xref: /titanic_52/usr/src/uts/common/inet/tcp/tcp.c (revision a38404919468e155105de3bc33db2d994fffd427)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/multidata.h>
50 #include <sys/multidata_impl.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/uio.h>
66 #include <sys/systm.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/proto_set.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/udp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue_impl.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: SQ_NODRAIN
239  * 2: SQ_PROCESS
240  * 3: SQ_FILL
241  */
242 int tcp_squeue_wput = 2;	/* /etc/systems */
243 int tcp_squeue_flag;
244 
245 /*
246  * This controls how tiny a write must be before we try to copy it
247  * into the the mblk on the tail of the transmit queue.  Not much
248  * speedup is observed for values larger than sixteen.  Zero will
249  * disable the optimisation.
250  */
251 int tcp_tx_pull_len = 16;
252 
253 /*
254  * TCP Statistics.
255  *
256  * How TCP statistics work.
257  *
258  * There are two types of statistics invoked by two macros.
259  *
260  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
261  * supposed to be used in non MT-hot paths of the code.
262  *
263  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
264  * supposed to be used for DEBUG purposes and may be used on a hot path.
265  *
266  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
267  * (use "kstat tcp" to get them).
268  *
269  * There is also additional debugging facility that marks tcp_clean_death()
270  * instances and saves them in tcp_t structure. It is triggered by
271  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
272  * tcp_clean_death() calls that counts the number of times each tag was hit. It
273  * is triggered by TCP_CLD_COUNTERS define.
274  *
275  * How to add new counters.
276  *
277  * 1) Add a field in the tcp_stat structure describing your counter.
278  * 2) Add a line in the template in tcp_kstat2_init() with the name
279  *    of the counter.
280  *
281  *    IMPORTANT!! - make sure that both are in sync !!
282  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
283  *
284  * Please avoid using private counters which are not kstat-exported.
285  *
286  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
287  * in tcp_t structure.
288  *
289  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
290  */
291 
292 #ifndef TCP_DEBUG_COUNTER
293 #ifdef DEBUG
294 #define	TCP_DEBUG_COUNTER 1
295 #else
296 #define	TCP_DEBUG_COUNTER 0
297 #endif
298 #endif
299 
300 #define	TCP_CLD_COUNTERS 0
301 
302 #define	TCP_TAG_CLEAN_DEATH 1
303 #define	TCP_MAX_CLEAN_DEATH_TAG 32
304 
305 #ifdef lint
306 static int _lint_dummy_;
307 #endif
308 
309 #if TCP_CLD_COUNTERS
310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
311 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
312 #elif defined(lint)
313 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
314 #else
315 #define	TCP_CLD_STAT(x)
316 #endif
317 
318 #if TCP_DEBUG_COUNTER
319 #define	TCP_DBGSTAT(tcps, x)	\
320 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
321 #define	TCP_G_DBGSTAT(x)	\
322 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
323 #elif defined(lint)
324 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
325 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(tcps, x)
328 #define	TCP_G_DBGSTAT(x)
329 #endif
330 
331 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
332 
333 tcp_g_stat_t	tcp_g_statistics;
334 kstat_t		*tcp_g_kstat;
335 
336 /*
337  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
338  * tcp write side.
339  */
340 #define	CALL_IP_WPUT(connp, q, mp) {					\
341 	ASSERT(((q)->q_flag & QREADR) == 0);				\
342 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
343 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
344 }
345 
346 /* Macros for timestamp comparisons */
347 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
348 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
349 
350 /*
351  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
352  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
353  * by adding three components: a time component which grows by 1 every 4096
354  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
355  * a per-connection component which grows by 125000 for every new connection;
356  * and an "extra" component that grows by a random amount centered
357  * approximately on 64000.  This causes the the ISS generator to cycle every
358  * 4.89 hours if no TCP connections are made, and faster if connections are
359  * made.
360  *
361  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
362  * components: a time component which grows by 250000 every second; and
363  * a per-connection component which grows by 125000 for every new connections.
364  *
365  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
366  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
367  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
368  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
369  * password.
370  */
371 #define	ISS_INCR	250000
372 #define	ISS_NSEC_SHT	12
373 
374 static sin_t	sin_null;	/* Zero address for quick clears */
375 static sin6_t	sin6_null;	/* Zero address for quick clears */
376 
377 /*
378  * This implementation follows the 4.3BSD interpretation of the urgent
379  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
380  * incompatible changes in protocols like telnet and rlogin.
381  */
382 #define	TCP_OLD_URP_INTERPRETATION	1
383 
384 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
385 	(TCP_IS_DETACHED(tcp) && \
386 	    (!(tcp)->tcp_hard_binding))
387 
388 /*
389  * TCP reassembly macros.  We hide starting and ending sequence numbers in
390  * b_next and b_prev of messages on the reassembly queue.  The messages are
391  * chained using b_cont.  These macros are used in tcp_reass() so we don't
392  * have to see the ugly casts and assignments.
393  */
394 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
395 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
396 					(mblk_t *)(uintptr_t)(u))
397 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
398 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
399 					(mblk_t *)(uintptr_t)(u))
400 
401 /*
402  * Implementation of TCP Timers.
403  * =============================
404  *
405  * INTERFACE:
406  *
407  * There are two basic functions dealing with tcp timers:
408  *
409  *	timeout_id_t	tcp_timeout(connp, func, time)
410  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
411  *	TCP_TIMER_RESTART(tcp, intvl)
412  *
413  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
414  * after 'time' ticks passed. The function called by timeout() must adhere to
415  * the same restrictions as a driver soft interrupt handler - it must not sleep
416  * or call other functions that might sleep. The value returned is the opaque
417  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
418  * cancel the request. The call to tcp_timeout() may fail in which case it
419  * returns zero. This is different from the timeout(9F) function which never
420  * fails.
421  *
422  * The call-back function 'func' always receives 'connp' as its single
423  * argument. It is always executed in the squeue corresponding to the tcp
424  * structure. The tcp structure is guaranteed to be present at the time the
425  * call-back is called.
426  *
427  * NOTE: The call-back function 'func' is never called if tcp is in
428  * 	the TCPS_CLOSED state.
429  *
430  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
431  * request. locks acquired by the call-back routine should not be held across
432  * the call to tcp_timeout_cancel() or a deadlock may result.
433  *
434  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
435  * Otherwise, it returns an integer value greater than or equal to 0. In
436  * particular, if the call-back function is already placed on the squeue, it can
437  * not be canceled.
438  *
439  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
440  * 	within squeue context corresponding to the tcp instance. Since the
441  *	call-back is also called via the same squeue, there are no race
442  *	conditions described in untimeout(9F) manual page since all calls are
443  *	strictly serialized.
444  *
445  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
446  *	stored in tcp_timer_tid and starts a new one using
447  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
448  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
449  *	field.
450  *
451  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
452  *	call-back may still be called, so it is possible tcp_timer() will be
453  *	called several times. This should not be a problem since tcp_timer()
454  *	should always check the tcp instance state.
455  *
456  *
457  * IMPLEMENTATION:
458  *
459  * TCP timers are implemented using three-stage process. The call to
460  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
461  * when the timer expires. The tcp_timer_callback() arranges the call of the
462  * tcp_timer_handler() function via squeue corresponding to the tcp
463  * instance. The tcp_timer_handler() calls actual requested timeout call-back
464  * and passes tcp instance as an argument to it. Information is passed between
465  * stages using the tcp_timer_t structure which contains the connp pointer, the
466  * tcp call-back to call and the timeout id returned by the timeout(9F).
467  *
468  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
469  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
470  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
471  * returns the pointer to this mblk.
472  *
473  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
474  * looks like a normal mblk without actual dblk attached to it.
475  *
476  * To optimize performance each tcp instance holds a small cache of timer
477  * mblocks. In the current implementation it caches up to two timer mblocks per
478  * tcp instance. The cache is preserved over tcp frees and is only freed when
479  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
480  * timer processing happens on a corresponding squeue, the cache manipulation
481  * does not require any locks. Experiments show that majority of timer mblocks
482  * allocations are satisfied from the tcp cache and do not involve kmem calls.
483  *
484  * The tcp_timeout() places a refhold on the connp instance which guarantees
485  * that it will be present at the time the call-back function fires. The
486  * tcp_timer_handler() drops the reference after calling the call-back, so the
487  * call-back function does not need to manipulate the references explicitly.
488  */
489 
490 typedef struct tcp_timer_s {
491 	conn_t	*connp;
492 	void 	(*tcpt_proc)(void *);
493 	callout_id_t   tcpt_tid;
494 } tcp_timer_t;
495 
496 static kmem_cache_t *tcp_timercache;
497 kmem_cache_t	*tcp_sack_info_cache;
498 kmem_cache_t	*tcp_iphc_cache;
499 
500 /*
501  * For scalability, we must not run a timer for every TCP connection
502  * in TIME_WAIT state.  To see why, consider (for time wait interval of
503  * 4 minutes):
504  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
505  *
506  * This list is ordered by time, so you need only delete from the head
507  * until you get to entries which aren't old enough to delete yet.
508  * The list consists of only the detached TIME_WAIT connections.
509  *
510  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
511  * becomes detached TIME_WAIT (either by changing the state and already
512  * being detached or the other way around). This means that the TIME_WAIT
513  * state can be extended (up to doubled) if the connection doesn't become
514  * detached for a long time.
515  *
516  * The list manipulations (including tcp_time_wait_next/prev)
517  * are protected by the tcp_time_wait_lock. The content of the
518  * detached TIME_WAIT connections is protected by the normal perimeters.
519  *
520  * This list is per squeue and squeues are shared across the tcp_stack_t's.
521  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
522  * and conn_netstack.
523  * The tcp_t's that are added to tcp_free_list are disassociated and
524  * have NULL tcp_tcps and conn_netstack pointers.
525  */
526 typedef struct tcp_squeue_priv_s {
527 	kmutex_t	tcp_time_wait_lock;
528 	callout_id_t	tcp_time_wait_tid;
529 	tcp_t		*tcp_time_wait_head;
530 	tcp_t		*tcp_time_wait_tail;
531 	tcp_t		*tcp_free_list;
532 	uint_t		tcp_free_list_cnt;
533 } tcp_squeue_priv_t;
534 
535 /*
536  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
537  * Running it every 5 seconds seems to give the best results.
538  */
539 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
540 
541 /*
542  * To prevent memory hog, limit the number of entries in tcp_free_list
543  * to 1% of available memory / number of cpus
544  */
545 uint_t tcp_free_list_max_cnt = 0;
546 
547 #define	TCP_XMIT_LOWATER	4096
548 #define	TCP_XMIT_HIWATER	49152
549 #define	TCP_RECV_LOWATER	2048
550 #define	TCP_RECV_HIWATER	49152
551 
552 /*
553  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
554  */
555 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
556 
557 #define	TIDUSZ	4096	/* transport interface data unit size */
558 
559 /*
560  * Bind hash list size and has function.  It has to be a power of 2 for
561  * hashing.
562  */
563 #define	TCP_BIND_FANOUT_SIZE	512
564 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
565 /*
566  * Size of listen and acceptor hash list.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_FANOUT_SIZE		256
570 
571 #ifdef	_ILP32
572 #define	TCP_ACCEPTOR_HASH(accid)					\
573 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
574 #else
575 #define	TCP_ACCEPTOR_HASH(accid)					\
576 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
577 #endif	/* _ILP32 */
578 
579 #define	IP_ADDR_CACHE_SIZE	2048
580 #define	IP_ADDR_CACHE_HASH(faddr)					\
581 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
582 
583 /*
584  * TCP options struct returned from tcp_parse_options.
585  */
586 typedef struct tcp_opt_s {
587 	uint32_t	tcp_opt_mss;
588 	uint32_t	tcp_opt_wscale;
589 	uint32_t	tcp_opt_ts_val;
590 	uint32_t	tcp_opt_ts_ecr;
591 	tcp_t		*tcp;
592 } tcp_opt_t;
593 
594 /*
595  * TCP option struct passing information b/w lisenter and eager.
596  */
597 struct tcp_options {
598 	uint_t			to_flags;
599 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
600 };
601 
602 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
603 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
604 
605 /*
606  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
607  */
608 
609 #ifdef _BIG_ENDIAN
610 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
611 	(TCPOPT_TSTAMP << 8) | 10)
612 #else
613 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
614 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
615 #endif
616 
617 /*
618  * Flags returned from tcp_parse_options.
619  */
620 #define	TCP_OPT_MSS_PRESENT	1
621 #define	TCP_OPT_WSCALE_PRESENT	2
622 #define	TCP_OPT_TSTAMP_PRESENT	4
623 #define	TCP_OPT_SACK_OK_PRESENT	8
624 #define	TCP_OPT_SACK_PRESENT	16
625 
626 /* TCP option length */
627 #define	TCPOPT_NOP_LEN		1
628 #define	TCPOPT_MAXSEG_LEN	4
629 #define	TCPOPT_WS_LEN		3
630 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
631 #define	TCPOPT_TSTAMP_LEN	10
632 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
633 #define	TCPOPT_SACK_OK_LEN	2
634 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
635 #define	TCPOPT_REAL_SACK_LEN	4
636 #define	TCPOPT_MAX_SACK_LEN	36
637 #define	TCPOPT_HEADER_LEN	2
638 
639 /* TCP cwnd burst factor. */
640 #define	TCP_CWND_INFINITE	65535
641 #define	TCP_CWND_SS		3
642 #define	TCP_CWND_NORMAL		5
643 
644 /* Maximum TCP initial cwin (start/restart). */
645 #define	TCP_MAX_INIT_CWND	8
646 
647 /*
648  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
649  * either tcp_slow_start_initial or tcp_slow_start_after idle
650  * depending on the caller.  If the upper layer has not used the
651  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
652  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
653  * If the upper layer has changed set the tcp_init_cwnd, just use
654  * it to calculate the tcp_cwnd.
655  */
656 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
657 {									\
658 	if ((tcp)->tcp_init_cwnd == 0) {				\
659 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
660 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
661 	} else {							\
662 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
663 	}								\
664 	tcp->tcp_cwnd_cnt = 0;						\
665 }
666 
667 /* TCP Timer control structure */
668 typedef struct tcpt_s {
669 	pfv_t	tcpt_pfv;	/* The routine we are to call */
670 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
671 } tcpt_t;
672 
673 /*
674  * Functions called directly via squeue having a prototype of edesc_t.
675  */
676 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
677 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
678 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
679 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
680 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
681 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
682 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
683 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
684 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
685 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
686 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
687 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
688 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
689 
690 
691 /* Prototype for TCP functions */
692 static void	tcp_random_init(void);
693 int		tcp_random(void);
694 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
695 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
696 		    tcp_t *eager);
697 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
699     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
700     boolean_t user_specified);
701 static void	tcp_closei_local(tcp_t *tcp);
702 static void	tcp_close_detached(tcp_t *tcp);
703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
704 			mblk_t *idmp, mblk_t **defermp);
705 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
706 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
707 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
708 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
709 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
710 		    uint32_t scope_id, cred_t *cr, pid_t pid);
711 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
712 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
713 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
714 static char	*tcp_display(tcp_t *tcp, char *, char);
715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
716 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
717 static void	tcp_eager_unlink(tcp_t *tcp);
718 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
719 		    int unixerr);
720 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
721 		    int tlierr, int unixerr);
722 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
723 		    cred_t *cr);
724 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
725 		    char *value, caddr_t cp, cred_t *cr);
726 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
727 		    char *value, caddr_t cp, cred_t *cr);
728 static int	tcp_tpistate(tcp_t *tcp);
729 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
730     int caller_holds_lock);
731 static void	tcp_bind_hash_remove(tcp_t *tcp);
732 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
733 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
734 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
735 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
736 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
737 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
738 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
739 void		tcp_g_q_setup(tcp_stack_t *);
740 void		tcp_g_q_create(tcp_stack_t *);
741 void		tcp_g_q_destroy(tcp_stack_t *);
742 static int	tcp_header_init_ipv4(tcp_t *tcp);
743 static int	tcp_header_init_ipv6(tcp_t *tcp);
744 int		tcp_init(tcp_t *tcp, queue_t *q);
745 static int	tcp_init_values(tcp_t *tcp);
746 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
747 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
748 static void	tcp_ip_notify(tcp_t *tcp);
749 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
750 static void	tcp_iss_init(tcp_t *tcp);
751 static void	tcp_keepalive_killer(void *arg);
752 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
753 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
754 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
755 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
756 static boolean_t tcp_allow_connopt_set(int level, int name);
757 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
758 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
759 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
760 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
761 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
762 		    mblk_t *mblk);
763 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
764 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
765 		    uchar_t *ptr, uint_t len);
766 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
768     tcp_stack_t *);
769 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
770 		    caddr_t cp, cred_t *cr);
771 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
772 		    caddr_t cp, cred_t *cr);
773 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
774 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
775 		    caddr_t cp, cred_t *cr);
776 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
777 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
778 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
779 static void	tcp_reinit(tcp_t *tcp);
780 static void	tcp_reinit_values(tcp_t *tcp);
781 
782 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
783 static uint_t	tcp_rcv_drain(tcp_t *tcp);
784 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
785 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
786 static void	tcp_ss_rexmit(tcp_t *tcp);
787 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
788 static void	tcp_process_options(tcp_t *, tcph_t *);
789 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
790 static void	tcp_rsrv(queue_t *q);
791 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
792 static int	tcp_snmp_state(tcp_t *tcp);
793 static void	tcp_timer(void *arg);
794 static void	tcp_timer_callback(void *);
795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
796     boolean_t random);
797 static in_port_t tcp_get_next_priv_port(const tcp_t *);
798 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
799 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
800 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
801 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
802 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
803 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
804 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
805 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
806 		    const int num_sack_blk, int *usable, uint_t *snxt,
807 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
808 		    const int mdt_thres);
809 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
810 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
811 		    const int num_sack_blk, int *usable, uint_t *snxt,
812 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
813 		    const int mdt_thres);
814 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
815 		    int num_sack_blk);
816 static void	tcp_wsrv(queue_t *q);
817 static int	tcp_xmit_end(tcp_t *tcp);
818 static void	tcp_ack_timer(void *arg);
819 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
820 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
821 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
822 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
823 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
824 		    uint32_t ack, int ctl);
825 static int	setmaxps(queue_t *q, int maxpsz);
826 static void	tcp_set_rto(tcp_t *, time_t);
827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
828 		    boolean_t, boolean_t);
829 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
830 		    boolean_t ipsec_mctl);
831 static int	tcp_build_hdrs(tcp_t *);
832 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
833 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
834 		    tcph_t *tcph);
835 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
836 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
837 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
838 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
839 		    const boolean_t, const uint32_t, const uint32_t,
840 		    const uint32_t, const uint32_t, tcp_stack_t *);
841 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
842 		    const uint_t, const uint_t, boolean_t *);
843 static mblk_t	*tcp_lso_info_mp(mblk_t *);
844 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
845 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
846 extern mblk_t	*tcp_timermp_alloc(int);
847 extern void	tcp_timermp_free(tcp_t *);
848 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
849 static void	tcp_stop_lingering(tcp_t *tcp);
850 static void	tcp_close_linger_timeout(void *arg);
851 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
852 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
853 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
854 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
855 static void	tcp_g_kstat_fini(kstat_t *);
856 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
857 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
858 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
859 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
860 static int	tcp_kstat_update(kstat_t *kp, int rw);
861 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
862 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
863 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
864 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
865 			tcph_t *tcph, mblk_t *idmp);
866 static int	tcp_squeue_switch(int);
867 
868 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
869 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
870 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
871 static int	tcp_tpi_close(queue_t *, int);
872 static int	tcp_tpi_close_accept(queue_t *);
873 
874 static void	tcp_squeue_add(squeue_t *);
875 static boolean_t tcp_zcopy_check(tcp_t *);
876 static void	tcp_zcopy_notify(tcp_t *);
877 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
878 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
879 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
880 
881 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
882 
883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
885 
886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
887 	    sock_upper_handle_t, cred_t *);
888 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t);
890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
891     boolean_t);
892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
893     cred_t *, pid_t);
894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
895     boolean_t);
896 static int tcp_do_unbind(conn_t *);
897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
898     boolean_t);
899 
900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
901 
902 /*
903  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
904  *
905  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
906  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
907  * (defined in tcp.h) needs to be filled in and passed into the kernel
908  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
909  * structure contains the four-tuple of a TCP connection and a range of TCP
910  * states (specified by ac_start and ac_end). The use of wildcard addresses
911  * and ports is allowed. Connections with a matching four tuple and a state
912  * within the specified range will be aborted. The valid states for the
913  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
914  * inclusive.
915  *
916  * An application which has its connection aborted by this ioctl will receive
917  * an error that is dependent on the connection state at the time of the abort.
918  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
919  * though a RST packet has been received.  If the connection state is equal to
920  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
921  * and all resources associated with the connection will be freed.
922  */
923 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
924 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
925 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
926 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
927 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
928 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
929     boolean_t, tcp_stack_t *);
930 
931 static struct module_info tcp_rinfo =  {
932 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
933 };
934 
935 static struct module_info tcp_winfo =  {
936 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
937 };
938 
939 /*
940  * Entry points for TCP as a device. The normal case which supports
941  * the TCP functionality.
942  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
943  */
944 struct qinit tcp_rinitv4 = {
945 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
946 };
947 
948 struct qinit tcp_rinitv6 = {
949 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
950 };
951 
952 struct qinit tcp_winit = {
953 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
954 };
955 
956 /* Initial entry point for TCP in socket mode. */
957 struct qinit tcp_sock_winit = {
958 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
959 };
960 
961 /* TCP entry point during fallback */
962 struct qinit tcp_fallback_sock_winit = {
963 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
964 };
965 
966 /*
967  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
968  * an accept. Avoid allocating data structures since eager has already
969  * been created.
970  */
971 struct qinit tcp_acceptor_rinit = {
972 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
973 };
974 
975 struct qinit tcp_acceptor_winit = {
976 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
977 };
978 
979 /*
980  * Entry points for TCP loopback (read side only)
981  * The open routine is only used for reopens, thus no need to
982  * have a separate one for tcp_openv6.
983  */
984 struct qinit tcp_loopback_rinit = {
985 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
986 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
987 };
988 
989 /* For AF_INET aka /dev/tcp */
990 struct streamtab tcpinfov4 = {
991 	&tcp_rinitv4, &tcp_winit
992 };
993 
994 /* For AF_INET6 aka /dev/tcp6 */
995 struct streamtab tcpinfov6 = {
996 	&tcp_rinitv6, &tcp_winit
997 };
998 
999 sock_downcalls_t sock_tcp_downcalls;
1000 
1001 /*
1002  * Have to ensure that tcp_g_q_close is not done by an
1003  * interrupt thread.
1004  */
1005 static taskq_t *tcp_taskq;
1006 
1007 /* Setable only in /etc/system. Move to ndd? */
1008 boolean_t tcp_icmp_source_quench = B_FALSE;
1009 
1010 /*
1011  * Following assumes TPI alignment requirements stay along 32 bit
1012  * boundaries
1013  */
1014 #define	ROUNDUP32(x) \
1015 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1016 
1017 /* Template for response to info request. */
1018 static struct T_info_ack tcp_g_t_info_ack = {
1019 	T_INFO_ACK,		/* PRIM_type */
1020 	0,			/* TSDU_size */
1021 	T_INFINITE,		/* ETSDU_size */
1022 	T_INVALID,		/* CDATA_size */
1023 	T_INVALID,		/* DDATA_size */
1024 	sizeof (sin_t),		/* ADDR_size */
1025 	0,			/* OPT_size - not initialized here */
1026 	TIDUSZ,			/* TIDU_size */
1027 	T_COTS_ORD,		/* SERV_type */
1028 	TCPS_IDLE,		/* CURRENT_state */
1029 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1030 };
1031 
1032 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1033 	T_INFO_ACK,		/* PRIM_type */
1034 	0,			/* TSDU_size */
1035 	T_INFINITE,		/* ETSDU_size */
1036 	T_INVALID,		/* CDATA_size */
1037 	T_INVALID,		/* DDATA_size */
1038 	sizeof (sin6_t),	/* ADDR_size */
1039 	0,			/* OPT_size - not initialized here */
1040 	TIDUSZ,		/* TIDU_size */
1041 	T_COTS_ORD,		/* SERV_type */
1042 	TCPS_IDLE,		/* CURRENT_state */
1043 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1044 };
1045 
1046 #define	MS	1L
1047 #define	SECONDS	(1000 * MS)
1048 #define	MINUTES	(60 * SECONDS)
1049 #define	HOURS	(60 * MINUTES)
1050 #define	DAYS	(24 * HOURS)
1051 
1052 #define	PARAM_MAX (~(uint32_t)0)
1053 
1054 /* Max size IP datagram is 64k - 1 */
1055 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1056 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1057 /* Max of the above */
1058 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1059 
1060 /* Largest TCP port number */
1061 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1062 
1063 /*
1064  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1065  * layer header.  It has to be a multiple of 4.
1066  */
1067 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1068 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1069 
1070 /*
1071  * All of these are alterable, within the min/max values given, at run time.
1072  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1073  * per the TCP spec.
1074  */
1075 /* BEGIN CSTYLED */
1076 static tcpparam_t	lcl_tcp_param_arr[] = {
1077  /*min		max		value		name */
1078  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1079  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1080  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1081  { 1,		1024,		1,		"tcp_conn_req_min" },
1082  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1083  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1084  { 0,		10,		0,		"tcp_debug" },
1085  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1086  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1087  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1088  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1089  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1090  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1091  { 1,		255,		64,		"tcp_ipv4_ttl"},
1092  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1093  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1094  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1095  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1096  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1097  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1098  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1099  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1100  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1101  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1102  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1103  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1104  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1105  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1106  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1107  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1108  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1109  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1110  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1111  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1112  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1113  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1114  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1115 /*
1116  * Question:  What default value should I set for tcp_strong_iss?
1117  */
1118  { 0,		2,		1,		"tcp_strong_iss"},
1119  { 0,		65536,		20,		"tcp_rtt_updates"},
1120  { 0,		1,		1,		"tcp_wscale_always"},
1121  { 0,		1,		0,		"tcp_tstamp_always"},
1122  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1123  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1124  { 0,		16,		2,		"tcp_deferred_acks_max"},
1125  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1126  { 1,		4,		4,		"tcp_slow_start_initial"},
1127  { 0,		2,		2,		"tcp_sack_permitted"},
1128  { 0,		1,		1,		"tcp_compression_enabled"},
1129  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1130  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1131  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1132  { 0,		1,		0,		"tcp_rev_src_routes"},
1133  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1134  { 0,		16,		8,		"tcp_local_dacks_max"},
1135  { 0,		2,		1,		"tcp_ecn_permitted"},
1136  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1137  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1138  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1139  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1140  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1141 };
1142 /* END CSTYLED */
1143 
1144 /*
1145  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1146  * each header fragment in the header buffer.  Each parameter value has
1147  * to be a multiple of 4 (32-bit aligned).
1148  */
1149 static tcpparam_t lcl_tcp_mdt_head_param =
1150 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1151 static tcpparam_t lcl_tcp_mdt_tail_param =
1152 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1153 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1154 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1155 
1156 /*
1157  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1158  * the maximum number of payload buffers associated per Multidata.
1159  */
1160 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1161 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1162 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1163 
1164 /* Round up the value to the nearest mss. */
1165 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1166 
1167 /*
1168  * Set ECN capable transport (ECT) code point in IP header.
1169  *
1170  * Note that there are 2 ECT code points '01' and '10', which are called
1171  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1172  * point ECT(0) for TCP as described in RFC 2481.
1173  */
1174 #define	SET_ECT(tcp, iph) \
1175 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1176 		/* We need to clear the code point first. */ \
1177 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1178 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1179 	} else { \
1180 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1181 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1182 	}
1183 
1184 /*
1185  * The format argument to pass to tcp_display().
1186  * DISP_PORT_ONLY means that the returned string has only port info.
1187  * DISP_ADDR_AND_PORT means that the returned string also contains the
1188  * remote and local IP address.
1189  */
1190 #define	DISP_PORT_ONLY		1
1191 #define	DISP_ADDR_AND_PORT	2
1192 
1193 #define	IS_VMLOANED_MBLK(mp) \
1194 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1195 
1196 
1197 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1198 boolean_t tcp_mdt_chain = B_TRUE;
1199 
1200 /*
1201  * MDT threshold in the form of effective send MSS multiplier; we take
1202  * the MDT path if the amount of unsent data exceeds the threshold value
1203  * (default threshold is 1*SMSS).
1204  */
1205 uint_t tcp_mdt_smss_threshold = 1;
1206 
1207 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1208 
1209 /*
1210  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1211  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1212  * determined dynamically during tcp_adapt_ire(), which is the default.
1213  */
1214 boolean_t tcp_static_maxpsz = B_FALSE;
1215 
1216 /* Setable in /etc/system */
1217 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1218 uint32_t tcp_random_anon_port = 1;
1219 
1220 /*
1221  * To reach to an eager in Q0 which can be dropped due to an incoming
1222  * new SYN request when Q0 is full, a new doubly linked list is
1223  * introduced. This list allows to select an eager from Q0 in O(1) time.
1224  * This is needed to avoid spending too much time walking through the
1225  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1226  * this new list has to be a member of Q0.
1227  * This list is headed by listener's tcp_t. When the list is empty,
1228  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1229  * of listener's tcp_t point to listener's tcp_t itself.
1230  *
1231  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1232  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1233  * These macros do not affect the eager's membership to Q0.
1234  */
1235 
1236 
1237 #define	MAKE_DROPPABLE(listener, eager)					\
1238 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1239 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1240 		    = (eager);						\
1241 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1242 		(eager)->tcp_eager_next_drop_q0 =			\
1243 		    (listener)->tcp_eager_next_drop_q0;			\
1244 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1245 	}
1246 
1247 #define	MAKE_UNDROPPABLE(eager)						\
1248 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1249 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1250 		    = (eager)->tcp_eager_prev_drop_q0;			\
1251 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1252 		    = (eager)->tcp_eager_next_drop_q0;			\
1253 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1254 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1255 	}
1256 
1257 /*
1258  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1259  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1260  * data, TCP will not respond with an ACK.  RFC 793 requires that
1261  * TCP responds with an ACK for such a bogus ACK.  By not following
1262  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1263  * an attacker successfully spoofs an acceptable segment to our
1264  * peer; or when our peer is "confused."
1265  */
1266 uint32_t tcp_drop_ack_unsent_cnt = 10;
1267 
1268 /*
1269  * Hook functions to enable cluster networking
1270  * On non-clustered systems these vectors must always be NULL.
1271  */
1272 
1273 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1274 			    sa_family_t addr_family, uint8_t *laddrp,
1275 			    in_port_t lport, void *args) = NULL;
1276 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1277 			    sa_family_t addr_family, uint8_t *laddrp,
1278 			    in_port_t lport, void *args) = NULL;
1279 
1280 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1281 			    boolean_t is_outgoing,
1282 			    sa_family_t addr_family,
1283 			    uint8_t *laddrp, in_port_t lport,
1284 			    uint8_t *faddrp, in_port_t fport,
1285 			    void *args) = NULL;
1286 
1287 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1288 			    sa_family_t addr_family, uint8_t *laddrp,
1289 			    in_port_t lport, uint8_t *faddrp,
1290 			    in_port_t fport, void *args) = NULL;
1291 
1292 /*
1293  * The following are defined in ip.c
1294  */
1295 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1296 			    sa_family_t addr_family, uint8_t *laddrp,
1297 			    void *args);
1298 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1299 			    sa_family_t addr_family, uint8_t *laddrp,
1300 			    uint8_t *faddrp, void *args);
1301 
1302 
1303 /*
1304  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1305  */
1306 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1307 	(err) = 0;						\
1308 	if (cl_inet_connect2 != NULL) {				\
1309 		/*						\
1310 		 * Running in cluster mode - register active connection	\
1311 		 * information						\
1312 		 */							\
1313 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1314 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1315 				(err) = (*cl_inet_connect2)(		\
1316 				    (connp)->conn_netstack->netstack_stackid,\
1317 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1318 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1319 				    (in_port_t)(tcp)->tcp_lport,	\
1320 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1321 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1322 			}						\
1323 		} else {						\
1324 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1325 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1326 				(err) = (*cl_inet_connect2)(		\
1327 				    (connp)->conn_netstack->netstack_stackid,\
1328 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1329 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1330 				    (in_port_t)(tcp)->tcp_lport,	\
1331 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1332 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1333 			}						\
1334 		}							\
1335 	}								\
1336 }
1337 
1338 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1339 	if (cl_inet_disconnect != NULL) {				\
1340 		/*							\
1341 		 * Running in cluster mode - deregister active		\
1342 		 * connection information				\
1343 		 */							\
1344 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1345 			if ((tcp)->tcp_ip_src != 0) {			\
1346 				(*cl_inet_disconnect)(			\
1347 				    (connp)->conn_netstack->netstack_stackid,\
1348 				    IPPROTO_TCP, AF_INET,		\
1349 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1350 				    (in_port_t)(tcp)->tcp_lport,	\
1351 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1352 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1353 			}						\
1354 		} else {						\
1355 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1356 			    &(tcp)->tcp_ip_src_v6)) {			\
1357 				(*cl_inet_disconnect)(			\
1358 				    (connp)->conn_netstack->netstack_stackid,\
1359 				    IPPROTO_TCP, AF_INET6,		\
1360 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1361 				    (in_port_t)(tcp)->tcp_lport,	\
1362 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1363 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1364 			}						\
1365 		}							\
1366 	}								\
1367 }
1368 
1369 /*
1370  * Cluster networking hook for traversing current connection list.
1371  * This routine is used to extract the current list of live connections
1372  * which must continue to to be dispatched to this node.
1373  */
1374 int cl_tcp_walk_list(netstackid_t stack_id,
1375     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1376 
1377 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1378     void *arg, tcp_stack_t *tcps);
1379 
1380 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1381 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1382 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1383 	    ip6_t *, ip6h, int, 0);
1384 
1385 /*
1386  * Figure out the value of window scale opton.  Note that the rwnd is
1387  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1388  * We cannot find the scale value and then do a round up of tcp_rwnd
1389  * because the scale value may not be correct after that.
1390  *
1391  * Set the compiler flag to make this function inline.
1392  */
1393 static void
1394 tcp_set_ws_value(tcp_t *tcp)
1395 {
1396 	int i;
1397 	uint32_t rwnd = tcp->tcp_rwnd;
1398 
1399 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1400 	    i++, rwnd >>= 1)
1401 		;
1402 	tcp->tcp_rcv_ws = i;
1403 }
1404 
1405 /*
1406  * Remove a connection from the list of detached TIME_WAIT connections.
1407  * It returns B_FALSE if it can't remove the connection from the list
1408  * as the connection has already been removed from the list due to an
1409  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1410  */
1411 static boolean_t
1412 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1413 {
1414 	boolean_t	locked = B_FALSE;
1415 
1416 	if (tcp_time_wait == NULL) {
1417 		tcp_time_wait = *((tcp_squeue_priv_t **)
1418 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1419 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1420 		locked = B_TRUE;
1421 	} else {
1422 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1423 	}
1424 
1425 	if (tcp->tcp_time_wait_expire == 0) {
1426 		ASSERT(tcp->tcp_time_wait_next == NULL);
1427 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1428 		if (locked)
1429 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1430 		return (B_FALSE);
1431 	}
1432 	ASSERT(TCP_IS_DETACHED(tcp));
1433 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1434 
1435 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1436 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1437 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1438 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1439 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1440 			    NULL;
1441 		} else {
1442 			tcp_time_wait->tcp_time_wait_tail = NULL;
1443 		}
1444 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1445 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1446 		ASSERT(tcp->tcp_time_wait_next == NULL);
1447 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1448 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1449 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1450 	} else {
1451 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1452 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1453 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1454 		    tcp->tcp_time_wait_next;
1455 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1456 		    tcp->tcp_time_wait_prev;
1457 	}
1458 	tcp->tcp_time_wait_next = NULL;
1459 	tcp->tcp_time_wait_prev = NULL;
1460 	tcp->tcp_time_wait_expire = 0;
1461 
1462 	if (locked)
1463 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1464 	return (B_TRUE);
1465 }
1466 
1467 /*
1468  * Add a connection to the list of detached TIME_WAIT connections
1469  * and set its time to expire.
1470  */
1471 static void
1472 tcp_time_wait_append(tcp_t *tcp)
1473 {
1474 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1475 	tcp_squeue_priv_t *tcp_time_wait =
1476 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1477 	    SQPRIVATE_TCP));
1478 
1479 	tcp_timers_stop(tcp);
1480 
1481 	/* Freed above */
1482 	ASSERT(tcp->tcp_timer_tid == 0);
1483 	ASSERT(tcp->tcp_ack_tid == 0);
1484 
1485 	/* must have happened at the time of detaching the tcp */
1486 	ASSERT(tcp->tcp_ptpahn == NULL);
1487 	ASSERT(tcp->tcp_flow_stopped == 0);
1488 	ASSERT(tcp->tcp_time_wait_next == NULL);
1489 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1490 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1491 	ASSERT(tcp->tcp_listener == NULL);
1492 
1493 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1494 	/*
1495 	 * The value computed below in tcp->tcp_time_wait_expire may
1496 	 * appear negative or wrap around. That is ok since our
1497 	 * interest is only in the difference between the current lbolt
1498 	 * value and tcp->tcp_time_wait_expire. But the value should not
1499 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1500 	 * The corresponding comparison in tcp_time_wait_collector() uses
1501 	 * modular arithmetic.
1502 	 */
1503 	tcp->tcp_time_wait_expire +=
1504 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1505 	if (tcp->tcp_time_wait_expire == 0)
1506 		tcp->tcp_time_wait_expire = 1;
1507 
1508 	ASSERT(TCP_IS_DETACHED(tcp));
1509 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1510 	ASSERT(tcp->tcp_time_wait_next == NULL);
1511 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1512 	TCP_DBGSTAT(tcps, tcp_time_wait);
1513 
1514 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1515 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1516 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1517 		tcp_time_wait->tcp_time_wait_head = tcp;
1518 	} else {
1519 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1520 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1521 		    TCPS_TIME_WAIT);
1522 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1523 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1524 	}
1525 	tcp_time_wait->tcp_time_wait_tail = tcp;
1526 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1527 }
1528 
1529 /* ARGSUSED */
1530 void
1531 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1532 {
1533 	conn_t	*connp = (conn_t *)arg;
1534 	tcp_t	*tcp = connp->conn_tcp;
1535 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1536 
1537 	ASSERT(tcp != NULL);
1538 	if (tcp->tcp_state == TCPS_CLOSED) {
1539 		return;
1540 	}
1541 
1542 	ASSERT((tcp->tcp_family == AF_INET &&
1543 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1544 	    (tcp->tcp_family == AF_INET6 &&
1545 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1546 	    tcp->tcp_ipversion == IPV6_VERSION)));
1547 	ASSERT(!tcp->tcp_listener);
1548 
1549 	TCP_STAT(tcps, tcp_time_wait_reap);
1550 	ASSERT(TCP_IS_DETACHED(tcp));
1551 
1552 	/*
1553 	 * Because they have no upstream client to rebind or tcp_close()
1554 	 * them later, we axe the connection here and now.
1555 	 */
1556 	tcp_close_detached(tcp);
1557 }
1558 
1559 /*
1560  * Remove cached/latched IPsec references.
1561  */
1562 void
1563 tcp_ipsec_cleanup(tcp_t *tcp)
1564 {
1565 	conn_t		*connp = tcp->tcp_connp;
1566 
1567 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1568 
1569 	if (connp->conn_latch != NULL) {
1570 		IPLATCH_REFRELE(connp->conn_latch,
1571 		    connp->conn_netstack);
1572 		connp->conn_latch = NULL;
1573 	}
1574 	if (connp->conn_policy != NULL) {
1575 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1576 		connp->conn_policy = NULL;
1577 	}
1578 }
1579 
1580 /*
1581  * Cleaup before placing on free list.
1582  * Disassociate from the netstack/tcp_stack_t since the freelist
1583  * is per squeue and not per netstack.
1584  */
1585 void
1586 tcp_cleanup(tcp_t *tcp)
1587 {
1588 	mblk_t		*mp;
1589 	char		*tcp_iphc;
1590 	int		tcp_iphc_len;
1591 	int		tcp_hdr_grown;
1592 	tcp_sack_info_t	*tcp_sack_info;
1593 	conn_t		*connp = tcp->tcp_connp;
1594 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1595 	netstack_t	*ns = tcps->tcps_netstack;
1596 	mblk_t		*tcp_rsrv_mp;
1597 
1598 	tcp_bind_hash_remove(tcp);
1599 
1600 	/* Cleanup that which needs the netstack first */
1601 	tcp_ipsec_cleanup(tcp);
1602 
1603 	tcp_free(tcp);
1604 
1605 	/* Release any SSL context */
1606 	if (tcp->tcp_kssl_ent != NULL) {
1607 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1608 		tcp->tcp_kssl_ent = NULL;
1609 	}
1610 
1611 	if (tcp->tcp_kssl_ctx != NULL) {
1612 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1613 		tcp->tcp_kssl_ctx = NULL;
1614 	}
1615 	tcp->tcp_kssl_pending = B_FALSE;
1616 
1617 	conn_delete_ire(connp, NULL);
1618 
1619 	/*
1620 	 * Since we will bzero the entire structure, we need to
1621 	 * remove it and reinsert it in global hash list. We
1622 	 * know the walkers can't get to this conn because we
1623 	 * had set CONDEMNED flag earlier and checked reference
1624 	 * under conn_lock so walker won't pick it and when we
1625 	 * go the ipcl_globalhash_remove() below, no walker
1626 	 * can get to it.
1627 	 */
1628 	ipcl_globalhash_remove(connp);
1629 
1630 	/*
1631 	 * Now it is safe to decrement the reference counts.
1632 	 * This might be the last reference on the netstack and TCPS
1633 	 * in which case it will cause the tcp_g_q_close and
1634 	 * the freeing of the IP Instance.
1635 	 */
1636 	connp->conn_netstack = NULL;
1637 	netstack_rele(ns);
1638 	ASSERT(tcps != NULL);
1639 	tcp->tcp_tcps = NULL;
1640 	TCPS_REFRELE(tcps);
1641 
1642 	/* Save some state */
1643 	mp = tcp->tcp_timercache;
1644 
1645 	tcp_sack_info = tcp->tcp_sack_info;
1646 	tcp_iphc = tcp->tcp_iphc;
1647 	tcp_iphc_len = tcp->tcp_iphc_len;
1648 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1649 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1650 
1651 	if (connp->conn_cred != NULL) {
1652 		crfree(connp->conn_cred);
1653 		connp->conn_cred = NULL;
1654 	}
1655 	if (connp->conn_peercred != NULL) {
1656 		crfree(connp->conn_peercred);
1657 		connp->conn_peercred = NULL;
1658 	}
1659 	ipcl_conn_cleanup(connp);
1660 	connp->conn_flags = IPCL_TCPCONN;
1661 	bzero(tcp, sizeof (tcp_t));
1662 
1663 	/* restore the state */
1664 	tcp->tcp_timercache = mp;
1665 
1666 	tcp->tcp_sack_info = tcp_sack_info;
1667 	tcp->tcp_iphc = tcp_iphc;
1668 	tcp->tcp_iphc_len = tcp_iphc_len;
1669 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1670 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1671 
1672 	tcp->tcp_connp = connp;
1673 
1674 	ASSERT(connp->conn_tcp == tcp);
1675 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1676 	connp->conn_state_flags = CONN_INCIPIENT;
1677 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1678 	ASSERT(connp->conn_ref == 1);
1679 }
1680 
1681 /*
1682  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1683  * is done forwards from the head.
1684  * This walks all stack instances since
1685  * tcp_time_wait remains global across all stacks.
1686  */
1687 /* ARGSUSED */
1688 void
1689 tcp_time_wait_collector(void *arg)
1690 {
1691 	tcp_t *tcp;
1692 	clock_t now;
1693 	mblk_t *mp;
1694 	conn_t *connp;
1695 	kmutex_t *lock;
1696 	boolean_t removed;
1697 
1698 	squeue_t *sqp = (squeue_t *)arg;
1699 	tcp_squeue_priv_t *tcp_time_wait =
1700 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1701 
1702 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1703 	tcp_time_wait->tcp_time_wait_tid = 0;
1704 
1705 	if (tcp_time_wait->tcp_free_list != NULL &&
1706 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1707 		TCP_G_STAT(tcp_freelist_cleanup);
1708 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1709 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1710 			tcp->tcp_time_wait_next = NULL;
1711 			tcp_time_wait->tcp_free_list_cnt--;
1712 			ASSERT(tcp->tcp_tcps == NULL);
1713 			CONN_DEC_REF(tcp->tcp_connp);
1714 		}
1715 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1716 	}
1717 
1718 	/*
1719 	 * In order to reap time waits reliably, we should use a
1720 	 * source of time that is not adjustable by the user -- hence
1721 	 * the call to ddi_get_lbolt().
1722 	 */
1723 	now = ddi_get_lbolt();
1724 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1725 		/*
1726 		 * Compare times using modular arithmetic, since
1727 		 * lbolt can wrapover.
1728 		 */
1729 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1730 			break;
1731 		}
1732 
1733 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1734 		ASSERT(removed);
1735 
1736 		connp = tcp->tcp_connp;
1737 		ASSERT(connp->conn_fanout != NULL);
1738 		lock = &connp->conn_fanout->connf_lock;
1739 		/*
1740 		 * This is essentially a TW reclaim fast path optimization for
1741 		 * performance where the timewait collector checks under the
1742 		 * fanout lock (so that no one else can get access to the
1743 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1744 		 * the classifier hash list. If ref count is indeed 2, we can
1745 		 * just remove the conn under the fanout lock and avoid
1746 		 * cleaning up the conn under the squeue, provided that
1747 		 * clustering callbacks are not enabled. If clustering is
1748 		 * enabled, we need to make the clustering callback before
1749 		 * setting the CONDEMNED flag and after dropping all locks and
1750 		 * so we forego this optimization and fall back to the slow
1751 		 * path. Also please see the comments in tcp_closei_local
1752 		 * regarding the refcnt logic.
1753 		 *
1754 		 * Since we are holding the tcp_time_wait_lock, its better
1755 		 * not to block on the fanout_lock because other connections
1756 		 * can't add themselves to time_wait list. So we do a
1757 		 * tryenter instead of mutex_enter.
1758 		 */
1759 		if (mutex_tryenter(lock)) {
1760 			mutex_enter(&connp->conn_lock);
1761 			if ((connp->conn_ref == 2) &&
1762 			    (cl_inet_disconnect == NULL)) {
1763 				ipcl_hash_remove_locked(connp,
1764 				    connp->conn_fanout);
1765 				/*
1766 				 * Set the CONDEMNED flag now itself so that
1767 				 * the refcnt cannot increase due to any
1768 				 * walker. But we have still not cleaned up
1769 				 * conn_ire_cache. This is still ok since
1770 				 * we are going to clean it up in tcp_cleanup
1771 				 * immediately and any interface unplumb
1772 				 * thread will wait till the ire is blown away
1773 				 */
1774 				connp->conn_state_flags |= CONN_CONDEMNED;
1775 				mutex_exit(lock);
1776 				mutex_exit(&connp->conn_lock);
1777 				if (tcp_time_wait->tcp_free_list_cnt <
1778 				    tcp_free_list_max_cnt) {
1779 					/* Add to head of tcp_free_list */
1780 					mutex_exit(
1781 					    &tcp_time_wait->tcp_time_wait_lock);
1782 					tcp_cleanup(tcp);
1783 					ASSERT(connp->conn_latch == NULL);
1784 					ASSERT(connp->conn_policy == NULL);
1785 					ASSERT(tcp->tcp_tcps == NULL);
1786 					ASSERT(connp->conn_netstack == NULL);
1787 
1788 					mutex_enter(
1789 					    &tcp_time_wait->tcp_time_wait_lock);
1790 					tcp->tcp_time_wait_next =
1791 					    tcp_time_wait->tcp_free_list;
1792 					tcp_time_wait->tcp_free_list = tcp;
1793 					tcp_time_wait->tcp_free_list_cnt++;
1794 					continue;
1795 				} else {
1796 					/* Do not add to tcp_free_list */
1797 					mutex_exit(
1798 					    &tcp_time_wait->tcp_time_wait_lock);
1799 					tcp_bind_hash_remove(tcp);
1800 					conn_delete_ire(tcp->tcp_connp, NULL);
1801 					tcp_ipsec_cleanup(tcp);
1802 					CONN_DEC_REF(tcp->tcp_connp);
1803 				}
1804 			} else {
1805 				CONN_INC_REF_LOCKED(connp);
1806 				mutex_exit(lock);
1807 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1808 				mutex_exit(&connp->conn_lock);
1809 				/*
1810 				 * We can reuse the closemp here since conn has
1811 				 * detached (otherwise we wouldn't even be in
1812 				 * time_wait list). tcp_closemp_used can safely
1813 				 * be changed without taking a lock as no other
1814 				 * thread can concurrently access it at this
1815 				 * point in the connection lifecycle.
1816 				 */
1817 
1818 				if (tcp->tcp_closemp.b_prev == NULL)
1819 					tcp->tcp_closemp_used = B_TRUE;
1820 				else
1821 					cmn_err(CE_PANIC,
1822 					    "tcp_timewait_collector: "
1823 					    "concurrent use of tcp_closemp: "
1824 					    "connp %p tcp %p\n", (void *)connp,
1825 					    (void *)tcp);
1826 
1827 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1828 				mp = &tcp->tcp_closemp;
1829 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1830 				    tcp_timewait_output, connp,
1831 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1832 			}
1833 		} else {
1834 			mutex_enter(&connp->conn_lock);
1835 			CONN_INC_REF_LOCKED(connp);
1836 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1837 			mutex_exit(&connp->conn_lock);
1838 			/*
1839 			 * We can reuse the closemp here since conn has
1840 			 * detached (otherwise we wouldn't even be in
1841 			 * time_wait list). tcp_closemp_used can safely
1842 			 * be changed without taking a lock as no other
1843 			 * thread can concurrently access it at this
1844 			 * point in the connection lifecycle.
1845 			 */
1846 
1847 			if (tcp->tcp_closemp.b_prev == NULL)
1848 				tcp->tcp_closemp_used = B_TRUE;
1849 			else
1850 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1851 				    "concurrent use of tcp_closemp: "
1852 				    "connp %p tcp %p\n", (void *)connp,
1853 				    (void *)tcp);
1854 
1855 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1856 			mp = &tcp->tcp_closemp;
1857 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1858 			    tcp_timewait_output, connp,
1859 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1860 		}
1861 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1862 	}
1863 
1864 	if (tcp_time_wait->tcp_free_list != NULL)
1865 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1866 
1867 	tcp_time_wait->tcp_time_wait_tid =
1868 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1869 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1870 	    CALLOUT_FLAG_ROUNDUP);
1871 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1872 }
1873 
1874 /*
1875  * Reply to a clients T_CONN_RES TPI message. This function
1876  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1877  * on the acceptor STREAM and processed in tcp_wput_accept().
1878  * Read the block comment on top of tcp_conn_request().
