xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision b1d7ec75953cd517f5b7c3d9cb427ff8ec5d7d07)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsun.h>
30 #include <sys/strsubr.h>
31 #include <sys/stropts.h>
32 #include <sys/strlog.h>
33 #define	_SUN_TPI_VERSION 2
34 #include <sys/tihdr.h>
35 #include <sys/timod.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/suntpi.h>
39 #include <sys/xti_inet.h>
40 #include <sys/cmn_err.h>
41 #include <sys/debug.h>
42 #include <sys/sdt.h>
43 #include <sys/vtrace.h>
44 #include <sys/kmem.h>
45 #include <sys/ethernet.h>
46 #include <sys/cpuvar.h>
47 #include <sys/dlpi.h>
48 #include <sys/pattr.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/zone.h>
52 #include <sys/sunldi.h>
53 
54 #include <sys/errno.h>
55 #include <sys/signal.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sockio.h>
59 #include <sys/isa_defs.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/uio.h>
63 #include <sys/systm.h>
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <netinet/ip6.h>
67 #include <netinet/icmp6.h>
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <inet/ipsec_impl.h>
71 
72 #include <inet/common.h>
73 #include <inet/ip.h>
74 #include <inet/ip_impl.h>
75 #include <inet/ip6.h>
76 #include <inet/ip_ndp.h>
77 #include <inet/proto_set.h>
78 #include <inet/mib2.h>
79 #include <inet/optcom.h>
80 #include <inet/snmpcom.h>
81 #include <inet/kstatcom.h>
82 #include <inet/tcp.h>
83 #include <inet/tcp_impl.h>
84 #include <inet/tcp_cluster.h>
85 #include <inet/udp_impl.h>
86 #include <net/pfkeyv2.h>
87 #include <inet/ipdrop.h>
88 
89 #include <inet/ipclassifier.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_if.h>
93 #include <inet/ipp_common.h>
94 #include <inet/ip_rts.h>
95 #include <inet/ip_netinfo.h>
96 #include <sys/squeue_impl.h>
97 #include <sys/squeue.h>
98 #include <inet/kssl/ksslapi.h>
99 #include <sys/tsol/label.h>
100 #include <sys/tsol/tnet.h>
101 #include <rpc/pmap_prot.h>
102 #include <sys/callo.h>
103 
104 /*
105  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
106  *
107  * (Read the detailed design doc in PSARC case directory)
108  *
109  * The entire tcp state is contained in tcp_t and conn_t structure
110  * which are allocated in tandem using ipcl_conn_create() and passing
111  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
112  * the references on the tcp_t. The tcp_t structure is never compressed
113  * and packets always land on the correct TCP perimeter from the time
114  * eager is created till the time tcp_t dies (as such the old mentat
115  * TCP global queue is not used for detached state and no IPSEC checking
116  * is required). The global queue is still allocated to send out resets
117  * for connection which have no listeners and IP directly calls
118  * tcp_xmit_listeners_reset() which does any policy check.
119  *
120  * Protection and Synchronisation mechanism:
121  *
122  * The tcp data structure does not use any kind of lock for protecting
123  * its state but instead uses 'squeues' for mutual exclusion from various
124  * read and write side threads. To access a tcp member, the thread should
125  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
126  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
127  * can pass any tcp function having prototype of edesc_t as argument
128  * (different from traditional STREAMs model where packets come in only
129  * designated entry points). The list of functions that can be directly
130  * called via squeue are listed before the usual function prototype.
131  *
132  * Referencing:
133  *
134  * TCP is MT-Hot and we use a reference based scheme to make sure that the
135  * tcp structure doesn't disappear when its needed. When the application
136  * creates an outgoing connection or accepts an incoming connection, we
137  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
138  * The IP reference is just a symbolic reference since ip_tcpclose()
139  * looks at tcp structure after tcp_close_output() returns which could
140  * have dropped the last TCP reference. So as long as the connection is
141  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
142  * conn_t. The classifier puts its own reference when the connection is
143  * inserted in listen or connected hash. Anytime a thread needs to enter
144  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
145  * on write side or by doing a classify on read side and then puts a
146  * reference on the conn before doing squeue_enter/tryenter/fill. For
147  * read side, the classifier itself puts the reference under fanout lock
148  * to make sure that tcp can't disappear before it gets processed. The
149  * squeue will drop this reference automatically so the called function
150  * doesn't have to do a DEC_REF.
151  *
152  * Opening a new connection:
153  *
154  * The outgoing connection open is pretty simple. tcp_open() does the
155  * work in creating the conn/tcp structure and initializing it. The
156  * squeue assignment is done based on the CPU the application
157  * is running on. So for outbound connections, processing is always done
158  * on application CPU which might be different from the incoming CPU
159  * being interrupted by the NIC. An optimal way would be to figure out
160  * the NIC <-> CPU binding at listen time, and assign the outgoing
161  * connection to the squeue attached to the CPU that will be interrupted
162  * for incoming packets (we know the NIC based on the bind IP address).
163  * This might seem like a problem if more data is going out but the
164  * fact is that in most cases the transmit is ACK driven transmit where
165  * the outgoing data normally sits on TCP's xmit queue waiting to be
166  * transmitted.
167  *
168  * Accepting a connection:
169  *
170  * This is a more interesting case because of various races involved in
171  * establishing a eager in its own perimeter. Read the meta comment on
172  * top of tcp_input_listener(). But briefly, the squeue is picked by
173  * ip_fanout based on the ring or the sender (if loopback).
174  *
175  * Closing a connection:
176  *
177  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
178  * via squeue to do the close and mark the tcp as detached if the connection
179  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
180  * reference but tcp_close() drop IP's reference always. So if tcp was
181  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
182  * and 1 because it is in classifier's connected hash. This is the condition
183  * we use to determine that its OK to clean up the tcp outside of squeue
184  * when time wait expires (check the ref under fanout and conn_lock and
185  * if it is 2, remove it from fanout hash and kill it).
186  *
187  * Although close just drops the necessary references and marks the
188  * tcp_detached state, tcp_close needs to know the tcp_detached has been
189  * set (under squeue) before letting the STREAM go away (because a
190  * inbound packet might attempt to go up the STREAM while the close
191  * has happened and tcp_detached is not set). So a special lock and
192  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
193  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
194  * tcp_detached.
195  *
196  * Special provisions and fast paths:
197  *
198  * We make special provisions for sockfs by marking tcp_issocket
199  * whenever we have only sockfs on top of TCP. This allows us to skip
200  * putting the tcp in acceptor hash since a sockfs listener can never
201  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
202  * since eager has already been allocated and the accept now happens
203  * on acceptor STREAM. There is a big blob of comment on top of
204  * tcp_input_listener explaining the new accept. When socket is POP'd,
205  * sockfs sends us an ioctl to mark the fact and we go back to old
206  * behaviour. Once tcp_issocket is unset, its never set for the
207  * life of that connection.
208  *
209  * IPsec notes :
210  *
211  * Since a packet is always executed on the correct TCP perimeter
212  * all IPsec processing is defered to IP including checking new
213  * connections and setting IPSEC policies for new connection. The
214  * only exception is tcp_xmit_listeners_reset() which is called
215  * directly from IP and needs to policy check to see if TH_RST
216  * can be sent out.
217  */
218 
219 /*
220  * Values for squeue switch:
221  * 1: SQ_NODRAIN
222  * 2: SQ_PROCESS
223  * 3: SQ_FILL
224  */
225 int tcp_squeue_wput = 2;	/* /etc/systems */
226 int tcp_squeue_flag;
227 
228 /*
229  * To prevent memory hog, limit the number of entries in tcp_free_list
230  * to 1% of available memory / number of cpus
231  */
232 uint_t tcp_free_list_max_cnt = 0;
233 
234 #define	TCP_XMIT_LOWATER	4096
235 #define	TCP_XMIT_HIWATER	49152
236 #define	TCP_RECV_LOWATER	2048
237 #define	TCP_RECV_HIWATER	128000
238 
239 #define	TIDUSZ	4096	/* transport interface data unit size */
240 
241 /*
242  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
243  */
244 #define	TCP_ACCEPTOR_FANOUT_SIZE		256
245 
246 #ifdef	_ILP32
247 #define	TCP_ACCEPTOR_HASH(accid)					\
248 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
249 #else
250 #define	TCP_ACCEPTOR_HASH(accid)					\
251 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
252 #endif	/* _ILP32 */
253 
254 /* Minimum number of connections per listener. */
255 static uint32_t tcp_min_conn_listener = 2;
256 
257 uint32_t tcp_early_abort = 30;
258 
259 /* TCP Timer control structure */
260 typedef struct tcpt_s {
261 	pfv_t	tcpt_pfv;	/* The routine we are to call */
262 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
263 } tcpt_t;
264 
265 /*
266  * Functions called directly via squeue having a prototype of edesc_t.
267  */
268 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
269     ip_recv_attr_t *ira);
270 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
271     ip_recv_attr_t *ira);
272 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
273     ip_recv_attr_t *dummy);
274 
275 
276 /* Prototype for TCP functions */
277 static void	tcp_random_init(void);
278 int		tcp_random(void);
279 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
280 		    in_port_t dstport, uint_t srcid);
281 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
282 		    in_port_t dstport, uint32_t flowinfo,
283 		    uint_t srcid, uint32_t scope_id);
284 static void	tcp_iss_init(tcp_t *tcp);
285 static void	tcp_reinit(tcp_t *tcp);
286 static void	tcp_reinit_values(tcp_t *tcp);
287 
288 static void	tcp_wsrv(queue_t *q);
289 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
290 static void	tcp_update_zcopy(tcp_t *tcp);
291 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
292     ixa_notify_arg_t);
293 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
294 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
295 
296 static int	tcp_squeue_switch(int);
297 
298 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
299 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
300 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
301 
302 static void	tcp_squeue_add(squeue_t *);
303 
304 struct module_info tcp_rinfo =  {
305 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
306 };
307 
308 static struct module_info tcp_winfo =  {
309 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
310 };
311 
312 /*
313  * Entry points for TCP as a device. The normal case which supports
314  * the TCP functionality.
315  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
316  */
317 struct qinit tcp_rinitv4 = {
318 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
319 };
320 
321 struct qinit tcp_rinitv6 = {
322 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
323 };
324 
325 struct qinit tcp_winit = {
326 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
327 };
328 
329 /* Initial entry point for TCP in socket mode. */
330 struct qinit tcp_sock_winit = {
331 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
332 };
333 
334 /* TCP entry point during fallback */
335 struct qinit tcp_fallback_sock_winit = {
336 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
337 };
338 
339 /*
340  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
341  * an accept. Avoid allocating data structures since eager has already
342  * been created.
343  */
344 struct qinit tcp_acceptor_rinit = {
345 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
346 };
347 
348 struct qinit tcp_acceptor_winit = {
349 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
350 };
351 
352 /* For AF_INET aka /dev/tcp */
353 struct streamtab tcpinfov4 = {
354 	&tcp_rinitv4, &tcp_winit
355 };
356 
357 /* For AF_INET6 aka /dev/tcp6 */
358 struct streamtab tcpinfov6 = {
359 	&tcp_rinitv6, &tcp_winit
360 };
361 
362 /*
363  * Following assumes TPI alignment requirements stay along 32 bit
364  * boundaries
365  */
366 #define	ROUNDUP32(x) \
367 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
368 
369 /* Template for response to info request. */
370 struct T_info_ack tcp_g_t_info_ack = {
371 	T_INFO_ACK,		/* PRIM_type */
372 	0,			/* TSDU_size */
373 	T_INFINITE,		/* ETSDU_size */
374 	T_INVALID,		/* CDATA_size */
375 	T_INVALID,		/* DDATA_size */
376 	sizeof (sin_t),		/* ADDR_size */
377 	0,			/* OPT_size - not initialized here */
378 	TIDUSZ,			/* TIDU_size */
379 	T_COTS_ORD,		/* SERV_type */
380 	TCPS_IDLE,		/* CURRENT_state */
381 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
382 };
383 
384 struct T_info_ack tcp_g_t_info_ack_v6 = {
385 	T_INFO_ACK,		/* PRIM_type */
386 	0,			/* TSDU_size */
387 	T_INFINITE,		/* ETSDU_size */
388 	T_INVALID,		/* CDATA_size */
389 	T_INVALID,		/* DDATA_size */
390 	sizeof (sin6_t),	/* ADDR_size */
391 	0,			/* OPT_size - not initialized here */
392 	TIDUSZ,		/* TIDU_size */
393 	T_COTS_ORD,		/* SERV_type */
394 	TCPS_IDLE,		/* CURRENT_state */
395 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
396 };
397 
398 /*
399  * TCP tunables related declarations. Definitions are in tcp_tunables.c
400  */
401 extern mod_prop_info_t tcp_propinfo_tbl[];
402 extern int tcp_propinfo_count;
403 
404 #define	MB	(1024 * 1024)
405 
406 #define	IS_VMLOANED_MBLK(mp) \
407 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
408 
409 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
410 
411 /*
412  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
413  * tunable settable via NDD.  Otherwise, the per-connection behavior is
414  * determined dynamically during tcp_set_destination(), which is the default.
415  */
416 boolean_t tcp_static_maxpsz = B_FALSE;
417 
418 /*
419  * If the receive buffer size is changed, this function is called to update
420  * the upper socket layer on the new delayed receive wake up threshold.
421  */
422 static void
423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
424 {
425 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
426 
427 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
428 		conn_t *connp = tcp->tcp_connp;
429 		struct sock_proto_props sopp;
430 
431 		/*
432 		 * only increase rcvthresh upto default_threshold
433 		 */
434 		if (new_rcvthresh > default_threshold)
435 			new_rcvthresh = default_threshold;
436 
437 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
438 		sopp.sopp_rcvthresh = new_rcvthresh;
439 
440 		(*connp->conn_upcalls->su_set_proto_props)
441 		    (connp->conn_upper_handle, &sopp);
442 	}
443 }
444 
445 /*
446  * Figure out the value of window scale opton.  Note that the rwnd is
447  * ASSUMED to be rounded up to the nearest MSS before the calculation.
448  * We cannot find the scale value and then do a round up of tcp_rwnd
449  * because the scale value may not be correct after that.
450  *
451  * Set the compiler flag to make this function inline.
452  */
453 void
454 tcp_set_ws_value(tcp_t *tcp)
455 {
456 	int i;
457 	uint32_t rwnd = tcp->tcp_rwnd;
458 
459 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
460 	    i++, rwnd >>= 1)
461 		;
462 	tcp->tcp_rcv_ws = i;
463 }
464 
465 /*
466  * Remove cached/latched IPsec references.
467  */
468 void
469 tcp_ipsec_cleanup(tcp_t *tcp)
470 {
471 	conn_t		*connp = tcp->tcp_connp;
472 
473 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
474 
475 	if (connp->conn_latch != NULL) {
476 		IPLATCH_REFRELE(connp->conn_latch);
477 		connp->conn_latch = NULL;
478 	}
479 	if (connp->conn_latch_in_policy != NULL) {
480 		IPPOL_REFRELE(connp->conn_latch_in_policy);
481 		connp->conn_latch_in_policy = NULL;
482 	}
483 	if (connp->conn_latch_in_action != NULL) {
484 		IPACT_REFRELE(connp->conn_latch_in_action);
485 		connp->conn_latch_in_action = NULL;
486 	}
487 	if (connp->conn_policy != NULL) {
488 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
489 		connp->conn_policy = NULL;
490 	}
491 }
492 
493 /*
494  * Cleaup before placing on free list.
495  * Disassociate from the netstack/tcp_stack_t since the freelist
496  * is per squeue and not per netstack.
497  */
498 void
499 tcp_cleanup(tcp_t *tcp)
500 {
501 	mblk_t		*mp;
502 	conn_t		*connp = tcp->tcp_connp;
503 	tcp_stack_t	*tcps = tcp->tcp_tcps;
504 	netstack_t	*ns = tcps->tcps_netstack;
505 	mblk_t		*tcp_rsrv_mp;
506 
507 	tcp_bind_hash_remove(tcp);
508 
509 	/* Cleanup that which needs the netstack first */
510 	tcp_ipsec_cleanup(tcp);
511 	ixa_cleanup(connp->conn_ixa);
512 
513 	if (connp->conn_ht_iphc != NULL) {
514 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
515 		connp->conn_ht_iphc = NULL;
516 		connp->conn_ht_iphc_allocated = 0;
517 		connp->conn_ht_iphc_len = 0;
518 		connp->conn_ht_ulp = NULL;
519 		connp->conn_ht_ulp_len = 0;
520 		tcp->tcp_ipha = NULL;
521 		tcp->tcp_ip6h = NULL;
522 		tcp->tcp_tcpha = NULL;
523 	}
524 
525 	/* We clear any IP_OPTIONS and extension headers */
526 	ip_pkt_free(&connp->conn_xmit_ipp);
527 
528 	tcp_free(tcp);
529 
530 	/* Release any SSL context */
531 	if (tcp->tcp_kssl_ent != NULL) {
532 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
533 		tcp->tcp_kssl_ent = NULL;
534 	}
535 
536 	if (tcp->tcp_kssl_ctx != NULL) {
537 		kssl_release_ctx(tcp->tcp_kssl_ctx);
538 		tcp->tcp_kssl_ctx = NULL;
539 	}
540 	tcp->tcp_kssl_pending = B_FALSE;
541 
542 	/*
543 	 * Since we will bzero the entire structure, we need to
544 	 * remove it and reinsert it in global hash list. We
545 	 * know the walkers can't get to this conn because we
546 	 * had set CONDEMNED flag earlier and checked reference
547 	 * under conn_lock so walker won't pick it and when we
548 	 * go the ipcl_globalhash_remove() below, no walker
549 	 * can get to it.
550 	 */
551 	ipcl_globalhash_remove(connp);
552 
553 	/* Save some state */
554 	mp = tcp->tcp_timercache;
555 
556 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
557 
558 	if (connp->conn_cred != NULL) {
559 		crfree(connp->conn_cred);
560 		connp->conn_cred = NULL;
561 	}
562 	ipcl_conn_cleanup(connp);
563 	connp->conn_flags = IPCL_TCPCONN;
564 
565 	/*
566 	 * Now it is safe to decrement the reference counts.
567 	 * This might be the last reference on the netstack
568 	 * in which case it will cause the freeing of the IP Instance.
569 	 */
570 	connp->conn_netstack = NULL;
571 	connp->conn_ixa->ixa_ipst = NULL;
572 	netstack_rele(ns);
573 	ASSERT(tcps != NULL);
574 	tcp->tcp_tcps = NULL;
575 
576 	bzero(tcp, sizeof (tcp_t));
577 
578 	/* restore the state */
579 	tcp->tcp_timercache = mp;
580 
581 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
582 
583 	tcp->tcp_connp = connp;
584 
585 	ASSERT(connp->conn_tcp == tcp);
586 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
587 	connp->conn_state_flags = CONN_INCIPIENT;
588 	ASSERT(connp->conn_proto == IPPROTO_TCP);
589 	ASSERT(connp->conn_ref == 1);
590 }
591 
592 /*
593  * Adapt to the information, such as rtt and rtt_sd, provided from the
594  * DCE and IRE maintained by IP.
595  *
596  * Checks for multicast and broadcast destination address.
597  * Returns zero if ok; an errno on failure.
598  *
599  * Note that the MSS calculation here is based on the info given in
600  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
601  * will be handled in tcp_input_data() when TCP knows which options to use.
602  *
603  * Note on how TCP gets its parameters for a connection.
604  *
605  * When a tcp_t structure is allocated, it gets all the default parameters.
606  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
607  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
608  * default.
609  *
610  * An incoming SYN with a multicast or broadcast destination address is dropped
611  * in ip_fanout_v4/v6.
612  *
613  * An incoming SYN with a multicast or broadcast source address is always
614  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
615  * conn_connect.
