1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 #include <sys/sunldi.h> 61 62 #include <sys/errno.h> 63 #include <sys/signal.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/isa_defs.h> 67 #include <sys/md5.h> 68 #include <sys/random.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/mi.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 #include <inet/tcp_trace.h> 94 95 #include <inet/ipclassifier.h> 96 #include <inet/ip_ire.h> 97 #include <inet/ip_ftable.h> 98 #include <inet/ip_if.h> 99 #include <inet/ipp_common.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <sys/sdt.h> 106 #include <rpc/pmap_prot.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 130 * squeue_fill). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * IPsec notes : 221 * 222 * Since a packet is always executed on the correct TCP perimeter 223 * all IPsec processing is defered to IP including checking new 224 * connections and setting IPSEC policies for new connection. The 225 * only exception is tcp_xmit_listeners_reset() which is called 226 * directly from IP and needs to policy check to see if TH_RST 227 * can be sent out. 228 * 229 * PFHooks notes : 230 * 231 * For mdt case, one meta buffer contains multiple packets. Mblks for every 232 * packet are assembled and passed to the hooks. When packets are blocked, 233 * or boundary of any packet is changed, the mdt processing is stopped, and 234 * packets of the meta buffer are send to the IP path one by one. 235 */ 236 237 extern major_t TCP6_MAJ; 238 239 /* 240 * Values for squeue switch: 241 * 1: squeue_enter_nodrain 242 * 2: squeue_enter 243 * 3: squeue_fill 244 */ 245 int tcp_squeue_close = 2; /* Setable in /etc/system */ 246 int tcp_squeue_wput = 2; 247 248 squeue_func_t tcp_squeue_close_proc; 249 squeue_func_t tcp_squeue_wput_proc; 250 251 /* 252 * This controls how tiny a write must be before we try to copy it 253 * into the the mblk on the tail of the transmit queue. Not much 254 * speedup is observed for values larger than sixteen. Zero will 255 * disable the optimisation. 256 */ 257 int tcp_tx_pull_len = 16; 258 259 /* 260 * TCP Statistics. 261 * 262 * How TCP statistics work. 263 * 264 * There are two types of statistics invoked by two macros. 265 * 266 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 267 * supposed to be used in non MT-hot paths of the code. 268 * 269 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 270 * supposed to be used for DEBUG purposes and may be used on a hot path. 271 * 272 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 273 * (use "kstat tcp" to get them). 274 * 275 * There is also additional debugging facility that marks tcp_clean_death() 276 * instances and saves them in tcp_t structure. It is triggered by 277 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 278 * tcp_clean_death() calls that counts the number of times each tag was hit. It 279 * is triggered by TCP_CLD_COUNTERS define. 280 * 281 * How to add new counters. 282 * 283 * 1) Add a field in the tcp_stat structure describing your counter. 284 * 2) Add a line in the template in tcp_kstat2_init() with the name 285 * of the counter. 286 * 287 * IMPORTANT!! - make sure that both are in sync !! 288 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 289 * 290 * Please avoid using private counters which are not kstat-exported. 291 * 292 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 293 * in tcp_t structure. 294 * 295 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 296 */ 297 298 #ifndef TCP_DEBUG_COUNTER 299 #ifdef DEBUG 300 #define TCP_DEBUG_COUNTER 1 301 #else 302 #define TCP_DEBUG_COUNTER 0 303 #endif 304 #endif 305 306 #define TCP_CLD_COUNTERS 0 307 308 #define TCP_TAG_CLEAN_DEATH 1 309 #define TCP_MAX_CLEAN_DEATH_TAG 32 310 311 #ifdef lint 312 static int _lint_dummy_; 313 #endif 314 315 #if TCP_CLD_COUNTERS 316 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 317 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 318 #elif defined(lint) 319 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 320 #else 321 #define TCP_CLD_STAT(x) 322 #endif 323 324 #if TCP_DEBUG_COUNTER 325 #define TCP_DBGSTAT(tcps, x) \ 326 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 327 #define TCP_G_DBGSTAT(x) \ 328 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 329 #elif defined(lint) 330 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 331 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 332 #else 333 #define TCP_DBGSTAT(tcps, x) 334 #define TCP_G_DBGSTAT(x) 335 #endif 336 337 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 338 339 tcp_g_stat_t tcp_g_statistics; 340 kstat_t *tcp_g_kstat; 341 342 /* 343 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 344 * tcp write side. 345 */ 346 #define CALL_IP_WPUT(connp, q, mp) { \ 347 tcp_stack_t *tcps; \ 348 \ 349 tcps = connp->conn_netstack->netstack_tcp; \ 350 ASSERT(((q)->q_flag & QREADR) == 0); \ 351 TCP_DBGSTAT(tcps, tcp_ip_output); \ 352 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 353 } 354 355 /* Macros for timestamp comparisons */ 356 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 357 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 358 359 /* 360 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 361 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 362 * by adding three components: a time component which grows by 1 every 4096 363 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 364 * a per-connection component which grows by 125000 for every new connection; 365 * and an "extra" component that grows by a random amount centered 366 * approximately on 64000. This causes the the ISS generator to cycle every 367 * 4.89 hours if no TCP connections are made, and faster if connections are 368 * made. 369 * 370 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 371 * components: a time component which grows by 250000 every second; and 372 * a per-connection component which grows by 125000 for every new connections. 373 * 374 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 375 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 376 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 377 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 378 * password. 379 */ 380 #define ISS_INCR 250000 381 #define ISS_NSEC_SHT 12 382 383 static sin_t sin_null; /* Zero address for quick clears */ 384 static sin6_t sin6_null; /* Zero address for quick clears */ 385 386 /* 387 * This implementation follows the 4.3BSD interpretation of the urgent 388 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 389 * incompatible changes in protocols like telnet and rlogin. 390 */ 391 #define TCP_OLD_URP_INTERPRETATION 1 392 393 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 394 (TCP_IS_DETACHED(tcp) && \ 395 (!(tcp)->tcp_hard_binding)) 396 397 /* 398 * TCP reassembly macros. We hide starting and ending sequence numbers in 399 * b_next and b_prev of messages on the reassembly queue. The messages are 400 * chained using b_cont. These macros are used in tcp_reass() so we don't 401 * have to see the ugly casts and assignments. 402 */ 403 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 404 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 405 (mblk_t *)(uintptr_t)(u)) 406 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 407 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 408 (mblk_t *)(uintptr_t)(u)) 409 410 /* 411 * Implementation of TCP Timers. 412 * ============================= 413 * 414 * INTERFACE: 415 * 416 * There are two basic functions dealing with tcp timers: 417 * 418 * timeout_id_t tcp_timeout(connp, func, time) 419 * clock_t tcp_timeout_cancel(connp, timeout_id) 420 * TCP_TIMER_RESTART(tcp, intvl) 421 * 422 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 423 * after 'time' ticks passed. The function called by timeout() must adhere to 424 * the same restrictions as a driver soft interrupt handler - it must not sleep 425 * or call other functions that might sleep. The value returned is the opaque 426 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 427 * cancel the request. The call to tcp_timeout() may fail in which case it 428 * returns zero. This is different from the timeout(9F) function which never 429 * fails. 430 * 431 * The call-back function 'func' always receives 'connp' as its single 432 * argument. It is always executed in the squeue corresponding to the tcp 433 * structure. The tcp structure is guaranteed to be present at the time the 434 * call-back is called. 435 * 436 * NOTE: The call-back function 'func' is never called if tcp is in 437 * the TCPS_CLOSED state. 438 * 439 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 440 * request. locks acquired by the call-back routine should not be held across 441 * the call to tcp_timeout_cancel() or a deadlock may result. 442 * 443 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 444 * Otherwise, it returns an integer value greater than or equal to 0. In 445 * particular, if the call-back function is already placed on the squeue, it can 446 * not be canceled. 447 * 448 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 449 * within squeue context corresponding to the tcp instance. Since the 450 * call-back is also called via the same squeue, there are no race 451 * conditions described in untimeout(9F) manual page since all calls are 452 * strictly serialized. 453 * 454 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 455 * stored in tcp_timer_tid and starts a new one using 456 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 457 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 458 * field. 459 * 460 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 461 * call-back may still be called, so it is possible tcp_timer() will be 462 * called several times. This should not be a problem since tcp_timer() 463 * should always check the tcp instance state. 464 * 465 * 466 * IMPLEMENTATION: 467 * 468 * TCP timers are implemented using three-stage process. The call to 469 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 470 * when the timer expires. The tcp_timer_callback() arranges the call of the 471 * tcp_timer_handler() function via squeue corresponding to the tcp 472 * instance. The tcp_timer_handler() calls actual requested timeout call-back 473 * and passes tcp instance as an argument to it. Information is passed between 474 * stages using the tcp_timer_t structure which contains the connp pointer, the 475 * tcp call-back to call and the timeout id returned by the timeout(9F). 476 * 477 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 478 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 479 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 480 * returns the pointer to this mblk. 481 * 482 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 483 * looks like a normal mblk without actual dblk attached to it. 484 * 485 * To optimize performance each tcp instance holds a small cache of timer 486 * mblocks. In the current implementation it caches up to two timer mblocks per 487 * tcp instance. The cache is preserved over tcp frees and is only freed when 488 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 489 * timer processing happens on a corresponding squeue, the cache manipulation 490 * does not require any locks. Experiments show that majority of timer mblocks 491 * allocations are satisfied from the tcp cache and do not involve kmem calls. 492 * 493 * The tcp_timeout() places a refhold on the connp instance which guarantees 494 * that it will be present at the time the call-back function fires. The 495 * tcp_timer_handler() drops the reference after calling the call-back, so the 496 * call-back function does not need to manipulate the references explicitly. 497 */ 498 499 typedef struct tcp_timer_s { 500 conn_t *connp; 501 void (*tcpt_proc)(void *); 502 timeout_id_t tcpt_tid; 503 } tcp_timer_t; 504 505 static kmem_cache_t *tcp_timercache; 506 kmem_cache_t *tcp_sack_info_cache; 507 kmem_cache_t *tcp_iphc_cache; 508 509 /* 510 * For scalability, we must not run a timer for every TCP connection 511 * in TIME_WAIT state. To see why, consider (for time wait interval of 512 * 4 minutes): 513 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 514 * 515 * This list is ordered by time, so you need only delete from the head 516 * until you get to entries which aren't old enough to delete yet. 517 * The list consists of only the detached TIME_WAIT connections. 518 * 519 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 520 * becomes detached TIME_WAIT (either by changing the state and already 521 * being detached or the other way around). This means that the TIME_WAIT 522 * state can be extended (up to doubled) if the connection doesn't become 523 * detached for a long time. 524 * 525 * The list manipulations (including tcp_time_wait_next/prev) 526 * are protected by the tcp_time_wait_lock. The content of the 527 * detached TIME_WAIT connections is protected by the normal perimeters. 528 * 529 * This list is per squeue and squeues are shared across the tcp_stack_t's. 530 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 531 * and conn_netstack. 532 * The tcp_t's that are added to tcp_free_list are disassociated and 533 * have NULL tcp_tcps and conn_netstack pointers. 534 */ 535 typedef struct tcp_squeue_priv_s { 536 kmutex_t tcp_time_wait_lock; 537 timeout_id_t tcp_time_wait_tid; 538 tcp_t *tcp_time_wait_head; 539 tcp_t *tcp_time_wait_tail; 540 tcp_t *tcp_free_list; 541 uint_t tcp_free_list_cnt; 542 } tcp_squeue_priv_t; 543 544 /* 545 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 546 * Running it every 5 seconds seems to give the best results. 547 */ 548 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 549 550 /* 551 * To prevent memory hog, limit the number of entries in tcp_free_list 552 * to 1% of available memory / number of cpus 553 */ 554 uint_t tcp_free_list_max_cnt = 0; 555 556 #define TCP_XMIT_LOWATER 4096 557 #define TCP_XMIT_HIWATER 49152 558 #define TCP_RECV_LOWATER 2048 559 #define TCP_RECV_HIWATER 49152 560 561 /* 562 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 563 */ 564 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 565 566 #define TIDUSZ 4096 /* transport interface data unit size */ 567 568 /* 569 * Bind hash list size and has function. It has to be a power of 2 for 570 * hashing. 571 */ 572 #define TCP_BIND_FANOUT_SIZE 512 573 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 574 /* 575 * Size of listen and acceptor hash list. It has to be a power of 2 for 576 * hashing. 577 */ 578 #define TCP_FANOUT_SIZE 256 579 580 #ifdef _ILP32 581 #define TCP_ACCEPTOR_HASH(accid) \ 582 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 583 #else 584 #define TCP_ACCEPTOR_HASH(accid) \ 585 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 586 #endif /* _ILP32 */ 587 588 #define IP_ADDR_CACHE_SIZE 2048 589 #define IP_ADDR_CACHE_HASH(faddr) \ 590 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 591 592 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 593 #define TCP_HSP_HASH_SIZE 256 594 595 #define TCP_HSP_HASH(addr) \ 596 (((addr>>24) ^ (addr >>16) ^ \ 597 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 598 599 /* 600 * TCP options struct returned from tcp_parse_options. 601 */ 602 typedef struct tcp_opt_s { 603 uint32_t tcp_opt_mss; 604 uint32_t tcp_opt_wscale; 605 uint32_t tcp_opt_ts_val; 606 uint32_t tcp_opt_ts_ecr; 607 tcp_t *tcp; 608 } tcp_opt_t; 609 610 /* 611 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 612 */ 613 614 #ifdef _BIG_ENDIAN 615 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 616 (TCPOPT_TSTAMP << 8) | 10) 617 #else 618 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 619 (TCPOPT_NOP << 8) | TCPOPT_NOP) 620 #endif 621 622 /* 623 * Flags returned from tcp_parse_options. 624 */ 625 #define TCP_OPT_MSS_PRESENT 1 626 #define TCP_OPT_WSCALE_PRESENT 2 627 #define TCP_OPT_TSTAMP_PRESENT 4 628 #define TCP_OPT_SACK_OK_PRESENT 8 629 #define TCP_OPT_SACK_PRESENT 16 630 631 /* TCP option length */ 632 #define TCPOPT_NOP_LEN 1 633 #define TCPOPT_MAXSEG_LEN 4 634 #define TCPOPT_WS_LEN 3 635 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 636 #define TCPOPT_TSTAMP_LEN 10 637 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 638 #define TCPOPT_SACK_OK_LEN 2 639 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 640 #define TCPOPT_REAL_SACK_LEN 4 641 #define TCPOPT_MAX_SACK_LEN 36 642 #define TCPOPT_HEADER_LEN 2 643 644 /* TCP cwnd burst factor. */ 645 #define TCP_CWND_INFINITE 65535 646 #define TCP_CWND_SS 3 647 #define TCP_CWND_NORMAL 5 648 649 /* Maximum TCP initial cwin (start/restart). */ 650 #define TCP_MAX_INIT_CWND 8 651 652 /* 653 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 654 * either tcp_slow_start_initial or tcp_slow_start_after idle 655 * depending on the caller. If the upper layer has not used the 656 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 657 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 658 * If the upper layer has changed set the tcp_init_cwnd, just use 659 * it to calculate the tcp_cwnd. 660 */ 661 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 662 { \ 663 if ((tcp)->tcp_init_cwnd == 0) { \ 664 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 665 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 666 } else { \ 667 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 668 } \ 669 tcp->tcp_cwnd_cnt = 0; \ 670 } 671 672 /* TCP Timer control structure */ 673 typedef struct tcpt_s { 674 pfv_t tcpt_pfv; /* The routine we are to call */ 675 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 676 } tcpt_t; 677 678 /* Host Specific Parameter structure */ 679 typedef struct tcp_hsp { 680 struct tcp_hsp *tcp_hsp_next; 681 in6_addr_t tcp_hsp_addr_v6; 682 in6_addr_t tcp_hsp_subnet_v6; 683 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 684 int32_t tcp_hsp_sendspace; 685 int32_t tcp_hsp_recvspace; 686 int32_t tcp_hsp_tstamp; 687 } tcp_hsp_t; 688 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 689 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 690 691 /* 692 * Functions called directly via squeue having a prototype of edesc_t. 693 */ 694 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 695 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 696 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 697 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 698 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 699 void tcp_input(void *arg, mblk_t *mp, void *arg2); 700 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 701 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 702 void tcp_output(void *arg, mblk_t *mp, void *arg2); 703 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 704 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 705 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 706 707 708 /* Prototype for TCP functions */ 709 static void tcp_random_init(void); 710 int tcp_random(void); 711 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 712 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 713 tcp_t *eager); 714 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 715 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 716 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 717 boolean_t user_specified); 718 static void tcp_closei_local(tcp_t *tcp); 719 static void tcp_close_detached(tcp_t *tcp); 720 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 721 mblk_t *idmp, mblk_t **defermp); 722 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 723 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 724 in_port_t dstport, uint_t srcid); 725 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 726 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 727 uint32_t scope_id); 728 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 729 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 730 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 731 static char *tcp_display(tcp_t *tcp, char *, char); 732 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 733 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 734 static void tcp_eager_unlink(tcp_t *tcp); 735 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 736 int unixerr); 737 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 738 int tlierr, int unixerr); 739 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 740 cred_t *cr); 741 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 742 char *value, caddr_t cp, cred_t *cr); 743 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 744 char *value, caddr_t cp, cred_t *cr); 745 static int tcp_tpistate(tcp_t *tcp); 746 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 747 int caller_holds_lock); 748 static void tcp_bind_hash_remove(tcp_t *tcp); 749 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 750 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 751 static void tcp_acceptor_hash_remove(tcp_t *tcp); 752 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 753 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 754 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 755 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 756 void tcp_g_q_setup(tcp_stack_t *); 757 void tcp_g_q_create(tcp_stack_t *); 758 void tcp_g_q_destroy(tcp_stack_t *); 759 static int tcp_header_init_ipv4(tcp_t *tcp); 760 static int tcp_header_init_ipv6(tcp_t *tcp); 761 int tcp_init(tcp_t *tcp, queue_t *q); 762 static int tcp_init_values(tcp_t *tcp); 763 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 764 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 765 t_scalar_t addr_length); 766 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 767 static void tcp_ip_notify(tcp_t *tcp); 768 static mblk_t *tcp_ire_mp(mblk_t *mp); 769 static void tcp_iss_init(tcp_t *tcp); 770 static void tcp_keepalive_killer(void *arg); 771 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 772 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 773 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 774 int *do_disconnectp, int *t_errorp, int *sys_errorp); 775 static boolean_t tcp_allow_connopt_set(int level, int name); 776 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 777 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 778 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 779 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 780 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 781 mblk_t *mblk); 782 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 783 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 784 uchar_t *ptr, uint_t len); 785 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 786 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 787 tcp_stack_t *); 788 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 789 caddr_t cp, cred_t *cr); 790 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 791 caddr_t cp, cred_t *cr); 792 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 793 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 794 caddr_t cp, cred_t *cr); 795 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 796 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 797 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 798 static void tcp_reinit(tcp_t *tcp); 799 static void tcp_reinit_values(tcp_t *tcp); 800 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 801 tcp_t *thisstream, cred_t *cr); 802 803 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 804 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 805 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 806 static void tcp_ss_rexmit(tcp_t *tcp); 807 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 808 static void tcp_process_options(tcp_t *, tcph_t *); 809 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 810 static void tcp_rsrv(queue_t *q); 811 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 812 static int tcp_snmp_state(tcp_t *tcp); 813 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 814 cred_t *cr); 815 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 816 cred_t *cr); 817 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 818 cred_t *cr); 819 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 820 cred_t *cr); 821 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 822 cred_t *cr); 823 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 824 caddr_t cp, cred_t *cr); 825 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 826 caddr_t cp, cred_t *cr); 827 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 828 cred_t *cr); 829 static void tcp_timer(void *arg); 830 static void tcp_timer_callback(void *); 831 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 832 boolean_t random); 833 static in_port_t tcp_get_next_priv_port(const tcp_t *); 834 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 835 void tcp_wput_accept(queue_t *q, mblk_t *mp); 836 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 837 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 838 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 839 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 840 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 841 const int num_sack_blk, int *usable, uint_t *snxt, 842 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 843 const int mdt_thres); 844 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 845 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 846 const int num_sack_blk, int *usable, uint_t *snxt, 847 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 848 const int mdt_thres); 849 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 850 int num_sack_blk); 851 static void tcp_wsrv(queue_t *q); 852 static int tcp_xmit_end(tcp_t *tcp); 853 static void tcp_ack_timer(void *arg); 854 static mblk_t *tcp_ack_mp(tcp_t *tcp); 855 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 856 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 857 zoneid_t zoneid, tcp_stack_t *); 858 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 859 uint32_t ack, int ctl); 860 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 861 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 862 static int setmaxps(queue_t *q, int maxpsz); 863 static void tcp_set_rto(tcp_t *, time_t); 864 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 865 boolean_t, boolean_t); 866 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 867 boolean_t ipsec_mctl); 868 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 869 char *opt, int optlen); 870 static int tcp_build_hdrs(queue_t *, tcp_t *); 871 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 872 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 873 tcph_t *tcph); 874 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 875 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 876 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 877 boolean_t tcp_reserved_port_check(in_port_t, tcp_stack_t *); 878 static tcp_t *tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *); 879 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 880 static mblk_t *tcp_mdt_info_mp(mblk_t *); 881 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 882 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 883 const boolean_t, const uint32_t, const uint32_t, 884 const uint32_t, const uint32_t, tcp_stack_t *); 885 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 886 const uint_t, const uint_t, boolean_t *); 887 static mblk_t *tcp_lso_info_mp(mblk_t *); 888 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 889 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 890 extern mblk_t *tcp_timermp_alloc(int); 891 extern void tcp_timermp_free(tcp_t *); 892 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 893 static void tcp_stop_lingering(tcp_t *tcp); 894 static void tcp_close_linger_timeout(void *arg); 895 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 896 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 897 static void tcp_stack_fini(netstackid_t stackid, void *arg); 898 static void *tcp_g_kstat_init(tcp_g_stat_t *); 899 static void tcp_g_kstat_fini(kstat_t *); 900 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 901 static void tcp_kstat_fini(netstackid_t, kstat_t *); 902 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 903 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 904 static int tcp_kstat_update(kstat_t *kp, int rw); 905 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 906 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 907 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 908 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 909 tcph_t *tcph, mblk_t *idmp); 910 static squeue_func_t tcp_squeue_switch(int); 911 912 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 913 static int tcp_close(queue_t *, int); 914 static int tcpclose_accept(queue_t *); 915 static int tcp_modclose(queue_t *); 916 static void tcp_wput_mod(queue_t *, mblk_t *); 917 918 static void tcp_squeue_add(squeue_t *); 919 static boolean_t tcp_zcopy_check(tcp_t *); 920 static void tcp_zcopy_notify(tcp_t *); 921 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 922 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 923 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 924 925 extern void tcp_kssl_input(tcp_t *, mblk_t *); 926 927 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 928 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 929 930 /* 931 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 932 * 933 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 934 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 935 * (defined in tcp.h) needs to be filled in and passed into the kernel 936 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 937 * structure contains the four-tuple of a TCP connection and a range of TCP 938 * states (specified by ac_start and ac_end). The use of wildcard addresses 939 * and ports is allowed. Connections with a matching four tuple and a state 940 * within the specified range will be aborted. The valid states for the 941 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 942 * inclusive. 943 * 944 * An application which has its connection aborted by this ioctl will receive 945 * an error that is dependent on the connection state at the time of the abort. 946 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 947 * though a RST packet has been received. If the connection state is equal to 948 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 949 * and all resources associated with the connection will be freed. 950 */ 951 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 952 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 953 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 954 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 955 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 956 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 957 boolean_t, tcp_stack_t *); 958 959 static struct module_info tcp_rinfo = { 960 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 961 }; 962 963 static struct module_info tcp_winfo = { 964 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 965 }; 966 967 /* 968 * Entry points for TCP as a module. It only allows SNMP requests 969 * to pass through. 970 */ 971 struct qinit tcp_mod_rinit = { 972 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 973 }; 974 975 struct qinit tcp_mod_winit = { 976 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 977 &tcp_rinfo 978 }; 979 980 /* 981 * Entry points for TCP as a device. The normal case which supports 982 * the TCP functionality. 983 */ 984 struct qinit tcp_rinit = { 985 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 986 }; 987 988 struct qinit tcp_winit = { 989 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 990 }; 991 992 /* Initial entry point for TCP in socket mode. */ 993 struct qinit tcp_sock_winit = { 994 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 995 }; 996 997 /* 998 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 999 * an accept. Avoid allocating data structures since eager has already 1000 * been created. 1001 */ 1002 struct qinit tcp_acceptor_rinit = { 1003 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1004 }; 1005 1006 struct qinit tcp_acceptor_winit = { 1007 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1008 }; 1009 1010 /* 1011 * Entry points for TCP loopback (read side only) 1012 */ 1013 struct qinit tcp_loopback_rinit = { 1014 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1015 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1016 }; 1017 1018 struct streamtab tcpinfo = { 1019 &tcp_rinit, &tcp_winit 1020 }; 1021 1022 /* 1023 * Have to ensure that tcp_g_q_close is not done by an 1024 * interrupt thread. 1025 */ 1026 static taskq_t *tcp_taskq; 1027 1028 /* 1029 * TCP has a private interface for other kernel modules to reserve a 1030 * port range for them to use. Once reserved, TCP will not use any ports 1031 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1032 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1033 * has to be verified. 1034 * 1035 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1036 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1037 * range is [port a, port b] inclusive. And each port range is between 1038 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1039 * 1040 * Note that the default anonymous port range starts from 32768. There is 1041 * no port "collision" between that and the reserved port range. If there 1042 * is port collision (because the default smallest anonymous port is lowered 1043 * or some apps specifically bind to ports in the reserved port range), the 1044 * system may not be able to reserve a port range even there are enough 1045 * unbound ports as a reserved port range contains consecutive ports . 1046 */ 1047 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1048 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1049 #define TCP_SMALLEST_RESERVED_PORT 10240 1050 #define TCP_LARGEST_RESERVED_PORT 20480 1051 1052 /* Structure to represent those reserved port ranges. */ 1053 typedef struct tcp_rport_s { 1054 in_port_t lo_port; 1055 in_port_t hi_port; 1056 tcp_t **temp_tcp_array; 1057 } tcp_rport_t; 1058 1059 /* Setable only in /etc/system. Move to ndd? */ 1060 boolean_t tcp_icmp_source_quench = B_FALSE; 1061 1062 /* 1063 * Following assumes TPI alignment requirements stay along 32 bit 1064 * boundaries 1065 */ 1066 #define ROUNDUP32(x) \ 1067 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1068 1069 /* Template for response to info request. */ 1070 static struct T_info_ack tcp_g_t_info_ack = { 1071 T_INFO_ACK, /* PRIM_type */ 1072 0, /* TSDU_size */ 1073 T_INFINITE, /* ETSDU_size */ 1074 T_INVALID, /* CDATA_size */ 1075 T_INVALID, /* DDATA_size */ 1076 sizeof (sin_t), /* ADDR_size */ 1077 0, /* OPT_size - not initialized here */ 1078 TIDUSZ, /* TIDU_size */ 1079 T_COTS_ORD, /* SERV_type */ 1080 TCPS_IDLE, /* CURRENT_state */ 1081 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1082 }; 1083 1084 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1085 T_INFO_ACK, /* PRIM_type */ 1086 0, /* TSDU_size */ 1087 T_INFINITE, /* ETSDU_size */ 1088 T_INVALID, /* CDATA_size */ 1089 T_INVALID, /* DDATA_size */ 1090 sizeof (sin6_t), /* ADDR_size */ 1091 0, /* OPT_size - not initialized here */ 1092 TIDUSZ, /* TIDU_size */ 1093 T_COTS_ORD, /* SERV_type */ 1094 TCPS_IDLE, /* CURRENT_state */ 1095 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1096 }; 1097 1098 #define MS 1L 1099 #define SECONDS (1000 * MS) 1100 #define MINUTES (60 * SECONDS) 1101 #define HOURS (60 * MINUTES) 1102 #define DAYS (24 * HOURS) 1103 1104 #define PARAM_MAX (~(uint32_t)0) 1105 1106 /* Max size IP datagram is 64k - 1 */ 1107 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1108 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1109 /* Max of the above */ 1110 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1111 1112 /* Largest TCP port number */ 1113 #define TCP_MAX_PORT (64 * 1024 - 1) 1114 1115 /* 1116 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1117 * layer header. It has to be a multiple of 4. 1118 */ 1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1120 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1121 1122 /* 1123 * All of these are alterable, within the min/max values given, at run time. 1124 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1125 * per the TCP spec. 1126 */ 1127 /* BEGIN CSTYLED */ 1128 static tcpparam_t lcl_tcp_param_arr[] = { 1129 /*min max value name */ 1130 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1131 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1132 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1133 { 1, 1024, 1, "tcp_conn_req_min" }, 1134 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1135 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1136 { 0, 10, 0, "tcp_debug" }, 1137 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1138 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1139 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1140 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1141 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1142 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1143 { 1, 255, 64, "tcp_ipv4_ttl"}, 1144 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1145 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1146 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1147 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1148 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1149 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1150 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1151 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1152 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1153 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1154 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1155 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1156 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1157 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1158 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1159 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1160 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1161 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1162 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1163 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1164 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1165 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1166 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1167 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1168 /* 1169 * Question: What default value should I set for tcp_strong_iss? 1170 */ 1171 { 0, 2, 1, "tcp_strong_iss"}, 1172 { 0, 65536, 20, "tcp_rtt_updates"}, 1173 { 0, 1, 1, "tcp_wscale_always"}, 1174 { 0, 1, 0, "tcp_tstamp_always"}, 1175 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1176 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1177 { 0, 16, 2, "tcp_deferred_acks_max"}, 1178 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1179 { 1, 4, 4, "tcp_slow_start_initial"}, 1180 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1181 { 0, 2, 2, "tcp_sack_permitted"}, 1182 { 0, 1, 0, "tcp_trace"}, 1183 { 0, 1, 1, "tcp_compression_enabled"}, 1184 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1185 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1186 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1187 { 0, 1, 0, "tcp_rev_src_routes"}, 1188 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1189 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1190 { 0, 16, 8, "tcp_local_dacks_max"}, 1191 { 0, 2, 1, "tcp_ecn_permitted"}, 1192 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1193 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1194 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1195 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1196 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1197 }; 1198 /* END CSTYLED */ 1199 1200 /* 1201 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1202 * each header fragment in the header buffer. Each parameter value has 1203 * to be a multiple of 4 (32-bit aligned). 1204 */ 1205 static tcpparam_t lcl_tcp_mdt_head_param = 1206 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1207 static tcpparam_t lcl_tcp_mdt_tail_param = 1208 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1209 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1210 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1211 1212 /* 1213 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1214 * the maximum number of payload buffers associated per Multidata. 1215 */ 1216 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1217 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1218 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1219 1220 /* Round up the value to the nearest mss. */ 1221 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1222 1223 /* 1224 * Set ECN capable transport (ECT) code point in IP header. 1225 * 1226 * Note that there are 2 ECT code points '01' and '10', which are called 1227 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1228 * point ECT(0) for TCP as described in RFC 2481. 1229 */ 1230 #define SET_ECT(tcp, iph) \ 1231 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1232 /* We need to clear the code point first. */ \ 1233 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1234 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1235 } else { \ 1236 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1237 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1238 } 1239 1240 /* 1241 * The format argument to pass to tcp_display(). 1242 * DISP_PORT_ONLY means that the returned string has only port info. 1243 * DISP_ADDR_AND_PORT means that the returned string also contains the 1244 * remote and local IP address. 1245 */ 1246 #define DISP_PORT_ONLY 1 1247 #define DISP_ADDR_AND_PORT 2 1248 1249 #define NDD_TOO_QUICK_MSG \ 1250 "ndd get info rate too high for non-privileged users, try again " \ 1251 "later.\n" 1252 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1253 1254 #define IS_VMLOANED_MBLK(mp) \ 1255 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1256 1257 1258 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1259 boolean_t tcp_mdt_chain = B_TRUE; 1260 1261 /* 1262 * MDT threshold in the form of effective send MSS multiplier; we take 1263 * the MDT path if the amount of unsent data exceeds the threshold value 1264 * (default threshold is 1*SMSS). 1265 */ 1266 uint_t tcp_mdt_smss_threshold = 1; 1267 1268 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1269 1270 /* 1271 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1272 * tunable settable via NDD. Otherwise, the per-connection behavior is 1273 * determined dynamically during tcp_adapt_ire(), which is the default. 1274 */ 1275 boolean_t tcp_static_maxpsz = B_FALSE; 1276 1277 /* Setable in /etc/system */ 1278 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1279 uint32_t tcp_random_anon_port = 1; 1280 1281 /* 1282 * To reach to an eager in Q0 which can be dropped due to an incoming 1283 * new SYN request when Q0 is full, a new doubly linked list is 1284 * introduced. This list allows to select an eager from Q0 in O(1) time. 1285 * This is needed to avoid spending too much time walking through the 1286 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1287 * this new list has to be a member of Q0. 1288 * This list is headed by listener's tcp_t. When the list is empty, 1289 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1290 * of listener's tcp_t point to listener's tcp_t itself. 1291 * 1292 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1293 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1294 * These macros do not affect the eager's membership to Q0. 1295 */ 1296 1297 1298 #define MAKE_DROPPABLE(listener, eager) \ 1299 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1300 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1301 = (eager); \ 1302 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1303 (eager)->tcp_eager_next_drop_q0 = \ 1304 (listener)->tcp_eager_next_drop_q0; \ 1305 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1306 } 1307 1308 #define MAKE_UNDROPPABLE(eager) \ 1309 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1310 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1311 = (eager)->tcp_eager_prev_drop_q0; \ 1312 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1313 = (eager)->tcp_eager_next_drop_q0; \ 1314 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1315 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1316 } 1317 1318 /* 1319 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1320 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1321 * data, TCP will not respond with an ACK. RFC 793 requires that 1322 * TCP responds with an ACK for such a bogus ACK. By not following 1323 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1324 * an attacker successfully spoofs an acceptable segment to our 1325 * peer; or when our peer is "confused." 1326 */ 1327 uint32_t tcp_drop_ack_unsent_cnt = 10; 1328 1329 /* 1330 * Hook functions to enable cluster networking 1331 * On non-clustered systems these vectors must always be NULL. 1332 */ 1333 1334 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1335 uint8_t *laddrp, in_port_t lport) = NULL; 1336 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1337 uint8_t *laddrp, in_port_t lport) = NULL; 1338 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1339 uint8_t *laddrp, in_port_t lport, 1340 uint8_t *faddrp, in_port_t fport) = NULL; 1341 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1342 uint8_t *laddrp, in_port_t lport, 1343 uint8_t *faddrp, in_port_t fport) = NULL; 1344 1345 /* 1346 * The following are defined in ip.c 1347 */ 1348 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1349 uint8_t *laddrp); 1350 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1351 uint8_t *laddrp, uint8_t *faddrp); 1352 1353 #define CL_INET_CONNECT(tcp) { \ 1354 if (cl_inet_connect != NULL) { \ 1355 /* \ 1356 * Running in cluster mode - register active connection \ 1357 * information \ 1358 */ \ 1359 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1360 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1361 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1362 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1363 (in_port_t)(tcp)->tcp_lport, \ 1364 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1365 (in_port_t)(tcp)->tcp_fport); \ 1366 } \ 1367 } else { \ 1368 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1369 &(tcp)->tcp_ip6h->ip6_src)) {\ 1370 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1371 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1372 (in_port_t)(tcp)->tcp_lport, \ 1373 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1374 (in_port_t)(tcp)->tcp_fport); \ 1375 } \ 1376 } \ 1377 } \ 1378 } 1379 1380 #define CL_INET_DISCONNECT(tcp) { \ 1381 if (cl_inet_disconnect != NULL) { \ 1382 /* \ 1383 * Running in cluster mode - deregister active \ 1384 * connection information \ 1385 */ \ 1386 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1387 if ((tcp)->tcp_ip_src != 0) { \ 1388 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1389 AF_INET, \ 1390 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1391 (in_port_t)(tcp)->tcp_lport, \ 1392 (uint8_t *) \ 1393 (&((tcp)->tcp_ipha->ipha_dst)),\ 1394 (in_port_t)(tcp)->tcp_fport); \ 1395 } \ 1396 } else { \ 1397 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1398 &(tcp)->tcp_ip_src_v6)) { \ 1399 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1400 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1401 (in_port_t)(tcp)->tcp_lport, \ 1402 (uint8_t *) \ 1403 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1404 (in_port_t)(tcp)->tcp_fport); \ 1405 } \ 1406 } \ 1407 } \ 1408 } 1409 1410 /* 1411 * Cluster networking hook for traversing current connection list. 1412 * This routine is used to extract the current list of live connections 1413 * which must continue to to be dispatched to this node. 1414 */ 1415 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1416 1417 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1418 void *arg, tcp_stack_t *tcps); 1419 1420 /* 1421 * Figure out the value of window scale opton. Note that the rwnd is 1422 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1423 * We cannot find the scale value and then do a round up of tcp_rwnd 1424 * because the scale value may not be correct after that. 1425 * 1426 * Set the compiler flag to make this function inline. 1427 */ 1428 static void 1429 tcp_set_ws_value(tcp_t *tcp) 1430 { 1431 int i; 1432 uint32_t rwnd = tcp->tcp_rwnd; 1433 1434 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1435 i++, rwnd >>= 1) 1436 ; 1437 tcp->tcp_rcv_ws = i; 1438 } 1439 1440 /* 1441 * Remove a connection from the list of detached TIME_WAIT connections. 1442 * It returns B_FALSE if it can't remove the connection from the list 1443 * as the connection has already been removed from the list due to an 1444 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1445 */ 1446 static boolean_t 1447 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1448 { 1449 boolean_t locked = B_FALSE; 1450 1451 if (tcp_time_wait == NULL) { 1452 tcp_time_wait = *((tcp_squeue_priv_t **) 1453 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1454 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1455 locked = B_TRUE; 1456 } else { 1457 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1458 } 1459 1460 if (tcp->tcp_time_wait_expire == 0) { 1461 ASSERT(tcp->tcp_time_wait_next == NULL); 1462 ASSERT(tcp->tcp_time_wait_prev == NULL); 1463 if (locked) 1464 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1465 return (B_FALSE); 1466 } 1467 ASSERT(TCP_IS_DETACHED(tcp)); 1468 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1469 1470 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1471 ASSERT(tcp->tcp_time_wait_prev == NULL); 1472 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1473 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1474 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1475 NULL; 1476 } else { 1477 tcp_time_wait->tcp_time_wait_tail = NULL; 1478 } 1479 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1480 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1481 ASSERT(tcp->tcp_time_wait_next == NULL); 1482 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1483 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1484 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1485 } else { 1486 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1487 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1488 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1489 tcp->tcp_time_wait_next; 1490 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1491 tcp->tcp_time_wait_prev; 1492 } 1493 tcp->tcp_time_wait_next = NULL; 1494 tcp->tcp_time_wait_prev = NULL; 1495 tcp->tcp_time_wait_expire = 0; 1496 1497 if (locked) 1498 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1499 return (B_TRUE); 1500 } 1501 1502 /* 1503 * Add a connection to the list of detached TIME_WAIT connections 1504 * and set its time to expire. 1505 */ 1506 static void 1507 tcp_time_wait_append(tcp_t *tcp) 1508 { 1509 tcp_stack_t *tcps = tcp->tcp_tcps; 1510 tcp_squeue_priv_t *tcp_time_wait = 1511 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1512 SQPRIVATE_TCP)); 1513 1514 tcp_timers_stop(tcp); 1515 1516 /* Freed above */ 1517 ASSERT(tcp->tcp_timer_tid == 0); 1518 ASSERT(tcp->tcp_ack_tid == 0); 1519 1520 /* must have happened at the time of detaching the tcp */ 1521 ASSERT(tcp->tcp_ptpahn == NULL); 1522 ASSERT(tcp->tcp_flow_stopped == 0); 1523 ASSERT(tcp->tcp_time_wait_next == NULL); 1524 ASSERT(tcp->tcp_time_wait_prev == NULL); 1525 ASSERT(tcp->tcp_time_wait_expire == NULL); 1526 ASSERT(tcp->tcp_listener == NULL); 1527 1528 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1529 /* 1530 * The value computed below in tcp->tcp_time_wait_expire may 1531 * appear negative or wrap around. That is ok since our 1532 * interest is only in the difference between the current lbolt 1533 * value and tcp->tcp_time_wait_expire. But the value should not 1534 * be zero, since it means the tcp is not in the TIME_WAIT list. 1535 * The corresponding comparison in tcp_time_wait_collector() uses 1536 * modular arithmetic. 1537 */ 1538 tcp->tcp_time_wait_expire += 1539 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1540 if (tcp->tcp_time_wait_expire == 0) 1541 tcp->tcp_time_wait_expire = 1; 1542 1543 ASSERT(TCP_IS_DETACHED(tcp)); 1544 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1545 ASSERT(tcp->tcp_time_wait_next == NULL); 1546 ASSERT(tcp->tcp_time_wait_prev == NULL); 1547 TCP_DBGSTAT(tcps, tcp_time_wait); 1548 1549 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1550 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1551 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1552 tcp_time_wait->tcp_time_wait_head = tcp; 1553 } else { 1554 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1555 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1556 TCPS_TIME_WAIT); 1557 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1558 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1559 } 1560 tcp_time_wait->tcp_time_wait_tail = tcp; 1561 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1562 } 1563 1564 /* ARGSUSED */ 1565 void 1566 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1567 { 1568 conn_t *connp = (conn_t *)arg; 1569 tcp_t *tcp = connp->conn_tcp; 1570 tcp_stack_t *tcps = tcp->tcp_tcps; 1571 1572 ASSERT(tcp != NULL); 1573 if (tcp->tcp_state == TCPS_CLOSED) { 1574 return; 1575 } 1576 1577 ASSERT((tcp->tcp_family == AF_INET && 1578 tcp->tcp_ipversion == IPV4_VERSION) || 1579 (tcp->tcp_family == AF_INET6 && 1580 (tcp->tcp_ipversion == IPV4_VERSION || 1581 tcp->tcp_ipversion == IPV6_VERSION))); 1582 ASSERT(!tcp->tcp_listener); 1583 1584 TCP_STAT(tcps, tcp_time_wait_reap); 1585 ASSERT(TCP_IS_DETACHED(tcp)); 1586 1587 /* 1588 * Because they have no upstream client to rebind or tcp_close() 1589 * them later, we axe the connection here and now. 1590 */ 1591 tcp_close_detached(tcp); 1592 } 1593 1594 /* 1595 * Remove cached/latched IPsec references. 1596 */ 1597 void 1598 tcp_ipsec_cleanup(tcp_t *tcp) 1599 { 1600 conn_t *connp = tcp->tcp_connp; 1601 1602 if (connp->conn_flags & IPCL_TCPCONN) { 1603 if (connp->conn_latch != NULL) { 1604 IPLATCH_REFRELE(connp->conn_latch, 1605 connp->conn_netstack); 1606 connp->conn_latch = NULL; 1607 } 1608 if (connp->conn_policy != NULL) { 1609 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1610 connp->conn_policy = NULL; 1611 } 1612 } 1613 } 1614 1615 /* 1616 * Cleaup before placing on free list. 1617 * Disassociate from the netstack/tcp_stack_t since the freelist 1618 * is per squeue and not per netstack. 1619 */ 1620 void 1621 tcp_cleanup(tcp_t *tcp) 1622 { 1623 mblk_t *mp; 1624 char *tcp_iphc; 1625 int tcp_iphc_len; 1626 int tcp_hdr_grown; 1627 tcp_sack_info_t *tcp_sack_info; 1628 conn_t *connp = tcp->tcp_connp; 1629 tcp_stack_t *tcps = tcp->tcp_tcps; 1630 netstack_t *ns = tcps->tcps_netstack; 1631 1632 tcp_bind_hash_remove(tcp); 1633 1634 /* Cleanup that which needs the netstack first */ 1635 tcp_ipsec_cleanup(tcp); 1636 1637 tcp_free(tcp); 1638 1639 /* Release any SSL context */ 1640 if (tcp->tcp_kssl_ent != NULL) { 1641 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1642 tcp->tcp_kssl_ent = NULL; 1643 } 1644 1645 if (tcp->tcp_kssl_ctx != NULL) { 1646 kssl_release_ctx(tcp->tcp_kssl_ctx); 1647 tcp->tcp_kssl_ctx = NULL; 1648 } 1649 tcp->tcp_kssl_pending = B_FALSE; 1650 1651 conn_delete_ire(connp, NULL); 1652 1653 /* 1654 * Since we will bzero the entire structure, we need to 1655 * remove it and reinsert it in global hash list. We 1656 * know the walkers can't get to this conn because we 1657 * had set CONDEMNED flag earlier and checked reference 1658 * under conn_lock so walker won't pick it and when we 1659 * go the ipcl_globalhash_remove() below, no walker 1660 * can get to it. 1661 */ 1662 ipcl_globalhash_remove(connp); 1663 1664 /* 1665 * Now it is safe to decrement the reference counts. 1666 * This might be the last reference on the netstack and TCPS 1667 * in which case it will cause the tcp_g_q_close and 1668 * the freeing of the IP Instance. 1669 */ 1670 connp->conn_netstack = NULL; 1671 netstack_rele(ns); 1672 ASSERT(tcps != NULL); 1673 tcp->tcp_tcps = NULL; 1674 TCPS_REFRELE(tcps); 1675 1676 /* Save some state */ 1677 mp = tcp->tcp_timercache; 1678 1679 tcp_sack_info = tcp->tcp_sack_info; 1680 tcp_iphc = tcp->tcp_iphc; 1681 tcp_iphc_len = tcp->tcp_iphc_len; 1682 tcp_hdr_grown = tcp->tcp_hdr_grown; 1683 1684 if (connp->conn_cred != NULL) 1685 crfree(connp->conn_cred); 1686 if (connp->conn_peercred != NULL) 1687 crfree(connp->conn_peercred); 1688 bzero(connp, sizeof (conn_t)); 1689 bzero(tcp, sizeof (tcp_t)); 1690 1691 /* restore the state */ 1692 tcp->tcp_timercache = mp; 1693 1694 tcp->tcp_sack_info = tcp_sack_info; 1695 tcp->tcp_iphc = tcp_iphc; 1696 tcp->tcp_iphc_len = tcp_iphc_len; 1697 tcp->tcp_hdr_grown = tcp_hdr_grown; 1698 1699 1700 tcp->tcp_connp = connp; 1701 1702 connp->conn_tcp = tcp; 1703 connp->conn_flags = IPCL_TCPCONN; 1704 connp->conn_state_flags = CONN_INCIPIENT; 1705 connp->conn_ulp = IPPROTO_TCP; 1706 connp->conn_ref = 1; 1707 } 1708 1709 /* 1710 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1711 * is done forwards from the head. 1712 * This walks all stack instances since 1713 * tcp_time_wait remains global across all stacks. 1714 */ 1715 /* ARGSUSED */ 1716 void 1717 tcp_time_wait_collector(void *arg) 1718 { 1719 tcp_t *tcp; 1720 clock_t now; 1721 mblk_t *mp; 1722 conn_t *connp; 1723 kmutex_t *lock; 1724 boolean_t removed; 1725 1726 squeue_t *sqp = (squeue_t *)arg; 1727 tcp_squeue_priv_t *tcp_time_wait = 1728 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1729 1730 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1731 tcp_time_wait->tcp_time_wait_tid = 0; 1732 1733 if (tcp_time_wait->tcp_free_list != NULL && 1734 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1735 TCP_G_STAT(tcp_freelist_cleanup); 1736 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1737 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1738 tcp->tcp_time_wait_next = NULL; 1739 tcp_time_wait->tcp_free_list_cnt--; 1740 ASSERT(tcp->tcp_tcps == NULL); 1741 CONN_DEC_REF(tcp->tcp_connp); 1742 } 1743 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1744 } 1745 1746 /* 1747 * In order to reap time waits reliably, we should use a 1748 * source of time that is not adjustable by the user -- hence 1749 * the call to ddi_get_lbolt(). 1750 */ 1751 now = ddi_get_lbolt(); 1752 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1753 /* 1754 * Compare times using modular arithmetic, since 1755 * lbolt can wrapover. 1756 */ 1757 if ((now - tcp->tcp_time_wait_expire) < 0) { 1758 break; 1759 } 1760 1761 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1762 ASSERT(removed); 1763 1764 connp = tcp->tcp_connp; 1765 ASSERT(connp->conn_fanout != NULL); 1766 lock = &connp->conn_fanout->connf_lock; 1767 /* 1768 * This is essentially a TW reclaim fast path optimization for 1769 * performance where the timewait collector checks under the 1770 * fanout lock (so that no one else can get access to the 1771 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1772 * the classifier hash list. If ref count is indeed 2, we can 1773 * just remove the conn under the fanout lock and avoid 1774 * cleaning up the conn under the squeue, provided that 1775 * clustering callbacks are not enabled. If clustering is 1776 * enabled, we need to make the clustering callback before 1777 * setting the CONDEMNED flag and after dropping all locks and 1778 * so we forego this optimization and fall back to the slow 1779 * path. Also please see the comments in tcp_closei_local 1780 * regarding the refcnt logic. 1781 * 1782 * Since we are holding the tcp_time_wait_lock, its better 1783 * not to block on the fanout_lock because other connections 1784 * can't add themselves to time_wait list. So we do a 1785 * tryenter instead of mutex_enter. 1786 */ 1787 if (mutex_tryenter(lock)) { 1788 mutex_enter(&connp->conn_lock); 1789 if ((connp->conn_ref == 2) && 1790 (cl_inet_disconnect == NULL)) { 1791 ipcl_hash_remove_locked(connp, 1792 connp->conn_fanout); 1793 /* 1794 * Set the CONDEMNED flag now itself so that 1795 * the refcnt cannot increase due to any 1796 * walker. But we have still not cleaned up 1797 * conn_ire_cache. This is still ok since 1798 * we are going to clean it up in tcp_cleanup 1799 * immediately and any interface unplumb 1800 * thread will wait till the ire is blown away 1801 */ 1802 connp->conn_state_flags |= CONN_CONDEMNED; 1803 mutex_exit(lock); 1804 mutex_exit(&connp->conn_lock); 1805 if (tcp_time_wait->tcp_free_list_cnt < 1806 tcp_free_list_max_cnt) { 1807 /* Add to head of tcp_free_list */ 1808 mutex_exit( 1809 &tcp_time_wait->tcp_time_wait_lock); 1810 tcp_cleanup(tcp); 1811 ASSERT(connp->conn_latch == NULL); 1812 ASSERT(connp->conn_policy == NULL); 1813 ASSERT(tcp->tcp_tcps == NULL); 1814 ASSERT(connp->conn_netstack == NULL); 1815 1816 mutex_enter( 1817 &tcp_time_wait->tcp_time_wait_lock); 1818 tcp->tcp_time_wait_next = 1819 tcp_time_wait->tcp_free_list; 1820 tcp_time_wait->tcp_free_list = tcp; 1821 tcp_time_wait->tcp_free_list_cnt++; 1822 continue; 1823 } else { 1824 /* Do not add to tcp_free_list */ 1825 mutex_exit( 1826 &tcp_time_wait->tcp_time_wait_lock); 1827 tcp_bind_hash_remove(tcp); 1828 conn_delete_ire(tcp->tcp_connp, NULL); 1829 tcp_ipsec_cleanup(tcp); 1830 CONN_DEC_REF(tcp->tcp_connp); 1831 } 1832 } else { 1833 CONN_INC_REF_LOCKED(connp); 1834 mutex_exit(lock); 1835 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1836 mutex_exit(&connp->conn_lock); 1837 /* 1838 * We can reuse the closemp here since conn has 1839 * detached (otherwise we wouldn't even be in 1840 * time_wait list). tcp_closemp_used can safely 1841 * be changed without taking a lock as no other 1842 * thread can concurrently access it at this 1843 * point in the connection lifecycle. 1844 */ 1845 1846 if (tcp->tcp_closemp.b_prev == NULL) 1847 tcp->tcp_closemp_used = B_TRUE; 1848 else 1849 cmn_err(CE_PANIC, 1850 "tcp_timewait_collector: " 1851 "concurrent use of tcp_closemp: " 1852 "connp %p tcp %p\n", (void *)connp, 1853 (void *)tcp); 1854 1855 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1856 mp = &tcp->tcp_closemp; 1857 squeue_fill(connp->conn_sqp, mp, 1858 tcp_timewait_output, connp, 1859 SQTAG_TCP_TIMEWAIT); 1860 } 1861 } else { 1862 mutex_enter(&connp->conn_lock); 1863 CONN_INC_REF_LOCKED(connp); 1864 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1865 mutex_exit(&connp->conn_lock); 1866 /* 1867 * We can reuse the closemp here since conn has 1868 * detached (otherwise we wouldn't even be in 1869 * time_wait list). tcp_closemp_used can safely 1870 * be changed without taking a lock as no other 1871 * thread can concurrently access it at this 1872 * point in the connection lifecycle. 1873 */ 1874 1875 if (tcp->tcp_closemp.b_prev == NULL) 1876 tcp->tcp_closemp_used = B_TRUE; 1877 else 1878 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1879 "concurrent use of tcp_closemp: " 1880 "connp %p tcp %p\n", (void *)connp, 1881 (void *)tcp); 1882 1883 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1884 mp = &tcp->tcp_closemp; 1885 squeue_fill(connp->conn_sqp, mp, 1886 tcp_timewait_output, connp, 0); 1887 } 1888 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1889 } 1890 1891 if (tcp_time_wait->tcp_free_list != NULL) 1892 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1893 1894 tcp_time_wait->tcp_time_wait_tid = 1895 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1896 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1897 } 1898 /* 1899 * Reply to a clients T_CONN_RES TPI message. This function 1900 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1901 * on the acceptor STREAM and processed in tcp_wput_accept(). 1902 * Read the block comment on top of tcp_conn_request(). 1903 */ 1904 static void 1905 tcp_accept(tcp_t *listener, mblk_t *mp) 1906 { 1907 tcp_t *acceptor; 1908 tcp_t *eager; 1909 tcp_t *tcp; 1910 struct T_conn_res *tcr; 1911 t_uscalar_t acceptor_id; 1912 t_scalar_t seqnum; 1913 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1914 mblk_t *ok_mp; 1915 mblk_t *mp1; 1916 tcp_stack_t *tcps = listener->tcp_tcps; 1917 1918 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1919 tcp_err_ack(listener, mp, TPROTO, 0); 1920 return; 1921 } 1922 tcr = (struct T_conn_res *)mp->b_rptr; 1923 1924 /* 1925 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1926 * read side queue of the streams device underneath us i.e. the 1927 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1928 * look it up in the queue_hash. Under LP64 it sends down the 1929 * minor_t of the accepting endpoint. 1930 * 1931 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1932 * fanout hash lock is held. 1933 * This prevents any thread from entering the acceptor queue from 1934 * below (since it has not been hard bound yet i.e. any inbound 1935 * packets will arrive on the listener or default tcp queue and 1936 * go through tcp_lookup). 1937 * The CONN_INC_REF will prevent the acceptor from closing. 1938 * 1939 * XXX It is still possible for a tli application to send down data 1940 * on the accepting stream while another thread calls t_accept. 1941 * This should not be a problem for well-behaved applications since 1942 * the T_OK_ACK is sent after the queue swapping is completed. 1943 * 1944 * If the accepting fd is the same as the listening fd, avoid 1945 * queue hash lookup since that will return an eager listener in a 1946 * already established state. 1947 */ 1948 acceptor_id = tcr->ACCEPTOR_id; 1949 mutex_enter(&listener->tcp_eager_lock); 1950 if (listener->tcp_acceptor_id == acceptor_id) { 1951 eager = listener->tcp_eager_next_q; 1952 /* only count how many T_CONN_INDs so don't count q0 */ 1953 if ((listener->tcp_conn_req_cnt_q != 1) || 1954 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1955 mutex_exit(&listener->tcp_eager_lock); 1956 tcp_err_ack(listener, mp, TBADF, 0); 1957 return; 1958 } 1959 if (listener->tcp_conn_req_cnt_q0 != 0) { 1960 /* Throw away all the eagers on q0. */ 1961 tcp_eager_cleanup(listener, 1); 1962 } 1963 if (listener->tcp_syn_defense) { 1964 listener->tcp_syn_defense = B_FALSE; 1965 if (listener->tcp_ip_addr_cache != NULL) { 1966 kmem_free(listener->tcp_ip_addr_cache, 1967 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1968 listener->tcp_ip_addr_cache = NULL; 1969 } 1970 } 1971 /* 1972 * Transfer tcp_conn_req_max to the eager so that when 1973 * a disconnect occurs we can revert the endpoint to the 1974 * listen state. 1975 */ 1976 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1977 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1978 /* 1979 * Get a reference on the acceptor just like the 1980 * tcp_acceptor_hash_lookup below. 1981 */ 1982 acceptor = listener; 1983 CONN_INC_REF(acceptor->tcp_connp); 1984 } else { 1985 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1986 if (acceptor == NULL) { 1987 if (listener->tcp_debug) { 1988 (void) strlog(TCP_MOD_ID, 0, 1, 1989 SL_ERROR|SL_TRACE, 1990 "tcp_accept: did not find acceptor 0x%x\n", 1991 acceptor_id); 1992 } 1993 mutex_exit(&listener->tcp_eager_lock); 1994 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1995 return; 1996 } 1997 /* 1998 * Verify acceptor state. The acceptable states for an acceptor 1999 * include TCPS_IDLE and TCPS_BOUND. 2000 */ 2001 switch (acceptor->tcp_state) { 2002 case TCPS_IDLE: 2003 /* FALLTHRU */ 2004 case TCPS_BOUND: 2005 break; 2006 default: 2007 CONN_DEC_REF(acceptor->tcp_connp); 2008 mutex_exit(&listener->tcp_eager_lock); 2009 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2010 return; 2011 } 2012 } 2013 2014 /* The listener must be in TCPS_LISTEN */ 2015 if (listener->tcp_state != TCPS_LISTEN) { 2016 CONN_DEC_REF(acceptor->tcp_connp); 2017 mutex_exit(&listener->tcp_eager_lock); 2018 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2019 return; 2020 } 2021 2022 /* 2023 * Rendezvous with an eager connection request packet hanging off 2024 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2025 * tcp structure when the connection packet arrived in 2026 * tcp_conn_request(). 2027 */ 2028 seqnum = tcr->SEQ_number; 2029 eager = listener; 2030 do { 2031 eager = eager->tcp_eager_next_q; 2032 if (eager == NULL) { 2033 CONN_DEC_REF(acceptor->tcp_connp); 2034 mutex_exit(&listener->tcp_eager_lock); 2035 tcp_err_ack(listener, mp, TBADSEQ, 0); 2036 return; 2037 } 2038 } while (eager->tcp_conn_req_seqnum != seqnum); 2039 mutex_exit(&listener->tcp_eager_lock); 2040 2041 /* 2042 * At this point, both acceptor and listener have 2 ref 2043 * that they begin with. Acceptor has one additional ref 2044 * we placed in lookup while listener has 3 additional 2045 * ref for being behind the squeue (tcp_accept() is 2046 * done on listener's squeue); being in classifier hash; 2047 * and eager's ref on listener. 2048 */ 2049 ASSERT(listener->tcp_connp->conn_ref >= 5); 2050 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2051 2052 /* 2053 * The eager at this point is set in its own squeue and 2054 * could easily have been killed (tcp_accept_finish will 2055 * deal with that) because of a TH_RST so we can only 2056 * ASSERT for a single ref. 2057 */ 2058 ASSERT(eager->tcp_connp->conn_ref >= 1); 2059 2060 /* Pre allocate the stroptions mblk also */ 2061 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2062 if (opt_mp == NULL) { 2063 CONN_DEC_REF(acceptor->tcp_connp); 2064 CONN_DEC_REF(eager->tcp_connp); 2065 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2066 return; 2067 } 2068 DB_TYPE(opt_mp) = M_SETOPTS; 2069 opt_mp->b_wptr += sizeof (struct stroptions); 2070 2071 /* 2072 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2073 * from listener to acceptor. The message is chained on opt_mp 2074 * which will be sent onto eager's squeue. 2075 */ 2076 if (listener->tcp_bound_if != 0) { 2077 /* allocate optmgmt req */ 2078 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2079 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2080 sizeof (int)); 2081 if (mp1 != NULL) 2082 linkb(opt_mp, mp1); 2083 } 2084 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2085 uint_t on = 1; 2086 2087 /* allocate optmgmt req */ 2088 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2089 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2090 if (mp1 != NULL) 2091 linkb(opt_mp, mp1); 2092 } 2093 2094 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2095 if ((mp1 = copymsg(mp)) == NULL) { 2096 CONN_DEC_REF(acceptor->tcp_connp); 2097 CONN_DEC_REF(eager->tcp_connp); 2098 freemsg(opt_mp); 2099 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2100 return; 2101 } 2102 2103 tcr = (struct T_conn_res *)mp1->b_rptr; 2104 2105 /* 2106 * This is an expanded version of mi_tpi_ok_ack_alloc() 2107 * which allocates a larger mblk and appends the new 2108 * local address to the ok_ack. The address is copied by 2109 * soaccept() for getsockname(). 2110 */ 2111 { 2112 int extra; 2113 2114 extra = (eager->tcp_family == AF_INET) ? 2115 sizeof (sin_t) : sizeof (sin6_t); 2116 2117 /* 2118 * Try to re-use mp, if possible. Otherwise, allocate 2119 * an mblk and return it as ok_mp. In any case, mp 2120 * is no longer usable upon return. 2121 */ 2122 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2123 CONN_DEC_REF(acceptor->tcp_connp); 2124 CONN_DEC_REF(eager->tcp_connp); 2125 freemsg(opt_mp); 2126 /* Original mp has been freed by now, so use mp1 */ 2127 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2128 return; 2129 } 2130 2131 mp = NULL; /* We should never use mp after this point */ 2132 2133 switch (extra) { 2134 case sizeof (sin_t): { 2135 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2136 2137 ok_mp->b_wptr += extra; 2138 sin->sin_family = AF_INET; 2139 sin->sin_port = eager->tcp_lport; 2140 sin->sin_addr.s_addr = 2141 eager->tcp_ipha->ipha_src; 2142 break; 2143 } 2144 case sizeof (sin6_t): { 2145 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2146 2147 ok_mp->b_wptr += extra; 2148 sin6->sin6_family = AF_INET6; 2149 sin6->sin6_port = eager->tcp_lport; 2150 if (eager->tcp_ipversion == IPV4_VERSION) { 2151 sin6->sin6_flowinfo = 0; 2152 IN6_IPADDR_TO_V4MAPPED( 2153 eager->tcp_ipha->ipha_src, 2154 &sin6->sin6_addr); 2155 } else { 2156 ASSERT(eager->tcp_ip6h != NULL); 2157 sin6->sin6_flowinfo = 2158 eager->tcp_ip6h->ip6_vcf & 2159 ~IPV6_VERS_AND_FLOW_MASK; 2160 sin6->sin6_addr = 2161 eager->tcp_ip6h->ip6_src; 2162 } 2163 break; 2164 } 2165 default: 2166 break; 2167 } 2168 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2169 } 2170 2171 /* 2172 * If there are no options we know that the T_CONN_RES will 2173 * succeed. However, we can't send the T_OK_ACK upstream until 2174 * the tcp_accept_swap is done since it would be dangerous to 2175 * let the application start using the new fd prior to the swap. 2176 */ 2177 tcp_accept_swap(listener, acceptor, eager); 2178 2179 /* 2180 * tcp_accept_swap unlinks eager from listener but does not drop 2181 * the eager's reference on the listener. 2182 */ 2183 ASSERT(eager->tcp_listener == NULL); 2184 ASSERT(listener->tcp_connp->conn_ref >= 5); 2185 2186 /* 2187 * The eager is now associated with its own queue. Insert in 2188 * the hash so that the connection can be reused for a future 2189 * T_CONN_RES. 2190 */ 2191 tcp_acceptor_hash_insert(acceptor_id, eager); 2192 2193 /* 2194 * We now do the processing of options with T_CONN_RES. 2195 * We delay till now since we wanted to have queue to pass to 2196 * option processing routines that points back to the right 2197 * instance structure which does not happen until after 2198 * tcp_accept_swap(). 2199 * 2200 * Note: 2201 * The sanity of the logic here assumes that whatever options 2202 * are appropriate to inherit from listner=>eager are done 2203 * before this point, and whatever were to be overridden (or not) 2204 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2205 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2206 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2207 * This may not be true at this point in time but can be fixed 2208 * independently. This option processing code starts with 2209 * the instantiated acceptor instance and the final queue at 2210 * this point. 2211 */ 2212 2213 if (tcr->OPT_length != 0) { 2214 /* Options to process */ 2215 int t_error = 0; 2216 int sys_error = 0; 2217 int do_disconnect = 0; 2218 2219 if (tcp_conprim_opt_process(eager, mp1, 2220 &do_disconnect, &t_error, &sys_error) < 0) { 2221 eager->tcp_accept_error = 1; 2222 if (do_disconnect) { 2223 /* 2224 * An option failed which does not allow 2225 * connection to be accepted. 2226 * 2227 * We allow T_CONN_RES to succeed and 2228 * put a T_DISCON_IND on the eager queue. 2229 */ 2230 ASSERT(t_error == 0 && sys_error == 0); 2231 eager->tcp_send_discon_ind = 1; 2232 } else { 2233 ASSERT(t_error != 0); 2234 freemsg(ok_mp); 2235 /* 2236 * Original mp was either freed or set 2237 * to ok_mp above, so use mp1 instead. 2238 */ 2239 tcp_err_ack(listener, mp1, t_error, sys_error); 2240 goto finish; 2241 } 2242 } 2243 /* 2244 * Most likely success in setting options (except if 2245 * eager->tcp_send_discon_ind set). 2246 * mp1 option buffer represented by OPT_length/offset 2247 * potentially modified and contains results of setting 2248 * options at this point 2249 */ 2250 } 2251 2252 /* We no longer need mp1, since all options processing has passed */ 2253 freemsg(mp1); 2254 2255 putnext(listener->tcp_rq, ok_mp); 2256 2257 mutex_enter(&listener->tcp_eager_lock); 2258 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2259 tcp_t *tail; 2260 mblk_t *conn_ind; 2261 2262 /* 2263 * This path should not be executed if listener and 2264 * acceptor streams are the same. 2265 */ 2266 ASSERT(listener != acceptor); 2267 2268 tcp = listener->tcp_eager_prev_q0; 2269 /* 2270 * listener->tcp_eager_prev_q0 points to the TAIL of the 2271 * deferred T_conn_ind queue. We need to get to the head of 2272 * the queue in order to send up T_conn_ind the same order as 2273 * how the 3WHS is completed. 2274 */ 2275 while (tcp != listener) { 2276 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2277 break; 2278 else 2279 tcp = tcp->tcp_eager_prev_q0; 2280 } 2281 ASSERT(tcp != listener); 2282 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2283 ASSERT(conn_ind != NULL); 2284 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2285 2286 /* Move from q0 to q */ 2287 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2288 listener->tcp_conn_req_cnt_q0--; 2289 listener->tcp_conn_req_cnt_q++; 2290 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2291 tcp->tcp_eager_prev_q0; 2292 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2293 tcp->tcp_eager_next_q0; 2294 tcp->tcp_eager_prev_q0 = NULL; 2295 tcp->tcp_eager_next_q0 = NULL; 2296 tcp->tcp_conn_def_q0 = B_FALSE; 2297 2298 /* Make sure the tcp isn't in the list of droppables */ 2299 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2300 tcp->tcp_eager_prev_drop_q0 == NULL); 2301 2302 /* 2303 * Insert at end of the queue because sockfs sends 2304 * down T_CONN_RES in chronological order. Leaving 2305 * the older conn indications at front of the queue 2306 * helps reducing search time. 2307 */ 2308 tail = listener->tcp_eager_last_q; 2309 if (tail != NULL) 2310 tail->tcp_eager_next_q = tcp; 2311 else 2312 listener->tcp_eager_next_q = tcp; 2313 listener->tcp_eager_last_q = tcp; 2314 tcp->tcp_eager_next_q = NULL; 2315 mutex_exit(&listener->tcp_eager_lock); 2316 putnext(tcp->tcp_rq, conn_ind); 2317 } else { 2318 mutex_exit(&listener->tcp_eager_lock); 2319 } 2320 2321 /* 2322 * Done with the acceptor - free it 2323 * 2324 * Note: from this point on, no access to listener should be made 2325 * as listener can be equal to acceptor. 2326 */ 2327 finish: 2328 ASSERT(acceptor->tcp_detached); 2329 ASSERT(tcps->tcps_g_q != NULL); 2330 acceptor->tcp_rq = tcps->tcps_g_q; 2331 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2332 (void) tcp_clean_death(acceptor, 0, 2); 2333 CONN_DEC_REF(acceptor->tcp_connp); 2334 2335 /* 2336 * In case we already received a FIN we have to make tcp_rput send 2337 * the ordrel_ind. This will also send up a window update if the window 2338 * has opened up. 2339 * 2340 * In the normal case of a successful connection acceptance 2341 * we give the O_T_BIND_REQ to the read side put procedure as an 2342 * indication that this was just accepted. This tells tcp_rput to 2343 * pass up any data queued in tcp_rcv_list. 2344 * 2345 * In the fringe case where options sent with T_CONN_RES failed and 2346 * we required, we would be indicating a T_DISCON_IND to blow 2347 * away this connection. 2348 */ 2349 2350 /* 2351 * XXX: we currently have a problem if XTI application closes the 2352 * acceptor stream in between. This problem exists in on10-gate also 2353 * and is well know but nothing can be done short of major rewrite 2354 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2355 * eager same squeue as listener (we can distinguish non socket 2356 * listeners at the time of handling a SYN in tcp_conn_request) 2357 * and do most of the work that tcp_accept_finish does here itself 2358 * and then get behind the acceptor squeue to access the acceptor 2359 * queue. 2360 */ 2361 /* 2362 * We already have a ref on tcp so no need to do one before squeue_fill 2363 */ 2364 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2365 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2366 } 2367 2368 /* 2369 * Swap information between the eager and acceptor for a TLI/XTI client. 2370 * The sockfs accept is done on the acceptor stream and control goes 2371 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2372 * called. In either case, both the eager and listener are in their own 2373 * perimeter (squeue) and the code has to deal with potential race. 2374 * 2375 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2376 */ 2377 static void 2378 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2379 { 2380 conn_t *econnp, *aconnp; 2381 2382 ASSERT(eager->tcp_rq == listener->tcp_rq); 2383 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2384 ASSERT(!eager->tcp_hard_bound); 2385 ASSERT(!TCP_IS_SOCKET(acceptor)); 2386 ASSERT(!TCP_IS_SOCKET(eager)); 2387 ASSERT(!TCP_IS_SOCKET(listener)); 2388 2389 acceptor->tcp_detached = B_TRUE; 2390 /* 2391 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2392 * the acceptor id. 2393 */ 2394 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2395 2396 /* remove eager from listen list... */ 2397 mutex_enter(&listener->tcp_eager_lock); 2398 tcp_eager_unlink(eager); 2399 ASSERT(eager->tcp_eager_next_q == NULL && 2400 eager->tcp_eager_last_q == NULL); 2401 ASSERT(eager->tcp_eager_next_q0 == NULL && 2402 eager->tcp_eager_prev_q0 == NULL); 2403 mutex_exit(&listener->tcp_eager_lock); 2404 eager->tcp_rq = acceptor->tcp_rq; 2405 eager->tcp_wq = acceptor->tcp_wq; 2406 2407 econnp = eager->tcp_connp; 2408 aconnp = acceptor->tcp_connp; 2409 2410 eager->tcp_rq->q_ptr = econnp; 2411 eager->tcp_wq->q_ptr = econnp; 2412 2413 /* 2414 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2415 * which might be a different squeue from our peer TCP instance. 2416 * For TCP Fusion, the peer expects that whenever tcp_detached is 2417 * clear, our TCP queues point to the acceptor's queues. Thus, use 2418 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2419 * above reach global visibility prior to the clearing of tcp_detached. 2420 */ 2421 membar_producer(); 2422 eager->tcp_detached = B_FALSE; 2423 2424 ASSERT(eager->tcp_ack_tid == 0); 2425 2426 econnp->conn_dev = aconnp->conn_dev; 2427 if (eager->tcp_cred != NULL) 2428 crfree(eager->tcp_cred); 2429 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2430 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2431 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2432 2433 aconnp->conn_cred = NULL; 2434 2435 econnp->conn_zoneid = aconnp->conn_zoneid; 2436 econnp->conn_allzones = aconnp->conn_allzones; 2437 2438 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2439 aconnp->conn_mac_exempt = B_FALSE; 2440 2441 ASSERT(aconnp->conn_peercred == NULL); 2442 2443 /* Do the IPC initialization */ 2444 CONN_INC_REF(econnp); 2445 2446 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2447 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2448 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2449 econnp->conn_ulp = aconnp->conn_ulp; 2450 2451 /* Done with old IPC. Drop its ref on its connp */ 2452 CONN_DEC_REF(aconnp); 2453 } 2454 2455 2456 /* 2457 * Adapt to the information, such as rtt and rtt_sd, provided from the 2458 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2459 * 2460 * Checks for multicast and broadcast destination address. 2461 * Returns zero on failure; non-zero if ok. 2462 * 2463 * Note that the MSS calculation here is based on the info given in 2464 * the IRE. We do not do any calculation based on TCP options. They 2465 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2466 * knows which options to use. 2467 * 2468 * Note on how TCP gets its parameters for a connection. 2469 * 2470 * When a tcp_t structure is allocated, it gets all the default parameters. 2471 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2472 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2473 * default. But if there is an associated tcp_host_param, it will override 2474 * the metrics. 2475 * 2476 * An incoming SYN with a multicast or broadcast destination address, is dropped 2477 * in 1 of 2 places. 2478 * 2479 * 1. If the packet was received over the wire it is dropped in 2480 * ip_rput_process_broadcast() 2481 * 2482 * 2. If the packet was received through internal IP loopback, i.e. the packet 2483 * was generated and received on the same machine, it is dropped in 2484 * ip_wput_local() 2485 * 2486 * An incoming SYN with a multicast or broadcast source address is always 2487 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2488 * reject an attempt to connect to a broadcast or multicast (destination) 2489 * address. 2490 */ 2491 static int 2492 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2493 { 2494 tcp_hsp_t *hsp; 2495 ire_t *ire; 2496 ire_t *sire = NULL; 2497 iulp_t *ire_uinfo = NULL; 2498 uint32_t mss_max; 2499 uint32_t mss; 2500 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2501 conn_t *connp = tcp->tcp_connp; 2502 boolean_t ire_cacheable = B_FALSE; 2503 zoneid_t zoneid = connp->conn_zoneid; 2504 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2505 MATCH_IRE_SECATTR; 2506 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2507 ill_t *ill = NULL; 2508 boolean_t incoming = (ire_mp == NULL); 2509 tcp_stack_t *tcps = tcp->tcp_tcps; 2510 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2511 2512 ASSERT(connp->conn_ire_cache == NULL); 2513 2514 if (tcp->tcp_ipversion == IPV4_VERSION) { 2515 2516 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2517 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2518 return (0); 2519 } 2520 /* 2521 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2522 * for the destination with the nexthop as gateway. 2523 * ire_ctable_lookup() is used because this particular 2524 * ire, if it exists, will be marked private. 2525 * If that is not available, use the interface ire 2526 * for the nexthop. 2527 * 2528 * TSol: tcp_update_label will detect label mismatches based 2529 * only on the destination's label, but that would not 2530 * detect label mismatches based on the security attributes 2531 * of routes or next hop gateway. Hence we need to pass the 2532 * label to ire_ftable_lookup below in order to locate the 2533 * right prefix (and/or) ire cache. Similarly we also need 2534 * pass the label to the ire_cache_lookup below to locate 2535 * the right ire that also matches on the label. 2536 */ 2537 if (tcp->tcp_connp->conn_nexthop_set) { 2538 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2539 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2540 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2541 ipst); 2542 if (ire == NULL) { 2543 ire = ire_ftable_lookup( 2544 tcp->tcp_connp->conn_nexthop_v4, 2545 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2546 tsl, match_flags, ipst); 2547 if (ire == NULL) 2548 return (0); 2549 } else { 2550 ire_uinfo = &ire->ire_uinfo; 2551 } 2552 } else { 2553 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2554 zoneid, tsl, ipst); 2555 if (ire != NULL) { 2556 ire_cacheable = B_TRUE; 2557 ire_uinfo = (ire_mp != NULL) ? 2558 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2559 &ire->ire_uinfo; 2560 2561 } else { 2562 if (ire_mp == NULL) { 2563 ire = ire_ftable_lookup( 2564 tcp->tcp_connp->conn_rem, 2565 0, 0, 0, NULL, &sire, zoneid, 0, 2566 tsl, (MATCH_IRE_RECURSIVE | 2567 MATCH_IRE_DEFAULT), ipst); 2568 if (ire == NULL) 2569 return (0); 2570 ire_uinfo = (sire != NULL) ? 2571 &sire->ire_uinfo : 2572 &ire->ire_uinfo; 2573 } else { 2574 ire = (ire_t *)ire_mp->b_rptr; 2575 ire_uinfo = 2576 &((ire_t *) 2577 ire_mp->b_rptr)->ire_uinfo; 2578 } 2579 } 2580 } 2581 ASSERT(ire != NULL); 2582 2583 if ((ire->ire_src_addr == INADDR_ANY) || 2584 (ire->ire_type & IRE_BROADCAST)) { 2585 /* 2586 * ire->ire_mp is non null when ire_mp passed in is used 2587 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2588 */ 2589 if (ire->ire_mp == NULL) 2590 ire_refrele(ire); 2591 if (sire != NULL) 2592 ire_refrele(sire); 2593 return (0); 2594 } 2595 2596 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2597 ipaddr_t src_addr; 2598 2599 /* 2600 * ip_bind_connected() has stored the correct source 2601 * address in conn_src. 2602 */ 2603 src_addr = tcp->tcp_connp->conn_src; 2604 tcp->tcp_ipha->ipha_src = src_addr; 2605 /* 2606 * Copy of the src addr. in tcp_t is needed 2607 * for the lookup funcs. 2608 */ 2609 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2610 } 2611 /* 2612 * Set the fragment bit so that IP will tell us if the MTU 2613 * should change. IP tells us the latest setting of 2614 * ip_path_mtu_discovery through ire_frag_flag. 2615 */ 2616 if (ipst->ips_ip_path_mtu_discovery) { 2617 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2618 htons(IPH_DF); 2619 } 2620 /* 2621 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2622 * for IP_NEXTHOP. No cache ire has been found for the 2623 * destination and we are working with the nexthop's 2624 * interface ire. Since we need to forward all packets 2625 * to the nexthop first, we "blindly" set tcp_localnet 2626 * to false, eventhough the destination may also be 2627 * onlink. 2628 */ 2629 if (ire_uinfo == NULL) 2630 tcp->tcp_localnet = 0; 2631 else 2632 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2633 } else { 2634 /* 2635 * For incoming connection ire_mp = NULL 2636 * For outgoing connection ire_mp != NULL 2637 * Technically we should check conn_incoming_ill 2638 * when ire_mp is NULL and conn_outgoing_ill when 2639 * ire_mp is non-NULL. But this is performance 2640 * critical path and for IPV*_BOUND_IF, outgoing 2641 * and incoming ill are always set to the same value. 2642 */ 2643 ill_t *dst_ill = NULL; 2644 ipif_t *dst_ipif = NULL; 2645 2646 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2647 2648 if (connp->conn_outgoing_ill != NULL) { 2649 /* Outgoing or incoming path */ 2650 int err; 2651 2652 dst_ill = conn_get_held_ill(connp, 2653 &connp->conn_outgoing_ill, &err); 2654 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2655 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2656 return (0); 2657 } 2658 match_flags |= MATCH_IRE_ILL; 2659 dst_ipif = dst_ill->ill_ipif; 2660 } 2661 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2662 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2663 2664 if (ire != NULL) { 2665 ire_cacheable = B_TRUE; 2666 ire_uinfo = (ire_mp != NULL) ? 2667 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2668 &ire->ire_uinfo; 2669 } else { 2670 if (ire_mp == NULL) { 2671 ire = ire_ftable_lookup_v6( 2672 &tcp->tcp_connp->conn_remv6, 2673 0, 0, 0, dst_ipif, &sire, zoneid, 2674 0, tsl, match_flags, ipst); 2675 if (ire == NULL) { 2676 if (dst_ill != NULL) 2677 ill_refrele(dst_ill); 2678 return (0); 2679 } 2680 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2681 &ire->ire_uinfo; 2682 } else { 2683 ire = (ire_t *)ire_mp->b_rptr; 2684 ire_uinfo = 2685 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2686 } 2687 } 2688 if (dst_ill != NULL) 2689 ill_refrele(dst_ill); 2690 2691 ASSERT(ire != NULL); 2692 ASSERT(ire_uinfo != NULL); 2693 2694 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2695 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2696 /* 2697 * ire->ire_mp is non null when ire_mp passed in is used 2698 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2699 */ 2700 if (ire->ire_mp == NULL) 2701 ire_refrele(ire); 2702 if (sire != NULL) 2703 ire_refrele(sire); 2704 return (0); 2705 } 2706 2707 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2708 in6_addr_t src_addr; 2709 2710 /* 2711 * ip_bind_connected_v6() has stored the correct source 2712 * address per IPv6 addr. selection policy in 2713 * conn_src_v6. 2714 */ 2715 src_addr = tcp->tcp_connp->conn_srcv6; 2716 2717 tcp->tcp_ip6h->ip6_src = src_addr; 2718 /* 2719 * Copy of the src addr. in tcp_t is needed 2720 * for the lookup funcs. 2721 */ 2722 tcp->tcp_ip_src_v6 = src_addr; 2723 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2724 &connp->conn_srcv6)); 2725 } 2726 tcp->tcp_localnet = 2727 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2728 } 2729 2730 /* 2731 * This allows applications to fail quickly when connections are made 2732 * to dead hosts. Hosts can be labeled dead by adding a reject route 2733 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2734 */ 2735 if ((ire->ire_flags & RTF_REJECT) && 2736 (ire->ire_flags & RTF_PRIVATE)) 2737 goto error; 2738 2739 /* 2740 * Make use of the cached rtt and rtt_sd values to calculate the 2741 * initial RTO. Note that they are already initialized in 2742 * tcp_init_values(). 2743 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2744 * IP_NEXTHOP, but instead are using the interface ire for the 2745 * nexthop, then we do not use the ire_uinfo from that ire to 2746 * do any initializations. 2747 */ 2748 if (ire_uinfo != NULL) { 2749 if (ire_uinfo->iulp_rtt != 0) { 2750 clock_t rto; 2751 2752 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2753 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2754 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2755 tcps->tcps_rexmit_interval_extra + 2756 (tcp->tcp_rtt_sa >> 5); 2757 2758 if (rto > tcps->tcps_rexmit_interval_max) { 2759 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2760 } else if (rto < tcps->tcps_rexmit_interval_min) { 2761 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2762 } else { 2763 tcp->tcp_rto = rto; 2764 } 2765 } 2766 if (ire_uinfo->iulp_ssthresh != 0) 2767 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2768 else 2769 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2770 if (ire_uinfo->iulp_spipe > 0) { 2771 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2772 tcps->tcps_max_buf); 2773 if (tcps->tcps_snd_lowat_fraction != 0) 2774 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2775 tcps->tcps_snd_lowat_fraction; 2776 (void) tcp_maxpsz_set(tcp, B_TRUE); 2777 } 2778 /* 2779 * Note that up till now, acceptor always inherits receive 2780 * window from the listener. But if there is a metrics 2781 * associated with a host, we should use that instead of 2782 * inheriting it from listener. Thus we need to pass this 2783 * info back to the caller. 2784 */ 2785 if (ire_uinfo->iulp_rpipe > 0) { 2786 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2787 tcps->tcps_max_buf); 2788 } 2789 2790 if (ire_uinfo->iulp_rtomax > 0) { 2791 tcp->tcp_second_timer_threshold = 2792 ire_uinfo->iulp_rtomax; 2793 } 2794 2795 /* 2796 * Use the metric option settings, iulp_tstamp_ok and 2797 * iulp_wscale_ok, only for active open. What this means 2798 * is that if the other side uses timestamp or window 2799 * scale option, TCP will also use those options. That 2800 * is for passive open. If the application sets a 2801 * large window, window scale is enabled regardless of 2802 * the value in iulp_wscale_ok. This is the behavior 2803 * since 2.6. So we keep it. 2804 * The only case left in passive open processing is the 2805 * check for SACK. 2806 * For ECN, it should probably be like SACK. But the 2807 * current value is binary, so we treat it like the other 2808 * cases. The metric only controls active open.For passive 2809 * open, the ndd param, tcp_ecn_permitted, controls the 2810 * behavior. 2811 */ 2812 if (!tcp_detached) { 2813 /* 2814 * The if check means that the following can only 2815 * be turned on by the metrics only IRE, but not off. 2816 */ 2817 if (ire_uinfo->iulp_tstamp_ok) 2818 tcp->tcp_snd_ts_ok = B_TRUE; 2819 if (ire_uinfo->iulp_wscale_ok) 2820 tcp->tcp_snd_ws_ok = B_TRUE; 2821 if (ire_uinfo->iulp_sack == 2) 2822 tcp->tcp_snd_sack_ok = B_TRUE; 2823 if (ire_uinfo->iulp_ecn_ok) 2824 tcp->tcp_ecn_ok = B_TRUE; 2825 } else { 2826 /* 2827 * Passive open. 2828 * 2829 * As above, the if check means that SACK can only be 2830 * turned on by the metric only IRE. 2831 */ 2832 if (ire_uinfo->iulp_sack > 0) { 2833 tcp->tcp_snd_sack_ok = B_TRUE; 2834 } 2835 } 2836 } 2837 2838 2839 /* 2840 * XXX: Note that currently, ire_max_frag can be as small as 68 2841 * because of PMTUd. So tcp_mss may go to negative if combined 2842 * length of all those options exceeds 28 bytes. But because 2843 * of the tcp_mss_min check below, we may not have a problem if 2844 * tcp_mss_min is of a reasonable value. The default is 1 so 2845 * the negative problem still exists. And the check defeats PMTUd. 2846 * In fact, if PMTUd finds that the MSS should be smaller than 2847 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2848 * value. 2849 * 2850 * We do not deal with that now. All those problems related to 2851 * PMTUd will be fixed later. 2852 */ 2853 ASSERT(ire->ire_max_frag != 0); 2854 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2855 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2856 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2857 mss = MIN(mss, IPV6_MIN_MTU); 2858 } 2859 } 2860 2861 /* Sanity check for MSS value. */ 2862 if (tcp->tcp_ipversion == IPV4_VERSION) 2863 mss_max = tcps->tcps_mss_max_ipv4; 2864 else 2865 mss_max = tcps->tcps_mss_max_ipv6; 2866 2867 if (tcp->tcp_ipversion == IPV6_VERSION && 2868 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2869 /* 2870 * After receiving an ICMPv6 "packet too big" message with a 2871 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2872 * will insert a 8-byte fragment header in every packet; we 2873 * reduce the MSS by that amount here. 2874 */ 2875 mss -= sizeof (ip6_frag_t); 2876 } 2877 2878 if (tcp->tcp_ipsec_overhead == 0) 2879 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2880 2881 mss -= tcp->tcp_ipsec_overhead; 2882 2883 if (mss < tcps->tcps_mss_min) 2884 mss = tcps->tcps_mss_min; 2885 if (mss > mss_max) 2886 mss = mss_max; 2887 2888 /* Note that this is the maximum MSS, excluding all options. */ 2889 tcp->tcp_mss = mss; 2890 2891 /* 2892 * Initialize the ISS here now that we have the full connection ID. 2893 * The RFC 1948 method of initial sequence number generation requires 2894 * knowledge of the full connection ID before setting the ISS. 2895 */ 2896 2897 tcp_iss_init(tcp); 2898 2899 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2900 tcp->tcp_loopback = B_TRUE; 2901 2902 if (tcp->tcp_ipversion == IPV4_VERSION) { 2903 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2904 } else { 2905 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2906 } 2907 2908 if (hsp != NULL) { 2909 /* Only modify if we're going to make them bigger */ 2910 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2911 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2912 if (tcps->tcps_snd_lowat_fraction != 0) 2913 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2914 tcps->tcps_snd_lowat_fraction; 2915 } 2916 2917 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2918 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2919 } 2920 2921 /* Copy timestamp flag only for active open */ 2922 if (!tcp_detached) 2923 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2924 } 2925 2926 if (sire != NULL) 2927 IRE_REFRELE(sire); 2928 2929 /* 2930 * If we got an IRE_CACHE and an ILL, go through their properties; 2931 * otherwise, this is deferred until later when we have an IRE_CACHE. 2932 */ 2933 if (tcp->tcp_loopback || 2934 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2935 /* 2936 * For incoming, see if this tcp may be MDT-capable. For 2937 * outgoing, this process has been taken care of through 2938 * tcp_rput_other. 2939 */ 2940 tcp_ire_ill_check(tcp, ire, ill, incoming); 2941 tcp->tcp_ire_ill_check_done = B_TRUE; 2942 } 2943 2944 mutex_enter(&connp->conn_lock); 2945 /* 2946 * Make sure that conn is not marked incipient 2947 * for incoming connections. A blind 2948 * removal of incipient flag is cheaper than 2949 * check and removal. 2950 */ 2951 connp->conn_state_flags &= ~CONN_INCIPIENT; 2952 2953 /* 2954 * Must not cache forwarding table routes 2955 * or recache an IRE after the conn_t has 2956 * had conn_ire_cache cleared and is flagged 2957 * unusable, (see the CONN_CACHE_IRE() macro). 2958 */ 2959 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2960 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2961 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2962 connp->conn_ire_cache = ire; 2963 IRE_UNTRACE_REF(ire); 2964 rw_exit(&ire->ire_bucket->irb_lock); 2965 mutex_exit(&connp->conn_lock); 2966 return (1); 2967 } 2968 rw_exit(&ire->ire_bucket->irb_lock); 2969 } 2970 mutex_exit(&connp->conn_lock); 2971 2972 if (ire->ire_mp == NULL) 2973 ire_refrele(ire); 2974 return (1); 2975 2976 error: 2977 if (ire->ire_mp == NULL) 2978 ire_refrele(ire); 2979 if (sire != NULL) 2980 ire_refrele(sire); 2981 return (0); 2982 } 2983 2984 /* 2985 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2986 * O_T_BIND_REQ/T_BIND_REQ message. 2987 */ 2988 static void 2989 tcp_bind(tcp_t *tcp, mblk_t *mp) 2990 { 2991 sin_t *sin; 2992 sin6_t *sin6; 2993 mblk_t *mp1; 2994 in_port_t requested_port; 2995 in_port_t allocated_port; 2996 struct T_bind_req *tbr; 2997 boolean_t bind_to_req_port_only; 2998 boolean_t backlog_update = B_FALSE; 2999 boolean_t user_specified; 3000 in6_addr_t v6addr; 3001 ipaddr_t v4addr; 3002 uint_t origipversion; 3003 int err; 3004 queue_t *q = tcp->tcp_wq; 3005 conn_t *connp; 3006 mlp_type_t addrtype, mlptype; 3007 zone_t *zone; 3008 cred_t *cr; 3009 in_port_t mlp_port; 3010 tcp_stack_t *tcps = tcp->tcp_tcps; 3011 3012 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3013 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3014 if (tcp->tcp_debug) { 3015 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3016 "tcp_bind: bad req, len %u", 3017 (uint_t)(mp->b_wptr - mp->b_rptr)); 3018 } 3019 tcp_err_ack(tcp, mp, TPROTO, 0); 3020 return; 3021 } 3022 /* Make sure the largest address fits */ 3023 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3024 if (mp1 == NULL) { 3025 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3026 return; 3027 } 3028 mp = mp1; 3029 tbr = (struct T_bind_req *)mp->b_rptr; 3030 if (tcp->tcp_state >= TCPS_BOUND) { 3031 if ((tcp->tcp_state == TCPS_BOUND || 3032 tcp->tcp_state == TCPS_LISTEN) && 3033 tcp->tcp_conn_req_max != tbr->CONIND_number && 3034 tbr->CONIND_number > 0) { 3035 /* 3036 * Handle listen() increasing CONIND_number. 3037 * This is more "liberal" then what the TPI spec 3038 * requires but is needed to avoid a t_unbind 3039 * when handling listen() since the port number 3040 * might be "stolen" between the unbind and bind. 3041 */ 3042 backlog_update = B_TRUE; 3043 goto do_bind; 3044 } 3045 if (tcp->tcp_debug) { 3046 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3047 "tcp_bind: bad state, %d", tcp->tcp_state); 3048 } 3049 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3050 return; 3051 } 3052 origipversion = tcp->tcp_ipversion; 3053 3054 switch (tbr->ADDR_length) { 3055 case 0: /* request for a generic port */ 3056 tbr->ADDR_offset = sizeof (struct T_bind_req); 3057 if (tcp->tcp_family == AF_INET) { 3058 tbr->ADDR_length = sizeof (sin_t); 3059 sin = (sin_t *)&tbr[1]; 3060 *sin = sin_null; 3061 sin->sin_family = AF_INET; 3062 mp->b_wptr = (uchar_t *)&sin[1]; 3063 tcp->tcp_ipversion = IPV4_VERSION; 3064 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3065 } else { 3066 ASSERT(tcp->tcp_family == AF_INET6); 3067 tbr->ADDR_length = sizeof (sin6_t); 3068 sin6 = (sin6_t *)&tbr[1]; 3069 *sin6 = sin6_null; 3070 sin6->sin6_family = AF_INET6; 3071 mp->b_wptr = (uchar_t *)&sin6[1]; 3072 tcp->tcp_ipversion = IPV6_VERSION; 3073 V6_SET_ZERO(v6addr); 3074 } 3075 requested_port = 0; 3076 break; 3077 3078 case sizeof (sin_t): /* Complete IPv4 address */ 3079 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3080 sizeof (sin_t)); 3081 if (sin == NULL || !OK_32PTR((char *)sin)) { 3082 if (tcp->tcp_debug) { 3083 (void) strlog(TCP_MOD_ID, 0, 1, 3084 SL_ERROR|SL_TRACE, 3085 "tcp_bind: bad address parameter, " 3086 "offset %d, len %d", 3087 tbr->ADDR_offset, tbr->ADDR_length); 3088 } 3089 tcp_err_ack(tcp, mp, TPROTO, 0); 3090 return; 3091 } 3092 /* 3093 * With sockets sockfs will accept bogus sin_family in 3094 * bind() and replace it with the family used in the socket 3095 * call. 3096 */ 3097 if (sin->sin_family != AF_INET || 3098 tcp->tcp_family != AF_INET) { 3099 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3100 return; 3101 } 3102 requested_port = ntohs(sin->sin_port); 3103 tcp->tcp_ipversion = IPV4_VERSION; 3104 v4addr = sin->sin_addr.s_addr; 3105 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3106 break; 3107 3108 case sizeof (sin6_t): /* Complete IPv6 address */ 3109 sin6 = (sin6_t *)mi_offset_param(mp, 3110 tbr->ADDR_offset, sizeof (sin6_t)); 3111 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3112 if (tcp->tcp_debug) { 3113 (void) strlog(TCP_MOD_ID, 0, 1, 3114 SL_ERROR|SL_TRACE, 3115 "tcp_bind: bad IPv6 address parameter, " 3116 "offset %d, len %d", tbr->ADDR_offset, 3117 tbr->ADDR_length); 3118 } 3119 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3120 return; 3121 } 3122 if (sin6->sin6_family != AF_INET6 || 3123 tcp->tcp_family != AF_INET6) { 3124 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3125 return; 3126 } 3127 requested_port = ntohs(sin6->sin6_port); 3128 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3129 IPV4_VERSION : IPV6_VERSION; 3130 v6addr = sin6->sin6_addr; 3131 break; 3132 3133 default: 3134 if (tcp->tcp_debug) { 3135 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3136 "tcp_bind: bad address length, %d", 3137 tbr->ADDR_length); 3138 } 3139 tcp_err_ack(tcp, mp, TBADADDR, 0); 3140 return; 3141 } 3142 tcp->tcp_bound_source_v6 = v6addr; 3143 3144 /* Check for change in ipversion */ 3145 if (origipversion != tcp->tcp_ipversion) { 3146 ASSERT(tcp->tcp_family == AF_INET6); 3147 err = tcp->tcp_ipversion == IPV6_VERSION ? 3148 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3149 if (err) { 3150 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3151 return; 3152 } 3153 } 3154 3155 /* 3156 * Initialize family specific fields. Copy of the src addr. 3157 * in tcp_t is needed for the lookup funcs. 3158 */ 3159 if (tcp->tcp_ipversion == IPV6_VERSION) { 3160 tcp->tcp_ip6h->ip6_src = v6addr; 3161 } else { 3162 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3163 } 3164 tcp->tcp_ip_src_v6 = v6addr; 3165 3166 /* 3167 * For O_T_BIND_REQ: 3168 * Verify that the target port/addr is available, or choose 3169 * another. 3170 * For T_BIND_REQ: 3171 * Verify that the target port/addr is available or fail. 3172 * In both cases when it succeeds the tcp is inserted in the 3173 * bind hash table. This ensures that the operation is atomic 3174 * under the lock on the hash bucket. 