1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: SQ_NODRAIN 239 * 2: SQ_PROCESS 240 * 3: SQ_FILL 241 */ 242 int tcp_squeue_wput = 2; /* /etc/systems */ 243 int tcp_squeue_flag; 244 245 /* 246 * This controls how tiny a write must be before we try to copy it 247 * into the the mblk on the tail of the transmit queue. Not much 248 * speedup is observed for values larger than sixteen. Zero will 249 * disable the optimisation. 250 */ 251 int tcp_tx_pull_len = 16; 252 253 /* 254 * TCP Statistics. 255 * 256 * How TCP statistics work. 257 * 258 * There are two types of statistics invoked by two macros. 259 * 260 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 261 * supposed to be used in non MT-hot paths of the code. 262 * 263 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 264 * supposed to be used for DEBUG purposes and may be used on a hot path. 265 * 266 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 267 * (use "kstat tcp" to get them). 268 * 269 * There is also additional debugging facility that marks tcp_clean_death() 270 * instances and saves them in tcp_t structure. It is triggered by 271 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 272 * tcp_clean_death() calls that counts the number of times each tag was hit. It 273 * is triggered by TCP_CLD_COUNTERS define. 274 * 275 * How to add new counters. 276 * 277 * 1) Add a field in the tcp_stat structure describing your counter. 278 * 2) Add a line in the template in tcp_kstat2_init() with the name 279 * of the counter. 280 * 281 * IMPORTANT!! - make sure that both are in sync !! 282 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 283 * 284 * Please avoid using private counters which are not kstat-exported. 285 * 286 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 287 * in tcp_t structure. 288 * 289 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 290 */ 291 292 #ifndef TCP_DEBUG_COUNTER 293 #ifdef DEBUG 294 #define TCP_DEBUG_COUNTER 1 295 #else 296 #define TCP_DEBUG_COUNTER 0 297 #endif 298 #endif 299 300 #define TCP_CLD_COUNTERS 0 301 302 #define TCP_TAG_CLEAN_DEATH 1 303 #define TCP_MAX_CLEAN_DEATH_TAG 32 304 305 #ifdef lint 306 static int _lint_dummy_; 307 #endif 308 309 #if TCP_CLD_COUNTERS 310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 311 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 312 #elif defined(lint) 313 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 314 #else 315 #define TCP_CLD_STAT(x) 316 #endif 317 318 #if TCP_DEBUG_COUNTER 319 #define TCP_DBGSTAT(tcps, x) \ 320 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 321 #define TCP_G_DBGSTAT(x) \ 322 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 323 #elif defined(lint) 324 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 325 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(tcps, x) 328 #define TCP_G_DBGSTAT(x) 329 #endif 330 331 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 332 333 tcp_g_stat_t tcp_g_statistics; 334 kstat_t *tcp_g_kstat; 335 336 /* 337 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 338 * tcp write side. 339 */ 340 #define CALL_IP_WPUT(connp, q, mp) { \ 341 ASSERT(((q)->q_flag & QREADR) == 0); \ 342 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 343 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 344 } 345 346 /* Macros for timestamp comparisons */ 347 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 348 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 349 350 /* 351 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 352 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 353 * by adding three components: a time component which grows by 1 every 4096 354 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 355 * a per-connection component which grows by 125000 for every new connection; 356 * and an "extra" component that grows by a random amount centered 357 * approximately on 64000. This causes the the ISS generator to cycle every 358 * 4.89 hours if no TCP connections are made, and faster if connections are 359 * made. 360 * 361 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 362 * components: a time component which grows by 250000 every second; and 363 * a per-connection component which grows by 125000 for every new connections. 364 * 365 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 366 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 367 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 368 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 369 * password. 370 */ 371 #define ISS_INCR 250000 372 #define ISS_NSEC_SHT 12 373 374 static sin_t sin_null; /* Zero address for quick clears */ 375 static sin6_t sin6_null; /* Zero address for quick clears */ 376 377 /* 378 * This implementation follows the 4.3BSD interpretation of the urgent 379 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 380 * incompatible changes in protocols like telnet and rlogin. 381 */ 382 #define TCP_OLD_URP_INTERPRETATION 1 383 384 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 385 (TCP_IS_DETACHED(tcp) && \ 386 (!(tcp)->tcp_hard_binding)) 387 388 /* 389 * TCP reassembly macros. We hide starting and ending sequence numbers in 390 * b_next and b_prev of messages on the reassembly queue. The messages are 391 * chained using b_cont. These macros are used in tcp_reass() so we don't 392 * have to see the ugly casts and assignments. 393 */ 394 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 395 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 396 (mblk_t *)(uintptr_t)(u)) 397 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 398 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 399 (mblk_t *)(uintptr_t)(u)) 400 401 /* 402 * Implementation of TCP Timers. 403 * ============================= 404 * 405 * INTERFACE: 406 * 407 * There are two basic functions dealing with tcp timers: 408 * 409 * timeout_id_t tcp_timeout(connp, func, time) 410 * clock_t tcp_timeout_cancel(connp, timeout_id) 411 * TCP_TIMER_RESTART(tcp, intvl) 412 * 413 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 414 * after 'time' ticks passed. The function called by timeout() must adhere to 415 * the same restrictions as a driver soft interrupt handler - it must not sleep 416 * or call other functions that might sleep. The value returned is the opaque 417 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 418 * cancel the request. The call to tcp_timeout() may fail in which case it 419 * returns zero. This is different from the timeout(9F) function which never 420 * fails. 421 * 422 * The call-back function 'func' always receives 'connp' as its single 423 * argument. It is always executed in the squeue corresponding to the tcp 424 * structure. The tcp structure is guaranteed to be present at the time the 425 * call-back is called. 426 * 427 * NOTE: The call-back function 'func' is never called if tcp is in 428 * the TCPS_CLOSED state. 429 * 430 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 431 * request. locks acquired by the call-back routine should not be held across 432 * the call to tcp_timeout_cancel() or a deadlock may result. 433 * 434 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 435 * Otherwise, it returns an integer value greater than or equal to 0. In 436 * particular, if the call-back function is already placed on the squeue, it can 437 * not be canceled. 438 * 439 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 440 * within squeue context corresponding to the tcp instance. Since the 441 * call-back is also called via the same squeue, there are no race 442 * conditions described in untimeout(9F) manual page since all calls are 443 * strictly serialized. 444 * 445 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 446 * stored in tcp_timer_tid and starts a new one using 447 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 448 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 449 * field. 450 * 451 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 452 * call-back may still be called, so it is possible tcp_timer() will be 453 * called several times. This should not be a problem since tcp_timer() 454 * should always check the tcp instance state. 455 * 456 * 457 * IMPLEMENTATION: 458 * 459 * TCP timers are implemented using three-stage process. The call to 460 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 461 * when the timer expires. The tcp_timer_callback() arranges the call of the 462 * tcp_timer_handler() function via squeue corresponding to the tcp 463 * instance. The tcp_timer_handler() calls actual requested timeout call-back 464 * and passes tcp instance as an argument to it. Information is passed between 465 * stages using the tcp_timer_t structure which contains the connp pointer, the 466 * tcp call-back to call and the timeout id returned by the timeout(9F). 467 * 468 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 469 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 470 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 471 * returns the pointer to this mblk. 472 * 473 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 474 * looks like a normal mblk without actual dblk attached to it. 475 * 476 * To optimize performance each tcp instance holds a small cache of timer 477 * mblocks. In the current implementation it caches up to two timer mblocks per 478 * tcp instance. The cache is preserved over tcp frees and is only freed when 479 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 480 * timer processing happens on a corresponding squeue, the cache manipulation 481 * does not require any locks. Experiments show that majority of timer mblocks 482 * allocations are satisfied from the tcp cache and do not involve kmem calls. 483 * 484 * The tcp_timeout() places a refhold on the connp instance which guarantees 485 * that it will be present at the time the call-back function fires. The 486 * tcp_timer_handler() drops the reference after calling the call-back, so the 487 * call-back function does not need to manipulate the references explicitly. 488 */ 489 490 typedef struct tcp_timer_s { 491 conn_t *connp; 492 void (*tcpt_proc)(void *); 493 callout_id_t tcpt_tid; 494 } tcp_timer_t; 495 496 static kmem_cache_t *tcp_timercache; 497 kmem_cache_t *tcp_sack_info_cache; 498 kmem_cache_t *tcp_iphc_cache; 499 500 /* 501 * For scalability, we must not run a timer for every TCP connection 502 * in TIME_WAIT state. To see why, consider (for time wait interval of 503 * 4 minutes): 504 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 505 * 506 * This list is ordered by time, so you need only delete from the head 507 * until you get to entries which aren't old enough to delete yet. 508 * The list consists of only the detached TIME_WAIT connections. 509 * 510 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 511 * becomes detached TIME_WAIT (either by changing the state and already 512 * being detached or the other way around). This means that the TIME_WAIT 513 * state can be extended (up to doubled) if the connection doesn't become 514 * detached for a long time. 515 * 516 * The list manipulations (including tcp_time_wait_next/prev) 517 * are protected by the tcp_time_wait_lock. The content of the 518 * detached TIME_WAIT connections is protected by the normal perimeters. 519 * 520 * This list is per squeue and squeues are shared across the tcp_stack_t's. 521 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 522 * and conn_netstack. 523 * The tcp_t's that are added to tcp_free_list are disassociated and 524 * have NULL tcp_tcps and conn_netstack pointers. 525 */ 526 typedef struct tcp_squeue_priv_s { 527 kmutex_t tcp_time_wait_lock; 528 callout_id_t tcp_time_wait_tid; 529 tcp_t *tcp_time_wait_head; 530 tcp_t *tcp_time_wait_tail; 531 tcp_t *tcp_free_list; 532 uint_t tcp_free_list_cnt; 533 } tcp_squeue_priv_t; 534 535 /* 536 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 537 * Running it every 5 seconds seems to give the best results. 538 */ 539 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 540 541 /* 542 * To prevent memory hog, limit the number of entries in tcp_free_list 543 * to 1% of available memory / number of cpus 544 */ 545 uint_t tcp_free_list_max_cnt = 0; 546 547 #define TCP_XMIT_LOWATER 4096 548 #define TCP_XMIT_HIWATER 49152 549 #define TCP_RECV_LOWATER 2048 550 #define TCP_RECV_HIWATER 49152 551 552 /* 553 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 554 */ 555 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 556 557 #define TIDUSZ 4096 /* transport interface data unit size */ 558 559 /* 560 * Bind hash list size and has function. It has to be a power of 2 for 561 * hashing. 562 */ 563 #define TCP_BIND_FANOUT_SIZE 512 564 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 565 /* 566 * Size of listen and acceptor hash list. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_FANOUT_SIZE 256 570 571 #ifdef _ILP32 572 #define TCP_ACCEPTOR_HASH(accid) \ 573 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 574 #else 575 #define TCP_ACCEPTOR_HASH(accid) \ 576 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 577 #endif /* _ILP32 */ 578 579 #define IP_ADDR_CACHE_SIZE 2048 580 #define IP_ADDR_CACHE_HASH(faddr) \ 581 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 582 583 /* 584 * TCP options struct returned from tcp_parse_options. 585 */ 586 typedef struct tcp_opt_s { 587 uint32_t tcp_opt_mss; 588 uint32_t tcp_opt_wscale; 589 uint32_t tcp_opt_ts_val; 590 uint32_t tcp_opt_ts_ecr; 591 tcp_t *tcp; 592 } tcp_opt_t; 593 594 /* 595 * TCP option struct passing information b/w lisenter and eager. 596 */ 597 struct tcp_options { 598 uint_t to_flags; 599 ssize_t to_boundif; /* IPV6_BOUND_IF */ 600 }; 601 602 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 603 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 604 605 /* 606 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 607 */ 608 609 #ifdef _BIG_ENDIAN 610 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 611 (TCPOPT_TSTAMP << 8) | 10) 612 #else 613 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 614 (TCPOPT_NOP << 8) | TCPOPT_NOP) 615 #endif 616 617 /* 618 * Flags returned from tcp_parse_options. 619 */ 620 #define TCP_OPT_MSS_PRESENT 1 621 #define TCP_OPT_WSCALE_PRESENT 2 622 #define TCP_OPT_TSTAMP_PRESENT 4 623 #define TCP_OPT_SACK_OK_PRESENT 8 624 #define TCP_OPT_SACK_PRESENT 16 625 626 /* TCP option length */ 627 #define TCPOPT_NOP_LEN 1 628 #define TCPOPT_MAXSEG_LEN 4 629 #define TCPOPT_WS_LEN 3 630 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 631 #define TCPOPT_TSTAMP_LEN 10 632 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 633 #define TCPOPT_SACK_OK_LEN 2 634 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 635 #define TCPOPT_REAL_SACK_LEN 4 636 #define TCPOPT_MAX_SACK_LEN 36 637 #define TCPOPT_HEADER_LEN 2 638 639 /* TCP cwnd burst factor. */ 640 #define TCP_CWND_INFINITE 65535 641 #define TCP_CWND_SS 3 642 #define TCP_CWND_NORMAL 5 643 644 /* Maximum TCP initial cwin (start/restart). */ 645 #define TCP_MAX_INIT_CWND 8 646 647 /* 648 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 649 * either tcp_slow_start_initial or tcp_slow_start_after idle 650 * depending on the caller. If the upper layer has not used the 651 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 652 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 653 * If the upper layer has changed set the tcp_init_cwnd, just use 654 * it to calculate the tcp_cwnd. 655 */ 656 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 657 { \ 658 if ((tcp)->tcp_init_cwnd == 0) { \ 659 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 660 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 661 } else { \ 662 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 663 } \ 664 tcp->tcp_cwnd_cnt = 0; \ 665 } 666 667 /* TCP Timer control structure */ 668 typedef struct tcpt_s { 669 pfv_t tcpt_pfv; /* The routine we are to call */ 670 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 671 } tcpt_t; 672 673 /* 674 * Functions called directly via squeue having a prototype of edesc_t. 675 */ 676 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 677 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 678 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 679 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 680 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 681 void tcp_input(void *arg, mblk_t *mp, void *arg2); 682 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 683 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 684 void tcp_output(void *arg, mblk_t *mp, void *arg2); 685 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 686 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 687 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 688 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 689 690 691 /* Prototype for TCP functions */ 692 static void tcp_random_init(void); 693 int tcp_random(void); 694 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 695 static int tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 696 tcp_t *eager); 697 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 699 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 700 boolean_t user_specified); 701 static void tcp_closei_local(tcp_t *tcp); 702 static void tcp_close_detached(tcp_t *tcp); 703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 704 mblk_t *idmp, mblk_t **defermp); 705 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 706 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 707 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 708 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 709 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 710 uint32_t scope_id, cred_t *cr, pid_t pid); 711 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 712 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 713 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 714 static char *tcp_display(tcp_t *tcp, char *, char); 715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 716 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 717 static void tcp_eager_unlink(tcp_t *tcp); 718 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 719 int unixerr); 720 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 721 int tlierr, int unixerr); 722 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 723 cred_t *cr); 724 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 725 char *value, caddr_t cp, cred_t *cr); 726 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 727 char *value, caddr_t cp, cred_t *cr); 728 static int tcp_tpistate(tcp_t *tcp); 729 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 730 int caller_holds_lock); 731 static void tcp_bind_hash_remove(tcp_t *tcp); 732 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 733 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 734 static void tcp_acceptor_hash_remove(tcp_t *tcp); 735 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 736 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 737 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 738 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 739 void tcp_g_q_setup(tcp_stack_t *); 740 void tcp_g_q_create(tcp_stack_t *); 741 void tcp_g_q_destroy(tcp_stack_t *); 742 static int tcp_header_init_ipv4(tcp_t *tcp); 743 static int tcp_header_init_ipv6(tcp_t *tcp); 744 int tcp_init(tcp_t *tcp, queue_t *q); 745 static int tcp_init_values(tcp_t *tcp); 746 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 747 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 748 static void tcp_ip_notify(tcp_t *tcp); 749 static mblk_t *tcp_ire_mp(mblk_t **mpp); 750 static void tcp_iss_init(tcp_t *tcp); 751 static void tcp_keepalive_killer(void *arg); 752 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 753 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 754 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 755 int *do_disconnectp, int *t_errorp, int *sys_errorp); 756 static boolean_t tcp_allow_connopt_set(int level, int name); 757 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 758 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 759 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 760 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 761 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 762 mblk_t *mblk); 763 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 764 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 765 uchar_t *ptr, uint_t len); 766 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 768 tcp_stack_t *); 769 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 770 caddr_t cp, cred_t *cr); 771 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 772 caddr_t cp, cred_t *cr); 773 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 774 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 777 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 778 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 779 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 780 static void tcp_reinit(tcp_t *tcp); 781 static void tcp_reinit_values(tcp_t *tcp); 782 783 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 784 static uint_t tcp_rcv_drain(tcp_t *tcp); 785 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 786 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 787 static void tcp_ss_rexmit(tcp_t *tcp); 788 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 789 static void tcp_process_options(tcp_t *, tcph_t *); 790 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 791 static void tcp_rsrv(queue_t *q); 792 static int tcp_snmp_state(tcp_t *tcp); 793 static void tcp_timer(void *arg); 794 static void tcp_timer_callback(void *); 795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 796 boolean_t random); 797 static in_port_t tcp_get_next_priv_port(const tcp_t *); 798 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 799 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 800 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 801 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 802 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 803 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 804 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 805 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 806 const int num_sack_blk, int *usable, uint_t *snxt, 807 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 808 const int mdt_thres); 809 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 810 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 811 const int num_sack_blk, int *usable, uint_t *snxt, 812 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 813 const int mdt_thres); 814 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 815 int num_sack_blk); 816 static void tcp_wsrv(queue_t *q); 817 static int tcp_xmit_end(tcp_t *tcp); 818 static void tcp_ack_timer(void *arg); 819 static mblk_t *tcp_ack_mp(tcp_t *tcp); 820 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 821 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 822 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 823 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 824 uint32_t ack, int ctl); 825 static int setmaxps(queue_t *q, int maxpsz); 826 static void tcp_set_rto(tcp_t *, time_t); 827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 828 boolean_t, boolean_t); 829 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 830 boolean_t ipsec_mctl); 831 static int tcp_build_hdrs(tcp_t *); 832 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 833 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 834 tcph_t *tcph); 835 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 836 static mblk_t *tcp_mdt_info_mp(mblk_t *); 837 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 838 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 839 const boolean_t, const uint32_t, const uint32_t, 840 const uint32_t, const uint32_t, tcp_stack_t *); 841 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 842 const uint_t, const uint_t, boolean_t *); 843 static mblk_t *tcp_lso_info_mp(mblk_t *); 844 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 845 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 846 extern mblk_t *tcp_timermp_alloc(int); 847 extern void tcp_timermp_free(tcp_t *); 848 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 849 static void tcp_stop_lingering(tcp_t *tcp); 850 static void tcp_close_linger_timeout(void *arg); 851 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 852 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 853 static void tcp_stack_fini(netstackid_t stackid, void *arg); 854 static void *tcp_g_kstat_init(tcp_g_stat_t *); 855 static void tcp_g_kstat_fini(kstat_t *); 856 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 857 static void tcp_kstat_fini(netstackid_t, kstat_t *); 858 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 859 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 860 static int tcp_kstat_update(kstat_t *kp, int rw); 861 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 862 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 863 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 864 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 865 tcph_t *tcph, mblk_t *idmp); 866 static int tcp_squeue_switch(int); 867 868 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 869 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 870 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 871 static int tcp_tpi_close(queue_t *, int); 872 static int tcp_tpi_close_accept(queue_t *); 873 874 static void tcp_squeue_add(squeue_t *); 875 static boolean_t tcp_zcopy_check(tcp_t *); 876 static void tcp_zcopy_notify(tcp_t *); 877 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 878 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 879 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 880 881 extern void tcp_kssl_input(tcp_t *, mblk_t *); 882 883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 885 886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 887 sock_upper_handle_t, cred_t *); 888 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 891 boolean_t); 892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 893 cred_t *, pid_t); 894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 895 boolean_t); 896 static int tcp_do_unbind(conn_t *); 897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 898 boolean_t); 899 900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 901 902 /* 903 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 904 * 905 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 906 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 907 * (defined in tcp.h) needs to be filled in and passed into the kernel 908 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 909 * structure contains the four-tuple of a TCP connection and a range of TCP 910 * states (specified by ac_start and ac_end). The use of wildcard addresses 911 * and ports is allowed. Connections with a matching four tuple and a state 912 * within the specified range will be aborted. The valid states for the 913 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 914 * inclusive. 915 * 916 * An application which has its connection aborted by this ioctl will receive 917 * an error that is dependent on the connection state at the time of the abort. 918 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 919 * though a RST packet has been received. If the connection state is equal to 920 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 921 * and all resources associated with the connection will be freed. 922 */ 923 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 924 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 925 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 926 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 927 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 928 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 929 boolean_t, tcp_stack_t *); 930 931 static struct module_info tcp_rinfo = { 932 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 933 }; 934 935 static struct module_info tcp_winfo = { 936 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 937 }; 938 939 /* 940 * Entry points for TCP as a device. The normal case which supports 941 * the TCP functionality. 942 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 943 */ 944 struct qinit tcp_rinitv4 = { 945 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 946 }; 947 948 struct qinit tcp_rinitv6 = { 949 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 950 }; 951 952 struct qinit tcp_winit = { 953 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 954 }; 955 956 /* Initial entry point for TCP in socket mode. */ 957 struct qinit tcp_sock_winit = { 958 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 959 }; 960 961 /* TCP entry point during fallback */ 962 struct qinit tcp_fallback_sock_winit = { 963 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 964 }; 965 966 /* 967 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 968 * an accept. Avoid allocating data structures since eager has already 969 * been created. 970 */ 971 struct qinit tcp_acceptor_rinit = { 972 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 973 }; 974 975 struct qinit tcp_acceptor_winit = { 976 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 977 }; 978 979 /* For AF_INET aka /dev/tcp */ 980 struct streamtab tcpinfov4 = { 981 &tcp_rinitv4, &tcp_winit 982 }; 983 984 /* For AF_INET6 aka /dev/tcp6 */ 985 struct streamtab tcpinfov6 = { 986 &tcp_rinitv6, &tcp_winit 987 }; 988 989 sock_downcalls_t sock_tcp_downcalls; 990 991 /* 992 * Have to ensure that tcp_g_q_close is not done by an 993 * interrupt thread. 994 */ 995 static taskq_t *tcp_taskq; 996 997 /* Setable only in /etc/system. Move to ndd? */ 998 boolean_t tcp_icmp_source_quench = B_FALSE; 999 1000 /* 1001 * Following assumes TPI alignment requirements stay along 32 bit 1002 * boundaries 1003 */ 1004 #define ROUNDUP32(x) \ 1005 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1006 1007 /* Template for response to info request. */ 1008 static struct T_info_ack tcp_g_t_info_ack = { 1009 T_INFO_ACK, /* PRIM_type */ 1010 0, /* TSDU_size */ 1011 T_INFINITE, /* ETSDU_size */ 1012 T_INVALID, /* CDATA_size */ 1013 T_INVALID, /* DDATA_size */ 1014 sizeof (sin_t), /* ADDR_size */ 1015 0, /* OPT_size - not initialized here */ 1016 TIDUSZ, /* TIDU_size */ 1017 T_COTS_ORD, /* SERV_type */ 1018 TCPS_IDLE, /* CURRENT_state */ 1019 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1020 }; 1021 1022 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1023 T_INFO_ACK, /* PRIM_type */ 1024 0, /* TSDU_size */ 1025 T_INFINITE, /* ETSDU_size */ 1026 T_INVALID, /* CDATA_size */ 1027 T_INVALID, /* DDATA_size */ 1028 sizeof (sin6_t), /* ADDR_size */ 1029 0, /* OPT_size - not initialized here */ 1030 TIDUSZ, /* TIDU_size */ 1031 T_COTS_ORD, /* SERV_type */ 1032 TCPS_IDLE, /* CURRENT_state */ 1033 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1034 }; 1035 1036 #define MS 1L 1037 #define SECONDS (1000 * MS) 1038 #define MINUTES (60 * SECONDS) 1039 #define HOURS (60 * MINUTES) 1040 #define DAYS (24 * HOURS) 1041 1042 #define PARAM_MAX (~(uint32_t)0) 1043 1044 /* Max size IP datagram is 64k - 1 */ 1045 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1046 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1047 /* Max of the above */ 1048 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1049 1050 /* Largest TCP port number */ 1051 #define TCP_MAX_PORT (64 * 1024 - 1) 1052 1053 /* 1054 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1055 * layer header. It has to be a multiple of 4. 1056 */ 1057 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1058 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1059 1060 /* 1061 * All of these are alterable, within the min/max values given, at run time. 1062 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1063 * per the TCP spec. 1064 */ 1065 /* BEGIN CSTYLED */ 1066 static tcpparam_t lcl_tcp_param_arr[] = { 1067 /*min max value name */ 1068 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1069 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1070 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1071 { 1, 1024, 1, "tcp_conn_req_min" }, 1072 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1073 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1074 { 0, 10, 0, "tcp_debug" }, 1075 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1076 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1077 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1078 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1079 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1080 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1081 { 1, 255, 64, "tcp_ipv4_ttl"}, 1082 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1083 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1084 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1085 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1086 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1087 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1088 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1089 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1090 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1091 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1092 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1093 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1094 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1095 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1096 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1097 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1098 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1099 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1100 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1101 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1102 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1103 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1104 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1105 /* 1106 * Question: What default value should I set for tcp_strong_iss? 1107 */ 1108 { 0, 2, 1, "tcp_strong_iss"}, 1109 { 0, 65536, 20, "tcp_rtt_updates"}, 1110 { 0, 1, 1, "tcp_wscale_always"}, 1111 { 0, 1, 0, "tcp_tstamp_always"}, 1112 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1113 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1114 { 0, 16, 2, "tcp_deferred_acks_max"}, 1115 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1116 { 1, 4, 4, "tcp_slow_start_initial"}, 1117 { 0, 2, 2, "tcp_sack_permitted"}, 1118 { 0, 1, 1, "tcp_compression_enabled"}, 1119 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1120 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1121 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1122 { 0, 1, 0, "tcp_rev_src_routes"}, 1123 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1124 { 0, 16, 8, "tcp_local_dacks_max"}, 1125 { 0, 2, 1, "tcp_ecn_permitted"}, 1126 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1127 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1128 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1129 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1130 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1131 }; 1132 /* END CSTYLED */ 1133 1134 /* 1135 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1136 * each header fragment in the header buffer. Each parameter value has 1137 * to be a multiple of 4 (32-bit aligned). 1138 */ 1139 static tcpparam_t lcl_tcp_mdt_head_param = 1140 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1141 static tcpparam_t lcl_tcp_mdt_tail_param = 1142 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1143 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1144 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1145 1146 /* 1147 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1148 * the maximum number of payload buffers associated per Multidata. 1149 */ 1150 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1151 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1152 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1153 1154 /* Round up the value to the nearest mss. */ 1155 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1156 1157 /* 1158 * Set ECN capable transport (ECT) code point in IP header. 1159 * 1160 * Note that there are 2 ECT code points '01' and '10', which are called 1161 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1162 * point ECT(0) for TCP as described in RFC 2481. 1163 */ 1164 #define SET_ECT(tcp, iph) \ 1165 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1166 /* We need to clear the code point first. */ \ 1167 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1168 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1169 } else { \ 1170 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1171 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1172 } 1173 1174 /* 1175 * The format argument to pass to tcp_display(). 1176 * DISP_PORT_ONLY means that the returned string has only port info. 1177 * DISP_ADDR_AND_PORT means that the returned string also contains the 1178 * remote and local IP address. 1179 */ 1180 #define DISP_PORT_ONLY 1 1181 #define DISP_ADDR_AND_PORT 2 1182 1183 #define IS_VMLOANED_MBLK(mp) \ 1184 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1185 1186 1187 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1188 boolean_t tcp_mdt_chain = B_TRUE; 1189 1190 /* 1191 * MDT threshold in the form of effective send MSS multiplier; we take 1192 * the MDT path if the amount of unsent data exceeds the threshold value 1193 * (default threshold is 1*SMSS). 1194 */ 1195 uint_t tcp_mdt_smss_threshold = 1; 1196 1197 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1198 1199 /* 1200 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1201 * tunable settable via NDD. Otherwise, the per-connection behavior is 1202 * determined dynamically during tcp_adapt_ire(), which is the default. 1203 */ 1204 boolean_t tcp_static_maxpsz = B_FALSE; 1205 1206 /* Setable in /etc/system */ 1207 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1208 uint32_t tcp_random_anon_port = 1; 1209 1210 /* 1211 * To reach to an eager in Q0 which can be dropped due to an incoming 1212 * new SYN request when Q0 is full, a new doubly linked list is 1213 * introduced. This list allows to select an eager from Q0 in O(1) time. 1214 * This is needed to avoid spending too much time walking through the 1215 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1216 * this new list has to be a member of Q0. 1217 * This list is headed by listener's tcp_t. When the list is empty, 1218 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1219 * of listener's tcp_t point to listener's tcp_t itself. 1220 * 1221 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1222 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1223 * These macros do not affect the eager's membership to Q0. 1224 */ 1225 1226 1227 #define MAKE_DROPPABLE(listener, eager) \ 1228 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1229 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1230 = (eager); \ 1231 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1232 (eager)->tcp_eager_next_drop_q0 = \ 1233 (listener)->tcp_eager_next_drop_q0; \ 1234 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1235 } 1236 1237 #define MAKE_UNDROPPABLE(eager) \ 1238 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1239 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1240 = (eager)->tcp_eager_prev_drop_q0; \ 1241 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1242 = (eager)->tcp_eager_next_drop_q0; \ 1243 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1244 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1245 } 1246 1247 /* 1248 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1249 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1250 * data, TCP will not respond with an ACK. RFC 793 requires that 1251 * TCP responds with an ACK for such a bogus ACK. By not following 1252 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1253 * an attacker successfully spoofs an acceptable segment to our 1254 * peer; or when our peer is "confused." 1255 */ 1256 uint32_t tcp_drop_ack_unsent_cnt = 10; 1257 1258 /* 1259 * Hook functions to enable cluster networking 1260 * On non-clustered systems these vectors must always be NULL. 1261 */ 1262 1263 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1264 sa_family_t addr_family, uint8_t *laddrp, 1265 in_port_t lport, void *args) = NULL; 1266 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1267 sa_family_t addr_family, uint8_t *laddrp, 1268 in_port_t lport, void *args) = NULL; 1269 1270 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1271 boolean_t is_outgoing, 1272 sa_family_t addr_family, 1273 uint8_t *laddrp, in_port_t lport, 1274 uint8_t *faddrp, in_port_t fport, 1275 void *args) = NULL; 1276 1277 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1278 sa_family_t addr_family, uint8_t *laddrp, 1279 in_port_t lport, uint8_t *faddrp, 1280 in_port_t fport, void *args) = NULL; 1281 1282 /* 1283 * The following are defined in ip.c 1284 */ 1285 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1286 sa_family_t addr_family, uint8_t *laddrp, 1287 void *args); 1288 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1289 sa_family_t addr_family, uint8_t *laddrp, 1290 uint8_t *faddrp, void *args); 1291 1292 1293 /* 1294 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1295 */ 1296 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1297 (err) = 0; \ 1298 if (cl_inet_connect2 != NULL) { \ 1299 /* \ 1300 * Running in cluster mode - register active connection \ 1301 * information \ 1302 */ \ 1303 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1304 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1305 (err) = (*cl_inet_connect2)( \ 1306 (connp)->conn_netstack->netstack_stackid,\ 1307 IPPROTO_TCP, is_outgoing, AF_INET, \ 1308 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1309 (in_port_t)(tcp)->tcp_lport, \ 1310 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1311 (in_port_t)(tcp)->tcp_fport, NULL); \ 1312 } \ 1313 } else { \ 1314 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1315 &(tcp)->tcp_ip6h->ip6_src)) { \ 1316 (err) = (*cl_inet_connect2)( \ 1317 (connp)->conn_netstack->netstack_stackid,\ 1318 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1319 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1320 (in_port_t)(tcp)->tcp_lport, \ 1321 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1322 (in_port_t)(tcp)->tcp_fport, NULL); \ 1323 } \ 1324 } \ 1325 } \ 1326 } 1327 1328 #define CL_INET_DISCONNECT(connp, tcp) { \ 1329 if (cl_inet_disconnect != NULL) { \ 1330 /* \ 1331 * Running in cluster mode - deregister active \ 1332 * connection information \ 1333 */ \ 1334 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1335 if ((tcp)->tcp_ip_src != 0) { \ 1336 (*cl_inet_disconnect)( \ 1337 (connp)->conn_netstack->netstack_stackid,\ 1338 IPPROTO_TCP, AF_INET, \ 1339 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1340 (in_port_t)(tcp)->tcp_lport, \ 1341 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1342 (in_port_t)(tcp)->tcp_fport, NULL); \ 1343 } \ 1344 } else { \ 1345 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1346 &(tcp)->tcp_ip_src_v6)) { \ 1347 (*cl_inet_disconnect)( \ 1348 (connp)->conn_netstack->netstack_stackid,\ 1349 IPPROTO_TCP, AF_INET6, \ 1350 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1351 (in_port_t)(tcp)->tcp_lport, \ 1352 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1353 (in_port_t)(tcp)->tcp_fport, NULL); \ 1354 } \ 1355 } \ 1356 } \ 1357 } 1358 1359 /* 1360 * Cluster networking hook for traversing current connection list. 1361 * This routine is used to extract the current list of live connections 1362 * which must continue to to be dispatched to this node. 1363 */ 1364 int cl_tcp_walk_list(netstackid_t stack_id, 1365 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1366 1367 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1368 void *arg, tcp_stack_t *tcps); 1369 1370 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1371 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1372 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1373 ip6_t *, ip6h, int, 0); 1374 1375 static void 1376 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1377 { 1378 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1379 1380 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1381 conn_t *connp = tcp->tcp_connp; 1382 struct sock_proto_props sopp; 1383 1384 /* 1385 * only increase rcvthresh upto default_threshold 1386 */ 1387 if (new_rcvthresh > default_threshold) 1388 new_rcvthresh = default_threshold; 1389 1390 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1391 sopp.sopp_rcvthresh = new_rcvthresh; 1392 1393 (*connp->conn_upcalls->su_set_proto_props) 1394 (connp->conn_upper_handle, &sopp); 1395 } 1396 } 1397 /* 1398 * Figure out the value of window scale opton. Note that the rwnd is 1399 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1400 * We cannot find the scale value and then do a round up of tcp_rwnd 1401 * because the scale value may not be correct after that. 1402 * 1403 * Set the compiler flag to make this function inline. 1404 */ 1405 static void 1406 tcp_set_ws_value(tcp_t *tcp) 1407 { 1408 int i; 1409 uint32_t rwnd = tcp->tcp_rwnd; 1410 1411 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1412 i++, rwnd >>= 1) 1413 ; 1414 tcp->tcp_rcv_ws = i; 1415 } 1416 1417 /* 1418 * Remove a connection from the list of detached TIME_WAIT connections. 1419 * It returns B_FALSE if it can't remove the connection from the list 1420 * as the connection has already been removed from the list due to an 1421 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1422 */ 1423 static boolean_t 1424 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1425 { 1426 boolean_t locked = B_FALSE; 1427 1428 if (tcp_time_wait == NULL) { 1429 tcp_time_wait = *((tcp_squeue_priv_t **) 1430 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1431 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1432 locked = B_TRUE; 1433 } else { 1434 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1435 } 1436 1437 if (tcp->tcp_time_wait_expire == 0) { 1438 ASSERT(tcp->tcp_time_wait_next == NULL); 1439 ASSERT(tcp->tcp_time_wait_prev == NULL); 1440 if (locked) 1441 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1442 return (B_FALSE); 1443 } 1444 ASSERT(TCP_IS_DETACHED(tcp)); 1445 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1446 1447 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1448 ASSERT(tcp->tcp_time_wait_prev == NULL); 1449 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1450 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1451 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1452 NULL; 1453 } else { 1454 tcp_time_wait->tcp_time_wait_tail = NULL; 1455 } 1456 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1457 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1458 ASSERT(tcp->tcp_time_wait_next == NULL); 1459 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1460 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1461 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1462 } else { 1463 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1464 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1465 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1466 tcp->tcp_time_wait_next; 1467 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1468 tcp->tcp_time_wait_prev; 1469 } 1470 tcp->tcp_time_wait_next = NULL; 1471 tcp->tcp_time_wait_prev = NULL; 1472 tcp->tcp_time_wait_expire = 0; 1473 1474 if (locked) 1475 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1476 return (B_TRUE); 1477 } 1478 1479 /* 1480 * Add a connection to the list of detached TIME_WAIT connections 1481 * and set its time to expire. 1482 */ 1483 static void 1484 tcp_time_wait_append(tcp_t *tcp) 1485 { 1486 tcp_stack_t *tcps = tcp->tcp_tcps; 1487 tcp_squeue_priv_t *tcp_time_wait = 1488 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1489 SQPRIVATE_TCP)); 1490 1491 tcp_timers_stop(tcp); 1492 1493 /* Freed above */ 1494 ASSERT(tcp->tcp_timer_tid == 0); 1495 ASSERT(tcp->tcp_ack_tid == 0); 1496 1497 /* must have happened at the time of detaching the tcp */ 1498 ASSERT(tcp->tcp_ptpahn == NULL); 1499 ASSERT(tcp->tcp_flow_stopped == 0); 1500 ASSERT(tcp->tcp_time_wait_next == NULL); 1501 ASSERT(tcp->tcp_time_wait_prev == NULL); 1502 ASSERT(tcp->tcp_time_wait_expire == NULL); 1503 ASSERT(tcp->tcp_listener == NULL); 1504 1505 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1506 /* 1507 * The value computed below in tcp->tcp_time_wait_expire may 1508 * appear negative or wrap around. That is ok since our 1509 * interest is only in the difference between the current lbolt 1510 * value and tcp->tcp_time_wait_expire. But the value should not 1511 * be zero, since it means the tcp is not in the TIME_WAIT list. 1512 * The corresponding comparison in tcp_time_wait_collector() uses 1513 * modular arithmetic. 1514 */ 1515 tcp->tcp_time_wait_expire += 1516 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1517 if (tcp->tcp_time_wait_expire == 0) 1518 tcp->tcp_time_wait_expire = 1; 1519 1520 ASSERT(TCP_IS_DETACHED(tcp)); 1521 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1522 ASSERT(tcp->tcp_time_wait_next == NULL); 1523 ASSERT(tcp->tcp_time_wait_prev == NULL); 1524 TCP_DBGSTAT(tcps, tcp_time_wait); 1525 1526 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1527 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1528 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1529 tcp_time_wait->tcp_time_wait_head = tcp; 1530 } else { 1531 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1532 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1533 TCPS_TIME_WAIT); 1534 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1535 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1536 } 1537 tcp_time_wait->tcp_time_wait_tail = tcp; 1538 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1539 } 1540 1541 /* ARGSUSED */ 1542 void 1543 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1544 { 1545 conn_t *connp = (conn_t *)arg; 1546 tcp_t *tcp = connp->conn_tcp; 1547 tcp_stack_t *tcps = tcp->tcp_tcps; 1548 1549 ASSERT(tcp != NULL); 1550 if (tcp->tcp_state == TCPS_CLOSED) { 1551 return; 1552 } 1553 1554 ASSERT((tcp->tcp_family == AF_INET && 1555 tcp->tcp_ipversion == IPV4_VERSION) || 1556 (tcp->tcp_family == AF_INET6 && 1557 (tcp->tcp_ipversion == IPV4_VERSION || 1558 tcp->tcp_ipversion == IPV6_VERSION))); 1559 ASSERT(!tcp->tcp_listener); 1560 1561 TCP_STAT(tcps, tcp_time_wait_reap); 1562 ASSERT(TCP_IS_DETACHED(tcp)); 1563 1564 /* 1565 * Because they have no upstream client to rebind or tcp_close() 1566 * them later, we axe the connection here and now. 1567 */ 1568 tcp_close_detached(tcp); 1569 } 1570 1571 /* 1572 * Remove cached/latched IPsec references. 1573 */ 1574 void 1575 tcp_ipsec_cleanup(tcp_t *tcp) 1576 { 1577 conn_t *connp = tcp->tcp_connp; 1578 1579 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1580 1581 if (connp->conn_latch != NULL) { 1582 IPLATCH_REFRELE(connp->conn_latch, 1583 connp->conn_netstack); 1584 connp->conn_latch = NULL; 1585 } 1586 if (connp->conn_policy != NULL) { 1587 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1588 connp->conn_policy = NULL; 1589 } 1590 } 1591 1592 /* 1593 * Cleaup before placing on free list. 1594 * Disassociate from the netstack/tcp_stack_t since the freelist 1595 * is per squeue and not per netstack. 1596 */ 1597 void 1598 tcp_cleanup(tcp_t *tcp) 1599 { 1600 mblk_t *mp; 1601 char *tcp_iphc; 1602 int tcp_iphc_len; 1603 int tcp_hdr_grown; 1604 tcp_sack_info_t *tcp_sack_info; 1605 conn_t *connp = tcp->tcp_connp; 1606 tcp_stack_t *tcps = tcp->tcp_tcps; 1607 netstack_t *ns = tcps->tcps_netstack; 1608 mblk_t *tcp_rsrv_mp; 1609 1610 tcp_bind_hash_remove(tcp); 1611 1612 /* Cleanup that which needs the netstack first */ 1613 tcp_ipsec_cleanup(tcp); 1614 1615 tcp_free(tcp); 1616 1617 /* Release any SSL context */ 1618 if (tcp->tcp_kssl_ent != NULL) { 1619 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1620 tcp->tcp_kssl_ent = NULL; 1621 } 1622 1623 if (tcp->tcp_kssl_ctx != NULL) { 1624 kssl_release_ctx(tcp->tcp_kssl_ctx); 1625 tcp->tcp_kssl_ctx = NULL; 1626 } 1627 tcp->tcp_kssl_pending = B_FALSE; 1628 1629 conn_delete_ire(connp, NULL); 1630 1631 /* 1632 * Since we will bzero the entire structure, we need to 1633 * remove it and reinsert it in global hash list. We 1634 * know the walkers can't get to this conn because we 1635 * had set CONDEMNED flag earlier and checked reference 1636 * under conn_lock so walker won't pick it and when we 1637 * go the ipcl_globalhash_remove() below, no walker 1638 * can get to it. 1639 */ 1640 ipcl_globalhash_remove(connp); 1641 1642 /* 1643 * Now it is safe to decrement the reference counts. 1644 * This might be the last reference on the netstack and TCPS 1645 * in which case it will cause the tcp_g_q_close and 1646 * the freeing of the IP Instance. 1647 */ 1648 connp->conn_netstack = NULL; 1649 netstack_rele(ns); 1650 ASSERT(tcps != NULL); 1651 tcp->tcp_tcps = NULL; 1652 TCPS_REFRELE(tcps); 1653 1654 /* Save some state */ 1655 mp = tcp->tcp_timercache; 1656 1657 tcp_sack_info = tcp->tcp_sack_info; 1658 tcp_iphc = tcp->tcp_iphc; 1659 tcp_iphc_len = tcp->tcp_iphc_len; 1660 tcp_hdr_grown = tcp->tcp_hdr_grown; 1661 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1662 1663 if (connp->conn_cred != NULL) { 1664 crfree(connp->conn_cred); 1665 connp->conn_cred = NULL; 1666 } 1667 if (connp->conn_effective_cred != NULL) { 1668 crfree(connp->conn_effective_cred); 1669 connp->conn_effective_cred = NULL; 1670 } 1671 ipcl_conn_cleanup(connp); 1672 connp->conn_flags = IPCL_TCPCONN; 1673 bzero(tcp, sizeof (tcp_t)); 1674 1675 /* restore the state */ 1676 tcp->tcp_timercache = mp; 1677 1678 tcp->tcp_sack_info = tcp_sack_info; 1679 tcp->tcp_iphc = tcp_iphc; 1680 tcp->tcp_iphc_len = tcp_iphc_len; 1681 tcp->tcp_hdr_grown = tcp_hdr_grown; 1682 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1683 1684 tcp->tcp_connp = connp; 1685 1686 ASSERT(connp->conn_tcp == tcp); 1687 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1688 connp->conn_state_flags = CONN_INCIPIENT; 1689 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1690 ASSERT(connp->conn_ref == 1); 1691 } 1692 1693 /* 1694 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1695 * is done forwards from the head. 1696 * This walks all stack instances since 1697 * tcp_time_wait remains global across all stacks. 1698 */ 1699 /* ARGSUSED */ 1700 void 1701 tcp_time_wait_collector(void *arg) 1702 { 1703 tcp_t *tcp; 1704 clock_t now; 1705 mblk_t *mp; 1706 conn_t *connp; 1707 kmutex_t *lock; 1708 boolean_t removed; 1709 1710 squeue_t *sqp = (squeue_t *)arg; 1711 tcp_squeue_priv_t *tcp_time_wait = 1712 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1713 1714 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1715 tcp_time_wait->tcp_time_wait_tid = 0; 1716 1717 if (tcp_time_wait->tcp_free_list != NULL && 1718 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1719 TCP_G_STAT(tcp_freelist_cleanup); 1720 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1721 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1722 tcp->tcp_time_wait_next = NULL; 1723 tcp_time_wait->tcp_free_list_cnt--; 1724 ASSERT(tcp->tcp_tcps == NULL); 1725 CONN_DEC_REF(tcp->tcp_connp); 1726 } 1727 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1728 } 1729 1730 /* 1731 * In order to reap time waits reliably, we should use a 1732 * source of time that is not adjustable by the user -- hence 1733 * the call to ddi_get_lbolt(). 1734 */ 1735 now = ddi_get_lbolt(); 1736 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1737 /* 1738 * Compare times using modular arithmetic, since 1739 * lbolt can wrapover. 1740 */ 1741 if ((now - tcp->tcp_time_wait_expire) < 0) { 1742 break; 1743 } 1744 1745 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1746 ASSERT(removed); 1747 1748 connp = tcp->tcp_connp; 1749 ASSERT(connp->conn_fanout != NULL); 1750 lock = &connp->conn_fanout->connf_lock; 1751 /* 1752 * This is essentially a TW reclaim fast path optimization for 1753 * performance where the timewait collector checks under the 1754 * fanout lock (so that no one else can get access to the 1755 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1756 * the classifier hash list. If ref count is indeed 2, we can 1757 * just remove the conn under the fanout lock and avoid 1758 * cleaning up the conn under the squeue, provided that 1759 * clustering callbacks are not enabled. If clustering is 1760 * enabled, we need to make the clustering callback before 1761 * setting the CONDEMNED flag and after dropping all locks and 1762 * so we forego this optimization and fall back to the slow 1763 * path. Also please see the comments in tcp_closei_local 1764 * regarding the refcnt logic. 1765 * 1766 * Since we are holding the tcp_time_wait_lock, its better 1767 * not to block on the fanout_lock because other connections 1768 * can't add themselves to time_wait list. So we do a 1769 * tryenter instead of mutex_enter. 1770 */ 1771 if (mutex_tryenter(lock)) { 1772 mutex_enter(&connp->conn_lock); 1773 if ((connp->conn_ref == 2) && 1774 (cl_inet_disconnect == NULL)) { 1775 ipcl_hash_remove_locked(connp, 1776 connp->conn_fanout); 1777 /* 1778 * Set the CONDEMNED flag now itself so that 1779 * the refcnt cannot increase due to any 1780 * walker. But we have still not cleaned up 1781 * conn_ire_cache. This is still ok since 1782 * we are going to clean it up in tcp_cleanup 1783 * immediately and any interface unplumb 1784 * thread will wait till the ire is blown away 1785 */ 1786 connp->conn_state_flags |= CONN_CONDEMNED; 1787 mutex_exit(lock); 1788 mutex_exit(&connp->conn_lock); 1789 if (tcp_time_wait->tcp_free_list_cnt < 1790 tcp_free_list_max_cnt) { 1791 /* Add to head of tcp_free_list */ 1792 mutex_exit( 1793 &tcp_time_wait->tcp_time_wait_lock); 1794 tcp_cleanup(tcp); 1795 ASSERT(connp->conn_latch == NULL); 1796 ASSERT(connp->conn_policy == NULL); 1797 ASSERT(tcp->tcp_tcps == NULL); 1798 ASSERT(connp->conn_netstack == NULL); 1799 1800 mutex_enter( 1801 &tcp_time_wait->tcp_time_wait_lock); 1802 tcp->tcp_time_wait_next = 1803 tcp_time_wait->tcp_free_list; 1804 tcp_time_wait->tcp_free_list = tcp; 1805 tcp_time_wait->tcp_free_list_cnt++; 1806 continue; 1807 } else { 1808 /* Do not add to tcp_free_list */ 1809 mutex_exit( 1810 &tcp_time_wait->tcp_time_wait_lock); 1811 tcp_bind_hash_remove(tcp); 1812 conn_delete_ire(tcp->tcp_connp, NULL); 1813 tcp_ipsec_cleanup(tcp); 1814 CONN_DEC_REF(tcp->tcp_connp); 1815 } 1816 } else { 1817 CONN_INC_REF_LOCKED(connp); 1818 mutex_exit(lock); 1819 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1820 mutex_exit(&connp->conn_lock); 1821 /* 1822 * We can reuse the closemp here since conn has 1823 * detached (otherwise we wouldn't even be in 1824 * time_wait list). tcp_closemp_used can safely 1825 * be changed without taking a lock as no other 1826 * thread can concurrently access it at this 1827 * point in the connection lifecycle. 1828 */ 1829 1830 if (tcp->tcp_closemp.b_prev == NULL) 1831 tcp->tcp_closemp_used = B_TRUE; 1832 else 1833 cmn_err(CE_PANIC, 1834 "tcp_timewait_collector: " 1835 "concurrent use of tcp_closemp: " 1836 "connp %p tcp %p\n", (void *)connp, 1837 (void *)tcp); 1838 1839 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1840 mp = &tcp->tcp_closemp; 1841 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1842 tcp_timewait_output, connp, 1843 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1844 } 1845 } else { 1846 mutex_enter(&connp->conn_lock); 1847 CONN_INC_REF_LOCKED(connp); 1848 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1849 mutex_exit(&connp->conn_lock); 1850 /* 1851 * We can reuse the closemp here since conn has 1852 * detached (otherwise we wouldn't even be in 1853 * time_wait list). tcp_closemp_used can safely 1854 * be changed without taking a lock as no other 1855 * thread can concurrently access it at this 1856 * point in the connection lifecycle. 1857 */ 1858 1859 if (tcp->tcp_closemp.b_prev == NULL) 1860 tcp->tcp_closemp_used = B_TRUE; 1861 else 1862 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1863 "concurrent use of tcp_closemp: " 1864 "connp %p tcp %p\n", (void *)connp, 1865 (void *)tcp); 1866 1867 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1868 mp = &tcp->tcp_closemp; 1869 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1870 tcp_timewait_output, connp, 1871 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1872 } 1873 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1874 } 1875 1876 if (tcp_time_wait->tcp_free_list != NULL) 1877 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1878 1879 tcp_time_wait->tcp_time_wait_tid = 1880 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1881 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1882 CALLOUT_FLAG_ROUNDUP); 1883 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1884 } 1885 1886 /* 1887 * Reply to a clients T_CONN_RES TPI message. This function 1888 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1889 * on the acceptor STREAM and processed in tcp_wput_accept(). 1890 * Read the block comment on top of tcp_conn_request(). 1891 */ 1892 static void 1893 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1894 { 1895 tcp_t *acceptor; 1896 tcp_t *eager; 1897 tcp_t *tcp; 1898 struct T_conn_res *tcr; 1899 t_uscalar_t acceptor_id; 1900 t_scalar_t seqnum; 1901 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1902 struct tcp_options *tcpopt; 1903 mblk_t *ok_mp; 1904 mblk_t *mp1; 1905 tcp_stack_t *tcps = listener->tcp_tcps; 1906 int error; 1907 1908 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1909 tcp_err_ack(listener, mp, TPROTO, 0); 1910 return; 1911 } 1912 tcr = (struct T_conn_res *)mp->b_rptr; 1913 1914 /* 1915 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1916 * read side queue of the streams device underneath us i.e. the 1917 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1918 * look it up in the queue_hash. Under LP64 it sends down the 1919 * minor_t of the accepting endpoint. 1920 * 1921 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1922 * fanout hash lock is held. 1923 * This prevents any thread from entering the acceptor queue from 1924 * below (since it has not been hard bound yet i.e. any inbound 1925 * packets will arrive on the listener or default tcp queue and 1926 * go through tcp_lookup). 1927 * The CONN_INC_REF will prevent the acceptor from closing. 1928 * 1929 * XXX It is still possible for a tli application to send down data 1930 * on the accepting stream while another thread calls t_accept. 1931 * This should not be a problem for well-behaved applications since 1932 * the T_OK_ACK is sent after the queue swapping is completed. 1933 * 1934 * If the accepting fd is the same as the listening fd, avoid 1935 * queue hash lookup since that will return an eager listener in a 1936 * already established state. 1937 */ 1938 acceptor_id = tcr->ACCEPTOR_id; 1939 mutex_enter(&listener->tcp_eager_lock); 1940 if (listener->tcp_acceptor_id == acceptor_id) { 1941 eager = listener->tcp_eager_next_q; 1942 /* only count how many T_CONN_INDs so don't count q0 */ 1943 if ((listener->tcp_conn_req_cnt_q != 1) || 1944 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1945 mutex_exit(&listener->tcp_eager_lock); 1946 tcp_err_ack(listener, mp, TBADF, 0); 1947 return; 1948 } 1949 if (listener->tcp_conn_req_cnt_q0 != 0) { 1950 /* Throw away all the eagers on q0. */ 1951 tcp_eager_cleanup(listener, 1); 1952 } 1953 if (listener->tcp_syn_defense) { 1954 listener->tcp_syn_defense = B_FALSE; 1955 if (listener->tcp_ip_addr_cache != NULL) { 1956 kmem_free(listener->tcp_ip_addr_cache, 1957 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1958 listener->tcp_ip_addr_cache = NULL; 1959 } 1960 } 1961 /* 1962 * Transfer tcp_conn_req_max to the eager so that when 1963 * a disconnect occurs we can revert the endpoint to the 1964 * listen state. 1965 */ 1966 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1967 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1968 /* 1969 * Get a reference on the acceptor just like the 1970 * tcp_acceptor_hash_lookup below. 1971 */ 1972 acceptor = listener; 1973 CONN_INC_REF(acceptor->tcp_connp); 1974 } else { 1975 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1976 if (acceptor == NULL) { 1977 if (listener->tcp_debug) { 1978 (void) strlog(TCP_MOD_ID, 0, 1, 1979 SL_ERROR|SL_TRACE, 1980 "tcp_accept: did not find acceptor 0x%x\n", 1981 acceptor_id); 1982 } 1983 mutex_exit(&listener->tcp_eager_lock); 1984 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1985 return; 1986 } 1987 /* 1988 * Verify acceptor state. The acceptable states for an acceptor 1989 * include TCPS_IDLE and TCPS_BOUND. 1990 */ 1991 switch (acceptor->tcp_state) { 1992 case TCPS_IDLE: 1993 /* FALLTHRU */ 1994 case TCPS_BOUND: 1995 break; 1996 default: 1997 CONN_DEC_REF(acceptor->tcp_connp); 1998 mutex_exit(&listener->tcp_eager_lock); 1999 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2000 return; 2001 } 2002 } 2003 2004 /* The listener must be in TCPS_LISTEN */ 2005 if (listener->tcp_state != TCPS_LISTEN) { 2006 CONN_DEC_REF(acceptor->tcp_connp); 2007 mutex_exit(&listener->tcp_eager_lock); 2008 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2009 return; 2010 } 2011 2012 /* 2013 * Rendezvous with an eager connection request packet hanging off 2014 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2015 * tcp structure when the connection packet arrived in 2016 * tcp_conn_request(). 2017 */ 2018 seqnum = tcr->SEQ_number; 2019 eager = listener; 2020 do { 2021 eager = eager->tcp_eager_next_q; 2022 if (eager == NULL) { 2023 CONN_DEC_REF(acceptor->tcp_connp); 2024 mutex_exit(&listener->tcp_eager_lock); 2025 tcp_err_ack(listener, mp, TBADSEQ, 0); 2026 return; 2027 } 2028 } while (eager->tcp_conn_req_seqnum != seqnum); 2029 mutex_exit(&listener->tcp_eager_lock); 2030 2031 /* 2032 * At this point, both acceptor and listener have 2 ref 2033 * that they begin with. Acceptor has one additional ref 2034 * we placed in lookup while listener has 3 additional 2035 * ref for being behind the squeue (tcp_accept() is 2036 * done on listener's squeue); being in classifier hash; 2037 * and eager's ref on listener. 2038 */ 2039 ASSERT(listener->tcp_connp->conn_ref >= 5); 2040 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2041 2042 /* 2043 * The eager at this point is set in its own squeue and 2044 * could easily have been killed (tcp_accept_finish will 2045 * deal with that) because of a TH_RST so we can only 2046 * ASSERT for a single ref. 2047 */ 2048 ASSERT(eager->tcp_connp->conn_ref >= 1); 2049 2050 /* Pre allocate the stroptions mblk also */ 2051 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2052 sizeof (struct T_conn_res)), BPRI_HI); 2053 if (opt_mp == NULL) { 2054 CONN_DEC_REF(acceptor->tcp_connp); 2055 CONN_DEC_REF(eager->tcp_connp); 2056 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2057 return; 2058 } 2059 DB_TYPE(opt_mp) = M_SETOPTS; 2060 opt_mp->b_wptr += sizeof (struct tcp_options); 2061 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2062 tcpopt->to_flags = 0; 2063 2064 /* 2065 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2066 * from listener to acceptor. 2067 */ 2068 if (listener->tcp_bound_if != 0) { 2069 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2070 tcpopt->to_boundif = listener->tcp_bound_if; 2071 } 2072 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2073 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2074 } 2075 2076 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2077 if ((mp1 = copymsg(mp)) == NULL) { 2078 CONN_DEC_REF(acceptor->tcp_connp); 2079 CONN_DEC_REF(eager->tcp_connp); 2080 freemsg(opt_mp); 2081 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2082 return; 2083 } 2084 2085 tcr = (struct T_conn_res *)mp1->b_rptr; 2086 2087 /* 2088 * This is an expanded version of mi_tpi_ok_ack_alloc() 2089 * which allocates a larger mblk and appends the new 2090 * local address to the ok_ack. The address is copied by 2091 * soaccept() for getsockname(). 2092 */ 2093 { 2094 int extra; 2095 2096 extra = (eager->tcp_family == AF_INET) ? 2097 sizeof (sin_t) : sizeof (sin6_t); 2098 2099 /* 2100 * Try to re-use mp, if possible. Otherwise, allocate 2101 * an mblk and return it as ok_mp. In any case, mp 2102 * is no longer usable upon return. 2103 */ 2104 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 CONN_DEC_REF(eager->tcp_connp); 2107 freemsg(opt_mp); 2108 /* Original mp has been freed by now, so use mp1 */ 2109 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2110 return; 2111 } 2112 2113 mp = NULL; /* We should never use mp after this point */ 2114 2115 switch (extra) { 2116 case sizeof (sin_t): { 2117 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2118 2119 ok_mp->b_wptr += extra; 2120 sin->sin_family = AF_INET; 2121 sin->sin_port = eager->tcp_lport; 2122 sin->sin_addr.s_addr = 2123 eager->tcp_ipha->ipha_src; 2124 break; 2125 } 2126 case sizeof (sin6_t): { 2127 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2128 2129 ok_mp->b_wptr += extra; 2130 sin6->sin6_family = AF_INET6; 2131 sin6->sin6_port = eager->tcp_lport; 2132 if (eager->tcp_ipversion == IPV4_VERSION) { 2133 sin6->sin6_flowinfo = 0; 2134 IN6_IPADDR_TO_V4MAPPED( 2135 eager->tcp_ipha->ipha_src, 2136 &sin6->sin6_addr); 2137 } else { 2138 ASSERT(eager->tcp_ip6h != NULL); 2139 sin6->sin6_flowinfo = 2140 eager->tcp_ip6h->ip6_vcf & 2141 ~IPV6_VERS_AND_FLOW_MASK; 2142 sin6->sin6_addr = 2143 eager->tcp_ip6h->ip6_src; 2144 } 2145 sin6->sin6_scope_id = 0; 2146 sin6->__sin6_src_id = 0; 2147 break; 2148 } 2149 default: 2150 break; 2151 } 2152 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2153 } 2154 2155 /* 2156 * If there are no options we know that the T_CONN_RES will 2157 * succeed. However, we can't send the T_OK_ACK upstream until 2158 * the tcp_accept_swap is done since it would be dangerous to 2159 * let the application start using the new fd prior to the swap. 2160 */ 2161 error = tcp_accept_swap(listener, acceptor, eager); 2162 if (error != 0) { 2163 CONN_DEC_REF(acceptor->tcp_connp); 2164 CONN_DEC_REF(eager->tcp_connp); 2165 freemsg(ok_mp); 2166 /* Original mp has been freed by now, so use mp1 */ 2167 tcp_err_ack(listener, mp1, TSYSERR, error); 2168 return; 2169 } 2170 2171 /* 2172 * tcp_accept_swap unlinks eager from listener but does not drop 2173 * the eager's reference on the listener. 2174 */ 2175 ASSERT(eager->tcp_listener == NULL); 2176 ASSERT(listener->tcp_connp->conn_ref >= 5); 2177 2178 /* 2179 * The eager is now associated with its own queue. Insert in 2180 * the hash so that the connection can be reused for a future 2181 * T_CONN_RES. 2182 */ 2183 tcp_acceptor_hash_insert(acceptor_id, eager); 2184 2185 /* 2186 * We now do the processing of options with T_CONN_RES. 2187 * We delay till now since we wanted to have queue to pass to 2188 * option processing routines that points back to the right 2189 * instance structure which does not happen until after 2190 * tcp_accept_swap(). 2191 * 2192 * Note: 2193 * The sanity of the logic here assumes that whatever options 2194 * are appropriate to inherit from listner=>eager are done 2195 * before this point, and whatever were to be overridden (or not) 2196 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2197 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2198 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2199 * This may not be true at this point in time but can be fixed 2200 * independently. This option processing code starts with 2201 * the instantiated acceptor instance and the final queue at 2202 * this point. 2203 */ 2204 2205 if (tcr->OPT_length != 0) { 2206 /* Options to process */ 2207 int t_error = 0; 2208 int sys_error = 0; 2209 int do_disconnect = 0; 2210 2211 if (tcp_conprim_opt_process(eager, mp1, 2212 &do_disconnect, &t_error, &sys_error) < 0) { 2213 eager->tcp_accept_error = 1; 2214 if (do_disconnect) { 2215 /* 2216 * An option failed which does not allow 2217 * connection to be accepted. 2218 * 2219 * We allow T_CONN_RES to succeed and 2220 * put a T_DISCON_IND on the eager queue. 2221 */ 2222 ASSERT(t_error == 0 && sys_error == 0); 2223 eager->tcp_send_discon_ind = 1; 2224 } else { 2225 ASSERT(t_error != 0); 2226 freemsg(ok_mp); 2227 /* 2228 * Original mp was either freed or set 2229 * to ok_mp above, so use mp1 instead. 2230 */ 2231 tcp_err_ack(listener, mp1, t_error, sys_error); 2232 goto finish; 2233 } 2234 } 2235 /* 2236 * Most likely success in setting options (except if 2237 * eager->tcp_send_discon_ind set). 2238 * mp1 option buffer represented by OPT_length/offset 2239 * potentially modified and contains results of setting 2240 * options at this point 2241 */ 2242 } 2243 2244 /* We no longer need mp1, since all options processing has passed */ 2245 freemsg(mp1); 2246 2247 putnext(listener->tcp_rq, ok_mp); 2248 2249 mutex_enter(&listener->tcp_eager_lock); 2250 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2251 tcp_t *tail; 2252 mblk_t *conn_ind; 2253 2254 /* 2255 * This path should not be executed if listener and 2256 * acceptor streams are the same. 2257 */ 2258 ASSERT(listener != acceptor); 2259 2260 tcp = listener->tcp_eager_prev_q0; 2261 /* 2262 * listener->tcp_eager_prev_q0 points to the TAIL of the 2263 * deferred T_conn_ind queue. We need to get to the head of 2264 * the queue in order to send up T_conn_ind the same order as 2265 * how the 3WHS is completed. 2266 */ 2267 while (tcp != listener) { 2268 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2269 break; 2270 else 2271 tcp = tcp->tcp_eager_prev_q0; 2272 } 2273 ASSERT(tcp != listener); 2274 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2275 ASSERT(conn_ind != NULL); 2276 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2277 2278 /* Move from q0 to q */ 2279 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2280 listener->tcp_conn_req_cnt_q0--; 2281 listener->tcp_conn_req_cnt_q++; 2282 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2283 tcp->tcp_eager_prev_q0; 2284 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2285 tcp->tcp_eager_next_q0; 2286 tcp->tcp_eager_prev_q0 = NULL; 2287 tcp->tcp_eager_next_q0 = NULL; 2288 tcp->tcp_conn_def_q0 = B_FALSE; 2289 2290 /* Make sure the tcp isn't in the list of droppables */ 2291 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2292 tcp->tcp_eager_prev_drop_q0 == NULL); 2293 2294 /* 2295 * Insert at end of the queue because sockfs sends 2296 * down T_CONN_RES in chronological order. Leaving 2297 * the older conn indications at front of the queue 2298 * helps reducing search time. 2299 */ 2300 tail = listener->tcp_eager_last_q; 2301 if (tail != NULL) 2302 tail->tcp_eager_next_q = tcp; 2303 else 2304 listener->tcp_eager_next_q = tcp; 2305 listener->tcp_eager_last_q = tcp; 2306 tcp->tcp_eager_next_q = NULL; 2307 mutex_exit(&listener->tcp_eager_lock); 2308 putnext(tcp->tcp_rq, conn_ind); 2309 } else { 2310 mutex_exit(&listener->tcp_eager_lock); 2311 } 2312 2313 /* 2314 * Done with the acceptor - free it 2315 * 2316 * Note: from this point on, no access to listener should be made 2317 * as listener can be equal to acceptor. 2318 */ 2319 finish: 2320 ASSERT(acceptor->tcp_detached); 2321 ASSERT(tcps->tcps_g_q != NULL); 2322 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2323 acceptor->tcp_rq = tcps->tcps_g_q; 2324 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2325 (void) tcp_clean_death(acceptor, 0, 2); 2326 CONN_DEC_REF(acceptor->tcp_connp); 2327 2328 /* 2329 * In case we already received a FIN we have to make tcp_rput send 2330 * the ordrel_ind. This will also send up a window update if the window 2331 * has opened up. 2332 * 2333 * In the normal case of a successful connection acceptance 2334 * we give the O_T_BIND_REQ to the read side put procedure as an 2335 * indication that this was just accepted. This tells tcp_rput to 2336 * pass up any data queued in tcp_rcv_list. 2337 * 2338 * In the fringe case where options sent with T_CONN_RES failed and 2339 * we required, we would be indicating a T_DISCON_IND to blow 2340 * away this connection. 2341 */ 2342 2343 /* 2344 * XXX: we currently have a problem if XTI application closes the 2345 * acceptor stream in between. This problem exists in on10-gate also 2346 * and is well know but nothing can be done short of major rewrite 2347 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2348 * eager same squeue as listener (we can distinguish non socket 2349 * listeners at the time of handling a SYN in tcp_conn_request) 2350 * and do most of the work that tcp_accept_finish does here itself 2351 * and then get behind the acceptor squeue to access the acceptor 2352 * queue. 2353 */ 2354 /* 2355 * We already have a ref on tcp so no need to do one before squeue_enter 2356 */ 2357 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2358 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2359 } 2360 2361 /* 2362 * Swap information between the eager and acceptor for a TLI/XTI client. 2363 * The sockfs accept is done on the acceptor stream and control goes 2364 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2365 * called. In either case, both the eager and listener are in their own 2366 * perimeter (squeue) and the code has to deal with potential race. 2367 * 2368 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2369 */ 2370 static int 2371 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2372 { 2373 conn_t *econnp, *aconnp; 2374 cred_t *effective_cred = NULL; 2375 2376 ASSERT(eager->tcp_rq == listener->tcp_rq); 2377 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2378 ASSERT(!eager->tcp_hard_bound); 2379 ASSERT(!TCP_IS_SOCKET(acceptor)); 2380 ASSERT(!TCP_IS_SOCKET(eager)); 2381 ASSERT(!TCP_IS_SOCKET(listener)); 2382 2383 econnp = eager->tcp_connp; 2384 aconnp = acceptor->tcp_connp; 2385 2386 /* 2387 * Trusted Extensions may need to use a security label that is 2388 * different from the acceptor's label on MLP and MAC-Exempt 2389 * sockets. If this is the case, the required security label 2390 * already exists in econnp->conn_effective_cred. Use this label 2391 * to generate a new effective cred for the acceptor. 2392 * 2393 * We allow for potential application level retry attempts by 2394 * checking for transient errors before modifying eager. 2395 */ 2396 if (is_system_labeled() && 2397 aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) { 2398 effective_cred = copycred_from_tslabel(aconnp->conn_cred, 2399 crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP); 2400 if (effective_cred == NULL) 2401 return (ENOMEM); 2402 } 2403 2404 acceptor->tcp_detached = B_TRUE; 2405 /* 2406 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2407 * the acceptor id. 2408 */ 2409 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2410 2411 /* remove eager from listen list... */ 2412 mutex_enter(&listener->tcp_eager_lock); 2413 tcp_eager_unlink(eager); 2414 ASSERT(eager->tcp_eager_next_q == NULL && 2415 eager->tcp_eager_last_q == NULL); 2416 ASSERT(eager->tcp_eager_next_q0 == NULL && 2417 eager->tcp_eager_prev_q0 == NULL); 2418 mutex_exit(&listener->tcp_eager_lock); 2419 eager->tcp_rq = acceptor->tcp_rq; 2420 eager->tcp_wq = acceptor->tcp_wq; 2421 2422 eager->tcp_rq->q_ptr = econnp; 2423 eager->tcp_wq->q_ptr = econnp; 2424 2425 /* 2426 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2427 * which might be a different squeue from our peer TCP instance. 2428 * For TCP Fusion, the peer expects that whenever tcp_detached is 2429 * clear, our TCP queues point to the acceptor's queues. Thus, use 2430 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2431 * above reach global visibility prior to the clearing of tcp_detached. 2432 */ 2433 membar_producer(); 2434 eager->tcp_detached = B_FALSE; 2435 2436 ASSERT(eager->tcp_ack_tid == 0); 2437 2438 econnp->conn_dev = aconnp->conn_dev; 2439 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2440 2441 ASSERT(econnp->conn_minor_arena != NULL); 2442 if (eager->tcp_cred != NULL) 2443 crfree(eager->tcp_cred); 2444 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2445 if (econnp->conn_effective_cred != NULL) 2446 crfree(econnp->conn_effective_cred); 2447 econnp->conn_effective_cred = effective_cred; 2448 aconnp->conn_cred = NULL; 2449 ASSERT(aconnp->conn_effective_cred == NULL); 2450 2451 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2452 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2453 2454 econnp->conn_zoneid = aconnp->conn_zoneid; 2455 econnp->conn_allzones = aconnp->conn_allzones; 2456 2457 aconnp->conn_mac_exempt = B_FALSE; 2458 2459 /* Do the IPC initialization */ 2460 CONN_INC_REF(econnp); 2461 2462 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2463 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2464 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2465 2466 /* Done with old IPC. Drop its ref on its connp */ 2467 CONN_DEC_REF(aconnp); 2468 return (0); 2469 } 2470 2471 2472 /* 2473 * Adapt to the information, such as rtt and rtt_sd, provided from the 2474 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2475 * 2476 * Checks for multicast and broadcast destination address. 2477 * Returns zero on failure; non-zero if ok. 2478 * 2479 * Note that the MSS calculation here is based on the info given in 2480 * the IRE. We do not do any calculation based on TCP options. They 2481 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2482 * knows which options to use. 2483 * 2484 * Note on how TCP gets its parameters for a connection. 2485 * 2486 * When a tcp_t structure is allocated, it gets all the default parameters. 2487 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2488 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2489 * default. 2490 * 2491 * An incoming SYN with a multicast or broadcast destination address, is dropped 2492 * in 1 of 2 places. 2493 * 2494 * 1. If the packet was received over the wire it is dropped in 2495 * ip_rput_process_broadcast() 2496 * 2497 * 2. If the packet was received through internal IP loopback, i.e. the packet 2498 * was generated and received on the same machine, it is dropped in 2499 * ip_wput_local() 2500 * 2501 * An incoming SYN with a multicast or broadcast source address is always 2502 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2503 * reject an attempt to connect to a broadcast or multicast (destination) 2504 * address. 2505 */ 2506 static int 2507 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2508 { 2509 ire_t *ire; 2510 ire_t *sire = NULL; 2511 iulp_t *ire_uinfo = NULL; 2512 uint32_t mss_max; 2513 uint32_t mss; 2514 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2515 conn_t *connp = tcp->tcp_connp; 2516 boolean_t ire_cacheable = B_FALSE; 2517 zoneid_t zoneid = connp->conn_zoneid; 2518 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2519 MATCH_IRE_SECATTR; 2520 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2521 ill_t *ill = NULL; 2522 boolean_t incoming = (ire_mp == NULL); 2523 tcp_stack_t *tcps = tcp->tcp_tcps; 2524 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2525 2526 ASSERT(connp->conn_ire_cache == NULL); 2527 2528 if (tcp->tcp_ipversion == IPV4_VERSION) { 2529 2530 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2532 return (0); 2533 } 2534 /* 2535 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2536 * for the destination with the nexthop as gateway. 2537 * ire_ctable_lookup() is used because this particular 2538 * ire, if it exists, will be marked private. 2539 * If that is not available, use the interface ire 2540 * for the nexthop. 2541 * 2542 * TSol: tcp_update_label will detect label mismatches based 2543 * only on the destination's label, but that would not 2544 * detect label mismatches based on the security attributes 2545 * of routes or next hop gateway. Hence we need to pass the 2546 * label to ire_ftable_lookup below in order to locate the 2547 * right prefix (and/or) ire cache. Similarly we also need 2548 * pass the label to the ire_cache_lookup below to locate 2549 * the right ire that also matches on the label. 2550 */ 2551 if (tcp->tcp_connp->conn_nexthop_set) { 2552 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2553 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2554 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2555 ipst); 2556 if (ire == NULL) { 2557 ire = ire_ftable_lookup( 2558 tcp->tcp_connp->conn_nexthop_v4, 2559 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2560 tsl, match_flags, ipst); 2561 if (ire == NULL) 2562 return (0); 2563 } else { 2564 ire_uinfo = &ire->ire_uinfo; 2565 } 2566 } else { 2567 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2568 zoneid, tsl, ipst); 2569 if (ire != NULL) { 2570 ire_cacheable = B_TRUE; 2571 ire_uinfo = (ire_mp != NULL) ? 2572 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2573 &ire->ire_uinfo; 2574 2575 } else { 2576 if (ire_mp == NULL) { 2577 ire = ire_ftable_lookup( 2578 tcp->tcp_connp->conn_rem, 2579 0, 0, 0, NULL, &sire, zoneid, 0, 2580 tsl, (MATCH_IRE_RECURSIVE | 2581 MATCH_IRE_DEFAULT), ipst); 2582 if (ire == NULL) 2583 return (0); 2584 ire_uinfo = (sire != NULL) ? 2585 &sire->ire_uinfo : 2586 &ire->ire_uinfo; 2587 } else { 2588 ire = (ire_t *)ire_mp->b_rptr; 2589 ire_uinfo = 2590 &((ire_t *) 2591 ire_mp->b_rptr)->ire_uinfo; 2592 } 2593 } 2594 } 2595 ASSERT(ire != NULL); 2596 2597 if ((ire->ire_src_addr == INADDR_ANY) || 2598 (ire->ire_type & IRE_BROADCAST)) { 2599 /* 2600 * ire->ire_mp is non null when ire_mp passed in is used 2601 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2602 */ 2603 if (ire->ire_mp == NULL) 2604 ire_refrele(ire); 2605 if (sire != NULL) 2606 ire_refrele(sire); 2607 return (0); 2608 } 2609 2610 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2611 ipaddr_t src_addr; 2612 2613 /* 2614 * ip_bind_connected() has stored the correct source 2615 * address in conn_src. 2616 */ 2617 src_addr = tcp->tcp_connp->conn_src; 2618 tcp->tcp_ipha->ipha_src = src_addr; 2619 /* 2620 * Copy of the src addr. in tcp_t is needed 2621 * for the lookup funcs. 2622 */ 2623 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2624 } 2625 /* 2626 * Set the fragment bit so that IP will tell us if the MTU 2627 * should change. IP tells us the latest setting of 2628 * ip_path_mtu_discovery through ire_frag_flag. 2629 */ 2630 if (ipst->ips_ip_path_mtu_discovery) { 2631 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2632 htons(IPH_DF); 2633 } 2634 /* 2635 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2636 * for IP_NEXTHOP. No cache ire has been found for the 2637 * destination and we are working with the nexthop's 2638 * interface ire. Since we need to forward all packets 2639 * to the nexthop first, we "blindly" set tcp_localnet 2640 * to false, eventhough the destination may also be 2641 * onlink. 2642 */ 2643 if (ire_uinfo == NULL) 2644 tcp->tcp_localnet = 0; 2645 else 2646 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2647 } else { 2648 /* 2649 * For incoming connection ire_mp = NULL 2650 * For outgoing connection ire_mp != NULL 2651 * Technically we should check conn_incoming_ill 2652 * when ire_mp is NULL and conn_outgoing_ill when 2653 * ire_mp is non-NULL. But this is performance 2654 * critical path and for IPV*_BOUND_IF, outgoing 2655 * and incoming ill are always set to the same value. 2656 */ 2657 ill_t *dst_ill = NULL; 2658 ipif_t *dst_ipif = NULL; 2659 2660 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2661 2662 if (connp->conn_outgoing_ill != NULL) { 2663 /* Outgoing or incoming path */ 2664 int err; 2665 2666 dst_ill = conn_get_held_ill(connp, 2667 &connp->conn_outgoing_ill, &err); 2668 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2669 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2670 return (0); 2671 } 2672 match_flags |= MATCH_IRE_ILL; 2673 dst_ipif = dst_ill->ill_ipif; 2674 } 2675 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2676 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2677 2678 if (ire != NULL) { 2679 ire_cacheable = B_TRUE; 2680 ire_uinfo = (ire_mp != NULL) ? 2681 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2682 &ire->ire_uinfo; 2683 } else { 2684 if (ire_mp == NULL) { 2685 ire = ire_ftable_lookup_v6( 2686 &tcp->tcp_connp->conn_remv6, 2687 0, 0, 0, dst_ipif, &sire, zoneid, 2688 0, tsl, match_flags, ipst); 2689 if (ire == NULL) { 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 return (0); 2693 } 2694 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2695 &ire->ire_uinfo; 2696 } else { 2697 ire = (ire_t *)ire_mp->b_rptr; 2698 ire_uinfo = 2699 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2700 } 2701 } 2702 if (dst_ill != NULL) 2703 ill_refrele(dst_ill); 2704 2705 ASSERT(ire != NULL); 2706 ASSERT(ire_uinfo != NULL); 2707 2708 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2709 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2710 /* 2711 * ire->ire_mp is non null when ire_mp passed in is used 2712 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2713 */ 2714 if (ire->ire_mp == NULL) 2715 ire_refrele(ire); 2716 if (sire != NULL) 2717 ire_refrele(sire); 2718 return (0); 2719 } 2720 2721 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2722 in6_addr_t src_addr; 2723 2724 /* 2725 * ip_bind_connected_v6() has stored the correct source 2726 * address per IPv6 addr. selection policy in 2727 * conn_src_v6. 2728 */ 2729 src_addr = tcp->tcp_connp->conn_srcv6; 2730 2731 tcp->tcp_ip6h->ip6_src = src_addr; 2732 /* 2733 * Copy of the src addr. in tcp_t is needed 2734 * for the lookup funcs. 2735 */ 2736 tcp->tcp_ip_src_v6 = src_addr; 2737 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2738 &connp->conn_srcv6)); 2739 } 2740 tcp->tcp_localnet = 2741 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2742 } 2743 2744 /* 2745 * This allows applications to fail quickly when connections are made 2746 * to dead hosts. Hosts can be labeled dead by adding a reject route 2747 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2748 */ 2749 if ((ire->ire_flags & RTF_REJECT) && 2750 (ire->ire_flags & RTF_PRIVATE)) 2751 goto error; 2752 2753 /* 2754 * Make use of the cached rtt and rtt_sd values to calculate the 2755 * initial RTO. Note that they are already initialized in 2756 * tcp_init_values(). 2757 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2758 * IP_NEXTHOP, but instead are using the interface ire for the 2759 * nexthop, then we do not use the ire_uinfo from that ire to 2760 * do any initializations. 2761 */ 2762 if (ire_uinfo != NULL) { 2763 if (ire_uinfo->iulp_rtt != 0) { 2764 clock_t rto; 2765 2766 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2767 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2768 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2769 tcps->tcps_rexmit_interval_extra + 2770 (tcp->tcp_rtt_sa >> 5); 2771 2772 if (rto > tcps->tcps_rexmit_interval_max) { 2773 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2774 } else if (rto < tcps->tcps_rexmit_interval_min) { 2775 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2776 } else { 2777 tcp->tcp_rto = rto; 2778 } 2779 } 2780 if (ire_uinfo->iulp_ssthresh != 0) 2781 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2782 else 2783 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2784 if (ire_uinfo->iulp_spipe > 0) { 2785 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2786 tcps->tcps_max_buf); 2787 if (tcps->tcps_snd_lowat_fraction != 0) 2788 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2789 tcps->tcps_snd_lowat_fraction; 2790 (void) tcp_maxpsz_set(tcp, B_TRUE); 2791 } 2792 /* 2793 * Note that up till now, acceptor always inherits receive 2794 * window from the listener. But if there is a metrics 2795 * associated with a host, we should use that instead of 2796 * inheriting it from listener. Thus we need to pass this 2797 * info back to the caller. 2798 */ 2799 if (ire_uinfo->iulp_rpipe > 0) { 2800 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2801 tcps->tcps_max_buf); 2802 } 2803 2804 if (ire_uinfo->iulp_rtomax > 0) { 2805 tcp->tcp_second_timer_threshold = 2806 ire_uinfo->iulp_rtomax; 2807 } 2808 2809 /* 2810 * Use the metric option settings, iulp_tstamp_ok and 2811 * iulp_wscale_ok, only for active open. What this means 2812 * is that if the other side uses timestamp or window 2813 * scale option, TCP will also use those options. That 2814 * is for passive open. If the application sets a 2815 * large window, window scale is enabled regardless of 2816 * the value in iulp_wscale_ok. This is the behavior 2817 * since 2.6. So we keep it. 2818 * The only case left in passive open processing is the 2819 * check for SACK. 2820 * For ECN, it should probably be like SACK. But the 2821 * current value is binary, so we treat it like the other 2822 * cases. The metric only controls active open.For passive 2823 * open, the ndd param, tcp_ecn_permitted, controls the 2824 * behavior. 2825 */ 2826 if (!tcp_detached) { 2827 /* 2828 * The if check means that the following can only 2829 * be turned on by the metrics only IRE, but not off. 2830 */ 2831 if (ire_uinfo->iulp_tstamp_ok) 2832 tcp->tcp_snd_ts_ok = B_TRUE; 2833 if (ire_uinfo->iulp_wscale_ok) 2834 tcp->tcp_snd_ws_ok = B_TRUE; 2835 if (ire_uinfo->iulp_sack == 2) 2836 tcp->tcp_snd_sack_ok = B_TRUE; 2837 if (ire_uinfo->iulp_ecn_ok) 2838 tcp->tcp_ecn_ok = B_TRUE; 2839 } else { 2840 /* 2841 * Passive open. 2842 * 2843 * As above, the if check means that SACK can only be 2844 * turned on by the metric only IRE. 2845 */ 2846 if (ire_uinfo->iulp_sack > 0) { 2847 tcp->tcp_snd_sack_ok = B_TRUE; 2848 } 2849 } 2850 } 2851 2852 2853 /* 2854 * XXX: Note that currently, ire_max_frag can be as small as 68 2855 * because of PMTUd. So tcp_mss may go to negative if combined 2856 * length of all those options exceeds 28 bytes. But because 2857 * of the tcp_mss_min check below, we may not have a problem if 2858 * tcp_mss_min is of a reasonable value. The default is 1 so 2859 * the negative problem still exists. And the check defeats PMTUd. 2860 * In fact, if PMTUd finds that the MSS should be smaller than 2861 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2862 * value. 2863 * 2864 * We do not deal with that now. All those problems related to 2865 * PMTUd will be fixed later. 2866 */ 2867 ASSERT(ire->ire_max_frag != 0); 2868 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2869 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2870 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2871 mss = MIN(mss, IPV6_MIN_MTU); 2872 } 2873 } 2874 2875 /* Sanity check for MSS value. */ 2876 if (tcp->tcp_ipversion == IPV4_VERSION) 2877 mss_max = tcps->tcps_mss_max_ipv4; 2878 else 2879 mss_max = tcps->tcps_mss_max_ipv6; 2880 2881 if (tcp->tcp_ipversion == IPV6_VERSION && 2882 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2883 /* 2884 * After receiving an ICMPv6 "packet too big" message with a 2885 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2886 * will insert a 8-byte fragment header in every packet; we 2887 * reduce the MSS by that amount here. 2888 */ 2889 mss -= sizeof (ip6_frag_t); 2890 } 2891 2892 if (tcp->tcp_ipsec_overhead == 0) 2893 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2894 2895 mss -= tcp->tcp_ipsec_overhead; 2896 2897 if (mss < tcps->tcps_mss_min) 2898 mss = tcps->tcps_mss_min; 2899 if (mss > mss_max) 2900 mss = mss_max; 2901 2902 /* Note that this is the maximum MSS, excluding all options. */ 2903 tcp->tcp_mss = mss; 2904 2905 /* 2906 * Initialize the ISS here now that we have the full connection ID. 2907 * The RFC 1948 method of initial sequence number generation requires 2908 * knowledge of the full connection ID before setting the ISS. 2909 */ 2910 2911 tcp_iss_init(tcp); 2912 2913 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2914 tcp->tcp_loopback = B_TRUE; 2915 2916 if (sire != NULL) 2917 IRE_REFRELE(sire); 2918 2919 /* 2920 * If we got an IRE_CACHE and an ILL, go through their properties; 2921 * otherwise, this is deferred until later when we have an IRE_CACHE. 2922 */ 2923 if (tcp->tcp_loopback || 2924 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2925 /* 2926 * For incoming, see if this tcp may be MDT-capable. For 2927 * outgoing, this process has been taken care of through 2928 * tcp_rput_other. 2929 */ 2930 tcp_ire_ill_check(tcp, ire, ill, incoming); 2931 tcp->tcp_ire_ill_check_done = B_TRUE; 2932 } 2933 2934 mutex_enter(&connp->conn_lock); 2935 /* 2936 * Make sure that conn is not marked incipient 2937 * for incoming connections. A blind 2938 * removal of incipient flag is cheaper than 2939 * check and removal. 2940 */ 2941 connp->conn_state_flags &= ~CONN_INCIPIENT; 2942 2943 /* 2944 * Must not cache forwarding table routes 2945 * or recache an IRE after the conn_t has 2946 * had conn_ire_cache cleared and is flagged 2947 * unusable, (see the CONN_CACHE_IRE() macro). 2948 */ 2949 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2950 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2951 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2952 connp->conn_ire_cache = ire; 2953 IRE_UNTRACE_REF(ire); 2954 rw_exit(&ire->ire_bucket->irb_lock); 2955 mutex_exit(&connp->conn_lock); 2956 return (1); 2957 } 2958 rw_exit(&ire->ire_bucket->irb_lock); 2959 } 2960 mutex_exit(&connp->conn_lock); 2961 2962 if (ire->ire_mp == NULL) 2963 ire_refrele(ire); 2964 return (1); 2965 2966 error: 2967 if (ire->ire_mp == NULL) 2968 ire_refrele(ire); 2969 if (sire != NULL) 2970 ire_refrele(sire); 2971 return (0); 2972 } 2973 2974 static void 2975 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2976 { 2977 int error; 2978 conn_t *connp = tcp->tcp_connp; 2979 struct sockaddr *sa; 2980 mblk_t *mp1; 2981 struct T_bind_req *tbr; 2982 int backlog; 2983 socklen_t len; 2984 sin_t *sin; 2985 sin6_t *sin6; 2986 cred_t *cr; 2987 2988 /* 2989 * All Solaris components should pass a db_credp 2990 * for this TPI message, hence we ASSERT. 2991 * But in case there is some other M_PROTO that looks 2992 * like a TPI message sent by some other kernel 2993 * component, we check and return an error. 2994 */ 2995 cr = msg_getcred(mp, NULL); 2996 ASSERT(cr != NULL); 2997 if (cr == NULL) { 2998 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2999 return; 3000 } 3001 3002 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3003 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3004 if (tcp->tcp_debug) { 3005 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3006 "tcp_tpi_bind: bad req, len %u", 3007 (uint_t)(mp->b_wptr - mp->b_rptr)); 3008 } 3009 tcp_err_ack(tcp, mp, TPROTO, 0); 3010 return; 3011 } 3012 /* Make sure the largest address fits */ 3013 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3014 if (mp1 == NULL) { 3015 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3016 return; 3017 } 3018 mp = mp1; 3019 tbr = (struct T_bind_req *)mp->b_rptr; 3020 3021 backlog = tbr->CONIND_number; 3022 len = tbr->ADDR_length; 3023 3024 switch (len) { 3025 case 0: /* request for a generic port */ 3026 tbr->ADDR_offset = sizeof (struct T_bind_req); 3027 if (tcp->tcp_family == AF_INET) { 3028 tbr->ADDR_length = sizeof (sin_t); 3029 sin = (sin_t *)&tbr[1]; 3030 *sin = sin_null; 3031 sin->sin_family = AF_INET; 3032 sa = (struct sockaddr *)sin; 3033 len = sizeof (sin_t); 3034 mp->b_wptr = (uchar_t *)&sin[1]; 3035 } else { 3036 ASSERT(tcp->tcp_family == AF_INET6); 3037 tbr->ADDR_length = sizeof (sin6_t); 3038 sin6 = (sin6_t *)&tbr[1]; 3039 *sin6 = sin6_null; 3040 sin6->sin6_family = AF_INET6; 3041 sa = (struct sockaddr *)sin6; 3042 len = sizeof (sin6_t); 3043 mp->b_wptr = (uchar_t *)&sin6[1]; 3044 } 3045 break; 3046 3047 case sizeof (sin_t): /* Complete IPv4 address */ 3048 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3049 sizeof (sin_t)); 3050 break; 3051 3052 case sizeof (sin6_t): /* Complete IPv6 address */ 3053 sa = (struct sockaddr *)mi_offset_param(mp, 3054 tbr->ADDR_offset, sizeof (sin6_t)); 3055 break; 3056 3057 default: 3058 if (tcp->tcp_debug) { 3059 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3060 "tcp_tpi_bind: bad address length, %d", 3061 tbr->ADDR_length); 3062 } 3063 tcp_err_ack(tcp, mp, TBADADDR, 0); 3064 return; 3065 } 3066 3067 if (backlog > 0) { 3068 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 3069 tbr->PRIM_type != O_T_BIND_REQ); 3070 } else { 3071 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 3072 tbr->PRIM_type != O_T_BIND_REQ); 3073 } 3074 done: 3075 if (error > 0) { 3076 tcp_err_ack(tcp, mp, TSYSERR, error); 3077 } else if (error < 0) { 3078 tcp_err_ack(tcp, mp, -error, 0); 3079 } else { 3080 /* 3081 * Update port information as sockfs/tpi needs it for checking 3082 */ 3083 if (tcp->tcp_family == AF_INET) { 3084 sin = (sin_t *)sa; 3085 sin->sin_port = tcp->tcp_lport; 3086 } else { 3087 sin6 = (sin6_t *)sa; 3088 sin6->sin6_port = tcp->tcp_lport; 3089 } 3090 mp->b_datap->db_type = M_PCPROTO; 3091 tbr->PRIM_type = T_BIND_ACK; 3092 putnext(tcp->tcp_rq, mp); 3093 } 3094 } 3095 3096 /* 3097 * If the "bind_to_req_port_only" parameter is set, if the requested port 3098 * number is available, return it, If not return 0 3099 * 3100 * If "bind_to_req_port_only" parameter is not set and 3101 * If the requested port number is available, return it. If not, return 3102 * the first anonymous port we happen across. If no anonymous ports are 3103 * available, return 0. addr is the requested local address, if any. 3104 * 3105 * In either case, when succeeding update the tcp_t to record the port number 3106 * and insert it in the bind hash table. 3107 * 3108 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3109 * without setting SO_REUSEADDR. This is needed so that they 3110 * can be viewed as two independent transport protocols. 3111 */ 3112 static in_port_t 3113 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3114 int reuseaddr, boolean_t quick_connect, 3115 boolean_t bind_to_req_port_only, boolean_t user_specified) 3116 { 3117 /* number of times we have run around the loop */ 3118 int count = 0; 3119 /* maximum number of times to run around the loop */ 3120 int loopmax; 3121 conn_t *connp = tcp->tcp_connp; 3122 zoneid_t zoneid = connp->conn_zoneid; 3123 tcp_stack_t *tcps = tcp->tcp_tcps; 3124 3125 /* 3126 * Lookup for free addresses is done in a loop and "loopmax" 3127 * influences how long we spin in the loop 3128 */ 3129 if (bind_to_req_port_only) { 3130 /* 3131 * If the requested port is busy, don't bother to look 3132 * for a new one. Setting loop maximum count to 1 has 3133 * that effect. 3134 */ 3135 loopmax = 1; 3136 } else { 3137 /* 3138 * If the requested port is busy, look for a free one 3139 * in the anonymous port range. 3140 * Set loopmax appropriately so that one does not look 3141 * forever in the case all of the anonymous ports are in use. 3142 */ 3143 if (tcp->tcp_anon_priv_bind) { 3144 /* 3145 * loopmax = 3146 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3147 */ 3148 loopmax = IPPORT_RESERVED - 3149 tcps->tcps_min_anonpriv_port; 3150 } else { 3151 loopmax = (tcps->tcps_largest_anon_port - 3152 tcps->tcps_smallest_anon_port + 1); 3153 } 3154 } 3155 do { 3156 uint16_t lport; 3157 tf_t *tbf; 3158 tcp_t *ltcp; 3159 conn_t *lconnp; 3160 3161 lport = htons(port); 3162 3163 /* 3164 * Ensure that the tcp_t is not currently in the bind hash. 3165 * Hold the lock on the hash bucket to ensure that 3166 * the duplicate check plus the insertion is an atomic 3167 * operation. 3168 * 3169 * This function does an inline lookup on the bind hash list 3170 * Make sure that we access only members of tcp_t 3171 * and that we don't look at tcp_tcp, since we are not 3172 * doing a CONN_INC_REF. 3173 */ 3174 tcp_bind_hash_remove(tcp); 3175 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3176 mutex_enter(&tbf->tf_lock); 3177 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3178 ltcp = ltcp->tcp_bind_hash) { 3179 if (lport == ltcp->tcp_lport) 3180 break; 3181 } 3182 3183 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3184 boolean_t not_socket; 3185 boolean_t exclbind; 3186 3187 lconnp = ltcp->tcp_connp; 3188 3189 /* 3190 * On a labeled system, we must treat bindings to ports 3191 * on shared IP addresses by sockets with MAC exemption 3192 * privilege as being in all zones, as there's 3193 * otherwise no way to identify the right receiver. 3194 */ 3195 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3196 IPCL_ZONE_MATCH(connp, 3197 ltcp->tcp_connp->conn_zoneid)) && 3198 !lconnp->conn_mac_exempt && 3199 !connp->conn_mac_exempt) 3200 continue; 3201 3202 /* 3203 * If TCP_EXCLBIND is set for either the bound or 3204 * binding endpoint, the semantics of bind 3205 * is changed according to the following. 3206 * 3207 * spec = specified address (v4 or v6) 3208 * unspec = unspecified address (v4 or v6) 3209 * A = specified addresses are different for endpoints 3210 * 3211 * bound bind to allowed 3212 * ------------------------------------- 3213 * unspec unspec no 3214 * unspec spec no 3215 * spec unspec no 3216 * spec spec yes if A 3217 * 3218 * For labeled systems, SO_MAC_EXEMPT behaves the same 3219 * as TCP_EXCLBIND, except that zoneid is ignored. 3220 * 3221 * Note: 3222 * 3223 * 1. Because of TLI semantics, an endpoint can go 3224 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3225 * TCPS_BOUND, depending on whether it is originally 3226 * a listener or not. That is why we need to check 3227 * for states greater than or equal to TCPS_BOUND 3228 * here. 3229 * 3230 * 2. Ideally, we should only check for state equals 3231 * to TCPS_LISTEN. And the following check should be 3232 * added. 3233 * 3234 * if (ltcp->tcp_state == TCPS_LISTEN || 3235 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3236 * ... 3237 * } 3238 * 3239 * The semantics will be changed to this. If the 3240 * endpoint on the list is in state not equal to 3241 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3242 * set, let the bind succeed. 3243 * 3244 * Because of (1), we cannot do that for TLI 3245 * endpoints. But we can do that for socket endpoints. 3246 * If in future, we can change this going back 3247 * semantics, we can use the above check for TLI also. 3248 */ 3249 not_socket = !(TCP_IS_SOCKET(ltcp) && 3250 TCP_IS_SOCKET(tcp)); 3251 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3252 3253 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3254 (exclbind && (not_socket || 3255 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3256 if (V6_OR_V4_INADDR_ANY( 3257 ltcp->tcp_bound_source_v6) || 3258 V6_OR_V4_INADDR_ANY(*laddr) || 3259 IN6_ARE_ADDR_EQUAL(laddr, 3260 <cp->tcp_bound_source_v6)) { 3261 break; 3262 } 3263 continue; 3264 } 3265 3266 /* 3267 * Check ipversion to allow IPv4 and IPv6 sockets to 3268 * have disjoint port number spaces, if *_EXCLBIND 3269 * is not set and only if the application binds to a 3270 * specific port. We use the same autoassigned port 3271 * number space for IPv4 and IPv6 sockets. 3272 */ 3273 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3274 bind_to_req_port_only) 3275 continue; 3276 3277 /* 3278 * Ideally, we should make sure that the source 3279 * address, remote address, and remote port in the 3280 * four tuple for this tcp-connection is unique. 3281 * However, trying to find out the local source 3282 * address would require too much code duplication 3283 * with IP, since IP needs needs to have that code 3284 * to support userland TCP implementations. 