1879  */
1880 static void
1881 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1882 {
1883 	tcp_t	*acceptor;
1884 	tcp_t	*eager;
1885 	tcp_t   *tcp;
1886 	struct T_conn_res	*tcr;
1887 	t_uscalar_t	acceptor_id;
1888 	t_scalar_t	seqnum;
1889 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1890 	struct tcp_options *tcpopt;
1891 	mblk_t	*ok_mp;
1892 	mblk_t	*mp1;
1893 	tcp_stack_t	*tcps = listener->tcp_tcps;
1894 
1895 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1896 		tcp_err_ack(listener, mp, TPROTO, 0);
1897 		return;
1898 	}
1899 	tcr = (struct T_conn_res *)mp->b_rptr;
1900 
1901 	/*
1902 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1903 	 * read side queue of the streams device underneath us i.e. the
1904 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1905 	 * look it up in the queue_hash.  Under LP64 it sends down the
1906 	 * minor_t of the accepting endpoint.
1907 	 *
1908 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1909 	 * fanout hash lock is held.
1910 	 * This prevents any thread from entering the acceptor queue from
1911 	 * below (since it has not been hard bound yet i.e. any inbound
1912 	 * packets will arrive on the listener or default tcp queue and
1913 	 * go through tcp_lookup).
1914 	 * The CONN_INC_REF will prevent the acceptor from closing.
1915 	 *
1916 	 * XXX It is still possible for a tli application to send down data
1917 	 * on the accepting stream while another thread calls t_accept.
1918 	 * This should not be a problem for well-behaved applications since
1919 	 * the T_OK_ACK is sent after the queue swapping is completed.
1920 	 *
1921 	 * If the accepting fd is the same as the listening fd, avoid
1922 	 * queue hash lookup since that will return an eager listener in a
1923 	 * already established state.
1924 	 */
1925 	acceptor_id = tcr->ACCEPTOR_id;
1926 	mutex_enter(&listener->tcp_eager_lock);
1927 	if (listener->tcp_acceptor_id == acceptor_id) {
1928 		eager = listener->tcp_eager_next_q;
1929 		/* only count how many T_CONN_INDs so don't count q0 */
1930 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1931 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1932 			mutex_exit(&listener->tcp_eager_lock);
1933 			tcp_err_ack(listener, mp, TBADF, 0);
1934 			return;
1935 		}
1936 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1937 			/* Throw away all the eagers on q0. */
1938 			tcp_eager_cleanup(listener, 1);
1939 		}
1940 		if (listener->tcp_syn_defense) {
1941 			listener->tcp_syn_defense = B_FALSE;
1942 			if (listener->tcp_ip_addr_cache != NULL) {
1943 				kmem_free(listener->tcp_ip_addr_cache,
1944 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1945 				listener->tcp_ip_addr_cache = NULL;
1946 			}
1947 		}
1948 		/*
1949 		 * Transfer tcp_conn_req_max to the eager so that when
1950 		 * a disconnect occurs we can revert the endpoint to the
1951 		 * listen state.
1952 		 */
1953 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1954 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1955 		/*
1956 		 * Get a reference on the acceptor just like the
1957 		 * tcp_acceptor_hash_lookup below.
1958 		 */
1959 		acceptor = listener;
1960 		CONN_INC_REF(acceptor->tcp_connp);
1961 	} else {
1962 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1963 		if (acceptor == NULL) {
1964 			if (listener->tcp_debug) {
1965 				(void) strlog(TCP_MOD_ID, 0, 1,
1966 				    SL_ERROR|SL_TRACE,
1967 				    "tcp_accept: did not find acceptor 0x%x\n",
1968 				    acceptor_id);
1969 			}
1970 			mutex_exit(&listener->tcp_eager_lock);
1971 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1972 			return;
1973 		}
1974 		/*
1975 		 * Verify acceptor state. The acceptable states for an acceptor
1976 		 * include TCPS_IDLE and TCPS_BOUND.
1977 		 */
1978 		switch (acceptor->tcp_state) {
1979 		case TCPS_IDLE:
1980 			/* FALLTHRU */
1981 		case TCPS_BOUND:
1982 			break;
1983 		default:
1984 			CONN_DEC_REF(acceptor->tcp_connp);
1985 			mutex_exit(&listener->tcp_eager_lock);
1986 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
1987 			return;
1988 		}
1989 	}
1990 
1991 	/* The listener must be in TCPS_LISTEN */
1992 	if (listener->tcp_state != TCPS_LISTEN) {
1993 		CONN_DEC_REF(acceptor->tcp_connp);
1994 		mutex_exit(&listener->tcp_eager_lock);
1995 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
1996 		return;
1997 	}
1998 
1999 	/*
2000 	 * Rendezvous with an eager connection request packet hanging off
2001 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2002 	 * tcp structure when the connection packet arrived in
2003 	 * tcp_conn_request().
2004 	 */
2005 	seqnum = tcr->SEQ_number;
2006 	eager = listener;
2007 	do {
2008 		eager = eager->tcp_eager_next_q;
2009 		if (eager == NULL) {
2010 			CONN_DEC_REF(acceptor->tcp_connp);
2011 			mutex_exit(&listener->tcp_eager_lock);
2012 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2013 			return;
2014 		}
2015 	} while (eager->tcp_conn_req_seqnum != seqnum);
2016 	mutex_exit(&listener->tcp_eager_lock);
2017 
2018 	/*
2019 	 * At this point, both acceptor and listener have 2 ref
2020 	 * that they begin with. Acceptor has one additional ref
2021 	 * we placed in lookup while listener has 3 additional
2022 	 * ref for being behind the squeue (tcp_accept() is
2023 	 * done on listener's squeue); being in classifier hash;
2024 	 * and eager's ref on listener.
2025 	 */
2026 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2027 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2028 
2029 	/*
2030 	 * The eager at this point is set in its own squeue and
2031 	 * could easily have been killed (tcp_accept_finish will
2032 	 * deal with that) because of a TH_RST so we can only
2033 	 * ASSERT for a single ref.
2034 	 */
2035 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2036 
2037 	/* Pre allocate the stroptions mblk also */
2038 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2039 	    sizeof (struct T_conn_res)), BPRI_HI);
2040 	if (opt_mp == NULL) {
2041 		CONN_DEC_REF(acceptor->tcp_connp);
2042 		CONN_DEC_REF(eager->tcp_connp);
2043 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2044 		return;
2045 	}
2046 	DB_TYPE(opt_mp) = M_SETOPTS;
2047 	opt_mp->b_wptr += sizeof (struct tcp_options);
2048 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2049 	tcpopt->to_flags = 0;
2050 
2051 	/*
2052 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2053 	 * from listener to acceptor.
2054 	 */
2055 	if (listener->tcp_bound_if != 0) {
2056 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2057 		tcpopt->to_boundif = listener->tcp_bound_if;
2058 	}
2059 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2060 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2061 	}
2062 
2063 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2064 	if ((mp1 = copymsg(mp)) == NULL) {
2065 		CONN_DEC_REF(acceptor->tcp_connp);
2066 		CONN_DEC_REF(eager->tcp_connp);
2067 		freemsg(opt_mp);
2068 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2069 		return;
2070 	}
2071 
2072 	tcr = (struct T_conn_res *)mp1->b_rptr;
2073 
2074 	/*
2075 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2076 	 * which allocates a larger mblk and appends the new
2077 	 * local address to the ok_ack.  The address is copied by
2078 	 * soaccept() for getsockname().
2079 	 */
2080 	{
2081 		int extra;
2082 
2083 		extra = (eager->tcp_family == AF_INET) ?
2084 		    sizeof (sin_t) : sizeof (sin6_t);
2085 
2086 		/*
2087 		 * Try to re-use mp, if possible.  Otherwise, allocate
2088 		 * an mblk and return it as ok_mp.  In any case, mp
2089 		 * is no longer usable upon return.
2090 		 */
2091 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2092 			CONN_DEC_REF(acceptor->tcp_connp);
2093 			CONN_DEC_REF(eager->tcp_connp);
2094 			freemsg(opt_mp);
2095 			/* Original mp has been freed by now, so use mp1 */
2096 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2097 			return;
2098 		}
2099 
2100 		mp = NULL;	/* We should never use mp after this point */
2101 
2102 		switch (extra) {
2103 		case sizeof (sin_t): {
2104 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2105 
2106 				ok_mp->b_wptr += extra;
2107 				sin->sin_family = AF_INET;
2108 				sin->sin_port = eager->tcp_lport;
2109 				sin->sin_addr.s_addr =
2110 				    eager->tcp_ipha->ipha_src;
2111 				break;
2112 			}
2113 		case sizeof (sin6_t): {
2114 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2115 
2116 				ok_mp->b_wptr += extra;
2117 				sin6->sin6_family = AF_INET6;
2118 				sin6->sin6_port = eager->tcp_lport;
2119 				if (eager->tcp_ipversion == IPV4_VERSION) {
2120 					sin6->sin6_flowinfo = 0;
2121 					IN6_IPADDR_TO_V4MAPPED(
2122 					    eager->tcp_ipha->ipha_src,
2123 					    &sin6->sin6_addr);
2124 				} else {
2125 					ASSERT(eager->tcp_ip6h != NULL);
2126 					sin6->sin6_flowinfo =
2127 					    eager->tcp_ip6h->ip6_vcf &
2128 					    ~IPV6_VERS_AND_FLOW_MASK;
2129 					sin6->sin6_addr =
2130 					    eager->tcp_ip6h->ip6_src;
2131 				}
2132 				sin6->sin6_scope_id = 0;
2133 				sin6->__sin6_src_id = 0;
2134 				break;
2135 			}
2136 		default:
2137 			break;
2138 		}
2139 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2140 	}
2141 
2142 	/*
2143 	 * If there are no options we know that the T_CONN_RES will
2144 	 * succeed. However, we can't send the T_OK_ACK upstream until
2145 	 * the tcp_accept_swap is done since it would be dangerous to
2146 	 * let the application start using the new fd prior to the swap.
2147 	 */
2148 	tcp_accept_swap(listener, acceptor, eager);
2149 
2150 	/*
2151 	 * tcp_accept_swap unlinks eager from listener but does not drop
2152 	 * the eager's reference on the listener.
2153 	 */
2154 	ASSERT(eager->tcp_listener == NULL);
2155 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2156 
2157 	/*
2158 	 * The eager is now associated with its own queue. Insert in
2159 	 * the hash so that the connection can be reused for a future
2160 	 * T_CONN_RES.
2161 	 */
2162 	tcp_acceptor_hash_insert(acceptor_id, eager);
2163 
2164 	/*
2165 	 * We now do the processing of options with T_CONN_RES.
2166 	 * We delay till now since we wanted to have queue to pass to
2167 	 * option processing routines that points back to the right
2168 	 * instance structure which does not happen until after
2169 	 * tcp_accept_swap().
2170 	 *
2171 	 * Note:
2172 	 * The sanity of the logic here assumes that whatever options
2173 	 * are appropriate to inherit from listner=>eager are done
2174 	 * before this point, and whatever were to be overridden (or not)
2175 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2176 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2177 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2178 	 * This may not be true at this point in time but can be fixed
2179 	 * independently. This option processing code starts with
2180 	 * the instantiated acceptor instance and the final queue at
2181 	 * this point.
2182 	 */
2183 
2184 	if (tcr->OPT_length != 0) {
2185 		/* Options to process */
2186 		int t_error = 0;
2187 		int sys_error = 0;
2188 		int do_disconnect = 0;
2189 
2190 		if (tcp_conprim_opt_process(eager, mp1,
2191 		    &do_disconnect, &t_error, &sys_error) < 0) {
2192 			eager->tcp_accept_error = 1;
2193 			if (do_disconnect) {
2194 				/*
2195 				 * An option failed which does not allow
2196 				 * connection to be accepted.
2197 				 *
2198 				 * We allow T_CONN_RES to succeed and
2199 				 * put a T_DISCON_IND on the eager queue.
2200 				 */
2201 				ASSERT(t_error == 0 && sys_error == 0);
2202 				eager->tcp_send_discon_ind = 1;
2203 			} else {
2204 				ASSERT(t_error != 0);
2205 				freemsg(ok_mp);
2206 				/*
2207 				 * Original mp was either freed or set
2208 				 * to ok_mp above, so use mp1 instead.
2209 				 */
2210 				tcp_err_ack(listener, mp1, t_error, sys_error);
2211 				goto finish;
2212 			}
2213 		}
2214 		/*
2215 		 * Most likely success in setting options (except if
2216 		 * eager->tcp_send_discon_ind set).
2217 		 * mp1 option buffer represented by OPT_length/offset
2218 		 * potentially modified and contains results of setting
2219 		 * options at this point
2220 		 */
2221 	}
2222 
2223 	/* We no longer need mp1, since all options processing has passed */
2224 	freemsg(mp1);
2225 
2226 	putnext(listener->tcp_rq, ok_mp);
2227 
2228 	mutex_enter(&listener->tcp_eager_lock);
2229 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2230 		tcp_t	*tail;
2231 		mblk_t	*conn_ind;
2232 
2233 		/*
2234 		 * This path should not be executed if listener and
2235 		 * acceptor streams are the same.
2236 		 */
2237 		ASSERT(listener != acceptor);
2238 
2239 		tcp = listener->tcp_eager_prev_q0;
2240 		/*
2241 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2242 		 * deferred T_conn_ind queue. We need to get to the head of
2243 		 * the queue in order to send up T_conn_ind the same order as
2244 		 * how the 3WHS is completed.
2245 		 */
2246 		while (tcp != listener) {
2247 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2248 				break;
2249 			else
2250 				tcp = tcp->tcp_eager_prev_q0;
2251 		}
2252 		ASSERT(tcp != listener);
2253 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2254 		ASSERT(conn_ind != NULL);
2255 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2256 
2257 		/* Move from q0 to q */
2258 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2259 		listener->tcp_conn_req_cnt_q0--;
2260 		listener->tcp_conn_req_cnt_q++;
2261 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2262 		    tcp->tcp_eager_prev_q0;
2263 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2264 		    tcp->tcp_eager_next_q0;
2265 		tcp->tcp_eager_prev_q0 = NULL;
2266 		tcp->tcp_eager_next_q0 = NULL;
2267 		tcp->tcp_conn_def_q0 = B_FALSE;
2268 
2269 		/* Make sure the tcp isn't in the list of droppables */
2270 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2271 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2272 
2273 		/*
2274 		 * Insert at end of the queue because sockfs sends
2275 		 * down T_CONN_RES in chronological order. Leaving
2276 		 * the older conn indications at front of the queue
2277 		 * helps reducing search time.
2278 		 */
2279 		tail = listener->tcp_eager_last_q;
2280 		if (tail != NULL)
2281 			tail->tcp_eager_next_q = tcp;
2282 		else
2283 			listener->tcp_eager_next_q = tcp;
2284 		listener->tcp_eager_last_q = tcp;
2285 		tcp->tcp_eager_next_q = NULL;
2286 		mutex_exit(&listener->tcp_eager_lock);
2287 		putnext(tcp->tcp_rq, conn_ind);
2288 	} else {
2289 		mutex_exit(&listener->tcp_eager_lock);
2290 	}
2291 
2292 	/*
2293 	 * Done with the acceptor - free it
2294 	 *
2295 	 * Note: from this point on, no access to listener should be made
2296 	 * as listener can be equal to acceptor.
2297 	 */
2298 finish:
2299 	ASSERT(acceptor->tcp_detached);
2300 	ASSERT(tcps->tcps_g_q != NULL);
2301 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2302 	acceptor->tcp_rq = tcps->tcps_g_q;
2303 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2304 	(void) tcp_clean_death(acceptor, 0, 2);
2305 	CONN_DEC_REF(acceptor->tcp_connp);
2306 
2307 	/*
2308 	 * In case we already received a FIN we have to make tcp_rput send
2309 	 * the ordrel_ind. This will also send up a window update if the window
2310 	 * has opened up.
2311 	 *
2312 	 * In the normal case of a successful connection acceptance
2313 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2314 	 * indication that this was just accepted. This tells tcp_rput to
2315 	 * pass up any data queued in tcp_rcv_list.
2316 	 *
2317 	 * In the fringe case where options sent with T_CONN_RES failed and
2318 	 * we required, we would be indicating a T_DISCON_IND to blow
2319 	 * away this connection.
2320 	 */
2321 
2322 	/*
2323 	 * XXX: we currently have a problem if XTI application closes the
2324 	 * acceptor stream in between. This problem exists in on10-gate also
2325 	 * and is well know but nothing can be done short of major rewrite
2326 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2327 	 * eager same squeue as listener (we can distinguish non socket
2328 	 * listeners at the time of handling a SYN in tcp_conn_request)
2329 	 * and do most of the work that tcp_accept_finish does here itself
2330 	 * and then get behind the acceptor squeue to access the acceptor
2331 	 * queue.
2332 	 */
2333 	/*
2334 	 * We already have a ref on tcp so no need to do one before squeue_enter
2335 	 */
2336 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2337 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2338 }
2339 
2340 /*
2341  * Swap information between the eager and acceptor for a TLI/XTI client.
2342  * The sockfs accept is done on the acceptor stream and control goes
2343  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2344  * called. In either case, both the eager and listener are in their own
2345  * perimeter (squeue) and the code has to deal with potential race.
2346  *
2347  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2348  */
2349 static void
2350 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2351 {
2352 	conn_t	*econnp, *aconnp;
2353 
2354 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2355 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2356 	ASSERT(!eager->tcp_hard_bound);
2357 	ASSERT(!TCP_IS_SOCKET(acceptor));
2358 	ASSERT(!TCP_IS_SOCKET(eager));
2359 	ASSERT(!TCP_IS_SOCKET(listener));
2360 
2361 	acceptor->tcp_detached = B_TRUE;
2362 	/*
2363 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2364 	 * the acceptor id.
2365 	 */
2366 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2367 
2368 	/* remove eager from listen list... */
2369 	mutex_enter(&listener->tcp_eager_lock);
2370 	tcp_eager_unlink(eager);
2371 	ASSERT(eager->tcp_eager_next_q == NULL &&
2372 	    eager->tcp_eager_last_q == NULL);
2373 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2374 	    eager->tcp_eager_prev_q0 == NULL);
2375 	mutex_exit(&listener->tcp_eager_lock);
2376 	eager->tcp_rq = acceptor->tcp_rq;
2377 	eager->tcp_wq = acceptor->tcp_wq;
2378 
2379 	econnp = eager->tcp_connp;
2380 	aconnp = acceptor->tcp_connp;
2381 
2382 	eager->tcp_rq->q_ptr = econnp;
2383 	eager->tcp_wq->q_ptr = econnp;
2384 
2385 	/*
2386 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2387 	 * which might be a different squeue from our peer TCP instance.
2388 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2389 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2390 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2391 	 * above reach global visibility prior to the clearing of tcp_detached.
2392 	 */
2393 	membar_producer();
2394 	eager->tcp_detached = B_FALSE;
2395 
2396 	ASSERT(eager->tcp_ack_tid == 0);
2397 
2398 	econnp->conn_dev = aconnp->conn_dev;
2399 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2400 	ASSERT(econnp->conn_minor_arena != NULL);
2401 	if (eager->tcp_cred != NULL)
2402 		crfree(eager->tcp_cred);
2403 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2404 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2405 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2406 
2407 	aconnp->conn_cred = NULL;
2408 
2409 	econnp->conn_zoneid = aconnp->conn_zoneid;
2410 	econnp->conn_allzones = aconnp->conn_allzones;
2411 
2412 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2413 	aconnp->conn_mac_exempt = B_FALSE;
2414 
2415 	ASSERT(aconnp->conn_peercred == NULL);
2416 
2417 	/* Do the IPC initialization */
2418 	CONN_INC_REF(econnp);
2419 
2420 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2421 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2422 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2423 
2424 	/* Done with old IPC. Drop its ref on its connp */
2425 	CONN_DEC_REF(aconnp);
2426 }
2427 
2428 
2429 /*
2430  * Adapt to the information, such as rtt and rtt_sd, provided from the
2431  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2432  *
2433  * Checks for multicast and broadcast destination address.
2434  * Returns zero on failure; non-zero if ok.
2435  *
2436  * Note that the MSS calculation here is based on the info given in
2437  * the IRE.  We do not do any calculation based on TCP options.  They
2438  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2439  * knows which options to use.
2440  *
2441  * Note on how TCP gets its parameters for a connection.
2442  *
2443  * When a tcp_t structure is allocated, it gets all the default parameters.
2444  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2445  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2446  * default.
2447  *
2448  * An incoming SYN with a multicast or broadcast destination address, is dropped
2449  * in 1 of 2 places.
2450  *
2451  * 1. If the packet was received over the wire it is dropped in
2452  * ip_rput_process_broadcast()
2453  *
2454  * 2. If the packet was received through internal IP loopback, i.e. the packet
2455  * was generated and received on the same machine, it is dropped in
2456  * ip_wput_local()
2457  *
2458  * An incoming SYN with a multicast or broadcast source address is always
2459  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2460  * reject an attempt to connect to a broadcast or multicast (destination)
2461  * address.
2462  */
2463 static int
2464 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2465 {
2466 	ire_t		*ire;
2467 	ire_t		*sire = NULL;
2468 	iulp_t		*ire_uinfo = NULL;
2469 	uint32_t	mss_max;
2470 	uint32_t	mss;
2471 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2472 	conn_t		*connp = tcp->tcp_connp;
2473 	boolean_t	ire_cacheable = B_FALSE;
2474 	zoneid_t	zoneid = connp->conn_zoneid;
2475 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2476 	    MATCH_IRE_SECATTR;
2477 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2478 	ill_t		*ill = NULL;
2479 	boolean_t	incoming = (ire_mp == NULL);
2480 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2481 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2482 
2483 	ASSERT(connp->conn_ire_cache == NULL);
2484 
2485 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2486 
2487 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2488 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2489 			return (0);
2490 		}
2491 		/*
2492 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2493 		 * for the destination with the nexthop as gateway.
2494 		 * ire_ctable_lookup() is used because this particular
2495 		 * ire, if it exists, will be marked private.
2496 		 * If that is not available, use the interface ire
2497 		 * for the nexthop.
2498 		 *
2499 		 * TSol: tcp_update_label will detect label mismatches based
2500 		 * only on the destination's label, but that would not
2501 		 * detect label mismatches based on the security attributes
2502 		 * of routes or next hop gateway. Hence we need to pass the
2503 		 * label to ire_ftable_lookup below in order to locate the
2504 		 * right prefix (and/or) ire cache. Similarly we also need
2505 		 * pass the label to the ire_cache_lookup below to locate
2506 		 * the right ire that also matches on the label.
2507 		 */
2508 		if (tcp->tcp_connp->conn_nexthop_set) {
2509 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2510 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2511 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2512 			    ipst);
2513 			if (ire == NULL) {
2514 				ire = ire_ftable_lookup(
2515 				    tcp->tcp_connp->conn_nexthop_v4,
2516 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2517 				    tsl, match_flags, ipst);
2518 				if (ire == NULL)
2519 					return (0);
2520 			} else {
2521 				ire_uinfo = &ire->ire_uinfo;
2522 			}
2523 		} else {
2524 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2525 			    zoneid, tsl, ipst);
2526 			if (ire != NULL) {
2527 				ire_cacheable = B_TRUE;
2528 				ire_uinfo = (ire_mp != NULL) ?
2529 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2530 				    &ire->ire_uinfo;
2531 
2532 			} else {
2533 				if (ire_mp == NULL) {
2534 					ire = ire_ftable_lookup(
2535 					    tcp->tcp_connp->conn_rem,
2536 					    0, 0, 0, NULL, &sire, zoneid, 0,
2537 					    tsl, (MATCH_IRE_RECURSIVE |
2538 					    MATCH_IRE_DEFAULT), ipst);
2539 					if (ire == NULL)
2540 						return (0);
2541 					ire_uinfo = (sire != NULL) ?
2542 					    &sire->ire_uinfo :
2543 					    &ire->ire_uinfo;
2544 				} else {
2545 					ire = (ire_t *)ire_mp->b_rptr;
2546 					ire_uinfo =
2547 					    &((ire_t *)
2548 					    ire_mp->b_rptr)->ire_uinfo;
2549 				}
2550 			}
2551 		}
2552 		ASSERT(ire != NULL);
2553 
2554 		if ((ire->ire_src_addr == INADDR_ANY) ||
2555 		    (ire->ire_type & IRE_BROADCAST)) {
2556 			/*
2557 			 * ire->ire_mp is non null when ire_mp passed in is used
2558 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2559 			 */
2560 			if (ire->ire_mp == NULL)
2561 				ire_refrele(ire);
2562 			if (sire != NULL)
2563 				ire_refrele(sire);
2564 			return (0);
2565 		}
2566 
2567 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2568 			ipaddr_t src_addr;
2569 
2570 			/*
2571 			 * ip_bind_connected() has stored the correct source
2572 			 * address in conn_src.
2573 			 */
2574 			src_addr = tcp->tcp_connp->conn_src;
2575 			tcp->tcp_ipha->ipha_src = src_addr;
2576 			/*
2577 			 * Copy of the src addr. in tcp_t is needed
2578 			 * for the lookup funcs.
2579 			 */
2580 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2581 		}
2582 		/*
2583 		 * Set the fragment bit so that IP will tell us if the MTU
2584 		 * should change. IP tells us the latest setting of
2585 		 * ip_path_mtu_discovery through ire_frag_flag.
2586 		 */
2587 		if (ipst->ips_ip_path_mtu_discovery) {
2588 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2589 			    htons(IPH_DF);
2590 		}
2591 		/*
2592 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2593 		 * for IP_NEXTHOP. No cache ire has been found for the
2594 		 * destination and we are working with the nexthop's
2595 		 * interface ire. Since we need to forward all packets
2596 		 * to the nexthop first, we "blindly" set tcp_localnet
2597 		 * to false, eventhough the destination may also be
2598 		 * onlink.
2599 		 */
2600 		if (ire_uinfo == NULL)
2601 			tcp->tcp_localnet = 0;
2602 		else
2603 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2604 	} else {
2605 		/*
2606 		 * For incoming connection ire_mp = NULL
2607 		 * For outgoing connection ire_mp != NULL
2608 		 * Technically we should check conn_incoming_ill
2609 		 * when ire_mp is NULL and conn_outgoing_ill when
2610 		 * ire_mp is non-NULL. But this is performance
2611 		 * critical path and for IPV*_BOUND_IF, outgoing
2612 		 * and incoming ill are always set to the same value.
2613 		 */
2614 		ill_t	*dst_ill = NULL;
2615 		ipif_t  *dst_ipif = NULL;
2616 
2617 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2618 
2619 		if (connp->conn_outgoing_ill != NULL) {
2620 			/* Outgoing or incoming path */
2621 			int   err;
2622 
2623 			dst_ill = conn_get_held_ill(connp,
2624 			    &connp->conn_outgoing_ill, &err);
2625 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2626 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2627 				return (0);
2628 			}
2629 			match_flags |= MATCH_IRE_ILL;
2630 			dst_ipif = dst_ill->ill_ipif;
2631 		}
2632 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2633 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2634 
2635 		if (ire != NULL) {
2636 			ire_cacheable = B_TRUE;
2637 			ire_uinfo = (ire_mp != NULL) ?
2638 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2639 			    &ire->ire_uinfo;
2640 		} else {
2641 			if (ire_mp == NULL) {
2642 				ire = ire_ftable_lookup_v6(
2643 				    &tcp->tcp_connp->conn_remv6,
2644 				    0, 0, 0, dst_ipif, &sire, zoneid,
2645 				    0, tsl, match_flags, ipst);
2646 				if (ire == NULL) {
2647 					if (dst_ill != NULL)
2648 						ill_refrele(dst_ill);
2649 					return (0);
2650 				}
2651 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2652 				    &ire->ire_uinfo;
2653 			} else {
2654 				ire = (ire_t *)ire_mp->b_rptr;
2655 				ire_uinfo =
2656 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2657 			}
2658 		}
2659 		if (dst_ill != NULL)
2660 			ill_refrele(dst_ill);
2661 
2662 		ASSERT(ire != NULL);
2663 		ASSERT(ire_uinfo != NULL);
2664 
2665 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2666 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2667 			/*
2668 			 * ire->ire_mp is non null when ire_mp passed in is used
2669 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2670 			 */
2671 			if (ire->ire_mp == NULL)
2672 				ire_refrele(ire);
2673 			if (sire != NULL)
2674 				ire_refrele(sire);
2675 			return (0);
2676 		}
2677 
2678 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2679 			in6_addr_t	src_addr;
2680 
2681 			/*
2682 			 * ip_bind_connected_v6() has stored the correct source
2683 			 * address per IPv6 addr. selection policy in
2684 			 * conn_src_v6.
2685 			 */
2686 			src_addr = tcp->tcp_connp->conn_srcv6;
2687 
2688 			tcp->tcp_ip6h->ip6_src = src_addr;
2689 			/*
2690 			 * Copy of the src addr. in tcp_t is needed
2691 			 * for the lookup funcs.
2692 			 */
2693 			tcp->tcp_ip_src_v6 = src_addr;
2694 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2695 			    &connp->conn_srcv6));
2696 		}
2697 		tcp->tcp_localnet =
2698 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2699 	}
2700 
2701 	/*
2702 	 * This allows applications to fail quickly when connections are made
2703 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2704 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2705 	 */
2706 	if ((ire->ire_flags & RTF_REJECT) &&
2707 	    (ire->ire_flags & RTF_PRIVATE))
2708 		goto error;
2709 
2710 	/*
2711 	 * Make use of the cached rtt and rtt_sd values to calculate the
2712 	 * initial RTO.  Note that they are already initialized in
2713 	 * tcp_init_values().
2714 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2715 	 * IP_NEXTHOP, but instead are using the interface ire for the
2716 	 * nexthop, then we do not use the ire_uinfo from that ire to
2717 	 * do any initializations.
2718 	 */
2719 	if (ire_uinfo != NULL) {
2720 		if (ire_uinfo->iulp_rtt != 0) {
2721 			clock_t	rto;
2722 
2723 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2724 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2725 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2726 			    tcps->tcps_rexmit_interval_extra +
2727 			    (tcp->tcp_rtt_sa >> 5);
2728 
2729 			if (rto > tcps->tcps_rexmit_interval_max) {
2730 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2731 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2732 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2733 			} else {
2734 				tcp->tcp_rto = rto;
2735 			}
2736 		}
2737 		if (ire_uinfo->iulp_ssthresh != 0)
2738 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2739 		else
2740 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2741 		if (ire_uinfo->iulp_spipe > 0) {
2742 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2743 			    tcps->tcps_max_buf);
2744 			if (tcps->tcps_snd_lowat_fraction != 0)
2745 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2746 				    tcps->tcps_snd_lowat_fraction;
2747 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2748 		}
2749 		/*
2750 		 * Note that up till now, acceptor always inherits receive
2751 		 * window from the listener.  But if there is a metrics
2752 		 * associated with a host, we should use that instead of
2753 		 * inheriting it from listener. Thus we need to pass this
2754 		 * info back to the caller.
2755 		 */
2756 		if (ire_uinfo->iulp_rpipe > 0) {
2757 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2758 			    tcps->tcps_max_buf);
2759 		}
2760 
2761 		if (ire_uinfo->iulp_rtomax > 0) {
2762 			tcp->tcp_second_timer_threshold =
2763 			    ire_uinfo->iulp_rtomax;
2764 		}
2765 
2766 		/*
2767 		 * Use the metric option settings, iulp_tstamp_ok and
2768 		 * iulp_wscale_ok, only for active open. What this means
2769 		 * is that if the other side uses timestamp or window
2770 		 * scale option, TCP will also use those options. That
2771 		 * is for passive open.  If the application sets a
2772 		 * large window, window scale is enabled regardless of
2773 		 * the value in iulp_wscale_ok.  This is the behavior
2774 		 * since 2.6.  So we keep it.
2775 		 * The only case left in passive open processing is the
2776 		 * check for SACK.
2777 		 * For ECN, it should probably be like SACK.  But the
2778 		 * current value is binary, so we treat it like the other
2779 		 * cases.  The metric only controls active open.For passive
2780 		 * open, the ndd param, tcp_ecn_permitted, controls the
2781 		 * behavior.
2782 		 */
2783 		if (!tcp_detached) {
2784 			/*
2785 			 * The if check means that the following can only
2786 			 * be turned on by the metrics only IRE, but not off.
2787 			 */
2788 			if (ire_uinfo->iulp_tstamp_ok)
2789 				tcp->tcp_snd_ts_ok = B_TRUE;
2790 			if (ire_uinfo->iulp_wscale_ok)
2791 				tcp->tcp_snd_ws_ok = B_TRUE;
2792 			if (ire_uinfo->iulp_sack == 2)
2793 				tcp->tcp_snd_sack_ok = B_TRUE;
2794 			if (ire_uinfo->iulp_ecn_ok)
2795 				tcp->tcp_ecn_ok = B_TRUE;
2796 		} else {
2797 			/*
2798 			 * Passive open.
2799 			 *
2800 			 * As above, the if check means that SACK can only be
2801 			 * turned on by the metric only IRE.
2802 			 */
2803 			if (ire_uinfo->iulp_sack > 0) {
2804 				tcp->tcp_snd_sack_ok = B_TRUE;
2805 			}
2806 		}
2807 	}
2808 
2809 
2810 	/*
2811 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2812 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2813 	 * length of all those options exceeds 28 bytes.  But because
2814 	 * of the tcp_mss_min check below, we may not have a problem if
2815 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2816 	 * the negative problem still exists.  And the check defeats PMTUd.
2817 	 * In fact, if PMTUd finds that the MSS should be smaller than
2818 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2819 	 * value.
2820 	 *
2821 	 * We do not deal with that now.  All those problems related to
2822 	 * PMTUd will be fixed later.
2823 	 */
2824 	ASSERT(ire->ire_max_frag != 0);
2825 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2826 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2827 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2828 			mss = MIN(mss, IPV6_MIN_MTU);
2829 		}
2830 	}
2831 
2832 	/* Sanity check for MSS value. */
2833 	if (tcp->tcp_ipversion == IPV4_VERSION)
2834 		mss_max = tcps->tcps_mss_max_ipv4;
2835 	else
2836 		mss_max = tcps->tcps_mss_max_ipv6;
2837 
2838 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2839 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2840 		/*
2841 		 * After receiving an ICMPv6 "packet too big" message with a
2842 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2843 		 * will insert a 8-byte fragment header in every packet; we
2844 		 * reduce the MSS by that amount here.
2845 		 */
2846 		mss -= sizeof (ip6_frag_t);
2847 	}
2848 
2849 	if (tcp->tcp_ipsec_overhead == 0)
2850 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2851 
2852 	mss -= tcp->tcp_ipsec_overhead;
2853 
2854 	if (mss < tcps->tcps_mss_min)
2855 		mss = tcps->tcps_mss_min;
2856 	if (mss > mss_max)
2857 		mss = mss_max;
2858 
2859 	/* Note that this is the maximum MSS, excluding all options. */
2860 	tcp->tcp_mss = mss;
2861 
2862 	/*
2863 	 * Initialize the ISS here now that we have the full connection ID.
2864 	 * The RFC 1948 method of initial sequence number generation requires
2865 	 * knowledge of the full connection ID before setting the ISS.
2866 	 */
2867 
2868 	tcp_iss_init(tcp);
2869 
2870 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2871 		tcp->tcp_loopback = B_TRUE;
2872 
2873 	if (sire != NULL)
2874 		IRE_REFRELE(sire);
2875 
2876 	/*
2877 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2878 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2879 	 */
2880 	if (tcp->tcp_loopback ||
2881 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2882 		/*
2883 		 * For incoming, see if this tcp may be MDT-capable.  For
2884 		 * outgoing, this process has been taken care of through
2885 		 * tcp_rput_other.
2886 		 */
2887 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2888 		tcp->tcp_ire_ill_check_done = B_TRUE;
2889 	}
2890 
2891 	mutex_enter(&connp->conn_lock);
2892 	/*
2893 	 * Make sure that conn is not marked incipient
2894 	 * for incoming connections. A blind
2895 	 * removal of incipient flag is cheaper than
2896 	 * check and removal.
2897 	 */
2898 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2899 
2900 	/*
2901 	 * Must not cache forwarding table routes
2902 	 * or recache an IRE after the conn_t has
2903 	 * had conn_ire_cache cleared and is flagged
2904 	 * unusable, (see the CONN_CACHE_IRE() macro).
2905 	 */
2906 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2907 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2908 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2909 			connp->conn_ire_cache = ire;
2910 			IRE_UNTRACE_REF(ire);
2911 			rw_exit(&ire->ire_bucket->irb_lock);
2912 			mutex_exit(&connp->conn_lock);
2913 			return (1);
2914 		}
2915 		rw_exit(&ire->ire_bucket->irb_lock);
2916 	}
2917 	mutex_exit(&connp->conn_lock);
2918 
2919 	if (ire->ire_mp == NULL)
2920 		ire_refrele(ire);
2921 	return (1);
2922 
2923 error:
2924 	if (ire->ire_mp == NULL)
2925 		ire_refrele(ire);
2926 	if (sire != NULL)
2927 		ire_refrele(sire);
2928 	return (0);
2929 }
2930 
2931 static void
2932 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2933 {
2934 	int	error;
2935 	conn_t	*connp = tcp->tcp_connp;
2936 	struct sockaddr	*sa;
2937 	mblk_t  *mp1;
2938 	struct T_bind_req *tbr;
2939 	int	backlog;
2940 	socklen_t	len;
2941 	sin_t	*sin;
2942 	sin6_t	*sin6;
2943 	cred_t		*cr;
2944 
2945 	/*
2946 	 * All Solaris components should pass a db_credp
2947 	 * for this TPI message, hence we ASSERT.
2948 	 * But in case there is some other M_PROTO that looks
2949 	 * like a TPI message sent by some other kernel
2950 	 * component, we check and return an error.
2951 	 */
2952 	cr = msg_getcred(mp, NULL);
2953 	ASSERT(cr != NULL);
2954 	if (cr == NULL) {
2955 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
2956 		return;
2957 	}
2958 
2959 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2960 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2961 		if (tcp->tcp_debug) {
2962 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2963 			    "tcp_tpi_bind: bad req, len %u",
2964 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2965 		}
2966 		tcp_err_ack(tcp, mp, TPROTO, 0);
2967 		return;
2968 	}
2969 	/* Make sure the largest address fits */
2970 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
2971 	if (mp1 == NULL) {
2972 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2973 		return;
2974 	}
2975 	mp = mp1;
2976 	tbr = (struct T_bind_req *)mp->b_rptr;
2977 
2978 	backlog = tbr->CONIND_number;
2979 	len = tbr->ADDR_length;
2980 
2981 	switch (len) {
2982 	case 0:		/* request for a generic port */
2983 		tbr->ADDR_offset = sizeof (struct T_bind_req);
2984 		if (tcp->tcp_family == AF_INET) {
2985 			tbr->ADDR_length = sizeof (sin_t);
2986 			sin = (sin_t *)&tbr[1];
2987 			*sin = sin_null;
2988 			sin->sin_family = AF_INET;
2989 			sa = (struct sockaddr *)sin;
2990 			len = sizeof (sin_t);
2991 			mp->b_wptr = (uchar_t *)&sin[1];
2992 		} else {
2993 			ASSERT(tcp->tcp_family == AF_INET6);
2994 			tbr->ADDR_length = sizeof (sin6_t);
2995 			sin6 = (sin6_t *)&tbr[1];
2996 			*sin6 = sin6_null;
2997 			sin6->sin6_family = AF_INET6;
2998 			sa = (struct sockaddr *)sin6;
2999 			len = sizeof (sin6_t);
3000 			mp->b_wptr = (uchar_t *)&sin6[1];
3001 		}
3002 		break;
3003 
3004 	case sizeof (sin_t):    /* Complete IPv4 address */
3005 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3006 		    sizeof (sin_t));
3007 		break;
3008 
3009 	case sizeof (sin6_t): /* Complete IPv6 address */
3010 		sa = (struct sockaddr *)mi_offset_param(mp,
3011 		    tbr->ADDR_offset, sizeof (sin6_t));
3012 		break;
3013 
3014 	default:
3015 		if (tcp->tcp_debug) {
3016 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3017 			    "tcp_tpi_bind: bad address length, %d",
3018 			    tbr->ADDR_length);
3019 		}
3020 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3021 		return;
3022 	}
3023 
3024 	if (backlog > 0) {
3025 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
3026 		    tbr->PRIM_type != O_T_BIND_REQ);
3027 	} else {
3028 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
3029 		    tbr->PRIM_type != O_T_BIND_REQ);
3030 	}
3031 done:
3032 	if (error > 0) {
3033 		tcp_err_ack(tcp, mp, TSYSERR, error);
3034 	} else if (error < 0) {
3035 		tcp_err_ack(tcp, mp, -error, 0);
3036 	} else {
3037 		/*
3038 		 * Update port information as sockfs/tpi needs it for checking
3039 		 */
3040 		if (tcp->tcp_family == AF_INET) {
3041 			sin = (sin_t *)sa;
3042 			sin->sin_port = tcp->tcp_lport;
3043 		} else {
3044 			sin6 = (sin6_t *)sa;
3045 			sin6->sin6_port = tcp->tcp_lport;
3046 		}
3047 		mp->b_datap->db_type = M_PCPROTO;
3048 		tbr->PRIM_type = T_BIND_ACK;
3049 		putnext(tcp->tcp_rq, mp);
3050 	}
3051 }
3052 
3053 /*
3054  * If the "bind_to_req_port_only" parameter is set, if the requested port
3055  * number is available, return it, If not return 0
3056  *
3057  * If "bind_to_req_port_only" parameter is not set and
3058  * If the requested port number is available, return it.  If not, return
3059  * the first anonymous port we happen across.  If no anonymous ports are
3060  * available, return 0. addr is the requested local address, if any.
3061  *
3062  * In either case, when succeeding update the tcp_t to record the port number
3063  * and insert it in the bind hash table.
3064  *
3065  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3066  * without setting SO_REUSEADDR. This is needed so that they
3067  * can be viewed as two independent transport protocols.
3068  */
3069 static in_port_t
3070 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3071     int reuseaddr, boolean_t quick_connect,
3072     boolean_t bind_to_req_port_only, boolean_t user_specified)
3073 {
3074 	/* number of times we have run around the loop */
3075 	int count = 0;
3076 	/* maximum number of times to run around the loop */
3077 	int loopmax;
3078 	conn_t *connp = tcp->tcp_connp;
3079 	zoneid_t zoneid = connp->conn_zoneid;
3080 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3081 
3082 	/*
3083 	 * Lookup for free addresses is done in a loop and "loopmax"
3084 	 * influences how long we spin in the loop
3085 	 */
3086 	if (bind_to_req_port_only) {
3087 		/*
3088 		 * If the requested port is busy, don't bother to look
3089 		 * for a new one. Setting loop maximum count to 1 has
3090 		 * that effect.
3091 		 */
3092 		loopmax = 1;
3093 	} else {
3094 		/*
3095 		 * If the requested port is busy, look for a free one
3096 		 * in the anonymous port range.
3097 		 * Set loopmax appropriately so that one does not look
3098 		 * forever in the case all of the anonymous ports are in use.
3099 		 */
3100 		if (tcp->tcp_anon_priv_bind) {
3101 			/*
3102 			 * loopmax =
3103 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3104 			 */
3105 			loopmax = IPPORT_RESERVED -
3106 			    tcps->tcps_min_anonpriv_port;
3107 		} else {
3108 			loopmax = (tcps->tcps_largest_anon_port -
3109 			    tcps->tcps_smallest_anon_port + 1);
3110 		}
3111 	}
3112 	do {
3113 		uint16_t	lport;
3114 		tf_t		*tbf;
3115 		tcp_t		*ltcp;
3116 		conn_t		*lconnp;
3117 
3118 		lport = htons(port);
3119 
3120 		/*
3121 		 * Ensure that the tcp_t is not currently in the bind hash.
3122 		 * Hold the lock on the hash bucket to ensure that
3123 		 * the duplicate check plus the insertion is an atomic
3124 		 * operation.
3125 		 *
3126 		 * This function does an inline lookup on the bind hash list
3127 		 * Make sure that we access only members of tcp_t
3128 		 * and that we don't look at tcp_tcp, since we are not
3129 		 * doing a CONN_INC_REF.
3130 		 */
3131 		tcp_bind_hash_remove(tcp);
3132 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3133 		mutex_enter(&tbf->tf_lock);
3134 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3135 		    ltcp = ltcp->tcp_bind_hash) {
3136 			if (lport == ltcp->tcp_lport)
3137 				break;
3138 		}
3139 
3140 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3141 			boolean_t not_socket;
3142 			boolean_t exclbind;
3143 
3144 			lconnp = ltcp->tcp_connp;
3145 
3146 			/*
3147 			 * On a labeled system, we must treat bindings to ports
3148 			 * on shared IP addresses by sockets with MAC exemption
3149 			 * privilege as being in all zones, as there's
3150 			 * otherwise no way to identify the right receiver.
3151 			 */
3152 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3153 			    IPCL_ZONE_MATCH(connp,
3154 			    ltcp->tcp_connp->conn_zoneid)) &&
3155 			    !lconnp->conn_mac_exempt &&
3156 			    !connp->conn_mac_exempt)
3157 				continue;
3158 
3159 			/*
3160 			 * If TCP_EXCLBIND is set for either the bound or
3161 			 * binding endpoint, the semantics of bind
3162 			 * is changed according to the following.
3163 			 *
3164 			 * spec = specified address (v4 or v6)
3165 			 * unspec = unspecified address (v4 or v6)
3166 			 * A = specified addresses are different for endpoints
3167 			 *
3168 			 * bound	bind to		allowed
3169 			 * -------------------------------------
3170 			 * unspec	unspec		no
3171 			 * unspec	spec		no
3172 			 * spec		unspec		no
3173 			 * spec		spec		yes if A
3174 			 *
3175 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3176 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3177 			 *
3178 			 * Note:
3179 			 *
3180 			 * 1. Because of TLI semantics, an endpoint can go
3181 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3182 			 * TCPS_BOUND, depending on whether it is originally
3183 			 * a listener or not.  That is why we need to check
3184 			 * for states greater than or equal to TCPS_BOUND
3185 			 * here.
3186 			 *
3187 			 * 2. Ideally, we should only check for state equals
3188 			 * to TCPS_LISTEN. And the following check should be
3189 			 * added.
3190 			 *
3191 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3192 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3193 			 *		...
3194 			 * }
3195 			 *
3196 			 * The semantics will be changed to this.  If the
3197 			 * endpoint on the list is in state not equal to
3198 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3199 			 * set, let the bind succeed.
3200 			 *
3201 			 * Because of (1), we cannot do that for TLI
3202 			 * endpoints.  But we can do that for socket endpoints.
3203 			 * If in future, we can change this going back
3204 			 * semantics, we can use the above check for TLI also.
3205 			 */
3206 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3207 			    TCP_IS_SOCKET(tcp));
3208 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3209 
3210 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3211 			    (exclbind && (not_socket ||
3212 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3213 				if (V6_OR_V4_INADDR_ANY(
3214 				    ltcp->tcp_bound_source_v6) ||
3215 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3216 				    IN6_ARE_ADDR_EQUAL(laddr,
3217 				    &ltcp->tcp_bound_source_v6)) {
3218 					break;
3219 				}
3220 				continue;
3221 			}
3222 
3223 			/*
3224 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3225 			 * have disjoint port number spaces, if *_EXCLBIND
3226 			 * is not set and only if the application binds to a
3227 			 * specific port. We use the same autoassigned port
3228 			 * number space for IPv4 and IPv6 sockets.
3229 			 */
3230 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3231 			    bind_to_req_port_only)
3232 				continue;
3233 
3234 			/*
3235 			 * Ideally, we should make sure that the source
3236 			 * address, remote address, and remote port in the
3237 			 * four tuple for this tcp-connection is unique.
3238 			 * However, trying to find out the local source
3239 			 * address would require too much code duplication
3240 			 * with IP, since IP needs needs to have that code
3241 			 * to support userland TCP implementations.
3242 			 */
3243 			if (quick_connect &&
3244 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3245 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3246 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3247 			    &ltcp->tcp_remote_v6)))
3248 				continue;
3249 
3250 			if (!reuseaddr) {
3251 				/*
3252 				 * No socket option SO_REUSEADDR.
3253 				 * If existing port is bound to
3254 				 * a non-wildcard IP address
3255 				 * and the requesting stream is
3256 				 * bound to a distinct
3257 				 * different IP addresses
3258 				 * (non-wildcard, also), keep
3259 				 * going.
3260 				 */
3261 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3262 				    !V6_OR_V4_INADDR_ANY(
3263 				    ltcp->tcp_bound_source_v6) &&
3264 				    !IN6_ARE_ADDR_EQUAL(laddr,
3265 				    &ltcp->tcp_bound_source_v6))
3266 					continue;
3267 				if (ltcp->tcp_state >= TCPS_BOUND) {
3268 					/*
3269 					 * This port is being used and
3270 					 * its state is >= TCPS_BOUND,
3271 					 * so we can't bind to it.
3272 					 */
3273 					break;
3274 				}
3275 			} else {
3276 				/*
3277 				 * socket option SO_REUSEADDR is set on the
3278 				 * binding tcp_t.
3279 				 *
3280 				 * If two streams are bound to
3281 				 * same IP address or both addr
3282 				 * and bound source are wildcards
3283 				 * (INADDR_ANY), we want to stop
3284 				 * searching.
3285 				 * We have found a match of IP source
3286 				 * address and source port, which is
3287 				 * refused regardless of the
3288 				 * SO_REUSEADDR setting, so we break.
3289 				 */
3290 				if (IN6_ARE_ADDR_EQUAL(laddr,
3291 				    &ltcp->tcp_bound_source_v6) &&
3292 				    (ltcp->tcp_state == TCPS_LISTEN ||
3293 				    ltcp->tcp_state == TCPS_BOUND))
3294 					break;
3295 			}
3296 		}
3297 		if (ltcp != NULL) {
3298 			/* The port number is busy */
3299 			mutex_exit(&tbf->tf_lock);
3300 		} else {
3301 			/*
3302 			 * This port is ours. Insert in fanout and mark as
3303 			 * bound to prevent others from getting the port
3304 			 * number.
3305 			 */
3306 			tcp->tcp_state = TCPS_BOUND;
3307 			tcp->tcp_lport = htons(port);
3308 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3309 
3310 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3311 			    tcp->tcp_lport)] == tbf);
3312 			tcp_bind_hash_insert(tbf, tcp, 1);
3313 
3314 			mutex_exit(&tbf->tf_lock);
3315 
3316 			/*
3317 			 * We don't want tcp_next_port_to_try to "inherit"
3318 			 * a port number supplied by the user in a bind.
3319 			 */
3320 			if (user_specified)
3321 				return (port);
3322 
3323 			/*
3324 			 * This is the only place where tcp_next_port_to_try
3325 			 * is updated. After the update, it may or may not
3326 			 * be in the valid range.
3327 			 */
3328 			if (!tcp->tcp_anon_priv_bind)
3329 				tcps->tcps_next_port_to_try = port + 1;
3330 			return (port);
3331 		}
3332 
3333 		if (tcp->tcp_anon_priv_bind) {
3334 			port = tcp_get_next_priv_port(tcp);
3335 		} else {
3336 			if (count == 0 && user_specified) {
3337 				/*
3338 				 * We may have to return an anonymous port. So
3339 				 * get one to start with.
3340 				 */
3341 				port =
3342 				    tcp_update_next_port(
3343 				    tcps->tcps_next_port_to_try,
3344 				    tcp, B_TRUE);
3345 				user_specified = B_FALSE;
3346 			} else {
3347 				port = tcp_update_next_port(port + 1, tcp,
3348 				    B_FALSE);
3349 			}
3350 		}
3351 		if (port == 0)
3352 			break;
3353 
3354 		/*
3355 		 * Don't let this loop run forever in the case where
3356 		 * all of the anonymous ports are in use.