3175 */ 3176 bind_to_req_port_only = requested_port != 0 && 3177 tbr->PRIM_type != O_T_BIND_REQ; 3178 /* 3179 * Get a valid port (within the anonymous range and should not 3180 * be a privileged one) to use if the user has not given a port. 3181 * If multiple threads are here, they may all start with 3182 * with the same initial port. But, it should be fine as long as 3183 * tcp_bindi will ensure that no two threads will be assigned 3184 * the same port. 3185 * 3186 * NOTE: XXX If a privileged process asks for an anonymous port, we 3187 * still check for ports only in the range > tcp_smallest_non_priv_port, 3188 * unless TCP_ANONPRIVBIND option is set. 3189 */ 3190 mlptype = mlptSingle; 3191 mlp_port = requested_port; 3192 if (requested_port == 0) { 3193 requested_port = tcp->tcp_anon_priv_bind ? 3194 tcp_get_next_priv_port(tcp) : 3195 tcp_update_next_port(tcps->tcps_next_port_to_try, 3196 tcp, B_TRUE); 3197 if (requested_port == 0) { 3198 tcp_err_ack(tcp, mp, TNOADDR, 0); 3199 return; 3200 } 3201 user_specified = B_FALSE; 3202 3203 /* 3204 * If the user went through one of the RPC interfaces to create 3205 * this socket and RPC is MLP in this zone, then give him an 3206 * anonymous MLP. 3207 */ 3208 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3209 connp = tcp->tcp_connp; 3210 if (connp->conn_anon_mlp && is_system_labeled()) { 3211 zone = crgetzone(cr); 3212 addrtype = tsol_mlp_addr_type(zone->zone_id, 3213 IPV6_VERSION, &v6addr, 3214 tcps->tcps_netstack->netstack_ip); 3215 if (addrtype == mlptSingle) { 3216 tcp_err_ack(tcp, mp, TNOADDR, 0); 3217 return; 3218 } 3219 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3220 PMAPPORT, addrtype); 3221 mlp_port = PMAPPORT; 3222 } 3223 } else { 3224 int i; 3225 boolean_t priv = B_FALSE; 3226 3227 /* 3228 * If the requested_port is in the well-known privileged range, 3229 * verify that the stream was opened by a privileged user. 3230 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3231 * but instead the code relies on: 3232 * - the fact that the address of the array and its size never 3233 * changes 3234 * - the atomic assignment of the elements of the array 3235 */ 3236 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3237 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3238 priv = B_TRUE; 3239 } else { 3240 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3241 if (requested_port == 3242 tcps->tcps_g_epriv_ports[i]) { 3243 priv = B_TRUE; 3244 break; 3245 } 3246 } 3247 } 3248 if (priv) { 3249 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3250 if (tcp->tcp_debug) { 3251 (void) strlog(TCP_MOD_ID, 0, 1, 3252 SL_ERROR|SL_TRACE, 3253 "tcp_bind: no priv for port %d", 3254 requested_port); 3255 } 3256 tcp_err_ack(tcp, mp, TACCES, 0); 3257 return; 3258 } 3259 } 3260 user_specified = B_TRUE; 3261 3262 connp = tcp->tcp_connp; 3263 if (is_system_labeled()) { 3264 zone = crgetzone(cr); 3265 addrtype = tsol_mlp_addr_type(zone->zone_id, 3266 IPV6_VERSION, &v6addr, 3267 tcps->tcps_netstack->netstack_ip); 3268 if (addrtype == mlptSingle) { 3269 tcp_err_ack(tcp, mp, TNOADDR, 0); 3270 return; 3271 } 3272 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3273 requested_port, addrtype); 3274 } 3275 } 3276 3277 if (mlptype != mlptSingle) { 3278 if (secpolicy_net_bindmlp(cr) != 0) { 3279 if (tcp->tcp_debug) { 3280 (void) strlog(TCP_MOD_ID, 0, 1, 3281 SL_ERROR|SL_TRACE, 3282 "tcp_bind: no priv for multilevel port %d", 3283 requested_port); 3284 } 3285 tcp_err_ack(tcp, mp, TACCES, 0); 3286 return; 3287 } 3288 3289 /* 3290 * If we're specifically binding a shared IP address and the 3291 * port is MLP on shared addresses, then check to see if this 3292 * zone actually owns the MLP. Reject if not. 3293 */ 3294 if (mlptype == mlptShared && addrtype == mlptShared) { 3295 /* 3296 * No need to handle exclusive-stack zones since 3297 * ALL_ZONES only applies to the shared stack. 3298 */ 3299 zoneid_t mlpzone; 3300 3301 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3302 htons(mlp_port)); 3303 if (connp->conn_zoneid != mlpzone) { 3304 if (tcp->tcp_debug) { 3305 (void) strlog(TCP_MOD_ID, 0, 1, 3306 SL_ERROR|SL_TRACE, 3307 "tcp_bind: attempt to bind port " 3308 "%d on shared addr in zone %d " 3309 "(should be %d)", 3310 mlp_port, connp->conn_zoneid, 3311 mlpzone); 3312 } 3313 tcp_err_ack(tcp, mp, TACCES, 0); 3314 return; 3315 } 3316 } 3317 3318 if (!user_specified) { 3319 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3320 requested_port, B_TRUE); 3321 if (err != 0) { 3322 if (tcp->tcp_debug) { 3323 (void) strlog(TCP_MOD_ID, 0, 1, 3324 SL_ERROR|SL_TRACE, 3325 "tcp_bind: cannot establish anon " 3326 "MLP for port %d", 3327 requested_port); 3328 } 3329 tcp_err_ack(tcp, mp, TSYSERR, err); 3330 return; 3331 } 3332 connp->conn_anon_port = B_TRUE; 3333 } 3334 connp->conn_mlp_type = mlptype; 3335 } 3336 3337 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3338 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3339 3340 if (allocated_port == 0) { 3341 connp->conn_mlp_type = mlptSingle; 3342 if (connp->conn_anon_port) { 3343 connp->conn_anon_port = B_FALSE; 3344 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3345 requested_port, B_FALSE); 3346 } 3347 if (bind_to_req_port_only) { 3348 if (tcp->tcp_debug) { 3349 (void) strlog(TCP_MOD_ID, 0, 1, 3350 SL_ERROR|SL_TRACE, 3351 "tcp_bind: requested addr busy"); 3352 } 3353 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3354 } else { 3355 /* If we are out of ports, fail the bind. */ 3356 if (tcp->tcp_debug) { 3357 (void) strlog(TCP_MOD_ID, 0, 1, 3358 SL_ERROR|SL_TRACE, 3359 "tcp_bind: out of ports?"); 3360 } 3361 tcp_err_ack(tcp, mp, TNOADDR, 0); 3362 } 3363 return; 3364 } 3365 ASSERT(tcp->tcp_state == TCPS_BOUND); 3366 do_bind: 3367 if (!backlog_update) { 3368 if (tcp->tcp_family == AF_INET) 3369 sin->sin_port = htons(allocated_port); 3370 else 3371 sin6->sin6_port = htons(allocated_port); 3372 } 3373 if (tcp->tcp_family == AF_INET) { 3374 if (tbr->CONIND_number != 0) { 3375 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3376 sizeof (sin_t)); 3377 } else { 3378 /* Just verify the local IP address */ 3379 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3380 } 3381 } else { 3382 if (tbr->CONIND_number != 0) { 3383 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3384 sizeof (sin6_t)); 3385 } else { 3386 /* Just verify the local IP address */ 3387 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3388 IPV6_ADDR_LEN); 3389 } 3390 } 3391 if (mp1 == NULL) { 3392 if (connp->conn_anon_port) { 3393 connp->conn_anon_port = B_FALSE; 3394 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3395 requested_port, B_FALSE); 3396 } 3397 connp->conn_mlp_type = mlptSingle; 3398 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3399 return; 3400 } 3401 3402 tbr->PRIM_type = T_BIND_ACK; 3403 mp->b_datap->db_type = M_PCPROTO; 3404 3405 /* Chain in the reply mp for tcp_rput() */ 3406 mp1->b_cont = mp; 3407 mp = mp1; 3408 3409 tcp->tcp_conn_req_max = tbr->CONIND_number; 3410 if (tcp->tcp_conn_req_max) { 3411 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3412 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3413 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3414 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3415 /* 3416 * If this is a listener, do not reset the eager list 3417 * and other stuffs. Note that we don't check if the 3418 * existing eager list meets the new tcp_conn_req_max 3419 * requirement. 3420 */ 3421 if (tcp->tcp_state != TCPS_LISTEN) { 3422 tcp->tcp_state = TCPS_LISTEN; 3423 /* Initialize the chain. Don't need the eager_lock */ 3424 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3425 tcp->tcp_eager_next_drop_q0 = tcp; 3426 tcp->tcp_eager_prev_drop_q0 = tcp; 3427 tcp->tcp_second_ctimer_threshold = 3428 tcps->tcps_ip_abort_linterval; 3429 } 3430 } 3431 3432 /* 3433 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3434 * processing continues in tcp_rput_other(). 3435 */ 3436 if (tcp->tcp_family == AF_INET6) { 3437 ASSERT(tcp->tcp_connp->conn_af_isv6); 3438 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3439 } else { 3440 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3441 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3442 } 3443 /* 3444 * If the bind cannot complete immediately 3445 * IP will arrange to call tcp_rput_other 3446 * when the bind completes. 3447 */ 3448 if (mp != NULL) { 3449 tcp_rput_other(tcp, mp); 3450 } else { 3451 /* 3452 * Bind will be resumed later. Need to ensure 3453 * that conn doesn't disappear when that happens. 3454 * This will be decremented in ip_resume_tcp_bind(). 3455 */ 3456 CONN_INC_REF(tcp->tcp_connp); 3457 } 3458 } 3459 3460 3461 /* 3462 * If the "bind_to_req_port_only" parameter is set, if the requested port 3463 * number is available, return it, If not return 0 3464 * 3465 * If "bind_to_req_port_only" parameter is not set and 3466 * If the requested port number is available, return it. If not, return 3467 * the first anonymous port we happen across. If no anonymous ports are 3468 * available, return 0. addr is the requested local address, if any. 3469 * 3470 * In either case, when succeeding update the tcp_t to record the port number 3471 * and insert it in the bind hash table. 3472 * 3473 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3474 * without setting SO_REUSEADDR. This is needed so that they 3475 * can be viewed as two independent transport protocols. 3476 */ 3477 static in_port_t 3478 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3479 int reuseaddr, boolean_t quick_connect, 3480 boolean_t bind_to_req_port_only, boolean_t user_specified) 3481 { 3482 /* number of times we have run around the loop */ 3483 int count = 0; 3484 /* maximum number of times to run around the loop */ 3485 int loopmax; 3486 conn_t *connp = tcp->tcp_connp; 3487 zoneid_t zoneid = connp->conn_zoneid; 3488 tcp_stack_t *tcps = tcp->tcp_tcps; 3489 3490 /* 3491 * Lookup for free addresses is done in a loop and "loopmax" 3492 * influences how long we spin in the loop 3493 */ 3494 if (bind_to_req_port_only) { 3495 /* 3496 * If the requested port is busy, don't bother to look 3497 * for a new one. Setting loop maximum count to 1 has 3498 * that effect. 3499 */ 3500 loopmax = 1; 3501 } else { 3502 /* 3503 * If the requested port is busy, look for a free one 3504 * in the anonymous port range. 3505 * Set loopmax appropriately so that one does not look 3506 * forever in the case all of the anonymous ports are in use. 3507 */ 3508 if (tcp->tcp_anon_priv_bind) { 3509 /* 3510 * loopmax = 3511 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3512 */ 3513 loopmax = IPPORT_RESERVED - 3514 tcps->tcps_min_anonpriv_port; 3515 } else { 3516 loopmax = (tcps->tcps_largest_anon_port - 3517 tcps->tcps_smallest_anon_port + 1); 3518 } 3519 } 3520 do { 3521 uint16_t lport; 3522 tf_t *tbf; 3523 tcp_t *ltcp; 3524 conn_t *lconnp; 3525 3526 lport = htons(port); 3527 3528 /* 3529 * Ensure that the tcp_t is not currently in the bind hash. 3530 * Hold the lock on the hash bucket to ensure that 3531 * the duplicate check plus the insertion is an atomic 3532 * operation. 3533 * 3534 * This function does an inline lookup on the bind hash list 3535 * Make sure that we access only members of tcp_t 3536 * and that we don't look at tcp_tcp, since we are not 3537 * doing a CONN_INC_REF. 3538 */ 3539 tcp_bind_hash_remove(tcp); 3540 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3541 mutex_enter(&tbf->tf_lock); 3542 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3543 ltcp = ltcp->tcp_bind_hash) { 3544 boolean_t not_socket; 3545 boolean_t exclbind; 3546 3547 if (lport != ltcp->tcp_lport) 3548 continue; 3549 3550 lconnp = ltcp->tcp_connp; 3551 3552 /* 3553 * On a labeled system, we must treat bindings to ports 3554 * on shared IP addresses by sockets with MAC exemption 3555 * privilege as being in all zones, as there's 3556 * otherwise no way to identify the right receiver. 3557 */ 3558 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3559 !lconnp->conn_mac_exempt && 3560 !connp->conn_mac_exempt) 3561 continue; 3562 3563 /* 3564 * If TCP_EXCLBIND is set for either the bound or 3565 * binding endpoint, the semantics of bind 3566 * is changed according to the following. 3567 * 3568 * spec = specified address (v4 or v6) 3569 * unspec = unspecified address (v4 or v6) 3570 * A = specified addresses are different for endpoints 3571 * 3572 * bound bind to allowed 3573 * ------------------------------------- 3574 * unspec unspec no 3575 * unspec spec no 3576 * spec unspec no 3577 * spec spec yes if A 3578 * 3579 * For labeled systems, SO_MAC_EXEMPT behaves the same 3580 * as TCP_EXCLBIND, except that zoneid is ignored. 3581 * 3582 * Note: 3583 * 3584 * 1. Because of TLI semantics, an endpoint can go 3585 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3586 * TCPS_BOUND, depending on whether it is originally 3587 * a listener or not. That is why we need to check 3588 * for states greater than or equal to TCPS_BOUND 3589 * here. 3590 * 3591 * 2. Ideally, we should only check for state equals 3592 * to TCPS_LISTEN. And the following check should be 3593 * added. 3594 * 3595 * if (ltcp->tcp_state == TCPS_LISTEN || 3596 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3597 * ... 3598 * } 3599 * 3600 * The semantics will be changed to this. If the 3601 * endpoint on the list is in state not equal to 3602 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3603 * set, let the bind succeed. 3604 * 3605 * Because of (1), we cannot do that for TLI 3606 * endpoints. But we can do that for socket endpoints. 3607 * If in future, we can change this going back 3608 * semantics, we can use the above check for TLI also. 3609 */ 3610 not_socket = !(TCP_IS_SOCKET(ltcp) && 3611 TCP_IS_SOCKET(tcp)); 3612 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3613 3614 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3615 (exclbind && (not_socket || 3616 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3617 if (V6_OR_V4_INADDR_ANY( 3618 ltcp->tcp_bound_source_v6) || 3619 V6_OR_V4_INADDR_ANY(*laddr) || 3620 IN6_ARE_ADDR_EQUAL(laddr, 3621 <cp->tcp_bound_source_v6)) { 3622 break; 3623 } 3624 continue; 3625 } 3626 3627 /* 3628 * Check ipversion to allow IPv4 and IPv6 sockets to 3629 * have disjoint port number spaces, if *_EXCLBIND 3630 * is not set and only if the application binds to a 3631 * specific port. We use the same autoassigned port 3632 * number space for IPv4 and IPv6 sockets. 3633 */ 3634 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3635 bind_to_req_port_only) 3636 continue; 3637 3638 /* 3639 * Ideally, we should make sure that the source 3640 * address, remote address, and remote port in the 3641 * four tuple for this tcp-connection is unique. 3642 * However, trying to find out the local source 3643 * address would require too much code duplication 3644 * with IP, since IP needs needs to have that code 3645 * to support userland TCP implementations. 3646 */ 3647 if (quick_connect && 3648 (ltcp->tcp_state > TCPS_LISTEN) && 3649 ((tcp->tcp_fport != ltcp->tcp_fport) || 3650 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3651 <cp->tcp_remote_v6))) 3652 continue; 3653 3654 if (!reuseaddr) { 3655 /* 3656 * No socket option SO_REUSEADDR. 3657 * If existing port is bound to 3658 * a non-wildcard IP address 3659 * and the requesting stream is 3660 * bound to a distinct 3661 * different IP addresses 3662 * (non-wildcard, also), keep 3663 * going. 3664 */ 3665 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3666 !V6_OR_V4_INADDR_ANY( 3667 ltcp->tcp_bound_source_v6) && 3668 !IN6_ARE_ADDR_EQUAL(laddr, 3669 <cp->tcp_bound_source_v6)) 3670 continue; 3671 if (ltcp->tcp_state >= TCPS_BOUND) { 3672 /* 3673 * This port is being used and 3674 * its state is >= TCPS_BOUND, 3675 * so we can't bind to it. 3676 */ 3677 break; 3678 } 3679 } else { 3680 /* 3681 * socket option SO_REUSEADDR is set on the 3682 * binding tcp_t. 3683 * 3684 * If two streams are bound to 3685 * same IP address or both addr 3686 * and bound source are wildcards 3687 * (INADDR_ANY), we want to stop 3688 * searching. 3689 * We have found a match of IP source 3690 * address and source port, which is 3691 * refused regardless of the 3692 * SO_REUSEADDR setting, so we break. 3693 */ 3694 if (IN6_ARE_ADDR_EQUAL(laddr, 3695 <cp->tcp_bound_source_v6) && 3696 (ltcp->tcp_state == TCPS_LISTEN || 3697 ltcp->tcp_state == TCPS_BOUND)) 3698 break; 3699 } 3700 } 3701 if (ltcp != NULL) { 3702 /* The port number is busy */ 3703 mutex_exit(&tbf->tf_lock); 3704 } else { 3705 /* 3706 * This port is ours. Insert in fanout and mark as 3707 * bound to prevent others from getting the port 3708 * number. 3709 */ 3710 tcp->tcp_state = TCPS_BOUND; 3711 tcp->tcp_lport = htons(port); 3712 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3713 3714 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3715 tcp->tcp_lport)] == tbf); 3716 tcp_bind_hash_insert(tbf, tcp, 1); 3717 3718 mutex_exit(&tbf->tf_lock); 3719 3720 /* 3721 * We don't want tcp_next_port_to_try to "inherit" 3722 * a port number supplied by the user in a bind. 3723 */ 3724 if (user_specified) 3725 return (port); 3726 3727 /* 3728 * This is the only place where tcp_next_port_to_try 3729 * is updated. After the update, it may or may not 3730 * be in the valid range. 3731 */ 3732 if (!tcp->tcp_anon_priv_bind) 3733 tcps->tcps_next_port_to_try = port + 1; 3734 return (port); 3735 } 3736 3737 if (tcp->tcp_anon_priv_bind) { 3738 port = tcp_get_next_priv_port(tcp); 3739 } else { 3740 if (count == 0 && user_specified) { 3741 /* 3742 * We may have to return an anonymous port. So 3743 * get one to start with. 3744 */ 3745 port = 3746 tcp_update_next_port( 3747 tcps->tcps_next_port_to_try, 3748 tcp, B_TRUE); 3749 user_specified = B_FALSE; 3750 } else { 3751 port = tcp_update_next_port(port + 1, tcp, 3752 B_FALSE); 3753 } 3754 } 3755 if (port == 0) 3756 break; 3757 3758 /* 3759 * Don't let this loop run forever in the case where 3760 * all of the anonymous ports are in use. 3761 */ 3762 } while (++count < loopmax); 3763 return (0); 3764 } 3765 3766 /* 3767 * tcp_clean_death / tcp_close_detached must not be called more than once 3768 * on a tcp. Thus every function that potentially calls tcp_clean_death 3769 * must check for the tcp state before calling tcp_clean_death. 3770 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3771 * tcp_timer_handler, all check for the tcp state. 3772 */ 3773 /* ARGSUSED */ 3774 void 3775 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3776 { 3777 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3778 3779 freemsg(mp); 3780 if (tcp->tcp_state > TCPS_BOUND) 3781 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); 3782 } 3783 3784 /* 3785 * We are dying for some reason. Try to do it gracefully. (May be called 3786 * as writer.) 3787 * 3788 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3789 * done by a service procedure). 3790 * TBD - Should the return value distinguish between the tcp_t being 3791 * freed and it being reinitialized? 3792 */ 3793 static int 3794 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3795 { 3796 mblk_t *mp; 3797 queue_t *q; 3798 tcp_stack_t *tcps = tcp->tcp_tcps; 3799 3800 TCP_CLD_STAT(tag); 3801 3802 #if TCP_TAG_CLEAN_DEATH 3803 tcp->tcp_cleandeathtag = tag; 3804 #endif 3805 3806 if (tcp->tcp_fused) 3807 tcp_unfuse(tcp); 3808 3809 if (tcp->tcp_linger_tid != 0 && 3810 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3811 tcp_stop_lingering(tcp); 3812 } 3813 3814 ASSERT(tcp != NULL); 3815 ASSERT((tcp->tcp_family == AF_INET && 3816 tcp->tcp_ipversion == IPV4_VERSION) || 3817 (tcp->tcp_family == AF_INET6 && 3818 (tcp->tcp_ipversion == IPV4_VERSION || 3819 tcp->tcp_ipversion == IPV6_VERSION))); 3820 3821 if (TCP_IS_DETACHED(tcp)) { 3822 if (tcp->tcp_hard_binding) { 3823 /* 3824 * Its an eager that we are dealing with. We close the 3825 * eager but in case a conn_ind has already gone to the 3826 * listener, let tcp_accept_finish() send a discon_ind 3827 * to the listener and drop the last reference. If the 3828 * listener doesn't even know about the eager i.e. the 3829 * conn_ind hasn't gone up, blow away the eager and drop 3830 * the last reference as well. If the conn_ind has gone 3831 * up, state should be BOUND. tcp_accept_finish 3832 * will figure out that the connection has received a 3833 * RST and will send a DISCON_IND to the application. 3834 */ 3835 tcp_closei_local(tcp); 3836 if (!tcp->tcp_tconnind_started) { 3837 CONN_DEC_REF(tcp->tcp_connp); 3838 } else { 3839 tcp->tcp_state = TCPS_BOUND; 3840 } 3841 } else { 3842 tcp_close_detached(tcp); 3843 } 3844 return (0); 3845 } 3846 3847 TCP_STAT(tcps, tcp_clean_death_nondetached); 3848 3849 /* 3850 * If T_ORDREL_IND has not been sent yet (done when service routine 3851 * is run) postpone cleaning up the endpoint until service routine 3852 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3853 * client_errno since tcp_close uses the client_errno field. 3854 */ 3855 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3856 if (err != 0) 3857 tcp->tcp_client_errno = err; 3858 3859 tcp->tcp_deferred_clean_death = B_TRUE; 3860 return (-1); 3861 } 3862 3863 q = tcp->tcp_rq; 3864 3865 /* Trash all inbound data */ 3866 flushq(q, FLUSHALL); 3867 3868 /* 3869 * If we are at least part way open and there is error 3870 * (err==0 implies no error) 3871 * notify our client by a T_DISCON_IND. 3872 */ 3873 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3874 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3875 !TCP_IS_SOCKET(tcp)) { 3876 /* 3877 * Send M_FLUSH according to TPI. Because sockets will 3878 * (and must) ignore FLUSHR we do that only for TPI 3879 * endpoints and sockets in STREAMS mode. 3880 */ 3881 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3882 } 3883 if (tcp->tcp_debug) { 3884 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3885 "tcp_clean_death: discon err %d", err); 3886 } 3887 mp = mi_tpi_discon_ind(NULL, err, 0); 3888 if (mp != NULL) { 3889 putnext(q, mp); 3890 } else { 3891 if (tcp->tcp_debug) { 3892 (void) strlog(TCP_MOD_ID, 0, 1, 3893 SL_ERROR|SL_TRACE, 3894 "tcp_clean_death, sending M_ERROR"); 3895 } 3896 (void) putnextctl1(q, M_ERROR, EPROTO); 3897 } 3898 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3899 /* SYN_SENT or SYN_RCVD */ 3900 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3901 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3902 /* ESTABLISHED or CLOSE_WAIT */ 3903 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3904 } 3905 } 3906 3907 tcp_reinit(tcp); 3908 return (-1); 3909 } 3910 3911 /* 3912 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3913 * to expire, stop the wait and finish the close. 3914 */ 3915 static void 3916 tcp_stop_lingering(tcp_t *tcp) 3917 { 3918 clock_t delta = 0; 3919 tcp_stack_t *tcps = tcp->tcp_tcps; 3920 3921 tcp->tcp_linger_tid = 0; 3922 if (tcp->tcp_state > TCPS_LISTEN) { 3923 tcp_acceptor_hash_remove(tcp); 3924 mutex_enter(&tcp->tcp_non_sq_lock); 3925 if (tcp->tcp_flow_stopped) { 3926 tcp_clrqfull(tcp); 3927 } 3928 mutex_exit(&tcp->tcp_non_sq_lock); 3929 3930 if (tcp->tcp_timer_tid != 0) { 3931 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3932 tcp->tcp_timer_tid = 0; 3933 } 3934 /* 3935 * Need to cancel those timers which will not be used when 3936 * TCP is detached. This has to be done before the tcp_wq 3937 * is set to the global queue. 3938 */ 3939 tcp_timers_stop(tcp); 3940 3941 3942 tcp->tcp_detached = B_TRUE; 3943 ASSERT(tcps->tcps_g_q != NULL); 3944 tcp->tcp_rq = tcps->tcps_g_q; 3945 tcp->tcp_wq = WR(tcps->tcps_g_q); 3946 3947 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3948 tcp_time_wait_append(tcp); 3949 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3950 goto finish; 3951 } 3952 3953 /* 3954 * If delta is zero the timer event wasn't executed and was 3955 * successfully canceled. In this case we need to restart it 3956 * with the minimal delta possible. 3957 */ 3958 if (delta >= 0) { 3959 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3960 delta ? delta : 1); 3961 } 3962 } else { 3963 tcp_closei_local(tcp); 3964 CONN_DEC_REF(tcp->tcp_connp); 3965 } 3966 finish: 3967 /* Signal closing thread that it can complete close */ 3968 mutex_enter(&tcp->tcp_closelock); 3969 tcp->tcp_detached = B_TRUE; 3970 ASSERT(tcps->tcps_g_q != NULL); 3971 tcp->tcp_rq = tcps->tcps_g_q; 3972 tcp->tcp_wq = WR(tcps->tcps_g_q); 3973 tcp->tcp_closed = 1; 3974 cv_signal(&tcp->tcp_closecv); 3975 mutex_exit(&tcp->tcp_closelock); 3976 } 3977 3978 /* 3979 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3980 * expires. 3981 */ 3982 static void 3983 tcp_close_linger_timeout(void *arg) 3984 { 3985 conn_t *connp = (conn_t *)arg; 3986 tcp_t *tcp = connp->conn_tcp; 3987 3988 tcp->tcp_client_errno = ETIMEDOUT; 3989 tcp_stop_lingering(tcp); 3990 } 3991 3992 static int 3993 tcp_close(queue_t *q, int flags) 3994 { 3995 conn_t *connp = Q_TO_CONN(q); 3996 tcp_t *tcp = connp->conn_tcp; 3997 mblk_t *mp = &tcp->tcp_closemp; 3998 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3999 boolean_t linger_interrupted = B_FALSE; 4000 mblk_t *bp; 4001 4002 ASSERT(WR(q)->q_next == NULL); 4003 ASSERT(connp->conn_ref >= 2); 4004 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4005 4006 /* 4007 * We are being closed as /dev/tcp or /dev/tcp6. 4008 * 4009 * Mark the conn as closing. ill_pending_mp_add will not 4010 * add any mp to the pending mp list, after this conn has 4011 * started closing. Same for sq_pending_mp_add 4012 */ 4013 mutex_enter(&connp->conn_lock); 4014 connp->conn_state_flags |= CONN_CLOSING; 4015 if (connp->conn_oper_pending_ill != NULL) 4016 conn_ioctl_cleanup_reqd = B_TRUE; 4017 CONN_INC_REF_LOCKED(connp); 4018 mutex_exit(&connp->conn_lock); 4019 tcp->tcp_closeflags = (uint8_t)flags; 4020 ASSERT(connp->conn_ref >= 3); 4021 4022 /* 4023 * tcp_closemp_used is used below without any protection of a lock 4024 * as we don't expect any one else to use it concurrently at this 4025 * point otherwise it would be a major defect. 4026 */ 4027 4028 if (mp->b_prev == NULL) 4029 tcp->tcp_closemp_used = B_TRUE; 4030 else 4031 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4032 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4033 4034 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4035 4036 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4037 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4038 4039 mutex_enter(&tcp->tcp_closelock); 4040 while (!tcp->tcp_closed) { 4041 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4042 /* 4043 * We got interrupted. Check if we are lingering, 4044 * if yes, post a message to stop and wait until 4045 * tcp_closed is set. If we aren't lingering, 4046 * just go back around. 4047 */ 4048 if (tcp->tcp_linger && 4049 tcp->tcp_lingertime > 0 && 4050 !linger_interrupted) { 4051 mutex_exit(&tcp->tcp_closelock); 4052 /* Entering squeue, bump ref count. */ 4053 CONN_INC_REF(connp); 4054 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4055 squeue_enter(connp->conn_sqp, bp, 4056 tcp_linger_interrupted, connp, 4057 SQTAG_IP_TCP_CLOSE); 4058 linger_interrupted = B_TRUE; 4059 mutex_enter(&tcp->tcp_closelock); 4060 } 4061 } 4062 } 4063 mutex_exit(&tcp->tcp_closelock); 4064 4065 /* 4066 * In the case of listener streams that have eagers in the q or q0 4067 * we wait for the eagers to drop their reference to us. tcp_rq and 4068 * tcp_wq of the eagers point to our queues. By waiting for the 4069 * refcnt to drop to 1, we are sure that the eagers have cleaned 4070 * up their queue pointers and also dropped their references to us. 4071 */ 4072 if (tcp->tcp_wait_for_eagers) { 4073 mutex_enter(&connp->conn_lock); 4074 while (connp->conn_ref != 1) { 4075 cv_wait(&connp->conn_cv, &connp->conn_lock); 4076 } 4077 mutex_exit(&connp->conn_lock); 4078 } 4079 /* 4080 * ioctl cleanup. The mp is queued in the 4081 * ill_pending_mp or in the sq_pending_mp. 4082 */ 4083 if (conn_ioctl_cleanup_reqd) 4084 conn_ioctl_cleanup(connp); 4085 4086 qprocsoff(q); 4087 inet_minor_free(ip_minor_arena, connp->conn_dev); 4088 4089 tcp->tcp_cpid = -1; 4090 4091 /* 4092 * Drop IP's reference on the conn. This is the last reference 4093 * on the connp if the state was less than established. If the 4094 * connection has gone into timewait state, then we will have 4095 * one ref for the TCP and one more ref (total of two) for the 4096 * classifier connected hash list (a timewait connections stays 4097 * in connected hash till closed). 4098 * 4099 * We can't assert the references because there might be other 4100 * transient reference places because of some walkers or queued 4101 * packets in squeue for the timewait state. 4102 */ 4103 CONN_DEC_REF(connp); 4104 q->q_ptr = WR(q)->q_ptr = NULL; 4105 return (0); 4106 } 4107 4108 static int 4109 tcpclose_accept(queue_t *q) 4110 { 4111 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4112 4113 /* 4114 * We had opened an acceptor STREAM for sockfs which is 4115 * now being closed due to some error. 4116 */ 4117 qprocsoff(q); 4118 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4119 q->q_ptr = WR(q)->q_ptr = NULL; 4120 return (0); 4121 } 4122 4123 /* 4124 * Called by tcp_close() routine via squeue when lingering is 4125 * interrupted by a signal. 4126 */ 4127 4128 /* ARGSUSED */ 4129 static void 4130 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4131 { 4132 conn_t *connp = (conn_t *)arg; 4133 tcp_t *tcp = connp->conn_tcp; 4134 4135 freeb(mp); 4136 if (tcp->tcp_linger_tid != 0 && 4137 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4138 tcp_stop_lingering(tcp); 4139 tcp->tcp_client_errno = EINTR; 4140 } 4141 } 4142 4143 /* 4144 * Called by streams close routine via squeues when our client blows off her 4145 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4146 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4147 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4148 * acked. 4149 * 4150 * NOTE: tcp_close potentially returns error when lingering. 4151 * However, the stream head currently does not pass these errors 4152 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4153 * errors to the application (from tsleep()) and not errors 4154 * like ECONNRESET caused by receiving a reset packet. 4155 */ 4156 4157 /* ARGSUSED */ 4158 static void 4159 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4160 { 4161 char *msg; 4162 conn_t *connp = (conn_t *)arg; 4163 tcp_t *tcp = connp->conn_tcp; 4164 clock_t delta = 0; 4165 tcp_stack_t *tcps = tcp->tcp_tcps; 4166 4167 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4168 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4169 4170 /* Cancel any pending timeout */ 4171 if (tcp->tcp_ordrelid != 0) { 4172 if (tcp->tcp_timeout) { 4173 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4174 } 4175 tcp->tcp_ordrelid = 0; 4176 tcp->tcp_timeout = B_FALSE; 4177 } 4178 4179 mutex_enter(&tcp->tcp_eager_lock); 4180 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4181 /* Cleanup for listener */ 4182 tcp_eager_cleanup(tcp, 0); 4183 tcp->tcp_wait_for_eagers = 1; 4184 } 4185 mutex_exit(&tcp->tcp_eager_lock); 4186 4187 connp->conn_mdt_ok = B_FALSE; 4188 tcp->tcp_mdt = B_FALSE; 4189 4190 connp->conn_lso_ok = B_FALSE; 4191 tcp->tcp_lso = B_FALSE; 4192 4193 msg = NULL; 4194 switch (tcp->tcp_state) { 4195 case TCPS_CLOSED: 4196 case TCPS_IDLE: 4197 case TCPS_BOUND: 4198 case TCPS_LISTEN: 4199 break; 4200 case TCPS_SYN_SENT: 4201 msg = "tcp_close, during connect"; 4202 break; 4203 case TCPS_SYN_RCVD: 4204 /* 4205 * Close during the connect 3-way handshake 4206 * but here there may or may not be pending data 4207 * already on queue. Process almost same as in 4208 * the ESTABLISHED state. 4209 */ 4210 /* FALLTHRU */ 4211 default: 4212 if (tcp->tcp_fused) 4213 tcp_unfuse(tcp); 4214 4215 /* 4216 * If SO_LINGER has set a zero linger time, abort the 4217 * connection with a reset. 4218 */ 4219 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4220 msg = "tcp_close, zero lingertime"; 4221 break; 4222 } 4223 4224 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4225 /* 4226 * Abort connection if there is unread data queued. 4227 */ 4228 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4229 msg = "tcp_close, unread data"; 4230 break; 4231 } 4232 /* 4233 * tcp_hard_bound is now cleared thus all packets go through 4234 * tcp_lookup. This fact is used by tcp_detach below. 4235 * 4236 * We have done a qwait() above which could have possibly 4237 * drained more messages in turn causing transition to a 4238 * different state. Check whether we have to do the rest 4239 * of the processing or not. 4240 */ 4241 if (tcp->tcp_state <= TCPS_LISTEN) 4242 break; 4243 4244 /* 4245 * Transmit the FIN before detaching the tcp_t. 4246 * After tcp_detach returns this queue/perimeter 4247 * no longer owns the tcp_t thus others can modify it. 4248 */ 4249 (void) tcp_xmit_end(tcp); 4250 4251 /* 4252 * If lingering on close then wait until the fin is acked, 4253 * the SO_LINGER time passes, or a reset is sent/received. 4254 */ 4255 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4256 !(tcp->tcp_fin_acked) && 4257 tcp->tcp_state >= TCPS_ESTABLISHED) { 4258 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4259 tcp->tcp_client_errno = EWOULDBLOCK; 4260 } else if (tcp->tcp_client_errno == 0) { 4261 4262 ASSERT(tcp->tcp_linger_tid == 0); 4263 4264 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4265 tcp_close_linger_timeout, 4266 tcp->tcp_lingertime * hz); 4267 4268 /* tcp_close_linger_timeout will finish close */ 4269 if (tcp->tcp_linger_tid == 0) 4270 tcp->tcp_client_errno = ENOSR; 4271 else 4272 return; 4273 } 4274 4275 /* 4276 * Check if we need to detach or just close 4277 * the instance. 4278 */ 4279 if (tcp->tcp_state <= TCPS_LISTEN) 4280 break; 4281 } 4282 4283 /* 4284 * Make sure that no other thread will access the tcp_rq of 4285 * this instance (through lookups etc.) as tcp_rq will go 4286 * away shortly. 4287 */ 4288 tcp_acceptor_hash_remove(tcp); 4289 4290 mutex_enter(&tcp->tcp_non_sq_lock); 4291 if (tcp->tcp_flow_stopped) { 4292 tcp_clrqfull(tcp); 4293 } 4294 mutex_exit(&tcp->tcp_non_sq_lock); 4295 4296 if (tcp->tcp_timer_tid != 0) { 4297 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4298 tcp->tcp_timer_tid = 0; 4299 } 4300 /* 4301 * Need to cancel those timers which will not be used when 4302 * TCP is detached. This has to be done before the tcp_wq 4303 * is set to the global queue. 4304 */ 4305 tcp_timers_stop(tcp); 4306 4307 tcp->tcp_detached = B_TRUE; 4308 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4309 tcp_time_wait_append(tcp); 4310 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4311 ASSERT(connp->conn_ref >= 3); 4312 goto finish; 4313 } 4314 4315 /* 4316 * If delta is zero the timer event wasn't executed and was 4317 * successfully canceled. In this case we need to restart it 4318 * with the minimal delta possible. 4319 */ 4320 if (delta >= 0) 4321 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4322 delta ? delta : 1); 4323 4324 ASSERT(connp->conn_ref >= 3); 4325 goto finish; 4326 } 4327 4328 /* Detach did not complete. Still need to remove q from stream. */ 4329 if (msg) { 4330 if (tcp->tcp_state == TCPS_ESTABLISHED || 4331 tcp->tcp_state == TCPS_CLOSE_WAIT) 4332 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4333 if (tcp->tcp_state == TCPS_SYN_SENT || 4334 tcp->tcp_state == TCPS_SYN_RCVD) 4335 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4336 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4337 } 4338 4339 tcp_closei_local(tcp); 4340 CONN_DEC_REF(connp); 4341 ASSERT(connp->conn_ref >= 2); 4342 4343 finish: 4344 /* 4345 * Although packets are always processed on the correct 4346 * tcp's perimeter and access is serialized via squeue's, 4347 * IP still needs a queue when sending packets in time_wait 4348 * state so use WR(tcps_g_q) till ip_output() can be 4349 * changed to deal with just connp. For read side, we 4350 * could have set tcp_rq to NULL but there are some cases 4351 * in tcp_rput_data() from early days of this code which 4352 * do a putnext without checking if tcp is closed. Those 4353 * need to be identified before both tcp_rq and tcp_wq 4354 * can be set to NULL and tcps_g_q can disappear forever. 4355 */ 4356 mutex_enter(&tcp->tcp_closelock); 4357 /* 4358 * Don't change the queues in the case of a listener that has 4359 * eagers in its q or q0. It could surprise the eagers. 4360 * Instead wait for the eagers outside the squeue. 4361 */ 4362 if (!tcp->tcp_wait_for_eagers) { 4363 tcp->tcp_detached = B_TRUE; 4364 /* 4365 * When default queue is closing we set tcps_g_q to NULL 4366 * after the close is done. 4367 */ 4368 ASSERT(tcps->tcps_g_q != NULL); 4369 tcp->tcp_rq = tcps->tcps_g_q; 4370 tcp->tcp_wq = WR(tcps->tcps_g_q); 4371 } 4372 4373 /* Signal tcp_close() to finish closing. */ 4374 tcp->tcp_closed = 1; 4375 cv_signal(&tcp->tcp_closecv); 4376 mutex_exit(&tcp->tcp_closelock); 4377 } 4378 4379 4380 /* 4381 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4382 * Some stream heads get upset if they see these later on as anything but NULL. 4383 */ 4384 static void 4385 tcp_close_mpp(mblk_t **mpp) 4386 { 4387 mblk_t *mp; 4388 4389 if ((mp = *mpp) != NULL) { 4390 do { 4391 mp->b_next = NULL; 4392 mp->b_prev = NULL; 4393 } while ((mp = mp->b_cont) != NULL); 4394 4395 mp = *mpp; 4396 *mpp = NULL; 4397 freemsg(mp); 4398 } 4399 } 4400 4401 /* Do detached close. */ 4402 static void 4403 tcp_close_detached(tcp_t *tcp) 4404 { 4405 if (tcp->tcp_fused) 4406 tcp_unfuse(tcp); 4407 4408 /* 4409 * Clustering code serializes TCP disconnect callbacks and 4410 * cluster tcp list walks by blocking a TCP disconnect callback 4411 * if a cluster tcp list walk is in progress. This ensures 4412 * accurate accounting of TCPs in the cluster code even though 4413 * the TCP list walk itself is not atomic. 4414 */ 4415 tcp_closei_local(tcp); 4416 CONN_DEC_REF(tcp->tcp_connp); 4417 } 4418 4419 /* 4420 * Stop all TCP timers, and free the timer mblks if requested. 4421 */ 4422 void 4423 tcp_timers_stop(tcp_t *tcp) 4424 { 4425 if (tcp->tcp_timer_tid != 0) { 4426 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4427 tcp->tcp_timer_tid = 0; 4428 } 4429 if (tcp->tcp_ka_tid != 0) { 4430 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4431 tcp->tcp_ka_tid = 0; 4432 } 4433 if (tcp->tcp_ack_tid != 0) { 4434 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4435 tcp->tcp_ack_tid = 0; 4436 } 4437 if (tcp->tcp_push_tid != 0) { 4438 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4439 tcp->tcp_push_tid = 0; 4440 } 4441 } 4442 4443 /* 4444 * The tcp_t is going away. Remove it from all lists and set it 4445 * to TCPS_CLOSED. The freeing up of memory is deferred until 4446 * tcp_inactive. This is needed since a thread in tcp_rput might have 4447 * done a CONN_INC_REF on this structure before it was removed from the 4448 * hashes. 4449 */ 4450 static void 4451 tcp_closei_local(tcp_t *tcp) 4452 { 4453 ire_t *ire; 4454 conn_t *connp = tcp->tcp_connp; 4455 tcp_stack_t *tcps = tcp->tcp_tcps; 4456 4457 if (!TCP_IS_SOCKET(tcp)) 4458 tcp_acceptor_hash_remove(tcp); 4459 4460 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4461 tcp->tcp_ibsegs = 0; 4462 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4463 tcp->tcp_obsegs = 0; 4464 4465 /* 4466 * If we are an eager connection hanging off a listener that 4467 * hasn't formally accepted the connection yet, get off his 4468 * list and blow off any data that we have accumulated. 4469 */ 4470 if (tcp->tcp_listener != NULL) { 4471 tcp_t *listener = tcp->tcp_listener; 4472 mutex_enter(&listener->tcp_eager_lock); 4473 /* 4474 * tcp_tconnind_started == B_TRUE means that the 4475 * conn_ind has already gone to listener. At 4476 * this point, eager will be closed but we 4477 * leave it in listeners eager list so that 4478 * if listener decides to close without doing 4479 * accept, we can clean this up. In tcp_wput_accept 4480 * we take care of the case of accept on closed 4481 * eager. 4482 */ 4483 if (!tcp->tcp_tconnind_started) { 4484 tcp_eager_unlink(tcp); 4485 mutex_exit(&listener->tcp_eager_lock); 4486 /* 4487 * We don't want to have any pointers to the 4488 * listener queue, after we have released our 4489 * reference on the listener 4490 */ 4491 ASSERT(tcps->tcps_g_q != NULL); 4492 tcp->tcp_rq = tcps->tcps_g_q; 4493 tcp->tcp_wq = WR(tcps->tcps_g_q); 4494 CONN_DEC_REF(listener->tcp_connp); 4495 } else { 4496 mutex_exit(&listener->tcp_eager_lock); 4497 } 4498 } 4499 4500 /* Stop all the timers */ 4501 tcp_timers_stop(tcp); 4502 4503 if (tcp->tcp_state == TCPS_LISTEN) { 4504 if (tcp->tcp_ip_addr_cache) { 4505 kmem_free((void *)tcp->tcp_ip_addr_cache, 4506 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4507 tcp->tcp_ip_addr_cache = NULL; 4508 } 4509 } 4510 mutex_enter(&tcp->tcp_non_sq_lock); 4511 if (tcp->tcp_flow_stopped) 4512 tcp_clrqfull(tcp); 4513 mutex_exit(&tcp->tcp_non_sq_lock); 4514 4515 tcp_bind_hash_remove(tcp); 4516 /* 4517 * If the tcp_time_wait_collector (which runs outside the squeue) 4518 * is trying to remove this tcp from the time wait list, we will 4519 * block in tcp_time_wait_remove while trying to acquire the 4520 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4521 * requires the ipcl_hash_remove to be ordered after the 4522 * tcp_time_wait_remove for the refcnt checks to work correctly. 4523 */ 4524 if (tcp->tcp_state == TCPS_TIME_WAIT) 4525 (void) tcp_time_wait_remove(tcp, NULL); 4526 CL_INET_DISCONNECT(tcp); 4527 ipcl_hash_remove(connp); 4528 4529 /* 4530 * Delete the cached ire in conn_ire_cache and also mark 4531 * the conn as CONDEMNED 4532 */ 4533 mutex_enter(&connp->conn_lock); 4534 connp->conn_state_flags |= CONN_CONDEMNED; 4535 ire = connp->conn_ire_cache; 4536 connp->conn_ire_cache = NULL; 4537 mutex_exit(&connp->conn_lock); 4538 if (ire != NULL) 4539 IRE_REFRELE_NOTR(ire); 4540 4541 /* Need to cleanup any pending ioctls */ 4542 ASSERT(tcp->tcp_time_wait_next == NULL); 4543 ASSERT(tcp->tcp_time_wait_prev == NULL); 4544 ASSERT(tcp->tcp_time_wait_expire == 0); 4545 tcp->tcp_state = TCPS_CLOSED; 4546 4547 /* Release any SSL context */ 4548 if (tcp->tcp_kssl_ent != NULL) { 4549 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4550 tcp->tcp_kssl_ent = NULL; 4551 } 4552 if (tcp->tcp_kssl_ctx != NULL) { 4553 kssl_release_ctx(tcp->tcp_kssl_ctx); 4554 tcp->tcp_kssl_ctx = NULL; 4555 } 4556 tcp->tcp_kssl_pending = B_FALSE; 4557 4558 tcp_ipsec_cleanup(tcp); 4559 } 4560 4561 /* 4562 * tcp is dying (called from ipcl_conn_destroy and error cases). 4563 * Free the tcp_t in either case. 4564 */ 4565 void 4566 tcp_free(tcp_t *tcp) 4567 { 4568 mblk_t *mp; 4569 ip6_pkt_t *ipp; 4570 4571 ASSERT(tcp != NULL); 4572 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4573 4574 tcp->tcp_rq = NULL; 4575 tcp->tcp_wq = NULL; 4576 4577 tcp_close_mpp(&tcp->tcp_xmit_head); 4578 tcp_close_mpp(&tcp->tcp_reass_head); 4579 if (tcp->tcp_rcv_list != NULL) { 4580 /* Free b_next chain */ 4581 tcp_close_mpp(&tcp->tcp_rcv_list); 4582 } 4583 if ((mp = tcp->tcp_urp_mp) != NULL) { 4584 freemsg(mp); 4585 } 4586 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4587 freemsg(mp); 4588 } 4589 4590 if (tcp->tcp_fused_sigurg_mp != NULL) { 4591 freeb(tcp->tcp_fused_sigurg_mp); 4592 tcp->tcp_fused_sigurg_mp = NULL; 4593 } 4594 4595 if (tcp->tcp_sack_info != NULL) { 4596 if (tcp->tcp_notsack_list != NULL) { 4597 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4598 } 4599 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4600 } 4601 4602 if (tcp->tcp_hopopts != NULL) { 4603 mi_free(tcp->tcp_hopopts); 4604 tcp->tcp_hopopts = NULL; 4605 tcp->tcp_hopoptslen = 0; 4606 } 4607 ASSERT(tcp->tcp_hopoptslen == 0); 4608 if (tcp->tcp_dstopts != NULL) { 4609 mi_free(tcp->tcp_dstopts); 4610 tcp->tcp_dstopts = NULL; 4611 tcp->tcp_dstoptslen = 0; 4612 } 4613 ASSERT(tcp->tcp_dstoptslen == 0); 4614 if (tcp->tcp_rtdstopts != NULL) { 4615 mi_free(tcp->tcp_rtdstopts); 4616 tcp->tcp_rtdstopts = NULL; 4617 tcp->tcp_rtdstoptslen = 0; 4618 } 4619 ASSERT(tcp->tcp_rtdstoptslen == 0); 4620 if (tcp->tcp_rthdr != NULL) { 4621 mi_free(tcp->tcp_rthdr); 4622 tcp->tcp_rthdr = NULL; 4623 tcp->tcp_rthdrlen = 0; 4624 } 4625 ASSERT(tcp->tcp_rthdrlen == 0); 4626 4627 ipp = &tcp->tcp_sticky_ipp; 4628 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4629 IPPF_RTHDR)) 4630 ip6_pkt_free(ipp); 4631 4632 /* 4633 * Free memory associated with the tcp/ip header template. 4634 */ 4635 4636 if (tcp->tcp_iphc != NULL) 4637 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4638 4639 /* 4640 * Following is really a blowing away a union. 4641 * It happens to have exactly two members of identical size 4642 * the following code is enough. 4643 */ 4644 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4645 4646 if (tcp->tcp_tracebuf != NULL) { 4647 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4648 tcp->tcp_tracebuf = NULL; 4649 } 4650 } 4651 4652 4653 /* 4654 * Put a connection confirmation message upstream built from the 4655 * address information within 'iph' and 'tcph'. Report our success or failure. 4656 */ 4657 static boolean_t 4658 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4659 mblk_t **defermp) 4660 { 4661 sin_t sin; 4662 sin6_t sin6; 4663 mblk_t *mp; 4664 char *optp = NULL; 4665 int optlen = 0; 4666 cred_t *cr; 4667 4668 if (defermp != NULL) 4669 *defermp = NULL; 4670 4671 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4672 /* 4673 * Return in T_CONN_CON results of option negotiation through 4674 * the T_CONN_REQ. Note: If there is an real end-to-end option 4675 * negotiation, then what is received from remote end needs 4676 * to be taken into account but there is no such thing (yet?) 4677 * in our TCP/IP. 4678 * Note: We do not use mi_offset_param() here as 4679 * tcp_opts_conn_req contents do not directly come from 4680 * an application and are either generated in kernel or 4681 * from user input that was already verified. 4682 */ 4683 mp = tcp->tcp_conn.tcp_opts_conn_req; 4684 optp = (char *)(mp->b_rptr + 4685 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4686 optlen = (int) 4687 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4688 } 4689 4690 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4691 ipha_t *ipha = (ipha_t *)iphdr; 4692 4693 /* packet is IPv4 */ 4694 if (tcp->tcp_family == AF_INET) { 4695 sin = sin_null; 4696 sin.sin_addr.s_addr = ipha->ipha_src; 4697 sin.sin_port = *(uint16_t *)tcph->th_lport; 4698 sin.sin_family = AF_INET; 4699 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4700 (int)sizeof (sin_t), optp, optlen); 4701 } else { 4702 sin6 = sin6_null; 4703 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4704 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4705 sin6.sin6_family = AF_INET6; 4706 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4707 (int)sizeof (sin6_t), optp, optlen); 4708 4709 } 4710 } else { 4711 ip6_t *ip6h = (ip6_t *)iphdr; 4712 4713 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4714 ASSERT(tcp->tcp_family == AF_INET6); 4715 sin6 = sin6_null; 4716 sin6.sin6_addr = ip6h->ip6_src; 4717 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4718 sin6.sin6_family = AF_INET6; 4719 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4720 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4721 (int)sizeof (sin6_t), optp, optlen); 4722 } 4723 4724 if (!mp) 4725 return (B_FALSE); 4726 4727 if ((cr = DB_CRED(idmp)) != NULL) { 4728 mblk_setcred(mp, cr); 4729 DB_CPID(mp) = DB_CPID(idmp); 4730 } 4731 4732 if (defermp == NULL) 4733 putnext(tcp->tcp_rq, mp); 4734 else 4735 *defermp = mp; 4736 4737 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4738 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4739 return (B_TRUE); 4740 } 4741 4742 /* 4743 * Defense for the SYN attack - 4744 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4745 * one from the list of droppable eagers. This list is a subset of q0. 4746 * see comments before the definition of MAKE_DROPPABLE(). 4747 * 2. Don't drop a SYN request before its first timeout. This gives every 4748 * request at least til the first timeout to complete its 3-way handshake. 4749 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4750 * requests currently on the queue that has timed out. This will be used 4751 * as an indicator of whether an attack is under way, so that appropriate 4752 * actions can be taken. (It's incremented in tcp_timer() and decremented 4753 * either when eager goes into ESTABLISHED, or gets freed up.) 4754 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4755 * # of timeout drops back to <= q0len/32 => SYN alert off 4756 */ 4757 static boolean_t 4758 tcp_drop_q0(tcp_t *tcp) 4759 { 4760 tcp_t *eager; 4761 mblk_t *mp; 4762 tcp_stack_t *tcps = tcp->tcp_tcps; 4763 4764 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4765 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4766 4767 /* Pick oldest eager from the list of droppable eagers */ 4768 eager = tcp->tcp_eager_prev_drop_q0; 4769 4770 /* If list is empty. return B_FALSE */ 4771 if (eager == tcp) { 4772 return (B_FALSE); 4773 } 4774 4775 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4776 if ((mp = allocb(0, BPRI_HI)) == NULL) 4777 return (B_FALSE); 4778 4779 /* 4780 * Take this eager out from the list of droppable eagers since we are 4781 * going to drop it. 4782 */ 4783 MAKE_UNDROPPABLE(eager); 4784 4785 if (tcp->tcp_debug) { 4786 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4787 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4788 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4789 tcp->tcp_conn_req_cnt_q0, 4790 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4791 } 4792 4793 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4794 4795 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4796 CONN_INC_REF(eager->tcp_connp); 4797 4798 /* Mark the IRE created for this SYN request temporary */ 4799 tcp_ip_ire_mark_advice(eager); 4800 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4801 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4802 4803 return (B_TRUE); 4804 } 4805 4806 int 4807 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4808 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4809 { 4810 tcp_t *ltcp = lconnp->conn_tcp; 4811 tcp_t *tcp = connp->conn_tcp; 4812 mblk_t *tpi_mp; 4813 ipha_t *ipha; 4814 ip6_t *ip6h; 4815 sin6_t sin6; 4816 in6_addr_t v6dst; 4817 int err; 4818 int ifindex = 0; 4819 cred_t *cr; 4820 tcp_stack_t *tcps = tcp->tcp_tcps; 4821 4822 if (ipvers == IPV4_VERSION) { 4823 ipha = (ipha_t *)mp->b_rptr; 4824 4825 connp->conn_send = ip_output; 4826 connp->conn_recv = tcp_input; 4827 4828 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4829 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4830 4831 sin6 = sin6_null; 4832 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4833 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4834 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4835 sin6.sin6_family = AF_INET6; 4836 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4837 lconnp->conn_zoneid, tcps->tcps_netstack); 4838 if (tcp->tcp_recvdstaddr) { 4839 sin6_t sin6d; 4840 4841 sin6d = sin6_null; 4842 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4843 &sin6d.sin6_addr); 4844 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4845 sin6d.sin6_family = AF_INET; 4846 tpi_mp = mi_tpi_extconn_ind(NULL, 4847 (char *)&sin6d, sizeof (sin6_t), 4848 (char *)&tcp, 4849 (t_scalar_t)sizeof (intptr_t), 4850 (char *)&sin6d, sizeof (sin6_t), 4851 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4852 } else { 4853 tpi_mp = mi_tpi_conn_ind(NULL, 4854 (char *)&sin6, sizeof (sin6_t), 4855 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4856 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4857 } 4858 } else { 4859 ip6h = (ip6_t *)mp->b_rptr; 4860 4861 connp->conn_send = ip_output_v6; 4862 connp->conn_recv = tcp_input; 4863 4864 connp->conn_srcv6 = ip6h->ip6_dst; 4865 connp->conn_remv6 = ip6h->ip6_src; 4866 4867 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4868 ifindex = (int)DB_CKSUMSTUFF(mp); 4869 DB_CKSUMSTUFF(mp) = 0; 4870 4871 sin6 = sin6_null; 4872 sin6.sin6_addr = ip6h->ip6_src; 4873 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4874 sin6.sin6_family = AF_INET6; 4875 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4876 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4877 lconnp->conn_zoneid, tcps->tcps_netstack); 4878 4879 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4880 /* Pass up the scope_id of remote addr */ 4881 sin6.sin6_scope_id = ifindex; 4882 } else { 4883 sin6.sin6_scope_id = 0; 4884 } 4885 if (tcp->tcp_recvdstaddr) { 4886 sin6_t sin6d; 4887 4888 sin6d = sin6_null; 4889 sin6.sin6_addr = ip6h->ip6_dst; 4890 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4891 sin6d.sin6_family = AF_INET; 4892 tpi_mp = mi_tpi_extconn_ind(NULL, 4893 (char *)&sin6d, sizeof (sin6_t), 4894 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4895 (char *)&sin6d, sizeof (sin6_t), 4896 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4897 } else { 4898 tpi_mp = mi_tpi_conn_ind(NULL, 4899 (char *)&sin6, sizeof (sin6_t), 4900 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4901 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4902 } 4903 } 4904 4905 if (tpi_mp == NULL) 4906 return (ENOMEM); 4907 4908 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4909 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4910 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4911 connp->conn_fully_bound = B_FALSE; 4912 4913 if (tcps->tcps_trace) 4914 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4915 4916 /* Inherit information from the "parent" */ 4917 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4918 tcp->tcp_family = ltcp->tcp_family; 4919 tcp->tcp_wq = ltcp->tcp_wq; 4920 tcp->tcp_rq = ltcp->tcp_rq; 4921 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4922 tcp->tcp_detached = B_TRUE; 4923 if ((err = tcp_init_values(tcp)) != 0) { 4924 freemsg(tpi_mp); 4925 return (err); 4926 } 4927 4928 if (ipvers == IPV4_VERSION) { 4929 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4930 freemsg(tpi_mp); 4931 return (err); 4932 } 4933 ASSERT(tcp->tcp_ipha != NULL); 4934 } else { 4935 /* ifindex must be already set */ 4936 ASSERT(ifindex != 0); 4937 4938 if (ltcp->tcp_bound_if != 0) { 4939 /* 4940 * Set newtcp's bound_if equal to 4941 * listener's value. If ifindex is 4942 * not the same as ltcp->tcp_bound_if, 4943 * it must be a packet for the ipmp group 4944 * of interfaces 4945 */ 4946 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4947 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4948 tcp->tcp_bound_if = ifindex; 4949 } 4950 4951 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4952 tcp->tcp_recvifindex = 0; 4953 tcp->tcp_recvhops = 0xffffffffU; 4954 ASSERT(tcp->tcp_ip6h != NULL); 4955 } 4956 4957 tcp->tcp_lport = ltcp->tcp_lport; 4958 4959 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4960 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4961 /* 4962 * Listener had options of some sort; eager inherits. 4963 * Free up the eager template and allocate one 4964 * of the right size. 4965 */ 4966 if (tcp->tcp_hdr_grown) { 4967 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4968 } else { 4969 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4970 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4971 } 4972 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4973 KM_NOSLEEP); 4974 if (tcp->tcp_iphc == NULL) { 4975 tcp->tcp_iphc_len = 0; 4976 freemsg(tpi_mp); 4977 return (ENOMEM); 4978 } 4979 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4980 tcp->tcp_hdr_grown = B_TRUE; 4981 } 4982 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4983 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4984 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4985 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4986 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4987 4988 /* 4989 * Copy the IP+TCP header template from listener to eager 4990 */ 4991 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4992 if (tcp->tcp_ipversion == IPV6_VERSION) { 4993 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4994 IPPROTO_RAW) { 4995 tcp->tcp_ip6h = 4996 (ip6_t *)(tcp->tcp_iphc + 4997 sizeof (ip6i_t)); 4998 } else { 4999 tcp->tcp_ip6h = 5000 (ip6_t *)(tcp->tcp_iphc); 5001 } 5002 tcp->tcp_ipha = NULL; 5003 } else { 5004 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5005 tcp->tcp_ip6h = NULL; 5006 } 5007 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5008 tcp->tcp_ip_hdr_len); 5009 } else { 5010 /* 5011 * only valid case when ipversion of listener and 5012 * eager differ is when listener is IPv6 and 5013 * eager is IPv4. 5014 * Eager header template has been initialized to the 5015 * maximum v4 header sizes, which includes space for 5016 * TCP and IP options. 5017 */ 5018 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5019 (tcp->tcp_ipversion == IPV4_VERSION)); 5020 ASSERT(tcp->tcp_iphc_len >= 5021 TCP_MAX_COMBINED_HEADER_LENGTH); 5022 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5023 /* copy IP header fields individually */ 5024 tcp->tcp_ipha->ipha_ttl = 5025 ltcp->tcp_ip6h->ip6_hops; 5026 bcopy(ltcp->tcp_tcph->th_lport, 5027 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5028 } 5029 5030 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5031 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5032 sizeof (in_port_t)); 5033 5034 if (ltcp->tcp_lport == 0) { 5035 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5036 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5037 sizeof (in_port_t)); 5038 } 5039 5040 if (tcp->tcp_ipversion == IPV4_VERSION) { 5041 ASSERT(ipha != NULL); 5042 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5043 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5044 5045 /* Source routing option copyover (reverse it) */ 5046 if (tcps->tcps_rev_src_routes) 5047 tcp_opt_reverse(tcp, ipha); 5048 } else { 5049 ASSERT(ip6h != NULL); 5050 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5051 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5052 } 5053 5054 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5055 ASSERT(!tcp->tcp_tconnind_started); 5056 /* 5057 * If the SYN contains a credential, it's a loopback packet; attach 5058 * the credential to the TPI message. 5059 */ 5060 if ((cr = DB_CRED(idmp)) != NULL) { 5061 mblk_setcred(tpi_mp, cr); 5062 DB_CPID(tpi_mp) = DB_CPID(idmp); 5063 } 5064 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5065 5066 /* Inherit the listener's SSL protection state */ 5067 5068 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5069 kssl_hold_ent(tcp->tcp_kssl_ent); 5070 tcp->tcp_kssl_pending = B_TRUE; 5071 } 5072 5073 return (0); 5074 } 5075 5076 5077 int 5078 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5079 tcph_t *tcph, mblk_t *idmp) 5080 { 5081 tcp_t *ltcp = lconnp->conn_tcp; 5082 tcp_t *tcp = connp->conn_tcp; 5083 sin_t sin; 5084 mblk_t *tpi_mp = NULL; 5085 int err; 5086 cred_t *cr; 5087 tcp_stack_t *tcps = tcp->tcp_tcps; 5088 5089 sin = sin_null; 5090 sin.sin_addr.s_addr = ipha->ipha_src; 5091 sin.sin_port = *(uint16_t *)tcph->th_lport; 5092 sin.sin_family = AF_INET; 5093 if (ltcp->tcp_recvdstaddr) { 5094 sin_t sind; 5095 5096 sind = sin_null; 5097 sind.sin_addr.s_addr = ipha->ipha_dst; 5098 sind.sin_port = *(uint16_t *)tcph->th_fport; 5099 sind.sin_family = AF_INET; 5100 tpi_mp = mi_tpi_extconn_ind(NULL, 5101 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5102 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5103 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5104 } else { 5105 tpi_mp = mi_tpi_conn_ind(NULL, 5106 (char *)&sin, sizeof (sin_t), 5107 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5108 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5109 } 5110 5111 if (tpi_mp == NULL) { 5112 return (ENOMEM); 5113 } 5114 5115 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5116 connp->conn_send = ip_output; 5117 connp->conn_recv = tcp_input; 5118 connp->conn_fully_bound = B_FALSE; 5119 5120 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5121 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5122 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5123 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5124 5125 if (tcps->tcps_trace) { 5126 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5127 } 5128 5129 /* Inherit information from the "parent" */ 5130 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5131 tcp->tcp_family = ltcp->tcp_family; 5132 tcp->tcp_wq = ltcp->tcp_wq; 5133 tcp->tcp_rq = ltcp->tcp_rq; 5134 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5135 tcp->tcp_detached = B_TRUE; 5136 if ((err = tcp_init_values(tcp)) != 0) { 5137 freemsg(tpi_mp); 5138 return (err); 5139 } 5140 5141 /* 5142 * Let's make sure that eager tcp template has enough space to 5143 * copy IPv4 listener's tcp template. Since the conn_t structure is 5144 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5145 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5146 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5147 * extension headers or with ip6i_t struct). Note that bcopy() below 5148 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5149 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5150 */ 5151 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5152 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5153 5154 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5155 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5156 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5157 tcp->tcp_ttl = ltcp->tcp_ttl; 5158 tcp->tcp_tos = ltcp->tcp_tos; 5159 5160 /* Copy the IP+TCP header template from listener to eager */ 5161 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5162 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5163 tcp->tcp_ip6h = NULL; 5164 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5165 tcp->tcp_ip_hdr_len); 5166 5167 /* Initialize the IP addresses and Ports */ 5168 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5169 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5170 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5171 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5172 5173 /* Source routing option copyover (reverse it) */ 5174 if (tcps->tcps_rev_src_routes) 5175 tcp_opt_reverse(tcp, ipha); 5176 5177 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5178 ASSERT(!tcp->tcp_tconnind_started); 5179 5180 /* 5181 * If the SYN contains a credential, it's a loopback packet; attach 5182 * the credential to the TPI message. 5183 */ 5184 if ((cr = DB_CRED(idmp)) != NULL) { 5185 mblk_setcred(tpi_mp, cr); 5186 DB_CPID(tpi_mp) = DB_CPID(idmp); 5187 } 5188 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5189 5190 /* Inherit the listener's SSL protection state */ 5191 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5192 kssl_hold_ent(tcp->tcp_kssl_ent); 5193 tcp->tcp_kssl_pending = B_TRUE; 5194 } 5195 5196 return (0); 5197 } 5198 5199 /* 5200 * sets up conn for ipsec. 5201 * if the first mblk is M_CTL it is consumed and mpp is updated. 5202 * in case of error mpp is freed. 5203 */ 5204 conn_t * 5205 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5206 { 5207 conn_t *connp = tcp->tcp_connp; 5208 conn_t *econnp; 5209 squeue_t *new_sqp; 5210 mblk_t *first_mp = *mpp; 5211 mblk_t *mp = *mpp; 5212 boolean_t mctl_present = B_FALSE; 5213 uint_t ipvers; 5214 5215 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5216 if (econnp == NULL) { 5217 freemsg(first_mp); 5218 return (NULL); 5219 } 5220 if (DB_TYPE(mp) == M_CTL) { 5221 if (mp->b_cont == NULL || 5222 mp->b_cont->b_datap->db_type != M_DATA) { 5223 freemsg(first_mp); 5224 return (NULL); 5225 } 5226 mp = mp->b_cont; 5227 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5228 freemsg(first_mp); 5229 return (NULL); 5230 } 5231 5232 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5233 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5234 mctl_present = B_TRUE; 5235 } else { 5236 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5237 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5238 } 5239 5240 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5241 DB_CKSUMSTART(mp) = 0; 5242 5243 ASSERT(OK_32PTR(mp->b_rptr)); 5244 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5245 if (ipvers == IPV4_VERSION) { 5246 uint16_t *up; 5247 uint32_t ports; 5248 ipha_t *ipha; 5249 5250 ipha = (ipha_t *)mp->b_rptr; 5251 up = (uint16_t *)((uchar_t *)ipha + 5252 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5253 ports = *(uint32_t *)up; 5254 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5255 ipha->ipha_dst, ipha->ipha_src, ports); 5256 } else { 5257 uint16_t *up; 5258 uint32_t ports; 5259 uint16_t ip_hdr_len; 5260 uint8_t *nexthdrp; 5261 ip6_t *ip6h; 5262 tcph_t *tcph; 5263 5264 ip6h = (ip6_t *)mp->b_rptr; 5265 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5266 ip_hdr_len = IPV6_HDR_LEN; 5267 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5268 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5269 CONN_DEC_REF(econnp); 5270 freemsg(first_mp); 5271 return (NULL); 5272 } 5273 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5274 up = (uint16_t *)tcph->th_lport; 5275 ports = *(uint32_t *)up; 5276 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5277 ip6h->ip6_dst, ip6h->ip6_src, ports); 5278 } 5279 5280 /* 5281 * The caller already ensured that there is a sqp present. 5282 */ 5283 econnp->conn_sqp = new_sqp; 5284 5285 if (connp->conn_policy != NULL) { 5286 ipsec_in_t *ii; 5287 ii = (ipsec_in_t *)(first_mp->b_rptr); 5288 ASSERT(ii->ipsec_in_policy == NULL); 5289 IPPH_REFHOLD(connp->conn_policy); 5290 ii->ipsec_in_policy = connp->conn_policy; 5291 5292 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5293 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5294 CONN_DEC_REF(econnp); 5295 freemsg(first_mp); 5296 return (NULL); 5297 } 5298 } 5299 5300 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5301 CONN_DEC_REF(econnp); 5302 freemsg(first_mp); 5303 return (NULL); 5304 } 5305 5306 /* 5307 * If we know we have some policy, pass the "IPSEC" 5308 * options size TCP uses this adjust the MSS. 5309 */ 5310 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5311 if (mctl_present) { 5312 freeb(first_mp); 5313 *mpp = mp; 5314 } 5315 5316 return (econnp); 5317 } 5318 5319 /* 5320 * tcp_get_conn/tcp_free_conn 5321 * 5322 * tcp_get_conn is used to get a clean tcp connection structure. 5323 * It tries to reuse the connections put on the freelist by the 5324 * time_wait_collector failing which it goes to kmem_cache. This 5325 * way has two benefits compared to just allocating from and 5326 * freeing to kmem_cache. 5327 * 1) The time_wait_collector can free (which includes the cleanup) 5328 * outside the squeue. So when the interrupt comes, we have a clean 5329 * connection sitting in the freelist. Obviously, this buys us 5330 * performance. 5331 * 5332 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5333 * has multiple disadvantages - tying up the squeue during alloc, and the 5334 * fact that IPSec policy initialization has to happen here which 5335 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5336 * But allocating the conn/tcp in IP land is also not the best since 5337 * we can't check the 'q' and 'q0' which are protected by squeue and 5338 * blindly allocate memory which might have to be freed here if we are 5339 * not allowed to accept the connection. By using the freelist and 5340 * putting the conn/tcp back in freelist, we don't pay a penalty for 5341 * allocating memory without checking 'q/q0' and freeing it if we can't 5342 * accept the connection. 5343 * 5344 * Care should be taken to put the conn back in the same squeue's freelist 5345 * from which it was allocated. Best results are obtained if conn is 5346 * allocated from listener's squeue and freed to the same. Time wait 5347 * collector will free up the freelist is the connection ends up sitting 5348 * there for too long. 5349 */ 5350 void * 5351 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5352 { 5353 tcp_t *tcp = NULL; 5354 conn_t *connp = NULL; 5355 squeue_t *sqp = (squeue_t *)arg; 5356 tcp_squeue_priv_t *tcp_time_wait; 5357 netstack_t *ns; 5358 5359 tcp_time_wait = 5360 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5361 5362 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5363 tcp = tcp_time_wait->tcp_free_list; 5364 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5365 if (tcp != NULL) { 5366 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5367 tcp_time_wait->tcp_free_list_cnt--; 5368 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5369 tcp->tcp_time_wait_next = NULL; 5370 connp = tcp->tcp_connp; 5371 connp->conn_flags |= IPCL_REUSED; 5372 5373 ASSERT(tcp->tcp_tcps == NULL); 5374 ASSERT(connp->conn_netstack == NULL); 5375 ns = tcps->tcps_netstack; 5376 netstack_hold(ns); 5377 connp->conn_netstack = ns; 5378 tcp->tcp_tcps = tcps; 5379 TCPS_REFHOLD(tcps); 5380 ipcl_globalhash_insert(connp); 5381 return ((void *)connp); 5382 } 5383 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5384 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5385 tcps->tcps_netstack)) == NULL) 5386 return (NULL); 5387 tcp = connp->conn_tcp; 5388 tcp->tcp_tcps = tcps; 5389 TCPS_REFHOLD(tcps); 5390 return ((void *)connp); 5391 } 5392 5393 /* 5394 * Update the cached label for the given tcp_t. This should be called once per 5395 * connection, and before any packets are sent or tcp_process_options is 5396 * invoked. Returns B_FALSE if the correct label could not be constructed. 5397 */ 5398 static boolean_t 5399 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5400 { 5401 conn_t *connp = tcp->tcp_connp; 5402 5403 if (tcp->tcp_ipversion == IPV4_VERSION) { 5404 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5405 int added; 5406 5407 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5408 connp->conn_mac_exempt, 5409 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5410 return (B_FALSE); 5411 5412 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5413 if (added == -1) 5414 return (B_FALSE); 5415 tcp->tcp_hdr_len += added; 5416 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5417 tcp->tcp_ip_hdr_len += added; 5418 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5419 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5420 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5421 tcp->tcp_hdr_len); 5422 if (added == -1) 5423 return (B_FALSE); 5424 tcp->tcp_hdr_len += added; 5425 tcp->tcp_tcph = (tcph_t *) 5426 ((uchar_t *)tcp->tcp_tcph + added); 5427 tcp->tcp_ip_hdr_len += added; 5428 } 5429 } else { 5430 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5431 5432 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5433 connp->conn_mac_exempt, 5434 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5435 return (B_FALSE); 5436 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5437 &tcp->tcp_label_len, optbuf) != 0) 5438 return (B_FALSE); 5439 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5440 return (B_FALSE); 5441 } 5442 5443 connp->conn_ulp_labeled = 1; 5444 5445 return (B_TRUE); 5446 } 5447 5448 /* BEGIN CSTYLED */ 5449 /* 5450 * 5451 * The sockfs ACCEPT path: 5452 * ======================= 5453 * 5454 * The eager is now established in its own perimeter as soon as SYN is 5455 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5456 * completes the accept processing on the acceptor STREAM. The sending 5457 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5458 * listener but a TLI/XTI listener completes the accept processing 5459 * on the listener perimeter. 5460 * 5461 * Common control flow for 3 way handshake: 5462 * ---------------------------------------- 5463 * 5464 * incoming SYN (listener perimeter) -> tcp_rput_data() 5465 * -> tcp_conn_request() 5466 * 5467 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5468 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5469 * 5470 * Sockfs ACCEPT Path: 5471 * ------------------- 5472 * 5473 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5474 * as STREAM entry point) 5475 * 5476 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5477 * 5478 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5479 * association (we are not behind eager's squeue but sockfs is protecting us 5480 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5481 * is changed to point at tcp_wput(). 5482 * 5483 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5484 * listener (done on listener's perimeter). 5485 * 5486 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5487 * accept. 5488 * 5489 * TLI/XTI client ACCEPT path: 5490 * --------------------------- 5491 * 5492 * soaccept() sends T_CONN_RES on the listener STREAM. 5493 * 5494 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5495 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5496 * 5497 * Locks: 5498 * ====== 5499 * 5500 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5501 * and listeners->tcp_eager_next_q. 5502 * 5503 * Referencing: 5504 * ============ 5505 * 5506 * 1) We start out in tcp_conn_request by eager placing a ref on 5507 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5508 * 5509 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5510 * doing so we place a ref on the eager. This ref is finally dropped at the 5511 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5512 * reference is dropped by the squeue framework. 5513 * 5514 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5515 * 5516 * The reference must be released by the same entity that added the reference 5517 * In the above scheme, the eager is the entity that adds and releases the 5518 * references. Note that tcp_accept_finish executes in the squeue of the eager 5519 * (albeit after it is attached to the acceptor stream). Though 1. executes 5520 * in the listener's squeue, the eager is nascent at this point and the 5521 * reference can be considered to have been added on behalf of the eager. 5522 * 5523 * Eager getting a Reset or listener closing: 5524 * ========================================== 5525 * 5526 * Once the listener and eager are linked, the listener never does the unlink. 5527 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5528 * a message on all eager perimeter. The eager then does the unlink, clears 5529 * any pointers to the listener's queue and drops the reference to the 5530 * listener. The listener waits in tcp_close outside the squeue until its 5531 * refcount has dropped to 1. This ensures that the listener has waited for 5532 * all eagers to clear their association with the listener. 5533 * 5534 * Similarly, if eager decides to go away, it can unlink itself and close. 5535 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5536 * the reference to eager is still valid because of the extra ref we put 5537 * in tcp_send_conn_ind. 5538 * 5539 * Listener can always locate the eager under the protection 5540 * of the listener->tcp_eager_lock, and then do a refhold 5541 * on the eager during the accept processing. 5542 * 5543 * The acceptor stream accesses the eager in the accept processing 5544 * based on the ref placed on eager before sending T_conn_ind. 5545 * The only entity that can negate this refhold is a listener close 5546 * which is mutually exclusive with an active acceptor stream. 5547 * 5548 * Eager's reference on the listener 5549 * =================================== 5550 * 5551 * If the accept happens (even on a closed eager) the eager drops its 5552 * reference on the listener at the start of tcp_accept_finish. If the 5553 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5554 * the reference is dropped in tcp_closei_local. If the listener closes, 5555 * the reference is dropped in tcp_eager_kill. In all cases the reference 5556 * is dropped while executing in the eager's context (squeue). 5557 */ 5558 /* END CSTYLED */ 5559 5560 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5561 5562 /* 5563 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5564 * tcp_rput_data will not see any SYN packets. 5565 */ 5566 /* ARGSUSED */ 5567 void 5568 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5569 { 5570 tcph_t *tcph; 5571 uint32_t seg_seq; 5572 tcp_t *eager; 5573 uint_t ipvers; 5574 ipha_t *ipha; 5575 ip6_t *ip6h; 5576 int err; 5577 conn_t *econnp = NULL; 5578 squeue_t *new_sqp; 5579 mblk_t *mp1; 5580 uint_t ip_hdr_len; 5581 conn_t *connp = (conn_t *)arg; 5582 tcp_t *tcp = connp->conn_tcp; 5583 cred_t *credp; 5584 tcp_stack_t *tcps = tcp->tcp_tcps; 5585 ip_stack_t *ipst; 5586 5587 if (tcp->tcp_state != TCPS_LISTEN) 5588 goto error2; 5589 5590 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5591 5592 mutex_enter(&tcp->tcp_eager_lock); 5593 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5594 mutex_exit(&tcp->tcp_eager_lock); 5595 TCP_STAT(tcps, tcp_listendrop); 5596 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5597 if (tcp->tcp_debug) { 5598 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5599 "tcp_conn_request: listen backlog (max=%d) " 5600 "overflow (%d pending) on %s", 5601 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5602 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5603 } 5604 goto error2; 5605 } 5606 5607 if (tcp->tcp_conn_req_cnt_q0 >= 5608 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5609 /* 5610 * Q0 is full. Drop a pending half-open req from the queue 5611 * to make room for the new SYN req. Also mark the time we 5612 * drop a SYN. 5613 * 5614 * A more aggressive defense against SYN attack will 5615 * be to set the "tcp_syn_defense" flag now. 5616 */ 5617 TCP_STAT(tcps, tcp_listendropq0); 5618 tcp->tcp_last_rcv_lbolt = lbolt64; 5619 if (!tcp_drop_q0(tcp)) { 5620 mutex_exit(&tcp->tcp_eager_lock); 5621 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5622 if (tcp->tcp_debug) { 5623 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5624 "tcp_conn_request: listen half-open queue " 5625 "(max=%d) full (%d pending) on %s", 5626 tcps->tcps_conn_req_max_q0, 5627 tcp->tcp_conn_req_cnt_q0, 5628 tcp_display(tcp, NULL, 5629 DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 } 5634 mutex_exit(&tcp->tcp_eager_lock); 5635 5636 /* 5637 * IP adds STRUIO_EAGER and ensures that the received packet is 5638 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5639 * link local address. If IPSec is enabled, db_struioflag has 5640 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5641 * otherwise an error case if neither of them is set. 5642 */ 5643 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5644 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5645 DB_CKSUMSTART(mp) = 0; 5646 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5647 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5648 if (econnp == NULL) 5649 goto error2; 5650 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5651 econnp->conn_sqp = new_sqp; 5652 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5653 /* 5654 * mp is updated in tcp_get_ipsec_conn(). 5655 */ 5656 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5657 if (econnp == NULL) { 5658 /* 5659 * mp freed by tcp_get_ipsec_conn. 5660 */ 5661 return; 5662 } 5663 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5664 } else { 5665 goto error2; 5666 } 5667 5668 ASSERT(DB_TYPE(mp) == M_DATA); 5669 5670 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5671 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5672 ASSERT(OK_32PTR(mp->b_rptr)); 5673 if (ipvers == IPV4_VERSION) { 5674 ipha = (ipha_t *)mp->b_rptr; 5675 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5676 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5677 } else { 5678 ip6h = (ip6_t *)mp->b_rptr; 5679 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5680 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5681 } 5682 5683 if (tcp->tcp_family == AF_INET) { 5684 ASSERT(ipvers == IPV4_VERSION); 5685 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5686 } else { 5687 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5688 } 5689 5690 if (err) 5691 goto error3; 5692 5693 eager = econnp->conn_tcp; 5694 5695 /* Inherit various TCP parameters from the listener */ 5696 eager->tcp_naglim = tcp->tcp_naglim; 5697 eager->tcp_first_timer_threshold = 5698 tcp->tcp_first_timer_threshold; 5699 eager->tcp_second_timer_threshold = 5700 tcp->tcp_second_timer_threshold; 5701 5702 eager->tcp_first_ctimer_threshold = 5703 tcp->tcp_first_ctimer_threshold; 5704 eager->tcp_second_ctimer_threshold = 5705 tcp->tcp_second_ctimer_threshold; 5706 5707 /* 5708 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5709 * If it does not, the eager's receive window will be set to the 5710 * listener's receive window later in this function. 5711 */ 5712 eager->tcp_rwnd = 0; 5713 5714 /* 5715 * Inherit listener's tcp_init_cwnd. Need to do this before 5716 * calling tcp_process_options() where tcp_mss_set() is called 5717 * to set the initial cwnd. 5718 */ 5719 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5720 5721 /* 5722 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5723 * zone id before the accept is completed in tcp_wput_accept(). 5724 */ 5725 econnp->conn_zoneid = connp->conn_zoneid; 5726 econnp->conn_allzones = connp->conn_allzones; 5727 5728 /* Copy nexthop information from listener to eager */ 5729 if (connp->conn_nexthop_set) { 5730 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5731 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5732 } 5733 5734 /* 5735 * TSOL: tsol_input_proc() needs the eager's cred before the 5736 * eager is accepted 5737 */ 5738 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5739 crhold(credp); 5740 5741 /* 5742 * If the caller has the process-wide flag set, then default to MAC 5743 * exempt mode. This allows read-down to unlabeled hosts. 5744 */ 5745 if (getpflags(NET_MAC_AWARE, credp) != 0) 5746 econnp->conn_mac_exempt = B_TRUE; 5747 5748 if (is_system_labeled()) { 5749 cred_t *cr; 5750 5751 if (connp->conn_mlp_type != mlptSingle) { 5752 cr = econnp->conn_peercred = DB_CRED(mp); 5753 if (cr != NULL) 5754 crhold(cr); 5755 else 5756 cr = econnp->conn_cred; 5757 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5758 econnp, cred_t *, cr) 5759 } else { 5760 cr = econnp->conn_cred; 5761 DTRACE_PROBE2(syn_accept, conn_t *, 5762 econnp, cred_t *, cr) 5763 } 5764 5765 if (!tcp_update_label(eager, cr)) { 5766 DTRACE_PROBE3( 5767 tx__ip__log__error__connrequest__tcp, 5768 char *, "eager connp(1) label on SYN mp(2) failed", 5769 conn_t *, econnp, mblk_t *, mp); 5770 goto error3; 5771 } 5772 } 5773 5774 eager->tcp_hard_binding = B_TRUE; 5775 5776 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5777 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5778 5779 CL_INET_CONNECT(eager); 5780 5781 /* 5782 * No need to check for multicast destination since ip will only pass 5783 * up multicasts to those that have expressed interest 5784 * TODO: what about rejecting broadcasts? 5785 * Also check that source is not a multicast or broadcast address. 5786 */ 5787 eager->tcp_state = TCPS_SYN_RCVD; 5788 5789 5790 /* 5791 * There should be no ire in the mp as we are being called after 5792 * receiving the SYN. 5793 */ 5794 ASSERT(tcp_ire_mp(mp) == NULL); 5795 5796 /* 5797 * Adapt our mss, ttl, ... according to information provided in IRE. 5798 */ 5799 5800 if (tcp_adapt_ire(eager, NULL) == 0) { 5801 /* Undo the bind_hash_insert */ 5802 tcp_bind_hash_remove(eager); 5803 goto error3; 5804 } 5805 5806 /* Process all TCP options. */ 5807 tcp_process_options(eager, tcph); 5808 5809 /* Is the other end ECN capable? */ 5810 if (tcps->tcps_ecn_permitted >= 1 && 5811 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5812 eager->tcp_ecn_ok = B_TRUE; 5813 } 5814 5815 /* 5816 * listener->tcp_rq->q_hiwat should be the default window size or a 5817 * window size changed via SO_RCVBUF option. First round up the 5818 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5819 * scale option value if needed. Call tcp_rwnd_set() to finish the 5820 * setting. 5821 * 5822 * Note if there is a rpipe metric associated with the remote host, 5823 * we should not inherit receive window size from listener. 5824 */ 5825 eager->tcp_rwnd = MSS_ROUNDUP( 5826 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5827 eager->tcp_rwnd), eager->tcp_mss); 5828 if (eager->tcp_snd_ws_ok) 5829 tcp_set_ws_value(eager); 5830 /* 5831 * Note that this is the only place tcp_rwnd_set() is called for 5832 * accepting a connection. We need to call it here instead of 5833 * after the 3-way handshake because we need to tell the other 5834 * side our rwnd in the SYN-ACK segment. 5835 */ 5836 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5837 5838 /* 5839 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5840 * via soaccept()->soinheritoptions() which essentially applies 5841 * all the listener options to the new STREAM. The options that we 5842 * need to take care of are: 5843 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5844 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5845 * SO_SNDBUF, SO_RCVBUF. 5846 * 5847 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5848 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5849 * tcp_maxpsz_set() gets called later from 5850 * tcp_accept_finish(), the option takes effect. 5851 * 5852 */ 5853 /* Set the TCP options */ 5854 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5855 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5856 eager->tcp_oobinline = tcp->tcp_oobinline; 5857 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5858 eager->tcp_broadcast = tcp->tcp_broadcast; 5859 eager->tcp_useloopback = tcp->tcp_useloopback; 5860 eager->tcp_dontroute = tcp->tcp_dontroute; 5861 eager->tcp_linger = tcp->tcp_linger; 5862 eager->tcp_lingertime = tcp->tcp_lingertime; 5863 if (tcp->tcp_ka_enabled) 5864 eager->tcp_ka_enabled = 1; 5865 5866 /* Set the IP options */ 5867 econnp->conn_broadcast = connp->conn_broadcast; 5868 econnp->conn_loopback = connp->conn_loopback; 5869 econnp->conn_dontroute = connp->conn_dontroute; 5870 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5871 5872 /* Put a ref on the listener for the eager. */ 5873 CONN_INC_REF(connp); 5874 mutex_enter(&tcp->tcp_eager_lock); 5875 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5876 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5877 tcp->tcp_eager_next_q0 = eager; 5878 eager->tcp_eager_prev_q0 = tcp; 5879 5880 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5881 eager->tcp_listener = tcp; 5882 eager->tcp_saved_listener = tcp; 5883 5884 /* 5885 * Tag this detached tcp vector for later retrieval 5886 * by our listener client in tcp_accept(). 5887 */ 5888 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5889 tcp->tcp_conn_req_cnt_q0++; 5890 if (++tcp->tcp_conn_req_seqnum == -1) { 5891 /* 5892 * -1 is "special" and defined in TPI as something 5893 * that should never be used in T_CONN_IND 5894 */ 5895 ++tcp->tcp_conn_req_seqnum; 5896 } 5897 mutex_exit(&tcp->tcp_eager_lock); 5898 5899 if (tcp->tcp_syn_defense) { 5900 /* Don't drop the SYN that comes from a good IP source */ 5901 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5902 if (addr_cache != NULL && eager->tcp_remote == 5903 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5904 eager->tcp_dontdrop = B_TRUE; 5905 } 5906 } 5907 5908 /* 5909 * We need to insert the eager in its own perimeter but as soon 5910 * as we do that, we expose the eager to the classifier and 5911 * should not touch any field outside the eager's perimeter. 5912 * So do all the work necessary before inserting the eager 5913 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5914 * will succeed but undo everything if it fails. 5915 */ 5916 seg_seq = ABE32_TO_U32(tcph->th_seq); 5917 eager->tcp_irs = seg_seq; 5918 eager->tcp_rack = seg_seq; 5919 eager->tcp_rnxt = seg_seq + 1; 5920 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5921 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5922 eager->tcp_state = TCPS_SYN_RCVD; 5923 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5924 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5925 if (mp1 == NULL) { 5926 /* 5927 * Increment the ref count as we are going to 5928 * enqueueing an mp in squeue 5929 */ 5930 CONN_INC_REF(econnp); 5931 goto error; 5932 } 5933 DB_CPID(mp1) = tcp->tcp_cpid; 5934 eager->tcp_cpid = tcp->tcp_cpid; 5935 eager->tcp_open_time = lbolt64; 5936 5937 /* 5938 * We need to start the rto timer. In normal case, we start 5939 * the timer after sending the packet on the wire (or at 5940 * least believing that packet was sent by waiting for 5941 * CALL_IP_WPUT() to return). Since this is the first packet 5942 * being sent on the wire for the eager, our initial tcp_rto 5943 * is at least tcp_rexmit_interval_min which is a fairly 5944 * large value to allow the algorithm to adjust slowly to large 5945 * fluctuations of RTT during first few transmissions. 5946 * 5947 * Starting the timer first and then sending the packet in this 5948 * case shouldn't make much difference since tcp_rexmit_interval_min 5949 * is of the order of several 100ms and starting the timer 5950 * first and then sending the packet will result in difference 5951 * of few micro seconds. 5952 * 5953 * Without this optimization, we are forced to hold the fanout 5954 * lock across the ipcl_bind_insert() and sending the packet 5955 * so that we don't race against an incoming packet (maybe RST) 5956 * for this eager. 5957 * 5958 * It is necessary to acquire an extra reference on the eager 5959 * at this point and hold it until after tcp_send_data() to 5960 * ensure against an eager close race. 5961 */ 5962 5963 CONN_INC_REF(eager->tcp_connp); 5964 5965 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5966 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5967 5968 5969 /* 5970 * Insert the eager in its own perimeter now. We are ready to deal 5971 * with any packets on eager. 5972 */ 5973 if (eager->tcp_ipversion == IPV4_VERSION) { 5974 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5975 goto error; 5976 } 5977 } else { 5978 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5979 goto error; 5980 } 5981 } 5982 5983 /* mark conn as fully-bound */ 5984 econnp->conn_fully_bound = B_TRUE; 5985 5986 /* Send the SYN-ACK */ 5987 tcp_send_data(eager, eager->tcp_wq, mp1); 5988 CONN_DEC_REF(eager->tcp_connp); 5989 freemsg(mp); 5990 5991 return; 5992 error: 5993 freemsg(mp1); 5994 eager->tcp_closemp_used = B_TRUE; 5995 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5996 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 5997 econnp, SQTAG_TCP_CONN_REQ_2); 5998 5999 /* 6000 * If a connection already exists, send the mp to that connections so 6001 * that it can be appropriately dealt with. 6002 */ 6003 ipst = tcps->tcps_netstack->netstack_ip; 6004 6005 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6006 if (!IPCL_IS_CONNECTED(econnp)) { 6007 /* 6008 * Something bad happened. ipcl_conn_insert() 6009 * failed because a connection already existed 6010 * in connected hash but we can't find it 6011 * anymore (someone blew it away). Just 6012 * free this message and hopefully remote 6013 * will retransmit at which time the SYN can be 6014 * treated as a new connection or dealth with 6015 * a TH_RST if a connection already exists. 6016 */ 6017 CONN_DEC_REF(econnp); 6018 freemsg(mp); 6019 } else { 6020 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6021 econnp, SQTAG_TCP_CONN_REQ_1); 6022 } 6023 } else { 6024 /* Nobody wants this packet */ 6025 freemsg(mp); 6026 } 6027 return; 6028 error3: 6029 CONN_DEC_REF(econnp); 6030 error2: 6031 freemsg(mp); 6032 } 6033 6034 /* 6035 * In an ideal case of vertical partition in NUMA architecture, its 6036 * beneficial to have the listener and all the incoming connections 6037 * tied to the same squeue. The other constraint is that incoming 6038 * connections should be tied to the squeue attached to interrupted 6039 * CPU for obvious locality reason so this leaves the listener to 6040 * be tied to the same squeue. Our only problem is that when listener 6041 * is binding, the CPU that will get interrupted by the NIC whose 6042 * IP address the listener is binding to is not even known. So 6043 * the code below allows us to change that binding at the time the 6044 * CPU is interrupted by virtue of incoming connection's squeue. 6045 * 6046 * This is usefull only in case of a listener bound to a specific IP 6047 * address. For other kind of listeners, they get bound the 6048 * very first time and there is no attempt to rebind them. 6049 */ 6050 void 6051 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6052 { 6053 conn_t *connp = (conn_t *)arg; 6054 squeue_t *sqp = (squeue_t *)arg2; 6055 squeue_t *new_sqp; 6056 uint32_t conn_flags; 6057 6058 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6059 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6060 } else { 6061 goto done; 6062 } 6063 6064 if (connp->conn_fanout == NULL) 6065 goto done; 6066 6067 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6068 mutex_enter(&connp->conn_fanout->connf_lock); 6069 mutex_enter(&connp->conn_lock); 6070 /* 6071 * No one from read or write side can access us now 6072 * except for already queued packets on this squeue. 6073 * But since we haven't changed the squeue yet, they 6074 * can't execute. If they are processed after we have 6075 * changed the squeue, they are sent back to the 6076 * correct squeue down below. 6077 * But a listner close can race with processing of 6078 * incoming SYN. If incoming SYN processing changes 6079 * the squeue then the listener close which is waiting 6080 * to enter the squeue would operate on the wrong 6081 * squeue. Hence we don't change the squeue here unless 6082 * the refcount is exactly the minimum refcount. The 6083 * minimum refcount of 4 is counted as - 1 each for 6084 * TCP and IP, 1 for being in the classifier hash, and 6085 * 1 for the mblk being processed. 6086 */ 6087 6088 if (connp->conn_ref != 4 || 6089 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6090 mutex_exit(&connp->conn_lock); 6091 mutex_exit(&connp->conn_fanout->connf_lock); 6092 goto done; 6093 } 6094 if (connp->conn_sqp != new_sqp) { 6095 while (connp->conn_sqp != new_sqp) 6096 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6097 } 6098 6099 do { 6100 conn_flags = connp->conn_flags; 6101 conn_flags |= IPCL_FULLY_BOUND; 6102 (void) cas32(&connp->conn_flags, connp->conn_flags, 6103 conn_flags); 6104 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6105 6106 mutex_exit(&connp->conn_fanout->connf_lock); 6107 mutex_exit(&connp->conn_lock); 6108 } 6109 6110 done: 6111 if (connp->conn_sqp != sqp) { 6112 CONN_INC_REF(connp); 6113 squeue_fill(connp->conn_sqp, mp, 6114 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6115 } else { 6116 tcp_conn_request(connp, mp, sqp); 6117 } 6118 } 6119 6120 /* 6121 * Successful connect request processing begins when our client passes 6122 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6123 * our T_OK_ACK reply message upstream. The control flow looks like this: 6124 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6125 * upstream <- tcp_rput() <- IP 6126 * After various error checks are completed, tcp_connect() lays 6127 * the target address and port into the composite header template, 6128 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6129 * request followed by an IRE request, and passes the three mblk message 6130 * down to IP looking like this: 6131 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6132 * Processing continues in tcp_rput() when we receive the following message: 6133 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6134 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6135 * to fire off the connection request, and then passes the T_OK_ACK mblk 6136 * upstream that we filled in below. There are, of course, numerous 6137 * error conditions along the way which truncate the processing described 6138 * above. 6139 */ 6140 static void 6141 tcp_connect(tcp_t *tcp, mblk_t *mp) 6142 { 6143 sin_t *sin; 6144 sin6_t *sin6; 6145 queue_t *q = tcp->tcp_wq; 6146 struct T_conn_req *tcr; 6147 ipaddr_t *dstaddrp; 6148 in_port_t dstport; 6149 uint_t srcid; 6150 6151 tcr = (struct T_conn_req *)mp->b_rptr; 6152 6153 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6154 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6155 tcp_err_ack(tcp, mp, TPROTO, 0); 6156 return; 6157 } 6158 6159 /* 6160 * Determine packet type based on type of address passed in 6161 * the request should contain an IPv4 or IPv6 address. 6162 * Make sure that address family matches the type of 6163 * family of the the address passed down 6164 */ 6165 switch (tcr->DEST_length) { 6166 default: 6167 tcp_err_ack(tcp, mp, TBADADDR, 0); 6168 return; 6169 6170 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6171 /* 6172 * XXX: The check for valid DEST_length was not there 6173 * in earlier releases and some buggy 6174 * TLI apps (e.g Sybase) got away with not feeding 6175 * in sin_zero part of address. 6176 * We allow that bug to keep those buggy apps humming. 6177 * Test suites require the check on DEST_length. 6178 * We construct a new mblk with valid DEST_length 6179 * free the original so the rest of the code does 6180 * not have to keep track of this special shorter 6181 * length address case. 6182 */ 6183 mblk_t *nmp; 6184 struct T_conn_req *ntcr; 6185 sin_t *nsin; 6186 6187 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6188 tcr->OPT_length, BPRI_HI); 6189 if (nmp == NULL) { 6190 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6191 return; 6192 } 6193 ntcr = (struct T_conn_req *)nmp->b_rptr; 6194 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6195 ntcr->PRIM_type = T_CONN_REQ; 6196 ntcr->DEST_length = sizeof (sin_t); 6197 ntcr->DEST_offset = sizeof (struct T_conn_req); 6198 6199 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6200 *nsin = sin_null; 6201 /* Get pointer to shorter address to copy from original mp */ 6202 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6203 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6204 if (sin == NULL || !OK_32PTR((char *)sin)) { 6205 freemsg(nmp); 6206 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6207 return; 6208 } 6209 nsin->sin_family = sin->sin_family; 6210 nsin->sin_port = sin->sin_port; 6211 nsin->sin_addr = sin->sin_addr; 6212 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6213 nmp->b_wptr = (uchar_t *)&nsin[1]; 6214 if (tcr->OPT_length != 0) { 6215 ntcr->OPT_length = tcr->OPT_length; 6216 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6217 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6218 (uchar_t *)ntcr + ntcr->OPT_offset, 6219 tcr->OPT_length); 6220 nmp->b_wptr += tcr->OPT_length; 6221 } 6222 freemsg(mp); /* original mp freed */ 6223 mp = nmp; /* re-initialize original variables */ 6224 tcr = ntcr; 6225 } 6226 /* FALLTHRU */ 6227 6228 case sizeof (sin_t): 6229 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6230 sizeof (sin_t)); 6231 if (sin == NULL || !OK_32PTR((char *)sin)) { 6232 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6233 return; 6234 } 6235 if (tcp->tcp_family != AF_INET || 6236 sin->sin_family != AF_INET) { 6237 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6238 return; 6239 } 6240 if (sin->sin_port == 0) { 6241 tcp_err_ack(tcp, mp, TBADADDR, 0); 6242 return; 6243 } 6244 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6245 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6246 return; 6247 } 6248 6249 break; 6250 6251 case sizeof (sin6_t): 6252 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6253 sizeof (sin6_t)); 6254 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6255 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6256 return; 6257 } 6258 if (tcp->tcp_family != AF_INET6 || 6259 sin6->sin6_family != AF_INET6) { 6260 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6261 return; 6262 } 6263 if (sin6->sin6_port == 0) { 6264 tcp_err_ack(tcp, mp, TBADADDR, 0); 6265 return; 6266 } 6267 break; 6268 } 6269 /* 6270 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6271 * should key on their sequence number and cut them loose. 6272 */ 6273 6274 /* 6275 * If options passed in, feed it for verification and handling 6276 */ 6277 if (tcr->OPT_length != 0) { 6278 mblk_t *ok_mp; 6279 mblk_t *discon_mp; 6280 mblk_t *conn_opts_mp; 6281 int t_error, sys_error, do_disconnect; 6282 6283 conn_opts_mp = NULL; 6284 6285 if (tcp_conprim_opt_process(tcp, mp, 6286 &do_disconnect, &t_error, &sys_error) < 0) { 6287 if (do_disconnect) { 6288 ASSERT(t_error == 0 && sys_error == 0); 6289 discon_mp = mi_tpi_discon_ind(NULL, 6290 ECONNREFUSED, 0); 6291 if (!discon_mp) { 6292 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6293 TSYSERR, ENOMEM); 6294 return; 6295 } 6296 ok_mp = mi_tpi_ok_ack_alloc(mp); 6297 if (!ok_mp) { 6298 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6299 TSYSERR, ENOMEM); 6300 return; 6301 } 6302 qreply(q, ok_mp); 6303 qreply(q, discon_mp); /* no flush! */ 6304 } else { 6305 ASSERT(t_error != 0); 6306 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6307 sys_error); 6308 } 6309 return; 6310 } 6311 /* 6312 * Success in setting options, the mp option buffer represented 6313 * by OPT_length/offset has been potentially modified and 6314 * contains results of option processing. We copy it in 6315 * another mp to save it for potentially influencing returning 6316 * it in T_CONN_CONN. 6317 */ 6318 if (tcr->OPT_length != 0) { /* there are resulting options */ 6319 conn_opts_mp = copyb(mp); 6320 if (!conn_opts_mp) { 6321 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6322 TSYSERR, ENOMEM); 6323 return; 6324 } 6325 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6326 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6327 /* 6328 * Note: 6329 * These resulting option negotiation can include any 6330 * end-to-end negotiation options but there no such 6331 * thing (yet?) in our TCP/IP. 6332 */ 6333 } 6334 } 6335 6336 /* 6337 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6338 * make sure that the template IP header in the tcp structure is an 6339 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6340 * need to this before we call tcp_bindi() so that the port lookup 6341 * code will look for ports in the correct port space (IPv4 and 6342 * IPv6 have separate port spaces). 6343 */ 6344 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6345 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6346 int err = 0; 6347 6348 err = tcp_header_init_ipv4(tcp); 6349 if (err != 0) { 6350 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6351 goto connect_failed; 6352 } 6353 if (tcp->tcp_lport != 0) 6354 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6355 } 6356 6357 switch (tcp->tcp_state) { 6358 case TCPS_IDLE: 6359 /* 6360 * We support quick connect, refer to comments in 6361 * tcp_connect_*() 6362 */ 6363 /* FALLTHRU */ 6364 case TCPS_BOUND: 6365 case TCPS_LISTEN: 6366 if (tcp->tcp_family == AF_INET6) { 6367 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6368 tcp_connect_ipv6(tcp, mp, 6369 &sin6->sin6_addr, 6370 sin6->sin6_port, sin6->sin6_flowinfo, 6371 sin6->__sin6_src_id, sin6->sin6_scope_id); 6372 return; 6373 } 6374 /* 6375 * Destination adress is mapped IPv6 address. 6376 * Source bound address should be unspecified or 6377 * IPv6 mapped address as well. 6378 */ 6379 if (!IN6_IS_ADDR_UNSPECIFIED( 6380 &tcp->tcp_bound_source_v6) && 6381 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6382 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6383 EADDRNOTAVAIL); 6384 break; 6385 } 6386 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6387 dstport = sin6->sin6_port; 6388 srcid = sin6->__sin6_src_id; 6389 } else { 6390 dstaddrp = &sin->sin_addr.s_addr; 6391 dstport = sin->sin_port; 6392 srcid = 0; 6393 } 6394 6395 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6396 return; 6397 default: 6398 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6399 break; 6400 } 6401 /* 6402 * Note: Code below is the "failure" case 6403 */ 6404 /* return error ack and blow away saved option results if any */ 6405 connect_failed: 6406 if (mp != NULL) 6407 putnext(tcp->tcp_rq, mp); 6408 else { 6409 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6410 TSYSERR, ENOMEM); 6411 } 6412 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6413 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6414 } 6415 6416 /* 6417 * Handle connect to IPv4 destinations, including connections for AF_INET6 6418 * sockets connecting to IPv4 mapped IPv6 destinations. 6419 */ 6420 static void 6421 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6422 uint_t srcid) 6423 { 6424 tcph_t *tcph; 6425 mblk_t *mp1; 6426 ipaddr_t dstaddr = *dstaddrp; 6427 int32_t oldstate; 6428 uint16_t lport; 6429 tcp_stack_t *tcps = tcp->tcp_tcps; 6430 6431 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6432 6433 /* Check for attempt to connect to INADDR_ANY */ 6434 if (dstaddr == INADDR_ANY) { 6435 /* 6436 * SunOS 4.x and 4.3 BSD allow an application 6437 * to connect a TCP socket to INADDR_ANY. 6438 * When they do this, the kernel picks the 6439 * address of one interface and uses it 6440 * instead. The kernel usually ends up 6441 * picking the address of the loopback 6442 * interface. This is an undocumented feature. 6443 * However, we provide the same thing here 6444 * in order to have source and binary 6445 * compatibility with SunOS 4.x. 6446 * Update the T_CONN_REQ (sin/sin6) since it is used to 6447 * generate the T_CONN_CON. 6448 */ 6449 dstaddr = htonl(INADDR_LOOPBACK); 6450 *dstaddrp = dstaddr; 6451 } 6452 6453 /* Handle __sin6_src_id if socket not bound to an IP address */ 6454 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6455 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6456 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6457 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6458 tcp->tcp_ipha->ipha_src); 6459 } 6460 6461 /* 6462 * Don't let an endpoint connect to itself. Note that 6463 * the test here does not catch the case where the 6464 * source IP addr was left unspecified by the user. In 6465 * this case, the source addr is set in tcp_adapt_ire() 6466 * using the reply to the T_BIND message that we send 6467 * down to IP here and the check is repeated in tcp_rput_other. 6468 */ 6469 if (dstaddr == tcp->tcp_ipha->ipha_src && 6470 dstport == tcp->tcp_lport) { 6471 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6472 goto failed; 6473 } 6474 6475 tcp->tcp_ipha->ipha_dst = dstaddr; 6476 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6477 6478 /* 6479 * Massage a source route if any putting the first hop 6480 * in iph_dst. Compute a starting value for the checksum which 6481 * takes into account that the original iph_dst should be 6482 * included in the checksum but that ip will include the 6483 * first hop in the source route in the tcp checksum. 