1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: SQ_NODRAIN 239 * 2: SQ_PROCESS 240 * 3: SQ_FILL 241 */ 242 int tcp_squeue_wput = 2; /* /etc/systems */ 243 int tcp_squeue_flag; 244 245 /* 246 * This controls how tiny a write must be before we try to copy it 247 * into the the mblk on the tail of the transmit queue. Not much 248 * speedup is observed for values larger than sixteen. Zero will 249 * disable the optimisation. 250 */ 251 int tcp_tx_pull_len = 16; 252 253 /* 254 * TCP Statistics. 255 * 256 * How TCP statistics work. 257 * 258 * There are two types of statistics invoked by two macros. 259 * 260 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 261 * supposed to be used in non MT-hot paths of the code. 262 * 263 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 264 * supposed to be used for DEBUG purposes and may be used on a hot path. 265 * 266 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 267 * (use "kstat tcp" to get them). 268 * 269 * There is also additional debugging facility that marks tcp_clean_death() 270 * instances and saves them in tcp_t structure. It is triggered by 271 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 272 * tcp_clean_death() calls that counts the number of times each tag was hit. It 273 * is triggered by TCP_CLD_COUNTERS define. 274 * 275 * How to add new counters. 276 * 277 * 1) Add a field in the tcp_stat structure describing your counter. 278 * 2) Add a line in the template in tcp_kstat2_init() with the name 279 * of the counter. 280 * 281 * IMPORTANT!! - make sure that both are in sync !! 282 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 283 * 284 * Please avoid using private counters which are not kstat-exported. 285 * 286 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 287 * in tcp_t structure. 288 * 289 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 290 */ 291 292 #ifndef TCP_DEBUG_COUNTER 293 #ifdef DEBUG 294 #define TCP_DEBUG_COUNTER 1 295 #else 296 #define TCP_DEBUG_COUNTER 0 297 #endif 298 #endif 299 300 #define TCP_CLD_COUNTERS 0 301 302 #define TCP_TAG_CLEAN_DEATH 1 303 #define TCP_MAX_CLEAN_DEATH_TAG 32 304 305 #ifdef lint 306 static int _lint_dummy_; 307 #endif 308 309 #if TCP_CLD_COUNTERS 310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 311 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 312 #elif defined(lint) 313 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 314 #else 315 #define TCP_CLD_STAT(x) 316 #endif 317 318 #if TCP_DEBUG_COUNTER 319 #define TCP_DBGSTAT(tcps, x) \ 320 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 321 #define TCP_G_DBGSTAT(x) \ 322 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 323 #elif defined(lint) 324 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 325 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(tcps, x) 328 #define TCP_G_DBGSTAT(x) 329 #endif 330 331 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 332 333 tcp_g_stat_t tcp_g_statistics; 334 kstat_t *tcp_g_kstat; 335 336 /* 337 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 338 * tcp write side. 339 */ 340 #define CALL_IP_WPUT(connp, q, mp) { \ 341 ASSERT(((q)->q_flag & QREADR) == 0); \ 342 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 343 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 344 } 345 346 /* Macros for timestamp comparisons */ 347 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 348 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 349 350 /* 351 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 352 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 353 * by adding three components: a time component which grows by 1 every 4096 354 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 355 * a per-connection component which grows by 125000 for every new connection; 356 * and an "extra" component that grows by a random amount centered 357 * approximately on 64000. This causes the the ISS generator to cycle every 358 * 4.89 hours if no TCP connections are made, and faster if connections are 359 * made. 360 * 361 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 362 * components: a time component which grows by 250000 every second; and 363 * a per-connection component which grows by 125000 for every new connections. 364 * 365 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 366 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 367 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 368 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 369 * password. 370 */ 371 #define ISS_INCR 250000 372 #define ISS_NSEC_SHT 12 373 374 static sin_t sin_null; /* Zero address for quick clears */ 375 static sin6_t sin6_null; /* Zero address for quick clears */ 376 377 /* 378 * This implementation follows the 4.3BSD interpretation of the urgent 379 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 380 * incompatible changes in protocols like telnet and rlogin. 381 */ 382 #define TCP_OLD_URP_INTERPRETATION 1 383 384 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 385 (TCP_IS_DETACHED(tcp) && \ 386 (!(tcp)->tcp_hard_binding)) 387 388 /* 389 * TCP reassembly macros. We hide starting and ending sequence numbers in 390 * b_next and b_prev of messages on the reassembly queue. The messages are 391 * chained using b_cont. These macros are used in tcp_reass() so we don't 392 * have to see the ugly casts and assignments. 393 */ 394 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 395 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 396 (mblk_t *)(uintptr_t)(u)) 397 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 398 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 399 (mblk_t *)(uintptr_t)(u)) 400 401 /* 402 * Implementation of TCP Timers. 403 * ============================= 404 * 405 * INTERFACE: 406 * 407 * There are two basic functions dealing with tcp timers: 408 * 409 * timeout_id_t tcp_timeout(connp, func, time) 410 * clock_t tcp_timeout_cancel(connp, timeout_id) 411 * TCP_TIMER_RESTART(tcp, intvl) 412 * 413 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 414 * after 'time' ticks passed. The function called by timeout() must adhere to 415 * the same restrictions as a driver soft interrupt handler - it must not sleep 416 * or call other functions that might sleep. The value returned is the opaque 417 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 418 * cancel the request. The call to tcp_timeout() may fail in which case it 419 * returns zero. This is different from the timeout(9F) function which never 420 * fails. 421 * 422 * The call-back function 'func' always receives 'connp' as its single 423 * argument. It is always executed in the squeue corresponding to the tcp 424 * structure. The tcp structure is guaranteed to be present at the time the 425 * call-back is called. 426 * 427 * NOTE: The call-back function 'func' is never called if tcp is in 428 * the TCPS_CLOSED state. 429 * 430 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 431 * request. locks acquired by the call-back routine should not be held across 432 * the call to tcp_timeout_cancel() or a deadlock may result. 433 * 434 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 435 * Otherwise, it returns an integer value greater than or equal to 0. In 436 * particular, if the call-back function is already placed on the squeue, it can 437 * not be canceled. 438 * 439 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 440 * within squeue context corresponding to the tcp instance. Since the 441 * call-back is also called via the same squeue, there are no race 442 * conditions described in untimeout(9F) manual page since all calls are 443 * strictly serialized. 444 * 445 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 446 * stored in tcp_timer_tid and starts a new one using 447 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 448 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 449 * field. 450 * 451 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 452 * call-back may still be called, so it is possible tcp_timer() will be 453 * called several times. This should not be a problem since tcp_timer() 454 * should always check the tcp instance state. 455 * 456 * 457 * IMPLEMENTATION: 458 * 459 * TCP timers are implemented using three-stage process. The call to 460 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 461 * when the timer expires. The tcp_timer_callback() arranges the call of the 462 * tcp_timer_handler() function via squeue corresponding to the tcp 463 * instance. The tcp_timer_handler() calls actual requested timeout call-back 464 * and passes tcp instance as an argument to it. Information is passed between 465 * stages using the tcp_timer_t structure which contains the connp pointer, the 466 * tcp call-back to call and the timeout id returned by the timeout(9F). 467 * 468 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 469 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 470 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 471 * returns the pointer to this mblk. 472 * 473 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 474 * looks like a normal mblk without actual dblk attached to it. 475 * 476 * To optimize performance each tcp instance holds a small cache of timer 477 * mblocks. In the current implementation it caches up to two timer mblocks per 478 * tcp instance. The cache is preserved over tcp frees and is only freed when 479 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 480 * timer processing happens on a corresponding squeue, the cache manipulation 481 * does not require any locks. Experiments show that majority of timer mblocks 482 * allocations are satisfied from the tcp cache and do not involve kmem calls. 483 * 484 * The tcp_timeout() places a refhold on the connp instance which guarantees 485 * that it will be present at the time the call-back function fires. The 486 * tcp_timer_handler() drops the reference after calling the call-back, so the 487 * call-back function does not need to manipulate the references explicitly. 488 */ 489 490 typedef struct tcp_timer_s { 491 conn_t *connp; 492 void (*tcpt_proc)(void *); 493 callout_id_t tcpt_tid; 494 } tcp_timer_t; 495 496 static kmem_cache_t *tcp_timercache; 497 kmem_cache_t *tcp_sack_info_cache; 498 kmem_cache_t *tcp_iphc_cache; 499 500 /* 501 * For scalability, we must not run a timer for every TCP connection 502 * in TIME_WAIT state. To see why, consider (for time wait interval of 503 * 4 minutes): 504 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 505 * 506 * This list is ordered by time, so you need only delete from the head 507 * until you get to entries which aren't old enough to delete yet. 508 * The list consists of only the detached TIME_WAIT connections. 509 * 510 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 511 * becomes detached TIME_WAIT (either by changing the state and already 512 * being detached or the other way around). This means that the TIME_WAIT 513 * state can be extended (up to doubled) if the connection doesn't become 514 * detached for a long time. 515 * 516 * The list manipulations (including tcp_time_wait_next/prev) 517 * are protected by the tcp_time_wait_lock. The content of the 518 * detached TIME_WAIT connections is protected by the normal perimeters. 519 * 520 * This list is per squeue and squeues are shared across the tcp_stack_t's. 521 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 522 * and conn_netstack. 523 * The tcp_t's that are added to tcp_free_list are disassociated and 524 * have NULL tcp_tcps and conn_netstack pointers. 525 */ 526 typedef struct tcp_squeue_priv_s { 527 kmutex_t tcp_time_wait_lock; 528 callout_id_t tcp_time_wait_tid; 529 tcp_t *tcp_time_wait_head; 530 tcp_t *tcp_time_wait_tail; 531 tcp_t *tcp_free_list; 532 uint_t tcp_free_list_cnt; 533 } tcp_squeue_priv_t; 534 535 /* 536 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 537 * Running it every 5 seconds seems to give the best results. 538 */ 539 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 540 541 /* 542 * To prevent memory hog, limit the number of entries in tcp_free_list 543 * to 1% of available memory / number of cpus 544 */ 545 uint_t tcp_free_list_max_cnt = 0; 546 547 #define TCP_XMIT_LOWATER 4096 548 #define TCP_XMIT_HIWATER 49152 549 #define TCP_RECV_LOWATER 2048 550 #define TCP_RECV_HIWATER 49152 551 552 /* 553 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 554 */ 555 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 556 557 #define TIDUSZ 4096 /* transport interface data unit size */ 558 559 /* 560 * Bind hash list size and has function. It has to be a power of 2 for 561 * hashing. 562 */ 563 #define TCP_BIND_FANOUT_SIZE 512 564 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 565 /* 566 * Size of listen and acceptor hash list. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_FANOUT_SIZE 256 570 571 #ifdef _ILP32 572 #define TCP_ACCEPTOR_HASH(accid) \ 573 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 574 #else 575 #define TCP_ACCEPTOR_HASH(accid) \ 576 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 577 #endif /* _ILP32 */ 578 579 #define IP_ADDR_CACHE_SIZE 2048 580 #define IP_ADDR_CACHE_HASH(faddr) \ 581 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 582 583 /* 584 * TCP options struct returned from tcp_parse_options. 585 */ 586 typedef struct tcp_opt_s { 587 uint32_t tcp_opt_mss; 588 uint32_t tcp_opt_wscale; 589 uint32_t tcp_opt_ts_val; 590 uint32_t tcp_opt_ts_ecr; 591 tcp_t *tcp; 592 } tcp_opt_t; 593 594 /* 595 * TCP option struct passing information b/w lisenter and eager. 596 */ 597 struct tcp_options { 598 uint_t to_flags; 599 ssize_t to_boundif; /* IPV6_BOUND_IF */ 600 }; 601 602 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 603 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 604 605 /* 606 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 607 */ 608 609 #ifdef _BIG_ENDIAN 610 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 611 (TCPOPT_TSTAMP << 8) | 10) 612 #else 613 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 614 (TCPOPT_NOP << 8) | TCPOPT_NOP) 615 #endif 616 617 /* 618 * Flags returned from tcp_parse_options. 619 */ 620 #define TCP_OPT_MSS_PRESENT 1 621 #define TCP_OPT_WSCALE_PRESENT 2 622 #define TCP_OPT_TSTAMP_PRESENT 4 623 #define TCP_OPT_SACK_OK_PRESENT 8 624 #define TCP_OPT_SACK_PRESENT 16 625 626 /* TCP option length */ 627 #define TCPOPT_NOP_LEN 1 628 #define TCPOPT_MAXSEG_LEN 4 629 #define TCPOPT_WS_LEN 3 630 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 631 #define TCPOPT_TSTAMP_LEN 10 632 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 633 #define TCPOPT_SACK_OK_LEN 2 634 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 635 #define TCPOPT_REAL_SACK_LEN 4 636 #define TCPOPT_MAX_SACK_LEN 36 637 #define TCPOPT_HEADER_LEN 2 638 639 /* TCP cwnd burst factor. */ 640 #define TCP_CWND_INFINITE 65535 641 #define TCP_CWND_SS 3 642 #define TCP_CWND_NORMAL 5 643 644 /* Maximum TCP initial cwin (start/restart). */ 645 #define TCP_MAX_INIT_CWND 8 646 647 /* 648 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 649 * either tcp_slow_start_initial or tcp_slow_start_after idle 650 * depending on the caller. If the upper layer has not used the 651 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 652 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 653 * If the upper layer has changed set the tcp_init_cwnd, just use 654 * it to calculate the tcp_cwnd. 655 */ 656 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 657 { \ 658 if ((tcp)->tcp_init_cwnd == 0) { \ 659 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 660 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 661 } else { \ 662 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 663 } \ 664 tcp->tcp_cwnd_cnt = 0; \ 665 } 666 667 /* TCP Timer control structure */ 668 typedef struct tcpt_s { 669 pfv_t tcpt_pfv; /* The routine we are to call */ 670 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 671 } tcpt_t; 672 673 /* 674 * Functions called directly via squeue having a prototype of edesc_t. 675 */ 676 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 677 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 678 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 679 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 680 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 681 void tcp_input(void *arg, mblk_t *mp, void *arg2); 682 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 683 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 684 void tcp_output(void *arg, mblk_t *mp, void *arg2); 685 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 686 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 687 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 688 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 689 690 691 /* Prototype for TCP functions */ 692 static void tcp_random_init(void); 693 int tcp_random(void); 694 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 695 static int tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 696 tcp_t *eager); 697 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 699 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 700 boolean_t user_specified); 701 static void tcp_closei_local(tcp_t *tcp); 702 static void tcp_close_detached(tcp_t *tcp); 703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 704 mblk_t *idmp, mblk_t **defermp); 705 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 706 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 707 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 708 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 709 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 710 uint32_t scope_id, cred_t *cr, pid_t pid); 711 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 712 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 713 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 714 static char *tcp_display(tcp_t *tcp, char *, char); 715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 716 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 717 static void tcp_eager_unlink(tcp_t *tcp); 718 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 719 int unixerr); 720 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 721 int tlierr, int unixerr); 722 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 723 cred_t *cr); 724 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 725 char *value, caddr_t cp, cred_t *cr); 726 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 727 char *value, caddr_t cp, cred_t *cr); 728 static int tcp_tpistate(tcp_t *tcp); 729 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 730 int caller_holds_lock); 731 static void tcp_bind_hash_remove(tcp_t *tcp); 732 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 733 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 734 static void tcp_acceptor_hash_remove(tcp_t *tcp); 735 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 736 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 737 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 738 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 739 void tcp_g_q_setup(tcp_stack_t *); 740 void tcp_g_q_create(tcp_stack_t *); 741 void tcp_g_q_destroy(tcp_stack_t *); 742 static int tcp_header_init_ipv4(tcp_t *tcp); 743 static int tcp_header_init_ipv6(tcp_t *tcp); 744 int tcp_init(tcp_t *tcp, queue_t *q); 745 static int tcp_init_values(tcp_t *tcp); 746 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 747 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 748 static void tcp_ip_notify(tcp_t *tcp); 749 static mblk_t *tcp_ire_mp(mblk_t **mpp); 750 static void tcp_iss_init(tcp_t *tcp); 751 static void tcp_keepalive_killer(void *arg); 752 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 753 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 754 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 755 int *do_disconnectp, int *t_errorp, int *sys_errorp); 756 static boolean_t tcp_allow_connopt_set(int level, int name); 757 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 758 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 759 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 760 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 761 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 762 mblk_t *mblk); 763 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 764 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 765 uchar_t *ptr, uint_t len); 766 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 768 tcp_stack_t *); 769 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 770 caddr_t cp, cred_t *cr); 771 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 772 caddr_t cp, cred_t *cr); 773 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 774 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 777 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 778 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 779 static void tcp_reinit(tcp_t *tcp); 780 static void tcp_reinit_values(tcp_t *tcp); 781 782 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 783 static uint_t tcp_rcv_drain(tcp_t *tcp); 784 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 785 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 786 static void tcp_ss_rexmit(tcp_t *tcp); 787 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 788 static void tcp_process_options(tcp_t *, tcph_t *); 789 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 790 static void tcp_rsrv(queue_t *q); 791 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 792 static int tcp_snmp_state(tcp_t *tcp); 793 static void tcp_timer(void *arg); 794 static void tcp_timer_callback(void *); 795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 796 boolean_t random); 797 static in_port_t tcp_get_next_priv_port(const tcp_t *); 798 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 799 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 800 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 801 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 802 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 803 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 804 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 805 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 806 const int num_sack_blk, int *usable, uint_t *snxt, 807 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 808 const int mdt_thres); 809 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 810 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 811 const int num_sack_blk, int *usable, uint_t *snxt, 812 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 813 const int mdt_thres); 814 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 815 int num_sack_blk); 816 static void tcp_wsrv(queue_t *q); 817 static int tcp_xmit_end(tcp_t *tcp); 818 static void tcp_ack_timer(void *arg); 819 static mblk_t *tcp_ack_mp(tcp_t *tcp); 820 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 821 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 822 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 823 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 824 uint32_t ack, int ctl); 825 static int setmaxps(queue_t *q, int maxpsz); 826 static void tcp_set_rto(tcp_t *, time_t); 827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 828 boolean_t, boolean_t); 829 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 830 boolean_t ipsec_mctl); 831 static int tcp_build_hdrs(tcp_t *); 832 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 833 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 834 tcph_t *tcph); 835 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 836 static mblk_t *tcp_mdt_info_mp(mblk_t *); 837 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 838 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 839 const boolean_t, const uint32_t, const uint32_t, 840 const uint32_t, const uint32_t, tcp_stack_t *); 841 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 842 const uint_t, const uint_t, boolean_t *); 843 static mblk_t *tcp_lso_info_mp(mblk_t *); 844 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 845 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 846 extern mblk_t *tcp_timermp_alloc(int); 847 extern void tcp_timermp_free(tcp_t *); 848 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 849 static void tcp_stop_lingering(tcp_t *tcp); 850 static void tcp_close_linger_timeout(void *arg); 851 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 852 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 853 static void tcp_stack_fini(netstackid_t stackid, void *arg); 854 static void *tcp_g_kstat_init(tcp_g_stat_t *); 855 static void tcp_g_kstat_fini(kstat_t *); 856 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 857 static void tcp_kstat_fini(netstackid_t, kstat_t *); 858 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 859 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 860 static int tcp_kstat_update(kstat_t *kp, int rw); 861 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 862 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 863 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 864 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 865 tcph_t *tcph, mblk_t *idmp); 866 static int tcp_squeue_switch(int); 867 868 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 869 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 870 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 871 static int tcp_tpi_close(queue_t *, int); 872 static int tcp_tpi_close_accept(queue_t *); 873 874 static void tcp_squeue_add(squeue_t *); 875 static boolean_t tcp_zcopy_check(tcp_t *); 876 static void tcp_zcopy_notify(tcp_t *); 877 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 878 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 879 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 880 881 extern void tcp_kssl_input(tcp_t *, mblk_t *); 882 883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 885 886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 887 sock_upper_handle_t, cred_t *); 888 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 891 boolean_t); 892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 893 cred_t *, pid_t); 894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 895 boolean_t); 896 static int tcp_do_unbind(conn_t *); 897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 898 boolean_t); 899 900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 901 902 /* 903 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 904 * 905 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 906 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 907 * (defined in tcp.h) needs to be filled in and passed into the kernel 908 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 909 * structure contains the four-tuple of a TCP connection and a range of TCP 910 * states (specified by ac_start and ac_end). The use of wildcard addresses 911 * and ports is allowed. Connections with a matching four tuple and a state 912 * within the specified range will be aborted. The valid states for the 913 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 914 * inclusive. 915 * 916 * An application which has its connection aborted by this ioctl will receive 917 * an error that is dependent on the connection state at the time of the abort. 918 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 919 * though a RST packet has been received. If the connection state is equal to 920 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 921 * and all resources associated with the connection will be freed. 922 */ 923 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 924 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 925 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 926 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 927 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 928 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 929 boolean_t, tcp_stack_t *); 930 931 static struct module_info tcp_rinfo = { 932 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 933 }; 934 935 static struct module_info tcp_winfo = { 936 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 937 }; 938 939 /* 940 * Entry points for TCP as a device. The normal case which supports 941 * the TCP functionality. 942 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 943 */ 944 struct qinit tcp_rinitv4 = { 945 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 946 }; 947 948 struct qinit tcp_rinitv6 = { 949 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 950 }; 951 952 struct qinit tcp_winit = { 953 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 954 }; 955 956 /* Initial entry point for TCP in socket mode. */ 957 struct qinit tcp_sock_winit = { 958 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 959 }; 960 961 /* TCP entry point during fallback */ 962 struct qinit tcp_fallback_sock_winit = { 963 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 964 }; 965 966 /* 967 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 968 * an accept. Avoid allocating data structures since eager has already 969 * been created. 970 */ 971 struct qinit tcp_acceptor_rinit = { 972 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 973 }; 974 975 struct qinit tcp_acceptor_winit = { 976 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 977 }; 978 979 /* 980 * Entry points for TCP loopback (read side only) 981 * The open routine is only used for reopens, thus no need to 982 * have a separate one for tcp_openv6. 983 */ 984 struct qinit tcp_loopback_rinit = { 985 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 986 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 987 }; 988 989 /* For AF_INET aka /dev/tcp */ 990 struct streamtab tcpinfov4 = { 991 &tcp_rinitv4, &tcp_winit 992 }; 993 994 /* For AF_INET6 aka /dev/tcp6 */ 995 struct streamtab tcpinfov6 = { 996 &tcp_rinitv6, &tcp_winit 997 }; 998 999 sock_downcalls_t sock_tcp_downcalls; 1000 1001 /* 1002 * Have to ensure that tcp_g_q_close is not done by an 1003 * interrupt thread. 1004 */ 1005 static taskq_t *tcp_taskq; 1006 1007 /* Setable only in /etc/system. Move to ndd? */ 1008 boolean_t tcp_icmp_source_quench = B_FALSE; 1009 1010 /* 1011 * Following assumes TPI alignment requirements stay along 32 bit 1012 * boundaries 1013 */ 1014 #define ROUNDUP32(x) \ 1015 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1016 1017 /* Template for response to info request. */ 1018 static struct T_info_ack tcp_g_t_info_ack = { 1019 T_INFO_ACK, /* PRIM_type */ 1020 0, /* TSDU_size */ 1021 T_INFINITE, /* ETSDU_size */ 1022 T_INVALID, /* CDATA_size */ 1023 T_INVALID, /* DDATA_size */ 1024 sizeof (sin_t), /* ADDR_size */ 1025 0, /* OPT_size - not initialized here */ 1026 TIDUSZ, /* TIDU_size */ 1027 T_COTS_ORD, /* SERV_type */ 1028 TCPS_IDLE, /* CURRENT_state */ 1029 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1030 }; 1031 1032 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1033 T_INFO_ACK, /* PRIM_type */ 1034 0, /* TSDU_size */ 1035 T_INFINITE, /* ETSDU_size */ 1036 T_INVALID, /* CDATA_size */ 1037 T_INVALID, /* DDATA_size */ 1038 sizeof (sin6_t), /* ADDR_size */ 1039 0, /* OPT_size - not initialized here */ 1040 TIDUSZ, /* TIDU_size */ 1041 T_COTS_ORD, /* SERV_type */ 1042 TCPS_IDLE, /* CURRENT_state */ 1043 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1044 }; 1045 1046 #define MS 1L 1047 #define SECONDS (1000 * MS) 1048 #define MINUTES (60 * SECONDS) 1049 #define HOURS (60 * MINUTES) 1050 #define DAYS (24 * HOURS) 1051 1052 #define PARAM_MAX (~(uint32_t)0) 1053 1054 /* Max size IP datagram is 64k - 1 */ 1055 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1056 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1057 /* Max of the above */ 1058 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1059 1060 /* Largest TCP port number */ 1061 #define TCP_MAX_PORT (64 * 1024 - 1) 1062 1063 /* 1064 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1065 * layer header. It has to be a multiple of 4. 1066 */ 1067 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1068 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1069 1070 /* 1071 * All of these are alterable, within the min/max values given, at run time. 1072 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1073 * per the TCP spec. 1074 */ 1075 /* BEGIN CSTYLED */ 1076 static tcpparam_t lcl_tcp_param_arr[] = { 1077 /*min max value name */ 1078 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1079 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1080 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1081 { 1, 1024, 1, "tcp_conn_req_min" }, 1082 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1083 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1084 { 0, 10, 0, "tcp_debug" }, 1085 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1086 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1087 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1088 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1089 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1090 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1091 { 1, 255, 64, "tcp_ipv4_ttl"}, 1092 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1093 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1094 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1095 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1096 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1097 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1098 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1099 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1100 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1101 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1102 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1103 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1104 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1105 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1106 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1107 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1108 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1109 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1110 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1111 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1112 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1113 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1114 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1115 /* 1116 * Question: What default value should I set for tcp_strong_iss? 1117 */ 1118 { 0, 2, 1, "tcp_strong_iss"}, 1119 { 0, 65536, 20, "tcp_rtt_updates"}, 1120 { 0, 1, 1, "tcp_wscale_always"}, 1121 { 0, 1, 0, "tcp_tstamp_always"}, 1122 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1123 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1124 { 0, 16, 2, "tcp_deferred_acks_max"}, 1125 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1126 { 1, 4, 4, "tcp_slow_start_initial"}, 1127 { 0, 2, 2, "tcp_sack_permitted"}, 1128 { 0, 1, 1, "tcp_compression_enabled"}, 1129 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1130 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1131 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1132 { 0, 1, 0, "tcp_rev_src_routes"}, 1133 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1134 { 0, 16, 8, "tcp_local_dacks_max"}, 1135 { 0, 2, 1, "tcp_ecn_permitted"}, 1136 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1137 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1138 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1139 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1140 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1141 }; 1142 /* END CSTYLED */ 1143 1144 /* 1145 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1146 * each header fragment in the header buffer. Each parameter value has 1147 * to be a multiple of 4 (32-bit aligned). 1148 */ 1149 static tcpparam_t lcl_tcp_mdt_head_param = 1150 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1151 static tcpparam_t lcl_tcp_mdt_tail_param = 1152 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1153 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1154 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1155 1156 /* 1157 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1158 * the maximum number of payload buffers associated per Multidata. 1159 */ 1160 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1161 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1162 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1163 1164 /* Round up the value to the nearest mss. */ 1165 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1166 1167 /* 1168 * Set ECN capable transport (ECT) code point in IP header. 1169 * 1170 * Note that there are 2 ECT code points '01' and '10', which are called 1171 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1172 * point ECT(0) for TCP as described in RFC 2481. 1173 */ 1174 #define SET_ECT(tcp, iph) \ 1175 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1176 /* We need to clear the code point first. */ \ 1177 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1178 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1179 } else { \ 1180 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1181 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1182 } 1183 1184 /* 1185 * The format argument to pass to tcp_display(). 1186 * DISP_PORT_ONLY means that the returned string has only port info. 1187 * DISP_ADDR_AND_PORT means that the returned string also contains the 1188 * remote and local IP address. 1189 */ 1190 #define DISP_PORT_ONLY 1 1191 #define DISP_ADDR_AND_PORT 2 1192 1193 #define IS_VMLOANED_MBLK(mp) \ 1194 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1195 1196 1197 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1198 boolean_t tcp_mdt_chain = B_TRUE; 1199 1200 /* 1201 * MDT threshold in the form of effective send MSS multiplier; we take 1202 * the MDT path if the amount of unsent data exceeds the threshold value 1203 * (default threshold is 1*SMSS). 1204 */ 1205 uint_t tcp_mdt_smss_threshold = 1; 1206 1207 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1208 1209 /* 1210 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1211 * tunable settable via NDD. Otherwise, the per-connection behavior is 1212 * determined dynamically during tcp_adapt_ire(), which is the default. 1213 */ 1214 boolean_t tcp_static_maxpsz = B_FALSE; 1215 1216 /* Setable in /etc/system */ 1217 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1218 uint32_t tcp_random_anon_port = 1; 1219 1220 /* 1221 * To reach to an eager in Q0 which can be dropped due to an incoming 1222 * new SYN request when Q0 is full, a new doubly linked list is 1223 * introduced. This list allows to select an eager from Q0 in O(1) time. 1224 * This is needed to avoid spending too much time walking through the 1225 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1226 * this new list has to be a member of Q0. 1227 * This list is headed by listener's tcp_t. When the list is empty, 1228 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1229 * of listener's tcp_t point to listener's tcp_t itself. 1230 * 1231 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1232 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1233 * These macros do not affect the eager's membership to Q0. 1234 */ 1235 1236 1237 #define MAKE_DROPPABLE(listener, eager) \ 1238 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1239 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1240 = (eager); \ 1241 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1242 (eager)->tcp_eager_next_drop_q0 = \ 1243 (listener)->tcp_eager_next_drop_q0; \ 1244 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1245 } 1246 1247 #define MAKE_UNDROPPABLE(eager) \ 1248 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1249 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1250 = (eager)->tcp_eager_prev_drop_q0; \ 1251 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1252 = (eager)->tcp_eager_next_drop_q0; \ 1253 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1254 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1255 } 1256 1257 /* 1258 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1259 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1260 * data, TCP will not respond with an ACK. RFC 793 requires that 1261 * TCP responds with an ACK for such a bogus ACK. By not following 1262 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1263 * an attacker successfully spoofs an acceptable segment to our 1264 * peer; or when our peer is "confused." 1265 */ 1266 uint32_t tcp_drop_ack_unsent_cnt = 10; 1267 1268 /* 1269 * Hook functions to enable cluster networking 1270 * On non-clustered systems these vectors must always be NULL. 1271 */ 1272 1273 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1274 sa_family_t addr_family, uint8_t *laddrp, 1275 in_port_t lport, void *args) = NULL; 1276 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1277 sa_family_t addr_family, uint8_t *laddrp, 1278 in_port_t lport, void *args) = NULL; 1279 1280 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1281 boolean_t is_outgoing, 1282 sa_family_t addr_family, 1283 uint8_t *laddrp, in_port_t lport, 1284 uint8_t *faddrp, in_port_t fport, 1285 void *args) = NULL; 1286 1287 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1288 sa_family_t addr_family, uint8_t *laddrp, 1289 in_port_t lport, uint8_t *faddrp, 1290 in_port_t fport, void *args) = NULL; 1291 1292 /* 1293 * The following are defined in ip.c 1294 */ 1295 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1296 sa_family_t addr_family, uint8_t *laddrp, 1297 void *args); 1298 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1299 sa_family_t addr_family, uint8_t *laddrp, 1300 uint8_t *faddrp, void *args); 1301 1302 1303 /* 1304 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1305 */ 1306 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1307 (err) = 0; \ 1308 if (cl_inet_connect2 != NULL) { \ 1309 /* \ 1310 * Running in cluster mode - register active connection \ 1311 * information \ 1312 */ \ 1313 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1314 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1315 (err) = (*cl_inet_connect2)( \ 1316 (connp)->conn_netstack->netstack_stackid,\ 1317 IPPROTO_TCP, is_outgoing, AF_INET, \ 1318 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1319 (in_port_t)(tcp)->tcp_lport, \ 1320 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1321 (in_port_t)(tcp)->tcp_fport, NULL); \ 1322 } \ 1323 } else { \ 1324 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1325 &(tcp)->tcp_ip6h->ip6_src)) { \ 1326 (err) = (*cl_inet_connect2)( \ 1327 (connp)->conn_netstack->netstack_stackid,\ 1328 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1329 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1330 (in_port_t)(tcp)->tcp_lport, \ 1331 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1332 (in_port_t)(tcp)->tcp_fport, NULL); \ 1333 } \ 1334 } \ 1335 } \ 1336 } 1337 1338 #define CL_INET_DISCONNECT(connp, tcp) { \ 1339 if (cl_inet_disconnect != NULL) { \ 1340 /* \ 1341 * Running in cluster mode - deregister active \ 1342 * connection information \ 1343 */ \ 1344 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1345 if ((tcp)->tcp_ip_src != 0) { \ 1346 (*cl_inet_disconnect)( \ 1347 (connp)->conn_netstack->netstack_stackid,\ 1348 IPPROTO_TCP, AF_INET, \ 1349 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1350 (in_port_t)(tcp)->tcp_lport, \ 1351 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1352 (in_port_t)(tcp)->tcp_fport, NULL); \ 1353 } \ 1354 } else { \ 1355 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1356 &(tcp)->tcp_ip_src_v6)) { \ 1357 (*cl_inet_disconnect)( \ 1358 (connp)->conn_netstack->netstack_stackid,\ 1359 IPPROTO_TCP, AF_INET6, \ 1360 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1361 (in_port_t)(tcp)->tcp_lport, \ 1362 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1363 (in_port_t)(tcp)->tcp_fport, NULL); \ 1364 } \ 1365 } \ 1366 } \ 1367 } 1368 1369 /* 1370 * Cluster networking hook for traversing current connection list. 1371 * This routine is used to extract the current list of live connections 1372 * which must continue to to be dispatched to this node. 1373 */ 1374 int cl_tcp_walk_list(netstackid_t stack_id, 1375 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1376 1377 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1378 void *arg, tcp_stack_t *tcps); 1379 1380 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1381 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1382 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1383 ip6_t *, ip6h, int, 0); 1384 1385 /* 1386 * Figure out the value of window scale opton. Note that the rwnd is 1387 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1388 * We cannot find the scale value and then do a round up of tcp_rwnd 1389 * because the scale value may not be correct after that. 1390 * 1391 * Set the compiler flag to make this function inline. 1392 */ 1393 static void 1394 tcp_set_ws_value(tcp_t *tcp) 1395 { 1396 int i; 1397 uint32_t rwnd = tcp->tcp_rwnd; 1398 1399 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1400 i++, rwnd >>= 1) 1401 ; 1402 tcp->tcp_rcv_ws = i; 1403 } 1404 1405 /* 1406 * Remove a connection from the list of detached TIME_WAIT connections. 1407 * It returns B_FALSE if it can't remove the connection from the list 1408 * as the connection has already been removed from the list due to an 1409 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1410 */ 1411 static boolean_t 1412 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1413 { 1414 boolean_t locked = B_FALSE; 1415 1416 if (tcp_time_wait == NULL) { 1417 tcp_time_wait = *((tcp_squeue_priv_t **) 1418 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1419 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1420 locked = B_TRUE; 1421 } else { 1422 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1423 } 1424 1425 if (tcp->tcp_time_wait_expire == 0) { 1426 ASSERT(tcp->tcp_time_wait_next == NULL); 1427 ASSERT(tcp->tcp_time_wait_prev == NULL); 1428 if (locked) 1429 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1430 return (B_FALSE); 1431 } 1432 ASSERT(TCP_IS_DETACHED(tcp)); 1433 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1434 1435 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1436 ASSERT(tcp->tcp_time_wait_prev == NULL); 1437 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1438 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1439 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1440 NULL; 1441 } else { 1442 tcp_time_wait->tcp_time_wait_tail = NULL; 1443 } 1444 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1445 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1446 ASSERT(tcp->tcp_time_wait_next == NULL); 1447 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1448 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1449 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1450 } else { 1451 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1452 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1453 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1454 tcp->tcp_time_wait_next; 1455 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1456 tcp->tcp_time_wait_prev; 1457 } 1458 tcp->tcp_time_wait_next = NULL; 1459 tcp->tcp_time_wait_prev = NULL; 1460 tcp->tcp_time_wait_expire = 0; 1461 1462 if (locked) 1463 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1464 return (B_TRUE); 1465 } 1466 1467 /* 1468 * Add a connection to the list of detached TIME_WAIT connections 1469 * and set its time to expire. 1470 */ 1471 static void 1472 tcp_time_wait_append(tcp_t *tcp) 1473 { 1474 tcp_stack_t *tcps = tcp->tcp_tcps; 1475 tcp_squeue_priv_t *tcp_time_wait = 1476 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1477 SQPRIVATE_TCP)); 1478 1479 tcp_timers_stop(tcp); 1480 1481 /* Freed above */ 1482 ASSERT(tcp->tcp_timer_tid == 0); 1483 ASSERT(tcp->tcp_ack_tid == 0); 1484 1485 /* must have happened at the time of detaching the tcp */ 1486 ASSERT(tcp->tcp_ptpahn == NULL); 1487 ASSERT(tcp->tcp_flow_stopped == 0); 1488 ASSERT(tcp->tcp_time_wait_next == NULL); 1489 ASSERT(tcp->tcp_time_wait_prev == NULL); 1490 ASSERT(tcp->tcp_time_wait_expire == NULL); 1491 ASSERT(tcp->tcp_listener == NULL); 1492 1493 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1494 /* 1495 * The value computed below in tcp->tcp_time_wait_expire may 1496 * appear negative or wrap around. That is ok since our 1497 * interest is only in the difference between the current lbolt 1498 * value and tcp->tcp_time_wait_expire. But the value should not 1499 * be zero, since it means the tcp is not in the TIME_WAIT list. 1500 * The corresponding comparison in tcp_time_wait_collector() uses 1501 * modular arithmetic. 1502 */ 1503 tcp->tcp_time_wait_expire += 1504 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1505 if (tcp->tcp_time_wait_expire == 0) 1506 tcp->tcp_time_wait_expire = 1; 1507 1508 ASSERT(TCP_IS_DETACHED(tcp)); 1509 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1510 ASSERT(tcp->tcp_time_wait_next == NULL); 1511 ASSERT(tcp->tcp_time_wait_prev == NULL); 1512 TCP_DBGSTAT(tcps, tcp_time_wait); 1513 1514 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1515 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1516 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1517 tcp_time_wait->tcp_time_wait_head = tcp; 1518 } else { 1519 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1520 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1521 TCPS_TIME_WAIT); 1522 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1523 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1524 } 1525 tcp_time_wait->tcp_time_wait_tail = tcp; 1526 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1527 } 1528 1529 /* ARGSUSED */ 1530 void 1531 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1532 { 1533 conn_t *connp = (conn_t *)arg; 1534 tcp_t *tcp = connp->conn_tcp; 1535 tcp_stack_t *tcps = tcp->tcp_tcps; 1536 1537 ASSERT(tcp != NULL); 1538 if (tcp->tcp_state == TCPS_CLOSED) { 1539 return; 1540 } 1541 1542 ASSERT((tcp->tcp_family == AF_INET && 1543 tcp->tcp_ipversion == IPV4_VERSION) || 1544 (tcp->tcp_family == AF_INET6 && 1545 (tcp->tcp_ipversion == IPV4_VERSION || 1546 tcp->tcp_ipversion == IPV6_VERSION))); 1547 ASSERT(!tcp->tcp_listener); 1548 1549 TCP_STAT(tcps, tcp_time_wait_reap); 1550 ASSERT(TCP_IS_DETACHED(tcp)); 1551 1552 /* 1553 * Because they have no upstream client to rebind or tcp_close() 1554 * them later, we axe the connection here and now. 1555 */ 1556 tcp_close_detached(tcp); 1557 } 1558 1559 /* 1560 * Remove cached/latched IPsec references. 1561 */ 1562 void 1563 tcp_ipsec_cleanup(tcp_t *tcp) 1564 { 1565 conn_t *connp = tcp->tcp_connp; 1566 1567 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1568 1569 if (connp->conn_latch != NULL) { 1570 IPLATCH_REFRELE(connp->conn_latch, 1571 connp->conn_netstack); 1572 connp->conn_latch = NULL; 1573 } 1574 if (connp->conn_policy != NULL) { 1575 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1576 connp->conn_policy = NULL; 1577 } 1578 } 1579 1580 /* 1581 * Cleaup before placing on free list. 1582 * Disassociate from the netstack/tcp_stack_t since the freelist 1583 * is per squeue and not per netstack. 1584 */ 1585 void 1586 tcp_cleanup(tcp_t *tcp) 1587 { 1588 mblk_t *mp; 1589 char *tcp_iphc; 1590 int tcp_iphc_len; 1591 int tcp_hdr_grown; 1592 tcp_sack_info_t *tcp_sack_info; 1593 conn_t *connp = tcp->tcp_connp; 1594 tcp_stack_t *tcps = tcp->tcp_tcps; 1595 netstack_t *ns = tcps->tcps_netstack; 1596 mblk_t *tcp_rsrv_mp; 1597 1598 tcp_bind_hash_remove(tcp); 1599 1600 /* Cleanup that which needs the netstack first */ 1601 tcp_ipsec_cleanup(tcp); 1602 1603 tcp_free(tcp); 1604 1605 /* Release any SSL context */ 1606 if (tcp->tcp_kssl_ent != NULL) { 1607 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1608 tcp->tcp_kssl_ent = NULL; 1609 } 1610 1611 if (tcp->tcp_kssl_ctx != NULL) { 1612 kssl_release_ctx(tcp->tcp_kssl_ctx); 1613 tcp->tcp_kssl_ctx = NULL; 1614 } 1615 tcp->tcp_kssl_pending = B_FALSE; 1616 1617 conn_delete_ire(connp, NULL); 1618 1619 /* 1620 * Since we will bzero the entire structure, we need to 1621 * remove it and reinsert it in global hash list. We 1622 * know the walkers can't get to this conn because we 1623 * had set CONDEMNED flag earlier and checked reference 1624 * under conn_lock so walker won't pick it and when we 1625 * go the ipcl_globalhash_remove() below, no walker 1626 * can get to it. 1627 */ 1628 ipcl_globalhash_remove(connp); 1629 1630 /* 1631 * Now it is safe to decrement the reference counts. 1632 * This might be the last reference on the netstack and TCPS 1633 * in which case it will cause the tcp_g_q_close and 1634 * the freeing of the IP Instance. 1635 */ 1636 connp->conn_netstack = NULL; 1637 netstack_rele(ns); 1638 ASSERT(tcps != NULL); 1639 tcp->tcp_tcps = NULL; 1640 TCPS_REFRELE(tcps); 1641 1642 /* Save some state */ 1643 mp = tcp->tcp_timercache; 1644 1645 tcp_sack_info = tcp->tcp_sack_info; 1646 tcp_iphc = tcp->tcp_iphc; 1647 tcp_iphc_len = tcp->tcp_iphc_len; 1648 tcp_hdr_grown = tcp->tcp_hdr_grown; 1649 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1650 1651 if (connp->conn_cred != NULL) { 1652 crfree(connp->conn_cred); 1653 connp->conn_cred = NULL; 1654 } 1655 if (connp->conn_effective_cred != NULL) { 1656 crfree(connp->conn_effective_cred); 1657 connp->conn_effective_cred = NULL; 1658 } 1659 ipcl_conn_cleanup(connp); 1660 connp->conn_flags = IPCL_TCPCONN; 1661 bzero(tcp, sizeof (tcp_t)); 1662 1663 /* restore the state */ 1664 tcp->tcp_timercache = mp; 1665 1666 tcp->tcp_sack_info = tcp_sack_info; 1667 tcp->tcp_iphc = tcp_iphc; 1668 tcp->tcp_iphc_len = tcp_iphc_len; 1669 tcp->tcp_hdr_grown = tcp_hdr_grown; 1670 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1671 1672 tcp->tcp_connp = connp; 1673 1674 ASSERT(connp->conn_tcp == tcp); 1675 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1676 connp->conn_state_flags = CONN_INCIPIENT; 1677 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1678 ASSERT(connp->conn_ref == 1); 1679 } 1680 1681 /* 1682 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1683 * is done forwards from the head. 1684 * This walks all stack instances since 1685 * tcp_time_wait remains global across all stacks. 1686 */ 1687 /* ARGSUSED */ 1688 void 1689 tcp_time_wait_collector(void *arg) 1690 { 1691 tcp_t *tcp; 1692 clock_t now; 1693 mblk_t *mp; 1694 conn_t *connp; 1695 kmutex_t *lock; 1696 boolean_t removed; 1697 1698 squeue_t *sqp = (squeue_t *)arg; 1699 tcp_squeue_priv_t *tcp_time_wait = 1700 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1701 1702 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1703 tcp_time_wait->tcp_time_wait_tid = 0; 1704 1705 if (tcp_time_wait->tcp_free_list != NULL && 1706 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1707 TCP_G_STAT(tcp_freelist_cleanup); 1708 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1709 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1710 tcp->tcp_time_wait_next = NULL; 1711 tcp_time_wait->tcp_free_list_cnt--; 1712 ASSERT(tcp->tcp_tcps == NULL); 1713 CONN_DEC_REF(tcp->tcp_connp); 1714 } 1715 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1716 } 1717 1718 /* 1719 * In order to reap time waits reliably, we should use a 1720 * source of time that is not adjustable by the user -- hence 1721 * the call to ddi_get_lbolt(). 1722 */ 1723 now = ddi_get_lbolt(); 1724 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1725 /* 1726 * Compare times using modular arithmetic, since 1727 * lbolt can wrapover. 1728 */ 1729 if ((now - tcp->tcp_time_wait_expire) < 0) { 1730 break; 1731 } 1732 1733 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1734 ASSERT(removed); 1735 1736 connp = tcp->tcp_connp; 1737 ASSERT(connp->conn_fanout != NULL); 1738 lock = &connp->conn_fanout->connf_lock; 1739 /* 1740 * This is essentially a TW reclaim fast path optimization for 1741 * performance where the timewait collector checks under the 1742 * fanout lock (so that no one else can get access to the 1743 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1744 * the classifier hash list. If ref count is indeed 2, we can 1745 * just remove the conn under the fanout lock and avoid 1746 * cleaning up the conn under the squeue, provided that 1747 * clustering callbacks are not enabled. If clustering is 1748 * enabled, we need to make the clustering callback before 1749 * setting the CONDEMNED flag and after dropping all locks and 1750 * so we forego this optimization and fall back to the slow 1751 * path. Also please see the comments in tcp_closei_local 1752 * regarding the refcnt logic. 1753 * 1754 * Since we are holding the tcp_time_wait_lock, its better 1755 * not to block on the fanout_lock because other connections 1756 * can't add themselves to time_wait list. So we do a 1757 * tryenter instead of mutex_enter. 1758 */ 1759 if (mutex_tryenter(lock)) { 1760 mutex_enter(&connp->conn_lock); 1761 if ((connp->conn_ref == 2) && 1762 (cl_inet_disconnect == NULL)) { 1763 ipcl_hash_remove_locked(connp, 1764 connp->conn_fanout); 1765 /* 1766 * Set the CONDEMNED flag now itself so that 1767 * the refcnt cannot increase due to any 1768 * walker. But we have still not cleaned up 1769 * conn_ire_cache. This is still ok since 1770 * we are going to clean it up in tcp_cleanup 1771 * immediately and any interface unplumb 1772 * thread will wait till the ire is blown away 1773 */ 1774 connp->conn_state_flags |= CONN_CONDEMNED; 1775 mutex_exit(lock); 1776 mutex_exit(&connp->conn_lock); 1777 if (tcp_time_wait->tcp_free_list_cnt < 1778 tcp_free_list_max_cnt) { 1779 /* Add to head of tcp_free_list */ 1780 mutex_exit( 1781 &tcp_time_wait->tcp_time_wait_lock); 1782 tcp_cleanup(tcp); 1783 ASSERT(connp->conn_latch == NULL); 1784 ASSERT(connp->conn_policy == NULL); 1785 ASSERT(tcp->tcp_tcps == NULL); 1786 ASSERT(connp->conn_netstack == NULL); 1787 1788 mutex_enter( 1789 &tcp_time_wait->tcp_time_wait_lock); 1790 tcp->tcp_time_wait_next = 1791 tcp_time_wait->tcp_free_list; 1792 tcp_time_wait->tcp_free_list = tcp; 1793 tcp_time_wait->tcp_free_list_cnt++; 1794 continue; 1795 } else { 1796 /* Do not add to tcp_free_list */ 1797 mutex_exit( 1798 &tcp_time_wait->tcp_time_wait_lock); 1799 tcp_bind_hash_remove(tcp); 1800 conn_delete_ire(tcp->tcp_connp, NULL); 1801 tcp_ipsec_cleanup(tcp); 1802 CONN_DEC_REF(tcp->tcp_connp); 1803 } 1804 } else { 1805 CONN_INC_REF_LOCKED(connp); 1806 mutex_exit(lock); 1807 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1808 mutex_exit(&connp->conn_lock); 1809 /* 1810 * We can reuse the closemp here since conn has 1811 * detached (otherwise we wouldn't even be in 1812 * time_wait list). tcp_closemp_used can safely 1813 * be changed without taking a lock as no other 1814 * thread can concurrently access it at this 1815 * point in the connection lifecycle. 1816 */ 1817 1818 if (tcp->tcp_closemp.b_prev == NULL) 1819 tcp->tcp_closemp_used = B_TRUE; 1820 else 1821 cmn_err(CE_PANIC, 1822 "tcp_timewait_collector: " 1823 "concurrent use of tcp_closemp: " 1824 "connp %p tcp %p\n", (void *)connp, 1825 (void *)tcp); 1826 1827 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1828 mp = &tcp->tcp_closemp; 1829 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1830 tcp_timewait_output, connp, 1831 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1832 } 1833 } else { 1834 mutex_enter(&connp->conn_lock); 1835 CONN_INC_REF_LOCKED(connp); 1836 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1837 mutex_exit(&connp->conn_lock); 1838 /* 1839 * We can reuse the closemp here since conn has 1840 * detached (otherwise we wouldn't even be in 1841 * time_wait list). tcp_closemp_used can safely 1842 * be changed without taking a lock as no other 1843 * thread can concurrently access it at this 1844 * point in the connection lifecycle. 1845 */ 1846 1847 if (tcp->tcp_closemp.b_prev == NULL) 1848 tcp->tcp_closemp_used = B_TRUE; 1849 else 1850 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1851 "concurrent use of tcp_closemp: " 1852 "connp %p tcp %p\n", (void *)connp, 1853 (void *)tcp); 1854 1855 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1856 mp = &tcp->tcp_closemp; 1857 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1858 tcp_timewait_output, connp, 1859 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1860 } 1861 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1862 } 1863 1864 if (tcp_time_wait->tcp_free_list != NULL) 1865 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1866 1867 tcp_time_wait->tcp_time_wait_tid = 1868 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1869 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1870 CALLOUT_FLAG_ROUNDUP); 1871 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1872 } 1873 1874 /* 1875 * Reply to a clients T_CONN_RES TPI message. This function 1876 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1877 * on the acceptor STREAM and processed in tcp_wput_accept(). 1878 * Read the block comment on top of tcp_conn_request(). 1879 */ 1880 static void 1881 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1882 { 1883 tcp_t *acceptor; 1884 tcp_t *eager; 1885 tcp_t *tcp; 1886 struct T_conn_res *tcr; 1887 t_uscalar_t acceptor_id; 1888 t_scalar_t seqnum; 1889 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1890 struct tcp_options *tcpopt; 1891 mblk_t *ok_mp; 1892 mblk_t *mp1; 1893 tcp_stack_t *tcps = listener->tcp_tcps; 1894 int error; 1895 1896 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1897 tcp_err_ack(listener, mp, TPROTO, 0); 1898 return; 1899 } 1900 tcr = (struct T_conn_res *)mp->b_rptr; 1901 1902 /* 1903 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1904 * read side queue of the streams device underneath us i.e. the 1905 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1906 * look it up in the queue_hash. Under LP64 it sends down the 1907 * minor_t of the accepting endpoint. 1908 * 1909 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1910 * fanout hash lock is held. 1911 * This prevents any thread from entering the acceptor queue from 1912 * below (since it has not been hard bound yet i.e. any inbound 1913 * packets will arrive on the listener or default tcp queue and 1914 * go through tcp_lookup). 1915 * The CONN_INC_REF will prevent the acceptor from closing. 1916 * 1917 * XXX It is still possible for a tli application to send down data 1918 * on the accepting stream while another thread calls t_accept. 1919 * This should not be a problem for well-behaved applications since 1920 * the T_OK_ACK is sent after the queue swapping is completed. 1921 * 1922 * If the accepting fd is the same as the listening fd, avoid 1923 * queue hash lookup since that will return an eager listener in a 1924 * already established state. 1925 */ 1926 acceptor_id = tcr->ACCEPTOR_id; 1927 mutex_enter(&listener->tcp_eager_lock); 1928 if (listener->tcp_acceptor_id == acceptor_id) { 1929 eager = listener->tcp_eager_next_q; 1930 /* only count how many T_CONN_INDs so don't count q0 */ 1931 if ((listener->tcp_conn_req_cnt_q != 1) || 1932 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1933 mutex_exit(&listener->tcp_eager_lock); 1934 tcp_err_ack(listener, mp, TBADF, 0); 1935 return; 1936 } 1937 if (listener->tcp_conn_req_cnt_q0 != 0) { 1938 /* Throw away all the eagers on q0. */ 1939 tcp_eager_cleanup(listener, 1); 1940 } 1941 if (listener->tcp_syn_defense) { 1942 listener->tcp_syn_defense = B_FALSE; 1943 if (listener->tcp_ip_addr_cache != NULL) { 1944 kmem_free(listener->tcp_ip_addr_cache, 1945 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1946 listener->tcp_ip_addr_cache = NULL; 1947 } 1948 } 1949 /* 1950 * Transfer tcp_conn_req_max to the eager so that when 1951 * a disconnect occurs we can revert the endpoint to the 1952 * listen state. 1953 */ 1954 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1955 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1956 /* 1957 * Get a reference on the acceptor just like the 1958 * tcp_acceptor_hash_lookup below. 1959 */ 1960 acceptor = listener; 1961 CONN_INC_REF(acceptor->tcp_connp); 1962 } else { 1963 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1964 if (acceptor == NULL) { 1965 if (listener->tcp_debug) { 1966 (void) strlog(TCP_MOD_ID, 0, 1, 1967 SL_ERROR|SL_TRACE, 1968 "tcp_accept: did not find acceptor 0x%x\n", 1969 acceptor_id); 1970 } 1971 mutex_exit(&listener->tcp_eager_lock); 1972 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1973 return; 1974 } 1975 /* 1976 * Verify acceptor state. The acceptable states for an acceptor 1977 * include TCPS_IDLE and TCPS_BOUND. 1978 */ 1979 switch (acceptor->tcp_state) { 1980 case TCPS_IDLE: 1981 /* FALLTHRU */ 1982 case TCPS_BOUND: 1983 break; 1984 default: 1985 CONN_DEC_REF(acceptor->tcp_connp); 1986 mutex_exit(&listener->tcp_eager_lock); 1987 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1988 return; 1989 } 1990 } 1991 1992 /* The listener must be in TCPS_LISTEN */ 1993 if (listener->tcp_state != TCPS_LISTEN) { 1994 CONN_DEC_REF(acceptor->tcp_connp); 1995 mutex_exit(&listener->tcp_eager_lock); 1996 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1997 return; 1998 } 1999 2000 /* 2001 * Rendezvous with an eager connection request packet hanging off 2002 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2003 * tcp structure when the connection packet arrived in 2004 * tcp_conn_request(). 2005 */ 2006 seqnum = tcr->SEQ_number; 2007 eager = listener; 2008 do { 2009 eager = eager->tcp_eager_next_q; 2010 if (eager == NULL) { 2011 CONN_DEC_REF(acceptor->tcp_connp); 2012 mutex_exit(&listener->tcp_eager_lock); 2013 tcp_err_ack(listener, mp, TBADSEQ, 0); 2014 return; 2015 } 2016 } while (eager->tcp_conn_req_seqnum != seqnum); 2017 mutex_exit(&listener->tcp_eager_lock); 2018 2019 /* 2020 * At this point, both acceptor and listener have 2 ref 2021 * that they begin with. Acceptor has one additional ref 2022 * we placed in lookup while listener has 3 additional 2023 * ref for being behind the squeue (tcp_accept() is 2024 * done on listener's squeue); being in classifier hash; 2025 * and eager's ref on listener. 2026 */ 2027 ASSERT(listener->tcp_connp->conn_ref >= 5); 2028 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2029 2030 /* 2031 * The eager at this point is set in its own squeue and 2032 * could easily have been killed (tcp_accept_finish will 2033 * deal with that) because of a TH_RST so we can only 2034 * ASSERT for a single ref. 2035 */ 2036 ASSERT(eager->tcp_connp->conn_ref >= 1); 2037 2038 /* Pre allocate the stroptions mblk also */ 2039 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2040 sizeof (struct T_conn_res)), BPRI_HI); 2041 if (opt_mp == NULL) { 2042 CONN_DEC_REF(acceptor->tcp_connp); 2043 CONN_DEC_REF(eager->tcp_connp); 2044 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2045 return; 2046 } 2047 DB_TYPE(opt_mp) = M_SETOPTS; 2048 opt_mp->b_wptr += sizeof (struct tcp_options); 2049 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2050 tcpopt->to_flags = 0; 2051 2052 /* 2053 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2054 * from listener to acceptor. 2055 */ 2056 if (listener->tcp_bound_if != 0) { 2057 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2058 tcpopt->to_boundif = listener->tcp_bound_if; 2059 } 2060 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2061 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2062 } 2063 2064 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2065 if ((mp1 = copymsg(mp)) == NULL) { 2066 CONN_DEC_REF(acceptor->tcp_connp); 2067 CONN_DEC_REF(eager->tcp_connp); 2068 freemsg(opt_mp); 2069 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2070 return; 2071 } 2072 2073 tcr = (struct T_conn_res *)mp1->b_rptr; 2074 2075 /* 2076 * This is an expanded version of mi_tpi_ok_ack_alloc() 2077 * which allocates a larger mblk and appends the new 2078 * local address to the ok_ack. The address is copied by 2079 * soaccept() for getsockname(). 2080 */ 2081 { 2082 int extra; 2083 2084 extra = (eager->tcp_family == AF_INET) ? 2085 sizeof (sin_t) : sizeof (sin6_t); 2086 2087 /* 2088 * Try to re-use mp, if possible. Otherwise, allocate 2089 * an mblk and return it as ok_mp. In any case, mp 2090 * is no longer usable upon return. 2091 */ 2092 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2093 CONN_DEC_REF(acceptor->tcp_connp); 2094 CONN_DEC_REF(eager->tcp_connp); 2095 freemsg(opt_mp); 2096 /* Original mp has been freed by now, so use mp1 */ 2097 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2098 return; 2099 } 2100 2101 mp = NULL; /* We should never use mp after this point */ 2102 2103 switch (extra) { 2104 case sizeof (sin_t): { 2105 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2106 2107 ok_mp->b_wptr += extra; 2108 sin->sin_family = AF_INET; 2109 sin->sin_port = eager->tcp_lport; 2110 sin->sin_addr.s_addr = 2111 eager->tcp_ipha->ipha_src; 2112 break; 2113 } 2114 case sizeof (sin6_t): { 2115 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2116 2117 ok_mp->b_wptr += extra; 2118 sin6->sin6_family = AF_INET6; 2119 sin6->sin6_port = eager->tcp_lport; 2120 if (eager->tcp_ipversion == IPV4_VERSION) { 2121 sin6->sin6_flowinfo = 0; 2122 IN6_IPADDR_TO_V4MAPPED( 2123 eager->tcp_ipha->ipha_src, 2124 &sin6->sin6_addr); 2125 } else { 2126 ASSERT(eager->tcp_ip6h != NULL); 2127 sin6->sin6_flowinfo = 2128 eager->tcp_ip6h->ip6_vcf & 2129 ~IPV6_VERS_AND_FLOW_MASK; 2130 sin6->sin6_addr = 2131 eager->tcp_ip6h->ip6_src; 2132 } 2133 sin6->sin6_scope_id = 0; 2134 sin6->__sin6_src_id = 0; 2135 break; 2136 } 2137 default: 2138 break; 2139 } 2140 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2141 } 2142 2143 /* 2144 * If there are no options we know that the T_CONN_RES will 2145 * succeed. However, we can't send the T_OK_ACK upstream until 2146 * the tcp_accept_swap is done since it would be dangerous to 2147 * let the application start using the new fd prior to the swap. 2148 */ 2149 error = tcp_accept_swap(listener, acceptor, eager); 2150 if (error != 0) { 2151 CONN_DEC_REF(acceptor->tcp_connp); 2152 CONN_DEC_REF(eager->tcp_connp); 2153 freemsg(ok_mp); 2154 /* Original mp has been freed by now, so use mp1 */ 2155 tcp_err_ack(listener, mp1, TSYSERR, error); 2156 return; 2157 } 2158 2159 /* 2160 * tcp_accept_swap unlinks eager from listener but does not drop 2161 * the eager's reference on the listener. 2162 */ 2163 ASSERT(eager->tcp_listener == NULL); 2164 ASSERT(listener->tcp_connp->conn_ref >= 5); 2165 2166 /* 2167 * The eager is now associated with its own queue. Insert in 2168 * the hash so that the connection can be reused for a future 2169 * T_CONN_RES. 2170 */ 2171 tcp_acceptor_hash_insert(acceptor_id, eager); 2172 2173 /* 2174 * We now do the processing of options with T_CONN_RES. 2175 * We delay till now since we wanted to have queue to pass to 2176 * option processing routines that points back to the right 2177 * instance structure which does not happen until after 2178 * tcp_accept_swap(). 2179 * 2180 * Note: 2181 * The sanity of the logic here assumes that whatever options 2182 * are appropriate to inherit from listner=>eager are done 2183 * before this point, and whatever were to be overridden (or not) 2184 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2185 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2186 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2187 * This may not be true at this point in time but can be fixed 2188 * independently. This option processing code starts with 2189 * the instantiated acceptor instance and the final queue at 2190 * this point. 2191 */ 2192 2193 if (tcr->OPT_length != 0) { 2194 /* Options to process */ 2195 int t_error = 0; 2196 int sys_error = 0; 2197 int do_disconnect = 0; 2198 2199 if (tcp_conprim_opt_process(eager, mp1, 2200 &do_disconnect, &t_error, &sys_error) < 0) { 2201 eager->tcp_accept_error = 1; 2202 if (do_disconnect) { 2203 /* 2204 * An option failed which does not allow 2205 * connection to be accepted. 2206 * 2207 * We allow T_CONN_RES to succeed and 2208 * put a T_DISCON_IND on the eager queue. 2209 */ 2210 ASSERT(t_error == 0 && sys_error == 0); 2211 eager->tcp_send_discon_ind = 1; 2212 } else { 2213 ASSERT(t_error != 0); 2214 freemsg(ok_mp); 2215 /* 2216 * Original mp was either freed or set 2217 * to ok_mp above, so use mp1 instead. 2218 */ 2219 tcp_err_ack(listener, mp1, t_error, sys_error); 2220 goto finish; 2221 } 2222 } 2223 /* 2224 * Most likely success in setting options (except if 2225 * eager->tcp_send_discon_ind set). 2226 * mp1 option buffer represented by OPT_length/offset 2227 * potentially modified and contains results of setting 2228 * options at this point 2229 */ 2230 } 2231 2232 /* We no longer need mp1, since all options processing has passed */ 2233 freemsg(mp1); 2234 2235 putnext(listener->tcp_rq, ok_mp); 2236 2237 mutex_enter(&listener->tcp_eager_lock); 2238 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2239 tcp_t *tail; 2240 mblk_t *conn_ind; 2241 2242 /* 2243 * This path should not be executed if listener and 2244 * acceptor streams are the same. 2245 */ 2246 ASSERT(listener != acceptor); 2247 2248 tcp = listener->tcp_eager_prev_q0; 2249 /* 2250 * listener->tcp_eager_prev_q0 points to the TAIL of the 2251 * deferred T_conn_ind queue. We need to get to the head of 2252 * the queue in order to send up T_conn_ind the same order as 2253 * how the 3WHS is completed. 2254 */ 2255 while (tcp != listener) { 2256 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2257 break; 2258 else 2259 tcp = tcp->tcp_eager_prev_q0; 2260 } 2261 ASSERT(tcp != listener); 2262 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2263 ASSERT(conn_ind != NULL); 2264 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2265 2266 /* Move from q0 to q */ 2267 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2268 listener->tcp_conn_req_cnt_q0--; 2269 listener->tcp_conn_req_cnt_q++; 2270 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2271 tcp->tcp_eager_prev_q0; 2272 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2273 tcp->tcp_eager_next_q0; 2274 tcp->tcp_eager_prev_q0 = NULL; 2275 tcp->tcp_eager_next_q0 = NULL; 2276 tcp->tcp_conn_def_q0 = B_FALSE; 2277 2278 /* Make sure the tcp isn't in the list of droppables */ 2279 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2280 tcp->tcp_eager_prev_drop_q0 == NULL); 2281 2282 /* 2283 * Insert at end of the queue because sockfs sends 2284 * down T_CONN_RES in chronological order. Leaving 2285 * the older conn indications at front of the queue 2286 * helps reducing search time. 2287 */ 2288 tail = listener->tcp_eager_last_q; 2289 if (tail != NULL) 2290 tail->tcp_eager_next_q = tcp; 2291 else 2292 listener->tcp_eager_next_q = tcp; 2293 listener->tcp_eager_last_q = tcp; 2294 tcp->tcp_eager_next_q = NULL; 2295 mutex_exit(&listener->tcp_eager_lock); 2296 putnext(tcp->tcp_rq, conn_ind); 2297 } else { 2298 mutex_exit(&listener->tcp_eager_lock); 2299 } 2300 2301 /* 2302 * Done with the acceptor - free it 2303 * 2304 * Note: from this point on, no access to listener should be made 2305 * as listener can be equal to acceptor. 2306 */ 2307 finish: 2308 ASSERT(acceptor->tcp_detached); 2309 ASSERT(tcps->tcps_g_q != NULL); 2310 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2311 acceptor->tcp_rq = tcps->tcps_g_q; 2312 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2313 (void) tcp_clean_death(acceptor, 0, 2); 2314 CONN_DEC_REF(acceptor->tcp_connp); 2315 2316 /* 2317 * In case we already received a FIN we have to make tcp_rput send 2318 * the ordrel_ind. This will also send up a window update if the window 2319 * has opened up. 2320 * 2321 * In the normal case of a successful connection acceptance 2322 * we give the O_T_BIND_REQ to the read side put procedure as an 2323 * indication that this was just accepted. This tells tcp_rput to 2324 * pass up any data queued in tcp_rcv_list. 2325 * 2326 * In the fringe case where options sent with T_CONN_RES failed and 2327 * we required, we would be indicating a T_DISCON_IND to blow 2328 * away this connection. 2329 */ 2330 2331 /* 2332 * XXX: we currently have a problem if XTI application closes the 2333 * acceptor stream in between. This problem exists in on10-gate also 2334 * and is well know but nothing can be done short of major rewrite 2335 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2336 * eager same squeue as listener (we can distinguish non socket 2337 * listeners at the time of handling a SYN in tcp_conn_request) 2338 * and do most of the work that tcp_accept_finish does here itself 2339 * and then get behind the acceptor squeue to access the acceptor 2340 * queue. 2341 */ 2342 /* 2343 * We already have a ref on tcp so no need to do one before squeue_enter 2344 */ 2345 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2346 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2347 } 2348 2349 /* 2350 * Swap information between the eager and acceptor for a TLI/XTI client. 2351 * The sockfs accept is done on the acceptor stream and control goes 2352 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2353 * called. In either case, both the eager and listener are in their own 2354 * perimeter (squeue) and the code has to deal with potential race. 2355 * 2356 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2357 */ 2358 static int 2359 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2360 { 2361 conn_t *econnp, *aconnp; 2362 cred_t *effective_cred = NULL; 2363 2364 ASSERT(eager->tcp_rq == listener->tcp_rq); 2365 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2366 ASSERT(!eager->tcp_hard_bound); 2367 ASSERT(!TCP_IS_SOCKET(acceptor)); 2368 ASSERT(!TCP_IS_SOCKET(eager)); 2369 ASSERT(!TCP_IS_SOCKET(listener)); 2370 2371 econnp = eager->tcp_connp; 2372 aconnp = acceptor->tcp_connp; 2373 2374 /* 2375 * Trusted Extensions may need to use a security label that is 2376 * different from the acceptor's label on MLP and MAC-Exempt 2377 * sockets. If this is the case, the required security label 2378 * already exists in econnp->conn_effective_cred. Use this label 2379 * to generate a new effective cred for the acceptor. 2380 * 2381 * We allow for potential application level retry attempts by 2382 * checking for transient errors before modifying eager. 2383 */ 2384 if (is_system_labeled() && 2385 aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) { 2386 effective_cred = copycred_from_tslabel(aconnp->conn_cred, 2387 crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP); 2388 if (effective_cred == NULL) 2389 return (ENOMEM); 2390 } 2391 2392 acceptor->tcp_detached = B_TRUE; 2393 /* 2394 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2395 * the acceptor id. 2396 */ 2397 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2398 2399 /* remove eager from listen list... */ 2400 mutex_enter(&listener->tcp_eager_lock); 2401 tcp_eager_unlink(eager); 2402 ASSERT(eager->tcp_eager_next_q == NULL && 2403 eager->tcp_eager_last_q == NULL); 2404 ASSERT(eager->tcp_eager_next_q0 == NULL && 2405 eager->tcp_eager_prev_q0 == NULL); 2406 mutex_exit(&listener->tcp_eager_lock); 2407 eager->tcp_rq = acceptor->tcp_rq; 2408 eager->tcp_wq = acceptor->tcp_wq; 2409 2410 eager->tcp_rq->q_ptr = econnp; 2411 eager->tcp_wq->q_ptr = econnp; 2412 2413 /* 2414 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2415 * which might be a different squeue from our peer TCP instance. 2416 * For TCP Fusion, the peer expects that whenever tcp_detached is 2417 * clear, our TCP queues point to the acceptor's queues. Thus, use 2418 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2419 * above reach global visibility prior to the clearing of tcp_detached. 2420 */ 2421 membar_producer(); 2422 eager->tcp_detached = B_FALSE; 2423 2424 ASSERT(eager->tcp_ack_tid == 0); 2425 2426 econnp->conn_dev = aconnp->conn_dev; 2427 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2428 2429 ASSERT(econnp->conn_minor_arena != NULL); 2430 if (eager->tcp_cred != NULL) 2431 crfree(eager->tcp_cred); 2432 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2433 if (econnp->conn_effective_cred != NULL) 2434 crfree(econnp->conn_effective_cred); 2435 econnp->conn_effective_cred = effective_cred; 2436 aconnp->conn_cred = NULL; 2437 ASSERT(aconnp->conn_effective_cred == NULL); 2438 2439 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2440 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2441 2442 econnp->conn_zoneid = aconnp->conn_zoneid; 2443 econnp->conn_allzones = aconnp->conn_allzones; 2444 2445 aconnp->conn_mac_exempt = B_FALSE; 2446 2447 /* Do the IPC initialization */ 2448 CONN_INC_REF(econnp); 2449 2450 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2451 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2452 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2453 2454 /* Done with old IPC. Drop its ref on its connp */ 2455 CONN_DEC_REF(aconnp); 2456 return (0); 2457 } 2458 2459 2460 /* 2461 * Adapt to the information, such as rtt and rtt_sd, provided from the 2462 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2463 * 2464 * Checks for multicast and broadcast destination address. 2465 * Returns zero on failure; non-zero if ok. 2466 * 2467 * Note that the MSS calculation here is based on the info given in 2468 * the IRE. We do not do any calculation based on TCP options. They 2469 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2470 * knows which options to use. 2471 * 2472 * Note on how TCP gets its parameters for a connection. 2473 * 2474 * When a tcp_t structure is allocated, it gets all the default parameters. 2475 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2476 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2477 * default. 2478 * 2479 * An incoming SYN with a multicast or broadcast destination address, is dropped 2480 * in 1 of 2 places. 2481 * 2482 * 1. If the packet was received over the wire it is dropped in 2483 * ip_rput_process_broadcast() 2484 * 2485 * 2. If the packet was received through internal IP loopback, i.e. the packet 2486 * was generated and received on the same machine, it is dropped in 2487 * ip_wput_local() 2488 * 2489 * An incoming SYN with a multicast or broadcast source address is always 2490 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2491 * reject an attempt to connect to a broadcast or multicast (destination) 2492 * address. 2493 */ 2494 static int 2495 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2496 { 2497 ire_t *ire; 2498 ire_t *sire = NULL; 2499 iulp_t *ire_uinfo = NULL; 2500 uint32_t mss_max; 2501 uint32_t mss; 2502 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2503 conn_t *connp = tcp->tcp_connp; 2504 boolean_t ire_cacheable = B_FALSE; 2505 zoneid_t zoneid = connp->conn_zoneid; 2506 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2507 MATCH_IRE_SECATTR; 2508 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2509 ill_t *ill = NULL; 2510 boolean_t incoming = (ire_mp == NULL); 2511 tcp_stack_t *tcps = tcp->tcp_tcps; 2512 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2513 2514 ASSERT(connp->conn_ire_cache == NULL); 2515 2516 if (tcp->tcp_ipversion == IPV4_VERSION) { 2517 2518 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2519 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2520 return (0); 2521 } 2522 /* 2523 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2524 * for the destination with the nexthop as gateway. 2525 * ire_ctable_lookup() is used because this particular 2526 * ire, if it exists, will be marked private. 2527 * If that is not available, use the interface ire 2528 * for the nexthop. 2529 * 2530 * TSol: tcp_update_label will detect label mismatches based 2531 * only on the destination's label, but that would not 2532 * detect label mismatches based on the security attributes 2533 * of routes or next hop gateway. Hence we need to pass the 2534 * label to ire_ftable_lookup below in order to locate the 2535 * right prefix (and/or) ire cache. Similarly we also need 2536 * pass the label to the ire_cache_lookup below to locate 2537 * the right ire that also matches on the label. 2538 */ 2539 if (tcp->tcp_connp->conn_nexthop_set) { 2540 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2541 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2542 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2543 ipst); 2544 if (ire == NULL) { 2545 ire = ire_ftable_lookup( 2546 tcp->tcp_connp->conn_nexthop_v4, 2547 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2548 tsl, match_flags, ipst); 2549 if (ire == NULL) 2550 return (0); 2551 } else { 2552 ire_uinfo = &ire->ire_uinfo; 2553 } 2554 } else { 2555 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2556 zoneid, tsl, ipst); 2557 if (ire != NULL) { 2558 ire_cacheable = B_TRUE; 2559 ire_uinfo = (ire_mp != NULL) ? 2560 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2561 &ire->ire_uinfo; 2562 2563 } else { 2564 if (ire_mp == NULL) { 2565 ire = ire_ftable_lookup( 2566 tcp->tcp_connp->conn_rem, 2567 0, 0, 0, NULL, &sire, zoneid, 0, 2568 tsl, (MATCH_IRE_RECURSIVE | 2569 MATCH_IRE_DEFAULT), ipst); 2570 if (ire == NULL) 2571 return (0); 2572 ire_uinfo = (sire != NULL) ? 2573 &sire->ire_uinfo : 2574 &ire->ire_uinfo; 2575 } else { 2576 ire = (ire_t *)ire_mp->b_rptr; 2577 ire_uinfo = 2578 &((ire_t *) 2579 ire_mp->b_rptr)->ire_uinfo; 2580 } 2581 } 2582 } 2583 ASSERT(ire != NULL); 2584 2585 if ((ire->ire_src_addr == INADDR_ANY) || 2586 (ire->ire_type & IRE_BROADCAST)) { 2587 /* 2588 * ire->ire_mp is non null when ire_mp passed in is used 2589 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2590 */ 2591 if (ire->ire_mp == NULL) 2592 ire_refrele(ire); 2593 if (sire != NULL) 2594 ire_refrele(sire); 2595 return (0); 2596 } 2597 2598 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2599 ipaddr_t src_addr; 2600 2601 /* 2602 * ip_bind_connected() has stored the correct source 2603 * address in conn_src. 2604 */ 2605 src_addr = tcp->tcp_connp->conn_src; 2606 tcp->tcp_ipha->ipha_src = src_addr; 2607 /* 2608 * Copy of the src addr. in tcp_t is needed 2609 * for the lookup funcs. 2610 */ 2611 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2612 } 2613 /* 2614 * Set the fragment bit so that IP will tell us if the MTU 2615 * should change. IP tells us the latest setting of 2616 * ip_path_mtu_discovery through ire_frag_flag. 2617 */ 2618 if (ipst->ips_ip_path_mtu_discovery) { 2619 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2620 htons(IPH_DF); 2621 } 2622 /* 2623 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2624 * for IP_NEXTHOP. No cache ire has been found for the 2625 * destination and we are working with the nexthop's 2626 * interface ire. Since we need to forward all packets 2627 * to the nexthop first, we "blindly" set tcp_localnet 2628 * to false, eventhough the destination may also be 2629 * onlink. 2630 */ 2631 if (ire_uinfo == NULL) 2632 tcp->tcp_localnet = 0; 2633 else 2634 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2635 } else { 2636 /* 2637 * For incoming connection ire_mp = NULL 2638 * For outgoing connection ire_mp != NULL 2639 * Technically we should check conn_incoming_ill 2640 * when ire_mp is NULL and conn_outgoing_ill when 2641 * ire_mp is non-NULL. But this is performance 2642 * critical path and for IPV*_BOUND_IF, outgoing 2643 * and incoming ill are always set to the same value. 2644 */ 2645 ill_t *dst_ill = NULL; 2646 ipif_t *dst_ipif = NULL; 2647 2648 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2649 2650 if (connp->conn_outgoing_ill != NULL) { 2651 /* Outgoing or incoming path */ 2652 int err; 2653 2654 dst_ill = conn_get_held_ill(connp, 2655 &connp->conn_outgoing_ill, &err); 2656 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2657 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2658 return (0); 2659 } 2660 match_flags |= MATCH_IRE_ILL; 2661 dst_ipif = dst_ill->ill_ipif; 2662 } 2663 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2664 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2665 2666 if (ire != NULL) { 2667 ire_cacheable = B_TRUE; 2668 ire_uinfo = (ire_mp != NULL) ? 2669 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2670 &ire->ire_uinfo; 2671 } else { 2672 if (ire_mp == NULL) { 2673 ire = ire_ftable_lookup_v6( 2674 &tcp->tcp_connp->conn_remv6, 2675 0, 0, 0, dst_ipif, &sire, zoneid, 2676 0, tsl, match_flags, ipst); 2677 if (ire == NULL) { 2678 if (dst_ill != NULL) 2679 ill_refrele(dst_ill); 2680 return (0); 2681 } 2682 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2683 &ire->ire_uinfo; 2684 } else { 2685 ire = (ire_t *)ire_mp->b_rptr; 2686 ire_uinfo = 2687 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2688 } 2689 } 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 2693 ASSERT(ire != NULL); 2694 ASSERT(ire_uinfo != NULL); 2695 2696 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2697 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2698 /* 2699 * ire->ire_mp is non null when ire_mp passed in is used 2700 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2701 */ 2702 if (ire->ire_mp == NULL) 2703 ire_refrele(ire); 2704 if (sire != NULL) 2705 ire_refrele(sire); 2706 return (0); 2707 } 2708 2709 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2710 in6_addr_t src_addr; 2711 2712 /* 2713 * ip_bind_connected_v6() has stored the correct source 2714 * address per IPv6 addr. selection policy in 2715 * conn_src_v6. 2716 */ 2717 src_addr = tcp->tcp_connp->conn_srcv6; 2718 2719 tcp->tcp_ip6h->ip6_src = src_addr; 2720 /* 2721 * Copy of the src addr. in tcp_t is needed 2722 * for the lookup funcs. 2723 */ 2724 tcp->tcp_ip_src_v6 = src_addr; 2725 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2726 &connp->conn_srcv6)); 2727 } 2728 tcp->tcp_localnet = 2729 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2730 } 2731 2732 /* 2733 * This allows applications to fail quickly when connections are made 2734 * to dead hosts. Hosts can be labeled dead by adding a reject route 2735 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2736 */ 2737 if ((ire->ire_flags & RTF_REJECT) && 2738 (ire->ire_flags & RTF_PRIVATE)) 2739 goto error; 2740 2741 /* 2742 * Make use of the cached rtt and rtt_sd values to calculate the 2743 * initial RTO. Note that they are already initialized in 2744 * tcp_init_values(). 2745 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2746 * IP_NEXTHOP, but instead are using the interface ire for the 2747 * nexthop, then we do not use the ire_uinfo from that ire to 2748 * do any initializations. 2749 */ 2750 if (ire_uinfo != NULL) { 2751 if (ire_uinfo->iulp_rtt != 0) { 2752 clock_t rto; 2753 2754 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2755 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2756 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2757 tcps->tcps_rexmit_interval_extra + 2758 (tcp->tcp_rtt_sa >> 5); 2759 2760 if (rto > tcps->tcps_rexmit_interval_max) { 2761 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2762 } else if (rto < tcps->tcps_rexmit_interval_min) { 2763 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2764 } else { 2765 tcp->tcp_rto = rto; 2766 } 2767 } 2768 if (ire_uinfo->iulp_ssthresh != 0) 2769 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2770 else 2771 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2772 if (ire_uinfo->iulp_spipe > 0) { 2773 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2774 tcps->tcps_max_buf); 2775 if (tcps->tcps_snd_lowat_fraction != 0) 2776 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2777 tcps->tcps_snd_lowat_fraction; 2778 (void) tcp_maxpsz_set(tcp, B_TRUE); 2779 } 2780 /* 2781 * Note that up till now, acceptor always inherits receive 2782 * window from the listener. But if there is a metrics 2783 * associated with a host, we should use that instead of 2784 * inheriting it from listener. Thus we need to pass this 2785 * info back to the caller. 2786 */ 2787 if (ire_uinfo->iulp_rpipe > 0) { 2788 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2789 tcps->tcps_max_buf); 2790 } 2791 2792 if (ire_uinfo->iulp_rtomax > 0) { 2793 tcp->tcp_second_timer_threshold = 2794 ire_uinfo->iulp_rtomax; 2795 } 2796 2797 /* 2798 * Use the metric option settings, iulp_tstamp_ok and 2799 * iulp_wscale_ok, only for active open. What this means 2800 * is that if the other side uses timestamp or window 2801 * scale option, TCP will also use those options. That 2802 * is for passive open. If the application sets a 2803 * large window, window scale is enabled regardless of 2804 * the value in iulp_wscale_ok. This is the behavior 2805 * since 2.6. So we keep it. 2806 * The only case left in passive open processing is the 2807 * check for SACK. 2808 * For ECN, it should probably be like SACK. But the 2809 * current value is binary, so we treat it like the other 2810 * cases. The metric only controls active open.For passive 2811 * open, the ndd param, tcp_ecn_permitted, controls the 2812 * behavior. 2813 */ 2814 if (!tcp_detached) { 2815 /* 2816 * The if check means that the following can only 2817 * be turned on by the metrics only IRE, but not off. 2818 */ 2819 if (ire_uinfo->iulp_tstamp_ok) 2820 tcp->tcp_snd_ts_ok = B_TRUE; 2821 if (ire_uinfo->iulp_wscale_ok) 2822 tcp->tcp_snd_ws_ok = B_TRUE; 2823 if (ire_uinfo->iulp_sack == 2) 2824 tcp->tcp_snd_sack_ok = B_TRUE; 2825 if (ire_uinfo->iulp_ecn_ok) 2826 tcp->tcp_ecn_ok = B_TRUE; 2827 } else { 2828 /* 2829 * Passive open. 2830 * 2831 * As above, the if check means that SACK can only be 2832 * turned on by the metric only IRE. 2833 */ 2834 if (ire_uinfo->iulp_sack > 0) { 2835 tcp->tcp_snd_sack_ok = B_TRUE; 2836 } 2837 } 2838 } 2839 2840 2841 /* 2842 * XXX: Note that currently, ire_max_frag can be as small as 68 2843 * because of PMTUd. So tcp_mss may go to negative if combined 2844 * length of all those options exceeds 28 bytes. But because 2845 * of the tcp_mss_min check below, we may not have a problem if 2846 * tcp_mss_min is of a reasonable value. The default is 1 so 2847 * the negative problem still exists. And the check defeats PMTUd. 2848 * In fact, if PMTUd finds that the MSS should be smaller than 2849 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2850 * value. 2851 * 2852 * We do not deal with that now. All those problems related to 2853 * PMTUd will be fixed later. 2854 */ 2855 ASSERT(ire->ire_max_frag != 0); 2856 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2857 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2858 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2859 mss = MIN(mss, IPV6_MIN_MTU); 2860 } 2861 } 2862 2863 /* Sanity check for MSS value. */ 2864 if (tcp->tcp_ipversion == IPV4_VERSION) 2865 mss_max = tcps->tcps_mss_max_ipv4; 2866 else 2867 mss_max = tcps->tcps_mss_max_ipv6; 2868 2869 if (tcp->tcp_ipversion == IPV6_VERSION && 2870 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2871 /* 2872 * After receiving an ICMPv6 "packet too big" message with a 2873 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2874 * will insert a 8-byte fragment header in every packet; we 2875 * reduce the MSS by that amount here. 2876 */ 2877 mss -= sizeof (ip6_frag_t); 2878 } 2879 2880 if (tcp->tcp_ipsec_overhead == 0) 2881 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2882 2883 mss -= tcp->tcp_ipsec_overhead; 2884 2885 if (mss < tcps->tcps_mss_min) 2886 mss = tcps->tcps_mss_min; 2887 if (mss > mss_max) 2888 mss = mss_max; 2889 2890 /* Note that this is the maximum MSS, excluding all options. */ 2891 tcp->tcp_mss = mss; 2892 2893 /* 2894 * Initialize the ISS here now that we have the full connection ID. 2895 * The RFC 1948 method of initial sequence number generation requires 2896 * knowledge of the full connection ID before setting the ISS. 2897 */ 2898 2899 tcp_iss_init(tcp); 2900 2901 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2902 tcp->tcp_loopback = B_TRUE; 2903 2904 if (sire != NULL) 2905 IRE_REFRELE(sire); 2906 2907 /* 2908 * If we got an IRE_CACHE and an ILL, go through their properties; 2909 * otherwise, this is deferred until later when we have an IRE_CACHE. 2910 */ 2911 if (tcp->tcp_loopback || 2912 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2913 /* 2914 * For incoming, see if this tcp may be MDT-capable. For 2915 * outgoing, this process has been taken care of through 2916 * tcp_rput_other. 2917 */ 2918 tcp_ire_ill_check(tcp, ire, ill, incoming); 2919 tcp->tcp_ire_ill_check_done = B_TRUE; 2920 } 2921 2922 mutex_enter(&connp->conn_lock); 2923 /* 2924 * Make sure that conn is not marked incipient 2925 * for incoming connections. A blind 2926 * removal of incipient flag is cheaper than 2927 * check and removal. 2928 */ 2929 connp->conn_state_flags &= ~CONN_INCIPIENT; 2930 2931 /* 2932 * Must not cache forwarding table routes 2933 * or recache an IRE after the conn_t has 2934 * had conn_ire_cache cleared and is flagged 2935 * unusable, (see the CONN_CACHE_IRE() macro). 2936 */ 2937 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2938 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2939 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2940 connp->conn_ire_cache = ire; 2941 IRE_UNTRACE_REF(ire); 2942 rw_exit(&ire->ire_bucket->irb_lock); 2943 mutex_exit(&connp->conn_lock); 2944 return (1); 2945 } 2946 rw_exit(&ire->ire_bucket->irb_lock); 2947 } 2948 mutex_exit(&connp->conn_lock); 2949 2950 if (ire->ire_mp == NULL) 2951 ire_refrele(ire); 2952 return (1); 2953 2954 error: 2955 if (ire->ire_mp == NULL) 2956 ire_refrele(ire); 2957 if (sire != NULL) 2958 ire_refrele(sire); 2959 return (0); 2960 } 2961 2962 static void 2963 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2964 { 2965 int error; 2966 conn_t *connp = tcp->tcp_connp; 2967 struct sockaddr *sa; 2968 mblk_t *mp1; 2969 struct T_bind_req *tbr; 2970 int backlog; 2971 socklen_t len; 2972 sin_t *sin; 2973 sin6_t *sin6; 2974 cred_t *cr; 2975 2976 /* 2977 * All Solaris components should pass a db_credp 2978 * for this TPI message, hence we ASSERT. 2979 * But in case there is some other M_PROTO that looks 2980 * like a TPI message sent by some other kernel 2981 * component, we check and return an error. 2982 */ 2983 cr = msg_getcred(mp, NULL); 2984 ASSERT(cr != NULL); 2985 if (cr == NULL) { 2986 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2987 return; 2988 } 2989 2990 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2991 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2992 if (tcp->tcp_debug) { 2993 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2994 "tcp_tpi_bind: bad req, len %u", 2995 (uint_t)(mp->b_wptr - mp->b_rptr)); 2996 } 2997 tcp_err_ack(tcp, mp, TPROTO, 0); 2998 return; 2999 } 3000 /* Make sure the largest address fits */ 3001 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3002 if (mp1 == NULL) { 3003 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3004 return; 3005 } 3006 mp = mp1; 3007 tbr = (struct T_bind_req *)mp->b_rptr; 3008 3009 backlog = tbr->CONIND_number; 3010 len = tbr->ADDR_length; 3011 3012 switch (len) { 3013 case 0: /* request for a generic port */ 3014 tbr->ADDR_offset = sizeof (struct T_bind_req); 3015 if (tcp->tcp_family == AF_INET) { 3016 tbr->ADDR_length = sizeof (sin_t); 3017 sin = (sin_t *)&tbr[1]; 3018 *sin = sin_null; 3019 sin->sin_family = AF_INET; 3020 sa = (struct sockaddr *)sin; 3021 len = sizeof (sin_t); 3022 mp->b_wptr = (uchar_t *)&sin[1]; 3023 } else { 3024 ASSERT(tcp->tcp_family == AF_INET6); 3025 tbr->ADDR_length = sizeof (sin6_t); 3026 sin6 = (sin6_t *)&tbr[1]; 3027 *sin6 = sin6_null; 3028 sin6->sin6_family = AF_INET6; 3029 sa = (struct sockaddr *)sin6; 3030 len = sizeof (sin6_t); 3031 mp->b_wptr = (uchar_t *)&sin6[1]; 3032 } 3033 break; 3034 3035 case sizeof (sin_t): /* Complete IPv4 address */ 3036 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3037 sizeof (sin_t)); 3038 break; 3039 3040 case sizeof (sin6_t): /* Complete IPv6 address */ 3041 sa = (struct sockaddr *)mi_offset_param(mp, 3042 tbr->ADDR_offset, sizeof (sin6_t)); 3043 break; 3044 3045 default: 3046 if (tcp->tcp_debug) { 3047 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3048 "tcp_tpi_bind: bad address length, %d", 3049 tbr->ADDR_length); 3050 } 3051 tcp_err_ack(tcp, mp, TBADADDR, 0); 3052 return; 3053 } 3054 3055 if (backlog > 0) { 3056 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 3057 tbr->PRIM_type != O_T_BIND_REQ); 3058 } else { 3059 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 3060 tbr->PRIM_type != O_T_BIND_REQ); 3061 } 3062 done: 3063 if (error > 0) { 3064 tcp_err_ack(tcp, mp, TSYSERR, error); 3065 } else if (error < 0) { 3066 tcp_err_ack(tcp, mp, -error, 0); 3067 } else { 3068 /* 3069 * Update port information as sockfs/tpi needs it for checking 3070 */ 3071 if (tcp->tcp_family == AF_INET) { 3072 sin = (sin_t *)sa; 3073 sin->sin_port = tcp->tcp_lport; 3074 } else { 3075 sin6 = (sin6_t *)sa; 3076 sin6->sin6_port = tcp->tcp_lport; 3077 } 3078 mp->b_datap->db_type = M_PCPROTO; 3079 tbr->PRIM_type = T_BIND_ACK; 3080 putnext(tcp->tcp_rq, mp); 3081 } 3082 } 3083 3084 /* 3085 * If the "bind_to_req_port_only" parameter is set, if the requested port 3086 * number is available, return it, If not return 0 3087 * 3088 * If "bind_to_req_port_only" parameter is not set and 3089 * If the requested port number is available, return it. If not, return 3090 * the first anonymous port we happen across. If no anonymous ports are 3091 * available, return 0. addr is the requested local address, if any. 3092 * 3093 * In either case, when succeeding update the tcp_t to record the port number 3094 * and insert it in the bind hash table. 3095 * 3096 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3097 * without setting SO_REUSEADDR. This is needed so that they 3098 * can be viewed as two independent transport protocols. 3099 */ 3100 static in_port_t 3101 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3102 int reuseaddr, boolean_t quick_connect, 3103 boolean_t bind_to_req_port_only, boolean_t user_specified) 3104 { 3105 /* number of times we have run around the loop */ 3106 int count = 0; 3107 /* maximum number of times to run around the loop */ 3108 int loopmax; 3109 conn_t *connp = tcp->tcp_connp; 3110 zoneid_t zoneid = connp->conn_zoneid; 3111 tcp_stack_t *tcps = tcp->tcp_tcps; 3112 3113 /* 3114 * Lookup for free addresses is done in a loop and "loopmax" 3115 * influences how long we spin in the loop 3116 */ 3117 if (bind_to_req_port_only) { 3118 /* 3119 * If the requested port is busy, don't bother to look 3120 * for a new one. Setting loop maximum count to 1 has 3121 * that effect. 3122 */ 3123 loopmax = 1; 3124 } else { 3125 /* 3126 * If the requested port is busy, look for a free one 3127 * in the anonymous port range. 3128 * Set loopmax appropriately so that one does not look 3129 * forever in the case all of the anonymous ports are in use. 3130 */ 3131 if (tcp->tcp_anon_priv_bind) { 3132 /* 3133 * loopmax = 3134 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3135 */ 3136 loopmax = IPPORT_RESERVED - 3137 tcps->tcps_min_anonpriv_port; 3138 } else { 3139 loopmax = (tcps->tcps_largest_anon_port - 3140 tcps->tcps_smallest_anon_port + 1); 3141 } 3142 } 3143 do { 3144 uint16_t lport; 3145 tf_t *tbf; 3146 tcp_t *ltcp; 3147 conn_t *lconnp; 3148 3149 lport = htons(port); 3150 3151 /* 3152 * Ensure that the tcp_t is not currently in the bind hash. 3153 * Hold the lock on the hash bucket to ensure that 3154 * the duplicate check plus the insertion is an atomic 3155 * operation. 3156 * 3157 * This function does an inline lookup on the bind hash list 3158 * Make sure that we access only members of tcp_t 3159 * and that we don't look at tcp_tcp, since we are not 3160 * doing a CONN_INC_REF. 3161 */ 3162 tcp_bind_hash_remove(tcp); 3163 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3164 mutex_enter(&tbf->tf_lock); 3165 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3166 ltcp = ltcp->tcp_bind_hash) { 3167 if (lport == ltcp->tcp_lport) 3168 break; 3169 } 3170 3171 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3172 boolean_t not_socket; 3173 boolean_t exclbind; 3174 3175 lconnp = ltcp->tcp_connp; 3176 3177 /* 3178 * On a labeled system, we must treat bindings to ports 3179 * on shared IP addresses by sockets with MAC exemption 3180 * privilege as being in all zones, as there's 3181 * otherwise no way to identify the right receiver. 3182 */ 3183 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3184 IPCL_ZONE_MATCH(connp, 3185 ltcp->tcp_connp->conn_zoneid)) && 3186 !lconnp->conn_mac_exempt && 3187 !connp->conn_mac_exempt) 3188 continue; 3189 3190 /* 3191 * If TCP_EXCLBIND is set for either the bound or 3192 * binding endpoint, the semantics of bind 3193 * is changed according to the following. 3194 * 3195 * spec = specified address (v4 or v6) 3196 * unspec = unspecified address (v4 or v6) 3197 * A = specified addresses are different for endpoints 3198 * 3199 * bound bind to allowed 3200 * ------------------------------------- 3201 * unspec unspec no 3202 * unspec spec no 3203 * spec unspec no 3204 * spec spec yes if A 3205 * 3206 * For labeled systems, SO_MAC_EXEMPT behaves the same 3207 * as TCP_EXCLBIND, except that zoneid is ignored. 3208 * 3209 * Note: 3210 * 3211 * 1. Because of TLI semantics, an endpoint can go 3212 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3213 * TCPS_BOUND, depending on whether it is originally 3214 * a listener or not. That is why we need to check 3215 * for states greater than or equal to TCPS_BOUND 3216 * here. 3217 * 3218 * 2. Ideally, we should only check for state equals 3219 * to TCPS_LISTEN. And the following check should be 3220 * added. 3221 * 3222 * if (ltcp->tcp_state == TCPS_LISTEN || 3223 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3224 * ... 3225 * } 3226 * 3227 * The semantics will be changed to this. If the 3228 * endpoint on the list is in state not equal to 3229 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3230 * set, let the bind succeed. 3231 * 3232 * Because of (1), we cannot do that for TLI 3233 * endpoints. But we can do that for socket endpoints. 3234 * If in future, we can change this going back 3235 * semantics, we can use the above check for TLI also. 3236 */ 3237 not_socket = !(TCP_IS_SOCKET(ltcp) && 3238 TCP_IS_SOCKET(tcp)); 3239 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3240 3241 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3242 (exclbind && (not_socket || 3243 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3244 if (V6_OR_V4_INADDR_ANY( 3245 ltcp->tcp_bound_source_v6) || 3246 V6_OR_V4_INADDR_ANY(*laddr) || 3247 IN6_ARE_ADDR_EQUAL(laddr, 3248 <cp->tcp_bound_source_v6)) { 3249 break; 3250 } 3251 continue; 3252 } 3253 3254 /* 3255 * Check ipversion to allow IPv4 and IPv6 sockets to 3256 * have disjoint port number spaces, if *_EXCLBIND 3257 * is not set and only if the application binds to a 3258 * specific port. We use the same autoassigned port 3259 * number space for IPv4 and IPv6 sockets. 3260 */ 3261 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3262 bind_to_req_port_only) 3263 continue; 3264 3265 /* 3266 * Ideally, we should make sure that the source 3267 * address, remote address, and remote port in the 3268 * four tuple for this tcp-connection is unique. 3269 * However, trying to find out the local source 3270 * address would require too much code duplication 3271 * with IP, since IP needs needs to have that code 3272 * to support userland TCP implementations. 3273 */ 3274 if (quick_connect && 3275 (ltcp->tcp_state > TCPS_LISTEN) && 3276 ((tcp->tcp_fport != ltcp->tcp_fport) || 3277 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3278 <cp->tcp_remote_v6))) 3279 continue; 3280 3281 if (!reuseaddr) { 3282 /* 3283 * No socket option SO_REUSEADDR. 