3357 		 */
3358 	} while (++count < loopmax);
3359 	return (0);
3360 }
3361 
3362 /*
3363  * tcp_clean_death / tcp_close_detached must not be called more than once
3364  * on a tcp. Thus every function that potentially calls tcp_clean_death
3365  * must check for the tcp state before calling tcp_clean_death.
3366  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3367  * tcp_timer_handler, all check for the tcp state.
3368  */
3369 /* ARGSUSED */
3370 void
3371 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3372 {
3373 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3374 
3375 	freemsg(mp);
3376 	if (tcp->tcp_state > TCPS_BOUND)
3377 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3378 		    ETIMEDOUT, 5);
3379 }
3380 
3381 /*
3382  * We are dying for some reason.  Try to do it gracefully.  (May be called
3383  * as writer.)
3384  *
3385  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3386  * done by a service procedure).
3387  * TBD - Should the return value distinguish between the tcp_t being
3388  * freed and it being reinitialized?
3389  */
3390 static int
3391 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3392 {
3393 	mblk_t	*mp;
3394 	queue_t	*q;
3395 	conn_t	*connp = tcp->tcp_connp;
3396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3397 
3398 	TCP_CLD_STAT(tag);
3399 
3400 #if TCP_TAG_CLEAN_DEATH
3401 	tcp->tcp_cleandeathtag = tag;
3402 #endif
3403 
3404 	if (tcp->tcp_fused)
3405 		tcp_unfuse(tcp);
3406 
3407 	if (tcp->tcp_linger_tid != 0 &&
3408 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3409 		tcp_stop_lingering(tcp);
3410 	}
3411 
3412 	ASSERT(tcp != NULL);
3413 	ASSERT((tcp->tcp_family == AF_INET &&
3414 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3415 	    (tcp->tcp_family == AF_INET6 &&
3416 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3417 	    tcp->tcp_ipversion == IPV6_VERSION)));
3418 
3419 	if (TCP_IS_DETACHED(tcp)) {
3420 		if (tcp->tcp_hard_binding) {
3421 			/*
3422 			 * Its an eager that we are dealing with. We close the
3423 			 * eager but in case a conn_ind has already gone to the
3424 			 * listener, let tcp_accept_finish() send a discon_ind
3425 			 * to the listener and drop the last reference. If the
3426 			 * listener doesn't even know about the eager i.e. the
3427 			 * conn_ind hasn't gone up, blow away the eager and drop
3428 			 * the last reference as well. If the conn_ind has gone
3429 			 * up, state should be BOUND. tcp_accept_finish
3430 			 * will figure out that the connection has received a
3431 			 * RST and will send a DISCON_IND to the application.
3432 			 */
3433 			tcp_closei_local(tcp);
3434 			if (!tcp->tcp_tconnind_started) {
3435 				CONN_DEC_REF(connp);
3436 			} else {
3437 				tcp->tcp_state = TCPS_BOUND;
3438 			}
3439 		} else {
3440 			tcp_close_detached(tcp);
3441 		}
3442 		return (0);
3443 	}
3444 
3445 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3446 
3447 	q = tcp->tcp_rq;
3448 
3449 	/* Trash all inbound data */
3450 	if (!IPCL_IS_NONSTR(connp)) {
3451 		ASSERT(q != NULL);
3452 		flushq(q, FLUSHALL);
3453 	}
3454 
3455 	/*
3456 	 * If we are at least part way open and there is error
3457 	 * (err==0 implies no error)
3458 	 * notify our client by a T_DISCON_IND.
3459 	 */
3460 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3461 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3462 		    !TCP_IS_SOCKET(tcp)) {
3463 			/*
3464 			 * Send M_FLUSH according to TPI. Because sockets will
3465 			 * (and must) ignore FLUSHR we do that only for TPI
3466 			 * endpoints and sockets in STREAMS mode.
3467 			 */
3468 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3469 		}
3470 		if (tcp->tcp_debug) {
3471 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3472 			    "tcp_clean_death: discon err %d", err);
3473 		}
3474 		if (IPCL_IS_NONSTR(connp)) {
3475 			/* Direct socket, use upcall */
3476 			(*connp->conn_upcalls->su_disconnected)(
3477 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3478 		} else {
3479 			mp = mi_tpi_discon_ind(NULL, err, 0);
3480 			if (mp != NULL) {
3481 				putnext(q, mp);
3482 			} else {
3483 				if (tcp->tcp_debug) {
3484 					(void) strlog(TCP_MOD_ID, 0, 1,
3485 					    SL_ERROR|SL_TRACE,
3486 					    "tcp_clean_death, sending M_ERROR");
3487 				}
3488 				(void) putnextctl1(q, M_ERROR, EPROTO);
3489 			}
3490 		}
3491 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3492 			/* SYN_SENT or SYN_RCVD */
3493 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3494 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3495 			/* ESTABLISHED or CLOSE_WAIT */
3496 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3497 		}
3498 	}
3499 
3500 	tcp_reinit(tcp);
3501 	if (IPCL_IS_NONSTR(connp))
3502 		(void) tcp_do_unbind(connp);
3503 
3504 	return (-1);
3505 }
3506 
3507 /*
3508  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3509  * to expire, stop the wait and finish the close.
3510  */
3511 static void
3512 tcp_stop_lingering(tcp_t *tcp)
3513 {
3514 	clock_t	delta = 0;
3515 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3516 
3517 	tcp->tcp_linger_tid = 0;
3518 	if (tcp->tcp_state > TCPS_LISTEN) {
3519 		tcp_acceptor_hash_remove(tcp);
3520 		mutex_enter(&tcp->tcp_non_sq_lock);
3521 		if (tcp->tcp_flow_stopped) {
3522 			tcp_clrqfull(tcp);
3523 		}
3524 		mutex_exit(&tcp->tcp_non_sq_lock);
3525 
3526 		if (tcp->tcp_timer_tid != 0) {
3527 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3528 			tcp->tcp_timer_tid = 0;
3529 		}
3530 		/*
3531 		 * Need to cancel those timers which will not be used when
3532 		 * TCP is detached.  This has to be done before the tcp_wq
3533 		 * is set to the global queue.
3534 		 */
3535 		tcp_timers_stop(tcp);
3536 
3537 		tcp->tcp_detached = B_TRUE;
3538 		ASSERT(tcps->tcps_g_q != NULL);
3539 		tcp->tcp_rq = tcps->tcps_g_q;
3540 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3541 
3542 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3543 			tcp_time_wait_append(tcp);
3544 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3545 			goto finish;
3546 		}
3547 
3548 		/*
3549 		 * If delta is zero the timer event wasn't executed and was
3550 		 * successfully canceled. In this case we need to restart it
3551 		 * with the minimal delta possible.
3552 		 */
3553 		if (delta >= 0) {
3554 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3555 			    delta ? delta : 1);
3556 		}
3557 	} else {
3558 		tcp_closei_local(tcp);
3559 		CONN_DEC_REF(tcp->tcp_connp);
3560 	}
3561 finish:
3562 	/* Signal closing thread that it can complete close */
3563 	mutex_enter(&tcp->tcp_closelock);
3564 	tcp->tcp_detached = B_TRUE;
3565 	ASSERT(tcps->tcps_g_q != NULL);
3566 
3567 	tcp->tcp_rq = tcps->tcps_g_q;
3568 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3569 
3570 	tcp->tcp_closed = 1;
3571 	cv_signal(&tcp->tcp_closecv);
3572 	mutex_exit(&tcp->tcp_closelock);
3573 }
3574 
3575 /*
3576  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3577  * expires.
3578  */
3579 static void
3580 tcp_close_linger_timeout(void *arg)
3581 {
3582 	conn_t	*connp = (conn_t *)arg;
3583 	tcp_t 	*tcp = connp->conn_tcp;
3584 
3585 	tcp->tcp_client_errno = ETIMEDOUT;
3586 	tcp_stop_lingering(tcp);
3587 }
3588 
3589 static void
3590 tcp_close_common(conn_t *connp, int flags)
3591 {
3592 	tcp_t		*tcp = connp->conn_tcp;
3593 	mblk_t 		*mp = &tcp->tcp_closemp;
3594 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3595 	mblk_t		*bp;
3596 
3597 	ASSERT(connp->conn_ref >= 2);
3598 
3599 	/*
3600 	 * Mark the conn as closing. ill_pending_mp_add will not
3601 	 * add any mp to the pending mp list, after this conn has
3602 	 * started closing. Same for sq_pending_mp_add
3603 	 */
3604 	mutex_enter(&connp->conn_lock);
3605 	connp->conn_state_flags |= CONN_CLOSING;
3606 	if (connp->conn_oper_pending_ill != NULL)
3607 		conn_ioctl_cleanup_reqd = B_TRUE;
3608 	CONN_INC_REF_LOCKED(connp);
3609 	mutex_exit(&connp->conn_lock);
3610 	tcp->tcp_closeflags = (uint8_t)flags;
3611 	ASSERT(connp->conn_ref >= 3);
3612 
3613 	/*
3614 	 * tcp_closemp_used is used below without any protection of a lock
3615 	 * as we don't expect any one else to use it concurrently at this
3616 	 * point otherwise it would be a major defect.
3617 	 */
3618 
3619 	if (mp->b_prev == NULL)
3620 		tcp->tcp_closemp_used = B_TRUE;
3621 	else
3622 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3623 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3624 
3625 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3626 
3627 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3628 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3629 
3630 	mutex_enter(&tcp->tcp_closelock);
3631 	while (!tcp->tcp_closed) {
3632 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3633 			/*
3634 			 * The cv_wait_sig() was interrupted. We now do the
3635 			 * following:
3636 			 *
3637 			 * 1) If the endpoint was lingering, we allow this
3638 			 * to be interrupted by cancelling the linger timeout
3639 			 * and closing normally.
3640 			 *
3641 			 * 2) Revert to calling cv_wait()
3642 			 *
3643 			 * We revert to using cv_wait() to avoid an
3644 			 * infinite loop which can occur if the calling
3645 			 * thread is higher priority than the squeue worker
3646 			 * thread and is bound to the same cpu.
3647 			 */
3648 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3649 				mutex_exit(&tcp->tcp_closelock);
3650 				/* Entering squeue, bump ref count. */
3651 				CONN_INC_REF(connp);
3652 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3653 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3654 				    tcp_linger_interrupted, connp,
3655 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3656 				mutex_enter(&tcp->tcp_closelock);
3657 			}
3658 			break;
3659 		}
3660 	}
3661 	while (!tcp->tcp_closed)
3662 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3663 	mutex_exit(&tcp->tcp_closelock);
3664 
3665 	/*
3666 	 * In the case of listener streams that have eagers in the q or q0
3667 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3668 	 * tcp_wq of the eagers point to our queues. By waiting for the
3669 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3670 	 * up their queue pointers and also dropped their references to us.
3671 	 */
3672 	if (tcp->tcp_wait_for_eagers) {
3673 		mutex_enter(&connp->conn_lock);
3674 		while (connp->conn_ref != 1) {
3675 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3676 		}
3677 		mutex_exit(&connp->conn_lock);
3678 	}
3679 	/*
3680 	 * ioctl cleanup. The mp is queued in the
3681 	 * ill_pending_mp or in the sq_pending_mp.
3682 	 */
3683 	if (conn_ioctl_cleanup_reqd)
3684 		conn_ioctl_cleanup(connp);
3685 
3686 	tcp->tcp_cpid = -1;
3687 }
3688 
3689 static int
3690 tcp_tpi_close(queue_t *q, int flags)
3691 {
3692 	conn_t		*connp;
3693 
3694 	ASSERT(WR(q)->q_next == NULL);
3695 
3696 	if (flags & SO_FALLBACK) {
3697 		/*
3698 		 * stream is being closed while in fallback
3699 		 * simply free the resources that were allocated
3700 		 */
3701 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3702 		qprocsoff(q);
3703 		goto done;
3704 	}
3705 
3706 	connp = Q_TO_CONN(q);
3707 	/*
3708 	 * We are being closed as /dev/tcp or /dev/tcp6.
3709 	 */
3710 	tcp_close_common(connp, flags);
3711 
3712 	qprocsoff(q);
3713 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3714 
3715 	/*
3716 	 * Drop IP's reference on the conn. This is the last reference
3717 	 * on the connp if the state was less than established. If the
3718 	 * connection has gone into timewait state, then we will have
3719 	 * one ref for the TCP and one more ref (total of two) for the
3720 	 * classifier connected hash list (a timewait connections stays
3721 	 * in connected hash till closed).
3722 	 *
3723 	 * We can't assert the references because there might be other
3724 	 * transient reference places because of some walkers or queued
3725 	 * packets in squeue for the timewait state.
3726 	 */
3727 	CONN_DEC_REF(connp);
3728 done:
3729 	q->q_ptr = WR(q)->q_ptr = NULL;
3730 	return (0);
3731 }
3732 
3733 static int
3734 tcp_tpi_close_accept(queue_t *q)
3735 {
3736 	vmem_t	*minor_arena;
3737 	dev_t	conn_dev;
3738 
3739 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3740 
3741 	/*
3742 	 * We had opened an acceptor STREAM for sockfs which is
3743 	 * now being closed due to some error.
3744 	 */
3745 	qprocsoff(q);
3746 
3747 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3748 	conn_dev = (dev_t)RD(q)->q_ptr;
3749 	ASSERT(minor_arena != NULL);
3750 	ASSERT(conn_dev != 0);
3751 	inet_minor_free(minor_arena, conn_dev);
3752 	q->q_ptr = WR(q)->q_ptr = NULL;
3753 	return (0);
3754 }
3755 
3756 /*
3757  * Called by tcp_close() routine via squeue when lingering is
3758  * interrupted by a signal.
3759  */
3760 
3761 /* ARGSUSED */
3762 static void
3763 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3764 {
3765 	conn_t	*connp = (conn_t *)arg;
3766 	tcp_t	*tcp = connp->conn_tcp;
3767 
3768 	freeb(mp);
3769 	if (tcp->tcp_linger_tid != 0 &&
3770 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3771 		tcp_stop_lingering(tcp);
3772 		tcp->tcp_client_errno = EINTR;
3773 	}
3774 }
3775 
3776 /*
3777  * Called by streams close routine via squeues when our client blows off her
3778  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3779  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3780  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3781  * acked.
3782  *
3783  * NOTE: tcp_close potentially returns error when lingering.
3784  * However, the stream head currently does not pass these errors
3785  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3786  * errors to the application (from tsleep()) and not errors
3787  * like ECONNRESET caused by receiving a reset packet.
3788  */
3789 
3790 /* ARGSUSED */
3791 static void
3792 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3793 {
3794 	char	*msg;
3795 	conn_t	*connp = (conn_t *)arg;
3796 	tcp_t	*tcp = connp->conn_tcp;
3797 	clock_t	delta = 0;
3798 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3799 
3800 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3801 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3802 
3803 	mutex_enter(&tcp->tcp_eager_lock);
3804 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3805 		/* Cleanup for listener */
3806 		tcp_eager_cleanup(tcp, 0);
3807 		tcp->tcp_wait_for_eagers = 1;
3808 	}
3809 	mutex_exit(&tcp->tcp_eager_lock);
3810 
3811 	connp->conn_mdt_ok = B_FALSE;
3812 	tcp->tcp_mdt = B_FALSE;
3813 
3814 	connp->conn_lso_ok = B_FALSE;
3815 	tcp->tcp_lso = B_FALSE;
3816 
3817 	msg = NULL;
3818 	switch (tcp->tcp_state) {
3819 	case TCPS_CLOSED:
3820 	case TCPS_IDLE:
3821 	case TCPS_BOUND:
3822 	case TCPS_LISTEN:
3823 		break;
3824 	case TCPS_SYN_SENT:
3825 		msg = "tcp_close, during connect";
3826 		break;
3827 	case TCPS_SYN_RCVD:
3828 		/*
3829 		 * Close during the connect 3-way handshake
3830 		 * but here there may or may not be pending data
3831 		 * already on queue. Process almost same as in
3832 		 * the ESTABLISHED state.
3833 		 */
3834 		/* FALLTHRU */
3835 	default:
3836 		if (tcp->tcp_fused)
3837 			tcp_unfuse(tcp);
3838 
3839 		/*
3840 		 * If SO_LINGER has set a zero linger time, abort the
3841 		 * connection with a reset.
3842 		 */
3843 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3844 			msg = "tcp_close, zero lingertime";
3845 			break;
3846 		}
3847 
3848 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3849 		/*
3850 		 * Abort connection if there is unread data queued.
3851 		 */
3852 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3853 			msg = "tcp_close, unread data";
3854 			break;
3855 		}
3856 		/*
3857 		 * tcp_hard_bound is now cleared thus all packets go through
3858 		 * tcp_lookup. This fact is used by tcp_detach below.
3859 		 *
3860 		 * We have done a qwait() above which could have possibly
3861 		 * drained more messages in turn causing transition to a
3862 		 * different state. Check whether we have to do the rest
3863 		 * of the processing or not.
3864 		 */
3865 		if (tcp->tcp_state <= TCPS_LISTEN)
3866 			break;
3867 
3868 		/*
3869 		 * Transmit the FIN before detaching the tcp_t.
3870 		 * After tcp_detach returns this queue/perimeter
3871 		 * no longer owns the tcp_t thus others can modify it.
3872 		 */
3873 		(void) tcp_xmit_end(tcp);
3874 
3875 		/*
3876 		 * If lingering on close then wait until the fin is acked,
3877 		 * the SO_LINGER time passes, or a reset is sent/received.
3878 		 */
3879 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3880 		    !(tcp->tcp_fin_acked) &&
3881 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3882 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3883 				tcp->tcp_client_errno = EWOULDBLOCK;
3884 			} else if (tcp->tcp_client_errno == 0) {
3885 
3886 				ASSERT(tcp->tcp_linger_tid == 0);
3887 
3888 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3889 				    tcp_close_linger_timeout,
3890 				    tcp->tcp_lingertime * hz);
3891 
3892 				/* tcp_close_linger_timeout will finish close */
3893 				if (tcp->tcp_linger_tid == 0)
3894 					tcp->tcp_client_errno = ENOSR;
3895 				else
3896 					return;
3897 			}
3898 
3899 			/*
3900 			 * Check if we need to detach or just close
3901 			 * the instance.
3902 			 */
3903 			if (tcp->tcp_state <= TCPS_LISTEN)
3904 				break;
3905 		}
3906 
3907 		/*
3908 		 * Make sure that no other thread will access the tcp_rq of
3909 		 * this instance (through lookups etc.) as tcp_rq will go
3910 		 * away shortly.
3911 		 */
3912 		tcp_acceptor_hash_remove(tcp);
3913 
3914 		mutex_enter(&tcp->tcp_non_sq_lock);
3915 		if (tcp->tcp_flow_stopped) {
3916 			tcp_clrqfull(tcp);
3917 		}
3918 		mutex_exit(&tcp->tcp_non_sq_lock);
3919 
3920 		if (tcp->tcp_timer_tid != 0) {
3921 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3922 			tcp->tcp_timer_tid = 0;
3923 		}
3924 		/*
3925 		 * Need to cancel those timers which will not be used when
3926 		 * TCP is detached.  This has to be done before the tcp_wq
3927 		 * is set to the global queue.
3928 		 */
3929 		tcp_timers_stop(tcp);
3930 
3931 		tcp->tcp_detached = B_TRUE;
3932 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3933 			tcp_time_wait_append(tcp);
3934 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3935 			ASSERT(connp->conn_ref >= 3);
3936 			goto finish;
3937 		}
3938 
3939 		/*
3940 		 * If delta is zero the timer event wasn't executed and was
3941 		 * successfully canceled. In this case we need to restart it
3942 		 * with the minimal delta possible.
3943 		 */
3944 		if (delta >= 0)
3945 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3946 			    delta ? delta : 1);
3947 
3948 		ASSERT(connp->conn_ref >= 3);
3949 		goto finish;
3950 	}
3951 
3952 	/* Detach did not complete. Still need to remove q from stream. */
3953 	if (msg) {
3954 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
3955 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
3956 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3957 		if (tcp->tcp_state == TCPS_SYN_SENT ||
3958 		    tcp->tcp_state == TCPS_SYN_RCVD)
3959 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3960 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
3961 	}
3962 
3963 	tcp_closei_local(tcp);
3964 	CONN_DEC_REF(connp);
3965 	ASSERT(connp->conn_ref >= 2);
3966 
3967 finish:
3968 	/*
3969 	 * Although packets are always processed on the correct
3970 	 * tcp's perimeter and access is serialized via squeue's,
3971 	 * IP still needs a queue when sending packets in time_wait
3972 	 * state so use WR(tcps_g_q) till ip_output() can be
3973 	 * changed to deal with just connp. For read side, we
3974 	 * could have set tcp_rq to NULL but there are some cases
3975 	 * in tcp_rput_data() from early days of this code which
3976 	 * do a putnext without checking if tcp is closed. Those
3977 	 * need to be identified before both tcp_rq and tcp_wq
3978 	 * can be set to NULL and tcps_g_q can disappear forever.
3979 	 */
3980 	mutex_enter(&tcp->tcp_closelock);
3981 	/*
3982 	 * Don't change the queues in the case of a listener that has
3983 	 * eagers in its q or q0. It could surprise the eagers.
3984 	 * Instead wait for the eagers outside the squeue.
3985 	 */
3986 	if (!tcp->tcp_wait_for_eagers) {
3987 		tcp->tcp_detached = B_TRUE;
3988 		/*
3989 		 * When default queue is closing we set tcps_g_q to NULL
3990 		 * after the close is done.
3991 		 */
3992 		ASSERT(tcps->tcps_g_q != NULL);
3993 		tcp->tcp_rq = tcps->tcps_g_q;
3994 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3995 	}
3996 
3997 	/* Signal tcp_close() to finish closing. */
3998 	tcp->tcp_closed = 1;
3999 	cv_signal(&tcp->tcp_closecv);
4000 	mutex_exit(&tcp->tcp_closelock);
4001 }
4002 
4003 /*
4004  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4005  * Some stream heads get upset if they see these later on as anything but NULL.
4006  */
4007 static void
4008 tcp_close_mpp(mblk_t **mpp)
4009 {
4010 	mblk_t	*mp;
4011 
4012 	if ((mp = *mpp) != NULL) {
4013 		do {
4014 			mp->b_next = NULL;
4015 			mp->b_prev = NULL;
4016 		} while ((mp = mp->b_cont) != NULL);
4017 
4018 		mp = *mpp;
4019 		*mpp = NULL;
4020 		freemsg(mp);
4021 	}
4022 }
4023 
4024 /* Do detached close. */
4025 static void
4026 tcp_close_detached(tcp_t *tcp)
4027 {
4028 	if (tcp->tcp_fused)
4029 		tcp_unfuse(tcp);
4030 
4031 	/*
4032 	 * Clustering code serializes TCP disconnect callbacks and
4033 	 * cluster tcp list walks by blocking a TCP disconnect callback
4034 	 * if a cluster tcp list walk is in progress. This ensures
4035 	 * accurate accounting of TCPs in the cluster code even though
4036 	 * the TCP list walk itself is not atomic.
4037 	 */
4038 	tcp_closei_local(tcp);
4039 	CONN_DEC_REF(tcp->tcp_connp);
4040 }
4041 
4042 /*
4043  * Stop all TCP timers, and free the timer mblks if requested.
4044  */
4045 void
4046 tcp_timers_stop(tcp_t *tcp)
4047 {
4048 	if (tcp->tcp_timer_tid != 0) {
4049 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4050 		tcp->tcp_timer_tid = 0;
4051 	}
4052 	if (tcp->tcp_ka_tid != 0) {
4053 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4054 		tcp->tcp_ka_tid = 0;
4055 	}
4056 	if (tcp->tcp_ack_tid != 0) {
4057 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4058 		tcp->tcp_ack_tid = 0;
4059 	}
4060 	if (tcp->tcp_push_tid != 0) {
4061 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4062 		tcp->tcp_push_tid = 0;
4063 	}
4064 }
4065 
4066 /*
4067  * The tcp_t is going away. Remove it from all lists and set it
4068  * to TCPS_CLOSED. The freeing up of memory is deferred until
4069  * tcp_inactive. This is needed since a thread in tcp_rput might have
4070  * done a CONN_INC_REF on this structure before it was removed from the
4071  * hashes.
4072  */
4073 static void
4074 tcp_closei_local(tcp_t *tcp)
4075 {
4076 	ire_t 	*ire;
4077 	conn_t	*connp = tcp->tcp_connp;
4078 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4079 
4080 	if (!TCP_IS_SOCKET(tcp))
4081 		tcp_acceptor_hash_remove(tcp);
4082 
4083 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4084 	tcp->tcp_ibsegs = 0;
4085 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4086 	tcp->tcp_obsegs = 0;
4087 
4088 	/*
4089 	 * If we are an eager connection hanging off a listener that
4090 	 * hasn't formally accepted the connection yet, get off his
4091 	 * list and blow off any data that we have accumulated.
4092 	 */
4093 	if (tcp->tcp_listener != NULL) {
4094 		tcp_t	*listener = tcp->tcp_listener;
4095 		mutex_enter(&listener->tcp_eager_lock);
4096 		/*
4097 		 * tcp_tconnind_started == B_TRUE means that the
4098 		 * conn_ind has already gone to listener. At
4099 		 * this point, eager will be closed but we
4100 		 * leave it in listeners eager list so that
4101 		 * if listener decides to close without doing
4102 		 * accept, we can clean this up. In tcp_wput_accept
4103 		 * we take care of the case of accept on closed
4104 		 * eager.
4105 		 */
4106 		if (!tcp->tcp_tconnind_started) {
4107 			tcp_eager_unlink(tcp);
4108 			mutex_exit(&listener->tcp_eager_lock);
4109 			/*
4110 			 * We don't want to have any pointers to the
4111 			 * listener queue, after we have released our
4112 			 * reference on the listener
4113 			 */
4114 			ASSERT(tcps->tcps_g_q != NULL);
4115 			tcp->tcp_rq = tcps->tcps_g_q;
4116 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4117 			CONN_DEC_REF(listener->tcp_connp);
4118 		} else {
4119 			mutex_exit(&listener->tcp_eager_lock);
4120 		}
4121 	}
4122 
4123 	/* Stop all the timers */
4124 	tcp_timers_stop(tcp);
4125 
4126 	if (tcp->tcp_state == TCPS_LISTEN) {
4127 		if (tcp->tcp_ip_addr_cache) {
4128 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4129 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4130 			tcp->tcp_ip_addr_cache = NULL;
4131 		}
4132 	}
4133 	mutex_enter(&tcp->tcp_non_sq_lock);
4134 	if (tcp->tcp_flow_stopped)
4135 		tcp_clrqfull(tcp);
4136 	mutex_exit(&tcp->tcp_non_sq_lock);
4137 
4138 	tcp_bind_hash_remove(tcp);
4139 	/*
4140 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4141 	 * is trying to remove this tcp from the time wait list, we will
4142 	 * block in tcp_time_wait_remove while trying to acquire the
4143 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4144 	 * requires the ipcl_hash_remove to be ordered after the
4145 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4146 	 */
4147 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4148 		(void) tcp_time_wait_remove(tcp, NULL);
4149 	CL_INET_DISCONNECT(connp, tcp);
4150 	ipcl_hash_remove(connp);
4151 
4152 	/*
4153 	 * Delete the cached ire in conn_ire_cache and also mark
4154 	 * the conn as CONDEMNED
4155 	 */
4156 	mutex_enter(&connp->conn_lock);
4157 	connp->conn_state_flags |= CONN_CONDEMNED;
4158 	ire = connp->conn_ire_cache;
4159 	connp->conn_ire_cache = NULL;
4160 	mutex_exit(&connp->conn_lock);
4161 	if (ire != NULL)
4162 		IRE_REFRELE_NOTR(ire);
4163 
4164 	/* Need to cleanup any pending ioctls */
4165 	ASSERT(tcp->tcp_time_wait_next == NULL);
4166 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4167 	ASSERT(tcp->tcp_time_wait_expire == 0);
4168 	tcp->tcp_state = TCPS_CLOSED;
4169 
4170 	/* Release any SSL context */
4171 	if (tcp->tcp_kssl_ent != NULL) {
4172 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4173 		tcp->tcp_kssl_ent = NULL;
4174 	}
4175 	if (tcp->tcp_kssl_ctx != NULL) {
4176 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4177 		tcp->tcp_kssl_ctx = NULL;
4178 	}
4179 	tcp->tcp_kssl_pending = B_FALSE;
4180 
4181 	tcp_ipsec_cleanup(tcp);
4182 }
4183 
4184 /*
4185  * tcp is dying (called from ipcl_conn_destroy and error cases).
4186  * Free the tcp_t in either case.
4187  */
4188 void
4189 tcp_free(tcp_t *tcp)
4190 {
4191 	mblk_t	*mp;
4192 	ip6_pkt_t	*ipp;
4193 
4194 	ASSERT(tcp != NULL);
4195 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4196 
4197 	tcp->tcp_rq = NULL;
4198 	tcp->tcp_wq = NULL;
4199 
4200 	tcp_close_mpp(&tcp->tcp_xmit_head);
4201 	tcp_close_mpp(&tcp->tcp_reass_head);
4202 	if (tcp->tcp_rcv_list != NULL) {
4203 		/* Free b_next chain */
4204 		tcp_close_mpp(&tcp->tcp_rcv_list);
4205 	}
4206 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4207 		freemsg(mp);
4208 	}
4209 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4210 		freemsg(mp);
4211 	}
4212 
4213 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4214 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4215 		freeb(tcp->tcp_fused_sigurg_mp);
4216 		tcp->tcp_fused_sigurg_mp = NULL;
4217 	}
4218 
4219 	if (tcp->tcp_ordrel_mp != NULL) {
4220 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4221 		freeb(tcp->tcp_ordrel_mp);
4222 		tcp->tcp_ordrel_mp = NULL;
4223 	}
4224 
4225 	if (tcp->tcp_sack_info != NULL) {
4226 		if (tcp->tcp_notsack_list != NULL) {
4227 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4228 		}
4229 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4230 	}
4231 
4232 	if (tcp->tcp_hopopts != NULL) {
4233 		mi_free(tcp->tcp_hopopts);
4234 		tcp->tcp_hopopts = NULL;
4235 		tcp->tcp_hopoptslen = 0;
4236 	}
4237 	ASSERT(tcp->tcp_hopoptslen == 0);
4238 	if (tcp->tcp_dstopts != NULL) {
4239 		mi_free(tcp->tcp_dstopts);
4240 		tcp->tcp_dstopts = NULL;
4241 		tcp->tcp_dstoptslen = 0;
4242 	}
4243 	ASSERT(tcp->tcp_dstoptslen == 0);
4244 	if (tcp->tcp_rtdstopts != NULL) {
4245 		mi_free(tcp->tcp_rtdstopts);
4246 		tcp->tcp_rtdstopts = NULL;
4247 		tcp->tcp_rtdstoptslen = 0;
4248 	}
4249 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4250 	if (tcp->tcp_rthdr != NULL) {
4251 		mi_free(tcp->tcp_rthdr);
4252 		tcp->tcp_rthdr = NULL;
4253 		tcp->tcp_rthdrlen = 0;
4254 	}
4255 	ASSERT(tcp->tcp_rthdrlen == 0);
4256 
4257 	ipp = &tcp->tcp_sticky_ipp;
4258 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4259 	    IPPF_RTHDR))
4260 		ip6_pkt_free(ipp);
4261 
4262 	/*
4263 	 * Free memory associated with the tcp/ip header template.
4264 	 */
4265 
4266 	if (tcp->tcp_iphc != NULL)
4267 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4268 
4269 	/*
4270 	 * Following is really a blowing away a union.
4271 	 * It happens to have exactly two members of identical size
4272 	 * the following code is enough.
4273 	 */
4274 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4275 }
4276 
4277 
4278 /*
4279  * Put a connection confirmation message upstream built from the
4280  * address information within 'iph' and 'tcph'.  Report our success or failure.
4281  */
4282 static boolean_t
4283 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4284     mblk_t **defermp)
4285 {
4286 	sin_t	sin;
4287 	sin6_t	sin6;
4288 	mblk_t	*mp;
4289 	char	*optp = NULL;
4290 	int	optlen = 0;
4291 
4292 	if (defermp != NULL)
4293 		*defermp = NULL;
4294 
4295 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4296 		/*
4297 		 * Return in T_CONN_CON results of option negotiation through
4298 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4299 		 * negotiation, then what is received from remote end needs
4300 		 * to be taken into account but there is no such thing (yet?)
4301 		 * in our TCP/IP.
4302 		 * Note: We do not use mi_offset_param() here as
4303 		 * tcp_opts_conn_req contents do not directly come from
4304 		 * an application and are either generated in kernel or
4305 		 * from user input that was already verified.
4306 		 */
4307 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4308 		optp = (char *)(mp->b_rptr +
4309 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4310 		optlen = (int)
4311 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4312 	}
4313 
4314 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4315 		ipha_t *ipha = (ipha_t *)iphdr;
4316 
4317 		/* packet is IPv4 */
4318 		if (tcp->tcp_family == AF_INET) {
4319 			sin = sin_null;
4320 			sin.sin_addr.s_addr = ipha->ipha_src;
4321 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4322 			sin.sin_family = AF_INET;
4323 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4324 			    (int)sizeof (sin_t), optp, optlen);
4325 		} else {
4326 			sin6 = sin6_null;
4327 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4328 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4329 			sin6.sin6_family = AF_INET6;
4330 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4331 			    (int)sizeof (sin6_t), optp, optlen);
4332 
4333 		}
4334 	} else {
4335 		ip6_t	*ip6h = (ip6_t *)iphdr;
4336 
4337 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4338 		ASSERT(tcp->tcp_family == AF_INET6);
4339 		sin6 = sin6_null;
4340 		sin6.sin6_addr = ip6h->ip6_src;
4341 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4342 		sin6.sin6_family = AF_INET6;
4343 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4344 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4345 		    (int)sizeof (sin6_t), optp, optlen);
4346 	}
4347 
4348 	if (!mp)
4349 		return (B_FALSE);
4350 
4351 	mblk_copycred(mp, idmp);
4352 
4353 	if (defermp == NULL) {
4354 		conn_t *connp = tcp->tcp_connp;
4355 		if (IPCL_IS_NONSTR(connp)) {
4356 			cred_t *cr;
4357 			pid_t cpid;
4358 
4359 			cr = msg_getcred(mp, &cpid);
4360 			(*connp->conn_upcalls->su_connected)
4361 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4362 			    cpid);
4363 			freemsg(mp);
4364 		} else {
4365 			putnext(tcp->tcp_rq, mp);
4366 		}
4367 	} else {
4368 		*defermp = mp;
4369 	}
4370 
4371 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4372 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4373 	return (B_TRUE);
4374 }
4375 
4376 /*
4377  * Defense for the SYN attack -
4378  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4379  *    one from the list of droppable eagers. This list is a subset of q0.
4380  *    see comments before the definition of MAKE_DROPPABLE().
4381  * 2. Don't drop a SYN request before its first timeout. This gives every
4382  *    request at least til the first timeout to complete its 3-way handshake.
4383  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4384  *    requests currently on the queue that has timed out. This will be used
4385  *    as an indicator of whether an attack is under way, so that appropriate
4386  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4387  *    either when eager goes into ESTABLISHED, or gets freed up.)
4388  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4389  *    # of timeout drops back to <= q0len/32 => SYN alert off
4390  */
4391 static boolean_t
4392 tcp_drop_q0(tcp_t *tcp)
4393 {
4394 	tcp_t	*eager;
4395 	mblk_t	*mp;
4396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4397 
4398 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4399 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4400 
4401 	/* Pick oldest eager from the list of droppable eagers */
4402 	eager = tcp->tcp_eager_prev_drop_q0;
4403 
4404 	/* If list is empty. return B_FALSE */
4405 	if (eager == tcp) {
4406 		return (B_FALSE);
4407 	}
4408 
4409 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4410 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4411 		return (B_FALSE);
4412 
4413 	/*
4414 	 * Take this eager out from the list of droppable eagers since we are
4415 	 * going to drop it.
4416 	 */
4417 	MAKE_UNDROPPABLE(eager);
4418 
4419 	if (tcp->tcp_debug) {
4420 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4421 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4422 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4423 		    tcp->tcp_conn_req_cnt_q0,
4424 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4425 	}
4426 
4427 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4428 
4429 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4430 	CONN_INC_REF(eager->tcp_connp);
4431 
4432 	/* Mark the IRE created for this SYN request temporary */
4433 	tcp_ip_ire_mark_advice(eager);
4434 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4435 	    tcp_clean_death_wrapper, eager->tcp_connp,
4436 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4437 
4438 	return (B_TRUE);
4439 }
4440 
4441 int
4442 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4443     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4444 {
4445 	tcp_t 		*ltcp = lconnp->conn_tcp;
4446 	tcp_t		*tcp = connp->conn_tcp;
4447 	mblk_t		*tpi_mp;
4448 	ipha_t		*ipha;
4449 	ip6_t		*ip6h;
4450 	sin6_t 		sin6;
4451 	in6_addr_t 	v6dst;
4452 	int		err;
4453 	int		ifindex = 0;
4454 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4455 
4456 	if (ipvers == IPV4_VERSION) {
4457 		ipha = (ipha_t *)mp->b_rptr;
4458 
4459 		connp->conn_send = ip_output;
4460 		connp->conn_recv = tcp_input;
4461 
4462 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4463 		    &connp->conn_bound_source_v6);
4464 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4465 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4466 
4467 		sin6 = sin6_null;
4468 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4469 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4470 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4471 		sin6.sin6_family = AF_INET6;
4472 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4473 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4474 		if (tcp->tcp_recvdstaddr) {
4475 			sin6_t	sin6d;
4476 
4477 			sin6d = sin6_null;
4478 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4479 			    &sin6d.sin6_addr);
4480 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4481 			sin6d.sin6_family = AF_INET;
4482 			tpi_mp = mi_tpi_extconn_ind(NULL,
4483 			    (char *)&sin6d, sizeof (sin6_t),
4484 			    (char *)&tcp,
4485 			    (t_scalar_t)sizeof (intptr_t),
4486 			    (char *)&sin6d, sizeof (sin6_t),
4487 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4488 		} else {
4489 			tpi_mp = mi_tpi_conn_ind(NULL,
4490 			    (char *)&sin6, sizeof (sin6_t),
4491 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4492 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4493 		}
4494 	} else {
4495 		ip6h = (ip6_t *)mp->b_rptr;
4496 
4497 		connp->conn_send = ip_output_v6;
4498 		connp->conn_recv = tcp_input;
4499 
4500 		connp->conn_bound_source_v6 = ip6h->ip6_dst;
4501 		connp->conn_srcv6 = ip6h->ip6_dst;
4502 		connp->conn_remv6 = ip6h->ip6_src;
4503 
4504 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4505 		ifindex = (int)DB_CKSUMSTUFF(mp);
4506 		DB_CKSUMSTUFF(mp) = 0;
4507 
4508 		sin6 = sin6_null;
4509 		sin6.sin6_addr = ip6h->ip6_src;
4510 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4511 		sin6.sin6_family = AF_INET6;
4512 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4513 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4514 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4515 
4516 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4517 			/* Pass up the scope_id of remote addr */
4518 			sin6.sin6_scope_id = ifindex;
4519 		} else {
4520 			sin6.sin6_scope_id = 0;
4521 		}
4522 		if (tcp->tcp_recvdstaddr) {
4523 			sin6_t	sin6d;
4524 
4525 			sin6d = sin6_null;
4526 			sin6.sin6_addr = ip6h->ip6_dst;
4527 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4528 			sin6d.sin6_family = AF_INET;
4529 			tpi_mp = mi_tpi_extconn_ind(NULL,
4530 			    (char *)&sin6d, sizeof (sin6_t),
4531 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4532 			    (char *)&sin6d, sizeof (sin6_t),
4533 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4534 		} else {
4535 			tpi_mp = mi_tpi_conn_ind(NULL,
4536 			    (char *)&sin6, sizeof (sin6_t),
4537 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4538 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4539 		}
4540 	}
4541 
4542 	if (tpi_mp == NULL)
4543 		return (ENOMEM);
4544 
4545 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4546 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4547 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4548 	connp->conn_fully_bound = B_FALSE;
4549 
4550 	/* Inherit information from the "parent" */
4551 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4552 	tcp->tcp_family = ltcp->tcp_family;
4553 
4554 	tcp->tcp_wq = ltcp->tcp_wq;
4555 	tcp->tcp_rq = ltcp->tcp_rq;
4556 
4557 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4558 	tcp->tcp_detached = B_TRUE;
4559 	SOCK_CONNID_INIT(tcp->tcp_connid);
4560 	if ((err = tcp_init_values(tcp)) != 0) {
4561 		freemsg(tpi_mp);
4562 		return (err);
4563 	}
4564 
4565 	if (ipvers == IPV4_VERSION) {
4566 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4567 			freemsg(tpi_mp);
4568 			return (err);
4569 		}
4570 		ASSERT(tcp->tcp_ipha != NULL);
4571 	} else {
4572 		/* ifindex must be already set */
4573 		ASSERT(ifindex != 0);
4574 
4575 		if (ltcp->tcp_bound_if != 0)
4576 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4577 		else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4578 			tcp->tcp_bound_if = ifindex;
4579 
4580 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4581 		tcp->tcp_recvifindex = 0;
4582 		tcp->tcp_recvhops = 0xffffffffU;
4583 		ASSERT(tcp->tcp_ip6h != NULL);
4584 	}
4585 
4586 	tcp->tcp_lport = ltcp->tcp_lport;
4587 
4588 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4589 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4590 			/*
4591 			 * Listener had options of some sort; eager inherits.
4592 			 * Free up the eager template and allocate one
4593 			 * of the right size.
4594 			 */
4595 			if (tcp->tcp_hdr_grown) {
4596 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4597 			} else {
4598 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4599 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4600 			}
4601 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4602 			    KM_NOSLEEP);
4603 			if (tcp->tcp_iphc == NULL) {
4604 				tcp->tcp_iphc_len = 0;
4605 				freemsg(tpi_mp);
4606 				return (ENOMEM);
4607 			}
4608 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4609 			tcp->tcp_hdr_grown = B_TRUE;
4610 		}
4611 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4612 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4613 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4614 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4615 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4616 
4617 		/*
4618 		 * Copy the IP+TCP header template from listener to eager
4619 		 */
4620 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4621 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4622 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4623 			    IPPROTO_RAW) {
4624 				tcp->tcp_ip6h =
4625 				    (ip6_t *)(tcp->tcp_iphc +
4626 				    sizeof (ip6i_t));
4627 			} else {
4628 				tcp->tcp_ip6h =
4629 				    (ip6_t *)(tcp->tcp_iphc);
4630 			}
4631 			tcp->tcp_ipha = NULL;
4632 		} else {
4633 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4634 			tcp->tcp_ip6h = NULL;
4635 		}
4636 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4637 		    tcp->tcp_ip_hdr_len);
4638 	} else {
4639 		/*
4640 		 * only valid case when ipversion of listener and
4641 		 * eager differ is when listener is IPv6 and
4642 		 * eager is IPv4.
4643 		 * Eager header template has been initialized to the
4644 		 * maximum v4 header sizes, which includes space for
4645 		 * TCP and IP options.
4646 		 */
4647 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4648 		    (tcp->tcp_ipversion == IPV4_VERSION));
4649 		ASSERT(tcp->tcp_iphc_len >=
4650 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4651 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4652 		/* copy IP header fields individually */
4653 		tcp->tcp_ipha->ipha_ttl =
4654 		    ltcp->tcp_ip6h->ip6_hops;
4655 		bcopy(ltcp->tcp_tcph->th_lport,
4656 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4657 	}
4658 
4659 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4660 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4661 	    sizeof (in_port_t));
4662 
4663 	if (ltcp->tcp_lport == 0) {
4664 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4665 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4666 		    sizeof (in_port_t));
4667 	}
4668 
4669 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4670 		ASSERT(ipha != NULL);
4671 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4672 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4673 
4674 		/* Source routing option copyover (reverse it) */
4675 		if (tcps->tcps_rev_src_routes)
4676 			tcp_opt_reverse(tcp, ipha);
4677 	} else {
4678 		ASSERT(ip6h != NULL);
4679 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4680 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4681 	}
4682 
4683 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4684 	ASSERT(!tcp->tcp_tconnind_started);
4685 	/*
4686 	 * If the SYN contains a credential, it's a loopback packet; attach
4687 	 * the credential to the TPI message.
4688 	 */
4689 	mblk_copycred(tpi_mp, idmp);
4690 
4691 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4692 
4693 	/* Inherit the listener's SSL protection state */
4694 
4695 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4696 		kssl_hold_ent(tcp->tcp_kssl_ent);
4697 		tcp->tcp_kssl_pending = B_TRUE;
4698 	}
4699 
4700 	/* Inherit the listener's non-STREAMS flag */
4701 	if (IPCL_IS_NONSTR(lconnp)) {
4702 		connp->conn_flags |= IPCL_NONSTR;
4703 	}
4704 
4705 	return (0);
4706 }
4707 
4708 
4709 int
4710 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4711     tcph_t *tcph, mblk_t *idmp)
4712 {
4713 	tcp_t 		*ltcp = lconnp->conn_tcp;
4714 	tcp_t		*tcp = connp->conn_tcp;
4715 	sin_t		sin;
4716 	mblk_t		*tpi_mp = NULL;
4717 	int		err;
4718 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4719 
4720 	sin = sin_null;
4721 	sin.sin_addr.s_addr = ipha->ipha_src;
4722 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4723 	sin.sin_family = AF_INET;
4724 	if (ltcp->tcp_recvdstaddr) {
4725 		sin_t	sind;
4726 
4727 		sind = sin_null;
4728 		sind.sin_addr.s_addr = ipha->ipha_dst;
4729 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4730 		sind.sin_family = AF_INET;
4731 		tpi_mp = mi_tpi_extconn_ind(NULL,
4732 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4733 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4734 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4735 	} else {
4736 		tpi_mp = mi_tpi_conn_ind(NULL,
4737 		    (char *)&sin, sizeof (sin_t),
4738 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4739 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4740 	}
4741 
4742 	if (tpi_mp == NULL) {
4743 		return (ENOMEM);
4744 	}
4745 
4746 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4747 	connp->conn_send = ip_output;
4748 	connp->conn_recv = tcp_input;
4749 	connp->conn_fully_bound = B_FALSE;
4750 
4751 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6);
4752 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4753 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4754 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4755 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4756 
4757 	/* Inherit information from the "parent" */
4758 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4759 	tcp->tcp_family = ltcp->tcp_family;
4760 	tcp->tcp_wq = ltcp->tcp_wq;
4761 	tcp->tcp_rq = ltcp->tcp_rq;
4762 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4763 	tcp->tcp_detached = B_TRUE;
4764 	SOCK_CONNID_INIT(tcp->tcp_connid);
4765 	if ((err = tcp_init_values(tcp)) != 0) {
4766 		freemsg(tpi_mp);
4767 		return (err);
4768 	}
4769 
4770 	/*
4771 	 * Let's make sure that eager tcp template has enough space to
4772 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4773 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4774 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4775 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4776 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4777 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4778 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4779 	 */
4780 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4781 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4782 
4783 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4784 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4785 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4786 	tcp->tcp_ttl = ltcp->tcp_ttl;
4787 	tcp->tcp_tos = ltcp->tcp_tos;
4788 
4789 	/* Copy the IP+TCP header template from listener to eager */
4790 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4791 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4792 	tcp->tcp_ip6h = NULL;
4793 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4794 	    tcp->tcp_ip_hdr_len);
4795 
4796 	/* Initialize the IP addresses and Ports */
4797 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4798 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4799 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4800 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4801 
4802 	/* Source routing option copyover (reverse it) */
4803 	if (tcps->tcps_rev_src_routes)
4804 		tcp_opt_reverse(tcp, ipha);
4805 
4806 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4807 	ASSERT(!tcp->tcp_tconnind_started);
4808 
4809 	/*
4810 	 * If the SYN contains a credential, it's a loopback packet; attach
4811 	 * the credential to the TPI message.
4812 	 */
4813 	mblk_copycred(tpi_mp, idmp);
4814 
4815 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4816 
4817 	/* Inherit the listener's SSL protection state */
4818 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4819 		kssl_hold_ent(tcp->tcp_kssl_ent);
4820 		tcp->tcp_kssl_pending = B_TRUE;
4821 	}
4822 
4823 	/* Inherit the listener's non-STREAMS flag */
4824 	if (IPCL_IS_NONSTR(lconnp)) {
4825 		connp->conn_flags |= IPCL_NONSTR;
4826 	}
4827 
4828 	return (0);
4829 }
4830 
4831 /*
4832  * sets up conn for ipsec.
4833  * if the first mblk is M_CTL it is consumed and mpp is updated.
4834  * in case of error mpp is freed.
4835  */
4836 conn_t *
4837 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp,
4838     boolean_t is_streams)
4839 {
4840 	conn_t 		*connp = tcp->tcp_connp;
4841 	conn_t 		*econnp;
4842 	squeue_t 	*new_sqp;
4843 	mblk_t 		*first_mp = *mpp;
4844 	mblk_t		*mp = *mpp;
4845 	boolean_t	mctl_present = B_FALSE;
4846 	uint_t		ipvers;
4847 
4848 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps, is_streams);
4849 	if (econnp == NULL) {
4850 		freemsg(first_mp);
4851 		return (NULL);
4852 	}
4853 	if (DB_TYPE(mp) == M_CTL) {
4854 		if (mp->b_cont == NULL ||
4855 		    mp->b_cont->b_datap->db_type != M_DATA) {
4856 			freemsg(first_mp);
4857 			return (NULL);
4858 		}
4859 		mp = mp->b_cont;
4860 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4861 			freemsg(first_mp);
4862 			return (NULL);
4863 		}
4864 
4865 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4866 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4867 		mctl_present = B_TRUE;
4868 	} else {
4869 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4870 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4871 	}
4872 
4873 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4874 	DB_CKSUMSTART(mp) = 0;
4875 
4876 	ASSERT(OK_32PTR(mp->b_rptr));
4877 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
4878 	if (ipvers == IPV4_VERSION) {
4879 		uint16_t  	*up;
4880 		uint32_t	ports;
4881 		ipha_t		*ipha;
4882 
4883 		ipha = (ipha_t *)mp->b_rptr;
4884 		up = (uint16_t *)((uchar_t *)ipha +
4885 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
4886 		ports = *(uint32_t *)up;
4887 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
4888 		    ipha->ipha_dst, ipha->ipha_src, ports);
4889 	} else {
4890 		uint16_t  	*up;
4891 		uint32_t	ports;
4892 		uint16_t	ip_hdr_len;
4893 		uint8_t		*nexthdrp;
4894 		ip6_t 		*ip6h;
4895 		tcph_t		*tcph;
4896 
4897 		ip6h = (ip6_t *)mp->b_rptr;
4898 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
4899 			ip_hdr_len = IPV6_HDR_LEN;
4900 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
4901 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
4902 			CONN_DEC_REF(econnp);
4903 			freemsg(first_mp);
4904 			return (NULL);
4905 		}
4906 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
4907 		up = (uint16_t *)tcph->th_lport;
4908 		ports = *(uint32_t *)up;
4909 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
4910 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
4911 	}
4912 
4913 	/*
4914 	 * The caller already ensured that there is a sqp present.
