1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #define _SUN_TPI_VERSION 2 36 #include <sys/tihdr.h> 37 #include <sys/timod.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/xti_inet.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/sdt.h> 45 #include <sys/vtrace.h> 46 #include <sys/kmem.h> 47 #include <sys/ethernet.h> 48 #include <sys/cpuvar.h> 49 #include <sys/dlpi.h> 50 #include <sys/multidata.h> 51 #include <sys/multidata_impl.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <sys/sodirect.h> 67 #include <sys/uio.h> 68 #include <sys/systm.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/proto_set.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue_impl.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 #include <sys/callo.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 130 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 221 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 222 * directly to the socket (sodirect) and start an asynchronous copyout 223 * to a user-land receive-side buffer (uioa) when a blocking socket read 224 * (e.g. read, recv, ...) is pending. 225 * 226 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 227 * NULL so points to an sodirect_t and if marked enabled then we enqueue 228 * all mblk_t's directly to the socket. 229 * 230 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 231 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 232 * copyout will be started directly to the user-land uio buffer. Also, as we 233 * have a pending read, TCP's push logic can take into account the number of 234 * bytes to be received and only awake the blocked read()er when the uioa_t 235 * byte count has been satisfied. 236 * 237 * IPsec notes : 238 * 239 * Since a packet is always executed on the correct TCP perimeter 240 * all IPsec processing is defered to IP including checking new 241 * connections and setting IPSEC policies for new connection. The 242 * only exception is tcp_xmit_listeners_reset() which is called 243 * directly from IP and needs to policy check to see if TH_RST 244 * can be sent out. 245 * 246 * PFHooks notes : 247 * 248 * For mdt case, one meta buffer contains multiple packets. Mblks for every 249 * packet are assembled and passed to the hooks. When packets are blocked, 250 * or boundary of any packet is changed, the mdt processing is stopped, and 251 * packets of the meta buffer are send to the IP path one by one. 252 */ 253 254 /* 255 * Values for squeue switch: 256 * 1: SQ_NODRAIN 257 * 2: SQ_PROCESS 258 * 3: SQ_FILL 259 */ 260 int tcp_squeue_wput = 2; /* /etc/systems */ 261 int tcp_squeue_flag; 262 263 /* 264 * Macros for sodirect: 265 * 266 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 267 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 268 * if it exists and is enabled, else to NULL. Note, in the current 269 * sodirect implementation the sod_lockp must not be held across any 270 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 271 * will result as sod_lockp is the streamhead stdata.sd_lock. 272 * 273 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 274 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 275 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 276 * being used when sodirect code paths should be. 277 */ 278 279 #define SOD_PTR_ENTER(tcp, sodp) \ 280 (sodp) = (tcp)->tcp_sodirect; \ 281 \ 282 if ((sodp) != NULL) { \ 283 mutex_enter((sodp)->sod_lockp); \ 284 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 285 mutex_exit((sodp)->sod_lockp); \ 286 (sodp) = NULL; \ 287 } \ 288 } 289 290 #define SOD_NOT_ENABLED(tcp) \ 291 ((tcp)->tcp_sodirect == NULL || \ 292 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 293 294 /* 295 * This controls how tiny a write must be before we try to copy it 296 * into the the mblk on the tail of the transmit queue. Not much 297 * speedup is observed for values larger than sixteen. Zero will 298 * disable the optimisation. 299 */ 300 int tcp_tx_pull_len = 16; 301 302 /* 303 * TCP Statistics. 304 * 305 * How TCP statistics work. 306 * 307 * There are two types of statistics invoked by two macros. 308 * 309 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 310 * supposed to be used in non MT-hot paths of the code. 311 * 312 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 313 * supposed to be used for DEBUG purposes and may be used on a hot path. 314 * 315 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 316 * (use "kstat tcp" to get them). 317 * 318 * There is also additional debugging facility that marks tcp_clean_death() 319 * instances and saves them in tcp_t structure. It is triggered by 320 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 321 * tcp_clean_death() calls that counts the number of times each tag was hit. It 322 * is triggered by TCP_CLD_COUNTERS define. 323 * 324 * How to add new counters. 325 * 326 * 1) Add a field in the tcp_stat structure describing your counter. 327 * 2) Add a line in the template in tcp_kstat2_init() with the name 328 * of the counter. 329 * 330 * IMPORTANT!! - make sure that both are in sync !! 331 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 332 * 333 * Please avoid using private counters which are not kstat-exported. 334 * 335 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 336 * in tcp_t structure. 337 * 338 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 339 */ 340 341 #ifndef TCP_DEBUG_COUNTER 342 #ifdef DEBUG 343 #define TCP_DEBUG_COUNTER 1 344 #else 345 #define TCP_DEBUG_COUNTER 0 346 #endif 347 #endif 348 349 #define TCP_CLD_COUNTERS 0 350 351 #define TCP_TAG_CLEAN_DEATH 1 352 #define TCP_MAX_CLEAN_DEATH_TAG 32 353 354 #ifdef lint 355 static int _lint_dummy_; 356 #endif 357 358 #if TCP_CLD_COUNTERS 359 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 360 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 361 #elif defined(lint) 362 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 363 #else 364 #define TCP_CLD_STAT(x) 365 #endif 366 367 #if TCP_DEBUG_COUNTER 368 #define TCP_DBGSTAT(tcps, x) \ 369 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 370 #define TCP_G_DBGSTAT(x) \ 371 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 372 #elif defined(lint) 373 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 374 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 375 #else 376 #define TCP_DBGSTAT(tcps, x) 377 #define TCP_G_DBGSTAT(x) 378 #endif 379 380 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 381 382 tcp_g_stat_t tcp_g_statistics; 383 kstat_t *tcp_g_kstat; 384 385 /* 386 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 387 * tcp write side. 388 */ 389 #define CALL_IP_WPUT(connp, q, mp) { \ 390 ASSERT(((q)->q_flag & QREADR) == 0); \ 391 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 392 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 393 } 394 395 /* Macros for timestamp comparisons */ 396 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 397 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 398 399 /* 400 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 401 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 402 * by adding three components: a time component which grows by 1 every 4096 403 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 404 * a per-connection component which grows by 125000 for every new connection; 405 * and an "extra" component that grows by a random amount centered 406 * approximately on 64000. This causes the the ISS generator to cycle every 407 * 4.89 hours if no TCP connections are made, and faster if connections are 408 * made. 409 * 410 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 411 * components: a time component which grows by 250000 every second; and 412 * a per-connection component which grows by 125000 for every new connections. 413 * 414 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 415 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 416 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 417 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 418 * password. 419 */ 420 #define ISS_INCR 250000 421 #define ISS_NSEC_SHT 12 422 423 static sin_t sin_null; /* Zero address for quick clears */ 424 static sin6_t sin6_null; /* Zero address for quick clears */ 425 426 /* 427 * This implementation follows the 4.3BSD interpretation of the urgent 428 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 429 * incompatible changes in protocols like telnet and rlogin. 430 */ 431 #define TCP_OLD_URP_INTERPRETATION 1 432 433 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 434 (TCP_IS_DETACHED(tcp) && \ 435 (!(tcp)->tcp_hard_binding)) 436 437 /* 438 * TCP reassembly macros. We hide starting and ending sequence numbers in 439 * b_next and b_prev of messages on the reassembly queue. The messages are 440 * chained using b_cont. These macros are used in tcp_reass() so we don't 441 * have to see the ugly casts and assignments. 442 */ 443 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 444 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 445 (mblk_t *)(uintptr_t)(u)) 446 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 447 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 448 (mblk_t *)(uintptr_t)(u)) 449 450 /* 451 * Implementation of TCP Timers. 452 * ============================= 453 * 454 * INTERFACE: 455 * 456 * There are two basic functions dealing with tcp timers: 457 * 458 * timeout_id_t tcp_timeout(connp, func, time) 459 * clock_t tcp_timeout_cancel(connp, timeout_id) 460 * TCP_TIMER_RESTART(tcp, intvl) 461 * 462 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 463 * after 'time' ticks passed. The function called by timeout() must adhere to 464 * the same restrictions as a driver soft interrupt handler - it must not sleep 465 * or call other functions that might sleep. The value returned is the opaque 466 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 467 * cancel the request. The call to tcp_timeout() may fail in which case it 468 * returns zero. This is different from the timeout(9F) function which never 469 * fails. 470 * 471 * The call-back function 'func' always receives 'connp' as its single 472 * argument. It is always executed in the squeue corresponding to the tcp 473 * structure. The tcp structure is guaranteed to be present at the time the 474 * call-back is called. 475 * 476 * NOTE: The call-back function 'func' is never called if tcp is in 477 * the TCPS_CLOSED state. 478 * 479 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 480 * request. locks acquired by the call-back routine should not be held across 481 * the call to tcp_timeout_cancel() or a deadlock may result. 482 * 483 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 484 * Otherwise, it returns an integer value greater than or equal to 0. In 485 * particular, if the call-back function is already placed on the squeue, it can 486 * not be canceled. 487 * 488 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 489 * within squeue context corresponding to the tcp instance. Since the 490 * call-back is also called via the same squeue, there are no race 491 * conditions described in untimeout(9F) manual page since all calls are 492 * strictly serialized. 493 * 494 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 495 * stored in tcp_timer_tid and starts a new one using 496 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 497 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 498 * field. 499 * 500 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 501 * call-back may still be called, so it is possible tcp_timer() will be 502 * called several times. This should not be a problem since tcp_timer() 503 * should always check the tcp instance state. 504 * 505 * 506 * IMPLEMENTATION: 507 * 508 * TCP timers are implemented using three-stage process. The call to 509 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 510 * when the timer expires. The tcp_timer_callback() arranges the call of the 511 * tcp_timer_handler() function via squeue corresponding to the tcp 512 * instance. The tcp_timer_handler() calls actual requested timeout call-back 513 * and passes tcp instance as an argument to it. Information is passed between 514 * stages using the tcp_timer_t structure which contains the connp pointer, the 515 * tcp call-back to call and the timeout id returned by the timeout(9F). 516 * 517 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 518 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 519 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 520 * returns the pointer to this mblk. 521 * 522 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 523 * looks like a normal mblk without actual dblk attached to it. 524 * 525 * To optimize performance each tcp instance holds a small cache of timer 526 * mblocks. In the current implementation it caches up to two timer mblocks per 527 * tcp instance. The cache is preserved over tcp frees and is only freed when 528 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 529 * timer processing happens on a corresponding squeue, the cache manipulation 530 * does not require any locks. Experiments show that majority of timer mblocks 531 * allocations are satisfied from the tcp cache and do not involve kmem calls. 532 * 533 * The tcp_timeout() places a refhold on the connp instance which guarantees 534 * that it will be present at the time the call-back function fires. The 535 * tcp_timer_handler() drops the reference after calling the call-back, so the 536 * call-back function does not need to manipulate the references explicitly. 537 */ 538 539 typedef struct tcp_timer_s { 540 conn_t *connp; 541 void (*tcpt_proc)(void *); 542 callout_id_t tcpt_tid; 543 } tcp_timer_t; 544 545 static kmem_cache_t *tcp_timercache; 546 kmem_cache_t *tcp_sack_info_cache; 547 kmem_cache_t *tcp_iphc_cache; 548 549 /* 550 * For scalability, we must not run a timer for every TCP connection 551 * in TIME_WAIT state. To see why, consider (for time wait interval of 552 * 4 minutes): 553 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 554 * 555 * This list is ordered by time, so you need only delete from the head 556 * until you get to entries which aren't old enough to delete yet. 557 * The list consists of only the detached TIME_WAIT connections. 558 * 559 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 560 * becomes detached TIME_WAIT (either by changing the state and already 561 * being detached or the other way around). This means that the TIME_WAIT 562 * state can be extended (up to doubled) if the connection doesn't become 563 * detached for a long time. 564 * 565 * The list manipulations (including tcp_time_wait_next/prev) 566 * are protected by the tcp_time_wait_lock. The content of the 567 * detached TIME_WAIT connections is protected by the normal perimeters. 568 * 569 * This list is per squeue and squeues are shared across the tcp_stack_t's. 570 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 571 * and conn_netstack. 572 * The tcp_t's that are added to tcp_free_list are disassociated and 573 * have NULL tcp_tcps and conn_netstack pointers. 574 */ 575 typedef struct tcp_squeue_priv_s { 576 kmutex_t tcp_time_wait_lock; 577 callout_id_t tcp_time_wait_tid; 578 tcp_t *tcp_time_wait_head; 579 tcp_t *tcp_time_wait_tail; 580 tcp_t *tcp_free_list; 581 uint_t tcp_free_list_cnt; 582 } tcp_squeue_priv_t; 583 584 /* 585 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 586 * Running it every 5 seconds seems to give the best results. 587 */ 588 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 589 590 /* 591 * To prevent memory hog, limit the number of entries in tcp_free_list 592 * to 1% of available memory / number of cpus 593 */ 594 uint_t tcp_free_list_max_cnt = 0; 595 596 #define TCP_XMIT_LOWATER 4096 597 #define TCP_XMIT_HIWATER 49152 598 #define TCP_RECV_LOWATER 2048 599 #define TCP_RECV_HIWATER 49152 600 601 /* 602 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 603 */ 604 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 605 606 #define TIDUSZ 4096 /* transport interface data unit size */ 607 608 /* 609 * Bind hash list size and has function. It has to be a power of 2 for 610 * hashing. 611 */ 612 #define TCP_BIND_FANOUT_SIZE 512 613 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 614 /* 615 * Size of listen and acceptor hash list. It has to be a power of 2 for 616 * hashing. 617 */ 618 #define TCP_FANOUT_SIZE 256 619 620 #ifdef _ILP32 621 #define TCP_ACCEPTOR_HASH(accid) \ 622 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 623 #else 624 #define TCP_ACCEPTOR_HASH(accid) \ 625 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 626 #endif /* _ILP32 */ 627 628 #define IP_ADDR_CACHE_SIZE 2048 629 #define IP_ADDR_CACHE_HASH(faddr) \ 630 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 631 632 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 633 #define TCP_HSP_HASH_SIZE 256 634 635 #define TCP_HSP_HASH(addr) \ 636 (((addr>>24) ^ (addr >>16) ^ \ 637 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 638 639 /* 640 * TCP options struct returned from tcp_parse_options. 641 */ 642 typedef struct tcp_opt_s { 643 uint32_t tcp_opt_mss; 644 uint32_t tcp_opt_wscale; 645 uint32_t tcp_opt_ts_val; 646 uint32_t tcp_opt_ts_ecr; 647 tcp_t *tcp; 648 } tcp_opt_t; 649 650 /* 651 * TCP option struct passing information b/w lisenter and eager. 652 */ 653 struct tcp_options { 654 uint_t to_flags; 655 ssize_t to_boundif; /* IPV6_BOUND_IF */ 656 sock_upper_handle_t to_handle; 657 }; 658 659 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 660 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 661 #define TCPOPT_UPPERHANDLE 0x00000004 /* set upper handle */ 662 663 /* 664 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 665 */ 666 667 #ifdef _BIG_ENDIAN 668 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 669 (TCPOPT_TSTAMP << 8) | 10) 670 #else 671 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 672 (TCPOPT_NOP << 8) | TCPOPT_NOP) 673 #endif 674 675 /* 676 * Flags returned from tcp_parse_options. 677 */ 678 #define TCP_OPT_MSS_PRESENT 1 679 #define TCP_OPT_WSCALE_PRESENT 2 680 #define TCP_OPT_TSTAMP_PRESENT 4 681 #define TCP_OPT_SACK_OK_PRESENT 8 682 #define TCP_OPT_SACK_PRESENT 16 683 684 /* TCP option length */ 685 #define TCPOPT_NOP_LEN 1 686 #define TCPOPT_MAXSEG_LEN 4 687 #define TCPOPT_WS_LEN 3 688 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 689 #define TCPOPT_TSTAMP_LEN 10 690 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 691 #define TCPOPT_SACK_OK_LEN 2 692 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 693 #define TCPOPT_REAL_SACK_LEN 4 694 #define TCPOPT_MAX_SACK_LEN 36 695 #define TCPOPT_HEADER_LEN 2 696 697 /* TCP cwnd burst factor. */ 698 #define TCP_CWND_INFINITE 65535 699 #define TCP_CWND_SS 3 700 #define TCP_CWND_NORMAL 5 701 702 /* Maximum TCP initial cwin (start/restart). */ 703 #define TCP_MAX_INIT_CWND 8 704 705 /* 706 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 707 * either tcp_slow_start_initial or tcp_slow_start_after idle 708 * depending on the caller. If the upper layer has not used the 709 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 710 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 711 * If the upper layer has changed set the tcp_init_cwnd, just use 712 * it to calculate the tcp_cwnd. 713 */ 714 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 715 { \ 716 if ((tcp)->tcp_init_cwnd == 0) { \ 717 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 718 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 719 } else { \ 720 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 721 } \ 722 tcp->tcp_cwnd_cnt = 0; \ 723 } 724 725 /* TCP Timer control structure */ 726 typedef struct tcpt_s { 727 pfv_t tcpt_pfv; /* The routine we are to call */ 728 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 729 } tcpt_t; 730 731 /* Host Specific Parameter structure */ 732 typedef struct tcp_hsp { 733 struct tcp_hsp *tcp_hsp_next; 734 in6_addr_t tcp_hsp_addr_v6; 735 in6_addr_t tcp_hsp_subnet_v6; 736 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 737 int32_t tcp_hsp_sendspace; 738 int32_t tcp_hsp_recvspace; 739 int32_t tcp_hsp_tstamp; 740 } tcp_hsp_t; 741 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 742 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 743 744 /* 745 * Functions called directly via squeue having a prototype of edesc_t. 746 */ 747 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 748 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 749 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 750 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 751 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 752 void tcp_input(void *arg, mblk_t *mp, void *arg2); 753 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 754 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 755 void tcp_output(void *arg, mblk_t *mp, void *arg2); 756 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 757 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 758 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 759 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 760 761 762 /* Prototype for TCP functions */ 763 static void tcp_random_init(void); 764 int tcp_random(void); 765 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 766 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 767 tcp_t *eager); 768 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 769 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 770 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 771 boolean_t user_specified); 772 static void tcp_closei_local(tcp_t *tcp); 773 static void tcp_close_detached(tcp_t *tcp); 774 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 775 mblk_t *idmp, mblk_t **defermp); 776 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 777 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 778 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 779 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 780 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 781 uint32_t scope_id, cred_t *cr, pid_t pid); 782 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 783 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 784 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 785 static char *tcp_display(tcp_t *tcp, char *, char); 786 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 787 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 788 static void tcp_eager_unlink(tcp_t *tcp); 789 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 790 int unixerr); 791 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 792 int tlierr, int unixerr); 793 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 794 cred_t *cr); 795 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 796 char *value, caddr_t cp, cred_t *cr); 797 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 798 char *value, caddr_t cp, cred_t *cr); 799 static int tcp_tpistate(tcp_t *tcp); 800 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 801 int caller_holds_lock); 802 static void tcp_bind_hash_remove(tcp_t *tcp); 803 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 804 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 805 static void tcp_acceptor_hash_remove(tcp_t *tcp); 806 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 807 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 808 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 809 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 810 void tcp_g_q_setup(tcp_stack_t *); 811 void tcp_g_q_create(tcp_stack_t *); 812 void tcp_g_q_destroy(tcp_stack_t *); 813 static int tcp_header_init_ipv4(tcp_t *tcp); 814 static int tcp_header_init_ipv6(tcp_t *tcp); 815 int tcp_init(tcp_t *tcp, queue_t *q); 816 static int tcp_init_values(tcp_t *tcp); 817 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 818 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 819 static void tcp_ip_notify(tcp_t *tcp); 820 static mblk_t *tcp_ire_mp(mblk_t **mpp); 821 static void tcp_iss_init(tcp_t *tcp); 822 static void tcp_keepalive_killer(void *arg); 823 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 824 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 825 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 826 int *do_disconnectp, int *t_errorp, int *sys_errorp); 827 static boolean_t tcp_allow_connopt_set(int level, int name); 828 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 829 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 830 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 831 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 832 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 833 mblk_t *mblk); 834 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 835 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 836 uchar_t *ptr, uint_t len); 837 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 838 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 839 tcp_stack_t *); 840 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 841 caddr_t cp, cred_t *cr); 842 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 843 caddr_t cp, cred_t *cr); 844 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 845 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 846 caddr_t cp, cred_t *cr); 847 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 848 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 849 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 850 static void tcp_reinit(tcp_t *tcp); 851 static void tcp_reinit_values(tcp_t *tcp); 852 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 853 tcp_t *thisstream, cred_t *cr); 854 855 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 856 static uint_t tcp_rcv_drain(tcp_t *tcp); 857 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 858 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 859 static void tcp_ss_rexmit(tcp_t *tcp); 860 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 861 static void tcp_process_options(tcp_t *, tcph_t *); 862 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 863 static void tcp_rsrv(queue_t *q); 864 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 865 static int tcp_snmp_state(tcp_t *tcp); 866 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 867 cred_t *cr); 868 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 869 cred_t *cr); 870 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 871 cred_t *cr); 872 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 873 cred_t *cr); 874 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 875 cred_t *cr); 876 static void tcp_timer(void *arg); 877 static void tcp_timer_callback(void *); 878 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 879 boolean_t random); 880 static in_port_t tcp_get_next_priv_port(const tcp_t *); 881 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 882 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 883 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 884 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 885 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 886 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 887 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 888 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 889 const int num_sack_blk, int *usable, uint_t *snxt, 890 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 891 const int mdt_thres); 892 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 893 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 894 const int num_sack_blk, int *usable, uint_t *snxt, 895 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 896 const int mdt_thres); 897 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 898 int num_sack_blk); 899 static void tcp_wsrv(queue_t *q); 900 static int tcp_xmit_end(tcp_t *tcp); 901 static void tcp_ack_timer(void *arg); 902 static mblk_t *tcp_ack_mp(tcp_t *tcp); 903 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 904 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 905 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 906 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 907 uint32_t ack, int ctl); 908 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 909 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 910 static int setmaxps(queue_t *q, int maxpsz); 911 static void tcp_set_rto(tcp_t *, time_t); 912 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 913 boolean_t, boolean_t); 914 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 915 boolean_t ipsec_mctl); 916 static int tcp_build_hdrs(tcp_t *); 917 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 918 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 919 tcph_t *tcph); 920 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 921 static mblk_t *tcp_mdt_info_mp(mblk_t *); 922 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 923 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 924 const boolean_t, const uint32_t, const uint32_t, 925 const uint32_t, const uint32_t, tcp_stack_t *); 926 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 927 const uint_t, const uint_t, boolean_t *); 928 static mblk_t *tcp_lso_info_mp(mblk_t *); 929 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 930 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 931 extern mblk_t *tcp_timermp_alloc(int); 932 extern void tcp_timermp_free(tcp_t *); 933 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 934 static void tcp_stop_lingering(tcp_t *tcp); 935 static void tcp_close_linger_timeout(void *arg); 936 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 937 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 938 static void tcp_stack_fini(netstackid_t stackid, void *arg); 939 static void *tcp_g_kstat_init(tcp_g_stat_t *); 940 static void tcp_g_kstat_fini(kstat_t *); 941 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 942 static void tcp_kstat_fini(netstackid_t, kstat_t *); 943 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 944 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 945 static int tcp_kstat_update(kstat_t *kp, int rw); 946 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 947 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 948 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 949 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 950 tcph_t *tcph, mblk_t *idmp); 951 static int tcp_squeue_switch(int); 952 953 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 954 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 955 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 956 static int tcp_tpi_close(queue_t *, int); 957 static int tcpclose_accept(queue_t *); 958 959 static void tcp_squeue_add(squeue_t *); 960 static boolean_t tcp_zcopy_check(tcp_t *); 961 static void tcp_zcopy_notify(tcp_t *); 962 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 963 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 964 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 965 966 extern void tcp_kssl_input(tcp_t *, mblk_t *); 967 968 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 969 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 970 971 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 972 sock_upper_handle_t, cred_t *); 973 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 974 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int); 975 static int tcp_do_listen(conn_t *, int, cred_t *); 976 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 977 cred_t *, pid_t); 978 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 979 boolean_t); 980 static int tcp_do_unbind(conn_t *); 981 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 982 boolean_t); 983 984 /* 985 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 986 * 987 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 988 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 989 * (defined in tcp.h) needs to be filled in and passed into the kernel 990 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 991 * structure contains the four-tuple of a TCP connection and a range of TCP 992 * states (specified by ac_start and ac_end). The use of wildcard addresses 993 * and ports is allowed. Connections with a matching four tuple and a state 994 * within the specified range will be aborted. The valid states for the 995 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 996 * inclusive. 997 * 998 * An application which has its connection aborted by this ioctl will receive 999 * an error that is dependent on the connection state at the time of the abort. 1000 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1001 * though a RST packet has been received. If the connection state is equal to 1002 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1003 * and all resources associated with the connection will be freed. 1004 */ 1005 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1006 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1007 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1008 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 1009 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1010 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1011 boolean_t, tcp_stack_t *); 1012 1013 static struct module_info tcp_rinfo = { 1014 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1015 }; 1016 1017 static struct module_info tcp_winfo = { 1018 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1019 }; 1020 1021 /* 1022 * Entry points for TCP as a device. The normal case which supports 1023 * the TCP functionality. 1024 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1025 */ 1026 struct qinit tcp_rinitv4 = { 1027 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 1028 }; 1029 1030 struct qinit tcp_rinitv6 = { 1031 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 1032 }; 1033 1034 struct qinit tcp_winit = { 1035 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1036 }; 1037 1038 /* Initial entry point for TCP in socket mode. */ 1039 struct qinit tcp_sock_winit = { 1040 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1041 }; 1042 1043 /* TCP entry point during fallback */ 1044 struct qinit tcp_fallback_sock_winit = { 1045 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 1046 }; 1047 1048 /* 1049 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1050 * an accept. Avoid allocating data structures since eager has already 1051 * been created. 1052 */ 1053 struct qinit tcp_acceptor_rinit = { 1054 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1055 }; 1056 1057 struct qinit tcp_acceptor_winit = { 1058 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1059 }; 1060 1061 /* 1062 * Entry points for TCP loopback (read side only) 1063 * The open routine is only used for reopens, thus no need to 1064 * have a separate one for tcp_openv6. 1065 */ 1066 struct qinit tcp_loopback_rinit = { 1067 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 1068 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1069 }; 1070 1071 /* For AF_INET aka /dev/tcp */ 1072 struct streamtab tcpinfov4 = { 1073 &tcp_rinitv4, &tcp_winit 1074 }; 1075 1076 /* For AF_INET6 aka /dev/tcp6 */ 1077 struct streamtab tcpinfov6 = { 1078 &tcp_rinitv6, &tcp_winit 1079 }; 1080 1081 sock_downcalls_t sock_tcp_downcalls; 1082 1083 /* 1084 * Have to ensure that tcp_g_q_close is not done by an 1085 * interrupt thread. 1086 */ 1087 static taskq_t *tcp_taskq; 1088 1089 /* Setable only in /etc/system. Move to ndd? */ 1090 boolean_t tcp_icmp_source_quench = B_FALSE; 1091 1092 /* 1093 * Following assumes TPI alignment requirements stay along 32 bit 1094 * boundaries 1095 */ 1096 #define ROUNDUP32(x) \ 1097 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1098 1099 /* Template for response to info request. */ 1100 static struct T_info_ack tcp_g_t_info_ack = { 1101 T_INFO_ACK, /* PRIM_type */ 1102 0, /* TSDU_size */ 1103 T_INFINITE, /* ETSDU_size */ 1104 T_INVALID, /* CDATA_size */ 1105 T_INVALID, /* DDATA_size */ 1106 sizeof (sin_t), /* ADDR_size */ 1107 0, /* OPT_size - not initialized here */ 1108 TIDUSZ, /* TIDU_size */ 1109 T_COTS_ORD, /* SERV_type */ 1110 TCPS_IDLE, /* CURRENT_state */ 1111 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1112 }; 1113 1114 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1115 T_INFO_ACK, /* PRIM_type */ 1116 0, /* TSDU_size */ 1117 T_INFINITE, /* ETSDU_size */ 1118 T_INVALID, /* CDATA_size */ 1119 T_INVALID, /* DDATA_size */ 1120 sizeof (sin6_t), /* ADDR_size */ 1121 0, /* OPT_size - not initialized here */ 1122 TIDUSZ, /* TIDU_size */ 1123 T_COTS_ORD, /* SERV_type */ 1124 TCPS_IDLE, /* CURRENT_state */ 1125 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1126 }; 1127 1128 #define MS 1L 1129 #define SECONDS (1000 * MS) 1130 #define MINUTES (60 * SECONDS) 1131 #define HOURS (60 * MINUTES) 1132 #define DAYS (24 * HOURS) 1133 1134 #define PARAM_MAX (~(uint32_t)0) 1135 1136 /* Max size IP datagram is 64k - 1 */ 1137 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1138 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1139 /* Max of the above */ 1140 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1141 1142 /* Largest TCP port number */ 1143 #define TCP_MAX_PORT (64 * 1024 - 1) 1144 1145 /* 1146 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1147 * layer header. It has to be a multiple of 4. 1148 */ 1149 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1150 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1151 1152 /* 1153 * All of these are alterable, within the min/max values given, at run time. 1154 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1155 * per the TCP spec. 1156 */ 1157 /* BEGIN CSTYLED */ 1158 static tcpparam_t lcl_tcp_param_arr[] = { 1159 /*min max value name */ 1160 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1161 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1162 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1163 { 1, 1024, 1, "tcp_conn_req_min" }, 1164 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1165 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1166 { 0, 10, 0, "tcp_debug" }, 1167 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1168 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1169 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1170 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1171 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1172 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1173 { 1, 255, 64, "tcp_ipv4_ttl"}, 1174 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1175 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1176 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1177 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1178 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1179 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1180 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1181 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1182 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1183 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1184 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1185 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1186 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1187 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1188 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1189 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1190 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1191 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1192 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1193 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1194 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1195 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1196 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1197 /* 1198 * Question: What default value should I set for tcp_strong_iss? 1199 */ 1200 { 0, 2, 1, "tcp_strong_iss"}, 1201 { 0, 65536, 20, "tcp_rtt_updates"}, 1202 { 0, 1, 1, "tcp_wscale_always"}, 1203 { 0, 1, 0, "tcp_tstamp_always"}, 1204 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1205 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1206 { 0, 16, 2, "tcp_deferred_acks_max"}, 1207 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1208 { 1, 4, 4, "tcp_slow_start_initial"}, 1209 { 0, 2, 2, "tcp_sack_permitted"}, 1210 { 0, 1, 1, "tcp_compression_enabled"}, 1211 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1212 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1213 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1214 { 0, 1, 0, "tcp_rev_src_routes"}, 1215 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1216 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1217 { 0, 16, 8, "tcp_local_dacks_max"}, 1218 { 0, 2, 1, "tcp_ecn_permitted"}, 1219 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1220 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1221 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1222 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1223 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1224 }; 1225 /* END CSTYLED */ 1226 1227 /* 1228 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1229 * each header fragment in the header buffer. Each parameter value has 1230 * to be a multiple of 4 (32-bit aligned). 1231 */ 1232 static tcpparam_t lcl_tcp_mdt_head_param = 1233 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1234 static tcpparam_t lcl_tcp_mdt_tail_param = 1235 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1236 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1237 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1238 1239 /* 1240 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1241 * the maximum number of payload buffers associated per Multidata. 1242 */ 1243 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1244 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1245 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1246 1247 /* Round up the value to the nearest mss. */ 1248 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1249 1250 /* 1251 * Set ECN capable transport (ECT) code point in IP header. 1252 * 1253 * Note that there are 2 ECT code points '01' and '10', which are called 1254 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1255 * point ECT(0) for TCP as described in RFC 2481. 1256 */ 1257 #define SET_ECT(tcp, iph) \ 1258 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1259 /* We need to clear the code point first. */ \ 1260 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1261 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1262 } else { \ 1263 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1264 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1265 } 1266 1267 /* 1268 * The format argument to pass to tcp_display(). 1269 * DISP_PORT_ONLY means that the returned string has only port info. 1270 * DISP_ADDR_AND_PORT means that the returned string also contains the 1271 * remote and local IP address. 1272 */ 1273 #define DISP_PORT_ONLY 1 1274 #define DISP_ADDR_AND_PORT 2 1275 1276 #define NDD_TOO_QUICK_MSG \ 1277 "ndd get info rate too high for non-privileged users, try again " \ 1278 "later.\n" 1279 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1280 1281 #define IS_VMLOANED_MBLK(mp) \ 1282 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1283 1284 1285 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1286 boolean_t tcp_mdt_chain = B_TRUE; 1287 1288 /* 1289 * MDT threshold in the form of effective send MSS multiplier; we take 1290 * the MDT path if the amount of unsent data exceeds the threshold value 1291 * (default threshold is 1*SMSS). 1292 */ 1293 uint_t tcp_mdt_smss_threshold = 1; 1294 1295 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1296 1297 /* 1298 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1299 * tunable settable via NDD. Otherwise, the per-connection behavior is 1300 * determined dynamically during tcp_adapt_ire(), which is the default. 1301 */ 1302 boolean_t tcp_static_maxpsz = B_FALSE; 1303 1304 /* Setable in /etc/system */ 1305 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1306 uint32_t tcp_random_anon_port = 1; 1307 1308 /* 1309 * To reach to an eager in Q0 which can be dropped due to an incoming 1310 * new SYN request when Q0 is full, a new doubly linked list is 1311 * introduced. This list allows to select an eager from Q0 in O(1) time. 1312 * This is needed to avoid spending too much time walking through the 1313 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1314 * this new list has to be a member of Q0. 1315 * This list is headed by listener's tcp_t. When the list is empty, 1316 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1317 * of listener's tcp_t point to listener's tcp_t itself. 1318 * 1319 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1320 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1321 * These macros do not affect the eager's membership to Q0. 1322 */ 1323 1324 1325 #define MAKE_DROPPABLE(listener, eager) \ 1326 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1327 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1328 = (eager); \ 1329 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1330 (eager)->tcp_eager_next_drop_q0 = \ 1331 (listener)->tcp_eager_next_drop_q0; \ 1332 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1333 } 1334 1335 #define MAKE_UNDROPPABLE(eager) \ 1336 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1337 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1338 = (eager)->tcp_eager_prev_drop_q0; \ 1339 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1340 = (eager)->tcp_eager_next_drop_q0; \ 1341 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1342 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1343 } 1344 1345 /* 1346 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1347 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1348 * data, TCP will not respond with an ACK. RFC 793 requires that 1349 * TCP responds with an ACK for such a bogus ACK. By not following 1350 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1351 * an attacker successfully spoofs an acceptable segment to our 1352 * peer; or when our peer is "confused." 1353 */ 1354 uint32_t tcp_drop_ack_unsent_cnt = 10; 1355 1356 /* 1357 * Hook functions to enable cluster networking 1358 * On non-clustered systems these vectors must always be NULL. 1359 */ 1360 1361 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1362 sa_family_t addr_family, uint8_t *laddrp, 1363 in_port_t lport, void *args) = NULL; 1364 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1365 sa_family_t addr_family, uint8_t *laddrp, 1366 in_port_t lport, void *args) = NULL; 1367 1368 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1369 boolean_t is_outgoing, 1370 sa_family_t addr_family, 1371 uint8_t *laddrp, in_port_t lport, 1372 uint8_t *faddrp, in_port_t fport, 1373 void *args) = NULL; 1374 1375 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1376 sa_family_t addr_family, uint8_t *laddrp, 1377 in_port_t lport, uint8_t *faddrp, 1378 in_port_t fport, void *args) = NULL; 1379 1380 /* 1381 * The following are defined in ip.c 1382 */ 1383 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1384 sa_family_t addr_family, uint8_t *laddrp, 1385 void *args); 1386 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1387 sa_family_t addr_family, uint8_t *laddrp, 1388 uint8_t *faddrp, void *args); 1389 1390 1391 /* 1392 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1393 */ 1394 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1395 (err) = 0; \ 1396 if (cl_inet_connect2 != NULL) { \ 1397 /* \ 1398 * Running in cluster mode - register active connection \ 1399 * information \ 1400 */ \ 1401 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1402 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1403 (err) = (*cl_inet_connect2)( \ 1404 (connp)->conn_netstack->netstack_stackid,\ 1405 IPPROTO_TCP, is_outgoing, AF_INET, \ 1406 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1407 (in_port_t)(tcp)->tcp_lport, \ 1408 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1409 (in_port_t)(tcp)->tcp_fport, NULL); \ 1410 } \ 1411 } else { \ 1412 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1413 &(tcp)->tcp_ip6h->ip6_src)) { \ 1414 (err) = (*cl_inet_connect2)( \ 1415 (connp)->conn_netstack->netstack_stackid,\ 1416 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1417 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1418 (in_port_t)(tcp)->tcp_lport, \ 1419 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1420 (in_port_t)(tcp)->tcp_fport, NULL); \ 1421 } \ 1422 } \ 1423 } \ 1424 } 1425 1426 #define CL_INET_DISCONNECT(connp, tcp) { \ 1427 if (cl_inet_disconnect != NULL) { \ 1428 /* \ 1429 * Running in cluster mode - deregister active \ 1430 * connection information \ 1431 */ \ 1432 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1433 if ((tcp)->tcp_ip_src != 0) { \ 1434 (*cl_inet_disconnect)( \ 1435 (connp)->conn_netstack->netstack_stackid,\ 1436 IPPROTO_TCP, AF_INET, \ 1437 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1438 (in_port_t)(tcp)->tcp_lport, \ 1439 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1440 (in_port_t)(tcp)->tcp_fport, NULL); \ 1441 } \ 1442 } else { \ 1443 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1444 &(tcp)->tcp_ip_src_v6)) { \ 1445 (*cl_inet_disconnect)( \ 1446 (connp)->conn_netstack->netstack_stackid,\ 1447 IPPROTO_TCP, AF_INET6, \ 1448 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1449 (in_port_t)(tcp)->tcp_lport, \ 1450 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1451 (in_port_t)(tcp)->tcp_fport, NULL); \ 1452 } \ 1453 } \ 1454 } \ 1455 } 1456 1457 /* 1458 * Cluster networking hook for traversing current connection list. 1459 * This routine is used to extract the current list of live connections 1460 * which must continue to to be dispatched to this node. 1461 */ 1462 int cl_tcp_walk_list(netstackid_t stack_id, 1463 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1464 1465 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1466 void *arg, tcp_stack_t *tcps); 1467 1468 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1469 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1470 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1471 ip6_t *, ip6h, int, 0); 1472 1473 /* 1474 * Figure out the value of window scale opton. Note that the rwnd is 1475 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1476 * We cannot find the scale value and then do a round up of tcp_rwnd 1477 * because the scale value may not be correct after that. 1478 * 1479 * Set the compiler flag to make this function inline. 1480 */ 1481 static void 1482 tcp_set_ws_value(tcp_t *tcp) 1483 { 1484 int i; 1485 uint32_t rwnd = tcp->tcp_rwnd; 1486 1487 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1488 i++, rwnd >>= 1) 1489 ; 1490 tcp->tcp_rcv_ws = i; 1491 } 1492 1493 /* 1494 * Remove a connection from the list of detached TIME_WAIT connections. 1495 * It returns B_FALSE if it can't remove the connection from the list 1496 * as the connection has already been removed from the list due to an 1497 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1498 */ 1499 static boolean_t 1500 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1501 { 1502 boolean_t locked = B_FALSE; 1503 1504 if (tcp_time_wait == NULL) { 1505 tcp_time_wait = *((tcp_squeue_priv_t **) 1506 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1507 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1508 locked = B_TRUE; 1509 } else { 1510 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1511 } 1512 1513 if (tcp->tcp_time_wait_expire == 0) { 1514 ASSERT(tcp->tcp_time_wait_next == NULL); 1515 ASSERT(tcp->tcp_time_wait_prev == NULL); 1516 if (locked) 1517 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1518 return (B_FALSE); 1519 } 1520 ASSERT(TCP_IS_DETACHED(tcp)); 1521 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1522 1523 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1524 ASSERT(tcp->tcp_time_wait_prev == NULL); 1525 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1526 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1527 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1528 NULL; 1529 } else { 1530 tcp_time_wait->tcp_time_wait_tail = NULL; 1531 } 1532 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1533 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1534 ASSERT(tcp->tcp_time_wait_next == NULL); 1535 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1536 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1537 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1538 } else { 1539 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1540 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1541 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1542 tcp->tcp_time_wait_next; 1543 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1544 tcp->tcp_time_wait_prev; 1545 } 1546 tcp->tcp_time_wait_next = NULL; 1547 tcp->tcp_time_wait_prev = NULL; 1548 tcp->tcp_time_wait_expire = 0; 1549 1550 if (locked) 1551 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1552 return (B_TRUE); 1553 } 1554 1555 /* 1556 * Add a connection to the list of detached TIME_WAIT connections 1557 * and set its time to expire. 1558 */ 1559 static void 1560 tcp_time_wait_append(tcp_t *tcp) 1561 { 1562 tcp_stack_t *tcps = tcp->tcp_tcps; 1563 tcp_squeue_priv_t *tcp_time_wait = 1564 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1565 SQPRIVATE_TCP)); 1566 1567 tcp_timers_stop(tcp); 1568 1569 /* Freed above */ 1570 ASSERT(tcp->tcp_timer_tid == 0); 1571 ASSERT(tcp->tcp_ack_tid == 0); 1572 1573 /* must have happened at the time of detaching the tcp */ 1574 ASSERT(tcp->tcp_ptpahn == NULL); 1575 ASSERT(tcp->tcp_flow_stopped == 0); 1576 ASSERT(tcp->tcp_time_wait_next == NULL); 1577 ASSERT(tcp->tcp_time_wait_prev == NULL); 1578 ASSERT(tcp->tcp_time_wait_expire == NULL); 1579 ASSERT(tcp->tcp_listener == NULL); 1580 1581 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1582 /* 1583 * The value computed below in tcp->tcp_time_wait_expire may 1584 * appear negative or wrap around. That is ok since our 1585 * interest is only in the difference between the current lbolt 1586 * value and tcp->tcp_time_wait_expire. But the value should not 1587 * be zero, since it means the tcp is not in the TIME_WAIT list. 1588 * The corresponding comparison in tcp_time_wait_collector() uses 1589 * modular arithmetic. 1590 */ 1591 tcp->tcp_time_wait_expire += 1592 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1593 if (tcp->tcp_time_wait_expire == 0) 1594 tcp->tcp_time_wait_expire = 1; 1595 1596 ASSERT(TCP_IS_DETACHED(tcp)); 1597 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1598 ASSERT(tcp->tcp_time_wait_next == NULL); 1599 ASSERT(tcp->tcp_time_wait_prev == NULL); 1600 TCP_DBGSTAT(tcps, tcp_time_wait); 1601 1602 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1603 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1604 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1605 tcp_time_wait->tcp_time_wait_head = tcp; 1606 } else { 1607 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1608 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1609 TCPS_TIME_WAIT); 1610 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1611 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1612 } 1613 tcp_time_wait->tcp_time_wait_tail = tcp; 1614 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1615 } 1616 1617 /* ARGSUSED */ 1618 void 1619 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1620 { 1621 conn_t *connp = (conn_t *)arg; 1622 tcp_t *tcp = connp->conn_tcp; 1623 tcp_stack_t *tcps = tcp->tcp_tcps; 1624 1625 ASSERT(tcp != NULL); 1626 if (tcp->tcp_state == TCPS_CLOSED) { 1627 return; 1628 } 1629 1630 ASSERT((tcp->tcp_family == AF_INET && 1631 tcp->tcp_ipversion == IPV4_VERSION) || 1632 (tcp->tcp_family == AF_INET6 && 1633 (tcp->tcp_ipversion == IPV4_VERSION || 1634 tcp->tcp_ipversion == IPV6_VERSION))); 1635 ASSERT(!tcp->tcp_listener); 1636 1637 TCP_STAT(tcps, tcp_time_wait_reap); 1638 ASSERT(TCP_IS_DETACHED(tcp)); 1639 1640 /* 1641 * Because they have no upstream client to rebind or tcp_close() 1642 * them later, we axe the connection here and now. 1643 */ 1644 tcp_close_detached(tcp); 1645 } 1646 1647 /* 1648 * Remove cached/latched IPsec references. 1649 */ 1650 void 1651 tcp_ipsec_cleanup(tcp_t *tcp) 1652 { 1653 conn_t *connp = tcp->tcp_connp; 1654 1655 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1656 1657 if (connp->conn_latch != NULL) { 1658 IPLATCH_REFRELE(connp->conn_latch, 1659 connp->conn_netstack); 1660 connp->conn_latch = NULL; 1661 } 1662 if (connp->conn_policy != NULL) { 1663 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1664 connp->conn_policy = NULL; 1665 } 1666 } 1667 1668 /* 1669 * Cleaup before placing on free list. 1670 * Disassociate from the netstack/tcp_stack_t since the freelist 1671 * is per squeue and not per netstack. 1672 */ 1673 void 1674 tcp_cleanup(tcp_t *tcp) 1675 { 1676 mblk_t *mp; 1677 char *tcp_iphc; 1678 int tcp_iphc_len; 1679 int tcp_hdr_grown; 1680 tcp_sack_info_t *tcp_sack_info; 1681 conn_t *connp = tcp->tcp_connp; 1682 tcp_stack_t *tcps = tcp->tcp_tcps; 1683 netstack_t *ns = tcps->tcps_netstack; 1684 mblk_t *tcp_rsrv_mp; 1685 1686 tcp_bind_hash_remove(tcp); 1687 1688 /* Cleanup that which needs the netstack first */ 1689 tcp_ipsec_cleanup(tcp); 1690 1691 tcp_free(tcp); 1692 1693 /* Release any SSL context */ 1694 if (tcp->tcp_kssl_ent != NULL) { 1695 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1696 tcp->tcp_kssl_ent = NULL; 1697 } 1698 1699 if (tcp->tcp_kssl_ctx != NULL) { 1700 kssl_release_ctx(tcp->tcp_kssl_ctx); 1701 tcp->tcp_kssl_ctx = NULL; 1702 } 1703 tcp->tcp_kssl_pending = B_FALSE; 1704 1705 conn_delete_ire(connp, NULL); 1706 1707 /* 1708 * Since we will bzero the entire structure, we need to 1709 * remove it and reinsert it in global hash list. We 1710 * know the walkers can't get to this conn because we 1711 * had set CONDEMNED flag earlier and checked reference 1712 * under conn_lock so walker won't pick it and when we 1713 * go the ipcl_globalhash_remove() below, no walker 1714 * can get to it. 1715 */ 1716 ipcl_globalhash_remove(connp); 1717 1718 /* 1719 * Now it is safe to decrement the reference counts. 1720 * This might be the last reference on the netstack and TCPS 1721 * in which case it will cause the tcp_g_q_close and 1722 * the freeing of the IP Instance. 1723 */ 1724 connp->conn_netstack = NULL; 1725 netstack_rele(ns); 1726 ASSERT(tcps != NULL); 1727 tcp->tcp_tcps = NULL; 1728 TCPS_REFRELE(tcps); 1729 1730 /* Save some state */ 1731 mp = tcp->tcp_timercache; 1732 1733 tcp_sack_info = tcp->tcp_sack_info; 1734 tcp_iphc = tcp->tcp_iphc; 1735 tcp_iphc_len = tcp->tcp_iphc_len; 1736 tcp_hdr_grown = tcp->tcp_hdr_grown; 1737 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1738 1739 if (connp->conn_cred != NULL) { 1740 crfree(connp->conn_cred); 1741 connp->conn_cred = NULL; 1742 } 1743 if (connp->conn_peercred != NULL) { 1744 crfree(connp->conn_peercred); 1745 connp->conn_peercred = NULL; 1746 } 1747 ipcl_conn_cleanup(connp); 1748 connp->conn_flags = IPCL_TCPCONN; 1749 bzero(tcp, sizeof (tcp_t)); 1750 1751 /* restore the state */ 1752 tcp->tcp_timercache = mp; 1753 1754 tcp->tcp_sack_info = tcp_sack_info; 1755 tcp->tcp_iphc = tcp_iphc; 1756 tcp->tcp_iphc_len = tcp_iphc_len; 1757 tcp->tcp_hdr_grown = tcp_hdr_grown; 1758 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1759 1760 tcp->tcp_connp = connp; 1761 1762 ASSERT(connp->conn_tcp == tcp); 1763 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1764 connp->conn_state_flags = CONN_INCIPIENT; 1765 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1766 ASSERT(connp->conn_ref == 1); 1767 } 1768 1769 /* 1770 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1771 * is done forwards from the head. 1772 * This walks all stack instances since 1773 * tcp_time_wait remains global across all stacks. 1774 */ 1775 /* ARGSUSED */ 1776 void 1777 tcp_time_wait_collector(void *arg) 1778 { 1779 tcp_t *tcp; 1780 clock_t now; 1781 mblk_t *mp; 1782 conn_t *connp; 1783 kmutex_t *lock; 1784 boolean_t removed; 1785 1786 squeue_t *sqp = (squeue_t *)arg; 1787 tcp_squeue_priv_t *tcp_time_wait = 1788 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1789 1790 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1791 tcp_time_wait->tcp_time_wait_tid = 0; 1792 1793 if (tcp_time_wait->tcp_free_list != NULL && 1794 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1795 TCP_G_STAT(tcp_freelist_cleanup); 1796 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1797 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1798 tcp->tcp_time_wait_next = NULL; 1799 tcp_time_wait->tcp_free_list_cnt--; 1800 ASSERT(tcp->tcp_tcps == NULL); 1801 CONN_DEC_REF(tcp->tcp_connp); 1802 } 1803 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1804 } 1805 1806 /* 1807 * In order to reap time waits reliably, we should use a 1808 * source of time that is not adjustable by the user -- hence 1809 * the call to ddi_get_lbolt(). 1810 */ 1811 now = ddi_get_lbolt(); 1812 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1813 /* 1814 * Compare times using modular arithmetic, since 1815 * lbolt can wrapover. 1816 */ 1817 if ((now - tcp->tcp_time_wait_expire) < 0) { 1818 break; 1819 } 1820 1821 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1822 ASSERT(removed); 1823 1824 connp = tcp->tcp_connp; 1825 ASSERT(connp->conn_fanout != NULL); 1826 lock = &connp->conn_fanout->connf_lock; 1827 /* 1828 * This is essentially a TW reclaim fast path optimization for 1829 * performance where the timewait collector checks under the 1830 * fanout lock (so that no one else can get access to the 1831 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1832 * the classifier hash list. If ref count is indeed 2, we can 1833 * just remove the conn under the fanout lock and avoid 1834 * cleaning up the conn under the squeue, provided that 1835 * clustering callbacks are not enabled. If clustering is 1836 * enabled, we need to make the clustering callback before 1837 * setting the CONDEMNED flag and after dropping all locks and 1838 * so we forego this optimization and fall back to the slow 1839 * path. Also please see the comments in tcp_closei_local 1840 * regarding the refcnt logic. 1841 * 1842 * Since we are holding the tcp_time_wait_lock, its better 1843 * not to block on the fanout_lock because other connections 1844 * can't add themselves to time_wait list. So we do a 1845 * tryenter instead of mutex_enter. 1846 */ 1847 if (mutex_tryenter(lock)) { 1848 mutex_enter(&connp->conn_lock); 1849 if ((connp->conn_ref == 2) && 1850 (cl_inet_disconnect == NULL)) { 1851 ipcl_hash_remove_locked(connp, 1852 connp->conn_fanout); 1853 /* 1854 * Set the CONDEMNED flag now itself so that 1855 * the refcnt cannot increase due to any 1856 * walker. But we have still not cleaned up 1857 * conn_ire_cache. This is still ok since 1858 * we are going to clean it up in tcp_cleanup 1859 * immediately and any interface unplumb 1860 * thread will wait till the ire is blown away 1861 */ 1862 connp->conn_state_flags |= CONN_CONDEMNED; 1863 mutex_exit(lock); 1864 mutex_exit(&connp->conn_lock); 1865 if (tcp_time_wait->tcp_free_list_cnt < 1866 tcp_free_list_max_cnt) { 1867 /* Add to head of tcp_free_list */ 1868 mutex_exit( 1869 &tcp_time_wait->tcp_time_wait_lock); 1870 tcp_cleanup(tcp); 1871 ASSERT(connp->conn_latch == NULL); 1872 ASSERT(connp->conn_policy == NULL); 1873 ASSERT(tcp->tcp_tcps == NULL); 1874 ASSERT(connp->conn_netstack == NULL); 1875 1876 mutex_enter( 1877 &tcp_time_wait->tcp_time_wait_lock); 1878 tcp->tcp_time_wait_next = 1879 tcp_time_wait->tcp_free_list; 1880 tcp_time_wait->tcp_free_list = tcp; 1881 tcp_time_wait->tcp_free_list_cnt++; 1882 continue; 1883 } else { 1884 /* Do not add to tcp_free_list */ 1885 mutex_exit( 1886 &tcp_time_wait->tcp_time_wait_lock); 1887 tcp_bind_hash_remove(tcp); 1888 conn_delete_ire(tcp->tcp_connp, NULL); 1889 tcp_ipsec_cleanup(tcp); 1890 CONN_DEC_REF(tcp->tcp_connp); 1891 } 1892 } else { 1893 CONN_INC_REF_LOCKED(connp); 1894 mutex_exit(lock); 1895 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1896 mutex_exit(&connp->conn_lock); 1897 /* 1898 * We can reuse the closemp here since conn has 1899 * detached (otherwise we wouldn't even be in 1900 * time_wait list). tcp_closemp_used can safely 1901 * be changed without taking a lock as no other 1902 * thread can concurrently access it at this 1903 * point in the connection lifecycle. 1904 */ 1905 1906 if (tcp->tcp_closemp.b_prev == NULL) 1907 tcp->tcp_closemp_used = B_TRUE; 1908 else 1909 cmn_err(CE_PANIC, 1910 "tcp_timewait_collector: " 1911 "concurrent use of tcp_closemp: " 1912 "connp %p tcp %p\n", (void *)connp, 1913 (void *)tcp); 1914 1915 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1916 mp = &tcp->tcp_closemp; 1917 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1918 tcp_timewait_output, connp, 1919 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1920 } 1921 } else { 1922 mutex_enter(&connp->conn_lock); 1923 CONN_INC_REF_LOCKED(connp); 1924 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1925 mutex_exit(&connp->conn_lock); 1926 /* 1927 * We can reuse the closemp here since conn has 1928 * detached (otherwise we wouldn't even be in 1929 * time_wait list). tcp_closemp_used can safely 1930 * be changed without taking a lock as no other 1931 * thread can concurrently access it at this 1932 * point in the connection lifecycle. 1933 */ 1934 1935 if (tcp->tcp_closemp.b_prev == NULL) 1936 tcp->tcp_closemp_used = B_TRUE; 1937 else 1938 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1939 "concurrent use of tcp_closemp: " 1940 "connp %p tcp %p\n", (void *)connp, 1941 (void *)tcp); 1942 1943 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1944 mp = &tcp->tcp_closemp; 1945 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1946 tcp_timewait_output, connp, 1947 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1948 } 1949 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1950 } 1951 1952 if (tcp_time_wait->tcp_free_list != NULL) 1953 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1954 1955 tcp_time_wait->tcp_time_wait_tid = 1956 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1957 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1958 CALLOUT_FLAG_ROUNDUP); 1959 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1960 } 1961 1962 /* 1963 * Reply to a clients T_CONN_RES TPI message. This function 1964 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1965 * on the acceptor STREAM and processed in tcp_wput_accept(). 1966 * Read the block comment on top of tcp_conn_request(). 1967 */ 1968 static void 1969 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1970 { 1971 tcp_t *acceptor; 1972 tcp_t *eager; 1973 tcp_t *tcp; 1974 struct T_conn_res *tcr; 1975 t_uscalar_t acceptor_id; 1976 t_scalar_t seqnum; 1977 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1978 struct tcp_options *tcpopt; 1979 mblk_t *ok_mp; 1980 mblk_t *mp1; 1981 tcp_stack_t *tcps = listener->tcp_tcps; 1982 1983 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1984 tcp_err_ack(listener, mp, TPROTO, 0); 1985 return; 1986 } 1987 tcr = (struct T_conn_res *)mp->b_rptr; 1988 1989 /* 1990 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1991 * read side queue of the streams device underneath us i.e. the 1992 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1993 * look it up in the queue_hash. Under LP64 it sends down the 1994 * minor_t of the accepting endpoint. 1995 * 1996 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1997 * fanout hash lock is held. 1998 * This prevents any thread from entering the acceptor queue from 1999 * below (since it has not been hard bound yet i.e. any inbound 2000 * packets will arrive on the listener or default tcp queue and 2001 * go through tcp_lookup). 2002 * The CONN_INC_REF will prevent the acceptor from closing. 2003 * 2004 * XXX It is still possible for a tli application to send down data 2005 * on the accepting stream while another thread calls t_accept. 2006 * This should not be a problem for well-behaved applications since 2007 * the T_OK_ACK is sent after the queue swapping is completed. 2008 * 2009 * If the accepting fd is the same as the listening fd, avoid 2010 * queue hash lookup since that will return an eager listener in a 2011 * already established state. 2012 */ 2013 acceptor_id = tcr->ACCEPTOR_id; 2014 mutex_enter(&listener->tcp_eager_lock); 2015 if (listener->tcp_acceptor_id == acceptor_id) { 2016 eager = listener->tcp_eager_next_q; 2017 /* only count how many T_CONN_INDs so don't count q0 */ 2018 if ((listener->tcp_conn_req_cnt_q != 1) || 2019 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2020 mutex_exit(&listener->tcp_eager_lock); 2021 tcp_err_ack(listener, mp, TBADF, 0); 2022 return; 2023 } 2024 if (listener->tcp_conn_req_cnt_q0 != 0) { 2025 /* Throw away all the eagers on q0. */ 2026 tcp_eager_cleanup(listener, 1); 2027 } 2028 if (listener->tcp_syn_defense) { 2029 listener->tcp_syn_defense = B_FALSE; 2030 if (listener->tcp_ip_addr_cache != NULL) { 2031 kmem_free(listener->tcp_ip_addr_cache, 2032 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2033 listener->tcp_ip_addr_cache = NULL; 2034 } 2035 } 2036 /* 2037 * Transfer tcp_conn_req_max to the eager so that when 2038 * a disconnect occurs we can revert the endpoint to the 2039 * listen state. 2040 */ 2041 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2042 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2043 /* 2044 * Get a reference on the acceptor just like the 2045 * tcp_acceptor_hash_lookup below. 2046 */ 2047 acceptor = listener; 2048 CONN_INC_REF(acceptor->tcp_connp); 2049 } else { 2050 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2051 if (acceptor == NULL) { 2052 if (listener->tcp_debug) { 2053 (void) strlog(TCP_MOD_ID, 0, 1, 2054 SL_ERROR|SL_TRACE, 2055 "tcp_accept: did not find acceptor 0x%x\n", 2056 acceptor_id); 2057 } 2058 mutex_exit(&listener->tcp_eager_lock); 2059 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2060 return; 2061 } 2062 /* 2063 * Verify acceptor state. The acceptable states for an acceptor 2064 * include TCPS_IDLE and TCPS_BOUND. 2065 */ 2066 switch (acceptor->tcp_state) { 2067 case TCPS_IDLE: 2068 /* FALLTHRU */ 2069 case TCPS_BOUND: 2070 break; 2071 default: 2072 CONN_DEC_REF(acceptor->tcp_connp); 2073 mutex_exit(&listener->tcp_eager_lock); 2074 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2075 return; 2076 } 2077 } 2078 2079 /* The listener must be in TCPS_LISTEN */ 2080 if (listener->tcp_state != TCPS_LISTEN) { 2081 CONN_DEC_REF(acceptor->tcp_connp); 2082 mutex_exit(&listener->tcp_eager_lock); 2083 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2084 return; 2085 } 2086 2087 /* 2088 * Rendezvous with an eager connection request packet hanging off 2089 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2090 * tcp structure when the connection packet arrived in 2091 * tcp_conn_request(). 2092 */ 2093 seqnum = tcr->SEQ_number; 2094 eager = listener; 2095 do { 2096 eager = eager->tcp_eager_next_q; 2097 if (eager == NULL) { 2098 CONN_DEC_REF(acceptor->tcp_connp); 2099 mutex_exit(&listener->tcp_eager_lock); 2100 tcp_err_ack(listener, mp, TBADSEQ, 0); 2101 return; 2102 } 2103 } while (eager->tcp_conn_req_seqnum != seqnum); 2104 mutex_exit(&listener->tcp_eager_lock); 2105 2106 /* 2107 * At this point, both acceptor and listener have 2 ref 2108 * that they begin with. Acceptor has one additional ref 2109 * we placed in lookup while listener has 3 additional 2110 * ref for being behind the squeue (tcp_accept() is 2111 * done on listener's squeue); being in classifier hash; 2112 * and eager's ref on listener. 2113 */ 2114 ASSERT(listener->tcp_connp->conn_ref >= 5); 2115 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2116 2117 /* 2118 * The eager at this point is set in its own squeue and 2119 * could easily have been killed (tcp_accept_finish will 2120 * deal with that) because of a TH_RST so we can only 2121 * ASSERT for a single ref. 2122 */ 2123 ASSERT(eager->tcp_connp->conn_ref >= 1); 2124 2125 /* Pre allocate the stroptions mblk also */ 2126 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2127 sizeof (struct T_conn_res)), BPRI_HI); 2128 if (opt_mp == NULL) { 2129 CONN_DEC_REF(acceptor->tcp_connp); 2130 CONN_DEC_REF(eager->tcp_connp); 2131 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2132 return; 2133 } 2134 DB_TYPE(opt_mp) = M_SETOPTS; 2135 opt_mp->b_wptr += sizeof (struct tcp_options); 2136 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2137 tcpopt->to_flags = 0; 2138 2139 /* 2140 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2141 * from listener to acceptor. 2142 */ 2143 if (listener->tcp_bound_if != 0) { 2144 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2145 tcpopt->to_boundif = listener->tcp_bound_if; 2146 } 2147 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2148 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2149 } 2150 2151 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2152 if ((mp1 = copymsg(mp)) == NULL) { 2153 CONN_DEC_REF(acceptor->tcp_connp); 2154 CONN_DEC_REF(eager->tcp_connp); 2155 freemsg(opt_mp); 2156 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2157 return; 2158 } 2159 2160 tcr = (struct T_conn_res *)mp1->b_rptr; 2161 2162 /* 2163 * This is an expanded version of mi_tpi_ok_ack_alloc() 2164 * which allocates a larger mblk and appends the new 2165 * local address to the ok_ack. The address is copied by 2166 * soaccept() for getsockname(). 2167 */ 2168 { 2169 int extra; 2170 2171 extra = (eager->tcp_family == AF_INET) ? 2172 sizeof (sin_t) : sizeof (sin6_t); 2173 2174 /* 2175 * Try to re-use mp, if possible. Otherwise, allocate 2176 * an mblk and return it as ok_mp. In any case, mp 2177 * is no longer usable upon return. 2178 */ 2179 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2180 CONN_DEC_REF(acceptor->tcp_connp); 2181 CONN_DEC_REF(eager->tcp_connp); 2182 freemsg(opt_mp); 2183 /* Original mp has been freed by now, so use mp1 */ 2184 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2185 return; 2186 } 2187 2188 mp = NULL; /* We should never use mp after this point */ 2189 2190 switch (extra) { 2191 case sizeof (sin_t): { 2192 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2193 2194 ok_mp->b_wptr += extra; 2195 sin->sin_family = AF_INET; 2196 sin->sin_port = eager->tcp_lport; 2197 sin->sin_addr.s_addr = 2198 eager->tcp_ipha->ipha_src; 2199 break; 2200 } 2201 case sizeof (sin6_t): { 2202 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2203 2204 ok_mp->b_wptr += extra; 2205 sin6->sin6_family = AF_INET6; 2206 sin6->sin6_port = eager->tcp_lport; 2207 if (eager->tcp_ipversion == IPV4_VERSION) { 2208 sin6->sin6_flowinfo = 0; 2209 IN6_IPADDR_TO_V4MAPPED( 2210 eager->tcp_ipha->ipha_src, 2211 &sin6->sin6_addr); 2212 } else { 2213 ASSERT(eager->tcp_ip6h != NULL); 2214 sin6->sin6_flowinfo = 2215 eager->tcp_ip6h->ip6_vcf & 2216 ~IPV6_VERS_AND_FLOW_MASK; 2217 sin6->sin6_addr = 2218 eager->tcp_ip6h->ip6_src; 2219 } 2220 sin6->sin6_scope_id = 0; 2221 sin6->__sin6_src_id = 0; 2222 break; 2223 } 2224 default: 2225 break; 2226 } 2227 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2228 } 2229 2230 /* 2231 * If there are no options we know that the T_CONN_RES will 2232 * succeed. However, we can't send the T_OK_ACK upstream until 2233 * the tcp_accept_swap is done since it would be dangerous to 2234 * let the application start using the new fd prior to the swap. 2235 */ 2236 tcp_accept_swap(listener, acceptor, eager); 2237 2238 /* 2239 * tcp_accept_swap unlinks eager from listener but does not drop 2240 * the eager's reference on the listener. 2241 */ 2242 ASSERT(eager->tcp_listener == NULL); 2243 ASSERT(listener->tcp_connp->conn_ref >= 5); 2244 2245 /* 2246 * The eager is now associated with its own queue. Insert in 2247 * the hash so that the connection can be reused for a future 2248 * T_CONN_RES. 2249 */ 2250 tcp_acceptor_hash_insert(acceptor_id, eager); 2251 2252 /* 2253 * We now do the processing of options with T_CONN_RES. 2254 * We delay till now since we wanted to have queue to pass to 2255 * option processing routines that points back to the right 2256 * instance structure which does not happen until after 2257 * tcp_accept_swap(). 2258 * 2259 * Note: 2260 * The sanity of the logic here assumes that whatever options 2261 * are appropriate to inherit from listner=>eager are done 2262 * before this point, and whatever were to be overridden (or not) 2263 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2264 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2265 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2266 * This may not be true at this point in time but can be fixed 2267 * independently. This option processing code starts with 2268 * the instantiated acceptor instance and the final queue at 2269 * this point. 2270 */ 2271 2272 if (tcr->OPT_length != 0) { 2273 /* Options to process */ 2274 int t_error = 0; 2275 int sys_error = 0; 2276 int do_disconnect = 0; 2277 2278 if (tcp_conprim_opt_process(eager, mp1, 2279 &do_disconnect, &t_error, &sys_error) < 0) { 2280 eager->tcp_accept_error = 1; 2281 if (do_disconnect) { 2282 /* 2283 * An option failed which does not allow 2284 * connection to be accepted. 2285 * 2286 * We allow T_CONN_RES to succeed and 2287 * put a T_DISCON_IND on the eager queue. 2288 */ 2289 ASSERT(t_error == 0 && sys_error == 0); 2290 eager->tcp_send_discon_ind = 1; 2291 } else { 2292 ASSERT(t_error != 0); 2293 freemsg(ok_mp); 2294 /* 2295 * Original mp was either freed or set 2296 * to ok_mp above, so use mp1 instead. 2297 */ 2298 tcp_err_ack(listener, mp1, t_error, sys_error); 2299 goto finish; 2300 } 2301 } 2302 /* 2303 * Most likely success in setting options (except if 2304 * eager->tcp_send_discon_ind set). 2305 * mp1 option buffer represented by OPT_length/offset 2306 * potentially modified and contains results of setting 2307 * options at this point 2308 */ 2309 } 2310 2311 /* We no longer need mp1, since all options processing has passed */ 2312 freemsg(mp1); 2313 2314 putnext(listener->tcp_rq, ok_mp); 2315 2316 mutex_enter(&listener->tcp_eager_lock); 2317 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2318 tcp_t *tail; 2319 mblk_t *conn_ind; 2320 2321 /* 2322 * This path should not be executed if listener and 2323 * acceptor streams are the same. 2324 */ 2325 ASSERT(listener != acceptor); 2326 2327 tcp = listener->tcp_eager_prev_q0; 2328 /* 2329 * listener->tcp_eager_prev_q0 points to the TAIL of the 2330 * deferred T_conn_ind queue. We need to get to the head of 2331 * the queue in order to send up T_conn_ind the same order as 2332 * how the 3WHS is completed. 2333 */ 2334 while (tcp != listener) { 2335 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2336 break; 2337 else 2338 tcp = tcp->tcp_eager_prev_q0; 2339 } 2340 ASSERT(tcp != listener); 2341 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2342 ASSERT(conn_ind != NULL); 2343 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2344 2345 /* Move from q0 to q */ 2346 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2347 listener->tcp_conn_req_cnt_q0--; 2348 listener->tcp_conn_req_cnt_q++; 2349 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2350 tcp->tcp_eager_prev_q0; 2351 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2352 tcp->tcp_eager_next_q0; 2353 tcp->tcp_eager_prev_q0 = NULL; 2354 tcp->tcp_eager_next_q0 = NULL; 2355 tcp->tcp_conn_def_q0 = B_FALSE; 2356 2357 /* Make sure the tcp isn't in the list of droppables */ 2358 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2359 tcp->tcp_eager_prev_drop_q0 == NULL); 2360 2361 /* 2362 * Insert at end of the queue because sockfs sends 2363 * down T_CONN_RES in chronological order. Leaving 2364 * the older conn indications at front of the queue 2365 * helps reducing search time. 2366 */ 2367 tail = listener->tcp_eager_last_q; 2368 if (tail != NULL) 2369 tail->tcp_eager_next_q = tcp; 2370 else 2371 listener->tcp_eager_next_q = tcp; 2372 listener->tcp_eager_last_q = tcp; 2373 tcp->tcp_eager_next_q = NULL; 2374 mutex_exit(&listener->tcp_eager_lock); 2375 putnext(tcp->tcp_rq, conn_ind); 2376 } else { 2377 mutex_exit(&listener->tcp_eager_lock); 2378 } 2379 2380 /* 2381 * Done with the acceptor - free it 2382 * 2383 * Note: from this point on, no access to listener should be made 2384 * as listener can be equal to acceptor. 2385 */ 2386 finish: 2387 ASSERT(acceptor->tcp_detached); 2388 ASSERT(tcps->tcps_g_q != NULL); 2389 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2390 acceptor->tcp_rq = tcps->tcps_g_q; 2391 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2392 (void) tcp_clean_death(acceptor, 0, 2); 2393 CONN_DEC_REF(acceptor->tcp_connp); 2394 2395 /* 2396 * In case we already received a FIN we have to make tcp_rput send 2397 * the ordrel_ind. This will also send up a window update if the window 2398 * has opened up. 2399 * 2400 * In the normal case of a successful connection acceptance 2401 * we give the O_T_BIND_REQ to the read side put procedure as an 2402 * indication that this was just accepted. This tells tcp_rput to 2403 * pass up any data queued in tcp_rcv_list. 2404 * 2405 * In the fringe case where options sent with T_CONN_RES failed and 2406 * we required, we would be indicating a T_DISCON_IND to blow 2407 * away this connection. 2408 */ 2409 2410 /* 2411 * XXX: we currently have a problem if XTI application closes the 2412 * acceptor stream in between. This problem exists in on10-gate also 2413 * and is well know but nothing can be done short of major rewrite 2414 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2415 * eager same squeue as listener (we can distinguish non socket 2416 * listeners at the time of handling a SYN in tcp_conn_request) 2417 * and do most of the work that tcp_accept_finish does here itself 2418 * and then get behind the acceptor squeue to access the acceptor 2419 * queue. 2420 */ 2421 /* 2422 * We already have a ref on tcp so no need to do one before squeue_enter 2423 */ 2424 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2425 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2426 } 2427 2428 /* 2429 * Swap information between the eager and acceptor for a TLI/XTI client. 2430 * The sockfs accept is done on the acceptor stream and control goes 2431 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2432 * called. In either case, both the eager and listener are in their own 2433 * perimeter (squeue) and the code has to deal with potential race. 2434 * 2435 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2436 */ 2437 static void 2438 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2439 { 2440 conn_t *econnp, *aconnp; 2441 2442 ASSERT(eager->tcp_rq == listener->tcp_rq); 2443 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2444 ASSERT(!eager->tcp_hard_bound); 2445 ASSERT(!TCP_IS_SOCKET(acceptor)); 2446 ASSERT(!TCP_IS_SOCKET(eager)); 2447 ASSERT(!TCP_IS_SOCKET(listener)); 2448 2449 acceptor->tcp_detached = B_TRUE; 2450 /* 2451 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2452 * the acceptor id. 2453 */ 2454 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2455 2456 /* remove eager from listen list... */ 2457 mutex_enter(&listener->tcp_eager_lock); 2458 tcp_eager_unlink(eager); 2459 ASSERT(eager->tcp_eager_next_q == NULL && 2460 eager->tcp_eager_last_q == NULL); 2461 ASSERT(eager->tcp_eager_next_q0 == NULL && 2462 eager->tcp_eager_prev_q0 == NULL); 2463 mutex_exit(&listener->tcp_eager_lock); 2464 eager->tcp_rq = acceptor->tcp_rq; 2465 eager->tcp_wq = acceptor->tcp_wq; 2466 2467 econnp = eager->tcp_connp; 2468 aconnp = acceptor->tcp_connp; 2469 2470 eager->tcp_rq->q_ptr = econnp; 2471 eager->tcp_wq->q_ptr = econnp; 2472 2473 /* 2474 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2475 * which might be a different squeue from our peer TCP instance. 2476 * For TCP Fusion, the peer expects that whenever tcp_detached is 2477 * clear, our TCP queues point to the acceptor's queues. Thus, use 2478 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2479 * above reach global visibility prior to the clearing of tcp_detached. 2480 */ 2481 membar_producer(); 2482 eager->tcp_detached = B_FALSE; 2483 2484 ASSERT(eager->tcp_ack_tid == 0); 2485 2486 econnp->conn_dev = aconnp->conn_dev; 2487 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2488 ASSERT(econnp->conn_minor_arena != NULL); 2489 if (eager->tcp_cred != NULL) 2490 crfree(eager->tcp_cred); 2491 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2492 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2493 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2494 2495 aconnp->conn_cred = NULL; 2496 2497 econnp->conn_zoneid = aconnp->conn_zoneid; 2498 econnp->conn_allzones = aconnp->conn_allzones; 2499 2500 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2501 aconnp->conn_mac_exempt = B_FALSE; 2502 2503 ASSERT(aconnp->conn_peercred == NULL); 2504 2505 /* Do the IPC initialization */ 2506 CONN_INC_REF(econnp); 2507 2508 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2509 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2510 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2511 2512 /* Done with old IPC. Drop its ref on its connp */ 2513 CONN_DEC_REF(aconnp); 2514 } 2515 2516 2517 /* 2518 * Adapt to the information, such as rtt and rtt_sd, provided from the 2519 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2520 * 2521 * Checks for multicast and broadcast destination address. 2522 * Returns zero on failure; non-zero if ok. 2523 * 2524 * Note that the MSS calculation here is based on the info given in 2525 * the IRE. We do not do any calculation based on TCP options. They 2526 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2527 * knows which options to use. 2528 * 2529 * Note on how TCP gets its parameters for a connection. 2530 * 2531 * When a tcp_t structure is allocated, it gets all the default parameters. 2532 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2533 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2534 * default. 2535 * 2536 * An incoming SYN with a multicast or broadcast destination address, is dropped 2537 * in 1 of 2 places. 2538 * 2539 * 1. If the packet was received over the wire it is dropped in 2540 * ip_rput_process_broadcast() 2541 * 2542 * 2. If the packet was received through internal IP loopback, i.e. the packet 2543 * was generated and received on the same machine, it is dropped in 2544 * ip_wput_local() 2545 * 2546 * An incoming SYN with a multicast or broadcast source address is always 2547 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2548 * reject an attempt to connect to a broadcast or multicast (destination) 2549 * address. 2550 */ 2551 static int 2552 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2553 { 2554 tcp_hsp_t *hsp; 2555 ire_t *ire; 2556 ire_t *sire = NULL; 2557 iulp_t *ire_uinfo = NULL; 2558 uint32_t mss_max; 2559 uint32_t mss; 2560 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2561 conn_t *connp = tcp->tcp_connp; 2562 boolean_t ire_cacheable = B_FALSE; 2563 zoneid_t zoneid = connp->conn_zoneid; 2564 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2565 MATCH_IRE_SECATTR; 2566 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2567 ill_t *ill = NULL; 2568 boolean_t incoming = (ire_mp == NULL); 2569 tcp_stack_t *tcps = tcp->tcp_tcps; 2570 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2571 2572 ASSERT(connp->conn_ire_cache == NULL); 2573 2574 if (tcp->tcp_ipversion == IPV4_VERSION) { 2575 2576 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2577 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2578 return (0); 2579 } 2580 /* 2581 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2582 * for the destination with the nexthop as gateway. 2583 * ire_ctable_lookup() is used because this particular 2584 * ire, if it exists, will be marked private. 2585 * If that is not available, use the interface ire 2586 * for the nexthop. 2587 * 2588 * TSol: tcp_update_label will detect label mismatches based 2589 * only on the destination's label, but that would not 2590 * detect label mismatches based on the security attributes 2591 * of routes or next hop gateway. Hence we need to pass the 2592 * label to ire_ftable_lookup below in order to locate the 2593 * right prefix (and/or) ire cache. Similarly we also need 2594 * pass the label to the ire_cache_lookup below to locate 2595 * the right ire that also matches on the label. 2596 */ 2597 if (tcp->tcp_connp->conn_nexthop_set) { 2598 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2599 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2600 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2601 ipst); 2602 if (ire == NULL) { 2603 ire = ire_ftable_lookup( 2604 tcp->tcp_connp->conn_nexthop_v4, 2605 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2606 tsl, match_flags, ipst); 2607 if (ire == NULL) 2608 return (0); 2609 } else { 2610 ire_uinfo = &ire->ire_uinfo; 2611 } 2612 } else { 2613 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2614 zoneid, tsl, ipst); 2615 if (ire != NULL) { 2616 ire_cacheable = B_TRUE; 2617 ire_uinfo = (ire_mp != NULL) ? 2618 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2619 &ire->ire_uinfo; 2620 2621 } else { 2622 if (ire_mp == NULL) { 2623 ire = ire_ftable_lookup( 2624 tcp->tcp_connp->conn_rem, 2625 0, 0, 0, NULL, &sire, zoneid, 0, 2626 tsl, (MATCH_IRE_RECURSIVE | 2627 MATCH_IRE_DEFAULT), ipst); 2628 if (ire == NULL) 2629 return (0); 2630 ire_uinfo = (sire != NULL) ? 2631 &sire->ire_uinfo : 2632 &ire->ire_uinfo; 2633 } else { 2634 ire = (ire_t *)ire_mp->b_rptr; 2635 ire_uinfo = 2636 &((ire_t *) 2637 ire_mp->b_rptr)->ire_uinfo; 2638 } 2639 } 2640 } 2641 ASSERT(ire != NULL); 2642 2643 if ((ire->ire_src_addr == INADDR_ANY) || 2644 (ire->ire_type & IRE_BROADCAST)) { 2645 /* 2646 * ire->ire_mp is non null when ire_mp passed in is used 2647 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2648 */ 2649 if (ire->ire_mp == NULL) 2650 ire_refrele(ire); 2651 if (sire != NULL) 2652 ire_refrele(sire); 2653 return (0); 2654 } 2655 2656 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2657 ipaddr_t src_addr; 2658 2659 /* 2660 * ip_bind_connected() has stored the correct source 2661 * address in conn_src. 2662 */ 2663 src_addr = tcp->tcp_connp->conn_src; 2664 tcp->tcp_ipha->ipha_src = src_addr; 2665 /* 2666 * Copy of the src addr. in tcp_t is needed 2667 * for the lookup funcs. 2668 */ 2669 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2670 } 2671 /* 2672 * Set the fragment bit so that IP will tell us if the MTU 2673 * should change. IP tells us the latest setting of 2674 * ip_path_mtu_discovery through ire_frag_flag. 2675 */ 2676 if (ipst->ips_ip_path_mtu_discovery) { 2677 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2678 htons(IPH_DF); 2679 } 2680 /* 2681 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2682 * for IP_NEXTHOP. No cache ire has been found for the 2683 * destination and we are working with the nexthop's 2684 * interface ire. Since we need to forward all packets 2685 * to the nexthop first, we "blindly" set tcp_localnet 2686 * to false, eventhough the destination may also be 2687 * onlink. 2688 */ 2689 if (ire_uinfo == NULL) 2690 tcp->tcp_localnet = 0; 2691 else 2692 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2693 } else { 2694 /* 2695 * For incoming connection ire_mp = NULL 2696 * For outgoing connection ire_mp != NULL 2697 * Technically we should check conn_incoming_ill 2698 * when ire_mp is NULL and conn_outgoing_ill when 2699 * ire_mp is non-NULL. But this is performance 2700 * critical path and for IPV*_BOUND_IF, outgoing 2701 * and incoming ill are always set to the same value. 2702 */ 2703 ill_t *dst_ill = NULL; 2704 ipif_t *dst_ipif = NULL; 2705 2706 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2707 2708 if (connp->conn_outgoing_ill != NULL) { 2709 /* Outgoing or incoming path */ 2710 int err; 2711 2712 dst_ill = conn_get_held_ill(connp, 2713 &connp->conn_outgoing_ill, &err); 2714 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2715 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2716 return (0); 2717 } 2718 match_flags |= MATCH_IRE_ILL; 2719 dst_ipif = dst_ill->ill_ipif; 2720 } 2721 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2722 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2723 2724 if (ire != NULL) { 2725 ire_cacheable = B_TRUE; 2726 ire_uinfo = (ire_mp != NULL) ? 2727 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2728 &ire->ire_uinfo; 2729 } else { 2730 if (ire_mp == NULL) { 2731 ire = ire_ftable_lookup_v6( 2732 &tcp->tcp_connp->conn_remv6, 2733 0, 0, 0, dst_ipif, &sire, zoneid, 2734 0, tsl, match_flags, ipst); 2735 if (ire == NULL) { 2736 if (dst_ill != NULL) 2737 ill_refrele(dst_ill); 2738 return (0); 2739 } 2740 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2741 &ire->ire_uinfo; 2742 } else { 2743 ire = (ire_t *)ire_mp->b_rptr; 2744 ire_uinfo = 2745 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2746 } 2747 } 2748 if (dst_ill != NULL) 2749 ill_refrele(dst_ill); 2750 2751 ASSERT(ire != NULL); 2752 ASSERT(ire_uinfo != NULL); 2753 2754 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2755 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2756 /* 2757 * ire->ire_mp is non null when ire_mp passed in is used 2758 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2759 */ 2760 if (ire->ire_mp == NULL) 2761 ire_refrele(ire); 2762 if (sire != NULL) 2763 ire_refrele(sire); 2764 return (0); 2765 } 2766 2767 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2768 in6_addr_t src_addr; 2769 2770 /* 2771 * ip_bind_connected_v6() has stored the correct source 2772 * address per IPv6 addr. selection policy in 2773 * conn_src_v6. 2774 */ 2775 src_addr = tcp->tcp_connp->conn_srcv6; 2776 2777 tcp->tcp_ip6h->ip6_src = src_addr; 2778 /* 2779 * Copy of the src addr. in tcp_t is needed 2780 * for the lookup funcs. 2781 */ 2782 tcp->tcp_ip_src_v6 = src_addr; 2783 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2784 &connp->conn_srcv6)); 2785 } 2786 tcp->tcp_localnet = 2787 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2788 } 2789 2790 /* 2791 * This allows applications to fail quickly when connections are made 2792 * to dead hosts. Hosts can be labeled dead by adding a reject route 2793 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2794 */ 2795 if ((ire->ire_flags & RTF_REJECT) && 2796 (ire->ire_flags & RTF_PRIVATE)) 2797 goto error; 2798 2799 /* 2800 * Make use of the cached rtt and rtt_sd values to calculate the 2801 * initial RTO. Note that they are already initialized in 2802 * tcp_init_values(). 2803 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2804 * IP_NEXTHOP, but instead are using the interface ire for the 2805 * nexthop, then we do not use the ire_uinfo from that ire to 2806 * do any initializations. 2807 */ 2808 if (ire_uinfo != NULL) { 2809 if (ire_uinfo->iulp_rtt != 0) { 2810 clock_t rto; 2811 2812 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2813 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2814 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2815 tcps->tcps_rexmit_interval_extra + 2816 (tcp->tcp_rtt_sa >> 5); 2817 2818 if (rto > tcps->tcps_rexmit_interval_max) { 2819 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2820 } else if (rto < tcps->tcps_rexmit_interval_min) { 2821 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2822 } else { 2823 tcp->tcp_rto = rto; 2824 } 2825 } 2826 if (ire_uinfo->iulp_ssthresh != 0) 2827 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2828 else 2829 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2830 if (ire_uinfo->iulp_spipe > 0) { 2831 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2832 tcps->tcps_max_buf); 2833 if (tcps->tcps_snd_lowat_fraction != 0) 2834 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2835 tcps->tcps_snd_lowat_fraction; 2836 (void) tcp_maxpsz_set(tcp, B_TRUE); 2837 } 2838 /* 2839 * Note that up till now, acceptor always inherits receive 2840 * window from the listener. But if there is a metrics 2841 * associated with a host, we should use that instead of 2842 * inheriting it from listener. Thus we need to pass this 2843 * info back to the caller. 2844 */ 2845 if (ire_uinfo->iulp_rpipe > 0) { 2846 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2847 tcps->tcps_max_buf); 2848 } 2849 2850 if (ire_uinfo->iulp_rtomax > 0) { 2851 tcp->tcp_second_timer_threshold = 2852 ire_uinfo->iulp_rtomax; 2853 } 2854 2855 /* 2856 * Use the metric option settings, iulp_tstamp_ok and 2857 * iulp_wscale_ok, only for active open. What this means 2858 * is that if the other side uses timestamp or window 2859 * scale option, TCP will also use those options. That 2860 * is for passive open. If the application sets a 2861 * large window, window scale is enabled regardless of 2862 * the value in iulp_wscale_ok. This is the behavior 2863 * since 2.6. So we keep it. 2864 * The only case left in passive open processing is the 2865 * check for SACK. 2866 * For ECN, it should probably be like SACK. But the 2867 * current value is binary, so we treat it like the other 2868 * cases. The metric only controls active open.For passive 2869 * open, the ndd param, tcp_ecn_permitted, controls the 2870 * behavior. 2871 */ 2872 if (!tcp_detached) { 2873 /* 2874 * The if check means that the following can only 2875 * be turned on by the metrics only IRE, but not off. 2876 */ 2877 if (ire_uinfo->iulp_tstamp_ok) 2878 tcp->tcp_snd_ts_ok = B_TRUE; 2879 if (ire_uinfo->iulp_wscale_ok) 2880 tcp->tcp_snd_ws_ok = B_TRUE; 2881 if (ire_uinfo->iulp_sack == 2) 2882 tcp->tcp_snd_sack_ok = B_TRUE; 2883 if (ire_uinfo->iulp_ecn_ok) 2884 tcp->tcp_ecn_ok = B_TRUE; 2885 } else { 2886 /* 2887 * Passive open. 2888 * 2889 * As above, the if check means that SACK can only be 2890 * turned on by the metric only IRE. 2891 */ 2892 if (ire_uinfo->iulp_sack > 0) { 2893 tcp->tcp_snd_sack_ok = B_TRUE; 2894 } 2895 } 2896 } 2897 2898 2899 /* 2900 * XXX: Note that currently, ire_max_frag can be as small as 68 2901 * because of PMTUd. So tcp_mss may go to negative if combined 2902 * length of all those options exceeds 28 bytes. But because 2903 * of the tcp_mss_min check below, we may not have a problem if 2904 * tcp_mss_min is of a reasonable value. The default is 1 so 2905 * the negative problem still exists. And the check defeats PMTUd. 2906 * In fact, if PMTUd finds that the MSS should be smaller than 2907 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2908 * value. 2909 * 2910 * We do not deal with that now. All those problems related to 2911 * PMTUd will be fixed later. 2912 */ 2913 ASSERT(ire->ire_max_frag != 0); 2914 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2915 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2916 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2917 mss = MIN(mss, IPV6_MIN_MTU); 2918 } 2919 } 2920 2921 /* Sanity check for MSS value. */ 2922 if (tcp->tcp_ipversion == IPV4_VERSION) 2923 mss_max = tcps->tcps_mss_max_ipv4; 2924 else 2925 mss_max = tcps->tcps_mss_max_ipv6; 2926 2927 if (tcp->tcp_ipversion == IPV6_VERSION && 2928 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2929 /* 2930 * After receiving an ICMPv6 "packet too big" message with a 2931 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2932 * will insert a 8-byte fragment header in every packet; we 2933 * reduce the MSS by that amount here. 2934 */ 2935 mss -= sizeof (ip6_frag_t); 2936 } 2937 2938 if (tcp->tcp_ipsec_overhead == 0) 2939 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2940 2941 mss -= tcp->tcp_ipsec_overhead; 2942 2943 if (mss < tcps->tcps_mss_min) 2944 mss = tcps->tcps_mss_min; 2945 if (mss > mss_max) 2946 mss = mss_max; 2947 2948 /* Note that this is the maximum MSS, excluding all options. */ 2949 tcp->tcp_mss = mss; 2950 2951 /* 2952 * Initialize the ISS here now that we have the full connection ID. 2953 * The RFC 1948 method of initial sequence number generation requires 2954 * knowledge of the full connection ID before setting the ISS. 2955 */ 2956 2957 tcp_iss_init(tcp); 2958 2959 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2960 tcp->tcp_loopback = B_TRUE; 2961 2962 if (tcp->tcp_ipversion == IPV4_VERSION) { 2963 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2964 } else { 2965 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2966 } 2967 2968 if (hsp != NULL) { 2969 /* Only modify if we're going to make them bigger */ 2970 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2971 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2972 if (tcps->tcps_snd_lowat_fraction != 0) 2973 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2974 tcps->tcps_snd_lowat_fraction; 2975 } 2976 2977 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2978 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2979 } 2980 2981 /* Copy timestamp flag only for active open */ 2982 if (!tcp_detached) 2983 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2984 } 2985 2986 if (sire != NULL) 2987 IRE_REFRELE(sire); 2988 2989 /* 2990 * If we got an IRE_CACHE and an ILL, go through their properties; 2991 * otherwise, this is deferred until later when we have an IRE_CACHE. 2992 */ 2993 if (tcp->tcp_loopback || 2994 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2995 /* 2996 * For incoming, see if this tcp may be MDT-capable. For 2997 * outgoing, this process has been taken care of through 2998 * tcp_rput_other. 2999 */ 3000 tcp_ire_ill_check(tcp, ire, ill, incoming); 3001 tcp->tcp_ire_ill_check_done = B_TRUE; 3002 } 3003 3004 mutex_enter(&connp->conn_lock); 3005 /* 3006 * Make sure that conn is not marked incipient 3007 * for incoming connections. A blind 3008 * removal of incipient flag is cheaper than 3009 * check and removal. 3010 */ 3011 connp->conn_state_flags &= ~CONN_INCIPIENT; 3012 3013 /* 3014 * Must not cache forwarding table routes 3015 * or recache an IRE after the conn_t has 3016 * had conn_ire_cache cleared and is flagged 3017 * unusable, (see the CONN_CACHE_IRE() macro). 3018 */ 3019 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 3020 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3021 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3022 connp->conn_ire_cache = ire; 3023 IRE_UNTRACE_REF(ire); 3024 rw_exit(&ire->ire_bucket->irb_lock); 3025 mutex_exit(&connp->conn_lock); 3026 return (1); 3027 } 3028 rw_exit(&ire->ire_bucket->irb_lock); 3029 } 3030 mutex_exit(&connp->conn_lock); 3031 3032 if (ire->ire_mp == NULL) 3033 ire_refrele(ire); 3034 return (1); 3035 3036 error: 3037 if (ire->ire_mp == NULL) 3038 ire_refrele(ire); 3039 if (sire != NULL) 3040 ire_refrele(sire); 3041 return (0); 3042 } 3043 3044 static void 3045 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 3046 { 3047 int error; 3048 conn_t *connp = tcp->tcp_connp; 3049 struct sockaddr *sa; 3050 mblk_t *mp1; 3051 struct T_bind_req *tbr; 3052 int backlog; 3053 socklen_t len; 3054 sin_t *sin; 3055 sin6_t *sin6; 3056 3057 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3058 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3059 if (tcp->tcp_debug) { 3060 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3061 "tcp_tpi_bind: bad req, len %u", 3062 (uint_t)(mp->b_wptr - mp->b_rptr)); 3063 } 3064 tcp_err_ack(tcp, mp, TPROTO, 0); 3065 return; 3066 } 3067 /* Make sure the largest address fits */ 3068 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3069 if (mp1 == NULL) { 3070 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3071 return; 3072 } 3073 mp = mp1; 3074 tbr = (struct T_bind_req *)mp->b_rptr; 3075 3076 backlog = tbr->CONIND_number; 3077 len = tbr->ADDR_length; 3078 3079 switch (len) { 3080 case 0: /* request for a generic port */ 3081 tbr->ADDR_offset = sizeof (struct T_bind_req); 3082 if (tcp->tcp_family == AF_INET) { 3083 tbr->ADDR_length = sizeof (sin_t); 3084 sin = (sin_t *)&tbr[1]; 3085 *sin = sin_null; 3086 sin->sin_family = AF_INET; 3087 sa = (struct sockaddr *)sin; 3088 len = sizeof (sin_t); 3089 mp->b_wptr = (uchar_t *)&sin[1]; 3090 } else { 3091 ASSERT(tcp->tcp_family == AF_INET6); 3092 tbr->ADDR_length = sizeof (sin6_t); 3093 sin6 = (sin6_t *)&tbr[1]; 3094 *sin6 = sin6_null; 3095 sin6->sin6_family = AF_INET6; 3096 sa = (struct sockaddr *)sin6; 3097 len = sizeof (sin6_t); 3098 mp->b_wptr = (uchar_t *)&sin6[1]; 3099 } 3100 break; 3101 3102 case sizeof (sin_t): /* Complete IPv4 address */ 3103 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3104 sizeof (sin_t)); 3105 break; 3106 3107 case sizeof (sin6_t): /* Complete IPv6 address */ 3108 sa = (struct sockaddr *)mi_offset_param(mp, 3109 tbr->ADDR_offset, sizeof (sin6_t)); 3110 break; 3111 3112 default: 3113 if (tcp->tcp_debug) { 3114 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3115 "tcp_tpi_bind: bad address length, %d", 3116 tbr->ADDR_length); 3117 } 3118 tcp_err_ack(tcp, mp, TBADADDR, 0); 3119 return; 3120 } 3121 3122 error = tcp_bind_check(connp, sa, len, DB_CRED(mp), 3123 tbr->PRIM_type != O_T_BIND_REQ); 3124 if (error == 0) { 3125 if (tcp->tcp_family == AF_INET) { 3126 sin = (sin_t *)sa; 3127 sin->sin_port = tcp->tcp_lport; 3128 } else { 3129 sin6 = (sin6_t *)sa; 3130 sin6->sin6_port = tcp->tcp_lport; 3131 } 3132 3133 if (backlog > 0) { 3134 error = tcp_do_listen(connp, backlog, DB_CRED(mp)); 3135 } 3136 } 3137 done: 3138 if (error > 0) { 3139 tcp_err_ack(tcp, mp, TSYSERR, error); 3140 } else if (error < 0) { 3141 tcp_err_ack(tcp, mp, -error, 0); 3142 } else { 3143 mp->b_datap->db_type = M_PCPROTO; 3144 tbr->PRIM_type = T_BIND_ACK; 3145 putnext(tcp->tcp_rq, mp); 3146 } 3147 } 3148 3149 /* 3150 * If the "bind_to_req_port_only" parameter is set, if the requested port 3151 * number is available, return it, If not return 0 3152 * 3153 * If "bind_to_req_port_only" parameter is not set and 3154 * If the requested port number is available, return it. If not, return 3155 * the first anonymous port we happen across. If no anonymous ports are 3156 * available, return 0. addr is the requested local address, if any. 3157 * 3158 * In either case, when succeeding update the tcp_t to record the port number 3159 * and insert it in the bind hash table. 3160 * 3161 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3162 * without setting SO_REUSEADDR. This is needed so that they 3163 * can be viewed as two independent transport protocols. 3164 */ 3165 static in_port_t 3166 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3167 int reuseaddr, boolean_t quick_connect, 3168 boolean_t bind_to_req_port_only, boolean_t user_specified) 3169 { 3170 /* number of times we have run around the loop */ 3171 int count = 0; 3172 /* maximum number of times to run around the loop */ 3173 int loopmax; 3174 conn_t *connp = tcp->tcp_connp; 3175 zoneid_t zoneid = connp->conn_zoneid; 3176 tcp_stack_t *tcps = tcp->tcp_tcps; 3177 3178 /* 3179 * Lookup for free addresses is done in a loop and "loopmax" 3180 * influences how long we spin in the loop 3181 */ 3182 if (bind_to_req_port_only) { 3183 /* 3184 * If the requested port is busy, don't bother to look 3185 * for a new one. Setting loop maximum count to 1 has 3186 * that effect. 3187 */ 3188 loopmax = 1; 3189 } else { 3190 /* 3191 * If the requested port is busy, look for a free one 3192 * in the anonymous port range. 3193 * Set loopmax appropriately so that one does not look 3194 * forever in the case all of the anonymous ports are in use. 3195 */ 3196 if (tcp->tcp_anon_priv_bind) { 3197 /* 3198 * loopmax = 3199 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3200 */ 3201 loopmax = IPPORT_RESERVED - 3202 tcps->tcps_min_anonpriv_port; 3203 } else { 3204 loopmax = (tcps->tcps_largest_anon_port - 3205 tcps->tcps_smallest_anon_port + 1); 3206 } 3207 } 3208 do { 3209 uint16_t lport; 3210 tf_t *tbf; 3211 tcp_t *ltcp; 3212 conn_t *lconnp; 3213 3214 lport = htons(port); 3215 3216 /* 3217 * Ensure that the tcp_t is not currently in the bind hash. 3218 * Hold the lock on the hash bucket to ensure that 3219 * the duplicate check plus the insertion is an atomic 3220 * operation. 3221 * 3222 * This function does an inline lookup on the bind hash list 3223 * Make sure that we access only members of tcp_t 3224 * and that we don't look at tcp_tcp, since we are not 3225 * doing a CONN_INC_REF. 3226 */ 3227 tcp_bind_hash_remove(tcp); 3228 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3229 mutex_enter(&tbf->tf_lock); 3230 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3231 ltcp = ltcp->tcp_bind_hash) { 3232 if (lport == ltcp->tcp_lport) 3233 break; 3234 } 3235 3236 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3237 boolean_t not_socket; 3238 boolean_t exclbind; 3239 3240 lconnp = ltcp->tcp_connp; 3241 3242 /* 3243 * On a labeled system, we must treat bindings to ports 3244 * on shared IP addresses by sockets with MAC exemption 3245 * privilege as being in all zones, as there's 3246 * otherwise no way to identify the right receiver. 3247 */ 3248 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3249 IPCL_ZONE_MATCH(connp, 3250 ltcp->tcp_connp->conn_zoneid)) && 3251 !lconnp->conn_mac_exempt && 3252 !connp->conn_mac_exempt) 3253 continue; 3254 3255 /* 3256 * If TCP_EXCLBIND is set for either the bound or 3257 * binding endpoint, the semantics of bind 3258 * is changed according to the following. 3259 * 3260 * spec = specified address (v4 or v6) 3261 * unspec = unspecified address (v4 or v6) 3262 * A = specified addresses are different for endpoints 3263 * 3264 * bound bind to allowed 3265 * ------------------------------------- 3266 * unspec unspec no 3267 * unspec spec no 3268 * spec unspec no 3269 * spec spec yes if A 3270 * 3271 * For labeled systems, SO_MAC_EXEMPT behaves the same 3272 * as TCP_EXCLBIND, except that zoneid is ignored. 3273 * 3274 * Note: 3275 * 3276 * 1. Because of TLI semantics, an endpoint can go 3277 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3278 * TCPS_BOUND, depending on whether it is originally 3279 * a listener or not. That is why we need to check 3280 * for states greater than or equal to TCPS_BOUND 3281 * here. 3282 * 3283 * 2. Ideally, we should only check for state equals 3284 * to TCPS_LISTEN. And the following check should be 3285 * added. 3286 * 3287 * if (ltcp->tcp_state == TCPS_LISTEN || 3288 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3289 * ... 3290 * } 3291 * 3292 * The semantics will be changed to this. If the 3293 * endpoint on the list is in state not equal to 3294 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3295 * set, let the bind succeed. 3296 * 3297 * Because of (1), we cannot do that for TLI 3298 * endpoints. But we can do that for socket endpoints. 3299 * If in future, we can change this going back 3300 * semantics, we can use the above check for TLI also. 3301 */ 3302 not_socket = !(TCP_IS_SOCKET(ltcp) && 3303 TCP_IS_SOCKET(tcp)); 3304 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3305 3306 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3307 (exclbind && (not_socket || 3308 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3309 if (V6_OR_V4_INADDR_ANY( 3310 ltcp->tcp_bound_source_v6) || 3311 V6_OR_V4_INADDR_ANY(*laddr) || 3312 IN6_ARE_ADDR_EQUAL(laddr, 3313 <cp->tcp_bound_source_v6)) { 3314 break; 3315 } 3316 continue; 3317 } 3318 3319 /* 3320 * Check ipversion to allow IPv4 and IPv6 sockets to 3321 * have disjoint port number spaces, if *_EXCLBIND 3322 * is not set and only if the application binds to a 3323 * specific port. We use the same autoassigned port 3324 * number space for IPv4 and IPv6 sockets. 