616  * The same logic in tcp_set_destination also serves to
617  * reject an attempt to connect to a broadcast or multicast (destination)
618  * address.
619  */
620 int
621 tcp_set_destination(tcp_t *tcp)
622 {
623 	uint32_t	mss_max;
624 	uint32_t	mss;
625 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
626 	conn_t		*connp = tcp->tcp_connp;
627 	tcp_stack_t	*tcps = tcp->tcp_tcps;
628 	iulp_t		uinfo;
629 	int		error;
630 	uint32_t	flags;
631 
632 	flags = IPDF_LSO | IPDF_ZCOPY;
633 	/*
634 	 * Make sure we have a dce for the destination to avoid dce_ident
635 	 * contention for connected sockets.
636 	 */
637 	flags |= IPDF_UNIQUE_DCE;
638 
639 	if (!tcps->tcps_ignore_path_mtu)
640 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
641 
642 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
643 	mutex_enter(&connp->conn_lock);
644 	error = conn_connect(connp, &uinfo, flags);
645 	mutex_exit(&connp->conn_lock);
646 	if (error != 0)
647 		return (error);
648 
649 	error = tcp_build_hdrs(tcp);
650 	if (error != 0)
651 		return (error);
652 
653 	tcp->tcp_localnet = uinfo.iulp_localnet;
654 
655 	if (uinfo.iulp_rtt != 0) {
656 		clock_t	rto;
657 
658 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
659 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
660 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
661 		    tcps->tcps_rexmit_interval_extra +
662 		    (tcp->tcp_rtt_sa >> 5);
663 
664 		if (rto > tcps->tcps_rexmit_interval_max) {
665 			tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
666 		} else if (rto < tcps->tcps_rexmit_interval_min) {
667 			tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
668 		} else {
669 			tcp->tcp_rto = rto;
670 		}
671 	}
672 	if (uinfo.iulp_ssthresh != 0)
673 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
674 	else
675 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
676 	if (uinfo.iulp_spipe > 0) {
677 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
678 		    tcps->tcps_max_buf);
679 		if (tcps->tcps_snd_lowat_fraction != 0) {
680 			connp->conn_sndlowat = connp->conn_sndbuf /
681 			    tcps->tcps_snd_lowat_fraction;
682 		}
683 		(void) tcp_maxpsz_set(tcp, B_TRUE);
684 	}
685 	/*
686 	 * Note that up till now, acceptor always inherits receive
687 	 * window from the listener.  But if there is a metrics
688 	 * associated with a host, we should use that instead of
689 	 * inheriting it from listener. Thus we need to pass this
690 	 * info back to the caller.
691 	 */
692 	if (uinfo.iulp_rpipe > 0) {
693 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
694 		    tcps->tcps_max_buf);
695 	}
696 
697 	if (uinfo.iulp_rtomax > 0) {
698 		tcp->tcp_second_timer_threshold =
699 		    uinfo.iulp_rtomax;
700 	}
701 
702 	/*
703 	 * Use the metric option settings, iulp_tstamp_ok and
704 	 * iulp_wscale_ok, only for active open. What this means
705 	 * is that if the other side uses timestamp or window
706 	 * scale option, TCP will also use those options. That
707 	 * is for passive open.  If the application sets a
708 	 * large window, window scale is enabled regardless of
709 	 * the value in iulp_wscale_ok.  This is the behavior
710 	 * since 2.6.  So we keep it.
711 	 * The only case left in passive open processing is the
712 	 * check for SACK.
713 	 * For ECN, it should probably be like SACK.  But the
714 	 * current value is binary, so we treat it like the other
715 	 * cases.  The metric only controls active open.For passive
716 	 * open, the ndd param, tcp_ecn_permitted, controls the
717 	 * behavior.
718 	 */
719 	if (!tcp_detached) {
720 		/*
721 		 * The if check means that the following can only
722 		 * be turned on by the metrics only IRE, but not off.
723 		 */
724 		if (uinfo.iulp_tstamp_ok)
725 			tcp->tcp_snd_ts_ok = B_TRUE;
726 		if (uinfo.iulp_wscale_ok)
727 			tcp->tcp_snd_ws_ok = B_TRUE;
728 		if (uinfo.iulp_sack == 2)
729 			tcp->tcp_snd_sack_ok = B_TRUE;
730 		if (uinfo.iulp_ecn_ok)
731 			tcp->tcp_ecn_ok = B_TRUE;
732 	} else {
733 		/*
734 		 * Passive open.
735 		 *
736 		 * As above, the if check means that SACK can only be
737 		 * turned on by the metric only IRE.
738 		 */
739 		if (uinfo.iulp_sack > 0) {
740 			tcp->tcp_snd_sack_ok = B_TRUE;
741 		}
742 	}
743 
744 	/*
745 	 * XXX Note that currently, iulp_mtu can be as small as 68
746 	 * because of PMTUd.  So tcp_mss may go to negative if combined
747 	 * length of all those options exceeds 28 bytes.  But because
748 	 * of the tcp_mss_min check below, we may not have a problem if
749 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
750 	 * the negative problem still exists.  And the check defeats PMTUd.
751 	 * In fact, if PMTUd finds that the MSS should be smaller than
752 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
753 	 * value.
754 	 *
755 	 * We do not deal with that now.  All those problems related to
756 	 * PMTUd will be fixed later.
757 	 */
758 	ASSERT(uinfo.iulp_mtu != 0);
759 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
760 
761 	/* Sanity check for MSS value. */
762 	if (connp->conn_ipversion == IPV4_VERSION)
763 		mss_max = tcps->tcps_mss_max_ipv4;
764 	else
765 		mss_max = tcps->tcps_mss_max_ipv6;
766 
767 	if (tcp->tcp_ipsec_overhead == 0)
768 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
769 
770 	mss -= tcp->tcp_ipsec_overhead;
771 
772 	if (mss < tcps->tcps_mss_min)
773 		mss = tcps->tcps_mss_min;
774 	if (mss > mss_max)
775 		mss = mss_max;
776 
777 	/* Note that this is the maximum MSS, excluding all options. */
778 	tcp->tcp_mss = mss;
779 
780 	/*
781 	 * Update the tcp connection with LSO capability.
782 	 */
783 	tcp_update_lso(tcp, connp->conn_ixa);
784 
785 	/*
786 	 * Initialize the ISS here now that we have the full connection ID.
787 	 * The RFC 1948 method of initial sequence number generation requires
788 	 * knowledge of the full connection ID before setting the ISS.
789 	 */
790 	tcp_iss_init(tcp);
791 
792 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
793 
794 	/*
795 	 * Make sure that conn is not marked incipient
796 	 * for incoming connections. A blind
797 	 * removal of incipient flag is cheaper than
798 	 * check and removal.
799 	 */
800 	mutex_enter(&connp->conn_lock);
801 	connp->conn_state_flags &= ~CONN_INCIPIENT;
802 	mutex_exit(&connp->conn_lock);
803 	return (0);
804 }
805 
806 /*
807  * tcp_clean_death / tcp_close_detached must not be called more than once
808  * on a tcp. Thus every function that potentially calls tcp_clean_death
809  * must check for the tcp state before calling tcp_clean_death.
810  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
811  * tcp_timer_handler, all check for the tcp state.
812  */
813 /* ARGSUSED */
814 void
815 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
816     ip_recv_attr_t *dummy)
817 {
818 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
819 
820 	freemsg(mp);
821 	if (tcp->tcp_state > TCPS_BOUND)
822 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
823 }
824 
825 /*
826  * We are dying for some reason.  Try to do it gracefully.  (May be called
827  * as writer.)
828  *
829  * Return -1 if the structure was not cleaned up (if the cleanup had to be
830  * done by a service procedure).
831  * TBD - Should the return value distinguish between the tcp_t being
832  * freed and it being reinitialized?
833  */
834 int
835 tcp_clean_death(tcp_t *tcp, int err)
836 {
837 	mblk_t	*mp;
838 	queue_t	*q;
839 	conn_t	*connp = tcp->tcp_connp;
840 	tcp_stack_t	*tcps = tcp->tcp_tcps;
841 
842 	if (tcp->tcp_fused)
843 		tcp_unfuse(tcp);
844 
845 	if (tcp->tcp_linger_tid != 0 &&
846 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
847 		tcp_stop_lingering(tcp);
848 	}
849 
850 	ASSERT(tcp != NULL);
851 	ASSERT((connp->conn_family == AF_INET &&
852 	    connp->conn_ipversion == IPV4_VERSION) ||
853 	    (connp->conn_family == AF_INET6 &&
854 	    (connp->conn_ipversion == IPV4_VERSION ||
855 	    connp->conn_ipversion == IPV6_VERSION)));
856 
857 	if (TCP_IS_DETACHED(tcp)) {
858 		if (tcp->tcp_hard_binding) {
859 			/*
860 			 * Its an eager that we are dealing with. We close the
861 			 * eager but in case a conn_ind has already gone to the
862 			 * listener, let tcp_accept_finish() send a discon_ind
863 			 * to the listener and drop the last reference. If the
864 			 * listener doesn't even know about the eager i.e. the
865 			 * conn_ind hasn't gone up, blow away the eager and drop
866 			 * the last reference as well. If the conn_ind has gone
867 			 * up, state should be BOUND. tcp_accept_finish
868 			 * will figure out that the connection has received a
869 			 * RST and will send a DISCON_IND to the application.
870 			 */
871 			tcp_closei_local(tcp);
872 			if (!tcp->tcp_tconnind_started) {
873 				CONN_DEC_REF(connp);
874 			} else {
875 				int32_t oldstate = tcp->tcp_state;
876 
877 				tcp->tcp_state = TCPS_BOUND;
878 				DTRACE_TCP6(state__change, void, NULL,
879 				    ip_xmit_attr_t *, connp->conn_ixa,
880 				    void, NULL, tcp_t *, tcp, void, NULL,
881 				    int32_t, oldstate);
882 			}
883 		} else {
884 			tcp_close_detached(tcp);
885 		}
886 		return (0);
887 	}
888 
889 	TCP_STAT(tcps, tcp_clean_death_nondetached);
890 
891 	/*
892 	 * The connection is dead.  Decrement listener connection counter if
893 	 * necessary.
894 	 */
895 	if (tcp->tcp_listen_cnt != NULL)
896 		TCP_DECR_LISTEN_CNT(tcp);
897 
898 	/*
899 	 * When a connection is moved to TIME_WAIT state, the connection
900 	 * counter is already decremented.  So no need to decrement here
901 	 * again.  See SET_TIME_WAIT() macro.
902 	 */
903 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
904 	    tcp->tcp_state < TCPS_TIME_WAIT) {
905 		TCPS_CONN_DEC(tcps);
906 	}
907 
908 	q = connp->conn_rq;
909 
910 	/* Trash all inbound data */
911 	if (!IPCL_IS_NONSTR(connp)) {
912 		ASSERT(q != NULL);
913 		flushq(q, FLUSHALL);
914 	}
915 
916 	/*
917 	 * If we are at least part way open and there is error
918 	 * (err==0 implies no error)
919 	 * notify our client by a T_DISCON_IND.
920 	 */
921 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
922 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
923 		    !TCP_IS_SOCKET(tcp)) {
924 			/*
925 			 * Send M_FLUSH according to TPI. Because sockets will
926 			 * (and must) ignore FLUSHR we do that only for TPI
927 			 * endpoints and sockets in STREAMS mode.
928 			 */
929 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
930 		}
931 		if (connp->conn_debug) {
932 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
933 			    "tcp_clean_death: discon err %d", err);
934 		}
935 		if (IPCL_IS_NONSTR(connp)) {
936 			/* Direct socket, use upcall */
937 			(*connp->conn_upcalls->su_disconnected)(
938 			    connp->conn_upper_handle, tcp->tcp_connid, err);
939 		} else {
940 			mp = mi_tpi_discon_ind(NULL, err, 0);
941 			if (mp != NULL) {
942 				putnext(q, mp);
943 			} else {
944 				if (connp->conn_debug) {
945 					(void) strlog(TCP_MOD_ID, 0, 1,
946 					    SL_ERROR|SL_TRACE,
947 					    "tcp_clean_death, sending M_ERROR");
948 				}
949 				(void) putnextctl1(q, M_ERROR, EPROTO);
950 			}
951 		}
952 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
953 			/* SYN_SENT or SYN_RCVD */
954 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
955 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
956 			/* ESTABLISHED or CLOSE_WAIT */
957 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
958 		}
959 	}
960 
961 	tcp_reinit(tcp);
962 	if (IPCL_IS_NONSTR(connp))
963 		(void) tcp_do_unbind(connp);
964 
965 	return (-1);
966 }
967 
968 /*
969  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
970  * to expire, stop the wait and finish the close.
971  */
972 void
973 tcp_stop_lingering(tcp_t *tcp)
974 {
975 	clock_t	delta = 0;
976 	tcp_stack_t	*tcps = tcp->tcp_tcps;
977 	conn_t		*connp = tcp->tcp_connp;
978 
979 	tcp->tcp_linger_tid = 0;
980 	if (tcp->tcp_state > TCPS_LISTEN) {
981 		tcp_acceptor_hash_remove(tcp);
982 		mutex_enter(&tcp->tcp_non_sq_lock);
983 		if (tcp->tcp_flow_stopped) {
984 			tcp_clrqfull(tcp);
985 		}
986 		mutex_exit(&tcp->tcp_non_sq_lock);
987 
988 		if (tcp->tcp_timer_tid != 0) {
989 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
990 			tcp->tcp_timer_tid = 0;
991 		}
992 		/*
993 		 * Need to cancel those timers which will not be used when
994 		 * TCP is detached.  This has to be done before the conn_wq
995 		 * is cleared.
996 		 */
997 		tcp_timers_stop(tcp);
998 
999 		tcp->tcp_detached = B_TRUE;
1000 		connp->conn_rq = NULL;
1001 		connp->conn_wq = NULL;
1002 
1003 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
1004 			tcp_time_wait_append(tcp);
1005 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1006 			goto finish;
1007 		}
1008 
1009 		/*
1010 		 * If delta is zero the timer event wasn't executed and was
1011 		 * successfully canceled. In this case we need to restart it
1012 		 * with the minimal delta possible.
1013 		 */
1014 		if (delta >= 0) {
1015 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1016 			    delta ? delta : 1);
1017 		}
1018 	} else {
1019 		tcp_closei_local(tcp);
1020 		CONN_DEC_REF(connp);
1021 	}
1022 finish:
1023 	/* Signal closing thread that it can complete close */
1024 	mutex_enter(&tcp->tcp_closelock);
1025 	tcp->tcp_detached = B_TRUE;
1026 	connp->conn_rq = NULL;
1027 	connp->conn_wq = NULL;
1028 
1029 	tcp->tcp_closed = 1;
1030 	cv_signal(&tcp->tcp_closecv);
1031 	mutex_exit(&tcp->tcp_closelock);
1032 }
1033 
1034 void
1035 tcp_close_common(conn_t *connp, int flags)
1036 {
1037 	tcp_t		*tcp = connp->conn_tcp;
1038 	mblk_t 		*mp = &tcp->tcp_closemp;
1039 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1040 	mblk_t		*bp;
1041 
1042 	ASSERT(connp->conn_ref >= 2);
1043 
1044 	/*
1045 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1046 	 * add any mp to the pending mp list, after this conn has
1047 	 * started closing.
1048 	 */
1049 	mutex_enter(&connp->conn_lock);
1050 	connp->conn_state_flags |= CONN_CLOSING;
1051 	if (connp->conn_oper_pending_ill != NULL)
1052 		conn_ioctl_cleanup_reqd = B_TRUE;
1053 	CONN_INC_REF_LOCKED(connp);
1054 	mutex_exit(&connp->conn_lock);
1055 	tcp->tcp_closeflags = (uint8_t)flags;
1056 	ASSERT(connp->conn_ref >= 3);
1057 
1058 	/*
1059 	 * tcp_closemp_used is used below without any protection of a lock
1060 	 * as we don't expect any one else to use it concurrently at this
1061 	 * point otherwise it would be a major defect.
1062 	 */
1063 
1064 	if (mp->b_prev == NULL)
1065 		tcp->tcp_closemp_used = B_TRUE;
1066 	else
1067 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1068 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1069 
1070 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1071 
1072 	/*
1073 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1074 	 * are re-written by tcp_close_output().
1075 	 */
1076 	if (conn_ioctl_cleanup_reqd)
1077 		conn_ioctl_cleanup(connp);
1078 
1079 	/*
1080 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1081 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1082 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1083 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1084 	 * was still in flight at the time, we wait for it here. See comments
1085 	 * for CONN_INC_IOCTLREF in ip.h for details.
1086 	 */
1087 	mutex_enter(&connp->conn_lock);
1088 	while (connp->conn_ioctlref > 0)
1089 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1090 	ASSERT(connp->conn_ioctlref == 0);
1091 	ASSERT(connp->conn_oper_pending_ill == NULL);
1092 	mutex_exit(&connp->conn_lock);
1093 
1094 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1095 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1096 
1097 	mutex_enter(&tcp->tcp_closelock);
1098 	while (!tcp->tcp_closed) {
1099 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1100 			/*
1101 			 * The cv_wait_sig() was interrupted. We now do the
1102 			 * following:
1103 			 *
1104 			 * 1) If the endpoint was lingering, we allow this
1105 			 * to be interrupted by cancelling the linger timeout
1106 			 * and closing normally.
1107 			 *
1108 			 * 2) Revert to calling cv_wait()
1109 			 *
1110 			 * We revert to using cv_wait() to avoid an
1111 			 * infinite loop which can occur if the calling
1112 			 * thread is higher priority than the squeue worker
1113 			 * thread and is bound to the same cpu.
1114 			 */
1115 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1116 				mutex_exit(&tcp->tcp_closelock);
1117 				/* Entering squeue, bump ref count. */
1118 				CONN_INC_REF(connp);
1119 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1120 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1121 				    tcp_linger_interrupted, connp, NULL,
1122 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1123 				mutex_enter(&tcp->tcp_closelock);
1124 			}
1125 			break;
1126 		}
1127 	}
1128 	while (!tcp->tcp_closed)
1129 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1130 	mutex_exit(&tcp->tcp_closelock);
1131 
1132 	/*
1133 	 * In the case of listener streams that have eagers in the q or q0
1134 	 * we wait for the eagers to drop their reference to us. conn_rq and
1135 	 * conn_wq of the eagers point to our queues. By waiting for the
1136 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1137 	 * up their queue pointers and also dropped their references to us.
1138 	 */
1139 	if (tcp->tcp_wait_for_eagers) {
1140 		mutex_enter(&connp->conn_lock);
1141 		while (connp->conn_ref != 1) {
1142 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1143 		}
1144 		mutex_exit(&connp->conn_lock);
1145 	}
1146 
1147 	connp->conn_cpid = NOPID;
1148 }
1149 
1150 /*
1151  * Called by tcp_close() routine via squeue when lingering is
1152  * interrupted by a signal.
1153  */
1154 
1155 /* ARGSUSED */
1156 static void
1157 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1158 {
1159 	conn_t	*connp = (conn_t *)arg;
1160 	tcp_t	*tcp = connp->conn_tcp;
1161 
1162 	freeb(mp);
1163 	if (tcp->tcp_linger_tid != 0 &&
1164 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1165 		tcp_stop_lingering(tcp);
1166 		tcp->tcp_client_errno = EINTR;
1167 	}
1168 }
1169 
1170 /*
1171  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1172  * Some stream heads get upset if they see these later on as anything but NULL.