4915 	 */
4916 	econnp->conn_sqp = new_sqp;
4917 	econnp->conn_initial_sqp = new_sqp;
4918 
4919 	if (connp->conn_policy != NULL) {
4920 		ipsec_in_t *ii;
4921 		ii = (ipsec_in_t *)(first_mp->b_rptr);
4922 		ASSERT(ii->ipsec_in_policy == NULL);
4923 		IPPH_REFHOLD(connp->conn_policy);
4924 		ii->ipsec_in_policy = connp->conn_policy;
4925 
4926 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
4927 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
4928 			CONN_DEC_REF(econnp);
4929 			freemsg(first_mp);
4930 			return (NULL);
4931 		}
4932 	}
4933 
4934 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
4935 		CONN_DEC_REF(econnp);
4936 		freemsg(first_mp);
4937 		return (NULL);
4938 	}
4939 
4940 	/*
4941 	 * If we know we have some policy, pass the "IPSEC"
4942 	 * options size TCP uses this adjust the MSS.
4943 	 */
4944 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
4945 	if (mctl_present) {
4946 		freeb(first_mp);
4947 		*mpp = mp;
4948 	}
4949 
4950 	return (econnp);
4951 }
4952 
4953 /*
4954  * tcp_get_conn/tcp_free_conn
4955  *
4956  * tcp_get_conn is used to get a clean tcp connection structure.
4957  * It tries to reuse the connections put on the freelist by the
4958  * time_wait_collector failing which it goes to kmem_cache. This
4959  * way has two benefits compared to just allocating from and
4960  * freeing to kmem_cache.
4961  * 1) The time_wait_collector can free (which includes the cleanup)
4962  * outside the squeue. So when the interrupt comes, we have a clean
4963  * connection sitting in the freelist. Obviously, this buys us
4964  * performance.
4965  *
4966  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
4967  * has multiple disadvantages - tying up the squeue during alloc, and the
4968  * fact that IPSec policy initialization has to happen here which
4969  * requires us sending a M_CTL and checking for it i.e. real ugliness.
4970  * But allocating the conn/tcp in IP land is also not the best since
4971  * we can't check the 'q' and 'q0' which are protected by squeue and
4972  * blindly allocate memory which might have to be freed here if we are
4973  * not allowed to accept the connection. By using the freelist and
4974  * putting the conn/tcp back in freelist, we don't pay a penalty for
4975  * allocating memory without checking 'q/q0' and freeing it if we can't
4976  * accept the connection.
4977  *
4978  * Care should be taken to put the conn back in the same squeue's freelist
4979  * from which it was allocated. Best results are obtained if conn is
4980  * allocated from listener's squeue and freed to the same. Time wait
4981  * collector will free up the freelist is the connection ends up sitting
4982  * there for too long.
4983  */
4984 void *
4985 tcp_get_conn(void *arg, tcp_stack_t *tcps, boolean_t is_streams)
4986 {
4987 	tcp_t			*tcp = NULL;
4988 	conn_t			*connp = NULL;
4989 	squeue_t		*sqp = (squeue_t *)arg;
4990 	tcp_squeue_priv_t 	*tcp_time_wait;
4991 	netstack_t		*ns;
4992 	mblk_t			*tcp_rsrv_mp = NULL;
4993 
4994 	tcp_time_wait =
4995 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
4996 
4997 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
4998 	tcp = tcp_time_wait->tcp_free_list;
4999 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5000 	if (tcp != NULL) {
5001 		if (is_streams && tcp->tcp_rsrv_mp == NULL) {
5002 			/*
5003 			 * Pre-allocate the tcp_rsrv_mp if neccessary.
5004 			 * This mblk will not be freed until this conn_t/tcp_t
5005 			 * is freed at ipcl_conn_destroy().
5006 			 */
5007 			if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5008 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5009 				return (NULL);
5010 			}
5011 			mutex_init(&tcp->tcp_rsrv_mp_lock,
5012 			    NULL, MUTEX_DEFAULT, NULL);
5013 		}
5014 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5015 		tcp_time_wait->tcp_free_list_cnt--;
5016 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5017 		tcp->tcp_time_wait_next = NULL;
5018 		connp = tcp->tcp_connp;
5019 		connp->conn_flags |= IPCL_REUSED;
5020 
5021 		ASSERT(tcp->tcp_tcps == NULL);
5022 		ASSERT(connp->conn_netstack == NULL);
5023 		ASSERT(!is_streams || tcp->tcp_rsrv_mp != NULL);
5024 		ns = tcps->tcps_netstack;
5025 		netstack_hold(ns);
5026 		connp->conn_netstack = ns;
5027 		tcp->tcp_tcps = tcps;
5028 		TCPS_REFHOLD(tcps);
5029 		ipcl_globalhash_insert(connp);
5030 		return ((void *)connp);
5031 	}
5032 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5033 	if (is_streams) {
5034 		/*
5035 		 * Pre-allocate the tcp_rsrv_mp if neccessary.
5036 		 * This mblk will not be freed until this conn_t/tcp_t
5037 		 * is freed at ipcl_conn_destroy().
5038 		 */
5039 		tcp_rsrv_mp = allocb(0, BPRI_HI);
5040 		if (tcp_rsrv_mp == NULL)
5041 			return (NULL);
5042 	}
5043 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5044 	    tcps->tcps_netstack)) == NULL) {
5045 		if (is_streams) {
5046 			ASSERT(tcp_rsrv_mp != NULL);
5047 			freeb(tcp_rsrv_mp);
5048 		}
5049 		return (NULL);
5050 	}
5051 
5052 	tcp = connp->conn_tcp;
5053 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
5054 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5055 
5056 	tcp->tcp_tcps = tcps;
5057 	TCPS_REFHOLD(tcps);
5058 
5059 	return ((void *)connp);
5060 }
5061 
5062 /*
5063  * Update the cached label for the given tcp_t.  This should be called once per
5064  * connection, and before any packets are sent or tcp_process_options is
5065  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5066  */
5067 static boolean_t
5068 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5069 {
5070 	conn_t *connp = tcp->tcp_connp;
5071 
5072 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5073 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5074 		int added;
5075 
5076 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5077 		    connp->conn_mac_exempt,
5078 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5079 			return (B_FALSE);
5080 
5081 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5082 		if (added == -1)
5083 			return (B_FALSE);
5084 		tcp->tcp_hdr_len += added;
5085 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5086 		tcp->tcp_ip_hdr_len += added;
5087 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5088 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5089 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5090 			    tcp->tcp_hdr_len);
5091 			if (added == -1)
5092 				return (B_FALSE);
5093 			tcp->tcp_hdr_len += added;
5094 			tcp->tcp_tcph = (tcph_t *)
5095 			    ((uchar_t *)tcp->tcp_tcph + added);
5096 			tcp->tcp_ip_hdr_len += added;
5097 		}
5098 	} else {
5099 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5100 
5101 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5102 		    connp->conn_mac_exempt,
5103 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5104 			return (B_FALSE);
5105 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5106 		    &tcp->tcp_label_len, optbuf) != 0)
5107 			return (B_FALSE);
5108 		if (tcp_build_hdrs(tcp) != 0)
5109 			return (B_FALSE);
5110 	}
5111 
5112 	connp->conn_ulp_labeled = 1;
5113 
5114 	return (B_TRUE);
5115 }
5116 
5117 /* BEGIN CSTYLED */
5118 /*
5119  *
5120  * The sockfs ACCEPT path:
5121  * =======================
5122  *
5123  * The eager is now established in its own perimeter as soon as SYN is
5124  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5125  * completes the accept processing on the acceptor STREAM. The sending
5126  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5127  * listener but a TLI/XTI listener completes the accept processing
5128  * on the listener perimeter.
5129  *
5130  * Common control flow for 3 way handshake:
5131  * ----------------------------------------
5132  *
5133  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5134  *					-> tcp_conn_request()
5135  *
5136  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5137  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5138  *
5139  * Sockfs ACCEPT Path:
5140  * -------------------
5141  *
5142  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5143  * as STREAM entry point)
5144  *
5145  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5146  *
5147  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5148  * association (we are not behind eager's squeue but sockfs is protecting us
5149  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5150  * is changed to point at tcp_wput().
5151  *
5152  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5153  * listener (done on listener's perimeter).
5154  *
5155  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5156  * accept.
5157  *
5158  * TLI/XTI client ACCEPT path:
5159  * ---------------------------
5160  *
5161  * soaccept() sends T_CONN_RES on the listener STREAM.
5162  *
5163  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5164  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5165  *
5166  * Locks:
5167  * ======
5168  *
5169  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5170  * and listeners->tcp_eager_next_q.
5171  *
5172  * Referencing:
5173  * ============
5174  *
5175  * 1) We start out in tcp_conn_request by eager placing a ref on
5176  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5177  *
5178  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5179  * doing so we place a ref on the eager. This ref is finally dropped at the
5180  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5181  * reference is dropped by the squeue framework.
5182  *
5183  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5184  *
5185  * The reference must be released by the same entity that added the reference
5186  * In the above scheme, the eager is the entity that adds and releases the
5187  * references. Note that tcp_accept_finish executes in the squeue of the eager
5188  * (albeit after it is attached to the acceptor stream). Though 1. executes
5189  * in the listener's squeue, the eager is nascent at this point and the
5190  * reference can be considered to have been added on behalf of the eager.
5191  *
5192  * Eager getting a Reset or listener closing:
5193  * ==========================================
5194  *
5195  * Once the listener and eager are linked, the listener never does the unlink.
5196  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5197  * a message on all eager perimeter. The eager then does the unlink, clears
5198  * any pointers to the listener's queue and drops the reference to the
5199  * listener. The listener waits in tcp_close outside the squeue until its
5200  * refcount has dropped to 1. This ensures that the listener has waited for
5201  * all eagers to clear their association with the listener.
5202  *
5203  * Similarly, if eager decides to go away, it can unlink itself and close.
5204  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5205  * the reference to eager is still valid because of the extra ref we put
5206  * in tcp_send_conn_ind.
5207  *
5208  * Listener can always locate the eager under the protection
5209  * of the listener->tcp_eager_lock, and then do a refhold
5210  * on the eager during the accept processing.
5211  *
5212  * The acceptor stream accesses the eager in the accept processing
5213  * based on the ref placed on eager before sending T_conn_ind.
5214  * The only entity that can negate this refhold is a listener close
5215  * which is mutually exclusive with an active acceptor stream.
5216  *
5217  * Eager's reference on the listener
5218  * ===================================
5219  *
5220  * If the accept happens (even on a closed eager) the eager drops its
5221  * reference on the listener at the start of tcp_accept_finish. If the
5222  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5223  * the reference is dropped in tcp_closei_local. If the listener closes,
5224  * the reference is dropped in tcp_eager_kill. In all cases the reference
5225  * is dropped while executing in the eager's context (squeue).
5226  */
5227 /* END CSTYLED */
5228 
5229 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5230 
5231 /*
5232  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5233  * tcp_rput_data will not see any SYN packets.
5234  */
5235 /* ARGSUSED */
5236 void
5237 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5238 {
5239 	tcph_t		*tcph;
5240 	uint32_t	seg_seq;
5241 	tcp_t		*eager;
5242 	uint_t		ipvers;
5243 	ipha_t		*ipha;
5244 	ip6_t		*ip6h;
5245 	int		err;
5246 	conn_t		*econnp = NULL;
5247 	squeue_t	*new_sqp;
5248 	mblk_t		*mp1;
5249 	uint_t 		ip_hdr_len;
5250 	conn_t		*connp = (conn_t *)arg;
5251 	tcp_t		*tcp = connp->conn_tcp;
5252 	cred_t		*credp;
5253 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5254 	ip_stack_t	*ipst;
5255 
5256 	if (tcp->tcp_state != TCPS_LISTEN)
5257 		goto error2;
5258 
5259 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5260 
5261 	mutex_enter(&tcp->tcp_eager_lock);
5262 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5263 		mutex_exit(&tcp->tcp_eager_lock);
5264 		TCP_STAT(tcps, tcp_listendrop);
5265 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5266 		if (tcp->tcp_debug) {
5267 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5268 			    "tcp_conn_request: listen backlog (max=%d) "
5269 			    "overflow (%d pending) on %s",
5270 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5271 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5272 		}
5273 		goto error2;
5274 	}
5275 
5276 	if (tcp->tcp_conn_req_cnt_q0 >=
5277 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5278 		/*
5279 		 * Q0 is full. Drop a pending half-open req from the queue
5280 		 * to make room for the new SYN req. Also mark the time we
5281 		 * drop a SYN.
5282 		 *
5283 		 * A more aggressive defense against SYN attack will
5284 		 * be to set the "tcp_syn_defense" flag now.
5285 		 */
5286 		TCP_STAT(tcps, tcp_listendropq0);
5287 		tcp->tcp_last_rcv_lbolt = lbolt64;
5288 		if (!tcp_drop_q0(tcp)) {
5289 			mutex_exit(&tcp->tcp_eager_lock);
5290 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5291 			if (tcp->tcp_debug) {
5292 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5293 				    "tcp_conn_request: listen half-open queue "
5294 				    "(max=%d) full (%d pending) on %s",
5295 				    tcps->tcps_conn_req_max_q0,
5296 				    tcp->tcp_conn_req_cnt_q0,
5297 				    tcp_display(tcp, NULL,
5298 				    DISP_PORT_ONLY));
5299 			}
5300 			goto error2;
5301 		}
5302 	}
5303 	mutex_exit(&tcp->tcp_eager_lock);
5304 
5305 	/*
5306 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5307 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5308 	 * link local address.  If IPSec is enabled, db_struioflag has
5309 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5310 	 * otherwise an error case if neither of them is set.
5311 	 */
5312 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5313 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5314 		DB_CKSUMSTART(mp) = 0;
5315 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5316 		econnp = (conn_t *)tcp_get_conn(arg2, tcps,
5317 		    !IPCL_IS_NONSTR(connp));
5318 		if (econnp == NULL)
5319 			goto error2;
5320 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5321 		econnp->conn_sqp = new_sqp;
5322 		econnp->conn_initial_sqp = new_sqp;
5323 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5324 		/*
5325 		 * mp is updated in tcp_get_ipsec_conn().
5326 		 */
5327 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp,
5328 		    !IPCL_IS_NONSTR(connp));
5329 		if (econnp == NULL) {
5330 			/*
5331 			 * mp freed by tcp_get_ipsec_conn.
5332 			 */
5333 			return;
5334 		}
5335 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5336 	} else {
5337 		goto error2;
5338 	}
5339 
5340 	ASSERT(DB_TYPE(mp) == M_DATA);
5341 
5342 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5343 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5344 	ASSERT(OK_32PTR(mp->b_rptr));
5345 	if (ipvers == IPV4_VERSION) {
5346 		ipha = (ipha_t *)mp->b_rptr;
5347 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5348 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5349 	} else {
5350 		ip6h = (ip6_t *)mp->b_rptr;
5351 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5352 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5353 	}
5354 
5355 	if (tcp->tcp_family == AF_INET) {
5356 		ASSERT(ipvers == IPV4_VERSION);
5357 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5358 	} else {
5359 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5360 	}
5361 
5362 	if (err)
5363 		goto error3;
5364 
5365 	eager = econnp->conn_tcp;
5366 	ASSERT(eager->tcp_ordrel_mp == NULL);
5367 
5368 	if (!IPCL_IS_NONSTR(econnp)) {
5369 		/*
5370 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
5371 		 * at close time, we will always have that to send up.
5372 		 * Otherwise, we need to do special handling in case the
5373 		 * allocation fails at that time.
5374 		 */
5375 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5376 			goto error3;
5377 	}
5378 	/* Inherit various TCP parameters from the listener */
5379 	eager->tcp_naglim = tcp->tcp_naglim;
5380 	eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold;
5381 	eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold;
5382 
5383 	eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold;
5384 	eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold;
5385 
5386 	/*
5387 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5388 	 * If it does not, the eager's receive window will be set to the
5389 	 * listener's receive window later in this function.
5390 	 */
5391 	eager->tcp_rwnd = 0;
5392 
5393 	/*
5394 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5395 	 * calling tcp_process_options() where tcp_mss_set() is called
5396 	 * to set the initial cwnd.
5397 	 */
5398 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5399 
5400 	/*
5401 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5402 	 * zone id before the accept is completed in tcp_wput_accept().
5403 	 */
5404 	econnp->conn_zoneid = connp->conn_zoneid;
5405 	econnp->conn_allzones = connp->conn_allzones;
5406 
5407 	/* Copy nexthop information from listener to eager */
5408 	if (connp->conn_nexthop_set) {
5409 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5410 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5411 	}
5412 
5413 	/*
5414 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5415 	 * eager is accepted
5416 	 */
5417 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5418 	crhold(credp);
5419 
5420 	/*
5421 	 * If the caller has the process-wide flag set, then default to MAC
5422 	 * exempt mode.  This allows read-down to unlabeled hosts.
5423 	 */
5424 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5425 		econnp->conn_mac_exempt = B_TRUE;
5426 
5427 	if (is_system_labeled()) {
5428 		cred_t *cr;
5429 
5430 		if (connp->conn_mlp_type != mlptSingle) {
5431 			cr = econnp->conn_peercred = msg_getcred(mp, NULL);
5432 			if (cr != NULL)
5433 				crhold(cr);
5434 			else
5435 				cr = econnp->conn_cred;
5436 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5437 			    econnp, cred_t *, cr)
5438 		} else {
5439 			cr = econnp->conn_cred;
5440 			DTRACE_PROBE2(syn_accept, conn_t *,
5441 			    econnp, cred_t *, cr)
5442 		}
5443 
5444 		if (!tcp_update_label(eager, cr)) {
5445 			DTRACE_PROBE3(
5446 			    tx__ip__log__error__connrequest__tcp,
5447 			    char *, "eager connp(1) label on SYN mp(2) failed",
5448 			    conn_t *, econnp, mblk_t *, mp);
5449 			goto error3;
5450 		}
5451 	}
5452 
5453 	eager->tcp_hard_binding = B_TRUE;
5454 
5455 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5456 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5457 
5458 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5459 	if (err != 0) {
5460 		tcp_bind_hash_remove(eager);
5461 		goto error3;
5462 	}
5463 
5464 	/*
5465 	 * No need to check for multicast destination since ip will only pass
5466 	 * up multicasts to those that have expressed interest
5467 	 * TODO: what about rejecting broadcasts?
5468 	 * Also check that source is not a multicast or broadcast address.
5469 	 */
5470 	eager->tcp_state = TCPS_SYN_RCVD;
5471 
5472 
5473 	/*
5474 	 * There should be no ire in the mp as we are being called after
5475 	 * receiving the SYN.
5476 	 */
5477 	ASSERT(tcp_ire_mp(&mp) == NULL);
5478 
5479 	/*
5480 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5481 	 */
5482 
5483 	if (tcp_adapt_ire(eager, NULL) == 0) {
5484 		/* Undo the bind_hash_insert */
5485 		tcp_bind_hash_remove(eager);
5486 		goto error3;
5487 	}
5488 
5489 	/* Process all TCP options. */
5490 	tcp_process_options(eager, tcph);
5491 
5492 	/* Is the other end ECN capable? */
5493 	if (tcps->tcps_ecn_permitted >= 1 &&
5494 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5495 		eager->tcp_ecn_ok = B_TRUE;
5496 	}
5497 
5498 	/*
5499 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5500 	 * window size changed via SO_RCVBUF option.  First round up the
5501 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5502 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5503 	 * setting.
5504 	 *
5505 	 * Note if there is a rpipe metric associated with the remote host,
5506 	 * we should not inherit receive window size from listener.
5507 	 */
5508 	eager->tcp_rwnd = MSS_ROUNDUP(
5509 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5510 	    eager->tcp_rwnd), eager->tcp_mss);
5511 	if (eager->tcp_snd_ws_ok)
5512 		tcp_set_ws_value(eager);
5513 	/*
5514 	 * Note that this is the only place tcp_rwnd_set() is called for
5515 	 * accepting a connection.  We need to call it here instead of
5516 	 * after the 3-way handshake because we need to tell the other
5517 	 * side our rwnd in the SYN-ACK segment.
5518 	 */
5519 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5520 
5521 	/*
5522 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5523 	 * via soaccept()->soinheritoptions() which essentially applies
5524 	 * all the listener options to the new STREAM. The options that we
5525 	 * need to take care of are:
5526 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5527 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5528 	 * SO_SNDBUF, SO_RCVBUF.
5529 	 *
5530 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5531 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5532 	 *		tcp_maxpsz_set() gets called later from
5533 	 *		tcp_accept_finish(), the option takes effect.
5534 	 *
5535 	 */
5536 	/* Set the TCP options */
5537 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5538 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5539 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5540 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5541 	eager->tcp_oobinline = tcp->tcp_oobinline;
5542 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5543 	eager->tcp_broadcast = tcp->tcp_broadcast;
5544 	eager->tcp_useloopback = tcp->tcp_useloopback;
5545 	eager->tcp_dontroute = tcp->tcp_dontroute;
5546 	eager->tcp_debug = tcp->tcp_debug;
5547 	eager->tcp_linger = tcp->tcp_linger;
5548 	eager->tcp_lingertime = tcp->tcp_lingertime;
5549 	if (tcp->tcp_ka_enabled)
5550 		eager->tcp_ka_enabled = 1;
5551 
5552 	/* Set the IP options */
5553 	econnp->conn_broadcast = connp->conn_broadcast;
5554 	econnp->conn_loopback = connp->conn_loopback;
5555 	econnp->conn_dontroute = connp->conn_dontroute;
5556 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5557 
5558 	/* Put a ref on the listener for the eager. */
5559 	CONN_INC_REF(connp);
5560 	mutex_enter(&tcp->tcp_eager_lock);
5561 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5562 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5563 	tcp->tcp_eager_next_q0 = eager;
5564 	eager->tcp_eager_prev_q0 = tcp;
5565 
5566 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5567 	eager->tcp_listener = tcp;
5568 	eager->tcp_saved_listener = tcp;
5569 
5570 	/*
5571 	 * Tag this detached tcp vector for later retrieval
5572 	 * by our listener client in tcp_accept().
5573 	 */
5574 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5575 	tcp->tcp_conn_req_cnt_q0++;
5576 	if (++tcp->tcp_conn_req_seqnum == -1) {
5577 		/*
5578 		 * -1 is "special" and defined in TPI as something
5579 		 * that should never be used in T_CONN_IND
5580 		 */
5581 		++tcp->tcp_conn_req_seqnum;
5582 	}
5583 	mutex_exit(&tcp->tcp_eager_lock);
5584 
5585 	if (tcp->tcp_syn_defense) {
5586 		/* Don't drop the SYN that comes from a good IP source */
5587 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5588 		if (addr_cache != NULL && eager->tcp_remote ==
5589 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5590 			eager->tcp_dontdrop = B_TRUE;
5591 		}
5592 	}
5593 
5594 	/*
5595 	 * We need to insert the eager in its own perimeter but as soon
5596 	 * as we do that, we expose the eager to the classifier and
5597 	 * should not touch any field outside the eager's perimeter.
5598 	 * So do all the work necessary before inserting the eager
5599 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5600 	 * will succeed but undo everything if it fails.
5601 	 */
5602 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5603 	eager->tcp_irs = seg_seq;
5604 	eager->tcp_rack = seg_seq;
5605 	eager->tcp_rnxt = seg_seq + 1;
5606 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5607 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5608 	eager->tcp_state = TCPS_SYN_RCVD;
5609 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5610 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5611 	if (mp1 == NULL) {
5612 		/*
5613 		 * Increment the ref count as we are going to
5614 		 * enqueueing an mp in squeue
5615 		 */
5616 		CONN_INC_REF(econnp);
5617 		goto error;
5618 	}
5619 
5620 	/*
5621 	 * Note that in theory this should use the current pid
5622 	 * so that getpeerucred on the client returns the actual listener
5623 	 * that does accept. But accept() hasn't been called yet. We could use
5624 	 * the pid of the process that did bind/listen on the server.
5625 	 * However, with common usage like inetd() the bind/listen can be done
5626 	 * by a different process than the accept().
5627 	 * Hence we do the simple thing of using the open pid here.
5628 	 * Note that db_credp is set later in tcp_send_data().
5629 	 */
5630 	mblk_setcred(mp1, credp, tcp->tcp_cpid);
5631 	eager->tcp_cpid = tcp->tcp_cpid;
5632 	eager->tcp_open_time = lbolt64;
5633 
5634 	/*
5635 	 * We need to start the rto timer. In normal case, we start
5636 	 * the timer after sending the packet on the wire (or at
5637 	 * least believing that packet was sent by waiting for
5638 	 * CALL_IP_WPUT() to return). Since this is the first packet
5639 	 * being sent on the wire for the eager, our initial tcp_rto
5640 	 * is at least tcp_rexmit_interval_min which is a fairly
5641 	 * large value to allow the algorithm to adjust slowly to large
5642 	 * fluctuations of RTT during first few transmissions.
5643 	 *
5644 	 * Starting the timer first and then sending the packet in this
5645 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5646 	 * is of the order of several 100ms and starting the timer
5647 	 * first and then sending the packet will result in difference
5648 	 * of few micro seconds.
5649 	 *
5650 	 * Without this optimization, we are forced to hold the fanout
5651 	 * lock across the ipcl_bind_insert() and sending the packet
5652 	 * so that we don't race against an incoming packet (maybe RST)
5653 	 * for this eager.
5654 	 *
5655 	 * It is necessary to acquire an extra reference on the eager
5656 	 * at this point and hold it until after tcp_send_data() to
5657 	 * ensure against an eager close race.
5658 	 */
5659 
5660 	CONN_INC_REF(eager->tcp_connp);
5661 
5662 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5663 
5664 	/*
5665 	 * Insert the eager in its own perimeter now. We are ready to deal
5666 	 * with any packets on eager.
5667 	 */
5668 	if (eager->tcp_ipversion == IPV4_VERSION) {
5669 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5670 			goto error;
5671 		}
5672 	} else {
5673 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5674 			goto error;
5675 		}
5676 	}
5677 
5678 	/* mark conn as fully-bound */
5679 	econnp->conn_fully_bound = B_TRUE;
5680 
5681 	/* Send the SYN-ACK */
5682 	tcp_send_data(eager, eager->tcp_wq, mp1);
5683 	CONN_DEC_REF(eager->tcp_connp);
5684 	freemsg(mp);
5685 
5686 	return;
5687 error:
5688 	freemsg(mp1);
5689 	eager->tcp_closemp_used = B_TRUE;
5690 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5691 	mp1 = &eager->tcp_closemp;
5692 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5693 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5694 
5695 	/*
5696 	 * If a connection already exists, send the mp to that connections so
5697 	 * that it can be appropriately dealt with.
5698 	 */
5699 	ipst = tcps->tcps_netstack->netstack_ip;
5700 
5701 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5702 		if (!IPCL_IS_CONNECTED(econnp)) {
5703 			/*
5704 			 * Something bad happened. ipcl_conn_insert()
5705 			 * failed because a connection already existed
5706 			 * in connected hash but we can't find it
5707 			 * anymore (someone blew it away). Just
5708 			 * free this message and hopefully remote
5709 			 * will retransmit at which time the SYN can be
5710 			 * treated as a new connection or dealth with
5711 			 * a TH_RST if a connection already exists.
5712 			 */
5713 			CONN_DEC_REF(econnp);
5714 			freemsg(mp);
5715 		} else {
5716 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5717 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5718 		}
5719 	} else {
5720 		/* Nobody wants this packet */
5721 		freemsg(mp);
5722 	}
5723 	return;
5724 error3:
5725 	CONN_DEC_REF(econnp);
5726 error2:
5727 	freemsg(mp);
5728 }
5729 
5730 /*
5731  * In an ideal case of vertical partition in NUMA architecture, its
5732  * beneficial to have the listener and all the incoming connections
5733  * tied to the same squeue. The other constraint is that incoming
5734  * connections should be tied to the squeue attached to interrupted
5735  * CPU for obvious locality reason so this leaves the listener to
5736  * be tied to the same squeue. Our only problem is that when listener
5737  * is binding, the CPU that will get interrupted by the NIC whose
5738  * IP address the listener is binding to is not even known. So
5739  * the code below allows us to change that binding at the time the
5740  * CPU is interrupted by virtue of incoming connection's squeue.
5741  *
5742  * This is usefull only in case of a listener bound to a specific IP
5743  * address. For other kind of listeners, they get bound the
5744  * very first time and there is no attempt to rebind them.
5745  */
5746 void
5747 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5748 {
5749 	conn_t		*connp = (conn_t *)arg;
5750 	squeue_t	*sqp = (squeue_t *)arg2;
5751 	squeue_t	*new_sqp;
5752 	uint32_t	conn_flags;
5753 
5754 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5755 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5756 	} else {
5757 		goto done;
5758 	}
5759 
5760 	if (connp->conn_fanout == NULL)
5761 		goto done;
5762 
5763 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5764 		mutex_enter(&connp->conn_fanout->connf_lock);
5765 		mutex_enter(&connp->conn_lock);
5766 		/*
5767 		 * No one from read or write side can access us now
5768 		 * except for already queued packets on this squeue.
5769 		 * But since we haven't changed the squeue yet, they
5770 		 * can't execute. If they are processed after we have
5771 		 * changed the squeue, they are sent back to the
5772 		 * correct squeue down below.
5773 		 * But a listner close can race with processing of
5774 		 * incoming SYN. If incoming SYN processing changes
5775 		 * the squeue then the listener close which is waiting
5776 		 * to enter the squeue would operate on the wrong
5777 		 * squeue. Hence we don't change the squeue here unless
5778 		 * the refcount is exactly the minimum refcount. The
5779 		 * minimum refcount of 4 is counted as - 1 each for
5780 		 * TCP and IP, 1 for being in the classifier hash, and
5781 		 * 1 for the mblk being processed.
5782 		 */
5783 
5784 		if (connp->conn_ref != 4 ||
5785 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5786 			mutex_exit(&connp->conn_lock);
5787 			mutex_exit(&connp->conn_fanout->connf_lock);
5788 			goto done;
5789 		}
5790 		if (connp->conn_sqp != new_sqp) {
5791 			while (connp->conn_sqp != new_sqp)
5792 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5793 		}
5794 
5795 		do {
5796 			conn_flags = connp->conn_flags;
5797 			conn_flags |= IPCL_FULLY_BOUND;
5798 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5799 			    conn_flags);
5800 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5801 
5802 		mutex_exit(&connp->conn_fanout->connf_lock);
5803 		mutex_exit(&connp->conn_lock);
5804 	}
5805 
5806 done:
5807 	if (connp->conn_sqp != sqp) {
5808 		CONN_INC_REF(connp);
5809 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5810 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5811 	} else {
5812 		tcp_conn_request(connp, mp, sqp);
5813 	}
5814 }
5815 
5816 /*
5817  * Successful connect request processing begins when our client passes
5818  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5819  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5820  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5821  *   upstream <- tcp_rput()		<- IP
5822  * After various error checks are completed, tcp_tpi_connect() lays
5823  * the target address and port into the composite header template,
5824  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5825  * request followed by an IRE request, and passes the three mblk message
5826  * down to IP looking like this:
5827  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5828  * Processing continues in tcp_rput() when we receive the following message:
5829  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5830  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5831  * to fire off the connection request, and then passes the T_OK_ACK mblk
5832  * upstream that we filled in below.  There are, of course, numerous
5833  * error conditions along the way which truncate the processing described
5834  * above.
5835  */
5836 static void
5837 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5838 {
5839 	sin_t		*sin;
5840 	queue_t		*q = tcp->tcp_wq;
5841 	struct T_conn_req	*tcr;
5842 	struct sockaddr	*sa;
5843 	socklen_t	len;
5844 	int		error;
5845 	cred_t		*cr;
5846 	pid_t		cpid;
5847 
5848 	/*
5849 	 * All Solaris components should pass a db_credp
5850 	 * for this TPI message, hence we ASSERT.
5851 	 * But in case there is some other M_PROTO that looks
5852 	 * like a TPI message sent by some other kernel
5853 	 * component, we check and return an error.
5854 	 */
5855 	cr = msg_getcred(mp, &cpid);
5856 	ASSERT(cr != NULL);
5857 	if (cr == NULL) {
5858 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5859 		return;
5860 	}
5861 
5862 	tcr = (struct T_conn_req *)mp->b_rptr;
5863 
5864 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5865 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5866 		tcp_err_ack(tcp, mp, TPROTO, 0);
5867 		return;
5868 	}
5869 
5870 	/*
5871 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5872 	 * will always have that to send up.  Otherwise, we need to do
5873 	 * special handling in case the allocation fails at that time.
5874 	 * If the end point is TPI, the tcp_t can be reused and the
5875 	 * tcp_ordrel_mp may be allocated already.
5876 	 */
5877 	if (tcp->tcp_ordrel_mp == NULL) {
5878 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5879 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5880 			return;
5881 		}
5882 	}
5883 
5884 	/*
5885 	 * Determine packet type based on type of address passed in
5886 	 * the request should contain an IPv4 or IPv6 address.
5887 	 * Make sure that address family matches the type of
5888 	 * family of the the address passed down
5889 	 */
5890 	switch (tcr->DEST_length) {
5891 	default:
5892 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5893 		return;
5894 
5895 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5896 		/*
5897 		 * XXX: The check for valid DEST_length was not there
5898 		 * in earlier releases and some buggy
5899 		 * TLI apps (e.g Sybase) got away with not feeding
5900 		 * in sin_zero part of address.
5901 		 * We allow that bug to keep those buggy apps humming.
5902 		 * Test suites require the check on DEST_length.
5903 		 * We construct a new mblk with valid DEST_length
5904 		 * free the original so the rest of the code does
5905 		 * not have to keep track of this special shorter
5906 		 * length address case.
5907 		 */
5908 		mblk_t *nmp;
5909 		struct T_conn_req *ntcr;
5910 		sin_t *nsin;
5911 
5912 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5913 		    tcr->OPT_length, BPRI_HI);
5914 		if (nmp == NULL) {
5915 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5916 			return;
5917 		}
5918 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5919 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5920 		ntcr->PRIM_type = T_CONN_REQ;
5921 		ntcr->DEST_length = sizeof (sin_t);
5922 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5923 
5924 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5925 		*nsin = sin_null;
5926 		/* Get pointer to shorter address to copy from original mp */
5927 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5928 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5929 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5930 			freemsg(nmp);
5931 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5932 			return;
5933 		}
5934 		nsin->sin_family = sin->sin_family;
5935 		nsin->sin_port = sin->sin_port;
5936 		nsin->sin_addr = sin->sin_addr;
5937 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5938 		nmp->b_wptr = (uchar_t *)&nsin[1];
5939 		if (tcr->OPT_length != 0) {
5940 			ntcr->OPT_length = tcr->OPT_length;
5941 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5942 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5943 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5944 			    tcr->OPT_length);
5945 			nmp->b_wptr += tcr->OPT_length;
5946 		}
5947 		freemsg(mp);	/* original mp freed */
5948 		mp = nmp;	/* re-initialize original variables */
5949 		tcr = ntcr;
5950 	}
5951 	/* FALLTHRU */
5952 
5953 	case sizeof (sin_t):
5954 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5955 		    sizeof (sin_t));
5956 		len = sizeof (sin_t);
5957 		break;
5958 
5959 	case sizeof (sin6_t):
5960 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5961 		    sizeof (sin6_t));
5962 		len = sizeof (sin6_t);
5963 		break;
5964 	}
5965 
5966 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
5967 	if (error != 0) {
5968 		tcp_err_ack(tcp, mp, TSYSERR, error);
5969 		return;
5970 	}
5971 
5972 	/*
5973 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
5974 	 * should key on their sequence number and cut them loose.
5975 	 */
5976 
5977 	/*
5978 	 * If options passed in, feed it for verification and handling
5979 	 */
5980 	if (tcr->OPT_length != 0) {
5981 		mblk_t	*ok_mp;
5982 		mblk_t	*discon_mp;
5983 		mblk_t  *conn_opts_mp;
5984 		int t_error, sys_error, do_disconnect;
5985 
5986 		conn_opts_mp = NULL;
5987 
5988 		if (tcp_conprim_opt_process(tcp, mp,
5989 		    &do_disconnect, &t_error, &sys_error) < 0) {
5990 			if (do_disconnect) {
5991 				ASSERT(t_error == 0 && sys_error == 0);
5992 				discon_mp = mi_tpi_discon_ind(NULL,
5993 				    ECONNREFUSED, 0);
5994 				if (!discon_mp) {
5995 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5996 					    TSYSERR, ENOMEM);
5997 					return;
5998 				}
5999 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6000 				if (!ok_mp) {
6001 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6002 					    TSYSERR, ENOMEM);
6003 					return;
6004 				}
6005 				qreply(q, ok_mp);
6006 				qreply(q, discon_mp); /* no flush! */
6007 			} else {
6008 				ASSERT(t_error != 0);
6009 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6010 				    sys_error);
6011 			}
6012 			return;
6013 		}
6014 		/*
6015 		 * Success in setting options, the mp option buffer represented
6016 		 * by OPT_length/offset has been potentially modified and
6017 		 * contains results of option processing. We copy it in
6018 		 * another mp to save it for potentially influencing returning
6019 		 * it in T_CONN_CONN.
6020 		 */
6021 		if (tcr->OPT_length != 0) { /* there are resulting options */
6022 			conn_opts_mp = copyb(mp);
6023 			if (!conn_opts_mp) {
6024 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6025 				    TSYSERR, ENOMEM);
6026 				return;
6027 			}
6028 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6029 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6030 			/*
6031 			 * Note:
6032 			 * These resulting option negotiation can include any
6033 			 * end-to-end negotiation options but there no such
6034 			 * thing (yet?) in our TCP/IP.
6035 			 */
6036 		}
6037 	}
6038 
6039 	/* call the non-TPI version */
6040 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
6041 	if (error < 0) {
6042 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6043 	} else if (error > 0) {
6044 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6045 	} else {
6046 		mp = mi_tpi_ok_ack_alloc(mp);
6047 	}
6048 
6049 	/*
6050 	 * Note: Code below is the "failure" case
6051 	 */
6052 	/* return error ack and blow away saved option results if any */
6053 connect_failed:
6054 	if (mp != NULL)
6055 		putnext(tcp->tcp_rq, mp);
6056 	else {
6057 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6058 		    TSYSERR, ENOMEM);
6059 	}
6060 }
6061 
6062 /*
6063  * Handle connect to IPv4 destinations, including connections for AF_INET6
6064  * sockets connecting to IPv4 mapped IPv6 destinations.
6065  */
6066 static int
6067 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6068     uint_t srcid, cred_t *cr, pid_t pid)
6069 {
6070 	tcph_t	*tcph;
6071 	mblk_t	*mp;
6072 	ipaddr_t dstaddr = *dstaddrp;
6073 	int32_t	oldstate;
6074 	uint16_t lport;
6075 	int	error = 0;
6076 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6077 
6078 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6079 
6080 	/* Check for attempt to connect to INADDR_ANY */
6081 	if (dstaddr == INADDR_ANY)  {
6082 		/*
6083 		 * SunOS 4.x and 4.3 BSD allow an application
6084 		 * to connect a TCP socket to INADDR_ANY.
6085 		 * When they do this, the kernel picks the
6086 		 * address of one interface and uses it
6087 		 * instead.  The kernel usually ends up
6088 		 * picking the address of the loopback
6089 		 * interface.  This is an undocumented feature.
6090 		 * However, we provide the same thing here
6091 		 * in order to have source and binary
6092 		 * compatibility with SunOS 4.x.
6093 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6094 		 * generate the T_CONN_CON.
6095 		 */
6096 		dstaddr = htonl(INADDR_LOOPBACK);
6097 		*dstaddrp = dstaddr;
6098 	}
6099 
6100 	/* Handle __sin6_src_id if socket not bound to an IP address */
6101 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6102 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6103 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6104 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6105 		    tcp->tcp_ipha->ipha_src);
6106 	}
6107 
6108 	/*
6109 	 * Don't let an endpoint connect to itself.  Note that
6110 	 * the test here does not catch the case where the
6111 	 * source IP addr was left unspecified by the user. In
6112 	 * this case, the source addr is set in tcp_adapt_ire()
6113 	 * using the reply to the T_BIND message that we send
6114 	 * down to IP here and the check is repeated in tcp_rput_other.
6115 	 */
6116 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6117 	    dstport == tcp->tcp_lport) {
6118 		error = -TBADADDR;
6119 		goto failed;
6120 	}
6121 
6122 	tcp->tcp_ipha->ipha_dst = dstaddr;
6123 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6124 
6125 	/*
6126 	 * Massage a source route if any putting the first hop
6127 	 * in iph_dst. Compute a starting value for the checksum which
6128 	 * takes into account that the original iph_dst should be
6129 	 * included in the checksum but that ip will include the
6130 	 * first hop in the source route in the tcp checksum.
6131 	 */
6132 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6133 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6134 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6135 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6136 	if ((int)tcp->tcp_sum < 0)
6137 		tcp->tcp_sum--;
6138 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6139 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6140 	    (tcp->tcp_sum >> 16));
6141 	tcph = tcp->tcp_tcph;
6142 	*(uint16_t *)tcph->th_fport = dstport;
6143 	tcp->tcp_fport = dstport;
6144 
6145 	oldstate = tcp->tcp_state;
6146 	/*
6147 	 * At this point the remote destination address and remote port fields
6148 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6149 	 * have to see which state tcp was in so we can take apropriate action.
6150 	 */
6151 	if (oldstate == TCPS_IDLE) {
6152 		/*
6153 		 * We support a quick connect capability here, allowing
6154 		 * clients to transition directly from IDLE to SYN_SENT
6155 		 * tcp_bindi will pick an unused port, insert the connection
6156 		 * in the bind hash and transition to BOUND state.
6157 		 */
6158 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6159 		    tcp, B_TRUE);
6160 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6161 		    B_FALSE, B_FALSE);
6162 		if (lport == 0) {
6163 			error = -TNOADDR;
6164 			goto failed;
6165 		}
6166 	}
6167 	tcp->tcp_state = TCPS_SYN_SENT;
6168 
6169 	mp = allocb(sizeof (ire_t), BPRI_HI);
6170 	if (mp == NULL) {
6171 		tcp->tcp_state = oldstate;
6172 		error = ENOMEM;
6173 		goto failed;
6174 	}
6175 
6176 	mp->b_wptr += sizeof (ire_t);
6177 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6178 	tcp->tcp_hard_binding = 1;
6179 
6180 	/*
6181 	 * We need to make sure that the conn_recv is set to a non-null
6182 	 * value before we insert the conn_t into the classifier table.
6183 	 * This is to avoid a race with an incoming packet which does
6184 	 * an ipcl_classify().
6185 	 */
6186 	tcp->tcp_connp->conn_recv = tcp_input;
6187 
6188 	if (tcp->tcp_family == AF_INET) {
6189 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6190 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6191 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6192 	} else {
6193 		in6_addr_t v6src;
6194 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6195 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6196 		} else {
6197 			v6src = tcp->tcp_ip6h->ip6_src;
6198 		}
6199 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6200 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6201 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6202 	}
6203 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6204 	tcp->tcp_active_open = 1;
6205 
6206 
6207 	return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6208 failed:
6209 	/* return error ack and blow away saved option results if any */
6210 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6211 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6212 	return (error);
6213 }
6214 
6215 /*
6216  * Handle connect to IPv6 destinations.
6217  */
6218 static int
6219 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6220     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6221 {
6222 	tcph_t	*tcph;
6223 	mblk_t	*mp;
6224 	ip6_rthdr_t *rth;
6225 	int32_t  oldstate;
6226 	uint16_t lport;
6227 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6228 	int	error = 0;
6229 	conn_t	*connp = tcp->tcp_connp;
6230 
6231 	ASSERT(tcp->tcp_family == AF_INET6);
6232 
6233 	/*
6234 	 * If we're here, it means that the destination address is a native
6235 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6236 	 * reason why it might not be IPv6 is if the socket was bound to an
6237 	 * IPv4-mapped IPv6 address.
6238 	 */
6239 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6240 		return (-TBADADDR);
6241 	}
6242 
6243 	/*
6244 	 * Interpret a zero destination to mean loopback.
6245 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6246 	 * generate the T_CONN_CON.
6247 	 */
6248 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6249 		*dstaddrp = ipv6_loopback;
6250 	}
6251 
6252 	/* Handle __sin6_src_id if socket not bound to an IP address */
6253 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6254 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6255 		    connp->conn_zoneid, tcps->tcps_netstack);
6256 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6257 	}
6258 
6259 	/*
6260 	 * Take care of the scope_id now and add ip6i_t
6261 	 * if ip6i_t is not already allocated through TCP
6262 	 * sticky options. At this point tcp_ip6h does not
6263 	 * have dst info, thus use dstaddrp.
6264 	 */
6265 	if (scope_id != 0 &&
6266 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6267 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6268 		ip6i_t  *ip6i;
6269 
6270 		ipp->ipp_ifindex = scope_id;
6271 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6272 
6273 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6274 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6275 			/* Already allocated */
6276 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6277 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6278 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6279 		} else {
6280 			int reterr;
6281 
6282 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6283 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6284 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6285 			reterr = tcp_build_hdrs(tcp);
6286 			if (reterr != 0)
6287 				goto failed;
6288 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6289 		}
6290 	}
6291 
6292 	/*
6293 	 * Don't let an endpoint connect to itself.  Note that
6294 	 * the test here does not catch the case where the
6295 	 * source IP addr was left unspecified by the user. In
6296 	 * this case, the source addr is set in tcp_adapt_ire()
6297 	 * using the reply to the T_BIND message that we send
6298 	 * down to IP here and the check is repeated in tcp_rput_other.
6299 	 */
6300 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6301 	    (dstport == tcp->tcp_lport)) {
6302 		error = -TBADADDR;
6303 		goto failed;
6304 	}
6305 
6306 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6307 	tcp->tcp_remote_v6 = *dstaddrp;
6308 	tcp->tcp_ip6h->ip6_vcf =
6309 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6310 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6311 
6312 	/*
6313 	 * Massage a routing header (if present) putting the first hop
6314 	 * in ip6_dst. Compute a starting value for the checksum which
6315 	 * takes into account that the original ip6_dst should be
6316 	 * included in the checksum but that ip will include the
6317 	 * first hop in the source route in the tcp checksum.
6318 	 */
6319 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6320 	if (rth != NULL) {
6321 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6322 		    tcps->tcps_netstack);
6323 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6324 		    (tcp->tcp_sum >> 16));
6325 	} else {
6326 		tcp->tcp_sum = 0;
6327 	}
6328 
6329 	tcph = tcp->tcp_tcph;
6330 	*(uint16_t *)tcph->th_fport = dstport;
6331 	tcp->tcp_fport = dstport;
6332 
6333 	oldstate = tcp->tcp_state;
6334 	/*
6335 	 * At this point the remote destination address and remote port fields
6336 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6337 	 * have to see which state tcp was in so we can take apropriate action.
6338 	 */
6339 	if (oldstate == TCPS_IDLE) {
6340 		/*
6341 		 * We support a quick connect capability here, allowing
6342 		 * clients to transition directly from IDLE to SYN_SENT
6343 		 * tcp_bindi will pick an unused port, insert the connection
6344 		 * in the bind hash and transition to BOUND state.
6345 		 */
6346 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6347 		    tcp, B_TRUE);
6348 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6349 		    B_FALSE, B_FALSE);
6350 		if (lport == 0) {
6351 			error = -TNOADDR;
6352 			goto failed;
6353 		}
6354 	}
6355 	tcp->tcp_state = TCPS_SYN_SENT;
6356 
6357 	mp = allocb(sizeof (ire_t), BPRI_HI);
6358 	if (mp != NULL) {
6359 		in6_addr_t v6src;
6360 
6361 		mp->b_wptr += sizeof (ire_t);
6362 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6363 
6364 		tcp->tcp_hard_binding = 1;
6365 
6366 		/*
6367 		 * We need to make sure that the conn_recv is set to a non-null
6368 		 * value before we insert the conn_t into the classifier table.
6369 		 * This is to avoid a race with an incoming packet which does
6370 		 * an ipcl_classify().
6371 		 */
6372 		tcp->tcp_connp->conn_recv = tcp_input;
6373 
6374 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6375 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6376 		} else {
6377 			v6src = tcp->tcp_ip6h->ip6_src;
6378 		}
6379 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6380 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6381 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6382 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6383 		tcp->tcp_active_open = 1;
6384 
6385 		return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6386 	}
6387 	/* Error case */
6388 	tcp->tcp_state = oldstate;
6389 	error = ENOMEM;
6390 
6391 failed:
6392 	/* return error ack and blow away saved option results if any */
6393 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6394 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6395 	return (error);
6396 }
6397 
6398 /*
6399  * We need a stream q for detached closing tcp connections
6400  * to use.  Our client hereby indicates that this q is the
6401  * one to use.
6402  */
6403 static void
6404 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6405 {
6406 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6407 	queue_t	*q = tcp->tcp_wq;
6408 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6409 
6410 #ifdef NS_DEBUG
6411 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6412 	    tcps->tcps_netstack->netstack_stackid);
6413 #endif
6414 	mp->b_datap->db_type = M_IOCACK;
6415 	iocp->ioc_count = 0;
6416 	mutex_enter(&tcps->tcps_g_q_lock);
6417 	if (tcps->tcps_g_q != NULL) {
6418 		mutex_exit(&tcps->tcps_g_q_lock);
6419 		iocp->ioc_error = EALREADY;
6420 	} else {
6421 		int error = 0;
6422 		conn_t *connp = tcp->tcp_connp;
6423 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6424 
6425 		tcps->tcps_g_q = tcp->tcp_rq;
6426 		mutex_exit(&tcps->tcps_g_q_lock);
6427 		iocp->ioc_error = 0;
6428 		iocp->ioc_rval = 0;
6429 		/*
6430 		 * We are passing tcp_sticky_ipp as NULL
6431 		 * as it is not useful for tcp_default queue
6432 		 *
6433 		 * Set conn_recv just in case.
6434 		 */
6435 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6436 
6437 		ASSERT(connp->conn_af_isv6);
6438 		connp->conn_ulp = IPPROTO_TCP;
6439 
6440 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6441 		    NULL || connp->conn_mac_exempt) {
6442 			error = -TBADADDR;
6443 		} else {
6444 			connp->conn_srcv6 = ipv6_all_zeros;
6445 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6446 		}
6447 
6448 		(void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0);
6449 	}
6450 	qreply(q, mp);
6451 }
6452 
6453 static int
6454 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6455 {
6456 	tcp_t	*ltcp = NULL;
6457 	conn_t	*connp;
6458 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6459 
6460 	/*
6461 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6462 	 * when the stream is in BOUND state. Do not send a reset,
6463 	 * since the destination IP address is not valid, and it can
6464 	 * be the initialized value of all zeros (broadcast address).
6465 	 *
6466 	 * XXX There won't be any pending bind request to IP.
6467 	 */
6468 	if (tcp->tcp_state <= TCPS_BOUND) {
6469 		if (tcp->tcp_debug) {
6470 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6471 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6472 		}
6473 		return (TOUTSTATE);
6474 	}
6475 
6476 
6477 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6478 
6479 		/*
6480 		 * According to TPI, for non-listeners, ignore seqnum
6481 		 * and disconnect.
6482 		 * Following interpretation of -1 seqnum is historical
6483 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6484 		 * a valid seqnum should not be -1).
6485 		 *
6486 		 *	-1 means disconnect everything
6487 		 *	regardless even on a listener.
6488 		 */
6489 
6490 		int old_state = tcp->tcp_state;
6491 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6492 
6493 		/*
6494 		 * The connection can't be on the tcp_time_wait_head list
6495 		 * since it is not detached.
6496 		 */
6497 		ASSERT(tcp->tcp_time_wait_next == NULL);
6498 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6499 		ASSERT(tcp->tcp_time_wait_expire == 0);
6500 		ltcp = NULL;
6501 		/*
6502 		 * If it used to be a listener, check to make sure no one else
6503 		 * has taken the port before switching back to LISTEN state.