6484 */ 6485 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6486 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6487 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6488 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6489 if ((int)tcp->tcp_sum < 0) 6490 tcp->tcp_sum--; 6491 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6492 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6493 (tcp->tcp_sum >> 16)); 6494 tcph = tcp->tcp_tcph; 6495 *(uint16_t *)tcph->th_fport = dstport; 6496 tcp->tcp_fport = dstport; 6497 6498 oldstate = tcp->tcp_state; 6499 /* 6500 * At this point the remote destination address and remote port fields 6501 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6502 * have to see which state tcp was in so we can take apropriate action. 6503 */ 6504 if (oldstate == TCPS_IDLE) { 6505 /* 6506 * We support a quick connect capability here, allowing 6507 * clients to transition directly from IDLE to SYN_SENT 6508 * tcp_bindi will pick an unused port, insert the connection 6509 * in the bind hash and transition to BOUND state. 6510 */ 6511 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6512 tcp, B_TRUE); 6513 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6514 B_FALSE, B_FALSE); 6515 if (lport == 0) { 6516 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6517 goto failed; 6518 } 6519 } 6520 tcp->tcp_state = TCPS_SYN_SENT; 6521 6522 /* 6523 * TODO: allow data with connect requests 6524 * by unlinking M_DATA trailers here and 6525 * linking them in behind the T_OK_ACK mblk. 6526 * The tcp_rput() bind ack handler would then 6527 * feed them to tcp_wput_data() rather than call 6528 * tcp_timer(). 6529 */ 6530 mp = mi_tpi_ok_ack_alloc(mp); 6531 if (!mp) { 6532 tcp->tcp_state = oldstate; 6533 goto failed; 6534 } 6535 if (tcp->tcp_family == AF_INET) { 6536 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6537 sizeof (ipa_conn_t)); 6538 } else { 6539 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6540 sizeof (ipa6_conn_t)); 6541 } 6542 if (mp1) { 6543 /* Hang onto the T_OK_ACK for later. */ 6544 linkb(mp1, mp); 6545 mblk_setcred(mp1, tcp->tcp_cred); 6546 if (tcp->tcp_family == AF_INET) 6547 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6548 else { 6549 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6550 &tcp->tcp_sticky_ipp); 6551 } 6552 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6553 tcp->tcp_active_open = 1; 6554 /* 6555 * If the bind cannot complete immediately 6556 * IP will arrange to call tcp_rput_other 6557 * when the bind completes. 6558 */ 6559 if (mp1 != NULL) 6560 tcp_rput_other(tcp, mp1); 6561 return; 6562 } 6563 /* Error case */ 6564 tcp->tcp_state = oldstate; 6565 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6566 6567 failed: 6568 /* return error ack and blow away saved option results if any */ 6569 if (mp != NULL) 6570 putnext(tcp->tcp_rq, mp); 6571 else { 6572 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6573 TSYSERR, ENOMEM); 6574 } 6575 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6576 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6577 6578 } 6579 6580 /* 6581 * Handle connect to IPv6 destinations. 6582 */ 6583 static void 6584 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6585 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6586 { 6587 tcph_t *tcph; 6588 mblk_t *mp1; 6589 ip6_rthdr_t *rth; 6590 int32_t oldstate; 6591 uint16_t lport; 6592 tcp_stack_t *tcps = tcp->tcp_tcps; 6593 6594 ASSERT(tcp->tcp_family == AF_INET6); 6595 6596 /* 6597 * If we're here, it means that the destination address is a native 6598 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6599 * reason why it might not be IPv6 is if the socket was bound to an 6600 * IPv4-mapped IPv6 address. 6601 */ 6602 if (tcp->tcp_ipversion != IPV6_VERSION) { 6603 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6604 goto failed; 6605 } 6606 6607 /* 6608 * Interpret a zero destination to mean loopback. 6609 * Update the T_CONN_REQ (sin/sin6) since it is used to 6610 * generate the T_CONN_CON. 6611 */ 6612 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6613 *dstaddrp = ipv6_loopback; 6614 } 6615 6616 /* Handle __sin6_src_id if socket not bound to an IP address */ 6617 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6618 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6619 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6620 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6621 } 6622 6623 /* 6624 * Take care of the scope_id now and add ip6i_t 6625 * if ip6i_t is not already allocated through TCP 6626 * sticky options. At this point tcp_ip6h does not 6627 * have dst info, thus use dstaddrp. 6628 */ 6629 if (scope_id != 0 && 6630 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6631 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6632 ip6i_t *ip6i; 6633 6634 ipp->ipp_ifindex = scope_id; 6635 ip6i = (ip6i_t *)tcp->tcp_iphc; 6636 6637 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6638 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6639 /* Already allocated */ 6640 ip6i->ip6i_flags |= IP6I_IFINDEX; 6641 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6642 ipp->ipp_fields |= IPPF_SCOPE_ID; 6643 } else { 6644 int reterr; 6645 6646 ipp->ipp_fields |= IPPF_SCOPE_ID; 6647 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6648 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6649 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6650 if (reterr != 0) 6651 goto failed; 6652 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6653 } 6654 } 6655 6656 /* 6657 * Don't let an endpoint connect to itself. Note that 6658 * the test here does not catch the case where the 6659 * source IP addr was left unspecified by the user. In 6660 * this case, the source addr is set in tcp_adapt_ire() 6661 * using the reply to the T_BIND message that we send 6662 * down to IP here and the check is repeated in tcp_rput_other. 6663 */ 6664 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6665 (dstport == tcp->tcp_lport)) { 6666 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6667 goto failed; 6668 } 6669 6670 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6671 tcp->tcp_remote_v6 = *dstaddrp; 6672 tcp->tcp_ip6h->ip6_vcf = 6673 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6674 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6675 6676 6677 /* 6678 * Massage a routing header (if present) putting the first hop 6679 * in ip6_dst. Compute a starting value for the checksum which 6680 * takes into account that the original ip6_dst should be 6681 * included in the checksum but that ip will include the 6682 * first hop in the source route in the tcp checksum. 6683 */ 6684 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6685 if (rth != NULL) { 6686 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6687 tcps->tcps_netstack); 6688 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6689 (tcp->tcp_sum >> 16)); 6690 } else { 6691 tcp->tcp_sum = 0; 6692 } 6693 6694 tcph = tcp->tcp_tcph; 6695 *(uint16_t *)tcph->th_fport = dstport; 6696 tcp->tcp_fport = dstport; 6697 6698 oldstate = tcp->tcp_state; 6699 /* 6700 * At this point the remote destination address and remote port fields 6701 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6702 * have to see which state tcp was in so we can take apropriate action. 6703 */ 6704 if (oldstate == TCPS_IDLE) { 6705 /* 6706 * We support a quick connect capability here, allowing 6707 * clients to transition directly from IDLE to SYN_SENT 6708 * tcp_bindi will pick an unused port, insert the connection 6709 * in the bind hash and transition to BOUND state. 6710 */ 6711 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6712 tcp, B_TRUE); 6713 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6714 B_FALSE, B_FALSE); 6715 if (lport == 0) { 6716 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6717 goto failed; 6718 } 6719 } 6720 tcp->tcp_state = TCPS_SYN_SENT; 6721 /* 6722 * TODO: allow data with connect requests 6723 * by unlinking M_DATA trailers here and 6724 * linking them in behind the T_OK_ACK mblk. 6725 * The tcp_rput() bind ack handler would then 6726 * feed them to tcp_wput_data() rather than call 6727 * tcp_timer(). 6728 */ 6729 mp = mi_tpi_ok_ack_alloc(mp); 6730 if (!mp) { 6731 tcp->tcp_state = oldstate; 6732 goto failed; 6733 } 6734 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6735 if (mp1) { 6736 /* Hang onto the T_OK_ACK for later. */ 6737 linkb(mp1, mp); 6738 mblk_setcred(mp1, tcp->tcp_cred); 6739 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6740 &tcp->tcp_sticky_ipp); 6741 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6742 tcp->tcp_active_open = 1; 6743 /* ip_bind_v6() may return ACK or ERROR */ 6744 if (mp1 != NULL) 6745 tcp_rput_other(tcp, mp1); 6746 return; 6747 } 6748 /* Error case */ 6749 tcp->tcp_state = oldstate; 6750 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6751 6752 failed: 6753 /* return error ack and blow away saved option results if any */ 6754 if (mp != NULL) 6755 putnext(tcp->tcp_rq, mp); 6756 else { 6757 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6758 TSYSERR, ENOMEM); 6759 } 6760 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6761 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6762 } 6763 6764 /* 6765 * We need a stream q for detached closing tcp connections 6766 * to use. Our client hereby indicates that this q is the 6767 * one to use. 6768 */ 6769 static void 6770 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6771 { 6772 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6773 queue_t *q = tcp->tcp_wq; 6774 tcp_stack_t *tcps = tcp->tcp_tcps; 6775 6776 #ifdef NS_DEBUG 6777 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6778 tcps->tcps_netstack->netstack_stackid); 6779 #endif 6780 mp->b_datap->db_type = M_IOCACK; 6781 iocp->ioc_count = 0; 6782 mutex_enter(&tcps->tcps_g_q_lock); 6783 if (tcps->tcps_g_q != NULL) { 6784 mutex_exit(&tcps->tcps_g_q_lock); 6785 iocp->ioc_error = EALREADY; 6786 } else { 6787 mblk_t *mp1; 6788 6789 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6790 if (mp1 == NULL) { 6791 mutex_exit(&tcps->tcps_g_q_lock); 6792 iocp->ioc_error = ENOMEM; 6793 } else { 6794 tcps->tcps_g_q = tcp->tcp_rq; 6795 mutex_exit(&tcps->tcps_g_q_lock); 6796 iocp->ioc_error = 0; 6797 iocp->ioc_rval = 0; 6798 /* 6799 * We are passing tcp_sticky_ipp as NULL 6800 * as it is not useful for tcp_default queue 6801 */ 6802 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6803 if (mp1 != NULL) 6804 tcp_rput_other(tcp, mp1); 6805 } 6806 } 6807 qreply(q, mp); 6808 } 6809 6810 /* 6811 * Our client hereby directs us to reject the connection request 6812 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6813 * of sending the appropriate RST, not an ICMP error. 6814 */ 6815 static void 6816 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6817 { 6818 tcp_t *ltcp = NULL; 6819 t_scalar_t seqnum; 6820 conn_t *connp; 6821 tcp_stack_t *tcps = tcp->tcp_tcps; 6822 6823 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6824 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6825 tcp_err_ack(tcp, mp, TPROTO, 0); 6826 return; 6827 } 6828 6829 /* 6830 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6831 * when the stream is in BOUND state. Do not send a reset, 6832 * since the destination IP address is not valid, and it can 6833 * be the initialized value of all zeros (broadcast address). 6834 * 6835 * If TCP has sent down a bind request to IP and has not 6836 * received the reply, reject the request. Otherwise, TCP 6837 * will be confused. 6838 */ 6839 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6840 if (tcp->tcp_debug) { 6841 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6842 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6843 } 6844 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6845 return; 6846 } 6847 6848 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6849 6850 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6851 6852 /* 6853 * According to TPI, for non-listeners, ignore seqnum 6854 * and disconnect. 6855 * Following interpretation of -1 seqnum is historical 6856 * and implied TPI ? (TPI only states that for T_CONN_IND, 6857 * a valid seqnum should not be -1). 6858 * 6859 * -1 means disconnect everything 6860 * regardless even on a listener. 6861 */ 6862 6863 int old_state = tcp->tcp_state; 6864 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6865 6866 /* 6867 * The connection can't be on the tcp_time_wait_head list 6868 * since it is not detached. 6869 */ 6870 ASSERT(tcp->tcp_time_wait_next == NULL); 6871 ASSERT(tcp->tcp_time_wait_prev == NULL); 6872 ASSERT(tcp->tcp_time_wait_expire == 0); 6873 ltcp = NULL; 6874 /* 6875 * If it used to be a listener, check to make sure no one else 6876 * has taken the port before switching back to LISTEN state. 6877 */ 6878 if (tcp->tcp_ipversion == IPV4_VERSION) { 6879 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6880 tcp->tcp_ipha->ipha_src, 6881 tcp->tcp_connp->conn_zoneid, ipst); 6882 if (connp != NULL) 6883 ltcp = connp->conn_tcp; 6884 } else { 6885 /* Allow tcp_bound_if listeners? */ 6886 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6887 &tcp->tcp_ip6h->ip6_src, 0, 6888 tcp->tcp_connp->conn_zoneid, ipst); 6889 if (connp != NULL) 6890 ltcp = connp->conn_tcp; 6891 } 6892 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6893 tcp->tcp_state = TCPS_LISTEN; 6894 } else if (old_state > TCPS_BOUND) { 6895 tcp->tcp_conn_req_max = 0; 6896 tcp->tcp_state = TCPS_BOUND; 6897 } 6898 if (ltcp != NULL) 6899 CONN_DEC_REF(ltcp->tcp_connp); 6900 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6901 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6902 } else if (old_state == TCPS_ESTABLISHED || 6903 old_state == TCPS_CLOSE_WAIT) { 6904 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6905 } 6906 6907 if (tcp->tcp_fused) 6908 tcp_unfuse(tcp); 6909 6910 mutex_enter(&tcp->tcp_eager_lock); 6911 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6912 (tcp->tcp_conn_req_cnt_q != 0)) { 6913 tcp_eager_cleanup(tcp, 0); 6914 } 6915 mutex_exit(&tcp->tcp_eager_lock); 6916 6917 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6918 tcp->tcp_rnxt, TH_RST | TH_ACK); 6919 6920 tcp_reinit(tcp); 6921 6922 if (old_state >= TCPS_ESTABLISHED) { 6923 /* Send M_FLUSH according to TPI */ 6924 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6925 } 6926 mp = mi_tpi_ok_ack_alloc(mp); 6927 if (mp) 6928 putnext(tcp->tcp_rq, mp); 6929 return; 6930 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6931 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6932 return; 6933 } 6934 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6935 /* Send M_FLUSH according to TPI */ 6936 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6937 } 6938 mp = mi_tpi_ok_ack_alloc(mp); 6939 if (mp) 6940 putnext(tcp->tcp_rq, mp); 6941 } 6942 6943 /* 6944 * Diagnostic routine used to return a string associated with the tcp state. 6945 * Note that if the caller does not supply a buffer, it will use an internal 6946 * static string. This means that if multiple threads call this function at 6947 * the same time, output can be corrupted... Note also that this function 6948 * does not check the size of the supplied buffer. The caller has to make 6949 * sure that it is big enough. 6950 */ 6951 static char * 6952 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6953 { 6954 char buf1[30]; 6955 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6956 char *buf; 6957 char *cp; 6958 in6_addr_t local, remote; 6959 char local_addrbuf[INET6_ADDRSTRLEN]; 6960 char remote_addrbuf[INET6_ADDRSTRLEN]; 6961 6962 if (sup_buf != NULL) 6963 buf = sup_buf; 6964 else 6965 buf = priv_buf; 6966 6967 if (tcp == NULL) 6968 return ("NULL_TCP"); 6969 switch (tcp->tcp_state) { 6970 case TCPS_CLOSED: 6971 cp = "TCP_CLOSED"; 6972 break; 6973 case TCPS_IDLE: 6974 cp = "TCP_IDLE"; 6975 break; 6976 case TCPS_BOUND: 6977 cp = "TCP_BOUND"; 6978 break; 6979 case TCPS_LISTEN: 6980 cp = "TCP_LISTEN"; 6981 break; 6982 case TCPS_SYN_SENT: 6983 cp = "TCP_SYN_SENT"; 6984 break; 6985 case TCPS_SYN_RCVD: 6986 cp = "TCP_SYN_RCVD"; 6987 break; 6988 case TCPS_ESTABLISHED: 6989 cp = "TCP_ESTABLISHED"; 6990 break; 6991 case TCPS_CLOSE_WAIT: 6992 cp = "TCP_CLOSE_WAIT"; 6993 break; 6994 case TCPS_FIN_WAIT_1: 6995 cp = "TCP_FIN_WAIT_1"; 6996 break; 6997 case TCPS_CLOSING: 6998 cp = "TCP_CLOSING"; 6999 break; 7000 case TCPS_LAST_ACK: 7001 cp = "TCP_LAST_ACK"; 7002 break; 7003 case TCPS_FIN_WAIT_2: 7004 cp = "TCP_FIN_WAIT_2"; 7005 break; 7006 case TCPS_TIME_WAIT: 7007 cp = "TCP_TIME_WAIT"; 7008 break; 7009 default: 7010 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7011 cp = buf1; 7012 break; 7013 } 7014 switch (format) { 7015 case DISP_ADDR_AND_PORT: 7016 if (tcp->tcp_ipversion == IPV4_VERSION) { 7017 /* 7018 * Note that we use the remote address in the tcp_b 7019 * structure. This means that it will print out 7020 * the real destination address, not the next hop's 7021 * address if source routing is used. 7022 */ 7023 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7024 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7025 7026 } else { 7027 local = tcp->tcp_ip_src_v6; 7028 remote = tcp->tcp_remote_v6; 7029 } 7030 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7031 sizeof (local_addrbuf)); 7032 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7033 sizeof (remote_addrbuf)); 7034 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7035 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7036 ntohs(tcp->tcp_fport), cp); 7037 break; 7038 case DISP_PORT_ONLY: 7039 default: 7040 (void) mi_sprintf(buf, "[%u, %u] %s", 7041 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7042 break; 7043 } 7044 7045 return (buf); 7046 } 7047 7048 /* 7049 * Called via squeue to get on to eager's perimeter. It sends a 7050 * TH_RST if eager is in the fanout table. The listener wants the 7051 * eager to disappear either by means of tcp_eager_blowoff() or 7052 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7053 * called (via squeue) if the eager cannot be inserted in the 7054 * fanout table in tcp_conn_request(). 7055 */ 7056 /* ARGSUSED */ 7057 void 7058 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7059 { 7060 conn_t *econnp = (conn_t *)arg; 7061 tcp_t *eager = econnp->conn_tcp; 7062 tcp_t *listener = eager->tcp_listener; 7063 tcp_stack_t *tcps = eager->tcp_tcps; 7064 7065 /* 7066 * We could be called because listener is closing. Since 7067 * the eager is using listener's queue's, its not safe. 7068 * Better use the default queue just to send the TH_RST 7069 * out. 7070 */ 7071 ASSERT(tcps->tcps_g_q != NULL); 7072 eager->tcp_rq = tcps->tcps_g_q; 7073 eager->tcp_wq = WR(tcps->tcps_g_q); 7074 7075 /* 7076 * An eager's conn_fanout will be NULL if it's a duplicate 7077 * for an existing 4-tuples in the conn fanout table. 7078 * We don't want to send an RST out in such case. 7079 */ 7080 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7081 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7082 eager, eager->tcp_snxt, 0, TH_RST); 7083 } 7084 7085 /* We are here because listener wants this eager gone */ 7086 if (listener != NULL) { 7087 mutex_enter(&listener->tcp_eager_lock); 7088 tcp_eager_unlink(eager); 7089 if (eager->tcp_tconnind_started) { 7090 /* 7091 * The eager has sent a conn_ind up to the 7092 * listener but listener decides to close 7093 * instead. We need to drop the extra ref 7094 * placed on eager in tcp_rput_data() before 7095 * sending the conn_ind to listener. 7096 */ 7097 CONN_DEC_REF(econnp); 7098 } 7099 mutex_exit(&listener->tcp_eager_lock); 7100 CONN_DEC_REF(listener->tcp_connp); 7101 } 7102 7103 if (eager->tcp_state > TCPS_BOUND) 7104 tcp_close_detached(eager); 7105 } 7106 7107 /* 7108 * Reset any eager connection hanging off this listener marked 7109 * with 'seqnum' and then reclaim it's resources. 7110 */ 7111 static boolean_t 7112 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7113 { 7114 tcp_t *eager; 7115 mblk_t *mp; 7116 tcp_stack_t *tcps = listener->tcp_tcps; 7117 7118 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7119 eager = listener; 7120 mutex_enter(&listener->tcp_eager_lock); 7121 do { 7122 eager = eager->tcp_eager_next_q; 7123 if (eager == NULL) { 7124 mutex_exit(&listener->tcp_eager_lock); 7125 return (B_FALSE); 7126 } 7127 } while (eager->tcp_conn_req_seqnum != seqnum); 7128 7129 if (eager->tcp_closemp_used) { 7130 mutex_exit(&listener->tcp_eager_lock); 7131 return (B_TRUE); 7132 } 7133 eager->tcp_closemp_used = B_TRUE; 7134 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7135 CONN_INC_REF(eager->tcp_connp); 7136 mutex_exit(&listener->tcp_eager_lock); 7137 mp = &eager->tcp_closemp; 7138 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7139 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7140 return (B_TRUE); 7141 } 7142 7143 /* 7144 * Reset any eager connection hanging off this listener 7145 * and then reclaim it's resources. 7146 */ 7147 static void 7148 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7149 { 7150 tcp_t *eager; 7151 mblk_t *mp; 7152 tcp_stack_t *tcps = listener->tcp_tcps; 7153 7154 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7155 7156 if (!q0_only) { 7157 /* First cleanup q */ 7158 TCP_STAT(tcps, tcp_eager_blowoff_q); 7159 eager = listener->tcp_eager_next_q; 7160 while (eager != NULL) { 7161 if (!eager->tcp_closemp_used) { 7162 eager->tcp_closemp_used = B_TRUE; 7163 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7164 CONN_INC_REF(eager->tcp_connp); 7165 mp = &eager->tcp_closemp; 7166 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7167 tcp_eager_kill, eager->tcp_connp, 7168 SQTAG_TCP_EAGER_CLEANUP); 7169 } 7170 eager = eager->tcp_eager_next_q; 7171 } 7172 } 7173 /* Then cleanup q0 */ 7174 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7175 eager = listener->tcp_eager_next_q0; 7176 while (eager != listener) { 7177 if (!eager->tcp_closemp_used) { 7178 eager->tcp_closemp_used = B_TRUE; 7179 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7180 CONN_INC_REF(eager->tcp_connp); 7181 mp = &eager->tcp_closemp; 7182 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7183 tcp_eager_kill, eager->tcp_connp, 7184 SQTAG_TCP_EAGER_CLEANUP_Q0); 7185 } 7186 eager = eager->tcp_eager_next_q0; 7187 } 7188 } 7189 7190 /* 7191 * If we are an eager connection hanging off a listener that hasn't 7192 * formally accepted the connection yet, get off his list and blow off 7193 * any data that we have accumulated. 7194 */ 7195 static void 7196 tcp_eager_unlink(tcp_t *tcp) 7197 { 7198 tcp_t *listener = tcp->tcp_listener; 7199 7200 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7201 ASSERT(listener != NULL); 7202 if (tcp->tcp_eager_next_q0 != NULL) { 7203 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7204 7205 /* Remove the eager tcp from q0 */ 7206 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7207 tcp->tcp_eager_prev_q0; 7208 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7209 tcp->tcp_eager_next_q0; 7210 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7211 listener->tcp_conn_req_cnt_q0--; 7212 7213 tcp->tcp_eager_next_q0 = NULL; 7214 tcp->tcp_eager_prev_q0 = NULL; 7215 7216 /* 7217 * Take the eager out, if it is in the list of droppable 7218 * eagers. 7219 */ 7220 MAKE_UNDROPPABLE(tcp); 7221 7222 if (tcp->tcp_syn_rcvd_timeout != 0) { 7223 /* we have timed out before */ 7224 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7225 listener->tcp_syn_rcvd_timeout--; 7226 } 7227 } else { 7228 tcp_t **tcpp = &listener->tcp_eager_next_q; 7229 tcp_t *prev = NULL; 7230 7231 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7232 if (tcpp[0] == tcp) { 7233 if (listener->tcp_eager_last_q == tcp) { 7234 /* 7235 * If we are unlinking the last 7236 * element on the list, adjust 7237 * tail pointer. Set tail pointer 7238 * to nil when list is empty. 7239 */ 7240 ASSERT(tcp->tcp_eager_next_q == NULL); 7241 if (listener->tcp_eager_last_q == 7242 listener->tcp_eager_next_q) { 7243 listener->tcp_eager_last_q = 7244 NULL; 7245 } else { 7246 /* 7247 * We won't get here if there 7248 * is only one eager in the 7249 * list. 7250 */ 7251 ASSERT(prev != NULL); 7252 listener->tcp_eager_last_q = 7253 prev; 7254 } 7255 } 7256 tcpp[0] = tcp->tcp_eager_next_q; 7257 tcp->tcp_eager_next_q = NULL; 7258 tcp->tcp_eager_last_q = NULL; 7259 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7260 listener->tcp_conn_req_cnt_q--; 7261 break; 7262 } 7263 prev = tcpp[0]; 7264 } 7265 } 7266 tcp->tcp_listener = NULL; 7267 } 7268 7269 /* Shorthand to generate and send TPI error acks to our client */ 7270 static void 7271 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7272 { 7273 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7274 putnext(tcp->tcp_rq, mp); 7275 } 7276 7277 /* Shorthand to generate and send TPI error acks to our client */ 7278 static void 7279 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7280 int t_error, int sys_error) 7281 { 7282 struct T_error_ack *teackp; 7283 7284 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7285 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7286 teackp = (struct T_error_ack *)mp->b_rptr; 7287 teackp->ERROR_prim = primitive; 7288 teackp->TLI_error = t_error; 7289 teackp->UNIX_error = sys_error; 7290 putnext(tcp->tcp_rq, mp); 7291 } 7292 } 7293 7294 /* 7295 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7296 * but instead the code relies on: 7297 * - the fact that the address of the array and its size never changes 7298 * - the atomic assignment of the elements of the array 7299 */ 7300 /* ARGSUSED */ 7301 static int 7302 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7303 { 7304 int i; 7305 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7306 7307 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7308 if (tcps->tcps_g_epriv_ports[i] != 0) 7309 (void) mi_mpprintf(mp, "%d ", 7310 tcps->tcps_g_epriv_ports[i]); 7311 } 7312 return (0); 7313 } 7314 7315 /* 7316 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7317 * threads from changing it at the same time. 7318 */ 7319 /* ARGSUSED */ 7320 static int 7321 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7322 cred_t *cr) 7323 { 7324 long new_value; 7325 int i; 7326 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7327 7328 /* 7329 * Fail the request if the new value does not lie within the 7330 * port number limits. 7331 */ 7332 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7333 new_value <= 0 || new_value >= 65536) { 7334 return (EINVAL); 7335 } 7336 7337 mutex_enter(&tcps->tcps_epriv_port_lock); 7338 /* Check if the value is already in the list */ 7339 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7340 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7341 mutex_exit(&tcps->tcps_epriv_port_lock); 7342 return (EEXIST); 7343 } 7344 } 7345 /* Find an empty slot */ 7346 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7347 if (tcps->tcps_g_epriv_ports[i] == 0) 7348 break; 7349 } 7350 if (i == tcps->tcps_g_num_epriv_ports) { 7351 mutex_exit(&tcps->tcps_epriv_port_lock); 7352 return (EOVERFLOW); 7353 } 7354 /* Set the new value */ 7355 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7356 mutex_exit(&tcps->tcps_epriv_port_lock); 7357 return (0); 7358 } 7359 7360 /* 7361 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7362 * threads from changing it at the same time. 7363 */ 7364 /* ARGSUSED */ 7365 static int 7366 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7367 cred_t *cr) 7368 { 7369 long new_value; 7370 int i; 7371 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7372 7373 /* 7374 * Fail the request if the new value does not lie within the 7375 * port number limits. 7376 */ 7377 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7378 new_value >= 65536) { 7379 return (EINVAL); 7380 } 7381 7382 mutex_enter(&tcps->tcps_epriv_port_lock); 7383 /* Check that the value is already in the list */ 7384 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7385 if (tcps->tcps_g_epriv_ports[i] == new_value) 7386 break; 7387 } 7388 if (i == tcps->tcps_g_num_epriv_ports) { 7389 mutex_exit(&tcps->tcps_epriv_port_lock); 7390 return (ESRCH); 7391 } 7392 /* Clear the value */ 7393 tcps->tcps_g_epriv_ports[i] = 0; 7394 mutex_exit(&tcps->tcps_epriv_port_lock); 7395 return (0); 7396 } 7397 7398 /* Return the TPI/TLI equivalent of our current tcp_state */ 7399 static int 7400 tcp_tpistate(tcp_t *tcp) 7401 { 7402 switch (tcp->tcp_state) { 7403 case TCPS_IDLE: 7404 return (TS_UNBND); 7405 case TCPS_LISTEN: 7406 /* 7407 * Return whether there are outstanding T_CONN_IND waiting 7408 * for the matching T_CONN_RES. Therefore don't count q0. 7409 */ 7410 if (tcp->tcp_conn_req_cnt_q > 0) 7411 return (TS_WRES_CIND); 7412 else 7413 return (TS_IDLE); 7414 case TCPS_BOUND: 7415 return (TS_IDLE); 7416 case TCPS_SYN_SENT: 7417 return (TS_WCON_CREQ); 7418 case TCPS_SYN_RCVD: 7419 /* 7420 * Note: assumption: this has to the active open SYN_RCVD. 7421 * The passive instance is detached in SYN_RCVD stage of 7422 * incoming connection processing so we cannot get request 7423 * for T_info_ack on it. 7424 */ 7425 return (TS_WACK_CRES); 7426 case TCPS_ESTABLISHED: 7427 return (TS_DATA_XFER); 7428 case TCPS_CLOSE_WAIT: 7429 return (TS_WREQ_ORDREL); 7430 case TCPS_FIN_WAIT_1: 7431 return (TS_WIND_ORDREL); 7432 case TCPS_FIN_WAIT_2: 7433 return (TS_WIND_ORDREL); 7434 7435 case TCPS_CLOSING: 7436 case TCPS_LAST_ACK: 7437 case TCPS_TIME_WAIT: 7438 case TCPS_CLOSED: 7439 /* 7440 * Following TS_WACK_DREQ7 is a rendition of "not 7441 * yet TS_IDLE" TPI state. There is no best match to any 7442 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7443 * choose a value chosen that will map to TLI/XTI level 7444 * state of TSTATECHNG (state is process of changing) which 7445 * captures what this dummy state represents. 7446 */ 7447 return (TS_WACK_DREQ7); 7448 default: 7449 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7450 tcp->tcp_state, tcp_display(tcp, NULL, 7451 DISP_PORT_ONLY)); 7452 return (TS_UNBND); 7453 } 7454 } 7455 7456 static void 7457 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7458 { 7459 tcp_stack_t *tcps = tcp->tcp_tcps; 7460 7461 if (tcp->tcp_family == AF_INET6) 7462 *tia = tcp_g_t_info_ack_v6; 7463 else 7464 *tia = tcp_g_t_info_ack; 7465 tia->CURRENT_state = tcp_tpistate(tcp); 7466 tia->OPT_size = tcp_max_optsize; 7467 if (tcp->tcp_mss == 0) { 7468 /* Not yet set - tcp_open does not set mss */ 7469 if (tcp->tcp_ipversion == IPV4_VERSION) 7470 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7471 else 7472 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7473 } else { 7474 tia->TIDU_size = tcp->tcp_mss; 7475 } 7476 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7477 } 7478 7479 /* 7480 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7481 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7482 * tcp_g_t_info_ack. The current state of the stream is copied from 7483 * tcp_state. 7484 */ 7485 static void 7486 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7487 { 7488 t_uscalar_t cap_bits1; 7489 struct T_capability_ack *tcap; 7490 7491 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7492 freemsg(mp); 7493 return; 7494 } 7495 7496 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7497 7498 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7499 mp->b_datap->db_type, T_CAPABILITY_ACK); 7500 if (mp == NULL) 7501 return; 7502 7503 tcap = (struct T_capability_ack *)mp->b_rptr; 7504 tcap->CAP_bits1 = 0; 7505 7506 if (cap_bits1 & TC1_INFO) { 7507 tcp_copy_info(&tcap->INFO_ack, tcp); 7508 tcap->CAP_bits1 |= TC1_INFO; 7509 } 7510 7511 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7512 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7513 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7514 } 7515 7516 putnext(tcp->tcp_rq, mp); 7517 } 7518 7519 /* 7520 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7521 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7522 * The current state of the stream is copied from tcp_state. 7523 */ 7524 static void 7525 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7526 { 7527 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7528 T_INFO_ACK); 7529 if (!mp) { 7530 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7531 return; 7532 } 7533 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7534 putnext(tcp->tcp_rq, mp); 7535 } 7536 7537 /* Respond to the TPI addr request */ 7538 static void 7539 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7540 { 7541 sin_t *sin; 7542 mblk_t *ackmp; 7543 struct T_addr_ack *taa; 7544 7545 /* Make it large enough for worst case */ 7546 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7547 2 * sizeof (sin6_t), 1); 7548 if (ackmp == NULL) { 7549 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7550 return; 7551 } 7552 7553 if (tcp->tcp_ipversion == IPV6_VERSION) { 7554 tcp_addr_req_ipv6(tcp, ackmp); 7555 return; 7556 } 7557 taa = (struct T_addr_ack *)ackmp->b_rptr; 7558 7559 bzero(taa, sizeof (struct T_addr_ack)); 7560 ackmp->b_wptr = (uchar_t *)&taa[1]; 7561 7562 taa->PRIM_type = T_ADDR_ACK; 7563 ackmp->b_datap->db_type = M_PCPROTO; 7564 7565 /* 7566 * Note: Following code assumes 32 bit alignment of basic 7567 * data structures like sin_t and struct T_addr_ack. 7568 */ 7569 if (tcp->tcp_state >= TCPS_BOUND) { 7570 /* 7571 * Fill in local address 7572 */ 7573 taa->LOCADDR_length = sizeof (sin_t); 7574 taa->LOCADDR_offset = sizeof (*taa); 7575 7576 sin = (sin_t *)&taa[1]; 7577 7578 /* Fill zeroes and then intialize non-zero fields */ 7579 *sin = sin_null; 7580 7581 sin->sin_family = AF_INET; 7582 7583 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7584 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7585 7586 ackmp->b_wptr = (uchar_t *)&sin[1]; 7587 7588 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7589 /* 7590 * Fill in Remote address 7591 */ 7592 taa->REMADDR_length = sizeof (sin_t); 7593 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7594 taa->LOCADDR_length); 7595 7596 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7597 *sin = sin_null; 7598 sin->sin_family = AF_INET; 7599 sin->sin_addr.s_addr = tcp->tcp_remote; 7600 sin->sin_port = tcp->tcp_fport; 7601 7602 ackmp->b_wptr = (uchar_t *)&sin[1]; 7603 } 7604 } 7605 putnext(tcp->tcp_rq, ackmp); 7606 } 7607 7608 /* Assumes that tcp_addr_req gets enough space and alignment */ 7609 static void 7610 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7611 { 7612 sin6_t *sin6; 7613 struct T_addr_ack *taa; 7614 7615 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7616 ASSERT(OK_32PTR(ackmp->b_rptr)); 7617 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7618 2 * sizeof (sin6_t)); 7619 7620 taa = (struct T_addr_ack *)ackmp->b_rptr; 7621 7622 bzero(taa, sizeof (struct T_addr_ack)); 7623 ackmp->b_wptr = (uchar_t *)&taa[1]; 7624 7625 taa->PRIM_type = T_ADDR_ACK; 7626 ackmp->b_datap->db_type = M_PCPROTO; 7627 7628 /* 7629 * Note: Following code assumes 32 bit alignment of basic 7630 * data structures like sin6_t and struct T_addr_ack. 7631 */ 7632 if (tcp->tcp_state >= TCPS_BOUND) { 7633 /* 7634 * Fill in local address 7635 */ 7636 taa->LOCADDR_length = sizeof (sin6_t); 7637 taa->LOCADDR_offset = sizeof (*taa); 7638 7639 sin6 = (sin6_t *)&taa[1]; 7640 *sin6 = sin6_null; 7641 7642 sin6->sin6_family = AF_INET6; 7643 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7644 sin6->sin6_port = tcp->tcp_lport; 7645 7646 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7647 7648 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7649 /* 7650 * Fill in Remote address 7651 */ 7652 taa->REMADDR_length = sizeof (sin6_t); 7653 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7654 taa->LOCADDR_length); 7655 7656 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7657 *sin6 = sin6_null; 7658 sin6->sin6_family = AF_INET6; 7659 sin6->sin6_flowinfo = 7660 tcp->tcp_ip6h->ip6_vcf & 7661 ~IPV6_VERS_AND_FLOW_MASK; 7662 sin6->sin6_addr = tcp->tcp_remote_v6; 7663 sin6->sin6_port = tcp->tcp_fport; 7664 7665 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7666 } 7667 } 7668 putnext(tcp->tcp_rq, ackmp); 7669 } 7670 7671 /* 7672 * Handle reinitialization of a tcp structure. 7673 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7674 */ 7675 static void 7676 tcp_reinit(tcp_t *tcp) 7677 { 7678 mblk_t *mp; 7679 int err; 7680 tcp_stack_t *tcps = tcp->tcp_tcps; 7681 7682 TCP_STAT(tcps, tcp_reinit_calls); 7683 7684 /* tcp_reinit should never be called for detached tcp_t's */ 7685 ASSERT(tcp->tcp_listener == NULL); 7686 ASSERT((tcp->tcp_family == AF_INET && 7687 tcp->tcp_ipversion == IPV4_VERSION) || 7688 (tcp->tcp_family == AF_INET6 && 7689 (tcp->tcp_ipversion == IPV4_VERSION || 7690 tcp->tcp_ipversion == IPV6_VERSION))); 7691 7692 /* Cancel outstanding timers */ 7693 tcp_timers_stop(tcp); 7694 7695 /* 7696 * Reset everything in the state vector, after updating global 7697 * MIB data from instance counters. 7698 */ 7699 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7700 tcp->tcp_ibsegs = 0; 7701 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7702 tcp->tcp_obsegs = 0; 7703 7704 tcp_close_mpp(&tcp->tcp_xmit_head); 7705 if (tcp->tcp_snd_zcopy_aware) 7706 tcp_zcopy_notify(tcp); 7707 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7708 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7709 mutex_enter(&tcp->tcp_non_sq_lock); 7710 if (tcp->tcp_flow_stopped && 7711 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7712 tcp_clrqfull(tcp); 7713 } 7714 mutex_exit(&tcp->tcp_non_sq_lock); 7715 tcp_close_mpp(&tcp->tcp_reass_head); 7716 tcp->tcp_reass_tail = NULL; 7717 if (tcp->tcp_rcv_list != NULL) { 7718 /* Free b_next chain */ 7719 tcp_close_mpp(&tcp->tcp_rcv_list); 7720 tcp->tcp_rcv_last_head = NULL; 7721 tcp->tcp_rcv_last_tail = NULL; 7722 tcp->tcp_rcv_cnt = 0; 7723 } 7724 tcp->tcp_rcv_last_tail = NULL; 7725 7726 if ((mp = tcp->tcp_urp_mp) != NULL) { 7727 freemsg(mp); 7728 tcp->tcp_urp_mp = NULL; 7729 } 7730 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7731 freemsg(mp); 7732 tcp->tcp_urp_mark_mp = NULL; 7733 } 7734 if (tcp->tcp_fused_sigurg_mp != NULL) { 7735 freeb(tcp->tcp_fused_sigurg_mp); 7736 tcp->tcp_fused_sigurg_mp = NULL; 7737 } 7738 7739 /* 7740 * Following is a union with two members which are 7741 * identical types and size so the following cleanup 7742 * is enough. 7743 */ 7744 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7745 7746 CL_INET_DISCONNECT(tcp); 7747 7748 /* 7749 * The connection can't be on the tcp_time_wait_head list 7750 * since it is not detached. 7751 */ 7752 ASSERT(tcp->tcp_time_wait_next == NULL); 7753 ASSERT(tcp->tcp_time_wait_prev == NULL); 7754 ASSERT(tcp->tcp_time_wait_expire == 0); 7755 7756 if (tcp->tcp_kssl_pending) { 7757 tcp->tcp_kssl_pending = B_FALSE; 7758 7759 /* Don't reset if the initialized by bind. */ 7760 if (tcp->tcp_kssl_ent != NULL) { 7761 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7762 KSSL_NO_PROXY); 7763 } 7764 } 7765 if (tcp->tcp_kssl_ctx != NULL) { 7766 kssl_release_ctx(tcp->tcp_kssl_ctx); 7767 tcp->tcp_kssl_ctx = NULL; 7768 } 7769 7770 /* 7771 * Reset/preserve other values 7772 */ 7773 tcp_reinit_values(tcp); 7774 ipcl_hash_remove(tcp->tcp_connp); 7775 conn_delete_ire(tcp->tcp_connp, NULL); 7776 tcp_ipsec_cleanup(tcp); 7777 7778 if (tcp->tcp_conn_req_max != 0) { 7779 /* 7780 * This is the case when a TLI program uses the same 7781 * transport end point to accept a connection. This 7782 * makes the TCP both a listener and acceptor. When 7783 * this connection is closed, we need to set the state 7784 * back to TCPS_LISTEN. Make sure that the eager list 7785 * is reinitialized. 7786 * 7787 * Note that this stream is still bound to the four 7788 * tuples of the previous connection in IP. If a new 7789 * SYN with different foreign address comes in, IP will 7790 * not find it and will send it to the global queue. In 7791 * the global queue, TCP will do a tcp_lookup_listener() 7792 * to find this stream. This works because this stream 7793 * is only removed from connected hash. 7794 * 7795 */ 7796 tcp->tcp_state = TCPS_LISTEN; 7797 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7798 tcp->tcp_eager_next_drop_q0 = tcp; 7799 tcp->tcp_eager_prev_drop_q0 = tcp; 7800 tcp->tcp_connp->conn_recv = tcp_conn_request; 7801 if (tcp->tcp_family == AF_INET6) { 7802 ASSERT(tcp->tcp_connp->conn_af_isv6); 7803 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7804 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7805 } else { 7806 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7807 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7808 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7809 } 7810 } else { 7811 tcp->tcp_state = TCPS_BOUND; 7812 } 7813 7814 /* 7815 * Initialize to default values 7816 * Can't fail since enough header template space already allocated 7817 * at open(). 7818 */ 7819 err = tcp_init_values(tcp); 7820 ASSERT(err == 0); 7821 /* Restore state in tcp_tcph */ 7822 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7823 if (tcp->tcp_ipversion == IPV4_VERSION) 7824 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7825 else 7826 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7827 /* 7828 * Copy of the src addr. in tcp_t is needed in tcp_t 7829 * since the lookup funcs can only lookup on tcp_t 7830 */ 7831 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7832 7833 ASSERT(tcp->tcp_ptpbhn != NULL); 7834 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7835 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7836 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7837 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7838 } 7839 7840 /* 7841 * Force values to zero that need be zero. 7842 * Do not touch values asociated with the BOUND or LISTEN state 7843 * since the connection will end up in that state after the reinit. 7844 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7845 * structure! 7846 */ 7847 static void 7848 tcp_reinit_values(tcp) 7849 tcp_t *tcp; 7850 { 7851 tcp_stack_t *tcps = tcp->tcp_tcps; 7852 7853 #ifndef lint 7854 #define DONTCARE(x) 7855 #define PRESERVE(x) 7856 #else 7857 #define DONTCARE(x) ((x) = (x)) 7858 #define PRESERVE(x) ((x) = (x)) 7859 #endif /* lint */ 7860 7861 PRESERVE(tcp->tcp_bind_hash); 7862 PRESERVE(tcp->tcp_ptpbhn); 7863 PRESERVE(tcp->tcp_acceptor_hash); 7864 PRESERVE(tcp->tcp_ptpahn); 7865 7866 /* Should be ASSERT NULL on these with new code! */ 7867 ASSERT(tcp->tcp_time_wait_next == NULL); 7868 ASSERT(tcp->tcp_time_wait_prev == NULL); 7869 ASSERT(tcp->tcp_time_wait_expire == 0); 7870 PRESERVE(tcp->tcp_state); 7871 PRESERVE(tcp->tcp_rq); 7872 PRESERVE(tcp->tcp_wq); 7873 7874 ASSERT(tcp->tcp_xmit_head == NULL); 7875 ASSERT(tcp->tcp_xmit_last == NULL); 7876 ASSERT(tcp->tcp_unsent == 0); 7877 ASSERT(tcp->tcp_xmit_tail == NULL); 7878 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7879 7880 tcp->tcp_snxt = 0; /* Displayed in mib */ 7881 tcp->tcp_suna = 0; /* Displayed in mib */ 7882 tcp->tcp_swnd = 0; 7883 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7884 7885 ASSERT(tcp->tcp_ibsegs == 0); 7886 ASSERT(tcp->tcp_obsegs == 0); 7887 7888 if (tcp->tcp_iphc != NULL) { 7889 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7890 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7891 } 7892 7893 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7894 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7895 DONTCARE(tcp->tcp_ipha); 7896 DONTCARE(tcp->tcp_ip6h); 7897 DONTCARE(tcp->tcp_ip_hdr_len); 7898 DONTCARE(tcp->tcp_tcph); 7899 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7900 tcp->tcp_valid_bits = 0; 7901 7902 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7903 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7904 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7905 tcp->tcp_last_rcv_lbolt = 0; 7906 7907 tcp->tcp_init_cwnd = 0; 7908 7909 tcp->tcp_urp_last_valid = 0; 7910 tcp->tcp_hard_binding = 0; 7911 tcp->tcp_hard_bound = 0; 7912 PRESERVE(tcp->tcp_cred); 7913 PRESERVE(tcp->tcp_cpid); 7914 PRESERVE(tcp->tcp_open_time); 7915 PRESERVE(tcp->tcp_exclbind); 7916 7917 tcp->tcp_fin_acked = 0; 7918 tcp->tcp_fin_rcvd = 0; 7919 tcp->tcp_fin_sent = 0; 7920 tcp->tcp_ordrel_done = 0; 7921 7922 tcp->tcp_debug = 0; 7923 tcp->tcp_dontroute = 0; 7924 tcp->tcp_broadcast = 0; 7925 7926 tcp->tcp_useloopback = 0; 7927 tcp->tcp_reuseaddr = 0; 7928 tcp->tcp_oobinline = 0; 7929 tcp->tcp_dgram_errind = 0; 7930 7931 tcp->tcp_detached = 0; 7932 tcp->tcp_bind_pending = 0; 7933 tcp->tcp_unbind_pending = 0; 7934 tcp->tcp_deferred_clean_death = 0; 7935 7936 tcp->tcp_snd_ws_ok = B_FALSE; 7937 tcp->tcp_snd_ts_ok = B_FALSE; 7938 tcp->tcp_linger = 0; 7939 tcp->tcp_ka_enabled = 0; 7940 tcp->tcp_zero_win_probe = 0; 7941 7942 tcp->tcp_loopback = 0; 7943 tcp->tcp_localnet = 0; 7944 tcp->tcp_syn_defense = 0; 7945 tcp->tcp_set_timer = 0; 7946 7947 tcp->tcp_active_open = 0; 7948 ASSERT(tcp->tcp_timeout == B_FALSE); 7949 tcp->tcp_rexmit = B_FALSE; 7950 tcp->tcp_xmit_zc_clean = B_FALSE; 7951 7952 tcp->tcp_snd_sack_ok = B_FALSE; 7953 PRESERVE(tcp->tcp_recvdstaddr); 7954 tcp->tcp_hwcksum = B_FALSE; 7955 7956 tcp->tcp_ire_ill_check_done = B_FALSE; 7957 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7958 7959 tcp->tcp_mdt = B_FALSE; 7960 tcp->tcp_mdt_hdr_head = 0; 7961 tcp->tcp_mdt_hdr_tail = 0; 7962 7963 tcp->tcp_conn_def_q0 = 0; 7964 tcp->tcp_ip_forward_progress = B_FALSE; 7965 tcp->tcp_anon_priv_bind = 0; 7966 tcp->tcp_ecn_ok = B_FALSE; 7967 7968 tcp->tcp_cwr = B_FALSE; 7969 tcp->tcp_ecn_echo_on = B_FALSE; 7970 7971 if (tcp->tcp_sack_info != NULL) { 7972 if (tcp->tcp_notsack_list != NULL) { 7973 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7974 } 7975 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7976 tcp->tcp_sack_info = NULL; 7977 } 7978 7979 tcp->tcp_rcv_ws = 0; 7980 tcp->tcp_snd_ws = 0; 7981 tcp->tcp_ts_recent = 0; 7982 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7983 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7984 tcp->tcp_if_mtu = 0; 7985 7986 ASSERT(tcp->tcp_reass_head == NULL); 7987 ASSERT(tcp->tcp_reass_tail == NULL); 7988 7989 tcp->tcp_cwnd_cnt = 0; 7990 7991 ASSERT(tcp->tcp_rcv_list == NULL); 7992 ASSERT(tcp->tcp_rcv_last_head == NULL); 7993 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7994 ASSERT(tcp->tcp_rcv_cnt == 0); 7995 7996 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7997 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7998 tcp->tcp_csuna = 0; 7999 8000 tcp->tcp_rto = 0; /* Displayed in MIB */ 8001 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8002 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8003 tcp->tcp_rtt_update = 0; 8004 8005 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8006 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8007 8008 tcp->tcp_rack = 0; /* Displayed in mib */ 8009 tcp->tcp_rack_cnt = 0; 8010 tcp->tcp_rack_cur_max = 0; 8011 tcp->tcp_rack_abs_max = 0; 8012 8013 tcp->tcp_max_swnd = 0; 8014 8015 ASSERT(tcp->tcp_listener == NULL); 8016 8017 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8018 8019 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8020 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8021 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8022 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8023 8024 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8025 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8026 PRESERVE(tcp->tcp_conn_req_max); 8027 PRESERVE(tcp->tcp_conn_req_seqnum); 8028 8029 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8030 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8031 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8032 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8033 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8034 8035 tcp->tcp_lingertime = 0; 8036 8037 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8038 ASSERT(tcp->tcp_urp_mp == NULL); 8039 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8040 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8041 8042 ASSERT(tcp->tcp_eager_next_q == NULL); 8043 ASSERT(tcp->tcp_eager_last_q == NULL); 8044 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8045 tcp->tcp_eager_prev_q0 == NULL) || 8046 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8047 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8048 8049 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8050 tcp->tcp_eager_prev_drop_q0 == NULL) || 8051 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8052 8053 tcp->tcp_client_errno = 0; 8054 8055 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8056 8057 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8058 8059 PRESERVE(tcp->tcp_bound_source_v6); 8060 tcp->tcp_last_sent_len = 0; 8061 tcp->tcp_dupack_cnt = 0; 8062 8063 tcp->tcp_fport = 0; /* Displayed in MIB */ 8064 PRESERVE(tcp->tcp_lport); 8065 8066 PRESERVE(tcp->tcp_acceptor_lockp); 8067 8068 ASSERT(tcp->tcp_ordrelid == 0); 8069 PRESERVE(tcp->tcp_acceptor_id); 8070 DONTCARE(tcp->tcp_ipsec_overhead); 8071 8072 /* 8073 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8074 * in tcp structure and now tracing), Re-initialize all 8075 * members of tcp_traceinfo. 8076 */ 8077 if (tcp->tcp_tracebuf != NULL) { 8078 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8079 } 8080 8081 PRESERVE(tcp->tcp_family); 8082 if (tcp->tcp_family == AF_INET6) { 8083 tcp->tcp_ipversion = IPV6_VERSION; 8084 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8085 } else { 8086 tcp->tcp_ipversion = IPV4_VERSION; 8087 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8088 } 8089 8090 tcp->tcp_bound_if = 0; 8091 tcp->tcp_ipv6_recvancillary = 0; 8092 tcp->tcp_recvifindex = 0; 8093 tcp->tcp_recvhops = 0; 8094 tcp->tcp_closed = 0; 8095 tcp->tcp_cleandeathtag = 0; 8096 if (tcp->tcp_hopopts != NULL) { 8097 mi_free(tcp->tcp_hopopts); 8098 tcp->tcp_hopopts = NULL; 8099 tcp->tcp_hopoptslen = 0; 8100 } 8101 ASSERT(tcp->tcp_hopoptslen == 0); 8102 if (tcp->tcp_dstopts != NULL) { 8103 mi_free(tcp->tcp_dstopts); 8104 tcp->tcp_dstopts = NULL; 8105 tcp->tcp_dstoptslen = 0; 8106 } 8107 ASSERT(tcp->tcp_dstoptslen == 0); 8108 if (tcp->tcp_rtdstopts != NULL) { 8109 mi_free(tcp->tcp_rtdstopts); 8110 tcp->tcp_rtdstopts = NULL; 8111 tcp->tcp_rtdstoptslen = 0; 8112 } 8113 ASSERT(tcp->tcp_rtdstoptslen == 0); 8114 if (tcp->tcp_rthdr != NULL) { 8115 mi_free(tcp->tcp_rthdr); 8116 tcp->tcp_rthdr = NULL; 8117 tcp->tcp_rthdrlen = 0; 8118 } 8119 ASSERT(tcp->tcp_rthdrlen == 0); 8120 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8121 8122 /* Reset fusion-related fields */ 8123 tcp->tcp_fused = B_FALSE; 8124 tcp->tcp_unfusable = B_FALSE; 8125 tcp->tcp_fused_sigurg = B_FALSE; 8126 tcp->tcp_direct_sockfs = B_FALSE; 8127 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8128 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8129 tcp->tcp_loopback_peer = NULL; 8130 tcp->tcp_fuse_rcv_hiwater = 0; 8131 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8132 tcp->tcp_fuse_rcv_unread_cnt = 0; 8133 8134 tcp->tcp_lso = B_FALSE; 8135 8136 tcp->tcp_in_ack_unsent = 0; 8137 tcp->tcp_cork = B_FALSE; 8138 tcp->tcp_tconnind_started = B_FALSE; 8139 8140 PRESERVE(tcp->tcp_squeue_bytes); 8141 8142 ASSERT(tcp->tcp_kssl_ctx == NULL); 8143 ASSERT(!tcp->tcp_kssl_pending); 8144 PRESERVE(tcp->tcp_kssl_ent); 8145 8146 tcp->tcp_closemp_used = B_FALSE; 8147 8148 #ifdef DEBUG 8149 DONTCARE(tcp->tcmp_stk[0]); 8150 #endif 8151 8152 8153 #undef DONTCARE 8154 #undef PRESERVE 8155 } 8156 8157 /* 8158 * Allocate necessary resources and initialize state vector. 8159 * Guaranteed not to fail so that when an error is returned, 8160 * the caller doesn't need to do any additional cleanup. 8161 */ 8162 int 8163 tcp_init(tcp_t *tcp, queue_t *q) 8164 { 8165 int err; 8166 8167 tcp->tcp_rq = q; 8168 tcp->tcp_wq = WR(q); 8169 tcp->tcp_state = TCPS_IDLE; 8170 if ((err = tcp_init_values(tcp)) != 0) 8171 tcp_timers_stop(tcp); 8172 return (err); 8173 } 8174 8175 static int 8176 tcp_init_values(tcp_t *tcp) 8177 { 8178 int err; 8179 tcp_stack_t *tcps = tcp->tcp_tcps; 8180 8181 ASSERT((tcp->tcp_family == AF_INET && 8182 tcp->tcp_ipversion == IPV4_VERSION) || 8183 (tcp->tcp_family == AF_INET6 && 8184 (tcp->tcp_ipversion == IPV4_VERSION || 8185 tcp->tcp_ipversion == IPV6_VERSION))); 8186 8187 /* 8188 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8189 * will be close to tcp_rexmit_interval_initial. By doing this, we 8190 * allow the algorithm to adjust slowly to large fluctuations of RTT 8191 * during first few transmissions of a connection as seen in slow 8192 * links. 8193 */ 8194 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8195 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8196 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8197 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8198 tcps->tcps_conn_grace_period; 8199 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8200 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8201 tcp->tcp_timer_backoff = 0; 8202 tcp->tcp_ms_we_have_waited = 0; 8203 tcp->tcp_last_recv_time = lbolt; 8204 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8205 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8206 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8207 8208 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8209 8210 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8211 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8212 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8213 /* 8214 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8215 * passive open. 8216 */ 8217 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8218 8219 tcp->tcp_naglim = tcps->tcps_naglim_def; 8220 8221 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8222 8223 tcp->tcp_mdt_hdr_head = 0; 8224 tcp->tcp_mdt_hdr_tail = 0; 8225 8226 /* Reset fusion-related fields */ 8227 tcp->tcp_fused = B_FALSE; 8228 tcp->tcp_unfusable = B_FALSE; 8229 tcp->tcp_fused_sigurg = B_FALSE; 8230 tcp->tcp_direct_sockfs = B_FALSE; 8231 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8232 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8233 tcp->tcp_loopback_peer = NULL; 8234 tcp->tcp_fuse_rcv_hiwater = 0; 8235 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8236 tcp->tcp_fuse_rcv_unread_cnt = 0; 8237 8238 /* Initialize the header template */ 8239 if (tcp->tcp_ipversion == IPV4_VERSION) { 8240 err = tcp_header_init_ipv4(tcp); 8241 } else { 8242 err = tcp_header_init_ipv6(tcp); 8243 } 8244 if (err) 8245 return (err); 8246 8247 /* 8248 * Init the window scale to the max so tcp_rwnd_set() won't pare 8249 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8250 */ 8251 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8252 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8253 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8254 8255 tcp->tcp_cork = B_FALSE; 8256 /* 8257 * Init the tcp_debug option. This value determines whether TCP 8258 * calls strlog() to print out debug messages. Doing this 8259 * initialization here means that this value is not inherited thru 8260 * tcp_reinit(). 8261 */ 8262 tcp->tcp_debug = tcps->tcps_dbg; 8263 8264 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8265 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8266 8267 return (0); 8268 } 8269 8270 /* 8271 * Initialize the IPv4 header. Loses any record of any IP options. 8272 */ 8273 static int 8274 tcp_header_init_ipv4(tcp_t *tcp) 8275 { 8276 tcph_t *tcph; 8277 uint32_t sum; 8278 conn_t *connp; 8279 tcp_stack_t *tcps = tcp->tcp_tcps; 8280 8281 /* 8282 * This is a simple initialization. If there's 8283 * already a template, it should never be too small, 8284 * so reuse it. Otherwise, allocate space for the new one. 8285 */ 8286 if (tcp->tcp_iphc == NULL) { 8287 ASSERT(tcp->tcp_iphc_len == 0); 8288 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8289 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8290 if (tcp->tcp_iphc == NULL) { 8291 tcp->tcp_iphc_len = 0; 8292 return (ENOMEM); 8293 } 8294 } 8295 8296 /* options are gone; may need a new label */ 8297 connp = tcp->tcp_connp; 8298 connp->conn_mlp_type = mlptSingle; 8299 connp->conn_ulp_labeled = !is_system_labeled(); 8300 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8301 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8302 tcp->tcp_ip6h = NULL; 8303 tcp->tcp_ipversion = IPV4_VERSION; 8304 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8305 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8306 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8307 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8308 tcp->tcp_ipha->ipha_version_and_hdr_length 8309 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8310 tcp->tcp_ipha->ipha_ident = 0; 8311 8312 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8313 tcp->tcp_tos = 0; 8314 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8315 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8316 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8317 8318 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8319 tcp->tcp_tcph = tcph; 8320 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8321 /* 8322 * IP wants our header length in the checksum field to 8323 * allow it to perform a single pseudo-header+checksum 8324 * calculation on behalf of TCP. 8325 * Include the adjustment for a source route once IP_OPTIONS is set. 8326 */ 8327 sum = sizeof (tcph_t) + tcp->tcp_sum; 8328 sum = (sum >> 16) + (sum & 0xFFFF); 8329 U16_TO_ABE16(sum, tcph->th_sum); 8330 return (0); 8331 } 8332 8333 /* 8334 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8335 */ 8336 static int 8337 tcp_header_init_ipv6(tcp_t *tcp) 8338 { 8339 tcph_t *tcph; 8340 uint32_t sum; 8341 conn_t *connp; 8342 tcp_stack_t *tcps = tcp->tcp_tcps; 8343 8344 /* 8345 * This is a simple initialization. If there's 8346 * already a template, it should never be too small, 8347 * so reuse it. Otherwise, allocate space for the new one. 8348 * Ensure that there is enough space to "downgrade" the tcp_t 8349 * to an IPv4 tcp_t. This requires having space for a full load 8350 * of IPv4 options, as well as a full load of TCP options 8351 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8352 * than a v6 header and a TCP header with a full load of TCP options 8353 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8354 * We want to avoid reallocation in the "downgraded" case when 8355 * processing outbound IPv4 options. 8356 */ 8357 if (tcp->tcp_iphc == NULL) { 8358 ASSERT(tcp->tcp_iphc_len == 0); 8359 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8360 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8361 if (tcp->tcp_iphc == NULL) { 8362 tcp->tcp_iphc_len = 0; 8363 return (ENOMEM); 8364 } 8365 } 8366 8367 /* options are gone; may need a new label */ 8368 connp = tcp->tcp_connp; 8369 connp->conn_mlp_type = mlptSingle; 8370 connp->conn_ulp_labeled = !is_system_labeled(); 8371 8372 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8373 tcp->tcp_ipversion = IPV6_VERSION; 8374 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8375 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8376 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8377 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8378 tcp->tcp_ipha = NULL; 8379 8380 /* Initialize the header template */ 8381 8382 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8383 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8384 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8385 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8386 8387 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8388 tcp->tcp_tcph = tcph; 8389 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8390 /* 8391 * IP wants our header length in the checksum field to 8392 * allow it to perform a single psuedo-header+checksum 8393 * calculation on behalf of TCP. 8394 * Include the adjustment for a source route when IPV6_RTHDR is set. 8395 */ 8396 sum = sizeof (tcph_t) + tcp->tcp_sum; 8397 sum = (sum >> 16) + (sum & 0xFFFF); 8398 U16_TO_ABE16(sum, tcph->th_sum); 8399 return (0); 8400 } 8401 8402 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8403 #define ICMP_MIN_TCP_HDR 8 8404 8405 /* 8406 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8407 * passed up by IP. The message is always received on the correct tcp_t. 8408 * Assumes that IP has pulled up everything up to and including the ICMP header. 8409 */ 8410 void 8411 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8412 { 8413 icmph_t *icmph; 8414 ipha_t *ipha; 8415 int iph_hdr_length; 8416 tcph_t *tcph; 8417 boolean_t ipsec_mctl = B_FALSE; 8418 boolean_t secure; 8419 mblk_t *first_mp = mp; 8420 uint32_t new_mss; 8421 uint32_t ratio; 8422 size_t mp_size = MBLKL(mp); 8423 uint32_t seg_seq; 8424 tcp_stack_t *tcps = tcp->tcp_tcps; 8425 8426 /* Assume IP provides aligned packets - otherwise toss */ 8427 if (!OK_32PTR(mp->b_rptr)) { 8428 freemsg(mp); 8429 return; 8430 } 8431 8432 /* 8433 * Since ICMP errors are normal data marked with M_CTL when sent 8434 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8435 * packets starting with an ipsec_info_t, see ipsec_info.h. 8436 */ 8437 if ((mp_size == sizeof (ipsec_info_t)) && 8438 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8439 ASSERT(mp->b_cont != NULL); 8440 mp = mp->b_cont; 8441 /* IP should have done this */ 8442 ASSERT(OK_32PTR(mp->b_rptr)); 8443 mp_size = MBLKL(mp); 8444 ipsec_mctl = B_TRUE; 8445 } 8446 8447 /* 8448 * Verify that we have a complete outer IP header. If not, drop it. 8449 */ 8450 if (mp_size < sizeof (ipha_t)) { 8451 noticmpv4: 8452 freemsg(first_mp); 8453 return; 8454 } 8455 8456 ipha = (ipha_t *)mp->b_rptr; 8457 /* 8458 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8459 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8460 */ 8461 switch (IPH_HDR_VERSION(ipha)) { 8462 case IPV6_VERSION: 8463 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8464 return; 8465 case IPV4_VERSION: 8466 break; 8467 default: 8468 goto noticmpv4; 8469 } 8470 8471 /* Skip past the outer IP and ICMP headers */ 8472 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8473 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8474 /* 8475 * If we don't have the correct outer IP header length or if the ULP 8476 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8477 * send it upstream. 8478 */ 8479 if (iph_hdr_length < sizeof (ipha_t) || 8480 ipha->ipha_protocol != IPPROTO_ICMP || 8481 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8482 goto noticmpv4; 8483 } 8484 ipha = (ipha_t *)&icmph[1]; 8485 8486 /* Skip past the inner IP and find the ULP header */ 8487 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8488 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8489 /* 8490 * If we don't have the correct inner IP header length or if the ULP 8491 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8492 * bytes of TCP header, drop it. 8493 */ 8494 if (iph_hdr_length < sizeof (ipha_t) || 8495 ipha->ipha_protocol != IPPROTO_TCP || 8496 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8497 goto noticmpv4; 8498 } 8499 8500 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8501 if (ipsec_mctl) { 8502 secure = ipsec_in_is_secure(first_mp); 8503 } else { 8504 secure = B_FALSE; 8505 } 8506 if (secure) { 8507 /* 8508 * If we are willing to accept this in clear 8509 * we don't have to verify policy. 8510 */ 8511 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8512 if (!tcp_check_policy(tcp, first_mp, 8513 ipha, NULL, secure, ipsec_mctl)) { 8514 /* 8515 * tcp_check_policy called 8516 * ip_drop_packet() on failure. 8517 */ 8518 return; 8519 } 8520 } 8521 } 8522 } else if (ipsec_mctl) { 8523 /* 8524 * This is a hard_bound connection. IP has already 8525 * verified policy. We don't have to do it again. 8526 */ 8527 freeb(first_mp); 8528 first_mp = mp; 8529 ipsec_mctl = B_FALSE; 8530 } 8531 8532 seg_seq = ABE32_TO_U32(tcph->th_seq); 8533 /* 8534 * TCP SHOULD check that the TCP sequence number contained in 8535 * payload of the ICMP error message is within the range 8536 * SND.UNA <= SEG.SEQ < SND.NXT. 8537 */ 8538 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8539 /* 8540 * If the ICMP message is bogus, should we kill the 8541 * connection, or should we just drop the bogus ICMP 8542 * message? It would probably make more sense to just 8543 * drop the message so that if this one managed to get 8544 * in, the real connection should not suffer. 8545 */ 8546 goto noticmpv4; 8547 } 8548 8549 switch (icmph->icmph_type) { 8550 case ICMP_DEST_UNREACHABLE: 8551 switch (icmph->icmph_code) { 8552 case ICMP_FRAGMENTATION_NEEDED: 8553 /* 8554 * Reduce the MSS based on the new MTU. This will 8555 * eliminate any fragmentation locally. 8556 * N.B. There may well be some funny side-effects on 8557 * the local send policy and the remote receive policy. 8558 * Pending further research, we provide 8559 * tcp_ignore_path_mtu just in case this proves 8560 * disastrous somewhere. 8561 * 8562 * After updating the MSS, retransmit part of the 8563 * dropped segment using the new mss by calling 8564 * tcp_wput_data(). Need to adjust all those 8565 * params to make sure tcp_wput_data() work properly. 8566 */ 8567 if (tcps->tcps_ignore_path_mtu) 8568 break; 8569 8570 /* 8571 * Decrease the MSS by time stamp options 8572 * IP options and IPSEC options. tcp_hdr_len 8573 * includes time stamp option and IP option 8574 * length. 8575 */ 8576 8577 new_mss = ntohs(icmph->icmph_du_mtu) - 8578 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8579 8580 /* 8581 * Only update the MSS if the new one is 8582 * smaller than the previous one. This is 8583 * to avoid problems when getting multiple 8584 * ICMP errors for the same MTU. 8585 */ 8586 if (new_mss >= tcp->tcp_mss) 8587 break; 8588 8589 /* 8590 * Stop doing PMTU if new_mss is less than 68 8591 * or less than tcp_mss_min. 8592 * The value 68 comes from rfc 1191. 8593 */ 8594 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8595 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8596 0; 8597 8598 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8599 ASSERT(ratio >= 1); 8600 tcp_mss_set(tcp, new_mss, B_TRUE); 8601 8602 /* 8603 * Make sure we have something to 8604 * send. 8605 */ 8606 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8607 (tcp->tcp_xmit_head != NULL)) { 8608 /* 8609 * Shrink tcp_cwnd in 8610 * proportion to the old MSS/new MSS. 8611 */ 8612 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8613 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8614 (tcp->tcp_unsent == 0)) { 8615 tcp->tcp_rexmit_max = tcp->tcp_fss; 8616 } else { 8617 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8618 } 8619 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8620 tcp->tcp_rexmit = B_TRUE; 8621 tcp->tcp_dupack_cnt = 0; 8622 tcp->tcp_snd_burst = TCP_CWND_SS; 8623 tcp_ss_rexmit(tcp); 8624 } 8625 break; 8626 case ICMP_PORT_UNREACHABLE: 8627 case ICMP_PROTOCOL_UNREACHABLE: 8628 switch (tcp->tcp_state) { 8629 case TCPS_SYN_SENT: 8630 case TCPS_SYN_RCVD: 8631 /* 8632 * ICMP can snipe away incipient 8633 * TCP connections as long as 8634 * seq number is same as initial 8635 * send seq number. 8636 */ 8637 if (seg_seq == tcp->tcp_iss) { 8638 (void) tcp_clean_death(tcp, 8639 ECONNREFUSED, 6); 8640 } 8641 break; 8642 } 8643 break; 8644 case ICMP_HOST_UNREACHABLE: 8645 case ICMP_NET_UNREACHABLE: 8646 /* Record the error in case we finally time out. */ 8647 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8648 tcp->tcp_client_errno = EHOSTUNREACH; 8649 else 8650 tcp->tcp_client_errno = ENETUNREACH; 8651 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8652 if (tcp->tcp_listener != NULL && 8653 tcp->tcp_listener->tcp_syn_defense) { 8654 /* 8655 * Ditch the half-open connection if we 8656 * suspect a SYN attack is under way. 8657 */ 8658 tcp_ip_ire_mark_advice(tcp); 8659 (void) tcp_clean_death(tcp, 8660 tcp->tcp_client_errno, 7); 8661 } 8662 } 8663 break; 8664 default: 8665 break; 8666 } 8667 break; 8668 case ICMP_SOURCE_QUENCH: { 8669 /* 8670 * use a global boolean to control 8671 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8672 * The default is false. 8673 */ 8674 if (tcp_icmp_source_quench) { 8675 /* 8676 * Reduce the sending rate as if we got a 8677 * retransmit timeout 8678 */ 8679 uint32_t npkt; 8680 8681 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8682 tcp->tcp_mss; 8683 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8684 tcp->tcp_cwnd = tcp->tcp_mss; 8685 tcp->tcp_cwnd_cnt = 0; 8686 } 8687 break; 8688 } 8689 } 8690 freemsg(first_mp); 8691 } 8692 8693 /* 8694 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8695 * error messages passed up by IP. 8696 * Assumes that IP has pulled up all the extension headers as well 8697 * as the ICMPv6 header. 8698 */ 8699 static void 8700 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8701 { 8702 icmp6_t *icmp6; 8703 ip6_t *ip6h; 8704 uint16_t iph_hdr_length; 8705 tcpha_t *tcpha; 8706 uint8_t *nexthdrp; 8707 uint32_t new_mss; 8708 uint32_t ratio; 8709 boolean_t secure; 8710 mblk_t *first_mp = mp; 8711 size_t mp_size; 8712 uint32_t seg_seq; 8713 tcp_stack_t *tcps = tcp->tcp_tcps; 8714 8715 /* 8716 * The caller has determined if this is an IPSEC_IN packet and 8717 * set ipsec_mctl appropriately (see tcp_icmp_error). 8718 */ 8719 if (ipsec_mctl) 8720 mp = mp->b_cont; 8721 8722 mp_size = MBLKL(mp); 8723 8724 /* 8725 * Verify that we have a complete IP header. If not, send it upstream. 8726 */ 8727 if (mp_size < sizeof (ip6_t)) { 8728 noticmpv6: 8729 freemsg(first_mp); 8730 return; 8731 } 8732 8733 /* 8734 * Verify this is an ICMPV6 packet, else send it upstream. 8735 */ 8736 ip6h = (ip6_t *)mp->b_rptr; 8737 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8738 iph_hdr_length = IPV6_HDR_LEN; 8739 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8740 &nexthdrp) || 8741 *nexthdrp != IPPROTO_ICMPV6) { 8742 goto noticmpv6; 8743 } 8744 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8745 ip6h = (ip6_t *)&icmp6[1]; 8746 /* 8747 * Verify if we have a complete ICMP and inner IP header. 8748 */ 8749 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8750 goto noticmpv6; 8751 8752 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8753 goto noticmpv6; 8754 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8755 /* 8756 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8757 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8758 * packet. 8759 */ 8760 if ((*nexthdrp != IPPROTO_TCP) || 8761 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8762 goto noticmpv6; 8763 } 8764 8765 /* 8766 * ICMP errors come on the right queue or come on 8767 * listener/global queue for detached connections and 8768 * get switched to the right queue. If it comes on the 8769 * right queue, policy check has already been done by IP 8770 * and thus free the first_mp without verifying the policy. 8771 * If it has come for a non-hard bound connection, we need 8772 * to verify policy as IP may not have done it. 8773 */ 8774 if (!tcp->tcp_hard_bound) { 8775 if (ipsec_mctl) { 8776 secure = ipsec_in_is_secure(first_mp); 8777 } else { 8778 secure = B_FALSE; 8779 } 8780 if (secure) { 8781 /* 8782 * If we are willing to accept this in clear 8783 * we don't have to verify policy. 8784 */ 8785 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8786 if (!tcp_check_policy(tcp, first_mp, 8787 NULL, ip6h, secure, ipsec_mctl)) { 8788 /* 8789 * tcp_check_policy called 8790 * ip_drop_packet() on failure. 8791 */ 8792 return; 8793 } 8794 } 8795 } 8796 } else if (ipsec_mctl) { 8797 /* 8798 * This is a hard_bound connection. IP has already 8799 * verified policy. We don't have to do it again. 8800 */ 8801 freeb(first_mp); 8802 first_mp = mp; 8803 ipsec_mctl = B_FALSE; 8804 } 8805 8806 seg_seq = ntohl(tcpha->tha_seq); 8807 /* 8808 * TCP SHOULD check that the TCP sequence number contained in 8809 * payload of the ICMP error message is within the range 8810 * SND.UNA <= SEG.SEQ < SND.NXT. 8811 */ 8812 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8813 /* 8814 * If the ICMP message is bogus, should we kill the 8815 * connection, or should we just drop the bogus ICMP 8816 * message? It would probably make more sense to just 8817 * drop the message so that if this one managed to get 8818 * in, the real connection should not suffer. 8819 */ 8820 goto noticmpv6; 8821 } 8822 8823 switch (icmp6->icmp6_type) { 8824 case ICMP6_PACKET_TOO_BIG: 8825 /* 8826 * Reduce the MSS based on the new MTU. This will 8827 * eliminate any fragmentation locally. 8828 * N.B. There may well be some funny side-effects on 8829 * the local send policy and the remote receive policy. 8830 * Pending further research, we provide 8831 * tcp_ignore_path_mtu just in case this proves 8832 * disastrous somewhere. 8833 * 8834 * After updating the MSS, retransmit part of the 8835 * dropped segment using the new mss by calling 8836 * tcp_wput_data(). Need to adjust all those 8837 * params to make sure tcp_wput_data() work properly. 8838 */ 8839 if (tcps->tcps_ignore_path_mtu) 8840 break; 8841 8842 /* 8843 * Decrease the MSS by time stamp options 8844 * IP options and IPSEC options. tcp_hdr_len 8845 * includes time stamp option and IP option 8846 * length. 8847 */ 8848 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8849 tcp->tcp_ipsec_overhead; 8850 8851 /* 8852 * Only update the MSS if the new one is 8853 * smaller than the previous one. This is 8854 * to avoid problems when getting multiple 8855 * ICMP errors for the same MTU. 8856 */ 8857 if (new_mss >= tcp->tcp_mss) 8858 break; 8859 8860 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8861 ASSERT(ratio >= 1); 8862 tcp_mss_set(tcp, new_mss, B_TRUE); 8863 8864 /* 8865 * Make sure we have something to 8866 * send. 8867 */ 8868 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8869 (tcp->tcp_xmit_head != NULL)) { 8870 /* 8871 * Shrink tcp_cwnd in 8872 * proportion to the old MSS/new MSS. 8873 */ 8874 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8875 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8876 (tcp->tcp_unsent == 0)) { 8877 tcp->tcp_rexmit_max = tcp->tcp_fss; 8878 } else { 8879 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8880 } 8881 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8882 tcp->tcp_rexmit = B_TRUE; 8883 tcp->tcp_dupack_cnt = 0; 8884 tcp->tcp_snd_burst = TCP_CWND_SS; 8885 tcp_ss_rexmit(tcp); 8886 } 8887 break; 8888 8889 case ICMP6_DST_UNREACH: 8890 switch (icmp6->icmp6_code) { 8891 case ICMP6_DST_UNREACH_NOPORT: 8892 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8893 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8894 (seg_seq == tcp->tcp_iss)) { 8895 (void) tcp_clean_death(tcp, 8896 ECONNREFUSED, 8); 8897 } 8898 break; 8899 8900 case ICMP6_DST_UNREACH_ADMIN: 8901 case ICMP6_DST_UNREACH_NOROUTE: 8902 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8903 case ICMP6_DST_UNREACH_ADDR: 8904 /* Record the error in case we finally time out. */ 8905 tcp->tcp_client_errno = EHOSTUNREACH; 8906 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8907 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8908 (seg_seq == tcp->tcp_iss)) { 8909 if (tcp->tcp_listener != NULL && 8910 tcp->tcp_listener->tcp_syn_defense) { 8911 /* 8912 * Ditch the half-open connection if we 8913 * suspect a SYN attack is under way. 8914 */ 8915 tcp_ip_ire_mark_advice(tcp); 8916 (void) tcp_clean_death(tcp, 8917 tcp->tcp_client_errno, 9); 8918 } 8919 } 8920 8921 8922 break; 8923 default: 8924 break; 8925 } 8926 break; 8927 8928 case ICMP6_PARAM_PROB: 8929 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8930 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8931 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8932 (uchar_t *)nexthdrp) { 8933 if (tcp->tcp_state == TCPS_SYN_SENT || 8934 tcp->tcp_state == TCPS_SYN_RCVD) { 8935 (void) tcp_clean_death(tcp, 8936 ECONNREFUSED, 10); 8937 } 8938 break; 8939 } 8940 break; 8941 8942 case ICMP6_TIME_EXCEEDED: 8943 default: 8944 break; 8945 } 8946 freemsg(first_mp); 8947 } 8948 8949 /* 8950 * IP recognizes seven kinds of bind requests: 8951 * 8952 * - A zero-length address binds only to the protocol number. 8953 * 8954 * - A 4-byte address is treated as a request to 8955 * validate that the address is a valid local IPv4 8956 * address, appropriate for an application to bind to. 8957 * IP does the verification, but does not make any note 8958 * of the address at this time. 8959 * 8960 * - A 16-byte address contains is treated as a request 8961 * to validate a local IPv6 address, as the 4-byte 8962 * address case above. 8963 * 8964 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8965 * use it for the inbound fanout of packets. 8966 * 8967 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8968 * use it for the inbound fanout of packets. 8969 * 8970 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8971 * information consisting of local and remote addresses 8972 * and ports. In this case, the addresses are both 8973 * validated as appropriate for this operation, and, if 8974 * so, the information is retained for use in the 8975 * inbound fanout. 8976 * 8977 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8978 * fanout information, like the 12-byte case above. 8979 * 8980 * IP will also fill in the IRE request mblk with information 8981 * regarding our peer. In all cases, we notify IP of our protocol 8982 * type by appending a single protocol byte to the bind request. 8983 */ 8984 static mblk_t * 8985 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8986 { 8987 char *cp; 8988 mblk_t *mp; 8989 struct T_bind_req *tbr; 8990 ipa_conn_t *ac; 8991 ipa6_conn_t *ac6; 8992 sin_t *sin; 8993 sin6_t *sin6; 8994 8995 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8996 ASSERT((tcp->tcp_family == AF_INET && 8997 tcp->tcp_ipversion == IPV4_VERSION) || 8998 (tcp->tcp_family == AF_INET6 && 8999 (tcp->tcp_ipversion == IPV4_VERSION || 9000 tcp->tcp_ipversion == IPV6_VERSION))); 9001 9002 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9003 if (!mp) 9004 return (mp); 9005 mp->b_datap->db_type = M_PROTO; 9006 tbr = (struct T_bind_req *)mp->b_rptr; 9007 tbr->PRIM_type = bind_prim; 9008 tbr->ADDR_offset = sizeof (*tbr); 9009 tbr->CONIND_number = 0; 9010 tbr->ADDR_length = addr_length; 9011 cp = (char *)&tbr[1]; 9012 switch (addr_length) { 9013 case sizeof (ipa_conn_t): 9014 ASSERT(tcp->tcp_family == AF_INET); 9015 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9016 9017 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9018 if (mp->b_cont == NULL) { 9019 freemsg(mp); 9020 return (NULL); 9021 } 9022 mp->b_cont->b_wptr += sizeof (ire_t); 9023 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9024 9025 /* cp known to be 32 bit aligned */ 9026 ac = (ipa_conn_t *)cp; 9027 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9028 ac->ac_faddr = tcp->tcp_remote; 9029 ac->ac_fport = tcp->tcp_fport; 9030 ac->ac_lport = tcp->tcp_lport; 9031 tcp->tcp_hard_binding = 1; 9032 break; 9033 9034 case sizeof (ipa6_conn_t): 9035 ASSERT(tcp->tcp_family == AF_INET6); 9036 9037 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9038 if (mp->b_cont == NULL) { 9039 freemsg(mp); 9040 return (NULL); 9041 } 9042 mp->b_cont->b_wptr += sizeof (ire_t); 9043 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9044 9045 /* cp known to be 32 bit aligned */ 9046 ac6 = (ipa6_conn_t *)cp; 9047 if (tcp->tcp_ipversion == IPV4_VERSION) { 9048 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9049 &ac6->ac6_laddr); 9050 } else { 9051 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9052 } 9053 ac6->ac6_faddr = tcp->tcp_remote_v6; 9054 ac6->ac6_fport = tcp->tcp_fport; 9055 ac6->ac6_lport = tcp->tcp_lport; 9056 tcp->tcp_hard_binding = 1; 9057 break; 9058 9059 case sizeof (sin_t): 9060 /* 9061 * NOTE: IPV6_ADDR_LEN also has same size. 9062 * Use family to discriminate. 9063 */ 9064 if (tcp->tcp_family == AF_INET) { 9065 sin = (sin_t *)cp; 9066 9067 *sin = sin_null; 9068 sin->sin_family = AF_INET; 9069 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9070 sin->sin_port = tcp->tcp_lport; 9071 break; 9072 } else { 9073 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9074 } 9075 break; 9076 9077 case sizeof (sin6_t): 9078 ASSERT(tcp->tcp_family == AF_INET6); 9079 sin6 = (sin6_t *)cp; 9080 9081 *sin6 = sin6_null; 9082 sin6->sin6_family = AF_INET6; 9083 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9084 sin6->sin6_port = tcp->tcp_lport; 9085 break; 9086 9087 case IP_ADDR_LEN: 9088 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9089 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9090 break; 9091 9092 } 9093 /* Add protocol number to end */ 9094 cp[addr_length] = (char)IPPROTO_TCP; 9095 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9096 return (mp); 9097 } 9098 9099 /* 9100 * Notify IP that we are having trouble with this connection. IP should 9101 * blow the IRE away and start over. 9102 */ 9103 static void 9104 tcp_ip_notify(tcp_t *tcp) 9105 { 9106 struct iocblk *iocp; 9107 ipid_t *ipid; 9108 mblk_t *mp; 9109 9110 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9111 if (tcp->tcp_ipversion == IPV6_VERSION) 9112 return; 9113 9114 mp = mkiocb(IP_IOCTL); 9115 if (mp == NULL) 9116 return; 9117 9118 iocp = (struct iocblk *)mp->b_rptr; 9119 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9120 9121 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9122 if (!mp->b_cont) { 9123 freeb(mp); 9124 return; 9125 } 9126 9127 ipid = (ipid_t *)mp->b_cont->b_rptr; 9128 mp->b_cont->b_wptr += iocp->ioc_count; 9129 bzero(ipid, sizeof (*ipid)); 9130 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9131 ipid->ipid_ire_type = IRE_CACHE; 9132 ipid->ipid_addr_offset = sizeof (ipid_t); 9133 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9134 /* 9135 * Note: in the case of source routing we want to blow away the 9136 * route to the first source route hop. 9137 */ 9138 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9139 sizeof (tcp->tcp_ipha->ipha_dst)); 9140 9141 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9142 } 9143 9144 /* Unlink and return any mblk that looks like it contains an ire */ 9145 static mblk_t * 9146 tcp_ire_mp(mblk_t *mp) 9147 { 9148 mblk_t *prev_mp; 9149 9150 for (;;) { 9151 prev_mp = mp; 9152 mp = mp->b_cont; 9153 if (mp == NULL) 9154 break; 9155 switch (DB_TYPE(mp)) { 9156 case IRE_DB_TYPE: 9157 case IRE_DB_REQ_TYPE: 9158 if (prev_mp != NULL) 9159 prev_mp->b_cont = mp->b_cont; 9160 mp->b_cont = NULL; 9161 return (mp); 9162 default: 9163 break; 9164 } 9165 } 9166 return (mp); 9167 } 9168 9169 /* 9170 * Timer callback routine for keepalive probe. We do a fake resend of 9171 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9172 * check to see if we have heard anything from the other end for the last 9173 * RTO period. If we have, set the timer to expire for another 9174 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9175 * RTO << 1 and check again when it expires. Keep exponentially increasing 9176 * the timeout if we have not heard from the other side. If for more than 9177 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9178 * kill the connection unless the keepalive abort threshold is 0. In 9179 * that case, we will probe "forever." 9180 */ 9181 static void 9182 tcp_keepalive_killer(void *arg) 9183 { 9184 mblk_t *mp; 9185 conn_t *connp = (conn_t *)arg; 9186 tcp_t *tcp = connp->conn_tcp; 9187 int32_t firetime; 9188 int32_t idletime; 9189 int32_t ka_intrvl; 9190 tcp_stack_t *tcps = tcp->tcp_tcps; 9191 9192 tcp->tcp_ka_tid = 0; 9193 9194 if (tcp->tcp_fused) 9195 return; 9196 9197 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9198 ka_intrvl = tcp->tcp_ka_interval; 9199 9200 /* 9201 * Keepalive probe should only be sent if the application has not 9202 * done a close on the connection. 9203 */ 9204 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9205 return; 9206 } 9207 /* Timer fired too early, restart it. */ 9208 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9209 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9210 MSEC_TO_TICK(ka_intrvl)); 9211 return; 9212 } 9213 9214 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9215 /* 9216 * If we have not heard from the other side for a long 9217 * time, kill the connection unless the keepalive abort 9218 * threshold is 0. In that case, we will probe "forever." 9219 */ 9220 if (tcp->tcp_ka_abort_thres != 0 && 9221 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9222 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9223 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9224 tcp->tcp_client_errno : ETIMEDOUT, 11); 9225 return; 9226 } 9227 9228 if (tcp->tcp_snxt == tcp->tcp_suna && 9229 idletime >= ka_intrvl) { 9230 /* Fake resend of last ACKed byte. */ 9231 mblk_t *mp1 = allocb(1, BPRI_LO); 9232 9233 if (mp1 != NULL) { 9234 *mp1->b_wptr++ = '\0'; 9235 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9236 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9237 freeb(mp1); 9238 /* 9239 * if allocation failed, fall through to start the 9240 * timer back. 9241 */ 9242 if (mp != NULL) { 9243 TCP_RECORD_TRACE(tcp, mp, 9244 TCP_TRACE_SEND_PKT); 9245 tcp_send_data(tcp, tcp->tcp_wq, mp); 9246 BUMP_MIB(&tcps->tcps_mib, 9247 tcpTimKeepaliveProbe); 9248 if (tcp->tcp_ka_last_intrvl != 0) { 9249 int max; 9250 /* 9251 * We should probe again at least 9252 * in ka_intrvl, but not more than 9253 * tcp_rexmit_interval_max. 9254 */ 9255 max = tcps->tcps_rexmit_interval_max; 9256 firetime = MIN(ka_intrvl - 1, 9257 tcp->tcp_ka_last_intrvl << 1); 9258 if (firetime > max) 9259 firetime = max; 9260 } else { 9261 firetime = tcp->tcp_rto; 9262 } 9263 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9264 tcp_keepalive_killer, 9265 MSEC_TO_TICK(firetime)); 9266 tcp->tcp_ka_last_intrvl = firetime; 9267 return; 9268 } 9269 } 9270 } else { 9271 tcp->tcp_ka_last_intrvl = 0; 9272 } 9273 9274 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9275 if ((firetime = ka_intrvl - idletime) < 0) { 9276 firetime = ka_intrvl; 9277 } 9278 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9279 MSEC_TO_TICK(firetime)); 9280 } 9281 9282 int 9283 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9284 { 9285 queue_t *q = tcp->tcp_rq; 9286 int32_t mss = tcp->tcp_mss; 9287 int maxpsz; 9288 9289 if (TCP_IS_DETACHED(tcp)) 9290 return (mss); 9291 9292 if (tcp->tcp_fused) { 9293 maxpsz = tcp_fuse_maxpsz_set(tcp); 9294 mss = INFPSZ; 9295 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9296 /* 9297 * Set the sd_qn_maxpsz according to the socket send buffer 9298 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9299 * instruct the stream head to copyin user data into contiguous 9300 * kernel-allocated buffers without breaking it up into smaller 9301 * chunks. We round up the buffer size to the nearest SMSS. 9302 */ 9303 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9304 if (tcp->tcp_kssl_ctx == NULL) 9305 mss = INFPSZ; 9306 else 9307 mss = SSL3_MAX_RECORD_LEN; 9308 } else { 9309 /* 9310 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9311 * (and a multiple of the mss). This instructs the stream 9312 * head to break down larger than SMSS writes into SMSS- 9313 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9314 */ 9315 maxpsz = tcp->tcp_maxpsz * mss; 9316 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9317 maxpsz = tcp->tcp_xmit_hiwater/2; 9318 /* Round up to nearest mss */ 9319 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9320 } 9321 } 9322 (void) setmaxps(q, maxpsz); 9323 tcp->tcp_wq->q_maxpsz = maxpsz; 9324 9325 if (set_maxblk) 9326 (void) mi_set_sth_maxblk(q, mss); 9327 9328 return (mss); 9329 } 9330 9331 /* 9332 * Extract option values from a tcp header. We put any found values into the 9333 * tcpopt struct and return a bitmask saying which options were found. 9334 */ 9335 static int 9336 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9337 { 9338 uchar_t *endp; 9339 int len; 9340 uint32_t mss; 9341 uchar_t *up = (uchar_t *)tcph; 9342 int found = 0; 9343 int32_t sack_len; 9344 tcp_seq sack_begin, sack_end; 9345 tcp_t *tcp; 9346 9347 endp = up + TCP_HDR_LENGTH(tcph); 9348 up += TCP_MIN_HEADER_LENGTH; 9349 while (up < endp) { 9350 len = endp - up; 9351 switch (*up) { 9352 case TCPOPT_EOL: 9353 break; 9354 9355 case TCPOPT_NOP: 9356 up++; 9357 continue; 9358 9359 case TCPOPT_MAXSEG: 9360 if (len < TCPOPT_MAXSEG_LEN || 9361 up[1] != TCPOPT_MAXSEG_LEN) 9362 break; 9363 9364 mss = BE16_TO_U16(up+2); 9365 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9366 tcpopt->tcp_opt_mss = mss; 9367 found |= TCP_OPT_MSS_PRESENT; 9368 9369 up += TCPOPT_MAXSEG_LEN; 9370 continue; 9371 9372 case TCPOPT_WSCALE: 9373 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9374 break; 9375 9376 if (up[2] > TCP_MAX_WINSHIFT) 9377 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9378 else 9379 tcpopt->tcp_opt_wscale = up[2]; 9380 found |= TCP_OPT_WSCALE_PRESENT; 9381 9382 up += TCPOPT_WS_LEN; 9383 continue; 9384 9385 case TCPOPT_SACK_PERMITTED: 9386 if (len < TCPOPT_SACK_OK_LEN || 9387 up[1] != TCPOPT_SACK_OK_LEN) 9388 break; 9389 found |= TCP_OPT_SACK_OK_PRESENT; 9390 up += TCPOPT_SACK_OK_LEN; 9391 continue; 9392 9393 case TCPOPT_SACK: 9394 if (len <= 2 || up[1] <= 2 || len < up[1]) 9395 break; 9396 9397 /* If TCP is not interested in SACK blks... */ 9398 if ((tcp = tcpopt->tcp) == NULL) { 9399 up += up[1]; 9400 continue; 9401 } 9402 sack_len = up[1] - TCPOPT_HEADER_LEN; 9403 up += TCPOPT_HEADER_LEN; 9404 9405 /* 9406 * If the list is empty, allocate one and assume 9407 * nothing is sack'ed. 9408 */ 9409 ASSERT(tcp->tcp_sack_info != NULL); 9410 if (tcp->tcp_notsack_list == NULL) { 9411 tcp_notsack_update(&(tcp->tcp_notsack_list), 9412 tcp->tcp_suna, tcp->tcp_snxt, 9413 &(tcp->tcp_num_notsack_blk), 9414 &(tcp->tcp_cnt_notsack_list)); 9415 9416 /* 9417 * Make sure tcp_notsack_list is not NULL. 9418 * This happens when kmem_alloc(KM_NOSLEEP) 9419 * returns NULL. 9420 */ 9421 if (tcp->tcp_notsack_list == NULL) { 9422 up += sack_len; 9423 continue; 9424 } 9425 tcp->tcp_fack = tcp->tcp_suna; 9426 } 9427 9428 while (sack_len > 0) { 9429 if (up + 8 > endp) { 9430 up = endp; 9431 break; 9432 } 9433 sack_begin = BE32_TO_U32(up); 9434 up += 4; 9435 sack_end = BE32_TO_U32(up); 9436 up += 4; 9437 sack_len -= 8; 9438 /* 9439 * Bounds checking. Make sure the SACK 9440 * info is within tcp_suna and tcp_snxt. 9441 * If this SACK blk is out of bound, ignore 9442 * it but continue to parse the following 9443 * blks. 9444 */ 9445 if (SEQ_LEQ(sack_end, sack_begin) || 9446 SEQ_LT(sack_begin, tcp->tcp_suna) || 9447 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9448 continue; 9449 } 9450 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9451 sack_begin, sack_end, 9452 &(tcp->tcp_num_notsack_blk), 9453 &(tcp->tcp_cnt_notsack_list)); 9454 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9455 tcp->tcp_fack = sack_end; 9456 } 9457 } 9458 found |= TCP_OPT_SACK_PRESENT; 9459 continue; 9460 9461 case TCPOPT_TSTAMP: 9462 if (len < TCPOPT_TSTAMP_LEN || 9463 up[1] != TCPOPT_TSTAMP_LEN) 9464 break; 9465 9466 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9467 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9468 9469 found |= TCP_OPT_TSTAMP_PRESENT; 9470 9471 up += TCPOPT_TSTAMP_LEN; 9472 continue; 9473 9474 default: 9475 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9476 break; 9477 up += up[1]; 9478 continue; 9479 } 9480 break; 9481 } 9482 return (found); 9483 } 9484 9485 /* 9486 * Set the mss associated with a particular tcp based on its current value, 9487 * and a new one passed in. Observe minimums and maximums, and reset 9488 * other state variables that we want to view as multiples of mss. 9489 * 9490 * This function is called in various places mainly because 9491 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9492 * other side's SYN/SYN-ACK packet arrives. 9493 * 2) PMTUd may get us a new MSS. 9494 * 3) If the other side stops sending us timestamp option, we need to 9495 * increase the MSS size to use the extra bytes available. 9496 * 9497 * do_ss is used to control whether we will be doing slow start or 9498 * not if there is a change in the mss. Note that for some events like 9499 * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but 9500 * do not perform a slow start specifically. 9501 */ 9502 static void 9503 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9504 { 9505 uint32_t mss_max; 9506 tcp_stack_t *tcps = tcp->tcp_tcps; 9507 9508 if (tcp->tcp_ipversion == IPV4_VERSION) 9509 mss_max = tcps->tcps_mss_max_ipv4; 9510 else 9511 mss_max = tcps->tcps_mss_max_ipv6; 9512 9513 if (mss < tcps->tcps_mss_min) 9514 mss = tcps->tcps_mss_min; 9515 if (mss > mss_max) 9516 mss = mss_max; 9517 /* 9518 * Unless naglim has been set by our client to 9519 * a non-mss value, force naglim to track mss. 9520 * This can help to aggregate small writes. 9521 */ 9522 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9523 tcp->tcp_naglim = mss; 9524 /* 9525 * TCP should be able to buffer at least 4 MSS data for obvious 9526 * performance reason. 9527 */ 9528 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9529 tcp->tcp_xmit_hiwater = mss << 2; 9530 9531 /* 9532 * Check if we need to apply the tcp_init_cwnd here. If 9533 * it is set and the MSS gets bigger (should not happen 9534 * normally), we need to adjust the resulting tcp_cwnd properly. 9535 * The new tcp_cwnd should not get bigger. 9536 */ 9537 /* 9538 * We need to avoid setting tcp_cwnd to its slow start value 9539 * unnecessarily. However we have to let the tcp_cwnd adjust 9540 * to the modified mss. 9541 */ 9542 if (tcp->tcp_init_cwnd == 0 && do_ss) { 9543 tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial * 9544 mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9545 } else { 9546 if (tcp->tcp_mss < mss) { 9547 tcp->tcp_cwnd = MAX(1, 9548 (tcp->tcp_init_cwnd * tcp->tcp_mss / 9549 mss)) * mss; 9550 } else { 9551 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9552 } 9553 } 9554 tcp->tcp_mss = mss; 9555 tcp->tcp_cwnd_cnt = 0; 9556 (void) tcp_maxpsz_set(tcp, B_TRUE); 9557 } 9558 9559 static int 9560 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9561 { 9562 tcp_t *tcp = NULL; 9563 conn_t *connp; 9564 int err; 9565 dev_t conn_dev; 9566 zoneid_t zoneid; 9567 tcp_stack_t *tcps = NULL; 9568 9569 if (q->q_ptr != NULL) 9570 return (0); 9571 9572 if (!(flag & SO_ACCEPTOR)) { 9573 /* 9574 * Special case for install: miniroot needs to be able to 9575 * access files via NFS as though it were always in the 9576 * global zone. 9577 */ 9578 if (credp == kcred && nfs_global_client_only != 0) { 9579 zoneid = GLOBAL_ZONEID; 9580 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9581 netstack_tcp; 9582 ASSERT(tcps != NULL); 9583 } else { 9584 netstack_t *ns; 9585 9586 ns = netstack_find_by_cred(credp); 9587 ASSERT(ns != NULL); 9588 tcps = ns->netstack_tcp; 9589 ASSERT(tcps != NULL); 9590 9591 /* 9592 * For exclusive stacks we set the zoneid to zero 9593 * to make TCP operate as if in the global zone. 9594 */ 9595 if (tcps->tcps_netstack->netstack_stackid != 9596 GLOBAL_NETSTACKID) 9597 zoneid = GLOBAL_ZONEID; 9598 else 9599 zoneid = crgetzoneid(credp); 9600 } 9601 /* 9602 * For stackid zero this is done from strplumb.c, but 9603 * non-zero stackids are handled here. 9604 */ 9605 if (tcps->tcps_g_q == NULL && 9606 tcps->tcps_netstack->netstack_stackid != 9607 GLOBAL_NETSTACKID) { 9608 tcp_g_q_setup(tcps); 9609 } 9610 } 9611 if (sflag == MODOPEN) { 9612 /* 9613 * This is a special case. The purpose of a modopen 9614 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9615 * through for MIB browsers. Everything else is failed. 9616 */ 9617 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9618 /* tcp_get_conn incremented refcnt */ 9619 netstack_rele(tcps->tcps_netstack); 9620 9621 if (connp == NULL) 9622 return (ENOMEM); 9623 9624 connp->conn_flags |= IPCL_TCPMOD; 9625 connp->conn_cred = credp; 9626 connp->conn_zoneid = zoneid; 9627 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9628 ASSERT(connp->conn_netstack->netstack_tcp == tcps); 9629 q->q_ptr = WR(q)->q_ptr = connp; 9630 crhold(credp); 9631 q->q_qinfo = &tcp_mod_rinit; 9632 WR(q)->q_qinfo = &tcp_mod_winit; 9633 qprocson(q); 9634 return (0); 9635 } 9636 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9637 if (tcps != NULL) 9638 netstack_rele(tcps->tcps_netstack); 9639 return (EBUSY); 9640 } 9641 9642 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9643 9644 if (flag & SO_ACCEPTOR) { 9645 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9646 ASSERT(tcps == NULL); 9647 q->q_qinfo = &tcp_acceptor_rinit; 9648 q->q_ptr = (void *)conn_dev; 9649 WR(q)->q_qinfo = &tcp_acceptor_winit; 9650 WR(q)->q_ptr = (void *)conn_dev; 9651 qprocson(q); 9652 return (0); 9653 } 9654 9655 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9656 /* 9657 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9658 * so we drop it by one. 9659 */ 9660 netstack_rele(tcps->tcps_netstack); 9661 if (connp == NULL) { 9662 inet_minor_free(ip_minor_arena, conn_dev); 9663 q->q_ptr = NULL; 9664 return (ENOSR); 9665 } 9666 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9667 tcp = connp->conn_tcp; 9668 9669 q->q_ptr = WR(q)->q_ptr = connp; 9670 if (getmajor(*devp) == TCP6_MAJ) { 9671 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9672 connp->conn_send = ip_output_v6; 9673 connp->conn_af_isv6 = B_TRUE; 9674 connp->conn_pkt_isv6 = B_TRUE; 9675 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9676 tcp->tcp_ipversion = IPV6_VERSION; 9677 tcp->tcp_family = AF_INET6; 9678 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9679 } else { 9680 connp->conn_flags |= IPCL_TCP4; 9681 connp->conn_send = ip_output; 9682 connp->conn_af_isv6 = B_FALSE; 9683 connp->conn_pkt_isv6 = B_FALSE; 9684 tcp->tcp_ipversion = IPV4_VERSION; 9685 tcp->tcp_family = AF_INET; 9686 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9687 } 9688 9689 /* 9690 * TCP keeps a copy of cred for cache locality reasons but 9691 * we put a reference only once. If connp->conn_cred 9692 * becomes invalid, tcp_cred should also be set to NULL. 9693 */ 9694 tcp->tcp_cred = connp->conn_cred = credp; 9695 crhold(connp->conn_cred); 9696 tcp->tcp_cpid = curproc->p_pid; 9697 tcp->tcp_open_time = lbolt64; 9698 connp->conn_zoneid = zoneid; 9699 connp->conn_mlp_type = mlptSingle; 9700 connp->conn_ulp_labeled = !is_system_labeled(); 9701 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9702 ASSERT(tcp->tcp_tcps == tcps); 9703 9704 /* 9705 * If the caller has the process-wide flag set, then default to MAC 9706 * exempt mode. This allows read-down to unlabeled hosts. 9707 */ 9708 if (getpflags(NET_MAC_AWARE, credp) != 0) 9709 connp->conn_mac_exempt = B_TRUE; 9710 9711 connp->conn_dev = conn_dev; 9712 9713 ASSERT(q->q_qinfo == &tcp_rinit); 9714 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9715 9716 if (flag & SO_SOCKSTR) { 9717 /* 9718 * No need to insert a socket in tcp acceptor hash. 9719 * If it was a socket acceptor stream, we dealt with 9720 * it above. A socket listener can never accept a 9721 * connection and doesn't need acceptor_id. 9722 */ 9723 connp->conn_flags |= IPCL_SOCKET; 9724 tcp->tcp_issocket = 1; 9725 WR(q)->q_qinfo = &tcp_sock_winit; 9726 } else { 9727 #ifdef _ILP32 9728 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9729 #else 9730 tcp->tcp_acceptor_id = conn_dev; 9731 #endif /* _ILP32 */ 9732 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9733 } 9734 9735 if (tcps->tcps_trace) 9736 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9737 9738 err = tcp_init(tcp, q); 9739 if (err != 0) { 9740 inet_minor_free(ip_minor_arena, connp->conn_dev); 9741 tcp_acceptor_hash_remove(tcp); 9742 CONN_DEC_REF(connp); 9743 q->q_ptr = WR(q)->q_ptr = NULL; 9744 return (err); 9745 } 9746 9747 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9748 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9749 9750 /* Non-zero default values */ 9751 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9752 /* 9753 * Put the ref for TCP. Ref for IP was already put 9754 * by ipcl_conn_create. Also Make the conn_t globally 9755 * visible to walkers 9756 */ 9757 mutex_enter(&connp->conn_lock); 9758 CONN_INC_REF_LOCKED(connp); 9759 ASSERT(connp->conn_ref == 2); 9760 connp->conn_state_flags &= ~CONN_INCIPIENT; 9761 mutex_exit(&connp->conn_lock); 9762 9763 qprocson(q); 9764 return (0); 9765 } 9766 9767 /* 9768 * Some TCP options can be "set" by requesting them in the option 9769 * buffer. This is needed for XTI feature test though we do not 9770 * allow it in general. We interpret that this mechanism is more 9771 * applicable to OSI protocols and need not be allowed in general. 9772 * This routine filters out options for which it is not allowed (most) 9773 * and lets through those (few) for which it is. [ The XTI interface 9774 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9775 * ever implemented will have to be allowed here ]. 9776 */ 9777 static boolean_t 9778 tcp_allow_connopt_set(int level, int name) 9779 { 9780 9781 switch (level) { 9782 case IPPROTO_TCP: 9783 switch (name) { 9784 case TCP_NODELAY: 9785 return (B_TRUE); 9786 default: 9787 return (B_FALSE); 9788 } 9789 /*NOTREACHED*/ 9790 default: 9791 return (B_FALSE); 9792 } 9793 /*NOTREACHED*/ 9794 } 9795 9796 /* 9797 * This routine gets default values of certain options whose default 9798 * values are maintained by protocol specific code 9799 */ 9800 /* ARGSUSED */ 9801 int 9802 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9803 { 9804 int32_t *i1 = (int32_t *)ptr; 9805 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9806 9807 switch (level) { 9808 case IPPROTO_TCP: 9809 switch (name) { 9810 case TCP_NOTIFY_THRESHOLD: 9811 *i1 = tcps->tcps_ip_notify_interval; 9812 break; 9813 case TCP_ABORT_THRESHOLD: 9814 *i1 = tcps->tcps_ip_abort_interval; 9815 break; 9816 case TCP_CONN_NOTIFY_THRESHOLD: 9817 *i1 = tcps->tcps_ip_notify_cinterval; 9818 break; 9819 case TCP_CONN_ABORT_THRESHOLD: 9820 *i1 = tcps->tcps_ip_abort_cinterval; 9821 break; 9822 default: 9823 return (-1); 9824 } 9825 break; 9826 case IPPROTO_IP: 9827 switch (name) { 9828 case IP_TTL: 9829 *i1 = tcps->tcps_ipv4_ttl; 9830 break; 9831 default: 9832 return (-1); 9833 } 9834 break; 9835 case IPPROTO_IPV6: 9836 switch (name) { 9837 case IPV6_UNICAST_HOPS: 9838 *i1 = tcps->tcps_ipv6_hoplimit; 9839 break; 9840 default: 9841 return (-1); 9842 } 9843 break; 9844 default: 9845 return (-1); 9846 } 9847 return (sizeof (int)); 9848 } 9849 9850 9851 /* 9852 * TCP routine to get the values of options. 9853 */ 9854 int 9855 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9856 { 9857 int *i1 = (int *)ptr; 9858 conn_t *connp = Q_TO_CONN(q); 9859 tcp_t *tcp = connp->conn_tcp; 9860 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9861 9862 switch (level) { 9863 case SOL_SOCKET: 9864 switch (name) { 9865 case SO_LINGER: { 9866 struct linger *lgr = (struct linger *)ptr; 9867 9868 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9869 lgr->l_linger = tcp->tcp_lingertime; 9870 } 9871 return (sizeof (struct linger)); 9872 case SO_DEBUG: 9873 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9874 break; 9875 case SO_KEEPALIVE: 9876 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9877 break; 9878 case SO_DONTROUTE: 9879 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9880 break; 9881 case SO_USELOOPBACK: 9882 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9883 break; 9884 case SO_BROADCAST: 9885 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9886 break; 9887 case SO_REUSEADDR: 9888 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9889 break; 9890 case SO_OOBINLINE: 9891 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9892 break; 9893 case SO_DGRAM_ERRIND: 9894 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9895 break; 9896 case SO_TYPE: 9897 *i1 = SOCK_STREAM; 9898 break; 9899 case SO_SNDBUF: 9900 *i1 = tcp->tcp_xmit_hiwater; 9901 break; 9902 case SO_RCVBUF: 9903 *i1 = RD(q)->q_hiwat; 9904 break; 9905 case SO_SND_COPYAVOID: 9906 *i1 = tcp->tcp_snd_zcopy_on ? 9907 SO_SND_COPYAVOID : 0; 9908 break; 9909 case SO_ALLZONES: 9910 *i1 = connp->conn_allzones ? 1 : 0; 9911 break; 9912 case SO_ANON_MLP: 9913 *i1 = connp->conn_anon_mlp; 9914 break; 9915 case SO_MAC_EXEMPT: 9916 *i1 = connp->conn_mac_exempt; 9917 break; 9918 case SO_EXCLBIND: 9919 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9920 break; 9921 case SO_PROTOTYPE: 9922 *i1 = IPPROTO_TCP; 9923 break; 9924 case SO_DOMAIN: 9925 *i1 = tcp->tcp_family; 9926 break; 9927 default: 9928 return (-1); 9929 } 9930 break; 9931 case IPPROTO_TCP: 9932 switch (name) { 9933 case TCP_NODELAY: 9934 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9935 break; 9936 case TCP_MAXSEG: 9937 *i1 = tcp->tcp_mss; 9938 break; 9939 case TCP_NOTIFY_THRESHOLD: 9940 *i1 = (int)tcp->tcp_first_timer_threshold; 9941 break; 9942 case TCP_ABORT_THRESHOLD: 9943 *i1 = tcp->tcp_second_timer_threshold; 9944 break; 9945 case TCP_CONN_NOTIFY_THRESHOLD: 9946 *i1 = tcp->tcp_first_ctimer_threshold; 9947 break; 9948 case TCP_CONN_ABORT_THRESHOLD: 9949 *i1 = tcp->tcp_second_ctimer_threshold; 9950 break; 9951 case TCP_RECVDSTADDR: 9952 *i1 = tcp->tcp_recvdstaddr; 9953 break; 9954 case TCP_ANONPRIVBIND: 9955 *i1 = tcp->tcp_anon_priv_bind; 9956 break; 9957 case TCP_EXCLBIND: 9958 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9959 break; 9960 case TCP_INIT_CWND: 9961 *i1 = tcp->tcp_init_cwnd; 9962 break; 9963 case TCP_KEEPALIVE_THRESHOLD: 9964 *i1 = tcp->tcp_ka_interval; 9965 break; 9966 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9967 *i1 = tcp->tcp_ka_abort_thres; 9968 break; 9969 case TCP_CORK: 9970 *i1 = tcp->tcp_cork; 9971 break; 9972 default: 9973 return (-1); 9974 } 9975 break; 9976 case IPPROTO_IP: 9977 if (tcp->tcp_family != AF_INET) 9978 return (-1); 9979 switch (name) { 9980 case IP_OPTIONS: 9981 case T_IP_OPTIONS: { 9982 /* 9983 * This is compatible with BSD in that in only return 9984 * the reverse source route with the final destination 9985 * as the last entry. The first 4 bytes of the option 9986 * will contain the final destination. 