3284 * If existing port is bound to 3285 * a non-wildcard IP address 3286 * and the requesting stream is 3287 * bound to a distinct 3288 * different IP addresses 3289 * (non-wildcard, also), keep 3290 * going. 3291 */ 3292 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3293 !V6_OR_V4_INADDR_ANY( 3294 ltcp->tcp_bound_source_v6) && 3295 !IN6_ARE_ADDR_EQUAL(laddr, 3296 <cp->tcp_bound_source_v6)) 3297 continue; 3298 if (ltcp->tcp_state >= TCPS_BOUND) { 3299 /* 3300 * This port is being used and 3301 * its state is >= TCPS_BOUND, 3302 * so we can't bind to it. 3303 */ 3304 break; 3305 } 3306 } else { 3307 /* 3308 * socket option SO_REUSEADDR is set on the 3309 * binding tcp_t. 3310 * 3311 * If two streams are bound to 3312 * same IP address or both addr 3313 * and bound source are wildcards 3314 * (INADDR_ANY), we want to stop 3315 * searching. 3316 * We have found a match of IP source 3317 * address and source port, which is 3318 * refused regardless of the 3319 * SO_REUSEADDR setting, so we break. 3320 */ 3321 if (IN6_ARE_ADDR_EQUAL(laddr, 3322 <cp->tcp_bound_source_v6) && 3323 (ltcp->tcp_state == TCPS_LISTEN || 3324 ltcp->tcp_state == TCPS_BOUND)) 3325 break; 3326 } 3327 } 3328 if (ltcp != NULL) { 3329 /* The port number is busy */ 3330 mutex_exit(&tbf->tf_lock); 3331 } else { 3332 /* 3333 * This port is ours. Insert in fanout and mark as 3334 * bound to prevent others from getting the port 3335 * number. 3336 */ 3337 tcp->tcp_state = TCPS_BOUND; 3338 tcp->tcp_lport = htons(port); 3339 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3340 3341 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3342 tcp->tcp_lport)] == tbf); 3343 tcp_bind_hash_insert(tbf, tcp, 1); 3344 3345 mutex_exit(&tbf->tf_lock); 3346 3347 /* 3348 * We don't want tcp_next_port_to_try to "inherit" 3349 * a port number supplied by the user in a bind. 3350 */ 3351 if (user_specified) 3352 return (port); 3353 3354 /* 3355 * This is the only place where tcp_next_port_to_try 3356 * is updated. After the update, it may or may not 3357 * be in the valid range. 3358 */ 3359 if (!tcp->tcp_anon_priv_bind) 3360 tcps->tcps_next_port_to_try = port + 1; 3361 return (port); 3362 } 3363 3364 if (tcp->tcp_anon_priv_bind) { 3365 port = tcp_get_next_priv_port(tcp); 3366 } else { 3367 if (count == 0 && user_specified) { 3368 /* 3369 * We may have to return an anonymous port. So 3370 * get one to start with. 3371 */ 3372 port = 3373 tcp_update_next_port( 3374 tcps->tcps_next_port_to_try, 3375 tcp, B_TRUE); 3376 user_specified = B_FALSE; 3377 } else { 3378 port = tcp_update_next_port(port + 1, tcp, 3379 B_FALSE); 3380 } 3381 } 3382 if (port == 0) 3383 break; 3384 3385 /* 3386 * Don't let this loop run forever in the case where 3387 * all of the anonymous ports are in use. 3388 */ 3389 } while (++count < loopmax); 3390 return (0); 3391 } 3392 3393 /* 3394 * tcp_clean_death / tcp_close_detached must not be called more than once 3395 * on a tcp. Thus every function that potentially calls tcp_clean_death 3396 * must check for the tcp state before calling tcp_clean_death. 3397 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3398 * tcp_timer_handler, all check for the tcp state. 3399 */ 3400 /* ARGSUSED */ 3401 void 3402 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3403 { 3404 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3405 3406 freemsg(mp); 3407 if (tcp->tcp_state > TCPS_BOUND) 3408 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3409 ETIMEDOUT, 5); 3410 } 3411 3412 /* 3413 * We are dying for some reason. Try to do it gracefully. (May be called 3414 * as writer.) 3415 * 3416 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3417 * done by a service procedure). 3418 * TBD - Should the return value distinguish between the tcp_t being 3419 * freed and it being reinitialized? 3420 */ 3421 static int 3422 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3423 { 3424 mblk_t *mp; 3425 queue_t *q; 3426 conn_t *connp = tcp->tcp_connp; 3427 tcp_stack_t *tcps = tcp->tcp_tcps; 3428 3429 TCP_CLD_STAT(tag); 3430 3431 #if TCP_TAG_CLEAN_DEATH 3432 tcp->tcp_cleandeathtag = tag; 3433 #endif 3434 3435 if (tcp->tcp_fused) 3436 tcp_unfuse(tcp); 3437 3438 if (tcp->tcp_linger_tid != 0 && 3439 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3440 tcp_stop_lingering(tcp); 3441 } 3442 3443 ASSERT(tcp != NULL); 3444 ASSERT((tcp->tcp_family == AF_INET && 3445 tcp->tcp_ipversion == IPV4_VERSION) || 3446 (tcp->tcp_family == AF_INET6 && 3447 (tcp->tcp_ipversion == IPV4_VERSION || 3448 tcp->tcp_ipversion == IPV6_VERSION))); 3449 3450 if (TCP_IS_DETACHED(tcp)) { 3451 if (tcp->tcp_hard_binding) { 3452 /* 3453 * Its an eager that we are dealing with. We close the 3454 * eager but in case a conn_ind has already gone to the 3455 * listener, let tcp_accept_finish() send a discon_ind 3456 * to the listener and drop the last reference. If the 3457 * listener doesn't even know about the eager i.e. the 3458 * conn_ind hasn't gone up, blow away the eager and drop 3459 * the last reference as well. If the conn_ind has gone 3460 * up, state should be BOUND. tcp_accept_finish 3461 * will figure out that the connection has received a 3462 * RST and will send a DISCON_IND to the application. 3463 */ 3464 tcp_closei_local(tcp); 3465 if (!tcp->tcp_tconnind_started) { 3466 CONN_DEC_REF(connp); 3467 } else { 3468 tcp->tcp_state = TCPS_BOUND; 3469 } 3470 } else { 3471 tcp_close_detached(tcp); 3472 } 3473 return (0); 3474 } 3475 3476 TCP_STAT(tcps, tcp_clean_death_nondetached); 3477 3478 q = tcp->tcp_rq; 3479 3480 /* Trash all inbound data */ 3481 if (!IPCL_IS_NONSTR(connp)) { 3482 ASSERT(q != NULL); 3483 flushq(q, FLUSHALL); 3484 } 3485 3486 /* 3487 * If we are at least part way open and there is error 3488 * (err==0 implies no error) 3489 * notify our client by a T_DISCON_IND. 3490 */ 3491 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3492 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3493 !TCP_IS_SOCKET(tcp)) { 3494 /* 3495 * Send M_FLUSH according to TPI. Because sockets will 3496 * (and must) ignore FLUSHR we do that only for TPI 3497 * endpoints and sockets in STREAMS mode. 3498 */ 3499 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3500 } 3501 if (tcp->tcp_debug) { 3502 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3503 "tcp_clean_death: discon err %d", err); 3504 } 3505 if (IPCL_IS_NONSTR(connp)) { 3506 /* Direct socket, use upcall */ 3507 (*connp->conn_upcalls->su_disconnected)( 3508 connp->conn_upper_handle, tcp->tcp_connid, err); 3509 } else { 3510 mp = mi_tpi_discon_ind(NULL, err, 0); 3511 if (mp != NULL) { 3512 putnext(q, mp); 3513 } else { 3514 if (tcp->tcp_debug) { 3515 (void) strlog(TCP_MOD_ID, 0, 1, 3516 SL_ERROR|SL_TRACE, 3517 "tcp_clean_death, sending M_ERROR"); 3518 } 3519 (void) putnextctl1(q, M_ERROR, EPROTO); 3520 } 3521 } 3522 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3523 /* SYN_SENT or SYN_RCVD */ 3524 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3525 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3526 /* ESTABLISHED or CLOSE_WAIT */ 3527 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3528 } 3529 } 3530 3531 tcp_reinit(tcp); 3532 if (IPCL_IS_NONSTR(connp)) 3533 (void) tcp_do_unbind(connp); 3534 3535 return (-1); 3536 } 3537 3538 /* 3539 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3540 * to expire, stop the wait and finish the close. 3541 */ 3542 static void 3543 tcp_stop_lingering(tcp_t *tcp) 3544 { 3545 clock_t delta = 0; 3546 tcp_stack_t *tcps = tcp->tcp_tcps; 3547 3548 tcp->tcp_linger_tid = 0; 3549 if (tcp->tcp_state > TCPS_LISTEN) { 3550 tcp_acceptor_hash_remove(tcp); 3551 mutex_enter(&tcp->tcp_non_sq_lock); 3552 if (tcp->tcp_flow_stopped) { 3553 tcp_clrqfull(tcp); 3554 } 3555 mutex_exit(&tcp->tcp_non_sq_lock); 3556 3557 if (tcp->tcp_timer_tid != 0) { 3558 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3559 tcp->tcp_timer_tid = 0; 3560 } 3561 /* 3562 * Need to cancel those timers which will not be used when 3563 * TCP is detached. This has to be done before the tcp_wq 3564 * is set to the global queue. 3565 */ 3566 tcp_timers_stop(tcp); 3567 3568 tcp->tcp_detached = B_TRUE; 3569 ASSERT(tcps->tcps_g_q != NULL); 3570 tcp->tcp_rq = tcps->tcps_g_q; 3571 tcp->tcp_wq = WR(tcps->tcps_g_q); 3572 3573 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3574 tcp_time_wait_append(tcp); 3575 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3576 goto finish; 3577 } 3578 3579 /* 3580 * If delta is zero the timer event wasn't executed and was 3581 * successfully canceled. In this case we need to restart it 3582 * with the minimal delta possible. 3583 */ 3584 if (delta >= 0) { 3585 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3586 delta ? delta : 1); 3587 } 3588 } else { 3589 tcp_closei_local(tcp); 3590 CONN_DEC_REF(tcp->tcp_connp); 3591 } 3592 finish: 3593 /* Signal closing thread that it can complete close */ 3594 mutex_enter(&tcp->tcp_closelock); 3595 tcp->tcp_detached = B_TRUE; 3596 ASSERT(tcps->tcps_g_q != NULL); 3597 3598 tcp->tcp_rq = tcps->tcps_g_q; 3599 tcp->tcp_wq = WR(tcps->tcps_g_q); 3600 3601 tcp->tcp_closed = 1; 3602 cv_signal(&tcp->tcp_closecv); 3603 mutex_exit(&tcp->tcp_closelock); 3604 } 3605 3606 /* 3607 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3608 * expires. 3609 */ 3610 static void 3611 tcp_close_linger_timeout(void *arg) 3612 { 3613 conn_t *connp = (conn_t *)arg; 3614 tcp_t *tcp = connp->conn_tcp; 3615 3616 tcp->tcp_client_errno = ETIMEDOUT; 3617 tcp_stop_lingering(tcp); 3618 } 3619 3620 static void 3621 tcp_close_common(conn_t *connp, int flags) 3622 { 3623 tcp_t *tcp = connp->conn_tcp; 3624 mblk_t *mp = &tcp->tcp_closemp; 3625 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3626 mblk_t *bp; 3627 3628 ASSERT(connp->conn_ref >= 2); 3629 3630 /* 3631 * Mark the conn as closing. ill_pending_mp_add will not 3632 * add any mp to the pending mp list, after this conn has 3633 * started closing. Same for sq_pending_mp_add 3634 */ 3635 mutex_enter(&connp->conn_lock); 3636 connp->conn_state_flags |= CONN_CLOSING; 3637 if (connp->conn_oper_pending_ill != NULL) 3638 conn_ioctl_cleanup_reqd = B_TRUE; 3639 CONN_INC_REF_LOCKED(connp); 3640 mutex_exit(&connp->conn_lock); 3641 tcp->tcp_closeflags = (uint8_t)flags; 3642 ASSERT(connp->conn_ref >= 3); 3643 3644 /* 3645 * tcp_closemp_used is used below without any protection of a lock 3646 * as we don't expect any one else to use it concurrently at this 3647 * point otherwise it would be a major defect. 3648 */ 3649 3650 if (mp->b_prev == NULL) 3651 tcp->tcp_closemp_used = B_TRUE; 3652 else 3653 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3654 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3655 3656 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3657 3658 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3659 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3660 3661 mutex_enter(&tcp->tcp_closelock); 3662 while (!tcp->tcp_closed) { 3663 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3664 /* 3665 * The cv_wait_sig() was interrupted. We now do the 3666 * following: 3667 * 3668 * 1) If the endpoint was lingering, we allow this 3669 * to be interrupted by cancelling the linger timeout 3670 * and closing normally. 3671 * 3672 * 2) Revert to calling cv_wait() 3673 * 3674 * We revert to using cv_wait() to avoid an 3675 * infinite loop which can occur if the calling 3676 * thread is higher priority than the squeue worker 3677 * thread and is bound to the same cpu. 3678 */ 3679 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3680 mutex_exit(&tcp->tcp_closelock); 3681 /* Entering squeue, bump ref count. */ 3682 CONN_INC_REF(connp); 3683 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3684 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3685 tcp_linger_interrupted, connp, 3686 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3687 mutex_enter(&tcp->tcp_closelock); 3688 } 3689 break; 3690 } 3691 } 3692 while (!tcp->tcp_closed) 3693 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3694 mutex_exit(&tcp->tcp_closelock); 3695 3696 /* 3697 * In the case of listener streams that have eagers in the q or q0 3698 * we wait for the eagers to drop their reference to us. tcp_rq and 3699 * tcp_wq of the eagers point to our queues. By waiting for the 3700 * refcnt to drop to 1, we are sure that the eagers have cleaned 3701 * up their queue pointers and also dropped their references to us. 3702 */ 3703 if (tcp->tcp_wait_for_eagers) { 3704 mutex_enter(&connp->conn_lock); 3705 while (connp->conn_ref != 1) { 3706 cv_wait(&connp->conn_cv, &connp->conn_lock); 3707 } 3708 mutex_exit(&connp->conn_lock); 3709 } 3710 /* 3711 * ioctl cleanup. The mp is queued in the 3712 * ill_pending_mp or in the sq_pending_mp. 3713 */ 3714 if (conn_ioctl_cleanup_reqd) 3715 conn_ioctl_cleanup(connp); 3716 3717 tcp->tcp_cpid = -1; 3718 } 3719 3720 static int 3721 tcp_tpi_close(queue_t *q, int flags) 3722 { 3723 conn_t *connp; 3724 3725 ASSERT(WR(q)->q_next == NULL); 3726 3727 if (flags & SO_FALLBACK) { 3728 /* 3729 * stream is being closed while in fallback 3730 * simply free the resources that were allocated 3731 */ 3732 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3733 qprocsoff(q); 3734 goto done; 3735 } 3736 3737 connp = Q_TO_CONN(q); 3738 /* 3739 * We are being closed as /dev/tcp or /dev/tcp6. 3740 */ 3741 tcp_close_common(connp, flags); 3742 3743 qprocsoff(q); 3744 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3745 3746 /* 3747 * Drop IP's reference on the conn. This is the last reference 3748 * on the connp if the state was less than established. If the 3749 * connection has gone into timewait state, then we will have 3750 * one ref for the TCP and one more ref (total of two) for the 3751 * classifier connected hash list (a timewait connections stays 3752 * in connected hash till closed). 3753 * 3754 * We can't assert the references because there might be other 3755 * transient reference places because of some walkers or queued 3756 * packets in squeue for the timewait state. 3757 */ 3758 CONN_DEC_REF(connp); 3759 done: 3760 q->q_ptr = WR(q)->q_ptr = NULL; 3761 return (0); 3762 } 3763 3764 static int 3765 tcp_tpi_close_accept(queue_t *q) 3766 { 3767 vmem_t *minor_arena; 3768 dev_t conn_dev; 3769 3770 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3771 3772 /* 3773 * We had opened an acceptor STREAM for sockfs which is 3774 * now being closed due to some error. 3775 */ 3776 qprocsoff(q); 3777 3778 minor_arena = (vmem_t *)WR(q)->q_ptr; 3779 conn_dev = (dev_t)RD(q)->q_ptr; 3780 ASSERT(minor_arena != NULL); 3781 ASSERT(conn_dev != 0); 3782 inet_minor_free(minor_arena, conn_dev); 3783 q->q_ptr = WR(q)->q_ptr = NULL; 3784 return (0); 3785 } 3786 3787 /* 3788 * Called by tcp_close() routine via squeue when lingering is 3789 * interrupted by a signal. 3790 */ 3791 3792 /* ARGSUSED */ 3793 static void 3794 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3795 { 3796 conn_t *connp = (conn_t *)arg; 3797 tcp_t *tcp = connp->conn_tcp; 3798 3799 freeb(mp); 3800 if (tcp->tcp_linger_tid != 0 && 3801 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3802 tcp_stop_lingering(tcp); 3803 tcp->tcp_client_errno = EINTR; 3804 } 3805 } 3806 3807 /* 3808 * Called by streams close routine via squeues when our client blows off her 3809 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3810 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3811 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3812 * acked. 3813 * 3814 * NOTE: tcp_close potentially returns error when lingering. 3815 * However, the stream head currently does not pass these errors 3816 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3817 * errors to the application (from tsleep()) and not errors 3818 * like ECONNRESET caused by receiving a reset packet. 3819 */ 3820 3821 /* ARGSUSED */ 3822 static void 3823 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3824 { 3825 char *msg; 3826 conn_t *connp = (conn_t *)arg; 3827 tcp_t *tcp = connp->conn_tcp; 3828 clock_t delta = 0; 3829 tcp_stack_t *tcps = tcp->tcp_tcps; 3830 3831 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3832 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3833 3834 mutex_enter(&tcp->tcp_eager_lock); 3835 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3836 /* Cleanup for listener */ 3837 tcp_eager_cleanup(tcp, 0); 3838 tcp->tcp_wait_for_eagers = 1; 3839 } 3840 mutex_exit(&tcp->tcp_eager_lock); 3841 3842 connp->conn_mdt_ok = B_FALSE; 3843 tcp->tcp_mdt = B_FALSE; 3844 3845 connp->conn_lso_ok = B_FALSE; 3846 tcp->tcp_lso = B_FALSE; 3847 3848 msg = NULL; 3849 switch (tcp->tcp_state) { 3850 case TCPS_CLOSED: 3851 case TCPS_IDLE: 3852 case TCPS_BOUND: 3853 case TCPS_LISTEN: 3854 break; 3855 case TCPS_SYN_SENT: 3856 msg = "tcp_close, during connect"; 3857 break; 3858 case TCPS_SYN_RCVD: 3859 /* 3860 * Close during the connect 3-way handshake 3861 * but here there may or may not be pending data 3862 * already on queue. Process almost same as in 3863 * the ESTABLISHED state. 3864 */ 3865 /* FALLTHRU */ 3866 default: 3867 if (tcp->tcp_fused) 3868 tcp_unfuse(tcp); 3869 3870 /* 3871 * If SO_LINGER has set a zero linger time, abort the 3872 * connection with a reset. 3873 */ 3874 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3875 msg = "tcp_close, zero lingertime"; 3876 break; 3877 } 3878 3879 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3880 /* 3881 * Abort connection if there is unread data queued. 3882 */ 3883 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3884 msg = "tcp_close, unread data"; 3885 break; 3886 } 3887 /* 3888 * tcp_hard_bound is now cleared thus all packets go through 3889 * tcp_lookup. This fact is used by tcp_detach below. 3890 * 3891 * We have done a qwait() above which could have possibly 3892 * drained more messages in turn causing transition to a 3893 * different state. Check whether we have to do the rest 3894 * of the processing or not. 3895 */ 3896 if (tcp->tcp_state <= TCPS_LISTEN) 3897 break; 3898 3899 /* 3900 * Transmit the FIN before detaching the tcp_t. 3901 * After tcp_detach returns this queue/perimeter 3902 * no longer owns the tcp_t thus others can modify it. 3903 */ 3904 (void) tcp_xmit_end(tcp); 3905 3906 /* 3907 * If lingering on close then wait until the fin is acked, 3908 * the SO_LINGER time passes, or a reset is sent/received. 3909 */ 3910 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3911 !(tcp->tcp_fin_acked) && 3912 tcp->tcp_state >= TCPS_ESTABLISHED) { 3913 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3914 tcp->tcp_client_errno = EWOULDBLOCK; 3915 } else if (tcp->tcp_client_errno == 0) { 3916 3917 ASSERT(tcp->tcp_linger_tid == 0); 3918 3919 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3920 tcp_close_linger_timeout, 3921 tcp->tcp_lingertime * hz); 3922 3923 /* tcp_close_linger_timeout will finish close */ 3924 if (tcp->tcp_linger_tid == 0) 3925 tcp->tcp_client_errno = ENOSR; 3926 else 3927 return; 3928 } 3929 3930 /* 3931 * Check if we need to detach or just close 3932 * the instance. 3933 */ 3934 if (tcp->tcp_state <= TCPS_LISTEN) 3935 break; 3936 } 3937 3938 /* 3939 * Make sure that no other thread will access the tcp_rq of 3940 * this instance (through lookups etc.) as tcp_rq will go 3941 * away shortly. 3942 */ 3943 tcp_acceptor_hash_remove(tcp); 3944 3945 mutex_enter(&tcp->tcp_non_sq_lock); 3946 if (tcp->tcp_flow_stopped) { 3947 tcp_clrqfull(tcp); 3948 } 3949 mutex_exit(&tcp->tcp_non_sq_lock); 3950 3951 if (tcp->tcp_timer_tid != 0) { 3952 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3953 tcp->tcp_timer_tid = 0; 3954 } 3955 /* 3956 * Need to cancel those timers which will not be used when 3957 * TCP is detached. This has to be done before the tcp_wq 3958 * is set to the global queue. 3959 */ 3960 tcp_timers_stop(tcp); 3961 3962 tcp->tcp_detached = B_TRUE; 3963 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3964 tcp_time_wait_append(tcp); 3965 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3966 ASSERT(connp->conn_ref >= 3); 3967 goto finish; 3968 } 3969 3970 /* 3971 * If delta is zero the timer event wasn't executed and was 3972 * successfully canceled. In this case we need to restart it 3973 * with the minimal delta possible. 3974 */ 3975 if (delta >= 0) 3976 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3977 delta ? delta : 1); 3978 3979 ASSERT(connp->conn_ref >= 3); 3980 goto finish; 3981 } 3982 3983 /* Detach did not complete. Still need to remove q from stream. */ 3984 if (msg) { 3985 if (tcp->tcp_state == TCPS_ESTABLISHED || 3986 tcp->tcp_state == TCPS_CLOSE_WAIT) 3987 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3988 if (tcp->tcp_state == TCPS_SYN_SENT || 3989 tcp->tcp_state == TCPS_SYN_RCVD) 3990 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3991 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3992 } 3993 3994 tcp_closei_local(tcp); 3995 CONN_DEC_REF(connp); 3996 ASSERT(connp->conn_ref >= 2); 3997 3998 finish: 3999 /* 4000 * Although packets are always processed on the correct 4001 * tcp's perimeter and access is serialized via squeue's, 4002 * IP still needs a queue when sending packets in time_wait 4003 * state so use WR(tcps_g_q) till ip_output() can be 4004 * changed to deal with just connp. For read side, we 4005 * could have set tcp_rq to NULL but there are some cases 4006 * in tcp_rput_data() from early days of this code which 4007 * do a putnext without checking if tcp is closed. Those 4008 * need to be identified before both tcp_rq and tcp_wq 4009 * can be set to NULL and tcps_g_q can disappear forever. 4010 */ 4011 mutex_enter(&tcp->tcp_closelock); 4012 /* 4013 * Don't change the queues in the case of a listener that has 4014 * eagers in its q or q0. It could surprise the eagers. 4015 * Instead wait for the eagers outside the squeue. 4016 */ 4017 if (!tcp->tcp_wait_for_eagers) { 4018 tcp->tcp_detached = B_TRUE; 4019 /* 4020 * When default queue is closing we set tcps_g_q to NULL 4021 * after the close is done. 4022 */ 4023 ASSERT(tcps->tcps_g_q != NULL); 4024 tcp->tcp_rq = tcps->tcps_g_q; 4025 tcp->tcp_wq = WR(tcps->tcps_g_q); 4026 } 4027 4028 /* Signal tcp_close() to finish closing. */ 4029 tcp->tcp_closed = 1; 4030 cv_signal(&tcp->tcp_closecv); 4031 mutex_exit(&tcp->tcp_closelock); 4032 } 4033 4034 /* 4035 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4036 * Some stream heads get upset if they see these later on as anything but NULL. 4037 */ 4038 static void 4039 tcp_close_mpp(mblk_t **mpp) 4040 { 4041 mblk_t *mp; 4042 4043 if ((mp = *mpp) != NULL) { 4044 do { 4045 mp->b_next = NULL; 4046 mp->b_prev = NULL; 4047 } while ((mp = mp->b_cont) != NULL); 4048 4049 mp = *mpp; 4050 *mpp = NULL; 4051 freemsg(mp); 4052 } 4053 } 4054 4055 /* Do detached close. */ 4056 static void 4057 tcp_close_detached(tcp_t *tcp) 4058 { 4059 if (tcp->tcp_fused) 4060 tcp_unfuse(tcp); 4061 4062 /* 4063 * Clustering code serializes TCP disconnect callbacks and 4064 * cluster tcp list walks by blocking a TCP disconnect callback 4065 * if a cluster tcp list walk is in progress. This ensures 4066 * accurate accounting of TCPs in the cluster code even though 4067 * the TCP list walk itself is not atomic. 4068 */ 4069 tcp_closei_local(tcp); 4070 CONN_DEC_REF(tcp->tcp_connp); 4071 } 4072 4073 /* 4074 * Stop all TCP timers, and free the timer mblks if requested. 4075 */ 4076 void 4077 tcp_timers_stop(tcp_t *tcp) 4078 { 4079 if (tcp->tcp_timer_tid != 0) { 4080 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4081 tcp->tcp_timer_tid = 0; 4082 } 4083 if (tcp->tcp_ka_tid != 0) { 4084 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4085 tcp->tcp_ka_tid = 0; 4086 } 4087 if (tcp->tcp_ack_tid != 0) { 4088 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4089 tcp->tcp_ack_tid = 0; 4090 } 4091 if (tcp->tcp_push_tid != 0) { 4092 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4093 tcp->tcp_push_tid = 0; 4094 } 4095 } 4096 4097 /* 4098 * The tcp_t is going away. Remove it from all lists and set it 4099 * to TCPS_CLOSED. The freeing up of memory is deferred until 4100 * tcp_inactive. This is needed since a thread in tcp_rput might have 4101 * done a CONN_INC_REF on this structure before it was removed from the 4102 * hashes. 4103 */ 4104 static void 4105 tcp_closei_local(tcp_t *tcp) 4106 { 4107 ire_t *ire; 4108 conn_t *connp = tcp->tcp_connp; 4109 tcp_stack_t *tcps = tcp->tcp_tcps; 4110 4111 if (!TCP_IS_SOCKET(tcp)) 4112 tcp_acceptor_hash_remove(tcp); 4113 4114 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4115 tcp->tcp_ibsegs = 0; 4116 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4117 tcp->tcp_obsegs = 0; 4118 4119 /* 4120 * If we are an eager connection hanging off a listener that 4121 * hasn't formally accepted the connection yet, get off his 4122 * list and blow off any data that we have accumulated. 4123 */ 4124 if (tcp->tcp_listener != NULL) { 4125 tcp_t *listener = tcp->tcp_listener; 4126 mutex_enter(&listener->tcp_eager_lock); 4127 /* 4128 * tcp_tconnind_started == B_TRUE means that the 4129 * conn_ind has already gone to listener. At 4130 * this point, eager will be closed but we 4131 * leave it in listeners eager list so that 4132 * if listener decides to close without doing 4133 * accept, we can clean this up. In tcp_wput_accept 4134 * we take care of the case of accept on closed 4135 * eager. 4136 */ 4137 if (!tcp->tcp_tconnind_started) { 4138 tcp_eager_unlink(tcp); 4139 mutex_exit(&listener->tcp_eager_lock); 4140 /* 4141 * We don't want to have any pointers to the 4142 * listener queue, after we have released our 4143 * reference on the listener 4144 */ 4145 ASSERT(tcps->tcps_g_q != NULL); 4146 tcp->tcp_rq = tcps->tcps_g_q; 4147 tcp->tcp_wq = WR(tcps->tcps_g_q); 4148 CONN_DEC_REF(listener->tcp_connp); 4149 } else { 4150 mutex_exit(&listener->tcp_eager_lock); 4151 } 4152 } 4153 4154 /* Stop all the timers */ 4155 tcp_timers_stop(tcp); 4156 4157 if (tcp->tcp_state == TCPS_LISTEN) { 4158 if (tcp->tcp_ip_addr_cache) { 4159 kmem_free((void *)tcp->tcp_ip_addr_cache, 4160 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4161 tcp->tcp_ip_addr_cache = NULL; 4162 } 4163 } 4164 mutex_enter(&tcp->tcp_non_sq_lock); 4165 if (tcp->tcp_flow_stopped) 4166 tcp_clrqfull(tcp); 4167 mutex_exit(&tcp->tcp_non_sq_lock); 4168 4169 tcp_bind_hash_remove(tcp); 4170 /* 4171 * If the tcp_time_wait_collector (which runs outside the squeue) 4172 * is trying to remove this tcp from the time wait list, we will 4173 * block in tcp_time_wait_remove while trying to acquire the 4174 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4175 * requires the ipcl_hash_remove to be ordered after the 4176 * tcp_time_wait_remove for the refcnt checks to work correctly. 4177 */ 4178 if (tcp->tcp_state == TCPS_TIME_WAIT) 4179 (void) tcp_time_wait_remove(tcp, NULL); 4180 CL_INET_DISCONNECT(connp, tcp); 4181 ipcl_hash_remove(connp); 4182 4183 /* 4184 * Delete the cached ire in conn_ire_cache and also mark 4185 * the conn as CONDEMNED 4186 */ 4187 mutex_enter(&connp->conn_lock); 4188 connp->conn_state_flags |= CONN_CONDEMNED; 4189 ire = connp->conn_ire_cache; 4190 connp->conn_ire_cache = NULL; 4191 mutex_exit(&connp->conn_lock); 4192 if (ire != NULL) 4193 IRE_REFRELE_NOTR(ire); 4194 4195 /* Need to cleanup any pending ioctls */ 4196 ASSERT(tcp->tcp_time_wait_next == NULL); 4197 ASSERT(tcp->tcp_time_wait_prev == NULL); 4198 ASSERT(tcp->tcp_time_wait_expire == 0); 4199 tcp->tcp_state = TCPS_CLOSED; 4200 4201 /* Release any SSL context */ 4202 if (tcp->tcp_kssl_ent != NULL) { 4203 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4204 tcp->tcp_kssl_ent = NULL; 4205 } 4206 if (tcp->tcp_kssl_ctx != NULL) { 4207 kssl_release_ctx(tcp->tcp_kssl_ctx); 4208 tcp->tcp_kssl_ctx = NULL; 4209 } 4210 tcp->tcp_kssl_pending = B_FALSE; 4211 4212 tcp_ipsec_cleanup(tcp); 4213 } 4214 4215 /* 4216 * tcp is dying (called from ipcl_conn_destroy and error cases). 4217 * Free the tcp_t in either case. 4218 */ 4219 void 4220 tcp_free(tcp_t *tcp) 4221 { 4222 mblk_t *mp; 4223 ip6_pkt_t *ipp; 4224 4225 ASSERT(tcp != NULL); 4226 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4227 4228 tcp->tcp_rq = NULL; 4229 tcp->tcp_wq = NULL; 4230 4231 tcp_close_mpp(&tcp->tcp_xmit_head); 4232 tcp_close_mpp(&tcp->tcp_reass_head); 4233 if (tcp->tcp_rcv_list != NULL) { 4234 /* Free b_next chain */ 4235 tcp_close_mpp(&tcp->tcp_rcv_list); 4236 } 4237 if ((mp = tcp->tcp_urp_mp) != NULL) { 4238 freemsg(mp); 4239 } 4240 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4241 freemsg(mp); 4242 } 4243 4244 if (tcp->tcp_fused_sigurg_mp != NULL) { 4245 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4246 freeb(tcp->tcp_fused_sigurg_mp); 4247 tcp->tcp_fused_sigurg_mp = NULL; 4248 } 4249 4250 if (tcp->tcp_ordrel_mp != NULL) { 4251 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4252 freeb(tcp->tcp_ordrel_mp); 4253 tcp->tcp_ordrel_mp = NULL; 4254 } 4255 4256 if (tcp->tcp_sack_info != NULL) { 4257 if (tcp->tcp_notsack_list != NULL) { 4258 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4259 } 4260 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4261 } 4262 4263 if (tcp->tcp_hopopts != NULL) { 4264 mi_free(tcp->tcp_hopopts); 4265 tcp->tcp_hopopts = NULL; 4266 tcp->tcp_hopoptslen = 0; 4267 } 4268 ASSERT(tcp->tcp_hopoptslen == 0); 4269 if (tcp->tcp_dstopts != NULL) { 4270 mi_free(tcp->tcp_dstopts); 4271 tcp->tcp_dstopts = NULL; 4272 tcp->tcp_dstoptslen = 0; 4273 } 4274 ASSERT(tcp->tcp_dstoptslen == 0); 4275 if (tcp->tcp_rtdstopts != NULL) { 4276 mi_free(tcp->tcp_rtdstopts); 4277 tcp->tcp_rtdstopts = NULL; 4278 tcp->tcp_rtdstoptslen = 0; 4279 } 4280 ASSERT(tcp->tcp_rtdstoptslen == 0); 4281 if (tcp->tcp_rthdr != NULL) { 4282 mi_free(tcp->tcp_rthdr); 4283 tcp->tcp_rthdr = NULL; 4284 tcp->tcp_rthdrlen = 0; 4285 } 4286 ASSERT(tcp->tcp_rthdrlen == 0); 4287 4288 ipp = &tcp->tcp_sticky_ipp; 4289 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4290 IPPF_RTHDR)) 4291 ip6_pkt_free(ipp); 4292 4293 /* 4294 * Free memory associated with the tcp/ip header template. 4295 */ 4296 4297 if (tcp->tcp_iphc != NULL) 4298 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4299 4300 /* 4301 * Following is really a blowing away a union. 4302 * It happens to have exactly two members of identical size 4303 * the following code is enough. 4304 */ 4305 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4306 } 4307 4308 4309 /* 4310 * Put a connection confirmation message upstream built from the 4311 * address information within 'iph' and 'tcph'. Report our success or failure. 4312 */ 4313 static boolean_t 4314 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4315 mblk_t **defermp) 4316 { 4317 sin_t sin; 4318 sin6_t sin6; 4319 mblk_t *mp; 4320 char *optp = NULL; 4321 int optlen = 0; 4322 4323 if (defermp != NULL) 4324 *defermp = NULL; 4325 4326 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4327 /* 4328 * Return in T_CONN_CON results of option negotiation through 4329 * the T_CONN_REQ. Note: If there is an real end-to-end option 4330 * negotiation, then what is received from remote end needs 4331 * to be taken into account but there is no such thing (yet?) 4332 * in our TCP/IP. 4333 * Note: We do not use mi_offset_param() here as 4334 * tcp_opts_conn_req contents do not directly come from 4335 * an application and are either generated in kernel or 4336 * from user input that was already verified. 4337 */ 4338 mp = tcp->tcp_conn.tcp_opts_conn_req; 4339 optp = (char *)(mp->b_rptr + 4340 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4341 optlen = (int) 4342 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4343 } 4344 4345 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4346 ipha_t *ipha = (ipha_t *)iphdr; 4347 4348 /* packet is IPv4 */ 4349 if (tcp->tcp_family == AF_INET) { 4350 sin = sin_null; 4351 sin.sin_addr.s_addr = ipha->ipha_src; 4352 sin.sin_port = *(uint16_t *)tcph->th_lport; 4353 sin.sin_family = AF_INET; 4354 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4355 (int)sizeof (sin_t), optp, optlen); 4356 } else { 4357 sin6 = sin6_null; 4358 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4359 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4360 sin6.sin6_family = AF_INET6; 4361 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4362 (int)sizeof (sin6_t), optp, optlen); 4363 4364 } 4365 } else { 4366 ip6_t *ip6h = (ip6_t *)iphdr; 4367 4368 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4369 ASSERT(tcp->tcp_family == AF_INET6); 4370 sin6 = sin6_null; 4371 sin6.sin6_addr = ip6h->ip6_src; 4372 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4373 sin6.sin6_family = AF_INET6; 4374 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4375 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4376 (int)sizeof (sin6_t), optp, optlen); 4377 } 4378 4379 if (!mp) 4380 return (B_FALSE); 4381 4382 mblk_copycred(mp, idmp); 4383 4384 if (defermp == NULL) { 4385 conn_t *connp = tcp->tcp_connp; 4386 if (IPCL_IS_NONSTR(connp)) { 4387 cred_t *cr; 4388 pid_t cpid; 4389 4390 cr = msg_getcred(mp, &cpid); 4391 (*connp->conn_upcalls->su_connected) 4392 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4393 cpid); 4394 freemsg(mp); 4395 } else { 4396 putnext(tcp->tcp_rq, mp); 4397 } 4398 } else { 4399 *defermp = mp; 4400 } 4401 4402 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4403 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4404 return (B_TRUE); 4405 } 4406 4407 /* 4408 * Defense for the SYN attack - 4409 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4410 * one from the list of droppable eagers. This list is a subset of q0. 4411 * see comments before the definition of MAKE_DROPPABLE(). 4412 * 2. Don't drop a SYN request before its first timeout. This gives every 4413 * request at least til the first timeout to complete its 3-way handshake. 4414 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4415 * requests currently on the queue that has timed out. This will be used 4416 * as an indicator of whether an attack is under way, so that appropriate 4417 * actions can be taken. (It's incremented in tcp_timer() and decremented 4418 * either when eager goes into ESTABLISHED, or gets freed up.) 4419 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4420 * # of timeout drops back to <= q0len/32 => SYN alert off 4421 */ 4422 static boolean_t 4423 tcp_drop_q0(tcp_t *tcp) 4424 { 4425 tcp_t *eager; 4426 mblk_t *mp; 4427 tcp_stack_t *tcps = tcp->tcp_tcps; 4428 4429 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4430 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4431 4432 /* Pick oldest eager from the list of droppable eagers */ 4433 eager = tcp->tcp_eager_prev_drop_q0; 4434 4435 /* If list is empty. return B_FALSE */ 4436 if (eager == tcp) { 4437 return (B_FALSE); 4438 } 4439 4440 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4441 if ((mp = allocb(0, BPRI_HI)) == NULL) 4442 return (B_FALSE); 4443 4444 /* 4445 * Take this eager out from the list of droppable eagers since we are 4446 * going to drop it. 4447 */ 4448 MAKE_UNDROPPABLE(eager); 4449 4450 if (tcp->tcp_debug) { 4451 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4452 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4453 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4454 tcp->tcp_conn_req_cnt_q0, 4455 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4456 } 4457 4458 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4459 4460 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4461 CONN_INC_REF(eager->tcp_connp); 4462 4463 /* Mark the IRE created for this SYN request temporary */ 4464 tcp_ip_ire_mark_advice(eager); 4465 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4466 tcp_clean_death_wrapper, eager->tcp_connp, 4467 SQ_FILL, SQTAG_TCP_DROP_Q0); 4468 4469 return (B_TRUE); 4470 } 4471 4472 int 4473 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4474 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4475 { 4476 tcp_t *ltcp = lconnp->conn_tcp; 4477 tcp_t *tcp = connp->conn_tcp; 4478 mblk_t *tpi_mp; 4479 ipha_t *ipha; 4480 ip6_t *ip6h; 4481 sin6_t sin6; 4482 in6_addr_t v6dst; 4483 int err; 4484 int ifindex = 0; 4485 tcp_stack_t *tcps = tcp->tcp_tcps; 4486 4487 if (ipvers == IPV4_VERSION) { 4488 ipha = (ipha_t *)mp->b_rptr; 4489 4490 connp->conn_send = ip_output; 4491 connp->conn_recv = tcp_input; 4492 4493 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4494 &connp->conn_bound_source_v6); 4495 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4496 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4497 4498 sin6 = sin6_null; 4499 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4500 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4501 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4502 sin6.sin6_family = AF_INET6; 4503 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4504 lconnp->conn_zoneid, tcps->tcps_netstack); 4505 if (tcp->tcp_recvdstaddr) { 4506 sin6_t sin6d; 4507 4508 sin6d = sin6_null; 4509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4510 &sin6d.sin6_addr); 4511 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4512 sin6d.sin6_family = AF_INET; 4513 tpi_mp = mi_tpi_extconn_ind(NULL, 4514 (char *)&sin6d, sizeof (sin6_t), 4515 (char *)&tcp, 4516 (t_scalar_t)sizeof (intptr_t), 4517 (char *)&sin6d, sizeof (sin6_t), 4518 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4519 } else { 4520 tpi_mp = mi_tpi_conn_ind(NULL, 4521 (char *)&sin6, sizeof (sin6_t), 4522 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4523 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4524 } 4525 } else { 4526 ip6h = (ip6_t *)mp->b_rptr; 4527 4528 connp->conn_send = ip_output_v6; 4529 connp->conn_recv = tcp_input; 4530 4531 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4532 connp->conn_srcv6 = ip6h->ip6_dst; 4533 connp->conn_remv6 = ip6h->ip6_src; 4534 4535 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4536 ifindex = (int)DB_CKSUMSTUFF(mp); 4537 DB_CKSUMSTUFF(mp) = 0; 4538 4539 sin6 = sin6_null; 4540 sin6.sin6_addr = ip6h->ip6_src; 4541 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4542 sin6.sin6_family = AF_INET6; 4543 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4544 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4545 lconnp->conn_zoneid, tcps->tcps_netstack); 4546 4547 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4548 /* Pass up the scope_id of remote addr */ 4549 sin6.sin6_scope_id = ifindex; 4550 } else { 4551 sin6.sin6_scope_id = 0; 4552 } 4553 if (tcp->tcp_recvdstaddr) { 4554 sin6_t sin6d; 4555 4556 sin6d = sin6_null; 4557 sin6.sin6_addr = ip6h->ip6_dst; 4558 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4559 sin6d.sin6_family = AF_INET; 4560 tpi_mp = mi_tpi_extconn_ind(NULL, 4561 (char *)&sin6d, sizeof (sin6_t), 4562 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4563 (char *)&sin6d, sizeof (sin6_t), 4564 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4565 } else { 4566 tpi_mp = mi_tpi_conn_ind(NULL, 4567 (char *)&sin6, sizeof (sin6_t), 4568 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4569 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4570 } 4571 } 4572 4573 if (tpi_mp == NULL) 4574 return (ENOMEM); 4575 4576 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4577 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4578 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4579 connp->conn_fully_bound = B_FALSE; 4580 4581 /* Inherit information from the "parent" */ 4582 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4583 tcp->tcp_family = ltcp->tcp_family; 4584 4585 tcp->tcp_wq = ltcp->tcp_wq; 4586 tcp->tcp_rq = ltcp->tcp_rq; 4587 4588 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4589 tcp->tcp_detached = B_TRUE; 4590 SOCK_CONNID_INIT(tcp->tcp_connid); 4591 if ((err = tcp_init_values(tcp)) != 0) { 4592 freemsg(tpi_mp); 4593 return (err); 4594 } 4595 4596 if (ipvers == IPV4_VERSION) { 4597 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4598 freemsg(tpi_mp); 4599 return (err); 4600 } 4601 ASSERT(tcp->tcp_ipha != NULL); 4602 } else { 4603 /* ifindex must be already set */ 4604 ASSERT(ifindex != 0); 4605 4606 if (ltcp->tcp_bound_if != 0) 4607 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4608 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4609 tcp->tcp_bound_if = ifindex; 4610 4611 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4612 tcp->tcp_recvifindex = 0; 4613 tcp->tcp_recvhops = 0xffffffffU; 4614 ASSERT(tcp->tcp_ip6h != NULL); 4615 } 4616 4617 tcp->tcp_lport = ltcp->tcp_lport; 4618 4619 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4620 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4621 /* 4622 * Listener had options of some sort; eager inherits. 4623 * Free up the eager template and allocate one 4624 * of the right size. 4625 */ 4626 if (tcp->tcp_hdr_grown) { 4627 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4628 } else { 4629 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4630 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4631 } 4632 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4633 KM_NOSLEEP); 4634 if (tcp->tcp_iphc == NULL) { 4635 tcp->tcp_iphc_len = 0; 4636 freemsg(tpi_mp); 4637 return (ENOMEM); 4638 } 4639 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4640 tcp->tcp_hdr_grown = B_TRUE; 4641 } 4642 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4643 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4644 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4645 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4646 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4647 4648 /* 4649 * Copy the IP+TCP header template from listener to eager 4650 */ 4651 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4652 if (tcp->tcp_ipversion == IPV6_VERSION) { 4653 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4654 IPPROTO_RAW) { 4655 tcp->tcp_ip6h = 4656 (ip6_t *)(tcp->tcp_iphc + 4657 sizeof (ip6i_t)); 4658 } else { 4659 tcp->tcp_ip6h = 4660 (ip6_t *)(tcp->tcp_iphc); 4661 } 4662 tcp->tcp_ipha = NULL; 4663 } else { 4664 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4665 tcp->tcp_ip6h = NULL; 4666 } 4667 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4668 tcp->tcp_ip_hdr_len); 4669 } else { 4670 /* 4671 * only valid case when ipversion of listener and 4672 * eager differ is when listener is IPv6 and 4673 * eager is IPv4. 4674 * Eager header template has been initialized to the 4675 * maximum v4 header sizes, which includes space for 4676 * TCP and IP options. 4677 */ 4678 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4679 (tcp->tcp_ipversion == IPV4_VERSION)); 4680 ASSERT(tcp->tcp_iphc_len >= 4681 TCP_MAX_COMBINED_HEADER_LENGTH); 4682 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4683 /* copy IP header fields individually */ 4684 tcp->tcp_ipha->ipha_ttl = 4685 ltcp->tcp_ip6h->ip6_hops; 4686 bcopy(ltcp->tcp_tcph->th_lport, 4687 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4688 } 4689 4690 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4691 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4692 sizeof (in_port_t)); 4693 4694 if (ltcp->tcp_lport == 0) { 4695 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4696 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4697 sizeof (in_port_t)); 4698 } 4699 4700 if (tcp->tcp_ipversion == IPV4_VERSION) { 4701 ASSERT(ipha != NULL); 4702 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4703 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4704 4705 /* Source routing option copyover (reverse it) */ 4706 if (tcps->tcps_rev_src_routes) 4707 tcp_opt_reverse(tcp, ipha); 4708 } else { 4709 ASSERT(ip6h != NULL); 4710 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4711 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4712 } 4713 4714 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4715 ASSERT(!tcp->tcp_tconnind_started); 4716 /* 4717 * If the SYN contains a credential, it's a loopback packet; attach 4718 * the credential to the TPI message. 4719 */ 4720 mblk_copycred(tpi_mp, idmp); 4721 4722 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4723 4724 /* Inherit the listener's SSL protection state */ 4725 4726 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4727 kssl_hold_ent(tcp->tcp_kssl_ent); 4728 tcp->tcp_kssl_pending = B_TRUE; 4729 } 4730 4731 /* Inherit the listener's non-STREAMS flag */ 4732 if (IPCL_IS_NONSTR(lconnp)) { 4733 connp->conn_flags |= IPCL_NONSTR; 4734 } 4735 4736 return (0); 4737 } 4738 4739 4740 int 4741 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4742 tcph_t *tcph, mblk_t *idmp) 4743 { 4744 tcp_t *ltcp = lconnp->conn_tcp; 4745 tcp_t *tcp = connp->conn_tcp; 4746 sin_t sin; 4747 mblk_t *tpi_mp = NULL; 4748 int err; 4749 tcp_stack_t *tcps = tcp->tcp_tcps; 4750 4751 sin = sin_null; 4752 sin.sin_addr.s_addr = ipha->ipha_src; 4753 sin.sin_port = *(uint16_t *)tcph->th_lport; 4754 sin.sin_family = AF_INET; 4755 if (ltcp->tcp_recvdstaddr) { 4756 sin_t sind; 4757 4758 sind = sin_null; 4759 sind.sin_addr.s_addr = ipha->ipha_dst; 4760 sind.sin_port = *(uint16_t *)tcph->th_fport; 4761 sind.sin_family = AF_INET; 4762 tpi_mp = mi_tpi_extconn_ind(NULL, 4763 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4764 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4765 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4766 } else { 4767 tpi_mp = mi_tpi_conn_ind(NULL, 4768 (char *)&sin, sizeof (sin_t), 4769 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4770 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4771 } 4772 4773 if (tpi_mp == NULL) { 4774 return (ENOMEM); 4775 } 4776 4777 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4778 connp->conn_send = ip_output; 4779 connp->conn_recv = tcp_input; 4780 connp->conn_fully_bound = B_FALSE; 4781 4782 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4783 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4784 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4785 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4786 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4787 4788 /* Inherit information from the "parent" */ 4789 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4790 tcp->tcp_family = ltcp->tcp_family; 4791 tcp->tcp_wq = ltcp->tcp_wq; 4792 tcp->tcp_rq = ltcp->tcp_rq; 4793 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4794 tcp->tcp_detached = B_TRUE; 4795 SOCK_CONNID_INIT(tcp->tcp_connid); 4796 if ((err = tcp_init_values(tcp)) != 0) { 4797 freemsg(tpi_mp); 4798 return (err); 4799 } 4800 4801 /* 4802 * Let's make sure that eager tcp template has enough space to 4803 * copy IPv4 listener's tcp template. Since the conn_t structure is 4804 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4805 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4806 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4807 * extension headers or with ip6i_t struct). Note that bcopy() below 4808 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4809 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4810 */ 4811 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4812 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4813 4814 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4815 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4816 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4817 tcp->tcp_ttl = ltcp->tcp_ttl; 4818 tcp->tcp_tos = ltcp->tcp_tos; 4819 4820 /* Copy the IP+TCP header template from listener to eager */ 4821 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4822 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4823 tcp->tcp_ip6h = NULL; 4824 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4825 tcp->tcp_ip_hdr_len); 4826 4827 /* Initialize the IP addresses and Ports */ 4828 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4829 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4830 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4831 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4832 4833 /* Source routing option copyover (reverse it) */ 4834 if (tcps->tcps_rev_src_routes) 4835 tcp_opt_reverse(tcp, ipha); 4836 4837 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4838 ASSERT(!tcp->tcp_tconnind_started); 4839 4840 /* 4841 * If the SYN contains a credential, it's a loopback packet; attach 4842 * the credential to the TPI message. 4843 */ 4844 mblk_copycred(tpi_mp, idmp); 4845 4846 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4847 4848 /* Inherit the listener's SSL protection state */ 4849 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4850 kssl_hold_ent(tcp->tcp_kssl_ent); 4851 tcp->tcp_kssl_pending = B_TRUE; 4852 } 4853 4854 /* Inherit the listener's non-STREAMS flag */ 4855 if (IPCL_IS_NONSTR(lconnp)) { 4856 connp->conn_flags |= IPCL_NONSTR; 4857 } 4858 4859 return (0); 4860 } 4861 4862 /* 4863 * sets up conn for ipsec. 4864 * if the first mblk is M_CTL it is consumed and mpp is updated. 4865 * in case of error mpp is freed. 4866 */ 4867 conn_t * 4868 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4869 { 4870 conn_t *connp = tcp->tcp_connp; 4871 conn_t *econnp; 4872 squeue_t *new_sqp; 4873 mblk_t *first_mp = *mpp; 4874 mblk_t *mp = *mpp; 4875 boolean_t mctl_present = B_FALSE; 4876 uint_t ipvers; 4877 4878 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4879 if (econnp == NULL) { 4880 freemsg(first_mp); 4881 return (NULL); 4882 } 4883 if (DB_TYPE(mp) == M_CTL) { 4884 if (mp->b_cont == NULL || 4885 mp->b_cont->b_datap->db_type != M_DATA) { 4886 freemsg(first_mp); 4887 return (NULL); 4888 } 4889 mp = mp->b_cont; 4890 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4891 freemsg(first_mp); 4892 return (NULL); 4893 } 4894 4895 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4896 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4897 mctl_present = B_TRUE; 4898 } else { 4899 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4900 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4901 } 4902 4903 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4904 DB_CKSUMSTART(mp) = 0; 4905 4906 ASSERT(OK_32PTR(mp->b_rptr)); 4907 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4908 if (ipvers == IPV4_VERSION) { 4909 uint16_t *up; 4910 uint32_t ports; 4911 ipha_t *ipha; 4912 4913 ipha = (ipha_t *)mp->b_rptr; 4914 up = (uint16_t *)((uchar_t *)ipha + 4915 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4916 ports = *(uint32_t *)up; 4917 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4918 ipha->ipha_dst, ipha->ipha_src, ports); 4919 } else { 4920 uint16_t *up; 4921 uint32_t ports; 4922 uint16_t ip_hdr_len; 4923 uint8_t *nexthdrp; 4924 ip6_t *ip6h; 4925 tcph_t *tcph; 4926 4927 ip6h = (ip6_t *)mp->b_rptr; 4928 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4929 ip_hdr_len = IPV6_HDR_LEN; 4930 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4931 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4932 CONN_DEC_REF(econnp); 4933 freemsg(first_mp); 4934 return (NULL); 4935 } 4936 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4937 up = (uint16_t *)tcph->th_lport; 4938 ports = *(uint32_t *)up; 4939 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4940 ip6h->ip6_dst, ip6h->ip6_src, ports); 4941 } 4942 4943 /* 4944 * The caller already ensured that there is a sqp present. 4945 */ 4946 econnp->conn_sqp = new_sqp; 4947 econnp->conn_initial_sqp = new_sqp; 4948 4949 if (connp->conn_policy != NULL) { 4950 ipsec_in_t *ii; 4951 ii = (ipsec_in_t *)(first_mp->b_rptr); 4952 ASSERT(ii->ipsec_in_policy == NULL); 4953 IPPH_REFHOLD(connp->conn_policy); 4954 ii->ipsec_in_policy = connp->conn_policy; 4955 4956 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4957 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4958 CONN_DEC_REF(econnp); 4959 freemsg(first_mp); 4960 return (NULL); 4961 } 4962 } 4963 4964 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4965 CONN_DEC_REF(econnp); 4966 freemsg(first_mp); 4967 return (NULL); 4968 } 4969 4970 /* 4971 * If we know we have some policy, pass the "IPSEC" 4972 * options size TCP uses this adjust the MSS. 4973 */ 4974 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4975 if (mctl_present) { 4976 freeb(first_mp); 4977 *mpp = mp; 4978 } 4979 4980 return (econnp); 4981 } 4982 4983 /* 4984 * tcp_get_conn/tcp_free_conn 4985 * 4986 * tcp_get_conn is used to get a clean tcp connection structure. 4987 * It tries to reuse the connections put on the freelist by the 4988 * time_wait_collector failing which it goes to kmem_cache. This 4989 * way has two benefits compared to just allocating from and 4990 * freeing to kmem_cache. 4991 * 1) The time_wait_collector can free (which includes the cleanup) 4992 * outside the squeue. So when the interrupt comes, we have a clean 4993 * connection sitting in the freelist. Obviously, this buys us 4994 * performance. 4995 * 4996 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 4997 * has multiple disadvantages - tying up the squeue during alloc, and the 4998 * fact that IPSec policy initialization has to happen here which 4999 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5000 * But allocating the conn/tcp in IP land is also not the best since 5001 * we can't check the 'q' and 'q0' which are protected by squeue and 5002 * blindly allocate memory which might have to be freed here if we are 5003 * not allowed to accept the connection. By using the freelist and 5004 * putting the conn/tcp back in freelist, we don't pay a penalty for 5005 * allocating memory without checking 'q/q0' and freeing it if we can't 5006 * accept the connection. 5007 * 5008 * Care should be taken to put the conn back in the same squeue's freelist 5009 * from which it was allocated. Best results are obtained if conn is 5010 * allocated from listener's squeue and freed to the same. Time wait 5011 * collector will free up the freelist is the connection ends up sitting 5012 * there for too long. 5013 */ 5014 void * 5015 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5016 { 5017 tcp_t *tcp = NULL; 5018 conn_t *connp = NULL; 5019 squeue_t *sqp = (squeue_t *)arg; 5020 tcp_squeue_priv_t *tcp_time_wait; 5021 netstack_t *ns; 5022 mblk_t *tcp_rsrv_mp = NULL; 5023 5024 tcp_time_wait = 5025 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5026 5027 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5028 tcp = tcp_time_wait->tcp_free_list; 5029 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5030 if (tcp != NULL) { 5031 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5032 tcp_time_wait->tcp_free_list_cnt--; 5033 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5034 tcp->tcp_time_wait_next = NULL; 5035 connp = tcp->tcp_connp; 5036 connp->conn_flags |= IPCL_REUSED; 5037 5038 ASSERT(tcp->tcp_tcps == NULL); 5039 ASSERT(connp->conn_netstack == NULL); 5040 ASSERT(tcp->tcp_rsrv_mp != NULL); 5041 ns = tcps->tcps_netstack; 5042 netstack_hold(ns); 5043 connp->conn_netstack = ns; 5044 tcp->tcp_tcps = tcps; 5045 TCPS_REFHOLD(tcps); 5046 ipcl_globalhash_insert(connp); 5047 return ((void *)connp); 5048 } 5049 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5050 /* 5051 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 5052 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5053 */ 5054 tcp_rsrv_mp = allocb(0, BPRI_HI); 5055 if (tcp_rsrv_mp == NULL) 5056 return (NULL); 5057 5058 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5059 tcps->tcps_netstack)) == NULL) { 5060 freeb(tcp_rsrv_mp); 5061 return (NULL); 5062 } 5063 5064 tcp = connp->conn_tcp; 5065 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 5066 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5067 5068 tcp->tcp_tcps = tcps; 5069 TCPS_REFHOLD(tcps); 5070 5071 return ((void *)connp); 5072 } 5073 5074 /* 5075 * Update the cached label for the given tcp_t. This should be called once per 5076 * connection, and before any packets are sent or tcp_process_options is 5077 * invoked. Returns B_FALSE if the correct label could not be constructed. 5078 */ 5079 static boolean_t 5080 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5081 { 5082 conn_t *connp = tcp->tcp_connp; 5083 5084 if (tcp->tcp_ipversion == IPV4_VERSION) { 5085 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5086 int added; 5087 5088 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5089 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5090 return (B_FALSE); 5091 5092 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5093 if (added == -1) 5094 return (B_FALSE); 5095 tcp->tcp_hdr_len += added; 5096 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5097 tcp->tcp_ip_hdr_len += added; 5098 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5099 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5100 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5101 tcp->tcp_hdr_len); 5102 if (added == -1) 5103 return (B_FALSE); 5104 tcp->tcp_hdr_len += added; 5105 tcp->tcp_tcph = (tcph_t *) 5106 ((uchar_t *)tcp->tcp_tcph + added); 5107 tcp->tcp_ip_hdr_len += added; 5108 } 5109 } else { 5110 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5111 5112 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5113 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5114 return (B_FALSE); 5115 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5116 &tcp->tcp_label_len, optbuf) != 0) 5117 return (B_FALSE); 5118 if (tcp_build_hdrs(tcp) != 0) 5119 return (B_FALSE); 5120 } 5121 5122 connp->conn_ulp_labeled = 1; 5123 5124 return (B_TRUE); 5125 } 5126 5127 /* BEGIN CSTYLED */ 5128 /* 5129 * 5130 * The sockfs ACCEPT path: 5131 * ======================= 5132 * 5133 * The eager is now established in its own perimeter as soon as SYN is 5134 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5135 * completes the accept processing on the acceptor STREAM. The sending 5136 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5137 * listener but a TLI/XTI listener completes the accept processing 5138 * on the listener perimeter. 5139 * 5140 * Common control flow for 3 way handshake: 5141 * ---------------------------------------- 5142 * 5143 * incoming SYN (listener perimeter) -> tcp_rput_data() 5144 * -> tcp_conn_request() 5145 * 5146 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5147 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5148 * 5149 * Sockfs ACCEPT Path: 5150 * ------------------- 5151 * 5152 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5153 * as STREAM entry point) 5154 * 5155 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5156 * 5157 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5158 * association (we are not behind eager's squeue but sockfs is protecting us 5159 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5160 * is changed to point at tcp_wput(). 5161 * 5162 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5163 * listener (done on listener's perimeter). 5164 * 5165 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5166 * accept. 5167 * 5168 * TLI/XTI client ACCEPT path: 5169 * --------------------------- 5170 * 5171 * soaccept() sends T_CONN_RES on the listener STREAM. 5172 * 5173 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5174 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5175 * 5176 * Locks: 5177 * ====== 5178 * 5179 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5180 * and listeners->tcp_eager_next_q. 5181 * 5182 * Referencing: 5183 * ============ 5184 * 5185 * 1) We start out in tcp_conn_request by eager placing a ref on 5186 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5187 * 5188 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5189 * doing so we place a ref on the eager. This ref is finally dropped at the 5190 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5191 * reference is dropped by the squeue framework. 5192 * 5193 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5194 * 5195 * The reference must be released by the same entity that added the reference 5196 * In the above scheme, the eager is the entity that adds and releases the 5197 * references. Note that tcp_accept_finish executes in the squeue of the eager 5198 * (albeit after it is attached to the acceptor stream). Though 1. executes 5199 * in the listener's squeue, the eager is nascent at this point and the 5200 * reference can be considered to have been added on behalf of the eager. 5201 * 5202 * Eager getting a Reset or listener closing: 5203 * ========================================== 5204 * 5205 * Once the listener and eager are linked, the listener never does the unlink. 5206 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5207 * a message on all eager perimeter. The eager then does the unlink, clears 5208 * any pointers to the listener's queue and drops the reference to the 5209 * listener. The listener waits in tcp_close outside the squeue until its 5210 * refcount has dropped to 1. This ensures that the listener has waited for 5211 * all eagers to clear their association with the listener. 5212 * 5213 * Similarly, if eager decides to go away, it can unlink itself and close. 5214 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5215 * the reference to eager is still valid because of the extra ref we put 5216 * in tcp_send_conn_ind. 5217 * 5218 * Listener can always locate the eager under the protection 5219 * of the listener->tcp_eager_lock, and then do a refhold 5220 * on the eager during the accept processing. 5221 * 5222 * The acceptor stream accesses the eager in the accept processing 5223 * based on the ref placed on eager before sending T_conn_ind. 5224 * The only entity that can negate this refhold is a listener close 5225 * which is mutually exclusive with an active acceptor stream. 5226 * 5227 * Eager's reference on the listener 5228 * =================================== 5229 * 5230 * If the accept happens (even on a closed eager) the eager drops its 5231 * reference on the listener at the start of tcp_accept_finish. If the 5232 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5233 * the reference is dropped in tcp_closei_local. If the listener closes, 5234 * the reference is dropped in tcp_eager_kill. In all cases the reference 5235 * is dropped while executing in the eager's context (squeue). 5236 */ 5237 /* END CSTYLED */ 5238 5239 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5240 5241 /* 5242 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5243 * tcp_rput_data will not see any SYN packets. 5244 */ 5245 /* ARGSUSED */ 5246 void 5247 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5248 { 5249 tcph_t *tcph; 5250 uint32_t seg_seq; 5251 tcp_t *eager; 5252 uint_t ipvers; 5253 ipha_t *ipha; 5254 ip6_t *ip6h; 5255 int err; 5256 conn_t *econnp = NULL; 5257 squeue_t *new_sqp; 5258 mblk_t *mp1; 5259 uint_t ip_hdr_len; 5260 conn_t *connp = (conn_t *)arg; 5261 tcp_t *tcp = connp->conn_tcp; 5262 cred_t *credp; 5263 tcp_stack_t *tcps = tcp->tcp_tcps; 5264 ip_stack_t *ipst; 5265 5266 if (tcp->tcp_state != TCPS_LISTEN) 5267 goto error2; 5268 5269 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5270 5271 mutex_enter(&tcp->tcp_eager_lock); 5272 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5273 mutex_exit(&tcp->tcp_eager_lock); 5274 TCP_STAT(tcps, tcp_listendrop); 5275 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5276 if (tcp->tcp_debug) { 5277 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5278 "tcp_conn_request: listen backlog (max=%d) " 5279 "overflow (%d pending) on %s", 5280 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5281 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5282 } 5283 goto error2; 5284 } 5285 5286 if (tcp->tcp_conn_req_cnt_q0 >= 5287 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5288 /* 5289 * Q0 is full. Drop a pending half-open req from the queue 5290 * to make room for the new SYN req. Also mark the time we 5291 * drop a SYN. 5292 * 5293 * A more aggressive defense against SYN attack will 5294 * be to set the "tcp_syn_defense" flag now. 5295 */ 5296 TCP_STAT(tcps, tcp_listendropq0); 5297 tcp->tcp_last_rcv_lbolt = lbolt64; 5298 if (!tcp_drop_q0(tcp)) { 5299 mutex_exit(&tcp->tcp_eager_lock); 5300 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5301 if (tcp->tcp_debug) { 5302 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5303 "tcp_conn_request: listen half-open queue " 5304 "(max=%d) full (%d pending) on %s", 5305 tcps->tcps_conn_req_max_q0, 5306 tcp->tcp_conn_req_cnt_q0, 5307 tcp_display(tcp, NULL, 5308 DISP_PORT_ONLY)); 5309 } 5310 goto error2; 5311 } 5312 } 5313 mutex_exit(&tcp->tcp_eager_lock); 5314 5315 /* 5316 * IP adds STRUIO_EAGER and ensures that the received packet is 5317 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5318 * link local address. If IPSec is enabled, db_struioflag has 5319 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5320 * otherwise an error case if neither of them is set. 5321 */ 5322 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5323 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5324 DB_CKSUMSTART(mp) = 0; 5325 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5326 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5327 if (econnp == NULL) 5328 goto error2; 5329 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5330 econnp->conn_sqp = new_sqp; 5331 econnp->conn_initial_sqp = new_sqp; 5332 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5333 /* 5334 * mp is updated in tcp_get_ipsec_conn(). 5335 */ 5336 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5337 if (econnp == NULL) { 5338 /* 5339 * mp freed by tcp_get_ipsec_conn. 5340 */ 5341 return; 5342 } 5343 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5344 } else { 5345 goto error2; 5346 } 5347 5348 ASSERT(DB_TYPE(mp) == M_DATA); 5349 5350 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5351 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5352 ASSERT(OK_32PTR(mp->b_rptr)); 5353 if (ipvers == IPV4_VERSION) { 5354 ipha = (ipha_t *)mp->b_rptr; 5355 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5356 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5357 } else { 5358 ip6h = (ip6_t *)mp->b_rptr; 5359 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5360 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5361 } 5362 5363 if (tcp->tcp_family == AF_INET) { 5364 ASSERT(ipvers == IPV4_VERSION); 5365 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5366 } else { 5367 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5368 } 5369 5370 if (err) 5371 goto error3; 5372 5373 eager = econnp->conn_tcp; 5374 ASSERT(eager->tcp_ordrel_mp == NULL); 5375 5376 if (!IPCL_IS_NONSTR(econnp)) { 5377 /* 5378 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 5379 * at close time, we will always have that to send up. 5380 * Otherwise, we need to do special handling in case the 5381 * allocation fails at that time. 5382 */ 5383 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5384 goto error3; 5385 } 5386 /* Inherit various TCP parameters from the listener */ 5387 eager->tcp_naglim = tcp->tcp_naglim; 5388 eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; 5389 eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; 5390 5391 eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; 5392 eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; 5393 5394 /* 5395 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5396 * If it does not, the eager's receive window will be set to the 5397 * listener's receive window later in this function. 5398 */ 5399 eager->tcp_rwnd = 0; 5400 5401 /* 5402 * Inherit listener's tcp_init_cwnd. Need to do this before 5403 * calling tcp_process_options() where tcp_mss_set() is called 5404 * to set the initial cwnd. 5405 */ 5406 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5407 5408 /* 5409 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5410 * zone id before the accept is completed in tcp_wput_accept(). 5411 */ 5412 econnp->conn_zoneid = connp->conn_zoneid; 5413 econnp->conn_allzones = connp->conn_allzones; 5414 5415 /* Copy nexthop information from listener to eager */ 5416 if (connp->conn_nexthop_set) { 5417 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5418 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5419 } 5420 5421 /* 5422 * TSOL: tsol_input_proc() needs the eager's cred before the 5423 * eager is accepted 5424 */ 5425 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5426 crhold(credp); 5427 5428 ASSERT(econnp->conn_effective_cred == NULL); 5429 if (is_system_labeled()) { 5430 cred_t *cr; 5431 ts_label_t *tsl; 5432 5433 /* 5434 * If this is an MLP connection or a MAC-Exempt connection 5435 * with an unlabeled node, packets are to be 5436 * exchanged using the security label of the received 5437 * SYN packet instead of the server application's label. 5438 */ 5439 if ((cr = msg_getcred(mp, NULL)) != NULL && 5440 (tsl = crgetlabel(cr)) != NULL && 5441 (connp->conn_mlp_type != mlptSingle || 5442 (connp->conn_mac_exempt == B_TRUE && 5443 (tsl->tsl_flags & TSLF_UNLABELED)))) { 5444 if ((econnp->conn_effective_cred = 5445 copycred_from_tslabel(econnp->conn_cred, 5446 tsl, KM_NOSLEEP)) != NULL) { 5447 DTRACE_PROBE2( 5448 syn_accept_peerlabel, 5449 conn_t *, econnp, cred_t *, 5450 econnp->conn_effective_cred); 5451 } else { 5452 DTRACE_PROBE3( 5453 tx__ip__log__error__set__eagercred__tcp, 5454 char *, 5455 "SYN mp(1) label on eager connp(2) failed", 5456 mblk_t *, mp, conn_t *, econnp); 5457 goto error3; 5458 } 5459 } else { 5460 DTRACE_PROBE2(syn_accept, conn_t *, 5461 econnp, cred_t *, econnp->conn_cred) 5462 } 5463 5464 /* 5465 * Verify the destination is allowed to receive packets 5466 * at the security label of the SYN-ACK we are generating. 5467 * tsol_check_dest() may create a new effective cred for 5468 * this connection with a modified label or label flags. 5469 */ 5470 if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) { 5471 uint32_t dst; 5472 IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst); 5473 err = tsol_check_dest(CONN_CRED(econnp), &dst, 5474 IPV4_VERSION, B_FALSE, &cr); 5475 } else { 5476 err = tsol_check_dest(CONN_CRED(econnp), 5477 &econnp->conn_remv6, IPV6_VERSION, 5478 B_FALSE, &cr); 5479 } 5480 if (err != 0) 5481 goto error3; 5482 if (cr != NULL) { 5483 if (econnp->conn_effective_cred != NULL) 5484 crfree(econnp->conn_effective_cred); 5485 econnp->conn_effective_cred = cr; 5486 } 5487 5488 /* 5489 * Generate the security label to be used in the text of 5490 * this connection's outgoing packets. 5491 */ 5492 if (!tcp_update_label(eager, CONN_CRED(econnp))) { 5493 DTRACE_PROBE3( 5494 tx__ip__log__error__connrequest__tcp, 5495 char *, "eager connp(1) label on SYN mp(2) failed", 5496 conn_t *, econnp, mblk_t *, mp); 5497 goto error3; 5498 } 5499 } 5500 5501 eager->tcp_hard_binding = B_TRUE; 5502 5503 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5504 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5505 5506 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5507 if (err != 0) { 5508 tcp_bind_hash_remove(eager); 5509 goto error3; 5510 } 5511 5512 /* 5513 * No need to check for multicast destination since ip will only pass 5514 * up multicasts to those that have expressed interest 5515 * TODO: what about rejecting broadcasts? 5516 * Also check that source is not a multicast or broadcast address. 5517 */ 5518 eager->tcp_state = TCPS_SYN_RCVD; 5519 5520 5521 /* 5522 * There should be no ire in the mp as we are being called after 5523 * receiving the SYN. 5524 */ 5525 ASSERT(tcp_ire_mp(&mp) == NULL); 5526 5527 /* 5528 * Adapt our mss, ttl, ... according to information provided in IRE. 5529 */ 5530 5531 if (tcp_adapt_ire(eager, NULL) == 0) { 5532 /* Undo the bind_hash_insert */ 5533 tcp_bind_hash_remove(eager); 5534 goto error3; 5535 } 5536 5537 /* Process all TCP options. */ 5538 tcp_process_options(eager, tcph); 5539 5540 /* Is the other end ECN capable? */ 5541 if (tcps->tcps_ecn_permitted >= 1 && 5542 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5543 eager->tcp_ecn_ok = B_TRUE; 5544 } 5545 5546 /* 5547 * listener->tcp_rq->q_hiwat should be the default window size or a 5548 * window size changed via SO_RCVBUF option. First round up the 5549 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5550 * scale option value if needed. Call tcp_rwnd_set() to finish the 5551 * setting. 5552 * 5553 * Note if there is a rpipe metric associated with the remote host, 5554 * we should not inherit receive window size from listener. 5555 */ 5556 eager->tcp_rwnd = MSS_ROUNDUP( 5557 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5558 eager->tcp_rwnd), eager->tcp_mss); 5559 if (eager->tcp_snd_ws_ok) 5560 tcp_set_ws_value(eager); 5561 /* 5562 * Note that this is the only place tcp_rwnd_set() is called for 5563 * accepting a connection. We need to call it here instead of 5564 * after the 3-way handshake because we need to tell the other 5565 * side our rwnd in the SYN-ACK segment. 5566 */ 5567 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5568 5569 /* 5570 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5571 * via soaccept()->soinheritoptions() which essentially applies 5572 * all the listener options to the new STREAM. The options that we 5573 * need to take care of are: 5574 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5575 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5576 * SO_SNDBUF, SO_RCVBUF. 5577 * 5578 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5579 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5580 * tcp_maxpsz_set() gets called later from 5581 * tcp_accept_finish(), the option takes effect. 5582 * 5583 */ 5584 /* Set the TCP options */ 5585 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5586 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5587 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5588 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5589 eager->tcp_oobinline = tcp->tcp_oobinline; 5590 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5591 eager->tcp_broadcast = tcp->tcp_broadcast; 5592 eager->tcp_useloopback = tcp->tcp_useloopback; 5593 eager->tcp_dontroute = tcp->tcp_dontroute; 5594 eager->tcp_debug = tcp->tcp_debug; 5595 eager->tcp_linger = tcp->tcp_linger; 5596 eager->tcp_lingertime = tcp->tcp_lingertime; 5597 if (tcp->tcp_ka_enabled) 5598 eager->tcp_ka_enabled = 1; 5599 5600 /* Set the IP options */ 5601 econnp->conn_broadcast = connp->conn_broadcast; 5602 econnp->conn_loopback = connp->conn_loopback; 5603 econnp->conn_dontroute = connp->conn_dontroute; 5604 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5605 5606 /* Put a ref on the listener for the eager. */ 5607 CONN_INC_REF(connp); 5608 mutex_enter(&tcp->tcp_eager_lock); 5609 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5610 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5611 tcp->tcp_eager_next_q0 = eager; 5612 eager->tcp_eager_prev_q0 = tcp; 5613 5614 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5615 eager->tcp_listener = tcp; 5616 eager->tcp_saved_listener = tcp; 5617 5618 /* 5619 * Tag this detached tcp vector for later retrieval 5620 * by our listener client in tcp_accept(). 5621 */ 5622 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5623 tcp->tcp_conn_req_cnt_q0++; 5624 if (++tcp->tcp_conn_req_seqnum == -1) { 5625 /* 5626 * -1 is "special" and defined in TPI as something 5627 * that should never be used in T_CONN_IND 5628 */ 5629 ++tcp->tcp_conn_req_seqnum; 5630 } 5631 mutex_exit(&tcp->tcp_eager_lock); 5632 5633 if (tcp->tcp_syn_defense) { 5634 /* Don't drop the SYN that comes from a good IP source */ 5635 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5636 if (addr_cache != NULL && eager->tcp_remote == 5637 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5638 eager->tcp_dontdrop = B_TRUE; 5639 } 5640 } 5641 5642 /* 5643 * We need to insert the eager in its own perimeter but as soon 5644 * as we do that, we expose the eager to the classifier and 5645 * should not touch any field outside the eager's perimeter. 5646 * So do all the work necessary before inserting the eager 5647 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5648 * will succeed but undo everything if it fails. 5649 */ 5650 seg_seq = ABE32_TO_U32(tcph->th_seq); 5651 eager->tcp_irs = seg_seq; 5652 eager->tcp_rack = seg_seq; 5653 eager->tcp_rnxt = seg_seq + 1; 5654 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5655 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5656 eager->tcp_state = TCPS_SYN_RCVD; 5657 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5658 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5659 if (mp1 == NULL) { 5660 /* 5661 * Increment the ref count as we are going to 5662 * enqueueing an mp in squeue 5663 */ 5664 CONN_INC_REF(econnp); 5665 goto error; 5666 } 5667 5668 /* 5669 * Note that in theory this should use the current pid 5670 * so that getpeerucred on the client returns the actual listener 5671 * that does accept. But accept() hasn't been called yet. We could use 5672 * the pid of the process that did bind/listen on the server. 5673 * However, with common usage like inetd() the bind/listen can be done 5674 * by a different process than the accept(). 5675 * Hence we do the simple thing of using the open pid here. 5676 * Note that db_credp is set later in tcp_send_data(). 5677 */ 5678 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5679 eager->tcp_cpid = tcp->tcp_cpid; 5680 eager->tcp_open_time = lbolt64; 5681 5682 /* 5683 * We need to start the rto timer. In normal case, we start 5684 * the timer after sending the packet on the wire (or at 5685 * least believing that packet was sent by waiting for 5686 * CALL_IP_WPUT() to return). Since this is the first packet 5687 * being sent on the wire for the eager, our initial tcp_rto 5688 * is at least tcp_rexmit_interval_min which is a fairly 5689 * large value to allow the algorithm to adjust slowly to large 5690 * fluctuations of RTT during first few transmissions. 5691 * 5692 * Starting the timer first and then sending the packet in this 5693 * case shouldn't make much difference since tcp_rexmit_interval_min 5694 * is of the order of several 100ms and starting the timer 5695 * first and then sending the packet will result in difference 5696 * of few micro seconds. 5697 * 5698 * Without this optimization, we are forced to hold the fanout 5699 * lock across the ipcl_bind_insert() and sending the packet 5700 * so that we don't race against an incoming packet (maybe RST) 5701 * for this eager. 5702 * 5703 * It is necessary to acquire an extra reference on the eager 5704 * at this point and hold it until after tcp_send_data() to 5705 * ensure against an eager close race. 5706 */ 5707 5708 CONN_INC_REF(eager->tcp_connp); 5709 5710 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5711 5712 /* 5713 * Insert the eager in its own perimeter now. We are ready to deal 5714 * with any packets on eager. 5715 */ 5716 if (eager->tcp_ipversion == IPV4_VERSION) { 5717 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5718 goto error; 5719 } 5720 } else { 5721 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5722 goto error; 5723 } 5724 } 5725 5726 /* mark conn as fully-bound */ 5727 econnp->conn_fully_bound = B_TRUE; 5728 5729 /* Send the SYN-ACK */ 5730 tcp_send_data(eager, eager->tcp_wq, mp1); 5731 CONN_DEC_REF(eager->tcp_connp); 5732 freemsg(mp); 5733 5734 return; 5735 error: 5736 freemsg(mp1); 5737 eager->tcp_closemp_used = B_TRUE; 5738 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5739 mp1 = &eager->tcp_closemp; 5740 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5741 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5742 5743 /* 5744 * If a connection already exists, send the mp to that connections so 5745 * that it can be appropriately dealt with. 5746 */ 5747 ipst = tcps->tcps_netstack->netstack_ip; 5748 5749 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5750 if (!IPCL_IS_CONNECTED(econnp)) { 5751 /* 5752 * Something bad happened. ipcl_conn_insert() 5753 * failed because a connection already existed 5754 * in connected hash but we can't find it 5755 * anymore (someone blew it away). Just 5756 * free this message and hopefully remote 5757 * will retransmit at which time the SYN can be 5758 * treated as a new connection or dealth with 5759 * a TH_RST if a connection already exists. 5760 */ 5761 CONN_DEC_REF(econnp); 5762 freemsg(mp); 5763 } else { 5764 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5765 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5766 } 5767 } else { 5768 /* Nobody wants this packet */ 5769 freemsg(mp); 5770 } 5771 return; 5772 error3: 5773 CONN_DEC_REF(econnp); 5774 error2: 5775 freemsg(mp); 5776 } 5777 5778 /* 5779 * In an ideal case of vertical partition in NUMA architecture, its 5780 * beneficial to have the listener and all the incoming connections 5781 * tied to the same squeue. The other constraint is that incoming 5782 * connections should be tied to the squeue attached to interrupted 5783 * CPU for obvious locality reason so this leaves the listener to 5784 * be tied to the same squeue. Our only problem is that when listener 5785 * is binding, the CPU that will get interrupted by the NIC whose 5786 * IP address the listener is binding to is not even known. So 5787 * the code below allows us to change that binding at the time the 5788 * CPU is interrupted by virtue of incoming connection's squeue. 5789 * 5790 * This is usefull only in case of a listener bound to a specific IP 5791 * address. For other kind of listeners, they get bound the 5792 * very first time and there is no attempt to rebind them. 5793 */ 5794 void 5795 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5796 { 5797 conn_t *connp = (conn_t *)arg; 5798 squeue_t *sqp = (squeue_t *)arg2; 5799 squeue_t *new_sqp; 5800 uint32_t conn_flags; 5801 5802 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5803 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5804 } else { 5805 goto done; 5806 } 5807 5808 if (connp->conn_fanout == NULL) 5809 goto done; 5810 5811 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5812 mutex_enter(&connp->conn_fanout->connf_lock); 5813 mutex_enter(&connp->conn_lock); 5814 /* 5815 * No one from read or write side can access us now 5816 * except for already queued packets on this squeue. 5817 * But since we haven't changed the squeue yet, they 5818 * can't execute. If they are processed after we have 5819 * changed the squeue, they are sent back to the 5820 * correct squeue down below. 5821 * But a listner close can race with processing of 5822 * incoming SYN. If incoming SYN processing changes 5823 * the squeue then the listener close which is waiting 5824 * to enter the squeue would operate on the wrong 5825 * squeue. Hence we don't change the squeue here unless 5826 * the refcount is exactly the minimum refcount. The 5827 * minimum refcount of 4 is counted as - 1 each for 5828 * TCP and IP, 1 for being in the classifier hash, and 5829 * 1 for the mblk being processed. 5830 */ 5831 5832 if (connp->conn_ref != 4 || 5833 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5834 mutex_exit(&connp->conn_lock); 5835 mutex_exit(&connp->conn_fanout->connf_lock); 5836 goto done; 5837 } 5838 if (connp->conn_sqp != new_sqp) { 5839 while (connp->conn_sqp != new_sqp) 5840 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5841 } 5842 5843 do { 5844 conn_flags = connp->conn_flags; 5845 conn_flags |= IPCL_FULLY_BOUND; 5846 (void) cas32(&connp->conn_flags, connp->conn_flags, 5847 conn_flags); 5848 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5849 5850 mutex_exit(&connp->conn_fanout->connf_lock); 5851 mutex_exit(&connp->conn_lock); 5852 } 5853 5854 done: 5855 if (connp->conn_sqp != sqp) { 5856 CONN_INC_REF(connp); 5857 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5858 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5859 } else { 5860 tcp_conn_request(connp, mp, sqp); 5861 } 5862 } 5863 5864 /* 5865 * Successful connect request processing begins when our client passes 5866 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5867 * our T_OK_ACK reply message upstream. The control flow looks like this: 5868 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5869 * upstream <- tcp_rput() <- IP 5870 * After various error checks are completed, tcp_tpi_connect() lays 5871 * the target address and port into the composite header template, 5872 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5873 * request followed by an IRE request, and passes the three mblk message 5874 * down to IP looking like this: 5875 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5876 * Processing continues in tcp_rput() when we receive the following message: 5877 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5878 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5879 * to fire off the connection request, and then passes the T_OK_ACK mblk 5880 * upstream that we filled in below. There are, of course, numerous 5881 * error conditions along the way which truncate the processing described 5882 * above. 5883 */ 5884 static void 5885 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5886 { 5887 sin_t *sin; 5888 queue_t *q = tcp->tcp_wq; 5889 struct T_conn_req *tcr; 5890 struct sockaddr *sa; 5891 socklen_t len; 5892 int error; 5893 cred_t *cr; 5894 pid_t cpid; 5895 5896 /* 5897 * All Solaris components should pass a db_credp 5898 * for this TPI message, hence we ASSERT. 5899 * But in case there is some other M_PROTO that looks 5900 * like a TPI message sent by some other kernel 5901 * component, we check and return an error. 5902 */ 5903 cr = msg_getcred(mp, &cpid); 5904 ASSERT(cr != NULL); 5905 if (cr == NULL) { 5906 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5907 return; 5908 } 5909 5910 tcr = (struct T_conn_req *)mp->b_rptr; 5911 5912 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5913 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5914 tcp_err_ack(tcp, mp, TPROTO, 0); 5915 return; 5916 } 5917 5918 /* 5919 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5920 * will always have that to send up. Otherwise, we need to do 5921 * special handling in case the allocation fails at that time. 5922 * If the end point is TPI, the tcp_t can be reused and the 5923 * tcp_ordrel_mp may be allocated already. 5924 */ 5925 if (tcp->tcp_ordrel_mp == NULL) { 5926 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5927 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5928 return; 5929 } 5930 } 5931 5932 /* 5933 * Determine packet type based on type of address passed in 5934 * the request should contain an IPv4 or IPv6 address. 5935 * Make sure that address family matches the type of 5936 * family of the the address passed down 5937 */ 5938 switch (tcr->DEST_length) { 5939 default: 5940 tcp_err_ack(tcp, mp, TBADADDR, 0); 5941 return; 5942 5943 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5944 /* 5945 * XXX: The check for valid DEST_length was not there 5946 * in earlier releases and some buggy 5947 * TLI apps (e.g Sybase) got away with not feeding 5948 * in sin_zero part of address. 5949 * We allow that bug to keep those buggy apps humming. 5950 * Test suites require the check on DEST_length. 5951 * We construct a new mblk with valid DEST_length 5952 * free the original so the rest of the code does 5953 * not have to keep track of this special shorter 5954 * length address case. 5955 */ 5956 mblk_t *nmp; 5957 struct T_conn_req *ntcr; 5958 sin_t *nsin; 5959 5960 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5961 tcr->OPT_length, BPRI_HI); 5962 if (nmp == NULL) { 5963 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5964 return; 5965 } 5966 ntcr = (struct T_conn_req *)nmp->b_rptr; 5967 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5968 ntcr->PRIM_type = T_CONN_REQ; 5969 ntcr->DEST_length = sizeof (sin_t); 5970 ntcr->DEST_offset = sizeof (struct T_conn_req); 5971 5972 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5973 *nsin = sin_null; 5974 /* Get pointer to shorter address to copy from original mp */ 5975 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5976 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5977 if (sin == NULL || !OK_32PTR((char *)sin)) { 5978 freemsg(nmp); 5979 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5980 return; 5981 } 5982 nsin->sin_family = sin->sin_family; 5983 nsin->sin_port = sin->sin_port; 5984 nsin->sin_addr = sin->sin_addr; 5985 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5986 nmp->b_wptr = (uchar_t *)&nsin[1]; 5987 if (tcr->OPT_length != 0) { 5988 ntcr->OPT_length = tcr->OPT_length; 5989 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5990 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5991 (uchar_t *)ntcr + ntcr->OPT_offset, 5992 tcr->OPT_length); 5993 nmp->b_wptr += tcr->OPT_length; 5994 } 5995 freemsg(mp); /* original mp freed */ 5996 mp = nmp; /* re-initialize original variables */ 5997 tcr = ntcr; 5998 } 5999 /* FALLTHRU */ 6000 6001 case sizeof (sin_t): 6002 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6003 sizeof (sin_t)); 6004 len = sizeof (sin_t); 6005 break; 6006 6007 case sizeof (sin6_t): 6008 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6009 sizeof (sin6_t)); 6010 len = sizeof (sin6_t); 6011 break; 6012 } 6013 6014 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6015 if (error != 0) { 6016 tcp_err_ack(tcp, mp, TSYSERR, error); 6017 return; 6018 } 6019 6020 /* 6021 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6022 * should key on their sequence number and cut them loose. 6023 */ 6024 6025 /* 6026 * If options passed in, feed it for verification and handling 6027 */ 6028 if (tcr->OPT_length != 0) { 6029 mblk_t *ok_mp; 6030 mblk_t *discon_mp; 6031 mblk_t *conn_opts_mp; 6032 int t_error, sys_error, do_disconnect; 6033 6034 conn_opts_mp = NULL; 6035 6036 if (tcp_conprim_opt_process(tcp, mp, 6037 &do_disconnect, &t_error, &sys_error) < 0) { 6038 if (do_disconnect) { 6039 ASSERT(t_error == 0 && sys_error == 0); 6040 discon_mp = mi_tpi_discon_ind(NULL, 6041 ECONNREFUSED, 0); 6042 if (!discon_mp) { 6043 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6044 TSYSERR, ENOMEM); 6045 return; 6046 } 6047 ok_mp = mi_tpi_ok_ack_alloc(mp); 6048 if (!ok_mp) { 6049 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6050 TSYSERR, ENOMEM); 6051 return; 6052 } 6053 qreply(q, ok_mp); 6054 qreply(q, discon_mp); /* no flush! */ 6055 } else { 6056 ASSERT(t_error != 0); 6057 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6058 sys_error); 6059 } 6060 return; 6061 } 6062 /* 6063 * Success in setting options, the mp option buffer represented 6064 * by OPT_length/offset has been potentially modified and 6065 * contains results of option processing. We copy it in 6066 * another mp to save it for potentially influencing returning 6067 * it in T_CONN_CONN. 6068 */ 6069 if (tcr->OPT_length != 0) { /* there are resulting options */ 6070 conn_opts_mp = copyb(mp); 6071 if (!conn_opts_mp) { 6072 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6073 TSYSERR, ENOMEM); 6074 return; 6075 } 6076 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6077 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6078 /* 6079 * Note: 6080 * These resulting option negotiation can include any 6081 * end-to-end negotiation options but there no such 6082 * thing (yet?) in our TCP/IP. 6083 */ 6084 } 6085 } 6086 6087 /* call the non-TPI version */ 6088 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6089 if (error < 0) { 6090 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6091 } else if (error > 0) { 6092 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6093 } else { 6094 mp = mi_tpi_ok_ack_alloc(mp); 6095 } 6096 6097 /* 6098 * Note: Code below is the "failure" case 6099 */ 6100 /* return error ack and blow away saved option results if any */ 6101 connect_failed: 6102 if (mp != NULL) 6103 putnext(tcp->tcp_rq, mp); 6104 else { 6105 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6106 TSYSERR, ENOMEM); 6107 } 6108 } 6109 6110 /* 6111 * Handle connect to IPv4 destinations, including connections for AF_INET6 6112 * sockets connecting to IPv4 mapped IPv6 destinations. 6113 */ 6114 static int 6115 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6116 uint_t srcid, cred_t *cr, pid_t pid) 6117 { 6118 tcph_t *tcph; 6119 mblk_t *mp; 6120 ipaddr_t dstaddr = *dstaddrp; 6121 int32_t oldstate; 6122 uint16_t lport; 6123 int error = 0; 6124 tcp_stack_t *tcps = tcp->tcp_tcps; 6125 6126 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6127 6128 /* Check for attempt to connect to INADDR_ANY */ 6129 if (dstaddr == INADDR_ANY) { 6130 /* 6131 * SunOS 4.x and 4.3 BSD allow an application 6132 * to connect a TCP socket to INADDR_ANY. 6133 * When they do this, the kernel picks the 6134 * address of one interface and uses it 6135 * instead. The kernel usually ends up 6136 * picking the address of the loopback 6137 * interface. This is an undocumented feature. 6138 * However, we provide the same thing here 6139 * in order to have source and binary 6140 * compatibility with SunOS 4.x. 6141 * Update the T_CONN_REQ (sin/sin6) since it is used to 6142 * generate the T_CONN_CON. 6143 */ 6144 dstaddr = htonl(INADDR_LOOPBACK); 6145 *dstaddrp = dstaddr; 6146 } 6147 6148 /* Handle __sin6_src_id if socket not bound to an IP address */ 6149 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6150 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6151 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6152 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6153 tcp->tcp_ipha->ipha_src); 6154 } 6155 6156 /* 6157 * Don't let an endpoint connect to itself. Note that 6158 * the test here does not catch the case where the 6159 * source IP addr was left unspecified by the user. In 6160 * this case, the source addr is set in tcp_adapt_ire() 6161 * using the reply to the T_BIND message that we send 6162 * down to IP here and the check is repeated in tcp_rput_other. 6163 */ 6164 if (dstaddr == tcp->tcp_ipha->ipha_src && 6165 dstport == tcp->tcp_lport) { 6166 error = -TBADADDR; 6167 goto failed; 6168 } 6169 6170 /* 6171 * Verify the destination is allowed to receive packets 6172 * at the security label of the connection we are initiating. 6173 * tsol_check_dest() may create a new effective cred for this 6174 * connection with a modified label or label flags. 6175 */ 6176 if (is_system_labeled()) { 6177 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6178 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6179 &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_exempt, 6180 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6181 if (error != EHOSTUNREACH) 6182 error = -TSYSERR; 6183 goto failed; 6184 } 6185 } 6186 6187 tcp->tcp_ipha->ipha_dst = dstaddr; 6188 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6189 6190 /* 6191 * Massage a source route if any putting the first hop 6192 * in iph_dst. Compute a starting value for the checksum which 6193 * takes into account that the original iph_dst should be 6194 * included in the checksum but that ip will include the 6195 * first hop in the source route in the tcp checksum. 6196 */ 6197 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6198 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6199 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6200 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6201 if ((int)tcp->tcp_sum < 0) 6202 tcp->tcp_sum--; 6203 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6204 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6205 (tcp->tcp_sum >> 16)); 6206 tcph = tcp->tcp_tcph; 6207 *(uint16_t *)tcph->th_fport = dstport; 6208 tcp->tcp_fport = dstport; 6209 6210 oldstate = tcp->tcp_state; 6211 /* 6212 * At this point the remote destination address and remote port fields 6213 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6214 * have to see which state tcp was in so we can take apropriate action. 6215 */ 6216 if (oldstate == TCPS_IDLE) { 6217 /* 6218 * We support a quick connect capability here, allowing 6219 * clients to transition directly from IDLE to SYN_SENT 6220 * tcp_bindi will pick an unused port, insert the connection 6221 * in the bind hash and transition to BOUND state. 6222 */ 6223 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6224 tcp, B_TRUE); 6225 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6226 B_FALSE, B_FALSE); 6227 if (lport == 0) { 6228 error = -TNOADDR; 6229 goto failed; 6230 } 6231 } 6232 tcp->tcp_state = TCPS_SYN_SENT; 6233 6234 mp = allocb(sizeof (ire_t), BPRI_HI); 6235 if (mp == NULL) { 6236 tcp->tcp_state = oldstate; 6237 error = ENOMEM; 6238 goto failed; 6239 } 6240 6241 mp->b_wptr += sizeof (ire_t); 6242 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6243 tcp->tcp_hard_binding = 1; 6244 6245 /* 6246 * We need to make sure that the conn_recv is set to a non-null 6247 * value before we insert the conn_t into the classifier table. 6248 * This is to avoid a race with an incoming packet which does 6249 * an ipcl_classify(). 6250 */ 6251 tcp->tcp_connp->conn_recv = tcp_input; 6252 6253 if (tcp->tcp_family == AF_INET) { 6254 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6255 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6256 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6257 } else { 6258 in6_addr_t v6src; 6259 if (tcp->tcp_ipversion == IPV4_VERSION) { 6260 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6261 } else { 6262 v6src = tcp->tcp_ip6h->ip6_src; 6263 } 6264 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6265 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6266 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6267 } 6268 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6269 tcp->tcp_active_open = 1; 6270 6271 6272 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6273 failed: 6274 /* return error ack and blow away saved option results if any */ 6275 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6276 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6277 return (error); 6278 } 6279 6280 /* 6281 * Handle connect to IPv6 destinations. 6282 */ 6283 static int 6284 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6285 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6286 { 6287 tcph_t *tcph; 6288 mblk_t *mp; 6289 ip6_rthdr_t *rth; 6290 int32_t oldstate; 6291 uint16_t lport; 6292 tcp_stack_t *tcps = tcp->tcp_tcps; 6293 int error = 0; 6294 conn_t *connp = tcp->tcp_connp; 6295 6296 ASSERT(tcp->tcp_family == AF_INET6); 6297 6298 /* 6299 * If we're here, it means that the destination address is a native 6300 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6301 * reason why it might not be IPv6 is if the socket was bound to an 6302 * IPv4-mapped IPv6 address. 6303 */ 6304 if (tcp->tcp_ipversion != IPV6_VERSION) { 6305 return (-TBADADDR); 6306 } 6307 6308 /* 6309 * Interpret a zero destination to mean loopback. 6310 * Update the T_CONN_REQ (sin/sin6) since it is used to 6311 * generate the T_CONN_CON. 6312 */ 6313 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6314 *dstaddrp = ipv6_loopback; 6315 } 6316 6317 /* Handle __sin6_src_id if socket not bound to an IP address */ 6318 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6319 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6320 connp->conn_zoneid, tcps->tcps_netstack); 6321 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6322 } 6323 6324 /* 6325 * Take care of the scope_id now and add ip6i_t 6326 * if ip6i_t is not already allocated through TCP 6327 * sticky options. At this point tcp_ip6h does not 6328 * have dst info, thus use dstaddrp. 6329 */ 6330 if (scope_id != 0 && 6331 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6332 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6333 ip6i_t *ip6i; 6334 6335 ipp->ipp_ifindex = scope_id; 6336 ip6i = (ip6i_t *)tcp->tcp_iphc; 6337 6338 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6339 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6340 /* Already allocated */ 6341 ip6i->ip6i_flags |= IP6I_IFINDEX; 6342 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6343 ipp->ipp_fields |= IPPF_SCOPE_ID; 6344 } else { 6345 int reterr; 6346 6347 ipp->ipp_fields |= IPPF_SCOPE_ID; 6348 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6349 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6350 reterr = tcp_build_hdrs(tcp); 6351 if (reterr != 0) 6352 goto failed; 6353 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6354 } 6355 } 6356 6357 /* 6358 * Don't let an endpoint connect to itself. Note that 6359 * the test here does not catch the case where the 6360 * source IP addr was left unspecified by the user. In 6361 * this case, the source addr is set in tcp_adapt_ire() 6362 * using the reply to the T_BIND message that we send 6363 * down to IP here and the check is repeated in tcp_rput_other. 6364 */ 6365 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6366 (dstport == tcp->tcp_lport)) { 6367 error = -TBADADDR; 6368 goto failed; 6369 } 6370 6371 /* 6372 * Verify the destination is allowed to receive packets 6373 * at the security label of the connection we are initiating. 6374 * check_dest may create a new effective cred for this 6375 * connection with a modified label or label flags. 6376 */ 6377 if (is_system_labeled()) { 6378 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6379 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6380 dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_exempt, 6381 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6382 if (error != EHOSTUNREACH) 6383 error = -TSYSERR; 6384 goto failed; 6385 } 6386 } 6387 6388 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6389 tcp->tcp_remote_v6 = *dstaddrp; 6390 tcp->tcp_ip6h->ip6_vcf = 6391 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6392 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6393 6394 /* 6395 * Massage a routing header (if present) putting the first hop 6396 * in ip6_dst. Compute a starting value for the checksum which 6397 * takes into account that the original ip6_dst should be 6398 * included in the checksum but that ip will include the 6399 * first hop in the source route in the tcp checksum. 6400 */ 6401 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6402 if (rth != NULL) { 6403 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6404 tcps->tcps_netstack); 6405 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6406 (tcp->tcp_sum >> 16)); 6407 } else { 6408 tcp->tcp_sum = 0; 6409 } 6410 6411 tcph = tcp->tcp_tcph; 6412 *(uint16_t *)tcph->th_fport = dstport; 6413 tcp->tcp_fport = dstport; 6414 6415 oldstate = tcp->tcp_state; 6416 /* 6417 * At this point the remote destination address and remote port fields 6418 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6419 * have to see which state tcp was in so we can take apropriate action. 6420 */ 6421 if (oldstate == TCPS_IDLE) { 6422 /* 6423 * We support a quick connect capability here, allowing 6424 * clients to transition directly from IDLE to SYN_SENT 6425 * tcp_bindi will pick an unused port, insert the connection 6426 * in the bind hash and transition to BOUND state. 6427 */ 6428 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6429 tcp, B_TRUE); 6430 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6431 B_FALSE, B_FALSE); 6432 if (lport == 0) { 6433 error = -TNOADDR; 6434 goto failed; 6435 } 6436 } 6437 tcp->tcp_state = TCPS_SYN_SENT; 6438 6439 mp = allocb(sizeof (ire_t), BPRI_HI); 6440 if (mp != NULL) { 6441 in6_addr_t v6src; 6442 6443 mp->b_wptr += sizeof (ire_t); 6444 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6445 6446 tcp->tcp_hard_binding = 1; 6447 6448 /* 6449 * We need to make sure that the conn_recv is set to a non-null 6450 * value before we insert the conn_t into the classifier table. 6451 * This is to avoid a race with an incoming packet which does 6452 * an ipcl_classify(). 6453 */ 6454 tcp->tcp_connp->conn_recv = tcp_input; 6455 6456 if (tcp->tcp_ipversion == IPV4_VERSION) { 6457 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6458 } else { 6459 v6src = tcp->tcp_ip6h->ip6_src; 6460 } 6461 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6462 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6463 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6464 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6465 tcp->tcp_active_open = 1; 6466 6467 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6468 } 6469 /* Error case */ 6470 tcp->tcp_state = oldstate; 6471 error = ENOMEM; 6472 6473 failed: 6474 /* return error ack and blow away saved option results if any */ 6475 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6476 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6477 return (error); 6478 } 6479 6480 /* 6481 * We need a stream q for detached closing tcp connections 6482 * to use. Our client hereby indicates that this q is the 6483 * one to use. 6484 */ 6485 static void 6486 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6487 { 6488 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6489 queue_t *q = tcp->tcp_wq; 6490 tcp_stack_t *tcps = tcp->tcp_tcps; 6491 6492 #ifdef NS_DEBUG 6493 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6494 tcps->tcps_netstack->netstack_stackid); 6495 #endif 6496 mp->b_datap->db_type = M_IOCACK; 6497 iocp->ioc_count = 0; 6498 mutex_enter(&tcps->tcps_g_q_lock); 6499 if (tcps->tcps_g_q != NULL) { 6500 mutex_exit(&tcps->tcps_g_q_lock); 6501 iocp->ioc_error = EALREADY; 6502 } else { 6503 int error = 0; 6504 conn_t *connp = tcp->tcp_connp; 6505 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6506 6507 tcps->tcps_g_q = tcp->tcp_rq; 6508 mutex_exit(&tcps->tcps_g_q_lock); 6509 iocp->ioc_error = 0; 6510 iocp->ioc_rval = 0; 6511 /* 6512 * We are passing tcp_sticky_ipp as NULL 6513 * as it is not useful for tcp_default queue 6514 * 6515 * Set conn_recv just in case. 6516 */ 6517 tcp->tcp_connp->conn_recv = tcp_conn_request; 6518 6519 ASSERT(connp->conn_af_isv6); 6520 connp->conn_ulp = IPPROTO_TCP; 6521 6522 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6523 NULL || connp->conn_mac_exempt) { 6524 error = -TBADADDR; 6525 } else { 6526 connp->conn_srcv6 = ipv6_all_zeros; 6527 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6528 } 6529 6530 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6531 } 6532 qreply(q, mp); 6533 } 6534 6535 static int 6536 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6537 { 6538 tcp_t *ltcp = NULL; 6539 conn_t *connp; 6540 tcp_stack_t *tcps = tcp->tcp_tcps; 6541 6542 /* 6543 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6544 * when the stream is in BOUND state. Do not send a reset, 6545 * since the destination IP address is not valid, and it can 6546 * be the initialized value of all zeros (broadcast address). 6547 * 6548 * XXX There won't be any pending bind request to IP. 6549 */ 6550 if (tcp->tcp_state <= TCPS_BOUND) { 6551 if (tcp->tcp_debug) { 6552 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6553 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6554 } 6555 return (TOUTSTATE); 6556 } 6557 6558 6559 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6560 6561 /* 6562 * According to TPI, for non-listeners, ignore seqnum 6563 * and disconnect. 6564 * Following interpretation of -1 seqnum is historical 6565 * and implied TPI ? (TPI only states that for T_CONN_IND, 6566 * a valid seqnum should not be -1). 6567 * 6568 * -1 means disconnect everything 6569 * regardless even on a listener. 6570 */ 6571 6572 int old_state = tcp->tcp_state; 6573 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6574 6575 /* 6576 * The connection can't be on the tcp_time_wait_head list 6577 * since it is not detached. 6578 */ 6579 ASSERT(tcp->tcp_time_wait_next == NULL); 6580 ASSERT(tcp->tcp_time_wait_prev == NULL); 6581 ASSERT(tcp->tcp_time_wait_expire == 0); 6582 ltcp = NULL; 6583 /* 6584 * If it used to be a listener, check to make sure no one else 6585 * has taken the port before switching back to LISTEN state. 