6504 		 */
6505 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6506 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6507 			    tcp->tcp_ipha->ipha_src,
6508 			    tcp->tcp_connp->conn_zoneid, ipst);
6509 			if (connp != NULL)
6510 				ltcp = connp->conn_tcp;
6511 		} else {
6512 			/* Allow tcp_bound_if listeners? */
6513 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6514 			    &tcp->tcp_ip6h->ip6_src, 0,
6515 			    tcp->tcp_connp->conn_zoneid, ipst);
6516 			if (connp != NULL)
6517 				ltcp = connp->conn_tcp;
6518 		}
6519 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6520 			tcp->tcp_state = TCPS_LISTEN;
6521 		} else if (old_state > TCPS_BOUND) {
6522 			tcp->tcp_conn_req_max = 0;
6523 			tcp->tcp_state = TCPS_BOUND;
6524 		}
6525 		if (ltcp != NULL)
6526 			CONN_DEC_REF(ltcp->tcp_connp);
6527 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6528 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6529 		} else if (old_state == TCPS_ESTABLISHED ||
6530 		    old_state == TCPS_CLOSE_WAIT) {
6531 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6532 		}
6533 
6534 		if (tcp->tcp_fused)
6535 			tcp_unfuse(tcp);
6536 
6537 		mutex_enter(&tcp->tcp_eager_lock);
6538 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6539 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6540 			tcp_eager_cleanup(tcp, 0);
6541 		}
6542 		mutex_exit(&tcp->tcp_eager_lock);
6543 
6544 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6545 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6546 
6547 		tcp_reinit(tcp);
6548 
6549 		return (0);
6550 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6551 		return (TBADSEQ);
6552 	}
6553 	return (0);
6554 }
6555 
6556 /*
6557  * Our client hereby directs us to reject the connection request
6558  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6559  * of sending the appropriate RST, not an ICMP error.
6560  */
6561 static void
6562 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6563 {
6564 	t_scalar_t seqnum;
6565 	int	error;
6566 
6567 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6568 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6569 		tcp_err_ack(tcp, mp, TPROTO, 0);
6570 		return;
6571 	}
6572 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6573 	error = tcp_disconnect_common(tcp, seqnum);
6574 	if (error != 0)
6575 		tcp_err_ack(tcp, mp, error, 0);
6576 	else {
6577 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6578 			/* Send M_FLUSH according to TPI */
6579 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6580 		}
6581 		mp = mi_tpi_ok_ack_alloc(mp);
6582 		if (mp)
6583 			putnext(tcp->tcp_rq, mp);
6584 	}
6585 }
6586 
6587 /*
6588  * Diagnostic routine used to return a string associated with the tcp state.
6589  * Note that if the caller does not supply a buffer, it will use an internal
6590  * static string.  This means that if multiple threads call this function at
6591  * the same time, output can be corrupted...  Note also that this function
6592  * does not check the size of the supplied buffer.  The caller has to make
6593  * sure that it is big enough.
6594  */
6595 static char *
6596 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6597 {
6598 	char		buf1[30];
6599 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6600 	char		*buf;
6601 	char		*cp;
6602 	in6_addr_t	local, remote;
6603 	char		local_addrbuf[INET6_ADDRSTRLEN];
6604 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6605 
6606 	if (sup_buf != NULL)
6607 		buf = sup_buf;
6608 	else
6609 		buf = priv_buf;
6610 
6611 	if (tcp == NULL)
6612 		return ("NULL_TCP");
6613 	switch (tcp->tcp_state) {
6614 	case TCPS_CLOSED:
6615 		cp = "TCP_CLOSED";
6616 		break;
6617 	case TCPS_IDLE:
6618 		cp = "TCP_IDLE";
6619 		break;
6620 	case TCPS_BOUND:
6621 		cp = "TCP_BOUND";
6622 		break;
6623 	case TCPS_LISTEN:
6624 		cp = "TCP_LISTEN";
6625 		break;
6626 	case TCPS_SYN_SENT:
6627 		cp = "TCP_SYN_SENT";
6628 		break;
6629 	case TCPS_SYN_RCVD:
6630 		cp = "TCP_SYN_RCVD";
6631 		break;
6632 	case TCPS_ESTABLISHED:
6633 		cp = "TCP_ESTABLISHED";
6634 		break;
6635 	case TCPS_CLOSE_WAIT:
6636 		cp = "TCP_CLOSE_WAIT";
6637 		break;
6638 	case TCPS_FIN_WAIT_1:
6639 		cp = "TCP_FIN_WAIT_1";
6640 		break;
6641 	case TCPS_CLOSING:
6642 		cp = "TCP_CLOSING";
6643 		break;
6644 	case TCPS_LAST_ACK:
6645 		cp = "TCP_LAST_ACK";
6646 		break;
6647 	case TCPS_FIN_WAIT_2:
6648 		cp = "TCP_FIN_WAIT_2";
6649 		break;
6650 	case TCPS_TIME_WAIT:
6651 		cp = "TCP_TIME_WAIT";
6652 		break;
6653 	default:
6654 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6655 		cp = buf1;
6656 		break;
6657 	}
6658 	switch (format) {
6659 	case DISP_ADDR_AND_PORT:
6660 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6661 			/*
6662 			 * Note that we use the remote address in the tcp_b
6663 			 * structure.  This means that it will print out
6664 			 * the real destination address, not the next hop's
6665 			 * address if source routing is used.
6666 			 */
6667 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6668 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6669 
6670 		} else {
6671 			local = tcp->tcp_ip_src_v6;
6672 			remote = tcp->tcp_remote_v6;
6673 		}
6674 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6675 		    sizeof (local_addrbuf));
6676 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6677 		    sizeof (remote_addrbuf));
6678 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6679 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6680 		    ntohs(tcp->tcp_fport), cp);
6681 		break;
6682 	case DISP_PORT_ONLY:
6683 	default:
6684 		(void) mi_sprintf(buf, "[%u, %u] %s",
6685 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6686 		break;
6687 	}
6688 
6689 	return (buf);
6690 }
6691 
6692 /*
6693  * Called via squeue to get on to eager's perimeter. It sends a
6694  * TH_RST if eager is in the fanout table. The listener wants the
6695  * eager to disappear either by means of tcp_eager_blowoff() or
6696  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6697  * called (via squeue) if the eager cannot be inserted in the
6698  * fanout table in tcp_conn_request().
6699  */
6700 /* ARGSUSED */
6701 void
6702 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6703 {
6704 	conn_t	*econnp = (conn_t *)arg;
6705 	tcp_t	*eager = econnp->conn_tcp;
6706 	tcp_t	*listener = eager->tcp_listener;
6707 	tcp_stack_t	*tcps = eager->tcp_tcps;
6708 
6709 	/*
6710 	 * We could be called because listener is closing. Since
6711 	 * the eager is using listener's queue's, its not safe.
6712 	 * Better use the default queue just to send the TH_RST
6713 	 * out.
6714 	 */
6715 	ASSERT(tcps->tcps_g_q != NULL);
6716 	eager->tcp_rq = tcps->tcps_g_q;
6717 	eager->tcp_wq = WR(tcps->tcps_g_q);
6718 
6719 	/*
6720 	 * An eager's conn_fanout will be NULL if it's a duplicate
6721 	 * for an existing 4-tuples in the conn fanout table.
6722 	 * We don't want to send an RST out in such case.
6723 	 */
6724 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6725 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6726 		    eager, eager->tcp_snxt, 0, TH_RST);
6727 	}
6728 
6729 	/* We are here because listener wants this eager gone */
6730 	if (listener != NULL) {
6731 		mutex_enter(&listener->tcp_eager_lock);
6732 		tcp_eager_unlink(eager);
6733 		if (eager->tcp_tconnind_started) {
6734 			/*
6735 			 * The eager has sent a conn_ind up to the
6736 			 * listener but listener decides to close
6737 			 * instead. We need to drop the extra ref
6738 			 * placed on eager in tcp_rput_data() before
6739 			 * sending the conn_ind to listener.
6740 			 */
6741 			CONN_DEC_REF(econnp);
6742 		}
6743 		mutex_exit(&listener->tcp_eager_lock);
6744 		CONN_DEC_REF(listener->tcp_connp);
6745 	}
6746 
6747 	if (eager->tcp_state > TCPS_BOUND)
6748 		tcp_close_detached(eager);
6749 }
6750 
6751 /*
6752  * Reset any eager connection hanging off this listener marked
6753  * with 'seqnum' and then reclaim it's resources.
6754  */
6755 static boolean_t
6756 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6757 {
6758 	tcp_t	*eager;
6759 	mblk_t 	*mp;
6760 	tcp_stack_t	*tcps = listener->tcp_tcps;
6761 
6762 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6763 	eager = listener;
6764 	mutex_enter(&listener->tcp_eager_lock);
6765 	do {
6766 		eager = eager->tcp_eager_next_q;
6767 		if (eager == NULL) {
6768 			mutex_exit(&listener->tcp_eager_lock);
6769 			return (B_FALSE);
6770 		}
6771 	} while (eager->tcp_conn_req_seqnum != seqnum);
6772 
6773 	if (eager->tcp_closemp_used) {
6774 		mutex_exit(&listener->tcp_eager_lock);
6775 		return (B_TRUE);
6776 	}
6777 	eager->tcp_closemp_used = B_TRUE;
6778 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6779 	CONN_INC_REF(eager->tcp_connp);
6780 	mutex_exit(&listener->tcp_eager_lock);
6781 	mp = &eager->tcp_closemp;
6782 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6783 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6784 	return (B_TRUE);
6785 }
6786 
6787 /*
6788  * Reset any eager connection hanging off this listener
6789  * and then reclaim it's resources.
6790  */
6791 static void
6792 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6793 {
6794 	tcp_t	*eager;
6795 	mblk_t	*mp;
6796 	tcp_stack_t	*tcps = listener->tcp_tcps;
6797 
6798 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6799 
6800 	if (!q0_only) {
6801 		/* First cleanup q */
6802 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6803 		eager = listener->tcp_eager_next_q;
6804 		while (eager != NULL) {
6805 			if (!eager->tcp_closemp_used) {
6806 				eager->tcp_closemp_used = B_TRUE;
6807 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6808 				CONN_INC_REF(eager->tcp_connp);
6809 				mp = &eager->tcp_closemp;
6810 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6811 				    tcp_eager_kill, eager->tcp_connp,
6812 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6813 			}
6814 			eager = eager->tcp_eager_next_q;
6815 		}
6816 	}
6817 	/* Then cleanup q0 */
6818 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6819 	eager = listener->tcp_eager_next_q0;
6820 	while (eager != listener) {
6821 		if (!eager->tcp_closemp_used) {
6822 			eager->tcp_closemp_used = B_TRUE;
6823 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6824 			CONN_INC_REF(eager->tcp_connp);
6825 			mp = &eager->tcp_closemp;
6826 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6827 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6828 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6829 		}
6830 		eager = eager->tcp_eager_next_q0;
6831 	}
6832 }
6833 
6834 /*
6835  * If we are an eager connection hanging off a listener that hasn't
6836  * formally accepted the connection yet, get off his list and blow off
6837  * any data that we have accumulated.
6838  */
6839 static void
6840 tcp_eager_unlink(tcp_t *tcp)
6841 {
6842 	tcp_t	*listener = tcp->tcp_listener;
6843 
6844 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6845 	ASSERT(listener != NULL);
6846 	if (tcp->tcp_eager_next_q0 != NULL) {
6847 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6848 
6849 		/* Remove the eager tcp from q0 */
6850 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6851 		    tcp->tcp_eager_prev_q0;
6852 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6853 		    tcp->tcp_eager_next_q0;
6854 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6855 		listener->tcp_conn_req_cnt_q0--;
6856 
6857 		tcp->tcp_eager_next_q0 = NULL;
6858 		tcp->tcp_eager_prev_q0 = NULL;
6859 
6860 		/*
6861 		 * Take the eager out, if it is in the list of droppable
6862 		 * eagers.
6863 		 */
6864 		MAKE_UNDROPPABLE(tcp);
6865 
6866 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6867 			/* we have timed out before */
6868 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6869 			listener->tcp_syn_rcvd_timeout--;
6870 		}
6871 	} else {
6872 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6873 		tcp_t	*prev = NULL;
6874 
6875 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6876 			if (tcpp[0] == tcp) {
6877 				if (listener->tcp_eager_last_q == tcp) {
6878 					/*
6879 					 * If we are unlinking the last
6880 					 * element on the list, adjust
6881 					 * tail pointer. Set tail pointer
6882 					 * to nil when list is empty.
6883 					 */
6884 					ASSERT(tcp->tcp_eager_next_q == NULL);
6885 					if (listener->tcp_eager_last_q ==
6886 					    listener->tcp_eager_next_q) {
6887 						listener->tcp_eager_last_q =
6888 						    NULL;
6889 					} else {
6890 						/*
6891 						 * We won't get here if there
6892 						 * is only one eager in the
6893 						 * list.
6894 						 */
6895 						ASSERT(prev != NULL);
6896 						listener->tcp_eager_last_q =
6897 						    prev;
6898 					}
6899 				}
6900 				tcpp[0] = tcp->tcp_eager_next_q;
6901 				tcp->tcp_eager_next_q = NULL;
6902 				tcp->tcp_eager_last_q = NULL;
6903 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6904 				listener->tcp_conn_req_cnt_q--;
6905 				break;
6906 			}
6907 			prev = tcpp[0];
6908 		}
6909 	}
6910 	tcp->tcp_listener = NULL;
6911 }
6912 
6913 /* Shorthand to generate and send TPI error acks to our client */
6914 static void
6915 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
6916 {
6917 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
6918 		putnext(tcp->tcp_rq, mp);
6919 }
6920 
6921 /* Shorthand to generate and send TPI error acks to our client */
6922 static void
6923 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
6924     int t_error, int sys_error)
6925 {
6926 	struct T_error_ack	*teackp;
6927 
6928 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
6929 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
6930 		teackp = (struct T_error_ack *)mp->b_rptr;
6931 		teackp->ERROR_prim = primitive;
6932 		teackp->TLI_error = t_error;
6933 		teackp->UNIX_error = sys_error;
6934 		putnext(tcp->tcp_rq, mp);
6935 	}
6936 }
6937 
6938 /*
6939  * Note: No locks are held when inspecting tcp_g_*epriv_ports
6940  * but instead the code relies on:
6941  * - the fact that the address of the array and its size never changes
6942  * - the atomic assignment of the elements of the array
6943  */
6944 /* ARGSUSED */
6945 static int
6946 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
6947 {
6948 	int i;
6949 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6950 
6951 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6952 		if (tcps->tcps_g_epriv_ports[i] != 0)
6953 			(void) mi_mpprintf(mp, "%d ",
6954 			    tcps->tcps_g_epriv_ports[i]);
6955 	}
6956 	return (0);
6957 }
6958 
6959 /*
6960  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
6961  * threads from changing it at the same time.
6962  */
6963 /* ARGSUSED */
6964 static int
6965 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
6966     cred_t *cr)
6967 {
6968 	long	new_value;
6969 	int	i;
6970 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6971 
6972 	/*
6973 	 * Fail the request if the new value does not lie within the
6974 	 * port number limits.
6975 	 */
6976 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
6977 	    new_value <= 0 || new_value >= 65536) {
6978 		return (EINVAL);
6979 	}
6980 
6981 	mutex_enter(&tcps->tcps_epriv_port_lock);
6982 	/* Check if the value is already in the list */
6983 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6984 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
6985 			mutex_exit(&tcps->tcps_epriv_port_lock);
6986 			return (EEXIST);
6987 		}
6988 	}
6989 	/* Find an empty slot */
6990 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6991 		if (tcps->tcps_g_epriv_ports[i] == 0)
6992 			break;
6993 	}
6994 	if (i == tcps->tcps_g_num_epriv_ports) {
6995 		mutex_exit(&tcps->tcps_epriv_port_lock);
6996 		return (EOVERFLOW);
6997 	}
6998 	/* Set the new value */
6999 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7000 	mutex_exit(&tcps->tcps_epriv_port_lock);
7001 	return (0);
7002 }
7003 
7004 /*
7005  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7006  * threads from changing it at the same time.
7007  */
7008 /* ARGSUSED */
7009 static int
7010 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7011     cred_t *cr)
7012 {
7013 	long	new_value;
7014 	int	i;
7015 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7016 
7017 	/*
7018 	 * Fail the request if the new value does not lie within the
7019 	 * port number limits.
7020 	 */
7021 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7022 	    new_value >= 65536) {
7023 		return (EINVAL);
7024 	}
7025 
7026 	mutex_enter(&tcps->tcps_epriv_port_lock);
7027 	/* Check that the value is already in the list */
7028 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7029 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7030 			break;
7031 	}
7032 	if (i == tcps->tcps_g_num_epriv_ports) {
7033 		mutex_exit(&tcps->tcps_epriv_port_lock);
7034 		return (ESRCH);
7035 	}
7036 	/* Clear the value */
7037 	tcps->tcps_g_epriv_ports[i] = 0;
7038 	mutex_exit(&tcps->tcps_epriv_port_lock);
7039 	return (0);
7040 }
7041 
7042 /* Return the TPI/TLI equivalent of our current tcp_state */
7043 static int
7044 tcp_tpistate(tcp_t *tcp)
7045 {
7046 	switch (tcp->tcp_state) {
7047 	case TCPS_IDLE:
7048 		return (TS_UNBND);
7049 	case TCPS_LISTEN:
7050 		/*
7051 		 * Return whether there are outstanding T_CONN_IND waiting
7052 		 * for the matching T_CONN_RES. Therefore don't count q0.
7053 		 */
7054 		if (tcp->tcp_conn_req_cnt_q > 0)
7055 			return (TS_WRES_CIND);
7056 		else
7057 			return (TS_IDLE);
7058 	case TCPS_BOUND:
7059 		return (TS_IDLE);
7060 	case TCPS_SYN_SENT:
7061 		return (TS_WCON_CREQ);
7062 	case TCPS_SYN_RCVD:
7063 		/*
7064 		 * Note: assumption: this has to the active open SYN_RCVD.
7065 		 * The passive instance is detached in SYN_RCVD stage of
7066 		 * incoming connection processing so we cannot get request
7067 		 * for T_info_ack on it.
7068 		 */
7069 		return (TS_WACK_CRES);
7070 	case TCPS_ESTABLISHED:
7071 		return (TS_DATA_XFER);
7072 	case TCPS_CLOSE_WAIT:
7073 		return (TS_WREQ_ORDREL);
7074 	case TCPS_FIN_WAIT_1:
7075 		return (TS_WIND_ORDREL);
7076 	case TCPS_FIN_WAIT_2:
7077 		return (TS_WIND_ORDREL);
7078 
7079 	case TCPS_CLOSING:
7080 	case TCPS_LAST_ACK:
7081 	case TCPS_TIME_WAIT:
7082 	case TCPS_CLOSED:
7083 		/*
7084 		 * Following TS_WACK_DREQ7 is a rendition of "not
7085 		 * yet TS_IDLE" TPI state. There is no best match to any
7086 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7087 		 * choose a value chosen that will map to TLI/XTI level
7088 		 * state of TSTATECHNG (state is process of changing) which
7089 		 * captures what this dummy state represents.
7090 		 */
7091 		return (TS_WACK_DREQ7);
7092 	default:
7093 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7094 		    tcp->tcp_state, tcp_display(tcp, NULL,
7095 		    DISP_PORT_ONLY));
7096 		return (TS_UNBND);
7097 	}
7098 }
7099 
7100 static void
7101 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7102 {
7103 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7104 
7105 	if (tcp->tcp_family == AF_INET6)
7106 		*tia = tcp_g_t_info_ack_v6;
7107 	else
7108 		*tia = tcp_g_t_info_ack;
7109 	tia->CURRENT_state = tcp_tpistate(tcp);
7110 	tia->OPT_size = tcp_max_optsize;
7111 	if (tcp->tcp_mss == 0) {
7112 		/* Not yet set - tcp_open does not set mss */
7113 		if (tcp->tcp_ipversion == IPV4_VERSION)
7114 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7115 		else
7116 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7117 	} else {
7118 		tia->TIDU_size = tcp->tcp_mss;
7119 	}
7120 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7121 }
7122 
7123 static void
7124 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7125     t_uscalar_t cap_bits1)
7126 {
7127 	tcap->CAP_bits1 = 0;
7128 
7129 	if (cap_bits1 & TC1_INFO) {
7130 		tcp_copy_info(&tcap->INFO_ack, tcp);
7131 		tcap->CAP_bits1 |= TC1_INFO;
7132 	}
7133 
7134 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7135 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7136 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7137 	}
7138 
7139 }
7140 
7141 /*
7142  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7143  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7144  * tcp_g_t_info_ack.  The current state of the stream is copied from
7145  * tcp_state.
7146  */
7147 static void
7148 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7149 {
7150 	t_uscalar_t		cap_bits1;
7151 	struct T_capability_ack	*tcap;
7152 
7153 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7154 		freemsg(mp);
7155 		return;
7156 	}
7157 
7158 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7159 
7160 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7161 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7162 	if (mp == NULL)
7163 		return;
7164 
7165 	tcap = (struct T_capability_ack *)mp->b_rptr;
7166 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7167 
7168 	putnext(tcp->tcp_rq, mp);
7169 }
7170 
7171 /*
7172  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7173  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7174  * The current state of the stream is copied from tcp_state.
7175  */
7176 static void
7177 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7178 {
7179 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7180 	    T_INFO_ACK);
7181 	if (!mp) {
7182 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7183 		return;
7184 	}
7185 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7186 	putnext(tcp->tcp_rq, mp);
7187 }
7188 
7189 /* Respond to the TPI addr request */
7190 static void
7191 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7192 {
7193 	sin_t	*sin;
7194 	mblk_t	*ackmp;
7195 	struct T_addr_ack *taa;
7196 
7197 	/* Make it large enough for worst case */
7198 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7199 	    2 * sizeof (sin6_t), 1);
7200 	if (ackmp == NULL) {
7201 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7202 		return;
7203 	}
7204 
7205 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7206 		tcp_addr_req_ipv6(tcp, ackmp);
7207 		return;
7208 	}
7209 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7210 
7211 	bzero(taa, sizeof (struct T_addr_ack));
7212 	ackmp->b_wptr = (uchar_t *)&taa[1];
7213 
7214 	taa->PRIM_type = T_ADDR_ACK;
7215 	ackmp->b_datap->db_type = M_PCPROTO;
7216 
7217 	/*
7218 	 * Note: Following code assumes 32 bit alignment of basic
7219 	 * data structures like sin_t and struct T_addr_ack.
7220 	 */
7221 	if (tcp->tcp_state >= TCPS_BOUND) {
7222 		/*
7223 		 * Fill in local address
7224 		 */
7225 		taa->LOCADDR_length = sizeof (sin_t);
7226 		taa->LOCADDR_offset = sizeof (*taa);
7227 
7228 		sin = (sin_t *)&taa[1];
7229 
7230 		/* Fill zeroes and then intialize non-zero fields */
7231 		*sin = sin_null;
7232 
7233 		sin->sin_family = AF_INET;
7234 
7235 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7236 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7237 
7238 		ackmp->b_wptr = (uchar_t *)&sin[1];
7239 
7240 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7241 			/*
7242 			 * Fill in Remote address
7243 			 */
7244 			taa->REMADDR_length = sizeof (sin_t);
7245 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7246 			    taa->LOCADDR_length);
7247 
7248 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7249 			*sin = sin_null;
7250 			sin->sin_family = AF_INET;
7251 			sin->sin_addr.s_addr = tcp->tcp_remote;
7252 			sin->sin_port = tcp->tcp_fport;
7253 
7254 			ackmp->b_wptr = (uchar_t *)&sin[1];
7255 		}
7256 	}
7257 	putnext(tcp->tcp_rq, ackmp);
7258 }
7259 
7260 /* Assumes that tcp_addr_req gets enough space and alignment */
7261 static void
7262 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7263 {
7264 	sin6_t	*sin6;
7265 	struct T_addr_ack *taa;
7266 
7267 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7268 	ASSERT(OK_32PTR(ackmp->b_rptr));
7269 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7270 	    2 * sizeof (sin6_t));
7271 
7272 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7273 
7274 	bzero(taa, sizeof (struct T_addr_ack));
7275 	ackmp->b_wptr = (uchar_t *)&taa[1];
7276 
7277 	taa->PRIM_type = T_ADDR_ACK;
7278 	ackmp->b_datap->db_type = M_PCPROTO;
7279 
7280 	/*
7281 	 * Note: Following code assumes 32 bit alignment of basic
7282 	 * data structures like sin6_t and struct T_addr_ack.
7283 	 */
7284 	if (tcp->tcp_state >= TCPS_BOUND) {
7285 		/*
7286 		 * Fill in local address
7287 		 */
7288 		taa->LOCADDR_length = sizeof (sin6_t);
7289 		taa->LOCADDR_offset = sizeof (*taa);
7290 
7291 		sin6 = (sin6_t *)&taa[1];
7292 		*sin6 = sin6_null;
7293 
7294 		sin6->sin6_family = AF_INET6;
7295 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7296 		sin6->sin6_port = tcp->tcp_lport;
7297 
7298 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7299 
7300 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7301 			/*
7302 			 * Fill in Remote address
7303 			 */
7304 			taa->REMADDR_length = sizeof (sin6_t);
7305 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7306 			    taa->LOCADDR_length);
7307 
7308 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7309 			*sin6 = sin6_null;
7310 			sin6->sin6_family = AF_INET6;
7311 			sin6->sin6_flowinfo =
7312 			    tcp->tcp_ip6h->ip6_vcf &
7313 			    ~IPV6_VERS_AND_FLOW_MASK;
7314 			sin6->sin6_addr = tcp->tcp_remote_v6;
7315 			sin6->sin6_port = tcp->tcp_fport;
7316 
7317 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7318 		}
7319 	}
7320 	putnext(tcp->tcp_rq, ackmp);
7321 }
7322 
7323 /*
7324  * Handle reinitialization of a tcp structure.
7325  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7326  */
7327 static void
7328 tcp_reinit(tcp_t *tcp)
7329 {
7330 	mblk_t	*mp;
7331 	int 	err;
7332 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7333 
7334 	TCP_STAT(tcps, tcp_reinit_calls);
7335 
7336 	/* tcp_reinit should never be called for detached tcp_t's */
7337 	ASSERT(tcp->tcp_listener == NULL);
7338 	ASSERT((tcp->tcp_family == AF_INET &&
7339 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7340 	    (tcp->tcp_family == AF_INET6 &&
7341 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7342 	    tcp->tcp_ipversion == IPV6_VERSION)));
7343 
7344 	/* Cancel outstanding timers */
7345 	tcp_timers_stop(tcp);
7346 
7347 	/*
7348 	 * Reset everything in the state vector, after updating global
7349 	 * MIB data from instance counters.
7350 	 */
7351 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7352 	tcp->tcp_ibsegs = 0;
7353 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7354 	tcp->tcp_obsegs = 0;
7355 
7356 	tcp_close_mpp(&tcp->tcp_xmit_head);
7357 	if (tcp->tcp_snd_zcopy_aware)
7358 		tcp_zcopy_notify(tcp);
7359 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7360 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7361 	mutex_enter(&tcp->tcp_non_sq_lock);
7362 	if (tcp->tcp_flow_stopped &&
7363 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7364 		tcp_clrqfull(tcp);
7365 	}
7366 	mutex_exit(&tcp->tcp_non_sq_lock);
7367 	tcp_close_mpp(&tcp->tcp_reass_head);
7368 	tcp->tcp_reass_tail = NULL;
7369 	if (tcp->tcp_rcv_list != NULL) {
7370 		/* Free b_next chain */
7371 		tcp_close_mpp(&tcp->tcp_rcv_list);
7372 		tcp->tcp_rcv_last_head = NULL;
7373 		tcp->tcp_rcv_last_tail = NULL;
7374 		tcp->tcp_rcv_cnt = 0;
7375 	}
7376 	tcp->tcp_rcv_last_tail = NULL;
7377 
7378 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7379 		freemsg(mp);
7380 		tcp->tcp_urp_mp = NULL;
7381 	}
7382 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7383 		freemsg(mp);
7384 		tcp->tcp_urp_mark_mp = NULL;
7385 	}
7386 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7387 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7388 		freeb(tcp->tcp_fused_sigurg_mp);
7389 		tcp->tcp_fused_sigurg_mp = NULL;
7390 	}
7391 	if (tcp->tcp_ordrel_mp != NULL) {
7392 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7393 		freeb(tcp->tcp_ordrel_mp);
7394 		tcp->tcp_ordrel_mp = NULL;
7395 	}
7396 
7397 	/*
7398 	 * Following is a union with two members which are
7399 	 * identical types and size so the following cleanup
7400 	 * is enough.
7401 	 */
7402 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7403 
7404 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7405 
7406 	/*
7407 	 * The connection can't be on the tcp_time_wait_head list
7408 	 * since it is not detached.
7409 	 */
7410 	ASSERT(tcp->tcp_time_wait_next == NULL);
7411 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7412 	ASSERT(tcp->tcp_time_wait_expire == 0);
7413 
7414 	if (tcp->tcp_kssl_pending) {
7415 		tcp->tcp_kssl_pending = B_FALSE;
7416 
7417 		/* Don't reset if the initialized by bind. */
7418 		if (tcp->tcp_kssl_ent != NULL) {
7419 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7420 			    KSSL_NO_PROXY);
7421 		}
7422 	}
7423 	if (tcp->tcp_kssl_ctx != NULL) {
7424 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7425 		tcp->tcp_kssl_ctx = NULL;
7426 	}
7427 
7428 	/*
7429 	 * Reset/preserve other values
7430 	 */
7431 	tcp_reinit_values(tcp);
7432 	ipcl_hash_remove(tcp->tcp_connp);
7433 	conn_delete_ire(tcp->tcp_connp, NULL);
7434 	tcp_ipsec_cleanup(tcp);
7435 
7436 	if (tcp->tcp_conn_req_max != 0) {
7437 		/*
7438 		 * This is the case when a TLI program uses the same
7439 		 * transport end point to accept a connection.  This
7440 		 * makes the TCP both a listener and acceptor.  When
7441 		 * this connection is closed, we need to set the state
7442 		 * back to TCPS_LISTEN.  Make sure that the eager list
7443 		 * is reinitialized.
7444 		 *
7445 		 * Note that this stream is still bound to the four
7446 		 * tuples of the previous connection in IP.  If a new
7447 		 * SYN with different foreign address comes in, IP will
7448 		 * not find it and will send it to the global queue.  In
7449 		 * the global queue, TCP will do a tcp_lookup_listener()
7450 		 * to find this stream.  This works because this stream
7451 		 * is only removed from connected hash.
7452 		 *
7453 		 */
7454 		tcp->tcp_state = TCPS_LISTEN;
7455 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7456 		tcp->tcp_eager_next_drop_q0 = tcp;
7457 		tcp->tcp_eager_prev_drop_q0 = tcp;
7458 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7459 		if (tcp->tcp_family == AF_INET6) {
7460 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7461 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7462 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7463 		} else {
7464 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7465 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7466 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7467 		}
7468 	} else {
7469 		tcp->tcp_state = TCPS_BOUND;
7470 	}
7471 
7472 	/*
7473 	 * Initialize to default values
7474 	 * Can't fail since enough header template space already allocated
7475 	 * at open().
7476 	 */
7477 	err = tcp_init_values(tcp);
7478 	ASSERT(err == 0);
7479 	/* Restore state in tcp_tcph */
7480 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7481 	if (tcp->tcp_ipversion == IPV4_VERSION)
7482 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7483 	else
7484 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7485 	/*
7486 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7487 	 * since the lookup funcs can only lookup on tcp_t
7488 	 */
7489 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7490 
7491 	ASSERT(tcp->tcp_ptpbhn != NULL);
7492 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7493 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7494 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7495 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7496 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7497 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7498 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7499 }
7500 
7501 /*
7502  * Force values to zero that need be zero.
7503  * Do not touch values asociated with the BOUND or LISTEN state
7504  * since the connection will end up in that state after the reinit.
7505  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7506  * structure!
7507  */
7508 static void
7509 tcp_reinit_values(tcp)
7510 	tcp_t *tcp;
7511 {
7512 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7513 
7514 #ifndef	lint
7515 #define	DONTCARE(x)
7516 #define	PRESERVE(x)
7517 #else
7518 #define	DONTCARE(x)	((x) = (x))
7519 #define	PRESERVE(x)	((x) = (x))
7520 #endif	/* lint */
7521 
7522 	PRESERVE(tcp->tcp_bind_hash_port);
7523 	PRESERVE(tcp->tcp_bind_hash);
7524 	PRESERVE(tcp->tcp_ptpbhn);
7525 	PRESERVE(tcp->tcp_acceptor_hash);
7526 	PRESERVE(tcp->tcp_ptpahn);
7527 
7528 	/* Should be ASSERT NULL on these with new code! */
7529 	ASSERT(tcp->tcp_time_wait_next == NULL);
7530 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7531 	ASSERT(tcp->tcp_time_wait_expire == 0);
7532 	PRESERVE(tcp->tcp_state);
7533 	PRESERVE(tcp->tcp_rq);
7534 	PRESERVE(tcp->tcp_wq);
7535 
7536 	ASSERT(tcp->tcp_xmit_head == NULL);
7537 	ASSERT(tcp->tcp_xmit_last == NULL);
7538 	ASSERT(tcp->tcp_unsent == 0);
7539 	ASSERT(tcp->tcp_xmit_tail == NULL);
7540 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7541 
7542 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7543 	tcp->tcp_suna = 0;			/* Displayed in mib */
7544 	tcp->tcp_swnd = 0;
7545 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7546 
7547 	ASSERT(tcp->tcp_ibsegs == 0);
7548 	ASSERT(tcp->tcp_obsegs == 0);
7549 
7550 	if (tcp->tcp_iphc != NULL) {
7551 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7552 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7553 	}
7554 
7555 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7556 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7557 	DONTCARE(tcp->tcp_ipha);
7558 	DONTCARE(tcp->tcp_ip6h);
7559 	DONTCARE(tcp->tcp_ip_hdr_len);
7560 	DONTCARE(tcp->tcp_tcph);
7561 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7562 	tcp->tcp_valid_bits = 0;
7563 
7564 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7565 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7566 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7567 	tcp->tcp_last_rcv_lbolt = 0;
7568 
7569 	tcp->tcp_init_cwnd = 0;
7570 
7571 	tcp->tcp_urp_last_valid = 0;
7572 	tcp->tcp_hard_binding = 0;
7573 	tcp->tcp_hard_bound = 0;
7574 	PRESERVE(tcp->tcp_cred);
7575 	PRESERVE(tcp->tcp_cpid);
7576 	PRESERVE(tcp->tcp_open_time);
7577 	PRESERVE(tcp->tcp_exclbind);
7578 
7579 	tcp->tcp_fin_acked = 0;
7580 	tcp->tcp_fin_rcvd = 0;
7581 	tcp->tcp_fin_sent = 0;
7582 	tcp->tcp_ordrel_done = 0;
7583 
7584 	tcp->tcp_debug = 0;
7585 	tcp->tcp_dontroute = 0;
7586 	tcp->tcp_broadcast = 0;
7587 
7588 	tcp->tcp_useloopback = 0;
7589 	tcp->tcp_reuseaddr = 0;
7590 	tcp->tcp_oobinline = 0;
7591 	tcp->tcp_dgram_errind = 0;
7592 
7593 	tcp->tcp_detached = 0;
7594 	tcp->tcp_bind_pending = 0;
7595 	tcp->tcp_unbind_pending = 0;
7596 
7597 	tcp->tcp_snd_ws_ok = B_FALSE;
7598 	tcp->tcp_snd_ts_ok = B_FALSE;
7599 	tcp->tcp_linger = 0;
7600 	tcp->tcp_ka_enabled = 0;
7601 	tcp->tcp_zero_win_probe = 0;
7602 
7603 	tcp->tcp_loopback = 0;
7604 	tcp->tcp_refuse = 0;
7605 	tcp->tcp_localnet = 0;
7606 	tcp->tcp_syn_defense = 0;
7607 	tcp->tcp_set_timer = 0;
7608 
7609 	tcp->tcp_active_open = 0;
7610 	tcp->tcp_rexmit = B_FALSE;
7611 	tcp->tcp_xmit_zc_clean = B_FALSE;
7612 
7613 	tcp->tcp_snd_sack_ok = B_FALSE;
7614 	PRESERVE(tcp->tcp_recvdstaddr);
7615 	tcp->tcp_hwcksum = B_FALSE;
7616 
7617 	tcp->tcp_ire_ill_check_done = B_FALSE;
7618 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7619 
7620 	tcp->tcp_mdt = B_FALSE;
7621 	tcp->tcp_mdt_hdr_head = 0;
7622 	tcp->tcp_mdt_hdr_tail = 0;
7623 
7624 	tcp->tcp_conn_def_q0 = 0;
7625 	tcp->tcp_ip_forward_progress = B_FALSE;
7626 	tcp->tcp_anon_priv_bind = 0;
7627 	tcp->tcp_ecn_ok = B_FALSE;
7628 
7629 	tcp->tcp_cwr = B_FALSE;
7630 	tcp->tcp_ecn_echo_on = B_FALSE;
7631 
7632 	if (tcp->tcp_sack_info != NULL) {
7633 		if (tcp->tcp_notsack_list != NULL) {
7634 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7635 		}
7636 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7637 		tcp->tcp_sack_info = NULL;
7638 	}
7639 
7640 	tcp->tcp_rcv_ws = 0;
7641 	tcp->tcp_snd_ws = 0;
7642 	tcp->tcp_ts_recent = 0;
7643 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7644 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7645 	tcp->tcp_if_mtu = 0;
7646 
7647 	ASSERT(tcp->tcp_reass_head == NULL);
7648 	ASSERT(tcp->tcp_reass_tail == NULL);
7649 
7650 	tcp->tcp_cwnd_cnt = 0;
7651 
7652 	ASSERT(tcp->tcp_rcv_list == NULL);
7653 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7654 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7655 	ASSERT(tcp->tcp_rcv_cnt == 0);
7656 
7657 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7658 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7659 	tcp->tcp_csuna = 0;
7660 
7661 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7662 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7663 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7664 	tcp->tcp_rtt_update = 0;
7665 
7666 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7667 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7668 
7669 	tcp->tcp_rack = 0;			/* Displayed in mib */
7670 	tcp->tcp_rack_cnt = 0;
7671 	tcp->tcp_rack_cur_max = 0;
7672 	tcp->tcp_rack_abs_max = 0;
7673 
7674 	tcp->tcp_max_swnd = 0;
7675 
7676 	ASSERT(tcp->tcp_listener == NULL);
7677 
7678 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7679 
7680 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7681 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7682 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7683 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7684 
7685 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7686 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7687 	PRESERVE(tcp->tcp_conn_req_max);
7688 	PRESERVE(tcp->tcp_conn_req_seqnum);
7689 
7690 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7691 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7692 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7693 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7694 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7695 
7696 	tcp->tcp_lingertime = 0;
7697 
7698 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7699 	ASSERT(tcp->tcp_urp_mp == NULL);
7700 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7701 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7702 
7703 	ASSERT(tcp->tcp_eager_next_q == NULL);
7704 	ASSERT(tcp->tcp_eager_last_q == NULL);
7705 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7706 	    tcp->tcp_eager_prev_q0 == NULL) ||
7707 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7708 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7709 
7710 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7711 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7712 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7713 
7714 	tcp->tcp_client_errno = 0;
7715 
7716 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7717 
7718 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7719 
7720 	PRESERVE(tcp->tcp_bound_source_v6);
7721 	tcp->tcp_last_sent_len = 0;
7722 	tcp->tcp_dupack_cnt = 0;
7723 
7724 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7725 	PRESERVE(tcp->tcp_lport);
7726 
7727 	PRESERVE(tcp->tcp_acceptor_lockp);
7728 
7729 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7730 	PRESERVE(tcp->tcp_acceptor_id);
7731 	DONTCARE(tcp->tcp_ipsec_overhead);
7732 
7733 	PRESERVE(tcp->tcp_family);
7734 	if (tcp->tcp_family == AF_INET6) {
7735 		tcp->tcp_ipversion = IPV6_VERSION;
7736 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7737 	} else {
7738 		tcp->tcp_ipversion = IPV4_VERSION;
7739 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7740 	}
7741 
7742 	tcp->tcp_bound_if = 0;
7743 	tcp->tcp_ipv6_recvancillary = 0;
7744 	tcp->tcp_recvifindex = 0;
7745 	tcp->tcp_recvhops = 0;
7746 	tcp->tcp_closed = 0;
7747 	tcp->tcp_cleandeathtag = 0;
7748 	if (tcp->tcp_hopopts != NULL) {
7749 		mi_free(tcp->tcp_hopopts);
7750 		tcp->tcp_hopopts = NULL;
7751 		tcp->tcp_hopoptslen = 0;
7752 	}
7753 	ASSERT(tcp->tcp_hopoptslen == 0);
7754 	if (tcp->tcp_dstopts != NULL) {
7755 		mi_free(tcp->tcp_dstopts);
7756 		tcp->tcp_dstopts = NULL;
7757 		tcp->tcp_dstoptslen = 0;
7758 	}
7759 	ASSERT(tcp->tcp_dstoptslen == 0);
7760 	if (tcp->tcp_rtdstopts != NULL) {
7761 		mi_free(tcp->tcp_rtdstopts);
7762 		tcp->tcp_rtdstopts = NULL;
7763 		tcp->tcp_rtdstoptslen = 0;
7764 	}
7765 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7766 	if (tcp->tcp_rthdr != NULL) {
7767 		mi_free(tcp->tcp_rthdr);
7768 		tcp->tcp_rthdr = NULL;
7769 		tcp->tcp_rthdrlen = 0;
7770 	}
7771 	ASSERT(tcp->tcp_rthdrlen == 0);
7772 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7773 
7774 	/* Reset fusion-related fields */
7775 	tcp->tcp_fused = B_FALSE;
7776 	tcp->tcp_unfusable = B_FALSE;
7777 	tcp->tcp_fused_sigurg = B_FALSE;
7778 	tcp->tcp_direct_sockfs = B_FALSE;
7779 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7780 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7781 	tcp->tcp_loopback_peer = NULL;
7782 	tcp->tcp_fuse_rcv_hiwater = 0;
7783 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7784 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7785 
7786 	tcp->tcp_lso = B_FALSE;
7787 
7788 	tcp->tcp_in_ack_unsent = 0;
7789 	tcp->tcp_cork = B_FALSE;
7790 	tcp->tcp_tconnind_started = B_FALSE;
7791 
7792 	PRESERVE(tcp->tcp_squeue_bytes);
7793 
7794 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7795 	ASSERT(!tcp->tcp_kssl_pending);
7796 	PRESERVE(tcp->tcp_kssl_ent);
7797 
7798 	tcp->tcp_closemp_used = B_FALSE;
7799 
7800 	PRESERVE(tcp->tcp_rsrv_mp);
7801 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7802 
7803 #ifdef DEBUG
7804 	DONTCARE(tcp->tcmp_stk[0]);
7805 #endif
7806 
7807 	PRESERVE(tcp->tcp_connid);
7808 
7809 
7810 #undef	DONTCARE
7811 #undef	PRESERVE
7812 }
7813 
7814 /*
7815  * Allocate necessary resources and initialize state vector.
7816  * Guaranteed not to fail so that when an error is returned,
7817  * the caller doesn't need to do any additional cleanup.
7818  */
7819 int
7820 tcp_init(tcp_t *tcp, queue_t *q)
7821 {
7822 	int	err;
7823 
7824 	tcp->tcp_rq = q;
7825 	tcp->tcp_wq = WR(q);
7826 	tcp->tcp_state = TCPS_IDLE;
7827 	if ((err = tcp_init_values(tcp)) != 0)
7828 		tcp_timers_stop(tcp);
7829 	return (err);
7830 }
7831 
7832 static int
7833 tcp_init_values(tcp_t *tcp)
7834 {
7835 	int	err;
7836 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7837 
7838 	ASSERT((tcp->tcp_family == AF_INET &&
7839 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7840 	    (tcp->tcp_family == AF_INET6 &&
7841 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7842 	    tcp->tcp_ipversion == IPV6_VERSION)));
7843 
7844 	/*
7845 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7846 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7847 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7848 	 * during first few transmissions of a connection as seen in slow
7849 	 * links.
7850 	 */
7851 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7852 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7853 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7854 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7855 	    tcps->tcps_conn_grace_period;
7856 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7857 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7858 	tcp->tcp_timer_backoff = 0;
7859 	tcp->tcp_ms_we_have_waited = 0;
7860 	tcp->tcp_last_recv_time = lbolt;
7861 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7862 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7863 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7864 
7865 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7866 
7867 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7868 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7869 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7870 	/*
7871 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7872 	 * passive open.
7873 	 */
7874 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7875 
7876 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7877 
7878 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7879 
7880 	tcp->tcp_mdt_hdr_head = 0;
7881 	tcp->tcp_mdt_hdr_tail = 0;
7882 
7883 	/* Reset fusion-related fields */
7884 	tcp->tcp_fused = B_FALSE;
7885 	tcp->tcp_unfusable = B_FALSE;
7886 	tcp->tcp_fused_sigurg = B_FALSE;
7887 	tcp->tcp_direct_sockfs = B_FALSE;
7888 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7889 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7890 	tcp->tcp_loopback_peer = NULL;
7891 	tcp->tcp_fuse_rcv_hiwater = 0;
7892 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7893 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7894 
7895 	/* Initialize the header template */
7896 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7897 		err = tcp_header_init_ipv4(tcp);
7898 	} else {
7899 		err = tcp_header_init_ipv6(tcp);
7900 	}
7901 	if (err)
7902 		return (err);
7903 
7904 	/*
7905 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7906 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7907 	 */
7908 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
7909 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
7910 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
7911 
7912 	tcp->tcp_cork = B_FALSE;
7913 	/*
7914 	 * Init the tcp_debug option.  This value determines whether TCP
7915 	 * calls strlog() to print out debug messages.  Doing this
7916 	 * initialization here means that this value is not inherited thru
7917 	 * tcp_reinit().
7918 	 */
7919 	tcp->tcp_debug = tcps->tcps_dbg;
7920 
7921 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
7922 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
7923 
7924 	return (0);
7925 }
7926 
7927 /*
7928  * Initialize the IPv4 header. Loses any record of any IP options.
7929  */
7930 static int
7931 tcp_header_init_ipv4(tcp_t *tcp)
7932 {
7933 	tcph_t		*tcph;
7934 	uint32_t	sum;
7935 	conn_t		*connp;
7936 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7937 
7938 	/*
7939 	 * This is a simple initialization. If there's
7940 	 * already a template, it should never be too small,
7941 	 * so reuse it.  Otherwise, allocate space for the new one.
7942 	 */
7943 	if (tcp->tcp_iphc == NULL) {
7944 		ASSERT(tcp->tcp_iphc_len == 0);
7945 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
7946 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
7947 		if (tcp->tcp_iphc == NULL) {
7948 			tcp->tcp_iphc_len = 0;
7949 			return (ENOMEM);
7950 		}
7951 	}
7952 
7953 	/* options are gone; may need a new label */
7954 	connp = tcp->tcp_connp;
7955 	connp->conn_mlp_type = mlptSingle;
7956 	connp->conn_ulp_labeled = !is_system_labeled();
7957 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7958 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
7959 	tcp->tcp_ip6h = NULL;
7960 	tcp->tcp_ipversion = IPV4_VERSION;
7961 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
7962 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
7963 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
7964 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
7965 	tcp->tcp_ipha->ipha_version_and_hdr_length
7966 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
7967 	tcp->tcp_ipha->ipha_ident = 0;
7968 
7969 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
7970 	tcp->tcp_tos = 0;
7971 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
7972 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
7973 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
7974 
7975 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
7976 	tcp->tcp_tcph = tcph;
7977 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
7978 	/*
7979 	 * IP wants our header length in the checksum field to
7980 	 * allow it to perform a single pseudo-header+checksum
7981 	 * calculation on behalf of TCP.
7982 	 * Include the adjustment for a source route once IP_OPTIONS is set.
7983 	 */
7984 	sum = sizeof (tcph_t) + tcp->tcp_sum;
7985 	sum = (sum >> 16) + (sum & 0xFFFF);
7986 	U16_TO_ABE16(sum, tcph->th_sum);
7987 	return (0);
7988 }
7989 
7990 /*
7991  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
7992  */
7993 static int
7994 tcp_header_init_ipv6(tcp_t *tcp)
7995 {
7996 	tcph_t	*tcph;
7997 	uint32_t	sum;
7998 	conn_t	*connp;
7999 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8000 
8001 	/*
8002 	 * This is a simple initialization. If there's
8003 	 * already a template, it should never be too small,
8004 	 * so reuse it. Otherwise, allocate space for the new one.
8005 	 * Ensure that there is enough space to "downgrade" the tcp_t
8006 	 * to an IPv4 tcp_t. This requires having space for a full load
8007 	 * of IPv4 options, as well as a full load of TCP options
8008 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8009 	 * than a v6 header and a TCP header with a full load of TCP options
8010 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8011 	 * We want to avoid reallocation in the "downgraded" case when
8012 	 * processing outbound IPv4 options.
8013 	 */
8014 	if (tcp->tcp_iphc == NULL) {
8015 		ASSERT(tcp->tcp_iphc_len == 0);
8016 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8017 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8018 		if (tcp->tcp_iphc == NULL) {
8019 			tcp->tcp_iphc_len = 0;
8020 			return (ENOMEM);
8021 		}
8022 	}
8023 
8024 	/* options are gone; may need a new label */
8025 	connp = tcp->tcp_connp;
8026 	connp->conn_mlp_type = mlptSingle;
8027 	connp->conn_ulp_labeled = !is_system_labeled();
8028 
8029 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8030 	tcp->tcp_ipversion = IPV6_VERSION;
8031 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8032 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8033 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8034 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8035 	tcp->tcp_ipha = NULL;
8036 
8037 	/* Initialize the header template */
8038 
8039 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8040 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8041 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8042 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8043 
8044 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8045 	tcp->tcp_tcph = tcph;
8046 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8047 	/*
8048 	 * IP wants our header length in the checksum field to
8049 	 * allow it to perform a single psuedo-header+checksum
8050 	 * calculation on behalf of TCP.
8051 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8052 	 */
8053 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8054 	sum = (sum >> 16) + (sum & 0xFFFF);
8055 	U16_TO_ABE16(sum, tcph->th_sum);
8056 	return (0);
8057 }
8058 
8059 /* At minimum we need 8 bytes in the TCP header for the lookup */
8060 #define	ICMP_MIN_TCP_HDR	8
8061 
8062 /*
8063  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8064  * passed up by IP. The message is always received on the correct tcp_t.
8065  * Assumes that IP has pulled up everything up to and including the ICMP header.
8066  */
8067 void
8068 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8069 {
8070 	icmph_t *icmph;
8071 	ipha_t	*ipha;
8072 	int	iph_hdr_length;
8073 	tcph_t	*tcph;
8074 	boolean_t ipsec_mctl = B_FALSE;
8075 	boolean_t secure;
8076 	mblk_t *first_mp = mp;
8077 	int32_t new_mss;
8078 	uint32_t ratio;
8079 	size_t mp_size = MBLKL(mp);
8080 	uint32_t seg_seq;
8081 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8082 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8083 
8084 	/* Assume IP provides aligned packets - otherwise toss */
8085 	if (!OK_32PTR(mp->b_rptr)) {
8086 		freemsg(mp);
8087 		return;
8088 	}
8089 
8090 	/*
8091 	 * Since ICMP errors are normal data marked with M_CTL when sent
8092 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8093 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8094 	 */
8095 	if ((mp_size == sizeof (ipsec_info_t)) &&
8096 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8097 		ASSERT(mp->b_cont != NULL);
8098 		mp = mp->b_cont;
8099 		/* IP should have done this */
8100 		ASSERT(OK_32PTR(mp->b_rptr));
8101 		mp_size = MBLKL(mp);
8102 		ipsec_mctl = B_TRUE;
8103 	}
8104 
8105 	/*
8106 	 * Verify that we have a complete outer IP header. If not, drop it.