9987 */ 9988 int opt_len; 9989 9990 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9991 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9992 ASSERT(opt_len >= 0); 9993 /* Caller ensures enough space */ 9994 if (opt_len > 0) { 9995 /* 9996 * TODO: Do we have to handle getsockopt on an 9997 * initiator as well? 9998 */ 9999 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10000 } 10001 return (0); 10002 } 10003 case IP_TOS: 10004 case T_IP_TOS: 10005 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10006 break; 10007 case IP_TTL: 10008 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10009 break; 10010 case IP_NEXTHOP: 10011 /* Handled at IP level */ 10012 return (-EINVAL); 10013 default: 10014 return (-1); 10015 } 10016 break; 10017 case IPPROTO_IPV6: 10018 /* 10019 * IPPROTO_IPV6 options are only supported for sockets 10020 * that are using IPv6 on the wire. 10021 */ 10022 if (tcp->tcp_ipversion != IPV6_VERSION) { 10023 return (-1); 10024 } 10025 switch (name) { 10026 case IPV6_UNICAST_HOPS: 10027 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10028 break; /* goto sizeof (int) option return */ 10029 case IPV6_BOUND_IF: 10030 /* Zero if not set */ 10031 *i1 = tcp->tcp_bound_if; 10032 break; /* goto sizeof (int) option return */ 10033 case IPV6_RECVPKTINFO: 10034 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10035 *i1 = 1; 10036 else 10037 *i1 = 0; 10038 break; /* goto sizeof (int) option return */ 10039 case IPV6_RECVTCLASS: 10040 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10041 *i1 = 1; 10042 else 10043 *i1 = 0; 10044 break; /* goto sizeof (int) option return */ 10045 case IPV6_RECVHOPLIMIT: 10046 if (tcp->tcp_ipv6_recvancillary & 10047 TCP_IPV6_RECVHOPLIMIT) 10048 *i1 = 1; 10049 else 10050 *i1 = 0; 10051 break; /* goto sizeof (int) option return */ 10052 case IPV6_RECVHOPOPTS: 10053 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10054 *i1 = 1; 10055 else 10056 *i1 = 0; 10057 break; /* goto sizeof (int) option return */ 10058 case IPV6_RECVDSTOPTS: 10059 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10060 *i1 = 1; 10061 else 10062 *i1 = 0; 10063 break; /* goto sizeof (int) option return */ 10064 case _OLD_IPV6_RECVDSTOPTS: 10065 if (tcp->tcp_ipv6_recvancillary & 10066 TCP_OLD_IPV6_RECVDSTOPTS) 10067 *i1 = 1; 10068 else 10069 *i1 = 0; 10070 break; /* goto sizeof (int) option return */ 10071 case IPV6_RECVRTHDR: 10072 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10073 *i1 = 1; 10074 else 10075 *i1 = 0; 10076 break; /* goto sizeof (int) option return */ 10077 case IPV6_RECVRTHDRDSTOPTS: 10078 if (tcp->tcp_ipv6_recvancillary & 10079 TCP_IPV6_RECVRTDSTOPTS) 10080 *i1 = 1; 10081 else 10082 *i1 = 0; 10083 break; /* goto sizeof (int) option return */ 10084 case IPV6_PKTINFO: { 10085 /* XXX assumes that caller has room for max size! */ 10086 struct in6_pktinfo *pkti; 10087 10088 pkti = (struct in6_pktinfo *)ptr; 10089 if (ipp->ipp_fields & IPPF_IFINDEX) 10090 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10091 else 10092 pkti->ipi6_ifindex = 0; 10093 if (ipp->ipp_fields & IPPF_ADDR) 10094 pkti->ipi6_addr = ipp->ipp_addr; 10095 else 10096 pkti->ipi6_addr = ipv6_all_zeros; 10097 return (sizeof (struct in6_pktinfo)); 10098 } 10099 case IPV6_TCLASS: 10100 if (ipp->ipp_fields & IPPF_TCLASS) 10101 *i1 = ipp->ipp_tclass; 10102 else 10103 *i1 = IPV6_FLOW_TCLASS( 10104 IPV6_DEFAULT_VERS_AND_FLOW); 10105 break; /* goto sizeof (int) option return */ 10106 case IPV6_NEXTHOP: { 10107 sin6_t *sin6 = (sin6_t *)ptr; 10108 10109 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10110 return (0); 10111 *sin6 = sin6_null; 10112 sin6->sin6_family = AF_INET6; 10113 sin6->sin6_addr = ipp->ipp_nexthop; 10114 return (sizeof (sin6_t)); 10115 } 10116 case IPV6_HOPOPTS: 10117 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10118 return (0); 10119 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10120 return (0); 10121 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10122 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10123 if (tcp->tcp_label_len > 0) { 10124 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10125 ptr[1] = (ipp->ipp_hopoptslen - 10126 tcp->tcp_label_len + 7) / 8 - 1; 10127 } 10128 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10129 case IPV6_RTHDRDSTOPTS: 10130 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10131 return (0); 10132 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10133 return (ipp->ipp_rtdstoptslen); 10134 case IPV6_RTHDR: 10135 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10136 return (0); 10137 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10138 return (ipp->ipp_rthdrlen); 10139 case IPV6_DSTOPTS: 10140 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10141 return (0); 10142 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10143 return (ipp->ipp_dstoptslen); 10144 case IPV6_SRC_PREFERENCES: 10145 return (ip6_get_src_preferences(connp, 10146 (uint32_t *)ptr)); 10147 case IPV6_PATHMTU: { 10148 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10149 10150 if (tcp->tcp_state < TCPS_ESTABLISHED) 10151 return (-1); 10152 10153 return (ip_fill_mtuinfo(&connp->conn_remv6, 10154 connp->conn_fport, mtuinfo, 10155 connp->conn_netstack)); 10156 } 10157 default: 10158 return (-1); 10159 } 10160 break; 10161 default: 10162 return (-1); 10163 } 10164 return (sizeof (int)); 10165 } 10166 10167 /* 10168 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10169 * Parameters are assumed to be verified by the caller. 10170 */ 10171 /* ARGSUSED */ 10172 int 10173 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10174 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10175 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10176 { 10177 conn_t *connp = Q_TO_CONN(q); 10178 tcp_t *tcp = connp->conn_tcp; 10179 int *i1 = (int *)invalp; 10180 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10181 boolean_t checkonly; 10182 int reterr; 10183 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10184 10185 switch (optset_context) { 10186 case SETFN_OPTCOM_CHECKONLY: 10187 checkonly = B_TRUE; 10188 /* 10189 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10190 * inlen != 0 implies value supplied and 10191 * we have to "pretend" to set it. 10192 * inlen == 0 implies that there is no 10193 * value part in T_CHECK request and just validation 10194 * done elsewhere should be enough, we just return here. 10195 */ 10196 if (inlen == 0) { 10197 *outlenp = 0; 10198 return (0); 10199 } 10200 break; 10201 case SETFN_OPTCOM_NEGOTIATE: 10202 checkonly = B_FALSE; 10203 break; 10204 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10205 case SETFN_CONN_NEGOTIATE: 10206 checkonly = B_FALSE; 10207 /* 10208 * Negotiating local and "association-related" options 10209 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10210 * primitives is allowed by XTI, but we choose 10211 * to not implement this style negotiation for Internet 10212 * protocols (We interpret it is a must for OSI world but 10213 * optional for Internet protocols) for all options. 10214 * [ Will do only for the few options that enable test 10215 * suites that our XTI implementation of this feature 10216 * works for transports that do allow it ] 10217 */ 10218 if (!tcp_allow_connopt_set(level, name)) { 10219 *outlenp = 0; 10220 return (EINVAL); 10221 } 10222 break; 10223 default: 10224 /* 10225 * We should never get here 10226 */ 10227 *outlenp = 0; 10228 return (EINVAL); 10229 } 10230 10231 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10232 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10233 10234 /* 10235 * For TCP, we should have no ancillary data sent down 10236 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10237 * has to be zero. 10238 */ 10239 ASSERT(thisdg_attrs == NULL); 10240 10241 /* 10242 * For fixed length options, no sanity check 10243 * of passed in length is done. It is assumed *_optcom_req() 10244 * routines do the right thing. 10245 */ 10246 10247 switch (level) { 10248 case SOL_SOCKET: 10249 switch (name) { 10250 case SO_LINGER: { 10251 struct linger *lgr = (struct linger *)invalp; 10252 10253 if (!checkonly) { 10254 if (lgr->l_onoff) { 10255 tcp->tcp_linger = 1; 10256 tcp->tcp_lingertime = lgr->l_linger; 10257 } else { 10258 tcp->tcp_linger = 0; 10259 tcp->tcp_lingertime = 0; 10260 } 10261 /* struct copy */ 10262 *(struct linger *)outvalp = *lgr; 10263 } else { 10264 if (!lgr->l_onoff) { 10265 ((struct linger *)outvalp)->l_onoff = 0; 10266 ((struct linger *)outvalp)->l_linger = 0; 10267 } else { 10268 /* struct copy */ 10269 *(struct linger *)outvalp = *lgr; 10270 } 10271 } 10272 *outlenp = sizeof (struct linger); 10273 return (0); 10274 } 10275 case SO_DEBUG: 10276 if (!checkonly) 10277 tcp->tcp_debug = onoff; 10278 break; 10279 case SO_KEEPALIVE: 10280 if (checkonly) { 10281 /* T_CHECK case */ 10282 break; 10283 } 10284 10285 if (!onoff) { 10286 if (tcp->tcp_ka_enabled) { 10287 if (tcp->tcp_ka_tid != 0) { 10288 (void) TCP_TIMER_CANCEL(tcp, 10289 tcp->tcp_ka_tid); 10290 tcp->tcp_ka_tid = 0; 10291 } 10292 tcp->tcp_ka_enabled = 0; 10293 } 10294 break; 10295 } 10296 if (!tcp->tcp_ka_enabled) { 10297 /* Crank up the keepalive timer */ 10298 tcp->tcp_ka_last_intrvl = 0; 10299 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10300 tcp_keepalive_killer, 10301 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10302 tcp->tcp_ka_enabled = 1; 10303 } 10304 break; 10305 case SO_DONTROUTE: 10306 /* 10307 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10308 * only of interest to IP. We track them here only so 10309 * that we can report their current value. 10310 */ 10311 if (!checkonly) { 10312 tcp->tcp_dontroute = onoff; 10313 tcp->tcp_connp->conn_dontroute = onoff; 10314 } 10315 break; 10316 case SO_USELOOPBACK: 10317 if (!checkonly) { 10318 tcp->tcp_useloopback = onoff; 10319 tcp->tcp_connp->conn_loopback = onoff; 10320 } 10321 break; 10322 case SO_BROADCAST: 10323 if (!checkonly) { 10324 tcp->tcp_broadcast = onoff; 10325 tcp->tcp_connp->conn_broadcast = onoff; 10326 } 10327 break; 10328 case SO_REUSEADDR: 10329 if (!checkonly) { 10330 tcp->tcp_reuseaddr = onoff; 10331 tcp->tcp_connp->conn_reuseaddr = onoff; 10332 } 10333 break; 10334 case SO_OOBINLINE: 10335 if (!checkonly) 10336 tcp->tcp_oobinline = onoff; 10337 break; 10338 case SO_DGRAM_ERRIND: 10339 if (!checkonly) 10340 tcp->tcp_dgram_errind = onoff; 10341 break; 10342 case SO_SNDBUF: { 10343 if (*i1 > tcps->tcps_max_buf) { 10344 *outlenp = 0; 10345 return (ENOBUFS); 10346 } 10347 if (checkonly) 10348 break; 10349 10350 tcp->tcp_xmit_hiwater = *i1; 10351 if (tcps->tcps_snd_lowat_fraction != 0) 10352 tcp->tcp_xmit_lowater = 10353 tcp->tcp_xmit_hiwater / 10354 tcps->tcps_snd_lowat_fraction; 10355 (void) tcp_maxpsz_set(tcp, B_TRUE); 10356 /* 10357 * If we are flow-controlled, recheck the condition. 10358 * There are apps that increase SO_SNDBUF size when 10359 * flow-controlled (EWOULDBLOCK), and expect the flow 10360 * control condition to be lifted right away. 10361 */ 10362 mutex_enter(&tcp->tcp_non_sq_lock); 10363 if (tcp->tcp_flow_stopped && 10364 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10365 tcp_clrqfull(tcp); 10366 } 10367 mutex_exit(&tcp->tcp_non_sq_lock); 10368 break; 10369 } 10370 case SO_RCVBUF: 10371 if (*i1 > tcps->tcps_max_buf) { 10372 *outlenp = 0; 10373 return (ENOBUFS); 10374 } 10375 /* Silently ignore zero */ 10376 if (!checkonly && *i1 != 0) { 10377 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10378 (void) tcp_rwnd_set(tcp, *i1); 10379 } 10380 /* 10381 * XXX should we return the rwnd here 10382 * and tcp_opt_get ? 10383 */ 10384 break; 10385 case SO_SND_COPYAVOID: 10386 if (!checkonly) { 10387 /* we only allow enable at most once for now */ 10388 if (tcp->tcp_loopback || 10389 (!tcp->tcp_snd_zcopy_aware && 10390 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10391 *outlenp = 0; 10392 return (EOPNOTSUPP); 10393 } 10394 tcp->tcp_snd_zcopy_aware = 1; 10395 } 10396 break; 10397 case SO_ALLZONES: 10398 /* Handled at the IP level */ 10399 return (-EINVAL); 10400 case SO_ANON_MLP: 10401 if (!checkonly) { 10402 mutex_enter(&connp->conn_lock); 10403 connp->conn_anon_mlp = onoff; 10404 mutex_exit(&connp->conn_lock); 10405 } 10406 break; 10407 case SO_MAC_EXEMPT: 10408 if (secpolicy_net_mac_aware(cr) != 0 || 10409 IPCL_IS_BOUND(connp)) 10410 return (EACCES); 10411 if (!checkonly) { 10412 mutex_enter(&connp->conn_lock); 10413 connp->conn_mac_exempt = onoff; 10414 mutex_exit(&connp->conn_lock); 10415 } 10416 break; 10417 case SO_EXCLBIND: 10418 if (!checkonly) 10419 tcp->tcp_exclbind = onoff; 10420 break; 10421 default: 10422 *outlenp = 0; 10423 return (EINVAL); 10424 } 10425 break; 10426 case IPPROTO_TCP: 10427 switch (name) { 10428 case TCP_NODELAY: 10429 if (!checkonly) 10430 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10431 break; 10432 case TCP_NOTIFY_THRESHOLD: 10433 if (!checkonly) 10434 tcp->tcp_first_timer_threshold = *i1; 10435 break; 10436 case TCP_ABORT_THRESHOLD: 10437 if (!checkonly) 10438 tcp->tcp_second_timer_threshold = *i1; 10439 break; 10440 case TCP_CONN_NOTIFY_THRESHOLD: 10441 if (!checkonly) 10442 tcp->tcp_first_ctimer_threshold = *i1; 10443 break; 10444 case TCP_CONN_ABORT_THRESHOLD: 10445 if (!checkonly) 10446 tcp->tcp_second_ctimer_threshold = *i1; 10447 break; 10448 case TCP_RECVDSTADDR: 10449 if (tcp->tcp_state > TCPS_LISTEN) 10450 return (EOPNOTSUPP); 10451 if (!checkonly) 10452 tcp->tcp_recvdstaddr = onoff; 10453 break; 10454 case TCP_ANONPRIVBIND: 10455 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10456 *outlenp = 0; 10457 return (reterr); 10458 } 10459 if (!checkonly) { 10460 tcp->tcp_anon_priv_bind = onoff; 10461 } 10462 break; 10463 case TCP_EXCLBIND: 10464 if (!checkonly) 10465 tcp->tcp_exclbind = onoff; 10466 break; /* goto sizeof (int) option return */ 10467 case TCP_INIT_CWND: { 10468 uint32_t init_cwnd = *((uint32_t *)invalp); 10469 10470 if (checkonly) 10471 break; 10472 10473 /* 10474 * Only allow socket with network configuration 10475 * privilege to set the initial cwnd to be larger 10476 * than allowed by RFC 3390. 10477 */ 10478 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10479 tcp->tcp_init_cwnd = init_cwnd; 10480 break; 10481 } 10482 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10483 *outlenp = 0; 10484 return (reterr); 10485 } 10486 if (init_cwnd > TCP_MAX_INIT_CWND) { 10487 *outlenp = 0; 10488 return (EINVAL); 10489 } 10490 tcp->tcp_init_cwnd = init_cwnd; 10491 break; 10492 } 10493 case TCP_KEEPALIVE_THRESHOLD: 10494 if (checkonly) 10495 break; 10496 10497 if (*i1 < tcps->tcps_keepalive_interval_low || 10498 *i1 > tcps->tcps_keepalive_interval_high) { 10499 *outlenp = 0; 10500 return (EINVAL); 10501 } 10502 if (*i1 != tcp->tcp_ka_interval) { 10503 tcp->tcp_ka_interval = *i1; 10504 /* 10505 * Check if we need to restart the 10506 * keepalive timer. 10507 */ 10508 if (tcp->tcp_ka_tid != 0) { 10509 ASSERT(tcp->tcp_ka_enabled); 10510 (void) TCP_TIMER_CANCEL(tcp, 10511 tcp->tcp_ka_tid); 10512 tcp->tcp_ka_last_intrvl = 0; 10513 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10514 tcp_keepalive_killer, 10515 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10516 } 10517 } 10518 break; 10519 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10520 if (!checkonly) { 10521 if (*i1 < 10522 tcps->tcps_keepalive_abort_interval_low || 10523 *i1 > 10524 tcps->tcps_keepalive_abort_interval_high) { 10525 *outlenp = 0; 10526 return (EINVAL); 10527 } 10528 tcp->tcp_ka_abort_thres = *i1; 10529 } 10530 break; 10531 case TCP_CORK: 10532 if (!checkonly) { 10533 /* 10534 * if tcp->tcp_cork was set and is now 10535 * being unset, we have to make sure that 10536 * the remaining data gets sent out. Also 10537 * unset tcp->tcp_cork so that tcp_wput_data() 10538 * can send data even if it is less than mss 10539 */ 10540 if (tcp->tcp_cork && onoff == 0 && 10541 tcp->tcp_unsent > 0) { 10542 tcp->tcp_cork = B_FALSE; 10543 tcp_wput_data(tcp, NULL, B_FALSE); 10544 } 10545 tcp->tcp_cork = onoff; 10546 } 10547 break; 10548 default: 10549 *outlenp = 0; 10550 return (EINVAL); 10551 } 10552 break; 10553 case IPPROTO_IP: 10554 if (tcp->tcp_family != AF_INET) { 10555 *outlenp = 0; 10556 return (ENOPROTOOPT); 10557 } 10558 switch (name) { 10559 case IP_OPTIONS: 10560 case T_IP_OPTIONS: 10561 reterr = tcp_opt_set_header(tcp, checkonly, 10562 invalp, inlen); 10563 if (reterr) { 10564 *outlenp = 0; 10565 return (reterr); 10566 } 10567 /* OK return - copy input buffer into output buffer */ 10568 if (invalp != outvalp) { 10569 /* don't trust bcopy for identical src/dst */ 10570 bcopy(invalp, outvalp, inlen); 10571 } 10572 *outlenp = inlen; 10573 return (0); 10574 case IP_TOS: 10575 case T_IP_TOS: 10576 if (!checkonly) { 10577 tcp->tcp_ipha->ipha_type_of_service = 10578 (uchar_t)*i1; 10579 tcp->tcp_tos = (uchar_t)*i1; 10580 } 10581 break; 10582 case IP_TTL: 10583 if (!checkonly) { 10584 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10585 tcp->tcp_ttl = (uchar_t)*i1; 10586 } 10587 break; 10588 case IP_BOUND_IF: 10589 case IP_NEXTHOP: 10590 /* Handled at the IP level */ 10591 return (-EINVAL); 10592 case IP_SEC_OPT: 10593 /* 10594 * We should not allow policy setting after 10595 * we start listening for connections. 10596 */ 10597 if (tcp->tcp_state == TCPS_LISTEN) { 10598 return (EINVAL); 10599 } else { 10600 /* Handled at the IP level */ 10601 return (-EINVAL); 10602 } 10603 default: 10604 *outlenp = 0; 10605 return (EINVAL); 10606 } 10607 break; 10608 case IPPROTO_IPV6: { 10609 ip6_pkt_t *ipp; 10610 10611 /* 10612 * IPPROTO_IPV6 options are only supported for sockets 10613 * that are using IPv6 on the wire. 10614 */ 10615 if (tcp->tcp_ipversion != IPV6_VERSION) { 10616 *outlenp = 0; 10617 return (ENOPROTOOPT); 10618 } 10619 /* 10620 * Only sticky options; no ancillary data 10621 */ 10622 ASSERT(thisdg_attrs == NULL); 10623 ipp = &tcp->tcp_sticky_ipp; 10624 10625 switch (name) { 10626 case IPV6_UNICAST_HOPS: 10627 /* -1 means use default */ 10628 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10629 *outlenp = 0; 10630 return (EINVAL); 10631 } 10632 if (!checkonly) { 10633 if (*i1 == -1) { 10634 tcp->tcp_ip6h->ip6_hops = 10635 ipp->ipp_unicast_hops = 10636 (uint8_t)tcps->tcps_ipv6_hoplimit; 10637 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10638 /* Pass modified value to IP. */ 10639 *i1 = tcp->tcp_ip6h->ip6_hops; 10640 } else { 10641 tcp->tcp_ip6h->ip6_hops = 10642 ipp->ipp_unicast_hops = 10643 (uint8_t)*i1; 10644 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10645 } 10646 reterr = tcp_build_hdrs(q, tcp); 10647 if (reterr != 0) 10648 return (reterr); 10649 } 10650 break; 10651 case IPV6_BOUND_IF: 10652 if (!checkonly) { 10653 int error = 0; 10654 10655 tcp->tcp_bound_if = *i1; 10656 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10657 B_TRUE, checkonly, level, name, mblk); 10658 if (error != 0) { 10659 *outlenp = 0; 10660 return (error); 10661 } 10662 } 10663 break; 10664 /* 10665 * Set boolean switches for ancillary data delivery 10666 */ 10667 case IPV6_RECVPKTINFO: 10668 if (!checkonly) { 10669 if (onoff) 10670 tcp->tcp_ipv6_recvancillary |= 10671 TCP_IPV6_RECVPKTINFO; 10672 else 10673 tcp->tcp_ipv6_recvancillary &= 10674 ~TCP_IPV6_RECVPKTINFO; 10675 /* Force it to be sent up with the next msg */ 10676 tcp->tcp_recvifindex = 0; 10677 } 10678 break; 10679 case IPV6_RECVTCLASS: 10680 if (!checkonly) { 10681 if (onoff) 10682 tcp->tcp_ipv6_recvancillary |= 10683 TCP_IPV6_RECVTCLASS; 10684 else 10685 tcp->tcp_ipv6_recvancillary &= 10686 ~TCP_IPV6_RECVTCLASS; 10687 } 10688 break; 10689 case IPV6_RECVHOPLIMIT: 10690 if (!checkonly) { 10691 if (onoff) 10692 tcp->tcp_ipv6_recvancillary |= 10693 TCP_IPV6_RECVHOPLIMIT; 10694 else 10695 tcp->tcp_ipv6_recvancillary &= 10696 ~TCP_IPV6_RECVHOPLIMIT; 10697 /* Force it to be sent up with the next msg */ 10698 tcp->tcp_recvhops = 0xffffffffU; 10699 } 10700 break; 10701 case IPV6_RECVHOPOPTS: 10702 if (!checkonly) { 10703 if (onoff) 10704 tcp->tcp_ipv6_recvancillary |= 10705 TCP_IPV6_RECVHOPOPTS; 10706 else 10707 tcp->tcp_ipv6_recvancillary &= 10708 ~TCP_IPV6_RECVHOPOPTS; 10709 } 10710 break; 10711 case IPV6_RECVDSTOPTS: 10712 if (!checkonly) { 10713 if (onoff) 10714 tcp->tcp_ipv6_recvancillary |= 10715 TCP_IPV6_RECVDSTOPTS; 10716 else 10717 tcp->tcp_ipv6_recvancillary &= 10718 ~TCP_IPV6_RECVDSTOPTS; 10719 } 10720 break; 10721 case _OLD_IPV6_RECVDSTOPTS: 10722 if (!checkonly) { 10723 if (onoff) 10724 tcp->tcp_ipv6_recvancillary |= 10725 TCP_OLD_IPV6_RECVDSTOPTS; 10726 else 10727 tcp->tcp_ipv6_recvancillary &= 10728 ~TCP_OLD_IPV6_RECVDSTOPTS; 10729 } 10730 break; 10731 case IPV6_RECVRTHDR: 10732 if (!checkonly) { 10733 if (onoff) 10734 tcp->tcp_ipv6_recvancillary |= 10735 TCP_IPV6_RECVRTHDR; 10736 else 10737 tcp->tcp_ipv6_recvancillary &= 10738 ~TCP_IPV6_RECVRTHDR; 10739 } 10740 break; 10741 case IPV6_RECVRTHDRDSTOPTS: 10742 if (!checkonly) { 10743 if (onoff) 10744 tcp->tcp_ipv6_recvancillary |= 10745 TCP_IPV6_RECVRTDSTOPTS; 10746 else 10747 tcp->tcp_ipv6_recvancillary &= 10748 ~TCP_IPV6_RECVRTDSTOPTS; 10749 } 10750 break; 10751 case IPV6_PKTINFO: 10752 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10753 return (EINVAL); 10754 if (checkonly) 10755 break; 10756 10757 if (inlen == 0) { 10758 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10759 } else { 10760 struct in6_pktinfo *pkti; 10761 10762 pkti = (struct in6_pktinfo *)invalp; 10763 /* 10764 * RFC 3542 states that ipi6_addr must be 10765 * the unspecified address when setting the 10766 * IPV6_PKTINFO sticky socket option on a 10767 * TCP socket. 10768 */ 10769 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10770 return (EINVAL); 10771 /* 10772 * ip6_set_pktinfo() validates the source 10773 * address and interface index. 10774 */ 10775 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10776 pkti, mblk); 10777 if (reterr != 0) 10778 return (reterr); 10779 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10780 ipp->ipp_addr = pkti->ipi6_addr; 10781 if (ipp->ipp_ifindex != 0) 10782 ipp->ipp_fields |= IPPF_IFINDEX; 10783 else 10784 ipp->ipp_fields &= ~IPPF_IFINDEX; 10785 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10786 ipp->ipp_fields |= IPPF_ADDR; 10787 else 10788 ipp->ipp_fields &= ~IPPF_ADDR; 10789 } 10790 reterr = tcp_build_hdrs(q, tcp); 10791 if (reterr != 0) 10792 return (reterr); 10793 break; 10794 case IPV6_TCLASS: 10795 if (inlen != 0 && inlen != sizeof (int)) 10796 return (EINVAL); 10797 if (checkonly) 10798 break; 10799 10800 if (inlen == 0) { 10801 ipp->ipp_fields &= ~IPPF_TCLASS; 10802 } else { 10803 if (*i1 > 255 || *i1 < -1) 10804 return (EINVAL); 10805 if (*i1 == -1) { 10806 ipp->ipp_tclass = 0; 10807 *i1 = 0; 10808 } else { 10809 ipp->ipp_tclass = *i1; 10810 } 10811 ipp->ipp_fields |= IPPF_TCLASS; 10812 } 10813 reterr = tcp_build_hdrs(q, tcp); 10814 if (reterr != 0) 10815 return (reterr); 10816 break; 10817 case IPV6_NEXTHOP: 10818 /* 10819 * IP will verify that the nexthop is reachable 10820 * and fail for sticky options. 10821 */ 10822 if (inlen != 0 && inlen != sizeof (sin6_t)) 10823 return (EINVAL); 10824 if (checkonly) 10825 break; 10826 10827 if (inlen == 0) { 10828 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10829 } else { 10830 sin6_t *sin6 = (sin6_t *)invalp; 10831 10832 if (sin6->sin6_family != AF_INET6) 10833 return (EAFNOSUPPORT); 10834 if (IN6_IS_ADDR_V4MAPPED( 10835 &sin6->sin6_addr)) 10836 return (EADDRNOTAVAIL); 10837 ipp->ipp_nexthop = sin6->sin6_addr; 10838 if (!IN6_IS_ADDR_UNSPECIFIED( 10839 &ipp->ipp_nexthop)) 10840 ipp->ipp_fields |= IPPF_NEXTHOP; 10841 else 10842 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10843 } 10844 reterr = tcp_build_hdrs(q, tcp); 10845 if (reterr != 0) 10846 return (reterr); 10847 break; 10848 case IPV6_HOPOPTS: { 10849 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10850 10851 /* 10852 * Sanity checks - minimum size, size a multiple of 10853 * eight bytes, and matching size passed in. 10854 */ 10855 if (inlen != 0 && 10856 inlen != (8 * (hopts->ip6h_len + 1))) 10857 return (EINVAL); 10858 10859 if (checkonly) 10860 break; 10861 10862 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10863 (uchar_t **)&ipp->ipp_hopopts, 10864 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10865 if (reterr != 0) 10866 return (reterr); 10867 if (ipp->ipp_hopoptslen == 0) 10868 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10869 else 10870 ipp->ipp_fields |= IPPF_HOPOPTS; 10871 reterr = tcp_build_hdrs(q, tcp); 10872 if (reterr != 0) 10873 return (reterr); 10874 break; 10875 } 10876 case IPV6_RTHDRDSTOPTS: { 10877 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10878 10879 /* 10880 * Sanity checks - minimum size, size a multiple of 10881 * eight bytes, and matching size passed in. 10882 */ 10883 if (inlen != 0 && 10884 inlen != (8 * (dopts->ip6d_len + 1))) 10885 return (EINVAL); 10886 10887 if (checkonly) 10888 break; 10889 10890 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10891 (uchar_t **)&ipp->ipp_rtdstopts, 10892 &ipp->ipp_rtdstoptslen, 0); 10893 if (reterr != 0) 10894 return (reterr); 10895 if (ipp->ipp_rtdstoptslen == 0) 10896 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10897 else 10898 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10899 reterr = tcp_build_hdrs(q, tcp); 10900 if (reterr != 0) 10901 return (reterr); 10902 break; 10903 } 10904 case IPV6_DSTOPTS: { 10905 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10906 10907 /* 10908 * Sanity checks - minimum size, size a multiple of 10909 * eight bytes, and matching size passed in. 10910 */ 10911 if (inlen != 0 && 10912 inlen != (8 * (dopts->ip6d_len + 1))) 10913 return (EINVAL); 10914 10915 if (checkonly) 10916 break; 10917 10918 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10919 (uchar_t **)&ipp->ipp_dstopts, 10920 &ipp->ipp_dstoptslen, 0); 10921 if (reterr != 0) 10922 return (reterr); 10923 if (ipp->ipp_dstoptslen == 0) 10924 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10925 else 10926 ipp->ipp_fields |= IPPF_DSTOPTS; 10927 reterr = tcp_build_hdrs(q, tcp); 10928 if (reterr != 0) 10929 return (reterr); 10930 break; 10931 } 10932 case IPV6_RTHDR: { 10933 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10934 10935 /* 10936 * Sanity checks - minimum size, size a multiple of 10937 * eight bytes, and matching size passed in. 10938 */ 10939 if (inlen != 0 && 10940 inlen != (8 * (rt->ip6r_len + 1))) 10941 return (EINVAL); 10942 10943 if (checkonly) 10944 break; 10945 10946 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10947 (uchar_t **)&ipp->ipp_rthdr, 10948 &ipp->ipp_rthdrlen, 0); 10949 if (reterr != 0) 10950 return (reterr); 10951 if (ipp->ipp_rthdrlen == 0) 10952 ipp->ipp_fields &= ~IPPF_RTHDR; 10953 else 10954 ipp->ipp_fields |= IPPF_RTHDR; 10955 reterr = tcp_build_hdrs(q, tcp); 10956 if (reterr != 0) 10957 return (reterr); 10958 break; 10959 } 10960 case IPV6_V6ONLY: 10961 if (!checkonly) 10962 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10963 break; 10964 case IPV6_USE_MIN_MTU: 10965 if (inlen != sizeof (int)) 10966 return (EINVAL); 10967 10968 if (*i1 < -1 || *i1 > 1) 10969 return (EINVAL); 10970 10971 if (checkonly) 10972 break; 10973 10974 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10975 ipp->ipp_use_min_mtu = *i1; 10976 break; 10977 case IPV6_BOUND_PIF: 10978 /* Handled at the IP level */ 10979 return (-EINVAL); 10980 case IPV6_SEC_OPT: 10981 /* 10982 * We should not allow policy setting after 10983 * we start listening for connections. 10984 */ 10985 if (tcp->tcp_state == TCPS_LISTEN) { 10986 return (EINVAL); 10987 } else { 10988 /* Handled at the IP level */ 10989 return (-EINVAL); 10990 } 10991 case IPV6_SRC_PREFERENCES: 10992 if (inlen != sizeof (uint32_t)) 10993 return (EINVAL); 10994 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10995 *(uint32_t *)invalp); 10996 if (reterr != 0) { 10997 *outlenp = 0; 10998 return (reterr); 10999 } 11000 break; 11001 default: 11002 *outlenp = 0; 11003 return (EINVAL); 11004 } 11005 break; 11006 } /* end IPPROTO_IPV6 */ 11007 default: 11008 *outlenp = 0; 11009 return (EINVAL); 11010 } 11011 /* 11012 * Common case of OK return with outval same as inval 11013 */ 11014 if (invalp != outvalp) { 11015 /* don't trust bcopy for identical src/dst */ 11016 (void) bcopy(invalp, outvalp, inlen); 11017 } 11018 *outlenp = inlen; 11019 return (0); 11020 } 11021 11022 /* 11023 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11024 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11025 * headers, and the maximum size tcp header (to avoid reallocation 11026 * on the fly for additional tcp options). 11027 * Returns failure if can't allocate memory. 11028 */ 11029 static int 11030 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11031 { 11032 char *hdrs; 11033 uint_t hdrs_len; 11034 ip6i_t *ip6i; 11035 char buf[TCP_MAX_HDR_LENGTH]; 11036 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11037 in6_addr_t src, dst; 11038 tcp_stack_t *tcps = tcp->tcp_tcps; 11039 11040 /* 11041 * save the existing tcp header and source/dest IP addresses 11042 */ 11043 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11044 src = tcp->tcp_ip6h->ip6_src; 11045 dst = tcp->tcp_ip6h->ip6_dst; 11046 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11047 ASSERT(hdrs_len != 0); 11048 if (hdrs_len > tcp->tcp_iphc_len) { 11049 /* Need to reallocate */ 11050 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11051 if (hdrs == NULL) 11052 return (ENOMEM); 11053 if (tcp->tcp_iphc != NULL) { 11054 if (tcp->tcp_hdr_grown) { 11055 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11056 } else { 11057 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11058 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11059 } 11060 tcp->tcp_iphc_len = 0; 11061 } 11062 ASSERT(tcp->tcp_iphc_len == 0); 11063 tcp->tcp_iphc = hdrs; 11064 tcp->tcp_iphc_len = hdrs_len; 11065 tcp->tcp_hdr_grown = B_TRUE; 11066 } 11067 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11068 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11069 11070 /* Set header fields not in ipp */ 11071 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11072 ip6i = (ip6i_t *)tcp->tcp_iphc; 11073 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11074 } else { 11075 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11076 } 11077 /* 11078 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11079 * 11080 * tcp->tcp_tcp_hdr_len doesn't change here. 11081 */ 11082 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11083 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11084 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11085 11086 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11087 11088 tcp->tcp_ip6h->ip6_src = src; 11089 tcp->tcp_ip6h->ip6_dst = dst; 11090 11091 /* 11092 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11093 * the default value for TCP. 11094 */ 11095 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11096 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11097 11098 /* 11099 * If we're setting extension headers after a connection 11100 * has been established, and if we have a routing header 11101 * among the extension headers, call ip_massage_options_v6 to 11102 * manipulate the routing header/ip6_dst set the checksum 11103 * difference in the tcp header template. 11104 * (This happens in tcp_connect_ipv6 if the routing header 11105 * is set prior to the connect.) 11106 * Set the tcp_sum to zero first in case we've cleared a 11107 * routing header or don't have one at all. 11108 */ 11109 tcp->tcp_sum = 0; 11110 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11111 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11112 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11113 (uint8_t *)tcp->tcp_tcph); 11114 if (rth != NULL) { 11115 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11116 rth, tcps->tcps_netstack); 11117 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11118 (tcp->tcp_sum >> 16)); 11119 } 11120 } 11121 11122 /* Try to get everything in a single mblk */ 11123 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11124 return (0); 11125 } 11126 11127 /* 11128 * Transfer any source route option from ipha to buf/dst in reversed form. 11129 */ 11130 static int 11131 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11132 { 11133 ipoptp_t opts; 11134 uchar_t *opt; 11135 uint8_t optval; 11136 uint8_t optlen; 11137 uint32_t len = 0; 11138 11139 for (optval = ipoptp_first(&opts, ipha); 11140 optval != IPOPT_EOL; 11141 optval = ipoptp_next(&opts)) { 11142 opt = opts.ipoptp_cur; 11143 optlen = opts.ipoptp_len; 11144 switch (optval) { 11145 int off1, off2; 11146 case IPOPT_SSRR: 11147 case IPOPT_LSRR: 11148 11149 /* Reverse source route */ 11150 /* 11151 * First entry should be the next to last one in the 11152 * current source route (the last entry is our 11153 * address.) 11154 * The last entry should be the final destination. 11155 */ 11156 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11157 buf[IPOPT_OLEN] = (uint8_t)optlen; 11158 off1 = IPOPT_MINOFF_SR - 1; 11159 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11160 if (off2 < 0) { 11161 /* No entries in source route */ 11162 break; 11163 } 11164 bcopy(opt + off2, dst, IP_ADDR_LEN); 11165 /* 11166 * Note: use src since ipha has not had its src 11167 * and dst reversed (it is in the state it was 11168 * received. 11169 */ 11170 bcopy(&ipha->ipha_src, buf + off2, 11171 IP_ADDR_LEN); 11172 off2 -= IP_ADDR_LEN; 11173 11174 while (off2 > 0) { 11175 bcopy(opt + off2, buf + off1, 11176 IP_ADDR_LEN); 11177 off1 += IP_ADDR_LEN; 11178 off2 -= IP_ADDR_LEN; 11179 } 11180 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11181 buf += optlen; 11182 len += optlen; 11183 break; 11184 } 11185 } 11186 done: 11187 /* Pad the resulting options */ 11188 while (len & 0x3) { 11189 *buf++ = IPOPT_EOL; 11190 len++; 11191 } 11192 return (len); 11193 } 11194 11195 11196 /* 11197 * Extract and revert a source route from ipha (if any) 11198 * and then update the relevant fields in both tcp_t and the standard header. 11199 */ 11200 static void 11201 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11202 { 11203 char buf[TCP_MAX_HDR_LENGTH]; 11204 uint_t tcph_len; 11205 int len; 11206 11207 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11208 len = IPH_HDR_LENGTH(ipha); 11209 if (len == IP_SIMPLE_HDR_LENGTH) 11210 /* Nothing to do */ 11211 return; 11212 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11213 (len & 0x3)) 11214 return; 11215 11216 tcph_len = tcp->tcp_tcp_hdr_len; 11217 bcopy(tcp->tcp_tcph, buf, tcph_len); 11218 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11219 (tcp->tcp_ipha->ipha_dst & 0xffff); 11220 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11221 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11222 len += IP_SIMPLE_HDR_LENGTH; 11223 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11224 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11225 if ((int)tcp->tcp_sum < 0) 11226 tcp->tcp_sum--; 11227 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11228 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11229 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11230 bcopy(buf, tcp->tcp_tcph, tcph_len); 11231 tcp->tcp_ip_hdr_len = len; 11232 tcp->tcp_ipha->ipha_version_and_hdr_length = 11233 (IP_VERSION << 4) | (len >> 2); 11234 len += tcph_len; 11235 tcp->tcp_hdr_len = len; 11236 } 11237 11238 /* 11239 * Copy the standard header into its new location, 11240 * lay in the new options and then update the relevant 11241 * fields in both tcp_t and the standard header. 11242 */ 11243 static int 11244 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11245 { 11246 uint_t tcph_len; 11247 uint8_t *ip_optp; 11248 tcph_t *new_tcph; 11249 tcp_stack_t *tcps = tcp->tcp_tcps; 11250 11251 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11252 return (EINVAL); 11253 11254 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11255 return (EINVAL); 11256 11257 if (checkonly) { 11258 /* 11259 * do not really set, just pretend to - T_CHECK 11260 */ 11261 return (0); 11262 } 11263 11264 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11265 if (tcp->tcp_label_len > 0) { 11266 int padlen; 11267 uint8_t opt; 11268 11269 /* convert list termination to no-ops */ 11270 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11271 ip_optp += ip_optp[IPOPT_OLEN]; 11272 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11273 while (--padlen >= 0) 11274 *ip_optp++ = opt; 11275 } 11276 tcph_len = tcp->tcp_tcp_hdr_len; 11277 new_tcph = (tcph_t *)(ip_optp + len); 11278 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11279 tcp->tcp_tcph = new_tcph; 11280 bcopy(ptr, ip_optp, len); 11281 11282 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11283 11284 tcp->tcp_ip_hdr_len = len; 11285 tcp->tcp_ipha->ipha_version_and_hdr_length = 11286 (IP_VERSION << 4) | (len >> 2); 11287 tcp->tcp_hdr_len = len + tcph_len; 11288 if (!TCP_IS_DETACHED(tcp)) { 11289 /* Always allocate room for all options. */ 11290 (void) mi_set_sth_wroff(tcp->tcp_rq, 11291 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11292 } 11293 return (0); 11294 } 11295 11296 /* Get callback routine passed to nd_load by tcp_param_register */ 11297 /* ARGSUSED */ 11298 static int 11299 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11300 { 11301 tcpparam_t *tcppa = (tcpparam_t *)cp; 11302 11303 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11304 return (0); 11305 } 11306 11307 /* 11308 * Walk through the param array specified registering each element with the 11309 * named dispatch handler. 11310 */ 11311 static boolean_t 11312 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11313 { 11314 for (; cnt-- > 0; tcppa++) { 11315 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11316 if (!nd_load(ndp, tcppa->tcp_param_name, 11317 tcp_param_get, tcp_param_set, 11318 (caddr_t)tcppa)) { 11319 nd_free(ndp); 11320 return (B_FALSE); 11321 } 11322 } 11323 } 11324 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11325 KM_SLEEP); 11326 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11327 sizeof (tcpparam_t)); 11328 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11329 tcp_param_get, tcp_param_set_aligned, 11330 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11331 nd_free(ndp); 11332 return (B_FALSE); 11333 } 11334 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11335 KM_SLEEP); 11336 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11337 sizeof (tcpparam_t)); 11338 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11339 tcp_param_get, tcp_param_set_aligned, 11340 (caddr_t)tcps->tcps_mdt_head_param)) { 11341 nd_free(ndp); 11342 return (B_FALSE); 11343 } 11344 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11345 KM_SLEEP); 11346 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11347 sizeof (tcpparam_t)); 11348 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11349 tcp_param_get, tcp_param_set_aligned, 11350 (caddr_t)tcps->tcps_mdt_tail_param)) { 11351 nd_free(ndp); 11352 return (B_FALSE); 11353 } 11354 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11355 KM_SLEEP); 11356 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11357 sizeof (tcpparam_t)); 11358 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11359 tcp_param_get, tcp_param_set_aligned, 11360 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11361 nd_free(ndp); 11362 return (B_FALSE); 11363 } 11364 if (!nd_load(ndp, "tcp_extra_priv_ports", 11365 tcp_extra_priv_ports_get, NULL, NULL)) { 11366 nd_free(ndp); 11367 return (B_FALSE); 11368 } 11369 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11370 NULL, tcp_extra_priv_ports_add, NULL)) { 11371 nd_free(ndp); 11372 return (B_FALSE); 11373 } 11374 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11375 NULL, tcp_extra_priv_ports_del, NULL)) { 11376 nd_free(ndp); 11377 return (B_FALSE); 11378 } 11379 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11380 NULL)) { 11381 nd_free(ndp); 11382 return (B_FALSE); 11383 } 11384 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11385 NULL, NULL)) { 11386 nd_free(ndp); 11387 return (B_FALSE); 11388 } 11389 if (!nd_load(ndp, "tcp_listen_hash", 11390 tcp_listen_hash_report, NULL, NULL)) { 11391 nd_free(ndp); 11392 return (B_FALSE); 11393 } 11394 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11395 NULL, NULL)) { 11396 nd_free(ndp); 11397 return (B_FALSE); 11398 } 11399 if (!nd_load(ndp, "tcp_acceptor_hash", 11400 tcp_acceptor_hash_report, NULL, NULL)) { 11401 nd_free(ndp); 11402 return (B_FALSE); 11403 } 11404 if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report, 11405 tcp_host_param_set, NULL)) { 11406 nd_free(ndp); 11407 return (B_FALSE); 11408 } 11409 if (!nd_load(ndp, "tcp_host_param_ipv6", 11410 tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { 11411 nd_free(ndp); 11412 return (B_FALSE); 11413 } 11414 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11415 tcp_1948_phrase_set, NULL)) { 11416 nd_free(ndp); 11417 return (B_FALSE); 11418 } 11419 if (!nd_load(ndp, "tcp_reserved_port_list", 11420 tcp_reserved_port_list, NULL, NULL)) { 11421 nd_free(ndp); 11422 return (B_FALSE); 11423 } 11424 /* 11425 * Dummy ndd variables - only to convey obsolescence information 11426 * through printing of their name (no get or set routines) 11427 * XXX Remove in future releases ? 11428 */ 11429 if (!nd_load(ndp, 11430 "tcp_close_wait_interval(obsoleted - " 11431 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11432 nd_free(ndp); 11433 return (B_FALSE); 11434 } 11435 return (B_TRUE); 11436 } 11437 11438 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11439 /* ARGSUSED */ 11440 static int 11441 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11442 cred_t *cr) 11443 { 11444 long new_value; 11445 tcpparam_t *tcppa = (tcpparam_t *)cp; 11446 11447 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11448 new_value < tcppa->tcp_param_min || 11449 new_value > tcppa->tcp_param_max) { 11450 return (EINVAL); 11451 } 11452 /* 11453 * Need to make sure new_value is a multiple of 4. If it is not, 11454 * round it up. For future 64 bit requirement, we actually make it 11455 * a multiple of 8. 11456 */ 11457 if (new_value & 0x7) { 11458 new_value = (new_value & ~0x7) + 0x8; 11459 } 11460 tcppa->tcp_param_val = new_value; 11461 return (0); 11462 } 11463 11464 /* Set callback routine passed to nd_load by tcp_param_register */ 11465 /* ARGSUSED */ 11466 static int 11467 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11468 { 11469 long new_value; 11470 tcpparam_t *tcppa = (tcpparam_t *)cp; 11471 11472 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11473 new_value < tcppa->tcp_param_min || 11474 new_value > tcppa->tcp_param_max) { 11475 return (EINVAL); 11476 } 11477 tcppa->tcp_param_val = new_value; 11478 return (0); 11479 } 11480 11481 /* 11482 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11483 * is filled, return as much as we can. The message passed in may be 11484 * multi-part, chained using b_cont. "start" is the starting sequence 11485 * number for this piece. 11486 */ 11487 static mblk_t * 11488 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11489 { 11490 uint32_t end; 11491 mblk_t *mp1; 11492 mblk_t *mp2; 11493 mblk_t *next_mp; 11494 uint32_t u1; 11495 tcp_stack_t *tcps = tcp->tcp_tcps; 11496 11497 /* Walk through all the new pieces. */ 11498 do { 11499 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11500 (uintptr_t)INT_MAX); 11501 end = start + (int)(mp->b_wptr - mp->b_rptr); 11502 next_mp = mp->b_cont; 11503 if (start == end) { 11504 /* Empty. Blast it. */ 11505 freeb(mp); 11506 continue; 11507 } 11508 mp->b_cont = NULL; 11509 TCP_REASS_SET_SEQ(mp, start); 11510 TCP_REASS_SET_END(mp, end); 11511 mp1 = tcp->tcp_reass_tail; 11512 if (!mp1) { 11513 tcp->tcp_reass_tail = mp; 11514 tcp->tcp_reass_head = mp; 11515 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11516 UPDATE_MIB(&tcps->tcps_mib, 11517 tcpInDataUnorderBytes, end - start); 11518 continue; 11519 } 11520 /* New stuff completely beyond tail? */ 11521 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11522 /* Link it on end. */ 11523 mp1->b_cont = mp; 11524 tcp->tcp_reass_tail = mp; 11525 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11526 UPDATE_MIB(&tcps->tcps_mib, 11527 tcpInDataUnorderBytes, end - start); 11528 continue; 11529 } 11530 mp1 = tcp->tcp_reass_head; 11531 u1 = TCP_REASS_SEQ(mp1); 11532 /* New stuff at the front? */ 11533 if (SEQ_LT(start, u1)) { 11534 /* Yes... Check for overlap. */ 11535 mp->b_cont = mp1; 11536 tcp->tcp_reass_head = mp; 11537 tcp_reass_elim_overlap(tcp, mp); 11538 continue; 11539 } 11540 /* 11541 * The new piece fits somewhere between the head and tail. 11542 * We find our slot, where mp1 precedes us and mp2 trails. 11543 */ 11544 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11545 u1 = TCP_REASS_SEQ(mp2); 11546 if (SEQ_LEQ(start, u1)) 11547 break; 11548 } 11549 /* Link ourselves in */ 11550 mp->b_cont = mp2; 11551 mp1->b_cont = mp; 11552 11553 /* Trim overlap with following mblk(s) first */ 11554 tcp_reass_elim_overlap(tcp, mp); 11555 11556 /* Trim overlap with preceding mblk */ 11557 tcp_reass_elim_overlap(tcp, mp1); 11558 11559 } while (start = end, mp = next_mp); 11560 mp1 = tcp->tcp_reass_head; 11561 /* Anything ready to go? */ 11562 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11563 return (NULL); 11564 /* Eat what we can off the queue */ 11565 for (;;) { 11566 mp = mp1->b_cont; 11567 end = TCP_REASS_END(mp1); 11568 TCP_REASS_SET_SEQ(mp1, 0); 11569 TCP_REASS_SET_END(mp1, 0); 11570 if (!mp) { 11571 tcp->tcp_reass_tail = NULL; 11572 break; 11573 } 11574 if (end != TCP_REASS_SEQ(mp)) { 11575 mp1->b_cont = NULL; 11576 break; 11577 } 11578 mp1 = mp; 11579 } 11580 mp1 = tcp->tcp_reass_head; 11581 tcp->tcp_reass_head = mp; 11582 return (mp1); 11583 } 11584 11585 /* Eliminate any overlap that mp may have over later mblks */ 11586 static void 11587 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11588 { 11589 uint32_t end; 11590 mblk_t *mp1; 11591 uint32_t u1; 11592 tcp_stack_t *tcps = tcp->tcp_tcps; 11593 11594 end = TCP_REASS_END(mp); 11595 while ((mp1 = mp->b_cont) != NULL) { 11596 u1 = TCP_REASS_SEQ(mp1); 11597 if (!SEQ_GT(end, u1)) 11598 break; 11599 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11600 mp->b_wptr -= end - u1; 11601 TCP_REASS_SET_END(mp, u1); 11602 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11603 UPDATE_MIB(&tcps->tcps_mib, 11604 tcpInDataPartDupBytes, end - u1); 11605 break; 11606 } 11607 mp->b_cont = mp1->b_cont; 11608 TCP_REASS_SET_SEQ(mp1, 0); 11609 TCP_REASS_SET_END(mp1, 0); 11610 freeb(mp1); 11611 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11612 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11613 } 11614 if (!mp1) 11615 tcp->tcp_reass_tail = mp; 11616 } 11617 11618 /* 11619 * Send up all messages queued on tcp_rcv_list. 11620 */ 11621 static uint_t 11622 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11623 { 11624 mblk_t *mp; 11625 uint_t ret = 0; 11626 uint_t thwin; 11627 #ifdef DEBUG 11628 uint_t cnt = 0; 11629 #endif 11630 tcp_stack_t *tcps = tcp->tcp_tcps; 11631 11632 /* Can't drain on an eager connection */ 11633 if (tcp->tcp_listener != NULL) 11634 return (ret); 11635 11636 /* 11637 * Handle two cases here: we are currently fused or we were 11638 * previously fused and have some urgent data to be delivered 11639 * upstream. The latter happens because we either ran out of 11640 * memory or were detached and therefore sending the SIGURG was 11641 * deferred until this point. In either case we pass control 11642 * over to tcp_fuse_rcv_drain() since it may need to complete 11643 * some work. 11644 */ 11645 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11646 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11647 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11648 &tcp->tcp_fused_sigurg_mp)) 11649 return (ret); 11650 } 11651 11652 while ((mp = tcp->tcp_rcv_list) != NULL) { 11653 tcp->tcp_rcv_list = mp->b_next; 11654 mp->b_next = NULL; 11655 #ifdef DEBUG 11656 cnt += msgdsize(mp); 11657 #endif 11658 /* Does this need SSL processing first? */ 11659 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11660 tcp_kssl_input(tcp, mp); 11661 continue; 11662 } 11663 putnext(q, mp); 11664 } 11665 ASSERT(cnt == tcp->tcp_rcv_cnt); 11666 tcp->tcp_rcv_last_head = NULL; 11667 tcp->tcp_rcv_last_tail = NULL; 11668 tcp->tcp_rcv_cnt = 0; 11669 11670 /* Learn the latest rwnd information that we sent to the other side. */ 11671 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11672 << tcp->tcp_rcv_ws; 11673 /* This is peer's calculated send window (our receive window). */ 11674 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11675 /* 11676 * Increase the receive window to max. But we need to do receiver 11677 * SWS avoidance. This means that we need to check the increase of 11678 * of receive window is at least 1 MSS. 11679 */ 11680 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11681 /* 11682 * If the window that the other side knows is less than max 11683 * deferred acks segments, send an update immediately. 11684 */ 11685 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11686 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11687 ret = TH_ACK_NEEDED; 11688 } 11689 tcp->tcp_rwnd = q->q_hiwat; 11690 } 11691 /* No need for the push timer now. */ 11692 if (tcp->tcp_push_tid != 0) { 11693 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11694 tcp->tcp_push_tid = 0; 11695 } 11696 return (ret); 11697 } 11698 11699 /* 11700 * Queue data on tcp_rcv_list which is a b_next chain. 11701 * tcp_rcv_last_head/tail is the last element of this chain. 11702 * Each element of the chain is a b_cont chain. 11703 * 11704 * M_DATA messages are added to the current element. 11705 * Other messages are added as new (b_next) elements. 11706 */ 11707 void 11708 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11709 { 11710 ASSERT(seg_len == msgdsize(mp)); 11711 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11712 11713 if (tcp->tcp_rcv_list == NULL) { 11714 ASSERT(tcp->tcp_rcv_last_head == NULL); 11715 tcp->tcp_rcv_list = mp; 11716 tcp->tcp_rcv_last_head = mp; 11717 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11718 tcp->tcp_rcv_last_tail->b_cont = mp; 11719 } else { 11720 tcp->tcp_rcv_last_head->b_next = mp; 11721 tcp->tcp_rcv_last_head = mp; 11722 } 11723 11724 while (mp->b_cont) 11725 mp = mp->b_cont; 11726 11727 tcp->tcp_rcv_last_tail = mp; 11728 tcp->tcp_rcv_cnt += seg_len; 11729 tcp->tcp_rwnd -= seg_len; 11730 } 11731 11732 /* 11733 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11734 * 11735 * This is the default entry function into TCP on the read side. TCP is 11736 * always entered via squeue i.e. using squeue's for mutual exclusion. 11737 * When classifier does a lookup to find the tcp, it also puts a reference 11738 * on the conn structure associated so the tcp is guaranteed to exist 11739 * when we come here. We still need to check the state because it might 11740 * as well has been closed. The squeue processing function i.e. squeue_enter, 11741 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11742 * CONN_DEC_REF. 11743 * 11744 * Apart from the default entry point, IP also sends packets directly to 11745 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11746 * connections. 11747 */ 11748 void 11749 tcp_input(void *arg, mblk_t *mp, void *arg2) 11750 { 11751 conn_t *connp = (conn_t *)arg; 11752 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11753 11754 /* arg2 is the sqp */ 11755 ASSERT(arg2 != NULL); 11756 ASSERT(mp != NULL); 11757 11758 /* 11759 * Don't accept any input on a closed tcp as this TCP logically does 11760 * not exist on the system. Don't proceed further with this TCP. 11761 * For eg. this packet could trigger another close of this tcp 11762 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11763 * tcp_clean_death / tcp_closei_local must be called at most once 11764 * on a TCP. In this case we need to refeed the packet into the 11765 * classifier and figure out where the packet should go. Need to 11766 * preserve the recv_ill somehow. Until we figure that out, for 11767 * now just drop the packet if we can't classify the packet. 11768 */ 11769 if (tcp->tcp_state == TCPS_CLOSED || 11770 tcp->tcp_state == TCPS_BOUND) { 11771 conn_t *new_connp; 11772 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11773 11774 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11775 if (new_connp != NULL) { 11776 tcp_reinput(new_connp, mp, arg2); 11777 return; 11778 } 11779 /* We failed to classify. For now just drop the packet */ 11780 freemsg(mp); 11781 return; 11782 } 11783 11784 if (DB_TYPE(mp) == M_DATA) 11785 tcp_rput_data(connp, mp, arg2); 11786 else 11787 tcp_rput_common(tcp, mp); 11788 } 11789 11790 /* 11791 * The read side put procedure. 11792 * The packets passed up by ip are assume to be aligned according to 11793 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11794 */ 11795 static void 11796 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11797 { 11798 /* 11799 * tcp_rput_data() does not expect M_CTL except for the case 11800 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11801 * type. Need to make sure that any other M_CTLs don't make 11802 * it to tcp_rput_data since it is not expecting any and doesn't 11803 * check for it. 11804 */ 11805 if (DB_TYPE(mp) == M_CTL) { 11806 switch (*(uint32_t *)(mp->b_rptr)) { 11807 case TCP_IOC_ABORT_CONN: 11808 /* 11809 * Handle connection abort request. 11810 */ 11811 tcp_ioctl_abort_handler(tcp, mp); 11812 return; 11813 case IPSEC_IN: 11814 /* 11815 * Only secure icmp arrive in TCP and they 11816 * don't go through data path. 11817 */ 11818 tcp_icmp_error(tcp, mp); 11819 return; 11820 case IN_PKTINFO: 11821 /* 11822 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11823 * sockets that are receiving IPv4 traffic. tcp 11824 */ 11825 ASSERT(tcp->tcp_family == AF_INET6); 11826 ASSERT(tcp->tcp_ipv6_recvancillary & 11827 TCP_IPV6_RECVPKTINFO); 11828 tcp_rput_data(tcp->tcp_connp, mp, 11829 tcp->tcp_connp->conn_sqp); 11830 return; 11831 case MDT_IOC_INFO_UPDATE: 11832 /* 11833 * Handle Multidata information update; the 11834 * following routine will free the message. 11835 */ 11836 if (tcp->tcp_connp->conn_mdt_ok) { 11837 tcp_mdt_update(tcp, 11838 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11839 B_FALSE); 11840 } 11841 freemsg(mp); 11842 return; 11843 case LSO_IOC_INFO_UPDATE: 11844 /* 11845 * Handle LSO information update; the following 11846 * routine will free the message. 11847 */ 11848 if (tcp->tcp_connp->conn_lso_ok) { 11849 tcp_lso_update(tcp, 11850 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11851 } 11852 freemsg(mp); 11853 return; 11854 default: 11855 /* 11856 * tcp_icmp_err() will process the M_CTL packets. 11857 * Non-ICMP packets, if any, will be discarded in 11858 * tcp_icmp_err(). We will process the ICMP packet 11859 * even if we are TCP_IS_DETACHED_NONEAGER as the 11860 * incoming ICMP packet may result in changing 11861 * the tcp_mss, which we would need if we have 11862 * packets to retransmit. 11863 */ 11864 tcp_icmp_error(tcp, mp); 11865 return; 11866 } 11867 } 11868 11869 /* No point processing the message if tcp is already closed */ 11870 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11871 freemsg(mp); 11872 return; 11873 } 11874 11875 tcp_rput_other(tcp, mp); 11876 } 11877 11878 11879 /* The minimum of smoothed mean deviation in RTO calculation. */ 11880 #define TCP_SD_MIN 400 11881 11882 /* 11883 * Set RTO for this connection. The formula is from Jacobson and Karels' 11884 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11885 * are the same as those in Appendix A.2 of that paper. 11886 * 11887 * m = new measurement 11888 * sa = smoothed RTT average (8 * average estimates). 11889 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11890 */ 11891 static void 11892 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11893 { 11894 long m = TICK_TO_MSEC(rtt); 11895 clock_t sa = tcp->tcp_rtt_sa; 11896 clock_t sv = tcp->tcp_rtt_sd; 11897 clock_t rto; 11898 tcp_stack_t *tcps = tcp->tcp_tcps; 11899 11900 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11901 tcp->tcp_rtt_update++; 11902 11903 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11904 if (sa != 0) { 11905 /* 11906 * Update average estimator: 11907 * new rtt = 7/8 old rtt + 1/8 Error 11908 */ 11909 11910 /* m is now Error in estimate. */ 11911 m -= sa >> 3; 11912 if ((sa += m) <= 0) { 11913 /* 11914 * Don't allow the smoothed average to be negative. 11915 * We use 0 to denote reinitialization of the 11916 * variables. 11917 */ 11918 sa = 1; 11919 } 11920 11921 /* 11922 * Update deviation estimator: 11923 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11924 */ 11925 if (m < 0) 11926 m = -m; 11927 m -= sv >> 2; 11928 sv += m; 11929 } else { 11930 /* 11931 * This follows BSD's implementation. So the reinitialized 11932 * RTO is 3 * m. We cannot go less than 2 because if the 11933 * link is bandwidth dominated, doubling the window size 11934 * during slow start means doubling the RTT. We want to be 11935 * more conservative when we reinitialize our estimates. 3 11936 * is just a convenient number. 11937 */ 11938 sa = m << 3; 11939 sv = m << 1; 11940 } 11941 if (sv < TCP_SD_MIN) { 11942 /* 11943 * We do not know that if sa captures the delay ACK 11944 * effect as in a long train of segments, a receiver 11945 * does not delay its ACKs. So set the minimum of sv 11946 * to be TCP_SD_MIN, which is default to 400 ms, twice 11947 * of BSD DATO. That means the minimum of mean 11948 * deviation is 100 ms. 11949 * 11950 */ 11951 sv = TCP_SD_MIN; 11952 } 11953 tcp->tcp_rtt_sa = sa; 11954 tcp->tcp_rtt_sd = sv; 11955 /* 11956 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11957 * 11958 * Add tcp_rexmit_interval extra in case of extreme environment 11959 * where the algorithm fails to work. The default value of 11960 * tcp_rexmit_interval_extra should be 0. 11961 * 11962 * As we use a finer grained clock than BSD and update 11963 * RTO for every ACKs, add in another .25 of RTT to the 11964 * deviation of RTO to accomodate burstiness of 1/4 of 11965 * window size. 11966 */ 11967 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11968 11969 if (rto > tcps->tcps_rexmit_interval_max) { 11970 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11971 } else if (rto < tcps->tcps_rexmit_interval_min) { 11972 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11973 } else { 11974 tcp->tcp_rto = rto; 11975 } 11976 11977 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11978 tcp->tcp_timer_backoff = 0; 11979 } 11980 11981 /* 11982 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11983 * send queue which starts at the given seq. no. 11984 * 11985 * Parameters: 11986 * tcp_t *tcp: the tcp instance pointer. 11987 * uint32_t seq: the starting seq. no of the requested segment. 11988 * int32_t *off: after the execution, *off will be the offset to 11989 * the returned mblk which points to the requested seq no. 11990 * It is the caller's responsibility to send in a non-null off. 11991 * 11992 * Return: 11993 * A mblk_t pointer pointing to the requested segment in send queue. 11994 */ 11995 static mblk_t * 11996 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11997 { 11998 int32_t cnt; 11999 mblk_t *mp; 12000 12001 /* Defensive coding. Make sure we don't send incorrect data. */ 12002 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12003 return (NULL); 12004 12005 cnt = seq - tcp->tcp_suna; 12006 mp = tcp->tcp_xmit_head; 12007 while (cnt > 0 && mp != NULL) { 12008 cnt -= mp->b_wptr - mp->b_rptr; 12009 if (cnt < 0) { 12010 cnt += mp->b_wptr - mp->b_rptr; 12011 break; 12012 } 12013 mp = mp->b_cont; 12014 } 12015 ASSERT(mp != NULL); 12016 *off = cnt; 12017 return (mp); 12018 } 12019 12020 /* 12021 * This function handles all retransmissions if SACK is enabled for this 12022 * connection. First it calculates how many segments can be retransmitted 12023 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12024 * segments. A segment is eligible if sack_cnt for that segment is greater 12025 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12026 * all eligible segments, it checks to see if TCP can send some new segments 12027 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12028 * 12029 * Parameters: 12030 * tcp_t *tcp: the tcp structure of the connection. 12031 * uint_t *flags: in return, appropriate value will be set for 12032 * tcp_rput_data(). 12033 */ 12034 static void 12035 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12036 { 12037 notsack_blk_t *notsack_blk; 12038 int32_t usable_swnd; 12039 int32_t mss; 12040 uint32_t seg_len; 12041 mblk_t *xmit_mp; 12042 tcp_stack_t *tcps = tcp->tcp_tcps; 12043 12044 ASSERT(tcp->tcp_sack_info != NULL); 12045 ASSERT(tcp->tcp_notsack_list != NULL); 12046 ASSERT(tcp->tcp_rexmit == B_FALSE); 12047 12048 /* Defensive coding in case there is a bug... */ 12049 if (tcp->tcp_notsack_list == NULL) { 12050 return; 12051 } 12052 notsack_blk = tcp->tcp_notsack_list; 12053 mss = tcp->tcp_mss; 12054 12055 /* 12056 * Limit the num of outstanding data in the network to be 12057 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12058 */ 12059 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12060 12061 /* At least retransmit 1 MSS of data. */ 12062 if (usable_swnd <= 0) { 12063 usable_swnd = mss; 12064 } 12065 12066 /* Make sure no new RTT samples will be taken. */ 12067 tcp->tcp_csuna = tcp->tcp_snxt; 12068 12069 notsack_blk = tcp->tcp_notsack_list; 12070 while (usable_swnd > 0) { 12071 mblk_t *snxt_mp, *tmp_mp; 12072 tcp_seq begin = tcp->tcp_sack_snxt; 12073 tcp_seq end; 12074 int32_t off; 12075 12076 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12077 if (SEQ_GT(notsack_blk->end, begin) && 12078 (notsack_blk->sack_cnt >= 12079 tcps->tcps_dupack_fast_retransmit)) { 12080 end = notsack_blk->end; 12081 if (SEQ_LT(begin, notsack_blk->begin)) { 12082 begin = notsack_blk->begin; 12083 } 12084 break; 12085 } 12086 } 12087 /* 12088 * All holes are filled. Manipulate tcp_cwnd to send more 12089 * if we can. Note that after the SACK recovery, tcp_cwnd is 12090 * set to tcp_cwnd_ssthresh. 12091 */ 12092 if (notsack_blk == NULL) { 12093 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12094 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12095 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12096 ASSERT(tcp->tcp_cwnd > 0); 12097 return; 12098 } else { 12099 usable_swnd = usable_swnd / mss; 12100 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12101 MAX(usable_swnd * mss, mss); 12102 *flags |= TH_XMIT_NEEDED; 12103 return; 12104 } 12105 } 12106 12107 /* 12108 * Note that we may send more than usable_swnd allows here 12109 * because of round off, but no more than 1 MSS of data. 12110 */ 12111 seg_len = end - begin; 12112 if (seg_len > mss) 12113 seg_len = mss; 12114 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12115 ASSERT(snxt_mp != NULL); 12116 /* This should not happen. Defensive coding again... */ 12117 if (snxt_mp == NULL) { 12118 return; 12119 } 12120 12121 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12122 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12123 if (xmit_mp == NULL) 12124 return; 12125 12126 usable_swnd -= seg_len; 12127 tcp->tcp_pipe += seg_len; 12128 tcp->tcp_sack_snxt = begin + seg_len; 12129 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12130 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12131 12132 /* 12133 * Update the send timestamp to avoid false retransmission. 12134 */ 12135 snxt_mp->b_prev = (mblk_t *)lbolt; 12136 12137 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12138 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12139 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12140 /* 12141 * Update tcp_rexmit_max to extend this SACK recovery phase. 12142 * This happens when new data sent during fast recovery is 12143 * also lost. If TCP retransmits those new data, it needs 12144 * to extend SACK recover phase to avoid starting another 12145 * fast retransmit/recovery unnecessarily. 12146 */ 12147 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12148 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12149 } 12150 } 12151 } 12152 12153 /* 12154 * This function handles policy checking at TCP level for non-hard_bound/ 12155 * detached connections. 12156 */ 12157 static boolean_t 12158 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12159 boolean_t secure, boolean_t mctl_present) 12160 { 12161 ipsec_latch_t *ipl = NULL; 12162 ipsec_action_t *act = NULL; 12163 mblk_t *data_mp; 12164 ipsec_in_t *ii; 12165 const char *reason; 12166 kstat_named_t *counter; 12167 tcp_stack_t *tcps = tcp->tcp_tcps; 12168 ipsec_stack_t *ipss; 12169 ip_stack_t *ipst; 12170 12171 ASSERT(mctl_present || !secure); 12172 12173 ASSERT((ipha == NULL && ip6h != NULL) || 12174 (ip6h == NULL && ipha != NULL)); 12175 12176 /* 12177 * We don't necessarily have an ipsec_in_act action to verify 12178 * policy because of assymetrical policy where we have only 12179 * outbound policy and no inbound policy (possible with global 12180 * policy). 12181 */ 12182 if (!secure) { 12183 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12184 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12185 return (B_TRUE); 12186 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12187 "tcp_check_policy", ipha, ip6h, secure, 12188 tcps->tcps_netstack); 12189 ipss = tcps->tcps_netstack->netstack_ipsec; 12190 12191 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12192 DROPPER(ipss, ipds_tcp_clear), 12193 &tcps->tcps_dropper); 12194 return (B_FALSE); 12195 } 12196 12197 /* 12198 * We have a secure packet. 12199 */ 12200 if (act == NULL) { 12201 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12202 "tcp_check_policy", ipha, ip6h, secure, 12203 tcps->tcps_netstack); 12204 ipss = tcps->tcps_netstack->netstack_ipsec; 12205 12206 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12207 DROPPER(ipss, ipds_tcp_secure), 12208 &tcps->tcps_dropper); 12209 return (B_FALSE); 12210 } 12211 12212 /* 12213 * XXX This whole routine is currently incorrect. ipl should 12214 * be set to the latch pointer, but is currently not set, so 12215 * we initialize it to NULL to avoid picking up random garbage. 12216 */ 12217 if (ipl == NULL) 12218 return (B_TRUE); 12219 12220 data_mp = first_mp->b_cont; 12221 12222 ii = (ipsec_in_t *)first_mp->b_rptr; 12223 12224 ipst = tcps->tcps_netstack->netstack_ip; 12225 12226 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12227 &counter, tcp->tcp_connp)) { 12228 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12229 return (B_TRUE); 12230 } 12231 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12232 "tcp inbound policy mismatch: %s, packet dropped\n", 12233 reason); 12234 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12235 12236 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12237 &tcps->tcps_dropper); 12238 return (B_FALSE); 12239 } 12240 12241 /* 12242 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12243 * retransmission after a timeout. 12244 * 12245 * To limit the number of duplicate segments, we limit the number of segment 12246 * to be sent in one time to tcp_snd_burst, the burst variable. 12247 */ 12248 static void 12249 tcp_ss_rexmit(tcp_t *tcp) 12250 { 12251 uint32_t snxt; 12252 uint32_t smax; 12253 int32_t win; 12254 int32_t mss; 12255 int32_t off; 12256 int32_t burst = tcp->tcp_snd_burst; 12257 mblk_t *snxt_mp; 12258 tcp_stack_t *tcps = tcp->tcp_tcps; 12259 12260 /* 12261 * Note that tcp_rexmit can be set even though TCP has retransmitted 12262 * all unack'ed segments. 12263 */ 12264 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12265 smax = tcp->tcp_rexmit_max; 12266 snxt = tcp->tcp_rexmit_nxt; 12267 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12268 snxt = tcp->tcp_suna; 12269 } 12270 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12271 win -= snxt - tcp->tcp_suna; 12272 mss = tcp->tcp_mss; 12273 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12274 12275 while (SEQ_LT(snxt, smax) && (win > 0) && 12276 (burst > 0) && (snxt_mp != NULL)) { 12277 mblk_t *xmit_mp; 12278 mblk_t *old_snxt_mp = snxt_mp; 12279 uint32_t cnt = mss; 12280 12281 if (win < cnt) { 12282 cnt = win; 12283 } 12284 if (SEQ_GT(snxt + cnt, smax)) { 12285 cnt = smax - snxt; 12286 } 12287 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12288 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12289 if (xmit_mp == NULL) 12290 return; 12291 12292 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12293 12294 snxt += cnt; 12295 win -= cnt; 12296 /* 12297 * Update the send timestamp to avoid false 12298 * retransmission. 12299 */ 12300 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12301 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12302 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12303 12304 tcp->tcp_rexmit_nxt = snxt; 12305 burst--; 12306 } 12307 /* 12308 * If we have transmitted all we have at the time 12309 * we started the retranmission, we can leave 12310 * the rest of the job to tcp_wput_data(). But we 12311 * need to check the send window first. If the 12312 * win is not 0, go on with tcp_wput_data(). 12313 */ 12314 if (SEQ_LT(snxt, smax) || win == 0) { 12315 return; 12316 } 12317 } 12318 /* Only call tcp_wput_data() if there is data to be sent. */ 12319 if (tcp->tcp_unsent) { 12320 tcp_wput_data(tcp, NULL, B_FALSE); 12321 } 12322 } 12323 12324 /* 12325 * Process all TCP option in SYN segment. Note that this function should 12326 * be called after tcp_adapt_ire() is called so that the necessary info 12327 * from IRE is already set in the tcp structure. 12328 * 12329 * This function sets up the correct tcp_mss value according to the 12330 * MSS option value and our header size. It also sets up the window scale 12331 * and timestamp values, and initialize SACK info blocks. But it does not 12332 * change receive window size after setting the tcp_mss value. The caller 12333 * should do the appropriate change. 12334 */ 12335 void 12336 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12337 { 12338 int options; 12339 tcp_opt_t tcpopt; 12340 uint32_t mss_max; 12341 char *tmp_tcph; 12342 tcp_stack_t *tcps = tcp->tcp_tcps; 12343 12344 tcpopt.tcp = NULL; 12345 options = tcp_parse_options(tcph, &tcpopt); 12346 12347 /* 12348 * Process MSS option. Note that MSS option value does not account 12349 * for IP or TCP options. This means that it is equal to MTU - minimum 12350 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12351 * IPv6. 12352 */ 12353 if (!(options & TCP_OPT_MSS_PRESENT)) { 12354 if (tcp->tcp_ipversion == IPV4_VERSION) 12355 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12356 else 12357 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12358 } else { 12359 if (tcp->tcp_ipversion == IPV4_VERSION) 12360 mss_max = tcps->tcps_mss_max_ipv4; 12361 else 12362 mss_max = tcps->tcps_mss_max_ipv6; 12363 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12364 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12365 else if (tcpopt.tcp_opt_mss > mss_max) 12366 tcpopt.tcp_opt_mss = mss_max; 12367 } 12368 12369 /* Process Window Scale option. */ 12370 if (options & TCP_OPT_WSCALE_PRESENT) { 12371 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12372 tcp->tcp_snd_ws_ok = B_TRUE; 12373 } else { 12374 tcp->tcp_snd_ws = B_FALSE; 12375 tcp->tcp_snd_ws_ok = B_FALSE; 12376 tcp->tcp_rcv_ws = B_FALSE; 12377 } 12378 12379 /* Process Timestamp option. */ 12380 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12381 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12382 tmp_tcph = (char *)tcp->tcp_tcph; 12383 12384 tcp->tcp_snd_ts_ok = B_TRUE; 12385 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12386 tcp->tcp_last_rcv_lbolt = lbolt64; 12387 ASSERT(OK_32PTR(tmp_tcph)); 12388 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12389 12390 /* Fill in our template header with basic timestamp option. */ 12391 tmp_tcph += tcp->tcp_tcp_hdr_len; 12392 tmp_tcph[0] = TCPOPT_NOP; 12393 tmp_tcph[1] = TCPOPT_NOP; 12394 tmp_tcph[2] = TCPOPT_TSTAMP; 12395 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12396 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12397 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12398 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12399 } else { 12400 tcp->tcp_snd_ts_ok = B_FALSE; 12401 } 12402 12403 /* 12404 * Process SACK options. If SACK is enabled for this connection, 12405 * then allocate the SACK info structure. Note the following ways 12406 * when tcp_snd_sack_ok is set to true. 12407 * 12408 * For active connection: in tcp_adapt_ire() called in 12409 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12410 * is checked. 12411 * 12412 * For passive connection: in tcp_adapt_ire() called in 12413 * tcp_accept_comm(). 12414 * 12415 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12416 * That check makes sure that if we did not send a SACK OK option, 12417 * we will not enable SACK for this connection even though the other 12418 * side sends us SACK OK option. For active connection, the SACK 12419 * info structure has already been allocated. So we need to free 12420 * it if SACK is disabled. 12421 */ 12422 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12423 (tcp->tcp_snd_sack_ok || 12424 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12425 /* This should be true only in the passive case. */ 12426 if (tcp->tcp_sack_info == NULL) { 12427 ASSERT(TCP_IS_DETACHED(tcp)); 12428 tcp->tcp_sack_info = 12429 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12430 } 12431 if (tcp->tcp_sack_info == NULL) { 12432 tcp->tcp_snd_sack_ok = B_FALSE; 12433 } else { 12434 tcp->tcp_snd_sack_ok = B_TRUE; 12435 if (tcp->tcp_snd_ts_ok) { 12436 tcp->tcp_max_sack_blk = 3; 12437 } else { 12438 tcp->tcp_max_sack_blk = 4; 12439 } 12440 } 12441 } else { 12442 /* 12443 * Resetting tcp_snd_sack_ok to B_FALSE so that 12444 * no SACK info will be used for this 12445 * connection. This assumes that SACK usage 12446 * permission is negotiated. This may need 12447 * to be changed once this is clarified. 12448 */ 12449 if (tcp->tcp_sack_info != NULL) { 12450 ASSERT(tcp->tcp_notsack_list == NULL); 12451 kmem_cache_free(tcp_sack_info_cache, 12452 tcp->tcp_sack_info); 12453 tcp->tcp_sack_info = NULL; 12454 } 12455 tcp->tcp_snd_sack_ok = B_FALSE; 12456 } 12457 12458 /* 12459 * Now we know the exact TCP/IP header length, subtract 12460 * that from tcp_mss to get our side's MSS. 12461 */ 12462 tcp->tcp_mss -= tcp->tcp_hdr_len; 12463 /* 12464 * Here we assume that the other side's header size will be equal to 12465 * our header size. We calculate the real MSS accordingly. Need to 12466 * take into additional stuffs IPsec puts in. 12467 * 12468 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12469 */ 12470 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12471 ((tcp->tcp_ipversion == IPV4_VERSION ? 12472 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12473 12474 /* 12475 * Set MSS to the smaller one of both ends of the connection. 12476 * We should not have called tcp_mss_set() before, but our 12477 * side of the MSS should have been set to a proper value 12478 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12479 * STREAM head parameters properly. 12480 * 12481 * If we have a larger-than-16-bit window but the other side 12482 * didn't want to do window scale, tcp_rwnd_set() will take 12483 * care of that. 12484 */ 12485 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12486 } 12487 12488 /* 12489 * Sends the T_CONN_IND to the listener. The caller calls this 12490 * functions via squeue to get inside the listener's perimeter 12491 * once the 3 way hand shake is done a T_CONN_IND needs to be 12492 * sent. As an optimization, the caller can call this directly 12493 * if listener's perimeter is same as eager's. 12494 */ 12495 /* ARGSUSED */ 12496 void 12497 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12498 { 12499 conn_t *lconnp = (conn_t *)arg; 12500 tcp_t *listener = lconnp->conn_tcp; 12501 tcp_t *tcp; 12502 struct T_conn_ind *conn_ind; 12503 ipaddr_t *addr_cache; 12504 boolean_t need_send_conn_ind = B_FALSE; 12505 tcp_stack_t *tcps = listener->tcp_tcps; 12506 12507 /* retrieve the eager */ 12508 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12509 ASSERT(conn_ind->OPT_offset != 0 && 12510 conn_ind->OPT_length == sizeof (intptr_t)); 12511 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12512 conn_ind->OPT_length); 12513 12514 /* 12515 * TLI/XTI applications will get confused by 12516 * sending eager as an option since it violates 12517 * the option semantics. So remove the eager as 12518 * option since TLI/XTI app doesn't need it anyway. 12519 */ 12520 if (!TCP_IS_SOCKET(listener)) { 12521 conn_ind->OPT_length = 0; 12522 conn_ind->OPT_offset = 0; 12523 } 12524 if (listener->tcp_state == TCPS_CLOSED || 12525 TCP_IS_DETACHED(listener)) { 12526 /* 12527 * If listener has closed, it would have caused a 12528 * a cleanup/blowoff to happen for the eager. We 12529 * just need to return. 12530 */ 12531 freemsg(mp); 12532 return; 12533 } 12534 12535 12536 /* 12537 * if the conn_req_q is full defer passing up the 12538 * T_CONN_IND until space is availabe after t_accept() 12539 * processing 12540 */ 12541 mutex_enter(&listener->tcp_eager_lock); 12542 12543 /* 12544 * Take the eager out, if it is in the list of droppable eagers 12545 * as we are here because the 3W handshake is over. 12546 */ 12547 MAKE_UNDROPPABLE(tcp); 12548 12549 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12550 tcp_t *tail; 12551 12552 /* 12553 * The eager already has an extra ref put in tcp_rput_data 12554 * so that it stays till accept comes back even though it 12555 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12556 */ 12557 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12558 listener->tcp_conn_req_cnt_q0--; 12559 listener->tcp_conn_req_cnt_q++; 12560 12561 /* Move from SYN_RCVD to ESTABLISHED list */ 12562 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12563 tcp->tcp_eager_prev_q0; 12564 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12565 tcp->tcp_eager_next_q0; 12566 tcp->tcp_eager_prev_q0 = NULL; 12567 tcp->tcp_eager_next_q0 = NULL; 12568 12569 /* 12570 * Insert at end of the queue because sockfs 12571 * sends down T_CONN_RES in chronological 12572 * order. Leaving the older conn indications 12573 * at front of the queue helps reducing search 12574 * time. 12575 */ 12576 tail = listener->tcp_eager_last_q; 12577 if (tail != NULL) 12578 tail->tcp_eager_next_q = tcp; 12579 else 12580 listener->tcp_eager_next_q = tcp; 12581 listener->tcp_eager_last_q = tcp; 12582 tcp->tcp_eager_next_q = NULL; 12583 /* 12584 * Delay sending up the T_conn_ind until we are 12585 * done with the eager. Once we have have sent up 12586 * the T_conn_ind, the accept can potentially complete 12587 * any time and release the refhold we have on the eager. 12588 */ 12589 need_send_conn_ind = B_TRUE; 12590 } else { 12591 /* 12592 * Defer connection on q0 and set deferred 12593 * connection bit true 12594 */ 12595 tcp->tcp_conn_def_q0 = B_TRUE; 12596 12597 /* take tcp out of q0 ... */ 12598 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12599 tcp->tcp_eager_next_q0; 12600 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12601 tcp->tcp_eager_prev_q0; 12602 12603 /* ... and place it at the end of q0 */ 12604 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12605 tcp->tcp_eager_next_q0 = listener; 12606 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12607 listener->tcp_eager_prev_q0 = tcp; 12608 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12609 } 12610 12611 /* we have timed out before */ 12612 if (tcp->tcp_syn_rcvd_timeout != 0) { 12613 tcp->tcp_syn_rcvd_timeout = 0; 12614 listener->tcp_syn_rcvd_timeout--; 12615 if (listener->tcp_syn_defense && 12616 listener->tcp_syn_rcvd_timeout <= 12617 (tcps->tcps_conn_req_max_q0 >> 5) && 12618 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12619 listener->tcp_last_rcv_lbolt)) { 12620 /* 12621 * Turn off the defense mode if we 12622 * believe the SYN attack is over. 12623 */ 12624 listener->tcp_syn_defense = B_FALSE; 12625 if (listener->tcp_ip_addr_cache) { 12626 kmem_free((void *)listener->tcp_ip_addr_cache, 12627 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12628 listener->tcp_ip_addr_cache = NULL; 12629 } 12630 } 12631 } 12632 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12633 if (addr_cache != NULL) { 12634 /* 12635 * We have finished a 3-way handshake with this 12636 * remote host. This proves the IP addr is good. 12637 * Cache it! 12638 */ 12639 addr_cache[IP_ADDR_CACHE_HASH( 12640 tcp->tcp_remote)] = tcp->tcp_remote; 12641 } 12642 mutex_exit(&listener->tcp_eager_lock); 12643 if (need_send_conn_ind) 12644 putnext(listener->tcp_rq, mp); 12645 } 12646 12647 mblk_t * 12648 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12649 uint_t *ifindexp, ip6_pkt_t *ippp) 12650 { 12651 ip_pktinfo_t *pinfo; 12652 ip6_t *ip6h; 12653 uchar_t *rptr; 12654 mblk_t *first_mp = mp; 12655 boolean_t mctl_present = B_FALSE; 12656 uint_t ifindex = 0; 12657 ip6_pkt_t ipp; 12658 uint_t ipvers; 12659 uint_t ip_hdr_len; 12660 tcp_stack_t *tcps = tcp->tcp_tcps; 12661 12662 rptr = mp->b_rptr; 12663 ASSERT(OK_32PTR(rptr)); 12664 ASSERT(tcp != NULL); 12665 ipp.ipp_fields = 0; 12666 12667 switch DB_TYPE(mp) { 12668 case M_CTL: 12669 mp = mp->b_cont; 12670 if (mp == NULL) { 12671 freemsg(first_mp); 12672 return (NULL); 12673 } 12674 if (DB_TYPE(mp) != M_DATA) { 12675 freemsg(first_mp); 12676 return (NULL); 12677 } 12678 mctl_present = B_TRUE; 12679 break; 12680 case M_DATA: 12681 break; 12682 default: 12683 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12684 freemsg(mp); 12685 return (NULL); 12686 } 12687 ipvers = IPH_HDR_VERSION(rptr); 12688 if (ipvers == IPV4_VERSION) { 12689 if (tcp == NULL) { 12690 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12691 goto done; 12692 } 12693 12694 ipp.ipp_fields |= IPPF_HOPLIMIT; 12695 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12696 12697 /* 12698 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12699 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12700 */ 12701 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12702 mctl_present) { 12703 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12704 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12705 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12706 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12707 ipp.ipp_fields |= IPPF_IFINDEX; 12708 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12709 ifindex = pinfo->ip_pkt_ifindex; 12710 } 12711 freeb(first_mp); 12712 mctl_present = B_FALSE; 12713 } 12714 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12715 } else { 12716 ip6h = (ip6_t *)rptr; 12717 12718 ASSERT(ipvers == IPV6_VERSION); 12719 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12720 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12721 ipp.ipp_hoplimit = ip6h->ip6_hops; 12722 12723 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12724 uint8_t nexthdrp; 12725 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12726 12727 /* Look for ifindex information */ 12728 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12729 ip6i_t *ip6i = (ip6i_t *)ip6h; 12730 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12731 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12732 freemsg(first_mp); 12733 return (NULL); 12734 } 12735 12736 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12737 ASSERT(ip6i->ip6i_ifindex != 0); 12738 ipp.ipp_fields |= IPPF_IFINDEX; 12739 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12740 ifindex = ip6i->ip6i_ifindex; 12741 } 12742 rptr = (uchar_t *)&ip6i[1]; 12743 mp->b_rptr = rptr; 12744 if (rptr == mp->b_wptr) { 12745 mblk_t *mp1; 12746 mp1 = mp->b_cont; 12747 freeb(mp); 12748 mp = mp1; 12749 rptr = mp->b_rptr; 12750 } 12751 if (MBLKL(mp) < IPV6_HDR_LEN + 12752 sizeof (tcph_t)) { 12753 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12754 freemsg(first_mp); 12755 return (NULL); 12756 } 12757 ip6h = (ip6_t *)rptr; 12758 } 12759 12760 /* 12761 * Find any potentially interesting extension headers 12762 * as well as the length of the IPv6 + extension 12763 * headers. 12764 */ 12765 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12766 /* Verify if this is a TCP packet */ 12767 if (nexthdrp != IPPROTO_TCP) { 12768 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12769 freemsg(first_mp); 12770 return (NULL); 12771 } 12772 } else { 12773 ip_hdr_len = IPV6_HDR_LEN; 12774 } 12775 } 12776 12777 done: 12778 if (ipversp != NULL) 12779 *ipversp = ipvers; 12780 if (ip_hdr_lenp != NULL) 12781 *ip_hdr_lenp = ip_hdr_len; 12782 if (ippp != NULL) 12783 *ippp = ipp; 12784 if (ifindexp != NULL) 12785 *ifindexp = ifindex; 12786 if (mctl_present) { 12787 freeb(first_mp); 12788 } 12789 return (mp); 12790 } 12791 12792 /* 12793 * Handle M_DATA messages from IP. Its called directly from IP via 12794 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12795 * in this path. 12796 * 12797 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12798 * v4 and v6), we are called through tcp_input() and a M_CTL can 12799 * be present for options but tcp_find_pktinfo() deals with it. We 12800 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12801 * 12802 * The first argument is always the connp/tcp to which the mp belongs. 12803 * There are no exceptions to this rule. The caller has already put 12804 * a reference on this connp/tcp and once tcp_rput_data() returns, 12805 * the squeue will do the refrele. 12806 * 12807 * The TH_SYN for the listener directly go to tcp_conn_request via 12808 * squeue. 12809 * 12810 * sqp: NULL = recursive, sqp != NULL means called from squeue 12811 */ 12812 void 12813 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12814 { 12815 int32_t bytes_acked; 12816 int32_t gap; 12817 mblk_t *mp1; 12818 uint_t flags; 12819 uint32_t new_swnd = 0; 12820 uchar_t *iphdr; 12821 uchar_t *rptr; 12822 int32_t rgap; 12823 uint32_t seg_ack; 12824 int seg_len; 12825 uint_t ip_hdr_len; 12826 uint32_t seg_seq; 12827 tcph_t *tcph; 12828 int urp; 12829 tcp_opt_t tcpopt; 12830 uint_t ipvers; 12831 ip6_pkt_t ipp; 12832 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12833 uint32_t cwnd; 12834 uint32_t add; 12835 int npkt; 12836 int mss; 12837 conn_t *connp = (conn_t *)arg; 12838 squeue_t *sqp = (squeue_t *)arg2; 12839 tcp_t *tcp = connp->conn_tcp; 12840 tcp_stack_t *tcps = tcp->tcp_tcps; 12841 12842 /* 12843 * RST from fused tcp loopback peer should trigger an unfuse. 12844 */ 12845 if (tcp->tcp_fused) { 12846 TCP_STAT(tcps, tcp_fusion_aborted); 12847 tcp_unfuse(tcp); 12848 } 12849 12850 iphdr = mp->b_rptr; 12851 rptr = mp->b_rptr; 12852 ASSERT(OK_32PTR(rptr)); 12853 12854 /* 12855 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12856 * processing here. For rest call tcp_find_pktinfo to fill up the 12857 * necessary information. 12858 */ 12859 if (IPCL_IS_TCP4(connp)) { 12860 ipvers = IPV4_VERSION; 12861 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12862 } else { 12863 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12864 NULL, &ipp); 12865 if (mp == NULL) { 12866 TCP_STAT(tcps, tcp_rput_v6_error); 12867 return; 12868 } 12869 iphdr = mp->b_rptr; 12870 rptr = mp->b_rptr; 12871 } 12872 ASSERT(DB_TYPE(mp) == M_DATA); 12873 12874 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12875 seg_seq = ABE32_TO_U32(tcph->th_seq); 12876 seg_ack = ABE32_TO_U32(tcph->th_ack); 12877 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12878 seg_len = (int)(mp->b_wptr - rptr) - 12879 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12880 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12881 do { 12882 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12883 (uintptr_t)INT_MAX); 12884 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12885 } while ((mp1 = mp1->b_cont) != NULL && 12886 mp1->b_datap->db_type == M_DATA); 12887 } 12888 12889 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12890 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12891 seg_len, tcph); 12892 return; 12893 } 12894 12895 if (sqp != NULL) { 12896 /* 12897 * This is the correct place to update tcp_last_recv_time. Note 12898 * that it is also updated for tcp structure that belongs to 12899 * global and listener queues which do not really need updating. 12900 * But that should not cause any harm. And it is updated for 12901 * all kinds of incoming segments, not only for data segments. 12902 */ 12903 tcp->tcp_last_recv_time = lbolt; 12904 } 12905 12906 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12907 12908 BUMP_LOCAL(tcp->tcp_ibsegs); 12909 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12910 12911 if ((flags & TH_URG) && sqp != NULL) { 12912 /* 12913 * TCP can't handle urgent pointers that arrive before 12914 * the connection has been accept()ed since it can't 12915 * buffer OOB data. Discard segment if this happens. 12916 * 12917 * We can't just rely on a non-null tcp_listener to indicate 12918 * that the accept() has completed since unlinking of the 12919 * eager and completion of the accept are not atomic. 12920 * tcp_detached, when it is not set (B_FALSE) indicates 12921 * that the accept() has completed. 12922 * 12923 * Nor can it reassemble urgent pointers, so discard 12924 * if it's not the next segment expected. 12925 * 12926 * Otherwise, collapse chain into one mblk (discard if 12927 * that fails). This makes sure the headers, retransmitted 12928 * data, and new data all are in the same mblk. 12929 */ 12930 ASSERT(mp != NULL); 12931 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12932 freemsg(mp); 12933 return; 12934 } 12935 /* Update pointers into message */ 12936 iphdr = rptr = mp->b_rptr; 12937 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12938 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12939 /* 12940 * Since we can't handle any data with this urgent 12941 * pointer that is out of sequence, we expunge 12942 * the data. This allows us to still register 12943 * the urgent mark and generate the M_PCSIG, 12944 * which we can do. 12945 */ 12946 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12947 seg_len = 0; 12948 } 12949 } 12950 12951 switch (tcp->tcp_state) { 12952 case TCPS_SYN_SENT: 12953 if (flags & TH_ACK) { 12954 /* 12955 * Note that our stack cannot send data before a 12956 * connection is established, therefore the 12957 * following check is valid. Otherwise, it has 12958 * to be changed. 12959 */ 12960 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12961 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12962 freemsg(mp); 12963 if (flags & TH_RST) 12964 return; 12965 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12966 tcp, seg_ack, 0, TH_RST); 12967 return; 12968 } 12969 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12970 } 12971 if (flags & TH_RST) { 12972 freemsg(mp); 12973 if (flags & TH_ACK) 12974 (void) tcp_clean_death(tcp, 12975 ECONNREFUSED, 13); 12976 return; 12977 } 12978 if (!(flags & TH_SYN)) { 12979 freemsg(mp); 12980 return; 12981 } 12982 12983 /* Process all TCP options. */ 12984 tcp_process_options(tcp, tcph); 12985 /* 12986 * The following changes our rwnd to be a multiple of the 12987 * MIN(peer MSS, our MSS) for performance reason. 12988 */ 12989 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12990 tcp->tcp_mss)); 12991 12992 /* Is the other end ECN capable? */ 12993 if (tcp->tcp_ecn_ok) { 12994 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12995 tcp->tcp_ecn_ok = B_FALSE; 12996 } 12997 } 12998 /* 12999 * Clear ECN flags because it may interfere with later 13000 * processing. 13001 */ 13002 flags &= ~(TH_ECE|TH_CWR); 13003 13004 tcp->tcp_irs = seg_seq; 13005 tcp->tcp_rack = seg_seq; 13006 tcp->tcp_rnxt = seg_seq + 1; 13007 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13008 if (!TCP_IS_DETACHED(tcp)) { 13009 /* Allocate room for SACK options if needed. */ 13010 if (tcp->tcp_snd_sack_ok) { 13011 (void) mi_set_sth_wroff(tcp->tcp_rq, 13012 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13013 (tcp->tcp_loopback ? 0 : 13014 tcps->tcps_wroff_xtra)); 13015 } else { 13016 (void) mi_set_sth_wroff(tcp->tcp_rq, 13017 tcp->tcp_hdr_len + 13018 (tcp->tcp_loopback ? 0 : 13019 tcps->tcps_wroff_xtra)); 13020 } 13021 } 13022 if (flags & TH_ACK) { 13023 /* 13024 * If we can't get the confirmation upstream, pretend 13025 * we didn't even see this one. 13026 * 13027 * XXX: how can we pretend we didn't see it if we 13028 * have updated rnxt et. al. 13029 * 13030 * For loopback we defer sending up the T_CONN_CON 13031 * until after some checks below. 13032 */ 13033 mp1 = NULL; 13034 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13035 tcp->tcp_loopback ? &mp1 : NULL)) { 13036 freemsg(mp); 13037 return; 13038 } 13039 /* SYN was acked - making progress */ 13040 if (tcp->tcp_ipversion == IPV6_VERSION) 13041 tcp->tcp_ip_forward_progress = B_TRUE; 13042 13043 /* One for the SYN */ 13044 tcp->tcp_suna = tcp->tcp_iss + 1; 13045 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13046 tcp->tcp_state = TCPS_ESTABLISHED; 13047 13048 /* 13049 * If SYN was retransmitted, need to reset all 13050 * retransmission info. This is because this 13051 * segment will be treated as a dup ACK. 13052 */ 13053 if (tcp->tcp_rexmit) { 13054 tcp->tcp_rexmit = B_FALSE; 13055 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13056 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13057 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13058 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13059 tcp->tcp_ms_we_have_waited = 0; 13060 13061 /* 13062 * Set tcp_cwnd back to 1 MSS, per 13063 * recommendation from 13064 * draft-floyd-incr-init-win-01.txt, 13065 * Increasing TCP's Initial Window. 13066 */ 13067 tcp->tcp_cwnd = tcp->tcp_mss; 13068 } 13069 13070 tcp->tcp_swl1 = seg_seq; 13071 tcp->tcp_swl2 = seg_ack; 13072 13073 new_swnd = BE16_TO_U16(tcph->th_win); 13074 tcp->tcp_swnd = new_swnd; 13075 if (new_swnd > tcp->tcp_max_swnd) 13076 tcp->tcp_max_swnd = new_swnd; 13077 13078 /* 13079 * Always send the three-way handshake ack immediately 13080 * in order to make the connection complete as soon as 13081 * possible on the accepting host. 13082 */ 13083 flags |= TH_ACK_NEEDED; 13084 13085 /* 13086 * Special case for loopback. At this point we have 13087 * received SYN-ACK from the remote endpoint. In 13088 * order to ensure that both endpoints reach the 13089 * fused state prior to any data exchange, the final 13090 * ACK needs to be sent before we indicate T_CONN_CON 13091 * to the module upstream. 13092 */ 13093 if (tcp->tcp_loopback) { 13094 mblk_t *ack_mp; 13095 13096 ASSERT(!tcp->tcp_unfusable); 13097 ASSERT(mp1 != NULL); 13098 /* 13099 * For loopback, we always get a pure SYN-ACK 13100 * and only need to send back the final ACK 13101 * with no data (this is because the other 13102 * tcp is ours and we don't do T/TCP). This 13103 * final ACK triggers the passive side to 13104 * perform fusion in ESTABLISHED state. 13105 */ 13106 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13107 if (tcp->tcp_ack_tid != 0) { 13108 (void) TCP_TIMER_CANCEL(tcp, 13109 tcp->tcp_ack_tid); 13110 tcp->tcp_ack_tid = 0; 13111 } 13112 TCP_RECORD_TRACE(tcp, ack_mp, 13113 TCP_TRACE_SEND_PKT); 13114 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13115 BUMP_LOCAL(tcp->tcp_obsegs); 13116 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13117 13118 /* Send up T_CONN_CON */ 13119 putnext(tcp->tcp_rq, mp1); 13120 13121 freemsg(mp); 13122 return; 13123 } 13124 /* 13125 * Forget fusion; we need to handle more 13126 * complex cases below. Send the deferred 13127 * T_CONN_CON message upstream and proceed 13128 * as usual. Mark this tcp as not capable 13129 * of fusion. 13130 */ 13131 TCP_STAT(tcps, tcp_fusion_unfusable); 13132 tcp->tcp_unfusable = B_TRUE; 13133 putnext(tcp->tcp_rq, mp1); 13134 } 13135 13136 /* 13137 * Check to see if there is data to be sent. If 13138 * yes, set the transmit flag. Then check to see 13139 * if received data processing needs to be done. 13140 * If not, go straight to xmit_check. This short 13141 * cut is OK as we don't support T/TCP. 13142 */ 13143 if (tcp->tcp_unsent) 13144 flags |= TH_XMIT_NEEDED; 13145 13146 if (seg_len == 0 && !(flags & TH_URG)) { 13147 freemsg(mp); 13148 goto xmit_check; 13149 } 13150 13151 flags &= ~TH_SYN; 13152 seg_seq++; 13153 break; 13154 } 13155 tcp->tcp_state = TCPS_SYN_RCVD; 13156 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13157 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13158 if (mp1) { 13159 DB_CPID(mp1) = tcp->tcp_cpid; 13160 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13161 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13162 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13163 } 13164 freemsg(mp); 13165 return; 13166 case TCPS_SYN_RCVD: 13167 if (flags & TH_ACK) { 13168 /* 13169 * In this state, a SYN|ACK packet is either bogus 13170 * because the other side must be ACKing our SYN which 13171 * indicates it has seen the ACK for their SYN and 13172 * shouldn't retransmit it or we're crossing SYNs 13173 * on active open. 13174 */ 13175 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13176 freemsg(mp); 13177 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13178 tcp, seg_ack, 0, TH_RST); 13179 return; 13180 } 13181 /* 13182 * NOTE: RFC 793 pg. 72 says this should be 13183 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13184 * but that would mean we have an ack that ignored 13185 * our SYN. 13186 */ 13187 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13188 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13189 freemsg(mp); 13190 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13191 tcp, seg_ack, 0, TH_RST); 13192 return; 13193 } 13194 } 13195 break; 13196 case TCPS_LISTEN: 13197 /* 13198 * Only a TLI listener can come through this path when a 13199 * acceptor is going back to be a listener and a packet 13200 * for the acceptor hits the classifier. For a socket 13201 * listener, this can never happen because a listener 13202 * can never accept connection on itself and hence a 13203 * socket acceptor can not go back to being a listener. 13204 */ 13205 ASSERT(!TCP_IS_SOCKET(tcp)); 13206 /*FALLTHRU*/ 13207 case TCPS_CLOSED: 13208 case TCPS_BOUND: { 13209 conn_t *new_connp; 13210 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13211 13212 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13213 if (new_connp != NULL) { 13214 tcp_reinput(new_connp, mp, connp->conn_sqp); 13215 return; 13216 } 13217 /* We failed to classify. For now just drop the packet */ 13218 freemsg(mp); 13219 return; 13220 } 13221 case TCPS_IDLE: 13222 /* 13223 * Handle the case where the tcp_clean_death() has happened 13224 * on a connection (application hasn't closed yet) but a packet 13225 * was already queued on squeue before tcp_clean_death() 13226 * was processed. Calling tcp_clean_death() twice on same 13227 * connection can result in weird behaviour. 13228 */ 13229 freemsg(mp); 13230 return; 13231 default: 13232 break; 13233 } 13234 13235 /* 13236 * Already on the correct queue/perimeter. 13237 * If this is a detached connection and not an eager 13238 * connection hanging off a listener then new data 13239 * (past the FIN) will cause a reset. 13240 * We do a special check here where it 13241 * is out of the main line, rather than check 13242 * if we are detached every time we see new 13243 * data down below. 13244 */ 13245 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13246 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13247 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13248 TCP_RECORD_TRACE(tcp, 13249 mp, TCP_TRACE_RECV_PKT); 13250 13251 freemsg(mp); 13252 /* 13253 * This could be an SSL closure alert. We're detached so just 13254 * acknowledge it this last time. 13255 */ 13256 if (tcp->tcp_kssl_ctx != NULL) { 13257 kssl_release_ctx(tcp->tcp_kssl_ctx); 13258 tcp->tcp_kssl_ctx = NULL; 13259 13260 tcp->tcp_rnxt += seg_len; 13261 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13262 flags |= TH_ACK_NEEDED; 13263 goto ack_check; 13264 } 13265 13266 tcp_xmit_ctl("new data when detached", tcp, 13267 tcp->tcp_snxt, 0, TH_RST); 13268 (void) tcp_clean_death(tcp, EPROTO, 12); 13269 return; 13270 } 13271 13272 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13273 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13274 new_swnd = BE16_TO_U16(tcph->th_win) << 13275 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13276 13277 if (tcp->tcp_snd_ts_ok) { 13278 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13279 /* 13280 * This segment is not acceptable. 13281 * Drop it and send back an ACK. 13282 */ 13283 freemsg(mp); 13284 flags |= TH_ACK_NEEDED; 13285 goto ack_check; 13286 } 13287 } else if (tcp->tcp_snd_sack_ok) { 13288 ASSERT(tcp->tcp_sack_info != NULL); 13289 tcpopt.tcp = tcp; 13290 /* 13291 * SACK info in already updated in tcp_parse_options. Ignore 13292 * all other TCP options... 13293 */ 13294 (void) tcp_parse_options(tcph, &tcpopt); 13295 } 13296 try_again:; 13297 mss = tcp->tcp_mss; 13298 gap = seg_seq - tcp->tcp_rnxt; 13299 rgap = tcp->tcp_rwnd - (gap + seg_len); 13300 /* 13301 * gap is the amount of sequence space between what we expect to see 13302 * and what we got for seg_seq. A positive value for gap means 13303 * something got lost. A negative value means we got some old stuff. 13304 */ 13305 if (gap < 0) { 13306 /* Old stuff present. Is the SYN in there? */ 13307 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13308 (seg_len != 0)) { 13309 flags &= ~TH_SYN; 13310 seg_seq++; 13311 urp--; 13312 /* Recompute the gaps after noting the SYN. */ 13313 goto try_again; 13314 } 13315 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13316 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13317 (seg_len > -gap ? -gap : seg_len)); 13318 /* Remove the old stuff from seg_len. */ 13319 seg_len += gap; 13320 /* 13321 * Anything left? 13322 * Make sure to check for unack'd FIN when rest of data 13323 * has been previously ack'd. 13324 */ 13325 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13326 /* 13327 * Resets are only valid if they lie within our offered 13328 * window. If the RST bit is set, we just ignore this 13329 * segment. 13330 */ 13331 if (flags & TH_RST) { 13332 freemsg(mp); 13333 return; 13334 } 13335 13336 /* 13337 * The arriving of dup data packets indicate that we 13338 * may have postponed an ack for too long, or the other 13339 * side's RTT estimate is out of shape. Start acking 13340 * more often. 13341 */ 13342 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13343 tcp->tcp_rack_cnt >= 1 && 13344 tcp->tcp_rack_abs_max > 2) { 13345 tcp->tcp_rack_abs_max--; 13346 } 13347 tcp->tcp_rack_cur_max = 1; 13348 13349 /* 13350 * This segment is "unacceptable". None of its 13351 * sequence space lies within our advertized window. 13352 * 13353 * Adjust seg_len to the original value for tracing. 13354 */ 13355 seg_len -= gap; 13356 if (tcp->tcp_debug) { 13357 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13358 "tcp_rput: unacceptable, gap %d, rgap %d, " 13359 "flags 0x%x, seg_seq %u, seg_ack %u, " 13360 "seg_len %d, rnxt %u, snxt %u, %s", 13361 gap, rgap, flags, seg_seq, seg_ack, 13362 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13363 tcp_display(tcp, NULL, 13364 DISP_ADDR_AND_PORT)); 13365 } 13366 13367 /* 13368 * Arrange to send an ACK in response to the 13369 * unacceptable segment per RFC 793 page 69. There 13370 * is only one small difference between ours and the 13371 * acceptability test in the RFC - we accept ACK-only 13372 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13373 * will be generated. 13374 * 13375 * Note that we have to ACK an ACK-only packet at least 13376 * for stacks that send 0-length keep-alives with 13377 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13378 * section 4.2.3.6. As long as we don't ever generate 13379 * an unacceptable packet in response to an incoming 13380 * packet that is unacceptable, it should not cause 13381 * "ACK wars". 13382 */ 13383 flags |= TH_ACK_NEEDED; 13384 13385 /* 13386 * Continue processing this segment in order to use the 13387 * ACK information it contains, but skip all other 13388 * sequence-number processing. Processing the ACK 13389 * information is necessary in order to 13390 * re-synchronize connections that may have lost 13391 * synchronization. 13392 * 13393 * We clear seg_len and flag fields related to 13394 * sequence number processing as they are not 13395 * to be trusted for an unacceptable segment. 13396 */ 13397 seg_len = 0; 13398 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13399 goto process_ack; 13400 } 13401 13402 /* Fix seg_seq, and chew the gap off the front. */ 13403 seg_seq = tcp->tcp_rnxt; 13404 urp += gap; 13405 do { 13406 mblk_t *mp2; 13407 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13408 (uintptr_t)UINT_MAX); 13409 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13410 if (gap > 0) { 13411 mp->b_rptr = mp->b_wptr - gap; 13412 break; 13413 } 13414 mp2 = mp; 13415 mp = mp->b_cont; 13416 freeb(mp2); 13417 } while (gap < 0); 13418 /* 13419 * If the urgent data has already been acknowledged, we 13420 * should ignore TH_URG below 13421 */ 13422 if (urp < 0) 13423 flags &= ~TH_URG; 13424 } 13425 /* 13426 * rgap is the amount of stuff received out of window. A negative 13427 * value is the amount out of window. 13428 */ 13429 if (rgap < 0) { 13430 mblk_t *mp2; 13431 13432 if (tcp->tcp_rwnd == 0) { 13433 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13434 } else { 13435 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13436 UPDATE_MIB(&tcps->tcps_mib, 13437 tcpInDataPastWinBytes, -rgap); 13438 } 13439 13440 /* 13441 * seg_len does not include the FIN, so if more than 13442 * just the FIN is out of window, we act like we don't 13443 * see it. (If just the FIN is out of window, rgap 13444 * will be zero and we will go ahead and acknowledge 13445 * the FIN.) 13446 */ 13447 flags &= ~TH_FIN; 13448 13449 /* Fix seg_len and make sure there is something left. */ 13450 seg_len += rgap; 13451 if (seg_len <= 0) { 13452 /* 13453 * Resets are only valid if they lie within our offered 13454 * window. If the RST bit is set, we just ignore this 13455 * segment. 13456 */ 13457 if (flags & TH_RST) { 13458 freemsg(mp); 13459 return; 13460 } 13461 13462 /* Per RFC 793, we need to send back an ACK. */ 13463 flags |= TH_ACK_NEEDED; 13464 13465 /* 13466 * Send SIGURG as soon as possible i.e. even 13467 * if the TH_URG was delivered in a window probe 13468 * packet (which will be unacceptable). 