1173  */
1174 void
1175 tcp_close_mpp(mblk_t **mpp)
1176 {
1177 	mblk_t	*mp;
1178 
1179 	if ((mp = *mpp) != NULL) {
1180 		do {
1181 			mp->b_next = NULL;
1182 			mp->b_prev = NULL;
1183 		} while ((mp = mp->b_cont) != NULL);
1184 
1185 		mp = *mpp;
1186 		*mpp = NULL;
1187 		freemsg(mp);
1188 	}
1189 }
1190 
1191 /* Do detached close. */
1192 void
1193 tcp_close_detached(tcp_t *tcp)
1194 {
1195 	if (tcp->tcp_fused)
1196 		tcp_unfuse(tcp);
1197 
1198 	/*
1199 	 * Clustering code serializes TCP disconnect callbacks and
1200 	 * cluster tcp list walks by blocking a TCP disconnect callback
1201 	 * if a cluster tcp list walk is in progress. This ensures
1202 	 * accurate accounting of TCPs in the cluster code even though
1203 	 * the TCP list walk itself is not atomic.
1204 	 */
1205 	tcp_closei_local(tcp);
1206 	CONN_DEC_REF(tcp->tcp_connp);
1207 }
1208 
1209 /*
1210  * The tcp_t is going away. Remove it from all lists and set it
1211  * to TCPS_CLOSED. The freeing up of memory is deferred until
1212  * tcp_inactive. This is needed since a thread in tcp_rput might have
1213  * done a CONN_INC_REF on this structure before it was removed from the
1214  * hashes.
1215  */
1216 void
1217 tcp_closei_local(tcp_t *tcp)
1218 {
1219 	conn_t		*connp = tcp->tcp_connp;
1220 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1221 	int32_t		oldstate;
1222 
1223 	if (!TCP_IS_SOCKET(tcp))
1224 		tcp_acceptor_hash_remove(tcp);
1225 
1226 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1227 	tcp->tcp_ibsegs = 0;
1228 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1229 	tcp->tcp_obsegs = 0;
1230 
1231 	/*
1232 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1233 	 * SYN with sequence number outside the TIME-WAIT connection's
1234 	 * window.  So we need to check for TIME-WAIT state here as the
1235 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1236 	 * macro
1237 	 */
1238 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1239 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1240 		TCPS_CONN_DEC(tcps);
1241 	}
1242 
1243 	/*
1244 	 * If we are an eager connection hanging off a listener that
1245 	 * hasn't formally accepted the connection yet, get off his
1246 	 * list and blow off any data that we have accumulated.
1247 	 */
1248 	if (tcp->tcp_listener != NULL) {
1249 		tcp_t	*listener = tcp->tcp_listener;
1250 		mutex_enter(&listener->tcp_eager_lock);
1251 		/*
1252 		 * tcp_tconnind_started == B_TRUE means that the
1253 		 * conn_ind has already gone to listener. At
1254 		 * this point, eager will be closed but we
1255 		 * leave it in listeners eager list so that
1256 		 * if listener decides to close without doing
1257 		 * accept, we can clean this up. In tcp_tli_accept
1258 		 * we take care of the case of accept on closed
1259 		 * eager.
1260 		 */
1261 		if (!tcp->tcp_tconnind_started) {
1262 			tcp_eager_unlink(tcp);
1263 			mutex_exit(&listener->tcp_eager_lock);
1264 			/*
1265 			 * We don't want to have any pointers to the
1266 			 * listener queue, after we have released our
1267 			 * reference on the listener
1268 			 */
1269 			ASSERT(tcp->tcp_detached);
1270 			connp->conn_rq = NULL;
1271 			connp->conn_wq = NULL;
1272 			CONN_DEC_REF(listener->tcp_connp);
1273 		} else {
1274 			mutex_exit(&listener->tcp_eager_lock);
1275 		}
1276 	}
1277 
1278 	/* Stop all the timers */
1279 	tcp_timers_stop(tcp);
1280 
1281 	if (tcp->tcp_state == TCPS_LISTEN) {
1282 		if (tcp->tcp_ip_addr_cache) {
1283 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1284 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1285 			tcp->tcp_ip_addr_cache = NULL;
1286 		}
1287 	}
1288 
1289 	/* Decrement listerner connection counter if necessary. */
1290 	if (tcp->tcp_listen_cnt != NULL)
1291 		TCP_DECR_LISTEN_CNT(tcp);
1292 
1293 	mutex_enter(&tcp->tcp_non_sq_lock);
1294 	if (tcp->tcp_flow_stopped)
1295 		tcp_clrqfull(tcp);
1296 	mutex_exit(&tcp->tcp_non_sq_lock);
1297 
1298 	tcp_bind_hash_remove(tcp);
1299 	/*
1300 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1301 	 * is trying to remove this tcp from the time wait list, we will
1302 	 * block in tcp_time_wait_remove while trying to acquire the
1303 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1304 	 * requires the ipcl_hash_remove to be ordered after the
1305 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1306 	 */
1307 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1308 		(void) tcp_time_wait_remove(tcp, NULL);
1309 	CL_INET_DISCONNECT(connp);
1310 	ipcl_hash_remove(connp);
1311 	oldstate = tcp->tcp_state;
1312 	tcp->tcp_state = TCPS_CLOSED;
1313 	/* Need to probe before ixa_cleanup() is called */
1314 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1315 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1316 	    int32_t, oldstate);
1317 	ixa_cleanup(connp->conn_ixa);
1318 
1319 	/*
1320 	 * Mark the conn as CONDEMNED
1321 	 */
1322 	mutex_enter(&connp->conn_lock);
1323 	connp->conn_state_flags |= CONN_CONDEMNED;
1324 	mutex_exit(&connp->conn_lock);
1325 
1326 	ASSERT(tcp->tcp_time_wait_next == NULL);
1327 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1328 	ASSERT(tcp->tcp_time_wait_expire == 0);
1329 
1330 	/* Release any SSL context */
1331 	if (tcp->tcp_kssl_ent != NULL) {
1332 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1333 		tcp->tcp_kssl_ent = NULL;
1334 	}
1335 	if (tcp->tcp_kssl_ctx != NULL) {
1336 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1337 		tcp->tcp_kssl_ctx = NULL;
1338 	}
1339 	tcp->tcp_kssl_pending = B_FALSE;
1340 
1341 	tcp_ipsec_cleanup(tcp);
1342 }
1343 
1344 /*
1345  * tcp is dying (called from ipcl_conn_destroy and error cases).
1346  * Free the tcp_t in either case.
1347  */
1348 void
1349 tcp_free(tcp_t *tcp)
1350 {
1351 	mblk_t		*mp;
1352 	conn_t		*connp = tcp->tcp_connp;
1353 
1354 	ASSERT(tcp != NULL);
1355 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1356 
1357 	connp->conn_rq = NULL;
1358 	connp->conn_wq = NULL;
1359 
1360 	tcp_close_mpp(&tcp->tcp_xmit_head);
1361 	tcp_close_mpp(&tcp->tcp_reass_head);
1362 	if (tcp->tcp_rcv_list != NULL) {
1363 		/* Free b_next chain */
1364 		tcp_close_mpp(&tcp->tcp_rcv_list);
1365 	}
1366 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1367 		freemsg(mp);
1368 	}
1369 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1370 		freemsg(mp);
1371 	}
1372 
1373 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1374 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1375 		freeb(tcp->tcp_fused_sigurg_mp);
1376 		tcp->tcp_fused_sigurg_mp = NULL;
1377 	}
1378 
1379 	if (tcp->tcp_ordrel_mp != NULL) {
1380 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1381 		freeb(tcp->tcp_ordrel_mp);
1382 		tcp->tcp_ordrel_mp = NULL;
1383 	}
1384 
1385 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1386 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1387 
1388 	if (tcp->tcp_hopopts != NULL) {
1389 		mi_free(tcp->tcp_hopopts);
1390 		tcp->tcp_hopopts = NULL;
1391 		tcp->tcp_hopoptslen = 0;
1392 	}
1393 	ASSERT(tcp->tcp_hopoptslen == 0);
1394 	if (tcp->tcp_dstopts != NULL) {
1395 		mi_free(tcp->tcp_dstopts);
1396 		tcp->tcp_dstopts = NULL;
1397 		tcp->tcp_dstoptslen = 0;
1398 	}
1399 	ASSERT(tcp->tcp_dstoptslen == 0);
1400 	if (tcp->tcp_rthdrdstopts != NULL) {
1401 		mi_free(tcp->tcp_rthdrdstopts);
1402 		tcp->tcp_rthdrdstopts = NULL;
1403 		tcp->tcp_rthdrdstoptslen = 0;
1404 	}
1405 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1406 	if (tcp->tcp_rthdr != NULL) {
1407 		mi_free(tcp->tcp_rthdr);
1408 		tcp->tcp_rthdr = NULL;
1409 		tcp->tcp_rthdrlen = 0;
1410 	}
1411 	ASSERT(tcp->tcp_rthdrlen == 0);
1412 
1413 	/*
1414 	 * Following is really a blowing away a union.
1415 	 * It happens to have exactly two members of identical size
1416 	 * the following code is enough.
1417 	 */
1418 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1419 }
1420 
1421 /*
1422  * tcp_get_conn/tcp_free_conn
1423  *
1424  * tcp_get_conn is used to get a clean tcp connection structure.
1425  * It tries to reuse the connections put on the freelist by the
1426  * time_wait_collector failing which it goes to kmem_cache. This
1427  * way has two benefits compared to just allocating from and
1428  * freeing to kmem_cache.
1429  * 1) The time_wait_collector can free (which includes the cleanup)
1430  * outside the squeue. So when the interrupt comes, we have a clean
1431  * connection sitting in the freelist. Obviously, this buys us
1432  * performance.
1433  *
1434  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1435  * has multiple disadvantages - tying up the squeue during alloc.
1436  * But allocating the conn/tcp in IP land is also not the best since
1437  * we can't check the 'q' and 'q0' which are protected by squeue and
1438  * blindly allocate memory which might have to be freed here if we are
1439  * not allowed to accept the connection. By using the freelist and
1440  * putting the conn/tcp back in freelist, we don't pay a penalty for
1441  * allocating memory without checking 'q/q0' and freeing it if we can't
1442  * accept the connection.
1443  *
1444  * Care should be taken to put the conn back in the same squeue's freelist
1445  * from which it was allocated. Best results are obtained if conn is
1446  * allocated from listener's squeue and freed to the same. Time wait
1447  * collector will free up the freelist is the connection ends up sitting
1448  * there for too long.
1449  */
1450 void *
1451 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1452 {
1453 	tcp_t			*tcp = NULL;
1454 	conn_t			*connp = NULL;
1455 	squeue_t		*sqp = (squeue_t *)arg;
1456 	tcp_squeue_priv_t 	*tcp_time_wait;
1457 	netstack_t		*ns;
1458 	mblk_t			*tcp_rsrv_mp = NULL;
1459 
1460 	tcp_time_wait =
1461 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1462 
1463 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1464 	tcp = tcp_time_wait->tcp_free_list;
1465 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1466 	if (tcp != NULL) {
1467 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1468 		tcp_time_wait->tcp_free_list_cnt--;
1469 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1470 		tcp->tcp_time_wait_next = NULL;
1471 		connp = tcp->tcp_connp;
1472 		connp->conn_flags |= IPCL_REUSED;
1473 
1474 		ASSERT(tcp->tcp_tcps == NULL);
1475 		ASSERT(connp->conn_netstack == NULL);
1476 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1477 		ns = tcps->tcps_netstack;
1478 		netstack_hold(ns);
1479 		connp->conn_netstack = ns;
1480 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1481 		tcp->tcp_tcps = tcps;
1482 		ipcl_globalhash_insert(connp);
1483 
1484 		connp->conn_ixa->ixa_notify_cookie = tcp;
1485 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1486 		connp->conn_recv = tcp_input_data;
1487 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1488 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1489 		return ((void *)connp);
1490 	}
1491 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1492 	/*
1493 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1494 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1495 	 */
1496 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1497 	if (tcp_rsrv_mp == NULL)
1498 		return (NULL);
1499 
1500 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1501 	    tcps->tcps_netstack)) == NULL) {
1502 		freeb(tcp_rsrv_mp);
1503 		return (NULL);
1504 	}
1505 
1506 	tcp = connp->conn_tcp;
1507 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1508 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1509 
1510 	tcp->tcp_tcps = tcps;
1511 
1512 	connp->conn_recv = tcp_input_data;
1513 	connp->conn_recvicmp = tcp_icmp_input;
1514 	connp->conn_verifyicmp = tcp_verifyicmp;
1515 
1516 	/*
1517 	 * Register tcp_notify to listen to capability changes detected by IP.
1518 	 * This upcall is made in the context of the call to conn_ip_output
1519 	 * thus it is inside the squeue.
1520 	 */
1521 	connp->conn_ixa->ixa_notify = tcp_notify;
1522 	connp->conn_ixa->ixa_notify_cookie = tcp;
1523 
1524 	return ((void *)connp);
1525 }
1526 
1527 /*
1528  * Handle connect to IPv4 destinations, including connections for AF_INET6
1529  * sockets connecting to IPv4 mapped IPv6 destinations.
1530  * Returns zero if OK, a positive errno, or a negative TLI error.
1531  */
1532 static int
1533 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1534     uint_t srcid)
1535 {
1536 	ipaddr_t 	dstaddr = *dstaddrp;
1537 	uint16_t 	lport;
1538 	conn_t		*connp = tcp->tcp_connp;
1539 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1540 	int		error;
1541 
1542 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1543 
1544 	/* Check for attempt to connect to INADDR_ANY */
1545 	if (dstaddr == INADDR_ANY)  {
1546 		/*
1547 		 * SunOS 4.x and 4.3 BSD allow an application
1548 		 * to connect a TCP socket to INADDR_ANY.
1549 		 * When they do this, the kernel picks the
1550 		 * address of one interface and uses it
1551 		 * instead.  The kernel usually ends up
1552 		 * picking the address of the loopback
1553 		 * interface.  This is an undocumented feature.
1554 		 * However, we provide the same thing here
1555 		 * in order to have source and binary
1556 		 * compatibility with SunOS 4.x.
1557 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1558 		 * generate the T_CONN_CON.
1559 		 */
1560 		dstaddr = htonl(INADDR_LOOPBACK);
1561 		*dstaddrp = dstaddr;
1562 	}
1563 
1564 	/* Handle __sin6_src_id if socket not bound to an IP address */
1565 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1566 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1567 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1568 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1569 	}
1570 
1571 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1572 	connp->conn_fport = dstport;
1573 
1574 	/*
1575 	 * At this point the remote destination address and remote port fields
1576 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1577 	 * have to see which state tcp was in so we can take appropriate action.
1578 	 */
1579 	if (tcp->tcp_state == TCPS_IDLE) {
1580 		/*
1581 		 * We support a quick connect capability here, allowing
1582 		 * clients to transition directly from IDLE to SYN_SENT
1583 		 * tcp_bindi will pick an unused port, insert the connection
1584 		 * in the bind hash and transition to BOUND state.
1585 		 */
1586 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1587 		    tcp, B_TRUE);
1588 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1589 		    B_FALSE, B_FALSE);
1590 		if (lport == 0)
1591 			return (-TNOADDR);
1592 	}
1593 
1594 	/*
1595 	 * Lookup the route to determine a source address and the uinfo.
1596 	 * Setup TCP parameters based on the metrics/DCE.
1597 	 */
1598 	error = tcp_set_destination(tcp);
1599 	if (error != 0)
1600 		return (error);
1601 
1602 	/*
1603 	 * Don't let an endpoint connect to itself.
1604 	 */
1605 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1606 	    connp->conn_fport == connp->conn_lport)
1607 		return (-TBADADDR);
1608 
1609 	tcp->tcp_state = TCPS_SYN_SENT;
1610 
1611 	return (ipcl_conn_insert_v4(connp));
1612 }
1613 
1614 /*
1615  * Handle connect to IPv6 destinations.
1616  * Returns zero if OK, a positive errno, or a negative TLI error.
1617  */
1618 static int
1619 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1620     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1621 {
1622 	uint16_t 	lport;
1623 	conn_t		*connp = tcp->tcp_connp;
1624 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1625 	int		error;
1626 
1627 	ASSERT(connp->conn_family == AF_INET6);
1628 
1629 	/*
1630 	 * If we're here, it means that the destination address is a native
1631 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1632 	 * reason why it might not be IPv6 is if the socket was bound to an
1633 	 * IPv4-mapped IPv6 address.
1634 	 */
1635 	if (connp->conn_ipversion != IPV6_VERSION)
1636 		return (-TBADADDR);
1637 
1638 	/*
1639 	 * Interpret a zero destination to mean loopback.
1640 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1641 	 * generate the T_CONN_CON.
1642 	 */
1643 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1644 		*dstaddrp = ipv6_loopback;
1645 
1646 	/* Handle __sin6_src_id if socket not bound to an IP address */
1647 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1648 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1649 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1650 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1651 	}
1652 
1653 	/*
1654 	 * Take care of the scope_id now.
1655 	 */
1656 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1657 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1658 		connp->conn_ixa->ixa_scopeid = scope_id;
1659 	} else {
1660 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1661 	}
1662 
1663 	connp->conn_flowinfo = flowinfo;
1664 	connp->conn_faddr_v6 = *dstaddrp;
1665 	connp->conn_fport = dstport;
1666 
1667 	/*
1668 	 * At this point the remote destination address and remote port fields
1669 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1670 	 * have to see which state tcp was in so we can take appropriate action.
1671 	 */
1672 	if (tcp->tcp_state == TCPS_IDLE) {
1673 		/*
1674 		 * We support a quick connect capability here, allowing
1675 		 * clients to transition directly from IDLE to SYN_SENT
1676 		 * tcp_bindi will pick an unused port, insert the connection
1677 		 * in the bind hash and transition to BOUND state.
1678 		 */
1679 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1680 		    tcp, B_TRUE);
1681 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1682 		    B_FALSE, B_FALSE);
1683 		if (lport == 0)
1684 			return (-TNOADDR);
1685 	}
1686 
1687 	/*
1688 	 * Lookup the route to determine a source address and the uinfo.
1689 	 * Setup TCP parameters based on the metrics/DCE.
1690 	 */
1691 	error = tcp_set_destination(tcp);
1692 	if (error != 0)
1693 		return (error);
1694 
1695 	/*
1696 	 * Don't let an endpoint connect to itself.
1697 	 */
1698 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1699 	    connp->conn_fport == connp->conn_lport)
1700 		return (-TBADADDR);
1701 
1702 	tcp->tcp_state = TCPS_SYN_SENT;
1703 
1704 	return (ipcl_conn_insert_v6(connp));
1705 }
1706 
1707 /*
1708  * Disconnect
1709  * Note that unlike other functions this returns a positive tli error
1710  * when it fails; it never returns an errno.
1711  */
1712 static int
1713 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1714 {
1715 	conn_t		*lconnp;
1716 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1717 	conn_t		*connp = tcp->tcp_connp;
1718 
1719 	/*
1720 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1721 	 * when the stream is in BOUND state. Do not send a reset,
1722 	 * since the destination IP address is not valid, and it can
1723 	 * be the initialized value of all zeros (broadcast address).
1724 	 */
1725 	if (tcp->tcp_state <= TCPS_BOUND) {
1726 		if (connp->conn_debug) {
1727 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1728 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1729 		}
1730 		return (TOUTSTATE);
1731 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1732 		TCPS_CONN_DEC(tcps);
1733 	}
1734 
1735 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1736 
1737 		/*
1738 		 * According to TPI, for non-listeners, ignore seqnum
1739 		 * and disconnect.
1740 		 * Following interpretation of -1 seqnum is historical
1741 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1742 		 * a valid seqnum should not be -1).
1743 		 *
1744 		 *	-1 means disconnect everything
1745 		 *	regardless even on a listener.
1746 		 */
1747 
1748 		int old_state = tcp->tcp_state;
1749 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1750 
1751 		/*
1752 		 * The connection can't be on the tcp_time_wait_head list
1753 		 * since it is not detached.
1754 		 */
1755 		ASSERT(tcp->tcp_time_wait_next == NULL);
1756 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1757 		ASSERT(tcp->tcp_time_wait_expire == 0);
1758 		/*
1759 		 * If it used to be a listener, check to make sure no one else
1760 		 * has taken the port before switching back to LISTEN state.