8107 	 */
8108 	if (mp_size < sizeof (ipha_t)) {
8109 noticmpv4:
8110 		freemsg(first_mp);
8111 		return;
8112 	}
8113 
8114 	ipha = (ipha_t *)mp->b_rptr;
8115 	/*
8116 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8117 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8118 	 */
8119 	switch (IPH_HDR_VERSION(ipha)) {
8120 	case IPV6_VERSION:
8121 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8122 		return;
8123 	case IPV4_VERSION:
8124 		break;
8125 	default:
8126 		goto noticmpv4;
8127 	}
8128 
8129 	/* Skip past the outer IP and ICMP headers */
8130 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8131 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8132 	/*
8133 	 * If we don't have the correct outer IP header length or if the ULP
8134 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8135 	 * send it upstream.
8136 	 */
8137 	if (iph_hdr_length < sizeof (ipha_t) ||
8138 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8139 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8140 		goto noticmpv4;
8141 	}
8142 	ipha = (ipha_t *)&icmph[1];
8143 
8144 	/* Skip past the inner IP and find the ULP header */
8145 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8146 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8147 	/*
8148 	 * If we don't have the correct inner IP header length or if the ULP
8149 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8150 	 * bytes of TCP header, drop it.
8151 	 */
8152 	if (iph_hdr_length < sizeof (ipha_t) ||
8153 	    ipha->ipha_protocol != IPPROTO_TCP ||
8154 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8155 		goto noticmpv4;
8156 	}
8157 
8158 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8159 		if (ipsec_mctl) {
8160 			secure = ipsec_in_is_secure(first_mp);
8161 		} else {
8162 			secure = B_FALSE;
8163 		}
8164 		if (secure) {
8165 			/*
8166 			 * If we are willing to accept this in clear
8167 			 * we don't have to verify policy.
8168 			 */
8169 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8170 				if (!tcp_check_policy(tcp, first_mp,
8171 				    ipha, NULL, secure, ipsec_mctl)) {
8172 					/*
8173 					 * tcp_check_policy called
8174 					 * ip_drop_packet() on failure.
8175 					 */
8176 					return;
8177 				}
8178 			}
8179 		}
8180 	} else if (ipsec_mctl) {
8181 		/*
8182 		 * This is a hard_bound connection. IP has already
8183 		 * verified policy. We don't have to do it again.
8184 		 */
8185 		freeb(first_mp);
8186 		first_mp = mp;
8187 		ipsec_mctl = B_FALSE;
8188 	}
8189 
8190 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8191 	/*
8192 	 * TCP SHOULD check that the TCP sequence number contained in
8193 	 * payload of the ICMP error message is within the range
8194 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8195 	 */
8196 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8197 		/*
8198 		 * The ICMP message is bogus, just drop it.  But if this is
8199 		 * an ICMP too big message, IP has already changed
8200 		 * the ire_max_frag to the bogus value.  We need to change
8201 		 * it back.
8202 		 */
8203 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8204 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8205 			conn_t *connp = tcp->tcp_connp;
8206 			ire_t *ire;
8207 			int flag;
8208 
8209 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8210 				flag = tcp->tcp_ipha->
8211 				    ipha_fragment_offset_and_flags;
8212 			} else {
8213 				flag = 0;
8214 			}
8215 			mutex_enter(&connp->conn_lock);
8216 			if ((ire = connp->conn_ire_cache) != NULL) {
8217 				mutex_enter(&ire->ire_lock);
8218 				mutex_exit(&connp->conn_lock);
8219 				ire->ire_max_frag = tcp->tcp_if_mtu;
8220 				ire->ire_frag_flag |= flag;
8221 				mutex_exit(&ire->ire_lock);
8222 			} else {
8223 				mutex_exit(&connp->conn_lock);
8224 			}
8225 		}
8226 		goto noticmpv4;
8227 	}
8228 
8229 	switch (icmph->icmph_type) {
8230 	case ICMP_DEST_UNREACHABLE:
8231 		switch (icmph->icmph_code) {
8232 		case ICMP_FRAGMENTATION_NEEDED:
8233 			/*
8234 			 * Reduce the MSS based on the new MTU.  This will
8235 			 * eliminate any fragmentation locally.
8236 			 * N.B.  There may well be some funny side-effects on
8237 			 * the local send policy and the remote receive policy.
8238 			 * Pending further research, we provide
8239 			 * tcp_ignore_path_mtu just in case this proves
8240 			 * disastrous somewhere.
8241 			 *
8242 			 * After updating the MSS, retransmit part of the
8243 			 * dropped segment using the new mss by calling
8244 			 * tcp_wput_data().  Need to adjust all those
8245 			 * params to make sure tcp_wput_data() work properly.
8246 			 */
8247 			if (tcps->tcps_ignore_path_mtu ||
8248 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8249 				break;
8250 
8251 			/*
8252 			 * Decrease the MSS by time stamp options
8253 			 * IP options and IPSEC options. tcp_hdr_len
8254 			 * includes time stamp option and IP option
8255 			 * length.  Note that new_mss may be negative
8256 			 * if tcp_ipsec_overhead is large and the
8257 			 * icmph_du_mtu is the minimum value, which is 68.
8258 			 */
8259 			new_mss = ntohs(icmph->icmph_du_mtu) -
8260 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8261 
8262 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8263 			    new_mss);
8264 
8265 			/*
8266 			 * Only update the MSS if the new one is
8267 			 * smaller than the previous one.  This is
8268 			 * to avoid problems when getting multiple
8269 			 * ICMP errors for the same MTU.
8270 			 */
8271 			if (new_mss >= tcp->tcp_mss)
8272 				break;
8273 
8274 			/*
8275 			 * Note that we are using the template header's DF
8276 			 * bit in the fast path sending.  So we need to compare
8277 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8278 			 * And stop doing IPv4 PMTUd if new_mss is less than
8279 			 * MAX(tcps_mss_min, ip_pmtu_min).
8280 			 */
8281 			if (new_mss < tcps->tcps_mss_min ||
8282 			    new_mss < ipst->ips_ip_pmtu_min) {
8283 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8284 				    0;
8285 			}
8286 
8287 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8288 			ASSERT(ratio >= 1);
8289 			tcp_mss_set(tcp, new_mss, B_TRUE);
8290 
8291 			/*
8292 			 * Make sure we have something to
8293 			 * send.
8294 			 */
8295 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8296 			    (tcp->tcp_xmit_head != NULL)) {
8297 				/*
8298 				 * Shrink tcp_cwnd in
8299 				 * proportion to the old MSS/new MSS.
8300 				 */
8301 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8302 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8303 				    (tcp->tcp_unsent == 0)) {
8304 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8305 				} else {
8306 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8307 				}
8308 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8309 				tcp->tcp_rexmit = B_TRUE;
8310 				tcp->tcp_dupack_cnt = 0;
8311 				tcp->tcp_snd_burst = TCP_CWND_SS;
8312 				tcp_ss_rexmit(tcp);
8313 			}
8314 			break;
8315 		case ICMP_PORT_UNREACHABLE:
8316 		case ICMP_PROTOCOL_UNREACHABLE:
8317 			switch (tcp->tcp_state) {
8318 			case TCPS_SYN_SENT:
8319 			case TCPS_SYN_RCVD:
8320 				/*
8321 				 * ICMP can snipe away incipient
8322 				 * TCP connections as long as
8323 				 * seq number is same as initial
8324 				 * send seq number.
8325 				 */
8326 				if (seg_seq == tcp->tcp_iss) {
8327 					(void) tcp_clean_death(tcp,
8328 					    ECONNREFUSED, 6);
8329 				}
8330 				break;
8331 			}
8332 			break;
8333 		case ICMP_HOST_UNREACHABLE:
8334 		case ICMP_NET_UNREACHABLE:
8335 			/* Record the error in case we finally time out. */
8336 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8337 				tcp->tcp_client_errno = EHOSTUNREACH;
8338 			else
8339 				tcp->tcp_client_errno = ENETUNREACH;
8340 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8341 				if (tcp->tcp_listener != NULL &&
8342 				    tcp->tcp_listener->tcp_syn_defense) {
8343 					/*
8344 					 * Ditch the half-open connection if we
8345 					 * suspect a SYN attack is under way.
8346 					 */
8347 					tcp_ip_ire_mark_advice(tcp);
8348 					(void) tcp_clean_death(tcp,
8349 					    tcp->tcp_client_errno, 7);
8350 				}
8351 			}
8352 			break;
8353 		default:
8354 			break;
8355 		}
8356 		break;
8357 	case ICMP_SOURCE_QUENCH: {
8358 		/*
8359 		 * use a global boolean to control
8360 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8361 		 * The default is false.
8362 		 */
8363 		if (tcp_icmp_source_quench) {
8364 			/*
8365 			 * Reduce the sending rate as if we got a
8366 			 * retransmit timeout
8367 			 */
8368 			uint32_t npkt;
8369 
8370 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8371 			    tcp->tcp_mss;
8372 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8373 			tcp->tcp_cwnd = tcp->tcp_mss;
8374 			tcp->tcp_cwnd_cnt = 0;
8375 		}
8376 		break;
8377 	}
8378 	}
8379 	freemsg(first_mp);
8380 }
8381 
8382 /*
8383  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8384  * error messages passed up by IP.
8385  * Assumes that IP has pulled up all the extension headers as well
8386  * as the ICMPv6 header.
8387  */
8388 static void
8389 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8390 {
8391 	icmp6_t *icmp6;
8392 	ip6_t	*ip6h;
8393 	uint16_t	iph_hdr_length;
8394 	tcpha_t	*tcpha;
8395 	uint8_t	*nexthdrp;
8396 	uint32_t new_mss;
8397 	uint32_t ratio;
8398 	boolean_t secure;
8399 	mblk_t *first_mp = mp;
8400 	size_t mp_size;
8401 	uint32_t seg_seq;
8402 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8403 
8404 	/*
8405 	 * The caller has determined if this is an IPSEC_IN packet and
8406 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8407 	 */
8408 	if (ipsec_mctl)
8409 		mp = mp->b_cont;
8410 
8411 	mp_size = MBLKL(mp);
8412 
8413 	/*
8414 	 * Verify that we have a complete IP header. If not, send it upstream.
8415 	 */
8416 	if (mp_size < sizeof (ip6_t)) {
8417 noticmpv6:
8418 		freemsg(first_mp);
8419 		return;
8420 	}
8421 
8422 	/*
8423 	 * Verify this is an ICMPV6 packet, else send it upstream.
8424 	 */
8425 	ip6h = (ip6_t *)mp->b_rptr;
8426 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8427 		iph_hdr_length = IPV6_HDR_LEN;
8428 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8429 	    &nexthdrp) ||
8430 	    *nexthdrp != IPPROTO_ICMPV6) {
8431 		goto noticmpv6;
8432 	}
8433 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8434 	ip6h = (ip6_t *)&icmp6[1];
8435 	/*
8436 	 * Verify if we have a complete ICMP and inner IP header.
8437 	 */
8438 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8439 		goto noticmpv6;
8440 
8441 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8442 		goto noticmpv6;
8443 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8444 	/*
8445 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8446 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8447 	 * packet.
8448 	 */
8449 	if ((*nexthdrp != IPPROTO_TCP) ||
8450 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8451 		goto noticmpv6;
8452 	}
8453 
8454 	/*
8455 	 * ICMP errors come on the right queue or come on
8456 	 * listener/global queue for detached connections and
8457 	 * get switched to the right queue. If it comes on the
8458 	 * right queue, policy check has already been done by IP
8459 	 * and thus free the first_mp without verifying the policy.
8460 	 * If it has come for a non-hard bound connection, we need
8461 	 * to verify policy as IP may not have done it.
8462 	 */
8463 	if (!tcp->tcp_hard_bound) {
8464 		if (ipsec_mctl) {
8465 			secure = ipsec_in_is_secure(first_mp);
8466 		} else {
8467 			secure = B_FALSE;
8468 		}
8469 		if (secure) {
8470 			/*
8471 			 * If we are willing to accept this in clear
8472 			 * we don't have to verify policy.
8473 			 */
8474 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8475 				if (!tcp_check_policy(tcp, first_mp,
8476 				    NULL, ip6h, secure, ipsec_mctl)) {
8477 					/*
8478 					 * tcp_check_policy called
8479 					 * ip_drop_packet() on failure.
8480 					 */
8481 					return;
8482 				}
8483 			}
8484 		}
8485 	} else if (ipsec_mctl) {
8486 		/*
8487 		 * This is a hard_bound connection. IP has already
8488 		 * verified policy. We don't have to do it again.
8489 		 */
8490 		freeb(first_mp);
8491 		first_mp = mp;
8492 		ipsec_mctl = B_FALSE;
8493 	}
8494 
8495 	seg_seq = ntohl(tcpha->tha_seq);
8496 	/*
8497 	 * TCP SHOULD check that the TCP sequence number contained in
8498 	 * payload of the ICMP error message is within the range
8499 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8500 	 */
8501 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8502 		/*
8503 		 * If the ICMP message is bogus, should we kill the
8504 		 * connection, or should we just drop the bogus ICMP
8505 		 * message? It would probably make more sense to just
8506 		 * drop the message so that if this one managed to get
8507 		 * in, the real connection should not suffer.
8508 		 */
8509 		goto noticmpv6;
8510 	}
8511 
8512 	switch (icmp6->icmp6_type) {
8513 	case ICMP6_PACKET_TOO_BIG:
8514 		/*
8515 		 * Reduce the MSS based on the new MTU.  This will
8516 		 * eliminate any fragmentation locally.
8517 		 * N.B.  There may well be some funny side-effects on
8518 		 * the local send policy and the remote receive policy.
8519 		 * Pending further research, we provide
8520 		 * tcp_ignore_path_mtu just in case this proves
8521 		 * disastrous somewhere.
8522 		 *
8523 		 * After updating the MSS, retransmit part of the
8524 		 * dropped segment using the new mss by calling
8525 		 * tcp_wput_data().  Need to adjust all those
8526 		 * params to make sure tcp_wput_data() work properly.
8527 		 */
8528 		if (tcps->tcps_ignore_path_mtu)
8529 			break;
8530 
8531 		/*
8532 		 * Decrease the MSS by time stamp options
8533 		 * IP options and IPSEC options. tcp_hdr_len
8534 		 * includes time stamp option and IP option
8535 		 * length.
8536 		 */
8537 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8538 		    tcp->tcp_ipsec_overhead;
8539 
8540 		/*
8541 		 * Only update the MSS if the new one is
8542 		 * smaller than the previous one.  This is
8543 		 * to avoid problems when getting multiple
8544 		 * ICMP errors for the same MTU.
8545 		 */
8546 		if (new_mss >= tcp->tcp_mss)
8547 			break;
8548 
8549 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8550 		ASSERT(ratio >= 1);
8551 		tcp_mss_set(tcp, new_mss, B_TRUE);
8552 
8553 		/*
8554 		 * Make sure we have something to
8555 		 * send.
8556 		 */
8557 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8558 		    (tcp->tcp_xmit_head != NULL)) {
8559 			/*
8560 			 * Shrink tcp_cwnd in
8561 			 * proportion to the old MSS/new MSS.
8562 			 */
8563 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8564 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8565 			    (tcp->tcp_unsent == 0)) {
8566 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8567 			} else {
8568 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8569 			}
8570 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8571 			tcp->tcp_rexmit = B_TRUE;
8572 			tcp->tcp_dupack_cnt = 0;
8573 			tcp->tcp_snd_burst = TCP_CWND_SS;
8574 			tcp_ss_rexmit(tcp);
8575 		}
8576 		break;
8577 
8578 	case ICMP6_DST_UNREACH:
8579 		switch (icmp6->icmp6_code) {
8580 		case ICMP6_DST_UNREACH_NOPORT:
8581 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8582 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8583 			    (seg_seq == tcp->tcp_iss)) {
8584 				(void) tcp_clean_death(tcp,
8585 				    ECONNREFUSED, 8);
8586 			}
8587 			break;
8588 
8589 		case ICMP6_DST_UNREACH_ADMIN:
8590 		case ICMP6_DST_UNREACH_NOROUTE:
8591 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8592 		case ICMP6_DST_UNREACH_ADDR:
8593 			/* Record the error in case we finally time out. */
8594 			tcp->tcp_client_errno = EHOSTUNREACH;
8595 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8596 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8597 			    (seg_seq == tcp->tcp_iss)) {
8598 				if (tcp->tcp_listener != NULL &&
8599 				    tcp->tcp_listener->tcp_syn_defense) {
8600 					/*
8601 					 * Ditch the half-open connection if we
8602 					 * suspect a SYN attack is under way.
8603 					 */
8604 					tcp_ip_ire_mark_advice(tcp);
8605 					(void) tcp_clean_death(tcp,
8606 					    tcp->tcp_client_errno, 9);
8607 				}
8608 			}
8609 
8610 
8611 			break;
8612 		default:
8613 			break;
8614 		}
8615 		break;
8616 
8617 	case ICMP6_PARAM_PROB:
8618 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8619 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8620 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8621 		    (uchar_t *)nexthdrp) {
8622 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8623 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8624 				(void) tcp_clean_death(tcp,
8625 				    ECONNREFUSED, 10);
8626 			}
8627 			break;
8628 		}
8629 		break;
8630 
8631 	case ICMP6_TIME_EXCEEDED:
8632 	default:
8633 		break;
8634 	}
8635 	freemsg(first_mp);
8636 }
8637 
8638 /*
8639  * Notify IP that we are having trouble with this connection.  IP should
8640  * blow the IRE away and start over.
8641  */
8642 static void
8643 tcp_ip_notify(tcp_t *tcp)
8644 {
8645 	struct iocblk	*iocp;
8646 	ipid_t	*ipid;
8647 	mblk_t	*mp;
8648 
8649 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8650 	if (tcp->tcp_ipversion == IPV6_VERSION)
8651 		return;
8652 
8653 	mp = mkiocb(IP_IOCTL);
8654 	if (mp == NULL)
8655 		return;
8656 
8657 	iocp = (struct iocblk *)mp->b_rptr;
8658 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8659 
8660 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8661 	if (!mp->b_cont) {
8662 		freeb(mp);
8663 		return;
8664 	}
8665 
8666 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8667 	mp->b_cont->b_wptr += iocp->ioc_count;
8668 	bzero(ipid, sizeof (*ipid));
8669 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8670 	ipid->ipid_ire_type = IRE_CACHE;
8671 	ipid->ipid_addr_offset = sizeof (ipid_t);
8672 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8673 	/*
8674 	 * Note: in the case of source routing we want to blow away the
8675 	 * route to the first source route hop.
8676 	 */
8677 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8678 	    sizeof (tcp->tcp_ipha->ipha_dst));
8679 
8680 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8681 }
8682 
8683 /* Unlink and return any mblk that looks like it contains an ire */
8684 static mblk_t *
8685 tcp_ire_mp(mblk_t **mpp)
8686 {
8687 	mblk_t 	*mp = *mpp;
8688 	mblk_t	*prev_mp = NULL;
8689 
8690 	for (;;) {
8691 		switch (DB_TYPE(mp)) {
8692 		case IRE_DB_TYPE:
8693 		case IRE_DB_REQ_TYPE:
8694 			if (mp == *mpp) {
8695 				*mpp = mp->b_cont;
8696 			} else {
8697 				prev_mp->b_cont = mp->b_cont;
8698 			}
8699 			mp->b_cont = NULL;
8700 			return (mp);
8701 		default:
8702 			break;
8703 		}
8704 		prev_mp = mp;
8705 		mp = mp->b_cont;
8706 		if (mp == NULL)
8707 			break;
8708 	}
8709 	return (mp);
8710 }
8711 
8712 /*
8713  * Timer callback routine for keepalive probe.  We do a fake resend of
8714  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8715  * check to see if we have heard anything from the other end for the last
8716  * RTO period.  If we have, set the timer to expire for another
8717  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8718  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8719  * the timeout if we have not heard from the other side.  If for more than
8720  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8721  * kill the connection unless the keepalive abort threshold is 0.  In
8722  * that case, we will probe "forever."
8723  */
8724 static void
8725 tcp_keepalive_killer(void *arg)
8726 {
8727 	mblk_t	*mp;
8728 	conn_t	*connp = (conn_t *)arg;
8729 	tcp_t  	*tcp = connp->conn_tcp;
8730 	int32_t	firetime;
8731 	int32_t	idletime;
8732 	int32_t	ka_intrvl;
8733 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8734 
8735 	tcp->tcp_ka_tid = 0;
8736 
8737 	if (tcp->tcp_fused)
8738 		return;
8739 
8740 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8741 	ka_intrvl = tcp->tcp_ka_interval;
8742 
8743 	/*
8744 	 * Keepalive probe should only be sent if the application has not
8745 	 * done a close on the connection.
8746 	 */
8747 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8748 		return;
8749 	}
8750 	/* Timer fired too early, restart it. */
8751 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8752 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8753 		    MSEC_TO_TICK(ka_intrvl));
8754 		return;
8755 	}
8756 
8757 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8758 	/*
8759 	 * If we have not heard from the other side for a long
8760 	 * time, kill the connection unless the keepalive abort
8761 	 * threshold is 0.  In that case, we will probe "forever."
8762 	 */
8763 	if (tcp->tcp_ka_abort_thres != 0 &&
8764 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8765 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8766 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8767 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8768 		return;
8769 	}
8770 
8771 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8772 	    idletime >= ka_intrvl) {
8773 		/* Fake resend of last ACKed byte. */
8774 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8775 
8776 		if (mp1 != NULL) {
8777 			*mp1->b_wptr++ = '\0';
8778 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8779 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8780 			freeb(mp1);
8781 			/*
8782 			 * if allocation failed, fall through to start the
8783 			 * timer back.
8784 			 */
8785 			if (mp != NULL) {
8786 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8787 				BUMP_MIB(&tcps->tcps_mib,
8788 				    tcpTimKeepaliveProbe);
8789 				if (tcp->tcp_ka_last_intrvl != 0) {
8790 					int max;
8791 					/*
8792 					 * We should probe again at least
8793 					 * in ka_intrvl, but not more than
8794 					 * tcp_rexmit_interval_max.
8795 					 */
8796 					max = tcps->tcps_rexmit_interval_max;
8797 					firetime = MIN(ka_intrvl - 1,
8798 					    tcp->tcp_ka_last_intrvl << 1);
8799 					if (firetime > max)
8800 						firetime = max;
8801 				} else {
8802 					firetime = tcp->tcp_rto;
8803 				}
8804 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8805 				    tcp_keepalive_killer,
8806 				    MSEC_TO_TICK(firetime));
8807 				tcp->tcp_ka_last_intrvl = firetime;
8808 				return;
8809 			}
8810 		}
8811 	} else {
8812 		tcp->tcp_ka_last_intrvl = 0;
8813 	}
8814 
8815 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8816 	if ((firetime = ka_intrvl - idletime) < 0) {
8817 		firetime = ka_intrvl;
8818 	}
8819 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8820 	    MSEC_TO_TICK(firetime));
8821 }
8822 
8823 int
8824 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8825 {
8826 	queue_t	*q = tcp->tcp_rq;
8827 	int32_t	mss = tcp->tcp_mss;
8828 	int	maxpsz;
8829 	conn_t	*connp = tcp->tcp_connp;
8830 
8831 	if (TCP_IS_DETACHED(tcp))
8832 		return (mss);
8833 	if (tcp->tcp_fused) {
8834 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8835 		mss = INFPSZ;
8836 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8837 		/*
8838 		 * Set the sd_qn_maxpsz according to the socket send buffer
8839 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8840 		 * instruct the stream head to copyin user data into contiguous
8841 		 * kernel-allocated buffers without breaking it up into smaller
8842 		 * chunks.  We round up the buffer size to the nearest SMSS.
8843 		 */
8844 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8845 		if (tcp->tcp_kssl_ctx == NULL)
8846 			mss = INFPSZ;
8847 		else
8848 			mss = SSL3_MAX_RECORD_LEN;
8849 	} else {
8850 		/*
8851 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8852 		 * (and a multiple of the mss).  This instructs the stream
8853 		 * head to break down larger than SMSS writes into SMSS-
8854 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8855 		 */
8856 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8857 		maxpsz = tcp->tcp_maxpsz * mss;
8858 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8859 			maxpsz = tcp->tcp_xmit_hiwater/2;
8860 			/* Round up to nearest mss */
8861 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8862 		}
8863 	}
8864 
8865 	(void) proto_set_maxpsz(q, connp, maxpsz);
8866 	if (!(IPCL_IS_NONSTR(connp))) {
8867 		/* XXX do it in set_maxpsz()? */
8868 		tcp->tcp_wq->q_maxpsz = maxpsz;
8869 	}
8870 
8871 	if (set_maxblk)
8872 		(void) proto_set_tx_maxblk(q, connp, mss);
8873 	return (mss);
8874 }
8875 
8876 /*
8877  * Extract option values from a tcp header.  We put any found values into the
8878  * tcpopt struct and return a bitmask saying which options were found.
8879  */
8880 static int
8881 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8882 {
8883 	uchar_t		*endp;
8884 	int		len;
8885 	uint32_t	mss;
8886 	uchar_t		*up = (uchar_t *)tcph;
8887 	int		found = 0;
8888 	int32_t		sack_len;
8889 	tcp_seq		sack_begin, sack_end;
8890 	tcp_t		*tcp;
8891 
8892 	endp = up + TCP_HDR_LENGTH(tcph);
8893 	up += TCP_MIN_HEADER_LENGTH;
8894 	while (up < endp) {
8895 		len = endp - up;
8896 		switch (*up) {
8897 		case TCPOPT_EOL:
8898 			break;
8899 
8900 		case TCPOPT_NOP:
8901 			up++;
8902 			continue;
8903 
8904 		case TCPOPT_MAXSEG:
8905 			if (len < TCPOPT_MAXSEG_LEN ||
8906 			    up[1] != TCPOPT_MAXSEG_LEN)
8907 				break;
8908 
8909 			mss = BE16_TO_U16(up+2);
8910 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
8911 			tcpopt->tcp_opt_mss = mss;
8912 			found |= TCP_OPT_MSS_PRESENT;
8913 
8914 			up += TCPOPT_MAXSEG_LEN;
8915 			continue;
8916 
8917 		case TCPOPT_WSCALE:
8918 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
8919 				break;
8920 
8921 			if (up[2] > TCP_MAX_WINSHIFT)
8922 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
8923 			else
8924 				tcpopt->tcp_opt_wscale = up[2];
8925 			found |= TCP_OPT_WSCALE_PRESENT;
8926 
8927 			up += TCPOPT_WS_LEN;
8928 			continue;
8929 
8930 		case TCPOPT_SACK_PERMITTED:
8931 			if (len < TCPOPT_SACK_OK_LEN ||
8932 			    up[1] != TCPOPT_SACK_OK_LEN)
8933 				break;
8934 			found |= TCP_OPT_SACK_OK_PRESENT;
8935 			up += TCPOPT_SACK_OK_LEN;
8936 			continue;
8937 
8938 		case TCPOPT_SACK:
8939 			if (len <= 2 || up[1] <= 2 || len < up[1])
8940 				break;
8941 
8942 			/* If TCP is not interested in SACK blks... */
8943 			if ((tcp = tcpopt->tcp) == NULL) {
8944 				up += up[1];
8945 				continue;
8946 			}
8947 			sack_len = up[1] - TCPOPT_HEADER_LEN;
8948 			up += TCPOPT_HEADER_LEN;
8949 
8950 			/*
8951 			 * If the list is empty, allocate one and assume
8952 			 * nothing is sack'ed.
8953 			 */
8954 			ASSERT(tcp->tcp_sack_info != NULL);
8955 			if (tcp->tcp_notsack_list == NULL) {
8956 				tcp_notsack_update(&(tcp->tcp_notsack_list),
8957 				    tcp->tcp_suna, tcp->tcp_snxt,
8958 				    &(tcp->tcp_num_notsack_blk),
8959 				    &(tcp->tcp_cnt_notsack_list));
8960 
8961 				/*
8962 				 * Make sure tcp_notsack_list is not NULL.
8963 				 * This happens when kmem_alloc(KM_NOSLEEP)
8964 				 * returns NULL.
8965 				 */
8966 				if (tcp->tcp_notsack_list == NULL) {
8967 					up += sack_len;
8968 					continue;
8969 				}
8970 				tcp->tcp_fack = tcp->tcp_suna;
8971 			}
8972 
8973 			while (sack_len > 0) {
8974 				if (up + 8 > endp) {
8975 					up = endp;
8976 					break;
8977 				}
8978 				sack_begin = BE32_TO_U32(up);
8979 				up += 4;
8980 				sack_end = BE32_TO_U32(up);
8981 				up += 4;
8982 				sack_len -= 8;
8983 				/*
8984 				 * Bounds checking.  Make sure the SACK
8985 				 * info is within tcp_suna and tcp_snxt.
8986 				 * If this SACK blk is out of bound, ignore
8987 				 * it but continue to parse the following
8988 				 * blks.
8989 				 */
8990 				if (SEQ_LEQ(sack_end, sack_begin) ||
8991 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
8992 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
8993 					continue;
8994 				}
8995 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
8996 				    sack_begin, sack_end,
8997 				    &(tcp->tcp_num_notsack_blk),
8998 				    &(tcp->tcp_cnt_notsack_list));
8999 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9000 					tcp->tcp_fack = sack_end;
9001 				}
9002 			}
9003 			found |= TCP_OPT_SACK_PRESENT;
9004 			continue;
9005 
9006 		case TCPOPT_TSTAMP:
9007 			if (len < TCPOPT_TSTAMP_LEN ||
9008 			    up[1] != TCPOPT_TSTAMP_LEN)
9009 				break;
9010 
9011 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9012 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9013 
9014 			found |= TCP_OPT_TSTAMP_PRESENT;
9015 
9016 			up += TCPOPT_TSTAMP_LEN;
9017 			continue;
9018 
9019 		default:
9020 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9021 				break;
9022 			up += up[1];
9023 			continue;
9024 		}
9025 		break;
9026 	}
9027 	return (found);
9028 }
9029 
9030 /*
9031  * Set the mss associated with a particular tcp based on its current value,
9032  * and a new one passed in. Observe minimums and maximums, and reset
9033  * other state variables that we want to view as multiples of mss.
9034  *
9035  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9036  * highwater marks etc. need to be initialized or adjusted.
9037  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9038  *    packet arrives.
9039  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9040  *    ICMP6_PACKET_TOO_BIG arrives.
9041  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9042  *    to increase the MSS to use the extra bytes available.
9043  *
9044  * Callers except tcp_paws_check() ensure that they only reduce mss.
9045  */
9046 static void
9047 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9048 {
9049 	uint32_t	mss_max;
9050 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9051 
9052 	if (tcp->tcp_ipversion == IPV4_VERSION)
9053 		mss_max = tcps->tcps_mss_max_ipv4;
9054 	else
9055 		mss_max = tcps->tcps_mss_max_ipv6;
9056 
9057 	if (mss < tcps->tcps_mss_min)
9058 		mss = tcps->tcps_mss_min;
9059 	if (mss > mss_max)
9060 		mss = mss_max;
9061 	/*
9062 	 * Unless naglim has been set by our client to
9063 	 * a non-mss value, force naglim to track mss.
9064 	 * This can help to aggregate small writes.
9065 	 */
9066 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9067 		tcp->tcp_naglim = mss;
9068 	/*
9069 	 * TCP should be able to buffer at least 4 MSS data for obvious
9070 	 * performance reason.
9071 	 */
9072 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9073 		tcp->tcp_xmit_hiwater = mss << 2;
9074 
9075 	if (do_ss) {
9076 		/*
9077 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9078 		 * changing due to a reduction in MTU, presumably as a
9079 		 * result of a new path component, reset cwnd to its
9080 		 * "initial" value, as a multiple of the new mss.
9081 		 */
9082 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9083 	} else {
9084 		/*
9085 		 * Called by tcp_paws_check(), the mss increased
9086 		 * marginally to allow use of space previously taken
9087 		 * by the timestamp option. It would be inappropriate
9088 		 * to apply slow start or tcp_init_cwnd values to
9089 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9090 		 */
9091 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9092 		tcp->tcp_cwnd_cnt = 0;
9093 	}
9094 	tcp->tcp_mss = mss;
9095 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9096 }
9097 
9098 /* For /dev/tcp aka AF_INET open */
9099 static int
9100 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9101 {
9102 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9103 }
9104 
9105 /* For /dev/tcp6 aka AF_INET6 open */
9106 static int
9107 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9108 {
9109 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9110 }
9111 
9112 static conn_t *
9113 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9114     boolean_t issocket, int *errorp)
9115 {
9116 	tcp_t		*tcp = NULL;
9117 	conn_t		*connp;
9118 	int		err;
9119 	zoneid_t	zoneid;
9120 	tcp_stack_t	*tcps;
9121 	squeue_t	*sqp;
9122 
9123 	ASSERT(errorp != NULL);
9124 	/*
9125 	 * Find the proper zoneid and netstack.
9126 	 */
9127 	/*
9128 	 * Special case for install: miniroot needs to be able to
9129 	 * access files via NFS as though it were always in the
9130 	 * global zone.
9131 	 */
9132 	if (credp == kcred && nfs_global_client_only != 0) {
9133 		zoneid = GLOBAL_ZONEID;
9134 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9135 		    netstack_tcp;
9136 		ASSERT(tcps != NULL);
9137 	} else {
9138 		netstack_t *ns;
9139 
9140 		ns = netstack_find_by_cred(credp);
9141 		ASSERT(ns != NULL);
9142 		tcps = ns->netstack_tcp;
9143 		ASSERT(tcps != NULL);
9144 
9145 		/*
9146 		 * For exclusive stacks we set the zoneid to zero
9147 		 * to make TCP operate as if in the global zone.
9148 		 */
9149 		if (tcps->tcps_netstack->netstack_stackid !=
9150 		    GLOBAL_NETSTACKID)
9151 			zoneid = GLOBAL_ZONEID;
9152 		else
9153 			zoneid = crgetzoneid(credp);
9154 	}
9155 	/*
9156 	 * For stackid zero this is done from strplumb.c, but
9157 	 * non-zero stackids are handled here.
9158 	 */
9159 	if (tcps->tcps_g_q == NULL &&
9160 	    tcps->tcps_netstack->netstack_stackid !=
9161 	    GLOBAL_NETSTACKID) {
9162 		tcp_g_q_setup(tcps);
9163 	}
9164 
9165 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9166 	connp = (conn_t *)tcp_get_conn(sqp, tcps, q != NULL ? B_TRUE : B_FALSE);
9167 	/*
9168 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9169 	 * so we drop it by one.
9170 	 */
9171 	netstack_rele(tcps->tcps_netstack);
9172 	if (connp == NULL) {
9173 		*errorp = ENOSR;
9174 		return (NULL);
9175 	}
9176 	connp->conn_sqp = sqp;
9177 	connp->conn_initial_sqp = connp->conn_sqp;
9178 	tcp = connp->conn_tcp;
9179 
9180 	if (isv6) {
9181 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9182 		connp->conn_send = ip_output_v6;
9183 		connp->conn_af_isv6 = B_TRUE;
9184 		connp->conn_pkt_isv6 = B_TRUE;
9185 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9186 		tcp->tcp_ipversion = IPV6_VERSION;
9187 		tcp->tcp_family = AF_INET6;
9188 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9189 	} else {
9190 		connp->conn_flags |= IPCL_TCP4;
9191 		connp->conn_send = ip_output;
9192 		connp->conn_af_isv6 = B_FALSE;
9193 		connp->conn_pkt_isv6 = B_FALSE;
9194 		tcp->tcp_ipversion = IPV4_VERSION;
9195 		tcp->tcp_family = AF_INET;
9196 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9197 	}
9198 
9199 	/*
9200 	 * TCP keeps a copy of cred for cache locality reasons but
9201 	 * we put a reference only once. If connp->conn_cred
9202 	 * becomes invalid, tcp_cred should also be set to NULL.
9203 	 */
9204 	tcp->tcp_cred = connp->conn_cred = credp;
9205 	crhold(connp->conn_cred);
9206 	tcp->tcp_cpid = curproc->p_pid;
9207 	tcp->tcp_open_time = lbolt64;
9208 	connp->conn_zoneid = zoneid;
9209 	connp->conn_mlp_type = mlptSingle;
9210 	connp->conn_ulp_labeled = !is_system_labeled();
9211 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9212 	ASSERT(tcp->tcp_tcps == tcps);
9213 
9214 	/*
9215 	 * If the caller has the process-wide flag set, then default to MAC
9216 	 * exempt mode.  This allows read-down to unlabeled hosts.
9217 	 */
9218 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9219 		connp->conn_mac_exempt = B_TRUE;
9220 
9221 	connp->conn_dev = NULL;
9222 	if (issocket) {
9223 		connp->conn_flags |= IPCL_SOCKET;
9224 		tcp->tcp_issocket = 1;
9225 	}
9226 
9227 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9228 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9229 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9230 
9231 	/* Non-zero default values */
9232 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9233 
9234 	if (q == NULL) {
9235 		/*
9236 		 * Create a helper stream for non-STREAMS socket.
9237 		 */
9238 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9239 		if (err != 0) {
9240 			ip1dbg(("tcp_create_common: create of IP helper stream "
9241 			    "failed\n"));
9242 			CONN_DEC_REF(connp);
9243 			*errorp = err;
9244 			return (NULL);
9245 		}
9246 		q = connp->conn_rq;
9247 	} else {
9248 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9249 	}
9250 
9251 	SOCK_CONNID_INIT(tcp->tcp_connid);
9252 	err = tcp_init(tcp, q);
9253 	if (err != 0) {
9254 		CONN_DEC_REF(connp);
9255 		*errorp = err;
9256 		return (NULL);
9257 	}
9258 
9259 	return (connp);
9260 }
9261 
9262 static int
9263 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9264     boolean_t isv6)
9265 {
9266 	tcp_t		*tcp = NULL;
9267 	conn_t		*connp = NULL;
9268 	int		err;
9269 	vmem_t		*minor_arena = NULL;
9270 	dev_t		conn_dev;
9271 	boolean_t	issocket;
9272 
9273 	if (q->q_ptr != NULL)
9274 		return (0);
9275 
9276 	if (sflag == MODOPEN)
9277 		return (EINVAL);
9278 
9279 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9280 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9281 		minor_arena = ip_minor_arena_la;
9282 	} else {
9283 		/*
9284 		 * Either minor numbers in the large arena were exhausted
9285 		 * or a non socket application is doing the open.
9286 		 * Try to allocate from the small arena.
9287 		 */
9288 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9289 			return (EBUSY);
9290 		}
9291 		minor_arena = ip_minor_arena_sa;
9292 	}
9293 
9294 	ASSERT(minor_arena != NULL);
9295 
9296 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9297 
9298 	if (flag & SO_FALLBACK) {
9299 		/*
9300 		 * Non streams socket needs a stream to fallback to
9301 		 */
9302 		RD(q)->q_ptr = (void *)conn_dev;
9303 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9304 		WR(q)->q_ptr = (void *)minor_arena;
9305 		qprocson(q);
9306 		return (0);
9307 	} else if (flag & SO_ACCEPTOR) {
9308 		q->q_qinfo = &tcp_acceptor_rinit;
9309 		/*
9310 		 * the conn_dev and minor_arena will be subsequently used by
9311 		 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out
9312 		 * the minor device number for this connection from the q_ptr.
9313 		 */
9314 		RD(q)->q_ptr = (void *)conn_dev;
9315 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9316 		WR(q)->q_ptr = (void *)minor_arena;
9317 		qprocson(q);
9318 		return (0);
9319 	}
9320 
9321 	issocket = flag & SO_SOCKSTR;
9322 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9323 
9324 	if (connp == NULL) {
9325 		inet_minor_free(minor_arena, conn_dev);
9326 		q->q_ptr = WR(q)->q_ptr = NULL;
9327 		return (err);
9328 	}
9329 
9330 	q->q_ptr = WR(q)->q_ptr = connp;
9331 
9332 	connp->conn_dev = conn_dev;
9333 	connp->conn_minor_arena = minor_arena;
9334 
9335 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9336 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9337 
9338 	tcp = connp->conn_tcp;
9339 
9340 	if (issocket) {
9341 		WR(q)->q_qinfo = &tcp_sock_winit;
9342 	} else {
9343 #ifdef  _ILP32
9344 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9345 #else
9346 		tcp->tcp_acceptor_id = conn_dev;
9347 #endif  /* _ILP32 */
9348 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9349 	}
9350 
9351 	/*
9352 	 * Put the ref for TCP. Ref for IP was already put
9353 	 * by ipcl_conn_create. Also Make the conn_t globally
9354 	 * visible to walkers
9355 	 */
9356 	mutex_enter(&connp->conn_lock);
9357 	CONN_INC_REF_LOCKED(connp);
9358 	ASSERT(connp->conn_ref == 2);
9359 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9360 	mutex_exit(&connp->conn_lock);
9361 
9362 	qprocson(q);
9363 	return (0);
9364 }
9365 
9366 /*
9367  * Some TCP options can be "set" by requesting them in the option
9368  * buffer. This is needed for XTI feature test though we do not
9369  * allow it in general. We interpret that this mechanism is more
9370  * applicable to OSI protocols and need not be allowed in general.
9371  * This routine filters out options for which it is not allowed (most)
9372  * and lets through those (few) for which it is. [ The XTI interface
9373  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9374  * ever implemented will have to be allowed here ].
9375  */
9376 static boolean_t
9377 tcp_allow_connopt_set(int level, int name)
9378 {
9379 
9380 	switch (level) {
9381 	case IPPROTO_TCP:
9382 		switch (name) {
9383 		case TCP_NODELAY:
9384 			return (B_TRUE);
9385 		default:
9386 			return (B_FALSE);
9387 		}
9388 		/*NOTREACHED*/
9389 	default:
9390 		return (B_FALSE);
9391 	}
9392 	/*NOTREACHED*/
9393 }
9394 
9395 /*
9396  * this routine gets default values of certain options whose default
9397  * values are maintained by protocol specific code
9398  */
9399 /* ARGSUSED */
9400 int
9401 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9402 {
9403 	int32_t	*i1 = (int32_t *)ptr;
9404 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9405 
9406 	switch (level) {
9407 	case IPPROTO_TCP:
9408 		switch (name) {
9409 		case TCP_NOTIFY_THRESHOLD:
9410 			*i1 = tcps->tcps_ip_notify_interval;
9411 			break;
9412 		case TCP_ABORT_THRESHOLD:
9413 			*i1 = tcps->tcps_ip_abort_interval;
9414 			break;
9415 		case TCP_CONN_NOTIFY_THRESHOLD:
9416 			*i1 = tcps->tcps_ip_notify_cinterval;
9417 			break;
9418 		case TCP_CONN_ABORT_THRESHOLD:
9419 			*i1 = tcps->tcps_ip_abort_cinterval;
9420 			break;
9421 		default:
9422 			return (-1);
9423 		}
9424 		break;
9425 	case IPPROTO_IP:
9426 		switch (name) {
9427 		case IP_TTL:
9428 			*i1 = tcps->tcps_ipv4_ttl;
9429 			break;
9430 		default:
9431 			return (-1);
9432 		}
9433 		break;
9434 	case IPPROTO_IPV6:
9435 		switch (name) {
9436 		case IPV6_UNICAST_HOPS:
9437 			*i1 = tcps->tcps_ipv6_hoplimit;
9438 			break;
9439 		default:
9440 			return (-1);
9441 		}
9442 		break;
9443 	default:
9444 		return (-1);
9445 	}
9446 	return (sizeof (int));
9447 }
9448 
9449 static int
9450 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9451 {
9452 	int		*i1 = (int *)ptr;
9453 	tcp_t		*tcp = connp->conn_tcp;
9454 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9455 
9456 	switch (level) {
9457 	case SOL_SOCKET:
9458 		switch (name) {
9459 		case SO_LINGER:	{
9460 			struct linger *lgr = (struct linger *)ptr;
9461 
9462 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9463 			lgr->l_linger = tcp->tcp_lingertime;
9464 			}
9465 			return (sizeof (struct linger));
9466 		case SO_DEBUG:
9467 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9468 			break;
9469 		case SO_KEEPALIVE:
9470 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9471 			break;
9472 		case SO_DONTROUTE:
9473 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9474 			break;
9475 		case SO_USELOOPBACK:
9476 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9477 			break;
9478 		case SO_BROADCAST:
9479 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9480 			break;
9481 		case SO_REUSEADDR:
9482 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9483 			break;
9484 		case SO_OOBINLINE:
9485 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9486 			break;
9487 		case SO_DGRAM_ERRIND:
9488 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9489 			break;
9490 		case SO_TYPE:
9491 			*i1 = SOCK_STREAM;
9492 			break;
9493 		case SO_SNDBUF:
9494 			*i1 = tcp->tcp_xmit_hiwater;
9495 			break;
9496 		case SO_RCVBUF:
9497 			*i1 = tcp->tcp_recv_hiwater;
9498 			break;
9499 		case SO_SND_COPYAVOID:
9500 			*i1 = tcp->tcp_snd_zcopy_on ?
9501 			    SO_SND_COPYAVOID : 0;
9502 			break;
9503 		case SO_ALLZONES:
9504 			*i1 = connp->conn_allzones ? 1 : 0;
9505 			break;
9506 		case SO_ANON_MLP:
9507 			*i1 = connp->conn_anon_mlp;
9508 			break;
9509 		case SO_MAC_EXEMPT:
9510 			*i1 = connp->conn_mac_exempt;
9511 			break;
9512 		case SO_EXCLBIND:
9513 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9514 			break;
9515 		case SO_PROTOTYPE:
9516 			*i1 = IPPROTO_TCP;
9517 			break;
9518 		case SO_DOMAIN:
9519 			*i1 = tcp->tcp_family;
9520 			break;
9521 		case SO_ACCEPTCONN:
9522 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9523 		default:
9524 			return (-1);
9525 		}
9526 		break;
9527 	case IPPROTO_TCP:
9528 		switch (name) {
9529 		case TCP_NODELAY:
9530 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9531 			break;
9532 		case TCP_MAXSEG:
9533 			*i1 = tcp->tcp_mss;
9534 			break;
9535 		case TCP_NOTIFY_THRESHOLD:
9536 			*i1 = (int)tcp->tcp_first_timer_threshold;
9537 			break;
9538 		case TCP_ABORT_THRESHOLD:
9539 			*i1 = tcp->tcp_second_timer_threshold;
9540 			break;
9541 		case TCP_CONN_NOTIFY_THRESHOLD:
9542 			*i1 = tcp->tcp_first_ctimer_threshold;
9543 			break;
9544 		case TCP_CONN_ABORT_THRESHOLD:
9545 			*i1 = tcp->tcp_second_ctimer_threshold;
9546 			break;
9547 		case TCP_RECVDSTADDR:
9548 			*i1 = tcp->tcp_recvdstaddr;
9549 			break;
9550 		case TCP_ANONPRIVBIND:
9551 			*i1 = tcp->tcp_anon_priv_bind;
9552 			break;
9553 		case TCP_EXCLBIND:
9554 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9555 			break;
9556 		case TCP_INIT_CWND:
9557 			*i1 = tcp->tcp_init_cwnd;
9558 			break;
9559 		case TCP_KEEPALIVE_THRESHOLD:
9560 			*i1 = tcp->tcp_ka_interval;
9561 			break;
9562 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9563 			*i1 = tcp->tcp_ka_abort_thres;
9564 			break;
9565 		case TCP_CORK:
9566 			*i1 = tcp->tcp_cork;
9567 			break;
9568 		default:
9569 			return (-1);
9570 		}
9571 		break;
9572 	case IPPROTO_IP:
9573 		if (tcp->tcp_family != AF_INET)
9574 			return (-1);
9575 		switch (name) {
9576 		case IP_OPTIONS:
9577 		case T_IP_OPTIONS: {
9578 			/*
9579 			 * This is compatible with BSD in that in only return
9580 			 * the reverse source route with the final destination
9581 			 * as the last entry. The first 4 bytes of the option
9582 			 * will contain the final destination.
9583 			 */
9584 			int	opt_len;
9585 
9586 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9587 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9588 			ASSERT(opt_len >= 0);
9589 			/* Caller ensures enough space */
9590 			if (opt_len > 0) {
9591 				/*
9592 				 * TODO: Do we have to handle getsockopt on an
9593 				 * initiator as well?
9594 				 */
9595 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9596 			}
9597 			return (0);
9598 			}
9599 		case IP_TOS:
9600 		case T_IP_TOS:
9601 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9602 			break;
9603 		case IP_TTL:
9604 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9605 			break;
9606 		case IP_NEXTHOP:
9607 			/* Handled at IP level */
9608 			return (-EINVAL);
9609 		default:
9610 			return (-1);
9611 		}
9612 		break;
9613 	case IPPROTO_IPV6:
9614 		/*
9615 		 * IPPROTO_IPV6 options are only supported for sockets
9616 		 * that are using IPv6 on the wire.
