILP32
9812 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9813 #else
9814 		tcp->tcp_acceptor_id = conn_dev;
9815 #endif	/* _ILP32 */
9816 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9817 	}
9818 
9819 	err = tcp_init(tcp, q);
9820 	if (err != 0) {
9821 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9822 		tcp_acceptor_hash_remove(tcp);
9823 		CONN_DEC_REF(connp);
9824 		q->q_ptr = WR(q)->q_ptr = NULL;
9825 		return (err);
9826 	}
9827 
9828 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9829 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9830 
9831 	/* Non-zero default values */
9832 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9833 	/*
9834 	 * Put the ref for TCP. Ref for IP was already put
9835 	 * by ipcl_conn_create. Also Make the conn_t globally
9836 	 * visible to walkers
9837 	 */
9838 	mutex_enter(&connp->conn_lock);
9839 	CONN_INC_REF_LOCKED(connp);
9840 	ASSERT(connp->conn_ref == 2);
9841 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9842 	mutex_exit(&connp->conn_lock);
9843 
9844 	qprocson(q);
9845 	return (0);
9846 }
9847 
9848 /*
9849  * Some TCP options can be "set" by requesting them in the option
9850  * buffer. This is needed for XTI feature test though we do not
9851  * allow it in general. We interpret that this mechanism is more
9852  * applicable to OSI protocols and need not be allowed in general.
9853  * This routine filters out options for which it is not allowed (most)
9854  * and lets through those (few) for which it is. [ The XTI interface
9855  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9856  * ever implemented will have to be allowed here ].
9857  */
9858 static boolean_t
9859 tcp_allow_connopt_set(int level, int name)
9860 {
9861 
9862 	switch (level) {
9863 	case IPPROTO_TCP:
9864 		switch (name) {
9865 		case TCP_NODELAY:
9866 			return (B_TRUE);
9867 		default:
9868 			return (B_FALSE);
9869 		}
9870 		/*NOTREACHED*/
9871 	default:
9872 		return (B_FALSE);
9873 	}
9874 	/*NOTREACHED*/
9875 }
9876 
9877 /*
9878  * This routine gets default values of certain options whose default
9879  * values are maintained by protocol specific code
9880  */
9881 /* ARGSUSED */
9882 int
9883 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9884 {
9885 	int32_t	*i1 = (int32_t *)ptr;
9886 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9887 
9888 	switch (level) {
9889 	case IPPROTO_TCP:
9890 		switch (name) {
9891 		case TCP_NOTIFY_THRESHOLD:
9892 			*i1 = tcps->tcps_ip_notify_interval;
9893 			break;
9894 		case TCP_ABORT_THRESHOLD:
9895 			*i1 = tcps->tcps_ip_abort_interval;
9896 			break;
9897 		case TCP_CONN_NOTIFY_THRESHOLD:
9898 			*i1 = tcps->tcps_ip_notify_cinterval;
9899 			break;
9900 		case TCP_CONN_ABORT_THRESHOLD:
9901 			*i1 = tcps->tcps_ip_abort_cinterval;
9902 			break;
9903 		default:
9904 			return (-1);
9905 		}
9906 		break;
9907 	case IPPROTO_IP:
9908 		switch (name) {
9909 		case IP_TTL:
9910 			*i1 = tcps->tcps_ipv4_ttl;
9911 			break;
9912 		default:
9913 			return (-1);
9914 		}
9915 		break;
9916 	case IPPROTO_IPV6:
9917 		switch (name) {
9918 		case IPV6_UNICAST_HOPS:
9919 			*i1 = tcps->tcps_ipv6_hoplimit;
9920 			break;
9921 		default:
9922 			return (-1);
9923 		}
9924 		break;
9925 	default:
9926 		return (-1);
9927 	}
9928 	return (sizeof (int));
9929 }
9930 
9931 
9932 /*
9933  * TCP routine to get the values of options.
9934  */
9935 int
9936 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9937 {
9938 	int		*i1 = (int *)ptr;
9939 	conn_t		*connp = Q_TO_CONN(q);
9940 	tcp_t		*tcp = connp->conn_tcp;
9941 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9942 
9943 	switch (level) {
9944 	case SOL_SOCKET:
9945 		switch (name) {
9946 		case SO_LINGER:	{
9947 			struct linger *lgr = (struct linger *)ptr;
9948 
9949 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9950 			lgr->l_linger = tcp->tcp_lingertime;
9951 			}
9952 			return (sizeof (struct linger));
9953 		case SO_DEBUG:
9954 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9955 			break;
9956 		case SO_KEEPALIVE:
9957 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9958 			break;
9959 		case SO_DONTROUTE:
9960 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9961 			break;
9962 		case SO_USELOOPBACK:
9963 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9964 			break;
9965 		case SO_BROADCAST:
9966 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9967 			break;
9968 		case SO_REUSEADDR:
9969 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9970 			break;
9971 		case SO_OOBINLINE:
9972 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9973 			break;
9974 		case SO_DGRAM_ERRIND:
9975 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9976 			break;
9977 		case SO_TYPE:
9978 			*i1 = SOCK_STREAM;
9979 			break;
9980 		case SO_SNDBUF:
9981 			*i1 = tcp->tcp_xmit_hiwater;
9982 			break;
9983 		case SO_RCVBUF:
9984 			*i1 = RD(q)->q_hiwat;
9985 			break;
9986 		case SO_SND_COPYAVOID:
9987 			*i1 = tcp->tcp_snd_zcopy_on ?
9988 			    SO_SND_COPYAVOID : 0;
9989 			break;
9990 		case SO_ALLZONES:
9991 			*i1 = connp->conn_allzones ? 1 : 0;
9992 			break;
9993 		case SO_ANON_MLP:
9994 			*i1 = connp->conn_anon_mlp;
9995 			break;
9996 		case SO_MAC_EXEMPT:
9997 			*i1 = connp->conn_mac_exempt;
9998 			break;
9999 		case SO_EXCLBIND:
10000 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
10001 			break;
10002 		case SO_PROTOTYPE:
10003 			*i1 = IPPROTO_TCP;
10004 			break;
10005 		case SO_DOMAIN:
10006 			*i1 = tcp->tcp_family;
10007 			break;
10008 		default:
10009 			return (-1);
10010 		}
10011 		break;
10012 	case IPPROTO_TCP:
10013 		switch (name) {
10014 		case TCP_NODELAY:
10015 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
10016 			break;
10017 		case TCP_MAXSEG:
10018 			*i1 = tcp->tcp_mss;
10019 			break;
10020 		case TCP_NOTIFY_THRESHOLD:
10021 			*i1 = (int)tcp->tcp_first_timer_threshold;
10022 			break;
10023 		case TCP_ABORT_THRESHOLD:
10024 			*i1 = tcp->tcp_second_timer_threshold;
10025 			break;
10026 		case TCP_CONN_NOTIFY_THRESHOLD:
10027 			*i1 = tcp->tcp_first_ctimer_threshold;
10028 			break;
10029 		case TCP_CONN_ABORT_THRESHOLD:
10030 			*i1 = tcp->tcp_second_ctimer_threshold;
10031 			break;
10032 		case TCP_RECVDSTADDR:
10033 			*i1 = tcp->tcp_recvdstaddr;
10034 			break;
10035 		case TCP_ANONPRIVBIND:
10036 			*i1 = tcp->tcp_anon_priv_bind;
10037 			break;
10038 		case TCP_EXCLBIND:
10039 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10040 			break;
10041 		case TCP_INIT_CWND:
10042 			*i1 = tcp->tcp_init_cwnd;
10043 			break;
10044 		case TCP_KEEPALIVE_THRESHOLD:
10045 			*i1 = tcp->tcp_ka_interval;
10046 			break;
10047 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10048 			*i1 = tcp->tcp_ka_abort_thres;
10049 			break;
10050 		case TCP_CORK:
10051 			*i1 = tcp->tcp_cork;
10052 			break;
10053 		default:
10054 			return (-1);
10055 		}
10056 		break;
10057 	case IPPROTO_IP:
10058 		if (tcp->tcp_family != AF_INET)
10059 			return (-1);
10060 		switch (name) {
10061 		case IP_OPTIONS:
10062 		case T_IP_OPTIONS: {
10063 			/*
10064 			 * This is compatible with BSD in that in only return
10065 			 * the reverse source route with the final destination
10066 			 * as the last entry. The first 4 bytes of the option
10067 			 * will contain the final destination.
10068 			 */
10069 			int	opt_len;
10070 
10071 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10072 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10073 			ASSERT(opt_len >= 0);
10074 			/* Caller ensures enough space */
10075 			if (opt_len > 0) {
10076 				/*
10077 				 * TODO: Do we have to handle getsockopt on an
10078 				 * initiator as well?
10079 				 */
10080 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10081 			}
10082 			return (0);
10083 			}
10084 		case IP_TOS:
10085 		case T_IP_TOS:
10086 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10087 			break;
10088 		case IP_TTL:
10089 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10090 			break;
10091 		case IP_NEXTHOP:
10092 			/* Handled at IP level */
10093 			return (-EINVAL);
10094 		default:
10095 			return (-1);
10096 		}
10097 		break;
10098 	case IPPROTO_IPV6:
10099 		/*
10100 		 * IPPROTO_IPV6 options are only supported for sockets
10101 		 * that are using IPv6 on the wire.
10102 		 */
10103 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10104 			return (-1);
10105 		}
10106 		switch (name) {
10107 		case IPV6_UNICAST_HOPS:
10108 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10109 			break;	/* goto sizeof (int) option return */
10110 		case IPV6_BOUND_IF:
10111 			/* Zero if not set */
10112 			*i1 = tcp->tcp_bound_if;
10113 			break;	/* goto sizeof (int) option return */
10114 		case IPV6_RECVPKTINFO:
10115 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10116 				*i1 = 1;
10117 			else
10118 				*i1 = 0;
10119 			break;	/* goto sizeof (int) option return */
10120 		case IPV6_RECVTCLASS:
10121 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10122 				*i1 = 1;
10123 			else
10124 				*i1 = 0;
10125 			break;	/* goto sizeof (int) option return */
10126 		case IPV6_RECVHOPLIMIT:
10127 			if (tcp->tcp_ipv6_recvancillary &
10128 			    TCP_IPV6_RECVHOPLIMIT)
10129 				*i1 = 1;
10130 			else
10131 				*i1 = 0;
10132 			break;	/* goto sizeof (int) option return */
10133 		case IPV6_RECVHOPOPTS:
10134 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10135 				*i1 = 1;
10136 			else
10137 				*i1 = 0;
10138 			break;	/* goto sizeof (int) option return */
10139 		case IPV6_RECVDSTOPTS:
10140 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10141 				*i1 = 1;
10142 			else
10143 				*i1 = 0;
10144 			break;	/* goto sizeof (int) option return */
10145 		case _OLD_IPV6_RECVDSTOPTS:
10146 			if (tcp->tcp_ipv6_recvancillary &
10147 			    TCP_OLD_IPV6_RECVDSTOPTS)
10148 				*i1 = 1;
10149 			else
10150 				*i1 = 0;
10151 			break;	/* goto sizeof (int) option return */
10152 		case IPV6_RECVRTHDR:
10153 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10154 				*i1 = 1;
10155 			else
10156 				*i1 = 0;
10157 			break;	/* goto sizeof (int) option return */
10158 		case IPV6_RECVRTHDRDSTOPTS:
10159 			if (tcp->tcp_ipv6_recvancillary &
10160 			    TCP_IPV6_RECVRTDSTOPTS)
10161 				*i1 = 1;
10162 			else
10163 				*i1 = 0;
10164 			break;	/* goto sizeof (int) option return */
10165 		case IPV6_PKTINFO: {
10166 			/* XXX assumes that caller has room for max size! */
10167 			struct in6_pktinfo *pkti;
10168 
10169 			pkti = (struct in6_pktinfo *)ptr;
10170 			if (ipp->ipp_fields & IPPF_IFINDEX)
10171 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10172 			else
10173 				pkti->ipi6_ifindex = 0;
10174 			if (ipp->ipp_fields & IPPF_ADDR)
10175 				pkti->ipi6_addr = ipp->ipp_addr;
10176 			else
10177 				pkti->ipi6_addr = ipv6_all_zeros;
10178 			return (sizeof (struct in6_pktinfo));
10179 		}
10180 		case IPV6_TCLASS:
10181 			if (ipp->ipp_fields & IPPF_TCLASS)
10182 				*i1 = ipp->ipp_tclass;
10183 			else
10184 				*i1 = IPV6_FLOW_TCLASS(
10185 				    IPV6_DEFAULT_VERS_AND_FLOW);
10186 			break;	/* goto sizeof (int) option return */
10187 		case IPV6_NEXTHOP: {
10188 			sin6_t *sin6 = (sin6_t *)ptr;
10189 
10190 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10191 				return (0);
10192 			*sin6 = sin6_null;
10193 			sin6->sin6_family = AF_INET6;
10194 			sin6->sin6_addr = ipp->ipp_nexthop;
10195 			return (sizeof (sin6_t));
10196 		}
10197 		case IPV6_HOPOPTS:
10198 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10199 				return (0);
10200 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10201 				return (0);
10202 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10203 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10204 			if (tcp->tcp_label_len > 0) {
10205 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10206 				ptr[1] = (ipp->ipp_hopoptslen -
10207 				    tcp->tcp_label_len + 7) / 8 - 1;
10208 			}
10209 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10210 		case IPV6_RTHDRDSTOPTS:
10211 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10212 				return (0);
10213 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10214 			return (ipp->ipp_rtdstoptslen);
10215 		case IPV6_RTHDR:
10216 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10217 				return (0);
10218 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10219 			return (ipp->ipp_rthdrlen);
10220 		case IPV6_DSTOPTS:
10221 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10222 				return (0);
10223 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10224 			return (ipp->ipp_dstoptslen);
10225 		case IPV6_SRC_PREFERENCES:
10226 			return (ip6_get_src_preferences(connp,
10227 			    (uint32_t *)ptr));
10228 		case IPV6_PATHMTU: {
10229 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10230 
10231 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10232 				return (-1);
10233 
10234 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10235 			    connp->conn_fport, mtuinfo,
10236 			    connp->conn_netstack));
10237 		}
10238 		default:
10239 			return (-1);
10240 		}
10241 		break;
10242 	default:
10243 		return (-1);
10244 	}
10245 	return (sizeof (int));
10246 }
10247 
10248 /*
10249  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10250  * Parameters are assumed to be verified by the caller.
10251  */
10252 /* ARGSUSED */
10253 int
10254 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10255     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10256     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10257 {
10258 	conn_t	*connp = Q_TO_CONN(q);
10259 	tcp_t	*tcp = connp->conn_tcp;
10260 	int	*i1 = (int *)invalp;
10261 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10262 	boolean_t checkonly;
10263 	int	reterr;
10264 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10265 
10266 	switch (optset_context) {
10267 	case SETFN_OPTCOM_CHECKONLY:
10268 		checkonly = B_TRUE;
10269 		/*
10270 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10271 		 * inlen != 0 implies value supplied and
10272 		 * 	we have to "pretend" to set it.
10273 		 * inlen == 0 implies that there is no
10274 		 * 	value part in T_CHECK request and just validation
10275 		 * done elsewhere should be enough, we just return here.
10276 		 */
10277 		if (inlen == 0) {
10278 			*outlenp = 0;
10279 			return (0);
10280 		}
10281 		break;
10282 	case SETFN_OPTCOM_NEGOTIATE:
10283 		checkonly = B_FALSE;
10284 		break;
10285 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10286 	case SETFN_CONN_NEGOTIATE:
10287 		checkonly = B_FALSE;
10288 		/*
10289 		 * Negotiating local and "association-related" options
10290 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10291 		 * primitives is allowed by XTI, but we choose
10292 		 * to not implement this style negotiation for Internet
10293 		 * protocols (We interpret it is a must for OSI world but
10294 		 * optional for Internet protocols) for all options.
10295 		 * [ Will do only for the few options that enable test
10296 		 * suites that our XTI implementation of this feature
10297 		 * works for transports that do allow it ]
10298 		 */
10299 		if (!tcp_allow_connopt_set(level, name)) {
10300 			*outlenp = 0;
10301 			return (EINVAL);
10302 		}
10303 		break;
10304 	default:
10305 		/*
10306 		 * We should never get here
10307 		 */
10308 		*outlenp = 0;
10309 		return (EINVAL);
10310 	}
10311 
10312 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10313 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10314 
10315 	/*
10316 	 * For TCP, we should have no ancillary data sent down
10317 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10318 	 * has to be zero.
10319 	 */
10320 	ASSERT(thisdg_attrs == NULL);
10321 
10322 	/*
10323 	 * For fixed length options, no sanity check
10324 	 * of passed in length is done. It is assumed *_optcom_req()
10325 	 * routines do the right thing.
10326 	 */
10327 
10328 	switch (level) {
10329 	case SOL_SOCKET:
10330 		switch (name) {
10331 		case SO_LINGER: {
10332 			struct linger *lgr = (struct linger *)invalp;
10333 
10334 			if (!checkonly) {
10335 				if (lgr->l_onoff) {
10336 					tcp->tcp_linger = 1;
10337 					tcp->tcp_lingertime = lgr->l_linger;
10338 				} else {
10339 					tcp->tcp_linger = 0;
10340 					tcp->tcp_lingertime = 0;
10341 				}
10342 				/* struct copy */
10343 				*(struct linger *)outvalp = *lgr;
10344 			} else {
10345 				if (!lgr->l_onoff) {
10346 					((struct linger *)
10347 					    outvalp)->l_onoff = 0;
10348 					((struct linger *)
10349 					    outvalp)->l_linger = 0;
10350 				} else {
10351 					/* struct copy */
10352 					*(struct linger *)outvalp = *lgr;
10353 				}
10354 			}
10355 			*outlenp = sizeof (struct linger);
10356 			return (0);
10357 		}
10358 		case SO_DEBUG:
10359 			if (!checkonly)
10360 				tcp->tcp_debug = onoff;
10361 			break;
10362 		case SO_KEEPALIVE:
10363 			if (checkonly) {
10364 				/* T_CHECK case */
10365 				break;
10366 			}
10367 
10368 			if (!onoff) {
10369 				if (tcp->tcp_ka_enabled) {
10370 					if (tcp->tcp_ka_tid != 0) {
10371 						(void) TCP_TIMER_CANCEL(tcp,
10372 						    tcp->tcp_ka_tid);
10373 						tcp->tcp_ka_tid = 0;
10374 					}
10375 					tcp->tcp_ka_enabled = 0;
10376 				}
10377 				break;
10378 			}
10379 			if (!tcp->tcp_ka_enabled) {
10380 				/* Crank up the keepalive timer */
10381 				tcp->tcp_ka_last_intrvl = 0;
10382 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10383 				    tcp_keepalive_killer,
10384 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10385 				tcp->tcp_ka_enabled = 1;
10386 			}
10387 			break;
10388 		case SO_DONTROUTE:
10389 			/*
10390 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10391 			 * only of interest to IP.  We track them here only so
10392 			 * that we can report their current value.
10393 			 */
10394 			if (!checkonly) {
10395 				tcp->tcp_dontroute = onoff;
10396 				tcp->tcp_connp->conn_dontroute = onoff;
10397 			}
10398 			break;
10399 		case SO_USELOOPBACK:
10400 			if (!checkonly) {
10401 				tcp->tcp_useloopback = onoff;
10402 				tcp->tcp_connp->conn_loopback = onoff;
10403 			}
10404 			break;
10405 		case SO_BROADCAST:
10406 			if (!checkonly) {
10407 				tcp->tcp_broadcast = onoff;
10408 				tcp->tcp_connp->conn_broadcast = onoff;
10409 			}
10410 			break;
10411 		case SO_REUSEADDR:
10412 			if (!checkonly) {
10413 				tcp->tcp_reuseaddr = onoff;
10414 				tcp->tcp_connp->conn_reuseaddr = onoff;
10415 			}
10416 			break;
10417 		case SO_OOBINLINE:
10418 			if (!checkonly)
10419 				tcp->tcp_oobinline = onoff;
10420 			break;
10421 		case SO_DGRAM_ERRIND:
10422 			if (!checkonly)
10423 				tcp->tcp_dgram_errind = onoff;
10424 			break;
10425 		case SO_SNDBUF: {
10426 			if (*i1 > tcps->tcps_max_buf) {
10427 				*outlenp = 0;
10428 				return (ENOBUFS);
10429 			}
10430 			if (checkonly)
10431 				break;
10432 
10433 			tcp->tcp_xmit_hiwater = *i1;
10434 			if (tcps->tcps_snd_lowat_fraction != 0)
10435 				tcp->tcp_xmit_lowater =
10436 				    tcp->tcp_xmit_hiwater /
10437 				    tcps->tcps_snd_lowat_fraction;
10438 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10439 			/*
10440 			 * If we are flow-controlled, recheck the condition.
10441 			 * There are apps that increase SO_SNDBUF size when
10442 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10443 			 * control condition to be lifted right away.
10444 			 */
10445 			mutex_enter(&tcp->tcp_non_sq_lock);
10446 			if (tcp->tcp_flow_stopped &&
10447 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10448 				tcp_clrqfull(tcp);
10449 			}
10450 			mutex_exit(&tcp->tcp_non_sq_lock);
10451 			break;
10452 		}
10453 		case SO_RCVBUF:
10454 			if (*i1 > tcps->tcps_max_buf) {
10455 				*outlenp = 0;
10456 				return (ENOBUFS);
10457 			}
10458 			/* Silently ignore zero */
10459 			if (!checkonly && *i1 != 0) {
10460 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10461 				(void) tcp_rwnd_set(tcp, *i1);
10462 			}
10463 			/*
10464 			 * XXX should we return the rwnd here
10465 			 * and tcp_opt_get ?
10466 			 */
10467 			break;
10468 		case SO_SND_COPYAVOID:
10469 			if (!checkonly) {
10470 				/* we only allow enable at most once for now */
10471 				if (tcp->tcp_loopback ||
10472 				    (tcp->tcp_kssl_ctx != NULL) ||
10473 				    (!tcp->tcp_snd_zcopy_aware &&
10474 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10475 					*outlenp = 0;
10476 					return (EOPNOTSUPP);
10477 				}
10478 				tcp->tcp_snd_zcopy_aware = 1;
10479 			}
10480 			break;
10481 		case SO_ALLZONES:
10482 			/* Pass option along to IP level for handling */
10483 			return (-EINVAL);
10484 		case SO_ANON_MLP:
10485 			/* Pass option along to IP level for handling */
10486 			return (-EINVAL);
10487 		case SO_MAC_EXEMPT:
10488 			/* Pass option along to IP level for handling */
10489 			return (-EINVAL);
10490 		case SO_EXCLBIND:
10491 			if (!checkonly)
10492 				tcp->tcp_exclbind = onoff;
10493 			break;
10494 		default:
10495 			*outlenp = 0;
10496 			return (EINVAL);
10497 		}
10498 		break;
10499 	case IPPROTO_TCP:
10500 		switch (name) {
10501 		case TCP_NODELAY:
10502 			if (!checkonly)
10503 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10504 			break;
10505 		case TCP_NOTIFY_THRESHOLD:
10506 			if (!checkonly)
10507 				tcp->tcp_first_timer_threshold = *i1;
10508 			break;
10509 		case TCP_ABORT_THRESHOLD:
10510 			if (!checkonly)
10511 				tcp->tcp_second_timer_threshold = *i1;
10512 			break;
10513 		case TCP_CONN_NOTIFY_THRESHOLD:
10514 			if (!checkonly)
10515 				tcp->tcp_first_ctimer_threshold = *i1;
10516 			break;
10517 		case TCP_CONN_ABORT_THRESHOLD:
10518 			if (!checkonly)
10519 				tcp->tcp_second_ctimer_threshold = *i1;
10520 			break;
10521 		case TCP_RECVDSTADDR:
10522 			if (tcp->tcp_state > TCPS_LISTEN)
10523 				return (EOPNOTSUPP);
10524 			if (!checkonly)
10525 				tcp->tcp_recvdstaddr = onoff;
10526 			break;
10527 		case TCP_ANONPRIVBIND:
10528 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10529 			    IPPROTO_TCP)) != 0) {
10530 				*outlenp = 0;
10531 				return (reterr);
10532 			}
10533 			if (!checkonly) {
10534 				tcp->tcp_anon_priv_bind = onoff;
10535 			}
10536 			break;
10537 		case TCP_EXCLBIND:
10538 			if (!checkonly)
10539 				tcp->tcp_exclbind = onoff;
10540 			break;	/* goto sizeof (int) option return */
10541 		case TCP_INIT_CWND: {
10542 			uint32_t init_cwnd = *((uint32_t *)invalp);
10543 
10544 			if (checkonly)
10545 				break;
10546 
10547 			/*
10548 			 * Only allow socket with network configuration
10549 			 * privilege to set the initial cwnd to be larger
10550 			 * than allowed by RFC 3390.
10551 			 */
10552 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10553 				tcp->tcp_init_cwnd = init_cwnd;
10554 				break;
10555 			}
10556 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10557 				*outlenp = 0;
10558 				return (reterr);
10559 			}
10560 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10561 				*outlenp = 0;
10562 				return (EINVAL);
10563 			}
10564 			tcp->tcp_init_cwnd = init_cwnd;
10565 			break;
10566 		}
10567 		case TCP_KEEPALIVE_THRESHOLD:
10568 			if (checkonly)
10569 				break;
10570 
10571 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10572 			    *i1 > tcps->tcps_keepalive_interval_high) {
10573 				*outlenp = 0;
10574 				return (EINVAL);
10575 			}
10576 			if (*i1 != tcp->tcp_ka_interval) {
10577 				tcp->tcp_ka_interval = *i1;
10578 				/*
10579 				 * Check if we need to restart the
10580 				 * keepalive timer.
10581 				 */
10582 				if (tcp->tcp_ka_tid != 0) {
10583 					ASSERT(tcp->tcp_ka_enabled);
10584 					(void) TCP_TIMER_CANCEL(tcp,
10585 					    tcp->tcp_ka_tid);
10586 					tcp->tcp_ka_last_intrvl = 0;
10587 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10588 					    tcp_keepalive_killer,
10589 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10590 				}
10591 			}
10592 			break;
10593 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10594 			if (!checkonly) {
10595 				if (*i1 <
10596 				    tcps->tcps_keepalive_abort_interval_low ||
10597 				    *i1 >
10598 				    tcps->tcps_keepalive_abort_interval_high) {
10599 					*outlenp = 0;
10600 					return (EINVAL);
10601 				}
10602 				tcp->tcp_ka_abort_thres = *i1;
10603 			}
10604 			break;
10605 		case TCP_CORK:
10606 			if (!checkonly) {
10607 				/*
10608 				 * if tcp->tcp_cork was set and is now
10609 				 * being unset, we have to make sure that
10610 				 * the remaining data gets sent out. Also
10611 				 * unset tcp->tcp_cork so that tcp_wput_data()
10612 				 * can send data even if it is less than mss
10613 				 */
10614 				if (tcp->tcp_cork && onoff == 0 &&
10615 				    tcp->tcp_unsent > 0) {
10616 					tcp->tcp_cork = B_FALSE;
10617 					tcp_wput_data(tcp, NULL, B_FALSE);
10618 				}
10619 				tcp->tcp_cork = onoff;
10620 			}
10621 			break;
10622 		default:
10623 			*outlenp = 0;
10624 			return (EINVAL);
10625 		}
10626 		break;
10627 	case IPPROTO_IP:
10628 		if (tcp->tcp_family != AF_INET) {
10629 			*outlenp = 0;
10630 			return (ENOPROTOOPT);
10631 		}
10632 		switch (name) {
10633 		case IP_OPTIONS:
10634 		case T_IP_OPTIONS:
10635 			reterr = tcp_opt_set_header(tcp, checkonly,
10636 			    invalp, inlen);
10637 			if (reterr) {
10638 				*outlenp = 0;
10639 				return (reterr);
10640 			}
10641 			/* OK return - copy input buffer into output buffer */
10642 			if (invalp != outvalp) {
10643 				/* don't trust bcopy for identical src/dst */
10644 				bcopy(invalp, outvalp, inlen);
10645 			}
10646 			*outlenp = inlen;
10647 			return (0);
10648 		case IP_TOS:
10649 		case T_IP_TOS:
10650 			if (!checkonly) {
10651 				tcp->tcp_ipha->ipha_type_of_service =
10652 				    (uchar_t)*i1;
10653 				tcp->tcp_tos = (uchar_t)*i1;
10654 			}
10655 			break;
10656 		case IP_TTL:
10657 			if (!checkonly) {
10658 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10659 				tcp->tcp_ttl = (uchar_t)*i1;
10660 			}
10661 			break;
10662 		case IP_BOUND_IF:
10663 		case IP_NEXTHOP:
10664 			/* Handled at the IP level */
10665 			return (-EINVAL);
10666 		case IP_SEC_OPT:
10667 			/*
10668 			 * We should not allow policy setting after
10669 			 * we start listening for connections.
10670 			 */
10671 			if (tcp->tcp_state == TCPS_LISTEN) {
10672 				return (EINVAL);
10673 			} else {
10674 				/* Handled at the IP level */
10675 				return (-EINVAL);
10676 			}
10677 		default:
10678 			*outlenp = 0;
10679 			return (EINVAL);
10680 		}
10681 		break;
10682 	case IPPROTO_IPV6: {
10683 		ip6_pkt_t		*ipp;
10684 
10685 		/*
10686 		 * IPPROTO_IPV6 options are only supported for sockets
10687 		 * that are using IPv6 on the wire.
10688 		 */
10689 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10690 			*outlenp = 0;
10691 			return (ENOPROTOOPT);
10692 		}
10693 		/*
10694 		 * Only sticky options; no ancillary data
10695 		 */
10696 		ASSERT(thisdg_attrs == NULL);
10697 		ipp = &tcp->tcp_sticky_ipp;
10698 
10699 		switch (name) {
10700 		case IPV6_UNICAST_HOPS:
10701 			/* -1 means use default */
10702 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10703 				*outlenp = 0;
10704 				return (EINVAL);
10705 			}
10706 			if (!checkonly) {
10707 				if (*i1 == -1) {
10708 					tcp->tcp_ip6h->ip6_hops =
10709 					    ipp->ipp_unicast_hops =
10710 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10711 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10712 					/* Pass modified value to IP. */
10713 					*i1 = tcp->tcp_ip6h->ip6_hops;
10714 				} else {
10715 					tcp->tcp_ip6h->ip6_hops =
10716 					    ipp->ipp_unicast_hops =
10717 					    (uint8_t)*i1;
10718 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10719 				}
10720 				reterr = tcp_build_hdrs(q, tcp);
10721 				if (reterr != 0)
10722 					return (reterr);
10723 			}
10724 			break;
10725 		case IPV6_BOUND_IF:
10726 			if (!checkonly) {
10727 				int error = 0;
10728 
10729 				tcp->tcp_bound_if = *i1;
10730 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10731 				    B_TRUE, checkonly, level, name, mblk);
10732 				if (error != 0) {
10733 					*outlenp = 0;
10734 					return (error);
10735 				}
10736 			}
10737 			break;
10738 		/*
10739 		 * Set boolean switches for ancillary data delivery
10740 		 */
10741 		case IPV6_RECVPKTINFO:
10742 			if (!checkonly) {
10743 				if (onoff)
10744 					tcp->tcp_ipv6_recvancillary |=
10745 					    TCP_IPV6_RECVPKTINFO;
10746 				else
10747 					tcp->tcp_ipv6_recvancillary &=
10748 					    ~TCP_IPV6_RECVPKTINFO;
10749 				/* Force it to be sent up with the next msg */
10750 				tcp->tcp_recvifindex = 0;
10751 			}
10752 			break;
10753 		case IPV6_RECVTCLASS:
10754 			if (!checkonly) {
10755 				if (onoff)
10756 					tcp->tcp_ipv6_recvancillary |=
10757 					    TCP_IPV6_RECVTCLASS;
10758 				else
10759 					tcp->tcp_ipv6_recvancillary &=
10760 					    ~TCP_IPV6_RECVTCLASS;
10761 			}
10762 			break;
10763 		case IPV6_RECVHOPLIMIT:
10764 			if (!checkonly) {
10765 				if (onoff)
10766 					tcp->tcp_ipv6_recvancillary |=
10767 					    TCP_IPV6_RECVHOPLIMIT;
10768 				else
10769 					tcp->tcp_ipv6_recvancillary &=
10770 					    ~TCP_IPV6_RECVHOPLIMIT;
10771 				/* Force it to be sent up with the next msg */
10772 				tcp->tcp_recvhops = 0xffffffffU;
10773 			}
10774 			break;
10775 		case IPV6_RECVHOPOPTS:
10776 			if (!checkonly) {
10777 				if (onoff)
10778 					tcp->tcp_ipv6_recvancillary |=
10779 					    TCP_IPV6_RECVHOPOPTS;
10780 				else
10781 					tcp->tcp_ipv6_recvancillary &=
10782 					    ~TCP_IPV6_RECVHOPOPTS;
10783 			}
10784 			break;
10785 		case IPV6_RECVDSTOPTS:
10786 			if (!checkonly) {
10787 				if (onoff)
10788 					tcp->tcp_ipv6_recvancillary |=
10789 					    TCP_IPV6_RECVDSTOPTS;
10790 				else
10791 					tcp->tcp_ipv6_recvancillary &=
10792 					    ~TCP_IPV6_RECVDSTOPTS;
10793 			}
10794 			break;
10795 		case _OLD_IPV6_RECVDSTOPTS:
10796 			if (!checkonly) {
10797 				if (onoff)
10798 					tcp->tcp_ipv6_recvancillary |=
10799 					    TCP_OLD_IPV6_RECVDSTOPTS;
10800 				else
10801 					tcp->tcp_ipv6_recvancillary &=
10802 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10803 			}
10804 			break;
10805 		case IPV6_RECVRTHDR:
10806 			if (!checkonly) {
10807 				if (onoff)
10808 					tcp->tcp_ipv6_recvancillary |=
10809 					    TCP_IPV6_RECVRTHDR;
10810 				else
10811 					tcp->tcp_ipv6_recvancillary &=
10812 					    ~TCP_IPV6_RECVRTHDR;
10813 			}
10814 			break;
10815 		case IPV6_RECVRTHDRDSTOPTS:
10816 			if (!checkonly) {
10817 				if (onoff)
10818 					tcp->tcp_ipv6_recvancillary |=
10819 					    TCP_IPV6_RECVRTDSTOPTS;
10820 				else
10821 					tcp->tcp_ipv6_recvancillary &=
10822 					    ~TCP_IPV6_RECVRTDSTOPTS;
10823 			}
10824 			break;
10825 		case IPV6_PKTINFO:
10826 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10827 				return (EINVAL);
10828 			if (checkonly)
10829 				break;
10830 
10831 			if (inlen == 0) {
10832 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10833 			} else {
10834 				struct in6_pktinfo *pkti;
10835 
10836 				pkti = (struct in6_pktinfo *)invalp;
10837 				/*
10838 				 * RFC 3542 states that ipi6_addr must be
10839 				 * the unspecified address when setting the
10840 				 * IPV6_PKTINFO sticky socket option on a
10841 				 * TCP socket.
10842 				 */
10843 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10844 					return (EINVAL);
10845 				/*
10846 				 * ip6_set_pktinfo() validates the source
10847 				 * address and interface index.
10848 				 */
10849 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10850 				    pkti, mblk);
10851 				if (reterr != 0)
10852 					return (reterr);
10853 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10854 				ipp->ipp_addr = pkti->ipi6_addr;
10855 				if (ipp->ipp_ifindex != 0)
10856 					ipp->ipp_fields |= IPPF_IFINDEX;
10857 				else
10858 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10859 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10860 					ipp->ipp_fields |= IPPF_ADDR;
10861 				else
10862 					ipp->ipp_fields &= ~IPPF_ADDR;
10863 			}
10864 			reterr = tcp_build_hdrs(q, tcp);
10865 			if (reterr != 0)
10866 				return (reterr);
10867 			break;
10868 		case IPV6_TCLASS:
10869 			if (inlen != 0 && inlen != sizeof (int))
10870 				return (EINVAL);
10871 			if (checkonly)
10872 				break;
10873 
10874 			if (inlen == 0) {
10875 				ipp->ipp_fields &= ~IPPF_TCLASS;
10876 			} else {
10877 				if (*i1 > 255 || *i1 < -1)
10878 					return (EINVAL);
10879 				if (*i1 == -1) {
10880 					ipp->ipp_tclass = 0;
10881 					*i1 = 0;
10882 				} else {
10883 					ipp->ipp_tclass = *i1;
10884 				}
10885 				ipp->ipp_fields |= IPPF_TCLASS;
10886 			}
10887 			reterr = tcp_build_hdrs(q, tcp);
10888 			if (reterr != 0)
10889 				return (reterr);
10890 			break;
10891 		case IPV6_NEXTHOP:
10892 			/*
10893 			 * IP will verify that the nexthop is reachable
10894 			 * and fail for sticky options.
10895 			 */
10896 			if (inlen != 0 && inlen != sizeof (sin6_t))
10897 				return (EINVAL);
10898 			if (checkonly)
10899 				break;
10900 
10901 			if (inlen == 0) {
10902 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10903 			} else {
10904 				sin6_t *sin6 = (sin6_t *)invalp;
10905 
10906 				if (sin6->sin6_family != AF_INET6)
10907 					return (EAFNOSUPPORT);
10908 				if (IN6_IS_ADDR_V4MAPPED(
10909 				    &sin6->sin6_addr))
10910 					return (EADDRNOTAVAIL);
10911 				ipp->ipp_nexthop = sin6->sin6_addr;
10912 				if (!IN6_IS_ADDR_UNSPECIFIED(
10913 				    &ipp->ipp_nexthop))
10914 					ipp->ipp_fields |= IPPF_NEXTHOP;
10915 				else
10916 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10917 			}
10918 			reterr = tcp_build_hdrs(q, tcp);
10919 			if (reterr != 0)
10920 				return (reterr);
10921 			break;
10922 		case IPV6_HOPOPTS: {
10923 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10924 
10925 			/*
10926 			 * Sanity checks - minimum size, size a multiple of
10927 			 * eight bytes, and matching size passed in.
10928 			 */
10929 			if (inlen != 0 &&
10930 			    inlen != (8 * (hopts->ip6h_len + 1)))
10931 				return (EINVAL);
10932 
10933 			if (checkonly)
10934 				break;
10935 
10936 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10937 			    (uchar_t **)&ipp->ipp_hopopts,
10938 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10939 			if (reterr != 0)
10940 				return (reterr);
10941 			if (ipp->ipp_hopoptslen == 0)
10942 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10943 			else
10944 				ipp->ipp_fields |= IPPF_HOPOPTS;
10945 			reterr = tcp_build_hdrs(q, tcp);
10946 			if (reterr != 0)
10947 				return (reterr);
10948 			break;
10949 		}
10950 		case IPV6_RTHDRDSTOPTS: {
10951 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10952 
10953 			/*
10954 			 * Sanity checks - minimum size, size a multiple of
10955 			 * eight bytes, and matching size passed in.
10956 			 */
10957 			if (inlen != 0 &&
10958 			    inlen != (8 * (dopts->ip6d_len + 1)))
10959 				return (EINVAL);
10960 
10961 			if (checkonly)
10962 				break;
10963 
10964 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10965 			    (uchar_t **)&ipp->ipp_rtdstopts,
10966 			    &ipp->ipp_rtdstoptslen, 0);
10967 			if (reterr != 0)
10968 				return (reterr);
10969 			if (ipp->ipp_rtdstoptslen == 0)
10970 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10971 			else
10972 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10973 			reterr = tcp_build_hdrs(q, tcp);
10974 			if (reterr != 0)
10975 				return (reterr);
10976 			break;
10977 		}
10978 		case IPV6_DSTOPTS: {
10979 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10980 
10981 			/*
10982 			 * Sanity checks - minimum size, size a multiple of
10983 			 * eight bytes, and matching size passed in.
10984 			 */
10985 			if (inlen != 0 &&
10986 			    inlen != (8 * (dopts->ip6d_len + 1)))
10987 				return (EINVAL);
10988 
10989 			if (checkonly)
10990 				break;
10991 
10992 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10993 			    (uchar_t **)&ipp->ipp_dstopts,
10994 			    &ipp->ipp_dstoptslen, 0);
10995 			if (reterr != 0)
10996 				return (reterr);
10997 			if (ipp->ipp_dstoptslen == 0)
10998 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10999 			else
11000 				ipp->ipp_fields |= IPPF_DSTOPTS;
11001 			reterr = tcp_build_hdrs(q, tcp);
11002 			if (reterr != 0)
11003 				return (reterr);
11004 			break;
11005 		}
11006 		case IPV6_RTHDR: {
11007 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
11008 
11009 			/*
11010 			 * Sanity checks - minimum size, size a multiple of
11011 			 * eight bytes, and matching size passed in.
11012 			 */
11013 			if (inlen != 0 &&
11014 			    inlen != (8 * (rt->ip6r_len + 1)))
11015 				return (EINVAL);
11016 
11017 			if (checkonly)
11018 				break;
11019 
11020 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11021 			    (uchar_t **)&ipp->ipp_rthdr,
11022 			    &ipp->ipp_rthdrlen, 0);
11023 			if (reterr != 0)
11024 				return (reterr);
11025 			if (ipp->ipp_rthdrlen == 0)
11026 				ipp->ipp_fields &= ~IPPF_RTHDR;
11027 			else
11028 				ipp->ipp_fields |= IPPF_RTHDR;
11029 			reterr = tcp_build_hdrs(q, tcp);
11030 			if (reterr != 0)
11031 				return (reterr);
11032 			break;
11033 		}
11034 		case IPV6_V6ONLY:
11035 			if (!checkonly)
11036 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11037 			break;
11038 		case IPV6_USE_MIN_MTU:
11039 			if (inlen != sizeof (int))
11040 				return (EINVAL);
11041 
11042 			if (*i1 < -1 || *i1 > 1)
11043 				return (EINVAL);
11044 
11045 			if (checkonly)
11046 				break;
11047 
11048 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11049 			ipp->ipp_use_min_mtu = *i1;
11050 			break;
11051 		case IPV6_BOUND_PIF:
11052 			/* Handled at the IP level */
11053 			return (-EINVAL);
11054 		case IPV6_SEC_OPT:
11055 			/*
11056 			 * We should not allow policy setting after
11057 			 * we start listening for connections.
11058 			 */
11059 			if (tcp->tcp_state == TCPS_LISTEN) {
11060 				return (EINVAL);
11061 			} else {
11062 				/* Handled at the IP level */
11063 				return (-EINVAL);
11064 			}
11065 		case IPV6_SRC_PREFERENCES:
11066 			if (inlen != sizeof (uint32_t))
11067 				return (EINVAL);
11068 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11069 			    *(uint32_t *)invalp);
11070 			if (reterr != 0) {
11071 				*outlenp = 0;
11072 				return (reterr);
11073 			}
11074 			break;
11075 		default:
11076 			*outlenp = 0;
11077 			return (EINVAL);
11078 		}
11079 		break;
11080 	}		/* end IPPROTO_IPV6 */
11081 	default:
11082 		*outlenp = 0;
11083 		return (EINVAL);
11084 	}
11085 	/*
11086 	 * Common case of OK return with outval same as inval
11087 	 */
11088 	if (invalp != outvalp) {
11089 		/* don't trust bcopy for identical src/dst */
11090 		(void) bcopy(invalp, outvalp, inlen);
11091 	}
11092 	*outlenp = inlen;
11093 	return (0);
11094 }
11095 
11096 /*
11097  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11098  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11099  * headers, and the maximum size tcp header (to avoid reallocation
11100  * on the fly for additional tcp options).
11101  * Returns failure if can't allocate memory.
11102  */
11103 static int
11104 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11105 {
11106 	char	*hdrs;
11107 	uint_t	hdrs_len;
11108 	ip6i_t	*ip6i;
11109 	char	buf[TCP_MAX_HDR_LENGTH];
11110 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11111 	in6_addr_t src, dst;
11112 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11113 
11114 	/*
11115 	 * save the existing tcp header and source/dest IP addresses
11116 	 */
11117 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11118 	src = tcp->tcp_ip6h->ip6_src;
11119 	dst = tcp->tcp_ip6h->ip6_dst;
11120 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11121 	ASSERT(hdrs_len != 0);
11122 	if (hdrs_len > tcp->tcp_iphc_len) {
11123 		/* Need to reallocate */
11124 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11125 		if (hdrs == NULL)
11126 			return (ENOMEM);
11127 		if (tcp->tcp_iphc != NULL) {
11128 			if (tcp->tcp_hdr_grown) {
11129 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11130 			} else {
11131 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11132 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11133 			}
11134 			tcp->tcp_iphc_len = 0;
11135 		}
11136 		ASSERT(tcp->tcp_iphc_len == 0);
11137 		tcp->tcp_iphc = hdrs;
11138 		tcp->tcp_iphc_len = hdrs_len;
11139 		tcp->tcp_hdr_grown = B_TRUE;
11140 	}
11141 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11142 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11143 
11144 	/* Set header fields not in ipp */
11145 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11146 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11147 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11148 	} else {
11149 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11150 	}
11151 	/*
11152 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11153 	 *
11154 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11155 	 */
11156 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11157 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11158 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11159 
11160 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11161 
11162 	tcp->tcp_ip6h->ip6_src = src;
11163 	tcp->tcp_ip6h->ip6_dst = dst;
11164 
11165 	/*
11166 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11167 	 * the default value for TCP.
11168 	 */
11169 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11170 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11171 
11172 	/*
11173 	 * If we're setting extension headers after a connection
11174 	 * has been established, and if we have a routing header
11175 	 * among the extension headers, call ip_massage_options_v6 to
11176 	 * manipulate the routing header/ip6_dst set the checksum
11177 	 * difference in the tcp header template.
11178 	 * (This happens in tcp_connect_ipv6 if the routing header
11179 	 * is set prior to the connect.)
11180 	 * Set the tcp_sum to zero first in case we've cleared a
11181 	 * routing header or don't have one at all.
11182 	 */
11183 	tcp->tcp_sum = 0;
11184 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11185 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11186 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11187 		    (uint8_t *)tcp->tcp_tcph);
11188 		if (rth != NULL) {
11189 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11190 			    rth, tcps->tcps_netstack);
11191 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11192 			    (tcp->tcp_sum >> 16));
11193 		}
11194 	}
11195 
11196 	/* Try to get everything in a single mblk */
11197 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11198 	return (0);
11199 }
11200 
11201 /*
11202  * Transfer any source route option from ipha to buf/dst in reversed form.
11203  */
11204 static int
11205 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11206 {
11207 	ipoptp_t	opts;
11208 	uchar_t		*opt;
11209 	uint8_t		optval;
11210 	uint8_t		optlen;
11211 	uint32_t	len = 0;
11212 
11213 	for (optval = ipoptp_first(&opts, ipha);
11214 	    optval != IPOPT_EOL;
11215 	    optval = ipoptp_next(&opts)) {
11216 		opt = opts.ipoptp_cur;
11217 		optlen = opts.ipoptp_len;
11218 		switch (optval) {
11219 			int	off1, off2;
11220 		case IPOPT_SSRR:
11221 		case IPOPT_LSRR:
11222 
11223 			/* Reverse source route */
11224 			/*
11225 			 * First entry should be the next to last one in the
11226 			 * current source route (the last entry is our
11227 			 * address.)
11228 			 * The last entry should be the final destination.
11229 			 */
11230 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11231 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11232 			off1 = IPOPT_MINOFF_SR - 1;
11233 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11234 			if (off2 < 0) {
11235 				/* No entries in source route */
11236 				break;
11237 			}
11238 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11239 			/*
11240 			 * Note: use src since ipha has not had its src
11241 			 * and dst reversed (it is in the state it was
11242 			 * received.
11243 			 */
11244 			bcopy(&ipha->ipha_src, buf + off2,
11245 			    IP_ADDR_LEN);
11246 			off2 -= IP_ADDR_LEN;
11247 
11248 			while (off2 > 0) {
11249 				bcopy(opt + off2, buf + off1,
11250 				    IP_ADDR_LEN);
11251 				off1 += IP_ADDR_LEN;
11252 				off2 -= IP_ADDR_LEN;
11253 			}
11254 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11255 			buf += optlen;
11256 			len += optlen;
11257 			break;
11258 		}
11259 	}
11260 done:
11261 	/* Pad the resulting options */
11262 	while (len & 0x3) {
11263 		*buf++ = IPOPT_EOL;
11264 		len++;
11265 	}
11266 	return (len);
11267 }
11268 
11269 
11270 /*
11271  * Extract and revert a source route from ipha (if any)
11272  * and then update the relevant fields in both tcp_t and the standard header.
11273  */
11274 static void
11275 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11276 {
11277 	char	buf[TCP_MAX_HDR_LENGTH];
11278 	uint_t	tcph_len;
11279 	int	len;
11280 
11281 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11282 	len = IPH_HDR_LENGTH(ipha);
11283 	if (len == IP_SIMPLE_HDR_LENGTH)
11284 		/* Nothing to do */
11285 		return;
11286 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11287 	    (len & 0x3))
11288 		return;
11289 
11290 	tcph_len = tcp->tcp_tcp_hdr_len;
11291 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11292 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11293 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11294 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11295 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11296 	len += IP_SIMPLE_HDR_LENGTH;
11297 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11298 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11299 	if ((int)tcp->tcp_sum < 0)
11300 		tcp->tcp_sum--;
11301 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11302 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11303 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11304 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11305 	tcp->tcp_ip_hdr_len = len;
11306 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11307 	    (IP_VERSION << 4) | (len >> 2);
11308 	len += tcph_len;
11309 	tcp->tcp_hdr_len = len;
11310 }
11311 
11312 /*
11313  * Copy the standard header into its new location,
11314  * lay in the new options and then update the relevant
11315  * fields in both tcp_t and the standard header.
11316  */
11317 static int
11318 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11319 {
11320 	uint_t	tcph_len;
11321 	uint8_t	*ip_optp;
11322 	tcph_t	*new_tcph;
11323 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11324 
11325 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11326 		return (EINVAL);
11327 
11328 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11329 		return (EINVAL);
11330 
11331 	if (checkonly) {
11332 		/*
11333 		 * do not really set, just pretend to - T_CHECK
11334 		 */
11335 		return (0);
11336 	}
11337 
11338 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11339 	if (tcp->tcp_label_len > 0) {
11340 		int padlen;
11341 		uint8_t opt;
11342 
11343 		/* convert list termination to no-ops */
11344 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11345 		ip_optp += ip_optp[IPOPT_OLEN];
11346 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11347 		while (--padlen >= 0)
11348 			*ip_optp++ = opt;
11349 	}
11350 	tcph_len = tcp->tcp_tcp_hdr_len;
11351 	new_tcph = (tcph_t *)(ip_optp + len);
11352 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11353 	tcp->tcp_tcph = new_tcph;
11354 	bcopy(ptr, ip_optp, len);
11355 
11356 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11357 
11358 	tcp->tcp_ip_hdr_len = len;
11359 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11360 	    (IP_VERSION << 4) | (len >> 2);
11361 	tcp->tcp_hdr_len = len + tcph_len;
11362 	if (!TCP_IS_DETACHED(tcp)) {
11363 		/* Always allocate room for all options. */
11364 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11365 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11366 	}
11367 	return (0);
11368 }
11369 
11370 /* Get callback routine passed to nd_load by tcp_param_register */
11371 /* ARGSUSED */
11372 static int
11373 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11374 {
11375 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11376 
11377 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11378 	return (0);
11379 }
11380 
11381 /*
11382  * Walk through the param array specified registering each element with the
11383  * named dispatch handler.
11384  */
11385 static boolean_t
11386 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11387 {
11388 	for (; cnt-- > 0; tcppa++) {
11389 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11390 			if (!nd_load(ndp, tcppa->tcp_param_name,
11391 			    tcp_param_get, tcp_param_set,
11392 			    (caddr_t)tcppa)) {
11393 				nd_free(ndp);
11394 				return (B_FALSE);
11395 			}
11396 		}
11397 	}
11398 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11399 	    KM_SLEEP);
11400 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11401 	    sizeof (tcpparam_t));
11402 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11403 	    tcp_param_get, tcp_param_set_aligned,
11404 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11405 		nd_free(ndp);
11406 		return (B_FALSE);
11407 	}
11408 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11409 	    KM_SLEEP);
11410 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11411 	    sizeof (tcpparam_t));
11412 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11413 	    tcp_param_get, tcp_param_set_aligned,
11414 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11415 		nd_free(ndp);
11416 		return (B_FALSE);
11417 	}
11418 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11419 	    KM_SLEEP);
11420 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11421 	    sizeof (tcpparam_t));
11422 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11423 	    tcp_param_get, tcp_param_set_aligned,
11424 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11425 		nd_free(ndp);
11426 		return (B_FALSE);
11427 	}
11428 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11429 	    KM_SLEEP);
11430 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11431 	    sizeof (tcpparam_t));
11432 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11433 	    tcp_param_get, tcp_param_set_aligned,
11434 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11435 		nd_free(ndp);
11436 		return (B_FALSE);
11437 	}
11438 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11439 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11440 		nd_free(ndp);
11441 		return (B_FALSE);
11442 	}
11443 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11444 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11445 		nd_free(ndp);
11446 		return (B_FALSE);
11447 	}
11448 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11449 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11450 		nd_free(ndp);
11451 		return (B_FALSE);
11452 	}
11453 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11454 	    NULL)) {
11455 		nd_free(ndp);
11456 		return (B_FALSE);
11457 	}
11458 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11459 	    NULL, NULL)) {
11460 		nd_free(ndp);
11461 		return (B_FALSE);
11462 	}
11463 	if (!nd_load(ndp, "tcp_listen_hash",
11464 	    tcp_listen_hash_report, NULL, NULL)) {
11465 		nd_free(ndp);
11466 		return (B_FALSE);
11467 	}
11468 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11469 	    NULL, NULL)) {
11470 		nd_free(ndp);
11471 		return (B_FALSE);
11472 	}
11473 	if (!nd_load(ndp, "tcp_acceptor_hash",
11474 	    tcp_acceptor_hash_report, NULL, NULL)) {
11475 		nd_free(ndp);
11476 		return (B_FALSE);
11477 	}
11478 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11479 	    tcp_1948_phrase_set, NULL)) {
11480 		nd_free(ndp);
11481 		return (B_FALSE);
11482 	}
11483 	/*
11484 	 * Dummy ndd variables - only to convey obsolescence information
11485 	 * through printing of their name (no get or set routines)
11486 	 * XXX Remove in future releases ?
11487 	 */
11488 	if (!nd_load(ndp,
11489 	    "tcp_close_wait_interval(obsoleted - "
11490 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11491 		nd_free(ndp);
11492 		return (B_FALSE);
11493 	}
11494 	return (B_TRUE);
11495 }
11496 
11497 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11498 /* ARGSUSED */
11499 static int
11500 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11501     cred_t *cr)
11502 {
11503 	long new_value;
11504 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11505 
11506 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11507 	    new_value < tcppa->tcp_param_min ||
11508 	    new_value > tcppa->tcp_param_max) {
11509 		return (EINVAL);
11510 	}
11511 	/*
11512 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11513 	 * round it up.  For future 64 bit requirement, we actually make it
11514 	 * a multiple of 8.
11515 	 */
11516 	if (new_value & 0x7) {
11517 		new_value = (new_value & ~0x7) + 0x8;
11518 	}
11519 	tcppa->tcp_param_val = new_value;
11520 	return (0);
11521 }
11522 
11523 /* Set callback routine passed to nd_load by tcp_param_register */
11524 /* ARGSUSED */
11525 static int
11526 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11527 {
11528 	long	new_value;
11529 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11530 
11531 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11532 	    new_value < tcppa->tcp_param_min ||
11533 	    new_value > tcppa->tcp_param_max) {
11534 		return (EINVAL);
11535 	}
11536 	tcppa->tcp_param_val = new_value;
11537 	return (0);
11538 }
11539 
11540 /*
11541  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11542  * is filled, return as much as we can.  The message passed in may be
11543  * multi-part, chained using b_cont.  "start" is the starting sequence
11544  * number for this piece.
11545  */
11546 static mblk_t *
11547 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11548 {
11549 	uint32_t	end;
11550 	mblk_t		*mp1;
11551 	mblk_t		*mp2;
11552 	mblk_t		*next_mp;
11553 	uint32_t	u1;
11554 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11555 
11556 	/* Walk through all the new pieces. */
11557 	do {
11558 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11559 		    (uintptr_t)INT_MAX);
11560 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11561 		next_mp = mp->b_cont;
11562 		if (start == end) {
11563 			/* Empty.  Blast it. */
11564 			freeb(mp);
11565 			continue;
11566 		}
11567 		mp->b_cont = NULL;
11568 		TCP_REASS_SET_SEQ(mp, start);
11569 		TCP_REASS_SET_END(mp, end);
11570 		mp1 = tcp->tcp_reass_tail;
11571 		if (!mp1) {
11572 			tcp->tcp_reass_tail = mp;
11573 			tcp->tcp_reass_head = mp;
11574 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11575 			UPDATE_MIB(&tcps->tcps_mib,
11576 			    tcpInDataUnorderBytes, end - start);
11577 			continue;
11578 		}
11579 		/* New stuff completely beyond tail? */
11580 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11581 			/* Link it on end. */
11582 			mp1->b_cont = mp;
11583 			tcp->tcp_reass_tail = mp;
11584 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11585 			UPDATE_MIB(&tcps->tcps_mib,
11586 			    tcpInDataUnorderBytes, end - start);
11587 			continue;
11588 		}
11589 		mp1 = tcp->tcp_reass_head;
11590 		u1 = TCP_REASS_SEQ(mp1);
11591 		/* New stuff at the front? */
11592 		if (SEQ_LT(start, u1)) {
11593 			/* Yes... Check for overlap. */
11594 			mp->b_cont = mp1;
11595 			tcp->tcp_reass_head = mp;
11596 			tcp_reass_elim_overlap(tcp, mp);
11597 			continue;
11598 		}
11599 		/*
11600 		 * The new piece fits somewhere between the head and tail.
11601 		 * We find our slot, where mp1 precedes us and mp2 trails.
11602 		 */
11603 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11604 			u1 = TCP_REASS_SEQ(mp2);
11605 			if (SEQ_LEQ(start, u1))
11606 				break;
11607 		}
11608 		/* Link ourselves in */
11609 		mp->b_cont = mp2;
11610 		mp1->b_cont = mp;
11611 
11612 		/* Trim overlap with following mblk(s) first */
11613 		tcp_reass_elim_overlap(tcp, mp);
11614 
11615 		/* Trim overlap with preceding mblk */
11616 		tcp_reass_elim_overlap(tcp, mp1);
11617 
11618 	} while (start = end, mp = next_mp);
11619 	mp1 = tcp->tcp_reass_head;
11620 	/* Anything ready to go? */
11621 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11622 		return (NULL);
11623 	/* Eat what we can off the queue */
11624 	for (;;) {
11625 		mp = mp1->b_cont;
11626 		end = TCP_REASS_END(mp1);
11627 		TCP_REASS_SET_SEQ(mp1, 0);
11628 		TCP_REASS_SET_END(mp1, 0);
11629 		if (!mp) {
11630 			tcp->tcp_reass_tail = NULL;
11631 			break;
11632 		}
11633 		if (end != TCP_REASS_SEQ(mp)) {
11634 			mp1->b_cont = NULL;
11635 			break;
11636 		}
11637 		mp1 = mp;
11638 	}
11639 	mp1 = tcp->tcp_reass_head;
11640 	tcp->tcp_reass_head = mp;
11641 	return (mp1);
11642 }
11643 
11644 /* Eliminate any overlap that mp may have over later mblks */
11645 static void
11646 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11647 {
11648 	uint32_t	end;
11649 	mblk_t		*mp1;
11650 	uint32_t	u1;
11651 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11652 
11653 	end = TCP_REASS_END(mp);
11654 	while ((mp1 = mp->b_cont) != NULL) {
11655 		u1 = TCP_REASS_SEQ(mp1);
11656 		if (!SEQ_GT(end, u1))
11657 			break;
11658 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11659 			mp->b_wptr -= end - u1;
11660 			TCP_REASS_SET_END(mp, u1);
11661 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11662 			UPDATE_MIB(&tcps->tcps_mib,
11663 			    tcpInDataPartDupBytes, end - u1);
11664 			break;
11665 		}
11666 		mp->b_cont = mp1->b_cont;
11667 		TCP_REASS_SET_SEQ(mp1, 0);
11668 		TCP_REASS_SET_END(mp1, 0);
11669 		freeb(mp1);
11670 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11671 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11672 	}
11673 	if (!mp1)
11674 		tcp->tcp_reass_tail = mp;
11675 }
11676 
11677 /*
11678  * Send up all messages queued on tcp_rcv_list.
11679  */
11680 static uint_t
11681 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11682 {
11683 	mblk_t *mp;
11684 	uint_t ret = 0;
11685 	uint_t thwin;
11686 #ifdef DEBUG
11687 	uint_t cnt = 0;
11688 #endif
11689 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11690 
11691 	/* Can't drain on an eager connection */
11692 	if (tcp->tcp_listener != NULL)
11693 		return (ret);
11694 
11695 	/* Can't be sodirect enabled */
11696 	ASSERT(SOD_NOT_ENABLED(tcp));
11697 
11698 	/* No need for the push timer now. */
11699 	if (tcp->tcp_push_tid != 0) {
11700 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11701 		tcp->tcp_push_tid = 0;
11702 	}
11703 
11704 	/*
11705 	 * Handle two cases here: we are currently fused or we were
11706 	 * previously fused and have some urgent data to be delivered
11707 	 * upstream.  The latter happens because we either ran out of
11708 	 * memory or were detached and therefore sending the SIGURG was
11709 	 * deferred until this point.  In either case we pass control
11710 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11711 	 * some work.
11712 	 */
11713 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11714 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11715 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11716 		    &tcp->tcp_fused_sigurg_mp))
11717 			return (ret);
11718 	}
11719 
11720 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11721 		tcp->tcp_rcv_list = mp->b_next;
11722 		mp->b_next = NULL;
11723 #ifdef DEBUG
11724 		cnt += msgdsize(mp);
11725 #endif
11726 		/* Does this need SSL processing first? */
11727 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11728 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11729 			    mblk_t *, mp);
11730 			tcp_kssl_input(tcp, mp);
11731 			continue;
11732 		}
11733 		putnext(q, mp);
11734 	}
11735 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11736 	tcp->tcp_rcv_last_head = NULL;
11737 	tcp->tcp_rcv_last_tail = NULL;
11738 	tcp->tcp_rcv_cnt = 0;
11739 
11740 	/* Learn the latest rwnd information that we sent to the other side. */
11741 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11742 	    << tcp->tcp_rcv_ws;
11743 	/* This is peer's calculated send window (our receive window). */
11744 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11745 	/*
11746 	 * Increase the receive window to max.  But we need to do receiver
11747 	 * SWS avoidance.  This means that we need to check the increase of
11748 	 * of receive window is at least 1 MSS.
11749 	 */
11750 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11751 		/*
11752 		 * If the window that the other side knows is less than max
11753 		 * deferred acks segments, send an update immediately.
11754 		 */
11755 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11756 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11757 			ret = TH_ACK_NEEDED;
11758 		}
11759 		tcp->tcp_rwnd = q->q_hiwat;
11760 	}
11761 	return (ret);
11762 }
11763 
11764 /*
11765  * Queue data on tcp_rcv_list which is a b_next chain.
11766  * tcp_rcv_last_head/tail is the last element of this chain.
11767  * Each element of the chain is a b_cont chain.
11768  *
11769  * M_DATA messages are added to the current element.
11770  * Other messages are added as new (b_next) elements.
11771  */
11772 void
11773 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11774 {
11775 	ASSERT(seg_len == msgdsize(mp));
11776 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11777 
11778 	if (tcp->tcp_rcv_list == NULL) {
11779 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11780 		tcp->tcp_rcv_list = mp;
11781 		tcp->tcp_rcv_last_head = mp;
11782 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11783 		tcp->tcp_rcv_last_tail->b_cont = mp;
11784 	} else {
11785 		tcp->tcp_rcv_last_head->b_next = mp;
11786 		tcp->tcp_rcv_last_head = mp;
11787 	}
11788 
11789 	while (mp->b_cont)
11790 		mp = mp->b_cont;
11791 
11792 	tcp->tcp_rcv_last_tail = mp;
11793 	tcp->tcp_rcv_cnt += seg_len;
11794 	tcp->tcp_rwnd -= seg_len;
11795 }
11796 
11797 /*
11798  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11799  * above, in addition when uioa is enabled schedule an asynchronous uio
11800  * prior to enqueuing. They implement the combinhed semantics of the
11801  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11802  * canputnext(), i.e. flow-control with backenable.
11803  *
11804  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11805  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11806  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11807  *
11808  * Must be called with sodp->sod_lockp held and will return with the lock
11809  * released.
11810  */
11811 static uint_t
11812 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11813 {
11814 	queue_t		*q = tcp->tcp_rq;
11815 	uint_t		thwin;
11816 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11817 	uint_t		ret = 0;
11818 
11819 	/* Can't be an eager connection */
11820 	ASSERT(tcp->tcp_listener == NULL);
11821 
11822 	/* Caller must have lock held */
11823 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11824 
11825 	/* Sodirect mode so must not be a tcp_rcv_list */
11826 	ASSERT(tcp->tcp_rcv_list == NULL);
11827 
11828 	if (SOD_QFULL(sodp)) {
11829 		/* Q is full, mark Q for need backenable */
11830 		SOD_QSETBE(sodp);
11831 	}
11832 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11833 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11834 	    << tcp->tcp_rcv_ws;
11835 	/* This is peer's calculated send window (our available rwnd). */
11836 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11837 	/*
11838 	 * Increase the receive window to max.  But we need to do receiver
11839 	 * SWS avoidance.  This means that we need to check the increase of
11840 	 * of receive window is at least 1 MSS.
11841 	 */
11842 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11843 		/*
11844 		 * If the window that the other side knows is less than max
11845 		 * deferred acks segments, send an update immediately.
11846 		 */
11847 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11848 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11849 			ret = TH_ACK_NEEDED;
11850 		}
11851 		tcp->tcp_rwnd = q->q_hiwat;
11852 	}
11853 
11854 	if (!SOD_QEMPTY(sodp)) {
11855 		/* Wakeup to socket */
11856 		sodp->sod_state &= SOD_WAKE_CLR;
11857 		sodp->sod_state |= SOD_WAKE_DONE;
11858 		(sodp->sod_wakeup)(sodp);
11859 		/* wakeup() does the mutex_ext() */
11860 	} else {
11861 		/* Q is empty, no need to wake */
11862 		sodp->sod_state &= SOD_WAKE_CLR;
11863 		sodp->sod_state |= SOD_WAKE_NOT;
11864 		mutex_exit(sodp->sod_lockp);
11865 	}
11866 
11867 	/* No need for the push timer now. */
11868 	if (tcp->tcp_push_tid != 0) {
11869 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11870 		tcp->tcp_push_tid = 0;
11871 	}
11872 
11873 	return (ret);
11874 }
11875 
11876 /*
11877  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11878  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11879  * to the user-land buffer and flag the mblk_t as such.
11880  *
11881  * Also, handle tcp_rwnd.
11882  */
11883 uint_t
11884 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11885 {
11886 	uioa_t		*uioap = &sodp->sod_uioa;
11887 	boolean_t	qfull;
11888 	uint_t		thwin;
11889 
11890 	/* Can't be an eager connection */
11891 	ASSERT(tcp->tcp_listener == NULL);
11892 
11893 	/* Caller must have lock held */
11894 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11895 
11896 	/* Sodirect mode so must not be a tcp_rcv_list */
11897 	ASSERT(tcp->tcp_rcv_list == NULL);
11898 
11899 	/* Passed in segment length must be equal to mblk_t chain data size */
11900 	ASSERT(seg_len == msgdsize(mp));
11901 
11902 	if (DB_TYPE(mp) != M_DATA) {
11903 		/* Only process M_DATA mblk_t's */
11904 		goto enq;
11905 	}
11906 	if (uioap->uioa_state & UIOA_ENABLED) {
11907 		/* Uioa is enabled */
11908 		mblk_t		*mp1 = mp;
11909 		mblk_t		*lmp = NULL;
11910 
11911 		if (seg_len > uioap->uio_resid) {
11912 			/*
11913 			 * There isn't enough uio space for the mblk_t chain
11914 			 * so disable uioa such that this and any additional
11915 			 * mblk_t data is handled by the socket and schedule
11916 			 * the socket for wakeup to finish this uioa.