3285 */ 3286 if (quick_connect && 3287 (ltcp->tcp_state > TCPS_LISTEN) && 3288 ((tcp->tcp_fport != ltcp->tcp_fport) || 3289 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3290 <cp->tcp_remote_v6))) 3291 continue; 3292 3293 if (!reuseaddr) { 3294 /* 3295 * No socket option SO_REUSEADDR. 3296 * If existing port is bound to 3297 * a non-wildcard IP address 3298 * and the requesting stream is 3299 * bound to a distinct 3300 * different IP addresses 3301 * (non-wildcard, also), keep 3302 * going. 3303 */ 3304 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3305 !V6_OR_V4_INADDR_ANY( 3306 ltcp->tcp_bound_source_v6) && 3307 !IN6_ARE_ADDR_EQUAL(laddr, 3308 <cp->tcp_bound_source_v6)) 3309 continue; 3310 if (ltcp->tcp_state >= TCPS_BOUND) { 3311 /* 3312 * This port is being used and 3313 * its state is >= TCPS_BOUND, 3314 * so we can't bind to it. 3315 */ 3316 break; 3317 } 3318 } else { 3319 /* 3320 * socket option SO_REUSEADDR is set on the 3321 * binding tcp_t. 3322 * 3323 * If two streams are bound to 3324 * same IP address or both addr 3325 * and bound source are wildcards 3326 * (INADDR_ANY), we want to stop 3327 * searching. 3328 * We have found a match of IP source 3329 * address and source port, which is 3330 * refused regardless of the 3331 * SO_REUSEADDR setting, so we break. 3332 */ 3333 if (IN6_ARE_ADDR_EQUAL(laddr, 3334 <cp->tcp_bound_source_v6) && 3335 (ltcp->tcp_state == TCPS_LISTEN || 3336 ltcp->tcp_state == TCPS_BOUND)) 3337 break; 3338 } 3339 } 3340 if (ltcp != NULL) { 3341 /* The port number is busy */ 3342 mutex_exit(&tbf->tf_lock); 3343 } else { 3344 /* 3345 * This port is ours. Insert in fanout and mark as 3346 * bound to prevent others from getting the port 3347 * number. 3348 */ 3349 tcp->tcp_state = TCPS_BOUND; 3350 tcp->tcp_lport = htons(port); 3351 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3352 3353 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3354 tcp->tcp_lport)] == tbf); 3355 tcp_bind_hash_insert(tbf, tcp, 1); 3356 3357 mutex_exit(&tbf->tf_lock); 3358 3359 /* 3360 * We don't want tcp_next_port_to_try to "inherit" 3361 * a port number supplied by the user in a bind. 3362 */ 3363 if (user_specified) 3364 return (port); 3365 3366 /* 3367 * This is the only place where tcp_next_port_to_try 3368 * is updated. After the update, it may or may not 3369 * be in the valid range. 3370 */ 3371 if (!tcp->tcp_anon_priv_bind) 3372 tcps->tcps_next_port_to_try = port + 1; 3373 return (port); 3374 } 3375 3376 if (tcp->tcp_anon_priv_bind) { 3377 port = tcp_get_next_priv_port(tcp); 3378 } else { 3379 if (count == 0 && user_specified) { 3380 /* 3381 * We may have to return an anonymous port. So 3382 * get one to start with. 3383 */ 3384 port = 3385 tcp_update_next_port( 3386 tcps->tcps_next_port_to_try, 3387 tcp, B_TRUE); 3388 user_specified = B_FALSE; 3389 } else { 3390 port = tcp_update_next_port(port + 1, tcp, 3391 B_FALSE); 3392 } 3393 } 3394 if (port == 0) 3395 break; 3396 3397 /* 3398 * Don't let this loop run forever in the case where 3399 * all of the anonymous ports are in use. 3400 */ 3401 } while (++count < loopmax); 3402 return (0); 3403 } 3404 3405 /* 3406 * tcp_clean_death / tcp_close_detached must not be called more than once 3407 * on a tcp. Thus every function that potentially calls tcp_clean_death 3408 * must check for the tcp state before calling tcp_clean_death. 3409 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3410 * tcp_timer_handler, all check for the tcp state. 3411 */ 3412 /* ARGSUSED */ 3413 void 3414 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3415 { 3416 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3417 3418 freemsg(mp); 3419 if (tcp->tcp_state > TCPS_BOUND) 3420 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3421 ETIMEDOUT, 5); 3422 } 3423 3424 /* 3425 * We are dying for some reason. Try to do it gracefully. (May be called 3426 * as writer.) 3427 * 3428 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3429 * done by a service procedure). 3430 * TBD - Should the return value distinguish between the tcp_t being 3431 * freed and it being reinitialized? 3432 */ 3433 static int 3434 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3435 { 3436 mblk_t *mp; 3437 queue_t *q; 3438 conn_t *connp = tcp->tcp_connp; 3439 tcp_stack_t *tcps = tcp->tcp_tcps; 3440 3441 TCP_CLD_STAT(tag); 3442 3443 #if TCP_TAG_CLEAN_DEATH 3444 tcp->tcp_cleandeathtag = tag; 3445 #endif 3446 3447 if (tcp->tcp_fused) 3448 tcp_unfuse(tcp); 3449 3450 if (tcp->tcp_linger_tid != 0 && 3451 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3452 tcp_stop_lingering(tcp); 3453 } 3454 3455 ASSERT(tcp != NULL); 3456 ASSERT((tcp->tcp_family == AF_INET && 3457 tcp->tcp_ipversion == IPV4_VERSION) || 3458 (tcp->tcp_family == AF_INET6 && 3459 (tcp->tcp_ipversion == IPV4_VERSION || 3460 tcp->tcp_ipversion == IPV6_VERSION))); 3461 3462 if (TCP_IS_DETACHED(tcp)) { 3463 if (tcp->tcp_hard_binding) { 3464 /* 3465 * Its an eager that we are dealing with. We close the 3466 * eager but in case a conn_ind has already gone to the 3467 * listener, let tcp_accept_finish() send a discon_ind 3468 * to the listener and drop the last reference. If the 3469 * listener doesn't even know about the eager i.e. the 3470 * conn_ind hasn't gone up, blow away the eager and drop 3471 * the last reference as well. If the conn_ind has gone 3472 * up, state should be BOUND. tcp_accept_finish 3473 * will figure out that the connection has received a 3474 * RST and will send a DISCON_IND to the application. 3475 */ 3476 tcp_closei_local(tcp); 3477 if (!tcp->tcp_tconnind_started) { 3478 CONN_DEC_REF(connp); 3479 } else { 3480 tcp->tcp_state = TCPS_BOUND; 3481 } 3482 } else { 3483 tcp_close_detached(tcp); 3484 } 3485 return (0); 3486 } 3487 3488 TCP_STAT(tcps, tcp_clean_death_nondetached); 3489 3490 q = tcp->tcp_rq; 3491 3492 /* Trash all inbound data */ 3493 if (!IPCL_IS_NONSTR(connp)) { 3494 ASSERT(q != NULL); 3495 flushq(q, FLUSHALL); 3496 } 3497 3498 /* 3499 * If we are at least part way open and there is error 3500 * (err==0 implies no error) 3501 * notify our client by a T_DISCON_IND. 3502 */ 3503 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3504 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3505 !TCP_IS_SOCKET(tcp)) { 3506 /* 3507 * Send M_FLUSH according to TPI. Because sockets will 3508 * (and must) ignore FLUSHR we do that only for TPI 3509 * endpoints and sockets in STREAMS mode. 3510 */ 3511 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3512 } 3513 if (tcp->tcp_debug) { 3514 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3515 "tcp_clean_death: discon err %d", err); 3516 } 3517 if (IPCL_IS_NONSTR(connp)) { 3518 /* Direct socket, use upcall */ 3519 (*connp->conn_upcalls->su_disconnected)( 3520 connp->conn_upper_handle, tcp->tcp_connid, err); 3521 } else { 3522 mp = mi_tpi_discon_ind(NULL, err, 0); 3523 if (mp != NULL) { 3524 putnext(q, mp); 3525 } else { 3526 if (tcp->tcp_debug) { 3527 (void) strlog(TCP_MOD_ID, 0, 1, 3528 SL_ERROR|SL_TRACE, 3529 "tcp_clean_death, sending M_ERROR"); 3530 } 3531 (void) putnextctl1(q, M_ERROR, EPROTO); 3532 } 3533 } 3534 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3535 /* SYN_SENT or SYN_RCVD */ 3536 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3537 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3538 /* ESTABLISHED or CLOSE_WAIT */ 3539 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3540 } 3541 } 3542 3543 tcp_reinit(tcp); 3544 if (IPCL_IS_NONSTR(connp)) 3545 (void) tcp_do_unbind(connp); 3546 3547 return (-1); 3548 } 3549 3550 /* 3551 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3552 * to expire, stop the wait and finish the close. 3553 */ 3554 static void 3555 tcp_stop_lingering(tcp_t *tcp) 3556 { 3557 clock_t delta = 0; 3558 tcp_stack_t *tcps = tcp->tcp_tcps; 3559 3560 tcp->tcp_linger_tid = 0; 3561 if (tcp->tcp_state > TCPS_LISTEN) { 3562 tcp_acceptor_hash_remove(tcp); 3563 mutex_enter(&tcp->tcp_non_sq_lock); 3564 if (tcp->tcp_flow_stopped) { 3565 tcp_clrqfull(tcp); 3566 } 3567 mutex_exit(&tcp->tcp_non_sq_lock); 3568 3569 if (tcp->tcp_timer_tid != 0) { 3570 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3571 tcp->tcp_timer_tid = 0; 3572 } 3573 /* 3574 * Need to cancel those timers which will not be used when 3575 * TCP is detached. This has to be done before the tcp_wq 3576 * is set to the global queue. 3577 */ 3578 tcp_timers_stop(tcp); 3579 3580 tcp->tcp_detached = B_TRUE; 3581 ASSERT(tcps->tcps_g_q != NULL); 3582 tcp->tcp_rq = tcps->tcps_g_q; 3583 tcp->tcp_wq = WR(tcps->tcps_g_q); 3584 3585 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3586 tcp_time_wait_append(tcp); 3587 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3588 goto finish; 3589 } 3590 3591 /* 3592 * If delta is zero the timer event wasn't executed and was 3593 * successfully canceled. In this case we need to restart it 3594 * with the minimal delta possible. 3595 */ 3596 if (delta >= 0) { 3597 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3598 delta ? delta : 1); 3599 } 3600 } else { 3601 tcp_closei_local(tcp); 3602 CONN_DEC_REF(tcp->tcp_connp); 3603 } 3604 finish: 3605 /* Signal closing thread that it can complete close */ 3606 mutex_enter(&tcp->tcp_closelock); 3607 tcp->tcp_detached = B_TRUE; 3608 ASSERT(tcps->tcps_g_q != NULL); 3609 3610 tcp->tcp_rq = tcps->tcps_g_q; 3611 tcp->tcp_wq = WR(tcps->tcps_g_q); 3612 3613 tcp->tcp_closed = 1; 3614 cv_signal(&tcp->tcp_closecv); 3615 mutex_exit(&tcp->tcp_closelock); 3616 } 3617 3618 /* 3619 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3620 * expires. 3621 */ 3622 static void 3623 tcp_close_linger_timeout(void *arg) 3624 { 3625 conn_t *connp = (conn_t *)arg; 3626 tcp_t *tcp = connp->conn_tcp; 3627 3628 tcp->tcp_client_errno = ETIMEDOUT; 3629 tcp_stop_lingering(tcp); 3630 } 3631 3632 static void 3633 tcp_close_common(conn_t *connp, int flags) 3634 { 3635 tcp_t *tcp = connp->conn_tcp; 3636 mblk_t *mp = &tcp->tcp_closemp; 3637 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3638 mblk_t *bp; 3639 3640 ASSERT(connp->conn_ref >= 2); 3641 3642 /* 3643 * Mark the conn as closing. ill_pending_mp_add will not 3644 * add any mp to the pending mp list, after this conn has 3645 * started closing. Same for sq_pending_mp_add 3646 */ 3647 mutex_enter(&connp->conn_lock); 3648 connp->conn_state_flags |= CONN_CLOSING; 3649 if (connp->conn_oper_pending_ill != NULL) 3650 conn_ioctl_cleanup_reqd = B_TRUE; 3651 CONN_INC_REF_LOCKED(connp); 3652 mutex_exit(&connp->conn_lock); 3653 tcp->tcp_closeflags = (uint8_t)flags; 3654 ASSERT(connp->conn_ref >= 3); 3655 3656 /* 3657 * tcp_closemp_used is used below without any protection of a lock 3658 * as we don't expect any one else to use it concurrently at this 3659 * point otherwise it would be a major defect. 3660 */ 3661 3662 if (mp->b_prev == NULL) 3663 tcp->tcp_closemp_used = B_TRUE; 3664 else 3665 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3666 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3667 3668 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3669 3670 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3671 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3672 3673 mutex_enter(&tcp->tcp_closelock); 3674 while (!tcp->tcp_closed) { 3675 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3676 /* 3677 * The cv_wait_sig() was interrupted. We now do the 3678 * following: 3679 * 3680 * 1) If the endpoint was lingering, we allow this 3681 * to be interrupted by cancelling the linger timeout 3682 * and closing normally. 3683 * 3684 * 2) Revert to calling cv_wait() 3685 * 3686 * We revert to using cv_wait() to avoid an 3687 * infinite loop which can occur if the calling 3688 * thread is higher priority than the squeue worker 3689 * thread and is bound to the same cpu. 3690 */ 3691 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3692 mutex_exit(&tcp->tcp_closelock); 3693 /* Entering squeue, bump ref count. */ 3694 CONN_INC_REF(connp); 3695 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3696 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3697 tcp_linger_interrupted, connp, 3698 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3699 mutex_enter(&tcp->tcp_closelock); 3700 } 3701 break; 3702 } 3703 } 3704 while (!tcp->tcp_closed) 3705 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3706 mutex_exit(&tcp->tcp_closelock); 3707 3708 /* 3709 * In the case of listener streams that have eagers in the q or q0 3710 * we wait for the eagers to drop their reference to us. tcp_rq and 3711 * tcp_wq of the eagers point to our queues. By waiting for the 3712 * refcnt to drop to 1, we are sure that the eagers have cleaned 3713 * up their queue pointers and also dropped their references to us. 3714 */ 3715 if (tcp->tcp_wait_for_eagers) { 3716 mutex_enter(&connp->conn_lock); 3717 while (connp->conn_ref != 1) { 3718 cv_wait(&connp->conn_cv, &connp->conn_lock); 3719 } 3720 mutex_exit(&connp->conn_lock); 3721 } 3722 /* 3723 * ioctl cleanup. The mp is queued in the 3724 * ill_pending_mp or in the sq_pending_mp. 3725 */ 3726 if (conn_ioctl_cleanup_reqd) 3727 conn_ioctl_cleanup(connp); 3728 3729 tcp->tcp_cpid = -1; 3730 } 3731 3732 static int 3733 tcp_tpi_close(queue_t *q, int flags) 3734 { 3735 conn_t *connp; 3736 3737 ASSERT(WR(q)->q_next == NULL); 3738 3739 if (flags & SO_FALLBACK) { 3740 /* 3741 * stream is being closed while in fallback 3742 * simply free the resources that were allocated 3743 */ 3744 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3745 qprocsoff(q); 3746 goto done; 3747 } 3748 3749 connp = Q_TO_CONN(q); 3750 /* 3751 * We are being closed as /dev/tcp or /dev/tcp6. 3752 */ 3753 tcp_close_common(connp, flags); 3754 3755 qprocsoff(q); 3756 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3757 3758 /* 3759 * Drop IP's reference on the conn. This is the last reference 3760 * on the connp if the state was less than established. If the 3761 * connection has gone into timewait state, then we will have 3762 * one ref for the TCP and one more ref (total of two) for the 3763 * classifier connected hash list (a timewait connections stays 3764 * in connected hash till closed). 3765 * 3766 * We can't assert the references because there might be other 3767 * transient reference places because of some walkers or queued 3768 * packets in squeue for the timewait state. 3769 */ 3770 CONN_DEC_REF(connp); 3771 done: 3772 q->q_ptr = WR(q)->q_ptr = NULL; 3773 return (0); 3774 } 3775 3776 static int 3777 tcp_tpi_close_accept(queue_t *q) 3778 { 3779 vmem_t *minor_arena; 3780 dev_t conn_dev; 3781 3782 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3783 3784 /* 3785 * We had opened an acceptor STREAM for sockfs which is 3786 * now being closed due to some error. 3787 */ 3788 qprocsoff(q); 3789 3790 minor_arena = (vmem_t *)WR(q)->q_ptr; 3791 conn_dev = (dev_t)RD(q)->q_ptr; 3792 ASSERT(minor_arena != NULL); 3793 ASSERT(conn_dev != 0); 3794 inet_minor_free(minor_arena, conn_dev); 3795 q->q_ptr = WR(q)->q_ptr = NULL; 3796 return (0); 3797 } 3798 3799 /* 3800 * Called by tcp_close() routine via squeue when lingering is 3801 * interrupted by a signal. 3802 */ 3803 3804 /* ARGSUSED */ 3805 static void 3806 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3807 { 3808 conn_t *connp = (conn_t *)arg; 3809 tcp_t *tcp = connp->conn_tcp; 3810 3811 freeb(mp); 3812 if (tcp->tcp_linger_tid != 0 && 3813 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3814 tcp_stop_lingering(tcp); 3815 tcp->tcp_client_errno = EINTR; 3816 } 3817 } 3818 3819 /* 3820 * Called by streams close routine via squeues when our client blows off her 3821 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3822 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3823 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3824 * acked. 3825 * 3826 * NOTE: tcp_close potentially returns error when lingering. 3827 * However, the stream head currently does not pass these errors 3828 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3829 * errors to the application (from tsleep()) and not errors 3830 * like ECONNRESET caused by receiving a reset packet. 3831 */ 3832 3833 /* ARGSUSED */ 3834 static void 3835 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3836 { 3837 char *msg; 3838 conn_t *connp = (conn_t *)arg; 3839 tcp_t *tcp = connp->conn_tcp; 3840 clock_t delta = 0; 3841 tcp_stack_t *tcps = tcp->tcp_tcps; 3842 3843 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3844 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3845 3846 mutex_enter(&tcp->tcp_eager_lock); 3847 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3848 /* Cleanup for listener */ 3849 tcp_eager_cleanup(tcp, 0); 3850 tcp->tcp_wait_for_eagers = 1; 3851 } 3852 mutex_exit(&tcp->tcp_eager_lock); 3853 3854 connp->conn_mdt_ok = B_FALSE; 3855 tcp->tcp_mdt = B_FALSE; 3856 3857 connp->conn_lso_ok = B_FALSE; 3858 tcp->tcp_lso = B_FALSE; 3859 3860 msg = NULL; 3861 switch (tcp->tcp_state) { 3862 case TCPS_CLOSED: 3863 case TCPS_IDLE: 3864 case TCPS_BOUND: 3865 case TCPS_LISTEN: 3866 break; 3867 case TCPS_SYN_SENT: 3868 msg = "tcp_close, during connect"; 3869 break; 3870 case TCPS_SYN_RCVD: 3871 /* 3872 * Close during the connect 3-way handshake 3873 * but here there may or may not be pending data 3874 * already on queue. Process almost same as in 3875 * the ESTABLISHED state. 3876 */ 3877 /* FALLTHRU */ 3878 default: 3879 if (tcp->tcp_fused) 3880 tcp_unfuse(tcp); 3881 3882 /* 3883 * If SO_LINGER has set a zero linger time, abort the 3884 * connection with a reset. 3885 */ 3886 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3887 msg = "tcp_close, zero lingertime"; 3888 break; 3889 } 3890 3891 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3892 /* 3893 * Abort connection if there is unread data queued. 3894 */ 3895 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3896 msg = "tcp_close, unread data"; 3897 break; 3898 } 3899 /* 3900 * tcp_hard_bound is now cleared thus all packets go through 3901 * tcp_lookup. This fact is used by tcp_detach below. 3902 * 3903 * We have done a qwait() above which could have possibly 3904 * drained more messages in turn causing transition to a 3905 * different state. Check whether we have to do the rest 3906 * of the processing or not. 3907 */ 3908 if (tcp->tcp_state <= TCPS_LISTEN) 3909 break; 3910 3911 /* 3912 * Transmit the FIN before detaching the tcp_t. 3913 * After tcp_detach returns this queue/perimeter 3914 * no longer owns the tcp_t thus others can modify it. 3915 */ 3916 (void) tcp_xmit_end(tcp); 3917 3918 /* 3919 * If lingering on close then wait until the fin is acked, 3920 * the SO_LINGER time passes, or a reset is sent/received. 3921 */ 3922 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3923 !(tcp->tcp_fin_acked) && 3924 tcp->tcp_state >= TCPS_ESTABLISHED) { 3925 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3926 tcp->tcp_client_errno = EWOULDBLOCK; 3927 } else if (tcp->tcp_client_errno == 0) { 3928 3929 ASSERT(tcp->tcp_linger_tid == 0); 3930 3931 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3932 tcp_close_linger_timeout, 3933 tcp->tcp_lingertime * hz); 3934 3935 /* tcp_close_linger_timeout will finish close */ 3936 if (tcp->tcp_linger_tid == 0) 3937 tcp->tcp_client_errno = ENOSR; 3938 else 3939 return; 3940 } 3941 3942 /* 3943 * Check if we need to detach or just close 3944 * the instance. 3945 */ 3946 if (tcp->tcp_state <= TCPS_LISTEN) 3947 break; 3948 } 3949 3950 /* 3951 * Make sure that no other thread will access the tcp_rq of 3952 * this instance (through lookups etc.) as tcp_rq will go 3953 * away shortly. 3954 */ 3955 tcp_acceptor_hash_remove(tcp); 3956 3957 mutex_enter(&tcp->tcp_non_sq_lock); 3958 if (tcp->tcp_flow_stopped) { 3959 tcp_clrqfull(tcp); 3960 } 3961 mutex_exit(&tcp->tcp_non_sq_lock); 3962 3963 if (tcp->tcp_timer_tid != 0) { 3964 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3965 tcp->tcp_timer_tid = 0; 3966 } 3967 /* 3968 * Need to cancel those timers which will not be used when 3969 * TCP is detached. This has to be done before the tcp_wq 3970 * is set to the global queue. 3971 */ 3972 tcp_timers_stop(tcp); 3973 3974 tcp->tcp_detached = B_TRUE; 3975 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3976 tcp_time_wait_append(tcp); 3977 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3978 ASSERT(connp->conn_ref >= 3); 3979 goto finish; 3980 } 3981 3982 /* 3983 * If delta is zero the timer event wasn't executed and was 3984 * successfully canceled. In this case we need to restart it 3985 * with the minimal delta possible. 3986 */ 3987 if (delta >= 0) 3988 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3989 delta ? delta : 1); 3990 3991 ASSERT(connp->conn_ref >= 3); 3992 goto finish; 3993 } 3994 3995 /* Detach did not complete. Still need to remove q from stream. */ 3996 if (msg) { 3997 if (tcp->tcp_state == TCPS_ESTABLISHED || 3998 tcp->tcp_state == TCPS_CLOSE_WAIT) 3999 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4000 if (tcp->tcp_state == TCPS_SYN_SENT || 4001 tcp->tcp_state == TCPS_SYN_RCVD) 4002 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4003 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4004 } 4005 4006 tcp_closei_local(tcp); 4007 CONN_DEC_REF(connp); 4008 ASSERT(connp->conn_ref >= 2); 4009 4010 finish: 4011 /* 4012 * Although packets are always processed on the correct 4013 * tcp's perimeter and access is serialized via squeue's, 4014 * IP still needs a queue when sending packets in time_wait 4015 * state so use WR(tcps_g_q) till ip_output() can be 4016 * changed to deal with just connp. For read side, we 4017 * could have set tcp_rq to NULL but there are some cases 4018 * in tcp_rput_data() from early days of this code which 4019 * do a putnext without checking if tcp is closed. Those 4020 * need to be identified before both tcp_rq and tcp_wq 4021 * can be set to NULL and tcps_g_q can disappear forever. 4022 */ 4023 mutex_enter(&tcp->tcp_closelock); 4024 /* 4025 * Don't change the queues in the case of a listener that has 4026 * eagers in its q or q0. It could surprise the eagers. 4027 * Instead wait for the eagers outside the squeue. 4028 */ 4029 if (!tcp->tcp_wait_for_eagers) { 4030 tcp->tcp_detached = B_TRUE; 4031 /* 4032 * When default queue is closing we set tcps_g_q to NULL 4033 * after the close is done. 4034 */ 4035 ASSERT(tcps->tcps_g_q != NULL); 4036 tcp->tcp_rq = tcps->tcps_g_q; 4037 tcp->tcp_wq = WR(tcps->tcps_g_q); 4038 } 4039 4040 /* Signal tcp_close() to finish closing. */ 4041 tcp->tcp_closed = 1; 4042 cv_signal(&tcp->tcp_closecv); 4043 mutex_exit(&tcp->tcp_closelock); 4044 } 4045 4046 /* 4047 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4048 * Some stream heads get upset if they see these later on as anything but NULL. 4049 */ 4050 static void 4051 tcp_close_mpp(mblk_t **mpp) 4052 { 4053 mblk_t *mp; 4054 4055 if ((mp = *mpp) != NULL) { 4056 do { 4057 mp->b_next = NULL; 4058 mp->b_prev = NULL; 4059 } while ((mp = mp->b_cont) != NULL); 4060 4061 mp = *mpp; 4062 *mpp = NULL; 4063 freemsg(mp); 4064 } 4065 } 4066 4067 /* Do detached close. */ 4068 static void 4069 tcp_close_detached(tcp_t *tcp) 4070 { 4071 if (tcp->tcp_fused) 4072 tcp_unfuse(tcp); 4073 4074 /* 4075 * Clustering code serializes TCP disconnect callbacks and 4076 * cluster tcp list walks by blocking a TCP disconnect callback 4077 * if a cluster tcp list walk is in progress. This ensures 4078 * accurate accounting of TCPs in the cluster code even though 4079 * the TCP list walk itself is not atomic. 4080 */ 4081 tcp_closei_local(tcp); 4082 CONN_DEC_REF(tcp->tcp_connp); 4083 } 4084 4085 /* 4086 * Stop all TCP timers, and free the timer mblks if requested. 4087 */ 4088 void 4089 tcp_timers_stop(tcp_t *tcp) 4090 { 4091 if (tcp->tcp_timer_tid != 0) { 4092 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4093 tcp->tcp_timer_tid = 0; 4094 } 4095 if (tcp->tcp_ka_tid != 0) { 4096 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4097 tcp->tcp_ka_tid = 0; 4098 } 4099 if (tcp->tcp_ack_tid != 0) { 4100 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4101 tcp->tcp_ack_tid = 0; 4102 } 4103 if (tcp->tcp_push_tid != 0) { 4104 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4105 tcp->tcp_push_tid = 0; 4106 } 4107 } 4108 4109 /* 4110 * The tcp_t is going away. Remove it from all lists and set it 4111 * to TCPS_CLOSED. The freeing up of memory is deferred until 4112 * tcp_inactive. This is needed since a thread in tcp_rput might have 4113 * done a CONN_INC_REF on this structure before it was removed from the 4114 * hashes. 4115 */ 4116 static void 4117 tcp_closei_local(tcp_t *tcp) 4118 { 4119 ire_t *ire; 4120 conn_t *connp = tcp->tcp_connp; 4121 tcp_stack_t *tcps = tcp->tcp_tcps; 4122 4123 if (!TCP_IS_SOCKET(tcp)) 4124 tcp_acceptor_hash_remove(tcp); 4125 4126 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4127 tcp->tcp_ibsegs = 0; 4128 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4129 tcp->tcp_obsegs = 0; 4130 4131 /* 4132 * If we are an eager connection hanging off a listener that 4133 * hasn't formally accepted the connection yet, get off his 4134 * list and blow off any data that we have accumulated. 4135 */ 4136 if (tcp->tcp_listener != NULL) { 4137 tcp_t *listener = tcp->tcp_listener; 4138 mutex_enter(&listener->tcp_eager_lock); 4139 /* 4140 * tcp_tconnind_started == B_TRUE means that the 4141 * conn_ind has already gone to listener. At 4142 * this point, eager will be closed but we 4143 * leave it in listeners eager list so that 4144 * if listener decides to close without doing 4145 * accept, we can clean this up. In tcp_wput_accept 4146 * we take care of the case of accept on closed 4147 * eager. 4148 */ 4149 if (!tcp->tcp_tconnind_started) { 4150 tcp_eager_unlink(tcp); 4151 mutex_exit(&listener->tcp_eager_lock); 4152 /* 4153 * We don't want to have any pointers to the 4154 * listener queue, after we have released our 4155 * reference on the listener 4156 */ 4157 ASSERT(tcps->tcps_g_q != NULL); 4158 tcp->tcp_rq = tcps->tcps_g_q; 4159 tcp->tcp_wq = WR(tcps->tcps_g_q); 4160 CONN_DEC_REF(listener->tcp_connp); 4161 } else { 4162 mutex_exit(&listener->tcp_eager_lock); 4163 } 4164 } 4165 4166 /* Stop all the timers */ 4167 tcp_timers_stop(tcp); 4168 4169 if (tcp->tcp_state == TCPS_LISTEN) { 4170 if (tcp->tcp_ip_addr_cache) { 4171 kmem_free((void *)tcp->tcp_ip_addr_cache, 4172 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4173 tcp->tcp_ip_addr_cache = NULL; 4174 } 4175 } 4176 mutex_enter(&tcp->tcp_non_sq_lock); 4177 if (tcp->tcp_flow_stopped) 4178 tcp_clrqfull(tcp); 4179 mutex_exit(&tcp->tcp_non_sq_lock); 4180 4181 tcp_bind_hash_remove(tcp); 4182 /* 4183 * If the tcp_time_wait_collector (which runs outside the squeue) 4184 * is trying to remove this tcp from the time wait list, we will 4185 * block in tcp_time_wait_remove while trying to acquire the 4186 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4187 * requires the ipcl_hash_remove to be ordered after the 4188 * tcp_time_wait_remove for the refcnt checks to work correctly. 4189 */ 4190 if (tcp->tcp_state == TCPS_TIME_WAIT) 4191 (void) tcp_time_wait_remove(tcp, NULL); 4192 CL_INET_DISCONNECT(connp, tcp); 4193 ipcl_hash_remove(connp); 4194 4195 /* 4196 * Delete the cached ire in conn_ire_cache and also mark 4197 * the conn as CONDEMNED 4198 */ 4199 mutex_enter(&connp->conn_lock); 4200 connp->conn_state_flags |= CONN_CONDEMNED; 4201 ire = connp->conn_ire_cache; 4202 connp->conn_ire_cache = NULL; 4203 mutex_exit(&connp->conn_lock); 4204 if (ire != NULL) 4205 IRE_REFRELE_NOTR(ire); 4206 4207 /* Need to cleanup any pending ioctls */ 4208 ASSERT(tcp->tcp_time_wait_next == NULL); 4209 ASSERT(tcp->tcp_time_wait_prev == NULL); 4210 ASSERT(tcp->tcp_time_wait_expire == 0); 4211 tcp->tcp_state = TCPS_CLOSED; 4212 4213 /* Release any SSL context */ 4214 if (tcp->tcp_kssl_ent != NULL) { 4215 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4216 tcp->tcp_kssl_ent = NULL; 4217 } 4218 if (tcp->tcp_kssl_ctx != NULL) { 4219 kssl_release_ctx(tcp->tcp_kssl_ctx); 4220 tcp->tcp_kssl_ctx = NULL; 4221 } 4222 tcp->tcp_kssl_pending = B_FALSE; 4223 4224 tcp_ipsec_cleanup(tcp); 4225 } 4226 4227 /* 4228 * tcp is dying (called from ipcl_conn_destroy and error cases). 4229 * Free the tcp_t in either case. 4230 */ 4231 void 4232 tcp_free(tcp_t *tcp) 4233 { 4234 mblk_t *mp; 4235 ip6_pkt_t *ipp; 4236 4237 ASSERT(tcp != NULL); 4238 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4239 4240 tcp->tcp_rq = NULL; 4241 tcp->tcp_wq = NULL; 4242 4243 tcp_close_mpp(&tcp->tcp_xmit_head); 4244 tcp_close_mpp(&tcp->tcp_reass_head); 4245 if (tcp->tcp_rcv_list != NULL) { 4246 /* Free b_next chain */ 4247 tcp_close_mpp(&tcp->tcp_rcv_list); 4248 } 4249 if ((mp = tcp->tcp_urp_mp) != NULL) { 4250 freemsg(mp); 4251 } 4252 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4253 freemsg(mp); 4254 } 4255 4256 if (tcp->tcp_fused_sigurg_mp != NULL) { 4257 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4258 freeb(tcp->tcp_fused_sigurg_mp); 4259 tcp->tcp_fused_sigurg_mp = NULL; 4260 } 4261 4262 if (tcp->tcp_ordrel_mp != NULL) { 4263 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4264 freeb(tcp->tcp_ordrel_mp); 4265 tcp->tcp_ordrel_mp = NULL; 4266 } 4267 4268 if (tcp->tcp_sack_info != NULL) { 4269 if (tcp->tcp_notsack_list != NULL) { 4270 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4271 tcp); 4272 } 4273 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4274 } 4275 4276 if (tcp->tcp_hopopts != NULL) { 4277 mi_free(tcp->tcp_hopopts); 4278 tcp->tcp_hopopts = NULL; 4279 tcp->tcp_hopoptslen = 0; 4280 } 4281 ASSERT(tcp->tcp_hopoptslen == 0); 4282 if (tcp->tcp_dstopts != NULL) { 4283 mi_free(tcp->tcp_dstopts); 4284 tcp->tcp_dstopts = NULL; 4285 tcp->tcp_dstoptslen = 0; 4286 } 4287 ASSERT(tcp->tcp_dstoptslen == 0); 4288 if (tcp->tcp_rtdstopts != NULL) { 4289 mi_free(tcp->tcp_rtdstopts); 4290 tcp->tcp_rtdstopts = NULL; 4291 tcp->tcp_rtdstoptslen = 0; 4292 } 4293 ASSERT(tcp->tcp_rtdstoptslen == 0); 4294 if (tcp->tcp_rthdr != NULL) { 4295 mi_free(tcp->tcp_rthdr); 4296 tcp->tcp_rthdr = NULL; 4297 tcp->tcp_rthdrlen = 0; 4298 } 4299 ASSERT(tcp->tcp_rthdrlen == 0); 4300 4301 ipp = &tcp->tcp_sticky_ipp; 4302 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4303 IPPF_RTHDR)) 4304 ip6_pkt_free(ipp); 4305 4306 /* 4307 * Free memory associated with the tcp/ip header template. 4308 */ 4309 4310 if (tcp->tcp_iphc != NULL) 4311 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4312 4313 /* 4314 * Following is really a blowing away a union. 4315 * It happens to have exactly two members of identical size 4316 * the following code is enough. 4317 */ 4318 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4319 } 4320 4321 4322 /* 4323 * Put a connection confirmation message upstream built from the 4324 * address information within 'iph' and 'tcph'. Report our success or failure. 4325 */ 4326 static boolean_t 4327 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4328 mblk_t **defermp) 4329 { 4330 sin_t sin; 4331 sin6_t sin6; 4332 mblk_t *mp; 4333 char *optp = NULL; 4334 int optlen = 0; 4335 4336 if (defermp != NULL) 4337 *defermp = NULL; 4338 4339 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4340 /* 4341 * Return in T_CONN_CON results of option negotiation through 4342 * the T_CONN_REQ. Note: If there is an real end-to-end option 4343 * negotiation, then what is received from remote end needs 4344 * to be taken into account but there is no such thing (yet?) 4345 * in our TCP/IP. 4346 * Note: We do not use mi_offset_param() here as 4347 * tcp_opts_conn_req contents do not directly come from 4348 * an application and are either generated in kernel or 4349 * from user input that was already verified. 4350 */ 4351 mp = tcp->tcp_conn.tcp_opts_conn_req; 4352 optp = (char *)(mp->b_rptr + 4353 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4354 optlen = (int) 4355 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4356 } 4357 4358 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4359 ipha_t *ipha = (ipha_t *)iphdr; 4360 4361 /* packet is IPv4 */ 4362 if (tcp->tcp_family == AF_INET) { 4363 sin = sin_null; 4364 sin.sin_addr.s_addr = ipha->ipha_src; 4365 sin.sin_port = *(uint16_t *)tcph->th_lport; 4366 sin.sin_family = AF_INET; 4367 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4368 (int)sizeof (sin_t), optp, optlen); 4369 } else { 4370 sin6 = sin6_null; 4371 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4372 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4373 sin6.sin6_family = AF_INET6; 4374 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4375 (int)sizeof (sin6_t), optp, optlen); 4376 4377 } 4378 } else { 4379 ip6_t *ip6h = (ip6_t *)iphdr; 4380 4381 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4382 ASSERT(tcp->tcp_family == AF_INET6); 4383 sin6 = sin6_null; 4384 sin6.sin6_addr = ip6h->ip6_src; 4385 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4386 sin6.sin6_family = AF_INET6; 4387 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4388 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4389 (int)sizeof (sin6_t), optp, optlen); 4390 } 4391 4392 if (!mp) 4393 return (B_FALSE); 4394 4395 mblk_copycred(mp, idmp); 4396 4397 if (defermp == NULL) { 4398 conn_t *connp = tcp->tcp_connp; 4399 if (IPCL_IS_NONSTR(connp)) { 4400 cred_t *cr; 4401 pid_t cpid; 4402 4403 cr = msg_getcred(mp, &cpid); 4404 (*connp->conn_upcalls->su_connected) 4405 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4406 cpid); 4407 freemsg(mp); 4408 } else { 4409 putnext(tcp->tcp_rq, mp); 4410 } 4411 } else { 4412 *defermp = mp; 4413 } 4414 4415 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4416 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4417 return (B_TRUE); 4418 } 4419 4420 /* 4421 * Defense for the SYN attack - 4422 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4423 * one from the list of droppable eagers. This list is a subset of q0. 4424 * see comments before the definition of MAKE_DROPPABLE(). 4425 * 2. Don't drop a SYN request before its first timeout. This gives every 4426 * request at least til the first timeout to complete its 3-way handshake. 4427 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4428 * requests currently on the queue that has timed out. This will be used 4429 * as an indicator of whether an attack is under way, so that appropriate 4430 * actions can be taken. (It's incremented in tcp_timer() and decremented 4431 * either when eager goes into ESTABLISHED, or gets freed up.) 4432 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4433 * # of timeout drops back to <= q0len/32 => SYN alert off 4434 */ 4435 static boolean_t 4436 tcp_drop_q0(tcp_t *tcp) 4437 { 4438 tcp_t *eager; 4439 mblk_t *mp; 4440 tcp_stack_t *tcps = tcp->tcp_tcps; 4441 4442 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4443 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4444 4445 /* Pick oldest eager from the list of droppable eagers */ 4446 eager = tcp->tcp_eager_prev_drop_q0; 4447 4448 /* If list is empty. return B_FALSE */ 4449 if (eager == tcp) { 4450 return (B_FALSE); 4451 } 4452 4453 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4454 if ((mp = allocb(0, BPRI_HI)) == NULL) 4455 return (B_FALSE); 4456 4457 /* 4458 * Take this eager out from the list of droppable eagers since we are 4459 * going to drop it. 4460 */ 4461 MAKE_UNDROPPABLE(eager); 4462 4463 if (tcp->tcp_debug) { 4464 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4465 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4466 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4467 tcp->tcp_conn_req_cnt_q0, 4468 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4469 } 4470 4471 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4472 4473 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4474 CONN_INC_REF(eager->tcp_connp); 4475 4476 /* Mark the IRE created for this SYN request temporary */ 4477 tcp_ip_ire_mark_advice(eager); 4478 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4479 tcp_clean_death_wrapper, eager->tcp_connp, 4480 SQ_FILL, SQTAG_TCP_DROP_Q0); 4481 4482 return (B_TRUE); 4483 } 4484 4485 int 4486 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4487 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4488 { 4489 tcp_t *ltcp = lconnp->conn_tcp; 4490 tcp_t *tcp = connp->conn_tcp; 4491 mblk_t *tpi_mp; 4492 ipha_t *ipha; 4493 ip6_t *ip6h; 4494 sin6_t sin6; 4495 in6_addr_t v6dst; 4496 int err; 4497 int ifindex = 0; 4498 tcp_stack_t *tcps = tcp->tcp_tcps; 4499 4500 if (ipvers == IPV4_VERSION) { 4501 ipha = (ipha_t *)mp->b_rptr; 4502 4503 connp->conn_send = ip_output; 4504 connp->conn_recv = tcp_input; 4505 4506 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4507 &connp->conn_bound_source_v6); 4508 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4510 4511 sin6 = sin6_null; 4512 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4513 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4514 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4515 sin6.sin6_family = AF_INET6; 4516 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4517 lconnp->conn_zoneid, tcps->tcps_netstack); 4518 if (tcp->tcp_recvdstaddr) { 4519 sin6_t sin6d; 4520 4521 sin6d = sin6_null; 4522 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4523 &sin6d.sin6_addr); 4524 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4525 sin6d.sin6_family = AF_INET; 4526 tpi_mp = mi_tpi_extconn_ind(NULL, 4527 (char *)&sin6d, sizeof (sin6_t), 4528 (char *)&tcp, 4529 (t_scalar_t)sizeof (intptr_t), 4530 (char *)&sin6d, sizeof (sin6_t), 4531 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4532 } else { 4533 tpi_mp = mi_tpi_conn_ind(NULL, 4534 (char *)&sin6, sizeof (sin6_t), 4535 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4536 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4537 } 4538 } else { 4539 ip6h = (ip6_t *)mp->b_rptr; 4540 4541 connp->conn_send = ip_output_v6; 4542 connp->conn_recv = tcp_input; 4543 4544 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4545 connp->conn_srcv6 = ip6h->ip6_dst; 4546 connp->conn_remv6 = ip6h->ip6_src; 4547 4548 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4549 ifindex = (int)DB_CKSUMSTUFF(mp); 4550 DB_CKSUMSTUFF(mp) = 0; 4551 4552 sin6 = sin6_null; 4553 sin6.sin6_addr = ip6h->ip6_src; 4554 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4555 sin6.sin6_family = AF_INET6; 4556 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4557 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4558 lconnp->conn_zoneid, tcps->tcps_netstack); 4559 4560 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4561 /* Pass up the scope_id of remote addr */ 4562 sin6.sin6_scope_id = ifindex; 4563 } else { 4564 sin6.sin6_scope_id = 0; 4565 } 4566 if (tcp->tcp_recvdstaddr) { 4567 sin6_t sin6d; 4568 4569 sin6d = sin6_null; 4570 sin6.sin6_addr = ip6h->ip6_dst; 4571 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4572 sin6d.sin6_family = AF_INET; 4573 tpi_mp = mi_tpi_extconn_ind(NULL, 4574 (char *)&sin6d, sizeof (sin6_t), 4575 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4576 (char *)&sin6d, sizeof (sin6_t), 4577 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4578 } else { 4579 tpi_mp = mi_tpi_conn_ind(NULL, 4580 (char *)&sin6, sizeof (sin6_t), 4581 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4582 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4583 } 4584 } 4585 4586 if (tpi_mp == NULL) 4587 return (ENOMEM); 4588 4589 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4590 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4591 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4592 connp->conn_fully_bound = B_FALSE; 4593 4594 /* Inherit information from the "parent" */ 4595 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4596 tcp->tcp_family = ltcp->tcp_family; 4597 4598 tcp->tcp_wq = ltcp->tcp_wq; 4599 tcp->tcp_rq = ltcp->tcp_rq; 4600 4601 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4602 tcp->tcp_detached = B_TRUE; 4603 SOCK_CONNID_INIT(tcp->tcp_connid); 4604 if ((err = tcp_init_values(tcp)) != 0) { 4605 freemsg(tpi_mp); 4606 return (err); 4607 } 4608 4609 if (ipvers == IPV4_VERSION) { 4610 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4611 freemsg(tpi_mp); 4612 return (err); 4613 } 4614 ASSERT(tcp->tcp_ipha != NULL); 4615 } else { 4616 /* ifindex must be already set */ 4617 ASSERT(ifindex != 0); 4618 4619 if (ltcp->tcp_bound_if != 0) 4620 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4621 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4622 tcp->tcp_bound_if = ifindex; 4623 4624 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4625 tcp->tcp_recvifindex = 0; 4626 tcp->tcp_recvhops = 0xffffffffU; 4627 ASSERT(tcp->tcp_ip6h != NULL); 4628 } 4629 4630 tcp->tcp_lport = ltcp->tcp_lport; 4631 4632 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4633 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4634 /* 4635 * Listener had options of some sort; eager inherits. 4636 * Free up the eager template and allocate one 4637 * of the right size. 4638 */ 4639 if (tcp->tcp_hdr_grown) { 4640 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4641 } else { 4642 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4643 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4644 } 4645 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4646 KM_NOSLEEP); 4647 if (tcp->tcp_iphc == NULL) { 4648 tcp->tcp_iphc_len = 0; 4649 freemsg(tpi_mp); 4650 return (ENOMEM); 4651 } 4652 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4653 tcp->tcp_hdr_grown = B_TRUE; 4654 } 4655 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4656 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4657 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4658 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4659 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4660 4661 /* 4662 * Copy the IP+TCP header template from listener to eager 4663 */ 4664 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4665 if (tcp->tcp_ipversion == IPV6_VERSION) { 4666 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4667 IPPROTO_RAW) { 4668 tcp->tcp_ip6h = 4669 (ip6_t *)(tcp->tcp_iphc + 4670 sizeof (ip6i_t)); 4671 } else { 4672 tcp->tcp_ip6h = 4673 (ip6_t *)(tcp->tcp_iphc); 4674 } 4675 tcp->tcp_ipha = NULL; 4676 } else { 4677 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4678 tcp->tcp_ip6h = NULL; 4679 } 4680 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4681 tcp->tcp_ip_hdr_len); 4682 } else { 4683 /* 4684 * only valid case when ipversion of listener and 4685 * eager differ is when listener is IPv6 and 4686 * eager is IPv4. 4687 * Eager header template has been initialized to the 4688 * maximum v4 header sizes, which includes space for 4689 * TCP and IP options. 4690 */ 4691 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4692 (tcp->tcp_ipversion == IPV4_VERSION)); 4693 ASSERT(tcp->tcp_iphc_len >= 4694 TCP_MAX_COMBINED_HEADER_LENGTH); 4695 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4696 /* copy IP header fields individually */ 4697 tcp->tcp_ipha->ipha_ttl = 4698 ltcp->tcp_ip6h->ip6_hops; 4699 bcopy(ltcp->tcp_tcph->th_lport, 4700 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4701 } 4702 4703 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4704 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4705 sizeof (in_port_t)); 4706 4707 if (ltcp->tcp_lport == 0) { 4708 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4709 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4710 sizeof (in_port_t)); 4711 } 4712 4713 if (tcp->tcp_ipversion == IPV4_VERSION) { 4714 ASSERT(ipha != NULL); 4715 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4716 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4717 4718 /* Source routing option copyover (reverse it) */ 4719 if (tcps->tcps_rev_src_routes) 4720 tcp_opt_reverse(tcp, ipha); 4721 } else { 4722 ASSERT(ip6h != NULL); 4723 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4724 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4725 } 4726 4727 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4728 ASSERT(!tcp->tcp_tconnind_started); 4729 /* 4730 * If the SYN contains a credential, it's a loopback packet; attach 4731 * the credential to the TPI message. 4732 */ 4733 mblk_copycred(tpi_mp, idmp); 4734 4735 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4736 4737 /* Inherit the listener's SSL protection state */ 4738 4739 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4740 kssl_hold_ent(tcp->tcp_kssl_ent); 4741 tcp->tcp_kssl_pending = B_TRUE; 4742 } 4743 4744 /* Inherit the listener's non-STREAMS flag */ 4745 if (IPCL_IS_NONSTR(lconnp)) { 4746 connp->conn_flags |= IPCL_NONSTR; 4747 } 4748 4749 return (0); 4750 } 4751 4752 4753 int 4754 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4755 tcph_t *tcph, mblk_t *idmp) 4756 { 4757 tcp_t *ltcp = lconnp->conn_tcp; 4758 tcp_t *tcp = connp->conn_tcp; 4759 sin_t sin; 4760 mblk_t *tpi_mp = NULL; 4761 int err; 4762 tcp_stack_t *tcps = tcp->tcp_tcps; 4763 4764 sin = sin_null; 4765 sin.sin_addr.s_addr = ipha->ipha_src; 4766 sin.sin_port = *(uint16_t *)tcph->th_lport; 4767 sin.sin_family = AF_INET; 4768 if (ltcp->tcp_recvdstaddr) { 4769 sin_t sind; 4770 4771 sind = sin_null; 4772 sind.sin_addr.s_addr = ipha->ipha_dst; 4773 sind.sin_port = *(uint16_t *)tcph->th_fport; 4774 sind.sin_family = AF_INET; 4775 tpi_mp = mi_tpi_extconn_ind(NULL, 4776 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4777 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4778 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4779 } else { 4780 tpi_mp = mi_tpi_conn_ind(NULL, 4781 (char *)&sin, sizeof (sin_t), 4782 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4783 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4784 } 4785 4786 if (tpi_mp == NULL) { 4787 return (ENOMEM); 4788 } 4789 4790 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4791 connp->conn_send = ip_output; 4792 connp->conn_recv = tcp_input; 4793 connp->conn_fully_bound = B_FALSE; 4794 4795 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4796 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4797 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4798 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4799 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4800 4801 /* Inherit information from the "parent" */ 4802 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4803 tcp->tcp_family = ltcp->tcp_family; 4804 tcp->tcp_wq = ltcp->tcp_wq; 4805 tcp->tcp_rq = ltcp->tcp_rq; 4806 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4807 tcp->tcp_detached = B_TRUE; 4808 SOCK_CONNID_INIT(tcp->tcp_connid); 4809 if ((err = tcp_init_values(tcp)) != 0) { 4810 freemsg(tpi_mp); 4811 return (err); 4812 } 4813 4814 /* 4815 * Let's make sure that eager tcp template has enough space to 4816 * copy IPv4 listener's tcp template. Since the conn_t structure is 4817 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4818 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4819 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4820 * extension headers or with ip6i_t struct). Note that bcopy() below 4821 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4822 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4823 */ 4824 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4825 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4826 4827 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4828 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4829 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4830 tcp->tcp_ttl = ltcp->tcp_ttl; 4831 tcp->tcp_tos = ltcp->tcp_tos; 4832 4833 /* Copy the IP+TCP header template from listener to eager */ 4834 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4835 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4836 tcp->tcp_ip6h = NULL; 4837 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4838 tcp->tcp_ip_hdr_len); 4839 4840 /* Initialize the IP addresses and Ports */ 4841 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4842 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4843 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4844 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4845 4846 /* Source routing option copyover (reverse it) */ 4847 if (tcps->tcps_rev_src_routes) 4848 tcp_opt_reverse(tcp, ipha); 4849 4850 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4851 ASSERT(!tcp->tcp_tconnind_started); 4852 4853 /* 4854 * If the SYN contains a credential, it's a loopback packet; attach 4855 * the credential to the TPI message. 4856 */ 4857 mblk_copycred(tpi_mp, idmp); 4858 4859 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4860 4861 /* Inherit the listener's SSL protection state */ 4862 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4863 kssl_hold_ent(tcp->tcp_kssl_ent); 4864 tcp->tcp_kssl_pending = B_TRUE; 4865 } 4866 4867 /* Inherit the listener's non-STREAMS flag */ 4868 if (IPCL_IS_NONSTR(lconnp)) { 4869 connp->conn_flags |= IPCL_NONSTR; 4870 } 4871 4872 return (0); 4873 } 4874 4875 /* 4876 * sets up conn for ipsec. 4877 * if the first mblk is M_CTL it is consumed and mpp is updated. 4878 * in case of error mpp is freed. 4879 */ 4880 conn_t * 4881 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4882 { 4883 conn_t *connp = tcp->tcp_connp; 4884 conn_t *econnp; 4885 squeue_t *new_sqp; 4886 mblk_t *first_mp = *mpp; 4887 mblk_t *mp = *mpp; 4888 boolean_t mctl_present = B_FALSE; 4889 uint_t ipvers; 4890 4891 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4892 if (econnp == NULL) { 4893 freemsg(first_mp); 4894 return (NULL); 4895 } 4896 if (DB_TYPE(mp) == M_CTL) { 4897 if (mp->b_cont == NULL || 4898 mp->b_cont->b_datap->db_type != M_DATA) { 4899 freemsg(first_mp); 4900 return (NULL); 4901 } 4902 mp = mp->b_cont; 4903 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4904 freemsg(first_mp); 4905 return (NULL); 4906 } 4907 4908 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4909 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4910 mctl_present = B_TRUE; 4911 } else { 4912 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4913 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4914 } 4915 4916 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4917 DB_CKSUMSTART(mp) = 0; 4918 4919 ASSERT(OK_32PTR(mp->b_rptr)); 4920 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4921 if (ipvers == IPV4_VERSION) { 4922 uint16_t *up; 4923 uint32_t ports; 4924 ipha_t *ipha; 4925 4926 ipha = (ipha_t *)mp->b_rptr; 4927 up = (uint16_t *)((uchar_t *)ipha + 4928 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4929 ports = *(uint32_t *)up; 4930 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4931 ipha->ipha_dst, ipha->ipha_src, ports); 4932 } else { 4933 uint16_t *up; 4934 uint32_t ports; 4935 uint16_t ip_hdr_len; 4936 uint8_t *nexthdrp; 4937 ip6_t *ip6h; 4938 tcph_t *tcph; 4939 4940 ip6h = (ip6_t *)mp->b_rptr; 4941 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4942 ip_hdr_len = IPV6_HDR_LEN; 4943 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4944 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4945 CONN_DEC_REF(econnp); 4946 freemsg(first_mp); 4947 return (NULL); 4948 } 4949 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4950 up = (uint16_t *)tcph->th_lport; 4951 ports = *(uint32_t *)up; 4952 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4953 ip6h->ip6_dst, ip6h->ip6_src, ports); 4954 } 4955 4956 /* 4957 * The caller already ensured that there is a sqp present. 4958 */ 4959 econnp->conn_sqp = new_sqp; 4960 econnp->conn_initial_sqp = new_sqp; 4961 4962 if (connp->conn_policy != NULL) { 4963 ipsec_in_t *ii; 4964 ii = (ipsec_in_t *)(first_mp->b_rptr); 4965 ASSERT(ii->ipsec_in_policy == NULL); 4966 IPPH_REFHOLD(connp->conn_policy); 4967 ii->ipsec_in_policy = connp->conn_policy; 4968 4969 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4970 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4971 CONN_DEC_REF(econnp); 4972 freemsg(first_mp); 4973 return (NULL); 4974 } 4975 } 4976 4977 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4978 CONN_DEC_REF(econnp); 4979 freemsg(first_mp); 4980 return (NULL); 4981 } 4982 4983 /* 4984 * If we know we have some policy, pass the "IPSEC" 4985 * options size TCP uses this adjust the MSS. 4986 */ 4987 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4988 if (mctl_present) { 4989 freeb(first_mp); 4990 *mpp = mp; 4991 } 4992 4993 return (econnp); 4994 } 4995 4996 /* 4997 * tcp_get_conn/tcp_free_conn 4998 * 4999 * tcp_get_conn is used to get a clean tcp connection structure. 5000 * It tries to reuse the connections put on the freelist by the 5001 * time_wait_collector failing which it goes to kmem_cache. This 5002 * way has two benefits compared to just allocating from and 5003 * freeing to kmem_cache. 5004 * 1) The time_wait_collector can free (which includes the cleanup) 5005 * outside the squeue. So when the interrupt comes, we have a clean 5006 * connection sitting in the freelist. Obviously, this buys us 5007 * performance. 5008 * 5009 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5010 * has multiple disadvantages - tying up the squeue during alloc, and the 5011 * fact that IPSec policy initialization has to happen here which 5012 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5013 * But allocating the conn/tcp in IP land is also not the best since 5014 * we can't check the 'q' and 'q0' which are protected by squeue and 5015 * blindly allocate memory which might have to be freed here if we are 5016 * not allowed to accept the connection. By using the freelist and 5017 * putting the conn/tcp back in freelist, we don't pay a penalty for 5018 * allocating memory without checking 'q/q0' and freeing it if we can't 5019 * accept the connection. 5020 * 5021 * Care should be taken to put the conn back in the same squeue's freelist 5022 * from which it was allocated. Best results are obtained if conn is 5023 * allocated from listener's squeue and freed to the same. Time wait 5024 * collector will free up the freelist is the connection ends up sitting 5025 * there for too long. 5026 */ 5027 void * 5028 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5029 { 5030 tcp_t *tcp = NULL; 5031 conn_t *connp = NULL; 5032 squeue_t *sqp = (squeue_t *)arg; 5033 tcp_squeue_priv_t *tcp_time_wait; 5034 netstack_t *ns; 5035 mblk_t *tcp_rsrv_mp = NULL; 5036 5037 tcp_time_wait = 5038 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5039 5040 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5041 tcp = tcp_time_wait->tcp_free_list; 5042 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5043 if (tcp != NULL) { 5044 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5045 tcp_time_wait->tcp_free_list_cnt--; 5046 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5047 tcp->tcp_time_wait_next = NULL; 5048 connp = tcp->tcp_connp; 5049 connp->conn_flags |= IPCL_REUSED; 5050 5051 ASSERT(tcp->tcp_tcps == NULL); 5052 ASSERT(connp->conn_netstack == NULL); 5053 ASSERT(tcp->tcp_rsrv_mp != NULL); 5054 ns = tcps->tcps_netstack; 5055 netstack_hold(ns); 5056 connp->conn_netstack = ns; 5057 tcp->tcp_tcps = tcps; 5058 TCPS_REFHOLD(tcps); 5059 ipcl_globalhash_insert(connp); 5060 return ((void *)connp); 5061 } 5062 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5063 /* 5064 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 5065 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5066 */ 5067 tcp_rsrv_mp = allocb(0, BPRI_HI); 5068 if (tcp_rsrv_mp == NULL) 5069 return (NULL); 5070 5071 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5072 tcps->tcps_netstack)) == NULL) { 5073 freeb(tcp_rsrv_mp); 5074 return (NULL); 5075 } 5076 5077 tcp = connp->conn_tcp; 5078 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 5079 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5080 5081 tcp->tcp_tcps = tcps; 5082 TCPS_REFHOLD(tcps); 5083 5084 return ((void *)connp); 5085 } 5086 5087 /* 5088 * Update the cached label for the given tcp_t. This should be called once per 5089 * connection, and before any packets are sent or tcp_process_options is 5090 * invoked. Returns B_FALSE if the correct label could not be constructed. 5091 */ 5092 static boolean_t 5093 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5094 { 5095 conn_t *connp = tcp->tcp_connp; 5096 5097 if (tcp->tcp_ipversion == IPV4_VERSION) { 5098 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5099 int added; 5100 5101 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5102 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5103 return (B_FALSE); 5104 5105 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5106 if (added == -1) 5107 return (B_FALSE); 5108 tcp->tcp_hdr_len += added; 5109 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5110 tcp->tcp_ip_hdr_len += added; 5111 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5112 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5113 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5114 tcp->tcp_hdr_len); 5115 if (added == -1) 5116 return (B_FALSE); 5117 tcp->tcp_hdr_len += added; 5118 tcp->tcp_tcph = (tcph_t *) 5119 ((uchar_t *)tcp->tcp_tcph + added); 5120 tcp->tcp_ip_hdr_len += added; 5121 } 5122 } else { 5123 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5124 5125 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5126 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5127 return (B_FALSE); 5128 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5129 &tcp->tcp_label_len, optbuf) != 0) 5130 return (B_FALSE); 5131 if (tcp_build_hdrs(tcp) != 0) 5132 return (B_FALSE); 5133 } 5134 5135 connp->conn_ulp_labeled = 1; 5136 5137 return (B_TRUE); 5138 } 5139 5140 /* BEGIN CSTYLED */ 5141 /* 5142 * 5143 * The sockfs ACCEPT path: 5144 * ======================= 5145 * 5146 * The eager is now established in its own perimeter as soon as SYN is 5147 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5148 * completes the accept processing on the acceptor STREAM. The sending 5149 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5150 * listener but a TLI/XTI listener completes the accept processing 5151 * on the listener perimeter. 5152 * 5153 * Common control flow for 3 way handshake: 5154 * ---------------------------------------- 5155 * 5156 * incoming SYN (listener perimeter) -> tcp_rput_data() 5157 * -> tcp_conn_request() 5158 * 5159 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5160 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5161 * 5162 * Sockfs ACCEPT Path: 5163 * ------------------- 5164 * 5165 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5166 * as STREAM entry point) 5167 * 5168 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5169 * 5170 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5171 * association (we are not behind eager's squeue but sockfs is protecting us 5172 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5173 * is changed to point at tcp_wput(). 5174 * 5175 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5176 * listener (done on listener's perimeter). 5177 * 5178 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5179 * accept. 5180 * 5181 * TLI/XTI client ACCEPT path: 5182 * --------------------------- 5183 * 5184 * soaccept() sends T_CONN_RES on the listener STREAM. 5185 * 5186 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5187 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5188 * 5189 * Locks: 5190 * ====== 5191 * 5192 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5193 * and listeners->tcp_eager_next_q. 5194 * 5195 * Referencing: 5196 * ============ 5197 * 5198 * 1) We start out in tcp_conn_request by eager placing a ref on 5199 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5200 * 5201 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5202 * doing so we place a ref on the eager. This ref is finally dropped at the 5203 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5204 * reference is dropped by the squeue framework. 5205 * 5206 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5207 * 5208 * The reference must be released by the same entity that added the reference 5209 * In the above scheme, the eager is the entity that adds and releases the 5210 * references. Note that tcp_accept_finish executes in the squeue of the eager 5211 * (albeit after it is attached to the acceptor stream). Though 1. executes 5212 * in the listener's squeue, the eager is nascent at this point and the 5213 * reference can be considered to have been added on behalf of the eager. 5214 * 5215 * Eager getting a Reset or listener closing: 5216 * ========================================== 5217 * 5218 * Once the listener and eager are linked, the listener never does the unlink. 5219 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5220 * a message on all eager perimeter. The eager then does the unlink, clears 5221 * any pointers to the listener's queue and drops the reference to the 5222 * listener. The listener waits in tcp_close outside the squeue until its 5223 * refcount has dropped to 1. This ensures that the listener has waited for 5224 * all eagers to clear their association with the listener. 5225 * 5226 * Similarly, if eager decides to go away, it can unlink itself and close. 5227 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5228 * the reference to eager is still valid because of the extra ref we put 5229 * in tcp_send_conn_ind. 5230 * 5231 * Listener can always locate the eager under the protection 5232 * of the listener->tcp_eager_lock, and then do a refhold 5233 * on the eager during the accept processing. 5234 * 5235 * The acceptor stream accesses the eager in the accept processing 5236 * based on the ref placed on eager before sending T_conn_ind. 5237 * The only entity that can negate this refhold is a listener close 5238 * which is mutually exclusive with an active acceptor stream. 5239 * 5240 * Eager's reference on the listener 5241 * =================================== 5242 * 5243 * If the accept happens (even on a closed eager) the eager drops its 5244 * reference on the listener at the start of tcp_accept_finish. If the 5245 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5246 * the reference is dropped in tcp_closei_local. If the listener closes, 5247 * the reference is dropped in tcp_eager_kill. In all cases the reference 5248 * is dropped while executing in the eager's context (squeue). 5249 */ 5250 /* END CSTYLED */ 5251 5252 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5253 5254 /* 5255 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5256 * tcp_rput_data will not see any SYN packets. 5257 */ 5258 /* ARGSUSED */ 5259 void 5260 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5261 { 5262 tcph_t *tcph; 5263 uint32_t seg_seq; 5264 tcp_t *eager; 5265 uint_t ipvers; 5266 ipha_t *ipha; 5267 ip6_t *ip6h; 5268 int err; 5269 conn_t *econnp = NULL; 5270 squeue_t *new_sqp; 5271 mblk_t *mp1; 5272 uint_t ip_hdr_len; 5273 conn_t *connp = (conn_t *)arg; 5274 tcp_t *tcp = connp->conn_tcp; 5275 cred_t *credp; 5276 tcp_stack_t *tcps = tcp->tcp_tcps; 5277 ip_stack_t *ipst; 5278 5279 if (tcp->tcp_state != TCPS_LISTEN) 5280 goto error2; 5281 5282 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5283 5284 mutex_enter(&tcp->tcp_eager_lock); 5285 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5286 mutex_exit(&tcp->tcp_eager_lock); 5287 TCP_STAT(tcps, tcp_listendrop); 5288 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5289 if (tcp->tcp_debug) { 5290 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5291 "tcp_conn_request: listen backlog (max=%d) " 5292 "overflow (%d pending) on %s", 5293 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5294 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5295 } 5296 goto error2; 5297 } 5298 5299 if (tcp->tcp_conn_req_cnt_q0 >= 5300 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5301 /* 5302 * Q0 is full. Drop a pending half-open req from the queue 5303 * to make room for the new SYN req. Also mark the time we 5304 * drop a SYN. 5305 * 5306 * A more aggressive defense against SYN attack will 5307 * be to set the "tcp_syn_defense" flag now. 5308 */ 5309 TCP_STAT(tcps, tcp_listendropq0); 5310 tcp->tcp_last_rcv_lbolt = lbolt64; 5311 if (!tcp_drop_q0(tcp)) { 5312 mutex_exit(&tcp->tcp_eager_lock); 5313 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5314 if (tcp->tcp_debug) { 5315 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5316 "tcp_conn_request: listen half-open queue " 5317 "(max=%d) full (%d pending) on %s", 5318 tcps->tcps_conn_req_max_q0, 5319 tcp->tcp_conn_req_cnt_q0, 5320 tcp_display(tcp, NULL, 5321 DISP_PORT_ONLY)); 5322 } 5323 goto error2; 5324 } 5325 } 5326 mutex_exit(&tcp->tcp_eager_lock); 5327 5328 /* 5329 * IP adds STRUIO_EAGER and ensures that the received packet is 5330 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5331 * link local address. If IPSec is enabled, db_struioflag has 5332 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5333 * otherwise an error case if neither of them is set. 5334 */ 5335 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5336 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5337 DB_CKSUMSTART(mp) = 0; 5338 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5339 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5340 if (econnp == NULL) 5341 goto error2; 5342 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5343 econnp->conn_sqp = new_sqp; 5344 econnp->conn_initial_sqp = new_sqp; 5345 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5346 /* 5347 * mp is updated in tcp_get_ipsec_conn(). 5348 */ 5349 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5350 if (econnp == NULL) { 5351 /* 5352 * mp freed by tcp_get_ipsec_conn. 5353 */ 5354 return; 5355 } 5356 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5357 } else { 5358 goto error2; 5359 } 5360 5361 ASSERT(DB_TYPE(mp) == M_DATA); 5362 5363 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5364 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5365 ASSERT(OK_32PTR(mp->b_rptr)); 5366 if (ipvers == IPV4_VERSION) { 5367 ipha = (ipha_t *)mp->b_rptr; 5368 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5369 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5370 } else { 5371 ip6h = (ip6_t *)mp->b_rptr; 5372 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5373 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5374 } 5375 5376 if (tcp->tcp_family == AF_INET) { 5377 ASSERT(ipvers == IPV4_VERSION); 5378 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5379 } else { 5380 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5381 } 5382 5383 if (err) 5384 goto error3; 5385 5386 eager = econnp->conn_tcp; 5387 ASSERT(eager->tcp_ordrel_mp == NULL); 5388 5389 if (!IPCL_IS_NONSTR(econnp)) { 5390 /* 5391 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 5392 * at close time, we will always have that to send up. 5393 * Otherwise, we need to do special handling in case the 5394 * allocation fails at that time. 5395 */ 5396 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5397 goto error3; 5398 } 5399 /* Inherit various TCP parameters from the listener */ 5400 eager->tcp_naglim = tcp->tcp_naglim; 5401 eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; 5402 eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; 5403 5404 eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; 5405 eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; 5406 5407 /* 5408 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5409 * If it does not, the eager's receive window will be set to the 5410 * listener's receive window later in this function. 5411 */ 5412 eager->tcp_rwnd = 0; 5413 5414 /* 5415 * Inherit listener's tcp_init_cwnd. Need to do this before 5416 * calling tcp_process_options() where tcp_mss_set() is called 5417 * to set the initial cwnd. 5418 */ 5419 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5420 5421 /* 5422 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5423 * zone id before the accept is completed in tcp_wput_accept(). 5424 */ 5425 econnp->conn_zoneid = connp->conn_zoneid; 5426 econnp->conn_allzones = connp->conn_allzones; 5427 5428 /* Copy nexthop information from listener to eager */ 5429 if (connp->conn_nexthop_set) { 5430 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5431 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5432 } 5433 5434 /* 5435 * TSOL: tsol_input_proc() needs the eager's cred before the 5436 * eager is accepted 5437 */ 5438 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5439 crhold(credp); 5440 5441 ASSERT(econnp->conn_effective_cred == NULL); 5442 if (is_system_labeled()) { 5443 cred_t *cr; 5444 ts_label_t *tsl; 5445 5446 /* 5447 * If this is an MLP connection or a MAC-Exempt connection 5448 * with an unlabeled node, packets are to be 5449 * exchanged using the security label of the received 5450 * SYN packet instead of the server application's label. 5451 */ 5452 if ((cr = msg_getcred(mp, NULL)) != NULL && 5453 (tsl = crgetlabel(cr)) != NULL && 5454 (connp->conn_mlp_type != mlptSingle || 5455 (connp->conn_mac_exempt == B_TRUE && 5456 (tsl->tsl_flags & TSLF_UNLABELED)))) { 5457 if ((econnp->conn_effective_cred = 5458 copycred_from_tslabel(econnp->conn_cred, 5459 tsl, KM_NOSLEEP)) != NULL) { 5460 DTRACE_PROBE2( 5461 syn_accept_peerlabel, 5462 conn_t *, econnp, cred_t *, 5463 econnp->conn_effective_cred); 5464 } else { 5465 DTRACE_PROBE3( 5466 tx__ip__log__error__set__eagercred__tcp, 5467 char *, 5468 "SYN mp(1) label on eager connp(2) failed", 5469 mblk_t *, mp, conn_t *, econnp); 5470 goto error3; 5471 } 5472 } else { 5473 DTRACE_PROBE2(syn_accept, conn_t *, 5474 econnp, cred_t *, econnp->conn_cred) 5475 } 5476 5477 /* 5478 * Verify the destination is allowed to receive packets 5479 * at the security label of the SYN-ACK we are generating. 5480 * tsol_check_dest() may create a new effective cred for 5481 * this connection with a modified label or label flags. 5482 */ 5483 if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) { 5484 uint32_t dst; 5485 IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst); 5486 err = tsol_check_dest(CONN_CRED(econnp), &dst, 5487 IPV4_VERSION, B_FALSE, &cr); 5488 } else { 5489 err = tsol_check_dest(CONN_CRED(econnp), 5490 &econnp->conn_remv6, IPV6_VERSION, 5491 B_FALSE, &cr); 5492 } 5493 if (err != 0) 5494 goto error3; 5495 if (cr != NULL) { 5496 if (econnp->conn_effective_cred != NULL) 5497 crfree(econnp->conn_effective_cred); 5498 econnp->conn_effective_cred = cr; 5499 } 5500 5501 /* 5502 * Generate the security label to be used in the text of 5503 * this connection's outgoing packets. 5504 */ 5505 if (!tcp_update_label(eager, CONN_CRED(econnp))) { 5506 DTRACE_PROBE3( 5507 tx__ip__log__error__connrequest__tcp, 5508 char *, "eager connp(1) label on SYN mp(2) failed", 5509 conn_t *, econnp, mblk_t *, mp); 5510 goto error3; 5511 } 5512 } 5513 5514 eager->tcp_hard_binding = B_TRUE; 5515 5516 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5517 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5518 5519 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5520 if (err != 0) { 5521 tcp_bind_hash_remove(eager); 5522 goto error3; 5523 } 5524 5525 /* 5526 * No need to check for multicast destination since ip will only pass 5527 * up multicasts to those that have expressed interest 5528 * TODO: what about rejecting broadcasts? 5529 * Also check that source is not a multicast or broadcast address. 5530 */ 5531 eager->tcp_state = TCPS_SYN_RCVD; 5532 5533 5534 /* 5535 * There should be no ire in the mp as we are being called after 5536 * receiving the SYN. 5537 */ 5538 ASSERT(tcp_ire_mp(&mp) == NULL); 5539 5540 /* 5541 * Adapt our mss, ttl, ... according to information provided in IRE. 5542 */ 5543 5544 if (tcp_adapt_ire(eager, NULL) == 0) { 5545 /* Undo the bind_hash_insert */ 5546 tcp_bind_hash_remove(eager); 5547 goto error3; 5548 } 5549 5550 /* Process all TCP options. */ 5551 tcp_process_options(eager, tcph); 5552 5553 /* Is the other end ECN capable? */ 5554 if (tcps->tcps_ecn_permitted >= 1 && 5555 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5556 eager->tcp_ecn_ok = B_TRUE; 5557 } 5558 5559 /* 5560 * listeners tcp_recv_hiwater should be the default window size or a 5561 * window size changed via SO_RCVBUF option. First round up the 5562 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5563 * scale option value if needed. Call tcp_rwnd_set() to finish the 5564 * setting. 5565 * 5566 * Note if there is a rpipe metric associated with the remote host, 5567 * we should not inherit receive window size from listener. 5568 */ 5569 eager->tcp_rwnd = MSS_ROUNDUP( 5570 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5571 eager->tcp_rwnd), eager->tcp_mss); 5572 if (eager->tcp_snd_ws_ok) 5573 tcp_set_ws_value(eager); 5574 /* 5575 * Note that this is the only place tcp_rwnd_set() is called for 5576 * accepting a connection. We need to call it here instead of 5577 * after the 3-way handshake because we need to tell the other 5578 * side our rwnd in the SYN-ACK segment. 5579 */ 5580 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5581 5582 /* 5583 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5584 * via soaccept()->soinheritoptions() which essentially applies 5585 * all the listener options to the new STREAM. The options that we 5586 * need to take care of are: 5587 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5588 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5589 * SO_SNDBUF, SO_RCVBUF. 5590 * 5591 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5592 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5593 * tcp_maxpsz_set() gets called later from 5594 * tcp_accept_finish(), the option takes effect. 5595 * 5596 */ 5597 /* Set the TCP options */ 5598 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5599 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5600 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5601 eager->tcp_oobinline = tcp->tcp_oobinline; 5602 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5603 eager->tcp_broadcast = tcp->tcp_broadcast; 5604 eager->tcp_useloopback = tcp->tcp_useloopback; 5605 eager->tcp_dontroute = tcp->tcp_dontroute; 5606 eager->tcp_debug = tcp->tcp_debug; 5607 eager->tcp_linger = tcp->tcp_linger; 5608 eager->tcp_lingertime = tcp->tcp_lingertime; 5609 if (tcp->tcp_ka_enabled) 5610 eager->tcp_ka_enabled = 1; 5611 5612 ASSERT(eager->tcp_recv_hiwater != 0 && 5613 eager->tcp_recv_hiwater == eager->tcp_rwnd); 5614 5615 /* Set the IP options */ 5616 econnp->conn_broadcast = connp->conn_broadcast; 5617 econnp->conn_loopback = connp->conn_loopback; 5618 econnp->conn_dontroute = connp->conn_dontroute; 5619 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5620 5621 /* Put a ref on the listener for the eager. */ 5622 CONN_INC_REF(connp); 5623 mutex_enter(&tcp->tcp_eager_lock); 5624 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5625 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5626 tcp->tcp_eager_next_q0 = eager; 5627 eager->tcp_eager_prev_q0 = tcp; 5628 5629 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5630 eager->tcp_listener = tcp; 5631 eager->tcp_saved_listener = tcp; 5632 5633 /* 5634 * Tag this detached tcp vector for later retrieval 5635 * by our listener client in tcp_accept(). 5636 */ 5637 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5638 tcp->tcp_conn_req_cnt_q0++; 5639 if (++tcp->tcp_conn_req_seqnum == -1) { 5640 /* 5641 * -1 is "special" and defined in TPI as something 5642 * that should never be used in T_CONN_IND 5643 */ 5644 ++tcp->tcp_conn_req_seqnum; 5645 } 5646 mutex_exit(&tcp->tcp_eager_lock); 5647 5648 if (tcp->tcp_syn_defense) { 5649 /* Don't drop the SYN that comes from a good IP source */ 5650 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5651 if (addr_cache != NULL && eager->tcp_remote == 5652 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5653 eager->tcp_dontdrop = B_TRUE; 5654 } 5655 } 5656 5657 /* 5658 * We need to insert the eager in its own perimeter but as soon 5659 * as we do that, we expose the eager to the classifier and 5660 * should not touch any field outside the eager's perimeter. 5661 * So do all the work necessary before inserting the eager 5662 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5663 * will succeed but undo everything if it fails. 5664 */ 5665 seg_seq = ABE32_TO_U32(tcph->th_seq); 5666 eager->tcp_irs = seg_seq; 5667 eager->tcp_rack = seg_seq; 5668 eager->tcp_rnxt = seg_seq + 1; 5669 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5670 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5671 eager->tcp_state = TCPS_SYN_RCVD; 5672 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5673 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5674 if (mp1 == NULL) { 5675 /* 5676 * Increment the ref count as we are going to 5677 * enqueueing an mp in squeue 5678 */ 5679 CONN_INC_REF(econnp); 5680 goto error; 5681 } 5682 5683 /* 5684 * Note that in theory this should use the current pid 5685 * so that getpeerucred on the client returns the actual listener 5686 * that does accept. But accept() hasn't been called yet. We could use 5687 * the pid of the process that did bind/listen on the server. 5688 * However, with common usage like inetd() the bind/listen can be done 5689 * by a different process than the accept(). 5690 * Hence we do the simple thing of using the open pid here. 5691 * Note that db_credp is set later in tcp_send_data(). 5692 */ 5693 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5694 eager->tcp_cpid = tcp->tcp_cpid; 5695 eager->tcp_open_time = lbolt64; 5696 5697 /* 5698 * We need to start the rto timer. In normal case, we start 5699 * the timer after sending the packet on the wire (or at 5700 * least believing that packet was sent by waiting for 5701 * CALL_IP_WPUT() to return). Since this is the first packet 5702 * being sent on the wire for the eager, our initial tcp_rto 5703 * is at least tcp_rexmit_interval_min which is a fairly 5704 * large value to allow the algorithm to adjust slowly to large 5705 * fluctuations of RTT during first few transmissions. 5706 * 5707 * Starting the timer first and then sending the packet in this 5708 * case shouldn't make much difference since tcp_rexmit_interval_min 5709 * is of the order of several 100ms and starting the timer 5710 * first and then sending the packet will result in difference 5711 * of few micro seconds. 5712 * 5713 * Without this optimization, we are forced to hold the fanout 5714 * lock across the ipcl_bind_insert() and sending the packet 5715 * so that we don't race against an incoming packet (maybe RST) 5716 * for this eager. 5717 * 5718 * It is necessary to acquire an extra reference on the eager 5719 * at this point and hold it until after tcp_send_data() to 5720 * ensure against an eager close race. 5721 */ 5722 5723 CONN_INC_REF(eager->tcp_connp); 5724 5725 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5726 5727 /* 5728 * Insert the eager in its own perimeter now. We are ready to deal 5729 * with any packets on eager. 5730 */ 5731 if (eager->tcp_ipversion == IPV4_VERSION) { 5732 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5733 goto error; 5734 } 5735 } else { 5736 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5737 goto error; 5738 } 5739 } 5740 5741 /* mark conn as fully-bound */ 5742 econnp->conn_fully_bound = B_TRUE; 5743 5744 /* Send the SYN-ACK */ 5745 tcp_send_data(eager, eager->tcp_wq, mp1); 5746 CONN_DEC_REF(eager->tcp_connp); 5747 freemsg(mp); 5748 5749 return; 5750 error: 5751 freemsg(mp1); 5752 eager->tcp_closemp_used = B_TRUE; 5753 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5754 mp1 = &eager->tcp_closemp; 5755 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5756 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5757 5758 /* 5759 * If a connection already exists, send the mp to that connections so 5760 * that it can be appropriately dealt with. 5761 */ 5762 ipst = tcps->tcps_netstack->netstack_ip; 5763 5764 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5765 if (!IPCL_IS_CONNECTED(econnp)) { 5766 /* 5767 * Something bad happened. ipcl_conn_insert() 5768 * failed because a connection already existed 5769 * in connected hash but we can't find it 5770 * anymore (someone blew it away). Just 5771 * free this message and hopefully remote 5772 * will retransmit at which time the SYN can be 5773 * treated as a new connection or dealth with 5774 * a TH_RST if a connection already exists. 5775 */ 5776 CONN_DEC_REF(econnp); 5777 freemsg(mp); 5778 } else { 5779 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5780 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5781 } 5782 } else { 5783 /* Nobody wants this packet */ 5784 freemsg(mp); 5785 } 5786 return; 5787 error3: 5788 CONN_DEC_REF(econnp); 5789 error2: 5790 freemsg(mp); 5791 } 5792 5793 /* 5794 * In an ideal case of vertical partition in NUMA architecture, its 5795 * beneficial to have the listener and all the incoming connections 5796 * tied to the same squeue. The other constraint is that incoming 5797 * connections should be tied to the squeue attached to interrupted 5798 * CPU for obvious locality reason so this leaves the listener to 5799 * be tied to the same squeue. Our only problem is that when listener 5800 * is binding, the CPU that will get interrupted by the NIC whose 5801 * IP address the listener is binding to is not even known. So 5802 * the code below allows us to change that binding at the time the 5803 * CPU is interrupted by virtue of incoming connection's squeue. 5804 * 5805 * This is usefull only in case of a listener bound to a specific IP 5806 * address. For other kind of listeners, they get bound the 5807 * very first time and there is no attempt to rebind them. 5808 */ 5809 void 5810 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5811 { 5812 conn_t *connp = (conn_t *)arg; 5813 squeue_t *sqp = (squeue_t *)arg2; 5814 squeue_t *new_sqp; 5815 uint32_t conn_flags; 5816 5817 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5818 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5819 } else { 5820 goto done; 5821 } 5822 5823 if (connp->conn_fanout == NULL) 5824 goto done; 5825 5826 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5827 mutex_enter(&connp->conn_fanout->connf_lock); 5828 mutex_enter(&connp->conn_lock); 5829 /* 5830 * No one from read or write side can access us now 5831 * except for already queued packets on this squeue. 5832 * But since we haven't changed the squeue yet, they 5833 * can't execute. If they are processed after we have 5834 * changed the squeue, they are sent back to the 5835 * correct squeue down below. 5836 * But a listner close can race with processing of 5837 * incoming SYN. If incoming SYN processing changes 5838 * the squeue then the listener close which is waiting 5839 * to enter the squeue would operate on the wrong 5840 * squeue. Hence we don't change the squeue here unless 5841 * the refcount is exactly the minimum refcount. The 5842 * minimum refcount of 4 is counted as - 1 each for 5843 * TCP and IP, 1 for being in the classifier hash, and 5844 * 1 for the mblk being processed. 5845 */ 5846 5847 if (connp->conn_ref != 4 || 5848 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5849 mutex_exit(&connp->conn_lock); 5850 mutex_exit(&connp->conn_fanout->connf_lock); 5851 goto done; 5852 } 5853 if (connp->conn_sqp != new_sqp) { 5854 while (connp->conn_sqp != new_sqp) 5855 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5856 } 5857 5858 do { 5859 conn_flags = connp->conn_flags; 5860 conn_flags |= IPCL_FULLY_BOUND; 5861 (void) cas32(&connp->conn_flags, connp->conn_flags, 5862 conn_flags); 5863 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5864 5865 mutex_exit(&connp->conn_fanout->connf_lock); 5866 mutex_exit(&connp->conn_lock); 5867 } 5868 5869 done: 5870 if (connp->conn_sqp != sqp) { 5871 CONN_INC_REF(connp); 5872 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5873 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5874 } else { 5875 tcp_conn_request(connp, mp, sqp); 5876 } 5877 } 5878 5879 /* 5880 * Successful connect request processing begins when our client passes 5881 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5882 * our T_OK_ACK reply message upstream. The control flow looks like this: 5883 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5884 * upstream <- tcp_rput() <- IP 5885 * After various error checks are completed, tcp_tpi_connect() lays 5886 * the target address and port into the composite header template, 5887 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5888 * request followed by an IRE request, and passes the three mblk message 5889 * down to IP looking like this: 5890 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5891 * Processing continues in tcp_rput() when we receive the following message: 5892 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5893 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5894 * to fire off the connection request, and then passes the T_OK_ACK mblk 5895 * upstream that we filled in below. There are, of course, numerous 5896 * error conditions along the way which truncate the processing described 5897 * above. 5898 */ 5899 static void 5900 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5901 { 5902 sin_t *sin; 5903 queue_t *q = tcp->tcp_wq; 5904 struct T_conn_req *tcr; 5905 struct sockaddr *sa; 5906 socklen_t len; 5907 int error; 5908 cred_t *cr; 5909 pid_t cpid; 5910 5911 /* 5912 * All Solaris components should pass a db_credp 5913 * for this TPI message, hence we ASSERT. 5914 * But in case there is some other M_PROTO that looks 5915 * like a TPI message sent by some other kernel 5916 * component, we check and return an error. 5917 */ 5918 cr = msg_getcred(mp, &cpid); 5919 ASSERT(cr != NULL); 5920 if (cr == NULL) { 5921 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5922 return; 5923 } 5924 5925 tcr = (struct T_conn_req *)mp->b_rptr; 5926 5927 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5928 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5929 tcp_err_ack(tcp, mp, TPROTO, 0); 5930 return; 5931 } 5932 5933 /* 5934 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5935 * will always have that to send up. Otherwise, we need to do 5936 * special handling in case the allocation fails at that time. 5937 * If the end point is TPI, the tcp_t can be reused and the 5938 * tcp_ordrel_mp may be allocated already. 5939 */ 5940 if (tcp->tcp_ordrel_mp == NULL) { 5941 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5942 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5943 return; 5944 } 5945 } 5946 5947 /* 5948 * Determine packet type based on type of address passed in 5949 * the request should contain an IPv4 or IPv6 address. 5950 * Make sure that address family matches the type of 5951 * family of the the address passed down 5952 */ 5953 switch (tcr->DEST_length) { 5954 default: 5955 tcp_err_ack(tcp, mp, TBADADDR, 0); 5956 return; 5957 5958 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5959 /* 5960 * XXX: The check for valid DEST_length was not there 5961 * in earlier releases and some buggy 5962 * TLI apps (e.g Sybase) got away with not feeding 5963 * in sin_zero part of address. 5964 * We allow that bug to keep those buggy apps humming. 5965 * Test suites require the check on DEST_length. 5966 * We construct a new mblk with valid DEST_length 5967 * free the original so the rest of the code does 5968 * not have to keep track of this special shorter 5969 * length address case. 5970 */ 5971 mblk_t *nmp; 5972 struct T_conn_req *ntcr; 5973 sin_t *nsin; 5974 5975 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5976 tcr->OPT_length, BPRI_HI); 5977 if (nmp == NULL) { 5978 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5979 return; 5980 } 5981 ntcr = (struct T_conn_req *)nmp->b_rptr; 5982 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5983 ntcr->PRIM_type = T_CONN_REQ; 5984 ntcr->DEST_length = sizeof (sin_t); 5985 ntcr->DEST_offset = sizeof (struct T_conn_req); 5986 5987 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5988 *nsin = sin_null; 5989 /* Get pointer to shorter address to copy from original mp */ 5990 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5991 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5992 if (sin == NULL || !OK_32PTR((char *)sin)) { 5993 freemsg(nmp); 5994 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5995 return; 5996 } 5997 nsin->sin_family = sin->sin_family; 5998 nsin->sin_port = sin->sin_port; 5999 nsin->sin_addr = sin->sin_addr; 6000 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6001 nmp->b_wptr = (uchar_t *)&nsin[1]; 6002 if (tcr->OPT_length != 0) { 6003 ntcr->OPT_length = tcr->OPT_length; 6004 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6005 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6006 (uchar_t *)ntcr + ntcr->OPT_offset, 6007 tcr->OPT_length); 6008 nmp->b_wptr += tcr->OPT_length; 6009 } 6010 freemsg(mp); /* original mp freed */ 6011 mp = nmp; /* re-initialize original variables */ 6012 tcr = ntcr; 6013 } 6014 /* FALLTHRU */ 6015 6016 case sizeof (sin_t): 6017 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6018 sizeof (sin_t)); 6019 len = sizeof (sin_t); 6020 break; 6021 6022 case sizeof (sin6_t): 6023 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6024 sizeof (sin6_t)); 6025 len = sizeof (sin6_t); 6026 break; 6027 } 6028 6029 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6030 if (error != 0) { 6031 tcp_err_ack(tcp, mp, TSYSERR, error); 6032 return; 6033 } 6034 6035 /* 6036 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6037 * should key on their sequence number and cut them loose. 6038 */ 6039 6040 /* 6041 * If options passed in, feed it for verification and handling 6042 */ 6043 if (tcr->OPT_length != 0) { 6044 mblk_t *ok_mp; 6045 mblk_t *discon_mp; 6046 mblk_t *conn_opts_mp; 6047 int t_error, sys_error, do_disconnect; 6048 6049 conn_opts_mp = NULL; 6050 6051 if (tcp_conprim_opt_process(tcp, mp, 6052 &do_disconnect, &t_error, &sys_error) < 0) { 6053 if (do_disconnect) { 6054 ASSERT(t_error == 0 && sys_error == 0); 6055 discon_mp = mi_tpi_discon_ind(NULL, 6056 ECONNREFUSED, 0); 6057 if (!discon_mp) { 6058 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6059 TSYSERR, ENOMEM); 6060 return; 6061 } 6062 ok_mp = mi_tpi_ok_ack_alloc(mp); 6063 if (!ok_mp) { 6064 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6065 TSYSERR, ENOMEM); 6066 return; 6067 } 6068 qreply(q, ok_mp); 6069 qreply(q, discon_mp); /* no flush! */ 6070 } else { 6071 ASSERT(t_error != 0); 6072 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6073 sys_error); 6074 } 6075 return; 6076 } 6077 /* 6078 * Success in setting options, the mp option buffer represented 6079 * by OPT_length/offset has been potentially modified and 6080 * contains results of option processing. We copy it in 6081 * another mp to save it for potentially influencing returning 6082 * it in T_CONN_CONN. 6083 */ 6084 if (tcr->OPT_length != 0) { /* there are resulting options */ 6085 conn_opts_mp = copyb(mp); 6086 if (!conn_opts_mp) { 6087 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6088 TSYSERR, ENOMEM); 6089 return; 6090 } 6091 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6092 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6093 /* 6094 * Note: 6095 * These resulting option negotiation can include any 6096 * end-to-end negotiation options but there no such 6097 * thing (yet?) in our TCP/IP. 6098 */ 6099 } 6100 } 6101 6102 /* call the non-TPI version */ 6103 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6104 if (error < 0) { 6105 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6106 } else if (error > 0) { 6107 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6108 } else { 6109 mp = mi_tpi_ok_ack_alloc(mp); 6110 } 6111 6112 /* 6113 * Note: Code below is the "failure" case 6114 */ 6115 /* return error ack and blow away saved option results if any */ 6116 connect_failed: 6117 if (mp != NULL) 6118 putnext(tcp->tcp_rq, mp); 6119 else { 6120 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6121 TSYSERR, ENOMEM); 6122 } 6123 } 6124 6125 /* 6126 * Handle connect to IPv4 destinations, including connections for AF_INET6 6127 * sockets connecting to IPv4 mapped IPv6 destinations. 6128 */ 6129 static int 6130 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6131 uint_t srcid, cred_t *cr, pid_t pid) 6132 { 6133 tcph_t *tcph; 6134 mblk_t *mp; 6135 ipaddr_t dstaddr = *dstaddrp; 6136 int32_t oldstate; 6137 uint16_t lport; 6138 int error = 0; 6139 tcp_stack_t *tcps = tcp->tcp_tcps; 6140 6141 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6142 6143 /* Check for attempt to connect to INADDR_ANY */ 6144 if (dstaddr == INADDR_ANY) { 6145 /* 6146 * SunOS 4.x and 4.3 BSD allow an application 6147 * to connect a TCP socket to INADDR_ANY. 6148 * When they do this, the kernel picks the 6149 * address of one interface and uses it 6150 * instead. The kernel usually ends up 6151 * picking the address of the loopback 6152 * interface. This is an undocumented feature. 6153 * However, we provide the same thing here 6154 * in order to have source and binary 6155 * compatibility with SunOS 4.x. 6156 * Update the T_CONN_REQ (sin/sin6) since it is used to 6157 * generate the T_CONN_CON. 6158 */ 6159 dstaddr = htonl(INADDR_LOOPBACK); 6160 *dstaddrp = dstaddr; 6161 } 6162 6163 /* Handle __sin6_src_id if socket not bound to an IP address */ 6164 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6165 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6166 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6167 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6168 tcp->tcp_ipha->ipha_src); 6169 } 6170 6171 /* 6172 * Don't let an endpoint connect to itself. Note that 6173 * the test here does not catch the case where the 6174 * source IP addr was left unspecified by the user. In 6175 * this case, the source addr is set in tcp_adapt_ire() 6176 * using the reply to the T_BIND message that we send 6177 * down to IP here and the check is repeated in tcp_rput_other. 6178 */ 6179 if (dstaddr == tcp->tcp_ipha->ipha_src && 6180 dstport == tcp->tcp_lport) { 6181 error = -TBADADDR; 6182 goto failed; 6183 } 6184 6185 /* 6186 * Verify the destination is allowed to receive packets 6187 * at the security label of the connection we are initiating. 6188 * tsol_check_dest() may create a new effective cred for this 6189 * connection with a modified label or label flags. 6190 */ 6191 if (is_system_labeled()) { 6192 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6193 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6194 &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_exempt, 6195 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6196 if (error != EHOSTUNREACH) 6197 error = -TSYSERR; 6198 goto failed; 6199 } 6200 } 6201 6202 tcp->tcp_ipha->ipha_dst = dstaddr; 6203 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6204 6205 /* 6206 * Massage a source route if any putting the first hop 6207 * in iph_dst. Compute a starting value for the checksum which 6208 * takes into account that the original iph_dst should be 6209 * included in the checksum but that ip will include the 6210 * first hop in the source route in the tcp checksum. 6211 */ 6212 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6213 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6214 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6215 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6216 if ((int)tcp->tcp_sum < 0) 6217 tcp->tcp_sum--; 6218 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6219 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6220 (tcp->tcp_sum >> 16)); 6221 tcph = tcp->tcp_tcph; 6222 *(uint16_t *)tcph->th_fport = dstport; 6223 tcp->tcp_fport = dstport; 6224 6225 oldstate = tcp->tcp_state; 6226 /* 6227 * At this point the remote destination address and remote port fields 6228 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6229 * have to see which state tcp was in so we can take apropriate action. 6230 */ 6231 if (oldstate == TCPS_IDLE) { 6232 /* 6233 * We support a quick connect capability here, allowing 6234 * clients to transition directly from IDLE to SYN_SENT 6235 * tcp_bindi will pick an unused port, insert the connection 6236 * in the bind hash and transition to BOUND state. 6237 */ 6238 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6239 tcp, B_TRUE); 6240 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6241 B_FALSE, B_FALSE); 6242 if (lport == 0) { 6243 error = -TNOADDR; 6244 goto failed; 6245 } 6246 } 6247 tcp->tcp_state = TCPS_SYN_SENT; 6248 6249 mp = allocb(sizeof (ire_t), BPRI_HI); 6250 if (mp == NULL) { 6251 tcp->tcp_state = oldstate; 6252 error = ENOMEM; 6253 goto failed; 6254 } 6255 6256 mp->b_wptr += sizeof (ire_t); 6257 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6258 tcp->tcp_hard_binding = 1; 6259 6260 /* 6261 * We need to make sure that the conn_recv is set to a non-null 6262 * value before we insert the conn_t into the classifier table. 6263 * This is to avoid a race with an incoming packet which does 6264 * an ipcl_classify(). 6265 */ 6266 tcp->tcp_connp->conn_recv = tcp_input; 6267 6268 if (tcp->tcp_family == AF_INET) { 6269 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6270 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6271 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6272 } else { 6273 in6_addr_t v6src; 6274 if (tcp->tcp_ipversion == IPV4_VERSION) { 6275 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6276 } else { 6277 v6src = tcp->tcp_ip6h->ip6_src; 6278 } 6279 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6280 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6281 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6282 } 6283 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6284 tcp->tcp_active_open = 1; 6285 6286 6287 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6288 failed: 6289 /* return error ack and blow away saved option results if any */ 6290 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6291 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6292 return (error); 6293 } 6294 6295 /* 6296 * Handle connect to IPv6 destinations. 6297 */ 6298 static int 6299 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6300 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6301 { 6302 tcph_t *tcph; 6303 mblk_t *mp; 6304 ip6_rthdr_t *rth; 6305 int32_t oldstate; 6306 uint16_t lport; 6307 tcp_stack_t *tcps = tcp->tcp_tcps; 6308 int error = 0; 6309 conn_t *connp = tcp->tcp_connp; 6310 6311 ASSERT(tcp->tcp_family == AF_INET6); 6312 6313 /* 6314 * If we're here, it means that the destination address is a native 6315 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6316 * reason why it might not be IPv6 is if the socket was bound to an 6317 * IPv4-mapped IPv6 address. 6318 */ 6319 if (tcp->tcp_ipversion != IPV6_VERSION) { 6320 return (-TBADADDR); 6321 } 6322 6323 /* 6324 * Interpret a zero destination to mean loopback. 6325 * Update the T_CONN_REQ (sin/sin6) since it is used to 6326 * generate the T_CONN_CON. 6327 */ 6328 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6329 *dstaddrp = ipv6_loopback; 6330 } 6331 6332 /* Handle __sin6_src_id if socket not bound to an IP address */ 6333 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6334 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6335 connp->conn_zoneid, tcps->tcps_netstack); 6336 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6337 } 6338 6339 /* 6340 * Take care of the scope_id now and add ip6i_t 6341 * if ip6i_t is not already allocated through TCP 6342 * sticky options. At this point tcp_ip6h does not 6343 * have dst info, thus use dstaddrp. 6344 */ 6345 if (scope_id != 0 && 6346 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6347 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6348 ip6i_t *ip6i; 6349 6350 ipp->ipp_ifindex = scope_id; 6351 ip6i = (ip6i_t *)tcp->tcp_iphc; 6352 6353 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6354 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6355 /* Already allocated */ 6356 ip6i->ip6i_flags |= IP6I_IFINDEX; 6357 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6358 ipp->ipp_fields |= IPPF_SCOPE_ID; 6359 } else { 6360 int reterr; 6361 6362 ipp->ipp_fields |= IPPF_SCOPE_ID; 6363 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6364 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6365 reterr = tcp_build_hdrs(tcp); 6366 if (reterr != 0) 6367 goto failed; 6368 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6369 } 6370 } 6371 6372 /* 6373 * Don't let an endpoint connect to itself. Note that 6374 * the test here does not catch the case where the 6375 * source IP addr was left unspecified by the user. In 6376 * this case, the source addr is set in tcp_adapt_ire() 6377 * using the reply to the T_BIND message that we send 6378 * down to IP here and the check is repeated in tcp_rput_other. 6379 */ 6380 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6381 (dstport == tcp->tcp_lport)) { 6382 error = -TBADADDR; 6383 goto failed; 6384 } 6385 6386 /* 6387 * Verify the destination is allowed to receive packets 6388 * at the security label of the connection we are initiating. 6389 * check_dest may create a new effective cred for this 6390 * connection with a modified label or label flags. 6391 */ 6392 if (is_system_labeled()) { 6393 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6394 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6395 dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_exempt, 6396 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6397 if (error != EHOSTUNREACH) 6398 error = -TSYSERR; 6399 goto failed; 6400 } 6401 } 6402 6403 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6404 tcp->tcp_remote_v6 = *dstaddrp; 6405 tcp->tcp_ip6h->ip6_vcf = 6406 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6407 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6408 6409 /* 6410 * Massage a routing header (if present) putting the first hop 6411 * in ip6_dst. Compute a starting value for the checksum which 6412 * takes into account that the original ip6_dst should be 6413 * included in the checksum but that ip will include the 6414 * first hop in the source route in the tcp checksum. 6415 */ 6416 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6417 if (rth != NULL) { 6418 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6419 tcps->tcps_netstack); 6420 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6421 (tcp->tcp_sum >> 16)); 6422 } else { 6423 tcp->tcp_sum = 0; 6424 } 6425 6426 tcph = tcp->tcp_tcph; 6427 *(uint16_t *)tcph->th_fport = dstport; 6428 tcp->tcp_fport = dstport; 6429 6430 oldstate = tcp->tcp_state; 6431 /* 6432 * At this point the remote destination address and remote port fields 6433 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6434 * have to see which state tcp was in so we can take apropriate action. 6435 */ 6436 if (oldstate == TCPS_IDLE) { 6437 /* 6438 * We support a quick connect capability here, allowing 6439 * clients to transition directly from IDLE to SYN_SENT 6440 * tcp_bindi will pick an unused port, insert the connection 6441 * in the bind hash and transition to BOUND state. 6442 */ 6443 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6444 tcp, B_TRUE); 6445 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6446 B_FALSE, B_FALSE); 6447 if (lport == 0) { 6448 error = -TNOADDR; 6449 goto failed; 6450 } 6451 } 6452 tcp->tcp_state = TCPS_SYN_SENT; 6453 6454 mp = allocb(sizeof (ire_t), BPRI_HI); 6455 if (mp != NULL) { 6456 in6_addr_t v6src; 6457 6458 mp->b_wptr += sizeof (ire_t); 6459 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6460 6461 tcp->tcp_hard_binding = 1; 6462 6463 /* 6464 * We need to make sure that the conn_recv is set to a non-null 6465 * value before we insert the conn_t into the classifier table. 6466 * This is to avoid a race with an incoming packet which does 6467 * an ipcl_classify(). 6468 */ 6469 tcp->tcp_connp->conn_recv = tcp_input; 6470 6471 if (tcp->tcp_ipversion == IPV4_VERSION) { 6472 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6473 } else { 6474 v6src = tcp->tcp_ip6h->ip6_src; 6475 } 6476 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6477 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6478 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6479 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6480 tcp->tcp_active_open = 1; 6481 6482 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6483 } 6484 /* Error case */ 6485 tcp->tcp_state = oldstate; 6486 error = ENOMEM; 6487 6488 failed: 6489 /* return error ack and blow away saved option results if any */ 6490 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6491 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6492 return (error); 6493 } 6494 6495 /* 6496 * We need a stream q for detached closing tcp connections 6497 * to use. Our client hereby indicates that this q is the 6498 * one to use. 6499 */ 6500 static void 6501 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6502 { 6503 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6504 queue_t *q = tcp->tcp_wq; 6505 tcp_stack_t *tcps = tcp->tcp_tcps; 6506 6507 #ifdef NS_DEBUG 6508 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6509 tcps->tcps_netstack->netstack_stackid); 6510 #endif 6511 mp->b_datap->db_type = M_IOCACK; 6512 iocp->ioc_count = 0; 6513 mutex_enter(&tcps->tcps_g_q_lock); 6514 if (tcps->tcps_g_q != NULL) { 6515 mutex_exit(&tcps->tcps_g_q_lock); 6516 iocp->ioc_error = EALREADY; 6517 } else { 6518 int error = 0; 6519 conn_t *connp = tcp->tcp_connp; 6520 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6521 6522 tcps->tcps_g_q = tcp->tcp_rq; 6523 mutex_exit(&tcps->tcps_g_q_lock); 6524 iocp->ioc_error = 0; 6525 iocp->ioc_rval = 0; 6526 /* 6527 * We are passing tcp_sticky_ipp as NULL 6528 * as it is not useful for tcp_default queue 6529 * 6530 * Set conn_recv just in case. 6531 */ 6532 tcp->tcp_connp->conn_recv = tcp_conn_request; 6533 6534 ASSERT(connp->conn_af_isv6); 6535 connp->conn_ulp = IPPROTO_TCP; 6536 6537 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6538 NULL || connp->conn_mac_exempt) { 6539 error = -TBADADDR; 6540 } else { 6541 connp->conn_srcv6 = ipv6_all_zeros; 6542 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6543 } 6544 6545 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6546 } 6547 qreply(q, mp); 6548 } 6549 6550 static int 6551 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6552 { 6553 tcp_t *ltcp = NULL; 6554 conn_t *connp; 6555 tcp_stack_t *tcps = tcp->tcp_tcps; 6556 6557 /* 6558 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6559 * when the stream is in BOUND state. Do not send a reset, 6560 * since the destination IP address is not valid, and it can 6561 * be the initialized value of all zeros (broadcast address). 6562 * 6563 * XXX There won't be any pending bind request to IP. 6564 */ 6565 if (tcp->tcp_state <= TCPS_BOUND) { 6566 if (tcp->tcp_debug) { 6567 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6568 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6569 } 6570 return (TOUTSTATE); 6571 } 6572 6573 6574 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6575 6576 /* 6577 * According to TPI, for non-listeners, ignore seqnum 6578 * and disconnect. 6579 * Following interpretation of -1 seqnum is historical 6580 * and implied TPI ? (TPI only states that for T_CONN_IND, 6581 * a valid seqnum should not be -1). 6582 * 6583 * -1 means disconnect everything 6584 * regardless even on a listener. 6585 */ 6586 6587 int old_state = tcp->tcp_state; 6588 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6589 6590 /* 6591 * The connection can't be on the tcp_time_wait_head list 6592 * since it is not detached. 6593 */ 6594 ASSERT(tcp->tcp_time_wait_next == NULL); 6595 ASSERT(tcp->tcp_time_wait_prev == NULL); 6596 ASSERT(tcp->tcp_time_wait_expire == 0); 6597 ltcp = NULL; 6598 /* 6599 * If it used to be a listener, check to make sure no one else 6600 * has taken the port before switching back to LISTEN state. 