9617 		 */
9618 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9619 			return (-1);
9620 		}
9621 		switch (name) {
9622 		case IPV6_UNICAST_HOPS:
9623 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9624 			break;	/* goto sizeof (int) option return */
9625 		case IPV6_BOUND_IF:
9626 			/* Zero if not set */
9627 			*i1 = tcp->tcp_bound_if;
9628 			break;	/* goto sizeof (int) option return */
9629 		case IPV6_RECVPKTINFO:
9630 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9631 				*i1 = 1;
9632 			else
9633 				*i1 = 0;
9634 			break;	/* goto sizeof (int) option return */
9635 		case IPV6_RECVTCLASS:
9636 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9637 				*i1 = 1;
9638 			else
9639 				*i1 = 0;
9640 			break;	/* goto sizeof (int) option return */
9641 		case IPV6_RECVHOPLIMIT:
9642 			if (tcp->tcp_ipv6_recvancillary &
9643 			    TCP_IPV6_RECVHOPLIMIT)
9644 				*i1 = 1;
9645 			else
9646 				*i1 = 0;
9647 			break;	/* goto sizeof (int) option return */
9648 		case IPV6_RECVHOPOPTS:
9649 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9650 				*i1 = 1;
9651 			else
9652 				*i1 = 0;
9653 			break;	/* goto sizeof (int) option return */
9654 		case IPV6_RECVDSTOPTS:
9655 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9656 				*i1 = 1;
9657 			else
9658 				*i1 = 0;
9659 			break;	/* goto sizeof (int) option return */
9660 		case _OLD_IPV6_RECVDSTOPTS:
9661 			if (tcp->tcp_ipv6_recvancillary &
9662 			    TCP_OLD_IPV6_RECVDSTOPTS)
9663 				*i1 = 1;
9664 			else
9665 				*i1 = 0;
9666 			break;	/* goto sizeof (int) option return */
9667 		case IPV6_RECVRTHDR:
9668 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9669 				*i1 = 1;
9670 			else
9671 				*i1 = 0;
9672 			break;	/* goto sizeof (int) option return */
9673 		case IPV6_RECVRTHDRDSTOPTS:
9674 			if (tcp->tcp_ipv6_recvancillary &
9675 			    TCP_IPV6_RECVRTDSTOPTS)
9676 				*i1 = 1;
9677 			else
9678 				*i1 = 0;
9679 			break;	/* goto sizeof (int) option return */
9680 		case IPV6_PKTINFO: {
9681 			/* XXX assumes that caller has room for max size! */
9682 			struct in6_pktinfo *pkti;
9683 
9684 			pkti = (struct in6_pktinfo *)ptr;
9685 			if (ipp->ipp_fields & IPPF_IFINDEX)
9686 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9687 			else
9688 				pkti->ipi6_ifindex = 0;
9689 			if (ipp->ipp_fields & IPPF_ADDR)
9690 				pkti->ipi6_addr = ipp->ipp_addr;
9691 			else
9692 				pkti->ipi6_addr = ipv6_all_zeros;
9693 			return (sizeof (struct in6_pktinfo));
9694 		}
9695 		case IPV6_TCLASS:
9696 			if (ipp->ipp_fields & IPPF_TCLASS)
9697 				*i1 = ipp->ipp_tclass;
9698 			else
9699 				*i1 = IPV6_FLOW_TCLASS(
9700 				    IPV6_DEFAULT_VERS_AND_FLOW);
9701 			break;	/* goto sizeof (int) option return */
9702 		case IPV6_NEXTHOP: {
9703 			sin6_t *sin6 = (sin6_t *)ptr;
9704 
9705 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9706 				return (0);
9707 			*sin6 = sin6_null;
9708 			sin6->sin6_family = AF_INET6;
9709 			sin6->sin6_addr = ipp->ipp_nexthop;
9710 			return (sizeof (sin6_t));
9711 		}
9712 		case IPV6_HOPOPTS:
9713 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9714 				return (0);
9715 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9716 				return (0);
9717 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9718 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9719 			if (tcp->tcp_label_len > 0) {
9720 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9721 				ptr[1] = (ipp->ipp_hopoptslen -
9722 				    tcp->tcp_label_len + 7) / 8 - 1;
9723 			}
9724 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9725 		case IPV6_RTHDRDSTOPTS:
9726 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9727 				return (0);
9728 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9729 			return (ipp->ipp_rtdstoptslen);
9730 		case IPV6_RTHDR:
9731 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9732 				return (0);
9733 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9734 			return (ipp->ipp_rthdrlen);
9735 		case IPV6_DSTOPTS:
9736 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9737 				return (0);
9738 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9739 			return (ipp->ipp_dstoptslen);
9740 		case IPV6_SRC_PREFERENCES:
9741 			return (ip6_get_src_preferences(connp,
9742 			    (uint32_t *)ptr));
9743 		case IPV6_PATHMTU: {
9744 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9745 
9746 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9747 				return (-1);
9748 
9749 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9750 			    connp->conn_fport, mtuinfo,
9751 			    connp->conn_netstack));
9752 		}
9753 		default:
9754 			return (-1);
9755 		}
9756 		break;
9757 	default:
9758 		return (-1);
9759 	}
9760 	return (sizeof (int));
9761 }
9762 
9763 /*
9764  * TCP routine to get the values of options.
9765  */
9766 int
9767 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9768 {
9769 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9770 }
9771 
9772 /* returns UNIX error, the optlen is a value-result arg */
9773 int
9774 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9775     void *optvalp, socklen_t *optlen, cred_t *cr)
9776 {
9777 	conn_t		*connp = (conn_t *)proto_handle;
9778 	squeue_t	*sqp = connp->conn_sqp;
9779 	int		error;
9780 	t_uscalar_t	max_optbuf_len;
9781 	void		*optvalp_buf;
9782 	int		len;
9783 
9784 	ASSERT(connp->conn_upper_handle != NULL);
9785 
9786 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9787 	    tcp_opt_obj.odb_opt_des_arr,
9788 	    tcp_opt_obj.odb_opt_arr_cnt,
9789 	    tcp_opt_obj.odb_topmost_tpiprovider,
9790 	    B_FALSE, B_TRUE, cr);
9791 	if (error != 0) {
9792 		if (error < 0) {
9793 			error = proto_tlitosyserr(-error);
9794 		}
9795 		return (error);
9796 	}
9797 
9798 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9799 
9800 	error = squeue_synch_enter(sqp, connp, 0);
9801 	if (error == ENOMEM) {
9802 		return (ENOMEM);
9803 	}
9804 
9805 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9806 	squeue_synch_exit(sqp, connp);
9807 
9808 	if (len < 0) {
9809 		/*
9810 		 * Pass on to IP
9811 		 */
9812 		kmem_free(optvalp_buf, max_optbuf_len);
9813 		return (ip_get_options(connp, level, option_name,
9814 		    optvalp, optlen, cr));
9815 	} else {
9816 		/*
9817 		 * update optlen and copy option value
9818 		 */
9819 		t_uscalar_t size = MIN(len, *optlen);
9820 		bcopy(optvalp_buf, optvalp, size);
9821 		bcopy(&size, optlen, sizeof (size));
9822 
9823 		kmem_free(optvalp_buf, max_optbuf_len);
9824 		return (0);
9825 	}
9826 }
9827 
9828 /*
9829  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9830  * Parameters are assumed to be verified by the caller.
9831  */
9832 /* ARGSUSED */
9833 int
9834 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9835     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9836     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9837 {
9838 	tcp_t	*tcp = connp->conn_tcp;
9839 	int	*i1 = (int *)invalp;
9840 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9841 	boolean_t checkonly;
9842 	int	reterr;
9843 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9844 
9845 	switch (optset_context) {
9846 	case SETFN_OPTCOM_CHECKONLY:
9847 		checkonly = B_TRUE;
9848 		/*
9849 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9850 		 * inlen != 0 implies value supplied and
9851 		 * 	we have to "pretend" to set it.
9852 		 * inlen == 0 implies that there is no
9853 		 * 	value part in T_CHECK request and just validation
9854 		 * done elsewhere should be enough, we just return here.
9855 		 */
9856 		if (inlen == 0) {
9857 			*outlenp = 0;
9858 			return (0);
9859 		}
9860 		break;
9861 	case SETFN_OPTCOM_NEGOTIATE:
9862 		checkonly = B_FALSE;
9863 		break;
9864 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9865 	case SETFN_CONN_NEGOTIATE:
9866 		checkonly = B_FALSE;
9867 		/*
9868 		 * Negotiating local and "association-related" options
9869 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9870 		 * primitives is allowed by XTI, but we choose
9871 		 * to not implement this style negotiation for Internet
9872 		 * protocols (We interpret it is a must for OSI world but
9873 		 * optional for Internet protocols) for all options.
9874 		 * [ Will do only for the few options that enable test
9875 		 * suites that our XTI implementation of this feature
9876 		 * works for transports that do allow it ]
9877 		 */
9878 		if (!tcp_allow_connopt_set(level, name)) {
9879 			*outlenp = 0;
9880 			return (EINVAL);
9881 		}
9882 		break;
9883 	default:
9884 		/*
9885 		 * We should never get here
9886 		 */
9887 		*outlenp = 0;
9888 		return (EINVAL);
9889 	}
9890 
9891 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9892 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9893 
9894 	/*
9895 	 * For TCP, we should have no ancillary data sent down
9896 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9897 	 * has to be zero.
9898 	 */
9899 	ASSERT(thisdg_attrs == NULL);
9900 
9901 	/*
9902 	 * For fixed length options, no sanity check
9903 	 * of passed in length is done. It is assumed *_optcom_req()
9904 	 * routines do the right thing.
9905 	 */
9906 	switch (level) {
9907 	case SOL_SOCKET:
9908 		switch (name) {
9909 		case SO_LINGER: {
9910 			struct linger *lgr = (struct linger *)invalp;
9911 
9912 			if (!checkonly) {
9913 				if (lgr->l_onoff) {
9914 					tcp->tcp_linger = 1;
9915 					tcp->tcp_lingertime = lgr->l_linger;
9916 				} else {
9917 					tcp->tcp_linger = 0;
9918 					tcp->tcp_lingertime = 0;
9919 				}
9920 				/* struct copy */
9921 				*(struct linger *)outvalp = *lgr;
9922 			} else {
9923 				if (!lgr->l_onoff) {
9924 					((struct linger *)
9925 					    outvalp)->l_onoff = 0;
9926 					((struct linger *)
9927 					    outvalp)->l_linger = 0;
9928 				} else {
9929 					/* struct copy */
9930 					*(struct linger *)outvalp = *lgr;
9931 				}
9932 			}
9933 			*outlenp = sizeof (struct linger);
9934 			return (0);
9935 		}
9936 		case SO_DEBUG:
9937 			if (!checkonly)
9938 				tcp->tcp_debug = onoff;
9939 			break;
9940 		case SO_KEEPALIVE:
9941 			if (checkonly) {
9942 				/* check only case */
9943 				break;
9944 			}
9945 
9946 			if (!onoff) {
9947 				if (tcp->tcp_ka_enabled) {
9948 					if (tcp->tcp_ka_tid != 0) {
9949 						(void) TCP_TIMER_CANCEL(tcp,
9950 						    tcp->tcp_ka_tid);
9951 						tcp->tcp_ka_tid = 0;
9952 					}
9953 					tcp->tcp_ka_enabled = 0;
9954 				}
9955 				break;
9956 			}
9957 			if (!tcp->tcp_ka_enabled) {
9958 				/* Crank up the keepalive timer */
9959 				tcp->tcp_ka_last_intrvl = 0;
9960 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9961 				    tcp_keepalive_killer,
9962 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
9963 				tcp->tcp_ka_enabled = 1;
9964 			}
9965 			break;
9966 		case SO_DONTROUTE:
9967 			/*
9968 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
9969 			 * only of interest to IP.  We track them here only so
9970 			 * that we can report their current value.
9971 			 */
9972 			if (!checkonly) {
9973 				tcp->tcp_dontroute = onoff;
9974 				tcp->tcp_connp->conn_dontroute = onoff;
9975 			}
9976 			break;
9977 		case SO_USELOOPBACK:
9978 			if (!checkonly) {
9979 				tcp->tcp_useloopback = onoff;
9980 				tcp->tcp_connp->conn_loopback = onoff;
9981 			}
9982 			break;
9983 		case SO_BROADCAST:
9984 			if (!checkonly) {
9985 				tcp->tcp_broadcast = onoff;
9986 				tcp->tcp_connp->conn_broadcast = onoff;
9987 			}
9988 			break;
9989 		case SO_REUSEADDR:
9990 			if (!checkonly) {
9991 				tcp->tcp_reuseaddr = onoff;
9992 				tcp->tcp_connp->conn_reuseaddr = onoff;
9993 			}
9994 			break;
9995 		case SO_OOBINLINE:
9996 			if (!checkonly) {
9997 				tcp->tcp_oobinline = onoff;
9998 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
9999 					proto_set_rx_oob_opt(connp, onoff);
10000 			}
10001 			break;
10002 		case SO_DGRAM_ERRIND:
10003 			if (!checkonly)
10004 				tcp->tcp_dgram_errind = onoff;
10005 			break;
10006 		case SO_SNDBUF: {
10007 			if (*i1 > tcps->tcps_max_buf) {
10008 				*outlenp = 0;
10009 				return (ENOBUFS);
10010 			}
10011 			if (checkonly)
10012 				break;
10013 
10014 			tcp->tcp_xmit_hiwater = *i1;
10015 			if (tcps->tcps_snd_lowat_fraction != 0)
10016 				tcp->tcp_xmit_lowater =
10017 				    tcp->tcp_xmit_hiwater /
10018 				    tcps->tcps_snd_lowat_fraction;
10019 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10020 			/*
10021 			 * If we are flow-controlled, recheck the condition.
10022 			 * There are apps that increase SO_SNDBUF size when
10023 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10024 			 * control condition to be lifted right away.
10025 			 */
10026 			mutex_enter(&tcp->tcp_non_sq_lock);
10027 			if (tcp->tcp_flow_stopped &&
10028 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10029 				tcp_clrqfull(tcp);
10030 			}
10031 			mutex_exit(&tcp->tcp_non_sq_lock);
10032 			break;
10033 		}
10034 		case SO_RCVBUF:
10035 			if (*i1 > tcps->tcps_max_buf) {
10036 				*outlenp = 0;
10037 				return (ENOBUFS);
10038 			}
10039 			/* Silently ignore zero */
10040 			if (!checkonly && *i1 != 0) {
10041 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10042 				(void) tcp_rwnd_set(tcp, *i1);
10043 			}
10044 			/*
10045 			 * XXX should we return the rwnd here
10046 			 * and tcp_opt_get ?
10047 			 */
10048 			break;
10049 		case SO_SND_COPYAVOID:
10050 			if (!checkonly) {
10051 				/* we only allow enable at most once for now */
10052 				if (tcp->tcp_loopback ||
10053 				    (tcp->tcp_kssl_ctx != NULL) ||
10054 				    (!tcp->tcp_snd_zcopy_aware &&
10055 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10056 					*outlenp = 0;
10057 					return (EOPNOTSUPP);
10058 				}
10059 				tcp->tcp_snd_zcopy_aware = 1;
10060 			}
10061 			break;
10062 		case SO_RCVTIMEO:
10063 		case SO_SNDTIMEO:
10064 			/*
10065 			 * Pass these two options in order for third part
10066 			 * protocol usage. Here just return directly.
10067 			 */
10068 			return (0);
10069 		case SO_ALLZONES:
10070 			/* Pass option along to IP level for handling */
10071 			return (-EINVAL);
10072 		case SO_ANON_MLP:
10073 			/* Pass option along to IP level for handling */
10074 			return (-EINVAL);
10075 		case SO_MAC_EXEMPT:
10076 			/* Pass option along to IP level for handling */
10077 			return (-EINVAL);
10078 		case SO_EXCLBIND:
10079 			if (!checkonly)
10080 				tcp->tcp_exclbind = onoff;
10081 			break;
10082 		default:
10083 			*outlenp = 0;
10084 			return (EINVAL);
10085 		}
10086 		break;
10087 	case IPPROTO_TCP:
10088 		switch (name) {
10089 		case TCP_NODELAY:
10090 			if (!checkonly)
10091 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10092 			break;
10093 		case TCP_NOTIFY_THRESHOLD:
10094 			if (!checkonly)
10095 				tcp->tcp_first_timer_threshold = *i1;
10096 			break;
10097 		case TCP_ABORT_THRESHOLD:
10098 			if (!checkonly)
10099 				tcp->tcp_second_timer_threshold = *i1;
10100 			break;
10101 		case TCP_CONN_NOTIFY_THRESHOLD:
10102 			if (!checkonly)
10103 				tcp->tcp_first_ctimer_threshold = *i1;
10104 			break;
10105 		case TCP_CONN_ABORT_THRESHOLD:
10106 			if (!checkonly)
10107 				tcp->tcp_second_ctimer_threshold = *i1;
10108 			break;
10109 		case TCP_RECVDSTADDR:
10110 			if (tcp->tcp_state > TCPS_LISTEN)
10111 				return (EOPNOTSUPP);
10112 			if (!checkonly)
10113 				tcp->tcp_recvdstaddr = onoff;
10114 			break;
10115 		case TCP_ANONPRIVBIND:
10116 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10117 			    IPPROTO_TCP)) != 0) {
10118 				*outlenp = 0;
10119 				return (reterr);
10120 			}
10121 			if (!checkonly) {
10122 				tcp->tcp_anon_priv_bind = onoff;
10123 			}
10124 			break;
10125 		case TCP_EXCLBIND:
10126 			if (!checkonly)
10127 				tcp->tcp_exclbind = onoff;
10128 			break;	/* goto sizeof (int) option return */
10129 		case TCP_INIT_CWND: {
10130 			uint32_t init_cwnd = *((uint32_t *)invalp);
10131 
10132 			if (checkonly)
10133 				break;
10134 
10135 			/*
10136 			 * Only allow socket with network configuration
10137 			 * privilege to set the initial cwnd to be larger
10138 			 * than allowed by RFC 3390.
10139 			 */
10140 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10141 				tcp->tcp_init_cwnd = init_cwnd;
10142 				break;
10143 			}
10144 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10145 				*outlenp = 0;
10146 				return (reterr);
10147 			}
10148 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10149 				*outlenp = 0;
10150 				return (EINVAL);
10151 			}
10152 			tcp->tcp_init_cwnd = init_cwnd;
10153 			break;
10154 		}
10155 		case TCP_KEEPALIVE_THRESHOLD:
10156 			if (checkonly)
10157 				break;
10158 
10159 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10160 			    *i1 > tcps->tcps_keepalive_interval_high) {
10161 				*outlenp = 0;
10162 				return (EINVAL);
10163 			}
10164 			if (*i1 != tcp->tcp_ka_interval) {
10165 				tcp->tcp_ka_interval = *i1;
10166 				/*
10167 				 * Check if we need to restart the
10168 				 * keepalive timer.
10169 				 */
10170 				if (tcp->tcp_ka_tid != 0) {
10171 					ASSERT(tcp->tcp_ka_enabled);
10172 					(void) TCP_TIMER_CANCEL(tcp,
10173 					    tcp->tcp_ka_tid);
10174 					tcp->tcp_ka_last_intrvl = 0;
10175 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10176 					    tcp_keepalive_killer,
10177 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10178 				}
10179 			}
10180 			break;
10181 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10182 			if (!checkonly) {
10183 				if (*i1 <
10184 				    tcps->tcps_keepalive_abort_interval_low ||
10185 				    *i1 >
10186 				    tcps->tcps_keepalive_abort_interval_high) {
10187 					*outlenp = 0;
10188 					return (EINVAL);
10189 				}
10190 				tcp->tcp_ka_abort_thres = *i1;
10191 			}
10192 			break;
10193 		case TCP_CORK:
10194 			if (!checkonly) {
10195 				/*
10196 				 * if tcp->tcp_cork was set and is now
10197 				 * being unset, we have to make sure that
10198 				 * the remaining data gets sent out. Also
10199 				 * unset tcp->tcp_cork so that tcp_wput_data()
10200 				 * can send data even if it is less than mss
10201 				 */
10202 				if (tcp->tcp_cork && onoff == 0 &&
10203 				    tcp->tcp_unsent > 0) {
10204 					tcp->tcp_cork = B_FALSE;
10205 					tcp_wput_data(tcp, NULL, B_FALSE);
10206 				}
10207 				tcp->tcp_cork = onoff;
10208 			}
10209 			break;
10210 		default:
10211 			*outlenp = 0;
10212 			return (EINVAL);
10213 		}
10214 		break;
10215 	case IPPROTO_IP:
10216 		if (tcp->tcp_family != AF_INET) {
10217 			*outlenp = 0;
10218 			return (ENOPROTOOPT);
10219 		}
10220 		switch (name) {
10221 		case IP_OPTIONS:
10222 		case T_IP_OPTIONS:
10223 			reterr = tcp_opt_set_header(tcp, checkonly,
10224 			    invalp, inlen);
10225 			if (reterr) {
10226 				*outlenp = 0;
10227 				return (reterr);
10228 			}
10229 			/* OK return - copy input buffer into output buffer */
10230 			if (invalp != outvalp) {
10231 				/* don't trust bcopy for identical src/dst */
10232 				bcopy(invalp, outvalp, inlen);
10233 			}
10234 			*outlenp = inlen;
10235 			return (0);
10236 		case IP_TOS:
10237 		case T_IP_TOS:
10238 			if (!checkonly) {
10239 				tcp->tcp_ipha->ipha_type_of_service =
10240 				    (uchar_t)*i1;
10241 				tcp->tcp_tos = (uchar_t)*i1;
10242 			}
10243 			break;
10244 		case IP_TTL:
10245 			if (!checkonly) {
10246 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10247 				tcp->tcp_ttl = (uchar_t)*i1;
10248 			}
10249 			break;
10250 		case IP_BOUND_IF:
10251 		case IP_NEXTHOP:
10252 			/* Handled at the IP level */
10253 			return (-EINVAL);
10254 		case IP_SEC_OPT:
10255 			/*
10256 			 * We should not allow policy setting after
10257 			 * we start listening for connections.
10258 			 */
10259 			if (tcp->tcp_state == TCPS_LISTEN) {
10260 				return (EINVAL);
10261 			} else {
10262 				/* Handled at the IP level */
10263 				return (-EINVAL);
10264 			}
10265 		default:
10266 			*outlenp = 0;
10267 			return (EINVAL);
10268 		}
10269 		break;
10270 	case IPPROTO_IPV6: {
10271 		ip6_pkt_t		*ipp;
10272 
10273 		/*
10274 		 * IPPROTO_IPV6 options are only supported for sockets
10275 		 * that are using IPv6 on the wire.
10276 		 */
10277 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10278 			*outlenp = 0;
10279 			return (ENOPROTOOPT);
10280 		}
10281 		/*
10282 		 * Only sticky options; no ancillary data
10283 		 */
10284 		ipp = &tcp->tcp_sticky_ipp;
10285 
10286 		switch (name) {
10287 		case IPV6_UNICAST_HOPS:
10288 			/* -1 means use default */
10289 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10290 				*outlenp = 0;
10291 				return (EINVAL);
10292 			}
10293 			if (!checkonly) {
10294 				if (*i1 == -1) {
10295 					tcp->tcp_ip6h->ip6_hops =
10296 					    ipp->ipp_unicast_hops =
10297 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10298 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10299 					/* Pass modified value to IP. */
10300 					*i1 = tcp->tcp_ip6h->ip6_hops;
10301 				} else {
10302 					tcp->tcp_ip6h->ip6_hops =
10303 					    ipp->ipp_unicast_hops =
10304 					    (uint8_t)*i1;
10305 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10306 				}
10307 				reterr = tcp_build_hdrs(tcp);
10308 				if (reterr != 0)
10309 					return (reterr);
10310 			}
10311 			break;
10312 		case IPV6_BOUND_IF:
10313 			if (!checkonly) {
10314 				tcp->tcp_bound_if = *i1;
10315 				PASS_OPT_TO_IP(connp);
10316 			}
10317 			break;
10318 		/*
10319 		 * Set boolean switches for ancillary data delivery
10320 		 */
10321 		case IPV6_RECVPKTINFO:
10322 			if (!checkonly) {
10323 				if (onoff)
10324 					tcp->tcp_ipv6_recvancillary |=
10325 					    TCP_IPV6_RECVPKTINFO;
10326 				else
10327 					tcp->tcp_ipv6_recvancillary &=
10328 					    ~TCP_IPV6_RECVPKTINFO;
10329 				/* Force it to be sent up with the next msg */
10330 				tcp->tcp_recvifindex = 0;
10331 				PASS_OPT_TO_IP(connp);
10332 			}
10333 			break;
10334 		case IPV6_RECVTCLASS:
10335 			if (!checkonly) {
10336 				if (onoff)
10337 					tcp->tcp_ipv6_recvancillary |=
10338 					    TCP_IPV6_RECVTCLASS;
10339 				else
10340 					tcp->tcp_ipv6_recvancillary &=
10341 					    ~TCP_IPV6_RECVTCLASS;
10342 				PASS_OPT_TO_IP(connp);
10343 			}
10344 			break;
10345 		case IPV6_RECVHOPLIMIT:
10346 			if (!checkonly) {
10347 				if (onoff)
10348 					tcp->tcp_ipv6_recvancillary |=
10349 					    TCP_IPV6_RECVHOPLIMIT;
10350 				else
10351 					tcp->tcp_ipv6_recvancillary &=
10352 					    ~TCP_IPV6_RECVHOPLIMIT;
10353 				/* Force it to be sent up with the next msg */
10354 				tcp->tcp_recvhops = 0xffffffffU;
10355 				PASS_OPT_TO_IP(connp);
10356 			}
10357 			break;
10358 		case IPV6_RECVHOPOPTS:
10359 			if (!checkonly) {
10360 				if (onoff)
10361 					tcp->tcp_ipv6_recvancillary |=
10362 					    TCP_IPV6_RECVHOPOPTS;
10363 				else
10364 					tcp->tcp_ipv6_recvancillary &=
10365 					    ~TCP_IPV6_RECVHOPOPTS;
10366 				PASS_OPT_TO_IP(connp);
10367 			}
10368 			break;
10369 		case IPV6_RECVDSTOPTS:
10370 			if (!checkonly) {
10371 				if (onoff)
10372 					tcp->tcp_ipv6_recvancillary |=
10373 					    TCP_IPV6_RECVDSTOPTS;
10374 				else
10375 					tcp->tcp_ipv6_recvancillary &=
10376 					    ~TCP_IPV6_RECVDSTOPTS;
10377 				PASS_OPT_TO_IP(connp);
10378 			}
10379 			break;
10380 		case _OLD_IPV6_RECVDSTOPTS:
10381 			if (!checkonly) {
10382 				if (onoff)
10383 					tcp->tcp_ipv6_recvancillary |=
10384 					    TCP_OLD_IPV6_RECVDSTOPTS;
10385 				else
10386 					tcp->tcp_ipv6_recvancillary &=
10387 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10388 			}
10389 			break;
10390 		case IPV6_RECVRTHDR:
10391 			if (!checkonly) {
10392 				if (onoff)
10393 					tcp->tcp_ipv6_recvancillary |=
10394 					    TCP_IPV6_RECVRTHDR;
10395 				else
10396 					tcp->tcp_ipv6_recvancillary &=
10397 					    ~TCP_IPV6_RECVRTHDR;
10398 				PASS_OPT_TO_IP(connp);
10399 			}
10400 			break;
10401 		case IPV6_RECVRTHDRDSTOPTS:
10402 			if (!checkonly) {
10403 				if (onoff)
10404 					tcp->tcp_ipv6_recvancillary |=
10405 					    TCP_IPV6_RECVRTDSTOPTS;
10406 				else
10407 					tcp->tcp_ipv6_recvancillary &=
10408 					    ~TCP_IPV6_RECVRTDSTOPTS;
10409 				PASS_OPT_TO_IP(connp);
10410 			}
10411 			break;
10412 		case IPV6_PKTINFO:
10413 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10414 				return (EINVAL);
10415 			if (checkonly)
10416 				break;
10417 
10418 			if (inlen == 0) {
10419 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10420 			} else {
10421 				struct in6_pktinfo *pkti;
10422 
10423 				pkti = (struct in6_pktinfo *)invalp;
10424 				/*
10425 				 * RFC 3542 states that ipi6_addr must be
10426 				 * the unspecified address when setting the
10427 				 * IPV6_PKTINFO sticky socket option on a
10428 				 * TCP socket.
10429 				 */
10430 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10431 					return (EINVAL);
10432 				/*
10433 				 * IP will validate the source address and
10434 				 * interface index.
10435 				 */
10436 				if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
10437 					reterr = ip_set_options(tcp->tcp_connp,
10438 					    level, name, invalp, inlen, cr);
10439 				} else {
10440 					reterr = ip6_set_pktinfo(cr,
10441 					    tcp->tcp_connp, pkti);
10442 				}
10443 				if (reterr != 0)
10444 					return (reterr);
10445 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10446 				ipp->ipp_addr = pkti->ipi6_addr;
10447 				if (ipp->ipp_ifindex != 0)
10448 					ipp->ipp_fields |= IPPF_IFINDEX;
10449 				else
10450 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10451 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10452 					ipp->ipp_fields |= IPPF_ADDR;
10453 				else
10454 					ipp->ipp_fields &= ~IPPF_ADDR;
10455 			}
10456 			reterr = tcp_build_hdrs(tcp);
10457 			if (reterr != 0)
10458 				return (reterr);
10459 			break;
10460 		case IPV6_TCLASS:
10461 			if (inlen != 0 && inlen != sizeof (int))
10462 				return (EINVAL);
10463 			if (checkonly)
10464 				break;
10465 
10466 			if (inlen == 0) {
10467 				ipp->ipp_fields &= ~IPPF_TCLASS;
10468 			} else {
10469 				if (*i1 > 255 || *i1 < -1)
10470 					return (EINVAL);
10471 				if (*i1 == -1) {
10472 					ipp->ipp_tclass = 0;
10473 					*i1 = 0;
10474 				} else {
10475 					ipp->ipp_tclass = *i1;
10476 				}
10477 				ipp->ipp_fields |= IPPF_TCLASS;
10478 			}
10479 			reterr = tcp_build_hdrs(tcp);
10480 			if (reterr != 0)
10481 				return (reterr);
10482 			break;
10483 		case IPV6_NEXTHOP:
10484 			/*
10485 			 * IP will verify that the nexthop is reachable
10486 			 * and fail for sticky options.
10487 			 */
10488 			if (inlen != 0 && inlen != sizeof (sin6_t))
10489 				return (EINVAL);
10490 			if (checkonly)
10491 				break;
10492 
10493 			if (inlen == 0) {
10494 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10495 			} else {
10496 				sin6_t *sin6 = (sin6_t *)invalp;
10497 
10498 				if (sin6->sin6_family != AF_INET6)
10499 					return (EAFNOSUPPORT);
10500 				if (IN6_IS_ADDR_V4MAPPED(
10501 				    &sin6->sin6_addr))
10502 					return (EADDRNOTAVAIL);
10503 				ipp->ipp_nexthop = sin6->sin6_addr;
10504 				if (!IN6_IS_ADDR_UNSPECIFIED(
10505 				    &ipp->ipp_nexthop))
10506 					ipp->ipp_fields |= IPPF_NEXTHOP;
10507 				else
10508 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10509 			}
10510 			reterr = tcp_build_hdrs(tcp);
10511 			if (reterr != 0)
10512 				return (reterr);
10513 			PASS_OPT_TO_IP(connp);
10514 			break;
10515 		case IPV6_HOPOPTS: {
10516 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10517 
10518 			/*
10519 			 * Sanity checks - minimum size, size a multiple of
10520 			 * eight bytes, and matching size passed in.
10521 			 */
10522 			if (inlen != 0 &&
10523 			    inlen != (8 * (hopts->ip6h_len + 1)))
10524 				return (EINVAL);
10525 
10526 			if (checkonly)
10527 				break;
10528 
10529 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10530 			    (uchar_t **)&ipp->ipp_hopopts,
10531 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10532 			if (reterr != 0)
10533 				return (reterr);
10534 			if (ipp->ipp_hopoptslen == 0)
10535 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10536 			else
10537 				ipp->ipp_fields |= IPPF_HOPOPTS;
10538 			reterr = tcp_build_hdrs(tcp);
10539 			if (reterr != 0)
10540 				return (reterr);
10541 			break;
10542 		}
10543 		case IPV6_RTHDRDSTOPTS: {
10544 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10545 
10546 			/*
10547 			 * Sanity checks - minimum size, size a multiple of
10548 			 * eight bytes, and matching size passed in.
10549 			 */
10550 			if (inlen != 0 &&
10551 			    inlen != (8 * (dopts->ip6d_len + 1)))
10552 				return (EINVAL);
10553 
10554 			if (checkonly)
10555 				break;
10556 
10557 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10558 			    (uchar_t **)&ipp->ipp_rtdstopts,
10559 			    &ipp->ipp_rtdstoptslen, 0);
10560 			if (reterr != 0)
10561 				return (reterr);
10562 			if (ipp->ipp_rtdstoptslen == 0)
10563 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10564 			else
10565 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10566 			reterr = tcp_build_hdrs(tcp);
10567 			if (reterr != 0)
10568 				return (reterr);
10569 			break;
10570 		}
10571 		case IPV6_DSTOPTS: {
10572 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10573 
10574 			/*
10575 			 * Sanity checks - minimum size, size a multiple of
10576 			 * eight bytes, and matching size passed in.
10577 			 */
10578 			if (inlen != 0 &&
10579 			    inlen != (8 * (dopts->ip6d_len + 1)))
10580 				return (EINVAL);
10581 
10582 			if (checkonly)
10583 				break;
10584 
10585 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10586 			    (uchar_t **)&ipp->ipp_dstopts,
10587 			    &ipp->ipp_dstoptslen, 0);
10588 			if (reterr != 0)
10589 				return (reterr);
10590 			if (ipp->ipp_dstoptslen == 0)
10591 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10592 			else
10593 				ipp->ipp_fields |= IPPF_DSTOPTS;
10594 			reterr = tcp_build_hdrs(tcp);
10595 			if (reterr != 0)
10596 				return (reterr);
10597 			break;
10598 		}
10599 		case IPV6_RTHDR: {
10600 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10601 
10602 			/*
10603 			 * Sanity checks - minimum size, size a multiple of
10604 			 * eight bytes, and matching size passed in.
10605 			 */
10606 			if (inlen != 0 &&
10607 			    inlen != (8 * (rt->ip6r_len + 1)))
10608 				return (EINVAL);
10609 
10610 			if (checkonly)
10611 				break;
10612 
10613 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10614 			    (uchar_t **)&ipp->ipp_rthdr,
10615 			    &ipp->ipp_rthdrlen, 0);
10616 			if (reterr != 0)
10617 				return (reterr);
10618 			if (ipp->ipp_rthdrlen == 0)
10619 				ipp->ipp_fields &= ~IPPF_RTHDR;
10620 			else
10621 				ipp->ipp_fields |= IPPF_RTHDR;
10622 			reterr = tcp_build_hdrs(tcp);
10623 			if (reterr != 0)
10624 				return (reterr);
10625 			break;
10626 		}
10627 		case IPV6_V6ONLY:
10628 			if (!checkonly) {
10629 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10630 			}
10631 			break;
10632 		case IPV6_USE_MIN_MTU:
10633 			if (inlen != sizeof (int))
10634 				return (EINVAL);
10635 
10636 			if (*i1 < -1 || *i1 > 1)
10637 				return (EINVAL);
10638 
10639 			if (checkonly)
10640 				break;
10641 
10642 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10643 			ipp->ipp_use_min_mtu = *i1;
10644 			break;
10645 		case IPV6_SEC_OPT:
10646 			/*
10647 			 * We should not allow policy setting after
10648 			 * we start listening for connections.
10649 			 */
10650 			if (tcp->tcp_state == TCPS_LISTEN) {
10651 				return (EINVAL);
10652 			} else {
10653 				/* Handled at the IP level */
10654 				return (-EINVAL);
10655 			}
10656 		case IPV6_SRC_PREFERENCES:
10657 			if (inlen != sizeof (uint32_t))
10658 				return (EINVAL);
10659 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10660 			    *(uint32_t *)invalp);
10661 			if (reterr != 0) {
10662 				*outlenp = 0;
10663 				return (reterr);
10664 			}
10665 			break;
10666 		default:
10667 			*outlenp = 0;
10668 			return (EINVAL);
10669 		}
10670 		break;
10671 	}		/* end IPPROTO_IPV6 */
10672 	default:
10673 		*outlenp = 0;
10674 		return (EINVAL);
10675 	}
10676 	/*
10677 	 * Common case of OK return with outval same as inval
10678 	 */
10679 	if (invalp != outvalp) {
10680 		/* don't trust bcopy for identical src/dst */
10681 		(void) bcopy(invalp, outvalp, inlen);
10682 	}
10683 	*outlenp = inlen;
10684 	return (0);
10685 }
10686 
10687 /* ARGSUSED */
10688 int
10689 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10690     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10691     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10692 {
10693 	conn_t	*connp =  Q_TO_CONN(q);
10694 
10695 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10696 	    outlenp, outvalp, thisdg_attrs, cr, mblk));
10697 }
10698 
10699 int
10700 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10701     const void *optvalp, socklen_t optlen, cred_t *cr)
10702 {
10703 	conn_t		*connp = (conn_t *)proto_handle;
10704 	squeue_t	*sqp = connp->conn_sqp;
10705 	int		error;
10706 
10707 	ASSERT(connp->conn_upper_handle != NULL);
10708 	/*
10709 	 * Entering the squeue synchronously can result in a context switch,
10710 	 * which can cause a rather sever performance degradation. So we try to
10711 	 * handle whatever options we can without entering the squeue.
10712 	 */
10713 	if (level == IPPROTO_TCP) {
10714 		switch (option_name) {
10715 		case TCP_NODELAY:
10716 			if (optlen != sizeof (int32_t))
10717 				return (EINVAL);
10718 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10719 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10720 			    connp->conn_tcp->tcp_mss;
10721 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10722 			return (0);
10723 		default:
10724 			break;
10725 		}
10726 	}
10727 
10728 	error = squeue_synch_enter(sqp, connp, 0);
10729 	if (error == ENOMEM) {
10730 		return (ENOMEM);
10731 	}
10732 
10733 	error = proto_opt_check(level, option_name, optlen, NULL,
10734 	    tcp_opt_obj.odb_opt_des_arr,
10735 	    tcp_opt_obj.odb_opt_arr_cnt,
10736 	    tcp_opt_obj.odb_topmost_tpiprovider,
10737 	    B_TRUE, B_FALSE, cr);
10738 
10739 	if (error != 0) {
10740 		if (error < 0) {
10741 			error = proto_tlitosyserr(-error);
10742 		}
10743 		squeue_synch_exit(sqp, connp);
10744 		return (error);
10745 	}
10746 
10747 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10748 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10749 	    NULL, cr, NULL);
10750 	squeue_synch_exit(sqp, connp);
10751 
10752 	if (error < 0) {
10753 		/*
10754 		 * Pass on to ip
10755 		 */
10756 		error = ip_set_options(connp, level, option_name, optvalp,
10757 		    optlen, cr);
10758 	}
10759 	return (error);
10760 }
10761 
10762 /*
10763  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10764  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10765  * headers, and the maximum size tcp header (to avoid reallocation
10766  * on the fly for additional tcp options).
10767  * Returns failure if can't allocate memory.
10768  */
10769 static int
10770 tcp_build_hdrs(tcp_t *tcp)
10771 {
10772 	char	*hdrs;
10773 	uint_t	hdrs_len;
10774 	ip6i_t	*ip6i;
10775 	char	buf[TCP_MAX_HDR_LENGTH];
10776 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10777 	in6_addr_t src, dst;
10778 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10779 	conn_t *connp = tcp->tcp_connp;
10780 
10781 	/*
10782 	 * save the existing tcp header and source/dest IP addresses
10783 	 */
10784 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10785 	src = tcp->tcp_ip6h->ip6_src;
10786 	dst = tcp->tcp_ip6h->ip6_dst;
10787 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10788 	ASSERT(hdrs_len != 0);
10789 	if (hdrs_len > tcp->tcp_iphc_len) {
10790 		/* Need to reallocate */
10791 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10792 		if (hdrs == NULL)
10793 			return (ENOMEM);
10794 		if (tcp->tcp_iphc != NULL) {
10795 			if (tcp->tcp_hdr_grown) {
10796 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10797 			} else {
10798 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10799 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10800 			}
10801 			tcp->tcp_iphc_len = 0;
10802 		}
10803 		ASSERT(tcp->tcp_iphc_len == 0);
10804 		tcp->tcp_iphc = hdrs;
10805 		tcp->tcp_iphc_len = hdrs_len;
10806 		tcp->tcp_hdr_grown = B_TRUE;
10807 	}
10808 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10809 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10810 
10811 	/* Set header fields not in ipp */
10812 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10813 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10814 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10815 	} else {
10816 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10817 	}
10818 	/*
10819 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10820 	 *
10821 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10822 	 */
10823 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10824 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10825 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10826 
10827 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10828 
10829 	tcp->tcp_ip6h->ip6_src = src;
10830 	tcp->tcp_ip6h->ip6_dst = dst;
10831 
10832 	/*
10833 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10834 	 * the default value for TCP.
10835 	 */
10836 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10837 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10838 
10839 	/*
10840 	 * If we're setting extension headers after a connection
10841 	 * has been established, and if we have a routing header
10842 	 * among the extension headers, call ip_massage_options_v6 to
10843 	 * manipulate the routing header/ip6_dst set the checksum
10844 	 * difference in the tcp header template.
10845 	 * (This happens in tcp_connect_ipv6 if the routing header
10846 	 * is set prior to the connect.)
10847 	 * Set the tcp_sum to zero first in case we've cleared a
10848 	 * routing header or don't have one at all.
10849 	 */
10850 	tcp->tcp_sum = 0;
10851 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10852 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10853 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10854 		    (uint8_t *)tcp->tcp_tcph);
10855 		if (rth != NULL) {
10856 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10857 			    rth, tcps->tcps_netstack);
10858 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10859 			    (tcp->tcp_sum >> 16));
10860 		}
10861 	}
10862 
10863 	/* Try to get everything in a single mblk */
10864 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10865 	    hdrs_len + tcps->tcps_wroff_xtra);
10866 	return (0);
10867 }
10868 
10869 /*
10870  * Transfer any source route option from ipha to buf/dst in reversed form.
10871  */
10872 static int
10873 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10874 {
10875 	ipoptp_t	opts;
10876 	uchar_t		*opt;
10877 	uint8_t		optval;
10878 	uint8_t		optlen;
10879 	uint32_t	len = 0;
10880 
10881 	for (optval = ipoptp_first(&opts, ipha);
10882 	    optval != IPOPT_EOL;
10883 	    optval = ipoptp_next(&opts)) {
10884 		opt = opts.ipoptp_cur;
10885 		optlen = opts.ipoptp_len;
10886 		switch (optval) {
10887 			int	off1, off2;
10888 		case IPOPT_SSRR:
10889 		case IPOPT_LSRR:
10890 
10891 			/* Reverse source route */
10892 			/*
10893 			 * First entry should be the next to last one in the
10894 			 * current source route (the last entry is our
10895 			 * address.)
10896 			 * The last entry should be the final destination.
10897 			 */
10898 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10899 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10900 			off1 = IPOPT_MINOFF_SR - 1;
10901 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10902 			if (off2 < 0) {
10903 				/* No entries in source route */
10904 				break;
10905 			}
10906 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10907 			/*
10908 			 * Note: use src since ipha has not had its src
10909 			 * and dst reversed (it is in the state it was
10910 			 * received.
10911 			 */
10912 			bcopy(&ipha->ipha_src, buf + off2,
10913 			    IP_ADDR_LEN);
10914 			off2 -= IP_ADDR_LEN;
10915 
10916 			while (off2 > 0) {
10917 				bcopy(opt + off2, buf + off1,
10918 				    IP_ADDR_LEN);
10919 				off1 += IP_ADDR_LEN;
10920 				off2 -= IP_ADDR_LEN;
10921 			}
10922 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10923 			buf += optlen;
10924 			len += optlen;
10925 			break;
10926 		}
10927 	}
10928 done:
10929 	/* Pad the resulting options */
10930 	while (len & 0x3) {
10931 		*buf++ = IPOPT_EOL;
10932 		len++;
10933 	}
10934 	return (len);
10935 }
10936 
10937 
10938 /*
10939  * Extract and revert a source route from ipha (if any)
10940  * and then update the relevant fields in both tcp_t and the standard header.
10941  */
10942 static void
10943 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10944 {
10945 	char	buf[TCP_MAX_HDR_LENGTH];
10946 	uint_t	tcph_len;
10947 	int	len;
10948 
10949 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10950 	len = IPH_HDR_LENGTH(ipha);
10951 	if (len == IP_SIMPLE_HDR_LENGTH)
10952 		/* Nothing to do */
10953 		return;
10954 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10955 	    (len & 0x3))
10956 		return;
10957 
10958 	tcph_len = tcp->tcp_tcp_hdr_len;
10959 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10960 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10961 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
10962 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10963 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10964 	len += IP_SIMPLE_HDR_LENGTH;
10965 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10966 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10967 	if ((int)tcp->tcp_sum < 0)
10968 		tcp->tcp_sum--;
10969 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10970 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10971 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10972 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10973 	tcp->tcp_ip_hdr_len = len;
10974 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10975 	    (IP_VERSION << 4) | (len >> 2);
10976 	len += tcph_len;
10977 	tcp->tcp_hdr_len = len;
10978 }
10979 
10980 /*
10981  * Copy the standard header into its new location,
10982  * lay in the new options and then update the relevant
10983  * fields in both tcp_t and the standard header.
10984  */
10985 static int
10986 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10987 {
10988 	uint_t	tcph_len;
10989 	uint8_t	*ip_optp;
10990 	tcph_t	*new_tcph;
10991 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10992 	conn_t	*connp = tcp->tcp_connp;
10993 
10994 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10995 		return (EINVAL);
10996 
10997 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10998 		return (EINVAL);
10999 
11000 	if (checkonly) {
11001 		/*
11002 		 * do not really set, just pretend to - T_CHECK
11003 		 */
11004 		return (0);
11005 	}
11006 
11007 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11008 	if (tcp->tcp_label_len > 0) {
11009 		int padlen;
11010 		uint8_t opt;
11011 
11012 		/* convert list termination to no-ops */
11013 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11014 		ip_optp += ip_optp[IPOPT_OLEN];
11015 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11016 		while (--padlen >= 0)
11017 			*ip_optp++ = opt;
11018 	}
11019 	tcph_len = tcp->tcp_tcp_hdr_len;
11020 	new_tcph = (tcph_t *)(ip_optp + len);
11021 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11022 	tcp->tcp_tcph = new_tcph;
11023 	bcopy(ptr, ip_optp, len);
11024 
11025 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11026 
11027 	tcp->tcp_ip_hdr_len = len;
11028 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11029 	    (IP_VERSION << 4) | (len >> 2);
11030 	tcp->tcp_hdr_len = len + tcph_len;
11031 	if (!TCP_IS_DETACHED(tcp)) {
11032 		/* Always allocate room for all options. */
11033 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11034 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11035 	}
11036 	return (0);
11037 }
11038 
11039 /* Get callback routine passed to nd_load by tcp_param_register */
11040 /* ARGSUSED */
11041 static int
11042 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11043 {
11044 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11045 
11046 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11047 	return (0);
11048 }
11049 
11050 /*
11051  * Walk through the param array specified registering each element with the
11052  * named dispatch handler.
11053  */
11054 static boolean_t
11055 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11056 {
11057 	for (; cnt-- > 0; tcppa++) {
11058 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11059 			if (!nd_load(ndp, tcppa->tcp_param_name,
11060 			    tcp_param_get, tcp_param_set,
11061 			    (caddr_t)tcppa)) {
11062 				nd_free(ndp);
11063 				return (B_FALSE);
11064 			}
11065 		}
11066 	}
11067 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11068 	    KM_SLEEP);
11069 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11070 	    sizeof (tcpparam_t));
11071 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11072 	    tcp_param_get, tcp_param_set_aligned,
11073 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11074 		nd_free(ndp);
11075 		return (B_FALSE);
11076 	}
11077 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11078 	    KM_SLEEP);
11079 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11080 	    sizeof (tcpparam_t));
11081 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11082 	    tcp_param_get, tcp_param_set_aligned,
11083 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11084 		nd_free(ndp);
11085 		return (B_FALSE);
11086 	}
11087 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11088 	    KM_SLEEP);
11089 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11090 	    sizeof (tcpparam_t));
11091 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11092 	    tcp_param_get, tcp_param_set_aligned,
11093 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11094 		nd_free(ndp);
11095 		return (B_FALSE);
11096 	}
11097 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11098 	    KM_SLEEP);
11099 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11100 	    sizeof (tcpparam_t));
11101 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11102 	    tcp_param_get, tcp_param_set_aligned,
11103 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11104 		nd_free(ndp);
11105 		return (B_FALSE);
11106 	}
11107 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11108 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11109 		nd_free(ndp);
11110 		return (B_FALSE);
11111 	}
11112 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11113 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11114 		nd_free(ndp);
11115 		return (B_FALSE);
11116 	}
11117 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11118 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11119 		nd_free(ndp);
11120 		return (B_FALSE);
11121 	}
11122 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11123 	    tcp_1948_phrase_set, NULL)) {
11124 		nd_free(ndp);
11125 		return (B_FALSE);
11126 	}
11127 	/*
11128 	 * Dummy ndd variables - only to convey obsolescence information
11129 	 * through printing of their name (no get or set routines)
11130 	 * XXX Remove in future releases ?
11131 	 */
11132 	if (!nd_load(ndp,
11133 	    "tcp_close_wait_interval(obsoleted - "
11134 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11135 		nd_free(ndp);
11136 		return (B_FALSE);
11137 	}
11138 	return (B_TRUE);
11139 }
11140 
11141 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11142 /* ARGSUSED */
11143 static int
11144 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11145     cred_t *cr)
11146 {
11147 	long new_value;
11148 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11149 
11150 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11151 	    new_value < tcppa->tcp_param_min ||
11152 	    new_value > tcppa->tcp_param_max) {
11153 		return (EINVAL);
11154 	}
11155 	/*
11156 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11157 	 * round it up.  For future 64 bit requirement, we actually make it
11158 	 * a multiple of 8.
11159 	 */
11160 	if (new_value & 0x7) {
11161 		new_value = (new_value & ~0x7) + 0x8;
11162 	}
11163 	tcppa->tcp_param_val = new_value;
11164 	return (0);
11165 }
11166 
11167 /* Set callback routine passed to nd_load by tcp_param_register */
11168 /* ARGSUSED */
11169 static int
11170 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11171 {
11172 	long	new_value;
11173 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11174 
11175 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11176 	    new_value < tcppa->tcp_param_min ||
11177 	    new_value > tcppa->tcp_param_max) {
11178 		return (EINVAL);
11179 	}
11180 	tcppa->tcp_param_val = new_value;
11181 	return (0);
11182 }
11183 
11184 /*
11185  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11186  * is filled, return as much as we can.  The message passed in may be
11187  * multi-part, chained using b_cont.  "start" is the starting sequence
11188  * number for this piece.
11189  */
11190 static mblk_t *
11191 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11192 {
11193 	uint32_t	end;
11194 	mblk_t		*mp1;
11195 	mblk_t		*mp2;
11196 	mblk_t		*next_mp;
11197 	uint32_t	u1;
11198 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11199 
11200 	/* Walk through all the new pieces. */
11201 	do {
11202 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11203 		    (uintptr_t)INT_MAX);
11204 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11205 		next_mp = mp->b_cont;
11206 		if (start == end) {
11207 			/* Empty.  Blast it. */
11208 			freeb(mp);
11209 			continue;
11210 		}
11211 		mp->b_cont = NULL;
11212 		TCP_REASS_SET_SEQ(mp, start);
11213 		TCP_REASS_SET_END(mp, end);
11214 		mp1 = tcp->tcp_reass_tail;
11215 		if (!mp1) {
11216 			tcp->tcp_reass_tail = mp;
11217 			tcp->tcp_reass_head = mp;
11218 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11219 			UPDATE_MIB(&tcps->tcps_mib,
11220 			    tcpInDataUnorderBytes, end - start);
11221 			continue;
11222 		}
11223 		/* New stuff completely beyond tail? */
11224 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11225 			/* Link it on end. */
11226 			mp1->b_cont = mp;
11227 			tcp->tcp_reass_tail = mp;
11228 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11229 			UPDATE_MIB(&tcps->tcps_mib,
11230 			    tcpInDataUnorderBytes, end - start);
11231 			continue;
11232 		}
11233 		mp1 = tcp->tcp_reass_head;
11234 		u1 = TCP_REASS_SEQ(mp1);
11235 		/* New stuff at the front? */
11236 		if (SEQ_LT(start, u1)) {
11237 			/* Yes... Check for overlap. */
11238 			mp->b_cont = mp1;
11239 			tcp->tcp_reass_head = mp;
11240 			tcp_reass_elim_overlap(tcp, mp);
11241 			continue;
11242 		}
11243 		/*
11244 		 * The new piece fits somewhere between the head and tail.
11245 		 * We find our slot, where mp1 precedes us and mp2 trails.