13469 * 13470 * We generate a signal if none has been generated 13471 * for this connection or if this is a new urgent 13472 * byte. Also send a zero-length "unmarked" message 13473 * to inform SIOCATMARK that this is not the mark. 13474 * 13475 * tcp_urp_last_valid is cleared when the T_exdata_ind 13476 * is sent up. This plus the check for old data 13477 * (gap >= 0) handles the wraparound of the sequence 13478 * number space without having to always track the 13479 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13480 * this max in its rcv_up variable). 13481 * 13482 * This prevents duplicate SIGURGS due to a "late" 13483 * zero-window probe when the T_EXDATA_IND has already 13484 * been sent up. 13485 */ 13486 if ((flags & TH_URG) && 13487 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13488 tcp->tcp_urp_last))) { 13489 mp1 = allocb(0, BPRI_MED); 13490 if (mp1 == NULL) { 13491 freemsg(mp); 13492 return; 13493 } 13494 if (!TCP_IS_DETACHED(tcp) && 13495 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13496 SIGURG)) { 13497 /* Try again on the rexmit. */ 13498 freemsg(mp1); 13499 freemsg(mp); 13500 return; 13501 } 13502 /* 13503 * If the next byte would be the mark 13504 * then mark with MARKNEXT else mark 13505 * with NOTMARKNEXT. 13506 */ 13507 if (gap == 0 && urp == 0) 13508 mp1->b_flag |= MSGMARKNEXT; 13509 else 13510 mp1->b_flag |= MSGNOTMARKNEXT; 13511 freemsg(tcp->tcp_urp_mark_mp); 13512 tcp->tcp_urp_mark_mp = mp1; 13513 flags |= TH_SEND_URP_MARK; 13514 tcp->tcp_urp_last_valid = B_TRUE; 13515 tcp->tcp_urp_last = urp + seg_seq; 13516 } 13517 /* 13518 * If this is a zero window probe, continue to 13519 * process the ACK part. But we need to set seg_len 13520 * to 0 to avoid data processing. Otherwise just 13521 * drop the segment and send back an ACK. 13522 */ 13523 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13524 flags &= ~(TH_SYN | TH_URG); 13525 seg_len = 0; 13526 goto process_ack; 13527 } else { 13528 freemsg(mp); 13529 goto ack_check; 13530 } 13531 } 13532 /* Pitch out of window stuff off the end. */ 13533 rgap = seg_len; 13534 mp2 = mp; 13535 do { 13536 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13537 (uintptr_t)INT_MAX); 13538 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13539 if (rgap < 0) { 13540 mp2->b_wptr += rgap; 13541 if ((mp1 = mp2->b_cont) != NULL) { 13542 mp2->b_cont = NULL; 13543 freemsg(mp1); 13544 } 13545 break; 13546 } 13547 } while ((mp2 = mp2->b_cont) != NULL); 13548 } 13549 ok:; 13550 /* 13551 * TCP should check ECN info for segments inside the window only. 13552 * Therefore the check should be done here. 13553 */ 13554 if (tcp->tcp_ecn_ok) { 13555 if (flags & TH_CWR) { 13556 tcp->tcp_ecn_echo_on = B_FALSE; 13557 } 13558 /* 13559 * Note that both ECN_CE and CWR can be set in the 13560 * same segment. In this case, we once again turn 13561 * on ECN_ECHO. 13562 */ 13563 if (tcp->tcp_ipversion == IPV4_VERSION) { 13564 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13565 13566 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13567 tcp->tcp_ecn_echo_on = B_TRUE; 13568 } 13569 } else { 13570 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13571 13572 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13573 htonl(IPH_ECN_CE << 20)) { 13574 tcp->tcp_ecn_echo_on = B_TRUE; 13575 } 13576 } 13577 } 13578 13579 /* 13580 * Check whether we can update tcp_ts_recent. This test is 13581 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13582 * Extensions for High Performance: An Update", Internet Draft. 13583 */ 13584 if (tcp->tcp_snd_ts_ok && 13585 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13586 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13587 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13588 tcp->tcp_last_rcv_lbolt = lbolt64; 13589 } 13590 13591 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13592 /* 13593 * FIN in an out of order segment. We record this in 13594 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13595 * Clear the FIN so that any check on FIN flag will fail. 13596 * Remember that FIN also counts in the sequence number 13597 * space. So we need to ack out of order FIN only segments. 13598 */ 13599 if (flags & TH_FIN) { 13600 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13601 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13602 flags &= ~TH_FIN; 13603 flags |= TH_ACK_NEEDED; 13604 } 13605 if (seg_len > 0) { 13606 /* Fill in the SACK blk list. */ 13607 if (tcp->tcp_snd_sack_ok) { 13608 ASSERT(tcp->tcp_sack_info != NULL); 13609 tcp_sack_insert(tcp->tcp_sack_list, 13610 seg_seq, seg_seq + seg_len, 13611 &(tcp->tcp_num_sack_blk)); 13612 } 13613 13614 /* 13615 * Attempt reassembly and see if we have something 13616 * ready to go. 13617 */ 13618 mp = tcp_reass(tcp, mp, seg_seq); 13619 /* Always ack out of order packets */ 13620 flags |= TH_ACK_NEEDED | TH_PUSH; 13621 if (mp) { 13622 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13623 (uintptr_t)INT_MAX); 13624 seg_len = mp->b_cont ? msgdsize(mp) : 13625 (int)(mp->b_wptr - mp->b_rptr); 13626 seg_seq = tcp->tcp_rnxt; 13627 /* 13628 * A gap is filled and the seq num and len 13629 * of the gap match that of a previously 13630 * received FIN, put the FIN flag back in. 13631 */ 13632 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13633 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13634 flags |= TH_FIN; 13635 tcp->tcp_valid_bits &= 13636 ~TCP_OFO_FIN_VALID; 13637 } 13638 } else { 13639 /* 13640 * Keep going even with NULL mp. 13641 * There may be a useful ACK or something else 13642 * we don't want to miss. 13643 * 13644 * But TCP should not perform fast retransmit 13645 * because of the ack number. TCP uses 13646 * seg_len == 0 to determine if it is a pure 13647 * ACK. And this is not a pure ACK. 13648 */ 13649 seg_len = 0; 13650 ofo_seg = B_TRUE; 13651 } 13652 } 13653 } else if (seg_len > 0) { 13654 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13655 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13656 /* 13657 * If an out of order FIN was received before, and the seq 13658 * num and len of the new segment match that of the FIN, 13659 * put the FIN flag back in. 13660 */ 13661 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13662 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13663 flags |= TH_FIN; 13664 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13665 } 13666 } 13667 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13668 if (flags & TH_RST) { 13669 freemsg(mp); 13670 switch (tcp->tcp_state) { 13671 case TCPS_SYN_RCVD: 13672 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13673 break; 13674 case TCPS_ESTABLISHED: 13675 case TCPS_FIN_WAIT_1: 13676 case TCPS_FIN_WAIT_2: 13677 case TCPS_CLOSE_WAIT: 13678 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13679 break; 13680 case TCPS_CLOSING: 13681 case TCPS_LAST_ACK: 13682 (void) tcp_clean_death(tcp, 0, 16); 13683 break; 13684 default: 13685 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13686 (void) tcp_clean_death(tcp, ENXIO, 17); 13687 break; 13688 } 13689 return; 13690 } 13691 if (flags & TH_SYN) { 13692 /* 13693 * See RFC 793, Page 71 13694 * 13695 * The seq number must be in the window as it should 13696 * be "fixed" above. If it is outside window, it should 13697 * be already rejected. Note that we allow seg_seq to be 13698 * rnxt + rwnd because we want to accept 0 window probe. 13699 */ 13700 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13701 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13702 freemsg(mp); 13703 /* 13704 * If the ACK flag is not set, just use our snxt as the 13705 * seq number of the RST segment. 13706 */ 13707 if (!(flags & TH_ACK)) { 13708 seg_ack = tcp->tcp_snxt; 13709 } 13710 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13711 TH_RST|TH_ACK); 13712 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13713 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13714 return; 13715 } 13716 /* 13717 * urp could be -1 when the urp field in the packet is 0 13718 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13719 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13720 */ 13721 if (flags & TH_URG && urp >= 0) { 13722 if (!tcp->tcp_urp_last_valid || 13723 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13724 /* 13725 * If we haven't generated the signal yet for this 13726 * urgent pointer value, do it now. Also, send up a 13727 * zero-length M_DATA indicating whether or not this is 13728 * the mark. The latter is not needed when a 13729 * T_EXDATA_IND is sent up. However, if there are 13730 * allocation failures this code relies on the sender 13731 * retransmitting and the socket code for determining 13732 * the mark should not block waiting for the peer to 13733 * transmit. Thus, for simplicity we always send up the 13734 * mark indication. 13735 */ 13736 mp1 = allocb(0, BPRI_MED); 13737 if (mp1 == NULL) { 13738 freemsg(mp); 13739 return; 13740 } 13741 if (!TCP_IS_DETACHED(tcp) && 13742 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13743 /* Try again on the rexmit. */ 13744 freemsg(mp1); 13745 freemsg(mp); 13746 return; 13747 } 13748 /* 13749 * Mark with NOTMARKNEXT for now. 13750 * The code below will change this to MARKNEXT 13751 * if we are at the mark. 13752 * 13753 * If there are allocation failures (e.g. in dupmsg 13754 * below) the next time tcp_rput_data sees the urgent 13755 * segment it will send up the MSG*MARKNEXT message. 13756 */ 13757 mp1->b_flag |= MSGNOTMARKNEXT; 13758 freemsg(tcp->tcp_urp_mark_mp); 13759 tcp->tcp_urp_mark_mp = mp1; 13760 flags |= TH_SEND_URP_MARK; 13761 #ifdef DEBUG 13762 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13763 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13764 "last %x, %s", 13765 seg_seq, urp, tcp->tcp_urp_last, 13766 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13767 #endif /* DEBUG */ 13768 tcp->tcp_urp_last_valid = B_TRUE; 13769 tcp->tcp_urp_last = urp + seg_seq; 13770 } else if (tcp->tcp_urp_mark_mp != NULL) { 13771 /* 13772 * An allocation failure prevented the previous 13773 * tcp_rput_data from sending up the allocated 13774 * MSG*MARKNEXT message - send it up this time 13775 * around. 13776 */ 13777 flags |= TH_SEND_URP_MARK; 13778 } 13779 13780 /* 13781 * If the urgent byte is in this segment, make sure that it is 13782 * all by itself. This makes it much easier to deal with the 13783 * possibility of an allocation failure on the T_exdata_ind. 13784 * Note that seg_len is the number of bytes in the segment, and 13785 * urp is the offset into the segment of the urgent byte. 13786 * urp < seg_len means that the urgent byte is in this segment. 13787 */ 13788 if (urp < seg_len) { 13789 if (seg_len != 1) { 13790 uint32_t tmp_rnxt; 13791 /* 13792 * Break it up and feed it back in. 13793 * Re-attach the IP header. 13794 */ 13795 mp->b_rptr = iphdr; 13796 if (urp > 0) { 13797 /* 13798 * There is stuff before the urgent 13799 * byte. 13800 */ 13801 mp1 = dupmsg(mp); 13802 if (!mp1) { 13803 /* 13804 * Trim from urgent byte on. 13805 * The rest will come back. 13806 */ 13807 (void) adjmsg(mp, 13808 urp - seg_len); 13809 tcp_rput_data(connp, 13810 mp, NULL); 13811 return; 13812 } 13813 (void) adjmsg(mp1, urp - seg_len); 13814 /* Feed this piece back in. */ 13815 tmp_rnxt = tcp->tcp_rnxt; 13816 tcp_rput_data(connp, mp1, NULL); 13817 /* 13818 * If the data passed back in was not 13819 * processed (ie: bad ACK) sending 13820 * the remainder back in will cause a 13821 * loop. In this case, drop the 13822 * packet and let the sender try 13823 * sending a good packet. 13824 */ 13825 if (tmp_rnxt == tcp->tcp_rnxt) { 13826 freemsg(mp); 13827 return; 13828 } 13829 } 13830 if (urp != seg_len - 1) { 13831 uint32_t tmp_rnxt; 13832 /* 13833 * There is stuff after the urgent 13834 * byte. 13835 */ 13836 mp1 = dupmsg(mp); 13837 if (!mp1) { 13838 /* 13839 * Trim everything beyond the 13840 * urgent byte. The rest will 13841 * come back. 13842 */ 13843 (void) adjmsg(mp, 13844 urp + 1 - seg_len); 13845 tcp_rput_data(connp, 13846 mp, NULL); 13847 return; 13848 } 13849 (void) adjmsg(mp1, urp + 1 - seg_len); 13850 tmp_rnxt = tcp->tcp_rnxt; 13851 tcp_rput_data(connp, mp1, NULL); 13852 /* 13853 * If the data passed back in was not 13854 * processed (ie: bad ACK) sending 13855 * the remainder back in will cause a 13856 * loop. In this case, drop the 13857 * packet and let the sender try 13858 * sending a good packet. 13859 */ 13860 if (tmp_rnxt == tcp->tcp_rnxt) { 13861 freemsg(mp); 13862 return; 13863 } 13864 } 13865 tcp_rput_data(connp, mp, NULL); 13866 return; 13867 } 13868 /* 13869 * This segment contains only the urgent byte. We 13870 * have to allocate the T_exdata_ind, if we can. 13871 */ 13872 if (!tcp->tcp_urp_mp) { 13873 struct T_exdata_ind *tei; 13874 mp1 = allocb(sizeof (struct T_exdata_ind), 13875 BPRI_MED); 13876 if (!mp1) { 13877 /* 13878 * Sigh... It'll be back. 13879 * Generate any MSG*MARK message now. 13880 */ 13881 freemsg(mp); 13882 seg_len = 0; 13883 if (flags & TH_SEND_URP_MARK) { 13884 13885 13886 ASSERT(tcp->tcp_urp_mark_mp); 13887 tcp->tcp_urp_mark_mp->b_flag &= 13888 ~MSGNOTMARKNEXT; 13889 tcp->tcp_urp_mark_mp->b_flag |= 13890 MSGMARKNEXT; 13891 } 13892 goto ack_check; 13893 } 13894 mp1->b_datap->db_type = M_PROTO; 13895 tei = (struct T_exdata_ind *)mp1->b_rptr; 13896 tei->PRIM_type = T_EXDATA_IND; 13897 tei->MORE_flag = 0; 13898 mp1->b_wptr = (uchar_t *)&tei[1]; 13899 tcp->tcp_urp_mp = mp1; 13900 #ifdef DEBUG 13901 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13902 "tcp_rput: allocated exdata_ind %s", 13903 tcp_display(tcp, NULL, 13904 DISP_PORT_ONLY)); 13905 #endif /* DEBUG */ 13906 /* 13907 * There is no need to send a separate MSG*MARK 13908 * message since the T_EXDATA_IND will be sent 13909 * now. 13910 */ 13911 flags &= ~TH_SEND_URP_MARK; 13912 freemsg(tcp->tcp_urp_mark_mp); 13913 tcp->tcp_urp_mark_mp = NULL; 13914 } 13915 /* 13916 * Now we are all set. On the next putnext upstream, 13917 * tcp_urp_mp will be non-NULL and will get prepended 13918 * to what has to be this piece containing the urgent 13919 * byte. If for any reason we abort this segment below, 13920 * if it comes back, we will have this ready, or it 13921 * will get blown off in close. 13922 */ 13923 } else if (urp == seg_len) { 13924 /* 13925 * The urgent byte is the next byte after this sequence 13926 * number. If there is data it is marked with 13927 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13928 * since it is not needed. Otherwise, if the code 13929 * above just allocated a zero-length tcp_urp_mark_mp 13930 * message, that message is tagged with MSGMARKNEXT. 13931 * Sending up these MSGMARKNEXT messages makes 13932 * SIOCATMARK work correctly even though 13933 * the T_EXDATA_IND will not be sent up until the 13934 * urgent byte arrives. 13935 */ 13936 if (seg_len != 0) { 13937 flags |= TH_MARKNEXT_NEEDED; 13938 freemsg(tcp->tcp_urp_mark_mp); 13939 tcp->tcp_urp_mark_mp = NULL; 13940 flags &= ~TH_SEND_URP_MARK; 13941 } else if (tcp->tcp_urp_mark_mp != NULL) { 13942 flags |= TH_SEND_URP_MARK; 13943 tcp->tcp_urp_mark_mp->b_flag &= 13944 ~MSGNOTMARKNEXT; 13945 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13946 } 13947 #ifdef DEBUG 13948 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13949 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13950 seg_len, flags, 13951 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13952 #endif /* DEBUG */ 13953 } else { 13954 /* Data left until we hit mark */ 13955 #ifdef DEBUG 13956 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13957 "tcp_rput: URP %d bytes left, %s", 13958 urp - seg_len, tcp_display(tcp, NULL, 13959 DISP_PORT_ONLY)); 13960 #endif /* DEBUG */ 13961 } 13962 } 13963 13964 process_ack: 13965 if (!(flags & TH_ACK)) { 13966 freemsg(mp); 13967 goto xmit_check; 13968 } 13969 } 13970 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13971 13972 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13973 tcp->tcp_ip_forward_progress = B_TRUE; 13974 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13975 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13976 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13977 /* 3-way handshake complete - pass up the T_CONN_IND */ 13978 tcp_t *listener = tcp->tcp_listener; 13979 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13980 13981 tcp->tcp_tconnind_started = B_TRUE; 13982 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13983 /* 13984 * We are here means eager is fine but it can 13985 * get a TH_RST at any point between now and till 13986 * accept completes and disappear. We need to 13987 * ensure that reference to eager is valid after 13988 * we get out of eager's perimeter. So we do 13989 * an extra refhold. 13990 */ 13991 CONN_INC_REF(connp); 13992 13993 /* 13994 * The listener also exists because of the refhold 13995 * done in tcp_conn_request. Its possible that it 13996 * might have closed. We will check that once we 13997 * get inside listeners context. 13998 */ 13999 CONN_INC_REF(listener->tcp_connp); 14000 if (listener->tcp_connp->conn_sqp == 14001 connp->conn_sqp) { 14002 tcp_send_conn_ind(listener->tcp_connp, mp, 14003 listener->tcp_connp->conn_sqp); 14004 CONN_DEC_REF(listener->tcp_connp); 14005 } else if (!tcp->tcp_loopback) { 14006 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14007 tcp_send_conn_ind, 14008 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14009 } else { 14010 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14011 tcp_send_conn_ind, listener->tcp_connp, 14012 SQTAG_TCP_CONN_IND); 14013 } 14014 } 14015 14016 if (tcp->tcp_active_open) { 14017 /* 14018 * We are seeing the final ack in the three way 14019 * hand shake of a active open'ed connection 14020 * so we must send up a T_CONN_CON 14021 */ 14022 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14023 freemsg(mp); 14024 return; 14025 } 14026 /* 14027 * Don't fuse the loopback endpoints for 14028 * simultaneous active opens. 14029 */ 14030 if (tcp->tcp_loopback) { 14031 TCP_STAT(tcps, tcp_fusion_unfusable); 14032 tcp->tcp_unfusable = B_TRUE; 14033 } 14034 } 14035 14036 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14037 bytes_acked--; 14038 /* SYN was acked - making progress */ 14039 if (tcp->tcp_ipversion == IPV6_VERSION) 14040 tcp->tcp_ip_forward_progress = B_TRUE; 14041 14042 /* 14043 * If SYN was retransmitted, need to reset all 14044 * retransmission info as this segment will be 14045 * treated as a dup ACK. 14046 */ 14047 if (tcp->tcp_rexmit) { 14048 tcp->tcp_rexmit = B_FALSE; 14049 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14050 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14051 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14052 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14053 tcp->tcp_ms_we_have_waited = 0; 14054 tcp->tcp_cwnd = mss; 14055 } 14056 14057 /* 14058 * We set the send window to zero here. 14059 * This is needed if there is data to be 14060 * processed already on the queue. 14061 * Later (at swnd_update label), the 14062 * "new_swnd > tcp_swnd" condition is satisfied 14063 * the XMIT_NEEDED flag is set in the current 14064 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14065 * called if there is already data on queue in 14066 * this state. 14067 */ 14068 tcp->tcp_swnd = 0; 14069 14070 if (new_swnd > tcp->tcp_max_swnd) 14071 tcp->tcp_max_swnd = new_swnd; 14072 tcp->tcp_swl1 = seg_seq; 14073 tcp->tcp_swl2 = seg_ack; 14074 tcp->tcp_state = TCPS_ESTABLISHED; 14075 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14076 14077 /* Fuse when both sides are in ESTABLISHED state */ 14078 if (tcp->tcp_loopback && do_tcp_fusion) 14079 tcp_fuse(tcp, iphdr, tcph); 14080 14081 } 14082 /* This code follows 4.4BSD-Lite2 mostly. */ 14083 if (bytes_acked < 0) 14084 goto est; 14085 14086 /* 14087 * If TCP is ECN capable and the congestion experience bit is 14088 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14089 * done once per window (or more loosely, per RTT). 14090 */ 14091 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14092 tcp->tcp_cwr = B_FALSE; 14093 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14094 if (!tcp->tcp_cwr) { 14095 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14096 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14097 tcp->tcp_cwnd = npkt * mss; 14098 /* 14099 * If the cwnd is 0, use the timer to clock out 14100 * new segments. This is required by the ECN spec. 14101 */ 14102 if (npkt == 0) { 14103 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14104 /* 14105 * This makes sure that when the ACK comes 14106 * back, we will increase tcp_cwnd by 1 MSS. 14107 */ 14108 tcp->tcp_cwnd_cnt = 0; 14109 } 14110 tcp->tcp_cwr = B_TRUE; 14111 /* 14112 * This marks the end of the current window of in 14113 * flight data. That is why we don't use 14114 * tcp_suna + tcp_swnd. Only data in flight can 14115 * provide ECN info. 14116 */ 14117 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14118 tcp->tcp_ecn_cwr_sent = B_FALSE; 14119 } 14120 } 14121 14122 mp1 = tcp->tcp_xmit_head; 14123 if (bytes_acked == 0) { 14124 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14125 int dupack_cnt; 14126 14127 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14128 /* 14129 * Fast retransmit. When we have seen exactly three 14130 * identical ACKs while we have unacked data 14131 * outstanding we take it as a hint that our peer 14132 * dropped something. 14133 * 14134 * If TCP is retransmitting, don't do fast retransmit. 14135 */ 14136 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14137 ! tcp->tcp_rexmit) { 14138 /* Do Limited Transmit */ 14139 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14140 tcps->tcps_dupack_fast_retransmit) { 14141 /* 14142 * RFC 3042 14143 * 14144 * What we need to do is temporarily 14145 * increase tcp_cwnd so that new 14146 * data can be sent if it is allowed 14147 * by the receive window (tcp_rwnd). 14148 * tcp_wput_data() will take care of 14149 * the rest. 14150 * 14151 * If the connection is SACK capable, 14152 * only do limited xmit when there 14153 * is SACK info. 14154 * 14155 * Note how tcp_cwnd is incremented. 14156 * The first dup ACK will increase 14157 * it by 1 MSS. The second dup ACK 14158 * will increase it by 2 MSS. This 14159 * means that only 1 new segment will 14160 * be sent for each dup ACK. 14161 */ 14162 if (tcp->tcp_unsent > 0 && 14163 (!tcp->tcp_snd_sack_ok || 14164 (tcp->tcp_snd_sack_ok && 14165 tcp->tcp_notsack_list != NULL))) { 14166 tcp->tcp_cwnd += mss << 14167 (tcp->tcp_dupack_cnt - 1); 14168 flags |= TH_LIMIT_XMIT; 14169 } 14170 } else if (dupack_cnt == 14171 tcps->tcps_dupack_fast_retransmit) { 14172 14173 /* 14174 * If we have reduced tcp_ssthresh 14175 * because of ECN, do not reduce it again 14176 * unless it is already one window of data 14177 * away. After one window of data, tcp_cwr 14178 * should then be cleared. Note that 14179 * for non ECN capable connection, tcp_cwr 14180 * should always be false. 14181 * 14182 * Adjust cwnd since the duplicate 14183 * ack indicates that a packet was 14184 * dropped (due to congestion.) 14185 */ 14186 if (!tcp->tcp_cwr) { 14187 npkt = ((tcp->tcp_snxt - 14188 tcp->tcp_suna) >> 1) / mss; 14189 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14190 mss; 14191 tcp->tcp_cwnd = (npkt + 14192 tcp->tcp_dupack_cnt) * mss; 14193 } 14194 if (tcp->tcp_ecn_ok) { 14195 tcp->tcp_cwr = B_TRUE; 14196 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14197 tcp->tcp_ecn_cwr_sent = B_FALSE; 14198 } 14199 14200 /* 14201 * We do Hoe's algorithm. Refer to her 14202 * paper "Improving the Start-up Behavior 14203 * of a Congestion Control Scheme for TCP," 14204 * appeared in SIGCOMM'96. 14205 * 14206 * Save highest seq no we have sent so far. 14207 * Be careful about the invisible FIN byte. 14208 */ 14209 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14210 (tcp->tcp_unsent == 0)) { 14211 tcp->tcp_rexmit_max = tcp->tcp_fss; 14212 } else { 14213 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14214 } 14215 14216 /* 14217 * Do not allow bursty traffic during. 14218 * fast recovery. Refer to Fall and Floyd's 14219 * paper "Simulation-based Comparisons of 14220 * Tahoe, Reno and SACK TCP" (in CCR?) 14221 * This is a best current practise. 14222 */ 14223 tcp->tcp_snd_burst = TCP_CWND_SS; 14224 14225 /* 14226 * For SACK: 14227 * Calculate tcp_pipe, which is the 14228 * estimated number of bytes in 14229 * network. 14230 * 14231 * tcp_fack is the highest sack'ed seq num 14232 * TCP has received. 14233 * 14234 * tcp_pipe is explained in the above quoted 14235 * Fall and Floyd's paper. tcp_fack is 14236 * explained in Mathis and Mahdavi's 14237 * "Forward Acknowledgment: Refining TCP 14238 * Congestion Control" in SIGCOMM '96. 14239 */ 14240 if (tcp->tcp_snd_sack_ok) { 14241 ASSERT(tcp->tcp_sack_info != NULL); 14242 if (tcp->tcp_notsack_list != NULL) { 14243 tcp->tcp_pipe = tcp->tcp_snxt - 14244 tcp->tcp_fack; 14245 tcp->tcp_sack_snxt = seg_ack; 14246 flags |= TH_NEED_SACK_REXMIT; 14247 } else { 14248 /* 14249 * Always initialize tcp_pipe 14250 * even though we don't have 14251 * any SACK info. If later 14252 * we get SACK info and 14253 * tcp_pipe is not initialized, 14254 * funny things will happen. 14255 */ 14256 tcp->tcp_pipe = 14257 tcp->tcp_cwnd_ssthresh; 14258 } 14259 } else { 14260 flags |= TH_REXMIT_NEEDED; 14261 } /* tcp_snd_sack_ok */ 14262 14263 } else { 14264 /* 14265 * Here we perform congestion 14266 * avoidance, but NOT slow start. 14267 * This is known as the Fast 14268 * Recovery Algorithm. 14269 */ 14270 if (tcp->tcp_snd_sack_ok && 14271 tcp->tcp_notsack_list != NULL) { 14272 flags |= TH_NEED_SACK_REXMIT; 14273 tcp->tcp_pipe -= mss; 14274 if (tcp->tcp_pipe < 0) 14275 tcp->tcp_pipe = 0; 14276 } else { 14277 /* 14278 * We know that one more packet has 14279 * left the pipe thus we can update 14280 * cwnd. 14281 */ 14282 cwnd = tcp->tcp_cwnd + mss; 14283 if (cwnd > tcp->tcp_cwnd_max) 14284 cwnd = tcp->tcp_cwnd_max; 14285 tcp->tcp_cwnd = cwnd; 14286 if (tcp->tcp_unsent > 0) 14287 flags |= TH_XMIT_NEEDED; 14288 } 14289 } 14290 } 14291 } else if (tcp->tcp_zero_win_probe) { 14292 /* 14293 * If the window has opened, need to arrange 14294 * to send additional data. 14295 */ 14296 if (new_swnd != 0) { 14297 /* tcp_suna != tcp_snxt */ 14298 /* Packet contains a window update */ 14299 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14300 tcp->tcp_zero_win_probe = 0; 14301 tcp->tcp_timer_backoff = 0; 14302 tcp->tcp_ms_we_have_waited = 0; 14303 14304 /* 14305 * Transmit starting with tcp_suna since 14306 * the one byte probe is not ack'ed. 14307 * If TCP has sent more than one identical 14308 * probe, tcp_rexmit will be set. That means 14309 * tcp_ss_rexmit() will send out the one 14310 * byte along with new data. Otherwise, 14311 * fake the retransmission. 14312 */ 14313 flags |= TH_XMIT_NEEDED; 14314 if (!tcp->tcp_rexmit) { 14315 tcp->tcp_rexmit = B_TRUE; 14316 tcp->tcp_dupack_cnt = 0; 14317 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14318 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14319 } 14320 } 14321 } 14322 goto swnd_update; 14323 } 14324 14325 /* 14326 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14327 * If the ACK value acks something that we have not yet sent, it might 14328 * be an old duplicate segment. Send an ACK to re-synchronize the 14329 * other side. 14330 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14331 * state is handled above, so we can always just drop the segment and 14332 * send an ACK here. 14333 * 14334 * Should we send ACKs in response to ACK only segments? 14335 */ 14336 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14337 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14338 /* drop the received segment */ 14339 freemsg(mp); 14340 14341 /* 14342 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14343 * greater than 0, check if the number of such 14344 * bogus ACks is greater than that count. If yes, 14345 * don't send back any ACK. This prevents TCP from 14346 * getting into an ACK storm if somehow an attacker 14347 * successfully spoofs an acceptable segment to our 14348 * peer. 14349 */ 14350 if (tcp_drop_ack_unsent_cnt > 0 && 14351 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14352 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14353 return; 14354 } 14355 mp = tcp_ack_mp(tcp); 14356 if (mp != NULL) { 14357 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14358 BUMP_LOCAL(tcp->tcp_obsegs); 14359 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14360 tcp_send_data(tcp, tcp->tcp_wq, mp); 14361 } 14362 return; 14363 } 14364 14365 /* 14366 * TCP gets a new ACK, update the notsack'ed list to delete those 14367 * blocks that are covered by this ACK. 14368 */ 14369 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14370 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14371 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14372 } 14373 14374 /* 14375 * If we got an ACK after fast retransmit, check to see 14376 * if it is a partial ACK. If it is not and the congestion 14377 * window was inflated to account for the other side's 14378 * cached packets, retract it. If it is, do Hoe's algorithm. 14379 */ 14380 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14381 ASSERT(tcp->tcp_rexmit == B_FALSE); 14382 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14383 tcp->tcp_dupack_cnt = 0; 14384 /* 14385 * Restore the orig tcp_cwnd_ssthresh after 14386 * fast retransmit phase. 14387 */ 14388 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14389 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14390 } 14391 tcp->tcp_rexmit_max = seg_ack; 14392 tcp->tcp_cwnd_cnt = 0; 14393 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14394 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14395 14396 /* 14397 * Remove all notsack info to avoid confusion with 14398 * the next fast retrasnmit/recovery phase. 14399 */ 14400 if (tcp->tcp_snd_sack_ok && 14401 tcp->tcp_notsack_list != NULL) { 14402 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14403 } 14404 } else { 14405 if (tcp->tcp_snd_sack_ok && 14406 tcp->tcp_notsack_list != NULL) { 14407 flags |= TH_NEED_SACK_REXMIT; 14408 tcp->tcp_pipe -= mss; 14409 if (tcp->tcp_pipe < 0) 14410 tcp->tcp_pipe = 0; 14411 } else { 14412 /* 14413 * Hoe's algorithm: 14414 * 14415 * Retransmit the unack'ed segment and 14416 * restart fast recovery. Note that we 14417 * need to scale back tcp_cwnd to the 14418 * original value when we started fast 14419 * recovery. This is to prevent overly 14420 * aggressive behaviour in sending new 14421 * segments. 14422 */ 14423 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14424 tcps->tcps_dupack_fast_retransmit * mss; 14425 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14426 flags |= TH_REXMIT_NEEDED; 14427 } 14428 } 14429 } else { 14430 tcp->tcp_dupack_cnt = 0; 14431 if (tcp->tcp_rexmit) { 14432 /* 14433 * TCP is retranmitting. If the ACK ack's all 14434 * outstanding data, update tcp_rexmit_max and 14435 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14436 * to the correct value. 14437 * 14438 * Note that SEQ_LEQ() is used. This is to avoid 14439 * unnecessary fast retransmit caused by dup ACKs 14440 * received when TCP does slow start retransmission 14441 * after a time out. During this phase, TCP may 14442 * send out segments which are already received. 14443 * This causes dup ACKs to be sent back. 14444 */ 14445 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14446 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14447 tcp->tcp_rexmit_nxt = seg_ack; 14448 } 14449 if (seg_ack != tcp->tcp_rexmit_max) { 14450 flags |= TH_XMIT_NEEDED; 14451 } 14452 } else { 14453 tcp->tcp_rexmit = B_FALSE; 14454 tcp->tcp_xmit_zc_clean = B_FALSE; 14455 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14456 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14457 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14458 } 14459 tcp->tcp_ms_we_have_waited = 0; 14460 } 14461 } 14462 14463 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14464 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14465 tcp->tcp_suna = seg_ack; 14466 if (tcp->tcp_zero_win_probe != 0) { 14467 tcp->tcp_zero_win_probe = 0; 14468 tcp->tcp_timer_backoff = 0; 14469 } 14470 14471 /* 14472 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14473 * Note that it cannot be the SYN being ack'ed. The code flow 14474 * will not reach here. 14475 */ 14476 if (mp1 == NULL) { 14477 goto fin_acked; 14478 } 14479 14480 /* 14481 * Update the congestion window. 14482 * 14483 * If TCP is not ECN capable or TCP is ECN capable but the 14484 * congestion experience bit is not set, increase the tcp_cwnd as 14485 * usual. 14486 */ 14487 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14488 cwnd = tcp->tcp_cwnd; 14489 add = mss; 14490 14491 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14492 /* 14493 * This is to prevent an increase of less than 1 MSS of 14494 * tcp_cwnd. With partial increase, tcp_wput_data() 14495 * may send out tinygrams in order to preserve mblk 14496 * boundaries. 14497 * 14498 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14499 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14500 * increased by 1 MSS for every RTTs. 14501 */ 14502 if (tcp->tcp_cwnd_cnt <= 0) { 14503 tcp->tcp_cwnd_cnt = cwnd + add; 14504 } else { 14505 tcp->tcp_cwnd_cnt -= add; 14506 add = 0; 14507 } 14508 } 14509 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14510 } 14511 14512 /* See if the latest urgent data has been acknowledged */ 14513 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14514 SEQ_GT(seg_ack, tcp->tcp_urg)) 14515 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14516 14517 /* Can we update the RTT estimates? */ 14518 if (tcp->tcp_snd_ts_ok) { 14519 /* Ignore zero timestamp echo-reply. */ 14520 if (tcpopt.tcp_opt_ts_ecr != 0) { 14521 tcp_set_rto(tcp, (int32_t)lbolt - 14522 (int32_t)tcpopt.tcp_opt_ts_ecr); 14523 } 14524 14525 /* If needed, restart the timer. */ 14526 if (tcp->tcp_set_timer == 1) { 14527 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14528 tcp->tcp_set_timer = 0; 14529 } 14530 /* 14531 * Update tcp_csuna in case the other side stops sending 14532 * us timestamps. 14533 */ 14534 tcp->tcp_csuna = tcp->tcp_snxt; 14535 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14536 /* 14537 * An ACK sequence we haven't seen before, so get the RTT 14538 * and update the RTO. But first check if the timestamp is 14539 * valid to use. 14540 */ 14541 if ((mp1->b_next != NULL) && 14542 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14543 tcp_set_rto(tcp, (int32_t)lbolt - 14544 (int32_t)(intptr_t)mp1->b_prev); 14545 else 14546 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14547 14548 /* Remeber the last sequence to be ACKed */ 14549 tcp->tcp_csuna = seg_ack; 14550 if (tcp->tcp_set_timer == 1) { 14551 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14552 tcp->tcp_set_timer = 0; 14553 } 14554 } else { 14555 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14556 } 14557 14558 /* Eat acknowledged bytes off the xmit queue. */ 14559 for (;;) { 14560 mblk_t *mp2; 14561 uchar_t *wptr; 14562 14563 wptr = mp1->b_wptr; 14564 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14565 bytes_acked -= (int)(wptr - mp1->b_rptr); 14566 if (bytes_acked < 0) { 14567 mp1->b_rptr = wptr + bytes_acked; 14568 /* 14569 * Set a new timestamp if all the bytes timed by the 14570 * old timestamp have been ack'ed. 14571 */ 14572 if (SEQ_GT(seg_ack, 14573 (uint32_t)(uintptr_t)(mp1->b_next))) { 14574 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14575 mp1->b_next = NULL; 14576 } 14577 break; 14578 } 14579 mp1->b_next = NULL; 14580 mp1->b_prev = NULL; 14581 mp2 = mp1; 14582 mp1 = mp1->b_cont; 14583 14584 /* 14585 * This notification is required for some zero-copy 14586 * clients to maintain a copy semantic. After the data 14587 * is ack'ed, client is safe to modify or reuse the buffer. 14588 */ 14589 if (tcp->tcp_snd_zcopy_aware && 14590 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14591 tcp_zcopy_notify(tcp); 14592 freeb(mp2); 14593 if (bytes_acked == 0) { 14594 if (mp1 == NULL) { 14595 /* Everything is ack'ed, clear the tail. */ 14596 tcp->tcp_xmit_tail = NULL; 14597 /* 14598 * Cancel the timer unless we are still 14599 * waiting for an ACK for the FIN packet. 14600 */ 14601 if (tcp->tcp_timer_tid != 0 && 14602 tcp->tcp_snxt == tcp->tcp_suna) { 14603 (void) TCP_TIMER_CANCEL(tcp, 14604 tcp->tcp_timer_tid); 14605 tcp->tcp_timer_tid = 0; 14606 } 14607 goto pre_swnd_update; 14608 } 14609 if (mp2 != tcp->tcp_xmit_tail) 14610 break; 14611 tcp->tcp_xmit_tail = mp1; 14612 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14613 (uintptr_t)INT_MAX); 14614 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14615 mp1->b_rptr); 14616 break; 14617 } 14618 if (mp1 == NULL) { 14619 /* 14620 * More was acked but there is nothing more 14621 * outstanding. This means that the FIN was 14622 * just acked or that we're talking to a clown. 14623 */ 14624 fin_acked: 14625 ASSERT(tcp->tcp_fin_sent); 14626 tcp->tcp_xmit_tail = NULL; 14627 if (tcp->tcp_fin_sent) { 14628 /* FIN was acked - making progress */ 14629 if (tcp->tcp_ipversion == IPV6_VERSION && 14630 !tcp->tcp_fin_acked) 14631 tcp->tcp_ip_forward_progress = B_TRUE; 14632 tcp->tcp_fin_acked = B_TRUE; 14633 if (tcp->tcp_linger_tid != 0 && 14634 TCP_TIMER_CANCEL(tcp, 14635 tcp->tcp_linger_tid) >= 0) { 14636 tcp_stop_lingering(tcp); 14637 } 14638 } else { 14639 /* 14640 * We should never get here because 14641 * we have already checked that the 14642 * number of bytes ack'ed should be 14643 * smaller than or equal to what we 14644 * have sent so far (it is the 14645 * acceptability check of the ACK). 14646 * We can only get here if the send 14647 * queue is corrupted. 14648 * 14649 * Terminate the connection and 14650 * panic the system. It is better 14651 * for us to panic instead of 14652 * continuing to avoid other disaster. 14653 */ 14654 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14655 tcp->tcp_rnxt, TH_RST|TH_ACK); 14656 panic("Memory corruption " 14657 "detected for connection %s.", 14658 tcp_display(tcp, NULL, 14659 DISP_ADDR_AND_PORT)); 14660 /*NOTREACHED*/ 14661 } 14662 goto pre_swnd_update; 14663 } 14664 ASSERT(mp2 != tcp->tcp_xmit_tail); 14665 } 14666 if (tcp->tcp_unsent) { 14667 flags |= TH_XMIT_NEEDED; 14668 } 14669 pre_swnd_update: 14670 tcp->tcp_xmit_head = mp1; 14671 swnd_update: 14672 /* 14673 * The following check is different from most other implementations. 14674 * For bi-directional transfer, when segments are dropped, the 14675 * "normal" check will not accept a window update in those 14676 * retransmitted segemnts. Failing to do that, TCP may send out 14677 * segments which are outside receiver's window. As TCP accepts 14678 * the ack in those retransmitted segments, if the window update in 14679 * the same segment is not accepted, TCP will incorrectly calculates 14680 * that it can send more segments. This can create a deadlock 14681 * with the receiver if its window becomes zero. 14682 */ 14683 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14684 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14685 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14686 /* 14687 * The criteria for update is: 14688 * 14689 * 1. the segment acknowledges some data. Or 14690 * 2. the segment is new, i.e. it has a higher seq num. Or 14691 * 3. the segment is not old and the advertised window is 14692 * larger than the previous advertised window. 14693 */ 14694 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14695 flags |= TH_XMIT_NEEDED; 14696 tcp->tcp_swnd = new_swnd; 14697 if (new_swnd > tcp->tcp_max_swnd) 14698 tcp->tcp_max_swnd = new_swnd; 14699 tcp->tcp_swl1 = seg_seq; 14700 tcp->tcp_swl2 = seg_ack; 14701 } 14702 est: 14703 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14704 14705 switch (tcp->tcp_state) { 14706 case TCPS_FIN_WAIT_1: 14707 if (tcp->tcp_fin_acked) { 14708 tcp->tcp_state = TCPS_FIN_WAIT_2; 14709 /* 14710 * We implement the non-standard BSD/SunOS 14711 * FIN_WAIT_2 flushing algorithm. 14712 * If there is no user attached to this 14713 * TCP endpoint, then this TCP struct 14714 * could hang around forever in FIN_WAIT_2 14715 * state if the peer forgets to send us 14716 * a FIN. To prevent this, we wait only 14717 * 2*MSL (a convenient time value) for 14718 * the FIN to arrive. If it doesn't show up, 14719 * we flush the TCP endpoint. This algorithm, 14720 * though a violation of RFC-793, has worked 14721 * for over 10 years in BSD systems. 14722 * Note: SunOS 4.x waits 675 seconds before 14723 * flushing the FIN_WAIT_2 connection. 14724 */ 14725 TCP_TIMER_RESTART(tcp, 14726 tcps->tcps_fin_wait_2_flush_interval); 14727 } 14728 break; 14729 case TCPS_FIN_WAIT_2: 14730 break; /* Shutdown hook? */ 14731 case TCPS_LAST_ACK: 14732 freemsg(mp); 14733 if (tcp->tcp_fin_acked) { 14734 (void) tcp_clean_death(tcp, 0, 19); 14735 return; 14736 } 14737 goto xmit_check; 14738 case TCPS_CLOSING: 14739 if (tcp->tcp_fin_acked) { 14740 tcp->tcp_state = TCPS_TIME_WAIT; 14741 /* 14742 * Unconditionally clear the exclusive binding 14743 * bit so this TIME-WAIT connection won't 14744 * interfere with new ones. 14745 */ 14746 tcp->tcp_exclbind = 0; 14747 if (!TCP_IS_DETACHED(tcp)) { 14748 TCP_TIMER_RESTART(tcp, 14749 tcps->tcps_time_wait_interval); 14750 } else { 14751 tcp_time_wait_append(tcp); 14752 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14753 } 14754 } 14755 /*FALLTHRU*/ 14756 case TCPS_CLOSE_WAIT: 14757 freemsg(mp); 14758 goto xmit_check; 14759 default: 14760 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14761 break; 14762 } 14763 } 14764 if (flags & TH_FIN) { 14765 /* Make sure we ack the fin */ 14766 flags |= TH_ACK_NEEDED; 14767 if (!tcp->tcp_fin_rcvd) { 14768 tcp->tcp_fin_rcvd = B_TRUE; 14769 tcp->tcp_rnxt++; 14770 tcph = tcp->tcp_tcph; 14771 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14772 14773 /* 14774 * Generate the ordrel_ind at the end unless we 14775 * are an eager guy. 14776 * In the eager case tcp_rsrv will do this when run 14777 * after tcp_accept is done. 14778 */ 14779 if (tcp->tcp_listener == NULL && 14780 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14781 flags |= TH_ORDREL_NEEDED; 14782 switch (tcp->tcp_state) { 14783 case TCPS_SYN_RCVD: 14784 case TCPS_ESTABLISHED: 14785 tcp->tcp_state = TCPS_CLOSE_WAIT; 14786 /* Keepalive? */ 14787 break; 14788 case TCPS_FIN_WAIT_1: 14789 if (!tcp->tcp_fin_acked) { 14790 tcp->tcp_state = TCPS_CLOSING; 14791 break; 14792 } 14793 /* FALLTHRU */ 14794 case TCPS_FIN_WAIT_2: 14795 tcp->tcp_state = TCPS_TIME_WAIT; 14796 /* 14797 * Unconditionally clear the exclusive binding 14798 * bit so this TIME-WAIT connection won't 14799 * interfere with new ones. 14800 */ 14801 tcp->tcp_exclbind = 0; 14802 if (!TCP_IS_DETACHED(tcp)) { 14803 TCP_TIMER_RESTART(tcp, 14804 tcps->tcps_time_wait_interval); 14805 } else { 14806 tcp_time_wait_append(tcp); 14807 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14808 } 14809 if (seg_len) { 14810 /* 14811 * implies data piggybacked on FIN. 14812 * break to handle data. 14813 */ 14814 break; 14815 } 14816 freemsg(mp); 14817 goto ack_check; 14818 } 14819 } 14820 } 14821 if (mp == NULL) 14822 goto xmit_check; 14823 if (seg_len == 0) { 14824 freemsg(mp); 14825 goto xmit_check; 14826 } 14827 if (mp->b_rptr == mp->b_wptr) { 14828 /* 14829 * The header has been consumed, so we remove the 14830 * zero-length mblk here. 14831 */ 14832 mp1 = mp; 14833 mp = mp->b_cont; 14834 freeb(mp1); 14835 } 14836 tcph = tcp->tcp_tcph; 14837 tcp->tcp_rack_cnt++; 14838 { 14839 uint32_t cur_max; 14840 14841 cur_max = tcp->tcp_rack_cur_max; 14842 if (tcp->tcp_rack_cnt >= cur_max) { 14843 /* 14844 * We have more unacked data than we should - send 14845 * an ACK now. 14846 */ 14847 flags |= TH_ACK_NEEDED; 14848 cur_max++; 14849 if (cur_max > tcp->tcp_rack_abs_max) 14850 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14851 else 14852 tcp->tcp_rack_cur_max = cur_max; 14853 } else if (TCP_IS_DETACHED(tcp)) { 14854 /* We don't have an ACK timer for detached TCP. */ 14855 flags |= TH_ACK_NEEDED; 14856 } else if (seg_len < mss) { 14857 /* 14858 * If we get a segment that is less than an mss, and we 14859 * already have unacknowledged data, and the amount 14860 * unacknowledged is not a multiple of mss, then we 14861 * better generate an ACK now. Otherwise, this may be 14862 * the tail piece of a transaction, and we would rather 14863 * wait for the response. 14864 */ 14865 uint32_t udif; 14866 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14867 (uintptr_t)INT_MAX); 14868 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14869 if (udif && (udif % mss)) 14870 flags |= TH_ACK_NEEDED; 14871 else 14872 flags |= TH_ACK_TIMER_NEEDED; 14873 } else { 14874 /* Start delayed ack timer */ 14875 flags |= TH_ACK_TIMER_NEEDED; 14876 } 14877 } 14878 tcp->tcp_rnxt += seg_len; 14879 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14880 14881 /* Update SACK list */ 14882 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14883 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14884 &(tcp->tcp_num_sack_blk)); 14885 } 14886 14887 if (tcp->tcp_urp_mp) { 14888 tcp->tcp_urp_mp->b_cont = mp; 14889 mp = tcp->tcp_urp_mp; 14890 tcp->tcp_urp_mp = NULL; 14891 /* Ready for a new signal. */ 14892 tcp->tcp_urp_last_valid = B_FALSE; 14893 #ifdef DEBUG 14894 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14895 "tcp_rput: sending exdata_ind %s", 14896 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14897 #endif /* DEBUG */ 14898 } 14899 14900 /* 14901 * Check for ancillary data changes compared to last segment. 14902 */ 14903 if (tcp->tcp_ipv6_recvancillary != 0) { 14904 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14905 if (mp == NULL) 14906 return; 14907 } 14908 14909 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14910 /* 14911 * Side queue inbound data until the accept happens. 14912 * tcp_accept/tcp_rput drains this when the accept happens. 14913 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14914 * T_EXDATA_IND) it is queued on b_next. 14915 * XXX Make urgent data use this. Requires: 14916 * Removing tcp_listener check for TH_URG 14917 * Making M_PCPROTO and MARK messages skip the eager case 14918 */ 14919 14920 if (tcp->tcp_kssl_pending) { 14921 tcp_kssl_input(tcp, mp); 14922 } else { 14923 tcp_rcv_enqueue(tcp, mp, seg_len); 14924 } 14925 } else { 14926 if (mp->b_datap->db_type != M_DATA || 14927 (flags & TH_MARKNEXT_NEEDED)) { 14928 if (tcp->tcp_rcv_list != NULL) { 14929 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14930 } 14931 ASSERT(tcp->tcp_rcv_list == NULL || 14932 tcp->tcp_fused_sigurg); 14933 if (flags & TH_MARKNEXT_NEEDED) { 14934 #ifdef DEBUG 14935 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14936 "tcp_rput: sending MSGMARKNEXT %s", 14937 tcp_display(tcp, NULL, 14938 DISP_PORT_ONLY)); 14939 #endif /* DEBUG */ 14940 mp->b_flag |= MSGMARKNEXT; 14941 flags &= ~TH_MARKNEXT_NEEDED; 14942 } 14943 14944 /* Does this need SSL processing first? */ 14945 if ((tcp->tcp_kssl_ctx != NULL) && 14946 (DB_TYPE(mp) == M_DATA)) { 14947 tcp_kssl_input(tcp, mp); 14948 } else { 14949 putnext(tcp->tcp_rq, mp); 14950 if (!canputnext(tcp->tcp_rq)) 14951 tcp->tcp_rwnd -= seg_len; 14952 } 14953 } else if ((flags & (TH_PUSH|TH_FIN)) || 14954 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14955 if (tcp->tcp_rcv_list != NULL) { 14956 /* 14957 * Enqueue the new segment first and then 14958 * call tcp_rcv_drain() to send all data 14959 * up. The other way to do this is to 14960 * send all queued data up and then call 14961 * putnext() to send the new segment up. 14962 * This way can remove the else part later 14963 * on. 14964 * 14965 * We don't this to avoid one more call to 14966 * canputnext() as tcp_rcv_drain() needs to 14967 * call canputnext(). 14968 */ 14969 tcp_rcv_enqueue(tcp, mp, seg_len); 14970 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14971 } else { 14972 /* Does this need SSL processing first? */ 14973 if ((tcp->tcp_kssl_ctx != NULL) && 14974 (DB_TYPE(mp) == M_DATA)) { 14975 tcp_kssl_input(tcp, mp); 14976 } else { 14977 putnext(tcp->tcp_rq, mp); 14978 if (!canputnext(tcp->tcp_rq)) 14979 tcp->tcp_rwnd -= seg_len; 14980 } 14981 } 14982 } else { 14983 /* 14984 * Enqueue all packets when processing an mblk 14985 * from the co queue and also enqueue normal packets. 14986 */ 14987 tcp_rcv_enqueue(tcp, mp, seg_len); 14988 } 14989 /* 14990 * Make sure the timer is running if we have data waiting 14991 * for a push bit. This provides resiliency against 14992 * implementations that do not correctly generate push bits. 14993 */ 14994 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14995 /* 14996 * The connection may be closed at this point, so don't 14997 * do anything for a detached tcp. 14998 */ 14999 if (!TCP_IS_DETACHED(tcp)) 15000 tcp->tcp_push_tid = TCP_TIMER(tcp, 15001 tcp_push_timer, 15002 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 15003 } 15004 } 15005 xmit_check: 15006 /* Is there anything left to do? */ 15007 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15008 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15009 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15010 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15011 goto done; 15012 15013 /* Any transmit work to do and a non-zero window? */ 15014 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15015 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15016 if (flags & TH_REXMIT_NEEDED) { 15017 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15018 15019 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15020 if (snd_size > mss) 15021 snd_size = mss; 15022 if (snd_size > tcp->tcp_swnd) 15023 snd_size = tcp->tcp_swnd; 15024 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15025 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15026 B_TRUE); 15027 15028 if (mp1 != NULL) { 15029 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15030 tcp->tcp_csuna = tcp->tcp_snxt; 15031 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15032 UPDATE_MIB(&tcps->tcps_mib, 15033 tcpRetransBytes, snd_size); 15034 TCP_RECORD_TRACE(tcp, mp1, 15035 TCP_TRACE_SEND_PKT); 15036 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15037 } 15038 } 15039 if (flags & TH_NEED_SACK_REXMIT) { 15040 tcp_sack_rxmit(tcp, &flags); 15041 } 15042 /* 15043 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15044 * out new segment. Note that tcp_rexmit should not be 15045 * set, otherwise TH_LIMIT_XMIT should not be set. 15046 */ 15047 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15048 if (!tcp->tcp_rexmit) { 15049 tcp_wput_data(tcp, NULL, B_FALSE); 15050 } else { 15051 tcp_ss_rexmit(tcp); 15052 } 15053 } 15054 /* 15055 * Adjust tcp_cwnd back to normal value after sending 15056 * new data segments. 15057 */ 15058 if (flags & TH_LIMIT_XMIT) { 15059 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15060 /* 15061 * This will restart the timer. Restarting the 15062 * timer is used to avoid a timeout before the 15063 * limited transmitted segment's ACK gets back. 15064 */ 15065 if (tcp->tcp_xmit_head != NULL) 15066 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15067 } 15068 15069 /* Anything more to do? */ 15070 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15071 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15072 goto done; 15073 } 15074 ack_check: 15075 if (flags & TH_SEND_URP_MARK) { 15076 ASSERT(tcp->tcp_urp_mark_mp); 15077 /* 15078 * Send up any queued data and then send the mark message 15079 */ 15080 if (tcp->tcp_rcv_list != NULL) { 15081 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15082 } 15083 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15084 15085 mp1 = tcp->tcp_urp_mark_mp; 15086 tcp->tcp_urp_mark_mp = NULL; 15087 #ifdef DEBUG 15088 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15089 "tcp_rput: sending zero-length %s %s", 15090 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15091 "MSGNOTMARKNEXT"), 15092 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15093 #endif /* DEBUG */ 15094 putnext(tcp->tcp_rq, mp1); 15095 flags &= ~TH_SEND_URP_MARK; 15096 } 15097 if (flags & TH_ACK_NEEDED) { 15098 /* 15099 * Time to send an ack for some reason. 15100 */ 15101 mp1 = tcp_ack_mp(tcp); 15102 15103 if (mp1 != NULL) { 15104 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15105 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15106 BUMP_LOCAL(tcp->tcp_obsegs); 15107 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15108 } 15109 if (tcp->tcp_ack_tid != 0) { 15110 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15111 tcp->tcp_ack_tid = 0; 15112 } 15113 } 15114 if (flags & TH_ACK_TIMER_NEEDED) { 15115 /* 15116 * Arrange for deferred ACK or push wait timeout. 15117 * Start timer if it is not already running. 15118 */ 15119 if (tcp->tcp_ack_tid == 0) { 15120 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15121 MSEC_TO_TICK(tcp->tcp_localnet ? 15122 (clock_t)tcps->tcps_local_dack_interval : 15123 (clock_t)tcps->tcps_deferred_ack_interval)); 15124 } 15125 } 15126 if (flags & TH_ORDREL_NEEDED) { 15127 /* 15128 * Send up the ordrel_ind unless we are an eager guy. 15129 * In the eager case tcp_rsrv will do this when run 15130 * after tcp_accept is done. 15131 */ 15132 ASSERT(tcp->tcp_listener == NULL); 15133 if (tcp->tcp_rcv_list != NULL) { 15134 /* 15135 * Push any mblk(s) enqueued from co processing. 15136 */ 15137 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15138 } 15139 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15140 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15141 tcp->tcp_ordrel_done = B_TRUE; 15142 putnext(tcp->tcp_rq, mp1); 15143 if (tcp->tcp_deferred_clean_death) { 15144 /* 15145 * tcp_clean_death was deferred 15146 * for T_ORDREL_IND - do it now 15147 */ 15148 (void) tcp_clean_death(tcp, 15149 tcp->tcp_client_errno, 20); 15150 tcp->tcp_deferred_clean_death = B_FALSE; 15151 } 15152 } else { 15153 /* 15154 * Run the orderly release in the 15155 * service routine. 15156 */ 15157 qenable(tcp->tcp_rq); 15158 /* 15159 * Caveat(XXX): The machine may be so 15160 * overloaded that tcp_rsrv() is not scheduled 15161 * until after the endpoint has transitioned 15162 * to TCPS_TIME_WAIT 15163 * and tcp_time_wait_interval expires. Then 15164 * tcp_timer() will blow away state in tcp_t 15165 * and T_ORDREL_IND will never be delivered 15166 * upstream. Unlikely but potentially 15167 * a problem. 15168 */ 15169 } 15170 } 15171 done: 15172 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15173 } 15174 15175 /* 15176 * This function does PAWS protection check. Returns B_TRUE if the 15177 * segment passes the PAWS test, else returns B_FALSE. 15178 */ 15179 boolean_t 15180 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15181 { 15182 uint8_t flags; 15183 int options; 15184 uint8_t *up; 15185 15186 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15187 /* 15188 * If timestamp option is aligned nicely, get values inline, 15189 * otherwise call general routine to parse. Only do that 15190 * if timestamp is the only option. 15191 */ 15192 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15193 TCPOPT_REAL_TS_LEN && 15194 OK_32PTR((up = ((uint8_t *)tcph) + 15195 TCP_MIN_HEADER_LENGTH)) && 15196 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15197 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15198 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15199 15200 options = TCP_OPT_TSTAMP_PRESENT; 15201 } else { 15202 if (tcp->tcp_snd_sack_ok) { 15203 tcpoptp->tcp = tcp; 15204 } else { 15205 tcpoptp->tcp = NULL; 15206 } 15207 options = tcp_parse_options(tcph, tcpoptp); 15208 } 15209 15210 if (options & TCP_OPT_TSTAMP_PRESENT) { 15211 /* 15212 * Do PAWS per RFC 1323 section 4.2. Accept RST 15213 * regardless of the timestamp, page 18 RFC 1323.bis. 15214 */ 15215 if ((flags & TH_RST) == 0 && 15216 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15217 tcp->tcp_ts_recent)) { 15218 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15219 PAWS_TIMEOUT)) { 15220 /* This segment is not acceptable. */ 15221 return (B_FALSE); 15222 } else { 15223 /* 15224 * Connection has been idle for 15225 * too long. Reset the timestamp 15226 * and assume the segment is valid. 15227 */ 15228 tcp->tcp_ts_recent = 15229 tcpoptp->tcp_opt_ts_val; 15230 } 15231 } 15232 } else { 15233 /* 15234 * If we don't get a timestamp on every packet, we 15235 * figure we can't really trust 'em, so we stop sending 15236 * and parsing them. 15237 */ 15238 tcp->tcp_snd_ts_ok = B_FALSE; 15239 15240 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15241 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15242 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15243 /* 15244 * Adjust the tcp_mss accordingly. We also need to 15245 * adjust tcp_cwnd here in accordance with the new mss. 15246 * But we avoid doing a slow start here so as to not 15247 * to lose on the transfer rate built up so far. 15248 */ 15249 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15250 if (tcp->tcp_snd_sack_ok) { 15251 ASSERT(tcp->tcp_sack_info != NULL); 15252 tcp->tcp_max_sack_blk = 4; 15253 } 15254 } 15255 return (B_TRUE); 15256 } 15257 15258 /* 15259 * Attach ancillary data to a received TCP segments for the 15260 * ancillary pieces requested by the application that are 15261 * different than they were in the previous data segment. 15262 * 15263 * Save the "current" values once memory allocation is ok so that 15264 * when memory allocation fails we can just wait for the next data segment. 15265 */ 15266 static mblk_t * 15267 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15268 { 15269 struct T_optdata_ind *todi; 15270 int optlen; 15271 uchar_t *optptr; 15272 struct T_opthdr *toh; 15273 uint_t addflag; /* Which pieces to add */ 15274 mblk_t *mp1; 15275 15276 optlen = 0; 15277 addflag = 0; 15278 /* If app asked for pktinfo and the index has changed ... */ 15279 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15280 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15281 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15282 optlen += sizeof (struct T_opthdr) + 15283 sizeof (struct in6_pktinfo); 15284 addflag |= TCP_IPV6_RECVPKTINFO; 15285 } 15286 /* If app asked for hoplimit and it has changed ... */ 15287 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15288 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15289 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15290 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15291 addflag |= TCP_IPV6_RECVHOPLIMIT; 15292 } 15293 /* If app asked for tclass and it has changed ... */ 15294 if ((ipp->ipp_fields & IPPF_TCLASS) && 15295 ipp->ipp_tclass != tcp->tcp_recvtclass && 15296 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15297 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15298 addflag |= TCP_IPV6_RECVTCLASS; 15299 } 15300 /* 15301 * If app asked for hopbyhop headers and it has changed ... 15302 * For security labels, note that (1) security labels can't change on 15303 * a connected socket at all, (2) we're connected to at most one peer, 15304 * (3) if anything changes, then it must be some other extra option. 15305 */ 15306 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15307 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15308 (ipp->ipp_fields & IPPF_HOPOPTS), 15309 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15310 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15311 tcp->tcp_label_len; 15312 addflag |= TCP_IPV6_RECVHOPOPTS; 15313 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15314 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15315 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15316 return (mp); 15317 } 15318 /* If app asked for dst headers before routing headers ... */ 15319 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15320 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15321 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15322 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15323 optlen += sizeof (struct T_opthdr) + 15324 ipp->ipp_rtdstoptslen; 15325 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15326 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15327 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15328 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15329 return (mp); 15330 } 15331 /* If app asked for routing headers and it has changed ... */ 15332 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15333 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15334 (ipp->ipp_fields & IPPF_RTHDR), 15335 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15336 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15337 addflag |= TCP_IPV6_RECVRTHDR; 15338 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15339 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15340 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15341 return (mp); 15342 } 15343 /* If app asked for dest headers and it has changed ... */ 15344 if ((tcp->tcp_ipv6_recvancillary & 15345 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15346 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15347 (ipp->ipp_fields & IPPF_DSTOPTS), 15348 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15349 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15350 addflag |= TCP_IPV6_RECVDSTOPTS; 15351 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15352 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15353 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15354 return (mp); 15355 } 15356 15357 if (optlen == 0) { 15358 /* Nothing to add */ 15359 return (mp); 15360 } 15361 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15362 if (mp1 == NULL) { 15363 /* 15364 * Defer sending ancillary data until the next TCP segment 15365 * arrives. 15366 */ 15367 return (mp); 15368 } 15369 mp1->b_cont = mp; 15370 mp = mp1; 15371 mp->b_wptr += sizeof (*todi) + optlen; 15372 mp->b_datap->db_type = M_PROTO; 15373 todi = (struct T_optdata_ind *)mp->b_rptr; 15374 todi->PRIM_type = T_OPTDATA_IND; 15375 todi->DATA_flag = 1; /* MORE data */ 15376 todi->OPT_length = optlen; 15377 todi->OPT_offset = sizeof (*todi); 15378 optptr = (uchar_t *)&todi[1]; 15379 /* 15380 * If app asked for pktinfo and the index has changed ... 15381 * Note that the local address never changes for the connection. 15382 */ 15383 if (addflag & TCP_IPV6_RECVPKTINFO) { 15384 struct in6_pktinfo *pkti; 15385 15386 toh = (struct T_opthdr *)optptr; 15387 toh->level = IPPROTO_IPV6; 15388 toh->name = IPV6_PKTINFO; 15389 toh->len = sizeof (*toh) + sizeof (*pkti); 15390 toh->status = 0; 15391 optptr += sizeof (*toh); 15392 pkti = (struct in6_pktinfo *)optptr; 15393 if (tcp->tcp_ipversion == IPV6_VERSION) 15394 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15395 else 15396 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15397 &pkti->ipi6_addr); 15398 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15399 optptr += sizeof (*pkti); 15400 ASSERT(OK_32PTR(optptr)); 15401 /* Save as "last" value */ 15402 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15403 } 15404 /* If app asked for hoplimit and it has changed ... */ 15405 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15406 toh = (struct T_opthdr *)optptr; 15407 toh->level = IPPROTO_IPV6; 15408 toh->name = IPV6_HOPLIMIT; 15409 toh->len = sizeof (*toh) + sizeof (uint_t); 15410 toh->status = 0; 15411 optptr += sizeof (*toh); 15412 *(uint_t *)optptr = ipp->ipp_hoplimit; 15413 optptr += sizeof (uint_t); 15414 ASSERT(OK_32PTR(optptr)); 15415 /* Save as "last" value */ 15416 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15417 } 15418 /* If app asked for tclass and it has changed ... */ 15419 if (addflag & TCP_IPV6_RECVTCLASS) { 15420 toh = (struct T_opthdr *)optptr; 15421 toh->level = IPPROTO_IPV6; 15422 toh->name = IPV6_TCLASS; 15423 toh->len = sizeof (*toh) + sizeof (uint_t); 15424 toh->status = 0; 15425 optptr += sizeof (*toh); 15426 *(uint_t *)optptr = ipp->ipp_tclass; 15427 optptr += sizeof (uint_t); 15428 ASSERT(OK_32PTR(optptr)); 15429 /* Save as "last" value */ 15430 tcp->tcp_recvtclass = ipp->ipp_tclass; 15431 } 15432 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15433 toh = (struct T_opthdr *)optptr; 15434 toh->level = IPPROTO_IPV6; 15435 toh->name = IPV6_HOPOPTS; 15436 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15437 tcp->tcp_label_len; 15438 toh->status = 0; 15439 optptr += sizeof (*toh); 15440 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15441 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15442 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15443 ASSERT(OK_32PTR(optptr)); 15444 /* Save as last value */ 15445 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15446 (ipp->ipp_fields & IPPF_HOPOPTS), 15447 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15448 } 15449 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15450 toh = (struct T_opthdr *)optptr; 15451 toh->level = IPPROTO_IPV6; 15452 toh->name = IPV6_RTHDRDSTOPTS; 15453 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15454 toh->status = 0; 15455 optptr += sizeof (*toh); 15456 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15457 optptr += ipp->ipp_rtdstoptslen; 15458 ASSERT(OK_32PTR(optptr)); 15459 /* Save as last value */ 15460 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15461 &tcp->tcp_rtdstoptslen, 15462 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15463 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15464 } 15465 if (addflag & TCP_IPV6_RECVRTHDR) { 15466 toh = (struct T_opthdr *)optptr; 15467 toh->level = IPPROTO_IPV6; 15468 toh->name = IPV6_RTHDR; 15469 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15470 toh->status = 0; 15471 optptr += sizeof (*toh); 15472 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15473 optptr += ipp->ipp_rthdrlen; 15474 ASSERT(OK_32PTR(optptr)); 15475 /* Save as last value */ 15476 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15477 (ipp->ipp_fields & IPPF_RTHDR), 15478 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15479 } 15480 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15481 toh = (struct T_opthdr *)optptr; 15482 toh->level = IPPROTO_IPV6; 15483 toh->name = IPV6_DSTOPTS; 15484 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15485 toh->status = 0; 15486 optptr += sizeof (*toh); 15487 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15488 optptr += ipp->ipp_dstoptslen; 15489 ASSERT(OK_32PTR(optptr)); 15490 /* Save as last value */ 15491 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15492 (ipp->ipp_fields & IPPF_DSTOPTS), 15493 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15494 } 15495 ASSERT(optptr == mp->b_wptr); 15496 return (mp); 15497 } 15498 15499 15500 /* 15501 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15502 * or a "bad" IRE detected by tcp_adapt_ire. 15503 * We can't tell if the failure was due to the laddr or the faddr 15504 * thus we clear out all addresses and ports. 15505 */ 15506 static void 15507 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15508 { 15509 queue_t *q = tcp->tcp_rq; 15510 tcph_t *tcph; 15511 struct T_error_ack *tea; 15512 conn_t *connp = tcp->tcp_connp; 15513 15514 15515 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15516 15517 if (mp->b_cont) { 15518 freemsg(mp->b_cont); 15519 mp->b_cont = NULL; 15520 } 15521 tea = (struct T_error_ack *)mp->b_rptr; 15522 switch (tea->PRIM_type) { 15523 case T_BIND_ACK: 15524 /* 15525 * Need to unbind with classifier since we were just told that 15526 * our bind succeeded. 15527 */ 15528 tcp->tcp_hard_bound = B_FALSE; 15529 tcp->tcp_hard_binding = B_FALSE; 15530 15531 ipcl_hash_remove(connp); 15532 /* Reuse the mblk if possible */ 15533 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15534 sizeof (*tea)); 15535 mp->b_rptr = mp->b_datap->db_base; 15536 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15537 tea = (struct T_error_ack *)mp->b_rptr; 15538 tea->PRIM_type = T_ERROR_ACK; 15539 tea->TLI_error = TSYSERR; 15540 tea->UNIX_error = error; 15541 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15542 tea->ERROR_prim = T_CONN_REQ; 15543 } else { 15544 tea->ERROR_prim = O_T_BIND_REQ; 15545 } 15546 break; 15547 15548 case T_ERROR_ACK: 15549 if (tcp->tcp_state >= TCPS_SYN_SENT) 15550 tea->ERROR_prim = T_CONN_REQ; 15551 break; 15552 default: 15553 panic("tcp_bind_failed: unexpected TPI type"); 15554 /*NOTREACHED*/ 15555 } 15556 15557 tcp->tcp_state = TCPS_IDLE; 15558 if (tcp->tcp_ipversion == IPV4_VERSION) 15559 tcp->tcp_ipha->ipha_src = 0; 15560 else 15561 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15562 /* 15563 * Copy of the src addr. in tcp_t is needed since 15564 * the lookup funcs. can only look at tcp_t 15565 */ 15566 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15567 15568 tcph = tcp->tcp_tcph; 15569 tcph->th_lport[0] = 0; 15570 tcph->th_lport[1] = 0; 15571 tcp_bind_hash_remove(tcp); 15572 bzero(&connp->u_port, sizeof (connp->u_port)); 15573 /* blow away saved option results if any */ 15574 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15575 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15576 15577 conn_delete_ire(tcp->tcp_connp, NULL); 15578 putnext(q, mp); 15579 } 15580 15581 /* 15582 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15583 * messages. 15584 */ 15585 void 15586 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15587 { 15588 mblk_t *mp1; 15589 uchar_t *rptr = mp->b_rptr; 15590 queue_t *q = tcp->tcp_rq; 15591 struct T_error_ack *tea; 15592 uint32_t mss; 15593 mblk_t *syn_mp; 15594 mblk_t *mdti; 15595 mblk_t *lsoi; 15596 int retval; 15597 mblk_t *ire_mp; 15598 tcp_stack_t *tcps = tcp->tcp_tcps; 15599 15600 switch (mp->b_datap->db_type) { 15601 case M_PROTO: 15602 case M_PCPROTO: 15603 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15604 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15605 break; 15606 tea = (struct T_error_ack *)rptr; 15607 switch (tea->PRIM_type) { 15608 case T_BIND_ACK: 15609 /* 15610 * Adapt Multidata information, if any. The 15611 * following tcp_mdt_update routine will free 15612 * the message. 15613 */ 15614 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15615 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15616 b_rptr)->mdt_capab, B_TRUE); 15617 freemsg(mdti); 15618 } 15619 15620 /* 15621 * Check to update LSO information with tcp, and 15622 * tcp_lso_update routine will free the message. 15623 */ 15624 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15625 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15626 b_rptr)->lso_capab); 15627 freemsg(lsoi); 15628 } 15629 15630 /* Get the IRE, if we had requested for it */ 15631 ire_mp = tcp_ire_mp(mp); 15632 15633 if (tcp->tcp_hard_binding) { 15634 tcp->tcp_hard_binding = B_FALSE; 15635 tcp->tcp_hard_bound = B_TRUE; 15636 CL_INET_CONNECT(tcp); 15637 } else { 15638 if (ire_mp != NULL) 15639 freeb(ire_mp); 15640 goto after_syn_sent; 15641 } 15642 15643 retval = tcp_adapt_ire(tcp, ire_mp); 15644 if (ire_mp != NULL) 15645 freeb(ire_mp); 15646 if (retval == 0) { 15647 tcp_bind_failed(tcp, mp, 15648 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15649 ENETUNREACH : EADDRNOTAVAIL)); 15650 return; 15651 } 15652 /* 15653 * Don't let an endpoint connect to itself. 15654 * Also checked in tcp_connect() but that 15655 * check can't handle the case when the 15656 * local IP address is INADDR_ANY. 15657 */ 15658 if (tcp->tcp_ipversion == IPV4_VERSION) { 15659 if ((tcp->tcp_ipha->ipha_dst == 15660 tcp->tcp_ipha->ipha_src) && 15661 (BE16_EQL(tcp->tcp_tcph->th_lport, 15662 tcp->tcp_tcph->th_fport))) { 15663 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15664 return; 15665 } 15666 } else { 15667 if (IN6_ARE_ADDR_EQUAL( 15668 &tcp->tcp_ip6h->ip6_dst, 15669 &tcp->tcp_ip6h->ip6_src) && 15670 (BE16_EQL(tcp->tcp_tcph->th_lport, 15671 tcp->tcp_tcph->th_fport))) { 15672 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15673 return; 15674 } 15675 } 15676 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15677 /* 15678 * This should not be possible! Just for 15679 * defensive coding... 15680 */ 15681 if (tcp->tcp_state != TCPS_SYN_SENT) 15682 goto after_syn_sent; 15683 15684 if (is_system_labeled() && 15685 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15686 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15687 return; 15688 } 15689 15690 ASSERT(q == tcp->tcp_rq); 15691 /* 15692 * tcp_adapt_ire() does not adjust 15693 * for TCP/IP header length. 15694 */ 15695 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15696 15697 /* 15698 * Just make sure our rwnd is at 15699 * least tcp_recv_hiwat_mss * MSS 15700 * large, and round up to the nearest 15701 * MSS. 15702 * 15703 * We do the round up here because 15704 * we need to get the interface 15705 * MTU first before we can do the 15706 * round up. 15707 */ 15708 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15709 tcps->tcps_recv_hiwat_minmss * mss); 15710 q->q_hiwat = tcp->tcp_rwnd; 15711 tcp_set_ws_value(tcp); 15712 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15713 tcp->tcp_tcph->th_win); 15714 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 15715 tcp->tcp_snd_ws_ok = B_TRUE; 15716 15717 /* 15718 * Set tcp_snd_ts_ok to true 15719 * so that tcp_xmit_mp will 15720 * include the timestamp 15721 * option in the SYN segment. 15722 */ 15723 if (tcps->tcps_tstamp_always || 15724 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 15725 tcp->tcp_snd_ts_ok = B_TRUE; 15726 } 15727 15728 /* 15729 * tcp_snd_sack_ok can be set in 15730 * tcp_adapt_ire() if the sack metric 15731 * is set. So check it here also. 15732 */ 15733 if (tcps->tcps_sack_permitted == 2 || 15734 tcp->tcp_snd_sack_ok) { 15735 if (tcp->tcp_sack_info == NULL) { 15736 tcp->tcp_sack_info = 15737 kmem_cache_alloc(tcp_sack_info_cache, 15738 KM_SLEEP); 15739 } 15740 tcp->tcp_snd_sack_ok = B_TRUE; 15741 } 15742 15743 /* 15744 * Should we use ECN? Note that the current 15745 * default value (SunOS 5.9) of tcp_ecn_permitted 15746 * is 1. The reason for doing this is that there 15747 * are equipments out there that will drop ECN 15748 * enabled IP packets. Setting it to 1 avoids 15749 * compatibility problems. 15750 */ 15751 if (tcps->tcps_ecn_permitted == 2) 15752 tcp->tcp_ecn_ok = B_TRUE; 15753 15754 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15755 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15756 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15757 if (syn_mp) { 15758 cred_t *cr; 15759 pid_t pid; 15760 15761 /* 15762 * Obtain the credential from the 15763 * thread calling connect(); the credential 15764 * lives on in the second mblk which 15765 * originated from T_CONN_REQ and is echoed 15766 * with the T_BIND_ACK from ip. If none 15767 * can be found, default to the creator 15768 * of the socket. 15769 */ 15770 if (mp->b_cont == NULL || 15771 (cr = DB_CRED(mp->b_cont)) == NULL) { 15772 cr = tcp->tcp_cred; 15773 pid = tcp->tcp_cpid; 15774 } else { 15775 pid = DB_CPID(mp->b_cont); 15776 } 15777 15778 TCP_RECORD_TRACE(tcp, syn_mp, 15779 TCP_TRACE_SEND_PKT); 15780 mblk_setcred(syn_mp, cr); 15781 DB_CPID(syn_mp) = pid; 15782 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15783 } 15784 after_syn_sent: 15785 /* 15786 * A trailer mblk indicates a waiting client upstream. 15787 * We complete here the processing begun in 15788 * either tcp_bind() or tcp_connect() by passing 15789 * upstream the reply message they supplied. 15790 */ 15791 mp1 = mp; 15792 mp = mp->b_cont; 15793 freeb(mp1); 15794 if (mp) 15795 break; 15796 return; 15797 case T_ERROR_ACK: 15798 if (tcp->tcp_debug) { 15799 (void) strlog(TCP_MOD_ID, 0, 1, 15800 SL_TRACE|SL_ERROR, 15801 "tcp_rput_other: case T_ERROR_ACK, " 15802 "ERROR_prim == %d", 15803 tea->ERROR_prim); 15804 } 15805 switch (tea->ERROR_prim) { 15806 case O_T_BIND_REQ: 15807 case T_BIND_REQ: 15808 tcp_bind_failed(tcp, mp, 15809 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15810 ENETUNREACH : EADDRNOTAVAIL)); 15811 return; 15812 case T_UNBIND_REQ: 15813 tcp->tcp_hard_binding = B_FALSE; 15814 tcp->tcp_hard_bound = B_FALSE; 15815 if (mp->b_cont) { 15816 freemsg(mp->b_cont); 15817 mp->b_cont = NULL; 15818 } 15819 if (tcp->tcp_unbind_pending) 15820 tcp->tcp_unbind_pending = 0; 15821 else { 15822 /* From tcp_ip_unbind() - free */ 15823 freemsg(mp); 15824 return; 15825 } 15826 break; 15827 case T_SVR4_OPTMGMT_REQ: 15828 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15829 /* T_OPTMGMT_REQ generated by TCP */ 15830 printf("T_SVR4_OPTMGMT_REQ failed " 15831 "%d/%d - dropped (cnt %d)\n", 15832 tea->TLI_error, tea->UNIX_error, 15833 tcp->tcp_drop_opt_ack_cnt); 15834 freemsg(mp); 15835 tcp->tcp_drop_opt_ack_cnt--; 15836 return; 15837 } 15838 break; 15839 } 15840 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15841 tcp->tcp_drop_opt_ack_cnt > 0) { 15842 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15843 "- dropped (cnt %d)\n", 15844 tea->TLI_error, tea->UNIX_error, 15845 tcp->tcp_drop_opt_ack_cnt); 15846 freemsg(mp); 15847 tcp->tcp_drop_opt_ack_cnt--; 15848 return; 15849 } 15850 break; 15851 case T_OPTMGMT_ACK: 15852 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15853 /* T_OPTMGMT_REQ generated by TCP */ 15854 freemsg(mp); 15855 tcp->tcp_drop_opt_ack_cnt--; 15856 return; 15857 } 15858 break; 15859 default: 15860 break; 15861 } 15862 break; 15863 case M_FLUSH: 15864 if (*rptr & FLUSHR) 15865 flushq(q, FLUSHDATA); 15866 break; 15867 default: 15868 /* M_CTL will be directly sent to tcp_icmp_error() */ 15869 ASSERT(DB_TYPE(mp) != M_CTL); 15870 break; 15871 } 15872 /* 15873 * Make sure we set this bit before sending the ACK for 15874 * bind. Otherwise accept could possibly run and free 15875 * this tcp struct. 15876 */ 15877 putnext(q, mp); 15878 } 15879 15880 /* 15881 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15882 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15883 * tcp_rsrv() try again. 15884 */ 15885 static void 15886 tcp_ordrel_kick(void *arg) 15887 { 15888 conn_t *connp = (conn_t *)arg; 15889 tcp_t *tcp = connp->conn_tcp; 15890 15891 tcp->tcp_ordrelid = 0; 15892 tcp->tcp_timeout = B_FALSE; 15893 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15894 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15895 qenable(tcp->tcp_rq); 15896 } 15897 } 15898 15899 /* ARGSUSED */ 15900 static void 15901 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15902 { 15903 conn_t *connp = (conn_t *)arg; 15904 tcp_t *tcp = connp->conn_tcp; 15905 queue_t *q = tcp->tcp_rq; 15906 uint_t thwin; 15907 tcp_stack_t *tcps = tcp->tcp_tcps; 15908 15909 freeb(mp); 15910 15911 TCP_STAT(tcps, tcp_rsrv_calls); 15912 15913 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15914 return; 15915 } 15916 15917 if (tcp->tcp_fused) { 15918 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15919 15920 ASSERT(tcp->tcp_fused); 15921 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15922 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15923 ASSERT(!TCP_IS_DETACHED(tcp)); 15924 ASSERT(tcp->tcp_connp->conn_sqp == 15925 peer_tcp->tcp_connp->conn_sqp); 15926 15927 /* 15928 * Normally we would not get backenabled in synchronous 15929 * streams mode, but in case this happens, we need to plug 15930 * synchronous streams during our drain to prevent a race 15931 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15932 */ 15933 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15934 if (tcp->tcp_rcv_list != NULL) 15935 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15936 15937 if (peer_tcp > tcp) { 15938 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15939 mutex_enter(&tcp->tcp_non_sq_lock); 15940 } else { 15941 mutex_enter(&tcp->tcp_non_sq_lock); 15942 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15943 } 15944 15945 if (peer_tcp->tcp_flow_stopped && 15946 (TCP_UNSENT_BYTES(peer_tcp) <= 15947 peer_tcp->tcp_xmit_lowater)) { 15948 tcp_clrqfull(peer_tcp); 15949 } 15950 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15951 mutex_exit(&tcp->tcp_non_sq_lock); 15952 15953 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15954 TCP_STAT(tcps, tcp_fusion_backenabled); 15955 return; 15956 } 15957 15958 if (canputnext(q)) { 15959 tcp->tcp_rwnd = q->q_hiwat; 15960 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15961 << tcp->tcp_rcv_ws; 15962 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15963 /* 15964 * Send back a window update immediately if TCP is above 15965 * ESTABLISHED state and the increase of the rcv window 15966 * that the other side knows is at least 1 MSS after flow 15967 * control is lifted. 15968 */ 15969 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15970 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15971 tcp_xmit_ctl(NULL, tcp, 15972 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15973 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15974 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 15975 } 15976 } 15977 /* Handle a failure to allocate a T_ORDREL_IND here */ 15978 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15979 ASSERT(tcp->tcp_listener == NULL); 15980 if (tcp->tcp_rcv_list != NULL) { 15981 (void) tcp_rcv_drain(q, tcp); 15982 } 15983 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15984 mp = mi_tpi_ordrel_ind(); 15985 if (mp) { 15986 tcp->tcp_ordrel_done = B_TRUE; 15987 putnext(q, mp); 15988 if (tcp->tcp_deferred_clean_death) { 15989 /* 15990 * tcp_clean_death was deferred for 15991 * T_ORDREL_IND - do it now 15992 */ 15993 tcp->tcp_deferred_clean_death = B_FALSE; 15994 (void) tcp_clean_death(tcp, 15995 tcp->tcp_client_errno, 22); 15996 } 15997 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15998 /* 15999 * If there isn't already a timer running 16000 * start one. Use a 4 second 16001 * timer as a fallback since it can't fail. 16002 */ 16003 tcp->tcp_timeout = B_TRUE; 16004 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16005 MSEC_TO_TICK(4000)); 16006 } 16007 } 16008 } 16009 16010 /* 16011 * The read side service routine is called mostly when we get back-enabled as a 16012 * result of flow control relief. Since we don't actually queue anything in 16013 * TCP, we have no data to send out of here. What we do is clear the receive 16014 * window, and send out a window update. 16015 * This routine is also called to drive an orderly release message upstream 16016 * if the attempt in tcp_rput failed. 16017 */ 16018 static void 16019 tcp_rsrv(queue_t *q) 16020 { 16021 conn_t *connp = Q_TO_CONN(q); 16022 tcp_t *tcp = connp->conn_tcp; 16023 mblk_t *mp; 16024 tcp_stack_t *tcps = tcp->tcp_tcps; 16025 16026 /* No code does a putq on the read side */ 16027 ASSERT(q->q_first == NULL); 16028 16029 /* Nothing to do for the default queue */ 16030 if (q == tcps->tcps_g_q) { 16031 return; 16032 } 16033 16034 mp = allocb(0, BPRI_HI); 16035 if (mp == NULL) { 16036 /* 16037 * We are under memory pressure. Return for now and we 16038 * we will be called again later. 16039 */ 16040 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16041 /* 16042 * If there isn't already a timer running 16043 * start one. Use a 4 second 16044 * timer as a fallback since it can't fail. 16045 */ 16046 tcp->tcp_timeout = B_TRUE; 16047 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16048 MSEC_TO_TICK(4000)); 16049 } 16050 return; 16051 } 16052 CONN_INC_REF(connp); 16053 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16054 SQTAG_TCP_RSRV); 16055 } 16056 16057 /* 16058 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16059 * We do not allow the receive window to shrink. After setting rwnd, 16060 * set the flow control hiwat of the stream. 16061 * 16062 * This function is called in 2 cases: 16063 * 16064 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16065 * connection (passive open) and in tcp_rput_data() for active connect. 16066 * This is called after tcp_mss_set() when the desired MSS value is known. 16067 * This makes sure that our window size is a mutiple of the other side's 16068 * MSS. 16069 * 2) Handling SO_RCVBUF option. 16070 * 16071 * It is ASSUMED that the requested size is a multiple of the current MSS. 16072 * 16073 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16074 * user requests so. 16075 */ 16076 static int 16077 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16078 { 16079 uint32_t mss = tcp->tcp_mss; 16080 uint32_t old_max_rwnd; 16081 uint32_t max_transmittable_rwnd; 16082 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16083 tcp_stack_t *tcps = tcp->tcp_tcps; 16084 16085 if (tcp->tcp_fused) { 16086 size_t sth_hiwat; 16087 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16088 16089 ASSERT(peer_tcp != NULL); 16090 /* 16091 * Record the stream head's high water mark for 16092 * this endpoint; this is used for flow-control 16093 * purposes in tcp_fuse_output(). 16094 */ 16095 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16096 if (!tcp_detached) 16097 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16098 16099 /* 16100 * In the fusion case, the maxpsz stream head value of 16101 * our peer is set according to its send buffer size 16102 * and our receive buffer size; since the latter may 16103 * have changed we need to update the peer's maxpsz. 16104 */ 16105 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16106 return (rwnd); 16107 } 16108 16109 if (tcp_detached) 16110 old_max_rwnd = tcp->tcp_rwnd; 16111 else 16112 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16113 16114 /* 16115 * Insist on a receive window that is at least 16116 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16117 * funny TCP interactions of Nagle algorithm, SWS avoidance 16118 * and delayed acknowledgement. 16119 */ 16120 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16121 16122 /* 16123 * If window size info has already been exchanged, TCP should not 16124 * shrink the window. Shrinking window is doable if done carefully. 16125 * We may add that support later. But so far there is not a real 16126 * need to do that. 16127 */ 16128 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16129 /* MSS may have changed, do a round up again. */ 16130 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16131 } 16132 16133 /* 16134 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16135 * can be applied even before the window scale option is decided. 16136 */ 16137 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16138 if (rwnd > max_transmittable_rwnd) { 16139 rwnd = max_transmittable_rwnd - 16140 (max_transmittable_rwnd % mss); 16141 if (rwnd < mss) 16142 rwnd = max_transmittable_rwnd; 16143 /* 16144 * If we're over the limit we may have to back down tcp_rwnd. 16145 * The increment below won't work for us. So we set all three 16146 * here and the increment below will have no effect. 16147 */ 16148 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16149 } 16150 if (tcp->tcp_localnet) { 16151 tcp->tcp_rack_abs_max = 16152 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16153 } else { 16154 /* 16155 * For a remote host on a different subnet (through a router), 16156 * we ack every other packet to be conforming to RFC1122. 16157 * tcp_deferred_acks_max is default to 2. 16158 */ 16159 tcp->tcp_rack_abs_max = 16160 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16161 } 16162 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16163 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16164 else 16165 tcp->tcp_rack_cur_max = 0; 16166 /* 16167 * Increment the current rwnd by the amount the maximum grew (we 16168 * can not overwrite it since we might be in the middle of a 16169 * connection.) 16170 */ 16171 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16172 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16173 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16174 tcp->tcp_cwnd_max = rwnd; 16175 16176 if (tcp_detached) 16177 return (rwnd); 16178 /* 16179 * We set the maximum receive window into rq->q_hiwat. 16180 * This is not actually used for flow control. 16181 */ 16182 tcp->tcp_rq->q_hiwat = rwnd; 16183 /* 16184 * Set the Stream head high water mark. This doesn't have to be 16185 * here, since we are simply using default values, but we would 16186 * prefer to choose these values algorithmically, with a likely 16187 * relationship to rwnd. 16188 */ 16189 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16190 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16191 return (rwnd); 16192 } 16193 16194 /* 16195 * Return SNMP stuff in buffer in mpdata. 16196 */ 16197 int 16198 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16199 { 16200 mblk_t *mpdata; 16201 mblk_t *mp_conn_ctl = NULL; 16202 mblk_t *mp_conn_tail; 16203 mblk_t *mp_attr_ctl = NULL; 16204 mblk_t *mp_attr_tail; 16205 mblk_t *mp6_conn_ctl = NULL; 16206 mblk_t *mp6_conn_tail; 16207 mblk_t *mp6_attr_ctl = NULL; 16208 mblk_t *mp6_attr_tail; 16209 struct opthdr *optp; 16210 mib2_tcpConnEntry_t tce; 16211 mib2_tcp6ConnEntry_t tce6; 16212 mib2_transportMLPEntry_t mlp; 16213 connf_t *connfp; 16214 conn_t *connp; 16215 int i; 16216 boolean_t ispriv; 16217 zoneid_t zoneid; 16218 int v4_conn_idx; 16219 int v6_conn_idx; 16220 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16221 ip_stack_t *ipst; 16222 16223 if (mpctl == NULL || 16224 (mpdata = mpctl->b_cont) == NULL || 16225 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16226 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16227 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16228 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16229 freemsg(mp_conn_ctl); 16230 freemsg(mp_attr_ctl); 16231 freemsg(mp6_conn_ctl); 16232 freemsg(mp6_attr_ctl); 16233 return (0); 16234 } 16235 16236 /* build table of connections -- need count in fixed part */ 16237 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16238 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16239 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16240 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16241 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16242 16243 ispriv = 16244 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16245 zoneid = Q_TO_CONN(q)->conn_zoneid; 16246 16247 v4_conn_idx = v6_conn_idx = 0; 16248 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16249 16250 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16251 ipst = tcps->tcps_netstack->netstack_ip; 16252 16253 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16254 16255 connp = NULL; 16256 16257 while ((connp = 16258 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16259 tcp_t *tcp; 16260 boolean_t needattr; 16261 16262 if (connp->conn_zoneid != zoneid) 16263 continue; /* not in this zone */ 16264 16265 tcp = connp->conn_tcp; 16266 UPDATE_MIB(&tcps->tcps_mib, 16267 tcpHCInSegs, tcp->tcp_ibsegs); 16268 tcp->tcp_ibsegs = 0; 16269 UPDATE_MIB(&tcps->tcps_mib, 16270 tcpHCOutSegs, tcp->tcp_obsegs); 16271 tcp->tcp_obsegs = 0; 16272 16273 tce6.tcp6ConnState = tce.tcpConnState = 16274 tcp_snmp_state(tcp); 16275 if (tce.tcpConnState == MIB2_TCP_established || 16276 tce.tcpConnState == MIB2_TCP_closeWait) 16277 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16278 16279 needattr = B_FALSE; 16280 bzero(&mlp, sizeof (mlp)); 16281 if (connp->conn_mlp_type != mlptSingle) { 16282 if (connp->conn_mlp_type == mlptShared || 16283 connp->conn_mlp_type == mlptBoth) 16284 mlp.tme_flags |= MIB2_TMEF_SHARED; 16285 if (connp->conn_mlp_type == mlptPrivate || 16286 connp->conn_mlp_type == mlptBoth) 16287 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16288 needattr = B_TRUE; 16289 } 16290 if (connp->conn_peercred != NULL) { 16291 ts_label_t *tsl; 16292 16293 tsl = crgetlabel(connp->conn_peercred); 16294 mlp.tme_doi = label2doi(tsl); 16295 mlp.tme_label = *label2bslabel(tsl); 16296 needattr = B_TRUE; 16297 } 16298 16299 /* Create a message to report on IPv6 entries */ 16300 if (tcp->tcp_ipversion == IPV6_VERSION) { 16301 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16302 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16303 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16304 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16305 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16306 /* Don't want just anybody seeing these... */ 16307 if (ispriv) { 16308 tce6.tcp6ConnEntryInfo.ce_snxt = 16309 tcp->tcp_snxt; 16310 tce6.tcp6ConnEntryInfo.ce_suna = 16311 tcp->tcp_suna; 16312 tce6.tcp6ConnEntryInfo.ce_rnxt = 16313 tcp->tcp_rnxt; 16314 tce6.tcp6ConnEntryInfo.ce_rack = 16315 tcp->tcp_rack; 16316 } else { 16317 /* 16318 * Netstat, unfortunately, uses this to 16319 * get send/receive queue sizes. How to fix? 16320 * Why not compute the difference only? 16321 */ 16322 tce6.tcp6ConnEntryInfo.ce_snxt = 16323 tcp->tcp_snxt - tcp->tcp_suna; 16324 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16325 tce6.tcp6ConnEntryInfo.ce_rnxt = 16326 tcp->tcp_rnxt - tcp->tcp_rack; 16327 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16328 } 16329 16330 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16331 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16332 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16333 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16334 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16335 16336 tce6.tcp6ConnCreationProcess = 16337 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16338 tcp->tcp_cpid; 16339 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16340 16341 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16342 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16343 16344 mlp.tme_connidx = v6_conn_idx++; 16345 if (needattr) 16346 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16347 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16348 } 16349 /* 16350 * Create an IPv4 table entry for IPv4 entries and also 16351 * for IPv6 entries which are bound to in6addr_any 16352 * but don't have IPV6_V6ONLY set. 16353 * (i.e. anything an IPv4 peer could connect to) 16354 */ 16355 if (tcp->tcp_ipversion == IPV4_VERSION || 16356 (tcp->tcp_state <= TCPS_LISTEN && 16357 !tcp->tcp_connp->conn_ipv6_v6only && 16358 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16359 if (tcp->tcp_ipversion == IPV6_VERSION) { 16360 tce.tcpConnRemAddress = INADDR_ANY; 16361 tce.tcpConnLocalAddress = INADDR_ANY; 16362 } else { 16363 tce.tcpConnRemAddress = 16364 tcp->tcp_remote; 16365 tce.tcpConnLocalAddress = 16366 tcp->tcp_ip_src; 16367 } 16368 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16369 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16370 /* Don't want just anybody seeing these... */ 16371 if (ispriv) { 16372 tce.tcpConnEntryInfo.ce_snxt = 16373 tcp->tcp_snxt; 16374 tce.tcpConnEntryInfo.ce_suna = 16375 tcp->tcp_suna; 16376 tce.tcpConnEntryInfo.ce_rnxt = 16377 tcp->tcp_rnxt; 16378 tce.tcpConnEntryInfo.ce_rack = 16379 tcp->tcp_rack; 16380 } else { 16381 /* 16382 * Netstat, unfortunately, uses this to 16383 * get send/receive queue sizes. How 16384 * to fix? 16385 * Why not compute the difference only? 16386 */ 16387 tce.tcpConnEntryInfo.ce_snxt = 16388 tcp->tcp_snxt - tcp->tcp_suna; 16389 tce.tcpConnEntryInfo.ce_suna = 0; 16390 tce.tcpConnEntryInfo.ce_rnxt = 16391 tcp->tcp_rnxt - tcp->tcp_rack; 16392 tce.tcpConnEntryInfo.ce_rack = 0; 16393 } 16394 16395 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16396 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16397 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16398 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16399 tce.tcpConnEntryInfo.ce_state = 16400 tcp->tcp_state; 16401 16402 tce.tcpConnCreationProcess = 16403 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16404 tcp->tcp_cpid; 16405 tce.tcpConnCreationTime = tcp->tcp_open_time; 16406 16407 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16408 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16409 16410 mlp.tme_connidx = v4_conn_idx++; 16411 if (needattr) 16412 (void) snmp_append_data2( 16413 mp_attr_ctl->b_cont, 16414 &mp_attr_tail, (char *)&mlp, 16415 sizeof (mlp)); 16416 } 16417 } 16418 } 16419 16420 /* fixed length structure for IPv4 and IPv6 counters */ 16421 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16422 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16423 sizeof (mib2_tcp6ConnEntry_t)); 16424 /* synchronize 32- and 64-bit counters */ 16425 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16426 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16427 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16428 optp->level = MIB2_TCP; 16429 optp->name = 0; 16430 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16431 sizeof (tcps->tcps_mib)); 16432 optp->len = msgdsize(mpdata); 16433 qreply(q, mpctl); 16434 16435 /* table of connections... */ 16436 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16437 sizeof (struct T_optmgmt_ack)]; 16438 optp->level = MIB2_TCP; 16439 optp->name = MIB2_TCP_CONN; 16440 optp->len = msgdsize(mp_conn_ctl->b_cont); 16441 qreply(q, mp_conn_ctl); 16442 16443 /* table of MLP attributes... */ 16444 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16445 sizeof (struct T_optmgmt_ack)]; 16446 optp->level = MIB2_TCP; 16447 optp->name = EXPER_XPORT_MLP; 16448 optp->len = msgdsize(mp_attr_ctl->b_cont); 16449 if (optp->len == 0) 16450 freemsg(mp_attr_ctl); 16451 else 16452 qreply(q, mp_attr_ctl); 16453 16454 /* table of IPv6 connections... */ 16455 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16456 sizeof (struct T_optmgmt_ack)]; 16457 optp->level = MIB2_TCP6; 16458 optp->name = MIB2_TCP6_CONN; 16459 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16460 qreply(q, mp6_conn_ctl); 16461 16462 /* table of IPv6 MLP attributes... */ 16463 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16464 sizeof (struct T_optmgmt_ack)]; 16465 optp->level = MIB2_TCP6; 16466 optp->name = EXPER_XPORT_MLP; 16467 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16468 if (optp->len == 0) 16469 freemsg(mp6_attr_ctl); 16470 else 16471 qreply(q, mp6_attr_ctl); 16472 return (1); 16473 } 16474 16475 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16476 /* ARGSUSED */ 16477 int 16478 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16479 { 16480 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16481 16482 switch (level) { 16483 case MIB2_TCP: 16484 switch (name) { 16485 case 13: 16486 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16487 return (0); 16488 /* TODO: delete entry defined by tce */ 16489 return (1); 16490 default: 16491 return (0); 16492 } 16493 default: 16494 return (1); 16495 } 16496 } 16497 16498 /* Translate TCP state to MIB2 TCP state. */ 16499 static int 16500 tcp_snmp_state(tcp_t *tcp) 16501 { 16502 if (tcp == NULL) 16503 return (0); 16504 16505 switch (tcp->tcp_state) { 16506 case TCPS_CLOSED: 16507 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16508 case TCPS_BOUND: 16509 return (MIB2_TCP_closed); 16510 case TCPS_LISTEN: 16511 return (MIB2_TCP_listen); 16512 case TCPS_SYN_SENT: 16513 return (MIB2_TCP_synSent); 16514 case TCPS_SYN_RCVD: 16515 return (MIB2_TCP_synReceived); 16516 case TCPS_ESTABLISHED: 16517 return (MIB2_TCP_established); 16518 case TCPS_CLOSE_WAIT: 16519 return (MIB2_TCP_closeWait); 16520 case TCPS_FIN_WAIT_1: 16521 return (MIB2_TCP_finWait1); 16522 case TCPS_CLOSING: 16523 return (MIB2_TCP_closing); 16524 case TCPS_LAST_ACK: 16525 return (MIB2_TCP_lastAck); 16526 case TCPS_FIN_WAIT_2: 16527 return (MIB2_TCP_finWait2); 16528 case TCPS_TIME_WAIT: 16529 return (MIB2_TCP_timeWait); 16530 default: 16531 return (0); 16532 } 16533 } 16534 16535 static char tcp_report_header[] = 16536 "TCP " MI_COL_HDRPAD_STR 16537 "zone dest snxt suna " 16538 "swnd rnxt rack rwnd rto mss w sw rw t " 16539 "recent [lport,fport] state"; 16540 16541 /* 16542 * TCP status report triggered via the Named Dispatch mechanism. 16543 */ 16544 /* ARGSUSED */ 16545 static void 16546 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16547 cred_t *cr) 16548 { 16549 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16550 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16551 char cflag; 16552 in6_addr_t v6dst; 16553 char buf[80]; 16554 uint_t print_len, buf_len; 16555 16556 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16557 if (buf_len <= 0) 16558 return; 16559 16560 if (hashval >= 0) 16561 (void) sprintf(hash, "%03d ", hashval); 16562 else 16563 hash[0] = '\0'; 16564 16565 /* 16566 * Note that we use the remote address in the tcp_b structure. 16567 * This means that it will print out the real destination address, 16568 * not the next hop's address if source routing is used. This 16569 * avoid the confusion on the output because user may not 16570 * know that source routing is used for a connection. 16571 */ 16572 if (tcp->tcp_ipversion == IPV4_VERSION) { 16573 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16574 } else { 16575 v6dst = tcp->tcp_remote_v6; 16576 } 16577 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16578 /* 16579 * the ispriv checks are so that normal users cannot determine 16580 * sequence number information using NDD. 16581 */ 16582 16583 if (TCP_IS_DETACHED(tcp)) 16584 cflag = '*'; 16585 else 16586 cflag = ' '; 16587 print_len = snprintf((char *)mp->b_wptr, buf_len, 16588 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16589 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16590 hash, 16591 (void *)tcp, 16592 tcp->tcp_connp->conn_zoneid, 16593 addrbuf, 16594 (ispriv) ? tcp->tcp_snxt : 0, 16595 (ispriv) ? tcp->tcp_suna : 0, 16596 tcp->tcp_swnd, 16597 (ispriv) ? tcp->tcp_rnxt : 0, 16598 (ispriv) ? tcp->tcp_rack : 0, 16599 tcp->tcp_rwnd, 16600 tcp->tcp_rto, 16601 tcp->tcp_mss, 16602 tcp->tcp_snd_ws_ok, 16603 tcp->tcp_snd_ws, 16604 tcp->tcp_rcv_ws, 16605 tcp->tcp_snd_ts_ok, 16606 tcp->tcp_ts_recent, 16607 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16608 if (print_len < buf_len) { 16609 ((mblk_t *)mp)->b_wptr += print_len; 16610 } else { 16611 ((mblk_t *)mp)->b_wptr += buf_len; 16612 } 16613 } 16614 16615 /* 16616 * TCP status report (for listeners only) triggered via the Named Dispatch 16617 * mechanism. 16618 */ 16619 /* ARGSUSED */ 16620 static void 16621 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16622 { 16623 char addrbuf[INET6_ADDRSTRLEN]; 16624 in6_addr_t v6dst; 16625 uint_t print_len, buf_len; 16626 16627 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16628 if (buf_len <= 0) 16629 return; 16630 16631 if (tcp->tcp_ipversion == IPV4_VERSION) { 16632 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16633 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16634 } else { 16635 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16636 addrbuf, sizeof (addrbuf)); 16637 } 16638 print_len = snprintf((char *)mp->b_wptr, buf_len, 16639 "%03d " 16640 MI_COL_PTRFMT_STR 16641 "%d %s %05u %08u %d/%d/%d%c\n", 16642 hashval, (void *)tcp, 16643 tcp->tcp_connp->conn_zoneid, 16644 addrbuf, 16645 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16646 tcp->tcp_conn_req_seqnum, 16647 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16648 tcp->tcp_conn_req_max, 16649 tcp->tcp_syn_defense ? '*' : ' '); 16650 if (print_len < buf_len) { 16651 ((mblk_t *)mp)->b_wptr += print_len; 16652 } else { 16653 ((mblk_t *)mp)->b_wptr += buf_len; 16654 } 16655 } 16656 16657 /* TCP status report triggered via the Named Dispatch mechanism. */ 16658 /* ARGSUSED */ 16659 static int 16660 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16661 { 16662 tcp_t *tcp; 16663 int i; 16664 conn_t *connp; 16665 connf_t *connfp; 16666 zoneid_t zoneid; 16667 tcp_stack_t *tcps; 16668 ip_stack_t *ipst; 16669 16670 zoneid = Q_TO_CONN(q)->conn_zoneid; 16671 tcps = Q_TO_TCP(q)->tcp_tcps; 16672 16673 /* 16674 * Because of the ndd constraint, at most we can have 64K buffer 16675 * to put in all TCP info. So to be more efficient, just 16676 * allocate a 64K buffer here, assuming we need that large buffer. 16677 * This may be a problem as any user can read tcp_status. Therefore 16678 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16679 * This should be OK as normal users should not do this too often. 