3325 */ 3326 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3327 bind_to_req_port_only) 3328 continue; 3329 3330 /* 3331 * Ideally, we should make sure that the source 3332 * address, remote address, and remote port in the 3333 * four tuple for this tcp-connection is unique. 3334 * However, trying to find out the local source 3335 * address would require too much code duplication 3336 * with IP, since IP needs needs to have that code 3337 * to support userland TCP implementations. 3338 */ 3339 if (quick_connect && 3340 (ltcp->tcp_state > TCPS_LISTEN) && 3341 ((tcp->tcp_fport != ltcp->tcp_fport) || 3342 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3343 <cp->tcp_remote_v6))) 3344 continue; 3345 3346 if (!reuseaddr) { 3347 /* 3348 * No socket option SO_REUSEADDR. 3349 * If existing port is bound to 3350 * a non-wildcard IP address 3351 * and the requesting stream is 3352 * bound to a distinct 3353 * different IP addresses 3354 * (non-wildcard, also), keep 3355 * going. 3356 */ 3357 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3358 !V6_OR_V4_INADDR_ANY( 3359 ltcp->tcp_bound_source_v6) && 3360 !IN6_ARE_ADDR_EQUAL(laddr, 3361 <cp->tcp_bound_source_v6)) 3362 continue; 3363 if (ltcp->tcp_state >= TCPS_BOUND) { 3364 /* 3365 * This port is being used and 3366 * its state is >= TCPS_BOUND, 3367 * so we can't bind to it. 3368 */ 3369 break; 3370 } 3371 } else { 3372 /* 3373 * socket option SO_REUSEADDR is set on the 3374 * binding tcp_t. 3375 * 3376 * If two streams are bound to 3377 * same IP address or both addr 3378 * and bound source are wildcards 3379 * (INADDR_ANY), we want to stop 3380 * searching. 3381 * We have found a match of IP source 3382 * address and source port, which is 3383 * refused regardless of the 3384 * SO_REUSEADDR setting, so we break. 3385 */ 3386 if (IN6_ARE_ADDR_EQUAL(laddr, 3387 <cp->tcp_bound_source_v6) && 3388 (ltcp->tcp_state == TCPS_LISTEN || 3389 ltcp->tcp_state == TCPS_BOUND)) 3390 break; 3391 } 3392 } 3393 if (ltcp != NULL) { 3394 /* The port number is busy */ 3395 mutex_exit(&tbf->tf_lock); 3396 } else { 3397 /* 3398 * This port is ours. Insert in fanout and mark as 3399 * bound to prevent others from getting the port 3400 * number. 3401 */ 3402 tcp->tcp_state = TCPS_BOUND; 3403 tcp->tcp_lport = htons(port); 3404 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3405 3406 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3407 tcp->tcp_lport)] == tbf); 3408 tcp_bind_hash_insert(tbf, tcp, 1); 3409 3410 mutex_exit(&tbf->tf_lock); 3411 3412 /* 3413 * We don't want tcp_next_port_to_try to "inherit" 3414 * a port number supplied by the user in a bind. 3415 */ 3416 if (user_specified) 3417 return (port); 3418 3419 /* 3420 * This is the only place where tcp_next_port_to_try 3421 * is updated. After the update, it may or may not 3422 * be in the valid range. 3423 */ 3424 if (!tcp->tcp_anon_priv_bind) 3425 tcps->tcps_next_port_to_try = port + 1; 3426 return (port); 3427 } 3428 3429 if (tcp->tcp_anon_priv_bind) { 3430 port = tcp_get_next_priv_port(tcp); 3431 } else { 3432 if (count == 0 && user_specified) { 3433 /* 3434 * We may have to return an anonymous port. So 3435 * get one to start with. 3436 */ 3437 port = 3438 tcp_update_next_port( 3439 tcps->tcps_next_port_to_try, 3440 tcp, B_TRUE); 3441 user_specified = B_FALSE; 3442 } else { 3443 port = tcp_update_next_port(port + 1, tcp, 3444 B_FALSE); 3445 } 3446 } 3447 if (port == 0) 3448 break; 3449 3450 /* 3451 * Don't let this loop run forever in the case where 3452 * all of the anonymous ports are in use. 3453 */ 3454 } while (++count < loopmax); 3455 return (0); 3456 } 3457 3458 /* 3459 * tcp_clean_death / tcp_close_detached must not be called more than once 3460 * on a tcp. Thus every function that potentially calls tcp_clean_death 3461 * must check for the tcp state before calling tcp_clean_death. 3462 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3463 * tcp_timer_handler, all check for the tcp state. 3464 */ 3465 /* ARGSUSED */ 3466 void 3467 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3468 { 3469 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3470 3471 freemsg(mp); 3472 if (tcp->tcp_state > TCPS_BOUND) 3473 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3474 ETIMEDOUT, 5); 3475 } 3476 3477 /* 3478 * We are dying for some reason. Try to do it gracefully. (May be called 3479 * as writer.) 3480 * 3481 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3482 * done by a service procedure). 3483 * TBD - Should the return value distinguish between the tcp_t being 3484 * freed and it being reinitialized? 3485 */ 3486 static int 3487 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3488 { 3489 mblk_t *mp; 3490 queue_t *q; 3491 conn_t *connp = tcp->tcp_connp; 3492 tcp_stack_t *tcps = tcp->tcp_tcps; 3493 sodirect_t *sodp; 3494 3495 TCP_CLD_STAT(tag); 3496 3497 #if TCP_TAG_CLEAN_DEATH 3498 tcp->tcp_cleandeathtag = tag; 3499 #endif 3500 3501 if (tcp->tcp_fused) 3502 tcp_unfuse(tcp); 3503 3504 if (tcp->tcp_linger_tid != 0 && 3505 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3506 tcp_stop_lingering(tcp); 3507 } 3508 3509 ASSERT(tcp != NULL); 3510 ASSERT((tcp->tcp_family == AF_INET && 3511 tcp->tcp_ipversion == IPV4_VERSION) || 3512 (tcp->tcp_family == AF_INET6 && 3513 (tcp->tcp_ipversion == IPV4_VERSION || 3514 tcp->tcp_ipversion == IPV6_VERSION))); 3515 3516 if (TCP_IS_DETACHED(tcp)) { 3517 if (tcp->tcp_hard_binding) { 3518 /* 3519 * Its an eager that we are dealing with. We close the 3520 * eager but in case a conn_ind has already gone to the 3521 * listener, let tcp_accept_finish() send a discon_ind 3522 * to the listener and drop the last reference. If the 3523 * listener doesn't even know about the eager i.e. the 3524 * conn_ind hasn't gone up, blow away the eager and drop 3525 * the last reference as well. If the conn_ind has gone 3526 * up, state should be BOUND. tcp_accept_finish 3527 * will figure out that the connection has received a 3528 * RST and will send a DISCON_IND to the application. 3529 */ 3530 tcp_closei_local(tcp); 3531 if (!tcp->tcp_tconnind_started) { 3532 CONN_DEC_REF(connp); 3533 } else { 3534 tcp->tcp_state = TCPS_BOUND; 3535 } 3536 } else { 3537 tcp_close_detached(tcp); 3538 } 3539 return (0); 3540 } 3541 3542 TCP_STAT(tcps, tcp_clean_death_nondetached); 3543 3544 /* If sodirect, not anymore */ 3545 SOD_PTR_ENTER(tcp, sodp); 3546 if (sodp != NULL) { 3547 tcp->tcp_sodirect = NULL; 3548 mutex_exit(sodp->sod_lockp); 3549 } 3550 3551 q = tcp->tcp_rq; 3552 3553 /* Trash all inbound data */ 3554 if (!IPCL_IS_NONSTR(connp)) { 3555 ASSERT(q != NULL); 3556 flushq(q, FLUSHALL); 3557 } 3558 3559 /* 3560 * If we are at least part way open and there is error 3561 * (err==0 implies no error) 3562 * notify our client by a T_DISCON_IND. 3563 */ 3564 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3565 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3566 !TCP_IS_SOCKET(tcp)) { 3567 /* 3568 * Send M_FLUSH according to TPI. Because sockets will 3569 * (and must) ignore FLUSHR we do that only for TPI 3570 * endpoints and sockets in STREAMS mode. 3571 */ 3572 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3573 } 3574 if (tcp->tcp_debug) { 3575 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3576 "tcp_clean_death: discon err %d", err); 3577 } 3578 if (IPCL_IS_NONSTR(connp)) { 3579 /* Direct socket, use upcall */ 3580 (*connp->conn_upcalls->su_disconnected)( 3581 connp->conn_upper_handle, tcp->tcp_connid, err); 3582 } else { 3583 mp = mi_tpi_discon_ind(NULL, err, 0); 3584 if (mp != NULL) { 3585 putnext(q, mp); 3586 } else { 3587 if (tcp->tcp_debug) { 3588 (void) strlog(TCP_MOD_ID, 0, 1, 3589 SL_ERROR|SL_TRACE, 3590 "tcp_clean_death, sending M_ERROR"); 3591 } 3592 (void) putnextctl1(q, M_ERROR, EPROTO); 3593 } 3594 } 3595 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3596 /* SYN_SENT or SYN_RCVD */ 3597 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3598 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3599 /* ESTABLISHED or CLOSE_WAIT */ 3600 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3601 } 3602 } 3603 3604 tcp_reinit(tcp); 3605 if (IPCL_IS_NONSTR(connp)) 3606 (void) tcp_do_unbind(connp); 3607 3608 return (-1); 3609 } 3610 3611 /* 3612 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3613 * to expire, stop the wait and finish the close. 3614 */ 3615 static void 3616 tcp_stop_lingering(tcp_t *tcp) 3617 { 3618 clock_t delta = 0; 3619 tcp_stack_t *tcps = tcp->tcp_tcps; 3620 3621 tcp->tcp_linger_tid = 0; 3622 if (tcp->tcp_state > TCPS_LISTEN) { 3623 tcp_acceptor_hash_remove(tcp); 3624 mutex_enter(&tcp->tcp_non_sq_lock); 3625 if (tcp->tcp_flow_stopped) { 3626 tcp_clrqfull(tcp); 3627 } 3628 mutex_exit(&tcp->tcp_non_sq_lock); 3629 3630 if (tcp->tcp_timer_tid != 0) { 3631 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3632 tcp->tcp_timer_tid = 0; 3633 } 3634 /* 3635 * Need to cancel those timers which will not be used when 3636 * TCP is detached. This has to be done before the tcp_wq 3637 * is set to the global queue. 3638 */ 3639 tcp_timers_stop(tcp); 3640 3641 tcp->tcp_detached = B_TRUE; 3642 ASSERT(tcps->tcps_g_q != NULL); 3643 tcp->tcp_rq = tcps->tcps_g_q; 3644 tcp->tcp_wq = WR(tcps->tcps_g_q); 3645 3646 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3647 tcp_time_wait_append(tcp); 3648 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3649 goto finish; 3650 } 3651 3652 /* 3653 * If delta is zero the timer event wasn't executed and was 3654 * successfully canceled. In this case we need to restart it 3655 * with the minimal delta possible. 3656 */ 3657 if (delta >= 0) { 3658 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3659 delta ? delta : 1); 3660 } 3661 } else { 3662 tcp_closei_local(tcp); 3663 CONN_DEC_REF(tcp->tcp_connp); 3664 } 3665 finish: 3666 /* Signal closing thread that it can complete close */ 3667 mutex_enter(&tcp->tcp_closelock); 3668 tcp->tcp_detached = B_TRUE; 3669 ASSERT(tcps->tcps_g_q != NULL); 3670 3671 tcp->tcp_rq = tcps->tcps_g_q; 3672 tcp->tcp_wq = WR(tcps->tcps_g_q); 3673 3674 tcp->tcp_closed = 1; 3675 cv_signal(&tcp->tcp_closecv); 3676 mutex_exit(&tcp->tcp_closelock); 3677 } 3678 3679 /* 3680 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3681 * expires. 3682 */ 3683 static void 3684 tcp_close_linger_timeout(void *arg) 3685 { 3686 conn_t *connp = (conn_t *)arg; 3687 tcp_t *tcp = connp->conn_tcp; 3688 3689 tcp->tcp_client_errno = ETIMEDOUT; 3690 tcp_stop_lingering(tcp); 3691 } 3692 3693 static void 3694 tcp_close_common(conn_t *connp, int flags) 3695 { 3696 tcp_t *tcp = connp->conn_tcp; 3697 mblk_t *mp = &tcp->tcp_closemp; 3698 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3699 mblk_t *bp; 3700 3701 ASSERT(connp->conn_ref >= 2); 3702 3703 /* 3704 * Mark the conn as closing. ill_pending_mp_add will not 3705 * add any mp to the pending mp list, after this conn has 3706 * started closing. Same for sq_pending_mp_add 3707 */ 3708 mutex_enter(&connp->conn_lock); 3709 connp->conn_state_flags |= CONN_CLOSING; 3710 if (connp->conn_oper_pending_ill != NULL) 3711 conn_ioctl_cleanup_reqd = B_TRUE; 3712 CONN_INC_REF_LOCKED(connp); 3713 mutex_exit(&connp->conn_lock); 3714 tcp->tcp_closeflags = (uint8_t)flags; 3715 ASSERT(connp->conn_ref >= 3); 3716 3717 /* 3718 * tcp_closemp_used is used below without any protection of a lock 3719 * as we don't expect any one else to use it concurrently at this 3720 * point otherwise it would be a major defect. 3721 */ 3722 3723 if (mp->b_prev == NULL) 3724 tcp->tcp_closemp_used = B_TRUE; 3725 else 3726 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3727 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3728 3729 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3730 3731 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3732 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3733 3734 mutex_enter(&tcp->tcp_closelock); 3735 while (!tcp->tcp_closed) { 3736 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3737 /* 3738 * The cv_wait_sig() was interrupted. We now do the 3739 * following: 3740 * 3741 * 1) If the endpoint was lingering, we allow this 3742 * to be interrupted by cancelling the linger timeout 3743 * and closing normally. 3744 * 3745 * 2) Revert to calling cv_wait() 3746 * 3747 * We revert to using cv_wait() to avoid an 3748 * infinite loop which can occur if the calling 3749 * thread is higher priority than the squeue worker 3750 * thread and is bound to the same cpu. 3751 */ 3752 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3753 mutex_exit(&tcp->tcp_closelock); 3754 /* Entering squeue, bump ref count. */ 3755 CONN_INC_REF(connp); 3756 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3757 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3758 tcp_linger_interrupted, connp, 3759 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3760 mutex_enter(&tcp->tcp_closelock); 3761 } 3762 break; 3763 } 3764 } 3765 while (!tcp->tcp_closed) 3766 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3767 mutex_exit(&tcp->tcp_closelock); 3768 3769 /* 3770 * In the case of listener streams that have eagers in the q or q0 3771 * we wait for the eagers to drop their reference to us. tcp_rq and 3772 * tcp_wq of the eagers point to our queues. By waiting for the 3773 * refcnt to drop to 1, we are sure that the eagers have cleaned 3774 * up their queue pointers and also dropped their references to us. 3775 */ 3776 if (tcp->tcp_wait_for_eagers) { 3777 mutex_enter(&connp->conn_lock); 3778 while (connp->conn_ref != 1) { 3779 cv_wait(&connp->conn_cv, &connp->conn_lock); 3780 } 3781 mutex_exit(&connp->conn_lock); 3782 } 3783 /* 3784 * ioctl cleanup. The mp is queued in the 3785 * ill_pending_mp or in the sq_pending_mp. 3786 */ 3787 if (conn_ioctl_cleanup_reqd) 3788 conn_ioctl_cleanup(connp); 3789 3790 tcp->tcp_cpid = -1; 3791 } 3792 3793 static int 3794 tcp_tpi_close(queue_t *q, int flags) 3795 { 3796 conn_t *connp; 3797 3798 ASSERT(WR(q)->q_next == NULL); 3799 3800 if (flags & SO_FALLBACK) { 3801 /* 3802 * stream is being closed while in fallback 3803 * simply free the resources that were allocated 3804 */ 3805 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3806 qprocsoff(q); 3807 goto done; 3808 } 3809 3810 connp = Q_TO_CONN(q); 3811 /* 3812 * We are being closed as /dev/tcp or /dev/tcp6. 3813 */ 3814 tcp_close_common(connp, flags); 3815 3816 qprocsoff(q); 3817 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3818 3819 /* 3820 * Drop IP's reference on the conn. This is the last reference 3821 * on the connp if the state was less than established. If the 3822 * connection has gone into timewait state, then we will have 3823 * one ref for the TCP and one more ref (total of two) for the 3824 * classifier connected hash list (a timewait connections stays 3825 * in connected hash till closed). 3826 * 3827 * We can't assert the references because there might be other 3828 * transient reference places because of some walkers or queued 3829 * packets in squeue for the timewait state. 3830 */ 3831 CONN_DEC_REF(connp); 3832 done: 3833 q->q_ptr = WR(q)->q_ptr = NULL; 3834 return (0); 3835 } 3836 3837 static int 3838 tcpclose_accept(queue_t *q) 3839 { 3840 vmem_t *minor_arena; 3841 dev_t conn_dev; 3842 3843 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3844 3845 /* 3846 * We had opened an acceptor STREAM for sockfs which is 3847 * now being closed due to some error. 3848 */ 3849 qprocsoff(q); 3850 3851 minor_arena = (vmem_t *)WR(q)->q_ptr; 3852 conn_dev = (dev_t)RD(q)->q_ptr; 3853 ASSERT(minor_arena != NULL); 3854 ASSERT(conn_dev != 0); 3855 inet_minor_free(minor_arena, conn_dev); 3856 q->q_ptr = WR(q)->q_ptr = NULL; 3857 return (0); 3858 } 3859 3860 /* 3861 * Called by tcp_close() routine via squeue when lingering is 3862 * interrupted by a signal. 3863 */ 3864 3865 /* ARGSUSED */ 3866 static void 3867 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3868 { 3869 conn_t *connp = (conn_t *)arg; 3870 tcp_t *tcp = connp->conn_tcp; 3871 3872 freeb(mp); 3873 if (tcp->tcp_linger_tid != 0 && 3874 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3875 tcp_stop_lingering(tcp); 3876 tcp->tcp_client_errno = EINTR; 3877 } 3878 } 3879 3880 /* 3881 * Called by streams close routine via squeues when our client blows off her 3882 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3883 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3884 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3885 * acked. 3886 * 3887 * NOTE: tcp_close potentially returns error when lingering. 3888 * However, the stream head currently does not pass these errors 3889 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3890 * errors to the application (from tsleep()) and not errors 3891 * like ECONNRESET caused by receiving a reset packet. 3892 */ 3893 3894 /* ARGSUSED */ 3895 static void 3896 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3897 { 3898 char *msg; 3899 conn_t *connp = (conn_t *)arg; 3900 tcp_t *tcp = connp->conn_tcp; 3901 clock_t delta = 0; 3902 tcp_stack_t *tcps = tcp->tcp_tcps; 3903 3904 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3905 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3906 3907 mutex_enter(&tcp->tcp_eager_lock); 3908 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3909 /* Cleanup for listener */ 3910 tcp_eager_cleanup(tcp, 0); 3911 tcp->tcp_wait_for_eagers = 1; 3912 } 3913 mutex_exit(&tcp->tcp_eager_lock); 3914 3915 connp->conn_mdt_ok = B_FALSE; 3916 tcp->tcp_mdt = B_FALSE; 3917 3918 connp->conn_lso_ok = B_FALSE; 3919 tcp->tcp_lso = B_FALSE; 3920 3921 msg = NULL; 3922 switch (tcp->tcp_state) { 3923 case TCPS_CLOSED: 3924 case TCPS_IDLE: 3925 case TCPS_BOUND: 3926 case TCPS_LISTEN: 3927 break; 3928 case TCPS_SYN_SENT: 3929 msg = "tcp_close, during connect"; 3930 break; 3931 case TCPS_SYN_RCVD: 3932 /* 3933 * Close during the connect 3-way handshake 3934 * but here there may or may not be pending data 3935 * already on queue. Process almost same as in 3936 * the ESTABLISHED state. 3937 */ 3938 /* FALLTHRU */ 3939 default: 3940 if (tcp->tcp_sodirect != NULL) { 3941 /* Ok, no more sodirect */ 3942 tcp->tcp_sodirect = NULL; 3943 } 3944 3945 if (tcp->tcp_fused) 3946 tcp_unfuse(tcp); 3947 3948 /* 3949 * If SO_LINGER has set a zero linger time, abort the 3950 * connection with a reset. 3951 */ 3952 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3953 msg = "tcp_close, zero lingertime"; 3954 break; 3955 } 3956 3957 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3958 /* 3959 * Abort connection if there is unread data queued. 3960 */ 3961 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3962 msg = "tcp_close, unread data"; 3963 break; 3964 } 3965 /* 3966 * tcp_hard_bound is now cleared thus all packets go through 3967 * tcp_lookup. This fact is used by tcp_detach below. 3968 * 3969 * We have done a qwait() above which could have possibly 3970 * drained more messages in turn causing transition to a 3971 * different state. Check whether we have to do the rest 3972 * of the processing or not. 3973 */ 3974 if (tcp->tcp_state <= TCPS_LISTEN) 3975 break; 3976 3977 /* 3978 * Transmit the FIN before detaching the tcp_t. 3979 * After tcp_detach returns this queue/perimeter 3980 * no longer owns the tcp_t thus others can modify it. 3981 */ 3982 (void) tcp_xmit_end(tcp); 3983 3984 /* 3985 * If lingering on close then wait until the fin is acked, 3986 * the SO_LINGER time passes, or a reset is sent/received. 3987 */ 3988 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3989 !(tcp->tcp_fin_acked) && 3990 tcp->tcp_state >= TCPS_ESTABLISHED) { 3991 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3992 tcp->tcp_client_errno = EWOULDBLOCK; 3993 } else if (tcp->tcp_client_errno == 0) { 3994 3995 ASSERT(tcp->tcp_linger_tid == 0); 3996 3997 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3998 tcp_close_linger_timeout, 3999 tcp->tcp_lingertime * hz); 4000 4001 /* tcp_close_linger_timeout will finish close */ 4002 if (tcp->tcp_linger_tid == 0) 4003 tcp->tcp_client_errno = ENOSR; 4004 else 4005 return; 4006 } 4007 4008 /* 4009 * Check if we need to detach or just close 4010 * the instance. 4011 */ 4012 if (tcp->tcp_state <= TCPS_LISTEN) 4013 break; 4014 } 4015 4016 /* 4017 * Make sure that no other thread will access the tcp_rq of 4018 * this instance (through lookups etc.) as tcp_rq will go 4019 * away shortly. 4020 */ 4021 tcp_acceptor_hash_remove(tcp); 4022 4023 mutex_enter(&tcp->tcp_non_sq_lock); 4024 if (tcp->tcp_flow_stopped) { 4025 tcp_clrqfull(tcp); 4026 } 4027 mutex_exit(&tcp->tcp_non_sq_lock); 4028 4029 if (tcp->tcp_timer_tid != 0) { 4030 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4031 tcp->tcp_timer_tid = 0; 4032 } 4033 /* 4034 * Need to cancel those timers which will not be used when 4035 * TCP is detached. This has to be done before the tcp_wq 4036 * is set to the global queue. 4037 */ 4038 tcp_timers_stop(tcp); 4039 4040 tcp->tcp_detached = B_TRUE; 4041 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4042 tcp_time_wait_append(tcp); 4043 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4044 ASSERT(connp->conn_ref >= 3); 4045 goto finish; 4046 } 4047 4048 /* 4049 * If delta is zero the timer event wasn't executed and was 4050 * successfully canceled. In this case we need to restart it 4051 * with the minimal delta possible. 4052 */ 4053 if (delta >= 0) 4054 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4055 delta ? delta : 1); 4056 4057 ASSERT(connp->conn_ref >= 3); 4058 goto finish; 4059 } 4060 4061 /* Detach did not complete. Still need to remove q from stream. */ 4062 if (msg) { 4063 if (tcp->tcp_state == TCPS_ESTABLISHED || 4064 tcp->tcp_state == TCPS_CLOSE_WAIT) 4065 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4066 if (tcp->tcp_state == TCPS_SYN_SENT || 4067 tcp->tcp_state == TCPS_SYN_RCVD) 4068 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4069 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4070 } 4071 4072 tcp_closei_local(tcp); 4073 CONN_DEC_REF(connp); 4074 ASSERT(connp->conn_ref >= 2); 4075 4076 finish: 4077 /* 4078 * Although packets are always processed on the correct 4079 * tcp's perimeter and access is serialized via squeue's, 4080 * IP still needs a queue when sending packets in time_wait 4081 * state so use WR(tcps_g_q) till ip_output() can be 4082 * changed to deal with just connp. For read side, we 4083 * could have set tcp_rq to NULL but there are some cases 4084 * in tcp_rput_data() from early days of this code which 4085 * do a putnext without checking if tcp is closed. Those 4086 * need to be identified before both tcp_rq and tcp_wq 4087 * can be set to NULL and tcps_g_q can disappear forever. 4088 */ 4089 mutex_enter(&tcp->tcp_closelock); 4090 /* 4091 * Don't change the queues in the case of a listener that has 4092 * eagers in its q or q0. It could surprise the eagers. 4093 * Instead wait for the eagers outside the squeue. 4094 */ 4095 if (!tcp->tcp_wait_for_eagers) { 4096 tcp->tcp_detached = B_TRUE; 4097 /* 4098 * When default queue is closing we set tcps_g_q to NULL 4099 * after the close is done. 4100 */ 4101 ASSERT(tcps->tcps_g_q != NULL); 4102 tcp->tcp_rq = tcps->tcps_g_q; 4103 tcp->tcp_wq = WR(tcps->tcps_g_q); 4104 } 4105 4106 /* Signal tcp_close() to finish closing. */ 4107 tcp->tcp_closed = 1; 4108 cv_signal(&tcp->tcp_closecv); 4109 mutex_exit(&tcp->tcp_closelock); 4110 } 4111 4112 4113 /* 4114 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4115 * Some stream heads get upset if they see these later on as anything but NULL. 4116 */ 4117 static void 4118 tcp_close_mpp(mblk_t **mpp) 4119 { 4120 mblk_t *mp; 4121 4122 if ((mp = *mpp) != NULL) { 4123 do { 4124 mp->b_next = NULL; 4125 mp->b_prev = NULL; 4126 } while ((mp = mp->b_cont) != NULL); 4127 4128 mp = *mpp; 4129 *mpp = NULL; 4130 freemsg(mp); 4131 } 4132 } 4133 4134 /* Do detached close. */ 4135 static void 4136 tcp_close_detached(tcp_t *tcp) 4137 { 4138 if (tcp->tcp_fused) 4139 tcp_unfuse(tcp); 4140 4141 /* 4142 * Clustering code serializes TCP disconnect callbacks and 4143 * cluster tcp list walks by blocking a TCP disconnect callback 4144 * if a cluster tcp list walk is in progress. This ensures 4145 * accurate accounting of TCPs in the cluster code even though 4146 * the TCP list walk itself is not atomic. 4147 */ 4148 tcp_closei_local(tcp); 4149 CONN_DEC_REF(tcp->tcp_connp); 4150 } 4151 4152 /* 4153 * Stop all TCP timers, and free the timer mblks if requested. 4154 */ 4155 void 4156 tcp_timers_stop(tcp_t *tcp) 4157 { 4158 if (tcp->tcp_timer_tid != 0) { 4159 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4160 tcp->tcp_timer_tid = 0; 4161 } 4162 if (tcp->tcp_ka_tid != 0) { 4163 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4164 tcp->tcp_ka_tid = 0; 4165 } 4166 if (tcp->tcp_ack_tid != 0) { 4167 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4168 tcp->tcp_ack_tid = 0; 4169 } 4170 if (tcp->tcp_push_tid != 0) { 4171 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4172 tcp->tcp_push_tid = 0; 4173 } 4174 } 4175 4176 /* 4177 * The tcp_t is going away. Remove it from all lists and set it 4178 * to TCPS_CLOSED. The freeing up of memory is deferred until 4179 * tcp_inactive. This is needed since a thread in tcp_rput might have 4180 * done a CONN_INC_REF on this structure before it was removed from the 4181 * hashes. 4182 */ 4183 static void 4184 tcp_closei_local(tcp_t *tcp) 4185 { 4186 ire_t *ire; 4187 conn_t *connp = tcp->tcp_connp; 4188 tcp_stack_t *tcps = tcp->tcp_tcps; 4189 4190 if (!TCP_IS_SOCKET(tcp)) 4191 tcp_acceptor_hash_remove(tcp); 4192 4193 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4194 tcp->tcp_ibsegs = 0; 4195 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4196 tcp->tcp_obsegs = 0; 4197 4198 /* 4199 * If we are an eager connection hanging off a listener that 4200 * hasn't formally accepted the connection yet, get off his 4201 * list and blow off any data that we have accumulated. 4202 */ 4203 if (tcp->tcp_listener != NULL) { 4204 tcp_t *listener = tcp->tcp_listener; 4205 mutex_enter(&listener->tcp_eager_lock); 4206 /* 4207 * tcp_tconnind_started == B_TRUE means that the 4208 * conn_ind has already gone to listener. At 4209 * this point, eager will be closed but we 4210 * leave it in listeners eager list so that 4211 * if listener decides to close without doing 4212 * accept, we can clean this up. In tcp_wput_accept 4213 * we take care of the case of accept on closed 4214 * eager. 4215 */ 4216 if (!tcp->tcp_tconnind_started) { 4217 tcp_eager_unlink(tcp); 4218 mutex_exit(&listener->tcp_eager_lock); 4219 /* 4220 * We don't want to have any pointers to the 4221 * listener queue, after we have released our 4222 * reference on the listener 4223 */ 4224 ASSERT(tcps->tcps_g_q != NULL); 4225 tcp->tcp_rq = tcps->tcps_g_q; 4226 tcp->tcp_wq = WR(tcps->tcps_g_q); 4227 CONN_DEC_REF(listener->tcp_connp); 4228 } else { 4229 mutex_exit(&listener->tcp_eager_lock); 4230 } 4231 } 4232 4233 /* Stop all the timers */ 4234 tcp_timers_stop(tcp); 4235 4236 if (tcp->tcp_state == TCPS_LISTEN) { 4237 if (tcp->tcp_ip_addr_cache) { 4238 kmem_free((void *)tcp->tcp_ip_addr_cache, 4239 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4240 tcp->tcp_ip_addr_cache = NULL; 4241 } 4242 } 4243 mutex_enter(&tcp->tcp_non_sq_lock); 4244 if (tcp->tcp_flow_stopped) 4245 tcp_clrqfull(tcp); 4246 mutex_exit(&tcp->tcp_non_sq_lock); 4247 4248 tcp_bind_hash_remove(tcp); 4249 /* 4250 * If the tcp_time_wait_collector (which runs outside the squeue) 4251 * is trying to remove this tcp from the time wait list, we will 4252 * block in tcp_time_wait_remove while trying to acquire the 4253 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4254 * requires the ipcl_hash_remove to be ordered after the 4255 * tcp_time_wait_remove for the refcnt checks to work correctly. 4256 */ 4257 if (tcp->tcp_state == TCPS_TIME_WAIT) 4258 (void) tcp_time_wait_remove(tcp, NULL); 4259 CL_INET_DISCONNECT(connp, tcp); 4260 ipcl_hash_remove(connp); 4261 4262 /* 4263 * Delete the cached ire in conn_ire_cache and also mark 4264 * the conn as CONDEMNED 4265 */ 4266 mutex_enter(&connp->conn_lock); 4267 connp->conn_state_flags |= CONN_CONDEMNED; 4268 ire = connp->conn_ire_cache; 4269 connp->conn_ire_cache = NULL; 4270 mutex_exit(&connp->conn_lock); 4271 if (ire != NULL) 4272 IRE_REFRELE_NOTR(ire); 4273 4274 /* Need to cleanup any pending ioctls */ 4275 ASSERT(tcp->tcp_time_wait_next == NULL); 4276 ASSERT(tcp->tcp_time_wait_prev == NULL); 4277 ASSERT(tcp->tcp_time_wait_expire == 0); 4278 tcp->tcp_state = TCPS_CLOSED; 4279 4280 /* Release any SSL context */ 4281 if (tcp->tcp_kssl_ent != NULL) { 4282 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4283 tcp->tcp_kssl_ent = NULL; 4284 } 4285 if (tcp->tcp_kssl_ctx != NULL) { 4286 kssl_release_ctx(tcp->tcp_kssl_ctx); 4287 tcp->tcp_kssl_ctx = NULL; 4288 } 4289 tcp->tcp_kssl_pending = B_FALSE; 4290 4291 tcp_ipsec_cleanup(tcp); 4292 } 4293 4294 /* 4295 * tcp is dying (called from ipcl_conn_destroy and error cases). 4296 * Free the tcp_t in either case. 4297 */ 4298 void 4299 tcp_free(tcp_t *tcp) 4300 { 4301 mblk_t *mp; 4302 ip6_pkt_t *ipp; 4303 4304 ASSERT(tcp != NULL); 4305 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4306 4307 tcp->tcp_rq = NULL; 4308 tcp->tcp_wq = NULL; 4309 4310 tcp_close_mpp(&tcp->tcp_xmit_head); 4311 tcp_close_mpp(&tcp->tcp_reass_head); 4312 if (tcp->tcp_rcv_list != NULL) { 4313 /* Free b_next chain */ 4314 tcp_close_mpp(&tcp->tcp_rcv_list); 4315 } 4316 if ((mp = tcp->tcp_urp_mp) != NULL) { 4317 freemsg(mp); 4318 } 4319 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4320 freemsg(mp); 4321 } 4322 4323 if (tcp->tcp_fused_sigurg_mp != NULL) { 4324 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4325 freeb(tcp->tcp_fused_sigurg_mp); 4326 tcp->tcp_fused_sigurg_mp = NULL; 4327 } 4328 4329 if (tcp->tcp_ordrel_mp != NULL) { 4330 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4331 freeb(tcp->tcp_ordrel_mp); 4332 tcp->tcp_ordrel_mp = NULL; 4333 } 4334 4335 if (tcp->tcp_sack_info != NULL) { 4336 if (tcp->tcp_notsack_list != NULL) { 4337 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4338 } 4339 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4340 } 4341 4342 if (tcp->tcp_hopopts != NULL) { 4343 mi_free(tcp->tcp_hopopts); 4344 tcp->tcp_hopopts = NULL; 4345 tcp->tcp_hopoptslen = 0; 4346 } 4347 ASSERT(tcp->tcp_hopoptslen == 0); 4348 if (tcp->tcp_dstopts != NULL) { 4349 mi_free(tcp->tcp_dstopts); 4350 tcp->tcp_dstopts = NULL; 4351 tcp->tcp_dstoptslen = 0; 4352 } 4353 ASSERT(tcp->tcp_dstoptslen == 0); 4354 if (tcp->tcp_rtdstopts != NULL) { 4355 mi_free(tcp->tcp_rtdstopts); 4356 tcp->tcp_rtdstopts = NULL; 4357 tcp->tcp_rtdstoptslen = 0; 4358 } 4359 ASSERT(tcp->tcp_rtdstoptslen == 0); 4360 if (tcp->tcp_rthdr != NULL) { 4361 mi_free(tcp->tcp_rthdr); 4362 tcp->tcp_rthdr = NULL; 4363 tcp->tcp_rthdrlen = 0; 4364 } 4365 ASSERT(tcp->tcp_rthdrlen == 0); 4366 4367 ipp = &tcp->tcp_sticky_ipp; 4368 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4369 IPPF_RTHDR)) 4370 ip6_pkt_free(ipp); 4371 4372 /* 4373 * Free memory associated with the tcp/ip header template. 4374 */ 4375 4376 if (tcp->tcp_iphc != NULL) 4377 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4378 4379 /* 4380 * Following is really a blowing away a union. 4381 * It happens to have exactly two members of identical size 4382 * the following code is enough. 4383 */ 4384 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4385 } 4386 4387 4388 /* 4389 * Put a connection confirmation message upstream built from the 4390 * address information within 'iph' and 'tcph'. Report our success or failure. 4391 */ 4392 static boolean_t 4393 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4394 mblk_t **defermp) 4395 { 4396 sin_t sin; 4397 sin6_t sin6; 4398 mblk_t *mp; 4399 char *optp = NULL; 4400 int optlen = 0; 4401 cred_t *cr; 4402 4403 if (defermp != NULL) 4404 *defermp = NULL; 4405 4406 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4407 /* 4408 * Return in T_CONN_CON results of option negotiation through 4409 * the T_CONN_REQ. Note: If there is an real end-to-end option 4410 * negotiation, then what is received from remote end needs 4411 * to be taken into account but there is no such thing (yet?) 4412 * in our TCP/IP. 4413 * Note: We do not use mi_offset_param() here as 4414 * tcp_opts_conn_req contents do not directly come from 4415 * an application and are either generated in kernel or 4416 * from user input that was already verified. 4417 */ 4418 mp = tcp->tcp_conn.tcp_opts_conn_req; 4419 optp = (char *)(mp->b_rptr + 4420 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4421 optlen = (int) 4422 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4423 } 4424 4425 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4426 ipha_t *ipha = (ipha_t *)iphdr; 4427 4428 /* packet is IPv4 */ 4429 if (tcp->tcp_family == AF_INET) { 4430 sin = sin_null; 4431 sin.sin_addr.s_addr = ipha->ipha_src; 4432 sin.sin_port = *(uint16_t *)tcph->th_lport; 4433 sin.sin_family = AF_INET; 4434 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4435 (int)sizeof (sin_t), optp, optlen); 4436 } else { 4437 sin6 = sin6_null; 4438 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4439 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4440 sin6.sin6_family = AF_INET6; 4441 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4442 (int)sizeof (sin6_t), optp, optlen); 4443 4444 } 4445 } else { 4446 ip6_t *ip6h = (ip6_t *)iphdr; 4447 4448 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4449 ASSERT(tcp->tcp_family == AF_INET6); 4450 sin6 = sin6_null; 4451 sin6.sin6_addr = ip6h->ip6_src; 4452 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4453 sin6.sin6_family = AF_INET6; 4454 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4455 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4456 (int)sizeof (sin6_t), optp, optlen); 4457 } 4458 4459 if (!mp) 4460 return (B_FALSE); 4461 4462 if ((cr = DB_CRED(idmp)) != NULL) { 4463 mblk_setcred(mp, cr); 4464 DB_CPID(mp) = DB_CPID(idmp); 4465 } 4466 4467 if (defermp == NULL) { 4468 conn_t *connp = tcp->tcp_connp; 4469 if (IPCL_IS_NONSTR(connp)) { 4470 (*connp->conn_upcalls->su_connected) 4471 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4472 DB_CPID(mp)); 4473 freemsg(mp); 4474 } else { 4475 putnext(tcp->tcp_rq, mp); 4476 } 4477 } else { 4478 *defermp = mp; 4479 } 4480 4481 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4482 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4483 return (B_TRUE); 4484 } 4485 4486 /* 4487 * Defense for the SYN attack - 4488 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4489 * one from the list of droppable eagers. This list is a subset of q0. 4490 * see comments before the definition of MAKE_DROPPABLE(). 4491 * 2. Don't drop a SYN request before its first timeout. This gives every 4492 * request at least til the first timeout to complete its 3-way handshake. 4493 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4494 * requests currently on the queue that has timed out. This will be used 4495 * as an indicator of whether an attack is under way, so that appropriate 4496 * actions can be taken. (It's incremented in tcp_timer() and decremented 4497 * either when eager goes into ESTABLISHED, or gets freed up.) 4498 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4499 * # of timeout drops back to <= q0len/32 => SYN alert off 4500 */ 4501 static boolean_t 4502 tcp_drop_q0(tcp_t *tcp) 4503 { 4504 tcp_t *eager; 4505 mblk_t *mp; 4506 tcp_stack_t *tcps = tcp->tcp_tcps; 4507 4508 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4509 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4510 4511 /* Pick oldest eager from the list of droppable eagers */ 4512 eager = tcp->tcp_eager_prev_drop_q0; 4513 4514 /* If list is empty. return B_FALSE */ 4515 if (eager == tcp) { 4516 return (B_FALSE); 4517 } 4518 4519 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4520 if ((mp = allocb(0, BPRI_HI)) == NULL) 4521 return (B_FALSE); 4522 4523 /* 4524 * Take this eager out from the list of droppable eagers since we are 4525 * going to drop it. 4526 */ 4527 MAKE_UNDROPPABLE(eager); 4528 4529 if (tcp->tcp_debug) { 4530 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4531 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4532 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4533 tcp->tcp_conn_req_cnt_q0, 4534 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4535 } 4536 4537 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4538 4539 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4540 CONN_INC_REF(eager->tcp_connp); 4541 4542 /* Mark the IRE created for this SYN request temporary */ 4543 tcp_ip_ire_mark_advice(eager); 4544 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4545 tcp_clean_death_wrapper, eager->tcp_connp, 4546 SQ_FILL, SQTAG_TCP_DROP_Q0); 4547 4548 return (B_TRUE); 4549 } 4550 4551 int 4552 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4553 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4554 { 4555 tcp_t *ltcp = lconnp->conn_tcp; 4556 tcp_t *tcp = connp->conn_tcp; 4557 mblk_t *tpi_mp; 4558 ipha_t *ipha; 4559 ip6_t *ip6h; 4560 sin6_t sin6; 4561 in6_addr_t v6dst; 4562 int err; 4563 int ifindex = 0; 4564 cred_t *cr; 4565 tcp_stack_t *tcps = tcp->tcp_tcps; 4566 4567 if (ipvers == IPV4_VERSION) { 4568 ipha = (ipha_t *)mp->b_rptr; 4569 4570 connp->conn_send = ip_output; 4571 connp->conn_recv = tcp_input; 4572 4573 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4574 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4575 4576 sin6 = sin6_null; 4577 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4578 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4579 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4580 sin6.sin6_family = AF_INET6; 4581 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4582 lconnp->conn_zoneid, tcps->tcps_netstack); 4583 if (tcp->tcp_recvdstaddr) { 4584 sin6_t sin6d; 4585 4586 sin6d = sin6_null; 4587 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4588 &sin6d.sin6_addr); 4589 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4590 sin6d.sin6_family = AF_INET; 4591 tpi_mp = mi_tpi_extconn_ind(NULL, 4592 (char *)&sin6d, sizeof (sin6_t), 4593 (char *)&tcp, 4594 (t_scalar_t)sizeof (intptr_t), 4595 (char *)&sin6d, sizeof (sin6_t), 4596 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4597 } else { 4598 tpi_mp = mi_tpi_conn_ind(NULL, 4599 (char *)&sin6, sizeof (sin6_t), 4600 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4601 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4602 } 4603 } else { 4604 ip6h = (ip6_t *)mp->b_rptr; 4605 4606 connp->conn_send = ip_output_v6; 4607 connp->conn_recv = tcp_input; 4608 4609 connp->conn_srcv6 = ip6h->ip6_dst; 4610 connp->conn_remv6 = ip6h->ip6_src; 4611 4612 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4613 ifindex = (int)DB_CKSUMSTUFF(mp); 4614 DB_CKSUMSTUFF(mp) = 0; 4615 4616 sin6 = sin6_null; 4617 sin6.sin6_addr = ip6h->ip6_src; 4618 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4619 sin6.sin6_family = AF_INET6; 4620 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4621 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4622 lconnp->conn_zoneid, tcps->tcps_netstack); 4623 4624 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4625 /* Pass up the scope_id of remote addr */ 4626 sin6.sin6_scope_id = ifindex; 4627 } else { 4628 sin6.sin6_scope_id = 0; 4629 } 4630 if (tcp->tcp_recvdstaddr) { 4631 sin6_t sin6d; 4632 4633 sin6d = sin6_null; 4634 sin6.sin6_addr = ip6h->ip6_dst; 4635 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4636 sin6d.sin6_family = AF_INET; 4637 tpi_mp = mi_tpi_extconn_ind(NULL, 4638 (char *)&sin6d, sizeof (sin6_t), 4639 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4640 (char *)&sin6d, sizeof (sin6_t), 4641 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4642 } else { 4643 tpi_mp = mi_tpi_conn_ind(NULL, 4644 (char *)&sin6, sizeof (sin6_t), 4645 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4646 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4647 } 4648 } 4649 4650 if (tpi_mp == NULL) 4651 return (ENOMEM); 4652 4653 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4654 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4655 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4656 connp->conn_fully_bound = B_FALSE; 4657 4658 /* Inherit information from the "parent" */ 4659 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4660 tcp->tcp_family = ltcp->tcp_family; 4661 4662 tcp->tcp_wq = ltcp->tcp_wq; 4663 tcp->tcp_rq = ltcp->tcp_rq; 4664 4665 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4666 tcp->tcp_detached = B_TRUE; 4667 SOCK_CONNID_INIT(tcp->tcp_connid); 4668 if ((err = tcp_init_values(tcp)) != 0) { 4669 freemsg(tpi_mp); 4670 return (err); 4671 } 4672 4673 if (ipvers == IPV4_VERSION) { 4674 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4675 freemsg(tpi_mp); 4676 return (err); 4677 } 4678 ASSERT(tcp->tcp_ipha != NULL); 4679 } else { 4680 /* ifindex must be already set */ 4681 ASSERT(ifindex != 0); 4682 4683 if (ltcp->tcp_bound_if != 0) { 4684 /* 4685 * Set newtcp's bound_if equal to 4686 * listener's value. If ifindex is 4687 * not the same as ltcp->tcp_bound_if, 4688 * it must be a packet for the ipmp group 4689 * of interfaces 4690 */ 4691 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4692 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4693 tcp->tcp_bound_if = ifindex; 4694 } 4695 4696 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4697 tcp->tcp_recvifindex = 0; 4698 tcp->tcp_recvhops = 0xffffffffU; 4699 ASSERT(tcp->tcp_ip6h != NULL); 4700 } 4701 4702 tcp->tcp_lport = ltcp->tcp_lport; 4703 4704 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4705 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4706 /* 4707 * Listener had options of some sort; eager inherits. 4708 * Free up the eager template and allocate one 4709 * of the right size. 4710 */ 4711 if (tcp->tcp_hdr_grown) { 4712 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4713 } else { 4714 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4715 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4716 } 4717 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4718 KM_NOSLEEP); 4719 if (tcp->tcp_iphc == NULL) { 4720 tcp->tcp_iphc_len = 0; 4721 freemsg(tpi_mp); 4722 return (ENOMEM); 4723 } 4724 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4725 tcp->tcp_hdr_grown = B_TRUE; 4726 } 4727 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4728 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4729 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4730 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4731 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4732 4733 /* 4734 * Copy the IP+TCP header template from listener to eager 4735 */ 4736 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4737 if (tcp->tcp_ipversion == IPV6_VERSION) { 4738 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4739 IPPROTO_RAW) { 4740 tcp->tcp_ip6h = 4741 (ip6_t *)(tcp->tcp_iphc + 4742 sizeof (ip6i_t)); 4743 } else { 4744 tcp->tcp_ip6h = 4745 (ip6_t *)(tcp->tcp_iphc); 4746 } 4747 tcp->tcp_ipha = NULL; 4748 } else { 4749 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4750 tcp->tcp_ip6h = NULL; 4751 } 4752 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4753 tcp->tcp_ip_hdr_len); 4754 } else { 4755 /* 4756 * only valid case when ipversion of listener and 4757 * eager differ is when listener is IPv6 and 4758 * eager is IPv4. 4759 * Eager header template has been initialized to the 4760 * maximum v4 header sizes, which includes space for 4761 * TCP and IP options. 4762 */ 4763 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4764 (tcp->tcp_ipversion == IPV4_VERSION)); 4765 ASSERT(tcp->tcp_iphc_len >= 4766 TCP_MAX_COMBINED_HEADER_LENGTH); 4767 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4768 /* copy IP header fields individually */ 4769 tcp->tcp_ipha->ipha_ttl = 4770 ltcp->tcp_ip6h->ip6_hops; 4771 bcopy(ltcp->tcp_tcph->th_lport, 4772 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4773 } 4774 4775 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4776 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4777 sizeof (in_port_t)); 4778 4779 if (ltcp->tcp_lport == 0) { 4780 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4781 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4782 sizeof (in_port_t)); 4783 } 4784 4785 if (tcp->tcp_ipversion == IPV4_VERSION) { 4786 ASSERT(ipha != NULL); 4787 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4788 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4789 4790 /* Source routing option copyover (reverse it) */ 4791 if (tcps->tcps_rev_src_routes) 4792 tcp_opt_reverse(tcp, ipha); 4793 } else { 4794 ASSERT(ip6h != NULL); 4795 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4796 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4797 } 4798 4799 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4800 ASSERT(!tcp->tcp_tconnind_started); 4801 /* 4802 * If the SYN contains a credential, it's a loopback packet; attach 4803 * the credential to the TPI message. 4804 */ 4805 if ((cr = DB_CRED(idmp)) != NULL) { 4806 mblk_setcred(tpi_mp, cr); 4807 DB_CPID(tpi_mp) = DB_CPID(idmp); 4808 } 4809 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4810 4811 /* Inherit the listener's SSL protection state */ 4812 4813 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4814 kssl_hold_ent(tcp->tcp_kssl_ent); 4815 tcp->tcp_kssl_pending = B_TRUE; 4816 } 4817 4818 /* Inherit the listener's non-STREAMS flag */ 4819 if (IPCL_IS_NONSTR(lconnp)) { 4820 connp->conn_flags |= IPCL_NONSTR; 4821 connp->conn_upcalls = lconnp->conn_upcalls; 4822 } 4823 4824 return (0); 4825 } 4826 4827 4828 int 4829 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4830 tcph_t *tcph, mblk_t *idmp) 4831 { 4832 tcp_t *ltcp = lconnp->conn_tcp; 4833 tcp_t *tcp = connp->conn_tcp; 4834 sin_t sin; 4835 mblk_t *tpi_mp = NULL; 4836 int err; 4837 cred_t *cr; 4838 tcp_stack_t *tcps = tcp->tcp_tcps; 4839 4840 sin = sin_null; 4841 sin.sin_addr.s_addr = ipha->ipha_src; 4842 sin.sin_port = *(uint16_t *)tcph->th_lport; 4843 sin.sin_family = AF_INET; 4844 if (ltcp->tcp_recvdstaddr) { 4845 sin_t sind; 4846 4847 sind = sin_null; 4848 sind.sin_addr.s_addr = ipha->ipha_dst; 4849 sind.sin_port = *(uint16_t *)tcph->th_fport; 4850 sind.sin_family = AF_INET; 4851 tpi_mp = mi_tpi_extconn_ind(NULL, 4852 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4853 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4854 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4855 } else { 4856 tpi_mp = mi_tpi_conn_ind(NULL, 4857 (char *)&sin, sizeof (sin_t), 4858 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4859 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4860 } 4861 4862 if (tpi_mp == NULL) { 4863 return (ENOMEM); 4864 } 4865 4866 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4867 connp->conn_send = ip_output; 4868 connp->conn_recv = tcp_input; 4869 connp->conn_fully_bound = B_FALSE; 4870 4871 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4872 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4873 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4874 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4875 4876 /* Inherit information from the "parent" */ 4877 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4878 tcp->tcp_family = ltcp->tcp_family; 4879 tcp->tcp_wq = ltcp->tcp_wq; 4880 tcp->tcp_rq = ltcp->tcp_rq; 4881 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4882 tcp->tcp_detached = B_TRUE; 4883 SOCK_CONNID_INIT(tcp->tcp_connid); 4884 if ((err = tcp_init_values(tcp)) != 0) { 4885 freemsg(tpi_mp); 4886 return (err); 4887 } 4888 4889 /* 4890 * Let's make sure that eager tcp template has enough space to 4891 * copy IPv4 listener's tcp template. Since the conn_t structure is 4892 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4893 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4894 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4895 * extension headers or with ip6i_t struct). Note that bcopy() below 4896 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4897 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4898 */ 4899 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4900 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4901 4902 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4903 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4904 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4905 tcp->tcp_ttl = ltcp->tcp_ttl; 4906 tcp->tcp_tos = ltcp->tcp_tos; 4907 4908 /* Copy the IP+TCP header template from listener to eager */ 4909 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4910 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4911 tcp->tcp_ip6h = NULL; 4912 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4913 tcp->tcp_ip_hdr_len); 4914 4915 /* Initialize the IP addresses and Ports */ 4916 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4917 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4918 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4919 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4920 4921 /* Source routing option copyover (reverse it) */ 4922 if (tcps->tcps_rev_src_routes) 4923 tcp_opt_reverse(tcp, ipha); 4924 4925 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4926 ASSERT(!tcp->tcp_tconnind_started); 4927 4928 /* 4929 * If the SYN contains a credential, it's a loopback packet; attach 4930 * the credential to the TPI message. 4931 */ 4932 if ((cr = DB_CRED(idmp)) != NULL) { 4933 mblk_setcred(tpi_mp, cr); 4934 DB_CPID(tpi_mp) = DB_CPID(idmp); 4935 } 4936 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4937 4938 /* Inherit the listener's SSL protection state */ 4939 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4940 kssl_hold_ent(tcp->tcp_kssl_ent); 4941 tcp->tcp_kssl_pending = B_TRUE; 4942 } 4943 4944 /* Inherit the listener's non-STREAMS flag */ 4945 if (IPCL_IS_NONSTR(lconnp)) { 4946 connp->conn_flags |= IPCL_NONSTR; 4947 connp->conn_upcalls = lconnp->conn_upcalls; 4948 } 4949 4950 return (0); 4951 } 4952 4953 /* 4954 * sets up conn for ipsec. 4955 * if the first mblk is M_CTL it is consumed and mpp is updated. 4956 * in case of error mpp is freed. 4957 */ 4958 conn_t * 4959 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4960 { 4961 conn_t *connp = tcp->tcp_connp; 4962 conn_t *econnp; 4963 squeue_t *new_sqp; 4964 mblk_t *first_mp = *mpp; 4965 mblk_t *mp = *mpp; 4966 boolean_t mctl_present = B_FALSE; 4967 uint_t ipvers; 4968 4969 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4970 if (econnp == NULL) { 4971 freemsg(first_mp); 4972 return (NULL); 4973 } 4974 if (DB_TYPE(mp) == M_CTL) { 4975 if (mp->b_cont == NULL || 4976 mp->b_cont->b_datap->db_type != M_DATA) { 4977 freemsg(first_mp); 4978 return (NULL); 4979 } 4980 mp = mp->b_cont; 4981 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4982 freemsg(first_mp); 4983 return (NULL); 4984 } 4985 4986 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4987 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4988 mctl_present = B_TRUE; 4989 } else { 4990 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4991 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4992 } 4993 4994 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4995 DB_CKSUMSTART(mp) = 0; 4996 4997 ASSERT(OK_32PTR(mp->b_rptr)); 4998 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4999 if (ipvers == IPV4_VERSION) { 5000 uint16_t *up; 5001 uint32_t ports; 5002 ipha_t *ipha; 5003 5004 ipha = (ipha_t *)mp->b_rptr; 5005 up = (uint16_t *)((uchar_t *)ipha + 5006 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5007 ports = *(uint32_t *)up; 5008 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5009 ipha->ipha_dst, ipha->ipha_src, ports); 5010 } else { 5011 uint16_t *up; 5012 uint32_t ports; 5013 uint16_t ip_hdr_len; 5014 uint8_t *nexthdrp; 5015 ip6_t *ip6h; 5016 tcph_t *tcph; 5017 5018 ip6h = (ip6_t *)mp->b_rptr; 5019 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5020 ip_hdr_len = IPV6_HDR_LEN; 5021 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5022 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5023 CONN_DEC_REF(econnp); 5024 freemsg(first_mp); 5025 return (NULL); 5026 } 5027 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5028 up = (uint16_t *)tcph->th_lport; 5029 ports = *(uint32_t *)up; 5030 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5031 ip6h->ip6_dst, ip6h->ip6_src, ports); 5032 } 5033 5034 /* 5035 * The caller already ensured that there is a sqp present. 5036 */ 5037 econnp->conn_sqp = new_sqp; 5038 econnp->conn_initial_sqp = new_sqp; 5039 5040 if (connp->conn_policy != NULL) { 5041 ipsec_in_t *ii; 5042 ii = (ipsec_in_t *)(first_mp->b_rptr); 5043 ASSERT(ii->ipsec_in_policy == NULL); 5044 IPPH_REFHOLD(connp->conn_policy); 5045 ii->ipsec_in_policy = connp->conn_policy; 5046 5047 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5048 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5049 CONN_DEC_REF(econnp); 5050 freemsg(first_mp); 5051 return (NULL); 5052 } 5053 } 5054 5055 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5056 CONN_DEC_REF(econnp); 5057 freemsg(first_mp); 5058 return (NULL); 5059 } 5060 5061 /* 5062 * If we know we have some policy, pass the "IPSEC" 5063 * options size TCP uses this adjust the MSS. 5064 */ 5065 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5066 if (mctl_present) { 5067 freeb(first_mp); 5068 *mpp = mp; 5069 } 5070 5071 return (econnp); 5072 } 5073 5074 /* 5075 * tcp_get_conn/tcp_free_conn 5076 * 5077 * tcp_get_conn is used to get a clean tcp connection structure. 5078 * It tries to reuse the connections put on the freelist by the 5079 * time_wait_collector failing which it goes to kmem_cache. This 5080 * way has two benefits compared to just allocating from and 5081 * freeing to kmem_cache. 5082 * 1) The time_wait_collector can free (which includes the cleanup) 5083 * outside the squeue. So when the interrupt comes, we have a clean 5084 * connection sitting in the freelist. Obviously, this buys us 5085 * performance. 5086 * 5087 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5088 * has multiple disadvantages - tying up the squeue during alloc, and the 5089 * fact that IPSec policy initialization has to happen here which 5090 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5091 * But allocating the conn/tcp in IP land is also not the best since 5092 * we can't check the 'q' and 'q0' which are protected by squeue and 5093 * blindly allocate memory which might have to be freed here if we are 5094 * not allowed to accept the connection. By using the freelist and 5095 * putting the conn/tcp back in freelist, we don't pay a penalty for 5096 * allocating memory without checking 'q/q0' and freeing it if we can't 5097 * accept the connection. 5098 * 5099 * Care should be taken to put the conn back in the same squeue's freelist 5100 * from which it was allocated. Best results are obtained if conn is 5101 * allocated from listener's squeue and freed to the same. Time wait 5102 * collector will free up the freelist is the connection ends up sitting 5103 * there for too long. 5104 */ 5105 void * 5106 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5107 { 5108 tcp_t *tcp = NULL; 5109 conn_t *connp = NULL; 5110 squeue_t *sqp = (squeue_t *)arg; 5111 tcp_squeue_priv_t *tcp_time_wait; 5112 netstack_t *ns; 5113 5114 tcp_time_wait = 5115 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5116 5117 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5118 tcp = tcp_time_wait->tcp_free_list; 5119 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5120 if (tcp != NULL) { 5121 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5122 tcp_time_wait->tcp_free_list_cnt--; 5123 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5124 tcp->tcp_time_wait_next = NULL; 5125 connp = tcp->tcp_connp; 5126 connp->conn_flags |= IPCL_REUSED; 5127 5128 ASSERT(tcp->tcp_tcps == NULL); 5129 ASSERT(connp->conn_netstack == NULL); 5130 ASSERT(tcp->tcp_rsrv_mp != NULL); 5131 ns = tcps->tcps_netstack; 5132 netstack_hold(ns); 5133 connp->conn_netstack = ns; 5134 tcp->tcp_tcps = tcps; 5135 TCPS_REFHOLD(tcps); 5136 ipcl_globalhash_insert(connp); 5137 return ((void *)connp); 5138 } 5139 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5140 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5141 tcps->tcps_netstack)) == NULL) 5142 return (NULL); 5143 tcp = connp->conn_tcp; 5144 /* 5145 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5146 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5147 */ 5148 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5149 ipcl_conn_destroy(connp); 5150 return (NULL); 5151 } 5152 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5153 tcp->tcp_tcps = tcps; 5154 TCPS_REFHOLD(tcps); 5155 5156 return ((void *)connp); 5157 } 5158 5159 /* 5160 * Update the cached label for the given tcp_t. This should be called once per 5161 * connection, and before any packets are sent or tcp_process_options is 5162 * invoked. Returns B_FALSE if the correct label could not be constructed. 5163 */ 5164 static boolean_t 5165 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5166 { 5167 conn_t *connp = tcp->tcp_connp; 5168 5169 if (tcp->tcp_ipversion == IPV4_VERSION) { 5170 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5171 int added; 5172 5173 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5174 connp->conn_mac_exempt, 5175 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5176 return (B_FALSE); 5177 5178 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5179 if (added == -1) 5180 return (B_FALSE); 5181 tcp->tcp_hdr_len += added; 5182 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5183 tcp->tcp_ip_hdr_len += added; 5184 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5185 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5186 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5187 tcp->tcp_hdr_len); 5188 if (added == -1) 5189 return (B_FALSE); 5190 tcp->tcp_hdr_len += added; 5191 tcp->tcp_tcph = (tcph_t *) 5192 ((uchar_t *)tcp->tcp_tcph + added); 5193 tcp->tcp_ip_hdr_len += added; 5194 } 5195 } else { 5196 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5197 5198 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5199 connp->conn_mac_exempt, 5200 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5201 return (B_FALSE); 5202 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5203 &tcp->tcp_label_len, optbuf) != 0) 5204 return (B_FALSE); 5205 if (tcp_build_hdrs(tcp) != 0) 5206 return (B_FALSE); 5207 } 5208 5209 connp->conn_ulp_labeled = 1; 5210 5211 return (B_TRUE); 5212 } 5213 5214 /* BEGIN CSTYLED */ 5215 /* 5216 * 5217 * The sockfs ACCEPT path: 5218 * ======================= 5219 * 5220 * The eager is now established in its own perimeter as soon as SYN is 5221 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5222 * completes the accept processing on the acceptor STREAM. The sending 5223 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5224 * listener but a TLI/XTI listener completes the accept processing 5225 * on the listener perimeter. 5226 * 5227 * Common control flow for 3 way handshake: 5228 * ---------------------------------------- 5229 * 5230 * incoming SYN (listener perimeter) -> tcp_rput_data() 5231 * -> tcp_conn_request() 5232 * 5233 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5234 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5235 * 5236 * Sockfs ACCEPT Path: 5237 * ------------------- 5238 * 5239 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5240 * as STREAM entry point) 5241 * 5242 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5243 * 5244 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5245 * association (we are not behind eager's squeue but sockfs is protecting us 5246 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5247 * is changed to point at tcp_wput(). 5248 * 5249 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5250 * listener (done on listener's perimeter). 5251 * 5252 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5253 * accept. 5254 * 5255 * TLI/XTI client ACCEPT path: 5256 * --------------------------- 5257 * 5258 * soaccept() sends T_CONN_RES on the listener STREAM. 5259 * 5260 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5261 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5262 * 5263 * Locks: 5264 * ====== 5265 * 5266 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5267 * and listeners->tcp_eager_next_q. 5268 * 5269 * Referencing: 5270 * ============ 5271 * 5272 * 1) We start out in tcp_conn_request by eager placing a ref on 5273 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5274 * 5275 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5276 * doing so we place a ref on the eager. This ref is finally dropped at the 5277 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5278 * reference is dropped by the squeue framework. 5279 * 5280 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5281 * 5282 * The reference must be released by the same entity that added the reference 5283 * In the above scheme, the eager is the entity that adds and releases the 5284 * references. Note that tcp_accept_finish executes in the squeue of the eager 5285 * (albeit after it is attached to the acceptor stream). Though 1. executes 5286 * in the listener's squeue, the eager is nascent at this point and the 5287 * reference can be considered to have been added on behalf of the eager. 5288 * 5289 * Eager getting a Reset or listener closing: 5290 * ========================================== 5291 * 5292 * Once the listener and eager are linked, the listener never does the unlink. 5293 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5294 * a message on all eager perimeter. The eager then does the unlink, clears 5295 * any pointers to the listener's queue and drops the reference to the 5296 * listener. The listener waits in tcp_close outside the squeue until its 5297 * refcount has dropped to 1. This ensures that the listener has waited for 5298 * all eagers to clear their association with the listener. 5299 * 5300 * Similarly, if eager decides to go away, it can unlink itself and close. 5301 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5302 * the reference to eager is still valid because of the extra ref we put 5303 * in tcp_send_conn_ind. 5304 * 5305 * Listener can always locate the eager under the protection 5306 * of the listener->tcp_eager_lock, and then do a refhold 5307 * on the eager during the accept processing. 5308 * 5309 * The acceptor stream accesses the eager in the accept processing 5310 * based on the ref placed on eager before sending T_conn_ind. 5311 * The only entity that can negate this refhold is a listener close 5312 * which is mutually exclusive with an active acceptor stream. 5313 * 5314 * Eager's reference on the listener 5315 * =================================== 5316 * 5317 * If the accept happens (even on a closed eager) the eager drops its 5318 * reference on the listener at the start of tcp_accept_finish. If the 5319 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5320 * the reference is dropped in tcp_closei_local. If the listener closes, 5321 * the reference is dropped in tcp_eager_kill. In all cases the reference 5322 * is dropped while executing in the eager's context (squeue). 5323 */ 5324 /* END CSTYLED */ 5325 5326 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5327 5328 /* 5329 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5330 * tcp_rput_data will not see any SYN packets. 5331 */ 5332 /* ARGSUSED */ 5333 void 5334 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5335 { 5336 tcph_t *tcph; 5337 uint32_t seg_seq; 5338 tcp_t *eager; 5339 uint_t ipvers; 5340 ipha_t *ipha; 5341 ip6_t *ip6h; 5342 int err; 5343 conn_t *econnp = NULL; 5344 squeue_t *new_sqp; 5345 mblk_t *mp1; 5346 uint_t ip_hdr_len; 5347 conn_t *connp = (conn_t *)arg; 5348 tcp_t *tcp = connp->conn_tcp; 5349 cred_t *credp; 5350 tcp_stack_t *tcps = tcp->tcp_tcps; 5351 ip_stack_t *ipst; 5352 5353 if (tcp->tcp_state != TCPS_LISTEN) 5354 goto error2; 5355 5356 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5357 5358 mutex_enter(&tcp->tcp_eager_lock); 5359 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5360 mutex_exit(&tcp->tcp_eager_lock); 5361 TCP_STAT(tcps, tcp_listendrop); 5362 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5363 if (tcp->tcp_debug) { 5364 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5365 "tcp_conn_request: listen backlog (max=%d) " 5366 "overflow (%d pending) on %s", 5367 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5368 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5369 } 5370 goto error2; 5371 } 5372 5373 if (tcp->tcp_conn_req_cnt_q0 >= 5374 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5375 /* 5376 * Q0 is full. Drop a pending half-open req from the queue 5377 * to make room for the new SYN req. Also mark the time we 5378 * drop a SYN. 5379 * 5380 * A more aggressive defense against SYN attack will 5381 * be to set the "tcp_syn_defense" flag now. 5382 */ 5383 TCP_STAT(tcps, tcp_listendropq0); 5384 tcp->tcp_last_rcv_lbolt = lbolt64; 5385 if (!tcp_drop_q0(tcp)) { 5386 mutex_exit(&tcp->tcp_eager_lock); 5387 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5388 if (tcp->tcp_debug) { 5389 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5390 "tcp_conn_request: listen half-open queue " 5391 "(max=%d) full (%d pending) on %s", 5392 tcps->tcps_conn_req_max_q0, 5393 tcp->tcp_conn_req_cnt_q0, 5394 tcp_display(tcp, NULL, 5395 DISP_PORT_ONLY)); 5396 } 5397 goto error2; 5398 } 5399 } 5400 mutex_exit(&tcp->tcp_eager_lock); 5401 5402 /* 5403 * IP adds STRUIO_EAGER and ensures that the received packet is 5404 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5405 * link local address. If IPSec is enabled, db_struioflag has 5406 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5407 * otherwise an error case if neither of them is set. 5408 */ 5409 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5410 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5411 DB_CKSUMSTART(mp) = 0; 5412 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5413 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5414 if (econnp == NULL) 5415 goto error2; 5416 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5417 econnp->conn_sqp = new_sqp; 5418 econnp->conn_initial_sqp = new_sqp; 5419 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5420 /* 5421 * mp is updated in tcp_get_ipsec_conn(). 5422 */ 5423 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5424 if (econnp == NULL) { 5425 /* 5426 * mp freed by tcp_get_ipsec_conn. 5427 */ 5428 return; 5429 } 5430 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5431 } else { 5432 goto error2; 5433 } 5434 5435 ASSERT(DB_TYPE(mp) == M_DATA); 5436 5437 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5438 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5439 ASSERT(OK_32PTR(mp->b_rptr)); 5440 if (ipvers == IPV4_VERSION) { 5441 ipha = (ipha_t *)mp->b_rptr; 5442 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5443 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5444 } else { 5445 ip6h = (ip6_t *)mp->b_rptr; 5446 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5447 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5448 } 5449 5450 if (tcp->tcp_family == AF_INET) { 5451 ASSERT(ipvers == IPV4_VERSION); 5452 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5453 } else { 5454 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5455 } 5456 5457 if (err) 5458 goto error3; 5459 5460 eager = econnp->conn_tcp; 5461 5462 /* 5463 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close 5464 * time, we will always have that to send up. Otherwise, we need to do 5465 * special handling in case the allocation fails at that time. 5466 */ 5467 ASSERT(eager->tcp_ordrel_mp == NULL); 5468 if (!IPCL_IS_NONSTR(econnp) && 5469 (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5470 goto error3; 5471 5472 /* Inherit various TCP parameters from the listener */ 5473 eager->tcp_naglim = tcp->tcp_naglim; 5474 eager->tcp_first_timer_threshold = 5475 tcp->tcp_first_timer_threshold; 5476 eager->tcp_second_timer_threshold = 5477 tcp->tcp_second_timer_threshold; 5478 5479 eager->tcp_first_ctimer_threshold = 5480 tcp->tcp_first_ctimer_threshold; 5481 eager->tcp_second_ctimer_threshold = 5482 tcp->tcp_second_ctimer_threshold; 5483 5484 /* 5485 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5486 * If it does not, the eager's receive window will be set to the 5487 * listener's receive window later in this function. 5488 */ 5489 eager->tcp_rwnd = 0; 5490 5491 /* 5492 * Inherit listener's tcp_init_cwnd. Need to do this before 5493 * calling tcp_process_options() where tcp_mss_set() is called 5494 * to set the initial cwnd. 5495 */ 5496 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5497 5498 /* 5499 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5500 * zone id before the accept is completed in tcp_wput_accept(). 5501 */ 5502 econnp->conn_zoneid = connp->conn_zoneid; 5503 econnp->conn_allzones = connp->conn_allzones; 5504 5505 /* Copy nexthop information from listener to eager */ 5506 if (connp->conn_nexthop_set) { 5507 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5508 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5509 } 5510 5511 /* 5512 * TSOL: tsol_input_proc() needs the eager's cred before the 5513 * eager is accepted 5514 */ 5515 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5516 crhold(credp); 5517 5518 /* 5519 * If the caller has the process-wide flag set, then default to MAC 5520 * exempt mode. This allows read-down to unlabeled hosts. 5521 */ 5522 if (getpflags(NET_MAC_AWARE, credp) != 0) 5523 econnp->conn_mac_exempt = B_TRUE; 5524 5525 if (is_system_labeled()) { 5526 cred_t *cr; 5527 5528 if (connp->conn_mlp_type != mlptSingle) { 5529 cr = econnp->conn_peercred = DB_CRED(mp); 5530 if (cr != NULL) 5531 crhold(cr); 5532 else 5533 cr = econnp->conn_cred; 5534 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5535 econnp, cred_t *, cr) 5536 } else { 5537 cr = econnp->conn_cred; 5538 DTRACE_PROBE2(syn_accept, conn_t *, 5539 econnp, cred_t *, cr) 5540 } 5541 5542 if (!tcp_update_label(eager, cr)) { 5543 DTRACE_PROBE3( 5544 tx__ip__log__error__connrequest__tcp, 5545 char *, "eager connp(1) label on SYN mp(2) failed", 5546 conn_t *, econnp, mblk_t *, mp); 5547 goto error3; 5548 } 5549 } 5550 5551 eager->tcp_hard_binding = B_TRUE; 5552 5553 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5554 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5555 5556 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5557 if (err != 0) { 5558 tcp_bind_hash_remove(eager); 5559 goto error3; 5560 } 5561 5562 /* 5563 * No need to check for multicast destination since ip will only pass 5564 * up multicasts to those that have expressed interest 5565 * TODO: what about rejecting broadcasts? 5566 * Also check that source is not a multicast or broadcast address. 5567 */ 5568 eager->tcp_state = TCPS_SYN_RCVD; 5569 5570 5571 /* 5572 * There should be no ire in the mp as we are being called after 5573 * receiving the SYN. 5574 */ 5575 ASSERT(tcp_ire_mp(&mp) == NULL); 5576 5577 /* 5578 * Adapt our mss, ttl, ... according to information provided in IRE. 5579 */ 5580 5581 if (tcp_adapt_ire(eager, NULL) == 0) { 5582 /* Undo the bind_hash_insert */ 5583 tcp_bind_hash_remove(eager); 5584 goto error3; 5585 } 5586 5587 /* Process all TCP options. */ 5588 tcp_process_options(eager, tcph); 5589 5590 /* Is the other end ECN capable? */ 5591 if (tcps->tcps_ecn_permitted >= 1 && 5592 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5593 eager->tcp_ecn_ok = B_TRUE; 5594 } 5595 5596 /* 5597 * listener->tcp_rq->q_hiwat should be the default window size or a 5598 * window size changed via SO_RCVBUF option. First round up the 5599 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5600 * scale option value if needed. Call tcp_rwnd_set() to finish the 5601 * setting. 5602 * 5603 * Note if there is a rpipe metric associated with the remote host, 5604 * we should not inherit receive window size from listener. 5605 */ 5606 eager->tcp_rwnd = MSS_ROUNDUP( 5607 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5608 eager->tcp_rwnd), eager->tcp_mss); 5609 if (eager->tcp_snd_ws_ok) 5610 tcp_set_ws_value(eager); 5611 /* 5612 * Note that this is the only place tcp_rwnd_set() is called for 5613 * accepting a connection. We need to call it here instead of 5614 * after the 3-way handshake because we need to tell the other 5615 * side our rwnd in the SYN-ACK segment. 5616 */ 5617 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5618 5619 /* 5620 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5621 * via soaccept()->soinheritoptions() which essentially applies 5622 * all the listener options to the new STREAM. The options that we 5623 * need to take care of are: 5624 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5625 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5626 * SO_SNDBUF, SO_RCVBUF. 5627 * 5628 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5629 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5630 * tcp_maxpsz_set() gets called later from 5631 * tcp_accept_finish(), the option takes effect. 5632 * 5633 */ 5634 /* Set the TCP options */ 5635 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5636 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5637 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5638 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5639 eager->tcp_oobinline = tcp->tcp_oobinline; 5640 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5641 eager->tcp_broadcast = tcp->tcp_broadcast; 5642 eager->tcp_useloopback = tcp->tcp_useloopback; 5643 eager->tcp_dontroute = tcp->tcp_dontroute; 5644 eager->tcp_debug = tcp->tcp_debug; 5645 eager->tcp_linger = tcp->tcp_linger; 5646 eager->tcp_lingertime = tcp->tcp_lingertime; 5647 if (tcp->tcp_ka_enabled) 5648 eager->tcp_ka_enabled = 1; 5649 5650 /* Set the IP options */ 5651 econnp->conn_broadcast = connp->conn_broadcast; 5652 econnp->conn_loopback = connp->conn_loopback; 5653 econnp->conn_dontroute = connp->conn_dontroute; 5654 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5655 5656 /* Put a ref on the listener for the eager. */ 5657 CONN_INC_REF(connp); 5658 mutex_enter(&tcp->tcp_eager_lock); 5659 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5660 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5661 tcp->tcp_eager_next_q0 = eager; 5662 eager->tcp_eager_prev_q0 = tcp; 5663 5664 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5665 eager->tcp_listener = tcp; 5666 eager->tcp_saved_listener = tcp; 5667 5668 /* 5669 * Tag this detached tcp vector for later retrieval 5670 * by our listener client in tcp_accept(). 5671 */ 5672 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5673 tcp->tcp_conn_req_cnt_q0++; 5674 if (++tcp->tcp_conn_req_seqnum == -1) { 5675 /* 5676 * -1 is "special" and defined in TPI as something 5677 * that should never be used in T_CONN_IND 5678 */ 5679 ++tcp->tcp_conn_req_seqnum; 5680 } 5681 mutex_exit(&tcp->tcp_eager_lock); 5682 5683 if (tcp->tcp_syn_defense) { 5684 /* Don't drop the SYN that comes from a good IP source */ 5685 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5686 if (addr_cache != NULL && eager->tcp_remote == 5687 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5688 eager->tcp_dontdrop = B_TRUE; 5689 } 5690 } 5691 5692 /* 5693 * We need to insert the eager in its own perimeter but as soon 5694 * as we do that, we expose the eager to the classifier and 5695 * should not touch any field outside the eager's perimeter. 5696 * So do all the work necessary before inserting the eager 5697 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5698 * will succeed but undo everything if it fails. 5699 */ 5700 seg_seq = ABE32_TO_U32(tcph->th_seq); 5701 eager->tcp_irs = seg_seq; 5702 eager->tcp_rack = seg_seq; 5703 eager->tcp_rnxt = seg_seq + 1; 5704 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5705 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5706 eager->tcp_state = TCPS_SYN_RCVD; 5707 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5708 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5709 if (mp1 == NULL) { 5710 /* 5711 * Increment the ref count as we are going to 5712 * enqueueing an mp in squeue 5713 */ 5714 CONN_INC_REF(econnp); 5715 goto error; 5716 } 5717 DB_CPID(mp1) = tcp->tcp_cpid; 5718 mblk_setcred(mp1, tcp->tcp_cred); 5719 eager->tcp_cpid = tcp->tcp_cpid; 5720 eager->tcp_open_time = lbolt64; 5721 5722 /* 5723 * We need to start the rto timer. In normal case, we start 5724 * the timer after sending the packet on the wire (or at 5725 * least believing that packet was sent by waiting for 5726 * CALL_IP_WPUT() to return). Since this is the first packet 5727 * being sent on the wire for the eager, our initial tcp_rto 5728 * is at least tcp_rexmit_interval_min which is a fairly 5729 * large value to allow the algorithm to adjust slowly to large 5730 * fluctuations of RTT during first few transmissions. 5731 * 5732 * Starting the timer first and then sending the packet in this 5733 * case shouldn't make much difference since tcp_rexmit_interval_min 5734 * is of the order of several 100ms and starting the timer 5735 * first and then sending the packet will result in difference 5736 * of few micro seconds. 5737 * 5738 * Without this optimization, we are forced to hold the fanout 5739 * lock across the ipcl_bind_insert() and sending the packet 5740 * so that we don't race against an incoming packet (maybe RST) 5741 * for this eager. 5742 * 5743 * It is necessary to acquire an extra reference on the eager 5744 * at this point and hold it until after tcp_send_data() to 5745 * ensure against an eager close race. 5746 */ 5747 5748 CONN_INC_REF(eager->tcp_connp); 5749 5750 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5751 5752 /* 5753 * Insert the eager in its own perimeter now. We are ready to deal 5754 * with any packets on eager. 5755 */ 5756 if (eager->tcp_ipversion == IPV4_VERSION) { 5757 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5758 goto error; 5759 } 5760 } else { 5761 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5762 goto error; 5763 } 5764 } 5765 5766 /* mark conn as fully-bound */ 5767 econnp->conn_fully_bound = B_TRUE; 5768 5769 /* Send the SYN-ACK */ 5770 tcp_send_data(eager, eager->tcp_wq, mp1); 5771 CONN_DEC_REF(eager->tcp_connp); 5772 freemsg(mp); 5773 5774 return; 5775 error: 5776 freemsg(mp1); 5777 eager->tcp_closemp_used = B_TRUE; 5778 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5779 mp1 = &eager->tcp_closemp; 5780 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5781 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5782 5783 /* 5784 * If a connection already exists, send the mp to that connections so 5785 * that it can be appropriately dealt with. 5786 */ 5787 ipst = tcps->tcps_netstack->netstack_ip; 5788 5789 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5790 if (!IPCL_IS_CONNECTED(econnp)) { 5791 /* 5792 * Something bad happened. ipcl_conn_insert() 5793 * failed because a connection already existed 5794 * in connected hash but we can't find it 5795 * anymore (someone blew it away). Just 5796 * free this message and hopefully remote 5797 * will retransmit at which time the SYN can be 5798 * treated as a new connection or dealth with 5799 * a TH_RST if a connection already exists. 5800 */ 5801 CONN_DEC_REF(econnp); 5802 freemsg(mp); 5803 } else { 5804 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5805 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5806 } 5807 } else { 5808 /* Nobody wants this packet */ 5809 freemsg(mp); 5810 } 5811 return; 5812 error3: 5813 CONN_DEC_REF(econnp); 5814 error2: 5815 freemsg(mp); 5816 } 5817 5818 /* 5819 * In an ideal case of vertical partition in NUMA architecture, its 5820 * beneficial to have the listener and all the incoming connections 5821 * tied to the same squeue. The other constraint is that incoming 5822 * connections should be tied to the squeue attached to interrupted 5823 * CPU for obvious locality reason so this leaves the listener to 5824 * be tied to the same squeue. Our only problem is that when listener 5825 * is binding, the CPU that will get interrupted by the NIC whose 5826 * IP address the listener is binding to is not even known. So 5827 * the code below allows us to change that binding at the time the 5828 * CPU is interrupted by virtue of incoming connection's squeue. 5829 * 5830 * This is usefull only in case of a listener bound to a specific IP 5831 * address. For other kind of listeners, they get bound the 5832 * very first time and there is no attempt to rebind them. 5833 */ 5834 void 5835 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5836 { 5837 conn_t *connp = (conn_t *)arg; 5838 squeue_t *sqp = (squeue_t *)arg2; 5839 squeue_t *new_sqp; 5840 uint32_t conn_flags; 5841 5842 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5843 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5844 } else { 5845 goto done; 5846 } 5847 5848 if (connp->conn_fanout == NULL) 5849 goto done; 5850 5851 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5852 mutex_enter(&connp->conn_fanout->connf_lock); 5853 mutex_enter(&connp->conn_lock); 5854 /* 5855 * No one from read or write side can access us now 5856 * except for already queued packets on this squeue. 5857 * But since we haven't changed the squeue yet, they 5858 * can't execute. If they are processed after we have 5859 * changed the squeue, they are sent back to the 5860 * correct squeue down below. 5861 * But a listner close can race with processing of 5862 * incoming SYN. If incoming SYN processing changes 5863 * the squeue then the listener close which is waiting 5864 * to enter the squeue would operate on the wrong 5865 * squeue. Hence we don't change the squeue here unless 5866 * the refcount is exactly the minimum refcount. The 5867 * minimum refcount of 4 is counted as - 1 each for 5868 * TCP and IP, 1 for being in the classifier hash, and 5869 * 1 for the mblk being processed. 5870 */ 5871 5872 if (connp->conn_ref != 4 || 5873 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5874 mutex_exit(&connp->conn_lock); 5875 mutex_exit(&connp->conn_fanout->connf_lock); 5876 goto done; 5877 } 5878 if (connp->conn_sqp != new_sqp) { 5879 while (connp->conn_sqp != new_sqp) 5880 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5881 } 5882 5883 do { 5884 conn_flags = connp->conn_flags; 5885 conn_flags |= IPCL_FULLY_BOUND; 5886 (void) cas32(&connp->conn_flags, connp->conn_flags, 5887 conn_flags); 5888 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5889 5890 mutex_exit(&connp->conn_fanout->connf_lock); 5891 mutex_exit(&connp->conn_lock); 5892 } 5893 5894 done: 5895 if (connp->conn_sqp != sqp) { 5896 CONN_INC_REF(connp); 5897 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5898 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5899 } else { 5900 tcp_conn_request(connp, mp, sqp); 5901 } 5902 } 5903 5904 /* 5905 * Successful connect request processing begins when our client passes 5906 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5907 * our T_OK_ACK reply message upstream. The control flow looks like this: 5908 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5909 * upstream <- tcp_rput() <- IP 5910 * After various error checks are completed, tcp_tpi_connect() lays 5911 * the target address and port into the composite header template, 5912 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5913 * request followed by an IRE request, and passes the three mblk message 5914 * down to IP looking like this: 5915 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5916 * Processing continues in tcp_rput() when we receive the following message: 5917 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5918 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5919 * to fire off the connection request, and then passes the T_OK_ACK mblk 5920 * upstream that we filled in below. There are, of course, numerous 5921 * error conditions along the way which truncate the processing described 5922 * above. 5923 */ 5924 static void 5925 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5926 { 5927 sin_t *sin; 5928 queue_t *q = tcp->tcp_wq; 5929 struct T_conn_req *tcr; 5930 struct sockaddr *sa; 5931 socklen_t len; 5932 int error; 5933 5934 tcr = (struct T_conn_req *)mp->b_rptr; 5935 5936 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5937 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5938 tcp_err_ack(tcp, mp, TPROTO, 0); 5939 return; 5940 } 5941 5942 /* 5943 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5944 * will always have that to send up. Otherwise, we need to do 5945 * special handling in case the allocation fails at that time. 5946 * If the end point is TPI, the tcp_t can be reused and the 5947 * tcp_ordrel_mp may be allocated already. 5948 */ 5949 if (tcp->tcp_ordrel_mp == NULL) { 5950 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5951 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5952 return; 5953 } 5954 } 5955 5956 /* 5957 * Determine packet type based on type of address passed in 5958 * the request should contain an IPv4 or IPv6 address. 5959 * Make sure that address family matches the type of 5960 * family of the the address passed down 5961 */ 5962 switch (tcr->DEST_length) { 5963 default: 5964 tcp_err_ack(tcp, mp, TBADADDR, 0); 5965 return; 5966 5967 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5968 /* 5969 * XXX: The check for valid DEST_length was not there 5970 * in earlier releases and some buggy 5971 * TLI apps (e.g Sybase) got away with not feeding 5972 * in sin_zero part of address. 5973 * We allow that bug to keep those buggy apps humming. 5974 * Test suites require the check on DEST_length. 5975 * We construct a new mblk with valid DEST_length 5976 * free the original so the rest of the code does 5977 * not have to keep track of this special shorter 5978 * length address case. 5979 */ 5980 mblk_t *nmp; 5981 struct T_conn_req *ntcr; 5982 sin_t *nsin; 5983 5984 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5985 tcr->OPT_length, BPRI_HI); 5986 if (nmp == NULL) { 5987 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5988 return; 5989 } 5990 ntcr = (struct T_conn_req *)nmp->b_rptr; 5991 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5992 ntcr->PRIM_type = T_CONN_REQ; 5993 ntcr->DEST_length = sizeof (sin_t); 5994 ntcr->DEST_offset = sizeof (struct T_conn_req); 5995 5996 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5997 *nsin = sin_null; 5998 /* Get pointer to shorter address to copy from original mp */ 5999 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6000 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6001 if (sin == NULL || !OK_32PTR((char *)sin)) { 6002 freemsg(nmp); 6003 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6004 return; 6005 } 6006 nsin->sin_family = sin->sin_family; 6007 nsin->sin_port = sin->sin_port; 6008 nsin->sin_addr = sin->sin_addr; 6009 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6010 nmp->b_wptr = (uchar_t *)&nsin[1]; 6011 if (tcr->OPT_length != 0) { 6012 ntcr->OPT_length = tcr->OPT_length; 6013 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6014 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6015 (uchar_t *)ntcr + ntcr->OPT_offset, 6016 tcr->OPT_length); 6017 nmp->b_wptr += tcr->OPT_length; 6018 } 6019 freemsg(mp); /* original mp freed */ 6020 mp = nmp; /* re-initialize original variables */ 6021 tcr = ntcr; 6022 } 6023 /* FALLTHRU */ 6024 6025 case sizeof (sin_t): 6026 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6027 sizeof (sin_t)); 6028 len = sizeof (sin_t); 6029 break; 6030 6031 case sizeof (sin6_t): 6032 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6033 sizeof (sin6_t)); 6034 len = sizeof (sin6_t); 6035 break; 6036 } 6037 6038 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6039 if (error != 0) { 6040 tcp_err_ack(tcp, mp, TSYSERR, error); 6041 return; 6042 } 6043 6044 /* 6045 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6046 * should key on their sequence number and cut them loose. 6047 */ 6048 6049 /* 6050 * If options passed in, feed it for verification and handling 6051 */ 6052 if (tcr->OPT_length != 0) { 6053 mblk_t *ok_mp; 6054 mblk_t *discon_mp; 6055 mblk_t *conn_opts_mp; 6056 int t_error, sys_error, do_disconnect; 6057 6058 conn_opts_mp = NULL; 6059 6060 if (tcp_conprim_opt_process(tcp, mp, 6061 &do_disconnect, &t_error, &sys_error) < 0) { 6062 if (do_disconnect) { 6063 ASSERT(t_error == 0 && sys_error == 0); 6064 discon_mp = mi_tpi_discon_ind(NULL, 6065 ECONNREFUSED, 0); 6066 if (!discon_mp) { 6067 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6068 TSYSERR, ENOMEM); 6069 return; 6070 } 6071 ok_mp = mi_tpi_ok_ack_alloc(mp); 6072 if (!ok_mp) { 6073 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6074 TSYSERR, ENOMEM); 6075 return; 6076 } 6077 qreply(q, ok_mp); 6078 qreply(q, discon_mp); /* no flush! */ 6079 } else { 6080 ASSERT(t_error != 0); 6081 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6082 sys_error); 6083 } 6084 return; 6085 } 6086 /* 6087 * Success in setting options, the mp option buffer represented 6088 * by OPT_length/offset has been potentially modified and 6089 * contains results of option processing. We copy it in 6090 * another mp to save it for potentially influencing returning 6091 * it in T_CONN_CONN. 6092 */ 6093 if (tcr->OPT_length != 0) { /* there are resulting options */ 6094 conn_opts_mp = copyb(mp); 6095 if (!conn_opts_mp) { 6096 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6097 TSYSERR, ENOMEM); 6098 return; 6099 } 6100 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6101 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6102 /* 6103 * Note: 6104 * These resulting option negotiation can include any 6105 * end-to-end negotiation options but there no such 6106 * thing (yet?) in our TCP/IP. 6107 */ 6108 } 6109 } 6110 6111 /* call the non-TPI version */ 6112 error = tcp_do_connect(tcp->tcp_connp, sa, len, DB_CRED(mp), 6113 DB_CPID(mp)); 6114 if (error < 0) { 6115 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6116 } else if (error > 0) { 6117 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6118 } else { 6119 mp = mi_tpi_ok_ack_alloc(mp); 6120 } 6121 6122 /* 6123 * Note: Code below is the "failure" case 6124 */ 6125 /* return error ack and blow away saved option results if any */ 6126 connect_failed: 6127 if (mp != NULL) 6128 putnext(tcp->tcp_rq, mp); 6129 else { 6130 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6131 TSYSERR, ENOMEM); 6132 } 6133 } 6134 6135 /* 6136 * Handle connect to IPv4 destinations, including connections for AF_INET6 6137 * sockets connecting to IPv4 mapped IPv6 destinations. 6138 */ 6139 static int 6140 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6141 uint_t srcid, cred_t *cr, pid_t pid) 6142 { 6143 tcph_t *tcph; 6144 mblk_t *mp; 6145 ipaddr_t dstaddr = *dstaddrp; 6146 int32_t oldstate; 6147 uint16_t lport; 6148 int error = 0; 6149 tcp_stack_t *tcps = tcp->tcp_tcps; 6150 6151 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6152 6153 /* Check for attempt to connect to INADDR_ANY */ 6154 if (dstaddr == INADDR_ANY) { 6155 /* 6156 * SunOS 4.x and 4.3 BSD allow an application 6157 * to connect a TCP socket to INADDR_ANY. 6158 * When they do this, the kernel picks the 6159 * address of one interface and uses it 6160 * instead. The kernel usually ends up 6161 * picking the address of the loopback 6162 * interface. This is an undocumented feature. 6163 * However, we provide the same thing here 6164 * in order to have source and binary 6165 * compatibility with SunOS 4.x. 6166 * Update the T_CONN_REQ (sin/sin6) since it is used to 6167 * generate the T_CONN_CON. 6168 */ 6169 dstaddr = htonl(INADDR_LOOPBACK); 6170 *dstaddrp = dstaddr; 6171 } 6172 6173 /* Handle __sin6_src_id if socket not bound to an IP address */ 6174 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6175 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6176 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6177 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6178 tcp->tcp_ipha->ipha_src); 6179 } 6180 6181 /* 6182 * Don't let an endpoint connect to itself. Note that 6183 * the test here does not catch the case where the 6184 * source IP addr was left unspecified by the user. In 6185 * this case, the source addr is set in tcp_adapt_ire() 6186 * using the reply to the T_BIND message that we send 6187 * down to IP here and the check is repeated in tcp_rput_other. 6188 */ 6189 if (dstaddr == tcp->tcp_ipha->ipha_src && 6190 dstport == tcp->tcp_lport) { 6191 error = -TBADADDR; 6192 goto failed; 6193 } 6194 6195 tcp->tcp_ipha->ipha_dst = dstaddr; 6196 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6197 6198 /* 6199 * Massage a source route if any putting the first hop 6200 * in iph_dst. Compute a starting value for the checksum which 6201 * takes into account that the original iph_dst should be 6202 * included in the checksum but that ip will include the 6203 * first hop in the source route in the tcp checksum. 6204 */ 6205 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6206 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6207 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6208 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6209 if ((int)tcp->tcp_sum < 0) 6210 tcp->tcp_sum--; 6211 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6212 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6213 (tcp->tcp_sum >> 16)); 6214 tcph = tcp->tcp_tcph; 6215 *(uint16_t *)tcph->th_fport = dstport; 6216 tcp->tcp_fport = dstport; 6217 6218 oldstate = tcp->tcp_state; 6219 /* 6220 * At this point the remote destination address and remote port fields 6221 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6222 * have to see which state tcp was in so we can take apropriate action. 6223 */ 6224 if (oldstate == TCPS_IDLE) { 6225 /* 6226 * We support a quick connect capability here, allowing 6227 * clients to transition directly from IDLE to SYN_SENT 6228 * tcp_bindi will pick an unused port, insert the connection 6229 * in the bind hash and transition to BOUND state. 6230 */ 6231 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6232 tcp, B_TRUE); 6233 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6234 B_FALSE, B_FALSE); 6235 if (lport == 0) { 6236 error = -TNOADDR; 6237 goto failed; 6238 } 6239 } 6240 tcp->tcp_state = TCPS_SYN_SENT; 6241 6242 mp = allocb(sizeof (ire_t), BPRI_HI); 6243 if (mp == NULL) { 6244 tcp->tcp_state = oldstate; 6245 error = ENOMEM; 6246 goto failed; 6247 } 6248 mp->b_wptr += sizeof (ire_t); 6249 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6250 tcp->tcp_hard_binding = 1; 6251 if (cr == NULL) { 6252 cr = tcp->tcp_cred; 6253 pid = tcp->tcp_cpid; 6254 } 6255 mblk_setcred(mp, cr); 6256 DB_CPID(mp) = pid; 6257 6258 /* 6259 * We need to make sure that the conn_recv is set to a non-null 6260 * value before we insert the conn_t into the classifier table. 6261 * This is to avoid a race with an incoming packet which does 6262 * an ipcl_classify(). 6263 */ 6264 tcp->tcp_connp->conn_recv = tcp_input; 6265 6266 if (tcp->tcp_family == AF_INET) { 6267 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6268 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6269 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE); 6270 } else { 6271 in6_addr_t v6src; 6272 if (tcp->tcp_ipversion == IPV4_VERSION) { 6273 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6274 } else { 6275 v6src = tcp->tcp_ip6h->ip6_src; 6276 } 6277 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6278 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6279 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6280 } 6281 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6282 tcp->tcp_active_open = 1; 6283 6284 return (tcp_post_ip_bind(tcp, mp, error)); 6285 failed: 6286 /* return error ack and blow away saved option results if any */ 6287 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6288 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6289 return (error); 6290 } 6291 6292 /* 6293 * Handle connect to IPv6 destinations. 6294 */ 6295 static int 6296 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6297 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6298 { 6299 tcph_t *tcph; 6300 mblk_t *mp; 6301 ip6_rthdr_t *rth; 6302 int32_t oldstate; 6303 uint16_t lport; 6304 tcp_stack_t *tcps = tcp->tcp_tcps; 6305 int error = 0; 6306 conn_t *connp = tcp->tcp_connp; 6307 6308 ASSERT(tcp->tcp_family == AF_INET6); 6309 6310 /* 6311 * If we're here, it means that the destination address is a native 6312 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6313 * reason why it might not be IPv6 is if the socket was bound to an 6314 * IPv4-mapped IPv6 address. 6315 */ 6316 if (tcp->tcp_ipversion != IPV6_VERSION) { 6317 return (-TBADADDR); 6318 } 6319 6320 /* 6321 * Interpret a zero destination to mean loopback. 6322 * Update the T_CONN_REQ (sin/sin6) since it is used to 6323 * generate the T_CONN_CON. 6324 */ 6325 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6326 *dstaddrp = ipv6_loopback; 6327 } 6328 6329 /* Handle __sin6_src_id if socket not bound to an IP address */ 6330 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6331 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6332 connp->conn_zoneid, tcps->tcps_netstack); 6333 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6334 } 6335 6336 /* 6337 * Take care of the scope_id now and add ip6i_t 6338 * if ip6i_t is not already allocated through TCP 6339 * sticky options. At this point tcp_ip6h does not 6340 * have dst info, thus use dstaddrp. 6341 */ 6342 if (scope_id != 0 && 6343 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6344 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6345 ip6i_t *ip6i; 6346 6347 ipp->ipp_ifindex = scope_id; 6348 ip6i = (ip6i_t *)tcp->tcp_iphc; 6349 6350 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6351 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6352 /* Already allocated */ 6353 ip6i->ip6i_flags |= IP6I_IFINDEX; 6354 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6355 ipp->ipp_fields |= IPPF_SCOPE_ID; 6356 } else { 6357 int reterr; 6358 6359 ipp->ipp_fields |= IPPF_SCOPE_ID; 6360 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6361 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6362 reterr = tcp_build_hdrs(tcp); 6363 if (reterr != 0) 6364 goto failed; 6365 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6366 } 6367 } 6368 6369 /* 6370 * Don't let an endpoint connect to itself. Note that 6371 * the test here does not catch the case where the 6372 * source IP addr was left unspecified by the user. In 6373 * this case, the source addr is set in tcp_adapt_ire() 6374 * using the reply to the T_BIND message that we send 6375 * down to IP here and the check is repeated in tcp_rput_other. 6376 */ 6377 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6378 (dstport == tcp->tcp_lport)) { 6379 error = -TBADADDR; 6380 goto failed; 6381 } 6382 6383 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6384 tcp->tcp_remote_v6 = *dstaddrp; 6385 tcp->tcp_ip6h->ip6_vcf = 6386 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6387 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6388 6389 /* 6390 * Massage a routing header (if present) putting the first hop 6391 * in ip6_dst. Compute a starting value for the checksum which 6392 * takes into account that the original ip6_dst should be 6393 * included in the checksum but that ip will include the 6394 * first hop in the source route in the tcp checksum. 6395 */ 6396 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6397 if (rth != NULL) { 6398 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6399 tcps->tcps_netstack); 6400 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6401 (tcp->tcp_sum >> 16)); 6402 } else { 6403 tcp->tcp_sum = 0; 6404 } 6405 6406 tcph = tcp->tcp_tcph; 6407 *(uint16_t *)tcph->th_fport = dstport; 6408 tcp->tcp_fport = dstport; 6409 6410 oldstate = tcp->tcp_state; 6411 /* 6412 * At this point the remote destination address and remote port fields 6413 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6414 * have to see which state tcp was in so we can take apropriate action. 6415 */ 6416 if (oldstate == TCPS_IDLE) { 6417 /* 6418 * We support a quick connect capability here, allowing 6419 * clients to transition directly from IDLE to SYN_SENT 6420 * tcp_bindi will pick an unused port, insert the connection 6421 * in the bind hash and transition to BOUND state. 6422 */ 6423 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6424 tcp, B_TRUE); 6425 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6426 B_FALSE, B_FALSE); 6427 if (lport == 0) { 6428 error = -TNOADDR; 6429 goto failed; 6430 } 6431 } 6432 tcp->tcp_state = TCPS_SYN_SENT; 6433 6434 mp = allocb(sizeof (ire_t), BPRI_HI); 6435 if (mp != NULL) { 6436 in6_addr_t v6src; 6437 6438 mp->b_wptr += sizeof (ire_t); 6439 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6440 if (cr == NULL) { 6441 cr = tcp->tcp_cred; 6442 pid = tcp->tcp_cpid; 6443 } 6444 mblk_setcred(mp, cr); 6445 DB_CPID(mp) = pid; 6446 tcp->tcp_hard_binding = 1; 6447 6448 /* 6449 * We need to make sure that the conn_recv is set to a non-null 6450 * value before we insert the conn_t into the classifier table. 6451 * This is to avoid a race with an incoming packet which does 6452 * an ipcl_classify(). 6453 */ 6454 tcp->tcp_connp->conn_recv = tcp_input; 6455 6456 if (tcp->tcp_ipversion == IPV4_VERSION) { 6457 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6458 } else { 6459 v6src = tcp->tcp_ip6h->ip6_src; 6460 } 6461 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6462 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6463 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6464 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6465 tcp->tcp_active_open = 1; 6466 6467 return (tcp_post_ip_bind(tcp, mp, error)); 6468 } 6469 /* Error case */ 6470 tcp->tcp_state = oldstate; 6471 error = ENOMEM; 6472 6473 failed: 6474 /* return error ack and blow away saved option results if any */ 6475 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6476 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6477 return (error); 6478 } 6479 6480 /* 6481 * We need a stream q for detached closing tcp connections 6482 * to use. Our client hereby indicates that this q is the 6483 * one to use. 6484 */ 6485 static void 6486 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6487 { 6488 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6489 queue_t *q = tcp->tcp_wq; 6490 tcp_stack_t *tcps = tcp->tcp_tcps; 6491 6492 #ifdef NS_DEBUG 6493 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6494 tcps->tcps_netstack->netstack_stackid); 6495 #endif 6496 mp->b_datap->db_type = M_IOCACK; 6497 iocp->ioc_count = 0; 6498 mutex_enter(&tcps->tcps_g_q_lock); 6499 if (tcps->tcps_g_q != NULL) { 6500 mutex_exit(&tcps->tcps_g_q_lock); 6501 iocp->ioc_error = EALREADY; 6502 } else { 6503 int error = 0; 6504 conn_t *connp = tcp->tcp_connp; 6505 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6506 6507 tcps->tcps_g_q = tcp->tcp_rq; 6508 mutex_exit(&tcps->tcps_g_q_lock); 6509 iocp->ioc_error = 0; 6510 iocp->ioc_rval = 0; 6511 /* 6512 * We are passing tcp_sticky_ipp as NULL 6513 * as it is not useful for tcp_default queue 6514 * 6515 * Set conn_recv just in case. 6516 */ 6517 tcp->tcp_connp->conn_recv = tcp_conn_request; 6518 6519 ASSERT(connp->conn_af_isv6); 6520 connp->conn_ulp = IPPROTO_TCP; 6521 6522 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6523 NULL || connp->conn_mac_exempt) { 6524 error = -TBADADDR; 6525 } else { 6526 connp->conn_srcv6 = ipv6_all_zeros; 6527 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6528 } 6529 6530 (void) tcp_post_ip_bind(tcp, NULL, error); 6531 } 6532 qreply(q, mp); 6533 } 6534 6535 static int 6536 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6537 { 6538 tcp_t *ltcp = NULL; 6539 conn_t *connp; 6540 tcp_stack_t *tcps = tcp->tcp_tcps; 6541 6542 /* 6543 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6544 * when the stream is in BOUND state. Do not send a reset, 6545 * since the destination IP address is not valid, and it can 6546 * be the initialized value of all zeros (broadcast address). 6547 * 6548 * XXX There won't be any pending bind request to IP. 6549 */ 6550 if (tcp->tcp_state <= TCPS_BOUND) { 6551 if (tcp->tcp_debug) { 6552 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6553 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6554 } 6555 return (TOUTSTATE); 6556 } 6557 6558 6559 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6560 6561 /* 6562 * According to TPI, for non-listeners, ignore seqnum 6563 * and disconnect. 6564 * Following interpretation of -1 seqnum is historical 6565 * and implied TPI ? (TPI only states that for T_CONN_IND, 6566 * a valid seqnum should not be -1). 6567 * 6568 * -1 means disconnect everything 6569 * regardless even on a listener. 6570 */ 6571 6572 int old_state = tcp->tcp_state; 6573 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6574 6575 /* 6576 * The connection can't be on the tcp_time_wait_head list 6577 * since it is not detached. 6578 */ 6579 ASSERT(tcp->tcp_time_wait_next == NULL); 6580 ASSERT(tcp->tcp_time_wait_prev == NULL); 6581 ASSERT(tcp->tcp_time_wait_expire == 0); 6582 ltcp = NULL; 6583 /* 6584 * If it used to be a listener, check to make sure no one else 6585 * has taken the port before switching back to LISTEN state. 6586 */ 6587 if (tcp->tcp_ipversion == IPV4_VERSION) { 6588 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6589 tcp->tcp_ipha->ipha_src, 6590 tcp->tcp_connp->conn_zoneid, ipst); 6591 if (connp != NULL) 6592 ltcp = connp->conn_tcp; 6593 } else { 6594 /* Allow tcp_bound_if listeners? */ 6595 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6596 &tcp->tcp_ip6h->ip6_src, 0, 6597 tcp->tcp_connp->conn_zoneid, ipst); 6598 if (connp != NULL) 6599 ltcp = connp->conn_tcp; 6600 } 6601 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6602 tcp->tcp_state = TCPS_LISTEN; 6603 } else if (old_state > TCPS_BOUND) { 6604 tcp->tcp_conn_req_max = 0; 6605 tcp->tcp_state = TCPS_BOUND; 6606 } 6607 if (ltcp != NULL) 6608 CONN_DEC_REF(ltcp->tcp_connp); 6609 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6610 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6611 } else if (old_state == TCPS_ESTABLISHED || 6612 old_state == TCPS_CLOSE_WAIT) { 6613 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6614 } 6615 6616 if (tcp->tcp_fused) 6617 tcp_unfuse(tcp); 6618 6619 mutex_enter(&tcp->tcp_eager_lock); 6620 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6621 (tcp->tcp_conn_req_cnt_q != 0)) { 6622 tcp_eager_cleanup(tcp, 0); 6623 } 6624 mutex_exit(&tcp->tcp_eager_lock); 6625 6626 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6627 tcp->tcp_rnxt, TH_RST | TH_ACK); 6628 6629 tcp_reinit(tcp); 6630 6631 return (0); 6632 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6633 return (TBADSEQ); 6634 } 6635 return (0); 6636 } 6637 6638 /* 6639 * Our client hereby directs us to reject the connection request 6640 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6641 * of sending the appropriate RST, not an ICMP error. 6642 */ 6643 static void 6644 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6645 { 6646 t_scalar_t seqnum; 6647 int error; 6648 6649 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6650 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6651 tcp_err_ack(tcp, mp, TPROTO, 0); 6652 return; 6653 } 6654 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6655 error = tcp_disconnect_common(tcp, seqnum); 6656 if (error != 0) 6657 tcp_err_ack(tcp, mp, error, 0); 6658 else { 6659 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6660 /* Send M_FLUSH according to TPI */ 6661 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6662 } 6663 mp = mi_tpi_ok_ack_alloc(mp); 6664 if (mp) 6665 putnext(tcp->tcp_rq, mp); 6666 } 6667 } 6668 6669 /* 6670 * Diagnostic routine used to return a string associated with the tcp state. 6671 * Note that if the caller does not supply a buffer, it will use an internal 6672 * static string. This means that if multiple threads call this function at 6673 * the same time, output can be corrupted... Note also that this function 6674 * does not check the size of the supplied buffer. The caller has to make 6675 * sure that it is big enough. 6676 */ 6677 static char * 6678 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6679 { 6680 char buf1[30]; 6681 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6682 char *buf; 6683 char *cp; 6684 in6_addr_t local, remote; 6685 char local_addrbuf[INET6_ADDRSTRLEN]; 6686 char remote_addrbuf[INET6_ADDRSTRLEN]; 6687 6688 if (sup_buf != NULL) 6689 buf = sup_buf; 6690 else 6691 buf = priv_buf; 6692 6693 if (tcp == NULL) 6694 return ("NULL_TCP"); 6695 switch (tcp->tcp_state) { 6696 case TCPS_CLOSED: 6697 cp = "TCP_CLOSED"; 6698 break; 6699 case TCPS_IDLE: 6700 cp = "TCP_IDLE"; 6701 break; 6702 case TCPS_BOUND: 6703 cp = "TCP_BOUND"; 6704 break; 6705 case TCPS_LISTEN: 6706 cp = "TCP_LISTEN"; 6707 break; 6708 case TCPS_SYN_SENT: 6709 cp = "TCP_SYN_SENT"; 6710 break; 6711 case TCPS_SYN_RCVD: 6712 cp = "TCP_SYN_RCVD"; 6713 break; 6714 case TCPS_ESTABLISHED: 6715 cp = "TCP_ESTABLISHED"; 6716 break; 6717 case TCPS_CLOSE_WAIT: 6718 cp = "TCP_CLOSE_WAIT"; 6719 break; 6720 case TCPS_FIN_WAIT_1: 6721 cp = "TCP_FIN_WAIT_1"; 6722 break; 6723 case TCPS_CLOSING: 6724 cp = "TCP_CLOSING"; 6725 break; 6726 case TCPS_LAST_ACK: 6727 cp = "TCP_LAST_ACK"; 6728 break; 6729 case TCPS_FIN_WAIT_2: 6730 cp = "TCP_FIN_WAIT_2"; 6731 break; 6732 case TCPS_TIME_WAIT: 6733 cp = "TCP_TIME_WAIT"; 6734 break; 6735 default: 6736 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6737 cp = buf1; 6738 break; 6739 } 6740 switch (format) { 6741 case DISP_ADDR_AND_PORT: 6742 if (tcp->tcp_ipversion == IPV4_VERSION) { 6743 /* 6744 * Note that we use the remote address in the tcp_b 6745 * structure. This means that it will print out 6746 * the real destination address, not the next hop's 6747 * address if source routing is used. 6748 */ 6749 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6750 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6751 6752 } else { 6753 local = tcp->tcp_ip_src_v6; 6754 remote = tcp->tcp_remote_v6; 6755 } 6756 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6757 sizeof (local_addrbuf)); 6758 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6759 sizeof (remote_addrbuf)); 6760 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6761 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6762 ntohs(tcp->tcp_fport), cp); 6763 break; 6764 case DISP_PORT_ONLY: 6765 default: 6766 (void) mi_sprintf(buf, "[%u, %u] %s", 6767 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6768 break; 6769 } 6770 6771 return (buf); 6772 } 6773 6774 /* 6775 * Called via squeue to get on to eager's perimeter. It sends a 6776 * TH_RST if eager is in the fanout table. The listener wants the 6777 * eager to disappear either by means of tcp_eager_blowoff() or 6778 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6779 * called (via squeue) if the eager cannot be inserted in the 6780 * fanout table in tcp_conn_request(). 