6586 */ 6587 if (tcp->tcp_ipversion == IPV4_VERSION) { 6588 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6589 tcp->tcp_ipha->ipha_src, 6590 tcp->tcp_connp->conn_zoneid, ipst); 6591 if (connp != NULL) 6592 ltcp = connp->conn_tcp; 6593 } else { 6594 /* Allow tcp_bound_if listeners? */ 6595 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6596 &tcp->tcp_ip6h->ip6_src, 0, 6597 tcp->tcp_connp->conn_zoneid, ipst); 6598 if (connp != NULL) 6599 ltcp = connp->conn_tcp; 6600 } 6601 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6602 tcp->tcp_state = TCPS_LISTEN; 6603 } else if (old_state > TCPS_BOUND) { 6604 tcp->tcp_conn_req_max = 0; 6605 tcp->tcp_state = TCPS_BOUND; 6606 } 6607 if (ltcp != NULL) 6608 CONN_DEC_REF(ltcp->tcp_connp); 6609 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6610 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6611 } else if (old_state == TCPS_ESTABLISHED || 6612 old_state == TCPS_CLOSE_WAIT) { 6613 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6614 } 6615 6616 if (tcp->tcp_fused) 6617 tcp_unfuse(tcp); 6618 6619 mutex_enter(&tcp->tcp_eager_lock); 6620 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6621 (tcp->tcp_conn_req_cnt_q != 0)) { 6622 tcp_eager_cleanup(tcp, 0); 6623 } 6624 mutex_exit(&tcp->tcp_eager_lock); 6625 6626 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6627 tcp->tcp_rnxt, TH_RST | TH_ACK); 6628 6629 tcp_reinit(tcp); 6630 6631 return (0); 6632 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6633 return (TBADSEQ); 6634 } 6635 return (0); 6636 } 6637 6638 /* 6639 * Our client hereby directs us to reject the connection request 6640 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6641 * of sending the appropriate RST, not an ICMP error. 6642 */ 6643 static void 6644 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6645 { 6646 t_scalar_t seqnum; 6647 int error; 6648 6649 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6650 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6651 tcp_err_ack(tcp, mp, TPROTO, 0); 6652 return; 6653 } 6654 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6655 error = tcp_disconnect_common(tcp, seqnum); 6656 if (error != 0) 6657 tcp_err_ack(tcp, mp, error, 0); 6658 else { 6659 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6660 /* Send M_FLUSH according to TPI */ 6661 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6662 } 6663 mp = mi_tpi_ok_ack_alloc(mp); 6664 if (mp) 6665 putnext(tcp->tcp_rq, mp); 6666 } 6667 } 6668 6669 /* 6670 * Diagnostic routine used to return a string associated with the tcp state. 6671 * Note that if the caller does not supply a buffer, it will use an internal 6672 * static string. This means that if multiple threads call this function at 6673 * the same time, output can be corrupted... Note also that this function 6674 * does not check the size of the supplied buffer. The caller has to make 6675 * sure that it is big enough. 6676 */ 6677 static char * 6678 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6679 { 6680 char buf1[30]; 6681 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6682 char *buf; 6683 char *cp; 6684 in6_addr_t local, remote; 6685 char local_addrbuf[INET6_ADDRSTRLEN]; 6686 char remote_addrbuf[INET6_ADDRSTRLEN]; 6687 6688 if (sup_buf != NULL) 6689 buf = sup_buf; 6690 else 6691 buf = priv_buf; 6692 6693 if (tcp == NULL) 6694 return ("NULL_TCP"); 6695 switch (tcp->tcp_state) { 6696 case TCPS_CLOSED: 6697 cp = "TCP_CLOSED"; 6698 break; 6699 case TCPS_IDLE: 6700 cp = "TCP_IDLE"; 6701 break; 6702 case TCPS_BOUND: 6703 cp = "TCP_BOUND"; 6704 break; 6705 case TCPS_LISTEN: 6706 cp = "TCP_LISTEN"; 6707 break; 6708 case TCPS_SYN_SENT: 6709 cp = "TCP_SYN_SENT"; 6710 break; 6711 case TCPS_SYN_RCVD: 6712 cp = "TCP_SYN_RCVD"; 6713 break; 6714 case TCPS_ESTABLISHED: 6715 cp = "TCP_ESTABLISHED"; 6716 break; 6717 case TCPS_CLOSE_WAIT: 6718 cp = "TCP_CLOSE_WAIT"; 6719 break; 6720 case TCPS_FIN_WAIT_1: 6721 cp = "TCP_FIN_WAIT_1"; 6722 break; 6723 case TCPS_CLOSING: 6724 cp = "TCP_CLOSING"; 6725 break; 6726 case TCPS_LAST_ACK: 6727 cp = "TCP_LAST_ACK"; 6728 break; 6729 case TCPS_FIN_WAIT_2: 6730 cp = "TCP_FIN_WAIT_2"; 6731 break; 6732 case TCPS_TIME_WAIT: 6733 cp = "TCP_TIME_WAIT"; 6734 break; 6735 default: 6736 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6737 cp = buf1; 6738 break; 6739 } 6740 switch (format) { 6741 case DISP_ADDR_AND_PORT: 6742 if (tcp->tcp_ipversion == IPV4_VERSION) { 6743 /* 6744 * Note that we use the remote address in the tcp_b 6745 * structure. This means that it will print out 6746 * the real destination address, not the next hop's 6747 * address if source routing is used. 6748 */ 6749 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6750 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6751 6752 } else { 6753 local = tcp->tcp_ip_src_v6; 6754 remote = tcp->tcp_remote_v6; 6755 } 6756 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6757 sizeof (local_addrbuf)); 6758 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6759 sizeof (remote_addrbuf)); 6760 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6761 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6762 ntohs(tcp->tcp_fport), cp); 6763 break; 6764 case DISP_PORT_ONLY: 6765 default: 6766 (void) mi_sprintf(buf, "[%u, %u] %s", 6767 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6768 break; 6769 } 6770 6771 return (buf); 6772 } 6773 6774 /* 6775 * Called via squeue to get on to eager's perimeter. It sends a 6776 * TH_RST if eager is in the fanout table. The listener wants the 6777 * eager to disappear either by means of tcp_eager_blowoff() or 6778 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6779 * called (via squeue) if the eager cannot be inserted in the 6780 * fanout table in tcp_conn_request(). 6781 */ 6782 /* ARGSUSED */ 6783 void 6784 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6785 { 6786 conn_t *econnp = (conn_t *)arg; 6787 tcp_t *eager = econnp->conn_tcp; 6788 tcp_t *listener = eager->tcp_listener; 6789 tcp_stack_t *tcps = eager->tcp_tcps; 6790 6791 /* 6792 * We could be called because listener is closing. Since 6793 * the eager is using listener's queue's, its not safe. 6794 * Better use the default queue just to send the TH_RST 6795 * out. 6796 */ 6797 ASSERT(tcps->tcps_g_q != NULL); 6798 eager->tcp_rq = tcps->tcps_g_q; 6799 eager->tcp_wq = WR(tcps->tcps_g_q); 6800 6801 /* 6802 * An eager's conn_fanout will be NULL if it's a duplicate 6803 * for an existing 4-tuples in the conn fanout table. 6804 * We don't want to send an RST out in such case. 6805 */ 6806 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6807 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6808 eager, eager->tcp_snxt, 0, TH_RST); 6809 } 6810 6811 /* We are here because listener wants this eager gone */ 6812 if (listener != NULL) { 6813 mutex_enter(&listener->tcp_eager_lock); 6814 tcp_eager_unlink(eager); 6815 if (eager->tcp_tconnind_started) { 6816 /* 6817 * The eager has sent a conn_ind up to the 6818 * listener but listener decides to close 6819 * instead. We need to drop the extra ref 6820 * placed on eager in tcp_rput_data() before 6821 * sending the conn_ind to listener. 6822 */ 6823 CONN_DEC_REF(econnp); 6824 } 6825 mutex_exit(&listener->tcp_eager_lock); 6826 CONN_DEC_REF(listener->tcp_connp); 6827 } 6828 6829 if (eager->tcp_state > TCPS_BOUND) 6830 tcp_close_detached(eager); 6831 } 6832 6833 /* 6834 * Reset any eager connection hanging off this listener marked 6835 * with 'seqnum' and then reclaim it's resources. 6836 */ 6837 static boolean_t 6838 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6839 { 6840 tcp_t *eager; 6841 mblk_t *mp; 6842 tcp_stack_t *tcps = listener->tcp_tcps; 6843 6844 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6845 eager = listener; 6846 mutex_enter(&listener->tcp_eager_lock); 6847 do { 6848 eager = eager->tcp_eager_next_q; 6849 if (eager == NULL) { 6850 mutex_exit(&listener->tcp_eager_lock); 6851 return (B_FALSE); 6852 } 6853 } while (eager->tcp_conn_req_seqnum != seqnum); 6854 6855 if (eager->tcp_closemp_used) { 6856 mutex_exit(&listener->tcp_eager_lock); 6857 return (B_TRUE); 6858 } 6859 eager->tcp_closemp_used = B_TRUE; 6860 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6861 CONN_INC_REF(eager->tcp_connp); 6862 mutex_exit(&listener->tcp_eager_lock); 6863 mp = &eager->tcp_closemp; 6864 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6865 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6866 return (B_TRUE); 6867 } 6868 6869 /* 6870 * Reset any eager connection hanging off this listener 6871 * and then reclaim it's resources. 6872 */ 6873 static void 6874 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6875 { 6876 tcp_t *eager; 6877 mblk_t *mp; 6878 tcp_stack_t *tcps = listener->tcp_tcps; 6879 6880 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6881 6882 if (!q0_only) { 6883 /* First cleanup q */ 6884 TCP_STAT(tcps, tcp_eager_blowoff_q); 6885 eager = listener->tcp_eager_next_q; 6886 while (eager != NULL) { 6887 if (!eager->tcp_closemp_used) { 6888 eager->tcp_closemp_used = B_TRUE; 6889 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6890 CONN_INC_REF(eager->tcp_connp); 6891 mp = &eager->tcp_closemp; 6892 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6893 tcp_eager_kill, eager->tcp_connp, 6894 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6895 } 6896 eager = eager->tcp_eager_next_q; 6897 } 6898 } 6899 /* Then cleanup q0 */ 6900 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6901 eager = listener->tcp_eager_next_q0; 6902 while (eager != listener) { 6903 if (!eager->tcp_closemp_used) { 6904 eager->tcp_closemp_used = B_TRUE; 6905 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6906 CONN_INC_REF(eager->tcp_connp); 6907 mp = &eager->tcp_closemp; 6908 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6909 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6910 SQTAG_TCP_EAGER_CLEANUP_Q0); 6911 } 6912 eager = eager->tcp_eager_next_q0; 6913 } 6914 } 6915 6916 /* 6917 * If we are an eager connection hanging off a listener that hasn't 6918 * formally accepted the connection yet, get off his list and blow off 6919 * any data that we have accumulated. 6920 */ 6921 static void 6922 tcp_eager_unlink(tcp_t *tcp) 6923 { 6924 tcp_t *listener = tcp->tcp_listener; 6925 6926 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6927 ASSERT(listener != NULL); 6928 if (tcp->tcp_eager_next_q0 != NULL) { 6929 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6930 6931 /* Remove the eager tcp from q0 */ 6932 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6933 tcp->tcp_eager_prev_q0; 6934 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6935 tcp->tcp_eager_next_q0; 6936 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6937 listener->tcp_conn_req_cnt_q0--; 6938 6939 tcp->tcp_eager_next_q0 = NULL; 6940 tcp->tcp_eager_prev_q0 = NULL; 6941 6942 /* 6943 * Take the eager out, if it is in the list of droppable 6944 * eagers. 6945 */ 6946 MAKE_UNDROPPABLE(tcp); 6947 6948 if (tcp->tcp_syn_rcvd_timeout != 0) { 6949 /* we have timed out before */ 6950 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6951 listener->tcp_syn_rcvd_timeout--; 6952 } 6953 } else { 6954 tcp_t **tcpp = &listener->tcp_eager_next_q; 6955 tcp_t *prev = NULL; 6956 6957 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6958 if (tcpp[0] == tcp) { 6959 if (listener->tcp_eager_last_q == tcp) { 6960 /* 6961 * If we are unlinking the last 6962 * element on the list, adjust 6963 * tail pointer. Set tail pointer 6964 * to nil when list is empty. 6965 */ 6966 ASSERT(tcp->tcp_eager_next_q == NULL); 6967 if (listener->tcp_eager_last_q == 6968 listener->tcp_eager_next_q) { 6969 listener->tcp_eager_last_q = 6970 NULL; 6971 } else { 6972 /* 6973 * We won't get here if there 6974 * is only one eager in the 6975 * list. 6976 */ 6977 ASSERT(prev != NULL); 6978 listener->tcp_eager_last_q = 6979 prev; 6980 } 6981 } 6982 tcpp[0] = tcp->tcp_eager_next_q; 6983 tcp->tcp_eager_next_q = NULL; 6984 tcp->tcp_eager_last_q = NULL; 6985 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6986 listener->tcp_conn_req_cnt_q--; 6987 break; 6988 } 6989 prev = tcpp[0]; 6990 } 6991 } 6992 tcp->tcp_listener = NULL; 6993 } 6994 6995 /* Shorthand to generate and send TPI error acks to our client */ 6996 static void 6997 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6998 { 6999 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7000 putnext(tcp->tcp_rq, mp); 7001 } 7002 7003 /* Shorthand to generate and send TPI error acks to our client */ 7004 static void 7005 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7006 int t_error, int sys_error) 7007 { 7008 struct T_error_ack *teackp; 7009 7010 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7011 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7012 teackp = (struct T_error_ack *)mp->b_rptr; 7013 teackp->ERROR_prim = primitive; 7014 teackp->TLI_error = t_error; 7015 teackp->UNIX_error = sys_error; 7016 putnext(tcp->tcp_rq, mp); 7017 } 7018 } 7019 7020 /* 7021 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7022 * but instead the code relies on: 7023 * - the fact that the address of the array and its size never changes 7024 * - the atomic assignment of the elements of the array 7025 */ 7026 /* ARGSUSED */ 7027 static int 7028 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7029 { 7030 int i; 7031 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7032 7033 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7034 if (tcps->tcps_g_epriv_ports[i] != 0) 7035 (void) mi_mpprintf(mp, "%d ", 7036 tcps->tcps_g_epriv_ports[i]); 7037 } 7038 return (0); 7039 } 7040 7041 /* 7042 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7043 * threads from changing it at the same time. 7044 */ 7045 /* ARGSUSED */ 7046 static int 7047 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7048 cred_t *cr) 7049 { 7050 long new_value; 7051 int i; 7052 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7053 7054 /* 7055 * Fail the request if the new value does not lie within the 7056 * port number limits. 7057 */ 7058 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7059 new_value <= 0 || new_value >= 65536) { 7060 return (EINVAL); 7061 } 7062 7063 mutex_enter(&tcps->tcps_epriv_port_lock); 7064 /* Check if the value is already in the list */ 7065 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7066 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7067 mutex_exit(&tcps->tcps_epriv_port_lock); 7068 return (EEXIST); 7069 } 7070 } 7071 /* Find an empty slot */ 7072 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7073 if (tcps->tcps_g_epriv_ports[i] == 0) 7074 break; 7075 } 7076 if (i == tcps->tcps_g_num_epriv_ports) { 7077 mutex_exit(&tcps->tcps_epriv_port_lock); 7078 return (EOVERFLOW); 7079 } 7080 /* Set the new value */ 7081 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7082 mutex_exit(&tcps->tcps_epriv_port_lock); 7083 return (0); 7084 } 7085 7086 /* 7087 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7088 * threads from changing it at the same time. 7089 */ 7090 /* ARGSUSED */ 7091 static int 7092 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7093 cred_t *cr) 7094 { 7095 long new_value; 7096 int i; 7097 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7098 7099 /* 7100 * Fail the request if the new value does not lie within the 7101 * port number limits. 7102 */ 7103 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7104 new_value >= 65536) { 7105 return (EINVAL); 7106 } 7107 7108 mutex_enter(&tcps->tcps_epriv_port_lock); 7109 /* Check that the value is already in the list */ 7110 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7111 if (tcps->tcps_g_epriv_ports[i] == new_value) 7112 break; 7113 } 7114 if (i == tcps->tcps_g_num_epriv_ports) { 7115 mutex_exit(&tcps->tcps_epriv_port_lock); 7116 return (ESRCH); 7117 } 7118 /* Clear the value */ 7119 tcps->tcps_g_epriv_ports[i] = 0; 7120 mutex_exit(&tcps->tcps_epriv_port_lock); 7121 return (0); 7122 } 7123 7124 /* Return the TPI/TLI equivalent of our current tcp_state */ 7125 static int 7126 tcp_tpistate(tcp_t *tcp) 7127 { 7128 switch (tcp->tcp_state) { 7129 case TCPS_IDLE: 7130 return (TS_UNBND); 7131 case TCPS_LISTEN: 7132 /* 7133 * Return whether there are outstanding T_CONN_IND waiting 7134 * for the matching T_CONN_RES. Therefore don't count q0. 7135 */ 7136 if (tcp->tcp_conn_req_cnt_q > 0) 7137 return (TS_WRES_CIND); 7138 else 7139 return (TS_IDLE); 7140 case TCPS_BOUND: 7141 return (TS_IDLE); 7142 case TCPS_SYN_SENT: 7143 return (TS_WCON_CREQ); 7144 case TCPS_SYN_RCVD: 7145 /* 7146 * Note: assumption: this has to the active open SYN_RCVD. 7147 * The passive instance is detached in SYN_RCVD stage of 7148 * incoming connection processing so we cannot get request 7149 * for T_info_ack on it. 7150 */ 7151 return (TS_WACK_CRES); 7152 case TCPS_ESTABLISHED: 7153 return (TS_DATA_XFER); 7154 case TCPS_CLOSE_WAIT: 7155 return (TS_WREQ_ORDREL); 7156 case TCPS_FIN_WAIT_1: 7157 return (TS_WIND_ORDREL); 7158 case TCPS_FIN_WAIT_2: 7159 return (TS_WIND_ORDREL); 7160 7161 case TCPS_CLOSING: 7162 case TCPS_LAST_ACK: 7163 case TCPS_TIME_WAIT: 7164 case TCPS_CLOSED: 7165 /* 7166 * Following TS_WACK_DREQ7 is a rendition of "not 7167 * yet TS_IDLE" TPI state. There is no best match to any 7168 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7169 * choose a value chosen that will map to TLI/XTI level 7170 * state of TSTATECHNG (state is process of changing) which 7171 * captures what this dummy state represents. 7172 */ 7173 return (TS_WACK_DREQ7); 7174 default: 7175 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7176 tcp->tcp_state, tcp_display(tcp, NULL, 7177 DISP_PORT_ONLY)); 7178 return (TS_UNBND); 7179 } 7180 } 7181 7182 static void 7183 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7184 { 7185 tcp_stack_t *tcps = tcp->tcp_tcps; 7186 7187 if (tcp->tcp_family == AF_INET6) 7188 *tia = tcp_g_t_info_ack_v6; 7189 else 7190 *tia = tcp_g_t_info_ack; 7191 tia->CURRENT_state = tcp_tpistate(tcp); 7192 tia->OPT_size = tcp_max_optsize; 7193 if (tcp->tcp_mss == 0) { 7194 /* Not yet set - tcp_open does not set mss */ 7195 if (tcp->tcp_ipversion == IPV4_VERSION) 7196 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7197 else 7198 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7199 } else { 7200 tia->TIDU_size = tcp->tcp_mss; 7201 } 7202 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7203 } 7204 7205 static void 7206 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7207 t_uscalar_t cap_bits1) 7208 { 7209 tcap->CAP_bits1 = 0; 7210 7211 if (cap_bits1 & TC1_INFO) { 7212 tcp_copy_info(&tcap->INFO_ack, tcp); 7213 tcap->CAP_bits1 |= TC1_INFO; 7214 } 7215 7216 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7217 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7218 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7219 } 7220 7221 } 7222 7223 /* 7224 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7225 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7226 * tcp_g_t_info_ack. The current state of the stream is copied from 7227 * tcp_state. 7228 */ 7229 static void 7230 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7231 { 7232 t_uscalar_t cap_bits1; 7233 struct T_capability_ack *tcap; 7234 7235 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7236 freemsg(mp); 7237 return; 7238 } 7239 7240 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7241 7242 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7243 mp->b_datap->db_type, T_CAPABILITY_ACK); 7244 if (mp == NULL) 7245 return; 7246 7247 tcap = (struct T_capability_ack *)mp->b_rptr; 7248 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7249 7250 putnext(tcp->tcp_rq, mp); 7251 } 7252 7253 /* 7254 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7255 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7256 * The current state of the stream is copied from tcp_state. 7257 */ 7258 static void 7259 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7260 { 7261 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7262 T_INFO_ACK); 7263 if (!mp) { 7264 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7265 return; 7266 } 7267 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7268 putnext(tcp->tcp_rq, mp); 7269 } 7270 7271 /* Respond to the TPI addr request */ 7272 static void 7273 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7274 { 7275 sin_t *sin; 7276 mblk_t *ackmp; 7277 struct T_addr_ack *taa; 7278 7279 /* Make it large enough for worst case */ 7280 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7281 2 * sizeof (sin6_t), 1); 7282 if (ackmp == NULL) { 7283 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7284 return; 7285 } 7286 7287 if (tcp->tcp_ipversion == IPV6_VERSION) { 7288 tcp_addr_req_ipv6(tcp, ackmp); 7289 return; 7290 } 7291 taa = (struct T_addr_ack *)ackmp->b_rptr; 7292 7293 bzero(taa, sizeof (struct T_addr_ack)); 7294 ackmp->b_wptr = (uchar_t *)&taa[1]; 7295 7296 taa->PRIM_type = T_ADDR_ACK; 7297 ackmp->b_datap->db_type = M_PCPROTO; 7298 7299 /* 7300 * Note: Following code assumes 32 bit alignment of basic 7301 * data structures like sin_t and struct T_addr_ack. 7302 */ 7303 if (tcp->tcp_state >= TCPS_BOUND) { 7304 /* 7305 * Fill in local address 7306 */ 7307 taa->LOCADDR_length = sizeof (sin_t); 7308 taa->LOCADDR_offset = sizeof (*taa); 7309 7310 sin = (sin_t *)&taa[1]; 7311 7312 /* Fill zeroes and then intialize non-zero fields */ 7313 *sin = sin_null; 7314 7315 sin->sin_family = AF_INET; 7316 7317 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7318 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7319 7320 ackmp->b_wptr = (uchar_t *)&sin[1]; 7321 7322 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7323 /* 7324 * Fill in Remote address 7325 */ 7326 taa->REMADDR_length = sizeof (sin_t); 7327 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7328 taa->LOCADDR_length); 7329 7330 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7331 *sin = sin_null; 7332 sin->sin_family = AF_INET; 7333 sin->sin_addr.s_addr = tcp->tcp_remote; 7334 sin->sin_port = tcp->tcp_fport; 7335 7336 ackmp->b_wptr = (uchar_t *)&sin[1]; 7337 } 7338 } 7339 putnext(tcp->tcp_rq, ackmp); 7340 } 7341 7342 /* Assumes that tcp_addr_req gets enough space and alignment */ 7343 static void 7344 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7345 { 7346 sin6_t *sin6; 7347 struct T_addr_ack *taa; 7348 7349 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7350 ASSERT(OK_32PTR(ackmp->b_rptr)); 7351 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7352 2 * sizeof (sin6_t)); 7353 7354 taa = (struct T_addr_ack *)ackmp->b_rptr; 7355 7356 bzero(taa, sizeof (struct T_addr_ack)); 7357 ackmp->b_wptr = (uchar_t *)&taa[1]; 7358 7359 taa->PRIM_type = T_ADDR_ACK; 7360 ackmp->b_datap->db_type = M_PCPROTO; 7361 7362 /* 7363 * Note: Following code assumes 32 bit alignment of basic 7364 * data structures like sin6_t and struct T_addr_ack. 7365 */ 7366 if (tcp->tcp_state >= TCPS_BOUND) { 7367 /* 7368 * Fill in local address 7369 */ 7370 taa->LOCADDR_length = sizeof (sin6_t); 7371 taa->LOCADDR_offset = sizeof (*taa); 7372 7373 sin6 = (sin6_t *)&taa[1]; 7374 *sin6 = sin6_null; 7375 7376 sin6->sin6_family = AF_INET6; 7377 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7378 sin6->sin6_port = tcp->tcp_lport; 7379 7380 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7381 7382 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7383 /* 7384 * Fill in Remote address 7385 */ 7386 taa->REMADDR_length = sizeof (sin6_t); 7387 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7388 taa->LOCADDR_length); 7389 7390 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7391 *sin6 = sin6_null; 7392 sin6->sin6_family = AF_INET6; 7393 sin6->sin6_flowinfo = 7394 tcp->tcp_ip6h->ip6_vcf & 7395 ~IPV6_VERS_AND_FLOW_MASK; 7396 sin6->sin6_addr = tcp->tcp_remote_v6; 7397 sin6->sin6_port = tcp->tcp_fport; 7398 7399 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7400 } 7401 } 7402 putnext(tcp->tcp_rq, ackmp); 7403 } 7404 7405 /* 7406 * Handle reinitialization of a tcp structure. 7407 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7408 */ 7409 static void 7410 tcp_reinit(tcp_t *tcp) 7411 { 7412 mblk_t *mp; 7413 int err; 7414 tcp_stack_t *tcps = tcp->tcp_tcps; 7415 7416 TCP_STAT(tcps, tcp_reinit_calls); 7417 7418 /* tcp_reinit should never be called for detached tcp_t's */ 7419 ASSERT(tcp->tcp_listener == NULL); 7420 ASSERT((tcp->tcp_family == AF_INET && 7421 tcp->tcp_ipversion == IPV4_VERSION) || 7422 (tcp->tcp_family == AF_INET6 && 7423 (tcp->tcp_ipversion == IPV4_VERSION || 7424 tcp->tcp_ipversion == IPV6_VERSION))); 7425 7426 /* Cancel outstanding timers */ 7427 tcp_timers_stop(tcp); 7428 7429 /* 7430 * Reset everything in the state vector, after updating global 7431 * MIB data from instance counters. 7432 */ 7433 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7434 tcp->tcp_ibsegs = 0; 7435 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7436 tcp->tcp_obsegs = 0; 7437 7438 tcp_close_mpp(&tcp->tcp_xmit_head); 7439 if (tcp->tcp_snd_zcopy_aware) 7440 tcp_zcopy_notify(tcp); 7441 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7442 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7443 mutex_enter(&tcp->tcp_non_sq_lock); 7444 if (tcp->tcp_flow_stopped && 7445 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7446 tcp_clrqfull(tcp); 7447 } 7448 mutex_exit(&tcp->tcp_non_sq_lock); 7449 tcp_close_mpp(&tcp->tcp_reass_head); 7450 tcp->tcp_reass_tail = NULL; 7451 if (tcp->tcp_rcv_list != NULL) { 7452 /* Free b_next chain */ 7453 tcp_close_mpp(&tcp->tcp_rcv_list); 7454 tcp->tcp_rcv_last_head = NULL; 7455 tcp->tcp_rcv_last_tail = NULL; 7456 tcp->tcp_rcv_cnt = 0; 7457 } 7458 tcp->tcp_rcv_last_tail = NULL; 7459 7460 if ((mp = tcp->tcp_urp_mp) != NULL) { 7461 freemsg(mp); 7462 tcp->tcp_urp_mp = NULL; 7463 } 7464 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7465 freemsg(mp); 7466 tcp->tcp_urp_mark_mp = NULL; 7467 } 7468 if (tcp->tcp_fused_sigurg_mp != NULL) { 7469 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7470 freeb(tcp->tcp_fused_sigurg_mp); 7471 tcp->tcp_fused_sigurg_mp = NULL; 7472 } 7473 if (tcp->tcp_ordrel_mp != NULL) { 7474 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7475 freeb(tcp->tcp_ordrel_mp); 7476 tcp->tcp_ordrel_mp = NULL; 7477 } 7478 7479 /* 7480 * Following is a union with two members which are 7481 * identical types and size so the following cleanup 7482 * is enough. 7483 */ 7484 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7485 7486 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7487 7488 /* 7489 * The connection can't be on the tcp_time_wait_head list 7490 * since it is not detached. 7491 */ 7492 ASSERT(tcp->tcp_time_wait_next == NULL); 7493 ASSERT(tcp->tcp_time_wait_prev == NULL); 7494 ASSERT(tcp->tcp_time_wait_expire == 0); 7495 7496 if (tcp->tcp_kssl_pending) { 7497 tcp->tcp_kssl_pending = B_FALSE; 7498 7499 /* Don't reset if the initialized by bind. */ 7500 if (tcp->tcp_kssl_ent != NULL) { 7501 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7502 KSSL_NO_PROXY); 7503 } 7504 } 7505 if (tcp->tcp_kssl_ctx != NULL) { 7506 kssl_release_ctx(tcp->tcp_kssl_ctx); 7507 tcp->tcp_kssl_ctx = NULL; 7508 } 7509 7510 /* 7511 * Reset/preserve other values 7512 */ 7513 tcp_reinit_values(tcp); 7514 ipcl_hash_remove(tcp->tcp_connp); 7515 conn_delete_ire(tcp->tcp_connp, NULL); 7516 tcp_ipsec_cleanup(tcp); 7517 7518 if (tcp->tcp_connp->conn_effective_cred != NULL) { 7519 crfree(tcp->tcp_connp->conn_effective_cred); 7520 tcp->tcp_connp->conn_effective_cred = NULL; 7521 } 7522 7523 if (tcp->tcp_conn_req_max != 0) { 7524 /* 7525 * This is the case when a TLI program uses the same 7526 * transport end point to accept a connection. This 7527 * makes the TCP both a listener and acceptor. When 7528 * this connection is closed, we need to set the state 7529 * back to TCPS_LISTEN. Make sure that the eager list 7530 * is reinitialized. 7531 * 7532 * Note that this stream is still bound to the four 7533 * tuples of the previous connection in IP. If a new 7534 * SYN with different foreign address comes in, IP will 7535 * not find it and will send it to the global queue. In 7536 * the global queue, TCP will do a tcp_lookup_listener() 7537 * to find this stream. This works because this stream 7538 * is only removed from connected hash. 7539 * 7540 */ 7541 tcp->tcp_state = TCPS_LISTEN; 7542 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7543 tcp->tcp_eager_next_drop_q0 = tcp; 7544 tcp->tcp_eager_prev_drop_q0 = tcp; 7545 tcp->tcp_connp->conn_recv = tcp_conn_request; 7546 if (tcp->tcp_family == AF_INET6) { 7547 ASSERT(tcp->tcp_connp->conn_af_isv6); 7548 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7549 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7550 } else { 7551 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7552 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7553 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7554 } 7555 } else { 7556 tcp->tcp_state = TCPS_BOUND; 7557 } 7558 7559 /* 7560 * Initialize to default values 7561 * Can't fail since enough header template space already allocated 7562 * at open(). 7563 */ 7564 err = tcp_init_values(tcp); 7565 ASSERT(err == 0); 7566 /* Restore state in tcp_tcph */ 7567 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7568 if (tcp->tcp_ipversion == IPV4_VERSION) 7569 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7570 else 7571 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7572 /* 7573 * Copy of the src addr. in tcp_t is needed in tcp_t 7574 * since the lookup funcs can only lookup on tcp_t 7575 */ 7576 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7577 7578 ASSERT(tcp->tcp_ptpbhn != NULL); 7579 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7580 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7581 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7582 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7583 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7584 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7585 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7586 } 7587 7588 /* 7589 * Force values to zero that need be zero. 7590 * Do not touch values asociated with the BOUND or LISTEN state 7591 * since the connection will end up in that state after the reinit. 7592 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7593 * structure! 7594 */ 7595 static void 7596 tcp_reinit_values(tcp) 7597 tcp_t *tcp; 7598 { 7599 tcp_stack_t *tcps = tcp->tcp_tcps; 7600 7601 #ifndef lint 7602 #define DONTCARE(x) 7603 #define PRESERVE(x) 7604 #else 7605 #define DONTCARE(x) ((x) = (x)) 7606 #define PRESERVE(x) ((x) = (x)) 7607 #endif /* lint */ 7608 7609 PRESERVE(tcp->tcp_bind_hash_port); 7610 PRESERVE(tcp->tcp_bind_hash); 7611 PRESERVE(tcp->tcp_ptpbhn); 7612 PRESERVE(tcp->tcp_acceptor_hash); 7613 PRESERVE(tcp->tcp_ptpahn); 7614 7615 /* Should be ASSERT NULL on these with new code! */ 7616 ASSERT(tcp->tcp_time_wait_next == NULL); 7617 ASSERT(tcp->tcp_time_wait_prev == NULL); 7618 ASSERT(tcp->tcp_time_wait_expire == 0); 7619 PRESERVE(tcp->tcp_state); 7620 PRESERVE(tcp->tcp_rq); 7621 PRESERVE(tcp->tcp_wq); 7622 7623 ASSERT(tcp->tcp_xmit_head == NULL); 7624 ASSERT(tcp->tcp_xmit_last == NULL); 7625 ASSERT(tcp->tcp_unsent == 0); 7626 ASSERT(tcp->tcp_xmit_tail == NULL); 7627 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7628 7629 tcp->tcp_snxt = 0; /* Displayed in mib */ 7630 tcp->tcp_suna = 0; /* Displayed in mib */ 7631 tcp->tcp_swnd = 0; 7632 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7633 7634 ASSERT(tcp->tcp_ibsegs == 0); 7635 ASSERT(tcp->tcp_obsegs == 0); 7636 7637 if (tcp->tcp_iphc != NULL) { 7638 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7639 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7640 } 7641 7642 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7643 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7644 DONTCARE(tcp->tcp_ipha); 7645 DONTCARE(tcp->tcp_ip6h); 7646 DONTCARE(tcp->tcp_ip_hdr_len); 7647 DONTCARE(tcp->tcp_tcph); 7648 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7649 tcp->tcp_valid_bits = 0; 7650 7651 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7652 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7653 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7654 tcp->tcp_last_rcv_lbolt = 0; 7655 7656 tcp->tcp_init_cwnd = 0; 7657 7658 tcp->tcp_urp_last_valid = 0; 7659 tcp->tcp_hard_binding = 0; 7660 tcp->tcp_hard_bound = 0; 7661 PRESERVE(tcp->tcp_cred); 7662 PRESERVE(tcp->tcp_cpid); 7663 PRESERVE(tcp->tcp_open_time); 7664 PRESERVE(tcp->tcp_exclbind); 7665 7666 tcp->tcp_fin_acked = 0; 7667 tcp->tcp_fin_rcvd = 0; 7668 tcp->tcp_fin_sent = 0; 7669 tcp->tcp_ordrel_done = 0; 7670 7671 tcp->tcp_debug = 0; 7672 tcp->tcp_dontroute = 0; 7673 tcp->tcp_broadcast = 0; 7674 7675 tcp->tcp_useloopback = 0; 7676 tcp->tcp_reuseaddr = 0; 7677 tcp->tcp_oobinline = 0; 7678 tcp->tcp_dgram_errind = 0; 7679 7680 tcp->tcp_detached = 0; 7681 tcp->tcp_bind_pending = 0; 7682 tcp->tcp_unbind_pending = 0; 7683 7684 tcp->tcp_snd_ws_ok = B_FALSE; 7685 tcp->tcp_snd_ts_ok = B_FALSE; 7686 tcp->tcp_linger = 0; 7687 tcp->tcp_ka_enabled = 0; 7688 tcp->tcp_zero_win_probe = 0; 7689 7690 tcp->tcp_loopback = 0; 7691 tcp->tcp_refuse = 0; 7692 tcp->tcp_localnet = 0; 7693 tcp->tcp_syn_defense = 0; 7694 tcp->tcp_set_timer = 0; 7695 7696 tcp->tcp_active_open = 0; 7697 tcp->tcp_rexmit = B_FALSE; 7698 tcp->tcp_xmit_zc_clean = B_FALSE; 7699 7700 tcp->tcp_snd_sack_ok = B_FALSE; 7701 PRESERVE(tcp->tcp_recvdstaddr); 7702 tcp->tcp_hwcksum = B_FALSE; 7703 7704 tcp->tcp_ire_ill_check_done = B_FALSE; 7705 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7706 7707 tcp->tcp_mdt = B_FALSE; 7708 tcp->tcp_mdt_hdr_head = 0; 7709 tcp->tcp_mdt_hdr_tail = 0; 7710 7711 tcp->tcp_conn_def_q0 = 0; 7712 tcp->tcp_ip_forward_progress = B_FALSE; 7713 tcp->tcp_anon_priv_bind = 0; 7714 tcp->tcp_ecn_ok = B_FALSE; 7715 7716 tcp->tcp_cwr = B_FALSE; 7717 tcp->tcp_ecn_echo_on = B_FALSE; 7718 7719 if (tcp->tcp_sack_info != NULL) { 7720 if (tcp->tcp_notsack_list != NULL) { 7721 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7722 } 7723 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7724 tcp->tcp_sack_info = NULL; 7725 } 7726 7727 tcp->tcp_rcv_ws = 0; 7728 tcp->tcp_snd_ws = 0; 7729 tcp->tcp_ts_recent = 0; 7730 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7731 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7732 tcp->tcp_if_mtu = 0; 7733 7734 ASSERT(tcp->tcp_reass_head == NULL); 7735 ASSERT(tcp->tcp_reass_tail == NULL); 7736 7737 tcp->tcp_cwnd_cnt = 0; 7738 7739 ASSERT(tcp->tcp_rcv_list == NULL); 7740 ASSERT(tcp->tcp_rcv_last_head == NULL); 7741 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7742 ASSERT(tcp->tcp_rcv_cnt == 0); 7743 7744 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7745 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7746 tcp->tcp_csuna = 0; 7747 7748 tcp->tcp_rto = 0; /* Displayed in MIB */ 7749 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7750 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7751 tcp->tcp_rtt_update = 0; 7752 7753 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7754 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7755 7756 tcp->tcp_rack = 0; /* Displayed in mib */ 7757 tcp->tcp_rack_cnt = 0; 7758 tcp->tcp_rack_cur_max = 0; 7759 tcp->tcp_rack_abs_max = 0; 7760 7761 tcp->tcp_max_swnd = 0; 7762 7763 ASSERT(tcp->tcp_listener == NULL); 7764 7765 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7766 7767 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7768 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7769 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7770 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7771 7772 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7773 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7774 PRESERVE(tcp->tcp_conn_req_max); 7775 PRESERVE(tcp->tcp_conn_req_seqnum); 7776 7777 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7778 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7779 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7780 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7781 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7782 7783 tcp->tcp_lingertime = 0; 7784 7785 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7786 ASSERT(tcp->tcp_urp_mp == NULL); 7787 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7788 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7789 7790 ASSERT(tcp->tcp_eager_next_q == NULL); 7791 ASSERT(tcp->tcp_eager_last_q == NULL); 7792 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7793 tcp->tcp_eager_prev_q0 == NULL) || 7794 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7795 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7796 7797 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7798 tcp->tcp_eager_prev_drop_q0 == NULL) || 7799 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7800 7801 tcp->tcp_client_errno = 0; 7802 7803 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7804 7805 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7806 7807 PRESERVE(tcp->tcp_bound_source_v6); 7808 tcp->tcp_last_sent_len = 0; 7809 tcp->tcp_dupack_cnt = 0; 7810 7811 tcp->tcp_fport = 0; /* Displayed in MIB */ 7812 PRESERVE(tcp->tcp_lport); 7813 7814 PRESERVE(tcp->tcp_acceptor_lockp); 7815 7816 ASSERT(tcp->tcp_ordrel_mp == NULL); 7817 PRESERVE(tcp->tcp_acceptor_id); 7818 DONTCARE(tcp->tcp_ipsec_overhead); 7819 7820 PRESERVE(tcp->tcp_family); 7821 if (tcp->tcp_family == AF_INET6) { 7822 tcp->tcp_ipversion = IPV6_VERSION; 7823 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7824 } else { 7825 tcp->tcp_ipversion = IPV4_VERSION; 7826 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7827 } 7828 7829 tcp->tcp_bound_if = 0; 7830 tcp->tcp_ipv6_recvancillary = 0; 7831 tcp->tcp_recvifindex = 0; 7832 tcp->tcp_recvhops = 0; 7833 tcp->tcp_closed = 0; 7834 tcp->tcp_cleandeathtag = 0; 7835 if (tcp->tcp_hopopts != NULL) { 7836 mi_free(tcp->tcp_hopopts); 7837 tcp->tcp_hopopts = NULL; 7838 tcp->tcp_hopoptslen = 0; 7839 } 7840 ASSERT(tcp->tcp_hopoptslen == 0); 7841 if (tcp->tcp_dstopts != NULL) { 7842 mi_free(tcp->tcp_dstopts); 7843 tcp->tcp_dstopts = NULL; 7844 tcp->tcp_dstoptslen = 0; 7845 } 7846 ASSERT(tcp->tcp_dstoptslen == 0); 7847 if (tcp->tcp_rtdstopts != NULL) { 7848 mi_free(tcp->tcp_rtdstopts); 7849 tcp->tcp_rtdstopts = NULL; 7850 tcp->tcp_rtdstoptslen = 0; 7851 } 7852 ASSERT(tcp->tcp_rtdstoptslen == 0); 7853 if (tcp->tcp_rthdr != NULL) { 7854 mi_free(tcp->tcp_rthdr); 7855 tcp->tcp_rthdr = NULL; 7856 tcp->tcp_rthdrlen = 0; 7857 } 7858 ASSERT(tcp->tcp_rthdrlen == 0); 7859 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7860 7861 /* Reset fusion-related fields */ 7862 tcp->tcp_fused = B_FALSE; 7863 tcp->tcp_unfusable = B_FALSE; 7864 tcp->tcp_fused_sigurg = B_FALSE; 7865 tcp->tcp_direct_sockfs = B_FALSE; 7866 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7867 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7868 tcp->tcp_loopback_peer = NULL; 7869 tcp->tcp_fuse_rcv_hiwater = 0; 7870 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7871 tcp->tcp_fuse_rcv_unread_cnt = 0; 7872 7873 tcp->tcp_lso = B_FALSE; 7874 7875 tcp->tcp_in_ack_unsent = 0; 7876 tcp->tcp_cork = B_FALSE; 7877 tcp->tcp_tconnind_started = B_FALSE; 7878 7879 PRESERVE(tcp->tcp_squeue_bytes); 7880 7881 ASSERT(tcp->tcp_kssl_ctx == NULL); 7882 ASSERT(!tcp->tcp_kssl_pending); 7883 PRESERVE(tcp->tcp_kssl_ent); 7884 7885 tcp->tcp_closemp_used = B_FALSE; 7886 7887 PRESERVE(tcp->tcp_rsrv_mp); 7888 PRESERVE(tcp->tcp_rsrv_mp_lock); 7889 7890 #ifdef DEBUG 7891 DONTCARE(tcp->tcmp_stk[0]); 7892 #endif 7893 7894 PRESERVE(tcp->tcp_connid); 7895 7896 7897 #undef DONTCARE 7898 #undef PRESERVE 7899 } 7900 7901 /* 7902 * Allocate necessary resources and initialize state vector. 7903 * Guaranteed not to fail so that when an error is returned, 7904 * the caller doesn't need to do any additional cleanup. 7905 */ 7906 int 7907 tcp_init(tcp_t *tcp, queue_t *q) 7908 { 7909 int err; 7910 7911 tcp->tcp_rq = q; 7912 tcp->tcp_wq = WR(q); 7913 tcp->tcp_state = TCPS_IDLE; 7914 if ((err = tcp_init_values(tcp)) != 0) 7915 tcp_timers_stop(tcp); 7916 return (err); 7917 } 7918 7919 static int 7920 tcp_init_values(tcp_t *tcp) 7921 { 7922 int err; 7923 tcp_stack_t *tcps = tcp->tcp_tcps; 7924 7925 ASSERT((tcp->tcp_family == AF_INET && 7926 tcp->tcp_ipversion == IPV4_VERSION) || 7927 (tcp->tcp_family == AF_INET6 && 7928 (tcp->tcp_ipversion == IPV4_VERSION || 7929 tcp->tcp_ipversion == IPV6_VERSION))); 7930 7931 /* 7932 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7933 * will be close to tcp_rexmit_interval_initial. By doing this, we 7934 * allow the algorithm to adjust slowly to large fluctuations of RTT 7935 * during first few transmissions of a connection as seen in slow 7936 * links. 7937 */ 7938 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7939 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7940 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7941 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7942 tcps->tcps_conn_grace_period; 7943 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7944 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7945 tcp->tcp_timer_backoff = 0; 7946 tcp->tcp_ms_we_have_waited = 0; 7947 tcp->tcp_last_recv_time = lbolt; 7948 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7949 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7950 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7951 7952 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7953 7954 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7955 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7956 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7957 /* 7958 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7959 * passive open. 7960 */ 7961 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7962 7963 tcp->tcp_naglim = tcps->tcps_naglim_def; 7964 7965 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7966 7967 tcp->tcp_mdt_hdr_head = 0; 7968 tcp->tcp_mdt_hdr_tail = 0; 7969 7970 /* Reset fusion-related fields */ 7971 tcp->tcp_fused = B_FALSE; 7972 tcp->tcp_unfusable = B_FALSE; 7973 tcp->tcp_fused_sigurg = B_FALSE; 7974 tcp->tcp_direct_sockfs = B_FALSE; 7975 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7976 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7977 tcp->tcp_loopback_peer = NULL; 7978 tcp->tcp_fuse_rcv_hiwater = 0; 7979 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7980 tcp->tcp_fuse_rcv_unread_cnt = 0; 7981 7982 /* Initialize the header template */ 7983 if (tcp->tcp_ipversion == IPV4_VERSION) { 7984 err = tcp_header_init_ipv4(tcp); 7985 } else { 7986 err = tcp_header_init_ipv6(tcp); 7987 } 7988 if (err) 7989 return (err); 7990 7991 /* 7992 * Init the window scale to the max so tcp_rwnd_set() won't pare 7993 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7994 */ 7995 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7996 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7997 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7998 7999 tcp->tcp_cork = B_FALSE; 8000 /* 8001 * Init the tcp_debug option. This value determines whether TCP 8002 * calls strlog() to print out debug messages. Doing this 8003 * initialization here means that this value is not inherited thru 8004 * tcp_reinit(). 8005 */ 8006 tcp->tcp_debug = tcps->tcps_dbg; 8007 8008 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8009 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8010 8011 return (0); 8012 } 8013 8014 /* 8015 * Initialize the IPv4 header. Loses any record of any IP options. 8016 */ 8017 static int 8018 tcp_header_init_ipv4(tcp_t *tcp) 8019 { 8020 tcph_t *tcph; 8021 uint32_t sum; 8022 conn_t *connp; 8023 tcp_stack_t *tcps = tcp->tcp_tcps; 8024 8025 /* 8026 * This is a simple initialization. If there's 8027 * already a template, it should never be too small, 8028 * so reuse it. Otherwise, allocate space for the new one. 8029 */ 8030 if (tcp->tcp_iphc == NULL) { 8031 ASSERT(tcp->tcp_iphc_len == 0); 8032 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8033 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8034 if (tcp->tcp_iphc == NULL) { 8035 tcp->tcp_iphc_len = 0; 8036 return (ENOMEM); 8037 } 8038 } 8039 8040 /* options are gone; may need a new label */ 8041 connp = tcp->tcp_connp; 8042 connp->conn_mlp_type = mlptSingle; 8043 connp->conn_ulp_labeled = !is_system_labeled(); 8044 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8045 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8046 tcp->tcp_ip6h = NULL; 8047 tcp->tcp_ipversion = IPV4_VERSION; 8048 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8049 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8050 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8051 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8052 tcp->tcp_ipha->ipha_version_and_hdr_length 8053 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8054 tcp->tcp_ipha->ipha_ident = 0; 8055 8056 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8057 tcp->tcp_tos = 0; 8058 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8059 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8060 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8061 8062 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8063 tcp->tcp_tcph = tcph; 8064 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8065 /* 8066 * IP wants our header length in the checksum field to 8067 * allow it to perform a single pseudo-header+checksum 8068 * calculation on behalf of TCP. 8069 * Include the adjustment for a source route once IP_OPTIONS is set. 8070 */ 8071 sum = sizeof (tcph_t) + tcp->tcp_sum; 8072 sum = (sum >> 16) + (sum & 0xFFFF); 8073 U16_TO_ABE16(sum, tcph->th_sum); 8074 return (0); 8075 } 8076 8077 /* 8078 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8079 */ 8080 static int 8081 tcp_header_init_ipv6(tcp_t *tcp) 8082 { 8083 tcph_t *tcph; 8084 uint32_t sum; 8085 conn_t *connp; 8086 tcp_stack_t *tcps = tcp->tcp_tcps; 8087 8088 /* 8089 * This is a simple initialization. If there's 8090 * already a template, it should never be too small, 8091 * so reuse it. Otherwise, allocate space for the new one. 8092 * Ensure that there is enough space to "downgrade" the tcp_t 8093 * to an IPv4 tcp_t. This requires having space for a full load 8094 * of IPv4 options, as well as a full load of TCP options 8095 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8096 * than a v6 header and a TCP header with a full load of TCP options 8097 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8098 * We want to avoid reallocation in the "downgraded" case when 8099 * processing outbound IPv4 options. 8100 */ 8101 if (tcp->tcp_iphc == NULL) { 8102 ASSERT(tcp->tcp_iphc_len == 0); 8103 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8104 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8105 if (tcp->tcp_iphc == NULL) { 8106 tcp->tcp_iphc_len = 0; 8107 return (ENOMEM); 8108 } 8109 } 8110 8111 /* options are gone; may need a new label */ 8112 connp = tcp->tcp_connp; 8113 connp->conn_mlp_type = mlptSingle; 8114 connp->conn_ulp_labeled = !is_system_labeled(); 8115 8116 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8117 tcp->tcp_ipversion = IPV6_VERSION; 8118 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8119 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8120 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8121 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8122 tcp->tcp_ipha = NULL; 8123 8124 /* Initialize the header template */ 8125 8126 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8127 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8128 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8129 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8130 8131 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8132 tcp->tcp_tcph = tcph; 8133 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8134 /* 8135 * IP wants our header length in the checksum field to 8136 * allow it to perform a single psuedo-header+checksum 8137 * calculation on behalf of TCP. 8138 * Include the adjustment for a source route when IPV6_RTHDR is set. 8139 */ 8140 sum = sizeof (tcph_t) + tcp->tcp_sum; 8141 sum = (sum >> 16) + (sum & 0xFFFF); 8142 U16_TO_ABE16(sum, tcph->th_sum); 8143 return (0); 8144 } 8145 8146 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8147 #define ICMP_MIN_TCP_HDR 8 8148 8149 /* 8150 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8151 * passed up by IP. The message is always received on the correct tcp_t. 8152 * Assumes that IP has pulled up everything up to and including the ICMP header. 8153 */ 8154 void 8155 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8156 { 8157 icmph_t *icmph; 8158 ipha_t *ipha; 8159 int iph_hdr_length; 8160 tcph_t *tcph; 8161 boolean_t ipsec_mctl = B_FALSE; 8162 boolean_t secure; 8163 mblk_t *first_mp = mp; 8164 int32_t new_mss; 8165 uint32_t ratio; 8166 size_t mp_size = MBLKL(mp); 8167 uint32_t seg_seq; 8168 tcp_stack_t *tcps = tcp->tcp_tcps; 8169 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8170 8171 /* Assume IP provides aligned packets - otherwise toss */ 8172 if (!OK_32PTR(mp->b_rptr)) { 8173 freemsg(mp); 8174 return; 8175 } 8176 8177 /* 8178 * Since ICMP errors are normal data marked with M_CTL when sent 8179 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8180 * packets starting with an ipsec_info_t, see ipsec_info.h. 8181 */ 8182 if ((mp_size == sizeof (ipsec_info_t)) && 8183 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8184 ASSERT(mp->b_cont != NULL); 8185 mp = mp->b_cont; 8186 /* IP should have done this */ 8187 ASSERT(OK_32PTR(mp->b_rptr)); 8188 mp_size = MBLKL(mp); 8189 ipsec_mctl = B_TRUE; 8190 } 8191 8192 /* 8193 * Verify that we have a complete outer IP header. If not, drop it. 8194 */ 8195 if (mp_size < sizeof (ipha_t)) { 8196 noticmpv4: 8197 freemsg(first_mp); 8198 return; 8199 } 8200 8201 ipha = (ipha_t *)mp->b_rptr; 8202 /* 8203 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8204 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8205 */ 8206 switch (IPH_HDR_VERSION(ipha)) { 8207 case IPV6_VERSION: 8208 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8209 return; 8210 case IPV4_VERSION: 8211 break; 8212 default: 8213 goto noticmpv4; 8214 } 8215 8216 /* Skip past the outer IP and ICMP headers */ 8217 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8218 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8219 /* 8220 * If we don't have the correct outer IP header length or if the ULP 8221 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8222 * send it upstream. 8223 */ 8224 if (iph_hdr_length < sizeof (ipha_t) || 8225 ipha->ipha_protocol != IPPROTO_ICMP || 8226 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8227 goto noticmpv4; 8228 } 8229 ipha = (ipha_t *)&icmph[1]; 8230 8231 /* Skip past the inner IP and find the ULP header */ 8232 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8233 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8234 /* 8235 * If we don't have the correct inner IP header length or if the ULP 8236 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8237 * bytes of TCP header, drop it. 8238 */ 8239 if (iph_hdr_length < sizeof (ipha_t) || 8240 ipha->ipha_protocol != IPPROTO_TCP || 8241 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8242 goto noticmpv4; 8243 } 8244 8245 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8246 if (ipsec_mctl) { 8247 secure = ipsec_in_is_secure(first_mp); 8248 } else { 8249 secure = B_FALSE; 8250 } 8251 if (secure) { 8252 /* 8253 * If we are willing to accept this in clear 8254 * we don't have to verify policy. 8255 */ 8256 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8257 if (!tcp_check_policy(tcp, first_mp, 8258 ipha, NULL, secure, ipsec_mctl)) { 8259 /* 8260 * tcp_check_policy called 8261 * ip_drop_packet() on failure. 8262 */ 8263 return; 8264 } 8265 } 8266 } 8267 } else if (ipsec_mctl) { 8268 /* 8269 * This is a hard_bound connection. IP has already 8270 * verified policy. We don't have to do it again. 8271 */ 8272 freeb(first_mp); 8273 first_mp = mp; 8274 ipsec_mctl = B_FALSE; 8275 } 8276 8277 seg_seq = ABE32_TO_U32(tcph->th_seq); 8278 /* 8279 * TCP SHOULD check that the TCP sequence number contained in 8280 * payload of the ICMP error message is within the range 8281 * SND.UNA <= SEG.SEQ < SND.NXT. 8282 */ 8283 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8284 /* 8285 * The ICMP message is bogus, just drop it. But if this is 8286 * an ICMP too big message, IP has already changed 8287 * the ire_max_frag to the bogus value. We need to change 8288 * it back. 8289 */ 8290 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8291 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8292 conn_t *connp = tcp->tcp_connp; 8293 ire_t *ire; 8294 int flag; 8295 8296 if (tcp->tcp_ipversion == IPV4_VERSION) { 8297 flag = tcp->tcp_ipha-> 8298 ipha_fragment_offset_and_flags; 8299 } else { 8300 flag = 0; 8301 } 8302 mutex_enter(&connp->conn_lock); 8303 if ((ire = connp->conn_ire_cache) != NULL) { 8304 mutex_enter(&ire->ire_lock); 8305 mutex_exit(&connp->conn_lock); 8306 ire->ire_max_frag = tcp->tcp_if_mtu; 8307 ire->ire_frag_flag |= flag; 8308 mutex_exit(&ire->ire_lock); 8309 } else { 8310 mutex_exit(&connp->conn_lock); 8311 } 8312 } 8313 goto noticmpv4; 8314 } 8315 8316 switch (icmph->icmph_type) { 8317 case ICMP_DEST_UNREACHABLE: 8318 switch (icmph->icmph_code) { 8319 case ICMP_FRAGMENTATION_NEEDED: 8320 /* 8321 * Reduce the MSS based on the new MTU. This will 8322 * eliminate any fragmentation locally. 8323 * N.B. There may well be some funny side-effects on 8324 * the local send policy and the remote receive policy. 8325 * Pending further research, we provide 8326 * tcp_ignore_path_mtu just in case this proves 8327 * disastrous somewhere. 8328 * 8329 * After updating the MSS, retransmit part of the 8330 * dropped segment using the new mss by calling 8331 * tcp_wput_data(). Need to adjust all those 8332 * params to make sure tcp_wput_data() work properly. 8333 */ 8334 if (tcps->tcps_ignore_path_mtu || 8335 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8336 break; 8337 8338 /* 8339 * Decrease the MSS by time stamp options 8340 * IP options and IPSEC options. tcp_hdr_len 8341 * includes time stamp option and IP option 8342 * length. Note that new_mss may be negative 8343 * if tcp_ipsec_overhead is large and the 8344 * icmph_du_mtu is the minimum value, which is 68. 8345 */ 8346 new_mss = ntohs(icmph->icmph_du_mtu) - 8347 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8348 8349 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8350 new_mss); 8351 8352 /* 8353 * Only update the MSS if the new one is 8354 * smaller than the previous one. This is 8355 * to avoid problems when getting multiple 8356 * ICMP errors for the same MTU. 8357 */ 8358 if (new_mss >= tcp->tcp_mss) 8359 break; 8360 8361 /* 8362 * Note that we are using the template header's DF 8363 * bit in the fast path sending. So we need to compare 8364 * the new mss with both tcps_mss_min and ip_pmtu_min. 8365 * And stop doing IPv4 PMTUd if new_mss is less than 8366 * MAX(tcps_mss_min, ip_pmtu_min). 8367 */ 8368 if (new_mss < tcps->tcps_mss_min || 8369 new_mss < ipst->ips_ip_pmtu_min) { 8370 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8371 0; 8372 } 8373 8374 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8375 ASSERT(ratio >= 1); 8376 tcp_mss_set(tcp, new_mss, B_TRUE); 8377 8378 /* 8379 * Make sure we have something to 8380 * send. 8381 */ 8382 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8383 (tcp->tcp_xmit_head != NULL)) { 8384 /* 8385 * Shrink tcp_cwnd in 8386 * proportion to the old MSS/new MSS. 8387 */ 8388 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8389 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8390 (tcp->tcp_unsent == 0)) { 8391 tcp->tcp_rexmit_max = tcp->tcp_fss; 8392 } else { 8393 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8394 } 8395 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8396 tcp->tcp_rexmit = B_TRUE; 8397 tcp->tcp_dupack_cnt = 0; 8398 tcp->tcp_snd_burst = TCP_CWND_SS; 8399 tcp_ss_rexmit(tcp); 8400 } 8401 break; 8402 case ICMP_PORT_UNREACHABLE: 8403 case ICMP_PROTOCOL_UNREACHABLE: 8404 switch (tcp->tcp_state) { 8405 case TCPS_SYN_SENT: 8406 case TCPS_SYN_RCVD: 8407 /* 8408 * ICMP can snipe away incipient 8409 * TCP connections as long as 8410 * seq number is same as initial 8411 * send seq number. 8412 */ 8413 if (seg_seq == tcp->tcp_iss) { 8414 (void) tcp_clean_death(tcp, 8415 ECONNREFUSED, 6); 8416 } 8417 break; 8418 } 8419 break; 8420 case ICMP_HOST_UNREACHABLE: 8421 case ICMP_NET_UNREACHABLE: 8422 /* Record the error in case we finally time out. */ 8423 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8424 tcp->tcp_client_errno = EHOSTUNREACH; 8425 else 8426 tcp->tcp_client_errno = ENETUNREACH; 8427 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8428 if (tcp->tcp_listener != NULL && 8429 tcp->tcp_listener->tcp_syn_defense) { 8430 /* 8431 * Ditch the half-open connection if we 8432 * suspect a SYN attack is under way. 8433 */ 8434 tcp_ip_ire_mark_advice(tcp); 8435 (void) tcp_clean_death(tcp, 8436 tcp->tcp_client_errno, 7); 8437 } 8438 } 8439 break; 8440 default: 8441 break; 8442 } 8443 break; 8444 case ICMP_SOURCE_QUENCH: { 8445 /* 8446 * use a global boolean to control 8447 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8448 * The default is false. 8449 */ 8450 if (tcp_icmp_source_quench) { 8451 /* 8452 * Reduce the sending rate as if we got a 8453 * retransmit timeout 8454 */ 8455 uint32_t npkt; 8456 8457 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8458 tcp->tcp_mss; 8459 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8460 tcp->tcp_cwnd = tcp->tcp_mss; 8461 tcp->tcp_cwnd_cnt = 0; 8462 } 8463 break; 8464 } 8465 } 8466 freemsg(first_mp); 8467 } 8468 8469 /* 8470 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8471 * error messages passed up by IP. 8472 * Assumes that IP has pulled up all the extension headers as well 8473 * as the ICMPv6 header. 8474 */ 8475 static void 8476 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8477 { 8478 icmp6_t *icmp6; 8479 ip6_t *ip6h; 8480 uint16_t iph_hdr_length; 8481 tcpha_t *tcpha; 8482 uint8_t *nexthdrp; 8483 uint32_t new_mss; 8484 uint32_t ratio; 8485 boolean_t secure; 8486 mblk_t *first_mp = mp; 8487 size_t mp_size; 8488 uint32_t seg_seq; 8489 tcp_stack_t *tcps = tcp->tcp_tcps; 8490 8491 /* 8492 * The caller has determined if this is an IPSEC_IN packet and 8493 * set ipsec_mctl appropriately (see tcp_icmp_error). 8494 */ 8495 if (ipsec_mctl) 8496 mp = mp->b_cont; 8497 8498 mp_size = MBLKL(mp); 8499 8500 /* 8501 * Verify that we have a complete IP header. If not, send it upstream. 8502 */ 8503 if (mp_size < sizeof (ip6_t)) { 8504 noticmpv6: 8505 freemsg(first_mp); 8506 return; 8507 } 8508 8509 /* 8510 * Verify this is an ICMPV6 packet, else send it upstream. 8511 */ 8512 ip6h = (ip6_t *)mp->b_rptr; 8513 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8514 iph_hdr_length = IPV6_HDR_LEN; 8515 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8516 &nexthdrp) || 8517 *nexthdrp != IPPROTO_ICMPV6) { 8518 goto noticmpv6; 8519 } 8520 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8521 ip6h = (ip6_t *)&icmp6[1]; 8522 /* 8523 * Verify if we have a complete ICMP and inner IP header. 8524 */ 8525 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8526 goto noticmpv6; 8527 8528 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8529 goto noticmpv6; 8530 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8531 /* 8532 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8533 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8534 * packet. 8535 */ 8536 if ((*nexthdrp != IPPROTO_TCP) || 8537 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8538 goto noticmpv6; 8539 } 8540 8541 /* 8542 * ICMP errors come on the right queue or come on 8543 * listener/global queue for detached connections and 8544 * get switched to the right queue. If it comes on the 8545 * right queue, policy check has already been done by IP 8546 * and thus free the first_mp without verifying the policy. 8547 * If it has come for a non-hard bound connection, we need 8548 * to verify policy as IP may not have done it. 8549 */ 8550 if (!tcp->tcp_hard_bound) { 8551 if (ipsec_mctl) { 8552 secure = ipsec_in_is_secure(first_mp); 8553 } else { 8554 secure = B_FALSE; 8555 } 8556 if (secure) { 8557 /* 8558 * If we are willing to accept this in clear 8559 * we don't have to verify policy. 8560 */ 8561 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8562 if (!tcp_check_policy(tcp, first_mp, 8563 NULL, ip6h, secure, ipsec_mctl)) { 8564 /* 8565 * tcp_check_policy called 8566 * ip_drop_packet() on failure. 8567 */ 8568 return; 8569 } 8570 } 8571 } 8572 } else if (ipsec_mctl) { 8573 /* 8574 * This is a hard_bound connection. IP has already 8575 * verified policy. We don't have to do it again. 8576 */ 8577 freeb(first_mp); 8578 first_mp = mp; 8579 ipsec_mctl = B_FALSE; 8580 } 8581 8582 seg_seq = ntohl(tcpha->tha_seq); 8583 /* 8584 * TCP SHOULD check that the TCP sequence number contained in 8585 * payload of the ICMP error message is within the range 8586 * SND.UNA <= SEG.SEQ < SND.NXT. 8587 */ 8588 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8589 /* 8590 * If the ICMP message is bogus, should we kill the 8591 * connection, or should we just drop the bogus ICMP 8592 * message? It would probably make more sense to just 8593 * drop the message so that if this one managed to get 8594 * in, the real connection should not suffer. 8595 */ 8596 goto noticmpv6; 8597 } 8598 8599 switch (icmp6->icmp6_type) { 8600 case ICMP6_PACKET_TOO_BIG: 8601 /* 8602 * Reduce the MSS based on the new MTU. This will 8603 * eliminate any fragmentation locally. 8604 * N.B. There may well be some funny side-effects on 8605 * the local send policy and the remote receive policy. 8606 * Pending further research, we provide 8607 * tcp_ignore_path_mtu just in case this proves 8608 * disastrous somewhere. 8609 * 8610 * After updating the MSS, retransmit part of the 8611 * dropped segment using the new mss by calling 8612 * tcp_wput_data(). Need to adjust all those 8613 * params to make sure tcp_wput_data() work properly. 8614 */ 8615 if (tcps->tcps_ignore_path_mtu) 8616 break; 8617 8618 /* 8619 * Decrease the MSS by time stamp options 8620 * IP options and IPSEC options. tcp_hdr_len 8621 * includes time stamp option and IP option 8622 * length. 8623 */ 8624 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8625 tcp->tcp_ipsec_overhead; 8626 8627 /* 8628 * Only update the MSS if the new one is 8629 * smaller than the previous one. This is 8630 * to avoid problems when getting multiple 8631 * ICMP errors for the same MTU. 8632 */ 8633 if (new_mss >= tcp->tcp_mss) 8634 break; 8635 8636 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8637 ASSERT(ratio >= 1); 8638 tcp_mss_set(tcp, new_mss, B_TRUE); 8639 8640 /* 8641 * Make sure we have something to 8642 * send. 8643 */ 8644 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8645 (tcp->tcp_xmit_head != NULL)) { 8646 /* 8647 * Shrink tcp_cwnd in 8648 * proportion to the old MSS/new MSS. 8649 */ 8650 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8651 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8652 (tcp->tcp_unsent == 0)) { 8653 tcp->tcp_rexmit_max = tcp->tcp_fss; 8654 } else { 8655 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8656 } 8657 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8658 tcp->tcp_rexmit = B_TRUE; 8659 tcp->tcp_dupack_cnt = 0; 8660 tcp->tcp_snd_burst = TCP_CWND_SS; 8661 tcp_ss_rexmit(tcp); 8662 } 8663 break; 8664 8665 case ICMP6_DST_UNREACH: 8666 switch (icmp6->icmp6_code) { 8667 case ICMP6_DST_UNREACH_NOPORT: 8668 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8669 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8670 (seg_seq == tcp->tcp_iss)) { 8671 (void) tcp_clean_death(tcp, 8672 ECONNREFUSED, 8); 8673 } 8674 break; 8675 8676 case ICMP6_DST_UNREACH_ADMIN: 8677 case ICMP6_DST_UNREACH_NOROUTE: 8678 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8679 case ICMP6_DST_UNREACH_ADDR: 8680 /* Record the error in case we finally time out. */ 8681 tcp->tcp_client_errno = EHOSTUNREACH; 8682 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8683 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8684 (seg_seq == tcp->tcp_iss)) { 8685 if (tcp->tcp_listener != NULL && 8686 tcp->tcp_listener->tcp_syn_defense) { 8687 /* 8688 * Ditch the half-open connection if we 8689 * suspect a SYN attack is under way. 8690 */ 8691 tcp_ip_ire_mark_advice(tcp); 8692 (void) tcp_clean_death(tcp, 8693 tcp->tcp_client_errno, 9); 8694 } 8695 } 8696 8697 8698 break; 8699 default: 8700 break; 8701 } 8702 break; 8703 8704 case ICMP6_PARAM_PROB: 8705 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8706 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8707 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8708 (uchar_t *)nexthdrp) { 8709 if (tcp->tcp_state == TCPS_SYN_SENT || 8710 tcp->tcp_state == TCPS_SYN_RCVD) { 8711 (void) tcp_clean_death(tcp, 8712 ECONNREFUSED, 10); 8713 } 8714 break; 8715 } 8716 break; 8717 8718 case ICMP6_TIME_EXCEEDED: 8719 default: 8720 break; 8721 } 8722 freemsg(first_mp); 8723 } 8724 8725 /* 8726 * Notify IP that we are having trouble with this connection. IP should 8727 * blow the IRE away and start over. 8728 */ 8729 static void 8730 tcp_ip_notify(tcp_t *tcp) 8731 { 8732 struct iocblk *iocp; 8733 ipid_t *ipid; 8734 mblk_t *mp; 8735 8736 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8737 if (tcp->tcp_ipversion == IPV6_VERSION) 8738 return; 8739 8740 mp = mkiocb(IP_IOCTL); 8741 if (mp == NULL) 8742 return; 8743 8744 iocp = (struct iocblk *)mp->b_rptr; 8745 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8746 8747 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8748 if (!mp->b_cont) { 8749 freeb(mp); 8750 return; 8751 } 8752 8753 ipid = (ipid_t *)mp->b_cont->b_rptr; 8754 mp->b_cont->b_wptr += iocp->ioc_count; 8755 bzero(ipid, sizeof (*ipid)); 8756 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8757 ipid->ipid_ire_type = IRE_CACHE; 8758 ipid->ipid_addr_offset = sizeof (ipid_t); 8759 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8760 /* 8761 * Note: in the case of source routing we want to blow away the 8762 * route to the first source route hop. 8763 */ 8764 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8765 sizeof (tcp->tcp_ipha->ipha_dst)); 8766 8767 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8768 } 8769 8770 /* Unlink and return any mblk that looks like it contains an ire */ 8771 static mblk_t * 8772 tcp_ire_mp(mblk_t **mpp) 8773 { 8774 mblk_t *mp = *mpp; 8775 mblk_t *prev_mp = NULL; 8776 8777 for (;;) { 8778 switch (DB_TYPE(mp)) { 8779 case IRE_DB_TYPE: 8780 case IRE_DB_REQ_TYPE: 8781 if (mp == *mpp) { 8782 *mpp = mp->b_cont; 8783 } else { 8784 prev_mp->b_cont = mp->b_cont; 8785 } 8786 mp->b_cont = NULL; 8787 return (mp); 8788 default: 8789 break; 8790 } 8791 prev_mp = mp; 8792 mp = mp->b_cont; 8793 if (mp == NULL) 8794 break; 8795 } 8796 return (mp); 8797 } 8798 8799 /* 8800 * Timer callback routine for keepalive probe. We do a fake resend of 8801 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8802 * check to see if we have heard anything from the other end for the last 8803 * RTO period. If we have, set the timer to expire for another 8804 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8805 * RTO << 1 and check again when it expires. Keep exponentially increasing 8806 * the timeout if we have not heard from the other side. If for more than 8807 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8808 * kill the connection unless the keepalive abort threshold is 0. In 8809 * that case, we will probe "forever." 8810 */ 8811 static void 8812 tcp_keepalive_killer(void *arg) 8813 { 8814 mblk_t *mp; 8815 conn_t *connp = (conn_t *)arg; 8816 tcp_t *tcp = connp->conn_tcp; 8817 int32_t firetime; 8818 int32_t idletime; 8819 int32_t ka_intrvl; 8820 tcp_stack_t *tcps = tcp->tcp_tcps; 8821 8822 tcp->tcp_ka_tid = 0; 8823 8824 if (tcp->tcp_fused) 8825 return; 8826 8827 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8828 ka_intrvl = tcp->tcp_ka_interval; 8829 8830 /* 8831 * Keepalive probe should only be sent if the application has not 8832 * done a close on the connection. 8833 */ 8834 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8835 return; 8836 } 8837 /* Timer fired too early, restart it. */ 8838 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8839 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8840 MSEC_TO_TICK(ka_intrvl)); 8841 return; 8842 } 8843 8844 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8845 /* 8846 * If we have not heard from the other side for a long 8847 * time, kill the connection unless the keepalive abort 8848 * threshold is 0. In that case, we will probe "forever." 8849 */ 8850 if (tcp->tcp_ka_abort_thres != 0 && 8851 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8852 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8853 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8854 tcp->tcp_client_errno : ETIMEDOUT, 11); 8855 return; 8856 } 8857 8858 if (tcp->tcp_snxt == tcp->tcp_suna && 8859 idletime >= ka_intrvl) { 8860 /* Fake resend of last ACKed byte. */ 8861 mblk_t *mp1 = allocb(1, BPRI_LO); 8862 8863 if (mp1 != NULL) { 8864 *mp1->b_wptr++ = '\0'; 8865 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8866 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8867 freeb(mp1); 8868 /* 8869 * if allocation failed, fall through to start the 8870 * timer back. 8871 */ 8872 if (mp != NULL) { 8873 tcp_send_data(tcp, tcp->tcp_wq, mp); 8874 BUMP_MIB(&tcps->tcps_mib, 8875 tcpTimKeepaliveProbe); 8876 if (tcp->tcp_ka_last_intrvl != 0) { 8877 int max; 8878 /* 8879 * We should probe again at least 8880 * in ka_intrvl, but not more than 8881 * tcp_rexmit_interval_max. 8882 */ 8883 max = tcps->tcps_rexmit_interval_max; 8884 firetime = MIN(ka_intrvl - 1, 8885 tcp->tcp_ka_last_intrvl << 1); 8886 if (firetime > max) 8887 firetime = max; 8888 } else { 8889 firetime = tcp->tcp_rto; 8890 } 8891 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8892 tcp_keepalive_killer, 8893 MSEC_TO_TICK(firetime)); 8894 tcp->tcp_ka_last_intrvl = firetime; 8895 return; 8896 } 8897 } 8898 } else { 8899 tcp->tcp_ka_last_intrvl = 0; 8900 } 8901 8902 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8903 if ((firetime = ka_intrvl - idletime) < 0) { 8904 firetime = ka_intrvl; 8905 } 8906 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8907 MSEC_TO_TICK(firetime)); 8908 } 8909 8910 int 8911 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8912 { 8913 queue_t *q = tcp->tcp_rq; 8914 int32_t mss = tcp->tcp_mss; 8915 int maxpsz; 8916 conn_t *connp = tcp->tcp_connp; 8917 8918 if (TCP_IS_DETACHED(tcp)) 8919 return (mss); 8920 if (tcp->tcp_fused) { 8921 maxpsz = tcp_fuse_maxpsz_set(tcp); 8922 mss = INFPSZ; 8923 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8924 /* 8925 * Set the sd_qn_maxpsz according to the socket send buffer 8926 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8927 * instruct the stream head to copyin user data into contiguous 8928 * kernel-allocated buffers without breaking it up into smaller 8929 * chunks. We round up the buffer size to the nearest SMSS. 8930 */ 8931 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8932 if (tcp->tcp_kssl_ctx == NULL) 8933 mss = INFPSZ; 8934 else 8935 mss = SSL3_MAX_RECORD_LEN; 8936 } else { 8937 /* 8938 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8939 * (and a multiple of the mss). This instructs the stream 8940 * head to break down larger than SMSS writes into SMSS- 8941 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8942 */ 8943 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8944 maxpsz = tcp->tcp_maxpsz * mss; 8945 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8946 maxpsz = tcp->tcp_xmit_hiwater/2; 8947 /* Round up to nearest mss */ 8948 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8949 } 8950 } 8951 8952 (void) proto_set_maxpsz(q, connp, maxpsz); 8953 if (!(IPCL_IS_NONSTR(connp))) { 8954 /* XXX do it in set_maxpsz()? */ 8955 tcp->tcp_wq->q_maxpsz = maxpsz; 8956 } 8957 8958 if (set_maxblk) 8959 (void) proto_set_tx_maxblk(q, connp, mss); 8960 return (mss); 8961 } 8962 8963 /* 8964 * Extract option values from a tcp header. We put any found values into the 8965 * tcpopt struct and return a bitmask saying which options were found. 8966 */ 8967 static int 8968 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8969 { 8970 uchar_t *endp; 8971 int len; 8972 uint32_t mss; 8973 uchar_t *up = (uchar_t *)tcph; 8974 int found = 0; 8975 int32_t sack_len; 8976 tcp_seq sack_begin, sack_end; 8977 tcp_t *tcp; 8978 8979 endp = up + TCP_HDR_LENGTH(tcph); 8980 up += TCP_MIN_HEADER_LENGTH; 8981 while (up < endp) { 8982 len = endp - up; 8983 switch (*up) { 8984 case TCPOPT_EOL: 8985 break; 8986 8987 case TCPOPT_NOP: 8988 up++; 8989 continue; 8990 8991 case TCPOPT_MAXSEG: 8992 if (len < TCPOPT_MAXSEG_LEN || 8993 up[1] != TCPOPT_MAXSEG_LEN) 8994 break; 8995 8996 mss = BE16_TO_U16(up+2); 8997 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8998 tcpopt->tcp_opt_mss = mss; 8999 found |= TCP_OPT_MSS_PRESENT; 9000 9001 up += TCPOPT_MAXSEG_LEN; 9002 continue; 9003 9004 case TCPOPT_WSCALE: 9005 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9006 break; 9007 9008 if (up[2] > TCP_MAX_WINSHIFT) 9009 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9010 else 9011 tcpopt->tcp_opt_wscale = up[2]; 9012 found |= TCP_OPT_WSCALE_PRESENT; 9013 9014 up += TCPOPT_WS_LEN; 9015 continue; 9016 9017 case TCPOPT_SACK_PERMITTED: 9018 if (len < TCPOPT_SACK_OK_LEN || 9019 up[1] != TCPOPT_SACK_OK_LEN) 9020 break; 9021 found |= TCP_OPT_SACK_OK_PRESENT; 9022 up += TCPOPT_SACK_OK_LEN; 9023 continue; 9024 9025 case TCPOPT_SACK: 9026 if (len <= 2 || up[1] <= 2 || len < up[1]) 9027 break; 9028 9029 /* If TCP is not interested in SACK blks... */ 9030 if ((tcp = tcpopt->tcp) == NULL) { 9031 up += up[1]; 9032 continue; 9033 } 9034 sack_len = up[1] - TCPOPT_HEADER_LEN; 9035 up += TCPOPT_HEADER_LEN; 9036 9037 /* 9038 * If the list is empty, allocate one and assume 9039 * nothing is sack'ed. 9040 */ 9041 ASSERT(tcp->tcp_sack_info != NULL); 9042 if (tcp->tcp_notsack_list == NULL) { 9043 tcp_notsack_update(&(tcp->tcp_notsack_list), 9044 tcp->tcp_suna, tcp->tcp_snxt, 9045 &(tcp->tcp_num_notsack_blk), 9046 &(tcp->tcp_cnt_notsack_list)); 9047 9048 /* 9049 * Make sure tcp_notsack_list is not NULL. 9050 * This happens when kmem_alloc(KM_NOSLEEP) 9051 * returns NULL. 9052 */ 9053 if (tcp->tcp_notsack_list == NULL) { 9054 up += sack_len; 9055 continue; 9056 } 9057 tcp->tcp_fack = tcp->tcp_suna; 9058 } 9059 9060 while (sack_len > 0) { 9061 if (up + 8 > endp) { 9062 up = endp; 9063 break; 9064 } 9065 sack_begin = BE32_TO_U32(up); 9066 up += 4; 9067 sack_end = BE32_TO_U32(up); 9068 up += 4; 9069 sack_len -= 8; 9070 /* 9071 * Bounds checking. Make sure the SACK 9072 * info is within tcp_suna and tcp_snxt. 9073 * If this SACK blk is out of bound, ignore 9074 * it but continue to parse the following 9075 * blks. 9076 */ 9077 if (SEQ_LEQ(sack_end, sack_begin) || 9078 SEQ_LT(sack_begin, tcp->tcp_suna) || 9079 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9080 continue; 9081 } 9082 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9083 sack_begin, sack_end, 9084 &(tcp->tcp_num_notsack_blk), 9085 &(tcp->tcp_cnt_notsack_list)); 9086 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9087 tcp->tcp_fack = sack_end; 9088 } 9089 } 9090 found |= TCP_OPT_SACK_PRESENT; 9091 continue; 9092 9093 case TCPOPT_TSTAMP: 9094 if (len < TCPOPT_TSTAMP_LEN || 9095 up[1] != TCPOPT_TSTAMP_LEN) 9096 break; 9097 9098 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9099 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9100 9101 found |= TCP_OPT_TSTAMP_PRESENT; 9102 9103 up += TCPOPT_TSTAMP_LEN; 9104 continue; 9105 9106 default: 9107 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9108 break; 9109 up += up[1]; 9110 continue; 9111 } 9112 break; 9113 } 9114 return (found); 9115 } 9116 9117 /* 9118 * Set the mss associated with a particular tcp based on its current value, 9119 * and a new one passed in. Observe minimums and maximums, and reset 9120 * other state variables that we want to view as multiples of mss. 9121 * 9122 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9123 * highwater marks etc. need to be initialized or adjusted. 9124 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9125 * packet arrives. 9126 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9127 * ICMP6_PACKET_TOO_BIG arrives. 9128 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9129 * to increase the MSS to use the extra bytes available. 9130 * 9131 * Callers except tcp_paws_check() ensure that they only reduce mss. 9132 */ 9133 static void 9134 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9135 { 9136 uint32_t mss_max; 9137 tcp_stack_t *tcps = tcp->tcp_tcps; 9138 9139 if (tcp->tcp_ipversion == IPV4_VERSION) 9140 mss_max = tcps->tcps_mss_max_ipv4; 9141 else 9142 mss_max = tcps->tcps_mss_max_ipv6; 9143 9144 if (mss < tcps->tcps_mss_min) 9145 mss = tcps->tcps_mss_min; 9146 if (mss > mss_max) 9147 mss = mss_max; 9148 /* 9149 * Unless naglim has been set by our client to 9150 * a non-mss value, force naglim to track mss. 9151 * This can help to aggregate small writes. 9152 */ 9153 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9154 tcp->tcp_naglim = mss; 9155 /* 9156 * TCP should be able to buffer at least 4 MSS data for obvious 9157 * performance reason. 9158 */ 9159 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9160 tcp->tcp_xmit_hiwater = mss << 2; 9161 9162 /* 9163 * Set the xmit_lowater to at least twice of MSS. 9164 */ 9165 if ((mss << 1) > tcp->tcp_xmit_lowater) 9166 tcp->tcp_xmit_lowater = mss << 1; 9167 9168 if (do_ss) { 9169 /* 9170 * Either the tcp_cwnd is as yet uninitialized, or mss is 9171 * changing due to a reduction in MTU, presumably as a 9172 * result of a new path component, reset cwnd to its 9173 * "initial" value, as a multiple of the new mss. 9174 */ 9175 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9176 } else { 9177 /* 9178 * Called by tcp_paws_check(), the mss increased 9179 * marginally to allow use of space previously taken 9180 * by the timestamp option. It would be inappropriate 9181 * to apply slow start or tcp_init_cwnd values to 9182 * tcp_cwnd, simply adjust to a multiple of the new mss. 9183 */ 9184 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9185 tcp->tcp_cwnd_cnt = 0; 9186 } 9187 tcp->tcp_mss = mss; 9188 (void) tcp_maxpsz_set(tcp, B_TRUE); 9189 } 9190 9191 /* For /dev/tcp aka AF_INET open */ 9192 static int 9193 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9194 { 9195 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9196 } 9197 9198 /* For /dev/tcp6 aka AF_INET6 open */ 9199 static int 9200 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9201 { 9202 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9203 } 9204 9205 static conn_t * 9206 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9207 boolean_t issocket, int *errorp) 9208 { 9209 tcp_t *tcp = NULL; 9210 conn_t *connp; 9211 int err; 9212 zoneid_t zoneid; 9213 tcp_stack_t *tcps; 9214 squeue_t *sqp; 9215 9216 ASSERT(errorp != NULL); 9217 /* 9218 * Find the proper zoneid and netstack. 9219 */ 9220 /* 9221 * Special case for install: miniroot needs to be able to 9222 * access files via NFS as though it were always in the 9223 * global zone. 9224 */ 9225 if (credp == kcred && nfs_global_client_only != 0) { 9226 zoneid = GLOBAL_ZONEID; 9227 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9228 netstack_tcp; 9229 ASSERT(tcps != NULL); 9230 } else { 9231 netstack_t *ns; 9232 9233 ns = netstack_find_by_cred(credp); 9234 ASSERT(ns != NULL); 9235 tcps = ns->netstack_tcp; 9236 ASSERT(tcps != NULL); 9237 9238 /* 9239 * For exclusive stacks we set the zoneid to zero 9240 * to make TCP operate as if in the global zone. 9241 */ 9242 if (tcps->tcps_netstack->netstack_stackid != 9243 GLOBAL_NETSTACKID) 9244 zoneid = GLOBAL_ZONEID; 9245 else 9246 zoneid = crgetzoneid(credp); 9247 } 9248 /* 9249 * For stackid zero this is done from strplumb.c, but 9250 * non-zero stackids are handled here. 9251 */ 9252 if (tcps->tcps_g_q == NULL && 9253 tcps->tcps_netstack->netstack_stackid != 9254 GLOBAL_NETSTACKID) { 9255 tcp_g_q_setup(tcps); 9256 } 9257 9258 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9259 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9260 /* 9261 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9262 * so we drop it by one. 9263 */ 9264 netstack_rele(tcps->tcps_netstack); 9265 if (connp == NULL) { 9266 *errorp = ENOSR; 9267 return (NULL); 9268 } 9269 connp->conn_sqp = sqp; 9270 connp->conn_initial_sqp = connp->conn_sqp; 9271 tcp = connp->conn_tcp; 9272 9273 if (isv6) { 9274 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9275 connp->conn_send = ip_output_v6; 9276 connp->conn_af_isv6 = B_TRUE; 9277 connp->conn_pkt_isv6 = B_TRUE; 9278 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9279 tcp->tcp_ipversion = IPV6_VERSION; 9280 tcp->tcp_family = AF_INET6; 9281 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9282 } else { 9283 connp->conn_flags |= IPCL_TCP4; 9284 connp->conn_send = ip_output; 9285 connp->conn_af_isv6 = B_FALSE; 9286 connp->conn_pkt_isv6 = B_FALSE; 9287 tcp->tcp_ipversion = IPV4_VERSION; 9288 tcp->tcp_family = AF_INET; 9289 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9290 } 9291 9292 /* 9293 * TCP keeps a copy of cred for cache locality reasons but 9294 * we put a reference only once. If connp->conn_cred 9295 * becomes invalid, tcp_cred should also be set to NULL. 9296 */ 9297 tcp->tcp_cred = connp->conn_cred = credp; 9298 crhold(connp->conn_cred); 9299 tcp->tcp_cpid = curproc->p_pid; 9300 tcp->tcp_open_time = lbolt64; 9301 connp->conn_zoneid = zoneid; 9302 connp->conn_mlp_type = mlptSingle; 9303 connp->conn_ulp_labeled = !is_system_labeled(); 9304 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9305 ASSERT(tcp->tcp_tcps == tcps); 9306 9307 /* 9308 * If the caller has the process-wide flag set, then default to MAC 9309 * exempt mode. This allows read-down to unlabeled hosts. 9310 */ 9311 if (getpflags(NET_MAC_AWARE, credp) != 0) 9312 connp->conn_mac_exempt = B_TRUE; 9313 9314 connp->conn_dev = NULL; 9315 if (issocket) { 9316 connp->conn_flags |= IPCL_SOCKET; 9317 tcp->tcp_issocket = 1; 9318 } 9319 9320 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9321 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9322 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9323 9324 /* Non-zero default values */ 9325 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9326 9327 if (q == NULL) { 9328 /* 9329 * Create a helper stream for non-STREAMS socket. 9330 */ 9331 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9332 if (err != 0) { 9333 ip1dbg(("tcp_create_common: create of IP helper stream " 9334 "failed\n")); 9335 CONN_DEC_REF(connp); 9336 *errorp = err; 9337 return (NULL); 9338 } 9339 q = connp->conn_rq; 9340 } else { 9341 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9342 } 9343 9344 SOCK_CONNID_INIT(tcp->tcp_connid); 9345 err = tcp_init(tcp, q); 9346 if (err != 0) { 9347 CONN_DEC_REF(connp); 9348 *errorp = err; 9349 return (NULL); 9350 } 9351 9352 return (connp); 9353 } 9354 9355 static int 9356 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9357 boolean_t isv6) 9358 { 9359 tcp_t *tcp = NULL; 9360 conn_t *connp = NULL; 9361 int err; 9362 vmem_t *minor_arena = NULL; 9363 dev_t conn_dev; 9364 boolean_t issocket; 9365 9366 if (q->q_ptr != NULL) 9367 return (0); 9368 9369 if (sflag == MODOPEN) 9370 return (EINVAL); 9371 9372 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9373 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9374 minor_arena = ip_minor_arena_la; 9375 } else { 9376 /* 9377 * Either minor numbers in the large arena were exhausted 9378 * or a non socket application is doing the open. 9379 * Try to allocate from the small arena. 9380 */ 9381 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9382 return (EBUSY); 9383 } 9384 minor_arena = ip_minor_arena_sa; 9385 } 9386 9387 ASSERT(minor_arena != NULL); 9388 9389 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9390 9391 if (flag & SO_FALLBACK) { 9392 /* 9393 * Non streams socket needs a stream to fallback to 9394 */ 9395 RD(q)->q_ptr = (void *)conn_dev; 9396 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9397 WR(q)->q_ptr = (void *)minor_arena; 9398 qprocson(q); 9399 return (0); 9400 } else if (flag & SO_ACCEPTOR) { 9401 q->q_qinfo = &tcp_acceptor_rinit; 9402 /* 9403 * the conn_dev and minor_arena will be subsequently used by 9404 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out 9405 * the minor device number for this connection from the q_ptr. 9406 */ 9407 RD(q)->q_ptr = (void *)conn_dev; 9408 WR(q)->q_qinfo = &tcp_acceptor_winit; 9409 WR(q)->q_ptr = (void *)minor_arena; 9410 qprocson(q); 9411 return (0); 9412 } 9413 9414 issocket = flag & SO_SOCKSTR; 9415 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9416 9417 if (connp == NULL) { 9418 inet_minor_free(minor_arena, conn_dev); 9419 q->q_ptr = WR(q)->q_ptr = NULL; 9420 return (err); 9421 } 9422 9423 q->q_ptr = WR(q)->q_ptr = connp; 9424 9425 connp->conn_dev = conn_dev; 9426 connp->conn_minor_arena = minor_arena; 9427 9428 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9429 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9430 9431 tcp = connp->conn_tcp; 9432 9433 if (issocket) { 9434 WR(q)->q_qinfo = &tcp_sock_winit; 9435 } else { 9436 #ifdef _ILP32 9437 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9438 #else 9439 tcp->tcp_acceptor_id = conn_dev; 9440 #endif /* _ILP32 */ 9441 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9442 } 9443 9444 /* 9445 * Put the ref for TCP. Ref for IP was already put 9446 * by ipcl_conn_create. Also Make the conn_t globally 9447 * visible to walkers 9448 */ 9449 mutex_enter(&connp->conn_lock); 9450 CONN_INC_REF_LOCKED(connp); 9451 ASSERT(connp->conn_ref == 2); 9452 connp->conn_state_flags &= ~CONN_INCIPIENT; 9453 mutex_exit(&connp->conn_lock); 9454 9455 qprocson(q); 9456 return (0); 9457 } 9458 9459 /* 9460 * Some TCP options can be "set" by requesting them in the option 9461 * buffer. This is needed for XTI feature test though we do not 9462 * allow it in general. We interpret that this mechanism is more 9463 * applicable to OSI protocols and need not be allowed in general. 9464 * This routine filters out options for which it is not allowed (most) 9465 * and lets through those (few) for which it is. [ The XTI interface 9466 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9467 * ever implemented will have to be allowed here ]. 9468 */ 9469 static boolean_t 9470 tcp_allow_connopt_set(int level, int name) 9471 { 9472 9473 switch (level) { 9474 case IPPROTO_TCP: 9475 switch (name) { 9476 case TCP_NODELAY: 9477 return (B_TRUE); 9478 default: 9479 return (B_FALSE); 9480 } 9481 /*NOTREACHED*/ 9482 default: 9483 return (B_FALSE); 9484 } 9485 /*NOTREACHED*/ 9486 } 9487 9488 /* 9489 * this routine gets default values of certain options whose default 9490 * values are maintained by protocol specific code 9491 */ 9492 /* ARGSUSED */ 9493 int 9494 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9495 { 9496 int32_t *i1 = (int32_t *)ptr; 9497 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9498 9499 switch (level) { 9500 case IPPROTO_TCP: 9501 switch (name) { 9502 case TCP_NOTIFY_THRESHOLD: 9503 *i1 = tcps->tcps_ip_notify_interval; 9504 break; 9505 case TCP_ABORT_THRESHOLD: 9506 *i1 = tcps->tcps_ip_abort_interval; 9507 break; 9508 case TCP_CONN_NOTIFY_THRESHOLD: 9509 *i1 = tcps->tcps_ip_notify_cinterval; 9510 break; 9511 case TCP_CONN_ABORT_THRESHOLD: 9512 *i1 = tcps->tcps_ip_abort_cinterval; 9513 break; 9514 default: 9515 return (-1); 9516 } 9517 break; 9518 case IPPROTO_IP: 9519 switch (name) { 9520 case IP_TTL: 9521 *i1 = tcps->tcps_ipv4_ttl; 9522 break; 9523 default: 9524 return (-1); 9525 } 9526 break; 9527 case IPPROTO_IPV6: 9528 switch (name) { 9529 case IPV6_UNICAST_HOPS: 9530 *i1 = tcps->tcps_ipv6_hoplimit; 9531 break; 9532 default: 9533 return (-1); 9534 } 9535 break; 9536 default: 9537 return (-1); 9538 } 9539 return (sizeof (int)); 9540 } 9541 9542 static int 9543 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9544 { 9545 int *i1 = (int *)ptr; 9546 tcp_t *tcp = connp->conn_tcp; 9547 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9548 9549 switch (level) { 9550 case SOL_SOCKET: 9551 switch (name) { 9552 case SO_LINGER: { 9553 struct linger *lgr = (struct linger *)ptr; 9554 9555 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9556 lgr->l_linger = tcp->tcp_lingertime; 9557 } 9558 return (sizeof (struct linger)); 9559 case SO_DEBUG: 9560 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9561 break; 9562 case SO_KEEPALIVE: 9563 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9564 break; 9565 case SO_DONTROUTE: 9566 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9567 break; 9568 case SO_USELOOPBACK: 9569 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9570 break; 9571 case SO_BROADCAST: 9572 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9573 break; 9574 case SO_REUSEADDR: 9575 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9576 break; 9577 case SO_OOBINLINE: 9578 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9579 break; 9580 case SO_DGRAM_ERRIND: 9581 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9582 break; 9583 case SO_TYPE: 9584 *i1 = SOCK_STREAM; 9585 break; 9586 case SO_SNDBUF: 9587 *i1 = tcp->tcp_xmit_hiwater; 9588 break; 9589 case SO_RCVBUF: 9590 *i1 = tcp->tcp_recv_hiwater; 9591 break; 9592 case SO_SND_COPYAVOID: 9593 *i1 = tcp->tcp_snd_zcopy_on ? 9594 SO_SND_COPYAVOID : 0; 9595 break; 9596 case SO_ALLZONES: 9597 *i1 = connp->conn_allzones ? 1 : 0; 9598 break; 9599 case SO_ANON_MLP: 9600 *i1 = connp->conn_anon_mlp; 9601 break; 9602 case SO_MAC_EXEMPT: 9603 *i1 = connp->conn_mac_exempt; 9604 break; 9605 case SO_EXCLBIND: 9606 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9607 break; 9608 case SO_PROTOTYPE: 9609 *i1 = IPPROTO_TCP; 9610 break; 9611 case SO_DOMAIN: 9612 *i1 = tcp->tcp_family; 9613 break; 9614 case SO_ACCEPTCONN: 9615 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9616 default: 9617 return (-1); 9618 } 9619 break; 9620 case IPPROTO_TCP: 9621 switch (name) { 9622 case TCP_NODELAY: 9623 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9624 break; 9625 case TCP_MAXSEG: 9626 *i1 = tcp->tcp_mss; 9627 break; 9628 case TCP_NOTIFY_THRESHOLD: 9629 *i1 = (int)tcp->tcp_first_timer_threshold; 9630 break; 9631 case TCP_ABORT_THRESHOLD: 9632 *i1 = tcp->tcp_second_timer_threshold; 9633 break; 9634 case TCP_CONN_NOTIFY_THRESHOLD: 9635 *i1 = tcp->tcp_first_ctimer_threshold; 9636 break; 9637 case TCP_CONN_ABORT_THRESHOLD: 9638 *i1 = tcp->tcp_second_ctimer_threshold; 9639 break; 9640 case TCP_RECVDSTADDR: 9641 *i1 = tcp->tcp_recvdstaddr; 9642 break; 9643 case TCP_ANONPRIVBIND: 9644 *i1 = tcp->tcp_anon_priv_bind; 9645 break; 9646 case TCP_EXCLBIND: 9647 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9648 break; 9649 case TCP_INIT_CWND: 9650 *i1 = tcp->tcp_init_cwnd; 9651 break; 9652 case TCP_KEEPALIVE_THRESHOLD: 9653 *i1 = tcp->tcp_ka_interval; 9654 break; 9655 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9656 *i1 = tcp->tcp_ka_abort_thres; 9657 break; 9658 case TCP_CORK: 9659 *i1 = tcp->tcp_cork; 9660 break; 9661 default: 9662 return (-1); 9663 } 9664 break; 9665 case IPPROTO_IP: 9666 if (tcp->tcp_family != AF_INET) 9667 return (-1); 9668 switch (name) { 9669 case IP_OPTIONS: 9670 case T_IP_OPTIONS: { 9671 /* 9672 * This is compatible with BSD in that in only return 9673 * the reverse source route with the final destination 9674 * as the last entry. The first 4 bytes of the option 9675 * will contain the final destination. 9676 */ 9677 int opt_len; 9678 9679 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9680 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9681 ASSERT(opt_len >= 0); 9682 /* Caller ensures enough space */ 9683 if (opt_len > 0) { 9684 /* 9685 * TODO: Do we have to handle getsockopt on an 9686 * initiator as well? 9687 */ 9688 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9689 } 9690 return (0); 9691 } 9692 case IP_TOS: 9693 case T_IP_TOS: 9694 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9695 break; 9696 case IP_TTL: 9697 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9698 break; 9699 case IP_NEXTHOP: 9700 /* Handled at IP level */ 9701 return (-EINVAL); 9702 default: 9703 return (-1); 9704 } 9705 break; 9706 case IPPROTO_IPV6: 9707 /* 9708 * IPPROTO_IPV6 options are only supported for sockets 9709 * that are using IPv6 on the wire. 9710 */ 9711 if (tcp->tcp_ipversion != IPV6_VERSION) { 9712 return (-1); 9713 } 9714 switch (name) { 9715 case IPV6_UNICAST_HOPS: 9716 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9717 break; /* goto sizeof (int) option return */ 9718 case IPV6_BOUND_IF: 9719 /* Zero if not set */ 9720 *i1 = tcp->tcp_bound_if; 9721 break; /* goto sizeof (int) option return */ 9722 case IPV6_RECVPKTINFO: 9723 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9724 *i1 = 1; 9725 else 9726 *i1 = 0; 9727 break; /* goto sizeof (int) option return */ 9728 case IPV6_RECVTCLASS: 9729 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9730 *i1 = 1; 9731 else 9732 *i1 = 0; 9733 break; /* goto sizeof (int) option return */ 9734 case IPV6_RECVHOPLIMIT: 9735 if (tcp->tcp_ipv6_recvancillary & 9736 TCP_IPV6_RECVHOPLIMIT) 9737 *i1 = 1; 9738 else 9739 *i1 = 0; 9740 break; /* goto sizeof (int) option return */ 9741 case IPV6_RECVHOPOPTS: 9742 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9743 *i1 = 1; 9744 else 9745 *i1 = 0; 9746 break; /* goto sizeof (int) option return */ 9747 case IPV6_RECVDSTOPTS: 9748 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9749 *i1 = 1; 9750 else 9751 *i1 = 0; 9752 break; /* goto sizeof (int) option return */ 9753 case _OLD_IPV6_RECVDSTOPTS: 9754 if (tcp->tcp_ipv6_recvancillary & 9755 TCP_OLD_IPV6_RECVDSTOPTS) 9756 *i1 = 1; 9757 else 9758 *i1 = 0; 9759 break; /* goto sizeof (int) option return */ 9760 case IPV6_RECVRTHDR: 9761 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9762 *i1 = 1; 9763 else 9764 *i1 = 0; 9765 break; /* goto sizeof (int) option return */ 9766 case IPV6_RECVRTHDRDSTOPTS: 9767 if (tcp->tcp_ipv6_recvancillary & 9768 TCP_IPV6_RECVRTDSTOPTS) 9769 *i1 = 1; 9770 else 9771 *i1 = 0; 9772 break; /* goto sizeof (int) option return */ 9773 case IPV6_PKTINFO: { 9774 /* XXX assumes that caller has room for max size! */ 9775 struct in6_pktinfo *pkti; 9776 9777 pkti = (struct in6_pktinfo *)ptr; 9778 if (ipp->ipp_fields & IPPF_IFINDEX) 9779 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9780 else 9781 pkti->ipi6_ifindex = 0; 9782 if (ipp->ipp_fields & IPPF_ADDR) 9783 pkti->ipi6_addr = ipp->ipp_addr; 9784 else 9785 pkti->ipi6_addr = ipv6_all_zeros; 9786 return (sizeof (struct in6_pktinfo)); 9787 } 9788 case IPV6_TCLASS: 9789 if (ipp->ipp_fields & IPPF_TCLASS) 9790 *i1 = ipp->ipp_tclass; 9791 else 9792 *i1 = IPV6_FLOW_TCLASS( 9793 IPV6_DEFAULT_VERS_AND_FLOW); 9794 break; /* goto sizeof (int) option return */ 9795 case IPV6_NEXTHOP: { 9796 sin6_t *sin6 = (sin6_t *)ptr; 9797 9798 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9799 return (0); 9800 *sin6 = sin6_null; 9801 sin6->sin6_family = AF_INET6; 9802 sin6->sin6_addr = ipp->ipp_nexthop; 9803 return (sizeof (sin6_t)); 9804 } 9805 case IPV6_HOPOPTS: 9806 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9807 return (0); 9808 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9809 return (0); 9810 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9811 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9812 if (tcp->tcp_label_len > 0) { 9813 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9814 ptr[1] = (ipp->ipp_hopoptslen - 9815 tcp->tcp_label_len + 7) / 8 - 1; 9816 } 9817 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9818 case IPV6_RTHDRDSTOPTS: 9819 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9820 return (0); 9821 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9822 return (ipp->ipp_rtdstoptslen); 9823 case IPV6_RTHDR: 9824 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9825 return (0); 9826 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9827 return (ipp->ipp_rthdrlen); 9828 case IPV6_DSTOPTS: 9829 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9830 return (0); 9831 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9832 return (ipp->ipp_dstoptslen); 9833 case IPV6_SRC_PREFERENCES: 9834 return (ip6_get_src_preferences(connp, 9835 (uint32_t *)ptr)); 9836 case IPV6_PATHMTU: { 9837 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9838 9839 if (tcp->tcp_state < TCPS_ESTABLISHED) 9840 return (-1); 9841 9842 return (ip_fill_mtuinfo(&connp->conn_remv6, 9843 connp->conn_fport, mtuinfo, 9844 connp->conn_netstack)); 9845 } 9846 default: 9847 return (-1); 9848 } 9849 break; 9850 default: 9851 return (-1); 9852 } 9853 return (sizeof (int)); 9854 } 9855 9856 /* 9857 * TCP routine to get the values of options. 9858 */ 9859 int 9860 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9861 { 9862 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9863 } 9864 9865 /* returns UNIX error, the optlen is a value-result arg */ 9866 int 9867 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9868 void *optvalp, socklen_t *optlen, cred_t *cr) 9869 { 9870 conn_t *connp = (conn_t *)proto_handle; 9871 squeue_t *sqp = connp->conn_sqp; 9872 int error; 9873 t_uscalar_t max_optbuf_len; 9874 void *optvalp_buf; 9875 int len; 9876 9877 ASSERT(connp->conn_upper_handle != NULL); 9878 9879 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9880 tcp_opt_obj.odb_opt_des_arr, 9881 tcp_opt_obj.odb_opt_arr_cnt, 9882 tcp_opt_obj.odb_topmost_tpiprovider, 9883 B_FALSE, B_TRUE, cr); 9884 if (error != 0) { 9885 if (error < 0) { 9886 error = proto_tlitosyserr(-error); 9887 } 9888 return (error); 9889 } 9890 9891 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9892 9893 error = squeue_synch_enter(sqp, connp, NULL); 9894 if (error == ENOMEM) { 9895 return (ENOMEM); 9896 } 9897 9898 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9899 squeue_synch_exit(sqp, connp); 9900 9901 if (len < 0) { 9902 /* 9903 * Pass on to IP 9904 */ 9905 kmem_free(optvalp_buf, max_optbuf_len); 9906 return (ip_get_options(connp, level, option_name, 9907 optvalp, optlen, cr)); 9908 } else { 9909 /* 9910 * update optlen and copy option value 9911 */ 9912 t_uscalar_t size = MIN(len, *optlen); 9913 bcopy(optvalp_buf, optvalp, size); 9914 bcopy(&size, optlen, sizeof (size)); 9915 9916 kmem_free(optvalp_buf, max_optbuf_len); 9917 return (0); 9918 } 9919 } 9920 9921 /* 9922 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9923 * Parameters are assumed to be verified by the caller. 9924 */ 9925 /* ARGSUSED */ 9926 int 9927 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9928 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9929 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9930 { 9931 tcp_t *tcp = connp->conn_tcp; 9932 int *i1 = (int *)invalp; 9933 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9934 boolean_t checkonly; 9935 int reterr; 9936 tcp_stack_t *tcps = tcp->tcp_tcps; 9937 9938 switch (optset_context) { 9939 case SETFN_OPTCOM_CHECKONLY: 9940 checkonly = B_TRUE; 9941 /* 9942 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9943 * inlen != 0 implies value supplied and 9944 * we have to "pretend" to set it. 9945 * inlen == 0 implies that there is no 9946 * value part in T_CHECK request and just validation 9947 * done elsewhere should be enough, we just return here. 9948 */ 9949 if (inlen == 0) { 9950 *outlenp = 0; 9951 return (0); 9952 } 9953 break; 9954 case SETFN_OPTCOM_NEGOTIATE: 9955 checkonly = B_FALSE; 9956 break; 9957 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9958 case SETFN_CONN_NEGOTIATE: 9959 checkonly = B_FALSE; 9960 /* 9961 * Negotiating local and "association-related" options 9962 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9963 * primitives is allowed by XTI, but we choose 9964 * to not implement this style negotiation for Internet 9965 * protocols (We interpret it is a must for OSI world but 9966 * optional for Internet protocols) for all options. 9967 * [ Will do only for the few options that enable test 9968 * suites that our XTI implementation of this feature 9969 * works for transports that do allow it ] 9970 */ 9971 if (!tcp_allow_connopt_set(level, name)) { 9972 *outlenp = 0; 9973 return (EINVAL); 9974 } 9975 break; 9976 default: 9977 /* 9978 * We should never get here 9979 */ 9980 *outlenp = 0; 9981 return (EINVAL); 9982 } 9983 9984 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9985 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9986 9987 /* 9988 * For TCP, we should have no ancillary data sent down 9989 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9990 * has to be zero. 9991 */ 9992 ASSERT(thisdg_attrs == NULL); 9993 9994 /* 9995 * For fixed length options, no sanity check 9996 * of passed in length is done. It is assumed *_optcom_req() 9997 * routines do the right thing. 9998 */ 9999 switch (level) { 10000 case SOL_SOCKET: 10001 switch (name) { 10002 case SO_LINGER: { 10003 struct linger *lgr = (struct linger *)invalp; 10004 10005 if (!checkonly) { 10006 if (lgr->l_onoff) { 10007 tcp->tcp_linger = 1; 10008 tcp->tcp_lingertime = lgr->l_linger; 10009 } else { 10010 tcp->tcp_linger = 0; 10011 tcp->tcp_lingertime = 0; 10012 } 10013 /* struct copy */ 10014 *(struct linger *)outvalp = *lgr; 10015 } else { 10016 if (!lgr->l_onoff) { 10017 ((struct linger *) 10018 outvalp)->l_onoff = 0; 10019 ((struct linger *) 10020 outvalp)->l_linger = 0; 10021 } else { 10022 /* struct copy */ 10023 *(struct linger *)outvalp = *lgr; 10024 } 10025 } 10026 *outlenp = sizeof (struct linger); 10027 return (0); 10028 } 10029 case SO_DEBUG: 10030 if (!checkonly) 10031 tcp->tcp_debug = onoff; 10032 break; 10033 case SO_KEEPALIVE: 10034 if (checkonly) { 10035 /* check only case */ 10036 break; 10037 } 10038 10039 if (!onoff) { 10040 if (tcp->tcp_ka_enabled) { 10041 if (tcp->tcp_ka_tid != 0) { 10042 (void) TCP_TIMER_CANCEL(tcp, 10043 tcp->tcp_ka_tid); 10044 tcp->tcp_ka_tid = 0; 10045 } 10046 tcp->tcp_ka_enabled = 0; 10047 } 10048 break; 10049 } 10050 if (!tcp->tcp_ka_enabled) { 10051 /* Crank up the keepalive timer */ 10052 tcp->tcp_ka_last_intrvl = 0; 10053 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10054 tcp_keepalive_killer, 10055 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10056 tcp->tcp_ka_enabled = 1; 10057 } 10058 break; 10059 case SO_DONTROUTE: 10060 /* 10061 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10062 * only of interest to IP. We track them here only so 10063 * that we can report their current value. 10064 */ 10065 if (!checkonly) { 10066 tcp->tcp_dontroute = onoff; 10067 tcp->tcp_connp->conn_dontroute = onoff; 10068 } 10069 break; 10070 case SO_USELOOPBACK: 10071 if (!checkonly) { 10072 tcp->tcp_useloopback = onoff; 10073 tcp->tcp_connp->conn_loopback = onoff; 10074 } 10075 break; 10076 case SO_BROADCAST: 10077 if (!checkonly) { 10078 tcp->tcp_broadcast = onoff; 10079 tcp->tcp_connp->conn_broadcast = onoff; 10080 } 10081 break; 10082 case SO_REUSEADDR: 10083 if (!checkonly) { 10084 tcp->tcp_reuseaddr = onoff; 10085 tcp->tcp_connp->conn_reuseaddr = onoff; 10086 } 10087 break; 10088 case SO_OOBINLINE: 10089 if (!checkonly) { 10090 tcp->tcp_oobinline = onoff; 10091 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10092 proto_set_rx_oob_opt(connp, onoff); 10093 } 10094 break; 10095 case SO_DGRAM_ERRIND: 10096 if (!checkonly) 10097 tcp->tcp_dgram_errind = onoff; 10098 break; 10099 case SO_SNDBUF: { 10100 if (*i1 > tcps->tcps_max_buf) { 10101 *outlenp = 0; 10102 return (ENOBUFS); 10103 } 10104 if (checkonly) 10105 break; 10106 10107 tcp->tcp_xmit_hiwater = *i1; 10108 if (tcps->tcps_snd_lowat_fraction != 0) 10109 tcp->tcp_xmit_lowater = 10110 tcp->tcp_xmit_hiwater / 10111 tcps->tcps_snd_lowat_fraction; 10112 (void) tcp_maxpsz_set(tcp, B_TRUE); 10113 /* 10114 * If we are flow-controlled, recheck the condition. 10115 * There are apps that increase SO_SNDBUF size when 10116 * flow-controlled (EWOULDBLOCK), and expect the flow 10117 * control condition to be lifted right away. 10118 */ 10119 mutex_enter(&tcp->tcp_non_sq_lock); 10120 if (tcp->tcp_flow_stopped && 10121 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10122 tcp_clrqfull(tcp); 10123 } 10124 mutex_exit(&tcp->tcp_non_sq_lock); 10125 break; 10126 } 10127 case SO_RCVBUF: 10128 if (*i1 > tcps->tcps_max_buf) { 10129 *outlenp = 0; 10130 return (ENOBUFS); 10131 } 10132 /* Silently ignore zero */ 10133 if (!checkonly && *i1 != 0) { 10134 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10135 (void) tcp_rwnd_set(tcp, *i1); 10136 } 10137 /* 10138 * XXX should we return the rwnd here 10139 * and tcp_opt_get ? 10140 */ 10141 break; 10142 case SO_SND_COPYAVOID: 10143 if (!checkonly) { 10144 /* we only allow enable at most once for now */ 10145 if (tcp->tcp_loopback || 10146 (tcp->tcp_kssl_ctx != NULL) || 10147 (!tcp->tcp_snd_zcopy_aware && 10148 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10149 *outlenp = 0; 10150 return (EOPNOTSUPP); 10151 } 10152 tcp->tcp_snd_zcopy_aware = 1; 10153 } 10154 break; 10155 case SO_RCVTIMEO: 10156 case SO_SNDTIMEO: 10157 /* 10158 * Pass these two options in order for third part 10159 * protocol usage. Here just return directly. 10160 */ 10161 return (0); 10162 case SO_ALLZONES: 10163 /* Pass option along to IP level for handling */ 10164 return (-EINVAL); 10165 case SO_ANON_MLP: 10166 /* Pass option along to IP level for handling */ 10167 return (-EINVAL); 10168 case SO_MAC_EXEMPT: 10169 /* Pass option along to IP level for handling */ 10170 return (-EINVAL); 10171 case SO_EXCLBIND: 10172 if (!checkonly) 10173 tcp->tcp_exclbind = onoff; 10174 break; 10175 default: 10176 *outlenp = 0; 10177 return (EINVAL); 10178 } 10179 break; 10180 case IPPROTO_TCP: 10181 switch (name) { 10182 case TCP_NODELAY: 10183 if (!checkonly) 10184 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10185 break; 10186 case TCP_NOTIFY_THRESHOLD: 10187 if (!checkonly) 10188 tcp->tcp_first_timer_threshold = *i1; 10189 break; 10190 case TCP_ABORT_THRESHOLD: 10191 if (!checkonly) 10192 tcp->tcp_second_timer_threshold = *i1; 10193 break; 10194 case TCP_CONN_NOTIFY_THRESHOLD: 10195 if (!checkonly) 10196 tcp->tcp_first_ctimer_threshold = *i1; 10197 break; 10198 case TCP_CONN_ABORT_THRESHOLD: 10199 if (!checkonly) 10200 tcp->tcp_second_ctimer_threshold = *i1; 10201 break; 10202 case TCP_RECVDSTADDR: 10203 if (tcp->tcp_state > TCPS_LISTEN) 10204 return (EOPNOTSUPP); 10205 if (!checkonly) 10206 tcp->tcp_recvdstaddr = onoff; 10207 break; 10208 case TCP_ANONPRIVBIND: 10209 if ((reterr = secpolicy_net_privaddr(cr, 0, 10210 IPPROTO_TCP)) != 0) { 10211 *outlenp = 0; 10212 return (reterr); 10213 } 10214 if (!checkonly) { 10215 tcp->tcp_anon_priv_bind = onoff; 10216 } 10217 break; 10218 case TCP_EXCLBIND: 10219 if (!checkonly) 10220 tcp->tcp_exclbind = onoff; 10221 break; /* goto sizeof (int) option return */ 10222 case TCP_INIT_CWND: { 10223 uint32_t init_cwnd = *((uint32_t *)invalp); 10224 10225 if (checkonly) 10226 break; 10227 10228 /* 10229 * Only allow socket with network configuration 10230 * privilege to set the initial cwnd to be larger 10231 * than allowed by RFC 3390. 