1761 		 */
1762 		if (connp->conn_ipversion == IPV4_VERSION) {
1763 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1764 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1765 		} else {
1766 			uint_t ifindex = 0;
1767 
1768 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1769 				ifindex = connp->conn_ixa->ixa_scopeid;
1770 
1771 			/* Allow conn_bound_if listeners? */
1772 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1773 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1774 			    ipst);
1775 		}
1776 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1777 			tcp->tcp_state = TCPS_LISTEN;
1778 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1779 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1780 			    NULL, int32_t, old_state);
1781 		} else if (old_state > TCPS_BOUND) {
1782 			tcp->tcp_conn_req_max = 0;
1783 			tcp->tcp_state = TCPS_BOUND;
1784 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1785 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1786 			    NULL, int32_t, old_state);
1787 
1788 			/*
1789 			 * If this end point is not going to become a listener,
1790 			 * decrement the listener connection count if
1791 			 * necessary.  Note that we do not do this if it is
1792 			 * going to be a listner (the above if case) since
1793 			 * then it may remove the counter struct.
1794 			 */
1795 			if (tcp->tcp_listen_cnt != NULL)
1796 				TCP_DECR_LISTEN_CNT(tcp);
1797 		}
1798 		if (lconnp != NULL)
1799 			CONN_DEC_REF(lconnp);
1800 		switch (old_state) {
1801 		case TCPS_SYN_SENT:
1802 		case TCPS_SYN_RCVD:
1803 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1804 			break;
1805 		case TCPS_ESTABLISHED:
1806 		case TCPS_CLOSE_WAIT:
1807 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1808 			break;
1809 		}
1810 
1811 		if (tcp->tcp_fused)
1812 			tcp_unfuse(tcp);
1813 
1814 		mutex_enter(&tcp->tcp_eager_lock);
1815 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1816 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1817 			tcp_eager_cleanup(tcp, 0);
1818 		}
1819 		mutex_exit(&tcp->tcp_eager_lock);
1820 
1821 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1822 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1823 
1824 		tcp_reinit(tcp);
1825 
1826 		return (0);
1827 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1828 		return (TBADSEQ);
1829 	}
1830 	return (0);
1831 }
1832 
1833 /*
1834  * Our client hereby directs us to reject the connection request
1835  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1836  * of sending the appropriate RST, not an ICMP error.
1837  */
1838 void
1839 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1840 {
1841 	t_scalar_t seqnum;
1842 	int	error;
1843 	conn_t	*connp = tcp->tcp_connp;
1844 
1845 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1846 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1847 		tcp_err_ack(tcp, mp, TPROTO, 0);
1848 		return;
1849 	}
1850 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1851 	error = tcp_disconnect_common(tcp, seqnum);
1852 	if (error != 0)
1853 		tcp_err_ack(tcp, mp, error, 0);
1854 	else {
1855 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1856 			/* Send M_FLUSH according to TPI */
1857 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1858 		}
1859 		mp = mi_tpi_ok_ack_alloc(mp);
1860 		if (mp != NULL)
1861 			putnext(connp->conn_rq, mp);
1862 	}
1863 }
1864 
1865 /*
1866  * Handle reinitialization of a tcp structure.
1867  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1868  */
1869 static void
1870 tcp_reinit(tcp_t *tcp)
1871 {
1872 	mblk_t		*mp;
1873 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1874 	conn_t		*connp  = tcp->tcp_connp;
1875 	int32_t		oldstate;
1876 
1877 	/* tcp_reinit should never be called for detached tcp_t's */
1878 	ASSERT(tcp->tcp_listener == NULL);
1879 	ASSERT((connp->conn_family == AF_INET &&
1880 	    connp->conn_ipversion == IPV4_VERSION) ||
1881 	    (connp->conn_family == AF_INET6 &&
1882 	    (connp->conn_ipversion == IPV4_VERSION ||
1883 	    connp->conn_ipversion == IPV6_VERSION)));
1884 
1885 	/* Cancel outstanding timers */
1886 	tcp_timers_stop(tcp);
1887 
1888 	/*
1889 	 * Reset everything in the state vector, after updating global
1890 	 * MIB data from instance counters.
1891 	 */
1892 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1893 	tcp->tcp_ibsegs = 0;
1894 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1895 	tcp->tcp_obsegs = 0;
1896 
1897 	tcp_close_mpp(&tcp->tcp_xmit_head);
1898 	if (tcp->tcp_snd_zcopy_aware)
1899 		tcp_zcopy_notify(tcp);
1900 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1901 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1902 	mutex_enter(&tcp->tcp_non_sq_lock);
1903 	if (tcp->tcp_flow_stopped &&
1904 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1905 		tcp_clrqfull(tcp);
1906 	}
1907 	mutex_exit(&tcp->tcp_non_sq_lock);
1908 	tcp_close_mpp(&tcp->tcp_reass_head);
1909 	tcp->tcp_reass_tail = NULL;
1910 	if (tcp->tcp_rcv_list != NULL) {
1911 		/* Free b_next chain */
1912 		tcp_close_mpp(&tcp->tcp_rcv_list);
1913 		tcp->tcp_rcv_last_head = NULL;
1914 		tcp->tcp_rcv_last_tail = NULL;
1915 		tcp->tcp_rcv_cnt = 0;
1916 	}
1917 	tcp->tcp_rcv_last_tail = NULL;
1918 
1919 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1920 		freemsg(mp);
1921 		tcp->tcp_urp_mp = NULL;
1922 	}
1923 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1924 		freemsg(mp);
1925 		tcp->tcp_urp_mark_mp = NULL;
1926 	}
1927 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1928 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1929 		freeb(tcp->tcp_fused_sigurg_mp);
1930 		tcp->tcp_fused_sigurg_mp = NULL;
1931 	}
1932 	if (tcp->tcp_ordrel_mp != NULL) {
1933 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1934 		freeb(tcp->tcp_ordrel_mp);
1935 		tcp->tcp_ordrel_mp = NULL;
1936 	}
1937 
1938 	/*
1939 	 * Following is a union with two members which are
1940 	 * identical types and size so the following cleanup
1941 	 * is enough.
1942 	 */
1943 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1944 
1945 	CL_INET_DISCONNECT(connp);
1946 
1947 	/*
1948 	 * The connection can't be on the tcp_time_wait_head list
1949 	 * since it is not detached.
1950 	 */
1951 	ASSERT(tcp->tcp_time_wait_next == NULL);
1952 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1953 	ASSERT(tcp->tcp_time_wait_expire == 0);
1954 
1955 	if (tcp->tcp_kssl_pending) {
1956 		tcp->tcp_kssl_pending = B_FALSE;
1957 
1958 		/* Don't reset if the initialized by bind. */
1959 		if (tcp->tcp_kssl_ent != NULL) {
1960 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
1961 			    KSSL_NO_PROXY);
1962 		}
1963 	}
1964 	if (tcp->tcp_kssl_ctx != NULL) {
1965 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1966 		tcp->tcp_kssl_ctx = NULL;
1967 	}
1968 
1969 	/*
1970 	 * Reset/preserve other values
1971 	 */
1972 	tcp_reinit_values(tcp);
1973 	ipcl_hash_remove(connp);
1974 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1975 	ixa_cleanup(connp->conn_ixa);
1976 	tcp_ipsec_cleanup(tcp);
1977 
1978 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1979 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1980 	oldstate = tcp->tcp_state;
1981 
1982 	if (tcp->tcp_conn_req_max != 0) {
1983 		/*
1984 		 * This is the case when a TLI program uses the same
1985 		 * transport end point to accept a connection.  This
1986 		 * makes the TCP both a listener and acceptor.  When
1987 		 * this connection is closed, we need to set the state
1988 		 * back to TCPS_LISTEN.  Make sure that the eager list
1989 		 * is reinitialized.
1990 		 *
1991 		 * Note that this stream is still bound to the four
1992 		 * tuples of the previous connection in IP.  If a new
1993 		 * SYN with different foreign address comes in, IP will
1994 		 * not find it and will send it to the global queue.  In
1995 		 * the global queue, TCP will do a tcp_lookup_listener()
1996 		 * to find this stream.  This works because this stream
1997 		 * is only removed from connected hash.
1998 		 *
1999 		 */
2000 		tcp->tcp_state = TCPS_LISTEN;
2001 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2002 		tcp->tcp_eager_next_drop_q0 = tcp;
2003 		tcp->tcp_eager_prev_drop_q0 = tcp;
2004 		/*
2005 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2006 		 * to pick a good squeue for the listener when the first SYN
2007 		 * arrives. tcp_input_listener_unbound sets it to
2008 		 * tcp_input_listener on that first SYN.
2009 		 */
2010 		connp->conn_recv = tcp_input_listener_unbound;
2011 
2012 		connp->conn_proto = IPPROTO_TCP;
2013 		connp->conn_faddr_v6 = ipv6_all_zeros;
2014 		connp->conn_fport = 0;
2015 
2016 		(void) ipcl_bind_insert(connp);
2017 	} else {
2018 		tcp->tcp_state = TCPS_BOUND;
2019 	}
2020 
2021 	/*
2022 	 * Initialize to default values
2023 	 */
2024 	tcp_init_values(tcp);
2025 
2026 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2027 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2028 	    int32_t, oldstate);
2029 
2030 	ASSERT(tcp->tcp_ptpbhn != NULL);
2031 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2032 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2033 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2034 }
2035 
2036 /*
2037  * Force values to zero that need be zero.
2038  * Do not touch values asociated with the BOUND or LISTEN state
2039  * since the connection will end up in that state after the reinit.
2040  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2041  * structure!
2042  */
2043 static void
2044 tcp_reinit_values(tcp)
2045 	tcp_t *tcp;
2046 {
2047 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2048 	conn_t		*connp = tcp->tcp_connp;
2049 
2050 #ifndef	lint
2051 #define	DONTCARE(x)
2052 #define	PRESERVE(x)
2053 #else
2054 #define	DONTCARE(x)	((x) = (x))
2055 #define	PRESERVE(x)	((x) = (x))
2056 #endif	/* lint */
2057 
2058 	PRESERVE(tcp->tcp_bind_hash_port);
2059 	PRESERVE(tcp->tcp_bind_hash);
2060 	PRESERVE(tcp->tcp_ptpbhn);
2061 	PRESERVE(tcp->tcp_acceptor_hash);
2062 	PRESERVE(tcp->tcp_ptpahn);
2063 
2064 	/* Should be ASSERT NULL on these with new code! */
2065 	ASSERT(tcp->tcp_time_wait_next == NULL);
2066 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2067 	ASSERT(tcp->tcp_time_wait_expire == 0);
2068 	PRESERVE(tcp->tcp_state);
2069 	PRESERVE(connp->conn_rq);
2070 	PRESERVE(connp->conn_wq);
2071 
2072 	ASSERT(tcp->tcp_xmit_head == NULL);
2073 	ASSERT(tcp->tcp_xmit_last == NULL);
2074 	ASSERT(tcp->tcp_unsent == 0);
2075 	ASSERT(tcp->tcp_xmit_tail == NULL);
2076 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2077 
2078 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2079 	tcp->tcp_suna = 0;			/* Displayed in mib */
2080 	tcp->tcp_swnd = 0;
2081 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2082 
2083 	ASSERT(tcp->tcp_ibsegs == 0);
2084 	ASSERT(tcp->tcp_obsegs == 0);
2085 
2086 	if (connp->conn_ht_iphc != NULL) {
2087 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2088 		connp->conn_ht_iphc = NULL;
2089 		connp->conn_ht_iphc_allocated = 0;
2090 		connp->conn_ht_iphc_len = 0;
2091 		connp->conn_ht_ulp = NULL;
2092 		connp->conn_ht_ulp_len = 0;
2093 		tcp->tcp_ipha = NULL;
2094 		tcp->tcp_ip6h = NULL;
2095 		tcp->tcp_tcpha = NULL;
2096 	}
2097 
2098 	/* We clear any IP_OPTIONS and extension headers */
2099 	ip_pkt_free(&connp->conn_xmit_ipp);
2100 
2101 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2102 	DONTCARE(tcp->tcp_ipha);
2103 	DONTCARE(tcp->tcp_ip6h);
2104 	DONTCARE(tcp->tcp_tcpha);
2105 	tcp->tcp_valid_bits = 0;
2106 
2107 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2108 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2109 	tcp->tcp_last_rcv_lbolt = 0;
2110 
2111 	tcp->tcp_init_cwnd = 0;
2112 
2113 	tcp->tcp_urp_last_valid = 0;
2114 	tcp->tcp_hard_binding = 0;
2115 
2116 	tcp->tcp_fin_acked = 0;
2117 	tcp->tcp_fin_rcvd = 0;
2118 	tcp->tcp_fin_sent = 0;
2119 	tcp->tcp_ordrel_done = 0;
2120 
2121 	tcp->tcp_detached = 0;
2122 
2123 	tcp->tcp_snd_ws_ok = B_FALSE;
2124 	tcp->tcp_snd_ts_ok = B_FALSE;
2125 	tcp->tcp_zero_win_probe = 0;
2126 
2127 	tcp->tcp_loopback = 0;
2128 	tcp->tcp_localnet = 0;
2129 	tcp->tcp_syn_defense = 0;
2130 	tcp->tcp_set_timer = 0;
2131 
2132 	tcp->tcp_active_open = 0;
2133 	tcp->tcp_rexmit = B_FALSE;
2134 	tcp->tcp_xmit_zc_clean = B_FALSE;
2135 
2136 	tcp->tcp_snd_sack_ok = B_FALSE;
2137 	tcp->tcp_hwcksum = B_FALSE;
2138 
2139 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2140 
2141 	tcp->tcp_conn_def_q0 = 0;
2142 	tcp->tcp_ip_forward_progress = B_FALSE;
2143 	tcp->tcp_ecn_ok = B_FALSE;
2144 
2145 	tcp->tcp_cwr = B_FALSE;
2146 	tcp->tcp_ecn_echo_on = B_FALSE;
2147 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2148 
2149 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2150 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2151 
2152 	tcp->tcp_rcv_ws = 0;
2153 	tcp->tcp_snd_ws = 0;
2154 	tcp->tcp_ts_recent = 0;
2155 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2156 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2157 	tcp->tcp_initial_pmtu = 0;
2158 
2159 	ASSERT(tcp->tcp_reass_head == NULL);
2160 	ASSERT(tcp->tcp_reass_tail == NULL);
2161 
2162 	tcp->tcp_cwnd_cnt = 0;
2163 
2164 	ASSERT(tcp->tcp_rcv_list == NULL);
2165 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2166 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2167 	ASSERT(tcp->tcp_rcv_cnt == 0);
2168 
2169 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2170 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2171 	tcp->tcp_csuna = 0;
2172 
2173 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2174 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2175 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2176 	tcp->tcp_rtt_update = 0;
2177 
2178 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2179 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2180 
2181 	tcp->tcp_rack = 0;			/* Displayed in mib */
2182 	tcp->tcp_rack_cnt = 0;
2183 	tcp->tcp_rack_cur_max = 0;
2184 	tcp->tcp_rack_abs_max = 0;
2185 
2186 	tcp->tcp_max_swnd = 0;
2187 
2188 	ASSERT(tcp->tcp_listener == NULL);
2189 
2190 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2191 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2192 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2193 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2194 
2195 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2196 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2197 	PRESERVE(tcp->tcp_conn_req_max);
2198 	PRESERVE(tcp->tcp_conn_req_seqnum);
2199 
2200 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2201 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2202 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2203 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2204 
2205 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2206 	ASSERT(tcp->tcp_urp_mp == NULL);
2207 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2208 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2209 
2210 	ASSERT(tcp->tcp_eager_next_q == NULL);
2211 	ASSERT(tcp->tcp_eager_last_q == NULL);
2212 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2213 	    tcp->tcp_eager_prev_q0 == NULL) ||
2214 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2215 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2216 
2217 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2218 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2219 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2220 
2221 	tcp->tcp_client_errno = 0;
2222 
2223 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2224 
2225 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2226 
2227 	PRESERVE(connp->conn_bound_addr_v6);
2228 	tcp->tcp_last_sent_len = 0;
2229 	tcp->tcp_dupack_cnt = 0;
2230 
2231 	connp->conn_fport = 0;			/* Displayed in MIB */
2232 	PRESERVE(connp->conn_lport);
2233 
2234 	PRESERVE(tcp->tcp_acceptor_lockp);
2235 
2236 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2237 	PRESERVE(tcp->tcp_acceptor_id);
2238 	DONTCARE(tcp->tcp_ipsec_overhead);
2239 
2240 	PRESERVE(connp->conn_family);
2241 	/* Remove any remnants of mapped address binding */
2242 	if (connp->conn_family == AF_INET6) {
2243 		connp->conn_ipversion = IPV6_VERSION;
2244 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2245 	} else {
2246 		connp->conn_ipversion = IPV4_VERSION;
2247 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2248 	}
2249 
2250 	connp->conn_bound_if = 0;
2251 	connp->conn_recv_ancillary.crb_all = 0;
2252 	tcp->tcp_recvifindex = 0;
2253 	tcp->tcp_recvhops = 0;
2254 	tcp->tcp_closed = 0;
2255 	if (tcp->tcp_hopopts != NULL) {
2256 		mi_free(tcp->tcp_hopopts);
2257 		tcp->tcp_hopopts = NULL;
2258 		tcp->tcp_hopoptslen = 0;
2259 	}
2260 	ASSERT(tcp->tcp_hopoptslen == 0);
2261 	if (tcp->tcp_dstopts != NULL) {
2262 		mi_free(tcp->tcp_dstopts);
2263 		tcp->tcp_dstopts = NULL;
2264 		tcp->tcp_dstoptslen = 0;
2265 	}
2266 	ASSERT(tcp->tcp_dstoptslen == 0);
2267 	if (tcp->tcp_rthdrdstopts != NULL) {
2268 		mi_free(tcp->tcp_rthdrdstopts);
2269 		tcp->tcp_rthdrdstopts = NULL;
2270 		tcp->tcp_rthdrdstoptslen = 0;
2271 	}
2272 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2273 	if (tcp->tcp_rthdr != NULL) {
2274 		mi_free(tcp->tcp_rthdr);
2275 		tcp->tcp_rthdr = NULL;
2276 		tcp->tcp_rthdrlen = 0;
2277 	}
2278 	ASSERT(tcp->tcp_rthdrlen == 0);
2279 
2280 	/* Reset fusion-related fields */
2281 	tcp->tcp_fused = B_FALSE;
2282 	tcp->tcp_unfusable = B_FALSE;
2283 	tcp->tcp_fused_sigurg = B_FALSE;
2284 	tcp->tcp_loopback_peer = NULL;
2285 
2286 	tcp->tcp_lso = B_FALSE;
2287 
2288 	tcp->tcp_in_ack_unsent = 0;
2289 	tcp->tcp_cork = B_FALSE;
2290 	tcp->tcp_tconnind_started = B_FALSE;
2291 
2292 	PRESERVE(tcp->tcp_squeue_bytes);
2293 
2294 	ASSERT(tcp->tcp_kssl_ctx == NULL);
2295 	ASSERT(!tcp->tcp_kssl_pending);
2296 	PRESERVE(tcp->tcp_kssl_ent);
2297 
2298 	tcp->tcp_closemp_used = B_FALSE;
2299 
2300 	PRESERVE(tcp->tcp_rsrv_mp);
2301 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2302 
2303 #ifdef DEBUG
2304 	DONTCARE(tcp->tcmp_stk[0]);
2305 #endif
2306 
2307 	PRESERVE(tcp->tcp_connid);
2308 
2309 	ASSERT(tcp->tcp_listen_cnt == NULL);
2310 	ASSERT(tcp->tcp_reass_tid == 0);
2311 
2312 #undef	DONTCARE
2313 #undef	PRESERVE
2314 }
2315 
2316 void
2317 tcp_init_values(tcp_t *tcp)
2318 {
2319 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2320 	conn_t		*connp = tcp->tcp_connp;
2321 
2322 	ASSERT((connp->conn_family == AF_INET &&
2323 	    connp->conn_ipversion == IPV4_VERSION) ||
2324 	    (connp->conn_family == AF_INET6 &&
2325 	    (connp->conn_ipversion == IPV4_VERSION ||
2326 	    connp->conn_ipversion == IPV6_VERSION)));
2327 
2328 	/*
2329 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2330 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2331 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2332 	 * during first few transmissions of a connection as seen in slow
2333 	 * links.