6781 */ 6782 /* ARGSUSED */ 6783 void 6784 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6785 { 6786 conn_t *econnp = (conn_t *)arg; 6787 tcp_t *eager = econnp->conn_tcp; 6788 tcp_t *listener = eager->tcp_listener; 6789 tcp_stack_t *tcps = eager->tcp_tcps; 6790 6791 /* 6792 * We could be called because listener is closing. Since 6793 * the eager is using listener's queue's, its not safe. 6794 * Better use the default queue just to send the TH_RST 6795 * out. 6796 */ 6797 ASSERT(tcps->tcps_g_q != NULL); 6798 eager->tcp_rq = tcps->tcps_g_q; 6799 eager->tcp_wq = WR(tcps->tcps_g_q); 6800 6801 /* 6802 * An eager's conn_fanout will be NULL if it's a duplicate 6803 * for an existing 4-tuples in the conn fanout table. 6804 * We don't want to send an RST out in such case. 6805 */ 6806 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6807 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6808 eager, eager->tcp_snxt, 0, TH_RST); 6809 } 6810 6811 /* We are here because listener wants this eager gone */ 6812 if (listener != NULL) { 6813 mutex_enter(&listener->tcp_eager_lock); 6814 tcp_eager_unlink(eager); 6815 if (eager->tcp_tconnind_started) { 6816 /* 6817 * The eager has sent a conn_ind up to the 6818 * listener but listener decides to close 6819 * instead. We need to drop the extra ref 6820 * placed on eager in tcp_rput_data() before 6821 * sending the conn_ind to listener. 6822 */ 6823 CONN_DEC_REF(econnp); 6824 } 6825 mutex_exit(&listener->tcp_eager_lock); 6826 CONN_DEC_REF(listener->tcp_connp); 6827 } 6828 6829 if (eager->tcp_state > TCPS_BOUND) 6830 tcp_close_detached(eager); 6831 } 6832 6833 /* 6834 * Reset any eager connection hanging off this listener marked 6835 * with 'seqnum' and then reclaim it's resources. 6836 */ 6837 static boolean_t 6838 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6839 { 6840 tcp_t *eager; 6841 mblk_t *mp; 6842 tcp_stack_t *tcps = listener->tcp_tcps; 6843 6844 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6845 eager = listener; 6846 mutex_enter(&listener->tcp_eager_lock); 6847 do { 6848 eager = eager->tcp_eager_next_q; 6849 if (eager == NULL) { 6850 mutex_exit(&listener->tcp_eager_lock); 6851 return (B_FALSE); 6852 } 6853 } while (eager->tcp_conn_req_seqnum != seqnum); 6854 6855 if (eager->tcp_closemp_used) { 6856 mutex_exit(&listener->tcp_eager_lock); 6857 return (B_TRUE); 6858 } 6859 eager->tcp_closemp_used = B_TRUE; 6860 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6861 CONN_INC_REF(eager->tcp_connp); 6862 mutex_exit(&listener->tcp_eager_lock); 6863 mp = &eager->tcp_closemp; 6864 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6865 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6866 return (B_TRUE); 6867 } 6868 6869 /* 6870 * Reset any eager connection hanging off this listener 6871 * and then reclaim it's resources. 6872 */ 6873 static void 6874 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6875 { 6876 tcp_t *eager; 6877 mblk_t *mp; 6878 tcp_stack_t *tcps = listener->tcp_tcps; 6879 6880 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6881 6882 if (!q0_only) { 6883 /* First cleanup q */ 6884 TCP_STAT(tcps, tcp_eager_blowoff_q); 6885 eager = listener->tcp_eager_next_q; 6886 while (eager != NULL) { 6887 if (!eager->tcp_closemp_used) { 6888 eager->tcp_closemp_used = B_TRUE; 6889 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6890 CONN_INC_REF(eager->tcp_connp); 6891 mp = &eager->tcp_closemp; 6892 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6893 tcp_eager_kill, eager->tcp_connp, 6894 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6895 } 6896 eager = eager->tcp_eager_next_q; 6897 } 6898 } 6899 /* Then cleanup q0 */ 6900 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6901 eager = listener->tcp_eager_next_q0; 6902 while (eager != listener) { 6903 if (!eager->tcp_closemp_used) { 6904 eager->tcp_closemp_used = B_TRUE; 6905 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6906 CONN_INC_REF(eager->tcp_connp); 6907 mp = &eager->tcp_closemp; 6908 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6909 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6910 SQTAG_TCP_EAGER_CLEANUP_Q0); 6911 } 6912 eager = eager->tcp_eager_next_q0; 6913 } 6914 } 6915 6916 /* 6917 * If we are an eager connection hanging off a listener that hasn't 6918 * formally accepted the connection yet, get off his list and blow off 6919 * any data that we have accumulated. 6920 */ 6921 static void 6922 tcp_eager_unlink(tcp_t *tcp) 6923 { 6924 tcp_t *listener = tcp->tcp_listener; 6925 6926 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6927 ASSERT(listener != NULL); 6928 if (tcp->tcp_eager_next_q0 != NULL) { 6929 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6930 6931 /* Remove the eager tcp from q0 */ 6932 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6933 tcp->tcp_eager_prev_q0; 6934 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6935 tcp->tcp_eager_next_q0; 6936 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6937 listener->tcp_conn_req_cnt_q0--; 6938 6939 tcp->tcp_eager_next_q0 = NULL; 6940 tcp->tcp_eager_prev_q0 = NULL; 6941 6942 /* 6943 * Take the eager out, if it is in the list of droppable 6944 * eagers. 6945 */ 6946 MAKE_UNDROPPABLE(tcp); 6947 6948 if (tcp->tcp_syn_rcvd_timeout != 0) { 6949 /* we have timed out before */ 6950 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6951 listener->tcp_syn_rcvd_timeout--; 6952 } 6953 } else { 6954 tcp_t **tcpp = &listener->tcp_eager_next_q; 6955 tcp_t *prev = NULL; 6956 6957 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6958 if (tcpp[0] == tcp) { 6959 if (listener->tcp_eager_last_q == tcp) { 6960 /* 6961 * If we are unlinking the last 6962 * element on the list, adjust 6963 * tail pointer. Set tail pointer 6964 * to nil when list is empty. 6965 */ 6966 ASSERT(tcp->tcp_eager_next_q == NULL); 6967 if (listener->tcp_eager_last_q == 6968 listener->tcp_eager_next_q) { 6969 listener->tcp_eager_last_q = 6970 NULL; 6971 } else { 6972 /* 6973 * We won't get here if there 6974 * is only one eager in the 6975 * list. 6976 */ 6977 ASSERT(prev != NULL); 6978 listener->tcp_eager_last_q = 6979 prev; 6980 } 6981 } 6982 tcpp[0] = tcp->tcp_eager_next_q; 6983 tcp->tcp_eager_next_q = NULL; 6984 tcp->tcp_eager_last_q = NULL; 6985 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6986 listener->tcp_conn_req_cnt_q--; 6987 break; 6988 } 6989 prev = tcpp[0]; 6990 } 6991 } 6992 tcp->tcp_listener = NULL; 6993 } 6994 6995 /* Shorthand to generate and send TPI error acks to our client */ 6996 static void 6997 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6998 { 6999 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7000 putnext(tcp->tcp_rq, mp); 7001 } 7002 7003 /* Shorthand to generate and send TPI error acks to our client */ 7004 static void 7005 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7006 int t_error, int sys_error) 7007 { 7008 struct T_error_ack *teackp; 7009 7010 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7011 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7012 teackp = (struct T_error_ack *)mp->b_rptr; 7013 teackp->ERROR_prim = primitive; 7014 teackp->TLI_error = t_error; 7015 teackp->UNIX_error = sys_error; 7016 putnext(tcp->tcp_rq, mp); 7017 } 7018 } 7019 7020 /* 7021 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7022 * but instead the code relies on: 7023 * - the fact that the address of the array and its size never changes 7024 * - the atomic assignment of the elements of the array 7025 */ 7026 /* ARGSUSED */ 7027 static int 7028 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7029 { 7030 int i; 7031 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7032 7033 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7034 if (tcps->tcps_g_epriv_ports[i] != 0) 7035 (void) mi_mpprintf(mp, "%d ", 7036 tcps->tcps_g_epriv_ports[i]); 7037 } 7038 return (0); 7039 } 7040 7041 /* 7042 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7043 * threads from changing it at the same time. 7044 */ 7045 /* ARGSUSED */ 7046 static int 7047 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7048 cred_t *cr) 7049 { 7050 long new_value; 7051 int i; 7052 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7053 7054 /* 7055 * Fail the request if the new value does not lie within the 7056 * port number limits. 7057 */ 7058 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7059 new_value <= 0 || new_value >= 65536) { 7060 return (EINVAL); 7061 } 7062 7063 mutex_enter(&tcps->tcps_epriv_port_lock); 7064 /* Check if the value is already in the list */ 7065 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7066 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7067 mutex_exit(&tcps->tcps_epriv_port_lock); 7068 return (EEXIST); 7069 } 7070 } 7071 /* Find an empty slot */ 7072 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7073 if (tcps->tcps_g_epriv_ports[i] == 0) 7074 break; 7075 } 7076 if (i == tcps->tcps_g_num_epriv_ports) { 7077 mutex_exit(&tcps->tcps_epriv_port_lock); 7078 return (EOVERFLOW); 7079 } 7080 /* Set the new value */ 7081 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7082 mutex_exit(&tcps->tcps_epriv_port_lock); 7083 return (0); 7084 } 7085 7086 /* 7087 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7088 * threads from changing it at the same time. 7089 */ 7090 /* ARGSUSED */ 7091 static int 7092 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7093 cred_t *cr) 7094 { 7095 long new_value; 7096 int i; 7097 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7098 7099 /* 7100 * Fail the request if the new value does not lie within the 7101 * port number limits. 7102 */ 7103 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7104 new_value >= 65536) { 7105 return (EINVAL); 7106 } 7107 7108 mutex_enter(&tcps->tcps_epriv_port_lock); 7109 /* Check that the value is already in the list */ 7110 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7111 if (tcps->tcps_g_epriv_ports[i] == new_value) 7112 break; 7113 } 7114 if (i == tcps->tcps_g_num_epriv_ports) { 7115 mutex_exit(&tcps->tcps_epriv_port_lock); 7116 return (ESRCH); 7117 } 7118 /* Clear the value */ 7119 tcps->tcps_g_epriv_ports[i] = 0; 7120 mutex_exit(&tcps->tcps_epriv_port_lock); 7121 return (0); 7122 } 7123 7124 /* Return the TPI/TLI equivalent of our current tcp_state */ 7125 static int 7126 tcp_tpistate(tcp_t *tcp) 7127 { 7128 switch (tcp->tcp_state) { 7129 case TCPS_IDLE: 7130 return (TS_UNBND); 7131 case TCPS_LISTEN: 7132 /* 7133 * Return whether there are outstanding T_CONN_IND waiting 7134 * for the matching T_CONN_RES. Therefore don't count q0. 7135 */ 7136 if (tcp->tcp_conn_req_cnt_q > 0) 7137 return (TS_WRES_CIND); 7138 else 7139 return (TS_IDLE); 7140 case TCPS_BOUND: 7141 return (TS_IDLE); 7142 case TCPS_SYN_SENT: 7143 return (TS_WCON_CREQ); 7144 case TCPS_SYN_RCVD: 7145 /* 7146 * Note: assumption: this has to the active open SYN_RCVD. 7147 * The passive instance is detached in SYN_RCVD stage of 7148 * incoming connection processing so we cannot get request 7149 * for T_info_ack on it. 7150 */ 7151 return (TS_WACK_CRES); 7152 case TCPS_ESTABLISHED: 7153 return (TS_DATA_XFER); 7154 case TCPS_CLOSE_WAIT: 7155 return (TS_WREQ_ORDREL); 7156 case TCPS_FIN_WAIT_1: 7157 return (TS_WIND_ORDREL); 7158 case TCPS_FIN_WAIT_2: 7159 return (TS_WIND_ORDREL); 7160 7161 case TCPS_CLOSING: 7162 case TCPS_LAST_ACK: 7163 case TCPS_TIME_WAIT: 7164 case TCPS_CLOSED: 7165 /* 7166 * Following TS_WACK_DREQ7 is a rendition of "not 7167 * yet TS_IDLE" TPI state. There is no best match to any 7168 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7169 * choose a value chosen that will map to TLI/XTI level 7170 * state of TSTATECHNG (state is process of changing) which 7171 * captures what this dummy state represents. 7172 */ 7173 return (TS_WACK_DREQ7); 7174 default: 7175 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7176 tcp->tcp_state, tcp_display(tcp, NULL, 7177 DISP_PORT_ONLY)); 7178 return (TS_UNBND); 7179 } 7180 } 7181 7182 static void 7183 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7184 { 7185 tcp_stack_t *tcps = tcp->tcp_tcps; 7186 7187 if (tcp->tcp_family == AF_INET6) 7188 *tia = tcp_g_t_info_ack_v6; 7189 else 7190 *tia = tcp_g_t_info_ack; 7191 tia->CURRENT_state = tcp_tpistate(tcp); 7192 tia->OPT_size = tcp_max_optsize; 7193 if (tcp->tcp_mss == 0) { 7194 /* Not yet set - tcp_open does not set mss */ 7195 if (tcp->tcp_ipversion == IPV4_VERSION) 7196 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7197 else 7198 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7199 } else { 7200 tia->TIDU_size = tcp->tcp_mss; 7201 } 7202 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7203 } 7204 7205 static void 7206 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7207 t_uscalar_t cap_bits1) 7208 { 7209 tcap->CAP_bits1 = 0; 7210 7211 if (cap_bits1 & TC1_INFO) { 7212 tcp_copy_info(&tcap->INFO_ack, tcp); 7213 tcap->CAP_bits1 |= TC1_INFO; 7214 } 7215 7216 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7217 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7218 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7219 } 7220 7221 } 7222 7223 /* 7224 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7225 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7226 * tcp_g_t_info_ack. The current state of the stream is copied from 7227 * tcp_state. 7228 */ 7229 static void 7230 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7231 { 7232 t_uscalar_t cap_bits1; 7233 struct T_capability_ack *tcap; 7234 7235 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7236 freemsg(mp); 7237 return; 7238 } 7239 7240 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7241 7242 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7243 mp->b_datap->db_type, T_CAPABILITY_ACK); 7244 if (mp == NULL) 7245 return; 7246 7247 tcap = (struct T_capability_ack *)mp->b_rptr; 7248 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7249 7250 putnext(tcp->tcp_rq, mp); 7251 } 7252 7253 /* 7254 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7255 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7256 * The current state of the stream is copied from tcp_state. 7257 */ 7258 static void 7259 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7260 { 7261 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7262 T_INFO_ACK); 7263 if (!mp) { 7264 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7265 return; 7266 } 7267 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7268 putnext(tcp->tcp_rq, mp); 7269 } 7270 7271 /* Respond to the TPI addr request */ 7272 static void 7273 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7274 { 7275 sin_t *sin; 7276 mblk_t *ackmp; 7277 struct T_addr_ack *taa; 7278 7279 /* Make it large enough for worst case */ 7280 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7281 2 * sizeof (sin6_t), 1); 7282 if (ackmp == NULL) { 7283 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7284 return; 7285 } 7286 7287 if (tcp->tcp_ipversion == IPV6_VERSION) { 7288 tcp_addr_req_ipv6(tcp, ackmp); 7289 return; 7290 } 7291 taa = (struct T_addr_ack *)ackmp->b_rptr; 7292 7293 bzero(taa, sizeof (struct T_addr_ack)); 7294 ackmp->b_wptr = (uchar_t *)&taa[1]; 7295 7296 taa->PRIM_type = T_ADDR_ACK; 7297 ackmp->b_datap->db_type = M_PCPROTO; 7298 7299 /* 7300 * Note: Following code assumes 32 bit alignment of basic 7301 * data structures like sin_t and struct T_addr_ack. 7302 */ 7303 if (tcp->tcp_state >= TCPS_BOUND) { 7304 /* 7305 * Fill in local address 7306 */ 7307 taa->LOCADDR_length = sizeof (sin_t); 7308 taa->LOCADDR_offset = sizeof (*taa); 7309 7310 sin = (sin_t *)&taa[1]; 7311 7312 /* Fill zeroes and then intialize non-zero fields */ 7313 *sin = sin_null; 7314 7315 sin->sin_family = AF_INET; 7316 7317 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7318 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7319 7320 ackmp->b_wptr = (uchar_t *)&sin[1]; 7321 7322 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7323 /* 7324 * Fill in Remote address 7325 */ 7326 taa->REMADDR_length = sizeof (sin_t); 7327 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7328 taa->LOCADDR_length); 7329 7330 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7331 *sin = sin_null; 7332 sin->sin_family = AF_INET; 7333 sin->sin_addr.s_addr = tcp->tcp_remote; 7334 sin->sin_port = tcp->tcp_fport; 7335 7336 ackmp->b_wptr = (uchar_t *)&sin[1]; 7337 } 7338 } 7339 putnext(tcp->tcp_rq, ackmp); 7340 } 7341 7342 /* Assumes that tcp_addr_req gets enough space and alignment */ 7343 static void 7344 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7345 { 7346 sin6_t *sin6; 7347 struct T_addr_ack *taa; 7348 7349 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7350 ASSERT(OK_32PTR(ackmp->b_rptr)); 7351 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7352 2 * sizeof (sin6_t)); 7353 7354 taa = (struct T_addr_ack *)ackmp->b_rptr; 7355 7356 bzero(taa, sizeof (struct T_addr_ack)); 7357 ackmp->b_wptr = (uchar_t *)&taa[1]; 7358 7359 taa->PRIM_type = T_ADDR_ACK; 7360 ackmp->b_datap->db_type = M_PCPROTO; 7361 7362 /* 7363 * Note: Following code assumes 32 bit alignment of basic 7364 * data structures like sin6_t and struct T_addr_ack. 7365 */ 7366 if (tcp->tcp_state >= TCPS_BOUND) { 7367 /* 7368 * Fill in local address 7369 */ 7370 taa->LOCADDR_length = sizeof (sin6_t); 7371 taa->LOCADDR_offset = sizeof (*taa); 7372 7373 sin6 = (sin6_t *)&taa[1]; 7374 *sin6 = sin6_null; 7375 7376 sin6->sin6_family = AF_INET6; 7377 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7378 sin6->sin6_port = tcp->tcp_lport; 7379 7380 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7381 7382 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7383 /* 7384 * Fill in Remote address 7385 */ 7386 taa->REMADDR_length = sizeof (sin6_t); 7387 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7388 taa->LOCADDR_length); 7389 7390 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7391 *sin6 = sin6_null; 7392 sin6->sin6_family = AF_INET6; 7393 sin6->sin6_flowinfo = 7394 tcp->tcp_ip6h->ip6_vcf & 7395 ~IPV6_VERS_AND_FLOW_MASK; 7396 sin6->sin6_addr = tcp->tcp_remote_v6; 7397 sin6->sin6_port = tcp->tcp_fport; 7398 7399 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7400 } 7401 } 7402 putnext(tcp->tcp_rq, ackmp); 7403 } 7404 7405 /* 7406 * Handle reinitialization of a tcp structure. 7407 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7408 */ 7409 static void 7410 tcp_reinit(tcp_t *tcp) 7411 { 7412 mblk_t *mp; 7413 int err; 7414 tcp_stack_t *tcps = tcp->tcp_tcps; 7415 7416 TCP_STAT(tcps, tcp_reinit_calls); 7417 7418 /* tcp_reinit should never be called for detached tcp_t's */ 7419 ASSERT(tcp->tcp_listener == NULL); 7420 ASSERT((tcp->tcp_family == AF_INET && 7421 tcp->tcp_ipversion == IPV4_VERSION) || 7422 (tcp->tcp_family == AF_INET6 && 7423 (tcp->tcp_ipversion == IPV4_VERSION || 7424 tcp->tcp_ipversion == IPV6_VERSION))); 7425 7426 /* Cancel outstanding timers */ 7427 tcp_timers_stop(tcp); 7428 7429 /* 7430 * Reset everything in the state vector, after updating global 7431 * MIB data from instance counters. 7432 */ 7433 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7434 tcp->tcp_ibsegs = 0; 7435 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7436 tcp->tcp_obsegs = 0; 7437 7438 tcp_close_mpp(&tcp->tcp_xmit_head); 7439 if (tcp->tcp_snd_zcopy_aware) 7440 tcp_zcopy_notify(tcp); 7441 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7442 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7443 mutex_enter(&tcp->tcp_non_sq_lock); 7444 if (tcp->tcp_flow_stopped && 7445 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7446 tcp_clrqfull(tcp); 7447 } 7448 mutex_exit(&tcp->tcp_non_sq_lock); 7449 tcp_close_mpp(&tcp->tcp_reass_head); 7450 tcp->tcp_reass_tail = NULL; 7451 if (tcp->tcp_rcv_list != NULL) { 7452 /* Free b_next chain */ 7453 tcp_close_mpp(&tcp->tcp_rcv_list); 7454 tcp->tcp_rcv_last_head = NULL; 7455 tcp->tcp_rcv_last_tail = NULL; 7456 tcp->tcp_rcv_cnt = 0; 7457 } 7458 tcp->tcp_rcv_last_tail = NULL; 7459 7460 if ((mp = tcp->tcp_urp_mp) != NULL) { 7461 freemsg(mp); 7462 tcp->tcp_urp_mp = NULL; 7463 } 7464 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7465 freemsg(mp); 7466 tcp->tcp_urp_mark_mp = NULL; 7467 } 7468 if (tcp->tcp_fused_sigurg_mp != NULL) { 7469 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7470 freeb(tcp->tcp_fused_sigurg_mp); 7471 tcp->tcp_fused_sigurg_mp = NULL; 7472 } 7473 if (tcp->tcp_ordrel_mp != NULL) { 7474 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7475 freeb(tcp->tcp_ordrel_mp); 7476 tcp->tcp_ordrel_mp = NULL; 7477 } 7478 7479 /* 7480 * Following is a union with two members which are 7481 * identical types and size so the following cleanup 7482 * is enough. 7483 */ 7484 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7485 7486 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7487 7488 /* 7489 * The connection can't be on the tcp_time_wait_head list 7490 * since it is not detached. 7491 */ 7492 ASSERT(tcp->tcp_time_wait_next == NULL); 7493 ASSERT(tcp->tcp_time_wait_prev == NULL); 7494 ASSERT(tcp->tcp_time_wait_expire == 0); 7495 7496 if (tcp->tcp_kssl_pending) { 7497 tcp->tcp_kssl_pending = B_FALSE; 7498 7499 /* Don't reset if the initialized by bind. */ 7500 if (tcp->tcp_kssl_ent != NULL) { 7501 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7502 KSSL_NO_PROXY); 7503 } 7504 } 7505 if (tcp->tcp_kssl_ctx != NULL) { 7506 kssl_release_ctx(tcp->tcp_kssl_ctx); 7507 tcp->tcp_kssl_ctx = NULL; 7508 } 7509 7510 /* 7511 * Reset/preserve other values 7512 */ 7513 tcp_reinit_values(tcp); 7514 ipcl_hash_remove(tcp->tcp_connp); 7515 conn_delete_ire(tcp->tcp_connp, NULL); 7516 tcp_ipsec_cleanup(tcp); 7517 7518 if (tcp->tcp_conn_req_max != 0) { 7519 /* 7520 * This is the case when a TLI program uses the same 7521 * transport end point to accept a connection. This 7522 * makes the TCP both a listener and acceptor. When 7523 * this connection is closed, we need to set the state 7524 * back to TCPS_LISTEN. Make sure that the eager list 7525 * is reinitialized. 7526 * 7527 * Note that this stream is still bound to the four 7528 * tuples of the previous connection in IP. If a new 7529 * SYN with different foreign address comes in, IP will 7530 * not find it and will send it to the global queue. In 7531 * the global queue, TCP will do a tcp_lookup_listener() 7532 * to find this stream. This works because this stream 7533 * is only removed from connected hash. 7534 * 7535 */ 7536 tcp->tcp_state = TCPS_LISTEN; 7537 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7538 tcp->tcp_eager_next_drop_q0 = tcp; 7539 tcp->tcp_eager_prev_drop_q0 = tcp; 7540 tcp->tcp_connp->conn_recv = tcp_conn_request; 7541 if (tcp->tcp_family == AF_INET6) { 7542 ASSERT(tcp->tcp_connp->conn_af_isv6); 7543 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7544 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7545 } else { 7546 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7547 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7548 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7549 } 7550 } else { 7551 tcp->tcp_state = TCPS_BOUND; 7552 } 7553 7554 /* 7555 * Initialize to default values 7556 * Can't fail since enough header template space already allocated 7557 * at open(). 7558 */ 7559 err = tcp_init_values(tcp); 7560 ASSERT(err == 0); 7561 /* Restore state in tcp_tcph */ 7562 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7563 if (tcp->tcp_ipversion == IPV4_VERSION) 7564 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7565 else 7566 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7567 /* 7568 * Copy of the src addr. in tcp_t is needed in tcp_t 7569 * since the lookup funcs can only lookup on tcp_t 7570 */ 7571 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7572 7573 ASSERT(tcp->tcp_ptpbhn != NULL); 7574 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7575 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7576 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7577 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7578 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7579 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7580 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7581 } 7582 7583 /* 7584 * Force values to zero that need be zero. 7585 * Do not touch values asociated with the BOUND or LISTEN state 7586 * since the connection will end up in that state after the reinit. 7587 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7588 * structure! 7589 */ 7590 static void 7591 tcp_reinit_values(tcp) 7592 tcp_t *tcp; 7593 { 7594 tcp_stack_t *tcps = tcp->tcp_tcps; 7595 7596 #ifndef lint 7597 #define DONTCARE(x) 7598 #define PRESERVE(x) 7599 #else 7600 #define DONTCARE(x) ((x) = (x)) 7601 #define PRESERVE(x) ((x) = (x)) 7602 #endif /* lint */ 7603 7604 PRESERVE(tcp->tcp_bind_hash_port); 7605 PRESERVE(tcp->tcp_bind_hash); 7606 PRESERVE(tcp->tcp_ptpbhn); 7607 PRESERVE(tcp->tcp_acceptor_hash); 7608 PRESERVE(tcp->tcp_ptpahn); 7609 7610 /* Should be ASSERT NULL on these with new code! */ 7611 ASSERT(tcp->tcp_time_wait_next == NULL); 7612 ASSERT(tcp->tcp_time_wait_prev == NULL); 7613 ASSERT(tcp->tcp_time_wait_expire == 0); 7614 PRESERVE(tcp->tcp_state); 7615 PRESERVE(tcp->tcp_rq); 7616 PRESERVE(tcp->tcp_wq); 7617 7618 ASSERT(tcp->tcp_xmit_head == NULL); 7619 ASSERT(tcp->tcp_xmit_last == NULL); 7620 ASSERT(tcp->tcp_unsent == 0); 7621 ASSERT(tcp->tcp_xmit_tail == NULL); 7622 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7623 7624 tcp->tcp_snxt = 0; /* Displayed in mib */ 7625 tcp->tcp_suna = 0; /* Displayed in mib */ 7626 tcp->tcp_swnd = 0; 7627 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7628 7629 ASSERT(tcp->tcp_ibsegs == 0); 7630 ASSERT(tcp->tcp_obsegs == 0); 7631 7632 if (tcp->tcp_iphc != NULL) { 7633 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7634 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7635 } 7636 7637 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7638 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7639 DONTCARE(tcp->tcp_ipha); 7640 DONTCARE(tcp->tcp_ip6h); 7641 DONTCARE(tcp->tcp_ip_hdr_len); 7642 DONTCARE(tcp->tcp_tcph); 7643 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7644 tcp->tcp_valid_bits = 0; 7645 7646 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7647 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7648 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7649 tcp->tcp_last_rcv_lbolt = 0; 7650 7651 tcp->tcp_init_cwnd = 0; 7652 7653 tcp->tcp_urp_last_valid = 0; 7654 tcp->tcp_hard_binding = 0; 7655 tcp->tcp_hard_bound = 0; 7656 PRESERVE(tcp->tcp_cred); 7657 PRESERVE(tcp->tcp_cpid); 7658 PRESERVE(tcp->tcp_open_time); 7659 PRESERVE(tcp->tcp_exclbind); 7660 7661 tcp->tcp_fin_acked = 0; 7662 tcp->tcp_fin_rcvd = 0; 7663 tcp->tcp_fin_sent = 0; 7664 tcp->tcp_ordrel_done = 0; 7665 7666 tcp->tcp_debug = 0; 7667 tcp->tcp_dontroute = 0; 7668 tcp->tcp_broadcast = 0; 7669 7670 tcp->tcp_useloopback = 0; 7671 tcp->tcp_reuseaddr = 0; 7672 tcp->tcp_oobinline = 0; 7673 tcp->tcp_dgram_errind = 0; 7674 7675 tcp->tcp_detached = 0; 7676 tcp->tcp_bind_pending = 0; 7677 tcp->tcp_unbind_pending = 0; 7678 7679 tcp->tcp_snd_ws_ok = B_FALSE; 7680 tcp->tcp_snd_ts_ok = B_FALSE; 7681 tcp->tcp_linger = 0; 7682 tcp->tcp_ka_enabled = 0; 7683 tcp->tcp_zero_win_probe = 0; 7684 7685 tcp->tcp_loopback = 0; 7686 tcp->tcp_refuse = 0; 7687 tcp->tcp_localnet = 0; 7688 tcp->tcp_syn_defense = 0; 7689 tcp->tcp_set_timer = 0; 7690 7691 tcp->tcp_active_open = 0; 7692 tcp->tcp_rexmit = B_FALSE; 7693 tcp->tcp_xmit_zc_clean = B_FALSE; 7694 7695 tcp->tcp_snd_sack_ok = B_FALSE; 7696 PRESERVE(tcp->tcp_recvdstaddr); 7697 tcp->tcp_hwcksum = B_FALSE; 7698 7699 tcp->tcp_ire_ill_check_done = B_FALSE; 7700 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7701 7702 tcp->tcp_mdt = B_FALSE; 7703 tcp->tcp_mdt_hdr_head = 0; 7704 tcp->tcp_mdt_hdr_tail = 0; 7705 7706 tcp->tcp_conn_def_q0 = 0; 7707 tcp->tcp_ip_forward_progress = B_FALSE; 7708 tcp->tcp_anon_priv_bind = 0; 7709 tcp->tcp_ecn_ok = B_FALSE; 7710 7711 tcp->tcp_cwr = B_FALSE; 7712 tcp->tcp_ecn_echo_on = B_FALSE; 7713 7714 if (tcp->tcp_sack_info != NULL) { 7715 if (tcp->tcp_notsack_list != NULL) { 7716 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7717 } 7718 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7719 tcp->tcp_sack_info = NULL; 7720 } 7721 7722 tcp->tcp_rcv_ws = 0; 7723 tcp->tcp_snd_ws = 0; 7724 tcp->tcp_ts_recent = 0; 7725 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7726 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7727 tcp->tcp_if_mtu = 0; 7728 7729 ASSERT(tcp->tcp_reass_head == NULL); 7730 ASSERT(tcp->tcp_reass_tail == NULL); 7731 7732 tcp->tcp_cwnd_cnt = 0; 7733 7734 ASSERT(tcp->tcp_rcv_list == NULL); 7735 ASSERT(tcp->tcp_rcv_last_head == NULL); 7736 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7737 ASSERT(tcp->tcp_rcv_cnt == 0); 7738 7739 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7740 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7741 tcp->tcp_csuna = 0; 7742 7743 tcp->tcp_rto = 0; /* Displayed in MIB */ 7744 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7745 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7746 tcp->tcp_rtt_update = 0; 7747 7748 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7749 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7750 7751 tcp->tcp_rack = 0; /* Displayed in mib */ 7752 tcp->tcp_rack_cnt = 0; 7753 tcp->tcp_rack_cur_max = 0; 7754 tcp->tcp_rack_abs_max = 0; 7755 7756 tcp->tcp_max_swnd = 0; 7757 7758 ASSERT(tcp->tcp_listener == NULL); 7759 7760 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7761 7762 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7763 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7764 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7765 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7766 7767 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7768 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7769 PRESERVE(tcp->tcp_conn_req_max); 7770 PRESERVE(tcp->tcp_conn_req_seqnum); 7771 7772 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7773 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7774 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7775 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7776 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7777 7778 tcp->tcp_lingertime = 0; 7779 7780 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7781 ASSERT(tcp->tcp_urp_mp == NULL); 7782 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7783 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7784 7785 ASSERT(tcp->tcp_eager_next_q == NULL); 7786 ASSERT(tcp->tcp_eager_last_q == NULL); 7787 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7788 tcp->tcp_eager_prev_q0 == NULL) || 7789 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7790 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7791 7792 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7793 tcp->tcp_eager_prev_drop_q0 == NULL) || 7794 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7795 7796 tcp->tcp_client_errno = 0; 7797 7798 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7799 7800 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7801 7802 PRESERVE(tcp->tcp_bound_source_v6); 7803 tcp->tcp_last_sent_len = 0; 7804 tcp->tcp_dupack_cnt = 0; 7805 7806 tcp->tcp_fport = 0; /* Displayed in MIB */ 7807 PRESERVE(tcp->tcp_lport); 7808 7809 PRESERVE(tcp->tcp_acceptor_lockp); 7810 7811 ASSERT(tcp->tcp_ordrel_mp == NULL); 7812 PRESERVE(tcp->tcp_acceptor_id); 7813 DONTCARE(tcp->tcp_ipsec_overhead); 7814 7815 PRESERVE(tcp->tcp_family); 7816 if (tcp->tcp_family == AF_INET6) { 7817 tcp->tcp_ipversion = IPV6_VERSION; 7818 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7819 } else { 7820 tcp->tcp_ipversion = IPV4_VERSION; 7821 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7822 } 7823 7824 tcp->tcp_bound_if = 0; 7825 tcp->tcp_ipv6_recvancillary = 0; 7826 tcp->tcp_recvifindex = 0; 7827 tcp->tcp_recvhops = 0; 7828 tcp->tcp_closed = 0; 7829 tcp->tcp_cleandeathtag = 0; 7830 if (tcp->tcp_hopopts != NULL) { 7831 mi_free(tcp->tcp_hopopts); 7832 tcp->tcp_hopopts = NULL; 7833 tcp->tcp_hopoptslen = 0; 7834 } 7835 ASSERT(tcp->tcp_hopoptslen == 0); 7836 if (tcp->tcp_dstopts != NULL) { 7837 mi_free(tcp->tcp_dstopts); 7838 tcp->tcp_dstopts = NULL; 7839 tcp->tcp_dstoptslen = 0; 7840 } 7841 ASSERT(tcp->tcp_dstoptslen == 0); 7842 if (tcp->tcp_rtdstopts != NULL) { 7843 mi_free(tcp->tcp_rtdstopts); 7844 tcp->tcp_rtdstopts = NULL; 7845 tcp->tcp_rtdstoptslen = 0; 7846 } 7847 ASSERT(tcp->tcp_rtdstoptslen == 0); 7848 if (tcp->tcp_rthdr != NULL) { 7849 mi_free(tcp->tcp_rthdr); 7850 tcp->tcp_rthdr = NULL; 7851 tcp->tcp_rthdrlen = 0; 7852 } 7853 ASSERT(tcp->tcp_rthdrlen == 0); 7854 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7855 7856 /* Reset fusion-related fields */ 7857 tcp->tcp_fused = B_FALSE; 7858 tcp->tcp_unfusable = B_FALSE; 7859 tcp->tcp_fused_sigurg = B_FALSE; 7860 tcp->tcp_direct_sockfs = B_FALSE; 7861 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7862 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7863 tcp->tcp_loopback_peer = NULL; 7864 tcp->tcp_fuse_rcv_hiwater = 0; 7865 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7866 tcp->tcp_fuse_rcv_unread_cnt = 0; 7867 7868 tcp->tcp_lso = B_FALSE; 7869 7870 tcp->tcp_in_ack_unsent = 0; 7871 tcp->tcp_cork = B_FALSE; 7872 tcp->tcp_tconnind_started = B_FALSE; 7873 7874 PRESERVE(tcp->tcp_squeue_bytes); 7875 7876 ASSERT(tcp->tcp_kssl_ctx == NULL); 7877 ASSERT(!tcp->tcp_kssl_pending); 7878 PRESERVE(tcp->tcp_kssl_ent); 7879 7880 /* Sodirect */ 7881 tcp->tcp_sodirect = NULL; 7882 7883 tcp->tcp_closemp_used = B_FALSE; 7884 7885 PRESERVE(tcp->tcp_rsrv_mp); 7886 PRESERVE(tcp->tcp_rsrv_mp_lock); 7887 7888 #ifdef DEBUG 7889 DONTCARE(tcp->tcmp_stk[0]); 7890 #endif 7891 7892 PRESERVE(tcp->tcp_connid); 7893 7894 7895 #undef DONTCARE 7896 #undef PRESERVE 7897 } 7898 7899 /* 7900 * Allocate necessary resources and initialize state vector. 7901 * Guaranteed not to fail so that when an error is returned, 7902 * the caller doesn't need to do any additional cleanup. 7903 */ 7904 int 7905 tcp_init(tcp_t *tcp, queue_t *q) 7906 { 7907 int err; 7908 7909 tcp->tcp_rq = q; 7910 tcp->tcp_wq = WR(q); 7911 tcp->tcp_state = TCPS_IDLE; 7912 if ((err = tcp_init_values(tcp)) != 0) 7913 tcp_timers_stop(tcp); 7914 return (err); 7915 } 7916 7917 static int 7918 tcp_init_values(tcp_t *tcp) 7919 { 7920 int err; 7921 tcp_stack_t *tcps = tcp->tcp_tcps; 7922 7923 ASSERT((tcp->tcp_family == AF_INET && 7924 tcp->tcp_ipversion == IPV4_VERSION) || 7925 (tcp->tcp_family == AF_INET6 && 7926 (tcp->tcp_ipversion == IPV4_VERSION || 7927 tcp->tcp_ipversion == IPV6_VERSION))); 7928 7929 /* 7930 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7931 * will be close to tcp_rexmit_interval_initial. By doing this, we 7932 * allow the algorithm to adjust slowly to large fluctuations of RTT 7933 * during first few transmissions of a connection as seen in slow 7934 * links. 7935 */ 7936 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7937 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7938 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7939 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7940 tcps->tcps_conn_grace_period; 7941 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7942 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7943 tcp->tcp_timer_backoff = 0; 7944 tcp->tcp_ms_we_have_waited = 0; 7945 tcp->tcp_last_recv_time = lbolt; 7946 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7947 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7948 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7949 7950 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7951 7952 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7953 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7954 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7955 /* 7956 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7957 * passive open. 7958 */ 7959 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7960 7961 tcp->tcp_naglim = tcps->tcps_naglim_def; 7962 7963 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7964 7965 tcp->tcp_mdt_hdr_head = 0; 7966 tcp->tcp_mdt_hdr_tail = 0; 7967 7968 /* Reset fusion-related fields */ 7969 tcp->tcp_fused = B_FALSE; 7970 tcp->tcp_unfusable = B_FALSE; 7971 tcp->tcp_fused_sigurg = B_FALSE; 7972 tcp->tcp_direct_sockfs = B_FALSE; 7973 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7974 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7975 tcp->tcp_loopback_peer = NULL; 7976 tcp->tcp_fuse_rcv_hiwater = 0; 7977 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7978 tcp->tcp_fuse_rcv_unread_cnt = 0; 7979 7980 /* Sodirect */ 7981 tcp->tcp_sodirect = NULL; 7982 7983 /* Initialize the header template */ 7984 if (tcp->tcp_ipversion == IPV4_VERSION) { 7985 err = tcp_header_init_ipv4(tcp); 7986 } else { 7987 err = tcp_header_init_ipv6(tcp); 7988 } 7989 if (err) 7990 return (err); 7991 7992 /* 7993 * Init the window scale to the max so tcp_rwnd_set() won't pare 7994 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7995 */ 7996 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7997 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7998 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7999 8000 tcp->tcp_cork = B_FALSE; 8001 /* 8002 * Init the tcp_debug option. This value determines whether TCP 8003 * calls strlog() to print out debug messages. Doing this 8004 * initialization here means that this value is not inherited thru 8005 * tcp_reinit(). 8006 */ 8007 tcp->tcp_debug = tcps->tcps_dbg; 8008 8009 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8010 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8011 8012 return (0); 8013 } 8014 8015 /* 8016 * Initialize the IPv4 header. Loses any record of any IP options. 8017 */ 8018 static int 8019 tcp_header_init_ipv4(tcp_t *tcp) 8020 { 8021 tcph_t *tcph; 8022 uint32_t sum; 8023 conn_t *connp; 8024 tcp_stack_t *tcps = tcp->tcp_tcps; 8025 8026 /* 8027 * This is a simple initialization. If there's 8028 * already a template, it should never be too small, 8029 * so reuse it. Otherwise, allocate space for the new one. 8030 */ 8031 if (tcp->tcp_iphc == NULL) { 8032 ASSERT(tcp->tcp_iphc_len == 0); 8033 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8034 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8035 if (tcp->tcp_iphc == NULL) { 8036 tcp->tcp_iphc_len = 0; 8037 return (ENOMEM); 8038 } 8039 } 8040 8041 /* options are gone; may need a new label */ 8042 connp = tcp->tcp_connp; 8043 connp->conn_mlp_type = mlptSingle; 8044 connp->conn_ulp_labeled = !is_system_labeled(); 8045 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8046 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8047 tcp->tcp_ip6h = NULL; 8048 tcp->tcp_ipversion = IPV4_VERSION; 8049 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8050 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8051 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8052 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8053 tcp->tcp_ipha->ipha_version_and_hdr_length 8054 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8055 tcp->tcp_ipha->ipha_ident = 0; 8056 8057 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8058 tcp->tcp_tos = 0; 8059 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8060 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8061 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8062 8063 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8064 tcp->tcp_tcph = tcph; 8065 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8066 /* 8067 * IP wants our header length in the checksum field to 8068 * allow it to perform a single pseudo-header+checksum 8069 * calculation on behalf of TCP. 8070 * Include the adjustment for a source route once IP_OPTIONS is set. 8071 */ 8072 sum = sizeof (tcph_t) + tcp->tcp_sum; 8073 sum = (sum >> 16) + (sum & 0xFFFF); 8074 U16_TO_ABE16(sum, tcph->th_sum); 8075 return (0); 8076 } 8077 8078 /* 8079 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8080 */ 8081 static int 8082 tcp_header_init_ipv6(tcp_t *tcp) 8083 { 8084 tcph_t *tcph; 8085 uint32_t sum; 8086 conn_t *connp; 8087 tcp_stack_t *tcps = tcp->tcp_tcps; 8088 8089 /* 8090 * This is a simple initialization. If there's 8091 * already a template, it should never be too small, 8092 * so reuse it. Otherwise, allocate space for the new one. 8093 * Ensure that there is enough space to "downgrade" the tcp_t 8094 * to an IPv4 tcp_t. This requires having space for a full load 8095 * of IPv4 options, as well as a full load of TCP options 8096 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8097 * than a v6 header and a TCP header with a full load of TCP options 8098 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8099 * We want to avoid reallocation in the "downgraded" case when 8100 * processing outbound IPv4 options. 8101 */ 8102 if (tcp->tcp_iphc == NULL) { 8103 ASSERT(tcp->tcp_iphc_len == 0); 8104 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8105 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8106 if (tcp->tcp_iphc == NULL) { 8107 tcp->tcp_iphc_len = 0; 8108 return (ENOMEM); 8109 } 8110 } 8111 8112 /* options are gone; may need a new label */ 8113 connp = tcp->tcp_connp; 8114 connp->conn_mlp_type = mlptSingle; 8115 connp->conn_ulp_labeled = !is_system_labeled(); 8116 8117 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8118 tcp->tcp_ipversion = IPV6_VERSION; 8119 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8120 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8121 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8122 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8123 tcp->tcp_ipha = NULL; 8124 8125 /* Initialize the header template */ 8126 8127 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8128 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8129 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8130 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8131 8132 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8133 tcp->tcp_tcph = tcph; 8134 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8135 /* 8136 * IP wants our header length in the checksum field to 8137 * allow it to perform a single psuedo-header+checksum 8138 * calculation on behalf of TCP. 8139 * Include the adjustment for a source route when IPV6_RTHDR is set. 8140 */ 8141 sum = sizeof (tcph_t) + tcp->tcp_sum; 8142 sum = (sum >> 16) + (sum & 0xFFFF); 8143 U16_TO_ABE16(sum, tcph->th_sum); 8144 return (0); 8145 } 8146 8147 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8148 #define ICMP_MIN_TCP_HDR 8 8149 8150 /* 8151 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8152 * passed up by IP. The message is always received on the correct tcp_t. 8153 * Assumes that IP has pulled up everything up to and including the ICMP header. 8154 */ 8155 void 8156 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8157 { 8158 icmph_t *icmph; 8159 ipha_t *ipha; 8160 int iph_hdr_length; 8161 tcph_t *tcph; 8162 boolean_t ipsec_mctl = B_FALSE; 8163 boolean_t secure; 8164 mblk_t *first_mp = mp; 8165 int32_t new_mss; 8166 uint32_t ratio; 8167 size_t mp_size = MBLKL(mp); 8168 uint32_t seg_seq; 8169 tcp_stack_t *tcps = tcp->tcp_tcps; 8170 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8171 8172 /* Assume IP provides aligned packets - otherwise toss */ 8173 if (!OK_32PTR(mp->b_rptr)) { 8174 freemsg(mp); 8175 return; 8176 } 8177 8178 /* 8179 * Since ICMP errors are normal data marked with M_CTL when sent 8180 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8181 * packets starting with an ipsec_info_t, see ipsec_info.h. 8182 */ 8183 if ((mp_size == sizeof (ipsec_info_t)) && 8184 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8185 ASSERT(mp->b_cont != NULL); 8186 mp = mp->b_cont; 8187 /* IP should have done this */ 8188 ASSERT(OK_32PTR(mp->b_rptr)); 8189 mp_size = MBLKL(mp); 8190 ipsec_mctl = B_TRUE; 8191 } 8192 8193 /* 8194 * Verify that we have a complete outer IP header. If not, drop it. 8195 */ 8196 if (mp_size < sizeof (ipha_t)) { 8197 noticmpv4: 8198 freemsg(first_mp); 8199 return; 8200 } 8201 8202 ipha = (ipha_t *)mp->b_rptr; 8203 /* 8204 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8205 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8206 */ 8207 switch (IPH_HDR_VERSION(ipha)) { 8208 case IPV6_VERSION: 8209 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8210 return; 8211 case IPV4_VERSION: 8212 break; 8213 default: 8214 goto noticmpv4; 8215 } 8216 8217 /* Skip past the outer IP and ICMP headers */ 8218 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8219 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8220 /* 8221 * If we don't have the correct outer IP header length or if the ULP 8222 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8223 * send it upstream. 8224 */ 8225 if (iph_hdr_length < sizeof (ipha_t) || 8226 ipha->ipha_protocol != IPPROTO_ICMP || 8227 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8228 goto noticmpv4; 8229 } 8230 ipha = (ipha_t *)&icmph[1]; 8231 8232 /* Skip past the inner IP and find the ULP header */ 8233 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8234 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8235 /* 8236 * If we don't have the correct inner IP header length or if the ULP 8237 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8238 * bytes of TCP header, drop it. 8239 */ 8240 if (iph_hdr_length < sizeof (ipha_t) || 8241 ipha->ipha_protocol != IPPROTO_TCP || 8242 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8243 goto noticmpv4; 8244 } 8245 8246 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8247 if (ipsec_mctl) { 8248 secure = ipsec_in_is_secure(first_mp); 8249 } else { 8250 secure = B_FALSE; 8251 } 8252 if (secure) { 8253 /* 8254 * If we are willing to accept this in clear 8255 * we don't have to verify policy. 8256 */ 8257 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8258 if (!tcp_check_policy(tcp, first_mp, 8259 ipha, NULL, secure, ipsec_mctl)) { 8260 /* 8261 * tcp_check_policy called 8262 * ip_drop_packet() on failure. 8263 */ 8264 return; 8265 } 8266 } 8267 } 8268 } else if (ipsec_mctl) { 8269 /* 8270 * This is a hard_bound connection. IP has already 8271 * verified policy. We don't have to do it again. 8272 */ 8273 freeb(first_mp); 8274 first_mp = mp; 8275 ipsec_mctl = B_FALSE; 8276 } 8277 8278 seg_seq = ABE32_TO_U32(tcph->th_seq); 8279 /* 8280 * TCP SHOULD check that the TCP sequence number contained in 8281 * payload of the ICMP error message is within the range 8282 * SND.UNA <= SEG.SEQ < SND.NXT. 8283 */ 8284 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8285 /* 8286 * The ICMP message is bogus, just drop it. But if this is 8287 * an ICMP too big message, IP has already changed 8288 * the ire_max_frag to the bogus value. We need to change 8289 * it back. 8290 */ 8291 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8292 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8293 conn_t *connp = tcp->tcp_connp; 8294 ire_t *ire; 8295 int flag; 8296 8297 if (tcp->tcp_ipversion == IPV4_VERSION) { 8298 flag = tcp->tcp_ipha-> 8299 ipha_fragment_offset_and_flags; 8300 } else { 8301 flag = 0; 8302 } 8303 mutex_enter(&connp->conn_lock); 8304 if ((ire = connp->conn_ire_cache) != NULL) { 8305 mutex_enter(&ire->ire_lock); 8306 mutex_exit(&connp->conn_lock); 8307 ire->ire_max_frag = tcp->tcp_if_mtu; 8308 ire->ire_frag_flag |= flag; 8309 mutex_exit(&ire->ire_lock); 8310 } else { 8311 mutex_exit(&connp->conn_lock); 8312 } 8313 } 8314 goto noticmpv4; 8315 } 8316 8317 switch (icmph->icmph_type) { 8318 case ICMP_DEST_UNREACHABLE: 8319 switch (icmph->icmph_code) { 8320 case ICMP_FRAGMENTATION_NEEDED: 8321 /* 8322 * Reduce the MSS based on the new MTU. This will 8323 * eliminate any fragmentation locally. 8324 * N.B. There may well be some funny side-effects on 8325 * the local send policy and the remote receive policy. 8326 * Pending further research, we provide 8327 * tcp_ignore_path_mtu just in case this proves 8328 * disastrous somewhere. 8329 * 8330 * After updating the MSS, retransmit part of the 8331 * dropped segment using the new mss by calling 8332 * tcp_wput_data(). Need to adjust all those 8333 * params to make sure tcp_wput_data() work properly. 8334 */ 8335 if (tcps->tcps_ignore_path_mtu || 8336 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8337 break; 8338 8339 /* 8340 * Decrease the MSS by time stamp options 8341 * IP options and IPSEC options. tcp_hdr_len 8342 * includes time stamp option and IP option 8343 * length. Note that new_mss may be negative 8344 * if tcp_ipsec_overhead is large and the 8345 * icmph_du_mtu is the minimum value, which is 68. 8346 */ 8347 new_mss = ntohs(icmph->icmph_du_mtu) - 8348 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8349 8350 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8351 new_mss); 8352 8353 /* 8354 * Only update the MSS if the new one is 8355 * smaller than the previous one. This is 8356 * to avoid problems when getting multiple 8357 * ICMP errors for the same MTU. 8358 */ 8359 if (new_mss >= tcp->tcp_mss) 8360 break; 8361 8362 /* 8363 * Note that we are using the template header's DF 8364 * bit in the fast path sending. So we need to compare 8365 * the new mss with both tcps_mss_min and ip_pmtu_min. 8366 * And stop doing IPv4 PMTUd if new_mss is less than 8367 * MAX(tcps_mss_min, ip_pmtu_min). 8368 */ 8369 if (new_mss < tcps->tcps_mss_min || 8370 new_mss < ipst->ips_ip_pmtu_min) { 8371 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8372 0; 8373 } 8374 8375 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8376 ASSERT(ratio >= 1); 8377 tcp_mss_set(tcp, new_mss, B_TRUE); 8378 8379 /* 8380 * Make sure we have something to 8381 * send. 8382 */ 8383 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8384 (tcp->tcp_xmit_head != NULL)) { 8385 /* 8386 * Shrink tcp_cwnd in 8387 * proportion to the old MSS/new MSS. 8388 */ 8389 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8390 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8391 (tcp->tcp_unsent == 0)) { 8392 tcp->tcp_rexmit_max = tcp->tcp_fss; 8393 } else { 8394 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8395 } 8396 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8397 tcp->tcp_rexmit = B_TRUE; 8398 tcp->tcp_dupack_cnt = 0; 8399 tcp->tcp_snd_burst = TCP_CWND_SS; 8400 tcp_ss_rexmit(tcp); 8401 } 8402 break; 8403 case ICMP_PORT_UNREACHABLE: 8404 case ICMP_PROTOCOL_UNREACHABLE: 8405 switch (tcp->tcp_state) { 8406 case TCPS_SYN_SENT: 8407 case TCPS_SYN_RCVD: 8408 /* 8409 * ICMP can snipe away incipient 8410 * TCP connections as long as 8411 * seq number is same as initial 8412 * send seq number. 8413 */ 8414 if (seg_seq == tcp->tcp_iss) { 8415 (void) tcp_clean_death(tcp, 8416 ECONNREFUSED, 6); 8417 } 8418 break; 8419 } 8420 break; 8421 case ICMP_HOST_UNREACHABLE: 8422 case ICMP_NET_UNREACHABLE: 8423 /* Record the error in case we finally time out. */ 8424 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8425 tcp->tcp_client_errno = EHOSTUNREACH; 8426 else 8427 tcp->tcp_client_errno = ENETUNREACH; 8428 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8429 if (tcp->tcp_listener != NULL && 8430 tcp->tcp_listener->tcp_syn_defense) { 8431 /* 8432 * Ditch the half-open connection if we 8433 * suspect a SYN attack is under way. 8434 */ 8435 tcp_ip_ire_mark_advice(tcp); 8436 (void) tcp_clean_death(tcp, 8437 tcp->tcp_client_errno, 7); 8438 } 8439 } 8440 break; 8441 default: 8442 break; 8443 } 8444 break; 8445 case ICMP_SOURCE_QUENCH: { 8446 /* 8447 * use a global boolean to control 8448 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8449 * The default is false. 8450 */ 8451 if (tcp_icmp_source_quench) { 8452 /* 8453 * Reduce the sending rate as if we got a 8454 * retransmit timeout 8455 */ 8456 uint32_t npkt; 8457 8458 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8459 tcp->tcp_mss; 8460 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8461 tcp->tcp_cwnd = tcp->tcp_mss; 8462 tcp->tcp_cwnd_cnt = 0; 8463 } 8464 break; 8465 } 8466 } 8467 freemsg(first_mp); 8468 } 8469 8470 /* 8471 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8472 * error messages passed up by IP. 8473 * Assumes that IP has pulled up all the extension headers as well 8474 * as the ICMPv6 header. 8475 */ 8476 static void 8477 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8478 { 8479 icmp6_t *icmp6; 8480 ip6_t *ip6h; 8481 uint16_t iph_hdr_length; 8482 tcpha_t *tcpha; 8483 uint8_t *nexthdrp; 8484 uint32_t new_mss; 8485 uint32_t ratio; 8486 boolean_t secure; 8487 mblk_t *first_mp = mp; 8488 size_t mp_size; 8489 uint32_t seg_seq; 8490 tcp_stack_t *tcps = tcp->tcp_tcps; 8491 8492 /* 8493 * The caller has determined if this is an IPSEC_IN packet and 8494 * set ipsec_mctl appropriately (see tcp_icmp_error). 8495 */ 8496 if (ipsec_mctl) 8497 mp = mp->b_cont; 8498 8499 mp_size = MBLKL(mp); 8500 8501 /* 8502 * Verify that we have a complete IP header. If not, send it upstream. 8503 */ 8504 if (mp_size < sizeof (ip6_t)) { 8505 noticmpv6: 8506 freemsg(first_mp); 8507 return; 8508 } 8509 8510 /* 8511 * Verify this is an ICMPV6 packet, else send it upstream. 8512 */ 8513 ip6h = (ip6_t *)mp->b_rptr; 8514 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8515 iph_hdr_length = IPV6_HDR_LEN; 8516 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8517 &nexthdrp) || 8518 *nexthdrp != IPPROTO_ICMPV6) { 8519 goto noticmpv6; 8520 } 8521 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8522 ip6h = (ip6_t *)&icmp6[1]; 8523 /* 8524 * Verify if we have a complete ICMP and inner IP header. 8525 */ 8526 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8527 goto noticmpv6; 8528 8529 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8530 goto noticmpv6; 8531 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8532 /* 8533 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8534 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8535 * packet. 8536 */ 8537 if ((*nexthdrp != IPPROTO_TCP) || 8538 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8539 goto noticmpv6; 8540 } 8541 8542 /* 8543 * ICMP errors come on the right queue or come on 8544 * listener/global queue for detached connections and 8545 * get switched to the right queue. If it comes on the 8546 * right queue, policy check has already been done by IP 8547 * and thus free the first_mp without verifying the policy. 8548 * If it has come for a non-hard bound connection, we need 8549 * to verify policy as IP may not have done it. 8550 */ 8551 if (!tcp->tcp_hard_bound) { 8552 if (ipsec_mctl) { 8553 secure = ipsec_in_is_secure(first_mp); 8554 } else { 8555 secure = B_FALSE; 8556 } 8557 if (secure) { 8558 /* 8559 * If we are willing to accept this in clear 8560 * we don't have to verify policy. 8561 */ 8562 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8563 if (!tcp_check_policy(tcp, first_mp, 8564 NULL, ip6h, secure, ipsec_mctl)) { 8565 /* 8566 * tcp_check_policy called 8567 * ip_drop_packet() on failure. 8568 */ 8569 return; 8570 } 8571 } 8572 } 8573 } else if (ipsec_mctl) { 8574 /* 8575 * This is a hard_bound connection. IP has already 8576 * verified policy. We don't have to do it again. 8577 */ 8578 freeb(first_mp); 8579 first_mp = mp; 8580 ipsec_mctl = B_FALSE; 8581 } 8582 8583 seg_seq = ntohl(tcpha->tha_seq); 8584 /* 8585 * TCP SHOULD check that the TCP sequence number contained in 8586 * payload of the ICMP error message is within the range 8587 * SND.UNA <= SEG.SEQ < SND.NXT. 8588 */ 8589 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8590 /* 8591 * If the ICMP message is bogus, should we kill the 8592 * connection, or should we just drop the bogus ICMP 8593 * message? It would probably make more sense to just 8594 * drop the message so that if this one managed to get 8595 * in, the real connection should not suffer. 8596 */ 8597 goto noticmpv6; 8598 } 8599 8600 switch (icmp6->icmp6_type) { 8601 case ICMP6_PACKET_TOO_BIG: 8602 /* 8603 * Reduce the MSS based on the new MTU. This will 8604 * eliminate any fragmentation locally. 8605 * N.B. There may well be some funny side-effects on 8606 * the local send policy and the remote receive policy. 8607 * Pending further research, we provide 8608 * tcp_ignore_path_mtu just in case this proves 8609 * disastrous somewhere. 8610 * 8611 * After updating the MSS, retransmit part of the 8612 * dropped segment using the new mss by calling 8613 * tcp_wput_data(). Need to adjust all those 8614 * params to make sure tcp_wput_data() work properly. 8615 */ 8616 if (tcps->tcps_ignore_path_mtu) 8617 break; 8618 8619 /* 8620 * Decrease the MSS by time stamp options 8621 * IP options and IPSEC options. tcp_hdr_len 8622 * includes time stamp option and IP option 8623 * length. 8624 */ 8625 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8626 tcp->tcp_ipsec_overhead; 8627 8628 /* 8629 * Only update the MSS if the new one is 8630 * smaller than the previous one. This is 8631 * to avoid problems when getting multiple 8632 * ICMP errors for the same MTU. 8633 */ 8634 if (new_mss >= tcp->tcp_mss) 8635 break; 8636 8637 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8638 ASSERT(ratio >= 1); 8639 tcp_mss_set(tcp, new_mss, B_TRUE); 8640 8641 /* 8642 * Make sure we have something to 8643 * send. 8644 */ 8645 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8646 (tcp->tcp_xmit_head != NULL)) { 8647 /* 8648 * Shrink tcp_cwnd in 8649 * proportion to the old MSS/new MSS. 8650 */ 8651 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8652 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8653 (tcp->tcp_unsent == 0)) { 8654 tcp->tcp_rexmit_max = tcp->tcp_fss; 8655 } else { 8656 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8657 } 8658 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8659 tcp->tcp_rexmit = B_TRUE; 8660 tcp->tcp_dupack_cnt = 0; 8661 tcp->tcp_snd_burst = TCP_CWND_SS; 8662 tcp_ss_rexmit(tcp); 8663 } 8664 break; 8665 8666 case ICMP6_DST_UNREACH: 8667 switch (icmp6->icmp6_code) { 8668 case ICMP6_DST_UNREACH_NOPORT: 8669 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8670 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8671 (seg_seq == tcp->tcp_iss)) { 8672 (void) tcp_clean_death(tcp, 8673 ECONNREFUSED, 8); 8674 } 8675 break; 8676 8677 case ICMP6_DST_UNREACH_ADMIN: 8678 case ICMP6_DST_UNREACH_NOROUTE: 8679 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8680 case ICMP6_DST_UNREACH_ADDR: 8681 /* Record the error in case we finally time out. */ 8682 tcp->tcp_client_errno = EHOSTUNREACH; 8683 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8684 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8685 (seg_seq == tcp->tcp_iss)) { 8686 if (tcp->tcp_listener != NULL && 8687 tcp->tcp_listener->tcp_syn_defense) { 8688 /* 8689 * Ditch the half-open connection if we 8690 * suspect a SYN attack is under way. 8691 */ 8692 tcp_ip_ire_mark_advice(tcp); 8693 (void) tcp_clean_death(tcp, 8694 tcp->tcp_client_errno, 9); 8695 } 8696 } 8697 8698 8699 break; 8700 default: 8701 break; 8702 } 8703 break; 8704 8705 case ICMP6_PARAM_PROB: 8706 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8707 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8708 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8709 (uchar_t *)nexthdrp) { 8710 if (tcp->tcp_state == TCPS_SYN_SENT || 8711 tcp->tcp_state == TCPS_SYN_RCVD) { 8712 (void) tcp_clean_death(tcp, 8713 ECONNREFUSED, 10); 8714 } 8715 break; 8716 } 8717 break; 8718 8719 case ICMP6_TIME_EXCEEDED: 8720 default: 8721 break; 8722 } 8723 freemsg(first_mp); 8724 } 8725 8726 /* 8727 * Notify IP that we are having trouble with this connection. IP should 8728 * blow the IRE away and start over. 8729 */ 8730 static void 8731 tcp_ip_notify(tcp_t *tcp) 8732 { 8733 struct iocblk *iocp; 8734 ipid_t *ipid; 8735 mblk_t *mp; 8736 8737 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8738 if (tcp->tcp_ipversion == IPV6_VERSION) 8739 return; 8740 8741 mp = mkiocb(IP_IOCTL); 8742 if (mp == NULL) 8743 return; 8744 8745 iocp = (struct iocblk *)mp->b_rptr; 8746 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8747 8748 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8749 if (!mp->b_cont) { 8750 freeb(mp); 8751 return; 8752 } 8753 8754 ipid = (ipid_t *)mp->b_cont->b_rptr; 8755 mp->b_cont->b_wptr += iocp->ioc_count; 8756 bzero(ipid, sizeof (*ipid)); 8757 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8758 ipid->ipid_ire_type = IRE_CACHE; 8759 ipid->ipid_addr_offset = sizeof (ipid_t); 8760 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8761 /* 8762 * Note: in the case of source routing we want to blow away the 8763 * route to the first source route hop. 8764 */ 8765 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8766 sizeof (tcp->tcp_ipha->ipha_dst)); 8767 8768 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8769 } 8770 8771 /* Unlink and return any mblk that looks like it contains an ire */ 8772 static mblk_t * 8773 tcp_ire_mp(mblk_t **mpp) 8774 { 8775 mblk_t *mp = *mpp; 8776 mblk_t *prev_mp = NULL; 8777 8778 for (;;) { 8779 switch (DB_TYPE(mp)) { 8780 case IRE_DB_TYPE: 8781 case IRE_DB_REQ_TYPE: 8782 if (mp == *mpp) { 8783 *mpp = mp->b_cont; 8784 } else { 8785 prev_mp->b_cont = mp->b_cont; 8786 } 8787 mp->b_cont = NULL; 8788 return (mp); 8789 default: 8790 break; 8791 } 8792 prev_mp = mp; 8793 mp = mp->b_cont; 8794 if (mp == NULL) 8795 break; 8796 } 8797 return (mp); 8798 } 8799 8800 /* 8801 * Timer callback routine for keepalive probe. We do a fake resend of 8802 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8803 * check to see if we have heard anything from the other end for the last 8804 * RTO period. If we have, set the timer to expire for another 8805 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8806 * RTO << 1 and check again when it expires. Keep exponentially increasing 8807 * the timeout if we have not heard from the other side. If for more than 8808 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8809 * kill the connection unless the keepalive abort threshold is 0. In 8810 * that case, we will probe "forever." 8811 */ 8812 static void 8813 tcp_keepalive_killer(void *arg) 8814 { 8815 mblk_t *mp; 8816 conn_t *connp = (conn_t *)arg; 8817 tcp_t *tcp = connp->conn_tcp; 8818 int32_t firetime; 8819 int32_t idletime; 8820 int32_t ka_intrvl; 8821 tcp_stack_t *tcps = tcp->tcp_tcps; 8822 8823 tcp->tcp_ka_tid = 0; 8824 8825 if (tcp->tcp_fused) 8826 return; 8827 8828 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8829 ka_intrvl = tcp->tcp_ka_interval; 8830 8831 /* 8832 * Keepalive probe should only be sent if the application has not 8833 * done a close on the connection. 8834 */ 8835 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8836 return; 8837 } 8838 /* Timer fired too early, restart it. */ 8839 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8840 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8841 MSEC_TO_TICK(ka_intrvl)); 8842 return; 8843 } 8844 8845 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8846 /* 8847 * If we have not heard from the other side for a long 8848 * time, kill the connection unless the keepalive abort 8849 * threshold is 0. In that case, we will probe "forever." 8850 */ 8851 if (tcp->tcp_ka_abort_thres != 0 && 8852 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8853 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8854 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8855 tcp->tcp_client_errno : ETIMEDOUT, 11); 8856 return; 8857 } 8858 8859 if (tcp->tcp_snxt == tcp->tcp_suna && 8860 idletime >= ka_intrvl) { 8861 /* Fake resend of last ACKed byte. */ 8862 mblk_t *mp1 = allocb(1, BPRI_LO); 8863 8864 if (mp1 != NULL) { 8865 *mp1->b_wptr++ = '\0'; 8866 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8867 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8868 freeb(mp1); 8869 /* 8870 * if allocation failed, fall through to start the 8871 * timer back. 8872 */ 8873 if (mp != NULL) { 8874 tcp_send_data(tcp, tcp->tcp_wq, mp); 8875 BUMP_MIB(&tcps->tcps_mib, 8876 tcpTimKeepaliveProbe); 8877 if (tcp->tcp_ka_last_intrvl != 0) { 8878 int max; 8879 /* 8880 * We should probe again at least 8881 * in ka_intrvl, but not more than 8882 * tcp_rexmit_interval_max. 8883 */ 8884 max = tcps->tcps_rexmit_interval_max; 8885 firetime = MIN(ka_intrvl - 1, 8886 tcp->tcp_ka_last_intrvl << 1); 8887 if (firetime > max) 8888 firetime = max; 8889 } else { 8890 firetime = tcp->tcp_rto; 8891 } 8892 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8893 tcp_keepalive_killer, 8894 MSEC_TO_TICK(firetime)); 8895 tcp->tcp_ka_last_intrvl = firetime; 8896 return; 8897 } 8898 } 8899 } else { 8900 tcp->tcp_ka_last_intrvl = 0; 8901 } 8902 8903 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8904 if ((firetime = ka_intrvl - idletime) < 0) { 8905 firetime = ka_intrvl; 8906 } 8907 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8908 MSEC_TO_TICK(firetime)); 8909 } 8910 8911 int 8912 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8913 { 8914 queue_t *q = tcp->tcp_rq; 8915 int32_t mss = tcp->tcp_mss; 8916 int maxpsz; 8917 conn_t *connp = tcp->tcp_connp; 8918 8919 if (TCP_IS_DETACHED(tcp)) 8920 return (mss); 8921 if (tcp->tcp_fused) { 8922 maxpsz = tcp_fuse_maxpsz_set(tcp); 8923 mss = INFPSZ; 8924 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8925 /* 8926 * Set the sd_qn_maxpsz according to the socket send buffer 8927 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8928 * instruct the stream head to copyin user data into contiguous 8929 * kernel-allocated buffers without breaking it up into smaller 8930 * chunks. We round up the buffer size to the nearest SMSS. 8931 */ 8932 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8933 if (tcp->tcp_kssl_ctx == NULL) 8934 mss = INFPSZ; 8935 else 8936 mss = SSL3_MAX_RECORD_LEN; 8937 } else { 8938 /* 8939 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8940 * (and a multiple of the mss). This instructs the stream 8941 * head to break down larger than SMSS writes into SMSS- 8942 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8943 */ 8944 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8945 maxpsz = tcp->tcp_maxpsz * mss; 8946 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8947 maxpsz = tcp->tcp_xmit_hiwater/2; 8948 /* Round up to nearest mss */ 8949 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8950 } 8951 } 8952 8953 (void) proto_set_maxpsz(q, connp, maxpsz); 8954 if (!(IPCL_IS_NONSTR(connp))) { 8955 /* XXX do it in set_maxpsz()? */ 8956 tcp->tcp_wq->q_maxpsz = maxpsz; 8957 } 8958 8959 if (set_maxblk) 8960 (void) proto_set_tx_maxblk(q, connp, mss); 8961 return (mss); 8962 } 8963 8964 /* 8965 * Extract option values from a tcp header. We put any found values into the 8966 * tcpopt struct and return a bitmask saying which options were found. 8967 */ 8968 static int 8969 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8970 { 8971 uchar_t *endp; 8972 int len; 8973 uint32_t mss; 8974 uchar_t *up = (uchar_t *)tcph; 8975 int found = 0; 8976 int32_t sack_len; 8977 tcp_seq sack_begin, sack_end; 8978 tcp_t *tcp; 8979 8980 endp = up + TCP_HDR_LENGTH(tcph); 8981 up += TCP_MIN_HEADER_LENGTH; 8982 while (up < endp) { 8983 len = endp - up; 8984 switch (*up) { 8985 case TCPOPT_EOL: 8986 break; 8987 8988 case TCPOPT_NOP: 8989 up++; 8990 continue; 8991 8992 case TCPOPT_MAXSEG: 8993 if (len < TCPOPT_MAXSEG_LEN || 8994 up[1] != TCPOPT_MAXSEG_LEN) 8995 break; 8996 8997 mss = BE16_TO_U16(up+2); 8998 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8999 tcpopt->tcp_opt_mss = mss; 9000 found |= TCP_OPT_MSS_PRESENT; 9001 9002 up += TCPOPT_MAXSEG_LEN; 9003 continue; 9004 9005 case TCPOPT_WSCALE: 9006 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9007 break; 9008 9009 if (up[2] > TCP_MAX_WINSHIFT) 9010 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9011 else 9012 tcpopt->tcp_opt_wscale = up[2]; 9013 found |= TCP_OPT_WSCALE_PRESENT; 9014 9015 up += TCPOPT_WS_LEN; 9016 continue; 9017 9018 case TCPOPT_SACK_PERMITTED: 9019 if (len < TCPOPT_SACK_OK_LEN || 9020 up[1] != TCPOPT_SACK_OK_LEN) 9021 break; 9022 found |= TCP_OPT_SACK_OK_PRESENT; 9023 up += TCPOPT_SACK_OK_LEN; 9024 continue; 9025 9026 case TCPOPT_SACK: 9027 if (len <= 2 || up[1] <= 2 || len < up[1]) 9028 break; 9029 9030 /* If TCP is not interested in SACK blks... */ 9031 if ((tcp = tcpopt->tcp) == NULL) { 9032 up += up[1]; 9033 continue; 9034 } 9035 sack_len = up[1] - TCPOPT_HEADER_LEN; 9036 up += TCPOPT_HEADER_LEN; 9037 9038 /* 9039 * If the list is empty, allocate one and assume 9040 * nothing is sack'ed. 9041 */ 9042 ASSERT(tcp->tcp_sack_info != NULL); 9043 if (tcp->tcp_notsack_list == NULL) { 9044 tcp_notsack_update(&(tcp->tcp_notsack_list), 9045 tcp->tcp_suna, tcp->tcp_snxt, 9046 &(tcp->tcp_num_notsack_blk), 9047 &(tcp->tcp_cnt_notsack_list)); 9048 9049 /* 9050 * Make sure tcp_notsack_list is not NULL. 9051 * This happens when kmem_alloc(KM_NOSLEEP) 9052 * returns NULL. 9053 */ 9054 if (tcp->tcp_notsack_list == NULL) { 9055 up += sack_len; 9056 continue; 9057 } 9058 tcp->tcp_fack = tcp->tcp_suna; 9059 } 9060 9061 while (sack_len > 0) { 9062 if (up + 8 > endp) { 9063 up = endp; 9064 break; 9065 } 9066 sack_begin = BE32_TO_U32(up); 9067 up += 4; 9068 sack_end = BE32_TO_U32(up); 9069 up += 4; 9070 sack_len -= 8; 9071 /* 9072 * Bounds checking. Make sure the SACK 9073 * info is within tcp_suna and tcp_snxt. 9074 * If this SACK blk is out of bound, ignore 9075 * it but continue to parse the following 9076 * blks. 9077 */ 9078 if (SEQ_LEQ(sack_end, sack_begin) || 9079 SEQ_LT(sack_begin, tcp->tcp_suna) || 9080 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9081 continue; 9082 } 9083 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9084 sack_begin, sack_end, 9085 &(tcp->tcp_num_notsack_blk), 9086 &(tcp->tcp_cnt_notsack_list)); 9087 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9088 tcp->tcp_fack = sack_end; 9089 } 9090 } 9091 found |= TCP_OPT_SACK_PRESENT; 9092 continue; 9093 9094 case TCPOPT_TSTAMP: 9095 if (len < TCPOPT_TSTAMP_LEN || 9096 up[1] != TCPOPT_TSTAMP_LEN) 9097 break; 9098 9099 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9100 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9101 9102 found |= TCP_OPT_TSTAMP_PRESENT; 9103 9104 up += TCPOPT_TSTAMP_LEN; 9105 continue; 9106 9107 default: 9108 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9109 break; 9110 up += up[1]; 9111 continue; 9112 } 9113 break; 9114 } 9115 return (found); 9116 } 9117 9118 /* 9119 * Set the mss associated with a particular tcp based on its current value, 9120 * and a new one passed in. Observe minimums and maximums, and reset 9121 * other state variables that we want to view as multiples of mss. 9122 * 9123 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9124 * highwater marks etc. need to be initialized or adjusted. 9125 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9126 * packet arrives. 9127 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9128 * ICMP6_PACKET_TOO_BIG arrives. 9129 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9130 * to increase the MSS to use the extra bytes available. 9131 * 9132 * Callers except tcp_paws_check() ensure that they only reduce mss. 9133 */ 9134 static void 9135 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9136 { 9137 uint32_t mss_max; 9138 tcp_stack_t *tcps = tcp->tcp_tcps; 9139 9140 if (tcp->tcp_ipversion == IPV4_VERSION) 9141 mss_max = tcps->tcps_mss_max_ipv4; 9142 else 9143 mss_max = tcps->tcps_mss_max_ipv6; 9144 9145 if (mss < tcps->tcps_mss_min) 9146 mss = tcps->tcps_mss_min; 9147 if (mss > mss_max) 9148 mss = mss_max; 9149 /* 9150 * Unless naglim has been set by our client to 9151 * a non-mss value, force naglim to track mss. 9152 * This can help to aggregate small writes. 9153 */ 9154 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9155 tcp->tcp_naglim = mss; 9156 /* 9157 * TCP should be able to buffer at least 4 MSS data for obvious 9158 * performance reason. 9159 */ 9160 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9161 tcp->tcp_xmit_hiwater = mss << 2; 9162 9163 if (do_ss) { 9164 /* 9165 * Either the tcp_cwnd is as yet uninitialized, or mss is 9166 * changing due to a reduction in MTU, presumably as a 9167 * result of a new path component, reset cwnd to its 9168 * "initial" value, as a multiple of the new mss. 9169 */ 9170 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9171 } else { 9172 /* 9173 * Called by tcp_paws_check(), the mss increased 9174 * marginally to allow use of space previously taken 9175 * by the timestamp option. It would be inappropriate 9176 * to apply slow start or tcp_init_cwnd values to 9177 * tcp_cwnd, simply adjust to a multiple of the new mss. 9178 */ 9179 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9180 tcp->tcp_cwnd_cnt = 0; 9181 } 9182 tcp->tcp_mss = mss; 9183 (void) tcp_maxpsz_set(tcp, B_TRUE); 9184 } 9185 9186 /* For /dev/tcp aka AF_INET open */ 9187 static int 9188 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9189 { 9190 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9191 } 9192 9193 /* For /dev/tcp6 aka AF_INET6 open */ 9194 static int 9195 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9196 { 9197 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9198 } 9199 9200 static conn_t * 9201 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9202 boolean_t issocket, int *errorp) 9203 { 9204 tcp_t *tcp = NULL; 9205 conn_t *connp; 9206 int err; 9207 zoneid_t zoneid; 9208 tcp_stack_t *tcps; 9209 squeue_t *sqp; 9210 9211 ASSERT(errorp != NULL); 9212 /* 9213 * Find the proper zoneid and netstack. 9214 */ 9215 /* 9216 * Special case for install: miniroot needs to be able to 9217 * access files via NFS as though it were always in the 9218 * global zone. 9219 */ 9220 if (credp == kcred && nfs_global_client_only != 0) { 9221 zoneid = GLOBAL_ZONEID; 9222 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9223 netstack_tcp; 9224 ASSERT(tcps != NULL); 9225 } else { 9226 netstack_t *ns; 9227 9228 ns = netstack_find_by_cred(credp); 9229 ASSERT(ns != NULL); 9230 tcps = ns->netstack_tcp; 9231 ASSERT(tcps != NULL); 9232 9233 /* 9234 * For exclusive stacks we set the zoneid to zero 9235 * to make TCP operate as if in the global zone. 9236 */ 9237 if (tcps->tcps_netstack->netstack_stackid != 9238 GLOBAL_NETSTACKID) 9239 zoneid = GLOBAL_ZONEID; 9240 else 9241 zoneid = crgetzoneid(credp); 9242 } 9243 /* 9244 * For stackid zero this is done from strplumb.c, but 9245 * non-zero stackids are handled here. 9246 */ 9247 if (tcps->tcps_g_q == NULL && 9248 tcps->tcps_netstack->netstack_stackid != 9249 GLOBAL_NETSTACKID) { 9250 tcp_g_q_setup(tcps); 9251 } 9252 9253 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9254 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9255 /* 9256 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9257 * so we drop it by one. 9258 */ 9259 netstack_rele(tcps->tcps_netstack); 9260 if (connp == NULL) { 9261 *errorp = ENOSR; 9262 return (NULL); 9263 } 9264 connp->conn_sqp = sqp; 9265 connp->conn_initial_sqp = connp->conn_sqp; 9266 tcp = connp->conn_tcp; 9267 9268 if (isv6) { 9269 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9270 connp->conn_send = ip_output_v6; 9271 connp->conn_af_isv6 = B_TRUE; 9272 connp->conn_pkt_isv6 = B_TRUE; 9273 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9274 tcp->tcp_ipversion = IPV6_VERSION; 9275 tcp->tcp_family = AF_INET6; 9276 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9277 } else { 9278 connp->conn_flags |= IPCL_TCP4; 9279 connp->conn_send = ip_output; 9280 connp->conn_af_isv6 = B_FALSE; 9281 connp->conn_pkt_isv6 = B_FALSE; 9282 tcp->tcp_ipversion = IPV4_VERSION; 9283 tcp->tcp_family = AF_INET; 9284 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9285 } 9286 9287 /* 9288 * TCP keeps a copy of cred for cache locality reasons but 9289 * we put a reference only once. If connp->conn_cred 9290 * becomes invalid, tcp_cred should also be set to NULL. 9291 */ 9292 tcp->tcp_cred = connp->conn_cred = credp; 9293 crhold(connp->conn_cred); 9294 tcp->tcp_cpid = curproc->p_pid; 9295 tcp->tcp_open_time = lbolt64; 9296 connp->conn_zoneid = zoneid; 9297 connp->conn_mlp_type = mlptSingle; 9298 connp->conn_ulp_labeled = !is_system_labeled(); 9299 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9300 ASSERT(tcp->tcp_tcps == tcps); 9301 9302 /* 9303 * If the caller has the process-wide flag set, then default to MAC 9304 * exempt mode. This allows read-down to unlabeled hosts. 9305 */ 9306 if (getpflags(NET_MAC_AWARE, credp) != 0) 9307 connp->conn_mac_exempt = B_TRUE; 9308 9309 connp->conn_dev = NULL; 9310 if (issocket) { 9311 connp->conn_flags |= IPCL_SOCKET; 9312 tcp->tcp_issocket = 1; 9313 } 9314 9315 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9316 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9317 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9318 9319 /* Non-zero default values */ 9320 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9321 9322 if (q == NULL) { 9323 /* 9324 * Create a helper stream for non-STREAMS socket. 9325 */ 9326 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9327 if (err != 0) { 9328 ip1dbg(("tcp_create: create of IP helper stream " 9329 "failed\n")); 9330 CONN_DEC_REF(connp); 9331 *errorp = err; 9332 return (NULL); 9333 } 9334 q = connp->conn_rq; 9335 } else { 9336 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9337 } 9338 9339 SOCK_CONNID_INIT(tcp->tcp_connid); 9340 err = tcp_init(tcp, q); 9341 if (err != 0) { 9342 CONN_DEC_REF(connp); 9343 *errorp = err; 9344 return (NULL); 9345 } 9346 9347 return (connp); 9348 } 9349 9350 static int 9351 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9352 boolean_t isv6) 9353 { 9354 tcp_t *tcp = NULL; 9355 conn_t *connp = NULL; 9356 int err; 9357 vmem_t *minor_arena = NULL; 9358 dev_t conn_dev; 9359 boolean_t issocket; 9360 9361 if (q->q_ptr != NULL) 9362 return (0); 9363 9364 if (sflag == MODOPEN) 9365 return (EINVAL); 9366 9367 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9368 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9369 minor_arena = ip_minor_arena_la; 9370 } else { 9371 /* 9372 * Either minor numbers in the large arena were exhausted 9373 * or a non socket application is doing the open. 9374 * Try to allocate from the small arena. 9375 */ 9376 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9377 return (EBUSY); 9378 } 9379 minor_arena = ip_minor_arena_sa; 9380 } 9381 9382 ASSERT(minor_arena != NULL); 9383 9384 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9385 9386 if (flag & SO_FALLBACK) { 9387 /* 9388 * Non streams socket needs a stream to fallback to 9389 */ 9390 RD(q)->q_ptr = (void *)conn_dev; 9391 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9392 WR(q)->q_ptr = (void *)minor_arena; 9393 qprocson(q); 9394 return (0); 9395 } else if (flag & SO_ACCEPTOR) { 9396 q->q_qinfo = &tcp_acceptor_rinit; 9397 /* 9398 * the conn_dev and minor_arena will be subsequently used by 9399 * tcp_wput_accept() and tcpclose_accept() to figure out the 9400 * minor device number for this connection from the q_ptr. 9401 */ 9402 RD(q)->q_ptr = (void *)conn_dev; 9403 WR(q)->q_qinfo = &tcp_acceptor_winit; 9404 WR(q)->q_ptr = (void *)minor_arena; 9405 qprocson(q); 9406 return (0); 9407 } 9408 9409 issocket = flag & SO_SOCKSTR; 9410 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9411 9412 if (connp == NULL) { 9413 inet_minor_free(minor_arena, conn_dev); 9414 q->q_ptr = WR(q)->q_ptr = NULL; 9415 return (err); 9416 } 9417 9418 q->q_ptr = WR(q)->q_ptr = connp; 9419 9420 connp->conn_dev = conn_dev; 9421 connp->conn_minor_arena = minor_arena; 9422 9423 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9424 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9425 9426 if (issocket) { 9427 WR(q)->q_qinfo = &tcp_sock_winit; 9428 } else { 9429 tcp = connp->conn_tcp; 9430 #ifdef _ILP32 9431 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9432 #else 9433 tcp->tcp_acceptor_id = conn_dev; 9434 #endif /* _ILP32 */ 9435 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9436 } 9437 9438 /* 9439 * Put the ref for TCP. Ref for IP was already put 9440 * by ipcl_conn_create. Also Make the conn_t globally 9441 * visible to walkers 9442 */ 9443 mutex_enter(&connp->conn_lock); 9444 CONN_INC_REF_LOCKED(connp); 9445 ASSERT(connp->conn_ref == 2); 9446 connp->conn_state_flags &= ~CONN_INCIPIENT; 9447 mutex_exit(&connp->conn_lock); 9448 9449 qprocson(q); 9450 return (0); 9451 } 9452 9453 /* 9454 * Some TCP options can be "set" by requesting them in the option 9455 * buffer. This is needed for XTI feature test though we do not 9456 * allow it in general. We interpret that this mechanism is more 9457 * applicable to OSI protocols and need not be allowed in general. 9458 * This routine filters out options for which it is not allowed (most) 9459 * and lets through those (few) for which it is. [ The XTI interface 9460 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9461 * ever implemented will have to be allowed here ]. 9462 */ 9463 static boolean_t 9464 tcp_allow_connopt_set(int level, int name) 9465 { 9466 9467 switch (level) { 9468 case IPPROTO_TCP: 9469 switch (name) { 9470 case TCP_NODELAY: 9471 return (B_TRUE); 9472 default: 9473 return (B_FALSE); 9474 } 9475 /*NOTREACHED*/ 9476 default: 9477 return (B_FALSE); 9478 } 9479 /*NOTREACHED*/ 9480 } 9481 9482 /* 9483 * this routine gets default values of certain options whose default 9484 * values are maintained by protocol specific code 9485 */ 9486 /* ARGSUSED */ 9487 int 9488 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9489 { 9490 int32_t *i1 = (int32_t *)ptr; 9491 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9492 9493 switch (level) { 9494 case IPPROTO_TCP: 9495 switch (name) { 9496 case TCP_NOTIFY_THRESHOLD: 9497 *i1 = tcps->tcps_ip_notify_interval; 9498 break; 9499 case TCP_ABORT_THRESHOLD: 9500 *i1 = tcps->tcps_ip_abort_interval; 9501 break; 9502 case TCP_CONN_NOTIFY_THRESHOLD: 9503 *i1 = tcps->tcps_ip_notify_cinterval; 9504 break; 9505 case TCP_CONN_ABORT_THRESHOLD: 9506 *i1 = tcps->tcps_ip_abort_cinterval; 9507 break; 9508 default: 9509 return (-1); 9510 } 9511 break; 9512 case IPPROTO_IP: 9513 switch (name) { 9514 case IP_TTL: 9515 *i1 = tcps->tcps_ipv4_ttl; 9516 break; 9517 default: 9518 return (-1); 9519 } 9520 break; 9521 case IPPROTO_IPV6: 9522 switch (name) { 9523 case IPV6_UNICAST_HOPS: 9524 *i1 = tcps->tcps_ipv6_hoplimit; 9525 break; 9526 default: 9527 return (-1); 9528 } 9529 break; 9530 default: 9531 return (-1); 9532 } 9533 return (sizeof (int)); 9534 } 9535 9536 static int 9537 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9538 { 9539 int *i1 = (int *)ptr; 9540 tcp_t *tcp = connp->conn_tcp; 9541 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9542 9543 switch (level) { 9544 case SOL_SOCKET: 9545 switch (name) { 9546 case SO_LINGER: { 9547 struct linger *lgr = (struct linger *)ptr; 9548 9549 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9550 lgr->l_linger = tcp->tcp_lingertime; 9551 } 9552 return (sizeof (struct linger)); 9553 case SO_DEBUG: 9554 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9555 break; 9556 case SO_KEEPALIVE: 9557 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9558 break; 9559 case SO_DONTROUTE: 9560 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9561 break; 9562 case SO_USELOOPBACK: 9563 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9564 break; 9565 case SO_BROADCAST: 9566 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9567 break; 9568 case SO_REUSEADDR: 9569 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9570 break; 9571 case SO_OOBINLINE: 9572 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9573 break; 9574 case SO_DGRAM_ERRIND: 9575 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9576 break; 9577 case SO_TYPE: 9578 *i1 = SOCK_STREAM; 9579 break; 9580 case SO_SNDBUF: 9581 *i1 = tcp->tcp_xmit_hiwater; 9582 break; 9583 case SO_RCVBUF: 9584 *i1 = tcp->tcp_recv_hiwater; 9585 break; 9586 case SO_SND_COPYAVOID: 9587 *i1 = tcp->tcp_snd_zcopy_on ? 9588 SO_SND_COPYAVOID : 0; 9589 break; 9590 case SO_ALLZONES: 9591 *i1 = connp->conn_allzones ? 1 : 0; 9592 break; 9593 case SO_ANON_MLP: 9594 *i1 = connp->conn_anon_mlp; 9595 break; 9596 case SO_MAC_EXEMPT: 9597 *i1 = connp->conn_mac_exempt; 9598 break; 9599 case SO_EXCLBIND: 9600 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9601 break; 9602 case SO_PROTOTYPE: 9603 *i1 = IPPROTO_TCP; 9604 break; 9605 case SO_DOMAIN: 9606 *i1 = tcp->tcp_family; 9607 break; 9608 case SO_ACCEPTCONN: 9609 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9610 default: 9611 return (-1); 9612 } 9613 break; 9614 case IPPROTO_TCP: 9615 switch (name) { 9616 case TCP_NODELAY: 9617 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9618 break; 9619 case TCP_MAXSEG: 9620 *i1 = tcp->tcp_mss; 9621 break; 9622 case TCP_NOTIFY_THRESHOLD: 9623 *i1 = (int)tcp->tcp_first_timer_threshold; 9624 break; 9625 case TCP_ABORT_THRESHOLD: 9626 *i1 = tcp->tcp_second_timer_threshold; 9627 break; 9628 case TCP_CONN_NOTIFY_THRESHOLD: 9629 *i1 = tcp->tcp_first_ctimer_threshold; 9630 break; 9631 case TCP_CONN_ABORT_THRESHOLD: 9632 *i1 = tcp->tcp_second_ctimer_threshold; 9633 break; 9634 case TCP_RECVDSTADDR: 9635 *i1 = tcp->tcp_recvdstaddr; 9636 break; 9637 case TCP_ANONPRIVBIND: 9638 *i1 = tcp->tcp_anon_priv_bind; 9639 break; 9640 case TCP_EXCLBIND: 9641 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9642 break; 9643 case TCP_INIT_CWND: 9644 *i1 = tcp->tcp_init_cwnd; 9645 break; 9646 case TCP_KEEPALIVE_THRESHOLD: 9647 *i1 = tcp->tcp_ka_interval; 9648 break; 9649 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9650 *i1 = tcp->tcp_ka_abort_thres; 9651 break; 9652 case TCP_CORK: 9653 *i1 = tcp->tcp_cork; 9654 break; 9655 default: 9656 return (-1); 9657 } 9658 break; 9659 case IPPROTO_IP: 9660 if (tcp->tcp_family != AF_INET) 9661 return (-1); 9662 switch (name) { 9663 case IP_OPTIONS: 9664 case T_IP_OPTIONS: { 9665 /* 9666 * This is compatible with BSD in that in only return 9667 * the reverse source route with the final destination 9668 * as the last entry. The first 4 bytes of the option 9669 * will contain the final destination. 9670 */ 9671 int opt_len; 9672 9673 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9674 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9675 ASSERT(opt_len >= 0); 9676 /* Caller ensures enough space */ 9677 if (opt_len > 0) { 9678 /* 9679 * TODO: Do we have to handle getsockopt on an 9680 * initiator as well? 9681 */ 9682 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9683 } 9684 return (0); 9685 } 9686 case IP_TOS: 9687 case T_IP_TOS: 9688 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9689 break; 9690 case IP_TTL: 9691 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9692 break; 9693 case IP_NEXTHOP: 9694 /* Handled at IP level */ 9695 return (-EINVAL); 9696 default: 9697 return (-1); 9698 } 9699 break; 9700 case IPPROTO_IPV6: 9701 /* 9702 * IPPROTO_IPV6 options are only supported for sockets 9703 * that are using IPv6 on the wire. 9704 */ 9705 if (tcp->tcp_ipversion != IPV6_VERSION) { 9706 return (-1); 9707 } 9708 switch (name) { 9709 case IPV6_UNICAST_HOPS: 9710 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9711 break; /* goto sizeof (int) option return */ 9712 case IPV6_BOUND_IF: 9713 /* Zero if not set */ 9714 *i1 = tcp->tcp_bound_if; 9715 break; /* goto sizeof (int) option return */ 9716 case IPV6_RECVPKTINFO: 9717 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9718 *i1 = 1; 9719 else 9720 *i1 = 0; 9721 break; /* goto sizeof (int) option return */ 9722 case IPV6_RECVTCLASS: 9723 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9724 *i1 = 1; 9725 else 9726 *i1 = 0; 9727 break; /* goto sizeof (int) option return */ 9728 case IPV6_RECVHOPLIMIT: 9729 if (tcp->tcp_ipv6_recvancillary & 9730 TCP_IPV6_RECVHOPLIMIT) 9731 *i1 = 1; 9732 else 9733 *i1 = 0; 9734 break; /* goto sizeof (int) option return */ 9735 case IPV6_RECVHOPOPTS: 9736 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9737 *i1 = 1; 9738 else 9739 *i1 = 0; 9740 break; /* goto sizeof (int) option return */ 9741 case IPV6_RECVDSTOPTS: 9742 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9743 *i1 = 1; 9744 else 9745 *i1 = 0; 9746 break; /* goto sizeof (int) option return */ 9747 case _OLD_IPV6_RECVDSTOPTS: 9748 if (tcp->tcp_ipv6_recvancillary & 9749 TCP_OLD_IPV6_RECVDSTOPTS) 9750 *i1 = 1; 9751 else 9752 *i1 = 0; 9753 break; /* goto sizeof (int) option return */ 9754 case IPV6_RECVRTHDR: 9755 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9756 *i1 = 1; 9757 else 9758 *i1 = 0; 9759 break; /* goto sizeof (int) option return */ 9760 case IPV6_RECVRTHDRDSTOPTS: 9761 if (tcp->tcp_ipv6_recvancillary & 9762 TCP_IPV6_RECVRTDSTOPTS) 9763 *i1 = 1; 9764 else 9765 *i1 = 0; 9766 break; /* goto sizeof (int) option return */ 9767 case IPV6_PKTINFO: { 9768 /* XXX assumes that caller has room for max size! */ 9769 struct in6_pktinfo *pkti; 9770 9771 pkti = (struct in6_pktinfo *)ptr; 9772 if (ipp->ipp_fields & IPPF_IFINDEX) 9773 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9774 else 9775 pkti->ipi6_ifindex = 0; 9776 if (ipp->ipp_fields & IPPF_ADDR) 9777 pkti->ipi6_addr = ipp->ipp_addr; 9778 else 9779 pkti->ipi6_addr = ipv6_all_zeros; 9780 return (sizeof (struct in6_pktinfo)); 9781 } 9782 case IPV6_TCLASS: 9783 if (ipp->ipp_fields & IPPF_TCLASS) 9784 *i1 = ipp->ipp_tclass; 9785 else 9786 *i1 = IPV6_FLOW_TCLASS( 9787 IPV6_DEFAULT_VERS_AND_FLOW); 9788 break; /* goto sizeof (int) option return */ 9789 case IPV6_NEXTHOP: { 9790 sin6_t *sin6 = (sin6_t *)ptr; 9791 9792 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9793 return (0); 9794 *sin6 = sin6_null; 9795 sin6->sin6_family = AF_INET6; 9796 sin6->sin6_addr = ipp->ipp_nexthop; 9797 return (sizeof (sin6_t)); 9798 } 9799 case IPV6_HOPOPTS: 9800 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9801 return (0); 9802 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9803 return (0); 9804 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9805 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9806 if (tcp->tcp_label_len > 0) { 9807 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9808 ptr[1] = (ipp->ipp_hopoptslen - 9809 tcp->tcp_label_len + 7) / 8 - 1; 9810 } 9811 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9812 case IPV6_RTHDRDSTOPTS: 9813 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9814 return (0); 9815 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9816 return (ipp->ipp_rtdstoptslen); 9817 case IPV6_RTHDR: 9818 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9819 return (0); 9820 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9821 return (ipp->ipp_rthdrlen); 9822 case IPV6_DSTOPTS: 9823 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9824 return (0); 9825 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9826 return (ipp->ipp_dstoptslen); 9827 case IPV6_SRC_PREFERENCES: 9828 return (ip6_get_src_preferences(connp, 9829 (uint32_t *)ptr)); 9830 case IPV6_PATHMTU: { 9831 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9832 9833 if (tcp->tcp_state < TCPS_ESTABLISHED) 9834 return (-1); 9835 9836 return (ip_fill_mtuinfo(&connp->conn_remv6, 9837 connp->conn_fport, mtuinfo, 9838 connp->conn_netstack)); 9839 } 9840 default: 9841 return (-1); 9842 } 9843 break; 9844 default: 9845 return (-1); 9846 } 9847 return (sizeof (int)); 9848 } 9849 9850 /* 9851 * TCP routine to get the values of options. 9852 */ 9853 int 9854 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9855 { 9856 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9857 } 9858 9859 /* returns UNIX error, the optlen is a value-result arg */ 9860 int 9861 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9862 void *optvalp, socklen_t *optlen, cred_t *cr) 9863 { 9864 conn_t *connp = (conn_t *)proto_handle; 9865 squeue_t *sqp = connp->conn_sqp; 9866 int error; 9867 t_uscalar_t max_optbuf_len; 9868 void *optvalp_buf; 9869 int len; 9870 9871 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9872 tcp_opt_obj.odb_opt_des_arr, 9873 tcp_opt_obj.odb_opt_arr_cnt, 9874 tcp_opt_obj.odb_topmost_tpiprovider, 9875 B_FALSE, B_TRUE, cr); 9876 if (error != 0) { 9877 if (error < 0) { 9878 error = proto_tlitosyserr(-error); 9879 } 9880 return (error); 9881 } 9882 9883 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9884 9885 error = squeue_synch_enter(sqp, connp, 0); 9886 if (error == ENOMEM) { 9887 return (ENOMEM); 9888 } 9889 9890 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9891 squeue_synch_exit(sqp, connp); 9892 9893 if (len < 0) { 9894 /* 9895 * Pass on to IP 9896 */ 9897 kmem_free(optvalp_buf, max_optbuf_len); 9898 return (ip_get_options(connp, level, option_name, 9899 optvalp, optlen, cr)); 9900 } else { 9901 /* 9902 * update optlen and copy option value 9903 */ 9904 t_uscalar_t size = MIN(len, *optlen); 9905 bcopy(optvalp_buf, optvalp, size); 9906 bcopy(&size, optlen, sizeof (size)); 9907 9908 kmem_free(optvalp_buf, max_optbuf_len); 9909 return (0); 9910 } 9911 } 9912 9913 /* 9914 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9915 * Parameters are assumed to be verified by the caller. 9916 */ 9917 /* ARGSUSED */ 9918 int 9919 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9920 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9921 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9922 { 9923 tcp_t *tcp = connp->conn_tcp; 9924 int *i1 = (int *)invalp; 9925 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9926 boolean_t checkonly; 9927 int reterr; 9928 tcp_stack_t *tcps = tcp->tcp_tcps; 9929 9930 switch (optset_context) { 9931 case SETFN_OPTCOM_CHECKONLY: 9932 checkonly = B_TRUE; 9933 /* 9934 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9935 * inlen != 0 implies value supplied and 9936 * we have to "pretend" to set it. 9937 * inlen == 0 implies that there is no 9938 * value part in T_CHECK request and just validation 9939 * done elsewhere should be enough, we just return here. 9940 */ 9941 if (inlen == 0) { 9942 *outlenp = 0; 9943 return (0); 9944 } 9945 break; 9946 case SETFN_OPTCOM_NEGOTIATE: 9947 checkonly = B_FALSE; 9948 break; 9949 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9950 case SETFN_CONN_NEGOTIATE: 9951 checkonly = B_FALSE; 9952 /* 9953 * Negotiating local and "association-related" options 9954 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9955 * primitives is allowed by XTI, but we choose 9956 * to not implement this style negotiation for Internet 9957 * protocols (We interpret it is a must for OSI world but 9958 * optional for Internet protocols) for all options. 9959 * [ Will do only for the few options that enable test 9960 * suites that our XTI implementation of this feature 9961 * works for transports that do allow it ] 9962 */ 9963 if (!tcp_allow_connopt_set(level, name)) { 9964 *outlenp = 0; 9965 return (EINVAL); 9966 } 9967 break; 9968 default: 9969 /* 9970 * We should never get here 9971 */ 9972 *outlenp = 0; 9973 return (EINVAL); 9974 } 9975 9976 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9977 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9978 9979 /* 9980 * For TCP, we should have no ancillary data sent down 9981 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9982 * has to be zero. 9983 */ 9984 ASSERT(thisdg_attrs == NULL); 9985 9986 /* 9987 * For fixed length options, no sanity check 9988 * of passed in length is done. It is assumed *_optcom_req() 9989 * routines do the right thing. 9990 */ 9991 switch (level) { 9992 case SOL_SOCKET: 9993 switch (name) { 9994 case SO_LINGER: { 9995 struct linger *lgr = (struct linger *)invalp; 9996 9997 if (!checkonly) { 9998 if (lgr->l_onoff) { 9999 tcp->tcp_linger = 1; 10000 tcp->tcp_lingertime = lgr->l_linger; 10001 } else { 10002 tcp->tcp_linger = 0; 10003 tcp->tcp_lingertime = 0; 10004 } 10005 /* struct copy */ 10006 *(struct linger *)outvalp = *lgr; 10007 } else { 10008 if (!lgr->l_onoff) { 10009 ((struct linger *) 10010 outvalp)->l_onoff = 0; 10011 ((struct linger *) 10012 outvalp)->l_linger = 0; 10013 } else { 10014 /* struct copy */ 10015 *(struct linger *)outvalp = *lgr; 10016 } 10017 } 10018 *outlenp = sizeof (struct linger); 10019 return (0); 10020 } 10021 case SO_DEBUG: 10022 if (!checkonly) 10023 tcp->tcp_debug = onoff; 10024 break; 10025 case SO_KEEPALIVE: 10026 if (checkonly) { 10027 /* check only case */ 10028 break; 10029 } 10030 10031 if (!onoff) { 10032 if (tcp->tcp_ka_enabled) { 10033 if (tcp->tcp_ka_tid != 0) { 10034 (void) TCP_TIMER_CANCEL(tcp, 10035 tcp->tcp_ka_tid); 10036 tcp->tcp_ka_tid = 0; 10037 } 10038 tcp->tcp_ka_enabled = 0; 10039 } 10040 break; 10041 } 10042 if (!tcp->tcp_ka_enabled) { 10043 /* Crank up the keepalive timer */ 10044 tcp->tcp_ka_last_intrvl = 0; 10045 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10046 tcp_keepalive_killer, 10047 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10048 tcp->tcp_ka_enabled = 1; 10049 } 10050 break; 10051 case SO_DONTROUTE: 10052 /* 10053 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10054 * only of interest to IP. We track them here only so 10055 * that we can report their current value. 10056 */ 10057 if (!checkonly) { 10058 tcp->tcp_dontroute = onoff; 10059 tcp->tcp_connp->conn_dontroute = onoff; 10060 } 10061 break; 10062 case SO_USELOOPBACK: 10063 if (!checkonly) { 10064 tcp->tcp_useloopback = onoff; 10065 tcp->tcp_connp->conn_loopback = onoff; 10066 } 10067 break; 10068 case SO_BROADCAST: 10069 if (!checkonly) { 10070 tcp->tcp_broadcast = onoff; 10071 tcp->tcp_connp->conn_broadcast = onoff; 10072 } 10073 break; 10074 case SO_REUSEADDR: 10075 if (!checkonly) { 10076 tcp->tcp_reuseaddr = onoff; 10077 tcp->tcp_connp->conn_reuseaddr = onoff; 10078 } 10079 break; 10080 case SO_OOBINLINE: 10081 if (!checkonly) { 10082 tcp->tcp_oobinline = onoff; 10083 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10084 proto_set_rx_oob_opt(connp, onoff); 10085 } 10086 break; 10087 case SO_DGRAM_ERRIND: 10088 if (!checkonly) 10089 tcp->tcp_dgram_errind = onoff; 10090 break; 10091 case SO_SNDBUF: { 10092 if (*i1 > tcps->tcps_max_buf) { 10093 *outlenp = 0; 10094 return (ENOBUFS); 10095 } 10096 if (checkonly) 10097 break; 10098 10099 tcp->tcp_xmit_hiwater = *i1; 10100 if (tcps->tcps_snd_lowat_fraction != 0) 10101 tcp->tcp_xmit_lowater = 10102 tcp->tcp_xmit_hiwater / 10103 tcps->tcps_snd_lowat_fraction; 10104 (void) tcp_maxpsz_set(tcp, B_TRUE); 10105 /* 10106 * If we are flow-controlled, recheck the condition. 10107 * There are apps that increase SO_SNDBUF size when 10108 * flow-controlled (EWOULDBLOCK), and expect the flow 10109 * control condition to be lifted right away. 10110 */ 10111 mutex_enter(&tcp->tcp_non_sq_lock); 10112 if (tcp->tcp_flow_stopped && 10113 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10114 tcp_clrqfull(tcp); 10115 } 10116 mutex_exit(&tcp->tcp_non_sq_lock); 10117 break; 10118 } 10119 case SO_RCVBUF: 10120 if (*i1 > tcps->tcps_max_buf) { 10121 *outlenp = 0; 10122 return (ENOBUFS); 10123 } 10124 /* Silently ignore zero */ 10125 if (!checkonly && *i1 != 0) { 10126 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10127 (void) tcp_rwnd_set(tcp, *i1); 10128 } 10129 /* 10130 * XXX should we return the rwnd here 10131 * and tcp_opt_get ? 10132 */ 10133 break; 10134 case SO_SND_COPYAVOID: 10135 if (!checkonly) { 10136 /* we only allow enable at most once for now */ 10137 if (tcp->tcp_loopback || 10138 (tcp->tcp_kssl_ctx != NULL) || 10139 (!tcp->tcp_snd_zcopy_aware && 10140 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10141 *outlenp = 0; 10142 return (EOPNOTSUPP); 10143 } 10144 tcp->tcp_snd_zcopy_aware = 1; 10145 } 10146 break; 10147 case SO_ALLZONES: 10148 /* Pass option along to IP level for handling */ 10149 return (-EINVAL); 10150 case SO_ANON_MLP: 10151 /* Pass option along to IP level for handling */ 10152 return (-EINVAL); 10153 case SO_MAC_EXEMPT: 10154 /* Pass option along to IP level for handling */ 10155 return (-EINVAL); 10156 case SO_EXCLBIND: 10157 if (!checkonly) 10158 tcp->tcp_exclbind = onoff; 10159 break; 10160 default: 10161 *outlenp = 0; 10162 return (EINVAL); 10163 } 10164 break; 10165 case IPPROTO_TCP: 10166 switch (name) { 10167 case TCP_NODELAY: 10168 if (!checkonly) 10169 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10170 break; 10171 case TCP_NOTIFY_THRESHOLD: 10172 if (!checkonly) 10173 tcp->tcp_first_timer_threshold = *i1; 10174 break; 10175 case TCP_ABORT_THRESHOLD: 10176 if (!checkonly) 10177 tcp->tcp_second_timer_threshold = *i1; 10178 break; 10179 case TCP_CONN_NOTIFY_THRESHOLD: 10180 if (!checkonly) 10181 tcp->tcp_first_ctimer_threshold = *i1; 10182 break; 10183 case TCP_CONN_ABORT_THRESHOLD: 10184 if (!checkonly) 10185 tcp->tcp_second_ctimer_threshold = *i1; 10186 break; 10187 case TCP_RECVDSTADDR: 10188 if (tcp->tcp_state > TCPS_LISTEN) 10189 return (EOPNOTSUPP); 10190 if (!checkonly) 10191 tcp->tcp_recvdstaddr = onoff; 10192 break; 10193 case TCP_ANONPRIVBIND: 10194 if ((reterr = secpolicy_net_privaddr(cr, 0, 10195 IPPROTO_TCP)) != 0) { 10196 *outlenp = 0; 10197 return (reterr); 10198 } 10199 if (!checkonly) { 10200 tcp->tcp_anon_priv_bind = onoff; 10201 } 10202 break; 10203 case TCP_EXCLBIND: 10204 if (!checkonly) 10205 tcp->tcp_exclbind = onoff; 10206 break; /* goto sizeof (int) option return */ 10207 case TCP_INIT_CWND: { 10208 uint32_t init_cwnd = *((uint32_t *)invalp); 10209 10210 if (checkonly) 10211 break; 10212 10213 /* 10214 * Only allow socket with network configuration 10215 * privilege to set the initial cwnd to be larger 10216 * than allowed by RFC 3390. 10217 */ 10218 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10219 tcp->tcp_init_cwnd = init_cwnd; 10220 break; 10221 } 10222 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10223 *outlenp = 0; 10224 return (reterr); 10225 } 10226 if (init_cwnd > TCP_MAX_INIT_CWND) { 10227 *outlenp = 0; 10228 return (EINVAL); 10229 } 10230 tcp->tcp_init_cwnd = init_cwnd; 10231 break; 10232 } 10233 case TCP_KEEPALIVE_THRESHOLD: 10234 if (checkonly) 10235 break; 10236 10237 if (*i1 < tcps->tcps_keepalive_interval_low || 10238 *i1 > tcps->tcps_keepalive_interval_high) { 10239 *outlenp = 0; 10240 return (EINVAL); 10241 } 10242 if (*i1 != tcp->tcp_ka_interval) { 10243 tcp->tcp_ka_interval = *i1; 10244 /* 10245 * Check if we need to restart the 10246 * keepalive timer. 10247 */ 10248 if (tcp->tcp_ka_tid != 0) { 10249 ASSERT(tcp->tcp_ka_enabled); 10250 (void) TCP_TIMER_CANCEL(tcp, 10251 tcp->tcp_ka_tid); 10252 tcp->tcp_ka_last_intrvl = 0; 10253 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10254 tcp_keepalive_killer, 10255 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10256 } 10257 } 10258 break; 10259 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10260 if (!checkonly) { 10261 if (*i1 < 10262 tcps->tcps_keepalive_abort_interval_low || 10263 *i1 > 10264 tcps->tcps_keepalive_abort_interval_high) { 10265 *outlenp = 0; 10266 return (EINVAL); 10267 } 10268 tcp->tcp_ka_abort_thres = *i1; 10269 } 10270 break; 10271 case TCP_CORK: 10272 if (!checkonly) { 10273 /* 10274 * if tcp->tcp_cork was set and is now 10275 * being unset, we have to make sure that 10276 * the remaining data gets sent out. Also 10277 * unset tcp->tcp_cork so that tcp_wput_data() 10278 * can send data even if it is less than mss 10279 */ 10280 if (tcp->tcp_cork && onoff == 0 && 10281 tcp->tcp_unsent > 0) { 10282 tcp->tcp_cork = B_FALSE; 10283 tcp_wput_data(tcp, NULL, B_FALSE); 10284 } 10285 tcp->tcp_cork = onoff; 10286 } 10287 break; 10288 default: 10289 *outlenp = 0; 10290 return (EINVAL); 10291 } 10292 break; 10293 case IPPROTO_IP: 10294 if (tcp->tcp_family != AF_INET) { 10295 *outlenp = 0; 10296 return (ENOPROTOOPT); 10297 } 10298 switch (name) { 10299 case IP_OPTIONS: 10300 case T_IP_OPTIONS: 10301 reterr = tcp_opt_set_header(tcp, checkonly, 10302 invalp, inlen); 10303 if (reterr) { 10304 *outlenp = 0; 10305 return (reterr); 10306 } 10307 /* OK return - copy input buffer into output buffer */ 10308 if (invalp != outvalp) { 10309 /* don't trust bcopy for identical src/dst */ 10310 bcopy(invalp, outvalp, inlen); 10311 } 10312 *outlenp = inlen; 10313 return (0); 10314 case IP_TOS: 10315 case T_IP_TOS: 10316 if (!checkonly) { 10317 tcp->tcp_ipha->ipha_type_of_service = 10318 (uchar_t)*i1; 10319 tcp->tcp_tos = (uchar_t)*i1; 10320 } 10321 break; 10322 case IP_TTL: 10323 if (!checkonly) { 10324 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10325 tcp->tcp_ttl = (uchar_t)*i1; 10326 } 10327 break; 10328 case IP_BOUND_IF: 10329 case IP_NEXTHOP: 10330 /* Handled at the IP level */ 10331 return (-EINVAL); 10332 case IP_SEC_OPT: 10333 /* 10334 * We should not allow policy setting after 10335 * we start listening for connections. 10336 */ 10337 if (tcp->tcp_state == TCPS_LISTEN) { 10338 return (EINVAL); 10339 } else { 10340 /* Handled at the IP level */ 10341 return (-EINVAL); 10342 } 10343 default: 10344 *outlenp = 0; 10345 return (EINVAL); 10346 } 10347 break; 10348 case IPPROTO_IPV6: { 10349 ip6_pkt_t *ipp; 10350 10351 /* 10352 * IPPROTO_IPV6 options are only supported for sockets 10353 * that are using IPv6 on the wire. 10354 */ 10355 if (tcp->tcp_ipversion != IPV6_VERSION) { 10356 *outlenp = 0; 10357 return (ENOPROTOOPT); 10358 } 10359 /* 10360 * Only sticky options; no ancillary data 10361 */ 10362 ipp = &tcp->tcp_sticky_ipp; 10363 10364 switch (name) { 10365 case IPV6_UNICAST_HOPS: 10366 /* -1 means use default */ 10367 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10368 *outlenp = 0; 10369 return (EINVAL); 10370 } 10371 if (!checkonly) { 10372 if (*i1 == -1) { 10373 tcp->tcp_ip6h->ip6_hops = 10374 ipp->ipp_unicast_hops = 10375 (uint8_t)tcps->tcps_ipv6_hoplimit; 10376 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10377 /* Pass modified value to IP. */ 10378 *i1 = tcp->tcp_ip6h->ip6_hops; 10379 } else { 10380 tcp->tcp_ip6h->ip6_hops = 10381 ipp->ipp_unicast_hops = 10382 (uint8_t)*i1; 10383 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10384 } 10385 reterr = tcp_build_hdrs(tcp); 10386 if (reterr != 0) 10387 return (reterr); 10388 } 10389 break; 10390 case IPV6_BOUND_IF: 10391 if (!checkonly) { 10392 tcp->tcp_bound_if = *i1; 10393 PASS_OPT_TO_IP(connp); 10394 } 10395 break; 10396 /* 10397 * Set boolean switches for ancillary data delivery 10398 */ 10399 case IPV6_RECVPKTINFO: 10400 if (!checkonly) { 10401 if (onoff) 10402 tcp->tcp_ipv6_recvancillary |= 10403 TCP_IPV6_RECVPKTINFO; 10404 else 10405 tcp->tcp_ipv6_recvancillary &= 10406 ~TCP_IPV6_RECVPKTINFO; 10407 /* Force it to be sent up with the next msg */ 10408 tcp->tcp_recvifindex = 0; 10409 PASS_OPT_TO_IP(connp); 10410 } 10411 break; 10412 case IPV6_RECVTCLASS: 10413 if (!checkonly) { 10414 if (onoff) 10415 tcp->tcp_ipv6_recvancillary |= 10416 TCP_IPV6_RECVTCLASS; 10417 else 10418 tcp->tcp_ipv6_recvancillary &= 10419 ~TCP_IPV6_RECVTCLASS; 10420 PASS_OPT_TO_IP(connp); 10421 } 10422 break; 10423 case IPV6_RECVHOPLIMIT: 10424 if (!checkonly) { 10425 if (onoff) 10426 tcp->tcp_ipv6_recvancillary |= 10427 TCP_IPV6_RECVHOPLIMIT; 10428 else 10429 tcp->tcp_ipv6_recvancillary &= 10430 ~TCP_IPV6_RECVHOPLIMIT; 10431 /* Force it to be sent up with the next msg */ 10432 tcp->tcp_recvhops = 0xffffffffU; 10433 PASS_OPT_TO_IP(connp); 10434 } 10435 break; 10436 case IPV6_RECVHOPOPTS: 10437 if (!checkonly) { 10438 if (onoff) 10439 tcp->tcp_ipv6_recvancillary |= 10440 TCP_IPV6_RECVHOPOPTS; 10441 else 10442 tcp->tcp_ipv6_recvancillary &= 10443 ~TCP_IPV6_RECVHOPOPTS; 10444 PASS_OPT_TO_IP(connp); 10445 } 10446 break; 10447 case IPV6_RECVDSTOPTS: 10448 if (!checkonly) { 10449 if (onoff) 10450 tcp->tcp_ipv6_recvancillary |= 10451 TCP_IPV6_RECVDSTOPTS; 10452 else 10453 tcp->tcp_ipv6_recvancillary &= 10454 ~TCP_IPV6_RECVDSTOPTS; 10455 PASS_OPT_TO_IP(connp); 10456 } 10457 break; 10458 case _OLD_IPV6_RECVDSTOPTS: 10459 if (!checkonly) { 10460 if (onoff) 10461 tcp->tcp_ipv6_recvancillary |= 10462 TCP_OLD_IPV6_RECVDSTOPTS; 10463 else 10464 tcp->tcp_ipv6_recvancillary &= 10465 ~TCP_OLD_IPV6_RECVDSTOPTS; 10466 } 10467 break; 10468 case IPV6_RECVRTHDR: 10469 if (!checkonly) { 10470 if (onoff) 10471 tcp->tcp_ipv6_recvancillary |= 10472 TCP_IPV6_RECVRTHDR; 10473 else 10474 tcp->tcp_ipv6_recvancillary &= 10475 ~TCP_IPV6_RECVRTHDR; 10476 PASS_OPT_TO_IP(connp); 10477 } 10478 break; 10479 case IPV6_RECVRTHDRDSTOPTS: 10480 if (!checkonly) { 10481 if (onoff) 10482 tcp->tcp_ipv6_recvancillary |= 10483 TCP_IPV6_RECVRTDSTOPTS; 10484 else 10485 tcp->tcp_ipv6_recvancillary &= 10486 ~TCP_IPV6_RECVRTDSTOPTS; 10487 PASS_OPT_TO_IP(connp); 10488 } 10489 break; 10490 case IPV6_PKTINFO: 10491 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10492 return (EINVAL); 10493 if (checkonly) 10494 break; 10495 10496 if (inlen == 0) { 10497 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10498 } else { 10499 struct in6_pktinfo *pkti; 10500 10501 pkti = (struct in6_pktinfo *)invalp; 10502 /* 10503 * RFC 3542 states that ipi6_addr must be 10504 * the unspecified address when setting the 10505 * IPV6_PKTINFO sticky socket option on a 10506 * TCP socket. 10507 */ 10508 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10509 return (EINVAL); 10510 /* 10511 * IP will validate the source address and 10512 * interface index. 10513 */ 10514 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10515 reterr = ip_set_options(tcp->tcp_connp, 10516 level, name, invalp, inlen, cr); 10517 } else { 10518 reterr = ip6_set_pktinfo(cr, 10519 tcp->tcp_connp, pkti, mblk); 10520 } 10521 if (reterr != 0) 10522 return (reterr); 10523 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10524 ipp->ipp_addr = pkti->ipi6_addr; 10525 if (ipp->ipp_ifindex != 0) 10526 ipp->ipp_fields |= IPPF_IFINDEX; 10527 else 10528 ipp->ipp_fields &= ~IPPF_IFINDEX; 10529 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10530 ipp->ipp_fields |= IPPF_ADDR; 10531 else 10532 ipp->ipp_fields &= ~IPPF_ADDR; 10533 } 10534 reterr = tcp_build_hdrs(tcp); 10535 if (reterr != 0) 10536 return (reterr); 10537 break; 10538 case IPV6_TCLASS: 10539 if (inlen != 0 && inlen != sizeof (int)) 10540 return (EINVAL); 10541 if (checkonly) 10542 break; 10543 10544 if (inlen == 0) { 10545 ipp->ipp_fields &= ~IPPF_TCLASS; 10546 } else { 10547 if (*i1 > 255 || *i1 < -1) 10548 return (EINVAL); 10549 if (*i1 == -1) { 10550 ipp->ipp_tclass = 0; 10551 *i1 = 0; 10552 } else { 10553 ipp->ipp_tclass = *i1; 10554 } 10555 ipp->ipp_fields |= IPPF_TCLASS; 10556 } 10557 reterr = tcp_build_hdrs(tcp); 10558 if (reterr != 0) 10559 return (reterr); 10560 break; 10561 case IPV6_NEXTHOP: 10562 /* 10563 * IP will verify that the nexthop is reachable 10564 * and fail for sticky options. 