10232 */ 10233 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10234 tcp->tcp_init_cwnd = init_cwnd; 10235 break; 10236 } 10237 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10238 *outlenp = 0; 10239 return (reterr); 10240 } 10241 if (init_cwnd > TCP_MAX_INIT_CWND) { 10242 *outlenp = 0; 10243 return (EINVAL); 10244 } 10245 tcp->tcp_init_cwnd = init_cwnd; 10246 break; 10247 } 10248 case TCP_KEEPALIVE_THRESHOLD: 10249 if (checkonly) 10250 break; 10251 10252 if (*i1 < tcps->tcps_keepalive_interval_low || 10253 *i1 > tcps->tcps_keepalive_interval_high) { 10254 *outlenp = 0; 10255 return (EINVAL); 10256 } 10257 if (*i1 != tcp->tcp_ka_interval) { 10258 tcp->tcp_ka_interval = *i1; 10259 /* 10260 * Check if we need to restart the 10261 * keepalive timer. 10262 */ 10263 if (tcp->tcp_ka_tid != 0) { 10264 ASSERT(tcp->tcp_ka_enabled); 10265 (void) TCP_TIMER_CANCEL(tcp, 10266 tcp->tcp_ka_tid); 10267 tcp->tcp_ka_last_intrvl = 0; 10268 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10269 tcp_keepalive_killer, 10270 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10271 } 10272 } 10273 break; 10274 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10275 if (!checkonly) { 10276 if (*i1 < 10277 tcps->tcps_keepalive_abort_interval_low || 10278 *i1 > 10279 tcps->tcps_keepalive_abort_interval_high) { 10280 *outlenp = 0; 10281 return (EINVAL); 10282 } 10283 tcp->tcp_ka_abort_thres = *i1; 10284 } 10285 break; 10286 case TCP_CORK: 10287 if (!checkonly) { 10288 /* 10289 * if tcp->tcp_cork was set and is now 10290 * being unset, we have to make sure that 10291 * the remaining data gets sent out. Also 10292 * unset tcp->tcp_cork so that tcp_wput_data() 10293 * can send data even if it is less than mss 10294 */ 10295 if (tcp->tcp_cork && onoff == 0 && 10296 tcp->tcp_unsent > 0) { 10297 tcp->tcp_cork = B_FALSE; 10298 tcp_wput_data(tcp, NULL, B_FALSE); 10299 } 10300 tcp->tcp_cork = onoff; 10301 } 10302 break; 10303 default: 10304 *outlenp = 0; 10305 return (EINVAL); 10306 } 10307 break; 10308 case IPPROTO_IP: 10309 if (tcp->tcp_family != AF_INET) { 10310 *outlenp = 0; 10311 return (ENOPROTOOPT); 10312 } 10313 switch (name) { 10314 case IP_OPTIONS: 10315 case T_IP_OPTIONS: 10316 reterr = tcp_opt_set_header(tcp, checkonly, 10317 invalp, inlen); 10318 if (reterr) { 10319 *outlenp = 0; 10320 return (reterr); 10321 } 10322 /* OK return - copy input buffer into output buffer */ 10323 if (invalp != outvalp) { 10324 /* don't trust bcopy for identical src/dst */ 10325 bcopy(invalp, outvalp, inlen); 10326 } 10327 *outlenp = inlen; 10328 return (0); 10329 case IP_TOS: 10330 case T_IP_TOS: 10331 if (!checkonly) { 10332 tcp->tcp_ipha->ipha_type_of_service = 10333 (uchar_t)*i1; 10334 tcp->tcp_tos = (uchar_t)*i1; 10335 } 10336 break; 10337 case IP_TTL: 10338 if (!checkonly) { 10339 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10340 tcp->tcp_ttl = (uchar_t)*i1; 10341 } 10342 break; 10343 case IP_BOUND_IF: 10344 case IP_NEXTHOP: 10345 /* Handled at the IP level */ 10346 return (-EINVAL); 10347 case IP_SEC_OPT: 10348 /* 10349 * We should not allow policy setting after 10350 * we start listening for connections. 10351 */ 10352 if (tcp->tcp_state == TCPS_LISTEN) { 10353 return (EINVAL); 10354 } else { 10355 /* Handled at the IP level */ 10356 return (-EINVAL); 10357 } 10358 default: 10359 *outlenp = 0; 10360 return (EINVAL); 10361 } 10362 break; 10363 case IPPROTO_IPV6: { 10364 ip6_pkt_t *ipp; 10365 10366 /* 10367 * IPPROTO_IPV6 options are only supported for sockets 10368 * that are using IPv6 on the wire. 10369 */ 10370 if (tcp->tcp_ipversion != IPV6_VERSION) { 10371 *outlenp = 0; 10372 return (ENOPROTOOPT); 10373 } 10374 /* 10375 * Only sticky options; no ancillary data 10376 */ 10377 ipp = &tcp->tcp_sticky_ipp; 10378 10379 switch (name) { 10380 case IPV6_UNICAST_HOPS: 10381 /* -1 means use default */ 10382 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10383 *outlenp = 0; 10384 return (EINVAL); 10385 } 10386 if (!checkonly) { 10387 if (*i1 == -1) { 10388 tcp->tcp_ip6h->ip6_hops = 10389 ipp->ipp_unicast_hops = 10390 (uint8_t)tcps->tcps_ipv6_hoplimit; 10391 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10392 /* Pass modified value to IP. */ 10393 *i1 = tcp->tcp_ip6h->ip6_hops; 10394 } else { 10395 tcp->tcp_ip6h->ip6_hops = 10396 ipp->ipp_unicast_hops = 10397 (uint8_t)*i1; 10398 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10399 } 10400 reterr = tcp_build_hdrs(tcp); 10401 if (reterr != 0) 10402 return (reterr); 10403 } 10404 break; 10405 case IPV6_BOUND_IF: 10406 if (!checkonly) { 10407 tcp->tcp_bound_if = *i1; 10408 PASS_OPT_TO_IP(connp); 10409 } 10410 break; 10411 /* 10412 * Set boolean switches for ancillary data delivery 10413 */ 10414 case IPV6_RECVPKTINFO: 10415 if (!checkonly) { 10416 if (onoff) 10417 tcp->tcp_ipv6_recvancillary |= 10418 TCP_IPV6_RECVPKTINFO; 10419 else 10420 tcp->tcp_ipv6_recvancillary &= 10421 ~TCP_IPV6_RECVPKTINFO; 10422 /* Force it to be sent up with the next msg */ 10423 tcp->tcp_recvifindex = 0; 10424 PASS_OPT_TO_IP(connp); 10425 } 10426 break; 10427 case IPV6_RECVTCLASS: 10428 if (!checkonly) { 10429 if (onoff) 10430 tcp->tcp_ipv6_recvancillary |= 10431 TCP_IPV6_RECVTCLASS; 10432 else 10433 tcp->tcp_ipv6_recvancillary &= 10434 ~TCP_IPV6_RECVTCLASS; 10435 PASS_OPT_TO_IP(connp); 10436 } 10437 break; 10438 case IPV6_RECVHOPLIMIT: 10439 if (!checkonly) { 10440 if (onoff) 10441 tcp->tcp_ipv6_recvancillary |= 10442 TCP_IPV6_RECVHOPLIMIT; 10443 else 10444 tcp->tcp_ipv6_recvancillary &= 10445 ~TCP_IPV6_RECVHOPLIMIT; 10446 /* Force it to be sent up with the next msg */ 10447 tcp->tcp_recvhops = 0xffffffffU; 10448 PASS_OPT_TO_IP(connp); 10449 } 10450 break; 10451 case IPV6_RECVHOPOPTS: 10452 if (!checkonly) { 10453 if (onoff) 10454 tcp->tcp_ipv6_recvancillary |= 10455 TCP_IPV6_RECVHOPOPTS; 10456 else 10457 tcp->tcp_ipv6_recvancillary &= 10458 ~TCP_IPV6_RECVHOPOPTS; 10459 PASS_OPT_TO_IP(connp); 10460 } 10461 break; 10462 case IPV6_RECVDSTOPTS: 10463 if (!checkonly) { 10464 if (onoff) 10465 tcp->tcp_ipv6_recvancillary |= 10466 TCP_IPV6_RECVDSTOPTS; 10467 else 10468 tcp->tcp_ipv6_recvancillary &= 10469 ~TCP_IPV6_RECVDSTOPTS; 10470 PASS_OPT_TO_IP(connp); 10471 } 10472 break; 10473 case _OLD_IPV6_RECVDSTOPTS: 10474 if (!checkonly) { 10475 if (onoff) 10476 tcp->tcp_ipv6_recvancillary |= 10477 TCP_OLD_IPV6_RECVDSTOPTS; 10478 else 10479 tcp->tcp_ipv6_recvancillary &= 10480 ~TCP_OLD_IPV6_RECVDSTOPTS; 10481 } 10482 break; 10483 case IPV6_RECVRTHDR: 10484 if (!checkonly) { 10485 if (onoff) 10486 tcp->tcp_ipv6_recvancillary |= 10487 TCP_IPV6_RECVRTHDR; 10488 else 10489 tcp->tcp_ipv6_recvancillary &= 10490 ~TCP_IPV6_RECVRTHDR; 10491 PASS_OPT_TO_IP(connp); 10492 } 10493 break; 10494 case IPV6_RECVRTHDRDSTOPTS: 10495 if (!checkonly) { 10496 if (onoff) 10497 tcp->tcp_ipv6_recvancillary |= 10498 TCP_IPV6_RECVRTDSTOPTS; 10499 else 10500 tcp->tcp_ipv6_recvancillary &= 10501 ~TCP_IPV6_RECVRTDSTOPTS; 10502 PASS_OPT_TO_IP(connp); 10503 } 10504 break; 10505 case IPV6_PKTINFO: 10506 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10507 return (EINVAL); 10508 if (checkonly) 10509 break; 10510 10511 if (inlen == 0) { 10512 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10513 } else { 10514 struct in6_pktinfo *pkti; 10515 10516 pkti = (struct in6_pktinfo *)invalp; 10517 /* 10518 * RFC 3542 states that ipi6_addr must be 10519 * the unspecified address when setting the 10520 * IPV6_PKTINFO sticky socket option on a 10521 * TCP socket. 10522 */ 10523 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10524 return (EINVAL); 10525 /* 10526 * IP will validate the source address and 10527 * interface index. 10528 */ 10529 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10530 reterr = ip_set_options(tcp->tcp_connp, 10531 level, name, invalp, inlen, cr); 10532 } else { 10533 reterr = ip6_set_pktinfo(cr, 10534 tcp->tcp_connp, pkti); 10535 } 10536 if (reterr != 0) 10537 return (reterr); 10538 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10539 ipp->ipp_addr = pkti->ipi6_addr; 10540 if (ipp->ipp_ifindex != 0) 10541 ipp->ipp_fields |= IPPF_IFINDEX; 10542 else 10543 ipp->ipp_fields &= ~IPPF_IFINDEX; 10544 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10545 ipp->ipp_fields |= IPPF_ADDR; 10546 else 10547 ipp->ipp_fields &= ~IPPF_ADDR; 10548 } 10549 reterr = tcp_build_hdrs(tcp); 10550 if (reterr != 0) 10551 return (reterr); 10552 break; 10553 case IPV6_TCLASS: 10554 if (inlen != 0 && inlen != sizeof (int)) 10555 return (EINVAL); 10556 if (checkonly) 10557 break; 10558 10559 if (inlen == 0) { 10560 ipp->ipp_fields &= ~IPPF_TCLASS; 10561 } else { 10562 if (*i1 > 255 || *i1 < -1) 10563 return (EINVAL); 10564 if (*i1 == -1) { 10565 ipp->ipp_tclass = 0; 10566 *i1 = 0; 10567 } else { 10568 ipp->ipp_tclass = *i1; 10569 } 10570 ipp->ipp_fields |= IPPF_TCLASS; 10571 } 10572 reterr = tcp_build_hdrs(tcp); 10573 if (reterr != 0) 10574 return (reterr); 10575 break; 10576 case IPV6_NEXTHOP: 10577 /* 10578 * IP will verify that the nexthop is reachable 10579 * and fail for sticky options. 10580 */ 10581 if (inlen != 0 && inlen != sizeof (sin6_t)) 10582 return (EINVAL); 10583 if (checkonly) 10584 break; 10585 10586 if (inlen == 0) { 10587 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10588 } else { 10589 sin6_t *sin6 = (sin6_t *)invalp; 10590 10591 if (sin6->sin6_family != AF_INET6) 10592 return (EAFNOSUPPORT); 10593 if (IN6_IS_ADDR_V4MAPPED( 10594 &sin6->sin6_addr)) 10595 return (EADDRNOTAVAIL); 10596 ipp->ipp_nexthop = sin6->sin6_addr; 10597 if (!IN6_IS_ADDR_UNSPECIFIED( 10598 &ipp->ipp_nexthop)) 10599 ipp->ipp_fields |= IPPF_NEXTHOP; 10600 else 10601 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10602 } 10603 reterr = tcp_build_hdrs(tcp); 10604 if (reterr != 0) 10605 return (reterr); 10606 PASS_OPT_TO_IP(connp); 10607 break; 10608 case IPV6_HOPOPTS: { 10609 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10610 10611 /* 10612 * Sanity checks - minimum size, size a multiple of 10613 * eight bytes, and matching size passed in. 10614 */ 10615 if (inlen != 0 && 10616 inlen != (8 * (hopts->ip6h_len + 1))) 10617 return (EINVAL); 10618 10619 if (checkonly) 10620 break; 10621 10622 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10623 (uchar_t **)&ipp->ipp_hopopts, 10624 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10625 if (reterr != 0) 10626 return (reterr); 10627 if (ipp->ipp_hopoptslen == 0) 10628 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10629 else 10630 ipp->ipp_fields |= IPPF_HOPOPTS; 10631 reterr = tcp_build_hdrs(tcp); 10632 if (reterr != 0) 10633 return (reterr); 10634 break; 10635 } 10636 case IPV6_RTHDRDSTOPTS: { 10637 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10638 10639 /* 10640 * Sanity checks - minimum size, size a multiple of 10641 * eight bytes, and matching size passed in. 10642 */ 10643 if (inlen != 0 && 10644 inlen != (8 * (dopts->ip6d_len + 1))) 10645 return (EINVAL); 10646 10647 if (checkonly) 10648 break; 10649 10650 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10651 (uchar_t **)&ipp->ipp_rtdstopts, 10652 &ipp->ipp_rtdstoptslen, 0); 10653 if (reterr != 0) 10654 return (reterr); 10655 if (ipp->ipp_rtdstoptslen == 0) 10656 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10657 else 10658 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10659 reterr = tcp_build_hdrs(tcp); 10660 if (reterr != 0) 10661 return (reterr); 10662 break; 10663 } 10664 case IPV6_DSTOPTS: { 10665 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10666 10667 /* 10668 * Sanity checks - minimum size, size a multiple of 10669 * eight bytes, and matching size passed in. 10670 */ 10671 if (inlen != 0 && 10672 inlen != (8 * (dopts->ip6d_len + 1))) 10673 return (EINVAL); 10674 10675 if (checkonly) 10676 break; 10677 10678 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10679 (uchar_t **)&ipp->ipp_dstopts, 10680 &ipp->ipp_dstoptslen, 0); 10681 if (reterr != 0) 10682 return (reterr); 10683 if (ipp->ipp_dstoptslen == 0) 10684 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10685 else 10686 ipp->ipp_fields |= IPPF_DSTOPTS; 10687 reterr = tcp_build_hdrs(tcp); 10688 if (reterr != 0) 10689 return (reterr); 10690 break; 10691 } 10692 case IPV6_RTHDR: { 10693 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10694 10695 /* 10696 * Sanity checks - minimum size, size a multiple of 10697 * eight bytes, and matching size passed in. 10698 */ 10699 if (inlen != 0 && 10700 inlen != (8 * (rt->ip6r_len + 1))) 10701 return (EINVAL); 10702 10703 if (checkonly) 10704 break; 10705 10706 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10707 (uchar_t **)&ipp->ipp_rthdr, 10708 &ipp->ipp_rthdrlen, 0); 10709 if (reterr != 0) 10710 return (reterr); 10711 if (ipp->ipp_rthdrlen == 0) 10712 ipp->ipp_fields &= ~IPPF_RTHDR; 10713 else 10714 ipp->ipp_fields |= IPPF_RTHDR; 10715 reterr = tcp_build_hdrs(tcp); 10716 if (reterr != 0) 10717 return (reterr); 10718 break; 10719 } 10720 case IPV6_V6ONLY: 10721 if (!checkonly) { 10722 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10723 } 10724 break; 10725 case IPV6_USE_MIN_MTU: 10726 if (inlen != sizeof (int)) 10727 return (EINVAL); 10728 10729 if (*i1 < -1 || *i1 > 1) 10730 return (EINVAL); 10731 10732 if (checkonly) 10733 break; 10734 10735 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10736 ipp->ipp_use_min_mtu = *i1; 10737 break; 10738 case IPV6_SEC_OPT: 10739 /* 10740 * We should not allow policy setting after 10741 * we start listening for connections. 10742 */ 10743 if (tcp->tcp_state == TCPS_LISTEN) { 10744 return (EINVAL); 10745 } else { 10746 /* Handled at the IP level */ 10747 return (-EINVAL); 10748 } 10749 case IPV6_SRC_PREFERENCES: 10750 if (inlen != sizeof (uint32_t)) 10751 return (EINVAL); 10752 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10753 *(uint32_t *)invalp); 10754 if (reterr != 0) { 10755 *outlenp = 0; 10756 return (reterr); 10757 } 10758 break; 10759 default: 10760 *outlenp = 0; 10761 return (EINVAL); 10762 } 10763 break; 10764 } /* end IPPROTO_IPV6 */ 10765 default: 10766 *outlenp = 0; 10767 return (EINVAL); 10768 } 10769 /* 10770 * Common case of OK return with outval same as inval 10771 */ 10772 if (invalp != outvalp) { 10773 /* don't trust bcopy for identical src/dst */ 10774 (void) bcopy(invalp, outvalp, inlen); 10775 } 10776 *outlenp = inlen; 10777 return (0); 10778 } 10779 10780 /* ARGSUSED */ 10781 int 10782 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10783 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10784 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10785 { 10786 conn_t *connp = Q_TO_CONN(q); 10787 10788 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10789 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10790 } 10791 10792 int 10793 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10794 const void *optvalp, socklen_t optlen, cred_t *cr) 10795 { 10796 conn_t *connp = (conn_t *)proto_handle; 10797 squeue_t *sqp = connp->conn_sqp; 10798 int error; 10799 10800 ASSERT(connp->conn_upper_handle != NULL); 10801 /* 10802 * Entering the squeue synchronously can result in a context switch, 10803 * which can cause a rather sever performance degradation. So we try to 10804 * handle whatever options we can without entering the squeue. 10805 */ 10806 if (level == IPPROTO_TCP) { 10807 switch (option_name) { 10808 case TCP_NODELAY: 10809 if (optlen != sizeof (int32_t)) 10810 return (EINVAL); 10811 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10812 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10813 connp->conn_tcp->tcp_mss; 10814 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10815 return (0); 10816 default: 10817 break; 10818 } 10819 } 10820 10821 error = squeue_synch_enter(sqp, connp, NULL); 10822 if (error == ENOMEM) { 10823 return (ENOMEM); 10824 } 10825 10826 error = proto_opt_check(level, option_name, optlen, NULL, 10827 tcp_opt_obj.odb_opt_des_arr, 10828 tcp_opt_obj.odb_opt_arr_cnt, 10829 tcp_opt_obj.odb_topmost_tpiprovider, 10830 B_TRUE, B_FALSE, cr); 10831 10832 if (error != 0) { 10833 if (error < 0) { 10834 error = proto_tlitosyserr(-error); 10835 } 10836 squeue_synch_exit(sqp, connp); 10837 return (error); 10838 } 10839 10840 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10841 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10842 NULL, cr, NULL); 10843 squeue_synch_exit(sqp, connp); 10844 10845 if (error < 0) { 10846 /* 10847 * Pass on to ip 10848 */ 10849 error = ip_set_options(connp, level, option_name, optvalp, 10850 optlen, cr); 10851 } 10852 return (error); 10853 } 10854 10855 /* 10856 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10857 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10858 * headers, and the maximum size tcp header (to avoid reallocation 10859 * on the fly for additional tcp options). 10860 * Returns failure if can't allocate memory. 10861 */ 10862 static int 10863 tcp_build_hdrs(tcp_t *tcp) 10864 { 10865 char *hdrs; 10866 uint_t hdrs_len; 10867 ip6i_t *ip6i; 10868 char buf[TCP_MAX_HDR_LENGTH]; 10869 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10870 in6_addr_t src, dst; 10871 tcp_stack_t *tcps = tcp->tcp_tcps; 10872 conn_t *connp = tcp->tcp_connp; 10873 10874 /* 10875 * save the existing tcp header and source/dest IP addresses 10876 */ 10877 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10878 src = tcp->tcp_ip6h->ip6_src; 10879 dst = tcp->tcp_ip6h->ip6_dst; 10880 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10881 ASSERT(hdrs_len != 0); 10882 if (hdrs_len > tcp->tcp_iphc_len) { 10883 /* Need to reallocate */ 10884 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10885 if (hdrs == NULL) 10886 return (ENOMEM); 10887 if (tcp->tcp_iphc != NULL) { 10888 if (tcp->tcp_hdr_grown) { 10889 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10890 } else { 10891 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10892 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10893 } 10894 tcp->tcp_iphc_len = 0; 10895 } 10896 ASSERT(tcp->tcp_iphc_len == 0); 10897 tcp->tcp_iphc = hdrs; 10898 tcp->tcp_iphc_len = hdrs_len; 10899 tcp->tcp_hdr_grown = B_TRUE; 10900 } 10901 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10902 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10903 10904 /* Set header fields not in ipp */ 10905 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10906 ip6i = (ip6i_t *)tcp->tcp_iphc; 10907 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10908 } else { 10909 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10910 } 10911 /* 10912 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10913 * 10914 * tcp->tcp_tcp_hdr_len doesn't change here. 10915 */ 10916 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10917 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10918 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10919 10920 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10921 10922 tcp->tcp_ip6h->ip6_src = src; 10923 tcp->tcp_ip6h->ip6_dst = dst; 10924 10925 /* 10926 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10927 * the default value for TCP. 10928 */ 10929 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10930 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10931 10932 /* 10933 * If we're setting extension headers after a connection 10934 * has been established, and if we have a routing header 10935 * among the extension headers, call ip_massage_options_v6 to 10936 * manipulate the routing header/ip6_dst set the checksum 10937 * difference in the tcp header template. 10938 * (This happens in tcp_connect_ipv6 if the routing header 10939 * is set prior to the connect.) 10940 * Set the tcp_sum to zero first in case we've cleared a 10941 * routing header or don't have one at all. 10942 */ 10943 tcp->tcp_sum = 0; 10944 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10945 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10946 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10947 (uint8_t *)tcp->tcp_tcph); 10948 if (rth != NULL) { 10949 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10950 rth, tcps->tcps_netstack); 10951 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10952 (tcp->tcp_sum >> 16)); 10953 } 10954 } 10955 10956 /* Try to get everything in a single mblk */ 10957 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10958 hdrs_len + tcps->tcps_wroff_xtra); 10959 return (0); 10960 } 10961 10962 /* 10963 * Transfer any source route option from ipha to buf/dst in reversed form. 10964 */ 10965 static int 10966 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10967 { 10968 ipoptp_t opts; 10969 uchar_t *opt; 10970 uint8_t optval; 10971 uint8_t optlen; 10972 uint32_t len = 0; 10973 10974 for (optval = ipoptp_first(&opts, ipha); 10975 optval != IPOPT_EOL; 10976 optval = ipoptp_next(&opts)) { 10977 opt = opts.ipoptp_cur; 10978 optlen = opts.ipoptp_len; 10979 switch (optval) { 10980 int off1, off2; 10981 case IPOPT_SSRR: 10982 case IPOPT_LSRR: 10983 10984 /* Reverse source route */ 10985 /* 10986 * First entry should be the next to last one in the 10987 * current source route (the last entry is our 10988 * address.) 10989 * The last entry should be the final destination. 10990 */ 10991 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10992 buf[IPOPT_OLEN] = (uint8_t)optlen; 10993 off1 = IPOPT_MINOFF_SR - 1; 10994 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10995 if (off2 < 0) { 10996 /* No entries in source route */ 10997 break; 10998 } 10999 bcopy(opt + off2, dst, IP_ADDR_LEN); 11000 /* 11001 * Note: use src since ipha has not had its src 11002 * and dst reversed (it is in the state it was 11003 * received. 11004 */ 11005 bcopy(&ipha->ipha_src, buf + off2, 11006 IP_ADDR_LEN); 11007 off2 -= IP_ADDR_LEN; 11008 11009 while (off2 > 0) { 11010 bcopy(opt + off2, buf + off1, 11011 IP_ADDR_LEN); 11012 off1 += IP_ADDR_LEN; 11013 off2 -= IP_ADDR_LEN; 11014 } 11015 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11016 buf += optlen; 11017 len += optlen; 11018 break; 11019 } 11020 } 11021 done: 11022 /* Pad the resulting options */ 11023 while (len & 0x3) { 11024 *buf++ = IPOPT_EOL; 11025 len++; 11026 } 11027 return (len); 11028 } 11029 11030 11031 /* 11032 * Extract and revert a source route from ipha (if any) 11033 * and then update the relevant fields in both tcp_t and the standard header. 11034 */ 11035 static void 11036 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11037 { 11038 char buf[TCP_MAX_HDR_LENGTH]; 11039 uint_t tcph_len; 11040 int len; 11041 11042 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11043 len = IPH_HDR_LENGTH(ipha); 11044 if (len == IP_SIMPLE_HDR_LENGTH) 11045 /* Nothing to do */ 11046 return; 11047 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11048 (len & 0x3)) 11049 return; 11050 11051 tcph_len = tcp->tcp_tcp_hdr_len; 11052 bcopy(tcp->tcp_tcph, buf, tcph_len); 11053 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11054 (tcp->tcp_ipha->ipha_dst & 0xffff); 11055 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11056 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11057 len += IP_SIMPLE_HDR_LENGTH; 11058 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11059 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11060 if ((int)tcp->tcp_sum < 0) 11061 tcp->tcp_sum--; 11062 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11063 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11064 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11065 bcopy(buf, tcp->tcp_tcph, tcph_len); 11066 tcp->tcp_ip_hdr_len = len; 11067 tcp->tcp_ipha->ipha_version_and_hdr_length = 11068 (IP_VERSION << 4) | (len >> 2); 11069 len += tcph_len; 11070 tcp->tcp_hdr_len = len; 11071 } 11072 11073 /* 11074 * Copy the standard header into its new location, 11075 * lay in the new options and then update the relevant 11076 * fields in both tcp_t and the standard header. 11077 */ 11078 static int 11079 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11080 { 11081 uint_t tcph_len; 11082 uint8_t *ip_optp; 11083 tcph_t *new_tcph; 11084 tcp_stack_t *tcps = tcp->tcp_tcps; 11085 conn_t *connp = tcp->tcp_connp; 11086 11087 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11088 return (EINVAL); 11089 11090 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11091 return (EINVAL); 11092 11093 if (checkonly) { 11094 /* 11095 * do not really set, just pretend to - T_CHECK 11096 */ 11097 return (0); 11098 } 11099 11100 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11101 if (tcp->tcp_label_len > 0) { 11102 int padlen; 11103 uint8_t opt; 11104 11105 /* convert list termination to no-ops */ 11106 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11107 ip_optp += ip_optp[IPOPT_OLEN]; 11108 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11109 while (--padlen >= 0) 11110 *ip_optp++ = opt; 11111 } 11112 tcph_len = tcp->tcp_tcp_hdr_len; 11113 new_tcph = (tcph_t *)(ip_optp + len); 11114 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11115 tcp->tcp_tcph = new_tcph; 11116 bcopy(ptr, ip_optp, len); 11117 11118 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11119 11120 tcp->tcp_ip_hdr_len = len; 11121 tcp->tcp_ipha->ipha_version_and_hdr_length = 11122 (IP_VERSION << 4) | (len >> 2); 11123 tcp->tcp_hdr_len = len + tcph_len; 11124 if (!TCP_IS_DETACHED(tcp)) { 11125 /* Always allocate room for all options. */ 11126 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11127 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11128 } 11129 return (0); 11130 } 11131 11132 /* Get callback routine passed to nd_load by tcp_param_register */ 11133 /* ARGSUSED */ 11134 static int 11135 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11136 { 11137 tcpparam_t *tcppa = (tcpparam_t *)cp; 11138 11139 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11140 return (0); 11141 } 11142 11143 /* 11144 * Walk through the param array specified registering each element with the 11145 * named dispatch handler. 11146 */ 11147 static boolean_t 11148 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11149 { 11150 for (; cnt-- > 0; tcppa++) { 11151 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11152 if (!nd_load(ndp, tcppa->tcp_param_name, 11153 tcp_param_get, tcp_param_set, 11154 (caddr_t)tcppa)) { 11155 nd_free(ndp); 11156 return (B_FALSE); 11157 } 11158 } 11159 } 11160 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11161 KM_SLEEP); 11162 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11163 sizeof (tcpparam_t)); 11164 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11165 tcp_param_get, tcp_param_set_aligned, 11166 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11167 nd_free(ndp); 11168 return (B_FALSE); 11169 } 11170 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11171 KM_SLEEP); 11172 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11173 sizeof (tcpparam_t)); 11174 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11175 tcp_param_get, tcp_param_set_aligned, 11176 (caddr_t)tcps->tcps_mdt_head_param)) { 11177 nd_free(ndp); 11178 return (B_FALSE); 11179 } 11180 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11181 KM_SLEEP); 11182 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11183 sizeof (tcpparam_t)); 11184 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11185 tcp_param_get, tcp_param_set_aligned, 11186 (caddr_t)tcps->tcps_mdt_tail_param)) { 11187 nd_free(ndp); 11188 return (B_FALSE); 11189 } 11190 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11191 KM_SLEEP); 11192 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11193 sizeof (tcpparam_t)); 11194 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11195 tcp_param_get, tcp_param_set_aligned, 11196 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11197 nd_free(ndp); 11198 return (B_FALSE); 11199 } 11200 if (!nd_load(ndp, "tcp_extra_priv_ports", 11201 tcp_extra_priv_ports_get, NULL, NULL)) { 11202 nd_free(ndp); 11203 return (B_FALSE); 11204 } 11205 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11206 NULL, tcp_extra_priv_ports_add, NULL)) { 11207 nd_free(ndp); 11208 return (B_FALSE); 11209 } 11210 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11211 NULL, tcp_extra_priv_ports_del, NULL)) { 11212 nd_free(ndp); 11213 return (B_FALSE); 11214 } 11215 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11216 tcp_1948_phrase_set, NULL)) { 11217 nd_free(ndp); 11218 return (B_FALSE); 11219 } 11220 /* 11221 * Dummy ndd variables - only to convey obsolescence information 11222 * through printing of their name (no get or set routines) 11223 * XXX Remove in future releases ? 11224 */ 11225 if (!nd_load(ndp, 11226 "tcp_close_wait_interval(obsoleted - " 11227 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11228 nd_free(ndp); 11229 return (B_FALSE); 11230 } 11231 return (B_TRUE); 11232 } 11233 11234 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11235 /* ARGSUSED */ 11236 static int 11237 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11238 cred_t *cr) 11239 { 11240 long new_value; 11241 tcpparam_t *tcppa = (tcpparam_t *)cp; 11242 11243 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11244 new_value < tcppa->tcp_param_min || 11245 new_value > tcppa->tcp_param_max) { 11246 return (EINVAL); 11247 } 11248 /* 11249 * Need to make sure new_value is a multiple of 4. If it is not, 11250 * round it up. For future 64 bit requirement, we actually make it 11251 * a multiple of 8. 11252 */ 11253 if (new_value & 0x7) { 11254 new_value = (new_value & ~0x7) + 0x8; 11255 } 11256 tcppa->tcp_param_val = new_value; 11257 return (0); 11258 } 11259 11260 /* Set callback routine passed to nd_load by tcp_param_register */ 11261 /* ARGSUSED */ 11262 static int 11263 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11264 { 11265 long new_value; 11266 tcpparam_t *tcppa = (tcpparam_t *)cp; 11267 11268 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11269 new_value < tcppa->tcp_param_min || 11270 new_value > tcppa->tcp_param_max) { 11271 return (EINVAL); 11272 } 11273 tcppa->tcp_param_val = new_value; 11274 return (0); 11275 } 11276 11277 /* 11278 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11279 * is filled, return as much as we can. The message passed in may be 11280 * multi-part, chained using b_cont. "start" is the starting sequence 11281 * number for this piece. 11282 */ 11283 static mblk_t * 11284 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11285 { 11286 uint32_t end; 11287 mblk_t *mp1; 11288 mblk_t *mp2; 11289 mblk_t *next_mp; 11290 uint32_t u1; 11291 tcp_stack_t *tcps = tcp->tcp_tcps; 11292 11293 /* Walk through all the new pieces. */ 11294 do { 11295 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11296 (uintptr_t)INT_MAX); 11297 end = start + (int)(mp->b_wptr - mp->b_rptr); 11298 next_mp = mp->b_cont; 11299 if (start == end) { 11300 /* Empty. Blast it. */ 11301 freeb(mp); 11302 continue; 11303 } 11304 mp->b_cont = NULL; 11305 TCP_REASS_SET_SEQ(mp, start); 11306 TCP_REASS_SET_END(mp, end); 11307 mp1 = tcp->tcp_reass_tail; 11308 if (!mp1) { 11309 tcp->tcp_reass_tail = mp; 11310 tcp->tcp_reass_head = mp; 11311 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11312 UPDATE_MIB(&tcps->tcps_mib, 11313 tcpInDataUnorderBytes, end - start); 11314 continue; 11315 } 11316 /* New stuff completely beyond tail? */ 11317 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11318 /* Link it on end. */ 11319 mp1->b_cont = mp; 11320 tcp->tcp_reass_tail = mp; 11321 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11322 UPDATE_MIB(&tcps->tcps_mib, 11323 tcpInDataUnorderBytes, end - start); 11324 continue; 11325 } 11326 mp1 = tcp->tcp_reass_head; 11327 u1 = TCP_REASS_SEQ(mp1); 11328 /* New stuff at the front? */ 11329 if (SEQ_LT(start, u1)) { 11330 /* Yes... Check for overlap. */ 11331 mp->b_cont = mp1; 11332 tcp->tcp_reass_head = mp; 11333 tcp_reass_elim_overlap(tcp, mp); 11334 continue; 11335 } 11336 /* 11337 * The new piece fits somewhere between the head and tail. 11338 * We find our slot, where mp1 precedes us and mp2 trails. 11339 */ 11340 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11341 u1 = TCP_REASS_SEQ(mp2); 11342 if (SEQ_LEQ(start, u1)) 11343 break; 11344 } 11345 /* Link ourselves in */ 11346 mp->b_cont = mp2; 11347 mp1->b_cont = mp; 11348 11349 /* Trim overlap with following mblk(s) first */ 11350 tcp_reass_elim_overlap(tcp, mp); 11351 11352 /* Trim overlap with preceding mblk */ 11353 tcp_reass_elim_overlap(tcp, mp1); 11354 11355 } while (start = end, mp = next_mp); 11356 mp1 = tcp->tcp_reass_head; 11357 /* Anything ready to go? */ 11358 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11359 return (NULL); 11360 /* Eat what we can off the queue */ 11361 for (;;) { 11362 mp = mp1->b_cont; 11363 end = TCP_REASS_END(mp1); 11364 TCP_REASS_SET_SEQ(mp1, 0); 11365 TCP_REASS_SET_END(mp1, 0); 11366 if (!mp) { 11367 tcp->tcp_reass_tail = NULL; 11368 break; 11369 } 11370 if (end != TCP_REASS_SEQ(mp)) { 11371 mp1->b_cont = NULL; 11372 break; 11373 } 11374 mp1 = mp; 11375 } 11376 mp1 = tcp->tcp_reass_head; 11377 tcp->tcp_reass_head = mp; 11378 return (mp1); 11379 } 11380 11381 /* Eliminate any overlap that mp may have over later mblks */ 11382 static void 11383 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11384 { 11385 uint32_t end; 11386 mblk_t *mp1; 11387 uint32_t u1; 11388 tcp_stack_t *tcps = tcp->tcp_tcps; 11389 11390 end = TCP_REASS_END(mp); 11391 while ((mp1 = mp->b_cont) != NULL) { 11392 u1 = TCP_REASS_SEQ(mp1); 11393 if (!SEQ_GT(end, u1)) 11394 break; 11395 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11396 mp->b_wptr -= end - u1; 11397 TCP_REASS_SET_END(mp, u1); 11398 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11399 UPDATE_MIB(&tcps->tcps_mib, 11400 tcpInDataPartDupBytes, end - u1); 11401 break; 11402 } 11403 mp->b_cont = mp1->b_cont; 11404 TCP_REASS_SET_SEQ(mp1, 0); 11405 TCP_REASS_SET_END(mp1, 0); 11406 freeb(mp1); 11407 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11408 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11409 } 11410 if (!mp1) 11411 tcp->tcp_reass_tail = mp; 11412 } 11413 11414 static uint_t 11415 tcp_rwnd_reopen(tcp_t *tcp) 11416 { 11417 uint_t ret = 0; 11418 uint_t thwin; 11419 11420 /* Learn the latest rwnd information that we sent to the other side. */ 11421 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11422 << tcp->tcp_rcv_ws; 11423 /* This is peer's calculated send window (our receive window). */ 11424 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11425 /* 11426 * Increase the receive window to max. But we need to do receiver 11427 * SWS avoidance. This means that we need to check the increase of 11428 * of receive window is at least 1 MSS. 11429 */ 11430 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11431 /* 11432 * If the window that the other side knows is less than max 11433 * deferred acks segments, send an update immediately. 11434 */ 11435 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11436 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11437 ret = TH_ACK_NEEDED; 11438 } 11439 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11440 } 11441 return (ret); 11442 } 11443 11444 /* 11445 * Send up all messages queued on tcp_rcv_list. 11446 */ 11447 static uint_t 11448 tcp_rcv_drain(tcp_t *tcp) 11449 { 11450 mblk_t *mp; 11451 uint_t ret = 0; 11452 #ifdef DEBUG 11453 uint_t cnt = 0; 11454 #endif 11455 queue_t *q = tcp->tcp_rq; 11456 11457 /* Can't drain on an eager connection */ 11458 if (tcp->tcp_listener != NULL) 11459 return (ret); 11460 11461 /* Can't be a non-STREAMS connection */ 11462 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 11463 11464 /* No need for the push timer now. */ 11465 if (tcp->tcp_push_tid != 0) { 11466 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11467 tcp->tcp_push_tid = 0; 11468 } 11469 11470 /* 11471 * Handle two cases here: we are currently fused or we were 11472 * previously fused and have some urgent data to be delivered 11473 * upstream. The latter happens because we either ran out of 11474 * memory or were detached and therefore sending the SIGURG was 11475 * deferred until this point. In either case we pass control 11476 * over to tcp_fuse_rcv_drain() since it may need to complete 11477 * some work. 11478 */ 11479 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11480 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11481 tcp->tcp_fused_sigurg_mp != NULL); 11482 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11483 &tcp->tcp_fused_sigurg_mp)) 11484 return (ret); 11485 } 11486 11487 while ((mp = tcp->tcp_rcv_list) != NULL) { 11488 tcp->tcp_rcv_list = mp->b_next; 11489 mp->b_next = NULL; 11490 #ifdef DEBUG 11491 cnt += msgdsize(mp); 11492 #endif 11493 /* Does this need SSL processing first? */ 11494 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11495 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11496 mblk_t *, mp); 11497 tcp_kssl_input(tcp, mp); 11498 continue; 11499 } 11500 putnext(q, mp); 11501 } 11502 #ifdef DEBUG 11503 ASSERT(cnt == tcp->tcp_rcv_cnt); 11504 #endif 11505 tcp->tcp_rcv_last_head = NULL; 11506 tcp->tcp_rcv_last_tail = NULL; 11507 tcp->tcp_rcv_cnt = 0; 11508 11509 if (canputnext(q)) 11510 return (tcp_rwnd_reopen(tcp)); 11511 11512 return (ret); 11513 } 11514 11515 /* 11516 * Queue data on tcp_rcv_list which is a b_next chain. 11517 * tcp_rcv_last_head/tail is the last element of this chain. 11518 * Each element of the chain is a b_cont chain. 11519 * 11520 * M_DATA messages are added to the current element. 11521 * Other messages are added as new (b_next) elements. 11522 */ 11523 void 11524 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11525 { 11526 ASSERT(seg_len == msgdsize(mp)); 11527 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11528 11529 if (tcp->tcp_rcv_list == NULL) { 11530 ASSERT(tcp->tcp_rcv_last_head == NULL); 11531 tcp->tcp_rcv_list = mp; 11532 tcp->tcp_rcv_last_head = mp; 11533 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11534 tcp->tcp_rcv_last_tail->b_cont = mp; 11535 } else { 11536 tcp->tcp_rcv_last_head->b_next = mp; 11537 tcp->tcp_rcv_last_head = mp; 11538 } 11539 11540 while (mp->b_cont) 11541 mp = mp->b_cont; 11542 11543 tcp->tcp_rcv_last_tail = mp; 11544 tcp->tcp_rcv_cnt += seg_len; 11545 tcp->tcp_rwnd -= seg_len; 11546 } 11547 11548 /* 11549 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11550 * 11551 * This is the default entry function into TCP on the read side. TCP is 11552 * always entered via squeue i.e. using squeue's for mutual exclusion. 11553 * When classifier does a lookup to find the tcp, it also puts a reference 11554 * on the conn structure associated so the tcp is guaranteed to exist 11555 * when we come here. We still need to check the state because it might 11556 * as well has been closed. The squeue processing function i.e. squeue_enter, 11557 * is responsible for doing the CONN_DEC_REF. 11558 * 11559 * Apart from the default entry point, IP also sends packets directly to 11560 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11561 * connections. 11562 */ 11563 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11564 void 11565 tcp_input(void *arg, mblk_t *mp, void *arg2) 11566 { 11567 conn_t *connp = (conn_t *)arg; 11568 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11569 11570 /* arg2 is the sqp */ 11571 ASSERT(arg2 != NULL); 11572 ASSERT(mp != NULL); 11573 11574 /* 11575 * Don't accept any input on a closed tcp as this TCP logically does 11576 * not exist on the system. Don't proceed further with this TCP. 11577 * For eg. this packet could trigger another close of this tcp 11578 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11579 * tcp_clean_death / tcp_closei_local must be called at most once 11580 * on a TCP. In this case we need to refeed the packet into the 11581 * classifier and figure out where the packet should go. Need to 11582 * preserve the recv_ill somehow. Until we figure that out, for 11583 * now just drop the packet if we can't classify the packet. 11584 */ 11585 if (tcp->tcp_state == TCPS_CLOSED || 11586 tcp->tcp_state == TCPS_BOUND) { 11587 conn_t *new_connp; 11588 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11589 11590 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11591 if (new_connp != NULL) { 11592 tcp_reinput(new_connp, mp, arg2); 11593 return; 11594 } 11595 /* We failed to classify. For now just drop the packet */ 11596 freemsg(mp); 11597 return; 11598 } 11599 11600 if (DB_TYPE(mp) != M_DATA) { 11601 tcp_rput_common(tcp, mp); 11602 return; 11603 } 11604 11605 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11606 squeue_t *final_sqp; 11607 11608 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11609 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11610 DB_CKSUMSTART(mp) = 0; 11611 if (tcp->tcp_state == TCPS_SYN_SENT && 11612 connp->conn_final_sqp == NULL && 11613 tcp_outbound_squeue_switch) { 11614 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11615 connp->conn_final_sqp = final_sqp; 11616 if (connp->conn_final_sqp != connp->conn_sqp) { 11617 CONN_INC_REF(connp); 11618 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11619 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11620 tcp_rput_data, connp, ip_squeue_flag, 11621 SQTAG_CONNECT_FINISH); 11622 return; 11623 } 11624 } 11625 } 11626 tcp_rput_data(connp, mp, arg2); 11627 } 11628 11629 /* 11630 * The read side put procedure. 11631 * The packets passed up by ip are assume to be aligned according to 11632 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11633 */ 11634 static void 11635 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11636 { 11637 /* 11638 * tcp_rput_data() does not expect M_CTL except for the case 11639 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11640 * type. Need to make sure that any other M_CTLs don't make 11641 * it to tcp_rput_data since it is not expecting any and doesn't 11642 * check for it. 11643 */ 11644 if (DB_TYPE(mp) == M_CTL) { 11645 switch (*(uint32_t *)(mp->b_rptr)) { 11646 case TCP_IOC_ABORT_CONN: 11647 /* 11648 * Handle connection abort request. 11649 */ 11650 tcp_ioctl_abort_handler(tcp, mp); 11651 return; 11652 case IPSEC_IN: 11653 /* 11654 * Only secure icmp arrive in TCP and they 11655 * don't go through data path. 11656 */ 11657 tcp_icmp_error(tcp, mp); 11658 return; 11659 case IN_PKTINFO: 11660 /* 11661 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11662 * sockets that are receiving IPv4 traffic. tcp 11663 */ 11664 ASSERT(tcp->tcp_family == AF_INET6); 11665 ASSERT(tcp->tcp_ipv6_recvancillary & 11666 TCP_IPV6_RECVPKTINFO); 11667 tcp_rput_data(tcp->tcp_connp, mp, 11668 tcp->tcp_connp->conn_sqp); 11669 return; 11670 case MDT_IOC_INFO_UPDATE: 11671 /* 11672 * Handle Multidata information update; the 11673 * following routine will free the message. 11674 */ 11675 if (tcp->tcp_connp->conn_mdt_ok) { 11676 tcp_mdt_update(tcp, 11677 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11678 B_FALSE); 11679 } 11680 freemsg(mp); 11681 return; 11682 case LSO_IOC_INFO_UPDATE: 11683 /* 11684 * Handle LSO information update; the following 11685 * routine will free the message. 11686 */ 11687 if (tcp->tcp_connp->conn_lso_ok) { 11688 tcp_lso_update(tcp, 11689 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11690 } 11691 freemsg(mp); 11692 return; 11693 default: 11694 /* 11695 * tcp_icmp_err() will process the M_CTL packets. 11696 * Non-ICMP packets, if any, will be discarded in 11697 * tcp_icmp_err(). We will process the ICMP packet 11698 * even if we are TCP_IS_DETACHED_NONEAGER as the 11699 * incoming ICMP packet may result in changing 11700 * the tcp_mss, which we would need if we have 11701 * packets to retransmit. 11702 */ 11703 tcp_icmp_error(tcp, mp); 11704 return; 11705 } 11706 } 11707 11708 /* No point processing the message if tcp is already closed */ 11709 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11710 freemsg(mp); 11711 return; 11712 } 11713 11714 tcp_rput_other(tcp, mp); 11715 } 11716 11717 11718 /* The minimum of smoothed mean deviation in RTO calculation. */ 11719 #define TCP_SD_MIN 400 11720 11721 /* 11722 * Set RTO for this connection. The formula is from Jacobson and Karels' 11723 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11724 * are the same as those in Appendix A.2 of that paper. 11725 * 11726 * m = new measurement 11727 * sa = smoothed RTT average (8 * average estimates). 11728 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11729 */ 11730 static void 11731 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11732 { 11733 long m = TICK_TO_MSEC(rtt); 11734 clock_t sa = tcp->tcp_rtt_sa; 11735 clock_t sv = tcp->tcp_rtt_sd; 11736 clock_t rto; 11737 tcp_stack_t *tcps = tcp->tcp_tcps; 11738 11739 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11740 tcp->tcp_rtt_update++; 11741 11742 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11743 if (sa != 0) { 11744 /* 11745 * Update average estimator: 11746 * new rtt = 7/8 old rtt + 1/8 Error 11747 */ 11748 11749 /* m is now Error in estimate. */ 11750 m -= sa >> 3; 11751 if ((sa += m) <= 0) { 11752 /* 11753 * Don't allow the smoothed average to be negative. 11754 * We use 0 to denote reinitialization of the 11755 * variables. 11756 */ 11757 sa = 1; 11758 } 11759 11760 /* 11761 * Update deviation estimator: 11762 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11763 */ 11764 if (m < 0) 11765 m = -m; 11766 m -= sv >> 2; 11767 sv += m; 11768 } else { 11769 /* 11770 * This follows BSD's implementation. So the reinitialized 11771 * RTO is 3 * m. We cannot go less than 2 because if the 11772 * link is bandwidth dominated, doubling the window size 11773 * during slow start means doubling the RTT. We want to be 11774 * more conservative when we reinitialize our estimates. 3 11775 * is just a convenient number. 11776 */ 11777 sa = m << 3; 11778 sv = m << 1; 11779 } 11780 if (sv < TCP_SD_MIN) { 11781 /* 11782 * We do not know that if sa captures the delay ACK 11783 * effect as in a long train of segments, a receiver 11784 * does not delay its ACKs. So set the minimum of sv 11785 * to be TCP_SD_MIN, which is default to 400 ms, twice 11786 * of BSD DATO. That means the minimum of mean 11787 * deviation is 100 ms. 11788 * 11789 */ 11790 sv = TCP_SD_MIN; 11791 } 11792 tcp->tcp_rtt_sa = sa; 11793 tcp->tcp_rtt_sd = sv; 11794 /* 11795 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11796 * 11797 * Add tcp_rexmit_interval extra in case of extreme environment 11798 * where the algorithm fails to work. The default value of 11799 * tcp_rexmit_interval_extra should be 0. 11800 * 11801 * As we use a finer grained clock than BSD and update 11802 * RTO for every ACKs, add in another .25 of RTT to the 11803 * deviation of RTO to accomodate burstiness of 1/4 of 11804 * window size. 11805 */ 11806 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11807 11808 if (rto > tcps->tcps_rexmit_interval_max) { 11809 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11810 } else if (rto < tcps->tcps_rexmit_interval_min) { 11811 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11812 } else { 11813 tcp->tcp_rto = rto; 11814 } 11815 11816 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11817 tcp->tcp_timer_backoff = 0; 11818 } 11819 11820 /* 11821 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11822 * send queue which starts at the given seq. no. 11823 * 11824 * Parameters: 11825 * tcp_t *tcp: the tcp instance pointer. 11826 * uint32_t seq: the starting seq. no of the requested segment. 11827 * int32_t *off: after the execution, *off will be the offset to 11828 * the returned mblk which points to the requested seq no. 11829 * It is the caller's responsibility to send in a non-null off. 11830 * 11831 * Return: 11832 * A mblk_t pointer pointing to the requested segment in send queue. 11833 */ 11834 static mblk_t * 11835 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11836 { 11837 int32_t cnt; 11838 mblk_t *mp; 11839 11840 /* Defensive coding. Make sure we don't send incorrect data. */ 11841 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11842 return (NULL); 11843 11844 cnt = seq - tcp->tcp_suna; 11845 mp = tcp->tcp_xmit_head; 11846 while (cnt > 0 && mp != NULL) { 11847 cnt -= mp->b_wptr - mp->b_rptr; 11848 if (cnt < 0) { 11849 cnt += mp->b_wptr - mp->b_rptr; 11850 break; 11851 } 11852 mp = mp->b_cont; 11853 } 11854 ASSERT(mp != NULL); 11855 *off = cnt; 11856 return (mp); 11857 } 11858 11859 /* 11860 * This function handles all retransmissions if SACK is enabled for this 11861 * connection. First it calculates how many segments can be retransmitted 11862 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11863 * segments. A segment is eligible if sack_cnt for that segment is greater 11864 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11865 * all eligible segments, it checks to see if TCP can send some new segments 11866 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11867 * 11868 * Parameters: 11869 * tcp_t *tcp: the tcp structure of the connection. 11870 * uint_t *flags: in return, appropriate value will be set for 11871 * tcp_rput_data(). 11872 */ 11873 static void 11874 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11875 { 11876 notsack_blk_t *notsack_blk; 11877 int32_t usable_swnd; 11878 int32_t mss; 11879 uint32_t seg_len; 11880 mblk_t *xmit_mp; 11881 tcp_stack_t *tcps = tcp->tcp_tcps; 11882 11883 ASSERT(tcp->tcp_sack_info != NULL); 11884 ASSERT(tcp->tcp_notsack_list != NULL); 11885 ASSERT(tcp->tcp_rexmit == B_FALSE); 11886 11887 /* Defensive coding in case there is a bug... */ 11888 if (tcp->tcp_notsack_list == NULL) { 11889 return; 11890 } 11891 notsack_blk = tcp->tcp_notsack_list; 11892 mss = tcp->tcp_mss; 11893 11894 /* 11895 * Limit the num of outstanding data in the network to be 11896 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11897 */ 11898 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11899 11900 /* At least retransmit 1 MSS of data. */ 11901 if (usable_swnd <= 0) { 11902 usable_swnd = mss; 11903 } 11904 11905 /* Make sure no new RTT samples will be taken. */ 11906 tcp->tcp_csuna = tcp->tcp_snxt; 11907 11908 notsack_blk = tcp->tcp_notsack_list; 11909 while (usable_swnd > 0) { 11910 mblk_t *snxt_mp, *tmp_mp; 11911 tcp_seq begin = tcp->tcp_sack_snxt; 11912 tcp_seq end; 11913 int32_t off; 11914 11915 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11916 if (SEQ_GT(notsack_blk->end, begin) && 11917 (notsack_blk->sack_cnt >= 11918 tcps->tcps_dupack_fast_retransmit)) { 11919 end = notsack_blk->end; 11920 if (SEQ_LT(begin, notsack_blk->begin)) { 11921 begin = notsack_blk->begin; 11922 } 11923 break; 11924 } 11925 } 11926 /* 11927 * All holes are filled. Manipulate tcp_cwnd to send more 11928 * if we can. Note that after the SACK recovery, tcp_cwnd is 11929 * set to tcp_cwnd_ssthresh. 11930 */ 11931 if (notsack_blk == NULL) { 11932 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11933 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11934 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11935 ASSERT(tcp->tcp_cwnd > 0); 11936 return; 11937 } else { 11938 usable_swnd = usable_swnd / mss; 11939 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11940 MAX(usable_swnd * mss, mss); 11941 *flags |= TH_XMIT_NEEDED; 11942 return; 11943 } 11944 } 11945 11946 /* 11947 * Note that we may send more than usable_swnd allows here 11948 * because of round off, but no more than 1 MSS of data. 11949 */ 11950 seg_len = end - begin; 11951 if (seg_len > mss) 11952 seg_len = mss; 11953 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11954 ASSERT(snxt_mp != NULL); 11955 /* This should not happen. Defensive coding again... */ 11956 if (snxt_mp == NULL) { 11957 return; 11958 } 11959 11960 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11961 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11962 if (xmit_mp == NULL) 11963 return; 11964 11965 usable_swnd -= seg_len; 11966 tcp->tcp_pipe += seg_len; 11967 tcp->tcp_sack_snxt = begin + seg_len; 11968 11969 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11970 11971 /* 11972 * Update the send timestamp to avoid false retransmission. 11973 */ 11974 snxt_mp->b_prev = (mblk_t *)lbolt; 11975 11976 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 11977 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 11978 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 11979 /* 11980 * Update tcp_rexmit_max to extend this SACK recovery phase. 11981 * This happens when new data sent during fast recovery is 11982 * also lost. If TCP retransmits those new data, it needs 11983 * to extend SACK recover phase to avoid starting another 11984 * fast retransmit/recovery unnecessarily. 11985 */ 11986 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11987 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11988 } 11989 } 11990 } 11991 11992 /* 11993 * This function handles policy checking at TCP level for non-hard_bound/ 11994 * detached connections. 11995 */ 11996 static boolean_t 11997 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11998 boolean_t secure, boolean_t mctl_present) 11999 { 12000 ipsec_latch_t *ipl = NULL; 12001 ipsec_action_t *act = NULL; 12002 mblk_t *data_mp; 12003 ipsec_in_t *ii; 12004 const char *reason; 12005 kstat_named_t *counter; 12006 tcp_stack_t *tcps = tcp->tcp_tcps; 12007 ipsec_stack_t *ipss; 12008 ip_stack_t *ipst; 12009 12010 ASSERT(mctl_present || !secure); 12011 12012 ASSERT((ipha == NULL && ip6h != NULL) || 12013 (ip6h == NULL && ipha != NULL)); 12014 12015 /* 12016 * We don't necessarily have an ipsec_in_act action to verify 12017 * policy because of assymetrical policy where we have only 12018 * outbound policy and no inbound policy (possible with global 12019 * policy). 12020 */ 12021 if (!secure) { 12022 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12023 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12024 return (B_TRUE); 12025 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12026 "tcp_check_policy", ipha, ip6h, secure, 12027 tcps->tcps_netstack); 12028 ipss = tcps->tcps_netstack->netstack_ipsec; 12029 12030 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12031 DROPPER(ipss, ipds_tcp_clear), 12032 &tcps->tcps_dropper); 12033 return (B_FALSE); 12034 } 12035 12036 /* 12037 * We have a secure packet. 12038 */ 12039 if (act == NULL) { 12040 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12041 "tcp_check_policy", ipha, ip6h, secure, 12042 tcps->tcps_netstack); 12043 ipss = tcps->tcps_netstack->netstack_ipsec; 12044 12045 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12046 DROPPER(ipss, ipds_tcp_secure), 12047 &tcps->tcps_dropper); 12048 return (B_FALSE); 12049 } 12050 12051 /* 12052 * XXX This whole routine is currently incorrect. ipl should 12053 * be set to the latch pointer, but is currently not set, so 12054 * we initialize it to NULL to avoid picking up random garbage. 12055 */ 12056 if (ipl == NULL) 12057 return (B_TRUE); 12058 12059 data_mp = first_mp->b_cont; 12060 12061 ii = (ipsec_in_t *)first_mp->b_rptr; 12062 12063 ipst = tcps->tcps_netstack->netstack_ip; 12064 12065 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12066 &counter, tcp->tcp_connp)) { 12067 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12068 return (B_TRUE); 12069 } 12070 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12071 "tcp inbound policy mismatch: %s, packet dropped\n", 12072 reason); 12073 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12074 12075 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12076 &tcps->tcps_dropper); 12077 return (B_FALSE); 12078 } 12079 12080 /* 12081 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12082 * retransmission after a timeout. 12083 * 12084 * To limit the number of duplicate segments, we limit the number of segment 12085 * to be sent in one time to tcp_snd_burst, the burst variable. 12086 */ 12087 static void 12088 tcp_ss_rexmit(tcp_t *tcp) 12089 { 12090 uint32_t snxt; 12091 uint32_t smax; 12092 int32_t win; 12093 int32_t mss; 12094 int32_t off; 12095 int32_t burst = tcp->tcp_snd_burst; 12096 mblk_t *snxt_mp; 12097 tcp_stack_t *tcps = tcp->tcp_tcps; 12098 12099 /* 12100 * Note that tcp_rexmit can be set even though TCP has retransmitted 12101 * all unack'ed segments. 12102 */ 12103 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12104 smax = tcp->tcp_rexmit_max; 12105 snxt = tcp->tcp_rexmit_nxt; 12106 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12107 snxt = tcp->tcp_suna; 12108 } 12109 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12110 win -= snxt - tcp->tcp_suna; 12111 mss = tcp->tcp_mss; 12112 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12113 12114 while (SEQ_LT(snxt, smax) && (win > 0) && 12115 (burst > 0) && (snxt_mp != NULL)) { 12116 mblk_t *xmit_mp; 12117 mblk_t *old_snxt_mp = snxt_mp; 12118 uint32_t cnt = mss; 12119 12120 if (win < cnt) { 12121 cnt = win; 12122 } 12123 if (SEQ_GT(snxt + cnt, smax)) { 12124 cnt = smax - snxt; 12125 } 12126 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12127 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12128 if (xmit_mp == NULL) 12129 return; 12130 12131 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12132 12133 snxt += cnt; 12134 win -= cnt; 12135 /* 12136 * Update the send timestamp to avoid false 12137 * retransmission. 12138 */ 12139 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12140 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12141 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12142 12143 tcp->tcp_rexmit_nxt = snxt; 12144 burst--; 12145 } 12146 /* 12147 * If we have transmitted all we have at the time 12148 * we started the retranmission, we can leave 12149 * the rest of the job to tcp_wput_data(). But we 12150 * need to check the send window first. If the 12151 * win is not 0, go on with tcp_wput_data(). 12152 */ 12153 if (SEQ_LT(snxt, smax) || win == 0) { 12154 return; 12155 } 12156 } 12157 /* Only call tcp_wput_data() if there is data to be sent. */ 12158 if (tcp->tcp_unsent) { 12159 tcp_wput_data(tcp, NULL, B_FALSE); 12160 } 12161 } 12162 12163 /* 12164 * Process all TCP option in SYN segment. Note that this function should 12165 * be called after tcp_adapt_ire() is called so that the necessary info 12166 * from IRE is already set in the tcp structure. 12167 * 12168 * This function sets up the correct tcp_mss value according to the 12169 * MSS option value and our header size. It also sets up the window scale 12170 * and timestamp values, and initialize SACK info blocks. But it does not 12171 * change receive window size after setting the tcp_mss value. The caller 12172 * should do the appropriate change. 12173 */ 12174 void 12175 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12176 { 12177 int options; 12178 tcp_opt_t tcpopt; 12179 uint32_t mss_max; 12180 char *tmp_tcph; 12181 tcp_stack_t *tcps = tcp->tcp_tcps; 12182 12183 tcpopt.tcp = NULL; 12184 options = tcp_parse_options(tcph, &tcpopt); 12185 12186 /* 12187 * Process MSS option. Note that MSS option value does not account 12188 * for IP or TCP options. This means that it is equal to MTU - minimum 12189 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12190 * IPv6. 12191 */ 12192 if (!(options & TCP_OPT_MSS_PRESENT)) { 12193 if (tcp->tcp_ipversion == IPV4_VERSION) 12194 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12195 else 12196 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12197 } else { 12198 if (tcp->tcp_ipversion == IPV4_VERSION) 12199 mss_max = tcps->tcps_mss_max_ipv4; 12200 else 12201 mss_max = tcps->tcps_mss_max_ipv6; 12202 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12203 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12204 else if (tcpopt.tcp_opt_mss > mss_max) 12205 tcpopt.tcp_opt_mss = mss_max; 12206 } 12207 12208 /* Process Window Scale option. */ 12209 if (options & TCP_OPT_WSCALE_PRESENT) { 12210 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12211 tcp->tcp_snd_ws_ok = B_TRUE; 12212 } else { 12213 tcp->tcp_snd_ws = B_FALSE; 12214 tcp->tcp_snd_ws_ok = B_FALSE; 12215 tcp->tcp_rcv_ws = B_FALSE; 12216 } 12217 12218 /* Process Timestamp option. */ 12219 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12220 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12221 tmp_tcph = (char *)tcp->tcp_tcph; 12222 12223 tcp->tcp_snd_ts_ok = B_TRUE; 12224 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12225 tcp->tcp_last_rcv_lbolt = lbolt64; 12226 ASSERT(OK_32PTR(tmp_tcph)); 12227 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12228 12229 /* Fill in our template header with basic timestamp option. */ 12230 tmp_tcph += tcp->tcp_tcp_hdr_len; 12231 tmp_tcph[0] = TCPOPT_NOP; 12232 tmp_tcph[1] = TCPOPT_NOP; 12233 tmp_tcph[2] = TCPOPT_TSTAMP; 12234 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12235 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12236 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12237 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12238 } else { 12239 tcp->tcp_snd_ts_ok = B_FALSE; 12240 } 12241 12242 /* 12243 * Process SACK options. If SACK is enabled for this connection, 12244 * then allocate the SACK info structure. Note the following ways 12245 * when tcp_snd_sack_ok is set to true. 12246 * 12247 * For active connection: in tcp_adapt_ire() called in 12248 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12249 * is checked. 12250 * 12251 * For passive connection: in tcp_adapt_ire() called in 12252 * tcp_accept_comm(). 12253 * 12254 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12255 * That check makes sure that if we did not send a SACK OK option, 12256 * we will not enable SACK for this connection even though the other 12257 * side sends us SACK OK option. For active connection, the SACK 12258 * info structure has already been allocated. So we need to free 12259 * it if SACK is disabled. 12260 */ 12261 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12262 (tcp->tcp_snd_sack_ok || 12263 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12264 /* This should be true only in the passive case. */ 12265 if (tcp->tcp_sack_info == NULL) { 12266 ASSERT(TCP_IS_DETACHED(tcp)); 12267 tcp->tcp_sack_info = 12268 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12269 } 12270 if (tcp->tcp_sack_info == NULL) { 12271 tcp->tcp_snd_sack_ok = B_FALSE; 12272 } else { 12273 tcp->tcp_snd_sack_ok = B_TRUE; 12274 if (tcp->tcp_snd_ts_ok) { 12275 tcp->tcp_max_sack_blk = 3; 12276 } else { 12277 tcp->tcp_max_sack_blk = 4; 12278 } 12279 } 12280 } else { 12281 /* 12282 * Resetting tcp_snd_sack_ok to B_FALSE so that 12283 * no SACK info will be used for this 12284 * connection. This assumes that SACK usage 12285 * permission is negotiated. This may need 12286 * to be changed once this is clarified. 12287 */ 12288 if (tcp->tcp_sack_info != NULL) { 12289 ASSERT(tcp->tcp_notsack_list == NULL); 12290 kmem_cache_free(tcp_sack_info_cache, 12291 tcp->tcp_sack_info); 12292 tcp->tcp_sack_info = NULL; 12293 } 12294 tcp->tcp_snd_sack_ok = B_FALSE; 12295 } 12296 12297 /* 12298 * Now we know the exact TCP/IP header length, subtract 12299 * that from tcp_mss to get our side's MSS. 12300 */ 12301 tcp->tcp_mss -= tcp->tcp_hdr_len; 12302 /* 12303 * Here we assume that the other side's header size will be equal to 12304 * our header size. We calculate the real MSS accordingly. Need to 12305 * take into additional stuffs IPsec puts in. 12306 * 12307 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12308 */ 12309 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12310 ((tcp->tcp_ipversion == IPV4_VERSION ? 12311 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12312 12313 /* 12314 * Set MSS to the smaller one of both ends of the connection. 12315 * We should not have called tcp_mss_set() before, but our 12316 * side of the MSS should have been set to a proper value 12317 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12318 * STREAM head parameters properly. 12319 * 12320 * If we have a larger-than-16-bit window but the other side 12321 * didn't want to do window scale, tcp_rwnd_set() will take 12322 * care of that. 12323 */ 12324 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12325 } 12326 12327 /* 12328 * Sends the T_CONN_IND to the listener. The caller calls this 12329 * functions via squeue to get inside the listener's perimeter 12330 * once the 3 way hand shake is done a T_CONN_IND needs to be 12331 * sent. As an optimization, the caller can call this directly 12332 * if listener's perimeter is same as eager's. 12333 */ 12334 /* ARGSUSED */ 12335 void 12336 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12337 { 12338 conn_t *lconnp = (conn_t *)arg; 12339 tcp_t *listener = lconnp->conn_tcp; 12340 tcp_t *tcp; 12341 struct T_conn_ind *conn_ind; 12342 ipaddr_t *addr_cache; 12343 boolean_t need_send_conn_ind = B_FALSE; 12344 tcp_stack_t *tcps = listener->tcp_tcps; 12345 12346 /* retrieve the eager */ 12347 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12348 ASSERT(conn_ind->OPT_offset != 0 && 12349 conn_ind->OPT_length == sizeof (intptr_t)); 12350 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12351 conn_ind->OPT_length); 12352 12353 /* 12354 * TLI/XTI applications will get confused by 12355 * sending eager as an option since it violates 12356 * the option semantics. So remove the eager as 12357 * option since TLI/XTI app doesn't need it anyway. 12358 */ 12359 if (!TCP_IS_SOCKET(listener)) { 12360 conn_ind->OPT_length = 0; 12361 conn_ind->OPT_offset = 0; 12362 } 12363 if (listener->tcp_state == TCPS_CLOSED || 12364 TCP_IS_DETACHED(listener)) { 12365 /* 12366 * If listener has closed, it would have caused a 12367 * a cleanup/blowoff to happen for the eager. We 12368 * just need to return. 12369 */ 12370 freemsg(mp); 12371 return; 12372 } 12373 12374 12375 /* 12376 * if the conn_req_q is full defer passing up the 12377 * T_CONN_IND until space is availabe after t_accept() 12378 * processing 12379 */ 12380 mutex_enter(&listener->tcp_eager_lock); 12381 12382 /* 12383 * Take the eager out, if it is in the list of droppable eagers 12384 * as we are here because the 3W handshake is over. 12385 */ 12386 MAKE_UNDROPPABLE(tcp); 12387 12388 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12389 tcp_t *tail; 12390 12391 /* 12392 * The eager already has an extra ref put in tcp_rput_data 12393 * so that it stays till accept comes back even though it 12394 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12395 */ 12396 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12397 listener->tcp_conn_req_cnt_q0--; 12398 listener->tcp_conn_req_cnt_q++; 12399 12400 /* Move from SYN_RCVD to ESTABLISHED list */ 12401 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12402 tcp->tcp_eager_prev_q0; 12403 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12404 tcp->tcp_eager_next_q0; 12405 tcp->tcp_eager_prev_q0 = NULL; 12406 tcp->tcp_eager_next_q0 = NULL; 12407 12408 /* 12409 * Insert at end of the queue because sockfs 12410 * sends down T_CONN_RES in chronological 12411 * order. Leaving the older conn indications 12412 * at front of the queue helps reducing search 12413 * time. 12414 */ 12415 tail = listener->tcp_eager_last_q; 12416 if (tail != NULL) 12417 tail->tcp_eager_next_q = tcp; 12418 else 12419 listener->tcp_eager_next_q = tcp; 12420 listener->tcp_eager_last_q = tcp; 12421 tcp->tcp_eager_next_q = NULL; 12422 /* 12423 * Delay sending up the T_conn_ind until we are 12424 * done with the eager. Once we have have sent up 12425 * the T_conn_ind, the accept can potentially complete 12426 * any time and release the refhold we have on the eager. 12427 */ 12428 need_send_conn_ind = B_TRUE; 12429 } else { 12430 /* 12431 * Defer connection on q0 and set deferred 12432 * connection bit true 12433 */ 12434 tcp->tcp_conn_def_q0 = B_TRUE; 12435 12436 /* take tcp out of q0 ... */ 12437 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12438 tcp->tcp_eager_next_q0; 12439 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12440 tcp->tcp_eager_prev_q0; 12441 12442 /* ... and place it at the end of q0 */ 12443 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12444 tcp->tcp_eager_next_q0 = listener; 12445 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12446 listener->tcp_eager_prev_q0 = tcp; 12447 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12448 } 12449 12450 /* we have timed out before */ 12451 if (tcp->tcp_syn_rcvd_timeout != 0) { 12452 tcp->tcp_syn_rcvd_timeout = 0; 12453 listener->tcp_syn_rcvd_timeout--; 12454 if (listener->tcp_syn_defense && 12455 listener->tcp_syn_rcvd_timeout <= 12456 (tcps->tcps_conn_req_max_q0 >> 5) && 12457 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12458 listener->tcp_last_rcv_lbolt)) { 12459 /* 12460 * Turn off the defense mode if we 12461 * believe the SYN attack is over. 12462 */ 12463 listener->tcp_syn_defense = B_FALSE; 12464 if (listener->tcp_ip_addr_cache) { 12465 kmem_free((void *)listener->tcp_ip_addr_cache, 12466 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12467 listener->tcp_ip_addr_cache = NULL; 12468 } 12469 } 12470 } 12471 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12472 if (addr_cache != NULL) { 12473 /* 12474 * We have finished a 3-way handshake with this 12475 * remote host. This proves the IP addr is good. 12476 * Cache it! 12477 */ 12478 addr_cache[IP_ADDR_CACHE_HASH( 12479 tcp->tcp_remote)] = tcp->tcp_remote; 12480 } 12481 mutex_exit(&listener->tcp_eager_lock); 12482 if (need_send_conn_ind) 12483 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12484 } 12485 12486 /* 12487 * Send the newconn notification to ulp. The eager is blown off if the 12488 * notification fails. 12489 */ 12490 static void 12491 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12492 { 12493 if (IPCL_IS_NONSTR(lconnp)) { 12494 cred_t *cr; 12495 pid_t cpid; 12496 12497 cr = msg_getcred(mp, &cpid); 12498 12499 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12500 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12501 lconnp->conn_tcp); 12502 12503 /* Keep the message around in case of a fallback to TPI */ 12504 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12505 12506 /* 12507 * Notify the ULP about the newconn. It is guaranteed that no 12508 * tcp_accept() call will be made for the eager if the 12509 * notification fails, so it's safe to blow it off in that 12510 * case. 12511 * 12512 * The upper handle will be assigned when tcp_accept() is 12513 * called. 12514 */ 12515 if ((*lconnp->conn_upcalls->su_newconn) 12516 (lconnp->conn_upper_handle, 12517 (sock_lower_handle_t)econnp, 12518 &sock_tcp_downcalls, cr, cpid, 12519 &econnp->conn_upcalls) == NULL) { 12520 /* Failed to allocate a socket */ 12521 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12522 tcpEstabResets); 12523 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12524 econnp->conn_tcp->tcp_conn_req_seqnum); 12525 } 12526 } else { 12527 putnext(lconnp->conn_tcp->tcp_rq, mp); 12528 } 12529 } 12530 12531 mblk_t * 12532 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12533 uint_t *ifindexp, ip6_pkt_t *ippp) 12534 { 12535 ip_pktinfo_t *pinfo; 12536 ip6_t *ip6h; 12537 uchar_t *rptr; 12538 mblk_t *first_mp = mp; 12539 boolean_t mctl_present = B_FALSE; 12540 uint_t ifindex = 0; 12541 ip6_pkt_t ipp; 12542 uint_t ipvers; 12543 uint_t ip_hdr_len; 12544 tcp_stack_t *tcps = tcp->tcp_tcps; 12545 12546 rptr = mp->b_rptr; 12547 ASSERT(OK_32PTR(rptr)); 12548 ASSERT(tcp != NULL); 12549 ipp.ipp_fields = 0; 12550 12551 switch DB_TYPE(mp) { 12552 case M_CTL: 12553 mp = mp->b_cont; 12554 if (mp == NULL) { 12555 freemsg(first_mp); 12556 return (NULL); 12557 } 12558 if (DB_TYPE(mp) != M_DATA) { 12559 freemsg(first_mp); 12560 return (NULL); 12561 } 12562 mctl_present = B_TRUE; 12563 break; 12564 case M_DATA: 12565 break; 12566 default: 12567 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12568 freemsg(mp); 12569 return (NULL); 12570 } 12571 ipvers = IPH_HDR_VERSION(rptr); 12572 if (ipvers == IPV4_VERSION) { 12573 if (tcp == NULL) { 12574 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12575 goto done; 12576 } 12577 12578 ipp.ipp_fields |= IPPF_HOPLIMIT; 12579 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12580 12581 /* 12582 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12583 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12584 */ 12585 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12586 mctl_present) { 12587 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12588 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12589 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12590 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12591 ipp.ipp_fields |= IPPF_IFINDEX; 12592 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12593 ifindex = pinfo->ip_pkt_ifindex; 12594 } 12595 freeb(first_mp); 12596 mctl_present = B_FALSE; 12597 } 12598 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12599 } else { 12600 ip6h = (ip6_t *)rptr; 12601 12602 ASSERT(ipvers == IPV6_VERSION); 12603 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12604 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12605 ipp.ipp_hoplimit = ip6h->ip6_hops; 12606 12607 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12608 uint8_t nexthdrp; 12609 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12610 12611 /* Look for ifindex information */ 12612 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12613 ip6i_t *ip6i = (ip6i_t *)ip6h; 12614 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12615 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12616 freemsg(first_mp); 12617 return (NULL); 12618 } 12619 12620 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12621 ASSERT(ip6i->ip6i_ifindex != 0); 12622 ipp.ipp_fields |= IPPF_IFINDEX; 12623 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12624 ifindex = ip6i->ip6i_ifindex; 12625 } 12626 rptr = (uchar_t *)&ip6i[1]; 12627 mp->b_rptr = rptr; 12628 if (rptr == mp->b_wptr) { 12629 mblk_t *mp1; 12630 mp1 = mp->b_cont; 12631 freeb(mp); 12632 mp = mp1; 12633 rptr = mp->b_rptr; 12634 } 12635 if (MBLKL(mp) < IPV6_HDR_LEN + 12636 sizeof (tcph_t)) { 12637 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12638 freemsg(first_mp); 12639 return (NULL); 12640 } 12641 ip6h = (ip6_t *)rptr; 12642 } 12643 12644 /* 12645 * Find any potentially interesting extension headers 12646 * as well as the length of the IPv6 + extension 12647 * headers. 12648 */ 12649 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12650 /* Verify if this is a TCP packet */ 12651 if (nexthdrp != IPPROTO_TCP) { 12652 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12653 freemsg(first_mp); 12654 return (NULL); 12655 } 12656 } else { 12657 ip_hdr_len = IPV6_HDR_LEN; 12658 } 12659 } 12660 12661 done: 12662 if (ipversp != NULL) 12663 *ipversp = ipvers; 12664 if (ip_hdr_lenp != NULL) 12665 *ip_hdr_lenp = ip_hdr_len; 12666 if (ippp != NULL) 12667 *ippp = ipp; 12668 if (ifindexp != NULL) 12669 *ifindexp = ifindex; 12670 if (mctl_present) { 12671 freeb(first_mp); 12672 } 12673 return (mp); 12674 } 12675 12676 /* 12677 * Handle M_DATA messages from IP. Its called directly from IP via 12678 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12679 * in this path. 12680 * 12681 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12682 * v4 and v6), we are called through tcp_input() and a M_CTL can 12683 * be present for options but tcp_find_pktinfo() deals with it. We 12684 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12685 * 12686 * The first argument is always the connp/tcp to which the mp belongs. 12687 * There are no exceptions to this rule. The caller has already put 12688 * a reference on this connp/tcp and once tcp_rput_data() returns, 12689 * the squeue will do the refrele. 12690 * 12691 * The TH_SYN for the listener directly go to tcp_conn_request via 12692 * squeue. 12693 * 12694 * sqp: NULL = recursive, sqp != NULL means called from squeue 12695 */ 12696 void 12697 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12698 { 12699 int32_t bytes_acked; 12700 int32_t gap; 12701 mblk_t *mp1; 12702 uint_t flags; 12703 uint32_t new_swnd = 0; 12704 uchar_t *iphdr; 12705 uchar_t *rptr; 12706 int32_t rgap; 12707 uint32_t seg_ack; 12708 int seg_len; 12709 uint_t ip_hdr_len; 12710 uint32_t seg_seq; 12711 tcph_t *tcph; 12712 int urp; 12713 tcp_opt_t tcpopt; 12714 uint_t ipvers; 12715 ip6_pkt_t ipp; 12716 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12717 uint32_t cwnd; 12718 uint32_t add; 12719 int npkt; 12720 int mss; 12721 conn_t *connp = (conn_t *)arg; 12722 squeue_t *sqp = (squeue_t *)arg2; 12723 tcp_t *tcp = connp->conn_tcp; 12724 tcp_stack_t *tcps = tcp->tcp_tcps; 12725 12726 /* 12727 * RST from fused tcp loopback peer should trigger an unfuse. 12728 */ 12729 if (tcp->tcp_fused) { 12730 TCP_STAT(tcps, tcp_fusion_aborted); 12731 tcp_unfuse(tcp); 12732 } 12733 12734 iphdr = mp->b_rptr; 12735 rptr = mp->b_rptr; 12736 ASSERT(OK_32PTR(rptr)); 12737 12738 /* 12739 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12740 * processing here. For rest call tcp_find_pktinfo to fill up the 12741 * necessary information. 12742 */ 12743 if (IPCL_IS_TCP4(connp)) { 12744 ipvers = IPV4_VERSION; 12745 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12746 } else { 12747 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12748 NULL, &ipp); 12749 if (mp == NULL) { 12750 TCP_STAT(tcps, tcp_rput_v6_error); 12751 return; 12752 } 12753 iphdr = mp->b_rptr; 12754 rptr = mp->b_rptr; 12755 } 12756 ASSERT(DB_TYPE(mp) == M_DATA); 12757 ASSERT(mp->b_next == NULL); 12758 12759 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12760 seg_seq = ABE32_TO_U32(tcph->th_seq); 12761 seg_ack = ABE32_TO_U32(tcph->th_ack); 12762 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12763 seg_len = (int)(mp->b_wptr - rptr) - 12764 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12765 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12766 do { 12767 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12768 (uintptr_t)INT_MAX); 12769 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12770 } while ((mp1 = mp1->b_cont) != NULL && 12771 mp1->b_datap->db_type == M_DATA); 12772 } 12773 12774 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12775 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12776 seg_len, tcph); 12777 return; 12778 } 12779 12780 if (sqp != NULL) { 12781 /* 12782 * This is the correct place to update tcp_last_recv_time. Note 12783 * that it is also updated for tcp structure that belongs to 12784 * global and listener queues which do not really need updating. 12785 * But that should not cause any harm. And it is updated for 12786 * all kinds of incoming segments, not only for data segments. 12787 */ 12788 tcp->tcp_last_recv_time = lbolt; 12789 } 12790 12791 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12792 12793 BUMP_LOCAL(tcp->tcp_ibsegs); 12794 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12795 12796 if ((flags & TH_URG) && sqp != NULL) { 12797 /* 12798 * TCP can't handle urgent pointers that arrive before 12799 * the connection has been accept()ed since it can't 12800 * buffer OOB data. Discard segment if this happens. 12801 * 12802 * We can't just rely on a non-null tcp_listener to indicate 12803 * that the accept() has completed since unlinking of the 12804 * eager and completion of the accept are not atomic. 12805 * tcp_detached, when it is not set (B_FALSE) indicates 12806 * that the accept() has completed. 12807 * 12808 * Nor can it reassemble urgent pointers, so discard 12809 * if it's not the next segment expected. 12810 * 12811 * Otherwise, collapse chain into one mblk (discard if 12812 * that fails). This makes sure the headers, retransmitted 12813 * data, and new data all are in the same mblk. 12814 */ 12815 ASSERT(mp != NULL); 12816 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12817 freemsg(mp); 12818 return; 12819 } 12820 /* Update pointers into message */ 12821 iphdr = rptr = mp->b_rptr; 12822 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12823 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12824 /* 12825 * Since we can't handle any data with this urgent 12826 * pointer that is out of sequence, we expunge 12827 * the data. This allows us to still register 12828 * the urgent mark and generate the M_PCSIG, 12829 * which we can do. 12830 */ 12831 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12832 seg_len = 0; 12833 } 12834 } 12835 12836 switch (tcp->tcp_state) { 12837 case TCPS_SYN_SENT: 12838 if (flags & TH_ACK) { 12839 /* 12840 * Note that our stack cannot send data before a 12841 * connection is established, therefore the 12842 * following check is valid. Otherwise, it has 12843 * to be changed. 12844 */ 12845 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12846 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12847 freemsg(mp); 12848 if (flags & TH_RST) 12849 return; 12850 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12851 tcp, seg_ack, 0, TH_RST); 12852 return; 12853 } 12854 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12855 } 12856 if (flags & TH_RST) { 12857 freemsg(mp); 12858 if (flags & TH_ACK) 12859 (void) tcp_clean_death(tcp, 12860 ECONNREFUSED, 13); 12861 return; 12862 } 12863 if (!(flags & TH_SYN)) { 12864 freemsg(mp); 12865 return; 12866 } 12867 12868 /* Process all TCP options. */ 12869 tcp_process_options(tcp, tcph); 12870 /* 12871 * The following changes our rwnd to be a multiple of the 12872 * MIN(peer MSS, our MSS) for performance reason. 12873 */ 12874 (void) tcp_rwnd_set(tcp, 12875 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 12876 12877 /* Is the other end ECN capable? */ 12878 if (tcp->tcp_ecn_ok) { 12879 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12880 tcp->tcp_ecn_ok = B_FALSE; 12881 } 12882 } 12883 /* 12884 * Clear ECN flags because it may interfere with later 12885 * processing. 12886 */ 12887 flags &= ~(TH_ECE|TH_CWR); 12888 12889 tcp->tcp_irs = seg_seq; 12890 tcp->tcp_rack = seg_seq; 12891 tcp->tcp_rnxt = seg_seq + 1; 12892 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12893 if (!TCP_IS_DETACHED(tcp)) { 12894 /* Allocate room for SACK options if needed. */ 12895 if (tcp->tcp_snd_sack_ok) { 12896 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12897 tcp->tcp_hdr_len + 12898 TCPOPT_MAX_SACK_LEN + 12899 (tcp->tcp_loopback ? 0 : 12900 tcps->tcps_wroff_xtra)); 12901 } else { 12902 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12903 tcp->tcp_hdr_len + 12904 (tcp->tcp_loopback ? 0 : 12905 tcps->tcps_wroff_xtra)); 12906 } 12907 } 12908 if (flags & TH_ACK) { 12909 /* 12910 * If we can't get the confirmation upstream, pretend 12911 * we didn't even see this one. 12912 * 12913 * XXX: how can we pretend we didn't see it if we 12914 * have updated rnxt et. al. 12915 * 12916 * For loopback we defer sending up the T_CONN_CON 12917 * until after some checks below. 12918 */ 12919 mp1 = NULL; 12920 /* 12921 * tcp_sendmsg() checks tcp_state without entering 12922 * the squeue so tcp_state should be updated before 12923 * sending up connection confirmation 12924 */ 12925 tcp->tcp_state = TCPS_ESTABLISHED; 12926 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12927 tcp->tcp_loopback ? &mp1 : NULL)) { 12928 tcp->tcp_state = TCPS_SYN_SENT; 12929 freemsg(mp); 12930 return; 12931 } 12932 /* SYN was acked - making progress */ 12933 if (tcp->tcp_ipversion == IPV6_VERSION) 12934 tcp->tcp_ip_forward_progress = B_TRUE; 12935 12936 /* One for the SYN */ 12937 tcp->tcp_suna = tcp->tcp_iss + 1; 12938 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12939 12940 /* 12941 * If SYN was retransmitted, need to reset all 12942 * retransmission info. This is because this 12943 * segment will be treated as a dup ACK. 12944 */ 12945 if (tcp->tcp_rexmit) { 12946 tcp->tcp_rexmit = B_FALSE; 12947 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12948 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12949 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12950 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12951 tcp->tcp_ms_we_have_waited = 0; 12952 12953 /* 12954 * Set tcp_cwnd back to 1 MSS, per 12955 * recommendation from 12956 * draft-floyd-incr-init-win-01.txt, 12957 * Increasing TCP's Initial Window. 12958 */ 12959 tcp->tcp_cwnd = tcp->tcp_mss; 12960 } 12961 12962 tcp->tcp_swl1 = seg_seq; 12963 tcp->tcp_swl2 = seg_ack; 12964 12965 new_swnd = BE16_TO_U16(tcph->th_win); 12966 tcp->tcp_swnd = new_swnd; 12967 if (new_swnd > tcp->tcp_max_swnd) 12968 tcp->tcp_max_swnd = new_swnd; 12969 12970 /* 12971 * Always send the three-way handshake ack immediately 12972 * in order to make the connection complete as soon as 12973 * possible on the accepting host. 12974 */ 12975 flags |= TH_ACK_NEEDED; 12976 12977 /* 12978 * Special case for loopback. At this point we have 12979 * received SYN-ACK from the remote endpoint. In 12980 * order to ensure that both endpoints reach the 12981 * fused state prior to any data exchange, the final 12982 * ACK needs to be sent before we indicate T_CONN_CON 12983 * to the module upstream. 12984 */ 12985 if (tcp->tcp_loopback) { 12986 mblk_t *ack_mp; 12987 12988 ASSERT(!tcp->tcp_unfusable); 12989 ASSERT(mp1 != NULL); 12990 /* 12991 * For loopback, we always get a pure SYN-ACK 12992 * and only need to send back the final ACK 12993 * with no data (this is because the other 12994 * tcp is ours and we don't do T/TCP). This 12995 * final ACK triggers the passive side to 12996 * perform fusion in ESTABLISHED state. 12997 */ 12998 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12999 if (tcp->tcp_ack_tid != 0) { 13000 (void) TCP_TIMER_CANCEL(tcp, 13001 tcp->tcp_ack_tid); 13002 tcp->tcp_ack_tid = 0; 13003 } 13004 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13005 BUMP_LOCAL(tcp->tcp_obsegs); 13006 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13007 13008 if (!IPCL_IS_NONSTR(connp)) { 13009 /* Send up T_CONN_CON */ 13010 putnext(tcp->tcp_rq, mp1); 13011 } else { 13012 cred_t *cr; 13013 pid_t cpid; 13014 13015 cr = msg_getcred(mp1, &cpid); 13016 (*connp->conn_upcalls-> 13017 su_connected) 13018 (connp->conn_upper_handle, 13019 tcp->tcp_connid, cr, cpid); 13020 freemsg(mp1); 13021 } 13022 13023 freemsg(mp); 13024 return; 13025 } 13026 /* 13027 * Forget fusion; we need to handle more 13028 * complex cases below. Send the deferred 13029 * T_CONN_CON message upstream and proceed 13030 * as usual. Mark this tcp as not capable 13031 * of fusion. 13032 */ 13033 TCP_STAT(tcps, tcp_fusion_unfusable); 13034 tcp->tcp_unfusable = B_TRUE; 13035 if (!IPCL_IS_NONSTR(connp)) { 13036 putnext(tcp->tcp_rq, mp1); 13037 } else { 13038 cred_t *cr; 13039 pid_t cpid; 13040 13041 cr = msg_getcred(mp1, &cpid); 13042 (*connp->conn_upcalls->su_connected) 13043 (connp->conn_upper_handle, 13044 tcp->tcp_connid, cr, cpid); 13045 freemsg(mp1); 13046 } 13047 } 13048 13049 /* 13050 * Check to see if there is data to be sent. If 13051 * yes, set the transmit flag. Then check to see 13052 * if received data processing needs to be done. 13053 * If not, go straight to xmit_check. This short 13054 * cut is OK as we don't support T/TCP. 13055 */ 13056 if (tcp->tcp_unsent) 13057 flags |= TH_XMIT_NEEDED; 13058 13059 if (seg_len == 0 && !(flags & TH_URG)) { 13060 freemsg(mp); 13061 goto xmit_check; 13062 } 13063 13064 flags &= ~TH_SYN; 13065 seg_seq++; 13066 break; 13067 } 13068 tcp->tcp_state = TCPS_SYN_RCVD; 13069 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13070 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13071 if (mp1) { 13072 /* 13073 * See comment in tcp_conn_request() for why we use 13074 * the open() time pid here. 13075 */ 13076 DB_CPID(mp1) = tcp->tcp_cpid; 13077 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13078 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13079 } 13080 freemsg(mp); 13081 return; 13082 case TCPS_SYN_RCVD: 13083 if (flags & TH_ACK) { 13084 /* 13085 * In this state, a SYN|ACK packet is either bogus 13086 * because the other side must be ACKing our SYN which 13087 * indicates it has seen the ACK for their SYN and 13088 * shouldn't retransmit it or we're crossing SYNs 13089 * on active open. 13090 */ 13091 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13092 freemsg(mp); 13093 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13094 tcp, seg_ack, 0, TH_RST); 13095 return; 13096 } 13097 /* 13098 * NOTE: RFC 793 pg. 72 says this should be 13099 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13100 * but that would mean we have an ack that ignored 13101 * our SYN. 13102 */ 13103 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13104 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13105 freemsg(mp); 13106 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13107 tcp, seg_ack, 0, TH_RST); 13108 return; 13109 } 13110 } 13111 break; 13112 case TCPS_LISTEN: 13113 /* 13114 * Only a TLI listener can come through this path when a 13115 * acceptor is going back to be a listener and a packet 13116 * for the acceptor hits the classifier. For a socket 13117 * listener, this can never happen because a listener 13118 * can never accept connection on itself and hence a 13119 * socket acceptor can not go back to being a listener. 13120 */ 13121 ASSERT(!TCP_IS_SOCKET(tcp)); 13122 /*FALLTHRU*/ 13123 case TCPS_CLOSED: 13124 case TCPS_BOUND: { 13125 conn_t *new_connp; 13126 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13127 13128 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13129 if (new_connp != NULL) { 13130 tcp_reinput(new_connp, mp, connp->conn_sqp); 13131 return; 13132 } 13133 /* We failed to classify. For now just drop the packet */ 13134 freemsg(mp); 13135 return; 13136 } 13137 case TCPS_IDLE: 13138 /* 13139 * Handle the case where the tcp_clean_death() has happened 13140 * on a connection (application hasn't closed yet) but a packet 13141 * was already queued on squeue before tcp_clean_death() 13142 * was processed. Calling tcp_clean_death() twice on same 13143 * connection can result in weird behaviour. 13144 */ 13145 freemsg(mp); 13146 return; 13147 default: 13148 break; 13149 } 13150 13151 /* 13152 * Already on the correct queue/perimeter. 13153 * If this is a detached connection and not an eager 13154 * connection hanging off a listener then new data 13155 * (past the FIN) will cause a reset. 13156 * We do a special check here where it 13157 * is out of the main line, rather than check 13158 * if we are detached every time we see new 13159 * data down below. 13160 */ 13161 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13162 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13163 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13164 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13165 13166 freemsg(mp); 13167 /* 13168 * This could be an SSL closure alert. We're detached so just 13169 * acknowledge it this last time. 13170 */ 13171 if (tcp->tcp_kssl_ctx != NULL) { 13172 kssl_release_ctx(tcp->tcp_kssl_ctx); 13173 tcp->tcp_kssl_ctx = NULL; 13174 13175 tcp->tcp_rnxt += seg_len; 13176 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13177 flags |= TH_ACK_NEEDED; 13178 goto ack_check; 13179 } 13180 13181 tcp_xmit_ctl("new data when detached", tcp, 13182 tcp->tcp_snxt, 0, TH_RST); 13183 (void) tcp_clean_death(tcp, EPROTO, 12); 13184 return; 13185 } 13186 13187 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13188 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13189 new_swnd = BE16_TO_U16(tcph->th_win) << 13190 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13191 13192 if (tcp->tcp_snd_ts_ok) { 13193 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13194 /* 13195 * This segment is not acceptable. 13196 * Drop it and send back an ACK. 13197 */ 13198 freemsg(mp); 13199 flags |= TH_ACK_NEEDED; 13200 goto ack_check; 13201 } 13202 } else if (tcp->tcp_snd_sack_ok) { 13203 ASSERT(tcp->tcp_sack_info != NULL); 13204 tcpopt.tcp = tcp; 13205 /* 13206 * SACK info in already updated in tcp_parse_options. Ignore 13207 * all other TCP options... 13208 */ 13209 (void) tcp_parse_options(tcph, &tcpopt); 13210 } 13211 try_again:; 13212 mss = tcp->tcp_mss; 13213 gap = seg_seq - tcp->tcp_rnxt; 13214 rgap = tcp->tcp_rwnd - (gap + seg_len); 13215 /* 13216 * gap is the amount of sequence space between what we expect to see 13217 * and what we got for seg_seq. A positive value for gap means 13218 * something got lost. A negative value means we got some old stuff. 13219 */ 13220 if (gap < 0) { 13221 /* Old stuff present. Is the SYN in there? */ 13222 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13223 (seg_len != 0)) { 13224 flags &= ~TH_SYN; 13225 seg_seq++; 13226 urp--; 13227 /* Recompute the gaps after noting the SYN. */ 13228 goto try_again; 13229 } 13230 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13231 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13232 (seg_len > -gap ? -gap : seg_len)); 13233 /* Remove the old stuff from seg_len. */ 13234 seg_len += gap; 13235 /* 13236 * Anything left? 13237 * Make sure to check for unack'd FIN when rest of data 13238 * has been previously ack'd. 13239 */ 13240 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13241 /* 13242 * Resets are only valid if they lie within our offered 13243 * window. If the RST bit is set, we just ignore this 13244 * segment. 13245 */ 13246 if (flags & TH_RST) { 13247 freemsg(mp); 13248 return; 13249 } 13250 13251 /* 13252 * The arriving of dup data packets indicate that we 13253 * may have postponed an ack for too long, or the other 13254 * side's RTT estimate is out of shape. Start acking 13255 * more often. 13256 */ 13257 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13258 tcp->tcp_rack_cnt >= 1 && 13259 tcp->tcp_rack_abs_max > 2) { 13260 tcp->tcp_rack_abs_max--; 13261 } 13262 tcp->tcp_rack_cur_max = 1; 13263 13264 /* 13265 * This segment is "unacceptable". None of its 13266 * sequence space lies within our advertized window. 13267 * 13268 * Adjust seg_len to the original value for tracing. 13269 */ 13270 seg_len -= gap; 13271 if (tcp->tcp_debug) { 13272 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13273 "tcp_rput: unacceptable, gap %d, rgap %d, " 13274 "flags 0x%x, seg_seq %u, seg_ack %u, " 13275 "seg_len %d, rnxt %u, snxt %u, %s", 13276 gap, rgap, flags, seg_seq, seg_ack, 13277 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13278 tcp_display(tcp, NULL, 13279 DISP_ADDR_AND_PORT)); 13280 } 13281 13282 /* 13283 * Arrange to send an ACK in response to the 13284 * unacceptable segment per RFC 793 page 69. There 13285 * is only one small difference between ours and the 13286 * acceptability test in the RFC - we accept ACK-only 13287 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13288 * will be generated. 13289 * 13290 * Note that we have to ACK an ACK-only packet at least 13291 * for stacks that send 0-length keep-alives with 13292 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13293 * section 4.2.3.6. As long as we don't ever generate 13294 * an unacceptable packet in response to an incoming 13295 * packet that is unacceptable, it should not cause 13296 * "ACK wars". 13297 */ 13298 flags |= TH_ACK_NEEDED; 13299 13300 /* 13301 * Continue processing this segment in order to use the 13302 * ACK information it contains, but skip all other 13303 * sequence-number processing. Processing the ACK 13304 * information is necessary in order to 13305 * re-synchronize connections that may have lost 13306 * synchronization. 13307 * 13308 * We clear seg_len and flag fields related to 13309 * sequence number processing as they are not 13310 * to be trusted for an unacceptable segment. 13311 */ 13312 seg_len = 0; 13313 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13314 goto process_ack; 13315 } 13316 13317 /* Fix seg_seq, and chew the gap off the front. */ 13318 seg_seq = tcp->tcp_rnxt; 13319 urp += gap; 13320 do { 13321 mblk_t *mp2; 13322 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13323 (uintptr_t)UINT_MAX); 13324 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13325 if (gap > 0) { 13326 mp->b_rptr = mp->b_wptr - gap; 13327 break; 13328 } 13329 mp2 = mp; 13330 mp = mp->b_cont; 13331 freeb(mp2); 13332 } while (gap < 0); 13333 /* 13334 * If the urgent data has already been acknowledged, we 13335 * should ignore TH_URG below 13336 */ 13337 if (urp < 0) 13338 flags &= ~TH_URG; 13339 } 13340 /* 13341 * rgap is the amount of stuff received out of window. A negative 13342 * value is the amount out of window. 13343 */ 13344 if (rgap < 0) { 13345 mblk_t *mp2; 13346 13347 if (tcp->tcp_rwnd == 0) { 13348 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13349 } else { 13350 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13351 UPDATE_MIB(&tcps->tcps_mib, 13352 tcpInDataPastWinBytes, -rgap); 13353 } 13354 13355 /* 13356 * seg_len does not include the FIN, so if more than 13357 * just the FIN is out of window, we act like we don't 13358 * see it. (If just the FIN is out of window, rgap 13359 * will be zero and we will go ahead and acknowledge 13360 * the FIN.) 13361 */ 13362 flags &= ~TH_FIN; 13363 13364 /* Fix seg_len and make sure there is something left. */ 13365 seg_len += rgap; 13366 if (seg_len <= 0) { 13367 /* 13368 * Resets are only valid if they lie within our offered 13369 * window. If the RST bit is set, we just ignore this 13370 * segment. 13371 */ 13372 if (flags & TH_RST) { 13373 freemsg(mp); 13374 return; 13375 } 13376 13377 /* Per RFC 793, we need to send back an ACK. */ 13378 flags |= TH_ACK_NEEDED; 13379 13380 /* 13381 * Send SIGURG as soon as possible i.e. even 13382 * if the TH_URG was delivered in a window probe 13383 * packet (which will be unacceptable). 13384 * 13385 * We generate a signal if none has been generated 13386 * for this connection or if this is a new urgent 13387 * byte. Also send a zero-length "unmarked" message 13388 * to inform SIOCATMARK that this is not the mark. 13389 * 13390 * tcp_urp_last_valid is cleared when the T_exdata_ind 13391 * is sent up. This plus the check for old data 13392 * (gap >= 0) handles the wraparound of the sequence 13393 * number space without having to always track the 13394 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13395 * this max in its rcv_up variable). 13396 * 13397 * This prevents duplicate SIGURGS due to a "late" 13398 * zero-window probe when the T_EXDATA_IND has already 13399 * been sent up. 13400 */ 13401 if ((flags & TH_URG) && 13402 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13403 tcp->tcp_urp_last))) { 13404 if (IPCL_IS_NONSTR(connp)) { 13405 if (!TCP_IS_DETACHED(tcp)) { 13406 (*connp->conn_upcalls-> 13407 su_signal_oob) 13408 (connp->conn_upper_handle, 13409 urp); 13410 } 13411 } else { 13412 mp1 = allocb(0, BPRI_MED); 13413 if (mp1 == NULL) { 13414 freemsg(mp); 13415 return; 13416 } 13417 if (!TCP_IS_DETACHED(tcp) && 13418 !putnextctl1(tcp->tcp_rq, 13419 M_PCSIG, SIGURG)) { 13420 /* Try again on the rexmit. */ 13421 freemsg(mp1); 13422 freemsg(mp); 13423 return; 13424 } 13425 /* 13426 * If the next byte would be the mark 13427 * then mark with MARKNEXT else mark 13428 * with NOTMARKNEXT. 13429 */ 13430 if (gap == 0 && urp == 0) 13431 mp1->b_flag |= MSGMARKNEXT; 13432 else 13433 mp1->b_flag |= MSGNOTMARKNEXT; 13434 freemsg(tcp->tcp_urp_mark_mp); 13435 tcp->tcp_urp_mark_mp = mp1; 13436 flags |= TH_SEND_URP_MARK; 13437 } 13438 tcp->tcp_urp_last_valid = B_TRUE; 13439 tcp->tcp_urp_last = urp + seg_seq; 13440 } 13441 /* 13442 * If this is a zero window probe, continue to 13443 * process the ACK part. But we need to set seg_len 13444 * to 0 to avoid data processing. Otherwise just 13445 * drop the segment and send back an ACK. 13446 */ 13447 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13448 flags &= ~(TH_SYN | TH_URG); 13449 seg_len = 0; 13450 goto process_ack; 13451 } else { 13452 freemsg(mp); 13453 goto ack_check; 13454 } 13455 } 13456 /* Pitch out of window stuff off the end. */ 13457 rgap = seg_len; 13458 mp2 = mp; 13459 do { 13460 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13461 (uintptr_t)INT_MAX); 13462 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13463 if (rgap < 0) { 13464 mp2->b_wptr += rgap; 13465 if ((mp1 = mp2->b_cont) != NULL) { 13466 mp2->b_cont = NULL; 13467 freemsg(mp1); 13468 } 13469 break; 13470 } 13471 } while ((mp2 = mp2->b_cont) != NULL); 13472 } 13473 ok:; 13474 /* 13475 * TCP should check ECN info for segments inside the window only. 13476 * Therefore the check should be done here. 13477 */ 13478 if (tcp->tcp_ecn_ok) { 13479 if (flags & TH_CWR) { 13480 tcp->tcp_ecn_echo_on = B_FALSE; 13481 } 13482 /* 13483 * Note that both ECN_CE and CWR can be set in the 13484 * same segment. In this case, we once again turn 13485 * on ECN_ECHO. 13486 */ 13487 if (tcp->tcp_ipversion == IPV4_VERSION) { 13488 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13489 13490 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13491 tcp->tcp_ecn_echo_on = B_TRUE; 13492 } 13493 } else { 13494 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13495 13496 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13497 htonl(IPH_ECN_CE << 20)) { 13498 tcp->tcp_ecn_echo_on = B_TRUE; 13499 } 13500 } 13501 } 13502 13503 /* 13504 * Check whether we can update tcp_ts_recent. This test is 13505 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13506 * Extensions for High Performance: An Update", Internet Draft. 13507 */ 13508 if (tcp->tcp_snd_ts_ok && 13509 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13510 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13511 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13512 tcp->tcp_last_rcv_lbolt = lbolt64; 13513 } 13514 13515 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13516 /* 13517 * FIN in an out of order segment. We record this in 13518 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13519 * Clear the FIN so that any check on FIN flag will fail. 13520 * Remember that FIN also counts in the sequence number 13521 * space. So we need to ack out of order FIN only segments. 13522 */ 13523 if (flags & TH_FIN) { 13524 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13525 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13526 flags &= ~TH_FIN; 13527 flags |= TH_ACK_NEEDED; 13528 } 13529 if (seg_len > 0) { 13530 /* Fill in the SACK blk list. */ 13531 if (tcp->tcp_snd_sack_ok) { 13532 ASSERT(tcp->tcp_sack_info != NULL); 13533 tcp_sack_insert(tcp->tcp_sack_list, 13534 seg_seq, seg_seq + seg_len, 13535 &(tcp->tcp_num_sack_blk)); 13536 } 13537 13538 /* 13539 * Attempt reassembly and see if we have something 13540 * ready to go. 13541 */ 13542 mp = tcp_reass(tcp, mp, seg_seq); 13543 /* Always ack out of order packets */ 13544 flags |= TH_ACK_NEEDED | TH_PUSH; 13545 if (mp) { 13546 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13547 (uintptr_t)INT_MAX); 13548 seg_len = mp->b_cont ? msgdsize(mp) : 13549 (int)(mp->b_wptr - mp->b_rptr); 13550 seg_seq = tcp->tcp_rnxt; 13551 /* 13552 * A gap is filled and the seq num and len 13553 * of the gap match that of a previously 13554 * received FIN, put the FIN flag back in. 13555 */ 13556 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13557 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13558 flags |= TH_FIN; 13559 tcp->tcp_valid_bits &= 13560 ~TCP_OFO_FIN_VALID; 13561 } 13562 } else { 13563 /* 13564 * Keep going even with NULL mp. 13565 * There may be a useful ACK or something else 13566 * we don't want to miss. 13567 * 13568 * But TCP should not perform fast retransmit 13569 * because of the ack number. TCP uses 13570 * seg_len == 0 to determine if it is a pure 13571 * ACK. And this is not a pure ACK. 13572 */ 13573 seg_len = 0; 13574 ofo_seg = B_TRUE; 13575 } 13576 } 13577 } else if (seg_len > 0) { 13578 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13579 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13580 /* 13581 * If an out of order FIN was received before, and the seq 13582 * num and len of the new segment match that of the FIN, 13583 * put the FIN flag back in. 13584 */ 13585 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13586 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13587 flags |= TH_FIN; 13588 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13589 } 13590 } 13591 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13592 if (flags & TH_RST) { 13593 freemsg(mp); 13594 switch (tcp->tcp_state) { 13595 case TCPS_SYN_RCVD: 13596 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13597 break; 13598 case TCPS_ESTABLISHED: 13599 case TCPS_FIN_WAIT_1: 13600 case TCPS_FIN_WAIT_2: 13601 case TCPS_CLOSE_WAIT: 13602 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13603 break; 13604 case TCPS_CLOSING: 13605 case TCPS_LAST_ACK: 13606 (void) tcp_clean_death(tcp, 0, 16); 13607 break; 13608 default: 13609 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13610 (void) tcp_clean_death(tcp, ENXIO, 17); 13611 break; 13612 } 13613 return; 13614 } 13615 if (flags & TH_SYN) { 13616 /* 13617 * See RFC 793, Page 71 13618 * 13619 * The seq number must be in the window as it should 13620 * be "fixed" above. If it is outside window, it should 13621 * be already rejected. Note that we allow seg_seq to be 13622 * rnxt + rwnd because we want to accept 0 window probe. 13623 */ 13624 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13625 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13626 freemsg(mp); 13627 /* 13628 * If the ACK flag is not set, just use our snxt as the 13629 * seq number of the RST segment. 13630 */ 13631 if (!(flags & TH_ACK)) { 13632 seg_ack = tcp->tcp_snxt; 13633 } 13634 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13635 TH_RST|TH_ACK); 13636 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13637 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13638 return; 13639 } 13640 /* 13641 * urp could be -1 when the urp field in the packet is 0 13642 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13643 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13644 */ 13645 if (flags & TH_URG && urp >= 0) { 13646 if (!tcp->tcp_urp_last_valid || 13647 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13648 if (IPCL_IS_NONSTR(connp)) { 13649 if (!TCP_IS_DETACHED(tcp)) { 13650 (*connp->conn_upcalls->su_signal_oob) 13651 (connp->conn_upper_handle, urp); 13652 } 13653 } else { 13654 /* 13655 * If we haven't generated the signal yet for 13656 * this urgent pointer value, do it now. Also, 13657 * send up a zero-length M_DATA indicating 13658 * whether or not this is the mark. The latter 13659 * is not needed when a T_EXDATA_IND is sent up. 13660 * However, if there are allocation failures 13661 * this code relies on the sender retransmitting 13662 * and the socket code for determining the mark 13663 * should not block waiting for the peer to 13664 * transmit. Thus, for simplicity we always 13665 * send up the mark indication. 13666 */ 13667 mp1 = allocb(0, BPRI_MED); 13668 if (mp1 == NULL) { 13669 freemsg(mp); 13670 return; 13671 } 13672 if (!TCP_IS_DETACHED(tcp) && 13673 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13674 SIGURG)) { 13675 /* Try again on the rexmit. */ 13676 freemsg(mp1); 13677 freemsg(mp); 13678 return; 13679 } 13680 /* 13681 * Mark with NOTMARKNEXT for now. 13682 * The code below will change this to MARKNEXT 13683 * if we are at the mark. 13684 * 13685 * If there are allocation failures (e.g. in 13686 * dupmsg below) the next time tcp_rput_data 13687 * sees the urgent segment it will send up the 13688 * MSGMARKNEXT message. 13689 */ 13690 mp1->b_flag |= MSGNOTMARKNEXT; 13691 freemsg(tcp->tcp_urp_mark_mp); 13692 tcp->tcp_urp_mark_mp = mp1; 13693 flags |= TH_SEND_URP_MARK; 13694 #ifdef DEBUG 13695 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13696 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13697 "last %x, %s", 13698 seg_seq, urp, tcp->tcp_urp_last, 13699 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13700 #endif /* DEBUG */ 13701 } 13702 tcp->tcp_urp_last_valid = B_TRUE; 13703 tcp->tcp_urp_last = urp + seg_seq; 13704 } else if (tcp->tcp_urp_mark_mp != NULL) { 13705 /* 13706 * An allocation failure prevented the previous 13707 * tcp_rput_data from sending up the allocated 13708 * MSG*MARKNEXT message - send it up this time 13709 * around. 