11917 			 */
11918 			uioap->uioa_state &= UIOA_CLR;
11919 			uioap->uioa_state |= UIOA_FINI;
11920 			if (sodp->sod_state & SOD_WAKE_NOT) {
11921 				sodp->sod_state &= SOD_WAKE_CLR;
11922 				sodp->sod_state |= SOD_WAKE_NEED;
11923 			}
11924 			goto enq;
11925 		}
11926 		do {
11927 			uint32_t	len = MBLKL(mp1);
11928 
11929 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11930 				/* Scheduled, mark dblk_t as such */
11931 				DB_FLAGS(mp1) |= DBLK_UIOA;
11932 			} else {
11933 				/* Error, turn off async processing */
11934 				uioap->uioa_state &= UIOA_CLR;
11935 				uioap->uioa_state |= UIOA_FINI;
11936 				break;
11937 			}
11938 			lmp = mp1;
11939 		} while ((mp1 = mp1->b_cont) != NULL);
11940 
11941 		if (mp1 != NULL || uioap->uio_resid == 0) {
11942 			/*
11943 			 * Not all mblk_t(s) uioamoved (error) or all uio
11944 			 * space has been consumed so schedule the socket
11945 			 * for wakeup to finish this uio.
11946 			 */
11947 			sodp->sod_state &= SOD_WAKE_CLR;
11948 			sodp->sod_state |= SOD_WAKE_NEED;
11949 
11950 			/* Break the mblk chain if neccessary. */
11951 			if (mp1 != NULL && lmp != NULL) {
11952 				mp->b_next = mp1;
11953 				lmp->b_cont = NULL;
11954 			}
11955 		}
11956 	} else if (uioap->uioa_state & UIOA_FINI) {
11957 		/*
11958 		 * Post UIO_ENABLED waiting for socket to finish processing
11959 		 * so just enqueue and update tcp_rwnd.
11960 		 */
11961 		if (SOD_QFULL(sodp))
11962 			tcp->tcp_rwnd -= seg_len;
11963 	} else if (sodp->sod_want > 0) {
11964 		/*
11965 		 * Uioa isn't enabled but sodirect has a pending read().
11966 		 */
11967 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
11968 			if (sodp->sod_state & SOD_WAKE_NOT) {
11969 				/* Schedule socket for wakeup */
11970 				sodp->sod_state &= SOD_WAKE_CLR;
11971 				sodp->sod_state |= SOD_WAKE_NEED;
11972 			}
11973 			tcp->tcp_rwnd -= seg_len;
11974 		}
11975 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
11976 		/*
11977 		 * No pending sodirect read() so used the default
11978 		 * TCP push logic to guess that a push is needed.
11979 		 */
11980 		if (sodp->sod_state & SOD_WAKE_NOT) {
11981 			/* Schedule socket for wakeup */
11982 			sodp->sod_state &= SOD_WAKE_CLR;
11983 			sodp->sod_state |= SOD_WAKE_NEED;
11984 		}
11985 		tcp->tcp_rwnd -= seg_len;
11986 	} else {
11987 		/* Just update tcp_rwnd */
11988 		tcp->tcp_rwnd -= seg_len;
11989 	}
11990 enq:
11991 	qfull = SOD_QFULL(sodp);
11992 
11993 	(sodp->sod_enqueue)(sodp, mp);
11994 
11995 	if (! qfull && SOD_QFULL(sodp)) {
11996 		/* Wasn't QFULL, now QFULL, need back-enable */
11997 		SOD_QSETBE(sodp);
11998 	}
11999 
12000 	/*
12001 	 * Check to see if remote avail swnd < mss due to delayed ACK,
12002 	 * first get advertised rwnd.
12003 	 */
12004 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
12005 	/* Minus delayed ACK count */
12006 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
12007 	if (thwin < tcp->tcp_mss) {
12008 		/* Remote avail swnd < mss, need ACK now */
12009 		return (TH_ACK_NEEDED);
12010 	}
12011 
12012 	return (0);
12013 }
12014 
12015 /*
12016  * DEFAULT TCP ENTRY POINT via squeue on READ side.
12017  *
12018  * This is the default entry function into TCP on the read side. TCP is
12019  * always entered via squeue i.e. using squeue's for mutual exclusion.
12020  * When classifier does a lookup to find the tcp, it also puts a reference
12021  * on the conn structure associated so the tcp is guaranteed to exist
12022  * when we come here. We still need to check the state because it might
12023  * as well has been closed. The squeue processing function i.e. squeue_enter,
12024  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
12025  * CONN_DEC_REF.
12026  *
12027  * Apart from the default entry point, IP also sends packets directly to
12028  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
12029  * connections.
12030  */
12031 void
12032 tcp_input(void *arg, mblk_t *mp, void *arg2)
12033 {
12034 	conn_t	*connp = (conn_t *)arg;
12035 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
12036 
12037 	/* arg2 is the sqp */
12038 	ASSERT(arg2 != NULL);
12039 	ASSERT(mp != NULL);
12040 
12041 	/*
12042 	 * Don't accept any input on a closed tcp as this TCP logically does
12043 	 * not exist on the system. Don't proceed further with this TCP.
12044 	 * For eg. this packet could trigger another close of this tcp
12045 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
12046 	 * tcp_clean_death / tcp_closei_local must be called at most once
12047 	 * on a TCP. In this case we need to refeed the packet into the
12048 	 * classifier and figure out where the packet should go. Need to
12049 	 * preserve the recv_ill somehow. Until we figure that out, for
12050 	 * now just drop the packet if we can't classify the packet.
12051 	 */
12052 	if (tcp->tcp_state == TCPS_CLOSED ||
12053 	    tcp->tcp_state == TCPS_BOUND) {
12054 		conn_t	*new_connp;
12055 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
12056 
12057 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
12058 		if (new_connp != NULL) {
12059 			tcp_reinput(new_connp, mp, arg2);
12060 			return;
12061 		}
12062 		/* We failed to classify. For now just drop the packet */
12063 		freemsg(mp);
12064 		return;
12065 	}
12066 
12067 	if (DB_TYPE(mp) == M_DATA)
12068 		tcp_rput_data(connp, mp, arg2);
12069 	else
12070 		tcp_rput_common(tcp, mp);
12071 }
12072 
12073 /*
12074  * The read side put procedure.
12075  * The packets passed up by ip are assume to be aligned according to
12076  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
12077  */
12078 static void
12079 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
12080 {
12081 	/*
12082 	 * tcp_rput_data() does not expect M_CTL except for the case
12083 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
12084 	 * type. Need to make sure that any other M_CTLs don't make
12085 	 * it to tcp_rput_data since it is not expecting any and doesn't
12086 	 * check for it.
12087 	 */
12088 	if (DB_TYPE(mp) == M_CTL) {
12089 		switch (*(uint32_t *)(mp->b_rptr)) {
12090 		case TCP_IOC_ABORT_CONN:
12091 			/*
12092 			 * Handle connection abort request.
12093 			 */
12094 			tcp_ioctl_abort_handler(tcp, mp);
12095 			return;
12096 		case IPSEC_IN:
12097 			/*
12098 			 * Only secure icmp arrive in TCP and they
12099 			 * don't go through data path.
12100 			 */
12101 			tcp_icmp_error(tcp, mp);
12102 			return;
12103 		case IN_PKTINFO:
12104 			/*
12105 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
12106 			 * sockets that are receiving IPv4 traffic. tcp
12107 			 */
12108 			ASSERT(tcp->tcp_family == AF_INET6);
12109 			ASSERT(tcp->tcp_ipv6_recvancillary &
12110 			    TCP_IPV6_RECVPKTINFO);
12111 			tcp_rput_data(tcp->tcp_connp, mp,
12112 			    tcp->tcp_connp->conn_sqp);
12113 			return;
12114 		case MDT_IOC_INFO_UPDATE:
12115 			/*
12116 			 * Handle Multidata information update; the
12117 			 * following routine will free the message.
12118 			 */
12119 			if (tcp->tcp_connp->conn_mdt_ok) {
12120 				tcp_mdt_update(tcp,
12121 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
12122 				    B_FALSE);
12123 			}
12124 			freemsg(mp);
12125 			return;
12126 		case LSO_IOC_INFO_UPDATE:
12127 			/*
12128 			 * Handle LSO information update; the following
12129 			 * routine will free the message.
12130 			 */
12131 			if (tcp->tcp_connp->conn_lso_ok) {
12132 				tcp_lso_update(tcp,
12133 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
12134 			}
12135 			freemsg(mp);
12136 			return;
12137 		default:
12138 			/*
12139 			 * tcp_icmp_err() will process the M_CTL packets.
12140 			 * Non-ICMP packets, if any, will be discarded in
12141 			 * tcp_icmp_err(). We will process the ICMP packet
12142 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
12143 			 * incoming ICMP packet may result in changing
12144 			 * the tcp_mss, which we would need if we have
12145 			 * packets to retransmit.
12146 			 */
12147 			tcp_icmp_error(tcp, mp);
12148 			return;
12149 		}
12150 	}
12151 
12152 	/* No point processing the message if tcp is already closed */
12153 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
12154 		freemsg(mp);
12155 		return;
12156 	}
12157 
12158 	tcp_rput_other(tcp, mp);
12159 }
12160 
12161 
12162 /* The minimum of smoothed mean deviation in RTO calculation. */
12163 #define	TCP_SD_MIN	400
12164 
12165 /*
12166  * Set RTO for this connection.  The formula is from Jacobson and Karels'
12167  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
12168  * are the same as those in Appendix A.2 of that paper.
12169  *
12170  * m = new measurement
12171  * sa = smoothed RTT average (8 * average estimates).
12172  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
12173  */
12174 static void
12175 tcp_set_rto(tcp_t *tcp, clock_t rtt)
12176 {
12177 	long m = TICK_TO_MSEC(rtt);
12178 	clock_t sa = tcp->tcp_rtt_sa;
12179 	clock_t sv = tcp->tcp_rtt_sd;
12180 	clock_t rto;
12181 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12182 
12183 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
12184 	tcp->tcp_rtt_update++;
12185 
12186 	/* tcp_rtt_sa is not 0 means this is a new sample. */
12187 	if (sa != 0) {
12188 		/*
12189 		 * Update average estimator:
12190 		 *	new rtt = 7/8 old rtt + 1/8 Error
12191 		 */
12192 
12193 		/* m is now Error in estimate. */
12194 		m -= sa >> 3;
12195 		if ((sa += m) <= 0) {
12196 			/*
12197 			 * Don't allow the smoothed average to be negative.
12198 			 * We use 0 to denote reinitialization of the
12199 			 * variables.
12200 			 */
12201 			sa = 1;
12202 		}
12203 
12204 		/*
12205 		 * Update deviation estimator:
12206 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12207 		 */
12208 		if (m < 0)
12209 			m = -m;
12210 		m -= sv >> 2;
12211 		sv += m;
12212 	} else {
12213 		/*
12214 		 * This follows BSD's implementation.  So the reinitialized
12215 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12216 		 * link is bandwidth dominated, doubling the window size
12217 		 * during slow start means doubling the RTT.  We want to be
12218 		 * more conservative when we reinitialize our estimates.  3
12219 		 * is just a convenient number.
12220 		 */
12221 		sa = m << 3;
12222 		sv = m << 1;
12223 	}
12224 	if (sv < TCP_SD_MIN) {
12225 		/*
12226 		 * We do not know that if sa captures the delay ACK
12227 		 * effect as in a long train of segments, a receiver
12228 		 * does not delay its ACKs.  So set the minimum of sv
12229 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12230 		 * of BSD DATO.  That means the minimum of mean
12231 		 * deviation is 100 ms.
12232 		 *
12233 		 */
12234 		sv = TCP_SD_MIN;
12235 	}
12236 	tcp->tcp_rtt_sa = sa;
12237 	tcp->tcp_rtt_sd = sv;
12238 	/*
12239 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12240 	 *
12241 	 * Add tcp_rexmit_interval extra in case of extreme environment
12242 	 * where the algorithm fails to work.  The default value of
12243 	 * tcp_rexmit_interval_extra should be 0.
12244 	 *
12245 	 * As we use a finer grained clock than BSD and update
12246 	 * RTO for every ACKs, add in another .25 of RTT to the
12247 	 * deviation of RTO to accomodate burstiness of 1/4 of
12248 	 * window size.
12249 	 */
12250 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12251 
12252 	if (rto > tcps->tcps_rexmit_interval_max) {
12253 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12254 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12255 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12256 	} else {
12257 		tcp->tcp_rto = rto;
12258 	}
12259 
12260 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12261 	tcp->tcp_timer_backoff = 0;
12262 }
12263 
12264 /*
12265  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12266  * send queue which starts at the given seq. no.
12267  *
12268  * Parameters:
12269  *	tcp_t *tcp: the tcp instance pointer.
12270  *	uint32_t seq: the starting seq. no of the requested segment.
12271  *	int32_t *off: after the execution, *off will be the offset to
12272  *		the returned mblk which points to the requested seq no.
12273  *		It is the caller's responsibility to send in a non-null off.
12274  *
12275  * Return:
12276  *	A mblk_t pointer pointing to the requested segment in send queue.
12277  */
12278 static mblk_t *
12279 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12280 {
12281 	int32_t	cnt;
12282 	mblk_t	*mp;
12283 
12284 	/* Defensive coding.  Make sure we don't send incorrect data. */
12285 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12286 		return (NULL);
12287 
12288 	cnt = seq - tcp->tcp_suna;
12289 	mp = tcp->tcp_xmit_head;
12290 	while (cnt > 0 && mp != NULL) {
12291 		cnt -= mp->b_wptr - mp->b_rptr;
12292 		if (cnt < 0) {
12293 			cnt += mp->b_wptr - mp->b_rptr;
12294 			break;
12295 		}
12296 		mp = mp->b_cont;
12297 	}
12298 	ASSERT(mp != NULL);
12299 	*off = cnt;
12300 	return (mp);
12301 }
12302 
12303 /*
12304  * This function handles all retransmissions if SACK is enabled for this
12305  * connection.  First it calculates how many segments can be retransmitted
12306  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12307  * segments.  A segment is eligible if sack_cnt for that segment is greater
12308  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12309  * all eligible segments, it checks to see if TCP can send some new segments
12310  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12311  *
12312  * Parameters:
12313  *	tcp_t *tcp: the tcp structure of the connection.
12314  *	uint_t *flags: in return, appropriate value will be set for
12315  *	tcp_rput_data().
12316  */
12317 static void
12318 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12319 {
12320 	notsack_blk_t	*notsack_blk;
12321 	int32_t		usable_swnd;
12322 	int32_t		mss;
12323 	uint32_t	seg_len;
12324 	mblk_t		*xmit_mp;
12325 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12326 
12327 	ASSERT(tcp->tcp_sack_info != NULL);
12328 	ASSERT(tcp->tcp_notsack_list != NULL);
12329 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12330 
12331 	/* Defensive coding in case there is a bug... */
12332 	if (tcp->tcp_notsack_list == NULL) {
12333 		return;
12334 	}
12335 	notsack_blk = tcp->tcp_notsack_list;
12336 	mss = tcp->tcp_mss;
12337 
12338 	/*
12339 	 * Limit the num of outstanding data in the network to be
12340 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12341 	 */
12342 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12343 
12344 	/* At least retransmit 1 MSS of data. */
12345 	if (usable_swnd <= 0) {
12346 		usable_swnd = mss;
12347 	}
12348 
12349 	/* Make sure no new RTT samples will be taken. */
12350 	tcp->tcp_csuna = tcp->tcp_snxt;
12351 
12352 	notsack_blk = tcp->tcp_notsack_list;
12353 	while (usable_swnd > 0) {
12354 		mblk_t		*snxt_mp, *tmp_mp;
12355 		tcp_seq		begin = tcp->tcp_sack_snxt;
12356 		tcp_seq		end;
12357 		int32_t		off;
12358 
12359 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12360 			if (SEQ_GT(notsack_blk->end, begin) &&
12361 			    (notsack_blk->sack_cnt >=
12362 			    tcps->tcps_dupack_fast_retransmit)) {
12363 				end = notsack_blk->end;
12364 				if (SEQ_LT(begin, notsack_blk->begin)) {
12365 					begin = notsack_blk->begin;
12366 				}
12367 				break;
12368 			}
12369 		}
12370 		/*
12371 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12372 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12373 		 * set to tcp_cwnd_ssthresh.
12374 		 */
12375 		if (notsack_blk == NULL) {
12376 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12377 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12378 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12379 				ASSERT(tcp->tcp_cwnd > 0);
12380 				return;
12381 			} else {
12382 				usable_swnd = usable_swnd / mss;
12383 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12384 				    MAX(usable_swnd * mss, mss);
12385 				*flags |= TH_XMIT_NEEDED;
12386 				return;
12387 			}
12388 		}
12389 
12390 		/*
12391 		 * Note that we may send more than usable_swnd allows here
12392 		 * because of round off, but no more than 1 MSS of data.
12393 		 */
12394 		seg_len = end - begin;
12395 		if (seg_len > mss)
12396 			seg_len = mss;
12397 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12398 		ASSERT(snxt_mp != NULL);
12399 		/* This should not happen.  Defensive coding again... */
12400 		if (snxt_mp == NULL) {
12401 			return;
12402 		}
12403 
12404 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12405 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12406 		if (xmit_mp == NULL)
12407 			return;
12408 
12409 		usable_swnd -= seg_len;
12410 		tcp->tcp_pipe += seg_len;
12411 		tcp->tcp_sack_snxt = begin + seg_len;
12412 
12413 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12414 
12415 		/*
12416 		 * Update the send timestamp to avoid false retransmission.
12417 		 */
12418 		snxt_mp->b_prev = (mblk_t *)lbolt;
12419 
12420 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12421 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12422 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12423 		/*
12424 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12425 		 * This happens when new data sent during fast recovery is
12426 		 * also lost.  If TCP retransmits those new data, it needs
12427 		 * to extend SACK recover phase to avoid starting another
12428 		 * fast retransmit/recovery unnecessarily.
12429 		 */
12430 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12431 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12432 		}
12433 	}
12434 }
12435 
12436 /*
12437  * This function handles policy checking at TCP level for non-hard_bound/
12438  * detached connections.
12439  */
12440 static boolean_t
12441 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12442     boolean_t secure, boolean_t mctl_present)
12443 {
12444 	ipsec_latch_t *ipl = NULL;
12445 	ipsec_action_t *act = NULL;
12446 	mblk_t *data_mp;
12447 	ipsec_in_t *ii;
12448 	const char *reason;
12449 	kstat_named_t *counter;
12450 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12451 	ipsec_stack_t	*ipss;
12452 	ip_stack_t	*ipst;
12453 
12454 	ASSERT(mctl_present || !secure);
12455 
12456 	ASSERT((ipha == NULL && ip6h != NULL) ||
12457 	    (ip6h == NULL && ipha != NULL));
12458 
12459 	/*
12460 	 * We don't necessarily have an ipsec_in_act action to verify
12461 	 * policy because of assymetrical policy where we have only
12462 	 * outbound policy and no inbound policy (possible with global
12463 	 * policy).
12464 	 */
12465 	if (!secure) {
12466 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12467 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12468 			return (B_TRUE);
12469 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12470 		    "tcp_check_policy", ipha, ip6h, secure,
12471 		    tcps->tcps_netstack);
12472 		ipss = tcps->tcps_netstack->netstack_ipsec;
12473 
12474 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12475 		    DROPPER(ipss, ipds_tcp_clear),
12476 		    &tcps->tcps_dropper);
12477 		return (B_FALSE);
12478 	}
12479 
12480 	/*
12481 	 * We have a secure packet.
12482 	 */
12483 	if (act == NULL) {
12484 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12485 		    "tcp_check_policy", ipha, ip6h, secure,
12486 		    tcps->tcps_netstack);
12487 		ipss = tcps->tcps_netstack->netstack_ipsec;
12488 
12489 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12490 		    DROPPER(ipss, ipds_tcp_secure),
12491 		    &tcps->tcps_dropper);
12492 		return (B_FALSE);
12493 	}
12494 
12495 	/*
12496 	 * XXX This whole routine is currently incorrect.  ipl should
12497 	 * be set to the latch pointer, but is currently not set, so
12498 	 * we initialize it to NULL to avoid picking up random garbage.
12499 	 */
12500 	if (ipl == NULL)
12501 		return (B_TRUE);
12502 
12503 	data_mp = first_mp->b_cont;
12504 
12505 	ii = (ipsec_in_t *)first_mp->b_rptr;
12506 
12507 	ipst = tcps->tcps_netstack->netstack_ip;
12508 
12509 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12510 	    &counter, tcp->tcp_connp)) {
12511 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12512 		return (B_TRUE);
12513 	}
12514 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12515 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12516 	    reason);
12517 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12518 
12519 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12520 	    &tcps->tcps_dropper);
12521 	return (B_FALSE);
12522 }
12523 
12524 /*
12525  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12526  * retransmission after a timeout.
12527  *
12528  * To limit the number of duplicate segments, we limit the number of segment
12529  * to be sent in one time to tcp_snd_burst, the burst variable.
12530  */
12531 static void
12532 tcp_ss_rexmit(tcp_t *tcp)
12533 {
12534 	uint32_t	snxt;
12535 	uint32_t	smax;
12536 	int32_t		win;
12537 	int32_t		mss;
12538 	int32_t		off;
12539 	int32_t		burst = tcp->tcp_snd_burst;
12540 	mblk_t		*snxt_mp;
12541 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12542 
12543 	/*
12544 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12545 	 * all unack'ed segments.
12546 	 */
12547 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12548 		smax = tcp->tcp_rexmit_max;
12549 		snxt = tcp->tcp_rexmit_nxt;
12550 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12551 			snxt = tcp->tcp_suna;
12552 		}
12553 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12554 		win -= snxt - tcp->tcp_suna;
12555 		mss = tcp->tcp_mss;
12556 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12557 
12558 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12559 		    (burst > 0) && (snxt_mp != NULL)) {
12560 			mblk_t	*xmit_mp;
12561 			mblk_t	*old_snxt_mp = snxt_mp;
12562 			uint32_t cnt = mss;
12563 
12564 			if (win < cnt) {
12565 				cnt = win;
12566 			}
12567 			if (SEQ_GT(snxt + cnt, smax)) {
12568 				cnt = smax - snxt;
12569 			}
12570 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12571 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12572 			if (xmit_mp == NULL)
12573 				return;
12574 
12575 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12576 
12577 			snxt += cnt;
12578 			win -= cnt;
12579 			/*
12580 			 * Update the send timestamp to avoid false
12581 			 * retransmission.
12582 			 */
12583 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12584 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12585 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12586 
12587 			tcp->tcp_rexmit_nxt = snxt;
12588 			burst--;
12589 		}
12590 		/*
12591 		 * If we have transmitted all we have at the time
12592 		 * we started the retranmission, we can leave
12593 		 * the rest of the job to tcp_wput_data().  But we
12594 		 * need to check the send window first.  If the
12595 		 * win is not 0, go on with tcp_wput_data().
12596 		 */
12597 		if (SEQ_LT(snxt, smax) || win == 0) {
12598 			return;
12599 		}
12600 	}
12601 	/* Only call tcp_wput_data() if there is data to be sent. */
12602 	if (tcp->tcp_unsent) {
12603 		tcp_wput_data(tcp, NULL, B_FALSE);
12604 	}
12605 }
12606 
12607 /*
12608  * Process all TCP option in SYN segment.  Note that this function should
12609  * be called after tcp_adapt_ire() is called so that the necessary info
12610  * from IRE is already set in the tcp structure.
12611  *
12612  * This function sets up the correct tcp_mss value according to the
12613  * MSS option value and our header size.  It also sets up the window scale
12614  * and timestamp values, and initialize SACK info blocks.  But it does not
12615  * change receive window size after setting the tcp_mss value.  The caller
12616  * should do the appropriate change.
12617  */
12618 void
12619 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12620 {
12621 	int options;
12622 	tcp_opt_t tcpopt;
12623 	uint32_t mss_max;
12624 	char *tmp_tcph;
12625 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12626 
12627 	tcpopt.tcp = NULL;
12628 	options = tcp_parse_options(tcph, &tcpopt);
12629 
12630 	/*
12631 	 * Process MSS option.  Note that MSS option value does not account
12632 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12633 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12634 	 * IPv6.
12635 	 */
12636 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12637 		if (tcp->tcp_ipversion == IPV4_VERSION)
12638 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12639 		else
12640 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12641 	} else {
12642 		if (tcp->tcp_ipversion == IPV4_VERSION)
12643 			mss_max = tcps->tcps_mss_max_ipv4;
12644 		else
12645 			mss_max = tcps->tcps_mss_max_ipv6;
12646 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12647 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12648 		else if (tcpopt.tcp_opt_mss > mss_max)
12649 			tcpopt.tcp_opt_mss = mss_max;
12650 	}
12651 
12652 	/* Process Window Scale option. */
12653 	if (options & TCP_OPT_WSCALE_PRESENT) {
12654 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12655 		tcp->tcp_snd_ws_ok = B_TRUE;
12656 	} else {
12657 		tcp->tcp_snd_ws = B_FALSE;
12658 		tcp->tcp_snd_ws_ok = B_FALSE;
12659 		tcp->tcp_rcv_ws = B_FALSE;
12660 	}
12661 
12662 	/* Process Timestamp option. */
12663 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12664 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12665 		tmp_tcph = (char *)tcp->tcp_tcph;
12666 
12667 		tcp->tcp_snd_ts_ok = B_TRUE;
12668 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12669 		tcp->tcp_last_rcv_lbolt = lbolt64;
12670 		ASSERT(OK_32PTR(tmp_tcph));
12671 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12672 
12673 		/* Fill in our template header with basic timestamp option. */
12674 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12675 		tmp_tcph[0] = TCPOPT_NOP;
12676 		tmp_tcph[1] = TCPOPT_NOP;
12677 		tmp_tcph[2] = TCPOPT_TSTAMP;
12678 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12679 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12680 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12681 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12682 	} else {
12683 		tcp->tcp_snd_ts_ok = B_FALSE;
12684 	}
12685 
12686 	/*
12687 	 * Process SACK options.  If SACK is enabled for this connection,
12688 	 * then allocate the SACK info structure.  Note the following ways
12689 	 * when tcp_snd_sack_ok is set to true.
12690 	 *
12691 	 * For active connection: in tcp_adapt_ire() called in
12692 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12693 	 * is checked.
12694 	 *
12695 	 * For passive connection: in tcp_adapt_ire() called in
12696 	 * tcp_accept_comm().
12697 	 *
12698 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12699 	 * That check makes sure that if we did not send a SACK OK option,
12700 	 * we will not enable SACK for this connection even though the other
12701 	 * side sends us SACK OK option.  For active connection, the SACK
12702 	 * info structure has already been allocated.  So we need to free
12703 	 * it if SACK is disabled.
12704 	 */
12705 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12706 	    (tcp->tcp_snd_sack_ok ||
12707 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12708 		/* This should be true only in the passive case. */
12709 		if (tcp->tcp_sack_info == NULL) {
12710 			ASSERT(TCP_IS_DETACHED(tcp));
12711 			tcp->tcp_sack_info =
12712 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12713 		}
12714 		if (tcp->tcp_sack_info == NULL) {
12715 			tcp->tcp_snd_sack_ok = B_FALSE;
12716 		} else {
12717 			tcp->tcp_snd_sack_ok = B_TRUE;
12718 			if (tcp->tcp_snd_ts_ok) {
12719 				tcp->tcp_max_sack_blk = 3;
12720 			} else {
12721 				tcp->tcp_max_sack_blk = 4;
12722 			}
12723 		}
12724 	} else {
12725 		/*
12726 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12727 		 * no SACK info will be used for this
12728 		 * connection.  This assumes that SACK usage
12729 		 * permission is negotiated.  This may need
12730 		 * to be changed once this is clarified.
12731 		 */
12732 		if (tcp->tcp_sack_info != NULL) {
12733 			ASSERT(tcp->tcp_notsack_list == NULL);
12734 			kmem_cache_free(tcp_sack_info_cache,
12735 			    tcp->tcp_sack_info);
12736 			tcp->tcp_sack_info = NULL;
12737 		}
12738 		tcp->tcp_snd_sack_ok = B_FALSE;
12739 	}
12740 
12741 	/*
12742 	 * Now we know the exact TCP/IP header length, subtract
12743 	 * that from tcp_mss to get our side's MSS.
12744 	 */
12745 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12746 	/*
12747 	 * Here we assume that the other side's header size will be equal to
12748 	 * our header size.  We calculate the real MSS accordingly.  Need to
12749 	 * take into additional stuffs IPsec puts in.
12750 	 *
12751 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12752 	 */
12753 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12754 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12755 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12756 
12757 	/*
12758 	 * Set MSS to the smaller one of both ends of the connection.
12759 	 * We should not have called tcp_mss_set() before, but our
12760 	 * side of the MSS should have been set to a proper value
12761 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12762 	 * STREAM head parameters properly.
12763 	 *
12764 	 * If we have a larger-than-16-bit window but the other side
12765 	 * didn't want to do window scale, tcp_rwnd_set() will take
12766 	 * care of that.
12767 	 */
12768 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12769 }
12770 
12771 /*
12772  * Sends the T_CONN_IND to the listener. The caller calls this
12773  * functions via squeue to get inside the listener's perimeter
12774  * once the 3 way hand shake is done a T_CONN_IND needs to be
12775  * sent. As an optimization, the caller can call this directly
12776  * if listener's perimeter is same as eager's.
12777  */
12778 /* ARGSUSED */
12779 void
12780 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12781 {
12782 	conn_t			*lconnp = (conn_t *)arg;
12783 	tcp_t			*listener = lconnp->conn_tcp;
12784 	tcp_t			*tcp;
12785 	struct T_conn_ind	*conn_ind;
12786 	ipaddr_t 		*addr_cache;
12787 	boolean_t		need_send_conn_ind = B_FALSE;
12788 	tcp_stack_t		*tcps = listener->tcp_tcps;
12789 
12790 	/* retrieve the eager */
12791 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12792 	ASSERT(conn_ind->OPT_offset != 0 &&
12793 	    conn_ind->OPT_length == sizeof (intptr_t));
12794 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12795 	    conn_ind->OPT_length);
12796 
12797 	/*
12798 	 * TLI/XTI applications will get confused by
12799 	 * sending eager as an option since it violates
12800 	 * the option semantics. So remove the eager as
12801 	 * option since TLI/XTI app doesn't need it anyway.
12802 	 */
12803 	if (!TCP_IS_SOCKET(listener)) {
12804 		conn_ind->OPT_length = 0;
12805 		conn_ind->OPT_offset = 0;
12806 	}
12807 	if (listener->tcp_state == TCPS_CLOSED ||
12808 	    TCP_IS_DETACHED(listener)) {
12809 		/*
12810 		 * If listener has closed, it would have caused a
12811 		 * a cleanup/blowoff to happen for the eager. We
12812 		 * just need to return.
12813 		 */
12814 		freemsg(mp);
12815 		return;
12816 	}
12817 
12818 
12819 	/*
12820 	 * if the conn_req_q is full defer passing up the
12821 	 * T_CONN_IND until space is availabe after t_accept()
12822 	 * processing
12823 	 */
12824 	mutex_enter(&listener->tcp_eager_lock);
12825 
12826 	/*
12827 	 * Take the eager out, if it is in the list of droppable eagers
12828 	 * as we are here because the 3W handshake is over.
12829 	 */
12830 	MAKE_UNDROPPABLE(tcp);
12831 
12832 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12833 		tcp_t *tail;
12834 
12835 		/*
12836 		 * The eager already has an extra ref put in tcp_rput_data
12837 		 * so that it stays till accept comes back even though it
12838 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12839 		 */
12840 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12841 		listener->tcp_conn_req_cnt_q0--;
12842 		listener->tcp_conn_req_cnt_q++;
12843 
12844 		/* Move from SYN_RCVD to ESTABLISHED list  */
12845 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12846 		    tcp->tcp_eager_prev_q0;
12847 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12848 		    tcp->tcp_eager_next_q0;
12849 		tcp->tcp_eager_prev_q0 = NULL;
12850 		tcp->tcp_eager_next_q0 = NULL;
12851 
12852 		/*
12853 		 * Insert at end of the queue because sockfs
12854 		 * sends down T_CONN_RES in chronological
12855 		 * order. Leaving the older conn indications
12856 		 * at front of the queue helps reducing search
12857 		 * time.
12858 		 */
12859 		tail = listener->tcp_eager_last_q;
12860 		if (tail != NULL)
12861 			tail->tcp_eager_next_q = tcp;
12862 		else
12863 			listener->tcp_eager_next_q = tcp;
12864 		listener->tcp_eager_last_q = tcp;
12865 		tcp->tcp_eager_next_q = NULL;
12866 		/*
12867 		 * Delay sending up the T_conn_ind until we are
12868 		 * done with the eager. Once we have have sent up
12869 		 * the T_conn_ind, the accept can potentially complete
12870 		 * any time and release the refhold we have on the eager.
12871 		 */
12872 		need_send_conn_ind = B_TRUE;
12873 	} else {
12874 		/*
12875 		 * Defer connection on q0 and set deferred
12876 		 * connection bit true
12877 		 */
12878 		tcp->tcp_conn_def_q0 = B_TRUE;
12879 
12880 		/* take tcp out of q0 ... */
12881 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12882 		    tcp->tcp_eager_next_q0;
12883 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12884 		    tcp->tcp_eager_prev_q0;
12885 
12886 		/* ... and place it at the end of q0 */
12887 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12888 		tcp->tcp_eager_next_q0 = listener;
12889 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12890 		listener->tcp_eager_prev_q0 = tcp;
12891 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12892 	}
12893 
12894 	/* we have timed out before */
12895 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12896 		tcp->tcp_syn_rcvd_timeout = 0;
12897 		listener->tcp_syn_rcvd_timeout--;
12898 		if (listener->tcp_syn_defense &&
12899 		    listener->tcp_syn_rcvd_timeout <=
12900 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12901 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12902 		    listener->tcp_last_rcv_lbolt)) {
12903 			/*
12904 			 * Turn off the defense mode if we
12905 			 * believe the SYN attack is over.
12906 			 */
12907 			listener->tcp_syn_defense = B_FALSE;
12908 			if (listener->tcp_ip_addr_cache) {
12909 				kmem_free((void *)listener->tcp_ip_addr_cache,
12910 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12911 				listener->tcp_ip_addr_cache = NULL;
12912 			}
12913 		}
12914 	}
12915 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12916 	if (addr_cache != NULL) {
12917 		/*
12918 		 * We have finished a 3-way handshake with this
12919 		 * remote host. This proves the IP addr is good.
12920 		 * Cache it!
12921 		 */
12922 		addr_cache[IP_ADDR_CACHE_HASH(
12923 		    tcp->tcp_remote)] = tcp->tcp_remote;
12924 	}
12925 	mutex_exit(&listener->tcp_eager_lock);
12926 	if (need_send_conn_ind)
12927 		putnext(listener->tcp_rq, mp);
12928 }
12929 
12930 mblk_t *
12931 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12932     uint_t *ifindexp, ip6_pkt_t *ippp)
12933 {
12934 	ip_pktinfo_t	*pinfo;
12935 	ip6_t		*ip6h;
12936 	uchar_t		*rptr;
12937 	mblk_t		*first_mp = mp;
12938 	boolean_t	mctl_present = B_FALSE;
12939 	uint_t 		ifindex = 0;
12940 	ip6_pkt_t	ipp;
12941 	uint_t		ipvers;
12942 	uint_t		ip_hdr_len;
12943 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12944 
12945 	rptr = mp->b_rptr;
12946 	ASSERT(OK_32PTR(rptr));
12947 	ASSERT(tcp != NULL);
12948 	ipp.ipp_fields = 0;
12949 
12950 	switch DB_TYPE(mp) {
12951 	case M_CTL:
12952 		mp = mp->b_cont;
12953 		if (mp == NULL) {
12954 			freemsg(first_mp);
12955 			return (NULL);
12956 		}
12957 		if (DB_TYPE(mp) != M_DATA) {
12958 			freemsg(first_mp);
12959 			return (NULL);
12960 		}
12961 		mctl_present = B_TRUE;
12962 		break;
12963 	case M_DATA:
12964 		break;
12965 	default:
12966 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12967 		freemsg(mp);
12968 		return (NULL);
12969 	}
12970 	ipvers = IPH_HDR_VERSION(rptr);
12971 	if (ipvers == IPV4_VERSION) {
12972 		if (tcp == NULL) {
12973 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12974 			goto done;
12975 		}
12976 
12977 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12978 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12979 
12980 		/*
12981 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12982 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12983 		 */
12984 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12985 		    mctl_present) {
12986 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12987 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12988 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12989 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12990 				ipp.ipp_fields |= IPPF_IFINDEX;
12991 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12992 				ifindex = pinfo->ip_pkt_ifindex;
12993 			}
12994 			freeb(first_mp);
12995 			mctl_present = B_FALSE;
12996 		}
12997 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12998 	} else {
12999 		ip6h = (ip6_t *)rptr;
13000 
13001 		ASSERT(ipvers == IPV6_VERSION);
13002 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
13003 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
13004 		ipp.ipp_hoplimit = ip6h->ip6_hops;
13005 
13006 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
13007 			uint8_t	nexthdrp;
13008 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13009 
13010 			/* Look for ifindex information */
13011 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
13012 				ip6i_t *ip6i = (ip6i_t *)ip6h;
13013 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
13014 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13015 					freemsg(first_mp);
13016 					return (NULL);
13017 				}
13018 
13019 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
13020 					ASSERT(ip6i->ip6i_ifindex != 0);
13021 					ipp.ipp_fields |= IPPF_IFINDEX;
13022 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
13023 					ifindex = ip6i->ip6i_ifindex;
13024 				}
13025 				rptr = (uchar_t *)&ip6i[1];
13026 				mp->b_rptr = rptr;
13027 				if (rptr == mp->b_wptr) {
13028 					mblk_t *mp1;
13029 					mp1 = mp->b_cont;
13030 					freeb(mp);
13031 					mp = mp1;
13032 					rptr = mp->b_rptr;
13033 				}
13034 				if (MBLKL(mp) < IPV6_HDR_LEN +
13035 				    sizeof (tcph_t)) {
13036 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13037 					freemsg(first_mp);
13038 					return (NULL);
13039 				}
13040 				ip6h = (ip6_t *)rptr;
13041 			}
13042 
13043 			/*
13044 			 * Find any potentially interesting extension headers
13045 			 * as well as the length of the IPv6 + extension
13046 			 * headers.
13047 			 */
13048 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
13049 			/* Verify if this is a TCP packet */
13050 			if (nexthdrp != IPPROTO_TCP) {
13051 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13052 				freemsg(first_mp);
13053 				return (NULL);
13054 			}
13055 		} else {
13056 			ip_hdr_len = IPV6_HDR_LEN;
13057 		}
13058 	}
13059 
13060 done:
13061 	if (ipversp != NULL)
13062 		*ipversp = ipvers;
13063 	if (ip_hdr_lenp != NULL)
13064 		*ip_hdr_lenp = ip_hdr_len;
13065 	if (ippp != NULL)
13066 		*ippp = ipp;
13067 	if (ifindexp != NULL)
13068 		*ifindexp = ifindex;
13069 	if (mctl_present) {
13070 		freeb(first_mp);
13071 	}
13072 	return (mp);
13073 }
13074 
13075 /*
13076  * Handle M_DATA messages from IP. Its called directly from IP via
13077  * squeue for AF_INET type sockets fast path. No M_CTL are expected
13078  * in this path.
13079  *
13080  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
13081  * v4 and v6), we are called through tcp_input() and a M_CTL can
13082  * be present for options but tcp_find_pktinfo() deals with it. We
13083  * only expect M_DATA packets after tcp_find_pktinfo() is done.
13084  *
13085  * The first argument is always the connp/tcp to which the mp belongs.
13086  * There are no exceptions to this rule. The caller has already put
13087  * a reference on this connp/tcp and once tcp_rput_data() returns,
13088  * the squeue will do the refrele.
13089  *
13090  * The TH_SYN for the listener directly go to tcp_conn_request via
13091  * squeue.
13092  *
13093  * sqp: NULL = recursive, sqp != NULL means called from squeue
13094  */
13095 void
13096 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
13097 {
13098 	int32_t		bytes_acked;
13099 	int32_t		gap;
13100 	mblk_t		*mp1;
13101 	uint_t		flags;
13102 	uint32_t	new_swnd = 0;
13103 	uchar_t		*iphdr;
13104 	uchar_t		*rptr;
13105 	int32_t		rgap;
13106 	uint32_t	seg_ack;
13107 	int		seg_len;
13108 	uint_t		ip_hdr_len;
13109 	uint32_t	seg_seq;
13110 	tcph_t		*tcph;
13111 	int		urp;
13112 	tcp_opt_t	tcpopt;
13113 	uint_t		ipvers;
13114 	ip6_pkt_t	ipp;
13115 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
13116 	uint32_t	cwnd;
13117 	uint32_t	add;
13118 	int		npkt;
13119 	int		mss;
13120 	conn_t		*connp = (conn_t *)arg;
13121 	squeue_t	*sqp = (squeue_t *)arg2;
13122 	tcp_t		*tcp = connp->conn_tcp;
13123 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13124 
13125 	/*
13126 	 * RST from fused tcp loopback peer should trigger an unfuse.
13127 	 */
13128 	if (tcp->tcp_fused) {
13129 		TCP_STAT(tcps, tcp_fusion_aborted);
13130 		tcp_unfuse(tcp);
13131 	}
13132 
13133 	iphdr = mp->b_rptr;
13134 	rptr = mp->b_rptr;
13135 	ASSERT(OK_32PTR(rptr));
13136 
13137 	/*
13138 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
13139 	 * processing here. For rest call tcp_find_pktinfo to fill up the
13140 	 * necessary information.
13141 	 */
13142 	if (IPCL_IS_TCP4(connp)) {
13143 		ipvers = IPV4_VERSION;
13144 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13145 	} else {
13146 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
13147 		    NULL, &ipp);
13148 		if (mp == NULL) {
13149 			TCP_STAT(tcps, tcp_rput_v6_error);
13150 			return;
13151 		}
13152 		iphdr = mp->b_rptr;
13153 		rptr = mp->b_rptr;
13154 	}
13155 	ASSERT(DB_TYPE(mp) == M_DATA);
13156 
13157 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13158 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13159 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13160 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13161 	seg_len = (int)(mp->b_wptr - rptr) -
13162 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13163 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13164 		do {
13165 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13166 			    (uintptr_t)INT_MAX);
13167 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13168 		} while ((mp1 = mp1->b_cont) != NULL &&
13169 		    mp1->b_datap->db_type == M_DATA);
13170 	}
13171 
13172 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13173 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13174 		    seg_len, tcph);
13175 		return;
13176 	}
13177 
13178 	if (sqp != NULL) {
13179 		/*
13180 		 * This is the correct place to update tcp_last_recv_time. Note
13181 		 * that it is also updated for tcp structure that belongs to
13182 		 * global and listener queues which do not really need updating.
13183 		 * But that should not cause any harm.  And it is updated for
13184 		 * all kinds of incoming segments, not only for data segments.
13185 		 */
13186 		tcp->tcp_last_recv_time = lbolt;
13187 	}
13188 
13189 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13190 
13191 	BUMP_LOCAL(tcp->tcp_ibsegs);
13192 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13193 
13194 	if ((flags & TH_URG) && sqp != NULL) {
13195 		/*
13196 		 * TCP can't handle urgent pointers that arrive before
13197 		 * the connection has been accept()ed since it can't
13198 		 * buffer OOB data.  Discard segment if this happens.
13199 		 *
13200 		 * We can't just rely on a non-null tcp_listener to indicate
13201 		 * that the accept() has completed since unlinking of the
13202 		 * eager and completion of the accept are not atomic.
13203 		 * tcp_detached, when it is not set (B_FALSE) indicates
13204 		 * that the accept() has completed.
13205 		 *
13206 		 * Nor can it reassemble urgent pointers, so discard
13207 		 * if it's not the next segment expected.
13208 		 *
13209 		 * Otherwise, collapse chain into one mblk (discard if
13210 		 * that fails).  This makes sure the headers, retransmitted
13211 		 * data, and new data all are in the same mblk.
13212 		 */
13213 		ASSERT(mp != NULL);
13214 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13215 			freemsg(mp);
13216 			return;
13217 		}
13218 		/* Update pointers into message */
13219 		iphdr = rptr = mp->b_rptr;
13220 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13221 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13222 			/*
13223 			 * Since we can't handle any data with this urgent
13224 			 * pointer that is out of sequence, we expunge
13225 			 * the data.  This allows us to still register
13226 			 * the urgent mark and generate the M_PCSIG,
13227 			 * which we can do.
13228 			 */
13229 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13230 			seg_len = 0;
13231 		}
13232 	}
13233 
13234 	switch (tcp->tcp_state) {
13235 	case TCPS_SYN_SENT:
13236 		if (flags & TH_ACK) {
13237 			/*
13238 			 * Note that our stack cannot send data before a
13239 			 * connection is established, therefore the
13240 			 * following check is valid.  Otherwise, it has
13241 			 * to be changed.
13242 			 */
13243 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13244 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13245 				freemsg(mp);
13246 				if (flags & TH_RST)
13247 					return;
13248 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13249 				    tcp, seg_ack, 0, TH_RST);
13250 				return;
13251 			}
13252 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13253 		}
13254 		if (flags & TH_RST) {
13255 			freemsg(mp);
13256 			if (flags & TH_ACK)
13257 				(void) tcp_clean_death(tcp,
13258 				    ECONNREFUSED, 13);
13259 			return;
13260 		}
13261 		if (!(flags & TH_SYN)) {
13262 			freemsg(mp);
13263 			return;
13264 		}
13265 
13266 		/* Process all TCP options. */
13267 		tcp_process_options(tcp, tcph);
13268 		/*
13269 		 * The following changes our rwnd to be a multiple of the
13270 		 * MIN(peer MSS, our MSS) for performance reason.
13271 		 */
13272 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13273 		    tcp->tcp_mss));
13274 
13275 		/* Is the other end ECN capable? */
13276 		if (tcp->tcp_ecn_ok) {
13277 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13278 				tcp->tcp_ecn_ok = B_FALSE;
13279 			}
13280 		}
13281 		/*
13282 		 * Clear ECN flags because it may interfere with later
13283 		 * processing.
13284 		 */
13285 		flags &= ~(TH_ECE|TH_CWR);
13286 
13287 		tcp->tcp_irs = seg_seq;
13288 		tcp->tcp_rack = seg_seq;
13289 		tcp->tcp_rnxt = seg_seq + 1;
13290 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13291 		if (!TCP_IS_DETACHED(tcp)) {
13292 			/* Allocate room for SACK options if needed. */
13293 			if (tcp->tcp_snd_sack_ok) {
13294 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13295 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13296 				    (tcp->tcp_loopback ? 0 :
13297 				    tcps->tcps_wroff_xtra));
13298 			} else {
13299 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13300 				    tcp->tcp_hdr_len +
13301 				    (tcp->tcp_loopback ? 0 :
13302 				    tcps->tcps_wroff_xtra));
13303 			}
13304 		}
13305 		if (flags & TH_ACK) {
13306 			/*
13307 			 * If we can't get the confirmation upstream, pretend
13308 			 * we didn't even see this one.
13309 			 *
13310 			 * XXX: how can we pretend we didn't see it if we
13311 			 * have updated rnxt et. al.
13312 			 *
13313 			 * For loopback we defer sending up the T_CONN_CON
13314 			 * until after some checks below.
13315 			 */
13316 			mp1 = NULL;
13317 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13318 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13319 				freemsg(mp);
13320 				return;
13321 			}
13322 			/* SYN was acked - making progress */
13323 			if (tcp->tcp_ipversion == IPV6_VERSION)
13324 				tcp->tcp_ip_forward_progress = B_TRUE;
13325 
13326 			/* One for the SYN */
13327 			tcp->tcp_suna = tcp->tcp_iss + 1;
13328 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13329 			tcp->tcp_state = TCPS_ESTABLISHED;
13330 
13331 			/*
13332 			 * If SYN was retransmitted, need to reset all
13333 			 * retransmission info.  This is because this
13334 			 * segment will be treated as a dup ACK.
13335 			 */
13336 			if (tcp->tcp_rexmit) {
13337 				tcp->tcp_rexmit = B_FALSE;
13338 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13339 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13340 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13341 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13342 				tcp->tcp_ms_we_have_waited = 0;
13343 
13344 				/*
13345 				 * Set tcp_cwnd back to 1 MSS, per
13346 				 * recommendation from
13347 				 * draft-floyd-incr-init-win-01.txt,
13348 				 * Increasing TCP's Initial Window.
13349 				 */
13350 				tcp->tcp_cwnd = tcp->tcp_mss;
13351 			}
13352 
13353 			tcp->tcp_swl1 = seg_seq;
13354 			tcp->tcp_swl2 = seg_ack;
13355 
13356 			new_swnd = BE16_TO_U16(tcph->th_win);
13357 			tcp->tcp_swnd = new_swnd;
13358 			if (new_swnd > tcp->tcp_max_swnd)
13359 				tcp->tcp_max_swnd = new_swnd;
13360 
13361 			/*
13362 			 * Always send the three-way handshake ack immediately
13363 			 * in order to make the connection complete as soon as
13364 			 * possible on the accepting host.
13365 			 */
13366 			flags |= TH_ACK_NEEDED;
13367 
13368 			/*
13369 			 * Special case for loopback.  At this point we have
13370 			 * received SYN-ACK from the remote endpoint.  In
13371 			 * order to ensure that both endpoints reach the
13372 			 * fused state prior to any data exchange, the final
13373 			 * ACK needs to be sent before we indicate T_CONN_CON
13374 			 * to the module upstream.
13375 			 */
13376 			if (tcp->tcp_loopback) {
13377 				mblk_t *ack_mp;
13378 
13379 				ASSERT(!tcp->tcp_unfusable);
13380 				ASSERT(mp1 != NULL);
13381 				/*
13382 				 * For loopback, we always get a pure SYN-ACK
13383 				 * and only need to send back the final ACK
13384 				 * with no data (this is because the other
13385 				 * tcp is ours and we don't do T/TCP).  This
13386 				 * final ACK triggers the passive side to
13387 				 * perform fusion in ESTABLISHED state.
13388 				 */
13389 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13390 					if (tcp->tcp_ack_tid != 0) {
13391 						(void) TCP_TIMER_CANCEL(tcp,
13392 						    tcp->tcp_ack_tid);
13393 						tcp->tcp_ack_tid = 0;
13394 					}
13395 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13396 					BUMP_LOCAL(tcp->tcp_obsegs);
13397 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13398 
13399 					/* Send up T_CONN_CON */
13400 					putnext(tcp->tcp_rq, mp1);
13401 
13402 					freemsg(mp);
13403 					return;
13404 				}
13405 				/*
13406 				 * Forget fusion; we need to handle more
13407 				 * complex cases below.  Send the deferred
13408 				 * T_CONN_CON message upstream and proceed
13409 				 * as usual.  Mark this tcp as not capable
13410 				 * of fusion.
13411 				 */
13412 				TCP_STAT(tcps, tcp_fusion_unfusable);
13413 				tcp->tcp_unfusable = B_TRUE;
13414 				putnext(tcp->tcp_rq, mp1);
13415 			}
13416 
13417 			/*
13418 			 * Check to see if there is data to be sent.  If
13419 			 * yes, set the transmit flag.  Then check to see
13420 			 * if received data processing needs to be done.
13421 			 * If not, go straight to xmit_check.  This short
13422 			 * cut is OK as we don't support T/TCP.
13423 			 */
13424 			if (tcp->tcp_unsent)
13425 				flags |= TH_XMIT_NEEDED;
13426 
13427 			if (seg_len == 0 && !(flags & TH_URG)) {
13428 				freemsg(mp);
13429 				goto xmit_check;
13430 			}
13431 
13432 			flags &= ~TH_SYN;
13433 			seg_seq++;
13434 			break;
13435 		}
13436 		tcp->tcp_state = TCPS_SYN_RCVD;
13437 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13438 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13439 		if (mp1) {
13440 			DB_CPID(mp1) = tcp->tcp_cpid;
13441 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13442 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13443 		}
13444 		freemsg(mp);
13445 		return;
13446 	case TCPS_SYN_RCVD:
13447 		if (flags & TH_ACK) {
13448 			/*
13449 			 * In this state, a SYN|ACK packet is either bogus
13450 			 * because the other side must be ACKing our SYN which
13451 			 * indicates it has seen the ACK for their SYN and
13452 			 * shouldn't retransmit it or we're crossing SYNs
13453 			 * on active open.
13454 			 */
13455 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13456 				freemsg(mp);
13457 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13458 				    tcp, seg_ack, 0, TH_RST);
13459 				return;
13460 			}
13461 			/*
13462 			 * NOTE: RFC 793 pg. 72 says this should be
13463 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13464 			 * but that would mean we have an ack that ignored
13465 			 * our SYN.
13466 			 */
13467 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13468 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13469 				freemsg(mp);
13470 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13471 				    tcp, seg_ack, 0, TH_RST);
13472 				return;
13473 			}
13474 		}
13475 		break;
13476 	case TCPS_LISTEN:
13477 		/*
13478 		 * Only a TLI listener can come through this path when a
13479 		 * acceptor is going back to be a listener and a packet
13480 		 * for the acceptor hits the classifier. For a socket
13481 		 * listener, this can never happen because a listener
13482 		 * can never accept connection on itself and hence a
13483 		 * socket acceptor can not go back to being a listener.
13484 		 */
13485 		ASSERT(!TCP_IS_SOCKET(tcp));
13486 		/*FALLTHRU*/
13487 	case TCPS_CLOSED:
13488 	case TCPS_BOUND: {
13489 		conn_t	*new_connp;
13490 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13491 
13492 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13493 		if (new_connp != NULL) {
13494 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13495 			return;
13496 		}
13497 		/* We failed to classify. For now just drop the packet */
13498 		freemsg(mp);
13499 		return;
13500 	}
13501 	case TCPS_IDLE:
13502 		/*
13503 		 * Handle the case where the tcp_clean_death() has happened
13504 		 * on a connection (application hasn't closed yet) but a packet
13505 		 * was already queued on squeue before tcp_clean_death()
13506 		 * was processed. Calling tcp_clean_death() twice on same
13507 		 * connection can result in weird behaviour.
13508 		 */
13509 		freemsg(mp);
13510 		return;
13511 	default:
13512 		break;
13513 	}
13514 
13515 	/*
13516 	 * Already on the correct queue/perimeter.
13517 	 * If this is a detached connection and not an eager
13518 	 * connection hanging off a listener then new data
13519 	 * (past the FIN) will cause a reset.
13520 	 * We do a special check here where it
13521 	 * is out of the main line, rather than check
13522 	 * if we are detached every time we see new
13523 	 * data down below.
13524 	 */
13525 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13526 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13527 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13528 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13529 
13530 		freemsg(mp);
13531 		/*
13532 		 * This could be an SSL closure alert. We're detached so just
13533 		 * acknowledge it this last time.
13534 		 */
13535 		if (tcp->tcp_kssl_ctx != NULL) {
13536 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13537 			tcp->tcp_kssl_ctx = NULL;
13538 
13539 			tcp->tcp_rnxt += seg_len;
13540 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13541 			flags |= TH_ACK_NEEDED;
13542 			goto ack_check;
13543 		}
13544 
13545 		tcp_xmit_ctl("new data when detached", tcp,
13546 		    tcp->tcp_snxt, 0, TH_RST);
13547 		(void) tcp_clean_death(tcp, EPROTO, 12);
13548 		return;
13549 	}
13550 
13551 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13552 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13553 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13554 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13555 
13556 	if (tcp->tcp_snd_ts_ok) {
13557 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13558 			/*
13559 			 * This segment is not acceptable.
13560 			 * Drop it and send back an ACK.
13561 			 */
13562 			freemsg(mp);
13563 			flags |= TH_ACK_NEEDED;
13564 			goto ack_check;
13565 		}
13566 	} else if (tcp->tcp_snd_sack_ok) {
13567 		ASSERT(tcp->tcp_sack_info != NULL);
13568 		tcpopt.tcp = tcp;
13569 		/*
13570 		 * SACK info in already updated in tcp_parse_options.  Ignore
13571 		 * all other TCP options...
13572 		 */
13573 		(void) tcp_parse_options(tcph, &tcpopt);
13574 	}
13575 try_again:;
13576 	mss = tcp->tcp_mss;
13577 	gap = seg_seq - tcp->tcp_rnxt;
13578 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13579 	/*
13580 	 * gap is the amount of sequence space between what we expect to see
13581 	 * and what we got for seg_seq.  A positive value for gap means
13582 	 * something got lost.  A negative value means we got some old stuff.
13583 	 */
13584 	if (gap < 0) {
13585 		/* Old stuff present.  Is the SYN in there? */
13586 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13587 		    (seg_len != 0)) {
13588 			flags &= ~TH_SYN;
13589 			seg_seq++;
13590 			urp--;
13591 			/* Recompute the gaps after noting the SYN. */
13592 			goto try_again;
13593 		}
13594 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13595 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13596 		    (seg_len > -gap ? -gap : seg_len));
13597 		/* Remove the old stuff from seg_len. */
13598 		seg_len += gap;
13599 		/*
13600 		 * Anything left?
13601 		 * Make sure to check for unack'd FIN when rest of data
13602 		 * has been previously ack'd.
13603 		 */
13604 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13605 			/*
13606 			 * Resets are only valid if they lie within our offered
13607 			 * window.  If the RST bit is set, we just ignore this
13608 			 * segment.
13609 			 */
13610 			if (flags & TH_RST) {
13611 				freemsg(mp);
13612 				return;
13613 			}
13614 
13615 			/*
13616 			 * The arriving of dup data packets indicate that we
13617 			 * may have postponed an ack for too long, or the other
13618 			 * side's RTT estimate is out of shape. Start acking
13619 			 * more often.
13620 			 */
13621 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13622 			    tcp->tcp_rack_cnt >= 1 &&
13623 			    tcp->tcp_rack_abs_max > 2) {
13624 				tcp->tcp_rack_abs_max--;
13625 			}
13626 			tcp->tcp_rack_cur_max = 1;
13627 
13628 			/*
13629 			 * This segment is "unacceptable".  None of its
13630 			 * sequence space lies within our advertized window.
13631 			 *
13632 			 * Adjust seg_len to the original value for tracing.
13633 			 */
13634 			seg_len -= gap;
13635 			if (tcp->tcp_debug) {
13636 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13637 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13638 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13639 				    "seg_len %d, rnxt %u, snxt %u, %s",
13640 				    gap, rgap, flags, seg_seq, seg_ack,
13641 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13642 				    tcp_display(tcp, NULL,
13643 				    DISP_ADDR_AND_PORT));
13644 			}
13645 
13646 			/*
13647 			 * Arrange to send an ACK in response to the
13648 			 * unacceptable segment per RFC 793 page 69. There
13649 			 * is only one small difference between ours and the
13650 			 * acceptability test in the RFC - we accept ACK-only
13651 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13652 			 * will be generated.
13653 			 *
13654 			 * Note that we have to ACK an ACK-only packet at least
13655 			 * for stacks that send 0-length keep-alives with
13656 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13657 			 * section 4.2.3.6. As long as we don't ever generate
13658 			 * an unacceptable packet in response to an incoming
13659 			 * packet that is unacceptable, it should not cause
13660 			 * "ACK wars".
13661 			 */
13662 			flags |=  TH_ACK_NEEDED;
13663 
13664 			/*
13665 			 * Continue processing this segment in order to use the
13666 			 * ACK information it contains, but skip all other
13667 			 * sequence-number processing.	Processing the ACK
13668 			 * information is necessary in order to
13669 			 * re-synchronize connections that may have lost
13670 			 * synchronization.
13671 			 *
13672 			 * We clear seg_len and flag fields related to
13673 			 * sequence number processing as they are not
13674 			 * to be trusted for an unacceptable segment.
13675 			 */
13676 			seg_len = 0;
13677 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13678 			goto process_ack;
13679 		}
13680 
13681 		/* Fix seg_seq, and chew the gap off the front. */
13682 		seg_seq = tcp->tcp_rnxt;
13683 		urp += gap;
13684 		do {
13685 			mblk_t	*mp2;
13686 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13687 			    (uintptr_t)UINT_MAX);
13688 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13689 			if (gap > 0) {
13690 				mp->b_rptr = mp->b_wptr - gap;
13691 				break;
13692 			}
13693 			mp2 = mp;
13694 			mp = mp->b_cont;
13695 			freeb(mp2);
13696 		} while (gap < 0);
13697 		/*
13698 		 * If the urgent data has already been acknowledged, we
13699 		 * should ignore TH_URG below
13700 		 */
13701 		if (urp < 0)
13702 			flags &= ~TH_URG;
13703 	}
13704 	/*
13705 	 * rgap is the amount of stuff received out of window.  A negative
13706 	 * value is the amount out of window.
13707 	 */
13708 	if (rgap < 0) {
13709 		mblk_t	*mp2;
13710 
13711 		if (tcp->tcp_rwnd == 0) {
13712 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13713 		} else {
13714 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13715 			UPDATE_MIB(&tcps->tcps_mib,
13716 			    tcpInDataPastWinBytes, -rgap);
13717 		}
13718 
13719 		/*
13720 		 * seg_len does not include the FIN, so if more than
13721 		 * just the FIN is out of window, we act like we don't
13722 		 * see it.  (If just the FIN is out of window, rgap
13723 		 * will be zero and we will go ahead and acknowledge
13724 		 * the FIN.)
13725 		 */
13726 		flags &= ~TH_FIN;
13727 
13728 		/* Fix seg_len and make sure there is something left. */
13729 		seg_len += rgap;
13730 		if (seg_len <= 0) {
13731 			/*
13732 			 * Resets are only valid if they lie within our offered
13733 			 * window.  If the RST bit is set, we just ignore this
13734 			 * segment.
13735 			 */
13736 			if (flags & TH_RST) {
13737 				freemsg(mp);
13738 				return;
13739 			}
13740 
13741 			/* Per RFC 793, we need to send back an ACK. */
13742 			flags |= TH_ACK_NEEDED;
13743 
13744 			/*
13745 			 * Send SIGURG as soon as possible i.e. even
13746 			 * if the TH_URG was delivered in a window probe
13747 			 * packet (which will be unacceptable).
13748 			 *
13749 			 * We generate a signal if none has been generated
13750 			 * for this connection or if this is a new urgent
13751 			 * byte. Also send a zero-length "unmarked" message
13752 			 * to inform SIOCATMARK that this is not the mark.
13753 			 *
13754 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13755 			 * is sent up. This plus the check for old data
13756 			 * (gap >= 0) handles the wraparound of the sequence
13757 			 * number space without having to always track the
13758 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13759 			 * this max in its rcv_up variable).
13760 			 *
13761 			 * This prevents duplicate SIGURGS due to a "late"
13762 			 * zero-window probe when the T_EXDATA_IND has already
13763 			 * been sent up.
13764 			 */
13765 			if ((flags & TH_URG) &&
13766 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13767 			    tcp->tcp_urp_last))) {
13768 				mp1 = allocb(0, BPRI_MED);
13769 				if (mp1 == NULL) {
13770 					freemsg(mp);
13771 					return;
13772 				}
13773 				if (!TCP_IS_DETACHED(tcp) &&
13774 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13775 				    SIGURG)) {
13776 					/* Try again on the rexmit. */
13777 					freemsg(mp1);
13778 					freemsg(mp);
13779 					return;
13780 				}
13781 				/*
13782 				 * If the next byte would be the mark
13783 				 * then mark with MARKNEXT else mark
13784 				 * with NOTMARKNEXT.
13785 				 */
13786 				if (gap == 0 && urp == 0)
13787 					mp1->b_flag |= MSGMARKNEXT;
13788 				else
13789 					mp1->b_flag |= MSGNOTMARKNEXT;
13790 				freemsg(tcp->tcp_urp_mark_mp);
13791 				tcp->tcp_urp_mark_mp = mp1;
13792 				flags |= TH_SEND_URP_MARK;
13793 				tcp->tcp_urp_last_valid = B_TRUE;
13794 				tcp->tcp_urp_last = urp + seg_seq;
13795 			}
13796 			/*
13797 			 * If this is a zero window probe, continue to
13798 			 * process the ACK part.  But we need to set seg_len
13799 			 * to 0 to avoid data processing.  Otherwise just
13800 			 * drop the segment and send back an ACK.
13801 			 */
13802 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13803 				flags &= ~(TH_SYN | TH_URG);
13804 				seg_len = 0;
13805 				goto process_ack;
13806 			} else {
13807 				freemsg(mp);
13808 				goto ack_check;
13809 			}
13810 		}
13811 		/* Pitch out of window stuff off the end. */
13812 		rgap = seg_len;
13813 		mp2 = mp;
13814 		do {
13815 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13816 			    (uintptr_t)INT_MAX);
13817 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13818 			if (rgap < 0) {
13819 				mp2->b_wptr += rgap;
13820 				if ((mp1 = mp2->b_cont) != NULL) {
13821 					mp2->b_cont = NULL;
13822 					freemsg(mp1);
13823 				}
13824 				break;
13825 			}
13826 		} while ((mp2 = mp2->b_cont) != NULL);
13827 	}
13828 ok:;
13829 	/*
13830 	 * TCP should check ECN info for segments inside the window only.
13831 	 * Therefore the check should be done here.
13832 	 */
13833 	if (tcp->tcp_ecn_ok) {
13834 		if (flags & TH_CWR) {
13835 			tcp->tcp_ecn_echo_on = B_FALSE;
13836 		}
13837 		/*
13838 		 * Note that both ECN_CE and CWR can be set in the
13839 		 * same segment.  In this case, we once again turn
13840 		 * on ECN_ECHO.
13841 		 */
13842 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13843 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13844 
13845 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13846 				tcp->tcp_ecn_echo_on = B_TRUE;
13847 			}
13848 		} else {
13849 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13850 
13851 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13852 			    htonl(IPH_ECN_CE << 20)) {
13853 				tcp->tcp_ecn_echo_on = B_TRUE;
13854 			}
13855 		}
13856 	}
13857 
13858 	/*
13859 	 * Check whether we can update tcp_ts_recent.  This test is
13860 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13861 	 * Extensions for High Performance: An Update", Internet Draft.
13862 	 */
13863 	if (tcp->tcp_snd_ts_ok &&
13864 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13865 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13866 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13867 		tcp->tcp_last_rcv_lbolt = lbolt64;
13868 	}
13869 
13870 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13871 		/*
13872 		 * FIN in an out of order segment.  We record this in
13873 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13874 		 * Clear the FIN so that any check on FIN flag will fail.
13875 		 * Remember that FIN also counts in the sequence number
13876 		 * space.  So we need to ack out of order FIN only segments.
13877 		 */
13878 		if (flags & TH_FIN) {
13879 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13880 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13881 			flags &= ~TH_FIN;
13882 			flags |= TH_ACK_NEEDED;
13883 		}
13884 		if (seg_len > 0) {
13885 			/* Fill in the SACK blk list. */
13886 			if (tcp->tcp_snd_sack_ok) {
13887 				ASSERT(tcp->tcp_sack_info != NULL);
13888 				tcp_sack_insert(tcp->tcp_sack_list,
13889 				    seg_seq, seg_seq + seg_len,
13890 				    &(tcp->tcp_num_sack_blk));
13891 			}
13892 
13893 			/*
13894 			 * Attempt reassembly and see if we have something
13895 			 * ready to go.
13896 			 */
13897 			mp = tcp_reass(tcp, mp, seg_seq);
13898 			/* Always ack out of order packets */
13899 			flags |= TH_ACK_NEEDED | TH_PUSH;
13900 			if (mp) {
13901 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13902 				    (uintptr_t)INT_MAX);
13903 				seg_len = mp->b_cont ? msgdsize(mp) :
13904 				    (int)(mp->b_wptr - mp->b_rptr);
13905 				seg_seq = tcp->tcp_rnxt;
13906 				/*
13907 				 * A gap is filled and the seq num and len
13908 				 * of the gap match that of a previously
13909 				 * received FIN, put the FIN flag back in.
13910 				 */
13911 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13912 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13913 					flags |= TH_FIN;
13914 					tcp->tcp_valid_bits &=
13915 					    ~TCP_OFO_FIN_VALID;
13916 				}
13917 			} else {
13918 				/*
13919 				 * Keep going even with NULL mp.
13920 				 * There may be a useful ACK or something else
13921 				 * we don't want to miss.