2334 	 */
2335 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
2336 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
2337 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2338 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2339 	    tcps->tcps_conn_grace_period;
2340 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
2341 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2342 	tcp->tcp_timer_backoff = 0;
2343 	tcp->tcp_ms_we_have_waited = 0;
2344 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2345 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2346 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2347 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
2348 
2349 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2350 
2351 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2352 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
2353 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2354 	/*
2355 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
2356 	 * passive open.
2357 	 */
2358 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
2359 
2360 	tcp->tcp_naglim = tcps->tcps_naglim_def;
2361 
2362 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2363 
2364 	/* Reset fusion-related fields */
2365 	tcp->tcp_fused = B_FALSE;
2366 	tcp->tcp_unfusable = B_FALSE;
2367 	tcp->tcp_fused_sigurg = B_FALSE;
2368 	tcp->tcp_loopback_peer = NULL;
2369 
2370 	/* We rebuild the header template on the next connect/conn_request */
2371 
2372 	connp->conn_mlp_type = mlptSingle;
2373 
2374 	/*
2375 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2376 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2377 	 */
2378 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2379 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2380 
2381 	tcp->tcp_cork = B_FALSE;
2382 	/*
2383 	 * Init the tcp_debug option if it wasn't already set.  This value
2384 	 * determines whether TCP
2385 	 * calls strlog() to print out debug messages.  Doing this
2386 	 * initialization here means that this value is not inherited thru
2387 	 * tcp_reinit().
2388 	 */
2389 	if (!connp->conn_debug)
2390 		connp->conn_debug = tcps->tcps_dbg;
2391 
2392 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2393 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2394 }
2395 
2396 /*
2397  * Update the TCP connection according to change of PMTU.
2398  *
2399  * Path MTU might have changed by either increase or decrease, so need to
2400  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2401  * or negative MSS, since tcp_mss_set() will do it.
2402  */
2403 void
2404 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2405 {
2406 	uint32_t	pmtu;
2407 	int32_t		mss;
2408 	conn_t		*connp = tcp->tcp_connp;
2409 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2410 	iaflags_t	ixaflags;
2411 
2412 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2413 		return;
2414 
2415 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2416 		return;
2417 
2418 	/*
2419 	 * Always call ip_get_pmtu() to make sure that IP has updated
2420 	 * ixa_flags properly.
2421 	 */
2422 	pmtu = ip_get_pmtu(ixa);
2423 	ixaflags = ixa->ixa_flags;
2424 
2425 	/*
2426 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2427 	 * IPsec overhead if applied. Make sure to use the most recent
2428 	 * IPsec information.
2429 	 */
2430 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2431 
2432 	/*
2433 	 * Nothing to change, so just return.
2434 	 */
2435 	if (mss == tcp->tcp_mss)
2436 		return;
2437 
2438 	/*
2439 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2440 	 */
2441 	if (mss > tcp->tcp_mss && decrease_only)
2442 		return;
2443 
2444 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2445 
2446 	/*
2447 	 * Update ixa_fragsize and ixa_pmtu.
2448 	 */
2449 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2450 
2451 	/*
2452 	 * Adjust MSS and all relevant variables.
2453 	 */
2454 	tcp_mss_set(tcp, mss);
2455 
2456 	/*
2457 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2458 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2459 	 * has a (potentially different) min size we do the same. Make sure to
2460 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2461 	 * fragment the packet.
2462 	 *
2463 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2464 	 * when IPv6 fragmentation is needed.
2465 	 */
2466 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2467 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2468 
2469 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2470 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2471 
2472 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2473 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2474 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2475 	}
2476 	ixa->ixa_flags = ixaflags;
2477 }
2478 
2479 int
2480 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2481 {
2482 	conn_t	*connp = tcp->tcp_connp;
2483 	queue_t	*q = connp->conn_rq;
2484 	int32_t	mss = tcp->tcp_mss;
2485 	int	maxpsz;
2486 
2487 	if (TCP_IS_DETACHED(tcp))
2488 		return (mss);
2489 	if (tcp->tcp_fused) {
2490 		maxpsz = tcp_fuse_maxpsz(tcp);
2491 		mss = INFPSZ;
2492 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2493 		/*
2494 		 * Set the sd_qn_maxpsz according to the socket send buffer
2495 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2496 		 * instruct the stream head to copyin user data into contiguous
2497 		 * kernel-allocated buffers without breaking it up into smaller
2498 		 * chunks.  We round up the buffer size to the nearest SMSS.
2499 		 */
2500 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2501 		if (tcp->tcp_kssl_ctx == NULL)
2502 			mss = INFPSZ;
2503 		else
2504 			mss = SSL3_MAX_RECORD_LEN;
2505 	} else {
2506 		/*
2507 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2508 		 * (and a multiple of the mss).  This instructs the stream
2509 		 * head to break down larger than SMSS writes into SMSS-
2510 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2511 		 */
2512 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2513 		if (maxpsz > connp->conn_sndbuf / 2) {
2514 			maxpsz = connp->conn_sndbuf / 2;
2515 			/* Round up to nearest mss */
2516 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2517 		}
2518 	}
2519 
2520 	(void) proto_set_maxpsz(q, connp, maxpsz);
2521 	if (!(IPCL_IS_NONSTR(connp)))
2522 		connp->conn_wq->q_maxpsz = maxpsz;
2523 	if (set_maxblk)
2524 		(void) proto_set_tx_maxblk(q, connp, mss);
2525 	return (mss);
2526 }
2527 
2528 /* For /dev/tcp aka AF_INET open */
2529 static int
2530 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2531 {
2532 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2533 }
2534 
2535 /* For /dev/tcp6 aka AF_INET6 open */
2536 static int
2537 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2538 {
2539 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2540 }
2541 
2542 conn_t *
2543 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2544     int *errorp)
2545 {
2546 	tcp_t		*tcp = NULL;
2547 	conn_t		*connp;
2548 	zoneid_t	zoneid;
2549 	tcp_stack_t	*tcps;
2550 	squeue_t	*sqp;
2551 
2552 	ASSERT(errorp != NULL);
2553 	/*
2554 	 * Find the proper zoneid and netstack.
2555 	 */
2556 	/*
2557 	 * Special case for install: miniroot needs to be able to
2558 	 * access files via NFS as though it were always in the
2559 	 * global zone.
2560 	 */
2561 	if (credp == kcred && nfs_global_client_only != 0) {
2562 		zoneid = GLOBAL_ZONEID;
2563 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2564 		    netstack_tcp;
2565 		ASSERT(tcps != NULL);
2566 	} else {
2567 		netstack_t *ns;
2568 		int err;
2569 
2570 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2571 			*errorp = err;
2572 			return (NULL);
2573 		}
2574 
2575 		ns = netstack_find_by_cred(credp);
2576 		ASSERT(ns != NULL);
2577 		tcps = ns->netstack_tcp;
2578 		ASSERT(tcps != NULL);
2579 
2580 		/*
2581 		 * For exclusive stacks we set the zoneid to zero
2582 		 * to make TCP operate as if in the global zone.
2583 		 */
2584 		if (tcps->tcps_netstack->netstack_stackid !=
2585 		    GLOBAL_NETSTACKID)
2586 			zoneid = GLOBAL_ZONEID;
2587 		else
2588 			zoneid = crgetzoneid(credp);
2589 	}
2590 
2591 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2592 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2593 	/*
2594 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2595 	 * so we drop it by one.
2596 	 */
2597 	netstack_rele(tcps->tcps_netstack);
2598 	if (connp == NULL) {
2599 		*errorp = ENOSR;
2600 		return (NULL);
2601 	}
2602 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2603 
2604 	connp->conn_sqp = sqp;
2605 	connp->conn_initial_sqp = connp->conn_sqp;
2606 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2607 	tcp = connp->conn_tcp;
2608 
2609 	/*
2610 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2611 	 * to do the following checks when necessary:
2612 	 *
2613 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2614 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2615 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2616 	 */
2617 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2618 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2619 
2620 	if (!tcps->tcps_dev_flow_ctl)
2621 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2622 
2623 	if (isv6) {
2624 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2625 		connp->conn_ipversion = IPV6_VERSION;
2626 		connp->conn_family = AF_INET6;
2627 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2628 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2629 	} else {
2630 		connp->conn_ipversion = IPV4_VERSION;
2631 		connp->conn_family = AF_INET;
2632 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2633 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2634 	}
2635 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2636 
2637 	crhold(credp);
2638 	connp->conn_cred = credp;
2639 	connp->conn_cpid = curproc->p_pid;
2640 	connp->conn_open_time = ddi_get_lbolt64();
2641 
2642 	/* Cache things in the ixa without any refhold */
2643 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2644 	connp->conn_ixa->ixa_cred = credp;
2645 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2646 
2647 	connp->conn_zoneid = zoneid;
2648 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2649 	connp->conn_ixa->ixa_zoneid = zoneid;
2650 	connp->conn_mlp_type = mlptSingle;
2651 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2652 	ASSERT(tcp->tcp_tcps == tcps);
2653 
2654 	/*
2655 	 * If the caller has the process-wide flag set, then default to MAC
2656 	 * exempt mode.  This allows read-down to unlabeled hosts.
2657 	 */
2658 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2659 		connp->conn_mac_mode = CONN_MAC_AWARE;
2660 
2661 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2662 
2663 	if (issocket) {
2664 		tcp->tcp_issocket = 1;
2665 	}
2666 
2667 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2668 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2669 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2670 	connp->conn_so_type = SOCK_STREAM;
2671 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2672 	    tcps->tcps_wroff_xtra;
2673 
2674 	SOCK_CONNID_INIT(tcp->tcp_connid);
2675 	/* DTrace ignores this - it isn't a tcp:::state-change */
2676 	tcp->tcp_state = TCPS_IDLE;
2677 	tcp_init_values(tcp);
2678 	return (connp);
2679 }
2680 
2681 static int
2682 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2683     boolean_t isv6)
2684 {
2685 	tcp_t		*tcp = NULL;
2686 	conn_t		*connp = NULL;
2687 	int		err;
2688 	vmem_t		*minor_arena = NULL;
2689 	dev_t		conn_dev;
2690 	boolean_t	issocket;
2691 
2692 	if (q->q_ptr != NULL)
2693 		return (0);
2694 
2695 	if (sflag == MODOPEN)
2696 		return (EINVAL);
2697 
2698 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2699 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2700 		minor_arena = ip_minor_arena_la;
2701 	} else {
2702 		/*
2703 		 * Either minor numbers in the large arena were exhausted
2704 		 * or a non socket application is doing the open.
2705 		 * Try to allocate from the small arena.
2706 		 */
2707 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2708 			return (EBUSY);
2709 		}
2710 		minor_arena = ip_minor_arena_sa;
2711 	}
2712 
2713 	ASSERT(minor_arena != NULL);
2714 
2715 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2716 
2717 	if (flag & SO_FALLBACK) {
2718 		/*
2719 		 * Non streams socket needs a stream to fallback to
2720 		 */
2721 		RD(q)->q_ptr = (void *)conn_dev;
2722 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2723 		WR(q)->q_ptr = (void *)minor_arena;
2724 		qprocson(q);
2725 		return (0);
2726 	} else if (flag & SO_ACCEPTOR) {
2727 		q->q_qinfo = &tcp_acceptor_rinit;
2728 		/*
2729 		 * the conn_dev and minor_arena will be subsequently used by
2730 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2731 		 * the minor device number for this connection from the q_ptr.
2732 		 */
2733 		RD(q)->q_ptr = (void *)conn_dev;
2734 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2735 		WR(q)->q_ptr = (void *)minor_arena;
2736 		qprocson(q);
2737 		return (0);
2738 	}
2739 
2740 	issocket = flag & SO_SOCKSTR;
2741 	connp = tcp_create_common(credp, isv6, issocket, &err);
2742 
2743 	if (connp == NULL) {
2744 		inet_minor_free(minor_arena, conn_dev);
2745 		q->q_ptr = WR(q)->q_ptr = NULL;
2746 		return (err);
2747 	}
2748 
2749 	connp->conn_rq = q;
2750 	connp->conn_wq = WR(q);
2751 	q->q_ptr = WR(q)->q_ptr = connp;
2752 
2753 	connp->conn_dev = conn_dev;
2754 	connp->conn_minor_arena = minor_arena;
2755 
2756 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2757 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2758 
2759 	tcp = connp->conn_tcp;
2760 
2761 	if (issocket) {
2762 		WR(q)->q_qinfo = &tcp_sock_winit;
2763 	} else {
2764 #ifdef  _ILP32
2765 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2766 #else
2767 		tcp->tcp_acceptor_id = conn_dev;
2768 #endif  /* _ILP32 */
2769 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2770 	}
2771 
2772 	/*
2773 	 * Put the ref for TCP. Ref for IP was already put
2774 	 * by ipcl_conn_create. Also Make the conn_t globally
2775 	 * visible to walkers
2776 	 */
2777 	mutex_enter(&connp->conn_lock);
2778 	CONN_INC_REF_LOCKED(connp);
2779 	ASSERT(connp->conn_ref == 2);
2780 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2781 	mutex_exit(&connp->conn_lock);
2782 
2783 	qprocson(q);
2784 	return (0);
2785 }
2786 
2787 /*
2788  * Build/update the tcp header template (in conn_ht_iphc) based on
2789  * conn_xmit_ipp. The headers include ip6_t, any extension
2790  * headers, and the maximum size tcp header (to avoid reallocation
2791  * on the fly for additional tcp options).
2792  *
2793  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2794  * Returns failure if can't allocate memory.
2795  */
2796 int
2797 tcp_build_hdrs(tcp_t *tcp)
2798 {
2799 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2800 	conn_t		*connp = tcp->tcp_connp;
2801 	char		buf[TCP_MAX_HDR_LENGTH];
2802 	uint_t		buflen;
2803 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2804 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2805 	tcpha_t		*tcpha;
2806 	uint32_t	cksum;
2807 	int		error;
2808 
2809 	/*
2810 	 * We might be called after the connection is set up, and we might
2811 	 * have TS options already in the TCP header. Thus we  save any
2812 	 * existing tcp header.
2813 	 */
2814 	buflen = connp->conn_ht_ulp_len;
2815 	if (buflen != 0) {
2816 		bcopy(connp->conn_ht_ulp, buf, buflen);
2817 		extralen -= buflen - ulplen;
2818 		ulplen = buflen;
2819 	}
2820 
2821 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2822 	mutex_enter(&connp->conn_lock);
2823 	error = conn_build_hdr_template(connp, ulplen, extralen,
2824 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2825 	mutex_exit(&connp->conn_lock);
2826 	if (error != 0)
2827 		return (error);
2828 
2829 	/*
2830 	 * Any routing header/option has been massaged. The checksum difference
2831 	 * is stored in conn_sum for later use.
2832 	 */
2833 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2834 	tcp->tcp_tcpha = tcpha;
2835 
2836 	/* restore any old tcp header */
2837 	if (buflen != 0) {
2838 		bcopy(buf, connp->conn_ht_ulp, buflen);
2839 	} else {
2840 		tcpha->tha_sum = 0;
2841 		tcpha->tha_urp = 0;
2842 		tcpha->tha_ack = 0;
2843 		tcpha->tha_offset_and_reserved = (5 << 4);
2844 		tcpha->tha_lport = connp->conn_lport;
2845 		tcpha->tha_fport = connp->conn_fport;
2846 	}
2847 
2848 	/*
2849 	 * IP wants our header length in the checksum field to
2850 	 * allow it to perform a single pseudo-header+checksum
2851 	 * calculation on behalf of TCP.
2852 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2853 	 */
2854 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2855 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2856 	ASSERT(cksum < 0x10000);
2857 	tcpha->tha_sum = htons(cksum);
2858 
2859 	if (connp->conn_ipversion == IPV4_VERSION)
2860 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2861 	else
2862 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2863 
2864 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2865 	    connp->conn_wroff) {
2866 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2867 		    tcps->tcps_wroff_xtra;
2868 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2869 		    connp->conn_wroff);
2870 	}
2871 	return (0);
2872 }
2873 
2874 /*
2875  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2876  * We do not allow the receive window to shrink.  After setting rwnd,
2877  * set the flow control hiwat of the stream.
2878  *
2879  * This function is called in 2 cases:
2880  *
2881  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2882  *    connection (passive open) and in tcp_input_data() for active connect.
2883  *    This is called after tcp_mss_set() when the desired MSS value is known.
2884  *    This makes sure that our window size is a mutiple of the other side's
2885  *    MSS.
2886  * 2) Handling SO_RCVBUF option.
2887  *
2888  * It is ASSUMED that the requested size is a multiple of the current MSS.
2889  *
2890  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2891  * user requests so.
2892  */
2893 int
2894 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2895 {
2896 	uint32_t	mss = tcp->tcp_mss;
2897 	uint32_t	old_max_rwnd;
2898 	uint32_t	max_transmittable_rwnd;
2899 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2900 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2901 	conn_t		*connp = tcp->tcp_connp;
2902 
2903 	/*
2904 	 * Insist on a receive window that is at least
2905 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2906 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2907 	 * and delayed acknowledgement.
2908 	 */
2909 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2910 
2911 	if (tcp->tcp_fused) {
2912 		size_t sth_hiwat;
2913 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2914 
2915 		ASSERT(peer_tcp != NULL);
2916 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2917 		if (!tcp_detached) {
2918 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2919 			    sth_hiwat);
2920 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2921 		}
2922 
2923 		/* Caller could have changed tcp_rwnd; update tha_win */
2924 		if (tcp->tcp_tcpha != NULL) {
2925 			tcp->tcp_tcpha->tha_win =
2926 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2927 		}
2928 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2929 			tcp->tcp_cwnd_max = rwnd;
2930 
2931 		/*
2932 		 * In the fusion case, the maxpsz stream head value of
2933 		 * our peer is set according to its send buffer size
2934 		 * and our receive buffer size; since the latter may
2935 		 * have changed we need to update the peer's maxpsz.
2936 		 */
2937 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2938 		return (sth_hiwat);
2939 	}
2940 
2941 	if (tcp_detached)
2942 		old_max_rwnd = tcp->tcp_rwnd;
2943 	else
2944 		old_max_rwnd = connp->conn_rcvbuf;
2945 
2946 
2947 	/*
2948 	 * If window size info has already been exchanged, TCP should not
2949 	 * shrink the window.  Shrinking window is doable if done carefully.
2950 	 * We may add that support later.  But so far there is not a real
2951 	 * need to do that.
2952 	 */
2953 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
2954 		/* MSS may have changed, do a round up again. */
2955 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
2956 	}
2957 
2958 	/*
2959 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
2960 	 * can be applied even before the window scale option is decided.
2961 	 */
2962 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
2963 	if (rwnd > max_transmittable_rwnd) {
2964 		rwnd = max_transmittable_rwnd -
2965 		    (max_transmittable_rwnd % mss);
2966 		if (rwnd < mss)
2967 			rwnd = max_transmittable_rwnd;
2968 		/*
2969 		 * If we're over the limit we may have to back down tcp_rwnd.
2970 		 * The increment below won't work for us. So we set all three
2971 		 * here and the increment below will have no effect.
2972 		 */
2973 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
2974 	}
2975 	if (tcp->tcp_localnet) {
2976 		tcp->tcp_rack_abs_max =
2977 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
2978 	} else {
2979 		/*
2980 		 * For a remote host on a different subnet (through a router),
2981 		 * we ack every other packet to be conforming to RFC1122.