6601 */ 6602 if (tcp->tcp_ipversion == IPV4_VERSION) { 6603 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6604 tcp->tcp_ipha->ipha_src, 6605 tcp->tcp_connp->conn_zoneid, ipst); 6606 if (connp != NULL) 6607 ltcp = connp->conn_tcp; 6608 } else { 6609 /* Allow tcp_bound_if listeners? */ 6610 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6611 &tcp->tcp_ip6h->ip6_src, 0, 6612 tcp->tcp_connp->conn_zoneid, ipst); 6613 if (connp != NULL) 6614 ltcp = connp->conn_tcp; 6615 } 6616 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6617 tcp->tcp_state = TCPS_LISTEN; 6618 } else if (old_state > TCPS_BOUND) { 6619 tcp->tcp_conn_req_max = 0; 6620 tcp->tcp_state = TCPS_BOUND; 6621 } 6622 if (ltcp != NULL) 6623 CONN_DEC_REF(ltcp->tcp_connp); 6624 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6625 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6626 } else if (old_state == TCPS_ESTABLISHED || 6627 old_state == TCPS_CLOSE_WAIT) { 6628 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6629 } 6630 6631 if (tcp->tcp_fused) 6632 tcp_unfuse(tcp); 6633 6634 mutex_enter(&tcp->tcp_eager_lock); 6635 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6636 (tcp->tcp_conn_req_cnt_q != 0)) { 6637 tcp_eager_cleanup(tcp, 0); 6638 } 6639 mutex_exit(&tcp->tcp_eager_lock); 6640 6641 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6642 tcp->tcp_rnxt, TH_RST | TH_ACK); 6643 6644 tcp_reinit(tcp); 6645 6646 return (0); 6647 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6648 return (TBADSEQ); 6649 } 6650 return (0); 6651 } 6652 6653 /* 6654 * Our client hereby directs us to reject the connection request 6655 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6656 * of sending the appropriate RST, not an ICMP error. 6657 */ 6658 static void 6659 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6660 { 6661 t_scalar_t seqnum; 6662 int error; 6663 6664 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6665 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6666 tcp_err_ack(tcp, mp, TPROTO, 0); 6667 return; 6668 } 6669 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6670 error = tcp_disconnect_common(tcp, seqnum); 6671 if (error != 0) 6672 tcp_err_ack(tcp, mp, error, 0); 6673 else { 6674 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6675 /* Send M_FLUSH according to TPI */ 6676 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6677 } 6678 mp = mi_tpi_ok_ack_alloc(mp); 6679 if (mp) 6680 putnext(tcp->tcp_rq, mp); 6681 } 6682 } 6683 6684 /* 6685 * Diagnostic routine used to return a string associated with the tcp state. 6686 * Note that if the caller does not supply a buffer, it will use an internal 6687 * static string. This means that if multiple threads call this function at 6688 * the same time, output can be corrupted... Note also that this function 6689 * does not check the size of the supplied buffer. The caller has to make 6690 * sure that it is big enough. 6691 */ 6692 static char * 6693 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6694 { 6695 char buf1[30]; 6696 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6697 char *buf; 6698 char *cp; 6699 in6_addr_t local, remote; 6700 char local_addrbuf[INET6_ADDRSTRLEN]; 6701 char remote_addrbuf[INET6_ADDRSTRLEN]; 6702 6703 if (sup_buf != NULL) 6704 buf = sup_buf; 6705 else 6706 buf = priv_buf; 6707 6708 if (tcp == NULL) 6709 return ("NULL_TCP"); 6710 switch (tcp->tcp_state) { 6711 case TCPS_CLOSED: 6712 cp = "TCP_CLOSED"; 6713 break; 6714 case TCPS_IDLE: 6715 cp = "TCP_IDLE"; 6716 break; 6717 case TCPS_BOUND: 6718 cp = "TCP_BOUND"; 6719 break; 6720 case TCPS_LISTEN: 6721 cp = "TCP_LISTEN"; 6722 break; 6723 case TCPS_SYN_SENT: 6724 cp = "TCP_SYN_SENT"; 6725 break; 6726 case TCPS_SYN_RCVD: 6727 cp = "TCP_SYN_RCVD"; 6728 break; 6729 case TCPS_ESTABLISHED: 6730 cp = "TCP_ESTABLISHED"; 6731 break; 6732 case TCPS_CLOSE_WAIT: 6733 cp = "TCP_CLOSE_WAIT"; 6734 break; 6735 case TCPS_FIN_WAIT_1: 6736 cp = "TCP_FIN_WAIT_1"; 6737 break; 6738 case TCPS_CLOSING: 6739 cp = "TCP_CLOSING"; 6740 break; 6741 case TCPS_LAST_ACK: 6742 cp = "TCP_LAST_ACK"; 6743 break; 6744 case TCPS_FIN_WAIT_2: 6745 cp = "TCP_FIN_WAIT_2"; 6746 break; 6747 case TCPS_TIME_WAIT: 6748 cp = "TCP_TIME_WAIT"; 6749 break; 6750 default: 6751 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6752 cp = buf1; 6753 break; 6754 } 6755 switch (format) { 6756 case DISP_ADDR_AND_PORT: 6757 if (tcp->tcp_ipversion == IPV4_VERSION) { 6758 /* 6759 * Note that we use the remote address in the tcp_b 6760 * structure. This means that it will print out 6761 * the real destination address, not the next hop's 6762 * address if source routing is used. 6763 */ 6764 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6765 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6766 6767 } else { 6768 local = tcp->tcp_ip_src_v6; 6769 remote = tcp->tcp_remote_v6; 6770 } 6771 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6772 sizeof (local_addrbuf)); 6773 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6774 sizeof (remote_addrbuf)); 6775 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6776 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6777 ntohs(tcp->tcp_fport), cp); 6778 break; 6779 case DISP_PORT_ONLY: 6780 default: 6781 (void) mi_sprintf(buf, "[%u, %u] %s", 6782 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6783 break; 6784 } 6785 6786 return (buf); 6787 } 6788 6789 /* 6790 * Called via squeue to get on to eager's perimeter. It sends a 6791 * TH_RST if eager is in the fanout table. The listener wants the 6792 * eager to disappear either by means of tcp_eager_blowoff() or 6793 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6794 * called (via squeue) if the eager cannot be inserted in the 6795 * fanout table in tcp_conn_request(). 6796 */ 6797 /* ARGSUSED */ 6798 void 6799 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6800 { 6801 conn_t *econnp = (conn_t *)arg; 6802 tcp_t *eager = econnp->conn_tcp; 6803 tcp_t *listener = eager->tcp_listener; 6804 tcp_stack_t *tcps = eager->tcp_tcps; 6805 6806 /* 6807 * We could be called because listener is closing. Since 6808 * the eager is using listener's queue's, its not safe. 6809 * Better use the default queue just to send the TH_RST 6810 * out. 6811 */ 6812 ASSERT(tcps->tcps_g_q != NULL); 6813 eager->tcp_rq = tcps->tcps_g_q; 6814 eager->tcp_wq = WR(tcps->tcps_g_q); 6815 6816 /* 6817 * An eager's conn_fanout will be NULL if it's a duplicate 6818 * for an existing 4-tuples in the conn fanout table. 6819 * We don't want to send an RST out in such case. 6820 */ 6821 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6822 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6823 eager, eager->tcp_snxt, 0, TH_RST); 6824 } 6825 6826 /* We are here because listener wants this eager gone */ 6827 if (listener != NULL) { 6828 mutex_enter(&listener->tcp_eager_lock); 6829 tcp_eager_unlink(eager); 6830 if (eager->tcp_tconnind_started) { 6831 /* 6832 * The eager has sent a conn_ind up to the 6833 * listener but listener decides to close 6834 * instead. We need to drop the extra ref 6835 * placed on eager in tcp_rput_data() before 6836 * sending the conn_ind to listener. 6837 */ 6838 CONN_DEC_REF(econnp); 6839 } 6840 mutex_exit(&listener->tcp_eager_lock); 6841 CONN_DEC_REF(listener->tcp_connp); 6842 } 6843 6844 if (eager->tcp_state != TCPS_CLOSED) 6845 tcp_close_detached(eager); 6846 } 6847 6848 /* 6849 * Reset any eager connection hanging off this listener marked 6850 * with 'seqnum' and then reclaim it's resources. 6851 */ 6852 static boolean_t 6853 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6854 { 6855 tcp_t *eager; 6856 mblk_t *mp; 6857 tcp_stack_t *tcps = listener->tcp_tcps; 6858 6859 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6860 eager = listener; 6861 mutex_enter(&listener->tcp_eager_lock); 6862 do { 6863 eager = eager->tcp_eager_next_q; 6864 if (eager == NULL) { 6865 mutex_exit(&listener->tcp_eager_lock); 6866 return (B_FALSE); 6867 } 6868 } while (eager->tcp_conn_req_seqnum != seqnum); 6869 6870 if (eager->tcp_closemp_used) { 6871 mutex_exit(&listener->tcp_eager_lock); 6872 return (B_TRUE); 6873 } 6874 eager->tcp_closemp_used = B_TRUE; 6875 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6876 CONN_INC_REF(eager->tcp_connp); 6877 mutex_exit(&listener->tcp_eager_lock); 6878 mp = &eager->tcp_closemp; 6879 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6880 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6881 return (B_TRUE); 6882 } 6883 6884 /* 6885 * Reset any eager connection hanging off this listener 6886 * and then reclaim it's resources. 6887 */ 6888 static void 6889 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6890 { 6891 tcp_t *eager; 6892 mblk_t *mp; 6893 tcp_stack_t *tcps = listener->tcp_tcps; 6894 6895 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6896 6897 if (!q0_only) { 6898 /* First cleanup q */ 6899 TCP_STAT(tcps, tcp_eager_blowoff_q); 6900 eager = listener->tcp_eager_next_q; 6901 while (eager != NULL) { 6902 if (!eager->tcp_closemp_used) { 6903 eager->tcp_closemp_used = B_TRUE; 6904 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6905 CONN_INC_REF(eager->tcp_connp); 6906 mp = &eager->tcp_closemp; 6907 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6908 tcp_eager_kill, eager->tcp_connp, 6909 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6910 } 6911 eager = eager->tcp_eager_next_q; 6912 } 6913 } 6914 /* Then cleanup q0 */ 6915 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6916 eager = listener->tcp_eager_next_q0; 6917 while (eager != listener) { 6918 if (!eager->tcp_closemp_used) { 6919 eager->tcp_closemp_used = B_TRUE; 6920 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6921 CONN_INC_REF(eager->tcp_connp); 6922 mp = &eager->tcp_closemp; 6923 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6924 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6925 SQTAG_TCP_EAGER_CLEANUP_Q0); 6926 } 6927 eager = eager->tcp_eager_next_q0; 6928 } 6929 } 6930 6931 /* 6932 * If we are an eager connection hanging off a listener that hasn't 6933 * formally accepted the connection yet, get off his list and blow off 6934 * any data that we have accumulated. 6935 */ 6936 static void 6937 tcp_eager_unlink(tcp_t *tcp) 6938 { 6939 tcp_t *listener = tcp->tcp_listener; 6940 6941 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6942 ASSERT(listener != NULL); 6943 if (tcp->tcp_eager_next_q0 != NULL) { 6944 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6945 6946 /* Remove the eager tcp from q0 */ 6947 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6948 tcp->tcp_eager_prev_q0; 6949 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6950 tcp->tcp_eager_next_q0; 6951 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6952 listener->tcp_conn_req_cnt_q0--; 6953 6954 tcp->tcp_eager_next_q0 = NULL; 6955 tcp->tcp_eager_prev_q0 = NULL; 6956 6957 /* 6958 * Take the eager out, if it is in the list of droppable 6959 * eagers. 6960 */ 6961 MAKE_UNDROPPABLE(tcp); 6962 6963 if (tcp->tcp_syn_rcvd_timeout != 0) { 6964 /* we have timed out before */ 6965 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6966 listener->tcp_syn_rcvd_timeout--; 6967 } 6968 } else { 6969 tcp_t **tcpp = &listener->tcp_eager_next_q; 6970 tcp_t *prev = NULL; 6971 6972 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6973 if (tcpp[0] == tcp) { 6974 if (listener->tcp_eager_last_q == tcp) { 6975 /* 6976 * If we are unlinking the last 6977 * element on the list, adjust 6978 * tail pointer. Set tail pointer 6979 * to nil when list is empty. 6980 */ 6981 ASSERT(tcp->tcp_eager_next_q == NULL); 6982 if (listener->tcp_eager_last_q == 6983 listener->tcp_eager_next_q) { 6984 listener->tcp_eager_last_q = 6985 NULL; 6986 } else { 6987 /* 6988 * We won't get here if there 6989 * is only one eager in the 6990 * list. 6991 */ 6992 ASSERT(prev != NULL); 6993 listener->tcp_eager_last_q = 6994 prev; 6995 } 6996 } 6997 tcpp[0] = tcp->tcp_eager_next_q; 6998 tcp->tcp_eager_next_q = NULL; 6999 tcp->tcp_eager_last_q = NULL; 7000 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7001 listener->tcp_conn_req_cnt_q--; 7002 break; 7003 } 7004 prev = tcpp[0]; 7005 } 7006 } 7007 tcp->tcp_listener = NULL; 7008 } 7009 7010 /* Shorthand to generate and send TPI error acks to our client */ 7011 static void 7012 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7013 { 7014 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7015 putnext(tcp->tcp_rq, mp); 7016 } 7017 7018 /* Shorthand to generate and send TPI error acks to our client */ 7019 static void 7020 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7021 int t_error, int sys_error) 7022 { 7023 struct T_error_ack *teackp; 7024 7025 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7026 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7027 teackp = (struct T_error_ack *)mp->b_rptr; 7028 teackp->ERROR_prim = primitive; 7029 teackp->TLI_error = t_error; 7030 teackp->UNIX_error = sys_error; 7031 putnext(tcp->tcp_rq, mp); 7032 } 7033 } 7034 7035 /* 7036 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7037 * but instead the code relies on: 7038 * - the fact that the address of the array and its size never changes 7039 * - the atomic assignment of the elements of the array 7040 */ 7041 /* ARGSUSED */ 7042 static int 7043 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7044 { 7045 int i; 7046 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7047 7048 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7049 if (tcps->tcps_g_epriv_ports[i] != 0) 7050 (void) mi_mpprintf(mp, "%d ", 7051 tcps->tcps_g_epriv_ports[i]); 7052 } 7053 return (0); 7054 } 7055 7056 /* 7057 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7058 * threads from changing it at the same time. 7059 */ 7060 /* ARGSUSED */ 7061 static int 7062 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7063 cred_t *cr) 7064 { 7065 long new_value; 7066 int i; 7067 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7068 7069 /* 7070 * Fail the request if the new value does not lie within the 7071 * port number limits. 7072 */ 7073 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7074 new_value <= 0 || new_value >= 65536) { 7075 return (EINVAL); 7076 } 7077 7078 mutex_enter(&tcps->tcps_epriv_port_lock); 7079 /* Check if the value is already in the list */ 7080 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7081 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7082 mutex_exit(&tcps->tcps_epriv_port_lock); 7083 return (EEXIST); 7084 } 7085 } 7086 /* Find an empty slot */ 7087 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7088 if (tcps->tcps_g_epriv_ports[i] == 0) 7089 break; 7090 } 7091 if (i == tcps->tcps_g_num_epriv_ports) { 7092 mutex_exit(&tcps->tcps_epriv_port_lock); 7093 return (EOVERFLOW); 7094 } 7095 /* Set the new value */ 7096 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7097 mutex_exit(&tcps->tcps_epriv_port_lock); 7098 return (0); 7099 } 7100 7101 /* 7102 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7103 * threads from changing it at the same time. 7104 */ 7105 /* ARGSUSED */ 7106 static int 7107 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7108 cred_t *cr) 7109 { 7110 long new_value; 7111 int i; 7112 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7113 7114 /* 7115 * Fail the request if the new value does not lie within the 7116 * port number limits. 7117 */ 7118 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7119 new_value >= 65536) { 7120 return (EINVAL); 7121 } 7122 7123 mutex_enter(&tcps->tcps_epriv_port_lock); 7124 /* Check that the value is already in the list */ 7125 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7126 if (tcps->tcps_g_epriv_ports[i] == new_value) 7127 break; 7128 } 7129 if (i == tcps->tcps_g_num_epriv_ports) { 7130 mutex_exit(&tcps->tcps_epriv_port_lock); 7131 return (ESRCH); 7132 } 7133 /* Clear the value */ 7134 tcps->tcps_g_epriv_ports[i] = 0; 7135 mutex_exit(&tcps->tcps_epriv_port_lock); 7136 return (0); 7137 } 7138 7139 /* Return the TPI/TLI equivalent of our current tcp_state */ 7140 static int 7141 tcp_tpistate(tcp_t *tcp) 7142 { 7143 switch (tcp->tcp_state) { 7144 case TCPS_IDLE: 7145 return (TS_UNBND); 7146 case TCPS_LISTEN: 7147 /* 7148 * Return whether there are outstanding T_CONN_IND waiting 7149 * for the matching T_CONN_RES. Therefore don't count q0. 7150 */ 7151 if (tcp->tcp_conn_req_cnt_q > 0) 7152 return (TS_WRES_CIND); 7153 else 7154 return (TS_IDLE); 7155 case TCPS_BOUND: 7156 return (TS_IDLE); 7157 case TCPS_SYN_SENT: 7158 return (TS_WCON_CREQ); 7159 case TCPS_SYN_RCVD: 7160 /* 7161 * Note: assumption: this has to the active open SYN_RCVD. 7162 * The passive instance is detached in SYN_RCVD stage of 7163 * incoming connection processing so we cannot get request 7164 * for T_info_ack on it. 7165 */ 7166 return (TS_WACK_CRES); 7167 case TCPS_ESTABLISHED: 7168 return (TS_DATA_XFER); 7169 case TCPS_CLOSE_WAIT: 7170 return (TS_WREQ_ORDREL); 7171 case TCPS_FIN_WAIT_1: 7172 return (TS_WIND_ORDREL); 7173 case TCPS_FIN_WAIT_2: 7174 return (TS_WIND_ORDREL); 7175 7176 case TCPS_CLOSING: 7177 case TCPS_LAST_ACK: 7178 case TCPS_TIME_WAIT: 7179 case TCPS_CLOSED: 7180 /* 7181 * Following TS_WACK_DREQ7 is a rendition of "not 7182 * yet TS_IDLE" TPI state. There is no best match to any 7183 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7184 * choose a value chosen that will map to TLI/XTI level 7185 * state of TSTATECHNG (state is process of changing) which 7186 * captures what this dummy state represents. 7187 */ 7188 return (TS_WACK_DREQ7); 7189 default: 7190 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7191 tcp->tcp_state, tcp_display(tcp, NULL, 7192 DISP_PORT_ONLY)); 7193 return (TS_UNBND); 7194 } 7195 } 7196 7197 static void 7198 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7199 { 7200 tcp_stack_t *tcps = tcp->tcp_tcps; 7201 7202 if (tcp->tcp_family == AF_INET6) 7203 *tia = tcp_g_t_info_ack_v6; 7204 else 7205 *tia = tcp_g_t_info_ack; 7206 tia->CURRENT_state = tcp_tpistate(tcp); 7207 tia->OPT_size = tcp_max_optsize; 7208 if (tcp->tcp_mss == 0) { 7209 /* Not yet set - tcp_open does not set mss */ 7210 if (tcp->tcp_ipversion == IPV4_VERSION) 7211 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7212 else 7213 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7214 } else { 7215 tia->TIDU_size = tcp->tcp_mss; 7216 } 7217 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7218 } 7219 7220 static void 7221 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7222 t_uscalar_t cap_bits1) 7223 { 7224 tcap->CAP_bits1 = 0; 7225 7226 if (cap_bits1 & TC1_INFO) { 7227 tcp_copy_info(&tcap->INFO_ack, tcp); 7228 tcap->CAP_bits1 |= TC1_INFO; 7229 } 7230 7231 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7232 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7233 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7234 } 7235 7236 } 7237 7238 /* 7239 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7240 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7241 * tcp_g_t_info_ack. The current state of the stream is copied from 7242 * tcp_state. 7243 */ 7244 static void 7245 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7246 { 7247 t_uscalar_t cap_bits1; 7248 struct T_capability_ack *tcap; 7249 7250 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7251 freemsg(mp); 7252 return; 7253 } 7254 7255 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7256 7257 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7258 mp->b_datap->db_type, T_CAPABILITY_ACK); 7259 if (mp == NULL) 7260 return; 7261 7262 tcap = (struct T_capability_ack *)mp->b_rptr; 7263 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7264 7265 putnext(tcp->tcp_rq, mp); 7266 } 7267 7268 /* 7269 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7270 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7271 * The current state of the stream is copied from tcp_state. 7272 */ 7273 static void 7274 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7275 { 7276 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7277 T_INFO_ACK); 7278 if (!mp) { 7279 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7280 return; 7281 } 7282 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7283 putnext(tcp->tcp_rq, mp); 7284 } 7285 7286 /* Respond to the TPI addr request */ 7287 static void 7288 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7289 { 7290 sin_t *sin; 7291 mblk_t *ackmp; 7292 struct T_addr_ack *taa; 7293 7294 /* Make it large enough for worst case */ 7295 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7296 2 * sizeof (sin6_t), 1); 7297 if (ackmp == NULL) { 7298 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7299 return; 7300 } 7301 7302 if (tcp->tcp_ipversion == IPV6_VERSION) { 7303 tcp_addr_req_ipv6(tcp, ackmp); 7304 return; 7305 } 7306 taa = (struct T_addr_ack *)ackmp->b_rptr; 7307 7308 bzero(taa, sizeof (struct T_addr_ack)); 7309 ackmp->b_wptr = (uchar_t *)&taa[1]; 7310 7311 taa->PRIM_type = T_ADDR_ACK; 7312 ackmp->b_datap->db_type = M_PCPROTO; 7313 7314 /* 7315 * Note: Following code assumes 32 bit alignment of basic 7316 * data structures like sin_t and struct T_addr_ack. 7317 */ 7318 if (tcp->tcp_state >= TCPS_BOUND) { 7319 /* 7320 * Fill in local address 7321 */ 7322 taa->LOCADDR_length = sizeof (sin_t); 7323 taa->LOCADDR_offset = sizeof (*taa); 7324 7325 sin = (sin_t *)&taa[1]; 7326 7327 /* Fill zeroes and then intialize non-zero fields */ 7328 *sin = sin_null; 7329 7330 sin->sin_family = AF_INET; 7331 7332 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7333 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7334 7335 ackmp->b_wptr = (uchar_t *)&sin[1]; 7336 7337 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7338 /* 7339 * Fill in Remote address 7340 */ 7341 taa->REMADDR_length = sizeof (sin_t); 7342 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7343 taa->LOCADDR_length); 7344 7345 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7346 *sin = sin_null; 7347 sin->sin_family = AF_INET; 7348 sin->sin_addr.s_addr = tcp->tcp_remote; 7349 sin->sin_port = tcp->tcp_fport; 7350 7351 ackmp->b_wptr = (uchar_t *)&sin[1]; 7352 } 7353 } 7354 putnext(tcp->tcp_rq, ackmp); 7355 } 7356 7357 /* Assumes that tcp_addr_req gets enough space and alignment */ 7358 static void 7359 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7360 { 7361 sin6_t *sin6; 7362 struct T_addr_ack *taa; 7363 7364 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7365 ASSERT(OK_32PTR(ackmp->b_rptr)); 7366 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7367 2 * sizeof (sin6_t)); 7368 7369 taa = (struct T_addr_ack *)ackmp->b_rptr; 7370 7371 bzero(taa, sizeof (struct T_addr_ack)); 7372 ackmp->b_wptr = (uchar_t *)&taa[1]; 7373 7374 taa->PRIM_type = T_ADDR_ACK; 7375 ackmp->b_datap->db_type = M_PCPROTO; 7376 7377 /* 7378 * Note: Following code assumes 32 bit alignment of basic 7379 * data structures like sin6_t and struct T_addr_ack. 7380 */ 7381 if (tcp->tcp_state >= TCPS_BOUND) { 7382 /* 7383 * Fill in local address 7384 */ 7385 taa->LOCADDR_length = sizeof (sin6_t); 7386 taa->LOCADDR_offset = sizeof (*taa); 7387 7388 sin6 = (sin6_t *)&taa[1]; 7389 *sin6 = sin6_null; 7390 7391 sin6->sin6_family = AF_INET6; 7392 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7393 sin6->sin6_port = tcp->tcp_lport; 7394 7395 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7396 7397 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7398 /* 7399 * Fill in Remote address 7400 */ 7401 taa->REMADDR_length = sizeof (sin6_t); 7402 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7403 taa->LOCADDR_length); 7404 7405 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7406 *sin6 = sin6_null; 7407 sin6->sin6_family = AF_INET6; 7408 sin6->sin6_flowinfo = 7409 tcp->tcp_ip6h->ip6_vcf & 7410 ~IPV6_VERS_AND_FLOW_MASK; 7411 sin6->sin6_addr = tcp->tcp_remote_v6; 7412 sin6->sin6_port = tcp->tcp_fport; 7413 7414 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7415 } 7416 } 7417 putnext(tcp->tcp_rq, ackmp); 7418 } 7419 7420 /* 7421 * Handle reinitialization of a tcp structure. 7422 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7423 */ 7424 static void 7425 tcp_reinit(tcp_t *tcp) 7426 { 7427 mblk_t *mp; 7428 int err; 7429 tcp_stack_t *tcps = tcp->tcp_tcps; 7430 7431 TCP_STAT(tcps, tcp_reinit_calls); 7432 7433 /* tcp_reinit should never be called for detached tcp_t's */ 7434 ASSERT(tcp->tcp_listener == NULL); 7435 ASSERT((tcp->tcp_family == AF_INET && 7436 tcp->tcp_ipversion == IPV4_VERSION) || 7437 (tcp->tcp_family == AF_INET6 && 7438 (tcp->tcp_ipversion == IPV4_VERSION || 7439 tcp->tcp_ipversion == IPV6_VERSION))); 7440 7441 /* Cancel outstanding timers */ 7442 tcp_timers_stop(tcp); 7443 7444 /* 7445 * Reset everything in the state vector, after updating global 7446 * MIB data from instance counters. 7447 */ 7448 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7449 tcp->tcp_ibsegs = 0; 7450 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7451 tcp->tcp_obsegs = 0; 7452 7453 tcp_close_mpp(&tcp->tcp_xmit_head); 7454 if (tcp->tcp_snd_zcopy_aware) 7455 tcp_zcopy_notify(tcp); 7456 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7457 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7458 mutex_enter(&tcp->tcp_non_sq_lock); 7459 if (tcp->tcp_flow_stopped && 7460 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7461 tcp_clrqfull(tcp); 7462 } 7463 mutex_exit(&tcp->tcp_non_sq_lock); 7464 tcp_close_mpp(&tcp->tcp_reass_head); 7465 tcp->tcp_reass_tail = NULL; 7466 if (tcp->tcp_rcv_list != NULL) { 7467 /* Free b_next chain */ 7468 tcp_close_mpp(&tcp->tcp_rcv_list); 7469 tcp->tcp_rcv_last_head = NULL; 7470 tcp->tcp_rcv_last_tail = NULL; 7471 tcp->tcp_rcv_cnt = 0; 7472 } 7473 tcp->tcp_rcv_last_tail = NULL; 7474 7475 if ((mp = tcp->tcp_urp_mp) != NULL) { 7476 freemsg(mp); 7477 tcp->tcp_urp_mp = NULL; 7478 } 7479 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7480 freemsg(mp); 7481 tcp->tcp_urp_mark_mp = NULL; 7482 } 7483 if (tcp->tcp_fused_sigurg_mp != NULL) { 7484 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7485 freeb(tcp->tcp_fused_sigurg_mp); 7486 tcp->tcp_fused_sigurg_mp = NULL; 7487 } 7488 if (tcp->tcp_ordrel_mp != NULL) { 7489 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7490 freeb(tcp->tcp_ordrel_mp); 7491 tcp->tcp_ordrel_mp = NULL; 7492 } 7493 7494 /* 7495 * Following is a union with two members which are 7496 * identical types and size so the following cleanup 7497 * is enough. 7498 */ 7499 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7500 7501 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7502 7503 /* 7504 * The connection can't be on the tcp_time_wait_head list 7505 * since it is not detached. 7506 */ 7507 ASSERT(tcp->tcp_time_wait_next == NULL); 7508 ASSERT(tcp->tcp_time_wait_prev == NULL); 7509 ASSERT(tcp->tcp_time_wait_expire == 0); 7510 7511 if (tcp->tcp_kssl_pending) { 7512 tcp->tcp_kssl_pending = B_FALSE; 7513 7514 /* Don't reset if the initialized by bind. */ 7515 if (tcp->tcp_kssl_ent != NULL) { 7516 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7517 KSSL_NO_PROXY); 7518 } 7519 } 7520 if (tcp->tcp_kssl_ctx != NULL) { 7521 kssl_release_ctx(tcp->tcp_kssl_ctx); 7522 tcp->tcp_kssl_ctx = NULL; 7523 } 7524 7525 /* 7526 * Reset/preserve other values 7527 */ 7528 tcp_reinit_values(tcp); 7529 ipcl_hash_remove(tcp->tcp_connp); 7530 conn_delete_ire(tcp->tcp_connp, NULL); 7531 tcp_ipsec_cleanup(tcp); 7532 7533 if (tcp->tcp_connp->conn_effective_cred != NULL) { 7534 crfree(tcp->tcp_connp->conn_effective_cred); 7535 tcp->tcp_connp->conn_effective_cred = NULL; 7536 } 7537 7538 if (tcp->tcp_conn_req_max != 0) { 7539 /* 7540 * This is the case when a TLI program uses the same 7541 * transport end point to accept a connection. This 7542 * makes the TCP both a listener and acceptor. When 7543 * this connection is closed, we need to set the state 7544 * back to TCPS_LISTEN. Make sure that the eager list 7545 * is reinitialized. 7546 * 7547 * Note that this stream is still bound to the four 7548 * tuples of the previous connection in IP. If a new 7549 * SYN with different foreign address comes in, IP will 7550 * not find it and will send it to the global queue. In 7551 * the global queue, TCP will do a tcp_lookup_listener() 7552 * to find this stream. This works because this stream 7553 * is only removed from connected hash. 7554 * 7555 */ 7556 tcp->tcp_state = TCPS_LISTEN; 7557 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7558 tcp->tcp_eager_next_drop_q0 = tcp; 7559 tcp->tcp_eager_prev_drop_q0 = tcp; 7560 tcp->tcp_connp->conn_recv = tcp_conn_request; 7561 if (tcp->tcp_family == AF_INET6) { 7562 ASSERT(tcp->tcp_connp->conn_af_isv6); 7563 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7564 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7565 } else { 7566 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7567 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7568 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7569 } 7570 } else { 7571 tcp->tcp_state = TCPS_BOUND; 7572 } 7573 7574 /* 7575 * Initialize to default values 7576 * Can't fail since enough header template space already allocated 7577 * at open(). 7578 */ 7579 err = tcp_init_values(tcp); 7580 ASSERT(err == 0); 7581 /* Restore state in tcp_tcph */ 7582 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7583 if (tcp->tcp_ipversion == IPV4_VERSION) 7584 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7585 else 7586 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7587 /* 7588 * Copy of the src addr. in tcp_t is needed in tcp_t 7589 * since the lookup funcs can only lookup on tcp_t 7590 */ 7591 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7592 7593 ASSERT(tcp->tcp_ptpbhn != NULL); 7594 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7595 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7596 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7597 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7598 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7599 } 7600 7601 /* 7602 * Force values to zero that need be zero. 7603 * Do not touch values asociated with the BOUND or LISTEN state 7604 * since the connection will end up in that state after the reinit. 7605 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7606 * structure! 7607 */ 7608 static void 7609 tcp_reinit_values(tcp) 7610 tcp_t *tcp; 7611 { 7612 tcp_stack_t *tcps = tcp->tcp_tcps; 7613 7614 #ifndef lint 7615 #define DONTCARE(x) 7616 #define PRESERVE(x) 7617 #else 7618 #define DONTCARE(x) ((x) = (x)) 7619 #define PRESERVE(x) ((x) = (x)) 7620 #endif /* lint */ 7621 7622 PRESERVE(tcp->tcp_bind_hash_port); 7623 PRESERVE(tcp->tcp_bind_hash); 7624 PRESERVE(tcp->tcp_ptpbhn); 7625 PRESERVE(tcp->tcp_acceptor_hash); 7626 PRESERVE(tcp->tcp_ptpahn); 7627 7628 /* Should be ASSERT NULL on these with new code! */ 7629 ASSERT(tcp->tcp_time_wait_next == NULL); 7630 ASSERT(tcp->tcp_time_wait_prev == NULL); 7631 ASSERT(tcp->tcp_time_wait_expire == 0); 7632 PRESERVE(tcp->tcp_state); 7633 PRESERVE(tcp->tcp_rq); 7634 PRESERVE(tcp->tcp_wq); 7635 7636 ASSERT(tcp->tcp_xmit_head == NULL); 7637 ASSERT(tcp->tcp_xmit_last == NULL); 7638 ASSERT(tcp->tcp_unsent == 0); 7639 ASSERT(tcp->tcp_xmit_tail == NULL); 7640 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7641 7642 tcp->tcp_snxt = 0; /* Displayed in mib */ 7643 tcp->tcp_suna = 0; /* Displayed in mib */ 7644 tcp->tcp_swnd = 0; 7645 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7646 7647 ASSERT(tcp->tcp_ibsegs == 0); 7648 ASSERT(tcp->tcp_obsegs == 0); 7649 7650 if (tcp->tcp_iphc != NULL) { 7651 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7652 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7653 } 7654 7655 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7656 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7657 DONTCARE(tcp->tcp_ipha); 7658 DONTCARE(tcp->tcp_ip6h); 7659 DONTCARE(tcp->tcp_ip_hdr_len); 7660 DONTCARE(tcp->tcp_tcph); 7661 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7662 tcp->tcp_valid_bits = 0; 7663 7664 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7665 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7666 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7667 tcp->tcp_last_rcv_lbolt = 0; 7668 7669 tcp->tcp_init_cwnd = 0; 7670 7671 tcp->tcp_urp_last_valid = 0; 7672 tcp->tcp_hard_binding = 0; 7673 tcp->tcp_hard_bound = 0; 7674 PRESERVE(tcp->tcp_cred); 7675 PRESERVE(tcp->tcp_cpid); 7676 PRESERVE(tcp->tcp_open_time); 7677 PRESERVE(tcp->tcp_exclbind); 7678 7679 tcp->tcp_fin_acked = 0; 7680 tcp->tcp_fin_rcvd = 0; 7681 tcp->tcp_fin_sent = 0; 7682 tcp->tcp_ordrel_done = 0; 7683 7684 tcp->tcp_debug = 0; 7685 tcp->tcp_dontroute = 0; 7686 tcp->tcp_broadcast = 0; 7687 7688 tcp->tcp_useloopback = 0; 7689 tcp->tcp_reuseaddr = 0; 7690 tcp->tcp_oobinline = 0; 7691 tcp->tcp_dgram_errind = 0; 7692 7693 tcp->tcp_detached = 0; 7694 tcp->tcp_bind_pending = 0; 7695 tcp->tcp_unbind_pending = 0; 7696 7697 tcp->tcp_snd_ws_ok = B_FALSE; 7698 tcp->tcp_snd_ts_ok = B_FALSE; 7699 tcp->tcp_linger = 0; 7700 tcp->tcp_ka_enabled = 0; 7701 tcp->tcp_zero_win_probe = 0; 7702 7703 tcp->tcp_loopback = 0; 7704 tcp->tcp_refuse = 0; 7705 tcp->tcp_localnet = 0; 7706 tcp->tcp_syn_defense = 0; 7707 tcp->tcp_set_timer = 0; 7708 7709 tcp->tcp_active_open = 0; 7710 tcp->tcp_rexmit = B_FALSE; 7711 tcp->tcp_xmit_zc_clean = B_FALSE; 7712 7713 tcp->tcp_snd_sack_ok = B_FALSE; 7714 PRESERVE(tcp->tcp_recvdstaddr); 7715 tcp->tcp_hwcksum = B_FALSE; 7716 7717 tcp->tcp_ire_ill_check_done = B_FALSE; 7718 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7719 7720 tcp->tcp_mdt = B_FALSE; 7721 tcp->tcp_mdt_hdr_head = 0; 7722 tcp->tcp_mdt_hdr_tail = 0; 7723 7724 tcp->tcp_conn_def_q0 = 0; 7725 tcp->tcp_ip_forward_progress = B_FALSE; 7726 tcp->tcp_anon_priv_bind = 0; 7727 tcp->tcp_ecn_ok = B_FALSE; 7728 7729 tcp->tcp_cwr = B_FALSE; 7730 tcp->tcp_ecn_echo_on = B_FALSE; 7731 tcp->tcp_is_wnd_shrnk = B_FALSE; 7732 7733 if (tcp->tcp_sack_info != NULL) { 7734 if (tcp->tcp_notsack_list != NULL) { 7735 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 7736 tcp); 7737 } 7738 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7739 tcp->tcp_sack_info = NULL; 7740 } 7741 7742 tcp->tcp_rcv_ws = 0; 7743 tcp->tcp_snd_ws = 0; 7744 tcp->tcp_ts_recent = 0; 7745 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7746 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7747 tcp->tcp_if_mtu = 0; 7748 7749 ASSERT(tcp->tcp_reass_head == NULL); 7750 ASSERT(tcp->tcp_reass_tail == NULL); 7751 7752 tcp->tcp_cwnd_cnt = 0; 7753 7754 ASSERT(tcp->tcp_rcv_list == NULL); 7755 ASSERT(tcp->tcp_rcv_last_head == NULL); 7756 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7757 ASSERT(tcp->tcp_rcv_cnt == 0); 7758 7759 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7760 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7761 tcp->tcp_csuna = 0; 7762 7763 tcp->tcp_rto = 0; /* Displayed in MIB */ 7764 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7765 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7766 tcp->tcp_rtt_update = 0; 7767 7768 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7769 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7770 7771 tcp->tcp_rack = 0; /* Displayed in mib */ 7772 tcp->tcp_rack_cnt = 0; 7773 tcp->tcp_rack_cur_max = 0; 7774 tcp->tcp_rack_abs_max = 0; 7775 7776 tcp->tcp_max_swnd = 0; 7777 7778 ASSERT(tcp->tcp_listener == NULL); 7779 7780 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7781 7782 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7783 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7784 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7785 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7786 7787 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7788 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7789 PRESERVE(tcp->tcp_conn_req_max); 7790 PRESERVE(tcp->tcp_conn_req_seqnum); 7791 7792 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7793 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7794 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7795 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7796 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7797 7798 tcp->tcp_lingertime = 0; 7799 7800 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7801 ASSERT(tcp->tcp_urp_mp == NULL); 7802 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7803 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7804 7805 ASSERT(tcp->tcp_eager_next_q == NULL); 7806 ASSERT(tcp->tcp_eager_last_q == NULL); 7807 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7808 tcp->tcp_eager_prev_q0 == NULL) || 7809 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7810 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7811 7812 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7813 tcp->tcp_eager_prev_drop_q0 == NULL) || 7814 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7815 7816 tcp->tcp_client_errno = 0; 7817 7818 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7819 7820 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7821 7822 PRESERVE(tcp->tcp_bound_source_v6); 7823 tcp->tcp_last_sent_len = 0; 7824 tcp->tcp_dupack_cnt = 0; 7825 7826 tcp->tcp_fport = 0; /* Displayed in MIB */ 7827 PRESERVE(tcp->tcp_lport); 7828 7829 PRESERVE(tcp->tcp_acceptor_lockp); 7830 7831 ASSERT(tcp->tcp_ordrel_mp == NULL); 7832 PRESERVE(tcp->tcp_acceptor_id); 7833 DONTCARE(tcp->tcp_ipsec_overhead); 7834 7835 PRESERVE(tcp->tcp_family); 7836 if (tcp->tcp_family == AF_INET6) { 7837 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7838 } else { 7839 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7840 } 7841 PRESERVE(tcp->tcp_ipversion); /* Init in tcp_init_values */ 7842 7843 tcp->tcp_bound_if = 0; 7844 tcp->tcp_ipv6_recvancillary = 0; 7845 tcp->tcp_recvifindex = 0; 7846 tcp->tcp_recvhops = 0; 7847 tcp->tcp_closed = 0; 7848 tcp->tcp_cleandeathtag = 0; 7849 if (tcp->tcp_hopopts != NULL) { 7850 mi_free(tcp->tcp_hopopts); 7851 tcp->tcp_hopopts = NULL; 7852 tcp->tcp_hopoptslen = 0; 7853 } 7854 ASSERT(tcp->tcp_hopoptslen == 0); 7855 if (tcp->tcp_dstopts != NULL) { 7856 mi_free(tcp->tcp_dstopts); 7857 tcp->tcp_dstopts = NULL; 7858 tcp->tcp_dstoptslen = 0; 7859 } 7860 ASSERT(tcp->tcp_dstoptslen == 0); 7861 if (tcp->tcp_rtdstopts != NULL) { 7862 mi_free(tcp->tcp_rtdstopts); 7863 tcp->tcp_rtdstopts = NULL; 7864 tcp->tcp_rtdstoptslen = 0; 7865 } 7866 ASSERT(tcp->tcp_rtdstoptslen == 0); 7867 if (tcp->tcp_rthdr != NULL) { 7868 mi_free(tcp->tcp_rthdr); 7869 tcp->tcp_rthdr = NULL; 7870 tcp->tcp_rthdrlen = 0; 7871 } 7872 ASSERT(tcp->tcp_rthdrlen == 0); 7873 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7874 7875 /* Reset fusion-related fields */ 7876 tcp->tcp_fused = B_FALSE; 7877 tcp->tcp_unfusable = B_FALSE; 7878 tcp->tcp_fused_sigurg = B_FALSE; 7879 tcp->tcp_loopback_peer = NULL; 7880 7881 tcp->tcp_lso = B_FALSE; 7882 7883 tcp->tcp_in_ack_unsent = 0; 7884 tcp->tcp_cork = B_FALSE; 7885 tcp->tcp_tconnind_started = B_FALSE; 7886 7887 PRESERVE(tcp->tcp_squeue_bytes); 7888 7889 ASSERT(tcp->tcp_kssl_ctx == NULL); 7890 ASSERT(!tcp->tcp_kssl_pending); 7891 PRESERVE(tcp->tcp_kssl_ent); 7892 7893 tcp->tcp_closemp_used = B_FALSE; 7894 7895 PRESERVE(tcp->tcp_rsrv_mp); 7896 PRESERVE(tcp->tcp_rsrv_mp_lock); 7897 7898 #ifdef DEBUG 7899 DONTCARE(tcp->tcmp_stk[0]); 7900 #endif 7901 7902 PRESERVE(tcp->tcp_connid); 7903 7904 7905 #undef DONTCARE 7906 #undef PRESERVE 7907 } 7908 7909 /* 7910 * Allocate necessary resources and initialize state vector. 7911 * Guaranteed not to fail so that when an error is returned, 7912 * the caller doesn't need to do any additional cleanup. 7913 */ 7914 int 7915 tcp_init(tcp_t *tcp, queue_t *q) 7916 { 7917 int err; 7918 7919 tcp->tcp_rq = q; 7920 tcp->tcp_wq = WR(q); 7921 tcp->tcp_state = TCPS_IDLE; 7922 if ((err = tcp_init_values(tcp)) != 0) 7923 tcp_timers_stop(tcp); 7924 return (err); 7925 } 7926 7927 static int 7928 tcp_init_values(tcp_t *tcp) 7929 { 7930 int err; 7931 tcp_stack_t *tcps = tcp->tcp_tcps; 7932 7933 ASSERT((tcp->tcp_family == AF_INET && 7934 tcp->tcp_ipversion == IPV4_VERSION) || 7935 (tcp->tcp_family == AF_INET6 && 7936 (tcp->tcp_ipversion == IPV4_VERSION || 7937 tcp->tcp_ipversion == IPV6_VERSION))); 7938 7939 /* 7940 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7941 * will be close to tcp_rexmit_interval_initial. By doing this, we 7942 * allow the algorithm to adjust slowly to large fluctuations of RTT 7943 * during first few transmissions of a connection as seen in slow 7944 * links. 7945 */ 7946 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7947 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7948 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7949 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7950 tcps->tcps_conn_grace_period; 7951 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7952 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7953 tcp->tcp_timer_backoff = 0; 7954 tcp->tcp_ms_we_have_waited = 0; 7955 tcp->tcp_last_recv_time = lbolt; 7956 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7957 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7958 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7959 7960 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7961 7962 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7963 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7964 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7965 /* 7966 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7967 * passive open. 7968 */ 7969 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7970 7971 tcp->tcp_naglim = tcps->tcps_naglim_def; 7972 7973 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7974 7975 tcp->tcp_mdt_hdr_head = 0; 7976 tcp->tcp_mdt_hdr_tail = 0; 7977 7978 /* Reset fusion-related fields */ 7979 tcp->tcp_fused = B_FALSE; 7980 tcp->tcp_unfusable = B_FALSE; 7981 tcp->tcp_fused_sigurg = B_FALSE; 7982 tcp->tcp_loopback_peer = NULL; 7983 7984 /* Initialize the header template */ 7985 if (tcp->tcp_family == AF_INET) { 7986 err = tcp_header_init_ipv4(tcp); 7987 } else { 7988 err = tcp_header_init_ipv6(tcp); 7989 } 7990 if (err) 7991 return (err); 7992 7993 /* 7994 * Init the window scale to the max so tcp_rwnd_set() won't pare 7995 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7996 */ 7997 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7998 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7999 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8000 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 8001 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 8002 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 8003 8004 tcp->tcp_cork = B_FALSE; 8005 /* 8006 * Init the tcp_debug option. This value determines whether TCP 8007 * calls strlog() to print out debug messages. Doing this 8008 * initialization here means that this value is not inherited thru 8009 * tcp_reinit(). 8010 */ 8011 tcp->tcp_debug = tcps->tcps_dbg; 8012 8013 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8014 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8015 8016 return (0); 8017 } 8018 8019 /* 8020 * Initialize the IPv4 header. Loses any record of any IP options. 8021 */ 8022 static int 8023 tcp_header_init_ipv4(tcp_t *tcp) 8024 { 8025 tcph_t *tcph; 8026 uint32_t sum; 8027 conn_t *connp; 8028 tcp_stack_t *tcps = tcp->tcp_tcps; 8029 8030 /* 8031 * This is a simple initialization. If there's 8032 * already a template, it should never be too small, 8033 * so reuse it. Otherwise, allocate space for the new one. 8034 */ 8035 if (tcp->tcp_iphc == NULL) { 8036 ASSERT(tcp->tcp_iphc_len == 0); 8037 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8038 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8039 if (tcp->tcp_iphc == NULL) { 8040 tcp->tcp_iphc_len = 0; 8041 return (ENOMEM); 8042 } 8043 } 8044 8045 /* options are gone; may need a new label */ 8046 connp = tcp->tcp_connp; 8047 connp->conn_mlp_type = mlptSingle; 8048 connp->conn_ulp_labeled = !is_system_labeled(); 8049 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8050 8051 /* 8052 * tcp_do_get{sock,peer}name constructs the sockaddr from the 8053 * ip header, and decides which header to use based on ip version. 8054 * That operation happens outside the squeue, so we hold the lock 8055 * here to ensure that the ip version and header remain consistent. 8056 */ 8057 mutex_enter(&connp->conn_lock); 8058 tcp->tcp_ipversion = IPV4_VERSION; 8059 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8060 tcp->tcp_ip6h = NULL; 8061 mutex_exit(&connp->conn_lock); 8062 8063 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8064 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8065 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8066 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8067 tcp->tcp_ipha->ipha_version_and_hdr_length 8068 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8069 tcp->tcp_ipha->ipha_ident = 0; 8070 8071 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8072 tcp->tcp_tos = 0; 8073 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8074 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8075 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8076 8077 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8078 tcp->tcp_tcph = tcph; 8079 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8080 /* 8081 * IP wants our header length in the checksum field to 8082 * allow it to perform a single pseudo-header+checksum 8083 * calculation on behalf of TCP. 8084 * Include the adjustment for a source route once IP_OPTIONS is set. 8085 */ 8086 sum = sizeof (tcph_t) + tcp->tcp_sum; 8087 sum = (sum >> 16) + (sum & 0xFFFF); 8088 U16_TO_ABE16(sum, tcph->th_sum); 8089 return (0); 8090 } 8091 8092 /* 8093 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8094 */ 8095 static int 8096 tcp_header_init_ipv6(tcp_t *tcp) 8097 { 8098 tcph_t *tcph; 8099 uint32_t sum; 8100 conn_t *connp; 8101 tcp_stack_t *tcps = tcp->tcp_tcps; 8102 8103 /* 8104 * This is a simple initialization. If there's 8105 * already a template, it should never be too small, 8106 * so reuse it. Otherwise, allocate space for the new one. 8107 * Ensure that there is enough space to "downgrade" the tcp_t 8108 * to an IPv4 tcp_t. This requires having space for a full load 8109 * of IPv4 options, as well as a full load of TCP options 8110 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8111 * than a v6 header and a TCP header with a full load of TCP options 8112 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8113 * We want to avoid reallocation in the "downgraded" case when 8114 * processing outbound IPv4 options. 8115 */ 8116 if (tcp->tcp_iphc == NULL) { 8117 ASSERT(tcp->tcp_iphc_len == 0); 8118 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8119 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8120 if (tcp->tcp_iphc == NULL) { 8121 tcp->tcp_iphc_len = 0; 8122 return (ENOMEM); 8123 } 8124 } 8125 8126 /* options are gone; may need a new label */ 8127 connp = tcp->tcp_connp; 8128 connp->conn_mlp_type = mlptSingle; 8129 connp->conn_ulp_labeled = !is_system_labeled(); 8130 8131 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8132 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8133 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8134 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8135 8136 /* 8137 * tcp_do_get{sock,peer}name constructs the sockaddr from the 8138 * ip header, and decides which header to use based on ip version. 8139 * That operation happens outside the squeue, so we hold the lock 8140 * here to ensure that the ip version and header remain consistent. 8141 */ 8142 mutex_enter(&connp->conn_lock); 8143 tcp->tcp_ipversion = IPV6_VERSION; 8144 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8145 tcp->tcp_ipha = NULL; 8146 mutex_exit(&connp->conn_lock); 8147 8148 /* Initialize the header template */ 8149 8150 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8151 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8152 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8153 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8154 8155 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8156 tcp->tcp_tcph = tcph; 8157 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8158 /* 8159 * IP wants our header length in the checksum field to 8160 * allow it to perform a single psuedo-header+checksum 8161 * calculation on behalf of TCP. 8162 * Include the adjustment for a source route when IPV6_RTHDR is set. 8163 */ 8164 sum = sizeof (tcph_t) + tcp->tcp_sum; 8165 sum = (sum >> 16) + (sum & 0xFFFF); 8166 U16_TO_ABE16(sum, tcph->th_sum); 8167 return (0); 8168 } 8169 8170 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8171 #define ICMP_MIN_TCP_HDR 8 8172 8173 /* 8174 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8175 * passed up by IP. The message is always received on the correct tcp_t. 8176 * Assumes that IP has pulled up everything up to and including the ICMP header. 8177 */ 8178 void 8179 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8180 { 8181 icmph_t *icmph; 8182 ipha_t *ipha; 8183 int iph_hdr_length; 8184 tcph_t *tcph; 8185 boolean_t ipsec_mctl = B_FALSE; 8186 boolean_t secure; 8187 mblk_t *first_mp = mp; 8188 int32_t new_mss; 8189 uint32_t ratio; 8190 size_t mp_size = MBLKL(mp); 8191 uint32_t seg_seq; 8192 tcp_stack_t *tcps = tcp->tcp_tcps; 8193 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8194 8195 /* Assume IP provides aligned packets - otherwise toss */ 8196 if (!OK_32PTR(mp->b_rptr)) { 8197 freemsg(mp); 8198 return; 8199 } 8200 8201 /* 8202 * Since ICMP errors are normal data marked with M_CTL when sent 8203 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8204 * packets starting with an ipsec_info_t, see ipsec_info.h. 8205 */ 8206 if ((mp_size == sizeof (ipsec_info_t)) && 8207 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8208 ASSERT(mp->b_cont != NULL); 8209 mp = mp->b_cont; 8210 /* IP should have done this */ 8211 ASSERT(OK_32PTR(mp->b_rptr)); 8212 mp_size = MBLKL(mp); 8213 ipsec_mctl = B_TRUE; 8214 } 8215 8216 /* 8217 * Verify that we have a complete outer IP header. If not, drop it. 8218 */ 8219 if (mp_size < sizeof (ipha_t)) { 8220 noticmpv4: 8221 freemsg(first_mp); 8222 return; 8223 } 8224 8225 ipha = (ipha_t *)mp->b_rptr; 8226 /* 8227 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8228 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8229 */ 8230 switch (IPH_HDR_VERSION(ipha)) { 8231 case IPV6_VERSION: 8232 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8233 return; 8234 case IPV4_VERSION: 8235 break; 8236 default: 8237 goto noticmpv4; 8238 } 8239 8240 /* Skip past the outer IP and ICMP headers */ 8241 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8242 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8243 /* 8244 * If we don't have the correct outer IP header length or if the ULP 8245 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8246 * send it upstream. 8247 */ 8248 if (iph_hdr_length < sizeof (ipha_t) || 8249 ipha->ipha_protocol != IPPROTO_ICMP || 8250 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8251 goto noticmpv4; 8252 } 8253 ipha = (ipha_t *)&icmph[1]; 8254 8255 /* Skip past the inner IP and find the ULP header */ 8256 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8257 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8258 /* 8259 * If we don't have the correct inner IP header length or if the ULP 8260 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8261 * bytes of TCP header, drop it. 8262 */ 8263 if (iph_hdr_length < sizeof (ipha_t) || 8264 ipha->ipha_protocol != IPPROTO_TCP || 8265 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8266 goto noticmpv4; 8267 } 8268 8269 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8270 if (ipsec_mctl) { 8271 secure = ipsec_in_is_secure(first_mp); 8272 } else { 8273 secure = B_FALSE; 8274 } 8275 if (secure) { 8276 /* 8277 * If we are willing to accept this in clear 8278 * we don't have to verify policy. 8279 */ 8280 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8281 if (!tcp_check_policy(tcp, first_mp, 8282 ipha, NULL, secure, ipsec_mctl)) { 8283 /* 8284 * tcp_check_policy called 8285 * ip_drop_packet() on failure. 8286 */ 8287 return; 8288 } 8289 } 8290 } 8291 } else if (ipsec_mctl) { 8292 /* 8293 * This is a hard_bound connection. IP has already 8294 * verified policy. We don't have to do it again. 8295 */ 8296 freeb(first_mp); 8297 first_mp = mp; 8298 ipsec_mctl = B_FALSE; 8299 } 8300 8301 seg_seq = ABE32_TO_U32(tcph->th_seq); 8302 /* 8303 * TCP SHOULD check that the TCP sequence number contained in 8304 * payload of the ICMP error message is within the range 8305 * SND.UNA <= SEG.SEQ < SND.NXT. 8306 */ 8307 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8308 /* 8309 * The ICMP message is bogus, just drop it. But if this is 8310 * an ICMP too big message, IP has already changed 8311 * the ire_max_frag to the bogus value. We need to change 8312 * it back. 8313 */ 8314 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8315 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8316 conn_t *connp = tcp->tcp_connp; 8317 ire_t *ire; 8318 int flag; 8319 8320 if (tcp->tcp_ipversion == IPV4_VERSION) { 8321 flag = tcp->tcp_ipha-> 8322 ipha_fragment_offset_and_flags; 8323 } else { 8324 flag = 0; 8325 } 8326 mutex_enter(&connp->conn_lock); 8327 if ((ire = connp->conn_ire_cache) != NULL) { 8328 mutex_enter(&ire->ire_lock); 8329 mutex_exit(&connp->conn_lock); 8330 ire->ire_max_frag = tcp->tcp_if_mtu; 8331 ire->ire_frag_flag |= flag; 8332 mutex_exit(&ire->ire_lock); 8333 } else { 8334 mutex_exit(&connp->conn_lock); 8335 } 8336 } 8337 goto noticmpv4; 8338 } 8339 8340 switch (icmph->icmph_type) { 8341 case ICMP_DEST_UNREACHABLE: 8342 switch (icmph->icmph_code) { 8343 case ICMP_FRAGMENTATION_NEEDED: 8344 /* 8345 * Reduce the MSS based on the new MTU. This will 8346 * eliminate any fragmentation locally. 8347 * N.B. There may well be some funny side-effects on 8348 * the local send policy and the remote receive policy. 8349 * Pending further research, we provide 8350 * tcp_ignore_path_mtu just in case this proves 8351 * disastrous somewhere. 8352 * 8353 * After updating the MSS, retransmit part of the 8354 * dropped segment using the new mss by calling 8355 * tcp_wput_data(). Need to adjust all those 8356 * params to make sure tcp_wput_data() work properly. 8357 */ 8358 if (tcps->tcps_ignore_path_mtu || 8359 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8360 break; 8361 8362 /* 8363 * Decrease the MSS by time stamp options 8364 * IP options and IPSEC options. tcp_hdr_len 8365 * includes time stamp option and IP option 8366 * length. Note that new_mss may be negative 8367 * if tcp_ipsec_overhead is large and the 8368 * icmph_du_mtu is the minimum value, which is 68. 8369 */ 8370 new_mss = ntohs(icmph->icmph_du_mtu) - 8371 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8372 8373 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8374 new_mss); 8375 8376 /* 8377 * Only update the MSS if the new one is 8378 * smaller than the previous one. This is 8379 * to avoid problems when getting multiple 8380 * ICMP errors for the same MTU. 8381 */ 8382 if (new_mss >= tcp->tcp_mss) 8383 break; 8384 8385 /* 8386 * Note that we are using the template header's DF 8387 * bit in the fast path sending. So we need to compare 8388 * the new mss with both tcps_mss_min and ip_pmtu_min. 8389 * And stop doing IPv4 PMTUd if new_mss is less than 8390 * MAX(tcps_mss_min, ip_pmtu_min). 8391 */ 8392 if (new_mss < tcps->tcps_mss_min || 8393 new_mss < ipst->ips_ip_pmtu_min) { 8394 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8395 0; 8396 } 8397 8398 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8399 ASSERT(ratio >= 1); 8400 tcp_mss_set(tcp, new_mss, B_TRUE); 8401 8402 /* 8403 * Make sure we have something to 8404 * send. 8405 */ 8406 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8407 (tcp->tcp_xmit_head != NULL)) { 8408 /* 8409 * Shrink tcp_cwnd in 8410 * proportion to the old MSS/new MSS. 8411 */ 8412 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8413 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8414 (tcp->tcp_unsent == 0)) { 8415 tcp->tcp_rexmit_max = tcp->tcp_fss; 8416 } else { 8417 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8418 } 8419 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8420 tcp->tcp_rexmit = B_TRUE; 8421 tcp->tcp_dupack_cnt = 0; 8422 tcp->tcp_snd_burst = TCP_CWND_SS; 8423 tcp_ss_rexmit(tcp); 8424 } 8425 break; 8426 case ICMP_PORT_UNREACHABLE: 8427 case ICMP_PROTOCOL_UNREACHABLE: 8428 switch (tcp->tcp_state) { 8429 case TCPS_SYN_SENT: 8430 case TCPS_SYN_RCVD: 8431 /* 8432 * ICMP can snipe away incipient 8433 * TCP connections as long as 8434 * seq number is same as initial 8435 * send seq number. 8436 */ 8437 if (seg_seq == tcp->tcp_iss) { 8438 (void) tcp_clean_death(tcp, 8439 ECONNREFUSED, 6); 8440 } 8441 break; 8442 } 8443 break; 8444 case ICMP_HOST_UNREACHABLE: 8445 case ICMP_NET_UNREACHABLE: 8446 /* Record the error in case we finally time out. */ 8447 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8448 tcp->tcp_client_errno = EHOSTUNREACH; 8449 else 8450 tcp->tcp_client_errno = ENETUNREACH; 8451 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8452 if (tcp->tcp_listener != NULL && 8453 tcp->tcp_listener->tcp_syn_defense) { 8454 /* 8455 * Ditch the half-open connection if we 8456 * suspect a SYN attack is under way. 8457 */ 8458 tcp_ip_ire_mark_advice(tcp); 8459 (void) tcp_clean_death(tcp, 8460 tcp->tcp_client_errno, 7); 8461 } 8462 } 8463 break; 8464 default: 8465 break; 8466 } 8467 break; 8468 case ICMP_SOURCE_QUENCH: { 8469 /* 8470 * use a global boolean to control 8471 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8472 * The default is false. 8473 */ 8474 if (tcp_icmp_source_quench) { 8475 /* 8476 * Reduce the sending rate as if we got a 8477 * retransmit timeout 8478 */ 8479 uint32_t npkt; 8480 8481 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8482 tcp->tcp_mss; 8483 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8484 tcp->tcp_cwnd = tcp->tcp_mss; 8485 tcp->tcp_cwnd_cnt = 0; 8486 } 8487 break; 8488 } 8489 } 8490 freemsg(first_mp); 8491 } 8492 8493 /* 8494 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8495 * error messages passed up by IP. 8496 * Assumes that IP has pulled up all the extension headers as well 8497 * as the ICMPv6 header. 8498 */ 8499 static void 8500 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8501 { 8502 icmp6_t *icmp6; 8503 ip6_t *ip6h; 8504 uint16_t iph_hdr_length; 8505 tcpha_t *tcpha; 8506 uint8_t *nexthdrp; 8507 uint32_t new_mss; 8508 uint32_t ratio; 8509 boolean_t secure; 8510 mblk_t *first_mp = mp; 8511 size_t mp_size; 8512 uint32_t seg_seq; 8513 tcp_stack_t *tcps = tcp->tcp_tcps; 8514 8515 /* 8516 * The caller has determined if this is an IPSEC_IN packet and 8517 * set ipsec_mctl appropriately (see tcp_icmp_error). 8518 */ 8519 if (ipsec_mctl) 8520 mp = mp->b_cont; 8521 8522 mp_size = MBLKL(mp); 8523 8524 /* 8525 * Verify that we have a complete IP header. If not, send it upstream. 8526 */ 8527 if (mp_size < sizeof (ip6_t)) { 8528 noticmpv6: 8529 freemsg(first_mp); 8530 return; 8531 } 8532 8533 /* 8534 * Verify this is an ICMPV6 packet, else send it upstream. 8535 */ 8536 ip6h = (ip6_t *)mp->b_rptr; 8537 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8538 iph_hdr_length = IPV6_HDR_LEN; 8539 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8540 &nexthdrp) || 8541 *nexthdrp != IPPROTO_ICMPV6) { 8542 goto noticmpv6; 8543 } 8544 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8545 ip6h = (ip6_t *)&icmp6[1]; 8546 /* 8547 * Verify if we have a complete ICMP and inner IP header. 8548 */ 8549 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8550 goto noticmpv6; 8551 8552 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8553 goto noticmpv6; 8554 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8555 /* 8556 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8557 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8558 * packet. 8559 */ 8560 if ((*nexthdrp != IPPROTO_TCP) || 8561 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8562 goto noticmpv6; 8563 } 8564 8565 /* 8566 * ICMP errors come on the right queue or come on 8567 * listener/global queue for detached connections and 8568 * get switched to the right queue. If it comes on the 8569 * right queue, policy check has already been done by IP 8570 * and thus free the first_mp without verifying the policy. 8571 * If it has come for a non-hard bound connection, we need 8572 * to verify policy as IP may not have done it. 8573 */ 8574 if (!tcp->tcp_hard_bound) { 8575 if (ipsec_mctl) { 8576 secure = ipsec_in_is_secure(first_mp); 8577 } else { 8578 secure = B_FALSE; 8579 } 8580 if (secure) { 8581 /* 8582 * If we are willing to accept this in clear 8583 * we don't have to verify policy. 8584 */ 8585 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8586 if (!tcp_check_policy(tcp, first_mp, 8587 NULL, ip6h, secure, ipsec_mctl)) { 8588 /* 8589 * tcp_check_policy called 8590 * ip_drop_packet() on failure. 8591 */ 8592 return; 8593 } 8594 } 8595 } 8596 } else if (ipsec_mctl) { 8597 /* 8598 * This is a hard_bound connection. IP has already 8599 * verified policy. We don't have to do it again. 8600 */ 8601 freeb(first_mp); 8602 first_mp = mp; 8603 ipsec_mctl = B_FALSE; 8604 } 8605 8606 seg_seq = ntohl(tcpha->tha_seq); 8607 /* 8608 * TCP SHOULD check that the TCP sequence number contained in 8609 * payload of the ICMP error message is within the range 8610 * SND.UNA <= SEG.SEQ < SND.NXT. 8611 */ 8612 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8613 /* 8614 * If the ICMP message is bogus, should we kill the 8615 * connection, or should we just drop the bogus ICMP 8616 * message? It would probably make more sense to just 8617 * drop the message so that if this one managed to get 8618 * in, the real connection should not suffer. 8619 */ 8620 goto noticmpv6; 8621 } 8622 8623 switch (icmp6->icmp6_type) { 8624 case ICMP6_PACKET_TOO_BIG: 8625 /* 8626 * Reduce the MSS based on the new MTU. This will 8627 * eliminate any fragmentation locally. 8628 * N.B. There may well be some funny side-effects on 8629 * the local send policy and the remote receive policy. 8630 * Pending further research, we provide 8631 * tcp_ignore_path_mtu just in case this proves 8632 * disastrous somewhere. 8633 * 8634 * After updating the MSS, retransmit part of the 8635 * dropped segment using the new mss by calling 8636 * tcp_wput_data(). Need to adjust all those 8637 * params to make sure tcp_wput_data() work properly. 8638 */ 8639 if (tcps->tcps_ignore_path_mtu) 8640 break; 8641 8642 /* 8643 * Decrease the MSS by time stamp options 8644 * IP options and IPSEC options. tcp_hdr_len 8645 * includes time stamp option and IP option 8646 * length. 8647 */ 8648 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8649 tcp->tcp_ipsec_overhead; 8650 8651 /* 8652 * Only update the MSS if the new one is 8653 * smaller than the previous one. This is 8654 * to avoid problems when getting multiple 8655 * ICMP errors for the same MTU. 8656 */ 8657 if (new_mss >= tcp->tcp_mss) 8658 break; 8659 8660 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8661 ASSERT(ratio >= 1); 8662 tcp_mss_set(tcp, new_mss, B_TRUE); 8663 8664 /* 8665 * Make sure we have something to 8666 * send. 8667 */ 8668 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8669 (tcp->tcp_xmit_head != NULL)) { 8670 /* 8671 * Shrink tcp_cwnd in 8672 * proportion to the old MSS/new MSS. 8673 */ 8674 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8675 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8676 (tcp->tcp_unsent == 0)) { 8677 tcp->tcp_rexmit_max = tcp->tcp_fss; 8678 } else { 8679 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8680 } 8681 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8682 tcp->tcp_rexmit = B_TRUE; 8683 tcp->tcp_dupack_cnt = 0; 8684 tcp->tcp_snd_burst = TCP_CWND_SS; 8685 tcp_ss_rexmit(tcp); 8686 } 8687 break; 8688 8689 case ICMP6_DST_UNREACH: 8690 switch (icmp6->icmp6_code) { 8691 case ICMP6_DST_UNREACH_NOPORT: 8692 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8693 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8694 (seg_seq == tcp->tcp_iss)) { 8695 (void) tcp_clean_death(tcp, 8696 ECONNREFUSED, 8); 8697 } 8698 break; 8699 8700 case ICMP6_DST_UNREACH_ADMIN: 8701 case ICMP6_DST_UNREACH_NOROUTE: 8702 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8703 case ICMP6_DST_UNREACH_ADDR: 8704 /* Record the error in case we finally time out. */ 8705 tcp->tcp_client_errno = EHOSTUNREACH; 8706 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8707 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8708 (seg_seq == tcp->tcp_iss)) { 8709 if (tcp->tcp_listener != NULL && 8710 tcp->tcp_listener->tcp_syn_defense) { 8711 /* 8712 * Ditch the half-open connection if we 8713 * suspect a SYN attack is under way. 8714 */ 8715 tcp_ip_ire_mark_advice(tcp); 8716 (void) tcp_clean_death(tcp, 8717 tcp->tcp_client_errno, 9); 8718 } 8719 } 8720 8721 8722 break; 8723 default: 8724 break; 8725 } 8726 break; 8727 8728 case ICMP6_PARAM_PROB: 8729 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8730 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8731 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8732 (uchar_t *)nexthdrp) { 8733 if (tcp->tcp_state == TCPS_SYN_SENT || 8734 tcp->tcp_state == TCPS_SYN_RCVD) { 8735 (void) tcp_clean_death(tcp, 8736 ECONNREFUSED, 10); 8737 } 8738 break; 8739 } 8740 break; 8741 8742 case ICMP6_TIME_EXCEEDED: 8743 default: 8744 break; 8745 } 8746 freemsg(first_mp); 8747 } 8748 8749 /* 8750 * Notify IP that we are having trouble with this connection. IP should 8751 * blow the IRE away and start over. 8752 */ 8753 static void 8754 tcp_ip_notify(tcp_t *tcp) 8755 { 8756 struct iocblk *iocp; 8757 ipid_t *ipid; 8758 mblk_t *mp; 8759 8760 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8761 if (tcp->tcp_ipversion == IPV6_VERSION) 8762 return; 8763 8764 mp = mkiocb(IP_IOCTL); 8765 if (mp == NULL) 8766 return; 8767 8768 iocp = (struct iocblk *)mp->b_rptr; 8769 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8770 8771 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8772 if (!mp->b_cont) { 8773 freeb(mp); 8774 return; 8775 } 8776 8777 ipid = (ipid_t *)mp->b_cont->b_rptr; 8778 mp->b_cont->b_wptr += iocp->ioc_count; 8779 bzero(ipid, sizeof (*ipid)); 8780 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8781 ipid->ipid_ire_type = IRE_CACHE; 8782 ipid->ipid_addr_offset = sizeof (ipid_t); 8783 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8784 /* 8785 * Note: in the case of source routing we want to blow away the 8786 * route to the first source route hop. 8787 */ 8788 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8789 sizeof (tcp->tcp_ipha->ipha_dst)); 8790 8791 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8792 } 8793 8794 /* Unlink and return any mblk that looks like it contains an ire */ 8795 static mblk_t * 8796 tcp_ire_mp(mblk_t **mpp) 8797 { 8798 mblk_t *mp = *mpp; 8799 mblk_t *prev_mp = NULL; 8800 8801 for (;;) { 8802 switch (DB_TYPE(mp)) { 8803 case IRE_DB_TYPE: 8804 case IRE_DB_REQ_TYPE: 8805 if (mp == *mpp) { 8806 *mpp = mp->b_cont; 8807 } else { 8808 prev_mp->b_cont = mp->b_cont; 8809 } 8810 mp->b_cont = NULL; 8811 return (mp); 8812 default: 8813 break; 8814 } 8815 prev_mp = mp; 8816 mp = mp->b_cont; 8817 if (mp == NULL) 8818 break; 8819 } 8820 return (mp); 8821 } 8822 8823 /* 8824 * Timer callback routine for keepalive probe. We do a fake resend of 8825 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8826 * check to see if we have heard anything from the other end for the last 8827 * RTO period. If we have, set the timer to expire for another 8828 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8829 * RTO << 1 and check again when it expires. Keep exponentially increasing 8830 * the timeout if we have not heard from the other side. If for more than 8831 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8832 * kill the connection unless the keepalive abort threshold is 0. In 8833 * that case, we will probe "forever." 8834 */ 8835 static void 8836 tcp_keepalive_killer(void *arg) 8837 { 8838 mblk_t *mp; 8839 conn_t *connp = (conn_t *)arg; 8840 tcp_t *tcp = connp->conn_tcp; 8841 int32_t firetime; 8842 int32_t idletime; 8843 int32_t ka_intrvl; 8844 tcp_stack_t *tcps = tcp->tcp_tcps; 8845 8846 tcp->tcp_ka_tid = 0; 8847 8848 if (tcp->tcp_fused) 8849 return; 8850 8851 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8852 ka_intrvl = tcp->tcp_ka_interval; 8853 8854 /* 8855 * Keepalive probe should only be sent if the application has not 8856 * done a close on the connection. 8857 */ 8858 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8859 return; 8860 } 8861 /* Timer fired too early, restart it. */ 8862 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8863 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8864 MSEC_TO_TICK(ka_intrvl)); 8865 return; 8866 } 8867 8868 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8869 /* 8870 * If we have not heard from the other side for a long 8871 * time, kill the connection unless the keepalive abort 8872 * threshold is 0. In that case, we will probe "forever." 8873 */ 8874 if (tcp->tcp_ka_abort_thres != 0 && 8875 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8876 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8877 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8878 tcp->tcp_client_errno : ETIMEDOUT, 11); 8879 return; 8880 } 8881 8882 if (tcp->tcp_snxt == tcp->tcp_suna && 8883 idletime >= ka_intrvl) { 8884 /* Fake resend of last ACKed byte. */ 8885 mblk_t *mp1 = allocb(1, BPRI_LO); 8886 8887 if (mp1 != NULL) { 8888 *mp1->b_wptr++ = '\0'; 8889 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8890 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8891 freeb(mp1); 8892 /* 8893 * if allocation failed, fall through to start the 8894 * timer back. 8895 */ 8896 if (mp != NULL) { 8897 tcp_send_data(tcp, tcp->tcp_wq, mp); 8898 BUMP_MIB(&tcps->tcps_mib, 8899 tcpTimKeepaliveProbe); 8900 if (tcp->tcp_ka_last_intrvl != 0) { 8901 int max; 8902 /* 8903 * We should probe again at least 8904 * in ka_intrvl, but not more than 8905 * tcp_rexmit_interval_max. 8906 */ 8907 max = tcps->tcps_rexmit_interval_max; 8908 firetime = MIN(ka_intrvl - 1, 8909 tcp->tcp_ka_last_intrvl << 1); 8910 if (firetime > max) 8911 firetime = max; 8912 } else { 8913 firetime = tcp->tcp_rto; 8914 } 8915 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8916 tcp_keepalive_killer, 8917 MSEC_TO_TICK(firetime)); 8918 tcp->tcp_ka_last_intrvl = firetime; 8919 return; 8920 } 8921 } 8922 } else { 8923 tcp->tcp_ka_last_intrvl = 0; 8924 } 8925 8926 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8927 if ((firetime = ka_intrvl - idletime) < 0) { 8928 firetime = ka_intrvl; 8929 } 8930 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8931 MSEC_TO_TICK(firetime)); 8932 } 8933 8934 int 8935 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8936 { 8937 queue_t *q = tcp->tcp_rq; 8938 int32_t mss = tcp->tcp_mss; 8939 int maxpsz; 8940 conn_t *connp = tcp->tcp_connp; 8941 8942 if (TCP_IS_DETACHED(tcp)) 8943 return (mss); 8944 if (tcp->tcp_fused) { 8945 maxpsz = tcp_fuse_maxpsz(tcp); 8946 mss = INFPSZ; 8947 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8948 /* 8949 * Set the sd_qn_maxpsz according to the socket send buffer 8950 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8951 * instruct the stream head to copyin user data into contiguous 8952 * kernel-allocated buffers without breaking it up into smaller 8953 * chunks. We round up the buffer size to the nearest SMSS. 8954 */ 8955 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8956 if (tcp->tcp_kssl_ctx == NULL) 8957 mss = INFPSZ; 8958 else 8959 mss = SSL3_MAX_RECORD_LEN; 8960 } else { 8961 /* 8962 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8963 * (and a multiple of the mss). This instructs the stream 8964 * head to break down larger than SMSS writes into SMSS- 8965 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8966 */ 8967 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8968 maxpsz = tcp->tcp_maxpsz * mss; 8969 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8970 maxpsz = tcp->tcp_xmit_hiwater/2; 8971 /* Round up to nearest mss */ 8972 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8973 } 8974 } 8975 8976 (void) proto_set_maxpsz(q, connp, maxpsz); 8977 if (!(IPCL_IS_NONSTR(connp))) { 8978 /* XXX do it in set_maxpsz()? */ 8979 tcp->tcp_wq->q_maxpsz = maxpsz; 8980 } 8981 8982 if (set_maxblk) 8983 (void) proto_set_tx_maxblk(q, connp, mss); 8984 return (mss); 8985 } 8986 8987 /* 8988 * Extract option values from a tcp header. We put any found values into the 8989 * tcpopt struct and return a bitmask saying which options were found. 8990 */ 8991 static int 8992 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8993 { 8994 uchar_t *endp; 8995 int len; 8996 uint32_t mss; 8997 uchar_t *up = (uchar_t *)tcph; 8998 int found = 0; 8999 int32_t sack_len; 9000 tcp_seq sack_begin, sack_end; 9001 tcp_t *tcp; 9002 9003 endp = up + TCP_HDR_LENGTH(tcph); 9004 up += TCP_MIN_HEADER_LENGTH; 9005 while (up < endp) { 9006 len = endp - up; 9007 switch (*up) { 9008 case TCPOPT_EOL: 9009 break; 9010 9011 case TCPOPT_NOP: 9012 up++; 9013 continue; 9014 9015 case TCPOPT_MAXSEG: 9016 if (len < TCPOPT_MAXSEG_LEN || 9017 up[1] != TCPOPT_MAXSEG_LEN) 9018 break; 9019 9020 mss = BE16_TO_U16(up+2); 9021 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9022 tcpopt->tcp_opt_mss = mss; 9023 found |= TCP_OPT_MSS_PRESENT; 9024 9025 up += TCPOPT_MAXSEG_LEN; 9026 continue; 9027 9028 case TCPOPT_WSCALE: 9029 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9030 break; 9031 9032 if (up[2] > TCP_MAX_WINSHIFT) 9033 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9034 else 9035 tcpopt->tcp_opt_wscale = up[2]; 9036 found |= TCP_OPT_WSCALE_PRESENT; 9037 9038 up += TCPOPT_WS_LEN; 9039 continue; 9040 9041 case TCPOPT_SACK_PERMITTED: 9042 if (len < TCPOPT_SACK_OK_LEN || 9043 up[1] != TCPOPT_SACK_OK_LEN) 9044 break; 9045 found |= TCP_OPT_SACK_OK_PRESENT; 9046 up += TCPOPT_SACK_OK_LEN; 9047 continue; 9048 9049 case TCPOPT_SACK: 9050 if (len <= 2 || up[1] <= 2 || len < up[1]) 9051 break; 9052 9053 /* If TCP is not interested in SACK blks... */ 9054 if ((tcp = tcpopt->tcp) == NULL) { 9055 up += up[1]; 9056 continue; 9057 } 9058 sack_len = up[1] - TCPOPT_HEADER_LEN; 9059 up += TCPOPT_HEADER_LEN; 9060 9061 /* 9062 * If the list is empty, allocate one and assume 9063 * nothing is sack'ed. 9064 */ 9065 ASSERT(tcp->tcp_sack_info != NULL); 9066 if (tcp->tcp_notsack_list == NULL) { 9067 tcp_notsack_update(&(tcp->tcp_notsack_list), 9068 tcp->tcp_suna, tcp->tcp_snxt, 9069 &(tcp->tcp_num_notsack_blk), 9070 &(tcp->tcp_cnt_notsack_list)); 9071 9072 /* 9073 * Make sure tcp_notsack_list is not NULL. 9074 * This happens when kmem_alloc(KM_NOSLEEP) 9075 * returns NULL. 9076 */ 9077 if (tcp->tcp_notsack_list == NULL) { 9078 up += sack_len; 9079 continue; 9080 } 9081 tcp->tcp_fack = tcp->tcp_suna; 9082 } 9083 9084 while (sack_len > 0) { 9085 if (up + 8 > endp) { 9086 up = endp; 9087 break; 9088 } 9089 sack_begin = BE32_TO_U32(up); 9090 up += 4; 9091 sack_end = BE32_TO_U32(up); 9092 up += 4; 9093 sack_len -= 8; 9094 /* 9095 * Bounds checking. Make sure the SACK 9096 * info is within tcp_suna and tcp_snxt. 9097 * If this SACK blk is out of bound, ignore 9098 * it but continue to parse the following 9099 * blks. 9100 */ 9101 if (SEQ_LEQ(sack_end, sack_begin) || 9102 SEQ_LT(sack_begin, tcp->tcp_suna) || 9103 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9104 continue; 9105 } 9106 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9107 sack_begin, sack_end, 9108 &(tcp->tcp_num_notsack_blk), 9109 &(tcp->tcp_cnt_notsack_list)); 9110 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9111 tcp->tcp_fack = sack_end; 9112 } 9113 } 9114 found |= TCP_OPT_SACK_PRESENT; 9115 continue; 9116 9117 case TCPOPT_TSTAMP: 9118 if (len < TCPOPT_TSTAMP_LEN || 9119 up[1] != TCPOPT_TSTAMP_LEN) 9120 break; 9121 9122 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9123 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9124 9125 found |= TCP_OPT_TSTAMP_PRESENT; 9126 9127 up += TCPOPT_TSTAMP_LEN; 9128 continue; 9129 9130 default: 9131 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9132 break; 9133 up += up[1]; 9134 continue; 9135 } 9136 break; 9137 } 9138 return (found); 9139 } 9140 9141 /* 9142 * Set the mss associated with a particular tcp based on its current value, 9143 * and a new one passed in. Observe minimums and maximums, and reset 9144 * other state variables that we want to view as multiples of mss. 9145 * 9146 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9147 * highwater marks etc. need to be initialized or adjusted. 9148 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9149 * packet arrives. 9150 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9151 * ICMP6_PACKET_TOO_BIG arrives. 9152 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9153 * to increase the MSS to use the extra bytes available. 9154 * 9155 * Callers except tcp_paws_check() ensure that they only reduce mss. 9156 */ 9157 static void 9158 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9159 { 9160 uint32_t mss_max; 9161 tcp_stack_t *tcps = tcp->tcp_tcps; 9162 9163 if (tcp->tcp_ipversion == IPV4_VERSION) 9164 mss_max = tcps->tcps_mss_max_ipv4; 9165 else 9166 mss_max = tcps->tcps_mss_max_ipv6; 9167 9168 if (mss < tcps->tcps_mss_min) 9169 mss = tcps->tcps_mss_min; 9170 if (mss > mss_max) 9171 mss = mss_max; 9172 /* 9173 * Unless naglim has been set by our client to 9174 * a non-mss value, force naglim to track mss. 9175 * This can help to aggregate small writes. 9176 */ 9177 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9178 tcp->tcp_naglim = mss; 9179 /* 9180 * TCP should be able to buffer at least 4 MSS data for obvious 9181 * performance reason. 9182 */ 9183 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9184 tcp->tcp_xmit_hiwater = mss << 2; 9185 9186 /* 9187 * Set the xmit_lowater to at least twice of MSS. 9188 */ 9189 if ((mss << 1) > tcp->tcp_xmit_lowater) 9190 tcp->tcp_xmit_lowater = mss << 1; 9191 9192 if (do_ss) { 9193 /* 9194 * Either the tcp_cwnd is as yet uninitialized, or mss is 9195 * changing due to a reduction in MTU, presumably as a 9196 * result of a new path component, reset cwnd to its 9197 * "initial" value, as a multiple of the new mss. 9198 */ 9199 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9200 } else { 9201 /* 9202 * Called by tcp_paws_check(), the mss increased 9203 * marginally to allow use of space previously taken 9204 * by the timestamp option. It would be inappropriate 9205 * to apply slow start or tcp_init_cwnd values to 9206 * tcp_cwnd, simply adjust to a multiple of the new mss. 9207 */ 9208 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9209 tcp->tcp_cwnd_cnt = 0; 9210 } 9211 tcp->tcp_mss = mss; 9212 (void) tcp_maxpsz_set(tcp, B_TRUE); 9213 } 9214 9215 /* For /dev/tcp aka AF_INET open */ 9216 static int 9217 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9218 { 9219 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9220 } 9221 9222 /* For /dev/tcp6 aka AF_INET6 open */ 9223 static int 9224 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9225 { 9226 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9227 } 9228 9229 static conn_t * 9230 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9231 boolean_t issocket, int *errorp) 9232 { 9233 tcp_t *tcp = NULL; 9234 conn_t *connp; 9235 int err; 9236 zoneid_t zoneid; 9237 tcp_stack_t *tcps; 9238 squeue_t *sqp; 9239 9240 ASSERT(errorp != NULL); 9241 /* 9242 * Find the proper zoneid and netstack. 9243 */ 9244 /* 9245 * Special case for install: miniroot needs to be able to 9246 * access files via NFS as though it were always in the 9247 * global zone. 9248 */ 9249 if (credp == kcred && nfs_global_client_only != 0) { 9250 zoneid = GLOBAL_ZONEID; 9251 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9252 netstack_tcp; 9253 ASSERT(tcps != NULL); 9254 } else { 9255 netstack_t *ns; 9256 9257 ns = netstack_find_by_cred(credp); 9258 ASSERT(ns != NULL); 9259 tcps = ns->netstack_tcp; 9260 ASSERT(tcps != NULL); 9261 9262 /* 9263 * For exclusive stacks we set the zoneid to zero 9264 * to make TCP operate as if in the global zone. 9265 */ 9266 if (tcps->tcps_netstack->netstack_stackid != 9267 GLOBAL_NETSTACKID) 9268 zoneid = GLOBAL_ZONEID; 9269 else 9270 zoneid = crgetzoneid(credp); 9271 } 9272 /* 9273 * For stackid zero this is done from strplumb.c, but 9274 * non-zero stackids are handled here. 9275 */ 9276 if (tcps->tcps_g_q == NULL && 9277 tcps->tcps_netstack->netstack_stackid != 9278 GLOBAL_NETSTACKID) { 9279 tcp_g_q_setup(tcps); 9280 } 9281 9282 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9283 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9284 /* 9285 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9286 * so we drop it by one. 9287 */ 9288 netstack_rele(tcps->tcps_netstack); 9289 if (connp == NULL) { 9290 *errorp = ENOSR; 9291 return (NULL); 9292 } 9293 connp->conn_sqp = sqp; 9294 connp->conn_initial_sqp = connp->conn_sqp; 9295 tcp = connp->conn_tcp; 9296 9297 if (isv6) { 9298 connp->conn_flags |= IPCL_TCP6; 9299 connp->conn_send = ip_output_v6; 9300 connp->conn_af_isv6 = B_TRUE; 9301 connp->conn_pkt_isv6 = B_TRUE; 9302 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9303 tcp->tcp_ipversion = IPV6_VERSION; 9304 tcp->tcp_family = AF_INET6; 9305 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9306 } else { 9307 connp->conn_flags |= IPCL_TCP4; 9308 connp->conn_send = ip_output; 9309 connp->conn_af_isv6 = B_FALSE; 9310 connp->conn_pkt_isv6 = B_FALSE; 9311 tcp->tcp_ipversion = IPV4_VERSION; 9312 tcp->tcp_family = AF_INET; 9313 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9314 } 9315 9316 /* 9317 * TCP keeps a copy of cred for cache locality reasons but 9318 * we put a reference only once. If connp->conn_cred 9319 * becomes invalid, tcp_cred should also be set to NULL. 9320 */ 9321 tcp->tcp_cred = connp->conn_cred = credp; 9322 crhold(connp->conn_cred); 9323 tcp->tcp_cpid = curproc->p_pid; 9324 tcp->tcp_open_time = lbolt64; 9325 connp->conn_zoneid = zoneid; 9326 connp->conn_mlp_type = mlptSingle; 9327 connp->conn_ulp_labeled = !is_system_labeled(); 9328 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9329 ASSERT(tcp->tcp_tcps == tcps); 9330 9331 /* 9332 * If the caller has the process-wide flag set, then default to MAC 9333 * exempt mode. This allows read-down to unlabeled hosts. 9334 */ 9335 if (getpflags(NET_MAC_AWARE, credp) != 0) 9336 connp->conn_mac_exempt = B_TRUE; 9337 9338 connp->conn_dev = NULL; 9339 if (issocket) { 9340 connp->conn_flags |= IPCL_SOCKET; 9341 tcp->tcp_issocket = 1; 9342 } 9343 9344 /* Non-zero default values */ 9345 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9346 9347 if (q == NULL) { 9348 /* 9349 * Create a helper stream for non-STREAMS socket. 9350 */ 9351 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9352 if (err != 0) { 9353 ip1dbg(("tcp_create_common: create of IP helper stream " 9354 "failed\n")); 9355 CONN_DEC_REF(connp); 9356 *errorp = err; 9357 return (NULL); 9358 } 9359 q = connp->conn_rq; 9360 } 9361 9362 SOCK_CONNID_INIT(tcp->tcp_connid); 9363 err = tcp_init(tcp, q); 9364 if (err != 0) { 9365 CONN_DEC_REF(connp); 9366 *errorp = err; 9367 return (NULL); 9368 } 9369 9370 return (connp); 9371 } 9372 9373 static int 9374 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9375 boolean_t isv6) 9376 { 9377 tcp_t *tcp = NULL; 9378 conn_t *connp = NULL; 9379 int err; 9380 vmem_t *minor_arena = NULL; 9381 dev_t conn_dev; 9382 boolean_t issocket; 9383 9384 if (q->q_ptr != NULL) 9385 return (0); 9386 9387 if (sflag == MODOPEN) 9388 return (EINVAL); 9389 9390 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9391 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9392 minor_arena = ip_minor_arena_la; 9393 } else { 9394 /* 9395 * Either minor numbers in the large arena were exhausted 9396 * or a non socket application is doing the open. 9397 * Try to allocate from the small arena. 9398 */ 9399 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9400 return (EBUSY); 9401 } 9402 minor_arena = ip_minor_arena_sa; 9403 } 9404 9405 ASSERT(minor_arena != NULL); 9406 9407 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9408 9409 if (flag & SO_FALLBACK) { 9410 /* 9411 * Non streams socket needs a stream to fallback to 9412 */ 9413 RD(q)->q_ptr = (void *)conn_dev; 9414 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9415 WR(q)->q_ptr = (void *)minor_arena; 9416 qprocson(q); 9417 return (0); 9418 } else if (flag & SO_ACCEPTOR) { 9419 q->q_qinfo = &tcp_acceptor_rinit; 9420 /* 9421 * the conn_dev and minor_arena will be subsequently used by 9422 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out 9423 * the minor device number for this connection from the q_ptr. 9424 */ 9425 RD(q)->q_ptr = (void *)conn_dev; 9426 WR(q)->q_qinfo = &tcp_acceptor_winit; 9427 WR(q)->q_ptr = (void *)minor_arena; 9428 qprocson(q); 9429 return (0); 9430 } 9431 9432 issocket = flag & SO_SOCKSTR; 9433 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9434 9435 if (connp == NULL) { 9436 inet_minor_free(minor_arena, conn_dev); 9437 q->q_ptr = WR(q)->q_ptr = NULL; 9438 return (err); 9439 } 9440 9441 q->q_ptr = WR(q)->q_ptr = connp; 9442 9443 connp->conn_dev = conn_dev; 9444 connp->conn_minor_arena = minor_arena; 9445 9446 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9447 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9448 9449 tcp = connp->conn_tcp; 9450 9451 if (issocket) { 9452 WR(q)->q_qinfo = &tcp_sock_winit; 9453 } else { 9454 #ifdef _ILP32 9455 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9456 #else 9457 tcp->tcp_acceptor_id = conn_dev; 9458 #endif /* _ILP32 */ 9459 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9460 } 9461 9462 /* 9463 * Put the ref for TCP. Ref for IP was already put 9464 * by ipcl_conn_create. Also Make the conn_t globally 9465 * visible to walkers 9466 */ 9467 mutex_enter(&connp->conn_lock); 9468 CONN_INC_REF_LOCKED(connp); 9469 ASSERT(connp->conn_ref == 2); 9470 connp->conn_state_flags &= ~CONN_INCIPIENT; 9471 mutex_exit(&connp->conn_lock); 9472 9473 qprocson(q); 9474 return (0); 9475 } 9476 9477 /* 9478 * Some TCP options can be "set" by requesting them in the option 9479 * buffer. This is needed for XTI feature test though we do not 9480 * allow it in general. We interpret that this mechanism is more 9481 * applicable to OSI protocols and need not be allowed in general. 9482 * This routine filters out options for which it is not allowed (most) 9483 * and lets through those (few) for which it is. [ The XTI interface 9484 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9485 * ever implemented will have to be allowed here ]. 9486 */ 9487 static boolean_t 9488 tcp_allow_connopt_set(int level, int name) 9489 { 9490 9491 switch (level) { 9492 case IPPROTO_TCP: 9493 switch (name) { 9494 case TCP_NODELAY: 9495 return (B_TRUE); 9496 default: 9497 return (B_FALSE); 9498 } 9499 /*NOTREACHED*/ 9500 default: 9501 return (B_FALSE); 9502 } 9503 /*NOTREACHED*/ 9504 } 9505 9506 /* 9507 * this routine gets default values of certain options whose default 9508 * values are maintained by protocol specific code 9509 */ 9510 /* ARGSUSED */ 9511 int 9512 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9513 { 9514 int32_t *i1 = (int32_t *)ptr; 9515 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9516 9517 switch (level) { 9518 case IPPROTO_TCP: 9519 switch (name) { 9520 case TCP_NOTIFY_THRESHOLD: 9521 *i1 = tcps->tcps_ip_notify_interval; 9522 break; 9523 case TCP_ABORT_THRESHOLD: 9524 *i1 = tcps->tcps_ip_abort_interval; 9525 break; 9526 case TCP_CONN_NOTIFY_THRESHOLD: 9527 *i1 = tcps->tcps_ip_notify_cinterval; 9528 break; 9529 case TCP_CONN_ABORT_THRESHOLD: 9530 *i1 = tcps->tcps_ip_abort_cinterval; 9531 break; 9532 default: 9533 return (-1); 9534 } 9535 break; 9536 case IPPROTO_IP: 9537 switch (name) { 9538 case IP_TTL: 9539 *i1 = tcps->tcps_ipv4_ttl; 9540 break; 9541 default: 9542 return (-1); 9543 } 9544 break; 9545 case IPPROTO_IPV6: 9546 switch (name) { 9547 case IPV6_UNICAST_HOPS: 9548 *i1 = tcps->tcps_ipv6_hoplimit; 9549 break; 9550 default: 9551 return (-1); 9552 } 9553 break; 9554 default: 9555 return (-1); 9556 } 9557 return (sizeof (int)); 9558 } 9559 9560 static int 9561 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9562 { 9563 int *i1 = (int *)ptr; 9564 tcp_t *tcp = connp->conn_tcp; 9565 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9566 9567 switch (level) { 9568 case SOL_SOCKET: 9569 switch (name) { 9570 case SO_LINGER: { 9571 struct linger *lgr = (struct linger *)ptr; 9572 9573 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9574 lgr->l_linger = tcp->tcp_lingertime; 9575 } 9576 return (sizeof (struct linger)); 9577 case SO_DEBUG: 9578 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9579 break; 9580 case SO_KEEPALIVE: 9581 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9582 break; 9583 case SO_DONTROUTE: 9584 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9585 break; 9586 case SO_USELOOPBACK: 9587 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9588 break; 9589 case SO_BROADCAST: 9590 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9591 break; 9592 case SO_REUSEADDR: 9593 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9594 break; 9595 case SO_OOBINLINE: 9596 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9597 break; 9598 case SO_DGRAM_ERRIND: 9599 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9600 break; 9601 case SO_TYPE: 9602 *i1 = SOCK_STREAM; 9603 break; 9604 case SO_SNDBUF: 9605 *i1 = tcp->tcp_xmit_hiwater; 9606 break; 9607 case SO_RCVBUF: 9608 *i1 = tcp->tcp_recv_hiwater; 9609 break; 9610 case SO_SND_COPYAVOID: 9611 *i1 = tcp->tcp_snd_zcopy_on ? 9612 SO_SND_COPYAVOID : 0; 9613 break; 9614 case SO_ALLZONES: 9615 *i1 = connp->conn_allzones ? 1 : 0; 9616 break; 9617 case SO_ANON_MLP: 9618 *i1 = connp->conn_anon_mlp; 9619 break; 9620 case SO_MAC_EXEMPT: 9621 *i1 = connp->conn_mac_exempt; 9622 break; 9623 case SO_EXCLBIND: 9624 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9625 break; 9626 case SO_PROTOTYPE: 9627 *i1 = IPPROTO_TCP; 9628 break; 9629 case SO_DOMAIN: 9630 *i1 = tcp->tcp_family; 9631 break; 9632 case SO_ACCEPTCONN: 9633 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9634 default: 9635 return (-1); 9636 } 9637 break; 9638 case IPPROTO_TCP: 9639 switch (name) { 9640 case TCP_NODELAY: 9641 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9642 break; 9643 case TCP_MAXSEG: 9644 *i1 = tcp->tcp_mss; 9645 break; 9646 case TCP_NOTIFY_THRESHOLD: 9647 *i1 = (int)tcp->tcp_first_timer_threshold; 9648 break; 9649 case TCP_ABORT_THRESHOLD: 9650 *i1 = tcp->tcp_second_timer_threshold; 9651 break; 9652 case TCP_CONN_NOTIFY_THRESHOLD: 9653 *i1 = tcp->tcp_first_ctimer_threshold; 9654 break; 9655 case TCP_CONN_ABORT_THRESHOLD: 9656 *i1 = tcp->tcp_second_ctimer_threshold; 9657 break; 9658 case TCP_RECVDSTADDR: 9659 *i1 = tcp->tcp_recvdstaddr; 9660 break; 9661 case TCP_ANONPRIVBIND: 9662 *i1 = tcp->tcp_anon_priv_bind; 9663 break; 9664 case TCP_EXCLBIND: 9665 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9666 break; 9667 case TCP_INIT_CWND: 9668 *i1 = tcp->tcp_init_cwnd; 9669 break; 9670 case TCP_KEEPALIVE_THRESHOLD: 9671 *i1 = tcp->tcp_ka_interval; 9672 break; 9673 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9674 *i1 = tcp->tcp_ka_abort_thres; 9675 break; 9676 case TCP_CORK: 9677 *i1 = tcp->tcp_cork; 9678 break; 9679 default: 9680 return (-1); 9681 } 9682 break; 9683 case IPPROTO_IP: 9684 if (tcp->tcp_family != AF_INET) 9685 return (-1); 9686 switch (name) { 9687 case IP_OPTIONS: 9688 case T_IP_OPTIONS: { 9689 /* 9690 * This is compatible with BSD in that in only return 9691 * the reverse source route with the final destination 9692 * as the last entry. The first 4 bytes of the option 9693 * will contain the final destination. 9694 */ 9695 int opt_len; 9696 9697 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9698 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9699 ASSERT(opt_len >= 0); 9700 /* Caller ensures enough space */ 9701 if (opt_len > 0) { 9702 /* 9703 * TODO: Do we have to handle getsockopt on an 9704 * initiator as well? 9705 */ 9706 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9707 } 9708 return (0); 9709 } 9710 case IP_TOS: 9711 case T_IP_TOS: 9712 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9713 break; 9714 case IP_TTL: 9715 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9716 break; 9717 case IP_NEXTHOP: 9718 /* Handled at IP level */ 9719 return (-EINVAL); 9720 default: 9721 return (-1); 9722 } 9723 break; 9724 case IPPROTO_IPV6: 9725 /* 9726 * IPPROTO_IPV6 options are only supported for sockets 9727 * that are using IPv6 on the wire. 9728 */ 9729 if (tcp->tcp_ipversion != IPV6_VERSION) { 9730 return (-1); 9731 } 9732 switch (name) { 9733 case IPV6_UNICAST_HOPS: 9734 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9735 break; /* goto sizeof (int) option return */ 9736 case IPV6_BOUND_IF: 9737 /* Zero if not set */ 9738 *i1 = tcp->tcp_bound_if; 9739 break; /* goto sizeof (int) option return */ 9740 case IPV6_RECVPKTINFO: 9741 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9742 *i1 = 1; 9743 else 9744 *i1 = 0; 9745 break; /* goto sizeof (int) option return */ 9746 case IPV6_RECVTCLASS: 9747 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9748 *i1 = 1; 9749 else 9750 *i1 = 0; 9751 break; /* goto sizeof (int) option return */ 9752 case IPV6_RECVHOPLIMIT: 9753 if (tcp->tcp_ipv6_recvancillary & 9754 TCP_IPV6_RECVHOPLIMIT) 9755 *i1 = 1; 9756 else 9757 *i1 = 0; 9758 break; /* goto sizeof (int) option return */ 9759 case IPV6_RECVHOPOPTS: 9760 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9761 *i1 = 1; 9762 else 9763 *i1 = 0; 9764 break; /* goto sizeof (int) option return */ 9765 case IPV6_RECVDSTOPTS: 9766 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9767 *i1 = 1; 9768 else 9769 *i1 = 0; 9770 break; /* goto sizeof (int) option return */ 9771 case _OLD_IPV6_RECVDSTOPTS: 9772 if (tcp->tcp_ipv6_recvancillary & 9773 TCP_OLD_IPV6_RECVDSTOPTS) 9774 *i1 = 1; 9775 else 9776 *i1 = 0; 9777 break; /* goto sizeof (int) option return */ 9778 case IPV6_RECVRTHDR: 9779 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9780 *i1 = 1; 9781 else 9782 *i1 = 0; 9783 break; /* goto sizeof (int) option return */ 9784 case IPV6_RECVRTHDRDSTOPTS: 9785 if (tcp->tcp_ipv6_recvancillary & 9786 TCP_IPV6_RECVRTDSTOPTS) 9787 *i1 = 1; 9788 else 9789 *i1 = 0; 9790 break; /* goto sizeof (int) option return */ 9791 case IPV6_PKTINFO: { 9792 /* XXX assumes that caller has room for max size! */ 9793 struct in6_pktinfo *pkti; 9794 9795 pkti = (struct in6_pktinfo *)ptr; 9796 if (ipp->ipp_fields & IPPF_IFINDEX) 9797 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9798 else 9799 pkti->ipi6_ifindex = 0; 9800 if (ipp->ipp_fields & IPPF_ADDR) 9801 pkti->ipi6_addr = ipp->ipp_addr; 9802 else 9803 pkti->ipi6_addr = ipv6_all_zeros; 9804 return (sizeof (struct in6_pktinfo)); 9805 } 9806 case IPV6_TCLASS: 9807 if (ipp->ipp_fields & IPPF_TCLASS) 9808 *i1 = ipp->ipp_tclass; 9809 else 9810 *i1 = IPV6_FLOW_TCLASS( 9811 IPV6_DEFAULT_VERS_AND_FLOW); 9812 break; /* goto sizeof (int) option return */ 9813 case IPV6_NEXTHOP: { 9814 sin6_t *sin6 = (sin6_t *)ptr; 9815 9816 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9817 return (0); 9818 *sin6 = sin6_null; 9819 sin6->sin6_family = AF_INET6; 9820 sin6->sin6_addr = ipp->ipp_nexthop; 9821 return (sizeof (sin6_t)); 9822 } 9823 case IPV6_HOPOPTS: 9824 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9825 return (0); 9826 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9827 return (0); 9828 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9829 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9830 if (tcp->tcp_label_len > 0) { 9831 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9832 ptr[1] = (ipp->ipp_hopoptslen - 9833 tcp->tcp_label_len + 7) / 8 - 1; 9834 } 9835 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9836 case IPV6_RTHDRDSTOPTS: 9837 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9838 return (0); 9839 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9840 return (ipp->ipp_rtdstoptslen); 9841 case IPV6_RTHDR: 9842 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9843 return (0); 9844 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9845 return (ipp->ipp_rthdrlen); 9846 case IPV6_DSTOPTS: 9847 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9848 return (0); 9849 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9850 return (ipp->ipp_dstoptslen); 9851 case IPV6_SRC_PREFERENCES: 9852 return (ip6_get_src_preferences(connp, 9853 (uint32_t *)ptr)); 9854 case IPV6_PATHMTU: { 9855 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9856 9857 if (tcp->tcp_state < TCPS_ESTABLISHED) 9858 return (-1); 9859 9860 return (ip_fill_mtuinfo(&connp->conn_remv6, 9861 connp->conn_fport, mtuinfo, 9862 connp->conn_netstack)); 9863 } 9864 default: 9865 return (-1); 9866 } 9867 break; 9868 default: 9869 return (-1); 9870 } 9871 return (sizeof (int)); 9872 } 9873 9874 /* 9875 * TCP routine to get the values of options. 9876 */ 9877 int 9878 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9879 { 9880 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9881 } 9882 9883 /* returns UNIX error, the optlen is a value-result arg */ 9884 int 9885 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9886 void *optvalp, socklen_t *optlen, cred_t *cr) 9887 { 9888 conn_t *connp = (conn_t *)proto_handle; 9889 squeue_t *sqp = connp->conn_sqp; 9890 int error; 9891 t_uscalar_t max_optbuf_len; 9892 void *optvalp_buf; 9893 int len; 9894 9895 ASSERT(connp->conn_upper_handle != NULL); 9896 9897 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9898 tcp_opt_obj.odb_opt_des_arr, 9899 tcp_opt_obj.odb_opt_arr_cnt, 9900 tcp_opt_obj.odb_topmost_tpiprovider, 9901 B_FALSE, B_TRUE, cr); 9902 if (error != 0) { 9903 if (error < 0) { 9904 error = proto_tlitosyserr(-error); 9905 } 9906 return (error); 9907 } 9908 9909 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9910 9911 error = squeue_synch_enter(sqp, connp, NULL); 9912 if (error == ENOMEM) { 9913 return (ENOMEM); 9914 } 9915 9916 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9917 squeue_synch_exit(sqp, connp); 9918 9919 if (len < 0) { 9920 /* 9921 * Pass on to IP 9922 */ 9923 kmem_free(optvalp_buf, max_optbuf_len); 9924 return (ip_get_options(connp, level, option_name, 9925 optvalp, optlen, cr)); 9926 } else { 9927 /* 9928 * update optlen and copy option value 9929 */ 9930 t_uscalar_t size = MIN(len, *optlen); 9931 bcopy(optvalp_buf, optvalp, size); 9932 bcopy(&size, optlen, sizeof (size)); 9933 9934 kmem_free(optvalp_buf, max_optbuf_len); 9935 return (0); 9936 } 9937 } 9938 9939 /* 9940 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9941 * Parameters are assumed to be verified by the caller. 9942 */ 9943 /* ARGSUSED */ 9944 int 9945 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9946 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9947 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9948 { 9949 tcp_t *tcp = connp->conn_tcp; 9950 int *i1 = (int *)invalp; 9951 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9952 boolean_t checkonly; 9953 int reterr; 9954 tcp_stack_t *tcps = tcp->tcp_tcps; 9955 9956 switch (optset_context) { 9957 case SETFN_OPTCOM_CHECKONLY: 9958 checkonly = B_TRUE; 9959 /* 9960 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9961 * inlen != 0 implies value supplied and 9962 * we have to "pretend" to set it. 9963 * inlen == 0 implies that there is no 9964 * value part in T_CHECK request and just validation 9965 * done elsewhere should be enough, we just return here. 9966 */ 9967 if (inlen == 0) { 9968 *outlenp = 0; 9969 return (0); 9970 } 9971 break; 9972 case SETFN_OPTCOM_NEGOTIATE: 9973 checkonly = B_FALSE; 9974 break; 9975 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9976 case SETFN_CONN_NEGOTIATE: 9977 checkonly = B_FALSE; 9978 /* 9979 * Negotiating local and "association-related" options 9980 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9981 * primitives is allowed by XTI, but we choose 9982 * to not implement this style negotiation for Internet 9983 * protocols (We interpret it is a must for OSI world but 9984 * optional for Internet protocols) for all options. 9985 * [ Will do only for the few options that enable test 9986 * suites that our XTI implementation of this feature 9987 * works for transports that do allow it ] 9988 */ 9989 if (!tcp_allow_connopt_set(level, name)) { 9990 *outlenp = 0; 9991 return (EINVAL); 9992 } 9993 break; 9994 default: 9995 /* 9996 * We should never get here 9997 */ 9998 *outlenp = 0; 9999 return (EINVAL); 10000 } 10001 10002 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10003 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10004 10005 /* 10006 * For TCP, we should have no ancillary data sent down 10007 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10008 * has to be zero. 10009 */ 10010 ASSERT(thisdg_attrs == NULL); 10011 10012 /* 10013 * For fixed length options, no sanity check 10014 * of passed in length is done. It is assumed *_optcom_req() 10015 * routines do the right thing. 10016 */ 10017 switch (level) { 10018 case SOL_SOCKET: 10019 switch (name) { 10020 case SO_LINGER: { 10021 struct linger *lgr = (struct linger *)invalp; 10022 10023 if (!checkonly) { 10024 if (lgr->l_onoff) { 10025 tcp->tcp_linger = 1; 10026 tcp->tcp_lingertime = lgr->l_linger; 10027 } else { 10028 tcp->tcp_linger = 0; 10029 tcp->tcp_lingertime = 0; 10030 } 10031 /* struct copy */ 10032 *(struct linger *)outvalp = *lgr; 10033 } else { 10034 if (!lgr->l_onoff) { 10035 ((struct linger *) 10036 outvalp)->l_onoff = 0; 10037 ((struct linger *) 10038 outvalp)->l_linger = 0; 10039 } else { 10040 /* struct copy */ 10041 *(struct linger *)outvalp = *lgr; 10042 } 10043 } 10044 *outlenp = sizeof (struct linger); 10045 return (0); 10046 } 10047 case SO_DEBUG: 10048 if (!checkonly) 10049 tcp->tcp_debug = onoff; 10050 break; 10051 case SO_KEEPALIVE: 10052 if (checkonly) { 10053 /* check only case */ 10054 break; 10055 } 10056 10057 if (!onoff) { 10058 if (tcp->tcp_ka_enabled) { 10059 if (tcp->tcp_ka_tid != 0) { 10060 (void) TCP_TIMER_CANCEL(tcp, 10061 tcp->tcp_ka_tid); 10062 tcp->tcp_ka_tid = 0; 10063 } 10064 tcp->tcp_ka_enabled = 0; 10065 } 10066 break; 10067 } 10068 if (!tcp->tcp_ka_enabled) { 10069 /* Crank up the keepalive timer */ 10070 tcp->tcp_ka_last_intrvl = 0; 10071 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10072 tcp_keepalive_killer, 10073 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10074 tcp->tcp_ka_enabled = 1; 10075 } 10076 break; 10077 case SO_DONTROUTE: 10078 /* 10079 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10080 * only of interest to IP. We track them here only so 10081 * that we can report their current value. 10082 */ 10083 if (!checkonly) { 10084 tcp->tcp_dontroute = onoff; 10085 tcp->tcp_connp->conn_dontroute = onoff; 10086 } 10087 break; 10088 case SO_USELOOPBACK: 10089 if (!checkonly) { 10090 tcp->tcp_useloopback = onoff; 10091 tcp->tcp_connp->conn_loopback = onoff; 10092 } 10093 break; 10094 case SO_BROADCAST: 10095 if (!checkonly) { 10096 tcp->tcp_broadcast = onoff; 10097 tcp->tcp_connp->conn_broadcast = onoff; 10098 } 10099 break; 10100 case SO_REUSEADDR: 10101 if (!checkonly) { 10102 tcp->tcp_reuseaddr = onoff; 10103 tcp->tcp_connp->conn_reuseaddr = onoff; 10104 } 10105 break; 10106 case SO_OOBINLINE: 10107 if (!checkonly) { 10108 tcp->tcp_oobinline = onoff; 10109 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10110 proto_set_rx_oob_opt(connp, onoff); 10111 } 10112 break; 10113 case SO_DGRAM_ERRIND: 10114 if (!checkonly) 10115 tcp->tcp_dgram_errind = onoff; 10116 break; 10117 case SO_SNDBUF: { 10118 if (*i1 > tcps->tcps_max_buf) { 10119 *outlenp = 0; 10120 return (ENOBUFS); 10121 } 10122 if (checkonly) 10123 break; 10124 10125 tcp->tcp_xmit_hiwater = *i1; 10126 if (tcps->tcps_snd_lowat_fraction != 0) 10127 tcp->tcp_xmit_lowater = 10128 tcp->tcp_xmit_hiwater / 10129 tcps->tcps_snd_lowat_fraction; 10130 (void) tcp_maxpsz_set(tcp, B_TRUE); 10131 /* 10132 * If we are flow-controlled, recheck the condition. 10133 * There are apps that increase SO_SNDBUF size when 10134 * flow-controlled (EWOULDBLOCK), and expect the flow 10135 * control condition to be lifted right away. 10136 */ 10137 mutex_enter(&tcp->tcp_non_sq_lock); 10138 if (tcp->tcp_flow_stopped && 10139 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10140 tcp_clrqfull(tcp); 10141 } 10142 mutex_exit(&tcp->tcp_non_sq_lock); 10143 break; 10144 } 10145 case SO_RCVBUF: 10146 if (*i1 > tcps->tcps_max_buf) { 10147 *outlenp = 0; 10148 return (ENOBUFS); 10149 } 10150 /* Silently ignore zero */ 10151 if (!checkonly && *i1 != 0) { 10152 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10153 (void) tcp_rwnd_set(tcp, *i1); 10154 } 10155 /* 10156 * XXX should we return the rwnd here 10157 * and tcp_opt_get ? 10158 */ 10159 break; 10160 case SO_SND_COPYAVOID: 10161 if (!checkonly) { 10162 /* we only allow enable at most once for now */ 10163 if (tcp->tcp_loopback || 10164 (tcp->tcp_kssl_ctx != NULL) || 10165 (!tcp->tcp_snd_zcopy_aware && 10166 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10167 *outlenp = 0; 10168 return (EOPNOTSUPP); 10169 } 10170 tcp->tcp_snd_zcopy_aware = 1; 10171 } 10172 break; 10173 case SO_RCVTIMEO: 10174 case SO_SNDTIMEO: 10175 /* 10176 * Pass these two options in order for third part 10177 * protocol usage. Here just return directly. 10178 */ 10179 return (0); 10180 case SO_ALLZONES: 10181 /* Pass option along to IP level for handling */ 10182 return (-EINVAL); 10183 case SO_ANON_MLP: 10184 /* Pass option along to IP level for handling */ 10185 return (-EINVAL); 10186 case SO_MAC_EXEMPT: 10187 /* Pass option along to IP level for handling */ 10188 return (-EINVAL); 10189 case SO_EXCLBIND: 10190 if (!checkonly) 10191 tcp->tcp_exclbind = onoff; 10192 break; 10193 default: 10194 *outlenp = 0; 10195 return (EINVAL); 10196 } 10197 break; 10198 case IPPROTO_TCP: 10199 switch (name) { 10200 case TCP_NODELAY: 10201 if (!checkonly) 10202 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10203 break; 10204 case TCP_NOTIFY_THRESHOLD: 10205 if (!checkonly) 10206 tcp->tcp_first_timer_threshold = *i1; 10207 break; 10208 case TCP_ABORT_THRESHOLD: 10209 if (!checkonly) 10210 tcp->tcp_second_timer_threshold = *i1; 10211 break; 10212 case TCP_CONN_NOTIFY_THRESHOLD: 10213 if (!checkonly) 10214 tcp->tcp_first_ctimer_threshold = *i1; 10215 break; 10216 case TCP_CONN_ABORT_THRESHOLD: 10217 if (!checkonly) 10218 tcp->tcp_second_ctimer_threshold = *i1; 10219 break; 10220 case TCP_RECVDSTADDR: 10221 if (tcp->tcp_state > TCPS_LISTEN) 10222 return (EOPNOTSUPP); 10223 if (!checkonly) 10224 tcp->tcp_recvdstaddr = onoff; 10225 break; 10226 case TCP_ANONPRIVBIND: 10227 if ((reterr = secpolicy_net_privaddr(cr, 0, 10228 IPPROTO_TCP)) != 0) { 10229 *outlenp = 0; 10230 return (reterr); 10231 } 10232 if (!checkonly) { 10233 tcp->tcp_anon_priv_bind = onoff; 10234 } 10235 break; 10236 case TCP_EXCLBIND: 10237 if (!checkonly) 10238 tcp->tcp_exclbind = onoff; 10239 break; /* goto sizeof (int) option return */ 10240 case TCP_INIT_CWND: { 10241 uint32_t init_cwnd = *((uint32_t *)invalp); 10242 10243 if (checkonly) 10244 break; 10245 10246 /* 10247 * Only allow socket with network configuration 10248 * privilege to set the initial cwnd to be larger 10249 * than allowed by RFC 3390. 