10565 */ 10566 if (inlen != 0 && inlen != sizeof (sin6_t)) 10567 return (EINVAL); 10568 if (checkonly) 10569 break; 10570 10571 if (inlen == 0) { 10572 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10573 } else { 10574 sin6_t *sin6 = (sin6_t *)invalp; 10575 10576 if (sin6->sin6_family != AF_INET6) 10577 return (EAFNOSUPPORT); 10578 if (IN6_IS_ADDR_V4MAPPED( 10579 &sin6->sin6_addr)) 10580 return (EADDRNOTAVAIL); 10581 ipp->ipp_nexthop = sin6->sin6_addr; 10582 if (!IN6_IS_ADDR_UNSPECIFIED( 10583 &ipp->ipp_nexthop)) 10584 ipp->ipp_fields |= IPPF_NEXTHOP; 10585 else 10586 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10587 } 10588 reterr = tcp_build_hdrs(tcp); 10589 if (reterr != 0) 10590 return (reterr); 10591 PASS_OPT_TO_IP(connp); 10592 break; 10593 case IPV6_HOPOPTS: { 10594 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10595 10596 /* 10597 * Sanity checks - minimum size, size a multiple of 10598 * eight bytes, and matching size passed in. 10599 */ 10600 if (inlen != 0 && 10601 inlen != (8 * (hopts->ip6h_len + 1))) 10602 return (EINVAL); 10603 10604 if (checkonly) 10605 break; 10606 10607 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10608 (uchar_t **)&ipp->ipp_hopopts, 10609 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10610 if (reterr != 0) 10611 return (reterr); 10612 if (ipp->ipp_hopoptslen == 0) 10613 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10614 else 10615 ipp->ipp_fields |= IPPF_HOPOPTS; 10616 reterr = tcp_build_hdrs(tcp); 10617 if (reterr != 0) 10618 return (reterr); 10619 break; 10620 } 10621 case IPV6_RTHDRDSTOPTS: { 10622 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10623 10624 /* 10625 * Sanity checks - minimum size, size a multiple of 10626 * eight bytes, and matching size passed in. 10627 */ 10628 if (inlen != 0 && 10629 inlen != (8 * (dopts->ip6d_len + 1))) 10630 return (EINVAL); 10631 10632 if (checkonly) 10633 break; 10634 10635 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10636 (uchar_t **)&ipp->ipp_rtdstopts, 10637 &ipp->ipp_rtdstoptslen, 0); 10638 if (reterr != 0) 10639 return (reterr); 10640 if (ipp->ipp_rtdstoptslen == 0) 10641 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10642 else 10643 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10644 reterr = tcp_build_hdrs(tcp); 10645 if (reterr != 0) 10646 return (reterr); 10647 break; 10648 } 10649 case IPV6_DSTOPTS: { 10650 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10651 10652 /* 10653 * Sanity checks - minimum size, size a multiple of 10654 * eight bytes, and matching size passed in. 10655 */ 10656 if (inlen != 0 && 10657 inlen != (8 * (dopts->ip6d_len + 1))) 10658 return (EINVAL); 10659 10660 if (checkonly) 10661 break; 10662 10663 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10664 (uchar_t **)&ipp->ipp_dstopts, 10665 &ipp->ipp_dstoptslen, 0); 10666 if (reterr != 0) 10667 return (reterr); 10668 if (ipp->ipp_dstoptslen == 0) 10669 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10670 else 10671 ipp->ipp_fields |= IPPF_DSTOPTS; 10672 reterr = tcp_build_hdrs(tcp); 10673 if (reterr != 0) 10674 return (reterr); 10675 break; 10676 } 10677 case IPV6_RTHDR: { 10678 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10679 10680 /* 10681 * Sanity checks - minimum size, size a multiple of 10682 * eight bytes, and matching size passed in. 10683 */ 10684 if (inlen != 0 && 10685 inlen != (8 * (rt->ip6r_len + 1))) 10686 return (EINVAL); 10687 10688 if (checkonly) 10689 break; 10690 10691 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10692 (uchar_t **)&ipp->ipp_rthdr, 10693 &ipp->ipp_rthdrlen, 0); 10694 if (reterr != 0) 10695 return (reterr); 10696 if (ipp->ipp_rthdrlen == 0) 10697 ipp->ipp_fields &= ~IPPF_RTHDR; 10698 else 10699 ipp->ipp_fields |= IPPF_RTHDR; 10700 reterr = tcp_build_hdrs(tcp); 10701 if (reterr != 0) 10702 return (reterr); 10703 break; 10704 } 10705 case IPV6_V6ONLY: 10706 if (!checkonly) { 10707 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10708 } 10709 break; 10710 case IPV6_USE_MIN_MTU: 10711 if (inlen != sizeof (int)) 10712 return (EINVAL); 10713 10714 if (*i1 < -1 || *i1 > 1) 10715 return (EINVAL); 10716 10717 if (checkonly) 10718 break; 10719 10720 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10721 ipp->ipp_use_min_mtu = *i1; 10722 break; 10723 case IPV6_BOUND_PIF: 10724 /* Handled at the IP level */ 10725 return (-EINVAL); 10726 case IPV6_SEC_OPT: 10727 /* 10728 * We should not allow policy setting after 10729 * we start listening for connections. 10730 */ 10731 if (tcp->tcp_state == TCPS_LISTEN) { 10732 return (EINVAL); 10733 } else { 10734 /* Handled at the IP level */ 10735 return (-EINVAL); 10736 } 10737 case IPV6_SRC_PREFERENCES: 10738 if (inlen != sizeof (uint32_t)) 10739 return (EINVAL); 10740 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10741 *(uint32_t *)invalp); 10742 if (reterr != 0) { 10743 *outlenp = 0; 10744 return (reterr); 10745 } 10746 break; 10747 default: 10748 *outlenp = 0; 10749 return (EINVAL); 10750 } 10751 break; 10752 } /* end IPPROTO_IPV6 */ 10753 default: 10754 *outlenp = 0; 10755 return (EINVAL); 10756 } 10757 /* 10758 * Common case of OK return with outval same as inval 10759 */ 10760 if (invalp != outvalp) { 10761 /* don't trust bcopy for identical src/dst */ 10762 (void) bcopy(invalp, outvalp, inlen); 10763 } 10764 *outlenp = inlen; 10765 return (0); 10766 } 10767 10768 /* ARGSUSED */ 10769 int 10770 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10771 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10772 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10773 { 10774 conn_t *connp = Q_TO_CONN(q); 10775 10776 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10777 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10778 } 10779 10780 int 10781 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10782 const void *optvalp, socklen_t optlen, cred_t *cr) 10783 { 10784 conn_t *connp = (conn_t *)proto_handle; 10785 squeue_t *sqp = connp->conn_sqp; 10786 int error; 10787 10788 /* 10789 * Entering the squeue synchronously can result in a context switch, 10790 * which can cause a rather sever performance degradation. So we try to 10791 * handle whatever options we can without entering the squeue. 10792 */ 10793 if (level == IPPROTO_TCP) { 10794 switch (option_name) { 10795 case TCP_NODELAY: 10796 if (optlen != sizeof (int32_t)) 10797 return (EINVAL); 10798 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10799 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10800 connp->conn_tcp->tcp_mss; 10801 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10802 return (0); 10803 default: 10804 break; 10805 } 10806 } 10807 10808 error = squeue_synch_enter(sqp, connp, 0); 10809 if (error == ENOMEM) { 10810 return (ENOMEM); 10811 } 10812 10813 error = proto_opt_check(level, option_name, optlen, NULL, 10814 tcp_opt_obj.odb_opt_des_arr, 10815 tcp_opt_obj.odb_opt_arr_cnt, 10816 tcp_opt_obj.odb_topmost_tpiprovider, 10817 B_TRUE, B_FALSE, cr); 10818 10819 if (error != 0) { 10820 if (error < 0) { 10821 error = proto_tlitosyserr(-error); 10822 } 10823 squeue_synch_exit(sqp, connp); 10824 return (error); 10825 } 10826 10827 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10828 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10829 NULL, cr, NULL); 10830 squeue_synch_exit(sqp, connp); 10831 10832 if (error < 0) { 10833 /* 10834 * Pass on to ip 10835 */ 10836 error = ip_set_options(connp, level, option_name, optvalp, 10837 optlen, cr); 10838 } 10839 return (error); 10840 } 10841 10842 /* 10843 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10844 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10845 * headers, and the maximum size tcp header (to avoid reallocation 10846 * on the fly for additional tcp options). 10847 * Returns failure if can't allocate memory. 10848 */ 10849 static int 10850 tcp_build_hdrs(tcp_t *tcp) 10851 { 10852 char *hdrs; 10853 uint_t hdrs_len; 10854 ip6i_t *ip6i; 10855 char buf[TCP_MAX_HDR_LENGTH]; 10856 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10857 in6_addr_t src, dst; 10858 tcp_stack_t *tcps = tcp->tcp_tcps; 10859 conn_t *connp = tcp->tcp_connp; 10860 10861 /* 10862 * save the existing tcp header and source/dest IP addresses 10863 */ 10864 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10865 src = tcp->tcp_ip6h->ip6_src; 10866 dst = tcp->tcp_ip6h->ip6_dst; 10867 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10868 ASSERT(hdrs_len != 0); 10869 if (hdrs_len > tcp->tcp_iphc_len) { 10870 /* Need to reallocate */ 10871 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10872 if (hdrs == NULL) 10873 return (ENOMEM); 10874 if (tcp->tcp_iphc != NULL) { 10875 if (tcp->tcp_hdr_grown) { 10876 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10877 } else { 10878 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10879 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10880 } 10881 tcp->tcp_iphc_len = 0; 10882 } 10883 ASSERT(tcp->tcp_iphc_len == 0); 10884 tcp->tcp_iphc = hdrs; 10885 tcp->tcp_iphc_len = hdrs_len; 10886 tcp->tcp_hdr_grown = B_TRUE; 10887 } 10888 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10889 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10890 10891 /* Set header fields not in ipp */ 10892 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10893 ip6i = (ip6i_t *)tcp->tcp_iphc; 10894 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10895 } else { 10896 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10897 } 10898 /* 10899 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10900 * 10901 * tcp->tcp_tcp_hdr_len doesn't change here. 10902 */ 10903 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10904 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10905 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10906 10907 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10908 10909 tcp->tcp_ip6h->ip6_src = src; 10910 tcp->tcp_ip6h->ip6_dst = dst; 10911 10912 /* 10913 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10914 * the default value for TCP. 10915 */ 10916 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10917 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10918 10919 /* 10920 * If we're setting extension headers after a connection 10921 * has been established, and if we have a routing header 10922 * among the extension headers, call ip_massage_options_v6 to 10923 * manipulate the routing header/ip6_dst set the checksum 10924 * difference in the tcp header template. 10925 * (This happens in tcp_connect_ipv6 if the routing header 10926 * is set prior to the connect.) 10927 * Set the tcp_sum to zero first in case we've cleared a 10928 * routing header or don't have one at all. 10929 */ 10930 tcp->tcp_sum = 0; 10931 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10932 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10933 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10934 (uint8_t *)tcp->tcp_tcph); 10935 if (rth != NULL) { 10936 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10937 rth, tcps->tcps_netstack); 10938 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10939 (tcp->tcp_sum >> 16)); 10940 } 10941 } 10942 10943 /* Try to get everything in a single mblk */ 10944 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10945 hdrs_len + tcps->tcps_wroff_xtra); 10946 return (0); 10947 } 10948 10949 /* 10950 * Transfer any source route option from ipha to buf/dst in reversed form. 10951 */ 10952 static int 10953 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10954 { 10955 ipoptp_t opts; 10956 uchar_t *opt; 10957 uint8_t optval; 10958 uint8_t optlen; 10959 uint32_t len = 0; 10960 10961 for (optval = ipoptp_first(&opts, ipha); 10962 optval != IPOPT_EOL; 10963 optval = ipoptp_next(&opts)) { 10964 opt = opts.ipoptp_cur; 10965 optlen = opts.ipoptp_len; 10966 switch (optval) { 10967 int off1, off2; 10968 case IPOPT_SSRR: 10969 case IPOPT_LSRR: 10970 10971 /* Reverse source route */ 10972 /* 10973 * First entry should be the next to last one in the 10974 * current source route (the last entry is our 10975 * address.) 10976 * The last entry should be the final destination. 10977 */ 10978 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10979 buf[IPOPT_OLEN] = (uint8_t)optlen; 10980 off1 = IPOPT_MINOFF_SR - 1; 10981 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10982 if (off2 < 0) { 10983 /* No entries in source route */ 10984 break; 10985 } 10986 bcopy(opt + off2, dst, IP_ADDR_LEN); 10987 /* 10988 * Note: use src since ipha has not had its src 10989 * and dst reversed (it is in the state it was 10990 * received. 10991 */ 10992 bcopy(&ipha->ipha_src, buf + off2, 10993 IP_ADDR_LEN); 10994 off2 -= IP_ADDR_LEN; 10995 10996 while (off2 > 0) { 10997 bcopy(opt + off2, buf + off1, 10998 IP_ADDR_LEN); 10999 off1 += IP_ADDR_LEN; 11000 off2 -= IP_ADDR_LEN; 11001 } 11002 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11003 buf += optlen; 11004 len += optlen; 11005 break; 11006 } 11007 } 11008 done: 11009 /* Pad the resulting options */ 11010 while (len & 0x3) { 11011 *buf++ = IPOPT_EOL; 11012 len++; 11013 } 11014 return (len); 11015 } 11016 11017 11018 /* 11019 * Extract and revert a source route from ipha (if any) 11020 * and then update the relevant fields in both tcp_t and the standard header. 11021 */ 11022 static void 11023 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11024 { 11025 char buf[TCP_MAX_HDR_LENGTH]; 11026 uint_t tcph_len; 11027 int len; 11028 11029 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11030 len = IPH_HDR_LENGTH(ipha); 11031 if (len == IP_SIMPLE_HDR_LENGTH) 11032 /* Nothing to do */ 11033 return; 11034 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11035 (len & 0x3)) 11036 return; 11037 11038 tcph_len = tcp->tcp_tcp_hdr_len; 11039 bcopy(tcp->tcp_tcph, buf, tcph_len); 11040 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11041 (tcp->tcp_ipha->ipha_dst & 0xffff); 11042 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11043 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11044 len += IP_SIMPLE_HDR_LENGTH; 11045 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11046 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11047 if ((int)tcp->tcp_sum < 0) 11048 tcp->tcp_sum--; 11049 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11050 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11051 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11052 bcopy(buf, tcp->tcp_tcph, tcph_len); 11053 tcp->tcp_ip_hdr_len = len; 11054 tcp->tcp_ipha->ipha_version_and_hdr_length = 11055 (IP_VERSION << 4) | (len >> 2); 11056 len += tcph_len; 11057 tcp->tcp_hdr_len = len; 11058 } 11059 11060 /* 11061 * Copy the standard header into its new location, 11062 * lay in the new options and then update the relevant 11063 * fields in both tcp_t and the standard header. 11064 */ 11065 static int 11066 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11067 { 11068 uint_t tcph_len; 11069 uint8_t *ip_optp; 11070 tcph_t *new_tcph; 11071 tcp_stack_t *tcps = tcp->tcp_tcps; 11072 conn_t *connp = tcp->tcp_connp; 11073 11074 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11075 return (EINVAL); 11076 11077 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11078 return (EINVAL); 11079 11080 if (checkonly) { 11081 /* 11082 * do not really set, just pretend to - T_CHECK 11083 */ 11084 return (0); 11085 } 11086 11087 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11088 if (tcp->tcp_label_len > 0) { 11089 int padlen; 11090 uint8_t opt; 11091 11092 /* convert list termination to no-ops */ 11093 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11094 ip_optp += ip_optp[IPOPT_OLEN]; 11095 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11096 while (--padlen >= 0) 11097 *ip_optp++ = opt; 11098 } 11099 tcph_len = tcp->tcp_tcp_hdr_len; 11100 new_tcph = (tcph_t *)(ip_optp + len); 11101 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11102 tcp->tcp_tcph = new_tcph; 11103 bcopy(ptr, ip_optp, len); 11104 11105 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11106 11107 tcp->tcp_ip_hdr_len = len; 11108 tcp->tcp_ipha->ipha_version_and_hdr_length = 11109 (IP_VERSION << 4) | (len >> 2); 11110 tcp->tcp_hdr_len = len + tcph_len; 11111 if (!TCP_IS_DETACHED(tcp)) { 11112 /* Always allocate room for all options. */ 11113 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11114 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11115 } 11116 return (0); 11117 } 11118 11119 /* Get callback routine passed to nd_load by tcp_param_register */ 11120 /* ARGSUSED */ 11121 static int 11122 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11123 { 11124 tcpparam_t *tcppa = (tcpparam_t *)cp; 11125 11126 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11127 return (0); 11128 } 11129 11130 /* 11131 * Walk through the param array specified registering each element with the 11132 * named dispatch handler. 11133 */ 11134 static boolean_t 11135 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11136 { 11137 for (; cnt-- > 0; tcppa++) { 11138 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11139 if (!nd_load(ndp, tcppa->tcp_param_name, 11140 tcp_param_get, tcp_param_set, 11141 (caddr_t)tcppa)) { 11142 nd_free(ndp); 11143 return (B_FALSE); 11144 } 11145 } 11146 } 11147 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11148 KM_SLEEP); 11149 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11150 sizeof (tcpparam_t)); 11151 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11152 tcp_param_get, tcp_param_set_aligned, 11153 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11154 nd_free(ndp); 11155 return (B_FALSE); 11156 } 11157 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11158 KM_SLEEP); 11159 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11160 sizeof (tcpparam_t)); 11161 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11162 tcp_param_get, tcp_param_set_aligned, 11163 (caddr_t)tcps->tcps_mdt_head_param)) { 11164 nd_free(ndp); 11165 return (B_FALSE); 11166 } 11167 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11168 KM_SLEEP); 11169 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11170 sizeof (tcpparam_t)); 11171 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11172 tcp_param_get, tcp_param_set_aligned, 11173 (caddr_t)tcps->tcps_mdt_tail_param)) { 11174 nd_free(ndp); 11175 return (B_FALSE); 11176 } 11177 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11178 KM_SLEEP); 11179 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11180 sizeof (tcpparam_t)); 11181 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11182 tcp_param_get, tcp_param_set_aligned, 11183 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11184 nd_free(ndp); 11185 return (B_FALSE); 11186 } 11187 if (!nd_load(ndp, "tcp_extra_priv_ports", 11188 tcp_extra_priv_ports_get, NULL, NULL)) { 11189 nd_free(ndp); 11190 return (B_FALSE); 11191 } 11192 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11193 NULL, tcp_extra_priv_ports_add, NULL)) { 11194 nd_free(ndp); 11195 return (B_FALSE); 11196 } 11197 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11198 NULL, tcp_extra_priv_ports_del, NULL)) { 11199 nd_free(ndp); 11200 return (B_FALSE); 11201 } 11202 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11203 NULL)) { 11204 nd_free(ndp); 11205 return (B_FALSE); 11206 } 11207 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11208 NULL, NULL)) { 11209 nd_free(ndp); 11210 return (B_FALSE); 11211 } 11212 if (!nd_load(ndp, "tcp_listen_hash", 11213 tcp_listen_hash_report, NULL, NULL)) { 11214 nd_free(ndp); 11215 return (B_FALSE); 11216 } 11217 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11218 NULL, NULL)) { 11219 nd_free(ndp); 11220 return (B_FALSE); 11221 } 11222 if (!nd_load(ndp, "tcp_acceptor_hash", 11223 tcp_acceptor_hash_report, NULL, NULL)) { 11224 nd_free(ndp); 11225 return (B_FALSE); 11226 } 11227 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11228 tcp_1948_phrase_set, NULL)) { 11229 nd_free(ndp); 11230 return (B_FALSE); 11231 } 11232 /* 11233 * Dummy ndd variables - only to convey obsolescence information 11234 * through printing of their name (no get or set routines) 11235 * XXX Remove in future releases ? 11236 */ 11237 if (!nd_load(ndp, 11238 "tcp_close_wait_interval(obsoleted - " 11239 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11240 nd_free(ndp); 11241 return (B_FALSE); 11242 } 11243 return (B_TRUE); 11244 } 11245 11246 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11247 /* ARGSUSED */ 11248 static int 11249 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11250 cred_t *cr) 11251 { 11252 long new_value; 11253 tcpparam_t *tcppa = (tcpparam_t *)cp; 11254 11255 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11256 new_value < tcppa->tcp_param_min || 11257 new_value > tcppa->tcp_param_max) { 11258 return (EINVAL); 11259 } 11260 /* 11261 * Need to make sure new_value is a multiple of 4. If it is not, 11262 * round it up. For future 64 bit requirement, we actually make it 11263 * a multiple of 8. 11264 */ 11265 if (new_value & 0x7) { 11266 new_value = (new_value & ~0x7) + 0x8; 11267 } 11268 tcppa->tcp_param_val = new_value; 11269 return (0); 11270 } 11271 11272 /* Set callback routine passed to nd_load by tcp_param_register */ 11273 /* ARGSUSED */ 11274 static int 11275 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11276 { 11277 long new_value; 11278 tcpparam_t *tcppa = (tcpparam_t *)cp; 11279 11280 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11281 new_value < tcppa->tcp_param_min || 11282 new_value > tcppa->tcp_param_max) { 11283 return (EINVAL); 11284 } 11285 tcppa->tcp_param_val = new_value; 11286 return (0); 11287 } 11288 11289 /* 11290 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11291 * is filled, return as much as we can. The message passed in may be 11292 * multi-part, chained using b_cont. "start" is the starting sequence 11293 * number for this piece. 11294 */ 11295 static mblk_t * 11296 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11297 { 11298 uint32_t end; 11299 mblk_t *mp1; 11300 mblk_t *mp2; 11301 mblk_t *next_mp; 11302 uint32_t u1; 11303 tcp_stack_t *tcps = tcp->tcp_tcps; 11304 11305 /* Walk through all the new pieces. */ 11306 do { 11307 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11308 (uintptr_t)INT_MAX); 11309 end = start + (int)(mp->b_wptr - mp->b_rptr); 11310 next_mp = mp->b_cont; 11311 if (start == end) { 11312 /* Empty. Blast it. */ 11313 freeb(mp); 11314 continue; 11315 } 11316 mp->b_cont = NULL; 11317 TCP_REASS_SET_SEQ(mp, start); 11318 TCP_REASS_SET_END(mp, end); 11319 mp1 = tcp->tcp_reass_tail; 11320 if (!mp1) { 11321 tcp->tcp_reass_tail = mp; 11322 tcp->tcp_reass_head = mp; 11323 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11324 UPDATE_MIB(&tcps->tcps_mib, 11325 tcpInDataUnorderBytes, end - start); 11326 continue; 11327 } 11328 /* New stuff completely beyond tail? */ 11329 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11330 /* Link it on end. */ 11331 mp1->b_cont = mp; 11332 tcp->tcp_reass_tail = mp; 11333 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11334 UPDATE_MIB(&tcps->tcps_mib, 11335 tcpInDataUnorderBytes, end - start); 11336 continue; 11337 } 11338 mp1 = tcp->tcp_reass_head; 11339 u1 = TCP_REASS_SEQ(mp1); 11340 /* New stuff at the front? */ 11341 if (SEQ_LT(start, u1)) { 11342 /* Yes... Check for overlap. */ 11343 mp->b_cont = mp1; 11344 tcp->tcp_reass_head = mp; 11345 tcp_reass_elim_overlap(tcp, mp); 11346 continue; 11347 } 11348 /* 11349 * The new piece fits somewhere between the head and tail. 11350 * We find our slot, where mp1 precedes us and mp2 trails. 11351 */ 11352 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11353 u1 = TCP_REASS_SEQ(mp2); 11354 if (SEQ_LEQ(start, u1)) 11355 break; 11356 } 11357 /* Link ourselves in */ 11358 mp->b_cont = mp2; 11359 mp1->b_cont = mp; 11360 11361 /* Trim overlap with following mblk(s) first */ 11362 tcp_reass_elim_overlap(tcp, mp); 11363 11364 /* Trim overlap with preceding mblk */ 11365 tcp_reass_elim_overlap(tcp, mp1); 11366 11367 } while (start = end, mp = next_mp); 11368 mp1 = tcp->tcp_reass_head; 11369 /* Anything ready to go? */ 11370 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11371 return (NULL); 11372 /* Eat what we can off the queue */ 11373 for (;;) { 11374 mp = mp1->b_cont; 11375 end = TCP_REASS_END(mp1); 11376 TCP_REASS_SET_SEQ(mp1, 0); 11377 TCP_REASS_SET_END(mp1, 0); 11378 if (!mp) { 11379 tcp->tcp_reass_tail = NULL; 11380 break; 11381 } 11382 if (end != TCP_REASS_SEQ(mp)) { 11383 mp1->b_cont = NULL; 11384 break; 11385 } 11386 mp1 = mp; 11387 } 11388 mp1 = tcp->tcp_reass_head; 11389 tcp->tcp_reass_head = mp; 11390 return (mp1); 11391 } 11392 11393 /* Eliminate any overlap that mp may have over later mblks */ 11394 static void 11395 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11396 { 11397 uint32_t end; 11398 mblk_t *mp1; 11399 uint32_t u1; 11400 tcp_stack_t *tcps = tcp->tcp_tcps; 11401 11402 end = TCP_REASS_END(mp); 11403 while ((mp1 = mp->b_cont) != NULL) { 11404 u1 = TCP_REASS_SEQ(mp1); 11405 if (!SEQ_GT(end, u1)) 11406 break; 11407 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11408 mp->b_wptr -= end - u1; 11409 TCP_REASS_SET_END(mp, u1); 11410 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11411 UPDATE_MIB(&tcps->tcps_mib, 11412 tcpInDataPartDupBytes, end - u1); 11413 break; 11414 } 11415 mp->b_cont = mp1->b_cont; 11416 TCP_REASS_SET_SEQ(mp1, 0); 11417 TCP_REASS_SET_END(mp1, 0); 11418 freeb(mp1); 11419 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11420 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11421 } 11422 if (!mp1) 11423 tcp->tcp_reass_tail = mp; 11424 } 11425 11426 static uint_t 11427 tcp_rwnd_reopen(tcp_t *tcp) 11428 { 11429 uint_t ret = 0; 11430 uint_t thwin; 11431 11432 /* Learn the latest rwnd information that we sent to the other side. */ 11433 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11434 << tcp->tcp_rcv_ws; 11435 /* This is peer's calculated send window (our receive window). */ 11436 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11437 /* 11438 * Increase the receive window to max. But we need to do receiver 11439 * SWS avoidance. This means that we need to check the increase of 11440 * of receive window is at least 1 MSS. 11441 */ 11442 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11443 /* 11444 * If the window that the other side knows is less than max 11445 * deferred acks segments, send an update immediately. 11446 */ 11447 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11448 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11449 ret = TH_ACK_NEEDED; 11450 } 11451 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11452 } 11453 return (ret); 11454 } 11455 11456 /* 11457 * Send up all messages queued on tcp_rcv_list. 11458 */ 11459 static uint_t 11460 tcp_rcv_drain(tcp_t *tcp) 11461 { 11462 mblk_t *mp; 11463 uint_t ret = 0; 11464 #ifdef DEBUG 11465 uint_t cnt = 0; 11466 #endif 11467 queue_t *q = tcp->tcp_rq; 11468 11469 /* Can't drain on an eager connection */ 11470 if (tcp->tcp_listener != NULL) 11471 return (ret); 11472 11473 /* Can't be a non-STREAMS connection or sodirect enabled */ 11474 ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp)); 11475 11476 /* No need for the push timer now. */ 11477 if (tcp->tcp_push_tid != 0) { 11478 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11479 tcp->tcp_push_tid = 0; 11480 } 11481 11482 /* 11483 * Handle two cases here: we are currently fused or we were 11484 * previously fused and have some urgent data to be delivered 11485 * upstream. The latter happens because we either ran out of 11486 * memory or were detached and therefore sending the SIGURG was 11487 * deferred until this point. In either case we pass control 11488 * over to tcp_fuse_rcv_drain() since it may need to complete 11489 * some work. 11490 */ 11491 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11492 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11493 tcp->tcp_fused_sigurg_mp != NULL); 11494 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11495 &tcp->tcp_fused_sigurg_mp)) 11496 return (ret); 11497 } 11498 11499 while ((mp = tcp->tcp_rcv_list) != NULL) { 11500 tcp->tcp_rcv_list = mp->b_next; 11501 mp->b_next = NULL; 11502 #ifdef DEBUG 11503 cnt += msgdsize(mp); 11504 #endif 11505 /* Does this need SSL processing first? */ 11506 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11507 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11508 mblk_t *, mp); 11509 tcp_kssl_input(tcp, mp); 11510 continue; 11511 } 11512 putnext(q, mp); 11513 } 11514 #ifdef DEBUG 11515 ASSERT(cnt == tcp->tcp_rcv_cnt); 11516 #endif 11517 tcp->tcp_rcv_last_head = NULL; 11518 tcp->tcp_rcv_last_tail = NULL; 11519 tcp->tcp_rcv_cnt = 0; 11520 11521 if (canputnext(q)) 11522 return (tcp_rwnd_reopen(tcp)); 11523 11524 return (ret); 11525 } 11526 11527 /* 11528 * Queue data on tcp_rcv_list which is a b_next chain. 11529 * tcp_rcv_last_head/tail is the last element of this chain. 11530 * Each element of the chain is a b_cont chain. 11531 * 11532 * M_DATA messages are added to the current element. 11533 * Other messages are added as new (b_next) elements. 11534 */ 11535 void 11536 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11537 { 11538 ASSERT(seg_len == msgdsize(mp)); 11539 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11540 11541 if (tcp->tcp_rcv_list == NULL) { 11542 ASSERT(tcp->tcp_rcv_last_head == NULL); 11543 tcp->tcp_rcv_list = mp; 11544 tcp->tcp_rcv_last_head = mp; 11545 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11546 tcp->tcp_rcv_last_tail->b_cont = mp; 11547 } else { 11548 tcp->tcp_rcv_last_head->b_next = mp; 11549 tcp->tcp_rcv_last_head = mp; 11550 } 11551 11552 while (mp->b_cont) 11553 mp = mp->b_cont; 11554 11555 tcp->tcp_rcv_last_tail = mp; 11556 tcp->tcp_rcv_cnt += seg_len; 11557 tcp->tcp_rwnd -= seg_len; 11558 } 11559 11560 /* 11561 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11562 * above, in addition when uioa is enabled schedule an asynchronous uio 11563 * prior to enqueuing. They implement the combinhed semantics of the 11564 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11565 * canputnext(), i.e. flow-control with backenable. 11566 * 11567 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11568 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11569 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11570 * 11571 * Must be called with sodp->sod_lockp held and will return with the lock 11572 * released. 11573 */ 11574 static uint_t 11575 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11576 { 11577 queue_t *q = tcp->tcp_rq; 11578 uint_t thwin; 11579 tcp_stack_t *tcps = tcp->tcp_tcps; 11580 uint_t ret = 0; 11581 11582 /* Can't be an eager connection */ 11583 ASSERT(tcp->tcp_listener == NULL); 11584 11585 /* Caller must have lock held */ 11586 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11587 11588 /* Sodirect mode so must not be a tcp_rcv_list */ 11589 ASSERT(tcp->tcp_rcv_list == NULL); 11590 11591 if (SOD_QFULL(sodp)) { 11592 /* Q is full, mark Q for need backenable */ 11593 SOD_QSETBE(sodp); 11594 } 11595 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11596 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11597 << tcp->tcp_rcv_ws; 11598 /* This is peer's calculated send window (our available rwnd). */ 11599 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11600 /* 11601 * Increase the receive window to max. But we need to do receiver 11602 * SWS avoidance. This means that we need to check the increase of 11603 * of receive window is at least 1 MSS. 11604 */ 11605 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11606 /* 11607 * If the window that the other side knows is less than max 11608 * deferred acks segments, send an update immediately. 11609 */ 11610 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11611 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11612 ret = TH_ACK_NEEDED; 11613 } 11614 tcp->tcp_rwnd = q->q_hiwat; 11615 } 11616 11617 if (!SOD_QEMPTY(sodp)) { 11618 /* Wakeup to socket */ 11619 sodp->sod_state &= SOD_WAKE_CLR; 11620 sodp->sod_state |= SOD_WAKE_DONE; 11621 (sodp->sod_wakeup)(sodp); 11622 /* wakeup() does the mutex_ext() */ 11623 } else { 11624 /* Q is empty, no need to wake */ 11625 sodp->sod_state &= SOD_WAKE_CLR; 11626 sodp->sod_state |= SOD_WAKE_NOT; 11627 mutex_exit(sodp->sod_lockp); 11628 } 11629 11630 /* No need for the push timer now. */ 11631 if (tcp->tcp_push_tid != 0) { 11632 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11633 tcp->tcp_push_tid = 0; 11634 } 11635 11636 return (ret); 11637 } 11638 11639 /* 11640 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11641 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11642 * to the user-land buffer and flag the mblk_t as such. 11643 * 11644 * Also, handle tcp_rwnd. 11645 */ 11646 uint_t 11647 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11648 { 11649 uioa_t *uioap = &sodp->sod_uioa; 11650 boolean_t qfull; 11651 uint_t thwin; 11652 11653 /* Can't be an eager connection */ 11654 ASSERT(tcp->tcp_listener == NULL); 11655 11656 /* Caller must have lock held */ 11657 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11658 11659 /* Sodirect mode so must not be a tcp_rcv_list */ 11660 ASSERT(tcp->tcp_rcv_list == NULL); 11661 11662 /* Passed in segment length must be equal to mblk_t chain data size */ 11663 ASSERT(seg_len == msgdsize(mp)); 11664 11665 if (DB_TYPE(mp) != M_DATA) { 11666 /* Only process M_DATA mblk_t's */ 11667 goto enq; 11668 } 11669 if (uioap->uioa_state & UIOA_ENABLED) { 11670 /* Uioa is enabled */ 11671 mblk_t *mp1 = mp; 11672 mblk_t *lmp = NULL; 11673 11674 if (seg_len > uioap->uio_resid) { 11675 /* 11676 * There isn't enough uio space for the mblk_t chain 11677 * so disable uioa such that this and any additional 11678 * mblk_t data is handled by the socket and schedule 11679 * the socket for wakeup to finish this uioa. 11680 */ 11681 uioap->uioa_state &= UIOA_CLR; 11682 uioap->uioa_state |= UIOA_FINI; 11683 if (sodp->sod_state & SOD_WAKE_NOT) { 11684 sodp->sod_state &= SOD_WAKE_CLR; 11685 sodp->sod_state |= SOD_WAKE_NEED; 11686 } 11687 goto enq; 11688 } 11689 do { 11690 uint32_t len = MBLKL(mp1); 11691 11692 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11693 /* Scheduled, mark dblk_t as such */ 11694 DB_FLAGS(mp1) |= DBLK_UIOA; 11695 } else { 11696 /* Error, turn off async processing */ 11697 uioap->uioa_state &= UIOA_CLR; 11698 uioap->uioa_state |= UIOA_FINI; 11699 break; 11700 } 11701 lmp = mp1; 11702 } while ((mp1 = mp1->b_cont) != NULL); 11703 11704 if (mp1 != NULL || uioap->uio_resid == 0) { 11705 /* 11706 * Not all mblk_t(s) uioamoved (error) or all uio 11707 * space has been consumed so schedule the socket 11708 * for wakeup to finish this uio. 11709 */ 11710 sodp->sod_state &= SOD_WAKE_CLR; 11711 sodp->sod_state |= SOD_WAKE_NEED; 11712 11713 /* Break the mblk chain if neccessary. */ 11714 if (mp1 != NULL && lmp != NULL) { 11715 mp->b_next = mp1; 11716 lmp->b_cont = NULL; 11717 } 11718 } 11719 } else if (uioap->uioa_state & UIOA_FINI) { 11720 /* 11721 * Post UIO_ENABLED waiting for socket to finish processing 11722 * so just enqueue and update tcp_rwnd. 11723 */ 11724 if (SOD_QFULL(sodp)) 11725 tcp->tcp_rwnd -= seg_len; 11726 } else if (sodp->sod_want > 0) { 11727 /* 11728 * Uioa isn't enabled but sodirect has a pending read(). 11729 */ 11730 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11731 if (sodp->sod_state & SOD_WAKE_NOT) { 11732 /* Schedule socket for wakeup */ 11733 sodp->sod_state &= SOD_WAKE_CLR; 11734 sodp->sod_state |= SOD_WAKE_NEED; 11735 } 11736 tcp->tcp_rwnd -= seg_len; 11737 } 11738 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11739 /* 11740 * No pending sodirect read() so used the default 11741 * TCP push logic to guess that a push is needed. 11742 */ 11743 if (sodp->sod_state & SOD_WAKE_NOT) { 11744 /* Schedule socket for wakeup */ 11745 sodp->sod_state &= SOD_WAKE_CLR; 11746 sodp->sod_state |= SOD_WAKE_NEED; 11747 } 11748 tcp->tcp_rwnd -= seg_len; 11749 } else { 11750 /* Just update tcp_rwnd */ 11751 tcp->tcp_rwnd -= seg_len; 11752 } 11753 enq: 11754 qfull = SOD_QFULL(sodp); 11755 11756 (sodp->sod_enqueue)(sodp, mp); 11757 11758 if (! qfull && SOD_QFULL(sodp)) { 11759 /* Wasn't QFULL, now QFULL, need back-enable */ 11760 SOD_QSETBE(sodp); 11761 } 11762 11763 /* 11764 * Check to see if remote avail swnd < mss due to delayed ACK, 11765 * first get advertised rwnd. 11766 */ 11767 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 11768 /* Minus delayed ACK count */ 11769 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11770 if (thwin < tcp->tcp_mss) { 11771 /* Remote avail swnd < mss, need ACK now */ 11772 return (TH_ACK_NEEDED); 11773 } 11774 11775 return (0); 11776 } 11777 11778 /* 11779 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11780 * 11781 * This is the default entry function into TCP on the read side. TCP is 11782 * always entered via squeue i.e. using squeue's for mutual exclusion. 11783 * When classifier does a lookup to find the tcp, it also puts a reference 11784 * on the conn structure associated so the tcp is guaranteed to exist 11785 * when we come here. We still need to check the state because it might 11786 * as well has been closed. The squeue processing function i.e. squeue_enter, 11787 * is responsible for doing the CONN_DEC_REF. 11788 * 11789 * Apart from the default entry point, IP also sends packets directly to 11790 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11791 * connections. 11792 */ 11793 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11794 void 11795 tcp_input(void *arg, mblk_t *mp, void *arg2) 11796 { 11797 conn_t *connp = (conn_t *)arg; 11798 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11799 11800 /* arg2 is the sqp */ 11801 ASSERT(arg2 != NULL); 11802 ASSERT(mp != NULL); 11803 11804 /* 11805 * Don't accept any input on a closed tcp as this TCP logically does 11806 * not exist on the system. Don't proceed further with this TCP. 11807 * For eg. this packet could trigger another close of this tcp 11808 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11809 * tcp_clean_death / tcp_closei_local must be called at most once 11810 * on a TCP. In this case we need to refeed the packet into the 11811 * classifier and figure out where the packet should go. Need to 11812 * preserve the recv_ill somehow. Until we figure that out, for 11813 * now just drop the packet if we can't classify the packet. 11814 */ 11815 if (tcp->tcp_state == TCPS_CLOSED || 11816 tcp->tcp_state == TCPS_BOUND) { 11817 conn_t *new_connp; 11818 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11819 11820 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11821 if (new_connp != NULL) { 11822 tcp_reinput(new_connp, mp, arg2); 11823 return; 11824 } 11825 /* We failed to classify. For now just drop the packet */ 11826 freemsg(mp); 11827 return; 11828 } 11829 11830 if (DB_TYPE(mp) != M_DATA) { 11831 tcp_rput_common(tcp, mp); 11832 return; 11833 } 11834 11835 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11836 squeue_t *final_sqp; 11837 11838 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11839 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11840 DB_CKSUMSTART(mp) = 0; 11841 if (tcp->tcp_state == TCPS_SYN_SENT && 11842 connp->conn_final_sqp == NULL && 11843 tcp_outbound_squeue_switch) { 11844 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11845 connp->conn_final_sqp = final_sqp; 11846 if (connp->conn_final_sqp != connp->conn_sqp) { 11847 CONN_INC_REF(connp); 11848 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11849 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11850 tcp_rput_data, connp, ip_squeue_flag, 11851 SQTAG_CONNECT_FINISH); 11852 return; 11853 } 11854 } 11855 } 11856 tcp_rput_data(connp, mp, arg2); 11857 } 11858 11859 /* 11860 * The read side put procedure. 11861 * The packets passed up by ip are assume to be aligned according to 11862 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11863 */ 11864 static void 11865 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11866 { 11867 /* 11868 * tcp_rput_data() does not expect M_CTL except for the case 11869 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11870 * type. Need to make sure that any other M_CTLs don't make 11871 * it to tcp_rput_data since it is not expecting any and doesn't 11872 * check for it. 11873 */ 11874 if (DB_TYPE(mp) == M_CTL) { 11875 switch (*(uint32_t *)(mp->b_rptr)) { 11876 case TCP_IOC_ABORT_CONN: 11877 /* 11878 * Handle connection abort request. 11879 */ 11880 tcp_ioctl_abort_handler(tcp, mp); 11881 return; 11882 case IPSEC_IN: 11883 /* 11884 * Only secure icmp arrive in TCP and they 11885 * don't go through data path. 11886 */ 11887 tcp_icmp_error(tcp, mp); 11888 return; 11889 case IN_PKTINFO: 11890 /* 11891 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11892 * sockets that are receiving IPv4 traffic. tcp 11893 */ 11894 ASSERT(tcp->tcp_family == AF_INET6); 11895 ASSERT(tcp->tcp_ipv6_recvancillary & 11896 TCP_IPV6_RECVPKTINFO); 11897 tcp_rput_data(tcp->tcp_connp, mp, 11898 tcp->tcp_connp->conn_sqp); 11899 return; 11900 case MDT_IOC_INFO_UPDATE: 11901 /* 11902 * Handle Multidata information update; the 11903 * following routine will free the message. 11904 */ 11905 if (tcp->tcp_connp->conn_mdt_ok) { 11906 tcp_mdt_update(tcp, 11907 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11908 B_FALSE); 11909 } 11910 freemsg(mp); 11911 return; 11912 case LSO_IOC_INFO_UPDATE: 11913 /* 11914 * Handle LSO information update; the following 11915 * routine will free the message. 11916 */ 11917 if (tcp->tcp_connp->conn_lso_ok) { 11918 tcp_lso_update(tcp, 11919 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11920 } 11921 freemsg(mp); 11922 return; 11923 default: 11924 /* 11925 * tcp_icmp_err() will process the M_CTL packets. 11926 * Non-ICMP packets, if any, will be discarded in 11927 * tcp_icmp_err(). We will process the ICMP packet 11928 * even if we are TCP_IS_DETACHED_NONEAGER as the 11929 * incoming ICMP packet may result in changing 11930 * the tcp_mss, which we would need if we have 11931 * packets to retransmit. 11932 */ 11933 tcp_icmp_error(tcp, mp); 11934 return; 11935 } 11936 } 11937 11938 /* No point processing the message if tcp is already closed */ 11939 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11940 freemsg(mp); 11941 return; 11942 } 11943 11944 tcp_rput_other(tcp, mp); 11945 } 11946 11947 11948 /* The minimum of smoothed mean deviation in RTO calculation. */ 11949 #define TCP_SD_MIN 400 11950 11951 /* 11952 * Set RTO for this connection. The formula is from Jacobson and Karels' 11953 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11954 * are the same as those in Appendix A.2 of that paper. 11955 * 11956 * m = new measurement 11957 * sa = smoothed RTT average (8 * average estimates). 11958 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11959 */ 11960 static void 11961 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11962 { 11963 long m = TICK_TO_MSEC(rtt); 11964 clock_t sa = tcp->tcp_rtt_sa; 11965 clock_t sv = tcp->tcp_rtt_sd; 11966 clock_t rto; 11967 tcp_stack_t *tcps = tcp->tcp_tcps; 11968 11969 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11970 tcp->tcp_rtt_update++; 11971 11972 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11973 if (sa != 0) { 11974 /* 11975 * Update average estimator: 11976 * new rtt = 7/8 old rtt + 1/8 Error 11977 */ 11978 11979 /* m is now Error in estimate. */ 11980 m -= sa >> 3; 11981 if ((sa += m) <= 0) { 11982 /* 11983 * Don't allow the smoothed average to be negative. 11984 * We use 0 to denote reinitialization of the 11985 * variables. 11986 */ 11987 sa = 1; 11988 } 11989 11990 /* 11991 * Update deviation estimator: 11992 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11993 */ 11994 if (m < 0) 11995 m = -m; 11996 m -= sv >> 2; 11997 sv += m; 11998 } else { 11999 /* 12000 * This follows BSD's implementation. So the reinitialized 12001 * RTO is 3 * m. We cannot go less than 2 because if the 12002 * link is bandwidth dominated, doubling the window size 12003 * during slow start means doubling the RTT. We want to be 12004 * more conservative when we reinitialize our estimates. 3 12005 * is just a convenient number. 12006 */ 12007 sa = m << 3; 12008 sv = m << 1; 12009 } 12010 if (sv < TCP_SD_MIN) { 12011 /* 12012 * We do not know that if sa captures the delay ACK 12013 * effect as in a long train of segments, a receiver 12014 * does not delay its ACKs. So set the minimum of sv 12015 * to be TCP_SD_MIN, which is default to 400 ms, twice 12016 * of BSD DATO. That means the minimum of mean 12017 * deviation is 100 ms. 12018 * 12019 */ 12020 sv = TCP_SD_MIN; 12021 } 12022 tcp->tcp_rtt_sa = sa; 12023 tcp->tcp_rtt_sd = sv; 12024 /* 12025 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12026 * 12027 * Add tcp_rexmit_interval extra in case of extreme environment 12028 * where the algorithm fails to work. The default value of 12029 * tcp_rexmit_interval_extra should be 0. 12030 * 12031 * As we use a finer grained clock than BSD and update 12032 * RTO for every ACKs, add in another .25 of RTT to the 12033 * deviation of RTO to accomodate burstiness of 1/4 of 12034 * window size. 12035 */ 12036 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12037 12038 if (rto > tcps->tcps_rexmit_interval_max) { 12039 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12040 } else if (rto < tcps->tcps_rexmit_interval_min) { 12041 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12042 } else { 12043 tcp->tcp_rto = rto; 12044 } 12045 12046 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12047 tcp->tcp_timer_backoff = 0; 12048 } 12049 12050 /* 12051 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12052 * send queue which starts at the given seq. no. 12053 * 12054 * Parameters: 12055 * tcp_t *tcp: the tcp instance pointer. 12056 * uint32_t seq: the starting seq. no of the requested segment. 12057 * int32_t *off: after the execution, *off will be the offset to 12058 * the returned mblk which points to the requested seq no. 12059 * It is the caller's responsibility to send in a non-null off. 12060 * 12061 * Return: 12062 * A mblk_t pointer pointing to the requested segment in send queue. 12063 */ 12064 static mblk_t * 12065 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12066 { 12067 int32_t cnt; 12068 mblk_t *mp; 12069 12070 /* Defensive coding. Make sure we don't send incorrect data. */ 12071 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12072 return (NULL); 12073 12074 cnt = seq - tcp->tcp_suna; 12075 mp = tcp->tcp_xmit_head; 12076 while (cnt > 0 && mp != NULL) { 12077 cnt -= mp->b_wptr - mp->b_rptr; 12078 if (cnt < 0) { 12079 cnt += mp->b_wptr - mp->b_rptr; 12080 break; 12081 } 12082 mp = mp->b_cont; 12083 } 12084 ASSERT(mp != NULL); 12085 *off = cnt; 12086 return (mp); 12087 } 12088 12089 /* 12090 * This function handles all retransmissions if SACK is enabled for this 12091 * connection. First it calculates how many segments can be retransmitted 12092 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12093 * segments. A segment is eligible if sack_cnt for that segment is greater 12094 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12095 * all eligible segments, it checks to see if TCP can send some new segments 12096 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12097 * 12098 * Parameters: 12099 * tcp_t *tcp: the tcp structure of the connection. 12100 * uint_t *flags: in return, appropriate value will be set for 12101 * tcp_rput_data(). 12102 */ 12103 static void 12104 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12105 { 12106 notsack_blk_t *notsack_blk; 12107 int32_t usable_swnd; 12108 int32_t mss; 12109 uint32_t seg_len; 12110 mblk_t *xmit_mp; 12111 tcp_stack_t *tcps = tcp->tcp_tcps; 12112 12113 ASSERT(tcp->tcp_sack_info != NULL); 12114 ASSERT(tcp->tcp_notsack_list != NULL); 12115 ASSERT(tcp->tcp_rexmit == B_FALSE); 12116 12117 /* Defensive coding in case there is a bug... */ 12118 if (tcp->tcp_notsack_list == NULL) { 12119 return; 12120 } 12121 notsack_blk = tcp->tcp_notsack_list; 12122 mss = tcp->tcp_mss; 12123 12124 /* 12125 * Limit the num of outstanding data in the network to be 12126 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12127 */ 12128 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12129 12130 /* At least retransmit 1 MSS of data. */ 12131 if (usable_swnd <= 0) { 12132 usable_swnd = mss; 12133 } 12134 12135 /* Make sure no new RTT samples will be taken. */ 12136 tcp->tcp_csuna = tcp->tcp_snxt; 12137 12138 notsack_blk = tcp->tcp_notsack_list; 12139 while (usable_swnd > 0) { 12140 mblk_t *snxt_mp, *tmp_mp; 12141 tcp_seq begin = tcp->tcp_sack_snxt; 12142 tcp_seq end; 12143 int32_t off; 12144 12145 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12146 if (SEQ_GT(notsack_blk->end, begin) && 12147 (notsack_blk->sack_cnt >= 12148 tcps->tcps_dupack_fast_retransmit)) { 12149 end = notsack_blk->end; 12150 if (SEQ_LT(begin, notsack_blk->begin)) { 12151 begin = notsack_blk->begin; 12152 } 12153 break; 12154 } 12155 } 12156 /* 12157 * All holes are filled. Manipulate tcp_cwnd to send more 12158 * if we can. Note that after the SACK recovery, tcp_cwnd is 12159 * set to tcp_cwnd_ssthresh. 12160 */ 12161 if (notsack_blk == NULL) { 12162 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12163 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12164 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12165 ASSERT(tcp->tcp_cwnd > 0); 12166 return; 12167 } else { 12168 usable_swnd = usable_swnd / mss; 12169 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12170 MAX(usable_swnd * mss, mss); 12171 *flags |= TH_XMIT_NEEDED; 12172 return; 12173 } 12174 } 12175 12176 /* 12177 * Note that we may send more than usable_swnd allows here 12178 * because of round off, but no more than 1 MSS of data. 12179 */ 12180 seg_len = end - begin; 12181 if (seg_len > mss) 12182 seg_len = mss; 12183 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12184 ASSERT(snxt_mp != NULL); 12185 /* This should not happen. Defensive coding again... */ 12186 if (snxt_mp == NULL) { 12187 return; 12188 } 12189 12190 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12191 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12192 if (xmit_mp == NULL) 12193 return; 12194 12195 usable_swnd -= seg_len; 12196 tcp->tcp_pipe += seg_len; 12197 tcp->tcp_sack_snxt = begin + seg_len; 12198 12199 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12200 12201 /* 12202 * Update the send timestamp to avoid false retransmission. 12203 */ 12204 snxt_mp->b_prev = (mblk_t *)lbolt; 12205 12206 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12207 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12208 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12209 /* 12210 * Update tcp_rexmit_max to extend this SACK recovery phase. 12211 * This happens when new data sent during fast recovery is 12212 * also lost. If TCP retransmits those new data, it needs 12213 * to extend SACK recover phase to avoid starting another 12214 * fast retransmit/recovery unnecessarily. 12215 */ 12216 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12217 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12218 } 12219 } 12220 } 12221 12222 /* 12223 * This function handles policy checking at TCP level for non-hard_bound/ 12224 * detached connections. 12225 */ 12226 static boolean_t 12227 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12228 boolean_t secure, boolean_t mctl_present) 12229 { 12230 ipsec_latch_t *ipl = NULL; 12231 ipsec_action_t *act = NULL; 12232 mblk_t *data_mp; 12233 ipsec_in_t *ii; 12234 const char *reason; 12235 kstat_named_t *counter; 12236 tcp_stack_t *tcps = tcp->tcp_tcps; 12237 ipsec_stack_t *ipss; 12238 ip_stack_t *ipst; 12239 12240 ASSERT(mctl_present || !secure); 12241 12242 ASSERT((ipha == NULL && ip6h != NULL) || 12243 (ip6h == NULL && ipha != NULL)); 12244 12245 /* 12246 * We don't necessarily have an ipsec_in_act action to verify 12247 * policy because of assymetrical policy where we have only 12248 * outbound policy and no inbound policy (possible with global 12249 * policy). 12250 */ 12251 if (!secure) { 12252 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12253 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12254 return (B_TRUE); 12255 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12256 "tcp_check_policy", ipha, ip6h, secure, 12257 tcps->tcps_netstack); 12258 ipss = tcps->tcps_netstack->netstack_ipsec; 12259 12260 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12261 DROPPER(ipss, ipds_tcp_clear), 12262 &tcps->tcps_dropper); 12263 return (B_FALSE); 12264 } 12265 12266 /* 12267 * We have a secure packet. 12268 */ 12269 if (act == NULL) { 12270 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12271 "tcp_check_policy", ipha, ip6h, secure, 12272 tcps->tcps_netstack); 12273 ipss = tcps->tcps_netstack->netstack_ipsec; 12274 12275 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12276 DROPPER(ipss, ipds_tcp_secure), 12277 &tcps->tcps_dropper); 12278 return (B_FALSE); 12279 } 12280 12281 /* 12282 * XXX This whole routine is currently incorrect. ipl should 12283 * be set to the latch pointer, but is currently not set, so 12284 * we initialize it to NULL to avoid picking up random garbage. 12285 */ 12286 if (ipl == NULL) 12287 return (B_TRUE); 12288 12289 data_mp = first_mp->b_cont; 12290 12291 ii = (ipsec_in_t *)first_mp->b_rptr; 12292 12293 ipst = tcps->tcps_netstack->netstack_ip; 12294 12295 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12296 &counter, tcp->tcp_connp)) { 12297 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12298 return (B_TRUE); 12299 } 12300 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12301 "tcp inbound policy mismatch: %s, packet dropped\n", 12302 reason); 12303 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12304 12305 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12306 &tcps->tcps_dropper); 12307 return (B_FALSE); 12308 } 12309 12310 /* 12311 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12312 * retransmission after a timeout. 12313 * 12314 * To limit the number of duplicate segments, we limit the number of segment 12315 * to be sent in one time to tcp_snd_burst, the burst variable. 12316 */ 12317 static void 12318 tcp_ss_rexmit(tcp_t *tcp) 12319 { 12320 uint32_t snxt; 12321 uint32_t smax; 12322 int32_t win; 12323 int32_t mss; 12324 int32_t off; 12325 int32_t burst = tcp->tcp_snd_burst; 12326 mblk_t *snxt_mp; 12327 tcp_stack_t *tcps = tcp->tcp_tcps; 12328 12329 /* 12330 * Note that tcp_rexmit can be set even though TCP has retransmitted 12331 * all unack'ed segments. 12332 */ 12333 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12334 smax = tcp->tcp_rexmit_max; 12335 snxt = tcp->tcp_rexmit_nxt; 12336 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12337 snxt = tcp->tcp_suna; 12338 } 12339 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12340 win -= snxt - tcp->tcp_suna; 12341 mss = tcp->tcp_mss; 12342 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12343 12344 while (SEQ_LT(snxt, smax) && (win > 0) && 12345 (burst > 0) && (snxt_mp != NULL)) { 12346 mblk_t *xmit_mp; 12347 mblk_t *old_snxt_mp = snxt_mp; 12348 uint32_t cnt = mss; 12349 12350 if (win < cnt) { 12351 cnt = win; 12352 } 12353 if (SEQ_GT(snxt + cnt, smax)) { 12354 cnt = smax - snxt; 12355 } 12356 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12357 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12358 if (xmit_mp == NULL) 12359 return; 12360 12361 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12362 12363 snxt += cnt; 12364 win -= cnt; 12365 /* 12366 * Update the send timestamp to avoid false 12367 * retransmission. 12368 */ 12369 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12370 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12371 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12372 12373 tcp->tcp_rexmit_nxt = snxt; 12374 burst--; 12375 } 12376 /* 12377 * If we have transmitted all we have at the time 12378 * we started the retranmission, we can leave 12379 * the rest of the job to tcp_wput_data(). But we 12380 * need to check the send window first. If the 12381 * win is not 0, go on with tcp_wput_data(). 12382 */ 12383 if (SEQ_LT(snxt, smax) || win == 0) { 12384 return; 12385 } 12386 } 12387 /* Only call tcp_wput_data() if there is data to be sent. */ 12388 if (tcp->tcp_unsent) { 12389 tcp_wput_data(tcp, NULL, B_FALSE); 12390 } 12391 } 12392 12393 /* 12394 * Process all TCP option in SYN segment. Note that this function should 12395 * be called after tcp_adapt_ire() is called so that the necessary info 12396 * from IRE is already set in the tcp structure. 12397 * 12398 * This function sets up the correct tcp_mss value according to the 12399 * MSS option value and our header size. It also sets up the window scale 12400 * and timestamp values, and initialize SACK info blocks. But it does not 12401 * change receive window size after setting the tcp_mss value. The caller 12402 * should do the appropriate change. 12403 */ 12404 void 12405 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12406 { 12407 int options; 12408 tcp_opt_t tcpopt; 12409 uint32_t mss_max; 12410 char *tmp_tcph; 12411 tcp_stack_t *tcps = tcp->tcp_tcps; 12412 12413 tcpopt.tcp = NULL; 12414 options = tcp_parse_options(tcph, &tcpopt); 12415 12416 /* 12417 * Process MSS option. Note that MSS option value does not account 12418 * for IP or TCP options. This means that it is equal to MTU - minimum 12419 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12420 * IPv6. 12421 */ 12422 if (!(options & TCP_OPT_MSS_PRESENT)) { 12423 if (tcp->tcp_ipversion == IPV4_VERSION) 12424 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12425 else 12426 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12427 } else { 12428 if (tcp->tcp_ipversion == IPV4_VERSION) 12429 mss_max = tcps->tcps_mss_max_ipv4; 12430 else 12431 mss_max = tcps->tcps_mss_max_ipv6; 12432 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12433 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12434 else if (tcpopt.tcp_opt_mss > mss_max) 12435 tcpopt.tcp_opt_mss = mss_max; 12436 } 12437 12438 /* Process Window Scale option. */ 12439 if (options & TCP_OPT_WSCALE_PRESENT) { 12440 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12441 tcp->tcp_snd_ws_ok = B_TRUE; 12442 } else { 12443 tcp->tcp_snd_ws = B_FALSE; 12444 tcp->tcp_snd_ws_ok = B_FALSE; 12445 tcp->tcp_rcv_ws = B_FALSE; 12446 } 12447 12448 /* Process Timestamp option. */ 12449 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12450 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12451 tmp_tcph = (char *)tcp->tcp_tcph; 12452 12453 tcp->tcp_snd_ts_ok = B_TRUE; 12454 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12455 tcp->tcp_last_rcv_lbolt = lbolt64; 12456 ASSERT(OK_32PTR(tmp_tcph)); 12457 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12458 12459 /* Fill in our template header with basic timestamp option. */ 12460 tmp_tcph += tcp->tcp_tcp_hdr_len; 12461 tmp_tcph[0] = TCPOPT_NOP; 12462 tmp_tcph[1] = TCPOPT_NOP; 12463 tmp_tcph[2] = TCPOPT_TSTAMP; 12464 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12465 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12466 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12467 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12468 } else { 12469 tcp->tcp_snd_ts_ok = B_FALSE; 12470 } 12471 12472 /* 12473 * Process SACK options. If SACK is enabled for this connection, 12474 * then allocate the SACK info structure. Note the following ways 12475 * when tcp_snd_sack_ok is set to true. 12476 * 12477 * For active connection: in tcp_adapt_ire() called in 12478 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12479 * is checked. 12480 * 12481 * For passive connection: in tcp_adapt_ire() called in 12482 * tcp_accept_comm(). 12483 * 12484 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12485 * That check makes sure that if we did not send a SACK OK option, 12486 * we will not enable SACK for this connection even though the other 12487 * side sends us SACK OK option. For active connection, the SACK 12488 * info structure has already been allocated. So we need to free 12489 * it if SACK is disabled. 12490 */ 12491 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12492 (tcp->tcp_snd_sack_ok || 12493 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12494 /* This should be true only in the passive case. */ 12495 if (tcp->tcp_sack_info == NULL) { 12496 ASSERT(TCP_IS_DETACHED(tcp)); 12497 tcp->tcp_sack_info = 12498 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12499 } 12500 if (tcp->tcp_sack_info == NULL) { 12501 tcp->tcp_snd_sack_ok = B_FALSE; 12502 } else { 12503 tcp->tcp_snd_sack_ok = B_TRUE; 12504 if (tcp->tcp_snd_ts_ok) { 12505 tcp->tcp_max_sack_blk = 3; 12506 } else { 12507 tcp->tcp_max_sack_blk = 4; 12508 } 12509 } 12510 } else { 12511 /* 12512 * Resetting tcp_snd_sack_ok to B_FALSE so that 12513 * no SACK info will be used for this 12514 * connection. This assumes that SACK usage 12515 * permission is negotiated. This may need 12516 * to be changed once this is clarified. 12517 */ 12518 if (tcp->tcp_sack_info != NULL) { 12519 ASSERT(tcp->tcp_notsack_list == NULL); 12520 kmem_cache_free(tcp_sack_info_cache, 12521 tcp->tcp_sack_info); 12522 tcp->tcp_sack_info = NULL; 12523 } 12524 tcp->tcp_snd_sack_ok = B_FALSE; 12525 } 12526 12527 /* 12528 * Now we know the exact TCP/IP header length, subtract 12529 * that from tcp_mss to get our side's MSS. 12530 */ 12531 tcp->tcp_mss -= tcp->tcp_hdr_len; 12532 /* 12533 * Here we assume that the other side's header size will be equal to 12534 * our header size. We calculate the real MSS accordingly. Need to 12535 * take into additional stuffs IPsec puts in. 12536 * 12537 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12538 */ 12539 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12540 ((tcp->tcp_ipversion == IPV4_VERSION ? 12541 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12542 12543 /* 12544 * Set MSS to the smaller one of both ends of the connection. 12545 * We should not have called tcp_mss_set() before, but our 12546 * side of the MSS should have been set to a proper value 12547 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12548 * STREAM head parameters properly. 12549 * 12550 * If we have a larger-than-16-bit window but the other side 12551 * didn't want to do window scale, tcp_rwnd_set() will take 12552 * care of that. 12553 */ 12554 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12555 } 12556 12557 /* 12558 * Sends the T_CONN_IND to the listener. The caller calls this 12559 * functions via squeue to get inside the listener's perimeter 12560 * once the 3 way hand shake is done a T_CONN_IND needs to be 12561 * sent. As an optimization, the caller can call this directly 12562 * if listener's perimeter is same as eager's. 12563 */ 12564 /* ARGSUSED */ 12565 void 12566 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12567 { 12568 conn_t *lconnp = (conn_t *)arg; 12569 tcp_t *listener = lconnp->conn_tcp; 12570 tcp_t *tcp; 12571 struct T_conn_ind *conn_ind; 12572 ipaddr_t *addr_cache; 12573 boolean_t need_send_conn_ind = B_FALSE; 12574 tcp_stack_t *tcps = listener->tcp_tcps; 12575 12576 /* retrieve the eager */ 12577 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12578 ASSERT(conn_ind->OPT_offset != 0 && 12579 conn_ind->OPT_length == sizeof (intptr_t)); 12580 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12581 conn_ind->OPT_length); 12582 12583 /* 12584 * TLI/XTI applications will get confused by 12585 * sending eager as an option since it violates 12586 * the option semantics. So remove the eager as 12587 * option since TLI/XTI app doesn't need it anyway. 12588 */ 12589 if (!TCP_IS_SOCKET(listener)) { 12590 conn_ind->OPT_length = 0; 12591 conn_ind->OPT_offset = 0; 12592 } 12593 if (listener->tcp_state == TCPS_CLOSED || 12594 TCP_IS_DETACHED(listener)) { 12595 /* 12596 * If listener has closed, it would have caused a 12597 * a cleanup/blowoff to happen for the eager. We 12598 * just need to return. 12599 */ 12600 freemsg(mp); 12601 return; 12602 } 12603 12604 12605 /* 12606 * if the conn_req_q is full defer passing up the 12607 * T_CONN_IND until space is availabe after t_accept() 12608 * processing 12609 */ 12610 mutex_enter(&listener->tcp_eager_lock); 12611 12612 /* 12613 * Take the eager out, if it is in the list of droppable eagers 12614 * as we are here because the 3W handshake is over. 12615 */ 12616 MAKE_UNDROPPABLE(tcp); 12617 12618 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12619 tcp_t *tail; 12620 12621 /* 12622 * The eager already has an extra ref put in tcp_rput_data 12623 * so that it stays till accept comes back even though it 12624 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12625 */ 12626 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12627 listener->tcp_conn_req_cnt_q0--; 12628 listener->tcp_conn_req_cnt_q++; 12629 12630 /* Move from SYN_RCVD to ESTABLISHED list */ 12631 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12632 tcp->tcp_eager_prev_q0; 12633 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12634 tcp->tcp_eager_next_q0; 12635 tcp->tcp_eager_prev_q0 = NULL; 12636 tcp->tcp_eager_next_q0 = NULL; 12637 12638 /* 12639 * Insert at end of the queue because sockfs 12640 * sends down T_CONN_RES in chronological 12641 * order. Leaving the older conn indications 12642 * at front of the queue helps reducing search 12643 * time. 12644 */ 12645 tail = listener->tcp_eager_last_q; 12646 if (tail != NULL) 12647 tail->tcp_eager_next_q = tcp; 12648 else 12649 listener->tcp_eager_next_q = tcp; 12650 listener->tcp_eager_last_q = tcp; 12651 tcp->tcp_eager_next_q = NULL; 12652 /* 12653 * Delay sending up the T_conn_ind until we are 12654 * done with the eager. Once we have have sent up 12655 * the T_conn_ind, the accept can potentially complete 12656 * any time and release the refhold we have on the eager. 12657 */ 12658 need_send_conn_ind = B_TRUE; 12659 } else { 12660 /* 12661 * Defer connection on q0 and set deferred 12662 * connection bit true 12663 */ 12664 tcp->tcp_conn_def_q0 = B_TRUE; 12665 12666 /* take tcp out of q0 ... */ 12667 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12668 tcp->tcp_eager_next_q0; 12669 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12670 tcp->tcp_eager_prev_q0; 12671 12672 /* ... and place it at the end of q0 */ 12673 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12674 tcp->tcp_eager_next_q0 = listener; 12675 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12676 listener->tcp_eager_prev_q0 = tcp; 12677 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12678 } 12679 12680 /* we have timed out before */ 12681 if (tcp->tcp_syn_rcvd_timeout != 0) { 12682 tcp->tcp_syn_rcvd_timeout = 0; 12683 listener->tcp_syn_rcvd_timeout--; 12684 if (listener->tcp_syn_defense && 12685 listener->tcp_syn_rcvd_timeout <= 12686 (tcps->tcps_conn_req_max_q0 >> 5) && 12687 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12688 listener->tcp_last_rcv_lbolt)) { 12689 /* 12690 * Turn off the defense mode if we 12691 * believe the SYN attack is over. 12692 */ 12693 listener->tcp_syn_defense = B_FALSE; 12694 if (listener->tcp_ip_addr_cache) { 12695 kmem_free((void *)listener->tcp_ip_addr_cache, 12696 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12697 listener->tcp_ip_addr_cache = NULL; 12698 } 12699 } 12700 } 12701 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12702 if (addr_cache != NULL) { 12703 /* 12704 * We have finished a 3-way handshake with this 12705 * remote host. This proves the IP addr is good. 12706 * Cache it! 12707 */ 12708 addr_cache[IP_ADDR_CACHE_HASH( 12709 tcp->tcp_remote)] = tcp->tcp_remote; 12710 } 12711 mutex_exit(&listener->tcp_eager_lock); 12712 if (need_send_conn_ind) { 12713 if (IPCL_IS_NONSTR(lconnp)) { 12714 ASSERT(tcp->tcp_listener == listener); 12715 ASSERT(tcp->tcp_saved_listener == listener); 12716 if ((*lconnp->conn_upcalls->su_newconn) 12717 (lconnp->conn_upper_handle, 12718 (sock_lower_handle_t)tcp->tcp_connp, 12719 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 12720 &tcp->tcp_connp->conn_upcalls) != NULL) { 12721 /* 12722 * Keep the message around 12723 * in case of fallback 12724 */ 12725 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12726 } else { 12727 freemsg(mp); 12728 } 12729 } else { 12730 putnext(listener->tcp_rq, mp); 12731 } 12732 } 12733 } 12734 12735 mblk_t * 12736 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12737 uint_t *ifindexp, ip6_pkt_t *ippp) 12738 { 12739 ip_pktinfo_t *pinfo; 12740 ip6_t *ip6h; 12741 uchar_t *rptr; 12742 mblk_t *first_mp = mp; 12743 boolean_t mctl_present = B_FALSE; 12744 uint_t ifindex = 0; 12745 ip6_pkt_t ipp; 12746 uint_t ipvers; 12747 uint_t ip_hdr_len; 12748 tcp_stack_t *tcps = tcp->tcp_tcps; 12749 12750 rptr = mp->b_rptr; 12751 ASSERT(OK_32PTR(rptr)); 12752 ASSERT(tcp != NULL); 12753 ipp.ipp_fields = 0; 12754 12755 switch DB_TYPE(mp) { 12756 case M_CTL: 12757 mp = mp->b_cont; 12758 if (mp == NULL) { 12759 freemsg(first_mp); 12760 return (NULL); 12761 } 12762 if (DB_TYPE(mp) != M_DATA) { 12763 freemsg(first_mp); 12764 return (NULL); 12765 } 12766 mctl_present = B_TRUE; 12767 break; 12768 case M_DATA: 12769 break; 12770 default: 12771 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12772 freemsg(mp); 12773 return (NULL); 12774 } 12775 ipvers = IPH_HDR_VERSION(rptr); 12776 if (ipvers == IPV4_VERSION) { 12777 if (tcp == NULL) { 12778 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12779 goto done; 12780 } 12781 12782 ipp.ipp_fields |= IPPF_HOPLIMIT; 12783 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12784 12785 /* 12786 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12787 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12788 */ 12789 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12790 mctl_present) { 12791 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12792 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12793 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12794 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12795 ipp.ipp_fields |= IPPF_IFINDEX; 12796 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12797 ifindex = pinfo->ip_pkt_ifindex; 12798 } 12799 freeb(first_mp); 12800 mctl_present = B_FALSE; 12801 } 12802 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12803 } else { 12804 ip6h = (ip6_t *)rptr; 12805 12806 ASSERT(ipvers == IPV6_VERSION); 12807 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12808 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12809 ipp.ipp_hoplimit = ip6h->ip6_hops; 12810 12811 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12812 uint8_t nexthdrp; 12813 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12814 12815 /* Look for ifindex information */ 12816 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12817 ip6i_t *ip6i = (ip6i_t *)ip6h; 12818 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12819 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12820 freemsg(first_mp); 12821 return (NULL); 12822 } 12823 12824 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12825 ASSERT(ip6i->ip6i_ifindex != 0); 12826 ipp.ipp_fields |= IPPF_IFINDEX; 12827 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12828 ifindex = ip6i->ip6i_ifindex; 12829 } 12830 rptr = (uchar_t *)&ip6i[1]; 12831 mp->b_rptr = rptr; 12832 if (rptr == mp->b_wptr) { 12833 mblk_t *mp1; 12834 mp1 = mp->b_cont; 12835 freeb(mp); 12836 mp = mp1; 12837 rptr = mp->b_rptr; 12838 } 12839 if (MBLKL(mp) < IPV6_HDR_LEN + 12840 sizeof (tcph_t)) { 12841 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12842 freemsg(first_mp); 12843 return (NULL); 12844 } 12845 ip6h = (ip6_t *)rptr; 12846 } 12847 12848 /* 12849 * Find any potentially interesting extension headers 12850 * as well as the length of the IPv6 + extension 12851 * headers. 12852 */ 12853 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12854 /* Verify if this is a TCP packet */ 12855 if (nexthdrp != IPPROTO_TCP) { 12856 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12857 freemsg(first_mp); 12858 return (NULL); 12859 } 12860 } else { 12861 ip_hdr_len = IPV6_HDR_LEN; 12862 } 12863 } 12864 12865 done: 12866 if (ipversp != NULL) 12867 *ipversp = ipvers; 12868 if (ip_hdr_lenp != NULL) 12869 *ip_hdr_lenp = ip_hdr_len; 12870 if (ippp != NULL) 12871 *ippp = ipp; 12872 if (ifindexp != NULL) 12873 *ifindexp = ifindex; 12874 if (mctl_present) { 12875 freeb(first_mp); 12876 } 12877 return (mp); 12878 } 12879 12880 /* 12881 * Handle M_DATA messages from IP. Its called directly from IP via 12882 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12883 * in this path. 12884 * 12885 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12886 * v4 and v6), we are called through tcp_input() and a M_CTL can 12887 * be present for options but tcp_find_pktinfo() deals with it. We 12888 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12889 * 12890 * The first argument is always the connp/tcp to which the mp belongs. 12891 * There are no exceptions to this rule. The caller has already put 12892 * a reference on this connp/tcp and once tcp_rput_data() returns, 12893 * the squeue will do the refrele. 12894 * 12895 * The TH_SYN for the listener directly go to tcp_conn_request via 12896 * squeue. 12897 * 12898 * sqp: NULL = recursive, sqp != NULL means called from squeue 12899 */ 12900 void 12901 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12902 { 12903 int32_t bytes_acked; 12904 int32_t gap; 12905 mblk_t *mp1; 12906 uint_t flags; 12907 uint32_t new_swnd = 0; 12908 uchar_t *iphdr; 12909 uchar_t *rptr; 12910 int32_t rgap; 12911 uint32_t seg_ack; 12912 int seg_len; 12913 uint_t ip_hdr_len; 12914 uint32_t seg_seq; 12915 tcph_t *tcph; 12916 int urp; 12917 tcp_opt_t tcpopt; 12918 uint_t ipvers; 12919 ip6_pkt_t ipp; 12920 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12921 uint32_t cwnd; 12922 uint32_t add; 12923 int npkt; 12924 int mss; 12925 conn_t *connp = (conn_t *)arg; 12926 squeue_t *sqp = (squeue_t *)arg2; 12927 tcp_t *tcp = connp->conn_tcp; 12928 tcp_stack_t *tcps = tcp->tcp_tcps; 12929 12930 /* 12931 * RST from fused tcp loopback peer should trigger an unfuse. 12932 */ 12933 if (tcp->tcp_fused) { 12934 TCP_STAT(tcps, tcp_fusion_aborted); 12935 tcp_unfuse(tcp); 12936 } 12937 12938 iphdr = mp->b_rptr; 12939 rptr = mp->b_rptr; 12940 ASSERT(OK_32PTR(rptr)); 12941 12942 /* 12943 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12944 * processing here. For rest call tcp_find_pktinfo to fill up the 12945 * necessary information. 12946 */ 12947 if (IPCL_IS_TCP4(connp)) { 12948 ipvers = IPV4_VERSION; 12949 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12950 } else { 12951 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12952 NULL, &ipp); 12953 if (mp == NULL) { 12954 TCP_STAT(tcps, tcp_rput_v6_error); 12955 return; 12956 } 12957 iphdr = mp->b_rptr; 12958 rptr = mp->b_rptr; 12959 } 12960 ASSERT(DB_TYPE(mp) == M_DATA); 12961 ASSERT(mp->b_next == NULL); 12962 12963 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12964 seg_seq = ABE32_TO_U32(tcph->th_seq); 12965 seg_ack = ABE32_TO_U32(tcph->th_ack); 12966 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12967 seg_len = (int)(mp->b_wptr - rptr) - 12968 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12969 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12970 do { 12971 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12972 (uintptr_t)INT_MAX); 12973 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12974 } while ((mp1 = mp1->b_cont) != NULL && 12975 mp1->b_datap->db_type == M_DATA); 12976 } 12977 12978 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12979 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12980 seg_len, tcph); 12981 return; 12982 } 12983 12984 if (sqp != NULL) { 12985 /* 12986 * This is the correct place to update tcp_last_recv_time. Note 12987 * that it is also updated for tcp structure that belongs to 12988 * global and listener queues which do not really need updating. 12989 * But that should not cause any harm. And it is updated for 12990 * all kinds of incoming segments, not only for data segments. 12991 */ 12992 tcp->tcp_last_recv_time = lbolt; 12993 } 12994 12995 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12996 12997 BUMP_LOCAL(tcp->tcp_ibsegs); 12998 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12999 13000 if ((flags & TH_URG) && sqp != NULL) { 13001 /* 13002 * TCP can't handle urgent pointers that arrive before 13003 * the connection has been accept()ed since it can't 13004 * buffer OOB data. Discard segment if this happens. 13005 * 13006 * We can't just rely on a non-null tcp_listener to indicate 13007 * that the accept() has completed since unlinking of the 13008 * eager and completion of the accept are not atomic. 13009 * tcp_detached, when it is not set (B_FALSE) indicates 13010 * that the accept() has completed. 13011 * 13012 * Nor can it reassemble urgent pointers, so discard 13013 * if it's not the next segment expected. 13014 * 13015 * Otherwise, collapse chain into one mblk (discard if 13016 * that fails). This makes sure the headers, retransmitted 13017 * data, and new data all are in the same mblk. 13018 */ 13019 ASSERT(mp != NULL); 13020 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 13021 freemsg(mp); 13022 return; 13023 } 13024 /* Update pointers into message */ 13025 iphdr = rptr = mp->b_rptr; 13026 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13027 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13028 /* 13029 * Since we can't handle any data with this urgent 13030 * pointer that is out of sequence, we expunge 13031 * the data. This allows us to still register 13032 * the urgent mark and generate the M_PCSIG, 13033 * which we can do. 13034 */ 13035 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13036 seg_len = 0; 13037 } 13038 } 13039 13040 switch (tcp->tcp_state) { 13041 case TCPS_SYN_SENT: 13042 if (flags & TH_ACK) { 13043 /* 13044 * Note that our stack cannot send data before a 13045 * connection is established, therefore the 13046 * following check is valid. Otherwise, it has 13047 * to be changed. 13048 */ 13049 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13050 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13051 freemsg(mp); 13052 if (flags & TH_RST) 13053 return; 13054 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13055 tcp, seg_ack, 0, TH_RST); 13056 return; 13057 } 13058 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13059 } 13060 if (flags & TH_RST) { 13061 freemsg(mp); 13062 if (flags & TH_ACK) 13063 (void) tcp_clean_death(tcp, 13064 ECONNREFUSED, 13); 13065 return; 13066 } 13067 if (!(flags & TH_SYN)) { 13068 freemsg(mp); 13069 return; 13070 } 13071 13072 /* Process all TCP options. */ 13073 tcp_process_options(tcp, tcph); 13074 /* 13075 * The following changes our rwnd to be a multiple of the 13076 * MIN(peer MSS, our MSS) for performance reason. 13077 */ 13078 (void) tcp_rwnd_set(tcp, 13079 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 13080 13081 /* Is the other end ECN capable? */ 13082 if (tcp->tcp_ecn_ok) { 13083 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13084 tcp->tcp_ecn_ok = B_FALSE; 13085 } 13086 } 13087 /* 13088 * Clear ECN flags because it may interfere with later 13089 * processing. 13090 */ 13091 flags &= ~(TH_ECE|TH_CWR); 13092 13093 tcp->tcp_irs = seg_seq; 13094 tcp->tcp_rack = seg_seq; 13095 tcp->tcp_rnxt = seg_seq + 1; 13096 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13097 if (!TCP_IS_DETACHED(tcp)) { 13098 /* Allocate room for SACK options if needed. */ 13099 if (tcp->tcp_snd_sack_ok) { 13100 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13101 tcp->tcp_hdr_len + 13102 TCPOPT_MAX_SACK_LEN + 13103 (tcp->tcp_loopback ? 0 : 13104 tcps->tcps_wroff_xtra)); 13105 } else { 13106 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13107 tcp->tcp_hdr_len + 13108 (tcp->tcp_loopback ? 0 : 13109 tcps->tcps_wroff_xtra)); 13110 } 13111 } 13112 if (flags & TH_ACK) { 13113 /* 13114 * If we can't get the confirmation upstream, pretend 13115 * we didn't even see this one. 13116 * 13117 * XXX: how can we pretend we didn't see it if we 13118 * have updated rnxt et. al. 13119 * 13120 * For loopback we defer sending up the T_CONN_CON 13121 * until after some checks below. 13122 */ 13123 mp1 = NULL; 13124 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13125 tcp->tcp_loopback ? &mp1 : NULL)) { 13126 freemsg(mp); 13127 return; 13128 } 13129 /* SYN was acked - making progress */ 13130 if (tcp->tcp_ipversion == IPV6_VERSION) 13131 tcp->tcp_ip_forward_progress = B_TRUE; 13132 13133 /* One for the SYN */ 13134 tcp->tcp_suna = tcp->tcp_iss + 1; 13135 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13136 tcp->tcp_state = TCPS_ESTABLISHED; 13137 13138 /* 13139 * If SYN was retransmitted, need to reset all 13140 * retransmission info. This is because this 13141 * segment will be treated as a dup ACK. 13142 */ 13143 if (tcp->tcp_rexmit) { 13144 tcp->tcp_rexmit = B_FALSE; 13145 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13146 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13147 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13148 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13149 tcp->tcp_ms_we_have_waited = 0; 13150 13151 /* 13152 * Set tcp_cwnd back to 1 MSS, per 13153 * recommendation from 13154 * draft-floyd-incr-init-win-01.txt, 13155 * Increasing TCP's Initial Window. 13156 */ 13157 tcp->tcp_cwnd = tcp->tcp_mss; 13158 } 13159 13160 tcp->tcp_swl1 = seg_seq; 13161 tcp->tcp_swl2 = seg_ack; 13162 13163 new_swnd = BE16_TO_U16(tcph->th_win); 13164 tcp->tcp_swnd = new_swnd; 13165 if (new_swnd > tcp->tcp_max_swnd) 13166 tcp->tcp_max_swnd = new_swnd; 13167 13168 /* 13169 * Always send the three-way handshake ack immediately 13170 * in order to make the connection complete as soon as 13171 * possible on the accepting host. 13172 */ 13173 flags |= TH_ACK_NEEDED; 13174 13175 /* 13176 * Special case for loopback. At this point we have 13177 * received SYN-ACK from the remote endpoint. In 13178 * order to ensure that both endpoints reach the 13179 * fused state prior to any data exchange, the final 13180 * ACK needs to be sent before we indicate T_CONN_CON 13181 * to the module upstream. 13182 */ 13183 if (tcp->tcp_loopback) { 13184 mblk_t *ack_mp; 13185 13186 ASSERT(!tcp->tcp_unfusable); 13187 ASSERT(mp1 != NULL); 13188 /* 13189 * For loopback, we always get a pure SYN-ACK 13190 * and only need to send back the final ACK 13191 * with no data (this is because the other 13192 * tcp is ours and we don't do T/TCP). This 13193 * final ACK triggers the passive side to 13194 * perform fusion in ESTABLISHED state. 13195 */ 13196 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13197 if (tcp->tcp_ack_tid != 0) { 13198 (void) TCP_TIMER_CANCEL(tcp, 13199 tcp->tcp_ack_tid); 13200 tcp->tcp_ack_tid = 0; 13201 } 13202 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13203 BUMP_LOCAL(tcp->tcp_obsegs); 13204 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13205 13206 if (!IPCL_IS_NONSTR(connp)) { 13207 /* Send up T_CONN_CON */ 13208 putnext(tcp->tcp_rq, mp1); 13209 } else { 13210 (*connp->conn_upcalls-> 13211 su_connected) 13212 (connp->conn_upper_handle, 13213 tcp->tcp_connid, 13214 DB_CRED(mp1), 13215 DB_CPID(mp1)); 13216 freemsg(mp1); 13217 } 13218 13219 freemsg(mp); 13220 return; 13221 } 13222 /* 13223 * Forget fusion; we need to handle more 13224 * complex cases below. Send the deferred 13225 * T_CONN_CON message upstream and proceed 13226 * as usual. Mark this tcp as not capable 13227 * of fusion. 13228 */ 13229 TCP_STAT(tcps, tcp_fusion_unfusable); 13230 tcp->tcp_unfusable = B_TRUE; 13231 if (!IPCL_IS_NONSTR(connp)) { 13232 putnext(tcp->tcp_rq, mp1); 13233 } else { 13234 (*connp->conn_upcalls->su_connected) 13235 (connp->conn_upper_handle, 13236 tcp->tcp_connid, DB_CRED(mp1), 13237 DB_CPID(mp1)); 13238 freemsg(mp1); 13239 } 13240 } 13241 13242 /* 13243 * Check to see if there is data to be sent. If 13244 * yes, set the transmit flag. Then check to see 13245 * if received data processing needs to be done. 13246 * If not, go straight to xmit_check. This short 13247 * cut is OK as we don't support T/TCP. 13248 */ 13249 if (tcp->tcp_unsent) 13250 flags |= TH_XMIT_NEEDED; 13251 13252 if (seg_len == 0 && !(flags & TH_URG)) { 13253 freemsg(mp); 13254 goto xmit_check; 13255 } 13256 13257 flags &= ~TH_SYN; 13258 seg_seq++; 13259 break; 13260 } 13261 tcp->tcp_state = TCPS_SYN_RCVD; 13262 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13263 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13264 if (mp1) { 13265 DB_CPID(mp1) = tcp->tcp_cpid; 13266 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13267 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13268 } 13269 freemsg(mp); 13270 return; 13271 case TCPS_SYN_RCVD: 13272 if (flags & TH_ACK) { 13273 /* 13274 * In this state, a SYN|ACK packet is either bogus 13275 * because the other side must be ACKing our SYN which 13276 * indicates it has seen the ACK for their SYN and 13277 * shouldn't retransmit it or we're crossing SYNs 13278 * on active open. 13279 */ 13280 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13281 freemsg(mp); 13282 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13283 tcp, seg_ack, 0, TH_RST); 13284 return; 13285 } 13286 /* 13287 * NOTE: RFC 793 pg. 72 says this should be 13288 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13289 * but that would mean we have an ack that ignored 13290 * our SYN. 13291 */ 13292 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13293 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13294 freemsg(mp); 13295 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13296 tcp, seg_ack, 0, TH_RST); 13297 return; 13298 } 13299 } 13300 break; 13301 case TCPS_LISTEN: 13302 /* 13303 * Only a TLI listener can come through this path when a 13304 * acceptor is going back to be a listener and a packet 13305 * for the acceptor hits the classifier. For a socket 13306 * listener, this can never happen because a listener 13307 * can never accept connection on itself and hence a 13308 * socket acceptor can not go back to being a listener. 13309 */ 13310 ASSERT(!TCP_IS_SOCKET(tcp)); 13311 /*FALLTHRU*/ 13312 case TCPS_CLOSED: 13313 case TCPS_BOUND: { 13314 conn_t *new_connp; 13315 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13316 13317 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13318 if (new_connp != NULL) { 13319 tcp_reinput(new_connp, mp, connp->conn_sqp); 13320 return; 13321 } 13322 /* We failed to classify. For now just drop the packet */ 13323 freemsg(mp); 13324 return; 13325 } 13326 case TCPS_IDLE: 13327 /* 13328 * Handle the case where the tcp_clean_death() has happened 13329 * on a connection (application hasn't closed yet) but a packet 13330 * was already queued on squeue before tcp_clean_death() 13331 * was processed. Calling tcp_clean_death() twice on same 13332 * connection can result in weird behaviour. 13333 */ 13334 freemsg(mp); 13335 return; 13336 default: 13337 break; 13338 } 13339 13340 /* 13341 * Already on the correct queue/perimeter. 13342 * If this is a detached connection and not an eager 13343 * connection hanging off a listener then new data 13344 * (past the FIN) will cause a reset. 13345 * We do a special check here where it 13346 * is out of the main line, rather than check 13347 * if we are detached every time we see new 13348 * data down below. 13349 */ 13350 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13351 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13352 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13353 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13354 13355 freemsg(mp); 13356 /* 13357 * This could be an SSL closure alert. We're detached so just 13358 * acknowledge it this last time. 13359 */ 13360 if (tcp->tcp_kssl_ctx != NULL) { 13361 kssl_release_ctx(tcp->tcp_kssl_ctx); 13362 tcp->tcp_kssl_ctx = NULL; 13363 13364 tcp->tcp_rnxt += seg_len; 13365 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13366 flags |= TH_ACK_NEEDED; 13367 goto ack_check; 13368 } 13369 13370 tcp_xmit_ctl("new data when detached", tcp, 13371 tcp->tcp_snxt, 0, TH_RST); 13372 (void) tcp_clean_death(tcp, EPROTO, 12); 13373 return; 13374 } 13375 13376 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13377 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13378 new_swnd = BE16_TO_U16(tcph->th_win) << 13379 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13380 13381 if (tcp->tcp_snd_ts_ok) { 13382 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13383 /* 13384 * This segment is not acceptable. 13385 * Drop it and send back an ACK. 13386 */ 13387 freemsg(mp); 13388 flags |= TH_ACK_NEEDED; 13389 goto ack_check; 13390 } 13391 } else if (tcp->tcp_snd_sack_ok) { 13392 ASSERT(tcp->tcp_sack_info != NULL); 13393 tcpopt.tcp = tcp; 13394 /* 13395 * SACK info in already updated in tcp_parse_options. Ignore 13396 * all other TCP options... 13397 */ 13398 (void) tcp_parse_options(tcph, &tcpopt); 13399 } 13400 try_again:; 13401 mss = tcp->tcp_mss; 13402 gap = seg_seq - tcp->tcp_rnxt; 13403 rgap = tcp->tcp_rwnd - (gap + seg_len); 13404 /* 13405 * gap is the amount of sequence space between what we expect to see 13406 * and what we got for seg_seq. A positive value for gap means 13407 * something got lost. A negative value means we got some old stuff. 13408 */ 13409 if (gap < 0) { 13410 /* Old stuff present. Is the SYN in there? */ 13411 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13412 (seg_len != 0)) { 13413 flags &= ~TH_SYN; 13414 seg_seq++; 13415 urp--; 13416 /* Recompute the gaps after noting the SYN. */ 13417 goto try_again; 13418 } 13419 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13420 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13421 (seg_len > -gap ? -gap : seg_len)); 13422 /* Remove the old stuff from seg_len. */ 13423 seg_len += gap; 13424 /* 13425 * Anything left? 13426 * Make sure to check for unack'd FIN when rest of data 13427 * has been previously ack'd. 13428 */ 13429 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13430 /* 13431 * Resets are only valid if they lie within our offered 13432 * window. If the RST bit is set, we just ignore this 13433 * segment. 13434 */ 13435 if (flags & TH_RST) { 13436 freemsg(mp); 13437 return; 13438 } 13439 13440 /* 13441 * The arriving of dup data packets indicate that we 13442 * may have postponed an ack for too long, or the other 13443 * side's RTT estimate is out of shape. Start acking 13444 * more often. 13445 */ 13446 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13447 tcp->tcp_rack_cnt >= 1 && 13448 tcp->tcp_rack_abs_max > 2) { 13449 tcp->tcp_rack_abs_max--; 13450 } 13451 tcp->tcp_rack_cur_max = 1; 13452 13453 /* 13454 * This segment is "unacceptable". None of its 13455 * sequence space lies within our advertized window. 13456 * 13457 * Adjust seg_len to the original value for tracing. 13458 */ 13459 seg_len -= gap; 13460 if (tcp->tcp_debug) { 13461 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13462 "tcp_rput: unacceptable, gap %d, rgap %d, " 13463 "flags 0x%x, seg_seq %u, seg_ack %u, " 13464 "seg_len %d, rnxt %u, snxt %u, %s", 13465 gap, rgap, flags, seg_seq, seg_ack, 13466 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13467 tcp_display(tcp, NULL, 13468 DISP_ADDR_AND_PORT)); 13469 } 13470 13471 /* 13472 * Arrange to send an ACK in response to the 13473 * unacceptable segment per RFC 793 page 69. There 13474 * is only one small difference between ours and the 13475 * acceptability test in the RFC - we accept ACK-only 13476 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13477 * will be generated. 13478 * 13479 * Note that we have to ACK an ACK-only packet at least 13480 * for stacks that send 0-length keep-alives with 13481 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13482 * section 4.2.3.6. As long as we don't ever generate 13483 * an unacceptable packet in response to an incoming 13484 * packet that is unacceptable, it should not cause 13485 * "ACK wars". 13486 */ 13487 flags |= TH_ACK_NEEDED; 13488 13489 /* 13490 * Continue processing this segment in order to use the 13491 * ACK information it contains, but skip all other 13492 * sequence-number processing. Processing the ACK 13493 * information is necessary in order to 13494 * re-synchronize connections that may have lost 13495 * synchronization. 13496 * 13497 * We clear seg_len and flag fields related to 13498 * sequence number processing as they are not 13499 * to be trusted for an unacceptable segment. 13500 */ 13501 seg_len = 0; 13502 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13503 goto process_ack; 13504 } 13505 13506 /* Fix seg_seq, and chew the gap off the front. */ 13507 seg_seq = tcp->tcp_rnxt; 13508 urp += gap; 13509 do { 13510 mblk_t *mp2; 13511 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13512 (uintptr_t)UINT_MAX); 13513 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13514 if (gap > 0) { 13515 mp->b_rptr = mp->b_wptr - gap; 13516 break; 13517 } 13518 mp2 = mp; 13519 mp = mp->b_cont; 13520 freeb(mp2); 13521 } while (gap < 0); 13522 /* 13523 * If the urgent data has already been acknowledged, we 13524 * should ignore TH_URG below 13525 */ 13526 if (urp < 0) 13527 flags &= ~TH_URG; 13528 } 13529 /* 13530 * rgap is the amount of stuff received out of window. A negative 13531 * value is the amount out of window. 13532 */ 13533 if (rgap < 0) { 13534 mblk_t *mp2; 13535 13536 if (tcp->tcp_rwnd == 0) { 13537 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13538 } else { 13539 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13540 UPDATE_MIB(&tcps->tcps_mib, 13541 tcpInDataPastWinBytes, -rgap); 13542 } 13543 13544 /* 13545 * seg_len does not include the FIN, so if more than 13546 * just the FIN is out of window, we act like we don't 13547 * see it. (If just the FIN is out of window, rgap 13548 * will be zero and we will go ahead and acknowledge 13549 * the FIN.) 13550 */ 13551 flags &= ~TH_FIN; 13552 13553 /* Fix seg_len and make sure there is something left. */ 13554 seg_len += rgap; 13555 if (seg_len <= 0) { 13556 /* 13557 * Resets are only valid if they lie within our offered 13558 * window. If the RST bit is set, we just ignore this 13559 * segment. 13560 */ 13561 if (flags & TH_RST) { 13562 freemsg(mp); 13563 return; 13564 } 13565 13566 /* Per RFC 793, we need to send back an ACK. */ 13567 flags |= TH_ACK_NEEDED; 13568 13569 /* 13570 * Send SIGURG as soon as possible i.e. even 13571 * if the TH_URG was delivered in a window probe 13572 * packet (which will be unacceptable). 13573 * 13574 * We generate a signal if none has been generated 13575 * for this connection or if this is a new urgent 13576 * byte. Also send a zero-length "unmarked" message 13577 * to inform SIOCATMARK that this is not the mark. 13578 * 13579 * tcp_urp_last_valid is cleared when the T_exdata_ind 13580 * is sent up. This plus the check for old data 13581 * (gap >= 0) handles the wraparound of the sequence 13582 * number space without having to always track the 13583 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13584 * this max in its rcv_up variable). 13585 * 13586 * This prevents duplicate SIGURGS due to a "late" 13587 * zero-window probe when the T_EXDATA_IND has already 13588 * been sent up. 13589 */ 13590 if ((flags & TH_URG) && 13591 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13592 tcp->tcp_urp_last))) { 13593 if (IPCL_IS_NONSTR(connp)) { 13594 if (!TCP_IS_DETACHED(tcp)) { 13595 (*connp->conn_upcalls-> 13596 su_signal_oob) 13597 (connp->conn_upper_handle, 13598 urp); 13599 } 13600 } else { 13601 mp1 = allocb(0, BPRI_MED); 13602 if (mp1 == NULL) { 13603 freemsg(mp); 13604 return; 13605 } 13606 if (!TCP_IS_DETACHED(tcp) && 13607 !putnextctl1(tcp->tcp_rq, 13608 M_PCSIG, SIGURG)) { 13609 /* Try again on the rexmit. */ 13610 freemsg(mp1); 13611 freemsg(mp); 13612 return; 13613 } 13614 /* 13615 * If the next byte would be the mark 13616 * then mark with MARKNEXT else mark 13617 * with NOTMARKNEXT. 13618 */ 13619 if (gap == 0 && urp == 0) 13620 mp1->b_flag |= MSGMARKNEXT; 13621 else 13622 mp1->b_flag |= MSGNOTMARKNEXT; 13623 freemsg(tcp->tcp_urp_mark_mp); 13624 tcp->tcp_urp_mark_mp = mp1; 13625 flags |= TH_SEND_URP_MARK; 13626 } 13627 tcp->tcp_urp_last_valid = B_TRUE; 13628 tcp->tcp_urp_last = urp + seg_seq; 13629 } 13630 /* 13631 * If this is a zero window probe, continue to 13632 * process the ACK part. But we need to set seg_len 13633 * to 0 to avoid data processing. Otherwise just 13634 * drop the segment and send back an ACK. 13635 */ 13636 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13637 flags &= ~(TH_SYN | TH_URG); 13638 seg_len = 0; 13639 goto process_ack; 13640 } else { 13641 freemsg(mp); 13642 goto ack_check; 13643 } 13644 } 13645 /* Pitch out of window stuff off the end. */ 13646 rgap = seg_len; 13647 mp2 = mp; 13648 do { 13649 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13650 (uintptr_t)INT_MAX); 13651 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13652 if (rgap < 0) { 13653 mp2->b_wptr += rgap; 13654 if ((mp1 = mp2->b_cont) != NULL) { 13655 mp2->b_cont = NULL; 13656 freemsg(mp1); 13657 } 13658 break; 13659 } 13660 } while ((mp2 = mp2->b_cont) != NULL); 13661 } 13662 ok:; 13663 /* 13664 * TCP should check ECN info for segments inside the window only. 13665 * Therefore the check should be done here. 13666 */ 13667 if (tcp->tcp_ecn_ok) { 13668 if (flags & TH_CWR) { 13669 tcp->tcp_ecn_echo_on = B_FALSE; 13670 } 13671 /* 13672 * Note that both ECN_CE and CWR can be set in the 13673 * same segment. In this case, we once again turn 13674 * on ECN_ECHO. 13675 */ 13676 if (tcp->tcp_ipversion == IPV4_VERSION) { 13677 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13678 13679 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13680 tcp->tcp_ecn_echo_on = B_TRUE; 13681 } 13682 } else { 13683 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13684 13685 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13686 htonl(IPH_ECN_CE << 20)) { 13687 tcp->tcp_ecn_echo_on = B_TRUE; 13688 } 13689 } 13690 } 13691 13692 /* 13693 * Check whether we can update tcp_ts_recent. This test is 13694 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13695 * Extensions for High Performance: An Update", Internet Draft. 13696 */ 13697 if (tcp->tcp_snd_ts_ok && 13698 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13699 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13700 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13701 tcp->tcp_last_rcv_lbolt = lbolt64; 13702 } 13703 13704 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13705 /* 13706 * FIN in an out of order segment. We record this in 13707 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13708 * Clear the FIN so that any check on FIN flag will fail. 13709 * Remember that FIN also counts in the sequence number 13710 * space. So we need to ack out of order FIN only segments. 13711 */ 13712 if (flags & TH_FIN) { 13713 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13714 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13715 flags &= ~TH_FIN; 13716 flags |= TH_ACK_NEEDED; 13717 } 13718 if (seg_len > 0) { 13719 /* Fill in the SACK blk list. */ 13720 if (tcp->tcp_snd_sack_ok) { 13721 ASSERT(tcp->tcp_sack_info != NULL); 13722 tcp_sack_insert(tcp->tcp_sack_list, 13723 seg_seq, seg_seq + seg_len, 13724 &(tcp->tcp_num_sack_blk)); 13725 } 13726 13727 /* 13728 * Attempt reassembly and see if we have something 13729 * ready to go. 13730 */ 13731 mp = tcp_reass(tcp, mp, seg_seq); 13732 /* Always ack out of order packets */ 13733 flags |= TH_ACK_NEEDED | TH_PUSH; 13734 if (mp) { 13735 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13736 (uintptr_t)INT_MAX); 13737 seg_len = mp->b_cont ? msgdsize(mp) : 13738 (int)(mp->b_wptr - mp->b_rptr); 13739 seg_seq = tcp->tcp_rnxt; 13740 /* 13741 * A gap is filled and the seq num and len 13742 * of the gap match that of a previously 13743 * received FIN, put the FIN flag back in. 13744 */ 13745 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13746 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13747 flags |= TH_FIN; 13748 tcp->tcp_valid_bits &= 13749 ~TCP_OFO_FIN_VALID; 13750 } 13751 } else { 13752 /* 13753 * Keep going even with NULL mp. 13754 * There may be a useful ACK or something else 13755 * we don't want to miss. 13756 * 13757 * But TCP should not perform fast retransmit 13758 * because of the ack number. TCP uses 13759 * seg_len == 0 to determine if it is a pure 13760 * ACK. And this is not a pure ACK. 13761 */ 13762 seg_len = 0; 13763 ofo_seg = B_TRUE; 13764 } 13765 } 13766 } else if (seg_len > 0) { 13767 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13768 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13769 /* 13770 * If an out of order FIN was received before, and the seq 13771 * num and len of the new segment match that of the FIN, 13772 * put the FIN flag back in. 13773 */ 13774 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13775 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13776 flags |= TH_FIN; 13777 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13778 } 13779 } 13780 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13781 if (flags & TH_RST) { 13782 freemsg(mp); 13783 switch (tcp->tcp_state) { 13784 case TCPS_SYN_RCVD: 13785 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13786 break; 13787 case TCPS_ESTABLISHED: 13788 case TCPS_FIN_WAIT_1: 13789 case TCPS_FIN_WAIT_2: 13790 case TCPS_CLOSE_WAIT: 13791 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13792 break; 13793 case TCPS_CLOSING: 13794 case TCPS_LAST_ACK: 13795 (void) tcp_clean_death(tcp, 0, 16); 13796 break; 13797 default: 13798 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13799 (void) tcp_clean_death(tcp, ENXIO, 17); 13800 break; 13801 } 13802 return; 13803 } 13804 if (flags & TH_SYN) { 13805 /* 13806 * See RFC 793, Page 71 13807 * 13808 * The seq number must be in the window as it should 13809 * be "fixed" above. If it is outside window, it should 13810 * be already rejected. Note that we allow seg_seq to be 13811 * rnxt + rwnd because we want to accept 0 window probe. 13812 */ 13813 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13814 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13815 freemsg(mp); 13816 /* 13817 * If the ACK flag is not set, just use our snxt as the 13818 * seq number of the RST segment. 13819 */ 13820 if (!(flags & TH_ACK)) { 13821 seg_ack = tcp->tcp_snxt; 13822 } 13823 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13824 TH_RST|TH_ACK); 13825 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13826 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13827 return; 13828 } 13829 /* 13830 * urp could be -1 when the urp field in the packet is 0 13831 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13832 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13833 */ 13834 if (flags & TH_URG && urp >= 0) { 13835 if (!tcp->tcp_urp_last_valid || 13836 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13837 if (IPCL_IS_NONSTR(connp)) { 13838 if (!TCP_IS_DETACHED(tcp)) { 13839 (*connp->conn_upcalls->su_signal_oob) 13840 (connp->conn_upper_handle, urp); 13841 } 13842 } else { 13843 /* 13844 * If we haven't generated the signal yet for 13845 * this urgent pointer value, do it now. Also, 13846 * send up a zero-length M_DATA indicating 13847 * whether or not this is the mark. The latter 13848 * is not needed when a T_EXDATA_IND is sent up. 13849 * However, if there are allocation failures 13850 * this code relies on the sender retransmitting 13851 * and the socket code for determining the mark 13852 * should not block waiting for the peer to 13853 * transmit. Thus, for simplicity we always 13854 * send up the mark indication. 13855 */ 13856 mp1 = allocb(0, BPRI_MED); 13857 if (mp1 == NULL) { 13858 freemsg(mp); 13859 return; 13860 } 13861 if (!TCP_IS_DETACHED(tcp) && 13862 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13863 SIGURG)) { 13864 /* Try again on the rexmit. */ 13865 freemsg(mp1); 13866 freemsg(mp); 13867 return; 13868 } 13869 /* 13870 * Mark with NOTMARKNEXT for now. 13871 * The code below will change this to MARKNEXT 13872 * if we are at the mark. 13873 * 13874 * If there are allocation failures (e.g. in 13875 * dupmsg below) the next time tcp_rput_data 13876 * sees the urgent segment it will send up the 13877 * MSGMARKNEXT message. 13878 */ 13879 mp1->b_flag |= MSGNOTMARKNEXT; 13880 freemsg(tcp->tcp_urp_mark_mp); 13881 tcp->tcp_urp_mark_mp = mp1; 13882 flags |= TH_SEND_URP_MARK; 13883 #ifdef DEBUG 13884 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13885 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13886 "last %x, %s", 13887 seg_seq, urp, tcp->tcp_urp_last, 13888 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13889 #endif /* DEBUG */ 13890 } 13891 tcp->tcp_urp_last_valid = B_TRUE; 13892 tcp->tcp_urp_last = urp + seg_seq; 13893 } else if (tcp->tcp_urp_mark_mp != NULL) { 13894 /* 13895 * An allocation failure prevented the previous 13896 * tcp_rput_data from sending up the allocated 13897 * MSG*MARKNEXT message - send it up this time 13898 * around. 13899 */ 13900 flags |= TH_SEND_URP_MARK; 13901 } 13902 13903 /* 13904 * If the urgent byte is in this segment, make sure that it is 13905 * all by itself. This makes it much easier to deal with the 13906 * possibility of an allocation failure on the T_exdata_ind. 13907 * Note that seg_len is the number of bytes in the segment, and 13908 * urp is the offset into the segment of the urgent byte. 13909 * urp < seg_len means that the urgent byte is in this segment. 13910 */ 13911 if (urp < seg_len) { 13912 if (seg_len != 1) { 13913 uint32_t tmp_rnxt; 13914 /* 13915 * Break it up and feed it back in. 13916 * Re-attach the IP header. 13917 */ 13918 mp->b_rptr = iphdr; 13919 if (urp > 0) { 13920 /* 13921 * There is stuff before the urgent 13922 * byte. 13923 */ 13924 mp1 = dupmsg(mp); 13925 if (!mp1) { 13926 /* 13927 * Trim from urgent byte on. 13928 * The rest will come back. 13929 */ 13930 (void) adjmsg(mp, 13931 urp - seg_len); 13932 tcp_rput_data(connp, 13933 mp, NULL); 13934 return; 13935 } 13936 (void) adjmsg(mp1, urp - seg_len); 13937 /* Feed this piece back in. */ 13938 tmp_rnxt = tcp->tcp_rnxt; 13939 tcp_rput_data(connp, mp1, NULL); 13940 /* 13941 * If the data passed back in was not 13942 * processed (ie: bad ACK) sending 13943 * the remainder back in will cause a 13944 * loop. In this case, drop the 13945 * packet and let the sender try 13946 * sending a good packet. 13947 */ 13948 if (tmp_rnxt == tcp->tcp_rnxt) { 13949 freemsg(mp); 13950 return; 13951 } 13952 } 13953 if (urp != seg_len - 1) { 13954 uint32_t tmp_rnxt; 13955 /* 13956 * There is stuff after the urgent 13957 * byte. 13958 */ 13959 mp1 = dupmsg(mp); 13960 if (!mp1) { 13961 /* 13962 * Trim everything beyond the 13963 * urgent byte. The rest will 13964 * come back. 13965 */ 13966 (void) adjmsg(mp, 13967 urp + 1 - seg_len); 13968 tcp_rput_data(connp, 13969 mp, NULL); 13970 return; 13971 } 13972 (void) adjmsg(mp1, urp + 1 - seg_len); 13973 tmp_rnxt = tcp->tcp_rnxt; 13974 tcp_rput_data(connp, mp1, NULL); 13975 /* 13976 * If the data passed back in was not 13977 * processed (ie: bad ACK) sending 13978 * the remainder back in will cause a 13979 * loop. In this case, drop the 13980 * packet and let the sender try 13981 * sending a good packet. 13982 */ 13983 if (tmp_rnxt == tcp->tcp_rnxt) { 13984 freemsg(mp); 13985 return; 13986 } 13987 } 13988 tcp_rput_data(connp, mp, NULL); 13989 return; 13990 } 13991 /* 13992 * This segment contains only the urgent byte. We 13993 * have to allocate the T_exdata_ind, if we can. 13994 */ 13995 if (IPCL_IS_NONSTR(connp)) { 13996 int error; 13997 13998 (*connp->conn_upcalls->su_recv) 13999 (connp->conn_upper_handle, mp, seg_len, 14000 MSG_OOB, &error, NULL); 14001 mp = NULL; 14002 goto update_ack; 14003 } else if (!tcp->tcp_urp_mp) { 14004 struct T_exdata_ind *tei; 14005 mp1 = allocb(sizeof (struct T_exdata_ind), 14006 BPRI_MED); 14007 if (!mp1) { 14008 /* 14009 * Sigh... It'll be back. 14010 * Generate any MSG*MARK message now. 14011 */ 14012 freemsg(mp); 14013 seg_len = 0; 14014 if (flags & TH_SEND_URP_MARK) { 14015 14016 14017 ASSERT(tcp->tcp_urp_mark_mp); 14018 tcp->tcp_urp_mark_mp->b_flag &= 14019 ~MSGNOTMARKNEXT; 14020 tcp->tcp_urp_mark_mp->b_flag |= 14021 MSGMARKNEXT; 14022 } 14023 goto ack_check; 14024 } 14025 mp1->b_datap->db_type = M_PROTO; 14026 tei = (struct T_exdata_ind *)mp1->b_rptr; 14027 tei->PRIM_type = T_EXDATA_IND; 14028 tei->MORE_flag = 0; 14029 mp1->b_wptr = (uchar_t *)&tei[1]; 14030 tcp->tcp_urp_mp = mp1; 14031 #ifdef DEBUG 14032 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14033 "tcp_rput: allocated exdata_ind %s", 14034 tcp_display(tcp, NULL, 14035 DISP_PORT_ONLY)); 14036 #endif /* DEBUG */ 14037 /* 14038 * There is no need to send a separate MSG*MARK 14039 * message since the T_EXDATA_IND will be sent 14040 * now. 14041 */ 14042 flags &= ~TH_SEND_URP_MARK; 14043 freemsg(tcp->tcp_urp_mark_mp); 14044 tcp->tcp_urp_mark_mp = NULL; 14045 } 14046 /* 14047 * Now we are all set. On the next putnext upstream, 14048 * tcp_urp_mp will be non-NULL and will get prepended 14049 * to what has to be this piece containing the urgent 14050 * byte. If for any reason we abort this segment below, 14051 * if it comes back, we will have this ready, or it 14052 * will get blown off in close. 14053 */ 14054 } else if (urp == seg_len) { 14055 /* 14056 * The urgent byte is the next byte after this sequence 14057 * number. If there is data it is marked with 14058 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14059 * since it is not needed. Otherwise, if the code 14060 * above just allocated a zero-length tcp_urp_mark_mp 14061 * message, that message is tagged with MSGMARKNEXT. 14062 * Sending up these MSGMARKNEXT messages makes 14063 * SIOCATMARK work correctly even though 14064 * the T_EXDATA_IND will not be sent up until the 14065 * urgent byte arrives. 14066 */ 14067 if (seg_len != 0) { 14068 flags |= TH_MARKNEXT_NEEDED; 14069 freemsg(tcp->tcp_urp_mark_mp); 14070 tcp->tcp_urp_mark_mp = NULL; 14071 flags &= ~TH_SEND_URP_MARK; 14072 } else if (tcp->tcp_urp_mark_mp != NULL) { 14073 flags |= TH_SEND_URP_MARK; 14074 tcp->tcp_urp_mark_mp->b_flag &= 14075 ~MSGNOTMARKNEXT; 14076 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14077 } 14078 #ifdef DEBUG 14079 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14080 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14081 seg_len, flags, 14082 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14083 #endif /* DEBUG */ 14084 } 14085 #ifdef DEBUG 14086 else { 14087 /* Data left until we hit mark */ 14088 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14089 "tcp_rput: URP %d bytes left, %s", 14090 urp - seg_len, tcp_display(tcp, NULL, 14091 DISP_PORT_ONLY)); 14092 } 14093 #endif /* DEBUG */ 14094 } 14095 14096 process_ack: 14097 if (!(flags & TH_ACK)) { 14098 freemsg(mp); 14099 goto xmit_check; 14100 } 14101 } 14102 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14103 14104 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14105 tcp->tcp_ip_forward_progress = B_TRUE; 14106 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14107 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14108 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14109 /* 3-way handshake complete - pass up the T_CONN_IND */ 14110 tcp_t *listener = tcp->tcp_listener; 14111 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14112 14113 tcp->tcp_tconnind_started = B_TRUE; 14114 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14115 /* 14116 * We are here means eager is fine but it can 14117 * get a TH_RST at any point between now and till 14118 * accept completes and disappear. We need to 14119 * ensure that reference to eager is valid after 14120 * we get out of eager's perimeter. So we do 14121 * an extra refhold. 14122 */ 14123 CONN_INC_REF(connp); 14124 14125 /* 14126 * The listener also exists because of the refhold 14127 * done in tcp_conn_request. Its possible that it 14128 * might have closed. We will check that once we 14129 * get inside listeners context. 