2982 		 * tcp_deferred_acks_max is default to 2.
2983 		 */
2984 		tcp->tcp_rack_abs_max =
2985 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
2986 	}
2987 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
2988 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
2989 	else
2990 		tcp->tcp_rack_cur_max = 0;
2991 	/*
2992 	 * Increment the current rwnd by the amount the maximum grew (we
2993 	 * can not overwrite it since we might be in the middle of a
2994 	 * connection.)
2995 	 */
2996 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
2997 	connp->conn_rcvbuf = rwnd;
2998 
2999 	/* Are we already connected? */
3000 	if (tcp->tcp_tcpha != NULL) {
3001 		tcp->tcp_tcpha->tha_win =
3002 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3003 	}
3004 
3005 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3006 		tcp->tcp_cwnd_max = rwnd;
3007 
3008 	if (tcp_detached)
3009 		return (rwnd);
3010 
3011 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3012 
3013 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3014 	return (rwnd);
3015 }
3016 
3017 int
3018 tcp_do_unbind(conn_t *connp)
3019 {
3020 	tcp_t *tcp = connp->conn_tcp;
3021 	int32_t oldstate;
3022 
3023 	switch (tcp->tcp_state) {
3024 	case TCPS_BOUND:
3025 	case TCPS_LISTEN:
3026 		break;
3027 	default:
3028 		return (-TOUTSTATE);
3029 	}
3030 
3031 	/*
3032 	 * Need to clean up all the eagers since after the unbind, segments
3033 	 * will no longer be delivered to this listener stream.
3034 	 */
3035 	mutex_enter(&tcp->tcp_eager_lock);
3036 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3037 		tcp_eager_cleanup(tcp, 0);
3038 	}
3039 	mutex_exit(&tcp->tcp_eager_lock);
3040 
3041 	/* Clean up the listener connection counter if necessary. */
3042 	if (tcp->tcp_listen_cnt != NULL)
3043 		TCP_DECR_LISTEN_CNT(tcp);
3044 	connp->conn_laddr_v6 = ipv6_all_zeros;
3045 	connp->conn_saddr_v6 = ipv6_all_zeros;
3046 	tcp_bind_hash_remove(tcp);
3047 	oldstate = tcp->tcp_state;
3048 	tcp->tcp_state = TCPS_IDLE;
3049 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3050 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3051 	    int32_t, oldstate);
3052 
3053 	ip_unbind(connp);
3054 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3055 
3056 	return (0);
3057 }
3058 
3059 /*
3060  * This runs at the tail end of accept processing on the squeue of the
3061  * new connection.
3062  */
3063 /* ARGSUSED */
3064 void
3065 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
3066 {
3067 	conn_t			*connp = (conn_t *)arg;
3068 	tcp_t			*tcp = connp->conn_tcp;
3069 	queue_t			*q = connp->conn_rq;
3070 	tcp_stack_t		*tcps = tcp->tcp_tcps;
3071 	/* socket options */
3072 	struct sock_proto_props	sopp;
3073 
3074 	/* We should just receive a single mblk that fits a T_discon_ind */
3075 	ASSERT(mp->b_cont == NULL);
3076 
3077 	/*
3078 	 * Drop the eager's ref on the listener, that was placed when
3079 	 * this eager began life in tcp_input_listener.
3080 	 */
3081 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
3082 	if (IPCL_IS_NONSTR(connp)) {
3083 		/* Safe to free conn_ind message */
3084 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
3085 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3086 	}
3087 
3088 	tcp->tcp_detached = B_FALSE;
3089 
3090 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
3091 		/*
3092 		 * Someone blewoff the eager before we could finish
3093 		 * the accept.
3094 		 *
3095 		 * The only reason eager exists it because we put in
3096 		 * a ref on it when conn ind went up. We need to send
3097 		 * a disconnect indication up while the last reference
3098 		 * on the eager will be dropped by the squeue when we
3099 		 * return.
3100 		 */
3101 		ASSERT(tcp->tcp_listener == NULL);
3102 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
3103 			if (IPCL_IS_NONSTR(connp)) {
3104 				ASSERT(tcp->tcp_issocket);
3105 				(*connp->conn_upcalls->su_disconnected)(
3106 				    connp->conn_upper_handle, tcp->tcp_connid,
3107 				    ECONNREFUSED);
3108 				freemsg(mp);
3109 			} else {
3110 				struct	T_discon_ind	*tdi;
3111 
3112 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
3113 				/*
3114 				 * Let us reuse the incoming mblk to avoid
3115 				 * memory allocation failure problems. We know
3116 				 * that the size of the incoming mblk i.e.
3117 				 * stroptions is greater than sizeof
3118 				 * T_discon_ind.
3119 				 */
3120 				ASSERT(DB_REF(mp) == 1);
3121 				ASSERT(MBLKSIZE(mp) >=
3122 				    sizeof (struct T_discon_ind));
3123 
3124 				DB_TYPE(mp) = M_PROTO;
3125 				((union T_primitives *)mp->b_rptr)->type =
3126 				    T_DISCON_IND;
3127 				tdi = (struct T_discon_ind *)mp->b_rptr;
3128 				if (tcp->tcp_issocket) {
3129 					tdi->DISCON_reason = ECONNREFUSED;
3130 					tdi->SEQ_number = 0;
3131 				} else {
3132 					tdi->DISCON_reason = ENOPROTOOPT;
3133 					tdi->SEQ_number =
3134 					    tcp->tcp_conn_req_seqnum;
3135 				}
3136 				mp->b_wptr = mp->b_rptr +
3137 				    sizeof (struct T_discon_ind);
3138 				putnext(q, mp);
3139 			}
3140 		}
3141 		tcp->tcp_hard_binding = B_FALSE;
3142 		return;
3143 	}
3144 
3145 	/*
3146 	 * This is the first time we run on the correct
3147 	 * queue after tcp_accept. So fix all the q parameters
3148 	 * here.
3149 	 */
3150 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3151 	sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3152 
3153 	sopp.sopp_rxhiwat = tcp->tcp_fused ?
3154 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3155 	    connp->conn_rcvbuf;
3156 
3157 	/*
3158 	 * Determine what write offset value to use depending on SACK and
3159 	 * whether the endpoint is fused or not.
3160 	 */
3161 	if (tcp->tcp_fused) {
3162 		ASSERT(tcp->tcp_loopback);
3163 		ASSERT(tcp->tcp_loopback_peer != NULL);
3164 		/*
3165 		 * For fused tcp loopback, set the stream head's write
3166 		 * offset value to zero since we won't be needing any room
3167 		 * for TCP/IP headers.  This would also improve performance
3168 		 * since it would reduce the amount of work done by kmem.
3169 		 * Non-fused tcp loopback case is handled separately below.
3170 		 */
3171 		sopp.sopp_wroff = 0;
3172 		/*
3173 		 * Update the peer's transmit parameters according to
3174 		 * our recently calculated high water mark value.
3175 		 */
3176 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3177 	} else if (tcp->tcp_snd_sack_ok) {
3178 		sopp.sopp_wroff = connp->conn_ht_iphc_allocated +
3179 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
3180 	} else {
3181 		sopp.sopp_wroff = connp->conn_ht_iphc_len +
3182 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
3183 	}
3184 
3185 	/*
3186 	 * If this is endpoint is handling SSL, then reserve extra
3187 	 * offset and space at the end.
3188 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
3189 	 * overriding the previous setting. The extra cost of signing and
3190 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
3191 	 * instead of a single contiguous one by the stream head
3192 	 * largely outweighs the statistical reduction of ACKs, when
3193 	 * applicable. The peer will also save on decryption and verification
3194 	 * costs.
3195 	 */
3196 	if (tcp->tcp_kssl_ctx != NULL) {
3197 		sopp.sopp_wroff += SSL3_WROFFSET;
3198 
3199 		sopp.sopp_flags |= SOCKOPT_TAIL;
3200 		sopp.sopp_tail = SSL3_MAX_TAIL_LEN;
3201 
3202 		sopp.sopp_flags |= SOCKOPT_ZCOPY;
3203 		sopp.sopp_zcopyflag = ZCVMUNSAFE;
3204 
3205 		sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN;
3206 	}
3207 
3208 	/* Send the options up */
3209 	if (IPCL_IS_NONSTR(connp)) {
3210 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
3211 			ASSERT(tcp->tcp_kssl_ctx != NULL);
3212 			ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY);
3213 		}
3214 		if (tcp->tcp_loopback) {
3215 			sopp.sopp_flags |= SOCKOPT_LOOPBACK;
3216 			sopp.sopp_loopback = B_TRUE;
3217 		}
3218 		(*connp->conn_upcalls->su_set_proto_props)
3219 		    (connp->conn_upper_handle, &sopp);
3220 		freemsg(mp);
3221 	} else {
3222 		/*
3223 		 * Let us reuse the incoming mblk to avoid
3224 		 * memory allocation failure problems. We know
3225 		 * that the size of the incoming mblk is at least
3226 		 * stroptions
3227 		 */
3228 		struct stroptions *stropt;
3229 
3230 		ASSERT(DB_REF(mp) == 1);
3231 		ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions));
3232 
3233 		DB_TYPE(mp) = M_SETOPTS;
3234 		stropt = (struct stroptions *)mp->b_rptr;
3235 		mp->b_wptr = mp->b_rptr + sizeof (struct stroptions);
3236 		stropt = (struct stroptions *)mp->b_rptr;
3237 		stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
3238 		stropt->so_hiwat = sopp.sopp_rxhiwat;
3239 		stropt->so_wroff = sopp.sopp_wroff;
3240 		stropt->so_maxblk = sopp.sopp_maxblk;
3241 
3242 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
3243 			ASSERT(tcp->tcp_kssl_ctx != NULL);
3244 
3245 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
3246 			stropt->so_tail = sopp.sopp_tail;
3247 			stropt->so_copyopt = sopp.sopp_zcopyflag;
3248 		}
3249 
3250 		/* Send the options up */
3251 		putnext(q, mp);
3252 	}
3253 
3254 	/*
3255 	 * Pass up any data and/or a fin that has been received.
3256 	 *
3257 	 * Adjust receive window in case it had decreased
3258 	 * (because there is data <=> tcp_rcv_list != NULL)
3259 	 * while the connection was detached. Note that
3260 	 * in case the eager was flow-controlled, w/o this
3261 	 * code, the rwnd may never open up again!
3262 	 */
3263 	if (tcp->tcp_rcv_list != NULL) {
3264 		if (IPCL_IS_NONSTR(connp)) {
3265 			mblk_t *mp;
3266 			int space_left;
3267 			int error;
3268 			boolean_t push = B_TRUE;
3269 
3270 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
3271 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
3272 			    &push) >= 0) {
3273 				tcp->tcp_rwnd = connp->conn_rcvbuf;
3274 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3275 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
3276 					tcp_xmit_ctl(NULL,
3277 					    tcp, (tcp->tcp_swnd == 0) ?
3278 					    tcp->tcp_suna : tcp->tcp_snxt,
3279 					    tcp->tcp_rnxt, TH_ACK);
3280 				}
3281 			}
3282 			while ((mp = tcp->tcp_rcv_list) != NULL) {
3283 				push = B_TRUE;
3284 				tcp->tcp_rcv_list = mp->b_next;
3285 				mp->b_next = NULL;
3286 				space_left = (*connp->conn_upcalls->su_recv)
3287 				    (connp->conn_upper_handle, mp, msgdsize(mp),
3288 				    0, &error, &push);
3289 				if (space_left < 0) {
3290 					/*
3291 					 * We should never be in middle of a
3292 					 * fallback, the squeue guarantees that.
3293 					 */
3294 					ASSERT(error != EOPNOTSUPP);
3295 				}
3296 			}
3297 			tcp->tcp_rcv_last_head = NULL;
3298 			tcp->tcp_rcv_last_tail = NULL;
3299 			tcp->tcp_rcv_cnt = 0;
3300 		} else {
3301 			/* We drain directly in case of fused tcp loopback */
3302 
3303 			if (!tcp->tcp_fused && canputnext(q)) {
3304 				tcp->tcp_rwnd = connp->conn_rcvbuf;
3305 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3306 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
3307 					tcp_xmit_ctl(NULL,
3308 					    tcp, (tcp->tcp_swnd == 0) ?
3309 					    tcp->tcp_suna : tcp->tcp_snxt,
3310 					    tcp->tcp_rnxt, TH_ACK);
3311 				}
3312 			}
3313 
3314 			(void) tcp_rcv_drain(tcp);
3315 		}
3316 
3317 		/*
3318 		 * For fused tcp loopback, back-enable peer endpoint
3319 		 * if it's currently flow-controlled.
3320 		 */
3321 		if (tcp->tcp_fused) {
3322 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
3323 
3324 			ASSERT(peer_tcp != NULL);
3325 			ASSERT(peer_tcp->tcp_fused);
3326 
3327 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
3328 			if (peer_tcp->tcp_flow_stopped) {
3329 				tcp_clrqfull(peer_tcp);
3330 				TCP_STAT(tcps, tcp_fusion_backenabled);
3331 			}
3332 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
3333 		}
3334 	}
3335 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
3336 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3337 		tcp->tcp_ordrel_done = B_TRUE;
3338 		if (IPCL_IS_NONSTR(connp)) {
3339 			ASSERT(tcp->tcp_ordrel_mp == NULL);
3340 			(*connp->conn_upcalls->su_opctl)(
3341 			    connp->conn_upper_handle,
3342 			    SOCK_OPCTL_SHUT_RECV, 0);
3343 		} else {
3344 			mp = tcp->tcp_ordrel_mp;
3345 			tcp->tcp_ordrel_mp = NULL;
3346 			putnext(q, mp);
3347 		}
3348 	}
3349 	tcp->tcp_hard_binding = B_FALSE;
3350 
3351 	if (connp->conn_keepalive) {
3352 		tcp->tcp_ka_last_intrvl = 0;
3353 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer,
3354 		    tcp->tcp_ka_interval);
3355 	}
3356 
3357 	/*
3358 	 * At this point, eager is fully established and will
3359 	 * have the following references -
3360 	 *
3361 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
3362 	 * 1 reference for the squeue which will be dropped by the squeue as
3363 	 *	soon as this function returns.
3364 	 * There will be 1 additonal reference for being in classifier
3365 	 *	hash list provided something bad hasn't happened.
3366 	 */
3367 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3368 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3369 }
3370 
3371 /*
3372  * Common to TPI and sockfs accept code.
3373  */
3374 /* ARGSUSED2 */
3375 int
3376 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
3377 {
3378 	tcp_t *listener, *eager;
3379 	mblk_t *discon_mp;
3380 
3381 	listener = lconnp->conn_tcp;
3382 	ASSERT(listener->tcp_state == TCPS_LISTEN);
3383 	eager = econnp->conn_tcp;
3384 	ASSERT(eager->tcp_listener != NULL);
3385 
3386 	/*
3387 	 * Pre allocate the discon_ind mblk also. tcp_accept_finish will
3388 	 * use it if something failed.
3389 	 */
3390 	discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
3391 	    sizeof (struct stroptions)), BPRI_HI);
3392 
3393 	if (discon_mp == NULL) {
3394 		return (-TPROTO);
3395 	}
3396 	eager->tcp_issocket = B_TRUE;
3397 
3398 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
3399 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
3400 	ASSERT(econnp->conn_netstack ==
3401 	    listener->tcp_connp->conn_netstack);
3402 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
3403 
3404 	/* Put the ref for IP */
3405 	CONN_INC_REF(econnp);
3406 
3407 	/*
3408 	 * We should have minimum of 3 references on the conn
3409 	 * at this point. One each for TCP and IP and one for
3410 	 * the T_conn_ind that was sent up when the 3-way handshake
3411 	 * completed. In the normal case we would also have another
3412 	 * reference (making a total of 4) for the conn being in the
3413 	 * classifier hash list. However the eager could have received
3414 	 * an RST subsequently and tcp_closei_local could have removed
3415 	 * the eager from the classifier hash list, hence we can't
3416 	 * assert that reference.
3417 	 */
3418 	ASSERT(econnp->conn_ref >= 3);
3419 
3420 	mutex_enter(&listener->tcp_eager_lock);
3421 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
3422 
3423 		tcp_t *tail;
3424 		tcp_t *tcp;
3425 		mblk_t *mp1;
3426 
3427 		tcp = listener->tcp_eager_prev_q0;
3428 		/*
3429 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
3430 		 * deferred T_conn_ind queue. We need to get to the head
3431 		 * of the queue in order to send up T_conn_ind the same
3432 		 * order as how the 3WHS is completed.
3433 		 */
3434 		while (tcp != listener) {
3435 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
3436 			    !tcp->tcp_kssl_pending)
3437 				break;
3438 			else
3439 				tcp = tcp->tcp_eager_prev_q0;
3440 		}
3441 		/* None of the pending eagers can be sent up now */
3442 		if (tcp == listener)
3443 			goto no_more_eagers;
3444 
3445 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
3446 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3447 		/* Move from q0 to q */
3448 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
3449 		listener->tcp_conn_req_cnt_q0--;
3450 		listener->tcp_conn_req_cnt_q++;
3451 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
3452 		    tcp->tcp_eager_prev_q0;
3453 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
3454 		    tcp->tcp_eager_next_q0;
3455 		tcp->tcp_eager_prev_q0 = NULL;
3456 		tcp->tcp_eager_next_q0 = NULL;
3457 		tcp->tcp_conn_def_q0 = B_FALSE;
3458 
3459 		/* Make sure the tcp isn't in the list of droppables */
3460 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
3461 		    tcp->tcp_eager_prev_drop_q0 == NULL);
3462 
3463 		/*
3464 		 * Insert at end of the queue because sockfs sends
3465 		 * down T_CONN_RES in chronological order. Leaving
3466 		 * the older conn indications at front of the queue
3467 		 * helps reducing search time.
3468 		 */
3469 		tail = listener->tcp_eager_last_q;
3470 		if (tail != NULL) {
3471 			tail->tcp_eager_next_q = tcp;
3472 		} else {
3473 			listener->tcp_eager_next_q = tcp;
3474 		}
3475 		listener->tcp_eager_last_q = tcp;
3476 		tcp->tcp_eager_next_q = NULL;
3477 
3478 		/* Need to get inside the listener perimeter */
3479 		CONN_INC_REF(listener->tcp_connp);
3480 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
3481 		    tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL,
3482 		    SQTAG_TCP_SEND_PENDING);
3483 	}
3484 no_more_eagers:
3485 	tcp_eager_unlink(eager);
3486 	mutex_exit(&listener->tcp_eager_lock);
3487 
3488 	/*
3489 	 * At this point, the eager is detached from the listener
3490 	 * but we still have an extra refs on eager (apart from the
3491 	 * usual tcp references). The ref was placed in tcp_input_data
3492 	 * before sending the conn_ind in tcp_send_conn_ind.
3493 	 * The ref will be dropped in tcp_accept_finish().
3494 	 */
3495 	SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish,
3496 	    econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
3497 	return (0);
3498 }
3499 
3500 /*
3501  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3502  */
3503 boolean_t
3504 tcp_zcopy_check(tcp_t *tcp)
3505 {
3506 	conn_t		*connp = tcp->tcp_connp;
3507 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3508 	boolean_t	zc_enabled = B_FALSE;
3509 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3510 
3511 	if (do_tcpzcopy == 2)
3512 		zc_enabled = B_TRUE;
3513 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3514 		zc_enabled = B_TRUE;
3515 
3516 	tcp->tcp_snd_zcopy_on = zc_enabled;
3517 	if (!TCP_IS_DETACHED(tcp)) {
3518 		if (zc_enabled) {
3519 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3520 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3521 			    ZCVMSAFE);
3522 			TCP_STAT(tcps, tcp_zcopy_on);
3523 		} else {
3524 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3525 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3526 			    ZCVMUNSAFE);
3527 			TCP_STAT(tcps, tcp_zcopy_off);
3528 		}
3529 	}
3530 	return (zc_enabled);
3531 }
3532 
3533 /*
3534  * Backoff from a zero-copy message by copying data to a new allocated
3535  * message and freeing the original desballoca'ed segmapped message.