10250 */ 10251 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10252 tcp->tcp_init_cwnd = init_cwnd; 10253 break; 10254 } 10255 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10256 *outlenp = 0; 10257 return (reterr); 10258 } 10259 if (init_cwnd > TCP_MAX_INIT_CWND) { 10260 *outlenp = 0; 10261 return (EINVAL); 10262 } 10263 tcp->tcp_init_cwnd = init_cwnd; 10264 break; 10265 } 10266 case TCP_KEEPALIVE_THRESHOLD: 10267 if (checkonly) 10268 break; 10269 10270 if (*i1 < tcps->tcps_keepalive_interval_low || 10271 *i1 > tcps->tcps_keepalive_interval_high) { 10272 *outlenp = 0; 10273 return (EINVAL); 10274 } 10275 if (*i1 != tcp->tcp_ka_interval) { 10276 tcp->tcp_ka_interval = *i1; 10277 /* 10278 * Check if we need to restart the 10279 * keepalive timer. 10280 */ 10281 if (tcp->tcp_ka_tid != 0) { 10282 ASSERT(tcp->tcp_ka_enabled); 10283 (void) TCP_TIMER_CANCEL(tcp, 10284 tcp->tcp_ka_tid); 10285 tcp->tcp_ka_last_intrvl = 0; 10286 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10287 tcp_keepalive_killer, 10288 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10289 } 10290 } 10291 break; 10292 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10293 if (!checkonly) { 10294 if (*i1 < 10295 tcps->tcps_keepalive_abort_interval_low || 10296 *i1 > 10297 tcps->tcps_keepalive_abort_interval_high) { 10298 *outlenp = 0; 10299 return (EINVAL); 10300 } 10301 tcp->tcp_ka_abort_thres = *i1; 10302 } 10303 break; 10304 case TCP_CORK: 10305 if (!checkonly) { 10306 /* 10307 * if tcp->tcp_cork was set and is now 10308 * being unset, we have to make sure that 10309 * the remaining data gets sent out. Also 10310 * unset tcp->tcp_cork so that tcp_wput_data() 10311 * can send data even if it is less than mss 10312 */ 10313 if (tcp->tcp_cork && onoff == 0 && 10314 tcp->tcp_unsent > 0) { 10315 tcp->tcp_cork = B_FALSE; 10316 tcp_wput_data(tcp, NULL, B_FALSE); 10317 } 10318 tcp->tcp_cork = onoff; 10319 } 10320 break; 10321 default: 10322 *outlenp = 0; 10323 return (EINVAL); 10324 } 10325 break; 10326 case IPPROTO_IP: 10327 if (tcp->tcp_family != AF_INET) { 10328 *outlenp = 0; 10329 return (ENOPROTOOPT); 10330 } 10331 switch (name) { 10332 case IP_OPTIONS: 10333 case T_IP_OPTIONS: 10334 reterr = tcp_opt_set_header(tcp, checkonly, 10335 invalp, inlen); 10336 if (reterr) { 10337 *outlenp = 0; 10338 return (reterr); 10339 } 10340 /* OK return - copy input buffer into output buffer */ 10341 if (invalp != outvalp) { 10342 /* don't trust bcopy for identical src/dst */ 10343 bcopy(invalp, outvalp, inlen); 10344 } 10345 *outlenp = inlen; 10346 return (0); 10347 case IP_TOS: 10348 case T_IP_TOS: 10349 if (!checkonly) { 10350 tcp->tcp_ipha->ipha_type_of_service = 10351 (uchar_t)*i1; 10352 tcp->tcp_tos = (uchar_t)*i1; 10353 } 10354 break; 10355 case IP_TTL: 10356 if (!checkonly) { 10357 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10358 tcp->tcp_ttl = (uchar_t)*i1; 10359 } 10360 break; 10361 case IP_BOUND_IF: 10362 case IP_NEXTHOP: 10363 /* Handled at the IP level */ 10364 return (-EINVAL); 10365 case IP_SEC_OPT: 10366 /* 10367 * We should not allow policy setting after 10368 * we start listening for connections. 10369 */ 10370 if (tcp->tcp_state == TCPS_LISTEN) { 10371 return (EINVAL); 10372 } else { 10373 /* Handled at the IP level */ 10374 return (-EINVAL); 10375 } 10376 default: 10377 *outlenp = 0; 10378 return (EINVAL); 10379 } 10380 break; 10381 case IPPROTO_IPV6: { 10382 ip6_pkt_t *ipp; 10383 10384 /* 10385 * IPPROTO_IPV6 options are only supported for sockets 10386 * that are using IPv6 on the wire. 10387 */ 10388 if (tcp->tcp_ipversion != IPV6_VERSION) { 10389 *outlenp = 0; 10390 return (ENOPROTOOPT); 10391 } 10392 /* 10393 * Only sticky options; no ancillary data 10394 */ 10395 ipp = &tcp->tcp_sticky_ipp; 10396 10397 switch (name) { 10398 case IPV6_UNICAST_HOPS: 10399 /* -1 means use default */ 10400 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10401 *outlenp = 0; 10402 return (EINVAL); 10403 } 10404 if (!checkonly) { 10405 if (*i1 == -1) { 10406 tcp->tcp_ip6h->ip6_hops = 10407 ipp->ipp_unicast_hops = 10408 (uint8_t)tcps->tcps_ipv6_hoplimit; 10409 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10410 /* Pass modified value to IP. */ 10411 *i1 = tcp->tcp_ip6h->ip6_hops; 10412 } else { 10413 tcp->tcp_ip6h->ip6_hops = 10414 ipp->ipp_unicast_hops = 10415 (uint8_t)*i1; 10416 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10417 } 10418 reterr = tcp_build_hdrs(tcp); 10419 if (reterr != 0) 10420 return (reterr); 10421 } 10422 break; 10423 case IPV6_BOUND_IF: 10424 if (!checkonly) { 10425 tcp->tcp_bound_if = *i1; 10426 PASS_OPT_TO_IP(connp); 10427 } 10428 break; 10429 /* 10430 * Set boolean switches for ancillary data delivery 10431 */ 10432 case IPV6_RECVPKTINFO: 10433 if (!checkonly) { 10434 if (onoff) 10435 tcp->tcp_ipv6_recvancillary |= 10436 TCP_IPV6_RECVPKTINFO; 10437 else 10438 tcp->tcp_ipv6_recvancillary &= 10439 ~TCP_IPV6_RECVPKTINFO; 10440 /* Force it to be sent up with the next msg */ 10441 tcp->tcp_recvifindex = 0; 10442 PASS_OPT_TO_IP(connp); 10443 } 10444 break; 10445 case IPV6_RECVTCLASS: 10446 if (!checkonly) { 10447 if (onoff) 10448 tcp->tcp_ipv6_recvancillary |= 10449 TCP_IPV6_RECVTCLASS; 10450 else 10451 tcp->tcp_ipv6_recvancillary &= 10452 ~TCP_IPV6_RECVTCLASS; 10453 PASS_OPT_TO_IP(connp); 10454 } 10455 break; 10456 case IPV6_RECVHOPLIMIT: 10457 if (!checkonly) { 10458 if (onoff) 10459 tcp->tcp_ipv6_recvancillary |= 10460 TCP_IPV6_RECVHOPLIMIT; 10461 else 10462 tcp->tcp_ipv6_recvancillary &= 10463 ~TCP_IPV6_RECVHOPLIMIT; 10464 /* Force it to be sent up with the next msg */ 10465 tcp->tcp_recvhops = 0xffffffffU; 10466 PASS_OPT_TO_IP(connp); 10467 } 10468 break; 10469 case IPV6_RECVHOPOPTS: 10470 if (!checkonly) { 10471 if (onoff) 10472 tcp->tcp_ipv6_recvancillary |= 10473 TCP_IPV6_RECVHOPOPTS; 10474 else 10475 tcp->tcp_ipv6_recvancillary &= 10476 ~TCP_IPV6_RECVHOPOPTS; 10477 PASS_OPT_TO_IP(connp); 10478 } 10479 break; 10480 case IPV6_RECVDSTOPTS: 10481 if (!checkonly) { 10482 if (onoff) 10483 tcp->tcp_ipv6_recvancillary |= 10484 TCP_IPV6_RECVDSTOPTS; 10485 else 10486 tcp->tcp_ipv6_recvancillary &= 10487 ~TCP_IPV6_RECVDSTOPTS; 10488 PASS_OPT_TO_IP(connp); 10489 } 10490 break; 10491 case _OLD_IPV6_RECVDSTOPTS: 10492 if (!checkonly) { 10493 if (onoff) 10494 tcp->tcp_ipv6_recvancillary |= 10495 TCP_OLD_IPV6_RECVDSTOPTS; 10496 else 10497 tcp->tcp_ipv6_recvancillary &= 10498 ~TCP_OLD_IPV6_RECVDSTOPTS; 10499 } 10500 break; 10501 case IPV6_RECVRTHDR: 10502 if (!checkonly) { 10503 if (onoff) 10504 tcp->tcp_ipv6_recvancillary |= 10505 TCP_IPV6_RECVRTHDR; 10506 else 10507 tcp->tcp_ipv6_recvancillary &= 10508 ~TCP_IPV6_RECVRTHDR; 10509 PASS_OPT_TO_IP(connp); 10510 } 10511 break; 10512 case IPV6_RECVRTHDRDSTOPTS: 10513 if (!checkonly) { 10514 if (onoff) 10515 tcp->tcp_ipv6_recvancillary |= 10516 TCP_IPV6_RECVRTDSTOPTS; 10517 else 10518 tcp->tcp_ipv6_recvancillary &= 10519 ~TCP_IPV6_RECVRTDSTOPTS; 10520 PASS_OPT_TO_IP(connp); 10521 } 10522 break; 10523 case IPV6_PKTINFO: 10524 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10525 return (EINVAL); 10526 if (checkonly) 10527 break; 10528 10529 if (inlen == 0) { 10530 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10531 } else { 10532 struct in6_pktinfo *pkti; 10533 10534 pkti = (struct in6_pktinfo *)invalp; 10535 /* 10536 * RFC 3542 states that ipi6_addr must be 10537 * the unspecified address when setting the 10538 * IPV6_PKTINFO sticky socket option on a 10539 * TCP socket. 10540 */ 10541 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10542 return (EINVAL); 10543 /* 10544 * IP will validate the source address and 10545 * interface index. 10546 */ 10547 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10548 reterr = ip_set_options(tcp->tcp_connp, 10549 level, name, invalp, inlen, cr); 10550 } else { 10551 reterr = ip6_set_pktinfo(cr, 10552 tcp->tcp_connp, pkti); 10553 } 10554 if (reterr != 0) 10555 return (reterr); 10556 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10557 ipp->ipp_addr = pkti->ipi6_addr; 10558 if (ipp->ipp_ifindex != 0) 10559 ipp->ipp_fields |= IPPF_IFINDEX; 10560 else 10561 ipp->ipp_fields &= ~IPPF_IFINDEX; 10562 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10563 ipp->ipp_fields |= IPPF_ADDR; 10564 else 10565 ipp->ipp_fields &= ~IPPF_ADDR; 10566 } 10567 reterr = tcp_build_hdrs(tcp); 10568 if (reterr != 0) 10569 return (reterr); 10570 break; 10571 case IPV6_TCLASS: 10572 if (inlen != 0 && inlen != sizeof (int)) 10573 return (EINVAL); 10574 if (checkonly) 10575 break; 10576 10577 if (inlen == 0) { 10578 ipp->ipp_fields &= ~IPPF_TCLASS; 10579 } else { 10580 if (*i1 > 255 || *i1 < -1) 10581 return (EINVAL); 10582 if (*i1 == -1) { 10583 ipp->ipp_tclass = 0; 10584 *i1 = 0; 10585 } else { 10586 ipp->ipp_tclass = *i1; 10587 } 10588 ipp->ipp_fields |= IPPF_TCLASS; 10589 } 10590 reterr = tcp_build_hdrs(tcp); 10591 if (reterr != 0) 10592 return (reterr); 10593 break; 10594 case IPV6_NEXTHOP: 10595 /* 10596 * IP will verify that the nexthop is reachable 10597 * and fail for sticky options. 10598 */ 10599 if (inlen != 0 && inlen != sizeof (sin6_t)) 10600 return (EINVAL); 10601 if (checkonly) 10602 break; 10603 10604 if (inlen == 0) { 10605 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10606 } else { 10607 sin6_t *sin6 = (sin6_t *)invalp; 10608 10609 if (sin6->sin6_family != AF_INET6) 10610 return (EAFNOSUPPORT); 10611 if (IN6_IS_ADDR_V4MAPPED( 10612 &sin6->sin6_addr)) 10613 return (EADDRNOTAVAIL); 10614 ipp->ipp_nexthop = sin6->sin6_addr; 10615 if (!IN6_IS_ADDR_UNSPECIFIED( 10616 &ipp->ipp_nexthop)) 10617 ipp->ipp_fields |= IPPF_NEXTHOP; 10618 else 10619 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10620 } 10621 reterr = tcp_build_hdrs(tcp); 10622 if (reterr != 0) 10623 return (reterr); 10624 PASS_OPT_TO_IP(connp); 10625 break; 10626 case IPV6_HOPOPTS: { 10627 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10628 10629 /* 10630 * Sanity checks - minimum size, size a multiple of 10631 * eight bytes, and matching size passed in. 10632 */ 10633 if (inlen != 0 && 10634 inlen != (8 * (hopts->ip6h_len + 1))) 10635 return (EINVAL); 10636 10637 if (checkonly) 10638 break; 10639 10640 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10641 (uchar_t **)&ipp->ipp_hopopts, 10642 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10643 if (reterr != 0) 10644 return (reterr); 10645 if (ipp->ipp_hopoptslen == 0) 10646 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10647 else 10648 ipp->ipp_fields |= IPPF_HOPOPTS; 10649 reterr = tcp_build_hdrs(tcp); 10650 if (reterr != 0) 10651 return (reterr); 10652 break; 10653 } 10654 case IPV6_RTHDRDSTOPTS: { 10655 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10656 10657 /* 10658 * Sanity checks - minimum size, size a multiple of 10659 * eight bytes, and matching size passed in. 10660 */ 10661 if (inlen != 0 && 10662 inlen != (8 * (dopts->ip6d_len + 1))) 10663 return (EINVAL); 10664 10665 if (checkonly) 10666 break; 10667 10668 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10669 (uchar_t **)&ipp->ipp_rtdstopts, 10670 &ipp->ipp_rtdstoptslen, 0); 10671 if (reterr != 0) 10672 return (reterr); 10673 if (ipp->ipp_rtdstoptslen == 0) 10674 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10675 else 10676 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10677 reterr = tcp_build_hdrs(tcp); 10678 if (reterr != 0) 10679 return (reterr); 10680 break; 10681 } 10682 case IPV6_DSTOPTS: { 10683 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10684 10685 /* 10686 * Sanity checks - minimum size, size a multiple of 10687 * eight bytes, and matching size passed in. 10688 */ 10689 if (inlen != 0 && 10690 inlen != (8 * (dopts->ip6d_len + 1))) 10691 return (EINVAL); 10692 10693 if (checkonly) 10694 break; 10695 10696 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10697 (uchar_t **)&ipp->ipp_dstopts, 10698 &ipp->ipp_dstoptslen, 0); 10699 if (reterr != 0) 10700 return (reterr); 10701 if (ipp->ipp_dstoptslen == 0) 10702 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10703 else 10704 ipp->ipp_fields |= IPPF_DSTOPTS; 10705 reterr = tcp_build_hdrs(tcp); 10706 if (reterr != 0) 10707 return (reterr); 10708 break; 10709 } 10710 case IPV6_RTHDR: { 10711 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10712 10713 /* 10714 * Sanity checks - minimum size, size a multiple of 10715 * eight bytes, and matching size passed in. 10716 */ 10717 if (inlen != 0 && 10718 inlen != (8 * (rt->ip6r_len + 1))) 10719 return (EINVAL); 10720 10721 if (checkonly) 10722 break; 10723 10724 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10725 (uchar_t **)&ipp->ipp_rthdr, 10726 &ipp->ipp_rthdrlen, 0); 10727 if (reterr != 0) 10728 return (reterr); 10729 if (ipp->ipp_rthdrlen == 0) 10730 ipp->ipp_fields &= ~IPPF_RTHDR; 10731 else 10732 ipp->ipp_fields |= IPPF_RTHDR; 10733 reterr = tcp_build_hdrs(tcp); 10734 if (reterr != 0) 10735 return (reterr); 10736 break; 10737 } 10738 case IPV6_V6ONLY: 10739 if (!checkonly) { 10740 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10741 } 10742 break; 10743 case IPV6_USE_MIN_MTU: 10744 if (inlen != sizeof (int)) 10745 return (EINVAL); 10746 10747 if (*i1 < -1 || *i1 > 1) 10748 return (EINVAL); 10749 10750 if (checkonly) 10751 break; 10752 10753 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10754 ipp->ipp_use_min_mtu = *i1; 10755 break; 10756 case IPV6_SEC_OPT: 10757 /* 10758 * We should not allow policy setting after 10759 * we start listening for connections. 10760 */ 10761 if (tcp->tcp_state == TCPS_LISTEN) { 10762 return (EINVAL); 10763 } else { 10764 /* Handled at the IP level */ 10765 return (-EINVAL); 10766 } 10767 case IPV6_SRC_PREFERENCES: 10768 if (inlen != sizeof (uint32_t)) 10769 return (EINVAL); 10770 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10771 *(uint32_t *)invalp); 10772 if (reterr != 0) { 10773 *outlenp = 0; 10774 return (reterr); 10775 } 10776 break; 10777 default: 10778 *outlenp = 0; 10779 return (EINVAL); 10780 } 10781 break; 10782 } /* end IPPROTO_IPV6 */ 10783 default: 10784 *outlenp = 0; 10785 return (EINVAL); 10786 } 10787 /* 10788 * Common case of OK return with outval same as inval 10789 */ 10790 if (invalp != outvalp) { 10791 /* don't trust bcopy for identical src/dst */ 10792 (void) bcopy(invalp, outvalp, inlen); 10793 } 10794 *outlenp = inlen; 10795 return (0); 10796 } 10797 10798 /* ARGSUSED */ 10799 int 10800 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10801 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10802 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10803 { 10804 conn_t *connp = Q_TO_CONN(q); 10805 10806 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10807 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10808 } 10809 10810 int 10811 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10812 const void *optvalp, socklen_t optlen, cred_t *cr) 10813 { 10814 conn_t *connp = (conn_t *)proto_handle; 10815 squeue_t *sqp = connp->conn_sqp; 10816 int error; 10817 10818 ASSERT(connp->conn_upper_handle != NULL); 10819 /* 10820 * Entering the squeue synchronously can result in a context switch, 10821 * which can cause a rather sever performance degradation. So we try to 10822 * handle whatever options we can without entering the squeue. 10823 */ 10824 if (level == IPPROTO_TCP) { 10825 switch (option_name) { 10826 case TCP_NODELAY: 10827 if (optlen != sizeof (int32_t)) 10828 return (EINVAL); 10829 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10830 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10831 connp->conn_tcp->tcp_mss; 10832 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10833 return (0); 10834 default: 10835 break; 10836 } 10837 } 10838 10839 error = squeue_synch_enter(sqp, connp, NULL); 10840 if (error == ENOMEM) { 10841 return (ENOMEM); 10842 } 10843 10844 error = proto_opt_check(level, option_name, optlen, NULL, 10845 tcp_opt_obj.odb_opt_des_arr, 10846 tcp_opt_obj.odb_opt_arr_cnt, 10847 tcp_opt_obj.odb_topmost_tpiprovider, 10848 B_TRUE, B_FALSE, cr); 10849 10850 if (error != 0) { 10851 if (error < 0) { 10852 error = proto_tlitosyserr(-error); 10853 } 10854 squeue_synch_exit(sqp, connp); 10855 return (error); 10856 } 10857 10858 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10859 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10860 NULL, cr, NULL); 10861 squeue_synch_exit(sqp, connp); 10862 10863 if (error < 0) { 10864 /* 10865 * Pass on to ip 10866 */ 10867 error = ip_set_options(connp, level, option_name, optvalp, 10868 optlen, cr); 10869 } 10870 return (error); 10871 } 10872 10873 /* 10874 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10875 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10876 * headers, and the maximum size tcp header (to avoid reallocation 10877 * on the fly for additional tcp options). 10878 * Returns failure if can't allocate memory. 10879 */ 10880 static int 10881 tcp_build_hdrs(tcp_t *tcp) 10882 { 10883 char *hdrs; 10884 uint_t hdrs_len; 10885 ip6i_t *ip6i; 10886 char buf[TCP_MAX_HDR_LENGTH]; 10887 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10888 in6_addr_t src, dst; 10889 tcp_stack_t *tcps = tcp->tcp_tcps; 10890 conn_t *connp = tcp->tcp_connp; 10891 10892 /* 10893 * save the existing tcp header and source/dest IP addresses 10894 */ 10895 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10896 src = tcp->tcp_ip6h->ip6_src; 10897 dst = tcp->tcp_ip6h->ip6_dst; 10898 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10899 ASSERT(hdrs_len != 0); 10900 if (hdrs_len > tcp->tcp_iphc_len) { 10901 /* Need to reallocate */ 10902 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10903 if (hdrs == NULL) 10904 return (ENOMEM); 10905 if (tcp->tcp_iphc != NULL) { 10906 if (tcp->tcp_hdr_grown) { 10907 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10908 } else { 10909 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10910 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10911 } 10912 tcp->tcp_iphc_len = 0; 10913 } 10914 ASSERT(tcp->tcp_iphc_len == 0); 10915 tcp->tcp_iphc = hdrs; 10916 tcp->tcp_iphc_len = hdrs_len; 10917 tcp->tcp_hdr_grown = B_TRUE; 10918 } 10919 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10920 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10921 10922 /* Set header fields not in ipp */ 10923 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10924 ip6i = (ip6i_t *)tcp->tcp_iphc; 10925 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10926 } else { 10927 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10928 } 10929 /* 10930 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10931 * 10932 * tcp->tcp_tcp_hdr_len doesn't change here. 10933 */ 10934 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10935 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10936 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10937 10938 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10939 10940 tcp->tcp_ip6h->ip6_src = src; 10941 tcp->tcp_ip6h->ip6_dst = dst; 10942 10943 /* 10944 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10945 * the default value for TCP. 10946 */ 10947 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10948 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10949 10950 /* 10951 * If we're setting extension headers after a connection 10952 * has been established, and if we have a routing header 10953 * among the extension headers, call ip_massage_options_v6 to 10954 * manipulate the routing header/ip6_dst set the checksum 10955 * difference in the tcp header template. 10956 * (This happens in tcp_connect_ipv6 if the routing header 10957 * is set prior to the connect.) 10958 * Set the tcp_sum to zero first in case we've cleared a 10959 * routing header or don't have one at all. 10960 */ 10961 tcp->tcp_sum = 0; 10962 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10963 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10964 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10965 (uint8_t *)tcp->tcp_tcph); 10966 if (rth != NULL) { 10967 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10968 rth, tcps->tcps_netstack); 10969 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10970 (tcp->tcp_sum >> 16)); 10971 } 10972 } 10973 10974 /* Try to get everything in a single mblk */ 10975 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10976 hdrs_len + tcps->tcps_wroff_xtra); 10977 return (0); 10978 } 10979 10980 /* 10981 * Transfer any source route option from ipha to buf/dst in reversed form. 10982 */ 10983 static int 10984 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10985 { 10986 ipoptp_t opts; 10987 uchar_t *opt; 10988 uint8_t optval; 10989 uint8_t optlen; 10990 uint32_t len = 0; 10991 10992 for (optval = ipoptp_first(&opts, ipha); 10993 optval != IPOPT_EOL; 10994 optval = ipoptp_next(&opts)) { 10995 opt = opts.ipoptp_cur; 10996 optlen = opts.ipoptp_len; 10997 switch (optval) { 10998 int off1, off2; 10999 case IPOPT_SSRR: 11000 case IPOPT_LSRR: 11001 11002 /* Reverse source route */ 11003 /* 11004 * First entry should be the next to last one in the 11005 * current source route (the last entry is our 11006 * address.) 11007 * The last entry should be the final destination. 11008 */ 11009 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11010 buf[IPOPT_OLEN] = (uint8_t)optlen; 11011 off1 = IPOPT_MINOFF_SR - 1; 11012 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11013 if (off2 < 0) { 11014 /* No entries in source route */ 11015 break; 11016 } 11017 bcopy(opt + off2, dst, IP_ADDR_LEN); 11018 /* 11019 * Note: use src since ipha has not had its src 11020 * and dst reversed (it is in the state it was 11021 * received. 11022 */ 11023 bcopy(&ipha->ipha_src, buf + off2, 11024 IP_ADDR_LEN); 11025 off2 -= IP_ADDR_LEN; 11026 11027 while (off2 > 0) { 11028 bcopy(opt + off2, buf + off1, 11029 IP_ADDR_LEN); 11030 off1 += IP_ADDR_LEN; 11031 off2 -= IP_ADDR_LEN; 11032 } 11033 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11034 buf += optlen; 11035 len += optlen; 11036 break; 11037 } 11038 } 11039 done: 11040 /* Pad the resulting options */ 11041 while (len & 0x3) { 11042 *buf++ = IPOPT_EOL; 11043 len++; 11044 } 11045 return (len); 11046 } 11047 11048 11049 /* 11050 * Extract and revert a source route from ipha (if any) 11051 * and then update the relevant fields in both tcp_t and the standard header. 11052 */ 11053 static void 11054 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11055 { 11056 char buf[TCP_MAX_HDR_LENGTH]; 11057 uint_t tcph_len; 11058 int len; 11059 11060 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11061 len = IPH_HDR_LENGTH(ipha); 11062 if (len == IP_SIMPLE_HDR_LENGTH) 11063 /* Nothing to do */ 11064 return; 11065 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11066 (len & 0x3)) 11067 return; 11068 11069 tcph_len = tcp->tcp_tcp_hdr_len; 11070 bcopy(tcp->tcp_tcph, buf, tcph_len); 11071 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11072 (tcp->tcp_ipha->ipha_dst & 0xffff); 11073 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11074 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11075 len += IP_SIMPLE_HDR_LENGTH; 11076 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11077 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11078 if ((int)tcp->tcp_sum < 0) 11079 tcp->tcp_sum--; 11080 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11081 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11082 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11083 bcopy(buf, tcp->tcp_tcph, tcph_len); 11084 tcp->tcp_ip_hdr_len = len; 11085 tcp->tcp_ipha->ipha_version_and_hdr_length = 11086 (IP_VERSION << 4) | (len >> 2); 11087 len += tcph_len; 11088 tcp->tcp_hdr_len = len; 11089 } 11090 11091 /* 11092 * Copy the standard header into its new location, 11093 * lay in the new options and then update the relevant 11094 * fields in both tcp_t and the standard header. 11095 */ 11096 static int 11097 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11098 { 11099 uint_t tcph_len; 11100 uint8_t *ip_optp; 11101 tcph_t *new_tcph; 11102 tcp_stack_t *tcps = tcp->tcp_tcps; 11103 conn_t *connp = tcp->tcp_connp; 11104 11105 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11106 return (EINVAL); 11107 11108 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11109 return (EINVAL); 11110 11111 if (checkonly) { 11112 /* 11113 * do not really set, just pretend to - T_CHECK 11114 */ 11115 return (0); 11116 } 11117 11118 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11119 if (tcp->tcp_label_len > 0) { 11120 int padlen; 11121 uint8_t opt; 11122 11123 /* convert list termination to no-ops */ 11124 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11125 ip_optp += ip_optp[IPOPT_OLEN]; 11126 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11127 while (--padlen >= 0) 11128 *ip_optp++ = opt; 11129 } 11130 tcph_len = tcp->tcp_tcp_hdr_len; 11131 new_tcph = (tcph_t *)(ip_optp + len); 11132 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11133 tcp->tcp_tcph = new_tcph; 11134 bcopy(ptr, ip_optp, len); 11135 11136 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11137 11138 tcp->tcp_ip_hdr_len = len; 11139 tcp->tcp_ipha->ipha_version_and_hdr_length = 11140 (IP_VERSION << 4) | (len >> 2); 11141 tcp->tcp_hdr_len = len + tcph_len; 11142 if (!TCP_IS_DETACHED(tcp)) { 11143 /* Always allocate room for all options. */ 11144 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11145 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11146 } 11147 return (0); 11148 } 11149 11150 /* Get callback routine passed to nd_load by tcp_param_register */ 11151 /* ARGSUSED */ 11152 static int 11153 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11154 { 11155 tcpparam_t *tcppa = (tcpparam_t *)cp; 11156 11157 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11158 return (0); 11159 } 11160 11161 /* 11162 * Walk through the param array specified registering each element with the 11163 * named dispatch handler. 11164 */ 11165 static boolean_t 11166 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11167 { 11168 for (; cnt-- > 0; tcppa++) { 11169 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11170 if (!nd_load(ndp, tcppa->tcp_param_name, 11171 tcp_param_get, tcp_param_set, 11172 (caddr_t)tcppa)) { 11173 nd_free(ndp); 11174 return (B_FALSE); 11175 } 11176 } 11177 } 11178 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11179 KM_SLEEP); 11180 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11181 sizeof (tcpparam_t)); 11182 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11183 tcp_param_get, tcp_param_set_aligned, 11184 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11185 nd_free(ndp); 11186 return (B_FALSE); 11187 } 11188 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11189 KM_SLEEP); 11190 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11191 sizeof (tcpparam_t)); 11192 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11193 tcp_param_get, tcp_param_set_aligned, 11194 (caddr_t)tcps->tcps_mdt_head_param)) { 11195 nd_free(ndp); 11196 return (B_FALSE); 11197 } 11198 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11199 KM_SLEEP); 11200 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11201 sizeof (tcpparam_t)); 11202 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11203 tcp_param_get, tcp_param_set_aligned, 11204 (caddr_t)tcps->tcps_mdt_tail_param)) { 11205 nd_free(ndp); 11206 return (B_FALSE); 11207 } 11208 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11209 KM_SLEEP); 11210 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11211 sizeof (tcpparam_t)); 11212 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11213 tcp_param_get, tcp_param_set_aligned, 11214 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11215 nd_free(ndp); 11216 return (B_FALSE); 11217 } 11218 if (!nd_load(ndp, "tcp_extra_priv_ports", 11219 tcp_extra_priv_ports_get, NULL, NULL)) { 11220 nd_free(ndp); 11221 return (B_FALSE); 11222 } 11223 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11224 NULL, tcp_extra_priv_ports_add, NULL)) { 11225 nd_free(ndp); 11226 return (B_FALSE); 11227 } 11228 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11229 NULL, tcp_extra_priv_ports_del, NULL)) { 11230 nd_free(ndp); 11231 return (B_FALSE); 11232 } 11233 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11234 tcp_1948_phrase_set, NULL)) { 11235 nd_free(ndp); 11236 return (B_FALSE); 11237 } 11238 /* 11239 * Dummy ndd variables - only to convey obsolescence information 11240 * through printing of their name (no get or set routines) 11241 * XXX Remove in future releases ? 11242 */ 11243 if (!nd_load(ndp, 11244 "tcp_close_wait_interval(obsoleted - " 11245 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11246 nd_free(ndp); 11247 return (B_FALSE); 11248 } 11249 return (B_TRUE); 11250 } 11251 11252 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11253 /* ARGSUSED */ 11254 static int 11255 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11256 cred_t *cr) 11257 { 11258 long new_value; 11259 tcpparam_t *tcppa = (tcpparam_t *)cp; 11260 11261 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11262 new_value < tcppa->tcp_param_min || 11263 new_value > tcppa->tcp_param_max) { 11264 return (EINVAL); 11265 } 11266 /* 11267 * Need to make sure new_value is a multiple of 4. If it is not, 11268 * round it up. For future 64 bit requirement, we actually make it 11269 * a multiple of 8. 11270 */ 11271 if (new_value & 0x7) { 11272 new_value = (new_value & ~0x7) + 0x8; 11273 } 11274 tcppa->tcp_param_val = new_value; 11275 return (0); 11276 } 11277 11278 /* Set callback routine passed to nd_load by tcp_param_register */ 11279 /* ARGSUSED */ 11280 static int 11281 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11282 { 11283 long new_value; 11284 tcpparam_t *tcppa = (tcpparam_t *)cp; 11285 11286 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11287 new_value < tcppa->tcp_param_min || 11288 new_value > tcppa->tcp_param_max) { 11289 return (EINVAL); 11290 } 11291 tcppa->tcp_param_val = new_value; 11292 return (0); 11293 } 11294 11295 /* 11296 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11297 * is filled, return as much as we can. The message passed in may be 11298 * multi-part, chained using b_cont. "start" is the starting sequence 11299 * number for this piece. 11300 */ 11301 static mblk_t * 11302 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11303 { 11304 uint32_t end; 11305 mblk_t *mp1; 11306 mblk_t *mp2; 11307 mblk_t *next_mp; 11308 uint32_t u1; 11309 tcp_stack_t *tcps = tcp->tcp_tcps; 11310 11311 /* Walk through all the new pieces. */ 11312 do { 11313 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11314 (uintptr_t)INT_MAX); 11315 end = start + (int)(mp->b_wptr - mp->b_rptr); 11316 next_mp = mp->b_cont; 11317 if (start == end) { 11318 /* Empty. Blast it. */ 11319 freeb(mp); 11320 continue; 11321 } 11322 mp->b_cont = NULL; 11323 TCP_REASS_SET_SEQ(mp, start); 11324 TCP_REASS_SET_END(mp, end); 11325 mp1 = tcp->tcp_reass_tail; 11326 if (!mp1) { 11327 tcp->tcp_reass_tail = mp; 11328 tcp->tcp_reass_head = mp; 11329 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11330 UPDATE_MIB(&tcps->tcps_mib, 11331 tcpInDataUnorderBytes, end - start); 11332 continue; 11333 } 11334 /* New stuff completely beyond tail? */ 11335 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11336 /* Link it on end. */ 11337 mp1->b_cont = mp; 11338 tcp->tcp_reass_tail = mp; 11339 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11340 UPDATE_MIB(&tcps->tcps_mib, 11341 tcpInDataUnorderBytes, end - start); 11342 continue; 11343 } 11344 mp1 = tcp->tcp_reass_head; 11345 u1 = TCP_REASS_SEQ(mp1); 11346 /* New stuff at the front? */ 11347 if (SEQ_LT(start, u1)) { 11348 /* Yes... Check for overlap. */ 11349 mp->b_cont = mp1; 11350 tcp->tcp_reass_head = mp; 11351 tcp_reass_elim_overlap(tcp, mp); 11352 continue; 11353 } 11354 /* 11355 * The new piece fits somewhere between the head and tail. 11356 * We find our slot, where mp1 precedes us and mp2 trails. 11357 */ 11358 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11359 u1 = TCP_REASS_SEQ(mp2); 11360 if (SEQ_LEQ(start, u1)) 11361 break; 11362 } 11363 /* Link ourselves in */ 11364 mp->b_cont = mp2; 11365 mp1->b_cont = mp; 11366 11367 /* Trim overlap with following mblk(s) first */ 11368 tcp_reass_elim_overlap(tcp, mp); 11369 11370 /* Trim overlap with preceding mblk */ 11371 tcp_reass_elim_overlap(tcp, mp1); 11372 11373 } while (start = end, mp = next_mp); 11374 mp1 = tcp->tcp_reass_head; 11375 /* Anything ready to go? */ 11376 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11377 return (NULL); 11378 /* Eat what we can off the queue */ 11379 for (;;) { 11380 mp = mp1->b_cont; 11381 end = TCP_REASS_END(mp1); 11382 TCP_REASS_SET_SEQ(mp1, 0); 11383 TCP_REASS_SET_END(mp1, 0); 11384 if (!mp) { 11385 tcp->tcp_reass_tail = NULL; 11386 break; 11387 } 11388 if (end != TCP_REASS_SEQ(mp)) { 11389 mp1->b_cont = NULL; 11390 break; 11391 } 11392 mp1 = mp; 11393 } 11394 mp1 = tcp->tcp_reass_head; 11395 tcp->tcp_reass_head = mp; 11396 return (mp1); 11397 } 11398 11399 /* Eliminate any overlap that mp may have over later mblks */ 11400 static void 11401 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11402 { 11403 uint32_t end; 11404 mblk_t *mp1; 11405 uint32_t u1; 11406 tcp_stack_t *tcps = tcp->tcp_tcps; 11407 11408 end = TCP_REASS_END(mp); 11409 while ((mp1 = mp->b_cont) != NULL) { 11410 u1 = TCP_REASS_SEQ(mp1); 11411 if (!SEQ_GT(end, u1)) 11412 break; 11413 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11414 mp->b_wptr -= end - u1; 11415 TCP_REASS_SET_END(mp, u1); 11416 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11417 UPDATE_MIB(&tcps->tcps_mib, 11418 tcpInDataPartDupBytes, end - u1); 11419 break; 11420 } 11421 mp->b_cont = mp1->b_cont; 11422 TCP_REASS_SET_SEQ(mp1, 0); 11423 TCP_REASS_SET_END(mp1, 0); 11424 freeb(mp1); 11425 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11426 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11427 } 11428 if (!mp1) 11429 tcp->tcp_reass_tail = mp; 11430 } 11431 11432 static uint_t 11433 tcp_rwnd_reopen(tcp_t *tcp) 11434 { 11435 uint_t ret = 0; 11436 uint_t thwin; 11437 11438 /* Learn the latest rwnd information that we sent to the other side. */ 11439 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11440 << tcp->tcp_rcv_ws; 11441 /* This is peer's calculated send window (our receive window). */ 11442 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11443 /* 11444 * Increase the receive window to max. But we need to do receiver 11445 * SWS avoidance. This means that we need to check the increase of 11446 * of receive window is at least 1 MSS. 11447 */ 11448 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11449 /* 11450 * If the window that the other side knows is less than max 11451 * deferred acks segments, send an update immediately. 11452 */ 11453 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11454 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11455 ret = TH_ACK_NEEDED; 11456 } 11457 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11458 } 11459 return (ret); 11460 } 11461 11462 /* 11463 * Send up all messages queued on tcp_rcv_list. 11464 */ 11465 static uint_t 11466 tcp_rcv_drain(tcp_t *tcp) 11467 { 11468 mblk_t *mp; 11469 uint_t ret = 0; 11470 #ifdef DEBUG 11471 uint_t cnt = 0; 11472 #endif 11473 queue_t *q = tcp->tcp_rq; 11474 11475 /* Can't drain on an eager connection */ 11476 if (tcp->tcp_listener != NULL) 11477 return (ret); 11478 11479 /* Can't be a non-STREAMS connection */ 11480 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 11481 11482 /* No need for the push timer now. */ 11483 if (tcp->tcp_push_tid != 0) { 11484 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11485 tcp->tcp_push_tid = 0; 11486 } 11487 11488 /* 11489 * Handle two cases here: we are currently fused or we were 11490 * previously fused and have some urgent data to be delivered 11491 * upstream. The latter happens because we either ran out of 11492 * memory or were detached and therefore sending the SIGURG was 11493 * deferred until this point. In either case we pass control 11494 * over to tcp_fuse_rcv_drain() since it may need to complete 11495 * some work. 11496 */ 11497 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11498 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11499 tcp->tcp_fused_sigurg_mp != NULL); 11500 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11501 &tcp->tcp_fused_sigurg_mp)) 11502 return (ret); 11503 } 11504 11505 while ((mp = tcp->tcp_rcv_list) != NULL) { 11506 tcp->tcp_rcv_list = mp->b_next; 11507 mp->b_next = NULL; 11508 #ifdef DEBUG 11509 cnt += msgdsize(mp); 11510 #endif 11511 /* Does this need SSL processing first? */ 11512 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11513 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11514 mblk_t *, mp); 11515 tcp_kssl_input(tcp, mp); 11516 continue; 11517 } 11518 putnext(q, mp); 11519 } 11520 #ifdef DEBUG 11521 ASSERT(cnt == tcp->tcp_rcv_cnt); 11522 #endif 11523 tcp->tcp_rcv_last_head = NULL; 11524 tcp->tcp_rcv_last_tail = NULL; 11525 tcp->tcp_rcv_cnt = 0; 11526 11527 if (canputnext(q)) 11528 return (tcp_rwnd_reopen(tcp)); 11529 11530 return (ret); 11531 } 11532 11533 /* 11534 * Queue data on tcp_rcv_list which is a b_next chain. 11535 * tcp_rcv_last_head/tail is the last element of this chain. 11536 * Each element of the chain is a b_cont chain. 11537 * 11538 * M_DATA messages are added to the current element. 11539 * Other messages are added as new (b_next) elements. 11540 */ 11541 void 11542 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11543 { 11544 ASSERT(seg_len == msgdsize(mp)); 11545 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11546 11547 if (tcp->tcp_rcv_list == NULL) { 11548 ASSERT(tcp->tcp_rcv_last_head == NULL); 11549 tcp->tcp_rcv_list = mp; 11550 tcp->tcp_rcv_last_head = mp; 11551 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11552 tcp->tcp_rcv_last_tail->b_cont = mp; 11553 } else { 11554 tcp->tcp_rcv_last_head->b_next = mp; 11555 tcp->tcp_rcv_last_head = mp; 11556 } 11557 11558 while (mp->b_cont) 11559 mp = mp->b_cont; 11560 11561 tcp->tcp_rcv_last_tail = mp; 11562 tcp->tcp_rcv_cnt += seg_len; 11563 tcp->tcp_rwnd -= seg_len; 11564 } 11565 11566 /* 11567 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11568 * 11569 * This is the default entry function into TCP on the read side. TCP is 11570 * always entered via squeue i.e. using squeue's for mutual exclusion. 11571 * When classifier does a lookup to find the tcp, it also puts a reference 11572 * on the conn structure associated so the tcp is guaranteed to exist 11573 * when we come here. We still need to check the state because it might 11574 * as well has been closed. The squeue processing function i.e. squeue_enter, 11575 * is responsible for doing the CONN_DEC_REF. 11576 * 11577 * Apart from the default entry point, IP also sends packets directly to 11578 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11579 * connections. 11580 */ 11581 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11582 void 11583 tcp_input(void *arg, mblk_t *mp, void *arg2) 11584 { 11585 conn_t *connp = (conn_t *)arg; 11586 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11587 11588 /* arg2 is the sqp */ 11589 ASSERT(arg2 != NULL); 11590 ASSERT(mp != NULL); 11591 11592 /* 11593 * Don't accept any input on a closed tcp as this TCP logically does 11594 * not exist on the system. Don't proceed further with this TCP. 11595 * For eg. this packet could trigger another close of this tcp 11596 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11597 * tcp_clean_death / tcp_closei_local must be called at most once 11598 * on a TCP. In this case we need to refeed the packet into the 11599 * classifier and figure out where the packet should go. Need to 11600 * preserve the recv_ill somehow. Until we figure that out, for 11601 * now just drop the packet if we can't classify the packet. 11602 */ 11603 if (tcp->tcp_state == TCPS_CLOSED || 11604 tcp->tcp_state == TCPS_BOUND) { 11605 conn_t *new_connp; 11606 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11607 11608 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11609 if (new_connp != NULL) { 11610 tcp_reinput(new_connp, mp, arg2); 11611 return; 11612 } 11613 /* We failed to classify. For now just drop the packet */ 11614 freemsg(mp); 11615 return; 11616 } 11617 11618 if (DB_TYPE(mp) != M_DATA) { 11619 tcp_rput_common(tcp, mp); 11620 return; 11621 } 11622 11623 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11624 squeue_t *final_sqp; 11625 11626 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11627 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11628 DB_CKSUMSTART(mp) = 0; 11629 if (tcp->tcp_state == TCPS_SYN_SENT && 11630 connp->conn_final_sqp == NULL && 11631 tcp_outbound_squeue_switch) { 11632 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11633 connp->conn_final_sqp = final_sqp; 11634 if (connp->conn_final_sqp != connp->conn_sqp) { 11635 CONN_INC_REF(connp); 11636 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11637 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11638 tcp_rput_data, connp, ip_squeue_flag, 11639 SQTAG_CONNECT_FINISH); 11640 return; 11641 } 11642 } 11643 } 11644 tcp_rput_data(connp, mp, arg2); 11645 } 11646 11647 /* 11648 * The read side put procedure. 11649 * The packets passed up by ip are assume to be aligned according to 11650 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11651 */ 11652 static void 11653 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11654 { 11655 /* 11656 * tcp_rput_data() does not expect M_CTL except for the case 11657 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11658 * type. Need to make sure that any other M_CTLs don't make 11659 * it to tcp_rput_data since it is not expecting any and doesn't 11660 * check for it. 11661 */ 11662 if (DB_TYPE(mp) == M_CTL) { 11663 switch (*(uint32_t *)(mp->b_rptr)) { 11664 case TCP_IOC_ABORT_CONN: 11665 /* 11666 * Handle connection abort request. 11667 */ 11668 tcp_ioctl_abort_handler(tcp, mp); 11669 return; 11670 case IPSEC_IN: 11671 /* 11672 * Only secure icmp arrive in TCP and they 11673 * don't go through data path. 11674 */ 11675 tcp_icmp_error(tcp, mp); 11676 return; 11677 case IN_PKTINFO: 11678 /* 11679 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11680 * sockets that are receiving IPv4 traffic. tcp 11681 */ 11682 ASSERT(tcp->tcp_family == AF_INET6); 11683 ASSERT(tcp->tcp_ipv6_recvancillary & 11684 TCP_IPV6_RECVPKTINFO); 11685 tcp_rput_data(tcp->tcp_connp, mp, 11686 tcp->tcp_connp->conn_sqp); 11687 return; 11688 case MDT_IOC_INFO_UPDATE: 11689 /* 11690 * Handle Multidata information update; the 11691 * following routine will free the message. 11692 */ 11693 if (tcp->tcp_connp->conn_mdt_ok) { 11694 tcp_mdt_update(tcp, 11695 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11696 B_FALSE); 11697 } 11698 freemsg(mp); 11699 return; 11700 case LSO_IOC_INFO_UPDATE: 11701 /* 11702 * Handle LSO information update; the following 11703 * routine will free the message. 11704 */ 11705 if (tcp->tcp_connp->conn_lso_ok) { 11706 tcp_lso_update(tcp, 11707 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11708 } 11709 freemsg(mp); 11710 return; 11711 default: 11712 /* 11713 * tcp_icmp_err() will process the M_CTL packets. 11714 * Non-ICMP packets, if any, will be discarded in 11715 * tcp_icmp_err(). We will process the ICMP packet 11716 * even if we are TCP_IS_DETACHED_NONEAGER as the 11717 * incoming ICMP packet may result in changing 11718 * the tcp_mss, which we would need if we have 11719 * packets to retransmit. 11720 */ 11721 tcp_icmp_error(tcp, mp); 11722 return; 11723 } 11724 } 11725 11726 /* No point processing the message if tcp is already closed */ 11727 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11728 freemsg(mp); 11729 return; 11730 } 11731 11732 tcp_rput_other(tcp, mp); 11733 } 11734 11735 11736 /* The minimum of smoothed mean deviation in RTO calculation. */ 11737 #define TCP_SD_MIN 400 11738 11739 /* 11740 * Set RTO for this connection. The formula is from Jacobson and Karels' 11741 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11742 * are the same as those in Appendix A.2 of that paper. 11743 * 11744 * m = new measurement 11745 * sa = smoothed RTT average (8 * average estimates). 11746 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11747 */ 11748 static void 11749 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11750 { 11751 long m = TICK_TO_MSEC(rtt); 11752 clock_t sa = tcp->tcp_rtt_sa; 11753 clock_t sv = tcp->tcp_rtt_sd; 11754 clock_t rto; 11755 tcp_stack_t *tcps = tcp->tcp_tcps; 11756 11757 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11758 tcp->tcp_rtt_update++; 11759 11760 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11761 if (sa != 0) { 11762 /* 11763 * Update average estimator: 11764 * new rtt = 7/8 old rtt + 1/8 Error 11765 */ 11766 11767 /* m is now Error in estimate. */ 11768 m -= sa >> 3; 11769 if ((sa += m) <= 0) { 11770 /* 11771 * Don't allow the smoothed average to be negative. 11772 * We use 0 to denote reinitialization of the 11773 * variables. 11774 */ 11775 sa = 1; 11776 } 11777 11778 /* 11779 * Update deviation estimator: 11780 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11781 */ 11782 if (m < 0) 11783 m = -m; 11784 m -= sv >> 2; 11785 sv += m; 11786 } else { 11787 /* 11788 * This follows BSD's implementation. So the reinitialized 11789 * RTO is 3 * m. We cannot go less than 2 because if the 11790 * link is bandwidth dominated, doubling the window size 11791 * during slow start means doubling the RTT. We want to be 11792 * more conservative when we reinitialize our estimates. 3 11793 * is just a convenient number. 11794 */ 11795 sa = m << 3; 11796 sv = m << 1; 11797 } 11798 if (sv < TCP_SD_MIN) { 11799 /* 11800 * We do not know that if sa captures the delay ACK 11801 * effect as in a long train of segments, a receiver 11802 * does not delay its ACKs. So set the minimum of sv 11803 * to be TCP_SD_MIN, which is default to 400 ms, twice 11804 * of BSD DATO. That means the minimum of mean 11805 * deviation is 100 ms. 11806 * 11807 */ 11808 sv = TCP_SD_MIN; 11809 } 11810 tcp->tcp_rtt_sa = sa; 11811 tcp->tcp_rtt_sd = sv; 11812 /* 11813 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11814 * 11815 * Add tcp_rexmit_interval extra in case of extreme environment 11816 * where the algorithm fails to work. The default value of 11817 * tcp_rexmit_interval_extra should be 0. 11818 * 11819 * As we use a finer grained clock than BSD and update 11820 * RTO for every ACKs, add in another .25 of RTT to the 11821 * deviation of RTO to accomodate burstiness of 1/4 of 11822 * window size. 11823 */ 11824 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11825 11826 if (rto > tcps->tcps_rexmit_interval_max) { 11827 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11828 } else if (rto < tcps->tcps_rexmit_interval_min) { 11829 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11830 } else { 11831 tcp->tcp_rto = rto; 11832 } 11833 11834 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11835 tcp->tcp_timer_backoff = 0; 11836 } 11837 11838 /* 11839 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11840 * send queue which starts at the given sequence number. If the given 11841 * sequence number is equal to last valid sequence number (tcp_snxt), the 11842 * returned mblk is the last valid mblk, and off is set to the length of 11843 * that mblk. 11844 * 11845 * send queue which starts at the given seq. no. 11846 * 11847 * Parameters: 11848 * tcp_t *tcp: the tcp instance pointer. 11849 * uint32_t seq: the starting seq. no of the requested segment. 11850 * int32_t *off: after the execution, *off will be the offset to 11851 * the returned mblk which points to the requested seq no. 11852 * It is the caller's responsibility to send in a non-null off. 11853 * 11854 * Return: 11855 * A mblk_t pointer pointing to the requested segment in send queue. 11856 */ 11857 static mblk_t * 11858 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11859 { 11860 int32_t cnt; 11861 mblk_t *mp; 11862 11863 /* Defensive coding. Make sure we don't send incorrect data. */ 11864 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 11865 return (NULL); 11866 11867 cnt = seq - tcp->tcp_suna; 11868 mp = tcp->tcp_xmit_head; 11869 while (cnt > 0 && mp != NULL) { 11870 cnt -= mp->b_wptr - mp->b_rptr; 11871 if (cnt <= 0) { 11872 cnt += mp->b_wptr - mp->b_rptr; 11873 break; 11874 } 11875 mp = mp->b_cont; 11876 } 11877 ASSERT(mp != NULL); 11878 *off = cnt; 11879 return (mp); 11880 } 11881 11882 /* 11883 * This function handles all retransmissions if SACK is enabled for this 11884 * connection. First it calculates how many segments can be retransmitted 11885 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11886 * segments. A segment is eligible if sack_cnt for that segment is greater 11887 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11888 * all eligible segments, it checks to see if TCP can send some new segments 11889 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11890 * 11891 * Parameters: 11892 * tcp_t *tcp: the tcp structure of the connection. 11893 * uint_t *flags: in return, appropriate value will be set for 11894 * tcp_rput_data(). 11895 */ 11896 static void 11897 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11898 { 11899 notsack_blk_t *notsack_blk; 11900 int32_t usable_swnd; 11901 int32_t mss; 11902 uint32_t seg_len; 11903 mblk_t *xmit_mp; 11904 tcp_stack_t *tcps = tcp->tcp_tcps; 11905 11906 ASSERT(tcp->tcp_sack_info != NULL); 11907 ASSERT(tcp->tcp_notsack_list != NULL); 11908 ASSERT(tcp->tcp_rexmit == B_FALSE); 11909 11910 /* Defensive coding in case there is a bug... */ 11911 if (tcp->tcp_notsack_list == NULL) { 11912 return; 11913 } 11914 notsack_blk = tcp->tcp_notsack_list; 11915 mss = tcp->tcp_mss; 11916 11917 /* 11918 * Limit the num of outstanding data in the network to be 11919 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11920 */ 11921 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11922 11923 /* At least retransmit 1 MSS of data. */ 11924 if (usable_swnd <= 0) { 11925 usable_swnd = mss; 11926 } 11927 11928 /* Make sure no new RTT samples will be taken. */ 11929 tcp->tcp_csuna = tcp->tcp_snxt; 11930 11931 notsack_blk = tcp->tcp_notsack_list; 11932 while (usable_swnd > 0) { 11933 mblk_t *snxt_mp, *tmp_mp; 11934 tcp_seq begin = tcp->tcp_sack_snxt; 11935 tcp_seq end; 11936 int32_t off; 11937 11938 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11939 if (SEQ_GT(notsack_blk->end, begin) && 11940 (notsack_blk->sack_cnt >= 11941 tcps->tcps_dupack_fast_retransmit)) { 11942 end = notsack_blk->end; 11943 if (SEQ_LT(begin, notsack_blk->begin)) { 11944 begin = notsack_blk->begin; 11945 } 11946 break; 11947 } 11948 } 11949 /* 11950 * All holes are filled. Manipulate tcp_cwnd to send more 11951 * if we can. Note that after the SACK recovery, tcp_cwnd is 11952 * set to tcp_cwnd_ssthresh. 11953 */ 11954 if (notsack_blk == NULL) { 11955 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11956 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11957 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11958 ASSERT(tcp->tcp_cwnd > 0); 11959 return; 11960 } else { 11961 usable_swnd = usable_swnd / mss; 11962 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11963 MAX(usable_swnd * mss, mss); 11964 *flags |= TH_XMIT_NEEDED; 11965 return; 11966 } 11967 } 11968 11969 /* 11970 * Note that we may send more than usable_swnd allows here 11971 * because of round off, but no more than 1 MSS of data. 11972 */ 11973 seg_len = end - begin; 11974 if (seg_len > mss) 11975 seg_len = mss; 11976 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11977 ASSERT(snxt_mp != NULL); 11978 /* This should not happen. Defensive coding again... */ 11979 if (snxt_mp == NULL) { 11980 return; 11981 } 11982 11983 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11984 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11985 if (xmit_mp == NULL) 11986 return; 11987 11988 usable_swnd -= seg_len; 11989 tcp->tcp_pipe += seg_len; 11990 tcp->tcp_sack_snxt = begin + seg_len; 11991 11992 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11993 11994 /* 11995 * Update the send timestamp to avoid false retransmission. 11996 */ 11997 snxt_mp->b_prev = (mblk_t *)lbolt; 11998 11999 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12000 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12001 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12002 /* 12003 * Update tcp_rexmit_max to extend this SACK recovery phase. 12004 * This happens when new data sent during fast recovery is 12005 * also lost. If TCP retransmits those new data, it needs 12006 * to extend SACK recover phase to avoid starting another 12007 * fast retransmit/recovery unnecessarily. 12008 */ 12009 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12010 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12011 } 12012 } 12013 } 12014 12015 /* 12016 * This function handles policy checking at TCP level for non-hard_bound/ 12017 * detached connections. 12018 */ 12019 static boolean_t 12020 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12021 boolean_t secure, boolean_t mctl_present) 12022 { 12023 ipsec_latch_t *ipl = NULL; 12024 ipsec_action_t *act = NULL; 12025 mblk_t *data_mp; 12026 ipsec_in_t *ii; 12027 const char *reason; 12028 kstat_named_t *counter; 12029 tcp_stack_t *tcps = tcp->tcp_tcps; 12030 ipsec_stack_t *ipss; 12031 ip_stack_t *ipst; 12032 12033 ASSERT(mctl_present || !secure); 12034 12035 ASSERT((ipha == NULL && ip6h != NULL) || 12036 (ip6h == NULL && ipha != NULL)); 12037 12038 /* 12039 * We don't necessarily have an ipsec_in_act action to verify 12040 * policy because of assymetrical policy where we have only 12041 * outbound policy and no inbound policy (possible with global 12042 * policy). 12043 */ 12044 if (!secure) { 12045 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12046 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12047 return (B_TRUE); 12048 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12049 "tcp_check_policy", ipha, ip6h, secure, 12050 tcps->tcps_netstack); 12051 ipss = tcps->tcps_netstack->netstack_ipsec; 12052 12053 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12054 DROPPER(ipss, ipds_tcp_clear), 12055 &tcps->tcps_dropper); 12056 return (B_FALSE); 12057 } 12058 12059 /* 12060 * We have a secure packet. 12061 */ 12062 if (act == NULL) { 12063 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12064 "tcp_check_policy", ipha, ip6h, secure, 12065 tcps->tcps_netstack); 12066 ipss = tcps->tcps_netstack->netstack_ipsec; 12067 12068 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12069 DROPPER(ipss, ipds_tcp_secure), 12070 &tcps->tcps_dropper); 12071 return (B_FALSE); 12072 } 12073 12074 /* 12075 * XXX This whole routine is currently incorrect. ipl should 12076 * be set to the latch pointer, but is currently not set, so 12077 * we initialize it to NULL to avoid picking up random garbage. 12078 */ 12079 if (ipl == NULL) 12080 return (B_TRUE); 12081 12082 data_mp = first_mp->b_cont; 12083 12084 ii = (ipsec_in_t *)first_mp->b_rptr; 12085 12086 ipst = tcps->tcps_netstack->netstack_ip; 12087 12088 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12089 &counter, tcp->tcp_connp)) { 12090 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12091 return (B_TRUE); 12092 } 12093 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12094 "tcp inbound policy mismatch: %s, packet dropped\n", 12095 reason); 12096 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12097 12098 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12099 &tcps->tcps_dropper); 12100 return (B_FALSE); 12101 } 12102 12103 /* 12104 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12105 * retransmission after a timeout. 12106 * 12107 * To limit the number of duplicate segments, we limit the number of segment 12108 * to be sent in one time to tcp_snd_burst, the burst variable. 12109 */ 12110 static void 12111 tcp_ss_rexmit(tcp_t *tcp) 12112 { 12113 uint32_t snxt; 12114 uint32_t smax; 12115 int32_t win; 12116 int32_t mss; 12117 int32_t off; 12118 int32_t burst = tcp->tcp_snd_burst; 12119 mblk_t *snxt_mp; 12120 tcp_stack_t *tcps = tcp->tcp_tcps; 12121 12122 /* 12123 * Note that tcp_rexmit can be set even though TCP has retransmitted 12124 * all unack'ed segments. 12125 */ 12126 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12127 smax = tcp->tcp_rexmit_max; 12128 snxt = tcp->tcp_rexmit_nxt; 12129 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12130 snxt = tcp->tcp_suna; 12131 } 12132 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12133 win -= snxt - tcp->tcp_suna; 12134 mss = tcp->tcp_mss; 12135 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12136 12137 while (SEQ_LT(snxt, smax) && (win > 0) && 12138 (burst > 0) && (snxt_mp != NULL)) { 12139 mblk_t *xmit_mp; 12140 mblk_t *old_snxt_mp = snxt_mp; 12141 uint32_t cnt = mss; 12142 12143 if (win < cnt) { 12144 cnt = win; 12145 } 12146 if (SEQ_GT(snxt + cnt, smax)) { 12147 cnt = smax - snxt; 12148 } 12149 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12150 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12151 if (xmit_mp == NULL) 12152 return; 12153 12154 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12155 12156 snxt += cnt; 12157 win -= cnt; 12158 /* 12159 * Update the send timestamp to avoid false 12160 * retransmission. 12161 */ 12162 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12163 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12164 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12165 12166 tcp->tcp_rexmit_nxt = snxt; 12167 burst--; 12168 } 12169 /* 12170 * If we have transmitted all we have at the time 12171 * we started the retranmission, we can leave 12172 * the rest of the job to tcp_wput_data(). But we 12173 * need to check the send window first. If the 12174 * win is not 0, go on with tcp_wput_data(). 12175 */ 12176 if (SEQ_LT(snxt, smax) || win == 0) { 12177 return; 12178 } 12179 } 12180 /* Only call tcp_wput_data() if there is data to be sent. */ 12181 if (tcp->tcp_unsent) { 12182 tcp_wput_data(tcp, NULL, B_FALSE); 12183 } 12184 } 12185 12186 /* 12187 * Process all TCP option in SYN segment. Note that this function should 12188 * be called after tcp_adapt_ire() is called so that the necessary info 12189 * from IRE is already set in the tcp structure. 12190 * 12191 * This function sets up the correct tcp_mss value according to the 12192 * MSS option value and our header size. It also sets up the window scale 12193 * and timestamp values, and initialize SACK info blocks. But it does not 12194 * change receive window size after setting the tcp_mss value. The caller 12195 * should do the appropriate change. 12196 */ 12197 void 12198 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12199 { 12200 int options; 12201 tcp_opt_t tcpopt; 12202 uint32_t mss_max; 12203 char *tmp_tcph; 12204 tcp_stack_t *tcps = tcp->tcp_tcps; 12205 12206 tcpopt.tcp = NULL; 12207 options = tcp_parse_options(tcph, &tcpopt); 12208 12209 /* 12210 * Process MSS option. Note that MSS option value does not account 12211 * for IP or TCP options. This means that it is equal to MTU - minimum 12212 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12213 * IPv6. 12214 */ 12215 if (!(options & TCP_OPT_MSS_PRESENT)) { 12216 if (tcp->tcp_ipversion == IPV4_VERSION) 12217 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12218 else 12219 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12220 } else { 12221 if (tcp->tcp_ipversion == IPV4_VERSION) 12222 mss_max = tcps->tcps_mss_max_ipv4; 12223 else 12224 mss_max = tcps->tcps_mss_max_ipv6; 12225 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12226 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12227 else if (tcpopt.tcp_opt_mss > mss_max) 12228 tcpopt.tcp_opt_mss = mss_max; 12229 } 12230 12231 /* Process Window Scale option. */ 12232 if (options & TCP_OPT_WSCALE_PRESENT) { 12233 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12234 tcp->tcp_snd_ws_ok = B_TRUE; 12235 } else { 12236 tcp->tcp_snd_ws = B_FALSE; 12237 tcp->tcp_snd_ws_ok = B_FALSE; 12238 tcp->tcp_rcv_ws = B_FALSE; 12239 } 12240 12241 /* Process Timestamp option. */ 12242 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12243 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12244 tmp_tcph = (char *)tcp->tcp_tcph; 12245 12246 tcp->tcp_snd_ts_ok = B_TRUE; 12247 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12248 tcp->tcp_last_rcv_lbolt = lbolt64; 12249 ASSERT(OK_32PTR(tmp_tcph)); 12250 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12251 12252 /* Fill in our template header with basic timestamp option. */ 12253 tmp_tcph += tcp->tcp_tcp_hdr_len; 12254 tmp_tcph[0] = TCPOPT_NOP; 12255 tmp_tcph[1] = TCPOPT_NOP; 12256 tmp_tcph[2] = TCPOPT_TSTAMP; 12257 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12258 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12259 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12260 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12261 } else { 12262 tcp->tcp_snd_ts_ok = B_FALSE; 12263 } 12264 12265 /* 12266 * Process SACK options. If SACK is enabled for this connection, 12267 * then allocate the SACK info structure. Note the following ways 12268 * when tcp_snd_sack_ok is set to true. 12269 * 12270 * For active connection: in tcp_adapt_ire() called in 12271 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12272 * is checked. 12273 * 12274 * For passive connection: in tcp_adapt_ire() called in 12275 * tcp_accept_comm(). 12276 * 12277 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12278 * That check makes sure that if we did not send a SACK OK option, 12279 * we will not enable SACK for this connection even though the other 12280 * side sends us SACK OK option. For active connection, the SACK 12281 * info structure has already been allocated. So we need to free 12282 * it if SACK is disabled. 12283 */ 12284 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12285 (tcp->tcp_snd_sack_ok || 12286 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12287 /* This should be true only in the passive case. */ 12288 if (tcp->tcp_sack_info == NULL) { 12289 ASSERT(TCP_IS_DETACHED(tcp)); 12290 tcp->tcp_sack_info = 12291 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12292 } 12293 if (tcp->tcp_sack_info == NULL) { 12294 tcp->tcp_snd_sack_ok = B_FALSE; 12295 } else { 12296 tcp->tcp_snd_sack_ok = B_TRUE; 12297 if (tcp->tcp_snd_ts_ok) { 12298 tcp->tcp_max_sack_blk = 3; 12299 } else { 12300 tcp->tcp_max_sack_blk = 4; 12301 } 12302 } 12303 } else { 12304 /* 12305 * Resetting tcp_snd_sack_ok to B_FALSE so that 12306 * no SACK info will be used for this 12307 * connection. This assumes that SACK usage 12308 * permission is negotiated. This may need 12309 * to be changed once this is clarified. 12310 */ 12311 if (tcp->tcp_sack_info != NULL) { 12312 ASSERT(tcp->tcp_notsack_list == NULL); 12313 kmem_cache_free(tcp_sack_info_cache, 12314 tcp->tcp_sack_info); 12315 tcp->tcp_sack_info = NULL; 12316 } 12317 tcp->tcp_snd_sack_ok = B_FALSE; 12318 } 12319 12320 /* 12321 * Now we know the exact TCP/IP header length, subtract 12322 * that from tcp_mss to get our side's MSS. 12323 */ 12324 tcp->tcp_mss -= tcp->tcp_hdr_len; 12325 /* 12326 * Here we assume that the other side's header size will be equal to 12327 * our header size. We calculate the real MSS accordingly. Need to 12328 * take into additional stuffs IPsec puts in. 12329 * 12330 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12331 */ 12332 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12333 ((tcp->tcp_ipversion == IPV4_VERSION ? 12334 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12335 12336 /* 12337 * Set MSS to the smaller one of both ends of the connection. 12338 * We should not have called tcp_mss_set() before, but our 12339 * side of the MSS should have been set to a proper value 12340 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12341 * STREAM head parameters properly. 12342 * 12343 * If we have a larger-than-16-bit window but the other side 12344 * didn't want to do window scale, tcp_rwnd_set() will take 12345 * care of that. 12346 */ 12347 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12348 } 12349 12350 /* 12351 * Sends the T_CONN_IND to the listener. The caller calls this 12352 * functions via squeue to get inside the listener's perimeter 12353 * once the 3 way hand shake is done a T_CONN_IND needs to be 12354 * sent. As an optimization, the caller can call this directly 12355 * if listener's perimeter is same as eager's. 12356 */ 12357 /* ARGSUSED */ 12358 void 12359 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12360 { 12361 conn_t *lconnp = (conn_t *)arg; 12362 tcp_t *listener = lconnp->conn_tcp; 12363 tcp_t *tcp; 12364 struct T_conn_ind *conn_ind; 12365 ipaddr_t *addr_cache; 12366 boolean_t need_send_conn_ind = B_FALSE; 12367 tcp_stack_t *tcps = listener->tcp_tcps; 12368 12369 /* retrieve the eager */ 12370 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12371 ASSERT(conn_ind->OPT_offset != 0 && 12372 conn_ind->OPT_length == sizeof (intptr_t)); 12373 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12374 conn_ind->OPT_length); 12375 12376 /* 12377 * TLI/XTI applications will get confused by 12378 * sending eager as an option since it violates 12379 * the option semantics. So remove the eager as 12380 * option since TLI/XTI app doesn't need it anyway. 12381 */ 12382 if (!TCP_IS_SOCKET(listener)) { 12383 conn_ind->OPT_length = 0; 12384 conn_ind->OPT_offset = 0; 12385 } 12386 if (listener->tcp_state != TCPS_LISTEN) { 12387 /* 12388 * If listener has closed, it would have caused a 12389 * a cleanup/blowoff to happen for the eager. We 12390 * just need to return. 12391 */ 12392 freemsg(mp); 12393 return; 12394 } 12395 12396 12397 /* 12398 * if the conn_req_q is full defer passing up the 12399 * T_CONN_IND until space is availabe after t_accept() 12400 * processing 12401 */ 12402 mutex_enter(&listener->tcp_eager_lock); 12403 12404 /* 12405 * Take the eager out, if it is in the list of droppable eagers 12406 * as we are here because the 3W handshake is over. 12407 */ 12408 MAKE_UNDROPPABLE(tcp); 12409 12410 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12411 tcp_t *tail; 12412 12413 /* 12414 * The eager already has an extra ref put in tcp_rput_data 12415 * so that it stays till accept comes back even though it 12416 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12417 */ 12418 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12419 listener->tcp_conn_req_cnt_q0--; 12420 listener->tcp_conn_req_cnt_q++; 12421 12422 /* Move from SYN_RCVD to ESTABLISHED list */ 12423 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12424 tcp->tcp_eager_prev_q0; 12425 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12426 tcp->tcp_eager_next_q0; 12427 tcp->tcp_eager_prev_q0 = NULL; 12428 tcp->tcp_eager_next_q0 = NULL; 12429 12430 /* 12431 * Insert at end of the queue because sockfs 12432 * sends down T_CONN_RES in chronological 12433 * order. Leaving the older conn indications 12434 * at front of the queue helps reducing search 12435 * time. 12436 */ 12437 tail = listener->tcp_eager_last_q; 12438 if (tail != NULL) 12439 tail->tcp_eager_next_q = tcp; 12440 else 12441 listener->tcp_eager_next_q = tcp; 12442 listener->tcp_eager_last_q = tcp; 12443 tcp->tcp_eager_next_q = NULL; 12444 /* 12445 * Delay sending up the T_conn_ind until we are 12446 * done with the eager. Once we have have sent up 12447 * the T_conn_ind, the accept can potentially complete 12448 * any time and release the refhold we have on the eager. 12449 */ 12450 need_send_conn_ind = B_TRUE; 12451 } else { 12452 /* 12453 * Defer connection on q0 and set deferred 12454 * connection bit true 12455 */ 12456 tcp->tcp_conn_def_q0 = B_TRUE; 12457 12458 /* take tcp out of q0 ... */ 12459 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12460 tcp->tcp_eager_next_q0; 12461 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12462 tcp->tcp_eager_prev_q0; 12463 12464 /* ... and place it at the end of q0 */ 12465 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12466 tcp->tcp_eager_next_q0 = listener; 12467 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12468 listener->tcp_eager_prev_q0 = tcp; 12469 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12470 } 12471 12472 /* we have timed out before */ 12473 if (tcp->tcp_syn_rcvd_timeout != 0) { 12474 tcp->tcp_syn_rcvd_timeout = 0; 12475 listener->tcp_syn_rcvd_timeout--; 12476 if (listener->tcp_syn_defense && 12477 listener->tcp_syn_rcvd_timeout <= 12478 (tcps->tcps_conn_req_max_q0 >> 5) && 12479 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12480 listener->tcp_last_rcv_lbolt)) { 12481 /* 12482 * Turn off the defense mode if we 12483 * believe the SYN attack is over. 12484 */ 12485 listener->tcp_syn_defense = B_FALSE; 12486 if (listener->tcp_ip_addr_cache) { 12487 kmem_free((void *)listener->tcp_ip_addr_cache, 12488 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12489 listener->tcp_ip_addr_cache = NULL; 12490 } 12491 } 12492 } 12493 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12494 if (addr_cache != NULL) { 12495 /* 12496 * We have finished a 3-way handshake with this 12497 * remote host. This proves the IP addr is good. 12498 * Cache it! 12499 */ 12500 addr_cache[IP_ADDR_CACHE_HASH( 12501 tcp->tcp_remote)] = tcp->tcp_remote; 12502 } 12503 mutex_exit(&listener->tcp_eager_lock); 12504 if (need_send_conn_ind) 12505 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12506 } 12507 12508 /* 12509 * Send the newconn notification to ulp. The eager is blown off if the 12510 * notification fails. 12511 */ 12512 static void 12513 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12514 { 12515 if (IPCL_IS_NONSTR(lconnp)) { 12516 cred_t *cr; 12517 pid_t cpid; 12518 12519 cr = msg_getcred(mp, &cpid); 12520 12521 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12522 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12523 lconnp->conn_tcp); 12524 12525 /* Keep the message around in case of a fallback to TPI */ 12526 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12527 12528 /* 12529 * Notify the ULP about the newconn. It is guaranteed that no 12530 * tcp_accept() call will be made for the eager if the 12531 * notification fails, so it's safe to blow it off in that 12532 * case. 12533 * 12534 * The upper handle will be assigned when tcp_accept() is 12535 * called. 12536 */ 12537 if ((*lconnp->conn_upcalls->su_newconn) 12538 (lconnp->conn_upper_handle, 12539 (sock_lower_handle_t)econnp, 12540 &sock_tcp_downcalls, cr, cpid, 12541 &econnp->conn_upcalls) == NULL) { 12542 /* Failed to allocate a socket */ 12543 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12544 tcpEstabResets); 12545 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12546 econnp->conn_tcp->tcp_conn_req_seqnum); 12547 } 12548 } else { 12549 putnext(lconnp->conn_tcp->tcp_rq, mp); 12550 } 12551 } 12552 12553 mblk_t * 12554 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12555 uint_t *ifindexp, ip6_pkt_t *ippp) 12556 { 12557 ip_pktinfo_t *pinfo; 12558 ip6_t *ip6h; 12559 uchar_t *rptr; 12560 mblk_t *first_mp = mp; 12561 boolean_t mctl_present = B_FALSE; 12562 uint_t ifindex = 0; 12563 ip6_pkt_t ipp; 12564 uint_t ipvers; 12565 uint_t ip_hdr_len; 12566 tcp_stack_t *tcps = tcp->tcp_tcps; 12567 12568 rptr = mp->b_rptr; 12569 ASSERT(OK_32PTR(rptr)); 12570 ASSERT(tcp != NULL); 12571 ipp.ipp_fields = 0; 12572 12573 switch DB_TYPE(mp) { 12574 case M_CTL: 12575 mp = mp->b_cont; 12576 if (mp == NULL) { 12577 freemsg(first_mp); 12578 return (NULL); 12579 } 12580 if (DB_TYPE(mp) != M_DATA) { 12581 freemsg(first_mp); 12582 return (NULL); 12583 } 12584 mctl_present = B_TRUE; 12585 break; 12586 case M_DATA: 12587 break; 12588 default: 12589 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12590 freemsg(mp); 12591 return (NULL); 12592 } 12593 ipvers = IPH_HDR_VERSION(rptr); 12594 if (ipvers == IPV4_VERSION) { 12595 if (tcp == NULL) { 12596 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12597 goto done; 12598 } 12599 12600 ipp.ipp_fields |= IPPF_HOPLIMIT; 12601 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12602 12603 /* 12604 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12605 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12606 */ 12607 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12608 mctl_present) { 12609 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12610 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12611 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12612 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12613 ipp.ipp_fields |= IPPF_IFINDEX; 12614 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12615 ifindex = pinfo->ip_pkt_ifindex; 12616 } 12617 freeb(first_mp); 12618 mctl_present = B_FALSE; 12619 } 12620 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12621 } else { 12622 ip6h = (ip6_t *)rptr; 12623 12624 ASSERT(ipvers == IPV6_VERSION); 12625 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12626 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12627 ipp.ipp_hoplimit = ip6h->ip6_hops; 12628 12629 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12630 uint8_t nexthdrp; 12631 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12632 12633 /* Look for ifindex information */ 12634 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12635 ip6i_t *ip6i = (ip6i_t *)ip6h; 12636 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12637 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12638 freemsg(first_mp); 12639 return (NULL); 12640 } 12641 12642 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12643 ASSERT(ip6i->ip6i_ifindex != 0); 12644 ipp.ipp_fields |= IPPF_IFINDEX; 12645 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12646 ifindex = ip6i->ip6i_ifindex; 12647 } 12648 rptr = (uchar_t *)&ip6i[1]; 12649 mp->b_rptr = rptr; 12650 if (rptr == mp->b_wptr) { 12651 mblk_t *mp1; 12652 mp1 = mp->b_cont; 12653 freeb(mp); 12654 mp = mp1; 12655 rptr = mp->b_rptr; 12656 } 12657 if (MBLKL(mp) < IPV6_HDR_LEN + 12658 sizeof (tcph_t)) { 12659 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12660 freemsg(first_mp); 12661 return (NULL); 12662 } 12663 ip6h = (ip6_t *)rptr; 12664 } 12665 12666 /* 12667 * Find any potentially interesting extension headers 12668 * as well as the length of the IPv6 + extension 12669 * headers. 12670 */ 12671 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12672 /* Verify if this is a TCP packet */ 12673 if (nexthdrp != IPPROTO_TCP) { 12674 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12675 freemsg(first_mp); 12676 return (NULL); 12677 } 12678 } else { 12679 ip_hdr_len = IPV6_HDR_LEN; 12680 } 12681 } 12682 12683 done: 12684 if (ipversp != NULL) 12685 *ipversp = ipvers; 12686 if (ip_hdr_lenp != NULL) 12687 *ip_hdr_lenp = ip_hdr_len; 12688 if (ippp != NULL) 12689 *ippp = ipp; 12690 if (ifindexp != NULL) 12691 *ifindexp = ifindex; 12692 if (mctl_present) { 12693 freeb(first_mp); 12694 } 12695 return (mp); 12696 } 12697 12698 /* 12699 * Handle M_DATA messages from IP. Its called directly from IP via 12700 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12701 * in this path. 12702 * 12703 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12704 * v4 and v6), we are called through tcp_input() and a M_CTL can 12705 * be present for options but tcp_find_pktinfo() deals with it. We 12706 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12707 * 12708 * The first argument is always the connp/tcp to which the mp belongs. 12709 * There are no exceptions to this rule. The caller has already put 12710 * a reference on this connp/tcp and once tcp_rput_data() returns, 12711 * the squeue will do the refrele. 12712 * 12713 * The TH_SYN for the listener directly go to tcp_conn_request via 12714 * squeue. 12715 * 12716 * sqp: NULL = recursive, sqp != NULL means called from squeue 12717 */ 12718 void 12719 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12720 { 12721 int32_t bytes_acked; 12722 int32_t gap; 12723 mblk_t *mp1; 12724 uint_t flags; 12725 uint32_t new_swnd = 0; 12726 uchar_t *iphdr; 12727 uchar_t *rptr; 12728 int32_t rgap; 12729 uint32_t seg_ack; 12730 int seg_len; 12731 uint_t ip_hdr_len; 12732 uint32_t seg_seq; 12733 tcph_t *tcph; 12734 int urp; 12735 tcp_opt_t tcpopt; 12736 uint_t ipvers; 12737 ip6_pkt_t ipp; 12738 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12739 uint32_t cwnd; 12740 uint32_t add; 12741 int npkt; 12742 int mss; 12743 conn_t *connp = (conn_t *)arg; 12744 squeue_t *sqp = (squeue_t *)arg2; 12745 tcp_t *tcp = connp->conn_tcp; 12746 tcp_stack_t *tcps = tcp->tcp_tcps; 12747 12748 /* 12749 * RST from fused tcp loopback peer should trigger an unfuse. 12750 */ 12751 if (tcp->tcp_fused) { 12752 TCP_STAT(tcps, tcp_fusion_aborted); 12753 tcp_unfuse(tcp); 12754 } 12755 12756 iphdr = mp->b_rptr; 12757 rptr = mp->b_rptr; 12758 ASSERT(OK_32PTR(rptr)); 12759 12760 /* 12761 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12762 * processing here. For rest call tcp_find_pktinfo to fill up the 12763 * necessary information. 12764 */ 12765 if (IPCL_IS_TCP4(connp)) { 12766 ipvers = IPV4_VERSION; 12767 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12768 } else { 12769 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12770 NULL, &ipp); 12771 if (mp == NULL) { 12772 TCP_STAT(tcps, tcp_rput_v6_error); 12773 return; 12774 } 12775 iphdr = mp->b_rptr; 12776 rptr = mp->b_rptr; 12777 } 12778 ASSERT(DB_TYPE(mp) == M_DATA); 12779 ASSERT(mp->b_next == NULL); 12780 12781 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12782 seg_seq = ABE32_TO_U32(tcph->th_seq); 12783 seg_ack = ABE32_TO_U32(tcph->th_ack); 12784 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12785 seg_len = (int)(mp->b_wptr - rptr) - 12786 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12787 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12788 do { 12789 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12790 (uintptr_t)INT_MAX); 12791 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12792 } while ((mp1 = mp1->b_cont) != NULL && 12793 mp1->b_datap->db_type == M_DATA); 12794 } 12795 12796 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12797 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12798 seg_len, tcph); 12799 return; 12800 } 12801 12802 if (sqp != NULL) { 12803 /* 12804 * This is the correct place to update tcp_last_recv_time. Note 12805 * that it is also updated for tcp structure that belongs to 12806 * global and listener queues which do not really need updating. 12807 * But that should not cause any harm. And it is updated for 12808 * all kinds of incoming segments, not only for data segments. 12809 */ 12810 tcp->tcp_last_recv_time = lbolt; 12811 } 12812 12813 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12814 12815 BUMP_LOCAL(tcp->tcp_ibsegs); 12816 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12817 12818 if ((flags & TH_URG) && sqp != NULL) { 12819 /* 12820 * TCP can't handle urgent pointers that arrive before 12821 * the connection has been accept()ed since it can't 12822 * buffer OOB data. Discard segment if this happens. 12823 * 12824 * We can't just rely on a non-null tcp_listener to indicate 12825 * that the accept() has completed since unlinking of the 12826 * eager and completion of the accept are not atomic. 12827 * tcp_detached, when it is not set (B_FALSE) indicates 12828 * that the accept() has completed. 12829 * 12830 * Nor can it reassemble urgent pointers, so discard 12831 * if it's not the next segment expected. 12832 * 12833 * Otherwise, collapse chain into one mblk (discard if 12834 * that fails). This makes sure the headers, retransmitted 12835 * data, and new data all are in the same mblk. 12836 */ 12837 ASSERT(mp != NULL); 12838 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12839 freemsg(mp); 12840 return; 12841 } 12842 /* Update pointers into message */ 12843 iphdr = rptr = mp->b_rptr; 12844 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12845 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12846 /* 12847 * Since we can't handle any data with this urgent 12848 * pointer that is out of sequence, we expunge 12849 * the data. This allows us to still register 12850 * the urgent mark and generate the M_PCSIG, 12851 * which we can do. 12852 */ 12853 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12854 seg_len = 0; 12855 } 12856 } 12857 12858 switch (tcp->tcp_state) { 12859 case TCPS_SYN_SENT: 12860 if (flags & TH_ACK) { 12861 /* 12862 * Note that our stack cannot send data before a 12863 * connection is established, therefore the 12864 * following check is valid. Otherwise, it has 12865 * to be changed. 12866 */ 12867 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12868 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12869 freemsg(mp); 12870 if (flags & TH_RST) 12871 return; 12872 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12873 tcp, seg_ack, 0, TH_RST); 12874 return; 12875 } 12876 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12877 } 12878 if (flags & TH_RST) { 12879 freemsg(mp); 12880 if (flags & TH_ACK) 12881 (void) tcp_clean_death(tcp, 12882 ECONNREFUSED, 13); 12883 return; 12884 } 12885 if (!(flags & TH_SYN)) { 12886 freemsg(mp); 12887 return; 12888 } 12889 12890 /* Process all TCP options. */ 12891 tcp_process_options(tcp, tcph); 12892 /* 12893 * The following changes our rwnd to be a multiple of the 12894 * MIN(peer MSS, our MSS) for performance reason. 12895 */ 12896 (void) tcp_rwnd_set(tcp, 12897 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 12898 12899 /* Is the other end ECN capable? */ 12900 if (tcp->tcp_ecn_ok) { 12901 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12902 tcp->tcp_ecn_ok = B_FALSE; 12903 } 12904 } 12905 /* 12906 * Clear ECN flags because it may interfere with later 12907 * processing. 12908 */ 12909 flags &= ~(TH_ECE|TH_CWR); 12910 12911 tcp->tcp_irs = seg_seq; 12912 tcp->tcp_rack = seg_seq; 12913 tcp->tcp_rnxt = seg_seq + 1; 12914 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12915 if (!TCP_IS_DETACHED(tcp)) { 12916 /* Allocate room for SACK options if needed. */ 12917 if (tcp->tcp_snd_sack_ok) { 12918 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12919 tcp->tcp_hdr_len + 12920 TCPOPT_MAX_SACK_LEN + 12921 (tcp->tcp_loopback ? 0 : 12922 tcps->tcps_wroff_xtra)); 12923 } else { 12924 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12925 tcp->tcp_hdr_len + 12926 (tcp->tcp_loopback ? 0 : 12927 tcps->tcps_wroff_xtra)); 12928 } 12929 } 12930 if (flags & TH_ACK) { 12931 /* 12932 * If we can't get the confirmation upstream, pretend 12933 * we didn't even see this one. 12934 * 12935 * XXX: how can we pretend we didn't see it if we 12936 * have updated rnxt et. al. 12937 * 12938 * For loopback we defer sending up the T_CONN_CON 12939 * until after some checks below. 12940 */ 12941 mp1 = NULL; 12942 /* 12943 * tcp_sendmsg() checks tcp_state without entering 12944 * the squeue so tcp_state should be updated before 12945 * sending up connection confirmation 12946 */ 12947 tcp->tcp_state = TCPS_ESTABLISHED; 12948 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12949 tcp->tcp_loopback ? &mp1 : NULL)) { 12950 tcp->tcp_state = TCPS_SYN_SENT; 12951 freemsg(mp); 12952 return; 12953 } 12954 /* SYN was acked - making progress */ 12955 if (tcp->tcp_ipversion == IPV6_VERSION) 12956 tcp->tcp_ip_forward_progress = B_TRUE; 12957 12958 /* One for the SYN */ 12959 tcp->tcp_suna = tcp->tcp_iss + 1; 12960 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12961 12962 /* 12963 * If SYN was retransmitted, need to reset all 12964 * retransmission info. This is because this 12965 * segment will be treated as a dup ACK. 12966 */ 12967 if (tcp->tcp_rexmit) { 12968 tcp->tcp_rexmit = B_FALSE; 12969 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12970 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12971 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12972 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12973 tcp->tcp_ms_we_have_waited = 0; 12974 12975 /* 12976 * Set tcp_cwnd back to 1 MSS, per 12977 * recommendation from 12978 * draft-floyd-incr-init-win-01.txt, 12979 * Increasing TCP's Initial Window. 12980 */ 12981 tcp->tcp_cwnd = tcp->tcp_mss; 12982 } 12983 12984 tcp->tcp_swl1 = seg_seq; 12985 tcp->tcp_swl2 = seg_ack; 12986 12987 new_swnd = BE16_TO_U16(tcph->th_win); 12988 tcp->tcp_swnd = new_swnd; 12989 if (new_swnd > tcp->tcp_max_swnd) 12990 tcp->tcp_max_swnd = new_swnd; 12991 12992 /* 12993 * Always send the three-way handshake ack immediately 12994 * in order to make the connection complete as soon as 12995 * possible on the accepting host. 12996 */ 12997 flags |= TH_ACK_NEEDED; 12998 12999 /* 13000 * Special case for loopback. At this point we have 13001 * received SYN-ACK from the remote endpoint. In 13002 * order to ensure that both endpoints reach the 13003 * fused state prior to any data exchange, the final 13004 * ACK needs to be sent before we indicate T_CONN_CON 13005 * to the module upstream. 13006 */ 13007 if (tcp->tcp_loopback) { 13008 mblk_t *ack_mp; 13009 13010 ASSERT(!tcp->tcp_unfusable); 13011 ASSERT(mp1 != NULL); 13012 /* 13013 * For loopback, we always get a pure SYN-ACK 13014 * and only need to send back the final ACK 13015 * with no data (this is because the other 13016 * tcp is ours and we don't do T/TCP). This 13017 * final ACK triggers the passive side to 13018 * perform fusion in ESTABLISHED state. 13019 */ 13020 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13021 if (tcp->tcp_ack_tid != 0) { 13022 (void) TCP_TIMER_CANCEL(tcp, 13023 tcp->tcp_ack_tid); 13024 tcp->tcp_ack_tid = 0; 13025 } 13026 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13027 BUMP_LOCAL(tcp->tcp_obsegs); 13028 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13029 13030 if (!IPCL_IS_NONSTR(connp)) { 13031 /* Send up T_CONN_CON */ 13032 putnext(tcp->tcp_rq, mp1); 13033 } else { 13034 cred_t *cr; 13035 pid_t cpid; 13036 13037 cr = msg_getcred(mp1, &cpid); 13038 (*connp->conn_upcalls-> 13039 su_connected) 13040 (connp->conn_upper_handle, 13041 tcp->tcp_connid, cr, cpid); 13042 freemsg(mp1); 13043 } 13044 13045 freemsg(mp); 13046 return; 13047 } 13048 /* 13049 * Forget fusion; we need to handle more 13050 * complex cases below. Send the deferred 13051 * T_CONN_CON message upstream and proceed 13052 * as usual. Mark this tcp as not capable 13053 * of fusion. 13054 */ 13055 TCP_STAT(tcps, tcp_fusion_unfusable); 13056 tcp->tcp_unfusable = B_TRUE; 13057 if (!IPCL_IS_NONSTR(connp)) { 13058 putnext(tcp->tcp_rq, mp1); 13059 } else { 13060 cred_t *cr; 13061 pid_t cpid; 13062 13063 cr = msg_getcred(mp1, &cpid); 13064 (*connp->conn_upcalls->su_connected) 13065 (connp->conn_upper_handle, 13066 tcp->tcp_connid, cr, cpid); 13067 freemsg(mp1); 13068 } 13069 } 13070 13071 /* 13072 * Check to see if there is data to be sent. If 13073 * yes, set the transmit flag. Then check to see 13074 * if received data processing needs to be done. 13075 * If not, go straight to xmit_check. This short 13076 * cut is OK as we don't support T/TCP. 13077 */ 13078 if (tcp->tcp_unsent) 13079 flags |= TH_XMIT_NEEDED; 13080 13081 if (seg_len == 0 && !(flags & TH_URG)) { 13082 freemsg(mp); 13083 goto xmit_check; 13084 } 13085 13086 flags &= ~TH_SYN; 13087 seg_seq++; 13088 break; 13089 } 13090 tcp->tcp_state = TCPS_SYN_RCVD; 13091 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13092 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13093 if (mp1) { 13094 /* 13095 * See comment in tcp_conn_request() for why we use 13096 * the open() time pid here. 13097 */ 13098 DB_CPID(mp1) = tcp->tcp_cpid; 13099 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13100 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13101 } 13102 freemsg(mp); 13103 return; 13104 case TCPS_SYN_RCVD: 13105 if (flags & TH_ACK) { 13106 /* 13107 * In this state, a SYN|ACK packet is either bogus 13108 * because the other side must be ACKing our SYN which 13109 * indicates it has seen the ACK for their SYN and 13110 * shouldn't retransmit it or we're crossing SYNs 13111 * on active open. 13112 */ 13113 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13114 freemsg(mp); 13115 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13116 tcp, seg_ack, 0, TH_RST); 13117 return; 13118 } 13119 /* 13120 * NOTE: RFC 793 pg. 72 says this should be 13121 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13122 * but that would mean we have an ack that ignored 13123 * our SYN. 13124 */ 13125 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13126 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13127 freemsg(mp); 13128 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13129 tcp, seg_ack, 0, TH_RST); 13130 return; 13131 } 13132 } 13133 break; 13134 case TCPS_LISTEN: 13135 /* 13136 * Only a TLI listener can come through this path when a 13137 * acceptor is going back to be a listener and a packet 13138 * for the acceptor hits the classifier. For a socket 13139 * listener, this can never happen because a listener 13140 * can never accept connection on itself and hence a 13141 * socket acceptor can not go back to being a listener. 13142 */ 13143 ASSERT(!TCP_IS_SOCKET(tcp)); 13144 /*FALLTHRU*/ 13145 case TCPS_CLOSED: 13146 case TCPS_BOUND: { 13147 conn_t *new_connp; 13148 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13149 13150 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13151 if (new_connp != NULL) { 13152 tcp_reinput(new_connp, mp, connp->conn_sqp); 13153 return; 13154 } 13155 /* We failed to classify. For now just drop the packet */ 13156 freemsg(mp); 13157 return; 13158 } 13159 case TCPS_IDLE: 13160 /* 13161 * Handle the case where the tcp_clean_death() has happened 13162 * on a connection (application hasn't closed yet) but a packet 13163 * was already queued on squeue before tcp_clean_death() 13164 * was processed. Calling tcp_clean_death() twice on same 13165 * connection can result in weird behaviour. 13166 */ 13167 freemsg(mp); 13168 return; 13169 default: 13170 break; 13171 } 13172 13173 /* 13174 * Already on the correct queue/perimeter. 13175 * If this is a detached connection and not an eager 13176 * connection hanging off a listener then new data 13177 * (past the FIN) will cause a reset. 13178 * We do a special check here where it 13179 * is out of the main line, rather than check 13180 * if we are detached every time we see new 13181 * data down below. 13182 */ 13183 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13184 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13185 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13186 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13187 13188 freemsg(mp); 13189 /* 13190 * This could be an SSL closure alert. We're detached so just 13191 * acknowledge it this last time. 13192 */ 13193 if (tcp->tcp_kssl_ctx != NULL) { 13194 kssl_release_ctx(tcp->tcp_kssl_ctx); 13195 tcp->tcp_kssl_ctx = NULL; 13196 13197 tcp->tcp_rnxt += seg_len; 13198 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13199 flags |= TH_ACK_NEEDED; 13200 goto ack_check; 13201 } 13202 13203 tcp_xmit_ctl("new data when detached", tcp, 13204 tcp->tcp_snxt, 0, TH_RST); 13205 (void) tcp_clean_death(tcp, EPROTO, 12); 13206 return; 13207 } 13208 13209 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13210 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13211 new_swnd = BE16_TO_U16(tcph->th_win) << 13212 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13213 13214 if (tcp->tcp_snd_ts_ok) { 13215 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13216 /* 13217 * This segment is not acceptable. 13218 * Drop it and send back an ACK. 13219 */ 13220 freemsg(mp); 13221 flags |= TH_ACK_NEEDED; 13222 goto ack_check; 13223 } 13224 } else if (tcp->tcp_snd_sack_ok) { 13225 ASSERT(tcp->tcp_sack_info != NULL); 13226 tcpopt.tcp = tcp; 13227 /* 13228 * SACK info in already updated in tcp_parse_options. Ignore 13229 * all other TCP options... 13230 */ 13231 (void) tcp_parse_options(tcph, &tcpopt); 13232 } 13233 try_again:; 13234 mss = tcp->tcp_mss; 13235 gap = seg_seq - tcp->tcp_rnxt; 13236 rgap = tcp->tcp_rwnd - (gap + seg_len); 13237 /* 13238 * gap is the amount of sequence space between what we expect to see 13239 * and what we got for seg_seq. A positive value for gap means 13240 * something got lost. A negative value means we got some old stuff. 13241 */ 13242 if (gap < 0) { 13243 /* Old stuff present. Is the SYN in there? */ 13244 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13245 (seg_len != 0)) { 13246 flags &= ~TH_SYN; 13247 seg_seq++; 13248 urp--; 13249 /* Recompute the gaps after noting the SYN. */ 13250 goto try_again; 13251 } 13252 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13253 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13254 (seg_len > -gap ? -gap : seg_len)); 13255 /* Remove the old stuff from seg_len. */ 13256 seg_len += gap; 13257 /* 13258 * Anything left? 13259 * Make sure to check for unack'd FIN when rest of data 13260 * has been previously ack'd. 13261 */ 13262 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13263 /* 13264 * Resets are only valid if they lie within our offered 13265 * window. If the RST bit is set, we just ignore this 13266 * segment. 13267 */ 13268 if (flags & TH_RST) { 13269 freemsg(mp); 13270 return; 13271 } 13272 13273 /* 13274 * The arriving of dup data packets indicate that we 13275 * may have postponed an ack for too long, or the other 13276 * side's RTT estimate is out of shape. Start acking 13277 * more often. 13278 */ 13279 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13280 tcp->tcp_rack_cnt >= 1 && 13281 tcp->tcp_rack_abs_max > 2) { 13282 tcp->tcp_rack_abs_max--; 13283 } 13284 tcp->tcp_rack_cur_max = 1; 13285 13286 /* 13287 * This segment is "unacceptable". None of its 13288 * sequence space lies within our advertized window. 13289 * 13290 * Adjust seg_len to the original value for tracing. 13291 */ 13292 seg_len -= gap; 13293 if (tcp->tcp_debug) { 13294 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13295 "tcp_rput: unacceptable, gap %d, rgap %d, " 13296 "flags 0x%x, seg_seq %u, seg_ack %u, " 13297 "seg_len %d, rnxt %u, snxt %u, %s", 13298 gap, rgap, flags, seg_seq, seg_ack, 13299 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13300 tcp_display(tcp, NULL, 13301 DISP_ADDR_AND_PORT)); 13302 } 13303 13304 /* 13305 * Arrange to send an ACK in response to the 13306 * unacceptable segment per RFC 793 page 69. There 13307 * is only one small difference between ours and the 13308 * acceptability test in the RFC - we accept ACK-only 13309 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13310 * will be generated. 13311 * 13312 * Note that we have to ACK an ACK-only packet at least 13313 * for stacks that send 0-length keep-alives with 13314 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13315 * section 4.2.3.6. As long as we don't ever generate 13316 * an unacceptable packet in response to an incoming 13317 * packet that is unacceptable, it should not cause 13318 * "ACK wars". 13319 */ 13320 flags |= TH_ACK_NEEDED; 13321 13322 /* 13323 * Continue processing this segment in order to use the 13324 * ACK information it contains, but skip all other 13325 * sequence-number processing. Processing the ACK 13326 * information is necessary in order to 13327 * re-synchronize connections that may have lost 13328 * synchronization. 13329 * 13330 * We clear seg_len and flag fields related to 13331 * sequence number processing as they are not 13332 * to be trusted for an unacceptable segment. 13333 */ 13334 seg_len = 0; 13335 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13336 goto process_ack; 13337 } 13338 13339 /* Fix seg_seq, and chew the gap off the front. */ 13340 seg_seq = tcp->tcp_rnxt; 13341 urp += gap; 13342 do { 13343 mblk_t *mp2; 13344 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13345 (uintptr_t)UINT_MAX); 13346 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13347 if (gap > 0) { 13348 mp->b_rptr = mp->b_wptr - gap; 13349 break; 13350 } 13351 mp2 = mp; 13352 mp = mp->b_cont; 13353 freeb(mp2); 13354 } while (gap < 0); 13355 /* 13356 * If the urgent data has already been acknowledged, we 13357 * should ignore TH_URG below 13358 */ 13359 if (urp < 0) 13360 flags &= ~TH_URG; 13361 } 13362 /* 13363 * rgap is the amount of stuff received out of window. A negative 13364 * value is the amount out of window. 13365 */ 13366 if (rgap < 0) { 13367 mblk_t *mp2; 13368 13369 if (tcp->tcp_rwnd == 0) { 13370 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13371 } else { 13372 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13373 UPDATE_MIB(&tcps->tcps_mib, 13374 tcpInDataPastWinBytes, -rgap); 13375 } 13376 13377 /* 13378 * seg_len does not include the FIN, so if more than 13379 * just the FIN is out of window, we act like we don't 13380 * see it. (If just the FIN is out of window, rgap 13381 * will be zero and we will go ahead and acknowledge 13382 * the FIN.) 13383 */ 13384 flags &= ~TH_FIN; 13385 13386 /* Fix seg_len and make sure there is something left. */ 13387 seg_len += rgap; 13388 if (seg_len <= 0) { 13389 /* 13390 * Resets are only valid if they lie within our offered 13391 * window. If the RST bit is set, we just ignore this 13392 * segment. 13393 */ 13394 if (flags & TH_RST) { 13395 freemsg(mp); 13396 return; 13397 } 13398 13399 /* Per RFC 793, we need to send back an ACK. */ 13400 flags |= TH_ACK_NEEDED; 13401 13402 /* 13403 * Send SIGURG as soon as possible i.e. even 13404 * if the TH_URG was delivered in a window probe 13405 * packet (which will be unacceptable). 13406 * 13407 * We generate a signal if none has been generated 13408 * for this connection or if this is a new urgent 13409 * byte. Also send a zero-length "unmarked" message 13410 * to inform SIOCATMARK that this is not the mark. 13411 * 13412 * tcp_urp_last_valid is cleared when the T_exdata_ind 13413 * is sent up. This plus the check for old data 13414 * (gap >= 0) handles the wraparound of the sequence 13415 * number space without having to always track the 13416 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13417 * this max in its rcv_up variable). 13418 * 13419 * This prevents duplicate SIGURGS due to a "late" 13420 * zero-window probe when the T_EXDATA_IND has already 13421 * been sent up. 13422 */ 13423 if ((flags & TH_URG) && 13424 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13425 tcp->tcp_urp_last))) { 13426 if (IPCL_IS_NONSTR(connp)) { 13427 if (!TCP_IS_DETACHED(tcp)) { 13428 (*connp->conn_upcalls-> 13429 su_signal_oob) 13430 (connp->conn_upper_handle, 13431 urp); 13432 } 13433 } else { 13434 mp1 = allocb(0, BPRI_MED); 13435 if (mp1 == NULL) { 13436 freemsg(mp); 13437 return; 13438 } 13439 if (!TCP_IS_DETACHED(tcp) && 13440 !putnextctl1(tcp->tcp_rq, 13441 M_PCSIG, SIGURG)) { 13442 /* Try again on the rexmit. */ 13443 freemsg(mp1); 13444 freemsg(mp); 13445 return; 13446 } 13447 /* 13448 * If the next byte would be the mark 13449 * then mark with MARKNEXT else mark 13450 * with NOTMARKNEXT. 13451 */ 13452 if (gap == 0 && urp == 0) 13453 mp1->b_flag |= MSGMARKNEXT; 13454 else 13455 mp1->b_flag |= MSGNOTMARKNEXT; 13456 freemsg(tcp->tcp_urp_mark_mp); 13457 tcp->tcp_urp_mark_mp = mp1; 13458 flags |= TH_SEND_URP_MARK; 13459 } 13460 tcp->tcp_urp_last_valid = B_TRUE; 13461 tcp->tcp_urp_last = urp + seg_seq; 13462 } 13463 /* 13464 * If this is a zero window probe, continue to 13465 * process the ACK part. But we need to set seg_len 13466 * to 0 to avoid data processing. Otherwise just 13467 * drop the segment and send back an ACK. 13468 */ 13469 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13470 flags &= ~(TH_SYN | TH_URG); 13471 seg_len = 0; 13472 goto process_ack; 13473 } else { 13474 freemsg(mp); 13475 goto ack_check; 13476 } 13477 } 13478 /* Pitch out of window stuff off the end. */ 13479 rgap = seg_len; 13480 mp2 = mp; 13481 do { 13482 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13483 (uintptr_t)INT_MAX); 13484 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13485 if (rgap < 0) { 13486 mp2->b_wptr += rgap; 13487 if ((mp1 = mp2->b_cont) != NULL) { 13488 mp2->b_cont = NULL; 13489 freemsg(mp1); 13490 } 13491 break; 13492 } 13493 } while ((mp2 = mp2->b_cont) != NULL); 13494 } 13495 ok:; 13496 /* 13497 * TCP should check ECN info for segments inside the window only. 13498 * Therefore the check should be done here. 13499 */ 13500 if (tcp->tcp_ecn_ok) { 13501 if (flags & TH_CWR) { 13502 tcp->tcp_ecn_echo_on = B_FALSE; 13503 } 13504 /* 13505 * Note that both ECN_CE and CWR can be set in the 13506 * same segment. In this case, we once again turn 13507 * on ECN_ECHO. 13508 */ 13509 if (tcp->tcp_ipversion == IPV4_VERSION) { 13510 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13511 13512 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13513 tcp->tcp_ecn_echo_on = B_TRUE; 13514 } 13515 } else { 13516 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13517 13518 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13519 htonl(IPH_ECN_CE << 20)) { 13520 tcp->tcp_ecn_echo_on = B_TRUE; 13521 } 13522 } 13523 } 13524 13525 /* 13526 * Check whether we can update tcp_ts_recent. This test is 13527 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13528 * Extensions for High Performance: An Update", Internet Draft. 13529 */ 13530 if (tcp->tcp_snd_ts_ok && 13531 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13532 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13533 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13534 tcp->tcp_last_rcv_lbolt = lbolt64; 13535 } 13536 13537 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13538 /* 13539 * FIN in an out of order segment. We record this in 13540 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13541 * Clear the FIN so that any check on FIN flag will fail. 13542 * Remember that FIN also counts in the sequence number 13543 * space. So we need to ack out of order FIN only segments. 13544 */ 13545 if (flags & TH_FIN) { 13546 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13547 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13548 flags &= ~TH_FIN; 13549 flags |= TH_ACK_NEEDED; 13550 } 13551 if (seg_len > 0) { 13552 /* Fill in the SACK blk list. */ 13553 if (tcp->tcp_snd_sack_ok) { 13554 ASSERT(tcp->tcp_sack_info != NULL); 13555 tcp_sack_insert(tcp->tcp_sack_list, 13556 seg_seq, seg_seq + seg_len, 13557 &(tcp->tcp_num_sack_blk)); 13558 } 13559 13560 /* 13561 * Attempt reassembly and see if we have something 13562 * ready to go. 13563 */ 13564 mp = tcp_reass(tcp, mp, seg_seq); 13565 /* Always ack out of order packets */ 13566 flags |= TH_ACK_NEEDED | TH_PUSH; 13567 if (mp) { 13568 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13569 (uintptr_t)INT_MAX); 13570 seg_len = mp->b_cont ? msgdsize(mp) : 13571 (int)(mp->b_wptr - mp->b_rptr); 13572 seg_seq = tcp->tcp_rnxt; 13573 /* 13574 * A gap is filled and the seq num and len 13575 * of the gap match that of a previously 13576 * received FIN, put the FIN flag back in. 13577 */ 13578 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13579 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13580 flags |= TH_FIN; 13581 tcp->tcp_valid_bits &= 13582 ~TCP_OFO_FIN_VALID; 13583 } 13584 } else { 13585 /* 13586 * Keep going even with NULL mp. 13587 * There may be a useful ACK or something else 13588 * we don't want to miss. 13589 * 13590 * But TCP should not perform fast retransmit 13591 * because of the ack number. TCP uses 13592 * seg_len == 0 to determine if it is a pure 13593 * ACK. And this is not a pure ACK. 13594 */ 13595 seg_len = 0; 13596 ofo_seg = B_TRUE; 13597 } 13598 } 13599 } else if (seg_len > 0) { 13600 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13601 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13602 /* 13603 * If an out of order FIN was received before, and the seq 13604 * num and len of the new segment match that of the FIN, 13605 * put the FIN flag back in. 13606 */ 13607 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13608 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13609 flags |= TH_FIN; 13610 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13611 } 13612 } 13613 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13614 if (flags & TH_RST) { 13615 freemsg(mp); 13616 switch (tcp->tcp_state) { 13617 case TCPS_SYN_RCVD: 13618 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13619 break; 13620 case TCPS_ESTABLISHED: 13621 case TCPS_FIN_WAIT_1: 13622 case TCPS_FIN_WAIT_2: 13623 case TCPS_CLOSE_WAIT: 13624 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13625 break; 13626 case TCPS_CLOSING: 13627 case TCPS_LAST_ACK: 13628 (void) tcp_clean_death(tcp, 0, 16); 13629 break; 13630 default: 13631 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13632 (void) tcp_clean_death(tcp, ENXIO, 17); 13633 break; 13634 } 13635 return; 13636 } 13637 if (flags & TH_SYN) { 13638 /* 13639 * See RFC 793, Page 71 13640 * 13641 * The seq number must be in the window as it should 13642 * be "fixed" above. If it is outside window, it should 13643 * be already rejected. Note that we allow seg_seq to be 13644 * rnxt + rwnd because we want to accept 0 window probe. 13645 */ 13646 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13647 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13648 freemsg(mp); 13649 /* 13650 * If the ACK flag is not set, just use our snxt as the 13651 * seq number of the RST segment. 13652 */ 13653 if (!(flags & TH_ACK)) { 13654 seg_ack = tcp->tcp_snxt; 13655 } 13656 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13657 TH_RST|TH_ACK); 13658 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13659 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13660 return; 13661 } 13662 /* 13663 * urp could be -1 when the urp field in the packet is 0 13664 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13665 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13666 */ 13667 if (flags & TH_URG && urp >= 0) { 13668 if (!tcp->tcp_urp_last_valid || 13669 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13670 /* 13671 * Non-STREAMS sockets handle the urgent data a litte 13672 * differently from STREAMS based sockets. There is no 13673 * need to mark any mblks with the MSG{NOT,}MARKNEXT 13674 * flags to keep SIOCATMARK happy. Instead a 13675 * su_signal_oob upcall is made to update the mark. 13676 * Neither is a T_EXDATA_IND mblk needed to be 13677 * prepended to the urgent data. The urgent data is 13678 * delivered using the su_recv upcall, where we set 13679 * the MSG_OOB flag to indicate that it is urg data. 13680 * 13681 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 13682 * are used by non-STREAMS sockets. 13683 */ 13684 if (IPCL_IS_NONSTR(connp)) { 13685 if (!TCP_IS_DETACHED(tcp)) { 13686 (*connp->conn_upcalls->su_signal_oob) 13687 (connp->conn_upper_handle, urp); 13688 } 13689 } else { 13690 /* 13691 * If we haven't generated the signal yet for 13692 * this urgent pointer value, do it now. Also, 13693 * send up a zero-length M_DATA indicating 13694 * whether or not this is the mark. The latter 13695 * is not needed when a T_EXDATA_IND is sent up. 13696 * However, if there are allocation failures 13697 * this code relies on the sender retransmitting 13698 * and the socket code for determining the mark 13699 * should not block waiting for the peer to 13700 * transmit. Thus, for simplicity we always 13701 * send up the mark indication. 13702 */ 13703 mp1 = allocb(0, BPRI_MED); 13704 if (mp1 == NULL) { 13705 freemsg(mp); 13706 return; 13707 } 13708 if (!TCP_IS_DETACHED(tcp) && 13709 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13710 SIGURG)) { 13711 /* Try again on the rexmit. */ 13712 freemsg(mp1); 13713 freemsg(mp); 13714 return; 13715 } 13716 /* 13717 * Mark with NOTMARKNEXT for now. 13718 * The code below will change this to MARKNEXT 13719 * if we are at the mark. 13720 * 13721 * If there are allocation failures (e.g. in 13722 * dupmsg below) the next time tcp_rput_data 13723 * sees the urgent segment it will send up the 13724 * MSGMARKNEXT message. 