14130 */ 14131 CONN_INC_REF(listener->tcp_connp); 14132 if (listener->tcp_connp->conn_sqp == 14133 connp->conn_sqp) { 14134 /* 14135 * We optimize by not calling an SQUEUE_ENTER 14136 * on the listener since we know that the 14137 * listener and eager squeues are the same. 14138 * We are able to make this check safely only 14139 * because neither the eager nor the listener 14140 * can change its squeue. Only an active connect 14141 * can change its squeue 14142 */ 14143 tcp_send_conn_ind(listener->tcp_connp, mp, 14144 listener->tcp_connp->conn_sqp); 14145 CONN_DEC_REF(listener->tcp_connp); 14146 } else if (!tcp->tcp_loopback) { 14147 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14148 mp, tcp_send_conn_ind, 14149 listener->tcp_connp, SQ_FILL, 14150 SQTAG_TCP_CONN_IND); 14151 } else { 14152 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14153 mp, tcp_send_conn_ind, 14154 listener->tcp_connp, SQ_PROCESS, 14155 SQTAG_TCP_CONN_IND); 14156 } 14157 } 14158 14159 if (tcp->tcp_active_open) { 14160 /* 14161 * We are seeing the final ack in the three way 14162 * hand shake of a active open'ed connection 14163 * so we must send up a T_CONN_CON 14164 */ 14165 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14166 freemsg(mp); 14167 return; 14168 } 14169 /* 14170 * Don't fuse the loopback endpoints for 14171 * simultaneous active opens. 14172 */ 14173 if (tcp->tcp_loopback) { 14174 TCP_STAT(tcps, tcp_fusion_unfusable); 14175 tcp->tcp_unfusable = B_TRUE; 14176 } 14177 } 14178 14179 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14180 bytes_acked--; 14181 /* SYN was acked - making progress */ 14182 if (tcp->tcp_ipversion == IPV6_VERSION) 14183 tcp->tcp_ip_forward_progress = B_TRUE; 14184 14185 /* 14186 * If SYN was retransmitted, need to reset all 14187 * retransmission info as this segment will be 14188 * treated as a dup ACK. 14189 */ 14190 if (tcp->tcp_rexmit) { 14191 tcp->tcp_rexmit = B_FALSE; 14192 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14193 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14194 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14195 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14196 tcp->tcp_ms_we_have_waited = 0; 14197 tcp->tcp_cwnd = mss; 14198 } 14199 14200 /* 14201 * We set the send window to zero here. 14202 * This is needed if there is data to be 14203 * processed already on the queue. 14204 * Later (at swnd_update label), the 14205 * "new_swnd > tcp_swnd" condition is satisfied 14206 * the XMIT_NEEDED flag is set in the current 14207 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14208 * called if there is already data on queue in 14209 * this state. 14210 */ 14211 tcp->tcp_swnd = 0; 14212 14213 if (new_swnd > tcp->tcp_max_swnd) 14214 tcp->tcp_max_swnd = new_swnd; 14215 tcp->tcp_swl1 = seg_seq; 14216 tcp->tcp_swl2 = seg_ack; 14217 tcp->tcp_state = TCPS_ESTABLISHED; 14218 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14219 14220 /* Fuse when both sides are in ESTABLISHED state */ 14221 if (tcp->tcp_loopback && do_tcp_fusion) 14222 tcp_fuse(tcp, iphdr, tcph); 14223 14224 } 14225 /* This code follows 4.4BSD-Lite2 mostly. */ 14226 if (bytes_acked < 0) 14227 goto est; 14228 14229 /* 14230 * If TCP is ECN capable and the congestion experience bit is 14231 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14232 * done once per window (or more loosely, per RTT). 14233 */ 14234 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14235 tcp->tcp_cwr = B_FALSE; 14236 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14237 if (!tcp->tcp_cwr) { 14238 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14239 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14240 tcp->tcp_cwnd = npkt * mss; 14241 /* 14242 * If the cwnd is 0, use the timer to clock out 14243 * new segments. This is required by the ECN spec. 14244 */ 14245 if (npkt == 0) { 14246 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14247 /* 14248 * This makes sure that when the ACK comes 14249 * back, we will increase tcp_cwnd by 1 MSS. 14250 */ 14251 tcp->tcp_cwnd_cnt = 0; 14252 } 14253 tcp->tcp_cwr = B_TRUE; 14254 /* 14255 * This marks the end of the current window of in 14256 * flight data. That is why we don't use 14257 * tcp_suna + tcp_swnd. Only data in flight can 14258 * provide ECN info. 14259 */ 14260 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14261 tcp->tcp_ecn_cwr_sent = B_FALSE; 14262 } 14263 } 14264 14265 mp1 = tcp->tcp_xmit_head; 14266 if (bytes_acked == 0) { 14267 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14268 int dupack_cnt; 14269 14270 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14271 /* 14272 * Fast retransmit. When we have seen exactly three 14273 * identical ACKs while we have unacked data 14274 * outstanding we take it as a hint that our peer 14275 * dropped something. 14276 * 14277 * If TCP is retransmitting, don't do fast retransmit. 14278 */ 14279 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14280 ! tcp->tcp_rexmit) { 14281 /* Do Limited Transmit */ 14282 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14283 tcps->tcps_dupack_fast_retransmit) { 14284 /* 14285 * RFC 3042 14286 * 14287 * What we need to do is temporarily 14288 * increase tcp_cwnd so that new 14289 * data can be sent if it is allowed 14290 * by the receive window (tcp_rwnd). 14291 * tcp_wput_data() will take care of 14292 * the rest. 14293 * 14294 * If the connection is SACK capable, 14295 * only do limited xmit when there 14296 * is SACK info. 14297 * 14298 * Note how tcp_cwnd is incremented. 14299 * The first dup ACK will increase 14300 * it by 1 MSS. The second dup ACK 14301 * will increase it by 2 MSS. This 14302 * means that only 1 new segment will 14303 * be sent for each dup ACK. 14304 */ 14305 if (tcp->tcp_unsent > 0 && 14306 (!tcp->tcp_snd_sack_ok || 14307 (tcp->tcp_snd_sack_ok && 14308 tcp->tcp_notsack_list != NULL))) { 14309 tcp->tcp_cwnd += mss << 14310 (tcp->tcp_dupack_cnt - 1); 14311 flags |= TH_LIMIT_XMIT; 14312 } 14313 } else if (dupack_cnt == 14314 tcps->tcps_dupack_fast_retransmit) { 14315 14316 /* 14317 * If we have reduced tcp_ssthresh 14318 * because of ECN, do not reduce it again 14319 * unless it is already one window of data 14320 * away. After one window of data, tcp_cwr 14321 * should then be cleared. Note that 14322 * for non ECN capable connection, tcp_cwr 14323 * should always be false. 14324 * 14325 * Adjust cwnd since the duplicate 14326 * ack indicates that a packet was 14327 * dropped (due to congestion.) 14328 */ 14329 if (!tcp->tcp_cwr) { 14330 npkt = ((tcp->tcp_snxt - 14331 tcp->tcp_suna) >> 1) / mss; 14332 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14333 mss; 14334 tcp->tcp_cwnd = (npkt + 14335 tcp->tcp_dupack_cnt) * mss; 14336 } 14337 if (tcp->tcp_ecn_ok) { 14338 tcp->tcp_cwr = B_TRUE; 14339 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14340 tcp->tcp_ecn_cwr_sent = B_FALSE; 14341 } 14342 14343 /* 14344 * We do Hoe's algorithm. Refer to her 14345 * paper "Improving the Start-up Behavior 14346 * of a Congestion Control Scheme for TCP," 14347 * appeared in SIGCOMM'96. 14348 * 14349 * Save highest seq no we have sent so far. 14350 * Be careful about the invisible FIN byte. 14351 */ 14352 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14353 (tcp->tcp_unsent == 0)) { 14354 tcp->tcp_rexmit_max = tcp->tcp_fss; 14355 } else { 14356 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14357 } 14358 14359 /* 14360 * Do not allow bursty traffic during. 14361 * fast recovery. Refer to Fall and Floyd's 14362 * paper "Simulation-based Comparisons of 14363 * Tahoe, Reno and SACK TCP" (in CCR?) 14364 * This is a best current practise. 14365 */ 14366 tcp->tcp_snd_burst = TCP_CWND_SS; 14367 14368 /* 14369 * For SACK: 14370 * Calculate tcp_pipe, which is the 14371 * estimated number of bytes in 14372 * network. 14373 * 14374 * tcp_fack is the highest sack'ed seq num 14375 * TCP has received. 14376 * 14377 * tcp_pipe is explained in the above quoted 14378 * Fall and Floyd's paper. tcp_fack is 14379 * explained in Mathis and Mahdavi's 14380 * "Forward Acknowledgment: Refining TCP 14381 * Congestion Control" in SIGCOMM '96. 14382 */ 14383 if (tcp->tcp_snd_sack_ok) { 14384 ASSERT(tcp->tcp_sack_info != NULL); 14385 if (tcp->tcp_notsack_list != NULL) { 14386 tcp->tcp_pipe = tcp->tcp_snxt - 14387 tcp->tcp_fack; 14388 tcp->tcp_sack_snxt = seg_ack; 14389 flags |= TH_NEED_SACK_REXMIT; 14390 } else { 14391 /* 14392 * Always initialize tcp_pipe 14393 * even though we don't have 14394 * any SACK info. If later 14395 * we get SACK info and 14396 * tcp_pipe is not initialized, 14397 * funny things will happen. 14398 */ 14399 tcp->tcp_pipe = 14400 tcp->tcp_cwnd_ssthresh; 14401 } 14402 } else { 14403 flags |= TH_REXMIT_NEEDED; 14404 } /* tcp_snd_sack_ok */ 14405 14406 } else { 14407 /* 14408 * Here we perform congestion 14409 * avoidance, but NOT slow start. 14410 * This is known as the Fast 14411 * Recovery Algorithm. 14412 */ 14413 if (tcp->tcp_snd_sack_ok && 14414 tcp->tcp_notsack_list != NULL) { 14415 flags |= TH_NEED_SACK_REXMIT; 14416 tcp->tcp_pipe -= mss; 14417 if (tcp->tcp_pipe < 0) 14418 tcp->tcp_pipe = 0; 14419 } else { 14420 /* 14421 * We know that one more packet has 14422 * left the pipe thus we can update 14423 * cwnd. 14424 */ 14425 cwnd = tcp->tcp_cwnd + mss; 14426 if (cwnd > tcp->tcp_cwnd_max) 14427 cwnd = tcp->tcp_cwnd_max; 14428 tcp->tcp_cwnd = cwnd; 14429 if (tcp->tcp_unsent > 0) 14430 flags |= TH_XMIT_NEEDED; 14431 } 14432 } 14433 } 14434 } else if (tcp->tcp_zero_win_probe) { 14435 /* 14436 * If the window has opened, need to arrange 14437 * to send additional data. 14438 */ 14439 if (new_swnd != 0) { 14440 /* tcp_suna != tcp_snxt */ 14441 /* Packet contains a window update */ 14442 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14443 tcp->tcp_zero_win_probe = 0; 14444 tcp->tcp_timer_backoff = 0; 14445 tcp->tcp_ms_we_have_waited = 0; 14446 14447 /* 14448 * Transmit starting with tcp_suna since 14449 * the one byte probe is not ack'ed. 14450 * If TCP has sent more than one identical 14451 * probe, tcp_rexmit will be set. That means 14452 * tcp_ss_rexmit() will send out the one 14453 * byte along with new data. Otherwise, 14454 * fake the retransmission. 14455 */ 14456 flags |= TH_XMIT_NEEDED; 14457 if (!tcp->tcp_rexmit) { 14458 tcp->tcp_rexmit = B_TRUE; 14459 tcp->tcp_dupack_cnt = 0; 14460 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14461 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14462 } 14463 } 14464 } 14465 goto swnd_update; 14466 } 14467 14468 /* 14469 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14470 * If the ACK value acks something that we have not yet sent, it might 14471 * be an old duplicate segment. Send an ACK to re-synchronize the 14472 * other side. 14473 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14474 * state is handled above, so we can always just drop the segment and 14475 * send an ACK here. 14476 * 14477 * Should we send ACKs in response to ACK only segments? 14478 */ 14479 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14480 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14481 /* drop the received segment */ 14482 freemsg(mp); 14483 14484 /* 14485 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14486 * greater than 0, check if the number of such 14487 * bogus ACks is greater than that count. If yes, 14488 * don't send back any ACK. This prevents TCP from 14489 * getting into an ACK storm if somehow an attacker 14490 * successfully spoofs an acceptable segment to our 14491 * peer. 14492 */ 14493 if (tcp_drop_ack_unsent_cnt > 0 && 14494 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14495 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14496 return; 14497 } 14498 mp = tcp_ack_mp(tcp); 14499 if (mp != NULL) { 14500 BUMP_LOCAL(tcp->tcp_obsegs); 14501 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14502 tcp_send_data(tcp, tcp->tcp_wq, mp); 14503 } 14504 return; 14505 } 14506 14507 /* 14508 * TCP gets a new ACK, update the notsack'ed list to delete those 14509 * blocks that are covered by this ACK. 14510 */ 14511 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14512 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14513 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14514 } 14515 14516 /* 14517 * If we got an ACK after fast retransmit, check to see 14518 * if it is a partial ACK. If it is not and the congestion 14519 * window was inflated to account for the other side's 14520 * cached packets, retract it. If it is, do Hoe's algorithm. 14521 */ 14522 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14523 ASSERT(tcp->tcp_rexmit == B_FALSE); 14524 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14525 tcp->tcp_dupack_cnt = 0; 14526 /* 14527 * Restore the orig tcp_cwnd_ssthresh after 14528 * fast retransmit phase. 14529 */ 14530 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14531 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14532 } 14533 tcp->tcp_rexmit_max = seg_ack; 14534 tcp->tcp_cwnd_cnt = 0; 14535 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14536 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14537 14538 /* 14539 * Remove all notsack info to avoid confusion with 14540 * the next fast retrasnmit/recovery phase. 14541 */ 14542 if (tcp->tcp_snd_sack_ok && 14543 tcp->tcp_notsack_list != NULL) { 14544 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14545 } 14546 } else { 14547 if (tcp->tcp_snd_sack_ok && 14548 tcp->tcp_notsack_list != NULL) { 14549 flags |= TH_NEED_SACK_REXMIT; 14550 tcp->tcp_pipe -= mss; 14551 if (tcp->tcp_pipe < 0) 14552 tcp->tcp_pipe = 0; 14553 } else { 14554 /* 14555 * Hoe's algorithm: 14556 * 14557 * Retransmit the unack'ed segment and 14558 * restart fast recovery. Note that we 14559 * need to scale back tcp_cwnd to the 14560 * original value when we started fast 14561 * recovery. This is to prevent overly 14562 * aggressive behaviour in sending new 14563 * segments. 14564 */ 14565 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14566 tcps->tcps_dupack_fast_retransmit * mss; 14567 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14568 flags |= TH_REXMIT_NEEDED; 14569 } 14570 } 14571 } else { 14572 tcp->tcp_dupack_cnt = 0; 14573 if (tcp->tcp_rexmit) { 14574 /* 14575 * TCP is retranmitting. If the ACK ack's all 14576 * outstanding data, update tcp_rexmit_max and 14577 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14578 * to the correct value. 14579 * 14580 * Note that SEQ_LEQ() is used. This is to avoid 14581 * unnecessary fast retransmit caused by dup ACKs 14582 * received when TCP does slow start retransmission 14583 * after a time out. During this phase, TCP may 14584 * send out segments which are already received. 14585 * This causes dup ACKs to be sent back. 14586 */ 14587 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14588 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14589 tcp->tcp_rexmit_nxt = seg_ack; 14590 } 14591 if (seg_ack != tcp->tcp_rexmit_max) { 14592 flags |= TH_XMIT_NEEDED; 14593 } 14594 } else { 14595 tcp->tcp_rexmit = B_FALSE; 14596 tcp->tcp_xmit_zc_clean = B_FALSE; 14597 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14598 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14599 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14600 } 14601 tcp->tcp_ms_we_have_waited = 0; 14602 } 14603 } 14604 14605 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14606 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14607 tcp->tcp_suna = seg_ack; 14608 if (tcp->tcp_zero_win_probe != 0) { 14609 tcp->tcp_zero_win_probe = 0; 14610 tcp->tcp_timer_backoff = 0; 14611 } 14612 14613 /* 14614 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14615 * Note that it cannot be the SYN being ack'ed. The code flow 14616 * will not reach here. 14617 */ 14618 if (mp1 == NULL) { 14619 goto fin_acked; 14620 } 14621 14622 /* 14623 * Update the congestion window. 14624 * 14625 * If TCP is not ECN capable or TCP is ECN capable but the 14626 * congestion experience bit is not set, increase the tcp_cwnd as 14627 * usual. 14628 */ 14629 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14630 cwnd = tcp->tcp_cwnd; 14631 add = mss; 14632 14633 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14634 /* 14635 * This is to prevent an increase of less than 1 MSS of 14636 * tcp_cwnd. With partial increase, tcp_wput_data() 14637 * may send out tinygrams in order to preserve mblk 14638 * boundaries. 14639 * 14640 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14641 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14642 * increased by 1 MSS for every RTTs. 14643 */ 14644 if (tcp->tcp_cwnd_cnt <= 0) { 14645 tcp->tcp_cwnd_cnt = cwnd + add; 14646 } else { 14647 tcp->tcp_cwnd_cnt -= add; 14648 add = 0; 14649 } 14650 } 14651 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14652 } 14653 14654 /* See if the latest urgent data has been acknowledged */ 14655 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14656 SEQ_GT(seg_ack, tcp->tcp_urg)) 14657 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14658 14659 /* Can we update the RTT estimates? */ 14660 if (tcp->tcp_snd_ts_ok) { 14661 /* Ignore zero timestamp echo-reply. */ 14662 if (tcpopt.tcp_opt_ts_ecr != 0) { 14663 tcp_set_rto(tcp, (int32_t)lbolt - 14664 (int32_t)tcpopt.tcp_opt_ts_ecr); 14665 } 14666 14667 /* If needed, restart the timer. */ 14668 if (tcp->tcp_set_timer == 1) { 14669 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14670 tcp->tcp_set_timer = 0; 14671 } 14672 /* 14673 * Update tcp_csuna in case the other side stops sending 14674 * us timestamps. 14675 */ 14676 tcp->tcp_csuna = tcp->tcp_snxt; 14677 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14678 /* 14679 * An ACK sequence we haven't seen before, so get the RTT 14680 * and update the RTO. But first check if the timestamp is 14681 * valid to use. 14682 */ 14683 if ((mp1->b_next != NULL) && 14684 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14685 tcp_set_rto(tcp, (int32_t)lbolt - 14686 (int32_t)(intptr_t)mp1->b_prev); 14687 else 14688 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14689 14690 /* Remeber the last sequence to be ACKed */ 14691 tcp->tcp_csuna = seg_ack; 14692 if (tcp->tcp_set_timer == 1) { 14693 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14694 tcp->tcp_set_timer = 0; 14695 } 14696 } else { 14697 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14698 } 14699 14700 /* Eat acknowledged bytes off the xmit queue. */ 14701 for (;;) { 14702 mblk_t *mp2; 14703 uchar_t *wptr; 14704 14705 wptr = mp1->b_wptr; 14706 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14707 bytes_acked -= (int)(wptr - mp1->b_rptr); 14708 if (bytes_acked < 0) { 14709 mp1->b_rptr = wptr + bytes_acked; 14710 /* 14711 * Set a new timestamp if all the bytes timed by the 14712 * old timestamp have been ack'ed. 14713 */ 14714 if (SEQ_GT(seg_ack, 14715 (uint32_t)(uintptr_t)(mp1->b_next))) { 14716 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14717 mp1->b_next = NULL; 14718 } 14719 break; 14720 } 14721 mp1->b_next = NULL; 14722 mp1->b_prev = NULL; 14723 mp2 = mp1; 14724 mp1 = mp1->b_cont; 14725 14726 /* 14727 * This notification is required for some zero-copy 14728 * clients to maintain a copy semantic. After the data 14729 * is ack'ed, client is safe to modify or reuse the buffer. 14730 */ 14731 if (tcp->tcp_snd_zcopy_aware && 14732 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14733 tcp_zcopy_notify(tcp); 14734 freeb(mp2); 14735 if (bytes_acked == 0) { 14736 if (mp1 == NULL) { 14737 /* Everything is ack'ed, clear the tail. */ 14738 tcp->tcp_xmit_tail = NULL; 14739 /* 14740 * Cancel the timer unless we are still 14741 * waiting for an ACK for the FIN packet. 14742 */ 14743 if (tcp->tcp_timer_tid != 0 && 14744 tcp->tcp_snxt == tcp->tcp_suna) { 14745 (void) TCP_TIMER_CANCEL(tcp, 14746 tcp->tcp_timer_tid); 14747 tcp->tcp_timer_tid = 0; 14748 } 14749 goto pre_swnd_update; 14750 } 14751 if (mp2 != tcp->tcp_xmit_tail) 14752 break; 14753 tcp->tcp_xmit_tail = mp1; 14754 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14755 (uintptr_t)INT_MAX); 14756 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14757 mp1->b_rptr); 14758 break; 14759 } 14760 if (mp1 == NULL) { 14761 /* 14762 * More was acked but there is nothing more 14763 * outstanding. This means that the FIN was 14764 * just acked or that we're talking to a clown. 14765 */ 14766 fin_acked: 14767 ASSERT(tcp->tcp_fin_sent); 14768 tcp->tcp_xmit_tail = NULL; 14769 if (tcp->tcp_fin_sent) { 14770 /* FIN was acked - making progress */ 14771 if (tcp->tcp_ipversion == IPV6_VERSION && 14772 !tcp->tcp_fin_acked) 14773 tcp->tcp_ip_forward_progress = B_TRUE; 14774 tcp->tcp_fin_acked = B_TRUE; 14775 if (tcp->tcp_linger_tid != 0 && 14776 TCP_TIMER_CANCEL(tcp, 14777 tcp->tcp_linger_tid) >= 0) { 14778 tcp_stop_lingering(tcp); 14779 freemsg(mp); 14780 mp = NULL; 14781 } 14782 } else { 14783 /* 14784 * We should never get here because 14785 * we have already checked that the 14786 * number of bytes ack'ed should be 14787 * smaller than or equal to what we 14788 * have sent so far (it is the 14789 * acceptability check of the ACK). 14790 * We can only get here if the send 14791 * queue is corrupted. 14792 * 14793 * Terminate the connection and 14794 * panic the system. It is better 14795 * for us to panic instead of 14796 * continuing to avoid other disaster. 14797 */ 14798 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14799 tcp->tcp_rnxt, TH_RST|TH_ACK); 14800 panic("Memory corruption " 14801 "detected for connection %s.", 14802 tcp_display(tcp, NULL, 14803 DISP_ADDR_AND_PORT)); 14804 /*NOTREACHED*/ 14805 } 14806 goto pre_swnd_update; 14807 } 14808 ASSERT(mp2 != tcp->tcp_xmit_tail); 14809 } 14810 if (tcp->tcp_unsent) { 14811 flags |= TH_XMIT_NEEDED; 14812 } 14813 pre_swnd_update: 14814 tcp->tcp_xmit_head = mp1; 14815 swnd_update: 14816 /* 14817 * The following check is different from most other implementations. 14818 * For bi-directional transfer, when segments are dropped, the 14819 * "normal" check will not accept a window update in those 14820 * retransmitted segemnts. Failing to do that, TCP may send out 14821 * segments which are outside receiver's window. As TCP accepts 14822 * the ack in those retransmitted segments, if the window update in 14823 * the same segment is not accepted, TCP will incorrectly calculates 14824 * that it can send more segments. This can create a deadlock 14825 * with the receiver if its window becomes zero. 14826 */ 14827 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14828 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14829 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14830 /* 14831 * The criteria for update is: 14832 * 14833 * 1. the segment acknowledges some data. Or 14834 * 2. the segment is new, i.e. it has a higher seq num. Or 14835 * 3. the segment is not old and the advertised window is 14836 * larger than the previous advertised window. 14837 */ 14838 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14839 flags |= TH_XMIT_NEEDED; 14840 tcp->tcp_swnd = new_swnd; 14841 if (new_swnd > tcp->tcp_max_swnd) 14842 tcp->tcp_max_swnd = new_swnd; 14843 tcp->tcp_swl1 = seg_seq; 14844 tcp->tcp_swl2 = seg_ack; 14845 } 14846 est: 14847 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14848 14849 switch (tcp->tcp_state) { 14850 case TCPS_FIN_WAIT_1: 14851 if (tcp->tcp_fin_acked) { 14852 tcp->tcp_state = TCPS_FIN_WAIT_2; 14853 /* 14854 * We implement the non-standard BSD/SunOS 14855 * FIN_WAIT_2 flushing algorithm. 14856 * If there is no user attached to this 14857 * TCP endpoint, then this TCP struct 14858 * could hang around forever in FIN_WAIT_2 14859 * state if the peer forgets to send us 14860 * a FIN. To prevent this, we wait only 14861 * 2*MSL (a convenient time value) for 14862 * the FIN to arrive. If it doesn't show up, 14863 * we flush the TCP endpoint. This algorithm, 14864 * though a violation of RFC-793, has worked 14865 * for over 10 years in BSD systems. 14866 * Note: SunOS 4.x waits 675 seconds before 14867 * flushing the FIN_WAIT_2 connection. 14868 */ 14869 TCP_TIMER_RESTART(tcp, 14870 tcps->tcps_fin_wait_2_flush_interval); 14871 } 14872 break; 14873 case TCPS_FIN_WAIT_2: 14874 break; /* Shutdown hook? */ 14875 case TCPS_LAST_ACK: 14876 freemsg(mp); 14877 if (tcp->tcp_fin_acked) { 14878 (void) tcp_clean_death(tcp, 0, 19); 14879 return; 14880 } 14881 goto xmit_check; 14882 case TCPS_CLOSING: 14883 if (tcp->tcp_fin_acked) { 14884 tcp->tcp_state = TCPS_TIME_WAIT; 14885 /* 14886 * Unconditionally clear the exclusive binding 14887 * bit so this TIME-WAIT connection won't 14888 * interfere with new ones. 14889 */ 14890 tcp->tcp_exclbind = 0; 14891 if (!TCP_IS_DETACHED(tcp)) { 14892 TCP_TIMER_RESTART(tcp, 14893 tcps->tcps_time_wait_interval); 14894 } else { 14895 tcp_time_wait_append(tcp); 14896 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14897 } 14898 } 14899 /*FALLTHRU*/ 14900 case TCPS_CLOSE_WAIT: 14901 freemsg(mp); 14902 goto xmit_check; 14903 default: 14904 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14905 break; 14906 } 14907 } 14908 if (flags & TH_FIN) { 14909 /* Make sure we ack the fin */ 14910 flags |= TH_ACK_NEEDED; 14911 if (!tcp->tcp_fin_rcvd) { 14912 tcp->tcp_fin_rcvd = B_TRUE; 14913 tcp->tcp_rnxt++; 14914 tcph = tcp->tcp_tcph; 14915 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14916 14917 /* 14918 * Generate the ordrel_ind at the end unless we 14919 * are an eager guy. 14920 * In the eager case tcp_rsrv will do this when run 14921 * after tcp_accept is done. 14922 */ 14923 if (tcp->tcp_listener == NULL && 14924 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14925 flags |= TH_ORDREL_NEEDED; 14926 switch (tcp->tcp_state) { 14927 case TCPS_SYN_RCVD: 14928 case TCPS_ESTABLISHED: 14929 tcp->tcp_state = TCPS_CLOSE_WAIT; 14930 /* Keepalive? */ 14931 break; 14932 case TCPS_FIN_WAIT_1: 14933 if (!tcp->tcp_fin_acked) { 14934 tcp->tcp_state = TCPS_CLOSING; 14935 break; 14936 } 14937 /* FALLTHRU */ 14938 case TCPS_FIN_WAIT_2: 14939 tcp->tcp_state = TCPS_TIME_WAIT; 14940 /* 14941 * Unconditionally clear the exclusive binding 14942 * bit so this TIME-WAIT connection won't 14943 * interfere with new ones. 14944 */ 14945 tcp->tcp_exclbind = 0; 14946 if (!TCP_IS_DETACHED(tcp)) { 14947 TCP_TIMER_RESTART(tcp, 14948 tcps->tcps_time_wait_interval); 14949 } else { 14950 tcp_time_wait_append(tcp); 14951 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14952 } 14953 if (seg_len) { 14954 /* 14955 * implies data piggybacked on FIN. 14956 * break to handle data. 14957 */ 14958 break; 14959 } 14960 freemsg(mp); 14961 goto ack_check; 14962 } 14963 } 14964 } 14965 if (mp == NULL) 14966 goto xmit_check; 14967 if (seg_len == 0) { 14968 freemsg(mp); 14969 goto xmit_check; 14970 } 14971 if (mp->b_rptr == mp->b_wptr) { 14972 /* 14973 * The header has been consumed, so we remove the 14974 * zero-length mblk here. 14975 */ 14976 mp1 = mp; 14977 mp = mp->b_cont; 14978 freeb(mp1); 14979 } 14980 update_ack: 14981 tcph = tcp->tcp_tcph; 14982 tcp->tcp_rack_cnt++; 14983 { 14984 uint32_t cur_max; 14985 14986 cur_max = tcp->tcp_rack_cur_max; 14987 if (tcp->tcp_rack_cnt >= cur_max) { 14988 /* 14989 * We have more unacked data than we should - send 14990 * an ACK now. 14991 */ 14992 flags |= TH_ACK_NEEDED; 14993 cur_max++; 14994 if (cur_max > tcp->tcp_rack_abs_max) 14995 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14996 else 14997 tcp->tcp_rack_cur_max = cur_max; 14998 } else if (TCP_IS_DETACHED(tcp)) { 14999 /* We don't have an ACK timer for detached TCP. */ 15000 flags |= TH_ACK_NEEDED; 15001 } else if (seg_len < mss) { 15002 /* 15003 * If we get a segment that is less than an mss, and we 15004 * already have unacknowledged data, and the amount 15005 * unacknowledged is not a multiple of mss, then we 15006 * better generate an ACK now. Otherwise, this may be 15007 * the tail piece of a transaction, and we would rather 15008 * wait for the response. 15009 */ 15010 uint32_t udif; 15011 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15012 (uintptr_t)INT_MAX); 15013 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15014 if (udif && (udif % mss)) 15015 flags |= TH_ACK_NEEDED; 15016 else 15017 flags |= TH_ACK_TIMER_NEEDED; 15018 } else { 15019 /* Start delayed ack timer */ 15020 flags |= TH_ACK_TIMER_NEEDED; 15021 } 15022 } 15023 tcp->tcp_rnxt += seg_len; 15024 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15025 15026 if (mp == NULL) 15027 goto xmit_check; 15028 15029 /* Update SACK list */ 15030 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15031 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15032 &(tcp->tcp_num_sack_blk)); 15033 } 15034 15035 if (tcp->tcp_urp_mp) { 15036 tcp->tcp_urp_mp->b_cont = mp; 15037 mp = tcp->tcp_urp_mp; 15038 tcp->tcp_urp_mp = NULL; 15039 /* Ready for a new signal. */ 15040 tcp->tcp_urp_last_valid = B_FALSE; 15041 #ifdef DEBUG 15042 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15043 "tcp_rput: sending exdata_ind %s", 15044 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15045 #endif /* DEBUG */ 15046 } 15047 15048 /* 15049 * Check for ancillary data changes compared to last segment. 15050 */ 15051 if (tcp->tcp_ipv6_recvancillary != 0) { 15052 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15053 ASSERT(mp != NULL); 15054 } 15055 15056 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15057 /* 15058 * Side queue inbound data until the accept happens. 15059 * tcp_accept/tcp_rput drains this when the accept happens. 15060 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15061 * T_EXDATA_IND) it is queued on b_next. 15062 * XXX Make urgent data use this. Requires: 15063 * Removing tcp_listener check for TH_URG 15064 * Making M_PCPROTO and MARK messages skip the eager case 15065 */ 15066 15067 if (tcp->tcp_kssl_pending) { 15068 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15069 mblk_t *, mp); 15070 tcp_kssl_input(tcp, mp); 15071 } else { 15072 tcp_rcv_enqueue(tcp, mp, seg_len); 15073 } 15074 } else { 15075 sodirect_t *sodp = tcp->tcp_sodirect; 15076 15077 /* 15078 * If an sodirect connection and an enabled sodirect_t then 15079 * sodp will be set to point to the tcp_t/sonode_t shared 15080 * sodirect_t and the sodirect_t's lock will be held. 15081 */ 15082 if (sodp != NULL) { 15083 mutex_enter(sodp->sod_lockp); 15084 if (!(sodp->sod_state & SOD_ENABLED) || 15085 (tcp->tcp_kssl_ctx != NULL && 15086 DB_TYPE(mp) == M_DATA)) { 15087 sodp = NULL; 15088 } 15089 mutex_exit(sodp->sod_lockp); 15090 } 15091 if (mp->b_datap->db_type != M_DATA || 15092 (flags & TH_MARKNEXT_NEEDED)) { 15093 if (IPCL_IS_NONSTR(connp)) { 15094 int error; 15095 15096 if ((*connp->conn_upcalls->su_recv) 15097 (connp->conn_upper_handle, mp, 15098 seg_len, 0, &error, NULL) <= 0) { 15099 if (error == ENOSPC) { 15100 tcp->tcp_rwnd -= seg_len; 15101 } else if (error == EOPNOTSUPP) { 15102 tcp_rcv_enqueue(tcp, mp, 15103 seg_len); 15104 } 15105 } 15106 } else if (sodp != NULL) { 15107 mutex_enter(sodp->sod_lockp); 15108 SOD_UIOAFINI(sodp); 15109 if (!SOD_QEMPTY(sodp) && 15110 (sodp->sod_state & SOD_WAKE_NOT)) { 15111 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15112 /* sod_wakeup() did the mutex_exit() */ 15113 } else { 15114 mutex_exit(sodp->sod_lockp); 15115 } 15116 } else if (tcp->tcp_rcv_list != NULL) { 15117 flags |= tcp_rcv_drain(tcp); 15118 } 15119 ASSERT(tcp->tcp_rcv_list == NULL || 15120 tcp->tcp_fused_sigurg); 15121 15122 if (flags & TH_MARKNEXT_NEEDED) { 15123 #ifdef DEBUG 15124 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15125 "tcp_rput: sending MSGMARKNEXT %s", 15126 tcp_display(tcp, NULL, 15127 DISP_PORT_ONLY)); 15128 #endif /* DEBUG */ 15129 mp->b_flag |= MSGMARKNEXT; 15130 flags &= ~TH_MARKNEXT_NEEDED; 15131 } 15132 15133 /* Does this need SSL processing first? */ 15134 if ((tcp->tcp_kssl_ctx != NULL) && 15135 (DB_TYPE(mp) == M_DATA)) { 15136 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15137 mblk_t *, mp); 15138 tcp_kssl_input(tcp, mp); 15139 } else if (!IPCL_IS_NONSTR(connp)) { 15140 /* Already handled non-STREAMS case. */ 15141 putnext(tcp->tcp_rq, mp); 15142 if (!canputnext(tcp->tcp_rq)) 15143 tcp->tcp_rwnd -= seg_len; 15144 } 15145 } else if ((tcp->tcp_kssl_ctx != NULL) && 15146 (DB_TYPE(mp) == M_DATA)) { 15147 /* Does this need SSL processing first? */ 15148 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15149 tcp_kssl_input(tcp, mp); 15150 } else if (IPCL_IS_NONSTR(connp)) { 15151 /* Non-STREAMS socket */ 15152 boolean_t push = flags & (TH_PUSH|TH_FIN); 15153 int error; 15154 15155 if ((*connp->conn_upcalls->su_recv)( 15156 connp->conn_upper_handle, 15157 mp, seg_len, 0, &error, &push) <= 0) { 15158 if (error == ENOSPC) { 15159 tcp->tcp_rwnd -= seg_len; 15160 } else if (error == EOPNOTSUPP) { 15161 tcp_rcv_enqueue(tcp, mp, seg_len); 15162 } 15163 } else if (push) { 15164 /* 15165 * PUSH bit set and sockfs is not 15166 * flow controlled 15167 */ 15168 flags |= tcp_rwnd_reopen(tcp); 15169 } 15170 } else if (sodp != NULL) { 15171 /* 15172 * Sodirect so all mblk_t's are queued on the 15173 * socket directly, check for wakeup of blocked 15174 * reader (if any), and last if flow-controled. 15175 */ 15176 mutex_enter(sodp->sod_lockp); 15177 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15178 if ((sodp->sod_state & SOD_WAKE_NEED) || 15179 (flags & (TH_PUSH|TH_FIN))) { 15180 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15181 /* sod_wakeup() did the mutex_exit() */ 15182 } else { 15183 if (SOD_QFULL(sodp)) { 15184 /* Q is full, need backenable */ 15185 SOD_QSETBE(sodp); 15186 } 15187 mutex_exit(sodp->sod_lockp); 15188 } 15189 } else if ((flags & (TH_PUSH|TH_FIN)) || 15190 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15191 if (tcp->tcp_rcv_list != NULL) { 15192 /* 15193 * Enqueue the new segment first and then 15194 * call tcp_rcv_drain() to send all data 15195 * up. The other way to do this is to 15196 * send all queued data up and then call 15197 * putnext() to send the new segment up. 15198 * This way can remove the else part later 15199 * on. 15200 * 15201 * We don't do this to avoid one more call to 15202 * canputnext() as tcp_rcv_drain() needs to 15203 * call canputnext(). 15204 */ 15205 tcp_rcv_enqueue(tcp, mp, seg_len); 15206 flags |= tcp_rcv_drain(tcp); 15207 } else { 15208 putnext(tcp->tcp_rq, mp); 15209 if (!canputnext(tcp->tcp_rq)) 15210 tcp->tcp_rwnd -= seg_len; 15211 } 15212 } else { 15213 /* 15214 * Enqueue all packets when processing an mblk 15215 * from the co queue and also enqueue normal packets. 15216 * For packets which belong to SSL stream do SSL 15217 * processing first. 15218 */ 15219 tcp_rcv_enqueue(tcp, mp, seg_len); 15220 } 15221 /* 15222 * Make sure the timer is running if we have data waiting 15223 * for a push bit. This provides resiliency against 15224 * implementations that do not correctly generate push bits. 15225 * 15226 * Note, for sodirect if Q isn't empty and there's not a 15227 * pending wakeup then we need a timer. Also note that sodp 15228 * is assumed to be still valid after exit()ing the sod_lockp 15229 * above and while the SOD state can change it can only change 15230 * such that the Q is empty now even though data was added 15231 * above. 15232 */ 15233 if (!IPCL_IS_NONSTR(connp) && 15234 ((sodp != NULL && !SOD_QEMPTY(sodp) && 15235 (sodp->sod_state & SOD_WAKE_NOT)) || 15236 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15237 tcp->tcp_push_tid == 0) { 15238 /* 15239 * The connection may be closed at this point, so don't 15240 * do anything for a detached tcp. 15241 */ 15242 if (!TCP_IS_DETACHED(tcp)) 15243 tcp->tcp_push_tid = TCP_TIMER(tcp, 15244 tcp_push_timer, 15245 MSEC_TO_TICK( 15246 tcps->tcps_push_timer_interval)); 15247 } 15248 } 15249 15250 xmit_check: 15251 /* Is there anything left to do? */ 15252 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15253 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15254 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15255 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15256 goto done; 15257 15258 /* Any transmit work to do and a non-zero window? */ 15259 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15260 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15261 if (flags & TH_REXMIT_NEEDED) { 15262 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15263 15264 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15265 if (snd_size > mss) 15266 snd_size = mss; 15267 if (snd_size > tcp->tcp_swnd) 15268 snd_size = tcp->tcp_swnd; 15269 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15270 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15271 B_TRUE); 15272 15273 if (mp1 != NULL) { 15274 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15275 tcp->tcp_csuna = tcp->tcp_snxt; 15276 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15277 UPDATE_MIB(&tcps->tcps_mib, 15278 tcpRetransBytes, snd_size); 15279 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15280 } 15281 } 15282 if (flags & TH_NEED_SACK_REXMIT) { 15283 tcp_sack_rxmit(tcp, &flags); 15284 } 15285 /* 15286 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15287 * out new segment. Note that tcp_rexmit should not be 15288 * set, otherwise TH_LIMIT_XMIT should not be set. 15289 */ 15290 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15291 if (!tcp->tcp_rexmit) { 15292 tcp_wput_data(tcp, NULL, B_FALSE); 15293 } else { 15294 tcp_ss_rexmit(tcp); 15295 } 15296 } 15297 /* 15298 * Adjust tcp_cwnd back to normal value after sending 15299 * new data segments. 15300 */ 15301 if (flags & TH_LIMIT_XMIT) { 15302 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15303 /* 15304 * This will restart the timer. Restarting the 15305 * timer is used to avoid a timeout before the 15306 * limited transmitted segment's ACK gets back. 15307 */ 15308 if (tcp->tcp_xmit_head != NULL) 15309 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15310 } 15311 15312 /* Anything more to do? */ 15313 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15314 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15315 goto done; 15316 } 15317 ack_check: 15318 if (flags & TH_SEND_URP_MARK) { 15319 ASSERT(tcp->tcp_urp_mark_mp); 15320 ASSERT(!IPCL_IS_NONSTR(connp)); 15321 /* 15322 * Send up any queued data and then send the mark message 15323 */ 15324 sodirect_t *sodp; 15325 15326 SOD_PTR_ENTER(tcp, sodp); 15327 15328 mp1 = tcp->tcp_urp_mark_mp; 15329 tcp->tcp_urp_mark_mp = NULL; 15330 if (sodp != NULL) { 15331 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15332 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15333 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15334 } 15335 ASSERT(tcp->tcp_rcv_list == NULL); 15336 15337 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15338 /* sod_wakeup() does the mutex_exit() */ 15339 } else if (tcp->tcp_rcv_list != NULL) { 15340 flags |= tcp_rcv_drain(tcp); 15341 15342 ASSERT(tcp->tcp_rcv_list == NULL || 15343 tcp->tcp_fused_sigurg); 15344 15345 } 15346 putnext(tcp->tcp_rq, mp1); 15347 #ifdef DEBUG 15348 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15349 "tcp_rput: sending zero-length %s %s", 15350 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15351 "MSGNOTMARKNEXT"), 15352 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15353 #endif /* DEBUG */ 15354 flags &= ~TH_SEND_URP_MARK; 15355 } 15356 if (flags & TH_ACK_NEEDED) { 15357 /* 15358 * Time to send an ack for some reason. 15359 */ 15360 mp1 = tcp_ack_mp(tcp); 15361 15362 if (mp1 != NULL) { 15363 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15364 BUMP_LOCAL(tcp->tcp_obsegs); 15365 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15366 } 15367 if (tcp->tcp_ack_tid != 0) { 15368 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15369 tcp->tcp_ack_tid = 0; 15370 } 15371 } 15372 if (flags & TH_ACK_TIMER_NEEDED) { 15373 /* 15374 * Arrange for deferred ACK or push wait timeout. 15375 * Start timer if it is not already running. 15376 */ 15377 if (tcp->tcp_ack_tid == 0) { 15378 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15379 MSEC_TO_TICK(tcp->tcp_localnet ? 15380 (clock_t)tcps->tcps_local_dack_interval : 15381 (clock_t)tcps->tcps_deferred_ack_interval)); 15382 } 15383 } 15384 if (flags & TH_ORDREL_NEEDED) { 15385 /* 15386 * Send up the ordrel_ind unless we are an eager guy. 15387 * In the eager case tcp_rsrv will do this when run 15388 * after tcp_accept is done. 15389 */ 15390 sodirect_t *sodp; 15391 15392 ASSERT(tcp->tcp_listener == NULL); 15393 15394 if (IPCL_IS_NONSTR(connp)) { 15395 ASSERT(tcp->tcp_ordrel_mp == NULL); 15396 tcp->tcp_ordrel_done = B_TRUE; 15397 (*connp->conn_upcalls->su_opctl) 15398 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15399 goto done; 15400 } 15401 15402 SOD_PTR_ENTER(tcp, sodp); 15403 if (sodp != NULL) { 15404 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15405 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15406 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15407 } 15408 /* No more sodirect */ 15409 tcp->tcp_sodirect = NULL; 15410 if (!SOD_QEMPTY(sodp)) { 15411 /* Mblk(s) to process, notify */ 15412 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15413 /* sod_wakeup() does the mutex_exit() */ 15414 } else { 15415 /* Nothing to process */ 15416 mutex_exit(sodp->sod_lockp); 15417 } 15418 } else if (tcp->tcp_rcv_list != NULL) { 15419 /* 15420 * Push any mblk(s) enqueued from co processing. 15421 */ 15422 flags |= tcp_rcv_drain(tcp); 15423 15424 ASSERT(tcp->tcp_rcv_list == NULL || 15425 tcp->tcp_fused_sigurg); 15426 } 15427 15428 mp1 = tcp->tcp_ordrel_mp; 15429 tcp->tcp_ordrel_mp = NULL; 15430 tcp->tcp_ordrel_done = B_TRUE; 15431 putnext(tcp->tcp_rq, mp1); 15432 } 15433 done: 15434 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15435 } 15436 15437 /* 15438 * This function does PAWS protection check. Returns B_TRUE if the 15439 * segment passes the PAWS test, else returns B_FALSE. 15440 */ 15441 boolean_t 15442 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15443 { 15444 uint8_t flags; 15445 int options; 15446 uint8_t *up; 15447 15448 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15449 /* 15450 * If timestamp option is aligned nicely, get values inline, 15451 * otherwise call general routine to parse. Only do that 15452 * if timestamp is the only option. 15453 */ 15454 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15455 TCPOPT_REAL_TS_LEN && 15456 OK_32PTR((up = ((uint8_t *)tcph) + 15457 TCP_MIN_HEADER_LENGTH)) && 15458 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15459 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15460 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15461 15462 options = TCP_OPT_TSTAMP_PRESENT; 15463 } else { 15464 if (tcp->tcp_snd_sack_ok) { 15465 tcpoptp->tcp = tcp; 15466 } else { 15467 tcpoptp->tcp = NULL; 15468 } 15469 options = tcp_parse_options(tcph, tcpoptp); 15470 } 15471 15472 if (options & TCP_OPT_TSTAMP_PRESENT) { 15473 /* 15474 * Do PAWS per RFC 1323 section 4.2. Accept RST 15475 * regardless of the timestamp, page 18 RFC 1323.bis. 15476 */ 15477 if ((flags & TH_RST) == 0 && 15478 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15479 tcp->tcp_ts_recent)) { 15480 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15481 PAWS_TIMEOUT)) { 15482 /* This segment is not acceptable. */ 15483 return (B_FALSE); 15484 } else { 15485 /* 15486 * Connection has been idle for 15487 * too long. Reset the timestamp 15488 * and assume the segment is valid. 15489 */ 15490 tcp->tcp_ts_recent = 15491 tcpoptp->tcp_opt_ts_val; 15492 } 15493 } 15494 } else { 15495 /* 15496 * If we don't get a timestamp on every packet, we 15497 * figure we can't really trust 'em, so we stop sending 15498 * and parsing them. 15499 */ 15500 tcp->tcp_snd_ts_ok = B_FALSE; 15501 15502 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15503 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15504 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15505 /* 15506 * Adjust the tcp_mss accordingly. We also need to 15507 * adjust tcp_cwnd here in accordance with the new mss. 15508 * But we avoid doing a slow start here so as to not 15509 * to lose on the transfer rate built up so far. 15510 */ 15511 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15512 if (tcp->tcp_snd_sack_ok) { 15513 ASSERT(tcp->tcp_sack_info != NULL); 15514 tcp->tcp_max_sack_blk = 4; 15515 } 15516 } 15517 return (B_TRUE); 15518 } 15519 15520 /* 15521 * Attach ancillary data to a received TCP segments for the 15522 * ancillary pieces requested by the application that are 15523 * different than they were in the previous data segment. 15524 * 15525 * Save the "current" values once memory allocation is ok so that 15526 * when memory allocation fails we can just wait for the next data segment. 15527 */ 15528 static mblk_t * 15529 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15530 { 15531 struct T_optdata_ind *todi; 15532 int optlen; 15533 uchar_t *optptr; 15534 struct T_opthdr *toh; 15535 uint_t addflag; /* Which pieces to add */ 15536 mblk_t *mp1; 15537 15538 optlen = 0; 15539 addflag = 0; 15540 /* If app asked for pktinfo and the index has changed ... */ 15541 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15542 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15543 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15544 optlen += sizeof (struct T_opthdr) + 15545 sizeof (struct in6_pktinfo); 15546 addflag |= TCP_IPV6_RECVPKTINFO; 15547 } 15548 /* If app asked for hoplimit and it has changed ... */ 15549 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15550 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15551 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15552 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15553 addflag |= TCP_IPV6_RECVHOPLIMIT; 15554 } 15555 /* If app asked for tclass and it has changed ... */ 15556 if ((ipp->ipp_fields & IPPF_TCLASS) && 15557 ipp->ipp_tclass != tcp->tcp_recvtclass && 15558 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15559 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15560 addflag |= TCP_IPV6_RECVTCLASS; 15561 } 15562 /* 15563 * If app asked for hopbyhop headers and it has changed ... 15564 * For security labels, note that (1) security labels can't change on 15565 * a connected socket at all, (2) we're connected to at most one peer, 15566 * (3) if anything changes, then it must be some other extra option. 15567 */ 15568 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15569 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15570 (ipp->ipp_fields & IPPF_HOPOPTS), 15571 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15572 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15573 tcp->tcp_label_len; 15574 addflag |= TCP_IPV6_RECVHOPOPTS; 15575 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15576 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15577 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15578 return (mp); 15579 } 15580 /* If app asked for dst headers before routing headers ... */ 15581 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15582 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15583 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15584 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15585 optlen += sizeof (struct T_opthdr) + 15586 ipp->ipp_rtdstoptslen; 15587 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15588 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15589 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15590 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15591 return (mp); 15592 } 15593 /* If app asked for routing headers and it has changed ... */ 15594 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15595 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15596 (ipp->ipp_fields & IPPF_RTHDR), 15597 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15598 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15599 addflag |= TCP_IPV6_RECVRTHDR; 15600 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15601 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15602 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15603 return (mp); 15604 } 15605 /* If app asked for dest headers and it has changed ... */ 15606 if ((tcp->tcp_ipv6_recvancillary & 15607 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15608 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15609 (ipp->ipp_fields & IPPF_DSTOPTS), 15610 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15611 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15612 addflag |= TCP_IPV6_RECVDSTOPTS; 15613 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15614 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15615 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15616 return (mp); 15617 } 15618 15619 if (optlen == 0) { 15620 /* Nothing to add */ 15621 return (mp); 15622 } 15623 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15624 if (mp1 == NULL) { 15625 /* 15626 * Defer sending ancillary data until the next TCP segment 15627 * arrives. 15628 */ 15629 return (mp); 15630 } 15631 mp1->b_cont = mp; 15632 mp = mp1; 15633 mp->b_wptr += sizeof (*todi) + optlen; 15634 mp->b_datap->db_type = M_PROTO; 15635 todi = (struct T_optdata_ind *)mp->b_rptr; 15636 todi->PRIM_type = T_OPTDATA_IND; 15637 todi->DATA_flag = 1; /* MORE data */ 15638 todi->OPT_length = optlen; 15639 todi->OPT_offset = sizeof (*todi); 15640 optptr = (uchar_t *)&todi[1]; 15641 /* 15642 * If app asked for pktinfo and the index has changed ... 15643 * Note that the local address never changes for the connection. 15644 */ 15645 if (addflag & TCP_IPV6_RECVPKTINFO) { 15646 struct in6_pktinfo *pkti; 15647 15648 toh = (struct T_opthdr *)optptr; 15649 toh->level = IPPROTO_IPV6; 15650 toh->name = IPV6_PKTINFO; 15651 toh->len = sizeof (*toh) + sizeof (*pkti); 15652 toh->status = 0; 15653 optptr += sizeof (*toh); 15654 pkti = (struct in6_pktinfo *)optptr; 15655 if (tcp->tcp_ipversion == IPV6_VERSION) 15656 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15657 else 15658 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15659 &pkti->ipi6_addr); 15660 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15661 optptr += sizeof (*pkti); 15662 ASSERT(OK_32PTR(optptr)); 15663 /* Save as "last" value */ 15664 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15665 } 15666 /* If app asked for hoplimit and it has changed ... */ 15667 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15668 toh = (struct T_opthdr *)optptr; 15669 toh->level = IPPROTO_IPV6; 15670 toh->name = IPV6_HOPLIMIT; 15671 toh->len = sizeof (*toh) + sizeof (uint_t); 15672 toh->status = 0; 15673 optptr += sizeof (*toh); 15674 *(uint_t *)optptr = ipp->ipp_hoplimit; 15675 optptr += sizeof (uint_t); 15676 ASSERT(OK_32PTR(optptr)); 15677 /* Save as "last" value */ 15678 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15679 } 15680 /* If app asked for tclass and it has changed ... */ 15681 if (addflag & TCP_IPV6_RECVTCLASS) { 15682 toh = (struct T_opthdr *)optptr; 15683 toh->level = IPPROTO_IPV6; 15684 toh->name = IPV6_TCLASS; 15685 toh->len = sizeof (*toh) + sizeof (uint_t); 15686 toh->status = 0; 15687 optptr += sizeof (*toh); 15688 *(uint_t *)optptr = ipp->ipp_tclass; 15689 optptr += sizeof (uint_t); 15690 ASSERT(OK_32PTR(optptr)); 15691 /* Save as "last" value */ 15692 tcp->tcp_recvtclass = ipp->ipp_tclass; 15693 } 15694 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15695 toh = (struct T_opthdr *)optptr; 15696 toh->level = IPPROTO_IPV6; 15697 toh->name = IPV6_HOPOPTS; 15698 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15699 tcp->tcp_label_len; 15700 toh->status = 0; 15701 optptr += sizeof (*toh); 15702 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15703 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15704 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15705 ASSERT(OK_32PTR(optptr)); 15706 /* Save as last value */ 15707 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15708 (ipp->ipp_fields & IPPF_HOPOPTS), 15709 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15710 } 15711 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15712 toh = (struct T_opthdr *)optptr; 15713 toh->level = IPPROTO_IPV6; 15714 toh->name = IPV6_RTHDRDSTOPTS; 15715 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15716 toh->status = 0; 15717 optptr += sizeof (*toh); 15718 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15719 optptr += ipp->ipp_rtdstoptslen; 15720 ASSERT(OK_32PTR(optptr)); 15721 /* Save as last value */ 15722 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15723 &tcp->tcp_rtdstoptslen, 15724 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15725 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15726 } 15727 if (addflag & TCP_IPV6_RECVRTHDR) { 15728 toh = (struct T_opthdr *)optptr; 15729 toh->level = IPPROTO_IPV6; 15730 toh->name = IPV6_RTHDR; 15731 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15732 toh->status = 0; 15733 optptr += sizeof (*toh); 15734 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15735 optptr += ipp->ipp_rthdrlen; 15736 ASSERT(OK_32PTR(optptr)); 15737 /* Save as last value */ 15738 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15739 (ipp->ipp_fields & IPPF_RTHDR), 15740 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15741 } 15742 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15743 toh = (struct T_opthdr *)optptr; 15744 toh->level = IPPROTO_IPV6; 15745 toh->name = IPV6_DSTOPTS; 15746 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15747 toh->status = 0; 15748 optptr += sizeof (*toh); 15749 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15750 optptr += ipp->ipp_dstoptslen; 15751 ASSERT(OK_32PTR(optptr)); 15752 /* Save as last value */ 15753 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15754 (ipp->ipp_fields & IPPF_DSTOPTS), 15755 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15756 } 15757 ASSERT(optptr == mp->b_wptr); 15758 return (mp); 15759 } 15760 15761 /* 15762 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15763 * or a "bad" IRE detected by tcp_adapt_ire. 15764 * We can't tell if the failure was due to the laddr or the faddr 15765 * thus we clear out all addresses and ports. 15766 */ 15767 static void 15768 tcp_tpi_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15769 { 15770 queue_t *q = tcp->tcp_rq; 15771 tcph_t *tcph; 15772 struct T_error_ack *tea; 15773 conn_t *connp = tcp->tcp_connp; 15774 15775 15776 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15777 15778 if (mp->b_cont) { 15779 freemsg(mp->b_cont); 15780 mp->b_cont = NULL; 15781 } 15782 tea = (struct T_error_ack *)mp->b_rptr; 15783 switch (tea->PRIM_type) { 15784 case T_BIND_ACK: 15785 /* 15786 * Need to unbind with classifier since we were just told that 15787 * our bind succeeded. 15788 */ 15789 tcp->tcp_hard_bound = B_FALSE; 15790 tcp->tcp_hard_binding = B_FALSE; 15791 15792 ipcl_hash_remove(connp); 15793 /* Reuse the mblk if possible */ 15794 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15795 sizeof (*tea)); 15796 mp->b_rptr = mp->b_datap->db_base; 15797 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15798 tea = (struct T_error_ack *)mp->b_rptr; 15799 tea->PRIM_type = T_ERROR_ACK; 15800 tea->TLI_error = TSYSERR; 15801 tea->UNIX_error = error; 15802 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15803 tea->ERROR_prim = T_CONN_REQ; 15804 } else { 15805 tea->ERROR_prim = O_T_BIND_REQ; 15806 } 15807 break; 15808 15809 case T_ERROR_ACK: 15810 if (tcp->tcp_state >= TCPS_SYN_SENT) 15811 tea->ERROR_prim = T_CONN_REQ; 15812 break; 15813 default: 15814 panic("tcp_tpi_bind_failed: unexpected TPI type"); 15815 /*NOTREACHED*/ 15816 } 15817 15818 tcp->tcp_state = TCPS_IDLE; 15819 if (tcp->tcp_ipversion == IPV4_VERSION) 15820 tcp->tcp_ipha->ipha_src = 0; 15821 else 15822 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15823 /* 15824 * Copy of the src addr. in tcp_t is needed since 15825 * the lookup funcs. can only look at tcp_t 15826 */ 15827 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15828 15829 tcph = tcp->tcp_tcph; 15830 tcph->th_lport[0] = 0; 15831 tcph->th_lport[1] = 0; 15832 tcp_bind_hash_remove(tcp); 15833 bzero(&connp->u_port, sizeof (connp->u_port)); 15834 /* blow away saved option results if any */ 15835 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15836 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15837 15838 conn_delete_ire(tcp->tcp_connp, NULL); 15839 putnext(q, mp); 15840 } 15841 15842 /* 15843 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15844 * messages. 15845 */ 15846 void 15847 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15848 { 15849 uchar_t *rptr = mp->b_rptr; 15850 queue_t *q = tcp->tcp_rq; 15851 struct T_error_ack *tea; 15852 15853 switch (mp->b_datap->db_type) { 15854 case M_PROTO: 15855 case M_PCPROTO: 15856 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15857 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15858 break; 15859 tea = (struct T_error_ack *)rptr; 15860 switch (tea->PRIM_type) { 15861 case T_BIND_ACK: 15862 /* 15863 * AF_INET socket should not be here. 15864 */ 15865 ASSERT(tcp->tcp_family != AF_INET && 15866 tcp->tcp_family != AF_INET6); 15867 (void) tcp_post_ip_bind(tcp, mp->b_cont, 0); 15868 return; 15869 case T_ERROR_ACK: 15870 if (tcp->tcp_debug) { 15871 (void) strlog(TCP_MOD_ID, 0, 1, 15872 SL_TRACE|SL_ERROR, 15873 "tcp_rput_other: case T_ERROR_ACK, " 15874 "ERROR_prim == %d", 15875 tea->ERROR_prim); 15876 } 15877 switch (tea->ERROR_prim) { 15878 case O_T_BIND_REQ: 15879 case T_BIND_REQ: 15880 ASSERT(tcp->tcp_family != AF_INET); 15881 tcp_tpi_bind_failed(tcp, mp, 15882 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15883 ENETUNREACH : EADDRNOTAVAIL)); 15884 return; 15885 case T_SVR4_OPTMGMT_REQ: 15886 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15887 /* T_OPTMGMT_REQ generated by TCP */ 15888 printf("T_SVR4_OPTMGMT_REQ failed " 15889 "%d/%d - dropped (cnt %d)\n", 15890 tea->TLI_error, tea->UNIX_error, 15891 tcp->tcp_drop_opt_ack_cnt); 15892 freemsg(mp); 15893 tcp->tcp_drop_opt_ack_cnt--; 15894 return; 15895 } 15896 break; 15897 } 15898 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15899 tcp->tcp_drop_opt_ack_cnt > 0) { 15900 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15901 "- dropped (cnt %d)\n", 15902 tea->TLI_error, tea->UNIX_error, 15903 tcp->tcp_drop_opt_ack_cnt); 15904 freemsg(mp); 15905 tcp->tcp_drop_opt_ack_cnt--; 15906 return; 15907 } 15908 break; 15909 case T_OPTMGMT_ACK: 15910 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15911 /* T_OPTMGMT_REQ generated by TCP */ 15912 freemsg(mp); 15913 tcp->tcp_drop_opt_ack_cnt--; 15914 return; 15915 } 15916 break; 15917 default: 15918 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15919 break; 15920 } 15921 break; 15922 case M_FLUSH: 15923 if (*rptr & FLUSHR) 15924 flushq(q, FLUSHDATA); 15925 break; 15926 default: 15927 /* M_CTL will be directly sent to tcp_icmp_error() */ 15928 ASSERT(DB_TYPE(mp) != M_CTL); 15929 break; 15930 } 15931 /* 15932 * Make sure we set this bit before sending the ACK for 15933 * bind. Otherwise accept could possibly run and free 15934 * this tcp struct. 15935 */ 15936 ASSERT(q != NULL); 15937 putnext(q, mp); 15938 } 15939 15940 /* ARGSUSED */ 15941 static void 15942 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15943 { 15944 conn_t *connp = (conn_t *)arg; 15945 tcp_t *tcp = connp->conn_tcp; 15946 queue_t *q = tcp->tcp_rq; 15947 uint_t thwin; 15948 tcp_stack_t *tcps = tcp->tcp_tcps; 15949 sodirect_t *sodp; 15950 boolean_t fc; 15951 15952 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15953 tcp->tcp_rsrv_mp = mp; 15954 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15955 15956 TCP_STAT(tcps, tcp_rsrv_calls); 15957 15958 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15959 return; 15960 } 15961 15962 if (tcp->tcp_fused) { 15963 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15964 15965 ASSERT(tcp->tcp_fused); 15966 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15967 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15968 ASSERT(!TCP_IS_DETACHED(tcp)); 15969 ASSERT(tcp->tcp_connp->conn_sqp == 15970 peer_tcp->tcp_connp->conn_sqp); 15971 15972 /* 15973 * Normally we would not get backenabled in synchronous 15974 * streams mode, but in case this happens, we need to plug 15975 * synchronous streams during our drain to prevent a race 15976 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15977 */ 15978 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15979 if (tcp->tcp_rcv_list != NULL) 15980 (void) tcp_rcv_drain(tcp); 15981 15982 if (peer_tcp > tcp) { 15983 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15984 mutex_enter(&tcp->tcp_non_sq_lock); 15985 } else { 15986 mutex_enter(&tcp->tcp_non_sq_lock); 15987 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15988 } 15989 15990 if (peer_tcp->tcp_flow_stopped && 15991 (TCP_UNSENT_BYTES(peer_tcp) <= 15992 peer_tcp->tcp_xmit_lowater)) { 15993 tcp_clrqfull(peer_tcp); 15994 } 15995 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15996 mutex_exit(&tcp->tcp_non_sq_lock); 15997 15998 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15999 TCP_STAT(tcps, tcp_fusion_backenabled); 16000 return; 16001 } 16002 16003 SOD_PTR_ENTER(tcp, sodp); 16004 if (sodp != NULL) { 16005 /* An sodirect connection */ 16006 if (SOD_QFULL(sodp)) { 16007 /* Flow-controlled, need another back-enable */ 16008 fc = B_TRUE; 16009 SOD_QSETBE(sodp); 16010 } else { 16011 /* Not flow-controlled */ 16012 fc = B_FALSE; 16013 } 16014 mutex_exit(sodp->sod_lockp); 16015 } else if (canputnext(q)) { 16016 /* STREAMS, not flow-controlled */ 16017 fc = B_FALSE; 16018 } else { 16019 /* STREAMS, flow-controlled */ 16020 fc = B_TRUE; 16021 } 16022 if (!fc) { 16023 /* Not flow-controlled, open rwnd */ 16024 tcp->tcp_rwnd = q->q_hiwat; 16025 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16026 << tcp->tcp_rcv_ws; 16027 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16028 /* 16029 * Send back a window update immediately if TCP is above 16030 * ESTABLISHED state and the increase of the rcv window 16031 * that the other side knows is at least 1 MSS after flow 16032 * control is lifted. 16033 */ 16034 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16035 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16036 tcp_xmit_ctl(NULL, tcp, 16037 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16038 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16039 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16040 } 16041 } 16042 } 16043 16044 /* 16045 * The read side service routine is called mostly when we get back-enabled as a 16046 * result of flow control relief. Since we don't actually queue anything in 16047 * TCP, we have no data to send out of here. What we do is clear the receive 16048 * window, and send out a window update. 16049 */ 16050 static void 16051 tcp_rsrv(queue_t *q) 16052 { 16053 conn_t *connp = Q_TO_CONN(q); 16054 tcp_t *tcp = connp->conn_tcp; 16055 mblk_t *mp; 16056 tcp_stack_t *tcps = tcp->tcp_tcps; 16057 16058 /* No code does a putq on the read side */ 16059 ASSERT(q->q_first == NULL); 16060 16061 /* Nothing to do for the default queue */ 16062 if (q == tcps->tcps_g_q) { 16063 return; 16064 } 16065 16066 /* 16067 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 16068 * been run. So just return. 16069 */ 16070 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16071 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 16072 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16073 return; 16074 } 16075 tcp->tcp_rsrv_mp = NULL; 16076 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16077 16078 CONN_INC_REF(connp); 16079 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16080 SQ_PROCESS, SQTAG_TCP_RSRV); 16081 } 16082 16083 /* 16084 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16085 * We do not allow the receive window to shrink. After setting rwnd, 16086 * set the flow control hiwat of the stream. 16087 * 16088 * This function is called in 2 cases: 16089 * 16090 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16091 * connection (passive open) and in tcp_rput_data() for active connect. 16092 * This is called after tcp_mss_set() when the desired MSS value is known. 16093 * This makes sure that our window size is a mutiple of the other side's 16094 * MSS. 16095 * 2) Handling SO_RCVBUF option. 16096 * 16097 * It is ASSUMED that the requested size is a multiple of the current MSS. 16098 * 16099 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16100 * user requests so. 16101 */ 16102 static int 16103 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16104 { 16105 uint32_t mss = tcp->tcp_mss; 16106 uint32_t old_max_rwnd; 16107 uint32_t max_transmittable_rwnd; 16108 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16109 tcp_stack_t *tcps = tcp->tcp_tcps; 16110 16111 if (tcp->tcp_fused) { 16112 size_t sth_hiwat; 16113 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16114 16115 ASSERT(peer_tcp != NULL); 16116 /* 16117 * Record the stream head's high water mark for 16118 * this endpoint; this is used for flow-control 16119 * purposes in tcp_fuse_output(). 16120 */ 16121 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16122 if (!tcp_detached) { 16123 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16124 sth_hiwat); 16125 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 16126 conn_t *connp = tcp->tcp_connp; 16127 struct sock_proto_props sopp; 16128 16129 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 16130 sopp.sopp_rcvthresh = sth_hiwat >> 3; 16131 16132 (*connp->conn_upcalls->su_set_proto_props) 16133 (connp->conn_upper_handle, &sopp); 16134 } 16135 } 16136 16137 /* 16138 * In the fusion case, the maxpsz stream head value of 16139 * our peer is set according to its send buffer size 16140 * and our receive buffer size; since the latter may 16141 * have changed we need to update the peer's maxpsz. 16142 */ 16143 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16144 return (rwnd); 16145 } 16146 16147 if (tcp_detached) { 16148 old_max_rwnd = tcp->tcp_rwnd; 16149 } else { 16150 old_max_rwnd = tcp->tcp_recv_hiwater; 16151 } 16152 16153 /* 16154 * Insist on a receive window that is at least 16155 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16156 * funny TCP interactions of Nagle algorithm, SWS avoidance 16157 * and delayed acknowledgement. 16158 */ 16159 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16160 16161 /* 16162 * If window size info has already been exchanged, TCP should not 16163 * shrink the window. Shrinking window is doable if done carefully. 16164 * We may add that support later. But so far there is not a real 16165 * need to do that. 16166 */ 16167 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16168 /* MSS may have changed, do a round up again. */ 16169 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16170 } 16171 16172 /* 16173 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16174 * can be applied even before the window scale option is decided. 16175 */ 16176 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16177 if (rwnd > max_transmittable_rwnd) { 16178 rwnd = max_transmittable_rwnd - 16179 (max_transmittable_rwnd % mss); 16180 if (rwnd < mss) 16181 rwnd = max_transmittable_rwnd; 16182 /* 16183 * If we're over the limit we may have to back down tcp_rwnd. 16184 * The increment below won't work for us. So we set all three 16185 * here and the increment below will have no effect. 16186 */ 16187 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16188 } 16189 if (tcp->tcp_localnet) { 16190 tcp->tcp_rack_abs_max = 16191 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16192 } else { 16193 /* 16194 * For a remote host on a different subnet (through a router), 16195 * we ack every other packet to be conforming to RFC1122. 16196 * tcp_deferred_acks_max is default to 2. 16197 */ 16198 tcp->tcp_rack_abs_max = 16199 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16200 } 16201 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16202 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16203 else 16204 tcp->tcp_rack_cur_max = 0; 16205 /* 16206 * Increment the current rwnd by the amount the maximum grew (we 16207 * can not overwrite it since we might be in the middle of a 16208 * connection.) 16209 */ 16210 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16211 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16212 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16213 tcp->tcp_cwnd_max = rwnd; 16214 16215 if (tcp_detached) 16216 return (rwnd); 16217 /* 16218 * We set the maximum receive window into rq->q_hiwat if it is 16219 * a STREAMS socket. 16220 * This is not actually used for flow control. 16221 */ 16222 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 16223 tcp->tcp_rq->q_hiwat = rwnd; 16224 tcp->tcp_recv_hiwater = rwnd; 16225 /* 16226 * Set the STREAM head high water mark. This doesn't have to be 16227 * here, since we are simply using default values, but we would 16228 * prefer to choose these values algorithmically, with a likely 16229 * relationship to rwnd. 16230 */ 16231 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16232 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16233 return (rwnd); 16234 } 16235 16236 /* 16237 * Return SNMP stuff in buffer in mpdata. 16238 */ 16239 mblk_t * 16240 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16241 { 16242 mblk_t *mpdata; 16243 mblk_t *mp_conn_ctl = NULL; 16244 mblk_t *mp_conn_tail; 16245 mblk_t *mp_attr_ctl = NULL; 16246 mblk_t *mp_attr_tail; 16247 mblk_t *mp6_conn_ctl = NULL; 16248 mblk_t *mp6_conn_tail; 16249 mblk_t *mp6_attr_ctl = NULL; 16250 mblk_t *mp6_attr_tail; 16251 struct opthdr *optp; 16252 mib2_tcpConnEntry_t tce; 16253 mib2_tcp6ConnEntry_t tce6; 16254 mib2_transportMLPEntry_t mlp; 16255 connf_t *connfp; 16256 int i; 16257 boolean_t ispriv; 16258 zoneid_t zoneid; 16259 int v4_conn_idx; 16260 int v6_conn_idx; 16261 conn_t *connp = Q_TO_CONN(q); 16262 tcp_stack_t *tcps; 16263 ip_stack_t *ipst; 16264 mblk_t *mp2ctl; 16265 16266 /* 16267 * make a copy of the original message 16268 */ 16269 mp2ctl = copymsg(mpctl); 16270 16271 if (mpctl == NULL || 16272 (mpdata = mpctl->b_cont) == NULL || 16273 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16274 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16275 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16276 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16277 freemsg(mp_conn_ctl); 16278 freemsg(mp_attr_ctl); 16279 freemsg(mp6_conn_ctl); 16280 freemsg(mp6_attr_ctl); 16281 freemsg(mpctl); 16282 freemsg(mp2ctl); 16283 return (NULL); 16284 } 16285 16286 ipst = connp->conn_netstack->netstack_ip; 16287 tcps = connp->conn_netstack->netstack_tcp; 16288 16289 /* build table of connections -- need count in fixed part */ 16290 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16291 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16292 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16293 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16294 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16295 16296 ispriv = 16297 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16298 zoneid = Q_TO_CONN(q)->conn_zoneid; 16299 16300 v4_conn_idx = v6_conn_idx = 0; 16301 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16302 16303 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16304 ipst = tcps->tcps_netstack->netstack_ip; 16305 16306 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16307 16308 connp = NULL; 16309 16310 while ((connp = 16311 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16312 tcp_t *tcp; 16313 boolean_t needattr; 16314 16315 if (connp->conn_zoneid != zoneid) 16316 continue; /* not in this zone */ 16317 16318 tcp = connp->conn_tcp; 16319 UPDATE_MIB(&tcps->tcps_mib, 16320 tcpHCInSegs, tcp->tcp_ibsegs); 16321 tcp->tcp_ibsegs = 0; 16322 UPDATE_MIB(&tcps->tcps_mib, 16323 tcpHCOutSegs, tcp->tcp_obsegs); 16324 tcp->tcp_obsegs = 0; 16325 16326 tce6.tcp6ConnState = tce.tcpConnState = 16327 tcp_snmp_state(tcp); 16328 if (tce.tcpConnState == MIB2_TCP_established || 16329 tce.tcpConnState == MIB2_TCP_closeWait) 16330 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16331 16332 needattr = B_FALSE; 16333 bzero(&mlp, sizeof (mlp)); 16334 if (connp->conn_mlp_type != mlptSingle) { 16335 if (connp->conn_mlp_type == mlptShared || 16336 connp->conn_mlp_type == mlptBoth) 16337 mlp.tme_flags |= MIB2_TMEF_SHARED; 16338 if (connp->conn_mlp_type == mlptPrivate || 16339 connp->conn_mlp_type == mlptBoth) 16340 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16341 needattr = B_TRUE; 16342 } 16343 if (connp->conn_peercred != NULL) { 16344 ts_label_t *tsl; 16345 16346 tsl = crgetlabel(connp->conn_peercred); 16347 mlp.tme_doi = label2doi(tsl); 16348 mlp.tme_label = *label2bslabel(tsl); 16349 needattr = B_TRUE; 16350 } 16351 16352 /* Create a message to report on IPv6 entries */ 16353 if (tcp->tcp_ipversion == IPV6_VERSION) { 16354 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16355 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16356 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16357 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16358 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16359 /* Don't want just anybody seeing these... */ 16360 if (ispriv) { 16361 tce6.tcp6ConnEntryInfo.ce_snxt = 16362 tcp->tcp_snxt; 16363 tce6.tcp6ConnEntryInfo.ce_suna = 16364 tcp->tcp_suna; 16365 tce6.tcp6ConnEntryInfo.ce_rnxt = 16366 tcp->tcp_rnxt; 16367 tce6.tcp6ConnEntryInfo.ce_rack = 16368 tcp->tcp_rack; 16369 } else { 16370 /* 16371 * Netstat, unfortunately, uses this to 16372 * get send/receive queue sizes. How to fix? 16373 * Why not compute the difference only? 16374 */ 16375 tce6.tcp6ConnEntryInfo.ce_snxt = 16376 tcp->tcp_snxt - tcp->tcp_suna; 16377 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16378 tce6.tcp6ConnEntryInfo.ce_rnxt = 16379 tcp->tcp_rnxt - tcp->tcp_rack; 16380 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16381 } 16382 16383 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16384 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16385 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16386 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16387 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16388 16389 tce6.tcp6ConnCreationProcess = 16390 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16391 tcp->tcp_cpid; 16392 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16393 16394 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16395 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16396 16397 mlp.tme_connidx = v6_conn_idx++; 16398 if (needattr) 16399 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16400 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16401 } 16402 /* 16403 * Create an IPv4 table entry for IPv4 entries and also 16404 * for IPv6 entries which are bound to in6addr_any 16405 * but don't have IPV6_V6ONLY set. 16406 * (i.e. anything an IPv4 peer could connect to) 16407 */ 16408 if (tcp->tcp_ipversion == IPV4_VERSION || 16409 (tcp->tcp_state <= TCPS_LISTEN && 16410 !tcp->tcp_connp->conn_ipv6_v6only && 16411 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16412 if (tcp->tcp_ipversion == IPV6_VERSION) { 16413 tce.tcpConnRemAddress = INADDR_ANY; 16414 tce.tcpConnLocalAddress = INADDR_ANY; 16415 } else { 16416 tce.tcpConnRemAddress = 16417 tcp->tcp_remote; 16418 tce.tcpConnLocalAddress = 16419 tcp->tcp_ip_src; 16420 } 16421 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16422 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16423 /* Don't want just anybody seeing these... */ 16424 if (ispriv) { 16425 tce.tcpConnEntryInfo.ce_snxt = 16426 tcp->tcp_snxt; 16427 tce.tcpConnEntryInfo.ce_suna = 16428 tcp->tcp_suna; 16429 tce.tcpConnEntryInfo.ce_rnxt = 16430 tcp->tcp_rnxt; 16431 tce.tcpConnEntryInfo.ce_rack = 16432 tcp->tcp_rack; 16433 } else { 16434 /* 16435 * Netstat, unfortunately, uses this to 16436 * get send/receive queue sizes. How 16437 * to fix? 16438 * Why not compute the difference only? 16439 */ 16440 tce.tcpConnEntryInfo.ce_snxt = 16441 tcp->tcp_snxt - tcp->tcp_suna; 16442 tce.tcpConnEntryInfo.ce_suna = 0; 16443 tce.tcpConnEntryInfo.ce_rnxt = 16444 tcp->tcp_rnxt - tcp->tcp_rack; 16445 tce.tcpConnEntryInfo.ce_rack = 0; 16446 } 16447 16448 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16449 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16450 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16451 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16452 tce.tcpConnEntryInfo.ce_state = 16453 tcp->tcp_state; 16454 16455 tce.tcpConnCreationProcess = 16456 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16457 tcp->tcp_cpid; 16458 tce.tcpConnCreationTime = tcp->tcp_open_time; 16459 16460 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16461 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16462 16463 mlp.tme_connidx = v4_conn_idx++; 16464 if (needattr) 16465 (void) snmp_append_data2( 16466 mp_attr_ctl->b_cont, 16467 &mp_attr_tail, (char *)&mlp, 16468 sizeof (mlp)); 16469 } 16470 } 16471 } 16472 16473 /* fixed length structure for IPv4 and IPv6 counters */ 16474 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16475 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16476 sizeof (mib2_tcp6ConnEntry_t)); 16477 /* synchronize 32- and 64-bit counters */ 16478 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16479 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16480 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16481 optp->level = MIB2_TCP; 16482 optp->name = 0; 16483 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16484 sizeof (tcps->tcps_mib)); 16485 optp->len = msgdsize(mpdata); 16486 qreply(q, mpctl); 16487 16488 /* table of connections... */ 16489 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16490 sizeof (struct T_optmgmt_ack)]; 16491 optp->level = MIB2_TCP; 16492 optp->name = MIB2_TCP_CONN; 16493 optp->len = msgdsize(mp_conn_ctl->b_cont); 16494 qreply(q, mp_conn_ctl); 16495 16496 /* table of MLP attributes... */ 16497 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16498 sizeof (struct T_optmgmt_ack)]; 16499 optp->level = MIB2_TCP; 16500 optp->name = EXPER_XPORT_MLP; 16501 optp->len = msgdsize(mp_attr_ctl->b_cont); 16502 if (optp->len == 0) 16503 freemsg(mp_attr_ctl); 16504 else 16505 qreply(q, mp_attr_ctl); 16506 16507 /* table of IPv6 connections... */ 16508 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16509 sizeof (struct T_optmgmt_ack)]; 16510 optp->level = MIB2_TCP6; 16511 optp->name = MIB2_TCP6_CONN; 16512 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16513 qreply(q, mp6_conn_ctl); 16514 16515 /* table of IPv6 MLP attributes... */ 16516 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16517 sizeof (struct T_optmgmt_ack)]; 16518 optp->level = MIB2_TCP6; 16519 optp->name = EXPER_XPORT_MLP; 16520 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16521 if (optp->len == 0) 16522 freemsg(mp6_attr_ctl); 16523 else 16524 qreply(q, mp6_attr_ctl); 16525 return (mp2ctl); 16526 } 16527 16528 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16529 /* ARGSUSED */ 16530 int 16531 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16532 { 16533 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16534 16535 switch (level) { 16536 case MIB2_TCP: 16537 switch (name) { 16538 case 13: 16539 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16540 return (0); 16541 /* TODO: delete entry defined by tce */ 16542 return (1); 16543 default: 16544 return (0); 16545 } 16546 default: 16547 return (1); 16548 } 16549 } 16550 16551 /* Translate TCP state to MIB2 TCP state. */ 16552 static int 16553 tcp_snmp_state(tcp_t *tcp) 16554 { 16555 if (tcp == NULL) 16556 return (0); 16557 16558 switch (tcp->tcp_state) { 16559 case TCPS_CLOSED: 16560 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16561 case TCPS_BOUND: 16562 return (MIB2_TCP_closed); 16563 case TCPS_LISTEN: 16564 return (MIB2_TCP_listen); 16565 case TCPS_SYN_SENT: 16566 return (MIB2_TCP_synSent); 16567 case TCPS_SYN_RCVD: 16568 return (MIB2_TCP_synReceived); 16569 case TCPS_ESTABLISHED: 16570 return (MIB2_TCP_established); 16571 case TCPS_CLOSE_WAIT: 16572 return (MIB2_TCP_closeWait); 16573 case TCPS_FIN_WAIT_1: 16574 return (MIB2_TCP_finWait1); 16575 case TCPS_CLOSING: 16576 return (MIB2_TCP_closing); 16577 case TCPS_LAST_ACK: 16578 return (MIB2_TCP_lastAck); 16579 case TCPS_FIN_WAIT_2: 16580 return (MIB2_TCP_finWait2); 16581 case TCPS_TIME_WAIT: 16582 return (MIB2_TCP_timeWait); 16583 default: 16584 return (0); 16585 } 16586 } 16587 16588 static char tcp_report_header[] = 16589 "TCP " MI_COL_HDRPAD_STR 16590 "zone dest snxt suna " 16591 "swnd rnxt rack rwnd rto mss w sw rw t " 16592 "recent [lport,fport] state"; 16593 16594 /* 16595 * TCP status report triggered via the Named Dispatch mechanism. 16596 */ 16597 /* ARGSUSED */ 16598 static void 16599 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16600 cred_t *cr) 16601 { 16602 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16603 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16604 char cflag; 16605 in6_addr_t v6dst; 16606 char buf[80]; 16607 uint_t print_len, buf_len; 16608 16609 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16610 if (buf_len <= 0) 16611 return; 16612 16613 if (hashval >= 0) 16614 (void) sprintf(hash, "%03d ", hashval); 16615 else 16616 hash[0] = '\0'; 16617 16618 /* 16619 * Note that we use the remote address in the tcp_b structure. 16620 * This means that it will print out the real destination address, 16621 * not the next hop's address if source routing is used. This 16622 * avoid the confusion on the output because user may not 16623 * know that source routing is used for a connection. 16624 */ 16625 if (tcp->tcp_ipversion == IPV4_VERSION) { 16626 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16627 } else { 16628 v6dst = tcp->tcp_remote_v6; 16629 } 16630 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16631 /* 16632 * the ispriv checks are so that normal users cannot determine 16633 * sequence number information using NDD. 16634 */ 16635 16636 if (TCP_IS_DETACHED(tcp)) 16637 cflag = '*'; 16638 else 16639 cflag = ' '; 16640 print_len = snprintf((char *)mp->b_wptr, buf_len, 16641 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16642 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16643 hash, 16644 (void *)tcp, 16645 tcp->tcp_connp->conn_zoneid, 16646 addrbuf, 16647 (ispriv) ? tcp->tcp_snxt : 0, 16648 (ispriv) ? tcp->tcp_suna : 0, 16649 tcp->tcp_swnd, 16650 (ispriv) ? tcp->tcp_rnxt : 0, 16651 (ispriv) ? tcp->tcp_rack : 0, 16652 tcp->tcp_rwnd, 16653 tcp->tcp_rto, 16654 tcp->tcp_mss, 16655 tcp->tcp_snd_ws_ok, 16656 tcp->tcp_snd_ws, 16657 tcp->tcp_rcv_ws, 16658 tcp->tcp_snd_ts_ok, 16659 tcp->tcp_ts_recent, 16660 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16661 if (print_len < buf_len) { 16662 ((mblk_t *)mp)->b_wptr += print_len; 16663 } else { 16664 ((mblk_t *)mp)->b_wptr += buf_len; 16665 } 16666 } 16667 16668 /* 16669 * TCP status report (for listeners only) triggered via the Named Dispatch 16670 * mechanism. 16671 */ 16672 /* ARGSUSED */ 16673 static void 16674 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16675 { 16676 char addrbuf[INET6_ADDRSTRLEN]; 16677 in6_addr_t v6dst; 16678 uint_t print_len, buf_len; 16679 16680 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16681 if (buf_len <= 0) 16682 return; 16683 16684 if (tcp->tcp_ipversion == IPV4_VERSION) { 16685 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16686 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16687 } else { 16688 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16689 addrbuf, sizeof (addrbuf)); 16690 } 16691 print_len = snprintf((char *)mp->b_wptr, buf_len, 16692 "%03d " 16693 MI_COL_PTRFMT_STR 16694 "%d %s %05u %08u %d/%d/%d%c\n", 16695 hashval, (void *)tcp, 16696 tcp->tcp_connp->conn_zoneid, 16697 addrbuf, 16698 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16699 tcp->tcp_conn_req_seqnum, 16700 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16701 tcp->tcp_conn_req_max, 16702 tcp->tcp_syn_defense ? '*' : ' '); 16703 if (print_len < buf_len) { 16704 ((mblk_t *)mp)->b_wptr += print_len; 16705 } else { 16706 ((mblk_t *)mp)->b_wptr += buf_len; 16707 } 16708 } 16709 16710 /* TCP status report triggered via the Named Dispatch mechanism. */ 16711 /* ARGSUSED */ 16712 static int 16713 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16714 { 16715 tcp_t *tcp; 16716 int i; 16717 conn_t *connp; 16718 connf_t *connfp; 16719 zoneid_t zoneid; 16720 tcp_stack_t *tcps; 16721 ip_stack_t *ipst; 16722 16723 zoneid = Q_TO_CONN(q)->conn_zoneid; 16724 tcps = Q_TO_TCP(q)->tcp_tcps; 16725 16726 /* 16727 * Because of the ndd constraint, at most we can have 64K buffer 16728 * to put in all TCP info. So to be more efficient, just 16729 * allocate a 64K buffer here, assuming we need that large buffer. 16730 * This may be a problem as any user can read tcp_status. Therefore 16731 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16732 * This should be OK as normal users should not do this too often. 16733 */ 16734 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16735 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16736 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16737 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16738 return (0); 16739 } 16740 } 16741 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16742 /* The following may work even if we cannot get a large buf. */ 16743 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16744 return (0); 16745 } 16746 16747 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16748 16749 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16750 16751 ipst = tcps->tcps_netstack->netstack_ip; 16752 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16753 16754 connp = NULL; 16755 16756 while ((connp = 16757 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16758 tcp = connp->conn_tcp; 16759 if (zoneid != GLOBAL_ZONEID && 16760 zoneid != connp->conn_zoneid) 16761 continue; 16762 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16763 cr); 16764 } 16765 16766 } 16767 16768 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16769 return (0); 16770 } 16771 16772 /* TCP status report triggered via the Named Dispatch mechanism. */ 16773 /* ARGSUSED */ 16774 static int 16775 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16776 { 16777 tf_t *tbf; 16778 tcp_t *tcp, *ltcp; 16779 int i; 16780 zoneid_t zoneid; 16781 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16782 16783 zoneid = Q_TO_CONN(q)->conn_zoneid; 16784 16785 /* Refer to comments in tcp_status_report(). */ 16786 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16787 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16788 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16789 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16790 return (0); 16791 } 16792 } 16793 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16794 /* The following may work even if we cannot get a large buf. */ 16795 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16796 return (0); 16797 } 16798 16799 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16800 16801 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16802 tbf = &tcps->tcps_bind_fanout[i]; 16803 mutex_enter(&tbf->tf_lock); 16804 for (ltcp = tbf->tf_tcp; ltcp != NULL; 16805 ltcp = ltcp->tcp_bind_hash) { 16806 for (tcp = ltcp; tcp != NULL; 16807 tcp = tcp->tcp_bind_hash_port) { 16808 if (zoneid != GLOBAL_ZONEID && 16809 zoneid != tcp->tcp_connp->conn_zoneid) 16810 continue; 16811 CONN_INC_REF(tcp->tcp_connp); 16812 tcp_report_item(mp->b_cont, tcp, i, 16813 Q_TO_TCP(q), cr); 16814 CONN_DEC_REF(tcp->tcp_connp); 16815 } 16816 } 16817 mutex_exit(&tbf->tf_lock); 16818 } 16819 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16820 return (0); 16821 } 16822 16823 /* TCP status report triggered via the Named Dispatch mechanism. */ 16824 /* ARGSUSED */ 16825 static int 16826 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16827 { 16828 connf_t *connfp; 16829 conn_t *connp; 16830 tcp_t *tcp; 16831 int i; 16832 zoneid_t zoneid; 16833 tcp_stack_t *tcps; 16834 ip_stack_t *ipst; 16835 16836 zoneid = Q_TO_CONN(q)->conn_zoneid; 16837 tcps = Q_TO_TCP(q)->tcp_tcps; 16838 16839 /* Refer to comments in tcp_status_report(). */ 16840 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16841 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16842 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16843 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16844 return (0); 16845 } 16846 } 16847 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16848 /* The following may work even if we cannot get a large buf. */ 16849 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16850 return (0); 16851 } 16852 16853 (void) mi_mpprintf(mp, 16854 " TCP " MI_COL_HDRPAD_STR 16855 "zone IP addr port seqnum backlog (q0/q/max)"); 16856 16857 ipst = tcps->tcps_netstack->netstack_ip; 16858 16859 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16860 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16861 connp = NULL; 16862 while ((connp = 16863 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16864 tcp = connp->conn_tcp; 16865 if (zoneid != GLOBAL_ZONEID && 16866 zoneid != connp->conn_zoneid) 16867 continue; 16868 tcp_report_listener(mp->b_cont, tcp, i); 16869 } 16870 } 16871 16872 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16873 return (0); 16874 } 16875 16876 /* TCP status report triggered via the Named Dispatch mechanism. */ 16877 /* ARGSUSED */ 16878 static int 16879 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16880 { 16881 connf_t *connfp; 16882 conn_t *connp; 16883 tcp_t *tcp; 16884 int i; 16885 zoneid_t zoneid; 16886 tcp_stack_t *tcps; 16887 ip_stack_t *ipst; 16888 16889 zoneid = Q_TO_CONN(q)->conn_zoneid; 16890 tcps = Q_TO_TCP(q)->tcp_tcps; 16891 ipst = tcps->tcps_netstack->netstack_ip; 16892 16893 /* Refer to comments in tcp_status_report(). */ 16894 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16895 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16896 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16897 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16898 return (0); 16899 } 16900 } 16901 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16902 /* The following may work even if we cannot get a large buf. */ 16903 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16904 return (0); 16905 } 16906 16907 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16908 ipst->ips_ipcl_conn_fanout_size); 16909 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16910 16911 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16912 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16913 connp = NULL; 16914 while ((connp = 16915 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16916 tcp = connp->conn_tcp; 16917 if (zoneid != GLOBAL_ZONEID && 16918 zoneid != connp->conn_zoneid) 16919 continue; 16920 tcp_report_item(mp->b_cont, tcp, i, 16921 Q_TO_TCP(q), cr); 16922 } 16923 } 16924 16925 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16926 return (0); 16927 } 16928 16929 /* TCP status report triggered via the Named Dispatch mechanism. */ 16930 /* ARGSUSED */ 16931 static int 16932 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16933 { 16934 tf_t *tf; 16935 tcp_t *tcp; 16936 int i; 16937 zoneid_t zoneid; 16938 tcp_stack_t *tcps; 16939 16940 zoneid = Q_TO_CONN(q)->conn_zoneid; 16941 tcps = Q_TO_TCP(q)->tcp_tcps; 16942 16943 /* Refer to comments in tcp_status_report(). */ 16944 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16945 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16946 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16947 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16948 return (0); 16949 } 16950 } 16951 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16952 /* The following may work even if we cannot get a large buf. */ 16953 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16954 return (0); 16955 } 16956 16957 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16958 16959 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16960 tf = &tcps->tcps_acceptor_fanout[i]; 16961 mutex_enter(&tf->tf_lock); 16962 for (tcp = tf->tf_tcp; tcp != NULL; 16963 tcp = tcp->tcp_acceptor_hash) { 16964 if (zoneid != GLOBAL_ZONEID && 16965 zoneid != tcp->tcp_connp->conn_zoneid) 16966 continue; 16967 tcp_report_item(mp->b_cont, tcp, i, 16968 Q_TO_TCP(q), cr); 16969 } 16970 mutex_exit(&tf->tf_lock); 16971 } 16972 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16973 return (0); 16974 } 16975 16976 /* 16977 * tcp_timer is the timer service routine. It handles the retransmission, 16978 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16979 * from the state of the tcp instance what kind of action needs to be done 16980 * at the time it is called. 16981 */ 16982 static void 16983 tcp_timer(void *arg) 16984 { 16985 mblk_t *mp; 16986 clock_t first_threshold; 16987 clock_t second_threshold; 16988 clock_t ms; 16989 uint32_t mss; 16990 conn_t *connp = (conn_t *)arg; 16991 tcp_t *tcp = connp->conn_tcp; 16992 tcp_stack_t *tcps = tcp->tcp_tcps; 16993 16994 tcp->tcp_timer_tid = 0; 16995 16996 if (tcp->tcp_fused) 16997 return; 16998 16999 first_threshold = tcp->tcp_first_timer_threshold; 17000 second_threshold = tcp->tcp_second_timer_threshold; 17001 switch (tcp->tcp_state) { 17002 case TCPS_IDLE: 17003 case TCPS_BOUND: 17004 case TCPS_LISTEN: 17005 return; 17006 case TCPS_SYN_RCVD: { 17007 tcp_t *listener = tcp->tcp_listener; 17008 17009 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17010 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17011 /* it's our first timeout */ 17012 tcp->tcp_syn_rcvd_timeout = 1; 17013 mutex_enter(&listener->tcp_eager_lock); 17014 listener->tcp_syn_rcvd_timeout++; 17015 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17016 /* 17017 * Make this eager available for drop if we 17018 * need to drop one to accomodate a new 17019 * incoming SYN request. 17020 */ 17021 MAKE_DROPPABLE(listener, tcp); 17022 } 17023 if (!listener->tcp_syn_defense && 17024 (listener->tcp_syn_rcvd_timeout > 17025 (tcps->tcps_conn_req_max_q0 >> 2)) && 17026 (tcps->tcps_conn_req_max_q0 > 200)) { 17027 /* We may be under attack. Put on a defense. */ 17028 listener->tcp_syn_defense = B_TRUE; 17029 cmn_err(CE_WARN, "High TCP connect timeout " 17030 "rate! System (port %d) may be under a " 17031 "SYN flood attack!", 17032 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17033 17034 listener->tcp_ip_addr_cache = kmem_zalloc( 17035 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17036 KM_NOSLEEP); 17037 } 17038 mutex_exit(&listener->tcp_eager_lock); 17039 } else if (listener != NULL) { 17040 mutex_enter(&listener->tcp_eager_lock); 17041 tcp->tcp_syn_rcvd_timeout++; 17042 if (tcp->tcp_syn_rcvd_timeout > 1 && 17043 !tcp->tcp_closemp_used) { 17044 /* 17045 * This is our second timeout. Put the tcp in 17046 * the list of droppable eagers to allow it to 17047 * be dropped, if needed. We don't check 17048 * whether tcp_dontdrop is set or not to 17049 * protect ourselve from a SYN attack where a 17050 * remote host can spoof itself as one of the 17051 * good IP source and continue to hold 17052 * resources too long. 17053 */ 17054 MAKE_DROPPABLE(listener, tcp); 17055 } 17056 mutex_exit(&listener->tcp_eager_lock); 17057 } 17058 } 17059 /* FALLTHRU */ 17060 case TCPS_SYN_SENT: 17061 first_threshold = tcp->tcp_first_ctimer_threshold; 17062 second_threshold = tcp->tcp_second_ctimer_threshold; 17063 break; 17064 case TCPS_ESTABLISHED: 17065 case TCPS_FIN_WAIT_1: 17066 case TCPS_CLOSING: 17067 case TCPS_CLOSE_WAIT: 17068 case TCPS_LAST_ACK: 17069 /* If we have data to rexmit */ 17070 if (tcp->tcp_suna != tcp->tcp_snxt) { 17071 clock_t time_to_wait; 17072 17073 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17074 if (!tcp->tcp_xmit_head) 17075 break; 17076 time_to_wait = lbolt - 17077 (clock_t)tcp->tcp_xmit_head->b_prev; 17078 time_to_wait = tcp->tcp_rto - 17079 TICK_TO_MSEC(time_to_wait); 17080 /* 17081 * If the timer fires too early, 1 clock tick earlier, 17082 * restart the timer. 17083 */ 17084 if (time_to_wait > msec_per_tick) { 17085 TCP_STAT(tcps, tcp_timer_fire_early); 17086 TCP_TIMER_RESTART(tcp, time_to_wait); 17087 return; 17088 } 17089 /* 17090 * When we probe zero windows, we force the swnd open. 17091 * If our peer acks with a closed window swnd will be 17092 * set to zero by tcp_rput(). As long as we are 17093 * receiving acks tcp_rput will 17094 * reset 'tcp_ms_we_have_waited' so as not to trip the 17095 * first and second interval actions. NOTE: the timer 17096 * interval is allowed to continue its exponential 17097 * backoff. 17098 */ 17099 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17100 if (tcp->tcp_debug) { 17101 (void) strlog(TCP_MOD_ID, 0, 1, 17102 SL_TRACE, "tcp_timer: zero win"); 17103 } 17104 } else { 17105 /* 17106 * After retransmission, we need to do 17107 * slow start. Set the ssthresh to one 17108 * half of current effective window and 17109 * cwnd to one MSS. Also reset 17110 * tcp_cwnd_cnt. 17111 * 17112 * Note that if tcp_ssthresh is reduced because 17113 * of ECN, do not reduce it again unless it is 17114 * already one window of data away (tcp_cwr 17115 * should then be cleared) or this is a 17116 * timeout for a retransmitted segment. 17117 */ 17118 uint32_t npkt; 17119 17120 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17121 npkt = ((tcp->tcp_timer_backoff ? 17122 tcp->tcp_cwnd_ssthresh : 17123 tcp->tcp_snxt - 17124 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17125 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17126 tcp->tcp_mss; 17127 } 17128 tcp->tcp_cwnd = tcp->tcp_mss; 17129 tcp->tcp_cwnd_cnt = 0; 17130 if (tcp->tcp_ecn_ok) { 17131 tcp->tcp_cwr = B_TRUE; 17132 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17133 tcp->tcp_ecn_cwr_sent = B_FALSE; 17134 } 17135 } 17136 break; 17137 } 17138 /* 17139 * We have something to send yet we cannot send. The 17140 * reason can be: 17141 * 17142 * 1. Zero send window: we need to do zero window probe. 17143 * 2. Zero cwnd: because of ECN, we need to "clock out 17144 * segments. 17145 * 3. SWS avoidance: receiver may have shrunk window, 17146 * reset our knowledge. 17147 * 17148 * Note that condition 2 can happen with either 1 or 17149 * 3. But 1 and 3 are exclusive. 17150 */ 17151 if (tcp->tcp_unsent != 0) { 17152 if (tcp->tcp_cwnd == 0) { 17153 /* 17154 * Set tcp_cwnd to 1 MSS so that a 17155 * new segment can be sent out. We 17156 * are "clocking out" new data when 17157 * the network is really congested. 17158 */ 17159 ASSERT(tcp->tcp_ecn_ok); 17160 tcp->tcp_cwnd = tcp->tcp_mss; 17161 } 17162 if (tcp->tcp_swnd == 0) { 17163 /* Extend window for zero window probe */ 17164 tcp->tcp_swnd++; 17165 tcp->tcp_zero_win_probe = B_TRUE; 17166 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17167 } else { 17168 /* 17169 * Handle timeout from sender SWS avoidance. 17170 * Reset our knowledge of the max send window 17171 * since the receiver might have reduced its 17172 * receive buffer. Avoid setting tcp_max_swnd 17173 * to one since that will essentially disable 17174 * the SWS checks. 17175 * 17176 * Note that since we don't have a SWS 17177 * state variable, if the timeout is set 17178 * for ECN but not for SWS, this 17179 * code will also be executed. This is 17180 * fine as tcp_max_swnd is updated 17181 * constantly and it will not affect 17182 * anything. 17183 */ 17184 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17185 } 17186 tcp_wput_data(tcp, NULL, B_FALSE); 17187 return; 17188 } 17189 /* Is there a FIN that needs to be to re retransmitted? */ 17190 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17191 !tcp->tcp_fin_acked) 17192 break; 17193 /* Nothing to do, return without restarting timer. */ 17194 TCP_STAT(tcps, tcp_timer_fire_miss); 17195 return; 17196 case TCPS_FIN_WAIT_2: 17197 /* 17198 * User closed the TCP endpoint and peer ACK'ed our FIN. 17199 * We waited some time for for peer's FIN, but it hasn't 17200 * arrived. We flush the connection now to avoid 17201 * case where the peer has rebooted. 17202 */ 17203 if (TCP_IS_DETACHED(tcp)) { 17204 (void) tcp_clean_death(tcp, 0, 23); 17205 } else { 17206 TCP_TIMER_RESTART(tcp, 17207 tcps->tcps_fin_wait_2_flush_interval); 17208 } 17209 return; 17210 case TCPS_TIME_WAIT: 17211 (void) tcp_clean_death(tcp, 0, 24); 17212 return; 17213 default: 17214 if (tcp->tcp_debug) { 17215 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17216 "tcp_timer: strange state (%d) %s", 17217 tcp->tcp_state, tcp_display(tcp, NULL, 17218 DISP_PORT_ONLY)); 17219 } 17220 return; 17221 } 17222 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17223 /* 17224 * For zero window probe, we need to send indefinitely, 17225 * unless we have not heard from the other side for some 17226 * time... 17227 */ 17228 if ((tcp->tcp_zero_win_probe == 0) || 17229 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17230 second_threshold)) { 17231 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17232 /* 17233 * If TCP is in SYN_RCVD state, send back a 17234 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17235 * should be zero in TCPS_SYN_RCVD state. 17236 */ 17237 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17238 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17239 "in SYN_RCVD", 17240 tcp, tcp->tcp_snxt, 17241 tcp->tcp_rnxt, TH_RST | TH_ACK); 17242 } 17243 (void) tcp_clean_death(tcp, 17244 tcp->tcp_client_errno ? 17245 tcp->tcp_client_errno : ETIMEDOUT, 25); 17246 return; 17247 } else { 17248 /* 17249 * Set tcp_ms_we_have_waited to second_threshold 17250 * so that in next timeout, we will do the above 17251 * check (lbolt - tcp_last_recv_time). This is 17252 * also to avoid overflow. 17253 * 17254 * We don't need to decrement tcp_timer_backoff 17255 * to avoid overflow because it will be decremented 17256 * later if new timeout value is greater than 17257 * tcp_rexmit_interval_max. In the case when 17258 * tcp_rexmit_interval_max is greater than 17259 * second_threshold, it means that we will wait 17260 * longer than second_threshold to send the next 17261 * window probe. 17262 */ 17263 tcp->tcp_ms_we_have_waited = second_threshold; 17264 } 17265 } else if (ms > first_threshold) { 17266 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17267 tcp->tcp_xmit_head != NULL) { 17268 tcp->tcp_xmit_head = 17269 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17270 } 17271 /* 17272 * We have been retransmitting for too long... The RTT 17273 * we calculated is probably incorrect. Reinitialize it. 17274 * Need to compensate for 0 tcp_rtt_sa. Reset 17275 * tcp_rtt_update so that we won't accidentally cache a 17276 * bad value. But only do this if this is not a zero 17277 * window probe. 17278 */ 17279 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17280 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17281 (tcp->tcp_rtt_sa >> 5); 17282 tcp->tcp_rtt_sa = 0; 17283 tcp_ip_notify(tcp); 17284 tcp->tcp_rtt_update = 0; 17285 } 17286 } 17287 tcp->tcp_timer_backoff++; 17288 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17289 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17290 tcps->tcps_rexmit_interval_min) { 17291 /* 17292 * This means the original RTO is tcp_rexmit_interval_min. 17293 * So we will use tcp_rexmit_interval_min as the RTO value 17294 * and do the backoff. 17295 */ 17296 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17297 } else { 17298 ms <<= tcp->tcp_timer_backoff; 17299 } 17300 if (ms > tcps->tcps_rexmit_interval_max) { 17301 ms = tcps->tcps_rexmit_interval_max; 17302 /* 17303 * ms is at max, decrement tcp_timer_backoff to avoid 17304 * overflow. 17305 */ 17306 tcp->tcp_timer_backoff--; 17307 } 17308 tcp->tcp_ms_we_have_waited += ms; 17309 if (tcp->tcp_zero_win_probe == 0) { 17310 tcp->tcp_rto = ms; 17311 } 17312 TCP_TIMER_RESTART(tcp, ms); 17313 /* 17314 * This is after a timeout and tcp_rto is backed off. Set 17315 * tcp_set_timer to 1 so that next time RTO is updated, we will 17316 * restart the timer with a correct value. 17317 */ 17318 tcp->tcp_set_timer = 1; 17319 mss = tcp->tcp_snxt - tcp->tcp_suna; 17320 if (mss > tcp->tcp_mss) 17321 mss = tcp->tcp_mss; 17322 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17323 mss = tcp->tcp_swnd; 17324 17325 if ((mp = tcp->tcp_xmit_head) != NULL) 17326 mp->b_prev = (mblk_t *)lbolt; 17327 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17328 B_TRUE); 17329 17330 /* 17331 * When slow start after retransmission begins, start with 17332 * this seq no. tcp_rexmit_max marks the end of special slow 17333 * start phase. tcp_snd_burst controls how many segments 17334 * can be sent because of an ack. 17335 */ 17336 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17337 tcp->tcp_snd_burst = TCP_CWND_SS; 17338 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17339 (tcp->tcp_unsent == 0)) { 17340 tcp->tcp_rexmit_max = tcp->tcp_fss; 17341 } else { 17342 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17343 } 17344 tcp->tcp_rexmit = B_TRUE; 17345 tcp->tcp_dupack_cnt = 0; 17346 17347 /* 17348 * Remove all rexmit SACK blk to start from fresh. 17349 */ 17350 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17351 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17352 tcp->tcp_num_notsack_blk = 0; 17353 tcp->tcp_cnt_notsack_list = 0; 17354 } 17355 if (mp == NULL) { 17356 return; 17357 } 17358 /* Attach credentials to retransmitted initial SYNs. */ 17359 if (tcp->tcp_state == TCPS_SYN_SENT) { 17360 mblk_setcred(mp, tcp->tcp_cred); 17361 DB_CPID(mp) = tcp->tcp_cpid; 17362 } 17363 17364 tcp->tcp_csuna = tcp->tcp_snxt; 17365 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17366 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17367 tcp_send_data(tcp, tcp->tcp_wq, mp); 17368 17369 } 17370 17371 static int 17372 tcp_do_unbind(conn_t *connp) 17373 { 17374 tcp_t *tcp = connp->conn_tcp; 17375 int error = 0; 17376 17377 switch (tcp->tcp_state) { 17378 case TCPS_BOUND: 17379 case TCPS_LISTEN: 17380 break; 17381 default: 17382 return (-TOUTSTATE); 17383 } 17384 17385 /* 17386 * Need to clean up all the eagers since after the unbind, segments 17387 * will no longer be delivered to this listener stream. 17388 */ 17389 mutex_enter(&tcp->tcp_eager_lock); 17390 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17391 tcp_eager_cleanup(tcp, 0); 17392 } 17393 mutex_exit(&tcp->tcp_eager_lock); 17394 17395 if (tcp->tcp_ipversion == IPV4_VERSION) { 17396 tcp->tcp_ipha->ipha_src = 0; 17397 } else { 17398 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17399 } 17400 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17401 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17402 tcp_bind_hash_remove(tcp); 17403 tcp->tcp_state = TCPS_IDLE; 17404 tcp->tcp_mdt = B_FALSE; 17405 17406 connp = tcp->tcp_connp; 17407 connp->conn_mdt_ok = B_FALSE; 17408 ipcl_hash_remove(connp); 17409 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17410 17411 return (error); 17412 } 17413 17414 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17415 static void 17416 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 17417 { 17418 int error = tcp_do_unbind(tcp->tcp_connp); 17419 17420 if (error > 0) { 17421 tcp_err_ack(tcp, mp, TSYSERR, error); 17422 } else if (error < 0) { 17423 tcp_err_ack(tcp, mp, -error, 0); 17424 } else { 17425 /* Send M_FLUSH according to TPI */ 17426 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17427 17428 mp = mi_tpi_ok_ack_alloc(mp); 17429 putnext(tcp->tcp_rq, mp); 17430 } 17431 } 17432 17433 /* 17434 * Don't let port fall into the privileged range. 17435 * Since the extra privileged ports can be arbitrary we also 17436 * ensure that we exclude those from consideration. 17437 * tcp_g_epriv_ports is not sorted thus we loop over it until 17438 * there are no changes. 17439 * 17440 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17441 * but instead the code relies on: 17442 * - the fact that the address of the array and its size never changes 17443 * - the atomic assignment of the elements of the array 17444 * 17445 * Returns 0 if there are no more ports available. 17446 * 17447 * TS note: skip multilevel ports. 17448 */ 17449 static in_port_t 17450 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17451 { 17452 int i; 17453 boolean_t restart = B_FALSE; 17454 tcp_stack_t *tcps = tcp->tcp_tcps; 17455 17456 if (random && tcp_random_anon_port != 0) { 17457 (void) random_get_pseudo_bytes((uint8_t *)&port, 17458 sizeof (in_port_t)); 17459 /* 17460 * Unless changed by a sys admin, the smallest anon port 17461 * is 32768 and the largest anon port is 65535. It is 17462 * very likely (50%) for the random port to be smaller 17463 * than the smallest anon port. When that happens, 17464 * add port % (anon port range) to the smallest anon 17465 * port to get the random port. It should fall into the 17466 * valid anon port range. 17467 */ 17468 if (port < tcps->tcps_smallest_anon_port) { 17469 port = tcps->tcps_smallest_anon_port + 17470 port % (tcps->tcps_largest_anon_port - 17471 tcps->tcps_smallest_anon_port); 17472 } 17473 } 17474 17475 retry: 17476 if (port < tcps->tcps_smallest_anon_port) 17477 port = (in_port_t)tcps->tcps_smallest_anon_port; 17478 17479 if (port > tcps->tcps_largest_anon_port) { 17480 if (restart) 17481 return (0); 17482 restart = B_TRUE; 17483 port = (in_port_t)tcps->tcps_smallest_anon_port; 17484 } 17485 17486 if (port < tcps->tcps_smallest_nonpriv_port) 17487 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17488 17489 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17490 if (port == tcps->tcps_g_epriv_ports[i]) { 17491 port++; 17492 /* 17493 * Make sure whether the port is in the 17494 * valid range. 17495 */ 17496 goto retry; 17497 } 17498 } 17499 if (is_system_labeled() && 17500 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17501 IPPROTO_TCP, B_TRUE)) != 0) { 17502 port = i; 17503 goto retry; 17504 } 17505 return (port); 17506 } 17507 17508 /* 17509 * Return the next anonymous port in the privileged port range for 17510 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17511 * downwards. This is the same behavior as documented in the userland 17512 * library call rresvport(3N). 17513 * 17514 * TS note: skip multilevel ports. 17515 */ 17516 static in_port_t 17517 tcp_get_next_priv_port(const tcp_t *tcp) 17518 { 17519 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17520 in_port_t nextport; 17521 boolean_t restart = B_FALSE; 17522 tcp_stack_t *tcps = tcp->tcp_tcps; 17523 retry: 17524 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17525 next_priv_port >= IPPORT_RESERVED) { 17526 next_priv_port = IPPORT_RESERVED - 1; 17527 if (restart) 17528 return (0); 17529 restart = B_TRUE; 17530 } 17531 if (is_system_labeled() && 17532 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17533 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17534 next_priv_port = nextport; 17535 goto retry; 17536 } 17537 return (next_priv_port--); 17538 } 17539 17540 /* The write side r/w procedure. */ 17541 17542 #if CCS_STATS 17543 struct { 17544 struct { 17545 int64_t count, bytes; 17546 } tot, hit; 17547 } wrw_stats; 17548 #endif 17549 17550 /* 17551 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17552 * messages. 