13710 */ 13711 flags |= TH_SEND_URP_MARK; 13712 } 13713 13714 /* 13715 * If the urgent byte is in this segment, make sure that it is 13716 * all by itself. This makes it much easier to deal with the 13717 * possibility of an allocation failure on the T_exdata_ind. 13718 * Note that seg_len is the number of bytes in the segment, and 13719 * urp is the offset into the segment of the urgent byte. 13720 * urp < seg_len means that the urgent byte is in this segment. 13721 */ 13722 if (urp < seg_len) { 13723 if (seg_len != 1) { 13724 uint32_t tmp_rnxt; 13725 /* 13726 * Break it up and feed it back in. 13727 * Re-attach the IP header. 13728 */ 13729 mp->b_rptr = iphdr; 13730 if (urp > 0) { 13731 /* 13732 * There is stuff before the urgent 13733 * byte. 13734 */ 13735 mp1 = dupmsg(mp); 13736 if (!mp1) { 13737 /* 13738 * Trim from urgent byte on. 13739 * The rest will come back. 13740 */ 13741 (void) adjmsg(mp, 13742 urp - seg_len); 13743 tcp_rput_data(connp, 13744 mp, NULL); 13745 return; 13746 } 13747 (void) adjmsg(mp1, urp - seg_len); 13748 /* Feed this piece back in. */ 13749 tmp_rnxt = tcp->tcp_rnxt; 13750 tcp_rput_data(connp, mp1, NULL); 13751 /* 13752 * If the data passed back in was not 13753 * processed (ie: bad ACK) sending 13754 * the remainder back in will cause a 13755 * loop. In this case, drop the 13756 * packet and let the sender try 13757 * sending a good packet. 13758 */ 13759 if (tmp_rnxt == tcp->tcp_rnxt) { 13760 freemsg(mp); 13761 return; 13762 } 13763 } 13764 if (urp != seg_len - 1) { 13765 uint32_t tmp_rnxt; 13766 /* 13767 * There is stuff after the urgent 13768 * byte. 13769 */ 13770 mp1 = dupmsg(mp); 13771 if (!mp1) { 13772 /* 13773 * Trim everything beyond the 13774 * urgent byte. The rest will 13775 * come back. 13776 */ 13777 (void) adjmsg(mp, 13778 urp + 1 - seg_len); 13779 tcp_rput_data(connp, 13780 mp, NULL); 13781 return; 13782 } 13783 (void) adjmsg(mp1, urp + 1 - seg_len); 13784 tmp_rnxt = tcp->tcp_rnxt; 13785 tcp_rput_data(connp, mp1, NULL); 13786 /* 13787 * If the data passed back in was not 13788 * processed (ie: bad ACK) sending 13789 * the remainder back in will cause a 13790 * loop. In this case, drop the 13791 * packet and let the sender try 13792 * sending a good packet. 13793 */ 13794 if (tmp_rnxt == tcp->tcp_rnxt) { 13795 freemsg(mp); 13796 return; 13797 } 13798 } 13799 tcp_rput_data(connp, mp, NULL); 13800 return; 13801 } 13802 /* 13803 * This segment contains only the urgent byte. We 13804 * have to allocate the T_exdata_ind, if we can. 13805 */ 13806 if (IPCL_IS_NONSTR(connp)) { 13807 int error; 13808 13809 (*connp->conn_upcalls->su_recv) 13810 (connp->conn_upper_handle, mp, seg_len, 13811 MSG_OOB, &error, NULL); 13812 /* 13813 * We should never be in middle of a 13814 * fallback, the squeue guarantees that. 13815 */ 13816 ASSERT(error != EOPNOTSUPP); 13817 mp = NULL; 13818 goto update_ack; 13819 } else if (!tcp->tcp_urp_mp) { 13820 struct T_exdata_ind *tei; 13821 mp1 = allocb(sizeof (struct T_exdata_ind), 13822 BPRI_MED); 13823 if (!mp1) { 13824 /* 13825 * Sigh... It'll be back. 13826 * Generate any MSG*MARK message now. 13827 */ 13828 freemsg(mp); 13829 seg_len = 0; 13830 if (flags & TH_SEND_URP_MARK) { 13831 13832 13833 ASSERT(tcp->tcp_urp_mark_mp); 13834 tcp->tcp_urp_mark_mp->b_flag &= 13835 ~MSGNOTMARKNEXT; 13836 tcp->tcp_urp_mark_mp->b_flag |= 13837 MSGMARKNEXT; 13838 } 13839 goto ack_check; 13840 } 13841 mp1->b_datap->db_type = M_PROTO; 13842 tei = (struct T_exdata_ind *)mp1->b_rptr; 13843 tei->PRIM_type = T_EXDATA_IND; 13844 tei->MORE_flag = 0; 13845 mp1->b_wptr = (uchar_t *)&tei[1]; 13846 tcp->tcp_urp_mp = mp1; 13847 #ifdef DEBUG 13848 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13849 "tcp_rput: allocated exdata_ind %s", 13850 tcp_display(tcp, NULL, 13851 DISP_PORT_ONLY)); 13852 #endif /* DEBUG */ 13853 /* 13854 * There is no need to send a separate MSG*MARK 13855 * message since the T_EXDATA_IND will be sent 13856 * now. 13857 */ 13858 flags &= ~TH_SEND_URP_MARK; 13859 freemsg(tcp->tcp_urp_mark_mp); 13860 tcp->tcp_urp_mark_mp = NULL; 13861 } 13862 /* 13863 * Now we are all set. On the next putnext upstream, 13864 * tcp_urp_mp will be non-NULL and will get prepended 13865 * to what has to be this piece containing the urgent 13866 * byte. If for any reason we abort this segment below, 13867 * if it comes back, we will have this ready, or it 13868 * will get blown off in close. 13869 */ 13870 } else if (urp == seg_len) { 13871 /* 13872 * The urgent byte is the next byte after this sequence 13873 * number. If there is data it is marked with 13874 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13875 * since it is not needed. Otherwise, if the code 13876 * above just allocated a zero-length tcp_urp_mark_mp 13877 * message, that message is tagged with MSGMARKNEXT. 13878 * Sending up these MSGMARKNEXT messages makes 13879 * SIOCATMARK work correctly even though 13880 * the T_EXDATA_IND will not be sent up until the 13881 * urgent byte arrives. 13882 */ 13883 if (seg_len != 0) { 13884 flags |= TH_MARKNEXT_NEEDED; 13885 freemsg(tcp->tcp_urp_mark_mp); 13886 tcp->tcp_urp_mark_mp = NULL; 13887 flags &= ~TH_SEND_URP_MARK; 13888 } else if (tcp->tcp_urp_mark_mp != NULL) { 13889 flags |= TH_SEND_URP_MARK; 13890 tcp->tcp_urp_mark_mp->b_flag &= 13891 ~MSGNOTMARKNEXT; 13892 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13893 } 13894 #ifdef DEBUG 13895 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13896 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13897 seg_len, flags, 13898 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13899 #endif /* DEBUG */ 13900 } 13901 #ifdef DEBUG 13902 else { 13903 /* Data left until we hit mark */ 13904 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13905 "tcp_rput: URP %d bytes left, %s", 13906 urp - seg_len, tcp_display(tcp, NULL, 13907 DISP_PORT_ONLY)); 13908 } 13909 #endif /* DEBUG */ 13910 } 13911 13912 process_ack: 13913 if (!(flags & TH_ACK)) { 13914 freemsg(mp); 13915 goto xmit_check; 13916 } 13917 } 13918 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13919 13920 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13921 tcp->tcp_ip_forward_progress = B_TRUE; 13922 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13923 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13924 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13925 /* 3-way handshake complete - pass up the T_CONN_IND */ 13926 tcp_t *listener = tcp->tcp_listener; 13927 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13928 13929 tcp->tcp_tconnind_started = B_TRUE; 13930 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13931 /* 13932 * We are here means eager is fine but it can 13933 * get a TH_RST at any point between now and till 13934 * accept completes and disappear. We need to 13935 * ensure that reference to eager is valid after 13936 * we get out of eager's perimeter. So we do 13937 * an extra refhold. 13938 */ 13939 CONN_INC_REF(connp); 13940 13941 /* 13942 * The listener also exists because of the refhold 13943 * done in tcp_conn_request. Its possible that it 13944 * might have closed. We will check that once we 13945 * get inside listeners context. 13946 */ 13947 CONN_INC_REF(listener->tcp_connp); 13948 if (listener->tcp_connp->conn_sqp == 13949 connp->conn_sqp) { 13950 /* 13951 * We optimize by not calling an SQUEUE_ENTER 13952 * on the listener since we know that the 13953 * listener and eager squeues are the same. 13954 * We are able to make this check safely only 13955 * because neither the eager nor the listener 13956 * can change its squeue. Only an active connect 13957 * can change its squeue 13958 */ 13959 tcp_send_conn_ind(listener->tcp_connp, mp, 13960 listener->tcp_connp->conn_sqp); 13961 CONN_DEC_REF(listener->tcp_connp); 13962 } else if (!tcp->tcp_loopback) { 13963 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13964 mp, tcp_send_conn_ind, 13965 listener->tcp_connp, SQ_FILL, 13966 SQTAG_TCP_CONN_IND); 13967 } else { 13968 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13969 mp, tcp_send_conn_ind, 13970 listener->tcp_connp, SQ_PROCESS, 13971 SQTAG_TCP_CONN_IND); 13972 } 13973 } 13974 13975 /* 13976 * We are seeing the final ack in the three way 13977 * hand shake of a active open'ed connection 13978 * so we must send up a T_CONN_CON 13979 * 13980 * tcp_sendmsg() checks tcp_state without entering 13981 * the squeue so tcp_state should be updated before 13982 * sending up connection confirmation. 13983 */ 13984 tcp->tcp_state = TCPS_ESTABLISHED; 13985 if (tcp->tcp_active_open) { 13986 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13987 freemsg(mp); 13988 tcp->tcp_state = TCPS_SYN_RCVD; 13989 return; 13990 } 13991 /* 13992 * Don't fuse the loopback endpoints for 13993 * simultaneous active opens. 13994 */ 13995 if (tcp->tcp_loopback) { 13996 TCP_STAT(tcps, tcp_fusion_unfusable); 13997 tcp->tcp_unfusable = B_TRUE; 13998 } 13999 } 14000 14001 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14002 bytes_acked--; 14003 /* SYN was acked - making progress */ 14004 if (tcp->tcp_ipversion == IPV6_VERSION) 14005 tcp->tcp_ip_forward_progress = B_TRUE; 14006 14007 /* 14008 * If SYN was retransmitted, need to reset all 14009 * retransmission info as this segment will be 14010 * treated as a dup ACK. 14011 */ 14012 if (tcp->tcp_rexmit) { 14013 tcp->tcp_rexmit = B_FALSE; 14014 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14015 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14016 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14017 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14018 tcp->tcp_ms_we_have_waited = 0; 14019 tcp->tcp_cwnd = mss; 14020 } 14021 14022 /* 14023 * We set the send window to zero here. 14024 * This is needed if there is data to be 14025 * processed already on the queue. 14026 * Later (at swnd_update label), the 14027 * "new_swnd > tcp_swnd" condition is satisfied 14028 * the XMIT_NEEDED flag is set in the current 14029 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14030 * called if there is already data on queue in 14031 * this state. 14032 */ 14033 tcp->tcp_swnd = 0; 14034 14035 if (new_swnd > tcp->tcp_max_swnd) 14036 tcp->tcp_max_swnd = new_swnd; 14037 tcp->tcp_swl1 = seg_seq; 14038 tcp->tcp_swl2 = seg_ack; 14039 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14040 14041 /* Fuse when both sides are in ESTABLISHED state */ 14042 if (tcp->tcp_loopback && do_tcp_fusion) 14043 tcp_fuse(tcp, iphdr, tcph); 14044 14045 } 14046 /* This code follows 4.4BSD-Lite2 mostly. */ 14047 if (bytes_acked < 0) 14048 goto est; 14049 14050 /* 14051 * If TCP is ECN capable and the congestion experience bit is 14052 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14053 * done once per window (or more loosely, per RTT). 14054 */ 14055 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14056 tcp->tcp_cwr = B_FALSE; 14057 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14058 if (!tcp->tcp_cwr) { 14059 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14060 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14061 tcp->tcp_cwnd = npkt * mss; 14062 /* 14063 * If the cwnd is 0, use the timer to clock out 14064 * new segments. This is required by the ECN spec. 14065 */ 14066 if (npkt == 0) { 14067 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14068 /* 14069 * This makes sure that when the ACK comes 14070 * back, we will increase tcp_cwnd by 1 MSS. 14071 */ 14072 tcp->tcp_cwnd_cnt = 0; 14073 } 14074 tcp->tcp_cwr = B_TRUE; 14075 /* 14076 * This marks the end of the current window of in 14077 * flight data. That is why we don't use 14078 * tcp_suna + tcp_swnd. Only data in flight can 14079 * provide ECN info. 14080 */ 14081 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14082 tcp->tcp_ecn_cwr_sent = B_FALSE; 14083 } 14084 } 14085 14086 mp1 = tcp->tcp_xmit_head; 14087 if (bytes_acked == 0) { 14088 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14089 int dupack_cnt; 14090 14091 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14092 /* 14093 * Fast retransmit. When we have seen exactly three 14094 * identical ACKs while we have unacked data 14095 * outstanding we take it as a hint that our peer 14096 * dropped something. 14097 * 14098 * If TCP is retransmitting, don't do fast retransmit. 14099 */ 14100 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14101 ! tcp->tcp_rexmit) { 14102 /* Do Limited Transmit */ 14103 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14104 tcps->tcps_dupack_fast_retransmit) { 14105 /* 14106 * RFC 3042 14107 * 14108 * What we need to do is temporarily 14109 * increase tcp_cwnd so that new 14110 * data can be sent if it is allowed 14111 * by the receive window (tcp_rwnd). 14112 * tcp_wput_data() will take care of 14113 * the rest. 14114 * 14115 * If the connection is SACK capable, 14116 * only do limited xmit when there 14117 * is SACK info. 14118 * 14119 * Note how tcp_cwnd is incremented. 14120 * The first dup ACK will increase 14121 * it by 1 MSS. The second dup ACK 14122 * will increase it by 2 MSS. This 14123 * means that only 1 new segment will 14124 * be sent for each dup ACK. 14125 */ 14126 if (tcp->tcp_unsent > 0 && 14127 (!tcp->tcp_snd_sack_ok || 14128 (tcp->tcp_snd_sack_ok && 14129 tcp->tcp_notsack_list != NULL))) { 14130 tcp->tcp_cwnd += mss << 14131 (tcp->tcp_dupack_cnt - 1); 14132 flags |= TH_LIMIT_XMIT; 14133 } 14134 } else if (dupack_cnt == 14135 tcps->tcps_dupack_fast_retransmit) { 14136 14137 /* 14138 * If we have reduced tcp_ssthresh 14139 * because of ECN, do not reduce it again 14140 * unless it is already one window of data 14141 * away. After one window of data, tcp_cwr 14142 * should then be cleared. Note that 14143 * for non ECN capable connection, tcp_cwr 14144 * should always be false. 14145 * 14146 * Adjust cwnd since the duplicate 14147 * ack indicates that a packet was 14148 * dropped (due to congestion.) 14149 */ 14150 if (!tcp->tcp_cwr) { 14151 npkt = ((tcp->tcp_snxt - 14152 tcp->tcp_suna) >> 1) / mss; 14153 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14154 mss; 14155 tcp->tcp_cwnd = (npkt + 14156 tcp->tcp_dupack_cnt) * mss; 14157 } 14158 if (tcp->tcp_ecn_ok) { 14159 tcp->tcp_cwr = B_TRUE; 14160 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14161 tcp->tcp_ecn_cwr_sent = B_FALSE; 14162 } 14163 14164 /* 14165 * We do Hoe's algorithm. Refer to her 14166 * paper "Improving the Start-up Behavior 14167 * of a Congestion Control Scheme for TCP," 14168 * appeared in SIGCOMM'96. 14169 * 14170 * Save highest seq no we have sent so far. 14171 * Be careful about the invisible FIN byte. 14172 */ 14173 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14174 (tcp->tcp_unsent == 0)) { 14175 tcp->tcp_rexmit_max = tcp->tcp_fss; 14176 } else { 14177 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14178 } 14179 14180 /* 14181 * Do not allow bursty traffic during. 14182 * fast recovery. Refer to Fall and Floyd's 14183 * paper "Simulation-based Comparisons of 14184 * Tahoe, Reno and SACK TCP" (in CCR?) 14185 * This is a best current practise. 14186 */ 14187 tcp->tcp_snd_burst = TCP_CWND_SS; 14188 14189 /* 14190 * For SACK: 14191 * Calculate tcp_pipe, which is the 14192 * estimated number of bytes in 14193 * network. 14194 * 14195 * tcp_fack is the highest sack'ed seq num 14196 * TCP has received. 14197 * 14198 * tcp_pipe is explained in the above quoted 14199 * Fall and Floyd's paper. tcp_fack is 14200 * explained in Mathis and Mahdavi's 14201 * "Forward Acknowledgment: Refining TCP 14202 * Congestion Control" in SIGCOMM '96. 14203 */ 14204 if (tcp->tcp_snd_sack_ok) { 14205 ASSERT(tcp->tcp_sack_info != NULL); 14206 if (tcp->tcp_notsack_list != NULL) { 14207 tcp->tcp_pipe = tcp->tcp_snxt - 14208 tcp->tcp_fack; 14209 tcp->tcp_sack_snxt = seg_ack; 14210 flags |= TH_NEED_SACK_REXMIT; 14211 } else { 14212 /* 14213 * Always initialize tcp_pipe 14214 * even though we don't have 14215 * any SACK info. If later 14216 * we get SACK info and 14217 * tcp_pipe is not initialized, 14218 * funny things will happen. 14219 */ 14220 tcp->tcp_pipe = 14221 tcp->tcp_cwnd_ssthresh; 14222 } 14223 } else { 14224 flags |= TH_REXMIT_NEEDED; 14225 } /* tcp_snd_sack_ok */ 14226 14227 } else { 14228 /* 14229 * Here we perform congestion 14230 * avoidance, but NOT slow start. 14231 * This is known as the Fast 14232 * Recovery Algorithm. 14233 */ 14234 if (tcp->tcp_snd_sack_ok && 14235 tcp->tcp_notsack_list != NULL) { 14236 flags |= TH_NEED_SACK_REXMIT; 14237 tcp->tcp_pipe -= mss; 14238 if (tcp->tcp_pipe < 0) 14239 tcp->tcp_pipe = 0; 14240 } else { 14241 /* 14242 * We know that one more packet has 14243 * left the pipe thus we can update 14244 * cwnd. 14245 */ 14246 cwnd = tcp->tcp_cwnd + mss; 14247 if (cwnd > tcp->tcp_cwnd_max) 14248 cwnd = tcp->tcp_cwnd_max; 14249 tcp->tcp_cwnd = cwnd; 14250 if (tcp->tcp_unsent > 0) 14251 flags |= TH_XMIT_NEEDED; 14252 } 14253 } 14254 } 14255 } else if (tcp->tcp_zero_win_probe) { 14256 /* 14257 * If the window has opened, need to arrange 14258 * to send additional data. 14259 */ 14260 if (new_swnd != 0) { 14261 /* tcp_suna != tcp_snxt */ 14262 /* Packet contains a window update */ 14263 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14264 tcp->tcp_zero_win_probe = 0; 14265 tcp->tcp_timer_backoff = 0; 14266 tcp->tcp_ms_we_have_waited = 0; 14267 14268 /* 14269 * Transmit starting with tcp_suna since 14270 * the one byte probe is not ack'ed. 14271 * If TCP has sent more than one identical 14272 * probe, tcp_rexmit will be set. That means 14273 * tcp_ss_rexmit() will send out the one 14274 * byte along with new data. Otherwise, 14275 * fake the retransmission. 14276 */ 14277 flags |= TH_XMIT_NEEDED; 14278 if (!tcp->tcp_rexmit) { 14279 tcp->tcp_rexmit = B_TRUE; 14280 tcp->tcp_dupack_cnt = 0; 14281 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14282 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14283 } 14284 } 14285 } 14286 goto swnd_update; 14287 } 14288 14289 /* 14290 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14291 * If the ACK value acks something that we have not yet sent, it might 14292 * be an old duplicate segment. Send an ACK to re-synchronize the 14293 * other side. 14294 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14295 * state is handled above, so we can always just drop the segment and 14296 * send an ACK here. 14297 * 14298 * Should we send ACKs in response to ACK only segments? 14299 */ 14300 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14301 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14302 /* drop the received segment */ 14303 freemsg(mp); 14304 14305 /* 14306 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14307 * greater than 0, check if the number of such 14308 * bogus ACks is greater than that count. If yes, 14309 * don't send back any ACK. This prevents TCP from 14310 * getting into an ACK storm if somehow an attacker 14311 * successfully spoofs an acceptable segment to our 14312 * peer. 14313 */ 14314 if (tcp_drop_ack_unsent_cnt > 0 && 14315 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14316 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14317 return; 14318 } 14319 mp = tcp_ack_mp(tcp); 14320 if (mp != NULL) { 14321 BUMP_LOCAL(tcp->tcp_obsegs); 14322 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14323 tcp_send_data(tcp, tcp->tcp_wq, mp); 14324 } 14325 return; 14326 } 14327 14328 /* 14329 * TCP gets a new ACK, update the notsack'ed list to delete those 14330 * blocks that are covered by this ACK. 14331 */ 14332 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14333 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14334 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14335 } 14336 14337 /* 14338 * If we got an ACK after fast retransmit, check to see 14339 * if it is a partial ACK. If it is not and the congestion 14340 * window was inflated to account for the other side's 14341 * cached packets, retract it. If it is, do Hoe's algorithm. 14342 */ 14343 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14344 ASSERT(tcp->tcp_rexmit == B_FALSE); 14345 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14346 tcp->tcp_dupack_cnt = 0; 14347 /* 14348 * Restore the orig tcp_cwnd_ssthresh after 14349 * fast retransmit phase. 14350 */ 14351 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14352 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14353 } 14354 tcp->tcp_rexmit_max = seg_ack; 14355 tcp->tcp_cwnd_cnt = 0; 14356 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14357 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14358 14359 /* 14360 * Remove all notsack info to avoid confusion with 14361 * the next fast retrasnmit/recovery phase. 14362 */ 14363 if (tcp->tcp_snd_sack_ok && 14364 tcp->tcp_notsack_list != NULL) { 14365 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14366 } 14367 } else { 14368 if (tcp->tcp_snd_sack_ok && 14369 tcp->tcp_notsack_list != NULL) { 14370 flags |= TH_NEED_SACK_REXMIT; 14371 tcp->tcp_pipe -= mss; 14372 if (tcp->tcp_pipe < 0) 14373 tcp->tcp_pipe = 0; 14374 } else { 14375 /* 14376 * Hoe's algorithm: 14377 * 14378 * Retransmit the unack'ed segment and 14379 * restart fast recovery. Note that we 14380 * need to scale back tcp_cwnd to the 14381 * original value when we started fast 14382 * recovery. This is to prevent overly 14383 * aggressive behaviour in sending new 14384 * segments. 14385 */ 14386 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14387 tcps->tcps_dupack_fast_retransmit * mss; 14388 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14389 flags |= TH_REXMIT_NEEDED; 14390 } 14391 } 14392 } else { 14393 tcp->tcp_dupack_cnt = 0; 14394 if (tcp->tcp_rexmit) { 14395 /* 14396 * TCP is retranmitting. If the ACK ack's all 14397 * outstanding data, update tcp_rexmit_max and 14398 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14399 * to the correct value. 14400 * 14401 * Note that SEQ_LEQ() is used. This is to avoid 14402 * unnecessary fast retransmit caused by dup ACKs 14403 * received when TCP does slow start retransmission 14404 * after a time out. During this phase, TCP may 14405 * send out segments which are already received. 14406 * This causes dup ACKs to be sent back. 14407 */ 14408 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14409 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14410 tcp->tcp_rexmit_nxt = seg_ack; 14411 } 14412 if (seg_ack != tcp->tcp_rexmit_max) { 14413 flags |= TH_XMIT_NEEDED; 14414 } 14415 } else { 14416 tcp->tcp_rexmit = B_FALSE; 14417 tcp->tcp_xmit_zc_clean = B_FALSE; 14418 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14419 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14420 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14421 } 14422 tcp->tcp_ms_we_have_waited = 0; 14423 } 14424 } 14425 14426 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14427 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14428 tcp->tcp_suna = seg_ack; 14429 if (tcp->tcp_zero_win_probe != 0) { 14430 tcp->tcp_zero_win_probe = 0; 14431 tcp->tcp_timer_backoff = 0; 14432 } 14433 14434 /* 14435 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14436 * Note that it cannot be the SYN being ack'ed. The code flow 14437 * will not reach here. 14438 */ 14439 if (mp1 == NULL) { 14440 goto fin_acked; 14441 } 14442 14443 /* 14444 * Update the congestion window. 14445 * 14446 * If TCP is not ECN capable or TCP is ECN capable but the 14447 * congestion experience bit is not set, increase the tcp_cwnd as 14448 * usual. 14449 */ 14450 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14451 cwnd = tcp->tcp_cwnd; 14452 add = mss; 14453 14454 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14455 /* 14456 * This is to prevent an increase of less than 1 MSS of 14457 * tcp_cwnd. With partial increase, tcp_wput_data() 14458 * may send out tinygrams in order to preserve mblk 14459 * boundaries. 14460 * 14461 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14462 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14463 * increased by 1 MSS for every RTTs. 14464 */ 14465 if (tcp->tcp_cwnd_cnt <= 0) { 14466 tcp->tcp_cwnd_cnt = cwnd + add; 14467 } else { 14468 tcp->tcp_cwnd_cnt -= add; 14469 add = 0; 14470 } 14471 } 14472 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14473 } 14474 14475 /* See if the latest urgent data has been acknowledged */ 14476 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14477 SEQ_GT(seg_ack, tcp->tcp_urg)) 14478 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14479 14480 /* Can we update the RTT estimates? */ 14481 if (tcp->tcp_snd_ts_ok) { 14482 /* Ignore zero timestamp echo-reply. */ 14483 if (tcpopt.tcp_opt_ts_ecr != 0) { 14484 tcp_set_rto(tcp, (int32_t)lbolt - 14485 (int32_t)tcpopt.tcp_opt_ts_ecr); 14486 } 14487 14488 /* If needed, restart the timer. */ 14489 if (tcp->tcp_set_timer == 1) { 14490 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14491 tcp->tcp_set_timer = 0; 14492 } 14493 /* 14494 * Update tcp_csuna in case the other side stops sending 14495 * us timestamps. 14496 */ 14497 tcp->tcp_csuna = tcp->tcp_snxt; 14498 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14499 /* 14500 * An ACK sequence we haven't seen before, so get the RTT 14501 * and update the RTO. But first check if the timestamp is 14502 * valid to use. 14503 */ 14504 if ((mp1->b_next != NULL) && 14505 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14506 tcp_set_rto(tcp, (int32_t)lbolt - 14507 (int32_t)(intptr_t)mp1->b_prev); 14508 else 14509 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14510 14511 /* Remeber the last sequence to be ACKed */ 14512 tcp->tcp_csuna = seg_ack; 14513 if (tcp->tcp_set_timer == 1) { 14514 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14515 tcp->tcp_set_timer = 0; 14516 } 14517 } else { 14518 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14519 } 14520 14521 /* Eat acknowledged bytes off the xmit queue. */ 14522 for (;;) { 14523 mblk_t *mp2; 14524 uchar_t *wptr; 14525 14526 wptr = mp1->b_wptr; 14527 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14528 bytes_acked -= (int)(wptr - mp1->b_rptr); 14529 if (bytes_acked < 0) { 14530 mp1->b_rptr = wptr + bytes_acked; 14531 /* 14532 * Set a new timestamp if all the bytes timed by the 14533 * old timestamp have been ack'ed. 14534 */ 14535 if (SEQ_GT(seg_ack, 14536 (uint32_t)(uintptr_t)(mp1->b_next))) { 14537 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14538 mp1->b_next = NULL; 14539 } 14540 break; 14541 } 14542 mp1->b_next = NULL; 14543 mp1->b_prev = NULL; 14544 mp2 = mp1; 14545 mp1 = mp1->b_cont; 14546 14547 /* 14548 * This notification is required for some zero-copy 14549 * clients to maintain a copy semantic. After the data 14550 * is ack'ed, client is safe to modify or reuse the buffer. 14551 */ 14552 if (tcp->tcp_snd_zcopy_aware && 14553 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14554 tcp_zcopy_notify(tcp); 14555 freeb(mp2); 14556 if (bytes_acked == 0) { 14557 if (mp1 == NULL) { 14558 /* Everything is ack'ed, clear the tail. */ 14559 tcp->tcp_xmit_tail = NULL; 14560 /* 14561 * Cancel the timer unless we are still 14562 * waiting for an ACK for the FIN packet. 14563 */ 14564 if (tcp->tcp_timer_tid != 0 && 14565 tcp->tcp_snxt == tcp->tcp_suna) { 14566 (void) TCP_TIMER_CANCEL(tcp, 14567 tcp->tcp_timer_tid); 14568 tcp->tcp_timer_tid = 0; 14569 } 14570 goto pre_swnd_update; 14571 } 14572 if (mp2 != tcp->tcp_xmit_tail) 14573 break; 14574 tcp->tcp_xmit_tail = mp1; 14575 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14576 (uintptr_t)INT_MAX); 14577 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14578 mp1->b_rptr); 14579 break; 14580 } 14581 if (mp1 == NULL) { 14582 /* 14583 * More was acked but there is nothing more 14584 * outstanding. This means that the FIN was 14585 * just acked or that we're talking to a clown. 14586 */ 14587 fin_acked: 14588 ASSERT(tcp->tcp_fin_sent); 14589 tcp->tcp_xmit_tail = NULL; 14590 if (tcp->tcp_fin_sent) { 14591 /* FIN was acked - making progress */ 14592 if (tcp->tcp_ipversion == IPV6_VERSION && 14593 !tcp->tcp_fin_acked) 14594 tcp->tcp_ip_forward_progress = B_TRUE; 14595 tcp->tcp_fin_acked = B_TRUE; 14596 if (tcp->tcp_linger_tid != 0 && 14597 TCP_TIMER_CANCEL(tcp, 14598 tcp->tcp_linger_tid) >= 0) { 14599 tcp_stop_lingering(tcp); 14600 freemsg(mp); 14601 mp = NULL; 14602 } 14603 } else { 14604 /* 14605 * We should never get here because 14606 * we have already checked that the 14607 * number of bytes ack'ed should be 14608 * smaller than or equal to what we 14609 * have sent so far (it is the 14610 * acceptability check of the ACK). 14611 * We can only get here if the send 14612 * queue is corrupted. 14613 * 14614 * Terminate the connection and 14615 * panic the system. It is better 14616 * for us to panic instead of 14617 * continuing to avoid other disaster. 14618 */ 14619 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14620 tcp->tcp_rnxt, TH_RST|TH_ACK); 14621 panic("Memory corruption " 14622 "detected for connection %s.", 14623 tcp_display(tcp, NULL, 14624 DISP_ADDR_AND_PORT)); 14625 /*NOTREACHED*/ 14626 } 14627 goto pre_swnd_update; 14628 } 14629 ASSERT(mp2 != tcp->tcp_xmit_tail); 14630 } 14631 if (tcp->tcp_unsent) { 14632 flags |= TH_XMIT_NEEDED; 14633 } 14634 pre_swnd_update: 14635 tcp->tcp_xmit_head = mp1; 14636 swnd_update: 14637 /* 14638 * The following check is different from most other implementations. 14639 * For bi-directional transfer, when segments are dropped, the 14640 * "normal" check will not accept a window update in those 14641 * retransmitted segemnts. Failing to do that, TCP may send out 14642 * segments which are outside receiver's window. As TCP accepts 14643 * the ack in those retransmitted segments, if the window update in 14644 * the same segment is not accepted, TCP will incorrectly calculates 14645 * that it can send more segments. This can create a deadlock 14646 * with the receiver if its window becomes zero. 14647 */ 14648 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14649 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14650 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14651 /* 14652 * The criteria for update is: 14653 * 14654 * 1. the segment acknowledges some data. Or 14655 * 2. the segment is new, i.e. it has a higher seq num. Or 14656 * 3. the segment is not old and the advertised window is 14657 * larger than the previous advertised window. 14658 */ 14659 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14660 flags |= TH_XMIT_NEEDED; 14661 tcp->tcp_swnd = new_swnd; 14662 if (new_swnd > tcp->tcp_max_swnd) 14663 tcp->tcp_max_swnd = new_swnd; 14664 tcp->tcp_swl1 = seg_seq; 14665 tcp->tcp_swl2 = seg_ack; 14666 } 14667 est: 14668 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14669 14670 switch (tcp->tcp_state) { 14671 case TCPS_FIN_WAIT_1: 14672 if (tcp->tcp_fin_acked) { 14673 tcp->tcp_state = TCPS_FIN_WAIT_2; 14674 /* 14675 * We implement the non-standard BSD/SunOS 14676 * FIN_WAIT_2 flushing algorithm. 14677 * If there is no user attached to this 14678 * TCP endpoint, then this TCP struct 14679 * could hang around forever in FIN_WAIT_2 14680 * state if the peer forgets to send us 14681 * a FIN. To prevent this, we wait only 14682 * 2*MSL (a convenient time value) for 14683 * the FIN to arrive. If it doesn't show up, 14684 * we flush the TCP endpoint. This algorithm, 14685 * though a violation of RFC-793, has worked 14686 * for over 10 years in BSD systems. 14687 * Note: SunOS 4.x waits 675 seconds before 14688 * flushing the FIN_WAIT_2 connection. 14689 */ 14690 TCP_TIMER_RESTART(tcp, 14691 tcps->tcps_fin_wait_2_flush_interval); 14692 } 14693 break; 14694 case TCPS_FIN_WAIT_2: 14695 break; /* Shutdown hook? */ 14696 case TCPS_LAST_ACK: 14697 freemsg(mp); 14698 if (tcp->tcp_fin_acked) { 14699 (void) tcp_clean_death(tcp, 0, 19); 14700 return; 14701 } 14702 goto xmit_check; 14703 case TCPS_CLOSING: 14704 if (tcp->tcp_fin_acked) { 14705 tcp->tcp_state = TCPS_TIME_WAIT; 14706 /* 14707 * Unconditionally clear the exclusive binding 14708 * bit so this TIME-WAIT connection won't 14709 * interfere with new ones. 14710 */ 14711 tcp->tcp_exclbind = 0; 14712 if (!TCP_IS_DETACHED(tcp)) { 14713 TCP_TIMER_RESTART(tcp, 14714 tcps->tcps_time_wait_interval); 14715 } else { 14716 tcp_time_wait_append(tcp); 14717 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14718 } 14719 } 14720 /*FALLTHRU*/ 14721 case TCPS_CLOSE_WAIT: 14722 freemsg(mp); 14723 goto xmit_check; 14724 default: 14725 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14726 break; 14727 } 14728 } 14729 if (flags & TH_FIN) { 14730 /* Make sure we ack the fin */ 14731 flags |= TH_ACK_NEEDED; 14732 if (!tcp->tcp_fin_rcvd) { 14733 tcp->tcp_fin_rcvd = B_TRUE; 14734 tcp->tcp_rnxt++; 14735 tcph = tcp->tcp_tcph; 14736 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14737 14738 /* 14739 * Generate the ordrel_ind at the end unless we 14740 * are an eager guy. 14741 * In the eager case tcp_rsrv will do this when run 14742 * after tcp_accept is done. 14743 */ 14744 if (tcp->tcp_listener == NULL && 14745 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14746 flags |= TH_ORDREL_NEEDED; 14747 switch (tcp->tcp_state) { 14748 case TCPS_SYN_RCVD: 14749 case TCPS_ESTABLISHED: 14750 tcp->tcp_state = TCPS_CLOSE_WAIT; 14751 /* Keepalive? */ 14752 break; 14753 case TCPS_FIN_WAIT_1: 14754 if (!tcp->tcp_fin_acked) { 14755 tcp->tcp_state = TCPS_CLOSING; 14756 break; 14757 } 14758 /* FALLTHRU */ 14759 case TCPS_FIN_WAIT_2: 14760 tcp->tcp_state = TCPS_TIME_WAIT; 14761 /* 14762 * Unconditionally clear the exclusive binding 14763 * bit so this TIME-WAIT connection won't 14764 * interfere with new ones. 14765 */ 14766 tcp->tcp_exclbind = 0; 14767 if (!TCP_IS_DETACHED(tcp)) { 14768 TCP_TIMER_RESTART(tcp, 14769 tcps->tcps_time_wait_interval); 14770 } else { 14771 tcp_time_wait_append(tcp); 14772 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14773 } 14774 if (seg_len) { 14775 /* 14776 * implies data piggybacked on FIN. 14777 * break to handle data. 14778 */ 14779 break; 14780 } 14781 freemsg(mp); 14782 goto ack_check; 14783 } 14784 } 14785 } 14786 if (mp == NULL) 14787 goto xmit_check; 14788 if (seg_len == 0) { 14789 freemsg(mp); 14790 goto xmit_check; 14791 } 14792 if (mp->b_rptr == mp->b_wptr) { 14793 /* 14794 * The header has been consumed, so we remove the 14795 * zero-length mblk here. 14796 */ 14797 mp1 = mp; 14798 mp = mp->b_cont; 14799 freeb(mp1); 14800 } 14801 update_ack: 14802 tcph = tcp->tcp_tcph; 14803 tcp->tcp_rack_cnt++; 14804 { 14805 uint32_t cur_max; 14806 14807 cur_max = tcp->tcp_rack_cur_max; 14808 if (tcp->tcp_rack_cnt >= cur_max) { 14809 /* 14810 * We have more unacked data than we should - send 14811 * an ACK now. 14812 */ 14813 flags |= TH_ACK_NEEDED; 14814 cur_max++; 14815 if (cur_max > tcp->tcp_rack_abs_max) 14816 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14817 else 14818 tcp->tcp_rack_cur_max = cur_max; 14819 } else if (TCP_IS_DETACHED(tcp)) { 14820 /* We don't have an ACK timer for detached TCP. */ 14821 flags |= TH_ACK_NEEDED; 14822 } else if (seg_len < mss) { 14823 /* 14824 * If we get a segment that is less than an mss, and we 14825 * already have unacknowledged data, and the amount 14826 * unacknowledged is not a multiple of mss, then we 14827 * better generate an ACK now. Otherwise, this may be 14828 * the tail piece of a transaction, and we would rather 14829 * wait for the response. 14830 */ 14831 uint32_t udif; 14832 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14833 (uintptr_t)INT_MAX); 14834 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14835 if (udif && (udif % mss)) 14836 flags |= TH_ACK_NEEDED; 14837 else 14838 flags |= TH_ACK_TIMER_NEEDED; 14839 } else { 14840 /* Start delayed ack timer */ 14841 flags |= TH_ACK_TIMER_NEEDED; 14842 } 14843 } 14844 tcp->tcp_rnxt += seg_len; 14845 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14846 14847 if (mp == NULL) 14848 goto xmit_check; 14849 14850 /* Update SACK list */ 14851 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14852 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14853 &(tcp->tcp_num_sack_blk)); 14854 } 14855 14856 if (tcp->tcp_urp_mp) { 14857 tcp->tcp_urp_mp->b_cont = mp; 14858 mp = tcp->tcp_urp_mp; 14859 tcp->tcp_urp_mp = NULL; 14860 /* Ready for a new signal. */ 14861 tcp->tcp_urp_last_valid = B_FALSE; 14862 #ifdef DEBUG 14863 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14864 "tcp_rput: sending exdata_ind %s", 14865 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14866 #endif /* DEBUG */ 14867 } 14868 14869 /* 14870 * Check for ancillary data changes compared to last segment. 14871 */ 14872 if (tcp->tcp_ipv6_recvancillary != 0) { 14873 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14874 ASSERT(mp != NULL); 14875 } 14876 14877 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14878 /* 14879 * Side queue inbound data until the accept happens. 14880 * tcp_accept/tcp_rput drains this when the accept happens. 14881 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14882 * T_EXDATA_IND) it is queued on b_next. 14883 * XXX Make urgent data use this. Requires: 14884 * Removing tcp_listener check for TH_URG 14885 * Making M_PCPROTO and MARK messages skip the eager case 14886 */ 14887 14888 if (tcp->tcp_kssl_pending) { 14889 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14890 mblk_t *, mp); 14891 tcp_kssl_input(tcp, mp); 14892 } else { 14893 tcp_rcv_enqueue(tcp, mp, seg_len); 14894 } 14895 } else { 14896 if (mp->b_datap->db_type != M_DATA || 14897 (flags & TH_MARKNEXT_NEEDED)) { 14898 if (IPCL_IS_NONSTR(connp)) { 14899 int error; 14900 14901 if ((*connp->conn_upcalls->su_recv) 14902 (connp->conn_upper_handle, mp, 14903 seg_len, 0, &error, NULL) <= 0) { 14904 /* 14905 * We should never be in middle of a 14906 * fallback, the squeue guarantees that. 14907 */ 14908 ASSERT(error != EOPNOTSUPP); 14909 if (error == ENOSPC) 14910 tcp->tcp_rwnd -= seg_len; 14911 } 14912 } else if (tcp->tcp_rcv_list != NULL) { 14913 flags |= tcp_rcv_drain(tcp); 14914 } 14915 ASSERT(tcp->tcp_rcv_list == NULL || 14916 tcp->tcp_fused_sigurg); 14917 14918 if (flags & TH_MARKNEXT_NEEDED) { 14919 #ifdef DEBUG 14920 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14921 "tcp_rput: sending MSGMARKNEXT %s", 14922 tcp_display(tcp, NULL, 14923 DISP_PORT_ONLY)); 14924 #endif /* DEBUG */ 14925 mp->b_flag |= MSGMARKNEXT; 14926 flags &= ~TH_MARKNEXT_NEEDED; 14927 } 14928 14929 /* Does this need SSL processing first? */ 14930 if ((tcp->tcp_kssl_ctx != NULL) && 14931 (DB_TYPE(mp) == M_DATA)) { 14932 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 14933 mblk_t *, mp); 14934 tcp_kssl_input(tcp, mp); 14935 } else if (!IPCL_IS_NONSTR(connp)) { 14936 /* Already handled non-STREAMS case. */ 14937 putnext(tcp->tcp_rq, mp); 14938 if (!canputnext(tcp->tcp_rq)) 14939 tcp->tcp_rwnd -= seg_len; 14940 } 14941 } else if ((tcp->tcp_kssl_ctx != NULL) && 14942 (DB_TYPE(mp) == M_DATA)) { 14943 /* Does this need SSL processing first? */ 14944 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 14945 tcp_kssl_input(tcp, mp); 14946 } else if (IPCL_IS_NONSTR(connp)) { 14947 /* Non-STREAMS socket */ 14948 boolean_t push = flags & (TH_PUSH|TH_FIN); 14949 int error; 14950 14951 if ((*connp->conn_upcalls->su_recv)( 14952 connp->conn_upper_handle, 14953 mp, seg_len, 0, &error, &push) <= 0) { 14954 /* 14955 * We should never be in middle of a 14956 * fallback, the squeue guarantees that. 14957 */ 14958 ASSERT(error != EOPNOTSUPP); 14959 if (error == ENOSPC) 14960 tcp->tcp_rwnd -= seg_len; 14961 } else if (push) { 14962 /* 14963 * PUSH bit set and sockfs is not 14964 * flow controlled 14965 */ 14966 flags |= tcp_rwnd_reopen(tcp); 14967 } 14968 } else if ((flags & (TH_PUSH|TH_FIN)) || 14969 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 14970 if (tcp->tcp_rcv_list != NULL) { 14971 /* 14972 * Enqueue the new segment first and then 14973 * call tcp_rcv_drain() to send all data 14974 * up. The other way to do this is to 14975 * send all queued data up and then call 14976 * putnext() to send the new segment up. 14977 * This way can remove the else part later 14978 * on. 14979 * 14980 * We don't do this to avoid one more call to 14981 * canputnext() as tcp_rcv_drain() needs to 14982 * call canputnext(). 14983 */ 14984 tcp_rcv_enqueue(tcp, mp, seg_len); 14985 flags |= tcp_rcv_drain(tcp); 14986 } else { 14987 putnext(tcp->tcp_rq, mp); 14988 if (!canputnext(tcp->tcp_rq)) 14989 tcp->tcp_rwnd -= seg_len; 14990 } 14991 } else { 14992 /* 14993 * Enqueue all packets when processing an mblk 14994 * from the co queue and also enqueue normal packets. 14995 */ 14996 tcp_rcv_enqueue(tcp, mp, seg_len); 14997 } 14998 /* 14999 * Make sure the timer is running if we have data waiting 15000 * for a push bit. This provides resiliency against 15001 * implementations that do not correctly generate push bits. 15002 */ 15003 if (!IPCL_IS_NONSTR(connp) && tcp->tcp_rcv_list != NULL && 15004 tcp->tcp_push_tid == 0) { 15005 /* 15006 * The connection may be closed at this point, so don't 15007 * do anything for a detached tcp. 15008 */ 15009 if (!TCP_IS_DETACHED(tcp)) 15010 tcp->tcp_push_tid = TCP_TIMER(tcp, 15011 tcp_push_timer, 15012 MSEC_TO_TICK( 15013 tcps->tcps_push_timer_interval)); 15014 } 15015 } 15016 15017 xmit_check: 15018 /* Is there anything left to do? */ 15019 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15020 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15021 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15022 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15023 goto done; 15024 15025 /* Any transmit work to do and a non-zero window? */ 15026 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15027 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15028 if (flags & TH_REXMIT_NEEDED) { 15029 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15030 15031 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15032 if (snd_size > mss) 15033 snd_size = mss; 15034 if (snd_size > tcp->tcp_swnd) 15035 snd_size = tcp->tcp_swnd; 15036 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15037 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15038 B_TRUE); 15039 15040 if (mp1 != NULL) { 15041 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15042 tcp->tcp_csuna = tcp->tcp_snxt; 15043 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15044 UPDATE_MIB(&tcps->tcps_mib, 15045 tcpRetransBytes, snd_size); 15046 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15047 } 15048 } 15049 if (flags & TH_NEED_SACK_REXMIT) { 15050 tcp_sack_rxmit(tcp, &flags); 15051 } 15052 /* 15053 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15054 * out new segment. Note that tcp_rexmit should not be 15055 * set, otherwise TH_LIMIT_XMIT should not be set. 15056 */ 15057 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15058 if (!tcp->tcp_rexmit) { 15059 tcp_wput_data(tcp, NULL, B_FALSE); 15060 } else { 15061 tcp_ss_rexmit(tcp); 15062 } 15063 } 15064 /* 15065 * Adjust tcp_cwnd back to normal value after sending 15066 * new data segments. 15067 */ 15068 if (flags & TH_LIMIT_XMIT) { 15069 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15070 /* 15071 * This will restart the timer. Restarting the 15072 * timer is used to avoid a timeout before the 15073 * limited transmitted segment's ACK gets back. 15074 */ 15075 if (tcp->tcp_xmit_head != NULL) 15076 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15077 } 15078 15079 /* Anything more to do? */ 15080 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15081 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15082 goto done; 15083 } 15084 ack_check: 15085 if (flags & TH_SEND_URP_MARK) { 15086 ASSERT(tcp->tcp_urp_mark_mp); 15087 ASSERT(!IPCL_IS_NONSTR(connp)); 15088 /* 15089 * Send up any queued data and then send the mark message 15090 */ 15091 if (tcp->tcp_rcv_list != NULL) { 15092 flags |= tcp_rcv_drain(tcp); 15093 15094 } 15095 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15096 mp1 = tcp->tcp_urp_mark_mp; 15097 tcp->tcp_urp_mark_mp = NULL; 15098 putnext(tcp->tcp_rq, mp1); 15099 #ifdef DEBUG 15100 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15101 "tcp_rput: sending zero-length %s %s", 15102 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15103 "MSGNOTMARKNEXT"), 15104 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15105 #endif /* DEBUG */ 15106 flags &= ~TH_SEND_URP_MARK; 15107 } 15108 if (flags & TH_ACK_NEEDED) { 15109 /* 15110 * Time to send an ack for some reason. 15111 */ 15112 mp1 = tcp_ack_mp(tcp); 15113 15114 if (mp1 != NULL) { 15115 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15116 BUMP_LOCAL(tcp->tcp_obsegs); 15117 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15118 } 15119 if (tcp->tcp_ack_tid != 0) { 15120 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15121 tcp->tcp_ack_tid = 0; 15122 } 15123 } 15124 if (flags & TH_ACK_TIMER_NEEDED) { 15125 /* 15126 * Arrange for deferred ACK or push wait timeout. 15127 * Start timer if it is not already running. 15128 */ 15129 if (tcp->tcp_ack_tid == 0) { 15130 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15131 MSEC_TO_TICK(tcp->tcp_localnet ? 15132 (clock_t)tcps->tcps_local_dack_interval : 15133 (clock_t)tcps->tcps_deferred_ack_interval)); 15134 } 15135 } 15136 if (flags & TH_ORDREL_NEEDED) { 15137 /* 15138 * Send up the ordrel_ind unless we are an eager guy. 15139 * In the eager case tcp_rsrv will do this when run 15140 * after tcp_accept is done. 15141 */ 15142 ASSERT(tcp->tcp_listener == NULL); 15143 15144 if (IPCL_IS_NONSTR(connp)) { 15145 ASSERT(tcp->tcp_ordrel_mp == NULL); 15146 tcp->tcp_ordrel_done = B_TRUE; 15147 (*connp->conn_upcalls->su_opctl) 15148 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15149 goto done; 15150 } 15151 15152 if (tcp->tcp_rcv_list != NULL) { 15153 /* 15154 * Push any mblk(s) enqueued from co processing. 15155 */ 15156 flags |= tcp_rcv_drain(tcp); 15157 } 15158 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15159 15160 mp1 = tcp->tcp_ordrel_mp; 15161 tcp->tcp_ordrel_mp = NULL; 15162 tcp->tcp_ordrel_done = B_TRUE; 15163 putnext(tcp->tcp_rq, mp1); 15164 } 15165 done: 15166 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15167 } 15168 15169 /* 15170 * This function does PAWS protection check. Returns B_TRUE if the 15171 * segment passes the PAWS test, else returns B_FALSE. 15172 */ 15173 boolean_t 15174 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15175 { 15176 uint8_t flags; 15177 int options; 15178 uint8_t *up; 15179 15180 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15181 /* 15182 * If timestamp option is aligned nicely, get values inline, 15183 * otherwise call general routine to parse. Only do that 15184 * if timestamp is the only option. 15185 */ 15186 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15187 TCPOPT_REAL_TS_LEN && 15188 OK_32PTR((up = ((uint8_t *)tcph) + 15189 TCP_MIN_HEADER_LENGTH)) && 15190 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15191 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15192 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15193 15194 options = TCP_OPT_TSTAMP_PRESENT; 15195 } else { 15196 if (tcp->tcp_snd_sack_ok) { 15197 tcpoptp->tcp = tcp; 15198 } else { 15199 tcpoptp->tcp = NULL; 15200 } 15201 options = tcp_parse_options(tcph, tcpoptp); 15202 } 15203 15204 if (options & TCP_OPT_TSTAMP_PRESENT) { 15205 /* 15206 * Do PAWS per RFC 1323 section 4.2. Accept RST 15207 * regardless of the timestamp, page 18 RFC 1323.bis. 15208 */ 15209 if ((flags & TH_RST) == 0 && 15210 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15211 tcp->tcp_ts_recent)) { 15212 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15213 PAWS_TIMEOUT)) { 15214 /* This segment is not acceptable. */ 15215 return (B_FALSE); 15216 } else { 15217 /* 15218 * Connection has been idle for 15219 * too long. Reset the timestamp 15220 * and assume the segment is valid. 15221 */ 15222 tcp->tcp_ts_recent = 15223 tcpoptp->tcp_opt_ts_val; 15224 } 15225 } 15226 } else { 15227 /* 15228 * If we don't get a timestamp on every packet, we 15229 * figure we can't really trust 'em, so we stop sending 15230 * and parsing them. 15231 */ 15232 tcp->tcp_snd_ts_ok = B_FALSE; 15233 15234 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15235 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15236 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15237 /* 15238 * Adjust the tcp_mss accordingly. We also need to 15239 * adjust tcp_cwnd here in accordance with the new mss. 15240 * But we avoid doing a slow start here so as to not 15241 * to lose on the transfer rate built up so far. 15242 */ 15243 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15244 if (tcp->tcp_snd_sack_ok) { 15245 ASSERT(tcp->tcp_sack_info != NULL); 15246 tcp->tcp_max_sack_blk = 4; 15247 } 15248 } 15249 return (B_TRUE); 15250 } 15251 15252 /* 15253 * Attach ancillary data to a received TCP segments for the 15254 * ancillary pieces requested by the application that are 15255 * different than they were in the previous data segment. 15256 * 15257 * Save the "current" values once memory allocation is ok so that 15258 * when memory allocation fails we can just wait for the next data segment. 15259 */ 15260 static mblk_t * 15261 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15262 { 15263 struct T_optdata_ind *todi; 15264 int optlen; 15265 uchar_t *optptr; 15266 struct T_opthdr *toh; 15267 uint_t addflag; /* Which pieces to add */ 15268 mblk_t *mp1; 15269 15270 optlen = 0; 15271 addflag = 0; 15272 /* If app asked for pktinfo and the index has changed ... */ 15273 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15274 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15275 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15276 optlen += sizeof (struct T_opthdr) + 15277 sizeof (struct in6_pktinfo); 15278 addflag |= TCP_IPV6_RECVPKTINFO; 15279 } 15280 /* If app asked for hoplimit and it has changed ... */ 15281 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15282 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15283 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15284 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15285 addflag |= TCP_IPV6_RECVHOPLIMIT; 15286 } 15287 /* If app asked for tclass and it has changed ... */ 15288 if ((ipp->ipp_fields & IPPF_TCLASS) && 15289 ipp->ipp_tclass != tcp->tcp_recvtclass && 15290 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15291 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15292 addflag |= TCP_IPV6_RECVTCLASS; 15293 } 15294 /* 15295 * If app asked for hopbyhop headers and it has changed ... 15296 * For security labels, note that (1) security labels can't change on 15297 * a connected socket at all, (2) we're connected to at most one peer, 15298 * (3) if anything changes, then it must be some other extra option. 15299 */ 15300 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15301 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15302 (ipp->ipp_fields & IPPF_HOPOPTS), 15303 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15304 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15305 tcp->tcp_label_len; 15306 addflag |= TCP_IPV6_RECVHOPOPTS; 15307 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15308 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15309 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15310 return (mp); 15311 } 15312 /* If app asked for dst headers before routing headers ... */ 15313 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15314 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15315 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15316 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15317 optlen += sizeof (struct T_opthdr) + 15318 ipp->ipp_rtdstoptslen; 15319 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15320 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15321 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15322 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15323 return (mp); 15324 } 15325 /* If app asked for routing headers and it has changed ... */ 15326 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15327 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15328 (ipp->ipp_fields & IPPF_RTHDR), 15329 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15330 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15331 addflag |= TCP_IPV6_RECVRTHDR; 15332 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15333 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15334 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15335 return (mp); 15336 } 15337 /* If app asked for dest headers and it has changed ... */ 15338 if ((tcp->tcp_ipv6_recvancillary & 15339 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15340 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15341 (ipp->ipp_fields & IPPF_DSTOPTS), 15342 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15343 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15344 addflag |= TCP_IPV6_RECVDSTOPTS; 15345 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15346 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15347 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15348 return (mp); 15349 } 15350 15351 if (optlen == 0) { 15352 /* Nothing to add */ 15353 return (mp); 15354 } 15355 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15356 if (mp1 == NULL) { 15357 /* 15358 * Defer sending ancillary data until the next TCP segment 15359 * arrives. 15360 */ 15361 return (mp); 15362 } 15363 mp1->b_cont = mp; 15364 mp = mp1; 15365 mp->b_wptr += sizeof (*todi) + optlen; 15366 mp->b_datap->db_type = M_PROTO; 15367 todi = (struct T_optdata_ind *)mp->b_rptr; 15368 todi->PRIM_type = T_OPTDATA_IND; 15369 todi->DATA_flag = 1; /* MORE data */ 15370 todi->OPT_length = optlen; 15371 todi->OPT_offset = sizeof (*todi); 15372 optptr = (uchar_t *)&todi[1]; 15373 /* 15374 * If app asked for pktinfo and the index has changed ... 15375 * Note that the local address never changes for the connection. 15376 */ 15377 if (addflag & TCP_IPV6_RECVPKTINFO) { 15378 struct in6_pktinfo *pkti; 15379 15380 toh = (struct T_opthdr *)optptr; 15381 toh->level = IPPROTO_IPV6; 15382 toh->name = IPV6_PKTINFO; 15383 toh->len = sizeof (*toh) + sizeof (*pkti); 15384 toh->status = 0; 15385 optptr += sizeof (*toh); 15386 pkti = (struct in6_pktinfo *)optptr; 15387 if (tcp->tcp_ipversion == IPV6_VERSION) 15388 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15389 else 15390 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15391 &pkti->ipi6_addr); 15392 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15393 optptr += sizeof (*pkti); 15394 ASSERT(OK_32PTR(optptr)); 15395 /* Save as "last" value */ 15396 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15397 } 15398 /* If app asked for hoplimit and it has changed ... */ 15399 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15400 toh = (struct T_opthdr *)optptr; 15401 toh->level = IPPROTO_IPV6; 15402 toh->name = IPV6_HOPLIMIT; 15403 toh->len = sizeof (*toh) + sizeof (uint_t); 15404 toh->status = 0; 15405 optptr += sizeof (*toh); 15406 *(uint_t *)optptr = ipp->ipp_hoplimit; 15407 optptr += sizeof (uint_t); 15408 ASSERT(OK_32PTR(optptr)); 15409 /* Save as "last" value */ 15410 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15411 } 15412 /* If app asked for tclass and it has changed ... */ 15413 if (addflag & TCP_IPV6_RECVTCLASS) { 15414 toh = (struct T_opthdr *)optptr; 15415 toh->level = IPPROTO_IPV6; 15416 toh->name = IPV6_TCLASS; 15417 toh->len = sizeof (*toh) + sizeof (uint_t); 15418 toh->status = 0; 15419 optptr += sizeof (*toh); 15420 *(uint_t *)optptr = ipp->ipp_tclass; 15421 optptr += sizeof (uint_t); 15422 ASSERT(OK_32PTR(optptr)); 15423 /* Save as "last" value */ 15424 tcp->tcp_recvtclass = ipp->ipp_tclass; 15425 } 15426 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15427 toh = (struct T_opthdr *)optptr; 15428 toh->level = IPPROTO_IPV6; 15429 toh->name = IPV6_HOPOPTS; 15430 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15431 tcp->tcp_label_len; 15432 toh->status = 0; 15433 optptr += sizeof (*toh); 15434 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15435 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15436 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15437 ASSERT(OK_32PTR(optptr)); 15438 /* Save as last value */ 15439 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15440 (ipp->ipp_fields & IPPF_HOPOPTS), 15441 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15442 } 15443 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15444 toh = (struct T_opthdr *)optptr; 15445 toh->level = IPPROTO_IPV6; 15446 toh->name = IPV6_RTHDRDSTOPTS; 15447 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15448 toh->status = 0; 15449 optptr += sizeof (*toh); 15450 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15451 optptr += ipp->ipp_rtdstoptslen; 15452 ASSERT(OK_32PTR(optptr)); 15453 /* Save as last value */ 15454 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15455 &tcp->tcp_rtdstoptslen, 15456 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15457 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15458 } 15459 if (addflag & TCP_IPV6_RECVRTHDR) { 15460 toh = (struct T_opthdr *)optptr; 15461 toh->level = IPPROTO_IPV6; 15462 toh->name = IPV6_RTHDR; 15463 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15464 toh->status = 0; 15465 optptr += sizeof (*toh); 15466 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15467 optptr += ipp->ipp_rthdrlen; 15468 ASSERT(OK_32PTR(optptr)); 15469 /* Save as last value */ 15470 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15471 (ipp->ipp_fields & IPPF_RTHDR), 15472 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15473 } 15474 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15475 toh = (struct T_opthdr *)optptr; 15476 toh->level = IPPROTO_IPV6; 15477 toh->name = IPV6_DSTOPTS; 15478 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15479 toh->status = 0; 15480 optptr += sizeof (*toh); 15481 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15482 optptr += ipp->ipp_dstoptslen; 15483 ASSERT(OK_32PTR(optptr)); 15484 /* Save as last value */ 15485 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15486 (ipp->ipp_fields & IPPF_DSTOPTS), 15487 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15488 } 15489 ASSERT(optptr == mp->b_wptr); 15490 return (mp); 15491 } 15492 15493 /* 15494 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15495 * messages. 15496 */ 15497 void 15498 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15499 { 15500 uchar_t *rptr = mp->b_rptr; 15501 queue_t *q = tcp->tcp_rq; 15502 struct T_error_ack *tea; 15503 15504 switch (mp->b_datap->db_type) { 15505 case M_PROTO: 15506 case M_PCPROTO: 15507 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15508 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15509 break; 15510 tea = (struct T_error_ack *)rptr; 15511 ASSERT(tea->PRIM_type != T_BIND_ACK); 15512 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15513 tea->ERROR_prim != T_BIND_REQ); 15514 switch (tea->PRIM_type) { 15515 case T_ERROR_ACK: 15516 if (tcp->tcp_debug) { 15517 (void) strlog(TCP_MOD_ID, 0, 1, 15518 SL_TRACE|SL_ERROR, 15519 "tcp_rput_other: case T_ERROR_ACK, " 15520 "ERROR_prim == %d", 15521 tea->ERROR_prim); 15522 } 15523 switch (tea->ERROR_prim) { 15524 case T_SVR4_OPTMGMT_REQ: 15525 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15526 /* T_OPTMGMT_REQ generated by TCP */ 15527 printf("T_SVR4_OPTMGMT_REQ failed " 15528 "%d/%d - dropped (cnt %d)\n", 15529 tea->TLI_error, tea->UNIX_error, 15530 tcp->tcp_drop_opt_ack_cnt); 15531 freemsg(mp); 15532 tcp->tcp_drop_opt_ack_cnt--; 15533 return; 15534 } 15535 break; 15536 } 15537 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15538 tcp->tcp_drop_opt_ack_cnt > 0) { 15539 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15540 "- dropped (cnt %d)\n", 15541 tea->TLI_error, tea->UNIX_error, 15542 tcp->tcp_drop_opt_ack_cnt); 15543 freemsg(mp); 15544 tcp->tcp_drop_opt_ack_cnt--; 15545 return; 15546 } 15547 break; 15548 case T_OPTMGMT_ACK: 15549 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15550 /* T_OPTMGMT_REQ generated by TCP */ 15551 freemsg(mp); 15552 tcp->tcp_drop_opt_ack_cnt--; 15553 return; 15554 } 15555 break; 15556 default: 15557 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15558 break; 15559 } 15560 break; 15561 case M_FLUSH: 15562 if (*rptr & FLUSHR) 15563 flushq(q, FLUSHDATA); 15564 break; 15565 default: 15566 /* M_CTL will be directly sent to tcp_icmp_error() */ 15567 ASSERT(DB_TYPE(mp) != M_CTL); 15568 break; 15569 } 15570 /* 15571 * Make sure we set this bit before sending the ACK for 15572 * bind. Otherwise accept could possibly run and free 15573 * this tcp struct. 15574 */ 15575 ASSERT(q != NULL); 15576 putnext(q, mp); 15577 } 15578 15579 /* ARGSUSED */ 15580 static void 15581 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15582 { 15583 conn_t *connp = (conn_t *)arg; 15584 tcp_t *tcp = connp->conn_tcp; 15585 queue_t *q = tcp->tcp_rq; 15586 tcp_stack_t *tcps = tcp->tcp_tcps; 15587 15588 ASSERT(!IPCL_IS_NONSTR(connp)); 15589 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15590 tcp->tcp_rsrv_mp = mp; 15591 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15592 15593 TCP_STAT(tcps, tcp_rsrv_calls); 15594 15595 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15596 return; 15597 } 15598 15599 if (tcp->tcp_fused) { 15600 tcp_fuse_backenable(tcp); 15601 return; 15602 } 15603 15604 if (canputnext(q)) { 15605 /* Not flow-controlled, open rwnd */ 15606 tcp->tcp_rwnd = q->q_hiwat; 15607 15608 /* 15609 * Send back a window update immediately if TCP is above 15610 * ESTABLISHED state and the increase of the rcv window 15611 * that the other side knows is at least 1 MSS after flow 15612 * control is lifted. 15613 */ 15614 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15615 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 15616 tcp_xmit_ctl(NULL, tcp, 15617 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15618 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15619 } 15620 } 15621 } 15622 15623 /* 15624 * The read side service routine is called mostly when we get back-enabled as a 15625 * result of flow control relief. Since we don't actually queue anything in 15626 * TCP, we have no data to send out of here. What we do is clear the receive 15627 * window, and send out a window update. 15628 */ 15629 static void 15630 tcp_rsrv(queue_t *q) 15631 { 15632 conn_t *connp = Q_TO_CONN(q); 15633 tcp_t *tcp = connp->conn_tcp; 15634 mblk_t *mp; 15635 tcp_stack_t *tcps = tcp->tcp_tcps; 15636 15637 /* No code does a putq on the read side */ 15638 ASSERT(q->q_first == NULL); 15639 15640 /* Nothing to do for the default queue */ 15641 if (q == tcps->tcps_g_q) { 15642 return; 15643 } 15644 15645 /* 15646 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15647 * been run. So just return. 15648 */ 15649 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15650 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15651 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15652 return; 15653 } 15654 tcp->tcp_rsrv_mp = NULL; 15655 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15656 15657 CONN_INC_REF(connp); 15658 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15659 SQ_PROCESS, SQTAG_TCP_RSRV); 15660 } 15661 15662 /* 15663 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15664 * We do not allow the receive window to shrink. After setting rwnd, 15665 * set the flow control hiwat of the stream. 15666 * 15667 * This function is called in 2 cases: 15668 * 15669 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15670 * connection (passive open) and in tcp_rput_data() for active connect. 15671 * This is called after tcp_mss_set() when the desired MSS value is known. 15672 * This makes sure that our window size is a mutiple of the other side's 15673 * MSS. 15674 * 2) Handling SO_RCVBUF option. 15675 * 15676 * It is ASSUMED that the requested size is a multiple of the current MSS. 15677 * 15678 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15679 * user requests so. 15680 */ 15681 static int 15682 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15683 { 15684 uint32_t mss = tcp->tcp_mss; 15685 uint32_t old_max_rwnd; 15686 uint32_t max_transmittable_rwnd; 15687 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15688 tcp_stack_t *tcps = tcp->tcp_tcps; 15689 15690 if (tcp->tcp_fused) { 15691 size_t sth_hiwat; 15692 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15693 15694 ASSERT(peer_tcp != NULL); 15695 /* 15696 * Record the stream head's high water mark for 15697 * this endpoint; this is used for flow-control 15698 * purposes in tcp_fuse_output(). 15699 */ 15700 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15701 if (!tcp_detached) { 15702 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15703 sth_hiwat); 15704 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 15705 conn_t *connp = tcp->tcp_connp; 15706 struct sock_proto_props sopp; 15707 15708 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 15709 sopp.sopp_rcvthresh = sth_hiwat >> 3; 15710 15711 (*connp->conn_upcalls->su_set_proto_props) 15712 (connp->conn_upper_handle, &sopp); 15713 } 15714 } 15715 15716 /* 15717 * In the fusion case, the maxpsz stream head value of 15718 * our peer is set according to its send buffer size 15719 * and our receive buffer size; since the latter may 15720 * have changed we need to update the peer's maxpsz. 15721 */ 15722 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15723 return (rwnd); 15724 } 15725 15726 if (tcp_detached) { 15727 old_max_rwnd = tcp->tcp_rwnd; 15728 } else { 15729 old_max_rwnd = tcp->tcp_recv_hiwater; 15730 } 15731 15732 /* 15733 * Insist on a receive window that is at least 15734 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15735 * funny TCP interactions of Nagle algorithm, SWS avoidance 15736 * and delayed acknowledgement. 15737 */ 15738 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 15739 15740 /* 15741 * If window size info has already been exchanged, TCP should not 15742 * shrink the window. Shrinking window is doable if done carefully. 15743 * We may add that support later. But so far there is not a real 15744 * need to do that. 15745 */ 15746 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15747 /* MSS may have changed, do a round up again. */ 15748 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15749 } 15750 15751 /* 15752 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15753 * can be applied even before the window scale option is decided. 15754 */ 15755 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15756 if (rwnd > max_transmittable_rwnd) { 15757 rwnd = max_transmittable_rwnd - 15758 (max_transmittable_rwnd % mss); 15759 if (rwnd < mss) 15760 rwnd = max_transmittable_rwnd; 15761 /* 15762 * If we're over the limit we may have to back down tcp_rwnd. 15763 * The increment below won't work for us. So we set all three 15764 * here and the increment below will have no effect. 15765 */ 15766 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15767 } 15768 if (tcp->tcp_localnet) { 15769 tcp->tcp_rack_abs_max = 15770 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 15771 } else { 15772 /* 15773 * For a remote host on a different subnet (through a router), 15774 * we ack every other packet to be conforming to RFC1122. 15775 * tcp_deferred_acks_max is default to 2. 15776 */ 15777 tcp->tcp_rack_abs_max = 15778 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 15779 } 15780 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15781 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15782 else 15783 tcp->tcp_rack_cur_max = 0; 15784 /* 15785 * Increment the current rwnd by the amount the maximum grew (we 15786 * can not overwrite it since we might be in the middle of a 15787 * connection.) 15788 */ 15789 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15790 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15791 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15792 tcp->tcp_cwnd_max = rwnd; 15793 15794 if (tcp_detached) 15795 return (rwnd); 15796 /* 15797 * We set the maximum receive window into rq->q_hiwat if it is 15798 * a STREAMS socket. 15799 * This is not actually used for flow control. 15800 */ 15801 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 15802 tcp->tcp_rq->q_hiwat = rwnd; 15803 tcp->tcp_recv_hiwater = rwnd; 15804 /* 15805 * Set the STREAM head high water mark. This doesn't have to be 15806 * here, since we are simply using default values, but we would 15807 * prefer to choose these values algorithmically, with a likely 15808 * relationship to rwnd. 15809 */ 15810 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15811 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 15812 return (rwnd); 15813 } 15814 15815 /* 15816 * Return SNMP stuff in buffer in mpdata. 15817 */ 15818 mblk_t * 15819 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15820 { 15821 mblk_t *mpdata; 15822 mblk_t *mp_conn_ctl = NULL; 15823 mblk_t *mp_conn_tail; 15824 mblk_t *mp_attr_ctl = NULL; 15825 mblk_t *mp_attr_tail; 15826 mblk_t *mp6_conn_ctl = NULL; 15827 mblk_t *mp6_conn_tail; 15828 mblk_t *mp6_attr_ctl = NULL; 15829 mblk_t *mp6_attr_tail; 15830 struct opthdr *optp; 15831 mib2_tcpConnEntry_t tce; 15832 mib2_tcp6ConnEntry_t tce6; 15833 mib2_transportMLPEntry_t mlp; 15834 connf_t *connfp; 15835 int i; 15836 boolean_t ispriv; 15837 zoneid_t zoneid; 15838 int v4_conn_idx; 15839 int v6_conn_idx; 15840 conn_t *connp = Q_TO_CONN(q); 15841 tcp_stack_t *tcps; 15842 ip_stack_t *ipst; 15843 mblk_t *mp2ctl; 15844 15845 /* 15846 * make a copy of the original message 15847 */ 15848 mp2ctl = copymsg(mpctl); 15849 15850 if (mpctl == NULL || 15851 (mpdata = mpctl->b_cont) == NULL || 15852 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15853 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15854 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15855 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15856 freemsg(mp_conn_ctl); 15857 freemsg(mp_attr_ctl); 15858 freemsg(mp6_conn_ctl); 15859 freemsg(mp6_attr_ctl); 15860 freemsg(mpctl); 15861 freemsg(mp2ctl); 15862 return (NULL); 15863 } 15864 15865 ipst = connp->conn_netstack->netstack_ip; 15866 tcps = connp->conn_netstack->netstack_tcp; 15867 15868 /* build table of connections -- need count in fixed part */ 15869 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 15870 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 15871 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 15872 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 15873 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 15874 15875 ispriv = 15876 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15877 zoneid = Q_TO_CONN(q)->conn_zoneid; 15878 15879 v4_conn_idx = v6_conn_idx = 0; 15880 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15881 15882 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15883 ipst = tcps->tcps_netstack->netstack_ip; 15884 15885 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 15886 15887 connp = NULL; 15888 15889 while ((connp = 15890 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15891 tcp_t *tcp; 15892 boolean_t needattr; 15893 15894 if (connp->conn_zoneid != zoneid) 15895 continue; /* not in this zone */ 15896 15897 tcp = connp->conn_tcp; 15898 UPDATE_MIB(&tcps->tcps_mib, 15899 tcpHCInSegs, tcp->tcp_ibsegs); 15900 tcp->tcp_ibsegs = 0; 15901 UPDATE_MIB(&tcps->tcps_mib, 15902 tcpHCOutSegs, tcp->tcp_obsegs); 15903 tcp->tcp_obsegs = 0; 15904 15905 tce6.tcp6ConnState = tce.tcpConnState = 15906 tcp_snmp_state(tcp); 15907 if (tce.tcpConnState == MIB2_TCP_established || 15908 tce.tcpConnState == MIB2_TCP_closeWait) 15909 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 15910 15911 needattr = B_FALSE; 15912 bzero(&mlp, sizeof (mlp)); 15913 if (connp->conn_mlp_type != mlptSingle) { 15914 if (connp->conn_mlp_type == mlptShared || 15915 connp->conn_mlp_type == mlptBoth) 15916 mlp.tme_flags |= MIB2_TMEF_SHARED; 15917 if (connp->conn_mlp_type == mlptPrivate || 15918 connp->conn_mlp_type == mlptBoth) 15919 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15920 needattr = B_TRUE; 15921 } 15922 if (connp->conn_anon_mlp) { 15923 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 15924 needattr = B_TRUE; 15925 } 15926 if (connp->conn_mac_exempt) { 15927 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 15928 needattr = B_TRUE; 15929 } 15930 if (connp->conn_fully_bound && 15931 connp->conn_effective_cred != NULL) { 15932 ts_label_t *tsl; 15933 15934 tsl = crgetlabel(connp->conn_effective_cred); 15935 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 15936 mlp.tme_doi = label2doi(tsl); 15937 mlp.tme_label = *label2bslabel(tsl); 15938 needattr = B_TRUE; 15939 } 15940 15941 /* Create a message to report on IPv6 entries */ 15942 if (tcp->tcp_ipversion == IPV6_VERSION) { 15943 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15944 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15945 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15946 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15947 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15948 /* Don't want just anybody seeing these... */ 15949 if (ispriv) { 15950 tce6.tcp6ConnEntryInfo.ce_snxt = 15951 tcp->tcp_snxt; 15952 tce6.tcp6ConnEntryInfo.ce_suna = 15953 tcp->tcp_suna; 15954 tce6.tcp6ConnEntryInfo.ce_rnxt = 15955 tcp->tcp_rnxt; 15956 tce6.tcp6ConnEntryInfo.ce_rack = 15957 tcp->tcp_rack; 15958 } else { 15959 /* 15960 * Netstat, unfortunately, uses this to 15961 * get send/receive queue sizes. How to fix? 15962 * Why not compute the difference only? 15963 */ 15964 tce6.tcp6ConnEntryInfo.ce_snxt = 15965 tcp->tcp_snxt - tcp->tcp_suna; 15966 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15967 tce6.tcp6ConnEntryInfo.ce_rnxt = 15968 tcp->tcp_rnxt - tcp->tcp_rack; 15969 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15970 } 15971 15972 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15973 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15974 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15975 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15976 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15977 15978 tce6.tcp6ConnCreationProcess = 15979 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 15980 tcp->tcp_cpid; 15981 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 15982 15983 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 15984 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 15985 15986 mlp.tme_connidx = v6_conn_idx++; 15987 if (needattr) 15988 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 15989 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 15990 } 15991 /* 15992 * Create an IPv4 table entry for IPv4 entries and also 15993 * for IPv6 entries which are bound to in6addr_any 15994 * but don't have IPV6_V6ONLY set. 15995 * (i.e. anything an IPv4 peer could connect to) 15996 */ 15997 if (tcp->tcp_ipversion == IPV4_VERSION || 15998 (tcp->tcp_state <= TCPS_LISTEN && 15999 !tcp->tcp_connp->conn_ipv6_v6only && 16000 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16001 if (tcp->tcp_ipversion == IPV6_VERSION) { 16002 tce.tcpConnRemAddress = INADDR_ANY; 16003 tce.tcpConnLocalAddress = INADDR_ANY; 16004 } else { 16005 tce.tcpConnRemAddress = 16006 tcp->tcp_remote; 16007 tce.tcpConnLocalAddress = 16008 tcp->tcp_ip_src; 16009 } 16010 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16011 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16012 /* Don't want just anybody seeing these... */ 16013 if (ispriv) { 16014 tce.tcpConnEntryInfo.ce_snxt = 16015 tcp->tcp_snxt; 16016 tce.tcpConnEntryInfo.ce_suna = 16017 tcp->tcp_suna; 16018 tce.tcpConnEntryInfo.ce_rnxt = 16019 tcp->tcp_rnxt; 16020 tce.tcpConnEntryInfo.ce_rack = 16021 tcp->tcp_rack; 16022 } else { 16023 /* 16024 * Netstat, unfortunately, uses this to 16025 * get send/receive queue sizes. How 16026 * to fix? 16027 * Why not compute the difference only? 16028 */ 16029 tce.tcpConnEntryInfo.ce_snxt = 16030 tcp->tcp_snxt - tcp->tcp_suna; 16031 tce.tcpConnEntryInfo.ce_suna = 0; 16032 tce.tcpConnEntryInfo.ce_rnxt = 16033 tcp->tcp_rnxt - tcp->tcp_rack; 16034 tce.tcpConnEntryInfo.ce_rack = 0; 16035 } 16036 16037 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16038 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16039 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16040 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16041 tce.tcpConnEntryInfo.ce_state = 16042 tcp->tcp_state; 16043 16044 tce.tcpConnCreationProcess = 16045 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16046 tcp->tcp_cpid; 16047 tce.tcpConnCreationTime = tcp->tcp_open_time; 16048 16049 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16050 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16051 16052 mlp.tme_connidx = v4_conn_idx++; 16053 if (needattr) 16054 (void) snmp_append_data2( 16055 mp_attr_ctl->b_cont, 16056 &mp_attr_tail, (char *)&mlp, 16057 sizeof (mlp)); 16058 } 16059 } 16060 } 16061 16062 /* fixed length structure for IPv4 and IPv6 counters */ 16063 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16064 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16065 sizeof (mib2_tcp6ConnEntry_t)); 16066 /* synchronize 32- and 64-bit counters */ 16067 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16068 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16069 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16070 optp->level = MIB2_TCP; 16071 optp->name = 0; 16072 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16073 sizeof (tcps->tcps_mib)); 16074 optp->len = msgdsize(mpdata); 16075 qreply(q, mpctl); 16076 16077 /* table of connections... */ 16078 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16079 sizeof (struct T_optmgmt_ack)]; 16080 optp->level = MIB2_TCP; 16081 optp->name = MIB2_TCP_CONN; 16082 optp->len = msgdsize(mp_conn_ctl->b_cont); 16083 qreply(q, mp_conn_ctl); 16084 16085 /* table of MLP attributes... */ 16086 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16087 sizeof (struct T_optmgmt_ack)]; 16088 optp->level = MIB2_TCP; 16089 optp->name = EXPER_XPORT_MLP; 16090 optp->len = msgdsize(mp_attr_ctl->b_cont); 16091 if (optp->len == 0) 16092 freemsg(mp_attr_ctl); 16093 else 16094 qreply(q, mp_attr_ctl); 16095 16096 /* table of IPv6 connections... */ 16097 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16098 sizeof (struct T_optmgmt_ack)]; 16099 optp->level = MIB2_TCP6; 16100 optp->name = MIB2_TCP6_CONN; 16101 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16102 qreply(q, mp6_conn_ctl); 16103 16104 /* table of IPv6 MLP attributes... */ 16105 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16106 sizeof (struct T_optmgmt_ack)]; 16107 optp->level = MIB2_TCP6; 16108 optp->name = EXPER_XPORT_MLP; 16109 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16110 if (optp->len == 0) 16111 freemsg(mp6_attr_ctl); 16112 else 16113 qreply(q, mp6_attr_ctl); 16114 return (mp2ctl); 16115 } 16116 16117 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16118 /* ARGSUSED */ 16119 int 16120 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16121 { 16122 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16123 16124 switch (level) { 16125 case MIB2_TCP: 16126 switch (name) { 16127 case 13: 16128 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16129 return (0); 16130 /* TODO: delete entry defined by tce */ 16131 return (1); 16132 default: 16133 return (0); 16134 } 16135 default: 16136 return (1); 16137 } 16138 } 16139 16140 /* Translate TCP state to MIB2 TCP state. */ 16141 static int 16142 tcp_snmp_state(tcp_t *tcp) 16143 { 16144 if (tcp == NULL) 16145 return (0); 16146 16147 switch (tcp->tcp_state) { 16148 case TCPS_CLOSED: 16149 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16150 case TCPS_BOUND: 16151 return (MIB2_TCP_closed); 16152 case TCPS_LISTEN: 16153 return (MIB2_TCP_listen); 16154 case TCPS_SYN_SENT: 16155 return (MIB2_TCP_synSent); 16156 case TCPS_SYN_RCVD: 16157 return (MIB2_TCP_synReceived); 16158 case TCPS_ESTABLISHED: 16159 return (MIB2_TCP_established); 16160 case TCPS_CLOSE_WAIT: 16161 return (MIB2_TCP_closeWait); 16162 case TCPS_FIN_WAIT_1: 16163 return (MIB2_TCP_finWait1); 16164 case TCPS_CLOSING: 16165 return (MIB2_TCP_closing); 16166 case TCPS_LAST_ACK: 16167 return (MIB2_TCP_lastAck); 16168 case TCPS_FIN_WAIT_2: 16169 return (MIB2_TCP_finWait2); 16170 case TCPS_TIME_WAIT: 16171 return (MIB2_TCP_timeWait); 16172 default: 16173 return (0); 16174 } 16175 } 16176 16177 /* 16178 * tcp_timer is the timer service routine. It handles the retransmission, 16179 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16180 * from the state of the tcp instance what kind of action needs to be done 16181 * at the time it is called. 16182 */ 16183 static void 16184 tcp_timer(void *arg) 16185 { 16186 mblk_t *mp; 16187 clock_t first_threshold; 16188 clock_t second_threshold; 16189 clock_t ms; 16190 uint32_t mss; 16191 conn_t *connp = (conn_t *)arg; 16192 tcp_t *tcp = connp->conn_tcp; 16193 tcp_stack_t *tcps = tcp->tcp_tcps; 16194 16195 tcp->tcp_timer_tid = 0; 16196 16197 if (tcp->tcp_fused) 16198 return; 16199 16200 first_threshold = tcp->tcp_first_timer_threshold; 16201 second_threshold = tcp->tcp_second_timer_threshold; 16202 switch (tcp->tcp_state) { 16203 case TCPS_IDLE: 16204 case TCPS_BOUND: 16205 case TCPS_LISTEN: 16206 return; 16207 case TCPS_SYN_RCVD: { 16208 tcp_t *listener = tcp->tcp_listener; 16209 16210 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16211 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16212 /* it's our first timeout */ 16213 tcp->tcp_syn_rcvd_timeout = 1; 16214 mutex_enter(&listener->tcp_eager_lock); 16215 listener->tcp_syn_rcvd_timeout++; 16216 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16217 /* 16218 * Make this eager available for drop if we 16219 * need to drop one to accomodate a new 16220 * incoming SYN request. 16221 */ 16222 MAKE_DROPPABLE(listener, tcp); 16223 } 16224 if (!listener->tcp_syn_defense && 16225 (listener->tcp_syn_rcvd_timeout > 16226 (tcps->tcps_conn_req_max_q0 >> 2)) && 16227 (tcps->tcps_conn_req_max_q0 > 200)) { 16228 /* We may be under attack. Put on a defense. */ 16229 listener->tcp_syn_defense = B_TRUE; 16230 cmn_err(CE_WARN, "High TCP connect timeout " 16231 "rate! System (port %d) may be under a " 16232 "SYN flood attack!", 16233 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16234 16235 listener->tcp_ip_addr_cache = kmem_zalloc( 16236 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16237 KM_NOSLEEP); 16238 } 16239 mutex_exit(&listener->tcp_eager_lock); 16240 } else if (listener != NULL) { 16241 mutex_enter(&listener->tcp_eager_lock); 16242 tcp->tcp_syn_rcvd_timeout++; 16243 if (tcp->tcp_syn_rcvd_timeout > 1 && 16244 !tcp->tcp_closemp_used) { 16245 /* 16246 * This is our second timeout. Put the tcp in 16247 * the list of droppable eagers to allow it to 16248 * be dropped, if needed. We don't check 16249 * whether tcp_dontdrop is set or not to 16250 * protect ourselve from a SYN attack where a 16251 * remote host can spoof itself as one of the 16252 * good IP source and continue to hold 16253 * resources too long. 16254 */ 16255 MAKE_DROPPABLE(listener, tcp); 16256 } 16257 mutex_exit(&listener->tcp_eager_lock); 16258 } 16259 } 16260 /* FALLTHRU */ 16261 case TCPS_SYN_SENT: 16262 first_threshold = tcp->tcp_first_ctimer_threshold; 16263 second_threshold = tcp->tcp_second_ctimer_threshold; 16264 break; 16265 case TCPS_ESTABLISHED: 16266 case TCPS_FIN_WAIT_1: 16267 case TCPS_CLOSING: 16268 case TCPS_CLOSE_WAIT: 16269 case TCPS_LAST_ACK: 16270 /* If we have data to rexmit */ 16271 if (tcp->tcp_suna != tcp->tcp_snxt) { 16272 clock_t time_to_wait; 16273 16274 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16275 if (!tcp->tcp_xmit_head) 16276 break; 16277 time_to_wait = lbolt - 16278 (clock_t)tcp->tcp_xmit_head->b_prev; 16279 time_to_wait = tcp->tcp_rto - 16280 TICK_TO_MSEC(time_to_wait); 16281 /* 16282 * If the timer fires too early, 1 clock tick earlier, 16283 * restart the timer. 16284 */ 16285 if (time_to_wait > msec_per_tick) { 16286 TCP_STAT(tcps, tcp_timer_fire_early); 16287 TCP_TIMER_RESTART(tcp, time_to_wait); 16288 return; 16289 } 16290 /* 16291 * When we probe zero windows, we force the swnd open. 16292 * If our peer acks with a closed window swnd will be 16293 * set to zero by tcp_rput(). As long as we are 16294 * receiving acks tcp_rput will 16295 * reset 'tcp_ms_we_have_waited' so as not to trip the 16296 * first and second interval actions. NOTE: the timer 16297 * interval is allowed to continue its exponential 16298 * backoff. 16299 */ 16300 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16301 if (tcp->tcp_debug) { 16302 (void) strlog(TCP_MOD_ID, 0, 1, 16303 SL_TRACE, "tcp_timer: zero win"); 16304 } 16305 } else { 16306 /* 16307 * After retransmission, we need to do 16308 * slow start. Set the ssthresh to one 16309 * half of current effective window and 16310 * cwnd to one MSS. Also reset 16311 * tcp_cwnd_cnt. 16312 * 16313 * Note that if tcp_ssthresh is reduced because 16314 * of ECN, do not reduce it again unless it is 16315 * already one window of data away (tcp_cwr 16316 * should then be cleared) or this is a 16317 * timeout for a retransmitted segment. 16318 */ 16319 uint32_t npkt; 16320 16321 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16322 npkt = ((tcp->tcp_timer_backoff ? 16323 tcp->tcp_cwnd_ssthresh : 16324 tcp->tcp_snxt - 16325 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16326 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16327 tcp->tcp_mss; 16328 } 16329 tcp->tcp_cwnd = tcp->tcp_mss; 16330 tcp->tcp_cwnd_cnt = 0; 16331 if (tcp->tcp_ecn_ok) { 16332 tcp->tcp_cwr = B_TRUE; 16333 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16334 tcp->tcp_ecn_cwr_sent = B_FALSE; 16335 } 16336 } 16337 break; 16338 } 16339 /* 16340 * We have something to send yet we cannot send. The 16341 * reason can be: 16342 * 16343 * 1. Zero send window: we need to do zero window probe. 16344 * 2. Zero cwnd: because of ECN, we need to "clock out 16345 * segments. 16346 * 3. SWS avoidance: receiver may have shrunk window, 16347 * reset our knowledge. 16348 * 16349 * Note that condition 2 can happen with either 1 or 16350 * 3. But 1 and 3 are exclusive. 16351 */ 16352 if (tcp->tcp_unsent != 0) { 16353 if (tcp->tcp_cwnd == 0) { 16354 /* 16355 * Set tcp_cwnd to 1 MSS so that a 16356 * new segment can be sent out. We 16357 * are "clocking out" new data when 16358 * the network is really congested. 16359 */ 16360 ASSERT(tcp->tcp_ecn_ok); 16361 tcp->tcp_cwnd = tcp->tcp_mss; 16362 } 16363 if (tcp->tcp_swnd == 0) { 16364 /* Extend window for zero window probe */ 16365 tcp->tcp_swnd++; 16366 tcp->tcp_zero_win_probe = B_TRUE; 16367 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16368 } else { 16369 /* 16370 * Handle timeout from sender SWS avoidance. 16371 * Reset our knowledge of the max send window 16372 * since the receiver might have reduced its 16373 * receive buffer. Avoid setting tcp_max_swnd 16374 * to one since that will essentially disable 16375 * the SWS checks. 16376 * 16377 * Note that since we don't have a SWS 16378 * state variable, if the timeout is set 16379 * for ECN but not for SWS, this 16380 * code will also be executed. This is 16381 * fine as tcp_max_swnd is updated 16382 * constantly and it will not affect 16383 * anything. 16384 */ 16385 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16386 } 16387 tcp_wput_data(tcp, NULL, B_FALSE); 16388 return; 16389 } 16390 /* Is there a FIN that needs to be to re retransmitted? */ 16391 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16392 !tcp->tcp_fin_acked) 16393 break; 16394 /* Nothing to do, return without restarting timer. */ 16395 TCP_STAT(tcps, tcp_timer_fire_miss); 16396 return; 16397 case TCPS_FIN_WAIT_2: 16398 /* 16399 * User closed the TCP endpoint and peer ACK'ed our FIN. 16400 * We waited some time for for peer's FIN, but it hasn't 16401 * arrived. We flush the connection now to avoid 16402 * case where the peer has rebooted. 16403 */ 16404 if (TCP_IS_DETACHED(tcp)) { 16405 (void) tcp_clean_death(tcp, 0, 23); 16406 } else { 16407 TCP_TIMER_RESTART(tcp, 16408 tcps->tcps_fin_wait_2_flush_interval); 16409 } 16410 return; 16411 case TCPS_TIME_WAIT: 16412 (void) tcp_clean_death(tcp, 0, 24); 16413 return; 16414 default: 16415 if (tcp->tcp_debug) { 16416 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16417 "tcp_timer: strange state (%d) %s", 16418 tcp->tcp_state, tcp_display(tcp, NULL, 16419 DISP_PORT_ONLY)); 16420 } 16421 return; 16422 } 16423 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16424 /* 16425 * For zero window probe, we need to send indefinitely, 16426 * unless we have not heard from the other side for some 16427 * time... 16428 */ 16429 if ((tcp->tcp_zero_win_probe == 0) || 16430 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16431 second_threshold)) { 16432 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16433 /* 16434 * If TCP is in SYN_RCVD state, send back a 16435 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16436 * should be zero in TCPS_SYN_RCVD state. 16437 */ 16438 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16439 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16440 "in SYN_RCVD", 16441 tcp, tcp->tcp_snxt, 16442 tcp->tcp_rnxt, TH_RST | TH_ACK); 16443 } 16444 (void) tcp_clean_death(tcp, 16445 tcp->tcp_client_errno ? 16446 tcp->tcp_client_errno : ETIMEDOUT, 25); 16447 return; 16448 } else { 16449 /* 16450 * Set tcp_ms_we_have_waited to second_threshold 16451 * so that in next timeout, we will do the above 16452 * check (lbolt - tcp_last_recv_time). This is 16453 * also to avoid overflow. 16454 * 16455 * We don't need to decrement tcp_timer_backoff 16456 * to avoid overflow because it will be decremented 16457 * later if new timeout value is greater than 16458 * tcp_rexmit_interval_max. In the case when 16459 * tcp_rexmit_interval_max is greater than 16460 * second_threshold, it means that we will wait 16461 * longer than second_threshold to send the next 16462 * window probe. 16463 */ 16464 tcp->tcp_ms_we_have_waited = second_threshold; 16465 } 16466 } else if (ms > first_threshold) { 16467 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16468 tcp->tcp_xmit_head != NULL) { 16469 tcp->tcp_xmit_head = 16470 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16471 } 16472 /* 16473 * We have been retransmitting for too long... The RTT 16474 * we calculated is probably incorrect. Reinitialize it. 16475 * Need to compensate for 0 tcp_rtt_sa. Reset 16476 * tcp_rtt_update so that we won't accidentally cache a 16477 * bad value. But only do this if this is not a zero 16478 * window probe. 16479 */ 16480 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16481 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16482 (tcp->tcp_rtt_sa >> 5); 16483 tcp->tcp_rtt_sa = 0; 16484 tcp_ip_notify(tcp); 16485 tcp->tcp_rtt_update = 0; 16486 } 16487 } 16488 tcp->tcp_timer_backoff++; 16489 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16490 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16491 tcps->tcps_rexmit_interval_min) { 16492 /* 16493 * This means the original RTO is tcp_rexmit_interval_min. 16494 * So we will use tcp_rexmit_interval_min as the RTO value 16495 * and do the backoff. 16496 */ 16497 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16498 } else { 16499 ms <<= tcp->tcp_timer_backoff; 16500 } 16501 if (ms > tcps->tcps_rexmit_interval_max) { 16502 ms = tcps->tcps_rexmit_interval_max; 16503 /* 16504 * ms is at max, decrement tcp_timer_backoff to avoid 16505 * overflow. 16506 */ 16507 tcp->tcp_timer_backoff--; 16508 } 16509 tcp->tcp_ms_we_have_waited += ms; 16510 if (tcp->tcp_zero_win_probe == 0) { 16511 tcp->tcp_rto = ms; 16512 } 16513 TCP_TIMER_RESTART(tcp, ms); 16514 /* 16515 * This is after a timeout and tcp_rto is backed off. Set 16516 * tcp_set_timer to 1 so that next time RTO is updated, we will 16517 * restart the timer with a correct value. 16518 */ 16519 tcp->tcp_set_timer = 1; 16520 mss = tcp->tcp_snxt - tcp->tcp_suna; 16521 if (mss > tcp->tcp_mss) 16522 mss = tcp->tcp_mss; 16523 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16524 mss = tcp->tcp_swnd; 16525 16526 if ((mp = tcp->tcp_xmit_head) != NULL) 16527 mp->b_prev = (mblk_t *)lbolt; 16528 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16529 B_TRUE); 16530 16531 /* 16532 * When slow start after retransmission begins, start with 16533 * this seq no. tcp_rexmit_max marks the end of special slow 16534 * start phase. tcp_snd_burst controls how many segments 16535 * can be sent because of an ack. 16536 */ 16537 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16538 tcp->tcp_snd_burst = TCP_CWND_SS; 16539 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16540 (tcp->tcp_unsent == 0)) { 16541 tcp->tcp_rexmit_max = tcp->tcp_fss; 16542 } else { 16543 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16544 } 16545 tcp->tcp_rexmit = B_TRUE; 16546 tcp->tcp_dupack_cnt = 0; 16547 16548 /* 16549 * Remove all rexmit SACK blk to start from fresh. 16550 */ 16551 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16552 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16553 tcp->tcp_num_notsack_blk = 0; 16554 tcp->tcp_cnt_notsack_list = 0; 16555 } 16556 if (mp == NULL) { 16557 return; 16558 } 16559 /* 16560 * Attach credentials to retransmitted initial SYNs. 16561 * In theory we should use the credentials from the connect() 16562 * call to ensure that getpeerucred() on the peer will be correct. 16563 * But we assume that SYN's are not dropped for loopback connections. 16564 */ 16565 if (tcp->tcp_state == TCPS_SYN_SENT) { 16566 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid); 16567 } 16568 16569 tcp->tcp_csuna = tcp->tcp_snxt; 16570 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16571 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16572 tcp_send_data(tcp, tcp->tcp_wq, mp); 16573 16574 } 16575 16576 static int 16577 tcp_do_unbind(conn_t *connp) 16578 { 16579 tcp_t *tcp = connp->conn_tcp; 16580 int error = 0; 16581 16582 switch (tcp->tcp_state) { 16583 case TCPS_BOUND: 16584 case TCPS_LISTEN: 16585 break; 16586 default: 16587 return (-TOUTSTATE); 16588 } 16589 16590 /* 16591 * Need to clean up all the eagers since after the unbind, segments 16592 * will no longer be delivered to this listener stream. 16593 */ 16594 mutex_enter(&tcp->tcp_eager_lock); 16595 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16596 tcp_eager_cleanup(tcp, 0); 16597 } 16598 mutex_exit(&tcp->tcp_eager_lock); 16599 16600 if (tcp->tcp_ipversion == IPV4_VERSION) { 16601 tcp->tcp_ipha->ipha_src = 0; 16602 } else { 16603 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16604 } 16605 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16606 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16607 tcp_bind_hash_remove(tcp); 16608 tcp->tcp_state = TCPS_IDLE; 16609 tcp->tcp_mdt = B_FALSE; 16610 16611 connp = tcp->tcp_connp; 16612 connp->conn_mdt_ok = B_FALSE; 16613 ipcl_hash_remove(connp); 16614 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16615 16616 return (error); 16617 } 16618 16619 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16620 static void 16621 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16622 { 16623 int error = tcp_do_unbind(tcp->tcp_connp); 16624 16625 if (error > 0) { 16626 tcp_err_ack(tcp, mp, TSYSERR, error); 16627 } else if (error < 0) { 16628 tcp_err_ack(tcp, mp, -error, 0); 16629 } else { 16630 /* Send M_FLUSH according to TPI */ 16631 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16632 16633 mp = mi_tpi_ok_ack_alloc(mp); 16634 putnext(tcp->tcp_rq, mp); 16635 } 16636 } 16637 16638 /* 16639 * Don't let port fall into the privileged range. 16640 * Since the extra privileged ports can be arbitrary we also 16641 * ensure that we exclude those from consideration. 16642 * tcp_g_epriv_ports is not sorted thus we loop over it until 16643 * there are no changes. 16644 * 16645 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16646 * but instead the code relies on: 16647 * - the fact that the address of the array and its size never changes 16648 * - the atomic assignment of the elements of the array 16649 * 16650 * Returns 0 if there are no more ports available. 16651 * 16652 * TS note: skip multilevel ports. 16653 */ 16654 static in_port_t 16655 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16656 { 16657 int i; 16658 boolean_t restart = B_FALSE; 16659 tcp_stack_t *tcps = tcp->tcp_tcps; 16660 16661 if (random && tcp_random_anon_port != 0) { 16662 (void) random_get_pseudo_bytes((uint8_t *)&port, 16663 sizeof (in_port_t)); 16664 /* 16665 * Unless changed by a sys admin, the smallest anon port 16666 * is 32768 and the largest anon port is 65535. It is 16667 * very likely (50%) for the random port to be smaller 16668 * than the smallest anon port. When that happens, 16669 * add port % (anon port range) to the smallest anon 16670 * port to get the random port. It should fall into the 16671 * valid anon port range. 16672 */ 16673 if (port < tcps->tcps_smallest_anon_port) { 16674 port = tcps->tcps_smallest_anon_port + 16675 port % (tcps->tcps_largest_anon_port - 16676 tcps->tcps_smallest_anon_port); 16677 } 16678 } 16679 16680 retry: 16681 if (port < tcps->tcps_smallest_anon_port) 16682 port = (in_port_t)tcps->tcps_smallest_anon_port; 16683 16684 if (port > tcps->tcps_largest_anon_port) { 16685 if (restart) 16686 return (0); 16687 restart = B_TRUE; 16688 port = (in_port_t)tcps->tcps_smallest_anon_port; 16689 } 16690 16691 if (port < tcps->tcps_smallest_nonpriv_port) 16692 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16693 16694 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16695 if (port == tcps->tcps_g_epriv_ports[i]) { 16696 port++; 16697 /* 16698 * Make sure whether the port is in the 16699 * valid range. 16700 */ 16701 goto retry; 16702 } 16703 } 16704 if (is_system_labeled() && 16705 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16706 IPPROTO_TCP, B_TRUE)) != 0) { 16707 port = i; 16708 goto retry; 16709 } 16710 return (port); 16711 } 16712 16713 /* 16714 * Return the next anonymous port in the privileged port range for 16715 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16716 * downwards. This is the same behavior as documented in the userland 16717 * library call rresvport(3N). 16718 * 16719 * TS note: skip multilevel ports. 16720 */ 16721 static in_port_t 16722 tcp_get_next_priv_port(const tcp_t *tcp) 16723 { 16724 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16725 in_port_t nextport; 16726 boolean_t restart = B_FALSE; 16727 tcp_stack_t *tcps = tcp->tcp_tcps; 16728 retry: 16729 if (next_priv_port < tcps->tcps_min_anonpriv_port || 16730 next_priv_port >= IPPORT_RESERVED) { 16731 next_priv_port = IPPORT_RESERVED - 1; 16732 if (restart) 16733 return (0); 16734 restart = B_TRUE; 16735 } 16736 if (is_system_labeled() && 16737 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16738 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16739 next_priv_port = nextport; 16740 goto retry; 16741 } 16742 return (next_priv_port--); 16743 } 16744 16745 /* The write side r/w procedure. */ 16746 16747 #if CCS_STATS 16748 struct { 16749 struct { 16750 int64_t count, bytes; 16751 } tot, hit; 16752 } wrw_stats; 16753 #endif 16754 16755 /* 16756 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16757 * messages. 16758 */ 16759 /* ARGSUSED */ 16760 static void 16761 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16762 { 16763 conn_t *connp = (conn_t *)arg; 16764 tcp_t *tcp = connp->conn_tcp; 16765 queue_t *q = tcp->tcp_wq; 16766 16767 ASSERT(DB_TYPE(mp) != M_IOCTL); 16768 /* 16769 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16770 * Once the close starts, streamhead and sockfs will not let any data 16771 * packets come down (close ensures that there are no threads using the 16772 * queue and no new threads will come down) but since qprocsoff() 16773 * hasn't happened yet, a M_FLUSH or some non data message might 16774 * get reflected back (in response to our own FLUSHRW) and get 16775 * processed after tcp_close() is done. The conn would still be valid 16776 * because a ref would have added but we need to check the state 16777 * before actually processing the packet. 16778 */ 16779 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16780 freemsg(mp); 16781 return; 16782 } 16783 16784 switch (DB_TYPE(mp)) { 16785 case M_IOCDATA: 16786 tcp_wput_iocdata(tcp, mp); 16787 break; 16788 case M_FLUSH: 16789 tcp_wput_flush(tcp, mp); 16790 break; 16791 default: 16792 CALL_IP_WPUT(connp, q, mp); 16793 break; 16794 } 16795 } 16796 16797 /* 16798 * The TCP fast path write put procedure. 16799 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16800 */ 16801 /* ARGSUSED */ 16802 void 16803 tcp_output(void *arg, mblk_t *mp, void *arg2) 16804 { 16805 int len; 16806 int hdrlen; 16807 int plen; 16808 mblk_t *mp1; 16809 uchar_t *rptr; 16810 uint32_t snxt; 16811 tcph_t *tcph; 16812 struct datab *db; 16813 uint32_t suna; 16814 uint32_t mss; 16815 ipaddr_t *dst; 16816 ipaddr_t *src; 16817 uint32_t sum; 16818 int usable; 16819 conn_t *connp = (conn_t *)arg; 16820 tcp_t *tcp = connp->conn_tcp; 16821 uint32_t msize; 16822 tcp_stack_t *tcps = tcp->tcp_tcps; 16823 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 16824 16825 /* 16826 * Try and ASSERT the minimum possible references on the 16827 * conn early enough. Since we are executing on write side, 16828 * the connection is obviously not detached and that means 16829 * there is a ref each for TCP and IP. Since we are behind 16830 * the squeue, the minimum references needed are 3. If the 16831 * conn is in classifier hash list, there should be an 16832 * extra ref for that (we check both the possibilities). 16833 */ 16834 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16835 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16836 16837 ASSERT(DB_TYPE(mp) == M_DATA); 16838 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 16839 16840 mutex_enter(&tcp->tcp_non_sq_lock); 16841 tcp->tcp_squeue_bytes -= msize; 16842 mutex_exit(&tcp->tcp_non_sq_lock); 16843 16844 /* Check to see if this connection wants to be re-fused. */ 16845 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 16846 if (tcp->tcp_ipversion == IPV4_VERSION) { 16847 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 16848 &tcp->tcp_saved_tcph); 16849 } else { 16850 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 16851 &tcp->tcp_saved_tcph); 16852 } 16853 } 16854 /* Bypass tcp protocol for fused tcp loopback */ 16855 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 16856 return; 16857 16858 mss = tcp->tcp_mss; 16859 if (tcp->tcp_xmit_zc_clean) 16860 mp = tcp_zcopy_backoff(tcp, mp, 0); 16861 16862 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16863 len = (int)(mp->b_wptr - mp->b_rptr); 16864 16865 /* 16866 * Criteria for fast path: 16867 * 16868 * 1. no unsent data 16869 * 2. single mblk in request 16870 * 3. connection established 16871 * 4. data in mblk 16872 * 5. len <= mss 16873 * 6. no tcp_valid bits 16874 */ 16875 if ((tcp->tcp_unsent != 0) || 16876 (tcp->tcp_cork) || 16877 (mp->b_cont != NULL) || 16878 (tcp->tcp_state != TCPS_ESTABLISHED) || 16879 (len == 0) || 16880 (len > mss) || 16881 (tcp->tcp_valid_bits != 0)) { 16882 tcp_wput_data(tcp, mp, B_FALSE); 16883 return; 16884 } 16885 16886 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16887 ASSERT(tcp->tcp_fin_sent == 0); 16888 16889 /* queue new packet onto retransmission queue */ 16890 if (tcp->tcp_xmit_head == NULL) { 16891 tcp->tcp_xmit_head = mp; 16892 } else { 16893 tcp->tcp_xmit_last->b_cont = mp; 16894 } 16895 tcp->tcp_xmit_last = mp; 16896 tcp->tcp_xmit_tail = mp; 16897 16898 /* find out how much we can send */ 16899 /* BEGIN CSTYLED */ 16900 /* 16901 * un-acked usable 16902 * |--------------|-----------------| 16903 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16904 */ 16905 /* END CSTYLED */ 16906 16907 /* start sending from tcp_snxt */ 16908 snxt = tcp->tcp_snxt; 16909 16910 /* 16911 * Check to see if this connection has been idled for some 16912 * time and no ACK is expected. If it is, we need to slow 16913 * start again to get back the connection's "self-clock" as 16914 * described in VJ's paper. 16915 * 16916 * Refer to the comment in tcp_mss_set() for the calculation 16917 * of tcp_cwnd after idle. 16918 */ 16919 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16920 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16921 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 16922 } 16923 16924 usable = tcp->tcp_swnd; /* tcp window size */ 16925 if (usable > tcp->tcp_cwnd) 16926 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16927 usable -= snxt; /* subtract stuff already sent */ 16928 suna = tcp->tcp_suna; 16929 usable += suna; 16930 /* usable can be < 0 if the congestion window is smaller */ 16931 if (len > usable) { 16932 /* Can't send complete M_DATA in one shot */ 16933 goto slow; 16934 } 16935 16936 mutex_enter(&tcp->tcp_non_sq_lock); 16937 if (tcp->tcp_flow_stopped && 16938 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16939 tcp_clrqfull(tcp); 16940 } 16941 mutex_exit(&tcp->tcp_non_sq_lock); 16942 16943 /* 16944 * determine if anything to send (Nagle). 16945 * 16946 * 1. len < tcp_mss (i.e. small) 16947 * 2. unacknowledged data present 16948 * 3. len < nagle limit 16949 * 4. last packet sent < nagle limit (previous packet sent) 16950 */ 16951 if ((len < mss) && (snxt != suna) && 16952 (len < (int)tcp->tcp_naglim) && 16953 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16954 /* 16955 * This was the first unsent packet and normally 16956 * mss < xmit_hiwater so there is no need to worry 16957 * about flow control. The next packet will go 16958 * through the flow control check in tcp_wput_data(). 