13725 */ 13726 mp1->b_flag |= MSGNOTMARKNEXT; 13727 freemsg(tcp->tcp_urp_mark_mp); 13728 tcp->tcp_urp_mark_mp = mp1; 13729 flags |= TH_SEND_URP_MARK; 13730 #ifdef DEBUG 13731 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13732 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13733 "last %x, %s", 13734 seg_seq, urp, tcp->tcp_urp_last, 13735 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13736 #endif /* DEBUG */ 13737 } 13738 tcp->tcp_urp_last_valid = B_TRUE; 13739 tcp->tcp_urp_last = urp + seg_seq; 13740 } else if (tcp->tcp_urp_mark_mp != NULL) { 13741 /* 13742 * An allocation failure prevented the previous 13743 * tcp_rput_data from sending up the allocated 13744 * MSG*MARKNEXT message - send it up this time 13745 * around. 13746 */ 13747 flags |= TH_SEND_URP_MARK; 13748 } 13749 13750 /* 13751 * If the urgent byte is in this segment, make sure that it is 13752 * all by itself. This makes it much easier to deal with the 13753 * possibility of an allocation failure on the T_exdata_ind. 13754 * Note that seg_len is the number of bytes in the segment, and 13755 * urp is the offset into the segment of the urgent byte. 13756 * urp < seg_len means that the urgent byte is in this segment. 13757 */ 13758 if (urp < seg_len) { 13759 if (seg_len != 1) { 13760 uint32_t tmp_rnxt; 13761 /* 13762 * Break it up and feed it back in. 13763 * Re-attach the IP header. 13764 */ 13765 mp->b_rptr = iphdr; 13766 if (urp > 0) { 13767 /* 13768 * There is stuff before the urgent 13769 * byte. 13770 */ 13771 mp1 = dupmsg(mp); 13772 if (!mp1) { 13773 /* 13774 * Trim from urgent byte on. 13775 * The rest will come back. 13776 */ 13777 (void) adjmsg(mp, 13778 urp - seg_len); 13779 tcp_rput_data(connp, 13780 mp, NULL); 13781 return; 13782 } 13783 (void) adjmsg(mp1, urp - seg_len); 13784 /* Feed this piece back in. */ 13785 tmp_rnxt = tcp->tcp_rnxt; 13786 tcp_rput_data(connp, mp1, NULL); 13787 /* 13788 * If the data passed back in was not 13789 * processed (ie: bad ACK) sending 13790 * the remainder back in will cause a 13791 * loop. In this case, drop the 13792 * packet and let the sender try 13793 * sending a good packet. 13794 */ 13795 if (tmp_rnxt == tcp->tcp_rnxt) { 13796 freemsg(mp); 13797 return; 13798 } 13799 } 13800 if (urp != seg_len - 1) { 13801 uint32_t tmp_rnxt; 13802 /* 13803 * There is stuff after the urgent 13804 * byte. 13805 */ 13806 mp1 = dupmsg(mp); 13807 if (!mp1) { 13808 /* 13809 * Trim everything beyond the 13810 * urgent byte. The rest will 13811 * come back. 13812 */ 13813 (void) adjmsg(mp, 13814 urp + 1 - seg_len); 13815 tcp_rput_data(connp, 13816 mp, NULL); 13817 return; 13818 } 13819 (void) adjmsg(mp1, urp + 1 - seg_len); 13820 tmp_rnxt = tcp->tcp_rnxt; 13821 tcp_rput_data(connp, mp1, NULL); 13822 /* 13823 * If the data passed back in was not 13824 * processed (ie: bad ACK) sending 13825 * the remainder back in will cause a 13826 * loop. In this case, drop the 13827 * packet and let the sender try 13828 * sending a good packet. 13829 */ 13830 if (tmp_rnxt == tcp->tcp_rnxt) { 13831 freemsg(mp); 13832 return; 13833 } 13834 } 13835 tcp_rput_data(connp, mp, NULL); 13836 return; 13837 } 13838 /* 13839 * This segment contains only the urgent byte. We 13840 * have to allocate the T_exdata_ind, if we can. 13841 */ 13842 if (IPCL_IS_NONSTR(connp)) { 13843 int error; 13844 13845 (*connp->conn_upcalls->su_recv) 13846 (connp->conn_upper_handle, mp, seg_len, 13847 MSG_OOB, &error, NULL); 13848 /* 13849 * We should never be in middle of a 13850 * fallback, the squeue guarantees that. 13851 */ 13852 ASSERT(error != EOPNOTSUPP); 13853 mp = NULL; 13854 goto update_ack; 13855 } else if (!tcp->tcp_urp_mp) { 13856 struct T_exdata_ind *tei; 13857 mp1 = allocb(sizeof (struct T_exdata_ind), 13858 BPRI_MED); 13859 if (!mp1) { 13860 /* 13861 * Sigh... It'll be back. 13862 * Generate any MSG*MARK message now. 13863 */ 13864 freemsg(mp); 13865 seg_len = 0; 13866 if (flags & TH_SEND_URP_MARK) { 13867 13868 13869 ASSERT(tcp->tcp_urp_mark_mp); 13870 tcp->tcp_urp_mark_mp->b_flag &= 13871 ~MSGNOTMARKNEXT; 13872 tcp->tcp_urp_mark_mp->b_flag |= 13873 MSGMARKNEXT; 13874 } 13875 goto ack_check; 13876 } 13877 mp1->b_datap->db_type = M_PROTO; 13878 tei = (struct T_exdata_ind *)mp1->b_rptr; 13879 tei->PRIM_type = T_EXDATA_IND; 13880 tei->MORE_flag = 0; 13881 mp1->b_wptr = (uchar_t *)&tei[1]; 13882 tcp->tcp_urp_mp = mp1; 13883 #ifdef DEBUG 13884 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13885 "tcp_rput: allocated exdata_ind %s", 13886 tcp_display(tcp, NULL, 13887 DISP_PORT_ONLY)); 13888 #endif /* DEBUG */ 13889 /* 13890 * There is no need to send a separate MSG*MARK 13891 * message since the T_EXDATA_IND will be sent 13892 * now. 13893 */ 13894 flags &= ~TH_SEND_URP_MARK; 13895 freemsg(tcp->tcp_urp_mark_mp); 13896 tcp->tcp_urp_mark_mp = NULL; 13897 } 13898 /* 13899 * Now we are all set. On the next putnext upstream, 13900 * tcp_urp_mp will be non-NULL and will get prepended 13901 * to what has to be this piece containing the urgent 13902 * byte. If for any reason we abort this segment below, 13903 * if it comes back, we will have this ready, or it 13904 * will get blown off in close. 13905 */ 13906 } else if (urp == seg_len) { 13907 /* 13908 * The urgent byte is the next byte after this sequence 13909 * number. If this endpoint is non-STREAMS, then there 13910 * is nothing to do here since the socket has already 13911 * been notified about the urg pointer by the 13912 * su_signal_oob call above. 13913 * 13914 * In case of STREAMS, some more work might be needed. 13915 * If there is data it is marked with MSGMARKNEXT and 13916 * and any tcp_urp_mark_mp is discarded since it is not 13917 * needed. Otherwise, if the code above just allocated 13918 * a zero-length tcp_urp_mark_mp message, that message 13919 * is tagged with MSGMARKNEXT. Sending up these 13920 * MSGMARKNEXT messages makes SIOCATMARK work correctly 13921 * even though the T_EXDATA_IND will not be sent up 13922 * until the urgent byte arrives. 13923 */ 13924 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 13925 if (seg_len != 0) { 13926 flags |= TH_MARKNEXT_NEEDED; 13927 freemsg(tcp->tcp_urp_mark_mp); 13928 tcp->tcp_urp_mark_mp = NULL; 13929 flags &= ~TH_SEND_URP_MARK; 13930 } else if (tcp->tcp_urp_mark_mp != NULL) { 13931 flags |= TH_SEND_URP_MARK; 13932 tcp->tcp_urp_mark_mp->b_flag &= 13933 ~MSGNOTMARKNEXT; 13934 tcp->tcp_urp_mark_mp->b_flag |= 13935 MSGMARKNEXT; 13936 } 13937 } 13938 #ifdef DEBUG 13939 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13940 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13941 seg_len, flags, 13942 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13943 #endif /* DEBUG */ 13944 } 13945 #ifdef DEBUG 13946 else { 13947 /* Data left until we hit mark */ 13948 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13949 "tcp_rput: URP %d bytes left, %s", 13950 urp - seg_len, tcp_display(tcp, NULL, 13951 DISP_PORT_ONLY)); 13952 } 13953 #endif /* DEBUG */ 13954 } 13955 13956 process_ack: 13957 if (!(flags & TH_ACK)) { 13958 freemsg(mp); 13959 goto xmit_check; 13960 } 13961 } 13962 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13963 13964 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13965 tcp->tcp_ip_forward_progress = B_TRUE; 13966 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13967 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13968 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13969 /* 3-way handshake complete - pass up the T_CONN_IND */ 13970 tcp_t *listener = tcp->tcp_listener; 13971 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13972 13973 tcp->tcp_tconnind_started = B_TRUE; 13974 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13975 /* 13976 * We are here means eager is fine but it can 13977 * get a TH_RST at any point between now and till 13978 * accept completes and disappear. We need to 13979 * ensure that reference to eager is valid after 13980 * we get out of eager's perimeter. So we do 13981 * an extra refhold. 13982 */ 13983 CONN_INC_REF(connp); 13984 13985 /* 13986 * The listener also exists because of the refhold 13987 * done in tcp_conn_request. Its possible that it 13988 * might have closed. We will check that once we 13989 * get inside listeners context. 13990 */ 13991 CONN_INC_REF(listener->tcp_connp); 13992 if (listener->tcp_connp->conn_sqp == 13993 connp->conn_sqp) { 13994 /* 13995 * We optimize by not calling an SQUEUE_ENTER 13996 * on the listener since we know that the 13997 * listener and eager squeues are the same. 13998 * We are able to make this check safely only 13999 * because neither the eager nor the listener 14000 * can change its squeue. Only an active connect 14001 * can change its squeue 14002 */ 14003 tcp_send_conn_ind(listener->tcp_connp, mp, 14004 listener->tcp_connp->conn_sqp); 14005 CONN_DEC_REF(listener->tcp_connp); 14006 } else if (!tcp->tcp_loopback) { 14007 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14008 mp, tcp_send_conn_ind, 14009 listener->tcp_connp, SQ_FILL, 14010 SQTAG_TCP_CONN_IND); 14011 } else { 14012 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14013 mp, tcp_send_conn_ind, 14014 listener->tcp_connp, SQ_PROCESS, 14015 SQTAG_TCP_CONN_IND); 14016 } 14017 } 14018 14019 /* 14020 * We are seeing the final ack in the three way 14021 * hand shake of a active open'ed connection 14022 * so we must send up a T_CONN_CON 14023 * 14024 * tcp_sendmsg() checks tcp_state without entering 14025 * the squeue so tcp_state should be updated before 14026 * sending up connection confirmation. 14027 */ 14028 tcp->tcp_state = TCPS_ESTABLISHED; 14029 if (tcp->tcp_active_open) { 14030 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14031 freemsg(mp); 14032 tcp->tcp_state = TCPS_SYN_RCVD; 14033 return; 14034 } 14035 /* 14036 * Don't fuse the loopback endpoints for 14037 * simultaneous active opens. 14038 */ 14039 if (tcp->tcp_loopback) { 14040 TCP_STAT(tcps, tcp_fusion_unfusable); 14041 tcp->tcp_unfusable = B_TRUE; 14042 } 14043 } 14044 14045 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14046 bytes_acked--; 14047 /* SYN was acked - making progress */ 14048 if (tcp->tcp_ipversion == IPV6_VERSION) 14049 tcp->tcp_ip_forward_progress = B_TRUE; 14050 14051 /* 14052 * If SYN was retransmitted, need to reset all 14053 * retransmission info as this segment will be 14054 * treated as a dup ACK. 14055 */ 14056 if (tcp->tcp_rexmit) { 14057 tcp->tcp_rexmit = B_FALSE; 14058 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14059 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14060 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14061 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14062 tcp->tcp_ms_we_have_waited = 0; 14063 tcp->tcp_cwnd = mss; 14064 } 14065 14066 /* 14067 * We set the send window to zero here. 14068 * This is needed if there is data to be 14069 * processed already on the queue. 14070 * Later (at swnd_update label), the 14071 * "new_swnd > tcp_swnd" condition is satisfied 14072 * the XMIT_NEEDED flag is set in the current 14073 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14074 * called if there is already data on queue in 14075 * this state. 14076 */ 14077 tcp->tcp_swnd = 0; 14078 14079 if (new_swnd > tcp->tcp_max_swnd) 14080 tcp->tcp_max_swnd = new_swnd; 14081 tcp->tcp_swl1 = seg_seq; 14082 tcp->tcp_swl2 = seg_ack; 14083 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14084 14085 /* Fuse when both sides are in ESTABLISHED state */ 14086 if (tcp->tcp_loopback && do_tcp_fusion) 14087 tcp_fuse(tcp, iphdr, tcph); 14088 14089 } 14090 /* This code follows 4.4BSD-Lite2 mostly. */ 14091 if (bytes_acked < 0) 14092 goto est; 14093 14094 /* 14095 * If TCP is ECN capable and the congestion experience bit is 14096 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14097 * done once per window (or more loosely, per RTT). 14098 */ 14099 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14100 tcp->tcp_cwr = B_FALSE; 14101 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14102 if (!tcp->tcp_cwr) { 14103 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14104 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14105 tcp->tcp_cwnd = npkt * mss; 14106 /* 14107 * If the cwnd is 0, use the timer to clock out 14108 * new segments. This is required by the ECN spec. 14109 */ 14110 if (npkt == 0) { 14111 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14112 /* 14113 * This makes sure that when the ACK comes 14114 * back, we will increase tcp_cwnd by 1 MSS. 14115 */ 14116 tcp->tcp_cwnd_cnt = 0; 14117 } 14118 tcp->tcp_cwr = B_TRUE; 14119 /* 14120 * This marks the end of the current window of in 14121 * flight data. That is why we don't use 14122 * tcp_suna + tcp_swnd. Only data in flight can 14123 * provide ECN info. 14124 */ 14125 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14126 tcp->tcp_ecn_cwr_sent = B_FALSE; 14127 } 14128 } 14129 14130 mp1 = tcp->tcp_xmit_head; 14131 if (bytes_acked == 0) { 14132 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14133 int dupack_cnt; 14134 14135 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14136 /* 14137 * Fast retransmit. When we have seen exactly three 14138 * identical ACKs while we have unacked data 14139 * outstanding we take it as a hint that our peer 14140 * dropped something. 14141 * 14142 * If TCP is retransmitting, don't do fast retransmit. 14143 */ 14144 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14145 ! tcp->tcp_rexmit) { 14146 /* Do Limited Transmit */ 14147 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14148 tcps->tcps_dupack_fast_retransmit) { 14149 /* 14150 * RFC 3042 14151 * 14152 * What we need to do is temporarily 14153 * increase tcp_cwnd so that new 14154 * data can be sent if it is allowed 14155 * by the receive window (tcp_rwnd). 14156 * tcp_wput_data() will take care of 14157 * the rest. 14158 * 14159 * If the connection is SACK capable, 14160 * only do limited xmit when there 14161 * is SACK info. 14162 * 14163 * Note how tcp_cwnd is incremented. 14164 * The first dup ACK will increase 14165 * it by 1 MSS. The second dup ACK 14166 * will increase it by 2 MSS. This 14167 * means that only 1 new segment will 14168 * be sent for each dup ACK. 14169 */ 14170 if (tcp->tcp_unsent > 0 && 14171 (!tcp->tcp_snd_sack_ok || 14172 (tcp->tcp_snd_sack_ok && 14173 tcp->tcp_notsack_list != NULL))) { 14174 tcp->tcp_cwnd += mss << 14175 (tcp->tcp_dupack_cnt - 1); 14176 flags |= TH_LIMIT_XMIT; 14177 } 14178 } else if (dupack_cnt == 14179 tcps->tcps_dupack_fast_retransmit) { 14180 14181 /* 14182 * If we have reduced tcp_ssthresh 14183 * because of ECN, do not reduce it again 14184 * unless it is already one window of data 14185 * away. After one window of data, tcp_cwr 14186 * should then be cleared. Note that 14187 * for non ECN capable connection, tcp_cwr 14188 * should always be false. 14189 * 14190 * Adjust cwnd since the duplicate 14191 * ack indicates that a packet was 14192 * dropped (due to congestion.) 14193 */ 14194 if (!tcp->tcp_cwr) { 14195 npkt = ((tcp->tcp_snxt - 14196 tcp->tcp_suna) >> 1) / mss; 14197 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14198 mss; 14199 tcp->tcp_cwnd = (npkt + 14200 tcp->tcp_dupack_cnt) * mss; 14201 } 14202 if (tcp->tcp_ecn_ok) { 14203 tcp->tcp_cwr = B_TRUE; 14204 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14205 tcp->tcp_ecn_cwr_sent = B_FALSE; 14206 } 14207 14208 /* 14209 * We do Hoe's algorithm. Refer to her 14210 * paper "Improving the Start-up Behavior 14211 * of a Congestion Control Scheme for TCP," 14212 * appeared in SIGCOMM'96. 14213 * 14214 * Save highest seq no we have sent so far. 14215 * Be careful about the invisible FIN byte. 14216 */ 14217 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14218 (tcp->tcp_unsent == 0)) { 14219 tcp->tcp_rexmit_max = tcp->tcp_fss; 14220 } else { 14221 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14222 } 14223 14224 /* 14225 * Do not allow bursty traffic during. 14226 * fast recovery. Refer to Fall and Floyd's 14227 * paper "Simulation-based Comparisons of 14228 * Tahoe, Reno and SACK TCP" (in CCR?) 14229 * This is a best current practise. 14230 */ 14231 tcp->tcp_snd_burst = TCP_CWND_SS; 14232 14233 /* 14234 * For SACK: 14235 * Calculate tcp_pipe, which is the 14236 * estimated number of bytes in 14237 * network. 14238 * 14239 * tcp_fack is the highest sack'ed seq num 14240 * TCP has received. 14241 * 14242 * tcp_pipe is explained in the above quoted 14243 * Fall and Floyd's paper. tcp_fack is 14244 * explained in Mathis and Mahdavi's 14245 * "Forward Acknowledgment: Refining TCP 14246 * Congestion Control" in SIGCOMM '96. 14247 */ 14248 if (tcp->tcp_snd_sack_ok) { 14249 ASSERT(tcp->tcp_sack_info != NULL); 14250 if (tcp->tcp_notsack_list != NULL) { 14251 tcp->tcp_pipe = tcp->tcp_snxt - 14252 tcp->tcp_fack; 14253 tcp->tcp_sack_snxt = seg_ack; 14254 flags |= TH_NEED_SACK_REXMIT; 14255 } else { 14256 /* 14257 * Always initialize tcp_pipe 14258 * even though we don't have 14259 * any SACK info. If later 14260 * we get SACK info and 14261 * tcp_pipe is not initialized, 14262 * funny things will happen. 14263 */ 14264 tcp->tcp_pipe = 14265 tcp->tcp_cwnd_ssthresh; 14266 } 14267 } else { 14268 flags |= TH_REXMIT_NEEDED; 14269 } /* tcp_snd_sack_ok */ 14270 14271 } else { 14272 /* 14273 * Here we perform congestion 14274 * avoidance, but NOT slow start. 14275 * This is known as the Fast 14276 * Recovery Algorithm. 14277 */ 14278 if (tcp->tcp_snd_sack_ok && 14279 tcp->tcp_notsack_list != NULL) { 14280 flags |= TH_NEED_SACK_REXMIT; 14281 tcp->tcp_pipe -= mss; 14282 if (tcp->tcp_pipe < 0) 14283 tcp->tcp_pipe = 0; 14284 } else { 14285 /* 14286 * We know that one more packet has 14287 * left the pipe thus we can update 14288 * cwnd. 14289 */ 14290 cwnd = tcp->tcp_cwnd + mss; 14291 if (cwnd > tcp->tcp_cwnd_max) 14292 cwnd = tcp->tcp_cwnd_max; 14293 tcp->tcp_cwnd = cwnd; 14294 if (tcp->tcp_unsent > 0) 14295 flags |= TH_XMIT_NEEDED; 14296 } 14297 } 14298 } 14299 } else if (tcp->tcp_zero_win_probe) { 14300 /* 14301 * If the window has opened, need to arrange 14302 * to send additional data. 14303 */ 14304 if (new_swnd != 0) { 14305 /* tcp_suna != tcp_snxt */ 14306 /* Packet contains a window update */ 14307 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14308 tcp->tcp_zero_win_probe = 0; 14309 tcp->tcp_timer_backoff = 0; 14310 tcp->tcp_ms_we_have_waited = 0; 14311 14312 /* 14313 * Transmit starting with tcp_suna since 14314 * the one byte probe is not ack'ed. 14315 * If TCP has sent more than one identical 14316 * probe, tcp_rexmit will be set. That means 14317 * tcp_ss_rexmit() will send out the one 14318 * byte along with new data. Otherwise, 14319 * fake the retransmission. 14320 */ 14321 flags |= TH_XMIT_NEEDED; 14322 if (!tcp->tcp_rexmit) { 14323 tcp->tcp_rexmit = B_TRUE; 14324 tcp->tcp_dupack_cnt = 0; 14325 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14326 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14327 } 14328 } 14329 } 14330 goto swnd_update; 14331 } 14332 14333 /* 14334 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14335 * If the ACK value acks something that we have not yet sent, it might 14336 * be an old duplicate segment. Send an ACK to re-synchronize the 14337 * other side. 14338 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14339 * state is handled above, so we can always just drop the segment and 14340 * send an ACK here. 14341 * 14342 * In the case where the peer shrinks the window, we see the new window 14343 * update, but all the data sent previously is queued up by the peer. 14344 * To account for this, in tcp_process_shrunk_swnd(), the sequence 14345 * number, which was already sent, and within window, is recorded. 14346 * tcp_snxt is then updated. 14347 * 14348 * If the window has previously shrunk, and an ACK for data not yet 14349 * sent, according to tcp_snxt is recieved, it may still be valid. If 14350 * the ACK is for data within the window at the time the window was 14351 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 14352 * the sequence number ACK'ed. 14353 * 14354 * If the ACK covers all the data sent at the time the window was 14355 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 14356 * 14357 * Should we send ACKs in response to ACK only segments? 14358 */ 14359 14360 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14361 if ((tcp->tcp_is_wnd_shrnk) && 14362 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 14363 uint32_t data_acked_ahead_snxt; 14364 14365 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 14366 tcp_update_xmit_tail(tcp, seg_ack); 14367 tcp->tcp_unsent -= data_acked_ahead_snxt; 14368 } else { 14369 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14370 /* drop the received segment */ 14371 freemsg(mp); 14372 14373 /* 14374 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14375 * greater than 0, check if the number of such 14376 * bogus ACks is greater than that count. If yes, 14377 * don't send back any ACK. This prevents TCP from 14378 * getting into an ACK storm if somehow an attacker 14379 * successfully spoofs an acceptable segment to our 14380 * peer. 14381 */ 14382 if (tcp_drop_ack_unsent_cnt > 0 && 14383 ++tcp->tcp_in_ack_unsent > 14384 tcp_drop_ack_unsent_cnt) { 14385 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14386 return; 14387 } 14388 mp = tcp_ack_mp(tcp); 14389 if (mp != NULL) { 14390 BUMP_LOCAL(tcp->tcp_obsegs); 14391 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14392 tcp_send_data(tcp, tcp->tcp_wq, mp); 14393 } 14394 return; 14395 } 14396 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 14397 tcp->tcp_snxt_shrunk)) { 14398 tcp->tcp_is_wnd_shrnk = B_FALSE; 14399 } 14400 14401 /* 14402 * TCP gets a new ACK, update the notsack'ed list to delete those 14403 * blocks that are covered by this ACK. 14404 */ 14405 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14406 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14407 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14408 } 14409 14410 /* 14411 * If we got an ACK after fast retransmit, check to see 14412 * if it is a partial ACK. If it is not and the congestion 14413 * window was inflated to account for the other side's 14414 * cached packets, retract it. If it is, do Hoe's algorithm. 14415 */ 14416 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14417 ASSERT(tcp->tcp_rexmit == B_FALSE); 14418 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14419 tcp->tcp_dupack_cnt = 0; 14420 /* 14421 * Restore the orig tcp_cwnd_ssthresh after 14422 * fast retransmit phase. 14423 */ 14424 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14425 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14426 } 14427 tcp->tcp_rexmit_max = seg_ack; 14428 tcp->tcp_cwnd_cnt = 0; 14429 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14430 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14431 14432 /* 14433 * Remove all notsack info to avoid confusion with 14434 * the next fast retrasnmit/recovery phase. 14435 */ 14436 if (tcp->tcp_snd_sack_ok && 14437 tcp->tcp_notsack_list != NULL) { 14438 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 14439 tcp); 14440 } 14441 } else { 14442 if (tcp->tcp_snd_sack_ok && 14443 tcp->tcp_notsack_list != NULL) { 14444 flags |= TH_NEED_SACK_REXMIT; 14445 tcp->tcp_pipe -= mss; 14446 if (tcp->tcp_pipe < 0) 14447 tcp->tcp_pipe = 0; 14448 } else { 14449 /* 14450 * Hoe's algorithm: 14451 * 14452 * Retransmit the unack'ed segment and 14453 * restart fast recovery. Note that we 14454 * need to scale back tcp_cwnd to the 14455 * original value when we started fast 14456 * recovery. This is to prevent overly 14457 * aggressive behaviour in sending new 14458 * segments. 14459 */ 14460 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14461 tcps->tcps_dupack_fast_retransmit * mss; 14462 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14463 flags |= TH_REXMIT_NEEDED; 14464 } 14465 } 14466 } else { 14467 tcp->tcp_dupack_cnt = 0; 14468 if (tcp->tcp_rexmit) { 14469 /* 14470 * TCP is retranmitting. If the ACK ack's all 14471 * outstanding data, update tcp_rexmit_max and 14472 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14473 * to the correct value. 14474 * 14475 * Note that SEQ_LEQ() is used. This is to avoid 14476 * unnecessary fast retransmit caused by dup ACKs 14477 * received when TCP does slow start retransmission 14478 * after a time out. During this phase, TCP may 14479 * send out segments which are already received. 14480 * This causes dup ACKs to be sent back. 14481 */ 14482 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14483 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14484 tcp->tcp_rexmit_nxt = seg_ack; 14485 } 14486 if (seg_ack != tcp->tcp_rexmit_max) { 14487 flags |= TH_XMIT_NEEDED; 14488 } 14489 } else { 14490 tcp->tcp_rexmit = B_FALSE; 14491 tcp->tcp_xmit_zc_clean = B_FALSE; 14492 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14493 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14494 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14495 } 14496 tcp->tcp_ms_we_have_waited = 0; 14497 } 14498 } 14499 14500 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14501 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14502 tcp->tcp_suna = seg_ack; 14503 if (tcp->tcp_zero_win_probe != 0) { 14504 tcp->tcp_zero_win_probe = 0; 14505 tcp->tcp_timer_backoff = 0; 14506 } 14507 14508 /* 14509 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14510 * Note that it cannot be the SYN being ack'ed. The code flow 14511 * will not reach here. 14512 */ 14513 if (mp1 == NULL) { 14514 goto fin_acked; 14515 } 14516 14517 /* 14518 * Update the congestion window. 14519 * 14520 * If TCP is not ECN capable or TCP is ECN capable but the 14521 * congestion experience bit is not set, increase the tcp_cwnd as 14522 * usual. 14523 */ 14524 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14525 cwnd = tcp->tcp_cwnd; 14526 add = mss; 14527 14528 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14529 /* 14530 * This is to prevent an increase of less than 1 MSS of 14531 * tcp_cwnd. With partial increase, tcp_wput_data() 14532 * may send out tinygrams in order to preserve mblk 14533 * boundaries. 14534 * 14535 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14536 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14537 * increased by 1 MSS for every RTTs. 14538 */ 14539 if (tcp->tcp_cwnd_cnt <= 0) { 14540 tcp->tcp_cwnd_cnt = cwnd + add; 14541 } else { 14542 tcp->tcp_cwnd_cnt -= add; 14543 add = 0; 14544 } 14545 } 14546 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14547 } 14548 14549 /* See if the latest urgent data has been acknowledged */ 14550 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14551 SEQ_GT(seg_ack, tcp->tcp_urg)) 14552 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14553 14554 /* Can we update the RTT estimates? */ 14555 if (tcp->tcp_snd_ts_ok) { 14556 /* Ignore zero timestamp echo-reply. */ 14557 if (tcpopt.tcp_opt_ts_ecr != 0) { 14558 tcp_set_rto(tcp, (int32_t)lbolt - 14559 (int32_t)tcpopt.tcp_opt_ts_ecr); 14560 } 14561 14562 /* If needed, restart the timer. */ 14563 if (tcp->tcp_set_timer == 1) { 14564 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14565 tcp->tcp_set_timer = 0; 14566 } 14567 /* 14568 * Update tcp_csuna in case the other side stops sending 14569 * us timestamps. 14570 */ 14571 tcp->tcp_csuna = tcp->tcp_snxt; 14572 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14573 /* 14574 * An ACK sequence we haven't seen before, so get the RTT 14575 * and update the RTO. But first check if the timestamp is 14576 * valid to use. 14577 */ 14578 if ((mp1->b_next != NULL) && 14579 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14580 tcp_set_rto(tcp, (int32_t)lbolt - 14581 (int32_t)(intptr_t)mp1->b_prev); 14582 else 14583 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14584 14585 /* Remeber the last sequence to be ACKed */ 14586 tcp->tcp_csuna = seg_ack; 14587 if (tcp->tcp_set_timer == 1) { 14588 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14589 tcp->tcp_set_timer = 0; 14590 } 14591 } else { 14592 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14593 } 14594 14595 /* Eat acknowledged bytes off the xmit queue. */ 14596 for (;;) { 14597 mblk_t *mp2; 14598 uchar_t *wptr; 14599 14600 wptr = mp1->b_wptr; 14601 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14602 bytes_acked -= (int)(wptr - mp1->b_rptr); 14603 if (bytes_acked < 0) { 14604 mp1->b_rptr = wptr + bytes_acked; 14605 /* 14606 * Set a new timestamp if all the bytes timed by the 14607 * old timestamp have been ack'ed. 14608 */ 14609 if (SEQ_GT(seg_ack, 14610 (uint32_t)(uintptr_t)(mp1->b_next))) { 14611 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14612 mp1->b_next = NULL; 14613 } 14614 break; 14615 } 14616 mp1->b_next = NULL; 14617 mp1->b_prev = NULL; 14618 mp2 = mp1; 14619 mp1 = mp1->b_cont; 14620 14621 /* 14622 * This notification is required for some zero-copy 14623 * clients to maintain a copy semantic. After the data 14624 * is ack'ed, client is safe to modify or reuse the buffer. 14625 */ 14626 if (tcp->tcp_snd_zcopy_aware && 14627 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14628 tcp_zcopy_notify(tcp); 14629 freeb(mp2); 14630 if (bytes_acked == 0) { 14631 if (mp1 == NULL) { 14632 /* Everything is ack'ed, clear the tail. */ 14633 tcp->tcp_xmit_tail = NULL; 14634 /* 14635 * Cancel the timer unless we are still 14636 * waiting for an ACK for the FIN packet. 14637 */ 14638 if (tcp->tcp_timer_tid != 0 && 14639 tcp->tcp_snxt == tcp->tcp_suna) { 14640 (void) TCP_TIMER_CANCEL(tcp, 14641 tcp->tcp_timer_tid); 14642 tcp->tcp_timer_tid = 0; 14643 } 14644 goto pre_swnd_update; 14645 } 14646 if (mp2 != tcp->tcp_xmit_tail) 14647 break; 14648 tcp->tcp_xmit_tail = mp1; 14649 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14650 (uintptr_t)INT_MAX); 14651 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14652 mp1->b_rptr); 14653 break; 14654 } 14655 if (mp1 == NULL) { 14656 /* 14657 * More was acked but there is nothing more 14658 * outstanding. This means that the FIN was 14659 * just acked or that we're talking to a clown. 14660 */ 14661 fin_acked: 14662 ASSERT(tcp->tcp_fin_sent); 14663 tcp->tcp_xmit_tail = NULL; 14664 if (tcp->tcp_fin_sent) { 14665 /* FIN was acked - making progress */ 14666 if (tcp->tcp_ipversion == IPV6_VERSION && 14667 !tcp->tcp_fin_acked) 14668 tcp->tcp_ip_forward_progress = B_TRUE; 14669 tcp->tcp_fin_acked = B_TRUE; 14670 if (tcp->tcp_linger_tid != 0 && 14671 TCP_TIMER_CANCEL(tcp, 14672 tcp->tcp_linger_tid) >= 0) { 14673 tcp_stop_lingering(tcp); 14674 freemsg(mp); 14675 mp = NULL; 14676 } 14677 } else { 14678 /* 14679 * We should never get here because 14680 * we have already checked that the 14681 * number of bytes ack'ed should be 14682 * smaller than or equal to what we 14683 * have sent so far (it is the 14684 * acceptability check of the ACK). 14685 * We can only get here if the send 14686 * queue is corrupted. 14687 * 14688 * Terminate the connection and 14689 * panic the system. It is better 14690 * for us to panic instead of 14691 * continuing to avoid other disaster. 14692 */ 14693 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14694 tcp->tcp_rnxt, TH_RST|TH_ACK); 14695 panic("Memory corruption " 14696 "detected for connection %s.", 14697 tcp_display(tcp, NULL, 14698 DISP_ADDR_AND_PORT)); 14699 /*NOTREACHED*/ 14700 } 14701 goto pre_swnd_update; 14702 } 14703 ASSERT(mp2 != tcp->tcp_xmit_tail); 14704 } 14705 if (tcp->tcp_unsent) { 14706 flags |= TH_XMIT_NEEDED; 14707 } 14708 pre_swnd_update: 14709 tcp->tcp_xmit_head = mp1; 14710 swnd_update: 14711 /* 14712 * The following check is different from most other implementations. 14713 * For bi-directional transfer, when segments are dropped, the 14714 * "normal" check will not accept a window update in those 14715 * retransmitted segemnts. Failing to do that, TCP may send out 14716 * segments which are outside receiver's window. As TCP accepts 14717 * the ack in those retransmitted segments, if the window update in 14718 * the same segment is not accepted, TCP will incorrectly calculates 14719 * that it can send more segments. This can create a deadlock 14720 * with the receiver if its window becomes zero. 14721 */ 14722 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14723 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14724 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14725 /* 14726 * The criteria for update is: 14727 * 14728 * 1. the segment acknowledges some data. Or 14729 * 2. the segment is new, i.e. it has a higher seq num. Or 14730 * 3. the segment is not old and the advertised window is 14731 * larger than the previous advertised window. 14732 */ 14733 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14734 flags |= TH_XMIT_NEEDED; 14735 tcp->tcp_swnd = new_swnd; 14736 if (new_swnd > tcp->tcp_max_swnd) 14737 tcp->tcp_max_swnd = new_swnd; 14738 tcp->tcp_swl1 = seg_seq; 14739 tcp->tcp_swl2 = seg_ack; 14740 } 14741 est: 14742 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14743 14744 switch (tcp->tcp_state) { 14745 case TCPS_FIN_WAIT_1: 14746 if (tcp->tcp_fin_acked) { 14747 tcp->tcp_state = TCPS_FIN_WAIT_2; 14748 /* 14749 * We implement the non-standard BSD/SunOS 14750 * FIN_WAIT_2 flushing algorithm. 14751 * If there is no user attached to this 14752 * TCP endpoint, then this TCP struct 14753 * could hang around forever in FIN_WAIT_2 14754 * state if the peer forgets to send us 14755 * a FIN. To prevent this, we wait only 14756 * 2*MSL (a convenient time value) for 14757 * the FIN to arrive. If it doesn't show up, 14758 * we flush the TCP endpoint. This algorithm, 14759 * though a violation of RFC-793, has worked 14760 * for over 10 years in BSD systems. 14761 * Note: SunOS 4.x waits 675 seconds before 14762 * flushing the FIN_WAIT_2 connection. 14763 */ 14764 TCP_TIMER_RESTART(tcp, 14765 tcps->tcps_fin_wait_2_flush_interval); 14766 } 14767 break; 14768 case TCPS_FIN_WAIT_2: 14769 break; /* Shutdown hook? */ 14770 case TCPS_LAST_ACK: 14771 freemsg(mp); 14772 if (tcp->tcp_fin_acked) { 14773 (void) tcp_clean_death(tcp, 0, 19); 14774 return; 14775 } 14776 goto xmit_check; 14777 case TCPS_CLOSING: 14778 if (tcp->tcp_fin_acked) { 14779 tcp->tcp_state = TCPS_TIME_WAIT; 14780 /* 14781 * Unconditionally clear the exclusive binding 14782 * bit so this TIME-WAIT connection won't 14783 * interfere with new ones. 14784 */ 14785 tcp->tcp_exclbind = 0; 14786 if (!TCP_IS_DETACHED(tcp)) { 14787 TCP_TIMER_RESTART(tcp, 14788 tcps->tcps_time_wait_interval); 14789 } else { 14790 tcp_time_wait_append(tcp); 14791 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14792 } 14793 } 14794 /*FALLTHRU*/ 14795 case TCPS_CLOSE_WAIT: 14796 freemsg(mp); 14797 goto xmit_check; 14798 default: 14799 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14800 break; 14801 } 14802 } 14803 if (flags & TH_FIN) { 14804 /* Make sure we ack the fin */ 14805 flags |= TH_ACK_NEEDED; 14806 if (!tcp->tcp_fin_rcvd) { 14807 tcp->tcp_fin_rcvd = B_TRUE; 14808 tcp->tcp_rnxt++; 14809 tcph = tcp->tcp_tcph; 14810 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14811 14812 /* 14813 * Generate the ordrel_ind at the end unless we 14814 * are an eager guy. 14815 * In the eager case tcp_rsrv will do this when run 14816 * after tcp_accept is done. 14817 */ 14818 if (tcp->tcp_listener == NULL && 14819 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14820 flags |= TH_ORDREL_NEEDED; 14821 switch (tcp->tcp_state) { 14822 case TCPS_SYN_RCVD: 14823 case TCPS_ESTABLISHED: 14824 tcp->tcp_state = TCPS_CLOSE_WAIT; 14825 /* Keepalive? */ 14826 break; 14827 case TCPS_FIN_WAIT_1: 14828 if (!tcp->tcp_fin_acked) { 14829 tcp->tcp_state = TCPS_CLOSING; 14830 break; 14831 } 14832 /* FALLTHRU */ 14833 case TCPS_FIN_WAIT_2: 14834 tcp->tcp_state = TCPS_TIME_WAIT; 14835 /* 14836 * Unconditionally clear the exclusive binding 14837 * bit so this TIME-WAIT connection won't 14838 * interfere with new ones. 14839 */ 14840 tcp->tcp_exclbind = 0; 14841 if (!TCP_IS_DETACHED(tcp)) { 14842 TCP_TIMER_RESTART(tcp, 14843 tcps->tcps_time_wait_interval); 14844 } else { 14845 tcp_time_wait_append(tcp); 14846 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14847 } 14848 if (seg_len) { 14849 /* 14850 * implies data piggybacked on FIN. 14851 * break to handle data. 14852 */ 14853 break; 14854 } 14855 freemsg(mp); 14856 goto ack_check; 14857 } 14858 } 14859 } 14860 if (mp == NULL) 14861 goto xmit_check; 14862 if (seg_len == 0) { 14863 freemsg(mp); 14864 goto xmit_check; 14865 } 14866 if (mp->b_rptr == mp->b_wptr) { 14867 /* 14868 * The header has been consumed, so we remove the 14869 * zero-length mblk here. 14870 */ 14871 mp1 = mp; 14872 mp = mp->b_cont; 14873 freeb(mp1); 14874 } 14875 update_ack: 14876 tcph = tcp->tcp_tcph; 14877 tcp->tcp_rack_cnt++; 14878 { 14879 uint32_t cur_max; 14880 14881 cur_max = tcp->tcp_rack_cur_max; 14882 if (tcp->tcp_rack_cnt >= cur_max) { 14883 /* 14884 * We have more unacked data than we should - send 14885 * an ACK now. 14886 */ 14887 flags |= TH_ACK_NEEDED; 14888 cur_max++; 14889 if (cur_max > tcp->tcp_rack_abs_max) 14890 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14891 else 14892 tcp->tcp_rack_cur_max = cur_max; 14893 } else if (TCP_IS_DETACHED(tcp)) { 14894 /* We don't have an ACK timer for detached TCP. */ 14895 flags |= TH_ACK_NEEDED; 14896 } else if (seg_len < mss) { 14897 /* 14898 * If we get a segment that is less than an mss, and we 14899 * already have unacknowledged data, and the amount 14900 * unacknowledged is not a multiple of mss, then we 14901 * better generate an ACK now. Otherwise, this may be 14902 * the tail piece of a transaction, and we would rather 14903 * wait for the response. 14904 */ 14905 uint32_t udif; 14906 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14907 (uintptr_t)INT_MAX); 14908 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14909 if (udif && (udif % mss)) 14910 flags |= TH_ACK_NEEDED; 14911 else 14912 flags |= TH_ACK_TIMER_NEEDED; 14913 } else { 14914 /* Start delayed ack timer */ 14915 flags |= TH_ACK_TIMER_NEEDED; 14916 } 14917 } 14918 tcp->tcp_rnxt += seg_len; 14919 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14920 14921 if (mp == NULL) 14922 goto xmit_check; 14923 14924 /* Update SACK list */ 14925 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14926 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14927 &(tcp->tcp_num_sack_blk)); 14928 } 14929 14930 if (tcp->tcp_urp_mp) { 14931 tcp->tcp_urp_mp->b_cont = mp; 14932 mp = tcp->tcp_urp_mp; 14933 tcp->tcp_urp_mp = NULL; 14934 /* Ready for a new signal. */ 14935 tcp->tcp_urp_last_valid = B_FALSE; 14936 #ifdef DEBUG 14937 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14938 "tcp_rput: sending exdata_ind %s", 14939 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14940 #endif /* DEBUG */ 14941 } 14942 14943 /* 14944 * Check for ancillary data changes compared to last segment. 14945 */ 14946 if (tcp->tcp_ipv6_recvancillary != 0) { 14947 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14948 ASSERT(mp != NULL); 14949 } 14950 14951 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14952 /* 14953 * Side queue inbound data until the accept happens. 14954 * tcp_accept/tcp_rput drains this when the accept happens. 14955 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14956 * T_EXDATA_IND) it is queued on b_next. 14957 * XXX Make urgent data use this. Requires: 14958 * Removing tcp_listener check for TH_URG 14959 * Making M_PCPROTO and MARK messages skip the eager case 14960 */ 14961 14962 if (tcp->tcp_kssl_pending) { 14963 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14964 mblk_t *, mp); 14965 tcp_kssl_input(tcp, mp); 14966 } else { 14967 tcp_rcv_enqueue(tcp, mp, seg_len); 14968 } 14969 } else if (IPCL_IS_NONSTR(connp)) { 14970 /* 14971 * Non-STREAMS socket 14972 * 14973 * Note that no KSSL processing is done here, because 14974 * KSSL is not supported for non-STREAMS sockets. 14975 */ 14976 boolean_t push = flags & (TH_PUSH|TH_FIN); 14977 int error; 14978 14979 if ((*connp->conn_upcalls->su_recv)( 14980 connp->conn_upper_handle, 14981 mp, seg_len, 0, &error, &push) <= 0) { 14982 /* 14983 * We should never be in middle of a 14984 * fallback, the squeue guarantees that. 14985 */ 14986 ASSERT(error != EOPNOTSUPP); 14987 if (error == ENOSPC) 14988 tcp->tcp_rwnd -= seg_len; 14989 } else if (push) { 14990 /* PUSH bit set and sockfs is not flow controlled */ 14991 flags |= tcp_rwnd_reopen(tcp); 14992 } 14993 } else { 14994 /* STREAMS socket */ 14995 if (mp->b_datap->db_type != M_DATA || 14996 (flags & TH_MARKNEXT_NEEDED)) { 14997 if (tcp->tcp_rcv_list != NULL) { 14998 flags |= tcp_rcv_drain(tcp); 14999 } 15000 ASSERT(tcp->tcp_rcv_list == NULL || 15001 tcp->tcp_fused_sigurg); 15002 15003 if (flags & TH_MARKNEXT_NEEDED) { 15004 #ifdef DEBUG 15005 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15006 "tcp_rput: sending MSGMARKNEXT %s", 15007 tcp_display(tcp, NULL, 15008 DISP_PORT_ONLY)); 15009 #endif /* DEBUG */ 15010 mp->b_flag |= MSGMARKNEXT; 15011 flags &= ~TH_MARKNEXT_NEEDED; 15012 } 15013 15014 /* Does this need SSL processing first? */ 15015 if ((tcp->tcp_kssl_ctx != NULL) && 15016 (DB_TYPE(mp) == M_DATA)) { 15017 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15018 mblk_t *, mp); 15019 tcp_kssl_input(tcp, mp); 15020 } else { 15021 putnext(tcp->tcp_rq, mp); 15022 if (!canputnext(tcp->tcp_rq)) 15023 tcp->tcp_rwnd -= seg_len; 15024 } 15025 } else if ((tcp->tcp_kssl_ctx != NULL) && 15026 (DB_TYPE(mp) == M_DATA)) { 15027 /* Does this need SSL processing first? */ 15028 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15029 tcp_kssl_input(tcp, mp); 15030 } else if ((flags & (TH_PUSH|TH_FIN)) || 15031 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15032 if (tcp->tcp_rcv_list != NULL) { 15033 /* 15034 * Enqueue the new segment first and then 15035 * call tcp_rcv_drain() to send all data 15036 * up. The other way to do this is to 15037 * send all queued data up and then call 15038 * putnext() to send the new segment up. 15039 * This way can remove the else part later 15040 * on. 15041 * 15042 * We don't do this to avoid one more call to 15043 * canputnext() as tcp_rcv_drain() needs to 15044 * call canputnext(). 15045 */ 15046 tcp_rcv_enqueue(tcp, mp, seg_len); 15047 flags |= tcp_rcv_drain(tcp); 15048 } else { 15049 putnext(tcp->tcp_rq, mp); 15050 if (!canputnext(tcp->tcp_rq)) 15051 tcp->tcp_rwnd -= seg_len; 15052 } 15053 } else { 15054 /* 15055 * Enqueue all packets when processing an mblk 15056 * from the co queue and also enqueue normal packets. 15057 */ 15058 tcp_rcv_enqueue(tcp, mp, seg_len); 15059 } 15060 /* 15061 * Make sure the timer is running if we have data waiting 15062 * for a push bit. This provides resiliency against 15063 * implementations that do not correctly generate push bits. 15064 */ 15065 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15066 /* 15067 * The connection may be closed at this point, so don't 15068 * do anything for a detached tcp. 15069 */ 15070 if (!TCP_IS_DETACHED(tcp)) 15071 tcp->tcp_push_tid = TCP_TIMER(tcp, 15072 tcp_push_timer, 15073 MSEC_TO_TICK( 15074 tcps->tcps_push_timer_interval)); 15075 } 15076 } 15077 15078 xmit_check: 15079 /* Is there anything left to do? */ 15080 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15081 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15082 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15083 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15084 goto done; 15085 15086 /* Any transmit work to do and a non-zero window? */ 15087 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15088 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15089 if (flags & TH_REXMIT_NEEDED) { 15090 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15091 15092 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15093 if (snd_size > mss) 15094 snd_size = mss; 15095 if (snd_size > tcp->tcp_swnd) 15096 snd_size = tcp->tcp_swnd; 15097 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15098 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15099 B_TRUE); 15100 15101 if (mp1 != NULL) { 15102 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15103 tcp->tcp_csuna = tcp->tcp_snxt; 15104 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15105 UPDATE_MIB(&tcps->tcps_mib, 15106 tcpRetransBytes, snd_size); 15107 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15108 } 15109 } 15110 if (flags & TH_NEED_SACK_REXMIT) { 15111 tcp_sack_rxmit(tcp, &flags); 15112 } 15113 /* 15114 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15115 * out new segment. Note that tcp_rexmit should not be 15116 * set, otherwise TH_LIMIT_XMIT should not be set. 15117 */ 15118 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15119 if (!tcp->tcp_rexmit) { 15120 tcp_wput_data(tcp, NULL, B_FALSE); 15121 } else { 15122 tcp_ss_rexmit(tcp); 15123 } 15124 } 15125 /* 15126 * Adjust tcp_cwnd back to normal value after sending 15127 * new data segments. 15128 */ 15129 if (flags & TH_LIMIT_XMIT) { 15130 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15131 /* 15132 * This will restart the timer. Restarting the 15133 * timer is used to avoid a timeout before the 15134 * limited transmitted segment's ACK gets back. 15135 */ 15136 if (tcp->tcp_xmit_head != NULL) 15137 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15138 } 15139 15140 /* Anything more to do? */ 15141 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15142 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15143 goto done; 15144 } 15145 ack_check: 15146 if (flags & TH_SEND_URP_MARK) { 15147 ASSERT(tcp->tcp_urp_mark_mp); 15148 ASSERT(!IPCL_IS_NONSTR(connp)); 15149 /* 15150 * Send up any queued data and then send the mark message 15151 */ 15152 if (tcp->tcp_rcv_list != NULL) { 15153 flags |= tcp_rcv_drain(tcp); 15154 15155 } 15156 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15157 mp1 = tcp->tcp_urp_mark_mp; 15158 tcp->tcp_urp_mark_mp = NULL; 15159 putnext(tcp->tcp_rq, mp1); 15160 #ifdef DEBUG 15161 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15162 "tcp_rput: sending zero-length %s %s", 15163 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15164 "MSGNOTMARKNEXT"), 15165 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15166 #endif /* DEBUG */ 15167 flags &= ~TH_SEND_URP_MARK; 15168 } 15169 if (flags & TH_ACK_NEEDED) { 15170 /* 15171 * Time to send an ack for some reason. 15172 */ 15173 mp1 = tcp_ack_mp(tcp); 15174 15175 if (mp1 != NULL) { 15176 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15177 BUMP_LOCAL(tcp->tcp_obsegs); 15178 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15179 } 15180 if (tcp->tcp_ack_tid != 0) { 15181 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15182 tcp->tcp_ack_tid = 0; 15183 } 15184 } 15185 if (flags & TH_ACK_TIMER_NEEDED) { 15186 /* 15187 * Arrange for deferred ACK or push wait timeout. 15188 * Start timer if it is not already running. 15189 */ 15190 if (tcp->tcp_ack_tid == 0) { 15191 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15192 MSEC_TO_TICK(tcp->tcp_localnet ? 15193 (clock_t)tcps->tcps_local_dack_interval : 15194 (clock_t)tcps->tcps_deferred_ack_interval)); 15195 } 15196 } 15197 if (flags & TH_ORDREL_NEEDED) { 15198 /* 15199 * Send up the ordrel_ind unless we are an eager guy. 15200 * In the eager case tcp_rsrv will do this when run 15201 * after tcp_accept is done. 15202 */ 15203 ASSERT(tcp->tcp_listener == NULL); 15204 15205 if (IPCL_IS_NONSTR(connp)) { 15206 ASSERT(tcp->tcp_ordrel_mp == NULL); 15207 tcp->tcp_ordrel_done = B_TRUE; 15208 (*connp->conn_upcalls->su_opctl) 15209 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15210 goto done; 15211 } 15212 15213 if (tcp->tcp_rcv_list != NULL) { 15214 /* 15215 * Push any mblk(s) enqueued from co processing. 15216 */ 15217 flags |= tcp_rcv_drain(tcp); 15218 } 15219 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15220 15221 mp1 = tcp->tcp_ordrel_mp; 15222 tcp->tcp_ordrel_mp = NULL; 15223 tcp->tcp_ordrel_done = B_TRUE; 15224 putnext(tcp->tcp_rq, mp1); 15225 } 15226 done: 15227 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15228 } 15229 15230 /* 15231 * This routine adjusts next-to-send sequence number variables, in the 15232 * case where the reciever has shrunk it's window. 15233 */ 15234 static void 15235 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 15236 { 15237 mblk_t *xmit_tail; 15238 int32_t offset; 15239 15240 tcp->tcp_snxt = snxt; 15241 15242 /* Get the mblk, and the offset in it, as per the shrunk window */ 15243 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 15244 ASSERT(xmit_tail != NULL); 15245 tcp->tcp_xmit_tail = xmit_tail; 15246 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 15247 xmit_tail->b_rptr - offset; 15248 } 15249 15250 /* 15251 * This function does PAWS protection check. Returns B_TRUE if the 15252 * segment passes the PAWS test, else returns B_FALSE. 15253 */ 15254 boolean_t 15255 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15256 { 15257 uint8_t flags; 15258 int options; 15259 uint8_t *up; 15260 15261 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15262 /* 15263 * If timestamp option is aligned nicely, get values inline, 15264 * otherwise call general routine to parse. Only do that 15265 * if timestamp is the only option. 15266 */ 15267 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15268 TCPOPT_REAL_TS_LEN && 15269 OK_32PTR((up = ((uint8_t *)tcph) + 15270 TCP_MIN_HEADER_LENGTH)) && 15271 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15272 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15273 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15274 15275 options = TCP_OPT_TSTAMP_PRESENT; 15276 } else { 15277 if (tcp->tcp_snd_sack_ok) { 15278 tcpoptp->tcp = tcp; 15279 } else { 15280 tcpoptp->tcp = NULL; 15281 } 15282 options = tcp_parse_options(tcph, tcpoptp); 15283 } 15284 15285 if (options & TCP_OPT_TSTAMP_PRESENT) { 15286 /* 15287 * Do PAWS per RFC 1323 section 4.2. Accept RST 15288 * regardless of the timestamp, page 18 RFC 1323.bis. 15289 */ 15290 if ((flags & TH_RST) == 0 && 15291 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15292 tcp->tcp_ts_recent)) { 15293 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15294 PAWS_TIMEOUT)) { 15295 /* This segment is not acceptable. */ 15296 return (B_FALSE); 15297 } else { 15298 /* 15299 * Connection has been idle for 15300 * too long. Reset the timestamp 15301 * and assume the segment is valid. 15302 */ 15303 tcp->tcp_ts_recent = 15304 tcpoptp->tcp_opt_ts_val; 15305 } 15306 } 15307 } else { 15308 /* 15309 * If we don't get a timestamp on every packet, we 15310 * figure we can't really trust 'em, so we stop sending 15311 * and parsing them. 15312 */ 15313 tcp->tcp_snd_ts_ok = B_FALSE; 15314 15315 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15316 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15317 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15318 /* 15319 * Adjust the tcp_mss accordingly. We also need to 15320 * adjust tcp_cwnd here in accordance with the new mss. 15321 * But we avoid doing a slow start here so as to not 15322 * to lose on the transfer rate built up so far. 15323 */ 15324 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15325 if (tcp->tcp_snd_sack_ok) { 15326 ASSERT(tcp->tcp_sack_info != NULL); 15327 tcp->tcp_max_sack_blk = 4; 15328 } 15329 } 15330 return (B_TRUE); 15331 } 15332 15333 /* 15334 * Attach ancillary data to a received TCP segments for the 15335 * ancillary pieces requested by the application that are 15336 * different than they were in the previous data segment. 15337 * 15338 * Save the "current" values once memory allocation is ok so that 15339 * when memory allocation fails we can just wait for the next data segment. 15340 */ 15341 static mblk_t * 15342 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15343 { 15344 struct T_optdata_ind *todi; 15345 int optlen; 15346 uchar_t *optptr; 15347 struct T_opthdr *toh; 15348 uint_t addflag; /* Which pieces to add */ 15349 mblk_t *mp1; 15350 15351 optlen = 0; 15352 addflag = 0; 15353 /* If app asked for pktinfo and the index has changed ... */ 15354 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15355 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15356 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15357 optlen += sizeof (struct T_opthdr) + 15358 sizeof (struct in6_pktinfo); 15359 addflag |= TCP_IPV6_RECVPKTINFO; 15360 } 15361 /* If app asked for hoplimit and it has changed ... */ 15362 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15363 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15364 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15365 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15366 addflag |= TCP_IPV6_RECVHOPLIMIT; 15367 } 15368 /* If app asked for tclass and it has changed ... */ 15369 if ((ipp->ipp_fields & IPPF_TCLASS) && 15370 ipp->ipp_tclass != tcp->tcp_recvtclass && 15371 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15372 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15373 addflag |= TCP_IPV6_RECVTCLASS; 15374 } 15375 /* 15376 * If app asked for hopbyhop headers and it has changed ... 15377 * For security labels, note that (1) security labels can't change on 15378 * a connected socket at all, (2) we're connected to at most one peer, 15379 * (3) if anything changes, then it must be some other extra option. 15380 */ 15381 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15382 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15383 (ipp->ipp_fields & IPPF_HOPOPTS), 15384 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15385 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15386 tcp->tcp_label_len; 15387 addflag |= TCP_IPV6_RECVHOPOPTS; 15388 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15389 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15390 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15391 return (mp); 15392 } 15393 /* If app asked for dst headers before routing headers ... */ 15394 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15395 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15396 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15397 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15398 optlen += sizeof (struct T_opthdr) + 15399 ipp->ipp_rtdstoptslen; 15400 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15401 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15402 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15403 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15404 return (mp); 15405 } 15406 /* If app asked for routing headers and it has changed ... */ 15407 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15408 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15409 (ipp->ipp_fields & IPPF_RTHDR), 15410 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15411 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15412 addflag |= TCP_IPV6_RECVRTHDR; 15413 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15414 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15415 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15416 return (mp); 15417 } 15418 /* If app asked for dest headers and it has changed ... */ 15419 if ((tcp->tcp_ipv6_recvancillary & 15420 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15421 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15422 (ipp->ipp_fields & IPPF_DSTOPTS), 15423 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15424 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15425 addflag |= TCP_IPV6_RECVDSTOPTS; 15426 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15427 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15428 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15429 return (mp); 15430 } 15431 15432 if (optlen == 0) { 15433 /* Nothing to add */ 15434 return (mp); 15435 } 15436 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15437 if (mp1 == NULL) { 15438 /* 15439 * Defer sending ancillary data until the next TCP segment 15440 * arrives. 15441 */ 15442 return (mp); 15443 } 15444 mp1->b_cont = mp; 15445 mp = mp1; 15446 mp->b_wptr += sizeof (*todi) + optlen; 15447 mp->b_datap->db_type = M_PROTO; 15448 todi = (struct T_optdata_ind *)mp->b_rptr; 15449 todi->PRIM_type = T_OPTDATA_IND; 15450 todi->DATA_flag = 1; /* MORE data */ 15451 todi->OPT_length = optlen; 15452 todi->OPT_offset = sizeof (*todi); 15453 optptr = (uchar_t *)&todi[1]; 15454 /* 15455 * If app asked for pktinfo and the index has changed ... 15456 * Note that the local address never changes for the connection. 15457 */ 15458 if (addflag & TCP_IPV6_RECVPKTINFO) { 15459 struct in6_pktinfo *pkti; 15460 15461 toh = (struct T_opthdr *)optptr; 15462 toh->level = IPPROTO_IPV6; 15463 toh->name = IPV6_PKTINFO; 15464 toh->len = sizeof (*toh) + sizeof (*pkti); 15465 toh->status = 0; 15466 optptr += sizeof (*toh); 15467 pkti = (struct in6_pktinfo *)optptr; 15468 if (tcp->tcp_ipversion == IPV6_VERSION) 15469 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15470 else 15471 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15472 &pkti->ipi6_addr); 15473 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15474 optptr += sizeof (*pkti); 15475 ASSERT(OK_32PTR(optptr)); 15476 /* Save as "last" value */ 15477 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15478 } 15479 /* If app asked for hoplimit and it has changed ... */ 15480 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15481 toh = (struct T_opthdr *)optptr; 15482 toh->level = IPPROTO_IPV6; 15483 toh->name = IPV6_HOPLIMIT; 15484 toh->len = sizeof (*toh) + sizeof (uint_t); 15485 toh->status = 0; 15486 optptr += sizeof (*toh); 15487 *(uint_t *)optptr = ipp->ipp_hoplimit; 15488 optptr += sizeof (uint_t); 15489 ASSERT(OK_32PTR(optptr)); 15490 /* Save as "last" value */ 15491 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15492 } 15493 /* If app asked for tclass and it has changed ... */ 15494 if (addflag & TCP_IPV6_RECVTCLASS) { 15495 toh = (struct T_opthdr *)optptr; 15496 toh->level = IPPROTO_IPV6; 15497 toh->name = IPV6_TCLASS; 15498 toh->len = sizeof (*toh) + sizeof (uint_t); 15499 toh->status = 0; 15500 optptr += sizeof (*toh); 15501 *(uint_t *)optptr = ipp->ipp_tclass; 15502 optptr += sizeof (uint_t); 15503 ASSERT(OK_32PTR(optptr)); 15504 /* Save as "last" value */ 15505 tcp->tcp_recvtclass = ipp->ipp_tclass; 15506 } 15507 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15508 toh = (struct T_opthdr *)optptr; 15509 toh->level = IPPROTO_IPV6; 15510 toh->name = IPV6_HOPOPTS; 15511 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15512 tcp->tcp_label_len; 15513 toh->status = 0; 15514 optptr += sizeof (*toh); 15515 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15516 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15517 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15518 ASSERT(OK_32PTR(optptr)); 15519 /* Save as last value */ 15520 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15521 (ipp->ipp_fields & IPPF_HOPOPTS), 15522 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15523 } 15524 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15525 toh = (struct T_opthdr *)optptr; 15526 toh->level = IPPROTO_IPV6; 15527 toh->name = IPV6_RTHDRDSTOPTS; 15528 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15529 toh->status = 0; 15530 optptr += sizeof (*toh); 15531 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15532 optptr += ipp->ipp_rtdstoptslen; 15533 ASSERT(OK_32PTR(optptr)); 15534 /* Save as last value */ 15535 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15536 &tcp->tcp_rtdstoptslen, 15537 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15538 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15539 } 15540 if (addflag & TCP_IPV6_RECVRTHDR) { 15541 toh = (struct T_opthdr *)optptr; 15542 toh->level = IPPROTO_IPV6; 15543 toh->name = IPV6_RTHDR; 15544 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15545 toh->status = 0; 15546 optptr += sizeof (*toh); 15547 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15548 optptr += ipp->ipp_rthdrlen; 15549 ASSERT(OK_32PTR(optptr)); 15550 /* Save as last value */ 15551 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15552 (ipp->ipp_fields & IPPF_RTHDR), 15553 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15554 } 15555 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15556 toh = (struct T_opthdr *)optptr; 15557 toh->level = IPPROTO_IPV6; 15558 toh->name = IPV6_DSTOPTS; 15559 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15560 toh->status = 0; 15561 optptr += sizeof (*toh); 15562 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15563 optptr += ipp->ipp_dstoptslen; 15564 ASSERT(OK_32PTR(optptr)); 15565 /* Save as last value */ 15566 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15567 (ipp->ipp_fields & IPPF_DSTOPTS), 15568 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15569 } 15570 ASSERT(optptr == mp->b_wptr); 15571 return (mp); 15572 } 15573 15574 /* 15575 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15576 * messages. 15577 */ 15578 void 15579 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15580 { 15581 uchar_t *rptr = mp->b_rptr; 15582 queue_t *q = tcp->tcp_rq; 15583 struct T_error_ack *tea; 15584 15585 switch (mp->b_datap->db_type) { 15586 case M_PROTO: 15587 case M_PCPROTO: 15588 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15589 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15590 break; 15591 tea = (struct T_error_ack *)rptr; 15592 ASSERT(tea->PRIM_type != T_BIND_ACK); 15593 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15594 tea->ERROR_prim != T_BIND_REQ); 15595 switch (tea->PRIM_type) { 15596 case T_ERROR_ACK: 15597 if (tcp->tcp_debug) { 15598 (void) strlog(TCP_MOD_ID, 0, 1, 15599 SL_TRACE|SL_ERROR, 15600 "tcp_rput_other: case T_ERROR_ACK, " 15601 "ERROR_prim == %d", 15602 tea->ERROR_prim); 15603 } 15604 switch (tea->ERROR_prim) { 15605 case T_SVR4_OPTMGMT_REQ: 15606 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15607 /* T_OPTMGMT_REQ generated by TCP */ 15608 printf("T_SVR4_OPTMGMT_REQ failed " 15609 "%d/%d - dropped (cnt %d)\n", 15610 tea->TLI_error, tea->UNIX_error, 15611 tcp->tcp_drop_opt_ack_cnt); 15612 freemsg(mp); 15613 tcp->tcp_drop_opt_ack_cnt--; 15614 return; 15615 } 15616 break; 15617 } 15618 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15619 tcp->tcp_drop_opt_ack_cnt > 0) { 15620 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15621 "- dropped (cnt %d)\n", 15622 tea->TLI_error, tea->UNIX_error, 15623 tcp->tcp_drop_opt_ack_cnt); 15624 freemsg(mp); 15625 tcp->tcp_drop_opt_ack_cnt--; 15626 return; 15627 } 15628 break; 15629 case T_OPTMGMT_ACK: 15630 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15631 /* T_OPTMGMT_REQ generated by TCP */ 15632 freemsg(mp); 15633 tcp->tcp_drop_opt_ack_cnt--; 15634 return; 15635 } 15636 break; 15637 default: 15638 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15639 break; 15640 } 15641 break; 15642 case M_FLUSH: 15643 if (*rptr & FLUSHR) 15644 flushq(q, FLUSHDATA); 15645 break; 15646 default: 15647 /* M_CTL will be directly sent to tcp_icmp_error() */ 15648 ASSERT(DB_TYPE(mp) != M_CTL); 15649 break; 15650 } 15651 /* 15652 * Make sure we set this bit before sending the ACK for 15653 * bind. Otherwise accept could possibly run and free 15654 * this tcp struct. 15655 */ 15656 ASSERT(q != NULL); 15657 putnext(q, mp); 15658 } 15659 15660 /* ARGSUSED */ 15661 static void 15662 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15663 { 15664 conn_t *connp = (conn_t *)arg; 15665 tcp_t *tcp = connp->conn_tcp; 15666 queue_t *q = tcp->tcp_rq; 15667 tcp_stack_t *tcps = tcp->tcp_tcps; 15668 15669 ASSERT(!IPCL_IS_NONSTR(connp)); 15670 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15671 tcp->tcp_rsrv_mp = mp; 15672 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15673 15674 TCP_STAT(tcps, tcp_rsrv_calls); 15675 15676 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15677 return; 15678 } 15679 15680 if (tcp->tcp_fused) { 15681 tcp_fuse_backenable(tcp); 15682 return; 15683 } 15684 15685 if (canputnext(q)) { 15686 /* Not flow-controlled, open rwnd */ 15687 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 15688 15689 /* 15690 * Send back a window update immediately if TCP is above 15691 * ESTABLISHED state and the increase of the rcv window 15692 * that the other side knows is at least 1 MSS after flow 15693 * control is lifted. 15694 */ 15695 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15696 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 15697 tcp_xmit_ctl(NULL, tcp, 15698 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15699 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15700 } 15701 } 15702 } 15703 15704 /* 15705 * The read side service routine is called mostly when we get back-enabled as a 15706 * result of flow control relief. Since we don't actually queue anything in 15707 * TCP, we have no data to send out of here. What we do is clear the receive 15708 * window, and send out a window update. 15709 */ 15710 static void 15711 tcp_rsrv(queue_t *q) 15712 { 15713 conn_t *connp = Q_TO_CONN(q); 15714 tcp_t *tcp = connp->conn_tcp; 15715 mblk_t *mp; 15716 tcp_stack_t *tcps = tcp->tcp_tcps; 15717 15718 /* No code does a putq on the read side */ 15719 ASSERT(q->q_first == NULL); 15720 15721 /* Nothing to do for the default queue */ 15722 if (q == tcps->tcps_g_q) { 15723 return; 15724 } 15725 15726 /* 15727 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15728 * been run. So just return. 15729 */ 15730 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15731 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15732 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15733 return; 15734 } 15735 tcp->tcp_rsrv_mp = NULL; 15736 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15737 15738 CONN_INC_REF(connp); 15739 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15740 SQ_PROCESS, SQTAG_TCP_RSRV); 15741 } 15742 15743 /* 15744 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15745 * We do not allow the receive window to shrink. After setting rwnd, 15746 * set the flow control hiwat of the stream. 15747 * 15748 * This function is called in 2 cases: 15749 * 15750 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15751 * connection (passive open) and in tcp_rput_data() for active connect. 15752 * This is called after tcp_mss_set() when the desired MSS value is known. 15753 * This makes sure that our window size is a mutiple of the other side's 15754 * MSS. 15755 * 2) Handling SO_RCVBUF option. 15756 * 15757 * It is ASSUMED that the requested size is a multiple of the current MSS. 15758 * 15759 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15760 * user requests so. 15761 */ 15762 int 15763 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15764 { 15765 uint32_t mss = tcp->tcp_mss; 15766 uint32_t old_max_rwnd; 15767 uint32_t max_transmittable_rwnd; 15768 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15769 tcp_stack_t *tcps = tcp->tcp_tcps; 15770 15771 /* 15772 * Insist on a receive window that is at least 15773 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15774 * funny TCP interactions of Nagle algorithm, SWS avoidance 15775 * and delayed acknowledgement. 15776 */ 15777 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 15778 15779 if (tcp->tcp_fused) { 15780 size_t sth_hiwat; 15781 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15782 15783 ASSERT(peer_tcp != NULL); 15784 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15785 if (!tcp_detached) { 15786 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15787 sth_hiwat); 15788 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 15789 } 15790 15791 /* 15792 * In the fusion case, the maxpsz stream head value of 15793 * our peer is set according to its send buffer size 15794 * and our receive buffer size; since the latter may 15795 * have changed we need to update the peer's maxpsz. 15796 */ 15797 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15798 return (sth_hiwat); 15799 } 15800 15801 if (tcp_detached) { 15802 old_max_rwnd = tcp->tcp_rwnd; 15803 } else { 15804 old_max_rwnd = tcp->tcp_recv_hiwater; 15805 } 15806 15807 15808 /* 15809 * If window size info has already been exchanged, TCP should not 15810 * shrink the window. Shrinking window is doable if done carefully. 15811 * We may add that support later. But so far there is not a real 15812 * need to do that. 15813 */ 15814 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15815 /* MSS may have changed, do a round up again. */ 15816 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15817 } 15818 15819 /* 15820 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15821 * can be applied even before the window scale option is decided. 15822 */ 15823 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15824 if (rwnd > max_transmittable_rwnd) { 15825 rwnd = max_transmittable_rwnd - 15826 (max_transmittable_rwnd % mss); 15827 if (rwnd < mss) 15828 rwnd = max_transmittable_rwnd; 15829 /* 15830 * If we're over the limit we may have to back down tcp_rwnd. 15831 * The increment below won't work for us. So we set all three 15832 * here and the increment below will have no effect. 15833 */ 15834 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15835 } 15836 if (tcp->tcp_localnet) { 15837 tcp->tcp_rack_abs_max = 15838 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 15839 } else { 15840 /* 15841 * For a remote host on a different subnet (through a router), 15842 * we ack every other packet to be conforming to RFC1122. 15843 * tcp_deferred_acks_max is default to 2. 15844 */ 15845 tcp->tcp_rack_abs_max = 15846 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 15847 } 15848 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15849 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15850 else 15851 tcp->tcp_rack_cur_max = 0; 15852 /* 15853 * Increment the current rwnd by the amount the maximum grew (we 15854 * can not overwrite it since we might be in the middle of a 15855 * connection.) 15856 */ 15857 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15858 tcp->tcp_recv_hiwater = rwnd; 15859 15860 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15861 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15862 tcp->tcp_cwnd_max = rwnd; 15863 15864 if (tcp_detached) 15865 return (rwnd); 15866 15867 tcp_set_recv_threshold(tcp, rwnd >> 3); 15868 15869 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, rwnd); 15870 return (rwnd); 15871 } 15872 15873 /* 15874 * Return SNMP stuff in buffer in mpdata. 15875 */ 15876 mblk_t * 15877 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15878 { 15879 mblk_t *mpdata; 15880 mblk_t *mp_conn_ctl = NULL; 15881 mblk_t *mp_conn_tail; 15882 mblk_t *mp_attr_ctl = NULL; 15883 mblk_t *mp_attr_tail; 15884 mblk_t *mp6_conn_ctl = NULL; 15885 mblk_t *mp6_conn_tail; 15886 mblk_t *mp6_attr_ctl = NULL; 15887 mblk_t *mp6_attr_tail; 15888 struct opthdr *optp; 15889 mib2_tcpConnEntry_t tce; 15890 mib2_tcp6ConnEntry_t tce6; 15891 mib2_transportMLPEntry_t mlp; 15892 connf_t *connfp; 15893 int i; 15894 boolean_t ispriv; 15895 zoneid_t zoneid; 15896 int v4_conn_idx; 15897 int v6_conn_idx; 15898 conn_t *connp = Q_TO_CONN(q); 15899 tcp_stack_t *tcps; 15900 ip_stack_t *ipst; 15901 mblk_t *mp2ctl; 15902 15903 /* 15904 * make a copy of the original message 15905 */ 15906 mp2ctl = copymsg(mpctl); 15907 15908 if (mpctl == NULL || 15909 (mpdata = mpctl->b_cont) == NULL || 15910 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15911 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15912 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15913 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15914 freemsg(mp_conn_ctl); 15915 freemsg(mp_attr_ctl); 15916 freemsg(mp6_conn_ctl); 15917 freemsg(mp6_attr_ctl); 15918 freemsg(mpctl); 15919 freemsg(mp2ctl); 15920 return (NULL); 15921 } 15922 15923 ipst = connp->conn_netstack->netstack_ip; 15924 tcps = connp->conn_netstack->netstack_tcp; 15925 15926 /* build table of connections -- need count in fixed part */ 15927 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 15928 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 15929 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 15930 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 15931 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 15932 15933 ispriv = 15934 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15935 zoneid = Q_TO_CONN(q)->conn_zoneid; 15936 15937 v4_conn_idx = v6_conn_idx = 0; 15938 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15939 15940 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15941 ipst = tcps->tcps_netstack->netstack_ip; 15942 15943 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 15944 15945 connp = NULL; 15946 15947 while ((connp = 15948 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15949 tcp_t *tcp; 15950 boolean_t needattr; 15951 15952 if (connp->conn_zoneid != zoneid) 15953 continue; /* not in this zone */ 15954 15955 tcp = connp->conn_tcp; 15956 UPDATE_MIB(&tcps->tcps_mib, 15957 tcpHCInSegs, tcp->tcp_ibsegs); 15958 tcp->tcp_ibsegs = 0; 15959 UPDATE_MIB(&tcps->tcps_mib, 15960 tcpHCOutSegs, tcp->tcp_obsegs); 15961 tcp->tcp_obsegs = 0; 15962 15963 tce6.tcp6ConnState = tce.tcpConnState = 15964 tcp_snmp_state(tcp); 15965 if (tce.tcpConnState == MIB2_TCP_established || 15966 tce.tcpConnState == MIB2_TCP_closeWait) 15967 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 15968 15969 needattr = B_FALSE; 15970 bzero(&mlp, sizeof (mlp)); 15971 if (connp->conn_mlp_type != mlptSingle) { 15972 if (connp->conn_mlp_type == mlptShared || 15973 connp->conn_mlp_type == mlptBoth) 15974 mlp.tme_flags |= MIB2_TMEF_SHARED; 15975 if (connp->conn_mlp_type == mlptPrivate || 15976 connp->conn_mlp_type == mlptBoth) 15977 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15978 needattr = B_TRUE; 15979 } 15980 if (connp->conn_anon_mlp) { 15981 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 15982 needattr = B_TRUE; 15983 } 15984 if (connp->conn_mac_exempt) { 15985 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 15986 needattr = B_TRUE; 15987 } 15988 if (connp->conn_fully_bound && 15989 connp->conn_effective_cred != NULL) { 15990 ts_label_t *tsl; 15991 15992 tsl = crgetlabel(connp->conn_effective_cred); 15993 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 15994 mlp.tme_doi = label2doi(tsl); 15995 mlp.tme_label = *label2bslabel(tsl); 15996 needattr = B_TRUE; 15997 } 15998 15999 /* Create a message to report on IPv6 entries */ 16000 if (tcp->tcp_ipversion == IPV6_VERSION) { 16001 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16002 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16003 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16004 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16005 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16006 /* Don't want just anybody seeing these... */ 16007 if (ispriv) { 16008 tce6.tcp6ConnEntryInfo.ce_snxt = 16009 tcp->tcp_snxt; 16010 tce6.tcp6ConnEntryInfo.ce_suna = 16011 tcp->tcp_suna; 16012 tce6.tcp6ConnEntryInfo.ce_rnxt = 16013 tcp->tcp_rnxt; 16014 tce6.tcp6ConnEntryInfo.ce_rack = 16015 tcp->tcp_rack; 16016 } else { 16017 /* 16018 * Netstat, unfortunately, uses this to 16019 * get send/receive queue sizes. How to fix? 16020 * Why not compute the difference only? 16021 */ 16022 tce6.tcp6ConnEntryInfo.ce_snxt = 16023 tcp->tcp_snxt - tcp->tcp_suna; 16024 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16025 tce6.tcp6ConnEntryInfo.ce_rnxt = 16026 tcp->tcp_rnxt - tcp->tcp_rack; 16027 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16028 } 16029 16030 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16031 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16032 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16033 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16034 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16035 16036 tce6.tcp6ConnCreationProcess = 16037 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16038 tcp->tcp_cpid; 16039 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16040 16041 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16042 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16043 16044 mlp.tme_connidx = v6_conn_idx++; 16045 if (needattr) 16046 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16047 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16048 } 16049 /* 16050 * Create an IPv4 table entry for IPv4 entries and also 16051 * for IPv6 entries which are bound to in6addr_any 16052 * but don't have IPV6_V6ONLY set. 16053 * (i.e. anything an IPv4 peer could connect to) 16054 */ 16055 if (tcp->tcp_ipversion == IPV4_VERSION || 16056 (tcp->tcp_state <= TCPS_LISTEN && 16057 !tcp->tcp_connp->conn_ipv6_v6only && 16058 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16059 if (tcp->tcp_ipversion == IPV6_VERSION) { 16060 tce.tcpConnRemAddress = INADDR_ANY; 16061 tce.tcpConnLocalAddress = INADDR_ANY; 16062 } else { 16063 tce.tcpConnRemAddress = 16064 tcp->tcp_remote; 16065 tce.tcpConnLocalAddress = 16066 tcp->tcp_ip_src; 16067 } 16068 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16069 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16070 /* Don't want just anybody seeing these... */ 16071 if (ispriv) { 16072 tce.tcpConnEntryInfo.ce_snxt = 16073 tcp->tcp_snxt; 16074 tce.tcpConnEntryInfo.ce_suna = 16075 tcp->tcp_suna; 16076 tce.tcpConnEntryInfo.ce_rnxt = 16077 tcp->tcp_rnxt; 16078 tce.tcpConnEntryInfo.ce_rack = 16079 tcp->tcp_rack; 16080 } else { 16081 /* 16082 * Netstat, unfortunately, uses this to 16083 * get send/receive queue sizes. How 16084 * to fix? 16085 * Why not compute the difference only? 16086 */ 16087 tce.tcpConnEntryInfo.ce_snxt = 16088 tcp->tcp_snxt - tcp->tcp_suna; 16089 tce.tcpConnEntryInfo.ce_suna = 0; 16090 tce.tcpConnEntryInfo.ce_rnxt = 16091 tcp->tcp_rnxt - tcp->tcp_rack; 16092 tce.tcpConnEntryInfo.ce_rack = 0; 16093 } 16094 16095 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16096 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16097 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16098 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16099 tce.tcpConnEntryInfo.ce_state = 16100 tcp->tcp_state; 16101 16102 tce.tcpConnCreationProcess = 16103 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16104 tcp->tcp_cpid; 16105 tce.tcpConnCreationTime = tcp->tcp_open_time; 16106 16107 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16108 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16109 16110 mlp.tme_connidx = v4_conn_idx++; 16111 if (needattr) 16112 (void) snmp_append_data2( 16113 mp_attr_ctl->b_cont, 16114 &mp_attr_tail, (char *)&mlp, 16115 sizeof (mlp)); 16116 } 16117 } 16118 } 16119 16120 /* fixed length structure for IPv4 and IPv6 counters */ 16121 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16122 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16123 sizeof (mib2_tcp6ConnEntry_t)); 16124 /* synchronize 32- and 64-bit counters */ 16125 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16126 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16127 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16128 optp->level = MIB2_TCP; 16129 optp->name = 0; 16130 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16131 sizeof (tcps->tcps_mib)); 16132 optp->len = msgdsize(mpdata); 16133 qreply(q, mpctl); 16134 16135 /* table of connections... */ 16136 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16137 sizeof (struct T_optmgmt_ack)]; 16138 optp->level = MIB2_TCP; 16139 optp->name = MIB2_TCP_CONN; 16140 optp->len = msgdsize(mp_conn_ctl->b_cont); 16141 qreply(q, mp_conn_ctl); 16142 16143 /* table of MLP attributes... */ 16144 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16145 sizeof (struct T_optmgmt_ack)]; 16146 optp->level = MIB2_TCP; 16147 optp->name = EXPER_XPORT_MLP; 16148 optp->len = msgdsize(mp_attr_ctl->b_cont); 16149 if (optp->len == 0) 16150 freemsg(mp_attr_ctl); 16151 else 16152 qreply(q, mp_attr_ctl); 16153 16154 /* table of IPv6 connections... */ 16155 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16156 sizeof (struct T_optmgmt_ack)]; 16157 optp->level = MIB2_TCP6; 16158 optp->name = MIB2_TCP6_CONN; 16159 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16160 qreply(q, mp6_conn_ctl); 16161 16162 /* table of IPv6 MLP attributes... */ 16163 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16164 sizeof (struct T_optmgmt_ack)]; 16165 optp->level = MIB2_TCP6; 16166 optp->name = EXPER_XPORT_MLP; 16167 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16168 if (optp->len == 0) 16169 freemsg(mp6_attr_ctl); 16170 else 16171 qreply(q, mp6_attr_ctl); 16172 return (mp2ctl); 16173 } 16174 16175 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16176 /* ARGSUSED */ 16177 int 16178 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16179 { 16180 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16181 16182 switch (level) { 16183 case MIB2_TCP: 16184 switch (name) { 16185 case 13: 16186 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16187 return (0); 16188 /* TODO: delete entry defined by tce */ 16189 return (1); 16190 default: 16191 return (0); 16192 } 16193 default: 16194 return (1); 16195 } 16196 } 16197 16198 /* Translate TCP state to MIB2 TCP state. */ 16199 static int 16200 tcp_snmp_state(tcp_t *tcp) 16201 { 16202 if (tcp == NULL) 16203 return (0); 16204 16205 switch (tcp->tcp_state) { 16206 case TCPS_CLOSED: 16207 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16208 case TCPS_BOUND: 16209 return (MIB2_TCP_closed); 16210 case TCPS_LISTEN: 16211 return (MIB2_TCP_listen); 16212 case TCPS_SYN_SENT: 16213 return (MIB2_TCP_synSent); 16214 case TCPS_SYN_RCVD: 16215 return (MIB2_TCP_synReceived); 16216 case TCPS_ESTABLISHED: 16217 return (MIB2_TCP_established); 16218 case TCPS_CLOSE_WAIT: 16219 return (MIB2_TCP_closeWait); 16220 case TCPS_FIN_WAIT_1: 16221 return (MIB2_TCP_finWait1); 16222 case TCPS_CLOSING: 16223 return (MIB2_TCP_closing); 16224 case TCPS_LAST_ACK: 16225 return (MIB2_TCP_lastAck); 16226 case TCPS_FIN_WAIT_2: 16227 return (MIB2_TCP_finWait2); 16228 case TCPS_TIME_WAIT: 16229 return (MIB2_TCP_timeWait); 16230 default: 16231 return (0); 16232 } 16233 } 16234 16235 /* 16236 * tcp_timer is the timer service routine. It handles the retransmission, 16237 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16238 * from the state of the tcp instance what kind of action needs to be done 16239 * at the time it is called. 16240 */ 16241 static void 16242 tcp_timer(void *arg) 16243 { 16244 mblk_t *mp; 16245 clock_t first_threshold; 16246 clock_t second_threshold; 16247 clock_t ms; 16248 uint32_t mss; 16249 conn_t *connp = (conn_t *)arg; 16250 tcp_t *tcp = connp->conn_tcp; 16251 tcp_stack_t *tcps = tcp->tcp_tcps; 16252 16253 tcp->tcp_timer_tid = 0; 16254 16255 if (tcp->tcp_fused) 16256 return; 16257 16258 first_threshold = tcp->tcp_first_timer_threshold; 16259 second_threshold = tcp->tcp_second_timer_threshold; 16260 switch (tcp->tcp_state) { 16261 case TCPS_IDLE: 16262 case TCPS_BOUND: 16263 case TCPS_LISTEN: 16264 return; 16265 case TCPS_SYN_RCVD: { 16266 tcp_t *listener = tcp->tcp_listener; 16267 16268 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16269 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16270 /* it's our first timeout */ 16271 tcp->tcp_syn_rcvd_timeout = 1; 16272 mutex_enter(&listener->tcp_eager_lock); 16273 listener->tcp_syn_rcvd_timeout++; 16274 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16275 /* 16276 * Make this eager available for drop if we 16277 * need to drop one to accomodate a new 16278 * incoming SYN request. 16279 */ 16280 MAKE_DROPPABLE(listener, tcp); 16281 } 16282 if (!listener->tcp_syn_defense && 16283 (listener->tcp_syn_rcvd_timeout > 16284 (tcps->tcps_conn_req_max_q0 >> 2)) && 16285 (tcps->tcps_conn_req_max_q0 > 200)) { 16286 /* We may be under attack. Put on a defense. */ 16287 listener->tcp_syn_defense = B_TRUE; 16288 cmn_err(CE_WARN, "High TCP connect timeout " 16289 "rate! System (port %d) may be under a " 16290 "SYN flood attack!", 16291 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16292 16293 listener->tcp_ip_addr_cache = kmem_zalloc( 16294 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16295 KM_NOSLEEP); 16296 } 16297 mutex_exit(&listener->tcp_eager_lock); 16298 } else if (listener != NULL) { 16299 mutex_enter(&listener->tcp_eager_lock); 16300 tcp->tcp_syn_rcvd_timeout++; 16301 if (tcp->tcp_syn_rcvd_timeout > 1 && 16302 !tcp->tcp_closemp_used) { 16303 /* 16304 * This is our second timeout. Put the tcp in 16305 * the list of droppable eagers to allow it to 16306 * be dropped, if needed. We don't check 16307 * whether tcp_dontdrop is set or not to 16308 * protect ourselve from a SYN attack where a 16309 * remote host can spoof itself as one of the 16310 * good IP source and continue to hold 16311 * resources too long. 16312 */ 16313 MAKE_DROPPABLE(listener, tcp); 16314 } 16315 mutex_exit(&listener->tcp_eager_lock); 16316 } 16317 } 16318 /* FALLTHRU */ 16319 case TCPS_SYN_SENT: 16320 first_threshold = tcp->tcp_first_ctimer_threshold; 16321 second_threshold = tcp->tcp_second_ctimer_threshold; 16322 break; 16323 case TCPS_ESTABLISHED: 16324 case TCPS_FIN_WAIT_1: 16325 case TCPS_CLOSING: 16326 case TCPS_CLOSE_WAIT: 16327 case TCPS_LAST_ACK: 16328 /* If we have data to rexmit */ 16329 if (tcp->tcp_suna != tcp->tcp_snxt) { 16330 clock_t time_to_wait; 16331 16332 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16333 if (!tcp->tcp_xmit_head) 16334 break; 16335 time_to_wait = lbolt - 16336 (clock_t)tcp->tcp_xmit_head->b_prev; 16337 time_to_wait = tcp->tcp_rto - 16338 TICK_TO_MSEC(time_to_wait); 16339 /* 16340 * If the timer fires too early, 1 clock tick earlier, 16341 * restart the timer. 16342 */ 16343 if (time_to_wait > msec_per_tick) { 16344 TCP_STAT(tcps, tcp_timer_fire_early); 16345 TCP_TIMER_RESTART(tcp, time_to_wait); 16346 return; 16347 } 16348 /* 16349 * When we probe zero windows, we force the swnd open. 16350 * If our peer acks with a closed window swnd will be 16351 * set to zero by tcp_rput(). As long as we are 16352 * receiving acks tcp_rput will 16353 * reset 'tcp_ms_we_have_waited' so as not to trip the 16354 * first and second interval actions. NOTE: the timer 16355 * interval is allowed to continue its exponential 16356 * backoff. 16357 */ 16358 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16359 if (tcp->tcp_debug) { 16360 (void) strlog(TCP_MOD_ID, 0, 1, 16361 SL_TRACE, "tcp_timer: zero win"); 16362 } 16363 } else { 16364 /* 16365 * After retransmission, we need to do 16366 * slow start. Set the ssthresh to one 16367 * half of current effective window and 16368 * cwnd to one MSS. Also reset 16369 * tcp_cwnd_cnt. 16370 * 16371 * Note that if tcp_ssthresh is reduced because 16372 * of ECN, do not reduce it again unless it is 16373 * already one window of data away (tcp_cwr 16374 * should then be cleared) or this is a 16375 * timeout for a retransmitted segment. 16376 */ 16377 uint32_t npkt; 16378 16379 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16380 npkt = ((tcp->tcp_timer_backoff ? 16381 tcp->tcp_cwnd_ssthresh : 16382 tcp->tcp_snxt - 16383 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16384 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16385 tcp->tcp_mss; 16386 } 16387 tcp->tcp_cwnd = tcp->tcp_mss; 16388 tcp->tcp_cwnd_cnt = 0; 16389 if (tcp->tcp_ecn_ok) { 16390 tcp->tcp_cwr = B_TRUE; 16391 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16392 tcp->tcp_ecn_cwr_sent = B_FALSE; 16393 } 16394 } 16395 break; 16396 } 16397 /* 16398 * We have something to send yet we cannot send. The 16399 * reason can be: 16400 * 16401 * 1. Zero send window: we need to do zero window probe. 16402 * 2. Zero cwnd: because of ECN, we need to "clock out 16403 * segments. 16404 * 3. SWS avoidance: receiver may have shrunk window, 16405 * reset our knowledge. 16406 * 16407 * Note that condition 2 can happen with either 1 or 16408 * 3. But 1 and 3 are exclusive. 16409 */ 16410 if (tcp->tcp_unsent != 0) { 16411 if (tcp->tcp_cwnd == 0) { 16412 /* 16413 * Set tcp_cwnd to 1 MSS so that a 16414 * new segment can be sent out. We 16415 * are "clocking out" new data when 16416 * the network is really congested. 16417 */ 16418 ASSERT(tcp->tcp_ecn_ok); 16419 tcp->tcp_cwnd = tcp->tcp_mss; 16420 } 16421 if (tcp->tcp_swnd == 0) { 16422 /* Extend window for zero window probe */ 16423 tcp->tcp_swnd++; 16424 tcp->tcp_zero_win_probe = B_TRUE; 16425 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16426 } else { 16427 /* 16428 * Handle timeout from sender SWS avoidance. 16429 * Reset our knowledge of the max send window 16430 * since the receiver might have reduced its 16431 * receive buffer. Avoid setting tcp_max_swnd 16432 * to one since that will essentially disable 16433 * the SWS checks. 16434 * 16435 * Note that since we don't have a SWS 16436 * state variable, if the timeout is set 16437 * for ECN but not for SWS, this 16438 * code will also be executed. This is 16439 * fine as tcp_max_swnd is updated 16440 * constantly and it will not affect 16441 * anything. 16442 */ 16443 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16444 } 16445 tcp_wput_data(tcp, NULL, B_FALSE); 16446 return; 16447 } 16448 /* Is there a FIN that needs to be to re retransmitted? */ 16449 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16450 !tcp->tcp_fin_acked) 16451 break; 16452 /* Nothing to do, return without restarting timer. */ 16453 TCP_STAT(tcps, tcp_timer_fire_miss); 16454 return; 16455 case TCPS_FIN_WAIT_2: 16456 /* 16457 * User closed the TCP endpoint and peer ACK'ed our FIN. 16458 * We waited some time for for peer's FIN, but it hasn't 16459 * arrived. We flush the connection now to avoid 16460 * case where the peer has rebooted. 16461 */ 16462 if (TCP_IS_DETACHED(tcp)) { 16463 (void) tcp_clean_death(tcp, 0, 23); 16464 } else { 16465 TCP_TIMER_RESTART(tcp, 16466 tcps->tcps_fin_wait_2_flush_interval); 16467 } 16468 return; 16469 case TCPS_TIME_WAIT: 16470 (void) tcp_clean_death(tcp, 0, 24); 16471 return; 16472 default: 16473 if (tcp->tcp_debug) { 16474 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16475 "tcp_timer: strange state (%d) %s", 16476 tcp->tcp_state, tcp_display(tcp, NULL, 16477 DISP_PORT_ONLY)); 16478 } 16479 return; 16480 } 16481 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16482 /* 16483 * For zero window probe, we need to send indefinitely, 16484 * unless we have not heard from the other side for some 16485 * time... 16486 */ 16487 if ((tcp->tcp_zero_win_probe == 0) || 16488 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16489 second_threshold)) { 16490 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16491 /* 16492 * If TCP is in SYN_RCVD state, send back a 16493 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16494 * should be zero in TCPS_SYN_RCVD state. 16495 */ 16496 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16497 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16498 "in SYN_RCVD", 16499 tcp, tcp->tcp_snxt, 16500 tcp->tcp_rnxt, TH_RST | TH_ACK); 16501 } 16502 (void) tcp_clean_death(tcp, 16503 tcp->tcp_client_errno ? 16504 tcp->tcp_client_errno : ETIMEDOUT, 25); 16505 return; 16506 } else { 16507 /* 16508 * Set tcp_ms_we_have_waited to second_threshold 16509 * so that in next timeout, we will do the above 16510 * check (lbolt - tcp_last_recv_time). This is 16511 * also to avoid overflow. 16512 * 16513 * We don't need to decrement tcp_timer_backoff 16514 * to avoid overflow because it will be decremented 16515 * later if new timeout value is greater than 16516 * tcp_rexmit_interval_max. In the case when 16517 * tcp_rexmit_interval_max is greater than 16518 * second_threshold, it means that we will wait 16519 * longer than second_threshold to send the next 16520 * window probe. 16521 */ 16522 tcp->tcp_ms_we_have_waited = second_threshold; 16523 } 16524 } else if (ms > first_threshold) { 16525 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16526 tcp->tcp_xmit_head != NULL) { 16527 tcp->tcp_xmit_head = 16528 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16529 } 16530 /* 16531 * We have been retransmitting for too long... The RTT 16532 * we calculated is probably incorrect. Reinitialize it. 16533 * Need to compensate for 0 tcp_rtt_sa. Reset 16534 * tcp_rtt_update so that we won't accidentally cache a 16535 * bad value. But only do this if this is not a zero 16536 * window probe. 16537 */ 16538 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16539 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16540 (tcp->tcp_rtt_sa >> 5); 16541 tcp->tcp_rtt_sa = 0; 16542 tcp_ip_notify(tcp); 16543 tcp->tcp_rtt_update = 0; 16544 } 16545 } 16546 tcp->tcp_timer_backoff++; 16547 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16548 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16549 tcps->tcps_rexmit_interval_min) { 16550 /* 16551 * This means the original RTO is tcp_rexmit_interval_min. 16552 * So we will use tcp_rexmit_interval_min as the RTO value 16553 * and do the backoff. 16554 */ 16555 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16556 } else { 16557 ms <<= tcp->tcp_timer_backoff; 16558 } 16559 if (ms > tcps->tcps_rexmit_interval_max) { 16560 ms = tcps->tcps_rexmit_interval_max; 16561 /* 16562 * ms is at max, decrement tcp_timer_backoff to avoid 16563 * overflow. 16564 */ 16565 tcp->tcp_timer_backoff--; 16566 } 16567 tcp->tcp_ms_we_have_waited += ms; 16568 if (tcp->tcp_zero_win_probe == 0) { 16569 tcp->tcp_rto = ms; 16570 } 16571 TCP_TIMER_RESTART(tcp, ms); 16572 /* 16573 * This is after a timeout and tcp_rto is backed off. Set 16574 * tcp_set_timer to 1 so that next time RTO is updated, we will 16575 * restart the timer with a correct value. 16576 */ 16577 tcp->tcp_set_timer = 1; 16578 mss = tcp->tcp_snxt - tcp->tcp_suna; 16579 if (mss > tcp->tcp_mss) 16580 mss = tcp->tcp_mss; 16581 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16582 mss = tcp->tcp_swnd; 16583 16584 if ((mp = tcp->tcp_xmit_head) != NULL) 16585 mp->b_prev = (mblk_t *)lbolt; 16586 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16587 B_TRUE); 16588 16589 /* 16590 * When slow start after retransmission begins, start with 16591 * this seq no. tcp_rexmit_max marks the end of special slow 16592 * start phase. tcp_snd_burst controls how many segments 16593 * can be sent because of an ack. 16594 */ 16595 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16596 tcp->tcp_snd_burst = TCP_CWND_SS; 16597 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16598 (tcp->tcp_unsent == 0)) { 16599 tcp->tcp_rexmit_max = tcp->tcp_fss; 16600 } else { 16601 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16602 } 16603 tcp->tcp_rexmit = B_TRUE; 16604 tcp->tcp_dupack_cnt = 0; 16605 16606 /* 16607 * Remove all rexmit SACK blk to start from fresh. 16608 */ 16609 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 16610 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 16611 if (mp == NULL) { 16612 return; 16613 } 16614 /* 16615 * Attach credentials to retransmitted initial SYNs. 16616 * In theory we should use the credentials from the connect() 16617 * call to ensure that getpeerucred() on the peer will be correct. 16618 * But we assume that SYN's are not dropped for loopback connections. 16619 */ 16620 if (tcp->tcp_state == TCPS_SYN_SENT) { 16621 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid); 16622 } 16623 16624 tcp->tcp_csuna = tcp->tcp_snxt; 16625 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16626 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16627 tcp_send_data(tcp, tcp->tcp_wq, mp); 16628 16629 } 16630 16631 static int 16632 tcp_do_unbind(conn_t *connp) 16633 { 16634 tcp_t *tcp = connp->conn_tcp; 16635 int error = 0; 16636 16637 switch (tcp->tcp_state) { 16638 case TCPS_BOUND: 16639 case TCPS_LISTEN: 16640 break; 16641 default: 16642 return (-TOUTSTATE); 16643 } 16644 16645 /* 16646 * Need to clean up all the eagers since after the unbind, segments 16647 * will no longer be delivered to this listener stream. 16648 */ 16649 mutex_enter(&tcp->tcp_eager_lock); 16650 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16651 tcp_eager_cleanup(tcp, 0); 16652 } 16653 mutex_exit(&tcp->tcp_eager_lock); 16654 16655 if (tcp->tcp_ipversion == IPV4_VERSION) { 16656 tcp->tcp_ipha->ipha_src = 0; 16657 } else { 16658 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16659 } 16660 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16661 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16662 tcp_bind_hash_remove(tcp); 16663 tcp->tcp_state = TCPS_IDLE; 16664 tcp->tcp_mdt = B_FALSE; 16665 16666 connp = tcp->tcp_connp; 16667 connp->conn_mdt_ok = B_FALSE; 16668 ipcl_hash_remove(connp); 16669 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16670 16671 return (error); 16672 } 16673 16674 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16675 static void 16676 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16677 { 16678 int error = tcp_do_unbind(tcp->tcp_connp); 16679 16680 if (error > 0) { 16681 tcp_err_ack(tcp, mp, TSYSERR, error); 16682 } else if (error < 0) { 16683 tcp_err_ack(tcp, mp, -error, 0); 16684 } else { 16685 /* Send M_FLUSH according to TPI */ 16686 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16687 16688 mp = mi_tpi_ok_ack_alloc(mp); 16689 putnext(tcp->tcp_rq, mp); 16690 } 16691 } 16692 16693 /* 16694 * Don't let port fall into the privileged range. 16695 * Since the extra privileged ports can be arbitrary we also 16696 * ensure that we exclude those from consideration. 16697 * tcp_g_epriv_ports is not sorted thus we loop over it until 16698 * there are no changes. 16699 * 16700 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16701 * but instead the code relies on: 16702 * - the fact that the address of the array and its size never changes 16703 * - the atomic assignment of the elements of the array 16704 * 16705 * Returns 0 if there are no more ports available. 16706 * 16707 * TS note: skip multilevel ports. 16708 */ 16709 static in_port_t 16710 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16711 { 16712 int i; 16713 boolean_t restart = B_FALSE; 16714 tcp_stack_t *tcps = tcp->tcp_tcps; 16715 16716 if (random && tcp_random_anon_port != 0) { 16717 (void) random_get_pseudo_bytes((uint8_t *)&port, 16718 sizeof (in_port_t)); 16719 /* 16720 * Unless changed by a sys admin, the smallest anon port 16721 * is 32768 and the largest anon port is 65535. It is 16722 * very likely (50%) for the random port to be smaller 16723 * than the smallest anon port. When that happens, 16724 * add port % (anon port range) to the smallest anon 16725 * port to get the random port. It should fall into the 16726 * valid anon port range. 16727 */ 16728 if (port < tcps->tcps_smallest_anon_port) { 16729 port = tcps->tcps_smallest_anon_port + 16730 port % (tcps->tcps_largest_anon_port - 16731 tcps->tcps_smallest_anon_port); 16732 } 16733 } 16734 16735 retry: 16736 if (port < tcps->tcps_smallest_anon_port) 16737 port = (in_port_t)tcps->tcps_smallest_anon_port; 16738 16739 if (port > tcps->tcps_largest_anon_port) { 16740 if (restart) 16741 return (0); 16742 restart = B_TRUE; 16743 port = (in_port_t)tcps->tcps_smallest_anon_port; 16744 } 16745 16746 if (port < tcps->tcps_smallest_nonpriv_port) 16747 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16748 16749 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16750 if (port == tcps->tcps_g_epriv_ports[i]) { 16751 port++; 16752 /* 16753 * Make sure whether the port is in the 16754 * valid range. 16755 */ 16756 goto retry; 16757 } 16758 } 16759 if (is_system_labeled() && 16760 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16761 IPPROTO_TCP, B_TRUE)) != 0) { 16762 port = i; 16763 goto retry; 16764 } 16765 return (port); 16766 } 16767 16768 /* 16769 * Return the next anonymous port in the privileged port range for 16770 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16771 * downwards. This is the same behavior as documented in the userland 16772 * library call rresvport(3N). 16773 * 16774 * TS note: skip multilevel ports. 16775 */ 16776 static in_port_t 16777 tcp_get_next_priv_port(const tcp_t *tcp) 16778 { 16779 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16780 in_port_t nextport; 16781 boolean_t restart = B_FALSE; 16782 tcp_stack_t *tcps = tcp->tcp_tcps; 16783 retry: 16784 if (next_priv_port < tcps->tcps_min_anonpriv_port || 16785 next_priv_port >= IPPORT_RESERVED) { 16786 next_priv_port = IPPORT_RESERVED - 1; 16787 if (restart) 16788 return (0); 16789 restart = B_TRUE; 16790 } 16791 if (is_system_labeled() && 16792 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16793 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16794 next_priv_port = nextport; 16795 goto retry; 16796 } 16797 return (next_priv_port--); 16798 } 16799 16800 /* The write side r/w procedure. */ 16801 16802 #if CCS_STATS 16803 struct { 16804 struct { 16805 int64_t count, bytes; 16806 } tot, hit; 16807 } wrw_stats; 16808 #endif 16809 16810 /* 16811 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16812 * messages. 16813 */ 16814 /* ARGSUSED */ 16815 static void 16816 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16817 { 16818 conn_t *connp = (conn_t *)arg; 16819 tcp_t *tcp = connp->conn_tcp; 16820 queue_t *q = tcp->tcp_wq; 16821 16822 ASSERT(DB_TYPE(mp) != M_IOCTL); 16823 /* 16824 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16825 * Once the close starts, streamhead and sockfs will not let any data 16826 * packets come down (close ensures that there are no threads using the 16827 * queue and no new threads will come down) but since qprocsoff() 16828 * hasn't happened yet, a M_FLUSH or some non data message might 16829 * get reflected back (in response to our own FLUSHRW) and get 16830 * processed after tcp_close() is done. The conn would still be valid 16831 * because a ref would have added but we need to check the state 16832 * before actually processing the packet. 16833 */ 16834 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16835 freemsg(mp); 16836 return; 16837 } 16838 16839 switch (DB_TYPE(mp)) { 16840 case M_IOCDATA: 16841 tcp_wput_iocdata(tcp, mp); 16842 break; 16843 case M_FLUSH: 16844 tcp_wput_flush(tcp, mp); 16845 break; 16846 default: 16847 CALL_IP_WPUT(connp, q, mp); 16848 break; 16849 } 16850 } 16851 16852 /* 16853 * The TCP fast path write put procedure. 16854 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16855 */ 16856 /* ARGSUSED */ 16857 void 16858 tcp_output(void *arg, mblk_t *mp, void *arg2) 16859 { 16860 int len; 16861 int hdrlen; 16862 int plen; 16863 mblk_t *mp1; 16864 uchar_t *rptr; 16865 uint32_t snxt; 16866 tcph_t *tcph; 16867 struct datab *db; 16868 uint32_t suna; 16869 uint32_t mss; 16870 ipaddr_t *dst; 16871 ipaddr_t *src; 16872 uint32_t sum; 16873 int usable; 16874 conn_t *connp = (conn_t *)arg; 16875 tcp_t *tcp = connp->conn_tcp; 16876 uint32_t msize; 16877 tcp_stack_t *tcps = tcp->tcp_tcps; 16878 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 16879 16880 /* 16881 * Try and ASSERT the minimum possible references on the 16882 * conn early enough. Since we are executing on write side, 16883 * the connection is obviously not detached and that means 16884 * there is a ref each for TCP and IP. Since we are behind 16885 * the squeue, the minimum references needed are 3. If the 16886 * conn is in classifier hash list, there should be an 16887 * extra ref for that (we check both the possibilities). 16888 */ 16889 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16890 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16891 16892 ASSERT(DB_TYPE(mp) == M_DATA); 16893 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 16894 16895 mutex_enter(&tcp->tcp_non_sq_lock); 16896 tcp->tcp_squeue_bytes -= msize; 16897 mutex_exit(&tcp->tcp_non_sq_lock); 16898 16899 /* Check to see if this connection wants to be re-fused. */ 16900 if (tcp->tcp_refuse) { 16901 if (tcp->tcp_ipversion == IPV4_VERSION && 16902 !ipst->ips_ip4_observe.he_interested) { 16903 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 16904 &tcp->tcp_saved_tcph); 16905 } else if (tcp->tcp_ipversion == IPV6_VERSION && 16906 !ipst->ips_ip6_observe.he_interested) { 16907 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 16908 &tcp->tcp_saved_tcph); 16909 } 16910 } 16911 /* Bypass tcp protocol for fused tcp loopback */ 16912 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 16913 return; 16914 16915 mss = tcp->tcp_mss; 16916 if (tcp->tcp_xmit_zc_clean) 16917 mp = tcp_zcopy_backoff(tcp, mp, 0); 16918 16919 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16920 len = (int)(mp->b_wptr - mp->b_rptr); 16921 16922 /* 16923 * Criteria for fast path: 16924 * 16925 * 1. no unsent data 16926 * 2. single mblk in request 16927 * 3. connection established 16928 * 4. data in mblk 16929 * 5. len <= mss 16930 * 6. no tcp_valid bits 16931 */ 16932 if ((tcp->tcp_unsent != 0) || 16933 (tcp->tcp_cork) || 16934 (mp->b_cont != NULL) || 16935 (tcp->tcp_state != TCPS_ESTABLISHED) || 16936 (len == 0) || 16937 (len > mss) || 16938 (tcp->tcp_valid_bits != 0)) { 16939 tcp_wput_data(tcp, mp, B_FALSE); 16940 return; 16941 } 16942 16943 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16944 ASSERT(tcp->tcp_fin_sent == 0); 16945 16946 /* queue new packet onto retransmission queue */ 16947 if (tcp->tcp_xmit_head == NULL) { 16948 tcp->tcp_xmit_head = mp; 16949 } else { 16950 tcp->tcp_xmit_last->b_cont = mp; 16951 } 16952 tcp->tcp_xmit_last = mp; 16953 tcp->tcp_xmit_tail = mp; 16954 16955 /* find out how much we can send */ 16956 /* BEGIN CSTYLED */ 16957 /* 16958 * un-acked usable 16959 * |--------------|-----------------| 16960 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16961 */ 16962 /* END CSTYLED */ 16963 16964 /* start sending from tcp_snxt */ 16965 snxt = tcp->tcp_snxt; 16966 16967 /* 16968 * Check to see if this connection has been idled for some 16969 * time and no ACK is expected. If it is, we need to slow 16970 * start again to get back the connection's "self-clock" as 16971 * described in VJ's paper. 16972 * 16973 * Refer to the comment in tcp_mss_set() for the calculation 16974 * of tcp_cwnd after idle. 16975 */ 16976 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16977 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16978 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 16979 } 16980 16981 usable = tcp->tcp_swnd; /* tcp window size */ 16982 if (usable > tcp->tcp_cwnd) 16983 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16984 usable -= snxt; /* subtract stuff already sent */ 16985 suna = tcp->tcp_suna; 16986 usable += suna; 16987 /* usable can be < 0 if the congestion window is smaller */ 16988 if (len > usable) { 16989 /* Can't send complete M_DATA in one shot */ 16990 goto slow; 16991 } 16992 16993 mutex_enter(&tcp->tcp_non_sq_lock); 16994 if (tcp->tcp_flow_stopped && 16995 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16996 tcp_clrqfull(tcp); 16997 } 16998 mutex_exit(&tcp->tcp_non_sq_lock); 16999 17000 /* 17001 * determine if anything to send (Nagle). 17002 * 17003 * 1. len < tcp_mss (i.e. small) 17004 * 2. unacknowledged data present 17005 * 3. len < nagle limit 17006 * 4. last packet sent < nagle limit (previous packet sent) 17007 */ 17008 if ((len < mss) && (snxt != suna) && 17009 (len < (int)tcp->tcp_naglim) && 17010 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17011 /* 17012 * This was the first unsent packet and normally 17013 * mss < xmit_hiwater so there is no need to worry 17014 * about flow control. The next packet will go 17015 * through the flow control check in tcp_wput_data(). 