13922 				 *
13923 				 * But TCP should not perform fast retransmit
13924 				 * because of the ack number.  TCP uses
13925 				 * seg_len == 0 to determine if it is a pure
13926 				 * ACK.  And this is not a pure ACK.
13927 				 */
13928 				seg_len = 0;
13929 				ofo_seg = B_TRUE;
13930 			}
13931 		}
13932 	} else if (seg_len > 0) {
13933 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13934 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13935 		/*
13936 		 * If an out of order FIN was received before, and the seq
13937 		 * num and len of the new segment match that of the FIN,
13938 		 * put the FIN flag back in.
13939 		 */
13940 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13941 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13942 			flags |= TH_FIN;
13943 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13944 		}
13945 	}
13946 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13947 	if (flags & TH_RST) {
13948 		freemsg(mp);
13949 		switch (tcp->tcp_state) {
13950 		case TCPS_SYN_RCVD:
13951 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13952 			break;
13953 		case TCPS_ESTABLISHED:
13954 		case TCPS_FIN_WAIT_1:
13955 		case TCPS_FIN_WAIT_2:
13956 		case TCPS_CLOSE_WAIT:
13957 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13958 			break;
13959 		case TCPS_CLOSING:
13960 		case TCPS_LAST_ACK:
13961 			(void) tcp_clean_death(tcp, 0, 16);
13962 			break;
13963 		default:
13964 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13965 			(void) tcp_clean_death(tcp, ENXIO, 17);
13966 			break;
13967 		}
13968 		return;
13969 	}
13970 	if (flags & TH_SYN) {
13971 		/*
13972 		 * See RFC 793, Page 71
13973 		 *
13974 		 * The seq number must be in the window as it should
13975 		 * be "fixed" above.  If it is outside window, it should
13976 		 * be already rejected.  Note that we allow seg_seq to be
13977 		 * rnxt + rwnd because we want to accept 0 window probe.
13978 		 */
13979 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13980 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13981 		freemsg(mp);
13982 		/*
13983 		 * If the ACK flag is not set, just use our snxt as the
13984 		 * seq number of the RST segment.
13985 		 */
13986 		if (!(flags & TH_ACK)) {
13987 			seg_ack = tcp->tcp_snxt;
13988 		}
13989 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13990 		    TH_RST|TH_ACK);
13991 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13992 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13993 		return;
13994 	}
13995 	/*
13996 	 * urp could be -1 when the urp field in the packet is 0
13997 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13998 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13999 	 */
14000 	if (flags & TH_URG && urp >= 0) {
14001 		if (!tcp->tcp_urp_last_valid ||
14002 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
14003 			/*
14004 			 * If we haven't generated the signal yet for this
14005 			 * urgent pointer value, do it now.  Also, send up a
14006 			 * zero-length M_DATA indicating whether or not this is
14007 			 * the mark. The latter is not needed when a
14008 			 * T_EXDATA_IND is sent up. However, if there are
14009 			 * allocation failures this code relies on the sender
14010 			 * retransmitting and the socket code for determining
14011 			 * the mark should not block waiting for the peer to
14012 			 * transmit. Thus, for simplicity we always send up the
14013 			 * mark indication.
14014 			 */
14015 			mp1 = allocb(0, BPRI_MED);
14016 			if (mp1 == NULL) {
14017 				freemsg(mp);
14018 				return;
14019 			}
14020 			if (!TCP_IS_DETACHED(tcp) &&
14021 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
14022 				/* Try again on the rexmit. */
14023 				freemsg(mp1);
14024 				freemsg(mp);
14025 				return;
14026 			}
14027 			/*
14028 			 * Mark with NOTMARKNEXT for now.
14029 			 * The code below will change this to MARKNEXT
14030 			 * if we are at the mark.
14031 			 *
14032 			 * If there are allocation failures (e.g. in dupmsg
14033 			 * below) the next time tcp_rput_data sees the urgent
14034 			 * segment it will send up the MSG*MARKNEXT message.
14035 			 */
14036 			mp1->b_flag |= MSGNOTMARKNEXT;
14037 			freemsg(tcp->tcp_urp_mark_mp);
14038 			tcp->tcp_urp_mark_mp = mp1;
14039 			flags |= TH_SEND_URP_MARK;
14040 #ifdef DEBUG
14041 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14042 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
14043 			    "last %x, %s",
14044 			    seg_seq, urp, tcp->tcp_urp_last,
14045 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14046 #endif /* DEBUG */
14047 			tcp->tcp_urp_last_valid = B_TRUE;
14048 			tcp->tcp_urp_last = urp + seg_seq;
14049 		} else if (tcp->tcp_urp_mark_mp != NULL) {
14050 			/*
14051 			 * An allocation failure prevented the previous
14052 			 * tcp_rput_data from sending up the allocated
14053 			 * MSG*MARKNEXT message - send it up this time
14054 			 * around.
14055 			 */
14056 			flags |= TH_SEND_URP_MARK;
14057 		}
14058 
14059 		/*
14060 		 * If the urgent byte is in this segment, make sure that it is
14061 		 * all by itself.  This makes it much easier to deal with the
14062 		 * possibility of an allocation failure on the T_exdata_ind.
14063 		 * Note that seg_len is the number of bytes in the segment, and
14064 		 * urp is the offset into the segment of the urgent byte.
14065 		 * urp < seg_len means that the urgent byte is in this segment.
14066 		 */
14067 		if (urp < seg_len) {
14068 			if (seg_len != 1) {
14069 				uint32_t  tmp_rnxt;
14070 				/*
14071 				 * Break it up and feed it back in.
14072 				 * Re-attach the IP header.
14073 				 */
14074 				mp->b_rptr = iphdr;
14075 				if (urp > 0) {
14076 					/*
14077 					 * There is stuff before the urgent
14078 					 * byte.
14079 					 */
14080 					mp1 = dupmsg(mp);
14081 					if (!mp1) {
14082 						/*
14083 						 * Trim from urgent byte on.
14084 						 * The rest will come back.
14085 						 */
14086 						(void) adjmsg(mp,
14087 						    urp - seg_len);
14088 						tcp_rput_data(connp,
14089 						    mp, NULL);
14090 						return;
14091 					}
14092 					(void) adjmsg(mp1, urp - seg_len);
14093 					/* Feed this piece back in. */
14094 					tmp_rnxt = tcp->tcp_rnxt;
14095 					tcp_rput_data(connp, mp1, NULL);
14096 					/*
14097 					 * If the data passed back in was not
14098 					 * processed (ie: bad ACK) sending
14099 					 * the remainder back in will cause a
14100 					 * loop. In this case, drop the
14101 					 * packet and let the sender try
14102 					 * sending a good packet.
14103 					 */
14104 					if (tmp_rnxt == tcp->tcp_rnxt) {
14105 						freemsg(mp);
14106 						return;
14107 					}
14108 				}
14109 				if (urp != seg_len - 1) {
14110 					uint32_t  tmp_rnxt;
14111 					/*
14112 					 * There is stuff after the urgent
14113 					 * byte.
14114 					 */
14115 					mp1 = dupmsg(mp);
14116 					if (!mp1) {
14117 						/*
14118 						 * Trim everything beyond the
14119 						 * urgent byte.  The rest will
14120 						 * come back.
14121 						 */
14122 						(void) adjmsg(mp,
14123 						    urp + 1 - seg_len);
14124 						tcp_rput_data(connp,
14125 						    mp, NULL);
14126 						return;
14127 					}
14128 					(void) adjmsg(mp1, urp + 1 - seg_len);
14129 					tmp_rnxt = tcp->tcp_rnxt;
14130 					tcp_rput_data(connp, mp1, NULL);
14131 					/*
14132 					 * If the data passed back in was not
14133 					 * processed (ie: bad ACK) sending
14134 					 * the remainder back in will cause a
14135 					 * loop. In this case, drop the
14136 					 * packet and let the sender try
14137 					 * sending a good packet.
14138 					 */
14139 					if (tmp_rnxt == tcp->tcp_rnxt) {
14140 						freemsg(mp);
14141 						return;
14142 					}
14143 				}
14144 				tcp_rput_data(connp, mp, NULL);
14145 				return;
14146 			}
14147 			/*
14148 			 * This segment contains only the urgent byte.  We
14149 			 * have to allocate the T_exdata_ind, if we can.
14150 			 */
14151 			if (!tcp->tcp_urp_mp) {
14152 				struct T_exdata_ind *tei;
14153 				mp1 = allocb(sizeof (struct T_exdata_ind),
14154 				    BPRI_MED);
14155 				if (!mp1) {
14156 					/*
14157 					 * Sigh... It'll be back.
14158 					 * Generate any MSG*MARK message now.
14159 					 */
14160 					freemsg(mp);
14161 					seg_len = 0;
14162 					if (flags & TH_SEND_URP_MARK) {
14163 
14164 
14165 						ASSERT(tcp->tcp_urp_mark_mp);
14166 						tcp->tcp_urp_mark_mp->b_flag &=
14167 						    ~MSGNOTMARKNEXT;
14168 						tcp->tcp_urp_mark_mp->b_flag |=
14169 						    MSGMARKNEXT;
14170 					}
14171 					goto ack_check;
14172 				}
14173 				mp1->b_datap->db_type = M_PROTO;
14174 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14175 				tei->PRIM_type = T_EXDATA_IND;
14176 				tei->MORE_flag = 0;
14177 				mp1->b_wptr = (uchar_t *)&tei[1];
14178 				tcp->tcp_urp_mp = mp1;
14179 #ifdef DEBUG
14180 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14181 				    "tcp_rput: allocated exdata_ind %s",
14182 				    tcp_display(tcp, NULL,
14183 				    DISP_PORT_ONLY));
14184 #endif /* DEBUG */
14185 				/*
14186 				 * There is no need to send a separate MSG*MARK
14187 				 * message since the T_EXDATA_IND will be sent
14188 				 * now.
14189 				 */
14190 				flags &= ~TH_SEND_URP_MARK;
14191 				freemsg(tcp->tcp_urp_mark_mp);
14192 				tcp->tcp_urp_mark_mp = NULL;
14193 			}
14194 			/*
14195 			 * Now we are all set.  On the next putnext upstream,
14196 			 * tcp_urp_mp will be non-NULL and will get prepended
14197 			 * to what has to be this piece containing the urgent
14198 			 * byte.  If for any reason we abort this segment below,
14199 			 * if it comes back, we will have this ready, or it
14200 			 * will get blown off in close.
14201 			 */
14202 		} else if (urp == seg_len) {
14203 			/*
14204 			 * The urgent byte is the next byte after this sequence
14205 			 * number. If there is data it is marked with
14206 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14207 			 * since it is not needed. Otherwise, if the code
14208 			 * above just allocated a zero-length tcp_urp_mark_mp
14209 			 * message, that message is tagged with MSGMARKNEXT.
14210 			 * Sending up these MSGMARKNEXT messages makes
14211 			 * SIOCATMARK work correctly even though
14212 			 * the T_EXDATA_IND will not be sent up until the
14213 			 * urgent byte arrives.
14214 			 */
14215 			if (seg_len != 0) {
14216 				flags |= TH_MARKNEXT_NEEDED;
14217 				freemsg(tcp->tcp_urp_mark_mp);
14218 				tcp->tcp_urp_mark_mp = NULL;
14219 				flags &= ~TH_SEND_URP_MARK;
14220 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14221 				flags |= TH_SEND_URP_MARK;
14222 				tcp->tcp_urp_mark_mp->b_flag &=
14223 				    ~MSGNOTMARKNEXT;
14224 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14225 			}
14226 #ifdef DEBUG
14227 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14228 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14229 			    seg_len, flags,
14230 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14231 #endif /* DEBUG */
14232 		} else {
14233 			/* Data left until we hit mark */
14234 #ifdef DEBUG
14235 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14236 			    "tcp_rput: URP %d bytes left, %s",
14237 			    urp - seg_len, tcp_display(tcp, NULL,
14238 			    DISP_PORT_ONLY));
14239 #endif /* DEBUG */
14240 		}
14241 	}
14242 
14243 process_ack:
14244 	if (!(flags & TH_ACK)) {
14245 		freemsg(mp);
14246 		goto xmit_check;
14247 	}
14248 	}
14249 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14250 
14251 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14252 		tcp->tcp_ip_forward_progress = B_TRUE;
14253 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14254 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14255 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14256 			/* 3-way handshake complete - pass up the T_CONN_IND */
14257 			tcp_t	*listener = tcp->tcp_listener;
14258 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14259 
14260 			tcp->tcp_tconnind_started = B_TRUE;
14261 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14262 			/*
14263 			 * We are here means eager is fine but it can
14264 			 * get a TH_RST at any point between now and till
14265 			 * accept completes and disappear. We need to
14266 			 * ensure that reference to eager is valid after
14267 			 * we get out of eager's perimeter. So we do
14268 			 * an extra refhold.
14269 			 */
14270 			CONN_INC_REF(connp);
14271 
14272 			/*
14273 			 * The listener also exists because of the refhold
14274 			 * done in tcp_conn_request. Its possible that it
14275 			 * might have closed. We will check that once we
14276 			 * get inside listeners context.
14277 			 */
14278 			CONN_INC_REF(listener->tcp_connp);
14279 			if (listener->tcp_connp->conn_sqp ==
14280 			    connp->conn_sqp) {
14281 				tcp_send_conn_ind(listener->tcp_connp, mp,
14282 				    listener->tcp_connp->conn_sqp);
14283 				CONN_DEC_REF(listener->tcp_connp);
14284 			} else if (!tcp->tcp_loopback) {
14285 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14286 				    tcp_send_conn_ind,
14287 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14288 			} else {
14289 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14290 				    tcp_send_conn_ind, listener->tcp_connp,
14291 				    SQTAG_TCP_CONN_IND);
14292 			}
14293 		}
14294 
14295 		if (tcp->tcp_active_open) {
14296 			/*
14297 			 * We are seeing the final ack in the three way
14298 			 * hand shake of a active open'ed connection
14299 			 * so we must send up a T_CONN_CON
14300 			 */
14301 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14302 				freemsg(mp);
14303 				return;
14304 			}
14305 			/*
14306 			 * Don't fuse the loopback endpoints for
14307 			 * simultaneous active opens.
14308 			 */
14309 			if (tcp->tcp_loopback) {
14310 				TCP_STAT(tcps, tcp_fusion_unfusable);
14311 				tcp->tcp_unfusable = B_TRUE;
14312 			}
14313 		}
14314 
14315 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14316 		bytes_acked--;
14317 		/* SYN was acked - making progress */
14318 		if (tcp->tcp_ipversion == IPV6_VERSION)
14319 			tcp->tcp_ip_forward_progress = B_TRUE;
14320 
14321 		/*
14322 		 * If SYN was retransmitted, need to reset all
14323 		 * retransmission info as this segment will be
14324 		 * treated as a dup ACK.
14325 		 */
14326 		if (tcp->tcp_rexmit) {
14327 			tcp->tcp_rexmit = B_FALSE;
14328 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14329 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14330 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14331 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14332 			tcp->tcp_ms_we_have_waited = 0;
14333 			tcp->tcp_cwnd = mss;
14334 		}
14335 
14336 		/*
14337 		 * We set the send window to zero here.
14338 		 * This is needed if there is data to be
14339 		 * processed already on the queue.
14340 		 * Later (at swnd_update label), the
14341 		 * "new_swnd > tcp_swnd" condition is satisfied
14342 		 * the XMIT_NEEDED flag is set in the current
14343 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14344 		 * called if there is already data on queue in
14345 		 * this state.
14346 		 */
14347 		tcp->tcp_swnd = 0;
14348 
14349 		if (new_swnd > tcp->tcp_max_swnd)
14350 			tcp->tcp_max_swnd = new_swnd;
14351 		tcp->tcp_swl1 = seg_seq;
14352 		tcp->tcp_swl2 = seg_ack;
14353 		tcp->tcp_state = TCPS_ESTABLISHED;
14354 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14355 
14356 		/* Fuse when both sides are in ESTABLISHED state */
14357 		if (tcp->tcp_loopback && do_tcp_fusion)
14358 			tcp_fuse(tcp, iphdr, tcph);
14359 
14360 	}
14361 	/* This code follows 4.4BSD-Lite2 mostly. */
14362 	if (bytes_acked < 0)
14363 		goto est;
14364 
14365 	/*
14366 	 * If TCP is ECN capable and the congestion experience bit is
14367 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14368 	 * done once per window (or more loosely, per RTT).
14369 	 */
14370 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14371 		tcp->tcp_cwr = B_FALSE;
14372 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14373 		if (!tcp->tcp_cwr) {
14374 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14375 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14376 			tcp->tcp_cwnd = npkt * mss;
14377 			/*
14378 			 * If the cwnd is 0, use the timer to clock out
14379 			 * new segments.  This is required by the ECN spec.
14380 			 */
14381 			if (npkt == 0) {
14382 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14383 				/*
14384 				 * This makes sure that when the ACK comes
14385 				 * back, we will increase tcp_cwnd by 1 MSS.
14386 				 */
14387 				tcp->tcp_cwnd_cnt = 0;
14388 			}
14389 			tcp->tcp_cwr = B_TRUE;
14390 			/*
14391 			 * This marks the end of the current window of in
14392 			 * flight data.  That is why we don't use
14393 			 * tcp_suna + tcp_swnd.  Only data in flight can
14394 			 * provide ECN info.
14395 			 */
14396 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14397 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14398 		}
14399 	}
14400 
14401 	mp1 = tcp->tcp_xmit_head;
14402 	if (bytes_acked == 0) {
14403 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14404 			int dupack_cnt;
14405 
14406 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14407 			/*
14408 			 * Fast retransmit.  When we have seen exactly three
14409 			 * identical ACKs while we have unacked data
14410 			 * outstanding we take it as a hint that our peer
14411 			 * dropped something.
14412 			 *
14413 			 * If TCP is retransmitting, don't do fast retransmit.
14414 			 */
14415 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14416 			    ! tcp->tcp_rexmit) {
14417 				/* Do Limited Transmit */
14418 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14419 				    tcps->tcps_dupack_fast_retransmit) {
14420 					/*
14421 					 * RFC 3042
14422 					 *
14423 					 * What we need to do is temporarily
14424 					 * increase tcp_cwnd so that new
14425 					 * data can be sent if it is allowed
14426 					 * by the receive window (tcp_rwnd).
14427 					 * tcp_wput_data() will take care of
14428 					 * the rest.
14429 					 *
14430 					 * If the connection is SACK capable,
14431 					 * only do limited xmit when there
14432 					 * is SACK info.
14433 					 *
14434 					 * Note how tcp_cwnd is incremented.
14435 					 * The first dup ACK will increase
14436 					 * it by 1 MSS.  The second dup ACK
14437 					 * will increase it by 2 MSS.  This
14438 					 * means that only 1 new segment will
14439 					 * be sent for each dup ACK.
14440 					 */
14441 					if (tcp->tcp_unsent > 0 &&
14442 					    (!tcp->tcp_snd_sack_ok ||
14443 					    (tcp->tcp_snd_sack_ok &&
14444 					    tcp->tcp_notsack_list != NULL))) {
14445 						tcp->tcp_cwnd += mss <<
14446 						    (tcp->tcp_dupack_cnt - 1);
14447 						flags |= TH_LIMIT_XMIT;
14448 					}
14449 				} else if (dupack_cnt ==
14450 				    tcps->tcps_dupack_fast_retransmit) {
14451 
14452 				/*
14453 				 * If we have reduced tcp_ssthresh
14454 				 * because of ECN, do not reduce it again
14455 				 * unless it is already one window of data
14456 				 * away.  After one window of data, tcp_cwr
14457 				 * should then be cleared.  Note that
14458 				 * for non ECN capable connection, tcp_cwr
14459 				 * should always be false.
14460 				 *
14461 				 * Adjust cwnd since the duplicate
14462 				 * ack indicates that a packet was
14463 				 * dropped (due to congestion.)
14464 				 */
14465 				if (!tcp->tcp_cwr) {
14466 					npkt = ((tcp->tcp_snxt -
14467 					    tcp->tcp_suna) >> 1) / mss;
14468 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14469 					    mss;
14470 					tcp->tcp_cwnd = (npkt +
14471 					    tcp->tcp_dupack_cnt) * mss;
14472 				}
14473 				if (tcp->tcp_ecn_ok) {
14474 					tcp->tcp_cwr = B_TRUE;
14475 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14476 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14477 				}
14478 
14479 				/*
14480 				 * We do Hoe's algorithm.  Refer to her
14481 				 * paper "Improving the Start-up Behavior
14482 				 * of a Congestion Control Scheme for TCP,"
14483 				 * appeared in SIGCOMM'96.
14484 				 *
14485 				 * Save highest seq no we have sent so far.
14486 				 * Be careful about the invisible FIN byte.
14487 				 */
14488 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14489 				    (tcp->tcp_unsent == 0)) {
14490 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14491 				} else {
14492 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14493 				}
14494 
14495 				/*
14496 				 * Do not allow bursty traffic during.
14497 				 * fast recovery.  Refer to Fall and Floyd's
14498 				 * paper "Simulation-based Comparisons of
14499 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14500 				 * This is a best current practise.
14501 				 */
14502 				tcp->tcp_snd_burst = TCP_CWND_SS;
14503 
14504 				/*
14505 				 * For SACK:
14506 				 * Calculate tcp_pipe, which is the
14507 				 * estimated number of bytes in
14508 				 * network.
14509 				 *
14510 				 * tcp_fack is the highest sack'ed seq num
14511 				 * TCP has received.
14512 				 *
14513 				 * tcp_pipe is explained in the above quoted
14514 				 * Fall and Floyd's paper.  tcp_fack is
14515 				 * explained in Mathis and Mahdavi's
14516 				 * "Forward Acknowledgment: Refining TCP
14517 				 * Congestion Control" in SIGCOMM '96.
14518 				 */
14519 				if (tcp->tcp_snd_sack_ok) {
14520 					ASSERT(tcp->tcp_sack_info != NULL);
14521 					if (tcp->tcp_notsack_list != NULL) {
14522 						tcp->tcp_pipe = tcp->tcp_snxt -
14523 						    tcp->tcp_fack;
14524 						tcp->tcp_sack_snxt = seg_ack;
14525 						flags |= TH_NEED_SACK_REXMIT;
14526 					} else {
14527 						/*
14528 						 * Always initialize tcp_pipe
14529 						 * even though we don't have
14530 						 * any SACK info.  If later
14531 						 * we get SACK info and
14532 						 * tcp_pipe is not initialized,
14533 						 * funny things will happen.
14534 						 */
14535 						tcp->tcp_pipe =
14536 						    tcp->tcp_cwnd_ssthresh;
14537 					}
14538 				} else {
14539 					flags |= TH_REXMIT_NEEDED;
14540 				} /* tcp_snd_sack_ok */
14541 
14542 				} else {
14543 					/*
14544 					 * Here we perform congestion
14545 					 * avoidance, but NOT slow start.
14546 					 * This is known as the Fast
14547 					 * Recovery Algorithm.
14548 					 */
14549 					if (tcp->tcp_snd_sack_ok &&
14550 					    tcp->tcp_notsack_list != NULL) {
14551 						flags |= TH_NEED_SACK_REXMIT;
14552 						tcp->tcp_pipe -= mss;
14553 						if (tcp->tcp_pipe < 0)
14554 							tcp->tcp_pipe = 0;
14555 					} else {
14556 					/*
14557 					 * We know that one more packet has
14558 					 * left the pipe thus we can update
14559 					 * cwnd.
14560 					 */
14561 					cwnd = tcp->tcp_cwnd + mss;
14562 					if (cwnd > tcp->tcp_cwnd_max)
14563 						cwnd = tcp->tcp_cwnd_max;
14564 					tcp->tcp_cwnd = cwnd;
14565 					if (tcp->tcp_unsent > 0)
14566 						flags |= TH_XMIT_NEEDED;
14567 					}
14568 				}
14569 			}
14570 		} else if (tcp->tcp_zero_win_probe) {
14571 			/*
14572 			 * If the window has opened, need to arrange
14573 			 * to send additional data.
14574 			 */
14575 			if (new_swnd != 0) {
14576 				/* tcp_suna != tcp_snxt */
14577 				/* Packet contains a window update */
14578 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14579 				tcp->tcp_zero_win_probe = 0;
14580 				tcp->tcp_timer_backoff = 0;
14581 				tcp->tcp_ms_we_have_waited = 0;
14582 
14583 				/*
14584 				 * Transmit starting with tcp_suna since
14585 				 * the one byte probe is not ack'ed.
14586 				 * If TCP has sent more than one identical
14587 				 * probe, tcp_rexmit will be set.  That means
14588 				 * tcp_ss_rexmit() will send out the one
14589 				 * byte along with new data.  Otherwise,
14590 				 * fake the retransmission.
14591 				 */
14592 				flags |= TH_XMIT_NEEDED;
14593 				if (!tcp->tcp_rexmit) {
14594 					tcp->tcp_rexmit = B_TRUE;
14595 					tcp->tcp_dupack_cnt = 0;
14596 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14597 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14598 				}
14599 			}
14600 		}
14601 		goto swnd_update;
14602 	}
14603 
14604 	/*
14605 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14606 	 * If the ACK value acks something that we have not yet sent, it might
14607 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14608 	 * other side.
14609 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14610 	 * state is handled above, so we can always just drop the segment and
14611 	 * send an ACK here.
14612 	 *
14613 	 * Should we send ACKs in response to ACK only segments?
14614 	 */
14615 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14616 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14617 		/* drop the received segment */
14618 		freemsg(mp);
14619 
14620 		/*
14621 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14622 		 * greater than 0, check if the number of such
14623 		 * bogus ACks is greater than that count.  If yes,
14624 		 * don't send back any ACK.  This prevents TCP from
14625 		 * getting into an ACK storm if somehow an attacker
14626 		 * successfully spoofs an acceptable segment to our
14627 		 * peer.
14628 		 */
14629 		if (tcp_drop_ack_unsent_cnt > 0 &&
14630 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14631 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14632 			return;
14633 		}
14634 		mp = tcp_ack_mp(tcp);
14635 		if (mp != NULL) {
14636 			BUMP_LOCAL(tcp->tcp_obsegs);
14637 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14638 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14639 		}
14640 		return;
14641 	}
14642 
14643 	/*
14644 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14645 	 * blocks that are covered by this ACK.
14646 	 */
14647 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14648 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14649 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14650 	}
14651 
14652 	/*
14653 	 * If we got an ACK after fast retransmit, check to see
14654 	 * if it is a partial ACK.  If it is not and the congestion
14655 	 * window was inflated to account for the other side's
14656 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14657 	 */
14658 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14659 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14660 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14661 			tcp->tcp_dupack_cnt = 0;
14662 			/*
14663 			 * Restore the orig tcp_cwnd_ssthresh after
14664 			 * fast retransmit phase.
14665 			 */
14666 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14667 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14668 			}
14669 			tcp->tcp_rexmit_max = seg_ack;
14670 			tcp->tcp_cwnd_cnt = 0;
14671 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14672 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14673 
14674 			/*
14675 			 * Remove all notsack info to avoid confusion with
14676 			 * the next fast retrasnmit/recovery phase.
14677 			 */
14678 			if (tcp->tcp_snd_sack_ok &&
14679 			    tcp->tcp_notsack_list != NULL) {
14680 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14681 			}
14682 		} else {
14683 			if (tcp->tcp_snd_sack_ok &&
14684 			    tcp->tcp_notsack_list != NULL) {
14685 				flags |= TH_NEED_SACK_REXMIT;
14686 				tcp->tcp_pipe -= mss;
14687 				if (tcp->tcp_pipe < 0)
14688 					tcp->tcp_pipe = 0;
14689 			} else {
14690 				/*
14691 				 * Hoe's algorithm:
14692 				 *
14693 				 * Retransmit the unack'ed segment and
14694 				 * restart fast recovery.  Note that we
14695 				 * need to scale back tcp_cwnd to the
14696 				 * original value when we started fast
14697 				 * recovery.  This is to prevent overly
14698 				 * aggressive behaviour in sending new
14699 				 * segments.
14700 				 */
14701 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14702 				    tcps->tcps_dupack_fast_retransmit * mss;
14703 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14704 				flags |= TH_REXMIT_NEEDED;
14705 			}
14706 		}
14707 	} else {
14708 		tcp->tcp_dupack_cnt = 0;
14709 		if (tcp->tcp_rexmit) {
14710 			/*
14711 			 * TCP is retranmitting.  If the ACK ack's all
14712 			 * outstanding data, update tcp_rexmit_max and
14713 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14714 			 * to the correct value.
14715 			 *
14716 			 * Note that SEQ_LEQ() is used.  This is to avoid
14717 			 * unnecessary fast retransmit caused by dup ACKs
14718 			 * received when TCP does slow start retransmission
14719 			 * after a time out.  During this phase, TCP may
14720 			 * send out segments which are already received.
14721 			 * This causes dup ACKs to be sent back.
14722 			 */
14723 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14724 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14725 					tcp->tcp_rexmit_nxt = seg_ack;
14726 				}
14727 				if (seg_ack != tcp->tcp_rexmit_max) {
14728 					flags |= TH_XMIT_NEEDED;
14729 				}
14730 			} else {
14731 				tcp->tcp_rexmit = B_FALSE;
14732 				tcp->tcp_xmit_zc_clean = B_FALSE;
14733 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14734 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14735 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14736 			}
14737 			tcp->tcp_ms_we_have_waited = 0;
14738 		}
14739 	}
14740 
14741 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14742 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14743 	tcp->tcp_suna = seg_ack;
14744 	if (tcp->tcp_zero_win_probe != 0) {
14745 		tcp->tcp_zero_win_probe = 0;
14746 		tcp->tcp_timer_backoff = 0;
14747 	}
14748 
14749 	/*
14750 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14751 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14752 	 * will not reach here.
14753 	 */
14754 	if (mp1 == NULL) {
14755 		goto fin_acked;
14756 	}
14757 
14758 	/*
14759 	 * Update the congestion window.
14760 	 *
14761 	 * If TCP is not ECN capable or TCP is ECN capable but the
14762 	 * congestion experience bit is not set, increase the tcp_cwnd as
14763 	 * usual.
14764 	 */
14765 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14766 		cwnd = tcp->tcp_cwnd;
14767 		add = mss;
14768 
14769 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14770 			/*
14771 			 * This is to prevent an increase of less than 1 MSS of
14772 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14773 			 * may send out tinygrams in order to preserve mblk
14774 			 * boundaries.
14775 			 *
14776 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14777 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14778 			 * increased by 1 MSS for every RTTs.
14779 			 */
14780 			if (tcp->tcp_cwnd_cnt <= 0) {
14781 				tcp->tcp_cwnd_cnt = cwnd + add;
14782 			} else {
14783 				tcp->tcp_cwnd_cnt -= add;
14784 				add = 0;
14785 			}
14786 		}
14787 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14788 	}
14789 
14790 	/* See if the latest urgent data has been acknowledged */
14791 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14792 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14793 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14794 
14795 	/* Can we update the RTT estimates? */
14796 	if (tcp->tcp_snd_ts_ok) {
14797 		/* Ignore zero timestamp echo-reply. */
14798 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14799 			tcp_set_rto(tcp, (int32_t)lbolt -
14800 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14801 		}
14802 
14803 		/* If needed, restart the timer. */
14804 		if (tcp->tcp_set_timer == 1) {
14805 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14806 			tcp->tcp_set_timer = 0;
14807 		}
14808 		/*
14809 		 * Update tcp_csuna in case the other side stops sending
14810 		 * us timestamps.
14811 		 */
14812 		tcp->tcp_csuna = tcp->tcp_snxt;
14813 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14814 		/*
14815 		 * An ACK sequence we haven't seen before, so get the RTT
14816 		 * and update the RTO. But first check if the timestamp is
14817 		 * valid to use.
14818 		 */
14819 		if ((mp1->b_next != NULL) &&
14820 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14821 			tcp_set_rto(tcp, (int32_t)lbolt -
14822 			    (int32_t)(intptr_t)mp1->b_prev);
14823 		else
14824 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14825 
14826 		/* Remeber the last sequence to be ACKed */
14827 		tcp->tcp_csuna = seg_ack;
14828 		if (tcp->tcp_set_timer == 1) {
14829 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14830 			tcp->tcp_set_timer = 0;
14831 		}
14832 	} else {
14833 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14834 	}
14835 
14836 	/* Eat acknowledged bytes off the xmit queue. */
14837 	for (;;) {
14838 		mblk_t	*mp2;
14839 		uchar_t	*wptr;
14840 
14841 		wptr = mp1->b_wptr;
14842 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14843 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14844 		if (bytes_acked < 0) {
14845 			mp1->b_rptr = wptr + bytes_acked;
14846 			/*
14847 			 * Set a new timestamp if all the bytes timed by the
14848 			 * old timestamp have been ack'ed.
14849 			 */
14850 			if (SEQ_GT(seg_ack,
14851 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14852 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14853 				mp1->b_next = NULL;
14854 			}
14855 			break;
14856 		}
14857 		mp1->b_next = NULL;
14858 		mp1->b_prev = NULL;
14859 		mp2 = mp1;
14860 		mp1 = mp1->b_cont;
14861 
14862 		/*
14863 		 * This notification is required for some zero-copy
14864 		 * clients to maintain a copy semantic. After the data
14865 		 * is ack'ed, client is safe to modify or reuse the buffer.
14866 		 */
14867 		if (tcp->tcp_snd_zcopy_aware &&
14868 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14869 			tcp_zcopy_notify(tcp);
14870 		freeb(mp2);
14871 		if (bytes_acked == 0) {
14872 			if (mp1 == NULL) {
14873 				/* Everything is ack'ed, clear the tail. */
14874 				tcp->tcp_xmit_tail = NULL;
14875 				/*
14876 				 * Cancel the timer unless we are still
14877 				 * waiting for an ACK for the FIN packet.
14878 				 */
14879 				if (tcp->tcp_timer_tid != 0 &&
14880 				    tcp->tcp_snxt == tcp->tcp_suna) {
14881 					(void) TCP_TIMER_CANCEL(tcp,
14882 					    tcp->tcp_timer_tid);
14883 					tcp->tcp_timer_tid = 0;
14884 				}
14885 				goto pre_swnd_update;
14886 			}
14887 			if (mp2 != tcp->tcp_xmit_tail)
14888 				break;
14889 			tcp->tcp_xmit_tail = mp1;
14890 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14891 			    (uintptr_t)INT_MAX);
14892 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14893 			    mp1->b_rptr);
14894 			break;
14895 		}
14896 		if (mp1 == NULL) {
14897 			/*
14898 			 * More was acked but there is nothing more
14899 			 * outstanding.  This means that the FIN was
14900 			 * just acked or that we're talking to a clown.
14901 			 */
14902 fin_acked:
14903 			ASSERT(tcp->tcp_fin_sent);
14904 			tcp->tcp_xmit_tail = NULL;
14905 			if (tcp->tcp_fin_sent) {
14906 				/* FIN was acked - making progress */
14907 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14908 				    !tcp->tcp_fin_acked)
14909 					tcp->tcp_ip_forward_progress = B_TRUE;
14910 				tcp->tcp_fin_acked = B_TRUE;
14911 				if (tcp->tcp_linger_tid != 0 &&
14912 				    TCP_TIMER_CANCEL(tcp,
14913 				    tcp->tcp_linger_tid) >= 0) {
14914 					tcp_stop_lingering(tcp);
14915 					freemsg(mp);
14916 					mp = NULL;
14917 				}
14918 			} else {
14919 				/*
14920 				 * We should never get here because
14921 				 * we have already checked that the
14922 				 * number of bytes ack'ed should be
14923 				 * smaller than or equal to what we
14924 				 * have sent so far (it is the
14925 				 * acceptability check of the ACK).
14926 				 * We can only get here if the send
14927 				 * queue is corrupted.
14928 				 *
14929 				 * Terminate the connection and
14930 				 * panic the system.  It is better
14931 				 * for us to panic instead of
14932 				 * continuing to avoid other disaster.
14933 				 */
14934 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14935 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14936 				panic("Memory corruption "
14937 				    "detected for connection %s.",
14938 				    tcp_display(tcp, NULL,
14939 				    DISP_ADDR_AND_PORT));
14940 				/*NOTREACHED*/
14941 			}
14942 			goto pre_swnd_update;
14943 		}
14944 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14945 	}
14946 	if (tcp->tcp_unsent) {
14947 		flags |= TH_XMIT_NEEDED;
14948 	}
14949 pre_swnd_update:
14950 	tcp->tcp_xmit_head = mp1;
14951 swnd_update:
14952 	/*
14953 	 * The following check is different from most other implementations.
14954 	 * For bi-directional transfer, when segments are dropped, the
14955 	 * "normal" check will not accept a window update in those
14956 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14957 	 * segments which are outside receiver's window.  As TCP accepts
14958 	 * the ack in those retransmitted segments, if the window update in
14959 	 * the same segment is not accepted, TCP will incorrectly calculates
14960 	 * that it can send more segments.  This can create a deadlock
14961 	 * with the receiver if its window becomes zero.
14962 	 */
14963 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14964 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14965 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14966 		/*
14967 		 * The criteria for update is:
14968 		 *
14969 		 * 1. the segment acknowledges some data.  Or
14970 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14971 		 * 3. the segment is not old and the advertised window is
14972 		 * larger than the previous advertised window.
14973 		 */
14974 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14975 			flags |= TH_XMIT_NEEDED;
14976 		tcp->tcp_swnd = new_swnd;
14977 		if (new_swnd > tcp->tcp_max_swnd)
14978 			tcp->tcp_max_swnd = new_swnd;
14979 		tcp->tcp_swl1 = seg_seq;
14980 		tcp->tcp_swl2 = seg_ack;
14981 	}
14982 est:
14983 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14984 
14985 		switch (tcp->tcp_state) {
14986 		case TCPS_FIN_WAIT_1:
14987 			if (tcp->tcp_fin_acked) {
14988 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14989 				/*
14990 				 * We implement the non-standard BSD/SunOS
14991 				 * FIN_WAIT_2 flushing algorithm.
14992 				 * If there is no user attached to this
14993 				 * TCP endpoint, then this TCP struct
14994 				 * could hang around forever in FIN_WAIT_2
14995 				 * state if the peer forgets to send us
14996 				 * a FIN.  To prevent this, we wait only
14997 				 * 2*MSL (a convenient time value) for
14998 				 * the FIN to arrive.  If it doesn't show up,
14999 				 * we flush the TCP endpoint.  This algorithm,
15000 				 * though a violation of RFC-793, has worked
15001 				 * for over 10 years in BSD systems.
15002 				 * Note: SunOS 4.x waits 675 seconds before
15003 				 * flushing the FIN_WAIT_2 connection.
15004 				 */
15005 				TCP_TIMER_RESTART(tcp,
15006 				    tcps->tcps_fin_wait_2_flush_interval);
15007 			}
15008 			break;
15009 		case TCPS_FIN_WAIT_2:
15010 			break;	/* Shutdown hook? */
15011 		case TCPS_LAST_ACK:
15012 			freemsg(mp);
15013 			if (tcp->tcp_fin_acked) {
15014 				(void) tcp_clean_death(tcp, 0, 19);
15015 				return;
15016 			}
15017 			goto xmit_check;
15018 		case TCPS_CLOSING:
15019 			if (tcp->tcp_fin_acked) {
15020 				tcp->tcp_state = TCPS_TIME_WAIT;
15021 				/*
15022 				 * Unconditionally clear the exclusive binding
15023 				 * bit so this TIME-WAIT connection won't
15024 				 * interfere with new ones.
15025 				 */
15026 				tcp->tcp_exclbind = 0;
15027 				if (!TCP_IS_DETACHED(tcp)) {
15028 					TCP_TIMER_RESTART(tcp,
15029 					    tcps->tcps_time_wait_interval);
15030 				} else {
15031 					tcp_time_wait_append(tcp);
15032 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15033 				}
15034 			}
15035 			/*FALLTHRU*/
15036 		case TCPS_CLOSE_WAIT:
15037 			freemsg(mp);
15038 			goto xmit_check;
15039 		default:
15040 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
15041 			break;
15042 		}
15043 	}
15044 	if (flags & TH_FIN) {
15045 		/* Make sure we ack the fin */
15046 		flags |= TH_ACK_NEEDED;
15047 		if (!tcp->tcp_fin_rcvd) {
15048 			tcp->tcp_fin_rcvd = B_TRUE;
15049 			tcp->tcp_rnxt++;
15050 			tcph = tcp->tcp_tcph;
15051 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15052 
15053 			/*
15054 			 * Generate the ordrel_ind at the end unless we
15055 			 * are an eager guy.
15056 			 * In the eager case tcp_rsrv will do this when run
15057 			 * after tcp_accept is done.
15058 			 */
15059 			if (tcp->tcp_listener == NULL &&
15060 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
15061 				flags |= TH_ORDREL_NEEDED;
15062 			switch (tcp->tcp_state) {
15063 			case TCPS_SYN_RCVD:
15064 			case TCPS_ESTABLISHED:
15065 				tcp->tcp_state = TCPS_CLOSE_WAIT;
15066 				/* Keepalive? */
15067 				break;
15068 			case TCPS_FIN_WAIT_1:
15069 				if (!tcp->tcp_fin_acked) {
15070 					tcp->tcp_state = TCPS_CLOSING;
15071 					break;
15072 				}
15073 				/* FALLTHRU */
15074 			case TCPS_FIN_WAIT_2:
15075 				tcp->tcp_state = TCPS_TIME_WAIT;
15076 				/*
15077 				 * Unconditionally clear the exclusive binding
15078 				 * bit so this TIME-WAIT connection won't
15079 				 * interfere with new ones.
15080 				 */
15081 				tcp->tcp_exclbind = 0;
15082 				if (!TCP_IS_DETACHED(tcp)) {
15083 					TCP_TIMER_RESTART(tcp,
15084 					    tcps->tcps_time_wait_interval);
15085 				} else {
15086 					tcp_time_wait_append(tcp);
15087 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15088 				}
15089 				if (seg_len) {
15090 					/*
15091 					 * implies data piggybacked on FIN.
15092 					 * break to handle data.
15093 					 */
15094 					break;
15095 				}
15096 				freemsg(mp);
15097 				goto ack_check;
15098 			}
15099 		}
15100 	}
15101 	if (mp == NULL)
15102 		goto xmit_check;
15103 	if (seg_len == 0) {
15104 		freemsg(mp);
15105 		goto xmit_check;
15106 	}
15107 	if (mp->b_rptr == mp->b_wptr) {
15108 		/*
15109 		 * The header has been consumed, so we remove the
15110 		 * zero-length mblk here.
15111 		 */
15112 		mp1 = mp;
15113 		mp = mp->b_cont;
15114 		freeb(mp1);
15115 	}
15116 	tcph = tcp->tcp_tcph;
15117 	tcp->tcp_rack_cnt++;
15118 	{
15119 		uint32_t cur_max;
15120 
15121 		cur_max = tcp->tcp_rack_cur_max;
15122 		if (tcp->tcp_rack_cnt >= cur_max) {
15123 			/*
15124 			 * We have more unacked data than we should - send
15125 			 * an ACK now.
15126 			 */
15127 			flags |= TH_ACK_NEEDED;
15128 			cur_max++;
15129 			if (cur_max > tcp->tcp_rack_abs_max)
15130 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15131 			else
15132 				tcp->tcp_rack_cur_max = cur_max;
15133 		} else if (TCP_IS_DETACHED(tcp)) {
15134 			/* We don't have an ACK timer for detached TCP. */
15135 			flags |= TH_ACK_NEEDED;
15136 		} else if (seg_len < mss) {
15137 			/*
15138 			 * If we get a segment that is less than an mss, and we
15139 			 * already have unacknowledged data, and the amount
15140 			 * unacknowledged is not a multiple of mss, then we
15141 			 * better generate an ACK now.  Otherwise, this may be
15142 			 * the tail piece of a transaction, and we would rather
15143 			 * wait for the response.
15144 			 */
15145 			uint32_t udif;
15146 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15147 			    (uintptr_t)INT_MAX);
15148 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15149 			if (udif && (udif % mss))
15150 				flags |= TH_ACK_NEEDED;
15151 			else
15152 				flags |= TH_ACK_TIMER_NEEDED;
15153 		} else {
15154 			/* Start delayed ack timer */
15155 			flags |= TH_ACK_TIMER_NEEDED;
15156 		}
15157 	}
15158 	tcp->tcp_rnxt += seg_len;
15159 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15160 
15161 	/* Update SACK list */
15162 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15163 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15164 		    &(tcp->tcp_num_sack_blk));
15165 	}
15166 
15167 	if (tcp->tcp_urp_mp) {
15168 		tcp->tcp_urp_mp->b_cont = mp;
15169 		mp = tcp->tcp_urp_mp;
15170 		tcp->tcp_urp_mp = NULL;
15171 		/* Ready for a new signal. */
15172 		tcp->tcp_urp_last_valid = B_FALSE;
15173 #ifdef DEBUG
15174 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15175 		    "tcp_rput: sending exdata_ind %s",
15176 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15177 #endif /* DEBUG */
15178 	}
15179 
15180 	/*
15181 	 * Check for ancillary data changes compared to last segment.
15182 	 */
15183 	if (tcp->tcp_ipv6_recvancillary != 0) {
15184 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15185 		ASSERT(mp != NULL);
15186 	}
15187 
15188 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15189 		/*
15190 		 * Side queue inbound data until the accept happens.
15191 		 * tcp_accept/tcp_rput drains this when the accept happens.
15192 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15193 		 * T_EXDATA_IND) it is queued on b_next.
15194 		 * XXX Make urgent data use this. Requires:
15195 		 *	Removing tcp_listener check for TH_URG
15196 		 *	Making M_PCPROTO and MARK messages skip the eager case
15197 		 */
15198 
15199 		if (tcp->tcp_kssl_pending) {
15200 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15201 			    mblk_t *, mp);
15202 			tcp_kssl_input(tcp, mp);
15203 		} else {
15204 			tcp_rcv_enqueue(tcp, mp, seg_len);
15205 		}
15206 	} else {
15207 		sodirect_t	*sodp = tcp->tcp_sodirect;
15208 
15209 		/*
15210 		 * If an sodirect connection and an enabled sodirect_t then
15211 		 * sodp will be set to point to the tcp_t/sonode_t shared
15212 		 * sodirect_t and the sodirect_t's lock will be held.
15213 		 */
15214 		if (sodp != NULL) {
15215 			mutex_enter(sodp->sod_lockp);
15216 			if (!(sodp->sod_state & SOD_ENABLED) ||
15217 			    (tcp->tcp_kssl_ctx != NULL &&
15218 			    DB_TYPE(mp) == M_DATA)) {
15219 				mutex_exit(sodp->sod_lockp);
15220 				sodp = NULL;
15221 			}
15222 		}
15223 		if (mp->b_datap->db_type != M_DATA ||
15224 		    (flags & TH_MARKNEXT_NEEDED)) {
15225 			if (sodp != NULL) {
15226 				if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15227 					sodp->sod_uioa.uioa_state &= UIOA_CLR;
15228 					sodp->sod_uioa.uioa_state |= UIOA_FINI;
15229 				}
15230 				if (!SOD_QEMPTY(sodp) &&
15231 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15232 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15233 					/* sod_wakeup() did the mutex_exit() */
15234 				} else {
15235 					mutex_exit(sodp->sod_lockp);
15236 				}
15237 			} else if (tcp->tcp_rcv_list != NULL) {
15238 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15239 			}
15240 			ASSERT(tcp->tcp_rcv_list == NULL ||
15241 			    tcp->tcp_fused_sigurg);
15242 
15243 			if (flags & TH_MARKNEXT_NEEDED) {
15244 #ifdef DEBUG
15245 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15246 				    "tcp_rput: sending MSGMARKNEXT %s",
15247 				    tcp_display(tcp, NULL,
15248 				    DISP_PORT_ONLY));
15249 #endif /* DEBUG */
15250 				mp->b_flag |= MSGMARKNEXT;
15251 				flags &= ~TH_MARKNEXT_NEEDED;
15252 			}
15253 
15254 			/* Does this need SSL processing first? */
15255 			if ((tcp->tcp_kssl_ctx != NULL) &&
15256 			    (DB_TYPE(mp) == M_DATA)) {
15257 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15258 				    mblk_t *, mp);
15259 				tcp_kssl_input(tcp, mp);
15260 			} else {
15261 				putnext(tcp->tcp_rq, mp);
15262 				if (!canputnext(tcp->tcp_rq))
15263 					tcp->tcp_rwnd -= seg_len;
15264 			}
15265 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15266 		    (DB_TYPE(mp) == M_DATA)) {
15267 			/* Do SSL processing first */
15268 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2,
15269 			    mblk_t *, mp);
15270 			tcp_kssl_input(tcp, mp);
15271 		} else if (sodp != NULL) {
15272 			/*
15273 			 * Sodirect so all mblk_t's are queued on the
15274 			 * socket directly, check for wakeup of blocked
15275 			 * reader (if any), and last if flow-controled.
15276 			 */
15277 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15278 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15279 			    (flags & (TH_PUSH|TH_FIN))) {
15280 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15281 				/* sod_wakeup() did the mutex_exit() */
15282 			} else {
15283 				if (SOD_QFULL(sodp)) {
15284 					/* Q is full, need backenable */
15285 					SOD_QSETBE(sodp);
15286 				}
15287 				mutex_exit(sodp->sod_lockp);
15288 			}
15289 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15290 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15291 			if (tcp->tcp_rcv_list != NULL) {
15292 				/*
15293 				 * Enqueue the new segment first and then
15294 				 * call tcp_rcv_drain() to send all data
15295 				 * up.  The other way to do this is to
15296 				 * send all queued data up and then call
15297 				 * putnext() to send the new segment up.
15298 				 * This way can remove the else part later
15299 				 * on.
15300 				 *
15301 				 * We don't this to avoid one more call to
15302 				 * canputnext() as tcp_rcv_drain() needs to
15303 				 * call canputnext().
15304 				 */
15305 				tcp_rcv_enqueue(tcp, mp, seg_len);
15306 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15307 			} else {
15308 				putnext(tcp->tcp_rq, mp);
15309 				if (!canputnext(tcp->tcp_rq))
15310 					tcp->tcp_rwnd -= seg_len;
15311 			}
15312 		} else {
15313 			/*
15314 			 * Enqueue all packets when processing an mblk
15315 			 * from the co queue and also enqueue normal packets.
15316 			 */
15317 			tcp_rcv_enqueue(tcp, mp, seg_len);
15318 		}
15319 		/*
15320 		 * Make sure the timer is running if we have data waiting
15321 		 * for a push bit. This provides resiliency against
15322 		 * implementations that do not correctly generate push bits.
15323 		 *
15324 		 * Note, for sodirect if Q isn't empty and there's not a
15325 		 * pending wakeup then we need a timer. Also note that sodp
15326 		 * is assumed to be still valid after exit()ing the sod_lockp
15327 		 * above and while the SOD state can change it can only change
15328 		 * such that the Q is empty now even though data was added
15329 		 * above.
15330 		 */
15331 		if (((sodp != NULL && !SOD_QEMPTY(sodp) &&
15332 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15333 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15334 		    tcp->tcp_push_tid == 0) {
15335 			/*
15336 			 * The connection may be closed at this point, so don't
15337 			 * do anything for a detached tcp.
15338 			 */
15339 			if (!TCP_IS_DETACHED(tcp))
15340 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15341 				    tcp_push_timer,
15342 				    MSEC_TO_TICK(
15343 				    tcps->tcps_push_timer_interval));
15344 		}
15345 	}
15346 
15347 xmit_check:
15348 	/* Is there anything left to do? */
15349 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15350 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15351 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15352 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15353 		goto done;
15354 
15355 	/* Any transmit work to do and a non-zero window? */
15356 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15357 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15358 		if (flags & TH_REXMIT_NEEDED) {
15359 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15360 
15361 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15362 			if (snd_size > mss)
15363 				snd_size = mss;
15364 			if (snd_size > tcp->tcp_swnd)
15365 				snd_size = tcp->tcp_swnd;
15366 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15367 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15368 			    B_TRUE);
15369 
15370 			if (mp1 != NULL) {
15371 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15372 				tcp->tcp_csuna = tcp->tcp_snxt;
15373 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15374 				UPDATE_MIB(&tcps->tcps_mib,
15375 				    tcpRetransBytes, snd_size);
15376 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15377 			}
15378 		}
15379 		if (flags & TH_NEED_SACK_REXMIT) {
15380 			tcp_sack_rxmit(tcp, &flags);
15381 		}
15382 		/*
15383 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15384 		 * out new segment.  Note that tcp_rexmit should not be
15385 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15386 		 */
15387 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15388 			if (!tcp->tcp_rexmit) {
15389 				tcp_wput_data(tcp, NULL, B_FALSE);
15390 			} else {
15391 				tcp_ss_rexmit(tcp);
15392 			}
15393 		}
15394 		/*
15395 		 * Adjust tcp_cwnd back to normal value after sending
15396 		 * new data segments.
15397 		 */
15398 		if (flags & TH_LIMIT_XMIT) {
15399 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15400 			/*
15401 			 * This will restart the timer.  Restarting the
15402 			 * timer is used to avoid a timeout before the
15403 			 * limited transmitted segment's ACK gets back.
15404 			 */
15405 			if (tcp->tcp_xmit_head != NULL)
15406 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15407 		}
15408 
15409 		/* Anything more to do? */
15410 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15411 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15412 			goto done;
15413 	}
15414 ack_check:
15415 	if (flags & TH_SEND_URP_MARK) {
15416 		ASSERT(tcp->tcp_urp_mark_mp);
15417 		/*
15418 		 * Send up any queued data and then send the mark message
15419 		 */
15420 		sodirect_t *sodp;
15421 
15422 		SOD_PTR_ENTER(tcp, sodp);
15423 
15424 		mp1 = tcp->tcp_urp_mark_mp;
15425 		tcp->tcp_urp_mark_mp = NULL;
15426 		if (sodp != NULL) {
15427 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15428 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15429 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15430 			}
15431 			ASSERT(tcp->tcp_rcv_list == NULL);
15432 
15433 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15434 			/* sod_wakeup() does the mutex_exit() */
15435 		} else if (tcp->tcp_rcv_list != NULL) {
15436 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15437 
15438 			ASSERT(tcp->tcp_rcv_list == NULL ||
15439 			    tcp->tcp_fused_sigurg);
15440 
15441 		}
15442 		putnext(tcp->tcp_rq, mp1);
15443 #ifdef DEBUG
15444 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15445 		    "tcp_rput: sending zero-length %s %s",
15446 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15447 		    "MSGNOTMARKNEXT"),
15448 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15449 #endif /* DEBUG */
15450 		flags &= ~TH_SEND_URP_MARK;
15451 	}
15452 	if (flags & TH_ACK_NEEDED) {
15453 		/*
15454 		 * Time to send an ack for some reason.
15455 		 */
15456 		mp1 = tcp_ack_mp(tcp);
15457 
15458 		if (mp1 != NULL) {
15459 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15460 			BUMP_LOCAL(tcp->tcp_obsegs);
15461 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15462 		}
15463 		if (tcp->tcp_ack_tid != 0) {
15464 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15465 			tcp->tcp_ack_tid = 0;
15466 		}
15467 	}
15468 	if (flags & TH_ACK_TIMER_NEEDED) {
15469 		/*
15470 		 * Arrange for deferred ACK or push wait timeout.
15471 		 * Start timer if it is not already running.
15472 		 */
15473 		if (tcp->tcp_ack_tid == 0) {
15474 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15475 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15476 			    (clock_t)tcps->tcps_local_dack_interval :
15477 			    (clock_t)tcps->tcps_deferred_ack_interval));
15478 		}
15479 	}
15480 	if (flags & TH_ORDREL_NEEDED) {
15481 		/*
15482 		 * Send up the ordrel_ind unless we are an eager guy.
15483 		 * In the eager case tcp_rsrv will do this when run
15484 		 * after tcp_accept is done.
15485 		 */
15486 		sodirect_t *sodp;
15487 
15488 		ASSERT(tcp->tcp_listener == NULL);
15489 
15490 		SOD_PTR_ENTER(tcp, sodp);
15491 		if (sodp != NULL) {
15492 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15493 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15494 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15495 			}
15496 			/* No more sodirect */
15497 			tcp->tcp_sodirect = NULL;
15498 			if (!SOD_QEMPTY(sodp)) {
15499 				/* Mblk(s) to process, notify */
15500 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15501 				/* sod_wakeup() does the mutex_exit() */
15502 			} else {
15503 				/* Nothing to process */
15504 				mutex_exit(sodp->sod_lockp);
15505 			}
15506 		} else if (tcp->tcp_rcv_list != NULL) {
15507 			/*
15508 			 * Push any mblk(s) enqueued from co processing.
15509 			 */
15510 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15511 
15512 			ASSERT(tcp->tcp_rcv_list == NULL ||
15513 			    tcp->tcp_fused_sigurg);
15514 		}
15515 
15516 		mp1 = tcp->tcp_ordrel_mp;
15517 		tcp->tcp_ordrel_mp = NULL;
15518 		tcp->tcp_ordrel_done = B_TRUE;
15519 		putnext(tcp->tcp_rq, mp1);
15520 	}
15521 done:
15522 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15523 }
15524 
15525 /*
15526  * This function does PAWS protection check. Returns B_TRUE if the
15527  * segment passes the PAWS test, else returns B_FALSE.
15528  */
15529 boolean_t
15530 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15531 {
15532 	uint8_t	flags;
15533 	int	options;
15534 	uint8_t *up;
15535 
15536 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15537 	/*
15538 	 * If timestamp option is aligned nicely, get values inline,
15539 	 * otherwise call general routine to parse.  Only do that
15540 	 * if timestamp is the only option.
15541 	 */
15542 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15543 	    TCPOPT_REAL_TS_LEN &&
15544 	    OK_32PTR((up = ((uint8_t *)tcph) +
15545 	    TCP_MIN_HEADER_LENGTH)) &&
15546 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15547 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15548 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15549 
15550 		options = TCP_OPT_TSTAMP_PRESENT;
15551 	} else {
15552 		if (tcp->tcp_snd_sack_ok) {
15553 			tcpoptp->tcp = tcp;
15554 		} else {
15555 			tcpoptp->tcp = NULL;
15556 		}
15557 		options = tcp_parse_options(tcph, tcpoptp);
15558 	}
15559 
15560 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15561 		/*
15562 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15563 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15564 		 */
15565 		if ((flags & TH_RST) == 0 &&
15566 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15567 		    tcp->tcp_ts_recent)) {
15568 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15569 			    PAWS_TIMEOUT)) {
15570 				/* This segment is not acceptable. */
15571 				return (B_FALSE);
15572 			} else {
15573 				/*
15574 				 * Connection has been idle for
15575 				 * too long.  Reset the timestamp
15576 				 * and assume the segment is valid.
15577 				 */
15578 				tcp->tcp_ts_recent =
15579 				    tcpoptp->tcp_opt_ts_val;
15580 			}
15581 		}
15582 	} else {
15583 		/*
15584 		 * If we don't get a timestamp on every packet, we
15585 		 * figure we can't really trust 'em, so we stop sending
15586 		 * and parsing them.
15587 		 */
15588 		tcp->tcp_snd_ts_ok = B_FALSE;
15589 
15590 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15591 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15592 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15593 		/*
15594 		 * Adjust the tcp_mss accordingly. We also need to
15595 		 * adjust tcp_cwnd here in accordance with the new mss.
15596 		 * But we avoid doing a slow start here so as to not
15597 		 * to lose on the transfer rate built up so far.
15598 		 */
15599 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15600 		if (tcp->tcp_snd_sack_ok) {
15601 			ASSERT(tcp->tcp_sack_info != NULL);
15602 			tcp->tcp_max_sack_blk = 4;
15603 		}
15604 	}
15605 	return (B_TRUE);
15606 }
15607 
15608 /*
15609  * Attach ancillary data to a received TCP segments for the
15610  * ancillary pieces requested by the application that are
15611  * different than they were in the previous data segment.
15612  *
15613  * Save the "current" values once memory allocation is ok so that
15614  * when memory allocation fails we can just wait for the next data segment.
15615  */
15616 static mblk_t *
15617 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15618 {
15619 	struct T_optdata_ind *todi;
15620 	int optlen;
15621 	uchar_t *optptr;
15622 	struct T_opthdr *toh;
15623 	uint_t addflag;	/* Which pieces to add */
15624 	mblk_t *mp1;
15625 
15626 	optlen = 0;
15627 	addflag = 0;
15628 	/* If app asked for pktinfo and the index has changed ... */
15629 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15630 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15631 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15632 		optlen += sizeof (struct T_opthdr) +
15633 		    sizeof (struct in6_pktinfo);
15634 		addflag |= TCP_IPV6_RECVPKTINFO;
15635 	}
15636 	/* If app asked for hoplimit and it has changed ... */
15637 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15638 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15639 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15640 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15641 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15642 	}
15643 	/* If app asked for tclass and it has changed ... */
15644 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15645 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15646 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15647 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15648 		addflag |= TCP_IPV6_RECVTCLASS;
15649 	}
15650 	/*
15651 	 * If app asked for hopbyhop headers and it has changed ...
15652 	 * For security labels, note that (1) security labels can't change on
15653 	 * a connected socket at all, (2) we're connected to at most one peer,
15654 	 * (3) if anything changes, then it must be some other extra option.
15655 	 */
15656 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15657 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15658 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15659 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15660 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15661 		    tcp->tcp_label_len;
15662 		addflag |= TCP_IPV6_RECVHOPOPTS;
15663 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15664 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15665 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15666 			return (mp);
15667 	}
15668 	/* If app asked for dst headers before routing headers ... */
15669 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15670 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15671 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15672 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15673 		optlen += sizeof (struct T_opthdr) +
15674 		    ipp->ipp_rtdstoptslen;
15675 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15676 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15677 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15678 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15679 			return (mp);
15680 	}
15681 	/* If app asked for routing headers and it has changed ... */
15682 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15683 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15684 	    (ipp->ipp_fields & IPPF_RTHDR),
15685 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15686 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15687 		addflag |= TCP_IPV6_RECVRTHDR;
15688 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15689 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15690 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15691 			return (mp);
15692 	}
15693 	/* If app asked for dest headers and it has changed ... */
15694 	if ((tcp->tcp_ipv6_recvancillary &
15695 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15696 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15697 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15698 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15699 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15700 		addflag |= TCP_IPV6_RECVDSTOPTS;
15701 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15702 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15703 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15704 			return (mp);
15705 	}
15706 
15707 	if (optlen == 0) {
15708 		/* Nothing to add */
15709 		return (mp);
15710 	}
15711 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15712 	if (mp1 == NULL) {
15713 		/*
15714 		 * Defer sending ancillary data until the next TCP segment
15715 		 * arrives.
15716 		 */
15717 		return (mp);
15718 	}
15719 	mp1->b_cont = mp;
15720 	mp = mp1;
15721 	mp->b_wptr += sizeof (*todi) + optlen;
15722 	mp->b_datap->db_type = M_PROTO;
15723 	todi = (struct T_optdata_ind *)mp->b_rptr;
15724 	todi->PRIM_type = T_OPTDATA_IND;
15725 	todi->DATA_flag = 1;	/* MORE data */
15726 	todi->OPT_length = optlen;
15727 	todi->OPT_offset = sizeof (*todi);
15728 	optptr = (uchar_t *)&todi[1];
15729 	/*
15730 	 * If app asked for pktinfo and the index has changed ...
15731 	 * Note that the local address never changes for the connection.
15732 	 */
15733 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15734 		struct in6_pktinfo *pkti;
15735 
15736 		toh = (struct T_opthdr *)optptr;
15737 		toh->level = IPPROTO_IPV6;
15738 		toh->name = IPV6_PKTINFO;
15739 		toh->len = sizeof (*toh) + sizeof (*pkti);
15740 		toh->status = 0;
15741 		optptr += sizeof (*toh);
15742 		pkti = (struct in6_pktinfo *)optptr;
15743 		if (tcp->tcp_ipversion == IPV6_VERSION)
15744 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15745 		else
15746 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15747 			    &pkti->ipi6_addr);
15748 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15749 		optptr += sizeof (*pkti);
15750 		ASSERT(OK_32PTR(optptr));
15751 		/* Save as "last" value */
15752 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15753 	}
15754 	/* If app asked for hoplimit and it has changed ... */
15755 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15756 		toh = (struct T_opthdr *)optptr;
15757 		toh->level = IPPROTO_IPV6;
15758 		toh->name = IPV6_HOPLIMIT;
15759 		toh->len = sizeof (*toh) + sizeof (uint_t);
15760 		toh->status = 0;
15761 		optptr += sizeof (*toh);
15762 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15763 		optptr += sizeof (uint_t);
15764 		ASSERT(OK_32PTR(optptr));
15765 		/* Save as "last" value */
15766 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15767 	}
15768 	/* If app asked for tclass and it has changed ... */
15769 	if (addflag & TCP_IPV6_RECVTCLASS) {
15770 		toh = (struct T_opthdr *)optptr;
15771 		toh->level = IPPROTO_IPV6;
15772 		toh->name = IPV6_TCLASS;
15773 		toh->len = sizeof (*toh) + sizeof (uint_t);
15774 		toh->status = 0;
15775 		optptr += sizeof (*toh);
15776 		*(uint_t *)optptr = ipp->ipp_tclass;
15777 		optptr += sizeof (uint_t);
15778 		ASSERT(OK_32PTR(optptr));
15779 		/* Save as "last" value */
15780 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15781 	}
15782 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15783 		toh = (struct T_opthdr *)optptr;
15784 		toh->level = IPPROTO_IPV6;
15785 		toh->name = IPV6_HOPOPTS;
15786 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15787 		    tcp->tcp_label_len;
15788 		toh->status = 0;
15789 		optptr += sizeof (*toh);
15790 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15791 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15792 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15793 		ASSERT(OK_32PTR(optptr));
15794 		/* Save as last value */
15795 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15796 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15797 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15798 	}
15799 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15800 		toh = (struct T_opthdr *)optptr;
15801 		toh->level = IPPROTO_IPV6;
15802 		toh->name = IPV6_RTHDRDSTOPTS;
15803 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15804 		toh->status = 0;
15805 		optptr += sizeof (*toh);
15806 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15807 		optptr += ipp->ipp_rtdstoptslen;
15808 		ASSERT(OK_32PTR(optptr));
15809 		/* Save as last value */
15810 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15811 		    &tcp->tcp_rtdstoptslen,
15812 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15813 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15814 	}
15815 	if (addflag & TCP_IPV6_RECVRTHDR) {
15816 		toh = (struct T_opthdr *)optptr;
15817 		toh->level = IPPROTO_IPV6;
15818 		toh->name = IPV6_RTHDR;
15819 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15820 		toh->status = 0;
15821 		optptr += sizeof (*toh);
15822 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15823 		optptr += ipp->ipp_rthdrlen;
15824 		ASSERT(OK_32PTR(optptr));
15825 		/* Save as last value */
15826 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15827 		    (ipp->ipp_fields & IPPF_RTHDR),
15828 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15829 	}
15830 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15831 		toh = (struct T_opthdr *)optptr;
15832 		toh->level = IPPROTO_IPV6;
15833 		toh->name = IPV6_DSTOPTS;
15834 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15835 		toh->status = 0;
15836 		optptr += sizeof (*toh);
15837 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15838 		optptr += ipp->ipp_dstoptslen;
15839 		ASSERT(OK_32PTR(optptr));
15840 		/* Save as last value */
15841 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15842 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15843 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15844 	}
15845 	ASSERT(optptr == mp->b_wptr);
15846 	return (mp);
15847 }
15848 
15849 
15850 /*
15851  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15852  * or a "bad" IRE detected by tcp_adapt_ire.
15853  * We can't tell if the failure was due to the laddr or the faddr
15854  * thus we clear out all addresses and ports.
15855  */
15856 static void
15857 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15858 {
15859 	queue_t	*q = tcp->tcp_rq;
15860 	tcph_t	*tcph;
15861 	struct T_error_ack *tea;
15862 	conn_t	*connp = tcp->tcp_connp;
15863 
15864 
15865 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15866 
15867 	if (mp->b_cont) {
15868 		freemsg(mp->b_cont);
15869 		mp->b_cont = NULL;
15870 	}
15871 	tea = (struct T_error_ack *)mp->b_rptr;
15872 	switch (tea->PRIM_type) {
15873 	case T_BIND_ACK:
15874 		/*
15875 		 * Need to unbind with classifier since we were just told that
15876 		 * our bind succeeded.