16959 */ 16960 /* leftover work from above */ 16961 tcp->tcp_unsent = len; 16962 tcp->tcp_xmit_tail_unsent = len; 16963 16964 return; 16965 } 16966 16967 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 16968 16969 if (snxt == suna) { 16970 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16971 } 16972 16973 /* we have always sent something */ 16974 tcp->tcp_rack_cnt = 0; 16975 16976 tcp->tcp_snxt = snxt + len; 16977 tcp->tcp_rack = tcp->tcp_rnxt; 16978 16979 if ((mp1 = dupb(mp)) == 0) 16980 goto no_memory; 16981 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 16982 mp->b_next = (mblk_t *)(uintptr_t)snxt; 16983 16984 /* adjust tcp header information */ 16985 tcph = tcp->tcp_tcph; 16986 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 16987 16988 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 16989 sum = (sum >> 16) + (sum & 0xFFFF); 16990 U16_TO_ABE16(sum, tcph->th_sum); 16991 16992 U32_TO_ABE32(snxt, tcph->th_seq); 16993 16994 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16995 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16996 BUMP_LOCAL(tcp->tcp_obsegs); 16997 16998 /* Update the latest receive window size in TCP header. */ 16999 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17000 tcph->th_win); 17001 17002 tcp->tcp_last_sent_len = (ushort_t)len; 17003 17004 plen = len + tcp->tcp_hdr_len; 17005 17006 if (tcp->tcp_ipversion == IPV4_VERSION) { 17007 tcp->tcp_ipha->ipha_length = htons(plen); 17008 } else { 17009 tcp->tcp_ip6h->ip6_plen = htons(plen - 17010 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17011 } 17012 17013 /* see if we need to allocate a mblk for the headers */ 17014 hdrlen = tcp->tcp_hdr_len; 17015 rptr = mp1->b_rptr - hdrlen; 17016 db = mp1->b_datap; 17017 if ((db->db_ref != 2) || rptr < db->db_base || 17018 (!OK_32PTR(rptr))) { 17019 /* NOTE: we assume allocb returns an OK_32PTR */ 17020 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17021 tcps->tcps_wroff_xtra, BPRI_MED); 17022 if (!mp) { 17023 freemsg(mp1); 17024 goto no_memory; 17025 } 17026 mp->b_cont = mp1; 17027 mp1 = mp; 17028 /* Leave room for Link Level header */ 17029 /* hdrlen = tcp->tcp_hdr_len; */ 17030 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17031 mp1->b_wptr = &rptr[hdrlen]; 17032 } 17033 mp1->b_rptr = rptr; 17034 17035 /* Fill in the timestamp option. */ 17036 if (tcp->tcp_snd_ts_ok) { 17037 U32_TO_BE32((uint32_t)lbolt, 17038 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17039 U32_TO_BE32(tcp->tcp_ts_recent, 17040 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17041 } else { 17042 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17043 } 17044 17045 /* copy header into outgoing packet */ 17046 dst = (ipaddr_t *)rptr; 17047 src = (ipaddr_t *)tcp->tcp_iphc; 17048 dst[0] = src[0]; 17049 dst[1] = src[1]; 17050 dst[2] = src[2]; 17051 dst[3] = src[3]; 17052 dst[4] = src[4]; 17053 dst[5] = src[5]; 17054 dst[6] = src[6]; 17055 dst[7] = src[7]; 17056 dst[8] = src[8]; 17057 dst[9] = src[9]; 17058 if (hdrlen -= 40) { 17059 hdrlen >>= 2; 17060 dst += 10; 17061 src += 10; 17062 do { 17063 *dst++ = *src++; 17064 } while (--hdrlen); 17065 } 17066 17067 /* 17068 * Set the ECN info in the TCP header. Note that this 17069 * is not the template header. 17070 */ 17071 if (tcp->tcp_ecn_ok) { 17072 SET_ECT(tcp, rptr); 17073 17074 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17075 if (tcp->tcp_ecn_echo_on) 17076 tcph->th_flags[0] |= TH_ECE; 17077 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17078 tcph->th_flags[0] |= TH_CWR; 17079 tcp->tcp_ecn_cwr_sent = B_TRUE; 17080 } 17081 } 17082 17083 if (tcp->tcp_ip_forward_progress) { 17084 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17085 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17086 tcp->tcp_ip_forward_progress = B_FALSE; 17087 } 17088 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17089 return; 17090 17091 /* 17092 * If we ran out of memory, we pretend to have sent the packet 17093 * and that it was lost on the wire. 17094 */ 17095 no_memory: 17096 return; 17097 17098 slow: 17099 /* leftover work from above */ 17100 tcp->tcp_unsent = len; 17101 tcp->tcp_xmit_tail_unsent = len; 17102 tcp_wput_data(tcp, NULL, B_FALSE); 17103 } 17104 17105 /* ARGSUSED */ 17106 void 17107 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17108 { 17109 conn_t *connp = (conn_t *)arg; 17110 tcp_t *tcp = connp->conn_tcp; 17111 queue_t *q = tcp->tcp_rq; 17112 struct tcp_options *tcpopt; 17113 tcp_stack_t *tcps = tcp->tcp_tcps; 17114 17115 /* socket options */ 17116 uint_t sopp_flags; 17117 ssize_t sopp_rxhiwat; 17118 ssize_t sopp_maxblk; 17119 ushort_t sopp_wroff; 17120 ushort_t sopp_tail; 17121 ushort_t sopp_copyopt; 17122 17123 tcpopt = (struct tcp_options *)mp->b_rptr; 17124 17125 /* 17126 * Drop the eager's ref on the listener, that was placed when 17127 * this eager began life in tcp_conn_request. 17128 */ 17129 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17130 if (IPCL_IS_NONSTR(connp)) { 17131 /* Safe to free conn_ind message */ 17132 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17133 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17134 } 17135 17136 tcp->tcp_detached = B_FALSE; 17137 17138 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17139 /* 17140 * Someone blewoff the eager before we could finish 17141 * the accept. 17142 * 17143 * The only reason eager exists it because we put in 17144 * a ref on it when conn ind went up. We need to send 17145 * a disconnect indication up while the last reference 17146 * on the eager will be dropped by the squeue when we 17147 * return. 17148 */ 17149 ASSERT(tcp->tcp_listener == NULL); 17150 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17151 if (IPCL_IS_NONSTR(connp)) { 17152 ASSERT(tcp->tcp_issocket); 17153 (*connp->conn_upcalls->su_disconnected)( 17154 connp->conn_upper_handle, tcp->tcp_connid, 17155 ECONNREFUSED); 17156 freemsg(mp); 17157 } else { 17158 struct T_discon_ind *tdi; 17159 17160 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17161 /* 17162 * Let us reuse the incoming mblk to avoid 17163 * memory allocation failure problems. We know 17164 * that the size of the incoming mblk i.e. 17165 * stroptions is greater than sizeof 17166 * T_discon_ind. So the reallocb below can't 17167 * fail. 17168 */ 17169 freemsg(mp->b_cont); 17170 mp->b_cont = NULL; 17171 ASSERT(DB_REF(mp) == 1); 17172 mp = reallocb(mp, sizeof (struct T_discon_ind), 17173 B_FALSE); 17174 ASSERT(mp != NULL); 17175 DB_TYPE(mp) = M_PROTO; 17176 ((union T_primitives *)mp->b_rptr)->type = 17177 T_DISCON_IND; 17178 tdi = (struct T_discon_ind *)mp->b_rptr; 17179 if (tcp->tcp_issocket) { 17180 tdi->DISCON_reason = ECONNREFUSED; 17181 tdi->SEQ_number = 0; 17182 } else { 17183 tdi->DISCON_reason = ENOPROTOOPT; 17184 tdi->SEQ_number = 17185 tcp->tcp_conn_req_seqnum; 17186 } 17187 mp->b_wptr = mp->b_rptr + 17188 sizeof (struct T_discon_ind); 17189 putnext(q, mp); 17190 return; 17191 } 17192 } 17193 if (tcp->tcp_hard_binding) { 17194 tcp->tcp_hard_binding = B_FALSE; 17195 tcp->tcp_hard_bound = B_TRUE; 17196 } 17197 return; 17198 } 17199 17200 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17201 int boundif = tcpopt->to_boundif; 17202 uint_t len = sizeof (int); 17203 17204 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17205 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17206 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17207 } 17208 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17209 uint_t on = 1; 17210 uint_t len = sizeof (uint_t); 17211 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17212 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17213 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17214 } 17215 17216 /* 17217 * For a loopback connection with tcp_direct_sockfs on, note that 17218 * we don't have to protect tcp_rcv_list yet because synchronous 17219 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17220 * possibly race with us. 17221 */ 17222 17223 /* 17224 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17225 * properly. This is the first time we know of the acceptor' 17226 * queue. So we do it here. 17227 * 17228 * XXX 17229 */ 17230 if (tcp->tcp_rcv_list == NULL) { 17231 /* 17232 * Recv queue is empty, tcp_rwnd should not have changed. 17233 * That means it should be equal to the listener's tcp_rwnd. 17234 */ 17235 if (!IPCL_IS_NONSTR(connp)) 17236 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17237 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17238 } else { 17239 #ifdef DEBUG 17240 mblk_t *tmp; 17241 mblk_t *mp1; 17242 uint_t cnt = 0; 17243 17244 mp1 = tcp->tcp_rcv_list; 17245 while ((tmp = mp1) != NULL) { 17246 mp1 = tmp->b_next; 17247 cnt += msgdsize(tmp); 17248 } 17249 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17250 #endif 17251 /* There is some data, add them back to get the max. */ 17252 if (!IPCL_IS_NONSTR(connp)) 17253 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17254 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17255 } 17256 /* 17257 * This is the first time we run on the correct 17258 * queue after tcp_accept. So fix all the q parameters 17259 * here. 17260 */ 17261 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17262 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17263 17264 /* 17265 * Record the stream head's high water mark for this endpoint; 17266 * this is used for flow-control purposes. 17267 */ 17268 sopp_rxhiwat = tcp->tcp_fused ? 17269 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17270 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17271 17272 /* 17273 * Determine what write offset value to use depending on SACK and 17274 * whether the endpoint is fused or not. 17275 */ 17276 if (tcp->tcp_fused) { 17277 ASSERT(tcp->tcp_loopback); 17278 ASSERT(tcp->tcp_loopback_peer != NULL); 17279 /* 17280 * For fused tcp loopback, set the stream head's write 17281 * offset value to zero since we won't be needing any room 17282 * for TCP/IP headers. This would also improve performance 17283 * since it would reduce the amount of work done by kmem. 17284 * Non-fused tcp loopback case is handled separately below. 17285 */ 17286 sopp_wroff = 0; 17287 /* 17288 * Update the peer's transmit parameters according to 17289 * our recently calculated high water mark value. 17290 */ 17291 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17292 } else if (tcp->tcp_snd_sack_ok) { 17293 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17294 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17295 } else { 17296 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17297 tcps->tcps_wroff_xtra); 17298 } 17299 17300 /* 17301 * If this is endpoint is handling SSL, then reserve extra 17302 * offset and space at the end. 17303 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17304 * overriding the previous setting. The extra cost of signing and 17305 * encrypting multiple MSS-size records (12 of them with Ethernet), 17306 * instead of a single contiguous one by the stream head 17307 * largely outweighs the statistical reduction of ACKs, when 17308 * applicable. The peer will also save on decryption and verification 17309 * costs. 17310 */ 17311 if (tcp->tcp_kssl_ctx != NULL) { 17312 sopp_wroff += SSL3_WROFFSET; 17313 17314 sopp_flags |= SOCKOPT_TAIL; 17315 sopp_tail = SSL3_MAX_TAIL_LEN; 17316 17317 sopp_flags |= SOCKOPT_ZCOPY; 17318 sopp_copyopt = ZCVMUNSAFE; 17319 17320 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17321 } 17322 17323 /* Send the options up */ 17324 if (IPCL_IS_NONSTR(connp)) { 17325 struct sock_proto_props sopp; 17326 17327 sopp.sopp_flags = sopp_flags; 17328 sopp.sopp_wroff = sopp_wroff; 17329 sopp.sopp_maxblk = sopp_maxblk; 17330 sopp.sopp_rxhiwat = sopp_rxhiwat; 17331 if (sopp_flags & SOCKOPT_TAIL) { 17332 ASSERT(tcp->tcp_kssl_ctx != NULL); 17333 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17334 sopp.sopp_tail = sopp_tail; 17335 sopp.sopp_zcopyflag = sopp_copyopt; 17336 } 17337 (*connp->conn_upcalls->su_set_proto_props) 17338 (connp->conn_upper_handle, &sopp); 17339 } else { 17340 struct stroptions *stropt; 17341 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17342 if (stropt_mp == NULL) { 17343 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17344 return; 17345 } 17346 DB_TYPE(stropt_mp) = M_SETOPTS; 17347 stropt = (struct stroptions *)stropt_mp->b_rptr; 17348 stropt_mp->b_wptr += sizeof (struct stroptions); 17349 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 17350 stropt->so_hiwat = sopp_rxhiwat; 17351 stropt->so_wroff = sopp_wroff; 17352 stropt->so_maxblk = sopp_maxblk; 17353 17354 if (sopp_flags & SOCKOPT_TAIL) { 17355 ASSERT(tcp->tcp_kssl_ctx != NULL); 17356 17357 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17358 stropt->so_tail = sopp_tail; 17359 stropt->so_copyopt = sopp_copyopt; 17360 } 17361 17362 /* Send the options up */ 17363 putnext(q, stropt_mp); 17364 } 17365 17366 freemsg(mp); 17367 /* 17368 * Pass up any data and/or a fin that has been received. 17369 * 17370 * Adjust receive window in case it had decreased 17371 * (because there is data <=> tcp_rcv_list != NULL) 17372 * while the connection was detached. Note that 17373 * in case the eager was flow-controlled, w/o this 17374 * code, the rwnd may never open up again! 17375 */ 17376 if (tcp->tcp_rcv_list != NULL) { 17377 if (IPCL_IS_NONSTR(connp)) { 17378 mblk_t *mp; 17379 int space_left; 17380 int error; 17381 boolean_t push = B_TRUE; 17382 17383 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17384 (connp->conn_upper_handle, NULL, 0, 0, &error, 17385 &push) >= 0) { 17386 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17387 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17388 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17389 tcp_xmit_ctl(NULL, 17390 tcp, (tcp->tcp_swnd == 0) ? 17391 tcp->tcp_suna : tcp->tcp_snxt, 17392 tcp->tcp_rnxt, TH_ACK); 17393 } 17394 } 17395 while ((mp = tcp->tcp_rcv_list) != NULL) { 17396 push = B_TRUE; 17397 tcp->tcp_rcv_list = mp->b_next; 17398 mp->b_next = NULL; 17399 space_left = (*connp->conn_upcalls->su_recv) 17400 (connp->conn_upper_handle, mp, msgdsize(mp), 17401 0, &error, &push); 17402 if (space_left < 0) { 17403 /* 17404 * We should never be in middle of a 17405 * fallback, the squeue guarantees that. 17406 */ 17407 ASSERT(error != EOPNOTSUPP); 17408 } 17409 } 17410 tcp->tcp_rcv_last_head = NULL; 17411 tcp->tcp_rcv_last_tail = NULL; 17412 tcp->tcp_rcv_cnt = 0; 17413 } else { 17414 /* We drain directly in case of fused tcp loopback */ 17415 17416 if (!tcp->tcp_fused && canputnext(q)) { 17417 tcp->tcp_rwnd = q->q_hiwat; 17418 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17419 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17420 tcp_xmit_ctl(NULL, 17421 tcp, (tcp->tcp_swnd == 0) ? 17422 tcp->tcp_suna : tcp->tcp_snxt, 17423 tcp->tcp_rnxt, TH_ACK); 17424 } 17425 } 17426 17427 (void) tcp_rcv_drain(tcp); 17428 } 17429 17430 /* 17431 * For fused tcp loopback, back-enable peer endpoint 17432 * if it's currently flow-controlled. 17433 */ 17434 if (tcp->tcp_fused) { 17435 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17436 17437 ASSERT(peer_tcp != NULL); 17438 ASSERT(peer_tcp->tcp_fused); 17439 /* 17440 * In order to change the peer's tcp_flow_stopped, 17441 * we need to take locks for both end points. The 17442 * highest address is taken first. 17443 */ 17444 if (peer_tcp > tcp) { 17445 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17446 mutex_enter(&tcp->tcp_non_sq_lock); 17447 } else { 17448 mutex_enter(&tcp->tcp_non_sq_lock); 17449 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17450 } 17451 if (peer_tcp->tcp_flow_stopped) { 17452 tcp_clrqfull(peer_tcp); 17453 TCP_STAT(tcps, tcp_fusion_backenabled); 17454 } 17455 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17456 mutex_exit(&tcp->tcp_non_sq_lock); 17457 } 17458 } 17459 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17460 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17461 tcp->tcp_ordrel_done = B_TRUE; 17462 if (IPCL_IS_NONSTR(connp)) { 17463 ASSERT(tcp->tcp_ordrel_mp == NULL); 17464 (*connp->conn_upcalls->su_opctl)( 17465 connp->conn_upper_handle, 17466 SOCK_OPCTL_SHUT_RECV, 0); 17467 } else { 17468 mp = tcp->tcp_ordrel_mp; 17469 tcp->tcp_ordrel_mp = NULL; 17470 putnext(q, mp); 17471 } 17472 } 17473 if (tcp->tcp_hard_binding) { 17474 tcp->tcp_hard_binding = B_FALSE; 17475 tcp->tcp_hard_bound = B_TRUE; 17476 } 17477 17478 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 17479 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 17480 tcp->tcp_loopback_peer != NULL && 17481 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 17482 tcp_fuse_syncstr_enable_pair(tcp); 17483 } 17484 17485 if (tcp->tcp_ka_enabled) { 17486 tcp->tcp_ka_last_intrvl = 0; 17487 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17488 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17489 } 17490 17491 /* 17492 * At this point, eager is fully established and will 17493 * have the following references - 17494 * 17495 * 2 references for connection to exist (1 for TCP and 1 for IP). 17496 * 1 reference for the squeue which will be dropped by the squeue as 17497 * soon as this function returns. 17498 * There will be 1 additonal reference for being in classifier 17499 * hash list provided something bad hasn't happened. 17500 */ 17501 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17502 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17503 } 17504 17505 /* 17506 * The function called through squeue to get behind listener's perimeter to 17507 * send a deffered conn_ind. 17508 */ 17509 /* ARGSUSED */ 17510 void 17511 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17512 { 17513 conn_t *connp = (conn_t *)arg; 17514 tcp_t *listener = connp->conn_tcp; 17515 struct T_conn_ind *conn_ind; 17516 tcp_t *tcp; 17517 17518 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17519 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17520 conn_ind->OPT_length); 17521 17522 if (listener->tcp_state == TCPS_CLOSED || 17523 TCP_IS_DETACHED(listener)) { 17524 /* 17525 * If listener has closed, it would have caused a 17526 * a cleanup/blowoff to happen for the eager. 17527 * 17528 * We need to drop the ref on eager that was put 17529 * tcp_rput_data() before trying to send the conn_ind 17530 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17531 * and tcp_wput_accept() is sending this deferred conn_ind but 17532 * listener is closed so we drop the ref. 17533 */ 17534 CONN_DEC_REF(tcp->tcp_connp); 17535 freemsg(mp); 17536 return; 17537 } 17538 17539 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17540 } 17541 17542 /* ARGSUSED */ 17543 static int 17544 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17545 { 17546 tcp_t *listener, *eager; 17547 mblk_t *opt_mp; 17548 struct tcp_options *tcpopt; 17549 17550 listener = lconnp->conn_tcp; 17551 ASSERT(listener->tcp_state == TCPS_LISTEN); 17552 eager = econnp->conn_tcp; 17553 ASSERT(eager->tcp_listener != NULL); 17554 17555 ASSERT(eager->tcp_rq != NULL); 17556 17557 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17558 if (opt_mp == NULL) { 17559 return (-TPROTO); 17560 } 17561 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17562 eager->tcp_issocket = B_TRUE; 17563 17564 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17565 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17566 ASSERT(econnp->conn_netstack == 17567 listener->tcp_connp->conn_netstack); 17568 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17569 17570 /* Put the ref for IP */ 17571 CONN_INC_REF(econnp); 17572 17573 /* 17574 * We should have minimum of 3 references on the conn 17575 * at this point. One each for TCP and IP and one for 17576 * the T_conn_ind that was sent up when the 3-way handshake 17577 * completed. In the normal case we would also have another 17578 * reference (making a total of 4) for the conn being in the 17579 * classifier hash list. However the eager could have received 17580 * an RST subsequently and tcp_closei_local could have removed 17581 * the eager from the classifier hash list, hence we can't 17582 * assert that reference. 17583 */ 17584 ASSERT(econnp->conn_ref >= 3); 17585 17586 opt_mp->b_datap->db_type = M_SETOPTS; 17587 opt_mp->b_wptr += sizeof (struct tcp_options); 17588 17589 /* 17590 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17591 * from listener to acceptor. 17592 */ 17593 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17594 tcpopt->to_flags = 0; 17595 17596 if (listener->tcp_bound_if != 0) { 17597 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17598 tcpopt->to_boundif = listener->tcp_bound_if; 17599 } 17600 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17601 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17602 } 17603 17604 mutex_enter(&listener->tcp_eager_lock); 17605 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17606 17607 tcp_t *tail; 17608 tcp_t *tcp; 17609 mblk_t *mp1; 17610 17611 tcp = listener->tcp_eager_prev_q0; 17612 /* 17613 * listener->tcp_eager_prev_q0 points to the TAIL of the 17614 * deferred T_conn_ind queue. We need to get to the head 17615 * of the queue in order to send up T_conn_ind the same 17616 * order as how the 3WHS is completed. 17617 */ 17618 while (tcp != listener) { 17619 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17620 !tcp->tcp_kssl_pending) 17621 break; 17622 else 17623 tcp = tcp->tcp_eager_prev_q0; 17624 } 17625 /* None of the pending eagers can be sent up now */ 17626 if (tcp == listener) 17627 goto no_more_eagers; 17628 17629 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17630 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17631 /* Move from q0 to q */ 17632 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17633 listener->tcp_conn_req_cnt_q0--; 17634 listener->tcp_conn_req_cnt_q++; 17635 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17636 tcp->tcp_eager_prev_q0; 17637 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17638 tcp->tcp_eager_next_q0; 17639 tcp->tcp_eager_prev_q0 = NULL; 17640 tcp->tcp_eager_next_q0 = NULL; 17641 tcp->tcp_conn_def_q0 = B_FALSE; 17642 17643 /* Make sure the tcp isn't in the list of droppables */ 17644 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17645 tcp->tcp_eager_prev_drop_q0 == NULL); 17646 17647 /* 17648 * Insert at end of the queue because sockfs sends 17649 * down T_CONN_RES in chronological order. Leaving 17650 * the older conn indications at front of the queue 17651 * helps reducing search time. 17652 */ 17653 tail = listener->tcp_eager_last_q; 17654 if (tail != NULL) { 17655 tail->tcp_eager_next_q = tcp; 17656 } else { 17657 listener->tcp_eager_next_q = tcp; 17658 } 17659 listener->tcp_eager_last_q = tcp; 17660 tcp->tcp_eager_next_q = NULL; 17661 17662 /* Need to get inside the listener perimeter */ 17663 CONN_INC_REF(listener->tcp_connp); 17664 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17665 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17666 SQTAG_TCP_SEND_PENDING); 17667 } 17668 no_more_eagers: 17669 tcp_eager_unlink(eager); 17670 mutex_exit(&listener->tcp_eager_lock); 17671 17672 /* 17673 * At this point, the eager is detached from the listener 17674 * but we still have an extra refs on eager (apart from the 17675 * usual tcp references). The ref was placed in tcp_rput_data 17676 * before sending the conn_ind in tcp_send_conn_ind. 17677 * The ref will be dropped in tcp_accept_finish(). 17678 */ 17679 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 17680 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 17681 return (0); 17682 } 17683 17684 int 17685 tcp_accept(sock_lower_handle_t lproto_handle, 17686 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 17687 cred_t *cr) 17688 { 17689 conn_t *lconnp, *econnp; 17690 tcp_t *listener, *eager; 17691 tcp_stack_t *tcps; 17692 17693 lconnp = (conn_t *)lproto_handle; 17694 listener = lconnp->conn_tcp; 17695 ASSERT(listener->tcp_state == TCPS_LISTEN); 17696 econnp = (conn_t *)eproto_handle; 17697 eager = econnp->conn_tcp; 17698 ASSERT(eager->tcp_listener != NULL); 17699 tcps = eager->tcp_tcps; 17700 17701 /* 17702 * It is OK to manipulate these fields outside the eager's squeue 17703 * because they will not start being used until tcp_accept_finish 17704 * has been called. 17705 */ 17706 ASSERT(lconnp->conn_upper_handle != NULL); 17707 ASSERT(econnp->conn_upper_handle == NULL); 17708 econnp->conn_upper_handle = sock_handle; 17709 econnp->conn_upcalls = lconnp->conn_upcalls; 17710 ASSERT(IPCL_IS_NONSTR(econnp)); 17711 /* 17712 * Create helper stream if it is a non-TPI TCP connection. 17713 */ 17714 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 17715 ip1dbg(("tcp_accept: create of IP helper stream" 17716 " failed\n")); 17717 return (EPROTO); 17718 } 17719 eager->tcp_rq = econnp->conn_rq; 17720 eager->tcp_wq = econnp->conn_wq; 17721 17722 ASSERT(eager->tcp_rq != NULL); 17723 17724 return (tcp_accept_common(lconnp, econnp, cr)); 17725 } 17726 17727 17728 /* 17729 * This is the STREAMS entry point for T_CONN_RES coming down on 17730 * Acceptor STREAM when sockfs listener does accept processing. 17731 * Read the block comment on top of tcp_conn_request(). 17732 */ 17733 void 17734 tcp_tpi_accept(queue_t *q, mblk_t *mp) 17735 { 17736 queue_t *rq = RD(q); 17737 struct T_conn_res *conn_res; 17738 tcp_t *eager; 17739 tcp_t *listener; 17740 struct T_ok_ack *ok; 17741 t_scalar_t PRIM_type; 17742 conn_t *econnp; 17743 cred_t *cr; 17744 17745 ASSERT(DB_TYPE(mp) == M_PROTO); 17746 17747 /* 17748 * All Solaris components should pass a db_credp 17749 * for this TPI message, hence we ASSERT. 17750 * But in case there is some other M_PROTO that looks 17751 * like a TPI message sent by some other kernel 17752 * component, we check and return an error. 17753 */ 17754 cr = msg_getcred(mp, NULL); 17755 ASSERT(cr != NULL); 17756 if (cr == NULL) { 17757 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 17758 if (mp != NULL) 17759 putnext(rq, mp); 17760 return; 17761 } 17762 conn_res = (struct T_conn_res *)mp->b_rptr; 17763 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17764 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17765 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17766 if (mp != NULL) 17767 putnext(rq, mp); 17768 return; 17769 } 17770 switch (conn_res->PRIM_type) { 17771 case O_T_CONN_RES: 17772 case T_CONN_RES: 17773 /* 17774 * We pass up an err ack if allocb fails. This will 17775 * cause sockfs to issue a T_DISCON_REQ which will cause 17776 * tcp_eager_blowoff to be called. sockfs will then call 17777 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17778 * we need to do the allocb up here because we have to 17779 * make sure rq->q_qinfo->qi_qclose still points to the 17780 * correct function (tcp_tpi_close_accept) in case allocb 17781 * fails. 17782 */ 17783 bcopy(mp->b_rptr + conn_res->OPT_offset, 17784 &eager, conn_res->OPT_length); 17785 PRIM_type = conn_res->PRIM_type; 17786 mp->b_datap->db_type = M_PCPROTO; 17787 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17788 ok = (struct T_ok_ack *)mp->b_rptr; 17789 ok->PRIM_type = T_OK_ACK; 17790 ok->CORRECT_prim = PRIM_type; 17791 econnp = eager->tcp_connp; 17792 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 17793 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 17794 eager->tcp_rq = rq; 17795 eager->tcp_wq = q; 17796 rq->q_ptr = econnp; 17797 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 17798 q->q_ptr = econnp; 17799 q->q_qinfo = &tcp_winit; 17800 listener = eager->tcp_listener; 17801 17802 if (tcp_accept_common(listener->tcp_connp, 17803 econnp, cr) < 0) { 17804 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17805 if (mp != NULL) 17806 putnext(rq, mp); 17807 return; 17808 } 17809 17810 /* 17811 * Send the new local address also up to sockfs. There 17812 * should already be enough space in the mp that came 17813 * down from soaccept(). 17814 */ 17815 if (eager->tcp_family == AF_INET) { 17816 sin_t *sin; 17817 17818 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17819 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17820 sin = (sin_t *)mp->b_wptr; 17821 mp->b_wptr += sizeof (sin_t); 17822 sin->sin_family = AF_INET; 17823 sin->sin_port = eager->tcp_lport; 17824 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17825 } else { 17826 sin6_t *sin6; 17827 17828 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17829 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17830 sin6 = (sin6_t *)mp->b_wptr; 17831 mp->b_wptr += sizeof (sin6_t); 17832 sin6->sin6_family = AF_INET6; 17833 sin6->sin6_port = eager->tcp_lport; 17834 if (eager->tcp_ipversion == IPV4_VERSION) { 17835 sin6->sin6_flowinfo = 0; 17836 IN6_IPADDR_TO_V4MAPPED( 17837 eager->tcp_ipha->ipha_src, 17838 &sin6->sin6_addr); 17839 } else { 17840 ASSERT(eager->tcp_ip6h != NULL); 17841 sin6->sin6_flowinfo = 17842 eager->tcp_ip6h->ip6_vcf & 17843 ~IPV6_VERS_AND_FLOW_MASK; 17844 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17845 } 17846 sin6->sin6_scope_id = 0; 17847 sin6->__sin6_src_id = 0; 17848 } 17849 17850 putnext(rq, mp); 17851 return; 17852 default: 17853 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17854 if (mp != NULL) 17855 putnext(rq, mp); 17856 return; 17857 } 17858 } 17859 17860 static int 17861 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17862 { 17863 sin_t *sin = (sin_t *)sa; 17864 sin6_t *sin6 = (sin6_t *)sa; 17865 17866 switch (tcp->tcp_family) { 17867 case AF_INET: 17868 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17869 17870 if (*salenp < sizeof (sin_t)) 17871 return (EINVAL); 17872 17873 *sin = sin_null; 17874 sin->sin_family = AF_INET; 17875 if (tcp->tcp_state >= TCPS_BOUND) { 17876 sin->sin_port = tcp->tcp_lport; 17877 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 17878 } 17879 *salenp = sizeof (sin_t); 17880 break; 17881 17882 case AF_INET6: 17883 if (*salenp < sizeof (sin6_t)) 17884 return (EINVAL); 17885 17886 *sin6 = sin6_null; 17887 sin6->sin6_family = AF_INET6; 17888 if (tcp->tcp_state >= TCPS_BOUND) { 17889 sin6->sin6_port = tcp->tcp_lport; 17890 if (tcp->tcp_ipversion == IPV4_VERSION) { 17891 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 17892 &sin6->sin6_addr); 17893 } else { 17894 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 17895 } 17896 } 17897 *salenp = sizeof (sin6_t); 17898 break; 17899 } 17900 17901 return (0); 17902 } 17903 17904 static int 17905 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17906 { 17907 sin_t *sin = (sin_t *)sa; 17908 sin6_t *sin6 = (sin6_t *)sa; 17909 17910 if (tcp->tcp_state < TCPS_SYN_RCVD) 17911 return (ENOTCONN); 17912 17913 switch (tcp->tcp_family) { 17914 case AF_INET: 17915 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17916 17917 if (*salenp < sizeof (sin_t)) 17918 return (EINVAL); 17919 17920 *sin = sin_null; 17921 sin->sin_family = AF_INET; 17922 sin->sin_port = tcp->tcp_fport; 17923 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 17924 sin->sin_addr.s_addr); 17925 *salenp = sizeof (sin_t); 17926 break; 17927 17928 case AF_INET6: 17929 if (*salenp < sizeof (sin6_t)) 17930 return (EINVAL); 17931 17932 *sin6 = sin6_null; 17933 sin6->sin6_family = AF_INET6; 17934 sin6->sin6_port = tcp->tcp_fport; 17935 sin6->sin6_addr = tcp->tcp_remote_v6; 17936 if (tcp->tcp_ipversion == IPV6_VERSION) { 17937 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 17938 ~IPV6_VERS_AND_FLOW_MASK; 17939 } 17940 *salenp = sizeof (sin6_t); 17941 break; 17942 } 17943 17944 return (0); 17945 } 17946 17947 /* 17948 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 17949 */ 17950 static void 17951 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 17952 { 17953 void *data; 17954 mblk_t *datamp = mp->b_cont; 17955 tcp_t *tcp = Q_TO_TCP(q); 17956 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 17957 17958 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 17959 cmdp->cb_error = EPROTO; 17960 qreply(q, mp); 17961 return; 17962 } 17963 17964 data = datamp->b_rptr; 17965 17966 switch (cmdp->cb_cmd) { 17967 case TI_GETPEERNAME: 17968 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 17969 break; 17970 case TI_GETMYNAME: 17971 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 17972 break; 17973 default: 17974 cmdp->cb_error = EINVAL; 17975 break; 17976 } 17977 17978 qreply(q, mp); 17979 } 17980 17981 void 17982 tcp_wput(queue_t *q, mblk_t *mp) 17983 { 17984 conn_t *connp = Q_TO_CONN(q); 17985 tcp_t *tcp; 17986 void (*output_proc)(); 17987 t_scalar_t type; 17988 uchar_t *rptr; 17989 struct iocblk *iocp; 17990 size_t size; 17991 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17992 17993 ASSERT(connp->conn_ref >= 2); 17994 17995 switch (DB_TYPE(mp)) { 17996 case M_DATA: 17997 tcp = connp->conn_tcp; 17998 ASSERT(tcp != NULL); 17999 18000 size = msgdsize(mp); 18001 18002 mutex_enter(&tcp->tcp_non_sq_lock); 18003 tcp->tcp_squeue_bytes += size; 18004 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18005 tcp_setqfull(tcp); 18006 } 18007 mutex_exit(&tcp->tcp_non_sq_lock); 18008 18009 CONN_INC_REF(connp); 18010 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18011 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18012 return; 18013 18014 case M_CMD: 18015 tcp_wput_cmdblk(q, mp); 18016 return; 18017 18018 case M_PROTO: 18019 case M_PCPROTO: 18020 /* 18021 * if it is a snmp message, don't get behind the squeue 18022 */ 18023 tcp = connp->conn_tcp; 18024 rptr = mp->b_rptr; 18025 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18026 type = ((union T_primitives *)rptr)->type; 18027 } else { 18028 if (tcp->tcp_debug) { 18029 (void) strlog(TCP_MOD_ID, 0, 1, 18030 SL_ERROR|SL_TRACE, 18031 "tcp_wput_proto, dropping one..."); 18032 } 18033 freemsg(mp); 18034 return; 18035 } 18036 if (type == T_SVR4_OPTMGMT_REQ) { 18037 /* 18038 * All Solaris components should pass a db_credp 18039 * for this TPI message, hence we ASSERT. 18040 * But in case there is some other M_PROTO that looks 18041 * like a TPI message sent by some other kernel 18042 * component, we check and return an error. 18043 */ 18044 cred_t *cr = msg_getcred(mp, NULL); 18045 18046 ASSERT(cr != NULL); 18047 if (cr == NULL) { 18048 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18049 return; 18050 } 18051 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18052 cr)) { 18053 /* 18054 * This was a SNMP request 18055 */ 18056 return; 18057 } else { 18058 output_proc = tcp_wput_proto; 18059 } 18060 } else { 18061 output_proc = tcp_wput_proto; 18062 } 18063 break; 18064 case M_IOCTL: 18065 /* 18066 * Most ioctls can be processed right away without going via 18067 * squeues - process them right here. Those that do require 18068 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18069 * are processed by tcp_wput_ioctl(). 18070 */ 18071 iocp = (struct iocblk *)mp->b_rptr; 18072 tcp = connp->conn_tcp; 18073 18074 switch (iocp->ioc_cmd) { 18075 case TCP_IOC_ABORT_CONN: 18076 tcp_ioctl_abort_conn(q, mp); 18077 return; 18078 case TI_GETPEERNAME: 18079 case TI_GETMYNAME: 18080 mi_copyin(q, mp, NULL, 18081 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18082 return; 18083 case ND_SET: 18084 /* nd_getset does the necessary checks */ 18085 case ND_GET: 18086 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18087 CALL_IP_WPUT(connp, q, mp); 18088 return; 18089 } 18090 qreply(q, mp); 18091 return; 18092 case TCP_IOC_DEFAULT_Q: 18093 /* 18094 * Wants to be the default wq. Check the credentials 18095 * first, the rest is executed via squeue. 18096 */ 18097 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18098 iocp->ioc_error = EPERM; 18099 iocp->ioc_count = 0; 18100 mp->b_datap->db_type = M_IOCACK; 18101 qreply(q, mp); 18102 return; 18103 } 18104 output_proc = tcp_wput_ioctl; 18105 break; 18106 default: 18107 output_proc = tcp_wput_ioctl; 18108 break; 18109 } 18110 break; 18111 default: 18112 output_proc = tcp_wput_nondata; 18113 break; 18114 } 18115 18116 CONN_INC_REF(connp); 18117 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18118 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18119 } 18120 18121 /* 18122 * Initial STREAMS write side put() procedure for sockets. It tries to 18123 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18124 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18125 * are handled by tcp_wput() as usual. 18126 * 18127 * All further messages will also be handled by tcp_wput() because we cannot 18128 * be sure that the above short cut is safe later. 18129 */ 18130 static void 18131 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18132 { 18133 conn_t *connp = Q_TO_CONN(wq); 18134 tcp_t *tcp = connp->conn_tcp; 18135 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18136 18137 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18138 wq->q_qinfo = &tcp_winit; 18139 18140 ASSERT(IPCL_IS_TCP(connp)); 18141 ASSERT(TCP_IS_SOCKET(tcp)); 18142 18143 if (DB_TYPE(mp) == M_PCPROTO && 18144 MBLKL(mp) == sizeof (struct T_capability_req) && 18145 car->PRIM_type == T_CAPABILITY_REQ) { 18146 tcp_capability_req(tcp, mp); 18147 return; 18148 } 18149 18150 tcp_wput(wq, mp); 18151 } 18152 18153 /* ARGSUSED */ 18154 static void 18155 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18156 { 18157 #ifdef DEBUG 18158 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18159 #endif 18160 freemsg(mp); 18161 } 18162 18163 static boolean_t 18164 tcp_zcopy_check(tcp_t *tcp) 18165 { 18166 conn_t *connp = tcp->tcp_connp; 18167 ire_t *ire; 18168 boolean_t zc_enabled = B_FALSE; 18169 tcp_stack_t *tcps = tcp->tcp_tcps; 18170 18171 if (do_tcpzcopy == 2) 18172 zc_enabled = B_TRUE; 18173 else if (tcp->tcp_ipversion == IPV4_VERSION && 18174 IPCL_IS_CONNECTED(connp) && 18175 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18176 connp->conn_dontroute == 0 && 18177 !connp->conn_nexthop_set && 18178 connp->conn_outgoing_ill == NULL && 18179 do_tcpzcopy == 1) { 18180 /* 18181 * the checks above closely resemble the fast path checks 18182 * in tcp_send_data(). 18183 */ 18184 mutex_enter(&connp->conn_lock); 18185 ire = connp->conn_ire_cache; 18186 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18187 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18188 IRE_REFHOLD(ire); 18189 if (ire->ire_stq != NULL) { 18190 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18191 18192 zc_enabled = ill && (ill->ill_capabilities & 18193 ILL_CAPAB_ZEROCOPY) && 18194 (ill->ill_zerocopy_capab-> 18195 ill_zerocopy_flags != 0); 18196 } 18197 IRE_REFRELE(ire); 18198 } 18199 mutex_exit(&connp->conn_lock); 18200 } 18201 tcp->tcp_snd_zcopy_on = zc_enabled; 18202 if (!TCP_IS_DETACHED(tcp)) { 18203 if (zc_enabled) { 18204 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18205 ZCVMSAFE); 18206 TCP_STAT(tcps, tcp_zcopy_on); 18207 } else { 18208 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18209 ZCVMUNSAFE); 18210 TCP_STAT(tcps, tcp_zcopy_off); 18211 } 18212 } 18213 return (zc_enabled); 18214 } 18215 18216 static mblk_t * 18217 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18218 { 18219 tcp_stack_t *tcps = tcp->tcp_tcps; 18220 18221 if (do_tcpzcopy == 2) 18222 return (bp); 18223 else if (tcp->tcp_snd_zcopy_on) { 18224 tcp->tcp_snd_zcopy_on = B_FALSE; 18225 if (!TCP_IS_DETACHED(tcp)) { 18226 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18227 ZCVMUNSAFE); 18228 TCP_STAT(tcps, tcp_zcopy_disable); 18229 } 18230 } 18231 return (tcp_zcopy_backoff(tcp, bp, 0)); 18232 } 18233 18234 /* 18235 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18236 * the original desballoca'ed segmapped mblk. 18237 */ 18238 static mblk_t * 18239 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18240 { 18241 mblk_t *head, *tail, *nbp; 18242 tcp_stack_t *tcps = tcp->tcp_tcps; 18243 18244 if (IS_VMLOANED_MBLK(bp)) { 18245 TCP_STAT(tcps, tcp_zcopy_backoff); 18246 if ((head = copyb(bp)) == NULL) { 18247 /* fail to backoff; leave it for the next backoff */ 18248 tcp->tcp_xmit_zc_clean = B_FALSE; 18249 return (bp); 18250 } 18251 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18252 if (fix_xmitlist) 18253 tcp_zcopy_notify(tcp); 18254 else 18255 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18256 } 18257 nbp = bp->b_cont; 18258 if (fix_xmitlist) { 18259 head->b_prev = bp->b_prev; 18260 head->b_next = bp->b_next; 18261 if (tcp->tcp_xmit_tail == bp) 18262 tcp->tcp_xmit_tail = head; 18263 } 18264 bp->b_next = NULL; 18265 bp->b_prev = NULL; 18266 freeb(bp); 18267 } else { 18268 head = bp; 18269 nbp = bp->b_cont; 18270 } 18271 tail = head; 18272 while (nbp) { 18273 if (IS_VMLOANED_MBLK(nbp)) { 18274 TCP_STAT(tcps, tcp_zcopy_backoff); 18275 if ((tail->b_cont = copyb(nbp)) == NULL) { 18276 tcp->tcp_xmit_zc_clean = B_FALSE; 18277 tail->b_cont = nbp; 18278 return (head); 18279 } 18280 tail = tail->b_cont; 18281 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18282 if (fix_xmitlist) 18283 tcp_zcopy_notify(tcp); 18284 else 18285 tail->b_datap->db_struioflag |= 18286 STRUIO_ZCNOTIFY; 18287 } 18288 bp = nbp; 18289 nbp = nbp->b_cont; 18290 if (fix_xmitlist) { 18291 tail->b_prev = bp->b_prev; 18292 tail->b_next = bp->b_next; 18293 if (tcp->tcp_xmit_tail == bp) 18294 tcp->tcp_xmit_tail = tail; 18295 } 18296 bp->b_next = NULL; 18297 bp->b_prev = NULL; 18298 freeb(bp); 18299 } else { 18300 tail->b_cont = nbp; 18301 tail = nbp; 18302 nbp = nbp->b_cont; 18303 } 18304 } 18305 if (fix_xmitlist) { 18306 tcp->tcp_xmit_last = tail; 18307 tcp->tcp_xmit_zc_clean = B_TRUE; 18308 } 18309 return (head); 18310 } 18311 18312 static void 18313 tcp_zcopy_notify(tcp_t *tcp) 18314 { 18315 struct stdata *stp; 18316 conn_t *connp; 18317 18318 if (tcp->tcp_detached) 18319 return; 18320 connp = tcp->tcp_connp; 18321 if (IPCL_IS_NONSTR(connp)) { 18322 (*connp->conn_upcalls->su_zcopy_notify) 18323 (connp->conn_upper_handle); 18324 return; 18325 } 18326 stp = STREAM(tcp->tcp_rq); 18327 mutex_enter(&stp->sd_lock); 18328 stp->sd_flag |= STZCNOTIFY; 18329 cv_broadcast(&stp->sd_zcopy_wait); 18330 mutex_exit(&stp->sd_lock); 18331 } 18332 18333 static boolean_t 18334 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18335 { 18336 ire_t *ire; 18337 conn_t *connp = tcp->tcp_connp; 18338 tcp_stack_t *tcps = tcp->tcp_tcps; 18339 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18340 18341 mutex_enter(&connp->conn_lock); 18342 ire = connp->conn_ire_cache; 18343 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18344 18345 if ((ire != NULL) && 18346 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18347 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18348 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18349 IRE_REFHOLD(ire); 18350 mutex_exit(&connp->conn_lock); 18351 } else { 18352 boolean_t cached = B_FALSE; 18353 ts_label_t *tsl; 18354 18355 /* force a recheck later on */ 18356 tcp->tcp_ire_ill_check_done = B_FALSE; 18357 18358 TCP_DBGSTAT(tcps, tcp_ire_null1); 18359 connp->conn_ire_cache = NULL; 18360 mutex_exit(&connp->conn_lock); 18361 18362 if (ire != NULL) 18363 IRE_REFRELE_NOTR(ire); 18364 18365 tsl = crgetlabel(CONN_CRED(connp)); 18366 ire = (dst ? 18367 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18368 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18369 connp->conn_zoneid, tsl, ipst)); 18370 18371 if (ire == NULL) { 18372 TCP_STAT(tcps, tcp_ire_null); 18373 return (B_FALSE); 18374 } 18375 18376 IRE_REFHOLD_NOTR(ire); 18377 18378 mutex_enter(&connp->conn_lock); 18379 if (CONN_CACHE_IRE(connp)) { 18380 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18381 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18382 TCP_CHECK_IREINFO(tcp, ire); 18383 connp->conn_ire_cache = ire; 18384 cached = B_TRUE; 18385 } 18386 rw_exit(&ire->ire_bucket->irb_lock); 18387 } 18388 mutex_exit(&connp->conn_lock); 18389 18390 /* 18391 * We can continue to use the ire but since it was 18392 * not cached, we should drop the extra reference. 18393 */ 18394 if (!cached) 18395 IRE_REFRELE_NOTR(ire); 18396 18397 /* 18398 * Rampart note: no need to select a new label here, since 18399 * labels are not allowed to change during the life of a TCP 18400 * connection. 18401 */ 18402 } 18403 18404 *irep = ire; 18405 18406 return (B_TRUE); 18407 } 18408 18409 /* 18410 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18411 * 18412 * 0 = success; 18413 * 1 = failed to find ire and ill. 18414 */ 18415 static boolean_t 18416 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18417 { 18418 ipha_t *ipha; 18419 ipaddr_t dst; 18420 ire_t *ire; 18421 ill_t *ill; 18422 mblk_t *ire_fp_mp; 18423 tcp_stack_t *tcps = tcp->tcp_tcps; 18424 18425 if (mp != NULL) 18426 ipha = (ipha_t *)mp->b_rptr; 18427 else 18428 ipha = tcp->tcp_ipha; 18429 dst = ipha->ipha_dst; 18430 18431 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18432 return (B_FALSE); 18433 18434 if ((ire->ire_flags & RTF_MULTIRT) || 18435 (ire->ire_stq == NULL) || 18436 (ire->ire_nce == NULL) || 18437 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18438 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18439 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18440 TCP_STAT(tcps, tcp_ip_ire_send); 18441 IRE_REFRELE(ire); 18442 return (B_FALSE); 18443 } 18444 18445 ill = ire_to_ill(ire); 18446 ASSERT(ill != NULL); 18447 18448 if (!tcp->tcp_ire_ill_check_done) { 18449 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18450 tcp->tcp_ire_ill_check_done = B_TRUE; 18451 } 18452 18453 *irep = ire; 18454 *illp = ill; 18455 18456 return (B_TRUE); 18457 } 18458 18459 static void 18460 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18461 { 18462 ipha_t *ipha; 18463 ipaddr_t src; 18464 ipaddr_t dst; 18465 uint32_t cksum; 18466 ire_t *ire; 18467 uint16_t *up; 18468 ill_t *ill; 18469 conn_t *connp = tcp->tcp_connp; 18470 uint32_t hcksum_txflags = 0; 18471 mblk_t *ire_fp_mp; 18472 uint_t ire_fp_mp_len; 18473 tcp_stack_t *tcps = tcp->tcp_tcps; 18474 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18475 cred_t *cr; 18476 pid_t cpid; 18477 18478 ASSERT(DB_TYPE(mp) == M_DATA); 18479 18480 /* 18481 * Here we need to handle the overloading of the cred_t for 18482 * both getpeerucred and TX. 18483 * If this is a SYN then the caller already set db_credp so 18484 * that getpeerucred will work. But if TX is in use we might have 18485 * a conn_effective_cred which is different, and we need to use that 18486 * cred to make TX use the correct label and label dependent route. 18487 */ 18488 if (is_system_labeled()) { 18489 cr = msg_getcred(mp, &cpid); 18490 if (cr == NULL || connp->conn_effective_cred != NULL) 18491 mblk_setcred(mp, CONN_CRED(connp), cpid); 18492 } 18493 18494 ipha = (ipha_t *)mp->b_rptr; 18495 src = ipha->ipha_src; 18496 dst = ipha->ipha_dst; 18497 18498 ASSERT(q != NULL); 18499 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18500 18501 /* 18502 * Drop off fast path for IPv6 and also if options are present or 18503 * we need to resolve a TS label. 18504 */ 18505 if (tcp->tcp_ipversion != IPV4_VERSION || 18506 !IPCL_IS_CONNECTED(connp) || 18507 !CONN_IS_LSO_MD_FASTPATH(connp) || 18508 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18509 !connp->conn_ulp_labeled || 18510 ipha->ipha_ident == IP_HDR_INCLUDED || 18511 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18512 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18513 if (tcp->tcp_snd_zcopy_aware) 18514 mp = tcp_zcopy_disable(tcp, mp); 18515 TCP_STAT(tcps, tcp_ip_send); 18516 CALL_IP_WPUT(connp, q, mp); 18517 return; 18518 } 18519 18520 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18521 if (tcp->tcp_snd_zcopy_aware) 18522 mp = tcp_zcopy_backoff(tcp, mp, 0); 18523 CALL_IP_WPUT(connp, q, mp); 18524 return; 18525 } 18526 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18527 ire_fp_mp_len = MBLKL(ire_fp_mp); 18528 18529 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18530 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18531 #ifndef _BIG_ENDIAN 18532 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18533 #endif 18534 18535 /* 18536 * Check to see if we need to re-enable LSO/MDT for this connection 18537 * because it was previously disabled due to changes in the ill; 18538 * note that by doing it here, this re-enabling only applies when 18539 * the packet is not dispatched through CALL_IP_WPUT(). 18540 * 18541 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18542 * case, since that's how we ended up here. For IPv6, we do the 18543 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18544 */ 18545 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18546 /* 18547 * Restore LSO for this connection, so that next time around 18548 * it is eligible to go through tcp_lsosend() path again. 18549 */ 18550 TCP_STAT(tcps, tcp_lso_enabled); 18551 tcp->tcp_lso = B_TRUE; 18552 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18553 "interface %s\n", (void *)connp, ill->ill_name)); 18554 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18555 /* 18556 * Restore MDT for this connection, so that next time around 18557 * it is eligible to go through tcp_multisend() path again. 18558 */ 18559 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18560 tcp->tcp_mdt = B_TRUE; 18561 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18562 "interface %s\n", (void *)connp, ill->ill_name)); 18563 } 18564 18565 if (tcp->tcp_snd_zcopy_aware) { 18566 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18567 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18568 mp = tcp_zcopy_disable(tcp, mp); 18569 /* 18570 * we shouldn't need to reset ipha as the mp containing 18571 * ipha should never be a zero-copy mp. 18572 */ 18573 } 18574 18575 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18576 ASSERT(ill->ill_hcksum_capab != NULL); 18577 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18578 } 18579 18580 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18581 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18582 18583 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18584 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18585 18586 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18587 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18588 18589 /* Software checksum? */ 18590 if (DB_CKSUMFLAGS(mp) == 0) { 18591 TCP_STAT(tcps, tcp_out_sw_cksum); 18592 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18593 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18594 } 18595 18596 /* Calculate IP header checksum if hardware isn't capable */ 18597 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18598 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18599 ((uint16_t *)ipha)[4]); 18600 } 18601 18602 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18603 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18604 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18605 18606 UPDATE_OB_PKT_COUNT(ire); 18607 ire->ire_last_used_time = lbolt; 18608 18609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18611 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18612 ntohs(ipha->ipha_length)); 18613 18614 DTRACE_PROBE4(ip4__physical__out__start, 18615 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18616 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18617 ipst->ips_ipv4firewall_physical_out, 18618 NULL, ill, ipha, mp, mp, 0, ipst); 18619 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18620 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18621 18622 if (mp != NULL) { 18623 if (ipst->ips_ipobs_enabled) { 18624 zoneid_t szone; 18625 18626 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18627 ipst, ALL_ZONES); 18628 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18629 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 18630 } 18631 18632 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18633 } 18634 18635 IRE_REFRELE(ire); 18636 } 18637 18638 /* 18639 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18640 * if the receiver shrinks the window, i.e. moves the right window to the 18641 * left, the we should not send new data, but should retransmit normally the 18642 * old unacked data between suna and suna + swnd. We might has sent data 18643 * that is now outside the new window, pretend that we didn't send it. 18644 */ 18645 static void 18646 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18647 { 18648 uint32_t snxt = tcp->tcp_snxt; 18649 mblk_t *xmit_tail; 18650 int32_t offset; 18651 18652 ASSERT(shrunk_count > 0); 18653 18654 /* Pretend we didn't send the data outside the window */ 18655 snxt -= shrunk_count; 18656 18657 /* Get the mblk and the offset in it per the shrunk window */ 18658 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18659 18660 ASSERT(xmit_tail != NULL); 18661 18662 /* Reset all the values per the now shrunk window */ 18663 tcp->tcp_snxt = snxt; 18664 tcp->tcp_xmit_tail = xmit_tail; 18665 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18666 offset; 18667 tcp->tcp_unsent += shrunk_count; 18668 18669 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18670 /* 18671 * Make sure the timer is running so that we will probe a zero 18672 * window. 18673 */ 18674 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18675 } 18676 18677 18678 /* 18679 * The TCP normal data output path. 18680 * NOTE: the logic of the fast path is duplicated from this function. 18681 */ 18682 static void 18683 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18684 { 18685 int len; 18686 mblk_t *local_time; 18687 mblk_t *mp1; 18688 uint32_t snxt; 18689 int tail_unsent; 18690 int tcpstate; 18691 int usable = 0; 18692 mblk_t *xmit_tail; 18693 queue_t *q = tcp->tcp_wq; 18694 int32_t mss; 18695 int32_t num_sack_blk = 0; 18696 int32_t tcp_hdr_len; 18697 int32_t tcp_tcp_hdr_len; 18698 int mdt_thres; 18699 int rc; 18700 tcp_stack_t *tcps = tcp->tcp_tcps; 18701 ip_stack_t *ipst; 18702 18703 tcpstate = tcp->tcp_state; 18704 if (mp == NULL) { 18705 /* 18706 * tcp_wput_data() with NULL mp should only be called when 18707 * there is unsent data. 18708 */ 18709 ASSERT(tcp->tcp_unsent > 0); 18710 /* Really tacky... but we need this for detached closes. */ 18711 len = tcp->tcp_unsent; 18712 goto data_null; 18713 } 18714 18715 #if CCS_STATS 18716 wrw_stats.tot.count++; 18717 wrw_stats.tot.bytes += msgdsize(mp); 18718 #endif 18719 ASSERT(mp->b_datap->db_type == M_DATA); 18720 /* 18721 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18722 * or before a connection attempt has begun. 18723 */ 18724 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18725 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18726 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18727 #ifdef DEBUG 18728 cmn_err(CE_WARN, 18729 "tcp_wput_data: data after ordrel, %s", 18730 tcp_display(tcp, NULL, 18731 DISP_ADDR_AND_PORT)); 18732 #else 18733 if (tcp->tcp_debug) { 18734 (void) strlog(TCP_MOD_ID, 0, 1, 18735 SL_TRACE|SL_ERROR, 18736 "tcp_wput_data: data after ordrel, %s\n", 18737 tcp_display(tcp, NULL, 18738 DISP_ADDR_AND_PORT)); 18739 } 18740 #endif /* DEBUG */ 18741 } 18742 if (tcp->tcp_snd_zcopy_aware && 18743 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18744 tcp_zcopy_notify(tcp); 18745 freemsg(mp); 18746 mutex_enter(&tcp->tcp_non_sq_lock); 18747 if (tcp->tcp_flow_stopped && 18748 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18749 tcp_clrqfull(tcp); 18750 } 18751 mutex_exit(&tcp->tcp_non_sq_lock); 18752 return; 18753 } 18754 18755 /* Strip empties */ 18756 for (;;) { 18757 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18758 (uintptr_t)INT_MAX); 18759 len = (int)(mp->b_wptr - mp->b_rptr); 18760 if (len > 0) 18761 break; 18762 mp1 = mp; 18763 mp = mp->b_cont; 18764 freeb(mp1); 18765 if (!mp) { 18766 return; 18767 } 18768 } 18769 18770 /* If we are the first on the list ... */ 18771 if (tcp->tcp_xmit_head == NULL) { 18772 tcp->tcp_xmit_head = mp; 18773 tcp->tcp_xmit_tail = mp; 18774 tcp->tcp_xmit_tail_unsent = len; 18775 } else { 18776 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18777 struct datab *dp; 18778 18779 mp1 = tcp->tcp_xmit_last; 18780 if (len < tcp_tx_pull_len && 18781 (dp = mp1->b_datap)->db_ref == 1 && 18782 dp->db_lim - mp1->b_wptr >= len) { 18783 ASSERT(len > 0); 18784 ASSERT(!mp1->b_cont); 18785 if (len == 1) { 18786 *mp1->b_wptr++ = *mp->b_rptr; 18787 } else { 18788 bcopy(mp->b_rptr, mp1->b_wptr, len); 18789 mp1->b_wptr += len; 18790 } 18791 if (mp1 == tcp->tcp_xmit_tail) 18792 tcp->tcp_xmit_tail_unsent += len; 18793 mp1->b_cont = mp->b_cont; 18794 if (tcp->tcp_snd_zcopy_aware && 18795 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18796 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18797 freeb(mp); 18798 mp = mp1; 18799 } else { 18800 tcp->tcp_xmit_last->b_cont = mp; 18801 } 18802 len += tcp->tcp_unsent; 18803 } 18804 18805 /* Tack on however many more positive length mblks we have */ 18806 if ((mp1 = mp->b_cont) != NULL) { 18807 do { 18808 int tlen; 18809 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18810 (uintptr_t)INT_MAX); 18811 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18812 if (tlen <= 0) { 18813 mp->b_cont = mp1->b_cont; 18814 freeb(mp1); 18815 } else { 18816 len += tlen; 18817 mp = mp1; 18818 } 18819 } while ((mp1 = mp->b_cont) != NULL); 18820 } 18821 tcp->tcp_xmit_last = mp; 18822 tcp->tcp_unsent = len; 18823 18824 if (urgent) 18825 usable = 1; 18826 18827 data_null: 18828 snxt = tcp->tcp_snxt; 18829 xmit_tail = tcp->tcp_xmit_tail; 18830 tail_unsent = tcp->tcp_xmit_tail_unsent; 18831 18832 /* 18833 * Note that tcp_mss has been adjusted to take into account the 18834 * timestamp option if applicable. Because SACK options do not 18835 * appear in every TCP segments and they are of variable lengths, 18836 * they cannot be included in tcp_mss. Thus we need to calculate 18837 * the actual segment length when we need to send a segment which 18838 * includes SACK options. 18839 */ 18840 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18841 int32_t opt_len; 18842 18843 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18844 tcp->tcp_num_sack_blk); 18845 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18846 2 + TCPOPT_HEADER_LEN; 18847 mss = tcp->tcp_mss - opt_len; 18848 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18849 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18850 } else { 18851 mss = tcp->tcp_mss; 18852 tcp_hdr_len = tcp->tcp_hdr_len; 18853 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18854 } 18855 18856 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18857 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18858 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18859 } 18860 if (tcpstate == TCPS_SYN_RCVD) { 18861 /* 18862 * The three-way connection establishment handshake is not 18863 * complete yet. We want to queue the data for transmission 18864 * after entering ESTABLISHED state (RFC793). A jump to 18865 * "done" label effectively leaves data on the queue. 18866 */ 18867 goto done; 18868 } else { 18869 int usable_r; 18870 18871 /* 18872 * In the special case when cwnd is zero, which can only 18873 * happen if the connection is ECN capable, return now. 18874 * New segments is sent using tcp_timer(). The timer 18875 * is set in tcp_rput_data(). 18876 */ 18877 if (tcp->tcp_cwnd == 0) { 18878 /* 18879 * Note that tcp_cwnd is 0 before 3-way handshake is 18880 * finished. 18881 */ 18882 ASSERT(tcp->tcp_ecn_ok || 18883 tcp->tcp_state < TCPS_ESTABLISHED); 18884 return; 18885 } 18886 18887 /* NOTE: trouble if xmitting while SYN not acked? */ 18888 usable_r = snxt - tcp->tcp_suna; 18889 usable_r = tcp->tcp_swnd - usable_r; 18890 18891 /* 18892 * Check if the receiver has shrunk the window. If 18893 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18894 * cannot be set as there is unsent data, so FIN cannot 18895 * be sent out. Otherwise, we need to take into account 18896 * of FIN as it consumes an "invisible" sequence number. 18897 */ 18898 ASSERT(tcp->tcp_fin_sent == 0); 18899 if (usable_r < 0) { 18900 /* 18901 * The receiver has shrunk the window and we have sent 18902 * -usable_r date beyond the window, re-adjust. 18903 * 18904 * If TCP window scaling is enabled, there can be 18905 * round down error as the advertised receive window 18906 * is actually right shifted n bits. This means that 18907 * the lower n bits info is wiped out. It will look 18908 * like the window is shrunk. Do a check here to 18909 * see if the shrunk amount is actually within the 18910 * error in window calculation. If it is, just 18911 * return. Note that this check is inside the 18912 * shrunk window check. This makes sure that even 18913 * though tcp_process_shrunk_swnd() is not called, 18914 * we will stop further processing. 18915 */ 18916 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18917 tcp_process_shrunk_swnd(tcp, -usable_r); 18918 } 18919 return; 18920 } 18921 18922 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18923 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18924 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18925 18926 /* usable = MIN(usable, unsent) */ 18927 if (usable_r > len) 18928 usable_r = len; 18929 18930 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18931 if (usable_r > 0) { 18932 usable = usable_r; 18933 } else { 18934 /* Bypass all other unnecessary processing. */ 18935 goto done; 18936 } 18937 } 18938 18939 local_time = (mblk_t *)lbolt; 18940 18941 /* 18942 * "Our" Nagle Algorithm. This is not the same as in the old 18943 * BSD. This is more in line with the true intent of Nagle. 18944 * 18945 * The conditions are: 18946 * 1. The amount of unsent data (or amount of data which can be 18947 * sent, whichever is smaller) is less than Nagle limit. 18948 * 2. The last sent size is also less than Nagle limit. 18949 * 3. There is unack'ed data. 18950 * 4. Urgent pointer is not set. Send urgent data ignoring the 18951 * Nagle algorithm. This reduces the probability that urgent 18952 * bytes get "merged" together. 18953 * 5. The app has not closed the connection. This eliminates the 18954 * wait time of the receiving side waiting for the last piece of 18955 * (small) data. 18956 * 18957 * If all are satisified, exit without sending anything. Note 18958 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18959 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18960 * 4095). 18961 */ 18962 if (usable < (int)tcp->tcp_naglim && 18963 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18964 snxt != tcp->tcp_suna && 18965 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18966 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18967 goto done; 18968 } 18969 18970 /* 18971 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 18972 * is set, then we have to force TCP not to send partial segment 18973 * (smaller than MSS bytes). We are calculating the usable now 18974 * based on full mss and will save the rest of remaining data for 18975 * later. When tcp_zero_win_probe is set, TCP needs to send out 18976 * something to do zero window probe. 18977 */ 18978 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 18979 if (usable < mss) 18980 goto done; 18981 usable = (usable / mss) * mss; 18982 } 18983 18984 /* Update the latest receive window size in TCP header. */ 18985 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18986 tcp->tcp_tcph->th_win); 18987 18988 /* 18989 * Determine if it's worthwhile to attempt LSO or MDT, based on: 18990 * 18991 * 1. Simple TCP/IP{v4,v6} (no options). 18992 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18993 * 3. If the TCP connection is in ESTABLISHED state. 18994 * 4. The TCP is not detached. 18995 * 18996 * If any of the above conditions have changed during the 18997 * connection, stop using LSO/MDT and restore the stream head 18998 * parameters accordingly. 18999 */ 19000 ipst = tcps->tcps_netstack->netstack_ip; 19001 19002 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19003 ((tcp->tcp_ipversion == IPV4_VERSION && 19004 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19005 (tcp->tcp_ipversion == IPV6_VERSION && 19006 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19007 tcp->tcp_state != TCPS_ESTABLISHED || 19008 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19009 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19010 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19011 if (tcp->tcp_lso) { 19012 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19013 tcp->tcp_lso = B_FALSE; 19014 } else { 19015 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19016 tcp->tcp_mdt = B_FALSE; 19017 } 19018 19019 /* Anything other than detached is considered pathological */ 19020 if (!TCP_IS_DETACHED(tcp)) { 19021 if (tcp->tcp_lso) 19022 TCP_STAT(tcps, tcp_lso_disabled); 19023 else 19024 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19025 (void) tcp_maxpsz_set(tcp, B_TRUE); 19026 } 19027 } 19028 19029 /* Use MDT if sendable amount is greater than the threshold */ 19030 if (tcp->tcp_mdt && 19031 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19032 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19033 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19034 (tcp->tcp_valid_bits == 0 || 19035 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19036 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19037 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19038 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19039 local_time, mdt_thres); 19040 } else { 19041 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19042 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19043 local_time, INT_MAX); 19044 } 19045 19046 /* Pretend that all we were trying to send really got sent */ 19047 if (rc < 0 && tail_unsent < 0) { 19048 do { 19049 xmit_tail = xmit_tail->b_cont; 19050 xmit_tail->b_prev = local_time; 19051 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19052 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19053 tail_unsent += (int)(xmit_tail->b_wptr - 19054 xmit_tail->b_rptr); 19055 } while (tail_unsent < 0); 19056 } 19057 done:; 19058 tcp->tcp_xmit_tail = xmit_tail; 19059 tcp->tcp_xmit_tail_unsent = tail_unsent; 19060 len = tcp->tcp_snxt - snxt; 19061 if (len) { 19062 /* 19063 * If new data was sent, need to update the notsack 19064 * list, which is, afterall, data blocks that have 19065 * not been sack'ed by the receiver. New data is 19066 * not sack'ed. 19067 */ 19068 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19069 /* len is a negative value. */ 19070 tcp->tcp_pipe -= len; 19071 tcp_notsack_update(&(tcp->tcp_notsack_list), 19072 tcp->tcp_snxt, snxt, 19073 &(tcp->tcp_num_notsack_blk), 19074 &(tcp->tcp_cnt_notsack_list)); 19075 } 19076 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19077 tcp->tcp_rack = tcp->tcp_rnxt; 19078 tcp->tcp_rack_cnt = 0; 19079 if ((snxt + len) == tcp->tcp_suna) { 19080 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19081 } 19082 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19083 /* 19084 * Didn't send anything. Make sure the timer is running 19085 * so that we will probe a zero window. 19086 */ 19087 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19088 } 19089 /* Note that len is the amount we just sent but with a negative sign */ 19090 tcp->tcp_unsent += len; 19091 mutex_enter(&tcp->tcp_non_sq_lock); 19092 if (tcp->tcp_flow_stopped) { 19093 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19094 tcp_clrqfull(tcp); 19095 } 19096 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19097 tcp_setqfull(tcp); 19098 } 19099 mutex_exit(&tcp->tcp_non_sq_lock); 19100 } 19101 19102 /* 19103 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19104 * outgoing TCP header with the template header, as well as other 19105 * options such as time-stamp, ECN and/or SACK. 19106 */ 19107 static void 19108 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19109 { 19110 tcph_t *tcp_tmpl, *tcp_h; 19111 uint32_t *dst, *src; 19112 int hdrlen; 19113 19114 ASSERT(OK_32PTR(rptr)); 19115 19116 /* Template header */ 19117 tcp_tmpl = tcp->tcp_tcph; 19118 19119 /* Header of outgoing packet */ 19120 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19121 19122 /* dst and src are opaque 32-bit fields, used for copying */ 19123 dst = (uint32_t *)rptr; 19124 src = (uint32_t *)tcp->tcp_iphc; 19125 hdrlen = tcp->tcp_hdr_len; 19126 19127 /* Fill time-stamp option if needed */ 19128 if (tcp->tcp_snd_ts_ok) { 19129 U32_TO_BE32((uint32_t)now, 19130 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19131 U32_TO_BE32(tcp->tcp_ts_recent, 19132 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19133 } else { 19134 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19135 } 19136 19137 /* 19138 * Copy the template header; is this really more efficient than 19139 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19140 * but perhaps not for other scenarios. 19141 */ 19142 dst[0] = src[0]; 19143 dst[1] = src[1]; 19144 dst[2] = src[2]; 19145 dst[3] = src[3]; 19146 dst[4] = src[4]; 19147 dst[5] = src[5]; 19148 dst[6] = src[6]; 19149 dst[7] = src[7]; 19150 dst[8] = src[8]; 19151 dst[9] = src[9]; 19152 if (hdrlen -= 40) { 19153 hdrlen >>= 2; 19154 dst += 10; 19155 src += 10; 19156 do { 19157 *dst++ = *src++; 19158 } while (--hdrlen); 19159 } 19160 19161 /* 19162 * Set the ECN info in the TCP header if it is not a zero 19163 * window probe. Zero window probe is only sent in 19164 * tcp_wput_data() and tcp_timer(). 19165 */ 19166 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19167 SET_ECT(tcp, rptr); 19168 19169 if (tcp->tcp_ecn_echo_on) 19170 tcp_h->th_flags[0] |= TH_ECE; 19171 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19172 tcp_h->th_flags[0] |= TH_CWR; 19173 tcp->tcp_ecn_cwr_sent = B_TRUE; 19174 } 19175 } 19176 19177 /* Fill in SACK options */ 19178 if (num_sack_blk > 0) { 19179 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19180 sack_blk_t *tmp; 19181 int32_t i; 19182 19183 wptr[0] = TCPOPT_NOP; 19184 wptr[1] = TCPOPT_NOP; 19185 wptr[2] = TCPOPT_SACK; 19186 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19187 sizeof (sack_blk_t); 19188 wptr += TCPOPT_REAL_SACK_LEN; 19189 19190 tmp = tcp->tcp_sack_list; 19191 for (i = 0; i < num_sack_blk; i++) { 19192 U32_TO_BE32(tmp[i].begin, wptr); 19193 wptr += sizeof (tcp_seq); 19194 U32_TO_BE32(tmp[i].end, wptr); 19195 wptr += sizeof (tcp_seq); 19196 } 19197 tcp_h->th_offset_and_rsrvd[0] += 19198 ((num_sack_blk * 2 + 1) << 4); 19199 } 19200 } 19201 19202 /* 19203 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19204 * the destination address and SAP attribute, and if necessary, the 19205 * hardware checksum offload attribute to a Multidata message. 19206 */ 19207 static int 19208 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19209 const uint32_t start, const uint32_t stuff, const uint32_t end, 19210 const uint32_t flags, tcp_stack_t *tcps) 19211 { 19212 /* Add global destination address & SAP attribute */ 19213 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19214 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19215 "destination address+SAP\n")); 19216 19217 if (dlmp != NULL) 19218 TCP_STAT(tcps, tcp_mdt_allocfail); 19219 return (-1); 19220 } 19221 19222 /* Add global hwcksum attribute */ 19223 if (hwcksum && 19224 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19225 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19226 "checksum attribute\n")); 19227 19228 TCP_STAT(tcps, tcp_mdt_allocfail); 19229 return (-1); 19230 } 19231 19232 return (0); 19233 } 19234 19235 /* 19236 * Smaller and private version of pdescinfo_t used specifically for TCP, 19237 * which allows for only two payload spans per packet. 19238 */ 19239 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19240 19241 /* 19242 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19243 * scheme, and returns one the following: 19244 * 19245 * -1 = failed allocation. 19246 * 0 = success; burst count reached, or usable send window is too small, 19247 * and that we'd rather wait until later before sending again. 19248 */ 19249 static int 19250 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19251 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19252 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19253 const int mdt_thres) 19254 { 19255 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19256 multidata_t *mmd; 19257 uint_t obsegs, obbytes, hdr_frag_sz; 19258 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19259 int num_burst_seg, max_pld; 19260 pdesc_t *pkt; 19261 tcp_pdescinfo_t tcp_pkt_info; 19262 pdescinfo_t *pkt_info; 19263 int pbuf_idx, pbuf_idx_nxt; 19264 int seg_len, len, spill, af; 19265 boolean_t add_buffer, zcopy, clusterwide; 19266 boolean_t rconfirm = B_FALSE; 19267 boolean_t done = B_FALSE; 19268 uint32_t cksum; 19269 uint32_t hwcksum_flags; 19270 ire_t *ire = NULL; 19271 ill_t *ill; 19272 ipha_t *ipha; 19273 ip6_t *ip6h; 19274 ipaddr_t src, dst; 19275 ill_zerocopy_capab_t *zc_cap = NULL; 19276 uint16_t *up; 19277 int err; 19278 conn_t *connp; 19279 tcp_stack_t *tcps = tcp->tcp_tcps; 19280 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19281 int usable_mmd, tail_unsent_mmd; 19282 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19283 mblk_t *xmit_tail_mmd; 19284 netstackid_t stack_id; 19285 19286 #ifdef _BIG_ENDIAN 19287 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19288 #else 19289 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19290 #endif 19291 19292 #define PREP_NEW_MULTIDATA() { \ 19293 mmd = NULL; \ 19294 md_mp = md_hbuf = NULL; \ 19295 cur_hdr_off = 0; \ 19296 max_pld = tcp->tcp_mdt_max_pld; \ 19297 pbuf_idx = pbuf_idx_nxt = -1; \ 19298 add_buffer = B_TRUE; \ 19299 zcopy = B_FALSE; \ 19300 } 19301 19302 #define PREP_NEW_PBUF() { \ 19303 md_pbuf = md_pbuf_nxt = NULL; \ 19304 pbuf_idx = pbuf_idx_nxt = -1; \ 19305 cur_pld_off = 0; \ 19306 first_snxt = *snxt; \ 19307 ASSERT(*tail_unsent > 0); \ 19308 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19309 } 19310 19311 ASSERT(mdt_thres >= mss); 19312 ASSERT(*usable > 0 && *usable > mdt_thres); 19313 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19314 ASSERT(!TCP_IS_DETACHED(tcp)); 19315 ASSERT(tcp->tcp_valid_bits == 0 || 19316 tcp->tcp_valid_bits == TCP_FSS_VALID); 19317 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19318 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19319 (tcp->tcp_ipversion == IPV6_VERSION && 19320 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19321 19322 connp = tcp->tcp_connp; 19323 ASSERT(connp != NULL); 19324 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19325 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19326 19327 stack_id = connp->conn_netstack->netstack_stackid; 19328 19329 usable_mmd = tail_unsent_mmd = 0; 19330 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19331 xmit_tail_mmd = NULL; 19332 /* 19333 * Note that tcp will only declare at most 2 payload spans per 19334 * packet, which is much lower than the maximum allowable number 19335 * of packet spans per Multidata. For this reason, we use the 19336 * privately declared and smaller descriptor info structure, in 19337 * order to save some stack space. 19338 */ 19339 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19340 19341 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19342 if (af == AF_INET) { 19343 dst = tcp->tcp_ipha->ipha_dst; 19344 src = tcp->tcp_ipha->ipha_src; 19345 ASSERT(!CLASSD(dst)); 19346 } 19347 ASSERT(af == AF_INET || 19348 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19349 19350 obsegs = obbytes = 0; 19351 num_burst_seg = tcp->tcp_snd_burst; 19352 md_mp_head = NULL; 19353 PREP_NEW_MULTIDATA(); 19354 19355 /* 19356 * Before we go on further, make sure there is an IRE that we can 19357 * use, and that the ILL supports MDT. Otherwise, there's no point 19358 * in proceeding any further, and we should just hand everything 19359 * off to the legacy path. 19360 */ 19361 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19362 goto legacy_send_no_md; 19363 19364 ASSERT(ire != NULL); 19365 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19366 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19367 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19368 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19369 /* 19370 * If we do support loopback for MDT (which requires modifications 19371 * to the receiving paths), the following assertions should go away, 19372 * and we would be sending the Multidata to loopback conn later on. 19373 */ 19374 ASSERT(!IRE_IS_LOCAL(ire)); 19375 ASSERT(ire->ire_stq != NULL); 19376 19377 ill = ire_to_ill(ire); 19378 ASSERT(ill != NULL); 19379 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19380 19381 if (!tcp->tcp_ire_ill_check_done) { 19382 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19383 tcp->tcp_ire_ill_check_done = B_TRUE; 19384 } 19385 19386 /* 19387 * If the underlying interface conditions have changed, or if the 19388 * new interface does not support MDT, go back to legacy path. 19389 */ 19390 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19391 /* don't go through this path anymore for this connection */ 19392 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19393 tcp->tcp_mdt = B_FALSE; 19394 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19395 "interface %s\n", (void *)connp, ill->ill_name)); 19396 /* IRE will be released prior to returning */ 19397 goto legacy_send_no_md; 19398 } 19399 19400 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19401 zc_cap = ill->ill_zerocopy_capab; 19402 19403 /* 19404 * Check if we can take tcp fast-path. Note that "incomplete" 19405 * ire's (where the link-layer for next hop is not resolved 19406 * or where the fast-path header in nce_fp_mp is not available 19407 * yet) are sent down the legacy (slow) path. 19408 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19409 */ 19410 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19411 /* IRE will be released prior to returning */ 19412 goto legacy_send_no_md; 19413 } 19414 19415 /* go to legacy path if interface doesn't support zerocopy */ 19416 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19417 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19418 /* IRE will be released prior to returning */ 19419 goto legacy_send_no_md; 19420 } 19421 19422 /* does the interface support hardware checksum offload? */ 19423 hwcksum_flags = 0; 19424 if (ILL_HCKSUM_CAPABLE(ill) && 19425 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19426 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19427 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19428 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19429 HCKSUM_IPHDRCKSUM) 19430 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19431 19432 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19433 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19434 hwcksum_flags |= HCK_FULLCKSUM; 19435 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19436 HCKSUM_INET_PARTIAL) 19437 hwcksum_flags |= HCK_PARTIALCKSUM; 19438 } 19439 19440 /* 19441 * Each header fragment consists of the leading extra space, 19442 * followed by the TCP/IP header, and the trailing extra space. 19443 * We make sure that each header fragment begins on a 32-bit 19444 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19445 * aligned in tcp_mdt_update). 19446 */ 19447 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19448 tcp->tcp_mdt_hdr_tail), 4); 19449 19450 /* are we starting from the beginning of data block? */ 19451 if (*tail_unsent == 0) { 19452 *xmit_tail = (*xmit_tail)->b_cont; 19453 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19454 *tail_unsent = (int)MBLKL(*xmit_tail); 19455 } 19456 19457 /* 19458 * Here we create one or more Multidata messages, each made up of 19459 * one header buffer and up to N payload buffers. This entire 19460 * operation is done within two loops: 19461 * 19462 * The outer loop mostly deals with creating the Multidata message, 19463 * as well as the header buffer that gets added to it. It also 19464 * links the Multidata messages together such that all of them can 19465 * be sent down to the lower layer in a single putnext call; this 19466 * linking behavior depends on the tcp_mdt_chain tunable. 19467 * 19468 * The inner loop takes an existing Multidata message, and adds 19469 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19470 * packetizes those buffers by filling up the corresponding header 19471 * buffer fragments with the proper IP and TCP headers, and by 19472 * describing the layout of each packet in the packet descriptors 19473 * that get added to the Multidata. 19474 */ 19475 do { 19476 /* 19477 * If usable send window is too small, or data blocks in 19478 * transmit list are smaller than our threshold (i.e. app 19479 * performs large writes followed by small ones), we hand 19480 * off the control over to the legacy path. Note that we'll 19481 * get back the control once it encounters a large block. 19482 */ 19483 if (*usable < mss || (*tail_unsent <= mdt_thres && 19484 (*xmit_tail)->b_cont != NULL && 19485 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19486 /* send down what we've got so far */ 19487 if (md_mp_head != NULL) { 19488 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19489 obsegs, obbytes, &rconfirm); 19490 } 19491 /* 19492 * Pass control over to tcp_send(), but tell it to 19493 * return to us once a large-size transmission is 19494 * possible. 19495 */ 19496 TCP_STAT(tcps, tcp_mdt_legacy_small); 19497 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19498 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19499 tail_unsent, xmit_tail, local_time, 19500 mdt_thres)) <= 0) { 19501 /* burst count reached, or alloc failed */ 19502 IRE_REFRELE(ire); 19503 return (err); 19504 } 19505 19506 /* tcp_send() may have sent everything, so check */ 19507 if (*usable <= 0) { 19508 IRE_REFRELE(ire); 19509 return (0); 19510 } 19511 19512 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19513 /* 19514 * We may have delivered the Multidata, so make sure 19515 * to re-initialize before the next round. 19516 */ 19517 md_mp_head = NULL; 19518 obsegs = obbytes = 0; 19519 num_burst_seg = tcp->tcp_snd_burst; 19520 PREP_NEW_MULTIDATA(); 19521 19522 /* are we starting from the beginning of data block? */ 19523 if (*tail_unsent == 0) { 19524 *xmit_tail = (*xmit_tail)->b_cont; 19525 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19526 (uintptr_t)INT_MAX); 19527 *tail_unsent = (int)MBLKL(*xmit_tail); 19528 } 19529 } 19530 /* 19531 * Record current values for parameters we may need to pass 19532 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19533 * each iteration of the outer loop (each multidata message 19534 * creation). If we have a failure in the inner loop, we send 19535 * any complete multidata messages we have before reverting 19536 * to using the traditional non-md path. 19537 */ 19538 snxt_mmd = *snxt; 19539 usable_mmd = *usable; 19540 xmit_tail_mmd = *xmit_tail; 19541 tail_unsent_mmd = *tail_unsent; 19542 obsegs_mmd = obsegs; 19543 obbytes_mmd = obbytes; 19544 19545 /* 19546 * max_pld limits the number of mblks in tcp's transmit 19547 * queue that can be added to a Multidata message. Once 19548 * this counter reaches zero, no more additional mblks 19549 * can be added to it. What happens afterwards depends 19550 * on whether or not we are set to chain the Multidata 19551 * messages. If we are to link them together, reset 19552 * max_pld to its original value (tcp_mdt_max_pld) and 19553 * prepare to create a new Multidata message which will 19554 * get linked to md_mp_head. Else, leave it alone and 19555 * let the inner loop break on its own. 19556 */ 19557 if (tcp_mdt_chain && max_pld == 0) 19558 PREP_NEW_MULTIDATA(); 19559 19560 /* adding a payload buffer; re-initialize values */ 19561 if (add_buffer) 19562 PREP_NEW_PBUF(); 19563 19564 /* 19565 * If we don't have a Multidata, either because we just 19566 * (re)entered this outer loop, or after we branched off 19567 * to tcp_send above, setup the Multidata and header 19568 * buffer to be used. 19569 */ 19570 if (md_mp == NULL) { 19571 int md_hbuflen; 19572 uint32_t start, stuff; 19573 19574 /* 19575 * Calculate Multidata header buffer size large enough 19576 * to hold all of the headers that can possibly be 19577 * sent at this moment. We'd rather over-estimate 19578 * the size than running out of space; this is okay 19579 * since this buffer is small anyway. 19580 */ 19581 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19582 19583 /* 19584 * Start and stuff offset for partial hardware 19585 * checksum offload; these are currently for IPv4. 19586 * For full checksum offload, they are set to zero. 19587 */ 19588 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19589 if (af == AF_INET) { 19590 start = IP_SIMPLE_HDR_LENGTH; 19591 stuff = IP_SIMPLE_HDR_LENGTH + 19592 TCP_CHECKSUM_OFFSET; 19593 } else { 19594 start = IPV6_HDR_LEN; 19595 stuff = IPV6_HDR_LEN + 19596 TCP_CHECKSUM_OFFSET; 19597 } 19598 } else { 19599 start = stuff = 0; 19600 } 19601 19602 /* 19603 * Create the header buffer, Multidata, as well as 19604 * any necessary attributes (destination address, 19605 * SAP and hardware checksum offload) that should 19606 * be associated with the Multidata message. 19607 */ 19608 ASSERT(cur_hdr_off == 0); 19609 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19610 ((md_hbuf->b_wptr += md_hbuflen), 19611 (mmd = mmd_alloc(md_hbuf, &md_mp, 19612 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19613 /* fastpath mblk */ 19614 ire->ire_nce->nce_res_mp, 19615 /* hardware checksum enabled */ 19616 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19617 /* hardware checksum offsets */ 19618 start, stuff, 0, 19619 /* hardware checksum flag */ 19620 hwcksum_flags, tcps) != 0)) { 19621 legacy_send: 19622 /* 19623 * We arrive here from a failure within the 19624 * inner (packetizer) loop or we fail one of 19625 * the conditionals above. We restore the 19626 * previously checkpointed values for: 19627 * xmit_tail 19628 * usable 19629 * tail_unsent 19630 * snxt 19631 * obbytes 19632 * obsegs 19633 * We should then be able to dispatch any 19634 * complete multidata before reverting to the 19635 * traditional path with consistent parameters 19636 * (the inner loop updates these as it 19637 * iterates). 19638 */ 19639 *xmit_tail = xmit_tail_mmd; 19640 *usable = usable_mmd; 19641 *tail_unsent = tail_unsent_mmd; 19642 *snxt = snxt_mmd; 19643 obbytes = obbytes_mmd; 19644 obsegs = obsegs_mmd; 19645 if (md_mp != NULL) { 19646 /* Unlink message from the chain */ 19647 if (md_mp_head != NULL) { 19648 err = (intptr_t)rmvb(md_mp_head, 19649 md_mp); 19650 /* 19651 * We can't assert that rmvb 19652 * did not return -1, since we 19653 * may get here before linkb 19654 * happens. We do, however, 19655 * check if we just removed the 19656 * only element in the list. 19657 */ 19658 if (err == 0) 19659 md_mp_head = NULL; 19660 } 19661 /* md_hbuf gets freed automatically */ 19662 TCP_STAT(tcps, tcp_mdt_discarded); 19663 freeb(md_mp); 19664 } else { 19665 /* Either allocb or mmd_alloc failed */ 19666 TCP_STAT(tcps, tcp_mdt_allocfail); 19667 if (md_hbuf != NULL) 19668 freeb(md_hbuf); 19669 } 19670 19671 /* send down what we've got so far */ 19672 if (md_mp_head != NULL) { 19673 tcp_multisend_data(tcp, ire, ill, 19674 md_mp_head, obsegs, obbytes, 19675 &rconfirm); 19676 } 19677 legacy_send_no_md: 19678 if (ire != NULL) 19679 IRE_REFRELE(ire); 19680 /* 19681 * Too bad; let the legacy path handle this. 19682 * We specify INT_MAX for the threshold, since 19683 * we gave up with the Multidata processings 19684 * and let the old path have it all. 19685 */ 19686 TCP_STAT(tcps, tcp_mdt_legacy_all); 19687 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19688 tcp_tcp_hdr_len, num_sack_blk, usable, 19689 snxt, tail_unsent, xmit_tail, local_time, 19690 INT_MAX)); 19691 } 19692 19693 /* link to any existing ones, if applicable */ 19694 TCP_STAT(tcps, tcp_mdt_allocd); 19695 if (md_mp_head == NULL) { 19696 md_mp_head = md_mp; 19697 } else if (tcp_mdt_chain) { 19698 TCP_STAT(tcps, tcp_mdt_linked); 19699 linkb(md_mp_head, md_mp); 19700 } 19701 } 19702 19703 ASSERT(md_mp_head != NULL); 19704 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19705 ASSERT(md_mp != NULL && mmd != NULL); 19706 ASSERT(md_hbuf != NULL); 19707 19708 /* 19709 * Packetize the transmittable portion of the data block; 19710 * each data block is essentially added to the Multidata 19711 * as a payload buffer. We also deal with adding more 19712 * than one payload buffers, which happens when the remaining 19713 * packetized portion of the current payload buffer is less 19714 * than MSS, while the next data block in transmit queue 19715 * has enough data to make up for one. This "spillover" 19716 * case essentially creates a split-packet, where portions 19717 * of the packet's payload fragments may span across two 19718 * virtually discontiguous address blocks. 19719 */ 19720 seg_len = mss; 19721 do { 19722 len = seg_len; 19723 19724 /* one must remain NULL for DTRACE_IP_FASTPATH */ 19725 ipha = NULL; 19726 ip6h = NULL; 19727 19728 ASSERT(len > 0); 19729 ASSERT(max_pld >= 0); 19730 ASSERT(!add_buffer || cur_pld_off == 0); 19731 19732 /* 19733 * First time around for this payload buffer; note 19734 * in the case of a spillover, the following has 19735 * been done prior to adding the split-packet 19736 * descriptor to Multidata, and we don't want to 19737 * repeat the process. 19738 */ 19739 if (add_buffer) { 19740 ASSERT(mmd != NULL); 19741 ASSERT(md_pbuf == NULL); 19742 ASSERT(md_pbuf_nxt == NULL); 19743 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19744 19745 /* 19746 * Have we reached the limit? We'd get to 19747 * this case when we're not chaining the 19748 * Multidata messages together, and since 19749 * we're done, terminate this loop. 19750 */ 19751 if (max_pld == 0) 19752 break; /* done */ 19753 19754 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19755 TCP_STAT(tcps, tcp_mdt_allocfail); 19756 goto legacy_send; /* out_of_mem */ 19757 } 19758 19759 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19760 zc_cap != NULL) { 19761 if (!ip_md_zcopy_attr(mmd, NULL, 19762 zc_cap->ill_zerocopy_flags)) { 19763 freeb(md_pbuf); 19764 TCP_STAT(tcps, 19765 tcp_mdt_allocfail); 19766 /* out_of_mem */ 19767 goto legacy_send; 19768 } 19769 zcopy = B_TRUE; 19770 } 19771 19772 md_pbuf->b_rptr += base_pld_off; 19773 19774 /* 19775 * Add a payload buffer to the Multidata; this 19776 * operation must not fail, or otherwise our 19777 * logic in this routine is broken. There 19778 * is no memory allocation done by the 19779 * routine, so any returned failure simply 19780 * tells us that we've done something wrong. 19781 * 19782 * A failure tells us that either we're adding 19783 * the same payload buffer more than once, or 19784 * we're trying to add more buffers than 19785 * allowed (max_pld calculation is wrong). 19786 * None of the above cases should happen, and 19787 * we panic because either there's horrible 19788 * heap corruption, and/or programming mistake. 19789 */ 19790 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19791 if (pbuf_idx < 0) { 19792 cmn_err(CE_PANIC, "tcp_multisend: " 19793 "payload buffer logic error " 19794 "detected for tcp %p mmd %p " 19795 "pbuf %p (%d)\n", 19796 (void *)tcp, (void *)mmd, 19797 (void *)md_pbuf, pbuf_idx); 19798 } 19799 19800 ASSERT(max_pld > 0); 19801 --max_pld; 19802 add_buffer = B_FALSE; 19803 } 19804 19805 ASSERT(md_mp_head != NULL); 19806 ASSERT(md_pbuf != NULL); 19807 ASSERT(md_pbuf_nxt == NULL); 19808 ASSERT(pbuf_idx != -1); 19809 ASSERT(pbuf_idx_nxt == -1); 19810 ASSERT(*usable > 0); 19811 19812 /* 19813 * We spillover to the next payload buffer only 19814 * if all of the following is true: 19815 * 19816 * 1. There is not enough data on the current 19817 * payload buffer to make up `len', 19818 * 2. We are allowed to send `len', 19819 * 3. The next payload buffer length is large 19820 * enough to accomodate `spill'. 19821 */ 19822 if ((spill = len - *tail_unsent) > 0 && 19823 *usable >= len && 19824 MBLKL((*xmit_tail)->b_cont) >= spill && 19825 max_pld > 0) { 19826 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19827 if (md_pbuf_nxt == NULL) { 19828 TCP_STAT(tcps, tcp_mdt_allocfail); 19829 goto legacy_send; /* out_of_mem */ 19830 } 19831 19832 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19833 zc_cap != NULL) { 19834 if (!ip_md_zcopy_attr(mmd, NULL, 19835 zc_cap->ill_zerocopy_flags)) { 19836 freeb(md_pbuf_nxt); 19837 TCP_STAT(tcps, 19838 tcp_mdt_allocfail); 19839 /* out_of_mem */ 19840 goto legacy_send; 19841 } 19842 zcopy = B_TRUE; 19843 } 19844 19845 /* 19846 * See comments above on the first call to 19847 * mmd_addpldbuf for explanation on the panic. 19848 */ 19849 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19850 if (pbuf_idx_nxt < 0) { 19851 panic("tcp_multisend: " 19852 "next payload buffer logic error " 19853 "detected for tcp %p mmd %p " 19854 "pbuf %p (%d)\n", 19855 (void *)tcp, (void *)mmd, 19856 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19857 } 19858 19859 ASSERT(max_pld > 0); 19860 --max_pld; 19861 } else if (spill > 0) { 19862 /* 19863 * If there's a spillover, but the following 19864 * xmit_tail couldn't give us enough octets 19865 * to reach "len", then stop the current 19866 * Multidata creation and let the legacy 19867 * tcp_send() path take over. We don't want 19868 * to send the tiny segment as part of this 19869 * Multidata for performance reasons; instead, 19870 * we let the legacy path deal with grouping 19871 * it with the subsequent small mblks. 19872 */ 19873 if (*usable >= len && 19874 MBLKL((*xmit_tail)->b_cont) < spill) { 19875 max_pld = 0; 19876 break; /* done */ 19877 } 19878 19879 /* 19880 * We can't spillover, and we are near 19881 * the end of the current payload buffer, 19882 * so send what's left. 19883 */ 19884 ASSERT(*tail_unsent > 0); 19885 len = *tail_unsent; 19886 } 19887 19888 /* tail_unsent is negated if there is a spillover */ 19889 *tail_unsent -= len; 19890 *usable -= len; 19891 ASSERT(*usable >= 0); 19892 19893 if (*usable < mss) 19894 seg_len = *usable; 19895 /* 19896 * Sender SWS avoidance; see comments in tcp_send(); 19897 * everything else is the same, except that we only 19898 * do this here if there is no more data to be sent 19899 * following the current xmit_tail. We don't check 19900 * for 1-byte urgent data because we shouldn't get 19901 * here if TCP_URG_VALID is set. 19902 */ 19903 if (*usable > 0 && *usable < mss && 19904 ((md_pbuf_nxt == NULL && 19905 (*xmit_tail)->b_cont == NULL) || 19906 (md_pbuf_nxt != NULL && 19907 (*xmit_tail)->b_cont->b_cont == NULL)) && 19908 seg_len < (tcp->tcp_max_swnd >> 1) && 19909 (tcp->tcp_unsent - 19910 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19911 !tcp->tcp_zero_win_probe) { 19912 if ((*snxt + len) == tcp->tcp_snxt && 19913 (*snxt + len) == tcp->tcp_suna) { 19914 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19915 } 19916 done = B_TRUE; 19917 } 19918 19919 /* 19920 * Prime pump for IP's checksumming on our behalf; 19921 * include the adjustment for a source route if any. 19922 * Do this only for software/partial hardware checksum 19923 * offload, as this field gets zeroed out later for 19924 * the full hardware checksum offload case. 19925 */ 19926 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19927 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19928 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19929 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19930 } 19931 19932 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19933 *snxt += len; 19934 19935 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19936 /* 19937 * We set the PUSH bit only if TCP has no more buffered 19938 * data to be transmitted (or if sender SWS avoidance 19939 * takes place), as opposed to setting it for every 19940 * last packet in the burst. 19941 */ 19942 if (done || 19943 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19944 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19945 19946 /* 19947 * Set FIN bit if this is our last segment; snxt 19948 * already includes its length, and it will not 19949 * be adjusted after this point. 19950 */ 19951 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19952 *snxt == tcp->tcp_fss) { 19953 if (!tcp->tcp_fin_acked) { 19954 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19955 BUMP_MIB(&tcps->tcps_mib, 19956 tcpOutControl); 19957 } 19958 if (!tcp->tcp_fin_sent) { 19959 tcp->tcp_fin_sent = B_TRUE; 19960 /* 19961 * tcp state must be ESTABLISHED 19962 * in order for us to get here in 19963 * the first place. 19964 */ 19965 tcp->tcp_state = TCPS_FIN_WAIT_1; 19966 19967 /* 19968 * Upon returning from this routine, 19969 * tcp_wput_data() will set tcp_snxt 19970 * to be equal to snxt + tcp_fin_sent. 19971 * This is essentially the same as 19972 * setting it to tcp_fss + 1. 19973 */ 19974 } 19975 } 19976 19977 tcp->tcp_last_sent_len = (ushort_t)len; 19978 19979 len += tcp_hdr_len; 19980 if (tcp->tcp_ipversion == IPV4_VERSION) 19981 tcp->tcp_ipha->ipha_length = htons(len); 19982 else 19983 tcp->tcp_ip6h->ip6_plen = htons(len - 19984 ((char *)&tcp->tcp_ip6h[1] - 19985 tcp->tcp_iphc)); 19986 19987 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19988 19989 /* setup header fragment */ 19990 PDESC_HDR_ADD(pkt_info, 19991 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19992 tcp->tcp_mdt_hdr_head, /* head room */ 19993 tcp_hdr_len, /* len */ 19994 tcp->tcp_mdt_hdr_tail); /* tail room */ 19995 19996 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19997 hdr_frag_sz); 19998 ASSERT(MBLKIN(md_hbuf, 19999 (pkt_info->hdr_base - md_hbuf->b_rptr), 20000 PDESC_HDRSIZE(pkt_info))); 20001 20002 /* setup first payload fragment */ 20003 PDESC_PLD_INIT(pkt_info); 20004 PDESC_PLD_SPAN_ADD(pkt_info, 20005 pbuf_idx, /* index */ 20006 md_pbuf->b_rptr + cur_pld_off, /* start */ 20007 tcp->tcp_last_sent_len); /* len */ 20008 20009 /* create a split-packet in case of a spillover */ 20010 if (md_pbuf_nxt != NULL) { 20011 ASSERT(spill > 0); 20012 ASSERT(pbuf_idx_nxt > pbuf_idx); 20013 ASSERT(!add_buffer); 20014 20015 md_pbuf = md_pbuf_nxt; 20016 md_pbuf_nxt = NULL; 20017 pbuf_idx = pbuf_idx_nxt; 20018 pbuf_idx_nxt = -1; 20019 cur_pld_off = spill; 20020 20021 /* trim out first payload fragment */ 20022 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20023 20024 /* setup second payload fragment */ 20025 PDESC_PLD_SPAN_ADD(pkt_info, 20026 pbuf_idx, /* index */ 20027 md_pbuf->b_rptr, /* start */ 20028 spill); /* len */ 20029 20030 if ((*xmit_tail)->b_next == NULL) { 20031 /* 20032 * Store the lbolt used for RTT 20033 * estimation. We can only record one 20034 * timestamp per mblk so we do it when 20035 * we reach the end of the payload 20036 * buffer. Also we only take a new 20037 * timestamp sample when the previous 20038 * timed data from the same mblk has 20039 * been ack'ed. 20040 */ 20041 (*xmit_tail)->b_prev = local_time; 20042 (*xmit_tail)->b_next = 20043 (mblk_t *)(uintptr_t)first_snxt; 20044 } 20045 20046 first_snxt = *snxt - spill; 20047 20048 /* 20049 * Advance xmit_tail; usable could be 0 by 20050 * the time we got here, but we made sure 20051 * above that we would only spillover to 20052 * the next data block if usable includes 20053 * the spilled-over amount prior to the 20054 * subtraction. Therefore, we are sure 20055 * that xmit_tail->b_cont can't be NULL. 20056 */ 20057 ASSERT((*xmit_tail)->b_cont != NULL); 20058 *xmit_tail = (*xmit_tail)->b_cont; 20059 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20060 (uintptr_t)INT_MAX); 20061 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20062 } else { 20063 cur_pld_off += tcp->tcp_last_sent_len; 20064 } 20065 20066 /* 20067 * Fill in the header using the template header, and 20068 * add options such as time-stamp, ECN and/or SACK, 20069 * as needed. 20070 */ 20071 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20072 (clock_t)local_time, num_sack_blk); 20073 20074 /* take care of some IP header businesses */ 20075 if (af == AF_INET) { 20076 ipha = (ipha_t *)pkt_info->hdr_rptr; 20077 20078 ASSERT(OK_32PTR((uchar_t *)ipha)); 20079 ASSERT(PDESC_HDRL(pkt_info) >= 20080 IP_SIMPLE_HDR_LENGTH); 20081 ASSERT(ipha->ipha_version_and_hdr_length == 20082 IP_SIMPLE_HDR_VERSION); 20083 20084 /* 20085 * Assign ident value for current packet; see 20086 * related comments in ip_wput_ire() about the 20087 * contract private interface with clustering 20088 * group. 20089 */ 20090 clusterwide = B_FALSE; 20091 if (cl_inet_ipident != NULL) { 20092 ASSERT(cl_inet_isclusterwide != NULL); 20093 if ((*cl_inet_isclusterwide)(stack_id, 20094 IPPROTO_IP, AF_INET, 20095 (uint8_t *)(uintptr_t)src, NULL)) { 20096 ipha->ipha_ident = 20097 (*cl_inet_ipident)(stack_id, 20098 IPPROTO_IP, AF_INET, 20099 (uint8_t *)(uintptr_t)src, 20100 (uint8_t *)(uintptr_t)dst, 20101 NULL); 20102 clusterwide = B_TRUE; 20103 } 20104 } 20105 20106 if (!clusterwide) { 20107 ipha->ipha_ident = (uint16_t) 20108 atomic_add_32_nv( 20109 &ire->ire_ident, 1); 20110 } 20111 #ifndef _BIG_ENDIAN 20112 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20113 (ipha->ipha_ident >> 8); 20114 #endif 20115 } else { 20116 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20117 20118 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20119 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20120 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20121 ASSERT(PDESC_HDRL(pkt_info) >= 20122 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20123 TCP_CHECKSUM_SIZE)); 20124 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20125 20126 if (tcp->tcp_ip_forward_progress) { 20127 rconfirm = B_TRUE; 20128 tcp->tcp_ip_forward_progress = B_FALSE; 20129 } 20130 } 20131 20132 /* at least one payload span, and at most two */ 20133 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20134 20135 /* add the packet descriptor to Multidata */ 20136 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20137 KM_NOSLEEP)) == NULL) { 20138 /* 20139 * Any failure other than ENOMEM indicates 20140 * that we have passed in invalid pkt_info 20141 * or parameters to mmd_addpdesc, which must 20142 * not happen. 20143 * 20144 * EINVAL is a result of failure on boundary 20145 * checks against the pkt_info contents. It 20146 * should not happen, and we panic because 20147 * either there's horrible heap corruption, 20148 * and/or programming mistake. 20149 */ 20150 if (err != ENOMEM) { 20151 cmn_err(CE_PANIC, "tcp_multisend: " 20152 "pdesc logic error detected for " 20153 "tcp %p mmd %p pinfo %p (%d)\n", 20154 (void *)tcp, (void *)mmd, 20155 (void *)pkt_info, err); 20156 } 20157 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20158 goto legacy_send; /* out_of_mem */ 20159 } 20160 ASSERT(pkt != NULL); 20161 20162 /* calculate IP header and TCP checksums */ 20163 if (af == AF_INET) { 20164 /* calculate pseudo-header checksum */ 20165 cksum = (dst >> 16) + (dst & 0xFFFF) + 20166 (src >> 16) + (src & 0xFFFF); 20167 20168 /* offset for TCP header checksum */ 20169 up = IPH_TCPH_CHECKSUMP(ipha, 20170 IP_SIMPLE_HDR_LENGTH); 20171 } else { 20172 up = (uint16_t *)&ip6h->ip6_src; 20173 20174 /* calculate pseudo-header checksum */ 20175 cksum = up[0] + up[1] + up[2] + up[3] + 20176 up[4] + up[5] + up[6] + up[7] + 20177 up[8] + up[9] + up[10] + up[11] + 20178 up[12] + up[13] + up[14] + up[15]; 20179 20180 /* Fold the initial sum */ 20181 cksum = (cksum & 0xffff) + (cksum >> 16); 20182 20183 up = (uint16_t *)(((uchar_t *)ip6h) + 20184 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20185 } 20186 20187 if (hwcksum_flags & HCK_FULLCKSUM) { 20188 /* clear checksum field for hardware */ 20189 *up = 0; 20190 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20191 uint32_t sum; 20192 20193 /* pseudo-header checksumming */ 20194 sum = *up + cksum + IP_TCP_CSUM_COMP; 20195 sum = (sum & 0xFFFF) + (sum >> 16); 20196 *up = (sum & 0xFFFF) + (sum >> 16); 20197 } else { 20198 /* software checksumming */ 20199 TCP_STAT(tcps, tcp_out_sw_cksum); 20200 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20201 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20202 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20203 cksum + IP_TCP_CSUM_COMP); 20204 if (*up == 0) 20205 *up = 0xFFFF; 20206 } 20207 20208 /* IPv4 header checksum */ 20209 if (af == AF_INET) { 20210 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20211 ipha->ipha_hdr_checksum = 0; 20212 } else { 20213 IP_HDR_CKSUM(ipha, cksum, 20214 ((uint32_t *)ipha)[0], 20215 ((uint16_t *)ipha)[4]); 20216 } 20217 } 20218 20219 if (af == AF_INET && 20220 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20221 af == AF_INET6 && 20222 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20223 mblk_t *mp, *mp1; 20224 uchar_t *hdr_rptr, *hdr_wptr; 20225 uchar_t *pld_rptr, *pld_wptr; 20226 20227 /* 20228 * We reconstruct a pseudo packet for the hooks 20229 * framework using mmd_transform_link(). 20230 * If it is a split packet we pullup the 20231 * payload. FW_HOOKS expects a pkt comprising 20232 * of two mblks: a header and the payload. 20233 */ 20234 if ((mp = mmd_transform_link(pkt)) == NULL) { 20235 TCP_STAT(tcps, tcp_mdt_allocfail); 20236 goto legacy_send; 20237 } 20238 20239 if (pkt_info->pld_cnt > 1) { 20240 /* split payload, more than one pld */ 20241 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20242 NULL) { 20243 freemsg(mp); 20244 TCP_STAT(tcps, 20245 tcp_mdt_allocfail); 20246 goto legacy_send; 20247 } 20248 freemsg(mp->b_cont); 20249 mp->b_cont = mp1; 20250 } else { 20251 mp1 = mp->b_cont; 20252 } 20253 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20254 20255 /* 20256 * Remember the message offsets. This is so we 20257 * can detect changes when we return from the 20258 * FW_HOOKS callbacks. 20259 */ 20260 hdr_rptr = mp->b_rptr; 20261 hdr_wptr = mp->b_wptr; 20262 pld_rptr = mp->b_cont->b_rptr; 20263 pld_wptr = mp->b_cont->b_wptr; 20264 20265 if (af == AF_INET) { 20266 DTRACE_PROBE4( 20267 ip4__physical__out__start, 20268 ill_t *, NULL, 20269 ill_t *, ill, 20270 ipha_t *, ipha, 20271 mblk_t *, mp); 20272 FW_HOOKS( 20273 ipst->ips_ip4_physical_out_event, 20274 ipst->ips_ipv4firewall_physical_out, 20275 NULL, ill, ipha, mp, mp, 0, ipst); 20276 DTRACE_PROBE1( 20277 ip4__physical__out__end, 20278 mblk_t *, mp); 20279 } else { 20280 DTRACE_PROBE4( 20281 ip6__physical__out_start, 20282 ill_t *, NULL, 20283 ill_t *, ill, 20284 ip6_t *, ip6h, 20285 mblk_t *, mp); 20286 FW_HOOKS6( 20287 ipst->ips_ip6_physical_out_event, 20288 ipst->ips_ipv6firewall_physical_out, 20289 NULL, ill, ip6h, mp, mp, 0, ipst); 20290 DTRACE_PROBE1( 20291 ip6__physical__out__end, 20292 mblk_t *, mp); 20293 } 20294 20295 if (mp == NULL || 20296 (mp1 = mp->b_cont) == NULL || 20297 mp->b_rptr != hdr_rptr || 20298 mp->b_wptr != hdr_wptr || 20299 mp1->b_rptr != pld_rptr || 20300 mp1->b_wptr != pld_wptr || 20301 mp1->b_cont != NULL) { 20302 /* 20303 * We abandon multidata processing and 20304 * return to the normal path, either 20305 * when a packet is blocked, or when 20306 * the boundaries of header buffer or 20307 * payload buffer have been changed by 20308 * FW_HOOKS[6]. 20309 */ 20310 if (mp != NULL) 20311 freemsg(mp); 20312 goto legacy_send; 20313 } 20314 /* Finished with the pseudo packet */ 20315 freemsg(mp); 20316 } 20317 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20318 ill, ipha, ip6h); 20319 /* advance header offset */ 20320 cur_hdr_off += hdr_frag_sz; 20321 20322 obbytes += tcp->tcp_last_sent_len; 20323 ++obsegs; 20324 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20325 *tail_unsent > 0); 20326 20327 if ((*xmit_tail)->b_next == NULL) { 20328 /* 20329 * Store the lbolt used for RTT estimation. We can only 20330 * record one timestamp per mblk so we do it when we 20331 * reach the end of the payload buffer. Also we only 20332 * take a new timestamp sample when the previous timed 20333 * data from the same mblk has been ack'ed. 20334 */ 20335 (*xmit_tail)->b_prev = local_time; 20336 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20337 } 20338 20339 ASSERT(*tail_unsent >= 0); 20340 if (*tail_unsent > 0) { 20341 /* 20342 * We got here because we broke out of the above 20343 * loop due to of one of the following cases: 20344 * 20345 * 1. len < adjusted MSS (i.e. small), 20346 * 2. Sender SWS avoidance, 20347 * 3. max_pld is zero. 20348 * 20349 * We are done for this Multidata, so trim our 20350 * last payload buffer (if any) accordingly. 