17553 */ 17554 /* ARGSUSED */ 17555 static void 17556 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17557 { 17558 conn_t *connp = (conn_t *)arg; 17559 tcp_t *tcp = connp->conn_tcp; 17560 queue_t *q = tcp->tcp_wq; 17561 17562 ASSERT(DB_TYPE(mp) != M_IOCTL); 17563 /* 17564 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17565 * Once the close starts, streamhead and sockfs will not let any data 17566 * packets come down (close ensures that there are no threads using the 17567 * queue and no new threads will come down) but since qprocsoff() 17568 * hasn't happened yet, a M_FLUSH or some non data message might 17569 * get reflected back (in response to our own FLUSHRW) and get 17570 * processed after tcp_close() is done. The conn would still be valid 17571 * because a ref would have added but we need to check the state 17572 * before actually processing the packet. 17573 */ 17574 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17575 freemsg(mp); 17576 return; 17577 } 17578 17579 switch (DB_TYPE(mp)) { 17580 case M_IOCDATA: 17581 tcp_wput_iocdata(tcp, mp); 17582 break; 17583 case M_FLUSH: 17584 tcp_wput_flush(tcp, mp); 17585 break; 17586 default: 17587 CALL_IP_WPUT(connp, q, mp); 17588 break; 17589 } 17590 } 17591 17592 /* 17593 * The TCP fast path write put procedure. 17594 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17595 */ 17596 /* ARGSUSED */ 17597 void 17598 tcp_output(void *arg, mblk_t *mp, void *arg2) 17599 { 17600 int len; 17601 int hdrlen; 17602 int plen; 17603 mblk_t *mp1; 17604 uchar_t *rptr; 17605 uint32_t snxt; 17606 tcph_t *tcph; 17607 struct datab *db; 17608 uint32_t suna; 17609 uint32_t mss; 17610 ipaddr_t *dst; 17611 ipaddr_t *src; 17612 uint32_t sum; 17613 int usable; 17614 conn_t *connp = (conn_t *)arg; 17615 tcp_t *tcp = connp->conn_tcp; 17616 uint32_t msize; 17617 tcp_stack_t *tcps = tcp->tcp_tcps; 17618 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17619 17620 /* 17621 * Try and ASSERT the minimum possible references on the 17622 * conn early enough. Since we are executing on write side, 17623 * the connection is obviously not detached and that means 17624 * there is a ref each for TCP and IP. Since we are behind 17625 * the squeue, the minimum references needed are 3. If the 17626 * conn is in classifier hash list, there should be an 17627 * extra ref for that (we check both the possibilities). 17628 */ 17629 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17630 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17631 17632 ASSERT(DB_TYPE(mp) == M_DATA); 17633 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17634 17635 mutex_enter(&tcp->tcp_non_sq_lock); 17636 tcp->tcp_squeue_bytes -= msize; 17637 mutex_exit(&tcp->tcp_non_sq_lock); 17638 17639 /* Check to see if this connection wants to be re-fused. */ 17640 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17641 if (tcp->tcp_ipversion == IPV4_VERSION) { 17642 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17643 &tcp->tcp_saved_tcph); 17644 } else { 17645 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17646 &tcp->tcp_saved_tcph); 17647 } 17648 } 17649 /* Bypass tcp protocol for fused tcp loopback */ 17650 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17651 return; 17652 17653 mss = tcp->tcp_mss; 17654 if (tcp->tcp_xmit_zc_clean) 17655 mp = tcp_zcopy_backoff(tcp, mp, 0); 17656 17657 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17658 len = (int)(mp->b_wptr - mp->b_rptr); 17659 17660 /* 17661 * Criteria for fast path: 17662 * 17663 * 1. no unsent data 17664 * 2. single mblk in request 17665 * 3. connection established 17666 * 4. data in mblk 17667 * 5. len <= mss 17668 * 6. no tcp_valid bits 17669 */ 17670 if ((tcp->tcp_unsent != 0) || 17671 (tcp->tcp_cork) || 17672 (mp->b_cont != NULL) || 17673 (tcp->tcp_state != TCPS_ESTABLISHED) || 17674 (len == 0) || 17675 (len > mss) || 17676 (tcp->tcp_valid_bits != 0)) { 17677 tcp_wput_data(tcp, mp, B_FALSE); 17678 return; 17679 } 17680 17681 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17682 ASSERT(tcp->tcp_fin_sent == 0); 17683 17684 /* queue new packet onto retransmission queue */ 17685 if (tcp->tcp_xmit_head == NULL) { 17686 tcp->tcp_xmit_head = mp; 17687 } else { 17688 tcp->tcp_xmit_last->b_cont = mp; 17689 } 17690 tcp->tcp_xmit_last = mp; 17691 tcp->tcp_xmit_tail = mp; 17692 17693 /* find out how much we can send */ 17694 /* BEGIN CSTYLED */ 17695 /* 17696 * un-acked usable 17697 * |--------------|-----------------| 17698 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17699 */ 17700 /* END CSTYLED */ 17701 17702 /* start sending from tcp_snxt */ 17703 snxt = tcp->tcp_snxt; 17704 17705 /* 17706 * Check to see if this connection has been idled for some 17707 * time and no ACK is expected. If it is, we need to slow 17708 * start again to get back the connection's "self-clock" as 17709 * described in VJ's paper. 17710 * 17711 * Refer to the comment in tcp_mss_set() for the calculation 17712 * of tcp_cwnd after idle. 17713 */ 17714 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17715 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17716 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17717 } 17718 17719 usable = tcp->tcp_swnd; /* tcp window size */ 17720 if (usable > tcp->tcp_cwnd) 17721 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17722 usable -= snxt; /* subtract stuff already sent */ 17723 suna = tcp->tcp_suna; 17724 usable += suna; 17725 /* usable can be < 0 if the congestion window is smaller */ 17726 if (len > usable) { 17727 /* Can't send complete M_DATA in one shot */ 17728 goto slow; 17729 } 17730 17731 mutex_enter(&tcp->tcp_non_sq_lock); 17732 if (tcp->tcp_flow_stopped && 17733 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17734 tcp_clrqfull(tcp); 17735 } 17736 mutex_exit(&tcp->tcp_non_sq_lock); 17737 17738 /* 17739 * determine if anything to send (Nagle). 17740 * 17741 * 1. len < tcp_mss (i.e. small) 17742 * 2. unacknowledged data present 17743 * 3. len < nagle limit 17744 * 4. last packet sent < nagle limit (previous packet sent) 17745 */ 17746 if ((len < mss) && (snxt != suna) && 17747 (len < (int)tcp->tcp_naglim) && 17748 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17749 /* 17750 * This was the first unsent packet and normally 17751 * mss < xmit_hiwater so there is no need to worry 17752 * about flow control. The next packet will go 17753 * through the flow control check in tcp_wput_data(). 17754 */ 17755 /* leftover work from above */ 17756 tcp->tcp_unsent = len; 17757 tcp->tcp_xmit_tail_unsent = len; 17758 17759 return; 17760 } 17761 17762 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17763 17764 if (snxt == suna) { 17765 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17766 } 17767 17768 /* we have always sent something */ 17769 tcp->tcp_rack_cnt = 0; 17770 17771 tcp->tcp_snxt = snxt + len; 17772 tcp->tcp_rack = tcp->tcp_rnxt; 17773 17774 if ((mp1 = dupb(mp)) == 0) 17775 goto no_memory; 17776 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17777 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17778 17779 /* adjust tcp header information */ 17780 tcph = tcp->tcp_tcph; 17781 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17782 17783 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17784 sum = (sum >> 16) + (sum & 0xFFFF); 17785 U16_TO_ABE16(sum, tcph->th_sum); 17786 17787 U32_TO_ABE32(snxt, tcph->th_seq); 17788 17789 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17790 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17791 BUMP_LOCAL(tcp->tcp_obsegs); 17792 17793 /* Update the latest receive window size in TCP header. */ 17794 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17795 tcph->th_win); 17796 17797 tcp->tcp_last_sent_len = (ushort_t)len; 17798 17799 plen = len + tcp->tcp_hdr_len; 17800 17801 if (tcp->tcp_ipversion == IPV4_VERSION) { 17802 tcp->tcp_ipha->ipha_length = htons(plen); 17803 } else { 17804 tcp->tcp_ip6h->ip6_plen = htons(plen - 17805 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17806 } 17807 17808 /* see if we need to allocate a mblk for the headers */ 17809 hdrlen = tcp->tcp_hdr_len; 17810 rptr = mp1->b_rptr - hdrlen; 17811 db = mp1->b_datap; 17812 if ((db->db_ref != 2) || rptr < db->db_base || 17813 (!OK_32PTR(rptr))) { 17814 /* NOTE: we assume allocb returns an OK_32PTR */ 17815 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17816 tcps->tcps_wroff_xtra, BPRI_MED); 17817 if (!mp) { 17818 freemsg(mp1); 17819 goto no_memory; 17820 } 17821 mp->b_cont = mp1; 17822 mp1 = mp; 17823 /* Leave room for Link Level header */ 17824 /* hdrlen = tcp->tcp_hdr_len; */ 17825 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17826 mp1->b_wptr = &rptr[hdrlen]; 17827 } 17828 mp1->b_rptr = rptr; 17829 17830 /* Fill in the timestamp option. */ 17831 if (tcp->tcp_snd_ts_ok) { 17832 U32_TO_BE32((uint32_t)lbolt, 17833 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17834 U32_TO_BE32(tcp->tcp_ts_recent, 17835 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17836 } else { 17837 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17838 } 17839 17840 /* copy header into outgoing packet */ 17841 dst = (ipaddr_t *)rptr; 17842 src = (ipaddr_t *)tcp->tcp_iphc; 17843 dst[0] = src[0]; 17844 dst[1] = src[1]; 17845 dst[2] = src[2]; 17846 dst[3] = src[3]; 17847 dst[4] = src[4]; 17848 dst[5] = src[5]; 17849 dst[6] = src[6]; 17850 dst[7] = src[7]; 17851 dst[8] = src[8]; 17852 dst[9] = src[9]; 17853 if (hdrlen -= 40) { 17854 hdrlen >>= 2; 17855 dst += 10; 17856 src += 10; 17857 do { 17858 *dst++ = *src++; 17859 } while (--hdrlen); 17860 } 17861 17862 /* 17863 * Set the ECN info in the TCP header. Note that this 17864 * is not the template header. 17865 */ 17866 if (tcp->tcp_ecn_ok) { 17867 SET_ECT(tcp, rptr); 17868 17869 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17870 if (tcp->tcp_ecn_echo_on) 17871 tcph->th_flags[0] |= TH_ECE; 17872 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17873 tcph->th_flags[0] |= TH_CWR; 17874 tcp->tcp_ecn_cwr_sent = B_TRUE; 17875 } 17876 } 17877 17878 if (tcp->tcp_ip_forward_progress) { 17879 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17880 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17881 tcp->tcp_ip_forward_progress = B_FALSE; 17882 } 17883 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17884 return; 17885 17886 /* 17887 * If we ran out of memory, we pretend to have sent the packet 17888 * and that it was lost on the wire. 17889 */ 17890 no_memory: 17891 return; 17892 17893 slow: 17894 /* leftover work from above */ 17895 tcp->tcp_unsent = len; 17896 tcp->tcp_xmit_tail_unsent = len; 17897 tcp_wput_data(tcp, NULL, B_FALSE); 17898 } 17899 17900 /* ARGSUSED */ 17901 void 17902 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17903 { 17904 conn_t *connp = (conn_t *)arg; 17905 tcp_t *tcp = connp->conn_tcp; 17906 queue_t *q = tcp->tcp_rq; 17907 struct tcp_options *tcpopt; 17908 tcp_stack_t *tcps = tcp->tcp_tcps; 17909 17910 /* socket options */ 17911 uint_t sopp_flags; 17912 ssize_t sopp_rxhiwat; 17913 ssize_t sopp_maxblk; 17914 ushort_t sopp_wroff; 17915 ushort_t sopp_tail; 17916 ushort_t sopp_copyopt; 17917 17918 tcpopt = (struct tcp_options *)mp->b_rptr; 17919 17920 /* 17921 * Drop the eager's ref on the listener, that was placed when 17922 * this eager began life in tcp_conn_request. 17923 */ 17924 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17925 if (IPCL_IS_NONSTR(connp)) { 17926 /* Safe to free conn_ind message */ 17927 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17928 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17929 17930 /* The listener tells us which upper handle to use */ 17931 ASSERT(tcpopt->to_flags & TCPOPT_UPPERHANDLE); 17932 connp->conn_upper_handle = tcpopt->to_handle; 17933 } 17934 17935 tcp->tcp_detached = B_FALSE; 17936 17937 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17938 /* 17939 * Someone blewoff the eager before we could finish 17940 * the accept. 17941 * 17942 * The only reason eager exists it because we put in 17943 * a ref on it when conn ind went up. We need to send 17944 * a disconnect indication up while the last reference 17945 * on the eager will be dropped by the squeue when we 17946 * return. 17947 */ 17948 ASSERT(tcp->tcp_listener == NULL); 17949 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17950 if (IPCL_IS_NONSTR(connp)) { 17951 ASSERT(tcp->tcp_issocket); 17952 (*connp->conn_upcalls->su_disconnected)( 17953 connp->conn_upper_handle, tcp->tcp_connid, 17954 ECONNREFUSED); 17955 freemsg(mp); 17956 } else { 17957 struct T_discon_ind *tdi; 17958 17959 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17960 /* 17961 * Let us reuse the incoming mblk to avoid 17962 * memory allocation failure problems. We know 17963 * that the size of the incoming mblk i.e. 17964 * stroptions is greater than sizeof 17965 * T_discon_ind. So the reallocb below can't 17966 * fail. 17967 */ 17968 freemsg(mp->b_cont); 17969 mp->b_cont = NULL; 17970 ASSERT(DB_REF(mp) == 1); 17971 mp = reallocb(mp, sizeof (struct T_discon_ind), 17972 B_FALSE); 17973 ASSERT(mp != NULL); 17974 DB_TYPE(mp) = M_PROTO; 17975 ((union T_primitives *)mp->b_rptr)->type = 17976 T_DISCON_IND; 17977 tdi = (struct T_discon_ind *)mp->b_rptr; 17978 if (tcp->tcp_issocket) { 17979 tdi->DISCON_reason = ECONNREFUSED; 17980 tdi->SEQ_number = 0; 17981 } else { 17982 tdi->DISCON_reason = ENOPROTOOPT; 17983 tdi->SEQ_number = 17984 tcp->tcp_conn_req_seqnum; 17985 } 17986 mp->b_wptr = mp->b_rptr + 17987 sizeof (struct T_discon_ind); 17988 putnext(q, mp); 17989 return; 17990 } 17991 } 17992 if (tcp->tcp_hard_binding) { 17993 tcp->tcp_hard_binding = B_FALSE; 17994 tcp->tcp_hard_bound = B_TRUE; 17995 } 17996 return; 17997 } 17998 17999 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 18000 int boundif = tcpopt->to_boundif; 18001 uint_t len = sizeof (int); 18002 18003 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 18004 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 18005 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 18006 } 18007 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 18008 uint_t on = 1; 18009 uint_t len = sizeof (uint_t); 18010 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 18011 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 18012 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 18013 } 18014 18015 /* 18016 * For a loopback connection with tcp_direct_sockfs on, note that 18017 * we don't have to protect tcp_rcv_list yet because synchronous 18018 * streams has not yet been enabled and tcp_fuse_rrw() cannot 18019 * possibly race with us. 18020 */ 18021 18022 /* 18023 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18024 * properly. This is the first time we know of the acceptor' 18025 * queue. So we do it here. 18026 * 18027 * XXX 18028 */ 18029 if (tcp->tcp_rcv_list == NULL) { 18030 /* 18031 * Recv queue is empty, tcp_rwnd should not have changed. 18032 * That means it should be equal to the listener's tcp_rwnd. 18033 */ 18034 if (!IPCL_IS_NONSTR(connp)) 18035 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18036 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 18037 } else { 18038 #ifdef DEBUG 18039 mblk_t *tmp; 18040 mblk_t *mp1; 18041 uint_t cnt = 0; 18042 18043 mp1 = tcp->tcp_rcv_list; 18044 while ((tmp = mp1) != NULL) { 18045 mp1 = tmp->b_next; 18046 cnt += msgdsize(tmp); 18047 } 18048 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18049 #endif 18050 /* There is some data, add them back to get the max. */ 18051 if (!IPCL_IS_NONSTR(connp)) 18052 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18053 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18054 } 18055 /* 18056 * This is the first time we run on the correct 18057 * queue after tcp_accept. So fix all the q parameters 18058 * here. 18059 */ 18060 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 18061 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18062 18063 /* 18064 * Record the stream head's high water mark for this endpoint; 18065 * this is used for flow-control purposes. 18066 */ 18067 sopp_rxhiwat = tcp->tcp_fused ? 18068 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 18069 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 18070 18071 /* 18072 * Determine what write offset value to use depending on SACK and 18073 * whether the endpoint is fused or not. 18074 */ 18075 if (tcp->tcp_fused) { 18076 ASSERT(tcp->tcp_loopback); 18077 ASSERT(tcp->tcp_loopback_peer != NULL); 18078 /* 18079 * For fused tcp loopback, set the stream head's write 18080 * offset value to zero since we won't be needing any room 18081 * for TCP/IP headers. This would also improve performance 18082 * since it would reduce the amount of work done by kmem. 18083 * Non-fused tcp loopback case is handled separately below. 18084 */ 18085 sopp_wroff = 0; 18086 /* 18087 * Update the peer's transmit parameters according to 18088 * our recently calculated high water mark value. 18089 */ 18090 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18091 } else if (tcp->tcp_snd_sack_ok) { 18092 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18093 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18094 } else { 18095 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18096 tcps->tcps_wroff_xtra); 18097 } 18098 18099 /* 18100 * If this is endpoint is handling SSL, then reserve extra 18101 * offset and space at the end. 18102 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18103 * overriding the previous setting. The extra cost of signing and 18104 * encrypting multiple MSS-size records (12 of them with Ethernet), 18105 * instead of a single contiguous one by the stream head 18106 * largely outweighs the statistical reduction of ACKs, when 18107 * applicable. The peer will also save on decryption and verification 18108 * costs. 18109 */ 18110 if (tcp->tcp_kssl_ctx != NULL) { 18111 sopp_wroff += SSL3_WROFFSET; 18112 18113 sopp_flags |= SOCKOPT_TAIL; 18114 sopp_tail = SSL3_MAX_TAIL_LEN; 18115 18116 sopp_flags |= SOCKOPT_ZCOPY; 18117 sopp_copyopt = ZCVMUNSAFE; 18118 18119 sopp_maxblk = SSL3_MAX_RECORD_LEN; 18120 } 18121 18122 /* Send the options up */ 18123 if (IPCL_IS_NONSTR(connp)) { 18124 struct sock_proto_props sopp; 18125 18126 sopp.sopp_flags = sopp_flags; 18127 sopp.sopp_wroff = sopp_wroff; 18128 sopp.sopp_maxblk = sopp_maxblk; 18129 sopp.sopp_rxhiwat = sopp_rxhiwat; 18130 if (sopp_flags & SOCKOPT_TAIL) { 18131 ASSERT(tcp->tcp_kssl_ctx != NULL); 18132 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 18133 sopp.sopp_tail = sopp_tail; 18134 sopp.sopp_zcopyflag = sopp_copyopt; 18135 } 18136 (*connp->conn_upcalls->su_set_proto_props) 18137 (connp->conn_upper_handle, &sopp); 18138 } else { 18139 struct stroptions *stropt; 18140 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18141 if (stropt_mp == NULL) { 18142 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 18143 return; 18144 } 18145 DB_TYPE(stropt_mp) = M_SETOPTS; 18146 stropt = (struct stroptions *)stropt_mp->b_rptr; 18147 stropt_mp->b_wptr += sizeof (struct stroptions); 18148 stropt = (struct stroptions *)stropt_mp->b_rptr; 18149 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 18150 stropt->so_hiwat = sopp_rxhiwat; 18151 stropt->so_wroff = sopp_wroff; 18152 stropt->so_maxblk = sopp_maxblk; 18153 18154 if (sopp_flags & SOCKOPT_TAIL) { 18155 ASSERT(tcp->tcp_kssl_ctx != NULL); 18156 18157 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 18158 stropt->so_tail = sopp_tail; 18159 stropt->so_copyopt = sopp_copyopt; 18160 } 18161 18162 /* Send the options up */ 18163 putnext(q, stropt_mp); 18164 } 18165 18166 freemsg(mp); 18167 /* 18168 * Pass up any data and/or a fin that has been received. 18169 * 18170 * Adjust receive window in case it had decreased 18171 * (because there is data <=> tcp_rcv_list != NULL) 18172 * while the connection was detached. Note that 18173 * in case the eager was flow-controlled, w/o this 18174 * code, the rwnd may never open up again! 18175 */ 18176 if (tcp->tcp_rcv_list != NULL) { 18177 if (IPCL_IS_NONSTR(connp)) { 18178 mblk_t *mp; 18179 int space_left; 18180 int error; 18181 boolean_t push = B_TRUE; 18182 18183 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 18184 (connp->conn_upper_handle, NULL, 0, 0, &error, 18185 &push) >= 0) { 18186 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 18187 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18188 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18189 tcp_xmit_ctl(NULL, 18190 tcp, (tcp->tcp_swnd == 0) ? 18191 tcp->tcp_suna : tcp->tcp_snxt, 18192 tcp->tcp_rnxt, TH_ACK); 18193 } 18194 } 18195 while ((mp = tcp->tcp_rcv_list) != NULL) { 18196 push = B_TRUE; 18197 tcp->tcp_rcv_list = mp->b_next; 18198 mp->b_next = NULL; 18199 space_left = (*connp->conn_upcalls->su_recv) 18200 (connp->conn_upper_handle, mp, msgdsize(mp), 18201 0, &error, &push); 18202 if (space_left < 0) { 18203 /* 18204 * At this point the eager is not 18205 * visible to anyone, so fallback 18206 * can not happen. 18207 */ 18208 ASSERT(error != EOPNOTSUPP); 18209 } 18210 } 18211 tcp->tcp_rcv_last_head = NULL; 18212 tcp->tcp_rcv_last_tail = NULL; 18213 tcp->tcp_rcv_cnt = 0; 18214 } else { 18215 /* We drain directly in case of fused tcp loopback */ 18216 sodirect_t *sodp; 18217 18218 if (!tcp->tcp_fused && canputnext(q)) { 18219 tcp->tcp_rwnd = q->q_hiwat; 18220 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18221 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18222 tcp_xmit_ctl(NULL, 18223 tcp, (tcp->tcp_swnd == 0) ? 18224 tcp->tcp_suna : tcp->tcp_snxt, 18225 tcp->tcp_rnxt, TH_ACK); 18226 } 18227 } 18228 18229 SOD_PTR_ENTER(tcp, sodp); 18230 if (sodp != NULL) { 18231 /* Sodirect, move from rcv_list */ 18232 ASSERT(!tcp->tcp_fused); 18233 while ((mp = tcp->tcp_rcv_list) != NULL) { 18234 tcp->tcp_rcv_list = mp->b_next; 18235 mp->b_next = NULL; 18236 (void) tcp_rcv_sod_enqueue(tcp, sodp, 18237 mp, msgdsize(mp)); 18238 } 18239 tcp->tcp_rcv_last_head = NULL; 18240 tcp->tcp_rcv_last_tail = NULL; 18241 tcp->tcp_rcv_cnt = 0; 18242 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18243 /* sod_wakeup() did the mutex_exit() */ 18244 } else { 18245 /* Not sodirect, drain */ 18246 (void) tcp_rcv_drain(tcp); 18247 } 18248 } 18249 18250 /* 18251 * For fused tcp loopback, back-enable peer endpoint 18252 * if it's currently flow-controlled. 18253 */ 18254 if (tcp->tcp_fused) { 18255 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18256 18257 ASSERT(peer_tcp != NULL); 18258 ASSERT(peer_tcp->tcp_fused); 18259 /* 18260 * In order to change the peer's tcp_flow_stopped, 18261 * we need to take locks for both end points. The 18262 * highest address is taken first. 18263 */ 18264 if (peer_tcp > tcp) { 18265 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18266 mutex_enter(&tcp->tcp_non_sq_lock); 18267 } else { 18268 mutex_enter(&tcp->tcp_non_sq_lock); 18269 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18270 } 18271 if (peer_tcp->tcp_flow_stopped) { 18272 tcp_clrqfull(peer_tcp); 18273 TCP_STAT(tcps, tcp_fusion_backenabled); 18274 } 18275 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18276 mutex_exit(&tcp->tcp_non_sq_lock); 18277 } 18278 } 18279 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18280 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18281 tcp->tcp_ordrel_done = B_TRUE; 18282 if (IPCL_IS_NONSTR(connp)) { 18283 ASSERT(tcp->tcp_ordrel_mp == NULL); 18284 (*connp->conn_upcalls->su_opctl)( 18285 connp->conn_upper_handle, 18286 SOCK_OPCTL_SHUT_RECV, 0); 18287 } else { 18288 mp = tcp->tcp_ordrel_mp; 18289 tcp->tcp_ordrel_mp = NULL; 18290 putnext(q, mp); 18291 } 18292 } 18293 if (tcp->tcp_hard_binding) { 18294 tcp->tcp_hard_binding = B_FALSE; 18295 tcp->tcp_hard_bound = B_TRUE; 18296 } 18297 18298 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 18299 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 18300 tcp->tcp_loopback_peer != NULL && 18301 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 18302 tcp_fuse_syncstr_enable_pair(tcp); 18303 } 18304 18305 if (tcp->tcp_ka_enabled) { 18306 tcp->tcp_ka_last_intrvl = 0; 18307 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18308 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18309 } 18310 18311 /* 18312 * At this point, eager is fully established and will 18313 * have the following references - 18314 * 18315 * 2 references for connection to exist (1 for TCP and 1 for IP). 18316 * 1 reference for the squeue which will be dropped by the squeue as 18317 * soon as this function returns. 18318 * There will be 1 additonal reference for being in classifier 18319 * hash list provided something bad hasn't happened. 18320 */ 18321 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18322 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18323 } 18324 18325 /* 18326 * The function called through squeue to get behind listener's perimeter to 18327 * send a deffered conn_ind. 18328 */ 18329 /* ARGSUSED */ 18330 void 18331 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18332 { 18333 conn_t *connp = (conn_t *)arg; 18334 tcp_t *listener = connp->conn_tcp; 18335 struct T_conn_ind *conn_ind; 18336 tcp_t *tcp; 18337 18338 if (listener->tcp_state == TCPS_CLOSED || 18339 TCP_IS_DETACHED(listener)) { 18340 /* 18341 * If listener has closed, it would have caused a 18342 * a cleanup/blowoff to happen for the eager. 18343 */ 18344 18345 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18346 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18347 conn_ind->OPT_length); 18348 /* 18349 * We need to drop the ref on eager that was put 18350 * tcp_rput_data() before trying to send the conn_ind 18351 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18352 * and tcp_wput_accept() is sending this deferred conn_ind but 18353 * listener is closed so we drop the ref. 18354 */ 18355 CONN_DEC_REF(tcp->tcp_connp); 18356 freemsg(mp); 18357 return; 18358 } 18359 if (IPCL_IS_NONSTR(connp)) { 18360 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18361 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18362 conn_ind->OPT_length); 18363 18364 if ((*connp->conn_upcalls->su_newconn) 18365 (connp->conn_upper_handle, 18366 (sock_lower_handle_t)tcp->tcp_connp, 18367 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 18368 &tcp->tcp_connp->conn_upcalls) != NULL) { 18369 /* Keep the message around in case of fallback */ 18370 tcp->tcp_conn.tcp_eager_conn_ind = mp; 18371 } else { 18372 freemsg(mp); 18373 } 18374 } else { 18375 putnext(listener->tcp_rq, mp); 18376 } 18377 } 18378 18379 /* ARGSUSED */ 18380 static int 18381 tcp_accept_common(conn_t *lconnp, conn_t *econnp, 18382 sock_upper_handle_t sock_handle, cred_t *cr) 18383 { 18384 tcp_t *listener, *eager; 18385 mblk_t *opt_mp; 18386 struct tcp_options *tcpopt; 18387 18388 listener = lconnp->conn_tcp; 18389 ASSERT(listener->tcp_state == TCPS_LISTEN); 18390 eager = econnp->conn_tcp; 18391 ASSERT(eager->tcp_listener != NULL); 18392 18393 ASSERT(eager->tcp_rq != NULL); 18394 18395 /* If tcp_fused and sodirect enabled disable it */ 18396 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18397 /* Fused, disable sodirect */ 18398 mutex_enter(eager->tcp_sodirect->sod_lockp); 18399 SOD_DISABLE(eager->tcp_sodirect); 18400 mutex_exit(eager->tcp_sodirect->sod_lockp); 18401 eager->tcp_sodirect = NULL; 18402 } 18403 18404 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 18405 if (opt_mp == NULL) { 18406 return (-TPROTO); 18407 } 18408 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 18409 eager->tcp_issocket = B_TRUE; 18410 18411 econnp->conn_upcalls = lconnp->conn_upcalls; 18412 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18413 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18414 ASSERT(econnp->conn_netstack == 18415 listener->tcp_connp->conn_netstack); 18416 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18417 18418 /* Put the ref for IP */ 18419 CONN_INC_REF(econnp); 18420 18421 /* 18422 * We should have minimum of 3 references on the conn 18423 * at this point. One each for TCP and IP and one for 18424 * the T_conn_ind that was sent up when the 3-way handshake 18425 * completed. In the normal case we would also have another 18426 * reference (making a total of 4) for the conn being in the 18427 * classifier hash list. However the eager could have received 18428 * an RST subsequently and tcp_closei_local could have removed 18429 * the eager from the classifier hash list, hence we can't 18430 * assert that reference. 18431 */ 18432 ASSERT(econnp->conn_ref >= 3); 18433 18434 opt_mp->b_datap->db_type = M_SETOPTS; 18435 opt_mp->b_wptr += sizeof (struct tcp_options); 18436 18437 /* 18438 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18439 * from listener to acceptor. In case of non-STREAMS sockets, 18440 * we also need to pass the upper handle along. 18441 */ 18442 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 18443 tcpopt->to_flags = 0; 18444 18445 if (IPCL_IS_NONSTR(econnp)) { 18446 ASSERT(sock_handle != NULL); 18447 tcpopt->to_flags |= TCPOPT_UPPERHANDLE; 18448 tcpopt->to_handle = sock_handle; 18449 } 18450 if (listener->tcp_bound_if != 0) { 18451 tcpopt->to_flags |= TCPOPT_BOUNDIF; 18452 tcpopt->to_boundif = listener->tcp_bound_if; 18453 } 18454 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18455 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 18456 } 18457 18458 mutex_enter(&listener->tcp_eager_lock); 18459 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18460 18461 tcp_t *tail; 18462 tcp_t *tcp; 18463 mblk_t *mp1; 18464 18465 tcp = listener->tcp_eager_prev_q0; 18466 /* 18467 * listener->tcp_eager_prev_q0 points to the TAIL of the 18468 * deferred T_conn_ind queue. We need to get to the head 18469 * of the queue in order to send up T_conn_ind the same 18470 * order as how the 3WHS is completed. 18471 */ 18472 while (tcp != listener) { 18473 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18474 !tcp->tcp_kssl_pending) 18475 break; 18476 else 18477 tcp = tcp->tcp_eager_prev_q0; 18478 } 18479 /* None of the pending eagers can be sent up now */ 18480 if (tcp == listener) 18481 goto no_more_eagers; 18482 18483 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18484 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18485 /* Move from q0 to q */ 18486 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18487 listener->tcp_conn_req_cnt_q0--; 18488 listener->tcp_conn_req_cnt_q++; 18489 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18490 tcp->tcp_eager_prev_q0; 18491 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18492 tcp->tcp_eager_next_q0; 18493 tcp->tcp_eager_prev_q0 = NULL; 18494 tcp->tcp_eager_next_q0 = NULL; 18495 tcp->tcp_conn_def_q0 = B_FALSE; 18496 18497 /* Make sure the tcp isn't in the list of droppables */ 18498 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18499 tcp->tcp_eager_prev_drop_q0 == NULL); 18500 18501 /* 18502 * Insert at end of the queue because sockfs sends 18503 * down T_CONN_RES in chronological order. Leaving 18504 * the older conn indications at front of the queue 18505 * helps reducing search time. 18506 */ 18507 tail = listener->tcp_eager_last_q; 18508 if (tail != NULL) { 18509 tail->tcp_eager_next_q = tcp; 18510 } else { 18511 listener->tcp_eager_next_q = tcp; 18512 } 18513 listener->tcp_eager_last_q = tcp; 18514 tcp->tcp_eager_next_q = NULL; 18515 18516 /* Need to get inside the listener perimeter */ 18517 CONN_INC_REF(listener->tcp_connp); 18518 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 18519 tcp_send_pending, listener->tcp_connp, SQ_FILL, 18520 SQTAG_TCP_SEND_PENDING); 18521 } 18522 no_more_eagers: 18523 tcp_eager_unlink(eager); 18524 mutex_exit(&listener->tcp_eager_lock); 18525 18526 /* 18527 * At this point, the eager is detached from the listener 18528 * but we still have an extra refs on eager (apart from the 18529 * usual tcp references). The ref was placed in tcp_rput_data 18530 * before sending the conn_ind in tcp_send_conn_ind. 18531 * The ref will be dropped in tcp_accept_finish(). 18532 */ 18533 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18534 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18535 return (0); 18536 } 18537 18538 int 18539 tcp_accept(sock_lower_handle_t lproto_handle, 18540 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 18541 cred_t *cr) 18542 { 18543 conn_t *lconnp, *econnp; 18544 tcp_t *listener, *eager; 18545 tcp_stack_t *tcps; 18546 18547 lconnp = (conn_t *)lproto_handle; 18548 listener = lconnp->conn_tcp; 18549 ASSERT(listener->tcp_state == TCPS_LISTEN); 18550 econnp = (conn_t *)eproto_handle; 18551 eager = econnp->conn_tcp; 18552 ASSERT(eager->tcp_listener != NULL); 18553 tcps = eager->tcp_tcps; 18554 18555 ASSERT(IPCL_IS_NONSTR(econnp)); 18556 /* 18557 * Create helper stream if it is a non-TPI TCP connection. 18558 */ 18559 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 18560 ip1dbg(("tcp_accept: create of IP helper stream" 18561 " failed\n")); 18562 return (EPROTO); 18563 } 18564 eager->tcp_rq = econnp->conn_rq; 18565 eager->tcp_wq = econnp->conn_wq; 18566 18567 ASSERT(eager->tcp_rq != NULL); 18568 18569 eager->tcp_sodirect = SOD_SOTOSODP(sock_handle); 18570 return (tcp_accept_common(lconnp, econnp, sock_handle, cr)); 18571 } 18572 18573 18574 /* 18575 * This is the STREAMS entry point for T_CONN_RES coming down on 18576 * Acceptor STREAM when sockfs listener does accept processing. 18577 * Read the block comment on top of tcp_conn_request(). 18578 */ 18579 void 18580 tcp_tpi_accept(queue_t *q, mblk_t *mp) 18581 { 18582 queue_t *rq = RD(q); 18583 struct T_conn_res *conn_res; 18584 tcp_t *eager; 18585 tcp_t *listener; 18586 struct T_ok_ack *ok; 18587 t_scalar_t PRIM_type; 18588 conn_t *econnp; 18589 18590 ASSERT(DB_TYPE(mp) == M_PROTO); 18591 18592 conn_res = (struct T_conn_res *)mp->b_rptr; 18593 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18594 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18595 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18596 if (mp != NULL) 18597 putnext(rq, mp); 18598 return; 18599 } 18600 switch (conn_res->PRIM_type) { 18601 case O_T_CONN_RES: 18602 case T_CONN_RES: 18603 /* 18604 * We pass up an err ack if allocb fails. This will 18605 * cause sockfs to issue a T_DISCON_REQ which will cause 18606 * tcp_eager_blowoff to be called. sockfs will then call 18607 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18608 * we need to do the allocb up here because we have to 18609 * make sure rq->q_qinfo->qi_qclose still points to the 18610 * correct function (tcpclose_accept) in case allocb 18611 * fails. 18612 */ 18613 bcopy(mp->b_rptr + conn_res->OPT_offset, 18614 &eager, conn_res->OPT_length); 18615 PRIM_type = conn_res->PRIM_type; 18616 mp->b_datap->db_type = M_PCPROTO; 18617 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18618 ok = (struct T_ok_ack *)mp->b_rptr; 18619 ok->PRIM_type = T_OK_ACK; 18620 ok->CORRECT_prim = PRIM_type; 18621 econnp = eager->tcp_connp; 18622 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18623 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18624 eager->tcp_rq = rq; 18625 eager->tcp_wq = q; 18626 rq->q_ptr = econnp; 18627 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18628 q->q_ptr = econnp; 18629 q->q_qinfo = &tcp_winit; 18630 listener = eager->tcp_listener; 18631 18632 /* 18633 * TCP is _D_SODIRECT and sockfs is directly above so 18634 * save shared sodirect_t pointer (if any). 18635 */ 18636 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18637 if (tcp_accept_common(listener->tcp_connp, 18638 econnp, NULL, CRED()) < 0) { 18639 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18640 if (mp != NULL) 18641 putnext(rq, mp); 18642 return; 18643 } 18644 18645 /* 18646 * Send the new local address also up to sockfs. There 18647 * should already be enough space in the mp that came 18648 * down from soaccept(). 18649 */ 18650 if (eager->tcp_family == AF_INET) { 18651 sin_t *sin; 18652 18653 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18654 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18655 sin = (sin_t *)mp->b_wptr; 18656 mp->b_wptr += sizeof (sin_t); 18657 sin->sin_family = AF_INET; 18658 sin->sin_port = eager->tcp_lport; 18659 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18660 } else { 18661 sin6_t *sin6; 18662 18663 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18664 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18665 sin6 = (sin6_t *)mp->b_wptr; 18666 mp->b_wptr += sizeof (sin6_t); 18667 sin6->sin6_family = AF_INET6; 18668 sin6->sin6_port = eager->tcp_lport; 18669 if (eager->tcp_ipversion == IPV4_VERSION) { 18670 sin6->sin6_flowinfo = 0; 18671 IN6_IPADDR_TO_V4MAPPED( 18672 eager->tcp_ipha->ipha_src, 18673 &sin6->sin6_addr); 18674 } else { 18675 ASSERT(eager->tcp_ip6h != NULL); 18676 sin6->sin6_flowinfo = 18677 eager->tcp_ip6h->ip6_vcf & 18678 ~IPV6_VERS_AND_FLOW_MASK; 18679 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18680 } 18681 sin6->sin6_scope_id = 0; 18682 sin6->__sin6_src_id = 0; 18683 } 18684 18685 putnext(rq, mp); 18686 return; 18687 default: 18688 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18689 if (mp != NULL) 18690 putnext(rq, mp); 18691 return; 18692 } 18693 } 18694 18695 static int 18696 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18697 { 18698 sin_t *sin = (sin_t *)sa; 18699 sin6_t *sin6 = (sin6_t *)sa; 18700 18701 switch (tcp->tcp_family) { 18702 case AF_INET: 18703 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18704 18705 if (*salenp < sizeof (sin_t)) 18706 return (EINVAL); 18707 18708 *sin = sin_null; 18709 sin->sin_family = AF_INET; 18710 sin->sin_port = tcp->tcp_lport; 18711 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18712 break; 18713 18714 case AF_INET6: 18715 if (*salenp < sizeof (sin6_t)) 18716 return (EINVAL); 18717 18718 *sin6 = sin6_null; 18719 sin6->sin6_family = AF_INET6; 18720 sin6->sin6_port = tcp->tcp_lport; 18721 if (tcp->tcp_ipversion == IPV4_VERSION) { 18722 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18723 &sin6->sin6_addr); 18724 } else { 18725 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18726 } 18727 break; 18728 } 18729 18730 return (0); 18731 } 18732 18733 static int 18734 i_tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18735 { 18736 sin_t *sin = (sin_t *)sa; 18737 sin6_t *sin6 = (sin6_t *)sa; 18738 18739 if (tcp->tcp_state < TCPS_SYN_RCVD) 18740 return (ENOTCONN); 18741 18742 switch (tcp->tcp_family) { 18743 case AF_INET: 18744 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18745 18746 if (*salenp < sizeof (sin_t)) 18747 return (EINVAL); 18748 18749 *sin = sin_null; 18750 sin->sin_family = AF_INET; 18751 sin->sin_port = tcp->tcp_fport; 18752 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18753 sin->sin_addr.s_addr); 18754 *salenp = sizeof (sin_t); 18755 break; 18756 18757 case AF_INET6: 18758 if (*salenp < sizeof (sin6_t)) 18759 return (EINVAL); 18760 18761 *sin6 = sin6_null; 18762 sin6->sin6_family = AF_INET6; 18763 sin6->sin6_port = tcp->tcp_fport; 18764 sin6->sin6_addr = tcp->tcp_remote_v6; 18765 if (tcp->tcp_ipversion == IPV6_VERSION) { 18766 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18767 ~IPV6_VERS_AND_FLOW_MASK; 18768 } 18769 *salenp = sizeof (sin6_t); 18770 break; 18771 } 18772 18773 return (0); 18774 } 18775 18776 /* 18777 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18778 */ 18779 static void 18780 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18781 { 18782 void *data; 18783 mblk_t *datamp = mp->b_cont; 18784 tcp_t *tcp = Q_TO_TCP(q); 18785 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18786 18787 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18788 cmdp->cb_error = EPROTO; 18789 qreply(q, mp); 18790 return; 18791 } 18792 18793 data = datamp->b_rptr; 18794 18795 switch (cmdp->cb_cmd) { 18796 case TI_GETPEERNAME: 18797 cmdp->cb_error = i_tcp_getpeername(tcp, data, &cmdp->cb_len); 18798 break; 18799 case TI_GETMYNAME: 18800 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18801 break; 18802 default: 18803 cmdp->cb_error = EINVAL; 18804 break; 18805 } 18806 18807 qreply(q, mp); 18808 } 18809 18810 void 18811 tcp_wput(queue_t *q, mblk_t *mp) 18812 { 18813 conn_t *connp = Q_TO_CONN(q); 18814 tcp_t *tcp; 18815 void (*output_proc)(); 18816 t_scalar_t type; 18817 uchar_t *rptr; 18818 struct iocblk *iocp; 18819 size_t size; 18820 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18821 18822 ASSERT(connp->conn_ref >= 2); 18823 18824 switch (DB_TYPE(mp)) { 18825 case M_DATA: 18826 tcp = connp->conn_tcp; 18827 ASSERT(tcp != NULL); 18828 18829 size = msgdsize(mp); 18830 18831 mutex_enter(&tcp->tcp_non_sq_lock); 18832 tcp->tcp_squeue_bytes += size; 18833 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18834 tcp_setqfull(tcp); 18835 } 18836 mutex_exit(&tcp->tcp_non_sq_lock); 18837 18838 if (DB_CRED(mp) == NULL && is_system_labeled()) 18839 msg_setcredpid(mp, CONN_CRED(connp), curproc->p_pid); 18840 18841 CONN_INC_REF(connp); 18842 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18843 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18844 return; 18845 18846 case M_CMD: 18847 tcp_wput_cmdblk(q, mp); 18848 return; 18849 18850 case M_PROTO: 18851 case M_PCPROTO: 18852 /* 18853 * if it is a snmp message, don't get behind the squeue 18854 */ 18855 tcp = connp->conn_tcp; 18856 rptr = mp->b_rptr; 18857 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18858 type = ((union T_primitives *)rptr)->type; 18859 } else { 18860 if (tcp->tcp_debug) { 18861 (void) strlog(TCP_MOD_ID, 0, 1, 18862 SL_ERROR|SL_TRACE, 18863 "tcp_wput_proto, dropping one..."); 18864 } 18865 freemsg(mp); 18866 return; 18867 } 18868 if (type == T_SVR4_OPTMGMT_REQ) { 18869 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18870 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18871 cr)) { 18872 /* 18873 * This was a SNMP request 18874 */ 18875 return; 18876 } else { 18877 output_proc = tcp_wput_proto; 18878 } 18879 } else { 18880 output_proc = tcp_wput_proto; 18881 } 18882 break; 18883 case M_IOCTL: 18884 /* 18885 * Most ioctls can be processed right away without going via 18886 * squeues - process them right here. Those that do require 18887 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18888 * are processed by tcp_wput_ioctl(). 18889 */ 18890 iocp = (struct iocblk *)mp->b_rptr; 18891 tcp = connp->conn_tcp; 18892 18893 switch (iocp->ioc_cmd) { 18894 case TCP_IOC_ABORT_CONN: 18895 tcp_ioctl_abort_conn(q, mp); 18896 return; 18897 case TI_GETPEERNAME: 18898 case TI_GETMYNAME: 18899 mi_copyin(q, mp, NULL, 18900 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18901 return; 18902 case ND_SET: 18903 /* nd_getset does the necessary checks */ 18904 case ND_GET: 18905 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18906 CALL_IP_WPUT(connp, q, mp); 18907 return; 18908 } 18909 qreply(q, mp); 18910 return; 18911 case TCP_IOC_DEFAULT_Q: 18912 /* 18913 * Wants to be the default wq. Check the credentials 18914 * first, the rest is executed via squeue. 18915 */ 18916 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18917 iocp->ioc_error = EPERM; 18918 iocp->ioc_count = 0; 18919 mp->b_datap->db_type = M_IOCACK; 18920 qreply(q, mp); 18921 return; 18922 } 18923 output_proc = tcp_wput_ioctl; 18924 break; 18925 default: 18926 output_proc = tcp_wput_ioctl; 18927 break; 18928 } 18929 break; 18930 default: 18931 output_proc = tcp_wput_nondata; 18932 break; 18933 } 18934 18935 CONN_INC_REF(connp); 18936 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18937 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18938 } 18939 18940 /* 18941 * Initial STREAMS write side put() procedure for sockets. It tries to 18942 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18943 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18944 * are handled by tcp_wput() as usual. 18945 * 18946 * All further messages will also be handled by tcp_wput() because we cannot 18947 * be sure that the above short cut is safe later. 18948 */ 18949 static void 18950 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18951 { 18952 conn_t *connp = Q_TO_CONN(wq); 18953 tcp_t *tcp = connp->conn_tcp; 18954 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18955 18956 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18957 wq->q_qinfo = &tcp_winit; 18958 18959 ASSERT(IPCL_IS_TCP(connp)); 18960 ASSERT(TCP_IS_SOCKET(tcp)); 18961 18962 if (DB_TYPE(mp) == M_PCPROTO && 18963 MBLKL(mp) == sizeof (struct T_capability_req) && 18964 car->PRIM_type == T_CAPABILITY_REQ) { 18965 tcp_capability_req(tcp, mp); 18966 return; 18967 } 18968 18969 tcp_wput(wq, mp); 18970 } 18971 18972 /* ARGSUSED */ 18973 static void 18974 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18975 { 18976 #ifdef DEBUG 18977 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18978 #endif 18979 freemsg(mp); 18980 } 18981 18982 static boolean_t 18983 tcp_zcopy_check(tcp_t *tcp) 18984 { 18985 conn_t *connp = tcp->tcp_connp; 18986 ire_t *ire; 18987 boolean_t zc_enabled = B_FALSE; 18988 tcp_stack_t *tcps = tcp->tcp_tcps; 18989 18990 if (do_tcpzcopy == 2) 18991 zc_enabled = B_TRUE; 18992 else if (tcp->tcp_ipversion == IPV4_VERSION && 18993 IPCL_IS_CONNECTED(connp) && 18994 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18995 connp->conn_dontroute == 0 && 18996 !connp->conn_nexthop_set && 18997 connp->conn_outgoing_ill == NULL && 18998 connp->conn_nofailover_ill == NULL && 18999 do_tcpzcopy == 1) { 19000 /* 19001 * the checks above closely resemble the fast path checks 19002 * in tcp_send_data(). 19003 */ 19004 mutex_enter(&connp->conn_lock); 19005 ire = connp->conn_ire_cache; 19006 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19007 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19008 IRE_REFHOLD(ire); 19009 if (ire->ire_stq != NULL) { 19010 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 19011 19012 zc_enabled = ill && (ill->ill_capabilities & 19013 ILL_CAPAB_ZEROCOPY) && 19014 (ill->ill_zerocopy_capab-> 19015 ill_zerocopy_flags != 0); 19016 } 19017 IRE_REFRELE(ire); 19018 } 19019 mutex_exit(&connp->conn_lock); 19020 } 19021 tcp->tcp_snd_zcopy_on = zc_enabled; 19022 if (!TCP_IS_DETACHED(tcp)) { 19023 if (zc_enabled) { 19024 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 19025 ZCVMSAFE); 19026 TCP_STAT(tcps, tcp_zcopy_on); 19027 } else { 19028 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 19029 ZCVMUNSAFE); 19030 TCP_STAT(tcps, tcp_zcopy_off); 19031 } 19032 } 19033 return (zc_enabled); 19034 } 19035 19036 static mblk_t * 19037 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 19038 { 19039 tcp_stack_t *tcps = tcp->tcp_tcps; 19040 19041 if (do_tcpzcopy == 2) 19042 return (bp); 19043 else if (tcp->tcp_snd_zcopy_on) { 19044 tcp->tcp_snd_zcopy_on = B_FALSE; 19045 if (!TCP_IS_DETACHED(tcp)) { 19046 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 19047 ZCVMUNSAFE); 19048 TCP_STAT(tcps, tcp_zcopy_disable); 19049 } 19050 } 19051 return (tcp_zcopy_backoff(tcp, bp, 0)); 19052 } 19053 19054 /* 19055 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 19056 * the original desballoca'ed segmapped mblk. 19057 */ 19058 static mblk_t * 19059 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 19060 { 19061 mblk_t *head, *tail, *nbp; 19062 tcp_stack_t *tcps = tcp->tcp_tcps; 19063 19064 if (IS_VMLOANED_MBLK(bp)) { 19065 TCP_STAT(tcps, tcp_zcopy_backoff); 19066 if ((head = copyb(bp)) == NULL) { 19067 /* fail to backoff; leave it for the next backoff */ 19068 tcp->tcp_xmit_zc_clean = B_FALSE; 19069 return (bp); 19070 } 19071 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19072 if (fix_xmitlist) 19073 tcp_zcopy_notify(tcp); 19074 else 19075 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19076 } 19077 nbp = bp->b_cont; 19078 if (fix_xmitlist) { 19079 head->b_prev = bp->b_prev; 19080 head->b_next = bp->b_next; 19081 if (tcp->tcp_xmit_tail == bp) 19082 tcp->tcp_xmit_tail = head; 19083 } 19084 bp->b_next = NULL; 19085 bp->b_prev = NULL; 19086 freeb(bp); 19087 } else { 19088 head = bp; 19089 nbp = bp->b_cont; 19090 } 19091 tail = head; 19092 while (nbp) { 19093 if (IS_VMLOANED_MBLK(nbp)) { 19094 TCP_STAT(tcps, tcp_zcopy_backoff); 19095 if ((tail->b_cont = copyb(nbp)) == NULL) { 19096 tcp->tcp_xmit_zc_clean = B_FALSE; 19097 tail->b_cont = nbp; 19098 return (head); 19099 } 19100 tail = tail->b_cont; 19101 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19102 if (fix_xmitlist) 19103 tcp_zcopy_notify(tcp); 19104 else 19105 tail->b_datap->db_struioflag |= 19106 STRUIO_ZCNOTIFY; 19107 } 19108 bp = nbp; 19109 nbp = nbp->b_cont; 19110 if (fix_xmitlist) { 19111 tail->b_prev = bp->b_prev; 19112 tail->b_next = bp->b_next; 19113 if (tcp->tcp_xmit_tail == bp) 19114 tcp->tcp_xmit_tail = tail; 19115 } 19116 bp->b_next = NULL; 19117 bp->b_prev = NULL; 19118 freeb(bp); 19119 } else { 19120 tail->b_cont = nbp; 19121 tail = nbp; 19122 nbp = nbp->b_cont; 19123 } 19124 } 19125 if (fix_xmitlist) { 19126 tcp->tcp_xmit_last = tail; 19127 tcp->tcp_xmit_zc_clean = B_TRUE; 19128 } 19129 return (head); 19130 } 19131 19132 static void 19133 tcp_zcopy_notify(tcp_t *tcp) 19134 { 19135 struct stdata *stp; 19136 conn_t *connp; 19137 19138 if (tcp->tcp_detached) 19139 return; 19140 connp = tcp->tcp_connp; 19141 if (IPCL_IS_NONSTR(connp)) { 19142 (*connp->conn_upcalls->su_zcopy_notify) 19143 (connp->conn_upper_handle); 19144 return; 19145 } 19146 stp = STREAM(tcp->tcp_rq); 19147 mutex_enter(&stp->sd_lock); 19148 stp->sd_flag |= STZCNOTIFY; 19149 cv_broadcast(&stp->sd_zcopy_wait); 19150 mutex_exit(&stp->sd_lock); 19151 } 19152 19153 static boolean_t 19154 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19155 { 19156 ire_t *ire; 19157 conn_t *connp = tcp->tcp_connp; 19158 tcp_stack_t *tcps = tcp->tcp_tcps; 19159 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19160 19161 mutex_enter(&connp->conn_lock); 19162 ire = connp->conn_ire_cache; 19163 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19164 19165 if ((ire != NULL) && 19166 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19167 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19168 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19169 IRE_REFHOLD(ire); 19170 mutex_exit(&connp->conn_lock); 19171 } else { 19172 boolean_t cached = B_FALSE; 19173 ts_label_t *tsl; 19174 19175 /* force a recheck later on */ 19176 tcp->tcp_ire_ill_check_done = B_FALSE; 19177 19178 TCP_DBGSTAT(tcps, tcp_ire_null1); 19179 connp->conn_ire_cache = NULL; 19180 mutex_exit(&connp->conn_lock); 19181 19182 if (ire != NULL) 19183 IRE_REFRELE_NOTR(ire); 19184 19185 tsl = crgetlabel(CONN_CRED(connp)); 19186 ire = (dst ? 19187 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19188 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19189 connp->conn_zoneid, tsl, ipst)); 19190 19191 if (ire == NULL) { 19192 TCP_STAT(tcps, tcp_ire_null); 19193 return (B_FALSE); 19194 } 19195 19196 IRE_REFHOLD_NOTR(ire); 19197 19198 mutex_enter(&connp->conn_lock); 19199 if (CONN_CACHE_IRE(connp)) { 19200 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19201 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19202 TCP_CHECK_IREINFO(tcp, ire); 19203 connp->conn_ire_cache = ire; 19204 cached = B_TRUE; 19205 } 19206 rw_exit(&ire->ire_bucket->irb_lock); 19207 } 19208 mutex_exit(&connp->conn_lock); 19209 19210 /* 19211 * We can continue to use the ire but since it was 19212 * not cached, we should drop the extra reference. 19213 */ 19214 if (!cached) 19215 IRE_REFRELE_NOTR(ire); 19216 19217 /* 19218 * Rampart note: no need to select a new label here, since 19219 * labels are not allowed to change during the life of a TCP 19220 * connection. 19221 */ 19222 } 19223 19224 *irep = ire; 19225 19226 return (B_TRUE); 19227 } 19228 19229 /* 19230 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19231 * 19232 * 0 = success; 19233 * 1 = failed to find ire and ill. 19234 */ 19235 static boolean_t 19236 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19237 { 19238 ipha_t *ipha; 19239 ipaddr_t dst; 19240 ire_t *ire; 19241 ill_t *ill; 19242 conn_t *connp = tcp->tcp_connp; 19243 mblk_t *ire_fp_mp; 19244 tcp_stack_t *tcps = tcp->tcp_tcps; 19245 19246 if (mp != NULL) 19247 ipha = (ipha_t *)mp->b_rptr; 19248 else 19249 ipha = tcp->tcp_ipha; 19250 dst = ipha->ipha_dst; 19251 19252 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19253 return (B_FALSE); 19254 19255 if ((ire->ire_flags & RTF_MULTIRT) || 19256 (ire->ire_stq == NULL) || 19257 (ire->ire_nce == NULL) || 19258 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19259 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19260 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19261 TCP_STAT(tcps, tcp_ip_ire_send); 19262 IRE_REFRELE(ire); 19263 return (B_FALSE); 19264 } 19265 19266 ill = ire_to_ill(ire); 19267 if (connp->conn_outgoing_ill != NULL) { 19268 ill_t *conn_outgoing_ill = NULL; 19269 /* 19270 * Choose a good ill in the group to send the packets on. 19271 */ 19272 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19273 ill = ire_to_ill(ire); 19274 } 19275 ASSERT(ill != NULL); 19276 19277 if (!tcp->tcp_ire_ill_check_done) { 19278 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19279 tcp->tcp_ire_ill_check_done = B_TRUE; 19280 } 19281 19282 *irep = ire; 19283 *illp = ill; 19284 19285 return (B_TRUE); 19286 } 19287 19288 static void 19289 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19290 { 19291 ipha_t *ipha; 19292 ipaddr_t src; 19293 ipaddr_t dst; 19294 uint32_t cksum; 19295 ire_t *ire; 19296 uint16_t *up; 19297 ill_t *ill; 19298 conn_t *connp = tcp->tcp_connp; 19299 uint32_t hcksum_txflags = 0; 19300 mblk_t *ire_fp_mp; 19301 uint_t ire_fp_mp_len; 19302 tcp_stack_t *tcps = tcp->tcp_tcps; 19303 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19304 19305 ASSERT(DB_TYPE(mp) == M_DATA); 19306 19307 if (is_system_labeled() && DB_CRED(mp) == NULL) 19308 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp)); 19309 19310 ipha = (ipha_t *)mp->b_rptr; 19311 src = ipha->ipha_src; 19312 dst = ipha->ipha_dst; 19313 19314 ASSERT(q != NULL); 19315 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19316 19317 /* 19318 * Drop off fast path for IPv6 and also if options are present or 19319 * we need to resolve a TS label. 19320 */ 19321 if (tcp->tcp_ipversion != IPV4_VERSION || 19322 !IPCL_IS_CONNECTED(connp) || 19323 !CONN_IS_LSO_MD_FASTPATH(connp) || 19324 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19325 !connp->conn_ulp_labeled || 19326 ipha->ipha_ident == IP_HDR_INCLUDED || 19327 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19328 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19329 if (tcp->tcp_snd_zcopy_aware) 19330 mp = tcp_zcopy_disable(tcp, mp); 19331 TCP_STAT(tcps, tcp_ip_send); 19332 CALL_IP_WPUT(connp, q, mp); 19333 return; 19334 } 19335 19336 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19337 if (tcp->tcp_snd_zcopy_aware) 19338 mp = tcp_zcopy_backoff(tcp, mp, 0); 19339 CALL_IP_WPUT(connp, q, mp); 19340 return; 19341 } 19342 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19343 ire_fp_mp_len = MBLKL(ire_fp_mp); 19344 19345 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19346 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19347 #ifndef _BIG_ENDIAN 19348 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19349 #endif 19350 19351 /* 19352 * Check to see if we need to re-enable LSO/MDT for this connection 19353 * because it was previously disabled due to changes in the ill; 19354 * note that by doing it here, this re-enabling only applies when 19355 * the packet is not dispatched through CALL_IP_WPUT(). 19356 * 19357 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19358 * case, since that's how we ended up here. For IPv6, we do the 19359 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19360 */ 19361 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19362 /* 19363 * Restore LSO for this connection, so that next time around 19364 * it is eligible to go through tcp_lsosend() path again. 19365 */ 19366 TCP_STAT(tcps, tcp_lso_enabled); 19367 tcp->tcp_lso = B_TRUE; 19368 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19369 "interface %s\n", (void *)connp, ill->ill_name)); 19370 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19371 /* 19372 * Restore MDT for this connection, so that next time around 19373 * it is eligible to go through tcp_multisend() path again. 19374 */ 19375 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19376 tcp->tcp_mdt = B_TRUE; 19377 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19378 "interface %s\n", (void *)connp, ill->ill_name)); 19379 } 19380 19381 if (tcp->tcp_snd_zcopy_aware) { 19382 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19383 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19384 mp = tcp_zcopy_disable(tcp, mp); 19385 /* 19386 * we shouldn't need to reset ipha as the mp containing 19387 * ipha should never be a zero-copy mp. 19388 */ 19389 } 19390 19391 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19392 ASSERT(ill->ill_hcksum_capab != NULL); 19393 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19394 } 19395 19396 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19397 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19398 19399 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19400 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19401 19402 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19403 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19404 19405 /* Software checksum? */ 19406 if (DB_CKSUMFLAGS(mp) == 0) { 19407 TCP_STAT(tcps, tcp_out_sw_cksum); 19408 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19409 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19410 } 19411 19412 /* Calculate IP header checksum if hardware isn't capable */ 19413 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19414 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19415 ((uint16_t *)ipha)[4]); 19416 } 19417 19418 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19419 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19420 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19421 19422 UPDATE_OB_PKT_COUNT(ire); 19423 ire->ire_last_used_time = lbolt; 19424 19425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19426 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19427 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19428 ntohs(ipha->ipha_length)); 19429 19430 DTRACE_PROBE4(ip4__physical__out__start, 19431 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 19432 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19433 ipst->ips_ipv4firewall_physical_out, 19434 NULL, ill, ipha, mp, mp, 0, ipst); 19435 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19436 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 19437 19438 if (mp != NULL) { 19439 if (ipst->ips_ipobs_enabled) { 19440 zoneid_t szone; 19441 19442 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 19443 ipst, ALL_ZONES); 19444 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 19445 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 19446 } 19447 19448 ILL_SEND_TX(ill, ire, connp, mp, 0); 19449 } 19450 19451 IRE_REFRELE(ire); 19452 } 19453 19454 /* 19455 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19456 * if the receiver shrinks the window, i.e. moves the right window to the 19457 * left, the we should not send new data, but should retransmit normally the 19458 * old unacked data between suna and suna + swnd. We might has sent data 19459 * that is now outside the new window, pretend that we didn't send it. 19460 */ 19461 static void 19462 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19463 { 19464 uint32_t snxt = tcp->tcp_snxt; 19465 mblk_t *xmit_tail; 19466 int32_t offset; 19467 19468 ASSERT(shrunk_count > 0); 19469 19470 /* Pretend we didn't send the data outside the window */ 19471 snxt -= shrunk_count; 19472 19473 /* Get the mblk and the offset in it per the shrunk window */ 19474 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19475 19476 ASSERT(xmit_tail != NULL); 19477 19478 /* Reset all the values per the now shrunk window */ 19479 tcp->tcp_snxt = snxt; 19480 tcp->tcp_xmit_tail = xmit_tail; 19481 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19482 offset; 19483 tcp->tcp_unsent += shrunk_count; 19484 19485 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19486 /* 19487 * Make sure the timer is running so that we will probe a zero 19488 * window. 19489 */ 19490 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19491 } 19492 19493 19494 /* 19495 * The TCP normal data output path. 19496 * NOTE: the logic of the fast path is duplicated from this function. 19497 */ 19498 static void 19499 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19500 { 19501 int len; 19502 mblk_t *local_time; 19503 mblk_t *mp1; 19504 uint32_t snxt; 19505 int tail_unsent; 19506 int tcpstate; 19507 int usable = 0; 19508 mblk_t *xmit_tail; 19509 queue_t *q = tcp->tcp_wq; 19510 int32_t mss; 19511 int32_t num_sack_blk = 0; 19512 int32_t tcp_hdr_len; 19513 int32_t tcp_tcp_hdr_len; 19514 int mdt_thres; 19515 int rc; 19516 tcp_stack_t *tcps = tcp->tcp_tcps; 19517 ip_stack_t *ipst; 19518 19519 tcpstate = tcp->tcp_state; 19520 if (mp == NULL) { 19521 /* 19522 * tcp_wput_data() with NULL mp should only be called when 19523 * there is unsent data. 19524 */ 19525 ASSERT(tcp->tcp_unsent > 0); 19526 /* Really tacky... but we need this for detached closes. */ 19527 len = tcp->tcp_unsent; 19528 goto data_null; 19529 } 19530 19531 #if CCS_STATS 19532 wrw_stats.tot.count++; 19533 wrw_stats.tot.bytes += msgdsize(mp); 19534 #endif 19535 ASSERT(mp->b_datap->db_type == M_DATA); 19536 /* 19537 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19538 * or before a connection attempt has begun. 19539 */ 19540 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19541 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19542 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19543 #ifdef DEBUG 19544 cmn_err(CE_WARN, 19545 "tcp_wput_data: data after ordrel, %s", 19546 tcp_display(tcp, NULL, 19547 DISP_ADDR_AND_PORT)); 19548 #else 19549 if (tcp->tcp_debug) { 19550 (void) strlog(TCP_MOD_ID, 0, 1, 19551 SL_TRACE|SL_ERROR, 19552 "tcp_wput_data: data after ordrel, %s\n", 19553 tcp_display(tcp, NULL, 19554 DISP_ADDR_AND_PORT)); 19555 } 19556 #endif /* DEBUG */ 19557 } 19558 if (tcp->tcp_snd_zcopy_aware && 19559 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19560 tcp_zcopy_notify(tcp); 19561 freemsg(mp); 19562 mutex_enter(&tcp->tcp_non_sq_lock); 19563 if (tcp->tcp_flow_stopped && 19564 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19565 tcp_clrqfull(tcp); 19566 } 19567 mutex_exit(&tcp->tcp_non_sq_lock); 19568 return; 19569 } 19570 19571 /* Strip empties */ 19572 for (;;) { 19573 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19574 (uintptr_t)INT_MAX); 19575 len = (int)(mp->b_wptr - mp->b_rptr); 19576 if (len > 0) 19577 break; 19578 mp1 = mp; 19579 mp = mp->b_cont; 19580 freeb(mp1); 19581 if (!mp) { 19582 return; 19583 } 19584 } 19585 19586 /* If we are the first on the list ... */ 19587 if (tcp->tcp_xmit_head == NULL) { 19588 tcp->tcp_xmit_head = mp; 19589 tcp->tcp_xmit_tail = mp; 19590 tcp->tcp_xmit_tail_unsent = len; 19591 } else { 19592 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19593 struct datab *dp; 19594 19595 mp1 = tcp->tcp_xmit_last; 19596 if (len < tcp_tx_pull_len && 19597 (dp = mp1->b_datap)->db_ref == 1 && 19598 dp->db_lim - mp1->b_wptr >= len) { 19599 ASSERT(len > 0); 19600 ASSERT(!mp1->b_cont); 19601 if (len == 1) { 19602 *mp1->b_wptr++ = *mp->b_rptr; 19603 } else { 19604 bcopy(mp->b_rptr, mp1->b_wptr, len); 19605 mp1->b_wptr += len; 19606 } 19607 if (mp1 == tcp->tcp_xmit_tail) 19608 tcp->tcp_xmit_tail_unsent += len; 19609 mp1->b_cont = mp->b_cont; 19610 if (tcp->tcp_snd_zcopy_aware && 19611 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19612 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19613 freeb(mp); 19614 mp = mp1; 19615 } else { 19616 tcp->tcp_xmit_last->b_cont = mp; 19617 } 19618 len += tcp->tcp_unsent; 19619 } 19620 19621 /* Tack on however many more positive length mblks we have */ 19622 if ((mp1 = mp->b_cont) != NULL) { 19623 do { 19624 int tlen; 19625 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19626 (uintptr_t)INT_MAX); 19627 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19628 if (tlen <= 0) { 19629 mp->b_cont = mp1->b_cont; 19630 freeb(mp1); 19631 } else { 19632 len += tlen; 19633 mp = mp1; 19634 } 19635 } while ((mp1 = mp->b_cont) != NULL); 19636 } 19637 tcp->tcp_xmit_last = mp; 19638 tcp->tcp_unsent = len; 19639 19640 if (urgent) 19641 usable = 1; 19642 19643 data_null: 19644 snxt = tcp->tcp_snxt; 19645 xmit_tail = tcp->tcp_xmit_tail; 19646 tail_unsent = tcp->tcp_xmit_tail_unsent; 19647 19648 /* 19649 * Note that tcp_mss has been adjusted to take into account the 19650 * timestamp option if applicable. Because SACK options do not 19651 * appear in every TCP segments and they are of variable lengths, 19652 * they cannot be included in tcp_mss. Thus we need to calculate 19653 * the actual segment length when we need to send a segment which 19654 * includes SACK options. 19655 */ 19656 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19657 int32_t opt_len; 19658 19659 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19660 tcp->tcp_num_sack_blk); 19661 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19662 2 + TCPOPT_HEADER_LEN; 19663 mss = tcp->tcp_mss - opt_len; 19664 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19665 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19666 } else { 19667 mss = tcp->tcp_mss; 19668 tcp_hdr_len = tcp->tcp_hdr_len; 19669 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19670 } 19671 19672 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19673 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19674 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19675 } 19676 if (tcpstate == TCPS_SYN_RCVD) { 19677 /* 19678 * The three-way connection establishment handshake is not 19679 * complete yet. We want to queue the data for transmission 19680 * after entering ESTABLISHED state (RFC793). A jump to 19681 * "done" label effectively leaves data on the queue. 19682 */ 19683 goto done; 19684 } else { 19685 int usable_r; 19686 19687 /* 19688 * In the special case when cwnd is zero, which can only 19689 * happen if the connection is ECN capable, return now. 19690 * New segments is sent using tcp_timer(). The timer 19691 * is set in tcp_rput_data(). 19692 */ 19693 if (tcp->tcp_cwnd == 0) { 19694 /* 19695 * Note that tcp_cwnd is 0 before 3-way handshake is 19696 * finished. 19697 */ 19698 ASSERT(tcp->tcp_ecn_ok || 19699 tcp->tcp_state < TCPS_ESTABLISHED); 19700 return; 19701 } 19702 19703 /* NOTE: trouble if xmitting while SYN not acked? */ 19704 usable_r = snxt - tcp->tcp_suna; 19705 usable_r = tcp->tcp_swnd - usable_r; 19706 19707 /* 19708 * Check if the receiver has shrunk the window. If 19709 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19710 * cannot be set as there is unsent data, so FIN cannot 19711 * be sent out. Otherwise, we need to take into account 19712 * of FIN as it consumes an "invisible" sequence number. 19713 */ 19714 ASSERT(tcp->tcp_fin_sent == 0); 19715 if (usable_r < 0) { 19716 /* 19717 * The receiver has shrunk the window and we have sent 19718 * -usable_r date beyond the window, re-adjust. 19719 * 19720 * If TCP window scaling is enabled, there can be 19721 * round down error as the advertised receive window 19722 * is actually right shifted n bits. This means that 19723 * the lower n bits info is wiped out. It will look 19724 * like the window is shrunk. Do a check here to 19725 * see if the shrunk amount is actually within the 19726 * error in window calculation. If it is, just 19727 * return. Note that this check is inside the 19728 * shrunk window check. This makes sure that even 19729 * though tcp_process_shrunk_swnd() is not called, 19730 * we will stop further processing. 19731 */ 19732 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19733 tcp_process_shrunk_swnd(tcp, -usable_r); 19734 } 19735 return; 19736 } 19737 19738 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19739 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19740 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19741 19742 /* usable = MIN(usable, unsent) */ 19743 if (usable_r > len) 19744 usable_r = len; 19745 19746 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19747 if (usable_r > 0) { 19748 usable = usable_r; 19749 } else { 19750 /* Bypass all other unnecessary processing. */ 19751 goto done; 19752 } 19753 } 19754 19755 local_time = (mblk_t *)lbolt; 19756 19757 /* 19758 * "Our" Nagle Algorithm. This is not the same as in the old 19759 * BSD. This is more in line with the true intent of Nagle. 19760 * 19761 * The conditions are: 19762 * 1. The amount of unsent data (or amount of data which can be 19763 * sent, whichever is smaller) is less than Nagle limit. 19764 * 2. The last sent size is also less than Nagle limit. 19765 * 3. There is unack'ed data. 19766 * 4. Urgent pointer is not set. Send urgent data ignoring the 19767 * Nagle algorithm. This reduces the probability that urgent 19768 * bytes get "merged" together. 19769 * 5. The app has not closed the connection. This eliminates the 19770 * wait time of the receiving side waiting for the last piece of 19771 * (small) data. 19772 * 19773 * If all are satisified, exit without sending anything. Note 19774 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19775 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19776 * 4095). 19777 */ 19778 if (usable < (int)tcp->tcp_naglim && 19779 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19780 snxt != tcp->tcp_suna && 19781 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19782 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19783 goto done; 19784 } 19785 19786 if (tcp->tcp_cork) { 19787 /* 19788 * if the tcp->tcp_cork option is set, then we have to force 19789 * TCP not to send partial segment (smaller than MSS bytes). 19790 * We are calculating the usable now based on full mss and 19791 * will save the rest of remaining data for later. 19792 */ 19793 if (usable < mss) 19794 goto done; 19795 usable = (usable / mss) * mss; 19796 } 19797 19798 /* Update the latest receive window size in TCP header. */ 19799 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19800 tcp->tcp_tcph->th_win); 19801 19802 /* 19803 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19804 * 19805 * 1. Simple TCP/IP{v4,v6} (no options). 19806 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19807 * 3. If the TCP connection is in ESTABLISHED state. 19808 * 4. The TCP is not detached. 19809 * 19810 * If any of the above conditions have changed during the 19811 * connection, stop using LSO/MDT and restore the stream head 19812 * parameters accordingly. 19813 */ 19814 ipst = tcps->tcps_netstack->netstack_ip; 19815 19816 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19817 ((tcp->tcp_ipversion == IPV4_VERSION && 19818 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19819 (tcp->tcp_ipversion == IPV6_VERSION && 19820 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19821 tcp->tcp_state != TCPS_ESTABLISHED || 19822 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19823 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19824 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19825 if (tcp->tcp_lso) { 19826 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19827 tcp->tcp_lso = B_FALSE; 19828 } else { 19829 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19830 tcp->tcp_mdt = B_FALSE; 19831 } 19832 19833 /* Anything other than detached is considered pathological */ 19834 if (!TCP_IS_DETACHED(tcp)) { 19835 if (tcp->tcp_lso) 19836 TCP_STAT(tcps, tcp_lso_disabled); 19837 else 19838 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19839 (void) tcp_maxpsz_set(tcp, B_TRUE); 19840 } 19841 } 19842 19843 /* Use MDT if sendable amount is greater than the threshold */ 19844 if (tcp->tcp_mdt && 19845 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19846 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19847 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19848 (tcp->tcp_valid_bits == 0 || 19849 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19850 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19851 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19852 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19853 local_time, mdt_thres); 19854 } else { 19855 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19856 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19857 local_time, INT_MAX); 19858 } 19859 19860 /* Pretend that all we were trying to send really got sent */ 19861 if (rc < 0 && tail_unsent < 0) { 19862 do { 19863 xmit_tail = xmit_tail->b_cont; 19864 xmit_tail->b_prev = local_time; 19865 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19866 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19867 tail_unsent += (int)(xmit_tail->b_wptr - 19868 xmit_tail->b_rptr); 19869 } while (tail_unsent < 0); 19870 } 19871 done:; 19872 tcp->tcp_xmit_tail = xmit_tail; 19873 tcp->tcp_xmit_tail_unsent = tail_unsent; 19874 len = tcp->tcp_snxt - snxt; 19875 if (len) { 19876 /* 19877 * If new data was sent, need to update the notsack 19878 * list, which is, afterall, data blocks that have 19879 * not been sack'ed by the receiver. New data is 19880 * not sack'ed. 19881 */ 19882 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19883 /* len is a negative value. */ 19884 tcp->tcp_pipe -= len; 19885 tcp_notsack_update(&(tcp->tcp_notsack_list), 19886 tcp->tcp_snxt, snxt, 19887 &(tcp->tcp_num_notsack_blk), 19888 &(tcp->tcp_cnt_notsack_list)); 19889 } 19890 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19891 tcp->tcp_rack = tcp->tcp_rnxt; 19892 tcp->tcp_rack_cnt = 0; 19893 if ((snxt + len) == tcp->tcp_suna) { 19894 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19895 } 19896 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19897 /* 19898 * Didn't send anything. Make sure the timer is running 19899 * so that we will probe a zero window. 19900 */ 19901 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19902 } 19903 /* Note that len is the amount we just sent but with a negative sign */ 19904 tcp->tcp_unsent += len; 19905 mutex_enter(&tcp->tcp_non_sq_lock); 19906 if (tcp->tcp_flow_stopped) { 19907 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19908 tcp_clrqfull(tcp); 19909 } 19910 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19911 tcp_setqfull(tcp); 19912 } 19913 mutex_exit(&tcp->tcp_non_sq_lock); 19914 } 19915 19916 /* 19917 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19918 * outgoing TCP header with the template header, as well as other 19919 * options such as time-stamp, ECN and/or SACK. 19920 */ 19921 static void 19922 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19923 { 19924 tcph_t *tcp_tmpl, *tcp_h; 19925 uint32_t *dst, *src; 19926 int hdrlen; 19927 19928 ASSERT(OK_32PTR(rptr)); 19929 19930 /* Template header */ 19931 tcp_tmpl = tcp->tcp_tcph; 19932 19933 /* Header of outgoing packet */ 19934 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19935 19936 /* dst and src are opaque 32-bit fields, used for copying */ 19937 dst = (uint32_t *)rptr; 19938 src = (uint32_t *)tcp->tcp_iphc; 19939 hdrlen = tcp->tcp_hdr_len; 19940 19941 /* Fill time-stamp option if needed */ 19942 if (tcp->tcp_snd_ts_ok) { 19943 U32_TO_BE32((uint32_t)now, 19944 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19945 U32_TO_BE32(tcp->tcp_ts_recent, 19946 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19947 } else { 19948 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19949 } 19950 19951 /* 19952 * Copy the template header; is this really more efficient than 19953 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19954 * but perhaps not for other scenarios. 19955 */ 19956 dst[0] = src[0]; 19957 dst[1] = src[1]; 19958 dst[2] = src[2]; 19959 dst[3] = src[3]; 19960 dst[4] = src[4]; 19961 dst[5] = src[5]; 19962 dst[6] = src[6]; 19963 dst[7] = src[7]; 19964 dst[8] = src[8]; 19965 dst[9] = src[9]; 19966 if (hdrlen -= 40) { 19967 hdrlen >>= 2; 19968 dst += 10; 19969 src += 10; 19970 do { 19971 *dst++ = *src++; 19972 } while (--hdrlen); 19973 } 19974 19975 /* 19976 * Set the ECN info in the TCP header if it is not a zero 19977 * window probe. Zero window probe is only sent in 19978 * tcp_wput_data() and tcp_timer(). 19979 */ 19980 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19981 SET_ECT(tcp, rptr); 19982 19983 if (tcp->tcp_ecn_echo_on) 19984 tcp_h->th_flags[0] |= TH_ECE; 19985 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19986 tcp_h->th_flags[0] |= TH_CWR; 19987 tcp->tcp_ecn_cwr_sent = B_TRUE; 19988 } 19989 } 19990 19991 /* Fill in SACK options */ 19992 if (num_sack_blk > 0) { 19993 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19994 sack_blk_t *tmp; 19995 int32_t i; 19996 19997 wptr[0] = TCPOPT_NOP; 19998 wptr[1] = TCPOPT_NOP; 19999 wptr[2] = TCPOPT_SACK; 20000 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 20001 sizeof (sack_blk_t); 20002 wptr += TCPOPT_REAL_SACK_LEN; 20003 20004 tmp = tcp->tcp_sack_list; 20005 for (i = 0; i < num_sack_blk; i++) { 20006 U32_TO_BE32(tmp[i].begin, wptr); 20007 wptr += sizeof (tcp_seq); 20008 U32_TO_BE32(tmp[i].end, wptr); 20009 wptr += sizeof (tcp_seq); 20010 } 20011 tcp_h->th_offset_and_rsrvd[0] += 20012 ((num_sack_blk * 2 + 1) << 4); 20013 } 20014 } 20015 20016 /* 20017 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 20018 * the destination address and SAP attribute, and if necessary, the 20019 * hardware checksum offload attribute to a Multidata message. 20020 */ 20021 static int 20022 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 20023 const uint32_t start, const uint32_t stuff, const uint32_t end, 20024 const uint32_t flags, tcp_stack_t *tcps) 20025 { 20026 /* Add global destination address & SAP attribute */ 20027 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 20028 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 20029 "destination address+SAP\n")); 20030 20031 if (dlmp != NULL) 20032 TCP_STAT(tcps, tcp_mdt_allocfail); 20033 return (-1); 20034 } 20035 20036 /* Add global hwcksum attribute */ 20037 if (hwcksum && 20038 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 20039 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 20040 "checksum attribute\n")); 20041 20042 TCP_STAT(tcps, tcp_mdt_allocfail); 20043 return (-1); 20044 } 20045 20046 return (0); 20047 } 20048 20049 /* 20050 * Smaller and private version of pdescinfo_t used specifically for TCP, 20051 * which allows for only two payload spans per packet. 20052 */ 20053 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 20054 20055 /* 20056 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 20057 * scheme, and returns one the following: 20058 * 20059 * -1 = failed allocation. 20060 * 0 = success; burst count reached, or usable send window is too small, 20061 * and that we'd rather wait until later before sending again. 20062 */ 20063 static int 20064 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20065 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20066 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20067 const int mdt_thres) 20068 { 20069 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 20070 multidata_t *mmd; 20071 uint_t obsegs, obbytes, hdr_frag_sz; 20072 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 20073 int num_burst_seg, max_pld; 20074 pdesc_t *pkt; 20075 tcp_pdescinfo_t tcp_pkt_info; 20076 pdescinfo_t *pkt_info; 20077 int pbuf_idx, pbuf_idx_nxt; 20078 int seg_len, len, spill, af; 20079 boolean_t add_buffer, zcopy, clusterwide; 20080 boolean_t rconfirm = B_FALSE; 20081 boolean_t done = B_FALSE; 20082 uint32_t cksum; 20083 uint32_t hwcksum_flags; 20084 ire_t *ire = NULL; 20085 ill_t *ill; 20086 ipha_t *ipha; 20087 ip6_t *ip6h; 20088 ipaddr_t src, dst; 20089 ill_zerocopy_capab_t *zc_cap = NULL; 20090 uint16_t *up; 20091 int err; 20092 conn_t *connp; 20093 tcp_stack_t *tcps = tcp->tcp_tcps; 20094 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20095 int usable_mmd, tail_unsent_mmd; 20096 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 20097 mblk_t *xmit_tail_mmd; 20098 netstackid_t stack_id; 20099 20100 #ifdef _BIG_ENDIAN 20101 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 20102 #else 20103 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 20104 #endif 20105 20106 #define PREP_NEW_MULTIDATA() { \ 20107 mmd = NULL; \ 20108 md_mp = md_hbuf = NULL; \ 20109 cur_hdr_off = 0; \ 20110 max_pld = tcp->tcp_mdt_max_pld; \ 20111 pbuf_idx = pbuf_idx_nxt = -1; \ 20112 add_buffer = B_TRUE; \ 20113 zcopy = B_FALSE; \ 20114 } 20115 20116 #define PREP_NEW_PBUF() { \ 20117 md_pbuf = md_pbuf_nxt = NULL; \ 20118 pbuf_idx = pbuf_idx_nxt = -1; \ 20119 cur_pld_off = 0; \ 20120 first_snxt = *snxt; \ 20121 ASSERT(*tail_unsent > 0); \ 20122 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20123 } 20124 20125 ASSERT(mdt_thres >= mss); 20126 ASSERT(*usable > 0 && *usable > mdt_thres); 20127 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20128 ASSERT(!TCP_IS_DETACHED(tcp)); 20129 ASSERT(tcp->tcp_valid_bits == 0 || 20130 tcp->tcp_valid_bits == TCP_FSS_VALID); 20131 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20132 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20133 (tcp->tcp_ipversion == IPV6_VERSION && 20134 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20135 20136 connp = tcp->tcp_connp; 20137 ASSERT(connp != NULL); 20138 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20139 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20140 20141 stack_id = connp->conn_netstack->netstack_stackid; 20142 20143 usable_mmd = tail_unsent_mmd = 0; 20144 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20145 xmit_tail_mmd = NULL; 20146 /* 20147 * Note that tcp will only declare at most 2 payload spans per 20148 * packet, which is much lower than the maximum allowable number 20149 * of packet spans per Multidata. For this reason, we use the 20150 * privately declared and smaller descriptor info structure, in 20151 * order to save some stack space. 20152 */ 20153 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20154 20155 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20156 if (af == AF_INET) { 20157 dst = tcp->tcp_ipha->ipha_dst; 20158 src = tcp->tcp_ipha->ipha_src; 20159 ASSERT(!CLASSD(dst)); 20160 } 20161 ASSERT(af == AF_INET || 20162 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20163 20164 obsegs = obbytes = 0; 20165 num_burst_seg = tcp->tcp_snd_burst; 20166 md_mp_head = NULL; 20167 PREP_NEW_MULTIDATA(); 20168 20169 /* 20170 * Before we go on further, make sure there is an IRE that we can 20171 * use, and that the ILL supports MDT. Otherwise, there's no point 20172 * in proceeding any further, and we should just hand everything 20173 * off to the legacy path. 20174 */ 20175 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20176 goto legacy_send_no_md; 20177 20178 ASSERT(ire != NULL); 20179 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20180 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20181 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20182 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20183 /* 20184 * If we do support loopback for MDT (which requires modifications 20185 * to the receiving paths), the following assertions should go away, 20186 * and we would be sending the Multidata to loopback conn later on. 20187 */ 20188 ASSERT(!IRE_IS_LOCAL(ire)); 20189 ASSERT(ire->ire_stq != NULL); 20190 20191 ill = ire_to_ill(ire); 20192 ASSERT(ill != NULL); 20193 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20194 20195 if (!tcp->tcp_ire_ill_check_done) { 20196 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20197 tcp->tcp_ire_ill_check_done = B_TRUE; 20198 } 20199 20200 /* 20201 * If the underlying interface conditions have changed, or if the 20202 * new interface does not support MDT, go back to legacy path. 20203 */ 20204 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20205 /* don't go through this path anymore for this connection */ 20206 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20207 tcp->tcp_mdt = B_FALSE; 20208 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20209 "interface %s\n", (void *)connp, ill->ill_name)); 20210 /* IRE will be released prior to returning */ 20211 goto legacy_send_no_md; 20212 } 20213 20214 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20215 zc_cap = ill->ill_zerocopy_capab; 20216 20217 /* 20218 * Check if we can take tcp fast-path. Note that "incomplete" 20219 * ire's (where the link-layer for next hop is not resolved 20220 * or where the fast-path header in nce_fp_mp is not available 20221 * yet) are sent down the legacy (slow) path. 20222 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20223 */ 20224 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20225 /* IRE will be released prior to returning */ 20226 goto legacy_send_no_md; 20227 } 20228 20229 /* go to legacy path if interface doesn't support zerocopy */ 20230 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20231 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20232 /* IRE will be released prior to returning */ 20233 goto legacy_send_no_md; 20234 } 20235 20236 /* does the interface support hardware checksum offload? */ 20237 hwcksum_flags = 0; 20238 if (ILL_HCKSUM_CAPABLE(ill) && 20239 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20240 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20241 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20242 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20243 HCKSUM_IPHDRCKSUM) 20244 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20245 20246 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20247 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20248 hwcksum_flags |= HCK_FULLCKSUM; 20249 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20250 HCKSUM_INET_PARTIAL) 20251 hwcksum_flags |= HCK_PARTIALCKSUM; 20252 } 20253 20254 /* 20255 * Each header fragment consists of the leading extra space, 20256 * followed by the TCP/IP header, and the trailing extra space. 20257 * We make sure that each header fragment begins on a 32-bit 20258 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20259 * aligned in tcp_mdt_update). 20260 */ 20261 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20262 tcp->tcp_mdt_hdr_tail), 4); 20263 20264 /* are we starting from the beginning of data block? */ 20265 if (*tail_unsent == 0) { 20266 *xmit_tail = (*xmit_tail)->b_cont; 20267 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20268 *tail_unsent = (int)MBLKL(*xmit_tail); 20269 } 20270 20271 /* 20272 * Here we create one or more Multidata messages, each made up of 20273 * one header buffer and up to N payload buffers. This entire 20274 * operation is done within two loops: 20275 * 20276 * The outer loop mostly deals with creating the Multidata message, 20277 * as well as the header buffer that gets added to it. It also 20278 * links the Multidata messages together such that all of them can 20279 * be sent down to the lower layer in a single putnext call; this 20280 * linking behavior depends on the tcp_mdt_chain tunable. 20281 * 20282 * The inner loop takes an existing Multidata message, and adds 20283 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20284 * packetizes those buffers by filling up the corresponding header 20285 * buffer fragments with the proper IP and TCP headers, and by 20286 * describing the layout of each packet in the packet descriptors 20287 * that get added to the Multidata. 20288 */ 20289 do { 20290 /* 20291 * If usable send window is too small, or data blocks in 20292 * transmit list are smaller than our threshold (i.e. app 20293 * performs large writes followed by small ones), we hand 20294 * off the control over to the legacy path. Note that we'll 20295 * get back the control once it encounters a large block. 20296 */ 20297 if (*usable < mss || (*tail_unsent <= mdt_thres && 20298 (*xmit_tail)->b_cont != NULL && 20299 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20300 /* send down what we've got so far */ 20301 if (md_mp_head != NULL) { 20302 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20303 obsegs, obbytes, &rconfirm); 20304 } 20305 /* 20306 * Pass control over to tcp_send(), but tell it to 20307 * return to us once a large-size transmission is 20308 * possible. 20309 */ 20310 TCP_STAT(tcps, tcp_mdt_legacy_small); 20311 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20312 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20313 tail_unsent, xmit_tail, local_time, 20314 mdt_thres)) <= 0) { 20315 /* burst count reached, or alloc failed */ 20316 IRE_REFRELE(ire); 20317 return (err); 20318 } 20319 20320 /* tcp_send() may have sent everything, so check */ 20321 if (*usable <= 0) { 20322 IRE_REFRELE(ire); 20323 return (0); 20324 } 20325 20326 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20327 /* 20328 * We may have delivered the Multidata, so make sure 20329 * to re-initialize before the next round. 20330 */ 20331 md_mp_head = NULL; 20332 obsegs = obbytes = 0; 20333 num_burst_seg = tcp->tcp_snd_burst; 20334 PREP_NEW_MULTIDATA(); 20335 20336 /* are we starting from the beginning of data block? */ 20337 if (*tail_unsent == 0) { 20338 *xmit_tail = (*xmit_tail)->b_cont; 20339 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20340 (uintptr_t)INT_MAX); 20341 *tail_unsent = (int)MBLKL(*xmit_tail); 20342 } 20343 } 20344 /* 20345 * Record current values for parameters we may need to pass 20346 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20347 * each iteration of the outer loop (each multidata message 20348 * creation). If we have a failure in the inner loop, we send 20349 * any complete multidata messages we have before reverting 20350 * to using the traditional non-md path. 20351 */ 20352 snxt_mmd = *snxt; 20353 usable_mmd = *usable; 20354 xmit_tail_mmd = *xmit_tail; 20355 tail_unsent_mmd = *tail_unsent; 20356 obsegs_mmd = obsegs; 20357 obbytes_mmd = obbytes; 20358 20359 /* 20360 * max_pld limits the number of mblks in tcp's transmit 20361 * queue that can be added to a Multidata message. Once 20362 * this counter reaches zero, no more additional mblks 20363 * can be added to it. What happens afterwards depends 20364 * on whether or not we are set to chain the Multidata 20365 * messages. If we are to link them together, reset 20366 * max_pld to its original value (tcp_mdt_max_pld) and 20367 * prepare to create a new Multidata message which will 20368 * get linked to md_mp_head. Else, leave it alone and 20369 * let the inner loop break on its own. 20370 */ 20371 if (tcp_mdt_chain && max_pld == 0) 20372 PREP_NEW_MULTIDATA(); 20373 20374 /* adding a payload buffer; re-initialize values */ 20375 if (add_buffer) 20376 PREP_NEW_PBUF(); 20377 20378 /* 20379 * If we don't have a Multidata, either because we just 20380 * (re)entered this outer loop, or after we branched off 20381 * to tcp_send above, setup the Multidata and header 20382 * buffer to be used. 20383 */ 20384 if (md_mp == NULL) { 20385 int md_hbuflen; 20386 uint32_t start, stuff; 20387 20388 /* 20389 * Calculate Multidata header buffer size large enough 20390 * to hold all of the headers that can possibly be 20391 * sent at this moment. We'd rather over-estimate 20392 * the size than running out of space; this is okay 20393 * since this buffer is small anyway. 20394 */ 20395 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20396 20397 /* 20398 * Start and stuff offset for partial hardware 20399 * checksum offload; these are currently for IPv4. 20400 * For full checksum offload, they are set to zero. 20401 */ 20402 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20403 if (af == AF_INET) { 20404 start = IP_SIMPLE_HDR_LENGTH; 20405 stuff = IP_SIMPLE_HDR_LENGTH + 20406 TCP_CHECKSUM_OFFSET; 20407 } else { 20408 start = IPV6_HDR_LEN; 20409 stuff = IPV6_HDR_LEN + 20410 TCP_CHECKSUM_OFFSET; 20411 } 20412 } else { 20413 start = stuff = 0; 20414 } 20415 20416 /* 20417 * Create the header buffer, Multidata, as well as 20418 * any necessary attributes (destination address, 20419 * SAP and hardware checksum offload) that should 20420 * be associated with the Multidata message. 20421 */ 20422 ASSERT(cur_hdr_off == 0); 20423 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20424 ((md_hbuf->b_wptr += md_hbuflen), 20425 (mmd = mmd_alloc(md_hbuf, &md_mp, 20426 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20427 /* fastpath mblk */ 20428 ire->ire_nce->nce_res_mp, 20429 /* hardware checksum enabled */ 20430 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20431 /* hardware checksum offsets */ 20432 start, stuff, 0, 20433 /* hardware checksum flag */ 20434 hwcksum_flags, tcps) != 0)) { 20435 legacy_send: 20436 /* 20437 * We arrive here from a failure within the 20438 * inner (packetizer) loop or we fail one of 20439 * the conditionals above. We restore the 20440 * previously checkpointed values for: 20441 * xmit_tail 20442 * usable 20443 * tail_unsent 20444 * snxt 20445 * obbytes 20446 * obsegs 20447 * We should then be able to dispatch any 20448 * complete multidata before reverting to the 20449 * traditional path with consistent parameters 20450 * (the inner loop updates these as it 20451 * iterates). 20452 */ 20453 *xmit_tail = xmit_tail_mmd; 20454 *usable = usable_mmd; 20455 *tail_unsent = tail_unsent_mmd; 20456 *snxt = snxt_mmd; 20457 obbytes = obbytes_mmd; 20458 obsegs = obsegs_mmd; 20459 if (md_mp != NULL) { 20460 /* Unlink message from the chain */ 20461 if (md_mp_head != NULL) { 20462 err = (intptr_t)rmvb(md_mp_head, 20463 md_mp); 20464 /* 20465 * We can't assert that rmvb 20466 * did not return -1, since we 20467 * may get here before linkb 20468 * happens. We do, however, 20469 * check if we just removed the 20470 * only element in the list. 20471 */ 20472 if (err == 0) 20473 md_mp_head = NULL; 20474 } 20475 /* md_hbuf gets freed automatically */ 20476 TCP_STAT(tcps, tcp_mdt_discarded); 20477 freeb(md_mp); 20478 } else { 20479 /* Either allocb or mmd_alloc failed */ 20480 TCP_STAT(tcps, tcp_mdt_allocfail); 20481 if (md_hbuf != NULL) 20482 freeb(md_hbuf); 20483 } 20484 20485 /* send down what we've got so far */ 20486 if (md_mp_head != NULL) { 20487 tcp_multisend_data(tcp, ire, ill, 20488 md_mp_head, obsegs, obbytes, 20489 &rconfirm); 20490 } 20491 legacy_send_no_md: 20492 if (ire != NULL) 20493 IRE_REFRELE(ire); 20494 /* 20495 * Too bad; let the legacy path handle this. 20496 * We specify INT_MAX for the threshold, since 20497 * we gave up with the Multidata processings 20498 * and let the old path have it all. 20499 */ 20500 TCP_STAT(tcps, tcp_mdt_legacy_all); 20501 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20502 tcp_tcp_hdr_len, num_sack_blk, usable, 20503 snxt, tail_unsent, xmit_tail, local_time, 20504 INT_MAX)); 20505 } 20506 20507 /* link to any existing ones, if applicable */ 20508 TCP_STAT(tcps, tcp_mdt_allocd); 20509 if (md_mp_head == NULL) { 20510 md_mp_head = md_mp; 20511 } else if (tcp_mdt_chain) { 20512 TCP_STAT(tcps, tcp_mdt_linked); 20513 linkb(md_mp_head, md_mp); 20514 } 20515 } 20516 20517 ASSERT(md_mp_head != NULL); 20518 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20519 ASSERT(md_mp != NULL && mmd != NULL); 20520 ASSERT(md_hbuf != NULL); 20521 20522 /* 20523 * Packetize the transmittable portion of the data block; 20524 * each data block is essentially added to the Multidata 20525 * as a payload buffer. We also deal with adding more 20526 * than one payload buffers, which happens when the remaining 20527 * packetized portion of the current payload buffer is less 20528 * than MSS, while the next data block in transmit queue 20529 * has enough data to make up for one. This "spillover" 20530 * case essentially creates a split-packet, where portions 20531 * of the packet's payload fragments may span across two 20532 * virtually discontiguous address blocks. 20533 */ 20534 seg_len = mss; 20535 do { 20536 len = seg_len; 20537 20538 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20539 ipha = NULL; 20540 ip6h = NULL; 20541 20542 ASSERT(len > 0); 20543 ASSERT(max_pld >= 0); 20544 ASSERT(!add_buffer || cur_pld_off == 0); 20545 20546 /* 20547 * First time around for this payload buffer; note 20548 * in the case of a spillover, the following has 20549 * been done prior to adding the split-packet 20550 * descriptor to Multidata, and we don't want to 20551 * repeat the process. 20552 */ 20553 if (add_buffer) { 20554 ASSERT(mmd != NULL); 20555 ASSERT(md_pbuf == NULL); 20556 ASSERT(md_pbuf_nxt == NULL); 20557 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20558 20559 /* 20560 * Have we reached the limit? We'd get to 20561 * this case when we're not chaining the 20562 * Multidata messages together, and since 20563 * we're done, terminate this loop. 20564 */ 20565 if (max_pld == 0) 20566 break; /* done */ 20567 20568 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20569 TCP_STAT(tcps, tcp_mdt_allocfail); 20570 goto legacy_send; /* out_of_mem */ 20571 } 20572 20573 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20574 zc_cap != NULL) { 20575 if (!ip_md_zcopy_attr(mmd, NULL, 20576 zc_cap->ill_zerocopy_flags)) { 20577 freeb(md_pbuf); 20578 TCP_STAT(tcps, 20579 tcp_mdt_allocfail); 20580 /* out_of_mem */ 20581 goto legacy_send; 20582 } 20583 zcopy = B_TRUE; 20584 } 20585 20586 md_pbuf->b_rptr += base_pld_off; 20587 20588 /* 20589 * Add a payload buffer to the Multidata; this 20590 * operation must not fail, or otherwise our 20591 * logic in this routine is broken. There 20592 * is no memory allocation done by the 20593 * routine, so any returned failure simply 20594 * tells us that we've done something wrong. 20595 * 20596 * A failure tells us that either we're adding 20597 * the same payload buffer more than once, or 20598 * we're trying to add more buffers than 20599 * allowed (max_pld calculation is wrong). 20600 * None of the above cases should happen, and 20601 * we panic because either there's horrible 20602 * heap corruption, and/or programming mistake. 20603 */ 20604 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20605 if (pbuf_idx < 0) { 20606 cmn_err(CE_PANIC, "tcp_multisend: " 20607 "payload buffer logic error " 20608 "detected for tcp %p mmd %p " 20609 "pbuf %p (%d)\n", 20610 (void *)tcp, (void *)mmd, 20611 (void *)md_pbuf, pbuf_idx); 20612 } 20613 20614 ASSERT(max_pld > 0); 20615 --max_pld; 20616 add_buffer = B_FALSE; 20617 } 20618 20619 ASSERT(md_mp_head != NULL); 20620 ASSERT(md_pbuf != NULL); 20621 ASSERT(md_pbuf_nxt == NULL); 20622 ASSERT(pbuf_idx != -1); 20623 ASSERT(pbuf_idx_nxt == -1); 20624 ASSERT(*usable > 0); 20625 20626 /* 20627 * We spillover to the next payload buffer only 20628 * if all of the following is true: 20629 * 20630 * 1. There is not enough data on the current 20631 * payload buffer to make up `len', 20632 * 2. We are allowed to send `len', 20633 * 3. The next payload buffer length is large 20634 * enough to accomodate `spill'. 20635 */ 20636 if ((spill = len - *tail_unsent) > 0 && 20637 *usable >= len && 20638 MBLKL((*xmit_tail)->b_cont) >= spill && 20639 max_pld > 0) { 20640 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20641 if (md_pbuf_nxt == NULL) { 20642 TCP_STAT(tcps, tcp_mdt_allocfail); 20643 goto legacy_send; /* out_of_mem */ 20644 } 20645 20646 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20647 zc_cap != NULL) { 20648 if (!ip_md_zcopy_attr(mmd, NULL, 20649 zc_cap->ill_zerocopy_flags)) { 20650 freeb(md_pbuf_nxt); 20651 TCP_STAT(tcps, 20652 tcp_mdt_allocfail); 20653 /* out_of_mem */ 20654 goto legacy_send; 20655 } 20656 zcopy = B_TRUE; 20657 } 20658 20659 /* 20660 * See comments above on the first call to 20661 * mmd_addpldbuf for explanation on the panic. 20662 */ 20663 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20664 if (pbuf_idx_nxt < 0) { 20665 panic("tcp_multisend: " 20666 "next payload buffer logic error " 20667 "detected for tcp %p mmd %p " 20668 "pbuf %p (%d)\n", 20669 (void *)tcp, (void *)mmd, 20670 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20671 } 20672 20673 ASSERT(max_pld > 0); 20674 --max_pld; 20675 } else if (spill > 0) { 20676 /* 20677 * If there's a spillover, but the following 20678 * xmit_tail couldn't give us enough octets 20679 * to reach "len", then stop the current 20680 * Multidata creation and let the legacy 20681 * tcp_send() path take over. We don't want 20682 * to send the tiny segment as part of this 20683 * Multidata for performance reasons; instead, 20684 * we let the legacy path deal with grouping 20685 * it with the subsequent small mblks. 20686 */ 20687 if (*usable >= len && 20688 MBLKL((*xmit_tail)->b_cont) < spill) { 20689 max_pld = 0; 20690 break; /* done */ 20691 } 20692 20693 /* 20694 * We can't spillover, and we are near 20695 * the end of the current payload buffer, 20696 * so send what's left. 20697 */ 20698 ASSERT(*tail_unsent > 0); 20699 len = *tail_unsent; 20700 } 20701 20702 /* tail_unsent is negated if there is a spillover */ 20703 *tail_unsent -= len; 20704 *usable -= len; 20705 ASSERT(*usable >= 0); 20706 20707 if (*usable < mss) 20708 seg_len = *usable; 20709 /* 20710 * Sender SWS avoidance; see comments in tcp_send(); 20711 * everything else is the same, except that we only 20712 * do this here if there is no more data to be sent 20713 * following the current xmit_tail. We don't check 20714 * for 1-byte urgent data because we shouldn't get 20715 * here if TCP_URG_VALID is set. 20716 */ 20717 if (*usable > 0 && *usable < mss && 20718 ((md_pbuf_nxt == NULL && 20719 (*xmit_tail)->b_cont == NULL) || 20720 (md_pbuf_nxt != NULL && 20721 (*xmit_tail)->b_cont->b_cont == NULL)) && 20722 seg_len < (tcp->tcp_max_swnd >> 1) && 20723 (tcp->tcp_unsent - 20724 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20725 !tcp->tcp_zero_win_probe) { 20726 if ((*snxt + len) == tcp->tcp_snxt && 20727 (*snxt + len) == tcp->tcp_suna) { 20728 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20729 } 20730 done = B_TRUE; 20731 } 20732 20733 /* 20734 * Prime pump for IP's checksumming on our behalf; 20735 * include the adjustment for a source route if any. 20736 * Do this only for software/partial hardware checksum 20737 * offload, as this field gets zeroed out later for 20738 * the full hardware checksum offload case. 20739 */ 20740 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20741 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20742 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20743 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20744 } 20745 20746 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20747 *snxt += len; 20748 20749 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20750 /* 20751 * We set the PUSH bit only if TCP has no more buffered 20752 * data to be transmitted (or if sender SWS avoidance 20753 * takes place), as opposed to setting it for every 20754 * last packet in the burst. 20755 */ 20756 if (done || 20757 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20758 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20759 20760 /* 20761 * Set FIN bit if this is our last segment; snxt 20762 * already includes its length, and it will not 20763 * be adjusted after this point. 20764 */ 20765 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20766 *snxt == tcp->tcp_fss) { 20767 if (!tcp->tcp_fin_acked) { 20768 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20769 BUMP_MIB(&tcps->tcps_mib, 20770 tcpOutControl); 20771 } 20772 if (!tcp->tcp_fin_sent) { 20773 tcp->tcp_fin_sent = B_TRUE; 20774 /* 20775 * tcp state must be ESTABLISHED 20776 * in order for us to get here in 20777 * the first place. 20778 */ 20779 tcp->tcp_state = TCPS_FIN_WAIT_1; 20780 20781 /* 20782 * Upon returning from this routine, 20783 * tcp_wput_data() will set tcp_snxt 20784 * to be equal to snxt + tcp_fin_sent. 20785 * This is essentially the same as 20786 * setting it to tcp_fss + 1. 20787 */ 20788 } 20789 } 20790 20791 tcp->tcp_last_sent_len = (ushort_t)len; 20792 20793 len += tcp_hdr_len; 20794 if (tcp->tcp_ipversion == IPV4_VERSION) 20795 tcp->tcp_ipha->ipha_length = htons(len); 20796 else 20797 tcp->tcp_ip6h->ip6_plen = htons(len - 20798 ((char *)&tcp->tcp_ip6h[1] - 20799 tcp->tcp_iphc)); 20800 20801 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20802 20803 /* setup header fragment */ 20804 PDESC_HDR_ADD(pkt_info, 20805 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20806 tcp->tcp_mdt_hdr_head, /* head room */ 20807 tcp_hdr_len, /* len */ 20808 tcp->tcp_mdt_hdr_tail); /* tail room */ 20809 20810 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20811 hdr_frag_sz); 20812 ASSERT(MBLKIN(md_hbuf, 20813 (pkt_info->hdr_base - md_hbuf->b_rptr), 20814 PDESC_HDRSIZE(pkt_info))); 20815 20816 /* setup first payload fragment */ 20817 PDESC_PLD_INIT(pkt_info); 20818 PDESC_PLD_SPAN_ADD(pkt_info, 20819 pbuf_idx, /* index */ 20820 md_pbuf->b_rptr + cur_pld_off, /* start */ 20821 tcp->tcp_last_sent_len); /* len */ 20822 20823 /* create a split-packet in case of a spillover */ 20824 if (md_pbuf_nxt != NULL) { 20825 ASSERT(spill > 0); 20826 ASSERT(pbuf_idx_nxt > pbuf_idx); 20827 ASSERT(!add_buffer); 20828 20829 md_pbuf = md_pbuf_nxt; 20830 md_pbuf_nxt = NULL; 20831 pbuf_idx = pbuf_idx_nxt; 20832 pbuf_idx_nxt = -1; 20833 cur_pld_off = spill; 20834 20835 /* trim out first payload fragment */ 20836 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20837 20838 /* setup second payload fragment */ 20839 PDESC_PLD_SPAN_ADD(pkt_info, 20840 pbuf_idx, /* index */ 20841 md_pbuf->b_rptr, /* start */ 20842 spill); /* len */ 20843 20844 if ((*xmit_tail)->b_next == NULL) { 20845 /* 20846 * Store the lbolt used for RTT 20847 * estimation. We can only record one 20848 * timestamp per mblk so we do it when 20849 * we reach the end of the payload 20850 * buffer. Also we only take a new 20851 * timestamp sample when the previous 20852 * timed data from the same mblk has 20853 * been ack'ed. 20854 */ 20855 (*xmit_tail)->b_prev = local_time; 20856 (*xmit_tail)->b_next = 20857 (mblk_t *)(uintptr_t)first_snxt; 20858 } 20859 20860 first_snxt = *snxt - spill; 20861 20862 /* 20863 * Advance xmit_tail; usable could be 0 by 20864 * the time we got here, but we made sure 20865 * above that we would only spillover to 20866 * the next data block if usable includes 20867 * the spilled-over amount prior to the 20868 * subtraction. Therefore, we are sure 20869 * that xmit_tail->b_cont can't be NULL. 20870 */ 20871 ASSERT((*xmit_tail)->b_cont != NULL); 20872 *xmit_tail = (*xmit_tail)->b_cont; 20873 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20874 (uintptr_t)INT_MAX); 20875 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20876 } else { 20877 cur_pld_off += tcp->tcp_last_sent_len; 20878 } 20879 20880 /* 20881 * Fill in the header using the template header, and 20882 * add options such as time-stamp, ECN and/or SACK, 20883 * as needed. 20884 */ 20885 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20886 (clock_t)local_time, num_sack_blk); 20887 20888 /* take care of some IP header businesses */ 20889 if (af == AF_INET) { 20890 ipha = (ipha_t *)pkt_info->hdr_rptr; 20891 20892 ASSERT(OK_32PTR((uchar_t *)ipha)); 20893 ASSERT(PDESC_HDRL(pkt_info) >= 20894 IP_SIMPLE_HDR_LENGTH); 20895 ASSERT(ipha->ipha_version_and_hdr_length == 20896 IP_SIMPLE_HDR_VERSION); 20897 20898 /* 20899 * Assign ident value for current packet; see 20900 * related comments in ip_wput_ire() about the 20901 * contract private interface with clustering 20902 * group. 20903 */ 20904 clusterwide = B_FALSE; 20905 if (cl_inet_ipident != NULL) { 20906 ASSERT(cl_inet_isclusterwide != NULL); 20907 if ((*cl_inet_isclusterwide)(stack_id, 20908 IPPROTO_IP, AF_INET, 20909 (uint8_t *)(uintptr_t)src, NULL)) { 20910 ipha->ipha_ident = 20911 (*cl_inet_ipident)(stack_id, 20912 IPPROTO_IP, AF_INET, 20913 (uint8_t *)(uintptr_t)src, 20914 (uint8_t *)(uintptr_t)dst, 20915 NULL); 20916 clusterwide = B_TRUE; 20917 } 20918 } 20919 20920 if (!clusterwide) { 20921 ipha->ipha_ident = (uint16_t) 20922 atomic_add_32_nv( 20923 &ire->ire_ident, 1); 20924 } 20925 #ifndef _BIG_ENDIAN 20926 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20927 (ipha->ipha_ident >> 8); 20928 #endif 20929 } else { 20930 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20931 20932 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20933 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20934 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20935 ASSERT(PDESC_HDRL(pkt_info) >= 20936 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20937 TCP_CHECKSUM_SIZE)); 20938 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20939 20940 if (tcp->tcp_ip_forward_progress) { 20941 rconfirm = B_TRUE; 20942 tcp->tcp_ip_forward_progress = B_FALSE; 20943 } 20944 } 20945 20946 /* at least one payload span, and at most two */ 20947 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20948 20949 /* add the packet descriptor to Multidata */ 20950 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20951 KM_NOSLEEP)) == NULL) { 20952 /* 20953 * Any failure other than ENOMEM indicates 20954 * that we have passed in invalid pkt_info 20955 * or parameters to mmd_addpdesc, which must 20956 * not happen. 20957 * 20958 * EINVAL is a result of failure on boundary 20959 * checks against the pkt_info contents. It 20960 * should not happen, and we panic because 20961 * either there's horrible heap corruption, 20962 * and/or programming mistake. 20963 */ 20964 if (err != ENOMEM) { 20965 cmn_err(CE_PANIC, "tcp_multisend: " 20966 "pdesc logic error detected for " 20967 "tcp %p mmd %p pinfo %p (%d)\n", 20968 (void *)tcp, (void *)mmd, 20969 (void *)pkt_info, err); 20970 } 20971 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20972 goto legacy_send; /* out_of_mem */ 20973 } 20974 ASSERT(pkt != NULL); 20975 20976 /* calculate IP header and TCP checksums */ 20977 if (af == AF_INET) { 20978 /* calculate pseudo-header checksum */ 20979 cksum = (dst >> 16) + (dst & 0xFFFF) + 20980 (src >> 16) + (src & 0xFFFF); 20981 20982 /* offset for TCP header checksum */ 20983 up = IPH_TCPH_CHECKSUMP(ipha, 20984 IP_SIMPLE_HDR_LENGTH); 20985 } else { 20986 up = (uint16_t *)&ip6h->ip6_src; 20987 20988 /* calculate pseudo-header checksum */ 20989 cksum = up[0] + up[1] + up[2] + up[3] + 20990 up[4] + up[5] + up[6] + up[7] + 20991 up[8] + up[9] + up[10] + up[11] + 20992 up[12] + up[13] + up[14] + up[15]; 20993 20994 /* Fold the initial sum */ 20995 cksum = (cksum & 0xffff) + (cksum >> 16); 20996 20997 up = (uint16_t *)(((uchar_t *)ip6h) + 20998 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20999 } 21000 21001 if (hwcksum_flags & HCK_FULLCKSUM) { 21002 /* clear checksum field for hardware */ 21003 *up = 0; 21004 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 21005 uint32_t sum; 21006 21007 /* pseudo-header checksumming */ 21008 sum = *up + cksum + IP_TCP_CSUM_COMP; 21009 sum = (sum & 0xFFFF) + (sum >> 16); 21010 *up = (sum & 0xFFFF) + (sum >> 16); 21011 } else { 21012 /* software checksumming */ 21013 TCP_STAT(tcps, tcp_out_sw_cksum); 21014 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 21015 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 21016 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 21017 cksum + IP_TCP_CSUM_COMP); 21018 if (*up == 0) 21019 *up = 0xFFFF; 21020 } 21021 21022 /* IPv4 header checksum */ 21023 if (af == AF_INET) { 21024 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 21025 ipha->ipha_hdr_checksum = 0; 21026 } else { 21027 IP_HDR_CKSUM(ipha, cksum, 21028 ((uint32_t *)ipha)[0], 21029 ((uint16_t *)ipha)[4]); 21030 } 21031 } 21032 21033 if (af == AF_INET && 21034 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 21035 af == AF_INET6 && 21036 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 21037 mblk_t *mp, *mp1; 21038 uchar_t *hdr_rptr, *hdr_wptr; 21039 uchar_t *pld_rptr, *pld_wptr; 21040 21041 /* 21042 * We reconstruct a pseudo packet for the hooks 21043 * framework using mmd_transform_link(). 