17016 */ 17017 /* leftover work from above */ 17018 tcp->tcp_unsent = len; 17019 tcp->tcp_xmit_tail_unsent = len; 17020 17021 return; 17022 } 17023 17024 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17025 17026 if (snxt == suna) { 17027 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17028 } 17029 17030 /* we have always sent something */ 17031 tcp->tcp_rack_cnt = 0; 17032 17033 tcp->tcp_snxt = snxt + len; 17034 tcp->tcp_rack = tcp->tcp_rnxt; 17035 17036 if ((mp1 = dupb(mp)) == 0) 17037 goto no_memory; 17038 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17039 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17040 17041 /* adjust tcp header information */ 17042 tcph = tcp->tcp_tcph; 17043 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17044 17045 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17046 sum = (sum >> 16) + (sum & 0xFFFF); 17047 U16_TO_ABE16(sum, tcph->th_sum); 17048 17049 U32_TO_ABE32(snxt, tcph->th_seq); 17050 17051 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17052 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17053 BUMP_LOCAL(tcp->tcp_obsegs); 17054 17055 /* Update the latest receive window size in TCP header. */ 17056 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17057 tcph->th_win); 17058 17059 tcp->tcp_last_sent_len = (ushort_t)len; 17060 17061 plen = len + tcp->tcp_hdr_len; 17062 17063 if (tcp->tcp_ipversion == IPV4_VERSION) { 17064 tcp->tcp_ipha->ipha_length = htons(plen); 17065 } else { 17066 tcp->tcp_ip6h->ip6_plen = htons(plen - 17067 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17068 } 17069 17070 /* see if we need to allocate a mblk for the headers */ 17071 hdrlen = tcp->tcp_hdr_len; 17072 rptr = mp1->b_rptr - hdrlen; 17073 db = mp1->b_datap; 17074 if ((db->db_ref != 2) || rptr < db->db_base || 17075 (!OK_32PTR(rptr))) { 17076 /* NOTE: we assume allocb returns an OK_32PTR */ 17077 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17078 tcps->tcps_wroff_xtra, BPRI_MED); 17079 if (!mp) { 17080 freemsg(mp1); 17081 goto no_memory; 17082 } 17083 mp->b_cont = mp1; 17084 mp1 = mp; 17085 /* Leave room for Link Level header */ 17086 /* hdrlen = tcp->tcp_hdr_len; */ 17087 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17088 mp1->b_wptr = &rptr[hdrlen]; 17089 } 17090 mp1->b_rptr = rptr; 17091 17092 /* Fill in the timestamp option. */ 17093 if (tcp->tcp_snd_ts_ok) { 17094 U32_TO_BE32((uint32_t)lbolt, 17095 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17096 U32_TO_BE32(tcp->tcp_ts_recent, 17097 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17098 } else { 17099 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17100 } 17101 17102 /* copy header into outgoing packet */ 17103 dst = (ipaddr_t *)rptr; 17104 src = (ipaddr_t *)tcp->tcp_iphc; 17105 dst[0] = src[0]; 17106 dst[1] = src[1]; 17107 dst[2] = src[2]; 17108 dst[3] = src[3]; 17109 dst[4] = src[4]; 17110 dst[5] = src[5]; 17111 dst[6] = src[6]; 17112 dst[7] = src[7]; 17113 dst[8] = src[8]; 17114 dst[9] = src[9]; 17115 if (hdrlen -= 40) { 17116 hdrlen >>= 2; 17117 dst += 10; 17118 src += 10; 17119 do { 17120 *dst++ = *src++; 17121 } while (--hdrlen); 17122 } 17123 17124 /* 17125 * Set the ECN info in the TCP header. Note that this 17126 * is not the template header. 17127 */ 17128 if (tcp->tcp_ecn_ok) { 17129 SET_ECT(tcp, rptr); 17130 17131 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17132 if (tcp->tcp_ecn_echo_on) 17133 tcph->th_flags[0] |= TH_ECE; 17134 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17135 tcph->th_flags[0] |= TH_CWR; 17136 tcp->tcp_ecn_cwr_sent = B_TRUE; 17137 } 17138 } 17139 17140 if (tcp->tcp_ip_forward_progress) { 17141 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17142 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17143 tcp->tcp_ip_forward_progress = B_FALSE; 17144 } 17145 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17146 return; 17147 17148 /* 17149 * If we ran out of memory, we pretend to have sent the packet 17150 * and that it was lost on the wire. 17151 */ 17152 no_memory: 17153 return; 17154 17155 slow: 17156 /* leftover work from above */ 17157 tcp->tcp_unsent = len; 17158 tcp->tcp_xmit_tail_unsent = len; 17159 tcp_wput_data(tcp, NULL, B_FALSE); 17160 } 17161 17162 /* ARGSUSED */ 17163 void 17164 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17165 { 17166 conn_t *connp = (conn_t *)arg; 17167 tcp_t *tcp = connp->conn_tcp; 17168 queue_t *q = tcp->tcp_rq; 17169 struct tcp_options *tcpopt; 17170 tcp_stack_t *tcps = tcp->tcp_tcps; 17171 17172 /* socket options */ 17173 uint_t sopp_flags; 17174 ssize_t sopp_rxhiwat; 17175 ssize_t sopp_maxblk; 17176 ushort_t sopp_wroff; 17177 ushort_t sopp_tail; 17178 ushort_t sopp_copyopt; 17179 17180 tcpopt = (struct tcp_options *)mp->b_rptr; 17181 17182 /* 17183 * Drop the eager's ref on the listener, that was placed when 17184 * this eager began life in tcp_conn_request. 17185 */ 17186 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17187 if (IPCL_IS_NONSTR(connp)) { 17188 /* Safe to free conn_ind message */ 17189 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17190 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17191 } 17192 17193 tcp->tcp_detached = B_FALSE; 17194 17195 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17196 /* 17197 * Someone blewoff the eager before we could finish 17198 * the accept. 17199 * 17200 * The only reason eager exists it because we put in 17201 * a ref on it when conn ind went up. We need to send 17202 * a disconnect indication up while the last reference 17203 * on the eager will be dropped by the squeue when we 17204 * return. 17205 */ 17206 ASSERT(tcp->tcp_listener == NULL); 17207 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17208 if (IPCL_IS_NONSTR(connp)) { 17209 ASSERT(tcp->tcp_issocket); 17210 (*connp->conn_upcalls->su_disconnected)( 17211 connp->conn_upper_handle, tcp->tcp_connid, 17212 ECONNREFUSED); 17213 freemsg(mp); 17214 } else { 17215 struct T_discon_ind *tdi; 17216 17217 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17218 /* 17219 * Let us reuse the incoming mblk to avoid 17220 * memory allocation failure problems. We know 17221 * that the size of the incoming mblk i.e. 17222 * stroptions is greater than sizeof 17223 * T_discon_ind. So the reallocb below can't 17224 * fail. 17225 */ 17226 freemsg(mp->b_cont); 17227 mp->b_cont = NULL; 17228 ASSERT(DB_REF(mp) == 1); 17229 mp = reallocb(mp, sizeof (struct T_discon_ind), 17230 B_FALSE); 17231 ASSERT(mp != NULL); 17232 DB_TYPE(mp) = M_PROTO; 17233 ((union T_primitives *)mp->b_rptr)->type = 17234 T_DISCON_IND; 17235 tdi = (struct T_discon_ind *)mp->b_rptr; 17236 if (tcp->tcp_issocket) { 17237 tdi->DISCON_reason = ECONNREFUSED; 17238 tdi->SEQ_number = 0; 17239 } else { 17240 tdi->DISCON_reason = ENOPROTOOPT; 17241 tdi->SEQ_number = 17242 tcp->tcp_conn_req_seqnum; 17243 } 17244 mp->b_wptr = mp->b_rptr + 17245 sizeof (struct T_discon_ind); 17246 putnext(q, mp); 17247 return; 17248 } 17249 } 17250 if (tcp->tcp_hard_binding) { 17251 tcp->tcp_hard_binding = B_FALSE; 17252 tcp->tcp_hard_bound = B_TRUE; 17253 } 17254 return; 17255 } 17256 17257 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17258 int boundif = tcpopt->to_boundif; 17259 uint_t len = sizeof (int); 17260 17261 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17262 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17263 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17264 } 17265 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17266 uint_t on = 1; 17267 uint_t len = sizeof (uint_t); 17268 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17269 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17270 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17271 } 17272 17273 /* 17274 * Set max window size (tcp_recv_hiwater) of the acceptor. 17275 */ 17276 if (tcp->tcp_rcv_list == NULL) { 17277 /* 17278 * Recv queue is empty, tcp_rwnd should not have changed. 17279 * That means it should be equal to the listener's tcp_rwnd. 17280 */ 17281 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17282 } else { 17283 #ifdef DEBUG 17284 mblk_t *tmp; 17285 mblk_t *mp1; 17286 uint_t cnt = 0; 17287 17288 mp1 = tcp->tcp_rcv_list; 17289 while ((tmp = mp1) != NULL) { 17290 mp1 = tmp->b_next; 17291 cnt += msgdsize(tmp); 17292 } 17293 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17294 #endif 17295 /* There is some data, add them back to get the max. */ 17296 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17297 } 17298 /* 17299 * This is the first time we run on the correct 17300 * queue after tcp_accept. So fix all the q parameters 17301 * here. 17302 */ 17303 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17304 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17305 17306 sopp_rxhiwat = tcp->tcp_fused ? 17307 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17308 tcp->tcp_recv_hiwater; 17309 17310 /* 17311 * Determine what write offset value to use depending on SACK and 17312 * whether the endpoint is fused or not. 17313 */ 17314 if (tcp->tcp_fused) { 17315 ASSERT(tcp->tcp_loopback); 17316 ASSERT(tcp->tcp_loopback_peer != NULL); 17317 /* 17318 * For fused tcp loopback, set the stream head's write 17319 * offset value to zero since we won't be needing any room 17320 * for TCP/IP headers. This would also improve performance 17321 * since it would reduce the amount of work done by kmem. 17322 * Non-fused tcp loopback case is handled separately below. 17323 */ 17324 sopp_wroff = 0; 17325 /* 17326 * Update the peer's transmit parameters according to 17327 * our recently calculated high water mark value. 17328 */ 17329 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17330 } else if (tcp->tcp_snd_sack_ok) { 17331 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17332 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17333 } else { 17334 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17335 tcps->tcps_wroff_xtra); 17336 } 17337 17338 /* 17339 * If this is endpoint is handling SSL, then reserve extra 17340 * offset and space at the end. 17341 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17342 * overriding the previous setting. The extra cost of signing and 17343 * encrypting multiple MSS-size records (12 of them with Ethernet), 17344 * instead of a single contiguous one by the stream head 17345 * largely outweighs the statistical reduction of ACKs, when 17346 * applicable. The peer will also save on decryption and verification 17347 * costs. 17348 */ 17349 if (tcp->tcp_kssl_ctx != NULL) { 17350 sopp_wroff += SSL3_WROFFSET; 17351 17352 sopp_flags |= SOCKOPT_TAIL; 17353 sopp_tail = SSL3_MAX_TAIL_LEN; 17354 17355 sopp_flags |= SOCKOPT_ZCOPY; 17356 sopp_copyopt = ZCVMUNSAFE; 17357 17358 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17359 } 17360 17361 /* Send the options up */ 17362 if (IPCL_IS_NONSTR(connp)) { 17363 struct sock_proto_props sopp; 17364 17365 sopp.sopp_flags = sopp_flags; 17366 sopp.sopp_wroff = sopp_wroff; 17367 sopp.sopp_maxblk = sopp_maxblk; 17368 sopp.sopp_rxhiwat = sopp_rxhiwat; 17369 if (sopp_flags & SOCKOPT_TAIL) { 17370 ASSERT(tcp->tcp_kssl_ctx != NULL); 17371 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17372 sopp.sopp_tail = sopp_tail; 17373 sopp.sopp_zcopyflag = sopp_copyopt; 17374 } 17375 if (tcp->tcp_loopback) { 17376 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 17377 sopp.sopp_loopback = B_TRUE; 17378 } 17379 (*connp->conn_upcalls->su_set_proto_props) 17380 (connp->conn_upper_handle, &sopp); 17381 } else { 17382 struct stroptions *stropt; 17383 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17384 if (stropt_mp == NULL) { 17385 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17386 return; 17387 } 17388 DB_TYPE(stropt_mp) = M_SETOPTS; 17389 stropt = (struct stroptions *)stropt_mp->b_rptr; 17390 stropt_mp->b_wptr += sizeof (struct stroptions); 17391 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 17392 stropt->so_hiwat = sopp_rxhiwat; 17393 stropt->so_wroff = sopp_wroff; 17394 stropt->so_maxblk = sopp_maxblk; 17395 17396 if (sopp_flags & SOCKOPT_TAIL) { 17397 ASSERT(tcp->tcp_kssl_ctx != NULL); 17398 17399 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17400 stropt->so_tail = sopp_tail; 17401 stropt->so_copyopt = sopp_copyopt; 17402 } 17403 17404 /* Send the options up */ 17405 putnext(q, stropt_mp); 17406 } 17407 17408 freemsg(mp); 17409 /* 17410 * Pass up any data and/or a fin that has been received. 17411 * 17412 * Adjust receive window in case it had decreased 17413 * (because there is data <=> tcp_rcv_list != NULL) 17414 * while the connection was detached. Note that 17415 * in case the eager was flow-controlled, w/o this 17416 * code, the rwnd may never open up again! 17417 */ 17418 if (tcp->tcp_rcv_list != NULL) { 17419 if (IPCL_IS_NONSTR(connp)) { 17420 mblk_t *mp; 17421 int space_left; 17422 int error; 17423 boolean_t push = B_TRUE; 17424 17425 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17426 (connp->conn_upper_handle, NULL, 0, 0, &error, 17427 &push) >= 0) { 17428 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17429 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17430 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17431 tcp_xmit_ctl(NULL, 17432 tcp, (tcp->tcp_swnd == 0) ? 17433 tcp->tcp_suna : tcp->tcp_snxt, 17434 tcp->tcp_rnxt, TH_ACK); 17435 } 17436 } 17437 while ((mp = tcp->tcp_rcv_list) != NULL) { 17438 push = B_TRUE; 17439 tcp->tcp_rcv_list = mp->b_next; 17440 mp->b_next = NULL; 17441 space_left = (*connp->conn_upcalls->su_recv) 17442 (connp->conn_upper_handle, mp, msgdsize(mp), 17443 0, &error, &push); 17444 if (space_left < 0) { 17445 /* 17446 * We should never be in middle of a 17447 * fallback, the squeue guarantees that. 17448 */ 17449 ASSERT(error != EOPNOTSUPP); 17450 } 17451 } 17452 tcp->tcp_rcv_last_head = NULL; 17453 tcp->tcp_rcv_last_tail = NULL; 17454 tcp->tcp_rcv_cnt = 0; 17455 } else { 17456 /* We drain directly in case of fused tcp loopback */ 17457 17458 if (!tcp->tcp_fused && canputnext(q)) { 17459 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17460 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17461 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17462 tcp_xmit_ctl(NULL, 17463 tcp, (tcp->tcp_swnd == 0) ? 17464 tcp->tcp_suna : tcp->tcp_snxt, 17465 tcp->tcp_rnxt, TH_ACK); 17466 } 17467 } 17468 17469 (void) tcp_rcv_drain(tcp); 17470 } 17471 17472 /* 17473 * For fused tcp loopback, back-enable peer endpoint 17474 * if it's currently flow-controlled. 17475 */ 17476 if (tcp->tcp_fused) { 17477 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17478 17479 ASSERT(peer_tcp != NULL); 17480 ASSERT(peer_tcp->tcp_fused); 17481 17482 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17483 if (peer_tcp->tcp_flow_stopped) { 17484 tcp_clrqfull(peer_tcp); 17485 TCP_STAT(tcps, tcp_fusion_backenabled); 17486 } 17487 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17488 } 17489 } 17490 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17491 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17492 tcp->tcp_ordrel_done = B_TRUE; 17493 if (IPCL_IS_NONSTR(connp)) { 17494 ASSERT(tcp->tcp_ordrel_mp == NULL); 17495 (*connp->conn_upcalls->su_opctl)( 17496 connp->conn_upper_handle, 17497 SOCK_OPCTL_SHUT_RECV, 0); 17498 } else { 17499 mp = tcp->tcp_ordrel_mp; 17500 tcp->tcp_ordrel_mp = NULL; 17501 putnext(q, mp); 17502 } 17503 } 17504 if (tcp->tcp_hard_binding) { 17505 tcp->tcp_hard_binding = B_FALSE; 17506 tcp->tcp_hard_bound = B_TRUE; 17507 } 17508 17509 if (tcp->tcp_ka_enabled) { 17510 tcp->tcp_ka_last_intrvl = 0; 17511 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17512 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17513 } 17514 17515 /* 17516 * At this point, eager is fully established and will 17517 * have the following references - 17518 * 17519 * 2 references for connection to exist (1 for TCP and 1 for IP). 17520 * 1 reference for the squeue which will be dropped by the squeue as 17521 * soon as this function returns. 17522 * There will be 1 additonal reference for being in classifier 17523 * hash list provided something bad hasn't happened. 17524 */ 17525 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17526 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17527 } 17528 17529 /* 17530 * The function called through squeue to get behind listener's perimeter to 17531 * send a deffered conn_ind. 17532 */ 17533 /* ARGSUSED */ 17534 void 17535 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17536 { 17537 conn_t *connp = (conn_t *)arg; 17538 tcp_t *listener = connp->conn_tcp; 17539 struct T_conn_ind *conn_ind; 17540 tcp_t *tcp; 17541 17542 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17543 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17544 conn_ind->OPT_length); 17545 17546 if (listener->tcp_state != TCPS_LISTEN) { 17547 /* 17548 * If listener has closed, it would have caused a 17549 * a cleanup/blowoff to happen for the eager, so 17550 * we don't need to do anything more. 17551 */ 17552 freemsg(mp); 17553 return; 17554 } 17555 17556 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17557 } 17558 17559 /* ARGSUSED */ 17560 static int 17561 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17562 { 17563 tcp_t *listener, *eager; 17564 mblk_t *opt_mp; 17565 struct tcp_options *tcpopt; 17566 17567 listener = lconnp->conn_tcp; 17568 ASSERT(listener->tcp_state == TCPS_LISTEN); 17569 eager = econnp->conn_tcp; 17570 ASSERT(eager->tcp_listener != NULL); 17571 17572 ASSERT(eager->tcp_rq != NULL); 17573 17574 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17575 if (opt_mp == NULL) { 17576 return (-TPROTO); 17577 } 17578 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17579 eager->tcp_issocket = B_TRUE; 17580 17581 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17582 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17583 ASSERT(econnp->conn_netstack == 17584 listener->tcp_connp->conn_netstack); 17585 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17586 17587 /* Put the ref for IP */ 17588 CONN_INC_REF(econnp); 17589 17590 /* 17591 * We should have minimum of 3 references on the conn 17592 * at this point. One each for TCP and IP and one for 17593 * the T_conn_ind that was sent up when the 3-way handshake 17594 * completed. In the normal case we would also have another 17595 * reference (making a total of 4) for the conn being in the 17596 * classifier hash list. However the eager could have received 17597 * an RST subsequently and tcp_closei_local could have removed 17598 * the eager from the classifier hash list, hence we can't 17599 * assert that reference. 17600 */ 17601 ASSERT(econnp->conn_ref >= 3); 17602 17603 opt_mp->b_datap->db_type = M_SETOPTS; 17604 opt_mp->b_wptr += sizeof (struct tcp_options); 17605 17606 /* 17607 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17608 * from listener to acceptor. 17609 */ 17610 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17611 tcpopt->to_flags = 0; 17612 17613 if (listener->tcp_bound_if != 0) { 17614 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17615 tcpopt->to_boundif = listener->tcp_bound_if; 17616 } 17617 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17618 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17619 } 17620 17621 mutex_enter(&listener->tcp_eager_lock); 17622 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17623 17624 tcp_t *tail; 17625 tcp_t *tcp; 17626 mblk_t *mp1; 17627 17628 tcp = listener->tcp_eager_prev_q0; 17629 /* 17630 * listener->tcp_eager_prev_q0 points to the TAIL of the 17631 * deferred T_conn_ind queue. We need to get to the head 17632 * of the queue in order to send up T_conn_ind the same 17633 * order as how the 3WHS is completed. 17634 */ 17635 while (tcp != listener) { 17636 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17637 !tcp->tcp_kssl_pending) 17638 break; 17639 else 17640 tcp = tcp->tcp_eager_prev_q0; 17641 } 17642 /* None of the pending eagers can be sent up now */ 17643 if (tcp == listener) 17644 goto no_more_eagers; 17645 17646 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17647 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17648 /* Move from q0 to q */ 17649 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17650 listener->tcp_conn_req_cnt_q0--; 17651 listener->tcp_conn_req_cnt_q++; 17652 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17653 tcp->tcp_eager_prev_q0; 17654 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17655 tcp->tcp_eager_next_q0; 17656 tcp->tcp_eager_prev_q0 = NULL; 17657 tcp->tcp_eager_next_q0 = NULL; 17658 tcp->tcp_conn_def_q0 = B_FALSE; 17659 17660 /* Make sure the tcp isn't in the list of droppables */ 17661 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17662 tcp->tcp_eager_prev_drop_q0 == NULL); 17663 17664 /* 17665 * Insert at end of the queue because sockfs sends 17666 * down T_CONN_RES in chronological order. Leaving 17667 * the older conn indications at front of the queue 17668 * helps reducing search time. 17669 */ 17670 tail = listener->tcp_eager_last_q; 17671 if (tail != NULL) { 17672 tail->tcp_eager_next_q = tcp; 17673 } else { 17674 listener->tcp_eager_next_q = tcp; 17675 } 17676 listener->tcp_eager_last_q = tcp; 17677 tcp->tcp_eager_next_q = NULL; 17678 17679 /* Need to get inside the listener perimeter */ 17680 CONN_INC_REF(listener->tcp_connp); 17681 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17682 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17683 SQTAG_TCP_SEND_PENDING); 17684 } 17685 no_more_eagers: 17686 tcp_eager_unlink(eager); 17687 mutex_exit(&listener->tcp_eager_lock); 17688 17689 /* 17690 * At this point, the eager is detached from the listener 17691 * but we still have an extra refs on eager (apart from the 17692 * usual tcp references). The ref was placed in tcp_rput_data 17693 * before sending the conn_ind in tcp_send_conn_ind. 17694 * The ref will be dropped in tcp_accept_finish(). 17695 */ 17696 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 17697 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 17698 return (0); 17699 } 17700 17701 int 17702 tcp_accept(sock_lower_handle_t lproto_handle, 17703 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 17704 cred_t *cr) 17705 { 17706 conn_t *lconnp, *econnp; 17707 tcp_t *listener, *eager; 17708 tcp_stack_t *tcps; 17709 17710 lconnp = (conn_t *)lproto_handle; 17711 listener = lconnp->conn_tcp; 17712 ASSERT(listener->tcp_state == TCPS_LISTEN); 17713 econnp = (conn_t *)eproto_handle; 17714 eager = econnp->conn_tcp; 17715 ASSERT(eager->tcp_listener != NULL); 17716 tcps = eager->tcp_tcps; 17717 17718 /* 17719 * It is OK to manipulate these fields outside the eager's squeue 17720 * because they will not start being used until tcp_accept_finish 17721 * has been called. 17722 */ 17723 ASSERT(lconnp->conn_upper_handle != NULL); 17724 ASSERT(econnp->conn_upper_handle == NULL); 17725 econnp->conn_upper_handle = sock_handle; 17726 econnp->conn_upcalls = lconnp->conn_upcalls; 17727 ASSERT(IPCL_IS_NONSTR(econnp)); 17728 /* 17729 * Create helper stream if it is a non-TPI TCP connection. 17730 */ 17731 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 17732 ip1dbg(("tcp_accept: create of IP helper stream" 17733 " failed\n")); 17734 return (EPROTO); 17735 } 17736 eager->tcp_rq = econnp->conn_rq; 17737 eager->tcp_wq = econnp->conn_wq; 17738 17739 ASSERT(eager->tcp_rq != NULL); 17740 17741 return (tcp_accept_common(lconnp, econnp, cr)); 17742 } 17743 17744 17745 /* 17746 * This is the STREAMS entry point for T_CONN_RES coming down on 17747 * Acceptor STREAM when sockfs listener does accept processing. 17748 * Read the block comment on top of tcp_conn_request(). 17749 */ 17750 void 17751 tcp_tpi_accept(queue_t *q, mblk_t *mp) 17752 { 17753 queue_t *rq = RD(q); 17754 struct T_conn_res *conn_res; 17755 tcp_t *eager; 17756 tcp_t *listener; 17757 struct T_ok_ack *ok; 17758 t_scalar_t PRIM_type; 17759 conn_t *econnp; 17760 cred_t *cr; 17761 17762 ASSERT(DB_TYPE(mp) == M_PROTO); 17763 17764 /* 17765 * All Solaris components should pass a db_credp 17766 * for this TPI message, hence we ASSERT. 17767 * But in case there is some other M_PROTO that looks 17768 * like a TPI message sent by some other kernel 17769 * component, we check and return an error. 17770 */ 17771 cr = msg_getcred(mp, NULL); 17772 ASSERT(cr != NULL); 17773 if (cr == NULL) { 17774 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 17775 if (mp != NULL) 17776 putnext(rq, mp); 17777 return; 17778 } 17779 conn_res = (struct T_conn_res *)mp->b_rptr; 17780 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17781 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17782 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17783 if (mp != NULL) 17784 putnext(rq, mp); 17785 return; 17786 } 17787 switch (conn_res->PRIM_type) { 17788 case O_T_CONN_RES: 17789 case T_CONN_RES: 17790 /* 17791 * We pass up an err ack if allocb fails. This will 17792 * cause sockfs to issue a T_DISCON_REQ which will cause 17793 * tcp_eager_blowoff to be called. sockfs will then call 17794 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17795 * we need to do the allocb up here because we have to 17796 * make sure rq->q_qinfo->qi_qclose still points to the 17797 * correct function (tcp_tpi_close_accept) in case allocb 17798 * fails. 17799 */ 17800 bcopy(mp->b_rptr + conn_res->OPT_offset, 17801 &eager, conn_res->OPT_length); 17802 PRIM_type = conn_res->PRIM_type; 17803 mp->b_datap->db_type = M_PCPROTO; 17804 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17805 ok = (struct T_ok_ack *)mp->b_rptr; 17806 ok->PRIM_type = T_OK_ACK; 17807 ok->CORRECT_prim = PRIM_type; 17808 econnp = eager->tcp_connp; 17809 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 17810 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 17811 eager->tcp_rq = rq; 17812 eager->tcp_wq = q; 17813 rq->q_ptr = econnp; 17814 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 17815 q->q_ptr = econnp; 17816 q->q_qinfo = &tcp_winit; 17817 listener = eager->tcp_listener; 17818 17819 if (tcp_accept_common(listener->tcp_connp, 17820 econnp, cr) < 0) { 17821 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17822 if (mp != NULL) 17823 putnext(rq, mp); 17824 return; 17825 } 17826 17827 /* 17828 * Send the new local address also up to sockfs. There 17829 * should already be enough space in the mp that came 17830 * down from soaccept(). 17831 */ 17832 if (eager->tcp_family == AF_INET) { 17833 sin_t *sin; 17834 17835 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17836 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17837 sin = (sin_t *)mp->b_wptr; 17838 mp->b_wptr += sizeof (sin_t); 17839 sin->sin_family = AF_INET; 17840 sin->sin_port = eager->tcp_lport; 17841 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17842 } else { 17843 sin6_t *sin6; 17844 17845 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17846 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17847 sin6 = (sin6_t *)mp->b_wptr; 17848 mp->b_wptr += sizeof (sin6_t); 17849 sin6->sin6_family = AF_INET6; 17850 sin6->sin6_port = eager->tcp_lport; 17851 if (eager->tcp_ipversion == IPV4_VERSION) { 17852 sin6->sin6_flowinfo = 0; 17853 IN6_IPADDR_TO_V4MAPPED( 17854 eager->tcp_ipha->ipha_src, 17855 &sin6->sin6_addr); 17856 } else { 17857 ASSERT(eager->tcp_ip6h != NULL); 17858 sin6->sin6_flowinfo = 17859 eager->tcp_ip6h->ip6_vcf & 17860 ~IPV6_VERS_AND_FLOW_MASK; 17861 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17862 } 17863 sin6->sin6_scope_id = 0; 17864 sin6->__sin6_src_id = 0; 17865 } 17866 17867 putnext(rq, mp); 17868 return; 17869 default: 17870 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17871 if (mp != NULL) 17872 putnext(rq, mp); 17873 return; 17874 } 17875 } 17876 17877 static int 17878 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17879 { 17880 sin_t *sin = (sin_t *)sa; 17881 sin6_t *sin6 = (sin6_t *)sa; 17882 17883 switch (tcp->tcp_family) { 17884 case AF_INET: 17885 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17886 17887 if (*salenp < sizeof (sin_t)) 17888 return (EINVAL); 17889 17890 *sin = sin_null; 17891 sin->sin_family = AF_INET; 17892 if (tcp->tcp_state >= TCPS_BOUND) { 17893 sin->sin_port = tcp->tcp_lport; 17894 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 17895 } 17896 *salenp = sizeof (sin_t); 17897 break; 17898 17899 case AF_INET6: 17900 if (*salenp < sizeof (sin6_t)) 17901 return (EINVAL); 17902 17903 *sin6 = sin6_null; 17904 sin6->sin6_family = AF_INET6; 17905 if (tcp->tcp_state >= TCPS_BOUND) { 17906 sin6->sin6_port = tcp->tcp_lport; 17907 mutex_enter(&tcp->tcp_connp->conn_lock); 17908 if (tcp->tcp_ipversion == IPV4_VERSION) { 17909 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 17910 &sin6->sin6_addr); 17911 } else { 17912 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 17913 } 17914 mutex_exit(&tcp->tcp_connp->conn_lock); 17915 } 17916 *salenp = sizeof (sin6_t); 17917 break; 17918 } 17919 17920 return (0); 17921 } 17922 17923 static int 17924 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17925 { 17926 sin_t *sin = (sin_t *)sa; 17927 sin6_t *sin6 = (sin6_t *)sa; 17928 17929 if (tcp->tcp_state < TCPS_SYN_RCVD) 17930 return (ENOTCONN); 17931 17932 switch (tcp->tcp_family) { 17933 case AF_INET: 17934 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17935 17936 if (*salenp < sizeof (sin_t)) 17937 return (EINVAL); 17938 17939 *sin = sin_null; 17940 sin->sin_family = AF_INET; 17941 sin->sin_port = tcp->tcp_fport; 17942 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 17943 sin->sin_addr.s_addr); 17944 *salenp = sizeof (sin_t); 17945 break; 17946 17947 case AF_INET6: 17948 if (*salenp < sizeof (sin6_t)) 17949 return (EINVAL); 17950 17951 *sin6 = sin6_null; 17952 sin6->sin6_family = AF_INET6; 17953 sin6->sin6_port = tcp->tcp_fport; 17954 sin6->sin6_addr = tcp->tcp_remote_v6; 17955 mutex_enter(&tcp->tcp_connp->conn_lock); 17956 if (tcp->tcp_ipversion == IPV6_VERSION) { 17957 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 17958 ~IPV6_VERS_AND_FLOW_MASK; 17959 } 17960 mutex_exit(&tcp->tcp_connp->conn_lock); 17961 *salenp = sizeof (sin6_t); 17962 break; 17963 } 17964 17965 return (0); 17966 } 17967 17968 /* 17969 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 17970 */ 17971 static void 17972 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 17973 { 17974 void *data; 17975 mblk_t *datamp = mp->b_cont; 17976 tcp_t *tcp = Q_TO_TCP(q); 17977 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 17978 17979 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 17980 cmdp->cb_error = EPROTO; 17981 qreply(q, mp); 17982 return; 17983 } 17984 17985 data = datamp->b_rptr; 17986 17987 switch (cmdp->cb_cmd) { 17988 case TI_GETPEERNAME: 17989 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 17990 break; 17991 case TI_GETMYNAME: 17992 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 17993 break; 17994 default: 17995 cmdp->cb_error = EINVAL; 17996 break; 17997 } 17998 17999 qreply(q, mp); 18000 } 18001 18002 void 18003 tcp_wput(queue_t *q, mblk_t *mp) 18004 { 18005 conn_t *connp = Q_TO_CONN(q); 18006 tcp_t *tcp; 18007 void (*output_proc)(); 18008 t_scalar_t type; 18009 uchar_t *rptr; 18010 struct iocblk *iocp; 18011 size_t size; 18012 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18013 18014 ASSERT(connp->conn_ref >= 2); 18015 18016 switch (DB_TYPE(mp)) { 18017 case M_DATA: 18018 tcp = connp->conn_tcp; 18019 ASSERT(tcp != NULL); 18020 18021 size = msgdsize(mp); 18022 18023 mutex_enter(&tcp->tcp_non_sq_lock); 18024 tcp->tcp_squeue_bytes += size; 18025 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18026 tcp_setqfull(tcp); 18027 } 18028 mutex_exit(&tcp->tcp_non_sq_lock); 18029 18030 CONN_INC_REF(connp); 18031 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18032 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18033 return; 18034 18035 case M_CMD: 18036 tcp_wput_cmdblk(q, mp); 18037 return; 18038 18039 case M_PROTO: 18040 case M_PCPROTO: 18041 /* 18042 * if it is a snmp message, don't get behind the squeue 18043 */ 18044 tcp = connp->conn_tcp; 18045 rptr = mp->b_rptr; 18046 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18047 type = ((union T_primitives *)rptr)->type; 18048 } else { 18049 if (tcp->tcp_debug) { 18050 (void) strlog(TCP_MOD_ID, 0, 1, 18051 SL_ERROR|SL_TRACE, 18052 "tcp_wput_proto, dropping one..."); 18053 } 18054 freemsg(mp); 18055 return; 18056 } 18057 if (type == T_SVR4_OPTMGMT_REQ) { 18058 /* 18059 * All Solaris components should pass a db_credp 18060 * for this TPI message, hence we ASSERT. 18061 * But in case there is some other M_PROTO that looks 18062 * like a TPI message sent by some other kernel 18063 * component, we check and return an error. 18064 */ 18065 cred_t *cr = msg_getcred(mp, NULL); 18066 18067 ASSERT(cr != NULL); 18068 if (cr == NULL) { 18069 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18070 return; 18071 } 18072 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18073 cr)) { 18074 /* 18075 * This was a SNMP request 18076 */ 18077 return; 18078 } else { 18079 output_proc = tcp_wput_proto; 18080 } 18081 } else { 18082 output_proc = tcp_wput_proto; 18083 } 18084 break; 18085 case M_IOCTL: 18086 /* 18087 * Most ioctls can be processed right away without going via 18088 * squeues - process them right here. Those that do require 18089 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18090 * are processed by tcp_wput_ioctl(). 18091 */ 18092 iocp = (struct iocblk *)mp->b_rptr; 18093 tcp = connp->conn_tcp; 18094 18095 switch (iocp->ioc_cmd) { 18096 case TCP_IOC_ABORT_CONN: 18097 tcp_ioctl_abort_conn(q, mp); 18098 return; 18099 case TI_GETPEERNAME: 18100 case TI_GETMYNAME: 18101 mi_copyin(q, mp, NULL, 18102 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18103 return; 18104 case ND_SET: 18105 /* nd_getset does the necessary checks */ 18106 case ND_GET: 18107 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18108 CALL_IP_WPUT(connp, q, mp); 18109 return; 18110 } 18111 qreply(q, mp); 18112 return; 18113 case TCP_IOC_DEFAULT_Q: 18114 /* 18115 * Wants to be the default wq. Check the credentials 18116 * first, the rest is executed via squeue. 18117 */ 18118 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18119 iocp->ioc_error = EPERM; 18120 iocp->ioc_count = 0; 18121 mp->b_datap->db_type = M_IOCACK; 18122 qreply(q, mp); 18123 return; 18124 } 18125 output_proc = tcp_wput_ioctl; 18126 break; 18127 default: 18128 output_proc = tcp_wput_ioctl; 18129 break; 18130 } 18131 break; 18132 default: 18133 output_proc = tcp_wput_nondata; 18134 break; 18135 } 18136 18137 CONN_INC_REF(connp); 18138 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18139 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18140 } 18141 18142 /* 18143 * Initial STREAMS write side put() procedure for sockets. It tries to 18144 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18145 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18146 * are handled by tcp_wput() as usual. 18147 * 18148 * All further messages will also be handled by tcp_wput() because we cannot 18149 * be sure that the above short cut is safe later. 18150 */ 18151 static void 18152 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18153 { 18154 conn_t *connp = Q_TO_CONN(wq); 18155 tcp_t *tcp = connp->conn_tcp; 18156 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18157 18158 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18159 wq->q_qinfo = &tcp_winit; 18160 18161 ASSERT(IPCL_IS_TCP(connp)); 18162 ASSERT(TCP_IS_SOCKET(tcp)); 18163 18164 if (DB_TYPE(mp) == M_PCPROTO && 18165 MBLKL(mp) == sizeof (struct T_capability_req) && 18166 car->PRIM_type == T_CAPABILITY_REQ) { 18167 tcp_capability_req(tcp, mp); 18168 return; 18169 } 18170 18171 tcp_wput(wq, mp); 18172 } 18173 18174 /* ARGSUSED */ 18175 static void 18176 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18177 { 18178 #ifdef DEBUG 18179 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18180 #endif 18181 freemsg(mp); 18182 } 18183 18184 static boolean_t 18185 tcp_zcopy_check(tcp_t *tcp) 18186 { 18187 conn_t *connp = tcp->tcp_connp; 18188 ire_t *ire; 18189 boolean_t zc_enabled = B_FALSE; 18190 tcp_stack_t *tcps = tcp->tcp_tcps; 18191 18192 if (do_tcpzcopy == 2) 18193 zc_enabled = B_TRUE; 18194 else if (tcp->tcp_ipversion == IPV4_VERSION && 18195 IPCL_IS_CONNECTED(connp) && 18196 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18197 connp->conn_dontroute == 0 && 18198 !connp->conn_nexthop_set && 18199 connp->conn_outgoing_ill == NULL && 18200 do_tcpzcopy == 1) { 18201 /* 18202 * the checks above closely resemble the fast path checks 18203 * in tcp_send_data(). 18204 */ 18205 mutex_enter(&connp->conn_lock); 18206 ire = connp->conn_ire_cache; 18207 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18208 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18209 IRE_REFHOLD(ire); 18210 if (ire->ire_stq != NULL) { 18211 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18212 18213 zc_enabled = ill && (ill->ill_capabilities & 18214 ILL_CAPAB_ZEROCOPY) && 18215 (ill->ill_zerocopy_capab-> 18216 ill_zerocopy_flags != 0); 18217 } 18218 IRE_REFRELE(ire); 18219 } 18220 mutex_exit(&connp->conn_lock); 18221 } 18222 tcp->tcp_snd_zcopy_on = zc_enabled; 18223 if (!TCP_IS_DETACHED(tcp)) { 18224 if (zc_enabled) { 18225 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18226 ZCVMSAFE); 18227 TCP_STAT(tcps, tcp_zcopy_on); 18228 } else { 18229 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18230 ZCVMUNSAFE); 18231 TCP_STAT(tcps, tcp_zcopy_off); 18232 } 18233 } 18234 return (zc_enabled); 18235 } 18236 18237 static mblk_t * 18238 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18239 { 18240 tcp_stack_t *tcps = tcp->tcp_tcps; 18241 18242 if (do_tcpzcopy == 2) 18243 return (bp); 18244 else if (tcp->tcp_snd_zcopy_on) { 18245 tcp->tcp_snd_zcopy_on = B_FALSE; 18246 if (!TCP_IS_DETACHED(tcp)) { 18247 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18248 ZCVMUNSAFE); 18249 TCP_STAT(tcps, tcp_zcopy_disable); 18250 } 18251 } 18252 return (tcp_zcopy_backoff(tcp, bp, 0)); 18253 } 18254 18255 /* 18256 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18257 * the original desballoca'ed segmapped mblk. 18258 */ 18259 static mblk_t * 18260 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18261 { 18262 mblk_t *head, *tail, *nbp; 18263 tcp_stack_t *tcps = tcp->tcp_tcps; 18264 18265 if (IS_VMLOANED_MBLK(bp)) { 18266 TCP_STAT(tcps, tcp_zcopy_backoff); 18267 if ((head = copyb(bp)) == NULL) { 18268 /* fail to backoff; leave it for the next backoff */ 18269 tcp->tcp_xmit_zc_clean = B_FALSE; 18270 return (bp); 18271 } 18272 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18273 if (fix_xmitlist) 18274 tcp_zcopy_notify(tcp); 18275 else 18276 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18277 } 18278 nbp = bp->b_cont; 18279 if (fix_xmitlist) { 18280 head->b_prev = bp->b_prev; 18281 head->b_next = bp->b_next; 18282 if (tcp->tcp_xmit_tail == bp) 18283 tcp->tcp_xmit_tail = head; 18284 } 18285 bp->b_next = NULL; 18286 bp->b_prev = NULL; 18287 freeb(bp); 18288 } else { 18289 head = bp; 18290 nbp = bp->b_cont; 18291 } 18292 tail = head; 18293 while (nbp) { 18294 if (IS_VMLOANED_MBLK(nbp)) { 18295 TCP_STAT(tcps, tcp_zcopy_backoff); 18296 if ((tail->b_cont = copyb(nbp)) == NULL) { 18297 tcp->tcp_xmit_zc_clean = B_FALSE; 18298 tail->b_cont = nbp; 18299 return (head); 18300 } 18301 tail = tail->b_cont; 18302 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18303 if (fix_xmitlist) 18304 tcp_zcopy_notify(tcp); 18305 else 18306 tail->b_datap->db_struioflag |= 18307 STRUIO_ZCNOTIFY; 18308 } 18309 bp = nbp; 18310 nbp = nbp->b_cont; 18311 if (fix_xmitlist) { 18312 tail->b_prev = bp->b_prev; 18313 tail->b_next = bp->b_next; 18314 if (tcp->tcp_xmit_tail == bp) 18315 tcp->tcp_xmit_tail = tail; 18316 } 18317 bp->b_next = NULL; 18318 bp->b_prev = NULL; 18319 freeb(bp); 18320 } else { 18321 tail->b_cont = nbp; 18322 tail = nbp; 18323 nbp = nbp->b_cont; 18324 } 18325 } 18326 if (fix_xmitlist) { 18327 tcp->tcp_xmit_last = tail; 18328 tcp->tcp_xmit_zc_clean = B_TRUE; 18329 } 18330 return (head); 18331 } 18332 18333 static void 18334 tcp_zcopy_notify(tcp_t *tcp) 18335 { 18336 struct stdata *stp; 18337 conn_t *connp; 18338 18339 if (tcp->tcp_detached) 18340 return; 18341 connp = tcp->tcp_connp; 18342 if (IPCL_IS_NONSTR(connp)) { 18343 (*connp->conn_upcalls->su_zcopy_notify) 18344 (connp->conn_upper_handle); 18345 return; 18346 } 18347 stp = STREAM(tcp->tcp_rq); 18348 mutex_enter(&stp->sd_lock); 18349 stp->sd_flag |= STZCNOTIFY; 18350 cv_broadcast(&stp->sd_zcopy_wait); 18351 mutex_exit(&stp->sd_lock); 18352 } 18353 18354 static boolean_t 18355 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18356 { 18357 ire_t *ire; 18358 conn_t *connp = tcp->tcp_connp; 18359 tcp_stack_t *tcps = tcp->tcp_tcps; 18360 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18361 18362 mutex_enter(&connp->conn_lock); 18363 ire = connp->conn_ire_cache; 18364 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18365 18366 if ((ire != NULL) && 18367 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18368 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18369 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18370 IRE_REFHOLD(ire); 18371 mutex_exit(&connp->conn_lock); 18372 } else { 18373 boolean_t cached = B_FALSE; 18374 ts_label_t *tsl; 18375 18376 /* force a recheck later on */ 18377 tcp->tcp_ire_ill_check_done = B_FALSE; 18378 18379 TCP_DBGSTAT(tcps, tcp_ire_null1); 18380 connp->conn_ire_cache = NULL; 18381 mutex_exit(&connp->conn_lock); 18382 18383 if (ire != NULL) 18384 IRE_REFRELE_NOTR(ire); 18385 18386 tsl = crgetlabel(CONN_CRED(connp)); 18387 ire = (dst ? 18388 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18389 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18390 connp->conn_zoneid, tsl, ipst)); 18391 18392 if (ire == NULL) { 18393 TCP_STAT(tcps, tcp_ire_null); 18394 return (B_FALSE); 18395 } 18396 18397 IRE_REFHOLD_NOTR(ire); 18398 18399 mutex_enter(&connp->conn_lock); 18400 if (CONN_CACHE_IRE(connp)) { 18401 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18402 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18403 TCP_CHECK_IREINFO(tcp, ire); 18404 connp->conn_ire_cache = ire; 18405 cached = B_TRUE; 18406 } 18407 rw_exit(&ire->ire_bucket->irb_lock); 18408 } 18409 mutex_exit(&connp->conn_lock); 18410 18411 /* 18412 * We can continue to use the ire but since it was 18413 * not cached, we should drop the extra reference. 18414 */ 18415 if (!cached) 18416 IRE_REFRELE_NOTR(ire); 18417 18418 /* 18419 * Rampart note: no need to select a new label here, since 18420 * labels are not allowed to change during the life of a TCP 18421 * connection. 18422 */ 18423 } 18424 18425 *irep = ire; 18426 18427 return (B_TRUE); 18428 } 18429 18430 /* 18431 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18432 * 18433 * 0 = success; 18434 * 1 = failed to find ire and ill. 18435 */ 18436 static boolean_t 18437 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18438 { 18439 ipha_t *ipha; 18440 ipaddr_t dst; 18441 ire_t *ire; 18442 ill_t *ill; 18443 mblk_t *ire_fp_mp; 18444 tcp_stack_t *tcps = tcp->tcp_tcps; 18445 18446 if (mp != NULL) 18447 ipha = (ipha_t *)mp->b_rptr; 18448 else 18449 ipha = tcp->tcp_ipha; 18450 dst = ipha->ipha_dst; 18451 18452 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18453 return (B_FALSE); 18454 18455 if ((ire->ire_flags & RTF_MULTIRT) || 18456 (ire->ire_stq == NULL) || 18457 (ire->ire_nce == NULL) || 18458 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18459 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18460 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18461 TCP_STAT(tcps, tcp_ip_ire_send); 18462 IRE_REFRELE(ire); 18463 return (B_FALSE); 18464 } 18465 18466 ill = ire_to_ill(ire); 18467 ASSERT(ill != NULL); 18468 18469 if (!tcp->tcp_ire_ill_check_done) { 18470 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18471 tcp->tcp_ire_ill_check_done = B_TRUE; 18472 } 18473 18474 *irep = ire; 18475 *illp = ill; 18476 18477 return (B_TRUE); 18478 } 18479 18480 static void 18481 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18482 { 18483 ipha_t *ipha; 18484 ipaddr_t src; 18485 ipaddr_t dst; 18486 uint32_t cksum; 18487 ire_t *ire; 18488 uint16_t *up; 18489 ill_t *ill; 18490 conn_t *connp = tcp->tcp_connp; 18491 uint32_t hcksum_txflags = 0; 18492 mblk_t *ire_fp_mp; 18493 uint_t ire_fp_mp_len; 18494 tcp_stack_t *tcps = tcp->tcp_tcps; 18495 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18496 cred_t *cr; 18497 pid_t cpid; 18498 18499 ASSERT(DB_TYPE(mp) == M_DATA); 18500 18501 /* 18502 * Here we need to handle the overloading of the cred_t for 18503 * both getpeerucred and TX. 18504 * If this is a SYN then the caller already set db_credp so 18505 * that getpeerucred will work. But if TX is in use we might have 18506 * a conn_effective_cred which is different, and we need to use that 18507 * cred to make TX use the correct label and label dependent route. 18508 */ 18509 if (is_system_labeled()) { 18510 cr = msg_getcred(mp, &cpid); 18511 if (cr == NULL || connp->conn_effective_cred != NULL) 18512 mblk_setcred(mp, CONN_CRED(connp), cpid); 18513 } 18514 18515 ipha = (ipha_t *)mp->b_rptr; 18516 src = ipha->ipha_src; 18517 dst = ipha->ipha_dst; 18518 18519 ASSERT(q != NULL); 18520 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18521 18522 /* 18523 * Drop off fast path for IPv6 and also if options are present or 18524 * we need to resolve a TS label. 18525 */ 18526 if (tcp->tcp_ipversion != IPV4_VERSION || 18527 !IPCL_IS_CONNECTED(connp) || 18528 !CONN_IS_LSO_MD_FASTPATH(connp) || 18529 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18530 !connp->conn_ulp_labeled || 18531 ipha->ipha_ident == IP_HDR_INCLUDED || 18532 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18533 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18534 if (tcp->tcp_snd_zcopy_aware) 18535 mp = tcp_zcopy_disable(tcp, mp); 18536 TCP_STAT(tcps, tcp_ip_send); 18537 CALL_IP_WPUT(connp, q, mp); 18538 return; 18539 } 18540 18541 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18542 if (tcp->tcp_snd_zcopy_aware) 18543 mp = tcp_zcopy_backoff(tcp, mp, 0); 18544 CALL_IP_WPUT(connp, q, mp); 18545 return; 18546 } 18547 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18548 ire_fp_mp_len = MBLKL(ire_fp_mp); 18549 18550 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18551 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18552 #ifndef _BIG_ENDIAN 18553 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18554 #endif 18555 18556 /* 18557 * Check to see if we need to re-enable LSO/MDT for this connection 18558 * because it was previously disabled due to changes in the ill; 18559 * note that by doing it here, this re-enabling only applies when 18560 * the packet is not dispatched through CALL_IP_WPUT(). 18561 * 18562 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18563 * case, since that's how we ended up here. For IPv6, we do the 18564 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18565 */ 18566 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18567 /* 18568 * Restore LSO for this connection, so that next time around 18569 * it is eligible to go through tcp_lsosend() path again. 18570 */ 18571 TCP_STAT(tcps, tcp_lso_enabled); 18572 tcp->tcp_lso = B_TRUE; 18573 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18574 "interface %s\n", (void *)connp, ill->ill_name)); 18575 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18576 /* 18577 * Restore MDT for this connection, so that next time around 18578 * it is eligible to go through tcp_multisend() path again. 18579 */ 18580 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18581 tcp->tcp_mdt = B_TRUE; 18582 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18583 "interface %s\n", (void *)connp, ill->ill_name)); 18584 } 18585 18586 if (tcp->tcp_snd_zcopy_aware) { 18587 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18588 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18589 mp = tcp_zcopy_disable(tcp, mp); 18590 /* 18591 * we shouldn't need to reset ipha as the mp containing 18592 * ipha should never be a zero-copy mp. 18593 */ 18594 } 18595 18596 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18597 ASSERT(ill->ill_hcksum_capab != NULL); 18598 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18599 } 18600 18601 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18602 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18603 18604 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18605 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18606 18607 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18608 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18609 18610 /* Software checksum? */ 18611 if (DB_CKSUMFLAGS(mp) == 0) { 18612 TCP_STAT(tcps, tcp_out_sw_cksum); 18613 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18614 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18615 } 18616 18617 /* Calculate IP header checksum if hardware isn't capable */ 18618 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18619 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18620 ((uint16_t *)ipha)[4]); 18621 } 18622 18623 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18624 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18625 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18626 18627 UPDATE_OB_PKT_COUNT(ire); 18628 ire->ire_last_used_time = lbolt; 18629 18630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18631 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18632 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18633 ntohs(ipha->ipha_length)); 18634 18635 DTRACE_PROBE4(ip4__physical__out__start, 18636 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18637 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18638 ipst->ips_ipv4firewall_physical_out, 18639 NULL, ill, ipha, mp, mp, 0, ipst); 18640 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18641 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18642 18643 if (mp != NULL) { 18644 if (ipst->ips_ip4_observe.he_interested) { 18645 zoneid_t szone; 18646 18647 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18648 ipst, ALL_ZONES); 18649 18650 /* 18651 * The IP observability hook expects b_rptr to be 18652 * where the IP header starts, so advance past the 18653 * link layer header. 18654 */ 18655 mp->b_rptr += ire_fp_mp_len; 18656 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18657 ALL_ZONES, ill, ipst); 18658 mp->b_rptr -= ire_fp_mp_len; 18659 } 18660 18661 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18662 } 18663 18664 IRE_REFRELE(ire); 18665 } 18666 18667 /* 18668 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18669 * if the receiver shrinks the window, i.e. moves the right window to the 18670 * left, the we should not send new data, but should retransmit normally the 18671 * old unacked data between suna and suna + swnd. We might has sent data 18672 * that is now outside the new window, pretend that we didn't send it. 18673 */ 18674 static void 18675 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18676 { 18677 uint32_t snxt = tcp->tcp_snxt; 18678 18679 ASSERT(shrunk_count > 0); 18680 18681 if (!tcp->tcp_is_wnd_shrnk) { 18682 tcp->tcp_snxt_shrunk = snxt; 18683 tcp->tcp_is_wnd_shrnk = B_TRUE; 18684 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 18685 tcp->tcp_snxt_shrunk = snxt; 18686 } 18687 18688 /* Pretend we didn't send the data outside the window */ 18689 snxt -= shrunk_count; 18690 18691 /* Reset all the values per the now shrunk window */ 18692 tcp_update_xmit_tail(tcp, snxt); 18693 tcp->tcp_unsent += shrunk_count; 18694 18695 /* 18696 * If the SACK option is set, delete the entire list of 18697 * notsack'ed blocks. 18698 */ 18699 if (tcp->tcp_sack_info != NULL) { 18700 if (tcp->tcp_notsack_list != NULL) 18701 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 18702 } 18703 18704 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18705 /* 18706 * Make sure the timer is running so that we will probe a zero 18707 * window. 18708 */ 18709 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18710 } 18711 18712 18713 /* 18714 * The TCP normal data output path. 18715 * NOTE: the logic of the fast path is duplicated from this function. 18716 */ 18717 static void 18718 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18719 { 18720 int len; 18721 mblk_t *local_time; 18722 mblk_t *mp1; 18723 uint32_t snxt; 18724 int tail_unsent; 18725 int tcpstate; 18726 int usable = 0; 18727 mblk_t *xmit_tail; 18728 queue_t *q = tcp->tcp_wq; 18729 int32_t mss; 18730 int32_t num_sack_blk = 0; 18731 int32_t tcp_hdr_len; 18732 int32_t tcp_tcp_hdr_len; 18733 int mdt_thres; 18734 int rc; 18735 tcp_stack_t *tcps = tcp->tcp_tcps; 18736 ip_stack_t *ipst; 18737 18738 tcpstate = tcp->tcp_state; 18739 if (mp == NULL) { 18740 /* 18741 * tcp_wput_data() with NULL mp should only be called when 18742 * there is unsent data. 18743 */ 18744 ASSERT(tcp->tcp_unsent > 0); 18745 /* Really tacky... but we need this for detached closes. */ 18746 len = tcp->tcp_unsent; 18747 goto data_null; 18748 } 18749 18750 #if CCS_STATS 18751 wrw_stats.tot.count++; 18752 wrw_stats.tot.bytes += msgdsize(mp); 18753 #endif 18754 ASSERT(mp->b_datap->db_type == M_DATA); 18755 /* 18756 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18757 * or before a connection attempt has begun. 18758 */ 18759 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18760 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18761 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18762 #ifdef DEBUG 18763 cmn_err(CE_WARN, 18764 "tcp_wput_data: data after ordrel, %s", 18765 tcp_display(tcp, NULL, 18766 DISP_ADDR_AND_PORT)); 18767 #else 18768 if (tcp->tcp_debug) { 18769 (void) strlog(TCP_MOD_ID, 0, 1, 18770 SL_TRACE|SL_ERROR, 18771 "tcp_wput_data: data after ordrel, %s\n", 18772 tcp_display(tcp, NULL, 18773 DISP_ADDR_AND_PORT)); 18774 } 18775 #endif /* DEBUG */ 18776 } 18777 if (tcp->tcp_snd_zcopy_aware && 18778 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18779 tcp_zcopy_notify(tcp); 18780 freemsg(mp); 18781 mutex_enter(&tcp->tcp_non_sq_lock); 18782 if (tcp->tcp_flow_stopped && 18783 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18784 tcp_clrqfull(tcp); 18785 } 18786 mutex_exit(&tcp->tcp_non_sq_lock); 18787 return; 18788 } 18789 18790 /* Strip empties */ 18791 for (;;) { 18792 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18793 (uintptr_t)INT_MAX); 18794 len = (int)(mp->b_wptr - mp->b_rptr); 18795 if (len > 0) 18796 break; 18797 mp1 = mp; 18798 mp = mp->b_cont; 18799 freeb(mp1); 18800 if (!mp) { 18801 return; 18802 } 18803 } 18804 18805 /* If we are the first on the list ... */ 18806 if (tcp->tcp_xmit_head == NULL) { 18807 tcp->tcp_xmit_head = mp; 18808 tcp->tcp_xmit_tail = mp; 18809 tcp->tcp_xmit_tail_unsent = len; 18810 } else { 18811 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18812 struct datab *dp; 18813 18814 mp1 = tcp->tcp_xmit_last; 18815 if (len < tcp_tx_pull_len && 18816 (dp = mp1->b_datap)->db_ref == 1 && 18817 dp->db_lim - mp1->b_wptr >= len) { 18818 ASSERT(len > 0); 18819 ASSERT(!mp1->b_cont); 18820 if (len == 1) { 18821 *mp1->b_wptr++ = *mp->b_rptr; 18822 } else { 18823 bcopy(mp->b_rptr, mp1->b_wptr, len); 18824 mp1->b_wptr += len; 18825 } 18826 if (mp1 == tcp->tcp_xmit_tail) 18827 tcp->tcp_xmit_tail_unsent += len; 18828 mp1->b_cont = mp->b_cont; 18829 if (tcp->tcp_snd_zcopy_aware && 18830 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18831 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18832 freeb(mp); 18833 mp = mp1; 18834 } else { 18835 tcp->tcp_xmit_last->b_cont = mp; 18836 } 18837 len += tcp->tcp_unsent; 18838 } 18839 18840 /* Tack on however many more positive length mblks we have */ 18841 if ((mp1 = mp->b_cont) != NULL) { 18842 do { 18843 int tlen; 18844 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18845 (uintptr_t)INT_MAX); 18846 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18847 if (tlen <= 0) { 18848 mp->b_cont = mp1->b_cont; 18849 freeb(mp1); 18850 } else { 18851 len += tlen; 18852 mp = mp1; 18853 } 18854 } while ((mp1 = mp->b_cont) != NULL); 18855 } 18856 tcp->tcp_xmit_last = mp; 18857 tcp->tcp_unsent = len; 18858 18859 if (urgent) 18860 usable = 1; 18861 18862 data_null: 18863 snxt = tcp->tcp_snxt; 18864 xmit_tail = tcp->tcp_xmit_tail; 18865 tail_unsent = tcp->tcp_xmit_tail_unsent; 18866 18867 /* 18868 * Note that tcp_mss has been adjusted to take into account the 18869 * timestamp option if applicable. Because SACK options do not 18870 * appear in every TCP segments and they are of variable lengths, 18871 * they cannot be included in tcp_mss. Thus we need to calculate 18872 * the actual segment length when we need to send a segment which 18873 * includes SACK options. 18874 */ 18875 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18876 int32_t opt_len; 18877 18878 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18879 tcp->tcp_num_sack_blk); 18880 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18881 2 + TCPOPT_HEADER_LEN; 18882 mss = tcp->tcp_mss - opt_len; 18883 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18884 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18885 } else { 18886 mss = tcp->tcp_mss; 18887 tcp_hdr_len = tcp->tcp_hdr_len; 18888 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18889 } 18890 18891 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18892 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18893 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18894 } 18895 if (tcpstate == TCPS_SYN_RCVD) { 18896 /* 18897 * The three-way connection establishment handshake is not 18898 * complete yet. We want to queue the data for transmission 18899 * after entering ESTABLISHED state (RFC793). A jump to 18900 * "done" label effectively leaves data on the queue. 18901 */ 18902 goto done; 18903 } else { 18904 int usable_r; 18905 18906 /* 18907 * In the special case when cwnd is zero, which can only 18908 * happen if the connection is ECN capable, return now. 18909 * New segments is sent using tcp_timer(). The timer 18910 * is set in tcp_rput_data(). 18911 */ 18912 if (tcp->tcp_cwnd == 0) { 18913 /* 18914 * Note that tcp_cwnd is 0 before 3-way handshake is 18915 * finished. 18916 */ 18917 ASSERT(tcp->tcp_ecn_ok || 18918 tcp->tcp_state < TCPS_ESTABLISHED); 18919 return; 18920 } 18921 18922 /* NOTE: trouble if xmitting while SYN not acked? */ 18923 usable_r = snxt - tcp->tcp_suna; 18924 usable_r = tcp->tcp_swnd - usable_r; 18925 18926 /* 18927 * Check if the receiver has shrunk the window. If 18928 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18929 * cannot be set as there is unsent data, so FIN cannot 18930 * be sent out. Otherwise, we need to take into account 18931 * of FIN as it consumes an "invisible" sequence number. 18932 */ 18933 ASSERT(tcp->tcp_fin_sent == 0); 18934 if (usable_r < 0) { 18935 /* 18936 * The receiver has shrunk the window and we have sent 18937 * -usable_r date beyond the window, re-adjust. 18938 * 18939 * If TCP window scaling is enabled, there can be 18940 * round down error as the advertised receive window 18941 * is actually right shifted n bits. This means that 18942 * the lower n bits info is wiped out. It will look 18943 * like the window is shrunk. Do a check here to 18944 * see if the shrunk amount is actually within the 18945 * error in window calculation. If it is, just 18946 * return. Note that this check is inside the 18947 * shrunk window check. This makes sure that even 18948 * though tcp_process_shrunk_swnd() is not called, 18949 * we will stop further processing. 18950 */ 18951 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18952 tcp_process_shrunk_swnd(tcp, -usable_r); 18953 } 18954 return; 18955 } 18956 18957 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18958 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18959 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18960 18961 /* usable = MIN(usable, unsent) */ 18962 if (usable_r > len) 18963 usable_r = len; 18964 18965 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18966 if (usable_r > 0) { 18967 usable = usable_r; 18968 } else { 18969 /* Bypass all other unnecessary processing. */ 18970 goto done; 18971 } 18972 } 18973 18974 local_time = (mblk_t *)lbolt; 18975 18976 /* 18977 * "Our" Nagle Algorithm. This is not the same as in the old 18978 * BSD. This is more in line with the true intent of Nagle. 18979 * 18980 * The conditions are: 18981 * 1. The amount of unsent data (or amount of data which can be 18982 * sent, whichever is smaller) is less than Nagle limit. 18983 * 2. The last sent size is also less than Nagle limit. 18984 * 3. There is unack'ed data. 18985 * 4. Urgent pointer is not set. Send urgent data ignoring the 18986 * Nagle algorithm. This reduces the probability that urgent 18987 * bytes get "merged" together. 18988 * 5. The app has not closed the connection. This eliminates the 18989 * wait time of the receiving side waiting for the last piece of 18990 * (small) data. 18991 * 18992 * If all are satisified, exit without sending anything. Note 18993 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18994 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18995 * 4095). 18996 */ 18997 if (usable < (int)tcp->tcp_naglim && 18998 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18999 snxt != tcp->tcp_suna && 19000 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19001 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19002 goto done; 19003 } 19004 19005 /* 19006 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 19007 * is set, then we have to force TCP not to send partial segment 19008 * (smaller than MSS bytes). We are calculating the usable now 19009 * based on full mss and will save the rest of remaining data for 19010 * later. When tcp_zero_win_probe is set, TCP needs to send out 19011 * something to do zero window probe. 19012 */ 19013 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 19014 if (usable < mss) 19015 goto done; 19016 usable = (usable / mss) * mss; 19017 } 19018 19019 /* Update the latest receive window size in TCP header. */ 19020 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19021 tcp->tcp_tcph->th_win); 19022 19023 /* 19024 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19025 * 19026 * 1. Simple TCP/IP{v4,v6} (no options). 19027 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19028 * 3. If the TCP connection is in ESTABLISHED state. 19029 * 4. The TCP is not detached. 19030 * 19031 * If any of the above conditions have changed during the 19032 * connection, stop using LSO/MDT and restore the stream head 19033 * parameters accordingly. 19034 */ 19035 ipst = tcps->tcps_netstack->netstack_ip; 19036 19037 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19038 ((tcp->tcp_ipversion == IPV4_VERSION && 19039 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19040 (tcp->tcp_ipversion == IPV6_VERSION && 19041 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19042 tcp->tcp_state != TCPS_ESTABLISHED || 19043 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19044 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19045 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19046 if (tcp->tcp_lso) { 19047 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19048 tcp->tcp_lso = B_FALSE; 19049 } else { 19050 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19051 tcp->tcp_mdt = B_FALSE; 19052 } 19053 19054 /* Anything other than detached is considered pathological */ 19055 if (!TCP_IS_DETACHED(tcp)) { 19056 if (tcp->tcp_lso) 19057 TCP_STAT(tcps, tcp_lso_disabled); 19058 else 19059 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19060 (void) tcp_maxpsz_set(tcp, B_TRUE); 19061 } 19062 } 19063 19064 /* Use MDT if sendable amount is greater than the threshold */ 19065 if (tcp->tcp_mdt && 19066 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19067 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19068 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19069 (tcp->tcp_valid_bits == 0 || 19070 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19071 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19072 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19073 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19074 local_time, mdt_thres); 19075 } else { 19076 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19077 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19078 local_time, INT_MAX); 19079 } 19080 19081 /* Pretend that all we were trying to send really got sent */ 19082 if (rc < 0 && tail_unsent < 0) { 19083 do { 19084 xmit_tail = xmit_tail->b_cont; 19085 xmit_tail->b_prev = local_time; 19086 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19087 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19088 tail_unsent += (int)(xmit_tail->b_wptr - 19089 xmit_tail->b_rptr); 19090 } while (tail_unsent < 0); 19091 } 19092 done:; 19093 tcp->tcp_xmit_tail = xmit_tail; 19094 tcp->tcp_xmit_tail_unsent = tail_unsent; 19095 len = tcp->tcp_snxt - snxt; 19096 if (len) { 19097 /* 19098 * If new data was sent, need to update the notsack 19099 * list, which is, afterall, data blocks that have 19100 * not been sack'ed by the receiver. New data is 19101 * not sack'ed. 19102 */ 19103 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19104 /* len is a negative value. */ 19105 tcp->tcp_pipe -= len; 19106 tcp_notsack_update(&(tcp->tcp_notsack_list), 19107 tcp->tcp_snxt, snxt, 19108 &(tcp->tcp_num_notsack_blk), 19109 &(tcp->tcp_cnt_notsack_list)); 19110 } 19111 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19112 tcp->tcp_rack = tcp->tcp_rnxt; 19113 tcp->tcp_rack_cnt = 0; 19114 if ((snxt + len) == tcp->tcp_suna) { 19115 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19116 } 19117 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19118 /* 19119 * Didn't send anything. Make sure the timer is running 19120 * so that we will probe a zero window. 19121 */ 19122 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19123 } 19124 /* Note that len is the amount we just sent but with a negative sign */ 19125 tcp->tcp_unsent += len; 19126 mutex_enter(&tcp->tcp_non_sq_lock); 19127 if (tcp->tcp_flow_stopped) { 19128 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19129 tcp_clrqfull(tcp); 19130 } 19131 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19132 tcp_setqfull(tcp); 19133 } 19134 mutex_exit(&tcp->tcp_non_sq_lock); 19135 } 19136 19137 /* 19138 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19139 * outgoing TCP header with the template header, as well as other 19140 * options such as time-stamp, ECN and/or SACK. 19141 */ 19142 static void 19143 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19144 { 19145 tcph_t *tcp_tmpl, *tcp_h; 19146 uint32_t *dst, *src; 19147 int hdrlen; 19148 19149 ASSERT(OK_32PTR(rptr)); 19150 19151 /* Template header */ 19152 tcp_tmpl = tcp->tcp_tcph; 19153 19154 /* Header of outgoing packet */ 19155 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19156 19157 /* dst and src are opaque 32-bit fields, used for copying */ 19158 dst = (uint32_t *)rptr; 19159 src = (uint32_t *)tcp->tcp_iphc; 19160 hdrlen = tcp->tcp_hdr_len; 19161 19162 /* Fill time-stamp option if needed */ 19163 if (tcp->tcp_snd_ts_ok) { 19164 U32_TO_BE32((uint32_t)now, 19165 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19166 U32_TO_BE32(tcp->tcp_ts_recent, 19167 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19168 } else { 19169 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19170 } 19171 19172 /* 19173 * Copy the template header; is this really more efficient than 19174 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19175 * but perhaps not for other scenarios. 19176 */ 19177 dst[0] = src[0]; 19178 dst[1] = src[1]; 19179 dst[2] = src[2]; 19180 dst[3] = src[3]; 19181 dst[4] = src[4]; 19182 dst[5] = src[5]; 19183 dst[6] = src[6]; 19184 dst[7] = src[7]; 19185 dst[8] = src[8]; 19186 dst[9] = src[9]; 19187 if (hdrlen -= 40) { 19188 hdrlen >>= 2; 19189 dst += 10; 19190 src += 10; 19191 do { 19192 *dst++ = *src++; 19193 } while (--hdrlen); 19194 } 19195 19196 /* 19197 * Set the ECN info in the TCP header if it is not a zero 19198 * window probe. Zero window probe is only sent in 19199 * tcp_wput_data() and tcp_timer(). 19200 */ 19201 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19202 SET_ECT(tcp, rptr); 19203 19204 if (tcp->tcp_ecn_echo_on) 19205 tcp_h->th_flags[0] |= TH_ECE; 19206 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19207 tcp_h->th_flags[0] |= TH_CWR; 19208 tcp->tcp_ecn_cwr_sent = B_TRUE; 19209 } 19210 } 19211 19212 /* Fill in SACK options */ 19213 if (num_sack_blk > 0) { 19214 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19215 sack_blk_t *tmp; 19216 int32_t i; 19217 19218 wptr[0] = TCPOPT_NOP; 19219 wptr[1] = TCPOPT_NOP; 19220 wptr[2] = TCPOPT_SACK; 19221 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19222 sizeof (sack_blk_t); 19223 wptr += TCPOPT_REAL_SACK_LEN; 19224 19225 tmp = tcp->tcp_sack_list; 19226 for (i = 0; i < num_sack_blk; i++) { 19227 U32_TO_BE32(tmp[i].begin, wptr); 19228 wptr += sizeof (tcp_seq); 19229 U32_TO_BE32(tmp[i].end, wptr); 19230 wptr += sizeof (tcp_seq); 19231 } 19232 tcp_h->th_offset_and_rsrvd[0] += 19233 ((num_sack_blk * 2 + 1) << 4); 19234 } 19235 } 19236 19237 /* 19238 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19239 * the destination address and SAP attribute, and if necessary, the 19240 * hardware checksum offload attribute to a Multidata message. 19241 */ 19242 static int 19243 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19244 const uint32_t start, const uint32_t stuff, const uint32_t end, 19245 const uint32_t flags, tcp_stack_t *tcps) 19246 { 19247 /* Add global destination address & SAP attribute */ 19248 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19249 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19250 "destination address+SAP\n")); 19251 19252 if (dlmp != NULL) 19253 TCP_STAT(tcps, tcp_mdt_allocfail); 19254 return (-1); 19255 } 19256 19257 /* Add global hwcksum attribute */ 19258 if (hwcksum && 19259 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19260 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19261 "checksum attribute\n")); 19262 19263 TCP_STAT(tcps, tcp_mdt_allocfail); 19264 return (-1); 19265 } 19266 19267 return (0); 19268 } 19269 19270 /* 19271 * Smaller and private version of pdescinfo_t used specifically for TCP, 19272 * which allows for only two payload spans per packet. 19273 */ 19274 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19275 19276 /* 19277 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19278 * scheme, and returns one the following: 19279 * 19280 * -1 = failed allocation. 19281 * 0 = success; burst count reached, or usable send window is too small, 19282 * and that we'd rather wait until later before sending again. 19283 */ 19284 static int 19285 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19286 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19287 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19288 const int mdt_thres) 19289 { 19290 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19291 multidata_t *mmd; 19292 uint_t obsegs, obbytes, hdr_frag_sz; 19293 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19294 int num_burst_seg, max_pld; 19295 pdesc_t *pkt; 19296 tcp_pdescinfo_t tcp_pkt_info; 19297 pdescinfo_t *pkt_info; 19298 int pbuf_idx, pbuf_idx_nxt; 19299 int seg_len, len, spill, af; 19300 boolean_t add_buffer, zcopy, clusterwide; 19301 boolean_t rconfirm = B_FALSE; 19302 boolean_t done = B_FALSE; 19303 uint32_t cksum; 19304 uint32_t hwcksum_flags; 19305 ire_t *ire = NULL; 19306 ill_t *ill; 19307 ipha_t *ipha; 19308 ip6_t *ip6h; 19309 ipaddr_t src, dst; 19310 ill_zerocopy_capab_t *zc_cap = NULL; 19311 uint16_t *up; 19312 int err; 19313 conn_t *connp; 19314 tcp_stack_t *tcps = tcp->tcp_tcps; 19315 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19316 int usable_mmd, tail_unsent_mmd; 19317 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19318 mblk_t *xmit_tail_mmd; 19319 netstackid_t stack_id; 19320 19321 #ifdef _BIG_ENDIAN 19322 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19323 #else 19324 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19325 #endif 19326 19327 #define PREP_NEW_MULTIDATA() { \ 19328 mmd = NULL; \ 19329 md_mp = md_hbuf = NULL; \ 19330 cur_hdr_off = 0; \ 19331 max_pld = tcp->tcp_mdt_max_pld; \ 19332 pbuf_idx = pbuf_idx_nxt = -1; \ 19333 add_buffer = B_TRUE; \ 19334 zcopy = B_FALSE; \ 19335 } 19336 19337 #define PREP_NEW_PBUF() { \ 19338 md_pbuf = md_pbuf_nxt = NULL; \ 19339 pbuf_idx = pbuf_idx_nxt = -1; \ 19340 cur_pld_off = 0; \ 19341 first_snxt = *snxt; \ 19342 ASSERT(*tail_unsent > 0); \ 19343 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19344 } 19345 19346 ASSERT(mdt_thres >= mss); 19347 ASSERT(*usable > 0 && *usable > mdt_thres); 19348 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19349 ASSERT(!TCP_IS_DETACHED(tcp)); 19350 ASSERT(tcp->tcp_valid_bits == 0 || 19351 tcp->tcp_valid_bits == TCP_FSS_VALID); 19352 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19353 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19354 (tcp->tcp_ipversion == IPV6_VERSION && 19355 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19356 19357 connp = tcp->tcp_connp; 19358 ASSERT(connp != NULL); 19359 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19360 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19361 19362 stack_id = connp->conn_netstack->netstack_stackid; 19363 19364 usable_mmd = tail_unsent_mmd = 0; 19365 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19366 xmit_tail_mmd = NULL; 19367 /* 19368 * Note that tcp will only declare at most 2 payload spans per 19369 * packet, which is much lower than the maximum allowable number 19370 * of packet spans per Multidata. For this reason, we use the 19371 * privately declared and smaller descriptor info structure, in 19372 * order to save some stack space. 19373 */ 19374 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19375 19376 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19377 if (af == AF_INET) { 19378 dst = tcp->tcp_ipha->ipha_dst; 19379 src = tcp->tcp_ipha->ipha_src; 19380 ASSERT(!CLASSD(dst)); 19381 } 19382 ASSERT(af == AF_INET || 19383 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19384 19385 obsegs = obbytes = 0; 19386 num_burst_seg = tcp->tcp_snd_burst; 19387 md_mp_head = NULL; 19388 PREP_NEW_MULTIDATA(); 19389 19390 /* 19391 * Before we go on further, make sure there is an IRE that we can 19392 * use, and that the ILL supports MDT. Otherwise, there's no point 19393 * in proceeding any further, and we should just hand everything 19394 * off to the legacy path. 19395 */ 19396 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19397 goto legacy_send_no_md; 19398 19399 ASSERT(ire != NULL); 19400 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19401 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19402 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19403 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19404 /* 19405 * If we do support loopback for MDT (which requires modifications 19406 * to the receiving paths), the following assertions should go away, 19407 * and we would be sending the Multidata to loopback conn later on. 19408 */ 19409 ASSERT(!IRE_IS_LOCAL(ire)); 19410 ASSERT(ire->ire_stq != NULL); 19411 19412 ill = ire_to_ill(ire); 19413 ASSERT(ill != NULL); 19414 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19415 19416 if (!tcp->tcp_ire_ill_check_done) { 19417 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19418 tcp->tcp_ire_ill_check_done = B_TRUE; 19419 } 19420 19421 /* 19422 * If the underlying interface conditions have changed, or if the 19423 * new interface does not support MDT, go back to legacy path. 19424 */ 19425 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19426 /* don't go through this path anymore for this connection */ 19427 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19428 tcp->tcp_mdt = B_FALSE; 19429 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19430 "interface %s\n", (void *)connp, ill->ill_name)); 19431 /* IRE will be released prior to returning */ 19432 goto legacy_send_no_md; 19433 } 19434 19435 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19436 zc_cap = ill->ill_zerocopy_capab; 19437 19438 /* 19439 * Check if we can take tcp fast-path. Note that "incomplete" 19440 * ire's (where the link-layer for next hop is not resolved 19441 * or where the fast-path header in nce_fp_mp is not available 19442 * yet) are sent down the legacy (slow) path. 19443 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19444 */ 19445 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19446 /* IRE will be released prior to returning */ 19447 goto legacy_send_no_md; 19448 } 19449 19450 /* go to legacy path if interface doesn't support zerocopy */ 19451 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19452 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19453 /* IRE will be released prior to returning */ 19454 goto legacy_send_no_md; 19455 } 19456 19457 /* does the interface support hardware checksum offload? */ 19458 hwcksum_flags = 0; 19459 if (ILL_HCKSUM_CAPABLE(ill) && 19460 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19461 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19462 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19463 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19464 HCKSUM_IPHDRCKSUM) 19465 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19466 19467 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19468 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19469 hwcksum_flags |= HCK_FULLCKSUM; 19470 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19471 HCKSUM_INET_PARTIAL) 19472 hwcksum_flags |= HCK_PARTIALCKSUM; 19473 } 19474 19475 /* 19476 * Each header fragment consists of the leading extra space, 19477 * followed by the TCP/IP header, and the trailing extra space. 19478 * We make sure that each header fragment begins on a 32-bit 19479 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19480 * aligned in tcp_mdt_update). 19481 */ 19482 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19483 tcp->tcp_mdt_hdr_tail), 4); 19484 19485 /* are we starting from the beginning of data block? */ 19486 if (*tail_unsent == 0) { 19487 *xmit_tail = (*xmit_tail)->b_cont; 19488 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19489 *tail_unsent = (int)MBLKL(*xmit_tail); 19490 } 19491 19492 /* 19493 * Here we create one or more Multidata messages, each made up of 19494 * one header buffer and up to N payload buffers. This entire 19495 * operation is done within two loops: 19496 * 19497 * The outer loop mostly deals with creating the Multidata message, 19498 * as well as the header buffer that gets added to it. It also 19499 * links the Multidata messages together such that all of them can 19500 * be sent down to the lower layer in a single putnext call; this 19501 * linking behavior depends on the tcp_mdt_chain tunable. 19502 * 19503 * The inner loop takes an existing Multidata message, and adds 19504 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19505 * packetizes those buffers by filling up the corresponding header 19506 * buffer fragments with the proper IP and TCP headers, and by 19507 * describing the layout of each packet in the packet descriptors 19508 * that get added to the Multidata. 19509 */ 19510 do { 19511 /* 19512 * If usable send window is too small, or data blocks in 19513 * transmit list are smaller than our threshold (i.e. app 19514 * performs large writes followed by small ones), we hand 19515 * off the control over to the legacy path. Note that we'll 19516 * get back the control once it encounters a large block. 19517 */ 19518 if (*usable < mss || (*tail_unsent <= mdt_thres && 19519 (*xmit_tail)->b_cont != NULL && 19520 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19521 /* send down what we've got so far */ 19522 if (md_mp_head != NULL) { 19523 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19524 obsegs, obbytes, &rconfirm); 19525 } 19526 /* 19527 * Pass control over to tcp_send(), but tell it to 19528 * return to us once a large-size transmission is 19529 * possible. 19530 */ 19531 TCP_STAT(tcps, tcp_mdt_legacy_small); 19532 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19533 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19534 tail_unsent, xmit_tail, local_time, 19535 mdt_thres)) <= 0) { 19536 /* burst count reached, or alloc failed */ 19537 IRE_REFRELE(ire); 19538 return (err); 19539 } 19540 19541 /* tcp_send() may have sent everything, so check */ 19542 if (*usable <= 0) { 19543 IRE_REFRELE(ire); 19544 return (0); 19545 } 19546 19547 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19548 /* 19549 * We may have delivered the Multidata, so make sure 19550 * to re-initialize before the next round. 19551 */ 19552 md_mp_head = NULL; 19553 obsegs = obbytes = 0; 19554 num_burst_seg = tcp->tcp_snd_burst; 19555 PREP_NEW_MULTIDATA(); 19556 19557 /* are we starting from the beginning of data block? */ 19558 if (*tail_unsent == 0) { 19559 *xmit_tail = (*xmit_tail)->b_cont; 19560 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19561 (uintptr_t)INT_MAX); 19562 *tail_unsent = (int)MBLKL(*xmit_tail); 19563 } 19564 } 19565 /* 19566 * Record current values for parameters we may need to pass 19567 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19568 * each iteration of the outer loop (each multidata message 19569 * creation). If we have a failure in the inner loop, we send 19570 * any complete multidata messages we have before reverting 19571 * to using the traditional non-md path. 19572 */ 19573 snxt_mmd = *snxt; 19574 usable_mmd = *usable; 19575 xmit_tail_mmd = *xmit_tail; 19576 tail_unsent_mmd = *tail_unsent; 19577 obsegs_mmd = obsegs; 19578 obbytes_mmd = obbytes; 19579 19580 /* 19581 * max_pld limits the number of mblks in tcp's transmit 19582 * queue that can be added to a Multidata message. Once 19583 * this counter reaches zero, no more additional mblks 19584 * can be added to it. What happens afterwards depends 19585 * on whether or not we are set to chain the Multidata 19586 * messages. If we are to link them together, reset 19587 * max_pld to its original value (tcp_mdt_max_pld) and 19588 * prepare to create a new Multidata message which will 19589 * get linked to md_mp_head. Else, leave it alone and 19590 * let the inner loop break on its own. 19591 */ 19592 if (tcp_mdt_chain && max_pld == 0) 19593 PREP_NEW_MULTIDATA(); 19594 19595 /* adding a payload buffer; re-initialize values */ 19596 if (add_buffer) 19597 PREP_NEW_PBUF(); 19598 19599 /* 19600 * If we don't have a Multidata, either because we just 19601 * (re)entered this outer loop, or after we branched off 19602 * to tcp_send above, setup the Multidata and header 19603 * buffer to be used. 19604 */ 19605 if (md_mp == NULL) { 19606 int md_hbuflen; 19607 uint32_t start, stuff; 19608 19609 /* 19610 * Calculate Multidata header buffer size large enough 19611 * to hold all of the headers that can possibly be 19612 * sent at this moment. We'd rather over-estimate 19613 * the size than running out of space; this is okay 19614 * since this buffer is small anyway. 19615 */ 19616 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19617 19618 /* 19619 * Start and stuff offset for partial hardware 19620 * checksum offload; these are currently for IPv4. 19621 * For full checksum offload, they are set to zero. 19622 */ 19623 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19624 if (af == AF_INET) { 19625 start = IP_SIMPLE_HDR_LENGTH; 19626 stuff = IP_SIMPLE_HDR_LENGTH + 19627 TCP_CHECKSUM_OFFSET; 19628 } else { 19629 start = IPV6_HDR_LEN; 19630 stuff = IPV6_HDR_LEN + 19631 TCP_CHECKSUM_OFFSET; 19632 } 19633 } else { 19634 start = stuff = 0; 19635 } 19636 19637 /* 19638 * Create the header buffer, Multidata, as well as 19639 * any necessary attributes (destination address, 19640 * SAP and hardware checksum offload) that should 19641 * be associated with the Multidata message. 19642 */ 19643 ASSERT(cur_hdr_off == 0); 19644 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19645 ((md_hbuf->b_wptr += md_hbuflen), 19646 (mmd = mmd_alloc(md_hbuf, &md_mp, 19647 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19648 /* fastpath mblk */ 19649 ire->ire_nce->nce_res_mp, 19650 /* hardware checksum enabled */ 19651 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19652 /* hardware checksum offsets */ 19653 start, stuff, 0, 19654 /* hardware checksum flag */ 19655 hwcksum_flags, tcps) != 0)) { 19656 legacy_send: 19657 /* 19658 * We arrive here from a failure within the 19659 * inner (packetizer) loop or we fail one of 19660 * the conditionals above. We restore the 19661 * previously checkpointed values for: 19662 * xmit_tail 19663 * usable 19664 * tail_unsent 19665 * snxt 19666 * obbytes 19667 * obsegs 19668 * We should then be able to dispatch any 19669 * complete multidata before reverting to the 19670 * traditional path with consistent parameters 19671 * (the inner loop updates these as it 19672 * iterates). 19673 */ 19674 *xmit_tail = xmit_tail_mmd; 19675 *usable = usable_mmd; 19676 *tail_unsent = tail_unsent_mmd; 19677 *snxt = snxt_mmd; 19678 obbytes = obbytes_mmd; 19679 obsegs = obsegs_mmd; 19680 if (md_mp != NULL) { 19681 /* Unlink message from the chain */ 19682 if (md_mp_head != NULL) { 19683 err = (intptr_t)rmvb(md_mp_head, 19684 md_mp); 19685 /* 19686 * We can't assert that rmvb 19687 * did not return -1, since we 19688 * may get here before linkb 19689 * happens. We do, however, 19690 * check if we just removed the 19691 * only element in the list. 19692 */ 19693 if (err == 0) 19694 md_mp_head = NULL; 19695 } 19696 /* md_hbuf gets freed automatically */ 19697 TCP_STAT(tcps, tcp_mdt_discarded); 19698 freeb(md_mp); 19699 } else { 19700 /* Either allocb or mmd_alloc failed */ 19701 TCP_STAT(tcps, tcp_mdt_allocfail); 19702 if (md_hbuf != NULL) 19703 freeb(md_hbuf); 19704 } 19705 19706 /* send down what we've got so far */ 19707 if (md_mp_head != NULL) { 19708 tcp_multisend_data(tcp, ire, ill, 19709 md_mp_head, obsegs, obbytes, 19710 &rconfirm); 19711 } 19712 legacy_send_no_md: 19713 if (ire != NULL) 19714 IRE_REFRELE(ire); 19715 /* 19716 * Too bad; let the legacy path handle this. 19717 * We specify INT_MAX for the threshold, since 19718 * we gave up with the Multidata processings 19719 * and let the old path have it all. 19720 */ 19721 TCP_STAT(tcps, tcp_mdt_legacy_all); 19722 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19723 tcp_tcp_hdr_len, num_sack_blk, usable, 19724 snxt, tail_unsent, xmit_tail, local_time, 19725 INT_MAX)); 19726 } 19727 19728 /* link to any existing ones, if applicable */ 19729 TCP_STAT(tcps, tcp_mdt_allocd); 19730 if (md_mp_head == NULL) { 19731 md_mp_head = md_mp; 19732 } else if (tcp_mdt_chain) { 19733 TCP_STAT(tcps, tcp_mdt_linked); 19734 linkb(md_mp_head, md_mp); 19735 } 19736 } 19737 19738 ASSERT(md_mp_head != NULL); 19739 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19740 ASSERT(md_mp != NULL && mmd != NULL); 19741 ASSERT(md_hbuf != NULL); 19742 19743 /* 19744 * Packetize the transmittable portion of the data block; 19745 * each data block is essentially added to the Multidata 19746 * as a payload buffer. We also deal with adding more 19747 * than one payload buffers, which happens when the remaining 19748 * packetized portion of the current payload buffer is less 19749 * than MSS, while the next data block in transmit queue 19750 * has enough data to make up for one. This "spillover" 19751 * case essentially creates a split-packet, where portions 19752 * of the packet's payload fragments may span across two 19753 * virtually discontiguous address blocks. 19754 */ 19755 seg_len = mss; 19756 do { 19757 len = seg_len; 19758 19759 /* one must remain NULL for DTRACE_IP_FASTPATH */ 19760 ipha = NULL; 19761 ip6h = NULL; 19762 19763 ASSERT(len > 0); 19764 ASSERT(max_pld >= 0); 19765 ASSERT(!add_buffer || cur_pld_off == 0); 19766 19767 /* 19768 * First time around for this payload buffer; note 19769 * in the case of a spillover, the following has 19770 * been done prior to adding the split-packet 19771 * descriptor to Multidata, and we don't want to 19772 * repeat the process. 19773 */ 19774 if (add_buffer) { 19775 ASSERT(mmd != NULL); 19776 ASSERT(md_pbuf == NULL); 19777 ASSERT(md_pbuf_nxt == NULL); 19778 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19779 19780 /* 19781 * Have we reached the limit? We'd get to 19782 * this case when we're not chaining the 19783 * Multidata messages together, and since 19784 * we're done, terminate this loop. 19785 */ 19786 if (max_pld == 0) 19787 break; /* done */ 19788 19789 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19790 TCP_STAT(tcps, tcp_mdt_allocfail); 19791 goto legacy_send; /* out_of_mem */ 19792 } 19793 19794 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19795 zc_cap != NULL) { 19796 if (!ip_md_zcopy_attr(mmd, NULL, 19797 zc_cap->ill_zerocopy_flags)) { 19798 freeb(md_pbuf); 19799 TCP_STAT(tcps, 19800 tcp_mdt_allocfail); 19801 /* out_of_mem */ 19802 goto legacy_send; 19803 } 19804 zcopy = B_TRUE; 19805 } 19806 19807 md_pbuf->b_rptr += base_pld_off; 19808 19809 /* 19810 * Add a payload buffer to the Multidata; this 19811 * operation must not fail, or otherwise our 19812 * logic in this routine is broken. There 19813 * is no memory allocation done by the 19814 * routine, so any returned failure simply 19815 * tells us that we've done something wrong. 19816 * 19817 * A failure tells us that either we're adding 19818 * the same payload buffer more than once, or 19819 * we're trying to add more buffers than 19820 * allowed (max_pld calculation is wrong). 19821 * None of the above cases should happen, and 19822 * we panic because either there's horrible 19823 * heap corruption, and/or programming mistake. 19824 */ 19825 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19826 if (pbuf_idx < 0) { 19827 cmn_err(CE_PANIC, "tcp_multisend: " 19828 "payload buffer logic error " 19829 "detected for tcp %p mmd %p " 19830 "pbuf %p (%d)\n", 19831 (void *)tcp, (void *)mmd, 19832 (void *)md_pbuf, pbuf_idx); 19833 } 19834 19835 ASSERT(max_pld > 0); 19836 --max_pld; 19837 add_buffer = B_FALSE; 19838 } 19839 19840 ASSERT(md_mp_head != NULL); 19841 ASSERT(md_pbuf != NULL); 19842 ASSERT(md_pbuf_nxt == NULL); 19843 ASSERT(pbuf_idx != -1); 19844 ASSERT(pbuf_idx_nxt == -1); 19845 ASSERT(*usable > 0); 19846 19847 /* 19848 * We spillover to the next payload buffer only 19849 * if all of the following is true: 19850 * 19851 * 1. There is not enough data on the current 19852 * payload buffer to make up `len', 19853 * 2. We are allowed to send `len', 19854 * 3. The next payload buffer length is large 19855 * enough to accomodate `spill'. 19856 */ 19857 if ((spill = len - *tail_unsent) > 0 && 19858 *usable >= len && 19859 MBLKL((*xmit_tail)->b_cont) >= spill && 19860 max_pld > 0) { 19861 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19862 if (md_pbuf_nxt == NULL) { 19863 TCP_STAT(tcps, tcp_mdt_allocfail); 19864 goto legacy_send; /* out_of_mem */ 19865 } 19866 19867 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19868 zc_cap != NULL) { 19869 if (!ip_md_zcopy_attr(mmd, NULL, 19870 zc_cap->ill_zerocopy_flags)) { 19871 freeb(md_pbuf_nxt); 19872 TCP_STAT(tcps, 19873 tcp_mdt_allocfail); 19874 /* out_of_mem */ 19875 goto legacy_send; 19876 } 19877 zcopy = B_TRUE; 19878 } 19879 19880 /* 19881 * See comments above on the first call to 19882 * mmd_addpldbuf for explanation on the panic. 19883 */ 19884 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19885 if (pbuf_idx_nxt < 0) { 19886 panic("tcp_multisend: " 19887 "next payload buffer logic error " 19888 "detected for tcp %p mmd %p " 19889 "pbuf %p (%d)\n", 19890 (void *)tcp, (void *)mmd, 19891 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19892 } 19893 19894 ASSERT(max_pld > 0); 19895 --max_pld; 19896 } else if (spill > 0) { 19897 /* 19898 * If there's a spillover, but the following 19899 * xmit_tail couldn't give us enough octets 19900 * to reach "len", then stop the current 19901 * Multidata creation and let the legacy 19902 * tcp_send() path take over. We don't want 19903 * to send the tiny segment as part of this 19904 * Multidata for performance reasons; instead, 19905 * we let the legacy path deal with grouping 19906 * it with the subsequent small mblks. 19907 */ 19908 if (*usable >= len && 19909 MBLKL((*xmit_tail)->b_cont) < spill) { 19910 max_pld = 0; 19911 break; /* done */ 19912 } 19913 19914 /* 19915 * We can't spillover, and we are near 19916 * the end of the current payload buffer, 19917 * so send what's left. 19918 */ 19919 ASSERT(*tail_unsent > 0); 19920 len = *tail_unsent; 19921 } 19922 19923 /* tail_unsent is negated if there is a spillover */ 19924 *tail_unsent -= len; 19925 *usable -= len; 19926 ASSERT(*usable >= 0); 19927 19928 if (*usable < mss) 19929 seg_len = *usable; 19930 /* 19931 * Sender SWS avoidance; see comments in tcp_send(); 19932 * everything else is the same, except that we only 19933 * do this here if there is no more data to be sent 19934 * following the current xmit_tail. We don't check 19935 * for 1-byte urgent data because we shouldn't get 19936 * here if TCP_URG_VALID is set. 19937 */ 19938 if (*usable > 0 && *usable < mss && 19939 ((md_pbuf_nxt == NULL && 19940 (*xmit_tail)->b_cont == NULL) || 19941 (md_pbuf_nxt != NULL && 19942 (*xmit_tail)->b_cont->b_cont == NULL)) && 19943 seg_len < (tcp->tcp_max_swnd >> 1) && 19944 (tcp->tcp_unsent - 19945 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19946 !tcp->tcp_zero_win_probe) { 19947 if ((*snxt + len) == tcp->tcp_snxt && 19948 (*snxt + len) == tcp->tcp_suna) { 19949 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19950 } 19951 done = B_TRUE; 19952 } 19953 19954 /* 19955 * Prime pump for IP's checksumming on our behalf; 19956 * include the adjustment for a source route if any. 19957 * Do this only for software/partial hardware checksum 19958 * offload, as this field gets zeroed out later for 19959 * the full hardware checksum offload case. 19960 */ 19961 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19962 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19963 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19964 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19965 } 19966 19967 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19968 *snxt += len; 19969 19970 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19971 /* 19972 * We set the PUSH bit only if TCP has no more buffered 19973 * data to be transmitted (or if sender SWS avoidance 19974 * takes place), as opposed to setting it for every 19975 * last packet in the burst. 19976 */ 19977 if (done || 19978 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19979 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19980 19981 /* 19982 * Set FIN bit if this is our last segment; snxt 19983 * already includes its length, and it will not 19984 * be adjusted after this point. 19985 */ 19986 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19987 *snxt == tcp->tcp_fss) { 19988 if (!tcp->tcp_fin_acked) { 19989 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19990 BUMP_MIB(&tcps->tcps_mib, 19991 tcpOutControl); 19992 } 19993 if (!tcp->tcp_fin_sent) { 19994 tcp->tcp_fin_sent = B_TRUE; 19995 /* 19996 * tcp state must be ESTABLISHED 19997 * in order for us to get here in 19998 * the first place. 19999 */ 20000 tcp->tcp_state = TCPS_FIN_WAIT_1; 20001 20002 /* 20003 * Upon returning from this routine, 20004 * tcp_wput_data() will set tcp_snxt 20005 * to be equal to snxt + tcp_fin_sent. 20006 * This is essentially the same as 20007 * setting it to tcp_fss + 1. 20008 */ 20009 } 20010 } 20011 20012 tcp->tcp_last_sent_len = (ushort_t)len; 20013 20014 len += tcp_hdr_len; 20015 if (tcp->tcp_ipversion == IPV4_VERSION) 20016 tcp->tcp_ipha->ipha_length = htons(len); 20017 else 20018 tcp->tcp_ip6h->ip6_plen = htons(len - 20019 ((char *)&tcp->tcp_ip6h[1] - 20020 tcp->tcp_iphc)); 20021 20022 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20023 20024 /* setup header fragment */ 20025 PDESC_HDR_ADD(pkt_info, 20026 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20027 tcp->tcp_mdt_hdr_head, /* head room */ 20028 tcp_hdr_len, /* len */ 20029 tcp->tcp_mdt_hdr_tail); /* tail room */ 20030 20031 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20032 hdr_frag_sz); 20033 ASSERT(MBLKIN(md_hbuf, 20034 (pkt_info->hdr_base - md_hbuf->b_rptr), 20035 PDESC_HDRSIZE(pkt_info))); 20036 20037 /* setup first payload fragment */ 20038 PDESC_PLD_INIT(pkt_info); 20039 PDESC_PLD_SPAN_ADD(pkt_info, 20040 pbuf_idx, /* index */ 20041 md_pbuf->b_rptr + cur_pld_off, /* start */ 20042 tcp->tcp_last_sent_len); /* len */ 20043 20044 /* create a split-packet in case of a spillover */ 20045 if (md_pbuf_nxt != NULL) { 20046 ASSERT(spill > 0); 20047 ASSERT(pbuf_idx_nxt > pbuf_idx); 20048 ASSERT(!add_buffer); 20049 20050 md_pbuf = md_pbuf_nxt; 20051 md_pbuf_nxt = NULL; 20052 pbuf_idx = pbuf_idx_nxt; 20053 pbuf_idx_nxt = -1; 20054 cur_pld_off = spill; 20055 20056 /* trim out first payload fragment */ 20057 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20058 20059 /* setup second payload fragment */ 20060 PDESC_PLD_SPAN_ADD(pkt_info, 20061 pbuf_idx, /* index */ 20062 md_pbuf->b_rptr, /* start */ 20063 spill); /* len */ 20064 20065 if ((*xmit_tail)->b_next == NULL) { 20066 /* 20067 * Store the lbolt used for RTT 20068 * estimation. We can only record one 20069 * timestamp per mblk so we do it when 20070 * we reach the end of the payload 20071 * buffer. Also we only take a new 20072 * timestamp sample when the previous 20073 * timed data from the same mblk has 20074 * been ack'ed. 20075 */ 20076 (*xmit_tail)->b_prev = local_time; 20077 (*xmit_tail)->b_next = 20078 (mblk_t *)(uintptr_t)first_snxt; 20079 } 20080 20081 first_snxt = *snxt - spill; 20082 20083 /* 20084 * Advance xmit_tail; usable could be 0 by 20085 * the time we got here, but we made sure 20086 * above that we would only spillover to 20087 * the next data block if usable includes 20088 * the spilled-over amount prior to the 20089 * subtraction. Therefore, we are sure 20090 * that xmit_tail->b_cont can't be NULL. 20091 */ 20092 ASSERT((*xmit_tail)->b_cont != NULL); 20093 *xmit_tail = (*xmit_tail)->b_cont; 20094 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20095 (uintptr_t)INT_MAX); 20096 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20097 } else { 20098 cur_pld_off += tcp->tcp_last_sent_len; 20099 } 20100 20101 /* 20102 * Fill in the header using the template header, and 20103 * add options such as time-stamp, ECN and/or SACK, 20104 * as needed. 20105 */ 20106 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20107 (clock_t)local_time, num_sack_blk); 20108 20109 /* take care of some IP header businesses */ 20110 if (af == AF_INET) { 20111 ipha = (ipha_t *)pkt_info->hdr_rptr; 20112 20113 ASSERT(OK_32PTR((uchar_t *)ipha)); 20114 ASSERT(PDESC_HDRL(pkt_info) >= 20115 IP_SIMPLE_HDR_LENGTH); 20116 ASSERT(ipha->ipha_version_and_hdr_length == 20117 IP_SIMPLE_HDR_VERSION); 20118 20119 /* 20120 * Assign ident value for current packet; see 20121 * related comments in ip_wput_ire() about the 20122 * contract private interface with clustering 20123 * group. 20124 */ 20125 clusterwide = B_FALSE; 20126 if (cl_inet_ipident != NULL) { 20127 ASSERT(cl_inet_isclusterwide != NULL); 20128 if ((*cl_inet_isclusterwide)(stack_id, 20129 IPPROTO_IP, AF_INET, 20130 (uint8_t *)(uintptr_t)src, NULL)) { 20131 ipha->ipha_ident = 20132 (*cl_inet_ipident)(stack_id, 20133 IPPROTO_IP, AF_INET, 20134 (uint8_t *)(uintptr_t)src, 20135 (uint8_t *)(uintptr_t)dst, 20136 NULL); 20137 clusterwide = B_TRUE; 20138 } 20139 } 20140 20141 if (!clusterwide) { 20142 ipha->ipha_ident = (uint16_t) 20143 atomic_add_32_nv( 20144 &ire->ire_ident, 1); 20145 } 20146 #ifndef _BIG_ENDIAN 20147 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20148 (ipha->ipha_ident >> 8); 20149 #endif 20150 } else { 20151 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20152 20153 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20154 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20155 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20156 ASSERT(PDESC_HDRL(pkt_info) >= 20157 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20158 TCP_CHECKSUM_SIZE)); 20159 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20160 20161 if (tcp->tcp_ip_forward_progress) { 20162 rconfirm = B_TRUE; 20163 tcp->tcp_ip_forward_progress = B_FALSE; 20164 } 20165 } 20166 20167 /* at least one payload span, and at most two */ 20168 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20169 20170 /* add the packet descriptor to Multidata */ 20171 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20172 KM_NOSLEEP)) == NULL) { 20173 /* 20174 * Any failure other than ENOMEM indicates 20175 * that we have passed in invalid pkt_info 20176 * or parameters to mmd_addpdesc, which must 20177 * not happen. 20178 * 20179 * EINVAL is a result of failure on boundary 20180 * checks against the pkt_info contents. It 20181 * should not happen, and we panic because 20182 * either there's horrible heap corruption, 20183 * and/or programming mistake. 20184 */ 20185 if (err != ENOMEM) { 20186 cmn_err(CE_PANIC, "tcp_multisend: " 20187 "pdesc logic error detected for " 20188 "tcp %p mmd %p pinfo %p (%d)\n", 20189 (void *)tcp, (void *)mmd, 20190 (void *)pkt_info, err); 20191 } 20192 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20193 goto legacy_send; /* out_of_mem */ 20194 } 20195 ASSERT(pkt != NULL); 20196 20197 /* calculate IP header and TCP checksums */ 20198 if (af == AF_INET) { 20199 /* calculate pseudo-header checksum */ 20200 cksum = (dst >> 16) + (dst & 0xFFFF) + 20201 (src >> 16) + (src & 0xFFFF); 20202 20203 /* offset for TCP header checksum */ 20204 up = IPH_TCPH_CHECKSUMP(ipha, 20205 IP_SIMPLE_HDR_LENGTH); 20206 } else { 20207 up = (uint16_t *)&ip6h->ip6_src; 20208 20209 /* calculate pseudo-header checksum */ 20210 cksum = up[0] + up[1] + up[2] + up[3] + 20211 up[4] + up[5] + up[6] + up[7] + 20212 up[8] + up[9] + up[10] + up[11] + 20213 up[12] + up[13] + up[14] + up[15]; 20214 20215 /* Fold the initial sum */ 20216 cksum = (cksum & 0xffff) + (cksum >> 16); 20217 20218 up = (uint16_t *)(((uchar_t *)ip6h) + 20219 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20220 } 20221 20222 if (hwcksum_flags & HCK_FULLCKSUM) { 20223 /* clear checksum field for hardware */ 20224 *up = 0; 20225 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20226 uint32_t sum; 20227 20228 /* pseudo-header checksumming */ 20229 sum = *up + cksum + IP_TCP_CSUM_COMP; 20230 sum = (sum & 0xFFFF) + (sum >> 16); 20231 *up = (sum & 0xFFFF) + (sum >> 16); 20232 } else { 20233 /* software checksumming */ 20234 TCP_STAT(tcps, tcp_out_sw_cksum); 20235 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20236 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20237 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20238 cksum + IP_TCP_CSUM_COMP); 20239 if (*up == 0) 20240 *up = 0xFFFF; 20241 } 20242 20243 /* IPv4 header checksum */ 20244 if (af == AF_INET) { 20245 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20246 ipha->ipha_hdr_checksum = 0; 20247 } else { 20248 IP_HDR_CKSUM(ipha, cksum, 20249 ((uint32_t *)ipha)[0], 20250 ((uint16_t *)ipha)[4]); 20251 } 20252 } 20253 20254 if (af == AF_INET && 20255 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20256 af == AF_INET6 && 20257 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20258 mblk_t *mp, *mp1; 20259 uchar_t *hdr_rptr, *hdr_wptr; 20260 uchar_t *pld_rptr, *pld_wptr; 20261 20262 /* 20263 * We reconstruct a pseudo packet for the hooks 20264 * framework using mmd_transform_link(). 20265 * If it is a split packet we pullup the 20266 * payload. FW_HOOKS expects a pkt comprising 20267 * of two mblks: a header and the payload. 20268 */ 20269 if ((mp = mmd_transform_link(pkt)) == NULL) { 20270 TCP_STAT(tcps, tcp_mdt_allocfail); 20271 goto legacy_send; 20272 } 20273 20274 if (pkt_info->pld_cnt > 1) { 20275 /* split payload, more than one pld */ 20276 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20277 NULL) { 20278 freemsg(mp); 20279 TCP_STAT(tcps, 20280 tcp_mdt_allocfail); 20281 goto legacy_send; 20282 } 20283 freemsg(mp->b_cont); 20284 mp->b_cont = mp1; 20285 } else { 20286 mp1 = mp->b_cont; 20287 } 20288 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20289 20290 /* 20291 * Remember the message offsets. This is so we 20292 * can detect changes when we return from the 20293 * FW_HOOKS callbacks. 20294 */ 20295 hdr_rptr = mp->b_rptr; 20296 hdr_wptr = mp->b_wptr; 20297 pld_rptr = mp->b_cont->b_rptr; 20298 pld_wptr = mp->b_cont->b_wptr; 20299 20300 if (af == AF_INET) { 20301 DTRACE_PROBE4( 20302 ip4__physical__out__start, 20303 ill_t *, NULL, 20304 ill_t *, ill, 20305 ipha_t *, ipha, 20306 mblk_t *, mp); 20307 FW_HOOKS( 20308 ipst->ips_ip4_physical_out_event, 20309 ipst->ips_ipv4firewall_physical_out, 20310 NULL, ill, ipha, mp, mp, 0, ipst); 20311 DTRACE_PROBE1( 20312 ip4__physical__out__end, 20313 mblk_t *, mp); 20314 } else { 20315 DTRACE_PROBE4( 20316 ip6__physical__out_start, 20317 ill_t *, NULL, 20318 ill_t *, ill, 20319 ip6_t *, ip6h, 20320 mblk_t *, mp); 20321 FW_HOOKS6( 20322 ipst->ips_ip6_physical_out_event, 20323 ipst->ips_ipv6firewall_physical_out, 20324 NULL, ill, ip6h, mp, mp, 0, ipst); 20325 DTRACE_PROBE1( 20326 ip6__physical__out__end, 20327 mblk_t *, mp); 20328 } 20329 20330 if (mp == NULL || 20331 (mp1 = mp->b_cont) == NULL || 20332 mp->b_rptr != hdr_rptr || 20333 mp->b_wptr != hdr_wptr || 20334 mp1->b_rptr != pld_rptr || 20335 mp1->b_wptr != pld_wptr || 20336 mp1->b_cont != NULL) { 20337 /* 20338 * We abandon multidata processing and 20339 * return to the normal path, either 20340 * when a packet is blocked, or when 20341 * the boundaries of header buffer or 20342 * payload buffer have been changed by 20343 * FW_HOOKS[6]. 20344 */ 20345 if (mp != NULL) 20346 freemsg(mp); 20347 goto legacy_send; 20348 } 20349 /* Finished with the pseudo packet */ 20350 freemsg(mp); 20351 } 20352 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20353 ill, ipha, ip6h); 20354 /* advance header offset */ 20355 cur_hdr_off += hdr_frag_sz; 20356 20357 obbytes += tcp->tcp_last_sent_len; 20358 ++obsegs; 20359 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20360 *tail_unsent > 0); 20361 20362 if ((*xmit_tail)->b_next == NULL) { 20363 /* 20364 * Store the lbolt used for RTT estimation. We can only 20365 * record one timestamp per mblk so we do it when we 20366 * reach the end of the payload buffer. Also we only 20367 * take a new timestamp sample when the previous timed 20368 * data from the same mblk has been ack'ed. 20369 */ 20370 (*xmit_tail)->b_prev = local_time; 20371 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20372 } 20373 20374 ASSERT(*tail_unsent >= 0); 20375 if (*tail_unsent > 0) { 20376 /* 20377 * We got here because we broke out of the above 20378 * loop due to of one of the following cases: 20379 * 20380 * 1. len < adjusted MSS (i.e. small), 20381 * 2. Sender SWS avoidance, 20382 * 3. max_pld is zero. 20383 * 20384 * We are done for this Multidata, so trim our 20385 * last payload buffer (if any) accordingly. 