20351 */ 20352 if (md_pbuf != NULL) 20353 md_pbuf->b_wptr -= *tail_unsent; 20354 } else if (*usable > 0) { 20355 *xmit_tail = (*xmit_tail)->b_cont; 20356 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20357 (uintptr_t)INT_MAX); 20358 *tail_unsent = (int)MBLKL(*xmit_tail); 20359 add_buffer = B_TRUE; 20360 } 20361 } while (!done && *usable > 0 && num_burst_seg > 0 && 20362 (tcp_mdt_chain || max_pld > 0)); 20363 20364 if (md_mp_head != NULL) { 20365 /* send everything down */ 20366 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20367 &rconfirm); 20368 } 20369 20370 #undef PREP_NEW_MULTIDATA 20371 #undef PREP_NEW_PBUF 20372 #undef IPVER 20373 20374 IRE_REFRELE(ire); 20375 return (0); 20376 } 20377 20378 /* 20379 * A wrapper function for sending one or more Multidata messages down to 20380 * the module below ip; this routine does not release the reference of the 20381 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20382 */ 20383 static void 20384 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20385 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20386 { 20387 uint64_t delta; 20388 nce_t *nce; 20389 tcp_stack_t *tcps = tcp->tcp_tcps; 20390 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20391 20392 ASSERT(ire != NULL && ill != NULL); 20393 ASSERT(ire->ire_stq != NULL); 20394 ASSERT(md_mp_head != NULL); 20395 ASSERT(rconfirm != NULL); 20396 20397 /* adjust MIBs and IRE timestamp */ 20398 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20399 tcp->tcp_obsegs += obsegs; 20400 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20401 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20402 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20403 20404 if (tcp->tcp_ipversion == IPV4_VERSION) { 20405 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20406 } else { 20407 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20408 } 20409 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20410 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20411 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20412 20413 ire->ire_ob_pkt_count += obsegs; 20414 if (ire->ire_ipif != NULL) 20415 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20416 ire->ire_last_used_time = lbolt; 20417 20418 if (ipst->ips_ipobs_enabled) { 20419 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20420 pdesc_t *dl_pkt; 20421 pdescinfo_t pinfo; 20422 mblk_t *nmp; 20423 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20424 20425 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20426 (dl_pkt != NULL); 20427 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20428 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20429 continue; 20430 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20431 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 20432 freemsg(nmp); 20433 } 20434 } 20435 20436 /* send it down */ 20437 putnext(ire->ire_stq, md_mp_head); 20438 20439 /* we're done for TCP/IPv4 */ 20440 if (tcp->tcp_ipversion == IPV4_VERSION) 20441 return; 20442 20443 nce = ire->ire_nce; 20444 20445 ASSERT(nce != NULL); 20446 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20447 ASSERT(nce->nce_state != ND_INCOMPLETE); 20448 20449 /* reachability confirmation? */ 20450 if (*rconfirm) { 20451 nce->nce_last = TICK_TO_MSEC(lbolt64); 20452 if (nce->nce_state != ND_REACHABLE) { 20453 mutex_enter(&nce->nce_lock); 20454 nce->nce_state = ND_REACHABLE; 20455 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20456 mutex_exit(&nce->nce_lock); 20457 (void) untimeout(nce->nce_timeout_id); 20458 if (ip_debug > 2) { 20459 /* ip1dbg */ 20460 pr_addr_dbg("tcp_multisend_data: state " 20461 "for %s changed to REACHABLE\n", 20462 AF_INET6, &ire->ire_addr_v6); 20463 } 20464 } 20465 /* reset transport reachability confirmation */ 20466 *rconfirm = B_FALSE; 20467 } 20468 20469 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20470 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20471 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20472 20473 if (delta > (uint64_t)ill->ill_reachable_time) { 20474 mutex_enter(&nce->nce_lock); 20475 switch (nce->nce_state) { 20476 case ND_REACHABLE: 20477 case ND_STALE: 20478 /* 20479 * ND_REACHABLE is identical to ND_STALE in this 20480 * specific case. If reachable time has expired for 20481 * this neighbor (delta is greater than reachable 20482 * time), conceptually, the neighbor cache is no 20483 * longer in REACHABLE state, but already in STALE 20484 * state. So the correct transition here is to 20485 * ND_DELAY. 20486 */ 20487 nce->nce_state = ND_DELAY; 20488 mutex_exit(&nce->nce_lock); 20489 NDP_RESTART_TIMER(nce, 20490 ipst->ips_delay_first_probe_time); 20491 if (ip_debug > 3) { 20492 /* ip2dbg */ 20493 pr_addr_dbg("tcp_multisend_data: state " 20494 "for %s changed to DELAY\n", 20495 AF_INET6, &ire->ire_addr_v6); 20496 } 20497 break; 20498 case ND_DELAY: 20499 case ND_PROBE: 20500 mutex_exit(&nce->nce_lock); 20501 /* Timers have already started */ 20502 break; 20503 case ND_UNREACHABLE: 20504 /* 20505 * ndp timer has detected that this nce is 20506 * unreachable and initiated deleting this nce 20507 * and all its associated IREs. This is a race 20508 * where we found the ire before it was deleted 20509 * and have just sent out a packet using this 20510 * unreachable nce. 20511 */ 20512 mutex_exit(&nce->nce_lock); 20513 break; 20514 default: 20515 ASSERT(0); 20516 } 20517 } 20518 } 20519 20520 /* 20521 * Derived from tcp_send_data(). 20522 */ 20523 static void 20524 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20525 int num_lso_seg) 20526 { 20527 ipha_t *ipha; 20528 mblk_t *ire_fp_mp; 20529 uint_t ire_fp_mp_len; 20530 uint32_t hcksum_txflags = 0; 20531 ipaddr_t src; 20532 ipaddr_t dst; 20533 uint32_t cksum; 20534 uint16_t *up; 20535 tcp_stack_t *tcps = tcp->tcp_tcps; 20536 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20537 20538 ASSERT(DB_TYPE(mp) == M_DATA); 20539 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20540 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20541 ASSERT(tcp->tcp_connp != NULL); 20542 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20543 20544 ipha = (ipha_t *)mp->b_rptr; 20545 src = ipha->ipha_src; 20546 dst = ipha->ipha_dst; 20547 20548 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20549 20550 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20551 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20552 num_lso_seg); 20553 #ifndef _BIG_ENDIAN 20554 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20555 #endif 20556 if (tcp->tcp_snd_zcopy_aware) { 20557 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20558 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20559 mp = tcp_zcopy_disable(tcp, mp); 20560 } 20561 20562 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20563 ASSERT(ill->ill_hcksum_capab != NULL); 20564 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20565 } 20566 20567 /* 20568 * Since the TCP checksum should be recalculated by h/w, we can just 20569 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20570 * pseudo-header checksum for HCK_PARTIALCKSUM. 20571 * The partial pseudo-header excludes TCP length, that was calculated 20572 * in tcp_send(), so to zero *up before further processing. 20573 */ 20574 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20575 20576 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20577 *up = 0; 20578 20579 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20580 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20581 20582 /* 20583 * Append LSO flags and mss to the mp. 20584 */ 20585 lso_info_set(mp, mss, HW_LSO); 20586 20587 ipha->ipha_fragment_offset_and_flags |= 20588 (uint32_t)htons(ire->ire_frag_flag); 20589 20590 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20591 ire_fp_mp_len = MBLKL(ire_fp_mp); 20592 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20593 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20594 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20595 20596 UPDATE_OB_PKT_COUNT(ire); 20597 ire->ire_last_used_time = lbolt; 20598 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20600 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20601 ntohs(ipha->ipha_length)); 20602 20603 DTRACE_PROBE4(ip4__physical__out__start, 20604 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20605 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20606 ipst->ips_ipv4firewall_physical_out, NULL, 20607 ill, ipha, mp, mp, 0, ipst); 20608 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20609 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20610 20611 if (mp != NULL) { 20612 if (ipst->ips_ipobs_enabled) { 20613 zoneid_t szone; 20614 20615 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20616 ipst, ALL_ZONES); 20617 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20618 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 20619 } 20620 20621 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20622 } 20623 } 20624 20625 /* 20626 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20627 * scheme, and returns one of the following: 20628 * 20629 * -1 = failed allocation. 20630 * 0 = success; burst count reached, or usable send window is too small, 20631 * and that we'd rather wait until later before sending again. 20632 * 1 = success; we are called from tcp_multisend(), and both usable send 20633 * window and tail_unsent are greater than the MDT threshold, and thus 20634 * Multidata Transmit should be used instead. 20635 */ 20636 static int 20637 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20638 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20639 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20640 const int mdt_thres) 20641 { 20642 int num_burst_seg = tcp->tcp_snd_burst; 20643 ire_t *ire = NULL; 20644 ill_t *ill = NULL; 20645 mblk_t *ire_fp_mp = NULL; 20646 uint_t ire_fp_mp_len = 0; 20647 int num_lso_seg = 1; 20648 uint_t lso_usable; 20649 boolean_t do_lso_send = B_FALSE; 20650 tcp_stack_t *tcps = tcp->tcp_tcps; 20651 20652 /* 20653 * Check LSO capability before any further work. And the similar check 20654 * need to be done in for(;;) loop. 20655 * LSO will be deployed when therer is more than one mss of available 20656 * data and a burst transmission is allowed. 20657 */ 20658 if (tcp->tcp_lso && 20659 (tcp->tcp_valid_bits == 0 || 20660 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20661 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20662 /* 20663 * Try to find usable IRE/ILL and do basic check to the ILL. 20664 * Double check LSO usability before going further, since the 20665 * underlying interface could have been changed. In case of any 20666 * change of LSO capability, set tcp_ire_ill_check_done to 20667 * B_FALSE to force to check the ILL with the next send. 20668 */ 20669 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 20670 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 20671 /* 20672 * Enable LSO with this transmission. 20673 * Since IRE has been hold in tcp_send_find_ire_ill(), 20674 * IRE_REFRELE(ire) should be called before return. 20675 */ 20676 do_lso_send = B_TRUE; 20677 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20678 ire_fp_mp_len = MBLKL(ire_fp_mp); 20679 /* Round up to multiple of 4 */ 20680 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20681 } else { 20682 tcp->tcp_lso = B_FALSE; 20683 tcp->tcp_ire_ill_check_done = B_FALSE; 20684 do_lso_send = B_FALSE; 20685 ill = NULL; 20686 } 20687 } 20688 20689 for (;;) { 20690 struct datab *db; 20691 tcph_t *tcph; 20692 uint32_t sum; 20693 mblk_t *mp, *mp1; 20694 uchar_t *rptr; 20695 int len; 20696 20697 /* 20698 * If we're called by tcp_multisend(), and the amount of 20699 * sendable data as well as the size of current xmit_tail 20700 * is beyond the MDT threshold, return to the caller and 20701 * let the large data transmit be done using MDT. 20702 */ 20703 if (*usable > 0 && *usable > mdt_thres && 20704 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20705 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20706 ASSERT(tcp->tcp_mdt); 20707 return (1); /* success; do large send */ 20708 } 20709 20710 if (num_burst_seg == 0) 20711 break; /* success; burst count reached */ 20712 20713 /* 20714 * Calculate the maximum payload length we can send in *one* 20715 * time. 20716 */ 20717 if (do_lso_send) { 20718 /* 20719 * Check whether need to do LSO any more. 20720 */ 20721 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20722 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20723 lso_usable = MIN(lso_usable, 20724 num_burst_seg * mss); 20725 20726 num_lso_seg = lso_usable / mss; 20727 if (lso_usable % mss) { 20728 num_lso_seg++; 20729 tcp->tcp_last_sent_len = (ushort_t) 20730 (lso_usable % mss); 20731 } else { 20732 tcp->tcp_last_sent_len = (ushort_t)mss; 20733 } 20734 } else { 20735 do_lso_send = B_FALSE; 20736 num_lso_seg = 1; 20737 lso_usable = mss; 20738 } 20739 } 20740 20741 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20742 20743 /* 20744 * Adjust num_burst_seg here. 20745 */ 20746 num_burst_seg -= num_lso_seg; 20747 20748 len = mss; 20749 if (len > *usable) { 20750 ASSERT(do_lso_send == B_FALSE); 20751 20752 len = *usable; 20753 if (len <= 0) { 20754 /* Terminate the loop */ 20755 break; /* success; too small */ 20756 } 20757 /* 20758 * Sender silly-window avoidance. 20759 * Ignore this if we are going to send a 20760 * zero window probe out. 20761 * 20762 * TODO: force data into microscopic window? 20763 * ==> (!pushed || (unsent > usable)) 20764 */ 20765 if (len < (tcp->tcp_max_swnd >> 1) && 20766 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20767 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20768 len == 1) && (! tcp->tcp_zero_win_probe)) { 20769 /* 20770 * If the retransmit timer is not running 20771 * we start it so that we will retransmit 20772 * in the case when the the receiver has 20773 * decremented the window. 20774 */ 20775 if (*snxt == tcp->tcp_snxt && 20776 *snxt == tcp->tcp_suna) { 20777 /* 20778 * We are not supposed to send 20779 * anything. So let's wait a little 20780 * bit longer before breaking SWS 20781 * avoidance. 20782 * 20783 * What should the value be? 20784 * Suggestion: MAX(init rexmit time, 20785 * tcp->tcp_rto) 20786 */ 20787 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20788 } 20789 break; /* success; too small */ 20790 } 20791 } 20792 20793 tcph = tcp->tcp_tcph; 20794 20795 /* 20796 * The reason to adjust len here is that we need to set flags 20797 * and calculate checksum. 20798 */ 20799 if (do_lso_send) 20800 len = lso_usable; 20801 20802 *usable -= len; /* Approximate - can be adjusted later */ 20803 if (*usable > 0) 20804 tcph->th_flags[0] = TH_ACK; 20805 else 20806 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20807 20808 /* 20809 * Prime pump for IP's checksumming on our behalf 20810 * Include the adjustment for a source route if any. 20811 */ 20812 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20813 sum = (sum >> 16) + (sum & 0xFFFF); 20814 U16_TO_ABE16(sum, tcph->th_sum); 20815 20816 U32_TO_ABE32(*snxt, tcph->th_seq); 20817 20818 /* 20819 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20820 * set. For the case when TCP_FSS_VALID is the only valid 20821 * bit (normal active close), branch off only when we think 20822 * that the FIN flag needs to be set. Note for this case, 20823 * that (snxt + len) may not reflect the actual seg_len, 20824 * as len may be further reduced in tcp_xmit_mp(). If len 20825 * gets modified, we will end up here again. 20826 */ 20827 if (tcp->tcp_valid_bits != 0 && 20828 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20829 ((*snxt + len) == tcp->tcp_fss))) { 20830 uchar_t *prev_rptr; 20831 uint32_t prev_snxt = tcp->tcp_snxt; 20832 20833 if (*tail_unsent == 0) { 20834 ASSERT((*xmit_tail)->b_cont != NULL); 20835 *xmit_tail = (*xmit_tail)->b_cont; 20836 prev_rptr = (*xmit_tail)->b_rptr; 20837 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20838 (*xmit_tail)->b_rptr); 20839 } else { 20840 prev_rptr = (*xmit_tail)->b_rptr; 20841 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20842 *tail_unsent; 20843 } 20844 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20845 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20846 /* Restore tcp_snxt so we get amount sent right. */ 20847 tcp->tcp_snxt = prev_snxt; 20848 if (prev_rptr == (*xmit_tail)->b_rptr) { 20849 /* 20850 * If the previous timestamp is still in use, 20851 * don't stomp on it. 20852 */ 20853 if ((*xmit_tail)->b_next == NULL) { 20854 (*xmit_tail)->b_prev = local_time; 20855 (*xmit_tail)->b_next = 20856 (mblk_t *)(uintptr_t)(*snxt); 20857 } 20858 } else 20859 (*xmit_tail)->b_rptr = prev_rptr; 20860 20861 if (mp == NULL) { 20862 if (ire != NULL) 20863 IRE_REFRELE(ire); 20864 return (-1); 20865 } 20866 mp1 = mp->b_cont; 20867 20868 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20869 tcp->tcp_last_sent_len = (ushort_t)len; 20870 while (mp1->b_cont) { 20871 *xmit_tail = (*xmit_tail)->b_cont; 20872 (*xmit_tail)->b_prev = local_time; 20873 (*xmit_tail)->b_next = 20874 (mblk_t *)(uintptr_t)(*snxt); 20875 mp1 = mp1->b_cont; 20876 } 20877 *snxt += len; 20878 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20879 BUMP_LOCAL(tcp->tcp_obsegs); 20880 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20881 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20882 tcp_send_data(tcp, q, mp); 20883 continue; 20884 } 20885 20886 *snxt += len; /* Adjust later if we don't send all of len */ 20887 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20888 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20889 20890 if (*tail_unsent) { 20891 /* Are the bytes above us in flight? */ 20892 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20893 if (rptr != (*xmit_tail)->b_rptr) { 20894 *tail_unsent -= len; 20895 if (len <= mss) /* LSO is unusable */ 20896 tcp->tcp_last_sent_len = (ushort_t)len; 20897 len += tcp_hdr_len; 20898 if (tcp->tcp_ipversion == IPV4_VERSION) 20899 tcp->tcp_ipha->ipha_length = htons(len); 20900 else 20901 tcp->tcp_ip6h->ip6_plen = 20902 htons(len - 20903 ((char *)&tcp->tcp_ip6h[1] - 20904 tcp->tcp_iphc)); 20905 mp = dupb(*xmit_tail); 20906 if (mp == NULL) { 20907 if (ire != NULL) 20908 IRE_REFRELE(ire); 20909 return (-1); /* out_of_mem */ 20910 } 20911 mp->b_rptr = rptr; 20912 /* 20913 * If the old timestamp is no longer in use, 20914 * sample a new timestamp now. 20915 */ 20916 if ((*xmit_tail)->b_next == NULL) { 20917 (*xmit_tail)->b_prev = local_time; 20918 (*xmit_tail)->b_next = 20919 (mblk_t *)(uintptr_t)(*snxt-len); 20920 } 20921 goto must_alloc; 20922 } 20923 } else { 20924 *xmit_tail = (*xmit_tail)->b_cont; 20925 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20926 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20927 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20928 (*xmit_tail)->b_rptr); 20929 } 20930 20931 (*xmit_tail)->b_prev = local_time; 20932 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20933 20934 *tail_unsent -= len; 20935 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20936 tcp->tcp_last_sent_len = (ushort_t)len; 20937 20938 len += tcp_hdr_len; 20939 if (tcp->tcp_ipversion == IPV4_VERSION) 20940 tcp->tcp_ipha->ipha_length = htons(len); 20941 else 20942 tcp->tcp_ip6h->ip6_plen = htons(len - 20943 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20944 20945 mp = dupb(*xmit_tail); 20946 if (mp == NULL) { 20947 if (ire != NULL) 20948 IRE_REFRELE(ire); 20949 return (-1); /* out_of_mem */ 20950 } 20951 20952 len = tcp_hdr_len; 20953 /* 20954 * There are four reasons to allocate a new hdr mblk: 20955 * 1) The bytes above us are in use by another packet 20956 * 2) We don't have good alignment 20957 * 3) The mblk is being shared 20958 * 4) We don't have enough room for a header 20959 */ 20960 rptr = mp->b_rptr - len; 20961 if (!OK_32PTR(rptr) || 20962 ((db = mp->b_datap), db->db_ref != 2) || 20963 rptr < db->db_base + ire_fp_mp_len) { 20964 /* NOTE: we assume allocb returns an OK_32PTR */ 20965 20966 must_alloc:; 20967 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20968 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 20969 if (mp1 == NULL) { 20970 freemsg(mp); 20971 if (ire != NULL) 20972 IRE_REFRELE(ire); 20973 return (-1); /* out_of_mem */ 20974 } 20975 mp1->b_cont = mp; 20976 mp = mp1; 20977 /* Leave room for Link Level header */ 20978 len = tcp_hdr_len; 20979 rptr = 20980 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 20981 mp->b_wptr = &rptr[len]; 20982 } 20983 20984 /* 20985 * Fill in the header using the template header, and add 20986 * options such as time-stamp, ECN and/or SACK, as needed. 20987 */ 20988 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20989 20990 mp->b_rptr = rptr; 20991 20992 if (*tail_unsent) { 20993 int spill = *tail_unsent; 20994 20995 mp1 = mp->b_cont; 20996 if (mp1 == NULL) 20997 mp1 = mp; 20998 20999 /* 21000 * If we're a little short, tack on more mblks until 21001 * there is no more spillover. 21002 */ 21003 while (spill < 0) { 21004 mblk_t *nmp; 21005 int nmpsz; 21006 21007 nmp = (*xmit_tail)->b_cont; 21008 nmpsz = MBLKL(nmp); 21009 21010 /* 21011 * Excess data in mblk; can we split it? 21012 * If MDT is enabled for the connection, 21013 * keep on splitting as this is a transient 21014 * send path. 21015 */ 21016 if (!do_lso_send && !tcp->tcp_mdt && 21017 (spill + nmpsz > 0)) { 21018 /* 21019 * Don't split if stream head was 21020 * told to break up larger writes 21021 * into smaller ones. 21022 */ 21023 if (tcp->tcp_maxpsz > 0) 21024 break; 21025 21026 /* 21027 * Next mblk is less than SMSS/2 21028 * rounded up to nearest 64-byte; 21029 * let it get sent as part of the 21030 * next segment. 21031 */ 21032 if (tcp->tcp_localnet && 21033 !tcp->tcp_cork && 21034 (nmpsz < roundup((mss >> 1), 64))) 21035 break; 21036 } 21037 21038 *xmit_tail = nmp; 21039 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21040 /* Stash for rtt use later */ 21041 (*xmit_tail)->b_prev = local_time; 21042 (*xmit_tail)->b_next = 21043 (mblk_t *)(uintptr_t)(*snxt - len); 21044 mp1->b_cont = dupb(*xmit_tail); 21045 mp1 = mp1->b_cont; 21046 21047 spill += nmpsz; 21048 if (mp1 == NULL) { 21049 *tail_unsent = spill; 21050 freemsg(mp); 21051 if (ire != NULL) 21052 IRE_REFRELE(ire); 21053 return (-1); /* out_of_mem */ 21054 } 21055 } 21056 21057 /* Trim back any surplus on the last mblk */ 21058 if (spill >= 0) { 21059 mp1->b_wptr -= spill; 21060 *tail_unsent = spill; 21061 } else { 21062 /* 21063 * We did not send everything we could in 21064 * order to remain within the b_cont limit. 21065 */ 21066 *usable -= spill; 21067 *snxt += spill; 21068 tcp->tcp_last_sent_len += spill; 21069 UPDATE_MIB(&tcps->tcps_mib, 21070 tcpOutDataBytes, spill); 21071 /* 21072 * Adjust the checksum 21073 */ 21074 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21075 sum += spill; 21076 sum = (sum >> 16) + (sum & 0xFFFF); 21077 U16_TO_ABE16(sum, tcph->th_sum); 21078 if (tcp->tcp_ipversion == IPV4_VERSION) { 21079 sum = ntohs( 21080 ((ipha_t *)rptr)->ipha_length) + 21081 spill; 21082 ((ipha_t *)rptr)->ipha_length = 21083 htons(sum); 21084 } else { 21085 sum = ntohs( 21086 ((ip6_t *)rptr)->ip6_plen) + 21087 spill; 21088 ((ip6_t *)rptr)->ip6_plen = 21089 htons(sum); 21090 } 21091 *tail_unsent = 0; 21092 } 21093 } 21094 if (tcp->tcp_ip_forward_progress) { 21095 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21096 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21097 tcp->tcp_ip_forward_progress = B_FALSE; 21098 } 21099 21100 if (do_lso_send) { 21101 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21102 num_lso_seg); 21103 tcp->tcp_obsegs += num_lso_seg; 21104 21105 TCP_STAT(tcps, tcp_lso_times); 21106 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21107 } else { 21108 tcp_send_data(tcp, q, mp); 21109 BUMP_LOCAL(tcp->tcp_obsegs); 21110 } 21111 } 21112 21113 if (ire != NULL) 21114 IRE_REFRELE(ire); 21115 return (0); 21116 } 21117 21118 /* Unlink and return any mblk that looks like it contains a MDT info */ 21119 static mblk_t * 21120 tcp_mdt_info_mp(mblk_t *mp) 21121 { 21122 mblk_t *prev_mp; 21123 21124 for (;;) { 21125 prev_mp = mp; 21126 /* no more to process? */ 21127 if ((mp = mp->b_cont) == NULL) 21128 break; 21129 21130 switch (DB_TYPE(mp)) { 21131 case M_CTL: 21132 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21133 continue; 21134 ASSERT(prev_mp != NULL); 21135 prev_mp->b_cont = mp->b_cont; 21136 mp->b_cont = NULL; 21137 return (mp); 21138 default: 21139 break; 21140 } 21141 } 21142 return (mp); 21143 } 21144 21145 /* MDT info update routine, called when IP notifies us about MDT */ 21146 static void 21147 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21148 { 21149 boolean_t prev_state; 21150 tcp_stack_t *tcps = tcp->tcp_tcps; 21151 21152 /* 21153 * IP is telling us to abort MDT on this connection? We know 21154 * this because the capability is only turned off when IP 21155 * encounters some pathological cases, e.g. link-layer change 21156 * where the new driver doesn't support MDT, or in situation 21157 * where MDT usage on the link-layer has been switched off. 21158 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21159 * if the link-layer doesn't support MDT, and if it does, it 21160 * will indicate that the feature is to be turned on. 21161 */ 21162 prev_state = tcp->tcp_mdt; 21163 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21164 if (!tcp->tcp_mdt && !first) { 21165 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21166 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21167 (void *)tcp->tcp_connp)); 21168 } 21169 21170 /* 21171 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21172 * so disable MDT otherwise. The checks are done here 21173 * and in tcp_wput_data(). 21174 */ 21175 if (tcp->tcp_mdt && 21176 (tcp->tcp_ipversion == IPV4_VERSION && 21177 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21178 (tcp->tcp_ipversion == IPV6_VERSION && 21179 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21180 tcp->tcp_mdt = B_FALSE; 21181 21182 if (tcp->tcp_mdt) { 21183 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21184 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21185 "version (%d), expected version is %d", 21186 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21187 tcp->tcp_mdt = B_FALSE; 21188 return; 21189 } 21190 21191 /* 21192 * We need the driver to be able to handle at least three 21193 * spans per packet in order for tcp MDT to be utilized. 21194 * The first is for the header portion, while the rest are 21195 * needed to handle a packet that straddles across two 21196 * virtually non-contiguous buffers; a typical tcp packet 21197 * therefore consists of only two spans. Note that we take 21198 * a zero as "don't care". 21199 */ 21200 if (mdt_capab->ill_mdt_span_limit > 0 && 21201 mdt_capab->ill_mdt_span_limit < 3) { 21202 tcp->tcp_mdt = B_FALSE; 21203 return; 21204 } 21205 21206 /* a zero means driver wants default value */ 21207 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21208 tcps->tcps_mdt_max_pbufs); 21209 if (tcp->tcp_mdt_max_pld == 0) 21210 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21211 21212 /* ensure 32-bit alignment */ 21213 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21214 mdt_capab->ill_mdt_hdr_head), 4); 21215 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21216 mdt_capab->ill_mdt_hdr_tail), 4); 21217 21218 if (!first && !prev_state) { 21219 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21220 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21221 (void *)tcp->tcp_connp)); 21222 } 21223 } 21224 } 21225 21226 /* Unlink and return any mblk that looks like it contains a LSO info */ 21227 static mblk_t * 21228 tcp_lso_info_mp(mblk_t *mp) 21229 { 21230 mblk_t *prev_mp; 21231 21232 for (;;) { 21233 prev_mp = mp; 21234 /* no more to process? */ 21235 if ((mp = mp->b_cont) == NULL) 21236 break; 21237 21238 switch (DB_TYPE(mp)) { 21239 case M_CTL: 21240 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21241 continue; 21242 ASSERT(prev_mp != NULL); 21243 prev_mp->b_cont = mp->b_cont; 21244 mp->b_cont = NULL; 21245 return (mp); 21246 default: 21247 break; 21248 } 21249 } 21250 21251 return (mp); 21252 } 21253 21254 /* LSO info update routine, called when IP notifies us about LSO */ 21255 static void 21256 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21257 { 21258 tcp_stack_t *tcps = tcp->tcp_tcps; 21259 21260 /* 21261 * IP is telling us to abort LSO on this connection? We know 21262 * this because the capability is only turned off when IP 21263 * encounters some pathological cases, e.g. link-layer change 21264 * where the new NIC/driver doesn't support LSO, or in situation 21265 * where LSO usage on the link-layer has been switched off. 21266 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21267 * if the link-layer doesn't support LSO, and if it does, it 21268 * will indicate that the feature is to be turned on. 21269 */ 21270 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21271 TCP_STAT(tcps, tcp_lso_enabled); 21272 21273 /* 21274 * We currently only support LSO on simple TCP/IPv4, 21275 * so disable LSO otherwise. The checks are done here 21276 * and in tcp_wput_data(). 21277 */ 21278 if (tcp->tcp_lso && 21279 (tcp->tcp_ipversion == IPV4_VERSION && 21280 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21281 (tcp->tcp_ipversion == IPV6_VERSION)) { 21282 tcp->tcp_lso = B_FALSE; 21283 TCP_STAT(tcps, tcp_lso_disabled); 21284 } else { 21285 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21286 lso_capab->ill_lso_max); 21287 } 21288 } 21289 21290 static void 21291 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21292 { 21293 conn_t *connp = tcp->tcp_connp; 21294 tcp_stack_t *tcps = tcp->tcp_tcps; 21295 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21296 21297 ASSERT(ire != NULL); 21298 21299 /* 21300 * We may be in the fastpath here, and although we essentially do 21301 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21302 * we try to keep things as brief as possible. After all, these 21303 * are only best-effort checks, and we do more thorough ones prior 21304 * to calling tcp_send()/tcp_multisend(). 21305 */ 21306 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21307 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21308 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21309 !(ire->ire_flags & RTF_MULTIRT) && 21310 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21311 CONN_IS_LSO_MD_FASTPATH(connp)) { 21312 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21313 /* Cache the result */ 21314 connp->conn_lso_ok = B_TRUE; 21315 21316 ASSERT(ill->ill_lso_capab != NULL); 21317 if (!ill->ill_lso_capab->ill_lso_on) { 21318 ill->ill_lso_capab->ill_lso_on = 1; 21319 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21320 "LSO for interface %s\n", (void *)connp, 21321 ill->ill_name)); 21322 } 21323 tcp_lso_update(tcp, ill->ill_lso_capab); 21324 } else if (ipst->ips_ip_multidata_outbound && 21325 ILL_MDT_CAPABLE(ill)) { 21326 /* Cache the result */ 21327 connp->conn_mdt_ok = B_TRUE; 21328 21329 ASSERT(ill->ill_mdt_capab != NULL); 21330 if (!ill->ill_mdt_capab->ill_mdt_on) { 21331 ill->ill_mdt_capab->ill_mdt_on = 1; 21332 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21333 "MDT for interface %s\n", (void *)connp, 21334 ill->ill_name)); 21335 } 21336 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21337 } 21338 } 21339 21340 /* 21341 * The goal is to reduce the number of generated tcp segments by 21342 * setting the maxpsz multiplier to 0; this will have an affect on 21343 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21344 * into each packet, up to SMSS bytes. Doing this reduces the number 21345 * of outbound segments and incoming ACKs, thus allowing for better 21346 * network and system performance. In contrast the legacy behavior 21347 * may result in sending less than SMSS size, because the last mblk 21348 * for some packets may have more data than needed to make up SMSS, 21349 * and the legacy code refused to "split" it. 21350 * 21351 * We apply the new behavior on following situations: 21352 * 21353 * 1) Loopback connections, 21354 * 2) Connections in which the remote peer is not on local subnet, 21355 * 3) Local subnet connections over the bge interface (see below). 21356 * 21357 * Ideally, we would like this behavior to apply for interfaces other 21358 * than bge. However, doing so would negatively impact drivers which 21359 * perform dynamic mapping and unmapping of DMA resources, which are 21360 * increased by setting the maxpsz multiplier to 0 (more mblks per 21361 * packet will be generated by tcp). The bge driver does not suffer 21362 * from this, as it copies the mblks into pre-mapped buffers, and 21363 * therefore does not require more I/O resources than before. 21364 * 21365 * Otherwise, this behavior is present on all network interfaces when 21366 * the destination endpoint is non-local, since reducing the number 21367 * of packets in general is good for the network. 21368 * 21369 * TODO We need to remove this hard-coded conditional for bge once 21370 * a better "self-tuning" mechanism, or a way to comprehend 21371 * the driver transmit strategy is devised. Until the solution 21372 * is found and well understood, we live with this hack. 21373 */ 21374 if (!tcp_static_maxpsz && 21375 (tcp->tcp_loopback || !tcp->tcp_localnet || 21376 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21377 /* override the default value */ 21378 tcp->tcp_maxpsz = 0; 21379 21380 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21381 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21382 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21383 } 21384 21385 /* set the stream head parameters accordingly */ 21386 (void) tcp_maxpsz_set(tcp, B_TRUE); 21387 } 21388 21389 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21390 static void 21391 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21392 { 21393 uchar_t fval = *mp->b_rptr; 21394 mblk_t *tail; 21395 queue_t *q = tcp->tcp_wq; 21396 21397 /* TODO: How should flush interact with urgent data? */ 21398 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21399 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21400 /* 21401 * Flush only data that has not yet been put on the wire. If 21402 * we flush data that we have already transmitted, life, as we 21403 * know it, may come to an end. 21404 */ 21405 tail = tcp->tcp_xmit_tail; 21406 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21407 tcp->tcp_xmit_tail_unsent = 0; 21408 tcp->tcp_unsent = 0; 21409 if (tail->b_wptr != tail->b_rptr) 21410 tail = tail->b_cont; 21411 if (tail) { 21412 mblk_t **excess = &tcp->tcp_xmit_head; 21413 for (;;) { 21414 mblk_t *mp1 = *excess; 21415 if (mp1 == tail) 21416 break; 21417 tcp->tcp_xmit_tail = mp1; 21418 tcp->tcp_xmit_last = mp1; 21419 excess = &mp1->b_cont; 21420 } 21421 *excess = NULL; 21422 tcp_close_mpp(&tail); 21423 if (tcp->tcp_snd_zcopy_aware) 21424 tcp_zcopy_notify(tcp); 21425 } 21426 /* 21427 * We have no unsent data, so unsent must be less than 21428 * tcp_xmit_lowater, so re-enable flow. 21429 */ 21430 mutex_enter(&tcp->tcp_non_sq_lock); 21431 if (tcp->tcp_flow_stopped) { 21432 tcp_clrqfull(tcp); 21433 } 21434 mutex_exit(&tcp->tcp_non_sq_lock); 21435 } 21436 /* 21437 * TODO: you can't just flush these, you have to increase rwnd for one 21438 * thing. For another, how should urgent data interact? 21439 */ 21440 if (fval & FLUSHR) { 21441 *mp->b_rptr = fval & ~FLUSHW; 21442 /* XXX */ 21443 qreply(q, mp); 21444 return; 21445 } 21446 freemsg(mp); 21447 } 21448 21449 /* 21450 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21451 * messages. 21452 */ 21453 static void 21454 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21455 { 21456 mblk_t *mp1; 21457 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21458 STRUCT_HANDLE(strbuf, sb); 21459 queue_t *q = tcp->tcp_wq; 21460 int error; 21461 uint_t addrlen; 21462 21463 /* Make sure it is one of ours. */ 21464 switch (iocp->ioc_cmd) { 21465 case TI_GETMYNAME: 21466 case TI_GETPEERNAME: 21467 break; 21468 default: 21469 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21470 return; 21471 } 21472 switch (mi_copy_state(q, mp, &mp1)) { 21473 case -1: 21474 return; 21475 case MI_COPY_CASE(MI_COPY_IN, 1): 21476 break; 21477 case MI_COPY_CASE(MI_COPY_OUT, 1): 21478 /* Copy out the strbuf. */ 21479 mi_copyout(q, mp); 21480 return; 21481 case MI_COPY_CASE(MI_COPY_OUT, 2): 21482 /* All done. */ 21483 mi_copy_done(q, mp, 0); 21484 return; 21485 default: 21486 mi_copy_done(q, mp, EPROTO); 21487 return; 21488 } 21489 /* Check alignment of the strbuf */ 21490 if (!OK_32PTR(mp1->b_rptr)) { 21491 mi_copy_done(q, mp, EINVAL); 21492 return; 21493 } 21494 21495 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21496 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21497 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21498 mi_copy_done(q, mp, EINVAL); 21499 return; 21500 } 21501 21502 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21503 if (mp1 == NULL) 21504 return; 21505 21506 switch (iocp->ioc_cmd) { 21507 case TI_GETMYNAME: 21508 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21509 break; 21510 case TI_GETPEERNAME: 21511 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21512 break; 21513 } 21514 21515 if (error != 0) { 21516 mi_copy_done(q, mp, error); 21517 } else { 21518 mp1->b_wptr += addrlen; 21519 STRUCT_FSET(sb, len, addrlen); 21520 21521 /* Copy out the address */ 21522 mi_copyout(q, mp); 21523 } 21524 } 21525 21526 static void 21527 tcp_disable_direct_sockfs(tcp_t *tcp) 21528 { 21529 #ifdef _ILP32 21530 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21531 #else 21532 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21533 #endif 21534 /* 21535 * Insert this socket into the acceptor hash. 21536 * We might need it for T_CONN_RES message 21537 */ 21538 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21539 21540 if (tcp->tcp_fused) { 21541 /* 21542 * This is a fused loopback tcp; disable 21543 * read-side synchronous streams interface 21544 * and drain any queued data. It is okay 21545 * to do this for non-synchronous streams 21546 * fused tcp as well. 21547 */ 21548 tcp_fuse_disable_pair(tcp, B_FALSE); 21549 } 21550 tcp->tcp_issocket = B_FALSE; 21551 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21552 } 21553 21554 /* 21555 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21556 * messages. 21557 */ 21558 /* ARGSUSED */ 21559 static void 21560 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21561 { 21562 conn_t *connp = (conn_t *)arg; 21563 tcp_t *tcp = connp->conn_tcp; 21564 queue_t *q = tcp->tcp_wq; 21565 struct iocblk *iocp; 21566 21567 ASSERT(DB_TYPE(mp) == M_IOCTL); 21568 /* 21569 * Try and ASSERT the minimum possible references on the 21570 * conn early enough. Since we are executing on write side, 21571 * the connection is obviously not detached and that means 21572 * there is a ref each for TCP and IP. Since we are behind 21573 * the squeue, the minimum references needed are 3. If the 21574 * conn is in classifier hash list, there should be an 21575 * extra ref for that (we check both the possibilities). 21576 */ 21577 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21578 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21579 21580 iocp = (struct iocblk *)mp->b_rptr; 21581 switch (iocp->ioc_cmd) { 21582 case TCP_IOC_DEFAULT_Q: 21583 /* Wants to be the default wq. */ 21584 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21585 iocp->ioc_error = EPERM; 21586 iocp->ioc_count = 0; 21587 mp->b_datap->db_type = M_IOCACK; 21588 qreply(q, mp); 21589 return; 21590 } 21591 tcp_def_q_set(tcp, mp); 21592 return; 21593 case _SIOCSOCKFALLBACK: 21594 /* 21595 * Either sockmod is about to be popped and the socket 21596 * would now be treated as a plain stream, or a module 21597 * is about to be pushed so we could no longer use read- 21598 * side synchronous streams for fused loopback tcp. 21599 * Drain any queued data and disable direct sockfs 21600 * interface from now on. 21601 */ 21602 if (!tcp->tcp_issocket) { 21603 DB_TYPE(mp) = M_IOCNAK; 21604 iocp->ioc_error = EINVAL; 21605 } else { 21606 tcp_disable_direct_sockfs(tcp); 21607 DB_TYPE(mp) = M_IOCACK; 21608 iocp->ioc_error = 0; 21609 } 21610 iocp->ioc_count = 0; 21611 iocp->ioc_rval = 0; 21612 qreply(q, mp); 21613 return; 21614 } 21615 CALL_IP_WPUT(connp, q, mp); 21616 } 21617 21618 /* 21619 * This routine is called by tcp_wput() to handle all TPI requests. 21620 */ 21621 /* ARGSUSED */ 21622 static void 21623 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21624 { 21625 conn_t *connp = (conn_t *)arg; 21626 tcp_t *tcp = connp->conn_tcp; 21627 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21628 uchar_t *rptr; 21629 t_scalar_t type; 21630 cred_t *cr; 21631 21632 /* 21633 * Try and ASSERT the minimum possible references on the 21634 * conn early enough. Since we are executing on write side, 21635 * the connection is obviously not detached and that means 21636 * there is a ref each for TCP and IP. Since we are behind 21637 * the squeue, the minimum references needed are 3. If the 21638 * conn is in classifier hash list, there should be an 21639 * extra ref for that (we check both the possibilities). 21640 */ 21641 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21642 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21643 21644 rptr = mp->b_rptr; 21645 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21646 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21647 type = ((union T_primitives *)rptr)->type; 21648 if (type == T_EXDATA_REQ) { 21649 tcp_output_urgent(connp, mp->b_cont, arg2); 21650 freeb(mp); 21651 } else if (type != T_DATA_REQ) { 21652 goto non_urgent_data; 21653 } else { 21654 /* TODO: options, flags, ... from user */ 21655 /* Set length to zero for reclamation below */ 21656 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21657 freeb(mp); 21658 } 21659 return; 21660 } else { 21661 if (tcp->tcp_debug) { 21662 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21663 "tcp_wput_proto, dropping one..."); 21664 } 21665 freemsg(mp); 21666 return; 21667 } 21668 21669 non_urgent_data: 21670 21671 switch ((int)tprim->type) { 21672 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21673 /* 21674 * save the kssl_ent_t from the next block, and convert this 21675 * back to a normal bind_req. 21676 */ 21677 if (mp->b_cont != NULL) { 21678 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21679 21680 if (tcp->tcp_kssl_ent != NULL) { 21681 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21682 KSSL_NO_PROXY); 21683 tcp->tcp_kssl_ent = NULL; 21684 } 21685 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21686 sizeof (kssl_ent_t)); 21687 kssl_hold_ent(tcp->tcp_kssl_ent); 21688 freemsg(mp->b_cont); 21689 mp->b_cont = NULL; 21690 } 21691 tprim->type = T_BIND_REQ; 21692 21693 /* FALLTHROUGH */ 21694 case O_T_BIND_REQ: /* bind request */ 21695 case T_BIND_REQ: /* new semantics bind request */ 21696 tcp_tpi_bind(tcp, mp); 21697 break; 21698 case T_UNBIND_REQ: /* unbind request */ 21699 tcp_tpi_unbind(tcp, mp); 21700 break; 21701 case O_T_CONN_RES: /* old connection response XXX */ 21702 case T_CONN_RES: /* connection response */ 21703 tcp_tli_accept(tcp, mp); 21704 break; 21705 case T_CONN_REQ: /* connection request */ 21706 tcp_tpi_connect(tcp, mp); 21707 break; 21708 case T_DISCON_REQ: /* disconnect request */ 21709 tcp_disconnect(tcp, mp); 21710 break; 21711 case T_CAPABILITY_REQ: 21712 tcp_capability_req(tcp, mp); /* capability request */ 21713 break; 21714 case T_INFO_REQ: /* information request */ 21715 tcp_info_req(tcp, mp); 21716 break; 21717 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21718 case T_OPTMGMT_REQ: 21719 /* 21720 * Note: no support for snmpcom_req() through new 21721 * T_OPTMGMT_REQ. See comments in ip.c 21722 */ 21723 21724 /* 21725 * All Solaris components should pass a db_credp 21726 * for this TPI message, hence we ASSERT. 21727 * But in case there is some other M_PROTO that looks 21728 * like a TPI message sent by some other kernel 21729 * component, we check and return an error. 21730 */ 21731 cr = msg_getcred(mp, NULL); 21732 ASSERT(cr != NULL); 21733 if (cr == NULL) { 21734 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 21735 return; 21736 } 21737 /* 21738 * If EINPROGRESS is returned, the request has been queued 21739 * for subsequent processing by ip_restart_optmgmt(), which 21740 * will do the CONN_DEC_REF(). 21741 */ 21742 CONN_INC_REF(connp); 21743 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 21744 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21745 B_TRUE) != EINPROGRESS) { 21746 CONN_DEC_REF(connp); 21747 } 21748 } else { 21749 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21750 B_TRUE) != EINPROGRESS) { 21751 CONN_DEC_REF(connp); 21752 } 21753 } 21754 break; 21755 21756 case T_UNITDATA_REQ: /* unitdata request */ 21757 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21758 break; 21759 case T_ORDREL_REQ: /* orderly release req */ 21760 freemsg(mp); 21761 21762 if (tcp->tcp_fused) 21763 tcp_unfuse(tcp); 21764 21765 if (tcp_xmit_end(tcp) != 0) { 21766 /* 21767 * We were crossing FINs and got a reset from 21768 * the other side. Just ignore it. 21769 */ 21770 if (tcp->tcp_debug) { 21771 (void) strlog(TCP_MOD_ID, 0, 1, 21772 SL_ERROR|SL_TRACE, 21773 "tcp_wput_proto, T_ORDREL_REQ out of " 21774 "state %s", 21775 tcp_display(tcp, NULL, 21776 DISP_ADDR_AND_PORT)); 21777 } 21778 } 21779 break; 21780 case T_ADDR_REQ: 21781 tcp_addr_req(tcp, mp); 21782 break; 21783 default: 21784 if (tcp->tcp_debug) { 21785 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21786 "tcp_wput_proto, bogus TPI msg, type %d", 21787 tprim->type); 21788 } 21789 /* 21790 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21791 * to recover. 21792 */ 21793 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21794 break; 21795 } 21796 } 21797 21798 /* 21799 * The TCP write service routine should never be called... 21800 */ 21801 /* ARGSUSED */ 21802 static void 21803 tcp_wsrv(queue_t *q) 21804 { 21805 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21806 21807 TCP_STAT(tcps, tcp_wsrv_called); 21808 } 21809 21810 /* Non overlapping byte exchanger */ 21811 static void 21812 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21813 { 21814 uchar_t uch; 21815 21816 while (len-- > 0) { 21817 uch = a[len]; 21818 a[len] = b[len]; 21819 b[len] = uch; 21820 } 21821 } 21822 21823 /* 21824 * Send out a control packet on the tcp connection specified. This routine 21825 * is typically called where we need a simple ACK or RST generated. 21826 */ 21827 static void 21828 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21829 { 21830 uchar_t *rptr; 21831 tcph_t *tcph; 21832 ipha_t *ipha = NULL; 21833 ip6_t *ip6h = NULL; 21834 uint32_t sum; 21835 int tcp_hdr_len; 21836 int tcp_ip_hdr_len; 21837 mblk_t *mp; 21838 tcp_stack_t *tcps = tcp->tcp_tcps; 21839 21840 /* 21841 * Save sum for use in source route later. 21842 */ 21843 ASSERT(tcp != NULL); 21844 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21845 tcp_hdr_len = tcp->tcp_hdr_len; 21846 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21847 21848 /* If a text string is passed in with the request, pass it to strlog. */ 21849 if (str != NULL && tcp->tcp_debug) { 21850 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21851 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21852 str, seq, ack, ctl); 21853 } 21854 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 21855 BPRI_MED); 21856 if (mp == NULL) { 21857 return; 21858 } 21859 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 21860 mp->b_rptr = rptr; 21861 mp->b_wptr = &rptr[tcp_hdr_len]; 21862 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21863 21864 if (tcp->tcp_ipversion == IPV4_VERSION) { 21865 ipha = (ipha_t *)rptr; 21866 ipha->ipha_length = htons(tcp_hdr_len); 21867 } else { 21868 ip6h = (ip6_t *)rptr; 21869 ASSERT(tcp != NULL); 21870 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21871 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21872 } 21873 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21874 tcph->th_flags[0] = (uint8_t)ctl; 21875 if (ctl & TH_RST) { 21876 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 21877 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 21878 /* 21879 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21880 */ 21881 if (tcp->tcp_snd_ts_ok && 21882 tcp->tcp_state > TCPS_SYN_SENT) { 21883 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21884 *(mp->b_wptr) = TCPOPT_EOL; 21885 if (tcp->tcp_ipversion == IPV4_VERSION) { 21886 ipha->ipha_length = htons(tcp_hdr_len - 21887 TCPOPT_REAL_TS_LEN); 21888 } else { 21889 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21890 TCPOPT_REAL_TS_LEN); 21891 } 21892 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21893 sum -= TCPOPT_REAL_TS_LEN; 21894 } 21895 } 21896 if (ctl & TH_ACK) { 21897 if (tcp->tcp_snd_ts_ok) { 21898 U32_TO_BE32(lbolt, 21899 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21900 U32_TO_BE32(tcp->tcp_ts_recent, 21901 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21902 } 21903 21904 /* Update the latest receive window size in TCP header. */ 21905 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21906 tcph->th_win); 21907 tcp->tcp_rack = ack; 21908 tcp->tcp_rack_cnt = 0; 21909 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 21910 } 21911 BUMP_LOCAL(tcp->tcp_obsegs); 21912 U32_TO_BE32(seq, tcph->th_seq); 21913 U32_TO_BE32(ack, tcph->th_ack); 21914 /* 21915 * Include the adjustment for a source route if any. 21916 */ 21917 sum = (sum >> 16) + (sum & 0xFFFF); 21918 U16_TO_BE16(sum, tcph->th_sum); 21919 tcp_send_data(tcp, tcp->tcp_wq, mp); 21920 } 21921 21922 /* 21923 * If this routine returns B_TRUE, TCP can generate a RST in response 21924 * to a segment. If it returns B_FALSE, TCP should not respond. 21925 */ 21926 static boolean_t 21927 tcp_send_rst_chk(tcp_stack_t *tcps) 21928 { 21929 clock_t now; 21930 21931 /* 21932 * TCP needs to protect itself from generating too many RSTs. 21933 * This can be a DoS attack by sending us random segments 21934 * soliciting RSTs. 21935 * 21936 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21937 * in each 1 second interval. In this way, TCP still generate 21938 * RSTs in normal cases but when under attack, the impact is 21939 * limited. 21940 */ 21941 if (tcps->tcps_rst_sent_rate_enabled != 0) { 21942 now = lbolt; 21943 /* lbolt can wrap around. */ 21944 if ((tcps->tcps_last_rst_intrvl > now) || 21945 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 21946 1*SECONDS)) { 21947 tcps->tcps_last_rst_intrvl = now; 21948 tcps->tcps_rst_cnt = 1; 21949 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 21950 return (B_FALSE); 21951 } 21952 } 21953 return (B_TRUE); 21954 } 21955 21956 /* 21957 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21958 */ 21959 static void 21960 tcp_ip_ire_mark_advice(tcp_t *tcp) 21961 { 21962 mblk_t *mp; 21963 ipic_t *ipic; 21964 21965 if (tcp->tcp_ipversion == IPV4_VERSION) { 21966 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21967 &ipic); 21968 } else { 21969 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21970 &ipic); 21971 } 21972 if (mp == NULL) 21973 return; 21974 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21975 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21976 } 21977 21978 /* 21979 * Return an IP advice ioctl mblk and set ipic to be the pointer 21980 * to the advice structure. 21981 */ 21982 static mblk_t * 21983 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21984 { 21985 struct iocblk *ioc; 21986 mblk_t *mp, *mp1; 21987 21988 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21989 if (mp == NULL) 21990 return (NULL); 21991 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21992 *ipic = (ipic_t *)mp->b_rptr; 21993 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21994 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21995 21996 bcopy(addr, *ipic + 1, addr_len); 21997 21998 (*ipic)->ipic_addr_length = addr_len; 21999 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22000 22001 mp1 = mkiocb(IP_IOCTL); 22002 if (mp1 == NULL) { 22003 freemsg(mp); 22004 return (NULL); 22005 } 22006 mp1->b_cont = mp; 22007 ioc = (struct iocblk *)mp1->b_rptr; 22008 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22009 22010 return (mp1); 22011 } 22012 22013 /* 22014 * Generate a reset based on an inbound packet, connp is set by caller 22015 * when RST is in response to an unexpected inbound packet for which 22016 * there is active tcp state in the system. 22017 * 22018 * IPSEC NOTE : Try to send the reply with the same protection as it came 22019 * in. We still have the ipsec_mp that the packet was attached to. Thus 22020 * the packet will go out at the same level of protection as it came in by 22021 * converting the IPSEC_IN to IPSEC_OUT. 22022 */ 22023 static void 22024 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22025 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22026 tcp_stack_t *tcps, conn_t *connp) 22027 { 22028 ipha_t *ipha = NULL; 22029 ip6_t *ip6h = NULL; 22030 ushort_t len; 22031 tcph_t *tcph; 22032 int i; 22033 mblk_t *ipsec_mp; 22034 boolean_t mctl_present; 22035 ipic_t *ipic; 22036 ipaddr_t v4addr; 22037 in6_addr_t v6addr; 22038 int addr_len; 22039 void *addr; 22040 queue_t *q = tcps->tcps_g_q; 22041 tcp_t *tcp; 22042 cred_t *cr; 22043 pid_t pid; 22044 mblk_t *nmp; 22045 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22046 22047 if (tcps->tcps_g_q == NULL) { 22048 /* 22049 * For non-zero stackids the default queue isn't created 22050 * until the first open, thus there can be a need to send 22051 * a reset before then. But we can't do that, hence we just 22052 * drop the packet. Later during boot, when the default queue 22053 * has been setup, a retransmitted packet from the peer 22054 * will result in a reset. 22055 */ 22056 ASSERT(tcps->tcps_netstack->netstack_stackid != 22057 GLOBAL_NETSTACKID); 22058 freemsg(mp); 22059 return; 22060 } 22061 22062 if (connp != NULL) 22063 tcp = connp->conn_tcp; 22064 else 22065 tcp = Q_TO_TCP(q); 22066 22067 if (!tcp_send_rst_chk(tcps)) { 22068 tcps->tcps_rst_unsent++; 22069 freemsg(mp); 22070 return; 22071 } 22072 22073 if (mp->b_datap->db_type == M_CTL) { 22074 ipsec_mp = mp; 22075 mp = mp->b_cont; 22076 mctl_present = B_TRUE; 22077 } else { 22078 ipsec_mp = mp; 22079 mctl_present = B_FALSE; 22080 } 22081 22082 if (str && q && tcps->tcps_dbg) { 22083 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22084 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22085 "flags 0x%x", 22086 str, seq, ack, ctl); 22087 } 22088 if (mp->b_datap->db_ref != 1) { 22089 mblk_t *mp1 = copyb(mp); 22090 freemsg(mp); 22091 mp = mp1; 22092 if (!mp) { 22093 if (mctl_present) 22094 freeb(ipsec_mp); 22095 return; 22096 } else { 22097 if (mctl_present) { 22098 ipsec_mp->b_cont = mp; 22099 } else { 22100 ipsec_mp = mp; 22101 } 22102 } 22103 } else if (mp->b_cont) { 22104 freemsg(mp->b_cont); 22105 mp->b_cont = NULL; 22106 } 22107 /* 22108 * We skip reversing source route here. 22109 * (for now we replace all IP options with EOL) 22110 */ 22111 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22112 ipha = (ipha_t *)mp->b_rptr; 22113 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22114 mp->b_rptr[i] = IPOPT_EOL; 22115 /* 22116 * Make sure that src address isn't flagrantly invalid. 22117 * Not all broadcast address checking for the src address 22118 * is possible, since we don't know the netmask of the src 22119 * addr. No check for destination address is done, since 22120 * IP will not pass up a packet with a broadcast dest 22121 * address to TCP. Similar checks are done below for IPv6. 22122 */ 22123 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22124 CLASSD(ipha->ipha_src)) { 22125 freemsg(ipsec_mp); 22126 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22127 return; 22128 } 22129 } else { 22130 ip6h = (ip6_t *)mp->b_rptr; 22131 22132 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22133 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22134 freemsg(ipsec_mp); 22135 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22136 return; 22137 } 22138 22139 /* Remove any extension headers assuming partial overlay */ 22140 if (ip_hdr_len > IPV6_HDR_LEN) { 22141 uint8_t *to; 22142 22143 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22144 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22145 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22146 ip_hdr_len = IPV6_HDR_LEN; 22147 ip6h = (ip6_t *)mp->b_rptr; 22148 ip6h->ip6_nxt = IPPROTO_TCP; 22149 } 22150 } 22151 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22152 if (tcph->th_flags[0] & TH_RST) { 22153 freemsg(ipsec_mp); 22154 return; 22155 } 22156 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22157 len = ip_hdr_len + sizeof (tcph_t); 22158 mp->b_wptr = &mp->b_rptr[len]; 22159 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22160 ipha->ipha_length = htons(len); 22161 /* Swap addresses */ 22162 v4addr = ipha->ipha_src; 22163 ipha->ipha_src = ipha->ipha_dst; 22164 ipha->ipha_dst = v4addr; 22165 ipha->ipha_ident = 0; 22166 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22167 addr_len = IP_ADDR_LEN; 22168 addr = &v4addr; 22169 } else { 22170 /* No ip6i_t in this case */ 22171 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22172 /* Swap addresses */ 22173 v6addr = ip6h->ip6_src; 22174 ip6h->ip6_src = ip6h->ip6_dst; 22175 ip6h->ip6_dst = v6addr; 22176 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22177 addr_len = IPV6_ADDR_LEN; 22178 addr = &v6addr; 22179 } 22180 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22181 U32_TO_BE32(ack, tcph->th_ack); 22182 U32_TO_BE32(seq, tcph->th_seq); 22183 U16_TO_BE16(0, tcph->th_win); 22184 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22185 tcph->th_flags[0] = (uint8_t)ctl; 22186 if (ctl & TH_RST) { 22187 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22188 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22189 } 22190 22191 /* IP trusts us to set up labels when required. */ 22192 if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL && 22193 crgetlabel(cr) != NULL) { 22194 int err; 22195 22196 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22197 err = tsol_check_label(cr, &mp, 22198 tcp->tcp_connp->conn_mac_exempt, 22199 tcps->tcps_netstack->netstack_ip, pid); 22200 else 22201 err = tsol_check_label_v6(cr, &mp, 22202 tcp->tcp_connp->conn_mac_exempt, 22203 tcps->tcps_netstack->netstack_ip, pid); 22204 if (mctl_present) 22205 ipsec_mp->b_cont = mp; 22206 else 22207 ipsec_mp = mp; 22208 if (err != 0) { 22209 freemsg(ipsec_mp); 22210 return; 22211 } 22212 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22213 ipha = (ipha_t *)mp->b_rptr; 22214 } else { 22215 ip6h = (ip6_t *)mp->b_rptr; 22216 } 22217 } 22218 22219 if (mctl_present) { 22220 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22221 22222 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22223 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22224 return; 22225 } 22226 } 22227 if (zoneid == ALL_ZONES) 22228 zoneid = GLOBAL_ZONEID; 22229 22230 /* Add the zoneid so ip_output routes it properly */ 22231 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22232 freemsg(ipsec_mp); 22233 return; 22234 } 22235 ipsec_mp = nmp; 22236 22237 /* 22238 * NOTE: one might consider tracing a TCP packet here, but 22239 * this function has no active TCP state and no tcp structure 22240 * that has a trace buffer. If we traced here, we would have 22241 * to keep a local trace buffer in tcp_record_trace(). 22242 * 22243 * TSol note: The mblk that contains the incoming packet was 22244 * reused by tcp_xmit_listener_reset, so it already contains 22245 * the right credentials and we don't need to call mblk_setcred. 22246 * Also the conn's cred is not right since it is associated 22247 * with tcps_g_q. 22248 */ 22249 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22250 22251 /* 22252 * Tell IP to mark the IRE used for this destination temporary. 22253 * This way, we can limit our exposure to DoS attack because IP 22254 * creates an IRE for each destination. If there are too many, 22255 * the time to do any routing lookup will be extremely long. And 22256 * the lookup can be in interrupt context. 22257 * 22258 * Note that in normal circumstances, this marking should not 22259 * affect anything. It would be nice if only 1 message is 22260 * needed to inform IP that the IRE created for this RST should 22261 * not be added to the cache table. But there is currently 22262 * not such communication mechanism between TCP and IP. So 22263 * the best we can do now is to send the advice ioctl to IP 22264 * to mark the IRE temporary. 22265 */ 22266 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22267 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22268 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22269 } 22270 } 22271 22272 /* 22273 * Initiate closedown sequence on an active connection. (May be called as 22274 * writer.) Return value zero for OK return, non-zero for error return. 22275 */ 22276 static int 22277 tcp_xmit_end(tcp_t *tcp) 22278 { 22279 ipic_t *ipic; 22280 mblk_t *mp; 22281 tcp_stack_t *tcps = tcp->tcp_tcps; 22282 22283 if (tcp->tcp_state < TCPS_SYN_RCVD || 22284 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22285 /* 22286 * Invalid state, only states TCPS_SYN_RCVD, 22287 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22288 */ 22289 return (-1); 22290 } 22291 22292 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22293 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22294 /* 22295 * If there is nothing more unsent, send the FIN now. 22296 * Otherwise, it will go out with the last segment. 22297 */ 22298 if (tcp->tcp_unsent == 0) { 22299 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22300 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22301 22302 if (mp) { 22303 tcp_send_data(tcp, tcp->tcp_wq, mp); 22304 } else { 22305 /* 22306 * Couldn't allocate msg. Pretend we got it out. 22307 * Wait for rexmit timeout. 22308 */ 22309 tcp->tcp_snxt = tcp->tcp_fss + 1; 22310 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22311 } 22312 22313 /* 22314 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22315 * changed. 22316 */ 22317 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22318 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22319 } 22320 } else { 22321 /* 22322 * If tcp->tcp_cork is set, then the data will not get sent, 22323 * so we have to check that and unset it first. 22324 */ 22325 if (tcp->tcp_cork) 22326 tcp->tcp_cork = B_FALSE; 22327 tcp_wput_data(tcp, NULL, B_FALSE); 22328 } 22329 22330 /* 22331 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22332 * is 0, don't update the cache. 22333 */ 22334 if (tcps->tcps_rtt_updates == 0 || 22335 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22336 return (0); 22337 22338 /* 22339 * NOTE: should not update if source routes i.e. if tcp_remote if 22340 * different from the destination. 22341 */ 22342 if (tcp->tcp_ipversion == IPV4_VERSION) { 22343 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22344 return (0); 22345 } 22346 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22347 &ipic); 22348 } else { 22349 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22350 &tcp->tcp_ip6h->ip6_dst))) { 22351 return (0); 22352 } 22353 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22354 &ipic); 22355 } 22356 22357 /* Record route attributes in the IRE for use by future connections. */ 22358 if (mp == NULL) 22359 return (0); 22360 22361 /* 22362 * We do not have a good algorithm to update ssthresh at this time. 22363 * So don't do any update. 22364 */ 22365 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22366 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22367 22368 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22369 22370 return (0); 22371 } 22372 22373 /* ARGSUSED */ 22374 void 22375 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22376 { 22377 conn_t *connp = (conn_t *)arg; 22378 mblk_t *mp1; 22379 tcp_t *tcp = connp->conn_tcp; 22380 tcp_xmit_reset_event_t *eventp; 22381 22382 ASSERT(mp->b_datap->db_type == M_PROTO && 22383 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22384 22385 if (tcp->tcp_state != TCPS_LISTEN) { 22386 freemsg(mp); 22387 return; 22388 } 22389 22390 mp1 = mp->b_cont; 22391 mp->b_cont = NULL; 22392 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22393 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22394 connp->conn_netstack); 22395 22396 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22397 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22398 freemsg(mp); 22399 } 22400 22401 /* 22402 * Generate a "no listener here" RST in response to an "unknown" segment. 22403 * connp is set by caller when RST is in response to an unexpected 22404 * inbound packet for which there is active tcp state in the system. 22405 * Note that we are reusing the incoming mp to construct the outgoing RST. 22406 */ 22407 void 22408 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22409 tcp_stack_t *tcps, conn_t *connp) 22410 { 22411 uchar_t *rptr; 22412 uint32_t seg_len; 22413 tcph_t *tcph; 22414 uint32_t seg_seq; 22415 uint32_t seg_ack; 22416 uint_t flags; 22417 mblk_t *ipsec_mp; 22418 ipha_t *ipha; 22419 ip6_t *ip6h; 22420 boolean_t mctl_present = B_FALSE; 22421 boolean_t check = B_TRUE; 22422 boolean_t policy_present; 22423 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22424 22425 TCP_STAT(tcps, tcp_no_listener); 22426 22427 ipsec_mp = mp; 22428 22429 if (mp->b_datap->db_type == M_CTL) { 22430 ipsec_in_t *ii; 22431 22432 mctl_present = B_TRUE; 22433 mp = mp->b_cont; 22434 22435 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22436 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22437 if (ii->ipsec_in_dont_check) { 22438 check = B_FALSE; 22439 if (!ii->ipsec_in_secure) { 22440 freeb(ipsec_mp); 22441 mctl_present = B_FALSE; 22442 ipsec_mp = mp; 22443 } 22444 } 22445 } 22446 22447 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22448 policy_present = ipss->ipsec_inbound_v4_policy_present; 22449 ipha = (ipha_t *)mp->b_rptr; 22450 ip6h = NULL; 22451 } else { 22452 policy_present = ipss->ipsec_inbound_v6_policy_present; 22453 ipha = NULL; 22454 ip6h = (ip6_t *)mp->b_rptr; 22455 } 22456 22457 if (check && policy_present) { 22458 /* 22459 * The conn_t parameter is NULL because we already know 22460 * nobody's home. 22461 */ 22462 ipsec_mp = ipsec_check_global_policy( 22463 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22464 tcps->tcps_netstack); 22465 if (ipsec_mp == NULL) 22466 return; 22467 } 22468 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22469 DTRACE_PROBE2( 22470 tx__ip__log__error__nolistener__tcp, 22471 char *, "Could not reply with RST to mp(1)", 22472 mblk_t *, mp); 22473 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22474 freemsg(ipsec_mp); 22475 return; 22476 } 22477 22478 rptr = mp->b_rptr; 22479 22480 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22481 seg_seq = BE32_TO_U32(tcph->th_seq); 22482 seg_ack = BE32_TO_U32(tcph->th_ack); 22483 flags = tcph->th_flags[0]; 22484 22485 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22486 if (flags & TH_RST) { 22487 freemsg(ipsec_mp); 22488 } else if (flags & TH_ACK) { 22489 tcp_xmit_early_reset("no tcp, reset", 22490 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22491 connp); 22492 } else { 22493 if (flags & TH_SYN) { 22494 seg_len++; 22495 } else { 22496 /* 22497 * Here we violate the RFC. Note that a normal 22498 * TCP will never send a segment without the ACK 22499 * flag, except for RST or SYN segment. This 22500 * segment is neither. Just drop it on the 22501 * floor. 22502 */ 22503 freemsg(ipsec_mp); 22504 tcps->tcps_rst_unsent++; 22505 return; 22506 } 22507 22508 tcp_xmit_early_reset("no tcp, reset/ack", 22509 ipsec_mp, 0, seg_seq + seg_len, 22510 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22511 } 22512 } 22513 22514 /* 22515 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22516 * ip and tcp header ready to pass down to IP. If the mp passed in is 22517 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22518 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22519 * otherwise it will dup partial mblks.) 22520 * Otherwise, an appropriate ACK packet will be generated. This 22521 * routine is not usually called to send new data for the first time. It 22522 * is mostly called out of the timer for retransmits, and to generate ACKs. 22523 * 22524 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22525 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22526 * of the original mblk chain will be returned in *offset and *end_mp. 22527 */ 22528 mblk_t * 22529 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22530 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22531 boolean_t rexmit) 22532 { 22533 int data_length; 22534 int32_t off = 0; 22535 uint_t flags; 22536 mblk_t *mp1; 22537 mblk_t *mp2; 22538 uchar_t *rptr; 22539 tcph_t *tcph; 22540 int32_t num_sack_blk = 0; 22541 int32_t sack_opt_len = 0; 22542 tcp_stack_t *tcps = tcp->tcp_tcps; 22543 22544 /* Allocate for our maximum TCP header + link-level */ 22545 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22546 tcps->tcps_wroff_xtra, BPRI_MED); 22547 if (!mp1) 22548 return (NULL); 22549 data_length = 0; 22550 22551 /* 22552 * Note that tcp_mss has been adjusted to take into account the 22553 * timestamp option if applicable. Because SACK options do not 22554 * appear in every TCP segments and they are of variable lengths, 22555 * they cannot be included in tcp_mss. Thus we need to calculate 22556 * the actual segment length when we need to send a segment which 22557 * includes SACK options. 22558 */ 22559 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22560 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22561 tcp->tcp_num_sack_blk); 22562 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22563 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22564 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22565 max_to_send -= sack_opt_len; 22566 } 22567 22568 if (offset != NULL) { 22569 off = *offset; 22570 /* We use offset as an indicator that end_mp is not NULL. */ 22571 *end_mp = NULL; 22572 } 22573 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22574 /* This could be faster with cooperation from downstream */ 22575 if (mp2 != mp1 && !sendall && 22576 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22577 max_to_send) 22578 /* 22579 * Don't send the next mblk since the whole mblk 22580 * does not fit. 22581 */ 22582 break; 22583 mp2->b_cont = dupb(mp); 22584 mp2 = mp2->b_cont; 22585 if (!mp2) { 22586 freemsg(mp1); 22587 return (NULL); 22588 } 22589 mp2->b_rptr += off; 22590 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22591 (uintptr_t)INT_MAX); 22592 22593 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22594 if (data_length > max_to_send) { 22595 mp2->b_wptr -= data_length - max_to_send; 22596 data_length = max_to_send; 22597 off = mp2->b_wptr - mp->b_rptr; 22598 break; 22599 } else { 22600 off = 0; 22601 } 22602 } 22603 if (offset != NULL) { 22604 *offset = off; 22605 *end_mp = mp; 22606 } 22607 if (seg_len != NULL) { 22608 *seg_len = data_length; 22609 } 22610 22611 /* Update the latest receive window size in TCP header. */ 22612 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22613 tcp->tcp_tcph->th_win); 22614 22615 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22616 mp1->b_rptr = rptr; 22617 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22618 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22619 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22620 U32_TO_ABE32(seq, tcph->th_seq); 22621 22622 /* 22623 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22624 * that this function was called from tcp_wput_data. Thus, when called 22625 * to retransmit data the setting of the PUSH bit may appear some 22626 * what random in that it might get set when it should not. This 22627 * should not pose any performance issues. 22628 */ 22629 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22630 tcp->tcp_unsent == data_length)) { 22631 flags = TH_ACK | TH_PUSH; 22632 } else { 22633 flags = TH_ACK; 22634 } 22635 22636 if (tcp->tcp_ecn_ok) { 22637 if (tcp->tcp_ecn_echo_on) 22638 flags |= TH_ECE; 22639 22640 /* 22641 * Only set ECT bit and ECN_CWR if a segment contains new data. 22642 * There is no TCP flow control for non-data segments, and 22643 * only data segment is transmitted reliably. 22644 */ 22645 if (data_length > 0 && !rexmit) { 22646 SET_ECT(tcp, rptr); 22647 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22648 flags |= TH_CWR; 22649 tcp->tcp_ecn_cwr_sent = B_TRUE; 22650 } 22651 } 22652 } 22653 22654 if (tcp->tcp_valid_bits) { 22655 uint32_t u1; 22656 22657 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22658 seq == tcp->tcp_iss) { 22659 uchar_t *wptr; 22660 22661 /* 22662 * If TCP_ISS_VALID and the seq number is tcp_iss, 22663 * TCP can only be in SYN-SENT, SYN-RCVD or 22664 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22665 * our SYN is not ack'ed but the app closes this 22666 * TCP connection. 22667 */ 22668 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22669 tcp->tcp_state == TCPS_SYN_RCVD || 22670 tcp->tcp_state == TCPS_FIN_WAIT_1); 22671 22672 /* 22673 * Tack on the MSS option. It is always needed 22674 * for both active and passive open. 22675 * 22676 * MSS option value should be interface MTU - MIN 22677 * TCP/IP header according to RFC 793 as it means 22678 * the maximum segment size TCP can receive. But 22679 * to get around some broken middle boxes/end hosts 22680 * out there, we allow the option value to be the 22681 * same as the MSS option size on the peer side. 22682 * In this way, the other side will not send 22683 * anything larger than they can receive. 22684 * 22685 * Note that for SYN_SENT state, the ndd param 22686 * tcp_use_smss_as_mss_opt has no effect as we 22687 * don't know the peer's MSS option value. So 22688 * the only case we need to take care of is in 22689 * SYN_RCVD state, which is done later. 22690 */ 22691 wptr = mp1->b_wptr; 22692 wptr[0] = TCPOPT_MAXSEG; 22693 wptr[1] = TCPOPT_MAXSEG_LEN; 22694 wptr += 2; 22695 u1 = tcp->tcp_if_mtu - 22696 (tcp->tcp_ipversion == IPV4_VERSION ? 22697 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22698 TCP_MIN_HEADER_LENGTH; 22699 U16_TO_BE16(u1, wptr); 22700 mp1->b_wptr = wptr + 2; 22701 /* Update the offset to cover the additional word */ 22702 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22703 22704 /* 22705 * Note that the following way of filling in 22706 * TCP options are not optimal. Some NOPs can 22707 * be saved. But there is no need at this time 22708 * to optimize it. When it is needed, we will 22709 * do it. 22710 */ 22711 switch (tcp->tcp_state) { 22712 case TCPS_SYN_SENT: 22713 flags = TH_SYN; 22714 22715 if (tcp->tcp_snd_ts_ok) { 22716 uint32_t llbolt = (uint32_t)lbolt; 22717 22718 wptr = mp1->b_wptr; 22719 wptr[0] = TCPOPT_NOP; 22720 wptr[1] = TCPOPT_NOP; 22721 wptr[2] = TCPOPT_TSTAMP; 22722 wptr[3] = TCPOPT_TSTAMP_LEN; 22723 wptr += 4; 22724 U32_TO_BE32(llbolt, wptr); 22725 wptr += 4; 22726 ASSERT(tcp->tcp_ts_recent == 0); 22727 U32_TO_BE32(0L, wptr); 22728 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22729 tcph->th_offset_and_rsrvd[0] += 22730 (3 << 4); 22731 } 22732 22733 /* 22734 * Set up all the bits to tell other side 22735 * we are ECN capable. 22736 */ 22737 if (tcp->tcp_ecn_ok) { 22738 flags |= (TH_ECE | TH_CWR); 22739 } 22740 break; 22741 case TCPS_SYN_RCVD: 22742 flags |= TH_SYN; 22743 22744 /* 22745 * Reset the MSS option value to be SMSS 22746 * We should probably add back the bytes 22747 * for timestamp option and IPsec. We 22748 * don't do that as this is a workaround 22749 * for broken middle boxes/end hosts, it 22750 * is better for us to be more cautious. 22751 * They may not take these things into 22752 * account in their SMSS calculation. Thus 22753 * the peer's calculated SMSS may be smaller 22754 * than what it can be. This should be OK. 22755 */ 22756 if (tcps->tcps_use_smss_as_mss_opt) { 22757 u1 = tcp->tcp_mss; 22758 U16_TO_BE16(u1, wptr); 22759 } 22760 22761 /* 22762 * If the other side is ECN capable, reply 22763 * that we are also ECN capable. 22764 */ 22765 if (tcp->tcp_ecn_ok) 22766 flags |= TH_ECE; 22767 break; 22768 default: 22769 /* 22770 * The above ASSERT() makes sure that this 22771 * must be FIN-WAIT-1 state. Our SYN has 22772 * not been ack'ed so retransmit it. 22773 */ 22774 flags |= TH_SYN; 22775 break; 22776 } 22777 22778 if (tcp->tcp_snd_ws_ok) { 22779 wptr = mp1->b_wptr; 22780 wptr[0] = TCPOPT_NOP; 22781 wptr[1] = TCPOPT_WSCALE; 22782 wptr[2] = TCPOPT_WS_LEN; 22783 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22784 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22785 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22786 } 22787 22788 if (tcp->tcp_snd_sack_ok) { 22789 wptr = mp1->b_wptr; 22790 wptr[0] = TCPOPT_NOP; 22791 wptr[1] = TCPOPT_NOP; 22792 wptr[2] = TCPOPT_SACK_PERMITTED; 22793 wptr[3] = TCPOPT_SACK_OK_LEN; 22794 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22795 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22796 } 22797 22798 /* allocb() of adequate mblk assures space */ 22799 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22800 (uintptr_t)INT_MAX); 22801 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22802 /* 22803 * Get IP set to checksum on our behalf 22804 * Include the adjustment for a source route if any. 22805 */ 22806 u1 += tcp->tcp_sum; 22807 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22808 U16_TO_BE16(u1, tcph->th_sum); 22809 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22810 } 22811 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22812 (seq + data_length) == tcp->tcp_fss) { 22813 if (!tcp->tcp_fin_acked) { 22814 flags |= TH_FIN; 22815 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22816 } 22817 if (!tcp->tcp_fin_sent) { 22818 tcp->tcp_fin_sent = B_TRUE; 22819 switch (tcp->tcp_state) { 22820 case TCPS_SYN_RCVD: 22821 case TCPS_ESTABLISHED: 22822 tcp->tcp_state = TCPS_FIN_WAIT_1; 22823 break; 22824 case TCPS_CLOSE_WAIT: 22825 tcp->tcp_state = TCPS_LAST_ACK; 22826 break; 22827 } 22828 if (tcp->tcp_suna == tcp->tcp_snxt) 22829 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22830 tcp->tcp_snxt = tcp->tcp_fss + 1; 22831 } 22832 } 22833 /* 22834 * Note the trick here. u1 is unsigned. When tcp_urg 22835 * is smaller than seq, u1 will become a very huge value. 22836 * So the comparison will fail. Also note that tcp_urp 22837 * should be positive, see RFC 793 page 17. 22838 */ 22839 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22840 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22841 u1 < (uint32_t)(64 * 1024)) { 22842 flags |= TH_URG; 22843 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 22844 U32_TO_ABE16(u1, tcph->th_urp); 22845 } 22846 } 22847 tcph->th_flags[0] = (uchar_t)flags; 22848 tcp->tcp_rack = tcp->tcp_rnxt; 22849 tcp->tcp_rack_cnt = 0; 22850 22851 if (tcp->tcp_snd_ts_ok) { 22852 if (tcp->tcp_state != TCPS_SYN_SENT) { 22853 uint32_t llbolt = (uint32_t)lbolt; 22854 22855 U32_TO_BE32(llbolt, 22856 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22857 U32_TO_BE32(tcp->tcp_ts_recent, 22858 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22859 } 22860 } 22861 22862 if (num_sack_blk > 0) { 22863 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22864 sack_blk_t *tmp; 22865 int32_t i; 22866 22867 wptr[0] = TCPOPT_NOP; 22868 wptr[1] = TCPOPT_NOP; 22869 wptr[2] = TCPOPT_SACK; 22870 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22871 sizeof (sack_blk_t); 22872 wptr += TCPOPT_REAL_SACK_LEN; 22873 22874 tmp = tcp->tcp_sack_list; 22875 for (i = 0; i < num_sack_blk; i++) { 22876 U32_TO_BE32(tmp[i].begin, wptr); 22877 wptr += sizeof (tcp_seq); 22878 U32_TO_BE32(tmp[i].end, wptr); 22879 wptr += sizeof (tcp_seq); 22880 } 22881 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22882 } 22883 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22884 data_length += (int)(mp1->b_wptr - rptr); 22885 if (tcp->tcp_ipversion == IPV4_VERSION) { 22886 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22887 } else { 22888 ip6_t *ip6 = (ip6_t *)(rptr + 22889 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22890 sizeof (ip6i_t) : 0)); 22891 22892 ip6->ip6_plen = htons(data_length - 22893 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22894 } 22895 22896 /* 22897 * Prime pump for IP 22898 * Include the adjustment for a source route if any. 22899 */ 22900 data_length -= tcp->tcp_ip_hdr_len; 22901 data_length += tcp->tcp_sum; 22902 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22903 U16_TO_ABE16(data_length, tcph->th_sum); 22904 if (tcp->tcp_ip_forward_progress) { 22905 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22906 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22907 tcp->tcp_ip_forward_progress = B_FALSE; 22908 } 22909 return (mp1); 22910 } 22911 22912 /* This function handles the push timeout. */ 22913 void 22914 tcp_push_timer(void *arg) 22915 { 22916 conn_t *connp = (conn_t *)arg; 22917 tcp_t *tcp = connp->conn_tcp; 22918 22919 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 22920 22921 ASSERT(tcp->tcp_listener == NULL); 22922 22923 ASSERT(!IPCL_IS_NONSTR(connp)); 22924 22925 /* 22926 * We need to plug synchronous streams during our drain to prevent 22927 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 22928 */ 22929 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 22930 tcp->tcp_push_tid = 0; 22931 22932 if (tcp->tcp_rcv_list != NULL && 22933 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 22934 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22935 22936 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 22937 } 22938 22939 /* 22940 * This function handles delayed ACK timeout. 22941 */ 22942 static void 22943 tcp_ack_timer(void *arg) 22944 { 22945 conn_t *connp = (conn_t *)arg; 22946 tcp_t *tcp = connp->conn_tcp; 22947 mblk_t *mp; 22948 tcp_stack_t *tcps = tcp->tcp_tcps; 22949 22950 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 22951 22952 tcp->tcp_ack_tid = 0; 22953 22954 if (tcp->tcp_fused) 22955 return; 22956 22957 /* 22958 * Do not send ACK if there is no outstanding unack'ed data. 22959 */ 22960 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22961 return; 22962 } 22963 22964 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22965 /* 22966 * Make sure we don't allow deferred ACKs to result in 22967 * timer-based ACKing. If we have held off an ACK 22968 * when there was more than an mss here, and the timer 22969 * goes off, we have to worry about the possibility 22970 * that the sender isn't doing slow-start, or is out 22971 * of step with us for some other reason. We fall 22972 * permanently back in the direction of 22973 * ACK-every-other-packet as suggested in RFC 1122. 22974 */ 22975 if (tcp->tcp_rack_abs_max > 2) 22976 tcp->tcp_rack_abs_max--; 22977 tcp->tcp_rack_cur_max = 2; 22978 } 22979 mp = tcp_ack_mp(tcp); 22980 22981 if (mp != NULL) { 22982 BUMP_LOCAL(tcp->tcp_obsegs); 22983 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22984 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 22985 tcp_send_data(tcp, tcp->tcp_wq, mp); 22986 } 22987 } 22988 22989 22990 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22991 static mblk_t * 22992 tcp_ack_mp(tcp_t *tcp) 22993 { 22994 uint32_t seq_no; 22995 tcp_stack_t *tcps = tcp->tcp_tcps; 22996 22997 /* 22998 * There are a few cases to be considered while setting the sequence no. 22999 * Essentially, we can come here while processing an unacceptable pkt 23000 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23001 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23002 * If we are here for a zero window probe, stick with suna. In all 23003 * other cases, we check if suna + swnd encompasses snxt and set 23004 * the sequence number to snxt, if so. If snxt falls outside the 23005 * window (the receiver probably shrunk its window), we will go with 23006 * suna + swnd, otherwise the sequence no will be unacceptable to the 23007 * receiver. 23008 */ 23009 if (tcp->tcp_zero_win_probe) { 23010 seq_no = tcp->tcp_suna; 23011 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23012 ASSERT(tcp->tcp_swnd == 0); 23013 seq_no = tcp->tcp_snxt; 23014 } else { 23015 seq_no = SEQ_GT(tcp->tcp_snxt, 23016 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23017 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23018 } 23019 23020 if (tcp->tcp_valid_bits) { 23021 /* 23022 * For the complex case where we have to send some 23023 * controls (FIN or SYN), let tcp_xmit_mp do it. 23024 */ 23025 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23026 NULL, B_FALSE)); 23027 } else { 23028 /* Generate a simple ACK */ 23029 int data_length; 23030 uchar_t *rptr; 23031 tcph_t *tcph; 23032 mblk_t *mp1; 23033 int32_t tcp_hdr_len; 23034 int32_t tcp_tcp_hdr_len; 23035 int32_t num_sack_blk = 0; 23036 int32_t sack_opt_len; 23037 23038 /* 23039 * Allocate space for TCP + IP headers 23040 * and link-level header 23041 */ 23042 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23043 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23044 tcp->tcp_num_sack_blk); 23045 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23046 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23047 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23048 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23049 } else { 23050 tcp_hdr_len = tcp->tcp_hdr_len; 23051 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23052 } 23053 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23054 if (!mp1) 23055 return (NULL); 23056 23057 /* Update the latest receive window size in TCP header. */ 23058 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23059 tcp->tcp_tcph->th_win); 23060 /* copy in prototype TCP + IP header */ 23061 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23062 mp1->b_rptr = rptr; 23063 mp1->b_wptr = rptr + tcp_hdr_len; 23064 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23065 23066 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23067 23068 /* Set the TCP sequence number. */ 23069 U32_TO_ABE32(seq_no, tcph->th_seq); 23070 23071 /* Set up the TCP flag field. */ 23072 tcph->th_flags[0] = (uchar_t)TH_ACK; 23073 if (tcp->tcp_ecn_echo_on) 23074 tcph->th_flags[0] |= TH_ECE; 23075 23076 tcp->tcp_rack = tcp->tcp_rnxt; 23077 tcp->tcp_rack_cnt = 0; 23078 23079 /* fill in timestamp option if in use */ 23080 if (tcp->tcp_snd_ts_ok) { 23081 uint32_t llbolt = (uint32_t)lbolt; 23082 23083 U32_TO_BE32(llbolt, 23084 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23085 U32_TO_BE32(tcp->tcp_ts_recent, 23086 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23087 } 23088 23089 /* Fill in SACK options */ 23090 if (num_sack_blk > 0) { 23091 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23092 sack_blk_t *tmp; 23093 int32_t i; 23094 23095 wptr[0] = TCPOPT_NOP; 23096 wptr[1] = TCPOPT_NOP; 23097 wptr[2] = TCPOPT_SACK; 23098 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23099 sizeof (sack_blk_t); 23100 wptr += TCPOPT_REAL_SACK_LEN; 23101 23102 tmp = tcp->tcp_sack_list; 23103 for (i = 0; i < num_sack_blk; i++) { 23104 U32_TO_BE32(tmp[i].begin, wptr); 23105 wptr += sizeof (tcp_seq); 23106 U32_TO_BE32(tmp[i].end, wptr); 23107 wptr += sizeof (tcp_seq); 23108 } 23109 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23110 << 4); 23111 } 23112 23113 if (tcp->tcp_ipversion == IPV4_VERSION) { 23114 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23115 } else { 23116 /* Check for ip6i_t header in sticky hdrs */ 23117 ip6_t *ip6 = (ip6_t *)(rptr + 23118 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23119 sizeof (ip6i_t) : 0)); 23120 23121 ip6->ip6_plen = htons(tcp_hdr_len - 23122 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23123 } 23124 23125 /* 23126 * Prime pump for checksum calculation in IP. Include the 23127 * adjustment for a source route if any. 23128 */ 23129 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23130 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23131 U16_TO_ABE16(data_length, tcph->th_sum); 23132 23133 if (tcp->tcp_ip_forward_progress) { 23134 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23135 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23136 tcp->tcp_ip_forward_progress = B_FALSE; 23137 } 23138 return (mp1); 23139 } 23140 } 23141 23142 /* 23143 * Hash list insertion routine for tcp_t structures. Each hash bucket 23144 * contains a list of tcp_t entries, and each entry is bound to a unique 23145 * port. If there are multiple tcp_t's that are bound to the same port, then 23146 * one of them will be linked into the hash bucket list, and the rest will 23147 * hang off of that one entry. For each port, entries bound to a specific IP 23148 * address will be inserted before those those bound to INADDR_ANY. 23149 */ 23150 static void 23151 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23152 { 23153 tcp_t **tcpp; 23154 tcp_t *tcpnext; 23155 tcp_t *tcphash; 23156 23157 if (tcp->tcp_ptpbhn != NULL) { 23158 ASSERT(!caller_holds_lock); 23159 tcp_bind_hash_remove(tcp); 23160 } 23161 tcpp = &tbf->tf_tcp; 23162 if (!caller_holds_lock) { 23163 mutex_enter(&tbf->tf_lock); 23164 } else { 23165 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23166 } 23167 tcphash = tcpp[0]; 23168 tcpnext = NULL; 23169 if (tcphash != NULL) { 23170 /* Look for an entry using the same port */ 23171 while ((tcphash = tcpp[0]) != NULL && 23172 tcp->tcp_lport != tcphash->tcp_lport) 23173 tcpp = &(tcphash->tcp_bind_hash); 23174 23175 /* The port was not found, just add to the end */ 23176 if (tcphash == NULL) 23177 goto insert; 23178 23179 /* 23180 * OK, there already exists an entry bound to the 23181 * same port. 23182 * 23183 * If the new tcp bound to the INADDR_ANY address 23184 * and the first one in the list is not bound to 23185 * INADDR_ANY we skip all entries until we find the 23186 * first one bound to INADDR_ANY. 23187 * This makes sure that applications binding to a 23188 * specific address get preference over those binding to 23189 * INADDR_ANY. 23190 */ 23191 tcpnext = tcphash; 23192 tcphash = NULL; 23193 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23194 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23195 while ((tcpnext = tcpp[0]) != NULL && 23196 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23197 tcpp = &(tcpnext->tcp_bind_hash_port); 23198 23199 if (tcpnext) { 23200 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23201 tcphash = tcpnext->tcp_bind_hash; 23202 if (tcphash != NULL) { 23203 tcphash->tcp_ptpbhn = 23204 &(tcp->tcp_bind_hash); 23205 tcpnext->tcp_bind_hash = NULL; 23206 } 23207 } 23208 } else { 23209 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23210 tcphash = tcpnext->tcp_bind_hash; 23211 if (tcphash != NULL) { 23212 tcphash->tcp_ptpbhn = 23213 &(tcp->tcp_bind_hash); 23214 tcpnext->tcp_bind_hash = NULL; 23215 } 23216 } 23217 } 23218 insert: 23219 tcp->tcp_bind_hash_port = tcpnext; 23220 tcp->tcp_bind_hash = tcphash; 23221 tcp->tcp_ptpbhn = tcpp; 23222 tcpp[0] = tcp; 23223 if (!caller_holds_lock) 23224 mutex_exit(&tbf->tf_lock); 23225 } 23226 23227 /* 23228 * Hash list removal routine for tcp_t structures. 23229 */ 23230 static void 23231 tcp_bind_hash_remove(tcp_t *tcp) 23232 { 23233 tcp_t *tcpnext; 23234 kmutex_t *lockp; 23235 tcp_stack_t *tcps = tcp->tcp_tcps; 23236 23237 if (tcp->tcp_ptpbhn == NULL) 23238 return; 23239 23240 /* 23241 * Extract the lock pointer in case there are concurrent 23242 * hash_remove's for this instance. 23243 */ 23244 ASSERT(tcp->tcp_lport != 0); 23245 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23246 23247 ASSERT(lockp != NULL); 23248 mutex_enter(lockp); 23249 if (tcp->tcp_ptpbhn) { 23250 tcpnext = tcp->tcp_bind_hash_port; 23251 if (tcpnext != NULL) { 23252 tcp->tcp_bind_hash_port = NULL; 23253 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23254 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23255 if (tcpnext->tcp_bind_hash != NULL) { 23256 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23257 &(tcpnext->tcp_bind_hash); 23258 tcp->tcp_bind_hash = NULL; 23259 } 23260 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23261 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23262 tcp->tcp_bind_hash = NULL; 23263 } 23264 *tcp->tcp_ptpbhn = tcpnext; 23265 tcp->tcp_ptpbhn = NULL; 23266 } 23267 mutex_exit(lockp); 23268 } 23269 23270 23271 /* 23272 * Hash list lookup routine for tcp_t structures. 23273 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23274 */ 23275 static tcp_t * 23276 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23277 { 23278 tf_t *tf; 23279 tcp_t *tcp; 23280 23281 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23282 mutex_enter(&tf->tf_lock); 23283 for (tcp = tf->tf_tcp; tcp != NULL; 23284 tcp = tcp->tcp_acceptor_hash) { 23285 if (tcp->tcp_acceptor_id == id) { 23286 CONN_INC_REF(tcp->tcp_connp); 23287 mutex_exit(&tf->tf_lock); 23288 return (tcp); 23289 } 23290 } 23291 mutex_exit(&tf->tf_lock); 23292 return (NULL); 23293 } 23294 23295 23296 /* 23297 * Hash list insertion routine for tcp_t structures. 23298 */ 23299 void 23300 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23301 { 23302 tf_t *tf; 23303 tcp_t **tcpp; 23304 tcp_t *tcpnext; 23305 tcp_stack_t *tcps = tcp->tcp_tcps; 23306 23307 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23308 23309 if (tcp->tcp_ptpahn != NULL) 23310 tcp_acceptor_hash_remove(tcp); 23311 tcpp = &tf->tf_tcp; 23312 mutex_enter(&tf->tf_lock); 23313 tcpnext = tcpp[0]; 23314 if (tcpnext) 23315 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23316 tcp->tcp_acceptor_hash = tcpnext; 23317 tcp->tcp_ptpahn = tcpp; 23318 tcpp[0] = tcp; 23319 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23320 mutex_exit(&tf->tf_lock); 23321 } 23322 23323 /* 23324 * Hash list removal routine for tcp_t structures. 23325 */ 23326 static void 23327 tcp_acceptor_hash_remove(tcp_t *tcp) 23328 { 23329 tcp_t *tcpnext; 23330 kmutex_t *lockp; 23331 23332 /* 23333 * Extract the lock pointer in case there are concurrent 23334 * hash_remove's for this instance. 23335 */ 23336 lockp = tcp->tcp_acceptor_lockp; 23337 23338 if (tcp->tcp_ptpahn == NULL) 23339 return; 23340 23341 ASSERT(lockp != NULL); 23342 mutex_enter(lockp); 23343 if (tcp->tcp_ptpahn) { 23344 tcpnext = tcp->tcp_acceptor_hash; 23345 if (tcpnext) { 23346 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23347 tcp->tcp_acceptor_hash = NULL; 23348 } 23349 *tcp->tcp_ptpahn = tcpnext; 23350 tcp->tcp_ptpahn = NULL; 23351 } 23352 mutex_exit(lockp); 23353 tcp->tcp_acceptor_lockp = NULL; 23354 } 23355 23356 /* 23357 * Type three generator adapted from the random() function in 4.4 BSD: 23358 */ 23359 23360 /* 23361 * Copyright (c) 1983, 1993 23362 * The Regents of the University of California. All rights reserved. 23363 * 23364 * Redistribution and use in source and binary forms, with or without 23365 * modification, are permitted provided that the following conditions 23366 * are met: 23367 * 1. Redistributions of source code must retain the above copyright 23368 * notice, this list of conditions and the following disclaimer. 23369 * 2. Redistributions in binary form must reproduce the above copyright 23370 * notice, this list of conditions and the following disclaimer in the 23371 * documentation and/or other materials provided with the distribution. 23372 * 3. All advertising materials mentioning features or use of this software 23373 * must display the following acknowledgement: 23374 * This product includes software developed by the University of 23375 * California, Berkeley and its contributors. 23376 * 4. Neither the name of the University nor the names of its contributors 23377 * may be used to endorse or promote products derived from this software 23378 * without specific prior written permission. 23379 * 23380 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23381 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23382 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23383 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23384 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23385 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23386 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23387 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23388 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23389 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23390 * SUCH DAMAGE. 23391 */ 23392 23393 /* Type 3 -- x**31 + x**3 + 1 */ 23394 #define DEG_3 31 23395 #define SEP_3 3 23396 23397 23398 /* Protected by tcp_random_lock */ 23399 static int tcp_randtbl[DEG_3 + 1]; 23400 23401 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23402 static int *tcp_random_rptr = &tcp_randtbl[1]; 23403 23404 static int *tcp_random_state = &tcp_randtbl[1]; 23405 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23406 23407 kmutex_t tcp_random_lock; 23408 23409 void 23410 tcp_random_init(void) 23411 { 23412 int i; 23413 hrtime_t hrt; 23414 time_t wallclock; 23415 uint64_t result; 23416 23417 /* 23418 * Use high-res timer and current time for seed. Gethrtime() returns 23419 * a longlong, which may contain resolution down to nanoseconds. 23420 * The current time will either be a 32-bit or a 64-bit quantity. 23421 * XOR the two together in a 64-bit result variable. 23422 * Convert the result to a 32-bit value by multiplying the high-order 23423 * 32-bits by the low-order 32-bits. 23424 */ 23425 23426 hrt = gethrtime(); 23427 (void) drv_getparm(TIME, &wallclock); 23428 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23429 mutex_enter(&tcp_random_lock); 23430 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23431 (result & 0xffffffff); 23432 23433 for (i = 1; i < DEG_3; i++) 23434 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23435 + 12345; 23436 tcp_random_fptr = &tcp_random_state[SEP_3]; 23437 tcp_random_rptr = &tcp_random_state[0]; 23438 mutex_exit(&tcp_random_lock); 23439 for (i = 0; i < 10 * DEG_3; i++) 23440 (void) tcp_random(); 23441 } 23442 23443 /* 23444 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23445 * This range is selected to be approximately centered on TCP_ISS / 2, 23446 * and easy to compute. We get this value by generating a 32-bit random 23447 * number, selecting out the high-order 17 bits, and then adding one so 23448 * that we never return zero. 23449 */ 23450 int 23451 tcp_random(void) 23452 { 23453 int i; 23454 23455 mutex_enter(&tcp_random_lock); 23456 *tcp_random_fptr += *tcp_random_rptr; 23457 23458 /* 23459 * The high-order bits are more random than the low-order bits, 23460 * so we select out the high-order 17 bits and add one so that 23461 * we never return zero. 23462 */ 23463 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23464 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23465 tcp_random_fptr = tcp_random_state; 23466 ++tcp_random_rptr; 23467 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23468 tcp_random_rptr = tcp_random_state; 23469 23470 mutex_exit(&tcp_random_lock); 23471 return (i); 23472 } 23473 23474 static int 23475 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23476 int *t_errorp, int *sys_errorp) 23477 { 23478 int error; 23479 int is_absreq_failure; 23480 t_scalar_t *opt_lenp; 23481 t_scalar_t opt_offset; 23482 int prim_type; 23483 struct T_conn_req *tcreqp; 23484 struct T_conn_res *tcresp; 23485 cred_t *cr; 23486 23487 /* 23488 * All Solaris components should pass a db_credp 23489 * for this TPI message, hence we ASSERT. 23490 * But in case there is some other M_PROTO that looks 23491 * like a TPI message sent by some other kernel 23492 * component, we check and return an error. 23493 */ 23494 cr = msg_getcred(mp, NULL); 23495 ASSERT(cr != NULL); 23496 if (cr == NULL) 23497 return (-1); 23498 23499 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23500 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23501 prim_type == T_CONN_RES); 23502 23503 switch (prim_type) { 23504 case T_CONN_REQ: 23505 tcreqp = (struct T_conn_req *)mp->b_rptr; 23506 opt_offset = tcreqp->OPT_offset; 23507 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23508 break; 23509 case O_T_CONN_RES: 23510 case T_CONN_RES: 23511 tcresp = (struct T_conn_res *)mp->b_rptr; 23512 opt_offset = tcresp->OPT_offset; 23513 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23514 break; 23515 } 23516 23517 *t_errorp = 0; 23518 *sys_errorp = 0; 23519 *do_disconnectp = 0; 23520 23521 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23522 opt_offset, cr, &tcp_opt_obj, 23523 NULL, &is_absreq_failure); 23524 23525 switch (error) { 23526 case 0: /* no error */ 23527 ASSERT(is_absreq_failure == 0); 23528 return (0); 23529 case ENOPROTOOPT: 23530 *t_errorp = TBADOPT; 23531 break; 23532 case EACCES: 23533 *t_errorp = TACCES; 23534 break; 23535 default: 23536 *t_errorp = TSYSERR; *sys_errorp = error; 23537 break; 23538 } 23539 if (is_absreq_failure != 0) { 23540 /* 23541 * The connection request should get the local ack 23542 * T_OK_ACK and then a T_DISCON_IND. 23543 */ 23544 *do_disconnectp = 1; 23545 } 23546 return (-1); 23547 } 23548 23549 /* 23550 * Split this function out so that if the secret changes, I'm okay. 23551 * 23552 * Initialize the tcp_iss_cookie and tcp_iss_key. 23553 */ 23554 23555 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23556 23557 static void 23558 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23559 { 23560 struct { 23561 int32_t current_time; 23562 uint32_t randnum; 23563 uint16_t pad; 23564 uint8_t ether[6]; 23565 uint8_t passwd[PASSWD_SIZE]; 23566 } tcp_iss_cookie; 23567 time_t t; 23568 23569 /* 23570 * Start with the current absolute time. 23571 */ 23572 (void) drv_getparm(TIME, &t); 23573 tcp_iss_cookie.current_time = t; 23574 23575 /* 23576 * XXX - Need a more random number per RFC 1750, not this crap. 23577 * OTOH, if what follows is pretty random, then I'm in better shape. 23578 */ 23579 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23580 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23581 23582 /* 23583 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23584 * as a good template. 23585 */ 23586 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23587 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23588 23589 /* 23590 * The pass-phrase. Normally this is supplied by user-called NDD. 23591 */ 23592 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23593 23594 /* 23595 * See 4010593 if this section becomes a problem again, 23596 * but the local ethernet address is useful here. 23597 */ 23598 (void) localetheraddr(NULL, 23599 (struct ether_addr *)&tcp_iss_cookie.ether); 23600 23601 /* 23602 * Hash 'em all together. The MD5Final is called per-connection. 23603 */ 23604 mutex_enter(&tcps->tcps_iss_key_lock); 23605 MD5Init(&tcps->tcps_iss_key); 23606 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23607 sizeof (tcp_iss_cookie)); 23608 mutex_exit(&tcps->tcps_iss_key_lock); 23609 } 23610 23611 /* 23612 * Set the RFC 1948 pass phrase 23613 */ 23614 /* ARGSUSED */ 23615 static int 23616 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23617 cred_t *cr) 23618 { 23619 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23620 23621 /* 23622 * Basically, value contains a new pass phrase. Pass it along! 23623 */ 23624 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23625 return (0); 23626 } 23627 23628 /* ARGSUSED */ 23629 static int 23630 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23631 { 23632 bzero(buf, sizeof (tcp_sack_info_t)); 23633 return (0); 23634 } 23635 23636 /* ARGSUSED */ 23637 static int 23638 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23639 { 23640 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23641 return (0); 23642 } 23643 23644 /* 23645 * Make sure we wait until the default queue is setup, yet allow 23646 * tcp_g_q_create() to open a TCP stream. 23647 * We need to allow tcp_g_q_create() do do an open 23648 * of tcp, hence we compare curhread. 23649 * All others have to wait until the tcps_g_q has been 23650 * setup. 23651 */ 23652 void 23653 tcp_g_q_setup(tcp_stack_t *tcps) 23654 { 23655 mutex_enter(&tcps->tcps_g_q_lock); 23656 if (tcps->tcps_g_q != NULL) { 23657 mutex_exit(&tcps->tcps_g_q_lock); 23658 return; 23659 } 23660 if (tcps->tcps_g_q_creator == NULL) { 23661 /* This thread will set it up */ 23662 tcps->tcps_g_q_creator = curthread; 23663 mutex_exit(&tcps->tcps_g_q_lock); 23664 tcp_g_q_create(tcps); 23665 mutex_enter(&tcps->tcps_g_q_lock); 23666 ASSERT(tcps->tcps_g_q_creator == curthread); 23667 tcps->tcps_g_q_creator = NULL; 23668 cv_signal(&tcps->tcps_g_q_cv); 23669 ASSERT(tcps->tcps_g_q != NULL); 23670 mutex_exit(&tcps->tcps_g_q_lock); 23671 return; 23672 } 23673 /* Everybody but the creator has to wait */ 23674 if (tcps->tcps_g_q_creator != curthread) { 23675 while (tcps->tcps_g_q == NULL) 23676 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 23677 } 23678 mutex_exit(&tcps->tcps_g_q_lock); 23679 } 23680 23681 #define IP "ip" 23682 23683 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 23684 23685 /* 23686 * Create a default tcp queue here instead of in strplumb 23687 */ 23688 void 23689 tcp_g_q_create(tcp_stack_t *tcps) 23690 { 23691 int error; 23692 ldi_handle_t lh = NULL; 23693 ldi_ident_t li = NULL; 23694 int rval; 23695 cred_t *cr; 23696 major_t IP_MAJ; 23697 23698 #ifdef NS_DEBUG 23699 (void) printf("tcp_g_q_create()\n"); 23700 #endif 23701 23702 IP_MAJ = ddi_name_to_major(IP); 23703 23704 ASSERT(tcps->tcps_g_q_creator == curthread); 23705 23706 error = ldi_ident_from_major(IP_MAJ, &li); 23707 if (error) { 23708 #ifdef DEBUG 23709 printf("tcp_g_q_create: lyr ident get failed error %d\n", 23710 error); 23711 #endif 23712 return; 23713 } 23714 23715 cr = zone_get_kcred(netstackid_to_zoneid( 23716 tcps->tcps_netstack->netstack_stackid)); 23717 ASSERT(cr != NULL); 23718 /* 23719 * We set the tcp default queue to IPv6 because IPv4 falls 23720 * back to IPv6 when it can't find a client, but 23721 * IPv6 does not fall back to IPv4. 23722 */ 23723 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 23724 if (error) { 23725 #ifdef DEBUG 23726 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 23727 error); 23728 #endif 23729 goto out; 23730 } 23731 23732 /* 23733 * This ioctl causes the tcp framework to cache a pointer to 23734 * this stream, so we don't want to close the stream after 23735 * this operation. 23736 * Use the kernel credentials that are for the zone we're in. 23737 */ 23738 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 23739 (intptr_t)0, FKIOCTL, cr, &rval); 23740 if (error) { 23741 #ifdef DEBUG 23742 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 23743 "error %d\n", error); 23744 #endif 23745 goto out; 23746 } 23747 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 23748 lh = NULL; 23749 out: 23750 /* Close layered handles */ 23751 if (li) 23752 ldi_ident_release(li); 23753 /* Keep cred around until _inactive needs it */ 23754 tcps->tcps_g_q_cr = cr; 23755 } 23756 23757 /* 23758 * We keep tcp_g_q set until all other tcp_t's in the zone 23759 * has gone away, and then when tcp_g_q_inactive() is called 23760 * we clear it. 23761 */ 23762 void 23763 tcp_g_q_destroy(tcp_stack_t *tcps) 23764 { 23765 #ifdef NS_DEBUG 23766 (void) printf("tcp_g_q_destroy()for stack %d\n", 23767 tcps->tcps_netstack->netstack_stackid); 23768 #endif 23769 23770 if (tcps->tcps_g_q == NULL) { 23771 return; /* Nothing to cleanup */ 23772 } 23773 /* 23774 * Drop reference corresponding to the default queue. 23775 * This reference was added from tcp_open when the default queue 23776 * was created, hence we compensate for this extra drop in 23777 * tcp_g_q_close. If the refcnt drops to zero here it means 23778 * the default queue was the last one to be open, in which 23779 * case, then tcp_g_q_inactive will be 23780 * called as a result of the refrele. 23781 */ 23782 TCPS_REFRELE(tcps); 23783 } 23784 23785 /* 23786 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23787 * Run by tcp_q_q_inactive using a taskq. 