15877 		 */
15878 		tcp->tcp_hard_bound = B_FALSE;
15879 		tcp->tcp_hard_binding = B_FALSE;
15880 
15881 		ipcl_hash_remove(connp);
15882 		/* Reuse the mblk if possible */
15883 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15884 		    sizeof (*tea));
15885 		mp->b_rptr = mp->b_datap->db_base;
15886 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15887 		tea = (struct T_error_ack *)mp->b_rptr;
15888 		tea->PRIM_type = T_ERROR_ACK;
15889 		tea->TLI_error = TSYSERR;
15890 		tea->UNIX_error = error;
15891 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15892 			tea->ERROR_prim = T_CONN_REQ;
15893 		} else {
15894 			tea->ERROR_prim = O_T_BIND_REQ;
15895 		}
15896 		break;
15897 
15898 	case T_ERROR_ACK:
15899 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15900 			tea->ERROR_prim = T_CONN_REQ;
15901 		break;
15902 	default:
15903 		panic("tcp_bind_failed: unexpected TPI type");
15904 		/*NOTREACHED*/
15905 	}
15906 
15907 	tcp->tcp_state = TCPS_IDLE;
15908 	if (tcp->tcp_ipversion == IPV4_VERSION)
15909 		tcp->tcp_ipha->ipha_src = 0;
15910 	else
15911 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15912 	/*
15913 	 * Copy of the src addr. in tcp_t is needed since
15914 	 * the lookup funcs. can only look at tcp_t
15915 	 */
15916 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15917 
15918 	tcph = tcp->tcp_tcph;
15919 	tcph->th_lport[0] = 0;
15920 	tcph->th_lport[1] = 0;
15921 	tcp_bind_hash_remove(tcp);
15922 	bzero(&connp->u_port, sizeof (connp->u_port));
15923 	/* blow away saved option results if any */
15924 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15925 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15926 
15927 	conn_delete_ire(tcp->tcp_connp, NULL);
15928 	putnext(q, mp);
15929 }
15930 
15931 /*
15932  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15933  * messages.
15934  */
15935 void
15936 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15937 {
15938 	mblk_t	*mp1;
15939 	uchar_t	*rptr = mp->b_rptr;
15940 	queue_t	*q = tcp->tcp_rq;
15941 	struct T_error_ack *tea;
15942 	uint32_t mss;
15943 	mblk_t *syn_mp;
15944 	mblk_t *mdti;
15945 	mblk_t *lsoi;
15946 	int	retval;
15947 	mblk_t *ire_mp;
15948 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15949 
15950 	switch (mp->b_datap->db_type) {
15951 	case M_PROTO:
15952 	case M_PCPROTO:
15953 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15954 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15955 			break;
15956 		tea = (struct T_error_ack *)rptr;
15957 		switch (tea->PRIM_type) {
15958 		case T_BIND_ACK:
15959 			/*
15960 			 * Adapt Multidata information, if any.  The
15961 			 * following tcp_mdt_update routine will free
15962 			 * the message.
15963 			 */
15964 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15965 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15966 				    b_rptr)->mdt_capab, B_TRUE);
15967 				freemsg(mdti);
15968 			}
15969 
15970 			/*
15971 			 * Check to update LSO information with tcp, and
15972 			 * tcp_lso_update routine will free the message.
15973 			 */
15974 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15975 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15976 				    b_rptr)->lso_capab);
15977 				freemsg(lsoi);
15978 			}
15979 
15980 			/* Get the IRE, if we had requested for it */
15981 			ire_mp = tcp_ire_mp(mp);
15982 
15983 			if (tcp->tcp_hard_binding) {
15984 				tcp->tcp_hard_binding = B_FALSE;
15985 				tcp->tcp_hard_bound = B_TRUE;
15986 				CL_INET_CONNECT(tcp);
15987 			} else {
15988 				if (ire_mp != NULL)
15989 					freeb(ire_mp);
15990 				goto after_syn_sent;
15991 			}
15992 
15993 			retval = tcp_adapt_ire(tcp, ire_mp);
15994 			if (ire_mp != NULL)
15995 				freeb(ire_mp);
15996 			if (retval == 0) {
15997 				tcp_bind_failed(tcp, mp,
15998 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15999 				    ENETUNREACH : EADDRNOTAVAIL));
16000 				return;
16001 			}
16002 			/*
16003 			 * Don't let an endpoint connect to itself.
16004 			 * Also checked in tcp_connect() but that
16005 			 * check can't handle the case when the
16006 			 * local IP address is INADDR_ANY.
16007 			 */
16008 			if (tcp->tcp_ipversion == IPV4_VERSION) {
16009 				if ((tcp->tcp_ipha->ipha_dst ==
16010 				    tcp->tcp_ipha->ipha_src) &&
16011 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16012 				    tcp->tcp_tcph->th_fport))) {
16013 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16014 					return;
16015 				}
16016 			} else {
16017 				if (IN6_ARE_ADDR_EQUAL(
16018 				    &tcp->tcp_ip6h->ip6_dst,
16019 				    &tcp->tcp_ip6h->ip6_src) &&
16020 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16021 				    tcp->tcp_tcph->th_fport))) {
16022 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16023 					return;
16024 				}
16025 			}
16026 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
16027 			/*
16028 			 * This should not be possible!  Just for
16029 			 * defensive coding...
16030 			 */
16031 			if (tcp->tcp_state != TCPS_SYN_SENT)
16032 				goto after_syn_sent;
16033 
16034 			if (is_system_labeled() &&
16035 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
16036 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
16037 				return;
16038 			}
16039 
16040 			ASSERT(q == tcp->tcp_rq);
16041 			/*
16042 			 * tcp_adapt_ire() does not adjust
16043 			 * for TCP/IP header length.
16044 			 */
16045 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
16046 
16047 			/*
16048 			 * Just make sure our rwnd is at
16049 			 * least tcp_recv_hiwat_mss * MSS
16050 			 * large, and round up to the nearest
16051 			 * MSS.
16052 			 *
16053 			 * We do the round up here because
16054 			 * we need to get the interface
16055 			 * MTU first before we can do the
16056 			 * round up.
16057 			 */
16058 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
16059 			    tcps->tcps_recv_hiwat_minmss * mss);
16060 			q->q_hiwat = tcp->tcp_rwnd;
16061 			tcp_set_ws_value(tcp);
16062 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
16063 			    tcp->tcp_tcph->th_win);
16064 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
16065 				tcp->tcp_snd_ws_ok = B_TRUE;
16066 
16067 			/*
16068 			 * Set tcp_snd_ts_ok to true
16069 			 * so that tcp_xmit_mp will
16070 			 * include the timestamp
16071 			 * option in the SYN segment.
16072 			 */
16073 			if (tcps->tcps_tstamp_always ||
16074 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
16075 				tcp->tcp_snd_ts_ok = B_TRUE;
16076 			}
16077 
16078 			/*
16079 			 * tcp_snd_sack_ok can be set in
16080 			 * tcp_adapt_ire() if the sack metric
16081 			 * is set.  So check it here also.
16082 			 */
16083 			if (tcps->tcps_sack_permitted == 2 ||
16084 			    tcp->tcp_snd_sack_ok) {
16085 				if (tcp->tcp_sack_info == NULL) {
16086 					tcp->tcp_sack_info =
16087 					    kmem_cache_alloc(
16088 					    tcp_sack_info_cache,
16089 					    KM_SLEEP);
16090 				}
16091 				tcp->tcp_snd_sack_ok = B_TRUE;
16092 			}
16093 
16094 			/*
16095 			 * Should we use ECN?  Note that the current
16096 			 * default value (SunOS 5.9) of tcp_ecn_permitted
16097 			 * is 1.  The reason for doing this is that there
16098 			 * are equipments out there that will drop ECN
16099 			 * enabled IP packets.  Setting it to 1 avoids
16100 			 * compatibility problems.
16101 			 */
16102 			if (tcps->tcps_ecn_permitted == 2)
16103 				tcp->tcp_ecn_ok = B_TRUE;
16104 
16105 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16106 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
16107 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
16108 			if (syn_mp) {
16109 				cred_t *cr;
16110 				pid_t pid;
16111 
16112 				/*
16113 				 * Obtain the credential from the
16114 				 * thread calling connect(); the credential
16115 				 * lives on in the second mblk which
16116 				 * originated from T_CONN_REQ and is echoed
16117 				 * with the T_BIND_ACK from ip.  If none
16118 				 * can be found, default to the creator
16119 				 * of the socket.
16120 				 */
16121 				if (mp->b_cont == NULL ||
16122 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
16123 					cr = tcp->tcp_cred;
16124 					pid = tcp->tcp_cpid;
16125 				} else {
16126 					pid = DB_CPID(mp->b_cont);
16127 				}
16128 				mblk_setcred(syn_mp, cr);
16129 				DB_CPID(syn_mp) = pid;
16130 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
16131 			}
16132 		after_syn_sent:
16133 			/*
16134 			 * A trailer mblk indicates a waiting client upstream.
16135 			 * We complete here the processing begun in
16136 			 * either tcp_bind() or tcp_connect() by passing
16137 			 * upstream the reply message they supplied.
16138 			 */
16139 			mp1 = mp;
16140 			mp = mp->b_cont;
16141 			freeb(mp1);
16142 			if (mp)
16143 				break;
16144 			return;
16145 		case T_ERROR_ACK:
16146 			if (tcp->tcp_debug) {
16147 				(void) strlog(TCP_MOD_ID, 0, 1,
16148 				    SL_TRACE|SL_ERROR,
16149 				    "tcp_rput_other: case T_ERROR_ACK, "
16150 				    "ERROR_prim == %d",
16151 				    tea->ERROR_prim);
16152 			}
16153 			switch (tea->ERROR_prim) {
16154 			case O_T_BIND_REQ:
16155 			case T_BIND_REQ:
16156 				tcp_bind_failed(tcp, mp,
16157 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16158 				    ENETUNREACH : EADDRNOTAVAIL));
16159 				return;
16160 			case T_UNBIND_REQ:
16161 				tcp->tcp_hard_binding = B_FALSE;
16162 				tcp->tcp_hard_bound = B_FALSE;
16163 				if (mp->b_cont) {
16164 					freemsg(mp->b_cont);
16165 					mp->b_cont = NULL;
16166 				}
16167 				if (tcp->tcp_unbind_pending)
16168 					tcp->tcp_unbind_pending = 0;
16169 				else {
16170 					/* From tcp_ip_unbind() - free */
16171 					freemsg(mp);
16172 					return;
16173 				}
16174 				break;
16175 			case T_SVR4_OPTMGMT_REQ:
16176 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
16177 					/* T_OPTMGMT_REQ generated by TCP */
16178 					printf("T_SVR4_OPTMGMT_REQ failed "
16179 					    "%d/%d - dropped (cnt %d)\n",
16180 					    tea->TLI_error, tea->UNIX_error,
16181 					    tcp->tcp_drop_opt_ack_cnt);
16182 					freemsg(mp);
16183 					tcp->tcp_drop_opt_ack_cnt--;
16184 					return;
16185 				}
16186 				break;
16187 			}
16188 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
16189 			    tcp->tcp_drop_opt_ack_cnt > 0) {
16190 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
16191 				    "- dropped (cnt %d)\n",
16192 				    tea->TLI_error, tea->UNIX_error,
16193 				    tcp->tcp_drop_opt_ack_cnt);
16194 				freemsg(mp);
16195 				tcp->tcp_drop_opt_ack_cnt--;
16196 				return;
16197 			}
16198 			break;
16199 		case T_OPTMGMT_ACK:
16200 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
16201 				/* T_OPTMGMT_REQ generated by TCP */
16202 				freemsg(mp);
16203 				tcp->tcp_drop_opt_ack_cnt--;
16204 				return;
16205 			}
16206 			break;
16207 		default:
16208 			break;
16209 		}
16210 		break;
16211 	case M_FLUSH:
16212 		if (*rptr & FLUSHR)
16213 			flushq(q, FLUSHDATA);
16214 		break;
16215 	default:
16216 		/* M_CTL will be directly sent to tcp_icmp_error() */
16217 		ASSERT(DB_TYPE(mp) != M_CTL);
16218 		break;
16219 	}
16220 	/*
16221 	 * Make sure we set this bit before sending the ACK for
16222 	 * bind. Otherwise accept could possibly run and free
16223 	 * this tcp struct.
16224 	 */
16225 	putnext(q, mp);
16226 }
16227 
16228 /* ARGSUSED */
16229 static void
16230 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
16231 {
16232 	conn_t	*connp = (conn_t *)arg;
16233 	tcp_t	*tcp = connp->conn_tcp;
16234 	queue_t	*q = tcp->tcp_rq;
16235 	uint_t	thwin;
16236 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16237 	sodirect_t	*sodp;
16238 	boolean_t	fc;
16239 
16240 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16241 	tcp->tcp_rsrv_mp = mp;
16242 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16243 
16244 	TCP_STAT(tcps, tcp_rsrv_calls);
16245 
16246 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
16247 		return;
16248 	}
16249 
16250 	if (tcp->tcp_fused) {
16251 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16252 
16253 		ASSERT(tcp->tcp_fused);
16254 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16255 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16256 		ASSERT(!TCP_IS_DETACHED(tcp));
16257 		ASSERT(tcp->tcp_connp->conn_sqp ==
16258 		    peer_tcp->tcp_connp->conn_sqp);
16259 
16260 		/*
16261 		 * Normally we would not get backenabled in synchronous
16262 		 * streams mode, but in case this happens, we need to plug
16263 		 * synchronous streams during our drain to prevent a race
16264 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16265 		 */
16266 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16267 		if (tcp->tcp_rcv_list != NULL)
16268 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16269 
16270 		if (peer_tcp > tcp) {
16271 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16272 			mutex_enter(&tcp->tcp_non_sq_lock);
16273 		} else {
16274 			mutex_enter(&tcp->tcp_non_sq_lock);
16275 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16276 		}
16277 
16278 		if (peer_tcp->tcp_flow_stopped &&
16279 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16280 		    peer_tcp->tcp_xmit_lowater)) {
16281 			tcp_clrqfull(peer_tcp);
16282 		}
16283 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16284 		mutex_exit(&tcp->tcp_non_sq_lock);
16285 
16286 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16287 		TCP_STAT(tcps, tcp_fusion_backenabled);
16288 		return;
16289 	}
16290 
16291 	SOD_PTR_ENTER(tcp, sodp);
16292 	if (sodp != NULL) {
16293 		/* An sodirect connection */
16294 		if (SOD_QFULL(sodp)) {
16295 			/* Flow-controlled, need another back-enable */
16296 			fc = B_TRUE;
16297 			SOD_QSETBE(sodp);
16298 		} else {
16299 			/* Not flow-controlled */
16300 			fc = B_FALSE;
16301 		}
16302 		mutex_exit(sodp->sod_lockp);
16303 	} else if (canputnext(q)) {
16304 		/* STREAMS, not flow-controlled */
16305 		fc = B_FALSE;
16306 	} else {
16307 		/* STREAMS, flow-controlled */
16308 		fc = B_TRUE;
16309 	}
16310 	if (!fc) {
16311 		/* Not flow-controlled, open rwnd */
16312 		tcp->tcp_rwnd = q->q_hiwat;
16313 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16314 		    << tcp->tcp_rcv_ws;
16315 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16316 		/*
16317 		 * Send back a window update immediately if TCP is above
16318 		 * ESTABLISHED state and the increase of the rcv window
16319 		 * that the other side knows is at least 1 MSS after flow
16320 		 * control is lifted.
16321 		 */
16322 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16323 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16324 			tcp_xmit_ctl(NULL, tcp,
16325 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16326 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16327 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16328 		}
16329 	}
16330 }
16331 
16332 /*
16333  * The read side service routine is called mostly when we get back-enabled as a
16334  * result of flow control relief.  Since we don't actually queue anything in
16335  * TCP, we have no data to send out of here.  What we do is clear the receive
16336  * window, and send out a window update.
16337  */
16338 static void
16339 tcp_rsrv(queue_t *q)
16340 {
16341 	conn_t		*connp = Q_TO_CONN(q);
16342 	tcp_t		*tcp = connp->conn_tcp;
16343 	mblk_t		*mp;
16344 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16345 
16346 	/* No code does a putq on the read side */
16347 	ASSERT(q->q_first == NULL);
16348 
16349 	/* Nothing to do for the default queue */
16350 	if (q == tcps->tcps_g_q) {
16351 		return;
16352 	}
16353 
16354 	/*
16355 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
16356 	 * been run.  So just return.
16357 	 */
16358 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16359 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
16360 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
16361 		return;
16362 	}
16363 	tcp->tcp_rsrv_mp = NULL;
16364 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16365 
16366 	CONN_INC_REF(connp);
16367 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16368 	    SQTAG_TCP_RSRV);
16369 }
16370 
16371 /*
16372  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16373  * We do not allow the receive window to shrink.  After setting rwnd,
16374  * set the flow control hiwat of the stream.
16375  *
16376  * This function is called in 2 cases:
16377  *
16378  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16379  *    connection (passive open) and in tcp_rput_data() for active connect.
16380  *    This is called after tcp_mss_set() when the desired MSS value is known.
16381  *    This makes sure that our window size is a mutiple of the other side's
16382  *    MSS.
16383  * 2) Handling SO_RCVBUF option.
16384  *
16385  * It is ASSUMED that the requested size is a multiple of the current MSS.
16386  *
16387  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16388  * user requests so.
16389  */
16390 static int
16391 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16392 {
16393 	uint32_t	mss = tcp->tcp_mss;
16394 	uint32_t	old_max_rwnd;
16395 	uint32_t	max_transmittable_rwnd;
16396 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16397 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16398 
16399 	if (tcp->tcp_fused) {
16400 		size_t sth_hiwat;
16401 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16402 
16403 		ASSERT(peer_tcp != NULL);
16404 		/*
16405 		 * Record the stream head's high water mark for
16406 		 * this endpoint; this is used for flow-control
16407 		 * purposes in tcp_fuse_output().
16408 		 */
16409 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16410 		if (!tcp_detached)
16411 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16412 
16413 		/*
16414 		 * In the fusion case, the maxpsz stream head value of
16415 		 * our peer is set according to its send buffer size
16416 		 * and our receive buffer size; since the latter may
16417 		 * have changed we need to update the peer's maxpsz.
16418 		 */
16419 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16420 		return (rwnd);
16421 	}
16422 
16423 	if (tcp_detached)
16424 		old_max_rwnd = tcp->tcp_rwnd;
16425 	else
16426 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16427 
16428 	/*
16429 	 * Insist on a receive window that is at least
16430 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16431 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16432 	 * and delayed acknowledgement.
16433 	 */
16434 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16435 
16436 	/*
16437 	 * If window size info has already been exchanged, TCP should not
16438 	 * shrink the window.  Shrinking window is doable if done carefully.
16439 	 * We may add that support later.  But so far there is not a real
16440 	 * need to do that.
16441 	 */
16442 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16443 		/* MSS may have changed, do a round up again. */
16444 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16445 	}
16446 
16447 	/*
16448 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16449 	 * can be applied even before the window scale option is decided.
16450 	 */
16451 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16452 	if (rwnd > max_transmittable_rwnd) {
16453 		rwnd = max_transmittable_rwnd -
16454 		    (max_transmittable_rwnd % mss);
16455 		if (rwnd < mss)
16456 			rwnd = max_transmittable_rwnd;
16457 		/*
16458 		 * If we're over the limit we may have to back down tcp_rwnd.
16459 		 * The increment below won't work for us. So we set all three
16460 		 * here and the increment below will have no effect.
16461 		 */
16462 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16463 	}
16464 	if (tcp->tcp_localnet) {
16465 		tcp->tcp_rack_abs_max =
16466 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16467 	} else {
16468 		/*
16469 		 * For a remote host on a different subnet (through a router),
16470 		 * we ack every other packet to be conforming to RFC1122.
16471 		 * tcp_deferred_acks_max is default to 2.
16472 		 */
16473 		tcp->tcp_rack_abs_max =
16474 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16475 	}
16476 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16477 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16478 	else
16479 		tcp->tcp_rack_cur_max = 0;
16480 	/*
16481 	 * Increment the current rwnd by the amount the maximum grew (we
16482 	 * can not overwrite it since we might be in the middle of a
16483 	 * connection.)
16484 	 */
16485 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16486 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16487 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16488 		tcp->tcp_cwnd_max = rwnd;
16489 
16490 	if (tcp_detached)
16491 		return (rwnd);
16492 	/*
16493 	 * We set the maximum receive window into rq->q_hiwat.
16494 	 * This is not actually used for flow control.
16495 	 */
16496 	tcp->tcp_rq->q_hiwat = rwnd;
16497 	/*
16498 	 * Set the Stream head high water mark. This doesn't have to be
16499 	 * here, since we are simply using default values, but we would
16500 	 * prefer to choose these values algorithmically, with a likely
16501 	 * relationship to rwnd.
16502 	 */
16503 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16504 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16505 	return (rwnd);
16506 }
16507 
16508 /*
16509  * Return SNMP stuff in buffer in mpdata.
16510  */
16511 mblk_t *
16512 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16513 {
16514 	mblk_t			*mpdata;
16515 	mblk_t			*mp_conn_ctl = NULL;
16516 	mblk_t			*mp_conn_tail;
16517 	mblk_t			*mp_attr_ctl = NULL;
16518 	mblk_t			*mp_attr_tail;
16519 	mblk_t			*mp6_conn_ctl = NULL;
16520 	mblk_t			*mp6_conn_tail;
16521 	mblk_t			*mp6_attr_ctl = NULL;
16522 	mblk_t			*mp6_attr_tail;
16523 	struct opthdr		*optp;
16524 	mib2_tcpConnEntry_t	tce;
16525 	mib2_tcp6ConnEntry_t	tce6;
16526 	mib2_transportMLPEntry_t mlp;
16527 	connf_t			*connfp;
16528 	int			i;
16529 	boolean_t 		ispriv;
16530 	zoneid_t 		zoneid;
16531 	int			v4_conn_idx;
16532 	int			v6_conn_idx;
16533 	conn_t			*connp = Q_TO_CONN(q);
16534 	tcp_stack_t		*tcps;
16535 	ip_stack_t		*ipst;
16536 	mblk_t			*mp2ctl;
16537 
16538 	/*
16539 	 * make a copy of the original message
16540 	 */
16541 	mp2ctl = copymsg(mpctl);
16542 
16543 	if (mpctl == NULL ||
16544 	    (mpdata = mpctl->b_cont) == NULL ||
16545 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16546 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16547 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16548 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16549 		freemsg(mp_conn_ctl);
16550 		freemsg(mp_attr_ctl);
16551 		freemsg(mp6_conn_ctl);
16552 		freemsg(mp6_attr_ctl);
16553 		freemsg(mpctl);
16554 		freemsg(mp2ctl);
16555 		return (NULL);
16556 	}
16557 
16558 	ipst = connp->conn_netstack->netstack_ip;
16559 	tcps = connp->conn_netstack->netstack_tcp;
16560 
16561 	/* build table of connections -- need count in fixed part */
16562 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16563 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16564 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16565 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16566 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16567 
16568 	ispriv =
16569 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16570 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16571 
16572 	v4_conn_idx = v6_conn_idx = 0;
16573 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16574 
16575 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16576 		ipst = tcps->tcps_netstack->netstack_ip;
16577 
16578 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16579 
16580 		connp = NULL;
16581 
16582 		while ((connp =
16583 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16584 			tcp_t *tcp;
16585 			boolean_t needattr;
16586 
16587 			if (connp->conn_zoneid != zoneid)
16588 				continue;	/* not in this zone */
16589 
16590 			tcp = connp->conn_tcp;
16591 			UPDATE_MIB(&tcps->tcps_mib,
16592 			    tcpHCInSegs, tcp->tcp_ibsegs);
16593 			tcp->tcp_ibsegs = 0;
16594 			UPDATE_MIB(&tcps->tcps_mib,
16595 			    tcpHCOutSegs, tcp->tcp_obsegs);
16596 			tcp->tcp_obsegs = 0;
16597 
16598 			tce6.tcp6ConnState = tce.tcpConnState =
16599 			    tcp_snmp_state(tcp);
16600 			if (tce.tcpConnState == MIB2_TCP_established ||
16601 			    tce.tcpConnState == MIB2_TCP_closeWait)
16602 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16603 
16604 			needattr = B_FALSE;
16605 			bzero(&mlp, sizeof (mlp));
16606 			if (connp->conn_mlp_type != mlptSingle) {
16607 				if (connp->conn_mlp_type == mlptShared ||
16608 				    connp->conn_mlp_type == mlptBoth)
16609 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16610 				if (connp->conn_mlp_type == mlptPrivate ||
16611 				    connp->conn_mlp_type == mlptBoth)
16612 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16613 				needattr = B_TRUE;
16614 			}
16615 			if (connp->conn_peercred != NULL) {
16616 				ts_label_t *tsl;
16617 
16618 				tsl = crgetlabel(connp->conn_peercred);
16619 				mlp.tme_doi = label2doi(tsl);
16620 				mlp.tme_label = *label2bslabel(tsl);
16621 				needattr = B_TRUE;
16622 			}
16623 
16624 			/* Create a message to report on IPv6 entries */
16625 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16626 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16627 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16628 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16629 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16630 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16631 			/* Don't want just anybody seeing these... */
16632 			if (ispriv) {
16633 				tce6.tcp6ConnEntryInfo.ce_snxt =
16634 				    tcp->tcp_snxt;
16635 				tce6.tcp6ConnEntryInfo.ce_suna =
16636 				    tcp->tcp_suna;
16637 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16638 				    tcp->tcp_rnxt;
16639 				tce6.tcp6ConnEntryInfo.ce_rack =
16640 				    tcp->tcp_rack;
16641 			} else {
16642 				/*
16643 				 * Netstat, unfortunately, uses this to
16644 				 * get send/receive queue sizes.  How to fix?
16645 				 * Why not compute the difference only?
16646 				 */
16647 				tce6.tcp6ConnEntryInfo.ce_snxt =
16648 				    tcp->tcp_snxt - tcp->tcp_suna;
16649 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16650 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16651 				    tcp->tcp_rnxt - tcp->tcp_rack;
16652 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16653 			}
16654 
16655 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16656 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16657 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16658 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16659 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16660 
16661 			tce6.tcp6ConnCreationProcess =
16662 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16663 			    tcp->tcp_cpid;
16664 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16665 
16666 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16667 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16668 
16669 			mlp.tme_connidx = v6_conn_idx++;
16670 			if (needattr)
16671 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16672 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16673 			}
16674 			/*
16675 			 * Create an IPv4 table entry for IPv4 entries and also
16676 			 * for IPv6 entries which are bound to in6addr_any
16677 			 * but don't have IPV6_V6ONLY set.
16678 			 * (i.e. anything an IPv4 peer could connect to)
16679 			 */
16680 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16681 			    (tcp->tcp_state <= TCPS_LISTEN &&
16682 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16683 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16684 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16685 					tce.tcpConnRemAddress = INADDR_ANY;
16686 					tce.tcpConnLocalAddress = INADDR_ANY;
16687 				} else {
16688 					tce.tcpConnRemAddress =
16689 					    tcp->tcp_remote;
16690 					tce.tcpConnLocalAddress =
16691 					    tcp->tcp_ip_src;
16692 				}
16693 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16694 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16695 				/* Don't want just anybody seeing these... */
16696 				if (ispriv) {
16697 					tce.tcpConnEntryInfo.ce_snxt =
16698 					    tcp->tcp_snxt;
16699 					tce.tcpConnEntryInfo.ce_suna =
16700 					    tcp->tcp_suna;
16701 					tce.tcpConnEntryInfo.ce_rnxt =
16702 					    tcp->tcp_rnxt;
16703 					tce.tcpConnEntryInfo.ce_rack =
16704 					    tcp->tcp_rack;
16705 				} else {
16706 					/*
16707 					 * Netstat, unfortunately, uses this to
16708 					 * get send/receive queue sizes.  How
16709 					 * to fix?
16710 					 * Why not compute the difference only?
16711 					 */
16712 					tce.tcpConnEntryInfo.ce_snxt =
16713 					    tcp->tcp_snxt - tcp->tcp_suna;
16714 					tce.tcpConnEntryInfo.ce_suna = 0;
16715 					tce.tcpConnEntryInfo.ce_rnxt =
16716 					    tcp->tcp_rnxt - tcp->tcp_rack;
16717 					tce.tcpConnEntryInfo.ce_rack = 0;
16718 				}
16719 
16720 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16721 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16722 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16723 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16724 				tce.tcpConnEntryInfo.ce_state =
16725 				    tcp->tcp_state;
16726 
16727 				tce.tcpConnCreationProcess =
16728 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16729 				    tcp->tcp_cpid;
16730 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16731 
16732 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16733 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16734 
16735 				mlp.tme_connidx = v4_conn_idx++;
16736 				if (needattr)
16737 					(void) snmp_append_data2(
16738 					    mp_attr_ctl->b_cont,
16739 					    &mp_attr_tail, (char *)&mlp,
16740 					    sizeof (mlp));
16741 			}
16742 		}
16743 	}
16744 
16745 	/* fixed length structure for IPv4 and IPv6 counters */
16746 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16747 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16748 	    sizeof (mib2_tcp6ConnEntry_t));
16749 	/* synchronize 32- and 64-bit counters */
16750 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16751 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16752 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16753 	optp->level = MIB2_TCP;
16754 	optp->name = 0;
16755 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16756 	    sizeof (tcps->tcps_mib));
16757 	optp->len = msgdsize(mpdata);
16758 	qreply(q, mpctl);
16759 
16760 	/* table of connections... */
16761 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16762 	    sizeof (struct T_optmgmt_ack)];
16763 	optp->level = MIB2_TCP;
16764 	optp->name = MIB2_TCP_CONN;
16765 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16766 	qreply(q, mp_conn_ctl);
16767 
16768 	/* table of MLP attributes... */
16769 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16770 	    sizeof (struct T_optmgmt_ack)];
16771 	optp->level = MIB2_TCP;
16772 	optp->name = EXPER_XPORT_MLP;
16773 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16774 	if (optp->len == 0)
16775 		freemsg(mp_attr_ctl);
16776 	else
16777 		qreply(q, mp_attr_ctl);
16778 
16779 	/* table of IPv6 connections... */
16780 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16781 	    sizeof (struct T_optmgmt_ack)];
16782 	optp->level = MIB2_TCP6;
16783 	optp->name = MIB2_TCP6_CONN;
16784 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16785 	qreply(q, mp6_conn_ctl);
16786 
16787 	/* table of IPv6 MLP attributes... */
16788 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16789 	    sizeof (struct T_optmgmt_ack)];
16790 	optp->level = MIB2_TCP6;
16791 	optp->name = EXPER_XPORT_MLP;
16792 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16793 	if (optp->len == 0)
16794 		freemsg(mp6_attr_ctl);
16795 	else
16796 		qreply(q, mp6_attr_ctl);
16797 	return (mp2ctl);
16798 }
16799 
16800 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16801 /* ARGSUSED */
16802 int
16803 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16804 {
16805 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16806 
16807 	switch (level) {
16808 	case MIB2_TCP:
16809 		switch (name) {
16810 		case 13:
16811 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16812 				return (0);
16813 			/* TODO: delete entry defined by tce */
16814 			return (1);
16815 		default:
16816 			return (0);
16817 		}
16818 	default:
16819 		return (1);
16820 	}
16821 }
16822 
16823 /* Translate TCP state to MIB2 TCP state. */
16824 static int
16825 tcp_snmp_state(tcp_t *tcp)
16826 {
16827 	if (tcp == NULL)
16828 		return (0);
16829 
16830 	switch (tcp->tcp_state) {
16831 	case TCPS_CLOSED:
16832 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16833 	case TCPS_BOUND:
16834 		return (MIB2_TCP_closed);
16835 	case TCPS_LISTEN:
16836 		return (MIB2_TCP_listen);
16837 	case TCPS_SYN_SENT:
16838 		return (MIB2_TCP_synSent);
16839 	case TCPS_SYN_RCVD:
16840 		return (MIB2_TCP_synReceived);
16841 	case TCPS_ESTABLISHED:
16842 		return (MIB2_TCP_established);
16843 	case TCPS_CLOSE_WAIT:
16844 		return (MIB2_TCP_closeWait);
16845 	case TCPS_FIN_WAIT_1:
16846 		return (MIB2_TCP_finWait1);
16847 	case TCPS_CLOSING:
16848 		return (MIB2_TCP_closing);
16849 	case TCPS_LAST_ACK:
16850 		return (MIB2_TCP_lastAck);
16851 	case TCPS_FIN_WAIT_2:
16852 		return (MIB2_TCP_finWait2);
16853 	case TCPS_TIME_WAIT:
16854 		return (MIB2_TCP_timeWait);
16855 	default:
16856 		return (0);
16857 	}
16858 }
16859 
16860 static char tcp_report_header[] =
16861 	"TCP     " MI_COL_HDRPAD_STR
16862 	"zone dest            snxt     suna     "
16863 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16864 	"recent   [lport,fport] state";
16865 
16866 /*
16867  * TCP status report triggered via the Named Dispatch mechanism.
16868  */
16869 /* ARGSUSED */
16870 static void
16871 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16872     cred_t *cr)
16873 {
16874 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16875 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16876 	char cflag;
16877 	in6_addr_t	v6dst;
16878 	char buf[80];
16879 	uint_t print_len, buf_len;
16880 
16881 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16882 	if (buf_len <= 0)
16883 		return;
16884 
16885 	if (hashval >= 0)
16886 		(void) sprintf(hash, "%03d ", hashval);
16887 	else
16888 		hash[0] = '\0';
16889 
16890 	/*
16891 	 * Note that we use the remote address in the tcp_b  structure.
16892 	 * This means that it will print out the real destination address,
16893 	 * not the next hop's address if source routing is used.  This
16894 	 * avoid the confusion on the output because user may not
16895 	 * know that source routing is used for a connection.
16896 	 */
16897 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16898 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16899 	} else {
16900 		v6dst = tcp->tcp_remote_v6;
16901 	}
16902 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16903 	/*
16904 	 * the ispriv checks are so that normal users cannot determine
16905 	 * sequence number information using NDD.
16906 	 */
16907 
16908 	if (TCP_IS_DETACHED(tcp))
16909 		cflag = '*';
16910 	else
16911 		cflag = ' ';
16912 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16913 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16914 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16915 	    hash,
16916 	    (void *)tcp,
16917 	    tcp->tcp_connp->conn_zoneid,
16918 	    addrbuf,
16919 	    (ispriv) ? tcp->tcp_snxt : 0,
16920 	    (ispriv) ? tcp->tcp_suna : 0,
16921 	    tcp->tcp_swnd,
16922 	    (ispriv) ? tcp->tcp_rnxt : 0,
16923 	    (ispriv) ? tcp->tcp_rack : 0,
16924 	    tcp->tcp_rwnd,
16925 	    tcp->tcp_rto,
16926 	    tcp->tcp_mss,
16927 	    tcp->tcp_snd_ws_ok,
16928 	    tcp->tcp_snd_ws,
16929 	    tcp->tcp_rcv_ws,
16930 	    tcp->tcp_snd_ts_ok,
16931 	    tcp->tcp_ts_recent,
16932 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16933 	if (print_len < buf_len) {
16934 		((mblk_t *)mp)->b_wptr += print_len;
16935 	} else {
16936 		((mblk_t *)mp)->b_wptr += buf_len;
16937 	}
16938 }
16939 
16940 /*
16941  * TCP status report (for listeners only) triggered via the Named Dispatch
16942  * mechanism.
16943  */
16944 /* ARGSUSED */
16945 static void
16946 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16947 {
16948 	char addrbuf[INET6_ADDRSTRLEN];
16949 	in6_addr_t	v6dst;
16950 	uint_t print_len, buf_len;
16951 
16952 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16953 	if (buf_len <= 0)
16954 		return;
16955 
16956 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16957 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16958 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16959 	} else {
16960 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16961 		    addrbuf, sizeof (addrbuf));
16962 	}
16963 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16964 	    "%03d "
16965 	    MI_COL_PTRFMT_STR
16966 	    "%d %s %05u %08u %d/%d/%d%c\n",
16967 	    hashval, (void *)tcp,
16968 	    tcp->tcp_connp->conn_zoneid,
16969 	    addrbuf,
16970 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16971 	    tcp->tcp_conn_req_seqnum,
16972 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16973 	    tcp->tcp_conn_req_max,
16974 	    tcp->tcp_syn_defense ? '*' : ' ');
16975 	if (print_len < buf_len) {
16976 		((mblk_t *)mp)->b_wptr += print_len;
16977 	} else {
16978 		((mblk_t *)mp)->b_wptr += buf_len;
16979 	}
16980 }
16981 
16982 /* TCP status report triggered via the Named Dispatch mechanism. */
16983 /* ARGSUSED */
16984 static int
16985 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16986 {
16987 	tcp_t	*tcp;
16988 	int	i;
16989 	conn_t	*connp;
16990 	connf_t	*connfp;
16991 	zoneid_t zoneid;
16992 	tcp_stack_t *tcps;
16993 	ip_stack_t *ipst;
16994 
16995 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16996 	tcps = Q_TO_TCP(q)->tcp_tcps;
16997 
16998 	/*
16999 	 * Because of the ndd constraint, at most we can have 64K buffer
17000 	 * to put in all TCP info.  So to be more efficient, just
17001 	 * allocate a 64K buffer here, assuming we need that large buffer.
17002 	 * This may be a problem as any user can read tcp_status.  Therefore
17003 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
17004 	 * This should be OK as normal users should not do this too often.
17005 	 */
17006 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17007 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17008 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17009 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17010 			return (0);
17011 		}
17012 	}
17013 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17014 		/* The following may work even if we cannot get a large buf. */
17015 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17016 		return (0);
17017 	}
17018 
17019 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
17020 
17021 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
17022 
17023 		ipst = tcps->tcps_netstack->netstack_ip;
17024 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
17025 
17026 		connp = NULL;
17027 
17028 		while ((connp =
17029 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17030 			tcp = connp->conn_tcp;
17031 			if (zoneid != GLOBAL_ZONEID &&
17032 			    zoneid != connp->conn_zoneid)
17033 				continue;
17034 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
17035 			    cr);
17036 		}
17037 
17038 	}
17039 
17040 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17041 	return (0);
17042 }
17043 
17044 /* TCP status report triggered via the Named Dispatch mechanism. */
17045 /* ARGSUSED */
17046 static int
17047 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17048 {
17049 	tf_t	*tbf;
17050 	tcp_t	*tcp;
17051 	int	i;
17052 	zoneid_t zoneid;
17053 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17054 
17055 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17056 
17057 	/* Refer to comments in tcp_status_report(). */
17058 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17059 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17060 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17061 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17062 			return (0);
17063 		}
17064 	}
17065 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17066 		/* The following may work even if we cannot get a large buf. */
17067 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17068 		return (0);
17069 	}
17070 
17071 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17072 
17073 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
17074 		tbf = &tcps->tcps_bind_fanout[i];
17075 		mutex_enter(&tbf->tf_lock);
17076 		for (tcp = tbf->tf_tcp; tcp != NULL;
17077 		    tcp = tcp->tcp_bind_hash) {
17078 			if (zoneid != GLOBAL_ZONEID &&
17079 			    zoneid != tcp->tcp_connp->conn_zoneid)
17080 				continue;
17081 			CONN_INC_REF(tcp->tcp_connp);
17082 			tcp_report_item(mp->b_cont, tcp, i,
17083 			    Q_TO_TCP(q), cr);
17084 			CONN_DEC_REF(tcp->tcp_connp);
17085 		}
17086 		mutex_exit(&tbf->tf_lock);
17087 	}
17088 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17089 	return (0);
17090 }
17091 
17092 /* TCP status report triggered via the Named Dispatch mechanism. */
17093 /* ARGSUSED */
17094 static int
17095 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17096 {
17097 	connf_t	*connfp;
17098 	conn_t	*connp;
17099 	tcp_t	*tcp;
17100 	int	i;
17101 	zoneid_t zoneid;
17102 	tcp_stack_t *tcps;
17103 	ip_stack_t	*ipst;
17104 
17105 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17106 	tcps = Q_TO_TCP(q)->tcp_tcps;
17107 
17108 	/* Refer to comments in tcp_status_report(). */
17109 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17110 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17111 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17112 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17113 			return (0);
17114 		}
17115 	}
17116 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17117 		/* The following may work even if we cannot get a large buf. */
17118 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17119 		return (0);
17120 	}
17121 
17122 	(void) mi_mpprintf(mp,
17123 	    "    TCP    " MI_COL_HDRPAD_STR
17124 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
17125 
17126 	ipst = tcps->tcps_netstack->netstack_ip;
17127 
17128 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
17129 		connfp = &ipst->ips_ipcl_bind_fanout[i];
17130 		connp = NULL;
17131 		while ((connp =
17132 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17133 			tcp = connp->conn_tcp;
17134 			if (zoneid != GLOBAL_ZONEID &&
17135 			    zoneid != connp->conn_zoneid)
17136 				continue;
17137 			tcp_report_listener(mp->b_cont, tcp, i);
17138 		}
17139 	}
17140 
17141 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17142 	return (0);
17143 }
17144 
17145 /* TCP status report triggered via the Named Dispatch mechanism. */
17146 /* ARGSUSED */
17147 static int
17148 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17149 {
17150 	connf_t	*connfp;
17151 	conn_t	*connp;
17152 	tcp_t	*tcp;
17153 	int	i;
17154 	zoneid_t zoneid;
17155 	tcp_stack_t *tcps;
17156 	ip_stack_t *ipst;
17157 
17158 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17159 	tcps = Q_TO_TCP(q)->tcp_tcps;
17160 	ipst = tcps->tcps_netstack->netstack_ip;
17161 
17162 	/* Refer to comments in tcp_status_report(). */
17163 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17164 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17165 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17166 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17167 			return (0);
17168 		}
17169 	}
17170 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17171 		/* The following may work even if we cannot get a large buf. */
17172 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17173 		return (0);
17174 	}
17175 
17176 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
17177 	    ipst->ips_ipcl_conn_fanout_size);
17178 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17179 
17180 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
17181 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
17182 		connp = NULL;
17183 		while ((connp =
17184 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17185 			tcp = connp->conn_tcp;
17186 			if (zoneid != GLOBAL_ZONEID &&
17187 			    zoneid != connp->conn_zoneid)
17188 				continue;
17189 			tcp_report_item(mp->b_cont, tcp, i,
17190 			    Q_TO_TCP(q), cr);
17191 		}
17192 	}
17193 
17194 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17195 	return (0);
17196 }
17197 
17198 /* TCP status report triggered via the Named Dispatch mechanism. */
17199 /* ARGSUSED */
17200 static int
17201 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17202 {
17203 	tf_t	*tf;
17204 	tcp_t	*tcp;
17205 	int	i;
17206 	zoneid_t zoneid;
17207 	tcp_stack_t	*tcps;
17208 
17209 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17210 	tcps = Q_TO_TCP(q)->tcp_tcps;
17211 
17212 	/* Refer to comments in tcp_status_report(). */
17213 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17214 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17215 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17216 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17217 			return (0);
17218 		}
17219 	}
17220 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17221 		/* The following may work even if we cannot get a large buf. */
17222 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17223 		return (0);
17224 	}
17225 
17226 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17227 
17228 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
17229 		tf = &tcps->tcps_acceptor_fanout[i];
17230 		mutex_enter(&tf->tf_lock);
17231 		for (tcp = tf->tf_tcp; tcp != NULL;
17232 		    tcp = tcp->tcp_acceptor_hash) {
17233 			if (zoneid != GLOBAL_ZONEID &&
17234 			    zoneid != tcp->tcp_connp->conn_zoneid)
17235 				continue;
17236 			tcp_report_item(mp->b_cont, tcp, i,
17237 			    Q_TO_TCP(q), cr);
17238 		}
17239 		mutex_exit(&tf->tf_lock);
17240 	}
17241 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17242 	return (0);
17243 }
17244 
17245 /*
17246  * tcp_timer is the timer service routine.  It handles the retransmission,
17247  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17248  * from the state of the tcp instance what kind of action needs to be done
17249  * at the time it is called.
17250  */
17251 static void
17252 tcp_timer(void *arg)
17253 {
17254 	mblk_t		*mp;
17255 	clock_t		first_threshold;
17256 	clock_t		second_threshold;
17257 	clock_t		ms;
17258 	uint32_t	mss;
17259 	conn_t		*connp = (conn_t *)arg;
17260 	tcp_t		*tcp = connp->conn_tcp;
17261 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17262 
17263 	tcp->tcp_timer_tid = 0;
17264 
17265 	if (tcp->tcp_fused)
17266 		return;
17267 
17268 	first_threshold =  tcp->tcp_first_timer_threshold;
17269 	second_threshold = tcp->tcp_second_timer_threshold;
17270 	switch (tcp->tcp_state) {
17271 	case TCPS_IDLE:
17272 	case TCPS_BOUND:
17273 	case TCPS_LISTEN:
17274 		return;
17275 	case TCPS_SYN_RCVD: {
17276 		tcp_t	*listener = tcp->tcp_listener;
17277 
17278 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17279 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17280 			/* it's our first timeout */
17281 			tcp->tcp_syn_rcvd_timeout = 1;
17282 			mutex_enter(&listener->tcp_eager_lock);
17283 			listener->tcp_syn_rcvd_timeout++;
17284 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17285 				/*
17286 				 * Make this eager available for drop if we
17287 				 * need to drop one to accomodate a new
17288 				 * incoming SYN request.
17289 				 */
17290 				MAKE_DROPPABLE(listener, tcp);
17291 			}
17292 			if (!listener->tcp_syn_defense &&
17293 			    (listener->tcp_syn_rcvd_timeout >
17294 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17295 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17296 				/* We may be under attack. Put on a defense. */
17297 				listener->tcp_syn_defense = B_TRUE;
17298 				cmn_err(CE_WARN, "High TCP connect timeout "
17299 				    "rate! System (port %d) may be under a "
17300 				    "SYN flood attack!",
17301 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17302 
17303 				listener->tcp_ip_addr_cache = kmem_zalloc(
17304 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17305 				    KM_NOSLEEP);
17306 			}
17307 			mutex_exit(&listener->tcp_eager_lock);
17308 		} else if (listener != NULL) {
17309 			mutex_enter(&listener->tcp_eager_lock);
17310 			tcp->tcp_syn_rcvd_timeout++;
17311 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17312 			    !tcp->tcp_closemp_used) {
17313 				/*
17314 				 * This is our second timeout. Put the tcp in
17315 				 * the list of droppable eagers to allow it to
17316 				 * be dropped, if needed. We don't check
17317 				 * whether tcp_dontdrop is set or not to
17318 				 * protect ourselve from a SYN attack where a
17319 				 * remote host can spoof itself as one of the
17320 				 * good IP source and continue to hold
17321 				 * resources too long.
17322 				 */
17323 				MAKE_DROPPABLE(listener, tcp);
17324 			}
17325 			mutex_exit(&listener->tcp_eager_lock);
17326 		}
17327 	}
17328 		/* FALLTHRU */
17329 	case TCPS_SYN_SENT:
17330 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17331 		second_threshold = tcp->tcp_second_ctimer_threshold;
17332 		break;
17333 	case TCPS_ESTABLISHED:
17334 	case TCPS_FIN_WAIT_1:
17335 	case TCPS_CLOSING:
17336 	case TCPS_CLOSE_WAIT:
17337 	case TCPS_LAST_ACK:
17338 		/* If we have data to rexmit */
17339 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17340 			clock_t	time_to_wait;
17341 
17342 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17343 			if (!tcp->tcp_xmit_head)
17344 				break;
17345 			time_to_wait = lbolt -
17346 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17347 			time_to_wait = tcp->tcp_rto -
17348 			    TICK_TO_MSEC(time_to_wait);
17349 			/*
17350 			 * If the timer fires too early, 1 clock tick earlier,
17351 			 * restart the timer.
17352 			 */
17353 			if (time_to_wait > msec_per_tick) {
17354 				TCP_STAT(tcps, tcp_timer_fire_early);
17355 				TCP_TIMER_RESTART(tcp, time_to_wait);
17356 				return;
17357 			}
17358 			/*
17359 			 * When we probe zero windows, we force the swnd open.
17360 			 * If our peer acks with a closed window swnd will be
17361 			 * set to zero by tcp_rput(). As long as we are
17362 			 * receiving acks tcp_rput will
17363 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17364 			 * first and second interval actions.  NOTE: the timer
17365 			 * interval is allowed to continue its exponential
17366 			 * backoff.
17367 			 */
17368 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17369 				if (tcp->tcp_debug) {
17370 					(void) strlog(TCP_MOD_ID, 0, 1,
17371 					    SL_TRACE, "tcp_timer: zero win");
17372 				}
17373 			} else {
17374 				/*
17375 				 * After retransmission, we need to do
17376 				 * slow start.  Set the ssthresh to one
17377 				 * half of current effective window and
17378 				 * cwnd to one MSS.  Also reset
17379 				 * tcp_cwnd_cnt.
17380 				 *
17381 				 * Note that if tcp_ssthresh is reduced because
17382 				 * of ECN, do not reduce it again unless it is
17383 				 * already one window of data away (tcp_cwr
17384 				 * should then be cleared) or this is a
17385 				 * timeout for a retransmitted segment.
17386 				 */
17387 				uint32_t npkt;
17388 
17389 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17390 					npkt = ((tcp->tcp_timer_backoff ?
17391 					    tcp->tcp_cwnd_ssthresh :
17392 					    tcp->tcp_snxt -
17393 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17394 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17395 					    tcp->tcp_mss;
17396 				}
17397 				tcp->tcp_cwnd = tcp->tcp_mss;
17398 				tcp->tcp_cwnd_cnt = 0;
17399 				if (tcp->tcp_ecn_ok) {
17400 					tcp->tcp_cwr = B_TRUE;
17401 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17402 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17403 				}
17404 			}
17405 			break;
17406 		}
17407 		/*
17408 		 * We have something to send yet we cannot send.  The
17409 		 * reason can be:
17410 		 *
17411 		 * 1. Zero send window: we need to do zero window probe.
17412 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17413 		 * segments.
17414 		 * 3. SWS avoidance: receiver may have shrunk window,
17415 		 * reset our knowledge.
17416 		 *
17417 		 * Note that condition 2 can happen with either 1 or
17418 		 * 3.  But 1 and 3 are exclusive.
17419 		 */
17420 		if (tcp->tcp_unsent != 0) {
17421 			if (tcp->tcp_cwnd == 0) {
17422 				/*
17423 				 * Set tcp_cwnd to 1 MSS so that a
17424 				 * new segment can be sent out.  We
17425 				 * are "clocking out" new data when
17426 				 * the network is really congested.
17427 				 */
17428 				ASSERT(tcp->tcp_ecn_ok);
17429 				tcp->tcp_cwnd = tcp->tcp_mss;
17430 			}
17431 			if (tcp->tcp_swnd == 0) {
17432 				/* Extend window for zero window probe */
17433 				tcp->tcp_swnd++;
17434 				tcp->tcp_zero_win_probe = B_TRUE;
17435 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17436 			} else {
17437 				/*
17438 				 * Handle timeout from sender SWS avoidance.
17439 				 * Reset our knowledge of the max send window
17440 				 * since the receiver might have reduced its
17441 				 * receive buffer.  Avoid setting tcp_max_swnd
17442 				 * to one since that will essentially disable
17443 				 * the SWS checks.
17444 				 *
17445 				 * Note that since we don't have a SWS
17446 				 * state variable, if the timeout is set
17447 				 * for ECN but not for SWS, this
17448 				 * code will also be executed.  This is
17449 				 * fine as tcp_max_swnd is updated
17450 				 * constantly and it will not affect
17451 				 * anything.
17452 				 */
17453 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17454 			}
17455 			tcp_wput_data(tcp, NULL, B_FALSE);
17456 			return;
17457 		}
17458 		/* Is there a FIN that needs to be to re retransmitted? */
17459 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17460 		    !tcp->tcp_fin_acked)
17461 			break;
17462 		/* Nothing to do, return without restarting timer. */
17463 		TCP_STAT(tcps, tcp_timer_fire_miss);
17464 		return;
17465 	case TCPS_FIN_WAIT_2:
17466 		/*
17467 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17468 		 * We waited some time for for peer's FIN, but it hasn't
17469 		 * arrived.  We flush the connection now to avoid
17470 		 * case where the peer has rebooted.
17471 		 */
17472 		if (TCP_IS_DETACHED(tcp)) {
17473 			(void) tcp_clean_death(tcp, 0, 23);
17474 		} else {
17475 			TCP_TIMER_RESTART(tcp,
17476 			    tcps->tcps_fin_wait_2_flush_interval);
17477 		}
17478 		return;
17479 	case TCPS_TIME_WAIT:
17480 		(void) tcp_clean_death(tcp, 0, 24);
17481 		return;
17482 	default:
17483 		if (tcp->tcp_debug) {
17484 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17485 			    "tcp_timer: strange state (%d) %s",
17486 			    tcp->tcp_state, tcp_display(tcp, NULL,
17487 			    DISP_PORT_ONLY));
17488 		}
17489 		return;
17490 	}
17491 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17492 		/*
17493 		 * For zero window probe, we need to send indefinitely,
17494 		 * unless we have not heard from the other side for some
17495 		 * time...
17496 		 */
17497 		if ((tcp->tcp_zero_win_probe == 0) ||
17498 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17499 		    second_threshold)) {
17500 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17501 			/*
17502 			 * If TCP is in SYN_RCVD state, send back a
17503 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17504 			 * should be zero in TCPS_SYN_RCVD state.
17505 			 */
17506 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17507 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17508 				    "in SYN_RCVD",
17509 				    tcp, tcp->tcp_snxt,
17510 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17511 			}
17512 			(void) tcp_clean_death(tcp,
17513 			    tcp->tcp_client_errno ?
17514 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17515 			return;
17516 		} else {
17517 			/*
17518 			 * Set tcp_ms_we_have_waited to second_threshold
17519 			 * so that in next timeout, we will do the above
17520 			 * check (lbolt - tcp_last_recv_time).  This is
17521 			 * also to avoid overflow.
17522 			 *
17523 			 * We don't need to decrement tcp_timer_backoff
17524 			 * to avoid overflow because it will be decremented
17525 			 * later if new timeout value is greater than
17526 			 * tcp_rexmit_interval_max.  In the case when
17527 			 * tcp_rexmit_interval_max is greater than
17528 			 * second_threshold, it means that we will wait
17529 			 * longer than second_threshold to send the next
17530 			 * window probe.
17531 			 */
17532 			tcp->tcp_ms_we_have_waited = second_threshold;
17533 		}
17534 	} else if (ms > first_threshold) {
17535 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17536 		    tcp->tcp_xmit_head != NULL) {
17537 			tcp->tcp_xmit_head =
17538 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17539 		}
17540 		/*
17541 		 * We have been retransmitting for too long...  The RTT
17542 		 * we calculated is probably incorrect.  Reinitialize it.
17543 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17544 		 * tcp_rtt_update so that we won't accidentally cache a
17545 		 * bad value.  But only do this if this is not a zero
17546 		 * window probe.
17547 		 */
17548 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17549 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17550 			    (tcp->tcp_rtt_sa >> 5);
17551 			tcp->tcp_rtt_sa = 0;
17552 			tcp_ip_notify(tcp);
17553 			tcp->tcp_rtt_update = 0;
17554 		}
17555 	}
17556 	tcp->tcp_timer_backoff++;
17557 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17558 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17559 	    tcps->tcps_rexmit_interval_min) {
17560 		/*
17561 		 * This means the original RTO is tcp_rexmit_interval_min.
17562 		 * So we will use tcp_rexmit_interval_min as the RTO value
17563 		 * and do the backoff.
17564 		 */
17565 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17566 	} else {
17567 		ms <<= tcp->tcp_timer_backoff;
17568 	}
17569 	if (ms > tcps->tcps_rexmit_interval_max) {
17570 		ms = tcps->tcps_rexmit_interval_max;
17571 		/*
17572 		 * ms is at max, decrement tcp_timer_backoff to avoid
17573 		 * overflow.
17574 		 */
17575 		tcp->tcp_timer_backoff--;
17576 	}
17577 	tcp->tcp_ms_we_have_waited += ms;
17578 	if (tcp->tcp_zero_win_probe == 0) {
17579 		tcp->tcp_rto = ms;
17580 	}
17581 	TCP_TIMER_RESTART(tcp, ms);
17582 	/*
17583 	 * This is after a timeout and tcp_rto is backed off.  Set
17584 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17585 	 * restart the timer with a correct value.
17586 	 */
17587 	tcp->tcp_set_timer = 1;
17588 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17589 	if (mss > tcp->tcp_mss)
17590 		mss = tcp->tcp_mss;
17591 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17592 		mss = tcp->tcp_swnd;
17593 
17594 	if ((mp = tcp->tcp_xmit_head) != NULL)
17595 		mp->b_prev = (mblk_t *)lbolt;
17596 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17597 	    B_TRUE);
17598 
17599 	/*
17600 	 * When slow start after retransmission begins, start with
17601 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17602 	 * start phase.  tcp_snd_burst controls how many segments
17603 	 * can be sent because of an ack.
17604 	 */
17605 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17606 	tcp->tcp_snd_burst = TCP_CWND_SS;
17607 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17608 	    (tcp->tcp_unsent == 0)) {
17609 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17610 	} else {
17611 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17612 	}
17613 	tcp->tcp_rexmit = B_TRUE;
17614 	tcp->tcp_dupack_cnt = 0;
17615 
17616 	/*
17617 	 * Remove all rexmit SACK blk to start from fresh.
17618 	 */
17619 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17620 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17621 		tcp->tcp_num_notsack_blk = 0;
17622 		tcp->tcp_cnt_notsack_list = 0;
17623 	}
17624 	if (mp == NULL) {
17625 		return;
17626 	}
17627 	/* Attach credentials to retransmitted initial SYNs. */
17628 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17629 		mblk_setcred(mp, tcp->tcp_cred);
17630 		DB_CPID(mp) = tcp->tcp_cpid;
17631 	}
17632 
17633 	tcp->tcp_csuna = tcp->tcp_snxt;
17634 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17635 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17636 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17637 
17638 }
17639 
17640 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17641 static void
17642 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17643 {
17644 	conn_t	*connp;
17645 
17646 	switch (tcp->tcp_state) {
17647 	case TCPS_BOUND:
17648 	case TCPS_LISTEN:
17649 		break;
17650 	default:
17651 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17652 		return;
17653 	}
17654 
17655 	/*
17656 	 * Need to clean up all the eagers since after the unbind, segments
17657 	 * will no longer be delivered to this listener stream.
17658 	 */
17659 	mutex_enter(&tcp->tcp_eager_lock);
17660 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17661 		tcp_eager_cleanup(tcp, 0);
17662 	}
17663 	mutex_exit(&tcp->tcp_eager_lock);
17664 
17665 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17666 		tcp->tcp_ipha->ipha_src = 0;
17667 	} else {
17668 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17669 	}
17670 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17671 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17672 	tcp_bind_hash_remove(tcp);
17673 	tcp->tcp_state = TCPS_IDLE;
17674 	tcp->tcp_mdt = B_FALSE;
17675 	/* Send M_FLUSH according to TPI */
17676 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17677 	connp = tcp->tcp_connp;
17678 	connp->conn_mdt_ok = B_FALSE;
17679 	ipcl_hash_remove(connp);
17680 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17681 	mp = mi_tpi_ok_ack_alloc(mp);
17682 	putnext(tcp->tcp_rq, mp);
17683 }
17684 
17685 /*
17686  * Don't let port fall into the privileged range.
17687  * Since the extra privileged ports can be arbitrary we also
17688  * ensure that we exclude those from consideration.
17689  * tcp_g_epriv_ports is not sorted thus we loop over it until
17690  * there are no changes.
17691  *
17692  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17693  * but instead the code relies on:
17694  * - the fact that the address of the array and its size never changes
17695  * - the atomic assignment of the elements of the array
17696  *
17697  * Returns 0 if there are no more ports available.
17698  *
17699  * TS note: skip multilevel ports.
17700  */
17701 static in_port_t
17702 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17703 {
17704 	int i;
17705 	boolean_t restart = B_FALSE;
17706 	tcp_stack_t *tcps = tcp->tcp_tcps;
17707 
17708 	if (random && tcp_random_anon_port != 0) {
17709 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17710 		    sizeof (in_port_t));
17711 		/*
17712 		 * Unless changed by a sys admin, the smallest anon port
17713 		 * is 32768 and the largest anon port is 65535.  It is
17714 		 * very likely (50%) for the random port to be smaller
17715 		 * than the smallest anon port.  When that happens,
17716 		 * add port % (anon port range) to the smallest anon
17717 		 * port to get the random port.  It should fall into the
17718 		 * valid anon port range.
17719 		 */
17720 		if (port < tcps->tcps_smallest_anon_port) {
17721 			port = tcps->tcps_smallest_anon_port +
17722 			    port % (tcps->tcps_largest_anon_port -
17723 			    tcps->tcps_smallest_anon_port);
17724 		}
17725 	}
17726 
17727 retry:
17728 	if (port < tcps->tcps_smallest_anon_port)
17729 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17730 
17731 	if (port > tcps->tcps_largest_anon_port) {
17732 		if (restart)
17733 			return (0);
17734 		restart = B_TRUE;
17735 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17736 	}
17737 
17738 	if (port < tcps->tcps_smallest_nonpriv_port)
17739 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17740 
17741 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17742 		if (port == tcps->tcps_g_epriv_ports[i]) {
17743 			port++;
17744 			/*
17745 			 * Make sure whether the port is in the
17746 			 * valid range.
17747 			 */
17748 			goto retry;
17749 		}
17750 	}
17751 	if (is_system_labeled() &&
17752 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17753 	    IPPROTO_TCP, B_TRUE)) != 0) {
17754 		port = i;
17755 		goto retry;
17756 	}
17757 	return (port);
17758 }
17759 
17760 /*
17761  * Return the next anonymous port in the privileged port range for
17762  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17763  * downwards.  This is the same behavior as documented in the userland
17764  * library call rresvport(3N).
17765  *
17766  * TS note: skip multilevel ports.
17767  */
17768 static in_port_t
17769 tcp_get_next_priv_port(const tcp_t *tcp)
17770 {
17771 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17772 	in_port_t nextport;
17773 	boolean_t restart = B_FALSE;
17774 	tcp_stack_t *tcps = tcp->tcp_tcps;
17775 retry:
17776 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17777 	    next_priv_port >= IPPORT_RESERVED) {
17778 		next_priv_port = IPPORT_RESERVED - 1;
17779 		if (restart)
17780 			return (0);
17781 		restart = B_TRUE;
17782 	}
17783 	if (is_system_labeled() &&
17784 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17785 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17786 		next_priv_port = nextport;
17787 		goto retry;
17788 	}
17789 	return (next_priv_port--);
17790 }
17791 
17792 /* The write side r/w procedure. */
17793 
17794 #if CCS_STATS
17795 struct {
17796 	struct {
17797 		int64_t count, bytes;
17798 	} tot, hit;
17799 } wrw_stats;
17800 #endif
17801 
17802 /*
17803  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17804  * messages.
17805  */
17806 /* ARGSUSED */
17807 static void
17808 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17809 {
17810 	conn_t	*connp = (conn_t *)arg;
17811 	tcp_t	*tcp = connp->conn_tcp;
17812 	queue_t	*q = tcp->tcp_wq;
17813 
17814 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17815 	/*
17816 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17817 	 * Once the close starts, streamhead and sockfs will not let any data
17818 	 * packets come down (close ensures that there are no threads using the
17819 	 * queue and no new threads will come down) but since qprocsoff()
17820 	 * hasn't happened yet, a M_FLUSH or some non data message might
17821 	 * get reflected back (in response to our own FLUSHRW) and get
17822 	 * processed after tcp_close() is done. The conn would still be valid
17823 	 * because a ref would have added but we need to check the state
17824 	 * before actually processing the packet.
17825 	 */
17826 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17827 		freemsg(mp);
17828 		return;
17829 	}
17830 
17831 	switch (DB_TYPE(mp)) {
17832 	case M_IOCDATA:
17833 		tcp_wput_iocdata(tcp, mp);
17834 		break;
17835 	case M_FLUSH:
17836 		tcp_wput_flush(tcp, mp);
17837 		break;
17838 	default:
17839 		CALL_IP_WPUT(connp, q, mp);
17840 		break;
17841 	}
17842 }
17843 
17844 /*
17845  * The TCP fast path write put procedure.
17846  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17847  */
17848 /* ARGSUSED */
17849 void
17850 tcp_output(void *arg, mblk_t *mp, void *arg2)
17851 {
17852 	int		len;
17853 	int		hdrlen;
17854 	int		plen;
17855 	mblk_t		*mp1;
17856 	uchar_t		*rptr;
17857 	uint32_t	snxt;
17858 	tcph_t		*tcph;
17859 	struct datab	*db;
17860 	uint32_t	suna;
17861 	uint32_t	mss;
17862 	ipaddr_t	*dst;
17863 	ipaddr_t	*src;
17864 	uint32_t	sum;
17865 	int		usable;
17866 	conn_t		*connp = (conn_t *)arg;
17867 	tcp_t		*tcp = connp->conn_tcp;
17868 	uint32_t	msize;
17869 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17870 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17871 
17872 	/*
17873 	 * Try and ASSERT the minimum possible references on the
17874 	 * conn early enough. Since we are executing on write side,
17875 	 * the connection is obviously not detached and that means
17876 	 * there is a ref each for TCP and IP. Since we are behind
17877 	 * the squeue, the minimum references needed are 3. If the
17878 	 * conn is in classifier hash list, there should be an
17879 	 * extra ref for that (we check both the possibilities).
17880 	 */
17881 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17882 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17883 
17884 	ASSERT(DB_TYPE(mp) == M_DATA);
17885 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17886 
17887 	mutex_enter(&tcp->tcp_non_sq_lock);
17888 	tcp->tcp_squeue_bytes -= msize;
17889 	mutex_exit(&tcp->tcp_non_sq_lock);
17890 
17891 	/* Check to see if this connection wants to be re-fused. */
17892 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
17893 		if (tcp->tcp_ipversion == IPV4_VERSION) {
17894 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
17895 			    &tcp->tcp_saved_tcph);
17896 		} else {
17897 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
17898 			    &tcp->tcp_saved_tcph);
17899 		}
17900 	}
17901 	/* Bypass tcp protocol for fused tcp loopback */
17902 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17903 		return;
17904 
17905 	mss = tcp->tcp_mss;
17906 	if (tcp->tcp_xmit_zc_clean)
17907 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17908 
17909 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17910 	len = (int)(mp->b_wptr - mp->b_rptr);
17911 
17912 	/*
17913 	 * Criteria for fast path:
17914 	 *
17915 	 *   1. no unsent data
17916 	 *   2. single mblk in request
17917 	 *   3. connection established
17918 	 *   4. data in mblk
17919 	 *   5. len <= mss
17920 	 *   6. no tcp_valid bits
17921 	 */
17922 	if ((tcp->tcp_unsent != 0) ||
17923 	    (tcp->tcp_cork) ||
17924 	    (mp->b_cont != NULL) ||
17925 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17926 	    (len == 0) ||
17927 	    (len > mss) ||
17928 	    (tcp->tcp_valid_bits != 0)) {
17929 		tcp_wput_data(tcp, mp, B_FALSE);
17930 		return;
17931 	}
17932 
17933 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17934 	ASSERT(tcp->tcp_fin_sent == 0);
17935 
17936 	/* queue new packet onto retransmission queue */
17937 	if (tcp->tcp_xmit_head == NULL) {
17938 		tcp->tcp_xmit_head = mp;
17939 	} else {
17940 		tcp->tcp_xmit_last->b_cont = mp;
17941 	}
17942 	tcp->tcp_xmit_last = mp;
17943 	tcp->tcp_xmit_tail = mp;
17944 
17945 	/* find out how much we can send */
17946 	/* BEGIN CSTYLED */
17947 	/*
17948 	 *    un-acked           usable
17949 	 *  |--------------|-----------------|
17950 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17951 	 */
17952 	/* END CSTYLED */
17953 
17954 	/* start sending from tcp_snxt */
17955 	snxt = tcp->tcp_snxt;
17956 
17957 	/*
17958 	 * Check to see if this connection has been idled for some
17959 	 * time and no ACK is expected.  If it is, we need to slow
17960 	 * start again to get back the connection's "self-clock" as
17961 	 * described in VJ's paper.
17962 	 *
17963 	 * Refer to the comment in tcp_mss_set() for the calculation
17964 	 * of tcp_cwnd after idle.