16680 */ 16681 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16682 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16683 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16684 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16685 return (0); 16686 } 16687 } 16688 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16689 /* The following may work even if we cannot get a large buf. */ 16690 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16691 return (0); 16692 } 16693 16694 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16695 16696 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16697 16698 ipst = tcps->tcps_netstack->netstack_ip; 16699 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16700 16701 connp = NULL; 16702 16703 while ((connp = 16704 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16705 tcp = connp->conn_tcp; 16706 if (zoneid != GLOBAL_ZONEID && 16707 zoneid != connp->conn_zoneid) 16708 continue; 16709 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16710 cr); 16711 } 16712 16713 } 16714 16715 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16716 return (0); 16717 } 16718 16719 /* TCP status report triggered via the Named Dispatch mechanism. */ 16720 /* ARGSUSED */ 16721 static int 16722 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16723 { 16724 tf_t *tbf; 16725 tcp_t *tcp; 16726 int i; 16727 zoneid_t zoneid; 16728 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16729 16730 zoneid = Q_TO_CONN(q)->conn_zoneid; 16731 16732 /* Refer to comments in tcp_status_report(). */ 16733 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16734 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16735 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16736 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16737 return (0); 16738 } 16739 } 16740 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16741 /* The following may work even if we cannot get a large buf. */ 16742 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16743 return (0); 16744 } 16745 16746 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16747 16748 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16749 tbf = &tcps->tcps_bind_fanout[i]; 16750 mutex_enter(&tbf->tf_lock); 16751 for (tcp = tbf->tf_tcp; tcp != NULL; 16752 tcp = tcp->tcp_bind_hash) { 16753 if (zoneid != GLOBAL_ZONEID && 16754 zoneid != tcp->tcp_connp->conn_zoneid) 16755 continue; 16756 CONN_INC_REF(tcp->tcp_connp); 16757 tcp_report_item(mp->b_cont, tcp, i, 16758 Q_TO_TCP(q), cr); 16759 CONN_DEC_REF(tcp->tcp_connp); 16760 } 16761 mutex_exit(&tbf->tf_lock); 16762 } 16763 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16764 return (0); 16765 } 16766 16767 /* TCP status report triggered via the Named Dispatch mechanism. */ 16768 /* ARGSUSED */ 16769 static int 16770 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16771 { 16772 connf_t *connfp; 16773 conn_t *connp; 16774 tcp_t *tcp; 16775 int i; 16776 zoneid_t zoneid; 16777 tcp_stack_t *tcps; 16778 ip_stack_t *ipst; 16779 16780 zoneid = Q_TO_CONN(q)->conn_zoneid; 16781 tcps = Q_TO_TCP(q)->tcp_tcps; 16782 16783 /* Refer to comments in tcp_status_report(). */ 16784 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16785 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16786 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16787 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16788 return (0); 16789 } 16790 } 16791 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16792 /* The following may work even if we cannot get a large buf. */ 16793 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16794 return (0); 16795 } 16796 16797 (void) mi_mpprintf(mp, 16798 " TCP " MI_COL_HDRPAD_STR 16799 "zone IP addr port seqnum backlog (q0/q/max)"); 16800 16801 ipst = tcps->tcps_netstack->netstack_ip; 16802 16803 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16804 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16805 connp = NULL; 16806 while ((connp = 16807 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16808 tcp = connp->conn_tcp; 16809 if (zoneid != GLOBAL_ZONEID && 16810 zoneid != connp->conn_zoneid) 16811 continue; 16812 tcp_report_listener(mp->b_cont, tcp, i); 16813 } 16814 } 16815 16816 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16817 return (0); 16818 } 16819 16820 /* TCP status report triggered via the Named Dispatch mechanism. */ 16821 /* ARGSUSED */ 16822 static int 16823 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16824 { 16825 connf_t *connfp; 16826 conn_t *connp; 16827 tcp_t *tcp; 16828 int i; 16829 zoneid_t zoneid; 16830 tcp_stack_t *tcps; 16831 ip_stack_t *ipst; 16832 16833 zoneid = Q_TO_CONN(q)->conn_zoneid; 16834 tcps = Q_TO_TCP(q)->tcp_tcps; 16835 ipst = tcps->tcps_netstack->netstack_ip; 16836 16837 /* Refer to comments in tcp_status_report(). */ 16838 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16839 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16840 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16841 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16842 return (0); 16843 } 16844 } 16845 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16846 /* The following may work even if we cannot get a large buf. */ 16847 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16848 return (0); 16849 } 16850 16851 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16852 ipst->ips_ipcl_conn_fanout_size); 16853 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16854 16855 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16856 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16857 connp = NULL; 16858 while ((connp = 16859 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16860 tcp = connp->conn_tcp; 16861 if (zoneid != GLOBAL_ZONEID && 16862 zoneid != connp->conn_zoneid) 16863 continue; 16864 tcp_report_item(mp->b_cont, tcp, i, 16865 Q_TO_TCP(q), cr); 16866 } 16867 } 16868 16869 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16870 return (0); 16871 } 16872 16873 /* TCP status report triggered via the Named Dispatch mechanism. */ 16874 /* ARGSUSED */ 16875 static int 16876 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16877 { 16878 tf_t *tf; 16879 tcp_t *tcp; 16880 int i; 16881 zoneid_t zoneid; 16882 tcp_stack_t *tcps; 16883 16884 zoneid = Q_TO_CONN(q)->conn_zoneid; 16885 tcps = Q_TO_TCP(q)->tcp_tcps; 16886 16887 /* Refer to comments in tcp_status_report(). */ 16888 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16889 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16890 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16891 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16892 return (0); 16893 } 16894 } 16895 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16896 /* The following may work even if we cannot get a large buf. */ 16897 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16898 return (0); 16899 } 16900 16901 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16902 16903 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16904 tf = &tcps->tcps_acceptor_fanout[i]; 16905 mutex_enter(&tf->tf_lock); 16906 for (tcp = tf->tf_tcp; tcp != NULL; 16907 tcp = tcp->tcp_acceptor_hash) { 16908 if (zoneid != GLOBAL_ZONEID && 16909 zoneid != tcp->tcp_connp->conn_zoneid) 16910 continue; 16911 tcp_report_item(mp->b_cont, tcp, i, 16912 Q_TO_TCP(q), cr); 16913 } 16914 mutex_exit(&tf->tf_lock); 16915 } 16916 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16917 return (0); 16918 } 16919 16920 /* 16921 * tcp_timer is the timer service routine. It handles the retransmission, 16922 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16923 * from the state of the tcp instance what kind of action needs to be done 16924 * at the time it is called. 16925 */ 16926 static void 16927 tcp_timer(void *arg) 16928 { 16929 mblk_t *mp; 16930 clock_t first_threshold; 16931 clock_t second_threshold; 16932 clock_t ms; 16933 uint32_t mss; 16934 conn_t *connp = (conn_t *)arg; 16935 tcp_t *tcp = connp->conn_tcp; 16936 tcp_stack_t *tcps = tcp->tcp_tcps; 16937 16938 tcp->tcp_timer_tid = 0; 16939 16940 if (tcp->tcp_fused) 16941 return; 16942 16943 first_threshold = tcp->tcp_first_timer_threshold; 16944 second_threshold = tcp->tcp_second_timer_threshold; 16945 switch (tcp->tcp_state) { 16946 case TCPS_IDLE: 16947 case TCPS_BOUND: 16948 case TCPS_LISTEN: 16949 return; 16950 case TCPS_SYN_RCVD: { 16951 tcp_t *listener = tcp->tcp_listener; 16952 16953 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16954 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16955 /* it's our first timeout */ 16956 tcp->tcp_syn_rcvd_timeout = 1; 16957 mutex_enter(&listener->tcp_eager_lock); 16958 listener->tcp_syn_rcvd_timeout++; 16959 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16960 /* 16961 * Make this eager available for drop if we 16962 * need to drop one to accomodate a new 16963 * incoming SYN request. 16964 */ 16965 MAKE_DROPPABLE(listener, tcp); 16966 } 16967 if (!listener->tcp_syn_defense && 16968 (listener->tcp_syn_rcvd_timeout > 16969 (tcps->tcps_conn_req_max_q0 >> 2)) && 16970 (tcps->tcps_conn_req_max_q0 > 200)) { 16971 /* We may be under attack. Put on a defense. */ 16972 listener->tcp_syn_defense = B_TRUE; 16973 cmn_err(CE_WARN, "High TCP connect timeout " 16974 "rate! System (port %d) may be under a " 16975 "SYN flood attack!", 16976 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16977 16978 listener->tcp_ip_addr_cache = kmem_zalloc( 16979 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16980 KM_NOSLEEP); 16981 } 16982 mutex_exit(&listener->tcp_eager_lock); 16983 } else if (listener != NULL) { 16984 mutex_enter(&listener->tcp_eager_lock); 16985 tcp->tcp_syn_rcvd_timeout++; 16986 if (tcp->tcp_syn_rcvd_timeout > 1 && 16987 !tcp->tcp_closemp_used) { 16988 /* 16989 * This is our second timeout. Put the tcp in 16990 * the list of droppable eagers to allow it to 16991 * be dropped, if needed. We don't check 16992 * whether tcp_dontdrop is set or not to 16993 * protect ourselve from a SYN attack where a 16994 * remote host can spoof itself as one of the 16995 * good IP source and continue to hold 16996 * resources too long. 16997 */ 16998 MAKE_DROPPABLE(listener, tcp); 16999 } 17000 mutex_exit(&listener->tcp_eager_lock); 17001 } 17002 } 17003 /* FALLTHRU */ 17004 case TCPS_SYN_SENT: 17005 first_threshold = tcp->tcp_first_ctimer_threshold; 17006 second_threshold = tcp->tcp_second_ctimer_threshold; 17007 break; 17008 case TCPS_ESTABLISHED: 17009 case TCPS_FIN_WAIT_1: 17010 case TCPS_CLOSING: 17011 case TCPS_CLOSE_WAIT: 17012 case TCPS_LAST_ACK: 17013 /* If we have data to rexmit */ 17014 if (tcp->tcp_suna != tcp->tcp_snxt) { 17015 clock_t time_to_wait; 17016 17017 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17018 if (!tcp->tcp_xmit_head) 17019 break; 17020 time_to_wait = lbolt - 17021 (clock_t)tcp->tcp_xmit_head->b_prev; 17022 time_to_wait = tcp->tcp_rto - 17023 TICK_TO_MSEC(time_to_wait); 17024 /* 17025 * If the timer fires too early, 1 clock tick earlier, 17026 * restart the timer. 17027 */ 17028 if (time_to_wait > msec_per_tick) { 17029 TCP_STAT(tcps, tcp_timer_fire_early); 17030 TCP_TIMER_RESTART(tcp, time_to_wait); 17031 return; 17032 } 17033 /* 17034 * When we probe zero windows, we force the swnd open. 17035 * If our peer acks with a closed window swnd will be 17036 * set to zero by tcp_rput(). As long as we are 17037 * receiving acks tcp_rput will 17038 * reset 'tcp_ms_we_have_waited' so as not to trip the 17039 * first and second interval actions. NOTE: the timer 17040 * interval is allowed to continue its exponential 17041 * backoff. 17042 */ 17043 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17044 if (tcp->tcp_debug) { 17045 (void) strlog(TCP_MOD_ID, 0, 1, 17046 SL_TRACE, "tcp_timer: zero win"); 17047 } 17048 } else { 17049 /* 17050 * After retransmission, we need to do 17051 * slow start. Set the ssthresh to one 17052 * half of current effective window and 17053 * cwnd to one MSS. Also reset 17054 * tcp_cwnd_cnt. 17055 * 17056 * Note that if tcp_ssthresh is reduced because 17057 * of ECN, do not reduce it again unless it is 17058 * already one window of data away (tcp_cwr 17059 * should then be cleared) or this is a 17060 * timeout for a retransmitted segment. 17061 */ 17062 uint32_t npkt; 17063 17064 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17065 npkt = ((tcp->tcp_timer_backoff ? 17066 tcp->tcp_cwnd_ssthresh : 17067 tcp->tcp_snxt - 17068 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17069 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17070 tcp->tcp_mss; 17071 } 17072 tcp->tcp_cwnd = tcp->tcp_mss; 17073 tcp->tcp_cwnd_cnt = 0; 17074 if (tcp->tcp_ecn_ok) { 17075 tcp->tcp_cwr = B_TRUE; 17076 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17077 tcp->tcp_ecn_cwr_sent = B_FALSE; 17078 } 17079 } 17080 break; 17081 } 17082 /* 17083 * We have something to send yet we cannot send. The 17084 * reason can be: 17085 * 17086 * 1. Zero send window: we need to do zero window probe. 17087 * 2. Zero cwnd: because of ECN, we need to "clock out 17088 * segments. 17089 * 3. SWS avoidance: receiver may have shrunk window, 17090 * reset our knowledge. 17091 * 17092 * Note that condition 2 can happen with either 1 or 17093 * 3. But 1 and 3 are exclusive. 17094 */ 17095 if (tcp->tcp_unsent != 0) { 17096 if (tcp->tcp_cwnd == 0) { 17097 /* 17098 * Set tcp_cwnd to 1 MSS so that a 17099 * new segment can be sent out. We 17100 * are "clocking out" new data when 17101 * the network is really congested. 17102 */ 17103 ASSERT(tcp->tcp_ecn_ok); 17104 tcp->tcp_cwnd = tcp->tcp_mss; 17105 } 17106 if (tcp->tcp_swnd == 0) { 17107 /* Extend window for zero window probe */ 17108 tcp->tcp_swnd++; 17109 tcp->tcp_zero_win_probe = B_TRUE; 17110 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17111 } else { 17112 /* 17113 * Handle timeout from sender SWS avoidance. 17114 * Reset our knowledge of the max send window 17115 * since the receiver might have reduced its 17116 * receive buffer. Avoid setting tcp_max_swnd 17117 * to one since that will essentially disable 17118 * the SWS checks. 17119 * 17120 * Note that since we don't have a SWS 17121 * state variable, if the timeout is set 17122 * for ECN but not for SWS, this 17123 * code will also be executed. This is 17124 * fine as tcp_max_swnd is updated 17125 * constantly and it will not affect 17126 * anything. 17127 */ 17128 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17129 } 17130 tcp_wput_data(tcp, NULL, B_FALSE); 17131 return; 17132 } 17133 /* Is there a FIN that needs to be to re retransmitted? */ 17134 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17135 !tcp->tcp_fin_acked) 17136 break; 17137 /* Nothing to do, return without restarting timer. */ 17138 TCP_STAT(tcps, tcp_timer_fire_miss); 17139 return; 17140 case TCPS_FIN_WAIT_2: 17141 /* 17142 * User closed the TCP endpoint and peer ACK'ed our FIN. 17143 * We waited some time for for peer's FIN, but it hasn't 17144 * arrived. We flush the connection now to avoid 17145 * case where the peer has rebooted. 17146 */ 17147 if (TCP_IS_DETACHED(tcp)) { 17148 (void) tcp_clean_death(tcp, 0, 23); 17149 } else { 17150 TCP_TIMER_RESTART(tcp, 17151 tcps->tcps_fin_wait_2_flush_interval); 17152 } 17153 return; 17154 case TCPS_TIME_WAIT: 17155 (void) tcp_clean_death(tcp, 0, 24); 17156 return; 17157 default: 17158 if (tcp->tcp_debug) { 17159 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17160 "tcp_timer: strange state (%d) %s", 17161 tcp->tcp_state, tcp_display(tcp, NULL, 17162 DISP_PORT_ONLY)); 17163 } 17164 return; 17165 } 17166 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17167 /* 17168 * For zero window probe, we need to send indefinitely, 17169 * unless we have not heard from the other side for some 17170 * time... 17171 */ 17172 if ((tcp->tcp_zero_win_probe == 0) || 17173 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17174 second_threshold)) { 17175 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17176 /* 17177 * If TCP is in SYN_RCVD state, send back a 17178 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17179 * should be zero in TCPS_SYN_RCVD state. 17180 */ 17181 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17182 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17183 "in SYN_RCVD", 17184 tcp, tcp->tcp_snxt, 17185 tcp->tcp_rnxt, TH_RST | TH_ACK); 17186 } 17187 (void) tcp_clean_death(tcp, 17188 tcp->tcp_client_errno ? 17189 tcp->tcp_client_errno : ETIMEDOUT, 25); 17190 return; 17191 } else { 17192 /* 17193 * Set tcp_ms_we_have_waited to second_threshold 17194 * so that in next timeout, we will do the above 17195 * check (lbolt - tcp_last_recv_time). This is 17196 * also to avoid overflow. 17197 * 17198 * We don't need to decrement tcp_timer_backoff 17199 * to avoid overflow because it will be decremented 17200 * later if new timeout value is greater than 17201 * tcp_rexmit_interval_max. In the case when 17202 * tcp_rexmit_interval_max is greater than 17203 * second_threshold, it means that we will wait 17204 * longer than second_threshold to send the next 17205 * window probe. 17206 */ 17207 tcp->tcp_ms_we_have_waited = second_threshold; 17208 } 17209 } else if (ms > first_threshold) { 17210 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17211 tcp->tcp_xmit_head != NULL) { 17212 tcp->tcp_xmit_head = 17213 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17214 } 17215 /* 17216 * We have been retransmitting for too long... The RTT 17217 * we calculated is probably incorrect. Reinitialize it. 17218 * Need to compensate for 0 tcp_rtt_sa. Reset 17219 * tcp_rtt_update so that we won't accidentally cache a 17220 * bad value. But only do this if this is not a zero 17221 * window probe. 17222 */ 17223 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17224 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17225 (tcp->tcp_rtt_sa >> 5); 17226 tcp->tcp_rtt_sa = 0; 17227 tcp_ip_notify(tcp); 17228 tcp->tcp_rtt_update = 0; 17229 } 17230 } 17231 tcp->tcp_timer_backoff++; 17232 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17233 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17234 tcps->tcps_rexmit_interval_min) { 17235 /* 17236 * This means the original RTO is tcp_rexmit_interval_min. 17237 * So we will use tcp_rexmit_interval_min as the RTO value 17238 * and do the backoff. 17239 */ 17240 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17241 } else { 17242 ms <<= tcp->tcp_timer_backoff; 17243 } 17244 if (ms > tcps->tcps_rexmit_interval_max) { 17245 ms = tcps->tcps_rexmit_interval_max; 17246 /* 17247 * ms is at max, decrement tcp_timer_backoff to avoid 17248 * overflow. 17249 */ 17250 tcp->tcp_timer_backoff--; 17251 } 17252 tcp->tcp_ms_we_have_waited += ms; 17253 if (tcp->tcp_zero_win_probe == 0) { 17254 tcp->tcp_rto = ms; 17255 } 17256 TCP_TIMER_RESTART(tcp, ms); 17257 /* 17258 * This is after a timeout and tcp_rto is backed off. Set 17259 * tcp_set_timer to 1 so that next time RTO is updated, we will 17260 * restart the timer with a correct value. 17261 */ 17262 tcp->tcp_set_timer = 1; 17263 mss = tcp->tcp_snxt - tcp->tcp_suna; 17264 if (mss > tcp->tcp_mss) 17265 mss = tcp->tcp_mss; 17266 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17267 mss = tcp->tcp_swnd; 17268 17269 if ((mp = tcp->tcp_xmit_head) != NULL) 17270 mp->b_prev = (mblk_t *)lbolt; 17271 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17272 B_TRUE); 17273 17274 /* 17275 * When slow start after retransmission begins, start with 17276 * this seq no. tcp_rexmit_max marks the end of special slow 17277 * start phase. tcp_snd_burst controls how many segments 17278 * can be sent because of an ack. 17279 */ 17280 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17281 tcp->tcp_snd_burst = TCP_CWND_SS; 17282 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17283 (tcp->tcp_unsent == 0)) { 17284 tcp->tcp_rexmit_max = tcp->tcp_fss; 17285 } else { 17286 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17287 } 17288 tcp->tcp_rexmit = B_TRUE; 17289 tcp->tcp_dupack_cnt = 0; 17290 17291 /* 17292 * Remove all rexmit SACK blk to start from fresh. 17293 */ 17294 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17295 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17296 tcp->tcp_num_notsack_blk = 0; 17297 tcp->tcp_cnt_notsack_list = 0; 17298 } 17299 if (mp == NULL) { 17300 return; 17301 } 17302 /* Attach credentials to retransmitted initial SYNs. */ 17303 if (tcp->tcp_state == TCPS_SYN_SENT) { 17304 mblk_setcred(mp, tcp->tcp_cred); 17305 DB_CPID(mp) = tcp->tcp_cpid; 17306 } 17307 17308 tcp->tcp_csuna = tcp->tcp_snxt; 17309 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17310 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17311 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17312 tcp_send_data(tcp, tcp->tcp_wq, mp); 17313 17314 } 17315 17316 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17317 static void 17318 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17319 { 17320 conn_t *connp; 17321 17322 switch (tcp->tcp_state) { 17323 case TCPS_BOUND: 17324 case TCPS_LISTEN: 17325 break; 17326 default: 17327 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17328 return; 17329 } 17330 17331 /* 17332 * Need to clean up all the eagers since after the unbind, segments 17333 * will no longer be delivered to this listener stream. 17334 */ 17335 mutex_enter(&tcp->tcp_eager_lock); 17336 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17337 tcp_eager_cleanup(tcp, 0); 17338 } 17339 mutex_exit(&tcp->tcp_eager_lock); 17340 17341 if (tcp->tcp_ipversion == IPV4_VERSION) { 17342 tcp->tcp_ipha->ipha_src = 0; 17343 } else { 17344 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17345 } 17346 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17347 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17348 tcp_bind_hash_remove(tcp); 17349 tcp->tcp_state = TCPS_IDLE; 17350 tcp->tcp_mdt = B_FALSE; 17351 /* Send M_FLUSH according to TPI */ 17352 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17353 connp = tcp->tcp_connp; 17354 connp->conn_mdt_ok = B_FALSE; 17355 ipcl_hash_remove(connp); 17356 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17357 mp = mi_tpi_ok_ack_alloc(mp); 17358 putnext(tcp->tcp_rq, mp); 17359 } 17360 17361 /* 17362 * Don't let port fall into the privileged range. 17363 * Since the extra privileged ports can be arbitrary we also 17364 * ensure that we exclude those from consideration. 17365 * tcp_g_epriv_ports is not sorted thus we loop over it until 17366 * there are no changes. 17367 * 17368 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17369 * but instead the code relies on: 17370 * - the fact that the address of the array and its size never changes 17371 * - the atomic assignment of the elements of the array 17372 * 17373 * Returns 0 if there are no more ports available. 17374 * 17375 * TS note: skip multilevel ports. 17376 */ 17377 static in_port_t 17378 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17379 { 17380 int i; 17381 boolean_t restart = B_FALSE; 17382 tcp_stack_t *tcps = tcp->tcp_tcps; 17383 17384 if (random && tcp_random_anon_port != 0) { 17385 (void) random_get_pseudo_bytes((uint8_t *)&port, 17386 sizeof (in_port_t)); 17387 /* 17388 * Unless changed by a sys admin, the smallest anon port 17389 * is 32768 and the largest anon port is 65535. It is 17390 * very likely (50%) for the random port to be smaller 17391 * than the smallest anon port. When that happens, 17392 * add port % (anon port range) to the smallest anon 17393 * port to get the random port. It should fall into the 17394 * valid anon port range. 17395 */ 17396 if (port < tcps->tcps_smallest_anon_port) { 17397 port = tcps->tcps_smallest_anon_port + 17398 port % (tcps->tcps_largest_anon_port - 17399 tcps->tcps_smallest_anon_port); 17400 } 17401 } 17402 17403 retry: 17404 if (port < tcps->tcps_smallest_anon_port) 17405 port = (in_port_t)tcps->tcps_smallest_anon_port; 17406 17407 if (port > tcps->tcps_largest_anon_port) { 17408 if (restart) 17409 return (0); 17410 restart = B_TRUE; 17411 port = (in_port_t)tcps->tcps_smallest_anon_port; 17412 } 17413 17414 if (port < tcps->tcps_smallest_nonpriv_port) 17415 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17416 17417 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17418 if (port == tcps->tcps_g_epriv_ports[i]) { 17419 port++; 17420 /* 17421 * Make sure whether the port is in the 17422 * valid range. 17423 */ 17424 goto retry; 17425 } 17426 } 17427 if (is_system_labeled() && 17428 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17429 IPPROTO_TCP, B_TRUE)) != 0) { 17430 port = i; 17431 goto retry; 17432 } 17433 return (port); 17434 } 17435 17436 /* 17437 * Return the next anonymous port in the privileged port range for 17438 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17439 * downwards. This is the same behavior as documented in the userland 17440 * library call rresvport(3N). 17441 * 17442 * TS note: skip multilevel ports. 17443 */ 17444 static in_port_t 17445 tcp_get_next_priv_port(const tcp_t *tcp) 17446 { 17447 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17448 in_port_t nextport; 17449 boolean_t restart = B_FALSE; 17450 tcp_stack_t *tcps = tcp->tcp_tcps; 17451 retry: 17452 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17453 next_priv_port >= IPPORT_RESERVED) { 17454 next_priv_port = IPPORT_RESERVED - 1; 17455 if (restart) 17456 return (0); 17457 restart = B_TRUE; 17458 } 17459 if (is_system_labeled() && 17460 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17461 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17462 next_priv_port = nextport; 17463 goto retry; 17464 } 17465 return (next_priv_port--); 17466 } 17467 17468 /* The write side r/w procedure. */ 17469 17470 #if CCS_STATS 17471 struct { 17472 struct { 17473 int64_t count, bytes; 17474 } tot, hit; 17475 } wrw_stats; 17476 #endif 17477 17478 /* 17479 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17480 * messages. 17481 */ 17482 /* ARGSUSED */ 17483 static void 17484 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17485 { 17486 conn_t *connp = (conn_t *)arg; 17487 tcp_t *tcp = connp->conn_tcp; 17488 queue_t *q = tcp->tcp_wq; 17489 17490 ASSERT(DB_TYPE(mp) != M_IOCTL); 17491 /* 17492 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17493 * Once the close starts, streamhead and sockfs will not let any data 17494 * packets come down (close ensures that there are no threads using the 17495 * queue and no new threads will come down) but since qprocsoff() 17496 * hasn't happened yet, a M_FLUSH or some non data message might 17497 * get reflected back (in response to our own FLUSHRW) and get 17498 * processed after tcp_close() is done. The conn would still be valid 17499 * because a ref would have added but we need to check the state 17500 * before actually processing the packet. 17501 */ 17502 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17503 freemsg(mp); 17504 return; 17505 } 17506 17507 switch (DB_TYPE(mp)) { 17508 case M_IOCDATA: 17509 tcp_wput_iocdata(tcp, mp); 17510 break; 17511 case M_FLUSH: 17512 tcp_wput_flush(tcp, mp); 17513 break; 17514 default: 17515 CALL_IP_WPUT(connp, q, mp); 17516 break; 17517 } 17518 } 17519 17520 /* 17521 * The TCP fast path write put procedure. 17522 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17523 */ 17524 /* ARGSUSED */ 17525 void 17526 tcp_output(void *arg, mblk_t *mp, void *arg2) 17527 { 17528 int len; 17529 int hdrlen; 17530 int plen; 17531 mblk_t *mp1; 17532 uchar_t *rptr; 17533 uint32_t snxt; 17534 tcph_t *tcph; 17535 struct datab *db; 17536 uint32_t suna; 17537 uint32_t mss; 17538 ipaddr_t *dst; 17539 ipaddr_t *src; 17540 uint32_t sum; 17541 int usable; 17542 conn_t *connp = (conn_t *)arg; 17543 tcp_t *tcp = connp->conn_tcp; 17544 uint32_t msize; 17545 tcp_stack_t *tcps = tcp->tcp_tcps; 17546 17547 /* 17548 * Try and ASSERT the minimum possible references on the 17549 * conn early enough. Since we are executing on write side, 17550 * the connection is obviously not detached and that means 17551 * there is a ref each for TCP and IP. Since we are behind 17552 * the squeue, the minimum references needed are 3. If the 17553 * conn is in classifier hash list, there should be an 17554 * extra ref for that (we check both the possibilities). 17555 */ 17556 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17557 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17558 17559 ASSERT(DB_TYPE(mp) == M_DATA); 17560 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17561 17562 mutex_enter(&tcp->tcp_non_sq_lock); 17563 tcp->tcp_squeue_bytes -= msize; 17564 mutex_exit(&tcp->tcp_non_sq_lock); 17565 17566 /* Bypass tcp protocol for fused tcp loopback */ 17567 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17568 return; 17569 17570 mss = tcp->tcp_mss; 17571 if (tcp->tcp_xmit_zc_clean) 17572 mp = tcp_zcopy_backoff(tcp, mp, 0); 17573 17574 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17575 len = (int)(mp->b_wptr - mp->b_rptr); 17576 17577 /* 17578 * Criteria for fast path: 17579 * 17580 * 1. no unsent data 17581 * 2. single mblk in request 17582 * 3. connection established 17583 * 4. data in mblk 17584 * 5. len <= mss 17585 * 6. no tcp_valid bits 17586 */ 17587 if ((tcp->tcp_unsent != 0) || 17588 (tcp->tcp_cork) || 17589 (mp->b_cont != NULL) || 17590 (tcp->tcp_state != TCPS_ESTABLISHED) || 17591 (len == 0) || 17592 (len > mss) || 17593 (tcp->tcp_valid_bits != 0)) { 17594 tcp_wput_data(tcp, mp, B_FALSE); 17595 return; 17596 } 17597 17598 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17599 ASSERT(tcp->tcp_fin_sent == 0); 17600 17601 /* queue new packet onto retransmission queue */ 17602 if (tcp->tcp_xmit_head == NULL) { 17603 tcp->tcp_xmit_head = mp; 17604 } else { 17605 tcp->tcp_xmit_last->b_cont = mp; 17606 } 17607 tcp->tcp_xmit_last = mp; 17608 tcp->tcp_xmit_tail = mp; 17609 17610 /* find out how much we can send */ 17611 /* BEGIN CSTYLED */ 17612 /* 17613 * un-acked usable 17614 * |--------------|-----------------| 17615 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17616 */ 17617 /* END CSTYLED */ 17618 17619 /* start sending from tcp_snxt */ 17620 snxt = tcp->tcp_snxt; 17621 17622 /* 17623 * Check to see if this connection has been idled for some 17624 * time and no ACK is expected. If it is, we need to slow 17625 * start again to get back the connection's "self-clock" as 17626 * described in VJ's paper. 17627 * 17628 * Refer to the comment in tcp_mss_set() for the calculation 17629 * of tcp_cwnd after idle. 17630 */ 17631 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17632 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17633 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17634 } 17635 17636 usable = tcp->tcp_swnd; /* tcp window size */ 17637 if (usable > tcp->tcp_cwnd) 17638 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17639 usable -= snxt; /* subtract stuff already sent */ 17640 suna = tcp->tcp_suna; 17641 usable += suna; 17642 /* usable can be < 0 if the congestion window is smaller */ 17643 if (len > usable) { 17644 /* Can't send complete M_DATA in one shot */ 17645 goto slow; 17646 } 17647 17648 mutex_enter(&tcp->tcp_non_sq_lock); 17649 if (tcp->tcp_flow_stopped && 17650 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17651 tcp_clrqfull(tcp); 17652 } 17653 mutex_exit(&tcp->tcp_non_sq_lock); 17654 17655 /* 17656 * determine if anything to send (Nagle). 17657 * 17658 * 1. len < tcp_mss (i.e. small) 17659 * 2. unacknowledged data present 17660 * 3. len < nagle limit 17661 * 4. last packet sent < nagle limit (previous packet sent) 17662 */ 17663 if ((len < mss) && (snxt != suna) && 17664 (len < (int)tcp->tcp_naglim) && 17665 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17666 /* 17667 * This was the first unsent packet and normally 17668 * mss < xmit_hiwater so there is no need to worry 17669 * about flow control. The next packet will go 17670 * through the flow control check in tcp_wput_data(). 17671 */ 17672 /* leftover work from above */ 17673 tcp->tcp_unsent = len; 17674 tcp->tcp_xmit_tail_unsent = len; 17675 17676 return; 17677 } 17678 17679 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17680 17681 if (snxt == suna) { 17682 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17683 } 17684 17685 /* we have always sent something */ 17686 tcp->tcp_rack_cnt = 0; 17687 17688 tcp->tcp_snxt = snxt + len; 17689 tcp->tcp_rack = tcp->tcp_rnxt; 17690 17691 if ((mp1 = dupb(mp)) == 0) 17692 goto no_memory; 17693 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17694 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17695 17696 /* adjust tcp header information */ 17697 tcph = tcp->tcp_tcph; 17698 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17699 17700 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17701 sum = (sum >> 16) + (sum & 0xFFFF); 17702 U16_TO_ABE16(sum, tcph->th_sum); 17703 17704 U32_TO_ABE32(snxt, tcph->th_seq); 17705 17706 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17707 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17708 BUMP_LOCAL(tcp->tcp_obsegs); 17709 17710 /* Update the latest receive window size in TCP header. */ 17711 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17712 tcph->th_win); 17713 17714 tcp->tcp_last_sent_len = (ushort_t)len; 17715 17716 plen = len + tcp->tcp_hdr_len; 17717 17718 if (tcp->tcp_ipversion == IPV4_VERSION) { 17719 tcp->tcp_ipha->ipha_length = htons(plen); 17720 } else { 17721 tcp->tcp_ip6h->ip6_plen = htons(plen - 17722 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17723 } 17724 17725 /* see if we need to allocate a mblk for the headers */ 17726 hdrlen = tcp->tcp_hdr_len; 17727 rptr = mp1->b_rptr - hdrlen; 17728 db = mp1->b_datap; 17729 if ((db->db_ref != 2) || rptr < db->db_base || 17730 (!OK_32PTR(rptr))) { 17731 /* NOTE: we assume allocb returns an OK_32PTR */ 17732 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17733 tcps->tcps_wroff_xtra, BPRI_MED); 17734 if (!mp) { 17735 freemsg(mp1); 17736 goto no_memory; 17737 } 17738 mp->b_cont = mp1; 17739 mp1 = mp; 17740 /* Leave room for Link Level header */ 17741 /* hdrlen = tcp->tcp_hdr_len; */ 17742 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17743 mp1->b_wptr = &rptr[hdrlen]; 17744 } 17745 mp1->b_rptr = rptr; 17746 17747 /* Fill in the timestamp option. */ 17748 if (tcp->tcp_snd_ts_ok) { 17749 U32_TO_BE32((uint32_t)lbolt, 17750 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17751 U32_TO_BE32(tcp->tcp_ts_recent, 17752 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17753 } else { 17754 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17755 } 17756 17757 /* copy header into outgoing packet */ 17758 dst = (ipaddr_t *)rptr; 17759 src = (ipaddr_t *)tcp->tcp_iphc; 17760 dst[0] = src[0]; 17761 dst[1] = src[1]; 17762 dst[2] = src[2]; 17763 dst[3] = src[3]; 17764 dst[4] = src[4]; 17765 dst[5] = src[5]; 17766 dst[6] = src[6]; 17767 dst[7] = src[7]; 17768 dst[8] = src[8]; 17769 dst[9] = src[9]; 17770 if (hdrlen -= 40) { 17771 hdrlen >>= 2; 17772 dst += 10; 17773 src += 10; 17774 do { 17775 *dst++ = *src++; 17776 } while (--hdrlen); 17777 } 17778 17779 /* 17780 * Set the ECN info in the TCP header. Note that this 17781 * is not the template header. 17782 */ 17783 if (tcp->tcp_ecn_ok) { 17784 SET_ECT(tcp, rptr); 17785 17786 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17787 if (tcp->tcp_ecn_echo_on) 17788 tcph->th_flags[0] |= TH_ECE; 17789 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17790 tcph->th_flags[0] |= TH_CWR; 17791 tcp->tcp_ecn_cwr_sent = B_TRUE; 17792 } 17793 } 17794 17795 if (tcp->tcp_ip_forward_progress) { 17796 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17797 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17798 tcp->tcp_ip_forward_progress = B_FALSE; 17799 } 17800 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17801 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17802 return; 17803 17804 /* 17805 * If we ran out of memory, we pretend to have sent the packet 17806 * and that it was lost on the wire. 17807 */ 17808 no_memory: 17809 return; 17810 17811 slow: 17812 /* leftover work from above */ 17813 tcp->tcp_unsent = len; 17814 tcp->tcp_xmit_tail_unsent = len; 17815 tcp_wput_data(tcp, NULL, B_FALSE); 17816 } 17817 17818 /* 17819 * The function called through squeue to get behind eager's perimeter to 17820 * finish the accept processing. 17821 */ 17822 /* ARGSUSED */ 17823 void 17824 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17825 { 17826 conn_t *connp = (conn_t *)arg; 17827 tcp_t *tcp = connp->conn_tcp; 17828 queue_t *q = tcp->tcp_rq; 17829 mblk_t *mp1; 17830 mblk_t *stropt_mp = mp; 17831 struct stroptions *stropt; 17832 uint_t thwin; 17833 tcp_stack_t *tcps = tcp->tcp_tcps; 17834 17835 /* 17836 * Drop the eager's ref on the listener, that was placed when 17837 * this eager began life in tcp_conn_request. 17838 */ 17839 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17840 17841 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17842 /* 17843 * Someone blewoff the eager before we could finish 17844 * the accept. 17845 * 17846 * The only reason eager exists it because we put in 17847 * a ref on it when conn ind went up. We need to send 17848 * a disconnect indication up while the last reference 17849 * on the eager will be dropped by the squeue when we 17850 * return. 17851 */ 17852 ASSERT(tcp->tcp_listener == NULL); 17853 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17854 struct T_discon_ind *tdi; 17855 17856 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17857 /* 17858 * Let us reuse the incoming mblk to avoid memory 17859 * allocation failure problems. We know that the 17860 * size of the incoming mblk i.e. stroptions is greater 17861 * than sizeof T_discon_ind. So the reallocb below 17862 * can't fail. 17863 */ 17864 freemsg(mp->b_cont); 17865 mp->b_cont = NULL; 17866 ASSERT(DB_REF(mp) == 1); 17867 mp = reallocb(mp, sizeof (struct T_discon_ind), 17868 B_FALSE); 17869 ASSERT(mp != NULL); 17870 DB_TYPE(mp) = M_PROTO; 17871 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17872 tdi = (struct T_discon_ind *)mp->b_rptr; 17873 if (tcp->tcp_issocket) { 17874 tdi->DISCON_reason = ECONNREFUSED; 17875 tdi->SEQ_number = 0; 17876 } else { 17877 tdi->DISCON_reason = ENOPROTOOPT; 17878 tdi->SEQ_number = 17879 tcp->tcp_conn_req_seqnum; 17880 } 17881 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17882 putnext(q, mp); 17883 } else { 17884 freemsg(mp); 17885 } 17886 if (tcp->tcp_hard_binding) { 17887 tcp->tcp_hard_binding = B_FALSE; 17888 tcp->tcp_hard_bound = B_TRUE; 17889 } 17890 tcp->tcp_detached = B_FALSE; 17891 return; 17892 } 17893 17894 mp1 = stropt_mp->b_cont; 17895 stropt_mp->b_cont = NULL; 17896 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17897 stropt = (struct stroptions *)stropt_mp->b_rptr; 17898 17899 while (mp1 != NULL) { 17900 mp = mp1; 17901 mp1 = mp1->b_cont; 17902 mp->b_cont = NULL; 17903 tcp->tcp_drop_opt_ack_cnt++; 17904 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17905 } 17906 mp = NULL; 17907 17908 /* 17909 * For a loopback connection with tcp_direct_sockfs on, note that 17910 * we don't have to protect tcp_rcv_list yet because synchronous 17911 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17912 * possibly race with us. 17913 */ 17914 17915 /* 17916 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17917 * properly. This is the first time we know of the acceptor' 17918 * queue. So we do it here. 17919 */ 17920 if (tcp->tcp_rcv_list == NULL) { 17921 /* 17922 * Recv queue is empty, tcp_rwnd should not have changed. 17923 * That means it should be equal to the listener's tcp_rwnd. 17924 */ 17925 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17926 } else { 17927 #ifdef DEBUG 17928 uint_t cnt = 0; 17929 17930 mp1 = tcp->tcp_rcv_list; 17931 while ((mp = mp1) != NULL) { 17932 mp1 = mp->b_next; 17933 cnt += msgdsize(mp); 17934 } 17935 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17936 #endif 17937 /* There is some data, add them back to get the max. */ 17938 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17939 } 17940 17941 stropt->so_flags = SO_HIWAT; 17942 stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 17943 17944 stropt->so_flags |= SO_MAXBLK; 17945 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17946 17947 /* 17948 * This is the first time we run on the correct 17949 * queue after tcp_accept. So fix all the q parameters 17950 * here. 17951 */ 17952 /* Allocate room for SACK options if needed. */ 17953 stropt->so_flags |= SO_WROFF; 17954 if (tcp->tcp_fused) { 17955 ASSERT(tcp->tcp_loopback); 17956 ASSERT(tcp->tcp_loopback_peer != NULL); 17957 /* 17958 * For fused tcp loopback, set the stream head's write 17959 * offset value to zero since we won't be needing any room 17960 * for TCP/IP headers. This would also improve performance 17961 * since it would reduce the amount of work done by kmem. 17962 * Non-fused tcp loopback case is handled separately below. 17963 */ 17964 stropt->so_wroff = 0; 17965 /* 17966 * Record the stream head's high water mark for this endpoint; 17967 * this is used for flow-control purposes in tcp_fuse_output(). 17968 */ 17969 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17970 /* 17971 * Update the peer's transmit parameters according to 17972 * our recently calculated high water mark value. 17973 */ 17974 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17975 } else if (tcp->tcp_snd_sack_ok) { 17976 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17977 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17978 } else { 17979 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17980 tcps->tcps_wroff_xtra); 17981 } 17982 17983 /* 17984 * If this is endpoint is handling SSL, then reserve extra 17985 * offset and space at the end. 17986 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17987 * overriding the previous setting. The extra cost of signing and 17988 * encrypting multiple MSS-size records (12 of them with Ethernet), 17989 * instead of a single contiguous one by the stream head 17990 * largely outweighs the statistical reduction of ACKs, when 17991 * applicable. The peer will also save on decyption and verification 17992 * costs. 17993 */ 17994 if (tcp->tcp_kssl_ctx != NULL) { 17995 stropt->so_wroff += SSL3_WROFFSET; 17996 17997 stropt->so_flags |= SO_TAIL; 17998 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17999 18000 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18001 } 18002 18003 /* Send the options up */ 18004 putnext(q, stropt_mp); 18005 18006 /* 18007 * Pass up any data and/or a fin that has been received. 18008 * 18009 * Adjust receive window in case it had decreased 18010 * (because there is data <=> tcp_rcv_list != NULL) 18011 * while the connection was detached. Note that 18012 * in case the eager was flow-controlled, w/o this 18013 * code, the rwnd may never open up again! 18014 */ 18015 if (tcp->tcp_rcv_list != NULL) { 18016 /* We drain directly in case of fused tcp loopback */ 18017 if (!tcp->tcp_fused && canputnext(q)) { 18018 tcp->tcp_rwnd = q->q_hiwat; 18019 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18020 << tcp->tcp_rcv_ws; 18021 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18022 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18023 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18024 tcp_xmit_ctl(NULL, 18025 tcp, (tcp->tcp_swnd == 0) ? 18026 tcp->tcp_suna : tcp->tcp_snxt, 18027 tcp->tcp_rnxt, TH_ACK); 18028 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18029 } 18030 18031 } 18032 (void) tcp_rcv_drain(q, tcp); 18033 18034 /* 18035 * For fused tcp loopback, back-enable peer endpoint 18036 * if it's currently flow-controlled. 18037 */ 18038 if (tcp->tcp_fused) { 18039 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18040 18041 ASSERT(peer_tcp != NULL); 18042 ASSERT(peer_tcp->tcp_fused); 18043 /* 18044 * In order to change the peer's tcp_flow_stopped, 18045 * we need to take locks for both end points. The 18046 * highest address is taken first. 18047 */ 18048 if (peer_tcp > tcp) { 18049 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18050 mutex_enter(&tcp->tcp_non_sq_lock); 18051 } else { 18052 mutex_enter(&tcp->tcp_non_sq_lock); 18053 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18054 } 18055 if (peer_tcp->tcp_flow_stopped) { 18056 tcp_clrqfull(peer_tcp); 18057 TCP_STAT(tcps, tcp_fusion_backenabled); 18058 } 18059 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18060 mutex_exit(&tcp->tcp_non_sq_lock); 18061 } 18062 } 18063 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18064 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18065 mp = mi_tpi_ordrel_ind(); 18066 if (mp) { 18067 tcp->tcp_ordrel_done = B_TRUE; 18068 putnext(q, mp); 18069 if (tcp->tcp_deferred_clean_death) { 18070 /* 18071 * tcp_clean_death was deferred 18072 * for T_ORDREL_IND - do it now 18073 */ 18074 (void) tcp_clean_death(tcp, 18075 tcp->tcp_client_errno, 21); 18076 tcp->tcp_deferred_clean_death = B_FALSE; 18077 } 18078 } else { 18079 /* 18080 * Run the orderly release in the 18081 * service routine. 18082 */ 18083 qenable(q); 18084 } 18085 } 18086 if (tcp->tcp_hard_binding) { 18087 tcp->tcp_hard_binding = B_FALSE; 18088 tcp->tcp_hard_bound = B_TRUE; 18089 } 18090 18091 tcp->tcp_detached = B_FALSE; 18092 18093 /* We can enable synchronous streams now */ 18094 if (tcp->tcp_fused) { 18095 tcp_fuse_syncstr_enable_pair(tcp); 18096 } 18097 18098 if (tcp->tcp_ka_enabled) { 18099 tcp->tcp_ka_last_intrvl = 0; 18100 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18101 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18102 } 18103 18104 /* 18105 * At this point, eager is fully established and will 18106 * have the following references - 18107 * 18108 * 2 references for connection to exist (1 for TCP and 1 for IP). 18109 * 1 reference for the squeue which will be dropped by the squeue as 18110 * soon as this function returns. 18111 * There will be 1 additonal reference for being in classifier 18112 * hash list provided something bad hasn't happened. 18113 */ 18114 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18115 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18116 } 18117 18118 /* 18119 * The function called through squeue to get behind listener's perimeter to 18120 * send a deffered conn_ind. 18121 */ 18122 /* ARGSUSED */ 18123 void 18124 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18125 { 18126 conn_t *connp = (conn_t *)arg; 18127 tcp_t *listener = connp->conn_tcp; 18128 18129 if (listener->tcp_state == TCPS_CLOSED || 18130 TCP_IS_DETACHED(listener)) { 18131 /* 18132 * If listener has closed, it would have caused a 18133 * a cleanup/blowoff to happen for the eager. 18134 */ 18135 tcp_t *tcp; 18136 struct T_conn_ind *conn_ind; 18137 18138 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18139 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18140 conn_ind->OPT_length); 18141 /* 18142 * We need to drop the ref on eager that was put 18143 * tcp_rput_data() before trying to send the conn_ind 18144 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18145 * and tcp_wput_accept() is sending this deferred conn_ind but 18146 * listener is closed so we drop the ref. 18147 */ 18148 CONN_DEC_REF(tcp->tcp_connp); 18149 freemsg(mp); 18150 return; 18151 } 18152 putnext(listener->tcp_rq, mp); 18153 } 18154 18155 18156 /* 18157 * This is the STREAMS entry point for T_CONN_RES coming down on 18158 * Acceptor STREAM when sockfs listener does accept processing. 18159 * Read the block comment on top of tcp_conn_request(). 18160 */ 18161 void 18162 tcp_wput_accept(queue_t *q, mblk_t *mp) 18163 { 18164 queue_t *rq = RD(q); 18165 struct T_conn_res *conn_res; 18166 tcp_t *eager; 18167 tcp_t *listener; 18168 struct T_ok_ack *ok; 18169 t_scalar_t PRIM_type; 18170 mblk_t *opt_mp; 18171 conn_t *econnp; 18172 18173 ASSERT(DB_TYPE(mp) == M_PROTO); 18174 18175 conn_res = (struct T_conn_res *)mp->b_rptr; 18176 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18177 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18178 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18179 if (mp != NULL) 18180 putnext(rq, mp); 18181 return; 18182 } 18183 switch (conn_res->PRIM_type) { 18184 case O_T_CONN_RES: 18185 case T_CONN_RES: 18186 /* 18187 * We pass up an err ack if allocb fails. This will 18188 * cause sockfs to issue a T_DISCON_REQ which will cause 18189 * tcp_eager_blowoff to be called. sockfs will then call 18190 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18191 * we need to do the allocb up here because we have to 18192 * make sure rq->q_qinfo->qi_qclose still points to the 18193 * correct function (tcpclose_accept) in case allocb 18194 * fails. 18195 */ 18196 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18197 if (opt_mp == NULL) { 18198 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18199 if (mp != NULL) 18200 putnext(rq, mp); 18201 return; 18202 } 18203 18204 bcopy(mp->b_rptr + conn_res->OPT_offset, 18205 &eager, conn_res->OPT_length); 18206 PRIM_type = conn_res->PRIM_type; 18207 mp->b_datap->db_type = M_PCPROTO; 18208 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18209 ok = (struct T_ok_ack *)mp->b_rptr; 18210 ok->PRIM_type = T_OK_ACK; 18211 ok->CORRECT_prim = PRIM_type; 18212 econnp = eager->tcp_connp; 18213 econnp->conn_dev = (dev_t)q->q_ptr; 18214 eager->tcp_rq = rq; 18215 eager->tcp_wq = q; 18216 rq->q_ptr = econnp; 18217 rq->q_qinfo = &tcp_rinit; 18218 q->q_ptr = econnp; 18219 q->q_qinfo = &tcp_winit; 18220 listener = eager->tcp_listener; 18221 eager->tcp_issocket = B_TRUE; 18222 18223 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18224 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18225 ASSERT(econnp->conn_netstack == 18226 listener->tcp_connp->conn_netstack); 18227 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18228 18229 /* Put the ref for IP */ 18230 CONN_INC_REF(econnp); 18231 18232 /* 18233 * We should have minimum of 3 references on the conn 18234 * at this point. One each for TCP and IP and one for 18235 * the T_conn_ind that was sent up when the 3-way handshake 18236 * completed. In the normal case we would also have another 18237 * reference (making a total of 4) for the conn being in the 18238 * classifier hash list. However the eager could have received 18239 * an RST subsequently and tcp_closei_local could have removed 18240 * the eager from the classifier hash list, hence we can't 18241 * assert that reference. 18242 */ 18243 ASSERT(econnp->conn_ref >= 3); 18244 18245 /* 18246 * Send the new local address also up to sockfs. There 18247 * should already be enough space in the mp that came 18248 * down from soaccept(). 18249 */ 18250 if (eager->tcp_family == AF_INET) { 18251 sin_t *sin; 18252 18253 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18254 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18255 sin = (sin_t *)mp->b_wptr; 18256 mp->b_wptr += sizeof (sin_t); 18257 sin->sin_family = AF_INET; 18258 sin->sin_port = eager->tcp_lport; 18259 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18260 } else { 18261 sin6_t *sin6; 18262 18263 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18264 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18265 sin6 = (sin6_t *)mp->b_wptr; 18266 mp->b_wptr += sizeof (sin6_t); 18267 sin6->sin6_family = AF_INET6; 18268 sin6->sin6_port = eager->tcp_lport; 18269 if (eager->tcp_ipversion == IPV4_VERSION) { 18270 sin6->sin6_flowinfo = 0; 18271 IN6_IPADDR_TO_V4MAPPED( 18272 eager->tcp_ipha->ipha_src, 18273 &sin6->sin6_addr); 18274 } else { 18275 ASSERT(eager->tcp_ip6h != NULL); 18276 sin6->sin6_flowinfo = 18277 eager->tcp_ip6h->ip6_vcf & 18278 ~IPV6_VERS_AND_FLOW_MASK; 18279 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18280 } 18281 sin6->sin6_scope_id = 0; 18282 sin6->__sin6_src_id = 0; 18283 } 18284 18285 putnext(rq, mp); 18286 18287 opt_mp->b_datap->db_type = M_SETOPTS; 18288 opt_mp->b_wptr += sizeof (struct stroptions); 18289 18290 /* 18291 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18292 * from listener to acceptor. The message is chained on the 18293 * bind_mp which tcp_rput_other will send down to IP. 18294 */ 18295 if (listener->tcp_bound_if != 0) { 18296 /* allocate optmgmt req */ 18297 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18298 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18299 sizeof (int)); 18300 if (mp != NULL) 18301 linkb(opt_mp, mp); 18302 } 18303 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18304 uint_t on = 1; 18305 18306 /* allocate optmgmt req */ 18307 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18308 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18309 if (mp != NULL) 18310 linkb(opt_mp, mp); 18311 } 18312 18313 18314 mutex_enter(&listener->tcp_eager_lock); 18315 18316 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18317 18318 tcp_t *tail; 18319 tcp_t *tcp; 18320 mblk_t *mp1; 18321 18322 tcp = listener->tcp_eager_prev_q0; 18323 /* 18324 * listener->tcp_eager_prev_q0 points to the TAIL of the 18325 * deferred T_conn_ind queue. We need to get to the head 18326 * of the queue in order to send up T_conn_ind the same 18327 * order as how the 3WHS is completed. 18328 */ 18329 while (tcp != listener) { 18330 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18331 !tcp->tcp_kssl_pending) 18332 break; 18333 else 18334 tcp = tcp->tcp_eager_prev_q0; 18335 } 18336 /* None of the pending eagers can be sent up now */ 18337 if (tcp == listener) 18338 goto no_more_eagers; 18339 18340 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18341 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18342 /* Move from q0 to q */ 18343 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18344 listener->tcp_conn_req_cnt_q0--; 18345 listener->tcp_conn_req_cnt_q++; 18346 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18347 tcp->tcp_eager_prev_q0; 18348 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18349 tcp->tcp_eager_next_q0; 18350 tcp->tcp_eager_prev_q0 = NULL; 18351 tcp->tcp_eager_next_q0 = NULL; 18352 tcp->tcp_conn_def_q0 = B_FALSE; 18353 18354 /* Make sure the tcp isn't in the list of droppables */ 18355 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18356 tcp->tcp_eager_prev_drop_q0 == NULL); 18357 18358 /* 18359 * Insert at end of the queue because sockfs sends 18360 * down T_CONN_RES in chronological order. Leaving 18361 * the older conn indications at front of the queue 18362 * helps reducing search time. 18363 */ 18364 tail = listener->tcp_eager_last_q; 18365 if (tail != NULL) { 18366 tail->tcp_eager_next_q = tcp; 18367 } else { 18368 listener->tcp_eager_next_q = tcp; 18369 } 18370 listener->tcp_eager_last_q = tcp; 18371 tcp->tcp_eager_next_q = NULL; 18372 18373 /* Need to get inside the listener perimeter */ 18374 CONN_INC_REF(listener->tcp_connp); 18375 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18376 tcp_send_pending, listener->tcp_connp, 18377 SQTAG_TCP_SEND_PENDING); 18378 } 18379 no_more_eagers: 18380 tcp_eager_unlink(eager); 18381 mutex_exit(&listener->tcp_eager_lock); 18382 18383 /* 18384 * At this point, the eager is detached from the listener 18385 * but we still have an extra refs on eager (apart from the 18386 * usual tcp references). The ref was placed in tcp_rput_data 18387 * before sending the conn_ind in tcp_send_conn_ind. 18388 * The ref will be dropped in tcp_accept_finish(). 18389 */ 18390 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18391 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18392 return; 18393 default: 18394 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18395 if (mp != NULL) 18396 putnext(rq, mp); 18397 return; 18398 } 18399 } 18400 18401 void 18402 tcp_wput(queue_t *q, mblk_t *mp) 18403 { 18404 conn_t *connp = Q_TO_CONN(q); 18405 tcp_t *tcp; 18406 void (*output_proc)(); 18407 t_scalar_t type; 18408 uchar_t *rptr; 18409 struct iocblk *iocp; 18410 uint32_t msize; 18411 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18412 18413 ASSERT(connp->conn_ref >= 2); 18414 18415 switch (DB_TYPE(mp)) { 18416 case M_DATA: 18417 tcp = connp->conn_tcp; 18418 ASSERT(tcp != NULL); 18419 18420 msize = msgdsize(mp); 18421 18422 mutex_enter(&tcp->tcp_non_sq_lock); 18423 tcp->tcp_squeue_bytes += msize; 18424 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18425 tcp_setqfull(tcp); 18426 } 18427 mutex_exit(&tcp->tcp_non_sq_lock); 18428 18429 CONN_INC_REF(connp); 18430 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18431 tcp_output, connp, SQTAG_TCP_OUTPUT); 18432 return; 18433 case M_PROTO: 18434 case M_PCPROTO: 18435 /* 18436 * if it is a snmp message, don't get behind the squeue 18437 */ 18438 tcp = connp->conn_tcp; 18439 rptr = mp->b_rptr; 18440 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18441 type = ((union T_primitives *)rptr)->type; 18442 } else { 18443 if (tcp->tcp_debug) { 18444 (void) strlog(TCP_MOD_ID, 0, 1, 18445 SL_ERROR|SL_TRACE, 18446 "tcp_wput_proto, dropping one..."); 18447 } 18448 freemsg(mp); 18449 return; 18450 } 18451 if (type == T_SVR4_OPTMGMT_REQ) { 18452 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18453 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18454 cr)) { 18455 /* 18456 * This was a SNMP request 18457 */ 18458 return; 18459 } else { 18460 output_proc = tcp_wput_proto; 18461 } 18462 } else { 18463 output_proc = tcp_wput_proto; 18464 } 18465 break; 18466 case M_IOCTL: 18467 /* 18468 * Most ioctls can be processed right away without going via 18469 * squeues - process them right here. Those that do require 18470 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18471 * are processed by tcp_wput_ioctl(). 18472 */ 18473 iocp = (struct iocblk *)mp->b_rptr; 18474 tcp = connp->conn_tcp; 18475 18476 switch (iocp->ioc_cmd) { 18477 case TCP_IOC_ABORT_CONN: 18478 tcp_ioctl_abort_conn(q, mp); 18479 return; 18480 case TI_GETPEERNAME: 18481 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18482 iocp->ioc_error = ENOTCONN; 18483 iocp->ioc_count = 0; 18484 mp->b_datap->db_type = M_IOCACK; 18485 qreply(q, mp); 18486 return; 18487 } 18488 /* FALLTHRU */ 18489 case TI_GETMYNAME: 18490 mi_copyin(q, mp, NULL, 18491 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18492 return; 18493 case ND_SET: 18494 /* nd_getset does the necessary checks */ 18495 case ND_GET: 18496 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18497 CALL_IP_WPUT(connp, q, mp); 18498 return; 18499 } 18500 qreply(q, mp); 18501 return; 18502 case TCP_IOC_DEFAULT_Q: 18503 /* 18504 * Wants to be the default wq. Check the credentials 18505 * first, the rest is executed via squeue. 18506 */ 18507 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18508 iocp->ioc_error = EPERM; 18509 iocp->ioc_count = 0; 18510 mp->b_datap->db_type = M_IOCACK; 18511 qreply(q, mp); 18512 return; 18513 } 18514 output_proc = tcp_wput_ioctl; 18515 break; 18516 default: 18517 output_proc = tcp_wput_ioctl; 18518 break; 18519 } 18520 break; 18521 default: 18522 output_proc = tcp_wput_nondata; 18523 break; 18524 } 18525 18526 CONN_INC_REF(connp); 18527 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18528 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18529 } 18530 18531 /* 18532 * Initial STREAMS write side put() procedure for sockets. It tries to 18533 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18534 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18535 * are handled by tcp_wput() as usual. 18536 * 18537 * All further messages will also be handled by tcp_wput() because we cannot 18538 * be sure that the above short cut is safe later. 18539 */ 18540 static void 18541 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18542 { 18543 conn_t *connp = Q_TO_CONN(wq); 18544 tcp_t *tcp = connp->conn_tcp; 18545 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18546 18547 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18548 wq->q_qinfo = &tcp_winit; 18549 18550 ASSERT(IPCL_IS_TCP(connp)); 18551 ASSERT(TCP_IS_SOCKET(tcp)); 18552 18553 if (DB_TYPE(mp) == M_PCPROTO && 18554 MBLKL(mp) == sizeof (struct T_capability_req) && 18555 car->PRIM_type == T_CAPABILITY_REQ) { 18556 tcp_capability_req(tcp, mp); 18557 return; 18558 } 18559 18560 tcp_wput(wq, mp); 18561 } 18562 18563 static boolean_t 18564 tcp_zcopy_check(tcp_t *tcp) 18565 { 18566 conn_t *connp = tcp->tcp_connp; 18567 ire_t *ire; 18568 boolean_t zc_enabled = B_FALSE; 18569 tcp_stack_t *tcps = tcp->tcp_tcps; 18570 18571 if (do_tcpzcopy == 2) 18572 zc_enabled = B_TRUE; 18573 else if (tcp->tcp_ipversion == IPV4_VERSION && 18574 IPCL_IS_CONNECTED(connp) && 18575 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18576 connp->conn_dontroute == 0 && 18577 !connp->conn_nexthop_set && 18578 connp->conn_xmit_if_ill == NULL && 18579 connp->conn_nofailover_ill == NULL && 18580 do_tcpzcopy == 1) { 18581 /* 18582 * the checks above closely resemble the fast path checks 18583 * in tcp_send_data(). 18584 */ 18585 mutex_enter(&connp->conn_lock); 18586 ire = connp->conn_ire_cache; 18587 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18588 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18589 IRE_REFHOLD(ire); 18590 if (ire->ire_stq != NULL) { 18591 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18592 18593 zc_enabled = ill && (ill->ill_capabilities & 18594 ILL_CAPAB_ZEROCOPY) && 18595 (ill->ill_zerocopy_capab-> 18596 ill_zerocopy_flags != 0); 18597 } 18598 IRE_REFRELE(ire); 18599 } 18600 mutex_exit(&connp->conn_lock); 18601 } 18602 tcp->tcp_snd_zcopy_on = zc_enabled; 18603 if (!TCP_IS_DETACHED(tcp)) { 18604 if (zc_enabled) { 18605 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18606 TCP_STAT(tcps, tcp_zcopy_on); 18607 } else { 18608 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18609 TCP_STAT(tcps, tcp_zcopy_off); 18610 } 18611 } 18612 return (zc_enabled); 18613 } 18614 18615 static mblk_t * 18616 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18617 { 18618 tcp_stack_t *tcps = tcp->tcp_tcps; 18619 18620 if (do_tcpzcopy == 2) 18621 return (bp); 18622 else if (tcp->tcp_snd_zcopy_on) { 18623 tcp->tcp_snd_zcopy_on = B_FALSE; 18624 if (!TCP_IS_DETACHED(tcp)) { 18625 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18626 TCP_STAT(tcps, tcp_zcopy_disable); 18627 } 18628 } 18629 return (tcp_zcopy_backoff(tcp, bp, 0)); 18630 } 18631 18632 /* 18633 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18634 * the original desballoca'ed segmapped mblk. 18635 */ 18636 static mblk_t * 18637 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18638 { 18639 mblk_t *head, *tail, *nbp; 18640 tcp_stack_t *tcps = tcp->tcp_tcps; 18641 18642 if (IS_VMLOANED_MBLK(bp)) { 18643 TCP_STAT(tcps, tcp_zcopy_backoff); 18644 if ((head = copyb(bp)) == NULL) { 18645 /* fail to backoff; leave it for the next backoff */ 18646 tcp->tcp_xmit_zc_clean = B_FALSE; 18647 return (bp); 18648 } 18649 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18650 if (fix_xmitlist) 18651 tcp_zcopy_notify(tcp); 18652 else 18653 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18654 } 18655 nbp = bp->b_cont; 18656 if (fix_xmitlist) { 18657 head->b_prev = bp->b_prev; 18658 head->b_next = bp->b_next; 18659 if (tcp->tcp_xmit_tail == bp) 18660 tcp->tcp_xmit_tail = head; 18661 } 18662 bp->b_next = NULL; 18663 bp->b_prev = NULL; 18664 freeb(bp); 18665 } else { 18666 head = bp; 18667 nbp = bp->b_cont; 18668 } 18669 tail = head; 18670 while (nbp) { 18671 if (IS_VMLOANED_MBLK(nbp)) { 18672 TCP_STAT(tcps, tcp_zcopy_backoff); 18673 if ((tail->b_cont = copyb(nbp)) == NULL) { 18674 tcp->tcp_xmit_zc_clean = B_FALSE; 18675 tail->b_cont = nbp; 18676 return (head); 18677 } 18678 tail = tail->b_cont; 18679 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18680 if (fix_xmitlist) 18681 tcp_zcopy_notify(tcp); 18682 else 18683 tail->b_datap->db_struioflag |= 18684 STRUIO_ZCNOTIFY; 18685 } 18686 bp = nbp; 18687 nbp = nbp->b_cont; 18688 if (fix_xmitlist) { 18689 tail->b_prev = bp->b_prev; 18690 tail->b_next = bp->b_next; 18691 if (tcp->tcp_xmit_tail == bp) 18692 tcp->tcp_xmit_tail = tail; 18693 } 18694 bp->b_next = NULL; 18695 bp->b_prev = NULL; 18696 freeb(bp); 18697 } else { 18698 tail->b_cont = nbp; 18699 tail = nbp; 18700 nbp = nbp->b_cont; 18701 } 18702 } 18703 if (fix_xmitlist) { 18704 tcp->tcp_xmit_last = tail; 18705 tcp->tcp_xmit_zc_clean = B_TRUE; 18706 } 18707 return (head); 18708 } 18709 18710 static void 18711 tcp_zcopy_notify(tcp_t *tcp) 18712 { 18713 struct stdata *stp; 18714 18715 if (tcp->tcp_detached) 18716 return; 18717 stp = STREAM(tcp->tcp_rq); 18718 mutex_enter(&stp->sd_lock); 18719 stp->sd_flag |= STZCNOTIFY; 18720 cv_broadcast(&stp->sd_zcopy_wait); 18721 mutex_exit(&stp->sd_lock); 18722 } 18723 18724 static boolean_t 18725 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18726 { 18727 ire_t *ire; 18728 conn_t *connp = tcp->tcp_connp; 18729 tcp_stack_t *tcps = tcp->tcp_tcps; 18730 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18731 18732 mutex_enter(&connp->conn_lock); 18733 ire = connp->conn_ire_cache; 18734 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18735 18736 if ((ire != NULL) && 18737 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18738 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18739 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18740 IRE_REFHOLD(ire); 18741 mutex_exit(&connp->conn_lock); 18742 } else { 18743 boolean_t cached = B_FALSE; 18744 ts_label_t *tsl; 18745 18746 /* force a recheck later on */ 18747 tcp->tcp_ire_ill_check_done = B_FALSE; 18748 18749 TCP_DBGSTAT(tcps, tcp_ire_null1); 18750 connp->conn_ire_cache = NULL; 18751 mutex_exit(&connp->conn_lock); 18752 18753 if (ire != NULL) 18754 IRE_REFRELE_NOTR(ire); 18755 18756 tsl = crgetlabel(CONN_CRED(connp)); 18757 ire = (dst ? 18758 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18759 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18760 connp->conn_zoneid, tsl, ipst)); 18761 18762 if (ire == NULL) { 18763 TCP_STAT(tcps, tcp_ire_null); 18764 return (B_FALSE); 18765 } 18766 18767 IRE_REFHOLD_NOTR(ire); 18768 /* 18769 * Since we are inside the squeue, there cannot be another 18770 * thread in TCP trying to set the conn_ire_cache now. The 18771 * check for IRE_MARK_CONDEMNED ensures that an interface 18772 * unplumb thread has not yet started cleaning up the conns. 18773 * Hence we don't need to grab the conn lock. 18774 */ 18775 if (CONN_CACHE_IRE(connp)) { 18776 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18777 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18778 TCP_CHECK_IREINFO(tcp, ire); 18779 connp->conn_ire_cache = ire; 18780 cached = B_TRUE; 18781 } 18782 rw_exit(&ire->ire_bucket->irb_lock); 18783 } 18784 18785 /* 18786 * We can continue to use the ire but since it was 18787 * not cached, we should drop the extra reference. 18788 */ 18789 if (!cached) 18790 IRE_REFRELE_NOTR(ire); 18791 18792 /* 18793 * Rampart note: no need to select a new label here, since 18794 * labels are not allowed to change during the life of a TCP 18795 * connection. 18796 */ 18797 } 18798 18799 *irep = ire; 18800 18801 return (B_TRUE); 18802 } 18803 18804 /* 18805 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18806 * 18807 * 0 = success; 18808 * 1 = failed to find ire and ill. 18809 */ 18810 static boolean_t 18811 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18812 { 18813 ipha_t *ipha; 18814 ipaddr_t dst; 18815 ire_t *ire; 18816 ill_t *ill; 18817 conn_t *connp = tcp->tcp_connp; 18818 mblk_t *ire_fp_mp; 18819 tcp_stack_t *tcps = tcp->tcp_tcps; 18820 18821 if (mp != NULL) 18822 ipha = (ipha_t *)mp->b_rptr; 18823 else 18824 ipha = tcp->tcp_ipha; 18825 dst = ipha->ipha_dst; 18826 18827 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18828 return (B_FALSE); 18829 18830 if ((ire->ire_flags & RTF_MULTIRT) || 18831 (ire->ire_stq == NULL) || 18832 (ire->ire_nce == NULL) || 18833 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18834 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18835 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18836 TCP_STAT(tcps, tcp_ip_ire_send); 18837 IRE_REFRELE(ire); 18838 return (B_FALSE); 18839 } 18840 18841 ill = ire_to_ill(ire); 18842 if (connp->conn_outgoing_ill != NULL) { 18843 ill_t *conn_outgoing_ill = NULL; 18844 /* 18845 * Choose a good ill in the group to send the packets on. 18846 */ 18847 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18848 ill = ire_to_ill(ire); 18849 } 18850 ASSERT(ill != NULL); 18851 18852 if (!tcp->tcp_ire_ill_check_done) { 18853 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18854 tcp->tcp_ire_ill_check_done = B_TRUE; 18855 } 18856 18857 *irep = ire; 18858 *illp = ill; 18859 18860 return (B_TRUE); 18861 } 18862 18863 static void 18864 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18865 { 18866 ipha_t *ipha; 18867 ipaddr_t src; 18868 ipaddr_t dst; 18869 uint32_t cksum; 18870 ire_t *ire; 18871 uint16_t *up; 18872 ill_t *ill; 18873 conn_t *connp = tcp->tcp_connp; 18874 uint32_t hcksum_txflags = 0; 18875 mblk_t *ire_fp_mp; 18876 uint_t ire_fp_mp_len; 18877 tcp_stack_t *tcps = tcp->tcp_tcps; 18878 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18879 18880 ASSERT(DB_TYPE(mp) == M_DATA); 18881 18882 if (DB_CRED(mp) == NULL) 18883 mblk_setcred(mp, CONN_CRED(connp)); 18884 18885 ipha = (ipha_t *)mp->b_rptr; 18886 src = ipha->ipha_src; 18887 dst = ipha->ipha_dst; 18888 18889 /* 18890 * Drop off fast path for IPv6 and also if options are present or 18891 * we need to resolve a TS label. 18892 */ 18893 if (tcp->tcp_ipversion != IPV4_VERSION || 18894 !IPCL_IS_CONNECTED(connp) || 18895 !CONN_IS_LSO_MD_FASTPATH(connp) || 18896 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18897 !connp->conn_ulp_labeled || 18898 ipha->ipha_ident == IP_HDR_INCLUDED || 18899 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18900 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18901 if (tcp->tcp_snd_zcopy_aware) 18902 mp = tcp_zcopy_disable(tcp, mp); 18903 TCP_STAT(tcps, tcp_ip_send); 18904 CALL_IP_WPUT(connp, q, mp); 18905 return; 18906 } 18907 18908 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18909 if (tcp->tcp_snd_zcopy_aware) 18910 mp = tcp_zcopy_backoff(tcp, mp, 0); 18911 CALL_IP_WPUT(connp, q, mp); 18912 return; 18913 } 18914 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18915 ire_fp_mp_len = MBLKL(ire_fp_mp); 18916 18917 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18918 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18919 #ifndef _BIG_ENDIAN 18920 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18921 #endif 18922 18923 /* 18924 * Check to see if we need to re-enable LSO/MDT for this connection 18925 * because it was previously disabled due to changes in the ill; 18926 * note that by doing it here, this re-enabling only applies when 18927 * the packet is not dispatched through CALL_IP_WPUT(). 18928 * 18929 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18930 * case, since that's how we ended up here. For IPv6, we do the 18931 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18932 */ 18933 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18934 /* 18935 * Restore LSO for this connection, so that next time around 18936 * it is eligible to go through tcp_lsosend() path again. 18937 */ 18938 TCP_STAT(tcps, tcp_lso_enabled); 18939 tcp->tcp_lso = B_TRUE; 18940 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18941 "interface %s\n", (void *)connp, ill->ill_name)); 18942 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18943 /* 18944 * Restore MDT for this connection, so that next time around 18945 * it is eligible to go through tcp_multisend() path again. 18946 */ 18947 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18948 tcp->tcp_mdt = B_TRUE; 18949 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18950 "interface %s\n", (void *)connp, ill->ill_name)); 18951 } 18952 18953 if (tcp->tcp_snd_zcopy_aware) { 18954 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18955 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18956 mp = tcp_zcopy_disable(tcp, mp); 18957 /* 18958 * we shouldn't need to reset ipha as the mp containing 18959 * ipha should never be a zero-copy mp. 18960 */ 18961 } 18962 18963 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18964 ASSERT(ill->ill_hcksum_capab != NULL); 18965 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18966 } 18967 18968 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18969 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18970 18971 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18972 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18973 18974 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18975 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18976 18977 /* Software checksum? */ 18978 if (DB_CKSUMFLAGS(mp) == 0) { 18979 TCP_STAT(tcps, tcp_out_sw_cksum); 18980 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18981 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18982 } 18983 18984 ipha->ipha_fragment_offset_and_flags |= 18985 (uint32_t)htons(ire->ire_frag_flag); 18986 18987 /* Calculate IP header checksum if hardware isn't capable */ 18988 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18989 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18990 ((uint16_t *)ipha)[4]); 18991 } 18992 18993 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18994 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18995 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18996 18997 UPDATE_OB_PKT_COUNT(ire); 18998 ire->ire_last_used_time = lbolt; 18999 19000 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19001 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19002 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19003 ntohs(ipha->ipha_length)); 19004 19005 if (ILL_DLS_CAPABLE(ill)) { 19006 /* 19007 * Send the packet directly to DLD, where it may be queued 19008 * depending on the availability of transmit resources at 19009 * the media layer. 19010 */ 19011 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 19012 } else { 19013 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19014 DTRACE_PROBE4(ip4__physical__out__start, 19015 ill_t *, NULL, ill_t *, out_ill, 19016 ipha_t *, ipha, mblk_t *, mp); 19017 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19018 ipst->ips_ipv4firewall_physical_out, 19019 NULL, out_ill, ipha, mp, mp, ipst); 19020 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19021 if (mp != NULL) 19022 putnext(ire->ire_stq, mp); 19023 } 19024 IRE_REFRELE(ire); 19025 } 19026 19027 /* 19028 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19029 * if the receiver shrinks the window, i.e. moves the right window to the 19030 * left, the we should not send new data, but should retransmit normally the 19031 * old unacked data between suna and suna + swnd. We might has sent data 19032 * that is now outside the new window, pretend that we didn't send it. 19033 */ 19034 static void 19035 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19036 { 19037 uint32_t snxt = tcp->tcp_snxt; 19038 mblk_t *xmit_tail; 19039 int32_t offset; 19040 19041 ASSERT(shrunk_count > 0); 19042 19043 /* Pretend we didn't send the data outside the window */ 19044 snxt -= shrunk_count; 19045 19046 /* Get the mblk and the offset in it per the shrunk window */ 19047 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19048 19049 ASSERT(xmit_tail != NULL); 19050 19051 /* Reset all the values per the now shrunk window */ 19052 tcp->tcp_snxt = snxt; 19053 tcp->tcp_xmit_tail = xmit_tail; 19054 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19055 offset; 19056 tcp->tcp_unsent += shrunk_count; 19057 19058 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19059 /* 19060 * Make sure the timer is running so that we will probe a zero 19061 * window. 19062 */ 19063 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19064 } 19065 19066 19067 /* 19068 * The TCP normal data output path. 19069 * NOTE: the logic of the fast path is duplicated from this function. 19070 */ 19071 static void 19072 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19073 { 19074 int len; 19075 mblk_t *local_time; 19076 mblk_t *mp1; 19077 uint32_t snxt; 19078 int tail_unsent; 19079 int tcpstate; 19080 int usable = 0; 19081 mblk_t *xmit_tail; 19082 queue_t *q = tcp->tcp_wq; 19083 int32_t mss; 19084 int32_t num_sack_blk = 0; 19085 int32_t tcp_hdr_len; 19086 int32_t tcp_tcp_hdr_len; 19087 int mdt_thres; 19088 int rc; 19089 tcp_stack_t *tcps = tcp->tcp_tcps; 19090 ip_stack_t *ipst; 19091 19092 tcpstate = tcp->tcp_state; 19093 if (mp == NULL) { 19094 /* 19095 * tcp_wput_data() with NULL mp should only be called when 19096 * there is unsent data. 19097 */ 19098 ASSERT(tcp->tcp_unsent > 0); 19099 /* Really tacky... but we need this for detached closes. */ 19100 len = tcp->tcp_unsent; 19101 goto data_null; 19102 } 19103 19104 #if CCS_STATS 19105 wrw_stats.tot.count++; 19106 wrw_stats.tot.bytes += msgdsize(mp); 19107 #endif 19108 ASSERT(mp->b_datap->db_type == M_DATA); 19109 /* 19110 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19111 * or before a connection attempt has begun. 19112 */ 19113 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19114 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19115 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19116 #ifdef DEBUG 19117 cmn_err(CE_WARN, 19118 "tcp_wput_data: data after ordrel, %s", 19119 tcp_display(tcp, NULL, 19120 DISP_ADDR_AND_PORT)); 19121 #else 19122 if (tcp->tcp_debug) { 19123 (void) strlog(TCP_MOD_ID, 0, 1, 19124 SL_TRACE|SL_ERROR, 19125 "tcp_wput_data: data after ordrel, %s\n", 19126 tcp_display(tcp, NULL, 19127 DISP_ADDR_AND_PORT)); 19128 } 19129 #endif /* DEBUG */ 19130 } 19131 if (tcp->tcp_snd_zcopy_aware && 19132 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19133 tcp_zcopy_notify(tcp); 19134 freemsg(mp); 19135 mutex_enter(&tcp->tcp_non_sq_lock); 19136 if (tcp->tcp_flow_stopped && 19137 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19138 tcp_clrqfull(tcp); 19139 } 19140 mutex_exit(&tcp->tcp_non_sq_lock); 19141 return; 19142 } 19143 19144 /* Strip empties */ 19145 for (;;) { 19146 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19147 (uintptr_t)INT_MAX); 19148 len = (int)(mp->b_wptr - mp->b_rptr); 19149 if (len > 0) 19150 break; 19151 mp1 = mp; 19152 mp = mp->b_cont; 19153 freeb(mp1); 19154 if (!mp) { 19155 return; 19156 } 19157 } 19158 19159 /* If we are the first on the list ... */ 19160 if (tcp->tcp_xmit_head == NULL) { 19161 tcp->tcp_xmit_head = mp; 19162 tcp->tcp_xmit_tail = mp; 19163 tcp->tcp_xmit_tail_unsent = len; 19164 } else { 19165 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19166 struct datab *dp; 19167 19168 mp1 = tcp->tcp_xmit_last; 19169 if (len < tcp_tx_pull_len && 19170 (dp = mp1->b_datap)->db_ref == 1 && 19171 dp->db_lim - mp1->b_wptr >= len) { 19172 ASSERT(len > 0); 19173 ASSERT(!mp1->b_cont); 19174 if (len == 1) { 19175 *mp1->b_wptr++ = *mp->b_rptr; 19176 } else { 19177 bcopy(mp->b_rptr, mp1->b_wptr, len); 19178 mp1->b_wptr += len; 19179 } 19180 if (mp1 == tcp->tcp_xmit_tail) 19181 tcp->tcp_xmit_tail_unsent += len; 19182 mp1->b_cont = mp->b_cont; 19183 if (tcp->tcp_snd_zcopy_aware && 19184 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19185 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19186 freeb(mp); 19187 mp = mp1; 19188 } else { 19189 tcp->tcp_xmit_last->b_cont = mp; 19190 } 19191 len += tcp->tcp_unsent; 19192 } 19193 19194 /* Tack on however many more positive length mblks we have */ 19195 if ((mp1 = mp->b_cont) != NULL) { 19196 do { 19197 int tlen; 19198 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19199 (uintptr_t)INT_MAX); 19200 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19201 if (tlen <= 0) { 19202 mp->b_cont = mp1->b_cont; 19203 freeb(mp1); 19204 } else { 19205 len += tlen; 19206 mp = mp1; 19207 } 19208 } while ((mp1 = mp->b_cont) != NULL); 19209 } 19210 tcp->tcp_xmit_last = mp; 19211 tcp->tcp_unsent = len; 19212 19213 if (urgent) 19214 usable = 1; 19215 19216 data_null: 19217 snxt = tcp->tcp_snxt; 19218 xmit_tail = tcp->tcp_xmit_tail; 19219 tail_unsent = tcp->tcp_xmit_tail_unsent; 19220 19221 /* 19222 * Note that tcp_mss has been adjusted to take into account the 19223 * timestamp option if applicable. Because SACK options do not 19224 * appear in every TCP segments and they are of variable lengths, 19225 * they cannot be included in tcp_mss. Thus we need to calculate 19226 * the actual segment length when we need to send a segment which 19227 * includes SACK options. 19228 */ 19229 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19230 int32_t opt_len; 19231 19232 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19233 tcp->tcp_num_sack_blk); 19234 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19235 2 + TCPOPT_HEADER_LEN; 19236 mss = tcp->tcp_mss - opt_len; 19237 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19238 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19239 } else { 19240 mss = tcp->tcp_mss; 19241 tcp_hdr_len = tcp->tcp_hdr_len; 19242 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19243 } 19244 19245 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19246 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19247 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19248 } 19249 if (tcpstate == TCPS_SYN_RCVD) { 19250 /* 19251 * The three-way connection establishment handshake is not 19252 * complete yet. We want to queue the data for transmission 19253 * after entering ESTABLISHED state (RFC793). A jump to 19254 * "done" label effectively leaves data on the queue. 19255 */ 19256 goto done; 19257 } else { 19258 int usable_r; 19259 19260 /* 19261 * In the special case when cwnd is zero, which can only 19262 * happen if the connection is ECN capable, return now. 19263 * New segments is sent using tcp_timer(). The timer 19264 * is set in tcp_rput_data(). 19265 */ 19266 if (tcp->tcp_cwnd == 0) { 19267 /* 19268 * Note that tcp_cwnd is 0 before 3-way handshake is 19269 * finished. 19270 */ 19271 ASSERT(tcp->tcp_ecn_ok || 19272 tcp->tcp_state < TCPS_ESTABLISHED); 19273 return; 19274 } 19275 19276 /* NOTE: trouble if xmitting while SYN not acked? */ 19277 usable_r = snxt - tcp->tcp_suna; 19278 usable_r = tcp->tcp_swnd - usable_r; 19279 19280 /* 19281 * Check if the receiver has shrunk the window. If 19282 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19283 * cannot be set as there is unsent data, so FIN cannot 19284 * be sent out. Otherwise, we need to take into account 19285 * of FIN as it consumes an "invisible" sequence number. 19286 */ 19287 ASSERT(tcp->tcp_fin_sent == 0); 19288 if (usable_r < 0) { 19289 /* 19290 * The receiver has shrunk the window and we have sent 19291 * -usable_r date beyond the window, re-adjust. 19292 * 19293 * If TCP window scaling is enabled, there can be 19294 * round down error as the advertised receive window 19295 * is actually right shifted n bits. This means that 19296 * the lower n bits info is wiped out. It will look 19297 * like the window is shrunk. Do a check here to 19298 * see if the shrunk amount is actually within the 19299 * error in window calculation. If it is, just 19300 * return. Note that this check is inside the 19301 * shrunk window check. This makes sure that even 19302 * though tcp_process_shrunk_swnd() is not called, 19303 * we will stop further processing. 19304 */ 19305 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19306 tcp_process_shrunk_swnd(tcp, -usable_r); 19307 } 19308 return; 19309 } 19310 19311 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19312 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19313 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19314 19315 /* usable = MIN(usable, unsent) */ 19316 if (usable_r > len) 19317 usable_r = len; 19318 19319 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19320 if (usable_r > 0) { 19321 usable = usable_r; 19322 } else { 19323 /* Bypass all other unnecessary processing. */ 19324 goto done; 19325 } 19326 } 19327 19328 local_time = (mblk_t *)lbolt; 19329 19330 /* 19331 * "Our" Nagle Algorithm. This is not the same as in the old 19332 * BSD. This is more in line with the true intent of Nagle. 19333 * 19334 * The conditions are: 19335 * 1. The amount of unsent data (or amount of data which can be 19336 * sent, whichever is smaller) is less than Nagle limit. 19337 * 2. The last sent size is also less than Nagle limit. 19338 * 3. There is unack'ed data. 19339 * 4. Urgent pointer is not set. Send urgent data ignoring the 19340 * Nagle algorithm. This reduces the probability that urgent 19341 * bytes get "merged" together. 19342 * 5. The app has not closed the connection. This eliminates the 19343 * wait time of the receiving side waiting for the last piece of 19344 * (small) data. 19345 * 19346 * If all are satisified, exit without sending anything. Note 19347 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19348 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19349 * 4095). 19350 */ 19351 if (usable < (int)tcp->tcp_naglim && 19352 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19353 snxt != tcp->tcp_suna && 19354 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19355 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19356 goto done; 19357 } 19358 19359 if (tcp->tcp_cork) { 19360 /* 19361 * if the tcp->tcp_cork option is set, then we have to force 19362 * TCP not to send partial segment (smaller than MSS bytes). 19363 * We are calculating the usable now based on full mss and 19364 * will save the rest of remaining data for later. 19365 */ 19366 if (usable < mss) 19367 goto done; 19368 usable = (usable / mss) * mss; 19369 } 19370 19371 /* Update the latest receive window size in TCP header. */ 19372 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19373 tcp->tcp_tcph->th_win); 19374 19375 /* 19376 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19377 * 19378 * 1. Simple TCP/IP{v4,v6} (no options). 19379 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19380 * 3. If the TCP connection is in ESTABLISHED state. 19381 * 4. The TCP is not detached. 19382 * 19383 * If any of the above conditions have changed during the 19384 * connection, stop using LSO/MDT and restore the stream head 19385 * parameters accordingly. 19386 */ 19387 ipst = tcps->tcps_netstack->netstack_ip; 19388 19389 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19390 ((tcp->tcp_ipversion == IPV4_VERSION && 19391 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19392 (tcp->tcp_ipversion == IPV6_VERSION && 19393 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19394 tcp->tcp_state != TCPS_ESTABLISHED || 19395 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19396 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19397 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19398 if (tcp->tcp_lso) { 19399 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19400 tcp->tcp_lso = B_FALSE; 19401 } else { 19402 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19403 tcp->tcp_mdt = B_FALSE; 19404 } 19405 19406 /* Anything other than detached is considered pathological */ 19407 if (!TCP_IS_DETACHED(tcp)) { 19408 if (tcp->tcp_lso) 19409 TCP_STAT(tcps, tcp_lso_disabled); 19410 else 19411 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19412 (void) tcp_maxpsz_set(tcp, B_TRUE); 19413 } 19414 } 19415 19416 /* Use MDT if sendable amount is greater than the threshold */ 19417 if (tcp->tcp_mdt && 19418 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19419 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19420 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19421 (tcp->tcp_valid_bits == 0 || 19422 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19423 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19424 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19425 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19426 local_time, mdt_thres); 19427 } else { 19428 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19429 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19430 local_time, INT_MAX); 19431 } 19432 19433 /* Pretend that all we were trying to send really got sent */ 19434 if (rc < 0 && tail_unsent < 0) { 19435 do { 19436 xmit_tail = xmit_tail->b_cont; 19437 xmit_tail->b_prev = local_time; 19438 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19439 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19440 tail_unsent += (int)(xmit_tail->b_wptr - 19441 xmit_tail->b_rptr); 19442 } while (tail_unsent < 0); 19443 } 19444 done:; 19445 tcp->tcp_xmit_tail = xmit_tail; 19446 tcp->tcp_xmit_tail_unsent = tail_unsent; 19447 len = tcp->tcp_snxt - snxt; 19448 if (len) { 19449 /* 19450 * If new data was sent, need to update the notsack 19451 * list, which is, afterall, data blocks that have 19452 * not been sack'ed by the receiver. New data is 19453 * not sack'ed. 19454 */ 19455 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19456 /* len is a negative value. */ 19457 tcp->tcp_pipe -= len; 19458 tcp_notsack_update(&(tcp->tcp_notsack_list), 19459 tcp->tcp_snxt, snxt, 19460 &(tcp->tcp_num_notsack_blk), 19461 &(tcp->tcp_cnt_notsack_list)); 19462 } 19463 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19464 tcp->tcp_rack = tcp->tcp_rnxt; 19465 tcp->tcp_rack_cnt = 0; 19466 if ((snxt + len) == tcp->tcp_suna) { 19467 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19468 } 19469 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19470 /* 19471 * Didn't send anything. Make sure the timer is running 19472 * so that we will probe a zero window. 19473 */ 19474 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19475 } 19476 /* Note that len is the amount we just sent but with a negative sign */ 19477 tcp->tcp_unsent += len; 19478 mutex_enter(&tcp->tcp_non_sq_lock); 19479 if (tcp->tcp_flow_stopped) { 19480 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19481 tcp_clrqfull(tcp); 19482 } 19483 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19484 tcp_setqfull(tcp); 19485 } 19486 mutex_exit(&tcp->tcp_non_sq_lock); 19487 } 19488 19489 /* 19490 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19491 * outgoing TCP header with the template header, as well as other 19492 * options such as time-stamp, ECN and/or SACK. 19493 */ 19494 static void 19495 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19496 { 19497 tcph_t *tcp_tmpl, *tcp_h; 19498 uint32_t *dst, *src; 19499 int hdrlen; 19500 19501 ASSERT(OK_32PTR(rptr)); 19502 19503 /* Template header */ 19504 tcp_tmpl = tcp->tcp_tcph; 19505 19506 /* Header of outgoing packet */ 19507 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19508 19509 /* dst and src are opaque 32-bit fields, used for copying */ 19510 dst = (uint32_t *)rptr; 19511 src = (uint32_t *)tcp->tcp_iphc; 19512 hdrlen = tcp->tcp_hdr_len; 19513 19514 /* Fill time-stamp option if needed */ 19515 if (tcp->tcp_snd_ts_ok) { 19516 U32_TO_BE32((uint32_t)now, 19517 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19518 U32_TO_BE32(tcp->tcp_ts_recent, 19519 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19520 } else { 19521 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19522 } 19523 19524 /* 19525 * Copy the template header; is this really more efficient than 19526 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19527 * but perhaps not for other scenarios. 19528 */ 19529 dst[0] = src[0]; 19530 dst[1] = src[1]; 19531 dst[2] = src[2]; 19532 dst[3] = src[3]; 19533 dst[4] = src[4]; 19534 dst[5] = src[5]; 19535 dst[6] = src[6]; 19536 dst[7] = src[7]; 19537 dst[8] = src[8]; 19538 dst[9] = src[9]; 19539 if (hdrlen -= 40) { 19540 hdrlen >>= 2; 19541 dst += 10; 19542 src += 10; 19543 do { 19544 *dst++ = *src++; 19545 } while (--hdrlen); 19546 } 19547 19548 /* 19549 * Set the ECN info in the TCP header if it is not a zero 19550 * window probe. Zero window probe is only sent in 19551 * tcp_wput_data() and tcp_timer(). 19552 */ 19553 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19554 SET_ECT(tcp, rptr); 19555 19556 if (tcp->tcp_ecn_echo_on) 19557 tcp_h->th_flags[0] |= TH_ECE; 19558 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19559 tcp_h->th_flags[0] |= TH_CWR; 19560 tcp->tcp_ecn_cwr_sent = B_TRUE; 19561 } 19562 } 19563 19564 /* Fill in SACK options */ 19565 if (num_sack_blk > 0) { 19566 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19567 sack_blk_t *tmp; 19568 int32_t i; 19569 19570 wptr[0] = TCPOPT_NOP; 19571 wptr[1] = TCPOPT_NOP; 19572 wptr[2] = TCPOPT_SACK; 19573 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19574 sizeof (sack_blk_t); 19575 wptr += TCPOPT_REAL_SACK_LEN; 19576 19577 tmp = tcp->tcp_sack_list; 19578 for (i = 0; i < num_sack_blk; i++) { 19579 U32_TO_BE32(tmp[i].begin, wptr); 19580 wptr += sizeof (tcp_seq); 19581 U32_TO_BE32(tmp[i].end, wptr); 19582 wptr += sizeof (tcp_seq); 19583 } 19584 tcp_h->th_offset_and_rsrvd[0] += 19585 ((num_sack_blk * 2 + 1) << 4); 19586 } 19587 } 19588 19589 /* 19590 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19591 * the destination address and SAP attribute, and if necessary, the 19592 * hardware checksum offload attribute to a Multidata message. 19593 */ 19594 static int 19595 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19596 const uint32_t start, const uint32_t stuff, const uint32_t end, 19597 const uint32_t flags, tcp_stack_t *tcps) 19598 { 19599 /* Add global destination address & SAP attribute */ 19600 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19601 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19602 "destination address+SAP\n")); 19603 19604 if (dlmp != NULL) 19605 TCP_STAT(tcps, tcp_mdt_allocfail); 19606 return (-1); 19607 } 19608 19609 /* Add global hwcksum attribute */ 19610 if (hwcksum && 19611 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19612 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19613 "checksum attribute\n")); 19614 19615 TCP_STAT(tcps, tcp_mdt_allocfail); 19616 return (-1); 19617 } 19618 19619 return (0); 19620 } 19621 19622 /* 19623 * Smaller and private version of pdescinfo_t used specifically for TCP, 19624 * which allows for only two payload spans per packet. 19625 */ 19626 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19627 19628 /* 19629 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19630 * scheme, and returns one the following: 19631 * 19632 * -1 = failed allocation. 19633 * 0 = success; burst count reached, or usable send window is too small, 19634 * and that we'd rather wait until later before sending again. 19635 */ 19636 static int 19637 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19638 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19639 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19640 const int mdt_thres) 19641 { 19642 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19643 multidata_t *mmd; 19644 uint_t obsegs, obbytes, hdr_frag_sz; 19645 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19646 int num_burst_seg, max_pld; 19647 pdesc_t *pkt; 19648 tcp_pdescinfo_t tcp_pkt_info; 19649 pdescinfo_t *pkt_info; 19650 int pbuf_idx, pbuf_idx_nxt; 19651 int seg_len, len, spill, af; 19652 boolean_t add_buffer, zcopy, clusterwide; 19653 boolean_t buf_trunked = B_FALSE; 19654 boolean_t rconfirm = B_FALSE; 19655 boolean_t done = B_FALSE; 19656 uint32_t cksum; 19657 uint32_t hwcksum_flags; 19658 ire_t *ire = NULL; 19659 ill_t *ill; 19660 ipha_t *ipha; 19661 ip6_t *ip6h; 19662 ipaddr_t src, dst; 19663 ill_zerocopy_capab_t *zc_cap = NULL; 19664 uint16_t *up; 19665 int err; 19666 conn_t *connp; 19667 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19668 uchar_t *pld_start; 19669 tcp_stack_t *tcps = tcp->tcp_tcps; 19670 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19671 19672 #ifdef _BIG_ENDIAN 19673 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19674 #else 19675 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19676 #endif 19677 19678 #define PREP_NEW_MULTIDATA() { \ 19679 mmd = NULL; \ 19680 md_mp = md_hbuf = NULL; \ 19681 cur_hdr_off = 0; \ 19682 max_pld = tcp->tcp_mdt_max_pld; \ 19683 pbuf_idx = pbuf_idx_nxt = -1; \ 19684 add_buffer = B_TRUE; \ 19685 zcopy = B_FALSE; \ 19686 } 19687 19688 #define PREP_NEW_PBUF() { \ 19689 md_pbuf = md_pbuf_nxt = NULL; \ 19690 pbuf_idx = pbuf_idx_nxt = -1; \ 19691 cur_pld_off = 0; \ 19692 first_snxt = *snxt; \ 19693 ASSERT(*tail_unsent > 0); \ 19694 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19695 } 19696 19697 ASSERT(mdt_thres >= mss); 19698 ASSERT(*usable > 0 && *usable > mdt_thres); 19699 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19700 ASSERT(!TCP_IS_DETACHED(tcp)); 19701 ASSERT(tcp->tcp_valid_bits == 0 || 19702 tcp->tcp_valid_bits == TCP_FSS_VALID); 19703 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19704 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19705 (tcp->tcp_ipversion == IPV6_VERSION && 19706 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19707 19708 connp = tcp->tcp_connp; 19709 ASSERT(connp != NULL); 19710 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19711 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19712 19713 /* 19714 * Note that tcp will only declare at most 2 payload spans per 19715 * packet, which is much lower than the maximum allowable number 19716 * of packet spans per Multidata. For this reason, we use the 19717 * privately declared and smaller descriptor info structure, in 19718 * order to save some stack space. 19719 */ 19720 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19721 19722 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19723 if (af == AF_INET) { 19724 dst = tcp->tcp_ipha->ipha_dst; 19725 src = tcp->tcp_ipha->ipha_src; 19726 ASSERT(!CLASSD(dst)); 19727 } 19728 ASSERT(af == AF_INET || 19729 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19730 19731 obsegs = obbytes = 0; 19732 num_burst_seg = tcp->tcp_snd_burst; 19733 md_mp_head = NULL; 19734 PREP_NEW_MULTIDATA(); 19735 19736 /* 19737 * Before we go on further, make sure there is an IRE that we can 19738 * use, and that the ILL supports MDT. Otherwise, there's no point 19739 * in proceeding any further, and we should just hand everything 19740 * off to the legacy path. 19741 */ 19742 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19743 goto legacy_send_no_md; 19744 19745 ASSERT(ire != NULL); 19746 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19747 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19748 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19749 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19750 /* 19751 * If we do support loopback for MDT (which requires modifications 19752 * to the receiving paths), the following assertions should go away, 19753 * and we would be sending the Multidata to loopback conn later on. 19754 */ 19755 ASSERT(!IRE_IS_LOCAL(ire)); 19756 ASSERT(ire->ire_stq != NULL); 19757 19758 ill = ire_to_ill(ire); 19759 ASSERT(ill != NULL); 19760 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19761 19762 if (!tcp->tcp_ire_ill_check_done) { 19763 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19764 tcp->tcp_ire_ill_check_done = B_TRUE; 19765 } 19766 19767 /* 19768 * If the underlying interface conditions have changed, or if the 19769 * new interface does not support MDT, go back to legacy path. 19770 */ 19771 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19772 /* don't go through this path anymore for this connection */ 19773 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19774 tcp->tcp_mdt = B_FALSE; 19775 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19776 "interface %s\n", (void *)connp, ill->ill_name)); 19777 /* IRE will be released prior to returning */ 19778 goto legacy_send_no_md; 19779 } 19780 19781 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19782 zc_cap = ill->ill_zerocopy_capab; 19783 19784 /* 19785 * Check if we can take tcp fast-path. Note that "incomplete" 19786 * ire's (where the link-layer for next hop is not resolved 19787 * or where the fast-path header in nce_fp_mp is not available 19788 * yet) are sent down the legacy (slow) path. 19789 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19790 */ 19791 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19792 /* IRE will be released prior to returning */ 19793 goto legacy_send_no_md; 19794 } 19795 19796 /* go to legacy path if interface doesn't support zerocopy */ 19797 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19798 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19799 /* IRE will be released prior to returning */ 19800 goto legacy_send_no_md; 19801 } 19802 19803 /* does the interface support hardware checksum offload? */ 19804 hwcksum_flags = 0; 19805 if (ILL_HCKSUM_CAPABLE(ill) && 19806 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19807 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19808 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19809 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19810 HCKSUM_IPHDRCKSUM) 19811 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19812 19813 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19814 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19815 hwcksum_flags |= HCK_FULLCKSUM; 19816 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19817 HCKSUM_INET_PARTIAL) 19818 hwcksum_flags |= HCK_PARTIALCKSUM; 19819 } 19820 19821 /* 19822 * Each header fragment consists of the leading extra space, 19823 * followed by the TCP/IP header, and the trailing extra space. 19824 * We make sure that each header fragment begins on a 32-bit 19825 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19826 * aligned in tcp_mdt_update). 19827 */ 19828 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19829 tcp->tcp_mdt_hdr_tail), 4); 19830 19831 /* are we starting from the beginning of data block? */ 19832 if (*tail_unsent == 0) { 19833 *xmit_tail = (*xmit_tail)->b_cont; 19834 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19835 *tail_unsent = (int)MBLKL(*xmit_tail); 19836 } 19837 19838 /* 19839 * Here we create one or more Multidata messages, each made up of 19840 * one header buffer and up to N payload buffers. This entire 19841 * operation is done within two loops: 19842 * 19843 * The outer loop mostly deals with creating the Multidata message, 19844 * as well as the header buffer that gets added to it. It also 19845 * links the Multidata messages together such that all of them can 19846 * be sent down to the lower layer in a single putnext call; this 19847 * linking behavior depends on the tcp_mdt_chain tunable. 19848 * 19849 * The inner loop takes an existing Multidata message, and adds 19850 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19851 * packetizes those buffers by filling up the corresponding header 19852 * buffer fragments with the proper IP and TCP headers, and by 19853 * describing the layout of each packet in the packet descriptors 19854 * that get added to the Multidata. 19855 */ 19856 do { 19857 /* 19858 * If usable send window is too small, or data blocks in 19859 * transmit list are smaller than our threshold (i.e. app 19860 * performs large writes followed by small ones), we hand 19861 * off the control over to the legacy path. Note that we'll 19862 * get back the control once it encounters a large block. 19863 */ 19864 if (*usable < mss || (*tail_unsent <= mdt_thres && 19865 (*xmit_tail)->b_cont != NULL && 19866 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19867 /* send down what we've got so far */ 19868 if (md_mp_head != NULL) { 19869 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19870 obsegs, obbytes, &rconfirm); 19871 } 19872 /* 19873 * Pass control over to tcp_send(), but tell it to 19874 * return to us once a large-size transmission is 19875 * possible. 19876 */ 19877 TCP_STAT(tcps, tcp_mdt_legacy_small); 19878 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19879 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19880 tail_unsent, xmit_tail, local_time, 19881 mdt_thres)) <= 0) { 19882 /* burst count reached, or alloc failed */ 19883 IRE_REFRELE(ire); 19884 return (err); 19885 } 19886 19887 /* tcp_send() may have sent everything, so check */ 19888 if (*usable <= 0) { 19889 IRE_REFRELE(ire); 19890 return (0); 19891 } 19892 19893 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19894 /* 19895 * We may have delivered the Multidata, so make sure 19896 * to re-initialize before the next round. 19897 */ 19898 md_mp_head = NULL; 19899 obsegs = obbytes = 0; 19900 num_burst_seg = tcp->tcp_snd_burst; 19901 PREP_NEW_MULTIDATA(); 19902 19903 /* are we starting from the beginning of data block? */ 19904 if (*tail_unsent == 0) { 19905 *xmit_tail = (*xmit_tail)->b_cont; 19906 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19907 (uintptr_t)INT_MAX); 19908 *tail_unsent = (int)MBLKL(*xmit_tail); 19909 } 19910 } 19911 19912 /* 19913 * max_pld limits the number of mblks in tcp's transmit 19914 * queue that can be added to a Multidata message. Once 19915 * this counter reaches zero, no more additional mblks 19916 * can be added to it. What happens afterwards depends 19917 * on whether or not we are set to chain the Multidata 19918 * messages. If we are to link them together, reset 19919 * max_pld to its original value (tcp_mdt_max_pld) and 19920 * prepare to create a new Multidata message which will 19921 * get linked to md_mp_head. Else, leave it alone and 19922 * let the inner loop break on its own. 19923 */ 19924 if (tcp_mdt_chain && max_pld == 0) 19925 PREP_NEW_MULTIDATA(); 19926 19927 /* adding a payload buffer; re-initialize values */ 19928 if (add_buffer) 19929 PREP_NEW_PBUF(); 19930 19931 /* 19932 * If we don't have a Multidata, either because we just 19933 * (re)entered this outer loop, or after we branched off 19934 * to tcp_send above, setup the Multidata and header 19935 * buffer to be used. 19936 */ 19937 if (md_mp == NULL) { 19938 int md_hbuflen; 19939 uint32_t start, stuff; 19940 19941 /* 19942 * Calculate Multidata header buffer size large enough 19943 * to hold all of the headers that can possibly be 19944 * sent at this moment. We'd rather over-estimate 19945 * the size than running out of space; this is okay 19946 * since this buffer is small anyway. 19947 */ 19948 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19949 19950 /* 19951 * Start and stuff offset for partial hardware 19952 * checksum offload; these are currently for IPv4. 19953 * For full checksum offload, they are set to zero. 19954 */ 19955 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19956 if (af == AF_INET) { 19957 start = IP_SIMPLE_HDR_LENGTH; 19958 stuff = IP_SIMPLE_HDR_LENGTH + 19959 TCP_CHECKSUM_OFFSET; 19960 } else { 19961 start = IPV6_HDR_LEN; 19962 stuff = IPV6_HDR_LEN + 19963 TCP_CHECKSUM_OFFSET; 19964 } 19965 } else { 19966 start = stuff = 0; 19967 } 19968 19969 /* 19970 * Create the header buffer, Multidata, as well as 19971 * any necessary attributes (destination address, 19972 * SAP and hardware checksum offload) that should 19973 * be associated with the Multidata message. 19974 */ 19975 ASSERT(cur_hdr_off == 0); 19976 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19977 ((md_hbuf->b_wptr += md_hbuflen), 19978 (mmd = mmd_alloc(md_hbuf, &md_mp, 19979 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19980 /* fastpath mblk */ 19981 ire->ire_nce->nce_res_mp, 19982 /* hardware checksum enabled */ 19983 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19984 /* hardware checksum offsets */ 19985 start, stuff, 0, 19986 /* hardware checksum flag */ 19987 hwcksum_flags, tcps) != 0)) { 19988 legacy_send: 19989 if (md_mp != NULL) { 19990 /* Unlink message from the chain */ 19991 if (md_mp_head != NULL) { 19992 err = (intptr_t)rmvb(md_mp_head, 19993 md_mp); 19994 /* 19995 * We can't assert that rmvb 19996 * did not return -1, since we 19997 * may get here before linkb 19998 * happens. We do, however, 19999 * check if we just removed the 20000 * only element in the list. 20001 */ 20002 if (err == 0) 20003 md_mp_head = NULL; 20004 } 20005 /* md_hbuf gets freed automatically */ 20006 TCP_STAT(tcps, tcp_mdt_discarded); 20007 freeb(md_mp); 20008 } else { 20009 /* Either allocb or mmd_alloc failed */ 20010 TCP_STAT(tcps, tcp_mdt_allocfail); 20011 if (md_hbuf != NULL) 20012 freeb(md_hbuf); 20013 } 20014 20015 /* send down what we've got so far */ 20016 if (md_mp_head != NULL) { 20017 tcp_multisend_data(tcp, ire, ill, 20018 md_mp_head, obsegs, obbytes, 20019 &rconfirm); 20020 } 20021 legacy_send_no_md: 20022 if (ire != NULL) 20023 IRE_REFRELE(ire); 20024 /* 20025 * Too bad; let the legacy path handle this. 20026 * We specify INT_MAX for the threshold, since 20027 * we gave up with the Multidata processings 20028 * and let the old path have it all. 20029 */ 20030 TCP_STAT(tcps, tcp_mdt_legacy_all); 20031 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20032 tcp_tcp_hdr_len, num_sack_blk, usable, 20033 snxt, tail_unsent, xmit_tail, local_time, 20034 INT_MAX)); 20035 } 20036 20037 /* link to any existing ones, if applicable */ 20038 TCP_STAT(tcps, tcp_mdt_allocd); 20039 if (md_mp_head == NULL) { 20040 md_mp_head = md_mp; 20041 } else if (tcp_mdt_chain) { 20042 TCP_STAT(tcps, tcp_mdt_linked); 20043 linkb(md_mp_head, md_mp); 20044 } 20045 } 20046 20047 ASSERT(md_mp_head != NULL); 20048 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20049 ASSERT(md_mp != NULL && mmd != NULL); 20050 ASSERT(md_hbuf != NULL); 20051 20052 /* 20053 * Packetize the transmittable portion of the data block; 20054 * each data block is essentially added to the Multidata 20055 * as a payload buffer. We also deal with adding more 20056 * than one payload buffers, which happens when the remaining 20057 * packetized portion of the current payload buffer is less 20058 * than MSS, while the next data block in transmit queue 20059 * has enough data to make up for one. This "spillover" 20060 * case essentially creates a split-packet, where portions 20061 * of the packet's payload fragments may span across two 20062 * virtually discontiguous address blocks. 