23788 */ 23789 static void 23790 tcp_g_q_close(void *arg) 23791 { 23792 tcp_stack_t *tcps = arg; 23793 int error; 23794 ldi_handle_t lh = NULL; 23795 ldi_ident_t li = NULL; 23796 cred_t *cr; 23797 major_t IP_MAJ; 23798 23799 IP_MAJ = ddi_name_to_major(IP); 23800 23801 #ifdef NS_DEBUG 23802 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 23803 tcps->tcps_netstack->netstack_stackid, 23804 tcps->tcps_netstack->netstack_refcnt); 23805 #endif 23806 lh = tcps->tcps_g_q_lh; 23807 if (lh == NULL) 23808 return; /* Nothing to cleanup */ 23809 23810 ASSERT(tcps->tcps_refcnt == 1); 23811 ASSERT(tcps->tcps_g_q != NULL); 23812 23813 error = ldi_ident_from_major(IP_MAJ, &li); 23814 if (error) { 23815 #ifdef DEBUG 23816 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 23817 error); 23818 #endif 23819 return; 23820 } 23821 23822 cr = tcps->tcps_g_q_cr; 23823 tcps->tcps_g_q_cr = NULL; 23824 ASSERT(cr != NULL); 23825 23826 /* 23827 * Make sure we can break the recursion when tcp_close decrements 23828 * the reference count causing g_q_inactive to be called again. 23829 */ 23830 tcps->tcps_g_q_lh = NULL; 23831 23832 /* close the default queue */ 23833 (void) ldi_close(lh, FREAD|FWRITE, cr); 23834 /* 23835 * At this point in time tcps and the rest of netstack_t might 23836 * have been deleted. 23837 */ 23838 tcps = NULL; 23839 23840 /* Close layered handles */ 23841 ldi_ident_release(li); 23842 crfree(cr); 23843 } 23844 23845 /* 23846 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23847 * 23848 * Have to ensure that the ldi routines are not used by an 23849 * interrupt thread by using a taskq. 23850 */ 23851 void 23852 tcp_g_q_inactive(tcp_stack_t *tcps) 23853 { 23854 if (tcps->tcps_g_q_lh == NULL) 23855 return; /* Nothing to cleanup */ 23856 23857 ASSERT(tcps->tcps_refcnt == 0); 23858 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 23859 23860 if (servicing_interrupt()) { 23861 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 23862 (void *) tcps, TQ_SLEEP); 23863 } else { 23864 tcp_g_q_close(tcps); 23865 } 23866 } 23867 23868 /* 23869 * Called by IP when IP is loaded into the kernel 23870 */ 23871 void 23872 tcp_ddi_g_init(void) 23873 { 23874 tcp_timercache = kmem_cache_create("tcp_timercache", 23875 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23876 NULL, NULL, NULL, NULL, NULL, 0); 23877 23878 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23879 sizeof (tcp_sack_info_t), 0, 23880 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23881 23882 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23883 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23884 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23885 23886 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23887 23888 /* Initialize the random number generator */ 23889 tcp_random_init(); 23890 23891 /* A single callback independently of how many netstacks we have */ 23892 ip_squeue_init(tcp_squeue_add); 23893 23894 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 23895 23896 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 23897 TASKQ_PREPOPULATE); 23898 23899 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 23900 23901 /* 23902 * We want to be informed each time a stack is created or 23903 * destroyed in the kernel, so we can maintain the 23904 * set of tcp_stack_t's. 23905 */ 23906 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 23907 tcp_stack_fini); 23908 } 23909 23910 23911 #define INET_NAME "ip" 23912 23913 /* 23914 * Initialize the TCP stack instance. 23915 */ 23916 static void * 23917 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 23918 { 23919 tcp_stack_t *tcps; 23920 tcpparam_t *pa; 23921 int i; 23922 int error = 0; 23923 major_t major; 23924 23925 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 23926 tcps->tcps_netstack = ns; 23927 23928 /* Initialize locks */ 23929 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23930 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 23931 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23932 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23933 23934 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 23935 tcps->tcps_g_epriv_ports[0] = 2049; 23936 tcps->tcps_g_epriv_ports[1] = 4045; 23937 tcps->tcps_min_anonpriv_port = 512; 23938 23939 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 23940 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 23941 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 23942 TCP_FANOUT_SIZE, KM_SLEEP); 23943 23944 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 23945 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 23946 MUTEX_DEFAULT, NULL); 23947 } 23948 23949 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 23950 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 23951 MUTEX_DEFAULT, NULL); 23952 } 23953 23954 /* TCP's IPsec code calls the packet dropper. */ 23955 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 23956 23957 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 23958 tcps->tcps_params = pa; 23959 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 23960 23961 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 23962 A_CNT(lcl_tcp_param_arr), tcps); 23963 23964 /* 23965 * Note: To really walk the device tree you need the devinfo 23966 * pointer to your device which is only available after probe/attach. 23967 * The following is safe only because it uses ddi_root_node() 23968 */ 23969 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23970 tcp_opt_obj.odb_opt_arr_cnt); 23971 23972 /* 23973 * Initialize RFC 1948 secret values. This will probably be reset once 23974 * by the boot scripts. 23975 * 23976 * Use NULL name, as the name is caught by the new lockstats. 23977 * 23978 * Initialize with some random, non-guessable string, like the global 23979 * T_INFO_ACK. 23980 */ 23981 23982 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23983 sizeof (tcp_g_t_info_ack), tcps); 23984 23985 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 23986 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 23987 23988 major = mod_name_to_major(INET_NAME); 23989 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 23990 ASSERT(error == 0); 23991 return (tcps); 23992 } 23993 23994 /* 23995 * Called when the IP module is about to be unloaded. 23996 */ 23997 void 23998 tcp_ddi_g_destroy(void) 23999 { 24000 tcp_g_kstat_fini(tcp_g_kstat); 24001 tcp_g_kstat = NULL; 24002 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24003 24004 mutex_destroy(&tcp_random_lock); 24005 24006 kmem_cache_destroy(tcp_timercache); 24007 kmem_cache_destroy(tcp_sack_info_cache); 24008 kmem_cache_destroy(tcp_iphc_cache); 24009 24010 netstack_unregister(NS_TCP); 24011 taskq_destroy(tcp_taskq); 24012 } 24013 24014 /* 24015 * Shut down the TCP stack instance. 24016 */ 24017 /* ARGSUSED */ 24018 static void 24019 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24020 { 24021 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24022 24023 tcp_g_q_destroy(tcps); 24024 } 24025 24026 /* 24027 * Free the TCP stack instance. 24028 */ 24029 static void 24030 tcp_stack_fini(netstackid_t stackid, void *arg) 24031 { 24032 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24033 int i; 24034 24035 nd_free(&tcps->tcps_g_nd); 24036 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24037 tcps->tcps_params = NULL; 24038 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24039 tcps->tcps_wroff_xtra_param = NULL; 24040 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24041 tcps->tcps_mdt_head_param = NULL; 24042 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24043 tcps->tcps_mdt_tail_param = NULL; 24044 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24045 tcps->tcps_mdt_max_pbufs_param = NULL; 24046 24047 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24048 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24049 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24050 } 24051 24052 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24053 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24054 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24055 } 24056 24057 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24058 tcps->tcps_bind_fanout = NULL; 24059 24060 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24061 tcps->tcps_acceptor_fanout = NULL; 24062 24063 mutex_destroy(&tcps->tcps_iss_key_lock); 24064 mutex_destroy(&tcps->tcps_g_q_lock); 24065 cv_destroy(&tcps->tcps_g_q_cv); 24066 mutex_destroy(&tcps->tcps_epriv_port_lock); 24067 24068 ip_drop_unregister(&tcps->tcps_dropper); 24069 24070 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24071 tcps->tcps_kstat = NULL; 24072 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24073 24074 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24075 tcps->tcps_mibkp = NULL; 24076 24077 ldi_ident_release(tcps->tcps_ldi_ident); 24078 kmem_free(tcps, sizeof (*tcps)); 24079 } 24080 24081 /* 24082 * Generate ISS, taking into account NDD changes may happen halfway through. 24083 * (If the iss is not zero, set it.) 24084 */ 24085 24086 static void 24087 tcp_iss_init(tcp_t *tcp) 24088 { 24089 MD5_CTX context; 24090 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24091 uint32_t answer[4]; 24092 tcp_stack_t *tcps = tcp->tcp_tcps; 24093 24094 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24095 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24096 switch (tcps->tcps_strong_iss) { 24097 case 2: 24098 mutex_enter(&tcps->tcps_iss_key_lock); 24099 context = tcps->tcps_iss_key; 24100 mutex_exit(&tcps->tcps_iss_key_lock); 24101 arg.ports = tcp->tcp_ports; 24102 if (tcp->tcp_ipversion == IPV4_VERSION) { 24103 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24104 &arg.src); 24105 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24106 &arg.dst); 24107 } else { 24108 arg.src = tcp->tcp_ip6h->ip6_src; 24109 arg.dst = tcp->tcp_ip6h->ip6_dst; 24110 } 24111 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24112 MD5Final((uchar_t *)answer, &context); 24113 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24114 /* 24115 * Now that we've hashed into a unique per-connection sequence 24116 * space, add a random increment per strong_iss == 1. So I 24117 * guess we'll have to... 24118 */ 24119 /* FALLTHRU */ 24120 case 1: 24121 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24122 break; 24123 default: 24124 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24125 break; 24126 } 24127 tcp->tcp_valid_bits = TCP_ISS_VALID; 24128 tcp->tcp_fss = tcp->tcp_iss - 1; 24129 tcp->tcp_suna = tcp->tcp_iss; 24130 tcp->tcp_snxt = tcp->tcp_iss + 1; 24131 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24132 tcp->tcp_csuna = tcp->tcp_snxt; 24133 } 24134 24135 /* 24136 * Exported routine for extracting active tcp connection status. 24137 * 24138 * This is used by the Solaris Cluster Networking software to 24139 * gather a list of connections that need to be forwarded to 24140 * specific nodes in the cluster when configuration changes occur. 24141 * 24142 * The callback is invoked for each tcp_t structure from all netstacks, 24143 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24144 * from the netstack with the specified stack_id. Returning 24145 * non-zero from the callback routine terminates the search. 24146 */ 24147 int 24148 cl_tcp_walk_list(netstackid_t stack_id, 24149 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24150 { 24151 netstack_handle_t nh; 24152 netstack_t *ns; 24153 int ret = 0; 24154 24155 if (stack_id >= 0) { 24156 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24157 return (EINVAL); 24158 24159 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24160 ns->netstack_tcp); 24161 netstack_rele(ns); 24162 return (ret); 24163 } 24164 24165 netstack_next_init(&nh); 24166 while ((ns = netstack_next(&nh)) != NULL) { 24167 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24168 ns->netstack_tcp); 24169 netstack_rele(ns); 24170 } 24171 netstack_next_fini(&nh); 24172 return (ret); 24173 } 24174 24175 static int 24176 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24177 tcp_stack_t *tcps) 24178 { 24179 tcp_t *tcp; 24180 cl_tcp_info_t cl_tcpi; 24181 connf_t *connfp; 24182 conn_t *connp; 24183 int i; 24184 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24185 24186 ASSERT(callback != NULL); 24187 24188 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24189 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24190 connp = NULL; 24191 24192 while ((connp = 24193 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24194 24195 tcp = connp->conn_tcp; 24196 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24197 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24198 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24199 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24200 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24201 /* 24202 * The macros tcp_laddr and tcp_faddr give the IPv4 24203 * addresses. They are copied implicitly below as 24204 * mapped addresses. 24205 */ 24206 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24207 if (tcp->tcp_ipversion == IPV4_VERSION) { 24208 cl_tcpi.cl_tcpi_faddr = 24209 tcp->tcp_ipha->ipha_dst; 24210 } else { 24211 cl_tcpi.cl_tcpi_faddr_v6 = 24212 tcp->tcp_ip6h->ip6_dst; 24213 } 24214 24215 /* 24216 * If the callback returns non-zero 24217 * we terminate the traversal. 24218 */ 24219 if ((*callback)(&cl_tcpi, arg) != 0) { 24220 CONN_DEC_REF(tcp->tcp_connp); 24221 return (1); 24222 } 24223 } 24224 } 24225 24226 return (0); 24227 } 24228 24229 /* 24230 * Macros used for accessing the different types of sockaddr 24231 * structures inside a tcp_ioc_abort_conn_t. 24232 */ 24233 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24234 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24235 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24236 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24237 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24238 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24239 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24240 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24241 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24242 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24243 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24244 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24245 24246 /* 24247 * Return the correct error code to mimic the behavior 24248 * of a connection reset. 24249 */ 24250 #define TCP_AC_GET_ERRCODE(state, err) { \ 24251 switch ((state)) { \ 24252 case TCPS_SYN_SENT: \ 24253 case TCPS_SYN_RCVD: \ 24254 (err) = ECONNREFUSED; \ 24255 break; \ 24256 case TCPS_ESTABLISHED: \ 24257 case TCPS_FIN_WAIT_1: \ 24258 case TCPS_FIN_WAIT_2: \ 24259 case TCPS_CLOSE_WAIT: \ 24260 (err) = ECONNRESET; \ 24261 break; \ 24262 case TCPS_CLOSING: \ 24263 case TCPS_LAST_ACK: \ 24264 case TCPS_TIME_WAIT: \ 24265 (err) = 0; \ 24266 break; \ 24267 default: \ 24268 (err) = ENXIO; \ 24269 } \ 24270 } 24271 24272 /* 24273 * Check if a tcp structure matches the info in acp. 24274 */ 24275 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24276 (((acp)->ac_local.ss_family == AF_INET) ? \ 24277 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24278 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24279 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24280 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24281 (TCP_AC_V4LPORT((acp)) == 0 || \ 24282 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24283 (TCP_AC_V4RPORT((acp)) == 0 || \ 24284 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24285 (acp)->ac_start <= (tcp)->tcp_state && \ 24286 (acp)->ac_end >= (tcp)->tcp_state) : \ 24287 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24288 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24289 &(tcp)->tcp_ip_src_v6)) && \ 24290 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24291 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24292 &(tcp)->tcp_remote_v6)) && \ 24293 (TCP_AC_V6LPORT((acp)) == 0 || \ 24294 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24295 (TCP_AC_V6RPORT((acp)) == 0 || \ 24296 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24297 (acp)->ac_start <= (tcp)->tcp_state && \ 24298 (acp)->ac_end >= (tcp)->tcp_state)) 24299 24300 #define TCP_AC_MATCH(acp, tcp) \ 24301 (((acp)->ac_zoneid == ALL_ZONES || \ 24302 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24303 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24304 24305 /* 24306 * Build a message containing a tcp_ioc_abort_conn_t structure 24307 * which is filled in with information from acp and tp. 24308 */ 24309 static mblk_t * 24310 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24311 { 24312 mblk_t *mp; 24313 tcp_ioc_abort_conn_t *tacp; 24314 24315 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24316 if (mp == NULL) 24317 return (NULL); 24318 24319 mp->b_datap->db_type = M_CTL; 24320 24321 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24322 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24323 sizeof (uint32_t)); 24324 24325 tacp->ac_start = acp->ac_start; 24326 tacp->ac_end = acp->ac_end; 24327 tacp->ac_zoneid = acp->ac_zoneid; 24328 24329 if (acp->ac_local.ss_family == AF_INET) { 24330 tacp->ac_local.ss_family = AF_INET; 24331 tacp->ac_remote.ss_family = AF_INET; 24332 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24333 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24334 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24335 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24336 } else { 24337 tacp->ac_local.ss_family = AF_INET6; 24338 tacp->ac_remote.ss_family = AF_INET6; 24339 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24340 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24341 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24342 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24343 } 24344 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24345 return (mp); 24346 } 24347 24348 /* 24349 * Print a tcp_ioc_abort_conn_t structure. 24350 */ 24351 static void 24352 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24353 { 24354 char lbuf[128]; 24355 char rbuf[128]; 24356 sa_family_t af; 24357 in_port_t lport, rport; 24358 ushort_t logflags; 24359 24360 af = acp->ac_local.ss_family; 24361 24362 if (af == AF_INET) { 24363 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24364 lbuf, 128); 24365 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24366 rbuf, 128); 24367 lport = ntohs(TCP_AC_V4LPORT(acp)); 24368 rport = ntohs(TCP_AC_V4RPORT(acp)); 24369 } else { 24370 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24371 lbuf, 128); 24372 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24373 rbuf, 128); 24374 lport = ntohs(TCP_AC_V6LPORT(acp)); 24375 rport = ntohs(TCP_AC_V6RPORT(acp)); 24376 } 24377 24378 logflags = SL_TRACE | SL_NOTE; 24379 /* 24380 * Don't print this message to the console if the operation was done 24381 * to a non-global zone. 24382 */ 24383 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24384 logflags |= SL_CONSOLE; 24385 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24386 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24387 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24388 acp->ac_start, acp->ac_end); 24389 } 24390 24391 /* 24392 * Called inside tcp_rput when a message built using 24393 * tcp_ioctl_abort_build_msg is put into a queue. 24394 * Note that when we get here there is no wildcard in acp any more. 24395 */ 24396 static void 24397 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24398 { 24399 tcp_ioc_abort_conn_t *acp; 24400 24401 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24402 if (tcp->tcp_state <= acp->ac_end) { 24403 /* 24404 * If we get here, we are already on the correct 24405 * squeue. This ioctl follows the following path 24406 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24407 * ->tcp_ioctl_abort->squeue_enter (if on a 24408 * different squeue) 24409 */ 24410 int errcode; 24411 24412 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24413 (void) tcp_clean_death(tcp, errcode, 26); 24414 } 24415 freemsg(mp); 24416 } 24417 24418 /* 24419 * Abort all matching connections on a hash chain. 24420 */ 24421 static int 24422 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24423 boolean_t exact, tcp_stack_t *tcps) 24424 { 24425 int nmatch, err = 0; 24426 tcp_t *tcp; 24427 MBLKP mp, last, listhead = NULL; 24428 conn_t *tconnp; 24429 connf_t *connfp; 24430 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24431 24432 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24433 24434 startover: 24435 nmatch = 0; 24436 24437 mutex_enter(&connfp->connf_lock); 24438 for (tconnp = connfp->connf_head; tconnp != NULL; 24439 tconnp = tconnp->conn_next) { 24440 tcp = tconnp->conn_tcp; 24441 if (TCP_AC_MATCH(acp, tcp)) { 24442 CONN_INC_REF(tcp->tcp_connp); 24443 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24444 if (mp == NULL) { 24445 err = ENOMEM; 24446 CONN_DEC_REF(tcp->tcp_connp); 24447 break; 24448 } 24449 mp->b_prev = (mblk_t *)tcp; 24450 24451 if (listhead == NULL) { 24452 listhead = mp; 24453 last = mp; 24454 } else { 24455 last->b_next = mp; 24456 last = mp; 24457 } 24458 nmatch++; 24459 if (exact) 24460 break; 24461 } 24462 24463 /* Avoid holding lock for too long. */ 24464 if (nmatch >= 500) 24465 break; 24466 } 24467 mutex_exit(&connfp->connf_lock); 24468 24469 /* Pass mp into the correct tcp */ 24470 while ((mp = listhead) != NULL) { 24471 listhead = listhead->b_next; 24472 tcp = (tcp_t *)mp->b_prev; 24473 mp->b_next = mp->b_prev = NULL; 24474 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24475 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24476 } 24477 24478 *count += nmatch; 24479 if (nmatch >= 500 && err == 0) 24480 goto startover; 24481 return (err); 24482 } 24483 24484 /* 24485 * Abort all connections that matches the attributes specified in acp. 24486 */ 24487 static int 24488 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24489 { 24490 sa_family_t af; 24491 uint32_t ports; 24492 uint16_t *pports; 24493 int err = 0, count = 0; 24494 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24495 int index = -1; 24496 ushort_t logflags; 24497 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24498 24499 af = acp->ac_local.ss_family; 24500 24501 if (af == AF_INET) { 24502 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24503 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24504 pports = (uint16_t *)&ports; 24505 pports[1] = TCP_AC_V4LPORT(acp); 24506 pports[0] = TCP_AC_V4RPORT(acp); 24507 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24508 } 24509 } else { 24510 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24511 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24512 pports = (uint16_t *)&ports; 24513 pports[1] = TCP_AC_V6LPORT(acp); 24514 pports[0] = TCP_AC_V6RPORT(acp); 24515 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24516 } 24517 } 24518 24519 /* 24520 * For cases where remote addr, local port, and remote port are non- 24521 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24522 */ 24523 if (index != -1) { 24524 err = tcp_ioctl_abort_bucket(acp, index, 24525 &count, exact, tcps); 24526 } else { 24527 /* 24528 * loop through all entries for wildcard case 24529 */ 24530 for (index = 0; 24531 index < ipst->ips_ipcl_conn_fanout_size; 24532 index++) { 24533 err = tcp_ioctl_abort_bucket(acp, index, 24534 &count, exact, tcps); 24535 if (err != 0) 24536 break; 24537 } 24538 } 24539 24540 logflags = SL_TRACE | SL_NOTE; 24541 /* 24542 * Don't print this message to the console if the operation was done 24543 * to a non-global zone. 24544 */ 24545 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24546 logflags |= SL_CONSOLE; 24547 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24548 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24549 if (err == 0 && count == 0) 24550 err = ENOENT; 24551 return (err); 24552 } 24553 24554 /* 24555 * Process the TCP_IOC_ABORT_CONN ioctl request. 24556 */ 24557 static void 24558 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24559 { 24560 int err; 24561 IOCP iocp; 24562 MBLKP mp1; 24563 sa_family_t laf, raf; 24564 tcp_ioc_abort_conn_t *acp; 24565 zone_t *zptr; 24566 conn_t *connp = Q_TO_CONN(q); 24567 zoneid_t zoneid = connp->conn_zoneid; 24568 tcp_t *tcp = connp->conn_tcp; 24569 tcp_stack_t *tcps = tcp->tcp_tcps; 24570 24571 iocp = (IOCP)mp->b_rptr; 24572 24573 if ((mp1 = mp->b_cont) == NULL || 24574 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24575 err = EINVAL; 24576 goto out; 24577 } 24578 24579 /* check permissions */ 24580 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24581 err = EPERM; 24582 goto out; 24583 } 24584 24585 if (mp1->b_cont != NULL) { 24586 freemsg(mp1->b_cont); 24587 mp1->b_cont = NULL; 24588 } 24589 24590 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24591 laf = acp->ac_local.ss_family; 24592 raf = acp->ac_remote.ss_family; 24593 24594 /* check that a zone with the supplied zoneid exists */ 24595 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24596 zptr = zone_find_by_id(zoneid); 24597 if (zptr != NULL) { 24598 zone_rele(zptr); 24599 } else { 24600 err = EINVAL; 24601 goto out; 24602 } 24603 } 24604 24605 /* 24606 * For exclusive stacks we set the zoneid to zero 24607 * to make TCP operate as if in the global zone. 24608 */ 24609 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24610 acp->ac_zoneid = GLOBAL_ZONEID; 24611 24612 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24613 acp->ac_start > acp->ac_end || laf != raf || 24614 (laf != AF_INET && laf != AF_INET6)) { 24615 err = EINVAL; 24616 goto out; 24617 } 24618 24619 tcp_ioctl_abort_dump(acp); 24620 err = tcp_ioctl_abort(acp, tcps); 24621 24622 out: 24623 if (mp1 != NULL) { 24624 freemsg(mp1); 24625 mp->b_cont = NULL; 24626 } 24627 24628 if (err != 0) 24629 miocnak(q, mp, 0, err); 24630 else 24631 miocack(q, mp, 0, 0); 24632 } 24633 24634 /* 24635 * tcp_time_wait_processing() handles processing of incoming packets when 24636 * the tcp is in the TIME_WAIT state. 24637 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24638 * on the time wait list. 24639 */ 24640 void 24641 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24642 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24643 { 24644 int32_t bytes_acked; 24645 int32_t gap; 24646 int32_t rgap; 24647 tcp_opt_t tcpopt; 24648 uint_t flags; 24649 uint32_t new_swnd = 0; 24650 conn_t *connp; 24651 tcp_stack_t *tcps = tcp->tcp_tcps; 24652 24653 BUMP_LOCAL(tcp->tcp_ibsegs); 24654 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24655 24656 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24657 new_swnd = BE16_TO_U16(tcph->th_win) << 24658 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24659 if (tcp->tcp_snd_ts_ok) { 24660 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24661 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24662 tcp->tcp_rnxt, TH_ACK); 24663 goto done; 24664 } 24665 } 24666 gap = seg_seq - tcp->tcp_rnxt; 24667 rgap = tcp->tcp_rwnd - (gap + seg_len); 24668 if (gap < 0) { 24669 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 24670 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 24671 (seg_len > -gap ? -gap : seg_len)); 24672 seg_len += gap; 24673 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24674 if (flags & TH_RST) { 24675 goto done; 24676 } 24677 if ((flags & TH_FIN) && seg_len == -1) { 24678 /* 24679 * When TCP receives a duplicate FIN in 24680 * TIME_WAIT state, restart the 2 MSL timer. 24681 * See page 73 in RFC 793. Make sure this TCP 24682 * is already on the TIME_WAIT list. If not, 24683 * just restart the timer. 24684 */ 24685 if (TCP_IS_DETACHED(tcp)) { 24686 if (tcp_time_wait_remove(tcp, NULL) == 24687 B_TRUE) { 24688 tcp_time_wait_append(tcp); 24689 TCP_DBGSTAT(tcps, 24690 tcp_rput_time_wait); 24691 } 24692 } else { 24693 ASSERT(tcp != NULL); 24694 TCP_TIMER_RESTART(tcp, 24695 tcps->tcps_time_wait_interval); 24696 } 24697 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24698 tcp->tcp_rnxt, TH_ACK); 24699 goto done; 24700 } 24701 flags |= TH_ACK_NEEDED; 24702 seg_len = 0; 24703 goto process_ack; 24704 } 24705 24706 /* Fix seg_seq, and chew the gap off the front. */ 24707 seg_seq = tcp->tcp_rnxt; 24708 } 24709 24710 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24711 /* 24712 * Make sure that when we accept the connection, pick 24713 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24714 * old connection. 24715 * 24716 * The next ISS generated is equal to tcp_iss_incr_extra 24717 * + ISS_INCR/2 + other components depending on the 24718 * value of tcp_strong_iss. We pre-calculate the new 24719 * ISS here and compare with tcp_snxt to determine if 24720 * we need to make adjustment to tcp_iss_incr_extra. 24721 * 24722 * The above calculation is ugly and is a 24723 * waste of CPU cycles... 24724 */ 24725 uint32_t new_iss = tcps->tcps_iss_incr_extra; 24726 int32_t adj; 24727 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24728 24729 switch (tcps->tcps_strong_iss) { 24730 case 2: { 24731 /* Add time and MD5 components. */ 24732 uint32_t answer[4]; 24733 struct { 24734 uint32_t ports; 24735 in6_addr_t src; 24736 in6_addr_t dst; 24737 } arg; 24738 MD5_CTX context; 24739 24740 mutex_enter(&tcps->tcps_iss_key_lock); 24741 context = tcps->tcps_iss_key; 24742 mutex_exit(&tcps->tcps_iss_key_lock); 24743 arg.ports = tcp->tcp_ports; 24744 /* We use MAPPED addresses in tcp_iss_init */ 24745 arg.src = tcp->tcp_ip_src_v6; 24746 if (tcp->tcp_ipversion == IPV4_VERSION) { 24747 IN6_IPADDR_TO_V4MAPPED( 24748 tcp->tcp_ipha->ipha_dst, 24749 &arg.dst); 24750 } else { 24751 arg.dst = 24752 tcp->tcp_ip6h->ip6_dst; 24753 } 24754 MD5Update(&context, (uchar_t *)&arg, 24755 sizeof (arg)); 24756 MD5Final((uchar_t *)answer, &context); 24757 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24758 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24759 break; 24760 } 24761 case 1: 24762 /* Add time component and min random (i.e. 1). */ 24763 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24764 break; 24765 default: 24766 /* Add only time component. */ 24767 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24768 break; 24769 } 24770 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24771 /* 24772 * New ISS not guaranteed to be ISS_INCR/2 24773 * ahead of the current tcp_snxt, so add the 24774 * difference to tcp_iss_incr_extra. 24775 */ 24776 tcps->tcps_iss_incr_extra += adj; 24777 } 24778 /* 24779 * If tcp_clean_death() can not perform the task now, 24780 * drop the SYN packet and let the other side re-xmit. 24781 * Otherwise pass the SYN packet back in, since the 24782 * old tcp state has been cleaned up or freed. 24783 */ 24784 if (tcp_clean_death(tcp, 0, 27) == -1) 24785 goto done; 24786 /* 24787 * We will come back to tcp_rput_data 24788 * on the global queue. Packets destined 24789 * for the global queue will be checked 24790 * with global policy. But the policy for 24791 * this packet has already been checked as 24792 * this was destined for the detached 24793 * connection. We need to bypass policy 24794 * check this time by attaching a dummy 24795 * ipsec_in with ipsec_in_dont_check set. 24796 */ 24797 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 24798 if (connp != NULL) { 24799 TCP_STAT(tcps, tcp_time_wait_syn_success); 24800 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24801 return; 24802 } 24803 goto done; 24804 } 24805 24806 /* 24807 * rgap is the amount of stuff received out of window. A negative 24808 * value is the amount out of window. 24809 */ 24810 if (rgap < 0) { 24811 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 24812 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 24813 /* Fix seg_len and make sure there is something left. */ 24814 seg_len += rgap; 24815 if (seg_len <= 0) { 24816 if (flags & TH_RST) { 24817 goto done; 24818 } 24819 flags |= TH_ACK_NEEDED; 24820 seg_len = 0; 24821 goto process_ack; 24822 } 24823 } 24824 /* 24825 * Check whether we can update tcp_ts_recent. This test is 24826 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24827 * Extensions for High Performance: An Update", Internet Draft. 24828 */ 24829 if (tcp->tcp_snd_ts_ok && 24830 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24831 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24832 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24833 tcp->tcp_last_rcv_lbolt = lbolt64; 24834 } 24835 24836 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24837 /* Always ack out of order packets */ 24838 flags |= TH_ACK_NEEDED; 24839 seg_len = 0; 24840 } else if (seg_len > 0) { 24841 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 24842 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 24843 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 24844 } 24845 if (flags & TH_RST) { 24846 (void) tcp_clean_death(tcp, 0, 28); 24847 goto done; 24848 } 24849 if (flags & TH_SYN) { 24850 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24851 TH_RST|TH_ACK); 24852 /* 24853 * Do not delete the TCP structure if it is in 24854 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24855 */ 24856 goto done; 24857 } 24858 process_ack: 24859 if (flags & TH_ACK) { 24860 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24861 if (bytes_acked <= 0) { 24862 if (bytes_acked == 0 && seg_len == 0 && 24863 new_swnd == tcp->tcp_swnd) 24864 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 24865 } else { 24866 /* Acks something not sent */ 24867 flags |= TH_ACK_NEEDED; 24868 } 24869 } 24870 if (flags & TH_ACK_NEEDED) { 24871 /* 24872 * Time to send an ack for some reason. 24873 */ 24874 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24875 tcp->tcp_rnxt, TH_ACK); 24876 } 24877 done: 24878 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24879 DB_CKSUMSTART(mp) = 0; 24880 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24881 TCP_STAT(tcps, tcp_time_wait_syn_fail); 24882 } 24883 freemsg(mp); 24884 } 24885 24886 /* 24887 * TCP Timers Implementation. 24888 */ 24889 timeout_id_t 24890 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24891 { 24892 mblk_t *mp; 24893 tcp_timer_t *tcpt; 24894 tcp_t *tcp = connp->conn_tcp; 24895 24896 ASSERT(connp->conn_sqp != NULL); 24897 24898 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 24899 24900 if (tcp->tcp_timercache == NULL) { 24901 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24902 } else { 24903 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 24904 mp = tcp->tcp_timercache; 24905 tcp->tcp_timercache = mp->b_next; 24906 mp->b_next = NULL; 24907 ASSERT(mp->b_wptr == NULL); 24908 } 24909 24910 CONN_INC_REF(connp); 24911 tcpt = (tcp_timer_t *)mp->b_rptr; 24912 tcpt->connp = connp; 24913 tcpt->tcpt_proc = f; 24914 /* 24915 * TCP timers are normal timeouts. Plus, they do not require more than 24916 * a 10 millisecond resolution. By choosing a coarser resolution and by 24917 * rounding up the expiration to the next resolution boundary, we can 24918 * batch timers in the callout subsystem to make TCP timers more 24919 * efficient. The roundup also protects short timers from expiring too 24920 * early before they have a chance to be cancelled. 24921 */ 24922 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 24923 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 24924 24925 return ((timeout_id_t)mp); 24926 } 24927 24928 static void 24929 tcp_timer_callback(void *arg) 24930 { 24931 mblk_t *mp = (mblk_t *)arg; 24932 tcp_timer_t *tcpt; 24933 conn_t *connp; 24934 24935 tcpt = (tcp_timer_t *)mp->b_rptr; 24936 connp = tcpt->connp; 24937 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 24938 SQ_FILL, SQTAG_TCP_TIMER); 24939 } 24940 24941 static void 24942 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24943 { 24944 tcp_timer_t *tcpt; 24945 conn_t *connp = (conn_t *)arg; 24946 tcp_t *tcp = connp->conn_tcp; 24947 24948 tcpt = (tcp_timer_t *)mp->b_rptr; 24949 ASSERT(connp == tcpt->connp); 24950 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24951 24952 /* 24953 * If the TCP has reached the closed state, don't proceed any 24954 * further. This TCP logically does not exist on the system. 24955 * tcpt_proc could for example access queues, that have already 24956 * been qprocoff'ed off. Also see comments at the start of tcp_input 24957 */ 24958 if (tcp->tcp_state != TCPS_CLOSED) { 24959 (*tcpt->tcpt_proc)(connp); 24960 } else { 24961 tcp->tcp_timer_tid = 0; 24962 } 24963 tcp_timer_free(connp->conn_tcp, mp); 24964 } 24965 24966 /* 24967 * There is potential race with untimeout and the handler firing at the same 24968 * time. The mblock may be freed by the handler while we are trying to use 24969 * it. But since both should execute on the same squeue, this race should not 24970 * occur. 24971 */ 24972 clock_t 24973 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24974 { 24975 mblk_t *mp = (mblk_t *)id; 24976 tcp_timer_t *tcpt; 24977 clock_t delta; 24978 24979 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 24980 24981 if (mp == NULL) 24982 return (-1); 24983 24984 tcpt = (tcp_timer_t *)mp->b_rptr; 24985 ASSERT(tcpt->connp == connp); 24986 24987 delta = untimeout_default(tcpt->tcpt_tid, 0); 24988 24989 if (delta >= 0) { 24990 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 24991 tcp_timer_free(connp->conn_tcp, mp); 24992 CONN_DEC_REF(connp); 24993 } 24994 24995 return (delta); 24996 } 24997 24998 /* 24999 * Allocate space for the timer event. The allocation looks like mblk, but it is 25000 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25001 * 25002 * Dealing with failures: If we can't allocate from the timer cache we try 25003 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25004 * points to b_rptr. 25005 * If we can't allocate anything using allocb_tryhard(), we perform a last 25006 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25007 * save the actual allocation size in b_datap. 25008 */ 25009 mblk_t * 25010 tcp_timermp_alloc(int kmflags) 25011 { 25012 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25013 kmflags & ~KM_PANIC); 25014 25015 if (mp != NULL) { 25016 mp->b_next = mp->b_prev = NULL; 25017 mp->b_rptr = (uchar_t *)(&mp[1]); 25018 mp->b_wptr = NULL; 25019 mp->b_datap = NULL; 25020 mp->b_queue = NULL; 25021 mp->b_cont = NULL; 25022 } else if (kmflags & KM_PANIC) { 25023 /* 25024 * Failed to allocate memory for the timer. Try allocating from 25025 * dblock caches. 25026 */ 25027 /* ipclassifier calls this from a constructor - hence no tcps */ 25028 TCP_G_STAT(tcp_timermp_allocfail); 25029 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25030 if (mp == NULL) { 25031 size_t size = 0; 25032 /* 25033 * Memory is really low. Try tryhard allocation. 25034 * 25035 * ipclassifier calls this from a constructor - 25036 * hence no tcps 25037 */ 25038 TCP_G_STAT(tcp_timermp_allocdblfail); 25039 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25040 sizeof (tcp_timer_t), &size, kmflags); 25041 mp->b_rptr = (uchar_t *)(&mp[1]); 25042 mp->b_next = mp->b_prev = NULL; 25043 mp->b_wptr = (uchar_t *)-1; 25044 mp->b_datap = (dblk_t *)size; 25045 mp->b_queue = NULL; 25046 mp->b_cont = NULL; 25047 } 25048 ASSERT(mp->b_wptr != NULL); 25049 } 25050 /* ipclassifier calls this from a constructor - hence no tcps */ 25051 TCP_G_DBGSTAT(tcp_timermp_alloced); 25052 25053 return (mp); 25054 } 25055 25056 /* 25057 * Free per-tcp timer cache. 25058 * It can only contain entries from tcp_timercache. 25059 */ 25060 void 25061 tcp_timermp_free(tcp_t *tcp) 25062 { 25063 mblk_t *mp; 25064 25065 while ((mp = tcp->tcp_timercache) != NULL) { 25066 ASSERT(mp->b_wptr == NULL); 25067 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25068 kmem_cache_free(tcp_timercache, mp); 25069 } 25070 } 25071 25072 /* 25073 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25074 * events there already (currently at most two events are cached). 25075 * If the event is not allocated from the timer cache, free it right away. 25076 */ 25077 static void 25078 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25079 { 25080 mblk_t *mp1 = tcp->tcp_timercache; 25081 25082 if (mp->b_wptr != NULL) { 25083 /* 25084 * This allocation is not from a timer cache, free it right 25085 * away. 25086 */ 25087 if (mp->b_wptr != (uchar_t *)-1) 25088 freeb(mp); 25089 else 25090 kmem_free(mp, (size_t)mp->b_datap); 25091 } else if (mp1 == NULL || mp1->b_next == NULL) { 25092 /* Cache this timer block for future allocations */ 25093 mp->b_rptr = (uchar_t *)(&mp[1]); 25094 mp->b_next = mp1; 25095 tcp->tcp_timercache = mp; 25096 } else { 25097 kmem_cache_free(tcp_timercache, mp); 25098 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25099 } 25100 } 25101 25102 /* 25103 * End of TCP Timers implementation. 25104 */ 25105 25106 /* 25107 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25108 * on the specified backing STREAMS q. Note, the caller may make the 25109 * decision to call based on the tcp_t.tcp_flow_stopped value which 25110 * when check outside the q's lock is only an advisory check ... 25111 */ 25112 void 25113 tcp_setqfull(tcp_t *tcp) 25114 { 25115 tcp_stack_t *tcps = tcp->tcp_tcps; 25116 conn_t *connp = tcp->tcp_connp; 25117 25118 if (tcp->tcp_closed) 25119 return; 25120 25121 if (IPCL_IS_NONSTR(connp)) { 25122 (*connp->conn_upcalls->su_txq_full) 25123 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25124 tcp->tcp_flow_stopped = B_TRUE; 25125 } else { 25126 queue_t *q = tcp->tcp_wq; 25127 25128 if (!(q->q_flag & QFULL)) { 25129 mutex_enter(QLOCK(q)); 25130 if (!(q->q_flag & QFULL)) { 25131 /* still need to set QFULL */ 25132 q->q_flag |= QFULL; 25133 tcp->tcp_flow_stopped = B_TRUE; 25134 mutex_exit(QLOCK(q)); 25135 TCP_STAT(tcps, tcp_flwctl_on); 25136 } else { 25137 mutex_exit(QLOCK(q)); 25138 } 25139 } 25140 } 25141 } 25142 25143 void 25144 tcp_clrqfull(tcp_t *tcp) 25145 { 25146 conn_t *connp = tcp->tcp_connp; 25147 25148 if (tcp->tcp_closed) 25149 return; 25150 25151 if (IPCL_IS_NONSTR(connp)) { 25152 (*connp->conn_upcalls->su_txq_full) 25153 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25154 tcp->tcp_flow_stopped = B_FALSE; 25155 } else { 25156 queue_t *q = tcp->tcp_wq; 25157 25158 if (q->q_flag & QFULL) { 25159 mutex_enter(QLOCK(q)); 25160 if (q->q_flag & QFULL) { 25161 q->q_flag &= ~QFULL; 25162 tcp->tcp_flow_stopped = B_FALSE; 25163 mutex_exit(QLOCK(q)); 25164 if (q->q_flag & QWANTW) 25165 qbackenable(q, 0); 25166 } else { 25167 mutex_exit(QLOCK(q)); 25168 } 25169 } 25170 } 25171 } 25172 25173 /* 25174 * kstats related to squeues i.e. not per IP instance 25175 */ 25176 static void * 25177 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25178 { 25179 kstat_t *ksp; 25180 25181 tcp_g_stat_t template = { 25182 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25183 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25184 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25185 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25186 }; 25187 25188 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25189 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25190 KSTAT_FLAG_VIRTUAL); 25191 25192 if (ksp == NULL) 25193 return (NULL); 25194 25195 bcopy(&template, tcp_g_statp, sizeof (template)); 25196 ksp->ks_data = (void *)tcp_g_statp; 25197 25198 kstat_install(ksp); 25199 return (ksp); 25200 } 25201 25202 static void 25203 tcp_g_kstat_fini(kstat_t *ksp) 25204 { 25205 if (ksp != NULL) { 25206 kstat_delete(ksp); 25207 } 25208 } 25209 25210 25211 static void * 25212 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25213 { 25214 kstat_t *ksp; 25215 25216 tcp_stat_t template = { 25217 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25218 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25219 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25220 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25221 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25222 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25223 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25224 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25225 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25226 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25227 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25228 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25229 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25230 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25231 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25232 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25233 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25234 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25235 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25236 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25237 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25238 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25239 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25240 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25241 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25242 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25243 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25244 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25245 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25246 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25247 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25248 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25249 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25250 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25251 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25252 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25253 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25254 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25255 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25256 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25257 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25258 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25259 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25260 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25261 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25262 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25263 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25264 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25265 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25266 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25267 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25268 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25269 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25270 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25271 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25272 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25273 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25274 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25275 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25276 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25277 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25278 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25279 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25280 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25281 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25282 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25283 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25284 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25285 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25286 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25287 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25288 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25289 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25290 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25291 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25292 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25293 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25294 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25295 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25296 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25297 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25298 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25299 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25300 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25301 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25302 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25303 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25304 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25305 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25306 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25307 }; 25308 25309 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25310 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25311 KSTAT_FLAG_VIRTUAL, stackid); 25312 25313 if (ksp == NULL) 25314 return (NULL); 25315 25316 bcopy(&template, tcps_statisticsp, sizeof (template)); 25317 ksp->ks_data = (void *)tcps_statisticsp; 25318 ksp->ks_private = (void *)(uintptr_t)stackid; 25319 25320 kstat_install(ksp); 25321 return (ksp); 25322 } 25323 25324 static void 25325 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25326 { 25327 if (ksp != NULL) { 25328 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25329 kstat_delete_netstack(ksp, stackid); 25330 } 25331 } 25332 25333 /* 25334 * TCP Kstats implementation 25335 */ 25336 static void * 25337 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25338 { 25339 kstat_t *ksp; 25340 25341 tcp_named_kstat_t template = { 25342 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25343 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25344 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25345 { "maxConn", KSTAT_DATA_INT32, 0 }, 25346 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25347 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25348 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25349 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25350 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25351 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25352 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25353 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25354 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25355 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25356 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25357 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25358 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25359 { "outAck", KSTAT_DATA_UINT32, 0 }, 25360 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25361 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25362 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25363 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25364 { "outControl", KSTAT_DATA_UINT32, 0 }, 25365 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25366 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25367 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25368 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25369 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25370 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25371 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25372 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25373 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25374 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25375 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25376 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25377 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25378 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25379 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25380 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25381 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25382 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25383 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25384 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25385 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25386 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25387 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25388 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25389 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25390 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25391 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25392 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25393 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25394 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25395 }; 25396 25397 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25398 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25399 25400 if (ksp == NULL) 25401 return (NULL); 25402 25403 template.rtoAlgorithm.value.ui32 = 4; 25404 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25405 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25406 template.maxConn.value.i32 = -1; 25407 25408 bcopy(&template, ksp->ks_data, sizeof (template)); 25409 ksp->ks_update = tcp_kstat_update; 25410 ksp->ks_private = (void *)(uintptr_t)stackid; 25411 25412 kstat_install(ksp); 25413 return (ksp); 25414 } 25415 25416 static void 25417 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25418 { 25419 if (ksp != NULL) { 25420 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25421 kstat_delete_netstack(ksp, stackid); 25422 } 25423 } 25424 25425 static int 25426 tcp_kstat_update(kstat_t *kp, int rw) 25427 { 25428 tcp_named_kstat_t *tcpkp; 25429 tcp_t *tcp; 25430 connf_t *connfp; 25431 conn_t *connp; 25432 int i; 25433 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25434 netstack_t *ns; 25435 tcp_stack_t *tcps; 25436 ip_stack_t *ipst; 25437 25438 if ((kp == NULL) || (kp->ks_data == NULL)) 25439 return (EIO); 25440 25441 if (rw == KSTAT_WRITE) 25442 return (EACCES); 25443 25444 ns = netstack_find_by_stackid(stackid); 25445 if (ns == NULL) 25446 return (-1); 25447 tcps = ns->netstack_tcp; 25448 if (tcps == NULL) { 25449 netstack_rele(ns); 25450 return (-1); 25451 } 25452 25453 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25454 25455 tcpkp->currEstab.value.ui32 = 0; 25456 25457 ipst = ns->netstack_ip; 25458 25459 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25460 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25461 connp = NULL; 25462 while ((connp = 25463 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25464 tcp = connp->conn_tcp; 25465 switch (tcp_snmp_state(tcp)) { 25466 case MIB2_TCP_established: 25467 case MIB2_TCP_closeWait: 25468 tcpkp->currEstab.value.ui32++; 25469 break; 25470 } 25471 } 25472 } 25473 25474 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25475 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25476 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25477 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25478 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25479 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25480 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25481 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25482 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25483 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25484 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25485 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25486 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25487 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25488 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25489 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25490 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25491 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25492 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25493 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25494 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25495 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25496 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25497 tcpkp->inDataInorderSegs.value.ui32 = 25498 tcps->tcps_mib.tcpInDataInorderSegs; 25499 tcpkp->inDataInorderBytes.value.ui32 = 25500 tcps->tcps_mib.tcpInDataInorderBytes; 25501 tcpkp->inDataUnorderSegs.value.ui32 = 25502 tcps->tcps_mib.tcpInDataUnorderSegs; 25503 tcpkp->inDataUnorderBytes.value.ui32 = 25504 tcps->tcps_mib.tcpInDataUnorderBytes; 25505 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25506 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25507 tcpkp->inDataPartDupSegs.value.ui32 = 25508 tcps->tcps_mib.tcpInDataPartDupSegs; 25509 tcpkp->inDataPartDupBytes.value.ui32 = 25510 tcps->tcps_mib.tcpInDataPartDupBytes; 25511 tcpkp->inDataPastWinSegs.value.ui32 = 25512 tcps->tcps_mib.tcpInDataPastWinSegs; 25513 tcpkp->inDataPastWinBytes.value.ui32 = 25514 tcps->tcps_mib.tcpInDataPastWinBytes; 25515 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25516 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25517 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25518 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25519 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25520 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25521 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25522 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25523 tcpkp->timKeepaliveProbe.value.ui32 = 25524 tcps->tcps_mib.tcpTimKeepaliveProbe; 25525 tcpkp->timKeepaliveDrop.value.ui32 = 25526 tcps->tcps_mib.tcpTimKeepaliveDrop; 25527 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25528 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25529 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25530 tcpkp->outSackRetransSegs.value.ui32 = 25531 tcps->tcps_mib.tcpOutSackRetransSegs; 25532 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25533 25534 netstack_rele(ns); 25535 return (0); 25536 } 25537 25538 void 25539 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25540 { 25541 uint16_t hdr_len; 25542 ipha_t *ipha; 25543 uint8_t *nexthdrp; 25544 tcph_t *tcph; 25545 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25546 25547 /* Already has an eager */ 25548 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25549 TCP_STAT(tcps, tcp_reinput_syn); 25550 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25551 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25552 return; 25553 } 25554 25555 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25556 case IPV4_VERSION: 25557 ipha = (ipha_t *)mp->b_rptr; 25558 hdr_len = IPH_HDR_LENGTH(ipha); 25559 break; 25560 case IPV6_VERSION: 25561 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25562 &hdr_len, &nexthdrp)) { 25563 CONN_DEC_REF(connp); 25564 freemsg(mp); 25565 return; 25566 } 25567 break; 25568 } 25569 25570 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25571 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25572 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25573 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25574 } 25575 25576 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25577 SQ_FILL, SQTAG_TCP_REINPUT); 25578 } 25579 25580 static int 25581 tcp_squeue_switch(int val) 25582 { 25583 int rval = SQ_FILL; 25584 25585 switch (val) { 25586 case 1: 25587 rval = SQ_NODRAIN; 25588 break; 25589 case 2: 25590 rval = SQ_PROCESS; 25591 break; 25592 default: 25593 break; 25594 } 25595 return (rval); 25596 } 25597 25598 /* 25599 * This is called once for each squeue - globally for all stack 25600 * instances. 25601 */ 25602 static void 25603 tcp_squeue_add(squeue_t *sqp) 25604 { 25605 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25606 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25607 25608 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25609 tcp_time_wait->tcp_time_wait_tid = 25610 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25611 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25612 CALLOUT_FLAG_ROUNDUP); 25613 if (tcp_free_list_max_cnt == 0) { 25614 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25615 max_ncpus : boot_max_ncpus); 25616 25617 /* 25618 * Limit number of entries to 1% of availble memory / tcp_ncpus 25619 */ 25620 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25621 (tcp_ncpus * sizeof (tcp_t) * 100); 25622 } 25623 tcp_time_wait->tcp_free_list_cnt = 0; 25624 } 25625 25626 static int 25627 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25628 { 25629 mblk_t *ire_mp = NULL; 25630 mblk_t *syn_mp; 25631 mblk_t *mdti; 25632 mblk_t *lsoi; 25633 int retval; 25634 tcph_t *tcph; 25635 cred_t *ecr; 25636 ts_label_t *tsl; 25637 uint32_t mss; 25638 queue_t *q = tcp->tcp_rq; 25639 conn_t *connp = tcp->tcp_connp; 25640 tcp_stack_t *tcps = tcp->tcp_tcps; 25641 25642 if (error == 0) { 25643 /* 25644 * Adapt Multidata information, if any. The 25645 * following tcp_mdt_update routine will free 25646 * the message. 25647 */ 25648 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25649 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25650 b_rptr)->mdt_capab, B_TRUE); 25651 freemsg(mdti); 25652 } 25653 25654 /* 25655 * Check to update LSO information with tcp, and 25656 * tcp_lso_update routine will free the message. 25657 */ 25658 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25659 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25660 b_rptr)->lso_capab); 25661 freemsg(lsoi); 25662 } 25663 25664 /* Get the IRE, if we had requested for it */ 25665 if (mp != NULL) 25666 ire_mp = tcp_ire_mp(&mp); 25667 25668 if (tcp->tcp_hard_binding) { 25669 tcp->tcp_hard_binding = B_FALSE; 25670 tcp->tcp_hard_bound = B_TRUE; 25671 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 25672 if (retval != 0) { 25673 error = EADDRINUSE; 25674 goto bind_failed; 25675 } 25676 } else { 25677 if (ire_mp != NULL) 25678 freeb(ire_mp); 25679 goto after_syn_sent; 25680 } 25681 25682 retval = tcp_adapt_ire(tcp, ire_mp); 25683 if (ire_mp != NULL) 25684 freeb(ire_mp); 25685 if (retval == 0) { 25686 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 25687 ENETUNREACH : EADDRNOTAVAIL); 25688 goto ipcl_rm; 25689 } 25690 /* 25691 * Don't let an endpoint connect to itself. 25692 * Also checked in tcp_connect() but that 25693 * check can't handle the case when the 25694 * local IP address is INADDR_ANY. 25695 */ 25696 if (tcp->tcp_ipversion == IPV4_VERSION) { 25697 if ((tcp->tcp_ipha->ipha_dst == 25698 tcp->tcp_ipha->ipha_src) && 25699 (BE16_EQL(tcp->tcp_tcph->th_lport, 25700 tcp->tcp_tcph->th_fport))) { 25701 error = EADDRNOTAVAIL; 25702 goto ipcl_rm; 25703 } 25704 } else { 25705 if (IN6_ARE_ADDR_EQUAL( 25706 &tcp->tcp_ip6h->ip6_dst, 25707 &tcp->tcp_ip6h->ip6_src) && 25708 (BE16_EQL(tcp->tcp_tcph->th_lport, 25709 tcp->tcp_tcph->th_fport))) { 25710 error = EADDRNOTAVAIL; 25711 goto ipcl_rm; 25712 } 25713 } 25714 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 25715 /* 25716 * This should not be possible! Just for 25717 * defensive coding... 25718 */ 25719 if (tcp->tcp_state != TCPS_SYN_SENT) 25720 goto after_syn_sent; 25721 25722 if (is_system_labeled() && 25723 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 25724 error = EHOSTUNREACH; 25725 goto ipcl_rm; 25726 } 25727 25728 /* 25729 * tcp_adapt_ire() does not adjust 25730 * for TCP/IP header length. 25731 */ 25732 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 25733 25734 /* 25735 * Just make sure our rwnd is at 25736 * least tcp_recv_hiwat_mss * MSS 25737 * large, and round up to the nearest 25738 * MSS. 25739 * 25740 * We do the round up here because 25741 * we need to get the interface 25742 * MTU first before we can do the 25743 * round up. 25744 */ 25745 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 25746 tcps->tcps_recv_hiwat_minmss * mss); 25747 if (!IPCL_IS_NONSTR(connp)) 25748 q->q_hiwat = tcp->tcp_rwnd; 25749 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 25750 tcp_set_ws_value(tcp); 25751 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 25752 tcp->tcp_tcph->th_win); 25753 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 25754 tcp->tcp_snd_ws_ok = B_TRUE; 25755 25756 /* 25757 * Set tcp_snd_ts_ok to true 25758 * so that tcp_xmit_mp will 25759 * include the timestamp 25760 * option in the SYN segment. 25761 */ 25762 if (tcps->tcps_tstamp_always || 25763 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 25764 tcp->tcp_snd_ts_ok = B_TRUE; 25765 } 25766 25767 /* 25768 * tcp_snd_sack_ok can be set in 25769 * tcp_adapt_ire() if the sack metric 25770 * is set. So check it here also. 25771 */ 25772 if (tcps->tcps_sack_permitted == 2 || 25773 tcp->tcp_snd_sack_ok) { 25774 if (tcp->tcp_sack_info == NULL) { 25775 tcp->tcp_sack_info = 25776 kmem_cache_alloc(tcp_sack_info_cache, 25777 KM_SLEEP); 25778 } 25779 tcp->tcp_snd_sack_ok = B_TRUE; 25780 } 25781 25782 /* 25783 * Should we use ECN? Note that the current 25784 * default value (SunOS 5.9) of tcp_ecn_permitted 25785 * is 1. The reason for doing this is that there 25786 * are equipments out there that will drop ECN 25787 * enabled IP packets. Setting it to 1 avoids 25788 * compatibility problems. 25789 */ 25790 if (tcps->tcps_ecn_permitted == 2) 25791 tcp->tcp_ecn_ok = B_TRUE; 25792 25793 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 25794 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 25795 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 25796 if (syn_mp) { 25797 /* 25798 * cr contains the cred from the thread calling 25799 * connect(). 25800 * 25801 * If no thread cred is available, use the 25802 * socket creator's cred instead. If still no 25803 * cred, drop the request rather than risk a 25804 * panic on production systems. 25805 */ 25806 if (cr == NULL) { 25807 cr = CONN_CRED(connp); 25808 pid = tcp->tcp_cpid; 25809 ASSERT(cr != NULL); 25810 if (cr != NULL) { 25811 mblk_setcred(syn_mp, cr, pid); 25812 } else { 25813 error = ECONNABORTED; 25814 goto ipcl_rm; 25815 } 25816 25817 /* 25818 * If an effective security label exists for 25819 * the connection, create a copy of the thread's 25820 * cred but with the effective label attached. 25821 */ 25822 } else if (is_system_labeled() && 25823 connp->conn_effective_cred != NULL && 25824 (tsl = crgetlabel(connp-> 25825 conn_effective_cred)) != NULL) { 25826 if ((ecr = copycred_from_tslabel(cr, 25827 tsl, KM_NOSLEEP)) == NULL) { 25828 error = ENOMEM; 25829 goto ipcl_rm; 25830 } 25831 mblk_setcred(syn_mp, ecr, pid); 25832 crfree(ecr); 25833 25834 /* 25835 * Default to using the thread's cred unchanged. 25836 */ 25837 } else { 25838 mblk_setcred(syn_mp, cr, pid); 25839 } 25840 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 25841 } 25842 after_syn_sent: 25843 if (mp != NULL) { 25844 ASSERT(mp->b_cont == NULL); 25845 freeb(mp); 25846 } 25847 return (error); 25848 } else { 25849 /* error */ 25850 if (tcp->tcp_debug) { 25851 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 25852 "tcp_post_ip_bind: error == %d", error); 25853 } 25854 if (mp != NULL) { 25855 freeb(mp); 25856 } 25857 } 25858 25859 ipcl_rm: 25860 /* 25861 * Need to unbind with classifier since we were just 25862 * told that our bind succeeded. a.k.a error == 0 at the entry. 25863 */ 25864 tcp->tcp_hard_bound = B_FALSE; 25865 tcp->tcp_hard_binding = B_FALSE; 25866 25867 ipcl_hash_remove(connp); 25868 25869 bind_failed: 25870 tcp->tcp_state = TCPS_IDLE; 25871 if (tcp->tcp_ipversion == IPV4_VERSION) 25872 tcp->tcp_ipha->ipha_src = 0; 25873 else 25874 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 25875 /* 25876 * Copy of the src addr. in tcp_t is needed since 25877 * the lookup funcs. can only look at tcp_t 25878 */ 25879 V6_SET_ZERO(tcp->tcp_ip_src_v6); 25880 25881 tcph = tcp->tcp_tcph; 25882 tcph->th_lport[0] = 0; 25883 tcph->th_lport[1] = 0; 25884 tcp_bind_hash_remove(tcp); 25885 bzero(&connp->u_port, sizeof (connp->u_port)); 25886 /* blow away saved option results if any */ 25887 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 25888 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 25889 25890 conn_delete_ire(tcp->tcp_connp, NULL); 25891 25892 return (error); 25893 } 25894 25895 static int 25896 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 25897 boolean_t bind_to_req_port_only, cred_t *cr) 25898 { 25899 in_port_t mlp_port; 25900 mlp_type_t addrtype, mlptype; 25901 boolean_t user_specified; 25902 in_port_t allocated_port; 25903 in_port_t requested_port = *requested_port_ptr; 25904 conn_t *connp; 25905 zone_t *zone; 25906 tcp_stack_t *tcps = tcp->tcp_tcps; 25907 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 25908 25909 /* 25910 * XXX It's up to the caller to specify bind_to_req_port_only or not. 25911 */ 25912 if (cr == NULL) 25913 cr = tcp->tcp_cred; 25914 /* 25915 * Get a valid port (within the anonymous range and should not 25916 * be a privileged one) to use if the user has not given a port. 25917 * If multiple threads are here, they may all start with 25918 * with the same initial port. But, it should be fine as long as 25919 * tcp_bindi will ensure that no two threads will be assigned 25920 * the same port. 25921 * 25922 * NOTE: XXX If a privileged process asks for an anonymous port, we 25923 * still check for ports only in the range > tcp_smallest_non_priv_port, 25924 * unless TCP_ANONPRIVBIND option is set. 25925 */ 25926 mlptype = mlptSingle; 25927 mlp_port = requested_port; 25928 if (requested_port == 0) { 25929 requested_port = tcp->tcp_anon_priv_bind ? 25930 tcp_get_next_priv_port(tcp) : 25931 tcp_update_next_port(tcps->tcps_next_port_to_try, 25932 tcp, B_TRUE); 25933 if (requested_port == 0) { 25934 return (-TNOADDR); 25935 } 25936 user_specified = B_FALSE; 25937 25938 /* 25939 * If the user went through one of the RPC interfaces to create 25940 * this socket and RPC is MLP in this zone, then give him an 25941 * anonymous MLP. 25942 */ 25943 connp = tcp->tcp_connp; 25944 if (connp->conn_anon_mlp && is_system_labeled()) { 25945 zone = crgetzone(cr); 25946 addrtype = tsol_mlp_addr_type(zone->zone_id, 25947 IPV6_VERSION, &v6addr, 25948 tcps->tcps_netstack->netstack_ip); 25949 if (addrtype == mlptSingle) { 25950 return (-TNOADDR); 25951 } 25952 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25953 PMAPPORT, addrtype); 25954 mlp_port = PMAPPORT; 25955 } 25956 } else { 25957 int i; 25958 boolean_t priv = B_FALSE; 25959 25960 /* 25961 * If the requested_port is in the well-known privileged range, 25962 * verify that the stream was opened by a privileged user. 25963 * Note: No locks are held when inspecting tcp_g_*epriv_ports 25964 * but instead the code relies on: 25965 * - the fact that the address of the array and its size never 25966 * changes 25967 * - the atomic assignment of the elements of the array 25968 */ 25969 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 25970 priv = B_TRUE; 25971 } else { 25972 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 25973 if (requested_port == 25974 tcps->tcps_g_epriv_ports[i]) { 25975 priv = B_TRUE; 25976 break; 25977 } 25978 } 25979 } 25980 if (priv) { 25981 if (secpolicy_net_privaddr(cr, requested_port, 25982 IPPROTO_TCP) != 0) { 25983 if (tcp->tcp_debug) { 25984 (void) strlog(TCP_MOD_ID, 0, 1, 25985 SL_ERROR|SL_TRACE, 25986 "tcp_bind: no priv for port %d", 25987 requested_port); 25988 } 25989 return (-TACCES); 25990 } 25991 } 25992 user_specified = B_TRUE; 25993 25994 connp = tcp->tcp_connp; 25995 if (is_system_labeled()) { 25996 zone = crgetzone(cr); 25997 addrtype = tsol_mlp_addr_type(zone->zone_id, 25998 IPV6_VERSION, &v6addr, 25999 tcps->tcps_netstack->netstack_ip); 26000 if (addrtype == mlptSingle) { 26001 return (-TNOADDR); 26002 } 26003 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26004 requested_port, addrtype); 26005 } 26006 } 26007 26008 if (mlptype != mlptSingle) { 26009 if (secpolicy_net_bindmlp(cr) != 0) { 26010 if (tcp->tcp_debug) { 26011 (void) strlog(TCP_MOD_ID, 0, 1, 26012 SL_ERROR|SL_TRACE, 26013 "tcp_bind: no priv for multilevel port %d", 26014 requested_port); 26015 } 26016 return (-TACCES); 26017 } 26018 26019 /* 26020 * If we're specifically binding a shared IP address and the 26021 * port is MLP on shared addresses, then check to see if this 26022 * zone actually owns the MLP. Reject if not. 26023 */ 26024 if (mlptype == mlptShared && addrtype == mlptShared) { 26025 /* 26026 * No need to handle exclusive-stack zones since 26027 * ALL_ZONES only applies to the shared stack. 26028 */ 26029 zoneid_t mlpzone; 26030 26031 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26032 htons(mlp_port)); 26033 if (connp->conn_zoneid != mlpzone) { 26034 if (tcp->tcp_debug) { 26035 (void) strlog(TCP_MOD_ID, 0, 1, 26036 SL_ERROR|SL_TRACE, 26037 "tcp_bind: attempt to bind port " 26038 "%d on shared addr in zone %d " 26039 "(should be %d)", 26040 mlp_port, connp->conn_zoneid, 26041 mlpzone); 26042 } 26043 return (-TACCES); 26044 } 26045 } 26046 26047 if (!user_specified) { 26048 int err; 26049 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26050 requested_port, B_TRUE); 26051 if (err != 0) { 26052 if (tcp->tcp_debug) { 26053 (void) strlog(TCP_MOD_ID, 0, 1, 26054 SL_ERROR|SL_TRACE, 26055 "tcp_bind: cannot establish anon " 26056 "MLP for port %d", 26057 requested_port); 26058 } 26059 return (err); 26060 } 26061 connp->conn_anon_port = B_TRUE; 26062 } 26063 connp->conn_mlp_type = mlptype; 26064 } 26065 26066 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26067 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26068 26069 if (allocated_port == 0) { 26070 connp->conn_mlp_type = mlptSingle; 26071 if (connp->conn_anon_port) { 26072 connp->conn_anon_port = B_FALSE; 26073 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26074 requested_port, B_FALSE); 26075 } 26076 if (bind_to_req_port_only) { 26077 if (tcp->tcp_debug) { 26078 (void) strlog(TCP_MOD_ID, 0, 1, 26079 SL_ERROR|SL_TRACE, 26080 "tcp_bind: requested addr busy"); 26081 } 26082 return (-TADDRBUSY); 26083 } else { 26084 /* If we are out of ports, fail the bind. */ 26085 if (tcp->tcp_debug) { 26086 (void) strlog(TCP_MOD_ID, 0, 1, 26087 SL_ERROR|SL_TRACE, 26088 "tcp_bind: out of ports?"); 26089 } 26090 return (-TNOADDR); 26091 } 26092 } 26093 26094 /* Pass the allocated port back */ 26095 *requested_port_ptr = allocated_port; 26096 return (0); 26097 } 26098 26099 static int 26100 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26101 boolean_t bind_to_req_port_only) 26102 { 26103 tcp_t *tcp = connp->conn_tcp; 26104 sin_t *sin; 26105 sin6_t *sin6; 26106 in_port_t requested_port; 26107 ipaddr_t v4addr; 26108 in6_addr_t v6addr; 26109 uint_t origipversion; 26110 int error = 0; 26111 26112 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26113 26114 if (tcp->tcp_state == TCPS_BOUND) { 26115 return (0); 26116 } else if (tcp->tcp_state > TCPS_BOUND) { 26117 if (tcp->tcp_debug) { 26118 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26119 "tcp_bind: bad state, %d", tcp->tcp_state); 26120 } 26121 return (-TOUTSTATE); 26122 } 26123 origipversion = tcp->tcp_ipversion; 26124 26125 ASSERT(sa != NULL && len != 0); 26126 26127 if (!OK_32PTR((char *)sa)) { 26128 if (tcp->tcp_debug) { 26129 (void) strlog(TCP_MOD_ID, 0, 1, 26130 SL_ERROR|SL_TRACE, 26131 "tcp_bind: bad address parameter, " 26132 "address %p, len %d", 26133 (void *)sa, len); 26134 } 26135 return (-TPROTO); 26136 } 26137 26138 switch (len) { 26139 case sizeof (sin_t): /* Complete IPv4 address */ 26140 sin = (sin_t *)sa; 26141 /* 26142 * With sockets sockfs will accept bogus sin_family in 26143 * bind() and replace it with the family used in the socket 26144 * call. 26145 */ 26146 if (sin->sin_family != AF_INET || 26147 tcp->tcp_family != AF_INET) { 26148 return (EAFNOSUPPORT); 26149 } 26150 requested_port = ntohs(sin->sin_port); 26151 tcp->tcp_ipversion = IPV4_VERSION; 26152 v4addr = sin->sin_addr.s_addr; 26153 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26154 break; 26155 26156 case sizeof (sin6_t): /* Complete IPv6 address */ 26157 sin6 = (sin6_t *)sa; 26158 if (sin6->sin6_family != AF_INET6 || 26159 tcp->tcp_family != AF_INET6) { 26160 return (EAFNOSUPPORT); 26161 } 26162 requested_port = ntohs(sin6->sin6_port); 26163 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26164 IPV4_VERSION : IPV6_VERSION; 26165 v6addr = sin6->sin6_addr; 26166 break; 26167 26168 default: 26169 if (tcp->tcp_debug) { 26170 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26171 "tcp_bind: bad address length, %d", len); 26172 } 26173 return (EAFNOSUPPORT); 26174 /* return (-TBADADDR); */ 26175 } 26176 26177 tcp->tcp_bound_source_v6 = v6addr; 26178 26179 /* Check for change in ipversion */ 26180 if (origipversion != tcp->tcp_ipversion) { 26181 ASSERT(tcp->tcp_family == AF_INET6); 26182 error = tcp->tcp_ipversion == IPV6_VERSION ? 26183 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26184 if (error) { 26185 return (ENOMEM); 26186 } 26187 } 26188 26189 /* 26190 * Initialize family specific fields. Copy of the src addr. 26191 * in tcp_t is needed for the lookup funcs. 26192 */ 26193 if (tcp->tcp_ipversion == IPV6_VERSION) { 26194 tcp->tcp_ip6h->ip6_src = v6addr; 26195 } else { 26196 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26197 } 26198 tcp->tcp_ip_src_v6 = v6addr; 26199 26200 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26201 26202 error = tcp_bind_select_lport(tcp, &requested_port, 26203 bind_to_req_port_only, cr); 26204 26205 return (error); 26206 } 26207 26208 /* 26209 * Return unix error is tli error is TSYSERR, otherwise return a negative 26210 * tli error. 26211 */ 26212 int 26213 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26214 boolean_t bind_to_req_port_only) 26215 { 26216 int error; 26217 tcp_t *tcp = connp->conn_tcp; 26218 26219 if (tcp->tcp_state >= TCPS_BOUND) { 26220 if (tcp->tcp_debug) { 26221 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26222 "tcp_bind: bad state, %d", tcp->tcp_state); 26223 } 26224 return (-TOUTSTATE); 26225 } 26226 26227 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26228 if (error != 0) 26229 return (error); 26230 26231 ASSERT(tcp->tcp_state == TCPS_BOUND); 26232 26233 tcp->tcp_conn_req_max = 0; 26234 26235 if (tcp->tcp_family == AF_INET6) { 26236 ASSERT(tcp->tcp_connp->conn_af_isv6); 26237 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26238 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26239 } else { 26240 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26241 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26242 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26243 } 26244 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26245 } 26246 26247 int 26248 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26249 socklen_t len, cred_t *cr) 26250 { 26251 int error; 26252 conn_t *connp = (conn_t *)proto_handle; 26253 squeue_t *sqp = connp->conn_sqp; 26254 26255 /* All Solaris components should pass a cred for this operation. */ 26256 ASSERT(cr != NULL); 26257 26258 ASSERT(sqp != NULL); 26259 ASSERT(connp->conn_upper_handle != NULL); 26260 26261 error = squeue_synch_enter(sqp, connp, NULL); 26262 if (error != 0) { 26263 /* failed to enter */ 26264 return (ENOSR); 26265 } 26266 26267 /* binding to a NULL address really means unbind */ 26268 if (sa == NULL) { 26269 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26270 error = tcp_do_unbind(connp); 26271 else 26272 error = EINVAL; 26273 } else { 26274 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26275 } 26276 26277 squeue_synch_exit(sqp, connp); 26278 26279 if (error < 0) { 26280 if (error == -TOUTSTATE) 26281 error = EINVAL; 26282 else 26283 error = proto_tlitosyserr(-error); 26284 } 26285 26286 return (error); 26287 } 26288 26289 /* 26290 * If the return value from this function is positive, it's a UNIX error. 26291 * Otherwise, if it's negative, then the absolute value is a TLI error. 26292 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26293 */ 26294 int 26295 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26296 cred_t *cr, pid_t pid) 26297 { 26298 tcp_t *tcp = connp->conn_tcp; 26299 sin_t *sin = (sin_t *)sa; 26300 sin6_t *sin6 = (sin6_t *)sa; 26301 ipaddr_t *dstaddrp; 26302 in_port_t dstport; 26303 uint_t srcid; 26304 int error = 0; 26305 26306 switch (len) { 26307 default: 26308 /* 26309 * Should never happen 26310 */ 26311 return (EINVAL); 26312 26313 case sizeof (sin_t): 26314 sin = (sin_t *)sa; 26315 if (sin->sin_port == 0) { 26316 return (-TBADADDR); 26317 } 26318 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26319 return (EAFNOSUPPORT); 26320 } 26321 break; 26322 26323 case sizeof (sin6_t): 26324 sin6 = (sin6_t *)sa; 26325 if (sin6->sin6_port == 0) { 26326 return (-TBADADDR); 26327 } 26328 break; 26329 } 26330 /* 26331 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26332 * make sure that the template IP header in the tcp structure is an 26333 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26334 * need to this before we call tcp_bindi() so that the port lookup 26335 * code will look for ports in the correct port space (IPv4 and 26336 * IPv6 have separate port spaces). 26337 */ 26338 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26339 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26340 int err = 0; 26341 26342 err = tcp_header_init_ipv4(tcp); 26343 if (err != 0) { 26344 error = ENOMEM; 26345 goto connect_failed; 26346 } 26347 if (tcp->tcp_lport != 0) 26348 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26349 } 26350 26351 switch (tcp->tcp_state) { 26352 case TCPS_LISTEN: 26353 /* 26354 * Listening sockets are not allowed to issue connect(). 26355 */ 26356 if (IPCL_IS_NONSTR(connp)) 26357 return (EOPNOTSUPP); 26358 /* FALLTHRU */ 26359 case TCPS_IDLE: 26360 /* 26361 * We support quick connect, refer to comments in 26362 * tcp_connect_*() 26363 */ 26364 /* FALLTHRU */ 26365 case TCPS_BOUND: 26366 /* 26367 * We must bump the generation before the operation start. 26368 * This is done to ensure that any upcall made later on sends 26369 * up the right generation to the socket. 26370 */ 26371 SOCK_CONNID_BUMP(tcp->tcp_connid); 26372 26373 if (tcp->tcp_family == AF_INET6) { 26374 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26375 return (tcp_connect_ipv6(tcp, 26376 &sin6->sin6_addr, 26377 sin6->sin6_port, sin6->sin6_flowinfo, 26378 sin6->__sin6_src_id, sin6->sin6_scope_id, 26379 cr, pid)); 26380 } 26381 /* 26382 * Destination adress is mapped IPv6 address. 26383 * Source bound address should be unspecified or 26384 * IPv6 mapped address as well. 26385 */ 26386 if (!IN6_IS_ADDR_UNSPECIFIED( 26387 &tcp->tcp_bound_source_v6) && 26388 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26389 return (EADDRNOTAVAIL); 26390 } 26391 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26392 dstport = sin6->sin6_port; 26393 srcid = sin6->__sin6_src_id; 26394 } else { 26395 dstaddrp = &sin->sin_addr.s_addr; 26396 dstport = sin->sin_port; 26397 srcid = 0; 26398 } 26399 26400 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26401 pid); 26402 break; 26403 default: 26404 return (-TOUTSTATE); 26405 } 26406 /* 26407 * Note: Code below is the "failure" case 26408 */ 26409 connect_failed: 26410 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26411 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26412 return (error); 26413 } 26414 26415 int 26416 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26417 socklen_t len, sock_connid_t *id, cred_t *cr) 26418 { 26419 conn_t *connp = (conn_t *)proto_handle; 26420 tcp_t *tcp = connp->conn_tcp; 26421 squeue_t *sqp = connp->conn_sqp; 26422 int error; 26423 26424 ASSERT(connp->conn_upper_handle != NULL); 26425 26426 /* All Solaris components should pass a cred for this operation. */ 26427 ASSERT(cr != NULL); 26428 26429 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26430 if (error != 0) { 26431 return (error); 26432 } 26433 26434 error = squeue_synch_enter(sqp, connp, NULL); 26435 if (error != 0) { 26436 /* failed to enter */ 26437 return (ENOSR); 26438 } 26439 26440 /* 26441 * TCP supports quick connect, so no need to do an implicit bind 26442 */ 26443 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26444 if (error == 0) { 26445 *id = connp->conn_tcp->tcp_connid; 26446 } else if (error < 0) { 26447 if (error == -TOUTSTATE) { 26448 switch (connp->conn_tcp->tcp_state) { 26449 case TCPS_SYN_SENT: 26450 error = EALREADY; 26451 break; 26452 case TCPS_ESTABLISHED: 26453 error = EISCONN; 26454 break; 26455 case TCPS_LISTEN: 26456 error = EOPNOTSUPP; 26457 break; 26458 default: 26459 error = EINVAL; 26460 break; 26461 } 26462 } else { 26463 error = proto_tlitosyserr(-error); 26464 } 26465 } 26466 done: 26467 squeue_synch_exit(sqp, connp); 26468 26469 return ((error == 0) ? EINPROGRESS : error); 26470 } 26471 26472 /* ARGSUSED */ 26473 sock_lower_handle_t 26474 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26475 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26476 { 26477 conn_t *connp; 26478 boolean_t isv6 = family == AF_INET6; 26479 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26480 (proto != 0 && proto != IPPROTO_TCP)) { 26481 *errorp = EPROTONOSUPPORT; 26482 return (NULL); 26483 } 26484 26485 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26486 if (connp == NULL) { 26487 return (NULL); 26488 } 26489 26490 /* 26491 * Put the ref for TCP. Ref for IP was already put 26492 * by ipcl_conn_create. Also Make the conn_t globally 26493 * visible to walkers 26494 */ 26495 mutex_enter(&connp->conn_lock); 26496 CONN_INC_REF_LOCKED(connp); 26497 ASSERT(connp->conn_ref == 2); 26498 connp->conn_state_flags &= ~CONN_INCIPIENT; 26499 26500 connp->conn_flags |= IPCL_NONSTR; 26501 mutex_exit(&connp->conn_lock); 26502 26503 ASSERT(errorp != NULL); 26504 *errorp = 0; 26505 *sock_downcalls = &sock_tcp_downcalls; 26506 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26507 SM_SENDFILESUPP; 26508 26509 return ((sock_lower_handle_t)connp); 26510 } 26511 26512 /* ARGSUSED */ 26513 void 26514 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26515 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26516 { 26517 conn_t *connp = (conn_t *)proto_handle; 26518 struct sock_proto_props sopp; 26519 26520 ASSERT(connp->conn_upper_handle == NULL); 26521 26522 /* All Solaris components should pass a cred for this operation. */ 26523 ASSERT(cr != NULL); 26524 26525 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26526 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26527 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26528 26529 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26530 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26531 sopp.sopp_maxpsz = INFPSZ; 26532 sopp.sopp_maxblk = INFPSZ; 26533 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26534 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26535 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26536 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26537 tcp_rinfo.mi_minpsz; 26538 26539 connp->conn_upcalls = sock_upcalls; 26540 connp->conn_upper_handle = sock_handle; 26541 26542 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26543 } 26544 26545 /* ARGSUSED */ 26546 int 26547 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26548 { 26549 conn_t *connp = (conn_t *)proto_handle; 26550 26551 ASSERT(connp->conn_upper_handle != NULL); 26552 26553 /* All Solaris components should pass a cred for this operation. */ 26554 ASSERT(cr != NULL); 26555 26556 tcp_close_common(connp, flags); 26557 26558 ip_free_helper_stream(connp); 26559 26560 /* 26561 * Drop IP's reference on the conn. This is the last reference 26562 * on the connp if the state was less than established. If the 26563 * connection has gone into timewait state, then we will have 26564 * one ref for the TCP and one more ref (total of two) for the 26565 * classifier connected hash list (a timewait connections stays 26566 * in connected hash till closed). 26567 * 26568 * We can't assert the references because there might be other 26569 * transient reference places because of some walkers or queued 26570 * packets in squeue for the timewait state. 26571 */ 26572 CONN_DEC_REF(connp); 26573 return (0); 26574 } 26575 26576 /* ARGSUSED */ 26577 int 26578 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26579 cred_t *cr) 26580 { 26581 tcp_t *tcp; 26582 uint32_t msize; 26583 conn_t *connp = (conn_t *)proto_handle; 26584 int32_t tcpstate; 26585 26586 /* All Solaris components should pass a cred for this operation. */ 26587 ASSERT(cr != NULL); 26588 26589 ASSERT(connp->conn_ref >= 2); 26590 ASSERT(connp->conn_upper_handle != NULL); 26591 26592 if (msg->msg_controllen != 0) { 26593 return (EOPNOTSUPP); 26594 26595 } 26596 switch (DB_TYPE(mp)) { 26597 case M_DATA: 26598 tcp = connp->conn_tcp; 26599 ASSERT(tcp != NULL); 26600 26601 tcpstate = tcp->tcp_state; 26602 if (tcpstate < TCPS_ESTABLISHED) { 26603 freemsg(mp); 26604 return (ENOTCONN); 26605 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26606 freemsg(mp); 26607 return (EPIPE); 26608 } 26609 26610 msize = msgdsize(mp); 26611 26612 mutex_enter(&tcp->tcp_non_sq_lock); 26613 tcp->tcp_squeue_bytes += msize; 26614 /* 26615 * Squeue Flow Control 26616 */ 26617 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26618 tcp_setqfull(tcp); 26619 } 26620 mutex_exit(&tcp->tcp_non_sq_lock); 26621 26622 /* 26623 * The application may pass in an address in the msghdr, but 26624 * we ignore the address on connection-oriented sockets. 26625 * Just like BSD this code does not generate an error for 26626 * TCP (a CONNREQUIRED socket) when sending to an address 26627 * passed in with sendto/sendmsg. Instead the data is 26628 * delivered on the connection as if no address had been 26629 * supplied. 26630 */ 26631 CONN_INC_REF(connp); 26632 26633 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26634 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26635 tcp_output_urgent, connp, tcp_squeue_flag, 26636 SQTAG_TCP_OUTPUT); 26637 } else { 26638 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26639 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26640 } 26641 26642 return (0); 26643 26644 default: 26645 ASSERT(0); 26646 } 26647 26648 freemsg(mp); 26649 return (0); 26650 } 26651 26652 /* ARGSUSED */ 26653 void 26654 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26655 { 26656 int len; 26657 uint32_t msize; 26658 conn_t *connp = (conn_t *)arg; 26659 tcp_t *tcp = connp->conn_tcp; 26660 26661 msize = msgdsize(mp); 26662 26663 len = msize - 1; 26664 if (len < 0) { 26665 freemsg(mp); 26666 return; 26667 } 26668 26669 /* 26670 * Try to force urgent data out on the wire. 26671 * Even if we have unsent data this will 26672 * at least send the urgent flag. 26673 * XXX does not handle more flag correctly. 26674 */ 26675 len += tcp->tcp_unsent; 26676 len += tcp->tcp_snxt; 26677 tcp->tcp_urg = len; 26678 tcp->tcp_valid_bits |= TCP_URG_VALID; 26679 26680 /* Bypass tcp protocol for fused tcp loopback */ 26681 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 26682 return; 26683 tcp_wput_data(tcp, mp, B_TRUE); 26684 } 26685 26686 /* ARGSUSED */ 26687 int 26688 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26689 socklen_t *addrlenp, cred_t *cr) 26690 { 26691 conn_t *connp = (conn_t *)proto_handle; 26692 tcp_t *tcp = connp->conn_tcp; 26693 26694 ASSERT(connp->conn_upper_handle != NULL); 26695 /* All Solaris components should pass a cred for this operation. */ 26696 ASSERT(cr != NULL); 26697 26698 ASSERT(tcp != NULL); 26699 26700 return (tcp_do_getpeername(tcp, addr, addrlenp)); 26701 } 26702 26703 /* ARGSUSED */ 26704 int 26705 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26706 socklen_t *addrlenp, cred_t *cr) 26707 { 26708 conn_t *connp = (conn_t *)proto_handle; 26709 tcp_t *tcp = connp->conn_tcp; 26710 26711 /* All Solaris components should pass a cred for this operation. */ 26712 ASSERT(cr != NULL); 26713 26714 ASSERT(connp->conn_upper_handle != NULL); 26715 26716 return (tcp_do_getsockname(tcp, addr, addrlenp)); 26717 } 26718 26719 /* 26720 * tcp_fallback 26721 * 26722 * A direct socket is falling back to using STREAMS. The queue 26723 * that is being passed down was created using tcp_open() with 26724 * the SO_FALLBACK flag set. As a result, the queue is not 26725 * associated with a conn, and the q_ptrs instead contain the 26726 * dev and minor area that should be used. 26727 * 26728 * The 'direct_sockfs' flag indicates whether the FireEngine 26729 * optimizations should be used. The common case would be that 26730 * optimizations are enabled, and they might be subsequently 26731 * disabled using the _SIOCSOCKFALLBACK ioctl. 26732 */ 26733 26734 /* 26735 * An active connection is falling back to TPI. Gather all the information 26736 * required by the STREAM head and TPI sonode and send it up. 26737 */ 26738 void 26739 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 26740 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26741 { 26742 conn_t *connp = tcp->tcp_connp; 26743 struct stroptions *stropt; 26744 struct T_capability_ack tca; 26745 struct sockaddr_in6 laddr, faddr; 26746 socklen_t laddrlen, faddrlen; 26747 short opts; 26748 int error; 26749 mblk_t *mp; 26750 26751 connp->conn_dev = (dev_t)RD(q)->q_ptr; 26752 connp->conn_minor_arena = WR(q)->q_ptr; 26753 26754 RD(q)->q_ptr = WR(q)->q_ptr = connp; 26755 26756 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 26757 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 26758 26759 WR(q)->q_qinfo = &tcp_sock_winit; 26760 26761 if (!direct_sockfs) 26762 tcp_disable_direct_sockfs(tcp); 26763 26764 /* 26765 * free the helper stream 26766 */ 26767 ip_free_helper_stream(connp); 26768 26769 /* 26770 * Notify the STREAM head about options 26771 */ 26772 DB_TYPE(stropt_mp) = M_SETOPTS; 26773 stropt = (struct stroptions *)stropt_mp->b_rptr; 26774 stropt_mp->b_wptr += sizeof (struct stroptions); 26775 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 26776 26777 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 26778 tcp->tcp_tcps->tcps_wroff_xtra); 26779 if (tcp->tcp_snd_sack_ok) 26780 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 26781 stropt->so_hiwat = tcp->tcp_fused ? 26782 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 26783 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 26784 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 26785 26786 putnext(RD(q), stropt_mp); 26787 26788 /* 26789 * Collect the information needed to sync with the sonode 26790 */ 26791 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 26792 26793 laddrlen = faddrlen = sizeof (sin6_t); 26794 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 26795 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 26796 if (error != 0) 26797 faddrlen = 0; 26798 26799 opts = 0; 26800 if (tcp->tcp_oobinline) 26801 opts |= SO_OOBINLINE; 26802 if (tcp->tcp_dontroute) 26803 opts |= SO_DONTROUTE; 26804 26805 /* 26806 * Notify the socket that the protocol is now quiescent, 26807 * and it's therefore safe move data from the socket 26808 * to the stream head. 26809 */ 26810 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 26811 (struct sockaddr *)&laddr, laddrlen, 26812 (struct sockaddr *)&faddr, faddrlen, opts); 26813 26814 while ((mp = tcp->tcp_rcv_list) != NULL) { 26815 tcp->tcp_rcv_list = mp->b_next; 26816 mp->b_next = NULL; 26817 putnext(q, mp); 26818 } 26819 tcp->tcp_rcv_last_head = NULL; 26820 tcp->tcp_rcv_last_tail = NULL; 26821 tcp->tcp_rcv_cnt = 0; 26822 } 26823 26824 /* 26825 * An eager is falling back to TPI. All we have to do is send 26826 * up a T_CONN_IND. 26827 */ 26828 void 26829 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 26830 { 26831 tcp_t *listener = eager->tcp_listener; 26832 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 26833 26834 ASSERT(listener != NULL); 26835 ASSERT(mp != NULL); 26836 26837 eager->tcp_conn.tcp_eager_conn_ind = NULL; 26838 26839 /* 26840 * TLI/XTI applications will get confused by 26841 * sending eager as an option since it violates 26842 * the option semantics. So remove the eager as 26843 * option since TLI/XTI app doesn't need it anyway. 26844 */ 26845 if (!direct_sockfs) { 26846 struct T_conn_ind *conn_ind; 26847 26848 conn_ind = (struct T_conn_ind *)mp->b_rptr; 26849 conn_ind->OPT_length = 0; 26850 conn_ind->OPT_offset = 0; 26851 } 26852 26853 /* 26854 * Sockfs guarantees that the listener will not be closed 26855 * during fallback. So we can safely use the listener's queue. 26856 */ 26857 putnext(listener->tcp_rq, mp); 26858 } 26859 26860 int 26861 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 26862 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26863 { 26864 tcp_t *tcp; 26865 conn_t *connp = (conn_t *)proto_handle; 26866 int error; 26867 mblk_t *stropt_mp; 26868 mblk_t *ordrel_mp; 26869 mblk_t *fused_sigurp_mp; 26870 26871 tcp = connp->conn_tcp; 26872 26873 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 26874 NULL); 26875 26876 /* Pre-allocate the T_ordrel_ind mblk. */ 26877 ASSERT(tcp->tcp_ordrel_mp == NULL); 26878 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 26879 STR_NOSIG, NULL); 26880 ordrel_mp->b_datap->db_type = M_PROTO; 26881 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 26882 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 26883 26884 /* Pre-allocate the M_PCSIG used by fusion */ 26885 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 26886 26887 /* 26888 * Enter the squeue so that no new packets can come in 26889 */ 26890 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 26891 if (error != 0) { 26892 /* failed to enter, free all the pre-allocated messages. */ 26893 freeb(stropt_mp); 26894 freeb(ordrel_mp); 26895 freeb(fused_sigurp_mp); 26896 /* 26897 * We cannot process the eager, so at least send out a 26898 * RST so the peer can reconnect. 26899 */ 26900 if (tcp->tcp_listener != NULL) { 26901 (void) tcp_eager_blowoff(tcp->tcp_listener, 26902 tcp->tcp_conn_req_seqnum); 26903 } 26904 return (ENOMEM); 26905 } 26906 26907 /* 26908 * No longer a direct socket 26909 */ 26910 connp->conn_flags &= ~IPCL_NONSTR; 26911 26912 tcp->tcp_ordrel_mp = ordrel_mp; 26913 26914 if (tcp->tcp_fused) { 26915 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 26916 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 26917 } else { 26918 freeb(fused_sigurp_mp); 26919 } 26920 26921 if (tcp->tcp_listener != NULL) { 26922 /* The eager will deal with opts when accept() is called */ 26923 freeb(stropt_mp); 26924 tcp_fallback_eager(tcp, direct_sockfs); 26925 } else { 26926 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 26927 quiesced_cb); 26928 } 26929 26930 /* 26931 * There should be atleast two ref's (IP + TCP) 26932 */ 26933 ASSERT(connp->conn_ref >= 2); 26934 squeue_synch_exit(connp->conn_sqp, connp); 26935 26936 return (0); 26937 } 26938 26939 /* ARGSUSED */ 26940 static void 26941 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 26942 { 26943 conn_t *connp = (conn_t *)arg; 26944 tcp_t *tcp = connp->conn_tcp; 26945 26946 freemsg(mp); 26947 26948 if (tcp->tcp_fused) 26949 tcp_unfuse(tcp); 26950 26951 if (tcp_xmit_end(tcp) != 0) { 26952 /* 26953 * We were crossing FINs and got a reset from 26954 * the other side. Just ignore it. 26955 */ 26956 if (tcp->tcp_debug) { 26957 (void) strlog(TCP_MOD_ID, 0, 1, 26958 SL_ERROR|SL_TRACE, 26959 "tcp_shutdown_output() out of state %s", 26960 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 26961 } 26962 } 26963 } 26964 26965 /* ARGSUSED */ 26966 int 26967 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 26968 { 26969 conn_t *connp = (conn_t *)proto_handle; 26970 tcp_t *tcp = connp->conn_tcp; 26971 26972 ASSERT(connp->conn_upper_handle != NULL); 26973 26974 /* All Solaris components should pass a cred for this operation. */ 26975 ASSERT(cr != NULL); 26976 26977 /* 26978 * X/Open requires that we check the connected state. 26979 */ 26980 if (tcp->tcp_state < TCPS_SYN_SENT) 26981 return (ENOTCONN); 26982 26983 /* shutdown the send side */ 26984 if (how != SHUT_RD) { 26985 mblk_t *bp; 26986 26987 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 26988 CONN_INC_REF(connp); 26989 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 26990 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 26991 26992 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26993 SOCK_OPCTL_SHUT_SEND, 0); 26994 } 26995 26996 /* shutdown the recv side */ 26997 if (how != SHUT_WR) 26998 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26999 SOCK_OPCTL_SHUT_RECV, 0); 27000 27001 return (0); 27002 } 27003 27004 /* 27005 * SOP_LISTEN() calls into tcp_listen(). 27006 */ 27007 /* ARGSUSED */ 27008 int 27009 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27010 { 27011 conn_t *connp = (conn_t *)proto_handle; 27012 int error; 27013 squeue_t *sqp = connp->conn_sqp; 27014 27015 ASSERT(connp->conn_upper_handle != NULL); 27016 27017 /* All Solaris components should pass a cred for this operation. */ 27018 ASSERT(cr != NULL); 27019 27020 error = squeue_synch_enter(sqp, connp, NULL); 27021 if (error != 0) { 27022 /* failed to enter */ 27023 return (ENOBUFS); 27024 } 27025 27026 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 27027 if (error == 0) { 27028 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27029 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27030 } else if (error < 0) { 27031 if (error == -TOUTSTATE) 27032 error = EINVAL; 27033 else 27034 error = proto_tlitosyserr(-error); 27035 } 27036 squeue_synch_exit(sqp, connp); 27037 return (error); 27038 } 27039 27040 static int 27041 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 27042 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 27043 { 27044 tcp_t *tcp = connp->conn_tcp; 27045 int error = 0; 27046 tcp_stack_t *tcps = tcp->tcp_tcps; 27047 27048 /* All Solaris components should pass a cred for this operation. */ 27049 ASSERT(cr != NULL); 27050 27051 if (tcp->tcp_state >= TCPS_BOUND) { 27052 if ((tcp->tcp_state == TCPS_BOUND || 27053 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27054 /* 27055 * Handle listen() increasing backlog. 27056 * This is more "liberal" then what the TPI spec 27057 * requires but is needed to avoid a t_unbind 27058 * when handling listen() since the port number 27059 * might be "stolen" between the unbind and bind. 27060 */ 27061 goto do_listen; 27062 } 27063 if (tcp->tcp_debug) { 27064 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27065 "tcp_listen: bad state, %d", tcp->tcp_state); 27066 } 27067 return (-TOUTSTATE); 27068 } else { 27069 if (sa == NULL) { 27070 sin6_t addr; 27071 sin_t *sin; 27072 sin6_t *sin6; 27073 27074 ASSERT(IPCL_IS_NONSTR(connp)); 27075 27076 /* Do an implicit bind: Request for a generic port. */ 27077 if (tcp->tcp_family == AF_INET) { 27078 len = sizeof (sin_t); 27079 sin = (sin_t *)&addr; 27080 *sin = sin_null; 27081 sin->sin_family = AF_INET; 27082 tcp->tcp_ipversion = IPV4_VERSION; 27083 } else { 27084 ASSERT(tcp->tcp_family == AF_INET6); 27085 len = sizeof (sin6_t); 27086 sin6 = (sin6_t *)&addr; 27087 *sin6 = sin6_null; 27088 sin6->sin6_family = AF_INET6; 27089 tcp->tcp_ipversion = IPV6_VERSION; 27090 } 27091 sa = (struct sockaddr *)&addr; 27092 } 27093 27094 error = tcp_bind_check(connp, sa, len, cr, 27095 bind_to_req_port_only); 27096 if (error) 27097 return (error); 27098 /* Fall through and do the fanout insertion */ 27099 } 27100 27101 do_listen: 27102 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27103 tcp->tcp_conn_req_max = backlog; 27104 if (tcp->tcp_conn_req_max) { 27105 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27106 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27107 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27108 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27109 /* 27110 * If this is a listener, do not reset the eager list 27111 * and other stuffs. Note that we don't check if the 27112 * existing eager list meets the new tcp_conn_req_max 27113 * requirement. 27114 */ 27115 if (tcp->tcp_state != TCPS_LISTEN) { 27116 tcp->tcp_state = TCPS_LISTEN; 27117 /* Initialize the chain. Don't need the eager_lock */ 27118 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27119 tcp->tcp_eager_next_drop_q0 = tcp; 27120 tcp->tcp_eager_prev_drop_q0 = tcp; 27121 tcp->tcp_second_ctimer_threshold = 27122 tcps->tcps_ip_abort_linterval; 27123 } 27124 } 27125 27126 /* 27127 * We can call ip_bind directly, the processing continues 27128 * in tcp_post_ip_bind(). 27129 * 27130 * We need to make sure that the conn_recv is set to a non-null 27131 * value before we insert the conn into the classifier table. 27132 * This is to avoid a race with an incoming packet which does an 27133 * ipcl_classify(). 27134 */ 27135 connp->conn_recv = tcp_conn_request; 27136 if (tcp->tcp_family == AF_INET) { 27137 error = ip_proto_bind_laddr_v4(connp, NULL, 27138 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27139 } else { 27140 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27141 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27142 } 27143 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27144 } 27145 27146 void 27147 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27148 { 27149 conn_t *connp = (conn_t *)proto_handle; 27150 tcp_t *tcp = connp->conn_tcp; 27151 mblk_t *mp; 27152 int error; 27153 27154 ASSERT(connp->conn_upper_handle != NULL); 27155 27156 /* 27157 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 27158 * is currently running. 27159 */ 27160 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27161 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 27162 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27163 return; 27164 } 27165 tcp->tcp_rsrv_mp = NULL; 27166 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27167 27168 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 27169 ASSERT(error == 0); 27170 27171 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27172 tcp->tcp_rsrv_mp = mp; 27173 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27174 27175 if (tcp->tcp_fused) { 27176 tcp_fuse_backenable(tcp); 27177 } else { 27178 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27179 /* 27180 * Send back a window update immediately if TCP is above 27181 * ESTABLISHED state and the increase of the rcv window 27182 * that the other side knows is at least 1 MSS after flow 27183 * control is lifted. 27184 */ 27185 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27186 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 27187 tcp_xmit_ctl(NULL, tcp, 27188 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27189 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27190 } 27191 } 27192 27193 squeue_synch_exit(connp->conn_sqp, connp); 27194 } 27195 27196 /* ARGSUSED */ 27197 int 27198 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27199 int mode, int32_t *rvalp, cred_t *cr) 27200 { 27201 conn_t *connp = (conn_t *)proto_handle; 27202 int error; 27203 27204 ASSERT(connp->conn_upper_handle != NULL); 27205 27206 /* All Solaris components should pass a cred for this operation. */ 27207 ASSERT(cr != NULL); 27208 27209 switch (cmd) { 27210 case ND_SET: 27211 case ND_GET: 27212 case TCP_IOC_DEFAULT_Q: 27213 case _SIOCSOCKFALLBACK: 27214 case TCP_IOC_ABORT_CONN: 27215 case TI_GETPEERNAME: 27216 case TI_GETMYNAME: 27217 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27218 cmd)); 27219 error = EINVAL; 27220 break; 27221 default: 27222 /* 27223 * Pass on to IP using helper stream 27224 */ 27225 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27226 cmd, arg, mode, cr, rvalp); 27227 break; 27228 } 27229 return (error); 27230 } 27231 27232 sock_downcalls_t sock_tcp_downcalls = { 27233 tcp_activate, 27234 tcp_accept, 27235 tcp_bind, 27236 tcp_listen, 27237 tcp_connect, 27238 tcp_getpeername, 27239 tcp_getsockname, 27240 tcp_getsockopt, 27241 tcp_setsockopt, 27242 tcp_sendmsg, 27243 NULL, 27244 NULL, 27245 NULL, 27246 tcp_shutdown, 27247 tcp_clr_flowctrl, 27248 tcp_ioctl, 27249 tcp_close, 27250 }; 27251