17965 	 */
17966 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17967 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17968 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17969 	}
17970 
17971 	usable = tcp->tcp_swnd;		/* tcp window size */
17972 	if (usable > tcp->tcp_cwnd)
17973 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17974 	usable -= snxt;		/* subtract stuff already sent */
17975 	suna = tcp->tcp_suna;
17976 	usable += suna;
17977 	/* usable can be < 0 if the congestion window is smaller */
17978 	if (len > usable) {
17979 		/* Can't send complete M_DATA in one shot */
17980 		goto slow;
17981 	}
17982 
17983 	mutex_enter(&tcp->tcp_non_sq_lock);
17984 	if (tcp->tcp_flow_stopped &&
17985 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17986 		tcp_clrqfull(tcp);
17987 	}
17988 	mutex_exit(&tcp->tcp_non_sq_lock);
17989 
17990 	/*
17991 	 * determine if anything to send (Nagle).
17992 	 *
17993 	 *   1. len < tcp_mss (i.e. small)
17994 	 *   2. unacknowledged data present
17995 	 *   3. len < nagle limit
17996 	 *   4. last packet sent < nagle limit (previous packet sent)
17997 	 */
17998 	if ((len < mss) && (snxt != suna) &&
17999 	    (len < (int)tcp->tcp_naglim) &&
18000 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
18001 		/*
18002 		 * This was the first unsent packet and normally
18003 		 * mss < xmit_hiwater so there is no need to worry
18004 		 * about flow control. The next packet will go
18005 		 * through the flow control check in tcp_wput_data().
18006 		 */
18007 		/* leftover work from above */
18008 		tcp->tcp_unsent = len;
18009 		tcp->tcp_xmit_tail_unsent = len;
18010 
18011 		return;
18012 	}
18013 
18014 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
18015 
18016 	if (snxt == suna) {
18017 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18018 	}
18019 
18020 	/* we have always sent something */
18021 	tcp->tcp_rack_cnt = 0;
18022 
18023 	tcp->tcp_snxt = snxt + len;
18024 	tcp->tcp_rack = tcp->tcp_rnxt;
18025 
18026 	if ((mp1 = dupb(mp)) == 0)
18027 		goto no_memory;
18028 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
18029 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
18030 
18031 	/* adjust tcp header information */
18032 	tcph = tcp->tcp_tcph;
18033 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
18034 
18035 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
18036 	sum = (sum >> 16) + (sum & 0xFFFF);
18037 	U16_TO_ABE16(sum, tcph->th_sum);
18038 
18039 	U32_TO_ABE32(snxt, tcph->th_seq);
18040 
18041 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
18042 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
18043 	BUMP_LOCAL(tcp->tcp_obsegs);
18044 
18045 	/* Update the latest receive window size in TCP header. */
18046 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18047 	    tcph->th_win);
18048 
18049 	tcp->tcp_last_sent_len = (ushort_t)len;
18050 
18051 	plen = len + tcp->tcp_hdr_len;
18052 
18053 	if (tcp->tcp_ipversion == IPV4_VERSION) {
18054 		tcp->tcp_ipha->ipha_length = htons(plen);
18055 	} else {
18056 		tcp->tcp_ip6h->ip6_plen = htons(plen -
18057 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
18058 	}
18059 
18060 	/* see if we need to allocate a mblk for the headers */
18061 	hdrlen = tcp->tcp_hdr_len;
18062 	rptr = mp1->b_rptr - hdrlen;
18063 	db = mp1->b_datap;
18064 	if ((db->db_ref != 2) || rptr < db->db_base ||
18065 	    (!OK_32PTR(rptr))) {
18066 		/* NOTE: we assume allocb returns an OK_32PTR */
18067 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
18068 		    tcps->tcps_wroff_xtra, BPRI_MED);
18069 		if (!mp) {
18070 			freemsg(mp1);
18071 			goto no_memory;
18072 		}
18073 		mp->b_cont = mp1;
18074 		mp1 = mp;
18075 		/* Leave room for Link Level header */
18076 		/* hdrlen = tcp->tcp_hdr_len; */
18077 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
18078 		mp1->b_wptr = &rptr[hdrlen];
18079 	}
18080 	mp1->b_rptr = rptr;
18081 
18082 	/* Fill in the timestamp option. */
18083 	if (tcp->tcp_snd_ts_ok) {
18084 		U32_TO_BE32((uint32_t)lbolt,
18085 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
18086 		U32_TO_BE32(tcp->tcp_ts_recent,
18087 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
18088 	} else {
18089 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18090 	}
18091 
18092 	/* copy header into outgoing packet */
18093 	dst = (ipaddr_t *)rptr;
18094 	src = (ipaddr_t *)tcp->tcp_iphc;
18095 	dst[0] = src[0];
18096 	dst[1] = src[1];
18097 	dst[2] = src[2];
18098 	dst[3] = src[3];
18099 	dst[4] = src[4];
18100 	dst[5] = src[5];
18101 	dst[6] = src[6];
18102 	dst[7] = src[7];
18103 	dst[8] = src[8];
18104 	dst[9] = src[9];
18105 	if (hdrlen -= 40) {
18106 		hdrlen >>= 2;
18107 		dst += 10;
18108 		src += 10;
18109 		do {
18110 			*dst++ = *src++;
18111 		} while (--hdrlen);
18112 	}
18113 
18114 	/*
18115 	 * Set the ECN info in the TCP header.  Note that this
18116 	 * is not the template header.
18117 	 */
18118 	if (tcp->tcp_ecn_ok) {
18119 		SET_ECT(tcp, rptr);
18120 
18121 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18122 		if (tcp->tcp_ecn_echo_on)
18123 			tcph->th_flags[0] |= TH_ECE;
18124 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18125 			tcph->th_flags[0] |= TH_CWR;
18126 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18127 		}
18128 	}
18129 
18130 	if (tcp->tcp_ip_forward_progress) {
18131 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
18132 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
18133 		tcp->tcp_ip_forward_progress = B_FALSE;
18134 	}
18135 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
18136 	return;
18137 
18138 	/*
18139 	 * If we ran out of memory, we pretend to have sent the packet
18140 	 * and that it was lost on the wire.
18141 	 */
18142 no_memory:
18143 	return;
18144 
18145 slow:
18146 	/* leftover work from above */
18147 	tcp->tcp_unsent = len;
18148 	tcp->tcp_xmit_tail_unsent = len;
18149 	tcp_wput_data(tcp, NULL, B_FALSE);
18150 }
18151 
18152 /*
18153  * The function called through squeue to get behind eager's perimeter to
18154  * finish the accept processing.
18155  */
18156 /* ARGSUSED */
18157 void
18158 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
18159 {
18160 	conn_t			*connp = (conn_t *)arg;
18161 	tcp_t			*tcp = connp->conn_tcp;
18162 	queue_t			*q = tcp->tcp_rq;
18163 	mblk_t			*mp1;
18164 	mblk_t			*stropt_mp = mp;
18165 	struct  stroptions	*stropt;
18166 	uint_t			thwin;
18167 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18168 
18169 	/*
18170 	 * Drop the eager's ref on the listener, that was placed when
18171 	 * this eager began life in tcp_conn_request.
18172 	 */
18173 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
18174 
18175 	tcp->tcp_detached = B_FALSE;
18176 
18177 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
18178 		/*
18179 		 * Someone blewoff the eager before we could finish
18180 		 * the accept.
18181 		 *
18182 		 * The only reason eager exists it because we put in
18183 		 * a ref on it when conn ind went up. We need to send
18184 		 * a disconnect indication up while the last reference
18185 		 * on the eager will be dropped by the squeue when we
18186 		 * return.
18187 		 */
18188 		ASSERT(tcp->tcp_listener == NULL);
18189 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
18190 			struct	T_discon_ind	*tdi;
18191 
18192 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
18193 			/*
18194 			 * Let us reuse the incoming mblk to avoid memory
18195 			 * allocation failure problems. We know that the
18196 			 * size of the incoming mblk i.e. stroptions is greater
18197 			 * than sizeof T_discon_ind. So the reallocb below
18198 			 * can't fail.
18199 			 */
18200 			freemsg(mp->b_cont);
18201 			mp->b_cont = NULL;
18202 			ASSERT(DB_REF(mp) == 1);
18203 			mp = reallocb(mp, sizeof (struct T_discon_ind),
18204 			    B_FALSE);
18205 			ASSERT(mp != NULL);
18206 			DB_TYPE(mp) = M_PROTO;
18207 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
18208 			tdi = (struct T_discon_ind *)mp->b_rptr;
18209 			if (tcp->tcp_issocket) {
18210 				tdi->DISCON_reason = ECONNREFUSED;
18211 				tdi->SEQ_number = 0;
18212 			} else {
18213 				tdi->DISCON_reason = ENOPROTOOPT;
18214 				tdi->SEQ_number =
18215 				    tcp->tcp_conn_req_seqnum;
18216 			}
18217 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
18218 			putnext(q, mp);
18219 		} else {
18220 			freemsg(mp);
18221 		}
18222 		if (tcp->tcp_hard_binding) {
18223 			tcp->tcp_hard_binding = B_FALSE;
18224 			tcp->tcp_hard_bound = B_TRUE;
18225 		}
18226 		return;
18227 	}
18228 
18229 	mp1 = stropt_mp->b_cont;
18230 	stropt_mp->b_cont = NULL;
18231 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
18232 	stropt = (struct stroptions *)stropt_mp->b_rptr;
18233 
18234 	while (mp1 != NULL) {
18235 		mp = mp1;
18236 		mp1 = mp1->b_cont;
18237 		mp->b_cont = NULL;
18238 		tcp->tcp_drop_opt_ack_cnt++;
18239 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
18240 	}
18241 	mp = NULL;
18242 
18243 	/*
18244 	 * For a loopback connection with tcp_direct_sockfs on, note that
18245 	 * we don't have to protect tcp_rcv_list yet because synchronous
18246 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18247 	 * possibly race with us.
18248 	 */
18249 
18250 	/*
18251 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18252 	 * properly.  This is the first time we know of the acceptor'
18253 	 * queue.  So we do it here.
18254 	 */
18255 	if (tcp->tcp_rcv_list == NULL) {
18256 		/*
18257 		 * Recv queue is empty, tcp_rwnd should not have changed.
18258 		 * That means it should be equal to the listener's tcp_rwnd.
18259 		 */
18260 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18261 	} else {
18262 #ifdef DEBUG
18263 		uint_t cnt = 0;
18264 
18265 		mp1 = tcp->tcp_rcv_list;
18266 		while ((mp = mp1) != NULL) {
18267 			mp1 = mp->b_next;
18268 			cnt += msgdsize(mp);
18269 		}
18270 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18271 #endif
18272 		/* There is some data, add them back to get the max. */
18273 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18274 	}
18275 	/*
18276 	 * This is the first time we run on the correct
18277 	 * queue after tcp_accept. So fix all the q parameters
18278 	 * here.
18279 	 */
18280 	stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF;
18281 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18282 
18283 	/*
18284 	 * Record the stream head's high water mark for this endpoint;
18285 	 * this is used for flow-control purposes.
18286 	 */
18287 	stropt->so_hiwat = tcp->tcp_fused ?
18288 	    tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) :
18289 	    MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18290 
18291 	/*
18292 	 * Determine what write offset value to use depending on SACK and
18293 	 * whether the endpoint is fused or not.
18294 	 */
18295 	if (tcp->tcp_fused) {
18296 		ASSERT(tcp->tcp_loopback);
18297 		ASSERT(tcp->tcp_loopback_peer != NULL);
18298 		/*
18299 		 * For fused tcp loopback, set the stream head's write
18300 		 * offset value to zero since we won't be needing any room
18301 		 * for TCP/IP headers.  This would also improve performance
18302 		 * since it would reduce the amount of work done by kmem.
18303 		 * Non-fused tcp loopback case is handled separately below.
18304 		 */
18305 		stropt->so_wroff = 0;
18306 		/*
18307 		 * Update the peer's transmit parameters according to
18308 		 * our recently calculated high water mark value.
18309 		 */
18310 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18311 	} else if (tcp->tcp_snd_sack_ok) {
18312 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18313 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18314 	} else {
18315 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18316 		    tcps->tcps_wroff_xtra);
18317 	}
18318 
18319 	/*
18320 	 * If this is endpoint is handling SSL, then reserve extra
18321 	 * offset and space at the end.
18322 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18323 	 * overriding the previous setting. The extra cost of signing and
18324 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18325 	 * instead of a single contiguous one by the stream head
18326 	 * largely outweighs the statistical reduction of ACKs, when
18327 	 * applicable. The peer will also save on decryption and verification
18328 	 * costs.
18329 	 */
18330 	if (tcp->tcp_kssl_ctx != NULL) {
18331 		stropt->so_wroff += SSL3_WROFFSET;
18332 
18333 		stropt->so_flags |= SO_TAIL;
18334 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18335 
18336 		stropt->so_flags |= SO_COPYOPT;
18337 		stropt->so_copyopt = ZCVMUNSAFE;
18338 
18339 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18340 	}
18341 
18342 	/* Send the options up */
18343 	putnext(q, stropt_mp);
18344 
18345 	/*
18346 	 * Pass up any data and/or a fin that has been received.
18347 	 *
18348 	 * Adjust receive window in case it had decreased
18349 	 * (because there is data <=> tcp_rcv_list != NULL)
18350 	 * while the connection was detached. Note that
18351 	 * in case the eager was flow-controlled, w/o this
18352 	 * code, the rwnd may never open up again!
18353 	 */
18354 	if (tcp->tcp_rcv_list != NULL) {
18355 		/* We drain directly in case of fused tcp loopback */
18356 		sodirect_t *sodp;
18357 
18358 		if (!tcp->tcp_fused && canputnext(q)) {
18359 			tcp->tcp_rwnd = q->q_hiwat;
18360 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18361 			    << tcp->tcp_rcv_ws;
18362 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18363 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18364 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18365 				tcp_xmit_ctl(NULL,
18366 				    tcp, (tcp->tcp_swnd == 0) ?
18367 				    tcp->tcp_suna : tcp->tcp_snxt,
18368 				    tcp->tcp_rnxt, TH_ACK);
18369 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18370 			}
18371 
18372 		}
18373 
18374 		SOD_PTR_ENTER(tcp, sodp);
18375 		if (sodp != NULL) {
18376 			/* Sodirect, move from rcv_list */
18377 			ASSERT(!tcp->tcp_fused);
18378 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18379 				tcp->tcp_rcv_list = mp->b_next;
18380 				mp->b_next = NULL;
18381 				(void) tcp_rcv_sod_enqueue(tcp, sodp, mp,
18382 				    msgdsize(mp));
18383 			}
18384 			tcp->tcp_rcv_last_head = NULL;
18385 			tcp->tcp_rcv_last_tail = NULL;
18386 			tcp->tcp_rcv_cnt = 0;
18387 			(void) tcp_rcv_sod_wakeup(tcp, sodp);
18388 			/* sod_wakeup() did the mutex_exit() */
18389 		} else {
18390 			/* Not sodirect, drain */
18391 			(void) tcp_rcv_drain(q, tcp);
18392 		}
18393 
18394 		/*
18395 		 * For fused tcp loopback, back-enable peer endpoint
18396 		 * if it's currently flow-controlled.
18397 		 */
18398 		if (tcp->tcp_fused) {
18399 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18400 
18401 			ASSERT(peer_tcp != NULL);
18402 			ASSERT(peer_tcp->tcp_fused);
18403 			/*
18404 			 * In order to change the peer's tcp_flow_stopped,
18405 			 * we need to take locks for both end points. The
18406 			 * highest address is taken first.
18407 			 */
18408 			if (peer_tcp > tcp) {
18409 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18410 				mutex_enter(&tcp->tcp_non_sq_lock);
18411 			} else {
18412 				mutex_enter(&tcp->tcp_non_sq_lock);
18413 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18414 			}
18415 			if (peer_tcp->tcp_flow_stopped) {
18416 				tcp_clrqfull(peer_tcp);
18417 				TCP_STAT(tcps, tcp_fusion_backenabled);
18418 			}
18419 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18420 			mutex_exit(&tcp->tcp_non_sq_lock);
18421 		}
18422 	}
18423 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18424 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18425 		mp = tcp->tcp_ordrel_mp;
18426 		tcp->tcp_ordrel_mp = NULL;
18427 		tcp->tcp_ordrel_done = B_TRUE;
18428 		putnext(q, mp);
18429 	}
18430 	if (tcp->tcp_hard_binding) {
18431 		tcp->tcp_hard_binding = B_FALSE;
18432 		tcp->tcp_hard_bound = B_TRUE;
18433 	}
18434 
18435 	/* We can enable synchronous streams now */
18436 	if (tcp->tcp_fused) {
18437 		tcp_fuse_syncstr_enable_pair(tcp);
18438 	}
18439 
18440 	if (tcp->tcp_ka_enabled) {
18441 		tcp->tcp_ka_last_intrvl = 0;
18442 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18443 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18444 	}
18445 
18446 	/*
18447 	 * At this point, eager is fully established and will
18448 	 * have the following references -
18449 	 *
18450 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18451 	 * 1 reference for the squeue which will be dropped by the squeue as
18452 	 *	soon as this function returns.
18453 	 * There will be 1 additonal reference for being in classifier
18454 	 *	hash list provided something bad hasn't happened.
18455 	 */
18456 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18457 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18458 }
18459 
18460 /*
18461  * The function called through squeue to get behind listener's perimeter to
18462  * send a deffered conn_ind.
18463  */
18464 /* ARGSUSED */
18465 void
18466 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18467 {
18468 	conn_t	*connp = (conn_t *)arg;
18469 	tcp_t *listener = connp->conn_tcp;
18470 
18471 	if (listener->tcp_state == TCPS_CLOSED ||
18472 	    TCP_IS_DETACHED(listener)) {
18473 		/*
18474 		 * If listener has closed, it would have caused a
18475 		 * a cleanup/blowoff to happen for the eager.
18476 		 */
18477 		tcp_t *tcp;
18478 		struct T_conn_ind	*conn_ind;
18479 
18480 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18481 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18482 		    conn_ind->OPT_length);
18483 		/*
18484 		 * We need to drop the ref on eager that was put
18485 		 * tcp_rput_data() before trying to send the conn_ind
18486 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18487 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18488 		 * listener is closed so we drop the ref.
18489 		 */
18490 		CONN_DEC_REF(tcp->tcp_connp);
18491 		freemsg(mp);
18492 		return;
18493 	}
18494 	putnext(listener->tcp_rq, mp);
18495 }
18496 
18497 
18498 /*
18499  * This is the STREAMS entry point for T_CONN_RES coming down on
18500  * Acceptor STREAM when  sockfs listener does accept processing.
18501  * Read the block comment on top of tcp_conn_request().
18502  */
18503 void
18504 tcp_wput_accept(queue_t *q, mblk_t *mp)
18505 {
18506 	queue_t *rq = RD(q);
18507 	struct T_conn_res *conn_res;
18508 	tcp_t *eager;
18509 	tcp_t *listener;
18510 	struct T_ok_ack *ok;
18511 	t_scalar_t PRIM_type;
18512 	mblk_t *opt_mp;
18513 	conn_t *econnp;
18514 
18515 	ASSERT(DB_TYPE(mp) == M_PROTO);
18516 
18517 	conn_res = (struct T_conn_res *)mp->b_rptr;
18518 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18519 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18520 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18521 		if (mp != NULL)
18522 			putnext(rq, mp);
18523 		return;
18524 	}
18525 	switch (conn_res->PRIM_type) {
18526 	case O_T_CONN_RES:
18527 	case T_CONN_RES:
18528 		/*
18529 		 * We pass up an err ack if allocb fails. This will
18530 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18531 		 * tcp_eager_blowoff to be called. sockfs will then call
18532 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18533 		 * we need to do the allocb up here because we have to
18534 		 * make sure rq->q_qinfo->qi_qclose still points to the
18535 		 * correct function (tcpclose_accept) in case allocb
18536 		 * fails.
18537 		 */
18538 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18539 		if (opt_mp == NULL) {
18540 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18541 			if (mp != NULL)
18542 				putnext(rq, mp);
18543 			return;
18544 		}
18545 
18546 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18547 		    &eager, conn_res->OPT_length);
18548 		PRIM_type = conn_res->PRIM_type;
18549 		mp->b_datap->db_type = M_PCPROTO;
18550 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18551 		ok = (struct T_ok_ack *)mp->b_rptr;
18552 		ok->PRIM_type = T_OK_ACK;
18553 		ok->CORRECT_prim = PRIM_type;
18554 		econnp = eager->tcp_connp;
18555 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18556 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18557 		eager->tcp_rq = rq;
18558 		eager->tcp_wq = q;
18559 		rq->q_ptr = econnp;
18560 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18561 		q->q_ptr = econnp;
18562 		q->q_qinfo = &tcp_winit;
18563 		listener = eager->tcp_listener;
18564 		eager->tcp_issocket = B_TRUE;
18565 
18566 		/*
18567 		 * TCP is _D_SODIRECT and sockfs is directly above so
18568 		 * save shared sodirect_t pointer (if any).
18569 		 *
18570 		 * If tcp_fused and sodirect enabled disable it.
18571 		 */
18572 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18573 		if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18574 			/* Fused, disable sodirect */
18575 			mutex_enter(eager->tcp_sodirect->sod_lockp);
18576 			SOD_DISABLE(eager->tcp_sodirect);
18577 			mutex_exit(eager->tcp_sodirect->sod_lockp);
18578 			eager->tcp_sodirect = NULL;
18579 		}
18580 
18581 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18582 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18583 		ASSERT(econnp->conn_netstack ==
18584 		    listener->tcp_connp->conn_netstack);
18585 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18586 
18587 		/* Put the ref for IP */
18588 		CONN_INC_REF(econnp);
18589 
18590 		/*
18591 		 * We should have minimum of 3 references on the conn
18592 		 * at this point. One each for TCP and IP and one for
18593 		 * the T_conn_ind that was sent up when the 3-way handshake
18594 		 * completed. In the normal case we would also have another
18595 		 * reference (making a total of 4) for the conn being in the
18596 		 * classifier hash list. However the eager could have received
18597 		 * an RST subsequently and tcp_closei_local could have removed
18598 		 * the eager from the classifier hash list, hence we can't
18599 		 * assert that reference.
18600 		 */
18601 		ASSERT(econnp->conn_ref >= 3);
18602 
18603 		/*
18604 		 * Send the new local address also up to sockfs. There
18605 		 * should already be enough space in the mp that came
18606 		 * down from soaccept().
18607 		 */
18608 		if (eager->tcp_family == AF_INET) {
18609 			sin_t *sin;
18610 
18611 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18612 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18613 			sin = (sin_t *)mp->b_wptr;
18614 			mp->b_wptr += sizeof (sin_t);
18615 			sin->sin_family = AF_INET;
18616 			sin->sin_port = eager->tcp_lport;
18617 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18618 		} else {
18619 			sin6_t *sin6;
18620 
18621 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18622 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18623 			sin6 = (sin6_t *)mp->b_wptr;
18624 			mp->b_wptr += sizeof (sin6_t);
18625 			sin6->sin6_family = AF_INET6;
18626 			sin6->sin6_port = eager->tcp_lport;
18627 			if (eager->tcp_ipversion == IPV4_VERSION) {
18628 				sin6->sin6_flowinfo = 0;
18629 				IN6_IPADDR_TO_V4MAPPED(
18630 				    eager->tcp_ipha->ipha_src,
18631 				    &sin6->sin6_addr);
18632 			} else {
18633 				ASSERT(eager->tcp_ip6h != NULL);
18634 				sin6->sin6_flowinfo =
18635 				    eager->tcp_ip6h->ip6_vcf &
18636 				    ~IPV6_VERS_AND_FLOW_MASK;
18637 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18638 			}
18639 			sin6->sin6_scope_id = 0;
18640 			sin6->__sin6_src_id = 0;
18641 		}
18642 
18643 		putnext(rq, mp);
18644 
18645 		opt_mp->b_datap->db_type = M_SETOPTS;
18646 		opt_mp->b_wptr += sizeof (struct stroptions);
18647 
18648 		/*
18649 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18650 		 * from listener to acceptor. The message is chained on the
18651 		 * bind_mp which tcp_rput_other will send down to IP.
18652 		 */
18653 		if (listener->tcp_bound_if != 0) {
18654 			/* allocate optmgmt req */
18655 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18656 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18657 			    sizeof (int));
18658 			if (mp != NULL)
18659 				linkb(opt_mp, mp);
18660 		}
18661 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18662 			uint_t on = 1;
18663 
18664 			/* allocate optmgmt req */
18665 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18666 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18667 			if (mp != NULL)
18668 				linkb(opt_mp, mp);
18669 		}
18670 
18671 
18672 		mutex_enter(&listener->tcp_eager_lock);
18673 
18674 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18675 
18676 			tcp_t *tail;
18677 			tcp_t *tcp;
18678 			mblk_t *mp1;
18679 
18680 			tcp = listener->tcp_eager_prev_q0;
18681 			/*
18682 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18683 			 * deferred T_conn_ind queue. We need to get to the head
18684 			 * of the queue in order to send up T_conn_ind the same
18685 			 * order as how the 3WHS is completed.
18686 			 */
18687 			while (tcp != listener) {
18688 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18689 				    !tcp->tcp_kssl_pending)
18690 					break;
18691 				else
18692 					tcp = tcp->tcp_eager_prev_q0;
18693 			}
18694 			/* None of the pending eagers can be sent up now */
18695 			if (tcp == listener)
18696 				goto no_more_eagers;
18697 
18698 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18699 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18700 			/* Move from q0 to q */
18701 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18702 			listener->tcp_conn_req_cnt_q0--;
18703 			listener->tcp_conn_req_cnt_q++;
18704 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18705 			    tcp->tcp_eager_prev_q0;
18706 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18707 			    tcp->tcp_eager_next_q0;
18708 			tcp->tcp_eager_prev_q0 = NULL;
18709 			tcp->tcp_eager_next_q0 = NULL;
18710 			tcp->tcp_conn_def_q0 = B_FALSE;
18711 
18712 			/* Make sure the tcp isn't in the list of droppables */
18713 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18714 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18715 
18716 			/*
18717 			 * Insert at end of the queue because sockfs sends
18718 			 * down T_CONN_RES in chronological order. Leaving
18719 			 * the older conn indications at front of the queue
18720 			 * helps reducing search time.
18721 			 */
18722 			tail = listener->tcp_eager_last_q;
18723 			if (tail != NULL) {
18724 				tail->tcp_eager_next_q = tcp;
18725 			} else {
18726 				listener->tcp_eager_next_q = tcp;
18727 			}
18728 			listener->tcp_eager_last_q = tcp;
18729 			tcp->tcp_eager_next_q = NULL;
18730 
18731 			/* Need to get inside the listener perimeter */
18732 			CONN_INC_REF(listener->tcp_connp);
18733 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18734 			    tcp_send_pending, listener->tcp_connp,
18735 			    SQTAG_TCP_SEND_PENDING);
18736 		}
18737 no_more_eagers:
18738 		tcp_eager_unlink(eager);
18739 		mutex_exit(&listener->tcp_eager_lock);
18740 
18741 		/*
18742 		 * At this point, the eager is detached from the listener
18743 		 * but we still have an extra refs on eager (apart from the
18744 		 * usual tcp references). The ref was placed in tcp_rput_data
18745 		 * before sending the conn_ind in tcp_send_conn_ind.
18746 		 * The ref will be dropped in tcp_accept_finish().
18747 		 */
18748 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18749 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18750 		return;
18751 	default:
18752 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18753 		if (mp != NULL)
18754 			putnext(rq, mp);
18755 		return;
18756 	}
18757 }
18758 
18759 static int
18760 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18761 {
18762 	sin_t *sin = (sin_t *)sa;
18763 	sin6_t *sin6 = (sin6_t *)sa;
18764 
18765 	switch (tcp->tcp_family) {
18766 	case AF_INET:
18767 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18768 
18769 		if (*salenp < sizeof (sin_t))
18770 			return (EINVAL);
18771 
18772 		*sin = sin_null;
18773 		sin->sin_family = AF_INET;
18774 		sin->sin_port = tcp->tcp_lport;
18775 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18776 		break;
18777 
18778 	case AF_INET6:
18779 		if (*salenp < sizeof (sin6_t))
18780 			return (EINVAL);
18781 
18782 		*sin6 = sin6_null;
18783 		sin6->sin6_family = AF_INET6;
18784 		sin6->sin6_port = tcp->tcp_lport;
18785 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18786 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18787 			    &sin6->sin6_addr);
18788 		} else {
18789 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18790 		}
18791 		break;
18792 	}
18793 
18794 	return (0);
18795 }
18796 
18797 static int
18798 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18799 {
18800 	sin_t *sin = (sin_t *)sa;
18801 	sin6_t *sin6 = (sin6_t *)sa;
18802 
18803 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18804 		return (ENOTCONN);
18805 
18806 	switch (tcp->tcp_family) {
18807 	case AF_INET:
18808 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18809 
18810 		if (*salenp < sizeof (sin_t))
18811 			return (EINVAL);
18812 
18813 		*sin = sin_null;
18814 		sin->sin_family = AF_INET;
18815 		sin->sin_port = tcp->tcp_fport;
18816 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18817 		    sin->sin_addr.s_addr);
18818 		break;
18819 
18820 	case AF_INET6:
18821 		if (*salenp < sizeof (sin6_t))
18822 			return (EINVAL);
18823 
18824 		*sin6 = sin6_null;
18825 		sin6->sin6_family = AF_INET6;
18826 		sin6->sin6_port = tcp->tcp_fport;
18827 		sin6->sin6_addr = tcp->tcp_remote_v6;
18828 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18829 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18830 			    ~IPV6_VERS_AND_FLOW_MASK;
18831 		}
18832 		break;
18833 	}
18834 
18835 	return (0);
18836 }
18837 
18838 /*
18839  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18840  */
18841 static void
18842 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18843 {
18844 	void	*data;
18845 	mblk_t	*datamp = mp->b_cont;
18846 	tcp_t	*tcp = Q_TO_TCP(q);
18847 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18848 
18849 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18850 		cmdp->cb_error = EPROTO;
18851 		qreply(q, mp);
18852 		return;
18853 	}
18854 
18855 	data = datamp->b_rptr;
18856 
18857 	switch (cmdp->cb_cmd) {
18858 	case TI_GETPEERNAME:
18859 		cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len);
18860 		break;
18861 	case TI_GETMYNAME:
18862 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
18863 		break;
18864 	default:
18865 		cmdp->cb_error = EINVAL;
18866 		break;
18867 	}
18868 
18869 	qreply(q, mp);
18870 }
18871 
18872 void
18873 tcp_wput(queue_t *q, mblk_t *mp)
18874 {
18875 	conn_t	*connp = Q_TO_CONN(q);
18876 	tcp_t	*tcp;
18877 	void (*output_proc)();
18878 	t_scalar_t type;
18879 	uchar_t *rptr;
18880 	struct iocblk	*iocp;
18881 	uint32_t	msize;
18882 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18883 
18884 	ASSERT(connp->conn_ref >= 2);
18885 
18886 	switch (DB_TYPE(mp)) {
18887 	case M_DATA:
18888 		tcp = connp->conn_tcp;
18889 		ASSERT(tcp != NULL);
18890 
18891 		msize = msgdsize(mp);
18892 
18893 		mutex_enter(&tcp->tcp_non_sq_lock);
18894 		tcp->tcp_squeue_bytes += msize;
18895 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18896 			tcp_setqfull(tcp);
18897 		}
18898 		mutex_exit(&tcp->tcp_non_sq_lock);
18899 
18900 		CONN_INC_REF(connp);
18901 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18902 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18903 		return;
18904 
18905 	case M_CMD:
18906 		tcp_wput_cmdblk(q, mp);
18907 		return;
18908 
18909 	case M_PROTO:
18910 	case M_PCPROTO:
18911 		/*
18912 		 * if it is a snmp message, don't get behind the squeue
18913 		 */
18914 		tcp = connp->conn_tcp;
18915 		rptr = mp->b_rptr;
18916 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18917 			type = ((union T_primitives *)rptr)->type;
18918 		} else {
18919 			if (tcp->tcp_debug) {
18920 				(void) strlog(TCP_MOD_ID, 0, 1,
18921 				    SL_ERROR|SL_TRACE,
18922 				    "tcp_wput_proto, dropping one...");
18923 			}
18924 			freemsg(mp);
18925 			return;
18926 		}
18927 		if (type == T_SVR4_OPTMGMT_REQ) {
18928 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18929 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18930 			    cr)) {
18931 				/*
18932 				 * This was a SNMP request
18933 				 */
18934 				return;
18935 			} else {
18936 				output_proc = tcp_wput_proto;
18937 			}
18938 		} else {
18939 			output_proc = tcp_wput_proto;
18940 		}
18941 		break;
18942 	case M_IOCTL:
18943 		/*
18944 		 * Most ioctls can be processed right away without going via
18945 		 * squeues - process them right here. Those that do require
18946 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18947 		 * are processed by tcp_wput_ioctl().
18948 		 */
18949 		iocp = (struct iocblk *)mp->b_rptr;
18950 		tcp = connp->conn_tcp;
18951 
18952 		switch (iocp->ioc_cmd) {
18953 		case TCP_IOC_ABORT_CONN:
18954 			tcp_ioctl_abort_conn(q, mp);
18955 			return;
18956 		case TI_GETPEERNAME:
18957 		case TI_GETMYNAME:
18958 			mi_copyin(q, mp, NULL,
18959 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18960 			return;
18961 		case ND_SET:
18962 			/* nd_getset does the necessary checks */
18963 		case ND_GET:
18964 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18965 				CALL_IP_WPUT(connp, q, mp);
18966 				return;
18967 			}
18968 			qreply(q, mp);
18969 			return;
18970 		case TCP_IOC_DEFAULT_Q:
18971 			/*
18972 			 * Wants to be the default wq. Check the credentials
18973 			 * first, the rest is executed via squeue.
18974 			 */
18975 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18976 				iocp->ioc_error = EPERM;
18977 				iocp->ioc_count = 0;
18978 				mp->b_datap->db_type = M_IOCACK;
18979 				qreply(q, mp);
18980 				return;
18981 			}
18982 			output_proc = tcp_wput_ioctl;
18983 			break;
18984 		default:
18985 			output_proc = tcp_wput_ioctl;
18986 			break;
18987 		}
18988 		break;
18989 	default:
18990 		output_proc = tcp_wput_nondata;
18991 		break;
18992 	}
18993 
18994 	CONN_INC_REF(connp);
18995 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18996 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18997 }
18998 
18999 /*
19000  * Initial STREAMS write side put() procedure for sockets. It tries to
19001  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
19002  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
19003  * are handled by tcp_wput() as usual.
19004  *
19005  * All further messages will also be handled by tcp_wput() because we cannot
19006  * be sure that the above short cut is safe later.
19007  */
19008 static void
19009 tcp_wput_sock(queue_t *wq, mblk_t *mp)
19010 {
19011 	conn_t			*connp = Q_TO_CONN(wq);
19012 	tcp_t			*tcp = connp->conn_tcp;
19013 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
19014 
19015 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
19016 	wq->q_qinfo = &tcp_winit;
19017 
19018 	ASSERT(IPCL_IS_TCP(connp));
19019 	ASSERT(TCP_IS_SOCKET(tcp));
19020 
19021 	if (DB_TYPE(mp) == M_PCPROTO &&
19022 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
19023 	    car->PRIM_type == T_CAPABILITY_REQ) {
19024 		tcp_capability_req(tcp, mp);
19025 		return;
19026 	}
19027 
19028 	tcp_wput(wq, mp);
19029 }
19030 
19031 static boolean_t
19032 tcp_zcopy_check(tcp_t *tcp)
19033 {
19034 	conn_t	*connp = tcp->tcp_connp;
19035 	ire_t	*ire;
19036 	boolean_t	zc_enabled = B_FALSE;
19037 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19038 
19039 	if (do_tcpzcopy == 2)
19040 		zc_enabled = B_TRUE;
19041 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
19042 	    IPCL_IS_CONNECTED(connp) &&
19043 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
19044 	    connp->conn_dontroute == 0 &&
19045 	    !connp->conn_nexthop_set &&
19046 	    connp->conn_outgoing_ill == NULL &&
19047 	    connp->conn_nofailover_ill == NULL &&
19048 	    do_tcpzcopy == 1) {
19049 		/*
19050 		 * the checks above  closely resemble the fast path checks
19051 		 * in tcp_send_data().
19052 		 */
19053 		mutex_enter(&connp->conn_lock);
19054 		ire = connp->conn_ire_cache;
19055 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19056 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19057 			IRE_REFHOLD(ire);
19058 			if (ire->ire_stq != NULL) {
19059 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
19060 
19061 				zc_enabled = ill && (ill->ill_capabilities &
19062 				    ILL_CAPAB_ZEROCOPY) &&
19063 				    (ill->ill_zerocopy_capab->
19064 				    ill_zerocopy_flags != 0);
19065 			}
19066 			IRE_REFRELE(ire);
19067 		}
19068 		mutex_exit(&connp->conn_lock);
19069 	}
19070 	tcp->tcp_snd_zcopy_on = zc_enabled;
19071 	if (!TCP_IS_DETACHED(tcp)) {
19072 		if (zc_enabled) {
19073 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
19074 			TCP_STAT(tcps, tcp_zcopy_on);
19075 		} else {
19076 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19077 			TCP_STAT(tcps, tcp_zcopy_off);
19078 		}
19079 	}
19080 	return (zc_enabled);
19081 }
19082 
19083 static mblk_t *
19084 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19085 {
19086 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19087 
19088 	if (do_tcpzcopy == 2)
19089 		return (bp);
19090 	else if (tcp->tcp_snd_zcopy_on) {
19091 		tcp->tcp_snd_zcopy_on = B_FALSE;
19092 		if (!TCP_IS_DETACHED(tcp)) {
19093 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19094 			TCP_STAT(tcps, tcp_zcopy_disable);
19095 		}
19096 	}
19097 	return (tcp_zcopy_backoff(tcp, bp, 0));
19098 }
19099 
19100 /*
19101  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19102  * the original desballoca'ed segmapped mblk.
19103  */
19104 static mblk_t *
19105 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19106 {
19107 	mblk_t *head, *tail, *nbp;
19108 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19109 
19110 	if (IS_VMLOANED_MBLK(bp)) {
19111 		TCP_STAT(tcps, tcp_zcopy_backoff);
19112 		if ((head = copyb(bp)) == NULL) {
19113 			/* fail to backoff; leave it for the next backoff */
19114 			tcp->tcp_xmit_zc_clean = B_FALSE;
19115 			return (bp);
19116 		}
19117 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19118 			if (fix_xmitlist)
19119 				tcp_zcopy_notify(tcp);
19120 			else
19121 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19122 		}
19123 		nbp = bp->b_cont;
19124 		if (fix_xmitlist) {
19125 			head->b_prev = bp->b_prev;
19126 			head->b_next = bp->b_next;
19127 			if (tcp->tcp_xmit_tail == bp)
19128 				tcp->tcp_xmit_tail = head;
19129 		}
19130 		bp->b_next = NULL;
19131 		bp->b_prev = NULL;
19132 		freeb(bp);
19133 	} else {
19134 		head = bp;
19135 		nbp = bp->b_cont;
19136 	}
19137 	tail = head;
19138 	while (nbp) {
19139 		if (IS_VMLOANED_MBLK(nbp)) {
19140 			TCP_STAT(tcps, tcp_zcopy_backoff);
19141 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19142 				tcp->tcp_xmit_zc_clean = B_FALSE;
19143 				tail->b_cont = nbp;
19144 				return (head);
19145 			}
19146 			tail = tail->b_cont;
19147 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19148 				if (fix_xmitlist)
19149 					tcp_zcopy_notify(tcp);
19150 				else
19151 					tail->b_datap->db_struioflag |=
19152 					    STRUIO_ZCNOTIFY;
19153 			}
19154 			bp = nbp;
19155 			nbp = nbp->b_cont;
19156 			if (fix_xmitlist) {
19157 				tail->b_prev = bp->b_prev;
19158 				tail->b_next = bp->b_next;
19159 				if (tcp->tcp_xmit_tail == bp)
19160 					tcp->tcp_xmit_tail = tail;
19161 			}
19162 			bp->b_next = NULL;
19163 			bp->b_prev = NULL;
19164 			freeb(bp);
19165 		} else {
19166 			tail->b_cont = nbp;
19167 			tail = nbp;
19168 			nbp = nbp->b_cont;
19169 		}
19170 	}
19171 	if (fix_xmitlist) {
19172 		tcp->tcp_xmit_last = tail;
19173 		tcp->tcp_xmit_zc_clean = B_TRUE;
19174 	}
19175 	return (head);
19176 }
19177 
19178 static void
19179 tcp_zcopy_notify(tcp_t *tcp)
19180 {
19181 	struct stdata	*stp;
19182 
19183 	if (tcp->tcp_detached)
19184 		return;
19185 	stp = STREAM(tcp->tcp_rq);
19186 	mutex_enter(&stp->sd_lock);
19187 	stp->sd_flag |= STZCNOTIFY;
19188 	cv_broadcast(&stp->sd_zcopy_wait);
19189 	mutex_exit(&stp->sd_lock);
19190 }
19191 
19192 static boolean_t
19193 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19194 {
19195 	ire_t	*ire;
19196 	conn_t	*connp = tcp->tcp_connp;
19197 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19198 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19199 
19200 	mutex_enter(&connp->conn_lock);
19201 	ire = connp->conn_ire_cache;
19202 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19203 
19204 	if ((ire != NULL) &&
19205 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19206 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19207 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19208 		IRE_REFHOLD(ire);
19209 		mutex_exit(&connp->conn_lock);
19210 	} else {
19211 		boolean_t cached = B_FALSE;
19212 		ts_label_t *tsl;
19213 
19214 		/* force a recheck later on */
19215 		tcp->tcp_ire_ill_check_done = B_FALSE;
19216 
19217 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19218 		connp->conn_ire_cache = NULL;
19219 		mutex_exit(&connp->conn_lock);
19220 
19221 		if (ire != NULL)
19222 			IRE_REFRELE_NOTR(ire);
19223 
19224 		tsl = crgetlabel(CONN_CRED(connp));
19225 		ire = (dst ?
19226 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19227 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19228 		    connp->conn_zoneid, tsl, ipst));
19229 
19230 		if (ire == NULL) {
19231 			TCP_STAT(tcps, tcp_ire_null);
19232 			return (B_FALSE);
19233 		}
19234 
19235 		IRE_REFHOLD_NOTR(ire);
19236 
19237 		mutex_enter(&connp->conn_lock);
19238 		if (CONN_CACHE_IRE(connp)) {
19239 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19240 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19241 				TCP_CHECK_IREINFO(tcp, ire);
19242 				connp->conn_ire_cache = ire;
19243 				cached = B_TRUE;
19244 			}
19245 			rw_exit(&ire->ire_bucket->irb_lock);
19246 		}
19247 		mutex_exit(&connp->conn_lock);
19248 
19249 		/*
19250 		 * We can continue to use the ire but since it was
19251 		 * not cached, we should drop the extra reference.
19252 		 */
19253 		if (!cached)
19254 			IRE_REFRELE_NOTR(ire);
19255 
19256 		/*
19257 		 * Rampart note: no need to select a new label here, since
19258 		 * labels are not allowed to change during the life of a TCP
19259 		 * connection.
19260 		 */
19261 	}
19262 
19263 	*irep = ire;
19264 
19265 	return (B_TRUE);
19266 }
19267 
19268 /*
19269  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19270  *
19271  * 0 = success;
19272  * 1 = failed to find ire and ill.
19273  */
19274 static boolean_t
19275 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19276 {
19277 	ipha_t		*ipha;
19278 	ipaddr_t	dst;
19279 	ire_t		*ire;
19280 	ill_t		*ill;
19281 	conn_t		*connp = tcp->tcp_connp;
19282 	mblk_t		*ire_fp_mp;
19283 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19284 
19285 	if (mp != NULL)
19286 		ipha = (ipha_t *)mp->b_rptr;
19287 	else
19288 		ipha = tcp->tcp_ipha;
19289 	dst = ipha->ipha_dst;
19290 
19291 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19292 		return (B_FALSE);
19293 
19294 	if ((ire->ire_flags & RTF_MULTIRT) ||
19295 	    (ire->ire_stq == NULL) ||
19296 	    (ire->ire_nce == NULL) ||
19297 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19298 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19299 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19300 		TCP_STAT(tcps, tcp_ip_ire_send);
19301 		IRE_REFRELE(ire);
19302 		return (B_FALSE);
19303 	}
19304 
19305 	ill = ire_to_ill(ire);
19306 	if (connp->conn_outgoing_ill != NULL) {
19307 		ill_t *conn_outgoing_ill = NULL;
19308 		/*
19309 		 * Choose a good ill in the group to send the packets on.
19310 		 */
19311 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19312 		ill = ire_to_ill(ire);
19313 	}
19314 	ASSERT(ill != NULL);
19315 
19316 	if (!tcp->tcp_ire_ill_check_done) {
19317 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19318 		tcp->tcp_ire_ill_check_done = B_TRUE;
19319 	}
19320 
19321 	*irep = ire;
19322 	*illp = ill;
19323 
19324 	return (B_TRUE);
19325 }
19326 
19327 static void
19328 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19329 {
19330 	ipha_t		*ipha;
19331 	ipaddr_t	src;
19332 	ipaddr_t	dst;
19333 	uint32_t	cksum;
19334 	ire_t		*ire;
19335 	uint16_t	*up;
19336 	ill_t		*ill;
19337 	conn_t		*connp = tcp->tcp_connp;
19338 	uint32_t	hcksum_txflags = 0;
19339 	mblk_t		*ire_fp_mp;
19340 	uint_t		ire_fp_mp_len;
19341 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19342 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19343 
19344 	ASSERT(DB_TYPE(mp) == M_DATA);
19345 
19346 	if (DB_CRED(mp) == NULL)
19347 		mblk_setcred(mp, CONN_CRED(connp));
19348 
19349 	ipha = (ipha_t *)mp->b_rptr;
19350 	src = ipha->ipha_src;
19351 	dst = ipha->ipha_dst;
19352 
19353 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
19354 
19355 	/*
19356 	 * Drop off fast path for IPv6 and also if options are present or
19357 	 * we need to resolve a TS label.
19358 	 */
19359 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19360 	    !IPCL_IS_CONNECTED(connp) ||
19361 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19362 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19363 	    !connp->conn_ulp_labeled ||
19364 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19365 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19366 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19367 		if (tcp->tcp_snd_zcopy_aware)
19368 			mp = tcp_zcopy_disable(tcp, mp);
19369 		TCP_STAT(tcps, tcp_ip_send);
19370 		CALL_IP_WPUT(connp, q, mp);
19371 		return;
19372 	}
19373 
19374 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19375 		if (tcp->tcp_snd_zcopy_aware)
19376 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19377 		CALL_IP_WPUT(connp, q, mp);
19378 		return;
19379 	}
19380 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19381 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19382 
19383 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19384 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19385 #ifndef _BIG_ENDIAN
19386 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19387 #endif
19388 
19389 	/*
19390 	 * Check to see if we need to re-enable LSO/MDT for this connection
19391 	 * because it was previously disabled due to changes in the ill;
19392 	 * note that by doing it here, this re-enabling only applies when
19393 	 * the packet is not dispatched through CALL_IP_WPUT().
19394 	 *
19395 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19396 	 * case, since that's how we ended up here.  For IPv6, we do the
19397 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19398 	 */
19399 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19400 		/*
19401 		 * Restore LSO for this connection, so that next time around
19402 		 * it is eligible to go through tcp_lsosend() path again.
19403 		 */
19404 		TCP_STAT(tcps, tcp_lso_enabled);
19405 		tcp->tcp_lso = B_TRUE;
19406 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19407 		    "interface %s\n", (void *)connp, ill->ill_name));
19408 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19409 		/*
19410 		 * Restore MDT for this connection, so that next time around
19411 		 * it is eligible to go through tcp_multisend() path again.
19412 		 */
19413 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19414 		tcp->tcp_mdt = B_TRUE;
19415 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19416 		    "interface %s\n", (void *)connp, ill->ill_name));
19417 	}
19418 
19419 	if (tcp->tcp_snd_zcopy_aware) {
19420 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19421 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19422 			mp = tcp_zcopy_disable(tcp, mp);
19423 		/*
19424 		 * we shouldn't need to reset ipha as the mp containing
19425 		 * ipha should never be a zero-copy mp.
19426 		 */
19427 	}
19428 
19429 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19430 		ASSERT(ill->ill_hcksum_capab != NULL);
19431 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19432 	}
19433 
19434 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19435 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19436 
19437 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19438 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19439 
19440 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19441 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19442 
19443 	/* Software checksum? */
19444 	if (DB_CKSUMFLAGS(mp) == 0) {
19445 		TCP_STAT(tcps, tcp_out_sw_cksum);
19446 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19447 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19448 	}
19449 
19450 	ipha->ipha_fragment_offset_and_flags |=
19451 	    (uint32_t)htons(ire->ire_frag_flag);
19452 
19453 	/* Calculate IP header checksum if hardware isn't capable */
19454 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19455 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19456 		    ((uint16_t *)ipha)[4]);
19457 	}
19458 
19459 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19460 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19461 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19462 
19463 	UPDATE_OB_PKT_COUNT(ire);
19464 	ire->ire_last_used_time = lbolt;
19465 
19466 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19467 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19468 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19469 	    ntohs(ipha->ipha_length));
19470 
19471 	if (ILL_DLS_CAPABLE(ill)) {
19472 		/*
19473 		 * Send the packet directly to DLD, where it may be queued
19474 		 * depending on the availability of transmit resources at
19475 		 * the media layer.
19476 		 */
19477 		IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len);
19478 	} else {
19479 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19480 		DTRACE_PROBE4(ip4__physical__out__start,
19481 		    ill_t *, NULL, ill_t *, out_ill,
19482 		    ipha_t *, ipha, mblk_t *, mp);
19483 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19484 		    ipst->ips_ipv4firewall_physical_out,
19485 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19486 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19487 
19488 		if (mp != NULL) {
19489 			if (ipst->ips_ipobs_enabled) {
19490 				ipobs_hook(mp, IPOBS_HOOK_OUTBOUND,
19491 				    IP_REAL_ZONEID(connp->conn_zoneid, ipst),
19492 				    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len,
19493 				    ipst);
19494 			}
19495 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
19496 			putnext(ire->ire_stq, mp);
19497 		}
19498 	}
19499 	IRE_REFRELE(ire);
19500 }
19501 
19502 /*
19503  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19504  * if the receiver shrinks the window, i.e. moves the right window to the
19505  * left, the we should not send new data, but should retransmit normally the
19506  * old unacked data between suna and suna + swnd. We might has sent data
19507  * that is now outside the new window, pretend that we didn't send  it.
19508  */
19509 static void
19510 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19511 {
19512 	uint32_t	snxt = tcp->tcp_snxt;
19513 	mblk_t		*xmit_tail;
19514 	int32_t		offset;
19515 
19516 	ASSERT(shrunk_count > 0);
19517 
19518 	/* Pretend we didn't send the data outside the window */
19519 	snxt -= shrunk_count;
19520 
19521 	/* Get the mblk and the offset in it per the shrunk window */
19522 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19523 
19524 	ASSERT(xmit_tail != NULL);
19525 
19526 	/* Reset all the values per the now shrunk window */
19527 	tcp->tcp_snxt = snxt;
19528 	tcp->tcp_xmit_tail = xmit_tail;
19529 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19530 	    offset;
19531 	tcp->tcp_unsent += shrunk_count;
19532 
19533 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19534 		/*
19535 		 * Make sure the timer is running so that we will probe a zero
19536 		 * window.
19537 		 */
19538 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19539 }
19540 
19541 
19542 /*
19543  * The TCP normal data output path.
19544  * NOTE: the logic of the fast path is duplicated from this function.
19545  */
19546 static void
19547 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19548 {
19549 	int		len;
19550 	mblk_t		*local_time;
19551 	mblk_t		*mp1;
19552 	uint32_t	snxt;
19553 	int		tail_unsent;
19554 	int		tcpstate;
19555 	int		usable = 0;
19556 	mblk_t		*xmit_tail;
19557 	queue_t		*q = tcp->tcp_wq;
19558 	int32_t		mss;
19559 	int32_t		num_sack_blk = 0;
19560 	int32_t		tcp_hdr_len;
19561 	int32_t		tcp_tcp_hdr_len;
19562 	int		mdt_thres;
19563 	int		rc;
19564 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19565 	ip_stack_t	*ipst;
19566 
19567 	tcpstate = tcp->tcp_state;
19568 	if (mp == NULL) {
19569 		/*
19570 		 * tcp_wput_data() with NULL mp should only be called when
19571 		 * there is unsent data.
19572 		 */
19573 		ASSERT(tcp->tcp_unsent > 0);
19574 		/* Really tacky... but we need this for detached closes. */
19575 		len = tcp->tcp_unsent;
19576 		goto data_null;
19577 	}
19578 
19579 #if CCS_STATS
19580 	wrw_stats.tot.count++;
19581 	wrw_stats.tot.bytes += msgdsize(mp);
19582 #endif
19583 	ASSERT(mp->b_datap->db_type == M_DATA);
19584 	/*
19585 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19586 	 * or before a connection attempt has begun.
19587 	 */
19588 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19589 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19590 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19591 #ifdef DEBUG
19592 			cmn_err(CE_WARN,
19593 			    "tcp_wput_data: data after ordrel, %s",
19594 			    tcp_display(tcp, NULL,
19595 			    DISP_ADDR_AND_PORT));
19596 #else
19597 			if (tcp->tcp_debug) {
19598 				(void) strlog(TCP_MOD_ID, 0, 1,
19599 				    SL_TRACE|SL_ERROR,
19600 				    "tcp_wput_data: data after ordrel, %s\n",
19601 				    tcp_display(tcp, NULL,
19602 				    DISP_ADDR_AND_PORT));
19603 			}
19604 #endif /* DEBUG */
19605 		}
19606 		if (tcp->tcp_snd_zcopy_aware &&
19607 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19608 			tcp_zcopy_notify(tcp);
19609 		freemsg(mp);
19610 		mutex_enter(&tcp->tcp_non_sq_lock);
19611 		if (tcp->tcp_flow_stopped &&
19612 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19613 			tcp_clrqfull(tcp);
19614 		}
19615 		mutex_exit(&tcp->tcp_non_sq_lock);
19616 		return;
19617 	}
19618 
19619 	/* Strip empties */
19620 	for (;;) {
19621 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19622 		    (uintptr_t)INT_MAX);
19623 		len = (int)(mp->b_wptr - mp->b_rptr);
19624 		if (len > 0)
19625 			break;
19626 		mp1 = mp;
19627 		mp = mp->b_cont;
19628 		freeb(mp1);
19629 		if (!mp) {
19630 			return;
19631 		}
19632 	}
19633 
19634 	/* If we are the first on the list ... */
19635 	if (tcp->tcp_xmit_head == NULL) {
19636 		tcp->tcp_xmit_head = mp;
19637 		tcp->tcp_xmit_tail = mp;
19638 		tcp->tcp_xmit_tail_unsent = len;
19639 	} else {
19640 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19641 		struct datab *dp;
19642 
19643 		mp1 = tcp->tcp_xmit_last;
19644 		if (len < tcp_tx_pull_len &&
19645 		    (dp = mp1->b_datap)->db_ref == 1 &&
19646 		    dp->db_lim - mp1->b_wptr >= len) {
19647 			ASSERT(len > 0);
19648 			ASSERT(!mp1->b_cont);
19649 			if (len == 1) {
19650 				*mp1->b_wptr++ = *mp->b_rptr;
19651 			} else {
19652 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19653 				mp1->b_wptr += len;
19654 			}
19655 			if (mp1 == tcp->tcp_xmit_tail)
19656 				tcp->tcp_xmit_tail_unsent += len;
19657 			mp1->b_cont = mp->b_cont;
19658 			if (tcp->tcp_snd_zcopy_aware &&
19659 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19660 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19661 			freeb(mp);
19662 			mp = mp1;
19663 		} else {
19664 			tcp->tcp_xmit_last->b_cont = mp;
19665 		}
19666 		len += tcp->tcp_unsent;
19667 	}
19668 
19669 	/* Tack on however many more positive length mblks we have */
19670 	if ((mp1 = mp->b_cont) != NULL) {
19671 		do {
19672 			int tlen;
19673 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19674 			    (uintptr_t)INT_MAX);
19675 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19676 			if (tlen <= 0) {
19677 				mp->b_cont = mp1->b_cont;
19678 				freeb(mp1);
19679 			} else {
19680 				len += tlen;
19681 				mp = mp1;
19682 			}
19683 		} while ((mp1 = mp->b_cont) != NULL);
19684 	}
19685 	tcp->tcp_xmit_last = mp;
19686 	tcp->tcp_unsent = len;
19687 
19688 	if (urgent)
19689 		usable = 1;
19690 
19691 data_null:
19692 	snxt = tcp->tcp_snxt;
19693 	xmit_tail = tcp->tcp_xmit_tail;
19694 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19695 
19696 	/*
19697 	 * Note that tcp_mss has been adjusted to take into account the
19698 	 * timestamp option if applicable.  Because SACK options do not
19699 	 * appear in every TCP segments and they are of variable lengths,
19700 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19701 	 * the actual segment length when we need to send a segment which
19702 	 * includes SACK options.
19703 	 */
19704 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19705 		int32_t	opt_len;
19706 
19707 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19708 		    tcp->tcp_num_sack_blk);
19709 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19710 		    2 + TCPOPT_HEADER_LEN;
19711 		mss = tcp->tcp_mss - opt_len;
19712 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19713 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19714 	} else {
19715 		mss = tcp->tcp_mss;
19716 		tcp_hdr_len = tcp->tcp_hdr_len;
19717 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19718 	}
19719 
19720 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19721 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19722 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19723 	}
19724 	if (tcpstate == TCPS_SYN_RCVD) {
19725 		/*
19726 		 * The three-way connection establishment handshake is not
19727 		 * complete yet. We want to queue the data for transmission
19728 		 * after entering ESTABLISHED state (RFC793). A jump to
19729 		 * "done" label effectively leaves data on the queue.
19730 		 */
19731 		goto done;
19732 	} else {
19733 		int usable_r;
19734 
19735 		/*
19736 		 * In the special case when cwnd is zero, which can only
19737 		 * happen if the connection is ECN capable, return now.
19738 		 * New segments is sent using tcp_timer().  The timer
19739 		 * is set in tcp_rput_data().
19740 		 */
19741 		if (tcp->tcp_cwnd == 0) {
19742 			/*
19743 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19744 			 * finished.
19745 			 */
19746 			ASSERT(tcp->tcp_ecn_ok ||
19747 			    tcp->tcp_state < TCPS_ESTABLISHED);
19748 			return;
19749 		}
19750 
19751 		/* NOTE: trouble if xmitting while SYN not acked? */
19752 		usable_r = snxt - tcp->tcp_suna;
19753 		usable_r = tcp->tcp_swnd - usable_r;
19754 
19755 		/*
19756 		 * Check if the receiver has shrunk the window.  If
19757 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19758 		 * cannot be set as there is unsent data, so FIN cannot
19759 		 * be sent out.  Otherwise, we need to take into account
19760 		 * of FIN as it consumes an "invisible" sequence number.
19761 		 */
19762 		ASSERT(tcp->tcp_fin_sent == 0);
19763 		if (usable_r < 0) {
19764 			/*
19765 			 * The receiver has shrunk the window and we have sent
19766 			 * -usable_r date beyond the window, re-adjust.
19767 			 *
19768 			 * If TCP window scaling is enabled, there can be
19769 			 * round down error as the advertised receive window
19770 			 * is actually right shifted n bits.  This means that
19771 			 * the lower n bits info is wiped out.  It will look
19772 			 * like the window is shrunk.  Do a check here to
19773 			 * see if the shrunk amount is actually within the
19774 			 * error in window calculation.  If it is, just
19775 			 * return.  Note that this check is inside the
19776 			 * shrunk window check.  This makes sure that even
19777 			 * though tcp_process_shrunk_swnd() is not called,
19778 			 * we will stop further processing.
19779 			 */
19780 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19781 				tcp_process_shrunk_swnd(tcp, -usable_r);
19782 			}
19783 			return;
19784 		}
19785 
19786 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19787 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19788 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19789 
19790 		/* usable = MIN(usable, unsent) */
19791 		if (usable_r > len)
19792 			usable_r = len;
19793 
19794 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19795 		if (usable_r > 0) {
19796 			usable = usable_r;
19797 		} else {
19798 			/* Bypass all other unnecessary processing. */
19799 			goto done;
19800 		}
19801 	}
19802 
19803 	local_time = (mblk_t *)lbolt;
19804 
19805 	/*
19806 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19807 	 * BSD.  This is more in line with the true intent of Nagle.
19808 	 *
19809 	 * The conditions are:
19810 	 * 1. The amount of unsent data (or amount of data which can be
19811 	 *    sent, whichever is smaller) is less than Nagle limit.
19812 	 * 2. The last sent size is also less than Nagle limit.
19813 	 * 3. There is unack'ed data.
19814 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19815 	 *    Nagle algorithm.  This reduces the probability that urgent
19816 	 *    bytes get "merged" together.
19817 	 * 5. The app has not closed the connection.  This eliminates the
19818 	 *    wait time of the receiving side waiting for the last piece of
19819 	 *    (small) data.
19820 	 *
19821 	 * If all are satisified, exit without sending anything.  Note
19822 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19823 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19824 	 * 4095).
19825 	 */
19826 	if (usable < (int)tcp->tcp_naglim &&
19827 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19828 	    snxt != tcp->tcp_suna &&
19829 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19830 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19831 		goto done;
19832 	}
19833 
19834 	if (tcp->tcp_cork) {
19835 		/*
19836 		 * if the tcp->tcp_cork option is set, then we have to force
19837 		 * TCP not to send partial segment (smaller than MSS bytes).
19838 		 * We are calculating the usable now based on full mss and
19839 		 * will save the rest of remaining data for later.
19840 		 */
19841 		if (usable < mss)
19842 			goto done;
19843 		usable = (usable / mss) * mss;
19844 	}
19845 
19846 	/* Update the latest receive window size in TCP header. */
19847 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19848 	    tcp->tcp_tcph->th_win);
19849 
19850 	/*
19851 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19852 	 *
19853 	 * 1. Simple TCP/IP{v4,v6} (no options).
19854 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19855 	 * 3. If the TCP connection is in ESTABLISHED state.
19856 	 * 4. The TCP is not detached.
19857 	 *
19858 	 * If any of the above conditions have changed during the
19859 	 * connection, stop using LSO/MDT and restore the stream head
19860 	 * parameters accordingly.
19861 	 */
19862 	ipst = tcps->tcps_netstack->netstack_ip;
19863 
19864 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19865 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19866 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19867 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19868 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19869 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19870 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19871 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19872 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19873 		if (tcp->tcp_lso) {
19874 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19875 			tcp->tcp_lso = B_FALSE;
19876 		} else {
19877 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19878 			tcp->tcp_mdt = B_FALSE;
19879 		}
19880 
19881 		/* Anything other than detached is considered pathological */
19882 		if (!TCP_IS_DETACHED(tcp)) {
19883 			if (tcp->tcp_lso)
19884 				TCP_STAT(tcps, tcp_lso_disabled);
19885 			else
19886 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19887 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19888 		}
19889 	}
19890 
19891 	/* Use MDT if sendable amount is greater than the threshold */
19892 	if (tcp->tcp_mdt &&
19893 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19894 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19895 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19896 	    (tcp->tcp_valid_bits == 0 ||
19897 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19898 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19899 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19900 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19901 		    local_time, mdt_thres);
19902 	} else {
19903 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19904 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19905 		    local_time, INT_MAX);
19906 	}
19907 
19908 	/* Pretend that all we were trying to send really got sent */
19909 	if (rc < 0 && tail_unsent < 0) {
19910 		do {
19911 			xmit_tail = xmit_tail->b_cont;
19912 			xmit_tail->b_prev = local_time;
19913 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19914 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19915 			tail_unsent += (int)(xmit_tail->b_wptr -
19916 			    xmit_tail->b_rptr);
19917 		} while (tail_unsent < 0);
19918 	}
19919 done:;
19920 	tcp->tcp_xmit_tail = xmit_tail;
19921 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19922 	len = tcp->tcp_snxt - snxt;
19923 	if (len) {
19924 		/*
19925 		 * If new data was sent, need to update the notsack
19926 		 * list, which is, afterall, data blocks that have
19927 		 * not been sack'ed by the receiver.  New data is
19928 		 * not sack'ed.
19929 		 */
19930 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19931 			/* len is a negative value. */
19932 			tcp->tcp_pipe -= len;
19933 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19934 			    tcp->tcp_snxt, snxt,
19935 			    &(tcp->tcp_num_notsack_blk),
19936 			    &(tcp->tcp_cnt_notsack_list));
19937 		}
19938 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19939 		tcp->tcp_rack = tcp->tcp_rnxt;
19940 		tcp->tcp_rack_cnt = 0;
19941 		if ((snxt + len) == tcp->tcp_suna) {
19942 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19943 		}
19944 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19945 		/*
19946 		 * Didn't send anything. Make sure the timer is running
19947 		 * so that we will probe a zero window.
19948 		 */
19949 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19950 	}
19951 	/* Note that len is the amount we just sent but with a negative sign */
19952 	tcp->tcp_unsent += len;
19953 	mutex_enter(&tcp->tcp_non_sq_lock);
19954 	if (tcp->tcp_flow_stopped) {
19955 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19956 			tcp_clrqfull(tcp);
19957 		}
19958 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19959 		tcp_setqfull(tcp);
19960 	}
19961 	mutex_exit(&tcp->tcp_non_sq_lock);
19962 }
19963 
19964 /*
19965  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19966  * outgoing TCP header with the template header, as well as other
19967  * options such as time-stamp, ECN and/or SACK.
19968  */
19969 static void
19970 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19971 {
19972 	tcph_t *tcp_tmpl, *tcp_h;
19973 	uint32_t *dst, *src;
19974 	int hdrlen;
19975 
19976 	ASSERT(OK_32PTR(rptr));
19977 
19978 	/* Template header */
19979 	tcp_tmpl = tcp->tcp_tcph;
19980 
19981 	/* Header of outgoing packet */
19982 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19983 
19984 	/* dst and src are opaque 32-bit fields, used for copying */
19985 	dst = (uint32_t *)rptr;
19986 	src = (uint32_t *)tcp->tcp_iphc;
19987 	hdrlen = tcp->tcp_hdr_len;
19988 
19989 	/* Fill time-stamp option if needed */
19990 	if (tcp->tcp_snd_ts_ok) {
19991 		U32_TO_BE32((uint32_t)now,
19992 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19993 		U32_TO_BE32(tcp->tcp_ts_recent,
19994 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19995 	} else {
19996 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19997 	}
19998 
19999 	/*
20000 	 * Copy the template header; is this really more efficient than
20001 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
20002 	 * but perhaps not for other scenarios.
20003 	 */
20004 	dst[0] = src[0];
20005 	dst[1] = src[1];
20006 	dst[2] = src[2];
20007 	dst[3] = src[3];
20008 	dst[4] = src[4];
20009 	dst[5] = src[5];
20010 	dst[6] = src[6];
20011 	dst[7] = src[7];
20012 	dst[8] = src[8];
20013 	dst[9] = src[9];
20014 	if (hdrlen -= 40) {
20015 		hdrlen >>= 2;
20016 		dst += 10;
20017 		src += 10;
20018 		do {
20019 			*dst++ = *src++;
20020 		} while (--hdrlen);
20021 	}
20022 
20023 	/*
20024 	 * Set the ECN info in the TCP header if it is not a zero
20025 	 * window probe.  Zero window probe is only sent in
20026 	 * tcp_wput_data() and tcp_timer().
20027 	 */
20028 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
20029 		SET_ECT(tcp, rptr);
20030 
20031 		if (tcp->tcp_ecn_echo_on)
20032 			tcp_h->th_flags[0] |= TH_ECE;
20033 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
20034 			tcp_h->th_flags[0] |= TH_CWR;
20035 			tcp->tcp_ecn_cwr_sent = B_TRUE;
20036 		}
20037 	}
20038 
20039 	/* Fill in SACK options */
20040 	if (num_sack_blk > 0) {
20041 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
20042 		sack_blk_t *tmp;
20043 		int32_t	i;
20044 
20045 		wptr[0] = TCPOPT_NOP;
20046 		wptr[1] = TCPOPT_NOP;
20047 		wptr[2] = TCPOPT_SACK;
20048 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
20049 		    sizeof (sack_blk_t);
20050 		wptr += TCPOPT_REAL_SACK_LEN;
20051 
20052 		tmp = tcp->tcp_sack_list;
20053 		for (i = 0; i < num_sack_blk; i++) {
20054 			U32_TO_BE32(tmp[i].begin, wptr);
20055 			wptr += sizeof (tcp_seq);
20056 			U32_TO_BE32(tmp[i].end, wptr);
20057 			wptr += sizeof (tcp_seq);
20058 		}
20059 		tcp_h->th_offset_and_rsrvd[0] +=
20060 		    ((num_sack_blk * 2 + 1) << 4);
20061 	}
20062 }
20063 
20064 /*
20065  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20066  * the destination address and SAP attribute, and if necessary, the
20067  * hardware checksum offload attribute to a Multidata message.