20063 */ 20064 seg_len = mss; 20065 do { 20066 len = seg_len; 20067 20068 ASSERT(len > 0); 20069 ASSERT(max_pld >= 0); 20070 ASSERT(!add_buffer || cur_pld_off == 0); 20071 20072 /* 20073 * First time around for this payload buffer; note 20074 * in the case of a spillover, the following has 20075 * been done prior to adding the split-packet 20076 * descriptor to Multidata, and we don't want to 20077 * repeat the process. 20078 */ 20079 if (add_buffer) { 20080 ASSERT(mmd != NULL); 20081 ASSERT(md_pbuf == NULL); 20082 ASSERT(md_pbuf_nxt == NULL); 20083 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20084 20085 /* 20086 * Have we reached the limit? We'd get to 20087 * this case when we're not chaining the 20088 * Multidata messages together, and since 20089 * we're done, terminate this loop. 20090 */ 20091 if (max_pld == 0) 20092 break; /* done */ 20093 20094 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20095 TCP_STAT(tcps, tcp_mdt_allocfail); 20096 goto legacy_send; /* out_of_mem */ 20097 } 20098 20099 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20100 zc_cap != NULL) { 20101 if (!ip_md_zcopy_attr(mmd, NULL, 20102 zc_cap->ill_zerocopy_flags)) { 20103 freeb(md_pbuf); 20104 TCP_STAT(tcps, 20105 tcp_mdt_allocfail); 20106 /* out_of_mem */ 20107 goto legacy_send; 20108 } 20109 zcopy = B_TRUE; 20110 } 20111 20112 md_pbuf->b_rptr += base_pld_off; 20113 20114 /* 20115 * Add a payload buffer to the Multidata; this 20116 * operation must not fail, or otherwise our 20117 * logic in this routine is broken. There 20118 * is no memory allocation done by the 20119 * routine, so any returned failure simply 20120 * tells us that we've done something wrong. 20121 * 20122 * A failure tells us that either we're adding 20123 * the same payload buffer more than once, or 20124 * we're trying to add more buffers than 20125 * allowed (max_pld calculation is wrong). 20126 * None of the above cases should happen, and 20127 * we panic because either there's horrible 20128 * heap corruption, and/or programming mistake. 20129 */ 20130 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20131 if (pbuf_idx < 0) { 20132 cmn_err(CE_PANIC, "tcp_multisend: " 20133 "payload buffer logic error " 20134 "detected for tcp %p mmd %p " 20135 "pbuf %p (%d)\n", 20136 (void *)tcp, (void *)mmd, 20137 (void *)md_pbuf, pbuf_idx); 20138 } 20139 20140 ASSERT(max_pld > 0); 20141 --max_pld; 20142 add_buffer = B_FALSE; 20143 } 20144 20145 ASSERT(md_mp_head != NULL); 20146 ASSERT(md_pbuf != NULL); 20147 ASSERT(md_pbuf_nxt == NULL); 20148 ASSERT(pbuf_idx != -1); 20149 ASSERT(pbuf_idx_nxt == -1); 20150 ASSERT(*usable > 0); 20151 20152 /* 20153 * We spillover to the next payload buffer only 20154 * if all of the following is true: 20155 * 20156 * 1. There is not enough data on the current 20157 * payload buffer to make up `len', 20158 * 2. We are allowed to send `len', 20159 * 3. The next payload buffer length is large 20160 * enough to accomodate `spill'. 20161 */ 20162 if ((spill = len - *tail_unsent) > 0 && 20163 *usable >= len && 20164 MBLKL((*xmit_tail)->b_cont) >= spill && 20165 max_pld > 0) { 20166 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20167 if (md_pbuf_nxt == NULL) { 20168 TCP_STAT(tcps, tcp_mdt_allocfail); 20169 goto legacy_send; /* out_of_mem */ 20170 } 20171 20172 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20173 zc_cap != NULL) { 20174 if (!ip_md_zcopy_attr(mmd, NULL, 20175 zc_cap->ill_zerocopy_flags)) { 20176 freeb(md_pbuf_nxt); 20177 TCP_STAT(tcps, 20178 tcp_mdt_allocfail); 20179 /* out_of_mem */ 20180 goto legacy_send; 20181 } 20182 zcopy = B_TRUE; 20183 } 20184 20185 /* 20186 * See comments above on the first call to 20187 * mmd_addpldbuf for explanation on the panic. 20188 */ 20189 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20190 if (pbuf_idx_nxt < 0) { 20191 panic("tcp_multisend: " 20192 "next payload buffer logic error " 20193 "detected for tcp %p mmd %p " 20194 "pbuf %p (%d)\n", 20195 (void *)tcp, (void *)mmd, 20196 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20197 } 20198 20199 ASSERT(max_pld > 0); 20200 --max_pld; 20201 } else if (spill > 0) { 20202 /* 20203 * If there's a spillover, but the following 20204 * xmit_tail couldn't give us enough octets 20205 * to reach "len", then stop the current 20206 * Multidata creation and let the legacy 20207 * tcp_send() path take over. We don't want 20208 * to send the tiny segment as part of this 20209 * Multidata for performance reasons; instead, 20210 * we let the legacy path deal with grouping 20211 * it with the subsequent small mblks. 20212 */ 20213 if (*usable >= len && 20214 MBLKL((*xmit_tail)->b_cont) < spill) { 20215 max_pld = 0; 20216 break; /* done */ 20217 } 20218 20219 /* 20220 * We can't spillover, and we are near 20221 * the end of the current payload buffer, 20222 * so send what's left. 20223 */ 20224 ASSERT(*tail_unsent > 0); 20225 len = *tail_unsent; 20226 } 20227 20228 /* tail_unsent is negated if there is a spillover */ 20229 *tail_unsent -= len; 20230 *usable -= len; 20231 ASSERT(*usable >= 0); 20232 20233 if (*usable < mss) 20234 seg_len = *usable; 20235 /* 20236 * Sender SWS avoidance; see comments in tcp_send(); 20237 * everything else is the same, except that we only 20238 * do this here if there is no more data to be sent 20239 * following the current xmit_tail. We don't check 20240 * for 1-byte urgent data because we shouldn't get 20241 * here if TCP_URG_VALID is set. 20242 */ 20243 if (*usable > 0 && *usable < mss && 20244 ((md_pbuf_nxt == NULL && 20245 (*xmit_tail)->b_cont == NULL) || 20246 (md_pbuf_nxt != NULL && 20247 (*xmit_tail)->b_cont->b_cont == NULL)) && 20248 seg_len < (tcp->tcp_max_swnd >> 1) && 20249 (tcp->tcp_unsent - 20250 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20251 !tcp->tcp_zero_win_probe) { 20252 if ((*snxt + len) == tcp->tcp_snxt && 20253 (*snxt + len) == tcp->tcp_suna) { 20254 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20255 } 20256 done = B_TRUE; 20257 } 20258 20259 /* 20260 * Prime pump for IP's checksumming on our behalf; 20261 * include the adjustment for a source route if any. 20262 * Do this only for software/partial hardware checksum 20263 * offload, as this field gets zeroed out later for 20264 * the full hardware checksum offload case. 20265 */ 20266 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20267 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20268 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20269 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20270 } 20271 20272 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20273 *snxt += len; 20274 20275 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20276 /* 20277 * We set the PUSH bit only if TCP has no more buffered 20278 * data to be transmitted (or if sender SWS avoidance 20279 * takes place), as opposed to setting it for every 20280 * last packet in the burst. 20281 */ 20282 if (done || 20283 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20284 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20285 20286 /* 20287 * Set FIN bit if this is our last segment; snxt 20288 * already includes its length, and it will not 20289 * be adjusted after this point. 20290 */ 20291 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20292 *snxt == tcp->tcp_fss) { 20293 if (!tcp->tcp_fin_acked) { 20294 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20295 BUMP_MIB(&tcps->tcps_mib, 20296 tcpOutControl); 20297 } 20298 if (!tcp->tcp_fin_sent) { 20299 tcp->tcp_fin_sent = B_TRUE; 20300 /* 20301 * tcp state must be ESTABLISHED 20302 * in order for us to get here in 20303 * the first place. 20304 */ 20305 tcp->tcp_state = TCPS_FIN_WAIT_1; 20306 20307 /* 20308 * Upon returning from this routine, 20309 * tcp_wput_data() will set tcp_snxt 20310 * to be equal to snxt + tcp_fin_sent. 20311 * This is essentially the same as 20312 * setting it to tcp_fss + 1. 20313 */ 20314 } 20315 } 20316 20317 tcp->tcp_last_sent_len = (ushort_t)len; 20318 20319 len += tcp_hdr_len; 20320 if (tcp->tcp_ipversion == IPV4_VERSION) 20321 tcp->tcp_ipha->ipha_length = htons(len); 20322 else 20323 tcp->tcp_ip6h->ip6_plen = htons(len - 20324 ((char *)&tcp->tcp_ip6h[1] - 20325 tcp->tcp_iphc)); 20326 20327 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20328 20329 /* setup header fragment */ 20330 PDESC_HDR_ADD(pkt_info, 20331 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20332 tcp->tcp_mdt_hdr_head, /* head room */ 20333 tcp_hdr_len, /* len */ 20334 tcp->tcp_mdt_hdr_tail); /* tail room */ 20335 20336 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20337 hdr_frag_sz); 20338 ASSERT(MBLKIN(md_hbuf, 20339 (pkt_info->hdr_base - md_hbuf->b_rptr), 20340 PDESC_HDRSIZE(pkt_info))); 20341 20342 /* setup first payload fragment */ 20343 PDESC_PLD_INIT(pkt_info); 20344 PDESC_PLD_SPAN_ADD(pkt_info, 20345 pbuf_idx, /* index */ 20346 md_pbuf->b_rptr + cur_pld_off, /* start */ 20347 tcp->tcp_last_sent_len); /* len */ 20348 20349 /* create a split-packet in case of a spillover */ 20350 if (md_pbuf_nxt != NULL) { 20351 ASSERT(spill > 0); 20352 ASSERT(pbuf_idx_nxt > pbuf_idx); 20353 ASSERT(!add_buffer); 20354 20355 md_pbuf = md_pbuf_nxt; 20356 md_pbuf_nxt = NULL; 20357 pbuf_idx = pbuf_idx_nxt; 20358 pbuf_idx_nxt = -1; 20359 cur_pld_off = spill; 20360 20361 /* trim out first payload fragment */ 20362 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20363 20364 /* setup second payload fragment */ 20365 PDESC_PLD_SPAN_ADD(pkt_info, 20366 pbuf_idx, /* index */ 20367 md_pbuf->b_rptr, /* start */ 20368 spill); /* len */ 20369 20370 if ((*xmit_tail)->b_next == NULL) { 20371 /* 20372 * Store the lbolt used for RTT 20373 * estimation. We can only record one 20374 * timestamp per mblk so we do it when 20375 * we reach the end of the payload 20376 * buffer. Also we only take a new 20377 * timestamp sample when the previous 20378 * timed data from the same mblk has 20379 * been ack'ed. 20380 */ 20381 (*xmit_tail)->b_prev = local_time; 20382 (*xmit_tail)->b_next = 20383 (mblk_t *)(uintptr_t)first_snxt; 20384 } 20385 20386 first_snxt = *snxt - spill; 20387 20388 /* 20389 * Advance xmit_tail; usable could be 0 by 20390 * the time we got here, but we made sure 20391 * above that we would only spillover to 20392 * the next data block if usable includes 20393 * the spilled-over amount prior to the 20394 * subtraction. Therefore, we are sure 20395 * that xmit_tail->b_cont can't be NULL. 20396 */ 20397 ASSERT((*xmit_tail)->b_cont != NULL); 20398 *xmit_tail = (*xmit_tail)->b_cont; 20399 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20400 (uintptr_t)INT_MAX); 20401 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20402 } else { 20403 cur_pld_off += tcp->tcp_last_sent_len; 20404 } 20405 20406 /* 20407 * Fill in the header using the template header, and 20408 * add options such as time-stamp, ECN and/or SACK, 20409 * as needed. 20410 */ 20411 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20412 (clock_t)local_time, num_sack_blk); 20413 20414 /* take care of some IP header businesses */ 20415 if (af == AF_INET) { 20416 ipha = (ipha_t *)pkt_info->hdr_rptr; 20417 20418 ASSERT(OK_32PTR((uchar_t *)ipha)); 20419 ASSERT(PDESC_HDRL(pkt_info) >= 20420 IP_SIMPLE_HDR_LENGTH); 20421 ASSERT(ipha->ipha_version_and_hdr_length == 20422 IP_SIMPLE_HDR_VERSION); 20423 20424 /* 20425 * Assign ident value for current packet; see 20426 * related comments in ip_wput_ire() about the 20427 * contract private interface with clustering 20428 * group. 20429 */ 20430 clusterwide = B_FALSE; 20431 if (cl_inet_ipident != NULL) { 20432 ASSERT(cl_inet_isclusterwide != NULL); 20433 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20434 AF_INET, 20435 (uint8_t *)(uintptr_t)src)) { 20436 ipha->ipha_ident = 20437 (*cl_inet_ipident) 20438 (IPPROTO_IP, AF_INET, 20439 (uint8_t *)(uintptr_t)src, 20440 (uint8_t *)(uintptr_t)dst); 20441 clusterwide = B_TRUE; 20442 } 20443 } 20444 20445 if (!clusterwide) { 20446 ipha->ipha_ident = (uint16_t) 20447 atomic_add_32_nv( 20448 &ire->ire_ident, 1); 20449 } 20450 #ifndef _BIG_ENDIAN 20451 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20452 (ipha->ipha_ident >> 8); 20453 #endif 20454 } else { 20455 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20456 20457 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20458 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20459 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20460 ASSERT(PDESC_HDRL(pkt_info) >= 20461 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20462 TCP_CHECKSUM_SIZE)); 20463 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20464 20465 if (tcp->tcp_ip_forward_progress) { 20466 rconfirm = B_TRUE; 20467 tcp->tcp_ip_forward_progress = B_FALSE; 20468 } 20469 } 20470 20471 /* at least one payload span, and at most two */ 20472 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20473 20474 /* add the packet descriptor to Multidata */ 20475 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20476 KM_NOSLEEP)) == NULL) { 20477 /* 20478 * Any failure other than ENOMEM indicates 20479 * that we have passed in invalid pkt_info 20480 * or parameters to mmd_addpdesc, which must 20481 * not happen. 20482 * 20483 * EINVAL is a result of failure on boundary 20484 * checks against the pkt_info contents. It 20485 * should not happen, and we panic because 20486 * either there's horrible heap corruption, 20487 * and/or programming mistake. 20488 */ 20489 if (err != ENOMEM) { 20490 cmn_err(CE_PANIC, "tcp_multisend: " 20491 "pdesc logic error detected for " 20492 "tcp %p mmd %p pinfo %p (%d)\n", 20493 (void *)tcp, (void *)mmd, 20494 (void *)pkt_info, err); 20495 } 20496 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20497 goto legacy_send; /* out_of_mem */ 20498 } 20499 ASSERT(pkt != NULL); 20500 20501 /* calculate IP header and TCP checksums */ 20502 if (af == AF_INET) { 20503 /* calculate pseudo-header checksum */ 20504 cksum = (dst >> 16) + (dst & 0xFFFF) + 20505 (src >> 16) + (src & 0xFFFF); 20506 20507 /* offset for TCP header checksum */ 20508 up = IPH_TCPH_CHECKSUMP(ipha, 20509 IP_SIMPLE_HDR_LENGTH); 20510 } else { 20511 up = (uint16_t *)&ip6h->ip6_src; 20512 20513 /* calculate pseudo-header checksum */ 20514 cksum = up[0] + up[1] + up[2] + up[3] + 20515 up[4] + up[5] + up[6] + up[7] + 20516 up[8] + up[9] + up[10] + up[11] + 20517 up[12] + up[13] + up[14] + up[15]; 20518 20519 /* Fold the initial sum */ 20520 cksum = (cksum & 0xffff) + (cksum >> 16); 20521 20522 up = (uint16_t *)(((uchar_t *)ip6h) + 20523 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20524 } 20525 20526 if (hwcksum_flags & HCK_FULLCKSUM) { 20527 /* clear checksum field for hardware */ 20528 *up = 0; 20529 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20530 uint32_t sum; 20531 20532 /* pseudo-header checksumming */ 20533 sum = *up + cksum + IP_TCP_CSUM_COMP; 20534 sum = (sum & 0xFFFF) + (sum >> 16); 20535 *up = (sum & 0xFFFF) + (sum >> 16); 20536 } else { 20537 /* software checksumming */ 20538 TCP_STAT(tcps, tcp_out_sw_cksum); 20539 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20540 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20541 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20542 cksum + IP_TCP_CSUM_COMP); 20543 if (*up == 0) 20544 *up = 0xFFFF; 20545 } 20546 20547 /* IPv4 header checksum */ 20548 if (af == AF_INET) { 20549 ipha->ipha_fragment_offset_and_flags |= 20550 (uint32_t)htons(ire->ire_frag_flag); 20551 20552 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20553 ipha->ipha_hdr_checksum = 0; 20554 } else { 20555 IP_HDR_CKSUM(ipha, cksum, 20556 ((uint32_t *)ipha)[0], 20557 ((uint16_t *)ipha)[4]); 20558 } 20559 } 20560 20561 if (af == AF_INET && 20562 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20563 af == AF_INET6 && 20564 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20565 /* build header(IP/TCP) mblk for this segment */ 20566 if ((mp = dupb(md_hbuf)) == NULL) 20567 goto legacy_send; 20568 20569 mp->b_rptr = pkt_info->hdr_rptr; 20570 mp->b_wptr = pkt_info->hdr_wptr; 20571 20572 /* build payload mblk for this segment */ 20573 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20574 freemsg(mp); 20575 goto legacy_send; 20576 } 20577 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20578 mp1->b_rptr = mp1->b_wptr - 20579 tcp->tcp_last_sent_len; 20580 linkb(mp, mp1); 20581 20582 pld_start = mp1->b_rptr; 20583 20584 if (af == AF_INET) { 20585 DTRACE_PROBE4( 20586 ip4__physical__out__start, 20587 ill_t *, NULL, 20588 ill_t *, ill, 20589 ipha_t *, ipha, 20590 mblk_t *, mp); 20591 FW_HOOKS( 20592 ipst->ips_ip4_physical_out_event, 20593 ipst->ips_ipv4firewall_physical_out, 20594 NULL, ill, ipha, mp, mp, ipst); 20595 DTRACE_PROBE1( 20596 ip4__physical__out__end, 20597 mblk_t *, mp); 20598 } else { 20599 DTRACE_PROBE4( 20600 ip6__physical__out_start, 20601 ill_t *, NULL, 20602 ill_t *, ill, 20603 ip6_t *, ip6h, 20604 mblk_t *, mp); 20605 FW_HOOKS6( 20606 ipst->ips_ip6_physical_out_event, 20607 ipst->ips_ipv6firewall_physical_out, 20608 NULL, ill, ip6h, mp, mp, ipst); 20609 DTRACE_PROBE1( 20610 ip6__physical__out__end, 20611 mblk_t *, mp); 20612 } 20613 20614 if (buf_trunked && mp != NULL) { 20615 /* 20616 * Need to pass it to normal path. 20617 */ 20618 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20619 } else if (mp == NULL || 20620 mp->b_rptr != pkt_info->hdr_rptr || 20621 mp->b_wptr != pkt_info->hdr_wptr || 20622 (mp1 = mp->b_cont) == NULL || 20623 mp1->b_rptr != pld_start || 20624 mp1->b_wptr != pld_start + 20625 tcp->tcp_last_sent_len || 20626 mp1->b_cont != NULL) { 20627 /* 20628 * Need to pass all packets of this 20629 * buffer to normal path, either when 20630 * packet is blocked, or when boundary 20631 * of header buffer or payload buffer 20632 * has been changed by FW_HOOKS[6]. 20633 */ 20634 buf_trunked = B_TRUE; 20635 if (md_mp_head != NULL) { 20636 err = (intptr_t)rmvb(md_mp_head, 20637 md_mp); 20638 if (err == 0) 20639 md_mp_head = NULL; 20640 } 20641 20642 /* send down what we've got so far */ 20643 if (md_mp_head != NULL) { 20644 tcp_multisend_data(tcp, ire, 20645 ill, md_mp_head, obsegs, 20646 obbytes, &rconfirm); 20647 } 20648 md_mp_head = NULL; 20649 20650 if (mp != NULL) 20651 CALL_IP_WPUT(tcp->tcp_connp, 20652 q, mp); 20653 20654 mp1 = fw_mp_head; 20655 do { 20656 mp = mp1; 20657 mp1 = mp1->b_next; 20658 mp->b_next = NULL; 20659 mp->b_prev = NULL; 20660 CALL_IP_WPUT(tcp->tcp_connp, 20661 q, mp); 20662 } while (mp1 != NULL); 20663 20664 fw_mp_head = NULL; 20665 } else { 20666 if (fw_mp_head == NULL) 20667 fw_mp_head = mp; 20668 else 20669 fw_mp_head->b_prev->b_next = mp; 20670 fw_mp_head->b_prev = mp; 20671 } 20672 } 20673 20674 /* advance header offset */ 20675 cur_hdr_off += hdr_frag_sz; 20676 20677 obbytes += tcp->tcp_last_sent_len; 20678 ++obsegs; 20679 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20680 *tail_unsent > 0); 20681 20682 if ((*xmit_tail)->b_next == NULL) { 20683 /* 20684 * Store the lbolt used for RTT estimation. We can only 20685 * record one timestamp per mblk so we do it when we 20686 * reach the end of the payload buffer. Also we only 20687 * take a new timestamp sample when the previous timed 20688 * data from the same mblk has been ack'ed. 20689 */ 20690 (*xmit_tail)->b_prev = local_time; 20691 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20692 } 20693 20694 ASSERT(*tail_unsent >= 0); 20695 if (*tail_unsent > 0) { 20696 /* 20697 * We got here because we broke out of the above 20698 * loop due to of one of the following cases: 20699 * 20700 * 1. len < adjusted MSS (i.e. small), 20701 * 2. Sender SWS avoidance, 20702 * 3. max_pld is zero. 20703 * 20704 * We are done for this Multidata, so trim our 20705 * last payload buffer (if any) accordingly. 20706 */ 20707 if (md_pbuf != NULL) 20708 md_pbuf->b_wptr -= *tail_unsent; 20709 } else if (*usable > 0) { 20710 *xmit_tail = (*xmit_tail)->b_cont; 20711 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20712 (uintptr_t)INT_MAX); 20713 *tail_unsent = (int)MBLKL(*xmit_tail); 20714 add_buffer = B_TRUE; 20715 } 20716 20717 while (fw_mp_head) { 20718 mp = fw_mp_head; 20719 fw_mp_head = fw_mp_head->b_next; 20720 mp->b_prev = mp->b_next = NULL; 20721 freemsg(mp); 20722 } 20723 if (buf_trunked) { 20724 TCP_STAT(tcps, tcp_mdt_discarded); 20725 freeb(md_mp); 20726 buf_trunked = B_FALSE; 20727 } 20728 } while (!done && *usable > 0 && num_burst_seg > 0 && 20729 (tcp_mdt_chain || max_pld > 0)); 20730 20731 if (md_mp_head != NULL) { 20732 /* send everything down */ 20733 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20734 &rconfirm); 20735 } 20736 20737 #undef PREP_NEW_MULTIDATA 20738 #undef PREP_NEW_PBUF 20739 #undef IPVER 20740 20741 IRE_REFRELE(ire); 20742 return (0); 20743 } 20744 20745 /* 20746 * A wrapper function for sending one or more Multidata messages down to 20747 * the module below ip; this routine does not release the reference of the 20748 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20749 */ 20750 static void 20751 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20752 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20753 { 20754 uint64_t delta; 20755 nce_t *nce; 20756 tcp_stack_t *tcps = tcp->tcp_tcps; 20757 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20758 20759 ASSERT(ire != NULL && ill != NULL); 20760 ASSERT(ire->ire_stq != NULL); 20761 ASSERT(md_mp_head != NULL); 20762 ASSERT(rconfirm != NULL); 20763 20764 /* adjust MIBs and IRE timestamp */ 20765 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20766 tcp->tcp_obsegs += obsegs; 20767 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20768 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20769 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20770 20771 if (tcp->tcp_ipversion == IPV4_VERSION) { 20772 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20773 } else { 20774 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20775 } 20776 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20777 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20778 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20779 20780 ire->ire_ob_pkt_count += obsegs; 20781 if (ire->ire_ipif != NULL) 20782 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20783 ire->ire_last_used_time = lbolt; 20784 20785 /* send it down */ 20786 putnext(ire->ire_stq, md_mp_head); 20787 20788 /* we're done for TCP/IPv4 */ 20789 if (tcp->tcp_ipversion == IPV4_VERSION) 20790 return; 20791 20792 nce = ire->ire_nce; 20793 20794 ASSERT(nce != NULL); 20795 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20796 ASSERT(nce->nce_state != ND_INCOMPLETE); 20797 20798 /* reachability confirmation? */ 20799 if (*rconfirm) { 20800 nce->nce_last = TICK_TO_MSEC(lbolt64); 20801 if (nce->nce_state != ND_REACHABLE) { 20802 mutex_enter(&nce->nce_lock); 20803 nce->nce_state = ND_REACHABLE; 20804 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20805 mutex_exit(&nce->nce_lock); 20806 (void) untimeout(nce->nce_timeout_id); 20807 if (ip_debug > 2) { 20808 /* ip1dbg */ 20809 pr_addr_dbg("tcp_multisend_data: state " 20810 "for %s changed to REACHABLE\n", 20811 AF_INET6, &ire->ire_addr_v6); 20812 } 20813 } 20814 /* reset transport reachability confirmation */ 20815 *rconfirm = B_FALSE; 20816 } 20817 20818 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20819 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20820 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20821 20822 if (delta > (uint64_t)ill->ill_reachable_time) { 20823 mutex_enter(&nce->nce_lock); 20824 switch (nce->nce_state) { 20825 case ND_REACHABLE: 20826 case ND_STALE: 20827 /* 20828 * ND_REACHABLE is identical to ND_STALE in this 20829 * specific case. If reachable time has expired for 20830 * this neighbor (delta is greater than reachable 20831 * time), conceptually, the neighbor cache is no 20832 * longer in REACHABLE state, but already in STALE 20833 * state. So the correct transition here is to 20834 * ND_DELAY. 20835 */ 20836 nce->nce_state = ND_DELAY; 20837 mutex_exit(&nce->nce_lock); 20838 NDP_RESTART_TIMER(nce, 20839 ipst->ips_delay_first_probe_time); 20840 if (ip_debug > 3) { 20841 /* ip2dbg */ 20842 pr_addr_dbg("tcp_multisend_data: state " 20843 "for %s changed to DELAY\n", 20844 AF_INET6, &ire->ire_addr_v6); 20845 } 20846 break; 20847 case ND_DELAY: 20848 case ND_PROBE: 20849 mutex_exit(&nce->nce_lock); 20850 /* Timers have already started */ 20851 break; 20852 case ND_UNREACHABLE: 20853 /* 20854 * ndp timer has detected that this nce is 20855 * unreachable and initiated deleting this nce 20856 * and all its associated IREs. This is a race 20857 * where we found the ire before it was deleted 20858 * and have just sent out a packet using this 20859 * unreachable nce. 20860 */ 20861 mutex_exit(&nce->nce_lock); 20862 break; 20863 default: 20864 ASSERT(0); 20865 } 20866 } 20867 } 20868 20869 /* 20870 * Derived from tcp_send_data(). 20871 */ 20872 static void 20873 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20874 int num_lso_seg) 20875 { 20876 ipha_t *ipha; 20877 mblk_t *ire_fp_mp; 20878 uint_t ire_fp_mp_len; 20879 uint32_t hcksum_txflags = 0; 20880 ipaddr_t src; 20881 ipaddr_t dst; 20882 uint32_t cksum; 20883 uint16_t *up; 20884 tcp_stack_t *tcps = tcp->tcp_tcps; 20885 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20886 20887 ASSERT(DB_TYPE(mp) == M_DATA); 20888 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20889 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20890 ASSERT(tcp->tcp_connp != NULL); 20891 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20892 20893 ipha = (ipha_t *)mp->b_rptr; 20894 src = ipha->ipha_src; 20895 dst = ipha->ipha_dst; 20896 20897 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20898 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20899 num_lso_seg); 20900 #ifndef _BIG_ENDIAN 20901 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20902 #endif 20903 if (tcp->tcp_snd_zcopy_aware) { 20904 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20905 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20906 mp = tcp_zcopy_disable(tcp, mp); 20907 } 20908 20909 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20910 ASSERT(ill->ill_hcksum_capab != NULL); 20911 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20912 } 20913 20914 /* 20915 * Since the TCP checksum should be recalculated by h/w, we can just 20916 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20917 * pseudo-header checksum for HCK_PARTIALCKSUM. 20918 * The partial pseudo-header excludes TCP length, that was calculated 20919 * in tcp_send(), so to zero *up before further processing. 20920 */ 20921 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20922 20923 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20924 *up = 0; 20925 20926 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20927 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20928 20929 /* 20930 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20931 */ 20932 DB_LSOFLAGS(mp) |= HW_LSO; 20933 DB_LSOMSS(mp) = mss; 20934 20935 ipha->ipha_fragment_offset_and_flags |= 20936 (uint32_t)htons(ire->ire_frag_flag); 20937 20938 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20939 ire_fp_mp_len = MBLKL(ire_fp_mp); 20940 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20941 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20942 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20943 20944 UPDATE_OB_PKT_COUNT(ire); 20945 ire->ire_last_used_time = lbolt; 20946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20948 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20949 ntohs(ipha->ipha_length)); 20950 20951 if (ILL_DLS_CAPABLE(ill)) { 20952 /* 20953 * Send the packet directly to DLD, where it may be queued 20954 * depending on the availability of transmit resources at 20955 * the media layer. 20956 */ 20957 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 20958 } else { 20959 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 20960 DTRACE_PROBE4(ip4__physical__out__start, 20961 ill_t *, NULL, ill_t *, out_ill, 20962 ipha_t *, ipha, mblk_t *, mp); 20963 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20964 ipst->ips_ipv4firewall_physical_out, 20965 NULL, out_ill, ipha, mp, mp, ipst); 20966 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20967 if (mp != NULL) 20968 putnext(ire->ire_stq, mp); 20969 } 20970 } 20971 20972 /* 20973 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20974 * scheme, and returns one of the following: 20975 * 20976 * -1 = failed allocation. 20977 * 0 = success; burst count reached, or usable send window is too small, 20978 * and that we'd rather wait until later before sending again. 20979 * 1 = success; we are called from tcp_multisend(), and both usable send 20980 * window and tail_unsent are greater than the MDT threshold, and thus 20981 * Multidata Transmit should be used instead. 20982 */ 20983 static int 20984 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20985 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20986 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20987 const int mdt_thres) 20988 { 20989 int num_burst_seg = tcp->tcp_snd_burst; 20990 ire_t *ire = NULL; 20991 ill_t *ill = NULL; 20992 mblk_t *ire_fp_mp = NULL; 20993 uint_t ire_fp_mp_len = 0; 20994 int num_lso_seg = 1; 20995 uint_t lso_usable; 20996 boolean_t do_lso_send = B_FALSE; 20997 tcp_stack_t *tcps = tcp->tcp_tcps; 20998 20999 /* 21000 * Check LSO capability before any further work. And the similar check 21001 * need to be done in for(;;) loop. 21002 * LSO will be deployed when therer is more than one mss of available 21003 * data and a burst transmission is allowed. 21004 */ 21005 if (tcp->tcp_lso && 21006 (tcp->tcp_valid_bits == 0 || 21007 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21008 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21009 /* 21010 * Try to find usable IRE/ILL and do basic check to the ILL. 21011 */ 21012 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21013 /* 21014 * Enable LSO with this transmission. 21015 * Since IRE has been hold in 21016 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21017 * should be called before return. 21018 */ 21019 do_lso_send = B_TRUE; 21020 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21021 ire_fp_mp_len = MBLKL(ire_fp_mp); 21022 /* Round up to multiple of 4 */ 21023 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21024 } else { 21025 do_lso_send = B_FALSE; 21026 ill = NULL; 21027 } 21028 } 21029 21030 for (;;) { 21031 struct datab *db; 21032 tcph_t *tcph; 21033 uint32_t sum; 21034 mblk_t *mp, *mp1; 21035 uchar_t *rptr; 21036 int len; 21037 21038 /* 21039 * If we're called by tcp_multisend(), and the amount of 21040 * sendable data as well as the size of current xmit_tail 21041 * is beyond the MDT threshold, return to the caller and 21042 * let the large data transmit be done using MDT. 21043 */ 21044 if (*usable > 0 && *usable > mdt_thres && 21045 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21046 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21047 ASSERT(tcp->tcp_mdt); 21048 return (1); /* success; do large send */ 21049 } 21050 21051 if (num_burst_seg == 0) 21052 break; /* success; burst count reached */ 21053 21054 /* 21055 * Calculate the maximum payload length we can send in *one* 21056 * time. 21057 */ 21058 if (do_lso_send) { 21059 /* 21060 * Check whether need to do LSO any more. 21061 */ 21062 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21063 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21064 lso_usable = MIN(lso_usable, 21065 num_burst_seg * mss); 21066 21067 num_lso_seg = lso_usable / mss; 21068 if (lso_usable % mss) { 21069 num_lso_seg++; 21070 tcp->tcp_last_sent_len = (ushort_t) 21071 (lso_usable % mss); 21072 } else { 21073 tcp->tcp_last_sent_len = (ushort_t)mss; 21074 } 21075 } else { 21076 do_lso_send = B_FALSE; 21077 num_lso_seg = 1; 21078 lso_usable = mss; 21079 } 21080 } 21081 21082 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21083 21084 /* 21085 * Adjust num_burst_seg here. 21086 */ 21087 num_burst_seg -= num_lso_seg; 21088 21089 len = mss; 21090 if (len > *usable) { 21091 ASSERT(do_lso_send == B_FALSE); 21092 21093 len = *usable; 21094 if (len <= 0) { 21095 /* Terminate the loop */ 21096 break; /* success; too small */ 21097 } 21098 /* 21099 * Sender silly-window avoidance. 21100 * Ignore this if we are going to send a 21101 * zero window probe out. 21102 * 21103 * TODO: force data into microscopic window? 21104 * ==> (!pushed || (unsent > usable)) 21105 */ 21106 if (len < (tcp->tcp_max_swnd >> 1) && 21107 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21108 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21109 len == 1) && (! tcp->tcp_zero_win_probe)) { 21110 /* 21111 * If the retransmit timer is not running 21112 * we start it so that we will retransmit 21113 * in the case when the the receiver has 21114 * decremented the window. 21115 */ 21116 if (*snxt == tcp->tcp_snxt && 21117 *snxt == tcp->tcp_suna) { 21118 /* 21119 * We are not supposed to send 21120 * anything. So let's wait a little 21121 * bit longer before breaking SWS 21122 * avoidance. 21123 * 21124 * What should the value be? 21125 * Suggestion: MAX(init rexmit time, 21126 * tcp->tcp_rto) 21127 */ 21128 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21129 } 21130 break; /* success; too small */ 21131 } 21132 } 21133 21134 tcph = tcp->tcp_tcph; 21135 21136 /* 21137 * The reason to adjust len here is that we need to set flags 21138 * and calculate checksum. 21139 */ 21140 if (do_lso_send) 21141 len = lso_usable; 21142 21143 *usable -= len; /* Approximate - can be adjusted later */ 21144 if (*usable > 0) 21145 tcph->th_flags[0] = TH_ACK; 21146 else 21147 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21148 21149 /* 21150 * Prime pump for IP's checksumming on our behalf 21151 * Include the adjustment for a source route if any. 21152 */ 21153 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21154 sum = (sum >> 16) + (sum & 0xFFFF); 21155 U16_TO_ABE16(sum, tcph->th_sum); 21156 21157 U32_TO_ABE32(*snxt, tcph->th_seq); 21158 21159 /* 21160 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21161 * set. For the case when TCP_FSS_VALID is the only valid 21162 * bit (normal active close), branch off only when we think 21163 * that the FIN flag needs to be set. Note for this case, 21164 * that (snxt + len) may not reflect the actual seg_len, 21165 * as len may be further reduced in tcp_xmit_mp(). If len 21166 * gets modified, we will end up here again. 21167 */ 21168 if (tcp->tcp_valid_bits != 0 && 21169 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21170 ((*snxt + len) == tcp->tcp_fss))) { 21171 uchar_t *prev_rptr; 21172 uint32_t prev_snxt = tcp->tcp_snxt; 21173 21174 if (*tail_unsent == 0) { 21175 ASSERT((*xmit_tail)->b_cont != NULL); 21176 *xmit_tail = (*xmit_tail)->b_cont; 21177 prev_rptr = (*xmit_tail)->b_rptr; 21178 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21179 (*xmit_tail)->b_rptr); 21180 } else { 21181 prev_rptr = (*xmit_tail)->b_rptr; 21182 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21183 *tail_unsent; 21184 } 21185 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21186 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21187 /* Restore tcp_snxt so we get amount sent right. */ 21188 tcp->tcp_snxt = prev_snxt; 21189 if (prev_rptr == (*xmit_tail)->b_rptr) { 21190 /* 21191 * If the previous timestamp is still in use, 21192 * don't stomp on it. 21193 */ 21194 if ((*xmit_tail)->b_next == NULL) { 21195 (*xmit_tail)->b_prev = local_time; 21196 (*xmit_tail)->b_next = 21197 (mblk_t *)(uintptr_t)(*snxt); 21198 } 21199 } else 21200 (*xmit_tail)->b_rptr = prev_rptr; 21201 21202 if (mp == NULL) { 21203 if (ire != NULL) 21204 IRE_REFRELE(ire); 21205 return (-1); 21206 } 21207 mp1 = mp->b_cont; 21208 21209 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21210 tcp->tcp_last_sent_len = (ushort_t)len; 21211 while (mp1->b_cont) { 21212 *xmit_tail = (*xmit_tail)->b_cont; 21213 (*xmit_tail)->b_prev = local_time; 21214 (*xmit_tail)->b_next = 21215 (mblk_t *)(uintptr_t)(*snxt); 21216 mp1 = mp1->b_cont; 21217 } 21218 *snxt += len; 21219 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21220 BUMP_LOCAL(tcp->tcp_obsegs); 21221 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21222 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21223 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21224 tcp_send_data(tcp, q, mp); 21225 continue; 21226 } 21227 21228 *snxt += len; /* Adjust later if we don't send all of len */ 21229 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21230 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21231 21232 if (*tail_unsent) { 21233 /* Are the bytes above us in flight? */ 21234 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21235 if (rptr != (*xmit_tail)->b_rptr) { 21236 *tail_unsent -= len; 21237 if (len <= mss) /* LSO is unusable */ 21238 tcp->tcp_last_sent_len = (ushort_t)len; 21239 len += tcp_hdr_len; 21240 if (tcp->tcp_ipversion == IPV4_VERSION) 21241 tcp->tcp_ipha->ipha_length = htons(len); 21242 else 21243 tcp->tcp_ip6h->ip6_plen = 21244 htons(len - 21245 ((char *)&tcp->tcp_ip6h[1] - 21246 tcp->tcp_iphc)); 21247 mp = dupb(*xmit_tail); 21248 if (mp == NULL) { 21249 if (ire != NULL) 21250 IRE_REFRELE(ire); 21251 return (-1); /* out_of_mem */ 21252 } 21253 mp->b_rptr = rptr; 21254 /* 21255 * If the old timestamp is no longer in use, 21256 * sample a new timestamp now. 21257 */ 21258 if ((*xmit_tail)->b_next == NULL) { 21259 (*xmit_tail)->b_prev = local_time; 21260 (*xmit_tail)->b_next = 21261 (mblk_t *)(uintptr_t)(*snxt-len); 21262 } 21263 goto must_alloc; 21264 } 21265 } else { 21266 *xmit_tail = (*xmit_tail)->b_cont; 21267 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21268 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21269 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21270 (*xmit_tail)->b_rptr); 21271 } 21272 21273 (*xmit_tail)->b_prev = local_time; 21274 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21275 21276 *tail_unsent -= len; 21277 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21278 tcp->tcp_last_sent_len = (ushort_t)len; 21279 21280 len += tcp_hdr_len; 21281 if (tcp->tcp_ipversion == IPV4_VERSION) 21282 tcp->tcp_ipha->ipha_length = htons(len); 21283 else 21284 tcp->tcp_ip6h->ip6_plen = htons(len - 21285 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21286 21287 mp = dupb(*xmit_tail); 21288 if (mp == NULL) { 21289 if (ire != NULL) 21290 IRE_REFRELE(ire); 21291 return (-1); /* out_of_mem */ 21292 } 21293 21294 len = tcp_hdr_len; 21295 /* 21296 * There are four reasons to allocate a new hdr mblk: 21297 * 1) The bytes above us are in use by another packet 21298 * 2) We don't have good alignment 21299 * 3) The mblk is being shared 21300 * 4) We don't have enough room for a header 21301 */ 21302 rptr = mp->b_rptr - len; 21303 if (!OK_32PTR(rptr) || 21304 ((db = mp->b_datap), db->db_ref != 2) || 21305 rptr < db->db_base + ire_fp_mp_len) { 21306 /* NOTE: we assume allocb returns an OK_32PTR */ 21307 21308 must_alloc:; 21309 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21310 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21311 if (mp1 == NULL) { 21312 freemsg(mp); 21313 if (ire != NULL) 21314 IRE_REFRELE(ire); 21315 return (-1); /* out_of_mem */ 21316 } 21317 mp1->b_cont = mp; 21318 mp = mp1; 21319 /* Leave room for Link Level header */ 21320 len = tcp_hdr_len; 21321 rptr = 21322 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21323 mp->b_wptr = &rptr[len]; 21324 } 21325 21326 /* 21327 * Fill in the header using the template header, and add 21328 * options such as time-stamp, ECN and/or SACK, as needed. 21329 */ 21330 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21331 21332 mp->b_rptr = rptr; 21333 21334 if (*tail_unsent) { 21335 int spill = *tail_unsent; 21336 21337 mp1 = mp->b_cont; 21338 if (mp1 == NULL) 21339 mp1 = mp; 21340 21341 /* 21342 * If we're a little short, tack on more mblks until 21343 * there is no more spillover. 21344 */ 21345 while (spill < 0) { 21346 mblk_t *nmp; 21347 int nmpsz; 21348 21349 nmp = (*xmit_tail)->b_cont; 21350 nmpsz = MBLKL(nmp); 21351 21352 /* 21353 * Excess data in mblk; can we split it? 21354 * If MDT is enabled for the connection, 21355 * keep on splitting as this is a transient 21356 * send path. 21357 */ 21358 if (!do_lso_send && !tcp->tcp_mdt && 21359 (spill + nmpsz > 0)) { 21360 /* 21361 * Don't split if stream head was 21362 * told to break up larger writes 21363 * into smaller ones. 21364 */ 21365 if (tcp->tcp_maxpsz > 0) 21366 break; 21367 21368 /* 21369 * Next mblk is less than SMSS/2 21370 * rounded up to nearest 64-byte; 21371 * let it get sent as part of the 21372 * next segment. 21373 */ 21374 if (tcp->tcp_localnet && 21375 !tcp->tcp_cork && 21376 (nmpsz < roundup((mss >> 1), 64))) 21377 break; 21378 } 21379 21380 *xmit_tail = nmp; 21381 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21382 /* Stash for rtt use later */ 21383 (*xmit_tail)->b_prev = local_time; 21384 (*xmit_tail)->b_next = 21385 (mblk_t *)(uintptr_t)(*snxt - len); 21386 mp1->b_cont = dupb(*xmit_tail); 21387 mp1 = mp1->b_cont; 21388 21389 spill += nmpsz; 21390 if (mp1 == NULL) { 21391 *tail_unsent = spill; 21392 freemsg(mp); 21393 if (ire != NULL) 21394 IRE_REFRELE(ire); 21395 return (-1); /* out_of_mem */ 21396 } 21397 } 21398 21399 /* Trim back any surplus on the last mblk */ 21400 if (spill >= 0) { 21401 mp1->b_wptr -= spill; 21402 *tail_unsent = spill; 21403 } else { 21404 /* 21405 * We did not send everything we could in 21406 * order to remain within the b_cont limit. 21407 */ 21408 *usable -= spill; 21409 *snxt += spill; 21410 tcp->tcp_last_sent_len += spill; 21411 UPDATE_MIB(&tcps->tcps_mib, 21412 tcpOutDataBytes, spill); 21413 /* 21414 * Adjust the checksum 21415 */ 21416 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21417 sum += spill; 21418 sum = (sum >> 16) + (sum & 0xFFFF); 21419 U16_TO_ABE16(sum, tcph->th_sum); 21420 if (tcp->tcp_ipversion == IPV4_VERSION) { 21421 sum = ntohs( 21422 ((ipha_t *)rptr)->ipha_length) + 21423 spill; 21424 ((ipha_t *)rptr)->ipha_length = 21425 htons(sum); 21426 } else { 21427 sum = ntohs( 21428 ((ip6_t *)rptr)->ip6_plen) + 21429 spill; 21430 ((ip6_t *)rptr)->ip6_plen = 21431 htons(sum); 21432 } 21433 *tail_unsent = 0; 21434 } 21435 } 21436 if (tcp->tcp_ip_forward_progress) { 21437 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21438 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21439 tcp->tcp_ip_forward_progress = B_FALSE; 21440 } 21441 21442 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21443 if (do_lso_send) { 21444 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21445 num_lso_seg); 21446 tcp->tcp_obsegs += num_lso_seg; 21447 21448 TCP_STAT(tcps, tcp_lso_times); 21449 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21450 } else { 21451 tcp_send_data(tcp, q, mp); 21452 BUMP_LOCAL(tcp->tcp_obsegs); 21453 } 21454 } 21455 21456 if (ire != NULL) 21457 IRE_REFRELE(ire); 21458 return (0); 21459 } 21460 21461 /* Unlink and return any mblk that looks like it contains a MDT info */ 21462 static mblk_t * 21463 tcp_mdt_info_mp(mblk_t *mp) 21464 { 21465 mblk_t *prev_mp; 21466 21467 for (;;) { 21468 prev_mp = mp; 21469 /* no more to process? */ 21470 if ((mp = mp->b_cont) == NULL) 21471 break; 21472 21473 switch (DB_TYPE(mp)) { 21474 case M_CTL: 21475 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21476 continue; 21477 ASSERT(prev_mp != NULL); 21478 prev_mp->b_cont = mp->b_cont; 21479 mp->b_cont = NULL; 21480 return (mp); 21481 default: 21482 break; 21483 } 21484 } 21485 return (mp); 21486 } 21487 21488 /* MDT info update routine, called when IP notifies us about MDT */ 21489 static void 21490 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21491 { 21492 boolean_t prev_state; 21493 tcp_stack_t *tcps = tcp->tcp_tcps; 21494 21495 /* 21496 * IP is telling us to abort MDT on this connection? We know 21497 * this because the capability is only turned off when IP 21498 * encounters some pathological cases, e.g. link-layer change 21499 * where the new driver doesn't support MDT, or in situation 21500 * where MDT usage on the link-layer has been switched off. 21501 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21502 * if the link-layer doesn't support MDT, and if it does, it 21503 * will indicate that the feature is to be turned on. 21504 */ 21505 prev_state = tcp->tcp_mdt; 21506 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21507 if (!tcp->tcp_mdt && !first) { 21508 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21509 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21510 (void *)tcp->tcp_connp)); 21511 } 21512 21513 /* 21514 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21515 * so disable MDT otherwise. The checks are done here 21516 * and in tcp_wput_data(). 21517 */ 21518 if (tcp->tcp_mdt && 21519 (tcp->tcp_ipversion == IPV4_VERSION && 21520 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21521 (tcp->tcp_ipversion == IPV6_VERSION && 21522 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21523 tcp->tcp_mdt = B_FALSE; 21524 21525 if (tcp->tcp_mdt) { 21526 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21527 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21528 "version (%d), expected version is %d", 21529 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21530 tcp->tcp_mdt = B_FALSE; 21531 return; 21532 } 21533 21534 /* 21535 * We need the driver to be able to handle at least three 21536 * spans per packet in order for tcp MDT to be utilized. 21537 * The first is for the header portion, while the rest are 21538 * needed to handle a packet that straddles across two 21539 * virtually non-contiguous buffers; a typical tcp packet 21540 * therefore consists of only two spans. Note that we take 21541 * a zero as "don't care". 21542 */ 21543 if (mdt_capab->ill_mdt_span_limit > 0 && 21544 mdt_capab->ill_mdt_span_limit < 3) { 21545 tcp->tcp_mdt = B_FALSE; 21546 return; 21547 } 21548 21549 /* a zero means driver wants default value */ 21550 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21551 tcps->tcps_mdt_max_pbufs); 21552 if (tcp->tcp_mdt_max_pld == 0) 21553 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21554 21555 /* ensure 32-bit alignment */ 21556 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21557 mdt_capab->ill_mdt_hdr_head), 4); 21558 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21559 mdt_capab->ill_mdt_hdr_tail), 4); 21560 21561 if (!first && !prev_state) { 21562 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21563 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21564 (void *)tcp->tcp_connp)); 21565 } 21566 } 21567 } 21568 21569 /* Unlink and return any mblk that looks like it contains a LSO info */ 21570 static mblk_t * 21571 tcp_lso_info_mp(mblk_t *mp) 21572 { 21573 mblk_t *prev_mp; 21574 21575 for (;;) { 21576 prev_mp = mp; 21577 /* no more to process? */ 21578 if ((mp = mp->b_cont) == NULL) 21579 break; 21580 21581 switch (DB_TYPE(mp)) { 21582 case M_CTL: 21583 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21584 continue; 21585 ASSERT(prev_mp != NULL); 21586 prev_mp->b_cont = mp->b_cont; 21587 mp->b_cont = NULL; 21588 return (mp); 21589 default: 21590 break; 21591 } 21592 } 21593 21594 return (mp); 21595 } 21596 21597 /* LSO info update routine, called when IP notifies us about LSO */ 21598 static void 21599 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21600 { 21601 tcp_stack_t *tcps = tcp->tcp_tcps; 21602 21603 /* 21604 * IP is telling us to abort LSO on this connection? We know 21605 * this because the capability is only turned off when IP 21606 * encounters some pathological cases, e.g. link-layer change 21607 * where the new NIC/driver doesn't support LSO, or in situation 21608 * where LSO usage on the link-layer has been switched off. 21609 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21610 * if the link-layer doesn't support LSO, and if it does, it 21611 * will indicate that the feature is to be turned on. 21612 */ 21613 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21614 TCP_STAT(tcps, tcp_lso_enabled); 21615 21616 /* 21617 * We currently only support LSO on simple TCP/IPv4, 21618 * so disable LSO otherwise. The checks are done here 21619 * and in tcp_wput_data(). 21620 */ 21621 if (tcp->tcp_lso && 21622 (tcp->tcp_ipversion == IPV4_VERSION && 21623 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21624 (tcp->tcp_ipversion == IPV6_VERSION)) { 21625 tcp->tcp_lso = B_FALSE; 21626 TCP_STAT(tcps, tcp_lso_disabled); 21627 } else { 21628 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21629 lso_capab->ill_lso_max); 21630 } 21631 } 21632 21633 static void 21634 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21635 { 21636 conn_t *connp = tcp->tcp_connp; 21637 tcp_stack_t *tcps = tcp->tcp_tcps; 21638 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21639 21640 ASSERT(ire != NULL); 21641 21642 /* 21643 * We may be in the fastpath here, and although we essentially do 21644 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21645 * we try to keep things as brief as possible. After all, these 21646 * are only best-effort checks, and we do more thorough ones prior 21647 * to calling tcp_send()/tcp_multisend(). 21648 */ 21649 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21650 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21651 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21652 !(ire->ire_flags & RTF_MULTIRT) && 21653 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21654 CONN_IS_LSO_MD_FASTPATH(connp)) { 21655 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21656 /* Cache the result */ 21657 connp->conn_lso_ok = B_TRUE; 21658 21659 ASSERT(ill->ill_lso_capab != NULL); 21660 if (!ill->ill_lso_capab->ill_lso_on) { 21661 ill->ill_lso_capab->ill_lso_on = 1; 21662 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21663 "LSO for interface %s\n", (void *)connp, 21664 ill->ill_name)); 21665 } 21666 tcp_lso_update(tcp, ill->ill_lso_capab); 21667 } else if (ipst->ips_ip_multidata_outbound && 21668 ILL_MDT_CAPABLE(ill)) { 21669 /* Cache the result */ 21670 connp->conn_mdt_ok = B_TRUE; 21671 21672 ASSERT(ill->ill_mdt_capab != NULL); 21673 if (!ill->ill_mdt_capab->ill_mdt_on) { 21674 ill->ill_mdt_capab->ill_mdt_on = 1; 21675 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21676 "MDT for interface %s\n", (void *)connp, 21677 ill->ill_name)); 21678 } 21679 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21680 } 21681 } 21682 21683 /* 21684 * The goal is to reduce the number of generated tcp segments by 21685 * setting the maxpsz multiplier to 0; this will have an affect on 21686 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21687 * into each packet, up to SMSS bytes. Doing this reduces the number 21688 * of outbound segments and incoming ACKs, thus allowing for better 21689 * network and system performance. In contrast the legacy behavior 21690 * may result in sending less than SMSS size, because the last mblk 21691 * for some packets may have more data than needed to make up SMSS, 21692 * and the legacy code refused to "split" it. 21693 * 21694 * We apply the new behavior on following situations: 21695 * 21696 * 1) Loopback connections, 21697 * 2) Connections in which the remote peer is not on local subnet, 21698 * 3) Local subnet connections over the bge interface (see below). 21699 * 21700 * Ideally, we would like this behavior to apply for interfaces other 21701 * than bge. However, doing so would negatively impact drivers which 21702 * perform dynamic mapping and unmapping of DMA resources, which are 21703 * increased by setting the maxpsz multiplier to 0 (more mblks per 21704 * packet will be generated by tcp). The bge driver does not suffer 21705 * from this, as it copies the mblks into pre-mapped buffers, and 21706 * therefore does not require more I/O resources than before. 21707 * 21708 * Otherwise, this behavior is present on all network interfaces when 21709 * the destination endpoint is non-local, since reducing the number 21710 * of packets in general is good for the network. 21711 * 21712 * TODO We need to remove this hard-coded conditional for bge once 21713 * a better "self-tuning" mechanism, or a way to comprehend 21714 * the driver transmit strategy is devised. Until the solution 21715 * is found and well understood, we live with this hack. 21716 */ 21717 if (!tcp_static_maxpsz && 21718 (tcp->tcp_loopback || !tcp->tcp_localnet || 21719 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21720 /* override the default value */ 21721 tcp->tcp_maxpsz = 0; 21722 21723 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21724 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21725 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21726 } 21727 21728 /* set the stream head parameters accordingly */ 21729 (void) tcp_maxpsz_set(tcp, B_TRUE); 21730 } 21731 21732 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21733 static void 21734 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21735 { 21736 uchar_t fval = *mp->b_rptr; 21737 mblk_t *tail; 21738 queue_t *q = tcp->tcp_wq; 21739 21740 /* TODO: How should flush interact with urgent data? */ 21741 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21742 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21743 /* 21744 * Flush only data that has not yet been put on the wire. If 21745 * we flush data that we have already transmitted, life, as we 21746 * know it, may come to an end. 21747 */ 21748 tail = tcp->tcp_xmit_tail; 21749 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21750 tcp->tcp_xmit_tail_unsent = 0; 21751 tcp->tcp_unsent = 0; 21752 if (tail->b_wptr != tail->b_rptr) 21753 tail = tail->b_cont; 21754 if (tail) { 21755 mblk_t **excess = &tcp->tcp_xmit_head; 21756 for (;;) { 21757 mblk_t *mp1 = *excess; 21758 if (mp1 == tail) 21759 break; 21760 tcp->tcp_xmit_tail = mp1; 21761 tcp->tcp_xmit_last = mp1; 21762 excess = &mp1->b_cont; 21763 } 21764 *excess = NULL; 21765 tcp_close_mpp(&tail); 21766 if (tcp->tcp_snd_zcopy_aware) 21767 tcp_zcopy_notify(tcp); 21768 } 21769 /* 21770 * We have no unsent data, so unsent must be less than 21771 * tcp_xmit_lowater, so re-enable flow. 21772 */ 21773 mutex_enter(&tcp->tcp_non_sq_lock); 21774 if (tcp->tcp_flow_stopped) { 21775 tcp_clrqfull(tcp); 21776 } 21777 mutex_exit(&tcp->tcp_non_sq_lock); 21778 } 21779 /* 21780 * TODO: you can't just flush these, you have to increase rwnd for one 21781 * thing. For another, how should urgent data interact? 21782 */ 21783 if (fval & FLUSHR) { 21784 *mp->b_rptr = fval & ~FLUSHW; 21785 /* XXX */ 21786 qreply(q, mp); 21787 return; 21788 } 21789 freemsg(mp); 21790 } 21791 21792 /* 21793 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21794 * messages. 21795 */ 21796 static void 21797 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21798 { 21799 mblk_t *mp1; 21800 STRUCT_HANDLE(strbuf, sb); 21801 uint16_t port; 21802 queue_t *q = tcp->tcp_wq; 21803 in6_addr_t v6addr; 21804 ipaddr_t v4addr; 21805 uint32_t flowinfo = 0; 21806 int addrlen; 21807 21808 /* Make sure it is one of ours. */ 21809 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21810 case TI_GETMYNAME: 21811 case TI_GETPEERNAME: 21812 break; 21813 default: 21814 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21815 return; 21816 } 21817 switch (mi_copy_state(q, mp, &mp1)) { 21818 case -1: 21819 return; 21820 case MI_COPY_CASE(MI_COPY_IN, 1): 21821 break; 21822 case MI_COPY_CASE(MI_COPY_OUT, 1): 21823 /* Copy out the strbuf. */ 21824 mi_copyout(q, mp); 21825 return; 21826 case MI_COPY_CASE(MI_COPY_OUT, 2): 21827 /* All done. */ 21828 mi_copy_done(q, mp, 0); 21829 return; 21830 default: 21831 mi_copy_done(q, mp, EPROTO); 21832 return; 21833 } 21834 /* Check alignment of the strbuf */ 21835 if (!OK_32PTR(mp1->b_rptr)) { 21836 mi_copy_done(q, mp, EINVAL); 21837 return; 21838 } 21839 21840 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21841 (void *)mp1->b_rptr); 21842 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21843 21844 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21845 mi_copy_done(q, mp, EINVAL); 21846 return; 21847 } 21848 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21849 case TI_GETMYNAME: 21850 if (tcp->tcp_family == AF_INET) { 21851 if (tcp->tcp_ipversion == IPV4_VERSION) { 21852 v4addr = tcp->tcp_ipha->ipha_src; 21853 } else { 21854 /* can't return an address in this case */ 21855 v4addr = 0; 21856 } 21857 } else { 21858 /* tcp->tcp_family == AF_INET6 */ 21859 if (tcp->tcp_ipversion == IPV4_VERSION) { 21860 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21861 &v6addr); 21862 } else { 21863 v6addr = tcp->tcp_ip6h->ip6_src; 21864 } 21865 } 21866 port = tcp->tcp_lport; 21867 break; 21868 case TI_GETPEERNAME: 21869 if (tcp->tcp_family == AF_INET) { 21870 if (tcp->tcp_ipversion == IPV4_VERSION) { 21871 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21872 v4addr); 21873 } else { 21874 /* can't return an address in this case */ 21875 v4addr = 0; 21876 } 21877 } else { 21878 /* tcp->tcp_family == AF_INET6) */ 21879 v6addr = tcp->tcp_remote_v6; 21880 if (tcp->tcp_ipversion == IPV6_VERSION) { 21881 /* 21882 * No flowinfo if tcp->tcp_ipversion is v4. 21883 * 21884 * flowinfo was already initialized to zero 21885 * where it was declared above, so only 21886 * set it if ipversion is v6. 21887 */ 21888 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21889 ~IPV6_VERS_AND_FLOW_MASK; 21890 } 21891 } 21892 port = tcp->tcp_fport; 21893 break; 21894 default: 21895 mi_copy_done(q, mp, EPROTO); 21896 return; 21897 } 21898 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21899 if (!mp1) 21900 return; 21901 21902 if (tcp->tcp_family == AF_INET) { 21903 sin_t *sin; 21904 21905 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21906 sin = (sin_t *)mp1->b_rptr; 21907 mp1->b_wptr = (uchar_t *)&sin[1]; 21908 *sin = sin_null; 21909 sin->sin_family = AF_INET; 21910 sin->sin_addr.s_addr = v4addr; 21911 sin->sin_port = port; 21912 } else { 21913 /* tcp->tcp_family == AF_INET6 */ 21914 sin6_t *sin6; 21915 21916 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21917 sin6 = (sin6_t *)mp1->b_rptr; 21918 mp1->b_wptr = (uchar_t *)&sin6[1]; 21919 *sin6 = sin6_null; 21920 sin6->sin6_family = AF_INET6; 21921 sin6->sin6_flowinfo = flowinfo; 21922 sin6->sin6_addr = v6addr; 21923 sin6->sin6_port = port; 21924 } 21925 /* Copy out the address */ 21926 mi_copyout(q, mp); 21927 } 21928 21929 /* 21930 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21931 * messages. 21932 */ 21933 /* ARGSUSED */ 21934 static void 21935 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21936 { 21937 conn_t *connp = (conn_t *)arg; 21938 tcp_t *tcp = connp->conn_tcp; 21939 queue_t *q = tcp->tcp_wq; 21940 struct iocblk *iocp; 21941 tcp_stack_t *tcps = tcp->tcp_tcps; 21942 21943 ASSERT(DB_TYPE(mp) == M_IOCTL); 21944 /* 21945 * Try and ASSERT the minimum possible references on the 21946 * conn early enough. Since we are executing on write side, 21947 * the connection is obviously not detached and that means 21948 * there is a ref each for TCP and IP. Since we are behind 21949 * the squeue, the minimum references needed are 3. If the 21950 * conn is in classifier hash list, there should be an 21951 * extra ref for that (we check both the possibilities). 21952 */ 21953 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21954 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21955 21956 iocp = (struct iocblk *)mp->b_rptr; 21957 switch (iocp->ioc_cmd) { 21958 case TCP_IOC_DEFAULT_Q: 21959 /* Wants to be the default wq. */ 21960 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21961 iocp->ioc_error = EPERM; 21962 iocp->ioc_count = 0; 21963 mp->b_datap->db_type = M_IOCACK; 21964 qreply(q, mp); 21965 return; 21966 } 21967 tcp_def_q_set(tcp, mp); 21968 return; 21969 case _SIOCSOCKFALLBACK: 21970 /* 21971 * Either sockmod is about to be popped and the socket 21972 * would now be treated as a plain stream, or a module 21973 * is about to be pushed so we could no longer use read- 21974 * side synchronous streams for fused loopback tcp. 21975 * Drain any queued data and disable direct sockfs 21976 * interface from now on. 21977 */ 21978 if (!tcp->tcp_issocket) { 21979 DB_TYPE(mp) = M_IOCNAK; 21980 iocp->ioc_error = EINVAL; 21981 } else { 21982 #ifdef _ILP32 21983 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21984 #else 21985 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21986 #endif 21987 /* 21988 * Insert this socket into the acceptor hash. 21989 * We might need it for T_CONN_RES message 21990 */ 21991 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21992 21993 if (tcp->tcp_fused) { 21994 /* 21995 * This is a fused loopback tcp; disable 21996 * read-side synchronous streams interface 21997 * and drain any queued data. It is okay 21998 * to do this for non-synchronous streams 21999 * fused tcp as well. 22000 */ 22001 tcp_fuse_disable_pair(tcp, B_FALSE); 22002 } 22003 tcp->tcp_issocket = B_FALSE; 22004 TCP_STAT(tcps, tcp_sock_fallback); 22005 22006 DB_TYPE(mp) = M_IOCACK; 22007 iocp->ioc_error = 0; 22008 } 22009 iocp->ioc_count = 0; 22010 iocp->ioc_rval = 0; 22011 qreply(q, mp); 22012 return; 22013 } 22014 CALL_IP_WPUT(connp, q, mp); 22015 } 22016 22017 /* 22018 * This routine is called by tcp_wput() to handle all TPI requests. 22019 */ 22020 /* ARGSUSED */ 22021 static void 22022 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22023 { 22024 conn_t *connp = (conn_t *)arg; 22025 tcp_t *tcp = connp->conn_tcp; 22026 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22027 uchar_t *rptr; 22028 t_scalar_t type; 22029 int len; 22030 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22031 22032 /* 22033 * Try and ASSERT the minimum possible references on the 22034 * conn early enough. Since we are executing on write side, 22035 * the connection is obviously not detached and that means 22036 * there is a ref each for TCP and IP. Since we are behind 22037 * the squeue, the minimum references needed are 3. If the 22038 * conn is in classifier hash list, there should be an 22039 * extra ref for that (we check both the possibilities). 22040 */ 22041 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22042 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22043 22044 rptr = mp->b_rptr; 22045 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22046 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22047 type = ((union T_primitives *)rptr)->type; 22048 if (type == T_EXDATA_REQ) { 22049 uint32_t msize = msgdsize(mp->b_cont); 22050 22051 len = msize - 1; 22052 if (len < 0) { 22053 freemsg(mp); 22054 return; 22055 } 22056 /* 22057 * Try to force urgent data out on the wire. 22058 * Even if we have unsent data this will 22059 * at least send the urgent flag. 22060 * XXX does not handle more flag correctly. 22061 */ 22062 len += tcp->tcp_unsent; 22063 len += tcp->tcp_snxt; 22064 tcp->tcp_urg = len; 22065 tcp->tcp_valid_bits |= TCP_URG_VALID; 22066 22067 /* Bypass tcp protocol for fused tcp loopback */ 22068 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22069 return; 22070 } else if (type != T_DATA_REQ) { 22071 goto non_urgent_data; 22072 } 22073 /* TODO: options, flags, ... from user */ 22074 /* Set length to zero for reclamation below */ 22075 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22076 freeb(mp); 22077 return; 22078 } else { 22079 if (tcp->tcp_debug) { 22080 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22081 "tcp_wput_proto, dropping one..."); 22082 } 22083 freemsg(mp); 22084 return; 22085 } 22086 22087 non_urgent_data: 22088 22089 switch ((int)tprim->type) { 22090 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22091 /* 22092 * save the kssl_ent_t from the next block, and convert this 22093 * back to a normal bind_req. 22094 */ 22095 if (mp->b_cont != NULL) { 22096 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22097 22098 if (tcp->tcp_kssl_ent != NULL) { 22099 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22100 KSSL_NO_PROXY); 22101 tcp->tcp_kssl_ent = NULL; 22102 } 22103 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22104 sizeof (kssl_ent_t)); 22105 kssl_hold_ent(tcp->tcp_kssl_ent); 22106 freemsg(mp->b_cont); 22107 mp->b_cont = NULL; 22108 } 22109 tprim->type = T_BIND_REQ; 22110 22111 /* FALLTHROUGH */ 22112 case O_T_BIND_REQ: /* bind request */ 22113 case T_BIND_REQ: /* new semantics bind request */ 22114 tcp_bind(tcp, mp); 22115 break; 22116 case T_UNBIND_REQ: /* unbind request */ 22117 tcp_unbind(tcp, mp); 22118 break; 22119 case O_T_CONN_RES: /* old connection response XXX */ 22120 case T_CONN_RES: /* connection response */ 22121 tcp_accept(tcp, mp); 22122 break; 22123 case T_CONN_REQ: /* connection request */ 22124 tcp_connect(tcp, mp); 22125 break; 22126 case T_DISCON_REQ: /* disconnect request */ 22127 tcp_disconnect(tcp, mp); 22128 break; 22129 case T_CAPABILITY_REQ: 22130 tcp_capability_req(tcp, mp); /* capability request */ 22131 break; 22132 case T_INFO_REQ: /* information request */ 22133 tcp_info_req(tcp, mp); 22134 break; 22135 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22136 /* Only IP is allowed to return meaningful value */ 22137 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 22138 break; 22139 case T_OPTMGMT_REQ: 22140 /* 22141 * Note: no support for snmpcom_req() through new 22142 * T_OPTMGMT_REQ. See comments in ip.c 22143 */ 22144 /* Only IP is allowed to return meaningful value */ 22145 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 22146 break; 22147 22148 case T_UNITDATA_REQ: /* unitdata request */ 22149 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22150 break; 22151 case T_ORDREL_REQ: /* orderly release req */ 22152 freemsg(mp); 22153 22154 if (tcp->tcp_fused) 22155 tcp_unfuse(tcp); 22156 22157 if (tcp_xmit_end(tcp) != 0) { 22158 /* 22159 * We were crossing FINs and got a reset from 22160 * the other side. Just ignore it. 22161 */ 22162 if (tcp->tcp_debug) { 22163 (void) strlog(TCP_MOD_ID, 0, 1, 22164 SL_ERROR|SL_TRACE, 22165 "tcp_wput_proto, T_ORDREL_REQ out of " 22166 "state %s", 22167 tcp_display(tcp, NULL, 22168 DISP_ADDR_AND_PORT)); 22169 } 22170 } 22171 break; 22172 case T_ADDR_REQ: 22173 tcp_addr_req(tcp, mp); 22174 break; 22175 default: 22176 if (tcp->tcp_debug) { 22177 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22178 "tcp_wput_proto, bogus TPI msg, type %d", 22179 tprim->type); 22180 } 22181 /* 22182 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22183 * to recover. 22184 */ 22185 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22186 break; 22187 } 22188 } 22189 22190 /* 22191 * The TCP write service routine should never be called... 22192 */ 22193 /* ARGSUSED */ 22194 static void 22195 tcp_wsrv(queue_t *q) 22196 { 22197 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22198 22199 TCP_STAT(tcps, tcp_wsrv_called); 22200 } 22201 22202 /* Non overlapping byte exchanger */ 22203 static void 22204 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22205 { 22206 uchar_t uch; 22207 22208 while (len-- > 0) { 22209 uch = a[len]; 22210 a[len] = b[len]; 22211 b[len] = uch; 22212 } 22213 } 22214 22215 /* 22216 * Send out a control packet on the tcp connection specified. This routine 22217 * is typically called where we need a simple ACK or RST generated. 22218 */ 22219 static void 22220 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22221 { 22222 uchar_t *rptr; 22223 tcph_t *tcph; 22224 ipha_t *ipha = NULL; 22225 ip6_t *ip6h = NULL; 22226 uint32_t sum; 22227 int tcp_hdr_len; 22228 int tcp_ip_hdr_len; 22229 mblk_t *mp; 22230 tcp_stack_t *tcps = tcp->tcp_tcps; 22231 22232 /* 22233 * Save sum for use in source route later. 22234 */ 22235 ASSERT(tcp != NULL); 22236 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22237 tcp_hdr_len = tcp->tcp_hdr_len; 22238 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22239 22240 /* If a text string is passed in with the request, pass it to strlog. */ 22241 if (str != NULL && tcp->tcp_debug) { 22242 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22243 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22244 str, seq, ack, ctl); 22245 } 22246 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22247 BPRI_MED); 22248 if (mp == NULL) { 22249 return; 22250 } 22251 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22252 mp->b_rptr = rptr; 22253 mp->b_wptr = &rptr[tcp_hdr_len]; 22254 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22255 22256 if (tcp->tcp_ipversion == IPV4_VERSION) { 22257 ipha = (ipha_t *)rptr; 22258 ipha->ipha_length = htons(tcp_hdr_len); 22259 } else { 22260 ip6h = (ip6_t *)rptr; 22261 ASSERT(tcp != NULL); 22262 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22263 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22264 } 22265 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22266 tcph->th_flags[0] = (uint8_t)ctl; 22267 if (ctl & TH_RST) { 22268 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22269 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22270 /* 22271 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22272 */ 22273 if (tcp->tcp_snd_ts_ok && 22274 tcp->tcp_state > TCPS_SYN_SENT) { 22275 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22276 *(mp->b_wptr) = TCPOPT_EOL; 22277 if (tcp->tcp_ipversion == IPV4_VERSION) { 22278 ipha->ipha_length = htons(tcp_hdr_len - 22279 TCPOPT_REAL_TS_LEN); 22280 } else { 22281 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22282 TCPOPT_REAL_TS_LEN); 22283 } 22284 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22285 sum -= TCPOPT_REAL_TS_LEN; 22286 } 22287 } 22288 if (ctl & TH_ACK) { 22289 if (tcp->tcp_snd_ts_ok) { 22290 U32_TO_BE32(lbolt, 22291 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22292 U32_TO_BE32(tcp->tcp_ts_recent, 22293 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22294 } 22295 22296 /* Update the latest receive window size in TCP header. */ 22297 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22298 tcph->th_win); 22299 tcp->tcp_rack = ack; 22300 tcp->tcp_rack_cnt = 0; 22301 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22302 } 22303 BUMP_LOCAL(tcp->tcp_obsegs); 22304 U32_TO_BE32(seq, tcph->th_seq); 22305 U32_TO_BE32(ack, tcph->th_ack); 22306 /* 22307 * Include the adjustment for a source route if any. 22308 */ 22309 sum = (sum >> 16) + (sum & 0xFFFF); 22310 U16_TO_BE16(sum, tcph->th_sum); 22311 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22312 tcp_send_data(tcp, tcp->tcp_wq, mp); 22313 } 22314 22315 /* 22316 * If this routine returns B_TRUE, TCP can generate a RST in response 22317 * to a segment. If it returns B_FALSE, TCP should not respond. 22318 */ 22319 static boolean_t 22320 tcp_send_rst_chk(tcp_stack_t *tcps) 22321 { 22322 clock_t now; 22323 22324 /* 22325 * TCP needs to protect itself from generating too many RSTs. 22326 * This can be a DoS attack by sending us random segments 22327 * soliciting RSTs. 22328 * 22329 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22330 * in each 1 second interval. In this way, TCP still generate 22331 * RSTs in normal cases but when under attack, the impact is 22332 * limited. 22333 */ 22334 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22335 now = lbolt; 22336 /* lbolt can wrap around. */ 22337 if ((tcps->tcps_last_rst_intrvl > now) || 22338 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22339 1*SECONDS)) { 22340 tcps->tcps_last_rst_intrvl = now; 22341 tcps->tcps_rst_cnt = 1; 22342 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22343 return (B_FALSE); 22344 } 22345 } 22346 return (B_TRUE); 22347 } 22348 22349 /* 22350 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22351 */ 22352 static void 22353 tcp_ip_ire_mark_advice(tcp_t *tcp) 22354 { 22355 mblk_t *mp; 22356 ipic_t *ipic; 22357 22358 if (tcp->tcp_ipversion == IPV4_VERSION) { 22359 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22360 &ipic); 22361 } else { 22362 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22363 &ipic); 22364 } 22365 if (mp == NULL) 22366 return; 22367 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22368 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22369 } 22370 22371 /* 22372 * Return an IP advice ioctl mblk and set ipic to be the pointer 22373 * to the advice structure. 22374 */ 22375 static mblk_t * 22376 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22377 { 22378 struct iocblk *ioc; 22379 mblk_t *mp, *mp1; 22380 22381 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22382 if (mp == NULL) 22383 return (NULL); 22384 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22385 *ipic = (ipic_t *)mp->b_rptr; 22386 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22387 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22388 22389 bcopy(addr, *ipic + 1, addr_len); 22390 22391 (*ipic)->ipic_addr_length = addr_len; 22392 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22393 22394 mp1 = mkiocb(IP_IOCTL); 22395 if (mp1 == NULL) { 22396 freemsg(mp); 22397 return (NULL); 22398 } 22399 mp1->b_cont = mp; 22400 ioc = (struct iocblk *)mp1->b_rptr; 22401 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22402 22403 return (mp1); 22404 } 22405 22406 /* 22407 * Generate a reset based on an inbound packet for which there is no active 22408 * tcp state that we can find. 22409 * 22410 * IPSEC NOTE : Try to send the reply with the same protection as it came 22411 * in. We still have the ipsec_mp that the packet was attached to. Thus 22412 * the packet will go out at the same level of protection as it came in by 22413 * converting the IPSEC_IN to IPSEC_OUT. 22414 */ 22415 static void 22416 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22417 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22418 tcp_stack_t *tcps) 22419 { 22420 ipha_t *ipha = NULL; 22421 ip6_t *ip6h = NULL; 22422 ushort_t len; 22423 tcph_t *tcph; 22424 int i; 22425 mblk_t *ipsec_mp; 22426 boolean_t mctl_present; 22427 ipic_t *ipic; 22428 ipaddr_t v4addr; 22429 in6_addr_t v6addr; 22430 int addr_len; 22431 void *addr; 22432 queue_t *q = tcps->tcps_g_q; 22433 tcp_t *tcp; 22434 cred_t *cr; 22435 mblk_t *nmp; 22436 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22437 22438 if (tcps->tcps_g_q == NULL) { 22439 /* 22440 * For non-zero stackids the default queue isn't created 22441 * until the first open, thus there can be a need to send 22442 * a reset before then. But we can't do that, hence we just 22443 * drop the packet. Later during boot, when the default queue 22444 * has been setup, a retransmitted packet from the peer 22445 * will result in a reset. 22446 */ 22447 ASSERT(tcps->tcps_netstack->netstack_stackid != 22448 GLOBAL_NETSTACKID); 22449 freemsg(mp); 22450 return; 22451 } 22452 22453 tcp = Q_TO_TCP(q); 22454 22455 if (!tcp_send_rst_chk(tcps)) { 22456 tcps->tcps_rst_unsent++; 22457 freemsg(mp); 22458 return; 22459 } 22460 22461 if (mp->b_datap->db_type == M_CTL) { 22462 ipsec_mp = mp; 22463 mp = mp->b_cont; 22464 mctl_present = B_TRUE; 22465 } else { 22466 ipsec_mp = mp; 22467 mctl_present = B_FALSE; 22468 } 22469 22470 if (str && q && tcps->tcps_dbg) { 22471 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22472 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22473 "flags 0x%x", 22474 str, seq, ack, ctl); 22475 } 22476 if (mp->b_datap->db_ref != 1) { 22477 mblk_t *mp1 = copyb(mp); 22478 freemsg(mp); 22479 mp = mp1; 22480 if (!mp) { 22481 if (mctl_present) 22482 freeb(ipsec_mp); 22483 return; 22484 } else { 22485 if (mctl_present) { 22486 ipsec_mp->b_cont = mp; 22487 } else { 22488 ipsec_mp = mp; 22489 } 22490 } 22491 } else if (mp->b_cont) { 22492 freemsg(mp->b_cont); 22493 mp->b_cont = NULL; 22494 } 22495 /* 22496 * We skip reversing source route here. 22497 * (for now we replace all IP options with EOL) 22498 */ 22499 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22500 ipha = (ipha_t *)mp->b_rptr; 22501 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22502 mp->b_rptr[i] = IPOPT_EOL; 22503 /* 22504 * Make sure that src address isn't flagrantly invalid. 22505 * Not all broadcast address checking for the src address 22506 * is possible, since we don't know the netmask of the src 22507 * addr. No check for destination address is done, since 22508 * IP will not pass up a packet with a broadcast dest 22509 * address to TCP. Similar checks are done below for IPv6. 22510 */ 22511 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22512 CLASSD(ipha->ipha_src)) { 22513 freemsg(ipsec_mp); 22514 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22515 return; 22516 } 22517 } else { 22518 ip6h = (ip6_t *)mp->b_rptr; 22519 22520 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22521 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22522 freemsg(ipsec_mp); 22523 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22524 return; 22525 } 22526 22527 /* Remove any extension headers assuming partial overlay */ 22528 if (ip_hdr_len > IPV6_HDR_LEN) { 22529 uint8_t *to; 22530 22531 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22532 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22533 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22534 ip_hdr_len = IPV6_HDR_LEN; 22535 ip6h = (ip6_t *)mp->b_rptr; 22536 ip6h->ip6_nxt = IPPROTO_TCP; 22537 } 22538 } 22539 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22540 if (tcph->th_flags[0] & TH_RST) { 22541 freemsg(ipsec_mp); 22542 return; 22543 } 22544 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22545 len = ip_hdr_len + sizeof (tcph_t); 22546 mp->b_wptr = &mp->b_rptr[len]; 22547 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22548 ipha->ipha_length = htons(len); 22549 /* Swap addresses */ 22550 v4addr = ipha->ipha_src; 22551 ipha->ipha_src = ipha->ipha_dst; 22552 ipha->ipha_dst = v4addr; 22553 ipha->ipha_ident = 0; 22554 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22555 addr_len = IP_ADDR_LEN; 22556 addr = &v4addr; 22557 } else { 22558 /* No ip6i_t in this case */ 22559 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22560 /* Swap addresses */ 22561 v6addr = ip6h->ip6_src; 22562 ip6h->ip6_src = ip6h->ip6_dst; 22563 ip6h->ip6_dst = v6addr; 22564 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22565 addr_len = IPV6_ADDR_LEN; 22566 addr = &v6addr; 22567 } 22568 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22569 U32_TO_BE32(ack, tcph->th_ack); 22570 U32_TO_BE32(seq, tcph->th_seq); 22571 U16_TO_BE16(0, tcph->th_win); 22572 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22573 tcph->th_flags[0] = (uint8_t)ctl; 22574 if (ctl & TH_RST) { 22575 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22576 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22577 } 22578 22579 /* IP trusts us to set up labels when required. */ 22580 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22581 crgetlabel(cr) != NULL) { 22582 int err, adjust; 22583 22584 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22585 err = tsol_check_label(cr, &mp, &adjust, 22586 tcp->tcp_connp->conn_mac_exempt, 22587 tcps->tcps_netstack->netstack_ip); 22588 else 22589 err = tsol_check_label_v6(cr, &mp, &adjust, 22590 tcp->tcp_connp->conn_mac_exempt, 22591 tcps->tcps_netstack->netstack_ip); 22592 if (mctl_present) 22593 ipsec_mp->b_cont = mp; 22594 else 22595 ipsec_mp = mp; 22596 if (err != 0) { 22597 freemsg(ipsec_mp); 22598 return; 22599 } 22600 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22601 ipha = (ipha_t *)mp->b_rptr; 22602 adjust += ntohs(ipha->ipha_length); 22603 ipha->ipha_length = htons(adjust); 22604 } else { 22605 ip6h = (ip6_t *)mp->b_rptr; 22606 } 22607 } 22608 22609 if (mctl_present) { 22610 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22611 22612 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22613 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22614 return; 22615 } 22616 } 22617 if (zoneid == ALL_ZONES) 22618 zoneid = GLOBAL_ZONEID; 22619 22620 /* Add the zoneid so ip_output routes it properly */ 22621 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22622 freemsg(ipsec_mp); 22623 return; 22624 } 22625 ipsec_mp = nmp; 22626 22627 /* 22628 * NOTE: one might consider tracing a TCP packet here, but 22629 * this function has no active TCP state and no tcp structure 22630 * that has a trace buffer. If we traced here, we would have 22631 * to keep a local trace buffer in tcp_record_trace(). 22632 * 22633 * TSol note: The mblk that contains the incoming packet was 22634 * reused by tcp_xmit_listener_reset, so it already contains 22635 * the right credentials and we don't need to call mblk_setcred. 22636 * Also the conn's cred is not right since it is associated 22637 * with tcps_g_q. 22638 */ 22639 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22640 22641 /* 22642 * Tell IP to mark the IRE used for this destination temporary. 22643 * This way, we can limit our exposure to DoS attack because IP 22644 * creates an IRE for each destination. If there are too many, 22645 * the time to do any routing lookup will be extremely long. And 22646 * the lookup can be in interrupt context. 22647 * 22648 * Note that in normal circumstances, this marking should not 22649 * affect anything. It would be nice if only 1 message is 22650 * needed to inform IP that the IRE created for this RST should 22651 * not be added to the cache table. But there is currently 22652 * not such communication mechanism between TCP and IP. So 22653 * the best we can do now is to send the advice ioctl to IP 22654 * to mark the IRE temporary. 22655 */ 22656 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22657 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22658 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22659 } 22660 } 22661 22662 /* 22663 * Initiate closedown sequence on an active connection. (May be called as 22664 * writer.) Return value zero for OK return, non-zero for error return. 22665 */ 22666 static int 22667 tcp_xmit_end(tcp_t *tcp) 22668 { 22669 ipic_t *ipic; 22670 mblk_t *mp; 22671 tcp_stack_t *tcps = tcp->tcp_tcps; 22672 22673 if (tcp->tcp_state < TCPS_SYN_RCVD || 22674 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22675 /* 22676 * Invalid state, only states TCPS_SYN_RCVD, 22677 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22678 */ 22679 return (-1); 22680 } 22681 22682 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22683 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22684 /* 22685 * If there is nothing more unsent, send the FIN now. 22686 * Otherwise, it will go out with the last segment. 22687 */ 22688 if (tcp->tcp_unsent == 0) { 22689 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22690 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22691 22692 if (mp) { 22693 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22694 tcp_send_data(tcp, tcp->tcp_wq, mp); 22695 } else { 22696 /* 22697 * Couldn't allocate msg. Pretend we got it out. 22698 * Wait for rexmit timeout. 22699 */ 22700 tcp->tcp_snxt = tcp->tcp_fss + 1; 22701 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22702 } 22703 22704 /* 22705 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22706 * changed. 22707 */ 22708 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22709 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22710 } 22711 } else { 22712 /* 22713 * If tcp->tcp_cork is set, then the data will not get sent, 22714 * so we have to check that and unset it first. 22715 */ 22716 if (tcp->tcp_cork) 22717 tcp->tcp_cork = B_FALSE; 22718 tcp_wput_data(tcp, NULL, B_FALSE); 22719 } 22720 22721 /* 22722 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22723 * is 0, don't update the cache. 22724 */ 22725 if (tcps->tcps_rtt_updates == 0 || 22726 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22727 return (0); 22728 22729 /* 22730 * NOTE: should not update if source routes i.e. if tcp_remote if 22731 * different from the destination. 22732 */ 22733 if (tcp->tcp_ipversion == IPV4_VERSION) { 22734 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22735 return (0); 22736 } 22737 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22738 &ipic); 22739 } else { 22740 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22741 &tcp->tcp_ip6h->ip6_dst))) { 22742 return (0); 22743 } 22744 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22745 &ipic); 22746 } 22747 22748 /* Record route attributes in the IRE for use by future connections. */ 22749 if (mp == NULL) 22750 return (0); 22751 22752 /* 22753 * We do not have a good algorithm to update ssthresh at this time. 22754 * So don't do any update. 22755 */ 22756 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22757 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22758 22759 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22760 return (0); 22761 } 22762 22763 /* 22764 * Generate a "no listener here" RST in response to an "unknown" segment. 22765 * Note that we are reusing the incoming mp to construct the outgoing 22766 * RST. 22767 */ 22768 void 22769 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22770 tcp_stack_t *tcps) 22771 { 22772 uchar_t *rptr; 22773 uint32_t seg_len; 22774 tcph_t *tcph; 22775 uint32_t seg_seq; 22776 uint32_t seg_ack; 22777 uint_t flags; 22778 mblk_t *ipsec_mp; 22779 ipha_t *ipha; 22780 ip6_t *ip6h; 22781 boolean_t mctl_present = B_FALSE; 22782 boolean_t check = B_TRUE; 22783 boolean_t policy_present; 22784 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22785 22786 TCP_STAT(tcps, tcp_no_listener); 22787 22788 ipsec_mp = mp; 22789 22790 if (mp->b_datap->db_type == M_CTL) { 22791 ipsec_in_t *ii; 22792 22793 mctl_present = B_TRUE; 22794 mp = mp->b_cont; 22795 22796 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22797 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22798 if (ii->ipsec_in_dont_check) { 22799 check = B_FALSE; 22800 if (!ii->ipsec_in_secure) { 22801 freeb(ipsec_mp); 22802 mctl_present = B_FALSE; 22803 ipsec_mp = mp; 22804 } 22805 } 22806 } 22807 22808 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22809 policy_present = ipss->ipsec_inbound_v4_policy_present; 22810 ipha = (ipha_t *)mp->b_rptr; 22811 ip6h = NULL; 22812 } else { 22813 policy_present = ipss->ipsec_inbound_v6_policy_present; 22814 ipha = NULL; 22815 ip6h = (ip6_t *)mp->b_rptr; 22816 } 22817 22818 if (check && policy_present) { 22819 /* 22820 * The conn_t parameter is NULL because we already know 22821 * nobody's home. 22822 */ 22823 ipsec_mp = ipsec_check_global_policy( 22824 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22825 tcps->tcps_netstack); 22826 if (ipsec_mp == NULL) 22827 return; 22828 } 22829 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22830 DTRACE_PROBE2( 22831 tx__ip__log__error__nolistener__tcp, 22832 char *, "Could not reply with RST to mp(1)", 22833 mblk_t *, mp); 22834 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22835 freemsg(ipsec_mp); 22836 return; 22837 } 22838 22839 rptr = mp->b_rptr; 22840 22841 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22842 seg_seq = BE32_TO_U32(tcph->th_seq); 22843 seg_ack = BE32_TO_U32(tcph->th_ack); 22844 flags = tcph->th_flags[0]; 22845 22846 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22847 if (flags & TH_RST) { 22848 freemsg(ipsec_mp); 22849 } else if (flags & TH_ACK) { 22850 tcp_xmit_early_reset("no tcp, reset", 22851 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps); 22852 } else { 22853 if (flags & TH_SYN) { 22854 seg_len++; 22855 } else { 22856 /* 22857 * Here we violate the RFC. Note that a normal 22858 * TCP will never send a segment without the ACK 22859 * flag, except for RST or SYN segment. This 22860 * segment is neither. Just drop it on the 22861 * floor. 22862 */ 22863 freemsg(ipsec_mp); 22864 tcps->tcps_rst_unsent++; 22865 return; 22866 } 22867 22868 tcp_xmit_early_reset("no tcp, reset/ack", 22869 ipsec_mp, 0, seg_seq + seg_len, 22870 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps); 22871 } 22872 } 22873 22874 /* 22875 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22876 * ip and tcp header ready to pass down to IP. If the mp passed in is 22877 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22878 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22879 * otherwise it will dup partial mblks.) 22880 * Otherwise, an appropriate ACK packet will be generated. This 22881 * routine is not usually called to send new data for the first time. It 22882 * is mostly called out of the timer for retransmits, and to generate ACKs. 22883 * 22884 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22885 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22886 * of the original mblk chain will be returned in *offset and *end_mp. 22887 */ 22888 mblk_t * 22889 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22890 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22891 boolean_t rexmit) 22892 { 22893 int data_length; 22894 int32_t off = 0; 22895 uint_t flags; 22896 mblk_t *mp1; 22897 mblk_t *mp2; 22898 uchar_t *rptr; 22899 tcph_t *tcph; 22900 int32_t num_sack_blk = 0; 22901 int32_t sack_opt_len = 0; 22902 tcp_stack_t *tcps = tcp->tcp_tcps; 22903 22904 /* Allocate for our maximum TCP header + link-level */ 22905 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22906 tcps->tcps_wroff_xtra, BPRI_MED); 22907 if (!mp1) 22908 return (NULL); 22909 data_length = 0; 22910 22911 /* 22912 * Note that tcp_mss has been adjusted to take into account the 22913 * timestamp option if applicable. Because SACK options do not 22914 * appear in every TCP segments and they are of variable lengths, 22915 * they cannot be included in tcp_mss. Thus we need to calculate 22916 * the actual segment length when we need to send a segment which 22917 * includes SACK options. 22918 */ 22919 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22920 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22921 tcp->tcp_num_sack_blk); 22922 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22923 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22924 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22925 max_to_send -= sack_opt_len; 22926 } 22927 22928 if (offset != NULL) { 22929 off = *offset; 22930 /* We use offset as an indicator that end_mp is not NULL. */ 22931 *end_mp = NULL; 22932 } 22933 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22934 /* This could be faster with cooperation from downstream */ 22935 if (mp2 != mp1 && !sendall && 22936 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22937 max_to_send) 22938 /* 22939 * Don't send the next mblk since the whole mblk 22940 * does not fit. 22941 */ 22942 break; 22943 mp2->b_cont = dupb(mp); 22944 mp2 = mp2->b_cont; 22945 if (!mp2) { 22946 freemsg(mp1); 22947 return (NULL); 22948 } 22949 mp2->b_rptr += off; 22950 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22951 (uintptr_t)INT_MAX); 22952 22953 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22954 if (data_length > max_to_send) { 22955 mp2->b_wptr -= data_length - max_to_send; 22956 data_length = max_to_send; 22957 off = mp2->b_wptr - mp->b_rptr; 22958 break; 22959 } else { 22960 off = 0; 22961 } 22962 } 22963 if (offset != NULL) { 22964 *offset = off; 22965 *end_mp = mp; 22966 } 22967 if (seg_len != NULL) { 22968 *seg_len = data_length; 22969 } 22970 22971 /* Update the latest receive window size in TCP header. */ 22972 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22973 tcp->tcp_tcph->th_win); 22974 22975 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22976 mp1->b_rptr = rptr; 22977 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22978 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22979 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22980 U32_TO_ABE32(seq, tcph->th_seq); 22981 22982 /* 22983 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22984 * that this function was called from tcp_wput_data. Thus, when called 22985 * to retransmit data the setting of the PUSH bit may appear some 22986 * what random in that it might get set when it should not. This 22987 * should not pose any performance issues. 22988 */ 22989 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22990 tcp->tcp_unsent == data_length)) { 22991 flags = TH_ACK | TH_PUSH; 22992 } else { 22993 flags = TH_ACK; 22994 } 22995 22996 if (tcp->tcp_ecn_ok) { 22997 if (tcp->tcp_ecn_echo_on) 22998 flags |= TH_ECE; 22999 23000 /* 23001 * Only set ECT bit and ECN_CWR if a segment contains new data. 23002 * There is no TCP flow control for non-data segments, and 23003 * only data segment is transmitted reliably. 23004 */ 23005 if (data_length > 0 && !rexmit) { 23006 SET_ECT(tcp, rptr); 23007 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23008 flags |= TH_CWR; 23009 tcp->tcp_ecn_cwr_sent = B_TRUE; 23010 } 23011 } 23012 } 23013 23014 if (tcp->tcp_valid_bits) { 23015 uint32_t u1; 23016 23017 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23018 seq == tcp->tcp_iss) { 23019 uchar_t *wptr; 23020 23021 /* 23022 * If TCP_ISS_VALID and the seq number is tcp_iss, 23023 * TCP can only be in SYN-SENT, SYN-RCVD or 23024 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23025 * our SYN is not ack'ed but the app closes this 23026 * TCP connection. 23027 */ 23028 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23029 tcp->tcp_state == TCPS_SYN_RCVD || 23030 tcp->tcp_state == TCPS_FIN_WAIT_1); 23031 23032 /* 23033 * Tack on the MSS option. It is always needed 23034 * for both active and passive open. 23035 * 23036 * MSS option value should be interface MTU - MIN 23037 * TCP/IP header according to RFC 793 as it means 23038 * the maximum segment size TCP can receive. But 23039 * to get around some broken middle boxes/end hosts 23040 * out there, we allow the option value to be the 23041 * same as the MSS option size on the peer side. 23042 * In this way, the other side will not send 23043 * anything larger than they can receive. 23044 * 23045 * Note that for SYN_SENT state, the ndd param 23046 * tcp_use_smss_as_mss_opt has no effect as we 23047 * don't know the peer's MSS option value. So 23048 * the only case we need to take care of is in 23049 * SYN_RCVD state, which is done later. 23050 */ 23051 wptr = mp1->b_wptr; 23052 wptr[0] = TCPOPT_MAXSEG; 23053 wptr[1] = TCPOPT_MAXSEG_LEN; 23054 wptr += 2; 23055 u1 = tcp->tcp_if_mtu - 23056 (tcp->tcp_ipversion == IPV4_VERSION ? 23057 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23058 TCP_MIN_HEADER_LENGTH; 23059 U16_TO_BE16(u1, wptr); 23060 mp1->b_wptr = wptr + 2; 23061 /* Update the offset to cover the additional word */ 23062 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23063 23064 /* 23065 * Note that the following way of filling in 23066 * TCP options are not optimal. Some NOPs can 23067 * be saved. But there is no need at this time 23068 * to optimize it. When it is needed, we will 23069 * do it. 23070 */ 23071 switch (tcp->tcp_state) { 23072 case TCPS_SYN_SENT: 23073 flags = TH_SYN; 23074 23075 if (tcp->tcp_snd_ts_ok) { 23076 uint32_t llbolt = (uint32_t)lbolt; 23077 23078 wptr = mp1->b_wptr; 23079 wptr[0] = TCPOPT_NOP; 23080 wptr[1] = TCPOPT_NOP; 23081 wptr[2] = TCPOPT_TSTAMP; 23082 wptr[3] = TCPOPT_TSTAMP_LEN; 23083 wptr += 4; 23084 U32_TO_BE32(llbolt, wptr); 23085 wptr += 4; 23086 ASSERT(tcp->tcp_ts_recent == 0); 23087 U32_TO_BE32(0L, wptr); 23088 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23089 tcph->th_offset_and_rsrvd[0] += 23090 (3 << 4); 23091 } 23092 23093 /* 23094 * Set up all the bits to tell other side 23095 * we are ECN capable. 23096 */ 23097 if (tcp->tcp_ecn_ok) { 23098 flags |= (TH_ECE | TH_CWR); 23099 } 23100 break; 23101 case TCPS_SYN_RCVD: 23102 flags |= TH_SYN; 23103 23104 /* 23105 * Reset the MSS option value to be SMSS 23106 * We should probably add back the bytes 23107 * for timestamp option and IPsec. We 23108 * don't do that as this is a workaround 23109 * for broken middle boxes/end hosts, it 23110 * is better for us to be more cautious. 23111 * They may not take these things into 23112 * account in their SMSS calculation. Thus 23113 * the peer's calculated SMSS may be smaller 23114 * than what it can be. This should be OK. 23115 */ 23116 if (tcps->tcps_use_smss_as_mss_opt) { 23117 u1 = tcp->tcp_mss; 23118 U16_TO_BE16(u1, wptr); 23119 } 23120 23121 /* 23122 * If the other side is ECN capable, reply 23123 * that we are also ECN capable. 23124 */ 23125 if (tcp->tcp_ecn_ok) 23126 flags |= TH_ECE; 23127 break; 23128 default: 23129 /* 23130 * The above ASSERT() makes sure that this 23131 * must be FIN-WAIT-1 state. Our SYN has 23132 * not been ack'ed so retransmit it. 23133 */ 23134 flags |= TH_SYN; 23135 break; 23136 } 23137 23138 if (tcp->tcp_snd_ws_ok) { 23139 wptr = mp1->b_wptr; 23140 wptr[0] = TCPOPT_NOP; 23141 wptr[1] = TCPOPT_WSCALE; 23142 wptr[2] = TCPOPT_WS_LEN; 23143 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23144 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23145 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23146 } 23147 23148 if (tcp->tcp_snd_sack_ok) { 23149 wptr = mp1->b_wptr; 23150 wptr[0] = TCPOPT_NOP; 23151 wptr[1] = TCPOPT_NOP; 23152 wptr[2] = TCPOPT_SACK_PERMITTED; 23153 wptr[3] = TCPOPT_SACK_OK_LEN; 23154 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23155 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23156 } 23157 23158 /* allocb() of adequate mblk assures space */ 23159 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23160 (uintptr_t)INT_MAX); 23161 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23162 /* 23163 * Get IP set to checksum on our behalf 23164 * Include the adjustment for a source route if any. 23165 */ 23166 u1 += tcp->tcp_sum; 23167 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23168 U16_TO_BE16(u1, tcph->th_sum); 23169 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23170 } 23171 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23172 (seq + data_length) == tcp->tcp_fss) { 23173 if (!tcp->tcp_fin_acked) { 23174 flags |= TH_FIN; 23175 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23176 } 23177 if (!tcp->tcp_fin_sent) { 23178 tcp->tcp_fin_sent = B_TRUE; 23179 switch (tcp->tcp_state) { 23180 case TCPS_SYN_RCVD: 23181 case TCPS_ESTABLISHED: 23182 tcp->tcp_state = TCPS_FIN_WAIT_1; 23183 break; 23184 case TCPS_CLOSE_WAIT: 23185 tcp->tcp_state = TCPS_LAST_ACK; 23186 break; 23187 } 23188 if (tcp->tcp_suna == tcp->tcp_snxt) 23189 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23190 tcp->tcp_snxt = tcp->tcp_fss + 1; 23191 } 23192 } 23193 /* 23194 * Note the trick here. u1 is unsigned. When tcp_urg 23195 * is smaller than seq, u1 will become a very huge value. 23196 * So the comparison will fail. Also note that tcp_urp 23197 * should be positive, see RFC 793 page 17. 23198 */ 23199 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23200 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23201 u1 < (uint32_t)(64 * 1024)) { 23202 flags |= TH_URG; 23203 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23204 U32_TO_ABE16(u1, tcph->th_urp); 23205 } 23206 } 23207 tcph->th_flags[0] = (uchar_t)flags; 23208 tcp->tcp_rack = tcp->tcp_rnxt; 23209 tcp->tcp_rack_cnt = 0; 23210 23211 if (tcp->tcp_snd_ts_ok) { 23212 if (tcp->tcp_state != TCPS_SYN_SENT) { 23213 uint32_t llbolt = (uint32_t)lbolt; 23214 23215 U32_TO_BE32(llbolt, 23216 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23217 U32_TO_BE32(tcp->tcp_ts_recent, 23218 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23219 } 23220 } 23221 23222 if (num_sack_blk > 0) { 23223 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23224 sack_blk_t *tmp; 23225 int32_t i; 23226 23227 wptr[0] = TCPOPT_NOP; 23228 wptr[1] = TCPOPT_NOP; 23229 wptr[2] = TCPOPT_SACK; 23230 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23231 sizeof (sack_blk_t); 23232 wptr += TCPOPT_REAL_SACK_LEN; 23233 23234 tmp = tcp->tcp_sack_list; 23235 for (i = 0; i < num_sack_blk; i++) { 23236 U32_TO_BE32(tmp[i].begin, wptr); 23237 wptr += sizeof (tcp_seq); 23238 U32_TO_BE32(tmp[i].end, wptr); 23239 wptr += sizeof (tcp_seq); 23240 } 23241 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23242 } 23243 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23244 data_length += (int)(mp1->b_wptr - rptr); 23245 if (tcp->tcp_ipversion == IPV4_VERSION) { 23246 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23247 } else { 23248 ip6_t *ip6 = (ip6_t *)(rptr + 23249 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23250 sizeof (ip6i_t) : 0)); 23251 23252 ip6->ip6_plen = htons(data_length - 23253 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23254 } 23255 23256 /* 23257 * Prime pump for IP 23258 * Include the adjustment for a source route if any. 23259 */ 23260 data_length -= tcp->tcp_ip_hdr_len; 23261 data_length += tcp->tcp_sum; 23262 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23263 U16_TO_ABE16(data_length, tcph->th_sum); 23264 if (tcp->tcp_ip_forward_progress) { 23265 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23266 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23267 tcp->tcp_ip_forward_progress = B_FALSE; 23268 } 23269 return (mp1); 23270 } 23271 23272 /* This function handles the push timeout. */ 23273 void 23274 tcp_push_timer(void *arg) 23275 { 23276 conn_t *connp = (conn_t *)arg; 23277 tcp_t *tcp = connp->conn_tcp; 23278 tcp_stack_t *tcps = tcp->tcp_tcps; 23279 23280 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23281 23282 ASSERT(tcp->tcp_listener == NULL); 23283 23284 /* 23285 * We need to plug synchronous streams during our drain to prevent 23286 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23287 */ 23288 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23289 tcp->tcp_push_tid = 0; 23290 if ((tcp->tcp_rcv_list != NULL) && 23291 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23292 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23293 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23294 } 23295 23296 /* 23297 * This function handles delayed ACK timeout. 23298 */ 23299 static void 23300 tcp_ack_timer(void *arg) 23301 { 23302 conn_t *connp = (conn_t *)arg; 23303 tcp_t *tcp = connp->conn_tcp; 23304 mblk_t *mp; 23305 tcp_stack_t *tcps = tcp->tcp_tcps; 23306 23307 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23308 23309 tcp->tcp_ack_tid = 0; 23310 23311 if (tcp->tcp_fused) 23312 return; 23313 23314 /* 23315 * Do not send ACK if there is no outstanding unack'ed data. 23316 */ 23317 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23318 return; 23319 } 23320 23321 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23322 /* 23323 * Make sure we don't allow deferred ACKs to result in 23324 * timer-based ACKing. If we have held off an ACK 23325 * when there was more than an mss here, and the timer 23326 * goes off, we have to worry about the possibility 23327 * that the sender isn't doing slow-start, or is out 23328 * of step with us for some other reason. We fall 23329 * permanently back in the direction of 23330 * ACK-every-other-packet as suggested in RFC 1122. 23331 */ 23332 if (tcp->tcp_rack_abs_max > 2) 23333 tcp->tcp_rack_abs_max--; 23334 tcp->tcp_rack_cur_max = 2; 23335 } 23336 mp = tcp_ack_mp(tcp); 23337 23338 if (mp != NULL) { 23339 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23340 BUMP_LOCAL(tcp->tcp_obsegs); 23341 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23342 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23343 tcp_send_data(tcp, tcp->tcp_wq, mp); 23344 } 23345 } 23346 23347 23348 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23349 static mblk_t * 23350 tcp_ack_mp(tcp_t *tcp) 23351 { 23352 uint32_t seq_no; 23353 tcp_stack_t *tcps = tcp->tcp_tcps; 23354 23355 /* 23356 * There are a few cases to be considered while setting the sequence no. 23357 * Essentially, we can come here while processing an unacceptable pkt 23358 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23359 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23360 * If we are here for a zero window probe, stick with suna. In all 23361 * other cases, we check if suna + swnd encompasses snxt and set 23362 * the sequence number to snxt, if so. If snxt falls outside the 23363 * window (the receiver probably shrunk its window), we will go with 23364 * suna + swnd, otherwise the sequence no will be unacceptable to the 23365 * receiver. 