20386 */ 20387 if (md_pbuf != NULL) 20388 md_pbuf->b_wptr -= *tail_unsent; 20389 } else if (*usable > 0) { 20390 *xmit_tail = (*xmit_tail)->b_cont; 20391 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20392 (uintptr_t)INT_MAX); 20393 *tail_unsent = (int)MBLKL(*xmit_tail); 20394 add_buffer = B_TRUE; 20395 } 20396 } while (!done && *usable > 0 && num_burst_seg > 0 && 20397 (tcp_mdt_chain || max_pld > 0)); 20398 20399 if (md_mp_head != NULL) { 20400 /* send everything down */ 20401 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20402 &rconfirm); 20403 } 20404 20405 #undef PREP_NEW_MULTIDATA 20406 #undef PREP_NEW_PBUF 20407 #undef IPVER 20408 20409 IRE_REFRELE(ire); 20410 return (0); 20411 } 20412 20413 /* 20414 * A wrapper function for sending one or more Multidata messages down to 20415 * the module below ip; this routine does not release the reference of the 20416 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20417 */ 20418 static void 20419 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20420 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20421 { 20422 uint64_t delta; 20423 nce_t *nce; 20424 tcp_stack_t *tcps = tcp->tcp_tcps; 20425 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20426 20427 ASSERT(ire != NULL && ill != NULL); 20428 ASSERT(ire->ire_stq != NULL); 20429 ASSERT(md_mp_head != NULL); 20430 ASSERT(rconfirm != NULL); 20431 20432 /* adjust MIBs and IRE timestamp */ 20433 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20434 tcp->tcp_obsegs += obsegs; 20435 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20436 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20437 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20438 20439 if (tcp->tcp_ipversion == IPV4_VERSION) { 20440 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20441 } else { 20442 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20443 } 20444 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20445 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20446 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20447 20448 ire->ire_ob_pkt_count += obsegs; 20449 if (ire->ire_ipif != NULL) 20450 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20451 ire->ire_last_used_time = lbolt; 20452 20453 if ((tcp->tcp_ipversion == IPV4_VERSION && 20454 ipst->ips_ip4_observe.he_interested) || 20455 (tcp->tcp_ipversion == IPV6_VERSION && 20456 ipst->ips_ip6_observe.he_interested)) { 20457 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20458 pdesc_t *dl_pkt; 20459 pdescinfo_t pinfo; 20460 mblk_t *nmp; 20461 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20462 20463 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20464 (dl_pkt != NULL); 20465 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20466 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20467 continue; 20468 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20469 ALL_ZONES, ill, ipst); 20470 freemsg(nmp); 20471 } 20472 } 20473 20474 /* send it down */ 20475 putnext(ire->ire_stq, md_mp_head); 20476 20477 /* we're done for TCP/IPv4 */ 20478 if (tcp->tcp_ipversion == IPV4_VERSION) 20479 return; 20480 20481 nce = ire->ire_nce; 20482 20483 ASSERT(nce != NULL); 20484 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20485 ASSERT(nce->nce_state != ND_INCOMPLETE); 20486 20487 /* reachability confirmation? */ 20488 if (*rconfirm) { 20489 nce->nce_last = TICK_TO_MSEC(lbolt64); 20490 if (nce->nce_state != ND_REACHABLE) { 20491 mutex_enter(&nce->nce_lock); 20492 nce->nce_state = ND_REACHABLE; 20493 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20494 mutex_exit(&nce->nce_lock); 20495 (void) untimeout(nce->nce_timeout_id); 20496 if (ip_debug > 2) { 20497 /* ip1dbg */ 20498 pr_addr_dbg("tcp_multisend_data: state " 20499 "for %s changed to REACHABLE\n", 20500 AF_INET6, &ire->ire_addr_v6); 20501 } 20502 } 20503 /* reset transport reachability confirmation */ 20504 *rconfirm = B_FALSE; 20505 } 20506 20507 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20508 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20509 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20510 20511 if (delta > (uint64_t)ill->ill_reachable_time) { 20512 mutex_enter(&nce->nce_lock); 20513 switch (nce->nce_state) { 20514 case ND_REACHABLE: 20515 case ND_STALE: 20516 /* 20517 * ND_REACHABLE is identical to ND_STALE in this 20518 * specific case. If reachable time has expired for 20519 * this neighbor (delta is greater than reachable 20520 * time), conceptually, the neighbor cache is no 20521 * longer in REACHABLE state, but already in STALE 20522 * state. So the correct transition here is to 20523 * ND_DELAY. 20524 */ 20525 nce->nce_state = ND_DELAY; 20526 mutex_exit(&nce->nce_lock); 20527 NDP_RESTART_TIMER(nce, 20528 ipst->ips_delay_first_probe_time); 20529 if (ip_debug > 3) { 20530 /* ip2dbg */ 20531 pr_addr_dbg("tcp_multisend_data: state " 20532 "for %s changed to DELAY\n", 20533 AF_INET6, &ire->ire_addr_v6); 20534 } 20535 break; 20536 case ND_DELAY: 20537 case ND_PROBE: 20538 mutex_exit(&nce->nce_lock); 20539 /* Timers have already started */ 20540 break; 20541 case ND_UNREACHABLE: 20542 /* 20543 * ndp timer has detected that this nce is 20544 * unreachable and initiated deleting this nce 20545 * and all its associated IREs. This is a race 20546 * where we found the ire before it was deleted 20547 * and have just sent out a packet using this 20548 * unreachable nce. 20549 */ 20550 mutex_exit(&nce->nce_lock); 20551 break; 20552 default: 20553 ASSERT(0); 20554 } 20555 } 20556 } 20557 20558 /* 20559 * Derived from tcp_send_data(). 20560 */ 20561 static void 20562 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20563 int num_lso_seg) 20564 { 20565 ipha_t *ipha; 20566 mblk_t *ire_fp_mp; 20567 uint_t ire_fp_mp_len; 20568 uint32_t hcksum_txflags = 0; 20569 ipaddr_t src; 20570 ipaddr_t dst; 20571 uint32_t cksum; 20572 uint16_t *up; 20573 tcp_stack_t *tcps = tcp->tcp_tcps; 20574 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20575 20576 ASSERT(DB_TYPE(mp) == M_DATA); 20577 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20578 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20579 ASSERT(tcp->tcp_connp != NULL); 20580 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20581 20582 ipha = (ipha_t *)mp->b_rptr; 20583 src = ipha->ipha_src; 20584 dst = ipha->ipha_dst; 20585 20586 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20587 20588 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20589 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20590 num_lso_seg); 20591 #ifndef _BIG_ENDIAN 20592 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20593 #endif 20594 if (tcp->tcp_snd_zcopy_aware) { 20595 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20596 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20597 mp = tcp_zcopy_disable(tcp, mp); 20598 } 20599 20600 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20601 ASSERT(ill->ill_hcksum_capab != NULL); 20602 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20603 } 20604 20605 /* 20606 * Since the TCP checksum should be recalculated by h/w, we can just 20607 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20608 * pseudo-header checksum for HCK_PARTIALCKSUM. 20609 * The partial pseudo-header excludes TCP length, that was calculated 20610 * in tcp_send(), so to zero *up before further processing. 20611 */ 20612 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20613 20614 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20615 *up = 0; 20616 20617 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20618 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20619 20620 /* 20621 * Append LSO flags and mss to the mp. 20622 */ 20623 lso_info_set(mp, mss, HW_LSO); 20624 20625 ipha->ipha_fragment_offset_and_flags |= 20626 (uint32_t)htons(ire->ire_frag_flag); 20627 20628 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20629 ire_fp_mp_len = MBLKL(ire_fp_mp); 20630 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20631 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20632 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20633 20634 UPDATE_OB_PKT_COUNT(ire); 20635 ire->ire_last_used_time = lbolt; 20636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20638 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20639 ntohs(ipha->ipha_length)); 20640 20641 DTRACE_PROBE4(ip4__physical__out__start, 20642 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20643 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20644 ipst->ips_ipv4firewall_physical_out, NULL, 20645 ill, ipha, mp, mp, 0, ipst); 20646 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20647 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20648 20649 if (mp != NULL) { 20650 if (ipst->ips_ip4_observe.he_interested) { 20651 zoneid_t szone; 20652 20653 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20654 ipst, ALL_ZONES); 20655 if (ire_fp_mp_len != 0) 20656 mp->b_rptr += ire_fp_mp_len; 20657 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20658 ALL_ZONES, ill, ipst); 20659 if (ire_fp_mp_len != 0) 20660 mp->b_rptr -= ire_fp_mp_len; 20661 } 20662 20663 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20664 } 20665 } 20666 20667 /* 20668 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20669 * scheme, and returns one of the following: 20670 * 20671 * -1 = failed allocation. 20672 * 0 = success; burst count reached, or usable send window is too small, 20673 * and that we'd rather wait until later before sending again. 20674 * 1 = success; we are called from tcp_multisend(), and both usable send 20675 * window and tail_unsent are greater than the MDT threshold, and thus 20676 * Multidata Transmit should be used instead. 20677 */ 20678 static int 20679 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20680 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20681 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20682 const int mdt_thres) 20683 { 20684 int num_burst_seg = tcp->tcp_snd_burst; 20685 ire_t *ire = NULL; 20686 ill_t *ill = NULL; 20687 mblk_t *ire_fp_mp = NULL; 20688 uint_t ire_fp_mp_len = 0; 20689 int num_lso_seg = 1; 20690 uint_t lso_usable; 20691 boolean_t do_lso_send = B_FALSE; 20692 tcp_stack_t *tcps = tcp->tcp_tcps; 20693 20694 /* 20695 * Check LSO capability before any further work. And the similar check 20696 * need to be done in for(;;) loop. 20697 * LSO will be deployed when therer is more than one mss of available 20698 * data and a burst transmission is allowed. 20699 */ 20700 if (tcp->tcp_lso && 20701 (tcp->tcp_valid_bits == 0 || 20702 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20703 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20704 /* 20705 * Try to find usable IRE/ILL and do basic check to the ILL. 20706 * Double check LSO usability before going further, since the 20707 * underlying interface could have been changed. In case of any 20708 * change of LSO capability, set tcp_ire_ill_check_done to 20709 * B_FALSE to force to check the ILL with the next send. 20710 */ 20711 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 20712 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 20713 /* 20714 * Enable LSO with this transmission. 20715 * Since IRE has been hold in tcp_send_find_ire_ill(), 20716 * IRE_REFRELE(ire) should be called before return. 20717 */ 20718 do_lso_send = B_TRUE; 20719 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20720 ire_fp_mp_len = MBLKL(ire_fp_mp); 20721 /* Round up to multiple of 4 */ 20722 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20723 } else { 20724 tcp->tcp_lso = B_FALSE; 20725 tcp->tcp_ire_ill_check_done = B_FALSE; 20726 do_lso_send = B_FALSE; 20727 ill = NULL; 20728 } 20729 } 20730 20731 for (;;) { 20732 struct datab *db; 20733 tcph_t *tcph; 20734 uint32_t sum; 20735 mblk_t *mp, *mp1; 20736 uchar_t *rptr; 20737 int len; 20738 20739 /* 20740 * If we're called by tcp_multisend(), and the amount of 20741 * sendable data as well as the size of current xmit_tail 20742 * is beyond the MDT threshold, return to the caller and 20743 * let the large data transmit be done using MDT. 20744 */ 20745 if (*usable > 0 && *usable > mdt_thres && 20746 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20747 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20748 ASSERT(tcp->tcp_mdt); 20749 return (1); /* success; do large send */ 20750 } 20751 20752 if (num_burst_seg == 0) 20753 break; /* success; burst count reached */ 20754 20755 /* 20756 * Calculate the maximum payload length we can send in *one* 20757 * time. 20758 */ 20759 if (do_lso_send) { 20760 /* 20761 * Check whether need to do LSO any more. 20762 */ 20763 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20764 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20765 lso_usable = MIN(lso_usable, 20766 num_burst_seg * mss); 20767 20768 num_lso_seg = lso_usable / mss; 20769 if (lso_usable % mss) { 20770 num_lso_seg++; 20771 tcp->tcp_last_sent_len = (ushort_t) 20772 (lso_usable % mss); 20773 } else { 20774 tcp->tcp_last_sent_len = (ushort_t)mss; 20775 } 20776 } else { 20777 do_lso_send = B_FALSE; 20778 num_lso_seg = 1; 20779 lso_usable = mss; 20780 } 20781 } 20782 20783 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20784 20785 /* 20786 * Adjust num_burst_seg here. 20787 */ 20788 num_burst_seg -= num_lso_seg; 20789 20790 len = mss; 20791 if (len > *usable) { 20792 ASSERT(do_lso_send == B_FALSE); 20793 20794 len = *usable; 20795 if (len <= 0) { 20796 /* Terminate the loop */ 20797 break; /* success; too small */ 20798 } 20799 /* 20800 * Sender silly-window avoidance. 20801 * Ignore this if we are going to send a 20802 * zero window probe out. 20803 * 20804 * TODO: force data into microscopic window? 20805 * ==> (!pushed || (unsent > usable)) 20806 */ 20807 if (len < (tcp->tcp_max_swnd >> 1) && 20808 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20809 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20810 len == 1) && (! tcp->tcp_zero_win_probe)) { 20811 /* 20812 * If the retransmit timer is not running 20813 * we start it so that we will retransmit 20814 * in the case when the the receiver has 20815 * decremented the window. 20816 */ 20817 if (*snxt == tcp->tcp_snxt && 20818 *snxt == tcp->tcp_suna) { 20819 /* 20820 * We are not supposed to send 20821 * anything. So let's wait a little 20822 * bit longer before breaking SWS 20823 * avoidance. 20824 * 20825 * What should the value be? 20826 * Suggestion: MAX(init rexmit time, 20827 * tcp->tcp_rto) 20828 */ 20829 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20830 } 20831 break; /* success; too small */ 20832 } 20833 } 20834 20835 tcph = tcp->tcp_tcph; 20836 20837 /* 20838 * The reason to adjust len here is that we need to set flags 20839 * and calculate checksum. 20840 */ 20841 if (do_lso_send) 20842 len = lso_usable; 20843 20844 *usable -= len; /* Approximate - can be adjusted later */ 20845 if (*usable > 0) 20846 tcph->th_flags[0] = TH_ACK; 20847 else 20848 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20849 20850 /* 20851 * Prime pump for IP's checksumming on our behalf 20852 * Include the adjustment for a source route if any. 20853 */ 20854 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20855 sum = (sum >> 16) + (sum & 0xFFFF); 20856 U16_TO_ABE16(sum, tcph->th_sum); 20857 20858 U32_TO_ABE32(*snxt, tcph->th_seq); 20859 20860 /* 20861 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20862 * set. For the case when TCP_FSS_VALID is the only valid 20863 * bit (normal active close), branch off only when we think 20864 * that the FIN flag needs to be set. Note for this case, 20865 * that (snxt + len) may not reflect the actual seg_len, 20866 * as len may be further reduced in tcp_xmit_mp(). If len 20867 * gets modified, we will end up here again. 20868 */ 20869 if (tcp->tcp_valid_bits != 0 && 20870 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20871 ((*snxt + len) == tcp->tcp_fss))) { 20872 uchar_t *prev_rptr; 20873 uint32_t prev_snxt = tcp->tcp_snxt; 20874 20875 if (*tail_unsent == 0) { 20876 ASSERT((*xmit_tail)->b_cont != NULL); 20877 *xmit_tail = (*xmit_tail)->b_cont; 20878 prev_rptr = (*xmit_tail)->b_rptr; 20879 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20880 (*xmit_tail)->b_rptr); 20881 } else { 20882 prev_rptr = (*xmit_tail)->b_rptr; 20883 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20884 *tail_unsent; 20885 } 20886 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20887 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20888 /* Restore tcp_snxt so we get amount sent right. */ 20889 tcp->tcp_snxt = prev_snxt; 20890 if (prev_rptr == (*xmit_tail)->b_rptr) { 20891 /* 20892 * If the previous timestamp is still in use, 20893 * don't stomp on it. 20894 */ 20895 if ((*xmit_tail)->b_next == NULL) { 20896 (*xmit_tail)->b_prev = local_time; 20897 (*xmit_tail)->b_next = 20898 (mblk_t *)(uintptr_t)(*snxt); 20899 } 20900 } else 20901 (*xmit_tail)->b_rptr = prev_rptr; 20902 20903 if (mp == NULL) { 20904 if (ire != NULL) 20905 IRE_REFRELE(ire); 20906 return (-1); 20907 } 20908 mp1 = mp->b_cont; 20909 20910 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20911 tcp->tcp_last_sent_len = (ushort_t)len; 20912 while (mp1->b_cont) { 20913 *xmit_tail = (*xmit_tail)->b_cont; 20914 (*xmit_tail)->b_prev = local_time; 20915 (*xmit_tail)->b_next = 20916 (mblk_t *)(uintptr_t)(*snxt); 20917 mp1 = mp1->b_cont; 20918 } 20919 *snxt += len; 20920 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20921 BUMP_LOCAL(tcp->tcp_obsegs); 20922 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20923 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20924 tcp_send_data(tcp, q, mp); 20925 continue; 20926 } 20927 20928 *snxt += len; /* Adjust later if we don't send all of len */ 20929 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20930 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20931 20932 if (*tail_unsent) { 20933 /* Are the bytes above us in flight? */ 20934 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20935 if (rptr != (*xmit_tail)->b_rptr) { 20936 *tail_unsent -= len; 20937 if (len <= mss) /* LSO is unusable */ 20938 tcp->tcp_last_sent_len = (ushort_t)len; 20939 len += tcp_hdr_len; 20940 if (tcp->tcp_ipversion == IPV4_VERSION) 20941 tcp->tcp_ipha->ipha_length = htons(len); 20942 else 20943 tcp->tcp_ip6h->ip6_plen = 20944 htons(len - 20945 ((char *)&tcp->tcp_ip6h[1] - 20946 tcp->tcp_iphc)); 20947 mp = dupb(*xmit_tail); 20948 if (mp == NULL) { 20949 if (ire != NULL) 20950 IRE_REFRELE(ire); 20951 return (-1); /* out_of_mem */ 20952 } 20953 mp->b_rptr = rptr; 20954 /* 20955 * If the old timestamp is no longer in use, 20956 * sample a new timestamp now. 20957 */ 20958 if ((*xmit_tail)->b_next == NULL) { 20959 (*xmit_tail)->b_prev = local_time; 20960 (*xmit_tail)->b_next = 20961 (mblk_t *)(uintptr_t)(*snxt-len); 20962 } 20963 goto must_alloc; 20964 } 20965 } else { 20966 *xmit_tail = (*xmit_tail)->b_cont; 20967 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20968 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20969 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20970 (*xmit_tail)->b_rptr); 20971 } 20972 20973 (*xmit_tail)->b_prev = local_time; 20974 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20975 20976 *tail_unsent -= len; 20977 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20978 tcp->tcp_last_sent_len = (ushort_t)len; 20979 20980 len += tcp_hdr_len; 20981 if (tcp->tcp_ipversion == IPV4_VERSION) 20982 tcp->tcp_ipha->ipha_length = htons(len); 20983 else 20984 tcp->tcp_ip6h->ip6_plen = htons(len - 20985 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20986 20987 mp = dupb(*xmit_tail); 20988 if (mp == NULL) { 20989 if (ire != NULL) 20990 IRE_REFRELE(ire); 20991 return (-1); /* out_of_mem */ 20992 } 20993 20994 len = tcp_hdr_len; 20995 /* 20996 * There are four reasons to allocate a new hdr mblk: 20997 * 1) The bytes above us are in use by another packet 20998 * 2) We don't have good alignment 20999 * 3) The mblk is being shared 21000 * 4) We don't have enough room for a header 21001 */ 21002 rptr = mp->b_rptr - len; 21003 if (!OK_32PTR(rptr) || 21004 ((db = mp->b_datap), db->db_ref != 2) || 21005 rptr < db->db_base + ire_fp_mp_len) { 21006 /* NOTE: we assume allocb returns an OK_32PTR */ 21007 21008 must_alloc:; 21009 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21010 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21011 if (mp1 == NULL) { 21012 freemsg(mp); 21013 if (ire != NULL) 21014 IRE_REFRELE(ire); 21015 return (-1); /* out_of_mem */ 21016 } 21017 mp1->b_cont = mp; 21018 mp = mp1; 21019 /* Leave room for Link Level header */ 21020 len = tcp_hdr_len; 21021 rptr = 21022 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21023 mp->b_wptr = &rptr[len]; 21024 } 21025 21026 /* 21027 * Fill in the header using the template header, and add 21028 * options such as time-stamp, ECN and/or SACK, as needed. 21029 */ 21030 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21031 21032 mp->b_rptr = rptr; 21033 21034 if (*tail_unsent) { 21035 int spill = *tail_unsent; 21036 21037 mp1 = mp->b_cont; 21038 if (mp1 == NULL) 21039 mp1 = mp; 21040 21041 /* 21042 * If we're a little short, tack on more mblks until 21043 * there is no more spillover. 21044 */ 21045 while (spill < 0) { 21046 mblk_t *nmp; 21047 int nmpsz; 21048 21049 nmp = (*xmit_tail)->b_cont; 21050 nmpsz = MBLKL(nmp); 21051 21052 /* 21053 * Excess data in mblk; can we split it? 21054 * If MDT is enabled for the connection, 21055 * keep on splitting as this is a transient 21056 * send path. 21057 */ 21058 if (!do_lso_send && !tcp->tcp_mdt && 21059 (spill + nmpsz > 0)) { 21060 /* 21061 * Don't split if stream head was 21062 * told to break up larger writes 21063 * into smaller ones. 21064 */ 21065 if (tcp->tcp_maxpsz > 0) 21066 break; 21067 21068 /* 21069 * Next mblk is less than SMSS/2 21070 * rounded up to nearest 64-byte; 21071 * let it get sent as part of the 21072 * next segment. 21073 */ 21074 if (tcp->tcp_localnet && 21075 !tcp->tcp_cork && 21076 (nmpsz < roundup((mss >> 1), 64))) 21077 break; 21078 } 21079 21080 *xmit_tail = nmp; 21081 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21082 /* Stash for rtt use later */ 21083 (*xmit_tail)->b_prev = local_time; 21084 (*xmit_tail)->b_next = 21085 (mblk_t *)(uintptr_t)(*snxt - len); 21086 mp1->b_cont = dupb(*xmit_tail); 21087 mp1 = mp1->b_cont; 21088 21089 spill += nmpsz; 21090 if (mp1 == NULL) { 21091 *tail_unsent = spill; 21092 freemsg(mp); 21093 if (ire != NULL) 21094 IRE_REFRELE(ire); 21095 return (-1); /* out_of_mem */ 21096 } 21097 } 21098 21099 /* Trim back any surplus on the last mblk */ 21100 if (spill >= 0) { 21101 mp1->b_wptr -= spill; 21102 *tail_unsent = spill; 21103 } else { 21104 /* 21105 * We did not send everything we could in 21106 * order to remain within the b_cont limit. 21107 */ 21108 *usable -= spill; 21109 *snxt += spill; 21110 tcp->tcp_last_sent_len += spill; 21111 UPDATE_MIB(&tcps->tcps_mib, 21112 tcpOutDataBytes, spill); 21113 /* 21114 * Adjust the checksum 21115 */ 21116 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21117 sum += spill; 21118 sum = (sum >> 16) + (sum & 0xFFFF); 21119 U16_TO_ABE16(sum, tcph->th_sum); 21120 if (tcp->tcp_ipversion == IPV4_VERSION) { 21121 sum = ntohs( 21122 ((ipha_t *)rptr)->ipha_length) + 21123 spill; 21124 ((ipha_t *)rptr)->ipha_length = 21125 htons(sum); 21126 } else { 21127 sum = ntohs( 21128 ((ip6_t *)rptr)->ip6_plen) + 21129 spill; 21130 ((ip6_t *)rptr)->ip6_plen = 21131 htons(sum); 21132 } 21133 *tail_unsent = 0; 21134 } 21135 } 21136 if (tcp->tcp_ip_forward_progress) { 21137 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21138 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21139 tcp->tcp_ip_forward_progress = B_FALSE; 21140 } 21141 21142 if (do_lso_send) { 21143 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21144 num_lso_seg); 21145 tcp->tcp_obsegs += num_lso_seg; 21146 21147 TCP_STAT(tcps, tcp_lso_times); 21148 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21149 } else { 21150 tcp_send_data(tcp, q, mp); 21151 BUMP_LOCAL(tcp->tcp_obsegs); 21152 } 21153 } 21154 21155 if (ire != NULL) 21156 IRE_REFRELE(ire); 21157 return (0); 21158 } 21159 21160 /* Unlink and return any mblk that looks like it contains a MDT info */ 21161 static mblk_t * 21162 tcp_mdt_info_mp(mblk_t *mp) 21163 { 21164 mblk_t *prev_mp; 21165 21166 for (;;) { 21167 prev_mp = mp; 21168 /* no more to process? */ 21169 if ((mp = mp->b_cont) == NULL) 21170 break; 21171 21172 switch (DB_TYPE(mp)) { 21173 case M_CTL: 21174 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21175 continue; 21176 ASSERT(prev_mp != NULL); 21177 prev_mp->b_cont = mp->b_cont; 21178 mp->b_cont = NULL; 21179 return (mp); 21180 default: 21181 break; 21182 } 21183 } 21184 return (mp); 21185 } 21186 21187 /* MDT info update routine, called when IP notifies us about MDT */ 21188 static void 21189 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21190 { 21191 boolean_t prev_state; 21192 tcp_stack_t *tcps = tcp->tcp_tcps; 21193 21194 /* 21195 * IP is telling us to abort MDT on this connection? We know 21196 * this because the capability is only turned off when IP 21197 * encounters some pathological cases, e.g. link-layer change 21198 * where the new driver doesn't support MDT, or in situation 21199 * where MDT usage on the link-layer has been switched off. 21200 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21201 * if the link-layer doesn't support MDT, and if it does, it 21202 * will indicate that the feature is to be turned on. 21203 */ 21204 prev_state = tcp->tcp_mdt; 21205 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21206 if (!tcp->tcp_mdt && !first) { 21207 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21208 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21209 (void *)tcp->tcp_connp)); 21210 } 21211 21212 /* 21213 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21214 * so disable MDT otherwise. The checks are done here 21215 * and in tcp_wput_data(). 21216 */ 21217 if (tcp->tcp_mdt && 21218 (tcp->tcp_ipversion == IPV4_VERSION && 21219 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21220 (tcp->tcp_ipversion == IPV6_VERSION && 21221 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21222 tcp->tcp_mdt = B_FALSE; 21223 21224 if (tcp->tcp_mdt) { 21225 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21226 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21227 "version (%d), expected version is %d", 21228 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21229 tcp->tcp_mdt = B_FALSE; 21230 return; 21231 } 21232 21233 /* 21234 * We need the driver to be able to handle at least three 21235 * spans per packet in order for tcp MDT to be utilized. 21236 * The first is for the header portion, while the rest are 21237 * needed to handle a packet that straddles across two 21238 * virtually non-contiguous buffers; a typical tcp packet 21239 * therefore consists of only two spans. Note that we take 21240 * a zero as "don't care". 21241 */ 21242 if (mdt_capab->ill_mdt_span_limit > 0 && 21243 mdt_capab->ill_mdt_span_limit < 3) { 21244 tcp->tcp_mdt = B_FALSE; 21245 return; 21246 } 21247 21248 /* a zero means driver wants default value */ 21249 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21250 tcps->tcps_mdt_max_pbufs); 21251 if (tcp->tcp_mdt_max_pld == 0) 21252 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21253 21254 /* ensure 32-bit alignment */ 21255 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21256 mdt_capab->ill_mdt_hdr_head), 4); 21257 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21258 mdt_capab->ill_mdt_hdr_tail), 4); 21259 21260 if (!first && !prev_state) { 21261 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21262 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21263 (void *)tcp->tcp_connp)); 21264 } 21265 } 21266 } 21267 21268 /* Unlink and return any mblk that looks like it contains a LSO info */ 21269 static mblk_t * 21270 tcp_lso_info_mp(mblk_t *mp) 21271 { 21272 mblk_t *prev_mp; 21273 21274 for (;;) { 21275 prev_mp = mp; 21276 /* no more to process? */ 21277 if ((mp = mp->b_cont) == NULL) 21278 break; 21279 21280 switch (DB_TYPE(mp)) { 21281 case M_CTL: 21282 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21283 continue; 21284 ASSERT(prev_mp != NULL); 21285 prev_mp->b_cont = mp->b_cont; 21286 mp->b_cont = NULL; 21287 return (mp); 21288 default: 21289 break; 21290 } 21291 } 21292 21293 return (mp); 21294 } 21295 21296 /* LSO info update routine, called when IP notifies us about LSO */ 21297 static void 21298 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21299 { 21300 tcp_stack_t *tcps = tcp->tcp_tcps; 21301 21302 /* 21303 * IP is telling us to abort LSO on this connection? We know 21304 * this because the capability is only turned off when IP 21305 * encounters some pathological cases, e.g. link-layer change 21306 * where the new NIC/driver doesn't support LSO, or in situation 21307 * where LSO usage on the link-layer has been switched off. 21308 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21309 * if the link-layer doesn't support LSO, and if it does, it 21310 * will indicate that the feature is to be turned on. 21311 */ 21312 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21313 TCP_STAT(tcps, tcp_lso_enabled); 21314 21315 /* 21316 * We currently only support LSO on simple TCP/IPv4, 21317 * so disable LSO otherwise. The checks are done here 21318 * and in tcp_wput_data(). 21319 */ 21320 if (tcp->tcp_lso && 21321 (tcp->tcp_ipversion == IPV4_VERSION && 21322 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21323 (tcp->tcp_ipversion == IPV6_VERSION)) { 21324 tcp->tcp_lso = B_FALSE; 21325 TCP_STAT(tcps, tcp_lso_disabled); 21326 } else { 21327 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21328 lso_capab->ill_lso_max); 21329 } 21330 } 21331 21332 static void 21333 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21334 { 21335 conn_t *connp = tcp->tcp_connp; 21336 tcp_stack_t *tcps = tcp->tcp_tcps; 21337 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21338 21339 ASSERT(ire != NULL); 21340 21341 /* 21342 * We may be in the fastpath here, and although we essentially do 21343 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21344 * we try to keep things as brief as possible. After all, these 21345 * are only best-effort checks, and we do more thorough ones prior 21346 * to calling tcp_send()/tcp_multisend(). 21347 */ 21348 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21349 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21350 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21351 !(ire->ire_flags & RTF_MULTIRT) && 21352 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21353 CONN_IS_LSO_MD_FASTPATH(connp)) { 21354 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21355 /* Cache the result */ 21356 connp->conn_lso_ok = B_TRUE; 21357 21358 ASSERT(ill->ill_lso_capab != NULL); 21359 if (!ill->ill_lso_capab->ill_lso_on) { 21360 ill->ill_lso_capab->ill_lso_on = 1; 21361 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21362 "LSO for interface %s\n", (void *)connp, 21363 ill->ill_name)); 21364 } 21365 tcp_lso_update(tcp, ill->ill_lso_capab); 21366 } else if (ipst->ips_ip_multidata_outbound && 21367 ILL_MDT_CAPABLE(ill)) { 21368 /* Cache the result */ 21369 connp->conn_mdt_ok = B_TRUE; 21370 21371 ASSERT(ill->ill_mdt_capab != NULL); 21372 if (!ill->ill_mdt_capab->ill_mdt_on) { 21373 ill->ill_mdt_capab->ill_mdt_on = 1; 21374 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21375 "MDT for interface %s\n", (void *)connp, 21376 ill->ill_name)); 21377 } 21378 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21379 } 21380 } 21381 21382 /* 21383 * The goal is to reduce the number of generated tcp segments by 21384 * setting the maxpsz multiplier to 0; this will have an affect on 21385 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21386 * into each packet, up to SMSS bytes. Doing this reduces the number 21387 * of outbound segments and incoming ACKs, thus allowing for better 21388 * network and system performance. In contrast the legacy behavior 21389 * may result in sending less than SMSS size, because the last mblk 21390 * for some packets may have more data than needed to make up SMSS, 21391 * and the legacy code refused to "split" it. 21392 * 21393 * We apply the new behavior on following situations: 21394 * 21395 * 1) Loopback connections, 21396 * 2) Connections in which the remote peer is not on local subnet, 21397 * 3) Local subnet connections over the bge interface (see below). 21398 * 21399 * Ideally, we would like this behavior to apply for interfaces other 21400 * than bge. However, doing so would negatively impact drivers which 21401 * perform dynamic mapping and unmapping of DMA resources, which are 21402 * increased by setting the maxpsz multiplier to 0 (more mblks per 21403 * packet will be generated by tcp). The bge driver does not suffer 21404 * from this, as it copies the mblks into pre-mapped buffers, and 21405 * therefore does not require more I/O resources than before. 21406 * 21407 * Otherwise, this behavior is present on all network interfaces when 21408 * the destination endpoint is non-local, since reducing the number 21409 * of packets in general is good for the network. 21410 * 21411 * TODO We need to remove this hard-coded conditional for bge once 21412 * a better "self-tuning" mechanism, or a way to comprehend 21413 * the driver transmit strategy is devised. Until the solution 21414 * is found and well understood, we live with this hack. 21415 */ 21416 if (!tcp_static_maxpsz && 21417 (tcp->tcp_loopback || !tcp->tcp_localnet || 21418 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21419 /* override the default value */ 21420 tcp->tcp_maxpsz = 0; 21421 21422 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21423 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21424 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21425 } 21426 21427 /* set the stream head parameters accordingly */ 21428 (void) tcp_maxpsz_set(tcp, B_TRUE); 21429 } 21430 21431 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21432 static void 21433 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21434 { 21435 uchar_t fval = *mp->b_rptr; 21436 mblk_t *tail; 21437 queue_t *q = tcp->tcp_wq; 21438 21439 /* TODO: How should flush interact with urgent data? */ 21440 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21441 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21442 /* 21443 * Flush only data that has not yet been put on the wire. If 21444 * we flush data that we have already transmitted, life, as we 21445 * know it, may come to an end. 21446 */ 21447 tail = tcp->tcp_xmit_tail; 21448 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21449 tcp->tcp_xmit_tail_unsent = 0; 21450 tcp->tcp_unsent = 0; 21451 if (tail->b_wptr != tail->b_rptr) 21452 tail = tail->b_cont; 21453 if (tail) { 21454 mblk_t **excess = &tcp->tcp_xmit_head; 21455 for (;;) { 21456 mblk_t *mp1 = *excess; 21457 if (mp1 == tail) 21458 break; 21459 tcp->tcp_xmit_tail = mp1; 21460 tcp->tcp_xmit_last = mp1; 21461 excess = &mp1->b_cont; 21462 } 21463 *excess = NULL; 21464 tcp_close_mpp(&tail); 21465 if (tcp->tcp_snd_zcopy_aware) 21466 tcp_zcopy_notify(tcp); 21467 } 21468 /* 21469 * We have no unsent data, so unsent must be less than 21470 * tcp_xmit_lowater, so re-enable flow. 21471 */ 21472 mutex_enter(&tcp->tcp_non_sq_lock); 21473 if (tcp->tcp_flow_stopped) { 21474 tcp_clrqfull(tcp); 21475 } 21476 mutex_exit(&tcp->tcp_non_sq_lock); 21477 } 21478 /* 21479 * TODO: you can't just flush these, you have to increase rwnd for one 21480 * thing. For another, how should urgent data interact? 21481 */ 21482 if (fval & FLUSHR) { 21483 *mp->b_rptr = fval & ~FLUSHW; 21484 /* XXX */ 21485 qreply(q, mp); 21486 return; 21487 } 21488 freemsg(mp); 21489 } 21490 21491 /* 21492 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21493 * messages. 21494 */ 21495 static void 21496 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21497 { 21498 mblk_t *mp1; 21499 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21500 STRUCT_HANDLE(strbuf, sb); 21501 queue_t *q = tcp->tcp_wq; 21502 int error; 21503 uint_t addrlen; 21504 21505 /* Make sure it is one of ours. */ 21506 switch (iocp->ioc_cmd) { 21507 case TI_GETMYNAME: 21508 case TI_GETPEERNAME: 21509 break; 21510 default: 21511 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21512 return; 21513 } 21514 switch (mi_copy_state(q, mp, &mp1)) { 21515 case -1: 21516 return; 21517 case MI_COPY_CASE(MI_COPY_IN, 1): 21518 break; 21519 case MI_COPY_CASE(MI_COPY_OUT, 1): 21520 /* Copy out the strbuf. */ 21521 mi_copyout(q, mp); 21522 return; 21523 case MI_COPY_CASE(MI_COPY_OUT, 2): 21524 /* All done. */ 21525 mi_copy_done(q, mp, 0); 21526 return; 21527 default: 21528 mi_copy_done(q, mp, EPROTO); 21529 return; 21530 } 21531 /* Check alignment of the strbuf */ 21532 if (!OK_32PTR(mp1->b_rptr)) { 21533 mi_copy_done(q, mp, EINVAL); 21534 return; 21535 } 21536 21537 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21538 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21539 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21540 mi_copy_done(q, mp, EINVAL); 21541 return; 21542 } 21543 21544 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21545 if (mp1 == NULL) 21546 return; 21547 21548 switch (iocp->ioc_cmd) { 21549 case TI_GETMYNAME: 21550 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21551 break; 21552 case TI_GETPEERNAME: 21553 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21554 break; 21555 } 21556 21557 if (error != 0) { 21558 mi_copy_done(q, mp, error); 21559 } else { 21560 mp1->b_wptr += addrlen; 21561 STRUCT_FSET(sb, len, addrlen); 21562 21563 /* Copy out the address */ 21564 mi_copyout(q, mp); 21565 } 21566 } 21567 21568 static void 21569 tcp_use_pure_tpi(tcp_t *tcp) 21570 { 21571 #ifdef _ILP32 21572 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21573 #else 21574 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21575 #endif 21576 /* 21577 * Insert this socket into the acceptor hash. 21578 * We might need it for T_CONN_RES message 21579 */ 21580 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21581 21582 tcp->tcp_issocket = B_FALSE; 21583 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21584 } 21585 21586 /* 21587 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21588 * messages. 21589 */ 21590 /* ARGSUSED */ 21591 static void 21592 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21593 { 21594 conn_t *connp = (conn_t *)arg; 21595 tcp_t *tcp = connp->conn_tcp; 21596 queue_t *q = tcp->tcp_wq; 21597 struct iocblk *iocp; 21598 21599 ASSERT(DB_TYPE(mp) == M_IOCTL); 21600 /* 21601 * Try and ASSERT the minimum possible references on the 21602 * conn early enough. Since we are executing on write side, 21603 * the connection is obviously not detached and that means 21604 * there is a ref each for TCP and IP. Since we are behind 21605 * the squeue, the minimum references needed are 3. If the 21606 * conn is in classifier hash list, there should be an 21607 * extra ref for that (we check both the possibilities). 21608 */ 21609 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21610 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21611 21612 iocp = (struct iocblk *)mp->b_rptr; 21613 switch (iocp->ioc_cmd) { 21614 case TCP_IOC_DEFAULT_Q: 21615 /* Wants to be the default wq. */ 21616 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21617 iocp->ioc_error = EPERM; 21618 iocp->ioc_count = 0; 21619 mp->b_datap->db_type = M_IOCACK; 21620 qreply(q, mp); 21621 return; 21622 } 21623 tcp_def_q_set(tcp, mp); 21624 return; 21625 case _SIOCSOCKFALLBACK: 21626 /* 21627 * Either sockmod is about to be popped and the socket 21628 * would now be treated as a plain stream, or a module 21629 * is about to be pushed so we could no longer use read- 21630 * side synchronous streams for fused loopback tcp. 21631 * Drain any queued data and disable direct sockfs 21632 * interface from now on. 21633 */ 21634 if (!tcp->tcp_issocket) { 21635 DB_TYPE(mp) = M_IOCNAK; 21636 iocp->ioc_error = EINVAL; 21637 } else { 21638 tcp_use_pure_tpi(tcp); 21639 DB_TYPE(mp) = M_IOCACK; 21640 iocp->ioc_error = 0; 21641 } 21642 iocp->ioc_count = 0; 21643 iocp->ioc_rval = 0; 21644 qreply(q, mp); 21645 return; 21646 } 21647 CALL_IP_WPUT(connp, q, mp); 21648 } 21649 21650 /* 21651 * This routine is called by tcp_wput() to handle all TPI requests. 21652 */ 21653 /* ARGSUSED */ 21654 static void 21655 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21656 { 21657 conn_t *connp = (conn_t *)arg; 21658 tcp_t *tcp = connp->conn_tcp; 21659 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21660 uchar_t *rptr; 21661 t_scalar_t type; 21662 cred_t *cr; 21663 21664 /* 21665 * Try and ASSERT the minimum possible references on the 21666 * conn early enough. Since we are executing on write side, 21667 * the connection is obviously not detached and that means 21668 * there is a ref each for TCP and IP. Since we are behind 21669 * the squeue, the minimum references needed are 3. If the 21670 * conn is in classifier hash list, there should be an 21671 * extra ref for that (we check both the possibilities). 21672 */ 21673 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21674 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21675 21676 rptr = mp->b_rptr; 21677 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21678 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21679 type = ((union T_primitives *)rptr)->type; 21680 if (type == T_EXDATA_REQ) { 21681 tcp_output_urgent(connp, mp, arg2); 21682 } else if (type != T_DATA_REQ) { 21683 goto non_urgent_data; 21684 } else { 21685 /* TODO: options, flags, ... from user */ 21686 /* Set length to zero for reclamation below */ 21687 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21688 freeb(mp); 21689 } 21690 return; 21691 } else { 21692 if (tcp->tcp_debug) { 21693 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21694 "tcp_wput_proto, dropping one..."); 21695 } 21696 freemsg(mp); 21697 return; 21698 } 21699 21700 non_urgent_data: 21701 21702 switch ((int)tprim->type) { 21703 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21704 /* 21705 * save the kssl_ent_t from the next block, and convert this 21706 * back to a normal bind_req. 21707 */ 21708 if (mp->b_cont != NULL) { 21709 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21710 21711 if (tcp->tcp_kssl_ent != NULL) { 21712 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21713 KSSL_NO_PROXY); 21714 tcp->tcp_kssl_ent = NULL; 21715 } 21716 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21717 sizeof (kssl_ent_t)); 21718 kssl_hold_ent(tcp->tcp_kssl_ent); 21719 freemsg(mp->b_cont); 21720 mp->b_cont = NULL; 21721 } 21722 tprim->type = T_BIND_REQ; 21723 21724 /* FALLTHROUGH */ 21725 case O_T_BIND_REQ: /* bind request */ 21726 case T_BIND_REQ: /* new semantics bind request */ 21727 tcp_tpi_bind(tcp, mp); 21728 break; 21729 case T_UNBIND_REQ: /* unbind request */ 21730 tcp_tpi_unbind(tcp, mp); 21731 break; 21732 case O_T_CONN_RES: /* old connection response XXX */ 21733 case T_CONN_RES: /* connection response */ 21734 tcp_tli_accept(tcp, mp); 21735 break; 21736 case T_CONN_REQ: /* connection request */ 21737 tcp_tpi_connect(tcp, mp); 21738 break; 21739 case T_DISCON_REQ: /* disconnect request */ 21740 tcp_disconnect(tcp, mp); 21741 break; 21742 case T_CAPABILITY_REQ: 21743 tcp_capability_req(tcp, mp); /* capability request */ 21744 break; 21745 case T_INFO_REQ: /* information request */ 21746 tcp_info_req(tcp, mp); 21747 break; 21748 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21749 case T_OPTMGMT_REQ: 21750 /* 21751 * Note: no support for snmpcom_req() through new 21752 * T_OPTMGMT_REQ. See comments in ip.c 21753 */ 21754 21755 /* 21756 * All Solaris components should pass a db_credp 21757 * for this TPI message, hence we ASSERT. 21758 * But in case there is some other M_PROTO that looks 21759 * like a TPI message sent by some other kernel 21760 * component, we check and return an error. 21761 */ 21762 cr = msg_getcred(mp, NULL); 21763 ASSERT(cr != NULL); 21764 if (cr == NULL) { 21765 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 21766 return; 21767 } 21768 /* 21769 * If EINPROGRESS is returned, the request has been queued 21770 * for subsequent processing by ip_restart_optmgmt(), which 21771 * will do the CONN_DEC_REF(). 21772 */ 21773 CONN_INC_REF(connp); 21774 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 21775 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21776 B_TRUE) != EINPROGRESS) { 21777 CONN_DEC_REF(connp); 21778 } 21779 } else { 21780 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21781 B_TRUE) != EINPROGRESS) { 21782 CONN_DEC_REF(connp); 21783 } 21784 } 21785 break; 21786 21787 case T_UNITDATA_REQ: /* unitdata request */ 21788 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21789 break; 21790 case T_ORDREL_REQ: /* orderly release req */ 21791 freemsg(mp); 21792 21793 if (tcp->tcp_fused) 21794 tcp_unfuse(tcp); 21795 21796 if (tcp_xmit_end(tcp) != 0) { 21797 /* 21798 * We were crossing FINs and got a reset from 21799 * the other side. Just ignore it. 21800 */ 21801 if (tcp->tcp_debug) { 21802 (void) strlog(TCP_MOD_ID, 0, 1, 21803 SL_ERROR|SL_TRACE, 21804 "tcp_wput_proto, T_ORDREL_REQ out of " 21805 "state %s", 21806 tcp_display(tcp, NULL, 21807 DISP_ADDR_AND_PORT)); 21808 } 21809 } 21810 break; 21811 case T_ADDR_REQ: 21812 tcp_addr_req(tcp, mp); 21813 break; 21814 default: 21815 if (tcp->tcp_debug) { 21816 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21817 "tcp_wput_proto, bogus TPI msg, type %d", 21818 tprim->type); 21819 } 21820 /* 21821 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21822 * to recover. 21823 */ 21824 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21825 break; 21826 } 21827 } 21828 21829 /* 21830 * The TCP write service routine should never be called... 21831 */ 21832 /* ARGSUSED */ 21833 static void 21834 tcp_wsrv(queue_t *q) 21835 { 21836 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21837 21838 TCP_STAT(tcps, tcp_wsrv_called); 21839 } 21840 21841 /* Non overlapping byte exchanger */ 21842 static void 21843 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21844 { 21845 uchar_t uch; 21846 21847 while (len-- > 0) { 21848 uch = a[len]; 21849 a[len] = b[len]; 21850 b[len] = uch; 21851 } 21852 } 21853 21854 /* 21855 * Send out a control packet on the tcp connection specified. This routine 21856 * is typically called where we need a simple ACK or RST generated. 21857 */ 21858 static void 21859 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21860 { 21861 uchar_t *rptr; 21862 tcph_t *tcph; 21863 ipha_t *ipha = NULL; 21864 ip6_t *ip6h = NULL; 21865 uint32_t sum; 21866 int tcp_hdr_len; 21867 int tcp_ip_hdr_len; 21868 mblk_t *mp; 21869 tcp_stack_t *tcps = tcp->tcp_tcps; 21870 21871 /* 21872 * Save sum for use in source route later. 21873 */ 21874 ASSERT(tcp != NULL); 21875 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21876 tcp_hdr_len = tcp->tcp_hdr_len; 21877 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21878 21879 /* If a text string is passed in with the request, pass it to strlog. */ 21880 if (str != NULL && tcp->tcp_debug) { 21881 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21882 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21883 str, seq, ack, ctl); 21884 } 21885 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 21886 BPRI_MED); 21887 if (mp == NULL) { 21888 return; 21889 } 21890 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 21891 mp->b_rptr = rptr; 21892 mp->b_wptr = &rptr[tcp_hdr_len]; 21893 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21894 21895 if (tcp->tcp_ipversion == IPV4_VERSION) { 21896 ipha = (ipha_t *)rptr; 21897 ipha->ipha_length = htons(tcp_hdr_len); 21898 } else { 21899 ip6h = (ip6_t *)rptr; 21900 ASSERT(tcp != NULL); 21901 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21902 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21903 } 21904 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21905 tcph->th_flags[0] = (uint8_t)ctl; 21906 if (ctl & TH_RST) { 21907 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 21908 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 21909 /* 21910 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21911 */ 21912 if (tcp->tcp_snd_ts_ok && 21913 tcp->tcp_state > TCPS_SYN_SENT) { 21914 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21915 *(mp->b_wptr) = TCPOPT_EOL; 21916 if (tcp->tcp_ipversion == IPV4_VERSION) { 21917 ipha->ipha_length = htons(tcp_hdr_len - 21918 TCPOPT_REAL_TS_LEN); 21919 } else { 21920 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21921 TCPOPT_REAL_TS_LEN); 21922 } 21923 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21924 sum -= TCPOPT_REAL_TS_LEN; 21925 } 21926 } 21927 if (ctl & TH_ACK) { 21928 if (tcp->tcp_snd_ts_ok) { 21929 U32_TO_BE32(lbolt, 21930 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21931 U32_TO_BE32(tcp->tcp_ts_recent, 21932 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21933 } 21934 21935 /* Update the latest receive window size in TCP header. */ 21936 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21937 tcph->th_win); 21938 tcp->tcp_rack = ack; 21939 tcp->tcp_rack_cnt = 0; 21940 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 21941 } 21942 BUMP_LOCAL(tcp->tcp_obsegs); 21943 U32_TO_BE32(seq, tcph->th_seq); 21944 U32_TO_BE32(ack, tcph->th_ack); 21945 /* 21946 * Include the adjustment for a source route if any. 21947 */ 21948 sum = (sum >> 16) + (sum & 0xFFFF); 21949 U16_TO_BE16(sum, tcph->th_sum); 21950 tcp_send_data(tcp, tcp->tcp_wq, mp); 21951 } 21952 21953 /* 21954 * If this routine returns B_TRUE, TCP can generate a RST in response 21955 * to a segment. If it returns B_FALSE, TCP should not respond. 21956 */ 21957 static boolean_t 21958 tcp_send_rst_chk(tcp_stack_t *tcps) 21959 { 21960 clock_t now; 21961 21962 /* 21963 * TCP needs to protect itself from generating too many RSTs. 21964 * This can be a DoS attack by sending us random segments 21965 * soliciting RSTs. 21966 * 21967 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21968 * in each 1 second interval. In this way, TCP still generate 21969 * RSTs in normal cases but when under attack, the impact is 21970 * limited. 21971 */ 21972 if (tcps->tcps_rst_sent_rate_enabled != 0) { 21973 now = lbolt; 21974 /* lbolt can wrap around. */ 21975 if ((tcps->tcps_last_rst_intrvl > now) || 21976 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 21977 1*SECONDS)) { 21978 tcps->tcps_last_rst_intrvl = now; 21979 tcps->tcps_rst_cnt = 1; 21980 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 21981 return (B_FALSE); 21982 } 21983 } 21984 return (B_TRUE); 21985 } 21986 21987 /* 21988 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21989 */ 21990 static void 21991 tcp_ip_ire_mark_advice(tcp_t *tcp) 21992 { 21993 mblk_t *mp; 21994 ipic_t *ipic; 21995 21996 if (tcp->tcp_ipversion == IPV4_VERSION) { 21997 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21998 &ipic); 21999 } else { 22000 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22001 &ipic); 22002 } 22003 if (mp == NULL) 22004 return; 22005 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22006 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22007 } 22008 22009 /* 22010 * Return an IP advice ioctl mblk and set ipic to be the pointer 22011 * to the advice structure. 22012 */ 22013 static mblk_t * 22014 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22015 { 22016 struct iocblk *ioc; 22017 mblk_t *mp, *mp1; 22018 22019 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22020 if (mp == NULL) 22021 return (NULL); 22022 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22023 *ipic = (ipic_t *)mp->b_rptr; 22024 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22025 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22026 22027 bcopy(addr, *ipic + 1, addr_len); 22028 22029 (*ipic)->ipic_addr_length = addr_len; 22030 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22031 22032 mp1 = mkiocb(IP_IOCTL); 22033 if (mp1 == NULL) { 22034 freemsg(mp); 22035 return (NULL); 22036 } 22037 mp1->b_cont = mp; 22038 ioc = (struct iocblk *)mp1->b_rptr; 22039 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22040 22041 return (mp1); 22042 } 22043 22044 /* 22045 * Generate a reset based on an inbound packet, connp is set by caller 22046 * when RST is in response to an unexpected inbound packet for which 22047 * there is active tcp state in the system. 22048 * 22049 * IPSEC NOTE : Try to send the reply with the same protection as it came 22050 * in. We still have the ipsec_mp that the packet was attached to. Thus 22051 * the packet will go out at the same level of protection as it came in by 22052 * converting the IPSEC_IN to IPSEC_OUT. 22053 */ 22054 static void 22055 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22056 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22057 tcp_stack_t *tcps, conn_t *connp) 22058 { 22059 ipha_t *ipha = NULL; 22060 ip6_t *ip6h = NULL; 22061 ushort_t len; 22062 tcph_t *tcph; 22063 int i; 22064 mblk_t *ipsec_mp; 22065 boolean_t mctl_present; 22066 ipic_t *ipic; 22067 ipaddr_t v4addr; 22068 in6_addr_t v6addr; 22069 int addr_len; 22070 void *addr; 22071 queue_t *q = tcps->tcps_g_q; 22072 tcp_t *tcp; 22073 cred_t *cr; 22074 pid_t pid; 22075 mblk_t *nmp; 22076 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22077 22078 if (tcps->tcps_g_q == NULL) { 22079 /* 22080 * For non-zero stackids the default queue isn't created 22081 * until the first open, thus there can be a need to send 22082 * a reset before then. But we can't do that, hence we just 22083 * drop the packet. Later during boot, when the default queue 22084 * has been setup, a retransmitted packet from the peer 22085 * will result in a reset. 22086 */ 22087 ASSERT(tcps->tcps_netstack->netstack_stackid != 22088 GLOBAL_NETSTACKID); 22089 freemsg(mp); 22090 return; 22091 } 22092 22093 if (connp != NULL) 22094 tcp = connp->conn_tcp; 22095 else 22096 tcp = Q_TO_TCP(q); 22097 22098 if (!tcp_send_rst_chk(tcps)) { 22099 tcps->tcps_rst_unsent++; 22100 freemsg(mp); 22101 return; 22102 } 22103 22104 if (mp->b_datap->db_type == M_CTL) { 22105 ipsec_mp = mp; 22106 mp = mp->b_cont; 22107 mctl_present = B_TRUE; 22108 } else { 22109 ipsec_mp = mp; 22110 mctl_present = B_FALSE; 22111 } 22112 22113 if (str && q && tcps->tcps_dbg) { 22114 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22115 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22116 "flags 0x%x", 22117 str, seq, ack, ctl); 22118 } 22119 if (mp->b_datap->db_ref != 1) { 22120 mblk_t *mp1 = copyb(mp); 22121 freemsg(mp); 22122 mp = mp1; 22123 if (!mp) { 22124 if (mctl_present) 22125 freeb(ipsec_mp); 22126 return; 22127 } else { 22128 if (mctl_present) { 22129 ipsec_mp->b_cont = mp; 22130 } else { 22131 ipsec_mp = mp; 22132 } 22133 } 22134 } else if (mp->b_cont) { 22135 freemsg(mp->b_cont); 22136 mp->b_cont = NULL; 22137 } 22138 /* 22139 * We skip reversing source route here. 22140 * (for now we replace all IP options with EOL) 22141 */ 22142 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22143 ipha = (ipha_t *)mp->b_rptr; 22144 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22145 mp->b_rptr[i] = IPOPT_EOL; 22146 /* 22147 * Make sure that src address isn't flagrantly invalid. 22148 * Not all broadcast address checking for the src address 22149 * is possible, since we don't know the netmask of the src 22150 * addr. No check for destination address is done, since 22151 * IP will not pass up a packet with a broadcast dest 22152 * address to TCP. Similar checks are done below for IPv6. 22153 */ 22154 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22155 CLASSD(ipha->ipha_src)) { 22156 freemsg(ipsec_mp); 22157 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22158 return; 22159 } 22160 } else { 22161 ip6h = (ip6_t *)mp->b_rptr; 22162 22163 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22164 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22165 freemsg(ipsec_mp); 22166 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22167 return; 22168 } 22169 22170 /* Remove any extension headers assuming partial overlay */ 22171 if (ip_hdr_len > IPV6_HDR_LEN) { 22172 uint8_t *to; 22173 22174 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22175 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22176 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22177 ip_hdr_len = IPV6_HDR_LEN; 22178 ip6h = (ip6_t *)mp->b_rptr; 22179 ip6h->ip6_nxt = IPPROTO_TCP; 22180 } 22181 } 22182 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22183 if (tcph->th_flags[0] & TH_RST) { 22184 freemsg(ipsec_mp); 22185 return; 22186 } 22187 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22188 len = ip_hdr_len + sizeof (tcph_t); 22189 mp->b_wptr = &mp->b_rptr[len]; 22190 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22191 ipha->ipha_length = htons(len); 22192 /* Swap addresses */ 22193 v4addr = ipha->ipha_src; 22194 ipha->ipha_src = ipha->ipha_dst; 22195 ipha->ipha_dst = v4addr; 22196 ipha->ipha_ident = 0; 22197 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22198 addr_len = IP_ADDR_LEN; 22199 addr = &v4addr; 22200 } else { 22201 /* No ip6i_t in this case */ 22202 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22203 /* Swap addresses */ 22204 v6addr = ip6h->ip6_src; 22205 ip6h->ip6_src = ip6h->ip6_dst; 22206 ip6h->ip6_dst = v6addr; 22207 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22208 addr_len = IPV6_ADDR_LEN; 22209 addr = &v6addr; 22210 } 22211 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22212 U32_TO_BE32(ack, tcph->th_ack); 22213 U32_TO_BE32(seq, tcph->th_seq); 22214 U16_TO_BE16(0, tcph->th_win); 22215 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22216 tcph->th_flags[0] = (uint8_t)ctl; 22217 if (ctl & TH_RST) { 22218 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22219 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22220 } 22221 22222 /* IP trusts us to set up labels when required. */ 22223 if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL && 22224 crgetlabel(cr) != NULL) { 22225 int err; 22226 22227 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22228 err = tsol_check_label(cr, &mp, 22229 tcp->tcp_connp->conn_mac_exempt, 22230 tcps->tcps_netstack->netstack_ip, pid); 22231 else 22232 err = tsol_check_label_v6(cr, &mp, 22233 tcp->tcp_connp->conn_mac_exempt, 22234 tcps->tcps_netstack->netstack_ip, pid); 22235 if (mctl_present) 22236 ipsec_mp->b_cont = mp; 22237 else 22238 ipsec_mp = mp; 22239 if (err != 0) { 22240 freemsg(ipsec_mp); 22241 return; 22242 } 22243 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22244 ipha = (ipha_t *)mp->b_rptr; 22245 } else { 22246 ip6h = (ip6_t *)mp->b_rptr; 22247 } 22248 } 22249 22250 if (mctl_present) { 22251 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22252 22253 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22254 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22255 return; 22256 } 22257 } 22258 if (zoneid == ALL_ZONES) 22259 zoneid = GLOBAL_ZONEID; 22260 22261 /* Add the zoneid so ip_output routes it properly */ 22262 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22263 freemsg(ipsec_mp); 22264 return; 22265 } 22266 ipsec_mp = nmp; 22267 22268 /* 22269 * NOTE: one might consider tracing a TCP packet here, but 22270 * this function has no active TCP state and no tcp structure 22271 * that has a trace buffer. If we traced here, we would have 22272 * to keep a local trace buffer in tcp_record_trace(). 22273 * 22274 * TSol note: The mblk that contains the incoming packet was 22275 * reused by tcp_xmit_listener_reset, so it already contains 22276 * the right credentials and we don't need to call mblk_setcred. 22277 * Also the conn's cred is not right since it is associated 22278 * with tcps_g_q. 22279 */ 22280 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22281 22282 /* 22283 * Tell IP to mark the IRE used for this destination temporary. 22284 * This way, we can limit our exposure to DoS attack because IP 22285 * creates an IRE for each destination. If there are too many, 22286 * the time to do any routing lookup will be extremely long. And 22287 * the lookup can be in interrupt context. 22288 * 22289 * Note that in normal circumstances, this marking should not 22290 * affect anything. It would be nice if only 1 message is 22291 * needed to inform IP that the IRE created for this RST should 22292 * not be added to the cache table. But there is currently 22293 * not such communication mechanism between TCP and IP. So 22294 * the best we can do now is to send the advice ioctl to IP 22295 * to mark the IRE temporary. 22296 */ 22297 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22298 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22299 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22300 } 22301 } 22302 22303 /* 22304 * Initiate closedown sequence on an active connection. (May be called as 22305 * writer.) Return value zero for OK return, non-zero for error return. 22306 */ 22307 static int 22308 tcp_xmit_end(tcp_t *tcp) 22309 { 22310 ipic_t *ipic; 22311 mblk_t *mp; 22312 tcp_stack_t *tcps = tcp->tcp_tcps; 22313 22314 if (tcp->tcp_state < TCPS_SYN_RCVD || 22315 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22316 /* 22317 * Invalid state, only states TCPS_SYN_RCVD, 22318 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22319 */ 22320 return (-1); 22321 } 22322 22323 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22324 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22325 /* 22326 * If there is nothing more unsent, send the FIN now. 22327 * Otherwise, it will go out with the last segment. 22328 */ 22329 if (tcp->tcp_unsent == 0) { 22330 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22331 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22332 22333 if (mp) { 22334 tcp_send_data(tcp, tcp->tcp_wq, mp); 22335 } else { 22336 /* 22337 * Couldn't allocate msg. Pretend we got it out. 22338 * Wait for rexmit timeout. 22339 */ 22340 tcp->tcp_snxt = tcp->tcp_fss + 1; 22341 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22342 } 22343 22344 /* 22345 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22346 * changed. 22347 */ 22348 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22349 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22350 } 22351 } else { 22352 /* 22353 * If tcp->tcp_cork is set, then the data will not get sent, 22354 * so we have to check that and unset it first. 22355 */ 22356 if (tcp->tcp_cork) 22357 tcp->tcp_cork = B_FALSE; 22358 tcp_wput_data(tcp, NULL, B_FALSE); 22359 } 22360 22361 /* 22362 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22363 * is 0, don't update the cache. 22364 */ 22365 if (tcps->tcps_rtt_updates == 0 || 22366 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22367 return (0); 22368 22369 /* 22370 * NOTE: should not update if source routes i.e. if tcp_remote if 22371 * different from the destination. 22372 */ 22373 if (tcp->tcp_ipversion == IPV4_VERSION) { 22374 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22375 return (0); 22376 } 22377 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22378 &ipic); 22379 } else { 22380 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22381 &tcp->tcp_ip6h->ip6_dst))) { 22382 return (0); 22383 } 22384 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22385 &ipic); 22386 } 22387 22388 /* Record route attributes in the IRE for use by future connections. */ 22389 if (mp == NULL) 22390 return (0); 22391 22392 /* 22393 * We do not have a good algorithm to update ssthresh at this time. 22394 * So don't do any update. 22395 */ 22396 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22397 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22398 22399 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22400 22401 return (0); 22402 } 22403 22404 /* ARGSUSED */ 22405 void 22406 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22407 { 22408 conn_t *connp = (conn_t *)arg; 22409 mblk_t *mp1; 22410 tcp_t *tcp = connp->conn_tcp; 22411 tcp_xmit_reset_event_t *eventp; 22412 22413 ASSERT(mp->b_datap->db_type == M_PROTO && 22414 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22415 22416 if (tcp->tcp_state != TCPS_LISTEN) { 22417 freemsg(mp); 22418 return; 22419 } 22420 22421 mp1 = mp->b_cont; 22422 mp->b_cont = NULL; 22423 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22424 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22425 connp->conn_netstack); 22426 22427 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22428 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22429 freemsg(mp); 22430 } 22431 22432 /* 22433 * Generate a "no listener here" RST in response to an "unknown" segment. 22434 * connp is set by caller when RST is in response to an unexpected 22435 * inbound packet for which there is active tcp state in the system. 22436 * Note that we are reusing the incoming mp to construct the outgoing RST. 22437 */ 22438 void 22439 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22440 tcp_stack_t *tcps, conn_t *connp) 22441 { 22442 uchar_t *rptr; 22443 uint32_t seg_len; 22444 tcph_t *tcph; 22445 uint32_t seg_seq; 22446 uint32_t seg_ack; 22447 uint_t flags; 22448 mblk_t *ipsec_mp; 22449 ipha_t *ipha; 22450 ip6_t *ip6h; 22451 boolean_t mctl_present = B_FALSE; 22452 boolean_t check = B_TRUE; 22453 boolean_t policy_present; 22454 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22455 22456 TCP_STAT(tcps, tcp_no_listener); 22457 22458 ipsec_mp = mp; 22459 22460 if (mp->b_datap->db_type == M_CTL) { 22461 ipsec_in_t *ii; 22462 22463 mctl_present = B_TRUE; 22464 mp = mp->b_cont; 22465 22466 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22467 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22468 if (ii->ipsec_in_dont_check) { 22469 check = B_FALSE; 22470 if (!ii->ipsec_in_secure) { 22471 freeb(ipsec_mp); 22472 mctl_present = B_FALSE; 22473 ipsec_mp = mp; 22474 } 22475 } 22476 } 22477 22478 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22479 policy_present = ipss->ipsec_inbound_v4_policy_present; 22480 ipha = (ipha_t *)mp->b_rptr; 22481 ip6h = NULL; 22482 } else { 22483 policy_present = ipss->ipsec_inbound_v6_policy_present; 22484 ipha = NULL; 22485 ip6h = (ip6_t *)mp->b_rptr; 22486 } 22487 22488 if (check && policy_present) { 22489 /* 22490 * The conn_t parameter is NULL because we already know 22491 * nobody's home. 22492 */ 22493 ipsec_mp = ipsec_check_global_policy( 22494 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22495 tcps->tcps_netstack); 22496 if (ipsec_mp == NULL) 22497 return; 22498 } 22499 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22500 DTRACE_PROBE2( 22501 tx__ip__log__error__nolistener__tcp, 22502 char *, "Could not reply with RST to mp(1)", 22503 mblk_t *, mp); 22504 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22505 freemsg(ipsec_mp); 22506 return; 22507 } 22508 22509 rptr = mp->b_rptr; 22510 22511 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22512 seg_seq = BE32_TO_U32(tcph->th_seq); 22513 seg_ack = BE32_TO_U32(tcph->th_ack); 22514 flags = tcph->th_flags[0]; 22515 22516 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22517 if (flags & TH_RST) { 22518 freemsg(ipsec_mp); 22519 } else if (flags & TH_ACK) { 22520 tcp_xmit_early_reset("no tcp, reset", 22521 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22522 connp); 22523 } else { 22524 if (flags & TH_SYN) { 22525 seg_len++; 22526 } else { 22527 /* 22528 * Here we violate the RFC. Note that a normal 22529 * TCP will never send a segment without the ACK 22530 * flag, except for RST or SYN segment. This 22531 * segment is neither. Just drop it on the 22532 * floor. 22533 */ 22534 freemsg(ipsec_mp); 22535 tcps->tcps_rst_unsent++; 22536 return; 22537 } 22538 22539 tcp_xmit_early_reset("no tcp, reset/ack", 22540 ipsec_mp, 0, seg_seq + seg_len, 22541 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22542 } 22543 } 22544 22545 /* 22546 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22547 * ip and tcp header ready to pass down to IP. If the mp passed in is 22548 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22549 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22550 * otherwise it will dup partial mblks.) 22551 * Otherwise, an appropriate ACK packet will be generated. This 22552 * routine is not usually called to send new data for the first time. It 22553 * is mostly called out of the timer for retransmits, and to generate ACKs. 22554 * 22555 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22556 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22557 * of the original mblk chain will be returned in *offset and *end_mp. 22558 */ 22559 mblk_t * 22560 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22561 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22562 boolean_t rexmit) 22563 { 22564 int data_length; 22565 int32_t off = 0; 22566 uint_t flags; 22567 mblk_t *mp1; 22568 mblk_t *mp2; 22569 uchar_t *rptr; 22570 tcph_t *tcph; 22571 int32_t num_sack_blk = 0; 22572 int32_t sack_opt_len = 0; 22573 tcp_stack_t *tcps = tcp->tcp_tcps; 22574 22575 /* Allocate for our maximum TCP header + link-level */ 22576 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22577 tcps->tcps_wroff_xtra, BPRI_MED); 22578 if (!mp1) 22579 return (NULL); 22580 data_length = 0; 22581 22582 /* 22583 * Note that tcp_mss has been adjusted to take into account the 22584 * timestamp option if applicable. Because SACK options do not 22585 * appear in every TCP segments and they are of variable lengths, 22586 * they cannot be included in tcp_mss. Thus we need to calculate 22587 * the actual segment length when we need to send a segment which 22588 * includes SACK options. 22589 */ 22590 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22591 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22592 tcp->tcp_num_sack_blk); 22593 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22594 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22595 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22596 max_to_send -= sack_opt_len; 22597 } 22598 22599 if (offset != NULL) { 22600 off = *offset; 22601 /* We use offset as an indicator that end_mp is not NULL. */ 22602 *end_mp = NULL; 22603 } 22604 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22605 /* This could be faster with cooperation from downstream */ 22606 if (mp2 != mp1 && !sendall && 22607 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22608 max_to_send) 22609 /* 22610 * Don't send the next mblk since the whole mblk 22611 * does not fit. 22612 */ 22613 break; 22614 mp2->b_cont = dupb(mp); 22615 mp2 = mp2->b_cont; 22616 if (!mp2) { 22617 freemsg(mp1); 22618 return (NULL); 22619 } 22620 mp2->b_rptr += off; 22621 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22622 (uintptr_t)INT_MAX); 22623 22624 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22625 if (data_length > max_to_send) { 22626 mp2->b_wptr -= data_length - max_to_send; 22627 data_length = max_to_send; 22628 off = mp2->b_wptr - mp->b_rptr; 22629 break; 22630 } else { 22631 off = 0; 22632 } 22633 } 22634 if (offset != NULL) { 22635 *offset = off; 22636 *end_mp = mp; 22637 } 22638 if (seg_len != NULL) { 22639 *seg_len = data_length; 22640 } 22641 22642 /* Update the latest receive window size in TCP header. */ 22643 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22644 tcp->tcp_tcph->th_win); 22645 22646 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22647 mp1->b_rptr = rptr; 22648 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22649 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22650 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22651 U32_TO_ABE32(seq, tcph->th_seq); 22652 22653 /* 22654 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22655 * that this function was called from tcp_wput_data. Thus, when called 22656 * to retransmit data the setting of the PUSH bit may appear some 22657 * what random in that it might get set when it should not. This 22658 * should not pose any performance issues. 22659 */ 22660 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22661 tcp->tcp_unsent == data_length)) { 22662 flags = TH_ACK | TH_PUSH; 22663 } else { 22664 flags = TH_ACK; 22665 } 22666 22667 if (tcp->tcp_ecn_ok) { 22668 if (tcp->tcp_ecn_echo_on) 22669 flags |= TH_ECE; 22670 22671 /* 22672 * Only set ECT bit and ECN_CWR if a segment contains new data. 22673 * There is no TCP flow control for non-data segments, and 22674 * only data segment is transmitted reliably. 22675 */ 22676 if (data_length > 0 && !rexmit) { 22677 SET_ECT(tcp, rptr); 22678 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22679 flags |= TH_CWR; 22680 tcp->tcp_ecn_cwr_sent = B_TRUE; 22681 } 22682 } 22683 } 22684 22685 if (tcp->tcp_valid_bits) { 22686 uint32_t u1; 22687 22688 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22689 seq == tcp->tcp_iss) { 22690 uchar_t *wptr; 22691 22692 /* 22693 * If TCP_ISS_VALID and the seq number is tcp_iss, 22694 * TCP can only be in SYN-SENT, SYN-RCVD or 22695 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22696 * our SYN is not ack'ed but the app closes this 22697 * TCP connection. 22698 */ 22699 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22700 tcp->tcp_state == TCPS_SYN_RCVD || 22701 tcp->tcp_state == TCPS_FIN_WAIT_1); 22702 22703 /* 22704 * Tack on the MSS option. It is always needed 22705 * for both active and passive open. 22706 * 22707 * MSS option value should be interface MTU - MIN 22708 * TCP/IP header according to RFC 793 as it means 22709 * the maximum segment size TCP can receive. But 22710 * to get around some broken middle boxes/end hosts 22711 * out there, we allow the option value to be the 22712 * same as the MSS option size on the peer side. 22713 * In this way, the other side will not send 22714 * anything larger than they can receive. 22715 * 22716 * Note that for SYN_SENT state, the ndd param 22717 * tcp_use_smss_as_mss_opt has no effect as we 22718 * don't know the peer's MSS option value. So 22719 * the only case we need to take care of is in 22720 * SYN_RCVD state, which is done later. 22721 */ 22722 wptr = mp1->b_wptr; 22723 wptr[0] = TCPOPT_MAXSEG; 22724 wptr[1] = TCPOPT_MAXSEG_LEN; 22725 wptr += 2; 22726 u1 = tcp->tcp_if_mtu - 22727 (tcp->tcp_ipversion == IPV4_VERSION ? 22728 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22729 TCP_MIN_HEADER_LENGTH; 22730 U16_TO_BE16(u1, wptr); 22731 mp1->b_wptr = wptr + 2; 22732 /* Update the offset to cover the additional word */ 22733 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22734 22735 /* 22736 * Note that the following way of filling in 22737 * TCP options are not optimal. Some NOPs can 22738 * be saved. But there is no need at this time 22739 * to optimize it. When it is needed, we will 22740 * do it. 22741 */ 22742 switch (tcp->tcp_state) { 22743 case TCPS_SYN_SENT: 22744 flags = TH_SYN; 22745 22746 if (tcp->tcp_snd_ts_ok) { 22747 uint32_t llbolt = (uint32_t)lbolt; 22748 22749 wptr = mp1->b_wptr; 22750 wptr[0] = TCPOPT_NOP; 22751 wptr[1] = TCPOPT_NOP; 22752 wptr[2] = TCPOPT_TSTAMP; 22753 wptr[3] = TCPOPT_TSTAMP_LEN; 22754 wptr += 4; 22755 U32_TO_BE32(llbolt, wptr); 22756 wptr += 4; 22757 ASSERT(tcp->tcp_ts_recent == 0); 22758 U32_TO_BE32(0L, wptr); 22759 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22760 tcph->th_offset_and_rsrvd[0] += 22761 (3 << 4); 22762 } 22763 22764 /* 22765 * Set up all the bits to tell other side 22766 * we are ECN capable. 22767 */ 22768 if (tcp->tcp_ecn_ok) { 22769 flags |= (TH_ECE | TH_CWR); 22770 } 22771 break; 22772 case TCPS_SYN_RCVD: 22773 flags |= TH_SYN; 22774 22775 /* 22776 * Reset the MSS option value to be SMSS 22777 * We should probably add back the bytes 22778 * for timestamp option and IPsec. We 22779 * don't do that as this is a workaround 22780 * for broken middle boxes/end hosts, it 22781 * is better for us to be more cautious. 22782 * They may not take these things into 22783 * account in their SMSS calculation. Thus 22784 * the peer's calculated SMSS may be smaller 22785 * than what it can be. This should be OK. 22786 */ 22787 if (tcps->tcps_use_smss_as_mss_opt) { 22788 u1 = tcp->tcp_mss; 22789 U16_TO_BE16(u1, wptr); 22790 } 22791 22792 /* 22793 * If the other side is ECN capable, reply 22794 * that we are also ECN capable. 22795 */ 22796 if (tcp->tcp_ecn_ok) 22797 flags |= TH_ECE; 22798 break; 22799 default: 22800 /* 22801 * The above ASSERT() makes sure that this 22802 * must be FIN-WAIT-1 state. Our SYN has 22803 * not been ack'ed so retransmit it. 22804 */ 22805 flags |= TH_SYN; 22806 break; 22807 } 22808 22809 if (tcp->tcp_snd_ws_ok) { 22810 wptr = mp1->b_wptr; 22811 wptr[0] = TCPOPT_NOP; 22812 wptr[1] = TCPOPT_WSCALE; 22813 wptr[2] = TCPOPT_WS_LEN; 22814 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22815 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22816 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22817 } 22818 22819 if (tcp->tcp_snd_sack_ok) { 22820 wptr = mp1->b_wptr; 22821 wptr[0] = TCPOPT_NOP; 22822 wptr[1] = TCPOPT_NOP; 22823 wptr[2] = TCPOPT_SACK_PERMITTED; 22824 wptr[3] = TCPOPT_SACK_OK_LEN; 22825 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22826 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22827 } 22828 22829 /* allocb() of adequate mblk assures space */ 22830 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22831 (uintptr_t)INT_MAX); 22832 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22833 /* 22834 * Get IP set to checksum on our behalf 22835 * Include the adjustment for a source route if any. 22836 */ 22837 u1 += tcp->tcp_sum; 22838 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22839 U16_TO_BE16(u1, tcph->th_sum); 22840 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22841 } 22842 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22843 (seq + data_length) == tcp->tcp_fss) { 22844 if (!tcp->tcp_fin_acked) { 22845 flags |= TH_FIN; 22846 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22847 } 22848 if (!tcp->tcp_fin_sent) { 22849 tcp->tcp_fin_sent = B_TRUE; 22850 switch (tcp->tcp_state) { 22851 case TCPS_SYN_RCVD: 22852 case TCPS_ESTABLISHED: 22853 tcp->tcp_state = TCPS_FIN_WAIT_1; 22854 break; 22855 case TCPS_CLOSE_WAIT: 22856 tcp->tcp_state = TCPS_LAST_ACK; 22857 break; 22858 } 22859 if (tcp->tcp_suna == tcp->tcp_snxt) 22860 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22861 tcp->tcp_snxt = tcp->tcp_fss + 1; 22862 } 22863 } 22864 /* 22865 * Note the trick here. u1 is unsigned. When tcp_urg 22866 * is smaller than seq, u1 will become a very huge value. 22867 * So the comparison will fail. Also note that tcp_urp 22868 * should be positive, see RFC 793 page 17. 22869 */ 22870 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22871 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22872 u1 < (uint32_t)(64 * 1024)) { 22873 flags |= TH_URG; 22874 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 22875 U32_TO_ABE16(u1, tcph->th_urp); 22876 } 22877 } 22878 tcph->th_flags[0] = (uchar_t)flags; 22879 tcp->tcp_rack = tcp->tcp_rnxt; 22880 tcp->tcp_rack_cnt = 0; 22881 22882 if (tcp->tcp_snd_ts_ok) { 22883 if (tcp->tcp_state != TCPS_SYN_SENT) { 22884 uint32_t llbolt = (uint32_t)lbolt; 22885 22886 U32_TO_BE32(llbolt, 22887 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22888 U32_TO_BE32(tcp->tcp_ts_recent, 22889 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22890 } 22891 } 22892 22893 if (num_sack_blk > 0) { 22894 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22895 sack_blk_t *tmp; 22896 int32_t i; 22897 22898 wptr[0] = TCPOPT_NOP; 22899 wptr[1] = TCPOPT_NOP; 22900 wptr[2] = TCPOPT_SACK; 22901 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22902 sizeof (sack_blk_t); 22903 wptr += TCPOPT_REAL_SACK_LEN; 22904 22905 tmp = tcp->tcp_sack_list; 22906 for (i = 0; i < num_sack_blk; i++) { 22907 U32_TO_BE32(tmp[i].begin, wptr); 22908 wptr += sizeof (tcp_seq); 22909 U32_TO_BE32(tmp[i].end, wptr); 22910 wptr += sizeof (tcp_seq); 22911 } 22912 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22913 } 22914 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22915 data_length += (int)(mp1->b_wptr - rptr); 22916 if (tcp->tcp_ipversion == IPV4_VERSION) { 22917 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22918 } else { 22919 ip6_t *ip6 = (ip6_t *)(rptr + 22920 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22921 sizeof (ip6i_t) : 0)); 22922 22923 ip6->ip6_plen = htons(data_length - 22924 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22925 } 22926 22927 /* 22928 * Prime pump for IP 22929 * Include the adjustment for a source route if any. 22930 */ 22931 data_length -= tcp->tcp_ip_hdr_len; 22932 data_length += tcp->tcp_sum; 22933 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22934 U16_TO_ABE16(data_length, tcph->th_sum); 22935 if (tcp->tcp_ip_forward_progress) { 22936 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22937 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22938 tcp->tcp_ip_forward_progress = B_FALSE; 22939 } 22940 return (mp1); 22941 } 22942 22943 /* This function handles the push timeout. */ 22944 void 22945 tcp_push_timer(void *arg) 22946 { 22947 conn_t *connp = (conn_t *)arg; 22948 tcp_t *tcp = connp->conn_tcp; 22949 22950 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 22951 22952 ASSERT(tcp->tcp_listener == NULL); 22953 22954 ASSERT(!IPCL_IS_NONSTR(connp)); 22955 22956 tcp->tcp_push_tid = 0; 22957 22958 if (tcp->tcp_rcv_list != NULL && 22959 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 22960 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22961 } 22962 22963 /* 22964 * This function handles delayed ACK timeout. 22965 */ 22966 static void 22967 tcp_ack_timer(void *arg) 22968 { 22969 conn_t *connp = (conn_t *)arg; 22970 tcp_t *tcp = connp->conn_tcp; 22971 mblk_t *mp; 22972 tcp_stack_t *tcps = tcp->tcp_tcps; 22973 22974 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 22975 22976 tcp->tcp_ack_tid = 0; 22977 22978 if (tcp->tcp_fused) 22979 return; 22980 22981 /* 22982 * Do not send ACK if there is no outstanding unack'ed data. 22983 */ 22984 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22985 return; 22986 } 22987 22988 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22989 /* 22990 * Make sure we don't allow deferred ACKs to result in 22991 * timer-based ACKing. If we have held off an ACK 22992 * when there was more than an mss here, and the timer 22993 * goes off, we have to worry about the possibility 22994 * that the sender isn't doing slow-start, or is out 22995 * of step with us for some other reason. We fall 22996 * permanently back in the direction of 22997 * ACK-every-other-packet as suggested in RFC 1122. 22998 */ 22999 if (tcp->tcp_rack_abs_max > 2) 23000 tcp->tcp_rack_abs_max--; 23001 tcp->tcp_rack_cur_max = 2; 23002 } 23003 mp = tcp_ack_mp(tcp); 23004 23005 if (mp != NULL) { 23006 BUMP_LOCAL(tcp->tcp_obsegs); 23007 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23008 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23009 tcp_send_data(tcp, tcp->tcp_wq, mp); 23010 } 23011 } 23012 23013 23014 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23015 static mblk_t * 23016 tcp_ack_mp(tcp_t *tcp) 23017 { 23018 uint32_t seq_no; 23019 tcp_stack_t *tcps = tcp->tcp_tcps; 23020 23021 /* 23022 * There are a few cases to be considered while setting the sequence no. 23023 * Essentially, we can come here while processing an unacceptable pkt 23024 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23025 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23026 * If we are here for a zero window probe, stick with suna. In all 23027 * other cases, we check if suna + swnd encompasses snxt and set 23028 * the sequence number to snxt, if so. If snxt falls outside the 23029 * window (the receiver probably shrunk its window), we will go with 23030 * suna + swnd, otherwise the sequence no will be unacceptable to the 23031 * receiver. 23032 */ 23033 if (tcp->tcp_zero_win_probe) { 23034 seq_no = tcp->tcp_suna; 23035 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23036 ASSERT(tcp->tcp_swnd == 0); 23037 seq_no = tcp->tcp_snxt; 23038 } else { 23039 seq_no = SEQ_GT(tcp->tcp_snxt, 23040 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23041 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23042 } 23043 23044 if (tcp->tcp_valid_bits) { 23045 /* 23046 * For the complex case where we have to send some 23047 * controls (FIN or SYN), let tcp_xmit_mp do it. 23048 */ 23049 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23050 NULL, B_FALSE)); 23051 } else { 23052 /* Generate a simple ACK */ 23053 int data_length; 23054 uchar_t *rptr; 23055 tcph_t *tcph; 23056 mblk_t *mp1; 23057 int32_t tcp_hdr_len; 23058 int32_t tcp_tcp_hdr_len; 23059 int32_t num_sack_blk = 0; 23060 int32_t sack_opt_len; 23061 23062 /* 23063 * Allocate space for TCP + IP headers 23064 * and link-level header 23065 */ 23066 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23067 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23068 tcp->tcp_num_sack_blk); 23069 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23070 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23071 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23072 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23073 } else { 23074 tcp_hdr_len = tcp->tcp_hdr_len; 23075 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23076 } 23077 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23078 if (!mp1) 23079 return (NULL); 23080 23081 /* Update the latest receive window size in TCP header. */ 23082 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23083 tcp->tcp_tcph->th_win); 23084 /* copy in prototype TCP + IP header */ 23085 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23086 mp1->b_rptr = rptr; 23087 mp1->b_wptr = rptr + tcp_hdr_len; 23088 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23089 23090 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23091 23092 /* Set the TCP sequence number. */ 23093 U32_TO_ABE32(seq_no, tcph->th_seq); 23094 23095 /* Set up the TCP flag field. */ 23096 tcph->th_flags[0] = (uchar_t)TH_ACK; 23097 if (tcp->tcp_ecn_echo_on) 23098 tcph->th_flags[0] |= TH_ECE; 23099 23100 tcp->tcp_rack = tcp->tcp_rnxt; 23101 tcp->tcp_rack_cnt = 0; 23102 23103 /* fill in timestamp option if in use */ 23104 if (tcp->tcp_snd_ts_ok) { 23105 uint32_t llbolt = (uint32_t)lbolt; 23106 23107 U32_TO_BE32(llbolt, 23108 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23109 U32_TO_BE32(tcp->tcp_ts_recent, 23110 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23111 } 23112 23113 /* Fill in SACK options */ 23114 if (num_sack_blk > 0) { 23115 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23116 sack_blk_t *tmp; 23117 int32_t i; 23118 23119 wptr[0] = TCPOPT_NOP; 23120 wptr[1] = TCPOPT_NOP; 23121 wptr[2] = TCPOPT_SACK; 23122 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23123 sizeof (sack_blk_t); 23124 wptr += TCPOPT_REAL_SACK_LEN; 23125 23126 tmp = tcp->tcp_sack_list; 23127 for (i = 0; i < num_sack_blk; i++) { 23128 U32_TO_BE32(tmp[i].begin, wptr); 23129 wptr += sizeof (tcp_seq); 23130 U32_TO_BE32(tmp[i].end, wptr); 23131 wptr += sizeof (tcp_seq); 23132 } 23133 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23134 << 4); 23135 } 23136 23137 if (tcp->tcp_ipversion == IPV4_VERSION) { 23138 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23139 } else { 23140 /* Check for ip6i_t header in sticky hdrs */ 23141 ip6_t *ip6 = (ip6_t *)(rptr + 23142 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23143 sizeof (ip6i_t) : 0)); 23144 23145 ip6->ip6_plen = htons(tcp_hdr_len - 23146 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23147 } 23148 23149 /* 23150 * Prime pump for checksum calculation in IP. Include the 23151 * adjustment for a source route if any. 23152 */ 23153 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23154 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23155 U16_TO_ABE16(data_length, tcph->th_sum); 23156 23157 if (tcp->tcp_ip_forward_progress) { 23158 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23159 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23160 tcp->tcp_ip_forward_progress = B_FALSE; 23161 } 23162 return (mp1); 23163 } 23164 } 23165 23166 /* 23167 * Hash list insertion routine for tcp_t structures. Each hash bucket 23168 * contains a list of tcp_t entries, and each entry is bound to a unique 23169 * port. If there are multiple tcp_t's that are bound to the same port, then 23170 * one of them will be linked into the hash bucket list, and the rest will 23171 * hang off of that one entry. For each port, entries bound to a specific IP 23172 * address will be inserted before those those bound to INADDR_ANY. 23173 */ 23174 static void 23175 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23176 { 23177 tcp_t **tcpp; 23178 tcp_t *tcpnext; 23179 tcp_t *tcphash; 23180 23181 if (tcp->tcp_ptpbhn != NULL) { 23182 ASSERT(!caller_holds_lock); 23183 tcp_bind_hash_remove(tcp); 23184 } 23185 tcpp = &tbf->tf_tcp; 23186 if (!caller_holds_lock) { 23187 mutex_enter(&tbf->tf_lock); 23188 } else { 23189 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23190 } 23191 tcphash = tcpp[0]; 23192 tcpnext = NULL; 23193 if (tcphash != NULL) { 23194 /* Look for an entry using the same port */ 23195 while ((tcphash = tcpp[0]) != NULL && 23196 tcp->tcp_lport != tcphash->tcp_lport) 23197 tcpp = &(tcphash->tcp_bind_hash); 23198 23199 /* The port was not found, just add to the end */ 23200 if (tcphash == NULL) 23201 goto insert; 23202 23203 /* 23204 * OK, there already exists an entry bound to the 23205 * same port. 23206 * 23207 * If the new tcp bound to the INADDR_ANY address 23208 * and the first one in the list is not bound to 23209 * INADDR_ANY we skip all entries until we find the 23210 * first one bound to INADDR_ANY. 23211 * This makes sure that applications binding to a 23212 * specific address get preference over those binding to 23213 * INADDR_ANY. 23214 */ 23215 tcpnext = tcphash; 23216 tcphash = NULL; 23217 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23218 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23219 while ((tcpnext = tcpp[0]) != NULL && 23220 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23221 tcpp = &(tcpnext->tcp_bind_hash_port); 23222 23223 if (tcpnext) { 23224 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23225 tcphash = tcpnext->tcp_bind_hash; 23226 if (tcphash != NULL) { 23227 tcphash->tcp_ptpbhn = 23228 &(tcp->tcp_bind_hash); 23229 tcpnext->tcp_bind_hash = NULL; 23230 } 23231 } 23232 } else { 23233 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23234 tcphash = tcpnext->tcp_bind_hash; 23235 if (tcphash != NULL) { 23236 tcphash->tcp_ptpbhn = 23237 &(tcp->tcp_bind_hash); 23238 tcpnext->tcp_bind_hash = NULL; 23239 } 23240 } 23241 } 23242 insert: 23243 tcp->tcp_bind_hash_port = tcpnext; 23244 tcp->tcp_bind_hash = tcphash; 23245 tcp->tcp_ptpbhn = tcpp; 23246 tcpp[0] = tcp; 23247 if (!caller_holds_lock) 23248 mutex_exit(&tbf->tf_lock); 23249 } 23250 23251 /* 23252 * Hash list removal routine for tcp_t structures. 23253 */ 23254 static void 23255 tcp_bind_hash_remove(tcp_t *tcp) 23256 { 23257 tcp_t *tcpnext; 23258 kmutex_t *lockp; 23259 tcp_stack_t *tcps = tcp->tcp_tcps; 23260 23261 if (tcp->tcp_ptpbhn == NULL) 23262 return; 23263 23264 /* 23265 * Extract the lock pointer in case there are concurrent 23266 * hash_remove's for this instance. 23267 */ 23268 ASSERT(tcp->tcp_lport != 0); 23269 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23270 23271 ASSERT(lockp != NULL); 23272 mutex_enter(lockp); 23273 if (tcp->tcp_ptpbhn) { 23274 tcpnext = tcp->tcp_bind_hash_port; 23275 if (tcpnext != NULL) { 23276 tcp->tcp_bind_hash_port = NULL; 23277 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23278 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23279 if (tcpnext->tcp_bind_hash != NULL) { 23280 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23281 &(tcpnext->tcp_bind_hash); 23282 tcp->tcp_bind_hash = NULL; 23283 } 23284 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23285 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23286 tcp->tcp_bind_hash = NULL; 23287 } 23288 *tcp->tcp_ptpbhn = tcpnext; 23289 tcp->tcp_ptpbhn = NULL; 23290 } 23291 mutex_exit(lockp); 23292 } 23293 23294 23295 /* 23296 * Hash list lookup routine for tcp_t structures. 23297 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23298 */ 23299 static tcp_t * 23300 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23301 { 23302 tf_t *tf; 23303 tcp_t *tcp; 23304 23305 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23306 mutex_enter(&tf->tf_lock); 23307 for (tcp = tf->tf_tcp; tcp != NULL; 23308 tcp = tcp->tcp_acceptor_hash) { 23309 if (tcp->tcp_acceptor_id == id) { 23310 CONN_INC_REF(tcp->tcp_connp); 23311 mutex_exit(&tf->tf_lock); 23312 return (tcp); 23313 } 23314 } 23315 mutex_exit(&tf->tf_lock); 23316 return (NULL); 23317 } 23318 23319 23320 /* 23321 * Hash list insertion routine for tcp_t structures. 23322 */ 23323 void 23324 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23325 { 23326 tf_t *tf; 23327 tcp_t **tcpp; 23328 tcp_t *tcpnext; 23329 tcp_stack_t *tcps = tcp->tcp_tcps; 23330 23331 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23332 23333 if (tcp->tcp_ptpahn != NULL) 23334 tcp_acceptor_hash_remove(tcp); 23335 tcpp = &tf->tf_tcp; 23336 mutex_enter(&tf->tf_lock); 23337 tcpnext = tcpp[0]; 23338 if (tcpnext) 23339 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23340 tcp->tcp_acceptor_hash = tcpnext; 23341 tcp->tcp_ptpahn = tcpp; 23342 tcpp[0] = tcp; 23343 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23344 mutex_exit(&tf->tf_lock); 23345 } 23346 23347 /* 23348 * Hash list removal routine for tcp_t structures. 23349 */ 23350 static void 23351 tcp_acceptor_hash_remove(tcp_t *tcp) 23352 { 23353 tcp_t *tcpnext; 23354 kmutex_t *lockp; 23355 23356 /* 23357 * Extract the lock pointer in case there are concurrent 23358 * hash_remove's for this instance. 23359 */ 23360 lockp = tcp->tcp_acceptor_lockp; 23361 23362 if (tcp->tcp_ptpahn == NULL) 23363 return; 23364 23365 ASSERT(lockp != NULL); 23366 mutex_enter(lockp); 23367 if (tcp->tcp_ptpahn) { 23368 tcpnext = tcp->tcp_acceptor_hash; 23369 if (tcpnext) { 23370 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23371 tcp->tcp_acceptor_hash = NULL; 23372 } 23373 *tcp->tcp_ptpahn = tcpnext; 23374 tcp->tcp_ptpahn = NULL; 23375 } 23376 mutex_exit(lockp); 23377 tcp->tcp_acceptor_lockp = NULL; 23378 } 23379 23380 /* 23381 * Type three generator adapted from the random() function in 4.4 BSD: 23382 */ 23383 23384 /* 23385 * Copyright (c) 1983, 1993 23386 * The Regents of the University of California. All rights reserved. 23387 * 23388 * Redistribution and use in source and binary forms, with or without 23389 * modification, are permitted provided that the following conditions 23390 * are met: 23391 * 1. Redistributions of source code must retain the above copyright 23392 * notice, this list of conditions and the following disclaimer. 23393 * 2. Redistributions in binary form must reproduce the above copyright 23394 * notice, this list of conditions and the following disclaimer in the 23395 * documentation and/or other materials provided with the distribution. 23396 * 3. All advertising materials mentioning features or use of this software 23397 * must display the following acknowledgement: 23398 * This product includes software developed by the University of 23399 * California, Berkeley and its contributors. 23400 * 4. Neither the name of the University nor the names of its contributors 23401 * may be used to endorse or promote products derived from this software 23402 * without specific prior written permission. 23403 * 23404 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23405 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23406 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23407 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23408 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23409 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23410 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23411 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23412 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23413 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23414 * SUCH DAMAGE. 23415 */ 23416 23417 /* Type 3 -- x**31 + x**3 + 1 */ 23418 #define DEG_3 31 23419 #define SEP_3 3 23420 23421 23422 /* Protected by tcp_random_lock */ 23423 static int tcp_randtbl[DEG_3 + 1]; 23424 23425 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23426 static int *tcp_random_rptr = &tcp_randtbl[1]; 23427 23428 static int *tcp_random_state = &tcp_randtbl[1]; 23429 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23430 23431 kmutex_t tcp_random_lock; 23432 23433 void 23434 tcp_random_init(void) 23435 { 23436 int i; 23437 hrtime_t hrt; 23438 time_t wallclock; 23439 uint64_t result; 23440 23441 /* 23442 * Use high-res timer and current time for seed. Gethrtime() returns 23443 * a longlong, which may contain resolution down to nanoseconds. 23444 * The current time will either be a 32-bit or a 64-bit quantity. 23445 * XOR the two together in a 64-bit result variable. 23446 * Convert the result to a 32-bit value by multiplying the high-order 23447 * 32-bits by the low-order 32-bits. 23448 */ 23449 23450 hrt = gethrtime(); 23451 (void) drv_getparm(TIME, &wallclock); 23452 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23453 mutex_enter(&tcp_random_lock); 23454 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23455 (result & 0xffffffff); 23456 23457 for (i = 1; i < DEG_3; i++) 23458 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23459 + 12345; 23460 tcp_random_fptr = &tcp_random_state[SEP_3]; 23461 tcp_random_rptr = &tcp_random_state[0]; 23462 mutex_exit(&tcp_random_lock); 23463 for (i = 0; i < 10 * DEG_3; i++) 23464 (void) tcp_random(); 23465 } 23466 23467 /* 23468 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23469 * This range is selected to be approximately centered on TCP_ISS / 2, 23470 * and easy to compute. We get this value by generating a 32-bit random 23471 * number, selecting out the high-order 17 bits, and then adding one so 23472 * that we never return zero. 23473 */ 23474 int 23475 tcp_random(void) 23476 { 23477 int i; 23478 23479 mutex_enter(&tcp_random_lock); 23480 *tcp_random_fptr += *tcp_random_rptr; 23481 23482 /* 23483 * The high-order bits are more random than the low-order bits, 23484 * so we select out the high-order 17 bits and add one so that 23485 * we never return zero. 23486 */ 23487 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23488 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23489 tcp_random_fptr = tcp_random_state; 23490 ++tcp_random_rptr; 23491 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23492 tcp_random_rptr = tcp_random_state; 23493 23494 mutex_exit(&tcp_random_lock); 23495 return (i); 23496 } 23497 23498 static int 23499 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23500 int *t_errorp, int *sys_errorp) 23501 { 23502 int error; 23503 int is_absreq_failure; 23504 t_scalar_t *opt_lenp; 23505 t_scalar_t opt_offset; 23506 int prim_type; 23507 struct T_conn_req *tcreqp; 23508 struct T_conn_res *tcresp; 23509 cred_t *cr; 23510 23511 /* 23512 * All Solaris components should pass a db_credp 23513 * for this TPI message, hence we ASSERT. 23514 * But in case there is some other M_PROTO that looks 23515 * like a TPI message sent by some other kernel 23516 * component, we check and return an error. 23517 */ 23518 cr = msg_getcred(mp, NULL); 23519 ASSERT(cr != NULL); 23520 if (cr == NULL) 23521 return (-1); 23522 23523 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23524 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23525 prim_type == T_CONN_RES); 23526 23527 switch (prim_type) { 23528 case T_CONN_REQ: 23529 tcreqp = (struct T_conn_req *)mp->b_rptr; 23530 opt_offset = tcreqp->OPT_offset; 23531 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23532 break; 23533 case O_T_CONN_RES: 23534 case T_CONN_RES: 23535 tcresp = (struct T_conn_res *)mp->b_rptr; 23536 opt_offset = tcresp->OPT_offset; 23537 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23538 break; 23539 } 23540 23541 *t_errorp = 0; 23542 *sys_errorp = 0; 23543 *do_disconnectp = 0; 23544 23545 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23546 opt_offset, cr, &tcp_opt_obj, 23547 NULL, &is_absreq_failure); 23548 23549 switch (error) { 23550 case 0: /* no error */ 23551 ASSERT(is_absreq_failure == 0); 23552 return (0); 23553 case ENOPROTOOPT: 23554 *t_errorp = TBADOPT; 23555 break; 23556 case EACCES: 23557 *t_errorp = TACCES; 23558 break; 23559 default: 23560 *t_errorp = TSYSERR; *sys_errorp = error; 23561 break; 23562 } 23563 if (is_absreq_failure != 0) { 23564 /* 23565 * The connection request should get the local ack 23566 * T_OK_ACK and then a T_DISCON_IND. 23567 */ 23568 *do_disconnectp = 1; 23569 } 23570 return (-1); 23571 } 23572 23573 /* 23574 * Split this function out so that if the secret changes, I'm okay. 23575 * 23576 * Initialize the tcp_iss_cookie and tcp_iss_key. 23577 */ 23578 23579 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23580 23581 static void 23582 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23583 { 23584 struct { 23585 int32_t current_time; 23586 uint32_t randnum; 23587 uint16_t pad; 23588 uint8_t ether[6]; 23589 uint8_t passwd[PASSWD_SIZE]; 23590 } tcp_iss_cookie; 23591 time_t t; 23592 23593 /* 23594 * Start with the current absolute time. 23595 */ 23596 (void) drv_getparm(TIME, &t); 23597 tcp_iss_cookie.current_time = t; 23598 23599 /* 23600 * XXX - Need a more random number per RFC 1750, not this crap. 23601 * OTOH, if what follows is pretty random, then I'm in better shape. 23602 */ 23603 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23604 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23605 23606 /* 23607 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23608 * as a good template. 23609 */ 23610 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23611 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23612 23613 /* 23614 * The pass-phrase. Normally this is supplied by user-called NDD. 23615 */ 23616 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23617 23618 /* 23619 * See 4010593 if this section becomes a problem again, 23620 * but the local ethernet address is useful here. 23621 */ 23622 (void) localetheraddr(NULL, 23623 (struct ether_addr *)&tcp_iss_cookie.ether); 23624 23625 /* 23626 * Hash 'em all together. The MD5Final is called per-connection. 23627 */ 23628 mutex_enter(&tcps->tcps_iss_key_lock); 23629 MD5Init(&tcps->tcps_iss_key); 23630 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23631 sizeof (tcp_iss_cookie)); 23632 mutex_exit(&tcps->tcps_iss_key_lock); 23633 } 23634 23635 /* 23636 * Set the RFC 1948 pass phrase 23637 */ 23638 /* ARGSUSED */ 23639 static int 23640 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23641 cred_t *cr) 23642 { 23643 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23644 23645 /* 23646 * Basically, value contains a new pass phrase. Pass it along! 23647 */ 23648 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23649 return (0); 23650 } 23651 23652 /* ARGSUSED */ 23653 static int 23654 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23655 { 23656 bzero(buf, sizeof (tcp_sack_info_t)); 23657 return (0); 23658 } 23659 23660 /* ARGSUSED */ 23661 static int 23662 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23663 { 23664 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23665 return (0); 23666 } 23667 23668 /* 23669 * Make sure we wait until the default queue is setup, yet allow 23670 * tcp_g_q_create() to open a TCP stream. 23671 * We need to allow tcp_g_q_create() do do an open 23672 * of tcp, hence we compare curhread. 23673 * All others have to wait until the tcps_g_q has been 23674 * setup. 23675 */ 23676 void 23677 tcp_g_q_setup(tcp_stack_t *tcps) 23678 { 23679 mutex_enter(&tcps->tcps_g_q_lock); 23680 if (tcps->tcps_g_q != NULL) { 23681 mutex_exit(&tcps->tcps_g_q_lock); 23682 return; 23683 } 23684 if (tcps->tcps_g_q_creator == NULL) { 23685 /* This thread will set it up */ 23686 tcps->tcps_g_q_creator = curthread; 23687 mutex_exit(&tcps->tcps_g_q_lock); 23688 tcp_g_q_create(tcps); 23689 mutex_enter(&tcps->tcps_g_q_lock); 23690 ASSERT(tcps->tcps_g_q_creator == curthread); 23691 tcps->tcps_g_q_creator = NULL; 23692 cv_signal(&tcps->tcps_g_q_cv); 23693 ASSERT(tcps->tcps_g_q != NULL); 23694 mutex_exit(&tcps->tcps_g_q_lock); 23695 return; 23696 } 23697 /* Everybody but the creator has to wait */ 23698 if (tcps->tcps_g_q_creator != curthread) { 23699 while (tcps->tcps_g_q == NULL) 23700 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 23701 } 23702 mutex_exit(&tcps->tcps_g_q_lock); 23703 } 23704 23705 #define IP "ip" 23706 23707 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 23708 23709 /* 23710 * Create a default tcp queue here instead of in strplumb 23711 */ 23712 void 23713 tcp_g_q_create(tcp_stack_t *tcps) 23714 { 23715 int error; 23716 ldi_handle_t lh = NULL; 23717 ldi_ident_t li = NULL; 23718 int rval; 23719 cred_t *cr; 23720 major_t IP_MAJ; 23721 23722 #ifdef NS_DEBUG 23723 (void) printf("tcp_g_q_create()\n"); 23724 #endif 23725 23726 IP_MAJ = ddi_name_to_major(IP); 23727 23728 ASSERT(tcps->tcps_g_q_creator == curthread); 23729 23730 error = ldi_ident_from_major(IP_MAJ, &li); 23731 if (error) { 23732 #ifdef DEBUG 23733 printf("tcp_g_q_create: lyr ident get failed error %d\n", 23734 error); 23735 #endif 23736 return; 23737 } 23738 23739 cr = zone_get_kcred(netstackid_to_zoneid( 23740 tcps->tcps_netstack->netstack_stackid)); 23741 ASSERT(cr != NULL); 23742 /* 23743 * We set the tcp default queue to IPv6 because IPv4 falls 23744 * back to IPv6 when it can't find a client, but 23745 * IPv6 does not fall back to IPv4. 23746 */ 23747 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 23748 if (error) { 23749 #ifdef DEBUG 23750 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 23751 error); 23752 #endif 23753 goto out; 23754 } 23755 23756 /* 23757 * This ioctl causes the tcp framework to cache a pointer to 23758 * this stream, so we don't want to close the stream after 23759 * this operation. 23760 * Use the kernel credentials that are for the zone we're in. 23761 */ 23762 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 23763 (intptr_t)0, FKIOCTL, cr, &rval); 23764 if (error) { 23765 #ifdef DEBUG 23766 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 23767 "error %d\n", error); 23768 #endif 23769 goto out; 23770 } 23771 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 23772 lh = NULL; 23773 out: 23774 /* Close layered handles */ 23775 if (li) 23776 ldi_ident_release(li); 23777 /* Keep cred around until _inactive needs it */ 23778 tcps->tcps_g_q_cr = cr; 23779 } 23780 23781 /* 23782 * We keep tcp_g_q set until all other tcp_t's in the zone 23783 * has gone away, and then when tcp_g_q_inactive() is called 23784 * we clear it. 23785 */ 23786 void 23787 tcp_g_q_destroy(tcp_stack_t *tcps) 23788 { 23789 #ifdef NS_DEBUG 23790 (void) printf("tcp_g_q_destroy()for stack %d\n", 23791 tcps->tcps_netstack->netstack_stackid); 23792 #endif 23793 23794 if (tcps->tcps_g_q == NULL) { 23795 return; /* Nothing to cleanup */ 23796 } 23797 /* 23798 * Drop reference corresponding to the default queue. 23799 * This reference was added from tcp_open when the default queue 23800 * was created, hence we compensate for this extra drop in 23801 * tcp_g_q_close. If the refcnt drops to zero here it means 23802 * the default queue was the last one to be open, in which 23803 * case, then tcp_g_q_inactive will be 23804 * called as a result of the refrele. 23805 */ 23806 TCPS_REFRELE(tcps); 23807 } 23808 23809 /* 23810 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23811 * Run by tcp_q_q_inactive using a taskq. 