20068  */
20069 static int
20070 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20071     const uint32_t start, const uint32_t stuff, const uint32_t end,
20072     const uint32_t flags, tcp_stack_t *tcps)
20073 {
20074 	/* Add global destination address & SAP attribute */
20075 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20076 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20077 		    "destination address+SAP\n"));
20078 
20079 		if (dlmp != NULL)
20080 			TCP_STAT(tcps, tcp_mdt_allocfail);
20081 		return (-1);
20082 	}
20083 
20084 	/* Add global hwcksum attribute */
20085 	if (hwcksum &&
20086 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20087 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20088 		    "checksum attribute\n"));
20089 
20090 		TCP_STAT(tcps, tcp_mdt_allocfail);
20091 		return (-1);
20092 	}
20093 
20094 	return (0);
20095 }
20096 
20097 /*
20098  * Smaller and private version of pdescinfo_t used specifically for TCP,
20099  * which allows for only two payload spans per packet.
20100  */
20101 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20102 
20103 /*
20104  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20105  * scheme, and returns one the following:
20106  *
20107  * -1 = failed allocation.
20108  *  0 = success; burst count reached, or usable send window is too small,
20109  *      and that we'd rather wait until later before sending again.
20110  */
20111 static int
20112 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20113     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20114     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20115     const int mdt_thres)
20116 {
20117 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20118 	multidata_t	*mmd;
20119 	uint_t		obsegs, obbytes, hdr_frag_sz;
20120 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20121 	int		num_burst_seg, max_pld;
20122 	pdesc_t		*pkt;
20123 	tcp_pdescinfo_t	tcp_pkt_info;
20124 	pdescinfo_t	*pkt_info;
20125 	int		pbuf_idx, pbuf_idx_nxt;
20126 	int		seg_len, len, spill, af;
20127 	boolean_t	add_buffer, zcopy, clusterwide;
20128 	boolean_t	rconfirm = B_FALSE;
20129 	boolean_t	done = B_FALSE;
20130 	uint32_t	cksum;
20131 	uint32_t	hwcksum_flags;
20132 	ire_t		*ire = NULL;
20133 	ill_t		*ill;
20134 	ipha_t		*ipha;
20135 	ip6_t		*ip6h;
20136 	ipaddr_t	src, dst;
20137 	ill_zerocopy_capab_t *zc_cap = NULL;
20138 	uint16_t	*up;
20139 	int		err;
20140 	conn_t		*connp;
20141 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20142 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20143 	int		usable_mmd, tail_unsent_mmd;
20144 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
20145 	mblk_t		*xmit_tail_mmd;
20146 
20147 #ifdef	_BIG_ENDIAN
20148 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20149 #else
20150 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20151 #endif
20152 
20153 #define	PREP_NEW_MULTIDATA() {			\
20154 	mmd = NULL;				\
20155 	md_mp = md_hbuf = NULL;			\
20156 	cur_hdr_off = 0;			\
20157 	max_pld = tcp->tcp_mdt_max_pld;		\
20158 	pbuf_idx = pbuf_idx_nxt = -1;		\
20159 	add_buffer = B_TRUE;			\
20160 	zcopy = B_FALSE;			\
20161 }
20162 
20163 #define	PREP_NEW_PBUF() {			\
20164 	md_pbuf = md_pbuf_nxt = NULL;		\
20165 	pbuf_idx = pbuf_idx_nxt = -1;		\
20166 	cur_pld_off = 0;			\
20167 	first_snxt = *snxt;			\
20168 	ASSERT(*tail_unsent > 0);		\
20169 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20170 }
20171 
20172 	ASSERT(mdt_thres >= mss);
20173 	ASSERT(*usable > 0 && *usable > mdt_thres);
20174 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20175 	ASSERT(!TCP_IS_DETACHED(tcp));
20176 	ASSERT(tcp->tcp_valid_bits == 0 ||
20177 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20178 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20179 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20180 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20181 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20182 
20183 	connp = tcp->tcp_connp;
20184 	ASSERT(connp != NULL);
20185 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20186 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20187 
20188 	usable_mmd = tail_unsent_mmd = 0;
20189 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
20190 	xmit_tail_mmd = NULL;
20191 	/*
20192 	 * Note that tcp will only declare at most 2 payload spans per
20193 	 * packet, which is much lower than the maximum allowable number
20194 	 * of packet spans per Multidata.  For this reason, we use the
20195 	 * privately declared and smaller descriptor info structure, in
20196 	 * order to save some stack space.
20197 	 */
20198 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20199 
20200 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20201 	if (af == AF_INET) {
20202 		dst = tcp->tcp_ipha->ipha_dst;
20203 		src = tcp->tcp_ipha->ipha_src;
20204 		ASSERT(!CLASSD(dst));
20205 	}
20206 	ASSERT(af == AF_INET ||
20207 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20208 
20209 	obsegs = obbytes = 0;
20210 	num_burst_seg = tcp->tcp_snd_burst;
20211 	md_mp_head = NULL;
20212 	PREP_NEW_MULTIDATA();
20213 
20214 	/*
20215 	 * Before we go on further, make sure there is an IRE that we can
20216 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20217 	 * in proceeding any further, and we should just hand everything
20218 	 * off to the legacy path.
20219 	 */
20220 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20221 		goto legacy_send_no_md;
20222 
20223 	ASSERT(ire != NULL);
20224 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20225 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20226 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20227 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20228 	/*
20229 	 * If we do support loopback for MDT (which requires modifications
20230 	 * to the receiving paths), the following assertions should go away,
20231 	 * and we would be sending the Multidata to loopback conn later on.
20232 	 */
20233 	ASSERT(!IRE_IS_LOCAL(ire));
20234 	ASSERT(ire->ire_stq != NULL);
20235 
20236 	ill = ire_to_ill(ire);
20237 	ASSERT(ill != NULL);
20238 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20239 
20240 	if (!tcp->tcp_ire_ill_check_done) {
20241 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20242 		tcp->tcp_ire_ill_check_done = B_TRUE;
20243 	}
20244 
20245 	/*
20246 	 * If the underlying interface conditions have changed, or if the
20247 	 * new interface does not support MDT, go back to legacy path.
20248 	 */
20249 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20250 		/* don't go through this path anymore for this connection */
20251 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20252 		tcp->tcp_mdt = B_FALSE;
20253 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20254 		    "interface %s\n", (void *)connp, ill->ill_name));
20255 		/* IRE will be released prior to returning */
20256 		goto legacy_send_no_md;
20257 	}
20258 
20259 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20260 		zc_cap = ill->ill_zerocopy_capab;
20261 
20262 	/*
20263 	 * Check if we can take tcp fast-path. Note that "incomplete"
20264 	 * ire's (where the link-layer for next hop is not resolved
20265 	 * or where the fast-path header in nce_fp_mp is not available
20266 	 * yet) are sent down the legacy (slow) path.
20267 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20268 	 */
20269 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20270 		/* IRE will be released prior to returning */
20271 		goto legacy_send_no_md;
20272 	}
20273 
20274 	/* go to legacy path if interface doesn't support zerocopy */
20275 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20276 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20277 		/* IRE will be released prior to returning */
20278 		goto legacy_send_no_md;
20279 	}
20280 
20281 	/* does the interface support hardware checksum offload? */
20282 	hwcksum_flags = 0;
20283 	if (ILL_HCKSUM_CAPABLE(ill) &&
20284 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20285 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20286 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20287 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20288 		    HCKSUM_IPHDRCKSUM)
20289 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20290 
20291 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20292 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20293 			hwcksum_flags |= HCK_FULLCKSUM;
20294 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20295 		    HCKSUM_INET_PARTIAL)
20296 			hwcksum_flags |= HCK_PARTIALCKSUM;
20297 	}
20298 
20299 	/*
20300 	 * Each header fragment consists of the leading extra space,
20301 	 * followed by the TCP/IP header, and the trailing extra space.
20302 	 * We make sure that each header fragment begins on a 32-bit
20303 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20304 	 * aligned in tcp_mdt_update).
20305 	 */
20306 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20307 	    tcp->tcp_mdt_hdr_tail), 4);
20308 
20309 	/* are we starting from the beginning of data block? */
20310 	if (*tail_unsent == 0) {
20311 		*xmit_tail = (*xmit_tail)->b_cont;
20312 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20313 		*tail_unsent = (int)MBLKL(*xmit_tail);
20314 	}
20315 
20316 	/*
20317 	 * Here we create one or more Multidata messages, each made up of
20318 	 * one header buffer and up to N payload buffers.  This entire
20319 	 * operation is done within two loops:
20320 	 *
20321 	 * The outer loop mostly deals with creating the Multidata message,
20322 	 * as well as the header buffer that gets added to it.  It also
20323 	 * links the Multidata messages together such that all of them can
20324 	 * be sent down to the lower layer in a single putnext call; this
20325 	 * linking behavior depends on the tcp_mdt_chain tunable.
20326 	 *
20327 	 * The inner loop takes an existing Multidata message, and adds
20328 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20329 	 * packetizes those buffers by filling up the corresponding header
20330 	 * buffer fragments with the proper IP and TCP headers, and by
20331 	 * describing the layout of each packet in the packet descriptors
20332 	 * that get added to the Multidata.
20333 	 */
20334 	do {
20335 		/*
20336 		 * If usable send window is too small, or data blocks in
20337 		 * transmit list are smaller than our threshold (i.e. app
20338 		 * performs large writes followed by small ones), we hand
20339 		 * off the control over to the legacy path.  Note that we'll
20340 		 * get back the control once it encounters a large block.
20341 		 */
20342 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20343 		    (*xmit_tail)->b_cont != NULL &&
20344 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20345 			/* send down what we've got so far */
20346 			if (md_mp_head != NULL) {
20347 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20348 				    obsegs, obbytes, &rconfirm);
20349 			}
20350 			/*
20351 			 * Pass control over to tcp_send(), but tell it to
20352 			 * return to us once a large-size transmission is
20353 			 * possible.
20354 			 */
20355 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20356 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20357 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20358 			    tail_unsent, xmit_tail, local_time,
20359 			    mdt_thres)) <= 0) {
20360 				/* burst count reached, or alloc failed */
20361 				IRE_REFRELE(ire);
20362 				return (err);
20363 			}
20364 
20365 			/* tcp_send() may have sent everything, so check */
20366 			if (*usable <= 0) {
20367 				IRE_REFRELE(ire);
20368 				return (0);
20369 			}
20370 
20371 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20372 			/*
20373 			 * We may have delivered the Multidata, so make sure
20374 			 * to re-initialize before the next round.
20375 			 */
20376 			md_mp_head = NULL;
20377 			obsegs = obbytes = 0;
20378 			num_burst_seg = tcp->tcp_snd_burst;
20379 			PREP_NEW_MULTIDATA();
20380 
20381 			/* are we starting from the beginning of data block? */
20382 			if (*tail_unsent == 0) {
20383 				*xmit_tail = (*xmit_tail)->b_cont;
20384 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20385 				    (uintptr_t)INT_MAX);
20386 				*tail_unsent = (int)MBLKL(*xmit_tail);
20387 			}
20388 		}
20389 		/*
20390 		 * Record current values for parameters we may need to pass
20391 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
20392 		 * each iteration of the outer loop (each multidata message
20393 		 * creation). If we have a failure in the inner loop, we send
20394 		 * any complete multidata messages we have before reverting
20395 		 * to using the traditional non-md path.
20396 		 */
20397 		snxt_mmd = *snxt;
20398 		usable_mmd = *usable;
20399 		xmit_tail_mmd = *xmit_tail;
20400 		tail_unsent_mmd = *tail_unsent;
20401 		obsegs_mmd = obsegs;
20402 		obbytes_mmd = obbytes;
20403 
20404 		/*
20405 		 * max_pld limits the number of mblks in tcp's transmit
20406 		 * queue that can be added to a Multidata message.  Once
20407 		 * this counter reaches zero, no more additional mblks
20408 		 * can be added to it.  What happens afterwards depends
20409 		 * on whether or not we are set to chain the Multidata
20410 		 * messages.  If we are to link them together, reset
20411 		 * max_pld to its original value (tcp_mdt_max_pld) and
20412 		 * prepare to create a new Multidata message which will
20413 		 * get linked to md_mp_head.  Else, leave it alone and
20414 		 * let the inner loop break on its own.
20415 		 */
20416 		if (tcp_mdt_chain && max_pld == 0)
20417 			PREP_NEW_MULTIDATA();
20418 
20419 		/* adding a payload buffer; re-initialize values */
20420 		if (add_buffer)
20421 			PREP_NEW_PBUF();
20422 
20423 		/*
20424 		 * If we don't have a Multidata, either because we just
20425 		 * (re)entered this outer loop, or after we branched off
20426 		 * to tcp_send above, setup the Multidata and header
20427 		 * buffer to be used.
20428 		 */
20429 		if (md_mp == NULL) {
20430 			int md_hbuflen;
20431 			uint32_t start, stuff;
20432 
20433 			/*
20434 			 * Calculate Multidata header buffer size large enough
20435 			 * to hold all of the headers that can possibly be
20436 			 * sent at this moment.  We'd rather over-estimate
20437 			 * the size than running out of space; this is okay
20438 			 * since this buffer is small anyway.
20439 			 */
20440 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20441 
20442 			/*
20443 			 * Start and stuff offset for partial hardware
20444 			 * checksum offload; these are currently for IPv4.
20445 			 * For full checksum offload, they are set to zero.
20446 			 */
20447 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20448 				if (af == AF_INET) {
20449 					start = IP_SIMPLE_HDR_LENGTH;
20450 					stuff = IP_SIMPLE_HDR_LENGTH +
20451 					    TCP_CHECKSUM_OFFSET;
20452 				} else {
20453 					start = IPV6_HDR_LEN;
20454 					stuff = IPV6_HDR_LEN +
20455 					    TCP_CHECKSUM_OFFSET;
20456 				}
20457 			} else {
20458 				start = stuff = 0;
20459 			}
20460 
20461 			/*
20462 			 * Create the header buffer, Multidata, as well as
20463 			 * any necessary attributes (destination address,
20464 			 * SAP and hardware checksum offload) that should
20465 			 * be associated with the Multidata message.
20466 			 */
20467 			ASSERT(cur_hdr_off == 0);
20468 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20469 			    ((md_hbuf->b_wptr += md_hbuflen),
20470 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20471 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20472 			    /* fastpath mblk */
20473 			    ire->ire_nce->nce_res_mp,
20474 			    /* hardware checksum enabled */
20475 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20476 			    /* hardware checksum offsets */
20477 			    start, stuff, 0,
20478 			    /* hardware checksum flag */
20479 			    hwcksum_flags, tcps) != 0)) {
20480 legacy_send:
20481 				/*
20482 				 * We arrive here from a failure within the
20483 				 * inner (packetizer) loop or we fail one of
20484 				 * the conditionals above. We restore the
20485 				 * previously checkpointed values for:
20486 				 *    xmit_tail
20487 				 *    usable
20488 				 *    tail_unsent
20489 				 *    snxt
20490 				 *    obbytes
20491 				 *    obsegs
20492 				 * We should then be able to dispatch any
20493 				 * complete multidata before reverting to the
20494 				 * traditional path with consistent parameters
20495 				 * (the inner loop updates these as it
20496 				 * iterates).
20497 				 */
20498 				*xmit_tail = xmit_tail_mmd;
20499 				*usable = usable_mmd;
20500 				*tail_unsent = tail_unsent_mmd;
20501 				*snxt = snxt_mmd;
20502 				obbytes = obbytes_mmd;
20503 				obsegs = obsegs_mmd;
20504 				if (md_mp != NULL) {
20505 					/* Unlink message from the chain */
20506 					if (md_mp_head != NULL) {
20507 						err = (intptr_t)rmvb(md_mp_head,
20508 						    md_mp);
20509 						/*
20510 						 * We can't assert that rmvb
20511 						 * did not return -1, since we
20512 						 * may get here before linkb
20513 						 * happens.  We do, however,
20514 						 * check if we just removed the
20515 						 * only element in the list.
20516 						 */
20517 						if (err == 0)
20518 							md_mp_head = NULL;
20519 					}
20520 					/* md_hbuf gets freed automatically */
20521 					TCP_STAT(tcps, tcp_mdt_discarded);
20522 					freeb(md_mp);
20523 				} else {
20524 					/* Either allocb or mmd_alloc failed */
20525 					TCP_STAT(tcps, tcp_mdt_allocfail);
20526 					if (md_hbuf != NULL)
20527 						freeb(md_hbuf);
20528 				}
20529 
20530 				/* send down what we've got so far */
20531 				if (md_mp_head != NULL) {
20532 					tcp_multisend_data(tcp, ire, ill,
20533 					    md_mp_head, obsegs, obbytes,
20534 					    &rconfirm);
20535 				}
20536 legacy_send_no_md:
20537 				if (ire != NULL)
20538 					IRE_REFRELE(ire);
20539 				/*
20540 				 * Too bad; let the legacy path handle this.
20541 				 * We specify INT_MAX for the threshold, since
20542 				 * we gave up with the Multidata processings
20543 				 * and let the old path have it all.
20544 				 */
20545 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20546 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20547 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20548 				    snxt, tail_unsent, xmit_tail, local_time,
20549 				    INT_MAX));
20550 			}
20551 
20552 			/* link to any existing ones, if applicable */
20553 			TCP_STAT(tcps, tcp_mdt_allocd);
20554 			if (md_mp_head == NULL) {
20555 				md_mp_head = md_mp;
20556 			} else if (tcp_mdt_chain) {
20557 				TCP_STAT(tcps, tcp_mdt_linked);
20558 				linkb(md_mp_head, md_mp);
20559 			}
20560 		}
20561 
20562 		ASSERT(md_mp_head != NULL);
20563 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20564 		ASSERT(md_mp != NULL && mmd != NULL);
20565 		ASSERT(md_hbuf != NULL);
20566 
20567 		/*
20568 		 * Packetize the transmittable portion of the data block;
20569 		 * each data block is essentially added to the Multidata
20570 		 * as a payload buffer.  We also deal with adding more
20571 		 * than one payload buffers, which happens when the remaining
20572 		 * packetized portion of the current payload buffer is less
20573 		 * than MSS, while the next data block in transmit queue
20574 		 * has enough data to make up for one.  This "spillover"
20575 		 * case essentially creates a split-packet, where portions
20576 		 * of the packet's payload fragments may span across two
20577 		 * virtually discontiguous address blocks.
20578 		 */
20579 		seg_len = mss;
20580 		do {
20581 			len = seg_len;
20582 
20583 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20584 			ipha = NULL;
20585 			ip6h = NULL;
20586 
20587 			ASSERT(len > 0);
20588 			ASSERT(max_pld >= 0);
20589 			ASSERT(!add_buffer || cur_pld_off == 0);
20590 
20591 			/*
20592 			 * First time around for this payload buffer; note
20593 			 * in the case of a spillover, the following has
20594 			 * been done prior to adding the split-packet
20595 			 * descriptor to Multidata, and we don't want to
20596 			 * repeat the process.
20597 			 */
20598 			if (add_buffer) {
20599 				ASSERT(mmd != NULL);
20600 				ASSERT(md_pbuf == NULL);
20601 				ASSERT(md_pbuf_nxt == NULL);
20602 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20603 
20604 				/*
20605 				 * Have we reached the limit?  We'd get to
20606 				 * this case when we're not chaining the
20607 				 * Multidata messages together, and since
20608 				 * we're done, terminate this loop.
20609 				 */
20610 				if (max_pld == 0)
20611 					break; /* done */
20612 
20613 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20614 					TCP_STAT(tcps, tcp_mdt_allocfail);
20615 					goto legacy_send; /* out_of_mem */
20616 				}
20617 
20618 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20619 				    zc_cap != NULL) {
20620 					if (!ip_md_zcopy_attr(mmd, NULL,
20621 					    zc_cap->ill_zerocopy_flags)) {
20622 						freeb(md_pbuf);
20623 						TCP_STAT(tcps,
20624 						    tcp_mdt_allocfail);
20625 						/* out_of_mem */
20626 						goto legacy_send;
20627 					}
20628 					zcopy = B_TRUE;
20629 				}
20630 
20631 				md_pbuf->b_rptr += base_pld_off;
20632 
20633 				/*
20634 				 * Add a payload buffer to the Multidata; this
20635 				 * operation must not fail, or otherwise our
20636 				 * logic in this routine is broken.  There
20637 				 * is no memory allocation done by the
20638 				 * routine, so any returned failure simply
20639 				 * tells us that we've done something wrong.
20640 				 *
20641 				 * A failure tells us that either we're adding
20642 				 * the same payload buffer more than once, or
20643 				 * we're trying to add more buffers than
20644 				 * allowed (max_pld calculation is wrong).
20645 				 * None of the above cases should happen, and
20646 				 * we panic because either there's horrible
20647 				 * heap corruption, and/or programming mistake.
20648 				 */
20649 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20650 				if (pbuf_idx < 0) {
20651 					cmn_err(CE_PANIC, "tcp_multisend: "
20652 					    "payload buffer logic error "
20653 					    "detected for tcp %p mmd %p "
20654 					    "pbuf %p (%d)\n",
20655 					    (void *)tcp, (void *)mmd,
20656 					    (void *)md_pbuf, pbuf_idx);
20657 				}
20658 
20659 				ASSERT(max_pld > 0);
20660 				--max_pld;
20661 				add_buffer = B_FALSE;
20662 			}
20663 
20664 			ASSERT(md_mp_head != NULL);
20665 			ASSERT(md_pbuf != NULL);
20666 			ASSERT(md_pbuf_nxt == NULL);
20667 			ASSERT(pbuf_idx != -1);
20668 			ASSERT(pbuf_idx_nxt == -1);
20669 			ASSERT(*usable > 0);
20670 
20671 			/*
20672 			 * We spillover to the next payload buffer only
20673 			 * if all of the following is true:
20674 			 *
20675 			 *   1. There is not enough data on the current
20676 			 *	payload buffer to make up `len',
20677 			 *   2. We are allowed to send `len',
20678 			 *   3. The next payload buffer length is large
20679 			 *	enough to accomodate `spill'.
20680 			 */
20681 			if ((spill = len - *tail_unsent) > 0 &&
20682 			    *usable >= len &&
20683 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20684 			    max_pld > 0) {
20685 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20686 				if (md_pbuf_nxt == NULL) {
20687 					TCP_STAT(tcps, tcp_mdt_allocfail);
20688 					goto legacy_send; /* out_of_mem */
20689 				}
20690 
20691 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20692 				    zc_cap != NULL) {
20693 					if (!ip_md_zcopy_attr(mmd, NULL,
20694 					    zc_cap->ill_zerocopy_flags)) {
20695 						freeb(md_pbuf_nxt);
20696 						TCP_STAT(tcps,
20697 						    tcp_mdt_allocfail);
20698 						/* out_of_mem */
20699 						goto legacy_send;
20700 					}
20701 					zcopy = B_TRUE;
20702 				}
20703 
20704 				/*
20705 				 * See comments above on the first call to
20706 				 * mmd_addpldbuf for explanation on the panic.
20707 				 */
20708 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20709 				if (pbuf_idx_nxt < 0) {
20710 					panic("tcp_multisend: "
20711 					    "next payload buffer logic error "
20712 					    "detected for tcp %p mmd %p "
20713 					    "pbuf %p (%d)\n",
20714 					    (void *)tcp, (void *)mmd,
20715 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20716 				}
20717 
20718 				ASSERT(max_pld > 0);
20719 				--max_pld;
20720 			} else if (spill > 0) {
20721 				/*
20722 				 * If there's a spillover, but the following
20723 				 * xmit_tail couldn't give us enough octets
20724 				 * to reach "len", then stop the current
20725 				 * Multidata creation and let the legacy
20726 				 * tcp_send() path take over.  We don't want
20727 				 * to send the tiny segment as part of this
20728 				 * Multidata for performance reasons; instead,
20729 				 * we let the legacy path deal with grouping
20730 				 * it with the subsequent small mblks.
20731 				 */
20732 				if (*usable >= len &&
20733 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20734 					max_pld = 0;
20735 					break;	/* done */
20736 				}
20737 
20738 				/*
20739 				 * We can't spillover, and we are near
20740 				 * the end of the current payload buffer,
20741 				 * so send what's left.
20742 				 */
20743 				ASSERT(*tail_unsent > 0);
20744 				len = *tail_unsent;
20745 			}
20746 
20747 			/* tail_unsent is negated if there is a spillover */
20748 			*tail_unsent -= len;
20749 			*usable -= len;
20750 			ASSERT(*usable >= 0);
20751 
20752 			if (*usable < mss)
20753 				seg_len = *usable;
20754 			/*
20755 			 * Sender SWS avoidance; see comments in tcp_send();
20756 			 * everything else is the same, except that we only
20757 			 * do this here if there is no more data to be sent
20758 			 * following the current xmit_tail.  We don't check
20759 			 * for 1-byte urgent data because we shouldn't get
20760 			 * here if TCP_URG_VALID is set.
20761 			 */
20762 			if (*usable > 0 && *usable < mss &&
20763 			    ((md_pbuf_nxt == NULL &&
20764 			    (*xmit_tail)->b_cont == NULL) ||
20765 			    (md_pbuf_nxt != NULL &&
20766 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20767 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20768 			    (tcp->tcp_unsent -
20769 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20770 			    !tcp->tcp_zero_win_probe) {
20771 				if ((*snxt + len) == tcp->tcp_snxt &&
20772 				    (*snxt + len) == tcp->tcp_suna) {
20773 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20774 				}
20775 				done = B_TRUE;
20776 			}
20777 
20778 			/*
20779 			 * Prime pump for IP's checksumming on our behalf;
20780 			 * include the adjustment for a source route if any.
20781 			 * Do this only for software/partial hardware checksum
20782 			 * offload, as this field gets zeroed out later for
20783 			 * the full hardware checksum offload case.
20784 			 */
20785 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20786 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20787 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20788 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20789 			}
20790 
20791 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20792 			*snxt += len;
20793 
20794 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20795 			/*
20796 			 * We set the PUSH bit only if TCP has no more buffered
20797 			 * data to be transmitted (or if sender SWS avoidance
20798 			 * takes place), as opposed to setting it for every
20799 			 * last packet in the burst.
20800 			 */
20801 			if (done ||
20802 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20803 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20804 
20805 			/*
20806 			 * Set FIN bit if this is our last segment; snxt
20807 			 * already includes its length, and it will not
20808 			 * be adjusted after this point.
20809 			 */
20810 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20811 			    *snxt == tcp->tcp_fss) {
20812 				if (!tcp->tcp_fin_acked) {
20813 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20814 					BUMP_MIB(&tcps->tcps_mib,
20815 					    tcpOutControl);
20816 				}
20817 				if (!tcp->tcp_fin_sent) {
20818 					tcp->tcp_fin_sent = B_TRUE;
20819 					/*
20820 					 * tcp state must be ESTABLISHED
20821 					 * in order for us to get here in
20822 					 * the first place.
20823 					 */
20824 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20825 
20826 					/*
20827 					 * Upon returning from this routine,
20828 					 * tcp_wput_data() will set tcp_snxt
20829 					 * to be equal to snxt + tcp_fin_sent.
20830 					 * This is essentially the same as
20831 					 * setting it to tcp_fss + 1.
20832 					 */
20833 				}
20834 			}
20835 
20836 			tcp->tcp_last_sent_len = (ushort_t)len;
20837 
20838 			len += tcp_hdr_len;
20839 			if (tcp->tcp_ipversion == IPV4_VERSION)
20840 				tcp->tcp_ipha->ipha_length = htons(len);
20841 			else
20842 				tcp->tcp_ip6h->ip6_plen = htons(len -
20843 				    ((char *)&tcp->tcp_ip6h[1] -
20844 				    tcp->tcp_iphc));
20845 
20846 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20847 
20848 			/* setup header fragment */
20849 			PDESC_HDR_ADD(pkt_info,
20850 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20851 			    tcp->tcp_mdt_hdr_head,		/* head room */
20852 			    tcp_hdr_len,			/* len */
20853 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20854 
20855 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20856 			    hdr_frag_sz);
20857 			ASSERT(MBLKIN(md_hbuf,
20858 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20859 			    PDESC_HDRSIZE(pkt_info)));
20860 
20861 			/* setup first payload fragment */
20862 			PDESC_PLD_INIT(pkt_info);
20863 			PDESC_PLD_SPAN_ADD(pkt_info,
20864 			    pbuf_idx,				/* index */
20865 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20866 			    tcp->tcp_last_sent_len);		/* len */
20867 
20868 			/* create a split-packet in case of a spillover */
20869 			if (md_pbuf_nxt != NULL) {
20870 				ASSERT(spill > 0);
20871 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20872 				ASSERT(!add_buffer);
20873 
20874 				md_pbuf = md_pbuf_nxt;
20875 				md_pbuf_nxt = NULL;
20876 				pbuf_idx = pbuf_idx_nxt;
20877 				pbuf_idx_nxt = -1;
20878 				cur_pld_off = spill;
20879 
20880 				/* trim out first payload fragment */
20881 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20882 
20883 				/* setup second payload fragment */
20884 				PDESC_PLD_SPAN_ADD(pkt_info,
20885 				    pbuf_idx,			/* index */
20886 				    md_pbuf->b_rptr,		/* start */
20887 				    spill);			/* len */
20888 
20889 				if ((*xmit_tail)->b_next == NULL) {
20890 					/*
20891 					 * Store the lbolt used for RTT
20892 					 * estimation. We can only record one
20893 					 * timestamp per mblk so we do it when
20894 					 * we reach the end of the payload
20895 					 * buffer.  Also we only take a new
20896 					 * timestamp sample when the previous
20897 					 * timed data from the same mblk has
20898 					 * been ack'ed.
20899 					 */
20900 					(*xmit_tail)->b_prev = local_time;
20901 					(*xmit_tail)->b_next =
20902 					    (mblk_t *)(uintptr_t)first_snxt;
20903 				}
20904 
20905 				first_snxt = *snxt - spill;
20906 
20907 				/*
20908 				 * Advance xmit_tail; usable could be 0 by
20909 				 * the time we got here, but we made sure
20910 				 * above that we would only spillover to
20911 				 * the next data block if usable includes
20912 				 * the spilled-over amount prior to the
20913 				 * subtraction.  Therefore, we are sure
20914 				 * that xmit_tail->b_cont can't be NULL.
20915 				 */
20916 				ASSERT((*xmit_tail)->b_cont != NULL);
20917 				*xmit_tail = (*xmit_tail)->b_cont;
20918 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20919 				    (uintptr_t)INT_MAX);
20920 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20921 			} else {
20922 				cur_pld_off += tcp->tcp_last_sent_len;
20923 			}
20924 
20925 			/*
20926 			 * Fill in the header using the template header, and
20927 			 * add options such as time-stamp, ECN and/or SACK,
20928 			 * as needed.
20929 			 */
20930 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20931 			    (clock_t)local_time, num_sack_blk);
20932 
20933 			/* take care of some IP header businesses */
20934 			if (af == AF_INET) {
20935 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20936 
20937 				ASSERT(OK_32PTR((uchar_t *)ipha));
20938 				ASSERT(PDESC_HDRL(pkt_info) >=
20939 				    IP_SIMPLE_HDR_LENGTH);
20940 				ASSERT(ipha->ipha_version_and_hdr_length ==
20941 				    IP_SIMPLE_HDR_VERSION);
20942 
20943 				/*
20944 				 * Assign ident value for current packet; see
20945 				 * related comments in ip_wput_ire() about the
20946 				 * contract private interface with clustering
20947 				 * group.
20948 				 */
20949 				clusterwide = B_FALSE;
20950 				if (cl_inet_ipident != NULL) {
20951 					ASSERT(cl_inet_isclusterwide != NULL);
20952 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20953 					    AF_INET,
20954 					    (uint8_t *)(uintptr_t)src)) {
20955 						ipha->ipha_ident =
20956 						    (*cl_inet_ipident)
20957 						    (IPPROTO_IP, AF_INET,
20958 						    (uint8_t *)(uintptr_t)src,
20959 						    (uint8_t *)(uintptr_t)dst);
20960 						clusterwide = B_TRUE;
20961 					}
20962 				}
20963 
20964 				if (!clusterwide) {
20965 					ipha->ipha_ident = (uint16_t)
20966 					    atomic_add_32_nv(
20967 						&ire->ire_ident, 1);
20968 				}
20969 #ifndef _BIG_ENDIAN
20970 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20971 				    (ipha->ipha_ident >> 8);
20972 #endif
20973 			} else {
20974 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20975 
20976 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20977 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20978 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20979 				ASSERT(PDESC_HDRL(pkt_info) >=
20980 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20981 				    TCP_CHECKSUM_SIZE));
20982 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20983 
20984 				if (tcp->tcp_ip_forward_progress) {
20985 					rconfirm = B_TRUE;
20986 					tcp->tcp_ip_forward_progress = B_FALSE;
20987 				}
20988 			}
20989 
20990 			/* at least one payload span, and at most two */
20991 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20992 
20993 			/* add the packet descriptor to Multidata */
20994 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20995 			    KM_NOSLEEP)) == NULL) {
20996 				/*
20997 				 * Any failure other than ENOMEM indicates
20998 				 * that we have passed in invalid pkt_info
20999 				 * or parameters to mmd_addpdesc, which must
21000 				 * not happen.
21001 				 *
21002 				 * EINVAL is a result of failure on boundary
21003 				 * checks against the pkt_info contents.  It
21004 				 * should not happen, and we panic because
21005 				 * either there's horrible heap corruption,
21006 				 * and/or programming mistake.
21007 				 */
21008 				if (err != ENOMEM) {
21009 					cmn_err(CE_PANIC, "tcp_multisend: "
21010 					    "pdesc logic error detected for "
21011 					    "tcp %p mmd %p pinfo %p (%d)\n",
21012 					    (void *)tcp, (void *)mmd,
21013 					    (void *)pkt_info, err);
21014 				}
21015 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
21016 				goto legacy_send; /* out_of_mem */
21017 			}
21018 			ASSERT(pkt != NULL);
21019 
21020 			/* calculate IP header and TCP checksums */
21021 			if (af == AF_INET) {
21022 				/* calculate pseudo-header checksum */
21023 				cksum = (dst >> 16) + (dst & 0xFFFF) +
21024 				    (src >> 16) + (src & 0xFFFF);
21025 
21026 				/* offset for TCP header checksum */
21027 				up = IPH_TCPH_CHECKSUMP(ipha,
21028 				    IP_SIMPLE_HDR_LENGTH);
21029 			} else {
21030 				up = (uint16_t *)&ip6h->ip6_src;
21031 
21032 				/* calculate pseudo-header checksum */
21033 				cksum = up[0] + up[1] + up[2] + up[3] +
21034 				    up[4] + up[5] + up[6] + up[7] +
21035 				    up[8] + up[9] + up[10] + up[11] +
21036 				    up[12] + up[13] + up[14] + up[15];
21037 
21038 				/* Fold the initial sum */
21039 				cksum = (cksum & 0xffff) + (cksum >> 16);
21040 
21041 				up = (uint16_t *)(((uchar_t *)ip6h) +
21042 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
21043 			}
21044 
21045 			if (hwcksum_flags & HCK_FULLCKSUM) {
21046 				/* clear checksum field for hardware */
21047 				*up = 0;
21048 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
21049 				uint32_t sum;
21050 
21051 				/* pseudo-header checksumming */
21052 				sum = *up + cksum + IP_TCP_CSUM_COMP;
21053 				sum = (sum & 0xFFFF) + (sum >> 16);
21054 				*up = (sum & 0xFFFF) + (sum >> 16);
21055 			} else {
21056 				/* software checksumming */
21057 				TCP_STAT(tcps, tcp_out_sw_cksum);
21058 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21059 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21060 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21061 				    cksum + IP_TCP_CSUM_COMP);
21062 				if (*up == 0)
21063 					*up = 0xFFFF;
21064 			}
21065 
21066 			/* IPv4 header checksum */
21067 			if (af == AF_INET) {
21068 				ipha->ipha_fragment_offset_and_flags |=
21069 				    (uint32_t)htons(ire->ire_frag_flag);
21070 
21071 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21072 					ipha->ipha_hdr_checksum = 0;
21073 				} else {
21074 					IP_HDR_CKSUM(ipha, cksum,
21075 					    ((uint32_t *)ipha)[0],
21076 					    ((uint16_t *)ipha)[4]);
21077 				}
21078 			}
21079 
21080 			if (af == AF_INET &&
21081 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21082 			    af == AF_INET6 &&
21083 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21084 				mblk_t	*mp, *mp1;
21085 				uchar_t	*hdr_rptr, *hdr_wptr;
21086 				uchar_t	*pld_rptr, *pld_wptr;
21087 
21088 				/*
21089 				 * We reconstruct a pseudo packet for the hooks
21090 				 * framework using mmd_transform_link().
21091 				 * If it is a split packet we pullup the
21092 				 * payload. FW_HOOKS expects a pkt comprising
21093 				 * of two mblks: a header and the payload.
21094 				 */
21095 				if ((mp = mmd_transform_link(pkt)) == NULL) {
21096 					TCP_STAT(tcps, tcp_mdt_allocfail);
21097 					goto legacy_send;
21098 				}
21099 
21100 				if (pkt_info->pld_cnt > 1) {
21101 					/* split payload, more than one pld */
21102 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
21103 					    NULL) {
21104 						freemsg(mp);
21105 						TCP_STAT(tcps,
21106 						    tcp_mdt_allocfail);
21107 						goto legacy_send;
21108 					}
21109 					freemsg(mp->b_cont);
21110 					mp->b_cont = mp1;
21111 				} else {
21112 					mp1 = mp->b_cont;
21113 				}
21114 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
21115 
21116 				/*
21117 				 * Remember the message offsets. This is so we
21118 				 * can detect changes when we return from the
21119 				 * FW_HOOKS callbacks.
21120 				 */
21121 				hdr_rptr = mp->b_rptr;
21122 				hdr_wptr = mp->b_wptr;
21123 				pld_rptr = mp->b_cont->b_rptr;
21124 				pld_wptr = mp->b_cont->b_wptr;
21125 
21126 				if (af == AF_INET) {
21127 					DTRACE_PROBE4(
21128 					    ip4__physical__out__start,
21129 					    ill_t *, NULL,
21130 					    ill_t *, ill,
21131 					    ipha_t *, ipha,
21132 					    mblk_t *, mp);
21133 					FW_HOOKS(
21134 					    ipst->ips_ip4_physical_out_event,
21135 					    ipst->ips_ipv4firewall_physical_out,
21136 					    NULL, ill, ipha, mp, mp, 0, ipst);
21137 					DTRACE_PROBE1(
21138 					    ip4__physical__out__end,
21139 					    mblk_t *, mp);
21140 				} else {
21141 					DTRACE_PROBE4(
21142 					    ip6__physical__out_start,
21143 					    ill_t *, NULL,
21144 					    ill_t *, ill,
21145 					    ip6_t *, ip6h,
21146 					    mblk_t *, mp);
21147 					FW_HOOKS6(
21148 					    ipst->ips_ip6_physical_out_event,
21149 					    ipst->ips_ipv6firewall_physical_out,
21150 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21151 					DTRACE_PROBE1(
21152 					    ip6__physical__out__end,
21153 					    mblk_t *, mp);
21154 				}
21155 
21156 				if (mp == NULL ||
21157 				    (mp1 = mp->b_cont) == NULL ||
21158 				    mp->b_rptr != hdr_rptr ||
21159 				    mp->b_wptr != hdr_wptr ||
21160 				    mp1->b_rptr != pld_rptr ||
21161 				    mp1->b_wptr != pld_wptr ||
21162 				    mp1->b_cont != NULL) {
21163 					/*
21164 					 * We abandon multidata processing and
21165 					 * return to the normal path, either
21166 					 * when a packet is blocked, or when
21167 					 * the boundaries of header buffer or
21168 					 * payload buffer have been changed by
21169 					 * FW_HOOKS[6].
21170 					 */
21171 					if (mp != NULL)
21172 						freemsg(mp);
21173 					goto legacy_send;
21174 				}
21175 				/* Finished with the pseudo packet */
21176 				freemsg(mp);
21177 			}
21178 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
21179 			    ill, ipha, ip6h);
21180 			/* advance header offset */
21181 			cur_hdr_off += hdr_frag_sz;
21182 
21183 			obbytes += tcp->tcp_last_sent_len;
21184 			++obsegs;
21185 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21186 		    *tail_unsent > 0);
21187 
21188 		if ((*xmit_tail)->b_next == NULL) {
21189 			/*
21190 			 * Store the lbolt used for RTT estimation. We can only
21191 			 * record one timestamp per mblk so we do it when we
21192 			 * reach the end of the payload buffer. Also we only
21193 			 * take a new timestamp sample when the previous timed
21194 			 * data from the same mblk has been ack'ed.
21195 			 */
21196 			(*xmit_tail)->b_prev = local_time;
21197 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21198 		}
21199 
21200 		ASSERT(*tail_unsent >= 0);
21201 		if (*tail_unsent > 0) {
21202 			/*
21203 			 * We got here because we broke out of the above
21204 			 * loop due to of one of the following cases:
21205 			 *
21206 			 *   1. len < adjusted MSS (i.e. small),
21207 			 *   2. Sender SWS avoidance,
21208 			 *   3. max_pld is zero.
21209 			 *
21210 			 * We are done for this Multidata, so trim our
21211 			 * last payload buffer (if any) accordingly.
21212 			 */
21213 			if (md_pbuf != NULL)
21214 				md_pbuf->b_wptr -= *tail_unsent;
21215 		} else if (*usable > 0) {
21216 			*xmit_tail = (*xmit_tail)->b_cont;
21217 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21218 			    (uintptr_t)INT_MAX);
21219 			*tail_unsent = (int)MBLKL(*xmit_tail);
21220 			add_buffer = B_TRUE;
21221 		}
21222 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21223 	    (tcp_mdt_chain || max_pld > 0));
21224 
21225 	if (md_mp_head != NULL) {
21226 		/* send everything down */
21227 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21228 		    &rconfirm);
21229 	}
21230 
21231 #undef PREP_NEW_MULTIDATA
21232 #undef PREP_NEW_PBUF
21233 #undef IPVER
21234 
21235 	IRE_REFRELE(ire);
21236 	return (0);
21237 }
21238 
21239 /*
21240  * A wrapper function for sending one or more Multidata messages down to
21241  * the module below ip; this routine does not release the reference of the
21242  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21243  */
21244 static void
21245 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21246     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21247 {
21248 	uint64_t delta;
21249 	nce_t *nce;
21250 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21251 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21252 
21253 	ASSERT(ire != NULL && ill != NULL);
21254 	ASSERT(ire->ire_stq != NULL);
21255 	ASSERT(md_mp_head != NULL);
21256 	ASSERT(rconfirm != NULL);
21257 
21258 	/* adjust MIBs and IRE timestamp */
21259 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
21260 	tcp->tcp_obsegs += obsegs;
21261 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21262 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21263 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21264 
21265 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21266 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21267 	} else {
21268 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21269 	}
21270 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21271 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21272 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21273 
21274 	ire->ire_ob_pkt_count += obsegs;
21275 	if (ire->ire_ipif != NULL)
21276 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21277 	ire->ire_last_used_time = lbolt;
21278 
21279 	if (ipst->ips_ipobs_enabled) {
21280 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
21281 		pdesc_t *dl_pkt;
21282 		pdescinfo_t pinfo;
21283 		mblk_t *nmp;
21284 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21285 
21286 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
21287 		    (dl_pkt != NULL);
21288 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
21289 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
21290 				continue;
21291 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
21292 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
21293 			freemsg(nmp);
21294 		}
21295 	}
21296 
21297 	/* send it down */
21298 	if (ILL_DLS_CAPABLE(ill)) {
21299 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
21300 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
21301 	} else {
21302 		putnext(ire->ire_stq, md_mp_head);
21303 	}
21304 
21305 	/* we're done for TCP/IPv4 */
21306 	if (tcp->tcp_ipversion == IPV4_VERSION)
21307 		return;
21308 
21309 	nce = ire->ire_nce;
21310 
21311 	ASSERT(nce != NULL);
21312 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21313 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21314 
21315 	/* reachability confirmation? */
21316 	if (*rconfirm) {
21317 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21318 		if (nce->nce_state != ND_REACHABLE) {
21319 			mutex_enter(&nce->nce_lock);
21320 			nce->nce_state = ND_REACHABLE;
21321 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21322 			mutex_exit(&nce->nce_lock);
21323 			(void) untimeout(nce->nce_timeout_id);
21324 			if (ip_debug > 2) {
21325 				/* ip1dbg */
21326 				pr_addr_dbg("tcp_multisend_data: state "
21327 				    "for %s changed to REACHABLE\n",
21328 				    AF_INET6, &ire->ire_addr_v6);
21329 			}
21330 		}
21331 		/* reset transport reachability confirmation */
21332 		*rconfirm = B_FALSE;
21333 	}
21334 
21335 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21336 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21337 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21338 
21339 	if (delta > (uint64_t)ill->ill_reachable_time) {
21340 		mutex_enter(&nce->nce_lock);
21341 		switch (nce->nce_state) {
21342 		case ND_REACHABLE:
21343 		case ND_STALE:
21344 			/*
21345 			 * ND_REACHABLE is identical to ND_STALE in this
21346 			 * specific case. If reachable time has expired for
21347 			 * this neighbor (delta is greater than reachable
21348 			 * time), conceptually, the neighbor cache is no
21349 			 * longer in REACHABLE state, but already in STALE
21350 			 * state.  So the correct transition here is to
21351 			 * ND_DELAY.
21352 			 */
21353 			nce->nce_state = ND_DELAY;
21354 			mutex_exit(&nce->nce_lock);
21355 			NDP_RESTART_TIMER(nce,
21356 			    ipst->ips_delay_first_probe_time);
21357 			if (ip_debug > 3) {
21358 				/* ip2dbg */
21359 				pr_addr_dbg("tcp_multisend_data: state "
21360 				    "for %s changed to DELAY\n",
21361 				    AF_INET6, &ire->ire_addr_v6);
21362 			}
21363 			break;
21364 		case ND_DELAY:
21365 		case ND_PROBE:
21366 			mutex_exit(&nce->nce_lock);
21367 			/* Timers have already started */
21368 			break;
21369 		case ND_UNREACHABLE:
21370 			/*
21371 			 * ndp timer has detected that this nce is
21372 			 * unreachable and initiated deleting this nce
21373 			 * and all its associated IREs. This is a race
21374 			 * where we found the ire before it was deleted
21375 			 * and have just sent out a packet using this
21376 			 * unreachable nce.
21377 			 */
21378 			mutex_exit(&nce->nce_lock);
21379 			break;
21380 		default:
21381 			ASSERT(0);
21382 		}
21383 	}
21384 }
21385 
21386 /*
21387  * Derived from tcp_send_data().
21388  */
21389 static void
21390 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21391     int num_lso_seg)
21392 {
21393 	ipha_t		*ipha;
21394 	mblk_t		*ire_fp_mp;
21395 	uint_t		ire_fp_mp_len;
21396 	uint32_t	hcksum_txflags = 0;
21397 	ipaddr_t	src;
21398 	ipaddr_t	dst;
21399 	uint32_t	cksum;
21400 	uint16_t	*up;
21401 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21402 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21403 
21404 	ASSERT(DB_TYPE(mp) == M_DATA);
21405 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21406 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21407 	ASSERT(tcp->tcp_connp != NULL);
21408 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21409 
21410 	ipha = (ipha_t *)mp->b_rptr;
21411 	src = ipha->ipha_src;
21412 	dst = ipha->ipha_dst;
21413 
21414 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
21415 
21416 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21417 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21418 	    num_lso_seg);
21419 #ifndef _BIG_ENDIAN
21420 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21421 #endif
21422 	if (tcp->tcp_snd_zcopy_aware) {
21423 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21424 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21425 			mp = tcp_zcopy_disable(tcp, mp);
21426 	}
21427 
21428 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21429 		ASSERT(ill->ill_hcksum_capab != NULL);
21430 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21431 	}
21432 
21433 	/*
21434 	 * Since the TCP checksum should be recalculated by h/w, we can just
21435 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21436 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21437 	 * The partial pseudo-header excludes TCP length, that was calculated
21438 	 * in tcp_send(), so to zero *up before further processing.
21439 	 */
21440 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21441 
21442 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21443 	*up = 0;
21444 
21445 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21446 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21447 
21448 	/*
21449 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21450 	 */
21451 	DB_LSOFLAGS(mp) |= HW_LSO;
21452 	DB_LSOMSS(mp) = mss;
21453 
21454 	ipha->ipha_fragment_offset_and_flags |=
21455 	    (uint32_t)htons(ire->ire_frag_flag);
21456 
21457 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21458 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21459 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21460 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21461 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21462 
21463 	UPDATE_OB_PKT_COUNT(ire);
21464 	ire->ire_last_used_time = lbolt;
21465 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21466 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21467 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21468 	    ntohs(ipha->ipha_length));
21469 
21470 	if (ILL_DLS_CAPABLE(ill)) {
21471 		/*
21472 		 * Send the packet directly to DLD, where it may be queued
21473 		 * depending on the availability of transmit resources at
21474 		 * the media layer.
21475 		 */
21476 		IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len);
21477 	} else {
21478 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21479 		DTRACE_PROBE4(ip4__physical__out__start,
21480 		    ill_t *, NULL, ill_t *, out_ill,
21481 		    ipha_t *, ipha, mblk_t *, mp);
21482 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21483 		    ipst->ips_ipv4firewall_physical_out,
21484 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21485 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21486 
21487 		if (mp != NULL) {
21488 			if (ipst->ips_ipobs_enabled) {
21489 				zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21490 
21491 				ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
21492 				    ALL_ZONES, ill, tcp->tcp_ipversion,
21493 				    ire_fp_mp_len, ipst);
21494 			}
21495 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
21496 			putnext(ire->ire_stq, mp);
21497 		}
21498 	}
21499 }
21500 
21501 /*
21502  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21503  * scheme, and returns one of the following:
21504  *
21505  * -1 = failed allocation.
21506  *  0 = success; burst count reached, or usable send window is too small,
21507  *      and that we'd rather wait until later before sending again.
21508  *  1 = success; we are called from tcp_multisend(), and both usable send
21509  *      window and tail_unsent are greater than the MDT threshold, and thus
21510  *      Multidata Transmit should be used instead.
21511  */
21512 static int
21513 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21514     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21515     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21516     const int mdt_thres)
21517 {
21518 	int num_burst_seg = tcp->tcp_snd_burst;
21519 	ire_t		*ire = NULL;
21520 	ill_t		*ill = NULL;
21521 	mblk_t		*ire_fp_mp = NULL;
21522 	uint_t		ire_fp_mp_len = 0;
21523 	int		num_lso_seg = 1;
21524 	uint_t		lso_usable;
21525 	boolean_t	do_lso_send = B_FALSE;
21526 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21527 
21528 	/*
21529 	 * Check LSO capability before any further work. And the similar check
21530 	 * need to be done in for(;;) loop.
21531 	 * LSO will be deployed when therer is more than one mss of available
21532 	 * data and a burst transmission is allowed.
21533 	 */
21534 	if (tcp->tcp_lso &&
21535 	    (tcp->tcp_valid_bits == 0 ||
21536 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21537 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21538 		/*
21539 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21540 		 */
21541 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21542 			/*
21543 			 * Enable LSO with this transmission.
21544 			 * Since IRE has been hold in
21545 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21546 			 * should be called before return.
21547 			 */
21548 			do_lso_send = B_TRUE;
21549 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21550 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21551 			/* Round up to multiple of 4 */
21552 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21553 		} else {
21554 			do_lso_send = B_FALSE;
21555 			ill = NULL;
21556 		}
21557 	}
21558 
21559 	for (;;) {
21560 		struct datab	*db;
21561 		tcph_t		*tcph;
21562 		uint32_t	sum;
21563 		mblk_t		*mp, *mp1;
21564 		uchar_t		*rptr;
21565 		int		len;
21566 
21567 		/*
21568 		 * If we're called by tcp_multisend(), and the amount of
21569 		 * sendable data as well as the size of current xmit_tail
21570 		 * is beyond the MDT threshold, return to the caller and
21571 		 * let the large data transmit be done using MDT.
21572 		 */
21573 		if (*usable > 0 && *usable > mdt_thres &&
21574 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21575 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21576 			ASSERT(tcp->tcp_mdt);
21577 			return (1);	/* success; do large send */
21578 		}
21579 
21580 		if (num_burst_seg == 0)
21581 			break;		/* success; burst count reached */
21582 
21583 		/*
21584 		 * Calculate the maximum payload length we can send in *one*
21585 		 * time.
21586 		 */
21587 		if (do_lso_send) {
21588 			/*
21589 			 * Check whether need to do LSO any more.
21590 			 */
21591 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21592 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21593 				lso_usable = MIN(lso_usable,
21594 				    num_burst_seg * mss);
21595 
21596 				num_lso_seg = lso_usable / mss;
21597 				if (lso_usable % mss) {
21598 					num_lso_seg++;
21599 					tcp->tcp_last_sent_len = (ushort_t)
21600 					    (lso_usable % mss);
21601 				} else {
21602 					tcp->tcp_last_sent_len = (ushort_t)mss;
21603 				}
21604 			} else {
21605 				do_lso_send = B_FALSE;
21606 				num_lso_seg = 1;
21607 				lso_usable = mss;
21608 			}
21609 		}
21610 
21611 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21612 
21613 		/*
21614 		 * Adjust num_burst_seg here.
21615 		 */
21616 		num_burst_seg -= num_lso_seg;
21617 
21618 		len = mss;
21619 		if (len > *usable) {
21620 			ASSERT(do_lso_send == B_FALSE);
21621 
21622 			len = *usable;
21623 			if (len <= 0) {
21624 				/* Terminate the loop */
21625 				break;	/* success; too small */
21626 			}
21627 			/*
21628 			 * Sender silly-window avoidance.
21629 			 * Ignore this if we are going to send a
21630 			 * zero window probe out.
21631 			 *
21632 			 * TODO: force data into microscopic window?
21633 			 *	==> (!pushed || (unsent > usable))
21634 			 */
21635 			if (len < (tcp->tcp_max_swnd >> 1) &&
21636 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21637 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21638 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21639 				/*
21640 				 * If the retransmit timer is not running
21641 				 * we start it so that we will retransmit
21642 				 * in the case when the the receiver has
21643 				 * decremented the window.
21644 				 */
21645 				if (*snxt == tcp->tcp_snxt &&
21646 				    *snxt == tcp->tcp_suna) {
21647 					/*
21648 					 * We are not supposed to send
21649 					 * anything.  So let's wait a little
21650 					 * bit longer before breaking SWS
21651 					 * avoidance.
21652 					 *
21653 					 * What should the value be?
21654 					 * Suggestion: MAX(init rexmit time,
21655 					 * tcp->tcp_rto)
21656 					 */
21657 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21658 				}
21659 				break;	/* success; too small */
21660 			}
21661 		}
21662 
21663 		tcph = tcp->tcp_tcph;
21664 
21665 		/*
21666 		 * The reason to adjust len here is that we need to set flags
21667 		 * and calculate checksum.
21668 		 */
21669 		if (do_lso_send)
21670 			len = lso_usable;
21671 
21672 		*usable -= len; /* Approximate - can be adjusted later */
21673 		if (*usable > 0)
21674 			tcph->th_flags[0] = TH_ACK;
21675 		else
21676 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21677 
21678 		/*
21679 		 * Prime pump for IP's checksumming on our behalf
21680 		 * Include the adjustment for a source route if any.
21681 		 */
21682 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21683 		sum = (sum >> 16) + (sum & 0xFFFF);
21684 		U16_TO_ABE16(sum, tcph->th_sum);
21685 
21686 		U32_TO_ABE32(*snxt, tcph->th_seq);
21687 
21688 		/*
21689 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21690 		 * set.  For the case when TCP_FSS_VALID is the only valid
21691 		 * bit (normal active close), branch off only when we think
21692 		 * that the FIN flag needs to be set.  Note for this case,
21693 		 * that (snxt + len) may not reflect the actual seg_len,
21694 		 * as len may be further reduced in tcp_xmit_mp().  If len
21695 		 * gets modified, we will end up here again.
21696 		 */
21697 		if (tcp->tcp_valid_bits != 0 &&
21698 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21699 		    ((*snxt + len) == tcp->tcp_fss))) {
21700 			uchar_t		*prev_rptr;
21701 			uint32_t	prev_snxt = tcp->tcp_snxt;
21702 
21703 			if (*tail_unsent == 0) {
21704 				ASSERT((*xmit_tail)->b_cont != NULL);
21705 				*xmit_tail = (*xmit_tail)->b_cont;
21706 				prev_rptr = (*xmit_tail)->b_rptr;
21707 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21708 				    (*xmit_tail)->b_rptr);
21709 			} else {
21710 				prev_rptr = (*xmit_tail)->b_rptr;
21711 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21712 				    *tail_unsent;
21713 			}
21714 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21715 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21716 			/* Restore tcp_snxt so we get amount sent right. */
21717 			tcp->tcp_snxt = prev_snxt;
21718 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21719 				/*
21720 				 * If the previous timestamp is still in use,
21721 				 * don't stomp on it.
21722 				 */
21723 				if ((*xmit_tail)->b_next == NULL) {
21724 					(*xmit_tail)->b_prev = local_time;
21725 					(*xmit_tail)->b_next =
21726 					    (mblk_t *)(uintptr_t)(*snxt);
21727 				}
21728 			} else
21729 				(*xmit_tail)->b_rptr = prev_rptr;
21730 
21731 			if (mp == NULL) {
21732 				if (ire != NULL)
21733 					IRE_REFRELE(ire);
21734 				return (-1);
21735 			}
21736 			mp1 = mp->b_cont;
21737 
21738 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21739 				tcp->tcp_last_sent_len = (ushort_t)len;
21740 			while (mp1->b_cont) {
21741 				*xmit_tail = (*xmit_tail)->b_cont;
21742 				(*xmit_tail)->b_prev = local_time;
21743 				(*xmit_tail)->b_next =
21744 				    (mblk_t *)(uintptr_t)(*snxt);
21745 				mp1 = mp1->b_cont;
21746 			}
21747 			*snxt += len;
21748 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21749 			BUMP_LOCAL(tcp->tcp_obsegs);
21750 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21751 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21752 			tcp_send_data(tcp, q, mp);
21753 			continue;
21754 		}
21755 
21756 		*snxt += len;	/* Adjust later if we don't send all of len */
21757 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21758 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21759 
21760 		if (*tail_unsent) {
21761 			/* Are the bytes above us in flight? */
21762 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21763 			if (rptr != (*xmit_tail)->b_rptr) {
21764 				*tail_unsent -= len;
21765 				if (len <= mss) /* LSO is unusable */
21766 					tcp->tcp_last_sent_len = (ushort_t)len;
21767 				len += tcp_hdr_len;
21768 				if (tcp->tcp_ipversion == IPV4_VERSION)
21769 					tcp->tcp_ipha->ipha_length = htons(len);
21770 				else
21771 					tcp->tcp_ip6h->ip6_plen =
21772 					    htons(len -
21773 					    ((char *)&tcp->tcp_ip6h[1] -
21774 					    tcp->tcp_iphc));
21775 				mp = dupb(*xmit_tail);
21776 				if (mp == NULL) {
21777 					if (ire != NULL)
21778 						IRE_REFRELE(ire);
21779 					return (-1);	/* out_of_mem */
21780 				}
21781 				mp->b_rptr = rptr;
21782 				/*
21783 				 * If the old timestamp is no longer in use,
21784 				 * sample a new timestamp now.
21785 				 */
21786 				if ((*xmit_tail)->b_next == NULL) {
21787 					(*xmit_tail)->b_prev = local_time;
21788 					(*xmit_tail)->b_next =
21789 					    (mblk_t *)(uintptr_t)(*snxt-len);
21790 				}
21791 				goto must_alloc;
21792 			}
21793 		} else {
21794 			*xmit_tail = (*xmit_tail)->b_cont;
21795 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21796 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21797 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21798 			    (*xmit_tail)->b_rptr);
21799 		}
21800 
21801 		(*xmit_tail)->b_prev = local_time;
21802 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21803 
21804 		*tail_unsent -= len;
21805 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21806 			tcp->tcp_last_sent_len = (ushort_t)len;
21807 
21808 		len += tcp_hdr_len;
21809 		if (tcp->tcp_ipversion == IPV4_VERSION)
21810 			tcp->tcp_ipha->ipha_length = htons(len);
21811 		else
21812 			tcp->tcp_ip6h->ip6_plen = htons(len -
21813 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21814 
21815 		mp = dupb(*xmit_tail);
21816 		if (mp == NULL) {
21817 			if (ire != NULL)
21818 				IRE_REFRELE(ire);
21819 			return (-1);	/* out_of_mem */
21820 		}
21821 
21822 		len = tcp_hdr_len;
21823 		/*
21824 		 * There are four reasons to allocate a new hdr mblk:
21825 		 *  1) The bytes above us are in use by another packet
21826 		 *  2) We don't have good alignment
21827 		 *  3) The mblk is being shared
21828 		 *  4) We don't have enough room for a header
21829 		 */
21830 		rptr = mp->b_rptr - len;
21831 		if (!OK_32PTR(rptr) ||
21832 		    ((db = mp->b_datap), db->db_ref != 2) ||
21833 		    rptr < db->db_base + ire_fp_mp_len) {
21834 			/* NOTE: we assume allocb returns an OK_32PTR */
21835 
21836 		must_alloc:;
21837 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21838 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21839 			if (mp1 == NULL) {
21840 				freemsg(mp);
21841 				if (ire != NULL)
21842 					IRE_REFRELE(ire);
21843 				return (-1);	/* out_of_mem */
21844 			}
21845 			mp1->b_cont = mp;
21846 			mp = mp1;
21847 			/* Leave room for Link Level header */
21848 			len = tcp_hdr_len;
21849 			rptr =
21850 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21851 			mp->b_wptr = &rptr[len];
21852 		}
21853 
21854 		/*
21855 		 * Fill in the header using the template header, and add
21856 		 * options such as time-stamp, ECN and/or SACK, as needed.
21857 		 */
21858 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21859 
21860 		mp->b_rptr = rptr;
21861 
21862 		if (*tail_unsent) {
21863 			int spill = *tail_unsent;
21864 
21865 			mp1 = mp->b_cont;
21866 			if (mp1 == NULL)
21867 				mp1 = mp;
21868 
21869 			/*
21870 			 * If we're a little short, tack on more mblks until
21871 			 * there is no more spillover.
21872 			 */
21873 			while (spill < 0) {
21874 				mblk_t *nmp;
21875 				int nmpsz;
21876 
21877 				nmp = (*xmit_tail)->b_cont;
21878 				nmpsz = MBLKL(nmp);
21879 
21880 				/*
21881 				 * Excess data in mblk; can we split it?
21882 				 * If MDT is enabled for the connection,
21883 				 * keep on splitting as this is a transient
21884 				 * send path.
21885 				 */
21886 				if (!do_lso_send && !tcp->tcp_mdt &&
21887 				    (spill + nmpsz > 0)) {
21888 					/*
21889 					 * Don't split if stream head was
21890 					 * told to break up larger writes
21891 					 * into smaller ones.
21892 					 */
21893 					if (tcp->tcp_maxpsz > 0)
21894 						break;
21895 
21896 					/*
21897 					 * Next mblk is less than SMSS/2
21898 					 * rounded up to nearest 64-byte;
21899 					 * let it get sent as part of the
21900 					 * next segment.
21901 					 */
21902 					if (tcp->tcp_localnet &&
21903 					    !tcp->tcp_cork &&
21904 					    (nmpsz < roundup((mss >> 1), 64)))
21905 						break;
21906 				}
21907 
21908 				*xmit_tail = nmp;
21909 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21910 				/* Stash for rtt use later */
21911 				(*xmit_tail)->b_prev = local_time;
21912 				(*xmit_tail)->b_next =
21913 				    (mblk_t *)(uintptr_t)(*snxt - len);
21914 				mp1->b_cont = dupb(*xmit_tail);
21915 				mp1 = mp1->b_cont;
21916 
21917 				spill += nmpsz;
21918 				if (mp1 == NULL) {
21919 					*tail_unsent = spill;
21920 					freemsg(mp);
21921 					if (ire != NULL)
21922 						IRE_REFRELE(ire);
21923 					return (-1);	/* out_of_mem */
21924 				}
21925 			}
21926 
21927 			/* Trim back any surplus on the last mblk */
21928 			if (spill >= 0) {
21929 				mp1->b_wptr -= spill;
21930 				*tail_unsent = spill;
21931 			} else {
21932 				/*
21933 				 * We did not send everything we could in
21934 				 * order to remain within the b_cont limit.
21935 				 */
21936 				*usable -= spill;
21937 				*snxt += spill;
21938 				tcp->tcp_last_sent_len += spill;
21939 				UPDATE_MIB(&tcps->tcps_mib,
21940 				    tcpOutDataBytes, spill);
21941 				/*
21942 				 * Adjust the checksum
21943 				 */
21944 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21945 				sum += spill;
21946 				sum = (sum >> 16) + (sum & 0xFFFF);
21947 				U16_TO_ABE16(sum, tcph->th_sum);
21948 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21949 					sum = ntohs(
21950 					    ((ipha_t *)rptr)->ipha_length) +
21951 					    spill;
21952 					((ipha_t *)rptr)->ipha_length =
21953 					    htons(sum);
21954 				} else {
21955 					sum = ntohs(
21956 					    ((ip6_t *)rptr)->ip6_plen) +
21957 					    spill;
21958 					((ip6_t *)rptr)->ip6_plen =
21959 					    htons(sum);
21960 				}
21961 				*tail_unsent = 0;
21962 			}
21963 		}
21964 		if (tcp->tcp_ip_forward_progress) {
21965 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21966 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21967 			tcp->tcp_ip_forward_progress = B_FALSE;
21968 		}
21969 
21970 		if (do_lso_send) {
21971 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21972 			    num_lso_seg);
21973 			tcp->tcp_obsegs += num_lso_seg;
21974 
21975 			TCP_STAT(tcps, tcp_lso_times);
21976 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21977 		} else {
21978 			tcp_send_data(tcp, q, mp);
21979 			BUMP_LOCAL(tcp->tcp_obsegs);
21980 		}
21981 	}
21982 
21983 	if (ire != NULL)
21984 		IRE_REFRELE(ire);
21985 	return (0);
21986 }
21987 
21988 /* Unlink and return any mblk that looks like it contains a MDT info */
21989 static mblk_t *
21990 tcp_mdt_info_mp(mblk_t *mp)
21991 {
21992 	mblk_t	*prev_mp;
21993 
21994 	for (;;) {
21995 		prev_mp = mp;
21996 		/* no more to process? */
21997 		if ((mp = mp->b_cont) == NULL)
21998 			break;
21999 
22000 		switch (DB_TYPE(mp)) {
22001 		case M_CTL:
22002 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
22003 				continue;
22004 			ASSERT(prev_mp != NULL);
22005 			prev_mp->b_cont = mp->b_cont;
22006 			mp->b_cont = NULL;
22007 			return (mp);
22008 		default:
22009 			break;
22010 		}
22011 	}
22012 	return (mp);
22013 }
22014 
22015 /* MDT info update routine, called when IP notifies us about MDT */
22016 static void
22017 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
22018 {
22019 	boolean_t prev_state;
22020 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22021 
22022 	/*
22023 	 * IP is telling us to abort MDT on this connection?  We know
22024 	 * this because the capability is only turned off when IP
22025 	 * encounters some pathological cases, e.g. link-layer change
22026 	 * where the new driver doesn't support MDT, or in situation
22027 	 * where MDT usage on the link-layer has been switched off.
22028 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
22029 	 * if the link-layer doesn't support MDT, and if it does, it
22030 	 * will indicate that the feature is to be turned on.