23366 */ 23367 if (tcp->tcp_zero_win_probe) { 23368 seq_no = tcp->tcp_suna; 23369 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23370 ASSERT(tcp->tcp_swnd == 0); 23371 seq_no = tcp->tcp_snxt; 23372 } else { 23373 seq_no = SEQ_GT(tcp->tcp_snxt, 23374 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23375 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23376 } 23377 23378 if (tcp->tcp_valid_bits) { 23379 /* 23380 * For the complex case where we have to send some 23381 * controls (FIN or SYN), let tcp_xmit_mp do it. 23382 */ 23383 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23384 NULL, B_FALSE)); 23385 } else { 23386 /* Generate a simple ACK */ 23387 int data_length; 23388 uchar_t *rptr; 23389 tcph_t *tcph; 23390 mblk_t *mp1; 23391 int32_t tcp_hdr_len; 23392 int32_t tcp_tcp_hdr_len; 23393 int32_t num_sack_blk = 0; 23394 int32_t sack_opt_len; 23395 23396 /* 23397 * Allocate space for TCP + IP headers 23398 * and link-level header 23399 */ 23400 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23401 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23402 tcp->tcp_num_sack_blk); 23403 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23404 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23405 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23406 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23407 } else { 23408 tcp_hdr_len = tcp->tcp_hdr_len; 23409 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23410 } 23411 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23412 if (!mp1) 23413 return (NULL); 23414 23415 /* Update the latest receive window size in TCP header. */ 23416 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23417 tcp->tcp_tcph->th_win); 23418 /* copy in prototype TCP + IP header */ 23419 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23420 mp1->b_rptr = rptr; 23421 mp1->b_wptr = rptr + tcp_hdr_len; 23422 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23423 23424 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23425 23426 /* Set the TCP sequence number. */ 23427 U32_TO_ABE32(seq_no, tcph->th_seq); 23428 23429 /* Set up the TCP flag field. */ 23430 tcph->th_flags[0] = (uchar_t)TH_ACK; 23431 if (tcp->tcp_ecn_echo_on) 23432 tcph->th_flags[0] |= TH_ECE; 23433 23434 tcp->tcp_rack = tcp->tcp_rnxt; 23435 tcp->tcp_rack_cnt = 0; 23436 23437 /* fill in timestamp option if in use */ 23438 if (tcp->tcp_snd_ts_ok) { 23439 uint32_t llbolt = (uint32_t)lbolt; 23440 23441 U32_TO_BE32(llbolt, 23442 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23443 U32_TO_BE32(tcp->tcp_ts_recent, 23444 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23445 } 23446 23447 /* Fill in SACK options */ 23448 if (num_sack_blk > 0) { 23449 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23450 sack_blk_t *tmp; 23451 int32_t i; 23452 23453 wptr[0] = TCPOPT_NOP; 23454 wptr[1] = TCPOPT_NOP; 23455 wptr[2] = TCPOPT_SACK; 23456 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23457 sizeof (sack_blk_t); 23458 wptr += TCPOPT_REAL_SACK_LEN; 23459 23460 tmp = tcp->tcp_sack_list; 23461 for (i = 0; i < num_sack_blk; i++) { 23462 U32_TO_BE32(tmp[i].begin, wptr); 23463 wptr += sizeof (tcp_seq); 23464 U32_TO_BE32(tmp[i].end, wptr); 23465 wptr += sizeof (tcp_seq); 23466 } 23467 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23468 << 4); 23469 } 23470 23471 if (tcp->tcp_ipversion == IPV4_VERSION) { 23472 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23473 } else { 23474 /* Check for ip6i_t header in sticky hdrs */ 23475 ip6_t *ip6 = (ip6_t *)(rptr + 23476 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23477 sizeof (ip6i_t) : 0)); 23478 23479 ip6->ip6_plen = htons(tcp_hdr_len - 23480 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23481 } 23482 23483 /* 23484 * Prime pump for checksum calculation in IP. Include the 23485 * adjustment for a source route if any. 23486 */ 23487 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23488 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23489 U16_TO_ABE16(data_length, tcph->th_sum); 23490 23491 if (tcp->tcp_ip_forward_progress) { 23492 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23493 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23494 tcp->tcp_ip_forward_progress = B_FALSE; 23495 } 23496 return (mp1); 23497 } 23498 } 23499 23500 /* 23501 * To create a temporary tcp structure for inserting into bind hash list. 23502 * The parameter is assumed to be in network byte order, ready for use. 23503 */ 23504 /* ARGSUSED */ 23505 static tcp_t * 23506 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps) 23507 { 23508 conn_t *connp; 23509 tcp_t *tcp; 23510 23511 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack); 23512 if (connp == NULL) 23513 return (NULL); 23514 23515 tcp = connp->conn_tcp; 23516 tcp->tcp_tcps = tcps; 23517 TCPS_REFHOLD(tcps); 23518 23519 /* 23520 * Only initialize the necessary info in those structures. Note 23521 * that since INADDR_ANY is all 0, we do not need to set 23522 * tcp_bound_source to INADDR_ANY here. 23523 */ 23524 tcp->tcp_state = TCPS_BOUND; 23525 tcp->tcp_lport = port; 23526 tcp->tcp_exclbind = 1; 23527 tcp->tcp_reserved_port = 1; 23528 23529 /* Just for place holding... */ 23530 tcp->tcp_ipversion = IPV4_VERSION; 23531 23532 return (tcp); 23533 } 23534 23535 /* 23536 * To remove a port range specified by lo_port and hi_port from the 23537 * reserved port ranges. This is one of the three public functions of 23538 * the reserved port interface. Note that a port range has to be removed 23539 * as a whole. Ports in a range cannot be removed individually. 23540 * 23541 * Params: 23542 * in_port_t lo_port: the beginning port of the reserved port range to 23543 * be deleted. 23544 * in_port_t hi_port: the ending port of the reserved port range to 23545 * be deleted. 23546 * 23547 * Return: 23548 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23549 * 23550 * Assumes that nca is only for zoneid=0 23551 */ 23552 boolean_t 23553 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23554 { 23555 int i, j; 23556 int size; 23557 tcp_t **temp_tcp_array; 23558 tcp_t *tcp; 23559 tcp_stack_t *tcps; 23560 23561 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23562 ASSERT(tcps != NULL); 23563 23564 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23565 23566 /* First make sure that the port ranage is indeed reserved. */ 23567 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23568 if (tcps->tcps_reserved_port[i].lo_port == lo_port) { 23569 hi_port = tcps->tcps_reserved_port[i].hi_port; 23570 temp_tcp_array = 23571 tcps->tcps_reserved_port[i].temp_tcp_array; 23572 break; 23573 } 23574 } 23575 if (i == tcps->tcps_reserved_port_array_size) { 23576 rw_exit(&tcps->tcps_reserved_port_lock); 23577 netstack_rele(tcps->tcps_netstack); 23578 return (B_FALSE); 23579 } 23580 23581 /* 23582 * Remove the range from the array. This simple loop is possible 23583 * because port ranges are inserted in ascending order. 23584 */ 23585 for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) { 23586 tcps->tcps_reserved_port[j].lo_port = 23587 tcps->tcps_reserved_port[j+1].lo_port; 23588 tcps->tcps_reserved_port[j].hi_port = 23589 tcps->tcps_reserved_port[j+1].hi_port; 23590 tcps->tcps_reserved_port[j].temp_tcp_array = 23591 tcps->tcps_reserved_port[j+1].temp_tcp_array; 23592 } 23593 23594 /* Remove all the temporary tcp structures. */ 23595 size = hi_port - lo_port + 1; 23596 while (size > 0) { 23597 tcp = temp_tcp_array[size - 1]; 23598 ASSERT(tcp != NULL); 23599 tcp_bind_hash_remove(tcp); 23600 CONN_DEC_REF(tcp->tcp_connp); 23601 size--; 23602 } 23603 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23604 tcps->tcps_reserved_port_array_size--; 23605 rw_exit(&tcps->tcps_reserved_port_lock); 23606 netstack_rele(tcps->tcps_netstack); 23607 return (B_TRUE); 23608 } 23609 23610 /* 23611 * Macro to remove temporary tcp structure from the bind hash list. The 23612 * first parameter is the list of tcp to be removed. The second parameter 23613 * is the number of tcps in the array. 23614 */ 23615 #define TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \ 23616 { \ 23617 while ((num) > 0) { \ 23618 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23619 tf_t *tbf; \ 23620 tcp_t *tcpnext; \ 23621 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23622 mutex_enter(&tbf->tf_lock); \ 23623 tcpnext = tcp->tcp_bind_hash; \ 23624 if (tcpnext) { \ 23625 tcpnext->tcp_ptpbhn = \ 23626 tcp->tcp_ptpbhn; \ 23627 } \ 23628 *tcp->tcp_ptpbhn = tcpnext; \ 23629 mutex_exit(&tbf->tf_lock); \ 23630 kmem_free(tcp, sizeof (tcp_t)); \ 23631 (tcp_array)[(num) - 1] = NULL; \ 23632 (num)--; \ 23633 } \ 23634 } 23635 23636 /* 23637 * The public interface for other modules to call to reserve a port range 23638 * in TCP. The caller passes in how large a port range it wants. TCP 23639 * will try to find a range and return it via lo_port and hi_port. This is 23640 * used by NCA's nca_conn_init. 23641 * NCA can only be used in the global zone so this only affects the global 23642 * zone's ports. 23643 * 23644 * Params: 23645 * int size: the size of the port range to be reserved. 23646 * in_port_t *lo_port (referenced): returns the beginning port of the 23647 * reserved port range added. 23648 * in_port_t *hi_port (referenced): returns the ending port of the 23649 * reserved port range added. 23650 * 23651 * Return: 23652 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23653 * 23654 * Assumes that nca is only for zoneid=0 23655 */ 23656 boolean_t 23657 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23658 { 23659 tcp_t *tcp; 23660 tcp_t *tmp_tcp; 23661 tcp_t **temp_tcp_array; 23662 tf_t *tbf; 23663 in_port_t net_port; 23664 in_port_t port; 23665 int32_t cur_size; 23666 int i, j; 23667 boolean_t used; 23668 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23669 zoneid_t zoneid = GLOBAL_ZONEID; 23670 tcp_stack_t *tcps; 23671 23672 /* Sanity check. */ 23673 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23674 return (B_FALSE); 23675 } 23676 23677 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23678 ASSERT(tcps != NULL); 23679 23680 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23681 if (tcps->tcps_reserved_port_array_size == 23682 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23683 rw_exit(&tcps->tcps_reserved_port_lock); 23684 netstack_rele(tcps->tcps_netstack); 23685 return (B_FALSE); 23686 } 23687 23688 /* 23689 * Find the starting port to try. Since the port ranges are ordered 23690 * in the reserved port array, we can do a simple search here. 23691 */ 23692 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23693 *hi_port = TCP_LARGEST_RESERVED_PORT; 23694 for (i = 0; i < tcps->tcps_reserved_port_array_size; 23695 *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) { 23696 if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) { 23697 *hi_port = tcps->tcps_reserved_port[i].lo_port - 1; 23698 break; 23699 } 23700 } 23701 /* No available port range. */ 23702 if (i == tcps->tcps_reserved_port_array_size && 23703 *hi_port - *lo_port < size) { 23704 rw_exit(&tcps->tcps_reserved_port_lock); 23705 netstack_rele(tcps->tcps_netstack); 23706 return (B_FALSE); 23707 } 23708 23709 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23710 if (temp_tcp_array == NULL) { 23711 rw_exit(&tcps->tcps_reserved_port_lock); 23712 netstack_rele(tcps->tcps_netstack); 23713 return (B_FALSE); 23714 } 23715 23716 /* Go thru the port range to see if some ports are already bound. */ 23717 for (port = *lo_port, cur_size = 0; 23718 cur_size < size && port <= *hi_port; 23719 cur_size++, port++) { 23720 used = B_FALSE; 23721 net_port = htons(port); 23722 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)]; 23723 mutex_enter(&tbf->tf_lock); 23724 for (tcp = tbf->tf_tcp; tcp != NULL; 23725 tcp = tcp->tcp_bind_hash) { 23726 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23727 net_port == tcp->tcp_lport) { 23728 /* 23729 * A port is already bound. Search again 23730 * starting from port + 1. Release all 23731 * temporary tcps. 23732 */ 23733 mutex_exit(&tbf->tf_lock); 23734 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23735 tcps); 23736 *lo_port = port + 1; 23737 cur_size = -1; 23738 used = B_TRUE; 23739 break; 23740 } 23741 } 23742 if (!used) { 23743 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) == 23744 NULL) { 23745 /* 23746 * Allocation failure. Just fail the request. 23747 * Need to remove all those temporary tcp 23748 * structures. 23749 */ 23750 mutex_exit(&tbf->tf_lock); 23751 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23752 tcps); 23753 rw_exit(&tcps->tcps_reserved_port_lock); 23754 kmem_free(temp_tcp_array, 23755 (hi_port - lo_port + 1) * 23756 sizeof (tcp_t *)); 23757 netstack_rele(tcps->tcps_netstack); 23758 return (B_FALSE); 23759 } 23760 temp_tcp_array[cur_size] = tmp_tcp; 23761 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23762 mutex_exit(&tbf->tf_lock); 23763 } 23764 } 23765 23766 /* 23767 * The current range is not large enough. We can actually do another 23768 * search if this search is done between 2 reserved port ranges. But 23769 * for first release, we just stop here and return saying that no port 23770 * range is available. 23771 */ 23772 if (cur_size < size) { 23773 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps); 23774 rw_exit(&tcps->tcps_reserved_port_lock); 23775 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23776 netstack_rele(tcps->tcps_netstack); 23777 return (B_FALSE); 23778 } 23779 *hi_port = port - 1; 23780 23781 /* 23782 * Insert range into array in ascending order. Since this function 23783 * must not be called often, we choose to use the simplest method. 23784 * The above array should not consume excessive stack space as 23785 * the size must be very small. If in future releases, we find 23786 * that we should provide more reserved port ranges, this function 23787 * has to be modified to be more efficient. 23788 */ 23789 if (tcps->tcps_reserved_port_array_size == 0) { 23790 tcps->tcps_reserved_port[0].lo_port = *lo_port; 23791 tcps->tcps_reserved_port[0].hi_port = *hi_port; 23792 tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array; 23793 } else { 23794 for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size; 23795 i++, j++) { 23796 if (*lo_port < tcps->tcps_reserved_port[i].lo_port && 23797 i == j) { 23798 tmp_ports[j].lo_port = *lo_port; 23799 tmp_ports[j].hi_port = *hi_port; 23800 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23801 j++; 23802 } 23803 tmp_ports[j].lo_port = 23804 tcps->tcps_reserved_port[i].lo_port; 23805 tmp_ports[j].hi_port = 23806 tcps->tcps_reserved_port[i].hi_port; 23807 tmp_ports[j].temp_tcp_array = 23808 tcps->tcps_reserved_port[i].temp_tcp_array; 23809 } 23810 if (j == i) { 23811 tmp_ports[j].lo_port = *lo_port; 23812 tmp_ports[j].hi_port = *hi_port; 23813 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23814 } 23815 bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports)); 23816 } 23817 tcps->tcps_reserved_port_array_size++; 23818 rw_exit(&tcps->tcps_reserved_port_lock); 23819 netstack_rele(tcps->tcps_netstack); 23820 return (B_TRUE); 23821 } 23822 23823 /* 23824 * Check to see if a port is in any reserved port range. 23825 * 23826 * Params: 23827 * in_port_t port: the port to be verified. 23828 * 23829 * Return: 23830 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23831 */ 23832 boolean_t 23833 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps) 23834 { 23835 int i; 23836 23837 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23838 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23839 if (port >= tcps->tcps_reserved_port[i].lo_port || 23840 port <= tcps->tcps_reserved_port[i].hi_port) { 23841 rw_exit(&tcps->tcps_reserved_port_lock); 23842 return (B_TRUE); 23843 } 23844 } 23845 rw_exit(&tcps->tcps_reserved_port_lock); 23846 return (B_FALSE); 23847 } 23848 23849 /* 23850 * To list all reserved port ranges. This is the function to handle 23851 * ndd tcp_reserved_port_list. 23852 */ 23853 /* ARGSUSED */ 23854 static int 23855 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23856 { 23857 int i; 23858 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23859 23860 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23861 if (tcps->tcps_reserved_port_array_size > 0) 23862 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23863 else 23864 (void) mi_mpprintf(mp, "No port is reserved."); 23865 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23866 (void) mi_mpprintf(mp, "%d-%d", 23867 tcps->tcps_reserved_port[i].lo_port, 23868 tcps->tcps_reserved_port[i].hi_port); 23869 } 23870 rw_exit(&tcps->tcps_reserved_port_lock); 23871 return (0); 23872 } 23873 23874 /* 23875 * Hash list insertion routine for tcp_t structures. 23876 * Inserts entries with the ones bound to a specific IP address first 23877 * followed by those bound to INADDR_ANY. 23878 */ 23879 static void 23880 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23881 { 23882 tcp_t **tcpp; 23883 tcp_t *tcpnext; 23884 23885 if (tcp->tcp_ptpbhn != NULL) { 23886 ASSERT(!caller_holds_lock); 23887 tcp_bind_hash_remove(tcp); 23888 } 23889 tcpp = &tbf->tf_tcp; 23890 if (!caller_holds_lock) { 23891 mutex_enter(&tbf->tf_lock); 23892 } else { 23893 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23894 } 23895 tcpnext = tcpp[0]; 23896 if (tcpnext) { 23897 /* 23898 * If the new tcp bound to the INADDR_ANY address 23899 * and the first one in the list is not bound to 23900 * INADDR_ANY we skip all entries until we find the 23901 * first one bound to INADDR_ANY. 23902 * This makes sure that applications binding to a 23903 * specific address get preference over those binding to 23904 * INADDR_ANY. 23905 */ 23906 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23907 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23908 while ((tcpnext = tcpp[0]) != NULL && 23909 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23910 tcpp = &(tcpnext->tcp_bind_hash); 23911 if (tcpnext) 23912 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23913 } else 23914 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23915 } 23916 tcp->tcp_bind_hash = tcpnext; 23917 tcp->tcp_ptpbhn = tcpp; 23918 tcpp[0] = tcp; 23919 if (!caller_holds_lock) 23920 mutex_exit(&tbf->tf_lock); 23921 } 23922 23923 /* 23924 * Hash list removal routine for tcp_t structures. 23925 */ 23926 static void 23927 tcp_bind_hash_remove(tcp_t *tcp) 23928 { 23929 tcp_t *tcpnext; 23930 kmutex_t *lockp; 23931 tcp_stack_t *tcps = tcp->tcp_tcps; 23932 23933 if (tcp->tcp_ptpbhn == NULL) 23934 return; 23935 23936 /* 23937 * Extract the lock pointer in case there are concurrent 23938 * hash_remove's for this instance. 23939 */ 23940 ASSERT(tcp->tcp_lport != 0); 23941 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23942 23943 ASSERT(lockp != NULL); 23944 mutex_enter(lockp); 23945 if (tcp->tcp_ptpbhn) { 23946 tcpnext = tcp->tcp_bind_hash; 23947 if (tcpnext) { 23948 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23949 tcp->tcp_bind_hash = NULL; 23950 } 23951 *tcp->tcp_ptpbhn = tcpnext; 23952 tcp->tcp_ptpbhn = NULL; 23953 } 23954 mutex_exit(lockp); 23955 } 23956 23957 23958 /* 23959 * Hash list lookup routine for tcp_t structures. 23960 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23961 */ 23962 static tcp_t * 23963 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23964 { 23965 tf_t *tf; 23966 tcp_t *tcp; 23967 23968 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23969 mutex_enter(&tf->tf_lock); 23970 for (tcp = tf->tf_tcp; tcp != NULL; 23971 tcp = tcp->tcp_acceptor_hash) { 23972 if (tcp->tcp_acceptor_id == id) { 23973 CONN_INC_REF(tcp->tcp_connp); 23974 mutex_exit(&tf->tf_lock); 23975 return (tcp); 23976 } 23977 } 23978 mutex_exit(&tf->tf_lock); 23979 return (NULL); 23980 } 23981 23982 23983 /* 23984 * Hash list insertion routine for tcp_t structures. 23985 */ 23986 void 23987 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23988 { 23989 tf_t *tf; 23990 tcp_t **tcpp; 23991 tcp_t *tcpnext; 23992 tcp_stack_t *tcps = tcp->tcp_tcps; 23993 23994 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23995 23996 if (tcp->tcp_ptpahn != NULL) 23997 tcp_acceptor_hash_remove(tcp); 23998 tcpp = &tf->tf_tcp; 23999 mutex_enter(&tf->tf_lock); 24000 tcpnext = tcpp[0]; 24001 if (tcpnext) 24002 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24003 tcp->tcp_acceptor_hash = tcpnext; 24004 tcp->tcp_ptpahn = tcpp; 24005 tcpp[0] = tcp; 24006 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24007 mutex_exit(&tf->tf_lock); 24008 } 24009 24010 /* 24011 * Hash list removal routine for tcp_t structures. 24012 */ 24013 static void 24014 tcp_acceptor_hash_remove(tcp_t *tcp) 24015 { 24016 tcp_t *tcpnext; 24017 kmutex_t *lockp; 24018 24019 /* 24020 * Extract the lock pointer in case there are concurrent 24021 * hash_remove's for this instance. 24022 */ 24023 lockp = tcp->tcp_acceptor_lockp; 24024 24025 if (tcp->tcp_ptpahn == NULL) 24026 return; 24027 24028 ASSERT(lockp != NULL); 24029 mutex_enter(lockp); 24030 if (tcp->tcp_ptpahn) { 24031 tcpnext = tcp->tcp_acceptor_hash; 24032 if (tcpnext) { 24033 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24034 tcp->tcp_acceptor_hash = NULL; 24035 } 24036 *tcp->tcp_ptpahn = tcpnext; 24037 tcp->tcp_ptpahn = NULL; 24038 } 24039 mutex_exit(lockp); 24040 tcp->tcp_acceptor_lockp = NULL; 24041 } 24042 24043 /* ARGSUSED */ 24044 static int 24045 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 24046 { 24047 int error = 0; 24048 int retval; 24049 char *end; 24050 tcp_hsp_t *hsp; 24051 tcp_hsp_t *hspprev; 24052 ipaddr_t addr = 0; /* Address we're looking for */ 24053 in6_addr_t v6addr; /* Address we're looking for */ 24054 uint32_t hash; /* Hash of that address */ 24055 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24056 24057 /* 24058 * If the following variables are still zero after parsing the input 24059 * string, the user didn't specify them and we don't change them in 24060 * the HSP. 24061 */ 24062 24063 ipaddr_t mask = 0; /* Subnet mask */ 24064 in6_addr_t v6mask; 24065 long sendspace = 0; /* Send buffer size */ 24066 long recvspace = 0; /* Receive buffer size */ 24067 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 24068 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 24069 24070 rw_enter(&tcps->tcps_hsp_lock, RW_WRITER); 24071 24072 /* Parse and validate address */ 24073 if (af == AF_INET) { 24074 retval = inet_pton(af, value, &addr); 24075 if (retval == 1) 24076 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 24077 } else if (af == AF_INET6) { 24078 retval = inet_pton(af, value, &v6addr); 24079 } else { 24080 error = EINVAL; 24081 goto done; 24082 } 24083 if (retval == 0) { 24084 error = EINVAL; 24085 goto done; 24086 } 24087 24088 while ((*value) && *value != ' ') 24089 value++; 24090 24091 /* Parse individual keywords, set variables if found */ 24092 while (*value) { 24093 /* Skip leading blanks */ 24094 24095 while (*value == ' ' || *value == '\t') 24096 value++; 24097 24098 /* If at end of string, we're done */ 24099 24100 if (!*value) 24101 break; 24102 24103 /* We have a word, figure out what it is */ 24104 24105 if (strncmp("mask", value, 4) == 0) { 24106 value += 4; 24107 while (*value == ' ' || *value == '\t') 24108 value++; 24109 /* Parse subnet mask */ 24110 if (af == AF_INET) { 24111 retval = inet_pton(af, value, &mask); 24112 if (retval == 1) { 24113 V4MASK_TO_V6(mask, v6mask); 24114 } 24115 } else if (af == AF_INET6) { 24116 retval = inet_pton(af, value, &v6mask); 24117 } 24118 if (retval != 1) { 24119 error = EINVAL; 24120 goto done; 24121 } 24122 while ((*value) && *value != ' ') 24123 value++; 24124 } else if (strncmp("sendspace", value, 9) == 0) { 24125 value += 9; 24126 24127 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 24128 sendspace < TCP_XMIT_HIWATER || 24129 sendspace >= (1L<<30)) { 24130 error = EINVAL; 24131 goto done; 24132 } 24133 value = end; 24134 } else if (strncmp("recvspace", value, 9) == 0) { 24135 value += 9; 24136 24137 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 24138 recvspace < TCP_RECV_HIWATER || 24139 recvspace >= (1L<<30)) { 24140 error = EINVAL; 24141 goto done; 24142 } 24143 value = end; 24144 } else if (strncmp("timestamp", value, 9) == 0) { 24145 value += 9; 24146 24147 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 24148 timestamp < 0 || timestamp > 1) { 24149 error = EINVAL; 24150 goto done; 24151 } 24152 24153 /* 24154 * We increment timestamp so we know it's been set; 24155 * this is undone when we put it in the HSP 24156 */ 24157 timestamp++; 24158 value = end; 24159 } else if (strncmp("delete", value, 6) == 0) { 24160 value += 6; 24161 delete = B_TRUE; 24162 } else { 24163 error = EINVAL; 24164 goto done; 24165 } 24166 } 24167 24168 /* Hash address for lookup */ 24169 24170 hash = TCP_HSP_HASH(addr); 24171 24172 if (delete) { 24173 /* 24174 * Note that deletes don't return an error if the thing 24175 * we're trying to delete isn't there. 24176 */ 24177 if (tcps->tcps_hsp_hash == NULL) 24178 goto done; 24179 hsp = tcps->tcps_hsp_hash[hash]; 24180 24181 if (hsp) { 24182 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24183 &v6addr)) { 24184 tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next; 24185 mi_free((char *)hsp); 24186 } else { 24187 hspprev = hsp; 24188 while ((hsp = hsp->tcp_hsp_next) != NULL) { 24189 if (IN6_ARE_ADDR_EQUAL( 24190 &hsp->tcp_hsp_addr_v6, &v6addr)) { 24191 hspprev->tcp_hsp_next = 24192 hsp->tcp_hsp_next; 24193 mi_free((char *)hsp); 24194 break; 24195 } 24196 hspprev = hsp; 24197 } 24198 } 24199 } 24200 } else { 24201 /* 24202 * We're adding/modifying an HSP. If we haven't already done 24203 * so, allocate the hash table. 24204 */ 24205 24206 if (!tcps->tcps_hsp_hash) { 24207 tcps->tcps_hsp_hash = (tcp_hsp_t **) 24208 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 24209 if (!tcps->tcps_hsp_hash) { 24210 error = EINVAL; 24211 goto done; 24212 } 24213 } 24214 24215 /* Get head of hash chain */ 24216 24217 hsp = tcps->tcps_hsp_hash[hash]; 24218 24219 /* Try to find pre-existing hsp on hash chain */ 24220 /* Doesn't handle CIDR prefixes. */ 24221 while (hsp) { 24222 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 24223 break; 24224 hsp = hsp->tcp_hsp_next; 24225 } 24226 24227 /* 24228 * If we didn't, create one with default values and put it 24229 * at head of hash chain 24230 */ 24231 24232 if (!hsp) { 24233 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 24234 if (!hsp) { 24235 error = EINVAL; 24236 goto done; 24237 } 24238 hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash]; 24239 tcps->tcps_hsp_hash[hash] = hsp; 24240 } 24241 24242 /* Set values that the user asked us to change */ 24243 24244 hsp->tcp_hsp_addr_v6 = v6addr; 24245 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 24246 hsp->tcp_hsp_vers = IPV4_VERSION; 24247 else 24248 hsp->tcp_hsp_vers = IPV6_VERSION; 24249 hsp->tcp_hsp_subnet_v6 = v6mask; 24250 if (sendspace > 0) 24251 hsp->tcp_hsp_sendspace = sendspace; 24252 if (recvspace > 0) 24253 hsp->tcp_hsp_recvspace = recvspace; 24254 if (timestamp > 0) 24255 hsp->tcp_hsp_tstamp = timestamp - 1; 24256 } 24257 24258 done: 24259 rw_exit(&tcps->tcps_hsp_lock); 24260 return (error); 24261 } 24262 24263 /* Set callback routine passed to nd_load by tcp_param_register. */ 24264 /* ARGSUSED */ 24265 static int 24266 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 24267 { 24268 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 24269 } 24270 /* ARGSUSED */ 24271 static int 24272 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24273 cred_t *cr) 24274 { 24275 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 24276 } 24277 24278 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 24279 /* ARGSUSED */ 24280 static int 24281 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24282 { 24283 tcp_hsp_t *hsp; 24284 int i; 24285 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 24286 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24287 24288 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24289 (void) mi_mpprintf(mp, 24290 "Hash HSP " MI_COL_HDRPAD_STR 24291 "Address Subnet Mask Send Receive TStamp"); 24292 if (tcps->tcps_hsp_hash) { 24293 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24294 hsp = tcps->tcps_hsp_hash[i]; 24295 while (hsp) { 24296 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24297 (void) inet_ntop(AF_INET, 24298 &hsp->tcp_hsp_addr, 24299 addrbuf, sizeof (addrbuf)); 24300 (void) inet_ntop(AF_INET, 24301 &hsp->tcp_hsp_subnet, 24302 subnetbuf, sizeof (subnetbuf)); 24303 } else { 24304 (void) inet_ntop(AF_INET6, 24305 &hsp->tcp_hsp_addr_v6, 24306 addrbuf, sizeof (addrbuf)); 24307 (void) inet_ntop(AF_INET6, 24308 &hsp->tcp_hsp_subnet_v6, 24309 subnetbuf, sizeof (subnetbuf)); 24310 } 24311 (void) mi_mpprintf(mp, 24312 " %03d " MI_COL_PTRFMT_STR 24313 "%s %s %010d %010d %d", 24314 i, 24315 (void *)hsp, 24316 addrbuf, 24317 subnetbuf, 24318 hsp->tcp_hsp_sendspace, 24319 hsp->tcp_hsp_recvspace, 24320 hsp->tcp_hsp_tstamp); 24321 24322 hsp = hsp->tcp_hsp_next; 24323 } 24324 } 24325 } 24326 rw_exit(&tcps->tcps_hsp_lock); 24327 return (0); 24328 } 24329 24330 24331 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24332 24333 static ipaddr_t netmasks[] = { 24334 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24335 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24336 }; 24337 24338 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24339 24340 /* 24341 * XXX This routine should go away and instead we should use the metrics 24342 * associated with the routes to determine the default sndspace and rcvspace. 24343 */ 24344 static tcp_hsp_t * 24345 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24346 { 24347 tcp_hsp_t *hsp = NULL; 24348 24349 /* Quick check without acquiring the lock. */ 24350 if (tcps->tcps_hsp_hash == NULL) 24351 return (NULL); 24352 24353 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24354 24355 /* This routine finds the best-matching HSP for address addr. */ 24356 24357 if (tcps->tcps_hsp_hash) { 24358 int i; 24359 ipaddr_t srchaddr; 24360 tcp_hsp_t *hsp_net; 24361 24362 /* We do three passes: host, network, and subnet. */ 24363 24364 srchaddr = addr; 24365 24366 for (i = 1; i <= 3; i++) { 24367 /* Look for exact match on srchaddr */ 24368 24369 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24370 while (hsp) { 24371 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24372 hsp->tcp_hsp_addr == srchaddr) 24373 break; 24374 hsp = hsp->tcp_hsp_next; 24375 } 24376 ASSERT(hsp == NULL || 24377 hsp->tcp_hsp_vers == IPV4_VERSION); 24378 24379 /* 24380 * If this is the first pass: 24381 * If we found a match, great, return it. 24382 * If not, search for the network on the second pass. 24383 */ 24384 24385 if (i == 1) 24386 if (hsp) 24387 break; 24388 else 24389 { 24390 srchaddr = addr & netmask(addr); 24391 continue; 24392 } 24393 24394 /* 24395 * If this is the second pass: 24396 * If we found a match, but there's a subnet mask, 24397 * save the match but try again using the subnet 24398 * mask on the third pass. 24399 * Otherwise, return whatever we found. 24400 */ 24401 24402 if (i == 2) { 24403 if (hsp && hsp->tcp_hsp_subnet) { 24404 hsp_net = hsp; 24405 srchaddr = addr & hsp->tcp_hsp_subnet; 24406 continue; 24407 } else { 24408 break; 24409 } 24410 } 24411 24412 /* 24413 * This must be the third pass. If we didn't find 24414 * anything, return the saved network HSP instead. 24415 */ 24416 24417 if (!hsp) 24418 hsp = hsp_net; 24419 } 24420 } 24421 24422 rw_exit(&tcps->tcps_hsp_lock); 24423 return (hsp); 24424 } 24425 24426 /* 24427 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24428 * match lookup. 24429 */ 24430 static tcp_hsp_t * 24431 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24432 { 24433 tcp_hsp_t *hsp = NULL; 24434 24435 /* Quick check without acquiring the lock. */ 24436 if (tcps->tcps_hsp_hash == NULL) 24437 return (NULL); 24438 24439 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24440 24441 /* This routine finds the best-matching HSP for address addr. */ 24442 24443 if (tcps->tcps_hsp_hash) { 24444 int i; 24445 in6_addr_t v6srchaddr; 24446 tcp_hsp_t *hsp_net; 24447 24448 /* We do three passes: host, network, and subnet. */ 24449 24450 v6srchaddr = *v6addr; 24451 24452 for (i = 1; i <= 3; i++) { 24453 /* Look for exact match on srchaddr */ 24454 24455 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24456 V4_PART_OF_V6(v6srchaddr))]; 24457 while (hsp) { 24458 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24459 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24460 &v6srchaddr)) 24461 break; 24462 hsp = hsp->tcp_hsp_next; 24463 } 24464 24465 /* 24466 * If this is the first pass: 24467 * If we found a match, great, return it. 24468 * If not, search for the network on the second pass. 24469 */ 24470 24471 if (i == 1) 24472 if (hsp) 24473 break; 24474 else { 24475 /* Assume a 64 bit mask */ 24476 v6srchaddr.s6_addr32[0] = 24477 v6addr->s6_addr32[0]; 24478 v6srchaddr.s6_addr32[1] = 24479 v6addr->s6_addr32[1]; 24480 v6srchaddr.s6_addr32[2] = 0; 24481 v6srchaddr.s6_addr32[3] = 0; 24482 continue; 24483 } 24484 24485 /* 24486 * If this is the second pass: 24487 * If we found a match, but there's a subnet mask, 24488 * save the match but try again using the subnet 24489 * mask on the third pass. 24490 * Otherwise, return whatever we found. 24491 */ 24492 24493 if (i == 2) { 24494 ASSERT(hsp == NULL || 24495 hsp->tcp_hsp_vers == IPV6_VERSION); 24496 if (hsp && 24497 !IN6_IS_ADDR_UNSPECIFIED( 24498 &hsp->tcp_hsp_subnet_v6)) { 24499 hsp_net = hsp; 24500 V6_MASK_COPY(*v6addr, 24501 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24502 continue; 24503 } else { 24504 break; 24505 } 24506 } 24507 24508 /* 24509 * This must be the third pass. If we didn't find 24510 * anything, return the saved network HSP instead. 24511 */ 24512 24513 if (!hsp) 24514 hsp = hsp_net; 24515 } 24516 } 24517 24518 rw_exit(&tcps->tcps_hsp_lock); 24519 return (hsp); 24520 } 24521 24522 /* 24523 * Type three generator adapted from the random() function in 4.4 BSD: 24524 */ 24525 24526 /* 24527 * Copyright (c) 1983, 1993 24528 * The Regents of the University of California. All rights reserved. 24529 * 24530 * Redistribution and use in source and binary forms, with or without 24531 * modification, are permitted provided that the following conditions 24532 * are met: 24533 * 1. Redistributions of source code must retain the above copyright 24534 * notice, this list of conditions and the following disclaimer. 24535 * 2. Redistributions in binary form must reproduce the above copyright 24536 * notice, this list of conditions and the following disclaimer in the 24537 * documentation and/or other materials provided with the distribution. 24538 * 3. All advertising materials mentioning features or use of this software 24539 * must display the following acknowledgement: 24540 * This product includes software developed by the University of 24541 * California, Berkeley and its contributors. 24542 * 4. Neither the name of the University nor the names of its contributors 24543 * may be used to endorse or promote products derived from this software 24544 * without specific prior written permission. 24545 * 24546 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24547 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24548 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24549 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24550 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24551 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24552 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24553 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24554 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24555 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24556 * SUCH DAMAGE. 24557 */ 24558 24559 /* Type 3 -- x**31 + x**3 + 1 */ 24560 #define DEG_3 31 24561 #define SEP_3 3 24562 24563 24564 /* Protected by tcp_random_lock */ 24565 static int tcp_randtbl[DEG_3 + 1]; 24566 24567 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24568 static int *tcp_random_rptr = &tcp_randtbl[1]; 24569 24570 static int *tcp_random_state = &tcp_randtbl[1]; 24571 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24572 24573 kmutex_t tcp_random_lock; 24574 24575 void 24576 tcp_random_init(void) 24577 { 24578 int i; 24579 hrtime_t hrt; 24580 time_t wallclock; 24581 uint64_t result; 24582 24583 /* 24584 * Use high-res timer and current time for seed. Gethrtime() returns 24585 * a longlong, which may contain resolution down to nanoseconds. 24586 * The current time will either be a 32-bit or a 64-bit quantity. 24587 * XOR the two together in a 64-bit result variable. 24588 * Convert the result to a 32-bit value by multiplying the high-order 24589 * 32-bits by the low-order 32-bits. 24590 */ 24591 24592 hrt = gethrtime(); 24593 (void) drv_getparm(TIME, &wallclock); 24594 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24595 mutex_enter(&tcp_random_lock); 24596 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24597 (result & 0xffffffff); 24598 24599 for (i = 1; i < DEG_3; i++) 24600 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24601 + 12345; 24602 tcp_random_fptr = &tcp_random_state[SEP_3]; 24603 tcp_random_rptr = &tcp_random_state[0]; 24604 mutex_exit(&tcp_random_lock); 24605 for (i = 0; i < 10 * DEG_3; i++) 24606 (void) tcp_random(); 24607 } 24608 24609 /* 24610 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24611 * This range is selected to be approximately centered on TCP_ISS / 2, 24612 * and easy to compute. We get this value by generating a 32-bit random 24613 * number, selecting out the high-order 17 bits, and then adding one so 24614 * that we never return zero. 24615 */ 24616 int 24617 tcp_random(void) 24618 { 24619 int i; 24620 24621 mutex_enter(&tcp_random_lock); 24622 *tcp_random_fptr += *tcp_random_rptr; 24623 24624 /* 24625 * The high-order bits are more random than the low-order bits, 24626 * so we select out the high-order 17 bits and add one so that 24627 * we never return zero. 24628 */ 24629 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24630 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24631 tcp_random_fptr = tcp_random_state; 24632 ++tcp_random_rptr; 24633 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24634 tcp_random_rptr = tcp_random_state; 24635 24636 mutex_exit(&tcp_random_lock); 24637 return (i); 24638 } 24639 24640 /* 24641 * XXX This will go away when TPI is extended to send 24642 * info reqs to sockfs/timod ..... 24643 * Given a queue, set the max packet size for the write 24644 * side of the queue below stream head. This value is 24645 * cached on the stream head. 24646 * Returns 1 on success, 0 otherwise. 24647 */ 24648 static int 24649 setmaxps(queue_t *q, int maxpsz) 24650 { 24651 struct stdata *stp; 24652 queue_t *wq; 24653 stp = STREAM(q); 24654 24655 /* 24656 * At this point change of a queue parameter is not allowed 24657 * when a multiplexor is sitting on top. 24658 */ 24659 if (stp->sd_flag & STPLEX) 24660 return (0); 24661 24662 claimstr(stp->sd_wrq); 24663 wq = stp->sd_wrq->q_next; 24664 ASSERT(wq != NULL); 24665 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24666 releasestr(stp->sd_wrq); 24667 return (1); 24668 } 24669 24670 static int 24671 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24672 int *t_errorp, int *sys_errorp) 24673 { 24674 int error; 24675 int is_absreq_failure; 24676 t_scalar_t *opt_lenp; 24677 t_scalar_t opt_offset; 24678 int prim_type; 24679 struct T_conn_req *tcreqp; 24680 struct T_conn_res *tcresp; 24681 cred_t *cr; 24682 24683 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24684 24685 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24686 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24687 prim_type == T_CONN_RES); 24688 24689 switch (prim_type) { 24690 case T_CONN_REQ: 24691 tcreqp = (struct T_conn_req *)mp->b_rptr; 24692 opt_offset = tcreqp->OPT_offset; 24693 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24694 break; 24695 case O_T_CONN_RES: 24696 case T_CONN_RES: 24697 tcresp = (struct T_conn_res *)mp->b_rptr; 24698 opt_offset = tcresp->OPT_offset; 24699 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24700 break; 24701 } 24702 24703 *t_errorp = 0; 24704 *sys_errorp = 0; 24705 *do_disconnectp = 0; 24706 24707 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24708 opt_offset, cr, &tcp_opt_obj, 24709 NULL, &is_absreq_failure); 24710 24711 switch (error) { 24712 case 0: /* no error */ 24713 ASSERT(is_absreq_failure == 0); 24714 return (0); 24715 case ENOPROTOOPT: 24716 *t_errorp = TBADOPT; 24717 break; 24718 case EACCES: 24719 *t_errorp = TACCES; 24720 break; 24721 default: 24722 *t_errorp = TSYSERR; *sys_errorp = error; 24723 break; 24724 } 24725 if (is_absreq_failure != 0) { 24726 /* 24727 * The connection request should get the local ack 24728 * T_OK_ACK and then a T_DISCON_IND. 24729 */ 24730 *do_disconnectp = 1; 24731 } 24732 return (-1); 24733 } 24734 24735 /* 24736 * Split this function out so that if the secret changes, I'm okay. 24737 * 24738 * Initialize the tcp_iss_cookie and tcp_iss_key. 24739 */ 24740 24741 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24742 24743 static void 24744 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24745 { 24746 struct { 24747 int32_t current_time; 24748 uint32_t randnum; 24749 uint16_t pad; 24750 uint8_t ether[6]; 24751 uint8_t passwd[PASSWD_SIZE]; 24752 } tcp_iss_cookie; 24753 time_t t; 24754 24755 /* 24756 * Start with the current absolute time. 24757 */ 24758 (void) drv_getparm(TIME, &t); 24759 tcp_iss_cookie.current_time = t; 24760 24761 /* 24762 * XXX - Need a more random number per RFC 1750, not this crap. 24763 * OTOH, if what follows is pretty random, then I'm in better shape. 24764 */ 24765 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24766 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24767 24768 /* 24769 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24770 * as a good template. 24771 */ 24772 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24773 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24774 24775 /* 24776 * The pass-phrase. Normally this is supplied by user-called NDD. 24777 */ 24778 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24779 24780 /* 24781 * See 4010593 if this section becomes a problem again, 24782 * but the local ethernet address is useful here. 24783 */ 24784 (void) localetheraddr(NULL, 24785 (struct ether_addr *)&tcp_iss_cookie.ether); 24786 24787 /* 24788 * Hash 'em all together. The MD5Final is called per-connection. 24789 */ 24790 mutex_enter(&tcps->tcps_iss_key_lock); 24791 MD5Init(&tcps->tcps_iss_key); 24792 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24793 sizeof (tcp_iss_cookie)); 24794 mutex_exit(&tcps->tcps_iss_key_lock); 24795 } 24796 24797 /* 24798 * Set the RFC 1948 pass phrase 24799 */ 24800 /* ARGSUSED */ 24801 static int 24802 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24803 cred_t *cr) 24804 { 24805 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24806 24807 /* 24808 * Basically, value contains a new pass phrase. Pass it along! 24809 */ 24810 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24811 return (0); 24812 } 24813 24814 /* ARGSUSED */ 24815 static int 24816 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24817 { 24818 bzero(buf, sizeof (tcp_sack_info_t)); 24819 return (0); 24820 } 24821 24822 /* ARGSUSED */ 24823 static int 24824 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24825 { 24826 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24827 return (0); 24828 } 24829 24830 /* 24831 * Make sure we wait until the default queue is setup, yet allow 24832 * tcp_g_q_create() to open a TCP stream. 24833 * We need to allow tcp_g_q_create() do do an open 24834 * of tcp, hence we compare curhread. 24835 * All others have to wait until the tcps_g_q has been 24836 * setup. 24837 */ 24838 void 24839 tcp_g_q_setup(tcp_stack_t *tcps) 24840 { 24841 mutex_enter(&tcps->tcps_g_q_lock); 24842 if (tcps->tcps_g_q != NULL) { 24843 mutex_exit(&tcps->tcps_g_q_lock); 24844 return; 24845 } 24846 if (tcps->tcps_g_q_creator == NULL) { 24847 /* This thread will set it up */ 24848 tcps->tcps_g_q_creator = curthread; 24849 mutex_exit(&tcps->tcps_g_q_lock); 24850 tcp_g_q_create(tcps); 24851 mutex_enter(&tcps->tcps_g_q_lock); 24852 ASSERT(tcps->tcps_g_q_creator == curthread); 24853 tcps->tcps_g_q_creator = NULL; 24854 cv_signal(&tcps->tcps_g_q_cv); 24855 ASSERT(tcps->tcps_g_q != NULL); 24856 mutex_exit(&tcps->tcps_g_q_lock); 24857 return; 24858 } 24859 /* Everybody but the creator has to wait */ 24860 if (tcps->tcps_g_q_creator != curthread) { 24861 while (tcps->tcps_g_q == NULL) 24862 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24863 } 24864 mutex_exit(&tcps->tcps_g_q_lock); 24865 } 24866 24867 major_t IP_MAJ; 24868 #define IP "ip" 24869 24870 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24871 24872 /* 24873 * Create a default tcp queue here instead of in strplumb 24874 */ 24875 void 24876 tcp_g_q_create(tcp_stack_t *tcps) 24877 { 24878 int error; 24879 ldi_handle_t lh = NULL; 24880 ldi_ident_t li = NULL; 24881 int rval; 24882 cred_t *cr; 24883 24884 #ifdef NS_DEBUG 24885 (void) printf("tcp_g_q_create()\n"); 24886 #endif 24887 24888 ASSERT(tcps->tcps_g_q_creator == curthread); 24889 24890 error = ldi_ident_from_major(IP_MAJ, &li); 24891 if (error) { 24892 #ifdef DEBUG 24893 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24894 error); 24895 #endif 24896 return; 24897 } 24898 24899 cr = zone_get_kcred(netstackid_to_zoneid( 24900 tcps->tcps_netstack->netstack_stackid)); 24901 ASSERT(cr != NULL); 24902 /* 24903 * We set the tcp default queue to IPv6 because IPv4 falls 24904 * back to IPv6 when it can't find a client, but 24905 * IPv6 does not fall back to IPv4. 24906 */ 24907 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24908 if (error) { 24909 #ifdef DEBUG 24910 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24911 error); 24912 #endif 24913 goto out; 24914 } 24915 24916 /* 24917 * This ioctl causes the tcp framework to cache a pointer to 24918 * this stream, so we don't want to close the stream after 24919 * this operation. 24920 * Use the kernel credentials that are for the zone we're in. 24921 */ 24922 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24923 (intptr_t)0, FKIOCTL, cr, &rval); 24924 if (error) { 24925 #ifdef DEBUG 24926 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24927 "error %d\n", error); 24928 #endif 24929 goto out; 24930 } 24931 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24932 lh = NULL; 24933 out: 24934 /* Close layered handles */ 24935 if (li) 24936 ldi_ident_release(li); 24937 /* Keep cred around until _inactive needs it */ 24938 tcps->tcps_g_q_cr = cr; 24939 } 24940 24941 /* 24942 * We keep tcp_g_q set until all other tcp_t's in the zone 24943 * has gone away, and then when tcp_g_q_inactive() is called 24944 * we clear it. 24945 */ 24946 void 24947 tcp_g_q_destroy(tcp_stack_t *tcps) 24948 { 24949 #ifdef NS_DEBUG 24950 (void) printf("tcp_g_q_destroy()for stack %d\n", 24951 tcps->tcps_netstack->netstack_stackid); 24952 #endif 24953 24954 if (tcps->tcps_g_q == NULL) { 24955 return; /* Nothing to cleanup */ 24956 } 24957 /* 24958 * Drop reference corresponding to the default queue. 24959 * This reference was added from tcp_open when the default queue 24960 * was created, hence we compensate for this extra drop in 24961 * tcp_g_q_close. If the refcnt drops to zero here it means 24962 * the default queue was the last one to be open, in which 24963 * case, then tcp_g_q_inactive will be 24964 * called as a result of the refrele. 24965 */ 24966 TCPS_REFRELE(tcps); 24967 } 24968 24969 /* 24970 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24971 * Run by tcp_q_q_inactive using a taskq. 24972 */ 24973 static void 24974 tcp_g_q_close(void *arg) 24975 { 24976 tcp_stack_t *tcps = arg; 24977 int error; 24978 ldi_handle_t lh = NULL; 24979 ldi_ident_t li = NULL; 24980 cred_t *cr; 24981 24982 #ifdef NS_DEBUG 24983 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24984 tcps->tcps_netstack->netstack_stackid, 24985 tcps->tcps_netstack->netstack_refcnt); 24986 #endif 24987 lh = tcps->tcps_g_q_lh; 24988 if (lh == NULL) 24989 return; /* Nothing to cleanup */ 24990 24991 ASSERT(tcps->tcps_refcnt == 1); 24992 ASSERT(tcps->tcps_g_q != NULL); 24993 24994 error = ldi_ident_from_major(IP_MAJ, &li); 24995 if (error) { 24996 #ifdef DEBUG 24997 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24998 error); 24999 #endif 25000 return; 25001 } 25002 25003 cr = tcps->tcps_g_q_cr; 25004 tcps->tcps_g_q_cr = NULL; 25005 ASSERT(cr != NULL); 25006 25007 /* 25008 * Make sure we can break the recursion when tcp_close decrements 25009 * the reference count causing g_q_inactive to be called again. 25010 */ 25011 tcps->tcps_g_q_lh = NULL; 25012 25013 /* close the default queue */ 25014 (void) ldi_close(lh, FREAD|FWRITE, cr); 25015 /* 25016 * At this point in time tcps and the rest of netstack_t might 25017 * have been deleted. 25018 */ 25019 tcps = NULL; 25020 25021 /* Close layered handles */ 25022 ldi_ident_release(li); 25023 crfree(cr); 25024 } 25025 25026 /* 25027 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25028 * 25029 * Have to ensure that the ldi routines are not used by an 25030 * interrupt thread by using a taskq. 25031 */ 25032 void 25033 tcp_g_q_inactive(tcp_stack_t *tcps) 25034 { 25035 if (tcps->tcps_g_q_lh == NULL) 25036 return; /* Nothing to cleanup */ 25037 25038 ASSERT(tcps->tcps_refcnt == 0); 25039 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 25040 25041 if (servicing_interrupt()) { 25042 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 25043 (void *) tcps, TQ_SLEEP); 25044 } else { 25045 tcp_g_q_close(tcps); 25046 } 25047 } 25048 25049 /* 25050 * Called by IP when IP is loaded into the kernel 25051 */ 25052 void 25053 tcp_ddi_g_init(void) 25054 { 25055 IP_MAJ = ddi_name_to_major(IP); 25056 25057 tcp_timercache = kmem_cache_create("tcp_timercache", 25058 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 25059 NULL, NULL, NULL, NULL, NULL, 0); 25060 25061 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 25062 sizeof (tcp_sack_info_t), 0, 25063 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 25064 25065 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 25066 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 25067 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 25068 25069 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 25070 25071 /* Initialize the random number generator */ 25072 tcp_random_init(); 25073 25074 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 25075 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 25076 25077 /* A single callback independently of how many netstacks we have */ 25078 ip_squeue_init(tcp_squeue_add); 25079 25080 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 25081 25082 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 25083 TASKQ_PREPOPULATE); 25084 25085 /* 25086 * We want to be informed each time a stack is created or 25087 * destroyed in the kernel, so we can maintain the 25088 * set of tcp_stack_t's. 25089 */ 25090 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 25091 tcp_stack_fini); 25092 } 25093 25094 25095 /* 25096 * Initialize the TCP stack instance. 25097 */ 25098 static void * 25099 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 25100 { 25101 tcp_stack_t *tcps; 25102 tcpparam_t *pa; 25103 int i; 25104 25105 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 25106 tcps->tcps_netstack = ns; 25107 25108 /* Initialize locks */ 25109 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 25110 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 25111 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 25112 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 25113 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 25114 rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL); 25115 25116 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 25117 tcps->tcps_g_epriv_ports[0] = 2049; 25118 tcps->tcps_g_epriv_ports[1] = 4045; 25119 tcps->tcps_min_anonpriv_port = 512; 25120 25121 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 25122 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 25123 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 25124 TCP_FANOUT_SIZE, KM_SLEEP); 25125 tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) * 25126 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP); 25127 25128 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25129 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 25130 MUTEX_DEFAULT, NULL); 25131 } 25132 25133 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25134 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25135 MUTEX_DEFAULT, NULL); 25136 } 25137 25138 /* TCP's IPsec code calls the packet dropper. */ 25139 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25140 25141 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25142 tcps->tcps_params = pa; 25143 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25144 25145 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25146 A_CNT(lcl_tcp_param_arr), tcps); 25147 25148 /* 25149 * Note: To really walk the device tree you need the devinfo 25150 * pointer to your device which is only available after probe/attach. 25151 * The following is safe only because it uses ddi_root_node() 25152 */ 25153 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25154 tcp_opt_obj.odb_opt_arr_cnt); 25155 25156 /* 25157 * Initialize RFC 1948 secret values. This will probably be reset once 25158 * by the boot scripts. 25159 * 25160 * Use NULL name, as the name is caught by the new lockstats. 25161 * 25162 * Initialize with some random, non-guessable string, like the global 25163 * T_INFO_ACK. 25164 */ 25165 25166 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25167 sizeof (tcp_g_t_info_ack), tcps); 25168 25169 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25170 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25171 25172 return (tcps); 25173 } 25174 25175 /* 25176 * Called when the IP module is about to be unloaded. 25177 */ 25178 void 25179 tcp_ddi_g_destroy(void) 25180 { 25181 tcp_g_kstat_fini(tcp_g_kstat); 25182 tcp_g_kstat = NULL; 25183 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25184 25185 mutex_destroy(&tcp_random_lock); 25186 25187 kmem_cache_destroy(tcp_timercache); 25188 kmem_cache_destroy(tcp_sack_info_cache); 25189 kmem_cache_destroy(tcp_iphc_cache); 25190 25191 netstack_unregister(NS_TCP); 25192 taskq_destroy(tcp_taskq); 25193 } 25194 25195 /* 25196 * Shut down the TCP stack instance. 25197 */ 25198 /* ARGSUSED */ 25199 static void 25200 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25201 { 25202 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25203 25204 tcp_g_q_destroy(tcps); 25205 } 25206 25207 /* 25208 * Free the TCP stack instance. 25209 */ 25210 static void 25211 tcp_stack_fini(netstackid_t stackid, void *arg) 25212 { 25213 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25214 int i; 25215 25216 nd_free(&tcps->tcps_g_nd); 25217 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25218 tcps->tcps_params = NULL; 25219 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25220 tcps->tcps_wroff_xtra_param = NULL; 25221 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25222 tcps->tcps_mdt_head_param = NULL; 25223 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25224 tcps->tcps_mdt_tail_param = NULL; 25225 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25226 tcps->tcps_mdt_max_pbufs_param = NULL; 25227 25228 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25229 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25230 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25231 } 25232 25233 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25234 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25235 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25236 } 25237 25238 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25239 tcps->tcps_bind_fanout = NULL; 25240 25241 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25242 tcps->tcps_acceptor_fanout = NULL; 25243 25244 kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) * 25245 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE); 25246 tcps->tcps_reserved_port = NULL; 25247 25248 mutex_destroy(&tcps->tcps_iss_key_lock); 25249 rw_destroy(&tcps->tcps_hsp_lock); 25250 mutex_destroy(&tcps->tcps_g_q_lock); 25251 cv_destroy(&tcps->tcps_g_q_cv); 25252 mutex_destroy(&tcps->tcps_epriv_port_lock); 25253 rw_destroy(&tcps->tcps_reserved_port_lock); 25254 25255 ip_drop_unregister(&tcps->tcps_dropper); 25256 25257 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25258 tcps->tcps_kstat = NULL; 25259 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25260 25261 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25262 tcps->tcps_mibkp = NULL; 25263 25264 kmem_free(tcps, sizeof (*tcps)); 25265 } 25266 25267 /* 25268 * Generate ISS, taking into account NDD changes may happen halfway through. 25269 * (If the iss is not zero, set it.) 25270 */ 25271 25272 static void 25273 tcp_iss_init(tcp_t *tcp) 25274 { 25275 MD5_CTX context; 25276 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25277 uint32_t answer[4]; 25278 tcp_stack_t *tcps = tcp->tcp_tcps; 25279 25280 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25281 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25282 switch (tcps->tcps_strong_iss) { 25283 case 2: 25284 mutex_enter(&tcps->tcps_iss_key_lock); 25285 context = tcps->tcps_iss_key; 25286 mutex_exit(&tcps->tcps_iss_key_lock); 25287 arg.ports = tcp->tcp_ports; 25288 if (tcp->tcp_ipversion == IPV4_VERSION) { 25289 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25290 &arg.src); 25291 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25292 &arg.dst); 25293 } else { 25294 arg.src = tcp->tcp_ip6h->ip6_src; 25295 arg.dst = tcp->tcp_ip6h->ip6_dst; 25296 } 25297 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25298 MD5Final((uchar_t *)answer, &context); 25299 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25300 /* 25301 * Now that we've hashed into a unique per-connection sequence 25302 * space, add a random increment per strong_iss == 1. So I 25303 * guess we'll have to... 25304 */ 25305 /* FALLTHRU */ 25306 case 1: 25307 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25308 break; 25309 default: 25310 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25311 break; 25312 } 25313 tcp->tcp_valid_bits = TCP_ISS_VALID; 25314 tcp->tcp_fss = tcp->tcp_iss - 1; 25315 tcp->tcp_suna = tcp->tcp_iss; 25316 tcp->tcp_snxt = tcp->tcp_iss + 1; 25317 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25318 tcp->tcp_csuna = tcp->tcp_snxt; 25319 } 25320 25321 /* 25322 * Exported routine for extracting active tcp connection status. 25323 * 25324 * This is used by the Solaris Cluster Networking software to 25325 * gather a list of connections that need to be forwarded to 25326 * specific nodes in the cluster when configuration changes occur. 25327 * 25328 * The callback is invoked for each tcp_t structure. Returning 25329 * non-zero from the callback routine terminates the search. 25330 */ 25331 int 25332 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25333 void *arg) 25334 { 25335 netstack_handle_t nh; 25336 netstack_t *ns; 25337 int ret = 0; 25338 25339 netstack_next_init(&nh); 25340 while ((ns = netstack_next(&nh)) != NULL) { 25341 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25342 ns->netstack_tcp); 25343 netstack_rele(ns); 25344 } 25345 netstack_next_fini(&nh); 25346 return (ret); 25347 } 25348 25349 static int 25350 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25351 tcp_stack_t *tcps) 25352 { 25353 tcp_t *tcp; 25354 cl_tcp_info_t cl_tcpi; 25355 connf_t *connfp; 25356 conn_t *connp; 25357 int i; 25358 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25359 25360 ASSERT(callback != NULL); 25361 25362 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25363 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25364 connp = NULL; 25365 25366 while ((connp = 25367 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25368 25369 tcp = connp->conn_tcp; 25370 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25371 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25372 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25373 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25374 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25375 /* 25376 * The macros tcp_laddr and tcp_faddr give the IPv4 25377 * addresses. They are copied implicitly below as 25378 * mapped addresses. 25379 */ 25380 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25381 if (tcp->tcp_ipversion == IPV4_VERSION) { 25382 cl_tcpi.cl_tcpi_faddr = 25383 tcp->tcp_ipha->ipha_dst; 25384 } else { 25385 cl_tcpi.cl_tcpi_faddr_v6 = 25386 tcp->tcp_ip6h->ip6_dst; 25387 } 25388 25389 /* 25390 * If the callback returns non-zero 25391 * we terminate the traversal. 25392 */ 25393 if ((*callback)(&cl_tcpi, arg) != 0) { 25394 CONN_DEC_REF(tcp->tcp_connp); 25395 return (1); 25396 } 25397 } 25398 } 25399 25400 return (0); 25401 } 25402 25403 /* 25404 * Macros used for accessing the different types of sockaddr 25405 * structures inside a tcp_ioc_abort_conn_t. 25406 */ 25407 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25408 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25409 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25410 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25411 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25412 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25413 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25414 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25415 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25416 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25417 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25418 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25419 25420 /* 25421 * Return the correct error code to mimic the behavior 25422 * of a connection reset. 25423 */ 25424 #define TCP_AC_GET_ERRCODE(state, err) { \ 25425 switch ((state)) { \ 25426 case TCPS_SYN_SENT: \ 25427 case TCPS_SYN_RCVD: \ 25428 (err) = ECONNREFUSED; \ 25429 break; \ 25430 case TCPS_ESTABLISHED: \ 25431 case TCPS_FIN_WAIT_1: \ 25432 case TCPS_FIN_WAIT_2: \ 25433 case TCPS_CLOSE_WAIT: \ 25434 (err) = ECONNRESET; \ 25435 break; \ 25436 case TCPS_CLOSING: \ 25437 case TCPS_LAST_ACK: \ 25438 case TCPS_TIME_WAIT: \ 25439 (err) = 0; \ 25440 break; \ 25441 default: \ 25442 (err) = ENXIO; \ 25443 } \ 25444 } 25445 25446 /* 25447 * Check if a tcp structure matches the info in acp. 25448 */ 25449 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25450 (((acp)->ac_local.ss_family == AF_INET) ? \ 25451 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25452 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25453 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25454 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25455 (TCP_AC_V4LPORT((acp)) == 0 || \ 25456 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25457 (TCP_AC_V4RPORT((acp)) == 0 || \ 25458 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25459 (acp)->ac_start <= (tcp)->tcp_state && \ 25460 (acp)->ac_end >= (tcp)->tcp_state) : \ 25461 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25462 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25463 &(tcp)->tcp_ip_src_v6)) && \ 25464 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25465 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25466 &(tcp)->tcp_remote_v6)) && \ 25467 (TCP_AC_V6LPORT((acp)) == 0 || \ 25468 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25469 (TCP_AC_V6RPORT((acp)) == 0 || \ 25470 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25471 (acp)->ac_start <= (tcp)->tcp_state && \ 25472 (acp)->ac_end >= (tcp)->tcp_state)) 25473 25474 #define TCP_AC_MATCH(acp, tcp) \ 25475 (((acp)->ac_zoneid == ALL_ZONES || \ 25476 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25477 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25478 25479 /* 25480 * Build a message containing a tcp_ioc_abort_conn_t structure 25481 * which is filled in with information from acp and tp. 25482 */ 25483 static mblk_t * 25484 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25485 { 25486 mblk_t *mp; 25487 tcp_ioc_abort_conn_t *tacp; 25488 25489 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25490 if (mp == NULL) 25491 return (NULL); 25492 25493 mp->b_datap->db_type = M_CTL; 25494 25495 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25496 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25497 sizeof (uint32_t)); 25498 25499 tacp->ac_start = acp->ac_start; 25500 tacp->ac_end = acp->ac_end; 25501 tacp->ac_zoneid = acp->ac_zoneid; 25502 25503 if (acp->ac_local.ss_family == AF_INET) { 25504 tacp->ac_local.ss_family = AF_INET; 25505 tacp->ac_remote.ss_family = AF_INET; 25506 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25507 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25508 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25509 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25510 } else { 25511 tacp->ac_local.ss_family = AF_INET6; 25512 tacp->ac_remote.ss_family = AF_INET6; 25513 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25514 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25515 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25516 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25517 } 25518 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25519 return (mp); 25520 } 25521 25522 /* 25523 * Print a tcp_ioc_abort_conn_t structure. 25524 */ 25525 static void 25526 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25527 { 25528 char lbuf[128]; 25529 char rbuf[128]; 25530 sa_family_t af; 25531 in_port_t lport, rport; 25532 ushort_t logflags; 25533 25534 af = acp->ac_local.ss_family; 25535 25536 if (af == AF_INET) { 25537 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25538 lbuf, 128); 25539 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25540 rbuf, 128); 25541 lport = ntohs(TCP_AC_V4LPORT(acp)); 25542 rport = ntohs(TCP_AC_V4RPORT(acp)); 25543 } else { 25544 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25545 lbuf, 128); 25546 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25547 rbuf, 128); 25548 lport = ntohs(TCP_AC_V6LPORT(acp)); 25549 rport = ntohs(TCP_AC_V6RPORT(acp)); 25550 } 25551 25552 logflags = SL_TRACE | SL_NOTE; 25553 /* 25554 * Don't print this message to the console if the operation was done 25555 * to a non-global zone. 25556 */ 25557 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25558 logflags |= SL_CONSOLE; 25559 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25560 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25561 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25562 acp->ac_start, acp->ac_end); 25563 } 25564 25565 /* 25566 * Called inside tcp_rput when a message built using 25567 * tcp_ioctl_abort_build_msg is put into a queue. 25568 * Note that when we get here there is no wildcard in acp any more. 25569 */ 25570 static void 25571 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25572 { 25573 tcp_ioc_abort_conn_t *acp; 25574 25575 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25576 if (tcp->tcp_state <= acp->ac_end) { 25577 /* 25578 * If we get here, we are already on the correct 25579 * squeue. This ioctl follows the following path 25580 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25581 * ->tcp_ioctl_abort->squeue_fill (if on a 25582 * different squeue) 25583 */ 25584 int errcode; 25585 25586 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25587 (void) tcp_clean_death(tcp, errcode, 26); 25588 } 25589 freemsg(mp); 25590 } 25591 25592 /* 25593 * Abort all matching connections on a hash chain. 25594 */ 25595 static int 25596 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25597 boolean_t exact, tcp_stack_t *tcps) 25598 { 25599 int nmatch, err = 0; 25600 tcp_t *tcp; 25601 MBLKP mp, last, listhead = NULL; 25602 conn_t *tconnp; 25603 connf_t *connfp; 25604 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25605 25606 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25607 25608 startover: 25609 nmatch = 0; 25610 25611 mutex_enter(&connfp->connf_lock); 25612 for (tconnp = connfp->connf_head; tconnp != NULL; 25613 tconnp = tconnp->conn_next) { 25614 tcp = tconnp->conn_tcp; 25615 if (TCP_AC_MATCH(acp, tcp)) { 25616 CONN_INC_REF(tcp->tcp_connp); 25617 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25618 if (mp == NULL) { 25619 err = ENOMEM; 25620 CONN_DEC_REF(tcp->tcp_connp); 25621 break; 25622 } 25623 mp->b_prev = (mblk_t *)tcp; 25624 25625 if (listhead == NULL) { 25626 listhead = mp; 25627 last = mp; 25628 } else { 25629 last->b_next = mp; 25630 last = mp; 25631 } 25632 nmatch++; 25633 if (exact) 25634 break; 25635 } 25636 25637 /* Avoid holding lock for too long. */ 25638 if (nmatch >= 500) 25639 break; 25640 } 25641 mutex_exit(&connfp->connf_lock); 25642 25643 /* Pass mp into the correct tcp */ 25644 while ((mp = listhead) != NULL) { 25645 listhead = listhead->b_next; 25646 tcp = (tcp_t *)mp->b_prev; 25647 mp->b_next = mp->b_prev = NULL; 25648 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25649 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25650 } 25651 25652 *count += nmatch; 25653 if (nmatch >= 500 && err == 0) 25654 goto startover; 25655 return (err); 25656 } 25657 25658 /* 25659 * Abort all connections that matches the attributes specified in acp. 25660 */ 25661 static int 25662 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25663 { 25664 sa_family_t af; 25665 uint32_t ports; 25666 uint16_t *pports; 25667 int err = 0, count = 0; 25668 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25669 int index = -1; 25670 ushort_t logflags; 25671 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25672 25673 af = acp->ac_local.ss_family; 25674 25675 if (af == AF_INET) { 25676 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25677 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25678 pports = (uint16_t *)&ports; 25679 pports[1] = TCP_AC_V4LPORT(acp); 25680 pports[0] = TCP_AC_V4RPORT(acp); 25681 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25682 } 25683 } else { 25684 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25685 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25686 pports = (uint16_t *)&ports; 25687 pports[1] = TCP_AC_V6LPORT(acp); 25688 pports[0] = TCP_AC_V6RPORT(acp); 25689 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25690 } 25691 } 25692 25693 /* 25694 * For cases where remote addr, local port, and remote port are non- 25695 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25696 */ 25697 if (index != -1) { 25698 err = tcp_ioctl_abort_bucket(acp, index, 25699 &count, exact, tcps); 25700 } else { 25701 /* 25702 * loop through all entries for wildcard case 25703 */ 25704 for (index = 0; 25705 index < ipst->ips_ipcl_conn_fanout_size; 25706 index++) { 25707 err = tcp_ioctl_abort_bucket(acp, index, 25708 &count, exact, tcps); 25709 if (err != 0) 25710 break; 25711 } 25712 } 25713 25714 logflags = SL_TRACE | SL_NOTE; 25715 /* 25716 * Don't print this message to the console if the operation was done 25717 * to a non-global zone. 25718 */ 25719 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25720 logflags |= SL_CONSOLE; 25721 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25722 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25723 if (err == 0 && count == 0) 25724 err = ENOENT; 25725 return (err); 25726 } 25727 25728 /* 25729 * Process the TCP_IOC_ABORT_CONN ioctl request. 25730 */ 25731 static void 25732 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25733 { 25734 int err; 25735 IOCP iocp; 25736 MBLKP mp1; 25737 sa_family_t laf, raf; 25738 tcp_ioc_abort_conn_t *acp; 25739 zone_t *zptr; 25740 conn_t *connp = Q_TO_CONN(q); 25741 zoneid_t zoneid = connp->conn_zoneid; 25742 tcp_t *tcp = connp->conn_tcp; 25743 tcp_stack_t *tcps = tcp->tcp_tcps; 25744 25745 iocp = (IOCP)mp->b_rptr; 25746 25747 if ((mp1 = mp->b_cont) == NULL || 25748 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25749 err = EINVAL; 25750 goto out; 25751 } 25752 25753 /* check permissions */ 25754 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25755 err = EPERM; 25756 goto out; 25757 } 25758 25759 if (mp1->b_cont != NULL) { 25760 freemsg(mp1->b_cont); 25761 mp1->b_cont = NULL; 25762 } 25763 25764 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25765 laf = acp->ac_local.ss_family; 25766 raf = acp->ac_remote.ss_family; 25767 25768 /* check that a zone with the supplied zoneid exists */ 25769 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25770 zptr = zone_find_by_id(zoneid); 25771 if (zptr != NULL) { 25772 zone_rele(zptr); 25773 } else { 25774 err = EINVAL; 25775 goto out; 25776 } 25777 } 25778 25779 /* 25780 * For exclusive stacks we set the zoneid to zero 25781 * to make TCP operate as if in the global zone. 25782 */ 25783 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25784 acp->ac_zoneid = GLOBAL_ZONEID; 25785 25786 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25787 acp->ac_start > acp->ac_end || laf != raf || 25788 (laf != AF_INET && laf != AF_INET6)) { 25789 err = EINVAL; 25790 goto out; 25791 } 25792 25793 tcp_ioctl_abort_dump(acp); 25794 err = tcp_ioctl_abort(acp, tcps); 25795 25796 out: 25797 if (mp1 != NULL) { 25798 freemsg(mp1); 25799 mp->b_cont = NULL; 25800 } 25801 25802 if (err != 0) 25803 miocnak(q, mp, 0, err); 25804 else 25805 miocack(q, mp, 0, 0); 25806 } 25807 25808 /* 25809 * tcp_time_wait_processing() handles processing of incoming packets when 25810 * the tcp is in the TIME_WAIT state. 25811 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25812 * on the time wait list. 25813 */ 25814 void 25815 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25816 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25817 { 25818 int32_t bytes_acked; 25819 int32_t gap; 25820 int32_t rgap; 25821 tcp_opt_t tcpopt; 25822 uint_t flags; 25823 uint32_t new_swnd = 0; 25824 conn_t *connp; 25825 tcp_stack_t *tcps = tcp->tcp_tcps; 25826 25827 BUMP_LOCAL(tcp->tcp_ibsegs); 25828 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25829 25830 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25831 new_swnd = BE16_TO_U16(tcph->th_win) << 25832 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25833 if (tcp->tcp_snd_ts_ok) { 25834 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25835 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25836 tcp->tcp_rnxt, TH_ACK); 25837 goto done; 25838 } 25839 } 25840 gap = seg_seq - tcp->tcp_rnxt; 25841 rgap = tcp->tcp_rwnd - (gap + seg_len); 25842 if (gap < 0) { 25843 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25844 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25845 (seg_len > -gap ? -gap : seg_len)); 25846 seg_len += gap; 25847 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25848 if (flags & TH_RST) { 25849 goto done; 25850 } 25851 if ((flags & TH_FIN) && seg_len == -1) { 25852 /* 25853 * When TCP receives a duplicate FIN in 25854 * TIME_WAIT state, restart the 2 MSL timer. 25855 * See page 73 in RFC 793. Make sure this TCP 25856 * is already on the TIME_WAIT list. If not, 25857 * just restart the timer. 25858 */ 25859 if (TCP_IS_DETACHED(tcp)) { 25860 if (tcp_time_wait_remove(tcp, NULL) == 25861 B_TRUE) { 25862 tcp_time_wait_append(tcp); 25863 TCP_DBGSTAT(tcps, 25864 tcp_rput_time_wait); 25865 } 25866 } else { 25867 ASSERT(tcp != NULL); 25868 TCP_TIMER_RESTART(tcp, 25869 tcps->tcps_time_wait_interval); 25870 } 25871 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25872 tcp->tcp_rnxt, TH_ACK); 25873 goto done; 25874 } 25875 flags |= TH_ACK_NEEDED; 25876 seg_len = 0; 25877 goto process_ack; 25878 } 25879 25880 /* Fix seg_seq, and chew the gap off the front. */ 25881 seg_seq = tcp->tcp_rnxt; 25882 } 25883 25884 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25885 /* 25886 * Make sure that when we accept the connection, pick 25887 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25888 * old connection. 25889 * 25890 * The next ISS generated is equal to tcp_iss_incr_extra 25891 * + ISS_INCR/2 + other components depending on the 25892 * value of tcp_strong_iss. We pre-calculate the new 25893 * ISS here and compare with tcp_snxt to determine if 25894 * we need to make adjustment to tcp_iss_incr_extra. 25895 * 25896 * The above calculation is ugly and is a 25897 * waste of CPU cycles... 25898 */ 25899 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25900 int32_t adj; 25901 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25902 25903 switch (tcps->tcps_strong_iss) { 25904 case 2: { 25905 /* Add time and MD5 components. */ 25906 uint32_t answer[4]; 25907 struct { 25908 uint32_t ports; 25909 in6_addr_t src; 25910 in6_addr_t dst; 25911 } arg; 25912 MD5_CTX context; 25913 25914 mutex_enter(&tcps->tcps_iss_key_lock); 25915 context = tcps->tcps_iss_key; 25916 mutex_exit(&tcps->tcps_iss_key_lock); 25917 arg.ports = tcp->tcp_ports; 25918 /* We use MAPPED addresses in tcp_iss_init */ 25919 arg.src = tcp->tcp_ip_src_v6; 25920 if (tcp->tcp_ipversion == IPV4_VERSION) { 25921 IN6_IPADDR_TO_V4MAPPED( 25922 tcp->tcp_ipha->ipha_dst, 25923 &arg.dst); 25924 } else { 25925 arg.dst = 25926 tcp->tcp_ip6h->ip6_dst; 25927 } 25928 MD5Update(&context, (uchar_t *)&arg, 25929 sizeof (arg)); 25930 MD5Final((uchar_t *)answer, &context); 25931 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25932 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25933 break; 25934 } 25935 case 1: 25936 /* Add time component and min random (i.e. 1). */ 25937 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25938 break; 25939 default: 25940 /* Add only time component. */ 25941 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25942 break; 25943 } 25944 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25945 /* 25946 * New ISS not guaranteed to be ISS_INCR/2 25947 * ahead of the current tcp_snxt, so add the 25948 * difference to tcp_iss_incr_extra. 25949 */ 25950 tcps->tcps_iss_incr_extra += adj; 25951 } 25952 /* 25953 * If tcp_clean_death() can not perform the task now, 25954 * drop the SYN packet and let the other side re-xmit. 25955 * Otherwise pass the SYN packet back in, since the 25956 * old tcp state has been cleaned up or freed. 25957 */ 25958 if (tcp_clean_death(tcp, 0, 27) == -1) 25959 goto done; 25960 /* 25961 * We will come back to tcp_rput_data 25962 * on the global queue. Packets destined 25963 * for the global queue will be checked 25964 * with global policy. But the policy for 25965 * this packet has already been checked as 25966 * this was destined for the detached 25967 * connection. We need to bypass policy 25968 * check this time by attaching a dummy 25969 * ipsec_in with ipsec_in_dont_check set. 25970 */ 25971 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25972 if (connp != NULL) { 25973 TCP_STAT(tcps, tcp_time_wait_syn_success); 25974 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25975 return; 25976 } 25977 goto done; 25978 } 25979 25980 /* 25981 * rgap is the amount of stuff received out of window. A negative 25982 * value is the amount out of window. 25983 */ 25984 if (rgap < 0) { 25985 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25986 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25987 /* Fix seg_len and make sure there is something left. */ 25988 seg_len += rgap; 25989 if (seg_len <= 0) { 25990 if (flags & TH_RST) { 25991 goto done; 25992 } 25993 flags |= TH_ACK_NEEDED; 25994 seg_len = 0; 25995 goto process_ack; 25996 } 25997 } 25998 /* 25999 * Check whether we can update tcp_ts_recent. This test is 26000 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 26001 * Extensions for High Performance: An Update", Internet Draft. 26002 */ 26003 if (tcp->tcp_snd_ts_ok && 26004 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 26005 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 26006 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 26007 tcp->tcp_last_rcv_lbolt = lbolt64; 26008 } 26009 26010 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 26011 /* Always ack out of order packets */ 26012 flags |= TH_ACK_NEEDED; 26013 seg_len = 0; 26014 } else if (seg_len > 0) { 26015 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 26016 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 26017 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 26018 } 26019 if (flags & TH_RST) { 26020 (void) tcp_clean_death(tcp, 0, 28); 26021 goto done; 26022 } 26023 if (flags & TH_SYN) { 26024 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 26025 TH_RST|TH_ACK); 26026 /* 26027 * Do not delete the TCP structure if it is in 26028 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 26029 */ 26030 goto done; 26031 } 26032 process_ack: 26033 if (flags & TH_ACK) { 26034 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 26035 if (bytes_acked <= 0) { 26036 if (bytes_acked == 0 && seg_len == 0 && 26037 new_swnd == tcp->tcp_swnd) 26038 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 26039 } else { 26040 /* Acks something not sent */ 26041 flags |= TH_ACK_NEEDED; 26042 } 26043 } 26044 if (flags & TH_ACK_NEEDED) { 26045 /* 26046 * Time to send an ack for some reason. 26047 */ 26048 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26049 tcp->tcp_rnxt, TH_ACK); 26050 } 26051 done: 26052 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26053 DB_CKSUMSTART(mp) = 0; 26054 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 26055 TCP_STAT(tcps, tcp_time_wait_syn_fail); 26056 } 26057 freemsg(mp); 26058 } 26059 26060 /* 26061 * Allocate a T_SVR4_OPTMGMT_REQ. 26062 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 26063 * that tcp_rput_other can drop the acks. 26064 */ 26065 static mblk_t * 26066 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 26067 { 26068 mblk_t *mp; 26069 struct T_optmgmt_req *tor; 26070 struct opthdr *oh; 26071 uint_t size; 26072 char *optptr; 26073 26074 size = sizeof (*tor) + sizeof (*oh) + optlen; 26075 mp = allocb(size, BPRI_MED); 26076 if (mp == NULL) 26077 return (NULL); 26078 26079 mp->b_wptr += size; 26080 mp->b_datap->db_type = M_PROTO; 26081 tor = (struct T_optmgmt_req *)mp->b_rptr; 26082 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 26083 tor->MGMT_flags = T_NEGOTIATE; 26084 tor->OPT_length = sizeof (*oh) + optlen; 26085 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 26086 26087 oh = (struct opthdr *)&tor[1]; 26088 oh->level = level; 26089 oh->name = cmd; 26090 oh->len = optlen; 26091 if (optlen != 0) { 26092 optptr = (char *)&oh[1]; 26093 bcopy(opt, optptr, optlen); 26094 } 26095 return (mp); 26096 } 26097 26098 /* 26099 * TCP Timers Implementation. 26100 */ 26101 timeout_id_t 26102 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 26103 { 26104 mblk_t *mp; 26105 tcp_timer_t *tcpt; 26106 tcp_t *tcp = connp->conn_tcp; 26107 tcp_stack_t *tcps = tcp->tcp_tcps; 26108 26109 ASSERT(connp->conn_sqp != NULL); 26110 26111 TCP_DBGSTAT(tcps, tcp_timeout_calls); 26112 26113 if (tcp->tcp_timercache == NULL) { 26114 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 26115 } else { 26116 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 26117 mp = tcp->tcp_timercache; 26118 tcp->tcp_timercache = mp->b_next; 26119 mp->b_next = NULL; 26120 ASSERT(mp->b_wptr == NULL); 26121 } 26122 26123 CONN_INC_REF(connp); 26124 tcpt = (tcp_timer_t *)mp->b_rptr; 26125 tcpt->connp = connp; 26126 tcpt->tcpt_proc = f; 26127 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 26128 return ((timeout_id_t)mp); 26129 } 26130 26131 static void 26132 tcp_timer_callback(void *arg) 26133 { 26134 mblk_t *mp = (mblk_t *)arg; 26135 tcp_timer_t *tcpt; 26136 conn_t *connp; 26137 26138 tcpt = (tcp_timer_t *)mp->b_rptr; 26139 connp = tcpt->connp; 26140 squeue_fill(connp->conn_sqp, mp, 26141 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 26142 } 26143 26144 static void 26145 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26146 { 26147 tcp_timer_t *tcpt; 26148 conn_t *connp = (conn_t *)arg; 26149 tcp_t *tcp = connp->conn_tcp; 26150 26151 tcpt = (tcp_timer_t *)mp->b_rptr; 26152 ASSERT(connp == tcpt->connp); 26153 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26154 26155 /* 26156 * If the TCP has reached the closed state, don't proceed any 26157 * further. This TCP logically does not exist on the system. 26158 * tcpt_proc could for example access queues, that have already 26159 * been qprocoff'ed off. Also see comments at the start of tcp_input 26160 */ 26161 if (tcp->tcp_state != TCPS_CLOSED) { 26162 (*tcpt->tcpt_proc)(connp); 26163 } else { 26164 tcp->tcp_timer_tid = 0; 26165 } 26166 tcp_timer_free(connp->conn_tcp, mp); 26167 } 26168 26169 /* 26170 * There is potential race with untimeout and the handler firing at the same 26171 * time. The mblock may be freed by the handler while we are trying to use 26172 * it. But since both should execute on the same squeue, this race should not 26173 * occur. 26174 */ 26175 clock_t 26176 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26177 { 26178 mblk_t *mp = (mblk_t *)id; 26179 tcp_timer_t *tcpt; 26180 clock_t delta; 26181 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26182 26183 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26184 26185 if (mp == NULL) 26186 return (-1); 26187 26188 tcpt = (tcp_timer_t *)mp->b_rptr; 26189 ASSERT(tcpt->connp == connp); 26190 26191 delta = untimeout(tcpt->tcpt_tid); 26192 26193 if (delta >= 0) { 26194 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26195 tcp_timer_free(connp->conn_tcp, mp); 26196 CONN_DEC_REF(connp); 26197 } 26198 26199 return (delta); 26200 } 26201 26202 /* 26203 * Allocate space for the timer event. The allocation looks like mblk, but it is 26204 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26205 * 26206 * Dealing with failures: If we can't allocate from the timer cache we try 26207 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26208 * points to b_rptr. 26209 * If we can't allocate anything using allocb_tryhard(), we perform a last 26210 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26211 * save the actual allocation size in b_datap. 26212 */ 26213 mblk_t * 26214 tcp_timermp_alloc(int kmflags) 26215 { 26216 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26217 kmflags & ~KM_PANIC); 26218 26219 if (mp != NULL) { 26220 mp->b_next = mp->b_prev = NULL; 26221 mp->b_rptr = (uchar_t *)(&mp[1]); 26222 mp->b_wptr = NULL; 26223 mp->b_datap = NULL; 26224 mp->b_queue = NULL; 26225 mp->b_cont = NULL; 26226 } else if (kmflags & KM_PANIC) { 26227 /* 26228 * Failed to allocate memory for the timer. Try allocating from 26229 * dblock caches. 26230 */ 26231 /* ipclassifier calls this from a constructor - hence no tcps */ 26232 TCP_G_STAT(tcp_timermp_allocfail); 26233 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26234 if (mp == NULL) { 26235 size_t size = 0; 26236 /* 26237 * Memory is really low. Try tryhard allocation. 26238 * 26239 * ipclassifier calls this from a constructor - 26240 * hence no tcps 26241 */ 26242 TCP_G_STAT(tcp_timermp_allocdblfail); 26243 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26244 sizeof (tcp_timer_t), &size, kmflags); 26245 mp->b_rptr = (uchar_t *)(&mp[1]); 26246 mp->b_next = mp->b_prev = NULL; 26247 mp->b_wptr = (uchar_t *)-1; 26248 mp->b_datap = (dblk_t *)size; 26249 mp->b_queue = NULL; 26250 mp->b_cont = NULL; 26251 } 26252 ASSERT(mp->b_wptr != NULL); 26253 } 26254 /* ipclassifier calls this from a constructor - hence no tcps */ 26255 TCP_G_DBGSTAT(tcp_timermp_alloced); 26256 26257 return (mp); 26258 } 26259 26260 /* 26261 * Free per-tcp timer cache. 26262 * It can only contain entries from tcp_timercache. 26263 */ 26264 void 26265 tcp_timermp_free(tcp_t *tcp) 26266 { 26267 mblk_t *mp; 26268 26269 while ((mp = tcp->tcp_timercache) != NULL) { 26270 ASSERT(mp->b_wptr == NULL); 26271 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26272 kmem_cache_free(tcp_timercache, mp); 26273 } 26274 } 26275 26276 /* 26277 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26278 * events there already (currently at most two events are cached). 26279 * If the event is not allocated from the timer cache, free it right away. 26280 */ 26281 static void 26282 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26283 { 26284 mblk_t *mp1 = tcp->tcp_timercache; 26285 tcp_stack_t *tcps = tcp->tcp_tcps; 26286 26287 if (mp->b_wptr != NULL) { 26288 /* 26289 * This allocation is not from a timer cache, free it right 26290 * away. 26291 */ 26292 if (mp->b_wptr != (uchar_t *)-1) 26293 freeb(mp); 26294 else 26295 kmem_free(mp, (size_t)mp->b_datap); 26296 } else if (mp1 == NULL || mp1->b_next == NULL) { 26297 /* Cache this timer block for future allocations */ 26298 mp->b_rptr = (uchar_t *)(&mp[1]); 26299 mp->b_next = mp1; 26300 tcp->tcp_timercache = mp; 26301 } else { 26302 kmem_cache_free(tcp_timercache, mp); 26303 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26304 } 26305 } 26306 26307 /* 26308 * End of TCP Timers implementation. 26309 */ 26310 26311 /* 26312 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26313 * on the specified backing STREAMS q. Note, the caller may make the 26314 * decision to call based on the tcp_t.tcp_flow_stopped value which 26315 * when check outside the q's lock is only an advisory check ... 26316 */ 26317 26318 void 26319 tcp_setqfull(tcp_t *tcp) 26320 { 26321 queue_t *q = tcp->tcp_wq; 26322 tcp_stack_t *tcps = tcp->tcp_tcps; 26323 26324 if (!(q->q_flag & QFULL)) { 26325 mutex_enter(QLOCK(q)); 26326 if (!(q->q_flag & QFULL)) { 26327 /* still need to set QFULL */ 26328 q->q_flag |= QFULL; 26329 tcp->tcp_flow_stopped = B_TRUE; 26330 mutex_exit(QLOCK(q)); 26331 TCP_STAT(tcps, tcp_flwctl_on); 26332 } else { 26333 mutex_exit(QLOCK(q)); 26334 } 26335 } 26336 } 26337 26338 void 26339 tcp_clrqfull(tcp_t *tcp) 26340 { 26341 queue_t *q = tcp->tcp_wq; 26342 26343 if (q->q_flag & QFULL) { 26344 mutex_enter(QLOCK(q)); 26345 if (q->q_flag & QFULL) { 26346 q->q_flag &= ~QFULL; 26347 tcp->tcp_flow_stopped = B_FALSE; 26348 mutex_exit(QLOCK(q)); 26349 if (q->q_flag & QWANTW) 26350 qbackenable(q, 0); 26351 } else { 26352 mutex_exit(QLOCK(q)); 26353 } 26354 } 26355 } 26356 26357 26358 /* 26359 * kstats related to squeues i.e. not per IP instance 26360 */ 26361 static void * 26362 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26363 { 26364 kstat_t *ksp; 26365 26366 tcp_g_stat_t template = { 26367 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26368 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26369 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26370 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26371 }; 26372 26373 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26374 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26375 KSTAT_FLAG_VIRTUAL); 26376 26377 if (ksp == NULL) 26378 return (NULL); 26379 26380 bcopy(&template, tcp_g_statp, sizeof (template)); 26381 ksp->ks_data = (void *)tcp_g_statp; 26382 26383 kstat_install(ksp); 26384 return (ksp); 26385 } 26386 26387 static void 26388 tcp_g_kstat_fini(kstat_t *ksp) 26389 { 26390 if (ksp != NULL) { 26391 kstat_delete(ksp); 26392 } 26393 } 26394 26395 26396 static void * 26397 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26398 { 26399 kstat_t *ksp; 26400 26401 tcp_stat_t template = { 26402 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26403 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26404 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26405 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26406 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26407 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26408 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26409 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26410 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26411 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26412 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26413 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26414 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26415 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26416 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26417 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26418 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26419 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26420 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26421 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26422 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26423 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26424 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26425 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26426 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26427 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26428 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26429 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26430 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26431 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26432 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26433 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26434 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26435 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26436 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26437 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26438 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26439 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26440 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26441 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26442 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26443 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26444 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26445 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26446 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26447 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26448 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26449 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26450 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26451 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26452 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26453 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26454 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26455 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26456 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26457 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26458 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26459 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26460 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26461 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26462 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26463 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26464 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26465 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26466 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26467 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26468 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26469 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26470 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26471 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26472 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26473 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26474 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26475 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26476 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26477 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26478 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26479 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26480 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26481 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26482 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26483 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26484 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26485 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26486 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26487 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26488 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26489 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26490 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26491 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26492 }; 26493 26494 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26495 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26496 KSTAT_FLAG_VIRTUAL, stackid); 26497 26498 if (ksp == NULL) 26499 return (NULL); 26500 26501 bcopy(&template, tcps_statisticsp, sizeof (template)); 26502 ksp->ks_data = (void *)tcps_statisticsp; 26503 ksp->ks_private = (void *)(uintptr_t)stackid; 26504 26505 kstat_install(ksp); 26506 return (ksp); 26507 } 26508 26509 static void 26510 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26511 { 26512 if (ksp != NULL) { 26513 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26514 kstat_delete_netstack(ksp, stackid); 26515 } 26516 } 26517 26518 /* 26519 * TCP Kstats implementation 26520 */ 26521 static void * 26522 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26523 { 26524 kstat_t *ksp; 26525 26526 tcp_named_kstat_t template = { 26527 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26528 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26529 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26530 { "maxConn", KSTAT_DATA_INT32, 0 }, 26531 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26532 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26533 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26534 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26535 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26536 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26537 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26538 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26539 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26540 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26541 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26542 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26543 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26544 { "outAck", KSTAT_DATA_UINT32, 0 }, 26545 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26546 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26547 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26548 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26549 { "outControl", KSTAT_DATA_UINT32, 0 }, 26550 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26551 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26552 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26553 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26554 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26555 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26556 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26557 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26558 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26559 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26560 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26561 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26562 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26563 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26564 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26565 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26566 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26567 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26568 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26569 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26570 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26571 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26572 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26573 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26574 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26575 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26576 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26577 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26578 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26579 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26580 }; 26581 26582 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26583 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26584 26585 if (ksp == NULL) 26586 return (NULL); 26587 26588 template.rtoAlgorithm.value.ui32 = 4; 26589 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26590 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26591 template.maxConn.value.i32 = -1; 26592 26593 bcopy(&template, ksp->ks_data, sizeof (template)); 26594 ksp->ks_update = tcp_kstat_update; 26595 ksp->ks_private = (void *)(uintptr_t)stackid; 26596 26597 kstat_install(ksp); 26598 return (ksp); 26599 } 26600 26601 static void 26602 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26603 { 26604 if (ksp != NULL) { 26605 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26606 kstat_delete_netstack(ksp, stackid); 26607 } 26608 } 26609 26610 static int 26611 tcp_kstat_update(kstat_t *kp, int rw) 26612 { 26613 tcp_named_kstat_t *tcpkp; 26614 tcp_t *tcp; 26615 connf_t *connfp; 26616 conn_t *connp; 26617 int i; 26618 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26619 netstack_t *ns; 26620 tcp_stack_t *tcps; 26621 ip_stack_t *ipst; 26622 26623 if ((kp == NULL) || (kp->ks_data == NULL)) 26624 return (EIO); 26625 26626 if (rw == KSTAT_WRITE) 26627 return (EACCES); 26628 26629 ns = netstack_find_by_stackid(stackid); 26630 if (ns == NULL) 26631 return (-1); 26632 tcps = ns->netstack_tcp; 26633 if (tcps == NULL) { 26634 netstack_rele(ns); 26635 return (-1); 26636 } 26637 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26638 26639 tcpkp->currEstab.value.ui32 = 0; 26640 26641 ipst = ns->netstack_ip; 26642 26643 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26644 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26645 connp = NULL; 26646 while ((connp = 26647 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26648 tcp = connp->conn_tcp; 26649 switch (tcp_snmp_state(tcp)) { 26650 case MIB2_TCP_established: 26651 case MIB2_TCP_closeWait: 26652 tcpkp->currEstab.value.ui32++; 26653 break; 26654 } 26655 } 26656 } 26657 26658 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26659 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26660 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26661 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26662 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26663 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26664 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26665 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26666 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26667 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26668 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26669 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26670 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26671 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26672 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26673 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26674 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26675 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26676 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26677 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26678 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26679 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26680 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26681 tcpkp->inDataInorderSegs.value.ui32 = 26682 tcps->tcps_mib.tcpInDataInorderSegs; 26683 tcpkp->inDataInorderBytes.value.ui32 = 26684 tcps->tcps_mib.tcpInDataInorderBytes; 26685 tcpkp->inDataUnorderSegs.value.ui32 = 26686 tcps->tcps_mib.tcpInDataUnorderSegs; 26687 tcpkp->inDataUnorderBytes.value.ui32 = 26688 tcps->tcps_mib.tcpInDataUnorderBytes; 26689 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26690 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26691 tcpkp->inDataPartDupSegs.value.ui32 = 26692 tcps->tcps_mib.tcpInDataPartDupSegs; 26693 tcpkp->inDataPartDupBytes.value.ui32 = 26694 tcps->tcps_mib.tcpInDataPartDupBytes; 26695 tcpkp->inDataPastWinSegs.value.ui32 = 26696 tcps->tcps_mib.tcpInDataPastWinSegs; 26697 tcpkp->inDataPastWinBytes.value.ui32 = 26698 tcps->tcps_mib.tcpInDataPastWinBytes; 26699 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26700 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26701 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26702 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26703 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26704 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26705 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26706 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26707 tcpkp->timKeepaliveProbe.value.ui32 = 26708 tcps->tcps_mib.tcpTimKeepaliveProbe; 26709 tcpkp->timKeepaliveDrop.value.ui32 = 26710 tcps->tcps_mib.tcpTimKeepaliveDrop; 26711 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26712 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26713 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26714 tcpkp->outSackRetransSegs.value.ui32 = 26715 tcps->tcps_mib.tcpOutSackRetransSegs; 26716 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26717 26718 netstack_rele(ns); 26719 return (0); 26720 } 26721 26722 void 26723 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26724 { 26725 uint16_t hdr_len; 26726 ipha_t *ipha; 26727 uint8_t *nexthdrp; 26728 tcph_t *tcph; 26729 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26730 26731 /* Already has an eager */ 26732 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26733 TCP_STAT(tcps, tcp_reinput_syn); 26734 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26735 connp, SQTAG_TCP_REINPUT_EAGER); 26736 return; 26737 } 26738 26739 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26740 case IPV4_VERSION: 26741 ipha = (ipha_t *)mp->b_rptr; 26742 hdr_len = IPH_HDR_LENGTH(ipha); 26743 break; 26744 case IPV6_VERSION: 26745 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26746 &hdr_len, &nexthdrp)) { 26747 CONN_DEC_REF(connp); 26748 freemsg(mp); 26749 return; 26750 } 26751 break; 26752 } 26753 26754 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26755 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26756 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26757 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26758 } 26759 26760 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26761 SQTAG_TCP_REINPUT); 26762 } 26763 26764 static squeue_func_t 26765 tcp_squeue_switch(int val) 26766 { 26767 squeue_func_t rval = squeue_fill; 26768 26769 switch (val) { 26770 case 1: 26771 rval = squeue_enter_nodrain; 26772 break; 26773 case 2: 26774 rval = squeue_enter; 26775 break; 26776 default: 26777 break; 26778 } 26779 return (rval); 26780 } 26781 26782 /* 26783 * This is called once for each squeue - globally for all stack 26784 * instances. 26785 */ 26786 static void 26787 tcp_squeue_add(squeue_t *sqp) 26788 { 26789 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26790 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26791 26792 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26793 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 26794 sqp, TCP_TIME_WAIT_DELAY); 26795 if (tcp_free_list_max_cnt == 0) { 26796 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26797 max_ncpus : boot_max_ncpus); 26798 26799 /* 26800 * Limit number of entries to 1% of availble memory / tcp_ncpus 26801 */ 26802 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26803 (tcp_ncpus * sizeof (tcp_t) * 100); 26804 } 26805 tcp_time_wait->tcp_free_list_cnt = 0; 26806 } 26807