3536  *
3537  * This function is called by following two callers:
3538  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3539  *    the origial desballoca'ed message and notify sockfs. This is in re-
3540  *    transmit state.
3541  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3542  *    to be copied to new message.
3543  */
3544 mblk_t *
3545 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3546 {
3547 	mblk_t		*nbp;
3548 	mblk_t		*head = NULL;
3549 	mblk_t		*tail = NULL;
3550 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3551 
3552 	ASSERT(bp != NULL);
3553 	while (bp != NULL) {
3554 		if (IS_VMLOANED_MBLK(bp)) {
3555 			TCP_STAT(tcps, tcp_zcopy_backoff);
3556 			if ((nbp = copyb(bp)) == NULL) {
3557 				tcp->tcp_xmit_zc_clean = B_FALSE;
3558 				if (tail != NULL)
3559 					tail->b_cont = bp;
3560 				return ((head == NULL) ? bp : head);
3561 			}
3562 
3563 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3564 				if (fix_xmitlist)
3565 					tcp_zcopy_notify(tcp);
3566 				else
3567 					nbp->b_datap->db_struioflag |=
3568 					    STRUIO_ZCNOTIFY;
3569 			}
3570 			nbp->b_cont = bp->b_cont;
3571 
3572 			/*
3573 			 * Copy saved information and adjust tcp_xmit_tail
3574 			 * if needed.
3575 			 */
3576 			if (fix_xmitlist) {
3577 				nbp->b_prev = bp->b_prev;
3578 				nbp->b_next = bp->b_next;
3579 
3580 				if (tcp->tcp_xmit_tail == bp)
3581 					tcp->tcp_xmit_tail = nbp;
3582 			}
3583 
3584 			/* Free the original message. */
3585 			bp->b_prev = NULL;
3586 			bp->b_next = NULL;
3587 			freeb(bp);
3588 
3589 			bp = nbp;
3590 		}
3591 
3592 		if (head == NULL) {
3593 			head = bp;
3594 		}
3595 		if (tail == NULL) {
3596 			tail = bp;
3597 		} else {
3598 			tail->b_cont = bp;
3599 			tail = bp;
3600 		}
3601 
3602 		/* Move forward. */
3603 		bp = bp->b_cont;
3604 	}
3605 
3606 	if (fix_xmitlist) {
3607 		tcp->tcp_xmit_last = tail;
3608 		tcp->tcp_xmit_zc_clean = B_TRUE;
3609 	}
3610 
3611 	return (head);
3612 }
3613 
3614 void
3615 tcp_zcopy_notify(tcp_t *tcp)
3616 {
3617 	struct stdata	*stp;
3618 	conn_t		*connp;
3619 
3620 	if (tcp->tcp_detached)
3621 		return;
3622 	connp = tcp->tcp_connp;
3623 	if (IPCL_IS_NONSTR(connp)) {
3624 		(*connp->conn_upcalls->su_zcopy_notify)
3625 		    (connp->conn_upper_handle);
3626 		return;
3627 	}
3628 	stp = STREAM(connp->conn_rq);
3629 	mutex_enter(&stp->sd_lock);
3630 	stp->sd_flag |= STZCNOTIFY;
3631 	cv_broadcast(&stp->sd_zcopy_wait);
3632 	mutex_exit(&stp->sd_lock);
3633 }
3634 
3635 /*
3636  * Update the TCP connection according to change of LSO capability.
3637  */
3638 static void
3639 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3640 {
3641 	/*
3642 	 * We check against IPv4 header length to preserve the old behavior
3643 	 * of only enabling LSO when there are no IP options.
3644 	 * But this restriction might not be necessary at all. Before removing
3645 	 * it, need to verify how LSO is handled for source routing case, with
3646 	 * which IP does software checksum.
3647 	 *
3648 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3649 	 */
3650 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3651 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3652 		return;
3653 
3654 	/*
3655 	 * Either the LSO capability newly became usable, or it has changed.
3656 	 */
3657 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3658 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3659 
3660 		ASSERT(lsoc->ill_lso_max > 0);
3661 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3662 
3663 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3664 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3665 
3666 		/*
3667 		 * If LSO to be enabled, notify the STREAM header with larger
3668 		 * data block.
3669 		 */
3670 		if (!tcp->tcp_lso)
3671 			tcp->tcp_maxpsz_multiplier = 0;
3672 
3673 		tcp->tcp_lso = B_TRUE;
3674 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3675 	} else { /* LSO capability is not usable any more. */
3676 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3677 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3678 
3679 		/*
3680 		 * If LSO to be disabled, notify the STREAM header with smaller
3681 		 * data block. And need to restore fragsize to PMTU.
3682 		 */
3683 		if (tcp->tcp_lso) {
3684 			tcp->tcp_maxpsz_multiplier =
3685 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3686 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3687 			tcp->tcp_lso = B_FALSE;
3688 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3689 		}
3690 	}
3691 
3692 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3693 }
3694 
3695 /*
3696  * Update the TCP connection according to change of ZEROCOPY capability.
3697  */
3698 static void
3699 tcp_update_zcopy(tcp_t *tcp)
3700 {
3701 	conn_t		*connp = tcp->tcp_connp;
3702 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3703 
3704 	if (tcp->tcp_snd_zcopy_on) {
3705 		tcp->tcp_snd_zcopy_on = B_FALSE;
3706 		if (!TCP_IS_DETACHED(tcp)) {
3707 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3708 			    ZCVMUNSAFE);
3709 			TCP_STAT(tcps, tcp_zcopy_off);
3710 		}
3711 	} else {
3712 		tcp->tcp_snd_zcopy_on = B_TRUE;
3713 		if (!TCP_IS_DETACHED(tcp)) {
3714 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3715 			    ZCVMSAFE);
3716 			TCP_STAT(tcps, tcp_zcopy_on);
3717 		}
3718 	}
3719 }
3720 
3721 /*
3722  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3723  * so it's safe to update the TCP connection.
3724  */
3725 /* ARGSUSED1 */
3726 static void
3727 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3728     ixa_notify_arg_t narg)
3729 {
3730 	tcp_t		*tcp = (tcp_t *)arg;
3731 	conn_t		*connp = tcp->tcp_connp;
3732 
3733 	switch (ntype) {
3734 	case IXAN_LSO:
3735 		tcp_update_lso(tcp, connp->conn_ixa);
3736 		break;
3737 	case IXAN_PMTU:
3738 		tcp_update_pmtu(tcp, B_FALSE);
3739 		break;
3740 	case IXAN_ZCOPY:
3741 		tcp_update_zcopy(tcp);
3742 		break;
3743 	default:
3744 		break;
3745 	}
3746 }
3747 
3748 /*
3749  * The TCP write service routine should never be called...
3750  */
3751 /* ARGSUSED */
3752 static void
3753 tcp_wsrv(queue_t *q)
3754 {
3755 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3756 
3757 	TCP_STAT(tcps, tcp_wsrv_called);
3758 }
3759 
3760 /*
3761  * Hash list lookup routine for tcp_t structures.
3762  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3763  */
3764 tcp_t *
3765 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3766 {
3767 	tf_t	*tf;
3768 	tcp_t	*tcp;
3769 
3770 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3771 	mutex_enter(&tf->tf_lock);
3772 	for (tcp = tf->tf_tcp; tcp != NULL;
3773 	    tcp = tcp->tcp_acceptor_hash) {
3774 		if (tcp->tcp_acceptor_id == id) {
3775 			CONN_INC_REF(tcp->tcp_connp);
3776 			mutex_exit(&tf->tf_lock);
3777 			return (tcp);
3778 		}
3779 	}
3780 	mutex_exit(&tf->tf_lock);
3781 	return (NULL);
3782 }
3783 
3784 /*
3785  * Hash list insertion routine for tcp_t structures.
3786  */
3787 void
3788 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3789 {
3790 	tf_t	*tf;
3791 	tcp_t	**tcpp;
3792 	tcp_t	*tcpnext;
3793 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3794 
3795 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3796 
3797 	if (tcp->tcp_ptpahn != NULL)
3798 		tcp_acceptor_hash_remove(tcp);
3799 	tcpp = &tf->tf_tcp;
3800 	mutex_enter(&tf->tf_lock);
3801 	tcpnext = tcpp[0];
3802 	if (tcpnext)
3803 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3804 	tcp->tcp_acceptor_hash = tcpnext;
3805 	tcp->tcp_ptpahn = tcpp;
3806 	tcpp[0] = tcp;
3807 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3808 	mutex_exit(&tf->tf_lock);
3809 }
3810 
3811 /*
3812  * Hash list removal routine for tcp_t structures.
3813  */
3814 void
3815 tcp_acceptor_hash_remove(tcp_t *tcp)
3816 {
3817 	tcp_t	*tcpnext;
3818 	kmutex_t *lockp;
3819 
3820 	/*
3821 	 * Extract the lock pointer in case there are concurrent
3822 	 * hash_remove's for this instance.
3823 	 */
3824 	lockp = tcp->tcp_acceptor_lockp;
3825 
3826 	if (tcp->tcp_ptpahn == NULL)
3827 		return;
3828 
3829 	ASSERT(lockp != NULL);
3830 	mutex_enter(lockp);
3831 	if (tcp->tcp_ptpahn) {
3832 		tcpnext = tcp->tcp_acceptor_hash;
3833 		if (tcpnext) {
3834 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3835 			tcp->tcp_acceptor_hash = NULL;
3836 		}
3837 		*tcp->tcp_ptpahn = tcpnext;
3838 		tcp->tcp_ptpahn = NULL;
3839 	}
3840 	mutex_exit(lockp);
3841 	tcp->tcp_acceptor_lockp = NULL;
3842 }
3843 
3844 /*
3845  * Type three generator adapted from the random() function in 4.4 BSD:
3846  */
3847 
3848 /*
3849  * Copyright (c) 1983, 1993
3850  *	The Regents of the University of California.  All rights reserved.
3851  *
3852  * Redistribution and use in source and binary forms, with or without
3853  * modification, are permitted provided that the following conditions
3854  * are met:
3855  * 1. Redistributions of source code must retain the above copyright
3856  *    notice, this list of conditions and the following disclaimer.
3857  * 2. Redistributions in binary form must reproduce the above copyright
3858  *    notice, this list of conditions and the following disclaimer in the
3859  *    documentation and/or other materials provided with the distribution.
3860  * 3. All advertising materials mentioning features or use of this software
3861  *    must display the following acknowledgement:
3862  *	This product includes software developed by the University of
3863  *	California, Berkeley and its contributors.
3864  * 4. Neither the name of the University nor the names of its contributors
3865  *    may be used to endorse or promote products derived from this software
3866  *    without specific prior written permission.
3867  *
3868  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3869  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3870  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3871  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3872  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3873  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3874  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3875  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3876  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3877  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3878  * SUCH DAMAGE.
3879  */
3880 
3881 /* Type 3 -- x**31 + x**3 + 1 */
3882 #define	DEG_3		31
3883 #define	SEP_3		3
3884 
3885 
3886 /* Protected by tcp_random_lock */
3887 static int tcp_randtbl[DEG_3 + 1];
3888 
3889 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3890 static int *tcp_random_rptr = &tcp_randtbl[1];
3891 
3892 static int *tcp_random_state = &tcp_randtbl[1];
3893 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3894 
3895 kmutex_t tcp_random_lock;
3896 
3897 void
3898 tcp_random_init(void)
3899 {
3900 	int i;
3901 	hrtime_t hrt;
3902 	time_t wallclock;
3903 	uint64_t result;
3904 
3905 	/*
3906 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3907 	 * a longlong, which may contain resolution down to nanoseconds.
3908 	 * The current time will either be a 32-bit or a 64-bit quantity.
3909 	 * XOR the two together in a 64-bit result variable.
3910 	 * Convert the result to a 32-bit value by multiplying the high-order
3911 	 * 32-bits by the low-order 32-bits.
3912 	 */
3913 
3914 	hrt = gethrtime();
3915 	(void) drv_getparm(TIME, &wallclock);
3916 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3917 	mutex_enter(&tcp_random_lock);
3918 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3919 	    (result & 0xffffffff);
3920 
3921 	for (i = 1; i < DEG_3; i++)
3922 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3923 		    + 12345;
3924 	tcp_random_fptr = &tcp_random_state[SEP_3];
3925 	tcp_random_rptr = &tcp_random_state[0];
3926 	mutex_exit(&tcp_random_lock);
3927 	for (i = 0; i < 10 * DEG_3; i++)
3928 		(void) tcp_random();
3929 }
3930 
3931 /*
3932  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3933  * This range is selected to be approximately centered on TCP_ISS / 2,
3934  * and easy to compute. We get this value by generating a 32-bit random
3935  * number, selecting out the high-order 17 bits, and then adding one so
3936  * that we never return zero.
3937  */
3938 int
3939 tcp_random(void)
3940 {
3941 	int i;
3942 
3943 	mutex_enter(&tcp_random_lock);
3944 	*tcp_random_fptr += *tcp_random_rptr;
3945 
3946 	/*
3947 	 * The high-order bits are more random than the low-order bits,
3948 	 * so we select out the high-order 17 bits and add one so that
3949 	 * we never return zero.
3950 	 */
3951 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3952 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3953 		tcp_random_fptr = tcp_random_state;
3954 		++tcp_random_rptr;
3955 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3956 		tcp_random_rptr = tcp_random_state;
3957 
3958 	mutex_exit(&tcp_random_lock);
3959 	return (i);
3960 }
3961 
3962 /*
3963  * Split this function out so that if the secret changes, I'm okay.
3964  *
3965  * Initialize the tcp_iss_cookie and tcp_iss_key.
3966  */
3967 
3968 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3969 
3970 void
3971 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3972 {
3973 	struct {
3974 		int32_t current_time;
3975 		uint32_t randnum;
3976 		uint16_t pad;
3977 		uint8_t ether[6];
3978 		uint8_t passwd[PASSWD_SIZE];
3979 	} tcp_iss_cookie;
3980 	time_t t;
3981 
3982 	/*
3983 	 * Start with the current absolute time.
3984 	 */
3985 	(void) drv_getparm(TIME, &t);
3986 	tcp_iss_cookie.current_time = t;
3987 
3988 	/*
3989 	 * XXX - Need a more random number per RFC 1750, not this crap.
3990 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3991 	 */
3992 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3993 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3994 
3995 	/*
3996 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3997 	 * as a good template.
3998 	 */
3999 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
4000 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
4001 
4002 	/*
4003 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
4004 	 */
4005 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
4006 
4007 	/*
4008 	 * See 4010593 if this section becomes a problem again,
4009 	 * but the local ethernet address is useful here.
4010 	 */
4011 	(void) localetheraddr(NULL,
4012 	    (struct ether_addr *)&tcp_iss_cookie.ether);
4013 
4014 	/*
4015 	 * Hash 'em all together.  The MD5Final is called per-connection.
4016 	 */
4017 	mutex_enter(&tcps->tcps_iss_key_lock);
4018 	MD5Init(&tcps->tcps_iss_key);
4019 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
4020 	    sizeof (tcp_iss_cookie));
4021 	mutex_exit(&tcps->tcps_iss_key_lock);
4022 }
4023 
4024 /*
4025  * Called by IP when IP is loaded into the kernel
4026  */
4027 void
4028 tcp_ddi_g_init(void)
4029 {
4030 	tcp_timercache = kmem_cache_create("tcp_timercache",
4031 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
4032 	    NULL, NULL, NULL, NULL, NULL, 0);
4033 
4034 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
4035 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
4036 
4037 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
4038 
4039 	/* Initialize the random number generator */
4040 	tcp_random_init();
4041 
4042 	/* A single callback independently of how many netstacks we have */
4043 	ip_squeue_init(tcp_squeue_add);
4044 
4045 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
4046 
4047 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
4048 
4049 	/*
4050 	 * We want to be informed each time a stack is created or
4051 	 * destroyed in the kernel, so we can maintain the
4052 	 * set of tcp_stack_t's.
4053 	 */
4054 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
4055 
4056 	mutex_enter(&cpu_lock);
4057 	register_cpu_setup_func(tcp_cpu_update, NULL);
4058 	mutex_exit(&cpu_lock);
4059 }
4060 
4061 
4062 #define	INET_NAME	"ip"
4063 
4064 /*
4065  * Initialize the TCP stack instance.
4066  */
4067 static void *
4068 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
4069 {
4070 	tcp_stack_t	*tcps;
4071 	int		i;
4072 	int		error = 0;
4073 	major_t		major;
4074 	size_t		arrsz;
4075 
4076 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
4077 	tcps->tcps_netstack = ns;
4078 
4079 	/* Initialize locks */
4080 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
4081 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
4082 
4083 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
4084 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
4085 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
4086 	tcps->tcps_min_anonpriv_port = 512;
4087 
4088 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
4089 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
4090 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
4091 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
4092 
4093 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
4094 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
4095 		    MUTEX_DEFAULT, NULL);
4096 	}
4097 
4098 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
4099 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
4100 		    MUTEX_DEFAULT, NULL);
4101 	}
4102 
4103 	/* TCP's IPsec code calls the packet dropper. */
4104 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
4105 
4106 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
4107 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
4108 	    KM_SLEEP);
4109 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
4110 
4111 	/*
4112 	 * Note: To really walk the device tree you need the devinfo
4113 	 * pointer to your device which is only available after probe/attach.
4114 	 * The following is safe only because it uses ddi_root_node()
4115 	 */
4116 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
4117 	    tcp_opt_obj.odb_opt_arr_cnt);
4118 
4119 	/*
4120 	 * Initialize RFC 1948 secret values.  This will probably be reset once
4121 	 * by the boot scripts.
4122 	 *
4123 	 * Use NULL name, as the name is caught by the new lockstats.
4124 	 *
4125 	 * Initialize with some random, non-guessable string, like the global
4126 	 * T_INFO_ACK.
4127 	 */
4128 
4129 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
4130 	    sizeof (tcp_g_t_info_ack), tcps);
4131 
4132 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
4133 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
4134 
4135 	major = mod_name_to_major(INET_NAME);
4136 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
4137 	ASSERT(error == 0);
4138 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
4139 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
4140 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
4141 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
4142 
4143 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
4144 	tcps->tcps_reclaim = B_FALSE;
4145 	tcps->tcps_reclaim_tid = 0;
4146 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
4147 
4148 	/*
4149 	 * ncpus is the current number of CPUs, which can be bigger than
4150 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
4151 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
4152 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
4153 	 * there are many CPUs as we will be adding them 1 by 1.
4154 	 *
4155 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
4156 	 * are not freed until the stack is going away.  So there is no need
4157 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
4158 	 */
4159 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
4160 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
4161 	    KM_SLEEP);
4162 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
4163 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
4164 		    KM_SLEEP);
4165 	}
4166 
4167 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
4168 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
4169 	    offsetof(tcp_listener_t, tl_link));
4170 
4171 	return (tcps);
4172 }
4173 
4174 /*
4175  * Called when the IP module is about to be unloaded.
4176  */
4177 void
4178 tcp_ddi_g_destroy(void)
4179 {
4180 	mutex_enter(&cpu_lock);
4181 	unregister_cpu_setup_func(tcp_cpu_update, NULL);
4182 	mutex_exit(&cpu_lock);
4183 
4184 	tcp_g_kstat_fini(tcp_g_kstat);
4185 	tcp_g_kstat = NULL;
4186 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
4187 
4188 	mutex_destroy(&tcp_random_lock);
4189 
4190 	kmem_cache_destroy(tcp_timercache);
4191 	kmem_cache_destroy(tcp_notsack_blk_cache);
4192 
4193 	netstack_unregister(NS_TCP);
4194 }
4195 
4196 /*
4197  * Free the TCP stack instance.