21044 * If it is a split packet we pullup the 21045 * payload. FW_HOOKS expects a pkt comprising 21046 * of two mblks: a header and the payload. 21047 */ 21048 if ((mp = mmd_transform_link(pkt)) == NULL) { 21049 TCP_STAT(tcps, tcp_mdt_allocfail); 21050 goto legacy_send; 21051 } 21052 21053 if (pkt_info->pld_cnt > 1) { 21054 /* split payload, more than one pld */ 21055 if ((mp1 = msgpullup(mp->b_cont, -1)) == 21056 NULL) { 21057 freemsg(mp); 21058 TCP_STAT(tcps, 21059 tcp_mdt_allocfail); 21060 goto legacy_send; 21061 } 21062 freemsg(mp->b_cont); 21063 mp->b_cont = mp1; 21064 } else { 21065 mp1 = mp->b_cont; 21066 } 21067 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 21068 21069 /* 21070 * Remember the message offsets. This is so we 21071 * can detect changes when we return from the 21072 * FW_HOOKS callbacks. 21073 */ 21074 hdr_rptr = mp->b_rptr; 21075 hdr_wptr = mp->b_wptr; 21076 pld_rptr = mp->b_cont->b_rptr; 21077 pld_wptr = mp->b_cont->b_wptr; 21078 21079 if (af == AF_INET) { 21080 DTRACE_PROBE4( 21081 ip4__physical__out__start, 21082 ill_t *, NULL, 21083 ill_t *, ill, 21084 ipha_t *, ipha, 21085 mblk_t *, mp); 21086 FW_HOOKS( 21087 ipst->ips_ip4_physical_out_event, 21088 ipst->ips_ipv4firewall_physical_out, 21089 NULL, ill, ipha, mp, mp, 0, ipst); 21090 DTRACE_PROBE1( 21091 ip4__physical__out__end, 21092 mblk_t *, mp); 21093 } else { 21094 DTRACE_PROBE4( 21095 ip6__physical__out_start, 21096 ill_t *, NULL, 21097 ill_t *, ill, 21098 ip6_t *, ip6h, 21099 mblk_t *, mp); 21100 FW_HOOKS6( 21101 ipst->ips_ip6_physical_out_event, 21102 ipst->ips_ipv6firewall_physical_out, 21103 NULL, ill, ip6h, mp, mp, 0, ipst); 21104 DTRACE_PROBE1( 21105 ip6__physical__out__end, 21106 mblk_t *, mp); 21107 } 21108 21109 if (mp == NULL || 21110 (mp1 = mp->b_cont) == NULL || 21111 mp->b_rptr != hdr_rptr || 21112 mp->b_wptr != hdr_wptr || 21113 mp1->b_rptr != pld_rptr || 21114 mp1->b_wptr != pld_wptr || 21115 mp1->b_cont != NULL) { 21116 /* 21117 * We abandon multidata processing and 21118 * return to the normal path, either 21119 * when a packet is blocked, or when 21120 * the boundaries of header buffer or 21121 * payload buffer have been changed by 21122 * FW_HOOKS[6]. 21123 */ 21124 if (mp != NULL) 21125 freemsg(mp); 21126 goto legacy_send; 21127 } 21128 /* Finished with the pseudo packet */ 21129 freemsg(mp); 21130 } 21131 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21132 ill, ipha, ip6h); 21133 /* advance header offset */ 21134 cur_hdr_off += hdr_frag_sz; 21135 21136 obbytes += tcp->tcp_last_sent_len; 21137 ++obsegs; 21138 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21139 *tail_unsent > 0); 21140 21141 if ((*xmit_tail)->b_next == NULL) { 21142 /* 21143 * Store the lbolt used for RTT estimation. We can only 21144 * record one timestamp per mblk so we do it when we 21145 * reach the end of the payload buffer. Also we only 21146 * take a new timestamp sample when the previous timed 21147 * data from the same mblk has been ack'ed. 21148 */ 21149 (*xmit_tail)->b_prev = local_time; 21150 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21151 } 21152 21153 ASSERT(*tail_unsent >= 0); 21154 if (*tail_unsent > 0) { 21155 /* 21156 * We got here because we broke out of the above 21157 * loop due to of one of the following cases: 21158 * 21159 * 1. len < adjusted MSS (i.e. small), 21160 * 2. Sender SWS avoidance, 21161 * 3. max_pld is zero. 21162 * 21163 * We are done for this Multidata, so trim our 21164 * last payload buffer (if any) accordingly. 21165 */ 21166 if (md_pbuf != NULL) 21167 md_pbuf->b_wptr -= *tail_unsent; 21168 } else if (*usable > 0) { 21169 *xmit_tail = (*xmit_tail)->b_cont; 21170 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21171 (uintptr_t)INT_MAX); 21172 *tail_unsent = (int)MBLKL(*xmit_tail); 21173 add_buffer = B_TRUE; 21174 } 21175 } while (!done && *usable > 0 && num_burst_seg > 0 && 21176 (tcp_mdt_chain || max_pld > 0)); 21177 21178 if (md_mp_head != NULL) { 21179 /* send everything down */ 21180 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21181 &rconfirm); 21182 } 21183 21184 #undef PREP_NEW_MULTIDATA 21185 #undef PREP_NEW_PBUF 21186 #undef IPVER 21187 21188 IRE_REFRELE(ire); 21189 return (0); 21190 } 21191 21192 /* 21193 * A wrapper function for sending one or more Multidata messages down to 21194 * the module below ip; this routine does not release the reference of the 21195 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21196 */ 21197 static void 21198 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21199 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21200 { 21201 uint64_t delta; 21202 nce_t *nce; 21203 tcp_stack_t *tcps = tcp->tcp_tcps; 21204 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21205 21206 ASSERT(ire != NULL && ill != NULL); 21207 ASSERT(ire->ire_stq != NULL); 21208 ASSERT(md_mp_head != NULL); 21209 ASSERT(rconfirm != NULL); 21210 21211 /* adjust MIBs and IRE timestamp */ 21212 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21213 tcp->tcp_obsegs += obsegs; 21214 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21215 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21216 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21217 21218 if (tcp->tcp_ipversion == IPV4_VERSION) { 21219 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21220 } else { 21221 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21222 } 21223 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21224 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21225 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21226 21227 ire->ire_ob_pkt_count += obsegs; 21228 if (ire->ire_ipif != NULL) 21229 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21230 ire->ire_last_used_time = lbolt; 21231 21232 if (ipst->ips_ipobs_enabled) { 21233 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21234 pdesc_t *dl_pkt; 21235 pdescinfo_t pinfo; 21236 mblk_t *nmp; 21237 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21238 21239 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21240 (dl_pkt != NULL); 21241 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21242 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21243 continue; 21244 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21245 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21246 freemsg(nmp); 21247 } 21248 } 21249 21250 /* send it down */ 21251 putnext(ire->ire_stq, md_mp_head); 21252 21253 /* we're done for TCP/IPv4 */ 21254 if (tcp->tcp_ipversion == IPV4_VERSION) 21255 return; 21256 21257 nce = ire->ire_nce; 21258 21259 ASSERT(nce != NULL); 21260 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21261 ASSERT(nce->nce_state != ND_INCOMPLETE); 21262 21263 /* reachability confirmation? */ 21264 if (*rconfirm) { 21265 nce->nce_last = TICK_TO_MSEC(lbolt64); 21266 if (nce->nce_state != ND_REACHABLE) { 21267 mutex_enter(&nce->nce_lock); 21268 nce->nce_state = ND_REACHABLE; 21269 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21270 mutex_exit(&nce->nce_lock); 21271 (void) untimeout(nce->nce_timeout_id); 21272 if (ip_debug > 2) { 21273 /* ip1dbg */ 21274 pr_addr_dbg("tcp_multisend_data: state " 21275 "for %s changed to REACHABLE\n", 21276 AF_INET6, &ire->ire_addr_v6); 21277 } 21278 } 21279 /* reset transport reachability confirmation */ 21280 *rconfirm = B_FALSE; 21281 } 21282 21283 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21284 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21285 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21286 21287 if (delta > (uint64_t)ill->ill_reachable_time) { 21288 mutex_enter(&nce->nce_lock); 21289 switch (nce->nce_state) { 21290 case ND_REACHABLE: 21291 case ND_STALE: 21292 /* 21293 * ND_REACHABLE is identical to ND_STALE in this 21294 * specific case. If reachable time has expired for 21295 * this neighbor (delta is greater than reachable 21296 * time), conceptually, the neighbor cache is no 21297 * longer in REACHABLE state, but already in STALE 21298 * state. So the correct transition here is to 21299 * ND_DELAY. 21300 */ 21301 nce->nce_state = ND_DELAY; 21302 mutex_exit(&nce->nce_lock); 21303 NDP_RESTART_TIMER(nce, 21304 ipst->ips_delay_first_probe_time); 21305 if (ip_debug > 3) { 21306 /* ip2dbg */ 21307 pr_addr_dbg("tcp_multisend_data: state " 21308 "for %s changed to DELAY\n", 21309 AF_INET6, &ire->ire_addr_v6); 21310 } 21311 break; 21312 case ND_DELAY: 21313 case ND_PROBE: 21314 mutex_exit(&nce->nce_lock); 21315 /* Timers have already started */ 21316 break; 21317 case ND_UNREACHABLE: 21318 /* 21319 * ndp timer has detected that this nce is 21320 * unreachable and initiated deleting this nce 21321 * and all its associated IREs. This is a race 21322 * where we found the ire before it was deleted 21323 * and have just sent out a packet using this 21324 * unreachable nce. 21325 */ 21326 mutex_exit(&nce->nce_lock); 21327 break; 21328 default: 21329 ASSERT(0); 21330 } 21331 } 21332 } 21333 21334 /* 21335 * Derived from tcp_send_data(). 21336 */ 21337 static void 21338 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21339 int num_lso_seg) 21340 { 21341 ipha_t *ipha; 21342 mblk_t *ire_fp_mp; 21343 uint_t ire_fp_mp_len; 21344 uint32_t hcksum_txflags = 0; 21345 ipaddr_t src; 21346 ipaddr_t dst; 21347 uint32_t cksum; 21348 uint16_t *up; 21349 tcp_stack_t *tcps = tcp->tcp_tcps; 21350 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21351 21352 ASSERT(DB_TYPE(mp) == M_DATA); 21353 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21354 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21355 ASSERT(tcp->tcp_connp != NULL); 21356 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21357 21358 ipha = (ipha_t *)mp->b_rptr; 21359 src = ipha->ipha_src; 21360 dst = ipha->ipha_dst; 21361 21362 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21363 21364 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21365 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21366 num_lso_seg); 21367 #ifndef _BIG_ENDIAN 21368 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21369 #endif 21370 if (tcp->tcp_snd_zcopy_aware) { 21371 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21372 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21373 mp = tcp_zcopy_disable(tcp, mp); 21374 } 21375 21376 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21377 ASSERT(ill->ill_hcksum_capab != NULL); 21378 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21379 } 21380 21381 /* 21382 * Since the TCP checksum should be recalculated by h/w, we can just 21383 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21384 * pseudo-header checksum for HCK_PARTIALCKSUM. 21385 * The partial pseudo-header excludes TCP length, that was calculated 21386 * in tcp_send(), so to zero *up before further processing. 21387 */ 21388 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21389 21390 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21391 *up = 0; 21392 21393 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21394 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21395 21396 /* 21397 * Append LSO flags and mss to the mp. 21398 */ 21399 lso_info_set(mp, mss, HW_LSO); 21400 21401 ipha->ipha_fragment_offset_and_flags |= 21402 (uint32_t)htons(ire->ire_frag_flag); 21403 21404 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21405 ire_fp_mp_len = MBLKL(ire_fp_mp); 21406 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21407 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21408 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21409 21410 UPDATE_OB_PKT_COUNT(ire); 21411 ire->ire_last_used_time = lbolt; 21412 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21414 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21415 ntohs(ipha->ipha_length)); 21416 21417 DTRACE_PROBE4(ip4__physical__out__start, 21418 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 21419 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21420 ipst->ips_ipv4firewall_physical_out, NULL, 21421 ill, ipha, mp, mp, 0, ipst); 21422 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21423 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 21424 21425 if (mp != NULL) { 21426 if (ipst->ips_ipobs_enabled) { 21427 zoneid_t szone; 21428 21429 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 21430 ipst, ALL_ZONES); 21431 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21432 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 21433 } 21434 21435 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0); 21436 } 21437 } 21438 21439 /* 21440 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21441 * scheme, and returns one of the following: 21442 * 21443 * -1 = failed allocation. 21444 * 0 = success; burst count reached, or usable send window is too small, 21445 * and that we'd rather wait until later before sending again. 21446 * 1 = success; we are called from tcp_multisend(), and both usable send 21447 * window and tail_unsent are greater than the MDT threshold, and thus 21448 * Multidata Transmit should be used instead. 21449 */ 21450 static int 21451 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21452 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21453 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21454 const int mdt_thres) 21455 { 21456 int num_burst_seg = tcp->tcp_snd_burst; 21457 ire_t *ire = NULL; 21458 ill_t *ill = NULL; 21459 mblk_t *ire_fp_mp = NULL; 21460 uint_t ire_fp_mp_len = 0; 21461 int num_lso_seg = 1; 21462 uint_t lso_usable; 21463 boolean_t do_lso_send = B_FALSE; 21464 tcp_stack_t *tcps = tcp->tcp_tcps; 21465 21466 /* 21467 * Check LSO capability before any further work. And the similar check 21468 * need to be done in for(;;) loop. 21469 * LSO will be deployed when therer is more than one mss of available 21470 * data and a burst transmission is allowed. 21471 */ 21472 if (tcp->tcp_lso && 21473 (tcp->tcp_valid_bits == 0 || 21474 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21475 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21476 /* 21477 * Try to find usable IRE/ILL and do basic check to the ILL. 21478 */ 21479 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21480 /* 21481 * Enable LSO with this transmission. 21482 * Since IRE has been hold in 21483 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21484 * should be called before return. 21485 */ 21486 do_lso_send = B_TRUE; 21487 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21488 ire_fp_mp_len = MBLKL(ire_fp_mp); 21489 /* Round up to multiple of 4 */ 21490 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21491 } else { 21492 do_lso_send = B_FALSE; 21493 ill = NULL; 21494 } 21495 } 21496 21497 for (;;) { 21498 struct datab *db; 21499 tcph_t *tcph; 21500 uint32_t sum; 21501 mblk_t *mp, *mp1; 21502 uchar_t *rptr; 21503 int len; 21504 21505 /* 21506 * If we're called by tcp_multisend(), and the amount of 21507 * sendable data as well as the size of current xmit_tail 21508 * is beyond the MDT threshold, return to the caller and 21509 * let the large data transmit be done using MDT. 21510 */ 21511 if (*usable > 0 && *usable > mdt_thres && 21512 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21513 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21514 ASSERT(tcp->tcp_mdt); 21515 return (1); /* success; do large send */ 21516 } 21517 21518 if (num_burst_seg == 0) 21519 break; /* success; burst count reached */ 21520 21521 /* 21522 * Calculate the maximum payload length we can send in *one* 21523 * time. 21524 */ 21525 if (do_lso_send) { 21526 /* 21527 * Check whether need to do LSO any more. 21528 */ 21529 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21530 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21531 lso_usable = MIN(lso_usable, 21532 num_burst_seg * mss); 21533 21534 num_lso_seg = lso_usable / mss; 21535 if (lso_usable % mss) { 21536 num_lso_seg++; 21537 tcp->tcp_last_sent_len = (ushort_t) 21538 (lso_usable % mss); 21539 } else { 21540 tcp->tcp_last_sent_len = (ushort_t)mss; 21541 } 21542 } else { 21543 do_lso_send = B_FALSE; 21544 num_lso_seg = 1; 21545 lso_usable = mss; 21546 } 21547 } 21548 21549 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21550 21551 /* 21552 * Adjust num_burst_seg here. 21553 */ 21554 num_burst_seg -= num_lso_seg; 21555 21556 len = mss; 21557 if (len > *usable) { 21558 ASSERT(do_lso_send == B_FALSE); 21559 21560 len = *usable; 21561 if (len <= 0) { 21562 /* Terminate the loop */ 21563 break; /* success; too small */ 21564 } 21565 /* 21566 * Sender silly-window avoidance. 21567 * Ignore this if we are going to send a 21568 * zero window probe out. 21569 * 21570 * TODO: force data into microscopic window? 21571 * ==> (!pushed || (unsent > usable)) 21572 */ 21573 if (len < (tcp->tcp_max_swnd >> 1) && 21574 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21575 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21576 len == 1) && (! tcp->tcp_zero_win_probe)) { 21577 /* 21578 * If the retransmit timer is not running 21579 * we start it so that we will retransmit 21580 * in the case when the the receiver has 21581 * decremented the window. 21582 */ 21583 if (*snxt == tcp->tcp_snxt && 21584 *snxt == tcp->tcp_suna) { 21585 /* 21586 * We are not supposed to send 21587 * anything. So let's wait a little 21588 * bit longer before breaking SWS 21589 * avoidance. 21590 * 21591 * What should the value be? 21592 * Suggestion: MAX(init rexmit time, 21593 * tcp->tcp_rto) 21594 */ 21595 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21596 } 21597 break; /* success; too small */ 21598 } 21599 } 21600 21601 tcph = tcp->tcp_tcph; 21602 21603 /* 21604 * The reason to adjust len here is that we need to set flags 21605 * and calculate checksum. 21606 */ 21607 if (do_lso_send) 21608 len = lso_usable; 21609 21610 *usable -= len; /* Approximate - can be adjusted later */ 21611 if (*usable > 0) 21612 tcph->th_flags[0] = TH_ACK; 21613 else 21614 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21615 21616 /* 21617 * Prime pump for IP's checksumming on our behalf 21618 * Include the adjustment for a source route if any. 21619 */ 21620 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21621 sum = (sum >> 16) + (sum & 0xFFFF); 21622 U16_TO_ABE16(sum, tcph->th_sum); 21623 21624 U32_TO_ABE32(*snxt, tcph->th_seq); 21625 21626 /* 21627 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21628 * set. For the case when TCP_FSS_VALID is the only valid 21629 * bit (normal active close), branch off only when we think 21630 * that the FIN flag needs to be set. Note for this case, 21631 * that (snxt + len) may not reflect the actual seg_len, 21632 * as len may be further reduced in tcp_xmit_mp(). If len 21633 * gets modified, we will end up here again. 21634 */ 21635 if (tcp->tcp_valid_bits != 0 && 21636 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21637 ((*snxt + len) == tcp->tcp_fss))) { 21638 uchar_t *prev_rptr; 21639 uint32_t prev_snxt = tcp->tcp_snxt; 21640 21641 if (*tail_unsent == 0) { 21642 ASSERT((*xmit_tail)->b_cont != NULL); 21643 *xmit_tail = (*xmit_tail)->b_cont; 21644 prev_rptr = (*xmit_tail)->b_rptr; 21645 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21646 (*xmit_tail)->b_rptr); 21647 } else { 21648 prev_rptr = (*xmit_tail)->b_rptr; 21649 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21650 *tail_unsent; 21651 } 21652 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21653 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21654 /* Restore tcp_snxt so we get amount sent right. */ 21655 tcp->tcp_snxt = prev_snxt; 21656 if (prev_rptr == (*xmit_tail)->b_rptr) { 21657 /* 21658 * If the previous timestamp is still in use, 21659 * don't stomp on it. 21660 */ 21661 if ((*xmit_tail)->b_next == NULL) { 21662 (*xmit_tail)->b_prev = local_time; 21663 (*xmit_tail)->b_next = 21664 (mblk_t *)(uintptr_t)(*snxt); 21665 } 21666 } else 21667 (*xmit_tail)->b_rptr = prev_rptr; 21668 21669 if (mp == NULL) { 21670 if (ire != NULL) 21671 IRE_REFRELE(ire); 21672 return (-1); 21673 } 21674 mp1 = mp->b_cont; 21675 21676 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21677 tcp->tcp_last_sent_len = (ushort_t)len; 21678 while (mp1->b_cont) { 21679 *xmit_tail = (*xmit_tail)->b_cont; 21680 (*xmit_tail)->b_prev = local_time; 21681 (*xmit_tail)->b_next = 21682 (mblk_t *)(uintptr_t)(*snxt); 21683 mp1 = mp1->b_cont; 21684 } 21685 *snxt += len; 21686 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21687 BUMP_LOCAL(tcp->tcp_obsegs); 21688 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21689 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21690 tcp_send_data(tcp, q, mp); 21691 continue; 21692 } 21693 21694 *snxt += len; /* Adjust later if we don't send all of len */ 21695 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21696 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21697 21698 if (*tail_unsent) { 21699 /* Are the bytes above us in flight? */ 21700 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21701 if (rptr != (*xmit_tail)->b_rptr) { 21702 *tail_unsent -= len; 21703 if (len <= mss) /* LSO is unusable */ 21704 tcp->tcp_last_sent_len = (ushort_t)len; 21705 len += tcp_hdr_len; 21706 if (tcp->tcp_ipversion == IPV4_VERSION) 21707 tcp->tcp_ipha->ipha_length = htons(len); 21708 else 21709 tcp->tcp_ip6h->ip6_plen = 21710 htons(len - 21711 ((char *)&tcp->tcp_ip6h[1] - 21712 tcp->tcp_iphc)); 21713 mp = dupb(*xmit_tail); 21714 if (mp == NULL) { 21715 if (ire != NULL) 21716 IRE_REFRELE(ire); 21717 return (-1); /* out_of_mem */ 21718 } 21719 mp->b_rptr = rptr; 21720 /* 21721 * If the old timestamp is no longer in use, 21722 * sample a new timestamp now. 21723 */ 21724 if ((*xmit_tail)->b_next == NULL) { 21725 (*xmit_tail)->b_prev = local_time; 21726 (*xmit_tail)->b_next = 21727 (mblk_t *)(uintptr_t)(*snxt-len); 21728 } 21729 goto must_alloc; 21730 } 21731 } else { 21732 *xmit_tail = (*xmit_tail)->b_cont; 21733 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21734 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21735 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21736 (*xmit_tail)->b_rptr); 21737 } 21738 21739 (*xmit_tail)->b_prev = local_time; 21740 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21741 21742 *tail_unsent -= len; 21743 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21744 tcp->tcp_last_sent_len = (ushort_t)len; 21745 21746 len += tcp_hdr_len; 21747 if (tcp->tcp_ipversion == IPV4_VERSION) 21748 tcp->tcp_ipha->ipha_length = htons(len); 21749 else 21750 tcp->tcp_ip6h->ip6_plen = htons(len - 21751 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21752 21753 mp = dupb(*xmit_tail); 21754 if (mp == NULL) { 21755 if (ire != NULL) 21756 IRE_REFRELE(ire); 21757 return (-1); /* out_of_mem */ 21758 } 21759 21760 len = tcp_hdr_len; 21761 /* 21762 * There are four reasons to allocate a new hdr mblk: 21763 * 1) The bytes above us are in use by another packet 21764 * 2) We don't have good alignment 21765 * 3) The mblk is being shared 21766 * 4) We don't have enough room for a header 21767 */ 21768 rptr = mp->b_rptr - len; 21769 if (!OK_32PTR(rptr) || 21770 ((db = mp->b_datap), db->db_ref != 2) || 21771 rptr < db->db_base + ire_fp_mp_len) { 21772 /* NOTE: we assume allocb returns an OK_32PTR */ 21773 21774 must_alloc:; 21775 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21776 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21777 if (mp1 == NULL) { 21778 freemsg(mp); 21779 if (ire != NULL) 21780 IRE_REFRELE(ire); 21781 return (-1); /* out_of_mem */ 21782 } 21783 mp1->b_cont = mp; 21784 mp = mp1; 21785 /* Leave room for Link Level header */ 21786 len = tcp_hdr_len; 21787 rptr = 21788 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21789 mp->b_wptr = &rptr[len]; 21790 } 21791 21792 /* 21793 * Fill in the header using the template header, and add 21794 * options such as time-stamp, ECN and/or SACK, as needed. 21795 */ 21796 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21797 21798 mp->b_rptr = rptr; 21799 21800 if (*tail_unsent) { 21801 int spill = *tail_unsent; 21802 21803 mp1 = mp->b_cont; 21804 if (mp1 == NULL) 21805 mp1 = mp; 21806 21807 /* 21808 * If we're a little short, tack on more mblks until 21809 * there is no more spillover. 21810 */ 21811 while (spill < 0) { 21812 mblk_t *nmp; 21813 int nmpsz; 21814 21815 nmp = (*xmit_tail)->b_cont; 21816 nmpsz = MBLKL(nmp); 21817 21818 /* 21819 * Excess data in mblk; can we split it? 21820 * If MDT is enabled for the connection, 21821 * keep on splitting as this is a transient 21822 * send path. 21823 */ 21824 if (!do_lso_send && !tcp->tcp_mdt && 21825 (spill + nmpsz > 0)) { 21826 /* 21827 * Don't split if stream head was 21828 * told to break up larger writes 21829 * into smaller ones. 21830 */ 21831 if (tcp->tcp_maxpsz > 0) 21832 break; 21833 21834 /* 21835 * Next mblk is less than SMSS/2 21836 * rounded up to nearest 64-byte; 21837 * let it get sent as part of the 21838 * next segment. 21839 */ 21840 if (tcp->tcp_localnet && 21841 !tcp->tcp_cork && 21842 (nmpsz < roundup((mss >> 1), 64))) 21843 break; 21844 } 21845 21846 *xmit_tail = nmp; 21847 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21848 /* Stash for rtt use later */ 21849 (*xmit_tail)->b_prev = local_time; 21850 (*xmit_tail)->b_next = 21851 (mblk_t *)(uintptr_t)(*snxt - len); 21852 mp1->b_cont = dupb(*xmit_tail); 21853 mp1 = mp1->b_cont; 21854 21855 spill += nmpsz; 21856 if (mp1 == NULL) { 21857 *tail_unsent = spill; 21858 freemsg(mp); 21859 if (ire != NULL) 21860 IRE_REFRELE(ire); 21861 return (-1); /* out_of_mem */ 21862 } 21863 } 21864 21865 /* Trim back any surplus on the last mblk */ 21866 if (spill >= 0) { 21867 mp1->b_wptr -= spill; 21868 *tail_unsent = spill; 21869 } else { 21870 /* 21871 * We did not send everything we could in 21872 * order to remain within the b_cont limit. 21873 */ 21874 *usable -= spill; 21875 *snxt += spill; 21876 tcp->tcp_last_sent_len += spill; 21877 UPDATE_MIB(&tcps->tcps_mib, 21878 tcpOutDataBytes, spill); 21879 /* 21880 * Adjust the checksum 21881 */ 21882 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21883 sum += spill; 21884 sum = (sum >> 16) + (sum & 0xFFFF); 21885 U16_TO_ABE16(sum, tcph->th_sum); 21886 if (tcp->tcp_ipversion == IPV4_VERSION) { 21887 sum = ntohs( 21888 ((ipha_t *)rptr)->ipha_length) + 21889 spill; 21890 ((ipha_t *)rptr)->ipha_length = 21891 htons(sum); 21892 } else { 21893 sum = ntohs( 21894 ((ip6_t *)rptr)->ip6_plen) + 21895 spill; 21896 ((ip6_t *)rptr)->ip6_plen = 21897 htons(sum); 21898 } 21899 *tail_unsent = 0; 21900 } 21901 } 21902 if (tcp->tcp_ip_forward_progress) { 21903 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21904 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21905 tcp->tcp_ip_forward_progress = B_FALSE; 21906 } 21907 21908 if (do_lso_send) { 21909 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21910 num_lso_seg); 21911 tcp->tcp_obsegs += num_lso_seg; 21912 21913 TCP_STAT(tcps, tcp_lso_times); 21914 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21915 } else { 21916 tcp_send_data(tcp, q, mp); 21917 BUMP_LOCAL(tcp->tcp_obsegs); 21918 } 21919 } 21920 21921 if (ire != NULL) 21922 IRE_REFRELE(ire); 21923 return (0); 21924 } 21925 21926 /* Unlink and return any mblk that looks like it contains a MDT info */ 21927 static mblk_t * 21928 tcp_mdt_info_mp(mblk_t *mp) 21929 { 21930 mblk_t *prev_mp; 21931 21932 for (;;) { 21933 prev_mp = mp; 21934 /* no more to process? */ 21935 if ((mp = mp->b_cont) == NULL) 21936 break; 21937 21938 switch (DB_TYPE(mp)) { 21939 case M_CTL: 21940 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21941 continue; 21942 ASSERT(prev_mp != NULL); 21943 prev_mp->b_cont = mp->b_cont; 21944 mp->b_cont = NULL; 21945 return (mp); 21946 default: 21947 break; 21948 } 21949 } 21950 return (mp); 21951 } 21952 21953 /* MDT info update routine, called when IP notifies us about MDT */ 21954 static void 21955 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21956 { 21957 boolean_t prev_state; 21958 tcp_stack_t *tcps = tcp->tcp_tcps; 21959 21960 /* 21961 * IP is telling us to abort MDT on this connection? We know 21962 * this because the capability is only turned off when IP 21963 * encounters some pathological cases, e.g. link-layer change 21964 * where the new driver doesn't support MDT, or in situation 21965 * where MDT usage on the link-layer has been switched off. 21966 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21967 * if the link-layer doesn't support MDT, and if it does, it 21968 * will indicate that the feature is to be turned on. 21969 */ 21970 prev_state = tcp->tcp_mdt; 21971 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21972 if (!tcp->tcp_mdt && !first) { 21973 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21974 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21975 (void *)tcp->tcp_connp)); 21976 } 21977 21978 /* 21979 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21980 * so disable MDT otherwise. The checks are done here 21981 * and in tcp_wput_data(). 21982 */ 21983 if (tcp->tcp_mdt && 21984 (tcp->tcp_ipversion == IPV4_VERSION && 21985 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21986 (tcp->tcp_ipversion == IPV6_VERSION && 21987 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21988 tcp->tcp_mdt = B_FALSE; 21989 21990 if (tcp->tcp_mdt) { 21991 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21992 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21993 "version (%d), expected version is %d", 21994 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21995 tcp->tcp_mdt = B_FALSE; 21996 return; 21997 } 21998 21999 /* 22000 * We need the driver to be able to handle at least three 22001 * spans per packet in order for tcp MDT to be utilized. 22002 * The first is for the header portion, while the rest are 22003 * needed to handle a packet that straddles across two 22004 * virtually non-contiguous buffers; a typical tcp packet 22005 * therefore consists of only two spans. Note that we take 22006 * a zero as "don't care". 22007 */ 22008 if (mdt_capab->ill_mdt_span_limit > 0 && 22009 mdt_capab->ill_mdt_span_limit < 3) { 22010 tcp->tcp_mdt = B_FALSE; 22011 return; 22012 } 22013 22014 /* a zero means driver wants default value */ 22015 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 22016 tcps->tcps_mdt_max_pbufs); 22017 if (tcp->tcp_mdt_max_pld == 0) 22018 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 22019 22020 /* ensure 32-bit alignment */ 22021 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 22022 mdt_capab->ill_mdt_hdr_head), 4); 22023 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 22024 mdt_capab->ill_mdt_hdr_tail), 4); 22025 22026 if (!first && !prev_state) { 22027 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 22028 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 22029 (void *)tcp->tcp_connp)); 22030 } 22031 } 22032 } 22033 22034 /* Unlink and return any mblk that looks like it contains a LSO info */ 22035 static mblk_t * 22036 tcp_lso_info_mp(mblk_t *mp) 22037 { 22038 mblk_t *prev_mp; 22039 22040 for (;;) { 22041 prev_mp = mp; 22042 /* no more to process? */ 22043 if ((mp = mp->b_cont) == NULL) 22044 break; 22045 22046 switch (DB_TYPE(mp)) { 22047 case M_CTL: 22048 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 22049 continue; 22050 ASSERT(prev_mp != NULL); 22051 prev_mp->b_cont = mp->b_cont; 22052 mp->b_cont = NULL; 22053 return (mp); 22054 default: 22055 break; 22056 } 22057 } 22058 22059 return (mp); 22060 } 22061 22062 /* LSO info update routine, called when IP notifies us about LSO */ 22063 static void 22064 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 22065 { 22066 tcp_stack_t *tcps = tcp->tcp_tcps; 22067 22068 /* 22069 * IP is telling us to abort LSO on this connection? We know 22070 * this because the capability is only turned off when IP 22071 * encounters some pathological cases, e.g. link-layer change 22072 * where the new NIC/driver doesn't support LSO, or in situation 22073 * where LSO usage on the link-layer has been switched off. 22074 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 22075 * if the link-layer doesn't support LSO, and if it does, it 22076 * will indicate that the feature is to be turned on. 22077 */ 22078 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 22079 TCP_STAT(tcps, tcp_lso_enabled); 22080 22081 /* 22082 * We currently only support LSO on simple TCP/IPv4, 22083 * so disable LSO otherwise. The checks are done here 22084 * and in tcp_wput_data(). 22085 */ 22086 if (tcp->tcp_lso && 22087 (tcp->tcp_ipversion == IPV4_VERSION && 22088 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22089 (tcp->tcp_ipversion == IPV6_VERSION)) { 22090 tcp->tcp_lso = B_FALSE; 22091 TCP_STAT(tcps, tcp_lso_disabled); 22092 } else { 22093 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 22094 lso_capab->ill_lso_max); 22095 } 22096 } 22097 22098 static void 22099 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 22100 { 22101 conn_t *connp = tcp->tcp_connp; 22102 tcp_stack_t *tcps = tcp->tcp_tcps; 22103 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22104 22105 ASSERT(ire != NULL); 22106 22107 /* 22108 * We may be in the fastpath here, and although we essentially do 22109 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22110 * we try to keep things as brief as possible. After all, these 22111 * are only best-effort checks, and we do more thorough ones prior 22112 * to calling tcp_send()/tcp_multisend(). 22113 */ 22114 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22115 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22116 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22117 !(ire->ire_flags & RTF_MULTIRT) && 22118 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22119 CONN_IS_LSO_MD_FASTPATH(connp)) { 22120 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22121 /* Cache the result */ 22122 connp->conn_lso_ok = B_TRUE; 22123 22124 ASSERT(ill->ill_lso_capab != NULL); 22125 if (!ill->ill_lso_capab->ill_lso_on) { 22126 ill->ill_lso_capab->ill_lso_on = 1; 22127 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22128 "LSO for interface %s\n", (void *)connp, 22129 ill->ill_name)); 22130 } 22131 tcp_lso_update(tcp, ill->ill_lso_capab); 22132 } else if (ipst->ips_ip_multidata_outbound && 22133 ILL_MDT_CAPABLE(ill)) { 22134 /* Cache the result */ 22135 connp->conn_mdt_ok = B_TRUE; 22136 22137 ASSERT(ill->ill_mdt_capab != NULL); 22138 if (!ill->ill_mdt_capab->ill_mdt_on) { 22139 ill->ill_mdt_capab->ill_mdt_on = 1; 22140 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22141 "MDT for interface %s\n", (void *)connp, 22142 ill->ill_name)); 22143 } 22144 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22145 } 22146 } 22147 22148 /* 22149 * The goal is to reduce the number of generated tcp segments by 22150 * setting the maxpsz multiplier to 0; this will have an affect on 22151 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22152 * into each packet, up to SMSS bytes. Doing this reduces the number 22153 * of outbound segments and incoming ACKs, thus allowing for better 22154 * network and system performance. In contrast the legacy behavior 22155 * may result in sending less than SMSS size, because the last mblk 22156 * for some packets may have more data than needed to make up SMSS, 22157 * and the legacy code refused to "split" it. 22158 * 22159 * We apply the new behavior on following situations: 22160 * 22161 * 1) Loopback connections, 22162 * 2) Connections in which the remote peer is not on local subnet, 22163 * 3) Local subnet connections over the bge interface (see below). 22164 * 22165 * Ideally, we would like this behavior to apply for interfaces other 22166 * than bge. However, doing so would negatively impact drivers which 22167 * perform dynamic mapping and unmapping of DMA resources, which are 22168 * increased by setting the maxpsz multiplier to 0 (more mblks per 22169 * packet will be generated by tcp). The bge driver does not suffer 22170 * from this, as it copies the mblks into pre-mapped buffers, and 22171 * therefore does not require more I/O resources than before. 22172 * 22173 * Otherwise, this behavior is present on all network interfaces when 22174 * the destination endpoint is non-local, since reducing the number 22175 * of packets in general is good for the network. 22176 * 22177 * TODO We need to remove this hard-coded conditional for bge once 22178 * a better "self-tuning" mechanism, or a way to comprehend 22179 * the driver transmit strategy is devised. Until the solution 22180 * is found and well understood, we live with this hack. 22181 */ 22182 if (!tcp_static_maxpsz && 22183 (tcp->tcp_loopback || !tcp->tcp_localnet || 22184 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22185 /* override the default value */ 22186 tcp->tcp_maxpsz = 0; 22187 22188 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22189 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22190 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22191 } 22192 22193 /* set the stream head parameters accordingly */ 22194 (void) tcp_maxpsz_set(tcp, B_TRUE); 22195 } 22196 22197 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22198 static void 22199 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22200 { 22201 uchar_t fval = *mp->b_rptr; 22202 mblk_t *tail; 22203 queue_t *q = tcp->tcp_wq; 22204 22205 /* TODO: How should flush interact with urgent data? */ 22206 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22207 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22208 /* 22209 * Flush only data that has not yet been put on the wire. If 22210 * we flush data that we have already transmitted, life, as we 22211 * know it, may come to an end. 22212 */ 22213 tail = tcp->tcp_xmit_tail; 22214 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22215 tcp->tcp_xmit_tail_unsent = 0; 22216 tcp->tcp_unsent = 0; 22217 if (tail->b_wptr != tail->b_rptr) 22218 tail = tail->b_cont; 22219 if (tail) { 22220 mblk_t **excess = &tcp->tcp_xmit_head; 22221 for (;;) { 22222 mblk_t *mp1 = *excess; 22223 if (mp1 == tail) 22224 break; 22225 tcp->tcp_xmit_tail = mp1; 22226 tcp->tcp_xmit_last = mp1; 22227 excess = &mp1->b_cont; 22228 } 22229 *excess = NULL; 22230 tcp_close_mpp(&tail); 22231 if (tcp->tcp_snd_zcopy_aware) 22232 tcp_zcopy_notify(tcp); 22233 } 22234 /* 22235 * We have no unsent data, so unsent must be less than 22236 * tcp_xmit_lowater, so re-enable flow. 22237 */ 22238 mutex_enter(&tcp->tcp_non_sq_lock); 22239 if (tcp->tcp_flow_stopped) { 22240 tcp_clrqfull(tcp); 22241 } 22242 mutex_exit(&tcp->tcp_non_sq_lock); 22243 } 22244 /* 22245 * TODO: you can't just flush these, you have to increase rwnd for one 22246 * thing. For another, how should urgent data interact? 22247 */ 22248 if (fval & FLUSHR) { 22249 *mp->b_rptr = fval & ~FLUSHW; 22250 /* XXX */ 22251 qreply(q, mp); 22252 return; 22253 } 22254 freemsg(mp); 22255 } 22256 22257 /* 22258 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22259 * messages. 22260 */ 22261 static void 22262 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22263 { 22264 mblk_t *mp1; 22265 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22266 STRUCT_HANDLE(strbuf, sb); 22267 queue_t *q = tcp->tcp_wq; 22268 int error; 22269 uint_t addrlen; 22270 22271 /* Make sure it is one of ours. */ 22272 switch (iocp->ioc_cmd) { 22273 case TI_GETMYNAME: 22274 case TI_GETPEERNAME: 22275 break; 22276 default: 22277 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22278 return; 22279 } 22280 switch (mi_copy_state(q, mp, &mp1)) { 22281 case -1: 22282 return; 22283 case MI_COPY_CASE(MI_COPY_IN, 1): 22284 break; 22285 case MI_COPY_CASE(MI_COPY_OUT, 1): 22286 /* Copy out the strbuf. */ 22287 mi_copyout(q, mp); 22288 return; 22289 case MI_COPY_CASE(MI_COPY_OUT, 2): 22290 /* All done. */ 22291 mi_copy_done(q, mp, 0); 22292 return; 22293 default: 22294 mi_copy_done(q, mp, EPROTO); 22295 return; 22296 } 22297 /* Check alignment of the strbuf */ 22298 if (!OK_32PTR(mp1->b_rptr)) { 22299 mi_copy_done(q, mp, EINVAL); 22300 return; 22301 } 22302 22303 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22304 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22305 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22306 mi_copy_done(q, mp, EINVAL); 22307 return; 22308 } 22309 22310 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22311 if (mp1 == NULL) 22312 return; 22313 22314 switch (iocp->ioc_cmd) { 22315 case TI_GETMYNAME: 22316 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22317 break; 22318 case TI_GETPEERNAME: 22319 error = i_tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22320 break; 22321 } 22322 22323 if (error != 0) { 22324 mi_copy_done(q, mp, error); 22325 } else { 22326 mp1->b_wptr += addrlen; 22327 STRUCT_FSET(sb, len, addrlen); 22328 22329 /* Copy out the address */ 22330 mi_copyout(q, mp); 22331 } 22332 } 22333 22334 static void 22335 tcp_disable_direct_sockfs(tcp_t *tcp) 22336 { 22337 #ifdef _ILP32 22338 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 22339 #else 22340 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22341 #endif 22342 /* 22343 * Insert this socket into the acceptor hash. 22344 * We might need it for T_CONN_RES message 22345 */ 22346 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22347 22348 if (tcp->tcp_fused) { 22349 /* 22350 * This is a fused loopback tcp; disable 22351 * read-side synchronous streams interface 22352 * and drain any queued data. It is okay 22353 * to do this for non-synchronous streams 22354 * fused tcp as well. 22355 */ 22356 tcp_fuse_disable_pair(tcp, B_FALSE); 22357 } 22358 tcp->tcp_issocket = B_FALSE; 22359 tcp->tcp_sodirect = NULL; 22360 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 22361 } 22362 22363 /* 22364 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22365 * messages. 22366 */ 22367 /* ARGSUSED */ 22368 static void 22369 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22370 { 22371 conn_t *connp = (conn_t *)arg; 22372 tcp_t *tcp = connp->conn_tcp; 22373 queue_t *q = tcp->tcp_wq; 22374 struct iocblk *iocp; 22375 22376 ASSERT(DB_TYPE(mp) == M_IOCTL); 22377 /* 22378 * Try and ASSERT the minimum possible references on the 22379 * conn early enough. Since we are executing on write side, 22380 * the connection is obviously not detached and that means 22381 * there is a ref each for TCP and IP. Since we are behind 22382 * the squeue, the minimum references needed are 3. If the 22383 * conn is in classifier hash list, there should be an 22384 * extra ref for that (we check both the possibilities). 22385 */ 22386 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22387 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22388 22389 iocp = (struct iocblk *)mp->b_rptr; 22390 switch (iocp->ioc_cmd) { 22391 case TCP_IOC_DEFAULT_Q: 22392 /* Wants to be the default wq. */ 22393 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22394 iocp->ioc_error = EPERM; 22395 iocp->ioc_count = 0; 22396 mp->b_datap->db_type = M_IOCACK; 22397 qreply(q, mp); 22398 return; 22399 } 22400 tcp_def_q_set(tcp, mp); 22401 return; 22402 case _SIOCSOCKFALLBACK: 22403 /* 22404 * Either sockmod is about to be popped and the socket 22405 * would now be treated as a plain stream, or a module 22406 * is about to be pushed so we could no longer use read- 22407 * side synchronous streams for fused loopback tcp. 22408 * Drain any queued data and disable direct sockfs 22409 * interface from now on. 22410 */ 22411 if (!tcp->tcp_issocket) { 22412 DB_TYPE(mp) = M_IOCNAK; 22413 iocp->ioc_error = EINVAL; 22414 } else { 22415 tcp_disable_direct_sockfs(tcp); 22416 DB_TYPE(mp) = M_IOCACK; 22417 iocp->ioc_error = 0; 22418 } 22419 iocp->ioc_count = 0; 22420 iocp->ioc_rval = 0; 22421 qreply(q, mp); 22422 return; 22423 } 22424 CALL_IP_WPUT(connp, q, mp); 22425 } 22426 22427 /* 22428 * This routine is called by tcp_wput() to handle all TPI requests. 22429 */ 22430 /* ARGSUSED */ 22431 static void 22432 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22433 { 22434 conn_t *connp = (conn_t *)arg; 22435 tcp_t *tcp = connp->conn_tcp; 22436 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22437 uchar_t *rptr; 22438 t_scalar_t type; 22439 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22440 22441 /* 22442 * Try and ASSERT the minimum possible references on the 22443 * conn early enough. Since we are executing on write side, 22444 * the connection is obviously not detached and that means 22445 * there is a ref each for TCP and IP. Since we are behind 22446 * the squeue, the minimum references needed are 3. If the 22447 * conn is in classifier hash list, there should be an 22448 * extra ref for that (we check both the possibilities). 22449 */ 22450 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22451 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22452 22453 rptr = mp->b_rptr; 22454 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22455 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22456 type = ((union T_primitives *)rptr)->type; 22457 if (type == T_EXDATA_REQ) { 22458 tcp_output_urgent(connp, mp->b_cont, arg2); 22459 freeb(mp); 22460 } else if (type != T_DATA_REQ) { 22461 goto non_urgent_data; 22462 } else { 22463 /* TODO: options, flags, ... from user */ 22464 /* Set length to zero for reclamation below */ 22465 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22466 freeb(mp); 22467 } 22468 return; 22469 } else { 22470 if (tcp->tcp_debug) { 22471 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22472 "tcp_wput_proto, dropping one..."); 22473 } 22474 freemsg(mp); 22475 return; 22476 } 22477 22478 non_urgent_data: 22479 22480 switch ((int)tprim->type) { 22481 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22482 /* 22483 * save the kssl_ent_t from the next block, and convert this 22484 * back to a normal bind_req. 22485 */ 22486 if (mp->b_cont != NULL) { 22487 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22488 22489 if (tcp->tcp_kssl_ent != NULL) { 22490 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22491 KSSL_NO_PROXY); 22492 tcp->tcp_kssl_ent = NULL; 22493 } 22494 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22495 sizeof (kssl_ent_t)); 22496 kssl_hold_ent(tcp->tcp_kssl_ent); 22497 freemsg(mp->b_cont); 22498 mp->b_cont = NULL; 22499 } 22500 tprim->type = T_BIND_REQ; 22501 22502 /* FALLTHROUGH */ 22503 case O_T_BIND_REQ: /* bind request */ 22504 case T_BIND_REQ: /* new semantics bind request */ 22505 tcp_tpi_bind(tcp, mp); 22506 break; 22507 case T_UNBIND_REQ: /* unbind request */ 22508 tcp_tpi_unbind(tcp, mp); 22509 break; 22510 case O_T_CONN_RES: /* old connection response XXX */ 22511 case T_CONN_RES: /* connection response */ 22512 tcp_tli_accept(tcp, mp); 22513 break; 22514 case T_CONN_REQ: /* connection request */ 22515 tcp_tpi_connect(tcp, mp); 22516 break; 22517 case T_DISCON_REQ: /* disconnect request */ 22518 tcp_disconnect(tcp, mp); 22519 break; 22520 case T_CAPABILITY_REQ: 22521 tcp_capability_req(tcp, mp); /* capability request */ 22522 break; 22523 case T_INFO_REQ: /* information request */ 22524 tcp_info_req(tcp, mp); 22525 break; 22526 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22527 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22528 &tcp_opt_obj, B_TRUE); 22529 break; 22530 case T_OPTMGMT_REQ: 22531 /* 22532 * Note: no support for snmpcom_req() through new 22533 * T_OPTMGMT_REQ. See comments in ip.c 22534 */ 22535 /* Only IP is allowed to return meaningful value */ 22536 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22537 B_TRUE); 22538 break; 22539 22540 case T_UNITDATA_REQ: /* unitdata request */ 22541 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22542 break; 22543 case T_ORDREL_REQ: /* orderly release req */ 22544 freemsg(mp); 22545 22546 if (tcp->tcp_fused) 22547 tcp_unfuse(tcp); 22548 22549 if (tcp_xmit_end(tcp) != 0) { 22550 /* 22551 * We were crossing FINs and got a reset from 22552 * the other side. Just ignore it. 22553 */ 22554 if (tcp->tcp_debug) { 22555 (void) strlog(TCP_MOD_ID, 0, 1, 22556 SL_ERROR|SL_TRACE, 22557 "tcp_wput_proto, T_ORDREL_REQ out of " 22558 "state %s", 22559 tcp_display(tcp, NULL, 22560 DISP_ADDR_AND_PORT)); 22561 } 22562 } 22563 break; 22564 case T_ADDR_REQ: 22565 tcp_addr_req(tcp, mp); 22566 break; 22567 default: 22568 if (tcp->tcp_debug) { 22569 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22570 "tcp_wput_proto, bogus TPI msg, type %d", 22571 tprim->type); 22572 } 22573 /* 22574 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22575 * to recover. 22576 */ 22577 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22578 break; 22579 } 22580 } 22581 22582 /* 22583 * The TCP write service routine should never be called... 22584 */ 22585 /* ARGSUSED */ 22586 static void 22587 tcp_wsrv(queue_t *q) 22588 { 22589 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22590 22591 TCP_STAT(tcps, tcp_wsrv_called); 22592 } 22593 22594 /* Non overlapping byte exchanger */ 22595 static void 22596 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22597 { 22598 uchar_t uch; 22599 22600 while (len-- > 0) { 22601 uch = a[len]; 22602 a[len] = b[len]; 22603 b[len] = uch; 22604 } 22605 } 22606 22607 /* 22608 * Send out a control packet on the tcp connection specified. This routine 22609 * is typically called where we need a simple ACK or RST generated. 22610 */ 22611 static void 22612 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22613 { 22614 uchar_t *rptr; 22615 tcph_t *tcph; 22616 ipha_t *ipha = NULL; 22617 ip6_t *ip6h = NULL; 22618 uint32_t sum; 22619 int tcp_hdr_len; 22620 int tcp_ip_hdr_len; 22621 mblk_t *mp; 22622 tcp_stack_t *tcps = tcp->tcp_tcps; 22623 22624 /* 22625 * Save sum for use in source route later. 22626 */ 22627 ASSERT(tcp != NULL); 22628 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22629 tcp_hdr_len = tcp->tcp_hdr_len; 22630 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22631 22632 /* If a text string is passed in with the request, pass it to strlog. */ 22633 if (str != NULL && tcp->tcp_debug) { 22634 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22635 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22636 str, seq, ack, ctl); 22637 } 22638 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22639 BPRI_MED); 22640 if (mp == NULL) { 22641 return; 22642 } 22643 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22644 mp->b_rptr = rptr; 22645 mp->b_wptr = &rptr[tcp_hdr_len]; 22646 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22647 22648 if (tcp->tcp_ipversion == IPV4_VERSION) { 22649 ipha = (ipha_t *)rptr; 22650 ipha->ipha_length = htons(tcp_hdr_len); 22651 } else { 22652 ip6h = (ip6_t *)rptr; 22653 ASSERT(tcp != NULL); 22654 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22655 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22656 } 22657 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22658 tcph->th_flags[0] = (uint8_t)ctl; 22659 if (ctl & TH_RST) { 22660 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22661 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22662 /* 22663 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22664 */ 22665 if (tcp->tcp_snd_ts_ok && 22666 tcp->tcp_state > TCPS_SYN_SENT) { 22667 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22668 *(mp->b_wptr) = TCPOPT_EOL; 22669 if (tcp->tcp_ipversion == IPV4_VERSION) { 22670 ipha->ipha_length = htons(tcp_hdr_len - 22671 TCPOPT_REAL_TS_LEN); 22672 } else { 22673 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22674 TCPOPT_REAL_TS_LEN); 22675 } 22676 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22677 sum -= TCPOPT_REAL_TS_LEN; 22678 } 22679 } 22680 if (ctl & TH_ACK) { 22681 if (tcp->tcp_snd_ts_ok) { 22682 U32_TO_BE32(lbolt, 22683 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22684 U32_TO_BE32(tcp->tcp_ts_recent, 22685 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22686 } 22687 22688 /* Update the latest receive window size in TCP header. */ 22689 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22690 tcph->th_win); 22691 tcp->tcp_rack = ack; 22692 tcp->tcp_rack_cnt = 0; 22693 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22694 } 22695 BUMP_LOCAL(tcp->tcp_obsegs); 22696 U32_TO_BE32(seq, tcph->th_seq); 22697 U32_TO_BE32(ack, tcph->th_ack); 22698 /* 22699 * Include the adjustment for a source route if any. 22700 */ 22701 sum = (sum >> 16) + (sum & 0xFFFF); 22702 U16_TO_BE16(sum, tcph->th_sum); 22703 tcp_send_data(tcp, tcp->tcp_wq, mp); 22704 } 22705 22706 /* 22707 * If this routine returns B_TRUE, TCP can generate a RST in response 22708 * to a segment. If it returns B_FALSE, TCP should not respond. 22709 */ 22710 static boolean_t 22711 tcp_send_rst_chk(tcp_stack_t *tcps) 22712 { 22713 clock_t now; 22714 22715 /* 22716 * TCP needs to protect itself from generating too many RSTs. 22717 * This can be a DoS attack by sending us random segments 22718 * soliciting RSTs. 22719 * 22720 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22721 * in each 1 second interval. In this way, TCP still generate 22722 * RSTs in normal cases but when under attack, the impact is 22723 * limited. 22724 */ 22725 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22726 now = lbolt; 22727 /* lbolt can wrap around. */ 22728 if ((tcps->tcps_last_rst_intrvl > now) || 22729 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22730 1*SECONDS)) { 22731 tcps->tcps_last_rst_intrvl = now; 22732 tcps->tcps_rst_cnt = 1; 22733 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22734 return (B_FALSE); 22735 } 22736 } 22737 return (B_TRUE); 22738 } 22739 22740 /* 22741 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22742 */ 22743 static void 22744 tcp_ip_ire_mark_advice(tcp_t *tcp) 22745 { 22746 mblk_t *mp; 22747 ipic_t *ipic; 22748 22749 if (tcp->tcp_ipversion == IPV4_VERSION) { 22750 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22751 &ipic); 22752 } else { 22753 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22754 &ipic); 22755 } 22756 if (mp == NULL) 22757 return; 22758 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22759 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22760 } 22761 22762 /* 22763 * Return an IP advice ioctl mblk and set ipic to be the pointer 22764 * to the advice structure. 22765 */ 22766 static mblk_t * 22767 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22768 { 22769 struct iocblk *ioc; 22770 mblk_t *mp, *mp1; 22771 22772 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22773 if (mp == NULL) 22774 return (NULL); 22775 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22776 *ipic = (ipic_t *)mp->b_rptr; 22777 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22778 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22779 22780 bcopy(addr, *ipic + 1, addr_len); 22781 22782 (*ipic)->ipic_addr_length = addr_len; 22783 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22784 22785 mp1 = mkiocb(IP_IOCTL); 22786 if (mp1 == NULL) { 22787 freemsg(mp); 22788 return (NULL); 22789 } 22790 mp1->b_cont = mp; 22791 ioc = (struct iocblk *)mp1->b_rptr; 22792 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22793 22794 return (mp1); 22795 } 22796 22797 /* 22798 * Generate a reset based on an inbound packet, connp is set by caller 22799 * when RST is in response to an unexpected inbound packet for which 22800 * there is active tcp state in the system. 22801 * 22802 * IPSEC NOTE : Try to send the reply with the same protection as it came 22803 * in. We still have the ipsec_mp that the packet was attached to. Thus 22804 * the packet will go out at the same level of protection as it came in by 22805 * converting the IPSEC_IN to IPSEC_OUT. 22806 */ 22807 static void 22808 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22809 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22810 tcp_stack_t *tcps, conn_t *connp) 22811 { 22812 ipha_t *ipha = NULL; 22813 ip6_t *ip6h = NULL; 22814 ushort_t len; 22815 tcph_t *tcph; 22816 int i; 22817 mblk_t *ipsec_mp; 22818 boolean_t mctl_present; 22819 ipic_t *ipic; 22820 ipaddr_t v4addr; 22821 in6_addr_t v6addr; 22822 int addr_len; 22823 void *addr; 22824 queue_t *q = tcps->tcps_g_q; 22825 tcp_t *tcp; 22826 cred_t *cr; 22827 mblk_t *nmp; 22828 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22829 22830 if (tcps->tcps_g_q == NULL) { 22831 /* 22832 * For non-zero stackids the default queue isn't created 22833 * until the first open, thus there can be a need to send 22834 * a reset before then. But we can't do that, hence we just 22835 * drop the packet. Later during boot, when the default queue 22836 * has been setup, a retransmitted packet from the peer 22837 * will result in a reset. 22838 */ 22839 ASSERT(tcps->tcps_netstack->netstack_stackid != 22840 GLOBAL_NETSTACKID); 22841 freemsg(mp); 22842 return; 22843 } 22844 22845 if (connp != NULL) 22846 tcp = connp->conn_tcp; 22847 else 22848 tcp = Q_TO_TCP(q); 22849 22850 if (!tcp_send_rst_chk(tcps)) { 22851 tcps->tcps_rst_unsent++; 22852 freemsg(mp); 22853 return; 22854 } 22855 22856 if (mp->b_datap->db_type == M_CTL) { 22857 ipsec_mp = mp; 22858 mp = mp->b_cont; 22859 mctl_present = B_TRUE; 22860 } else { 22861 ipsec_mp = mp; 22862 mctl_present = B_FALSE; 22863 } 22864 22865 if (str && q && tcps->tcps_dbg) { 22866 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22867 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22868 "flags 0x%x", 22869 str, seq, ack, ctl); 22870 } 22871 if (mp->b_datap->db_ref != 1) { 22872 mblk_t *mp1 = copyb(mp); 22873 freemsg(mp); 22874 mp = mp1; 22875 if (!mp) { 22876 if (mctl_present) 22877 freeb(ipsec_mp); 22878 return; 22879 } else { 22880 if (mctl_present) { 22881 ipsec_mp->b_cont = mp; 22882 } else { 22883 ipsec_mp = mp; 22884 } 22885 } 22886 } else if (mp->b_cont) { 22887 freemsg(mp->b_cont); 22888 mp->b_cont = NULL; 22889 } 22890 /* 22891 * We skip reversing source route here. 22892 * (for now we replace all IP options with EOL) 22893 */ 22894 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22895 ipha = (ipha_t *)mp->b_rptr; 22896 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22897 mp->b_rptr[i] = IPOPT_EOL; 22898 /* 22899 * Make sure that src address isn't flagrantly invalid. 22900 * Not all broadcast address checking for the src address 22901 * is possible, since we don't know the netmask of the src 22902 * addr. No check for destination address is done, since 22903 * IP will not pass up a packet with a broadcast dest 22904 * address to TCP. Similar checks are done below for IPv6. 22905 */ 22906 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22907 CLASSD(ipha->ipha_src)) { 22908 freemsg(ipsec_mp); 22909 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22910 return; 22911 } 22912 } else { 22913 ip6h = (ip6_t *)mp->b_rptr; 22914 22915 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22916 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22917 freemsg(ipsec_mp); 22918 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22919 return; 22920 } 22921 22922 /* Remove any extension headers assuming partial overlay */ 22923 if (ip_hdr_len > IPV6_HDR_LEN) { 22924 uint8_t *to; 22925 22926 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22927 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22928 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22929 ip_hdr_len = IPV6_HDR_LEN; 22930 ip6h = (ip6_t *)mp->b_rptr; 22931 ip6h->ip6_nxt = IPPROTO_TCP; 22932 } 22933 } 22934 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22935 if (tcph->th_flags[0] & TH_RST) { 22936 freemsg(ipsec_mp); 22937 return; 22938 } 22939 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22940 len = ip_hdr_len + sizeof (tcph_t); 22941 mp->b_wptr = &mp->b_rptr[len]; 22942 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22943 ipha->ipha_length = htons(len); 22944 /* Swap addresses */ 22945 v4addr = ipha->ipha_src; 22946 ipha->ipha_src = ipha->ipha_dst; 22947 ipha->ipha_dst = v4addr; 22948 ipha->ipha_ident = 0; 22949 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22950 addr_len = IP_ADDR_LEN; 22951 addr = &v4addr; 22952 } else { 22953 /* No ip6i_t in this case */ 22954 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22955 /* Swap addresses */ 22956 v6addr = ip6h->ip6_src; 22957 ip6h->ip6_src = ip6h->ip6_dst; 22958 ip6h->ip6_dst = v6addr; 22959 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22960 addr_len = IPV6_ADDR_LEN; 22961 addr = &v6addr; 22962 } 22963 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22964 U32_TO_BE32(ack, tcph->th_ack); 22965 U32_TO_BE32(seq, tcph->th_seq); 22966 U16_TO_BE16(0, tcph->th_win); 22967 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22968 tcph->th_flags[0] = (uint8_t)ctl; 22969 if (ctl & TH_RST) { 22970 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22971 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22972 } 22973 22974 /* IP trusts us to set up labels when required. */ 22975 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22976 crgetlabel(cr) != NULL) { 22977 int err; 22978 22979 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22980 err = tsol_check_label(cr, &mp, 22981 tcp->tcp_connp->conn_mac_exempt, 22982 tcps->tcps_netstack->netstack_ip); 22983 else 22984 err = tsol_check_label_v6(cr, &mp, 22985 tcp->tcp_connp->conn_mac_exempt, 22986 tcps->tcps_netstack->netstack_ip); 22987 if (mctl_present) 22988 ipsec_mp->b_cont = mp; 22989 else 22990 ipsec_mp = mp; 22991 if (err != 0) { 22992 freemsg(ipsec_mp); 22993 return; 22994 } 22995 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22996 ipha = (ipha_t *)mp->b_rptr; 22997 } else { 22998 ip6h = (ip6_t *)mp->b_rptr; 22999 } 23000 } 23001 23002 if (mctl_present) { 23003 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23004 23005 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23006 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 23007 return; 23008 } 23009 } 23010 if (zoneid == ALL_ZONES) 23011 zoneid = GLOBAL_ZONEID; 23012 23013 /* Add the zoneid so ip_output routes it properly */ 23014 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 23015 freemsg(ipsec_mp); 23016 return; 23017 } 23018 ipsec_mp = nmp; 23019 23020 /* 23021 * NOTE: one might consider tracing a TCP packet here, but 23022 * this function has no active TCP state and no tcp structure 23023 * that has a trace buffer. If we traced here, we would have 23024 * to keep a local trace buffer in tcp_record_trace(). 23025 * 23026 * TSol note: The mblk that contains the incoming packet was 23027 * reused by tcp_xmit_listener_reset, so it already contains 23028 * the right credentials and we don't need to call mblk_setcred. 23029 * Also the conn's cred is not right since it is associated 23030 * with tcps_g_q. 23031 */ 23032 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 23033 23034 /* 23035 * Tell IP to mark the IRE used for this destination temporary. 23036 * This way, we can limit our exposure to DoS attack because IP 23037 * creates an IRE for each destination. If there are too many, 23038 * the time to do any routing lookup will be extremely long. And 23039 * the lookup can be in interrupt context. 23040 * 23041 * Note that in normal circumstances, this marking should not 23042 * affect anything. It would be nice if only 1 message is 23043 * needed to inform IP that the IRE created for this RST should 23044 * not be added to the cache table. But there is currently 23045 * not such communication mechanism between TCP and IP. So 23046 * the best we can do now is to send the advice ioctl to IP 23047 * to mark the IRE temporary. 23048 */ 23049 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 23050 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 23051 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23052 } 23053 } 23054 23055 /* 23056 * Initiate closedown sequence on an active connection. (May be called as 23057 * writer.) Return value zero for OK return, non-zero for error return. 23058 */ 23059 static int 23060 tcp_xmit_end(tcp_t *tcp) 23061 { 23062 ipic_t *ipic; 23063 mblk_t *mp; 23064 tcp_stack_t *tcps = tcp->tcp_tcps; 23065 23066 if (tcp->tcp_state < TCPS_SYN_RCVD || 23067 tcp->tcp_state > TCPS_CLOSE_WAIT) { 23068 /* 23069 * Invalid state, only states TCPS_SYN_RCVD, 23070 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 23071 */ 23072 return (-1); 23073 } 23074 23075 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 23076 tcp->tcp_valid_bits |= TCP_FSS_VALID; 23077 /* 23078 * If there is nothing more unsent, send the FIN now. 23079 * Otherwise, it will go out with the last segment. 23080 */ 23081 if (tcp->tcp_unsent == 0) { 23082 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 23083 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 23084 23085 if (mp) { 23086 tcp_send_data(tcp, tcp->tcp_wq, mp); 23087 } else { 23088 /* 23089 * Couldn't allocate msg. Pretend we got it out. 23090 * Wait for rexmit timeout. 23091 */ 23092 tcp->tcp_snxt = tcp->tcp_fss + 1; 23093 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23094 } 23095 23096 /* 23097 * If needed, update tcp_rexmit_snxt as tcp_snxt is 23098 * changed. 23099 */ 23100 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23101 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23102 } 23103 } else { 23104 /* 23105 * If tcp->tcp_cork is set, then the data will not get sent, 23106 * so we have to check that and unset it first. 23107 */ 23108 if (tcp->tcp_cork) 23109 tcp->tcp_cork = B_FALSE; 23110 tcp_wput_data(tcp, NULL, B_FALSE); 23111 } 23112 23113 /* 23114 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23115 * is 0, don't update the cache. 23116 */ 23117 if (tcps->tcps_rtt_updates == 0 || 23118 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23119 return (0); 23120 23121 /* 23122 * NOTE: should not update if source routes i.e. if tcp_remote if 23123 * different from the destination. 23124 */ 23125 if (tcp->tcp_ipversion == IPV4_VERSION) { 23126 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23127 return (0); 23128 } 23129 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23130 &ipic); 23131 } else { 23132 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23133 &tcp->tcp_ip6h->ip6_dst))) { 23134 return (0); 23135 } 23136 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23137 &ipic); 23138 } 23139 23140 /* Record route attributes in the IRE for use by future connections. */ 23141 if (mp == NULL) 23142 return (0); 23143 23144 /* 23145 * We do not have a good algorithm to update ssthresh at this time. 23146 * So don't do any update. 23147 */ 23148 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23149 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23150 23151 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23152 23153 return (0); 23154 } 23155 23156 /* 23157 * Generate a "no listener here" RST in response to an "unknown" segment. 23158 * connp is set by caller when RST is in response to an unexpected 23159 * inbound packet for which there is active tcp state in the system. 23160 * Note that we are reusing the incoming mp to construct the outgoing RST. 23161 */ 23162 void 23163 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23164 tcp_stack_t *tcps, conn_t *connp) 23165 { 23166 uchar_t *rptr; 23167 uint32_t seg_len; 23168 tcph_t *tcph; 23169 uint32_t seg_seq; 23170 uint32_t seg_ack; 23171 uint_t flags; 23172 mblk_t *ipsec_mp; 23173 ipha_t *ipha; 23174 ip6_t *ip6h; 23175 boolean_t mctl_present = B_FALSE; 23176 boolean_t check = B_TRUE; 23177 boolean_t policy_present; 23178 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23179 23180 TCP_STAT(tcps, tcp_no_listener); 23181 23182 ipsec_mp = mp; 23183 23184 if (mp->b_datap->db_type == M_CTL) { 23185 ipsec_in_t *ii; 23186 23187 mctl_present = B_TRUE; 23188 mp = mp->b_cont; 23189 23190 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23191 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23192 if (ii->ipsec_in_dont_check) { 23193 check = B_FALSE; 23194 if (!ii->ipsec_in_secure) { 23195 freeb(ipsec_mp); 23196 mctl_present = B_FALSE; 23197 ipsec_mp = mp; 23198 } 23199 } 23200 } 23201 23202 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23203 policy_present = ipss->ipsec_inbound_v4_policy_present; 23204 ipha = (ipha_t *)mp->b_rptr; 23205 ip6h = NULL; 23206 } else { 23207 policy_present = ipss->ipsec_inbound_v6_policy_present; 23208 ipha = NULL; 23209 ip6h = (ip6_t *)mp->b_rptr; 23210 } 23211 23212 if (check && policy_present) { 23213 /* 23214 * The conn_t parameter is NULL because we already know 23215 * nobody's home. 23216 */ 23217 ipsec_mp = ipsec_check_global_policy( 23218 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23219 tcps->tcps_netstack); 23220 if (ipsec_mp == NULL) 23221 return; 23222 } 23223 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23224 DTRACE_PROBE2( 23225 tx__ip__log__error__nolistener__tcp, 23226 char *, "Could not reply with RST to mp(1)", 23227 mblk_t *, mp); 23228 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23229 freemsg(ipsec_mp); 23230 return; 23231 } 23232 23233 rptr = mp->b_rptr; 23234 23235 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23236 seg_seq = BE32_TO_U32(tcph->th_seq); 23237 seg_ack = BE32_TO_U32(tcph->th_ack); 23238 flags = tcph->th_flags[0]; 23239 23240 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23241 if (flags & TH_RST) { 23242 freemsg(ipsec_mp); 23243 } else if (flags & TH_ACK) { 23244 tcp_xmit_early_reset("no tcp, reset", 23245 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23246 connp); 23247 } else { 23248 if (flags & TH_SYN) { 23249 seg_len++; 23250 } else { 23251 /* 23252 * Here we violate the RFC. Note that a normal 23253 * TCP will never send a segment without the ACK 23254 * flag, except for RST or SYN segment. This 23255 * segment is neither. Just drop it on the 23256 * floor. 23257 */ 23258 freemsg(ipsec_mp); 23259 tcps->tcps_rst_unsent++; 23260 return; 23261 } 23262 23263 tcp_xmit_early_reset("no tcp, reset/ack", 23264 ipsec_mp, 0, seg_seq + seg_len, 23265 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23266 } 23267 } 23268 23269 /* 23270 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23271 * ip and tcp header ready to pass down to IP. If the mp passed in is 23272 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23273 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23274 * otherwise it will dup partial mblks.) 23275 * Otherwise, an appropriate ACK packet will be generated. This 23276 * routine is not usually called to send new data for the first time. It 23277 * is mostly called out of the timer for retransmits, and to generate ACKs. 23278 * 23279 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23280 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23281 * of the original mblk chain will be returned in *offset and *end_mp. 23282 */ 23283 mblk_t * 23284 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23285 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23286 boolean_t rexmit) 23287 { 23288 int data_length; 23289 int32_t off = 0; 23290 uint_t flags; 23291 mblk_t *mp1; 23292 mblk_t *mp2; 23293 uchar_t *rptr; 23294 tcph_t *tcph; 23295 int32_t num_sack_blk = 0; 23296 int32_t sack_opt_len = 0; 23297 tcp_stack_t *tcps = tcp->tcp_tcps; 23298 23299 /* Allocate for our maximum TCP header + link-level */ 23300 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23301 tcps->tcps_wroff_xtra, BPRI_MED); 23302 if (!mp1) 23303 return (NULL); 23304 data_length = 0; 23305 23306 /* 23307 * Note that tcp_mss has been adjusted to take into account the 23308 * timestamp option if applicable. Because SACK options do not 23309 * appear in every TCP segments and they are of variable lengths, 23310 * they cannot be included in tcp_mss. Thus we need to calculate 23311 * the actual segment length when we need to send a segment which 23312 * includes SACK options. 23313 */ 23314 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23315 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23316 tcp->tcp_num_sack_blk); 23317 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23318 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23319 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23320 max_to_send -= sack_opt_len; 23321 } 23322 23323 if (offset != NULL) { 23324 off = *offset; 23325 /* We use offset as an indicator that end_mp is not NULL. */ 23326 *end_mp = NULL; 23327 } 23328 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23329 /* This could be faster with cooperation from downstream */ 23330 if (mp2 != mp1 && !sendall && 23331 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23332 max_to_send) 23333 /* 23334 * Don't send the next mblk since the whole mblk 23335 * does not fit. 23336 */ 23337 break; 23338 mp2->b_cont = dupb(mp); 23339 mp2 = mp2->b_cont; 23340 if (!mp2) { 23341 freemsg(mp1); 23342 return (NULL); 23343 } 23344 mp2->b_rptr += off; 23345 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23346 (uintptr_t)INT_MAX); 23347 23348 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23349 if (data_length > max_to_send) { 23350 mp2->b_wptr -= data_length - max_to_send; 23351 data_length = max_to_send; 23352 off = mp2->b_wptr - mp->b_rptr; 23353 break; 23354 } else { 23355 off = 0; 23356 } 23357 } 23358 if (offset != NULL) { 23359 *offset = off; 23360 *end_mp = mp; 23361 } 23362 if (seg_len != NULL) { 23363 *seg_len = data_length; 23364 } 23365 23366 /* Update the latest receive window size in TCP header. */ 23367 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23368 tcp->tcp_tcph->th_win); 23369 23370 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23371 mp1->b_rptr = rptr; 23372 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23373 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23374 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23375 U32_TO_ABE32(seq, tcph->th_seq); 23376 23377 /* 23378 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23379 * that this function was called from tcp_wput_data. Thus, when called 23380 * to retransmit data the setting of the PUSH bit may appear some 23381 * what random in that it might get set when it should not. This 23382 * should not pose any performance issues. 23383 */ 23384 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23385 tcp->tcp_unsent == data_length)) { 23386 flags = TH_ACK | TH_PUSH; 23387 } else { 23388 flags = TH_ACK; 23389 } 23390 23391 if (tcp->tcp_ecn_ok) { 23392 if (tcp->tcp_ecn_echo_on) 23393 flags |= TH_ECE; 23394 23395 /* 23396 * Only set ECT bit and ECN_CWR if a segment contains new data. 23397 * There is no TCP flow control for non-data segments, and 23398 * only data segment is transmitted reliably. 23399 */ 23400 if (data_length > 0 && !rexmit) { 23401 SET_ECT(tcp, rptr); 23402 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23403 flags |= TH_CWR; 23404 tcp->tcp_ecn_cwr_sent = B_TRUE; 23405 } 23406 } 23407 } 23408 23409 if (tcp->tcp_valid_bits) { 23410 uint32_t u1; 23411 23412 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23413 seq == tcp->tcp_iss) { 23414 uchar_t *wptr; 23415 23416 /* 23417 * If TCP_ISS_VALID and the seq number is tcp_iss, 23418 * TCP can only be in SYN-SENT, SYN-RCVD or 23419 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23420 * our SYN is not ack'ed but the app closes this 23421 * TCP connection. 23422 */ 23423 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23424 tcp->tcp_state == TCPS_SYN_RCVD || 23425 tcp->tcp_state == TCPS_FIN_WAIT_1); 23426 23427 /* 23428 * Tack on the MSS option. It is always needed 23429 * for both active and passive open. 23430 * 23431 * MSS option value should be interface MTU - MIN 23432 * TCP/IP header according to RFC 793 as it means 23433 * the maximum segment size TCP can receive. But 23434 * to get around some broken middle boxes/end hosts 23435 * out there, we allow the option value to be the 23436 * same as the MSS option size on the peer side. 23437 * In this way, the other side will not send 23438 * anything larger than they can receive. 23439 * 23440 * Note that for SYN_SENT state, the ndd param 23441 * tcp_use_smss_as_mss_opt has no effect as we 23442 * don't know the peer's MSS option value. So 23443 * the only case we need to take care of is in 23444 * SYN_RCVD state, which is done later. 23445 */ 23446 wptr = mp1->b_wptr; 23447 wptr[0] = TCPOPT_MAXSEG; 23448 wptr[1] = TCPOPT_MAXSEG_LEN; 23449 wptr += 2; 23450 u1 = tcp->tcp_if_mtu - 23451 (tcp->tcp_ipversion == IPV4_VERSION ? 23452 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23453 TCP_MIN_HEADER_LENGTH; 23454 U16_TO_BE16(u1, wptr); 23455 mp1->b_wptr = wptr + 2; 23456 /* Update the offset to cover the additional word */ 23457 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23458 23459 /* 23460 * Note that the following way of filling in 23461 * TCP options are not optimal. Some NOPs can 23462 * be saved. But there is no need at this time 23463 * to optimize it. When it is needed, we will 23464 * do it. 23465 */ 23466 switch (tcp->tcp_state) { 23467 case TCPS_SYN_SENT: 23468 flags = TH_SYN; 23469 23470 if (tcp->tcp_snd_ts_ok) { 23471 uint32_t llbolt = (uint32_t)lbolt; 23472 23473 wptr = mp1->b_wptr; 23474 wptr[0] = TCPOPT_NOP; 23475 wptr[1] = TCPOPT_NOP; 23476 wptr[2] = TCPOPT_TSTAMP; 23477 wptr[3] = TCPOPT_TSTAMP_LEN; 23478 wptr += 4; 23479 U32_TO_BE32(llbolt, wptr); 23480 wptr += 4; 23481 ASSERT(tcp->tcp_ts_recent == 0); 23482 U32_TO_BE32(0L, wptr); 23483 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23484 tcph->th_offset_and_rsrvd[0] += 23485 (3 << 4); 23486 } 23487 23488 /* 23489 * Set up all the bits to tell other side 23490 * we are ECN capable. 23491 */ 23492 if (tcp->tcp_ecn_ok) { 23493 flags |= (TH_ECE | TH_CWR); 23494 } 23495 break; 23496 case TCPS_SYN_RCVD: 23497 flags |= TH_SYN; 23498 23499 /* 23500 * Reset the MSS option value to be SMSS 23501 * We should probably add back the bytes 23502 * for timestamp option and IPsec. We 23503 * don't do that as this is a workaround 23504 * for broken middle boxes/end hosts, it 23505 * is better for us to be more cautious. 23506 * They may not take these things into 23507 * account in their SMSS calculation. Thus 23508 * the peer's calculated SMSS may be smaller 23509 * than what it can be. This should be OK. 23510 */ 23511 if (tcps->tcps_use_smss_as_mss_opt) { 23512 u1 = tcp->tcp_mss; 23513 U16_TO_BE16(u1, wptr); 23514 } 23515 23516 /* 23517 * If the other side is ECN capable, reply 23518 * that we are also ECN capable. 23519 */ 23520 if (tcp->tcp_ecn_ok) 23521 flags |= TH_ECE; 23522 break; 23523 default: 23524 /* 23525 * The above ASSERT() makes sure that this 23526 * must be FIN-WAIT-1 state. Our SYN has 23527 * not been ack'ed so retransmit it. 23528 */ 23529 flags |= TH_SYN; 23530 break; 23531 } 23532 23533 if (tcp->tcp_snd_ws_ok) { 23534 wptr = mp1->b_wptr; 23535 wptr[0] = TCPOPT_NOP; 23536 wptr[1] = TCPOPT_WSCALE; 23537 wptr[2] = TCPOPT_WS_LEN; 23538 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23539 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23540 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23541 } 23542 23543 if (tcp->tcp_snd_sack_ok) { 23544 wptr = mp1->b_wptr; 23545 wptr[0] = TCPOPT_NOP; 23546 wptr[1] = TCPOPT_NOP; 23547 wptr[2] = TCPOPT_SACK_PERMITTED; 23548 wptr[3] = TCPOPT_SACK_OK_LEN; 23549 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23550 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23551 } 23552 23553 /* allocb() of adequate mblk assures space */ 23554 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23555 (uintptr_t)INT_MAX); 23556 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23557 /* 23558 * Get IP set to checksum on our behalf 23559 * Include the adjustment for a source route if any. 23560 */ 23561 u1 += tcp->tcp_sum; 23562 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23563 U16_TO_BE16(u1, tcph->th_sum); 23564 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23565 } 23566 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23567 (seq + data_length) == tcp->tcp_fss) { 23568 if (!tcp->tcp_fin_acked) { 23569 flags |= TH_FIN; 23570 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23571 } 23572 if (!tcp->tcp_fin_sent) { 23573 tcp->tcp_fin_sent = B_TRUE; 23574 switch (tcp->tcp_state) { 23575 case TCPS_SYN_RCVD: 23576 case TCPS_ESTABLISHED: 23577 tcp->tcp_state = TCPS_FIN_WAIT_1; 23578 break; 23579 case TCPS_CLOSE_WAIT: 23580 tcp->tcp_state = TCPS_LAST_ACK; 23581 break; 23582 } 23583 if (tcp->tcp_suna == tcp->tcp_snxt) 23584 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23585 tcp->tcp_snxt = tcp->tcp_fss + 1; 23586 } 23587 } 23588 /* 23589 * Note the trick here. u1 is unsigned. When tcp_urg 23590 * is smaller than seq, u1 will become a very huge value. 23591 * So the comparison will fail. Also note that tcp_urp 23592 * should be positive, see RFC 793 page 17. 23593 */ 23594 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23595 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23596 u1 < (uint32_t)(64 * 1024)) { 23597 flags |= TH_URG; 23598 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23599 U32_TO_ABE16(u1, tcph->th_urp); 23600 } 23601 } 23602 tcph->th_flags[0] = (uchar_t)flags; 23603 tcp->tcp_rack = tcp->tcp_rnxt; 23604 tcp->tcp_rack_cnt = 0; 23605 23606 if (tcp->tcp_snd_ts_ok) { 23607 if (tcp->tcp_state != TCPS_SYN_SENT) { 23608 uint32_t llbolt = (uint32_t)lbolt; 23609 23610 U32_TO_BE32(llbolt, 23611 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23612 U32_TO_BE32(tcp->tcp_ts_recent, 23613 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23614 } 23615 } 23616 23617 if (num_sack_blk > 0) { 23618 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23619 sack_blk_t *tmp; 23620 int32_t i; 23621 23622 wptr[0] = TCPOPT_NOP; 23623 wptr[1] = TCPOPT_NOP; 23624 wptr[2] = TCPOPT_SACK; 23625 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23626 sizeof (sack_blk_t); 23627 wptr += TCPOPT_REAL_SACK_LEN; 23628 23629 tmp = tcp->tcp_sack_list; 23630 for (i = 0; i < num_sack_blk; i++) { 23631 U32_TO_BE32(tmp[i].begin, wptr); 23632 wptr += sizeof (tcp_seq); 23633 U32_TO_BE32(tmp[i].end, wptr); 23634 wptr += sizeof (tcp_seq); 23635 } 23636 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23637 } 23638 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23639 data_length += (int)(mp1->b_wptr - rptr); 23640 if (tcp->tcp_ipversion == IPV4_VERSION) { 23641 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23642 } else { 23643 ip6_t *ip6 = (ip6_t *)(rptr + 23644 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23645 sizeof (ip6i_t) : 0)); 23646 23647 ip6->ip6_plen = htons(data_length - 23648 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23649 } 23650 23651 /* 23652 * Prime pump for IP 23653 * Include the adjustment for a source route if any. 23654 */ 23655 data_length -= tcp->tcp_ip_hdr_len; 23656 data_length += tcp->tcp_sum; 23657 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23658 U16_TO_ABE16(data_length, tcph->th_sum); 23659 if (tcp->tcp_ip_forward_progress) { 23660 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23661 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23662 tcp->tcp_ip_forward_progress = B_FALSE; 23663 } 23664 return (mp1); 23665 } 23666 23667 /* This function handles the push timeout. */ 23668 void 23669 tcp_push_timer(void *arg) 23670 { 23671 conn_t *connp = (conn_t *)arg; 23672 tcp_t *tcp = connp->conn_tcp; 23673 uint_t flags; 23674 sodirect_t *sodp; 23675 23676 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 23677 23678 ASSERT(tcp->tcp_listener == NULL); 23679 23680 ASSERT(!IPCL_IS_NONSTR(connp)); 23681 23682 /* 23683 * We need to plug synchronous streams during our drain to prevent 23684 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23685 */ 23686 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23687 tcp->tcp_push_tid = 0; 23688 23689 SOD_PTR_ENTER(tcp, sodp); 23690 if (sodp != NULL) { 23691 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23692 /* sod_wakeup() does the mutex_exit() */ 23693 } else if (tcp->tcp_rcv_list != NULL) { 23694 flags = tcp_rcv_drain(tcp); 23695 } 23696 if (flags == TH_ACK_NEEDED) 23697 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23698 23699 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23700 } 23701 23702 /* 23703 * This function handles delayed ACK timeout. 23704 */ 23705 static void 23706 tcp_ack_timer(void *arg) 23707 { 23708 conn_t *connp = (conn_t *)arg; 23709 tcp_t *tcp = connp->conn_tcp; 23710 mblk_t *mp; 23711 tcp_stack_t *tcps = tcp->tcp_tcps; 23712 23713 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23714 23715 tcp->tcp_ack_tid = 0; 23716 23717 if (tcp->tcp_fused) 23718 return; 23719 23720 /* 23721 * Do not send ACK if there is no outstanding unack'ed data. 23722 */ 23723 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23724 return; 23725 } 23726 23727 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23728 /* 23729 * Make sure we don't allow deferred ACKs to result in 23730 * timer-based ACKing. If we have held off an ACK 23731 * when there was more than an mss here, and the timer 23732 * goes off, we have to worry about the possibility 23733 * that the sender isn't doing slow-start, or is out 23734 * of step with us for some other reason. We fall 23735 * permanently back in the direction of 23736 * ACK-every-other-packet as suggested in RFC 1122. 23737 */ 23738 if (tcp->tcp_rack_abs_max > 2) 23739 tcp->tcp_rack_abs_max--; 23740 tcp->tcp_rack_cur_max = 2; 23741 } 23742 mp = tcp_ack_mp(tcp); 23743 23744 if (mp != NULL) { 23745 BUMP_LOCAL(tcp->tcp_obsegs); 23746 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23747 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23748 tcp_send_data(tcp, tcp->tcp_wq, mp); 23749 } 23750 } 23751 23752 23753 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23754 static mblk_t * 23755 tcp_ack_mp(tcp_t *tcp) 23756 { 23757 uint32_t seq_no; 23758 tcp_stack_t *tcps = tcp->tcp_tcps; 23759 23760 /* 23761 * There are a few cases to be considered while setting the sequence no. 23762 * Essentially, we can come here while processing an unacceptable pkt 23763 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23764 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23765 * If we are here for a zero window probe, stick with suna. In all 23766 * other cases, we check if suna + swnd encompasses snxt and set 23767 * the sequence number to snxt, if so. If snxt falls outside the 23768 * window (the receiver probably shrunk its window), we will go with 23769 * suna + swnd, otherwise the sequence no will be unacceptable to the 23770 * receiver. 23771 */ 23772 if (tcp->tcp_zero_win_probe) { 23773 seq_no = tcp->tcp_suna; 23774 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23775 ASSERT(tcp->tcp_swnd == 0); 23776 seq_no = tcp->tcp_snxt; 23777 } else { 23778 seq_no = SEQ_GT(tcp->tcp_snxt, 23779 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23780 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23781 } 23782 23783 if (tcp->tcp_valid_bits) { 23784 /* 23785 * For the complex case where we have to send some 23786 * controls (FIN or SYN), let tcp_xmit_mp do it. 23787 */ 23788 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23789 NULL, B_FALSE)); 23790 } else { 23791 /* Generate a simple ACK */ 23792 int data_length; 23793 uchar_t *rptr; 23794 tcph_t *tcph; 23795 mblk_t *mp1; 23796 int32_t tcp_hdr_len; 23797 int32_t tcp_tcp_hdr_len; 23798 int32_t num_sack_blk = 0; 23799 int32_t sack_opt_len; 23800 23801 /* 23802 * Allocate space for TCP + IP headers 23803 * and link-level header 23804 */ 23805 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23806 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23807 tcp->tcp_num_sack_blk); 23808 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23809 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23810 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23811 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23812 } else { 23813 tcp_hdr_len = tcp->tcp_hdr_len; 23814 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23815 } 23816 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23817 if (!mp1) 23818 return (NULL); 23819 23820 /* Update the latest receive window size in TCP header. */ 23821 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23822 tcp->tcp_tcph->th_win); 23823 /* copy in prototype TCP + IP header */ 23824 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23825 mp1->b_rptr = rptr; 23826 mp1->b_wptr = rptr + tcp_hdr_len; 23827 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23828 23829 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23830 23831 /* Set the TCP sequence number. */ 23832 U32_TO_ABE32(seq_no, tcph->th_seq); 23833 23834 /* Set up the TCP flag field. */ 23835 tcph->th_flags[0] = (uchar_t)TH_ACK; 23836 if (tcp->tcp_ecn_echo_on) 23837 tcph->th_flags[0] |= TH_ECE; 23838 23839 tcp->tcp_rack = tcp->tcp_rnxt; 23840 tcp->tcp_rack_cnt = 0; 23841 23842 /* fill in timestamp option if in use */ 23843 if (tcp->tcp_snd_ts_ok) { 23844 uint32_t llbolt = (uint32_t)lbolt; 23845 23846 U32_TO_BE32(llbolt, 23847 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23848 U32_TO_BE32(tcp->tcp_ts_recent, 23849 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23850 } 23851 23852 /* Fill in SACK options */ 23853 if (num_sack_blk > 0) { 23854 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23855 sack_blk_t *tmp; 23856 int32_t i; 23857 23858 wptr[0] = TCPOPT_NOP; 23859 wptr[1] = TCPOPT_NOP; 23860 wptr[2] = TCPOPT_SACK; 23861 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23862 sizeof (sack_blk_t); 23863 wptr += TCPOPT_REAL_SACK_LEN; 23864 23865 tmp = tcp->tcp_sack_list; 23866 for (i = 0; i < num_sack_blk; i++) { 23867 U32_TO_BE32(tmp[i].begin, wptr); 23868 wptr += sizeof (tcp_seq); 23869 U32_TO_BE32(tmp[i].end, wptr); 23870 wptr += sizeof (tcp_seq); 23871 } 23872 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23873 << 4); 23874 } 23875 23876 if (tcp->tcp_ipversion == IPV4_VERSION) { 23877 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23878 } else { 23879 /* Check for ip6i_t header in sticky hdrs */ 23880 ip6_t *ip6 = (ip6_t *)(rptr + 23881 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23882 sizeof (ip6i_t) : 0)); 23883 23884 ip6->ip6_plen = htons(tcp_hdr_len - 23885 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23886 } 23887 23888 /* 23889 * Prime pump for checksum calculation in IP. Include the 23890 * adjustment for a source route if any. 23891 */ 23892 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23893 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23894 U16_TO_ABE16(data_length, tcph->th_sum); 23895 23896 if (tcp->tcp_ip_forward_progress) { 23897 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23898 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23899 tcp->tcp_ip_forward_progress = B_FALSE; 23900 } 23901 return (mp1); 23902 } 23903 } 23904 23905 /* 23906 * Hash list insertion routine for tcp_t structures. Each hash bucket 23907 * contains a list of tcp_t entries, and each entry is bound to a unique 23908 * port. If there are multiple tcp_t's that are bound to the same port, then 23909 * one of them will be linked into the hash bucket list, and the rest will 23910 * hang off of that one entry. For each port, entries bound to a specific IP 23911 * address will be inserted before those those bound to INADDR_ANY. 23912 */ 23913 static void 23914 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23915 { 23916 tcp_t **tcpp; 23917 tcp_t *tcpnext; 23918 tcp_t *tcphash; 23919 23920 if (tcp->tcp_ptpbhn != NULL) { 23921 ASSERT(!caller_holds_lock); 23922 tcp_bind_hash_remove(tcp); 23923 } 23924 tcpp = &tbf->tf_tcp; 23925 if (!caller_holds_lock) { 23926 mutex_enter(&tbf->tf_lock); 23927 } else { 23928 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23929 } 23930 tcphash = tcpp[0]; 23931 tcpnext = NULL; 23932 if (tcphash != NULL) { 23933 /* Look for an entry using the same port */ 23934 while ((tcphash = tcpp[0]) != NULL && 23935 tcp->tcp_lport != tcphash->tcp_lport) 23936 tcpp = &(tcphash->tcp_bind_hash); 23937 23938 /* The port was not found, just add to the end */ 23939 if (tcphash == NULL) 23940 goto insert; 23941 23942 /* 23943 * OK, there already exists an entry bound to the 23944 * same port. 23945 * 23946 * If the new tcp bound to the INADDR_ANY address 23947 * and the first one in the list is not bound to 23948 * INADDR_ANY we skip all entries until we find the 23949 * first one bound to INADDR_ANY. 23950 * This makes sure that applications binding to a 23951 * specific address get preference over those binding to 23952 * INADDR_ANY. 23953 */ 23954 tcpnext = tcphash; 23955 tcphash = NULL; 23956 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23957 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23958 while ((tcpnext = tcpp[0]) != NULL && 23959 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23960 tcpp = &(tcpnext->tcp_bind_hash_port); 23961 23962 if (tcpnext) { 23963 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23964 tcphash = tcpnext->tcp_bind_hash; 23965 if (tcphash != NULL) { 23966 tcphash->tcp_ptpbhn = 23967 &(tcp->tcp_bind_hash); 23968 tcpnext->tcp_bind_hash = NULL; 23969 } 23970 } 23971 } else { 23972 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23973 tcphash = tcpnext->tcp_bind_hash; 23974 if (tcphash != NULL) { 23975 tcphash->tcp_ptpbhn = 23976 &(tcp->tcp_bind_hash); 23977 tcpnext->tcp_bind_hash = NULL; 23978 } 23979 } 23980 } 23981 insert: 23982 tcp->tcp_bind_hash_port = tcpnext; 23983 tcp->tcp_bind_hash = tcphash; 23984 tcp->tcp_ptpbhn = tcpp; 23985 tcpp[0] = tcp; 23986 if (!caller_holds_lock) 23987 mutex_exit(&tbf->tf_lock); 23988 } 23989 23990 /* 23991 * Hash list removal routine for tcp_t structures. 23992 */ 23993 static void 23994 tcp_bind_hash_remove(tcp_t *tcp) 23995 { 23996 tcp_t *tcpnext; 23997 kmutex_t *lockp; 23998 tcp_stack_t *tcps = tcp->tcp_tcps; 23999 24000 if (tcp->tcp_ptpbhn == NULL) 24001 return; 24002 24003 /* 24004 * Extract the lock pointer in case there are concurrent 24005 * hash_remove's for this instance. 24006 */ 24007 ASSERT(tcp->tcp_lport != 0); 24008 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24009 24010 ASSERT(lockp != NULL); 24011 mutex_enter(lockp); 24012 if (tcp->tcp_ptpbhn) { 24013 tcpnext = tcp->tcp_bind_hash_port; 24014 if (tcpnext != NULL) { 24015 tcp->tcp_bind_hash_port = NULL; 24016 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24017 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 24018 if (tcpnext->tcp_bind_hash != NULL) { 24019 tcpnext->tcp_bind_hash->tcp_ptpbhn = 24020 &(tcpnext->tcp_bind_hash); 24021 tcp->tcp_bind_hash = NULL; 24022 } 24023 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 24024 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24025 tcp->tcp_bind_hash = NULL; 24026 } 24027 *tcp->tcp_ptpbhn = tcpnext; 24028 tcp->tcp_ptpbhn = NULL; 24029 } 24030 mutex_exit(lockp); 24031 } 24032 24033 24034 /* 24035 * Hash list lookup routine for tcp_t structures. 24036 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24037 */ 24038 static tcp_t * 24039 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24040 { 24041 tf_t *tf; 24042 tcp_t *tcp; 24043 24044 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24045 mutex_enter(&tf->tf_lock); 24046 for (tcp = tf->tf_tcp; tcp != NULL; 24047 tcp = tcp->tcp_acceptor_hash) { 24048 if (tcp->tcp_acceptor_id == id) { 24049 CONN_INC_REF(tcp->tcp_connp); 24050 mutex_exit(&tf->tf_lock); 24051 return (tcp); 24052 } 24053 } 24054 mutex_exit(&tf->tf_lock); 24055 return (NULL); 24056 } 24057 24058 24059 /* 24060 * Hash list insertion routine for tcp_t structures. 24061 */ 24062 void 24063 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24064 { 24065 tf_t *tf; 24066 tcp_t **tcpp; 24067 tcp_t *tcpnext; 24068 tcp_stack_t *tcps = tcp->tcp_tcps; 24069 24070 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24071 24072 if (tcp->tcp_ptpahn != NULL) 24073 tcp_acceptor_hash_remove(tcp); 24074 tcpp = &tf->tf_tcp; 24075 mutex_enter(&tf->tf_lock); 24076 tcpnext = tcpp[0]; 24077 if (tcpnext) 24078 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24079 tcp->tcp_acceptor_hash = tcpnext; 24080 tcp->tcp_ptpahn = tcpp; 24081 tcpp[0] = tcp; 24082 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24083 mutex_exit(&tf->tf_lock); 24084 } 24085 24086 /* 24087 * Hash list removal routine for tcp_t structures. 24088 */ 24089 static void 24090 tcp_acceptor_hash_remove(tcp_t *tcp) 24091 { 24092 tcp_t *tcpnext; 24093 kmutex_t *lockp; 24094 24095 /* 24096 * Extract the lock pointer in case there are concurrent 24097 * hash_remove's for this instance. 24098 */ 24099 lockp = tcp->tcp_acceptor_lockp; 24100 24101 if (tcp->tcp_ptpahn == NULL) 24102 return; 24103 24104 ASSERT(lockp != NULL); 24105 mutex_enter(lockp); 24106 if (tcp->tcp_ptpahn) { 24107 tcpnext = tcp->tcp_acceptor_hash; 24108 if (tcpnext) { 24109 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24110 tcp->tcp_acceptor_hash = NULL; 24111 } 24112 *tcp->tcp_ptpahn = tcpnext; 24113 tcp->tcp_ptpahn = NULL; 24114 } 24115 mutex_exit(lockp); 24116 tcp->tcp_acceptor_lockp = NULL; 24117 } 24118 24119 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24120 24121 static ipaddr_t netmasks[] = { 24122 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24123 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24124 }; 24125 24126 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24127 24128 /* 24129 * XXX This routine should go away and instead we should use the metrics 24130 * associated with the routes to determine the default sndspace and rcvspace. 24131 */ 24132 static tcp_hsp_t * 24133 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24134 { 24135 tcp_hsp_t *hsp = NULL; 24136 24137 /* Quick check without acquiring the lock. */ 24138 if (tcps->tcps_hsp_hash == NULL) 24139 return (NULL); 24140 24141 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24142 24143 /* This routine finds the best-matching HSP for address addr. */ 24144 24145 if (tcps->tcps_hsp_hash) { 24146 int i; 24147 ipaddr_t srchaddr; 24148 tcp_hsp_t *hsp_net; 24149 24150 /* We do three passes: host, network, and subnet. */ 24151 24152 srchaddr = addr; 24153 24154 for (i = 1; i <= 3; i++) { 24155 /* Look for exact match on srchaddr */ 24156 24157 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24158 while (hsp) { 24159 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24160 hsp->tcp_hsp_addr == srchaddr) 24161 break; 24162 hsp = hsp->tcp_hsp_next; 24163 } 24164 ASSERT(hsp == NULL || 24165 hsp->tcp_hsp_vers == IPV4_VERSION); 24166 24167 /* 24168 * If this is the first pass: 24169 * If we found a match, great, return it. 24170 * If not, search for the network on the second pass. 24171 */ 24172 24173 if (i == 1) 24174 if (hsp) 24175 break; 24176 else 24177 { 24178 srchaddr = addr & netmask(addr); 24179 continue; 24180 } 24181 24182 /* 24183 * If this is the second pass: 24184 * If we found a match, but there's a subnet mask, 24185 * save the match but try again using the subnet 24186 * mask on the third pass. 24187 * Otherwise, return whatever we found. 24188 */ 24189 24190 if (i == 2) { 24191 if (hsp && hsp->tcp_hsp_subnet) { 24192 hsp_net = hsp; 24193 srchaddr = addr & hsp->tcp_hsp_subnet; 24194 continue; 24195 } else { 24196 break; 24197 } 24198 } 24199 24200 /* 24201 * This must be the third pass. If we didn't find 24202 * anything, return the saved network HSP instead. 24203 */ 24204 24205 if (!hsp) 24206 hsp = hsp_net; 24207 } 24208 } 24209 24210 rw_exit(&tcps->tcps_hsp_lock); 24211 return (hsp); 24212 } 24213 24214 /* 24215 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24216 * match lookup. 24217 */ 24218 static tcp_hsp_t * 24219 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24220 { 24221 tcp_hsp_t *hsp = NULL; 24222 24223 /* Quick check without acquiring the lock. */ 24224 if (tcps->tcps_hsp_hash == NULL) 24225 return (NULL); 24226 24227 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24228 24229 /* This routine finds the best-matching HSP for address addr. */ 24230 24231 if (tcps->tcps_hsp_hash) { 24232 int i; 24233 in6_addr_t v6srchaddr; 24234 tcp_hsp_t *hsp_net; 24235 24236 /* We do three passes: host, network, and subnet. */ 24237 24238 v6srchaddr = *v6addr; 24239 24240 for (i = 1; i <= 3; i++) { 24241 /* Look for exact match on srchaddr */ 24242 24243 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24244 V4_PART_OF_V6(v6srchaddr))]; 24245 while (hsp) { 24246 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24247 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24248 &v6srchaddr)) 24249 break; 24250 hsp = hsp->tcp_hsp_next; 24251 } 24252 24253 /* 24254 * If this is the first pass: 24255 * If we found a match, great, return it. 24256 * If not, search for the network on the second pass. 24257 */ 24258 24259 if (i == 1) 24260 if (hsp) 24261 break; 24262 else { 24263 /* Assume a 64 bit mask */ 24264 v6srchaddr.s6_addr32[0] = 24265 v6addr->s6_addr32[0]; 24266 v6srchaddr.s6_addr32[1] = 24267 v6addr->s6_addr32[1]; 24268 v6srchaddr.s6_addr32[2] = 0; 24269 v6srchaddr.s6_addr32[3] = 0; 24270 continue; 24271 } 24272 24273 /* 24274 * If this is the second pass: 24275 * If we found a match, but there's a subnet mask, 24276 * save the match but try again using the subnet 24277 * mask on the third pass. 24278 * Otherwise, return whatever we found. 24279 */ 24280 24281 if (i == 2) { 24282 ASSERT(hsp == NULL || 24283 hsp->tcp_hsp_vers == IPV6_VERSION); 24284 if (hsp && 24285 !IN6_IS_ADDR_UNSPECIFIED( 24286 &hsp->tcp_hsp_subnet_v6)) { 24287 hsp_net = hsp; 24288 V6_MASK_COPY(*v6addr, 24289 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24290 continue; 24291 } else { 24292 break; 24293 } 24294 } 24295 24296 /* 24297 * This must be the third pass. If we didn't find 24298 * anything, return the saved network HSP instead. 24299 */ 24300 24301 if (!hsp) 24302 hsp = hsp_net; 24303 } 24304 } 24305 24306 rw_exit(&tcps->tcps_hsp_lock); 24307 return (hsp); 24308 } 24309 24310 /* 24311 * Type three generator adapted from the random() function in 4.4 BSD: 24312 */ 24313 24314 /* 24315 * Copyright (c) 1983, 1993 24316 * The Regents of the University of California. All rights reserved. 24317 * 24318 * Redistribution and use in source and binary forms, with or without 24319 * modification, are permitted provided that the following conditions 24320 * are met: 24321 * 1. Redistributions of source code must retain the above copyright 24322 * notice, this list of conditions and the following disclaimer. 24323 * 2. Redistributions in binary form must reproduce the above copyright 24324 * notice, this list of conditions and the following disclaimer in the 24325 * documentation and/or other materials provided with the distribution. 24326 * 3. All advertising materials mentioning features or use of this software 24327 * must display the following acknowledgement: 24328 * This product includes software developed by the University of 24329 * California, Berkeley and its contributors. 24330 * 4. Neither the name of the University nor the names of its contributors 24331 * may be used to endorse or promote products derived from this software 24332 * without specific prior written permission. 24333 * 24334 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24335 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24336 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24337 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24338 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24339 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24340 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24341 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24342 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24343 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24344 * SUCH DAMAGE. 24345 */ 24346 24347 /* Type 3 -- x**31 + x**3 + 1 */ 24348 #define DEG_3 31 24349 #define SEP_3 3 24350 24351 24352 /* Protected by tcp_random_lock */ 24353 static int tcp_randtbl[DEG_3 + 1]; 24354 24355 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24356 static int *tcp_random_rptr = &tcp_randtbl[1]; 24357 24358 static int *tcp_random_state = &tcp_randtbl[1]; 24359 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24360 24361 kmutex_t tcp_random_lock; 24362 24363 void 24364 tcp_random_init(void) 24365 { 24366 int i; 24367 hrtime_t hrt; 24368 time_t wallclock; 24369 uint64_t result; 24370 24371 /* 24372 * Use high-res timer and current time for seed. Gethrtime() returns 24373 * a longlong, which may contain resolution down to nanoseconds. 24374 * The current time will either be a 32-bit or a 64-bit quantity. 24375 * XOR the two together in a 64-bit result variable. 24376 * Convert the result to a 32-bit value by multiplying the high-order 24377 * 32-bits by the low-order 32-bits. 24378 */ 24379 24380 hrt = gethrtime(); 24381 (void) drv_getparm(TIME, &wallclock); 24382 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24383 mutex_enter(&tcp_random_lock); 24384 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24385 (result & 0xffffffff); 24386 24387 for (i = 1; i < DEG_3; i++) 24388 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24389 + 12345; 24390 tcp_random_fptr = &tcp_random_state[SEP_3]; 24391 tcp_random_rptr = &tcp_random_state[0]; 24392 mutex_exit(&tcp_random_lock); 24393 for (i = 0; i < 10 * DEG_3; i++) 24394 (void) tcp_random(); 24395 } 24396 24397 /* 24398 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24399 * This range is selected to be approximately centered on TCP_ISS / 2, 24400 * and easy to compute. We get this value by generating a 32-bit random 24401 * number, selecting out the high-order 17 bits, and then adding one so 24402 * that we never return zero. 24403 */ 24404 int 24405 tcp_random(void) 24406 { 24407 int i; 24408 24409 mutex_enter(&tcp_random_lock); 24410 *tcp_random_fptr += *tcp_random_rptr; 24411 24412 /* 24413 * The high-order bits are more random than the low-order bits, 24414 * so we select out the high-order 17 bits and add one so that 24415 * we never return zero. 24416 */ 24417 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24418 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24419 tcp_random_fptr = tcp_random_state; 24420 ++tcp_random_rptr; 24421 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24422 tcp_random_rptr = tcp_random_state; 24423 24424 mutex_exit(&tcp_random_lock); 24425 return (i); 24426 } 24427 24428 static int 24429 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24430 int *t_errorp, int *sys_errorp) 24431 { 24432 int error; 24433 int is_absreq_failure; 24434 t_scalar_t *opt_lenp; 24435 t_scalar_t opt_offset; 24436 int prim_type; 24437 struct T_conn_req *tcreqp; 24438 struct T_conn_res *tcresp; 24439 cred_t *cr; 24440 24441 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24442 24443 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24444 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24445 prim_type == T_CONN_RES); 24446 24447 switch (prim_type) { 24448 case T_CONN_REQ: 24449 tcreqp = (struct T_conn_req *)mp->b_rptr; 24450 opt_offset = tcreqp->OPT_offset; 24451 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24452 break; 24453 case O_T_CONN_RES: 24454 case T_CONN_RES: 24455 tcresp = (struct T_conn_res *)mp->b_rptr; 24456 opt_offset = tcresp->OPT_offset; 24457 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24458 break; 24459 } 24460 24461 *t_errorp = 0; 24462 *sys_errorp = 0; 24463 *do_disconnectp = 0; 24464 24465 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24466 opt_offset, cr, &tcp_opt_obj, 24467 NULL, &is_absreq_failure); 24468 24469 switch (error) { 24470 case 0: /* no error */ 24471 ASSERT(is_absreq_failure == 0); 24472 return (0); 24473 case ENOPROTOOPT: 24474 *t_errorp = TBADOPT; 24475 break; 24476 case EACCES: 24477 *t_errorp = TACCES; 24478 break; 24479 default: 24480 *t_errorp = TSYSERR; *sys_errorp = error; 24481 break; 24482 } 24483 if (is_absreq_failure != 0) { 24484 /* 24485 * The connection request should get the local ack 24486 * T_OK_ACK and then a T_DISCON_IND. 24487 */ 24488 *do_disconnectp = 1; 24489 } 24490 return (-1); 24491 } 24492 24493 /* 24494 * Split this function out so that if the secret changes, I'm okay. 24495 * 24496 * Initialize the tcp_iss_cookie and tcp_iss_key. 24497 */ 24498 24499 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24500 24501 static void 24502 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24503 { 24504 struct { 24505 int32_t current_time; 24506 uint32_t randnum; 24507 uint16_t pad; 24508 uint8_t ether[6]; 24509 uint8_t passwd[PASSWD_SIZE]; 24510 } tcp_iss_cookie; 24511 time_t t; 24512 24513 /* 24514 * Start with the current absolute time. 24515 */ 24516 (void) drv_getparm(TIME, &t); 24517 tcp_iss_cookie.current_time = t; 24518 24519 /* 24520 * XXX - Need a more random number per RFC 1750, not this crap. 24521 * OTOH, if what follows is pretty random, then I'm in better shape. 24522 */ 24523 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24524 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24525 24526 /* 24527 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24528 * as a good template. 24529 */ 24530 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24531 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24532 24533 /* 24534 * The pass-phrase. Normally this is supplied by user-called NDD. 24535 */ 24536 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24537 24538 /* 24539 * See 4010593 if this section becomes a problem again, 24540 * but the local ethernet address is useful here. 24541 */ 24542 (void) localetheraddr(NULL, 24543 (struct ether_addr *)&tcp_iss_cookie.ether); 24544 24545 /* 24546 * Hash 'em all together. The MD5Final is called per-connection. 24547 */ 24548 mutex_enter(&tcps->tcps_iss_key_lock); 24549 MD5Init(&tcps->tcps_iss_key); 24550 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24551 sizeof (tcp_iss_cookie)); 24552 mutex_exit(&tcps->tcps_iss_key_lock); 24553 } 24554 24555 /* 24556 * Set the RFC 1948 pass phrase 24557 */ 24558 /* ARGSUSED */ 24559 static int 24560 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24561 cred_t *cr) 24562 { 24563 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24564 24565 /* 24566 * Basically, value contains a new pass phrase. Pass it along! 24567 */ 24568 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24569 return (0); 24570 } 24571 24572 /* ARGSUSED */ 24573 static int 24574 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24575 { 24576 bzero(buf, sizeof (tcp_sack_info_t)); 24577 return (0); 24578 } 24579 24580 /* ARGSUSED */ 24581 static int 24582 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24583 { 24584 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24585 return (0); 24586 } 24587 24588 /* 24589 * Make sure we wait until the default queue is setup, yet allow 24590 * tcp_g_q_create() to open a TCP stream. 24591 * We need to allow tcp_g_q_create() do do an open 24592 * of tcp, hence we compare curhread. 24593 * All others have to wait until the tcps_g_q has been 24594 * setup. 