23812 */ 23813 static void 23814 tcp_g_q_close(void *arg) 23815 { 23816 tcp_stack_t *tcps = arg; 23817 int error; 23818 ldi_handle_t lh = NULL; 23819 ldi_ident_t li = NULL; 23820 cred_t *cr; 23821 major_t IP_MAJ; 23822 23823 IP_MAJ = ddi_name_to_major(IP); 23824 23825 #ifdef NS_DEBUG 23826 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 23827 tcps->tcps_netstack->netstack_stackid, 23828 tcps->tcps_netstack->netstack_refcnt); 23829 #endif 23830 lh = tcps->tcps_g_q_lh; 23831 if (lh == NULL) 23832 return; /* Nothing to cleanup */ 23833 23834 ASSERT(tcps->tcps_refcnt == 1); 23835 ASSERT(tcps->tcps_g_q != NULL); 23836 23837 error = ldi_ident_from_major(IP_MAJ, &li); 23838 if (error) { 23839 #ifdef DEBUG 23840 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 23841 error); 23842 #endif 23843 return; 23844 } 23845 23846 cr = tcps->tcps_g_q_cr; 23847 tcps->tcps_g_q_cr = NULL; 23848 ASSERT(cr != NULL); 23849 23850 /* 23851 * Make sure we can break the recursion when tcp_close decrements 23852 * the reference count causing g_q_inactive to be called again. 23853 */ 23854 tcps->tcps_g_q_lh = NULL; 23855 23856 /* close the default queue */ 23857 (void) ldi_close(lh, FREAD|FWRITE, cr); 23858 /* 23859 * At this point in time tcps and the rest of netstack_t might 23860 * have been deleted. 23861 */ 23862 tcps = NULL; 23863 23864 /* Close layered handles */ 23865 ldi_ident_release(li); 23866 crfree(cr); 23867 } 23868 23869 /* 23870 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23871 * 23872 * Have to ensure that the ldi routines are not used by an 23873 * interrupt thread by using a taskq. 23874 */ 23875 void 23876 tcp_g_q_inactive(tcp_stack_t *tcps) 23877 { 23878 if (tcps->tcps_g_q_lh == NULL) 23879 return; /* Nothing to cleanup */ 23880 23881 ASSERT(tcps->tcps_refcnt == 0); 23882 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 23883 23884 if (servicing_interrupt()) { 23885 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 23886 (void *) tcps, TQ_SLEEP); 23887 } else { 23888 tcp_g_q_close(tcps); 23889 } 23890 } 23891 23892 /* 23893 * Called by IP when IP is loaded into the kernel 23894 */ 23895 void 23896 tcp_ddi_g_init(void) 23897 { 23898 tcp_timercache = kmem_cache_create("tcp_timercache", 23899 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23900 NULL, NULL, NULL, NULL, NULL, 0); 23901 23902 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23903 sizeof (tcp_sack_info_t), 0, 23904 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23905 23906 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23907 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23908 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23909 23910 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23911 23912 /* Initialize the random number generator */ 23913 tcp_random_init(); 23914 23915 /* A single callback independently of how many netstacks we have */ 23916 ip_squeue_init(tcp_squeue_add); 23917 23918 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 23919 23920 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 23921 TASKQ_PREPOPULATE); 23922 23923 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 23924 23925 /* 23926 * We want to be informed each time a stack is created or 23927 * destroyed in the kernel, so we can maintain the 23928 * set of tcp_stack_t's. 23929 */ 23930 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 23931 tcp_stack_fini); 23932 } 23933 23934 23935 #define INET_NAME "ip" 23936 23937 /* 23938 * Initialize the TCP stack instance. 23939 */ 23940 static void * 23941 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 23942 { 23943 tcp_stack_t *tcps; 23944 tcpparam_t *pa; 23945 int i; 23946 int error = 0; 23947 major_t major; 23948 23949 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 23950 tcps->tcps_netstack = ns; 23951 23952 /* Initialize locks */ 23953 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23954 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 23955 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23956 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23957 23958 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 23959 tcps->tcps_g_epriv_ports[0] = 2049; 23960 tcps->tcps_g_epriv_ports[1] = 4045; 23961 tcps->tcps_min_anonpriv_port = 512; 23962 23963 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 23964 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 23965 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 23966 TCP_FANOUT_SIZE, KM_SLEEP); 23967 23968 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 23969 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 23970 MUTEX_DEFAULT, NULL); 23971 } 23972 23973 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 23974 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 23975 MUTEX_DEFAULT, NULL); 23976 } 23977 23978 /* TCP's IPsec code calls the packet dropper. */ 23979 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 23980 23981 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 23982 tcps->tcps_params = pa; 23983 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 23984 23985 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 23986 A_CNT(lcl_tcp_param_arr), tcps); 23987 23988 /* 23989 * Note: To really walk the device tree you need the devinfo 23990 * pointer to your device which is only available after probe/attach. 23991 * The following is safe only because it uses ddi_root_node() 23992 */ 23993 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23994 tcp_opt_obj.odb_opt_arr_cnt); 23995 23996 /* 23997 * Initialize RFC 1948 secret values. This will probably be reset once 23998 * by the boot scripts. 23999 * 24000 * Use NULL name, as the name is caught by the new lockstats. 24001 * 24002 * Initialize with some random, non-guessable string, like the global 24003 * T_INFO_ACK. 24004 */ 24005 24006 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24007 sizeof (tcp_g_t_info_ack), tcps); 24008 24009 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24010 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24011 24012 major = mod_name_to_major(INET_NAME); 24013 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24014 ASSERT(error == 0); 24015 return (tcps); 24016 } 24017 24018 /* 24019 * Called when the IP module is about to be unloaded. 24020 */ 24021 void 24022 tcp_ddi_g_destroy(void) 24023 { 24024 tcp_g_kstat_fini(tcp_g_kstat); 24025 tcp_g_kstat = NULL; 24026 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24027 24028 mutex_destroy(&tcp_random_lock); 24029 24030 kmem_cache_destroy(tcp_timercache); 24031 kmem_cache_destroy(tcp_sack_info_cache); 24032 kmem_cache_destroy(tcp_iphc_cache); 24033 24034 netstack_unregister(NS_TCP); 24035 taskq_destroy(tcp_taskq); 24036 } 24037 24038 /* 24039 * Shut down the TCP stack instance. 24040 */ 24041 /* ARGSUSED */ 24042 static void 24043 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24044 { 24045 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24046 24047 tcp_g_q_destroy(tcps); 24048 } 24049 24050 /* 24051 * Free the TCP stack instance. 24052 */ 24053 static void 24054 tcp_stack_fini(netstackid_t stackid, void *arg) 24055 { 24056 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24057 int i; 24058 24059 nd_free(&tcps->tcps_g_nd); 24060 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24061 tcps->tcps_params = NULL; 24062 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24063 tcps->tcps_wroff_xtra_param = NULL; 24064 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24065 tcps->tcps_mdt_head_param = NULL; 24066 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24067 tcps->tcps_mdt_tail_param = NULL; 24068 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24069 tcps->tcps_mdt_max_pbufs_param = NULL; 24070 24071 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24072 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24073 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24074 } 24075 24076 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24077 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24078 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24079 } 24080 24081 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24082 tcps->tcps_bind_fanout = NULL; 24083 24084 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24085 tcps->tcps_acceptor_fanout = NULL; 24086 24087 mutex_destroy(&tcps->tcps_iss_key_lock); 24088 mutex_destroy(&tcps->tcps_g_q_lock); 24089 cv_destroy(&tcps->tcps_g_q_cv); 24090 mutex_destroy(&tcps->tcps_epriv_port_lock); 24091 24092 ip_drop_unregister(&tcps->tcps_dropper); 24093 24094 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24095 tcps->tcps_kstat = NULL; 24096 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24097 24098 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24099 tcps->tcps_mibkp = NULL; 24100 24101 ldi_ident_release(tcps->tcps_ldi_ident); 24102 kmem_free(tcps, sizeof (*tcps)); 24103 } 24104 24105 /* 24106 * Generate ISS, taking into account NDD changes may happen halfway through. 24107 * (If the iss is not zero, set it.) 24108 */ 24109 24110 static void 24111 tcp_iss_init(tcp_t *tcp) 24112 { 24113 MD5_CTX context; 24114 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24115 uint32_t answer[4]; 24116 tcp_stack_t *tcps = tcp->tcp_tcps; 24117 24118 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24119 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24120 switch (tcps->tcps_strong_iss) { 24121 case 2: 24122 mutex_enter(&tcps->tcps_iss_key_lock); 24123 context = tcps->tcps_iss_key; 24124 mutex_exit(&tcps->tcps_iss_key_lock); 24125 arg.ports = tcp->tcp_ports; 24126 if (tcp->tcp_ipversion == IPV4_VERSION) { 24127 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24128 &arg.src); 24129 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24130 &arg.dst); 24131 } else { 24132 arg.src = tcp->tcp_ip6h->ip6_src; 24133 arg.dst = tcp->tcp_ip6h->ip6_dst; 24134 } 24135 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24136 MD5Final((uchar_t *)answer, &context); 24137 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24138 /* 24139 * Now that we've hashed into a unique per-connection sequence 24140 * space, add a random increment per strong_iss == 1. So I 24141 * guess we'll have to... 24142 */ 24143 /* FALLTHRU */ 24144 case 1: 24145 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24146 break; 24147 default: 24148 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24149 break; 24150 } 24151 tcp->tcp_valid_bits = TCP_ISS_VALID; 24152 tcp->tcp_fss = tcp->tcp_iss - 1; 24153 tcp->tcp_suna = tcp->tcp_iss; 24154 tcp->tcp_snxt = tcp->tcp_iss + 1; 24155 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24156 tcp->tcp_csuna = tcp->tcp_snxt; 24157 } 24158 24159 /* 24160 * Exported routine for extracting active tcp connection status. 24161 * 24162 * This is used by the Solaris Cluster Networking software to 24163 * gather a list of connections that need to be forwarded to 24164 * specific nodes in the cluster when configuration changes occur. 24165 * 24166 * The callback is invoked for each tcp_t structure from all netstacks, 24167 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24168 * from the netstack with the specified stack_id. Returning 24169 * non-zero from the callback routine terminates the search. 24170 */ 24171 int 24172 cl_tcp_walk_list(netstackid_t stack_id, 24173 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24174 { 24175 netstack_handle_t nh; 24176 netstack_t *ns; 24177 int ret = 0; 24178 24179 if (stack_id >= 0) { 24180 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24181 return (EINVAL); 24182 24183 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24184 ns->netstack_tcp); 24185 netstack_rele(ns); 24186 return (ret); 24187 } 24188 24189 netstack_next_init(&nh); 24190 while ((ns = netstack_next(&nh)) != NULL) { 24191 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24192 ns->netstack_tcp); 24193 netstack_rele(ns); 24194 } 24195 netstack_next_fini(&nh); 24196 return (ret); 24197 } 24198 24199 static int 24200 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24201 tcp_stack_t *tcps) 24202 { 24203 tcp_t *tcp; 24204 cl_tcp_info_t cl_tcpi; 24205 connf_t *connfp; 24206 conn_t *connp; 24207 int i; 24208 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24209 24210 ASSERT(callback != NULL); 24211 24212 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24213 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24214 connp = NULL; 24215 24216 while ((connp = 24217 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24218 24219 tcp = connp->conn_tcp; 24220 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24221 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24222 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24223 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24224 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24225 /* 24226 * The macros tcp_laddr and tcp_faddr give the IPv4 24227 * addresses. They are copied implicitly below as 24228 * mapped addresses. 24229 */ 24230 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24231 if (tcp->tcp_ipversion == IPV4_VERSION) { 24232 cl_tcpi.cl_tcpi_faddr = 24233 tcp->tcp_ipha->ipha_dst; 24234 } else { 24235 cl_tcpi.cl_tcpi_faddr_v6 = 24236 tcp->tcp_ip6h->ip6_dst; 24237 } 24238 24239 /* 24240 * If the callback returns non-zero 24241 * we terminate the traversal. 24242 */ 24243 if ((*callback)(&cl_tcpi, arg) != 0) { 24244 CONN_DEC_REF(tcp->tcp_connp); 24245 return (1); 24246 } 24247 } 24248 } 24249 24250 return (0); 24251 } 24252 24253 /* 24254 * Macros used for accessing the different types of sockaddr 24255 * structures inside a tcp_ioc_abort_conn_t. 24256 */ 24257 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24258 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24259 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24260 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24261 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24262 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24263 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24264 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24265 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24266 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24267 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24268 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24269 24270 /* 24271 * Return the correct error code to mimic the behavior 24272 * of a connection reset. 24273 */ 24274 #define TCP_AC_GET_ERRCODE(state, err) { \ 24275 switch ((state)) { \ 24276 case TCPS_SYN_SENT: \ 24277 case TCPS_SYN_RCVD: \ 24278 (err) = ECONNREFUSED; \ 24279 break; \ 24280 case TCPS_ESTABLISHED: \ 24281 case TCPS_FIN_WAIT_1: \ 24282 case TCPS_FIN_WAIT_2: \ 24283 case TCPS_CLOSE_WAIT: \ 24284 (err) = ECONNRESET; \ 24285 break; \ 24286 case TCPS_CLOSING: \ 24287 case TCPS_LAST_ACK: \ 24288 case TCPS_TIME_WAIT: \ 24289 (err) = 0; \ 24290 break; \ 24291 default: \ 24292 (err) = ENXIO; \ 24293 } \ 24294 } 24295 24296 /* 24297 * Check if a tcp structure matches the info in acp. 24298 */ 24299 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24300 (((acp)->ac_local.ss_family == AF_INET) ? \ 24301 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24302 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24303 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24304 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24305 (TCP_AC_V4LPORT((acp)) == 0 || \ 24306 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24307 (TCP_AC_V4RPORT((acp)) == 0 || \ 24308 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24309 (acp)->ac_start <= (tcp)->tcp_state && \ 24310 (acp)->ac_end >= (tcp)->tcp_state) : \ 24311 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24312 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24313 &(tcp)->tcp_ip_src_v6)) && \ 24314 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24315 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24316 &(tcp)->tcp_remote_v6)) && \ 24317 (TCP_AC_V6LPORT((acp)) == 0 || \ 24318 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24319 (TCP_AC_V6RPORT((acp)) == 0 || \ 24320 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24321 (acp)->ac_start <= (tcp)->tcp_state && \ 24322 (acp)->ac_end >= (tcp)->tcp_state)) 24323 24324 #define TCP_AC_MATCH(acp, tcp) \ 24325 (((acp)->ac_zoneid == ALL_ZONES || \ 24326 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24327 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24328 24329 /* 24330 * Build a message containing a tcp_ioc_abort_conn_t structure 24331 * which is filled in with information from acp and tp. 24332 */ 24333 static mblk_t * 24334 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24335 { 24336 mblk_t *mp; 24337 tcp_ioc_abort_conn_t *tacp; 24338 24339 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24340 if (mp == NULL) 24341 return (NULL); 24342 24343 mp->b_datap->db_type = M_CTL; 24344 24345 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24346 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24347 sizeof (uint32_t)); 24348 24349 tacp->ac_start = acp->ac_start; 24350 tacp->ac_end = acp->ac_end; 24351 tacp->ac_zoneid = acp->ac_zoneid; 24352 24353 if (acp->ac_local.ss_family == AF_INET) { 24354 tacp->ac_local.ss_family = AF_INET; 24355 tacp->ac_remote.ss_family = AF_INET; 24356 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24357 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24358 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24359 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24360 } else { 24361 tacp->ac_local.ss_family = AF_INET6; 24362 tacp->ac_remote.ss_family = AF_INET6; 24363 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24364 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24365 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24366 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24367 } 24368 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24369 return (mp); 24370 } 24371 24372 /* 24373 * Print a tcp_ioc_abort_conn_t structure. 24374 */ 24375 static void 24376 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24377 { 24378 char lbuf[128]; 24379 char rbuf[128]; 24380 sa_family_t af; 24381 in_port_t lport, rport; 24382 ushort_t logflags; 24383 24384 af = acp->ac_local.ss_family; 24385 24386 if (af == AF_INET) { 24387 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24388 lbuf, 128); 24389 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24390 rbuf, 128); 24391 lport = ntohs(TCP_AC_V4LPORT(acp)); 24392 rport = ntohs(TCP_AC_V4RPORT(acp)); 24393 } else { 24394 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24395 lbuf, 128); 24396 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24397 rbuf, 128); 24398 lport = ntohs(TCP_AC_V6LPORT(acp)); 24399 rport = ntohs(TCP_AC_V6RPORT(acp)); 24400 } 24401 24402 logflags = SL_TRACE | SL_NOTE; 24403 /* 24404 * Don't print this message to the console if the operation was done 24405 * to a non-global zone. 24406 */ 24407 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24408 logflags |= SL_CONSOLE; 24409 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24410 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24411 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24412 acp->ac_start, acp->ac_end); 24413 } 24414 24415 /* 24416 * Called inside tcp_rput when a message built using 24417 * tcp_ioctl_abort_build_msg is put into a queue. 24418 * Note that when we get here there is no wildcard in acp any more. 24419 */ 24420 static void 24421 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24422 { 24423 tcp_ioc_abort_conn_t *acp; 24424 24425 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24426 if (tcp->tcp_state <= acp->ac_end) { 24427 /* 24428 * If we get here, we are already on the correct 24429 * squeue. This ioctl follows the following path 24430 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24431 * ->tcp_ioctl_abort->squeue_enter (if on a 24432 * different squeue) 24433 */ 24434 int errcode; 24435 24436 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24437 (void) tcp_clean_death(tcp, errcode, 26); 24438 } 24439 freemsg(mp); 24440 } 24441 24442 /* 24443 * Abort all matching connections on a hash chain. 24444 */ 24445 static int 24446 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24447 boolean_t exact, tcp_stack_t *tcps) 24448 { 24449 int nmatch, err = 0; 24450 tcp_t *tcp; 24451 MBLKP mp, last, listhead = NULL; 24452 conn_t *tconnp; 24453 connf_t *connfp; 24454 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24455 24456 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24457 24458 startover: 24459 nmatch = 0; 24460 24461 mutex_enter(&connfp->connf_lock); 24462 for (tconnp = connfp->connf_head; tconnp != NULL; 24463 tconnp = tconnp->conn_next) { 24464 tcp = tconnp->conn_tcp; 24465 if (TCP_AC_MATCH(acp, tcp)) { 24466 CONN_INC_REF(tcp->tcp_connp); 24467 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24468 if (mp == NULL) { 24469 err = ENOMEM; 24470 CONN_DEC_REF(tcp->tcp_connp); 24471 break; 24472 } 24473 mp->b_prev = (mblk_t *)tcp; 24474 24475 if (listhead == NULL) { 24476 listhead = mp; 24477 last = mp; 24478 } else { 24479 last->b_next = mp; 24480 last = mp; 24481 } 24482 nmatch++; 24483 if (exact) 24484 break; 24485 } 24486 24487 /* Avoid holding lock for too long. */ 24488 if (nmatch >= 500) 24489 break; 24490 } 24491 mutex_exit(&connfp->connf_lock); 24492 24493 /* Pass mp into the correct tcp */ 24494 while ((mp = listhead) != NULL) { 24495 listhead = listhead->b_next; 24496 tcp = (tcp_t *)mp->b_prev; 24497 mp->b_next = mp->b_prev = NULL; 24498 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24499 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24500 } 24501 24502 *count += nmatch; 24503 if (nmatch >= 500 && err == 0) 24504 goto startover; 24505 return (err); 24506 } 24507 24508 /* 24509 * Abort all connections that matches the attributes specified in acp. 24510 */ 24511 static int 24512 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24513 { 24514 sa_family_t af; 24515 uint32_t ports; 24516 uint16_t *pports; 24517 int err = 0, count = 0; 24518 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24519 int index = -1; 24520 ushort_t logflags; 24521 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24522 24523 af = acp->ac_local.ss_family; 24524 24525 if (af == AF_INET) { 24526 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24527 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24528 pports = (uint16_t *)&ports; 24529 pports[1] = TCP_AC_V4LPORT(acp); 24530 pports[0] = TCP_AC_V4RPORT(acp); 24531 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24532 } 24533 } else { 24534 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24535 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24536 pports = (uint16_t *)&ports; 24537 pports[1] = TCP_AC_V6LPORT(acp); 24538 pports[0] = TCP_AC_V6RPORT(acp); 24539 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24540 } 24541 } 24542 24543 /* 24544 * For cases where remote addr, local port, and remote port are non- 24545 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24546 */ 24547 if (index != -1) { 24548 err = tcp_ioctl_abort_bucket(acp, index, 24549 &count, exact, tcps); 24550 } else { 24551 /* 24552 * loop through all entries for wildcard case 24553 */ 24554 for (index = 0; 24555 index < ipst->ips_ipcl_conn_fanout_size; 24556 index++) { 24557 err = tcp_ioctl_abort_bucket(acp, index, 24558 &count, exact, tcps); 24559 if (err != 0) 24560 break; 24561 } 24562 } 24563 24564 logflags = SL_TRACE | SL_NOTE; 24565 /* 24566 * Don't print this message to the console if the operation was done 24567 * to a non-global zone. 24568 */ 24569 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24570 logflags |= SL_CONSOLE; 24571 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24572 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24573 if (err == 0 && count == 0) 24574 err = ENOENT; 24575 return (err); 24576 } 24577 24578 /* 24579 * Process the TCP_IOC_ABORT_CONN ioctl request. 24580 */ 24581 static void 24582 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24583 { 24584 int err; 24585 IOCP iocp; 24586 MBLKP mp1; 24587 sa_family_t laf, raf; 24588 tcp_ioc_abort_conn_t *acp; 24589 zone_t *zptr; 24590 conn_t *connp = Q_TO_CONN(q); 24591 zoneid_t zoneid = connp->conn_zoneid; 24592 tcp_t *tcp = connp->conn_tcp; 24593 tcp_stack_t *tcps = tcp->tcp_tcps; 24594 24595 iocp = (IOCP)mp->b_rptr; 24596 24597 if ((mp1 = mp->b_cont) == NULL || 24598 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24599 err = EINVAL; 24600 goto out; 24601 } 24602 24603 /* check permissions */ 24604 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24605 err = EPERM; 24606 goto out; 24607 } 24608 24609 if (mp1->b_cont != NULL) { 24610 freemsg(mp1->b_cont); 24611 mp1->b_cont = NULL; 24612 } 24613 24614 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24615 laf = acp->ac_local.ss_family; 24616 raf = acp->ac_remote.ss_family; 24617 24618 /* check that a zone with the supplied zoneid exists */ 24619 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24620 zptr = zone_find_by_id(zoneid); 24621 if (zptr != NULL) { 24622 zone_rele(zptr); 24623 } else { 24624 err = EINVAL; 24625 goto out; 24626 } 24627 } 24628 24629 /* 24630 * For exclusive stacks we set the zoneid to zero 24631 * to make TCP operate as if in the global zone. 24632 */ 24633 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24634 acp->ac_zoneid = GLOBAL_ZONEID; 24635 24636 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24637 acp->ac_start > acp->ac_end || laf != raf || 24638 (laf != AF_INET && laf != AF_INET6)) { 24639 err = EINVAL; 24640 goto out; 24641 } 24642 24643 tcp_ioctl_abort_dump(acp); 24644 err = tcp_ioctl_abort(acp, tcps); 24645 24646 out: 24647 if (mp1 != NULL) { 24648 freemsg(mp1); 24649 mp->b_cont = NULL; 24650 } 24651 24652 if (err != 0) 24653 miocnak(q, mp, 0, err); 24654 else 24655 miocack(q, mp, 0, 0); 24656 } 24657 24658 /* 24659 * tcp_time_wait_processing() handles processing of incoming packets when 24660 * the tcp is in the TIME_WAIT state. 24661 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24662 * on the time wait list. 24663 */ 24664 void 24665 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24666 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24667 { 24668 int32_t bytes_acked; 24669 int32_t gap; 24670 int32_t rgap; 24671 tcp_opt_t tcpopt; 24672 uint_t flags; 24673 uint32_t new_swnd = 0; 24674 conn_t *connp; 24675 tcp_stack_t *tcps = tcp->tcp_tcps; 24676 24677 BUMP_LOCAL(tcp->tcp_ibsegs); 24678 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24679 24680 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24681 new_swnd = BE16_TO_U16(tcph->th_win) << 24682 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24683 if (tcp->tcp_snd_ts_ok) { 24684 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24685 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24686 tcp->tcp_rnxt, TH_ACK); 24687 goto done; 24688 } 24689 } 24690 gap = seg_seq - tcp->tcp_rnxt; 24691 rgap = tcp->tcp_rwnd - (gap + seg_len); 24692 if (gap < 0) { 24693 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 24694 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 24695 (seg_len > -gap ? -gap : seg_len)); 24696 seg_len += gap; 24697 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24698 if (flags & TH_RST) { 24699 goto done; 24700 } 24701 if ((flags & TH_FIN) && seg_len == -1) { 24702 /* 24703 * When TCP receives a duplicate FIN in 24704 * TIME_WAIT state, restart the 2 MSL timer. 24705 * See page 73 in RFC 793. Make sure this TCP 24706 * is already on the TIME_WAIT list. If not, 24707 * just restart the timer. 24708 */ 24709 if (TCP_IS_DETACHED(tcp)) { 24710 if (tcp_time_wait_remove(tcp, NULL) == 24711 B_TRUE) { 24712 tcp_time_wait_append(tcp); 24713 TCP_DBGSTAT(tcps, 24714 tcp_rput_time_wait); 24715 } 24716 } else { 24717 ASSERT(tcp != NULL); 24718 TCP_TIMER_RESTART(tcp, 24719 tcps->tcps_time_wait_interval); 24720 } 24721 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24722 tcp->tcp_rnxt, TH_ACK); 24723 goto done; 24724 } 24725 flags |= TH_ACK_NEEDED; 24726 seg_len = 0; 24727 goto process_ack; 24728 } 24729 24730 /* Fix seg_seq, and chew the gap off the front. */ 24731 seg_seq = tcp->tcp_rnxt; 24732 } 24733 24734 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24735 /* 24736 * Make sure that when we accept the connection, pick 24737 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24738 * old connection. 24739 * 24740 * The next ISS generated is equal to tcp_iss_incr_extra 24741 * + ISS_INCR/2 + other components depending on the 24742 * value of tcp_strong_iss. We pre-calculate the new 24743 * ISS here and compare with tcp_snxt to determine if 24744 * we need to make adjustment to tcp_iss_incr_extra. 24745 * 24746 * The above calculation is ugly and is a 24747 * waste of CPU cycles... 24748 */ 24749 uint32_t new_iss = tcps->tcps_iss_incr_extra; 24750 int32_t adj; 24751 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24752 24753 switch (tcps->tcps_strong_iss) { 24754 case 2: { 24755 /* Add time and MD5 components. */ 24756 uint32_t answer[4]; 24757 struct { 24758 uint32_t ports; 24759 in6_addr_t src; 24760 in6_addr_t dst; 24761 } arg; 24762 MD5_CTX context; 24763 24764 mutex_enter(&tcps->tcps_iss_key_lock); 24765 context = tcps->tcps_iss_key; 24766 mutex_exit(&tcps->tcps_iss_key_lock); 24767 arg.ports = tcp->tcp_ports; 24768 /* We use MAPPED addresses in tcp_iss_init */ 24769 arg.src = tcp->tcp_ip_src_v6; 24770 if (tcp->tcp_ipversion == IPV4_VERSION) { 24771 IN6_IPADDR_TO_V4MAPPED( 24772 tcp->tcp_ipha->ipha_dst, 24773 &arg.dst); 24774 } else { 24775 arg.dst = 24776 tcp->tcp_ip6h->ip6_dst; 24777 } 24778 MD5Update(&context, (uchar_t *)&arg, 24779 sizeof (arg)); 24780 MD5Final((uchar_t *)answer, &context); 24781 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24782 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24783 break; 24784 } 24785 case 1: 24786 /* Add time component and min random (i.e. 1). */ 24787 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24788 break; 24789 default: 24790 /* Add only time component. */ 24791 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24792 break; 24793 } 24794 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24795 /* 24796 * New ISS not guaranteed to be ISS_INCR/2 24797 * ahead of the current tcp_snxt, so add the 24798 * difference to tcp_iss_incr_extra. 24799 */ 24800 tcps->tcps_iss_incr_extra += adj; 24801 } 24802 /* 24803 * If tcp_clean_death() can not perform the task now, 24804 * drop the SYN packet and let the other side re-xmit. 24805 * Otherwise pass the SYN packet back in, since the 24806 * old tcp state has been cleaned up or freed. 24807 */ 24808 if (tcp_clean_death(tcp, 0, 27) == -1) 24809 goto done; 24810 /* 24811 * We will come back to tcp_rput_data 24812 * on the global queue. Packets destined 24813 * for the global queue will be checked 24814 * with global policy. But the policy for 24815 * this packet has already been checked as 24816 * this was destined for the detached 24817 * connection. We need to bypass policy 24818 * check this time by attaching a dummy 24819 * ipsec_in with ipsec_in_dont_check set. 24820 */ 24821 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 24822 if (connp != NULL) { 24823 TCP_STAT(tcps, tcp_time_wait_syn_success); 24824 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24825 return; 24826 } 24827 goto done; 24828 } 24829 24830 /* 24831 * rgap is the amount of stuff received out of window. A negative 24832 * value is the amount out of window. 24833 */ 24834 if (rgap < 0) { 24835 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 24836 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 24837 /* Fix seg_len and make sure there is something left. */ 24838 seg_len += rgap; 24839 if (seg_len <= 0) { 24840 if (flags & TH_RST) { 24841 goto done; 24842 } 24843 flags |= TH_ACK_NEEDED; 24844 seg_len = 0; 24845 goto process_ack; 24846 } 24847 } 24848 /* 24849 * Check whether we can update tcp_ts_recent. This test is 24850 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24851 * Extensions for High Performance: An Update", Internet Draft. 24852 */ 24853 if (tcp->tcp_snd_ts_ok && 24854 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24855 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24856 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24857 tcp->tcp_last_rcv_lbolt = lbolt64; 24858 } 24859 24860 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24861 /* Always ack out of order packets */ 24862 flags |= TH_ACK_NEEDED; 24863 seg_len = 0; 24864 } else if (seg_len > 0) { 24865 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 24866 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 24867 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 24868 } 24869 if (flags & TH_RST) { 24870 (void) tcp_clean_death(tcp, 0, 28); 24871 goto done; 24872 } 24873 if (flags & TH_SYN) { 24874 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24875 TH_RST|TH_ACK); 24876 /* 24877 * Do not delete the TCP structure if it is in 24878 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24879 */ 24880 goto done; 24881 } 24882 process_ack: 24883 if (flags & TH_ACK) { 24884 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24885 if (bytes_acked <= 0) { 24886 if (bytes_acked == 0 && seg_len == 0 && 24887 new_swnd == tcp->tcp_swnd) 24888 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 24889 } else { 24890 /* Acks something not sent */ 24891 flags |= TH_ACK_NEEDED; 24892 } 24893 } 24894 if (flags & TH_ACK_NEEDED) { 24895 /* 24896 * Time to send an ack for some reason. 24897 */ 24898 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24899 tcp->tcp_rnxt, TH_ACK); 24900 } 24901 done: 24902 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24903 DB_CKSUMSTART(mp) = 0; 24904 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24905 TCP_STAT(tcps, tcp_time_wait_syn_fail); 24906 } 24907 freemsg(mp); 24908 } 24909 24910 /* 24911 * TCP Timers Implementation. 24912 */ 24913 timeout_id_t 24914 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24915 { 24916 mblk_t *mp; 24917 tcp_timer_t *tcpt; 24918 tcp_t *tcp = connp->conn_tcp; 24919 24920 ASSERT(connp->conn_sqp != NULL); 24921 24922 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 24923 24924 if (tcp->tcp_timercache == NULL) { 24925 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24926 } else { 24927 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 24928 mp = tcp->tcp_timercache; 24929 tcp->tcp_timercache = mp->b_next; 24930 mp->b_next = NULL; 24931 ASSERT(mp->b_wptr == NULL); 24932 } 24933 24934 CONN_INC_REF(connp); 24935 tcpt = (tcp_timer_t *)mp->b_rptr; 24936 tcpt->connp = connp; 24937 tcpt->tcpt_proc = f; 24938 /* 24939 * TCP timers are normal timeouts. Plus, they do not require more than 24940 * a 10 millisecond resolution. By choosing a coarser resolution and by 24941 * rounding up the expiration to the next resolution boundary, we can 24942 * batch timers in the callout subsystem to make TCP timers more 24943 * efficient. The roundup also protects short timers from expiring too 24944 * early before they have a chance to be cancelled. 24945 */ 24946 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 24947 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 24948 24949 return ((timeout_id_t)mp); 24950 } 24951 24952 static void 24953 tcp_timer_callback(void *arg) 24954 { 24955 mblk_t *mp = (mblk_t *)arg; 24956 tcp_timer_t *tcpt; 24957 conn_t *connp; 24958 24959 tcpt = (tcp_timer_t *)mp->b_rptr; 24960 connp = tcpt->connp; 24961 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 24962 SQ_FILL, SQTAG_TCP_TIMER); 24963 } 24964 24965 static void 24966 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24967 { 24968 tcp_timer_t *tcpt; 24969 conn_t *connp = (conn_t *)arg; 24970 tcp_t *tcp = connp->conn_tcp; 24971 24972 tcpt = (tcp_timer_t *)mp->b_rptr; 24973 ASSERT(connp == tcpt->connp); 24974 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24975 24976 /* 24977 * If the TCP has reached the closed state, don't proceed any 24978 * further. This TCP logically does not exist on the system. 24979 * tcpt_proc could for example access queues, that have already 24980 * been qprocoff'ed off. Also see comments at the start of tcp_input 24981 */ 24982 if (tcp->tcp_state != TCPS_CLOSED) { 24983 (*tcpt->tcpt_proc)(connp); 24984 } else { 24985 tcp->tcp_timer_tid = 0; 24986 } 24987 tcp_timer_free(connp->conn_tcp, mp); 24988 } 24989 24990 /* 24991 * There is potential race with untimeout and the handler firing at the same 24992 * time. The mblock may be freed by the handler while we are trying to use 24993 * it. But since both should execute on the same squeue, this race should not 24994 * occur. 24995 */ 24996 clock_t 24997 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24998 { 24999 mblk_t *mp = (mblk_t *)id; 25000 tcp_timer_t *tcpt; 25001 clock_t delta; 25002 25003 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25004 25005 if (mp == NULL) 25006 return (-1); 25007 25008 tcpt = (tcp_timer_t *)mp->b_rptr; 25009 ASSERT(tcpt->connp == connp); 25010 25011 delta = untimeout_default(tcpt->tcpt_tid, 0); 25012 25013 if (delta >= 0) { 25014 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25015 tcp_timer_free(connp->conn_tcp, mp); 25016 CONN_DEC_REF(connp); 25017 } 25018 25019 return (delta); 25020 } 25021 25022 /* 25023 * Allocate space for the timer event. The allocation looks like mblk, but it is 25024 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25025 * 25026 * Dealing with failures: If we can't allocate from the timer cache we try 25027 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25028 * points to b_rptr. 25029 * If we can't allocate anything using allocb_tryhard(), we perform a last 25030 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25031 * save the actual allocation size in b_datap. 25032 */ 25033 mblk_t * 25034 tcp_timermp_alloc(int kmflags) 25035 { 25036 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25037 kmflags & ~KM_PANIC); 25038 25039 if (mp != NULL) { 25040 mp->b_next = mp->b_prev = NULL; 25041 mp->b_rptr = (uchar_t *)(&mp[1]); 25042 mp->b_wptr = NULL; 25043 mp->b_datap = NULL; 25044 mp->b_queue = NULL; 25045 mp->b_cont = NULL; 25046 } else if (kmflags & KM_PANIC) { 25047 /* 25048 * Failed to allocate memory for the timer. Try allocating from 25049 * dblock caches. 25050 */ 25051 /* ipclassifier calls this from a constructor - hence no tcps */ 25052 TCP_G_STAT(tcp_timermp_allocfail); 25053 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25054 if (mp == NULL) { 25055 size_t size = 0; 25056 /* 25057 * Memory is really low. Try tryhard allocation. 25058 * 25059 * ipclassifier calls this from a constructor - 25060 * hence no tcps 25061 */ 25062 TCP_G_STAT(tcp_timermp_allocdblfail); 25063 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25064 sizeof (tcp_timer_t), &size, kmflags); 25065 mp->b_rptr = (uchar_t *)(&mp[1]); 25066 mp->b_next = mp->b_prev = NULL; 25067 mp->b_wptr = (uchar_t *)-1; 25068 mp->b_datap = (dblk_t *)size; 25069 mp->b_queue = NULL; 25070 mp->b_cont = NULL; 25071 } 25072 ASSERT(mp->b_wptr != NULL); 25073 } 25074 /* ipclassifier calls this from a constructor - hence no tcps */ 25075 TCP_G_DBGSTAT(tcp_timermp_alloced); 25076 25077 return (mp); 25078 } 25079 25080 /* 25081 * Free per-tcp timer cache. 25082 * It can only contain entries from tcp_timercache. 25083 */ 25084 void 25085 tcp_timermp_free(tcp_t *tcp) 25086 { 25087 mblk_t *mp; 25088 25089 while ((mp = tcp->tcp_timercache) != NULL) { 25090 ASSERT(mp->b_wptr == NULL); 25091 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25092 kmem_cache_free(tcp_timercache, mp); 25093 } 25094 } 25095 25096 /* 25097 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25098 * events there already (currently at most two events are cached). 25099 * If the event is not allocated from the timer cache, free it right away. 25100 */ 25101 static void 25102 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25103 { 25104 mblk_t *mp1 = tcp->tcp_timercache; 25105 25106 if (mp->b_wptr != NULL) { 25107 /* 25108 * This allocation is not from a timer cache, free it right 25109 * away. 25110 */ 25111 if (mp->b_wptr != (uchar_t *)-1) 25112 freeb(mp); 25113 else 25114 kmem_free(mp, (size_t)mp->b_datap); 25115 } else if (mp1 == NULL || mp1->b_next == NULL) { 25116 /* Cache this timer block for future allocations */ 25117 mp->b_rptr = (uchar_t *)(&mp[1]); 25118 mp->b_next = mp1; 25119 tcp->tcp_timercache = mp; 25120 } else { 25121 kmem_cache_free(tcp_timercache, mp); 25122 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25123 } 25124 } 25125 25126 /* 25127 * End of TCP Timers implementation. 25128 */ 25129 25130 /* 25131 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25132 * on the specified backing STREAMS q. Note, the caller may make the 25133 * decision to call based on the tcp_t.tcp_flow_stopped value which 25134 * when check outside the q's lock is only an advisory check ... 25135 */ 25136 void 25137 tcp_setqfull(tcp_t *tcp) 25138 { 25139 tcp_stack_t *tcps = tcp->tcp_tcps; 25140 conn_t *connp = tcp->tcp_connp; 25141 25142 if (tcp->tcp_closed) 25143 return; 25144 25145 if (IPCL_IS_NONSTR(connp)) { 25146 (*connp->conn_upcalls->su_txq_full) 25147 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25148 tcp->tcp_flow_stopped = B_TRUE; 25149 } else { 25150 queue_t *q = tcp->tcp_wq; 25151 25152 if (!(q->q_flag & QFULL)) { 25153 mutex_enter(QLOCK(q)); 25154 if (!(q->q_flag & QFULL)) { 25155 /* still need to set QFULL */ 25156 q->q_flag |= QFULL; 25157 tcp->tcp_flow_stopped = B_TRUE; 25158 mutex_exit(QLOCK(q)); 25159 TCP_STAT(tcps, tcp_flwctl_on); 25160 } else { 25161 mutex_exit(QLOCK(q)); 25162 } 25163 } 25164 } 25165 } 25166 25167 void 25168 tcp_clrqfull(tcp_t *tcp) 25169 { 25170 conn_t *connp = tcp->tcp_connp; 25171 25172 if (tcp->tcp_closed) 25173 return; 25174 25175 if (IPCL_IS_NONSTR(connp)) { 25176 (*connp->conn_upcalls->su_txq_full) 25177 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25178 tcp->tcp_flow_stopped = B_FALSE; 25179 } else { 25180 queue_t *q = tcp->tcp_wq; 25181 25182 if (q->q_flag & QFULL) { 25183 mutex_enter(QLOCK(q)); 25184 if (q->q_flag & QFULL) { 25185 q->q_flag &= ~QFULL; 25186 tcp->tcp_flow_stopped = B_FALSE; 25187 mutex_exit(QLOCK(q)); 25188 if (q->q_flag & QWANTW) 25189 qbackenable(q, 0); 25190 } else { 25191 mutex_exit(QLOCK(q)); 25192 } 25193 } 25194 } 25195 } 25196 25197 /* 25198 * kstats related to squeues i.e. not per IP instance 25199 */ 25200 static void * 25201 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25202 { 25203 kstat_t *ksp; 25204 25205 tcp_g_stat_t template = { 25206 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25207 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25208 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25209 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25210 }; 25211 25212 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25213 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25214 KSTAT_FLAG_VIRTUAL); 25215 25216 if (ksp == NULL) 25217 return (NULL); 25218 25219 bcopy(&template, tcp_g_statp, sizeof (template)); 25220 ksp->ks_data = (void *)tcp_g_statp; 25221 25222 kstat_install(ksp); 25223 return (ksp); 25224 } 25225 25226 static void 25227 tcp_g_kstat_fini(kstat_t *ksp) 25228 { 25229 if (ksp != NULL) { 25230 kstat_delete(ksp); 25231 } 25232 } 25233 25234 25235 static void * 25236 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25237 { 25238 kstat_t *ksp; 25239 25240 tcp_stat_t template = { 25241 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25242 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25243 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25244 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25245 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25246 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25247 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25248 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25249 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25250 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25251 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25252 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25253 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25254 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25255 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25256 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25257 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25258 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25259 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25260 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25261 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25262 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25263 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25264 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25265 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25266 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25267 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25268 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25269 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25270 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25271 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25272 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25273 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25274 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25275 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25276 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25277 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25278 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25279 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25280 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25281 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25282 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25283 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25284 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25285 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25286 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25287 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25288 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25289 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25290 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25291 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25292 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25293 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25294 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25295 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25296 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25297 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25298 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25299 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25300 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25301 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25302 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25303 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25304 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25305 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25306 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25307 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25308 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25309 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25310 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25311 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25312 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25313 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25314 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25315 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25316 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25317 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25318 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25319 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25320 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25321 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25322 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25323 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25324 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25325 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25326 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25327 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25328 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25329 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25330 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25331 }; 25332 25333 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25334 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25335 KSTAT_FLAG_VIRTUAL, stackid); 25336 25337 if (ksp == NULL) 25338 return (NULL); 25339 25340 bcopy(&template, tcps_statisticsp, sizeof (template)); 25341 ksp->ks_data = (void *)tcps_statisticsp; 25342 ksp->ks_private = (void *)(uintptr_t)stackid; 25343 25344 kstat_install(ksp); 25345 return (ksp); 25346 } 25347 25348 static void 25349 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25350 { 25351 if (ksp != NULL) { 25352 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25353 kstat_delete_netstack(ksp, stackid); 25354 } 25355 } 25356 25357 /* 25358 * TCP Kstats implementation 25359 */ 25360 static void * 25361 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25362 { 25363 kstat_t *ksp; 25364 25365 tcp_named_kstat_t template = { 25366 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25367 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25368 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25369 { "maxConn", KSTAT_DATA_INT32, 0 }, 25370 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25371 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25372 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25373 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25374 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25375 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25376 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25377 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25378 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25379 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25380 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25381 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25382 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25383 { "outAck", KSTAT_DATA_UINT32, 0 }, 25384 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25385 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25386 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25387 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25388 { "outControl", KSTAT_DATA_UINT32, 0 }, 25389 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25390 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25391 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25392 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25393 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25394 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25395 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25396 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25397 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25398 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25399 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25400 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25401 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25402 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25403 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25404 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25405 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25406 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25407 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25408 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25409 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25410 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25411 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25412 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25413 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25414 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25415 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25416 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25417 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25418 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25419 }; 25420 25421 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25422 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25423 25424 if (ksp == NULL) 25425 return (NULL); 25426 25427 template.rtoAlgorithm.value.ui32 = 4; 25428 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25429 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25430 template.maxConn.value.i32 = -1; 25431 25432 bcopy(&template, ksp->ks_data, sizeof (template)); 25433 ksp->ks_update = tcp_kstat_update; 25434 ksp->ks_private = (void *)(uintptr_t)stackid; 25435 25436 kstat_install(ksp); 25437 return (ksp); 25438 } 25439 25440 static void 25441 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25442 { 25443 if (ksp != NULL) { 25444 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25445 kstat_delete_netstack(ksp, stackid); 25446 } 25447 } 25448 25449 static int 25450 tcp_kstat_update(kstat_t *kp, int rw) 25451 { 25452 tcp_named_kstat_t *tcpkp; 25453 tcp_t *tcp; 25454 connf_t *connfp; 25455 conn_t *connp; 25456 int i; 25457 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25458 netstack_t *ns; 25459 tcp_stack_t *tcps; 25460 ip_stack_t *ipst; 25461 25462 if ((kp == NULL) || (kp->ks_data == NULL)) 25463 return (EIO); 25464 25465 if (rw == KSTAT_WRITE) 25466 return (EACCES); 25467 25468 ns = netstack_find_by_stackid(stackid); 25469 if (ns == NULL) 25470 return (-1); 25471 tcps = ns->netstack_tcp; 25472 if (tcps == NULL) { 25473 netstack_rele(ns); 25474 return (-1); 25475 } 25476 25477 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25478 25479 tcpkp->currEstab.value.ui32 = 0; 25480 25481 ipst = ns->netstack_ip; 25482 25483 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25484 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25485 connp = NULL; 25486 while ((connp = 25487 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25488 tcp = connp->conn_tcp; 25489 switch (tcp_snmp_state(tcp)) { 25490 case MIB2_TCP_established: 25491 case MIB2_TCP_closeWait: 25492 tcpkp->currEstab.value.ui32++; 25493 break; 25494 } 25495 } 25496 } 25497 25498 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25499 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25500 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25501 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25502 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25503 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25504 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25505 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25506 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25507 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25508 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25509 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25510 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25511 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25512 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25513 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25514 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25515 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25516 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25517 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25518 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25519 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25520 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25521 tcpkp->inDataInorderSegs.value.ui32 = 25522 tcps->tcps_mib.tcpInDataInorderSegs; 25523 tcpkp->inDataInorderBytes.value.ui32 = 25524 tcps->tcps_mib.tcpInDataInorderBytes; 25525 tcpkp->inDataUnorderSegs.value.ui32 = 25526 tcps->tcps_mib.tcpInDataUnorderSegs; 25527 tcpkp->inDataUnorderBytes.value.ui32 = 25528 tcps->tcps_mib.tcpInDataUnorderBytes; 25529 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25530 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25531 tcpkp->inDataPartDupSegs.value.ui32 = 25532 tcps->tcps_mib.tcpInDataPartDupSegs; 25533 tcpkp->inDataPartDupBytes.value.ui32 = 25534 tcps->tcps_mib.tcpInDataPartDupBytes; 25535 tcpkp->inDataPastWinSegs.value.ui32 = 25536 tcps->tcps_mib.tcpInDataPastWinSegs; 25537 tcpkp->inDataPastWinBytes.value.ui32 = 25538 tcps->tcps_mib.tcpInDataPastWinBytes; 25539 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25540 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25541 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25542 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25543 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25544 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25545 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25546 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25547 tcpkp->timKeepaliveProbe.value.ui32 = 25548 tcps->tcps_mib.tcpTimKeepaliveProbe; 25549 tcpkp->timKeepaliveDrop.value.ui32 = 25550 tcps->tcps_mib.tcpTimKeepaliveDrop; 25551 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25552 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25553 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25554 tcpkp->outSackRetransSegs.value.ui32 = 25555 tcps->tcps_mib.tcpOutSackRetransSegs; 25556 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25557 25558 netstack_rele(ns); 25559 return (0); 25560 } 25561 25562 void 25563 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25564 { 25565 uint16_t hdr_len; 25566 ipha_t *ipha; 25567 uint8_t *nexthdrp; 25568 tcph_t *tcph; 25569 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25570 25571 /* Already has an eager */ 25572 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25573 TCP_STAT(tcps, tcp_reinput_syn); 25574 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25575 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25576 return; 25577 } 25578 25579 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25580 case IPV4_VERSION: 25581 ipha = (ipha_t *)mp->b_rptr; 25582 hdr_len = IPH_HDR_LENGTH(ipha); 25583 break; 25584 case IPV6_VERSION: 25585 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25586 &hdr_len, &nexthdrp)) { 25587 CONN_DEC_REF(connp); 25588 freemsg(mp); 25589 return; 25590 } 25591 break; 25592 } 25593 25594 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25595 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25596 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25597 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25598 } 25599 25600 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25601 SQ_FILL, SQTAG_TCP_REINPUT); 25602 } 25603 25604 static int 25605 tcp_squeue_switch(int val) 25606 { 25607 int rval = SQ_FILL; 25608 25609 switch (val) { 25610 case 1: 25611 rval = SQ_NODRAIN; 25612 break; 25613 case 2: 25614 rval = SQ_PROCESS; 25615 break; 25616 default: 25617 break; 25618 } 25619 return (rval); 25620 } 25621 25622 /* 25623 * This is called once for each squeue - globally for all stack 25624 * instances. 25625 */ 25626 static void 25627 tcp_squeue_add(squeue_t *sqp) 25628 { 25629 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25630 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25631 25632 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25633 tcp_time_wait->tcp_time_wait_tid = 25634 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25635 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25636 CALLOUT_FLAG_ROUNDUP); 25637 if (tcp_free_list_max_cnt == 0) { 25638 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25639 max_ncpus : boot_max_ncpus); 25640 25641 /* 25642 * Limit number of entries to 1% of availble memory / tcp_ncpus 25643 */ 25644 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25645 (tcp_ncpus * sizeof (tcp_t) * 100); 25646 } 25647 tcp_time_wait->tcp_free_list_cnt = 0; 25648 } 25649 25650 static int 25651 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25652 { 25653 mblk_t *ire_mp = NULL; 25654 mblk_t *syn_mp; 25655 mblk_t *mdti; 25656 mblk_t *lsoi; 25657 int retval; 25658 tcph_t *tcph; 25659 cred_t *ecr; 25660 ts_label_t *tsl; 25661 uint32_t mss; 25662 conn_t *connp = tcp->tcp_connp; 25663 tcp_stack_t *tcps = tcp->tcp_tcps; 25664 25665 if (error == 0) { 25666 /* 25667 * Adapt Multidata information, if any. The 25668 * following tcp_mdt_update routine will free 25669 * the message. 25670 */ 25671 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25672 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25673 b_rptr)->mdt_capab, B_TRUE); 25674 freemsg(mdti); 25675 } 25676 25677 /* 25678 * Check to update LSO information with tcp, and 25679 * tcp_lso_update routine will free the message. 25680 */ 25681 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25682 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25683 b_rptr)->lso_capab); 25684 freemsg(lsoi); 25685 } 25686 25687 /* Get the IRE, if we had requested for it */ 25688 if (mp != NULL) 25689 ire_mp = tcp_ire_mp(&mp); 25690 25691 if (tcp->tcp_hard_binding) { 25692 tcp->tcp_hard_binding = B_FALSE; 25693 tcp->tcp_hard_bound = B_TRUE; 25694 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 25695 if (retval != 0) { 25696 error = EADDRINUSE; 25697 goto bind_failed; 25698 } 25699 } else { 25700 if (ire_mp != NULL) 25701 freeb(ire_mp); 25702 goto after_syn_sent; 25703 } 25704 25705 retval = tcp_adapt_ire(tcp, ire_mp); 25706 if (ire_mp != NULL) 25707 freeb(ire_mp); 25708 if (retval == 0) { 25709 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 25710 ENETUNREACH : EADDRNOTAVAIL); 25711 goto ipcl_rm; 25712 } 25713 /* 25714 * Don't let an endpoint connect to itself. 25715 * Also checked in tcp_connect() but that 25716 * check can't handle the case when the 25717 * local IP address is INADDR_ANY. 25718 */ 25719 if (tcp->tcp_ipversion == IPV4_VERSION) { 25720 if ((tcp->tcp_ipha->ipha_dst == 25721 tcp->tcp_ipha->ipha_src) && 25722 (BE16_EQL(tcp->tcp_tcph->th_lport, 25723 tcp->tcp_tcph->th_fport))) { 25724 error = EADDRNOTAVAIL; 25725 goto ipcl_rm; 25726 } 25727 } else { 25728 if (IN6_ARE_ADDR_EQUAL( 25729 &tcp->tcp_ip6h->ip6_dst, 25730 &tcp->tcp_ip6h->ip6_src) && 25731 (BE16_EQL(tcp->tcp_tcph->th_lport, 25732 tcp->tcp_tcph->th_fport))) { 25733 error = EADDRNOTAVAIL; 25734 goto ipcl_rm; 25735 } 25736 } 25737 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 25738 /* 25739 * This should not be possible! Just for 25740 * defensive coding... 25741 */ 25742 if (tcp->tcp_state != TCPS_SYN_SENT) 25743 goto after_syn_sent; 25744 25745 if (is_system_labeled() && 25746 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 25747 error = EHOSTUNREACH; 25748 goto ipcl_rm; 25749 } 25750 25751 /* 25752 * tcp_adapt_ire() does not adjust 25753 * for TCP/IP header length. 25754 */ 25755 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 25756 25757 /* 25758 * Just make sure our rwnd is at 25759 * least tcp_recv_hiwat_mss * MSS 25760 * large, and round up to the nearest 25761 * MSS. 25762 * 25763 * We do the round up here because 25764 * we need to get the interface 25765 * MTU first before we can do the 25766 * round up. 25767 */ 25768 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 25769 tcps->tcps_recv_hiwat_minmss * mss); 25770 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 25771 tcp_set_ws_value(tcp); 25772 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 25773 tcp->tcp_tcph->th_win); 25774 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 25775 tcp->tcp_snd_ws_ok = B_TRUE; 25776 25777 /* 25778 * Set tcp_snd_ts_ok to true 25779 * so that tcp_xmit_mp will 25780 * include the timestamp 25781 * option in the SYN segment. 25782 */ 25783 if (tcps->tcps_tstamp_always || 25784 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 25785 tcp->tcp_snd_ts_ok = B_TRUE; 25786 } 25787 25788 /* 25789 * tcp_snd_sack_ok can be set in 25790 * tcp_adapt_ire() if the sack metric 25791 * is set. So check it here also. 25792 */ 25793 if (tcps->tcps_sack_permitted == 2 || 25794 tcp->tcp_snd_sack_ok) { 25795 if (tcp->tcp_sack_info == NULL) { 25796 tcp->tcp_sack_info = 25797 kmem_cache_alloc(tcp_sack_info_cache, 25798 KM_SLEEP); 25799 } 25800 tcp->tcp_snd_sack_ok = B_TRUE; 25801 } 25802 25803 /* 25804 * Should we use ECN? Note that the current 25805 * default value (SunOS 5.9) of tcp_ecn_permitted 25806 * is 1. The reason for doing this is that there 25807 * are equipments out there that will drop ECN 25808 * enabled IP packets. Setting it to 1 avoids 25809 * compatibility problems. 25810 */ 25811 if (tcps->tcps_ecn_permitted == 2) 25812 tcp->tcp_ecn_ok = B_TRUE; 25813 25814 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 25815 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 25816 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 25817 if (syn_mp) { 25818 /* 25819 * cr contains the cred from the thread calling 25820 * connect(). 25821 * 25822 * If no thread cred is available, use the 25823 * socket creator's cred instead. If still no 25824 * cred, drop the request rather than risk a 25825 * panic on production systems. 25826 */ 25827 if (cr == NULL) { 25828 cr = CONN_CRED(connp); 25829 pid = tcp->tcp_cpid; 25830 ASSERT(cr != NULL); 25831 if (cr != NULL) { 25832 mblk_setcred(syn_mp, cr, pid); 25833 } else { 25834 error = ECONNABORTED; 25835 goto ipcl_rm; 25836 } 25837 25838 /* 25839 * If an effective security label exists for 25840 * the connection, create a copy of the thread's 25841 * cred but with the effective label attached. 25842 */ 25843 } else if (is_system_labeled() && 25844 connp->conn_effective_cred != NULL && 25845 (tsl = crgetlabel(connp-> 25846 conn_effective_cred)) != NULL) { 25847 if ((ecr = copycred_from_tslabel(cr, 25848 tsl, KM_NOSLEEP)) == NULL) { 25849 error = ENOMEM; 25850 goto ipcl_rm; 25851 } 25852 mblk_setcred(syn_mp, ecr, pid); 25853 crfree(ecr); 25854 25855 /* 25856 * Default to using the thread's cred unchanged. 25857 */ 25858 } else { 25859 mblk_setcred(syn_mp, cr, pid); 25860 } 25861 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 25862 } 25863 after_syn_sent: 25864 if (mp != NULL) { 25865 ASSERT(mp->b_cont == NULL); 25866 freeb(mp); 25867 } 25868 return (error); 25869 } else { 25870 /* error */ 25871 if (tcp->tcp_debug) { 25872 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 25873 "tcp_post_ip_bind: error == %d", error); 25874 } 25875 if (mp != NULL) { 25876 freeb(mp); 25877 } 25878 } 25879 25880 ipcl_rm: 25881 /* 25882 * Need to unbind with classifier since we were just 25883 * told that our bind succeeded. a.k.a error == 0 at the entry. 25884 */ 25885 tcp->tcp_hard_bound = B_FALSE; 25886 tcp->tcp_hard_binding = B_FALSE; 25887 25888 ipcl_hash_remove(connp); 25889 25890 bind_failed: 25891 tcp->tcp_state = TCPS_IDLE; 25892 if (tcp->tcp_ipversion == IPV4_VERSION) 25893 tcp->tcp_ipha->ipha_src = 0; 25894 else 25895 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 25896 /* 25897 * Copy of the src addr. in tcp_t is needed since 25898 * the lookup funcs. can only look at tcp_t 25899 */ 25900 V6_SET_ZERO(tcp->tcp_ip_src_v6); 25901 25902 tcph = tcp->tcp_tcph; 25903 tcph->th_lport[0] = 0; 25904 tcph->th_lport[1] = 0; 25905 tcp_bind_hash_remove(tcp); 25906 bzero(&connp->u_port, sizeof (connp->u_port)); 25907 /* blow away saved option results if any */ 25908 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 25909 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 25910 25911 conn_delete_ire(tcp->tcp_connp, NULL); 25912 25913 return (error); 25914 } 25915 25916 static int 25917 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 25918 boolean_t bind_to_req_port_only, cred_t *cr) 25919 { 25920 in_port_t mlp_port; 25921 mlp_type_t addrtype, mlptype; 25922 boolean_t user_specified; 25923 in_port_t allocated_port; 25924 in_port_t requested_port = *requested_port_ptr; 25925 conn_t *connp; 25926 zone_t *zone; 25927 tcp_stack_t *tcps = tcp->tcp_tcps; 25928 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 25929 25930 /* 25931 * XXX It's up to the caller to specify bind_to_req_port_only or not. 25932 */ 25933 if (cr == NULL) 25934 cr = tcp->tcp_cred; 25935 /* 25936 * Get a valid port (within the anonymous range and should not 25937 * be a privileged one) to use if the user has not given a port. 25938 * If multiple threads are here, they may all start with 25939 * with the same initial port. But, it should be fine as long as 25940 * tcp_bindi will ensure that no two threads will be assigned 25941 * the same port. 25942 * 25943 * NOTE: XXX If a privileged process asks for an anonymous port, we 25944 * still check for ports only in the range > tcp_smallest_non_priv_port, 25945 * unless TCP_ANONPRIVBIND option is set. 25946 */ 25947 mlptype = mlptSingle; 25948 mlp_port = requested_port; 25949 if (requested_port == 0) { 25950 requested_port = tcp->tcp_anon_priv_bind ? 25951 tcp_get_next_priv_port(tcp) : 25952 tcp_update_next_port(tcps->tcps_next_port_to_try, 25953 tcp, B_TRUE); 25954 if (requested_port == 0) { 25955 return (-TNOADDR); 25956 } 25957 user_specified = B_FALSE; 25958 25959 /* 25960 * If the user went through one of the RPC interfaces to create 25961 * this socket and RPC is MLP in this zone, then give him an 25962 * anonymous MLP. 25963 */ 25964 connp = tcp->tcp_connp; 25965 if (connp->conn_anon_mlp && is_system_labeled()) { 25966 zone = crgetzone(cr); 25967 addrtype = tsol_mlp_addr_type( 25968 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 25969 IPV6_VERSION, &v6addr, 25970 tcps->tcps_netstack->netstack_ip); 25971 if (addrtype == mlptSingle) { 25972 return (-TNOADDR); 25973 } 25974 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25975 PMAPPORT, addrtype); 25976 mlp_port = PMAPPORT; 25977 } 25978 } else { 25979 int i; 25980 boolean_t priv = B_FALSE; 25981 25982 /* 25983 * If the requested_port is in the well-known privileged range, 25984 * verify that the stream was opened by a privileged user. 25985 * Note: No locks are held when inspecting tcp_g_*epriv_ports 25986 * but instead the code relies on: 25987 * - the fact that the address of the array and its size never 25988 * changes 25989 * - the atomic assignment of the elements of the array 25990 */ 25991 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 25992 priv = B_TRUE; 25993 } else { 25994 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 25995 if (requested_port == 25996 tcps->tcps_g_epriv_ports[i]) { 25997 priv = B_TRUE; 25998 break; 25999 } 26000 } 26001 } 26002 if (priv) { 26003 if (secpolicy_net_privaddr(cr, requested_port, 26004 IPPROTO_TCP) != 0) { 26005 if (tcp->tcp_debug) { 26006 (void) strlog(TCP_MOD_ID, 0, 1, 26007 SL_ERROR|SL_TRACE, 26008 "tcp_bind: no priv for port %d", 26009 requested_port); 26010 } 26011 return (-TACCES); 26012 } 26013 } 26014 user_specified = B_TRUE; 26015 26016 connp = tcp->tcp_connp; 26017 if (is_system_labeled()) { 26018 zone = crgetzone(cr); 26019 addrtype = tsol_mlp_addr_type( 26020 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 26021 IPV6_VERSION, &v6addr, 26022 tcps->tcps_netstack->netstack_ip); 26023 if (addrtype == mlptSingle) { 26024 return (-TNOADDR); 26025 } 26026 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26027 requested_port, addrtype); 26028 } 26029 } 26030 26031 if (mlptype != mlptSingle) { 26032 if (secpolicy_net_bindmlp(cr) != 0) { 26033 if (tcp->tcp_debug) { 26034 (void) strlog(TCP_MOD_ID, 0, 1, 26035 SL_ERROR|SL_TRACE, 26036 "tcp_bind: no priv for multilevel port %d", 26037 requested_port); 26038 } 26039 return (-TACCES); 26040 } 26041 26042 /* 26043 * If we're specifically binding a shared IP address and the 26044 * port is MLP on shared addresses, then check to see if this 26045 * zone actually owns the MLP. Reject if not. 26046 */ 26047 if (mlptype == mlptShared && addrtype == mlptShared) { 26048 /* 26049 * No need to handle exclusive-stack zones since 26050 * ALL_ZONES only applies to the shared stack. 26051 */ 26052 zoneid_t mlpzone; 26053 26054 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26055 htons(mlp_port)); 26056 if (connp->conn_zoneid != mlpzone) { 26057 if (tcp->tcp_debug) { 26058 (void) strlog(TCP_MOD_ID, 0, 1, 26059 SL_ERROR|SL_TRACE, 26060 "tcp_bind: attempt to bind port " 26061 "%d on shared addr in zone %d " 26062 "(should be %d)", 26063 mlp_port, connp->conn_zoneid, 26064 mlpzone); 26065 } 26066 return (-TACCES); 26067 } 26068 } 26069 26070 if (!user_specified) { 26071 int err; 26072 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26073 requested_port, B_TRUE); 26074 if (err != 0) { 26075 if (tcp->tcp_debug) { 26076 (void) strlog(TCP_MOD_ID, 0, 1, 26077 SL_ERROR|SL_TRACE, 26078 "tcp_bind: cannot establish anon " 26079 "MLP for port %d", 26080 requested_port); 26081 } 26082 return (err); 26083 } 26084 connp->conn_anon_port = B_TRUE; 26085 } 26086 connp->conn_mlp_type = mlptype; 26087 } 26088 26089 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26090 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26091 26092 if (allocated_port == 0) { 26093 connp->conn_mlp_type = mlptSingle; 26094 if (connp->conn_anon_port) { 26095 connp->conn_anon_port = B_FALSE; 26096 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26097 requested_port, B_FALSE); 26098 } 26099 if (bind_to_req_port_only) { 26100 if (tcp->tcp_debug) { 26101 (void) strlog(TCP_MOD_ID, 0, 1, 26102 SL_ERROR|SL_TRACE, 26103 "tcp_bind: requested addr busy"); 26104 } 26105 return (-TADDRBUSY); 26106 } else { 26107 /* If we are out of ports, fail the bind. */ 26108 if (tcp->tcp_debug) { 26109 (void) strlog(TCP_MOD_ID, 0, 1, 26110 SL_ERROR|SL_TRACE, 26111 "tcp_bind: out of ports?"); 26112 } 26113 return (-TNOADDR); 26114 } 26115 } 26116 26117 /* Pass the allocated port back */ 26118 *requested_port_ptr = allocated_port; 26119 return (0); 26120 } 26121 26122 static int 26123 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26124 boolean_t bind_to_req_port_only) 26125 { 26126 tcp_t *tcp = connp->conn_tcp; 26127 sin_t *sin; 26128 sin6_t *sin6; 26129 in_port_t requested_port; 26130 ipaddr_t v4addr; 26131 in6_addr_t v6addr; 26132 uint_t ipversion; 26133 int error = 0; 26134 26135 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26136 26137 if (tcp->tcp_state == TCPS_BOUND) { 26138 return (0); 26139 } else if (tcp->tcp_state > TCPS_BOUND) { 26140 if (tcp->tcp_debug) { 26141 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26142 "tcp_bind: bad state, %d", tcp->tcp_state); 26143 } 26144 return (-TOUTSTATE); 26145 } 26146 26147 ASSERT(sa != NULL && len != 0); 26148 26149 if (!OK_32PTR((char *)sa)) { 26150 if (tcp->tcp_debug) { 26151 (void) strlog(TCP_MOD_ID, 0, 1, 26152 SL_ERROR|SL_TRACE, 26153 "tcp_bind: bad address parameter, " 26154 "address %p, len %d", 26155 (void *)sa, len); 26156 } 26157 return (-TPROTO); 26158 } 26159 26160 switch (len) { 26161 case sizeof (sin_t): /* Complete IPv4 address */ 26162 sin = (sin_t *)sa; 26163 /* 26164 * With sockets sockfs will accept bogus sin_family in 26165 * bind() and replace it with the family used in the socket 26166 * call. 26167 */ 26168 if (sin->sin_family != AF_INET || 26169 tcp->tcp_family != AF_INET) { 26170 return (EAFNOSUPPORT); 26171 } 26172 requested_port = ntohs(sin->sin_port); 26173 ipversion = IPV4_VERSION; 26174 v4addr = sin->sin_addr.s_addr; 26175 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26176 break; 26177 26178 case sizeof (sin6_t): /* Complete IPv6 address */ 26179 sin6 = (sin6_t *)sa; 26180 if (sin6->sin6_family != AF_INET6 || 26181 tcp->tcp_family != AF_INET6) { 26182 return (EAFNOSUPPORT); 26183 } 26184 requested_port = ntohs(sin6->sin6_port); 26185 ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26186 IPV4_VERSION : IPV6_VERSION; 26187 v6addr = sin6->sin6_addr; 26188 break; 26189 26190 default: 26191 if (tcp->tcp_debug) { 26192 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26193 "tcp_bind: bad address length, %d", len); 26194 } 26195 return (EAFNOSUPPORT); 26196 /* return (-TBADADDR); */ 26197 } 26198 26199 tcp->tcp_bound_source_v6 = v6addr; 26200 26201 /* Check for change in ipversion */ 26202 if (tcp->tcp_ipversion != ipversion) { 26203 ASSERT(tcp->tcp_family == AF_INET6); 26204 error = (ipversion == IPV6_VERSION) ? 26205 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26206 if (error) { 26207 return (ENOMEM); 26208 } 26209 } 26210 26211 /* 26212 * Initialize family specific fields. Copy of the src addr. 26213 * in tcp_t is needed for the lookup funcs. 26214 */ 26215 if (tcp->tcp_ipversion == IPV6_VERSION) { 26216 tcp->tcp_ip6h->ip6_src = v6addr; 26217 } else { 26218 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26219 } 26220 tcp->tcp_ip_src_v6 = v6addr; 26221 26222 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26223 26224 error = tcp_bind_select_lport(tcp, &requested_port, 26225 bind_to_req_port_only, cr); 26226 26227 return (error); 26228 } 26229 26230 /* 26231 * Return unix error is tli error is TSYSERR, otherwise return a negative 26232 * tli error. 26233 */ 26234 int 26235 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26236 boolean_t bind_to_req_port_only) 26237 { 26238 int error; 26239 tcp_t *tcp = connp->conn_tcp; 26240 26241 if (tcp->tcp_state >= TCPS_BOUND) { 26242 if (tcp->tcp_debug) { 26243 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26244 "tcp_bind: bad state, %d", tcp->tcp_state); 26245 } 26246 return (-TOUTSTATE); 26247 } 26248 26249 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26250 if (error != 0) 26251 return (error); 26252 26253 ASSERT(tcp->tcp_state == TCPS_BOUND); 26254 26255 tcp->tcp_conn_req_max = 0; 26256 26257 if (tcp->tcp_family == AF_INET6) { 26258 ASSERT(tcp->tcp_connp->conn_af_isv6); 26259 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26260 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26261 } else { 26262 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26263 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26264 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26265 } 26266 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26267 } 26268 26269 int 26270 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26271 socklen_t len, cred_t *cr) 26272 { 26273 int error; 26274 conn_t *connp = (conn_t *)proto_handle; 26275 squeue_t *sqp = connp->conn_sqp; 26276 26277 /* All Solaris components should pass a cred for this operation. */ 26278 ASSERT(cr != NULL); 26279 26280 ASSERT(sqp != NULL); 26281 ASSERT(connp->conn_upper_handle != NULL); 26282 26283 error = squeue_synch_enter(sqp, connp, NULL); 26284 if (error != 0) { 26285 /* failed to enter */ 26286 return (ENOSR); 26287 } 26288 26289 /* binding to a NULL address really means unbind */ 26290 if (sa == NULL) { 26291 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26292 error = tcp_do_unbind(connp); 26293 else 26294 error = EINVAL; 26295 } else { 26296 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26297 } 26298 26299 squeue_synch_exit(sqp, connp); 26300 26301 if (error < 0) { 26302 if (error == -TOUTSTATE) 26303 error = EINVAL; 26304 else 26305 error = proto_tlitosyserr(-error); 26306 } 26307 26308 return (error); 26309 } 26310 26311 /* 26312 * If the return value from this function is positive, it's a UNIX error. 26313 * Otherwise, if it's negative, then the absolute value is a TLI error. 26314 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26315 */ 26316 int 26317 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26318 cred_t *cr, pid_t pid) 26319 { 26320 tcp_t *tcp = connp->conn_tcp; 26321 sin_t *sin = (sin_t *)sa; 26322 sin6_t *sin6 = (sin6_t *)sa; 26323 ipaddr_t *dstaddrp; 26324 in_port_t dstport; 26325 uint_t srcid; 26326 int error = 0; 26327 26328 switch (len) { 26329 default: 26330 /* 26331 * Should never happen 26332 */ 26333 return (EINVAL); 26334 26335 case sizeof (sin_t): 26336 sin = (sin_t *)sa; 26337 if (sin->sin_port == 0) { 26338 return (-TBADADDR); 26339 } 26340 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26341 return (EAFNOSUPPORT); 26342 } 26343 break; 26344 26345 case sizeof (sin6_t): 26346 sin6 = (sin6_t *)sa; 26347 if (sin6->sin6_port == 0) { 26348 return (-TBADADDR); 26349 } 26350 break; 26351 } 26352 /* 26353 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26354 * make sure that the template IP header in the tcp structure is an 26355 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26356 * need to this before we call tcp_bindi() so that the port lookup 26357 * code will look for ports in the correct port space (IPv4 and 26358 * IPv6 have separate port spaces). 26359 */ 26360 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26361 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26362 int err = 0; 26363 26364 err = tcp_header_init_ipv4(tcp); 26365 if (err != 0) { 26366 error = ENOMEM; 26367 goto connect_failed; 26368 } 26369 if (tcp->tcp_lport != 0) 26370 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26371 } 26372 26373 switch (tcp->tcp_state) { 26374 case TCPS_LISTEN: 26375 /* 26376 * Listening sockets are not allowed to issue connect(). 26377 */ 26378 if (IPCL_IS_NONSTR(connp)) 26379 return (EOPNOTSUPP); 26380 /* FALLTHRU */ 26381 case TCPS_IDLE: 26382 /* 26383 * We support quick connect, refer to comments in 26384 * tcp_connect_*() 26385 */ 26386 /* FALLTHRU */ 26387 case TCPS_BOUND: 26388 /* 26389 * We must bump the generation before the operation start. 26390 * This is done to ensure that any upcall made later on sends 26391 * up the right generation to the socket. 26392 */ 26393 SOCK_CONNID_BUMP(tcp->tcp_connid); 26394 26395 if (tcp->tcp_family == AF_INET6) { 26396 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26397 return (tcp_connect_ipv6(tcp, 26398 &sin6->sin6_addr, 26399 sin6->sin6_port, sin6->sin6_flowinfo, 26400 sin6->__sin6_src_id, sin6->sin6_scope_id, 26401 cr, pid)); 26402 } 26403 /* 26404 * Destination adress is mapped IPv6 address. 26405 * Source bound address should be unspecified or 26406 * IPv6 mapped address as well. 26407 */ 26408 if (!IN6_IS_ADDR_UNSPECIFIED( 26409 &tcp->tcp_bound_source_v6) && 26410 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26411 return (EADDRNOTAVAIL); 26412 } 26413 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26414 dstport = sin6->sin6_port; 26415 srcid = sin6->__sin6_src_id; 26416 } else { 26417 dstaddrp = &sin->sin_addr.s_addr; 26418 dstport = sin->sin_port; 26419 srcid = 0; 26420 } 26421 26422 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26423 pid); 26424 break; 26425 default: 26426 return (-TOUTSTATE); 26427 } 26428 /* 26429 * Note: Code below is the "failure" case 26430 */ 26431 connect_failed: 26432 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26433 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26434 return (error); 26435 } 26436 26437 int 26438 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26439 socklen_t len, sock_connid_t *id, cred_t *cr) 26440 { 26441 conn_t *connp = (conn_t *)proto_handle; 26442 tcp_t *tcp = connp->conn_tcp; 26443 squeue_t *sqp = connp->conn_sqp; 26444 int error; 26445 26446 ASSERT(connp->conn_upper_handle != NULL); 26447 26448 /* All Solaris components should pass a cred for this operation. */ 26449 ASSERT(cr != NULL); 26450 26451 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26452 if (error != 0) { 26453 return (error); 26454 } 26455 26456 error = squeue_synch_enter(sqp, connp, NULL); 26457 if (error != 0) { 26458 /* failed to enter */ 26459 return (ENOSR); 26460 } 26461 26462 /* 26463 * TCP supports quick connect, so no need to do an implicit bind 26464 */ 26465 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26466 if (error == 0) { 26467 *id = connp->conn_tcp->tcp_connid; 26468 } else if (error < 0) { 26469 if (error == -TOUTSTATE) { 26470 switch (connp->conn_tcp->tcp_state) { 26471 case TCPS_SYN_SENT: 26472 error = EALREADY; 26473 break; 26474 case TCPS_ESTABLISHED: 26475 error = EISCONN; 26476 break; 26477 case TCPS_LISTEN: 26478 error = EOPNOTSUPP; 26479 break; 26480 default: 26481 error = EINVAL; 26482 break; 26483 } 26484 } else { 26485 error = proto_tlitosyserr(-error); 26486 } 26487 } 26488 26489 if (tcp->tcp_loopback) { 26490 struct sock_proto_props sopp; 26491 26492 sopp.sopp_flags = SOCKOPT_LOOPBACK; 26493 sopp.sopp_loopback = B_TRUE; 26494 26495 (*connp->conn_upcalls->su_set_proto_props)( 26496 connp->conn_upper_handle, &sopp); 26497 } 26498 done: 26499 squeue_synch_exit(sqp, connp); 26500 26501 return ((error == 0) ? EINPROGRESS : error); 26502 } 26503 26504 /* ARGSUSED */ 26505 sock_lower_handle_t 26506 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26507 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26508 { 26509 conn_t *connp; 26510 boolean_t isv6 = family == AF_INET6; 26511 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26512 (proto != 0 && proto != IPPROTO_TCP)) { 26513 *errorp = EPROTONOSUPPORT; 26514 return (NULL); 26515 } 26516 26517 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26518 if (connp == NULL) { 26519 return (NULL); 26520 } 26521 26522 /* 26523 * Put the ref for TCP. Ref for IP was already put 26524 * by ipcl_conn_create. Also Make the conn_t globally 26525 * visible to walkers 26526 */ 26527 mutex_enter(&connp->conn_lock); 26528 CONN_INC_REF_LOCKED(connp); 26529 ASSERT(connp->conn_ref == 2); 26530 connp->conn_state_flags &= ~CONN_INCIPIENT; 26531 26532 connp->conn_flags |= IPCL_NONSTR; 26533 mutex_exit(&connp->conn_lock); 26534 26535 ASSERT(errorp != NULL); 26536 *errorp = 0; 26537 *sock_downcalls = &sock_tcp_downcalls; 26538 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26539 SM_SENDFILESUPP; 26540 26541 return ((sock_lower_handle_t)connp); 26542 } 26543 26544 /* ARGSUSED */ 26545 void 26546 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26547 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26548 { 26549 conn_t *connp = (conn_t *)proto_handle; 26550 struct sock_proto_props sopp; 26551 26552 ASSERT(connp->conn_upper_handle == NULL); 26553 26554 /* All Solaris components should pass a cred for this operation. */ 26555 ASSERT(cr != NULL); 26556 26557 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26558 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26559 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26560 26561 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26562 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26563 sopp.sopp_maxpsz = INFPSZ; 26564 sopp.sopp_maxblk = INFPSZ; 26565 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26566 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26567 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26568 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26569 tcp_rinfo.mi_minpsz; 26570 26571 connp->conn_upcalls = sock_upcalls; 26572 connp->conn_upper_handle = sock_handle; 26573 26574 ASSERT(connp->conn_tcp->tcp_recv_hiwater != 0 && 26575 connp->conn_tcp->tcp_recv_hiwater == connp->conn_tcp->tcp_rwnd); 26576 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26577 } 26578 26579 /* ARGSUSED */ 26580 int 26581 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26582 { 26583 conn_t *connp = (conn_t *)proto_handle; 26584 26585 ASSERT(connp->conn_upper_handle != NULL); 26586 26587 /* All Solaris components should pass a cred for this operation. */ 26588 ASSERT(cr != NULL); 26589 26590 tcp_close_common(connp, flags); 26591 26592 ip_free_helper_stream(connp); 26593 26594 /* 26595 * Drop IP's reference on the conn. This is the last reference 26596 * on the connp if the state was less than established. If the 26597 * connection has gone into timewait state, then we will have 26598 * one ref for the TCP and one more ref (total of two) for the 26599 * classifier connected hash list (a timewait connections stays 26600 * in connected hash till closed). 26601 * 26602 * We can't assert the references because there might be other 26603 * transient reference places because of some walkers or queued 26604 * packets in squeue for the timewait state. 26605 */ 26606 CONN_DEC_REF(connp); 26607 return (0); 26608 } 26609 26610 /* ARGSUSED */ 26611 int 26612 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26613 cred_t *cr) 26614 { 26615 tcp_t *tcp; 26616 uint32_t msize; 26617 conn_t *connp = (conn_t *)proto_handle; 26618 int32_t tcpstate; 26619 26620 /* All Solaris components should pass a cred for this operation. */ 26621 ASSERT(cr != NULL); 26622 26623 ASSERT(connp->conn_ref >= 2); 26624 ASSERT(connp->conn_upper_handle != NULL); 26625 26626 if (msg->msg_controllen != 0) { 26627 return (EOPNOTSUPP); 26628 26629 } 26630 switch (DB_TYPE(mp)) { 26631 case M_DATA: 26632 tcp = connp->conn_tcp; 26633 ASSERT(tcp != NULL); 26634 26635 tcpstate = tcp->tcp_state; 26636 if (tcpstate < TCPS_ESTABLISHED) { 26637 freemsg(mp); 26638 return (ENOTCONN); 26639 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26640 freemsg(mp); 26641 return (EPIPE); 26642 } 26643 26644 msize = msgdsize(mp); 26645 26646 mutex_enter(&tcp->tcp_non_sq_lock); 26647 tcp->tcp_squeue_bytes += msize; 26648 /* 26649 * Squeue Flow Control 26650 */ 26651 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26652 tcp_setqfull(tcp); 26653 } 26654 mutex_exit(&tcp->tcp_non_sq_lock); 26655 26656 /* 26657 * The application may pass in an address in the msghdr, but 26658 * we ignore the address on connection-oriented sockets. 26659 * Just like BSD this code does not generate an error for 26660 * TCP (a CONNREQUIRED socket) when sending to an address 26661 * passed in with sendto/sendmsg. Instead the data is 26662 * delivered on the connection as if no address had been 26663 * supplied. 26664 */ 26665 CONN_INC_REF(connp); 26666 26667 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26668 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26669 tcp_output_urgent, connp, tcp_squeue_flag, 26670 SQTAG_TCP_OUTPUT); 26671 } else { 26672 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26673 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26674 } 26675 26676 return (0); 26677 26678 default: 26679 ASSERT(0); 26680 } 26681 26682 freemsg(mp); 26683 return (0); 26684 } 26685 26686 /* ARGSUSED */ 26687 void 26688 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26689 { 26690 int len; 26691 uint32_t msize; 26692 conn_t *connp = (conn_t *)arg; 26693 tcp_t *tcp = connp->conn_tcp; 26694 26695 msize = msgdsize(mp); 26696 26697 len = msize - 1; 26698 if (len < 0) { 26699 freemsg(mp); 26700 return; 26701 } 26702 26703 /* 26704 * Try to force urgent data out on the wire. Even if we have unsent 26705 * data this will at least send the urgent flag. 26706 * XXX does not handle more flag correctly. 26707 */ 26708 len += tcp->tcp_unsent; 26709 len += tcp->tcp_snxt; 26710 tcp->tcp_urg = len; 26711 tcp->tcp_valid_bits |= TCP_URG_VALID; 26712 26713 /* Bypass tcp protocol for fused tcp loopback */ 26714 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 26715 return; 26716 26717 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 26718 if (DB_TYPE(mp) != M_DATA) { 26719 mblk_t *mp1 = mp; 26720 ASSERT(!IPCL_IS_NONSTR(connp)); 26721 mp = mp->b_cont; 26722 freeb(mp1); 26723 } 26724 tcp_wput_data(tcp, mp, B_TRUE); 26725 } 26726 26727 /* ARGSUSED */ 26728 int 26729 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26730 socklen_t *addrlenp, cred_t *cr) 26731 { 26732 conn_t *connp = (conn_t *)proto_handle; 26733 tcp_t *tcp = connp->conn_tcp; 26734 26735 ASSERT(connp->conn_upper_handle != NULL); 26736 /* All Solaris components should pass a cred for this operation. */ 26737 ASSERT(cr != NULL); 26738 26739 ASSERT(tcp != NULL); 26740 26741 return (tcp_do_getpeername(tcp, addr, addrlenp)); 26742 } 26743 26744 /* ARGSUSED */ 26745 int 26746 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26747 socklen_t *addrlenp, cred_t *cr) 26748 { 26749 conn_t *connp = (conn_t *)proto_handle; 26750 tcp_t *tcp = connp->conn_tcp; 26751 26752 /* All Solaris components should pass a cred for this operation. */ 26753 ASSERT(cr != NULL); 26754 26755 ASSERT(connp->conn_upper_handle != NULL); 26756 26757 return (tcp_do_getsockname(tcp, addr, addrlenp)); 26758 } 26759 26760 /* 26761 * tcp_fallback 26762 * 26763 * A direct socket is falling back to using STREAMS. The queue 26764 * that is being passed down was created using tcp_open() with 26765 * the SO_FALLBACK flag set. As a result, the queue is not 26766 * associated with a conn, and the q_ptrs instead contain the 26767 * dev and minor area that should be used. 26768 * 26769 * The 'issocket' flag indicates whether the FireEngine 26770 * optimizations should be used. The common case would be that 26771 * optimizations are enabled, and they might be subsequently 26772 * disabled using the _SIOCSOCKFALLBACK ioctl. 26773 */ 26774 26775 /* 26776 * An active connection is falling back to TPI. Gather all the information 26777 * required by the STREAM head and TPI sonode and send it up. 26778 */ 26779 void 26780 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 26781 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 26782 { 26783 conn_t *connp = tcp->tcp_connp; 26784 struct stroptions *stropt; 26785 struct T_capability_ack tca; 26786 struct sockaddr_in6 laddr, faddr; 26787 socklen_t laddrlen, faddrlen; 26788 short opts; 26789 int error; 26790 mblk_t *mp; 26791 26792 connp->conn_dev = (dev_t)RD(q)->q_ptr; 26793 connp->conn_minor_arena = WR(q)->q_ptr; 26794 26795 RD(q)->q_ptr = WR(q)->q_ptr = connp; 26796 26797 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 26798 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 26799 26800 WR(q)->q_qinfo = &tcp_sock_winit; 26801 26802 if (!issocket) 26803 tcp_use_pure_tpi(tcp); 26804 26805 /* 26806 * free the helper stream 26807 */ 26808 ip_free_helper_stream(connp); 26809 26810 /* 26811 * Notify the STREAM head about options 26812 */ 26813 DB_TYPE(stropt_mp) = M_SETOPTS; 26814 stropt = (struct stroptions *)stropt_mp->b_rptr; 26815 stropt_mp->b_wptr += sizeof (struct stroptions); 26816 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 26817 26818 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 26819 tcp->tcp_tcps->tcps_wroff_xtra); 26820 if (tcp->tcp_snd_sack_ok) 26821 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 26822 stropt->so_hiwat = tcp->tcp_recv_hiwater; 26823 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 26824 26825 putnext(RD(q), stropt_mp); 26826 26827 /* 26828 * Collect the information needed to sync with the sonode 26829 */ 26830 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 26831 26832 laddrlen = faddrlen = sizeof (sin6_t); 26833 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 26834 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 26835 if (error != 0) 26836 faddrlen = 0; 26837 26838 opts = 0; 26839 if (tcp->tcp_oobinline) 26840 opts |= SO_OOBINLINE; 26841 if (tcp->tcp_dontroute) 26842 opts |= SO_DONTROUTE; 26843 26844 /* 26845 * Notify the socket that the protocol is now quiescent, 26846 * and it's therefore safe move data from the socket 26847 * to the stream head. 26848 */ 26849 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 26850 (struct sockaddr *)&laddr, laddrlen, 26851 (struct sockaddr *)&faddr, faddrlen, opts); 26852 26853 while ((mp = tcp->tcp_rcv_list) != NULL) { 26854 tcp->tcp_rcv_list = mp->b_next; 26855 mp->b_next = NULL; 26856 putnext(q, mp); 26857 } 26858 tcp->tcp_rcv_last_head = NULL; 26859 tcp->tcp_rcv_last_tail = NULL; 26860 tcp->tcp_rcv_cnt = 0; 26861 } 26862 26863 /* 26864 * An eager is falling back to TPI. All we have to do is send 26865 * up a T_CONN_IND. 26866 */ 26867 void 26868 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 26869 { 26870 tcp_t *listener = eager->tcp_listener; 26871 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 26872 26873 ASSERT(listener != NULL); 26874 ASSERT(mp != NULL); 26875 26876 eager->tcp_conn.tcp_eager_conn_ind = NULL; 26877 26878 /* 26879 * TLI/XTI applications will get confused by 26880 * sending eager as an option since it violates 26881 * the option semantics. So remove the eager as 26882 * option since TLI/XTI app doesn't need it anyway. 26883 */ 26884 if (!direct_sockfs) { 26885 struct T_conn_ind *conn_ind; 26886 26887 conn_ind = (struct T_conn_ind *)mp->b_rptr; 26888 conn_ind->OPT_length = 0; 26889 conn_ind->OPT_offset = 0; 26890 } 26891 26892 /* 26893 * Sockfs guarantees that the listener will not be closed 26894 * during fallback. So we can safely use the listener's queue. 26895 */ 26896 putnext(listener->tcp_rq, mp); 26897 } 26898 26899 int 26900 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 26901 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26902 { 26903 tcp_t *tcp; 26904 conn_t *connp = (conn_t *)proto_handle; 26905 int error; 26906 mblk_t *stropt_mp; 26907 mblk_t *ordrel_mp; 26908 26909 tcp = connp->conn_tcp; 26910 26911 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 26912 NULL); 26913 26914 /* Pre-allocate the T_ordrel_ind mblk. */ 26915 ASSERT(tcp->tcp_ordrel_mp == NULL); 26916 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 26917 STR_NOSIG, NULL); 26918 ordrel_mp->b_datap->db_type = M_PROTO; 26919 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 26920 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 26921 26922 /* 26923 * Enter the squeue so that no new packets can come in 26924 */ 26925 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 26926 if (error != 0) { 26927 /* failed to enter, free all the pre-allocated messages. */ 26928 freeb(stropt_mp); 26929 freeb(ordrel_mp); 26930 /* 26931 * We cannot process the eager, so at least send out a 26932 * RST so the peer can reconnect. 26933 */ 26934 if (tcp->tcp_listener != NULL) { 26935 (void) tcp_eager_blowoff(tcp->tcp_listener, 26936 tcp->tcp_conn_req_seqnum); 26937 } 26938 return (ENOMEM); 26939 } 26940 26941 /* 26942 * Both endpoints must be of the same type (either STREAMS or 26943 * non-STREAMS) for fusion to be enabled. So if we are fused, 26944 * we have to unfuse. 26945 */ 26946 if (tcp->tcp_fused) 26947 tcp_unfuse(tcp); 26948 26949 /* 26950 * No longer a direct socket 26951 */ 26952 connp->conn_flags &= ~IPCL_NONSTR; 26953 tcp->tcp_ordrel_mp = ordrel_mp; 26954 26955 if (tcp->tcp_listener != NULL) { 26956 /* The eager will deal with opts when accept() is called */ 26957 freeb(stropt_mp); 26958 tcp_fallback_eager(tcp, direct_sockfs); 26959 } else { 26960 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 26961 quiesced_cb); 26962 } 26963 26964 /* 26965 * There should be atleast two ref's (IP + TCP) 26966 */ 26967 ASSERT(connp->conn_ref >= 2); 26968 squeue_synch_exit(connp->conn_sqp, connp); 26969 26970 return (0); 26971 } 26972 26973 /* ARGSUSED */ 26974 static void 26975 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 26976 { 26977 conn_t *connp = (conn_t *)arg; 26978 tcp_t *tcp = connp->conn_tcp; 26979 26980 freemsg(mp); 26981 26982 if (tcp->tcp_fused) 26983 tcp_unfuse(tcp); 26984 26985 if (tcp_xmit_end(tcp) != 0) { 26986 /* 26987 * We were crossing FINs and got a reset from 26988 * the other side. Just ignore it. 26989 */ 26990 if (tcp->tcp_debug) { 26991 (void) strlog(TCP_MOD_ID, 0, 1, 26992 SL_ERROR|SL_TRACE, 26993 "tcp_shutdown_output() out of state %s", 26994 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 26995 } 26996 } 26997 } 26998 26999 /* ARGSUSED */ 27000 int 27001 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27002 { 27003 conn_t *connp = (conn_t *)proto_handle; 27004 tcp_t *tcp = connp->conn_tcp; 27005 27006 ASSERT(connp->conn_upper_handle != NULL); 27007 27008 /* All Solaris components should pass a cred for this operation. */ 27009 ASSERT(cr != NULL); 27010 27011 /* 27012 * X/Open requires that we check the connected state. 27013 */ 27014 if (tcp->tcp_state < TCPS_SYN_SENT) 27015 return (ENOTCONN); 27016 27017 /* shutdown the send side */ 27018 if (how != SHUT_RD) { 27019 mblk_t *bp; 27020 27021 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27022 CONN_INC_REF(connp); 27023 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27024 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27025 27026 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27027 SOCK_OPCTL_SHUT_SEND, 0); 27028 } 27029 27030 /* shutdown the recv side */ 27031 if (how != SHUT_WR) 27032 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27033 SOCK_OPCTL_SHUT_RECV, 0); 27034 27035 return (0); 27036 } 27037 27038 /* 27039 * SOP_LISTEN() calls into tcp_listen(). 27040 */ 27041 /* ARGSUSED */ 27042 int 27043 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27044 { 27045 conn_t *connp = (conn_t *)proto_handle; 27046 int error; 27047 squeue_t *sqp = connp->conn_sqp; 27048 27049 ASSERT(connp->conn_upper_handle != NULL); 27050 27051 /* All Solaris components should pass a cred for this operation. */ 27052 ASSERT(cr != NULL); 27053 27054 error = squeue_synch_enter(sqp, connp, NULL); 27055 if (error != 0) { 27056 /* failed to enter */ 27057 return (ENOBUFS); 27058 } 27059 27060 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 27061 if (error == 0) { 27062 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27063 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27064 } else if (error < 0) { 27065 if (error == -TOUTSTATE) 27066 error = EINVAL; 27067 else 27068 error = proto_tlitosyserr(-error); 27069 } 27070 squeue_synch_exit(sqp, connp); 27071 return (error); 27072 } 27073 27074 static int 27075 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 27076 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 27077 { 27078 tcp_t *tcp = connp->conn_tcp; 27079 int error = 0; 27080 tcp_stack_t *tcps = tcp->tcp_tcps; 27081 27082 /* All Solaris components should pass a cred for this operation. */ 27083 ASSERT(cr != NULL); 27084 27085 if (tcp->tcp_state >= TCPS_BOUND) { 27086 if ((tcp->tcp_state == TCPS_BOUND || 27087 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27088 /* 27089 * Handle listen() increasing backlog. 27090 * This is more "liberal" then what the TPI spec 27091 * requires but is needed to avoid a t_unbind 27092 * when handling listen() since the port number 27093 * might be "stolen" between the unbind and bind. 27094 */ 27095 goto do_listen; 27096 } 27097 if (tcp->tcp_debug) { 27098 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27099 "tcp_listen: bad state, %d", tcp->tcp_state); 27100 } 27101 return (-TOUTSTATE); 27102 } else { 27103 if (sa == NULL) { 27104 sin6_t addr; 27105 sin_t *sin; 27106 sin6_t *sin6; 27107 27108 ASSERT(IPCL_IS_NONSTR(connp)); 27109 27110 /* Do an implicit bind: Request for a generic port. */ 27111 if (tcp->tcp_family == AF_INET) { 27112 len = sizeof (sin_t); 27113 sin = (sin_t *)&addr; 27114 *sin = sin_null; 27115 sin->sin_family = AF_INET; 27116 } else { 27117 ASSERT(tcp->tcp_family == AF_INET6); 27118 len = sizeof (sin6_t); 27119 sin6 = (sin6_t *)&addr; 27120 *sin6 = sin6_null; 27121 sin6->sin6_family = AF_INET6; 27122 } 27123 sa = (struct sockaddr *)&addr; 27124 } 27125 27126 error = tcp_bind_check(connp, sa, len, cr, 27127 bind_to_req_port_only); 27128 if (error) 27129 return (error); 27130 /* Fall through and do the fanout insertion */ 27131 } 27132 27133 do_listen: 27134 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27135 tcp->tcp_conn_req_max = backlog; 27136 if (tcp->tcp_conn_req_max) { 27137 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27138 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27139 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27140 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27141 /* 27142 * If this is a listener, do not reset the eager list 27143 * and other stuffs. Note that we don't check if the 27144 * existing eager list meets the new tcp_conn_req_max 27145 * requirement. 27146 */ 27147 if (tcp->tcp_state != TCPS_LISTEN) { 27148 tcp->tcp_state = TCPS_LISTEN; 27149 /* Initialize the chain. Don't need the eager_lock */ 27150 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27151 tcp->tcp_eager_next_drop_q0 = tcp; 27152 tcp->tcp_eager_prev_drop_q0 = tcp; 27153 tcp->tcp_second_ctimer_threshold = 27154 tcps->tcps_ip_abort_linterval; 27155 } 27156 } 27157 27158 /* 27159 * We can call ip_bind directly, the processing continues 27160 * in tcp_post_ip_bind(). 27161 * 27162 * We need to make sure that the conn_recv is set to a non-null 27163 * value before we insert the conn into the classifier table. 27164 * This is to avoid a race with an incoming packet which does an 27165 * ipcl_classify(). 27166 */ 27167 connp->conn_recv = tcp_conn_request; 27168 if (tcp->tcp_family == AF_INET) { 27169 error = ip_proto_bind_laddr_v4(connp, NULL, 27170 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27171 } else { 27172 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27173 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27174 } 27175 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27176 } 27177 27178 void 27179 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27180 { 27181 conn_t *connp = (conn_t *)proto_handle; 27182 tcp_t *tcp = connp->conn_tcp; 27183 mblk_t *mp; 27184 int error; 27185 27186 ASSERT(connp->conn_upper_handle != NULL); 27187 27188 /* 27189 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 27190 * is currently running. 27191 */ 27192 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27193 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 27194 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27195 return; 27196 } 27197 tcp->tcp_rsrv_mp = NULL; 27198 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27199 27200 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 27201 ASSERT(error == 0); 27202 27203 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27204 tcp->tcp_rsrv_mp = mp; 27205 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27206 27207 if (tcp->tcp_fused) { 27208 tcp_fuse_backenable(tcp); 27209 } else { 27210 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27211 /* 27212 * Send back a window update immediately if TCP is above 27213 * ESTABLISHED state and the increase of the rcv window 27214 * that the other side knows is at least 1 MSS after flow 27215 * control is lifted. 27216 */ 27217 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27218 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 27219 tcp_xmit_ctl(NULL, tcp, 27220 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27221 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27222 } 27223 } 27224 27225 squeue_synch_exit(connp->conn_sqp, connp); 27226 } 27227 27228 /* ARGSUSED */ 27229 int 27230 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27231 int mode, int32_t *rvalp, cred_t *cr) 27232 { 27233 conn_t *connp = (conn_t *)proto_handle; 27234 int error; 27235 27236 ASSERT(connp->conn_upper_handle != NULL); 27237 27238 /* All Solaris components should pass a cred for this operation. */ 27239 ASSERT(cr != NULL); 27240 27241 switch (cmd) { 27242 case ND_SET: 27243 case ND_GET: 27244 case TCP_IOC_DEFAULT_Q: 27245 case _SIOCSOCKFALLBACK: 27246 case TCP_IOC_ABORT_CONN: 27247 case TI_GETPEERNAME: 27248 case TI_GETMYNAME: 27249 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27250 cmd)); 27251 error = EINVAL; 27252 break; 27253 default: 27254 /* 27255 * Pass on to IP using helper stream 27256 */ 27257 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27258 cmd, arg, mode, cr, rvalp); 27259 break; 27260 } 27261 return (error); 27262 } 27263 27264 sock_downcalls_t sock_tcp_downcalls = { 27265 tcp_activate, 27266 tcp_accept, 27267 tcp_bind, 27268 tcp_listen, 27269 tcp_connect, 27270 tcp_getpeername, 27271 tcp_getsockname, 27272 tcp_getsockopt, 27273 tcp_setsockopt, 27274 tcp_sendmsg, 27275 NULL, 27276 NULL, 27277 NULL, 27278 tcp_shutdown, 27279 tcp_clr_flowctrl, 27280 tcp_ioctl, 27281 tcp_close, 27282 }; 27283