4198  */
4199 static void
4200 tcp_stack_fini(netstackid_t stackid, void *arg)
4201 {
4202 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
4203 	int i;
4204 
4205 	freeb(tcps->tcps_ixa_cleanup_mp);
4206 	tcps->tcps_ixa_cleanup_mp = NULL;
4207 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
4208 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
4209 
4210 	/*
4211 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
4212 	 * the timer.
4213 	 */
4214 	mutex_enter(&tcps->tcps_reclaim_lock);
4215 	tcps->tcps_reclaim = B_FALSE;
4216 	mutex_exit(&tcps->tcps_reclaim_lock);
4217 	if (tcps->tcps_reclaim_tid != 0)
4218 		(void) untimeout(tcps->tcps_reclaim_tid);
4219 	mutex_destroy(&tcps->tcps_reclaim_lock);
4220 
4221 	tcp_listener_conf_cleanup(tcps);
4222 
4223 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
4224 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
4225 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
4226 
4227 	kmem_free(tcps->tcps_propinfo_tbl,
4228 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
4229 	tcps->tcps_propinfo_tbl = NULL;
4230 
4231 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
4232 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
4233 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
4234 	}
4235 
4236 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
4237 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
4238 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
4239 	}
4240 
4241 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
4242 	tcps->tcps_bind_fanout = NULL;
4243 
4244 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
4245 	    TCP_ACCEPTOR_FANOUT_SIZE);
4246 	tcps->tcps_acceptor_fanout = NULL;
4247 
4248 	mutex_destroy(&tcps->tcps_iss_key_lock);
4249 	mutex_destroy(&tcps->tcps_epriv_port_lock);
4250 
4251 	ip_drop_unregister(&tcps->tcps_dropper);
4252 
4253 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
4254 	tcps->tcps_kstat = NULL;
4255 
4256 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
4257 	tcps->tcps_mibkp = NULL;
4258 
4259 	ldi_ident_release(tcps->tcps_ldi_ident);
4260 	kmem_free(tcps, sizeof (*tcps));
4261 }
4262 
4263 /*
4264  * Generate ISS, taking into account NDD changes may happen halfway through.
4265  * (If the iss is not zero, set it.)
4266  */
4267 
4268 static void
4269 tcp_iss_init(tcp_t *tcp)
4270 {
4271 	MD5_CTX context;
4272 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
4273 	uint32_t answer[4];
4274 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4275 	conn_t		*connp = tcp->tcp_connp;
4276 
4277 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
4278 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
4279 	switch (tcps->tcps_strong_iss) {
4280 	case 2:
4281 		mutex_enter(&tcps->tcps_iss_key_lock);
4282 		context = tcps->tcps_iss_key;
4283 		mutex_exit(&tcps->tcps_iss_key_lock);
4284 		arg.ports = connp->conn_ports;
4285 		arg.src = connp->conn_laddr_v6;
4286 		arg.dst = connp->conn_faddr_v6;
4287 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
4288 		MD5Final((uchar_t *)answer, &context);
4289 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
4290 		/*
4291 		 * Now that we've hashed into a unique per-connection sequence
4292 		 * space, add a random increment per strong_iss == 1.  So I
4293 		 * guess we'll have to...
4294 		 */
4295 		/* FALLTHRU */
4296 	case 1:
4297 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
4298 		break;
4299 	default:
4300 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
4301 		break;
4302 	}
4303 	tcp->tcp_valid_bits = TCP_ISS_VALID;
4304 	tcp->tcp_fss = tcp->tcp_iss - 1;
4305 	tcp->tcp_suna = tcp->tcp_iss;
4306 	tcp->tcp_snxt = tcp->tcp_iss + 1;
4307 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4308 	tcp->tcp_csuna = tcp->tcp_snxt;
4309 }
4310 
4311 /*
4312  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
4313  * on the specified backing STREAMS q. Note, the caller may make the
4314  * decision to call based on the tcp_t.tcp_flow_stopped value which
4315  * when check outside the q's lock is only an advisory check ...
4316  */
4317 void
4318 tcp_setqfull(tcp_t *tcp)
4319 {
4320 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4321 	conn_t	*connp = tcp->tcp_connp;
4322 
4323 	if (tcp->tcp_closed)
4324 		return;
4325 
4326 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
4327 	if (tcp->tcp_flow_stopped)
4328 		TCP_STAT(tcps, tcp_flwctl_on);
4329 }
4330 
4331 void
4332 tcp_clrqfull(tcp_t *tcp)
4333 {
4334 	conn_t  *connp = tcp->tcp_connp;
4335 
4336 	if (tcp->tcp_closed)
4337 		return;
4338 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
4339 }
4340 
4341 static int
4342 tcp_squeue_switch(int val)
4343 {
4344 	int rval = SQ_FILL;
4345 
4346 	switch (val) {
4347 	case 1:
4348 		rval = SQ_NODRAIN;
4349 		break;
4350 	case 2:
4351 		rval = SQ_PROCESS;
4352 		break;
4353 	default:
4354 		break;
4355 	}
4356 	return (rval);
4357 }
4358 
4359 /*
4360  * This is called once for each squeue - globally for all stack
4361  * instances.
4362  */
4363 static void
4364 tcp_squeue_add(squeue_t *sqp)
4365 {
4366 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4367 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4368 
4369 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4370 	if (tcp_free_list_max_cnt == 0) {
4371 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4372 		    max_ncpus : boot_max_ncpus);
4373 
4374 		/*
4375 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4376 		 */
4377 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4378 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4379 	}
4380 	tcp_time_wait->tcp_free_list_cnt = 0;
4381 }
4382 /*
4383  * Return unix error is tli error is TSYSERR, otherwise return a negative
4384  * tli error.
4385  */
4386 int
4387 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4388     boolean_t bind_to_req_port_only)
4389 {
4390 	int error;
4391 	tcp_t *tcp = connp->conn_tcp;
4392 
4393 	if (tcp->tcp_state >= TCPS_BOUND) {
4394 		if (connp->conn_debug) {
4395 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4396 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4397 		}
4398 		return (-TOUTSTATE);
4399 	}
4400 
4401 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4402 	if (error != 0)
4403 		return (error);
4404 
4405 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4406 	tcp->tcp_conn_req_max = 0;
4407 	return (0);
4408 }
4409 
4410 /*
4411  * If the return value from this function is positive, it's a UNIX error.
4412  * Otherwise, if it's negative, then the absolute value is a TLI error.
4413  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4414  */
4415 int
4416 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4417     cred_t *cr, pid_t pid)
4418 {
4419 	tcp_t		*tcp = connp->conn_tcp;
4420 	sin_t		*sin = (sin_t *)sa;
4421 	sin6_t		*sin6 = (sin6_t *)sa;
4422 	ipaddr_t	*dstaddrp;
4423 	in_port_t	dstport;
4424 	uint_t		srcid;
4425 	int		error;
4426 	uint32_t	mss;
4427 	mblk_t		*syn_mp;
4428 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4429 	int32_t		oldstate;
4430 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4431 
4432 	oldstate = tcp->tcp_state;
4433 
4434 	switch (len) {
4435 	default:
4436 		/*
4437 		 * Should never happen
4438 		 */
4439 		return (EINVAL);
4440 
4441 	case sizeof (sin_t):
4442 		sin = (sin_t *)sa;
4443 		if (sin->sin_port == 0) {
4444 			return (-TBADADDR);
4445 		}
4446 		if (connp->conn_ipv6_v6only) {
4447 			return (EAFNOSUPPORT);
4448 		}
4449 		break;
4450 
4451 	case sizeof (sin6_t):
4452 		sin6 = (sin6_t *)sa;
4453 		if (sin6->sin6_port == 0) {
4454 			return (-TBADADDR);
4455 		}
4456 		break;
4457 	}
4458 	/*
4459 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4460 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4461 	 * need to this before we call tcp_bindi() so that the port lookup
4462 	 * code will look for ports in the correct port space (IPv4 and
4463 	 * IPv6 have separate port spaces).
4464 	 */
4465 	if (connp->conn_family == AF_INET6 &&
4466 	    connp->conn_ipversion == IPV6_VERSION &&
4467 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4468 		if (connp->conn_ipv6_v6only)
4469 			return (EADDRNOTAVAIL);
4470 
4471 		connp->conn_ipversion = IPV4_VERSION;
4472 	}
4473 
4474 	switch (tcp->tcp_state) {
4475 	case TCPS_LISTEN:
4476 		/*
4477 		 * Listening sockets are not allowed to issue connect().
4478 		 */
4479 		if (IPCL_IS_NONSTR(connp))
4480 			return (EOPNOTSUPP);
4481 		/* FALLTHRU */
4482 	case TCPS_IDLE:
4483 		/*
4484 		 * We support quick connect, refer to comments in
4485 		 * tcp_connect_*()
4486 		 */
4487 		/* FALLTHRU */
4488 	case TCPS_BOUND:
4489 		break;
4490 	default:
4491 		return (-TOUTSTATE);
4492 	}
4493 
4494 	/*
4495 	 * We update our cred/cpid based on the caller of connect
4496 	 */
4497 	if (connp->conn_cred != cr) {
4498 		crhold(cr);
4499 		crfree(connp->conn_cred);
4500 		connp->conn_cred = cr;
4501 	}
4502 	connp->conn_cpid = pid;
4503 
4504 	/* Cache things in the ixa without any refhold */
4505 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4506 	ixa->ixa_cred = cr;
4507 	ixa->ixa_cpid = pid;
4508 	if (is_system_labeled()) {
4509 		/* We need to restart with a label based on the cred */
4510 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4511 	}
4512 
4513 	if (connp->conn_family == AF_INET6) {
4514 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4515 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4516 			    sin6->sin6_port, sin6->sin6_flowinfo,
4517 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4518 		} else {
4519 			/*
4520 			 * Destination adress is mapped IPv6 address.
4521 			 * Source bound address should be unspecified or
4522 			 * IPv6 mapped address as well.
4523 			 */
4524 			if (!IN6_IS_ADDR_UNSPECIFIED(
4525 			    &connp->conn_bound_addr_v6) &&
4526 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4527 				return (EADDRNOTAVAIL);
4528 			}
4529 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4530 			dstport = sin6->sin6_port;
4531 			srcid = sin6->__sin6_src_id;
4532 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4533 			    srcid);
4534 		}
4535 	} else {
4536 		dstaddrp = &sin->sin_addr.s_addr;
4537 		dstport = sin->sin_port;
4538 		srcid = 0;
4539 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4540 	}
4541 
4542 	if (error != 0)
4543 		goto connect_failed;
4544 
4545 	CL_INET_CONNECT(connp, B_TRUE, error);
4546 	if (error != 0)
4547 		goto connect_failed;
4548 
4549 	/* connect succeeded */
4550 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4551 	tcp->tcp_active_open = 1;
4552 
4553 	/*
4554 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4555 	 */
4556 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4557 
4558 	/*
4559 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4560 	 * to the nearest MSS.
4561 	 *
4562 	 * We do the round up here because we need to get the interface MTU
4563 	 * first before we can do the round up.
4564 	 */
4565 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4566 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4567 	    tcps->tcps_recv_hiwat_minmss * mss);
4568 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4569 	tcp_set_ws_value(tcp);
4570 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4571 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4572 		tcp->tcp_snd_ws_ok = B_TRUE;
4573 
4574 	/*
4575 	 * Set tcp_snd_ts_ok to true
4576 	 * so that tcp_xmit_mp will
4577 	 * include the timestamp
4578 	 * option in the SYN segment.
4579 	 */
4580 	if (tcps->tcps_tstamp_always ||
4581 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4582 		tcp->tcp_snd_ts_ok = B_TRUE;
4583 	}
4584 
4585 	/*
4586 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4587 	 * the SACK metric is set.  So here we just check the per stack SACK
4588 	 * permitted param.
4589 	 */
4590 	if (tcps->tcps_sack_permitted == 2) {
4591 		ASSERT(tcp->tcp_num_sack_blk == 0);
4592 		ASSERT(tcp->tcp_notsack_list == NULL);
4593 		tcp->tcp_snd_sack_ok = B_TRUE;
4594 	}
4595 
4596 	/*
4597 	 * Should we use ECN?  Note that the current
4598 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4599 	 * is 1.  The reason for doing this is that there
4600 	 * are equipments out there that will drop ECN
4601 	 * enabled IP packets.  Setting it to 1 avoids
4602 	 * compatibility problems.
4603 	 */
4604 	if (tcps->tcps_ecn_permitted == 2)
4605 		tcp->tcp_ecn_ok = B_TRUE;
4606 
4607 	/* Trace change from BOUND -> SYN_SENT here */
4608 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4609 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4610 	    int32_t, TCPS_BOUND);
4611 
4612 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4613 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4614 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4615 	if (syn_mp != NULL) {
4616 		/*
4617 		 * We must bump the generation before sending the syn
4618 		 * to ensure that we use the right generation in case
4619 		 * this thread issues a "connected" up call.
4620 		 */
4621 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4622 		/*
4623 		 * DTrace sending the first SYN as a
4624 		 * tcp:::connect-request event.
4625 		 */
4626 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4627 		    ip_xmit_attr_t *, connp->conn_ixa,
4628 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4629 		    tcph_t *,
4630 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4631 		tcp_send_data(tcp, syn_mp);
4632 	}
4633 
4634 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4635 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4636 	return (0);
4637 
4638 connect_failed:
4639 	connp->conn_faddr_v6 = ipv6_all_zeros;
4640 	connp->conn_fport = 0;
4641 	tcp->tcp_state = oldstate;
4642 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4643 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4644 	return (error);
4645 }
4646 
4647 int
4648 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4649     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4650 {
4651 	tcp_t		*tcp = connp->conn_tcp;
4652 	int		error = 0;
4653 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4654 	int32_t		oldstate;
4655 
4656 	/* All Solaris components should pass a cred for this operation. */
4657 	ASSERT(cr != NULL);
4658 
4659 	if (tcp->tcp_state >= TCPS_BOUND) {
4660 		if ((tcp->tcp_state == TCPS_BOUND ||
4661 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4662 			/*
4663 			 * Handle listen() increasing backlog.
4664 			 * This is more "liberal" then what the TPI spec
4665 			 * requires but is needed to avoid a t_unbind
4666 			 * when handling listen() since the port number
4667 			 * might be "stolen" between the unbind and bind.
4668 			 */
4669 			goto do_listen;
4670 		}
4671 		if (connp->conn_debug) {
4672 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4673 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4674 		}
4675 		return (-TOUTSTATE);
4676 	} else {
4677 		if (sa == NULL) {
4678 			sin6_t	addr;
4679 			sin_t *sin;
4680 			sin6_t *sin6;
4681 
4682 			ASSERT(IPCL_IS_NONSTR(connp));
4683 			/* Do an implicit bind: Request for a generic port. */
4684 			if (connp->conn_family == AF_INET) {
4685 				len = sizeof (sin_t);
4686 				sin = (sin_t *)&addr;
4687 				*sin = sin_null;
4688 				sin->sin_family = AF_INET;
4689 			} else {
4690 				ASSERT(connp->conn_family == AF_INET6);
4691 				len = sizeof (sin6_t);
4692 				sin6 = (sin6_t *)&addr;
4693 				*sin6 = sin6_null;
4694 				sin6->sin6_family = AF_INET6;
4695 			}
4696 			sa = (struct sockaddr *)&addr;
4697 		}
4698 
4699 		error = tcp_bind_check(connp, sa, len, cr,
4700 		    bind_to_req_port_only);
4701 		if (error)
4702 			return (error);
4703 		/* Fall through and do the fanout insertion */
4704 	}
4705 
4706 do_listen:
4707 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4708 	tcp->tcp_conn_req_max = backlog;
4709 	if (tcp->tcp_conn_req_max) {
4710 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4711 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4712 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4713 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4714 		/*
4715 		 * If this is a listener, do not reset the eager list
4716 		 * and other stuffs.  Note that we don't check if the
4717 		 * existing eager list meets the new tcp_conn_req_max
4718 		 * requirement.
4719 		 */
4720 		if (tcp->tcp_state != TCPS_LISTEN) {
4721 			tcp->tcp_state = TCPS_LISTEN;
4722 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4723 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4724 			    void, NULL, int32_t, TCPS_BOUND);
4725 			/* Initialize the chain. Don't need the eager_lock */
4726 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4727 			tcp->tcp_eager_next_drop_q0 = tcp;
4728 			tcp->tcp_eager_prev_drop_q0 = tcp;
4729 			tcp->tcp_second_ctimer_threshold =
4730 			    tcps->tcps_ip_abort_linterval;
4731 		}
4732 	}
4733 
4734 	/*
4735 	 * We need to make sure that the conn_recv is set to a non-null
4736 	 * value before we insert the conn into the classifier table.
4737 	 * This is to avoid a race with an incoming packet which does an
4738 	 * ipcl_classify().
4739 	 * We initially set it to tcp_input_listener_unbound to try to
4740 	 * pick a good squeue for the listener when the first SYN arrives.
4741 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4742 	 * first SYN.
4743 	 */
4744 	connp->conn_recv = tcp_input_listener_unbound;
4745 
4746 	/* Insert the listener in the classifier table */
4747 	error = ip_laddr_fanout_insert(connp);
4748 	if (error != 0) {
4749 		/* Undo the bind - release the port number */
4750 		oldstate = tcp->tcp_state;
4751 		tcp->tcp_state = TCPS_IDLE;
4752 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4753 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4754 		    int32_t, oldstate);
4755 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4756 
4757 		connp->conn_laddr_v6 = ipv6_all_zeros;
4758 		connp->conn_saddr_v6 = ipv6_all_zeros;
4759 		connp->conn_ports = 0;
4760 
4761 		if (connp->conn_anon_port) {
4762 			zone_t		*zone;
4763 
4764 			zone = crgetzone(cr);
4765 			connp->conn_anon_port = B_FALSE;
4766 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4767 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4768 		}
4769 		connp->conn_mlp_type = mlptSingle;
4770 
4771 		tcp_bind_hash_remove(tcp);
4772 		return (error);
4773 	} else {
4774 		/*
4775 		 * If there is a connection limit, allocate and initialize
4776 		 * the counter struct.  Note that since listen can be called
4777 		 * multiple times, the struct may have been allready allocated.
4778 		 */
4779 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4780 		    tcp->tcp_listen_cnt == NULL) {
4781 			tcp_listen_cnt_t *tlc;
4782 			uint32_t ratio;
4783 
4784 			ratio = tcp_find_listener_conf(tcps,
4785 			    ntohs(connp->conn_lport));
4786 			if (ratio != 0) {
4787 				uint32_t mem_ratio, tot_buf;
4788 
4789 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4790 				    KM_SLEEP);
4791 				/*
4792 				 * Calculate the connection limit based on
4793 				 * the configured ratio and maxusers.  Maxusers
4794 				 * are calculated based on memory size,
4795 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4796 				 * and conn_sndbuf may change after a
4797 				 * connection is accepted.  So what we have
4798 				 * is only an approximation.
4799 				 */
4800 				if ((tot_buf = connp->conn_rcvbuf +
4801 				    connp->conn_sndbuf) < MB) {
4802 					mem_ratio = MB / tot_buf;
4803 					tlc->tlc_max = maxusers / ratio *
4804 					    mem_ratio;
4805 				} else {
4806 					mem_ratio = tot_buf / MB;
4807 					tlc->tlc_max = maxusers / ratio /
4808 					    mem_ratio;
4809 				}
4810 				/* At least we should allow two connections! */
4811 				if (tlc->tlc_max <= tcp_min_conn_listener)
4812 					tlc->tlc_max = tcp_min_conn_listener;
4813 				tlc->tlc_cnt = 1;
4814 				tlc->tlc_drop = 0;
4815 				tcp->tcp_listen_cnt = tlc;
4816 			}
4817 		}
4818 	}
4819 	return (error);
4820 }
4821