24595 */ 24596 void 24597 tcp_g_q_setup(tcp_stack_t *tcps) 24598 { 24599 mutex_enter(&tcps->tcps_g_q_lock); 24600 if (tcps->tcps_g_q != NULL) { 24601 mutex_exit(&tcps->tcps_g_q_lock); 24602 return; 24603 } 24604 if (tcps->tcps_g_q_creator == NULL) { 24605 /* This thread will set it up */ 24606 tcps->tcps_g_q_creator = curthread; 24607 mutex_exit(&tcps->tcps_g_q_lock); 24608 tcp_g_q_create(tcps); 24609 mutex_enter(&tcps->tcps_g_q_lock); 24610 ASSERT(tcps->tcps_g_q_creator == curthread); 24611 tcps->tcps_g_q_creator = NULL; 24612 cv_signal(&tcps->tcps_g_q_cv); 24613 ASSERT(tcps->tcps_g_q != NULL); 24614 mutex_exit(&tcps->tcps_g_q_lock); 24615 return; 24616 } 24617 /* Everybody but the creator has to wait */ 24618 if (tcps->tcps_g_q_creator != curthread) { 24619 while (tcps->tcps_g_q == NULL) 24620 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24621 } 24622 mutex_exit(&tcps->tcps_g_q_lock); 24623 } 24624 24625 #define IP "ip" 24626 24627 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24628 24629 /* 24630 * Create a default tcp queue here instead of in strplumb 24631 */ 24632 void 24633 tcp_g_q_create(tcp_stack_t *tcps) 24634 { 24635 int error; 24636 ldi_handle_t lh = NULL; 24637 ldi_ident_t li = NULL; 24638 int rval; 24639 cred_t *cr; 24640 major_t IP_MAJ; 24641 24642 #ifdef NS_DEBUG 24643 (void) printf("tcp_g_q_create()\n"); 24644 #endif 24645 24646 IP_MAJ = ddi_name_to_major(IP); 24647 24648 ASSERT(tcps->tcps_g_q_creator == curthread); 24649 24650 error = ldi_ident_from_major(IP_MAJ, &li); 24651 if (error) { 24652 #ifdef DEBUG 24653 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24654 error); 24655 #endif 24656 return; 24657 } 24658 24659 cr = zone_get_kcred(netstackid_to_zoneid( 24660 tcps->tcps_netstack->netstack_stackid)); 24661 ASSERT(cr != NULL); 24662 /* 24663 * We set the tcp default queue to IPv6 because IPv4 falls 24664 * back to IPv6 when it can't find a client, but 24665 * IPv6 does not fall back to IPv4. 24666 */ 24667 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24668 if (error) { 24669 #ifdef DEBUG 24670 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24671 error); 24672 #endif 24673 goto out; 24674 } 24675 24676 /* 24677 * This ioctl causes the tcp framework to cache a pointer to 24678 * this stream, so we don't want to close the stream after 24679 * this operation. 24680 * Use the kernel credentials that are for the zone we're in. 24681 */ 24682 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24683 (intptr_t)0, FKIOCTL, cr, &rval); 24684 if (error) { 24685 #ifdef DEBUG 24686 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24687 "error %d\n", error); 24688 #endif 24689 goto out; 24690 } 24691 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24692 lh = NULL; 24693 out: 24694 /* Close layered handles */ 24695 if (li) 24696 ldi_ident_release(li); 24697 /* Keep cred around until _inactive needs it */ 24698 tcps->tcps_g_q_cr = cr; 24699 } 24700 24701 /* 24702 * We keep tcp_g_q set until all other tcp_t's in the zone 24703 * has gone away, and then when tcp_g_q_inactive() is called 24704 * we clear it. 24705 */ 24706 void 24707 tcp_g_q_destroy(tcp_stack_t *tcps) 24708 { 24709 #ifdef NS_DEBUG 24710 (void) printf("tcp_g_q_destroy()for stack %d\n", 24711 tcps->tcps_netstack->netstack_stackid); 24712 #endif 24713 24714 if (tcps->tcps_g_q == NULL) { 24715 return; /* Nothing to cleanup */ 24716 } 24717 /* 24718 * Drop reference corresponding to the default queue. 24719 * This reference was added from tcp_open when the default queue 24720 * was created, hence we compensate for this extra drop in 24721 * tcp_g_q_close. If the refcnt drops to zero here it means 24722 * the default queue was the last one to be open, in which 24723 * case, then tcp_g_q_inactive will be 24724 * called as a result of the refrele. 24725 */ 24726 TCPS_REFRELE(tcps); 24727 } 24728 24729 /* 24730 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24731 * Run by tcp_q_q_inactive using a taskq. 24732 */ 24733 static void 24734 tcp_g_q_close(void *arg) 24735 { 24736 tcp_stack_t *tcps = arg; 24737 int error; 24738 ldi_handle_t lh = NULL; 24739 ldi_ident_t li = NULL; 24740 cred_t *cr; 24741 major_t IP_MAJ; 24742 24743 IP_MAJ = ddi_name_to_major(IP); 24744 24745 #ifdef NS_DEBUG 24746 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24747 tcps->tcps_netstack->netstack_stackid, 24748 tcps->tcps_netstack->netstack_refcnt); 24749 #endif 24750 lh = tcps->tcps_g_q_lh; 24751 if (lh == NULL) 24752 return; /* Nothing to cleanup */ 24753 24754 ASSERT(tcps->tcps_refcnt == 1); 24755 ASSERT(tcps->tcps_g_q != NULL); 24756 24757 error = ldi_ident_from_major(IP_MAJ, &li); 24758 if (error) { 24759 #ifdef DEBUG 24760 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24761 error); 24762 #endif 24763 return; 24764 } 24765 24766 cr = tcps->tcps_g_q_cr; 24767 tcps->tcps_g_q_cr = NULL; 24768 ASSERT(cr != NULL); 24769 24770 /* 24771 * Make sure we can break the recursion when tcp_close decrements 24772 * the reference count causing g_q_inactive to be called again. 24773 */ 24774 tcps->tcps_g_q_lh = NULL; 24775 24776 /* close the default queue */ 24777 (void) ldi_close(lh, FREAD|FWRITE, cr); 24778 /* 24779 * At this point in time tcps and the rest of netstack_t might 24780 * have been deleted. 24781 */ 24782 tcps = NULL; 24783 24784 /* Close layered handles */ 24785 ldi_ident_release(li); 24786 crfree(cr); 24787 } 24788 24789 /* 24790 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24791 * 24792 * Have to ensure that the ldi routines are not used by an 24793 * interrupt thread by using a taskq. 24794 */ 24795 void 24796 tcp_g_q_inactive(tcp_stack_t *tcps) 24797 { 24798 if (tcps->tcps_g_q_lh == NULL) 24799 return; /* Nothing to cleanup */ 24800 24801 ASSERT(tcps->tcps_refcnt == 0); 24802 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24803 24804 if (servicing_interrupt()) { 24805 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24806 (void *) tcps, TQ_SLEEP); 24807 } else { 24808 tcp_g_q_close(tcps); 24809 } 24810 } 24811 24812 /* 24813 * Called by IP when IP is loaded into the kernel 24814 */ 24815 void 24816 tcp_ddi_g_init(void) 24817 { 24818 tcp_timercache = kmem_cache_create("tcp_timercache", 24819 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24820 NULL, NULL, NULL, NULL, NULL, 0); 24821 24822 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24823 sizeof (tcp_sack_info_t), 0, 24824 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24825 24826 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24827 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24828 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24829 24830 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24831 24832 /* Initialize the random number generator */ 24833 tcp_random_init(); 24834 24835 /* A single callback independently of how many netstacks we have */ 24836 ip_squeue_init(tcp_squeue_add); 24837 24838 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24839 24840 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24841 TASKQ_PREPOPULATE); 24842 24843 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24844 24845 /* 24846 * We want to be informed each time a stack is created or 24847 * destroyed in the kernel, so we can maintain the 24848 * set of tcp_stack_t's. 24849 */ 24850 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24851 tcp_stack_fini); 24852 } 24853 24854 24855 #define INET_NAME "ip" 24856 24857 /* 24858 * Initialize the TCP stack instance. 24859 */ 24860 static void * 24861 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24862 { 24863 tcp_stack_t *tcps; 24864 tcpparam_t *pa; 24865 int i; 24866 int error = 0; 24867 major_t major; 24868 24869 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24870 tcps->tcps_netstack = ns; 24871 24872 /* Initialize locks */ 24873 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24874 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24875 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24876 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24877 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24878 24879 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24880 tcps->tcps_g_epriv_ports[0] = 2049; 24881 tcps->tcps_g_epriv_ports[1] = 4045; 24882 tcps->tcps_min_anonpriv_port = 512; 24883 24884 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24885 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24886 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24887 TCP_FANOUT_SIZE, KM_SLEEP); 24888 24889 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24890 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24891 MUTEX_DEFAULT, NULL); 24892 } 24893 24894 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24895 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24896 MUTEX_DEFAULT, NULL); 24897 } 24898 24899 /* TCP's IPsec code calls the packet dropper. */ 24900 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24901 24902 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24903 tcps->tcps_params = pa; 24904 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24905 24906 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24907 A_CNT(lcl_tcp_param_arr), tcps); 24908 24909 /* 24910 * Note: To really walk the device tree you need the devinfo 24911 * pointer to your device which is only available after probe/attach. 24912 * The following is safe only because it uses ddi_root_node() 24913 */ 24914 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24915 tcp_opt_obj.odb_opt_arr_cnt); 24916 24917 /* 24918 * Initialize RFC 1948 secret values. This will probably be reset once 24919 * by the boot scripts. 24920 * 24921 * Use NULL name, as the name is caught by the new lockstats. 24922 * 24923 * Initialize with some random, non-guessable string, like the global 24924 * T_INFO_ACK. 24925 */ 24926 24927 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24928 sizeof (tcp_g_t_info_ack), tcps); 24929 24930 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24931 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24932 24933 major = mod_name_to_major(INET_NAME); 24934 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24935 ASSERT(error == 0); 24936 return (tcps); 24937 } 24938 24939 /* 24940 * Called when the IP module is about to be unloaded. 24941 */ 24942 void 24943 tcp_ddi_g_destroy(void) 24944 { 24945 tcp_g_kstat_fini(tcp_g_kstat); 24946 tcp_g_kstat = NULL; 24947 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24948 24949 mutex_destroy(&tcp_random_lock); 24950 24951 kmem_cache_destroy(tcp_timercache); 24952 kmem_cache_destroy(tcp_sack_info_cache); 24953 kmem_cache_destroy(tcp_iphc_cache); 24954 24955 netstack_unregister(NS_TCP); 24956 taskq_destroy(tcp_taskq); 24957 } 24958 24959 /* 24960 * Shut down the TCP stack instance. 24961 */ 24962 /* ARGSUSED */ 24963 static void 24964 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24965 { 24966 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24967 24968 tcp_g_q_destroy(tcps); 24969 } 24970 24971 /* 24972 * Free the TCP stack instance. 24973 */ 24974 static void 24975 tcp_stack_fini(netstackid_t stackid, void *arg) 24976 { 24977 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24978 int i; 24979 24980 nd_free(&tcps->tcps_g_nd); 24981 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24982 tcps->tcps_params = NULL; 24983 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24984 tcps->tcps_wroff_xtra_param = NULL; 24985 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24986 tcps->tcps_mdt_head_param = NULL; 24987 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24988 tcps->tcps_mdt_tail_param = NULL; 24989 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24990 tcps->tcps_mdt_max_pbufs_param = NULL; 24991 24992 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24993 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24994 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24995 } 24996 24997 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24998 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24999 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25000 } 25001 25002 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25003 tcps->tcps_bind_fanout = NULL; 25004 25005 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25006 tcps->tcps_acceptor_fanout = NULL; 25007 25008 mutex_destroy(&tcps->tcps_iss_key_lock); 25009 rw_destroy(&tcps->tcps_hsp_lock); 25010 mutex_destroy(&tcps->tcps_g_q_lock); 25011 cv_destroy(&tcps->tcps_g_q_cv); 25012 mutex_destroy(&tcps->tcps_epriv_port_lock); 25013 25014 ip_drop_unregister(&tcps->tcps_dropper); 25015 25016 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25017 tcps->tcps_kstat = NULL; 25018 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25019 25020 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25021 tcps->tcps_mibkp = NULL; 25022 25023 ldi_ident_release(tcps->tcps_ldi_ident); 25024 kmem_free(tcps, sizeof (*tcps)); 25025 } 25026 25027 /* 25028 * Generate ISS, taking into account NDD changes may happen halfway through. 25029 * (If the iss is not zero, set it.) 25030 */ 25031 25032 static void 25033 tcp_iss_init(tcp_t *tcp) 25034 { 25035 MD5_CTX context; 25036 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25037 uint32_t answer[4]; 25038 tcp_stack_t *tcps = tcp->tcp_tcps; 25039 25040 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25041 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25042 switch (tcps->tcps_strong_iss) { 25043 case 2: 25044 mutex_enter(&tcps->tcps_iss_key_lock); 25045 context = tcps->tcps_iss_key; 25046 mutex_exit(&tcps->tcps_iss_key_lock); 25047 arg.ports = tcp->tcp_ports; 25048 if (tcp->tcp_ipversion == IPV4_VERSION) { 25049 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25050 &arg.src); 25051 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25052 &arg.dst); 25053 } else { 25054 arg.src = tcp->tcp_ip6h->ip6_src; 25055 arg.dst = tcp->tcp_ip6h->ip6_dst; 25056 } 25057 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25058 MD5Final((uchar_t *)answer, &context); 25059 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25060 /* 25061 * Now that we've hashed into a unique per-connection sequence 25062 * space, add a random increment per strong_iss == 1. So I 25063 * guess we'll have to... 25064 */ 25065 /* FALLTHRU */ 25066 case 1: 25067 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25068 break; 25069 default: 25070 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25071 break; 25072 } 25073 tcp->tcp_valid_bits = TCP_ISS_VALID; 25074 tcp->tcp_fss = tcp->tcp_iss - 1; 25075 tcp->tcp_suna = tcp->tcp_iss; 25076 tcp->tcp_snxt = tcp->tcp_iss + 1; 25077 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25078 tcp->tcp_csuna = tcp->tcp_snxt; 25079 } 25080 25081 /* 25082 * Exported routine for extracting active tcp connection status. 25083 * 25084 * This is used by the Solaris Cluster Networking software to 25085 * gather a list of connections that need to be forwarded to 25086 * specific nodes in the cluster when configuration changes occur. 25087 * 25088 * The callback is invoked for each tcp_t structure from all netstacks, 25089 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 25090 * from the netstack with the specified stack_id. Returning 25091 * non-zero from the callback routine terminates the search. 25092 */ 25093 int 25094 cl_tcp_walk_list(netstackid_t stack_id, 25095 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 25096 { 25097 netstack_handle_t nh; 25098 netstack_t *ns; 25099 int ret = 0; 25100 25101 if (stack_id >= 0) { 25102 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 25103 return (EINVAL); 25104 25105 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25106 ns->netstack_tcp); 25107 netstack_rele(ns); 25108 return (ret); 25109 } 25110 25111 netstack_next_init(&nh); 25112 while ((ns = netstack_next(&nh)) != NULL) { 25113 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25114 ns->netstack_tcp); 25115 netstack_rele(ns); 25116 } 25117 netstack_next_fini(&nh); 25118 return (ret); 25119 } 25120 25121 static int 25122 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25123 tcp_stack_t *tcps) 25124 { 25125 tcp_t *tcp; 25126 cl_tcp_info_t cl_tcpi; 25127 connf_t *connfp; 25128 conn_t *connp; 25129 int i; 25130 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25131 25132 ASSERT(callback != NULL); 25133 25134 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25135 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25136 connp = NULL; 25137 25138 while ((connp = 25139 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25140 25141 tcp = connp->conn_tcp; 25142 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25143 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25144 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25145 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25146 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25147 /* 25148 * The macros tcp_laddr and tcp_faddr give the IPv4 25149 * addresses. They are copied implicitly below as 25150 * mapped addresses. 25151 */ 25152 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25153 if (tcp->tcp_ipversion == IPV4_VERSION) { 25154 cl_tcpi.cl_tcpi_faddr = 25155 tcp->tcp_ipha->ipha_dst; 25156 } else { 25157 cl_tcpi.cl_tcpi_faddr_v6 = 25158 tcp->tcp_ip6h->ip6_dst; 25159 } 25160 25161 /* 25162 * If the callback returns non-zero 25163 * we terminate the traversal. 25164 */ 25165 if ((*callback)(&cl_tcpi, arg) != 0) { 25166 CONN_DEC_REF(tcp->tcp_connp); 25167 return (1); 25168 } 25169 } 25170 } 25171 25172 return (0); 25173 } 25174 25175 /* 25176 * Macros used for accessing the different types of sockaddr 25177 * structures inside a tcp_ioc_abort_conn_t. 25178 */ 25179 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25180 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25181 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25182 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25183 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25184 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25185 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25186 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25187 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25188 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25189 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25190 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25191 25192 /* 25193 * Return the correct error code to mimic the behavior 25194 * of a connection reset. 25195 */ 25196 #define TCP_AC_GET_ERRCODE(state, err) { \ 25197 switch ((state)) { \ 25198 case TCPS_SYN_SENT: \ 25199 case TCPS_SYN_RCVD: \ 25200 (err) = ECONNREFUSED; \ 25201 break; \ 25202 case TCPS_ESTABLISHED: \ 25203 case TCPS_FIN_WAIT_1: \ 25204 case TCPS_FIN_WAIT_2: \ 25205 case TCPS_CLOSE_WAIT: \ 25206 (err) = ECONNRESET; \ 25207 break; \ 25208 case TCPS_CLOSING: \ 25209 case TCPS_LAST_ACK: \ 25210 case TCPS_TIME_WAIT: \ 25211 (err) = 0; \ 25212 break; \ 25213 default: \ 25214 (err) = ENXIO; \ 25215 } \ 25216 } 25217 25218 /* 25219 * Check if a tcp structure matches the info in acp. 25220 */ 25221 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25222 (((acp)->ac_local.ss_family == AF_INET) ? \ 25223 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25224 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25225 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25226 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25227 (TCP_AC_V4LPORT((acp)) == 0 || \ 25228 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25229 (TCP_AC_V4RPORT((acp)) == 0 || \ 25230 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25231 (acp)->ac_start <= (tcp)->tcp_state && \ 25232 (acp)->ac_end >= (tcp)->tcp_state) : \ 25233 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25234 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25235 &(tcp)->tcp_ip_src_v6)) && \ 25236 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25237 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25238 &(tcp)->tcp_remote_v6)) && \ 25239 (TCP_AC_V6LPORT((acp)) == 0 || \ 25240 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25241 (TCP_AC_V6RPORT((acp)) == 0 || \ 25242 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25243 (acp)->ac_start <= (tcp)->tcp_state && \ 25244 (acp)->ac_end >= (tcp)->tcp_state)) 25245 25246 #define TCP_AC_MATCH(acp, tcp) \ 25247 (((acp)->ac_zoneid == ALL_ZONES || \ 25248 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25249 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25250 25251 /* 25252 * Build a message containing a tcp_ioc_abort_conn_t structure 25253 * which is filled in with information from acp and tp. 25254 */ 25255 static mblk_t * 25256 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25257 { 25258 mblk_t *mp; 25259 tcp_ioc_abort_conn_t *tacp; 25260 25261 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25262 if (mp == NULL) 25263 return (NULL); 25264 25265 mp->b_datap->db_type = M_CTL; 25266 25267 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25268 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25269 sizeof (uint32_t)); 25270 25271 tacp->ac_start = acp->ac_start; 25272 tacp->ac_end = acp->ac_end; 25273 tacp->ac_zoneid = acp->ac_zoneid; 25274 25275 if (acp->ac_local.ss_family == AF_INET) { 25276 tacp->ac_local.ss_family = AF_INET; 25277 tacp->ac_remote.ss_family = AF_INET; 25278 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25279 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25280 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25281 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25282 } else { 25283 tacp->ac_local.ss_family = AF_INET6; 25284 tacp->ac_remote.ss_family = AF_INET6; 25285 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25286 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25287 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25288 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25289 } 25290 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25291 return (mp); 25292 } 25293 25294 /* 25295 * Print a tcp_ioc_abort_conn_t structure. 25296 */ 25297 static void 25298 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25299 { 25300 char lbuf[128]; 25301 char rbuf[128]; 25302 sa_family_t af; 25303 in_port_t lport, rport; 25304 ushort_t logflags; 25305 25306 af = acp->ac_local.ss_family; 25307 25308 if (af == AF_INET) { 25309 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25310 lbuf, 128); 25311 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25312 rbuf, 128); 25313 lport = ntohs(TCP_AC_V4LPORT(acp)); 25314 rport = ntohs(TCP_AC_V4RPORT(acp)); 25315 } else { 25316 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25317 lbuf, 128); 25318 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25319 rbuf, 128); 25320 lport = ntohs(TCP_AC_V6LPORT(acp)); 25321 rport = ntohs(TCP_AC_V6RPORT(acp)); 25322 } 25323 25324 logflags = SL_TRACE | SL_NOTE; 25325 /* 25326 * Don't print this message to the console if the operation was done 25327 * to a non-global zone. 25328 */ 25329 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25330 logflags |= SL_CONSOLE; 25331 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25332 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25333 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25334 acp->ac_start, acp->ac_end); 25335 } 25336 25337 /* 25338 * Called inside tcp_rput when a message built using 25339 * tcp_ioctl_abort_build_msg is put into a queue. 25340 * Note that when we get here there is no wildcard in acp any more. 25341 */ 25342 static void 25343 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25344 { 25345 tcp_ioc_abort_conn_t *acp; 25346 25347 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25348 if (tcp->tcp_state <= acp->ac_end) { 25349 /* 25350 * If we get here, we are already on the correct 25351 * squeue. This ioctl follows the following path 25352 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25353 * ->tcp_ioctl_abort->squeue_enter (if on a 25354 * different squeue) 25355 */ 25356 int errcode; 25357 25358 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25359 (void) tcp_clean_death(tcp, errcode, 26); 25360 } 25361 freemsg(mp); 25362 } 25363 25364 /* 25365 * Abort all matching connections on a hash chain. 25366 */ 25367 static int 25368 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25369 boolean_t exact, tcp_stack_t *tcps) 25370 { 25371 int nmatch, err = 0; 25372 tcp_t *tcp; 25373 MBLKP mp, last, listhead = NULL; 25374 conn_t *tconnp; 25375 connf_t *connfp; 25376 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25377 25378 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25379 25380 startover: 25381 nmatch = 0; 25382 25383 mutex_enter(&connfp->connf_lock); 25384 for (tconnp = connfp->connf_head; tconnp != NULL; 25385 tconnp = tconnp->conn_next) { 25386 tcp = tconnp->conn_tcp; 25387 if (TCP_AC_MATCH(acp, tcp)) { 25388 CONN_INC_REF(tcp->tcp_connp); 25389 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25390 if (mp == NULL) { 25391 err = ENOMEM; 25392 CONN_DEC_REF(tcp->tcp_connp); 25393 break; 25394 } 25395 mp->b_prev = (mblk_t *)tcp; 25396 25397 if (listhead == NULL) { 25398 listhead = mp; 25399 last = mp; 25400 } else { 25401 last->b_next = mp; 25402 last = mp; 25403 } 25404 nmatch++; 25405 if (exact) 25406 break; 25407 } 25408 25409 /* Avoid holding lock for too long. */ 25410 if (nmatch >= 500) 25411 break; 25412 } 25413 mutex_exit(&connfp->connf_lock); 25414 25415 /* Pass mp into the correct tcp */ 25416 while ((mp = listhead) != NULL) { 25417 listhead = listhead->b_next; 25418 tcp = (tcp_t *)mp->b_prev; 25419 mp->b_next = mp->b_prev = NULL; 25420 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 25421 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 25422 } 25423 25424 *count += nmatch; 25425 if (nmatch >= 500 && err == 0) 25426 goto startover; 25427 return (err); 25428 } 25429 25430 /* 25431 * Abort all connections that matches the attributes specified in acp. 25432 */ 25433 static int 25434 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25435 { 25436 sa_family_t af; 25437 uint32_t ports; 25438 uint16_t *pports; 25439 int err = 0, count = 0; 25440 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25441 int index = -1; 25442 ushort_t logflags; 25443 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25444 25445 af = acp->ac_local.ss_family; 25446 25447 if (af == AF_INET) { 25448 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25449 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25450 pports = (uint16_t *)&ports; 25451 pports[1] = TCP_AC_V4LPORT(acp); 25452 pports[0] = TCP_AC_V4RPORT(acp); 25453 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25454 } 25455 } else { 25456 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25457 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25458 pports = (uint16_t *)&ports; 25459 pports[1] = TCP_AC_V6LPORT(acp); 25460 pports[0] = TCP_AC_V6RPORT(acp); 25461 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25462 } 25463 } 25464 25465 /* 25466 * For cases where remote addr, local port, and remote port are non- 25467 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25468 */ 25469 if (index != -1) { 25470 err = tcp_ioctl_abort_bucket(acp, index, 25471 &count, exact, tcps); 25472 } else { 25473 /* 25474 * loop through all entries for wildcard case 25475 */ 25476 for (index = 0; 25477 index < ipst->ips_ipcl_conn_fanout_size; 25478 index++) { 25479 err = tcp_ioctl_abort_bucket(acp, index, 25480 &count, exact, tcps); 25481 if (err != 0) 25482 break; 25483 } 25484 } 25485 25486 logflags = SL_TRACE | SL_NOTE; 25487 /* 25488 * Don't print this message to the console if the operation was done 25489 * to a non-global zone. 25490 */ 25491 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25492 logflags |= SL_CONSOLE; 25493 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25494 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25495 if (err == 0 && count == 0) 25496 err = ENOENT; 25497 return (err); 25498 } 25499 25500 /* 25501 * Process the TCP_IOC_ABORT_CONN ioctl request. 25502 */ 25503 static void 25504 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25505 { 25506 int err; 25507 IOCP iocp; 25508 MBLKP mp1; 25509 sa_family_t laf, raf; 25510 tcp_ioc_abort_conn_t *acp; 25511 zone_t *zptr; 25512 conn_t *connp = Q_TO_CONN(q); 25513 zoneid_t zoneid = connp->conn_zoneid; 25514 tcp_t *tcp = connp->conn_tcp; 25515 tcp_stack_t *tcps = tcp->tcp_tcps; 25516 25517 iocp = (IOCP)mp->b_rptr; 25518 25519 if ((mp1 = mp->b_cont) == NULL || 25520 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25521 err = EINVAL; 25522 goto out; 25523 } 25524 25525 /* check permissions */ 25526 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25527 err = EPERM; 25528 goto out; 25529 } 25530 25531 if (mp1->b_cont != NULL) { 25532 freemsg(mp1->b_cont); 25533 mp1->b_cont = NULL; 25534 } 25535 25536 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25537 laf = acp->ac_local.ss_family; 25538 raf = acp->ac_remote.ss_family; 25539 25540 /* check that a zone with the supplied zoneid exists */ 25541 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25542 zptr = zone_find_by_id(zoneid); 25543 if (zptr != NULL) { 25544 zone_rele(zptr); 25545 } else { 25546 err = EINVAL; 25547 goto out; 25548 } 25549 } 25550 25551 /* 25552 * For exclusive stacks we set the zoneid to zero 25553 * to make TCP operate as if in the global zone. 25554 */ 25555 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25556 acp->ac_zoneid = GLOBAL_ZONEID; 25557 25558 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25559 acp->ac_start > acp->ac_end || laf != raf || 25560 (laf != AF_INET && laf != AF_INET6)) { 25561 err = EINVAL; 25562 goto out; 25563 } 25564 25565 tcp_ioctl_abort_dump(acp); 25566 err = tcp_ioctl_abort(acp, tcps); 25567 25568 out: 25569 if (mp1 != NULL) { 25570 freemsg(mp1); 25571 mp->b_cont = NULL; 25572 } 25573 25574 if (err != 0) 25575 miocnak(q, mp, 0, err); 25576 else 25577 miocack(q, mp, 0, 0); 25578 } 25579 25580 /* 25581 * tcp_time_wait_processing() handles processing of incoming packets when 25582 * the tcp is in the TIME_WAIT state. 25583 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25584 * on the time wait list. 25585 */ 25586 void 25587 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25588 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25589 { 25590 int32_t bytes_acked; 25591 int32_t gap; 25592 int32_t rgap; 25593 tcp_opt_t tcpopt; 25594 uint_t flags; 25595 uint32_t new_swnd = 0; 25596 conn_t *connp; 25597 tcp_stack_t *tcps = tcp->tcp_tcps; 25598 25599 BUMP_LOCAL(tcp->tcp_ibsegs); 25600 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25601 25602 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25603 new_swnd = BE16_TO_U16(tcph->th_win) << 25604 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25605 if (tcp->tcp_snd_ts_ok) { 25606 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25607 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25608 tcp->tcp_rnxt, TH_ACK); 25609 goto done; 25610 } 25611 } 25612 gap = seg_seq - tcp->tcp_rnxt; 25613 rgap = tcp->tcp_rwnd - (gap + seg_len); 25614 if (gap < 0) { 25615 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25616 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25617 (seg_len > -gap ? -gap : seg_len)); 25618 seg_len += gap; 25619 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25620 if (flags & TH_RST) { 25621 goto done; 25622 } 25623 if ((flags & TH_FIN) && seg_len == -1) { 25624 /* 25625 * When TCP receives a duplicate FIN in 25626 * TIME_WAIT state, restart the 2 MSL timer. 25627 * See page 73 in RFC 793. Make sure this TCP 25628 * is already on the TIME_WAIT list. If not, 25629 * just restart the timer. 25630 */ 25631 if (TCP_IS_DETACHED(tcp)) { 25632 if (tcp_time_wait_remove(tcp, NULL) == 25633 B_TRUE) { 25634 tcp_time_wait_append(tcp); 25635 TCP_DBGSTAT(tcps, 25636 tcp_rput_time_wait); 25637 } 25638 } else { 25639 ASSERT(tcp != NULL); 25640 TCP_TIMER_RESTART(tcp, 25641 tcps->tcps_time_wait_interval); 25642 } 25643 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25644 tcp->tcp_rnxt, TH_ACK); 25645 goto done; 25646 } 25647 flags |= TH_ACK_NEEDED; 25648 seg_len = 0; 25649 goto process_ack; 25650 } 25651 25652 /* Fix seg_seq, and chew the gap off the front. */ 25653 seg_seq = tcp->tcp_rnxt; 25654 } 25655 25656 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25657 /* 25658 * Make sure that when we accept the connection, pick 25659 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25660 * old connection. 25661 * 25662 * The next ISS generated is equal to tcp_iss_incr_extra 25663 * + ISS_INCR/2 + other components depending on the 25664 * value of tcp_strong_iss. We pre-calculate the new 25665 * ISS here and compare with tcp_snxt to determine if 25666 * we need to make adjustment to tcp_iss_incr_extra. 25667 * 25668 * The above calculation is ugly and is a 25669 * waste of CPU cycles... 25670 */ 25671 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25672 int32_t adj; 25673 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25674 25675 switch (tcps->tcps_strong_iss) { 25676 case 2: { 25677 /* Add time and MD5 components. */ 25678 uint32_t answer[4]; 25679 struct { 25680 uint32_t ports; 25681 in6_addr_t src; 25682 in6_addr_t dst; 25683 } arg; 25684 MD5_CTX context; 25685 25686 mutex_enter(&tcps->tcps_iss_key_lock); 25687 context = tcps->tcps_iss_key; 25688 mutex_exit(&tcps->tcps_iss_key_lock); 25689 arg.ports = tcp->tcp_ports; 25690 /* We use MAPPED addresses in tcp_iss_init */ 25691 arg.src = tcp->tcp_ip_src_v6; 25692 if (tcp->tcp_ipversion == IPV4_VERSION) { 25693 IN6_IPADDR_TO_V4MAPPED( 25694 tcp->tcp_ipha->ipha_dst, 25695 &arg.dst); 25696 } else { 25697 arg.dst = 25698 tcp->tcp_ip6h->ip6_dst; 25699 } 25700 MD5Update(&context, (uchar_t *)&arg, 25701 sizeof (arg)); 25702 MD5Final((uchar_t *)answer, &context); 25703 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25704 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25705 break; 25706 } 25707 case 1: 25708 /* Add time component and min random (i.e. 1). */ 25709 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25710 break; 25711 default: 25712 /* Add only time component. */ 25713 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25714 break; 25715 } 25716 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25717 /* 25718 * New ISS not guaranteed to be ISS_INCR/2 25719 * ahead of the current tcp_snxt, so add the 25720 * difference to tcp_iss_incr_extra. 25721 */ 25722 tcps->tcps_iss_incr_extra += adj; 25723 } 25724 /* 25725 * If tcp_clean_death() can not perform the task now, 25726 * drop the SYN packet and let the other side re-xmit. 25727 * Otherwise pass the SYN packet back in, since the 25728 * old tcp state has been cleaned up or freed. 25729 */ 25730 if (tcp_clean_death(tcp, 0, 27) == -1) 25731 goto done; 25732 /* 25733 * We will come back to tcp_rput_data 25734 * on the global queue. Packets destined 25735 * for the global queue will be checked 25736 * with global policy. But the policy for 25737 * this packet has already been checked as 25738 * this was destined for the detached 25739 * connection. We need to bypass policy 25740 * check this time by attaching a dummy 25741 * ipsec_in with ipsec_in_dont_check set. 25742 */ 25743 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25744 if (connp != NULL) { 25745 TCP_STAT(tcps, tcp_time_wait_syn_success); 25746 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25747 return; 25748 } 25749 goto done; 25750 } 25751 25752 /* 25753 * rgap is the amount of stuff received out of window. A negative 25754 * value is the amount out of window. 25755 */ 25756 if (rgap < 0) { 25757 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25758 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25759 /* Fix seg_len and make sure there is something left. */ 25760 seg_len += rgap; 25761 if (seg_len <= 0) { 25762 if (flags & TH_RST) { 25763 goto done; 25764 } 25765 flags |= TH_ACK_NEEDED; 25766 seg_len = 0; 25767 goto process_ack; 25768 } 25769 } 25770 /* 25771 * Check whether we can update tcp_ts_recent. This test is 25772 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25773 * Extensions for High Performance: An Update", Internet Draft. 25774 */ 25775 if (tcp->tcp_snd_ts_ok && 25776 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25777 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25778 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25779 tcp->tcp_last_rcv_lbolt = lbolt64; 25780 } 25781 25782 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25783 /* Always ack out of order packets */ 25784 flags |= TH_ACK_NEEDED; 25785 seg_len = 0; 25786 } else if (seg_len > 0) { 25787 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25788 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25789 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25790 } 25791 if (flags & TH_RST) { 25792 (void) tcp_clean_death(tcp, 0, 28); 25793 goto done; 25794 } 25795 if (flags & TH_SYN) { 25796 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25797 TH_RST|TH_ACK); 25798 /* 25799 * Do not delete the TCP structure if it is in 25800 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25801 */ 25802 goto done; 25803 } 25804 process_ack: 25805 if (flags & TH_ACK) { 25806 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25807 if (bytes_acked <= 0) { 25808 if (bytes_acked == 0 && seg_len == 0 && 25809 new_swnd == tcp->tcp_swnd) 25810 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25811 } else { 25812 /* Acks something not sent */ 25813 flags |= TH_ACK_NEEDED; 25814 } 25815 } 25816 if (flags & TH_ACK_NEEDED) { 25817 /* 25818 * Time to send an ack for some reason. 25819 */ 25820 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25821 tcp->tcp_rnxt, TH_ACK); 25822 } 25823 done: 25824 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25825 DB_CKSUMSTART(mp) = 0; 25826 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25827 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25828 } 25829 freemsg(mp); 25830 } 25831 25832 /* 25833 * TCP Timers Implementation. 25834 */ 25835 timeout_id_t 25836 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25837 { 25838 mblk_t *mp; 25839 tcp_timer_t *tcpt; 25840 tcp_t *tcp = connp->conn_tcp; 25841 25842 ASSERT(connp->conn_sqp != NULL); 25843 25844 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 25845 25846 if (tcp->tcp_timercache == NULL) { 25847 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25848 } else { 25849 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 25850 mp = tcp->tcp_timercache; 25851 tcp->tcp_timercache = mp->b_next; 25852 mp->b_next = NULL; 25853 ASSERT(mp->b_wptr == NULL); 25854 } 25855 25856 CONN_INC_REF(connp); 25857 tcpt = (tcp_timer_t *)mp->b_rptr; 25858 tcpt->connp = connp; 25859 tcpt->tcpt_proc = f; 25860 /* 25861 * TCP timers are normal timeouts. Plus, they do not require more than 25862 * a 10 millisecond resolution. By choosing a coarser resolution and by 25863 * rounding up the expiration to the next resolution boundary, we can 25864 * batch timers in the callout subsystem to make TCP timers more 25865 * efficient. The roundup also protects short timers from expiring too 25866 * early before they have a chance to be cancelled. 25867 */ 25868 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25869 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25870 25871 return ((timeout_id_t)mp); 25872 } 25873 25874 static void 25875 tcp_timer_callback(void *arg) 25876 { 25877 mblk_t *mp = (mblk_t *)arg; 25878 tcp_timer_t *tcpt; 25879 conn_t *connp; 25880 25881 tcpt = (tcp_timer_t *)mp->b_rptr; 25882 connp = tcpt->connp; 25883 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 25884 SQ_FILL, SQTAG_TCP_TIMER); 25885 } 25886 25887 static void 25888 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25889 { 25890 tcp_timer_t *tcpt; 25891 conn_t *connp = (conn_t *)arg; 25892 tcp_t *tcp = connp->conn_tcp; 25893 25894 tcpt = (tcp_timer_t *)mp->b_rptr; 25895 ASSERT(connp == tcpt->connp); 25896 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25897 25898 /* 25899 * If the TCP has reached the closed state, don't proceed any 25900 * further. This TCP logically does not exist on the system. 25901 * tcpt_proc could for example access queues, that have already 25902 * been qprocoff'ed off. Also see comments at the start of tcp_input 25903 */ 25904 if (tcp->tcp_state != TCPS_CLOSED) { 25905 (*tcpt->tcpt_proc)(connp); 25906 } else { 25907 tcp->tcp_timer_tid = 0; 25908 } 25909 tcp_timer_free(connp->conn_tcp, mp); 25910 } 25911 25912 /* 25913 * There is potential race with untimeout and the handler firing at the same 25914 * time. The mblock may be freed by the handler while we are trying to use 25915 * it. But since both should execute on the same squeue, this race should not 25916 * occur. 25917 */ 25918 clock_t 25919 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25920 { 25921 mblk_t *mp = (mblk_t *)id; 25922 tcp_timer_t *tcpt; 25923 clock_t delta; 25924 25925 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25926 25927 if (mp == NULL) 25928 return (-1); 25929 25930 tcpt = (tcp_timer_t *)mp->b_rptr; 25931 ASSERT(tcpt->connp == connp); 25932 25933 delta = untimeout_default(tcpt->tcpt_tid, 0); 25934 25935 if (delta >= 0) { 25936 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25937 tcp_timer_free(connp->conn_tcp, mp); 25938 CONN_DEC_REF(connp); 25939 } 25940 25941 return (delta); 25942 } 25943 25944 /* 25945 * Allocate space for the timer event. The allocation looks like mblk, but it is 25946 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25947 * 25948 * Dealing with failures: If we can't allocate from the timer cache we try 25949 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25950 * points to b_rptr. 25951 * If we can't allocate anything using allocb_tryhard(), we perform a last 25952 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25953 * save the actual allocation size in b_datap. 25954 */ 25955 mblk_t * 25956 tcp_timermp_alloc(int kmflags) 25957 { 25958 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25959 kmflags & ~KM_PANIC); 25960 25961 if (mp != NULL) { 25962 mp->b_next = mp->b_prev = NULL; 25963 mp->b_rptr = (uchar_t *)(&mp[1]); 25964 mp->b_wptr = NULL; 25965 mp->b_datap = NULL; 25966 mp->b_queue = NULL; 25967 mp->b_cont = NULL; 25968 } else if (kmflags & KM_PANIC) { 25969 /* 25970 * Failed to allocate memory for the timer. Try allocating from 25971 * dblock caches. 25972 */ 25973 /* ipclassifier calls this from a constructor - hence no tcps */ 25974 TCP_G_STAT(tcp_timermp_allocfail); 25975 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25976 if (mp == NULL) { 25977 size_t size = 0; 25978 /* 25979 * Memory is really low. Try tryhard allocation. 25980 * 25981 * ipclassifier calls this from a constructor - 25982 * hence no tcps 25983 */ 25984 TCP_G_STAT(tcp_timermp_allocdblfail); 25985 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25986 sizeof (tcp_timer_t), &size, kmflags); 25987 mp->b_rptr = (uchar_t *)(&mp[1]); 25988 mp->b_next = mp->b_prev = NULL; 25989 mp->b_wptr = (uchar_t *)-1; 25990 mp->b_datap = (dblk_t *)size; 25991 mp->b_queue = NULL; 25992 mp->b_cont = NULL; 25993 } 25994 ASSERT(mp->b_wptr != NULL); 25995 } 25996 /* ipclassifier calls this from a constructor - hence no tcps */ 25997 TCP_G_DBGSTAT(tcp_timermp_alloced); 25998 25999 return (mp); 26000 } 26001 26002 /* 26003 * Free per-tcp timer cache. 26004 * It can only contain entries from tcp_timercache. 26005 */ 26006 void 26007 tcp_timermp_free(tcp_t *tcp) 26008 { 26009 mblk_t *mp; 26010 26011 while ((mp = tcp->tcp_timercache) != NULL) { 26012 ASSERT(mp->b_wptr == NULL); 26013 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26014 kmem_cache_free(tcp_timercache, mp); 26015 } 26016 } 26017 26018 /* 26019 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26020 * events there already (currently at most two events are cached). 26021 * If the event is not allocated from the timer cache, free it right away. 26022 */ 26023 static void 26024 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26025 { 26026 mblk_t *mp1 = tcp->tcp_timercache; 26027 26028 if (mp->b_wptr != NULL) { 26029 /* 26030 * This allocation is not from a timer cache, free it right 26031 * away. 26032 */ 26033 if (mp->b_wptr != (uchar_t *)-1) 26034 freeb(mp); 26035 else 26036 kmem_free(mp, (size_t)mp->b_datap); 26037 } else if (mp1 == NULL || mp1->b_next == NULL) { 26038 /* Cache this timer block for future allocations */ 26039 mp->b_rptr = (uchar_t *)(&mp[1]); 26040 mp->b_next = mp1; 26041 tcp->tcp_timercache = mp; 26042 } else { 26043 kmem_cache_free(tcp_timercache, mp); 26044 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 26045 } 26046 } 26047 26048 /* 26049 * End of TCP Timers implementation. 26050 */ 26051 26052 /* 26053 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26054 * on the specified backing STREAMS q. Note, the caller may make the 26055 * decision to call based on the tcp_t.tcp_flow_stopped value which 26056 * when check outside the q's lock is only an advisory check ... 26057 */ 26058 void 26059 tcp_setqfull(tcp_t *tcp) 26060 { 26061 tcp_stack_t *tcps = tcp->tcp_tcps; 26062 conn_t *connp = tcp->tcp_connp; 26063 26064 if (tcp->tcp_closed) 26065 return; 26066 26067 if (IPCL_IS_NONSTR(connp)) { 26068 (*connp->conn_upcalls->su_txq_full) 26069 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 26070 tcp->tcp_flow_stopped = B_TRUE; 26071 } else { 26072 queue_t *q = tcp->tcp_wq; 26073 26074 if (!(q->q_flag & QFULL)) { 26075 mutex_enter(QLOCK(q)); 26076 if (!(q->q_flag & QFULL)) { 26077 /* still need to set QFULL */ 26078 q->q_flag |= QFULL; 26079 tcp->tcp_flow_stopped = B_TRUE; 26080 mutex_exit(QLOCK(q)); 26081 TCP_STAT(tcps, tcp_flwctl_on); 26082 } else { 26083 mutex_exit(QLOCK(q)); 26084 } 26085 } 26086 } 26087 } 26088 26089 void 26090 tcp_clrqfull(tcp_t *tcp) 26091 { 26092 conn_t *connp = tcp->tcp_connp; 26093 26094 if (tcp->tcp_closed) 26095 return; 26096 26097 if (IPCL_IS_NONSTR(connp)) { 26098 (*connp->conn_upcalls->su_txq_full) 26099 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 26100 tcp->tcp_flow_stopped = B_FALSE; 26101 } else { 26102 queue_t *q = tcp->tcp_wq; 26103 26104 if (q->q_flag & QFULL) { 26105 mutex_enter(QLOCK(q)); 26106 if (q->q_flag & QFULL) { 26107 q->q_flag &= ~QFULL; 26108 tcp->tcp_flow_stopped = B_FALSE; 26109 mutex_exit(QLOCK(q)); 26110 if (q->q_flag & QWANTW) 26111 qbackenable(q, 0); 26112 } else { 26113 mutex_exit(QLOCK(q)); 26114 } 26115 } 26116 } 26117 } 26118 26119 /* 26120 * kstats related to squeues i.e. not per IP instance 26121 */ 26122 static void * 26123 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26124 { 26125 kstat_t *ksp; 26126 26127 tcp_g_stat_t template = { 26128 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26129 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26130 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26131 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26132 }; 26133 26134 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26135 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26136 KSTAT_FLAG_VIRTUAL); 26137 26138 if (ksp == NULL) 26139 return (NULL); 26140 26141 bcopy(&template, tcp_g_statp, sizeof (template)); 26142 ksp->ks_data = (void *)tcp_g_statp; 26143 26144 kstat_install(ksp); 26145 return (ksp); 26146 } 26147 26148 static void 26149 tcp_g_kstat_fini(kstat_t *ksp) 26150 { 26151 if (ksp != NULL) { 26152 kstat_delete(ksp); 26153 } 26154 } 26155 26156 26157 static void * 26158 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26159 { 26160 kstat_t *ksp; 26161 26162 tcp_stat_t template = { 26163 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26164 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26165 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26166 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26167 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26168 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26169 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26170 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26171 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26172 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26173 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26174 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26175 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26176 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26177 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26178 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26179 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26180 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26181 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26182 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26183 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26184 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26185 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26186 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26187 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26188 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26189 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26190 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26191 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26192 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26193 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26194 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26195 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26196 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26197 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26198 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26199 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26200 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26201 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26202 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26203 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26204 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26205 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26206 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26207 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26208 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26209 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26210 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26211 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26212 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26213 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26214 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26215 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26216 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26217 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26218 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26219 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26220 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26221 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26222 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26223 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26224 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26225 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26226 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26227 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26228 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26229 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26230 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26231 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26232 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26233 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26234 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26235 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26236 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26237 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26238 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26239 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26240 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26241 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26242 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26243 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26244 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26245 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26246 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26247 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26248 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26249 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26250 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26251 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26252 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26253 }; 26254 26255 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26256 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26257 KSTAT_FLAG_VIRTUAL, stackid); 26258 26259 if (ksp == NULL) 26260 return (NULL); 26261 26262 bcopy(&template, tcps_statisticsp, sizeof (template)); 26263 ksp->ks_data = (void *)tcps_statisticsp; 26264 ksp->ks_private = (void *)(uintptr_t)stackid; 26265 26266 kstat_install(ksp); 26267 return (ksp); 26268 } 26269 26270 static void 26271 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26272 { 26273 if (ksp != NULL) { 26274 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26275 kstat_delete_netstack(ksp, stackid); 26276 } 26277 } 26278 26279 /* 26280 * TCP Kstats implementation 26281 */ 26282 static void * 26283 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26284 { 26285 kstat_t *ksp; 26286 26287 tcp_named_kstat_t template = { 26288 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26289 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26290 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26291 { "maxConn", KSTAT_DATA_INT32, 0 }, 26292 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26293 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26294 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26295 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26296 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26297 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26298 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26299 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26300 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26301 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26302 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26303 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26304 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26305 { "outAck", KSTAT_DATA_UINT32, 0 }, 26306 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26307 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26308 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26309 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26310 { "outControl", KSTAT_DATA_UINT32, 0 }, 26311 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26312 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26313 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26314 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26315 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26316 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26317 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26318 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26319 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26320 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26321 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26322 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26323 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26324 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26325 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26326 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26327 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26328 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26329 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26330 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26331 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26332 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26333 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26334 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26335 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26336 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26337 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26338 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26339 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26340 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26341 }; 26342 26343 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26344 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26345 26346 if (ksp == NULL) 26347 return (NULL); 26348 26349 template.rtoAlgorithm.value.ui32 = 4; 26350 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26351 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26352 template.maxConn.value.i32 = -1; 26353 26354 bcopy(&template, ksp->ks_data, sizeof (template)); 26355 ksp->ks_update = tcp_kstat_update; 26356 ksp->ks_private = (void *)(uintptr_t)stackid; 26357 26358 kstat_install(ksp); 26359 return (ksp); 26360 } 26361 26362 static void 26363 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26364 { 26365 if (ksp != NULL) { 26366 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26367 kstat_delete_netstack(ksp, stackid); 26368 } 26369 } 26370 26371 static int 26372 tcp_kstat_update(kstat_t *kp, int rw) 26373 { 26374 tcp_named_kstat_t *tcpkp; 26375 tcp_t *tcp; 26376 connf_t *connfp; 26377 conn_t *connp; 26378 int i; 26379 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26380 netstack_t *ns; 26381 tcp_stack_t *tcps; 26382 ip_stack_t *ipst; 26383 26384 if ((kp == NULL) || (kp->ks_data == NULL)) 26385 return (EIO); 26386 26387 if (rw == KSTAT_WRITE) 26388 return (EACCES); 26389 26390 ns = netstack_find_by_stackid(stackid); 26391 if (ns == NULL) 26392 return (-1); 26393 tcps = ns->netstack_tcp; 26394 if (tcps == NULL) { 26395 netstack_rele(ns); 26396 return (-1); 26397 } 26398 26399 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26400 26401 tcpkp->currEstab.value.ui32 = 0; 26402 26403 ipst = ns->netstack_ip; 26404 26405 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26406 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26407 connp = NULL; 26408 while ((connp = 26409 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26410 tcp = connp->conn_tcp; 26411 switch (tcp_snmp_state(tcp)) { 26412 case MIB2_TCP_established: 26413 case MIB2_TCP_closeWait: 26414 tcpkp->currEstab.value.ui32++; 26415 break; 26416 } 26417 } 26418 } 26419 26420 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26421 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26422 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26423 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26424 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26425 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26426 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26427 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26428 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26429 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26430 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26431 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26432 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26433 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26434 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26435 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26436 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26437 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26438 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26439 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26440 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26441 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26442 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26443 tcpkp->inDataInorderSegs.value.ui32 = 26444 tcps->tcps_mib.tcpInDataInorderSegs; 26445 tcpkp->inDataInorderBytes.value.ui32 = 26446 tcps->tcps_mib.tcpInDataInorderBytes; 26447 tcpkp->inDataUnorderSegs.value.ui32 = 26448 tcps->tcps_mib.tcpInDataUnorderSegs; 26449 tcpkp->inDataUnorderBytes.value.ui32 = 26450 tcps->tcps_mib.tcpInDataUnorderBytes; 26451 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26452 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26453 tcpkp->inDataPartDupSegs.value.ui32 = 26454 tcps->tcps_mib.tcpInDataPartDupSegs; 26455 tcpkp->inDataPartDupBytes.value.ui32 = 26456 tcps->tcps_mib.tcpInDataPartDupBytes; 26457 tcpkp->inDataPastWinSegs.value.ui32 = 26458 tcps->tcps_mib.tcpInDataPastWinSegs; 26459 tcpkp->inDataPastWinBytes.value.ui32 = 26460 tcps->tcps_mib.tcpInDataPastWinBytes; 26461 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26462 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26463 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26464 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26465 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26466 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26467 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26468 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26469 tcpkp->timKeepaliveProbe.value.ui32 = 26470 tcps->tcps_mib.tcpTimKeepaliveProbe; 26471 tcpkp->timKeepaliveDrop.value.ui32 = 26472 tcps->tcps_mib.tcpTimKeepaliveDrop; 26473 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26474 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26475 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26476 tcpkp->outSackRetransSegs.value.ui32 = 26477 tcps->tcps_mib.tcpOutSackRetransSegs; 26478 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26479 26480 netstack_rele(ns); 26481 return (0); 26482 } 26483 26484 void 26485 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26486 { 26487 uint16_t hdr_len; 26488 ipha_t *ipha; 26489 uint8_t *nexthdrp; 26490 tcph_t *tcph; 26491 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26492 26493 /* Already has an eager */ 26494 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26495 TCP_STAT(tcps, tcp_reinput_syn); 26496 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26497 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 26498 return; 26499 } 26500 26501 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26502 case IPV4_VERSION: 26503 ipha = (ipha_t *)mp->b_rptr; 26504 hdr_len = IPH_HDR_LENGTH(ipha); 26505 break; 26506 case IPV6_VERSION: 26507 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26508 &hdr_len, &nexthdrp)) { 26509 CONN_DEC_REF(connp); 26510 freemsg(mp); 26511 return; 26512 } 26513 break; 26514 } 26515 26516 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26517 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26518 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26519 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26520 } 26521 26522 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26523 SQ_FILL, SQTAG_TCP_REINPUT); 26524 } 26525 26526 static int 26527 tcp_squeue_switch(int val) 26528 { 26529 int rval = SQ_FILL; 26530 26531 switch (val) { 26532 case 1: 26533 rval = SQ_NODRAIN; 26534 break; 26535 case 2: 26536 rval = SQ_PROCESS; 26537 break; 26538 default: 26539 break; 26540 } 26541 return (rval); 26542 } 26543 26544 /* 26545 * This is called once for each squeue - globally for all stack 26546 * instances. 26547 */ 26548 static void 26549 tcp_squeue_add(squeue_t *sqp) 26550 { 26551 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26552 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26553 26554 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26555 tcp_time_wait->tcp_time_wait_tid = 26556 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26557 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26558 CALLOUT_FLAG_ROUNDUP); 26559 if (tcp_free_list_max_cnt == 0) { 26560 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26561 max_ncpus : boot_max_ncpus); 26562 26563 /* 26564 * Limit number of entries to 1% of availble memory / tcp_ncpus 26565 */ 26566 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26567 (tcp_ncpus * sizeof (tcp_t) * 100); 26568 } 26569 tcp_time_wait->tcp_free_list_cnt = 0; 26570 } 26571 26572 static int 26573 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error) 26574 { 26575 mblk_t *ire_mp = NULL; 26576 mblk_t *syn_mp; 26577 mblk_t *mdti; 26578 mblk_t *lsoi; 26579 int retval; 26580 tcph_t *tcph; 26581 uint32_t mss; 26582 queue_t *q = tcp->tcp_rq; 26583 conn_t *connp = tcp->tcp_connp; 26584 tcp_stack_t *tcps = tcp->tcp_tcps; 26585 26586 if (error == 0) { 26587 /* 26588 * Adapt Multidata information, if any. The 26589 * following tcp_mdt_update routine will free 26590 * the message. 26591 */ 26592 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 26593 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 26594 b_rptr)->mdt_capab, B_TRUE); 26595 freemsg(mdti); 26596 } 26597 26598 /* 26599 * Check to update LSO information with tcp, and 26600 * tcp_lso_update routine will free the message. 26601 */ 26602 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 26603 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 26604 b_rptr)->lso_capab); 26605 freemsg(lsoi); 26606 } 26607 26608 /* Get the IRE, if we had requested for it */ 26609 if (mp != NULL) 26610 ire_mp = tcp_ire_mp(&mp); 26611 26612 if (tcp->tcp_hard_binding) { 26613 tcp->tcp_hard_binding = B_FALSE; 26614 tcp->tcp_hard_bound = B_TRUE; 26615 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 26616 if (retval != 0) { 26617 error = EADDRINUSE; 26618 goto bind_failed; 26619 } 26620 } else { 26621 if (ire_mp != NULL) 26622 freeb(ire_mp); 26623 goto after_syn_sent; 26624 } 26625 26626 retval = tcp_adapt_ire(tcp, ire_mp); 26627 if (ire_mp != NULL) 26628 freeb(ire_mp); 26629 if (retval == 0) { 26630 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 26631 ENETUNREACH : EADDRNOTAVAIL); 26632 goto ipcl_rm; 26633 } 26634 /* 26635 * Don't let an endpoint connect to itself. 26636 * Also checked in tcp_connect() but that 26637 * check can't handle the case when the 26638 * local IP address is INADDR_ANY. 26639 */ 26640 if (tcp->tcp_ipversion == IPV4_VERSION) { 26641 if ((tcp->tcp_ipha->ipha_dst == 26642 tcp->tcp_ipha->ipha_src) && 26643 (BE16_EQL(tcp->tcp_tcph->th_lport, 26644 tcp->tcp_tcph->th_fport))) { 26645 error = EADDRNOTAVAIL; 26646 goto ipcl_rm; 26647 } 26648 } else { 26649 if (IN6_ARE_ADDR_EQUAL( 26650 &tcp->tcp_ip6h->ip6_dst, 26651 &tcp->tcp_ip6h->ip6_src) && 26652 (BE16_EQL(tcp->tcp_tcph->th_lport, 26653 tcp->tcp_tcph->th_fport))) { 26654 error = EADDRNOTAVAIL; 26655 goto ipcl_rm; 26656 } 26657 } 26658 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 26659 /* 26660 * This should not be possible! Just for 26661 * defensive coding... 26662 */ 26663 if (tcp->tcp_state != TCPS_SYN_SENT) 26664 goto after_syn_sent; 26665 26666 if (is_system_labeled() && 26667 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 26668 error = EHOSTUNREACH; 26669 goto ipcl_rm; 26670 } 26671 26672 /* 26673 * tcp_adapt_ire() does not adjust 26674 * for TCP/IP header length. 26675 */ 26676 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 26677 26678 /* 26679 * Just make sure our rwnd is at 26680 * least tcp_recv_hiwat_mss * MSS 26681 * large, and round up to the nearest 26682 * MSS. 26683 * 26684 * We do the round up here because 26685 * we need to get the interface 26686 * MTU first before we can do the 26687 * round up. 26688 */ 26689 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 26690 tcps->tcps_recv_hiwat_minmss * mss); 26691 if (!IPCL_IS_NONSTR(connp)) 26692 q->q_hiwat = tcp->tcp_rwnd; 26693 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 26694 tcp_set_ws_value(tcp); 26695 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 26696 tcp->tcp_tcph->th_win); 26697 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 26698 tcp->tcp_snd_ws_ok = B_TRUE; 26699 26700 /* 26701 * Set tcp_snd_ts_ok to true 26702 * so that tcp_xmit_mp will 26703 * include the timestamp 26704 * option in the SYN segment. 26705 */ 26706 if (tcps->tcps_tstamp_always || 26707 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 26708 tcp->tcp_snd_ts_ok = B_TRUE; 26709 } 26710 26711 /* 26712 * tcp_snd_sack_ok can be set in 26713 * tcp_adapt_ire() if the sack metric 26714 * is set. So check it here also. 26715 */ 26716 if (tcps->tcps_sack_permitted == 2 || 26717 tcp->tcp_snd_sack_ok) { 26718 if (tcp->tcp_sack_info == NULL) { 26719 tcp->tcp_sack_info = 26720 kmem_cache_alloc(tcp_sack_info_cache, 26721 KM_SLEEP); 26722 } 26723 tcp->tcp_snd_sack_ok = B_TRUE; 26724 } 26725 26726 /* 26727 * Should we use ECN? Note that the current 26728 * default value (SunOS 5.9) of tcp_ecn_permitted 26729 * is 1. The reason for doing this is that there 26730 * are equipments out there that will drop ECN 26731 * enabled IP packets. Setting it to 1 avoids 26732 * compatibility problems. 26733 */ 26734 if (tcps->tcps_ecn_permitted == 2) 26735 tcp->tcp_ecn_ok = B_TRUE; 26736 26737 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 26738 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 26739 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 26740 if (syn_mp) { 26741 cred_t *cr; 26742 pid_t pid; 26743 26744 /* 26745 * Obtain the credential from the 26746 * thread calling connect(). 26747 * If none can be found, default to 26748 * the creator of the socket. 26749 */ 26750 if (mp == NULL || 26751 (cr = DB_CRED(mp)) == NULL) { 26752 cr = tcp->tcp_cred; 26753 pid = tcp->tcp_cpid; 26754 } else { 26755 pid = DB_CPID(mp); 26756 } 26757 26758 mblk_setcred(syn_mp, cr); 26759 DB_CPID(syn_mp) = pid; 26760 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 26761 } 26762 after_syn_sent: 26763 /* 26764 * A trailer mblk indicates a waiting client upstream. 26765 * We complete here the processing begun in 26766 * either tcp_bind() or tcp_connect() by passing 26767 * upstream the reply message they supplied. 26768 */ 26769 if (mp != NULL) { 26770 ASSERT(mp->b_cont == NULL); 26771 freeb(mp); 26772 } 26773 return (error); 26774 } else { 26775 /* error */ 26776 if (tcp->tcp_debug) { 26777 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 26778 "tcp_post_ip_bind: error == %d", error); 26779 } 26780 if (mp != NULL) { 26781 freeb(mp); 26782 } 26783 } 26784 26785 ipcl_rm: 26786 /* 26787 * Need to unbind with classifier since we were just 26788 * told that our bind succeeded. a.k.a error == 0 at the entry. 26789 */ 26790 tcp->tcp_hard_bound = B_FALSE; 26791 tcp->tcp_hard_binding = B_FALSE; 26792 26793 ipcl_hash_remove(connp); 26794 26795 bind_failed: 26796 tcp->tcp_state = TCPS_IDLE; 26797 if (tcp->tcp_ipversion == IPV4_VERSION) 26798 tcp->tcp_ipha->ipha_src = 0; 26799 else 26800 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 26801 /* 26802 * Copy of the src addr. in tcp_t is needed since 26803 * the lookup funcs. can only look at tcp_t 26804 */ 26805 V6_SET_ZERO(tcp->tcp_ip_src_v6); 26806 26807 tcph = tcp->tcp_tcph; 26808 tcph->th_lport[0] = 0; 26809 tcph->th_lport[1] = 0; 26810 tcp_bind_hash_remove(tcp); 26811 bzero(&connp->u_port, sizeof (connp->u_port)); 26812 /* blow away saved option results if any */ 26813 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26814 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26815 26816 conn_delete_ire(tcp->tcp_connp, NULL); 26817 26818 return (error); 26819 } 26820 26821 static int 26822 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 26823 boolean_t bind_to_req_port_only, cred_t *cr) 26824 { 26825 in_port_t mlp_port; 26826 mlp_type_t addrtype, mlptype; 26827 boolean_t user_specified; 26828 in_port_t allocated_port; 26829 in_port_t requested_port = *requested_port_ptr; 26830 conn_t *connp; 26831 zone_t *zone; 26832 tcp_stack_t *tcps = tcp->tcp_tcps; 26833 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 26834 26835 /* 26836 * XXX It's up to the caller to specify bind_to_req_port_only or not. 26837 */ 26838 if (cr == NULL) 26839 cr = tcp->tcp_cred; 26840 /* 26841 * Get a valid port (within the anonymous range and should not 26842 * be a privileged one) to use if the user has not given a port. 26843 * If multiple threads are here, they may all start with 26844 * with the same initial port. But, it should be fine as long as 26845 * tcp_bindi will ensure that no two threads will be assigned 26846 * the same port. 26847 * 26848 * NOTE: XXX If a privileged process asks for an anonymous port, we 26849 * still check for ports only in the range > tcp_smallest_non_priv_port, 26850 * unless TCP_ANONPRIVBIND option is set. 26851 */ 26852 mlptype = mlptSingle; 26853 mlp_port = requested_port; 26854 if (requested_port == 0) { 26855 requested_port = tcp->tcp_anon_priv_bind ? 26856 tcp_get_next_priv_port(tcp) : 26857 tcp_update_next_port(tcps->tcps_next_port_to_try, 26858 tcp, B_TRUE); 26859 if (requested_port == 0) { 26860 return (-TNOADDR); 26861 } 26862 user_specified = B_FALSE; 26863 26864 /* 26865 * If the user went through one of the RPC interfaces to create 26866 * this socket and RPC is MLP in this zone, then give him an 26867 * anonymous MLP. 26868 */ 26869 connp = tcp->tcp_connp; 26870 if (connp->conn_anon_mlp && is_system_labeled()) { 26871 zone = crgetzone(cr); 26872 addrtype = tsol_mlp_addr_type(zone->zone_id, 26873 IPV6_VERSION, &v6addr, 26874 tcps->tcps_netstack->netstack_ip); 26875 if (addrtype == mlptSingle) { 26876 return (-TNOADDR); 26877 } 26878 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26879 PMAPPORT, addrtype); 26880 mlp_port = PMAPPORT; 26881 } 26882 } else { 26883 int i; 26884 boolean_t priv = B_FALSE; 26885 26886 /* 26887 * If the requested_port is in the well-known privileged range, 26888 * verify that the stream was opened by a privileged user. 26889 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26890 * but instead the code relies on: 26891 * - the fact that the address of the array and its size never 26892 * changes 26893 * - the atomic assignment of the elements of the array 26894 */ 26895 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26896 priv = B_TRUE; 26897 } else { 26898 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26899 if (requested_port == 26900 tcps->tcps_g_epriv_ports[i]) { 26901 priv = B_TRUE; 26902 break; 26903 } 26904 } 26905 } 26906 if (priv) { 26907 if (secpolicy_net_privaddr(cr, requested_port, 26908 IPPROTO_TCP) != 0) { 26909 if (tcp->tcp_debug) { 26910 (void) strlog(TCP_MOD_ID, 0, 1, 26911 SL_ERROR|SL_TRACE, 26912 "tcp_bind: no priv for port %d", 26913 requested_port); 26914 } 26915 return (-TACCES); 26916 } 26917 } 26918 user_specified = B_TRUE; 26919 26920 connp = tcp->tcp_connp; 26921 if (is_system_labeled()) { 26922 zone = crgetzone(cr); 26923 addrtype = tsol_mlp_addr_type(zone->zone_id, 26924 IPV6_VERSION, &v6addr, 26925 tcps->tcps_netstack->netstack_ip); 26926 if (addrtype == mlptSingle) { 26927 return (-TNOADDR); 26928 } 26929 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26930 requested_port, addrtype); 26931 } 26932 } 26933 26934 if (mlptype != mlptSingle) { 26935 if (secpolicy_net_bindmlp(cr) != 0) { 26936 if (tcp->tcp_debug) { 26937 (void) strlog(TCP_MOD_ID, 0, 1, 26938 SL_ERROR|SL_TRACE, 26939 "tcp_bind: no priv for multilevel port %d", 26940 requested_port); 26941 } 26942 return (-TACCES); 26943 } 26944 26945 /* 26946 * If we're specifically binding a shared IP address and the 26947 * port is MLP on shared addresses, then check to see if this 26948 * zone actually owns the MLP. Reject if not. 26949 */ 26950 if (mlptype == mlptShared && addrtype == mlptShared) { 26951 /* 26952 * No need to handle exclusive-stack zones since 26953 * ALL_ZONES only applies to the shared stack. 26954 */ 26955 zoneid_t mlpzone; 26956 26957 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26958 htons(mlp_port)); 26959 if (connp->conn_zoneid != mlpzone) { 26960 if (tcp->tcp_debug) { 26961 (void) strlog(TCP_MOD_ID, 0, 1, 26962 SL_ERROR|SL_TRACE, 26963 "tcp_bind: attempt to bind port " 26964 "%d on shared addr in zone %d " 26965 "(should be %d)", 26966 mlp_port, connp->conn_zoneid, 26967 mlpzone); 26968 } 26969 return (-TACCES); 26970 } 26971 } 26972 26973 if (!user_specified) { 26974 int err; 26975 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26976 requested_port, B_TRUE); 26977 if (err != 0) { 26978 if (tcp->tcp_debug) { 26979 (void) strlog(TCP_MOD_ID, 0, 1, 26980 SL_ERROR|SL_TRACE, 26981 "tcp_bind: cannot establish anon " 26982 "MLP for port %d", 26983 requested_port); 26984 } 26985 return (err); 26986 } 26987 connp->conn_anon_port = B_TRUE; 26988 } 26989 connp->conn_mlp_type = mlptype; 26990 } 26991 26992 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26993 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26994 26995 if (allocated_port == 0) { 26996 connp->conn_mlp_type = mlptSingle; 26997 if (connp->conn_anon_port) { 26998 connp->conn_anon_port = B_FALSE; 26999 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 27000 requested_port, B_FALSE); 27001 } 27002 if (bind_to_req_port_only) { 27003 if (tcp->tcp_debug) { 27004 (void) strlog(TCP_MOD_ID, 0, 1, 27005 SL_ERROR|SL_TRACE, 27006 "tcp_bind: requested addr busy"); 27007 } 27008 return (-TADDRBUSY); 27009 } else { 27010 /* If we are out of ports, fail the bind. */ 27011 if (tcp->tcp_debug) { 27012 (void) strlog(TCP_MOD_ID, 0, 1, 27013 SL_ERROR|SL_TRACE, 27014 "tcp_bind: out of ports?"); 27015 } 27016 return (-TNOADDR); 27017 } 27018 } 27019 27020 /* Pass the allocated port back */ 27021 *requested_port_ptr = allocated_port; 27022 return (0); 27023 } 27024 27025 static int 27026 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 27027 boolean_t bind_to_req_port_only) 27028 { 27029 tcp_t *tcp = connp->conn_tcp; 27030 27031 sin_t *sin; 27032 sin6_t *sin6; 27033 sin6_t sin6addr; 27034 in_port_t requested_port; 27035 ipaddr_t v4addr; 27036 in6_addr_t v6addr; 27037 uint_t origipversion; 27038 int error = 0; 27039 27040 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 27041 27042 if (tcp->tcp_state == TCPS_BOUND) { 27043 return (0); 27044 } else if (tcp->tcp_state > TCPS_BOUND) { 27045 if (tcp->tcp_debug) { 27046 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27047 "tcp_bind: bad state, %d", tcp->tcp_state); 27048 } 27049 return (-TOUTSTATE); 27050 } 27051 origipversion = tcp->tcp_ipversion; 27052 27053 if (sa != NULL && !OK_32PTR((char *)sa)) { 27054 if (tcp->tcp_debug) { 27055 (void) strlog(TCP_MOD_ID, 0, 1, 27056 SL_ERROR|SL_TRACE, 27057 "tcp_bind: bad address parameter, " 27058 "address %p, len %d", 27059 (void *)sa, len); 27060 } 27061 return (-TPROTO); 27062 } 27063 27064 switch (len) { 27065 case 0: /* request for a generic port */ 27066 if (tcp->tcp_family == AF_INET) { 27067 sin = (sin_t *)&sin6addr; 27068 *sin = sin_null; 27069 sin->sin_family = AF_INET; 27070 tcp->tcp_ipversion = IPV4_VERSION; 27071 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 27072 } else { 27073 ASSERT(tcp->tcp_family == AF_INET6); 27074 sin6 = (sin6_t *)&sin6addr; 27075 *sin6 = sin6_null; 27076 sin6->sin6_family = AF_INET6; 27077 tcp->tcp_ipversion = IPV6_VERSION; 27078 V6_SET_ZERO(v6addr); 27079 } 27080 requested_port = 0; 27081 break; 27082 27083 case sizeof (sin_t): /* Complete IPv4 address */ 27084 sin = (sin_t *)sa; 27085 /* 27086 * With sockets sockfs will accept bogus sin_family in 27087 * bind() and replace it with the family used in the socket 27088 * call. 27089 */ 27090 if (sin->sin_family != AF_INET || 27091 tcp->tcp_family != AF_INET) { 27092 return (EAFNOSUPPORT); 27093 } 27094 requested_port = ntohs(sin->sin_port); 27095 tcp->tcp_ipversion = IPV4_VERSION; 27096 v4addr = sin->sin_addr.s_addr; 27097 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 27098 break; 27099 27100 case sizeof (sin6_t): /* Complete IPv6 address */ 27101 sin6 = (sin6_t *)sa; 27102 if (sin6->sin6_family != AF_INET6 || 27103 tcp->tcp_family != AF_INET6) { 27104 return (EAFNOSUPPORT); 27105 } 27106 requested_port = ntohs(sin6->sin6_port); 27107 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 27108 IPV4_VERSION : IPV6_VERSION; 27109 v6addr = sin6->sin6_addr; 27110 break; 27111 27112 default: 27113 if (tcp->tcp_debug) { 27114 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27115 "tcp_bind: bad address length, %d", len); 27116 } 27117 return (EAFNOSUPPORT); 27118 /* return (-TBADADDR); */ 27119 } 27120 27121 tcp->tcp_bound_source_v6 = v6addr; 27122 27123 /* Check for change in ipversion */ 27124 if (origipversion != tcp->tcp_ipversion) { 27125 ASSERT(tcp->tcp_family == AF_INET6); 27126 error = tcp->tcp_ipversion == IPV6_VERSION ? 27127 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 27128 if (error) { 27129 return (ENOMEM); 27130 } 27131 } 27132 27133 /* 27134 * Initialize family specific fields. Copy of the src addr. 27135 * in tcp_t is needed for the lookup funcs. 27136 */ 27137 if (tcp->tcp_ipversion == IPV6_VERSION) { 27138 tcp->tcp_ip6h->ip6_src = v6addr; 27139 } else { 27140 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 27141 } 27142 tcp->tcp_ip_src_v6 = v6addr; 27143 27144 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 27145 27146 error = tcp_bind_select_lport(tcp, &requested_port, 27147 bind_to_req_port_only, cr); 27148 27149 return (error); 27150 } 27151 27152 /* 27153 * Return unix error is tli error is TSYSERR, otherwise return a negative 27154 * tli error. 27155 */ 27156 int 27157 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 27158 boolean_t bind_to_req_port_only) 27159 { 27160 int error; 27161 tcp_t *tcp = connp->conn_tcp; 27162 27163 if (tcp->tcp_state >= TCPS_BOUND) { 27164 if (tcp->tcp_debug) { 27165 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27166 "tcp_bind: bad state, %d", tcp->tcp_state); 27167 } 27168 return (-TOUTSTATE); 27169 } 27170 27171 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 27172 if (error != 0) 27173 return (error); 27174 27175 ASSERT(tcp->tcp_state == TCPS_BOUND); 27176 27177 tcp->tcp_conn_req_max = 0; 27178 27179 /* 27180 * We need to make sure that the conn_recv is set to a non-null 27181 * value before we insert the conn into the classifier table. 27182 * This is to avoid a race with an incoming packet which does an 27183 * ipcl_classify(). 27184 */ 27185 connp->conn_recv = tcp_conn_request; 27186 27187 if (tcp->tcp_family == AF_INET6) { 27188 ASSERT(tcp->tcp_connp->conn_af_isv6); 27189 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27190 &tcp->tcp_bound_source_v6, 0, B_FALSE); 27191 } else { 27192 ASSERT(!tcp->tcp_connp->conn_af_isv6); 27193 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 27194 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 27195 } 27196 return (tcp_post_ip_bind(tcp, NULL, error)); 27197 } 27198 27199 int 27200 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 27201 socklen_t len, cred_t *cr) 27202 { 27203 int error; 27204 conn_t *connp = (conn_t *)proto_handle; 27205 squeue_t *sqp = connp->conn_sqp; 27206 27207 ASSERT(sqp != NULL); 27208 27209 error = squeue_synch_enter(sqp, connp, 0); 27210 if (error != 0) { 27211 /* failed to enter */ 27212 return (ENOSR); 27213 } 27214 27215 /* binding to a NULL address really means unbind */ 27216 if (sa == NULL) { 27217 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 27218 error = tcp_do_unbind(connp); 27219 else 27220 error = EINVAL; 27221 } else { 27222 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 27223 } 27224 27225 squeue_synch_exit(sqp, connp); 27226 27227 if (error < 0) { 27228 if (error == -TOUTSTATE) 27229 error = EINVAL; 27230 else 27231 error = proto_tlitosyserr(-error); 27232 } 27233 27234 return (error); 27235 } 27236 27237 /* 27238 * If the return value from this function is positive, it's a UNIX error. 27239 * Otherwise, if it's negative, then the absolute value is a TLI error. 27240 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 27241 */ 27242 int 27243 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 27244 cred_t *cr, pid_t pid) 27245 { 27246 tcp_t *tcp = connp->conn_tcp; 27247 sin_t *sin = (sin_t *)sa; 27248 sin6_t *sin6 = (sin6_t *)sa; 27249 ipaddr_t *dstaddrp; 27250 in_port_t dstport; 27251 uint_t srcid; 27252 int error = 0; 27253 27254 switch (len) { 27255 default: 27256 /* 27257 * Should never happen 27258 */ 27259 return (EINVAL); 27260 27261 case sizeof (sin_t): 27262 sin = (sin_t *)sa; 27263 if (sin->sin_port == 0) { 27264 return (-TBADADDR); 27265 } 27266 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 27267 return (EAFNOSUPPORT); 27268 } 27269 break; 27270 27271 case sizeof (sin6_t): 27272 sin6 = (sin6_t *)sa; 27273 if (sin6->sin6_port == 0) { 27274 return (-TBADADDR); 27275 } 27276 break; 27277 } 27278 /* 27279 * If we're connecting to an IPv4-mapped IPv6 address, we need to 27280 * make sure that the template IP header in the tcp structure is an 27281 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 27282 * need to this before we call tcp_bindi() so that the port lookup 27283 * code will look for ports in the correct port space (IPv4 and 27284 * IPv6 have separate port spaces). 27285 */ 27286 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 27287 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27288 int err = 0; 27289 27290 err = tcp_header_init_ipv4(tcp); 27291 if (err != 0) { 27292 error = ENOMEM; 27293 goto connect_failed; 27294 } 27295 if (tcp->tcp_lport != 0) 27296 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 27297 } 27298 27299 switch (tcp->tcp_state) { 27300 case TCPS_LISTEN: 27301 /* 27302 * Listening sockets are not allowed to issue connect(). 27303 */ 27304 if (IPCL_IS_NONSTR(connp)) 27305 return (EOPNOTSUPP); 27306 /* FALLTHRU */ 27307 case TCPS_IDLE: 27308 /* 27309 * We support quick connect, refer to comments in 27310 * tcp_connect_*() 27311 */ 27312 /* FALLTHRU */ 27313 case TCPS_BOUND: 27314 /* 27315 * We must bump the generation before the operation start. 27316 * This is done to ensure that any upcall made later on sends 27317 * up the right generation to the socket. 27318 */ 27319 SOCK_CONNID_BUMP(tcp->tcp_connid); 27320 27321 if (tcp->tcp_family == AF_INET6) { 27322 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27323 return (tcp_connect_ipv6(tcp, 27324 &sin6->sin6_addr, 27325 sin6->sin6_port, sin6->sin6_flowinfo, 27326 sin6->__sin6_src_id, sin6->sin6_scope_id, 27327 cr, pid)); 27328 } 27329 /* 27330 * Destination adress is mapped IPv6 address. 27331 * Source bound address should be unspecified or 27332 * IPv6 mapped address as well. 27333 */ 27334 if (!IN6_IS_ADDR_UNSPECIFIED( 27335 &tcp->tcp_bound_source_v6) && 27336 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 27337 return (EADDRNOTAVAIL); 27338 } 27339 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 27340 dstport = sin6->sin6_port; 27341 srcid = sin6->__sin6_src_id; 27342 } else { 27343 dstaddrp = &sin->sin_addr.s_addr; 27344 dstport = sin->sin_port; 27345 srcid = 0; 27346 } 27347 27348 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 27349 pid); 27350 break; 27351 default: 27352 return (-TOUTSTATE); 27353 } 27354 /* 27355 * Note: Code below is the "failure" case 27356 */ 27357 connect_failed: 27358 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 27359 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 27360 return (error); 27361 } 27362 27363 int 27364 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 27365 socklen_t len, sock_connid_t *id, cred_t *cr) 27366 { 27367 conn_t *connp = (conn_t *)proto_handle; 27368 tcp_t *tcp = connp->conn_tcp; 27369 squeue_t *sqp = connp->conn_sqp; 27370 int error; 27371 27372 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 27373 if (error != 0) { 27374 return (error); 27375 } 27376 27377 error = squeue_synch_enter(sqp, connp, 0); 27378 if (error != 0) { 27379 /* failed to enter */ 27380 return (ENOSR); 27381 } 27382 27383 /* 27384 * TCP supports quick connect, so no need to do an implicit bind 27385 */ 27386 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 27387 if (error == 0) { 27388 *id = connp->conn_tcp->tcp_connid; 27389 } else if (error < 0) { 27390 if (error == -TOUTSTATE) { 27391 switch (connp->conn_tcp->tcp_state) { 27392 case TCPS_SYN_SENT: 27393 error = EALREADY; 27394 break; 27395 case TCPS_ESTABLISHED: 27396 error = EISCONN; 27397 break; 27398 case TCPS_LISTEN: 27399 error = EOPNOTSUPP; 27400 break; 27401 default: 27402 error = EINVAL; 27403 break; 27404 } 27405 } else { 27406 error = proto_tlitosyserr(-error); 27407 } 27408 } 27409 done: 27410 squeue_synch_exit(sqp, connp); 27411 27412 return ((error == 0) ? EINPROGRESS : error); 27413 } 27414 27415 /* ARGSUSED */ 27416 sock_lower_handle_t 27417 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 27418 uint_t *smodep, int *errorp, int flags, cred_t *credp) 27419 { 27420 conn_t *connp; 27421 boolean_t isv6 = family == AF_INET6; 27422 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 27423 (proto != 0 && proto != IPPROTO_TCP)) { 27424 *errorp = EPROTONOSUPPORT; 27425 return (NULL); 27426 } 27427 27428 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 27429 if (connp == NULL) { 27430 return (NULL); 27431 } 27432 27433 /* 27434 * Put the ref for TCP. Ref for IP was already put 27435 * by ipcl_conn_create. Also Make the conn_t globally 27436 * visible to walkers 27437 */ 27438 mutex_enter(&connp->conn_lock); 27439 CONN_INC_REF_LOCKED(connp); 27440 ASSERT(connp->conn_ref == 2); 27441 connp->conn_state_flags &= ~CONN_INCIPIENT; 27442 27443 connp->conn_flags |= IPCL_NONSTR; 27444 mutex_exit(&connp->conn_lock); 27445 27446 ASSERT(errorp != NULL); 27447 *errorp = 0; 27448 *sock_downcalls = &sock_tcp_downcalls; 27449 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 27450 SM_SENDFILESUPP; 27451 27452 return ((sock_lower_handle_t)connp); 27453 } 27454 27455 /* ARGSUSED */ 27456 void 27457 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 27458 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 27459 { 27460 conn_t *connp = (conn_t *)proto_handle; 27461 struct sock_proto_props sopp; 27462 27463 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 27464 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 27465 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 27466 27467 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 27468 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 27469 sopp.sopp_maxpsz = INFPSZ; 27470 sopp.sopp_maxblk = INFPSZ; 27471 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 27472 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 27473 sopp.sopp_maxaddrlen = sizeof (sin6_t); 27474 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 27475 tcp_rinfo.mi_minpsz; 27476 27477 connp->conn_upcalls = sock_upcalls; 27478 connp->conn_upper_handle = sock_handle; 27479 27480 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 27481 } 27482 27483 /* ARGSUSED */ 27484 int 27485 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 27486 { 27487 conn_t *connp = (conn_t *)proto_handle; 27488 27489 tcp_close_common(connp, flags); 27490 27491 ip_close_helper_stream(connp); 27492 27493 /* 27494 * Drop IP's reference on the conn. This is the last reference 27495 * on the connp if the state was less than established. If the 27496 * connection has gone into timewait state, then we will have 27497 * one ref for the TCP and one more ref (total of two) for the 27498 * classifier connected hash list (a timewait connections stays 27499 * in connected hash till closed). 27500 * 27501 * We can't assert the references because there might be other 27502 * transient reference places because of some walkers or queued 27503 * packets in squeue for the timewait state. 27504 */ 27505 CONN_DEC_REF(connp); 27506 return (0); 27507 } 27508 27509 /* ARGSUSED */ 27510 int 27511 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 27512 cred_t *cr) 27513 { 27514 tcp_t *tcp; 27515 uint32_t msize; 27516 conn_t *connp = (conn_t *)proto_handle; 27517 int32_t tcpstate; 27518 27519 ASSERT(connp->conn_ref >= 2); 27520 27521 if (msg->msg_controllen != 0) { 27522 return (EOPNOTSUPP); 27523 27524 } 27525 switch (DB_TYPE(mp)) { 27526 case M_DATA: 27527 tcp = connp->conn_tcp; 27528 ASSERT(tcp != NULL); 27529 27530 tcpstate = tcp->tcp_state; 27531 if (tcpstate < TCPS_ESTABLISHED) { 27532 freemsg(mp); 27533 return (ENOTCONN); 27534 } else if (tcpstate > TCPS_CLOSE_WAIT) { 27535 freemsg(mp); 27536 return (EPIPE); 27537 } 27538 27539 if (is_system_labeled()) 27540 msg_setcredpid(mp, cr, curproc->p_pid); 27541 27542 /* XXX pass the size down and to the squeue */ 27543 msize = msgdsize(mp); 27544 27545 mutex_enter(&tcp->tcp_non_sq_lock); 27546 tcp->tcp_squeue_bytes += msize; 27547 /* 27548 * Squeue Flow Control 27549 */ 27550 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 27551 tcp_setqfull(tcp); 27552 } 27553 mutex_exit(&tcp->tcp_non_sq_lock); 27554 27555 /* 27556 * The application may pass in an address in the msghdr, but 27557 * we ignore the address on connection-oriented sockets. 27558 * Just like BSD this code does not generate an error for 27559 * TCP (a CONNREQUIRED socket) when sending to an address 27560 * passed in with sendto/sendmsg. Instead the data is 27561 * delivered on the connection as if no address had been 27562 * supplied. 27563 */ 27564 CONN_INC_REF(connp); 27565 27566 if (msg != NULL && msg->msg_flags & MSG_OOB) { 27567 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 27568 tcp_output_urgent, connp, tcp_squeue_flag, 27569 SQTAG_TCP_OUTPUT); 27570 } else { 27571 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 27572 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 27573 } 27574 27575 return (0); 27576 27577 default: 27578 ASSERT(0); 27579 } 27580 27581 freemsg(mp); 27582 return (0); 27583 } 27584 27585 /* ARGSUSED */ 27586 void 27587 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 27588 { 27589 int len; 27590 uint32_t msize; 27591 conn_t *connp = (conn_t *)arg; 27592 tcp_t *tcp = connp->conn_tcp; 27593 27594 msize = msgdsize(mp); 27595 27596 len = msize - 1; 27597 if (len < 0) { 27598 freemsg(mp); 27599 return; 27600 } 27601 27602 /* 27603 * Try to force urgent data out on the wire. 27604 * Even if we have unsent data this will 27605 * at least send the urgent flag. 27606 * XXX does not handle more flag correctly. 27607 */ 27608 len += tcp->tcp_unsent; 27609 len += tcp->tcp_snxt; 27610 tcp->tcp_urg = len; 27611 tcp->tcp_valid_bits |= TCP_URG_VALID; 27612 27613 /* Bypass tcp protocol for fused tcp loopback */ 27614 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 27615 return; 27616 tcp_wput_data(tcp, mp, B_TRUE); 27617 } 27618 27619 /* ARGSUSED */ 27620 int 27621 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27622 socklen_t *addrlen, cred_t *cr) 27623 { 27624 sin_t *sin; 27625 sin6_t *sin6; 27626 conn_t *connp = (conn_t *)proto_handle; 27627 tcp_t *tcp = connp->conn_tcp; 27628 27629 ASSERT(tcp != NULL); 27630 if (tcp->tcp_state < TCPS_SYN_RCVD) 27631 return (ENOTCONN); 27632 27633 addr->sa_family = tcp->tcp_family; 27634 switch (tcp->tcp_family) { 27635 case AF_INET: 27636 if (*addrlen < sizeof (sin_t)) 27637 return (EINVAL); 27638 27639 sin = (sin_t *)addr; 27640 *sin = sin_null; 27641 sin->sin_family = AF_INET; 27642 if (tcp->tcp_ipversion == IPV4_VERSION) { 27643 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 27644 sin->sin_addr.s_addr); 27645 } 27646 sin->sin_port = tcp->tcp_fport; 27647 *addrlen = sizeof (struct sockaddr_in); 27648 break; 27649 case AF_INET6: 27650 sin6 = (sin6_t *)addr; 27651 *sin6 = sin6_null; 27652 sin6->sin6_family = AF_INET6; 27653 27654 if (*addrlen < sizeof (struct sockaddr_in6)) 27655 return (EINVAL); 27656 27657 if (tcp->tcp_ipversion == IPV6_VERSION) { 27658 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 27659 ~IPV6_VERS_AND_FLOW_MASK; 27660 } 27661 27662 sin6->sin6_addr = tcp->tcp_remote_v6; 27663 sin6->sin6_port = tcp->tcp_fport; 27664 *addrlen = sizeof (struct sockaddr_in6); 27665 break; 27666 } 27667 return (0); 27668 } 27669 27670 /* ARGSUSED */ 27671 int 27672 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27673 socklen_t *addrlenp, cred_t *cr) 27674 { 27675 sin_t *sin; 27676 sin6_t *sin6; 27677 conn_t *connp = (conn_t *)proto_handle; 27678 tcp_t *tcp = connp->conn_tcp; 27679 27680 switch (tcp->tcp_family) { 27681 case AF_INET: 27682 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 27683 if (*addrlenp < sizeof (sin_t)) 27684 return (EINVAL); 27685 sin = (sin_t *)addr; 27686 *sin = sin_null; 27687 sin->sin_family = AF_INET; 27688 *addrlenp = sizeof (sin_t); 27689 if (tcp->tcp_state >= TCPS_BOUND) { 27690 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 27691 sin->sin_port = tcp->tcp_lport; 27692 } 27693 break; 27694 27695 case AF_INET6: 27696 if (*addrlenp < sizeof (sin6_t)) 27697 return (EINVAL); 27698 sin6 = (sin6_t *)addr; 27699 *sin6 = sin6_null; 27700 sin6->sin6_family = AF_INET6; 27701 *addrlenp = sizeof (sin6_t); 27702 if (tcp->tcp_state >= TCPS_BOUND) { 27703 sin6->sin6_port = tcp->tcp_lport; 27704 if (tcp->tcp_ipversion == IPV4_VERSION) { 27705 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 27706 &sin6->sin6_addr); 27707 } else { 27708 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 27709 } 27710 } 27711 break; 27712 } 27713 return (0); 27714 } 27715 27716 /* 27717 * tcp_fallback 27718 * 27719 * A direct socket is falling back to using STREAMS. Hanging 27720 * off of the queue is a temporary tcp_t, which was created using 27721 * tcp_open(). The tcp_open() was called as part of the regular 27722 * sockfs create path, i.e., the SO_SOCKSTR flag is passed down, 27723 * and therefore the temporary tcp_t is marked to be a socket 27724 * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations 27725 * introduced by FireEngine will be used. 27726 * 27727 * The tcp_t associated with the socket falling back will 27728 * still be marked as a socket, although the direct socket flag 27729 * (IPCL_NONSTR) is removed. A fall back to true TPI semantics 27730 * will not take place until a _SIOCSOCKFALLBACK ioctl is issued. 27731 * 27732 * If the above mentioned behavior, i.e., the tmp tcp_t is created 27733 * as a STREAMS/TPI endpoint, then we will need to do more work here. 27734 * Such as inserting the direct socket into the acceptor hash. 27735 */ 27736 void 27737 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 27738 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27739 { 27740 tcp_t *tcp, *eager; 27741 conn_t *connp = (conn_t *)proto_handle; 27742 int error; 27743 struct T_capability_ack tca; 27744 struct sockaddr_in6 laddr, faddr; 27745 socklen_t laddrlen, faddrlen; 27746 short opts; 27747 struct stroptions *stropt; 27748 mblk_t *stropt_mp; 27749 mblk_t *mp; 27750 mblk_t *conn_ind_head = NULL; 27751 mblk_t *conn_ind_tail = NULL; 27752 mblk_t *ordrel_mp; 27753 mblk_t *fused_sigurp_mp; 27754 27755 tcp = connp->conn_tcp; 27756 /* 27757 * No support for acceptor fallback 27758 */ 27759 ASSERT(q->q_qinfo != &tcp_acceptor_rinit); 27760 27761 stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL); 27762 27763 /* Pre-allocate the T_ordrel_ind mblk. */ 27764 ASSERT(tcp->tcp_ordrel_mp == NULL); 27765 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 27766 STR_NOSIG, NULL); 27767 ordrel_mp->b_datap->db_type = M_PROTO; 27768 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 27769 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 27770 27771 /* Pre-allocate the M_PCSIG anyway */ 27772 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 27773 27774 /* 27775 * Enter the squeue so that no new packets can come in 27776 */ 27777 error = squeue_synch_enter(connp->conn_sqp, connp, 0); 27778 if (error != 0) { 27779 /* failed to enter, free all the pre-allocated messages. */ 27780 freeb(stropt_mp); 27781 freeb(ordrel_mp); 27782 freeb(fused_sigurp_mp); 27783 return; 27784 } 27785 27786 /* Disable I/OAT during fallback */ 27787 tcp->tcp_sodirect = NULL; 27788 27789 connp->conn_dev = (dev_t)RD(q)->q_ptr; 27790 connp->conn_minor_arena = WR(q)->q_ptr; 27791 27792 RD(q)->q_ptr = WR(q)->q_ptr = connp; 27793 27794 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 27795 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 27796 27797 WR(q)->q_qinfo = &tcp_sock_winit; 27798 27799 if (!direct_sockfs) 27800 tcp_disable_direct_sockfs(tcp); 27801 27802 /* 27803 * free the helper stream 27804 */ 27805 ip_close_helper_stream(connp); 27806 27807 /* 27808 * Notify the STREAM head about options 27809 */ 27810 DB_TYPE(stropt_mp) = M_SETOPTS; 27811 stropt = (struct stroptions *)stropt_mp->b_rptr; 27812 stropt_mp->b_wptr += sizeof (struct stroptions); 27813 stropt = (struct stroptions *)stropt_mp->b_rptr; 27814 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 27815 27816 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 27817 tcp->tcp_tcps->tcps_wroff_xtra); 27818 if (tcp->tcp_snd_sack_ok) 27819 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 27820 stropt->so_hiwat = tcp->tcp_fused ? 27821 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 27822 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 27823 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 27824 27825 putnext(RD(q), stropt_mp); 27826 27827 /* 27828 * Collect the information needed to sync with the sonode 27829 */ 27830 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 27831 27832 laddrlen = faddrlen = sizeof (sin6_t); 27833 (void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr, 27834 &laddrlen, CRED()); 27835 error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr, 27836 &faddrlen, CRED()); 27837 if (error != 0) 27838 faddrlen = 0; 27839 27840 opts = 0; 27841 if (tcp->tcp_oobinline) 27842 opts |= SO_OOBINLINE; 27843 if (tcp->tcp_dontroute) 27844 opts |= SO_DONTROUTE; 27845 27846 /* 27847 * Notify the socket that the protocol is now quiescent, 27848 * and it's therefore safe move data from the socket 27849 * to the stream head. 27850 */ 27851 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 27852 (struct sockaddr *)&laddr, laddrlen, 27853 (struct sockaddr *)&faddr, faddrlen, opts); 27854 27855 while ((mp = tcp->tcp_rcv_list) != NULL) { 27856 tcp->tcp_rcv_list = mp->b_next; 27857 mp->b_next = NULL; 27858 putnext(q, mp); 27859 } 27860 tcp->tcp_rcv_last_head = NULL; 27861 tcp->tcp_rcv_last_tail = NULL; 27862 tcp->tcp_rcv_cnt = 0; 27863 27864 /* 27865 * No longer a direct socket 27866 */ 27867 connp->conn_flags &= ~IPCL_NONSTR; 27868 27869 tcp->tcp_ordrel_mp = ordrel_mp; 27870 27871 if (tcp->tcp_fused) { 27872 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 27873 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 27874 } else { 27875 freeb(fused_sigurp_mp); 27876 } 27877 27878 /* 27879 * Send T_CONN_IND messages for all ESTABLISHED connections. 27880 */ 27881 mutex_enter(&tcp->tcp_eager_lock); 27882 for (eager = tcp->tcp_eager_next_q; eager != NULL; 27883 eager = eager->tcp_eager_next_q) { 27884 mp = eager->tcp_conn.tcp_eager_conn_ind; 27885 27886 eager->tcp_conn.tcp_eager_conn_ind = NULL; 27887 ASSERT(mp != NULL); 27888 /* 27889 * TLI/XTI applications will get confused by 27890 * sending eager as an option since it violates 27891 * the option semantics. So remove the eager as 27892 * option since TLI/XTI app doesn't need it anyway. 27893 */ 27894 if (!TCP_IS_SOCKET(tcp)) { 27895 struct T_conn_ind *conn_ind; 27896 27897 conn_ind = (struct T_conn_ind *)mp->b_rptr; 27898 conn_ind->OPT_length = 0; 27899 conn_ind->OPT_offset = 0; 27900 } 27901 if (conn_ind_head == NULL) { 27902 conn_ind_head = mp; 27903 } else { 27904 conn_ind_tail->b_next = mp; 27905 } 27906 conn_ind_tail = mp; 27907 } 27908 mutex_exit(&tcp->tcp_eager_lock); 27909 27910 mp = conn_ind_head; 27911 while (mp != NULL) { 27912 mblk_t *nmp = mp->b_next; 27913 mp->b_next = NULL; 27914 27915 putnext(tcp->tcp_rq, mp); 27916 mp = nmp; 27917 } 27918 27919 /* 27920 * There should be atleast two ref's (IP + TCP) 27921 */ 27922 ASSERT(connp->conn_ref >= 2); 27923 squeue_synch_exit(connp->conn_sqp, connp); 27924 } 27925 27926 /* ARGSUSED */ 27927 static void 27928 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 27929 { 27930 conn_t *connp = (conn_t *)arg; 27931 tcp_t *tcp = connp->conn_tcp; 27932 27933 freemsg(mp); 27934 27935 if (tcp->tcp_fused) 27936 tcp_unfuse(tcp); 27937 27938 if (tcp_xmit_end(tcp) != 0) { 27939 /* 27940 * We were crossing FINs and got a reset from 27941 * the other side. Just ignore it. 27942 */ 27943 if (tcp->tcp_debug) { 27944 (void) strlog(TCP_MOD_ID, 0, 1, 27945 SL_ERROR|SL_TRACE, 27946 "tcp_shutdown_output() out of state %s", 27947 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27948 } 27949 } 27950 } 27951 27952 /* ARGSUSED */ 27953 int 27954 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27955 { 27956 conn_t *connp = (conn_t *)proto_handle; 27957 tcp_t *tcp = connp->conn_tcp; 27958 27959 /* 27960 * X/Open requires that we check the connected state. 27961 */ 27962 if (tcp->tcp_state < TCPS_SYN_SENT) 27963 return (ENOTCONN); 27964 27965 /* shutdown the send side */ 27966 if (how != SHUT_RD) { 27967 mblk_t *bp; 27968 27969 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27970 CONN_INC_REF(connp); 27971 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27972 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27973 27974 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27975 SOCK_OPCTL_SHUT_SEND, 0); 27976 } 27977 27978 /* shutdown the recv side */ 27979 if (how != SHUT_WR) 27980 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27981 SOCK_OPCTL_SHUT_RECV, 0); 27982 27983 return (0); 27984 } 27985 27986 /* 27987 * SOP_LISTEN() calls into tcp_listen(). 27988 */ 27989 /* ARGSUSED */ 27990 int 27991 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27992 { 27993 conn_t *connp = (conn_t *)proto_handle; 27994 int error; 27995 squeue_t *sqp = connp->conn_sqp; 27996 27997 error = squeue_synch_enter(sqp, connp, 0); 27998 if (error != 0) { 27999 /* failed to enter */ 28000 return (ENOBUFS); 28001 } 28002 28003 error = tcp_do_listen(connp, backlog, cr); 28004 if (error == 0) { 28005 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 28006 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 28007 } else if (error < 0) { 28008 if (error == -TOUTSTATE) 28009 error = EINVAL; 28010 else 28011 error = proto_tlitosyserr(-error); 28012 } 28013 squeue_synch_exit(sqp, connp); 28014 return (error); 28015 } 28016 28017 static int 28018 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr) 28019 { 28020 tcp_t *tcp = connp->conn_tcp; 28021 sin_t *sin; 28022 sin6_t *sin6; 28023 int error = 0; 28024 tcp_stack_t *tcps = tcp->tcp_tcps; 28025 28026 if (tcp->tcp_state >= TCPS_BOUND) { 28027 if ((tcp->tcp_state == TCPS_BOUND || 28028 tcp->tcp_state == TCPS_LISTEN) && 28029 backlog > 0) { 28030 /* 28031 * Handle listen() increasing backlog. 28032 * This is more "liberal" then what the TPI spec 28033 * requires but is needed to avoid a t_unbind 28034 * when handling listen() since the port number 28035 * might be "stolen" between the unbind and bind. 28036 */ 28037 goto do_listen; 28038 } 28039 if (tcp->tcp_debug) { 28040 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 28041 "tcp_bind: bad state, %d", tcp->tcp_state); 28042 } 28043 return (-TOUTSTATE); 28044 } else { 28045 int32_t len; 28046 sin6_t addr; 28047 28048 /* Do an implicit bind: Request for a generic port. */ 28049 if (tcp->tcp_family == AF_INET) { 28050 len = sizeof (sin_t); 28051 sin = (sin_t *)&addr; 28052 *sin = sin_null; 28053 sin->sin_family = AF_INET; 28054 tcp->tcp_ipversion = IPV4_VERSION; 28055 } else { 28056 ASSERT(tcp->tcp_family == AF_INET6); 28057 len = sizeof (sin6_t); 28058 sin6 = (sin6_t *)&addr; 28059 *sin6 = sin6_null; 28060 sin6->sin6_family = AF_INET6; 28061 tcp->tcp_ipversion = IPV6_VERSION; 28062 } 28063 28064 error = tcp_bind_check(connp, (struct sockaddr *)&addr, len, 28065 cr, B_FALSE); 28066 if (error) 28067 return (error); 28068 /* Fall through and do the fanout insertion */ 28069 } 28070 28071 do_listen: 28072 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 28073 tcp->tcp_conn_req_max = backlog; 28074 if (tcp->tcp_conn_req_max) { 28075 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 28076 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 28077 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 28078 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 28079 /* 28080 * If this is a listener, do not reset the eager list 28081 * and other stuffs. Note that we don't check if the 28082 * existing eager list meets the new tcp_conn_req_max 28083 * requirement. 28084 */ 28085 if (tcp->tcp_state != TCPS_LISTEN) { 28086 tcp->tcp_state = TCPS_LISTEN; 28087 /* Initialize the chain. Don't need the eager_lock */ 28088 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 28089 tcp->tcp_eager_next_drop_q0 = tcp; 28090 tcp->tcp_eager_prev_drop_q0 = tcp; 28091 tcp->tcp_second_ctimer_threshold = 28092 tcps->tcps_ip_abort_linterval; 28093 } 28094 } 28095 28096 /* 28097 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 28098 * processing continues in tcp_rput_other(). 28099 * 28100 * We need to make sure that the conn_recv is set to a non-null 28101 * value before we insert the conn into the classifier table. 28102 * This is to avoid a race with an incoming packet which does an 28103 * ipcl_classify(). 28104 */ 28105 connp->conn_recv = tcp_conn_request; 28106 if (tcp->tcp_family == AF_INET) { 28107 error = ip_proto_bind_laddr_v4(connp, NULL, 28108 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 28109 } else { 28110 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 28111 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 28112 } 28113 return (tcp_post_ip_bind(tcp, NULL, error)); 28114 } 28115 28116 void 28117 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 28118 { 28119 conn_t *connp = (conn_t *)proto_handle; 28120 tcp_t *tcp = connp->conn_tcp; 28121 tcp_stack_t *tcps = tcp->tcp_tcps; 28122 uint_t thwin; 28123 28124 (void) squeue_synch_enter(connp->conn_sqp, connp, 0); 28125 28126 /* Flow control condition has been removed. */ 28127 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 28128 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 28129 << tcp->tcp_rcv_ws; 28130 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 28131 /* 28132 * Send back a window update immediately if TCP is above 28133 * ESTABLISHED state and the increase of the rcv window 28134 * that the other side knows is at least 1 MSS after flow 28135 * control is lifted. 28136 */ 28137 if (tcp->tcp_state >= TCPS_ESTABLISHED && 28138 (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) { 28139 tcp_xmit_ctl(NULL, tcp, 28140 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 28141 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 28142 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 28143 } 28144 28145 squeue_synch_exit(connp->conn_sqp, connp); 28146 } 28147 28148 /* ARGSUSED */ 28149 int 28150 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 28151 int mode, int32_t *rvalp, cred_t *cr) 28152 { 28153 conn_t *connp = (conn_t *)proto_handle; 28154 int error; 28155 28156 switch (cmd) { 28157 case ND_SET: 28158 case ND_GET: 28159 case TCP_IOC_DEFAULT_Q: 28160 case _SIOCSOCKFALLBACK: 28161 case TCP_IOC_ABORT_CONN: 28162 case TI_GETPEERNAME: 28163 case TI_GETMYNAME: 28164 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 28165 cmd)); 28166 error = EINVAL; 28167 break; 28168 default: 28169 /* 28170 * Pass on to IP using helper stream 28171 */ 28172 error = ldi_ioctl( 28173 connp->conn_helper_info->ip_helper_stream_handle, 28174 cmd, arg, mode, cr, rvalp); 28175 break; 28176 } 28177 return (error); 28178 } 28179 28180 sock_downcalls_t sock_tcp_downcalls = { 28181 tcp_activate, 28182 tcp_accept, 28183 tcp_bind, 28184 tcp_listen, 28185 tcp_connect, 28186 tcp_getpeername, 28187 tcp_getsockname, 28188 tcp_getsockopt, 28189 tcp_setsockopt, 28190 tcp_sendmsg, 28191 NULL, 28192 NULL, 28193 NULL, 28194 tcp_shutdown, 28195 tcp_clr_flowctrl, 28196 tcp_ioctl, 28197 tcp_close, 28198 }; 28199