22031 	 */
22032 	prev_state = tcp->tcp_mdt;
22033 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
22034 	if (!tcp->tcp_mdt && !first) {
22035 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
22036 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
22037 		    (void *)tcp->tcp_connp));
22038 	}
22039 
22040 	/*
22041 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
22042 	 * so disable MDT otherwise.  The checks are done here
22043 	 * and in tcp_wput_data().
22044 	 */
22045 	if (tcp->tcp_mdt &&
22046 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22047 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22048 	    (tcp->tcp_ipversion == IPV6_VERSION &&
22049 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
22050 		tcp->tcp_mdt = B_FALSE;
22051 
22052 	if (tcp->tcp_mdt) {
22053 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
22054 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
22055 			    "version (%d), expected version is %d",
22056 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
22057 			tcp->tcp_mdt = B_FALSE;
22058 			return;
22059 		}
22060 
22061 		/*
22062 		 * We need the driver to be able to handle at least three
22063 		 * spans per packet in order for tcp MDT to be utilized.
22064 		 * The first is for the header portion, while the rest are
22065 		 * needed to handle a packet that straddles across two
22066 		 * virtually non-contiguous buffers; a typical tcp packet
22067 		 * therefore consists of only two spans.  Note that we take
22068 		 * a zero as "don't care".
22069 		 */
22070 		if (mdt_capab->ill_mdt_span_limit > 0 &&
22071 		    mdt_capab->ill_mdt_span_limit < 3) {
22072 			tcp->tcp_mdt = B_FALSE;
22073 			return;
22074 		}
22075 
22076 		/* a zero means driver wants default value */
22077 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22078 		    tcps->tcps_mdt_max_pbufs);
22079 		if (tcp->tcp_mdt_max_pld == 0)
22080 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22081 
22082 		/* ensure 32-bit alignment */
22083 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22084 		    mdt_capab->ill_mdt_hdr_head), 4);
22085 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22086 		    mdt_capab->ill_mdt_hdr_tail), 4);
22087 
22088 		if (!first && !prev_state) {
22089 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22090 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22091 			    (void *)tcp->tcp_connp));
22092 		}
22093 	}
22094 }
22095 
22096 /* Unlink and return any mblk that looks like it contains a LSO info */
22097 static mblk_t *
22098 tcp_lso_info_mp(mblk_t *mp)
22099 {
22100 	mblk_t	*prev_mp;
22101 
22102 	for (;;) {
22103 		prev_mp = mp;
22104 		/* no more to process? */
22105 		if ((mp = mp->b_cont) == NULL)
22106 			break;
22107 
22108 		switch (DB_TYPE(mp)) {
22109 		case M_CTL:
22110 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22111 				continue;
22112 			ASSERT(prev_mp != NULL);
22113 			prev_mp->b_cont = mp->b_cont;
22114 			mp->b_cont = NULL;
22115 			return (mp);
22116 		default:
22117 			break;
22118 		}
22119 	}
22120 
22121 	return (mp);
22122 }
22123 
22124 /* LSO info update routine, called when IP notifies us about LSO */
22125 static void
22126 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22127 {
22128 	tcp_stack_t *tcps = tcp->tcp_tcps;
22129 
22130 	/*
22131 	 * IP is telling us to abort LSO on this connection?  We know
22132 	 * this because the capability is only turned off when IP
22133 	 * encounters some pathological cases, e.g. link-layer change
22134 	 * where the new NIC/driver doesn't support LSO, or in situation
22135 	 * where LSO usage on the link-layer has been switched off.
22136 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22137 	 * if the link-layer doesn't support LSO, and if it does, it
22138 	 * will indicate that the feature is to be turned on.
22139 	 */
22140 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22141 	TCP_STAT(tcps, tcp_lso_enabled);
22142 
22143 	/*
22144 	 * We currently only support LSO on simple TCP/IPv4,
22145 	 * so disable LSO otherwise.  The checks are done here
22146 	 * and in tcp_wput_data().
22147 	 */
22148 	if (tcp->tcp_lso &&
22149 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22150 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22151 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22152 		tcp->tcp_lso = B_FALSE;
22153 		TCP_STAT(tcps, tcp_lso_disabled);
22154 	} else {
22155 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22156 		    lso_capab->ill_lso_max);
22157 	}
22158 }
22159 
22160 static void
22161 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22162 {
22163 	conn_t *connp = tcp->tcp_connp;
22164 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22165 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22166 
22167 	ASSERT(ire != NULL);
22168 
22169 	/*
22170 	 * We may be in the fastpath here, and although we essentially do
22171 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22172 	 * we try to keep things as brief as possible.  After all, these
22173 	 * are only best-effort checks, and we do more thorough ones prior
22174 	 * to calling tcp_send()/tcp_multisend().
22175 	 */
22176 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22177 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22178 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22179 	    !(ire->ire_flags & RTF_MULTIRT) &&
22180 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22181 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22182 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22183 			/* Cache the result */
22184 			connp->conn_lso_ok = B_TRUE;
22185 
22186 			ASSERT(ill->ill_lso_capab != NULL);
22187 			if (!ill->ill_lso_capab->ill_lso_on) {
22188 				ill->ill_lso_capab->ill_lso_on = 1;
22189 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22190 				    "LSO for interface %s\n", (void *)connp,
22191 				    ill->ill_name));
22192 			}
22193 			tcp_lso_update(tcp, ill->ill_lso_capab);
22194 		} else if (ipst->ips_ip_multidata_outbound &&
22195 		    ILL_MDT_CAPABLE(ill)) {
22196 			/* Cache the result */
22197 			connp->conn_mdt_ok = B_TRUE;
22198 
22199 			ASSERT(ill->ill_mdt_capab != NULL);
22200 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22201 				ill->ill_mdt_capab->ill_mdt_on = 1;
22202 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22203 				    "MDT for interface %s\n", (void *)connp,
22204 				    ill->ill_name));
22205 			}
22206 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22207 		}
22208 	}
22209 
22210 	/*
22211 	 * The goal is to reduce the number of generated tcp segments by
22212 	 * setting the maxpsz multiplier to 0; this will have an affect on
22213 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22214 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22215 	 * of outbound segments and incoming ACKs, thus allowing for better
22216 	 * network and system performance.  In contrast the legacy behavior
22217 	 * may result in sending less than SMSS size, because the last mblk
22218 	 * for some packets may have more data than needed to make up SMSS,
22219 	 * and the legacy code refused to "split" it.
22220 	 *
22221 	 * We apply the new behavior on following situations:
22222 	 *
22223 	 *   1) Loopback connections,
22224 	 *   2) Connections in which the remote peer is not on local subnet,
22225 	 *   3) Local subnet connections over the bge interface (see below).
22226 	 *
22227 	 * Ideally, we would like this behavior to apply for interfaces other
22228 	 * than bge.  However, doing so would negatively impact drivers which
22229 	 * perform dynamic mapping and unmapping of DMA resources, which are
22230 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22231 	 * packet will be generated by tcp).  The bge driver does not suffer
22232 	 * from this, as it copies the mblks into pre-mapped buffers, and
22233 	 * therefore does not require more I/O resources than before.
22234 	 *
22235 	 * Otherwise, this behavior is present on all network interfaces when
22236 	 * the destination endpoint is non-local, since reducing the number
22237 	 * of packets in general is good for the network.
22238 	 *
22239 	 * TODO We need to remove this hard-coded conditional for bge once
22240 	 *	a better "self-tuning" mechanism, or a way to comprehend
22241 	 *	the driver transmit strategy is devised.  Until the solution
22242 	 *	is found and well understood, we live with this hack.
22243 	 */
22244 	if (!tcp_static_maxpsz &&
22245 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22246 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22247 		/* override the default value */
22248 		tcp->tcp_maxpsz = 0;
22249 
22250 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22251 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22252 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22253 	}
22254 
22255 	/* set the stream head parameters accordingly */
22256 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22257 }
22258 
22259 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22260 static void
22261 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22262 {
22263 	uchar_t	fval = *mp->b_rptr;
22264 	mblk_t	*tail;
22265 	queue_t	*q = tcp->tcp_wq;
22266 
22267 	/* TODO: How should flush interact with urgent data? */
22268 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22269 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22270 		/*
22271 		 * Flush only data that has not yet been put on the wire.  If
22272 		 * we flush data that we have already transmitted, life, as we
22273 		 * know it, may come to an end.
22274 		 */
22275 		tail = tcp->tcp_xmit_tail;
22276 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22277 		tcp->tcp_xmit_tail_unsent = 0;
22278 		tcp->tcp_unsent = 0;
22279 		if (tail->b_wptr != tail->b_rptr)
22280 			tail = tail->b_cont;
22281 		if (tail) {
22282 			mblk_t **excess = &tcp->tcp_xmit_head;
22283 			for (;;) {
22284 				mblk_t *mp1 = *excess;
22285 				if (mp1 == tail)
22286 					break;
22287 				tcp->tcp_xmit_tail = mp1;
22288 				tcp->tcp_xmit_last = mp1;
22289 				excess = &mp1->b_cont;
22290 			}
22291 			*excess = NULL;
22292 			tcp_close_mpp(&tail);
22293 			if (tcp->tcp_snd_zcopy_aware)
22294 				tcp_zcopy_notify(tcp);
22295 		}
22296 		/*
22297 		 * We have no unsent data, so unsent must be less than
22298 		 * tcp_xmit_lowater, so re-enable flow.
22299 		 */
22300 		mutex_enter(&tcp->tcp_non_sq_lock);
22301 		if (tcp->tcp_flow_stopped) {
22302 			tcp_clrqfull(tcp);
22303 		}
22304 		mutex_exit(&tcp->tcp_non_sq_lock);
22305 	}
22306 	/*
22307 	 * TODO: you can't just flush these, you have to increase rwnd for one
22308 	 * thing.  For another, how should urgent data interact?
22309 	 */
22310 	if (fval & FLUSHR) {
22311 		*mp->b_rptr = fval & ~FLUSHW;
22312 		/* XXX */
22313 		qreply(q, mp);
22314 		return;
22315 	}
22316 	freemsg(mp);
22317 }
22318 
22319 /*
22320  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22321  * messages.
22322  */
22323 static void
22324 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22325 {
22326 	mblk_t	*mp1;
22327 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22328 	STRUCT_HANDLE(strbuf, sb);
22329 	queue_t *q = tcp->tcp_wq;
22330 	int	error;
22331 	uint_t	addrlen;
22332 
22333 	/* Make sure it is one of ours. */
22334 	switch (iocp->ioc_cmd) {
22335 	case TI_GETMYNAME:
22336 	case TI_GETPEERNAME:
22337 		break;
22338 	default:
22339 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22340 		return;
22341 	}
22342 	switch (mi_copy_state(q, mp, &mp1)) {
22343 	case -1:
22344 		return;
22345 	case MI_COPY_CASE(MI_COPY_IN, 1):
22346 		break;
22347 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22348 		/* Copy out the strbuf. */
22349 		mi_copyout(q, mp);
22350 		return;
22351 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22352 		/* All done. */
22353 		mi_copy_done(q, mp, 0);
22354 		return;
22355 	default:
22356 		mi_copy_done(q, mp, EPROTO);
22357 		return;
22358 	}
22359 	/* Check alignment of the strbuf */
22360 	if (!OK_32PTR(mp1->b_rptr)) {
22361 		mi_copy_done(q, mp, EINVAL);
22362 		return;
22363 	}
22364 
22365 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22366 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22367 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22368 		mi_copy_done(q, mp, EINVAL);
22369 		return;
22370 	}
22371 
22372 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22373 	if (mp1 == NULL)
22374 		return;
22375 
22376 	switch (iocp->ioc_cmd) {
22377 	case TI_GETMYNAME:
22378 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22379 		break;
22380 	case TI_GETPEERNAME:
22381 		error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22382 		break;
22383 	}
22384 
22385 	if (error != 0) {
22386 		mi_copy_done(q, mp, error);
22387 	} else {
22388 		mp1->b_wptr += addrlen;
22389 		STRUCT_FSET(sb, len, addrlen);
22390 
22391 		/* Copy out the address */
22392 		mi_copyout(q, mp);
22393 	}
22394 }
22395 
22396 /*
22397  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22398  * messages.
22399  */
22400 /* ARGSUSED */
22401 static void
22402 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22403 {
22404 	conn_t 	*connp = (conn_t *)arg;
22405 	tcp_t	*tcp = connp->conn_tcp;
22406 	queue_t	*q = tcp->tcp_wq;
22407 	struct iocblk	*iocp;
22408 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22409 
22410 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22411 	/*
22412 	 * Try and ASSERT the minimum possible references on the
22413 	 * conn early enough. Since we are executing on write side,
22414 	 * the connection is obviously not detached and that means
22415 	 * there is a ref each for TCP and IP. Since we are behind
22416 	 * the squeue, the minimum references needed are 3. If the
22417 	 * conn is in classifier hash list, there should be an
22418 	 * extra ref for that (we check both the possibilities).
22419 	 */
22420 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22421 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22422 
22423 	iocp = (struct iocblk *)mp->b_rptr;
22424 	switch (iocp->ioc_cmd) {
22425 	case TCP_IOC_DEFAULT_Q:
22426 		/* Wants to be the default wq. */
22427 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22428 			iocp->ioc_error = EPERM;
22429 			iocp->ioc_count = 0;
22430 			mp->b_datap->db_type = M_IOCACK;
22431 			qreply(q, mp);
22432 			return;
22433 		}
22434 		tcp_def_q_set(tcp, mp);
22435 		return;
22436 	case _SIOCSOCKFALLBACK:
22437 		/*
22438 		 * Either sockmod is about to be popped and the socket
22439 		 * would now be treated as a plain stream, or a module
22440 		 * is about to be pushed so we could no longer use read-
22441 		 * side synchronous streams for fused loopback tcp.
22442 		 * Drain any queued data and disable direct sockfs
22443 		 * interface from now on.
22444 		 */
22445 		if (!tcp->tcp_issocket) {
22446 			DB_TYPE(mp) = M_IOCNAK;
22447 			iocp->ioc_error = EINVAL;
22448 		} else {
22449 #ifdef	_ILP32
22450 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22451 #else
22452 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22453 #endif
22454 			/*
22455 			 * Insert this socket into the acceptor hash.
22456 			 * We might need it for T_CONN_RES message
22457 			 */
22458 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22459 
22460 			if (tcp->tcp_fused) {
22461 				/*
22462 				 * This is a fused loopback tcp; disable
22463 				 * read-side synchronous streams interface
22464 				 * and drain any queued data.  It is okay
22465 				 * to do this for non-synchronous streams
22466 				 * fused tcp as well.
22467 				 */
22468 				tcp_fuse_disable_pair(tcp, B_FALSE);
22469 			}
22470 			tcp->tcp_issocket = B_FALSE;
22471 			tcp->tcp_sodirect = NULL;
22472 			TCP_STAT(tcps, tcp_sock_fallback);
22473 
22474 			DB_TYPE(mp) = M_IOCACK;
22475 			iocp->ioc_error = 0;
22476 		}
22477 		iocp->ioc_count = 0;
22478 		iocp->ioc_rval = 0;
22479 		qreply(q, mp);
22480 		return;
22481 	}
22482 	CALL_IP_WPUT(connp, q, mp);
22483 }
22484 
22485 /*
22486  * This routine is called by tcp_wput() to handle all TPI requests.
22487  */
22488 /* ARGSUSED */
22489 static void
22490 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22491 {
22492 	conn_t 	*connp = (conn_t *)arg;
22493 	tcp_t	*tcp = connp->conn_tcp;
22494 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22495 	uchar_t *rptr;
22496 	t_scalar_t type;
22497 	int len;
22498 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22499 
22500 	/*
22501 	 * Try and ASSERT the minimum possible references on the
22502 	 * conn early enough. Since we are executing on write side,
22503 	 * the connection is obviously not detached and that means
22504 	 * there is a ref each for TCP and IP. Since we are behind
22505 	 * the squeue, the minimum references needed are 3. If the
22506 	 * conn is in classifier hash list, there should be an
22507 	 * extra ref for that (we check both the possibilities).
22508 	 */
22509 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22510 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22511 
22512 	rptr = mp->b_rptr;
22513 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22514 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22515 		type = ((union T_primitives *)rptr)->type;
22516 		if (type == T_EXDATA_REQ) {
22517 			uint32_t msize = msgdsize(mp->b_cont);
22518 
22519 			len = msize - 1;
22520 			if (len < 0) {
22521 				freemsg(mp);
22522 				return;
22523 			}
22524 			/*
22525 			 * Try to force urgent data out on the wire.
22526 			 * Even if we have unsent data this will
22527 			 * at least send the urgent flag.
22528 			 * XXX does not handle more flag correctly.
22529 			 */
22530 			len += tcp->tcp_unsent;
22531 			len += tcp->tcp_snxt;
22532 			tcp->tcp_urg = len;
22533 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22534 
22535 			/* Bypass tcp protocol for fused tcp loopback */
22536 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22537 				return;
22538 		} else if (type != T_DATA_REQ) {
22539 			goto non_urgent_data;
22540 		}
22541 		/* TODO: options, flags, ... from user */
22542 		/* Set length to zero for reclamation below */
22543 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22544 		freeb(mp);
22545 		return;
22546 	} else {
22547 		if (tcp->tcp_debug) {
22548 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22549 			    "tcp_wput_proto, dropping one...");
22550 		}
22551 		freemsg(mp);
22552 		return;
22553 	}
22554 
22555 non_urgent_data:
22556 
22557 	switch ((int)tprim->type) {
22558 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22559 		/*
22560 		 * save the kssl_ent_t from the next block, and convert this
22561 		 * back to a normal bind_req.
22562 		 */
22563 		if (mp->b_cont != NULL) {
22564 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22565 
22566 			if (tcp->tcp_kssl_ent != NULL) {
22567 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22568 				    KSSL_NO_PROXY);
22569 				tcp->tcp_kssl_ent = NULL;
22570 			}
22571 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22572 			    sizeof (kssl_ent_t));
22573 			kssl_hold_ent(tcp->tcp_kssl_ent);
22574 			freemsg(mp->b_cont);
22575 			mp->b_cont = NULL;
22576 		}
22577 		tprim->type = T_BIND_REQ;
22578 
22579 	/* FALLTHROUGH */
22580 	case O_T_BIND_REQ:	/* bind request */
22581 	case T_BIND_REQ:	/* new semantics bind request */
22582 		tcp_bind(tcp, mp);
22583 		break;
22584 	case T_UNBIND_REQ:	/* unbind request */
22585 		tcp_unbind(tcp, mp);
22586 		break;
22587 	case O_T_CONN_RES:	/* old connection response XXX */
22588 	case T_CONN_RES:	/* connection response */
22589 		tcp_accept(tcp, mp);
22590 		break;
22591 	case T_CONN_REQ:	/* connection request */
22592 		tcp_connect(tcp, mp);
22593 		break;
22594 	case T_DISCON_REQ:	/* disconnect request */
22595 		tcp_disconnect(tcp, mp);
22596 		break;
22597 	case T_CAPABILITY_REQ:
22598 		tcp_capability_req(tcp, mp);	/* capability request */
22599 		break;
22600 	case T_INFO_REQ:	/* information request */
22601 		tcp_info_req(tcp, mp);
22602 		break;
22603 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22604 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22605 		    &tcp_opt_obj, B_TRUE);
22606 		break;
22607 	case T_OPTMGMT_REQ:
22608 		/*
22609 		 * Note:  no support for snmpcom_req() through new
22610 		 * T_OPTMGMT_REQ. See comments in ip.c
22611 		 */
22612 		/* Only IP is allowed to return meaningful value */
22613 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22614 		    B_TRUE);
22615 		break;
22616 
22617 	case T_UNITDATA_REQ:	/* unitdata request */
22618 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22619 		break;
22620 	case T_ORDREL_REQ:	/* orderly release req */
22621 		freemsg(mp);
22622 
22623 		if (tcp->tcp_fused)
22624 			tcp_unfuse(tcp);
22625 
22626 		if (tcp_xmit_end(tcp) != 0) {
22627 			/*
22628 			 * We were crossing FINs and got a reset from
22629 			 * the other side. Just ignore it.
22630 			 */
22631 			if (tcp->tcp_debug) {
22632 				(void) strlog(TCP_MOD_ID, 0, 1,
22633 				    SL_ERROR|SL_TRACE,
22634 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22635 				    "state %s",
22636 				    tcp_display(tcp, NULL,
22637 				    DISP_ADDR_AND_PORT));
22638 			}
22639 		}
22640 		break;
22641 	case T_ADDR_REQ:
22642 		tcp_addr_req(tcp, mp);
22643 		break;
22644 	default:
22645 		if (tcp->tcp_debug) {
22646 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22647 			    "tcp_wput_proto, bogus TPI msg, type %d",
22648 			    tprim->type);
22649 		}
22650 		/*
22651 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22652 		 * to recover.
22653 		 */
22654 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22655 		break;
22656 	}
22657 }
22658 
22659 /*
22660  * The TCP write service routine should never be called...
22661  */
22662 /* ARGSUSED */
22663 static void
22664 tcp_wsrv(queue_t *q)
22665 {
22666 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22667 
22668 	TCP_STAT(tcps, tcp_wsrv_called);
22669 }
22670 
22671 /* Non overlapping byte exchanger */
22672 static void
22673 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22674 {
22675 	uchar_t	uch;
22676 
22677 	while (len-- > 0) {
22678 		uch = a[len];
22679 		a[len] = b[len];
22680 		b[len] = uch;
22681 	}
22682 }
22683 
22684 /*
22685  * Send out a control packet on the tcp connection specified.  This routine
22686  * is typically called where we need a simple ACK or RST generated.
22687  */
22688 static void
22689 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22690 {
22691 	uchar_t		*rptr;
22692 	tcph_t		*tcph;
22693 	ipha_t		*ipha = NULL;
22694 	ip6_t		*ip6h = NULL;
22695 	uint32_t	sum;
22696 	int		tcp_hdr_len;
22697 	int		tcp_ip_hdr_len;
22698 	mblk_t		*mp;
22699 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22700 
22701 	/*
22702 	 * Save sum for use in source route later.
22703 	 */
22704 	ASSERT(tcp != NULL);
22705 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22706 	tcp_hdr_len = tcp->tcp_hdr_len;
22707 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22708 
22709 	/* If a text string is passed in with the request, pass it to strlog. */
22710 	if (str != NULL && tcp->tcp_debug) {
22711 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22712 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22713 		    str, seq, ack, ctl);
22714 	}
22715 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22716 	    BPRI_MED);
22717 	if (mp == NULL) {
22718 		return;
22719 	}
22720 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22721 	mp->b_rptr = rptr;
22722 	mp->b_wptr = &rptr[tcp_hdr_len];
22723 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22724 
22725 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22726 		ipha = (ipha_t *)rptr;
22727 		ipha->ipha_length = htons(tcp_hdr_len);
22728 	} else {
22729 		ip6h = (ip6_t *)rptr;
22730 		ASSERT(tcp != NULL);
22731 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22732 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22733 	}
22734 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22735 	tcph->th_flags[0] = (uint8_t)ctl;
22736 	if (ctl & TH_RST) {
22737 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22738 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22739 		/*
22740 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22741 		 */
22742 		if (tcp->tcp_snd_ts_ok &&
22743 		    tcp->tcp_state > TCPS_SYN_SENT) {
22744 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22745 			*(mp->b_wptr) = TCPOPT_EOL;
22746 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22747 				ipha->ipha_length = htons(tcp_hdr_len -
22748 				    TCPOPT_REAL_TS_LEN);
22749 			} else {
22750 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22751 				    TCPOPT_REAL_TS_LEN);
22752 			}
22753 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22754 			sum -= TCPOPT_REAL_TS_LEN;
22755 		}
22756 	}
22757 	if (ctl & TH_ACK) {
22758 		if (tcp->tcp_snd_ts_ok) {
22759 			U32_TO_BE32(lbolt,
22760 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22761 			U32_TO_BE32(tcp->tcp_ts_recent,
22762 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22763 		}
22764 
22765 		/* Update the latest receive window size in TCP header. */
22766 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22767 		    tcph->th_win);
22768 		tcp->tcp_rack = ack;
22769 		tcp->tcp_rack_cnt = 0;
22770 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22771 	}
22772 	BUMP_LOCAL(tcp->tcp_obsegs);
22773 	U32_TO_BE32(seq, tcph->th_seq);
22774 	U32_TO_BE32(ack, tcph->th_ack);
22775 	/*
22776 	 * Include the adjustment for a source route if any.
22777 	 */
22778 	sum = (sum >> 16) + (sum & 0xFFFF);
22779 	U16_TO_BE16(sum, tcph->th_sum);
22780 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22781 }
22782 
22783 /*
22784  * If this routine returns B_TRUE, TCP can generate a RST in response
22785  * to a segment.  If it returns B_FALSE, TCP should not respond.
22786  */
22787 static boolean_t
22788 tcp_send_rst_chk(tcp_stack_t *tcps)
22789 {
22790 	clock_t	now;
22791 
22792 	/*
22793 	 * TCP needs to protect itself from generating too many RSTs.
22794 	 * This can be a DoS attack by sending us random segments
22795 	 * soliciting RSTs.
22796 	 *
22797 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22798 	 * in each 1 second interval.  In this way, TCP still generate
22799 	 * RSTs in normal cases but when under attack, the impact is
22800 	 * limited.
22801 	 */
22802 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22803 		now = lbolt;
22804 		/* lbolt can wrap around. */
22805 		if ((tcps->tcps_last_rst_intrvl > now) ||
22806 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22807 		    1*SECONDS)) {
22808 			tcps->tcps_last_rst_intrvl = now;
22809 			tcps->tcps_rst_cnt = 1;
22810 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22811 			return (B_FALSE);
22812 		}
22813 	}
22814 	return (B_TRUE);
22815 }
22816 
22817 /*
22818  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22819  */
22820 static void
22821 tcp_ip_ire_mark_advice(tcp_t *tcp)
22822 {
22823 	mblk_t *mp;
22824 	ipic_t *ipic;
22825 
22826 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22827 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22828 		    &ipic);
22829 	} else {
22830 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22831 		    &ipic);
22832 	}
22833 	if (mp == NULL)
22834 		return;
22835 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22836 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22837 }
22838 
22839 /*
22840  * Return an IP advice ioctl mblk and set ipic to be the pointer
22841  * to the advice structure.
22842  */
22843 static mblk_t *
22844 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22845 {
22846 	struct iocblk *ioc;
22847 	mblk_t *mp, *mp1;
22848 
22849 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22850 	if (mp == NULL)
22851 		return (NULL);
22852 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22853 	*ipic = (ipic_t *)mp->b_rptr;
22854 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22855 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22856 
22857 	bcopy(addr, *ipic + 1, addr_len);
22858 
22859 	(*ipic)->ipic_addr_length = addr_len;
22860 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22861 
22862 	mp1 = mkiocb(IP_IOCTL);
22863 	if (mp1 == NULL) {
22864 		freemsg(mp);
22865 		return (NULL);
22866 	}
22867 	mp1->b_cont = mp;
22868 	ioc = (struct iocblk *)mp1->b_rptr;
22869 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22870 
22871 	return (mp1);
22872 }
22873 
22874 /*
22875  * Generate a reset based on an inbound packet, connp is set by caller
22876  * when RST is in response to an unexpected inbound packet for which
22877  * there is active tcp state in the system.
22878  *
22879  * IPSEC NOTE : Try to send the reply with the same protection as it came
22880  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22881  * the packet will go out at the same level of protection as it came in by
22882  * converting the IPSEC_IN to IPSEC_OUT.
22883  */
22884 static void
22885 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22886     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22887     tcp_stack_t *tcps, conn_t *connp)
22888 {
22889 	ipha_t		*ipha = NULL;
22890 	ip6_t		*ip6h = NULL;
22891 	ushort_t	len;
22892 	tcph_t		*tcph;
22893 	int		i;
22894 	mblk_t		*ipsec_mp;
22895 	boolean_t	mctl_present;
22896 	ipic_t		*ipic;
22897 	ipaddr_t	v4addr;
22898 	in6_addr_t	v6addr;
22899 	int		addr_len;
22900 	void		*addr;
22901 	queue_t		*q = tcps->tcps_g_q;
22902 	tcp_t		*tcp;
22903 	cred_t		*cr;
22904 	mblk_t		*nmp;
22905 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22906 
22907 	if (tcps->tcps_g_q == NULL) {
22908 		/*
22909 		 * For non-zero stackids the default queue isn't created
22910 		 * until the first open, thus there can be a need to send
22911 		 * a reset before then. But we can't do that, hence we just
22912 		 * drop the packet. Later during boot, when the default queue
22913 		 * has been setup, a retransmitted packet from the peer
22914 		 * will result in a reset.
22915 		 */
22916 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22917 		    GLOBAL_NETSTACKID);
22918 		freemsg(mp);
22919 		return;
22920 	}
22921 
22922 	if (connp != NULL)
22923 		tcp = connp->conn_tcp;
22924 	else
22925 		tcp = Q_TO_TCP(q);
22926 
22927 	if (!tcp_send_rst_chk(tcps)) {
22928 		tcps->tcps_rst_unsent++;
22929 		freemsg(mp);
22930 		return;
22931 	}
22932 
22933 	if (mp->b_datap->db_type == M_CTL) {
22934 		ipsec_mp = mp;
22935 		mp = mp->b_cont;
22936 		mctl_present = B_TRUE;
22937 	} else {
22938 		ipsec_mp = mp;
22939 		mctl_present = B_FALSE;
22940 	}
22941 
22942 	if (str && q && tcps->tcps_dbg) {
22943 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22944 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22945 		    "flags 0x%x",
22946 		    str, seq, ack, ctl);
22947 	}
22948 	if (mp->b_datap->db_ref != 1) {
22949 		mblk_t *mp1 = copyb(mp);
22950 		freemsg(mp);
22951 		mp = mp1;
22952 		if (!mp) {
22953 			if (mctl_present)
22954 				freeb(ipsec_mp);
22955 			return;
22956 		} else {
22957 			if (mctl_present) {
22958 				ipsec_mp->b_cont = mp;
22959 			} else {
22960 				ipsec_mp = mp;
22961 			}
22962 		}
22963 	} else if (mp->b_cont) {
22964 		freemsg(mp->b_cont);
22965 		mp->b_cont = NULL;
22966 	}
22967 	/*
22968 	 * We skip reversing source route here.
22969 	 * (for now we replace all IP options with EOL)
22970 	 */
22971 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22972 		ipha = (ipha_t *)mp->b_rptr;
22973 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22974 			mp->b_rptr[i] = IPOPT_EOL;
22975 		/*
22976 		 * Make sure that src address isn't flagrantly invalid.
22977 		 * Not all broadcast address checking for the src address
22978 		 * is possible, since we don't know the netmask of the src
22979 		 * addr.  No check for destination address is done, since
22980 		 * IP will not pass up a packet with a broadcast dest
22981 		 * address to TCP.  Similar checks are done below for IPv6.
22982 		 */
22983 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22984 		    CLASSD(ipha->ipha_src)) {
22985 			freemsg(ipsec_mp);
22986 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22987 			return;
22988 		}
22989 	} else {
22990 		ip6h = (ip6_t *)mp->b_rptr;
22991 
22992 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22993 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22994 			freemsg(ipsec_mp);
22995 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22996 			return;
22997 		}
22998 
22999 		/* Remove any extension headers assuming partial overlay */
23000 		if (ip_hdr_len > IPV6_HDR_LEN) {
23001 			uint8_t *to;
23002 
23003 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
23004 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
23005 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
23006 			ip_hdr_len = IPV6_HDR_LEN;
23007 			ip6h = (ip6_t *)mp->b_rptr;
23008 			ip6h->ip6_nxt = IPPROTO_TCP;
23009 		}
23010 	}
23011 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
23012 	if (tcph->th_flags[0] & TH_RST) {
23013 		freemsg(ipsec_mp);
23014 		return;
23015 	}
23016 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
23017 	len = ip_hdr_len + sizeof (tcph_t);
23018 	mp->b_wptr = &mp->b_rptr[len];
23019 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23020 		ipha->ipha_length = htons(len);
23021 		/* Swap addresses */
23022 		v4addr = ipha->ipha_src;
23023 		ipha->ipha_src = ipha->ipha_dst;
23024 		ipha->ipha_dst = v4addr;
23025 		ipha->ipha_ident = 0;
23026 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
23027 		addr_len = IP_ADDR_LEN;
23028 		addr = &v4addr;
23029 	} else {
23030 		/* No ip6i_t in this case */
23031 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
23032 		/* Swap addresses */
23033 		v6addr = ip6h->ip6_src;
23034 		ip6h->ip6_src = ip6h->ip6_dst;
23035 		ip6h->ip6_dst = v6addr;
23036 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
23037 		addr_len = IPV6_ADDR_LEN;
23038 		addr = &v6addr;
23039 	}
23040 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
23041 	U32_TO_BE32(ack, tcph->th_ack);
23042 	U32_TO_BE32(seq, tcph->th_seq);
23043 	U16_TO_BE16(0, tcph->th_win);
23044 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
23045 	tcph->th_flags[0] = (uint8_t)ctl;
23046 	if (ctl & TH_RST) {
23047 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
23048 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23049 	}
23050 
23051 	/* IP trusts us to set up labels when required. */
23052 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
23053 	    crgetlabel(cr) != NULL) {
23054 		int err;
23055 
23056 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
23057 			err = tsol_check_label(cr, &mp,
23058 			    tcp->tcp_connp->conn_mac_exempt,
23059 			    tcps->tcps_netstack->netstack_ip);
23060 		else
23061 			err = tsol_check_label_v6(cr, &mp,
23062 			    tcp->tcp_connp->conn_mac_exempt,
23063 			    tcps->tcps_netstack->netstack_ip);
23064 		if (mctl_present)
23065 			ipsec_mp->b_cont = mp;
23066 		else
23067 			ipsec_mp = mp;
23068 		if (err != 0) {
23069 			freemsg(ipsec_mp);
23070 			return;
23071 		}
23072 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23073 			ipha = (ipha_t *)mp->b_rptr;
23074 		} else {
23075 			ip6h = (ip6_t *)mp->b_rptr;
23076 		}
23077 	}
23078 
23079 	if (mctl_present) {
23080 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23081 
23082 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23083 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23084 			return;
23085 		}
23086 	}
23087 	if (zoneid == ALL_ZONES)
23088 		zoneid = GLOBAL_ZONEID;
23089 
23090 	/* Add the zoneid so ip_output routes it properly */
23091 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23092 		freemsg(ipsec_mp);
23093 		return;
23094 	}
23095 	ipsec_mp = nmp;
23096 
23097 	/*
23098 	 * NOTE:  one might consider tracing a TCP packet here, but
23099 	 * this function has no active TCP state and no tcp structure
23100 	 * that has a trace buffer.  If we traced here, we would have
23101 	 * to keep a local trace buffer in tcp_record_trace().
23102 	 *
23103 	 * TSol note: The mblk that contains the incoming packet was
23104 	 * reused by tcp_xmit_listener_reset, so it already contains
23105 	 * the right credentials and we don't need to call mblk_setcred.
23106 	 * Also the conn's cred is not right since it is associated
23107 	 * with tcps_g_q.
23108 	 */
23109 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23110 
23111 	/*
23112 	 * Tell IP to mark the IRE used for this destination temporary.
23113 	 * This way, we can limit our exposure to DoS attack because IP
23114 	 * creates an IRE for each destination.  If there are too many,
23115 	 * the time to do any routing lookup will be extremely long.  And
23116 	 * the lookup can be in interrupt context.
23117 	 *
23118 	 * Note that in normal circumstances, this marking should not
23119 	 * affect anything.  It would be nice if only 1 message is
23120 	 * needed to inform IP that the IRE created for this RST should
23121 	 * not be added to the cache table.  But there is currently
23122 	 * not such communication mechanism between TCP and IP.  So
23123 	 * the best we can do now is to send the advice ioctl to IP
23124 	 * to mark the IRE temporary.
23125 	 */
23126 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23127 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23128 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23129 	}
23130 }
23131 
23132 /*
23133  * Initiate closedown sequence on an active connection.  (May be called as
23134  * writer.)  Return value zero for OK return, non-zero for error return.
23135  */
23136 static int
23137 tcp_xmit_end(tcp_t *tcp)
23138 {
23139 	ipic_t	*ipic;
23140 	mblk_t	*mp;
23141 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23142 
23143 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23144 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23145 		/*
23146 		 * Invalid state, only states TCPS_SYN_RCVD,
23147 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23148 		 */
23149 		return (-1);
23150 	}
23151 
23152 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23153 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23154 	/*
23155 	 * If there is nothing more unsent, send the FIN now.
23156 	 * Otherwise, it will go out with the last segment.
23157 	 */
23158 	if (tcp->tcp_unsent == 0) {
23159 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23160 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23161 
23162 		if (mp) {
23163 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23164 		} else {
23165 			/*
23166 			 * Couldn't allocate msg.  Pretend we got it out.
23167 			 * Wait for rexmit timeout.
23168 			 */
23169 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23170 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23171 		}
23172 
23173 		/*
23174 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23175 		 * changed.
23176 		 */
23177 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23178 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23179 		}
23180 	} else {
23181 		/*
23182 		 * If tcp->tcp_cork is set, then the data will not get sent,
23183 		 * so we have to check that and unset it first.
23184 		 */
23185 		if (tcp->tcp_cork)
23186 			tcp->tcp_cork = B_FALSE;
23187 		tcp_wput_data(tcp, NULL, B_FALSE);
23188 	}
23189 
23190 	/*
23191 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23192 	 * is 0, don't update the cache.
23193 	 */
23194 	if (tcps->tcps_rtt_updates == 0 ||
23195 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23196 		return (0);
23197 
23198 	/*
23199 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23200 	 * different from the destination.
23201 	 */
23202 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23203 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23204 			return (0);
23205 		}
23206 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23207 		    &ipic);
23208 	} else {
23209 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23210 		    &tcp->tcp_ip6h->ip6_dst))) {
23211 			return (0);
23212 		}
23213 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23214 		    &ipic);
23215 	}
23216 
23217 	/* Record route attributes in the IRE for use by future connections. */
23218 	if (mp == NULL)
23219 		return (0);
23220 
23221 	/*
23222 	 * We do not have a good algorithm to update ssthresh at this time.
23223 	 * So don't do any update.
23224 	 */
23225 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23226 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23227 
23228 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23229 	return (0);
23230 }
23231 
23232 /*
23233  * Generate a "no listener here" RST in response to an "unknown" segment.
23234  * connp is set by caller when RST is in response to an unexpected
23235  * inbound packet for which there is active tcp state in the system.
23236  * Note that we are reusing the incoming mp to construct the outgoing RST.
23237  */
23238 void
23239 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23240     tcp_stack_t *tcps, conn_t *connp)
23241 {
23242 	uchar_t		*rptr;
23243 	uint32_t	seg_len;
23244 	tcph_t		*tcph;
23245 	uint32_t	seg_seq;
23246 	uint32_t	seg_ack;
23247 	uint_t		flags;
23248 	mblk_t		*ipsec_mp;
23249 	ipha_t 		*ipha;
23250 	ip6_t 		*ip6h;
23251 	boolean_t	mctl_present = B_FALSE;
23252 	boolean_t	check = B_TRUE;
23253 	boolean_t	policy_present;
23254 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23255 
23256 	TCP_STAT(tcps, tcp_no_listener);
23257 
23258 	ipsec_mp = mp;
23259 
23260 	if (mp->b_datap->db_type == M_CTL) {
23261 		ipsec_in_t *ii;
23262 
23263 		mctl_present = B_TRUE;
23264 		mp = mp->b_cont;
23265 
23266 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23267 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23268 		if (ii->ipsec_in_dont_check) {
23269 			check = B_FALSE;
23270 			if (!ii->ipsec_in_secure) {
23271 				freeb(ipsec_mp);
23272 				mctl_present = B_FALSE;
23273 				ipsec_mp = mp;
23274 			}
23275 		}
23276 	}
23277 
23278 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23279 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23280 		ipha = (ipha_t *)mp->b_rptr;
23281 		ip6h = NULL;
23282 	} else {
23283 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23284 		ipha = NULL;
23285 		ip6h = (ip6_t *)mp->b_rptr;
23286 	}
23287 
23288 	if (check && policy_present) {
23289 		/*
23290 		 * The conn_t parameter is NULL because we already know
23291 		 * nobody's home.
23292 		 */
23293 		ipsec_mp = ipsec_check_global_policy(
23294 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23295 		    tcps->tcps_netstack);
23296 		if (ipsec_mp == NULL)
23297 			return;
23298 	}
23299 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23300 		DTRACE_PROBE2(
23301 		    tx__ip__log__error__nolistener__tcp,
23302 		    char *, "Could not reply with RST to mp(1)",
23303 		    mblk_t *, mp);
23304 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23305 		freemsg(ipsec_mp);
23306 		return;
23307 	}
23308 
23309 	rptr = mp->b_rptr;
23310 
23311 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23312 	seg_seq = BE32_TO_U32(tcph->th_seq);
23313 	seg_ack = BE32_TO_U32(tcph->th_ack);
23314 	flags = tcph->th_flags[0];
23315 
23316 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23317 	if (flags & TH_RST) {
23318 		freemsg(ipsec_mp);
23319 	} else if (flags & TH_ACK) {
23320 		tcp_xmit_early_reset("no tcp, reset",
23321 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23322 		    connp);
23323 	} else {
23324 		if (flags & TH_SYN) {
23325 			seg_len++;
23326 		} else {
23327 			/*
23328 			 * Here we violate the RFC.  Note that a normal
23329 			 * TCP will never send a segment without the ACK
23330 			 * flag, except for RST or SYN segment.  This
23331 			 * segment is neither.  Just drop it on the
23332 			 * floor.
23333 			 */
23334 			freemsg(ipsec_mp);
23335 			tcps->tcps_rst_unsent++;
23336 			return;
23337 		}
23338 
23339 		tcp_xmit_early_reset("no tcp, reset/ack",
23340 		    ipsec_mp, 0, seg_seq + seg_len,
23341 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23342 	}
23343 }
23344 
23345 /*
23346  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23347  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23348  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23349  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23350  * otherwise it will dup partial mblks.)
23351  * Otherwise, an appropriate ACK packet will be generated.  This
23352  * routine is not usually called to send new data for the first time.  It
23353  * is mostly called out of the timer for retransmits, and to generate ACKs.
23354  *
23355  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23356  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23357  * of the original mblk chain will be returned in *offset and *end_mp.
23358  */
23359 mblk_t *
23360 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23361     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23362     boolean_t rexmit)
23363 {
23364 	int	data_length;
23365 	int32_t	off = 0;
23366 	uint_t	flags;
23367 	mblk_t	*mp1;
23368 	mblk_t	*mp2;
23369 	uchar_t	*rptr;
23370 	tcph_t	*tcph;
23371 	int32_t	num_sack_blk = 0;
23372 	int32_t	sack_opt_len = 0;
23373 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23374 
23375 	/* Allocate for our maximum TCP header + link-level */
23376 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23377 	    tcps->tcps_wroff_xtra, BPRI_MED);
23378 	if (!mp1)
23379 		return (NULL);
23380 	data_length = 0;
23381 
23382 	/*
23383 	 * Note that tcp_mss has been adjusted to take into account the
23384 	 * timestamp option if applicable.  Because SACK options do not
23385 	 * appear in every TCP segments and they are of variable lengths,
23386 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23387 	 * the actual segment length when we need to send a segment which
23388 	 * includes SACK options.
23389 	 */
23390 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23391 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23392 		    tcp->tcp_num_sack_blk);
23393 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23394 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23395 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23396 			max_to_send -= sack_opt_len;
23397 	}
23398 
23399 	if (offset != NULL) {
23400 		off = *offset;
23401 		/* We use offset as an indicator that end_mp is not NULL. */
23402 		*end_mp = NULL;
23403 	}
23404 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23405 		/* This could be faster with cooperation from downstream */
23406 		if (mp2 != mp1 && !sendall &&
23407 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23408 		    max_to_send)
23409 			/*
23410 			 * Don't send the next mblk since the whole mblk
23411 			 * does not fit.
23412 			 */
23413 			break;
23414 		mp2->b_cont = dupb(mp);
23415 		mp2 = mp2->b_cont;
23416 		if (!mp2) {
23417 			freemsg(mp1);
23418 			return (NULL);
23419 		}
23420 		mp2->b_rptr += off;
23421 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23422 		    (uintptr_t)INT_MAX);
23423 
23424 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23425 		if (data_length > max_to_send) {
23426 			mp2->b_wptr -= data_length - max_to_send;
23427 			data_length = max_to_send;
23428 			off = mp2->b_wptr - mp->b_rptr;
23429 			break;
23430 		} else {
23431 			off = 0;
23432 		}
23433 	}
23434 	if (offset != NULL) {
23435 		*offset = off;
23436 		*end_mp = mp;
23437 	}
23438 	if (seg_len != NULL) {
23439 		*seg_len = data_length;
23440 	}
23441 
23442 	/* Update the latest receive window size in TCP header. */
23443 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23444 	    tcp->tcp_tcph->th_win);
23445 
23446 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23447 	mp1->b_rptr = rptr;
23448 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23449 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23450 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23451 	U32_TO_ABE32(seq, tcph->th_seq);
23452 
23453 	/*
23454 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23455 	 * that this function was called from tcp_wput_data. Thus, when called
23456 	 * to retransmit data the setting of the PUSH bit may appear some
23457 	 * what random in that it might get set when it should not. This
23458 	 * should not pose any performance issues.
23459 	 */
23460 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23461 	    tcp->tcp_unsent == data_length)) {
23462 		flags = TH_ACK | TH_PUSH;
23463 	} else {
23464 		flags = TH_ACK;
23465 	}
23466 
23467 	if (tcp->tcp_ecn_ok) {
23468 		if (tcp->tcp_ecn_echo_on)
23469 			flags |= TH_ECE;
23470 
23471 		/*
23472 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23473 		 * There is no TCP flow control for non-data segments, and
23474 		 * only data segment is transmitted reliably.
23475 		 */
23476 		if (data_length > 0 && !rexmit) {
23477 			SET_ECT(tcp, rptr);
23478 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23479 				flags |= TH_CWR;
23480 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23481 			}
23482 		}
23483 	}
23484 
23485 	if (tcp->tcp_valid_bits) {
23486 		uint32_t u1;
23487 
23488 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23489 		    seq == tcp->tcp_iss) {
23490 			uchar_t	*wptr;
23491 
23492 			/*
23493 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23494 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23495 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23496 			 * our SYN is not ack'ed but the app closes this
23497 			 * TCP connection.
23498 			 */
23499 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23500 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23501 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23502 
23503 			/*
23504 			 * Tack on the MSS option.  It is always needed
23505 			 * for both active and passive open.
23506 			 *
23507 			 * MSS option value should be interface MTU - MIN
23508 			 * TCP/IP header according to RFC 793 as it means
23509 			 * the maximum segment size TCP can receive.  But
23510 			 * to get around some broken middle boxes/end hosts
23511 			 * out there, we allow the option value to be the
23512 			 * same as the MSS option size on the peer side.
23513 			 * In this way, the other side will not send
23514 			 * anything larger than they can receive.
23515 			 *
23516 			 * Note that for SYN_SENT state, the ndd param
23517 			 * tcp_use_smss_as_mss_opt has no effect as we
23518 			 * don't know the peer's MSS option value. So
23519 			 * the only case we need to take care of is in
23520 			 * SYN_RCVD state, which is done later.
23521 			 */
23522 			wptr = mp1->b_wptr;
23523 			wptr[0] = TCPOPT_MAXSEG;
23524 			wptr[1] = TCPOPT_MAXSEG_LEN;
23525 			wptr += 2;
23526 			u1 = tcp->tcp_if_mtu -
23527 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23528 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23529 			    TCP_MIN_HEADER_LENGTH;
23530 			U16_TO_BE16(u1, wptr);
23531 			mp1->b_wptr = wptr + 2;
23532 			/* Update the offset to cover the additional word */
23533 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23534 
23535 			/*
23536 			 * Note that the following way of filling in
23537 			 * TCP options are not optimal.  Some NOPs can
23538 			 * be saved.  But there is no need at this time
23539 			 * to optimize it.  When it is needed, we will
23540 			 * do it.
23541 			 */
23542 			switch (tcp->tcp_state) {
23543 			case TCPS_SYN_SENT:
23544 				flags = TH_SYN;
23545 
23546 				if (tcp->tcp_snd_ts_ok) {
23547 					uint32_t llbolt = (uint32_t)lbolt;
23548 
23549 					wptr = mp1->b_wptr;
23550 					wptr[0] = TCPOPT_NOP;
23551 					wptr[1] = TCPOPT_NOP;
23552 					wptr[2] = TCPOPT_TSTAMP;
23553 					wptr[3] = TCPOPT_TSTAMP_LEN;
23554 					wptr += 4;
23555 					U32_TO_BE32(llbolt, wptr);
23556 					wptr += 4;
23557 					ASSERT(tcp->tcp_ts_recent == 0);
23558 					U32_TO_BE32(0L, wptr);
23559 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23560 					tcph->th_offset_and_rsrvd[0] +=
23561 					    (3 << 4);
23562 				}
23563 
23564 				/*
23565 				 * Set up all the bits to tell other side
23566 				 * we are ECN capable.
23567 				 */
23568 				if (tcp->tcp_ecn_ok) {
23569 					flags |= (TH_ECE | TH_CWR);
23570 				}
23571 				break;
23572 			case TCPS_SYN_RCVD:
23573 				flags |= TH_SYN;
23574 
23575 				/*
23576 				 * Reset the MSS option value to be SMSS
23577 				 * We should probably add back the bytes
23578 				 * for timestamp option and IPsec.  We
23579 				 * don't do that as this is a workaround
23580 				 * for broken middle boxes/end hosts, it
23581 				 * is better for us to be more cautious.
23582 				 * They may not take these things into
23583 				 * account in their SMSS calculation.  Thus
23584 				 * the peer's calculated SMSS may be smaller
23585 				 * than what it can be.  This should be OK.
23586 				 */
23587 				if (tcps->tcps_use_smss_as_mss_opt) {
23588 					u1 = tcp->tcp_mss;
23589 					U16_TO_BE16(u1, wptr);
23590 				}
23591 
23592 				/*
23593 				 * If the other side is ECN capable, reply
23594 				 * that we are also ECN capable.
23595 				 */
23596 				if (tcp->tcp_ecn_ok)
23597 					flags |= TH_ECE;
23598 				break;
23599 			default:
23600 				/*
23601 				 * The above ASSERT() makes sure that this
23602 				 * must be FIN-WAIT-1 state.  Our SYN has
23603 				 * not been ack'ed so retransmit it.
23604 				 */
23605 				flags |= TH_SYN;
23606 				break;
23607 			}
23608 
23609 			if (tcp->tcp_snd_ws_ok) {
23610 				wptr = mp1->b_wptr;
23611 				wptr[0] =  TCPOPT_NOP;
23612 				wptr[1] =  TCPOPT_WSCALE;
23613 				wptr[2] =  TCPOPT_WS_LEN;
23614 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23615 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23616 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23617 			}
23618 
23619 			if (tcp->tcp_snd_sack_ok) {
23620 				wptr = mp1->b_wptr;
23621 				wptr[0] = TCPOPT_NOP;
23622 				wptr[1] = TCPOPT_NOP;
23623 				wptr[2] = TCPOPT_SACK_PERMITTED;
23624 				wptr[3] = TCPOPT_SACK_OK_LEN;
23625 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23626 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23627 			}
23628 
23629 			/* allocb() of adequate mblk assures space */
23630 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23631 			    (uintptr_t)INT_MAX);
23632 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23633 			/*
23634 			 * Get IP set to checksum on our behalf
23635 			 * Include the adjustment for a source route if any.
23636 			 */
23637 			u1 += tcp->tcp_sum;
23638 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23639 			U16_TO_BE16(u1, tcph->th_sum);
23640 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23641 		}
23642 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23643 		    (seq + data_length) == tcp->tcp_fss) {
23644 			if (!tcp->tcp_fin_acked) {
23645 				flags |= TH_FIN;
23646 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23647 			}
23648 			if (!tcp->tcp_fin_sent) {
23649 				tcp->tcp_fin_sent = B_TRUE;
23650 				switch (tcp->tcp_state) {
23651 				case TCPS_SYN_RCVD:
23652 				case TCPS_ESTABLISHED:
23653 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23654 					break;
23655 				case TCPS_CLOSE_WAIT:
23656 					tcp->tcp_state = TCPS_LAST_ACK;
23657 					break;
23658 				}
23659 				if (tcp->tcp_suna == tcp->tcp_snxt)
23660 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23661 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23662 			}
23663 		}
23664 		/*
23665 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23666 		 * is smaller than seq, u1 will become a very huge value.
23667 		 * So the comparison will fail.  Also note that tcp_urp
23668 		 * should be positive, see RFC 793 page 17.
23669 		 */
23670 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23671 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23672 		    u1 < (uint32_t)(64 * 1024)) {
23673 			flags |= TH_URG;
23674 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23675 			U32_TO_ABE16(u1, tcph->th_urp);
23676 		}
23677 	}
23678 	tcph->th_flags[0] = (uchar_t)flags;
23679 	tcp->tcp_rack = tcp->tcp_rnxt;
23680 	tcp->tcp_rack_cnt = 0;
23681 
23682 	if (tcp->tcp_snd_ts_ok) {
23683 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23684 			uint32_t llbolt = (uint32_t)lbolt;
23685 
23686 			U32_TO_BE32(llbolt,
23687 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23688 			U32_TO_BE32(tcp->tcp_ts_recent,
23689 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23690 		}
23691 	}
23692 
23693 	if (num_sack_blk > 0) {
23694 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23695 		sack_blk_t *tmp;
23696 		int32_t	i;
23697 
23698 		wptr[0] = TCPOPT_NOP;
23699 		wptr[1] = TCPOPT_NOP;
23700 		wptr[2] = TCPOPT_SACK;
23701 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23702 		    sizeof (sack_blk_t);
23703 		wptr += TCPOPT_REAL_SACK_LEN;
23704 
23705 		tmp = tcp->tcp_sack_list;
23706 		for (i = 0; i < num_sack_blk; i++) {
23707 			U32_TO_BE32(tmp[i].begin, wptr);
23708 			wptr += sizeof (tcp_seq);
23709 			U32_TO_BE32(tmp[i].end, wptr);
23710 			wptr += sizeof (tcp_seq);
23711 		}
23712 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23713 	}
23714 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23715 	data_length += (int)(mp1->b_wptr - rptr);
23716 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23717 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23718 	} else {
23719 		ip6_t *ip6 = (ip6_t *)(rptr +
23720 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23721 		    sizeof (ip6i_t) : 0));
23722 
23723 		ip6->ip6_plen = htons(data_length -
23724 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23725 	}
23726 
23727 	/*
23728 	 * Prime pump for IP
23729 	 * Include the adjustment for a source route if any.
23730 	 */
23731 	data_length -= tcp->tcp_ip_hdr_len;
23732 	data_length += tcp->tcp_sum;
23733 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23734 	U16_TO_ABE16(data_length, tcph->th_sum);
23735 	if (tcp->tcp_ip_forward_progress) {
23736 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23737 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23738 		tcp->tcp_ip_forward_progress = B_FALSE;
23739 	}
23740 	return (mp1);
23741 }
23742 
23743 /* This function handles the push timeout. */
23744 void
23745 tcp_push_timer(void *arg)
23746 {
23747 	conn_t	*connp = (conn_t *)arg;
23748 	tcp_t *tcp = connp->conn_tcp;
23749 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23750 	uint_t		flags;
23751 	sodirect_t	*sodp;
23752 
23753 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23754 
23755 	ASSERT(tcp->tcp_listener == NULL);
23756 
23757 	/*
23758 	 * We need to plug synchronous streams during our drain to prevent
23759 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23760 	 */
23761 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23762 	tcp->tcp_push_tid = 0;
23763 
23764 	SOD_PTR_ENTER(tcp, sodp);
23765 	if (sodp != NULL) {
23766 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23767 		/* sod_wakeup() does the mutex_exit() */
23768 	} else if (tcp->tcp_rcv_list != NULL) {
23769 		flags = tcp_rcv_drain(tcp->tcp_rq, tcp);
23770 	}
23771 	if (flags == TH_ACK_NEEDED)
23772 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23773 
23774 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23775 }
23776 
23777 /*
23778  * This function handles delayed ACK timeout.
23779  */
23780 static void
23781 tcp_ack_timer(void *arg)
23782 {
23783 	conn_t	*connp = (conn_t *)arg;
23784 	tcp_t *tcp = connp->conn_tcp;
23785 	mblk_t *mp;
23786 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23787 
23788 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23789 
23790 	tcp->tcp_ack_tid = 0;
23791 
23792 	if (tcp->tcp_fused)
23793 		return;
23794 
23795 	/*
23796 	 * Do not send ACK if there is no outstanding unack'ed data.
23797 	 */
23798 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23799 		return;
23800 	}
23801 
23802 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23803 		/*
23804 		 * Make sure we don't allow deferred ACKs to result in
23805 		 * timer-based ACKing.  If we have held off an ACK
23806 		 * when there was more than an mss here, and the timer
23807 		 * goes off, we have to worry about the possibility
23808 		 * that the sender isn't doing slow-start, or is out
23809 		 * of step with us for some other reason.  We fall
23810 		 * permanently back in the direction of
23811 		 * ACK-every-other-packet as suggested in RFC 1122.
23812 		 */
23813 		if (tcp->tcp_rack_abs_max > 2)
23814 			tcp->tcp_rack_abs_max--;
23815 		tcp->tcp_rack_cur_max = 2;
23816 	}
23817 	mp = tcp_ack_mp(tcp);
23818 
23819 	if (mp != NULL) {
23820 		BUMP_LOCAL(tcp->tcp_obsegs);
23821 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23822 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23823 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23824 	}
23825 }
23826 
23827 
23828 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23829 static mblk_t *
23830 tcp_ack_mp(tcp_t *tcp)
23831 {
23832 	uint32_t	seq_no;
23833 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23834 
23835 	/*
23836 	 * There are a few cases to be considered while setting the sequence no.
23837 	 * Essentially, we can come here while processing an unacceptable pkt
23838 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23839 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23840 	 * If we are here for a zero window probe, stick with suna. In all
23841 	 * other cases, we check if suna + swnd encompasses snxt and set
23842 	 * the sequence number to snxt, if so. If snxt falls outside the
23843 	 * window (the receiver probably shrunk its window), we will go with
23844 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23845 	 * receiver.
23846 	 */
23847 	if (tcp->tcp_zero_win_probe) {
23848 		seq_no = tcp->tcp_suna;
23849 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23850 		ASSERT(tcp->tcp_swnd == 0);
23851 		seq_no = tcp->tcp_snxt;
23852 	} else {
23853 		seq_no = SEQ_GT(tcp->tcp_snxt,
23854 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23855 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23856 	}
23857 
23858 	if (tcp->tcp_valid_bits) {
23859 		/*
23860 		 * For the complex case where we have to send some
23861 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23862 		 */
23863 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23864 		    NULL, B_FALSE));
23865 	} else {
23866 		/* Generate a simple ACK */
23867 		int	data_length;
23868 		uchar_t	*rptr;
23869 		tcph_t	*tcph;
23870 		mblk_t	*mp1;
23871 		int32_t	tcp_hdr_len;
23872 		int32_t	tcp_tcp_hdr_len;
23873 		int32_t	num_sack_blk = 0;
23874 		int32_t sack_opt_len;
23875 
23876 		/*
23877 		 * Allocate space for TCP + IP headers
23878 		 * and link-level header
23879 		 */
23880 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23881 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23882 			    tcp->tcp_num_sack_blk);
23883 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23884 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23885 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23886 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23887 		} else {
23888 			tcp_hdr_len = tcp->tcp_hdr_len;
23889 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23890 		}
23891 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23892 		if (!mp1)
23893 			return (NULL);
23894 
23895 		/* Update the latest receive window size in TCP header. */
23896 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23897 		    tcp->tcp_tcph->th_win);
23898 		/* copy in prototype TCP + IP header */
23899 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23900 		mp1->b_rptr = rptr;
23901 		mp1->b_wptr = rptr + tcp_hdr_len;
23902 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23903 
23904 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23905 
23906 		/* Set the TCP sequence number. */
23907 		U32_TO_ABE32(seq_no, tcph->th_seq);
23908 
23909 		/* Set up the TCP flag field. */
23910 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23911 		if (tcp->tcp_ecn_echo_on)
23912 			tcph->th_flags[0] |= TH_ECE;
23913 
23914 		tcp->tcp_rack = tcp->tcp_rnxt;
23915 		tcp->tcp_rack_cnt = 0;
23916 
23917 		/* fill in timestamp option if in use */
23918 		if (tcp->tcp_snd_ts_ok) {
23919 			uint32_t llbolt = (uint32_t)lbolt;
23920 
23921 			U32_TO_BE32(llbolt,
23922 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23923 			U32_TO_BE32(tcp->tcp_ts_recent,
23924 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23925 		}
23926 
23927 		/* Fill in SACK options */
23928 		if (num_sack_blk > 0) {
23929 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23930 			sack_blk_t *tmp;
23931 			int32_t	i;
23932 
23933 			wptr[0] = TCPOPT_NOP;
23934 			wptr[1] = TCPOPT_NOP;
23935 			wptr[2] = TCPOPT_SACK;
23936 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23937 			    sizeof (sack_blk_t);
23938 			wptr += TCPOPT_REAL_SACK_LEN;
23939 
23940 			tmp = tcp->tcp_sack_list;
23941 			for (i = 0; i < num_sack_blk; i++) {
23942 				U32_TO_BE32(tmp[i].begin, wptr);
23943 				wptr += sizeof (tcp_seq);
23944 				U32_TO_BE32(tmp[i].end, wptr);
23945 				wptr += sizeof (tcp_seq);
23946 			}
23947 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23948 			    << 4);
23949 		}
23950 
23951 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23952 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23953 		} else {
23954 			/* Check for ip6i_t header in sticky hdrs */
23955 			ip6_t *ip6 = (ip6_t *)(rptr +
23956 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23957 			    sizeof (ip6i_t) : 0));
23958 
23959 			ip6->ip6_plen = htons(tcp_hdr_len -
23960 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23961 		}
23962 
23963 		/*
23964 		 * Prime pump for checksum calculation in IP.  Include the
23965 		 * adjustment for a source route if any.
23966 		 */
23967 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23968 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23969 		U16_TO_ABE16(data_length, tcph->th_sum);
23970 
23971 		if (tcp->tcp_ip_forward_progress) {
23972 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23973 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23974 			tcp->tcp_ip_forward_progress = B_FALSE;
23975 		}
23976 		return (mp1);
23977 	}
23978 }
23979 
23980 /*
23981  * Hash list insertion routine for tcp_t structures.
23982  * Inserts entries with the ones bound to a specific IP address first
23983  * followed by those bound to INADDR_ANY.
23984  */
23985 static void
23986 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23987 {
23988 	tcp_t	**tcpp;
23989 	tcp_t	*tcpnext;
23990 
23991 	if (tcp->tcp_ptpbhn != NULL) {
23992 		ASSERT(!caller_holds_lock);
23993 		tcp_bind_hash_remove(tcp);
23994 	}
23995 	tcpp = &tbf->tf_tcp;
23996 	if (!caller_holds_lock) {
23997 		mutex_enter(&tbf->tf_lock);
23998 	} else {
23999 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24000 	}
24001 	tcpnext = tcpp[0];
24002 	if (tcpnext) {
24003 		/*
24004 		 * If the new tcp bound to the INADDR_ANY address
24005 		 * and the first one in the list is not bound to
24006 		 * INADDR_ANY we skip all entries until we find the
24007 		 * first one bound to INADDR_ANY.
24008 		 * This makes sure that applications binding to a
24009 		 * specific address get preference over those binding to
24010 		 * INADDR_ANY.
24011 		 */
24012 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24013 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24014 			while ((tcpnext = tcpp[0]) != NULL &&
24015 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24016 				tcpp = &(tcpnext->tcp_bind_hash);
24017 			if (tcpnext)
24018 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24019 		} else
24020 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24021 	}
24022 	tcp->tcp_bind_hash = tcpnext;
24023 	tcp->tcp_ptpbhn = tcpp;
24024 	tcpp[0] = tcp;
24025 	if (!caller_holds_lock)
24026 		mutex_exit(&tbf->tf_lock);
24027 }
24028 
24029 /*
24030  * Hash list removal routine for tcp_t structures.
24031  */
24032 static void
24033 tcp_bind_hash_remove(tcp_t *tcp)
24034 {
24035 	tcp_t	*tcpnext;
24036 	kmutex_t *lockp;
24037 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24038 
24039 	if (tcp->tcp_ptpbhn == NULL)
24040 		return;
24041 
24042 	/*
24043 	 * Extract the lock pointer in case there are concurrent
24044 	 * hash_remove's for this instance.
24045 	 */
24046 	ASSERT(tcp->tcp_lport != 0);
24047 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24048 
24049 	ASSERT(lockp != NULL);
24050 	mutex_enter(lockp);
24051 	if (tcp->tcp_ptpbhn) {
24052 		tcpnext = tcp->tcp_bind_hash;
24053 		if (tcpnext) {
24054 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24055 			tcp->tcp_bind_hash = NULL;
24056 		}
24057 		*tcp->tcp_ptpbhn = tcpnext;
24058 		tcp->tcp_ptpbhn = NULL;
24059 	}
24060 	mutex_exit(lockp);
24061 }
24062 
24063 
24064 /*
24065  * Hash list lookup routine for tcp_t structures.
24066  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24067  */
24068 static tcp_t *
24069 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24070 {
24071 	tf_t	*tf;
24072 	tcp_t	*tcp;
24073 
24074 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24075 	mutex_enter(&tf->tf_lock);
24076 	for (tcp = tf->tf_tcp; tcp != NULL;
24077 	    tcp = tcp->tcp_acceptor_hash) {
24078 		if (tcp->tcp_acceptor_id == id) {
24079 			CONN_INC_REF(tcp->tcp_connp);
24080 			mutex_exit(&tf->tf_lock);
24081 			return (tcp);
24082 		}
24083 	}
24084 	mutex_exit(&tf->tf_lock);
24085 	return (NULL);
24086 }
24087 
24088 
24089 /*
24090  * Hash list insertion routine for tcp_t structures.
24091  */
24092 void
24093 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24094 {
24095 	tf_t	*tf;
24096 	tcp_t	**tcpp;
24097 	tcp_t	*tcpnext;
24098 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24099 
24100 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24101 
24102 	if (tcp->tcp_ptpahn != NULL)
24103 		tcp_acceptor_hash_remove(tcp);
24104 	tcpp = &tf->tf_tcp;
24105 	mutex_enter(&tf->tf_lock);
24106 	tcpnext = tcpp[0];
24107 	if (tcpnext)
24108 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24109 	tcp->tcp_acceptor_hash = tcpnext;
24110 	tcp->tcp_ptpahn = tcpp;
24111 	tcpp[0] = tcp;
24112 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24113 	mutex_exit(&tf->tf_lock);
24114 }
24115 
24116 /*
24117  * Hash list removal routine for tcp_t structures.
24118  */
24119 static void
24120 tcp_acceptor_hash_remove(tcp_t *tcp)
24121 {
24122 	tcp_t	*tcpnext;
24123 	kmutex_t *lockp;
24124 
24125 	/*
24126 	 * Extract the lock pointer in case there are concurrent
24127 	 * hash_remove's for this instance.
24128 	 */
24129 	lockp = tcp->tcp_acceptor_lockp;
24130 
24131 	if (tcp->tcp_ptpahn == NULL)
24132 		return;
24133 
24134 	ASSERT(lockp != NULL);
24135 	mutex_enter(lockp);
24136 	if (tcp->tcp_ptpahn) {
24137 		tcpnext = tcp->tcp_acceptor_hash;
24138 		if (tcpnext) {
24139 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24140 			tcp->tcp_acceptor_hash = NULL;
24141 		}
24142 		*tcp->tcp_ptpahn = tcpnext;
24143 		tcp->tcp_ptpahn = NULL;
24144 	}
24145 	mutex_exit(lockp);
24146 	tcp->tcp_acceptor_lockp = NULL;
24147 }
24148 
24149 /* Data for fast netmask macro used by tcp_hsp_lookup */
24150 
24151 static ipaddr_t netmasks[] = {
24152 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24153 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24154 };
24155 
24156 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24157 
24158 /*
24159  * XXX This routine should go away and instead we should use the metrics
24160  * associated with the routes to determine the default sndspace and rcvspace.
24161  */
24162 static tcp_hsp_t *
24163 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24164 {
24165 	tcp_hsp_t *hsp = NULL;
24166 
24167 	/* Quick check without acquiring the lock. */
24168 	if (tcps->tcps_hsp_hash == NULL)
24169 		return (NULL);
24170 
24171 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24172 
24173 	/* This routine finds the best-matching HSP for address addr. */
24174 
24175 	if (tcps->tcps_hsp_hash) {
24176 		int i;
24177 		ipaddr_t srchaddr;
24178 		tcp_hsp_t *hsp_net;
24179 
24180 		/* We do three passes: host, network, and subnet. */
24181 
24182 		srchaddr = addr;
24183 
24184 		for (i = 1; i <= 3; i++) {
24185 			/* Look for exact match on srchaddr */
24186 
24187 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24188 			while (hsp) {
24189 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24190 				    hsp->tcp_hsp_addr == srchaddr)
24191 					break;
24192 				hsp = hsp->tcp_hsp_next;
24193 			}
24194 			ASSERT(hsp == NULL ||
24195 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24196 
24197 			/*
24198 			 * If this is the first pass:
24199 			 *   If we found a match, great, return it.
24200 			 *   If not, search for the network on the second pass.
24201 			 */
24202 
24203 			if (i == 1)
24204 				if (hsp)
24205 					break;
24206 				else
24207 				{
24208 					srchaddr = addr & netmask(addr);
24209 					continue;
24210 				}
24211 
24212 			/*
24213 			 * If this is the second pass:
24214 			 *   If we found a match, but there's a subnet mask,
24215 			 *    save the match but try again using the subnet
24216 			 *    mask on the third pass.
24217 			 *   Otherwise, return whatever we found.
24218 			 */
24219 
24220 			if (i == 2) {
24221 				if (hsp && hsp->tcp_hsp_subnet) {
24222 					hsp_net = hsp;
24223 					srchaddr = addr & hsp->tcp_hsp_subnet;
24224 					continue;
24225 				} else {
24226 					break;
24227 				}
24228 			}
24229 
24230 			/*
24231 			 * This must be the third pass.  If we didn't find
24232 			 * anything, return the saved network HSP instead.
24233 			 */
24234 
24235 			if (!hsp)
24236 				hsp = hsp_net;
24237 		}
24238 	}
24239 
24240 	rw_exit(&tcps->tcps_hsp_lock);
24241 	return (hsp);
24242 }
24243 
24244 /*
24245  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24246  * match lookup.
24247  */
24248 static tcp_hsp_t *
24249 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24250 {
24251 	tcp_hsp_t *hsp = NULL;
24252 
24253 	/* Quick check without acquiring the lock. */
24254 	if (tcps->tcps_hsp_hash == NULL)
24255 		return (NULL);
24256 
24257 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24258 
24259 	/* This routine finds the best-matching HSP for address addr. */
24260 
24261 	if (tcps->tcps_hsp_hash) {
24262 		int i;
24263 		in6_addr_t v6srchaddr;
24264 		tcp_hsp_t *hsp_net;
24265 
24266 		/* We do three passes: host, network, and subnet. */
24267 
24268 		v6srchaddr = *v6addr;
24269 
24270 		for (i = 1; i <= 3; i++) {
24271 			/* Look for exact match on srchaddr */
24272 
24273 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24274 			    V4_PART_OF_V6(v6srchaddr))];
24275 			while (hsp) {
24276 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24277 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24278 				    &v6srchaddr))
24279 					break;
24280 				hsp = hsp->tcp_hsp_next;
24281 			}
24282 
24283 			/*
24284 			 * If this is the first pass:
24285 			 *   If we found a match, great, return it.
24286 			 *   If not, search for the network on the second pass.
24287 			 */
24288 
24289 			if (i == 1)
24290 				if (hsp)
24291 					break;
24292 				else {
24293 					/* Assume a 64 bit mask */
24294 					v6srchaddr.s6_addr32[0] =
24295 					    v6addr->s6_addr32[0];
24296 					v6srchaddr.s6_addr32[1] =
24297 					    v6addr->s6_addr32[1];
24298 					v6srchaddr.s6_addr32[2] = 0;
24299 					v6srchaddr.s6_addr32[3] = 0;
24300 					continue;
24301 				}
24302 
24303 			/*
24304 			 * If this is the second pass:
24305 			 *   If we found a match, but there's a subnet mask,
24306 			 *    save the match but try again using the subnet
24307 			 *    mask on the third pass.
24308 			 *   Otherwise, return whatever we found.
24309 			 */
24310 
24311 			if (i == 2) {
24312 				ASSERT(hsp == NULL ||
24313 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24314 				if (hsp &&
24315 				    !IN6_IS_ADDR_UNSPECIFIED(
24316 				    &hsp->tcp_hsp_subnet_v6)) {
24317 					hsp_net = hsp;
24318 					V6_MASK_COPY(*v6addr,
24319 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24320 					continue;
24321 				} else {
24322 					break;
24323 				}
24324 			}
24325 
24326 			/*
24327 			 * This must be the third pass.  If we didn't find
24328 			 * anything, return the saved network HSP instead.
24329 			 */
24330 
24331 			if (!hsp)
24332 				hsp = hsp_net;
24333 		}
24334 	}
24335 
24336 	rw_exit(&tcps->tcps_hsp_lock);
24337 	return (hsp);
24338 }
24339 
24340 /*
24341  * Type three generator adapted from the random() function in 4.4 BSD:
24342  */
24343 
24344 /*
24345  * Copyright (c) 1983, 1993
24346  *	The Regents of the University of California.  All rights reserved.
24347  *
24348  * Redistribution and use in source and binary forms, with or without
24349  * modification, are permitted provided that the following conditions
24350  * are met:
24351  * 1. Redistributions of source code must retain the above copyright
24352  *    notice, this list of conditions and the following disclaimer.
24353  * 2. Redistributions in binary form must reproduce the above copyright
24354  *    notice, this list of conditions and the following disclaimer in the
24355  *    documentation and/or other materials provided with the distribution.
24356  * 3. All advertising materials mentioning features or use of this software
24357  *    must display the following acknowledgement:
24358  *	This product includes software developed by the University of
24359  *	California, Berkeley and its contributors.
24360  * 4. Neither the name of the University nor the names of its contributors
24361  *    may be used to endorse or promote products derived from this software
24362  *    without specific prior written permission.
24363  *
24364  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24365  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24366  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24367  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24368  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24369  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24370  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24371  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24372  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24373  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24374  * SUCH DAMAGE.
24375  */
24376 
24377 /* Type 3 -- x**31 + x**3 + 1 */
24378 #define	DEG_3		31
24379 #define	SEP_3		3
24380 
24381 
24382 /* Protected by tcp_random_lock */
24383 static int tcp_randtbl[DEG_3 + 1];
24384 
24385 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24386 static int *tcp_random_rptr = &tcp_randtbl[1];
24387 
24388 static int *tcp_random_state = &tcp_randtbl[1];
24389 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24390 
24391 kmutex_t tcp_random_lock;
24392 
24393 void
24394 tcp_random_init(void)
24395 {
24396 	int i;
24397 	hrtime_t hrt;
24398 	time_t wallclock;
24399 	uint64_t result;
24400 
24401 	/*
24402 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24403 	 * a longlong, which may contain resolution down to nanoseconds.
24404 	 * The current time will either be a 32-bit or a 64-bit quantity.
24405 	 * XOR the two together in a 64-bit result variable.
24406 	 * Convert the result to a 32-bit value by multiplying the high-order
24407 	 * 32-bits by the low-order 32-bits.
24408 	 */
24409 
24410 	hrt = gethrtime();
24411 	(void) drv_getparm(TIME, &wallclock);
24412 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24413 	mutex_enter(&tcp_random_lock);
24414 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24415 	    (result & 0xffffffff);
24416 
24417 	for (i = 1; i < DEG_3; i++)
24418 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24419 		    + 12345;
24420 	tcp_random_fptr = &tcp_random_state[SEP_3];
24421 	tcp_random_rptr = &tcp_random_state[0];
24422 	mutex_exit(&tcp_random_lock);
24423 	for (i = 0; i < 10 * DEG_3; i++)
24424 		(void) tcp_random();
24425 }
24426 
24427 /*
24428  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24429  * This range is selected to be approximately centered on TCP_ISS / 2,
24430  * and easy to compute. We get this value by generating a 32-bit random
24431  * number, selecting out the high-order 17 bits, and then adding one so
24432  * that we never return zero.
24433  */
24434 int
24435 tcp_random(void)
24436 {
24437 	int i;
24438 
24439 	mutex_enter(&tcp_random_lock);
24440 	*tcp_random_fptr += *tcp_random_rptr;
24441 
24442 	/*
24443 	 * The high-order bits are more random than the low-order bits,
24444 	 * so we select out the high-order 17 bits and add one so that
24445 	 * we never return zero.
24446 	 */
24447 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24448 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24449 		tcp_random_fptr = tcp_random_state;
24450 		++tcp_random_rptr;
24451 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24452 		tcp_random_rptr = tcp_random_state;
24453 
24454 	mutex_exit(&tcp_random_lock);
24455 	return (i);
24456 }
24457 
24458 /*
24459  * XXX This will go away when TPI is extended to send
24460  * info reqs to sockfs/timod .....
24461  * Given a queue, set the max packet size for the write
24462  * side of the queue below stream head.  This value is
24463  * cached on the stream head.
24464  * Returns 1 on success, 0 otherwise.
24465  */
24466 static int
24467 setmaxps(queue_t *q, int maxpsz)
24468 {
24469 	struct stdata	*stp;
24470 	queue_t		*wq;
24471 	stp = STREAM(q);
24472 
24473 	/*
24474 	 * At this point change of a queue parameter is not allowed
24475 	 * when a multiplexor is sitting on top.
24476 	 */
24477 	if (stp->sd_flag & STPLEX)
24478 		return (0);
24479 
24480 	claimstr(stp->sd_wrq);
24481 	wq = stp->sd_wrq->q_next;
24482 	ASSERT(wq != NULL);
24483 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24484 	releasestr(stp->sd_wrq);
24485 	return (1);
24486 }
24487 
24488 static int
24489 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24490     int *t_errorp, int *sys_errorp)
24491 {
24492 	int error;
24493 	int is_absreq_failure;
24494 	t_scalar_t *opt_lenp;
24495 	t_scalar_t opt_offset;
24496 	int prim_type;
24497 	struct T_conn_req *tcreqp;
24498 	struct T_conn_res *tcresp;
24499 	cred_t *cr;
24500 
24501 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24502 
24503 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24504 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24505 	    prim_type == T_CONN_RES);
24506 
24507 	switch (prim_type) {
24508 	case T_CONN_REQ:
24509 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24510 		opt_offset = tcreqp->OPT_offset;
24511 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24512 		break;
24513 	case O_T_CONN_RES:
24514 	case T_CONN_RES:
24515 		tcresp = (struct T_conn_res *)mp->b_rptr;
24516 		opt_offset = tcresp->OPT_offset;
24517 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24518 		break;
24519 	}
24520 
24521 	*t_errorp = 0;
24522 	*sys_errorp = 0;
24523 	*do_disconnectp = 0;
24524 
24525 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24526 	    opt_offset, cr, &tcp_opt_obj,
24527 	    NULL, &is_absreq_failure);
24528 
24529 	switch (error) {
24530 	case  0:		/* no error */
24531 		ASSERT(is_absreq_failure == 0);
24532 		return (0);
24533 	case ENOPROTOOPT:
24534 		*t_errorp = TBADOPT;
24535 		break;
24536 	case EACCES:
24537 		*t_errorp = TACCES;
24538 		break;
24539 	default:
24540 		*t_errorp = TSYSERR; *sys_errorp = error;
24541 		break;
24542 	}
24543 	if (is_absreq_failure != 0) {
24544 		/*
24545 		 * The connection request should get the local ack
24546 		 * T_OK_ACK and then a T_DISCON_IND.
24547 		 */
24548 		*do_disconnectp = 1;
24549 	}
24550 	return (-1);
24551 }
24552 
24553 /*
24554  * Split this function out so that if the secret changes, I'm okay.
24555  *
24556  * Initialize the tcp_iss_cookie and tcp_iss_key.
24557  */
24558 
24559 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24560 
24561 static void
24562 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24563 {
24564 	struct {
24565 		int32_t current_time;
24566 		uint32_t randnum;
24567 		uint16_t pad;
24568 		uint8_t ether[6];
24569 		uint8_t passwd[PASSWD_SIZE];
24570 	} tcp_iss_cookie;
24571 	time_t t;
24572 
24573 	/*
24574 	 * Start with the current absolute time.
24575 	 */
24576 	(void) drv_getparm(TIME, &t);
24577 	tcp_iss_cookie.current_time = t;
24578 
24579 	/*
24580 	 * XXX - Need a more random number per RFC 1750, not this crap.
24581 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24582 	 */
24583 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24584 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24585 
24586 	/*
24587 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24588 	 * as a good template.
24589 	 */
24590 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24591 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24592 
24593 	/*
24594 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24595 	 */
24596 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24597 
24598 	/*
24599 	 * See 4010593 if this section becomes a problem again,
24600 	 * but the local ethernet address is useful here.
24601 	 */
24602 	(void) localetheraddr(NULL,
24603 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24604 
24605 	/*
24606 	 * Hash 'em all together.  The MD5Final is called per-connection.
24607 	 */
24608 	mutex_enter(&tcps->tcps_iss_key_lock);
24609 	MD5Init(&tcps->tcps_iss_key);
24610 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24611 	    sizeof (tcp_iss_cookie));
24612 	mutex_exit(&tcps->tcps_iss_key_lock);
24613 }
24614 
24615 /*
24616  * Set the RFC 1948 pass phrase
24617  */
24618 /* ARGSUSED */
24619 static int
24620 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24621     cred_t *cr)
24622 {
24623 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24624 
24625 	/*
24626 	 * Basically, value contains a new pass phrase.  Pass it along!
24627 	 */
24628 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24629 	return (0);
24630 }
24631 
24632 /* ARGSUSED */
24633 static int
24634 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24635 {
24636 	bzero(buf, sizeof (tcp_sack_info_t));
24637 	return (0);
24638 }
24639 
24640 /* ARGSUSED */
24641 static int
24642 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24643 {
24644 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24645 	return (0);
24646 }
24647 
24648 /*
24649  * Make sure we wait until the default queue is setup, yet allow
24650  * tcp_g_q_create() to open a TCP stream.
24651  * We need to allow tcp_g_q_create() do do an open
24652  * of tcp, hence we compare curhread.
24653  * All others have to wait until the tcps_g_q has been
24654  * setup.
24655  */
24656 void
24657 tcp_g_q_setup(tcp_stack_t *tcps)
24658 {
24659 	mutex_enter(&tcps->tcps_g_q_lock);
24660 	if (tcps->tcps_g_q != NULL) {
24661 		mutex_exit(&tcps->tcps_g_q_lock);
24662 		return;
24663 	}
24664 	if (tcps->tcps_g_q_creator == NULL) {
24665 		/* This thread will set it up */
24666 		tcps->tcps_g_q_creator = curthread;
24667 		mutex_exit(&tcps->tcps_g_q_lock);
24668 		tcp_g_q_create(tcps);
24669 		mutex_enter(&tcps->tcps_g_q_lock);
24670 		ASSERT(tcps->tcps_g_q_creator == curthread);
24671 		tcps->tcps_g_q_creator = NULL;
24672 		cv_signal(&tcps->tcps_g_q_cv);
24673 		ASSERT(tcps->tcps_g_q != NULL);
24674 		mutex_exit(&tcps->tcps_g_q_lock);
24675 		return;
24676 	}
24677 	/* Everybody but the creator has to wait */
24678 	if (tcps->tcps_g_q_creator != curthread) {
24679 		while (tcps->tcps_g_q == NULL)
24680 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24681 	}
24682 	mutex_exit(&tcps->tcps_g_q_lock);
24683 }
24684 
24685 #define	IP	"ip"
24686 
24687 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24688 
24689 /*
24690  * Create a default tcp queue here instead of in strplumb
24691  */
24692 void
24693 tcp_g_q_create(tcp_stack_t *tcps)
24694 {
24695 	int error;
24696 	ldi_handle_t	lh = NULL;
24697 	ldi_ident_t	li = NULL;
24698 	int		rval;
24699 	cred_t		*cr;
24700 	major_t IP_MAJ;
24701 
24702 #ifdef NS_DEBUG
24703 	(void) printf("tcp_g_q_create()\n");
24704 #endif
24705 
24706 	IP_MAJ = ddi_name_to_major(IP);
24707 
24708 	ASSERT(tcps->tcps_g_q_creator == curthread);
24709 
24710 	error = ldi_ident_from_major(IP_MAJ, &li);
24711 	if (error) {
24712 #ifdef DEBUG
24713 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24714 		    error);
24715 #endif
24716 		return;
24717 	}
24718 
24719 	cr = zone_get_kcred(netstackid_to_zoneid(
24720 	    tcps->tcps_netstack->netstack_stackid));
24721 	ASSERT(cr != NULL);
24722 	/*
24723 	 * We set the tcp default queue to IPv6 because IPv4 falls
24724 	 * back to IPv6 when it can't find a client, but
24725 	 * IPv6 does not fall back to IPv4.
24726 	 */
24727 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24728 	if (error) {
24729 #ifdef DEBUG
24730 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24731 		    error);
24732 #endif
24733 		goto out;
24734 	}
24735 
24736 	/*
24737 	 * This ioctl causes the tcp framework to cache a pointer to
24738 	 * this stream, so we don't want to close the stream after
24739 	 * this operation.
24740 	 * Use the kernel credentials that are for the zone we're in.
24741 	 */
24742 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24743 	    (intptr_t)0, FKIOCTL, cr, &rval);
24744 	if (error) {
24745 #ifdef DEBUG
24746 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24747 		    "error %d\n", error);
24748 #endif
24749 		goto out;
24750 	}
24751 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24752 	lh = NULL;
24753 out:
24754 	/* Close layered handles */
24755 	if (li)
24756 		ldi_ident_release(li);
24757 	/* Keep cred around until _inactive needs it */
24758 	tcps->tcps_g_q_cr = cr;
24759 }
24760 
24761 /*
24762  * We keep tcp_g_q set until all other tcp_t's in the zone
24763  * has gone away, and then when tcp_g_q_inactive() is called
24764  * we clear it.
24765  */
24766 void
24767 tcp_g_q_destroy(tcp_stack_t *tcps)
24768 {
24769 #ifdef NS_DEBUG
24770 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24771 	    tcps->tcps_netstack->netstack_stackid);
24772 #endif
24773 
24774 	if (tcps->tcps_g_q == NULL) {
24775 		return;	/* Nothing to cleanup */
24776 	}
24777 	/*
24778 	 * Drop reference corresponding to the default queue.
24779 	 * This reference was added from tcp_open when the default queue
24780 	 * was created, hence we compensate for this extra drop in
24781 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24782 	 * the default queue was the last one to be open, in which
24783 	 * case, then tcp_g_q_inactive will be
24784 	 * called as a result of the refrele.
24785 	 */
24786 	TCPS_REFRELE(tcps);
24787 }
24788 
24789 /*
24790  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24791  * Run by tcp_q_q_inactive using a taskq.
24792  */
24793 static void
24794 tcp_g_q_close(void *arg)
24795 {
24796 	tcp_stack_t *tcps = arg;
24797 	int error;
24798 	ldi_handle_t	lh = NULL;
24799 	ldi_ident_t	li = NULL;
24800 	cred_t		*cr;
24801 	major_t IP_MAJ;
24802 
24803 	IP_MAJ = ddi_name_to_major(IP);
24804 
24805 #ifdef NS_DEBUG
24806 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24807 	    tcps->tcps_netstack->netstack_stackid,
24808 	    tcps->tcps_netstack->netstack_refcnt);
24809 #endif
24810 	lh = tcps->tcps_g_q_lh;
24811 	if (lh == NULL)
24812 		return;	/* Nothing to cleanup */
24813 
24814 	ASSERT(tcps->tcps_refcnt == 1);
24815 	ASSERT(tcps->tcps_g_q != NULL);
24816 
24817 	error = ldi_ident_from_major(IP_MAJ, &li);
24818 	if (error) {
24819 #ifdef DEBUG
24820 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24821 		    error);
24822 #endif
24823 		return;
24824 	}
24825 
24826 	cr = tcps->tcps_g_q_cr;
24827 	tcps->tcps_g_q_cr = NULL;
24828 	ASSERT(cr != NULL);
24829 
24830 	/*
24831 	 * Make sure we can break the recursion when tcp_close decrements
24832 	 * the reference count causing g_q_inactive to be called again.
24833 	 */
24834 	tcps->tcps_g_q_lh = NULL;
24835 
24836 	/* close the default queue */
24837 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24838 	/*
24839 	 * At this point in time tcps and the rest of netstack_t might
24840 	 * have been deleted.
24841 	 */
24842 	tcps = NULL;
24843 
24844 	/* Close layered handles */
24845 	ldi_ident_release(li);
24846 	crfree(cr);
24847 }
24848 
24849 /*
24850  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24851  *
24852  * Have to ensure that the ldi routines are not used by an
24853  * interrupt thread by using a taskq.
24854  */
24855 void
24856 tcp_g_q_inactive(tcp_stack_t *tcps)
24857 {
24858 	if (tcps->tcps_g_q_lh == NULL)
24859 		return;	/* Nothing to cleanup */
24860 
24861 	ASSERT(tcps->tcps_refcnt == 0);
24862 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24863 
24864 	if (servicing_interrupt()) {
24865 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24866 		    (void *) tcps, TQ_SLEEP);
24867 	} else {
24868 		tcp_g_q_close(tcps);
24869 	}
24870 }
24871 
24872 /*
24873  * Called by IP when IP is loaded into the kernel
24874  */
24875 void
24876 tcp_ddi_g_init(void)
24877 {
24878 	tcp_timercache = kmem_cache_create("tcp_timercache",
24879 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24880 	    NULL, NULL, NULL, NULL, NULL, 0);
24881 
24882 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24883 	    sizeof (tcp_sack_info_t), 0,
24884 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24885 
24886 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24887 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24888 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24889 
24890 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24891 
24892 	/* Initialize the random number generator */
24893 	tcp_random_init();
24894 
24895 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24896 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24897 
24898 	/* A single callback independently of how many netstacks we have */
24899 	ip_squeue_init(tcp_squeue_add);
24900 
24901 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24902 
24903 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24904 	    TASKQ_PREPOPULATE);
24905 
24906 	/*
24907 	 * We want to be informed each time a stack is created or
24908 	 * destroyed in the kernel, so we can maintain the
24909 	 * set of tcp_stack_t's.
24910 	 */
24911 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24912 	    tcp_stack_fini);
24913 }
24914 
24915 
24916 /*
24917  * Initialize the TCP stack instance.
24918  */
24919 static void *
24920 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24921 {
24922 	tcp_stack_t	*tcps;
24923 	tcpparam_t	*pa;
24924 	int		i;
24925 
24926 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24927 	tcps->tcps_netstack = ns;
24928 
24929 	/* Initialize locks */
24930 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
24931 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24932 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24933 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24934 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24935 
24936 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24937 	tcps->tcps_g_epriv_ports[0] = 2049;
24938 	tcps->tcps_g_epriv_ports[1] = 4045;
24939 	tcps->tcps_min_anonpriv_port = 512;
24940 
24941 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24942 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24943 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24944 	    TCP_FANOUT_SIZE, KM_SLEEP);
24945 
24946 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24947 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24948 		    MUTEX_DEFAULT, NULL);
24949 	}
24950 
24951 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24952 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24953 		    MUTEX_DEFAULT, NULL);
24954 	}
24955 
24956 	/* TCP's IPsec code calls the packet dropper. */
24957 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24958 
24959 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24960 	tcps->tcps_params = pa;
24961 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24962 
24963 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24964 	    A_CNT(lcl_tcp_param_arr), tcps);
24965 
24966 	/*
24967 	 * Note: To really walk the device tree you need the devinfo
24968 	 * pointer to your device which is only available after probe/attach.
24969 	 * The following is safe only because it uses ddi_root_node()
24970 	 */
24971 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24972 	    tcp_opt_obj.odb_opt_arr_cnt);
24973 
24974 	/*
24975 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24976 	 * by the boot scripts.
24977 	 *
24978 	 * Use NULL name, as the name is caught by the new lockstats.
24979 	 *
24980 	 * Initialize with some random, non-guessable string, like the global
24981 	 * T_INFO_ACK.
24982 	 */
24983 
24984 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24985 	    sizeof (tcp_g_t_info_ack), tcps);
24986 
24987 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24988 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24989 
24990 	return (tcps);
24991 }
24992 
24993 /*
24994  * Called when the IP module is about to be unloaded.
24995  */
24996 void
24997 tcp_ddi_g_destroy(void)
24998 {
24999 	tcp_g_kstat_fini(tcp_g_kstat);
25000 	tcp_g_kstat = NULL;
25001 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25002 
25003 	mutex_destroy(&tcp_random_lock);
25004 
25005 	kmem_cache_destroy(tcp_timercache);
25006 	kmem_cache_destroy(tcp_sack_info_cache);
25007 	kmem_cache_destroy(tcp_iphc_cache);
25008 
25009 	netstack_unregister(NS_TCP);
25010 	taskq_destroy(tcp_taskq);
25011 }
25012 
25013 /*
25014  * Shut down the TCP stack instance.
25015  */
25016 /* ARGSUSED */
25017 static void
25018 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25019 {
25020 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25021 
25022 	tcp_g_q_destroy(tcps);
25023 }
25024 
25025 /*
25026  * Free the TCP stack instance.
25027  */
25028 static void
25029 tcp_stack_fini(netstackid_t stackid, void *arg)
25030 {
25031 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25032 	int i;
25033 
25034 	nd_free(&tcps->tcps_g_nd);
25035 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25036 	tcps->tcps_params = NULL;
25037 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25038 	tcps->tcps_wroff_xtra_param = NULL;
25039 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25040 	tcps->tcps_mdt_head_param = NULL;
25041 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25042 	tcps->tcps_mdt_tail_param = NULL;
25043 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25044 	tcps->tcps_mdt_max_pbufs_param = NULL;
25045 
25046 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25047 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25048 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25049 	}
25050 
25051 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25052 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25053 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25054 	}
25055 
25056 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25057 	tcps->tcps_bind_fanout = NULL;
25058 
25059 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25060 	tcps->tcps_acceptor_fanout = NULL;
25061 
25062 	mutex_destroy(&tcps->tcps_iss_key_lock);
25063 	rw_destroy(&tcps->tcps_hsp_lock);
25064 	mutex_destroy(&tcps->tcps_g_q_lock);
25065 	cv_destroy(&tcps->tcps_g_q_cv);
25066 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25067 
25068 	ip_drop_unregister(&tcps->tcps_dropper);
25069 
25070 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25071 	tcps->tcps_kstat = NULL;
25072 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25073 
25074 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25075 	tcps->tcps_mibkp = NULL;
25076 
25077 	kmem_free(tcps, sizeof (*tcps));
25078 }
25079 
25080 /*
25081  * Generate ISS, taking into account NDD changes may happen halfway through.
25082  * (If the iss is not zero, set it.)
25083  */
25084 
25085 static void
25086 tcp_iss_init(tcp_t *tcp)
25087 {
25088 	MD5_CTX context;
25089 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25090 	uint32_t answer[4];
25091 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25092 
25093 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25094 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25095 	switch (tcps->tcps_strong_iss) {
25096 	case 2:
25097 		mutex_enter(&tcps->tcps_iss_key_lock);
25098 		context = tcps->tcps_iss_key;
25099 		mutex_exit(&tcps->tcps_iss_key_lock);
25100 		arg.ports = tcp->tcp_ports;
25101 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25102 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25103 			    &arg.src);
25104 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25105 			    &arg.dst);
25106 		} else {
25107 			arg.src = tcp->tcp_ip6h->ip6_src;
25108 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25109 		}
25110 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25111 		MD5Final((uchar_t *)answer, &context);
25112 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25113 		/*
25114 		 * Now that we've hashed into a unique per-connection sequence
25115 		 * space, add a random increment per strong_iss == 1.  So I
25116 		 * guess we'll have to...
25117 		 */
25118 		/* FALLTHRU */
25119 	case 1:
25120 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25121 		break;
25122 	default:
25123 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25124 		break;
25125 	}
25126 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25127 	tcp->tcp_fss = tcp->tcp_iss - 1;
25128 	tcp->tcp_suna = tcp->tcp_iss;
25129 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25130 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25131 	tcp->tcp_csuna = tcp->tcp_snxt;
25132 }
25133 
25134 /*
25135  * Exported routine for extracting active tcp connection status.
25136  *
25137  * This is used by the Solaris Cluster Networking software to
25138  * gather a list of connections that need to be forwarded to
25139  * specific nodes in the cluster when configuration changes occur.
25140  *
25141  * The callback is invoked for each tcp_t structure. Returning
25142  * non-zero from the callback routine terminates the search.
25143  */
25144 int
25145 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25146     void *arg)
25147 {
25148 	netstack_handle_t nh;
25149 	netstack_t *ns;
25150 	int ret = 0;
25151 
25152 	netstack_next_init(&nh);
25153 	while ((ns = netstack_next(&nh)) != NULL) {
25154 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25155 		    ns->netstack_tcp);
25156 		netstack_rele(ns);
25157 	}
25158 	netstack_next_fini(&nh);
25159 	return (ret);
25160 }
25161 
25162 static int
25163 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25164     tcp_stack_t *tcps)
25165 {
25166 	tcp_t *tcp;
25167 	cl_tcp_info_t	cl_tcpi;
25168 	connf_t	*connfp;
25169 	conn_t	*connp;
25170 	int	i;
25171 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25172 
25173 	ASSERT(callback != NULL);
25174 
25175 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25176 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25177 		connp = NULL;
25178 
25179 		while ((connp =
25180 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25181 
25182 			tcp = connp->conn_tcp;
25183 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25184 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25185 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25186 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25187 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25188 			/*
25189 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25190 			 * addresses. They are copied implicitly below as
25191 			 * mapped addresses.
25192 			 */
25193 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25194 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25195 				cl_tcpi.cl_tcpi_faddr =
25196 				    tcp->tcp_ipha->ipha_dst;
25197 			} else {
25198 				cl_tcpi.cl_tcpi_faddr_v6 =
25199 				    tcp->tcp_ip6h->ip6_dst;
25200 			}
25201 
25202 			/*
25203 			 * If the callback returns non-zero
25204 			 * we terminate the traversal.
25205 			 */
25206 			if ((*callback)(&cl_tcpi, arg) != 0) {
25207 				CONN_DEC_REF(tcp->tcp_connp);
25208 				return (1);
25209 			}
25210 		}
25211 	}
25212 
25213 	return (0);
25214 }
25215 
25216 /*
25217  * Macros used for accessing the different types of sockaddr
25218  * structures inside a tcp_ioc_abort_conn_t.
25219  */
25220 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25221 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25222 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25223 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25224 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25225 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25226 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25227 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25228 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25229 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25230 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25231 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25232 
25233 /*
25234  * Return the correct error code to mimic the behavior
25235  * of a connection reset.
25236  */
25237 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25238 		switch ((state)) {		\
25239 		case TCPS_SYN_SENT:		\
25240 		case TCPS_SYN_RCVD:		\
25241 			(err) = ECONNREFUSED;	\
25242 			break;			\
25243 		case TCPS_ESTABLISHED:		\
25244 		case TCPS_FIN_WAIT_1:		\
25245 		case TCPS_FIN_WAIT_2:		\
25246 		case TCPS_CLOSE_WAIT:		\
25247 			(err) = ECONNRESET;	\
25248 			break;			\
25249 		case TCPS_CLOSING:		\
25250 		case TCPS_LAST_ACK:		\
25251 		case TCPS_TIME_WAIT:		\
25252 			(err) = 0;		\
25253 			break;			\
25254 		default:			\
25255 			(err) = ENXIO;		\
25256 		}				\
25257 	}
25258 
25259 /*
25260  * Check if a tcp structure matches the info in acp.
25261  */
25262 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25263 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25264 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25265 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25266 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25267 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25268 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25269 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25270 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25271 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25272 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25273 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25274 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25275 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25276 	&(tcp)->tcp_ip_src_v6)) &&				\
25277 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25278 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25279 	&(tcp)->tcp_remote_v6)) &&				\
25280 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25281 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25282 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25283 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25284 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25285 	(acp)->ac_end >= (tcp)->tcp_state))
25286 
25287 #define	TCP_AC_MATCH(acp, tcp)					\
25288 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25289 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25290 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25291 
25292 /*
25293  * Build a message containing a tcp_ioc_abort_conn_t structure
25294  * which is filled in with information from acp and tp.
25295  */
25296 static mblk_t *
25297 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25298 {
25299 	mblk_t *mp;
25300 	tcp_ioc_abort_conn_t *tacp;
25301 
25302 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25303 	if (mp == NULL)
25304 		return (NULL);
25305 
25306 	mp->b_datap->db_type = M_CTL;
25307 
25308 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25309 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25310 	    sizeof (uint32_t));
25311 
25312 	tacp->ac_start = acp->ac_start;
25313 	tacp->ac_end = acp->ac_end;
25314 	tacp->ac_zoneid = acp->ac_zoneid;
25315 
25316 	if (acp->ac_local.ss_family == AF_INET) {
25317 		tacp->ac_local.ss_family = AF_INET;
25318 		tacp->ac_remote.ss_family = AF_INET;
25319 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25320 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25321 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25322 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25323 	} else {
25324 		tacp->ac_local.ss_family = AF_INET6;
25325 		tacp->ac_remote.ss_family = AF_INET6;
25326 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25327 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25328 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25329 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25330 	}
25331 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25332 	return (mp);
25333 }
25334 
25335 /*
25336  * Print a tcp_ioc_abort_conn_t structure.
25337  */
25338 static void
25339 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25340 {
25341 	char lbuf[128];
25342 	char rbuf[128];
25343 	sa_family_t af;
25344 	in_port_t lport, rport;
25345 	ushort_t logflags;
25346 
25347 	af = acp->ac_local.ss_family;
25348 
25349 	if (af == AF_INET) {
25350 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25351 		    lbuf, 128);
25352 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25353 		    rbuf, 128);
25354 		lport = ntohs(TCP_AC_V4LPORT(acp));
25355 		rport = ntohs(TCP_AC_V4RPORT(acp));
25356 	} else {
25357 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25358 		    lbuf, 128);
25359 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25360 		    rbuf, 128);
25361 		lport = ntohs(TCP_AC_V6LPORT(acp));
25362 		rport = ntohs(TCP_AC_V6RPORT(acp));
25363 	}
25364 
25365 	logflags = SL_TRACE | SL_NOTE;
25366 	/*
25367 	 * Don't print this message to the console if the operation was done
25368 	 * to a non-global zone.
25369 	 */
25370 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25371 		logflags |= SL_CONSOLE;
25372 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25373 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25374 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25375 	    acp->ac_start, acp->ac_end);
25376 }
25377 
25378 /*
25379  * Called inside tcp_rput when a message built using
25380  * tcp_ioctl_abort_build_msg is put into a queue.
25381  * Note that when we get here there is no wildcard in acp any more.
25382  */
25383 static void
25384 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25385 {
25386 	tcp_ioc_abort_conn_t *acp;
25387 
25388 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25389 	if (tcp->tcp_state <= acp->ac_end) {
25390 		/*
25391 		 * If we get here, we are already on the correct
25392 		 * squeue. This ioctl follows the following path
25393 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25394 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25395 		 * different squeue)
25396 		 */
25397 		int errcode;
25398 
25399 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25400 		(void) tcp_clean_death(tcp, errcode, 26);
25401 	}
25402 	freemsg(mp);
25403 }
25404 
25405 /*
25406  * Abort all matching connections on a hash chain.
25407  */
25408 static int
25409 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25410     boolean_t exact, tcp_stack_t *tcps)
25411 {
25412 	int nmatch, err = 0;
25413 	tcp_t *tcp;
25414 	MBLKP mp, last, listhead = NULL;
25415 	conn_t	*tconnp;
25416 	connf_t	*connfp;
25417 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25418 
25419 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25420 
25421 startover:
25422 	nmatch = 0;
25423 
25424 	mutex_enter(&connfp->connf_lock);
25425 	for (tconnp = connfp->connf_head; tconnp != NULL;
25426 	    tconnp = tconnp->conn_next) {
25427 		tcp = tconnp->conn_tcp;
25428 		if (TCP_AC_MATCH(acp, tcp)) {
25429 			CONN_INC_REF(tcp->tcp_connp);
25430 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25431 			if (mp == NULL) {
25432 				err = ENOMEM;
25433 				CONN_DEC_REF(tcp->tcp_connp);
25434 				break;
25435 			}
25436 			mp->b_prev = (mblk_t *)tcp;
25437 
25438 			if (listhead == NULL) {
25439 				listhead = mp;
25440 				last = mp;
25441 			} else {
25442 				last->b_next = mp;
25443 				last = mp;
25444 			}
25445 			nmatch++;
25446 			if (exact)
25447 				break;
25448 		}
25449 
25450 		/* Avoid holding lock for too long. */
25451 		if (nmatch >= 500)
25452 			break;
25453 	}
25454 	mutex_exit(&connfp->connf_lock);
25455 
25456 	/* Pass mp into the correct tcp */
25457 	while ((mp = listhead) != NULL) {
25458 		listhead = listhead->b_next;
25459 		tcp = (tcp_t *)mp->b_prev;
25460 		mp->b_next = mp->b_prev = NULL;
25461 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25462 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25463 	}
25464 
25465 	*count += nmatch;
25466 	if (nmatch >= 500 && err == 0)
25467 		goto startover;
25468 	return (err);
25469 }
25470 
25471 /*
25472  * Abort all connections that matches the attributes specified in acp.
25473  */
25474 static int
25475 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25476 {
25477 	sa_family_t af;
25478 	uint32_t  ports;
25479 	uint16_t *pports;
25480 	int err = 0, count = 0;
25481 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25482 	int index = -1;
25483 	ushort_t logflags;
25484 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25485 
25486 	af = acp->ac_local.ss_family;
25487 
25488 	if (af == AF_INET) {
25489 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25490 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25491 			pports = (uint16_t *)&ports;
25492 			pports[1] = TCP_AC_V4LPORT(acp);
25493 			pports[0] = TCP_AC_V4RPORT(acp);
25494 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25495 		}
25496 	} else {
25497 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25498 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25499 			pports = (uint16_t *)&ports;
25500 			pports[1] = TCP_AC_V6LPORT(acp);
25501 			pports[0] = TCP_AC_V6RPORT(acp);
25502 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25503 		}
25504 	}
25505 
25506 	/*
25507 	 * For cases where remote addr, local port, and remote port are non-
25508 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25509 	 */
25510 	if (index != -1) {
25511 		err = tcp_ioctl_abort_bucket(acp, index,
25512 		    &count, exact, tcps);
25513 	} else {
25514 		/*
25515 		 * loop through all entries for wildcard case
25516 		 */
25517 		for (index = 0;
25518 		    index < ipst->ips_ipcl_conn_fanout_size;
25519 		    index++) {
25520 			err = tcp_ioctl_abort_bucket(acp, index,
25521 			    &count, exact, tcps);
25522 			if (err != 0)
25523 				break;
25524 		}
25525 	}
25526 
25527 	logflags = SL_TRACE | SL_NOTE;
25528 	/*
25529 	 * Don't print this message to the console if the operation was done
25530 	 * to a non-global zone.
25531 	 */
25532 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25533 		logflags |= SL_CONSOLE;
25534 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25535 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25536 	if (err == 0 && count == 0)
25537 		err = ENOENT;
25538 	return (err);
25539 }
25540 
25541 /*
25542  * Process the TCP_IOC_ABORT_CONN ioctl request.
25543  */
25544 static void
25545 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25546 {
25547 	int	err;
25548 	IOCP    iocp;
25549 	MBLKP   mp1;
25550 	sa_family_t laf, raf;
25551 	tcp_ioc_abort_conn_t *acp;
25552 	zone_t		*zptr;
25553 	conn_t		*connp = Q_TO_CONN(q);
25554 	zoneid_t	zoneid = connp->conn_zoneid;
25555 	tcp_t		*tcp = connp->conn_tcp;
25556 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25557 
25558 	iocp = (IOCP)mp->b_rptr;
25559 
25560 	if ((mp1 = mp->b_cont) == NULL ||
25561 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25562 		err = EINVAL;
25563 		goto out;
25564 	}
25565 
25566 	/* check permissions */
25567 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25568 		err = EPERM;
25569 		goto out;
25570 	}
25571 
25572 	if (mp1->b_cont != NULL) {
25573 		freemsg(mp1->b_cont);
25574 		mp1->b_cont = NULL;
25575 	}
25576 
25577 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25578 	laf = acp->ac_local.ss_family;
25579 	raf = acp->ac_remote.ss_family;
25580 
25581 	/* check that a zone with the supplied zoneid exists */
25582 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25583 		zptr = zone_find_by_id(zoneid);
25584 		if (zptr != NULL) {
25585 			zone_rele(zptr);
25586 		} else {
25587 			err = EINVAL;
25588 			goto out;
25589 		}
25590 	}
25591 
25592 	/*
25593 	 * For exclusive stacks we set the zoneid to zero
25594 	 * to make TCP operate as if in the global zone.
25595 	 */
25596 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25597 		acp->ac_zoneid = GLOBAL_ZONEID;
25598 
25599 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25600 	    acp->ac_start > acp->ac_end || laf != raf ||
25601 	    (laf != AF_INET && laf != AF_INET6)) {
25602 		err = EINVAL;
25603 		goto out;
25604 	}
25605 
25606 	tcp_ioctl_abort_dump(acp);
25607 	err = tcp_ioctl_abort(acp, tcps);
25608 
25609 out:
25610 	if (mp1 != NULL) {
25611 		freemsg(mp1);
25612 		mp->b_cont = NULL;
25613 	}
25614 
25615 	if (err != 0)
25616 		miocnak(q, mp, 0, err);
25617 	else
25618 		miocack(q, mp, 0, 0);
25619 }
25620 
25621 /*
25622  * tcp_time_wait_processing() handles processing of incoming packets when
25623  * the tcp is in the TIME_WAIT state.
25624  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25625  * on the time wait list.
25626  */
25627 void
25628 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25629     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25630 {
25631 	int32_t		bytes_acked;
25632 	int32_t		gap;
25633 	int32_t		rgap;
25634 	tcp_opt_t	tcpopt;
25635 	uint_t		flags;
25636 	uint32_t	new_swnd = 0;
25637 	conn_t		*connp;
25638 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25639 
25640 	BUMP_LOCAL(tcp->tcp_ibsegs);
25641 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25642 
25643 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25644 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25645 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25646 	if (tcp->tcp_snd_ts_ok) {
25647 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25648 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25649 			    tcp->tcp_rnxt, TH_ACK);
25650 			goto done;
25651 		}
25652 	}
25653 	gap = seg_seq - tcp->tcp_rnxt;
25654 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25655 	if (gap < 0) {
25656 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25657 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25658 		    (seg_len > -gap ? -gap : seg_len));
25659 		seg_len += gap;
25660 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25661 			if (flags & TH_RST) {
25662 				goto done;
25663 			}
25664 			if ((flags & TH_FIN) && seg_len == -1) {
25665 				/*
25666 				 * When TCP receives a duplicate FIN in
25667 				 * TIME_WAIT state, restart the 2 MSL timer.
25668 				 * See page 73 in RFC 793. Make sure this TCP
25669 				 * is already on the TIME_WAIT list. If not,
25670 				 * just restart the timer.
25671 				 */
25672 				if (TCP_IS_DETACHED(tcp)) {
25673 					if (tcp_time_wait_remove(tcp, NULL) ==
25674 					    B_TRUE) {
25675 						tcp_time_wait_append(tcp);
25676 						TCP_DBGSTAT(tcps,
25677 						    tcp_rput_time_wait);
25678 					}
25679 				} else {
25680 					ASSERT(tcp != NULL);
25681 					TCP_TIMER_RESTART(tcp,
25682 					    tcps->tcps_time_wait_interval);
25683 				}
25684 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25685 				    tcp->tcp_rnxt, TH_ACK);
25686 				goto done;
25687 			}
25688 			flags |=  TH_ACK_NEEDED;
25689 			seg_len = 0;
25690 			goto process_ack;
25691 		}
25692 
25693 		/* Fix seg_seq, and chew the gap off the front. */
25694 		seg_seq = tcp->tcp_rnxt;
25695 	}
25696 
25697 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25698 		/*
25699 		 * Make sure that when we accept the connection, pick
25700 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25701 		 * old connection.
25702 		 *
25703 		 * The next ISS generated is equal to tcp_iss_incr_extra
25704 		 * + ISS_INCR/2 + other components depending on the
25705 		 * value of tcp_strong_iss.  We pre-calculate the new
25706 		 * ISS here and compare with tcp_snxt to determine if
25707 		 * we need to make adjustment to tcp_iss_incr_extra.
25708 		 *
25709 		 * The above calculation is ugly and is a
25710 		 * waste of CPU cycles...
25711 		 */
25712 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25713 		int32_t adj;
25714 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25715 
25716 		switch (tcps->tcps_strong_iss) {
25717 		case 2: {
25718 			/* Add time and MD5 components. */
25719 			uint32_t answer[4];
25720 			struct {
25721 				uint32_t ports;
25722 				in6_addr_t src;
25723 				in6_addr_t dst;
25724 			} arg;
25725 			MD5_CTX context;
25726 
25727 			mutex_enter(&tcps->tcps_iss_key_lock);
25728 			context = tcps->tcps_iss_key;
25729 			mutex_exit(&tcps->tcps_iss_key_lock);
25730 			arg.ports = tcp->tcp_ports;
25731 			/* We use MAPPED addresses in tcp_iss_init */
25732 			arg.src = tcp->tcp_ip_src_v6;
25733 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25734 				IN6_IPADDR_TO_V4MAPPED(
25735 				    tcp->tcp_ipha->ipha_dst,
25736 				    &arg.dst);
25737 			} else {
25738 				arg.dst =
25739 				    tcp->tcp_ip6h->ip6_dst;
25740 			}
25741 			MD5Update(&context, (uchar_t *)&arg,
25742 			    sizeof (arg));
25743 			MD5Final((uchar_t *)answer, &context);
25744 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25745 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25746 			break;
25747 		}
25748 		case 1:
25749 			/* Add time component and min random (i.e. 1). */
25750 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25751 			break;
25752 		default:
25753 			/* Add only time component. */
25754 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25755 			break;
25756 		}
25757 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25758 			/*
25759 			 * New ISS not guaranteed to be ISS_INCR/2
25760 			 * ahead of the current tcp_snxt, so add the
25761 			 * difference to tcp_iss_incr_extra.
25762 			 */
25763 			tcps->tcps_iss_incr_extra += adj;
25764 		}
25765 		/*
25766 		 * If tcp_clean_death() can not perform the task now,
25767 		 * drop the SYN packet and let the other side re-xmit.
25768 		 * Otherwise pass the SYN packet back in, since the
25769 		 * old tcp state has been cleaned up or freed.
25770 		 */
25771 		if (tcp_clean_death(tcp, 0, 27) == -1)
25772 			goto done;
25773 		/*
25774 		 * We will come back to tcp_rput_data
25775 		 * on the global queue. Packets destined
25776 		 * for the global queue will be checked
25777 		 * with global policy. But the policy for
25778 		 * this packet has already been checked as
25779 		 * this was destined for the detached
25780 		 * connection. We need to bypass policy
25781 		 * check this time by attaching a dummy
25782 		 * ipsec_in with ipsec_in_dont_check set.
25783 		 */
25784 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25785 		if (connp != NULL) {
25786 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25787 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25788 			return;
25789 		}
25790 		goto done;
25791 	}
25792 
25793 	/*
25794 	 * rgap is the amount of stuff received out of window.  A negative
25795 	 * value is the amount out of window.
25796 	 */
25797 	if (rgap < 0) {
25798 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25799 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25800 		/* Fix seg_len and make sure there is something left. */
25801 		seg_len += rgap;
25802 		if (seg_len <= 0) {
25803 			if (flags & TH_RST) {
25804 				goto done;
25805 			}
25806 			flags |=  TH_ACK_NEEDED;
25807 			seg_len = 0;
25808 			goto process_ack;
25809 		}
25810 	}
25811 	/*
25812 	 * Check whether we can update tcp_ts_recent.  This test is
25813 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25814 	 * Extensions for High Performance: An Update", Internet Draft.
25815 	 */
25816 	if (tcp->tcp_snd_ts_ok &&
25817 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25818 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25819 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25820 		tcp->tcp_last_rcv_lbolt = lbolt64;
25821 	}
25822 
25823 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25824 		/* Always ack out of order packets */
25825 		flags |= TH_ACK_NEEDED;
25826 		seg_len = 0;
25827 	} else if (seg_len > 0) {
25828 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25829 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25830 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25831 	}
25832 	if (flags & TH_RST) {
25833 		(void) tcp_clean_death(tcp, 0, 28);
25834 		goto done;
25835 	}
25836 	if (flags & TH_SYN) {
25837 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25838 		    TH_RST|TH_ACK);
25839 		/*
25840 		 * Do not delete the TCP structure if it is in
25841 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25842 		 */
25843 		goto done;
25844 	}
25845 process_ack:
25846 	if (flags & TH_ACK) {
25847 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25848 		if (bytes_acked <= 0) {
25849 			if (bytes_acked == 0 && seg_len == 0 &&
25850 			    new_swnd == tcp->tcp_swnd)
25851 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25852 		} else {
25853 			/* Acks something not sent */
25854 			flags |= TH_ACK_NEEDED;
25855 		}
25856 	}
25857 	if (flags & TH_ACK_NEEDED) {
25858 		/*
25859 		 * Time to send an ack for some reason.
25860 		 */
25861 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25862 		    tcp->tcp_rnxt, TH_ACK);
25863 	}
25864 done:
25865 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25866 		DB_CKSUMSTART(mp) = 0;
25867 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25868 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25869 	}
25870 	freemsg(mp);
25871 }
25872 
25873 /*
25874  * Allocate a T_SVR4_OPTMGMT_REQ.
25875  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25876  * that tcp_rput_other can drop the acks.
25877  */
25878 static mblk_t *
25879 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25880 {
25881 	mblk_t *mp;
25882 	struct T_optmgmt_req *tor;
25883 	struct opthdr *oh;
25884 	uint_t size;
25885 	char *optptr;
25886 
25887 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25888 	mp = allocb(size, BPRI_MED);
25889 	if (mp == NULL)
25890 		return (NULL);
25891 
25892 	mp->b_wptr += size;
25893 	mp->b_datap->db_type = M_PROTO;
25894 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25895 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25896 	tor->MGMT_flags = T_NEGOTIATE;
25897 	tor->OPT_length = sizeof (*oh) + optlen;
25898 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25899 
25900 	oh = (struct opthdr *)&tor[1];
25901 	oh->level = level;
25902 	oh->name = cmd;
25903 	oh->len = optlen;
25904 	if (optlen != 0) {
25905 		optptr = (char *)&oh[1];
25906 		bcopy(opt, optptr, optlen);
25907 	}
25908 	return (mp);
25909 }
25910 
25911 /*
25912  * TCP Timers Implementation.
25913  */
25914 timeout_id_t
25915 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25916 {
25917 	mblk_t *mp;
25918 	tcp_timer_t *tcpt;
25919 	tcp_t *tcp = connp->conn_tcp;
25920 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25921 
25922 	ASSERT(connp->conn_sqp != NULL);
25923 
25924 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
25925 
25926 	if (tcp->tcp_timercache == NULL) {
25927 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25928 	} else {
25929 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
25930 		mp = tcp->tcp_timercache;
25931 		tcp->tcp_timercache = mp->b_next;
25932 		mp->b_next = NULL;
25933 		ASSERT(mp->b_wptr == NULL);
25934 	}
25935 
25936 	CONN_INC_REF(connp);
25937 	tcpt = (tcp_timer_t *)mp->b_rptr;
25938 	tcpt->connp = connp;
25939 	tcpt->tcpt_proc = f;
25940 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
25941 	return ((timeout_id_t)mp);
25942 }
25943 
25944 static void
25945 tcp_timer_callback(void *arg)
25946 {
25947 	mblk_t *mp = (mblk_t *)arg;
25948 	tcp_timer_t *tcpt;
25949 	conn_t	*connp;
25950 
25951 	tcpt = (tcp_timer_t *)mp->b_rptr;
25952 	connp = tcpt->connp;
25953 	squeue_fill(connp->conn_sqp, mp,
25954 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25955 }
25956 
25957 static void
25958 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25959 {
25960 	tcp_timer_t *tcpt;
25961 	conn_t *connp = (conn_t *)arg;
25962 	tcp_t *tcp = connp->conn_tcp;
25963 
25964 	tcpt = (tcp_timer_t *)mp->b_rptr;
25965 	ASSERT(connp == tcpt->connp);
25966 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25967 
25968 	/*
25969 	 * If the TCP has reached the closed state, don't proceed any
25970 	 * further. This TCP logically does not exist on the system.
25971 	 * tcpt_proc could for example access queues, that have already
25972 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25973 	 */
25974 	if (tcp->tcp_state != TCPS_CLOSED) {
25975 		(*tcpt->tcpt_proc)(connp);
25976 	} else {
25977 		tcp->tcp_timer_tid = 0;
25978 	}
25979 	tcp_timer_free(connp->conn_tcp, mp);
25980 }
25981 
25982 /*
25983  * There is potential race with untimeout and the handler firing at the same
25984  * time. The mblock may be freed by the handler while we are trying to use
25985  * it. But since both should execute on the same squeue, this race should not
25986  * occur.
25987  */
25988 clock_t
25989 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25990 {
25991 	mblk_t	*mp = (mblk_t *)id;
25992 	tcp_timer_t *tcpt;
25993 	clock_t delta;
25994 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25995 
25996 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
25997 
25998 	if (mp == NULL)
25999 		return (-1);
26000 
26001 	tcpt = (tcp_timer_t *)mp->b_rptr;
26002 	ASSERT(tcpt->connp == connp);
26003 
26004 	delta = untimeout(tcpt->tcpt_tid);
26005 
26006 	if (delta >= 0) {
26007 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26008 		tcp_timer_free(connp->conn_tcp, mp);
26009 		CONN_DEC_REF(connp);
26010 	}
26011 
26012 	return (delta);
26013 }
26014 
26015 /*
26016  * Allocate space for the timer event. The allocation looks like mblk, but it is
26017  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26018  *
26019  * Dealing with failures: If we can't allocate from the timer cache we try
26020  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26021  * points to b_rptr.
26022  * If we can't allocate anything using allocb_tryhard(), we perform a last
26023  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26024  * save the actual allocation size in b_datap.
26025  */
26026 mblk_t *
26027 tcp_timermp_alloc(int kmflags)
26028 {
26029 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26030 	    kmflags & ~KM_PANIC);
26031 
26032 	if (mp != NULL) {
26033 		mp->b_next = mp->b_prev = NULL;
26034 		mp->b_rptr = (uchar_t *)(&mp[1]);
26035 		mp->b_wptr = NULL;
26036 		mp->b_datap = NULL;
26037 		mp->b_queue = NULL;
26038 		mp->b_cont = NULL;
26039 	} else if (kmflags & KM_PANIC) {
26040 		/*
26041 		 * Failed to allocate memory for the timer. Try allocating from
26042 		 * dblock caches.
26043 		 */
26044 		/* ipclassifier calls this from a constructor - hence no tcps */
26045 		TCP_G_STAT(tcp_timermp_allocfail);
26046 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26047 		if (mp == NULL) {
26048 			size_t size = 0;
26049 			/*
26050 			 * Memory is really low. Try tryhard allocation.
26051 			 *
26052 			 * ipclassifier calls this from a constructor -
26053 			 * hence no tcps
26054 			 */
26055 			TCP_G_STAT(tcp_timermp_allocdblfail);
26056 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26057 			    sizeof (tcp_timer_t), &size, kmflags);
26058 			mp->b_rptr = (uchar_t *)(&mp[1]);
26059 			mp->b_next = mp->b_prev = NULL;
26060 			mp->b_wptr = (uchar_t *)-1;
26061 			mp->b_datap = (dblk_t *)size;
26062 			mp->b_queue = NULL;
26063 			mp->b_cont = NULL;
26064 		}
26065 		ASSERT(mp->b_wptr != NULL);
26066 	}
26067 	/* ipclassifier calls this from a constructor - hence no tcps */
26068 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26069 
26070 	return (mp);
26071 }
26072 
26073 /*
26074  * Free per-tcp timer cache.
26075  * It can only contain entries from tcp_timercache.
26076  */
26077 void
26078 tcp_timermp_free(tcp_t *tcp)
26079 {
26080 	mblk_t *mp;
26081 
26082 	while ((mp = tcp->tcp_timercache) != NULL) {
26083 		ASSERT(mp->b_wptr == NULL);
26084 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26085 		kmem_cache_free(tcp_timercache, mp);
26086 	}
26087 }
26088 
26089 /*
26090  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26091  * events there already (currently at most two events are cached).
26092  * If the event is not allocated from the timer cache, free it right away.
26093  */
26094 static void
26095 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26096 {
26097 	mblk_t *mp1 = tcp->tcp_timercache;
26098 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26099 
26100 	if (mp->b_wptr != NULL) {
26101 		/*
26102 		 * This allocation is not from a timer cache, free it right
26103 		 * away.
26104 		 */
26105 		if (mp->b_wptr != (uchar_t *)-1)
26106 			freeb(mp);
26107 		else
26108 			kmem_free(mp, (size_t)mp->b_datap);
26109 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26110 		/* Cache this timer block for future allocations */
26111 		mp->b_rptr = (uchar_t *)(&mp[1]);
26112 		mp->b_next = mp1;
26113 		tcp->tcp_timercache = mp;
26114 	} else {
26115 		kmem_cache_free(tcp_timercache, mp);
26116 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26117 	}
26118 }
26119 
26120 /*
26121  * End of TCP Timers implementation.
26122  */
26123 
26124 /*
26125  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26126  * on the specified backing STREAMS q. Note, the caller may make the
26127  * decision to call based on the tcp_t.tcp_flow_stopped value which
26128  * when check outside the q's lock is only an advisory check ...
26129  */
26130 
26131 void
26132 tcp_setqfull(tcp_t *tcp)
26133 {
26134 	queue_t *q = tcp->tcp_wq;
26135 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26136 
26137 	if (!(q->q_flag & QFULL)) {
26138 		mutex_enter(QLOCK(q));
26139 		if (!(q->q_flag & QFULL)) {
26140 			/* still need to set QFULL */
26141 			q->q_flag |= QFULL;
26142 			tcp->tcp_flow_stopped = B_TRUE;
26143 			mutex_exit(QLOCK(q));
26144 			TCP_STAT(tcps, tcp_flwctl_on);
26145 		} else {
26146 			mutex_exit(QLOCK(q));
26147 		}
26148 	}
26149 }
26150 
26151 void
26152 tcp_clrqfull(tcp_t *tcp)
26153 {
26154 	queue_t *q = tcp->tcp_wq;
26155 
26156 	if (q->q_flag & QFULL) {
26157 		mutex_enter(QLOCK(q));
26158 		if (q->q_flag & QFULL) {
26159 			q->q_flag &= ~QFULL;
26160 			tcp->tcp_flow_stopped = B_FALSE;
26161 			mutex_exit(QLOCK(q));
26162 			if (q->q_flag & QWANTW)
26163 				qbackenable(q, 0);
26164 		} else {
26165 			mutex_exit(QLOCK(q));
26166 		}
26167 	}
26168 }
26169 
26170 
26171 /*
26172  * kstats related to squeues i.e. not per IP instance
26173  */
26174 static void *
26175 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26176 {
26177 	kstat_t *ksp;
26178 
26179 	tcp_g_stat_t template = {
26180 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26181 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26182 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26183 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26184 	};
26185 
26186 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26187 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26188 	    KSTAT_FLAG_VIRTUAL);
26189 
26190 	if (ksp == NULL)
26191 		return (NULL);
26192 
26193 	bcopy(&template, tcp_g_statp, sizeof (template));
26194 	ksp->ks_data = (void *)tcp_g_statp;
26195 
26196 	kstat_install(ksp);
26197 	return (ksp);
26198 }
26199 
26200 static void
26201 tcp_g_kstat_fini(kstat_t *ksp)
26202 {
26203 	if (ksp != NULL) {
26204 		kstat_delete(ksp);
26205 	}
26206 }
26207 
26208 
26209 static void *
26210 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26211 {
26212 	kstat_t *ksp;
26213 
26214 	tcp_stat_t template = {
26215 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26216 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26217 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26218 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26219 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26220 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26221 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26222 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26223 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26224 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26225 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26226 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26227 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26228 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26229 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26230 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26231 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26232 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26233 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26234 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26235 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26236 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26237 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26238 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26239 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26240 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26241 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26242 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26243 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26244 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26245 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26246 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26247 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26248 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26249 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26250 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26251 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26252 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26253 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26254 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26255 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26256 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26257 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26258 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26259 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26260 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26261 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26262 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26263 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26264 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26265 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26266 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26267 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26268 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26269 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26270 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26271 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26272 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26273 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26274 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26275 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26276 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26277 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26278 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26279 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26280 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26281 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26282 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26283 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26284 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26285 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26286 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26287 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26288 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26289 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26290 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26291 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26292 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26293 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26294 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26295 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26296 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26297 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26298 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26299 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26300 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26301 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26302 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26303 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26304 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26305 	};
26306 
26307 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26308 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26309 	    KSTAT_FLAG_VIRTUAL, stackid);
26310 
26311 	if (ksp == NULL)
26312 		return (NULL);
26313 
26314 	bcopy(&template, tcps_statisticsp, sizeof (template));
26315 	ksp->ks_data = (void *)tcps_statisticsp;
26316 	ksp->ks_private = (void *)(uintptr_t)stackid;
26317 
26318 	kstat_install(ksp);
26319 	return (ksp);
26320 }
26321 
26322 static void
26323 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26324 {
26325 	if (ksp != NULL) {
26326 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26327 		kstat_delete_netstack(ksp, stackid);
26328 	}
26329 }
26330 
26331 /*
26332  * TCP Kstats implementation
26333  */
26334 static void *
26335 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26336 {
26337 	kstat_t	*ksp;
26338 
26339 	tcp_named_kstat_t template = {
26340 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26341 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26342 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26343 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26344 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26345 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26346 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26347 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26348 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26349 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26350 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26351 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26352 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26353 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26354 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26355 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26356 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26357 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26358 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26359 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26360 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26361 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26362 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26363 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26364 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26365 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26366 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26367 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26368 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26369 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26370 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26371 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26372 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26373 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26374 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26375 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26376 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26377 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26378 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26379 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26380 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26381 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26382 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26383 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26384 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26385 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26386 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26387 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26388 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26389 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26390 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26391 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26392 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26393 	};
26394 
26395 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26396 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26397 
26398 	if (ksp == NULL)
26399 		return (NULL);
26400 
26401 	template.rtoAlgorithm.value.ui32 = 4;
26402 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26403 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26404 	template.maxConn.value.i32 = -1;
26405 
26406 	bcopy(&template, ksp->ks_data, sizeof (template));
26407 	ksp->ks_update = tcp_kstat_update;
26408 	ksp->ks_private = (void *)(uintptr_t)stackid;
26409 
26410 	kstat_install(ksp);
26411 	return (ksp);
26412 }
26413 
26414 static void
26415 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26416 {
26417 	if (ksp != NULL) {
26418 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26419 		kstat_delete_netstack(ksp, stackid);
26420 	}
26421 }
26422 
26423 static int
26424 tcp_kstat_update(kstat_t *kp, int rw)
26425 {
26426 	tcp_named_kstat_t *tcpkp;
26427 	tcp_t		*tcp;
26428 	connf_t		*connfp;
26429 	conn_t		*connp;
26430 	int 		i;
26431 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26432 	netstack_t	*ns;
26433 	tcp_stack_t	*tcps;
26434 	ip_stack_t	*ipst;
26435 
26436 	if ((kp == NULL) || (kp->ks_data == NULL))
26437 		return (EIO);
26438 
26439 	if (rw == KSTAT_WRITE)
26440 		return (EACCES);
26441 
26442 	ns = netstack_find_by_stackid(stackid);
26443 	if (ns == NULL)
26444 		return (-1);
26445 	tcps = ns->netstack_tcp;
26446 	if (tcps == NULL) {
26447 		netstack_rele(ns);
26448 		return (-1);
26449 	}
26450 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26451 
26452 	tcpkp->currEstab.value.ui32 = 0;
26453 
26454 	ipst = ns->netstack_ip;
26455 
26456 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26457 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26458 		connp = NULL;
26459 		while ((connp =
26460 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26461 			tcp = connp->conn_tcp;
26462 			switch (tcp_snmp_state(tcp)) {
26463 			case MIB2_TCP_established:
26464 			case MIB2_TCP_closeWait:
26465 				tcpkp->currEstab.value.ui32++;
26466 				break;
26467 			}
26468 		}
26469 	}
26470 
26471 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26472 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26473 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26474 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26475 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26476 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26477 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26478 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26479 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26480 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26481 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26482 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26483 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26484 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26485 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26486 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26487 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26488 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26489 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26490 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26491 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26492 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26493 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26494 	tcpkp->inDataInorderSegs.value.ui32 =
26495 	    tcps->tcps_mib.tcpInDataInorderSegs;
26496 	tcpkp->inDataInorderBytes.value.ui32 =
26497 	    tcps->tcps_mib.tcpInDataInorderBytes;
26498 	tcpkp->inDataUnorderSegs.value.ui32 =
26499 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26500 	tcpkp->inDataUnorderBytes.value.ui32 =
26501 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26502 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26503 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26504 	tcpkp->inDataPartDupSegs.value.ui32 =
26505 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26506 	tcpkp->inDataPartDupBytes.value.ui32 =
26507 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26508 	tcpkp->inDataPastWinSegs.value.ui32 =
26509 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26510 	tcpkp->inDataPastWinBytes.value.ui32 =
26511 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26512 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26513 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26514 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26515 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26516 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26517 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26518 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26519 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26520 	tcpkp->timKeepaliveProbe.value.ui32 =
26521 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26522 	tcpkp->timKeepaliveDrop.value.ui32 =
26523 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26524 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26525 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26526 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26527 	tcpkp->outSackRetransSegs.value.ui32 =
26528 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26529 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26530 
26531 	netstack_rele(ns);
26532 	return (0);
26533 }
26534 
26535 void
26536 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26537 {
26538 	uint16_t	hdr_len;
26539 	ipha_t		*ipha;
26540 	uint8_t		*nexthdrp;
26541 	tcph_t		*tcph;
26542 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26543 
26544 	/* Already has an eager */
26545 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26546 		TCP_STAT(tcps, tcp_reinput_syn);
26547 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26548 		    connp, SQTAG_TCP_REINPUT_EAGER);
26549 		return;
26550 	}
26551 
26552 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26553 	case IPV4_VERSION:
26554 		ipha = (ipha_t *)mp->b_rptr;
26555 		hdr_len = IPH_HDR_LENGTH(ipha);
26556 		break;
26557 	case IPV6_VERSION:
26558 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26559 		    &hdr_len, &nexthdrp)) {
26560 			CONN_DEC_REF(connp);
26561 			freemsg(mp);
26562 			return;
26563 		}
26564 		break;
26565 	}
26566 
26567 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26568 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26569 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26570 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26571 	}
26572 
26573 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26574 	    SQTAG_TCP_REINPUT);
26575 }
26576 
26577 static squeue_func_t
26578 tcp_squeue_switch(int val)
26579 {
26580 	squeue_func_t rval = squeue_fill;
26581 
26582 	switch (val) {
26583 	case 1:
26584 		rval = squeue_enter_nodrain;
26585 		break;
26586 	case 2:
26587 		rval = squeue_enter;
26588 		break;
26589 	default:
26590 		break;
26591 	}
26592 	return (rval);
26593 }
26594 
26595 /*
26596  * This is called once for each squeue - globally for all stack
26597  * instances.
26598  */
26599 static void
26600 tcp_squeue_add(squeue_t *sqp)
26601 {
26602 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26603 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26604 
26605 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26606 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26607 	    sqp, TCP_TIME_WAIT_DELAY);
26608 	if (tcp_free_list_max_cnt == 0) {
26609 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26610 		    max_ncpus : boot_max_ncpus);
26611 
26612 		/*
26613 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26614 		 */
26615 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26616 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26617 	}
26618 	tcp_time_wait->tcp_free_list_cnt = 0;
26619 }
26620