11246 		 */
11247 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11248 			u1 = TCP_REASS_SEQ(mp2);
11249 			if (SEQ_LEQ(start, u1))
11250 				break;
11251 		}
11252 		/* Link ourselves in */
11253 		mp->b_cont = mp2;
11254 		mp1->b_cont = mp;
11255 
11256 		/* Trim overlap with following mblk(s) first */
11257 		tcp_reass_elim_overlap(tcp, mp);
11258 
11259 		/* Trim overlap with preceding mblk */
11260 		tcp_reass_elim_overlap(tcp, mp1);
11261 
11262 	} while (start = end, mp = next_mp);
11263 	mp1 = tcp->tcp_reass_head;
11264 	/* Anything ready to go? */
11265 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11266 		return (NULL);
11267 	/* Eat what we can off the queue */
11268 	for (;;) {
11269 		mp = mp1->b_cont;
11270 		end = TCP_REASS_END(mp1);
11271 		TCP_REASS_SET_SEQ(mp1, 0);
11272 		TCP_REASS_SET_END(mp1, 0);
11273 		if (!mp) {
11274 			tcp->tcp_reass_tail = NULL;
11275 			break;
11276 		}
11277 		if (end != TCP_REASS_SEQ(mp)) {
11278 			mp1->b_cont = NULL;
11279 			break;
11280 		}
11281 		mp1 = mp;
11282 	}
11283 	mp1 = tcp->tcp_reass_head;
11284 	tcp->tcp_reass_head = mp;
11285 	return (mp1);
11286 }
11287 
11288 /* Eliminate any overlap that mp may have over later mblks */
11289 static void
11290 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11291 {
11292 	uint32_t	end;
11293 	mblk_t		*mp1;
11294 	uint32_t	u1;
11295 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11296 
11297 	end = TCP_REASS_END(mp);
11298 	while ((mp1 = mp->b_cont) != NULL) {
11299 		u1 = TCP_REASS_SEQ(mp1);
11300 		if (!SEQ_GT(end, u1))
11301 			break;
11302 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11303 			mp->b_wptr -= end - u1;
11304 			TCP_REASS_SET_END(mp, u1);
11305 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11306 			UPDATE_MIB(&tcps->tcps_mib,
11307 			    tcpInDataPartDupBytes, end - u1);
11308 			break;
11309 		}
11310 		mp->b_cont = mp1->b_cont;
11311 		TCP_REASS_SET_SEQ(mp1, 0);
11312 		TCP_REASS_SET_END(mp1, 0);
11313 		freeb(mp1);
11314 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11315 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11316 	}
11317 	if (!mp1)
11318 		tcp->tcp_reass_tail = mp;
11319 }
11320 
11321 static uint_t
11322 tcp_rwnd_reopen(tcp_t *tcp)
11323 {
11324 	uint_t ret = 0;
11325 	uint_t thwin;
11326 
11327 	/* Learn the latest rwnd information that we sent to the other side. */
11328 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11329 	    << tcp->tcp_rcv_ws;
11330 	/* This is peer's calculated send window (our receive window). */
11331 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11332 	/*
11333 	 * Increase the receive window to max.  But we need to do receiver
11334 	 * SWS avoidance.  This means that we need to check the increase of
11335 	 * of receive window is at least 1 MSS.
11336 	 */
11337 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11338 		/*
11339 		 * If the window that the other side knows is less than max
11340 		 * deferred acks segments, send an update immediately.
11341 		 */
11342 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11343 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11344 			ret = TH_ACK_NEEDED;
11345 		}
11346 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11347 	}
11348 	return (ret);
11349 }
11350 
11351 /*
11352  * Send up all messages queued on tcp_rcv_list.
11353  */
11354 static uint_t
11355 tcp_rcv_drain(tcp_t *tcp)
11356 {
11357 	mblk_t *mp;
11358 	uint_t ret = 0;
11359 #ifdef DEBUG
11360 	uint_t cnt = 0;
11361 #endif
11362 	queue_t	*q = tcp->tcp_rq;
11363 
11364 	/* Can't drain on an eager connection */
11365 	if (tcp->tcp_listener != NULL)
11366 		return (ret);
11367 
11368 	/* Can't be a non-STREAMS connection */
11369 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
11370 
11371 	/* No need for the push timer now. */
11372 	if (tcp->tcp_push_tid != 0) {
11373 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11374 		tcp->tcp_push_tid = 0;
11375 	}
11376 
11377 	/*
11378 	 * Handle two cases here: we are currently fused or we were
11379 	 * previously fused and have some urgent data to be delivered
11380 	 * upstream.  The latter happens because we either ran out of
11381 	 * memory or were detached and therefore sending the SIGURG was
11382 	 * deferred until this point.  In either case we pass control
11383 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11384 	 * some work.
11385 	 */
11386 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11387 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11388 		    tcp->tcp_fused_sigurg_mp != NULL);
11389 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11390 		    &tcp->tcp_fused_sigurg_mp))
11391 			return (ret);
11392 	}
11393 
11394 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11395 		tcp->tcp_rcv_list = mp->b_next;
11396 		mp->b_next = NULL;
11397 #ifdef DEBUG
11398 		cnt += msgdsize(mp);
11399 #endif
11400 		/* Does this need SSL processing first? */
11401 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11402 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11403 			    mblk_t *, mp);
11404 			tcp_kssl_input(tcp, mp);
11405 			continue;
11406 		}
11407 		putnext(q, mp);
11408 	}
11409 #ifdef DEBUG
11410 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11411 #endif
11412 	tcp->tcp_rcv_last_head = NULL;
11413 	tcp->tcp_rcv_last_tail = NULL;
11414 	tcp->tcp_rcv_cnt = 0;
11415 
11416 	if (canputnext(q))
11417 		return (tcp_rwnd_reopen(tcp));
11418 
11419 	return (ret);
11420 }
11421 
11422 /*
11423  * Queue data on tcp_rcv_list which is a b_next chain.
11424  * tcp_rcv_last_head/tail is the last element of this chain.
11425  * Each element of the chain is a b_cont chain.
11426  *
11427  * M_DATA messages are added to the current element.
11428  * Other messages are added as new (b_next) elements.
11429  */
11430 void
11431 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11432 {
11433 	ASSERT(seg_len == msgdsize(mp));
11434 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11435 
11436 	if (tcp->tcp_rcv_list == NULL) {
11437 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11438 		tcp->tcp_rcv_list = mp;
11439 		tcp->tcp_rcv_last_head = mp;
11440 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11441 		tcp->tcp_rcv_last_tail->b_cont = mp;
11442 	} else {
11443 		tcp->tcp_rcv_last_head->b_next = mp;
11444 		tcp->tcp_rcv_last_head = mp;
11445 	}
11446 
11447 	while (mp->b_cont)
11448 		mp = mp->b_cont;
11449 
11450 	tcp->tcp_rcv_last_tail = mp;
11451 	tcp->tcp_rcv_cnt += seg_len;
11452 	tcp->tcp_rwnd -= seg_len;
11453 }
11454 
11455 /*
11456  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11457  *
11458  * This is the default entry function into TCP on the read side. TCP is
11459  * always entered via squeue i.e. using squeue's for mutual exclusion.
11460  * When classifier does a lookup to find the tcp, it also puts a reference
11461  * on the conn structure associated so the tcp is guaranteed to exist
11462  * when we come here. We still need to check the state because it might
11463  * as well has been closed. The squeue processing function i.e. squeue_enter,
11464  * is responsible for doing the CONN_DEC_REF.
11465  *
11466  * Apart from the default entry point, IP also sends packets directly to
11467  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11468  * connections.
11469  */
11470 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11471 void
11472 tcp_input(void *arg, mblk_t *mp, void *arg2)
11473 {
11474 	conn_t	*connp = (conn_t *)arg;
11475 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11476 
11477 	/* arg2 is the sqp */
11478 	ASSERT(arg2 != NULL);
11479 	ASSERT(mp != NULL);
11480 
11481 	/*
11482 	 * Don't accept any input on a closed tcp as this TCP logically does
11483 	 * not exist on the system. Don't proceed further with this TCP.
11484 	 * For eg. this packet could trigger another close of this tcp
11485 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11486 	 * tcp_clean_death / tcp_closei_local must be called at most once
11487 	 * on a TCP. In this case we need to refeed the packet into the
11488 	 * classifier and figure out where the packet should go. Need to
11489 	 * preserve the recv_ill somehow. Until we figure that out, for
11490 	 * now just drop the packet if we can't classify the packet.
11491 	 */
11492 	if (tcp->tcp_state == TCPS_CLOSED ||
11493 	    tcp->tcp_state == TCPS_BOUND) {
11494 		conn_t	*new_connp;
11495 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11496 
11497 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11498 		if (new_connp != NULL) {
11499 			tcp_reinput(new_connp, mp, arg2);
11500 			return;
11501 		}
11502 		/* We failed to classify. For now just drop the packet */
11503 		freemsg(mp);
11504 		return;
11505 	}
11506 
11507 	if (DB_TYPE(mp) != M_DATA) {
11508 		tcp_rput_common(tcp, mp);
11509 		return;
11510 	}
11511 
11512 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11513 		squeue_t	*final_sqp;
11514 
11515 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11516 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11517 		DB_CKSUMSTART(mp) = 0;
11518 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11519 		    connp->conn_final_sqp == NULL &&
11520 		    tcp_outbound_squeue_switch) {
11521 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11522 			connp->conn_final_sqp = final_sqp;
11523 			if (connp->conn_final_sqp != connp->conn_sqp) {
11524 				CONN_INC_REF(connp);
11525 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11526 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11527 				    tcp_rput_data, connp, ip_squeue_flag,
11528 				    SQTAG_CONNECT_FINISH);
11529 				return;
11530 			}
11531 		}
11532 	}
11533 	tcp_rput_data(connp, mp, arg2);
11534 }
11535 
11536 /*
11537  * The read side put procedure.
11538  * The packets passed up by ip are assume to be aligned according to
11539  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11540  */
11541 static void
11542 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11543 {
11544 	/*
11545 	 * tcp_rput_data() does not expect M_CTL except for the case
11546 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11547 	 * type. Need to make sure that any other M_CTLs don't make
11548 	 * it to tcp_rput_data since it is not expecting any and doesn't
11549 	 * check for it.
11550 	 */
11551 	if (DB_TYPE(mp) == M_CTL) {
11552 		switch (*(uint32_t *)(mp->b_rptr)) {
11553 		case TCP_IOC_ABORT_CONN:
11554 			/*
11555 			 * Handle connection abort request.
11556 			 */
11557 			tcp_ioctl_abort_handler(tcp, mp);
11558 			return;
11559 		case IPSEC_IN:
11560 			/*
11561 			 * Only secure icmp arrive in TCP and they
11562 			 * don't go through data path.
11563 			 */
11564 			tcp_icmp_error(tcp, mp);
11565 			return;
11566 		case IN_PKTINFO:
11567 			/*
11568 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11569 			 * sockets that are receiving IPv4 traffic. tcp
11570 			 */
11571 			ASSERT(tcp->tcp_family == AF_INET6);
11572 			ASSERT(tcp->tcp_ipv6_recvancillary &
11573 			    TCP_IPV6_RECVPKTINFO);
11574 			tcp_rput_data(tcp->tcp_connp, mp,
11575 			    tcp->tcp_connp->conn_sqp);
11576 			return;
11577 		case MDT_IOC_INFO_UPDATE:
11578 			/*
11579 			 * Handle Multidata information update; the
11580 			 * following routine will free the message.
11581 			 */
11582 			if (tcp->tcp_connp->conn_mdt_ok) {
11583 				tcp_mdt_update(tcp,
11584 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11585 				    B_FALSE);
11586 			}
11587 			freemsg(mp);
11588 			return;
11589 		case LSO_IOC_INFO_UPDATE:
11590 			/*
11591 			 * Handle LSO information update; the following
11592 			 * routine will free the message.
11593 			 */
11594 			if (tcp->tcp_connp->conn_lso_ok) {
11595 				tcp_lso_update(tcp,
11596 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11597 			}
11598 			freemsg(mp);
11599 			return;
11600 		default:
11601 			/*
11602 			 * tcp_icmp_err() will process the M_CTL packets.
11603 			 * Non-ICMP packets, if any, will be discarded in
11604 			 * tcp_icmp_err(). We will process the ICMP packet
11605 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11606 			 * incoming ICMP packet may result in changing
11607 			 * the tcp_mss, which we would need if we have
11608 			 * packets to retransmit.
11609 			 */
11610 			tcp_icmp_error(tcp, mp);
11611 			return;
11612 		}
11613 	}
11614 
11615 	/* No point processing the message if tcp is already closed */
11616 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11617 		freemsg(mp);
11618 		return;
11619 	}
11620 
11621 	tcp_rput_other(tcp, mp);
11622 }
11623 
11624 
11625 /* The minimum of smoothed mean deviation in RTO calculation. */
11626 #define	TCP_SD_MIN	400
11627 
11628 /*
11629  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11630  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11631  * are the same as those in Appendix A.2 of that paper.
11632  *
11633  * m = new measurement
11634  * sa = smoothed RTT average (8 * average estimates).
11635  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11636  */
11637 static void
11638 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11639 {
11640 	long m = TICK_TO_MSEC(rtt);
11641 	clock_t sa = tcp->tcp_rtt_sa;
11642 	clock_t sv = tcp->tcp_rtt_sd;
11643 	clock_t rto;
11644 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11645 
11646 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11647 	tcp->tcp_rtt_update++;
11648 
11649 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11650 	if (sa != 0) {
11651 		/*
11652 		 * Update average estimator:
11653 		 *	new rtt = 7/8 old rtt + 1/8 Error
11654 		 */
11655 
11656 		/* m is now Error in estimate. */
11657 		m -= sa >> 3;
11658 		if ((sa += m) <= 0) {
11659 			/*
11660 			 * Don't allow the smoothed average to be negative.
11661 			 * We use 0 to denote reinitialization of the
11662 			 * variables.
11663 			 */
11664 			sa = 1;
11665 		}
11666 
11667 		/*
11668 		 * Update deviation estimator:
11669 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11670 		 */
11671 		if (m < 0)
11672 			m = -m;
11673 		m -= sv >> 2;
11674 		sv += m;
11675 	} else {
11676 		/*
11677 		 * This follows BSD's implementation.  So the reinitialized
11678 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11679 		 * link is bandwidth dominated, doubling the window size
11680 		 * during slow start means doubling the RTT.  We want to be
11681 		 * more conservative when we reinitialize our estimates.  3
11682 		 * is just a convenient number.
11683 		 */
11684 		sa = m << 3;
11685 		sv = m << 1;
11686 	}
11687 	if (sv < TCP_SD_MIN) {
11688 		/*
11689 		 * We do not know that if sa captures the delay ACK
11690 		 * effect as in a long train of segments, a receiver
11691 		 * does not delay its ACKs.  So set the minimum of sv
11692 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11693 		 * of BSD DATO.  That means the minimum of mean
11694 		 * deviation is 100 ms.
11695 		 *
11696 		 */
11697 		sv = TCP_SD_MIN;
11698 	}
11699 	tcp->tcp_rtt_sa = sa;
11700 	tcp->tcp_rtt_sd = sv;
11701 	/*
11702 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11703 	 *
11704 	 * Add tcp_rexmit_interval extra in case of extreme environment
11705 	 * where the algorithm fails to work.  The default value of
11706 	 * tcp_rexmit_interval_extra should be 0.
11707 	 *
11708 	 * As we use a finer grained clock than BSD and update
11709 	 * RTO for every ACKs, add in another .25 of RTT to the
11710 	 * deviation of RTO to accomodate burstiness of 1/4 of
11711 	 * window size.
11712 	 */
11713 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11714 
11715 	if (rto > tcps->tcps_rexmit_interval_max) {
11716 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11717 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11718 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11719 	} else {
11720 		tcp->tcp_rto = rto;
11721 	}
11722 
11723 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11724 	tcp->tcp_timer_backoff = 0;
11725 }
11726 
11727 /*
11728  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11729  * send queue which starts at the given seq. no.
11730  *
11731  * Parameters:
11732  *	tcp_t *tcp: the tcp instance pointer.
11733  *	uint32_t seq: the starting seq. no of the requested segment.
11734  *	int32_t *off: after the execution, *off will be the offset to
11735  *		the returned mblk which points to the requested seq no.
11736  *		It is the caller's responsibility to send in a non-null off.
11737  *
11738  * Return:
11739  *	A mblk_t pointer pointing to the requested segment in send queue.
11740  */
11741 static mblk_t *
11742 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11743 {
11744 	int32_t	cnt;
11745 	mblk_t	*mp;
11746 
11747 	/* Defensive coding.  Make sure we don't send incorrect data. */
11748 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11749 		return (NULL);
11750 
11751 	cnt = seq - tcp->tcp_suna;
11752 	mp = tcp->tcp_xmit_head;
11753 	while (cnt > 0 && mp != NULL) {
11754 		cnt -= mp->b_wptr - mp->b_rptr;
11755 		if (cnt < 0) {
11756 			cnt += mp->b_wptr - mp->b_rptr;
11757 			break;
11758 		}
11759 		mp = mp->b_cont;
11760 	}
11761 	ASSERT(mp != NULL);
11762 	*off = cnt;
11763 	return (mp);
11764 }
11765 
11766 /*
11767  * This function handles all retransmissions if SACK is enabled for this
11768  * connection.  First it calculates how many segments can be retransmitted
11769  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11770  * segments.  A segment is eligible if sack_cnt for that segment is greater
11771  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11772  * all eligible segments, it checks to see if TCP can send some new segments
11773  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11774  *
11775  * Parameters:
11776  *	tcp_t *tcp: the tcp structure of the connection.
11777  *	uint_t *flags: in return, appropriate value will be set for
11778  *	tcp_rput_data().
11779  */
11780 static void
11781 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11782 {
11783 	notsack_blk_t	*notsack_blk;
11784 	int32_t		usable_swnd;
11785 	int32_t		mss;
11786 	uint32_t	seg_len;
11787 	mblk_t		*xmit_mp;
11788 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11789 
11790 	ASSERT(tcp->tcp_sack_info != NULL);
11791 	ASSERT(tcp->tcp_notsack_list != NULL);
11792 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11793 
11794 	/* Defensive coding in case there is a bug... */
11795 	if (tcp->tcp_notsack_list == NULL) {
11796 		return;
11797 	}
11798 	notsack_blk = tcp->tcp_notsack_list;
11799 	mss = tcp->tcp_mss;
11800 
11801 	/*
11802 	 * Limit the num of outstanding data in the network to be
11803 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11804 	 */
11805 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11806 
11807 	/* At least retransmit 1 MSS of data. */
11808 	if (usable_swnd <= 0) {
11809 		usable_swnd = mss;
11810 	}
11811 
11812 	/* Make sure no new RTT samples will be taken. */
11813 	tcp->tcp_csuna = tcp->tcp_snxt;
11814 
11815 	notsack_blk = tcp->tcp_notsack_list;
11816 	while (usable_swnd > 0) {
11817 		mblk_t		*snxt_mp, *tmp_mp;
11818 		tcp_seq		begin = tcp->tcp_sack_snxt;
11819 		tcp_seq		end;
11820 		int32_t		off;
11821 
11822 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11823 			if (SEQ_GT(notsack_blk->end, begin) &&
11824 			    (notsack_blk->sack_cnt >=
11825 			    tcps->tcps_dupack_fast_retransmit)) {
11826 				end = notsack_blk->end;
11827 				if (SEQ_LT(begin, notsack_blk->begin)) {
11828 					begin = notsack_blk->begin;
11829 				}
11830 				break;
11831 			}
11832 		}
11833 		/*
11834 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11835 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11836 		 * set to tcp_cwnd_ssthresh.
11837 		 */
11838 		if (notsack_blk == NULL) {
11839 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11840 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11841 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11842 				ASSERT(tcp->tcp_cwnd > 0);
11843 				return;
11844 			} else {
11845 				usable_swnd = usable_swnd / mss;
11846 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11847 				    MAX(usable_swnd * mss, mss);
11848 				*flags |= TH_XMIT_NEEDED;
11849 				return;
11850 			}
11851 		}
11852 
11853 		/*
11854 		 * Note that we may send more than usable_swnd allows here
11855 		 * because of round off, but no more than 1 MSS of data.
11856 		 */
11857 		seg_len = end - begin;
11858 		if (seg_len > mss)
11859 			seg_len = mss;
11860 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11861 		ASSERT(snxt_mp != NULL);
11862 		/* This should not happen.  Defensive coding again... */
11863 		if (snxt_mp == NULL) {
11864 			return;
11865 		}
11866 
11867 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11868 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11869 		if (xmit_mp == NULL)
11870 			return;
11871 
11872 		usable_swnd -= seg_len;
11873 		tcp->tcp_pipe += seg_len;
11874 		tcp->tcp_sack_snxt = begin + seg_len;
11875 
11876 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11877 
11878 		/*
11879 		 * Update the send timestamp to avoid false retransmission.
11880 		 */
11881 		snxt_mp->b_prev = (mblk_t *)lbolt;
11882 
11883 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
11884 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
11885 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
11886 		/*
11887 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11888 		 * This happens when new data sent during fast recovery is
11889 		 * also lost.  If TCP retransmits those new data, it needs
11890 		 * to extend SACK recover phase to avoid starting another
11891 		 * fast retransmit/recovery unnecessarily.
11892 		 */
11893 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11894 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11895 		}
11896 	}
11897 }
11898 
11899 /*
11900  * This function handles policy checking at TCP level for non-hard_bound/
11901  * detached connections.
11902  */
11903 static boolean_t
11904 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11905     boolean_t secure, boolean_t mctl_present)
11906 {
11907 	ipsec_latch_t *ipl = NULL;
11908 	ipsec_action_t *act = NULL;
11909 	mblk_t *data_mp;
11910 	ipsec_in_t *ii;
11911 	const char *reason;
11912 	kstat_named_t *counter;
11913 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11914 	ipsec_stack_t	*ipss;
11915 	ip_stack_t	*ipst;
11916 
11917 	ASSERT(mctl_present || !secure);
11918 
11919 	ASSERT((ipha == NULL && ip6h != NULL) ||
11920 	    (ip6h == NULL && ipha != NULL));
11921 
11922 	/*
11923 	 * We don't necessarily have an ipsec_in_act action to verify
11924 	 * policy because of assymetrical policy where we have only
11925 	 * outbound policy and no inbound policy (possible with global
11926 	 * policy).
11927 	 */
11928 	if (!secure) {
11929 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11930 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11931 			return (B_TRUE);
11932 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
11933 		    "tcp_check_policy", ipha, ip6h, secure,
11934 		    tcps->tcps_netstack);
11935 		ipss = tcps->tcps_netstack->netstack_ipsec;
11936 
11937 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11938 		    DROPPER(ipss, ipds_tcp_clear),
11939 		    &tcps->tcps_dropper);
11940 		return (B_FALSE);
11941 	}
11942 
11943 	/*
11944 	 * We have a secure packet.
11945 	 */
11946 	if (act == NULL) {
11947 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
11948 		    "tcp_check_policy", ipha, ip6h, secure,
11949 		    tcps->tcps_netstack);
11950 		ipss = tcps->tcps_netstack->netstack_ipsec;
11951 
11952 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11953 		    DROPPER(ipss, ipds_tcp_secure),
11954 		    &tcps->tcps_dropper);
11955 		return (B_FALSE);
11956 	}
11957 
11958 	/*
11959 	 * XXX This whole routine is currently incorrect.  ipl should
11960 	 * be set to the latch pointer, but is currently not set, so
11961 	 * we initialize it to NULL to avoid picking up random garbage.
11962 	 */
11963 	if (ipl == NULL)
11964 		return (B_TRUE);
11965 
11966 	data_mp = first_mp->b_cont;
11967 
11968 	ii = (ipsec_in_t *)first_mp->b_rptr;
11969 
11970 	ipst = tcps->tcps_netstack->netstack_ip;
11971 
11972 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11973 	    &counter, tcp->tcp_connp)) {
11974 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
11975 		return (B_TRUE);
11976 	}
11977 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11978 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11979 	    reason);
11980 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
11981 
11982 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
11983 	    &tcps->tcps_dropper);
11984 	return (B_FALSE);
11985 }
11986 
11987 /*
11988  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11989  * retransmission after a timeout.
11990  *
11991  * To limit the number of duplicate segments, we limit the number of segment
11992  * to be sent in one time to tcp_snd_burst, the burst variable.
11993  */
11994 static void
11995 tcp_ss_rexmit(tcp_t *tcp)
11996 {
11997 	uint32_t	snxt;
11998 	uint32_t	smax;
11999 	int32_t		win;
12000 	int32_t		mss;
12001 	int32_t		off;
12002 	int32_t		burst = tcp->tcp_snd_burst;
12003 	mblk_t		*snxt_mp;
12004 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12005 
12006 	/*
12007 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12008 	 * all unack'ed segments.
12009 	 */
12010 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12011 		smax = tcp->tcp_rexmit_max;
12012 		snxt = tcp->tcp_rexmit_nxt;
12013 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12014 			snxt = tcp->tcp_suna;
12015 		}
12016 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12017 		win -= snxt - tcp->tcp_suna;
12018 		mss = tcp->tcp_mss;
12019 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12020 
12021 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12022 		    (burst > 0) && (snxt_mp != NULL)) {
12023 			mblk_t	*xmit_mp;
12024 			mblk_t	*old_snxt_mp = snxt_mp;
12025 			uint32_t cnt = mss;
12026 
12027 			if (win < cnt) {
12028 				cnt = win;
12029 			}
12030 			if (SEQ_GT(snxt + cnt, smax)) {
12031 				cnt = smax - snxt;
12032 			}
12033 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12034 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12035 			if (xmit_mp == NULL)
12036 				return;
12037 
12038 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12039 
12040 			snxt += cnt;
12041 			win -= cnt;
12042 			/*
12043 			 * Update the send timestamp to avoid false
12044 			 * retransmission.
12045 			 */
12046 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12047 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12048 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12049 
12050 			tcp->tcp_rexmit_nxt = snxt;
12051 			burst--;
12052 		}
12053 		/*
12054 		 * If we have transmitted all we have at the time
12055 		 * we started the retranmission, we can leave
12056 		 * the rest of the job to tcp_wput_data().  But we
12057 		 * need to check the send window first.  If the
12058 		 * win is not 0, go on with tcp_wput_data().
12059 		 */
12060 		if (SEQ_LT(snxt, smax) || win == 0) {
12061 			return;
12062 		}
12063 	}
12064 	/* Only call tcp_wput_data() if there is data to be sent. */
12065 	if (tcp->tcp_unsent) {
12066 		tcp_wput_data(tcp, NULL, B_FALSE);
12067 	}
12068 }
12069 
12070 /*
12071  * Process all TCP option in SYN segment.  Note that this function should
12072  * be called after tcp_adapt_ire() is called so that the necessary info
12073  * from IRE is already set in the tcp structure.
12074  *
12075  * This function sets up the correct tcp_mss value according to the
12076  * MSS option value and our header size.  It also sets up the window scale
12077  * and timestamp values, and initialize SACK info blocks.  But it does not
12078  * change receive window size after setting the tcp_mss value.  The caller
12079  * should do the appropriate change.
12080  */
12081 void
12082 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12083 {
12084 	int options;
12085 	tcp_opt_t tcpopt;
12086 	uint32_t mss_max;
12087 	char *tmp_tcph;
12088 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12089 
12090 	tcpopt.tcp = NULL;
12091 	options = tcp_parse_options(tcph, &tcpopt);
12092 
12093 	/*
12094 	 * Process MSS option.  Note that MSS option value does not account
12095 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12096 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12097 	 * IPv6.
12098 	 */
12099 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12100 		if (tcp->tcp_ipversion == IPV4_VERSION)
12101 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12102 		else
12103 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12104 	} else {
12105 		if (tcp->tcp_ipversion == IPV4_VERSION)
12106 			mss_max = tcps->tcps_mss_max_ipv4;
12107 		else
12108 			mss_max = tcps->tcps_mss_max_ipv6;
12109 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12110 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12111 		else if (tcpopt.tcp_opt_mss > mss_max)
12112 			tcpopt.tcp_opt_mss = mss_max;
12113 	}
12114 
12115 	/* Process Window Scale option. */
12116 	if (options & TCP_OPT_WSCALE_PRESENT) {
12117 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12118 		tcp->tcp_snd_ws_ok = B_TRUE;
12119 	} else {
12120 		tcp->tcp_snd_ws = B_FALSE;
12121 		tcp->tcp_snd_ws_ok = B_FALSE;
12122 		tcp->tcp_rcv_ws = B_FALSE;
12123 	}
12124 
12125 	/* Process Timestamp option. */
12126 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12127 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12128 		tmp_tcph = (char *)tcp->tcp_tcph;
12129 
12130 		tcp->tcp_snd_ts_ok = B_TRUE;
12131 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12132 		tcp->tcp_last_rcv_lbolt = lbolt64;
12133 		ASSERT(OK_32PTR(tmp_tcph));
12134 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12135 
12136 		/* Fill in our template header with basic timestamp option. */
12137 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12138 		tmp_tcph[0] = TCPOPT_NOP;
12139 		tmp_tcph[1] = TCPOPT_NOP;
12140 		tmp_tcph[2] = TCPOPT_TSTAMP;
12141 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12142 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12143 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12144 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12145 	} else {
12146 		tcp->tcp_snd_ts_ok = B_FALSE;
12147 	}
12148 
12149 	/*
12150 	 * Process SACK options.  If SACK is enabled for this connection,
12151 	 * then allocate the SACK info structure.  Note the following ways
12152 	 * when tcp_snd_sack_ok is set to true.
12153 	 *
12154 	 * For active connection: in tcp_adapt_ire() called in
12155 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12156 	 * is checked.
12157 	 *
12158 	 * For passive connection: in tcp_adapt_ire() called in
12159 	 * tcp_accept_comm().
12160 	 *
12161 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12162 	 * That check makes sure that if we did not send a SACK OK option,
12163 	 * we will not enable SACK for this connection even though the other
12164 	 * side sends us SACK OK option.  For active connection, the SACK
12165 	 * info structure has already been allocated.  So we need to free
12166 	 * it if SACK is disabled.
12167 	 */
12168 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12169 	    (tcp->tcp_snd_sack_ok ||
12170 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12171 		/* This should be true only in the passive case. */
12172 		if (tcp->tcp_sack_info == NULL) {
12173 			ASSERT(TCP_IS_DETACHED(tcp));
12174 			tcp->tcp_sack_info =
12175 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12176 		}
12177 		if (tcp->tcp_sack_info == NULL) {
12178 			tcp->tcp_snd_sack_ok = B_FALSE;
12179 		} else {
12180 			tcp->tcp_snd_sack_ok = B_TRUE;
12181 			if (tcp->tcp_snd_ts_ok) {
12182 				tcp->tcp_max_sack_blk = 3;
12183 			} else {
12184 				tcp->tcp_max_sack_blk = 4;
12185 			}
12186 		}
12187 	} else {
12188 		/*
12189 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12190 		 * no SACK info will be used for this
12191 		 * connection.  This assumes that SACK usage
12192 		 * permission is negotiated.  This may need
12193 		 * to be changed once this is clarified.
12194 		 */
12195 		if (tcp->tcp_sack_info != NULL) {
12196 			ASSERT(tcp->tcp_notsack_list == NULL);
12197 			kmem_cache_free(tcp_sack_info_cache,
12198 			    tcp->tcp_sack_info);
12199 			tcp->tcp_sack_info = NULL;
12200 		}
12201 		tcp->tcp_snd_sack_ok = B_FALSE;
12202 	}
12203 
12204 	/*
12205 	 * Now we know the exact TCP/IP header length, subtract
12206 	 * that from tcp_mss to get our side's MSS.
12207 	 */
12208 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12209 	/*
12210 	 * Here we assume that the other side's header size will be equal to
12211 	 * our header size.  We calculate the real MSS accordingly.  Need to
12212 	 * take into additional stuffs IPsec puts in.
12213 	 *
12214 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12215 	 */
12216 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12217 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12218 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12219 
12220 	/*
12221 	 * Set MSS to the smaller one of both ends of the connection.
12222 	 * We should not have called tcp_mss_set() before, but our
12223 	 * side of the MSS should have been set to a proper value
12224 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12225 	 * STREAM head parameters properly.
12226 	 *
12227 	 * If we have a larger-than-16-bit window but the other side
12228 	 * didn't want to do window scale, tcp_rwnd_set() will take
12229 	 * care of that.
12230 	 */
12231 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12232 }
12233 
12234 /*
12235  * Sends the T_CONN_IND to the listener. The caller calls this
12236  * functions via squeue to get inside the listener's perimeter
12237  * once the 3 way hand shake is done a T_CONN_IND needs to be
12238  * sent. As an optimization, the caller can call this directly
12239  * if listener's perimeter is same as eager's.
12240  */
12241 /* ARGSUSED */
12242 void
12243 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12244 {
12245 	conn_t			*lconnp = (conn_t *)arg;
12246 	tcp_t			*listener = lconnp->conn_tcp;
12247 	tcp_t			*tcp;
12248 	struct T_conn_ind	*conn_ind;
12249 	ipaddr_t 		*addr_cache;
12250 	boolean_t		need_send_conn_ind = B_FALSE;
12251 	tcp_stack_t		*tcps = listener->tcp_tcps;
12252 
12253 	/* retrieve the eager */
12254 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12255 	ASSERT(conn_ind->OPT_offset != 0 &&
12256 	    conn_ind->OPT_length == sizeof (intptr_t));
12257 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12258 	    conn_ind->OPT_length);
12259 
12260 	/*
12261 	 * TLI/XTI applications will get confused by
12262 	 * sending eager as an option since it violates
12263 	 * the option semantics. So remove the eager as
12264 	 * option since TLI/XTI app doesn't need it anyway.
12265 	 */
12266 	if (!TCP_IS_SOCKET(listener)) {
12267 		conn_ind->OPT_length = 0;
12268 		conn_ind->OPT_offset = 0;
12269 	}
12270 	if (listener->tcp_state == TCPS_CLOSED ||
12271 	    TCP_IS_DETACHED(listener)) {
12272 		/*
12273 		 * If listener has closed, it would have caused a
12274 		 * a cleanup/blowoff to happen for the eager. We
12275 		 * just need to return.
12276 		 */
12277 		freemsg(mp);
12278 		return;
12279 	}
12280 
12281 
12282 	/*
12283 	 * if the conn_req_q is full defer passing up the
12284 	 * T_CONN_IND until space is availabe after t_accept()
12285 	 * processing
12286 	 */
12287 	mutex_enter(&listener->tcp_eager_lock);
12288 
12289 	/*
12290 	 * Take the eager out, if it is in the list of droppable eagers
12291 	 * as we are here because the 3W handshake is over.
12292 	 */
12293 	MAKE_UNDROPPABLE(tcp);
12294 
12295 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12296 		tcp_t *tail;
12297 
12298 		/*
12299 		 * The eager already has an extra ref put in tcp_rput_data
12300 		 * so that it stays till accept comes back even though it
12301 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12302 		 */
12303 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12304 		listener->tcp_conn_req_cnt_q0--;
12305 		listener->tcp_conn_req_cnt_q++;
12306 
12307 		/* Move from SYN_RCVD to ESTABLISHED list  */
12308 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12309 		    tcp->tcp_eager_prev_q0;
12310 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12311 		    tcp->tcp_eager_next_q0;
12312 		tcp->tcp_eager_prev_q0 = NULL;
12313 		tcp->tcp_eager_next_q0 = NULL;
12314 
12315 		/*
12316 		 * Insert at end of the queue because sockfs
12317 		 * sends down T_CONN_RES in chronological
12318 		 * order. Leaving the older conn indications
12319 		 * at front of the queue helps reducing search
12320 		 * time.
12321 		 */
12322 		tail = listener->tcp_eager_last_q;
12323 		if (tail != NULL)
12324 			tail->tcp_eager_next_q = tcp;
12325 		else
12326 			listener->tcp_eager_next_q = tcp;
12327 		listener->tcp_eager_last_q = tcp;
12328 		tcp->tcp_eager_next_q = NULL;
12329 		/*
12330 		 * Delay sending up the T_conn_ind until we are
12331 		 * done with the eager. Once we have have sent up
12332 		 * the T_conn_ind, the accept can potentially complete
12333 		 * any time and release the refhold we have on the eager.
12334 		 */
12335 		need_send_conn_ind = B_TRUE;
12336 	} else {
12337 		/*
12338 		 * Defer connection on q0 and set deferred
12339 		 * connection bit true
12340 		 */
12341 		tcp->tcp_conn_def_q0 = B_TRUE;
12342 
12343 		/* take tcp out of q0 ... */
12344 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12345 		    tcp->tcp_eager_next_q0;
12346 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12347 		    tcp->tcp_eager_prev_q0;
12348 
12349 		/* ... and place it at the end of q0 */
12350 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12351 		tcp->tcp_eager_next_q0 = listener;
12352 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12353 		listener->tcp_eager_prev_q0 = tcp;
12354 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12355 	}
12356 
12357 	/* we have timed out before */
12358 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12359 		tcp->tcp_syn_rcvd_timeout = 0;
12360 		listener->tcp_syn_rcvd_timeout--;
12361 		if (listener->tcp_syn_defense &&
12362 		    listener->tcp_syn_rcvd_timeout <=
12363 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12364 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12365 		    listener->tcp_last_rcv_lbolt)) {
12366 			/*
12367 			 * Turn off the defense mode if we
12368 			 * believe the SYN attack is over.
12369 			 */
12370 			listener->tcp_syn_defense = B_FALSE;
12371 			if (listener->tcp_ip_addr_cache) {
12372 				kmem_free((void *)listener->tcp_ip_addr_cache,
12373 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12374 				listener->tcp_ip_addr_cache = NULL;
12375 			}
12376 		}
12377 	}
12378 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12379 	if (addr_cache != NULL) {
12380 		/*
12381 		 * We have finished a 3-way handshake with this
12382 		 * remote host. This proves the IP addr is good.
12383 		 * Cache it!
12384 		 */
12385 		addr_cache[IP_ADDR_CACHE_HASH(
12386 		    tcp->tcp_remote)] = tcp->tcp_remote;
12387 	}
12388 	mutex_exit(&listener->tcp_eager_lock);
12389 	if (need_send_conn_ind)
12390 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
12391 }
12392 
12393 /*
12394  * Send the newconn notification to ulp. The eager is blown off if the
12395  * notification fails.
12396  */
12397 static void
12398 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
12399 {
12400 	if (IPCL_IS_NONSTR(lconnp)) {
12401 		cred_t	*cr;
12402 		pid_t	cpid;
12403 
12404 		cr = msg_getcred(mp, &cpid);
12405 
12406 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
12407 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
12408 		    lconnp->conn_tcp);
12409 
12410 		/* Keep the message around in case of a fallback to TPI */
12411 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
12412 
12413 		/*
12414 		 * Notify the ULP about the newconn. It is guaranteed that no
12415 		 * tcp_accept() call will be made for the eager if the
12416 		 * notification fails, so it's safe to blow it off in that
12417 		 * case.
12418 		 *
12419 		 * The upper handle will be assigned when tcp_accept() is
12420 		 * called.
12421 		 */
12422 		if ((*lconnp->conn_upcalls->su_newconn)
12423 		    (lconnp->conn_upper_handle,
12424 		    (sock_lower_handle_t)econnp,
12425 		    &sock_tcp_downcalls, cr, cpid,
12426 		    &econnp->conn_upcalls) == NULL) {
12427 			/* Failed to allocate a socket */
12428 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
12429 			    tcpEstabResets);
12430 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
12431 			    econnp->conn_tcp->tcp_conn_req_seqnum);
12432 		}
12433 	} else {
12434 		putnext(lconnp->conn_tcp->tcp_rq, mp);
12435 	}
12436 }
12437 
12438 mblk_t *
12439 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12440     uint_t *ifindexp, ip6_pkt_t *ippp)
12441 {
12442 	ip_pktinfo_t	*pinfo;
12443 	ip6_t		*ip6h;
12444 	uchar_t		*rptr;
12445 	mblk_t		*first_mp = mp;
12446 	boolean_t	mctl_present = B_FALSE;
12447 	uint_t 		ifindex = 0;
12448 	ip6_pkt_t	ipp;
12449 	uint_t		ipvers;
12450 	uint_t		ip_hdr_len;
12451 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12452 
12453 	rptr = mp->b_rptr;
12454 	ASSERT(OK_32PTR(rptr));
12455 	ASSERT(tcp != NULL);
12456 	ipp.ipp_fields = 0;
12457 
12458 	switch DB_TYPE(mp) {
12459 	case M_CTL:
12460 		mp = mp->b_cont;
12461 		if (mp == NULL) {
12462 			freemsg(first_mp);
12463 			return (NULL);
12464 		}
12465 		if (DB_TYPE(mp) != M_DATA) {
12466 			freemsg(first_mp);
12467 			return (NULL);
12468 		}
12469 		mctl_present = B_TRUE;
12470 		break;
12471 	case M_DATA:
12472 		break;
12473 	default:
12474 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12475 		freemsg(mp);
12476 		return (NULL);
12477 	}
12478 	ipvers = IPH_HDR_VERSION(rptr);
12479 	if (ipvers == IPV4_VERSION) {
12480 		if (tcp == NULL) {
12481 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12482 			goto done;
12483 		}
12484 
12485 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12486 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12487 
12488 		/*
12489 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12490 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12491 		 */
12492 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12493 		    mctl_present) {
12494 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12495 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12496 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12497 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12498 				ipp.ipp_fields |= IPPF_IFINDEX;
12499 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12500 				ifindex = pinfo->ip_pkt_ifindex;
12501 			}
12502 			freeb(first_mp);
12503 			mctl_present = B_FALSE;
12504 		}
12505 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12506 	} else {
12507 		ip6h = (ip6_t *)rptr;
12508 
12509 		ASSERT(ipvers == IPV6_VERSION);
12510 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12511 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12512 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12513 
12514 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12515 			uint8_t	nexthdrp;
12516 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12517 
12518 			/* Look for ifindex information */
12519 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12520 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12521 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12522 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12523 					freemsg(first_mp);
12524 					return (NULL);
12525 				}
12526 
12527 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12528 					ASSERT(ip6i->ip6i_ifindex != 0);
12529 					ipp.ipp_fields |= IPPF_IFINDEX;
12530 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12531 					ifindex = ip6i->ip6i_ifindex;
12532 				}
12533 				rptr = (uchar_t *)&ip6i[1];
12534 				mp->b_rptr = rptr;
12535 				if (rptr == mp->b_wptr) {
12536 					mblk_t *mp1;
12537 					mp1 = mp->b_cont;
12538 					freeb(mp);
12539 					mp = mp1;
12540 					rptr = mp->b_rptr;
12541 				}
12542 				if (MBLKL(mp) < IPV6_HDR_LEN +
12543 				    sizeof (tcph_t)) {
12544 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12545 					freemsg(first_mp);
12546 					return (NULL);
12547 				}
12548 				ip6h = (ip6_t *)rptr;
12549 			}
12550 
12551 			/*
12552 			 * Find any potentially interesting extension headers
12553 			 * as well as the length of the IPv6 + extension
12554 			 * headers.
12555 			 */
12556 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12557 			/* Verify if this is a TCP packet */
12558 			if (nexthdrp != IPPROTO_TCP) {
12559 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12560 				freemsg(first_mp);
12561 				return (NULL);
12562 			}
12563 		} else {
12564 			ip_hdr_len = IPV6_HDR_LEN;
12565 		}
12566 	}
12567 
12568 done:
12569 	if (ipversp != NULL)
12570 		*ipversp = ipvers;
12571 	if (ip_hdr_lenp != NULL)
12572 		*ip_hdr_lenp = ip_hdr_len;
12573 	if (ippp != NULL)
12574 		*ippp = ipp;
12575 	if (ifindexp != NULL)
12576 		*ifindexp = ifindex;
12577 	if (mctl_present) {
12578 		freeb(first_mp);
12579 	}
12580 	return (mp);
12581 }
12582 
12583 /*
12584  * Handle M_DATA messages from IP. Its called directly from IP via
12585  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12586  * in this path.
12587  *
12588  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12589  * v4 and v6), we are called through tcp_input() and a M_CTL can
12590  * be present for options but tcp_find_pktinfo() deals with it. We
12591  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12592  *
12593  * The first argument is always the connp/tcp to which the mp belongs.
12594  * There are no exceptions to this rule. The caller has already put
12595  * a reference on this connp/tcp and once tcp_rput_data() returns,
12596  * the squeue will do the refrele.
12597  *
12598  * The TH_SYN for the listener directly go to tcp_conn_request via
12599  * squeue.
12600  *
12601  * sqp: NULL = recursive, sqp != NULL means called from squeue
12602  */
12603 void
12604 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12605 {
12606 	int32_t		bytes_acked;
12607 	int32_t		gap;
12608 	mblk_t		*mp1;
12609 	uint_t		flags;
12610 	uint32_t	new_swnd = 0;
12611 	uchar_t		*iphdr;
12612 	uchar_t		*rptr;
12613 	int32_t		rgap;
12614 	uint32_t	seg_ack;
12615 	int		seg_len;
12616 	uint_t		ip_hdr_len;
12617 	uint32_t	seg_seq;
12618 	tcph_t		*tcph;
12619 	int		urp;
12620 	tcp_opt_t	tcpopt;
12621 	uint_t		ipvers;
12622 	ip6_pkt_t	ipp;
12623 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12624 	uint32_t	cwnd;
12625 	uint32_t	add;
12626 	int		npkt;
12627 	int		mss;
12628 	conn_t		*connp = (conn_t *)arg;
12629 	squeue_t	*sqp = (squeue_t *)arg2;
12630 	tcp_t		*tcp = connp->conn_tcp;
12631 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12632 
12633 	/*
12634 	 * RST from fused tcp loopback peer should trigger an unfuse.
12635 	 */
12636 	if (tcp->tcp_fused) {
12637 		TCP_STAT(tcps, tcp_fusion_aborted);
12638 		tcp_unfuse(tcp);
12639 	}
12640 
12641 	iphdr = mp->b_rptr;
12642 	rptr = mp->b_rptr;
12643 	ASSERT(OK_32PTR(rptr));
12644 
12645 	/*
12646 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12647 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12648 	 * necessary information.
12649 	 */
12650 	if (IPCL_IS_TCP4(connp)) {
12651 		ipvers = IPV4_VERSION;
12652 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12653 	} else {
12654 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12655 		    NULL, &ipp);
12656 		if (mp == NULL) {
12657 			TCP_STAT(tcps, tcp_rput_v6_error);
12658 			return;
12659 		}
12660 		iphdr = mp->b_rptr;
12661 		rptr = mp->b_rptr;
12662 	}
12663 	ASSERT(DB_TYPE(mp) == M_DATA);
12664 	ASSERT(mp->b_next == NULL);
12665 
12666 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12667 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12668 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12669 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12670 	seg_len = (int)(mp->b_wptr - rptr) -
12671 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12672 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12673 		do {
12674 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12675 			    (uintptr_t)INT_MAX);
12676 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12677 		} while ((mp1 = mp1->b_cont) != NULL &&
12678 		    mp1->b_datap->db_type == M_DATA);
12679 	}
12680 
12681 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12682 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12683 		    seg_len, tcph);
12684 		return;
12685 	}
12686 
12687 	if (sqp != NULL) {
12688 		/*
12689 		 * This is the correct place to update tcp_last_recv_time. Note
12690 		 * that it is also updated for tcp structure that belongs to
12691 		 * global and listener queues which do not really need updating.
12692 		 * But that should not cause any harm.  And it is updated for
12693 		 * all kinds of incoming segments, not only for data segments.
12694 		 */
12695 		tcp->tcp_last_recv_time = lbolt;
12696 	}
12697 
12698 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12699 
12700 	BUMP_LOCAL(tcp->tcp_ibsegs);
12701 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
12702 
12703 	if ((flags & TH_URG) && sqp != NULL) {
12704 		/*
12705 		 * TCP can't handle urgent pointers that arrive before
12706 		 * the connection has been accept()ed since it can't
12707 		 * buffer OOB data.  Discard segment if this happens.
12708 		 *
12709 		 * We can't just rely on a non-null tcp_listener to indicate
12710 		 * that the accept() has completed since unlinking of the
12711 		 * eager and completion of the accept are not atomic.
12712 		 * tcp_detached, when it is not set (B_FALSE) indicates
12713 		 * that the accept() has completed.
12714 		 *
12715 		 * Nor can it reassemble urgent pointers, so discard
12716 		 * if it's not the next segment expected.
12717 		 *
12718 		 * Otherwise, collapse chain into one mblk (discard if
12719 		 * that fails).  This makes sure the headers, retransmitted
12720 		 * data, and new data all are in the same mblk.
12721 		 */
12722 		ASSERT(mp != NULL);
12723 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12724 			freemsg(mp);
12725 			return;
12726 		}
12727 		/* Update pointers into message */
12728 		iphdr = rptr = mp->b_rptr;
12729 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12730 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12731 			/*
12732 			 * Since we can't handle any data with this urgent
12733 			 * pointer that is out of sequence, we expunge
12734 			 * the data.  This allows us to still register
12735 			 * the urgent mark and generate the M_PCSIG,
12736 			 * which we can do.
12737 			 */
12738 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12739 			seg_len = 0;
12740 		}
12741 	}
12742 
12743 	switch (tcp->tcp_state) {
12744 	case TCPS_SYN_SENT:
12745 		if (flags & TH_ACK) {
12746 			/*
12747 			 * Note that our stack cannot send data before a
12748 			 * connection is established, therefore the
12749 			 * following check is valid.  Otherwise, it has
12750 			 * to be changed.
12751 			 */
12752 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12753 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12754 				freemsg(mp);
12755 				if (flags & TH_RST)
12756 					return;
12757 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12758 				    tcp, seg_ack, 0, TH_RST);
12759 				return;
12760 			}
12761 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12762 		}
12763 		if (flags & TH_RST) {
12764 			freemsg(mp);
12765 			if (flags & TH_ACK)
12766 				(void) tcp_clean_death(tcp,
12767 				    ECONNREFUSED, 13);
12768 			return;
12769 		}
12770 		if (!(flags & TH_SYN)) {
12771 			freemsg(mp);
12772 			return;
12773 		}
12774 
12775 		/* Process all TCP options. */
12776 		tcp_process_options(tcp, tcph);
12777 		/*
12778 		 * The following changes our rwnd to be a multiple of the
12779 		 * MIN(peer MSS, our MSS) for performance reason.
12780 		 */
12781 		(void) tcp_rwnd_set(tcp,
12782 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
12783 
12784 		/* Is the other end ECN capable? */
12785 		if (tcp->tcp_ecn_ok) {
12786 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12787 				tcp->tcp_ecn_ok = B_FALSE;
12788 			}
12789 		}
12790 		/*
12791 		 * Clear ECN flags because it may interfere with later
12792 		 * processing.
12793 		 */
12794 		flags &= ~(TH_ECE|TH_CWR);
12795 
12796 		tcp->tcp_irs = seg_seq;
12797 		tcp->tcp_rack = seg_seq;
12798 		tcp->tcp_rnxt = seg_seq + 1;
12799 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12800 		if (!TCP_IS_DETACHED(tcp)) {
12801 			/* Allocate room for SACK options if needed. */
12802 			if (tcp->tcp_snd_sack_ok) {
12803 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12804 				    tcp->tcp_hdr_len +
12805 				    TCPOPT_MAX_SACK_LEN +
12806 				    (tcp->tcp_loopback ? 0 :
12807 				    tcps->tcps_wroff_xtra));
12808 			} else {
12809 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12810 				    tcp->tcp_hdr_len +
12811 				    (tcp->tcp_loopback ? 0 :
12812 				    tcps->tcps_wroff_xtra));
12813 			}
12814 		}
12815 		if (flags & TH_ACK) {
12816 			/*
12817 			 * If we can't get the confirmation upstream, pretend
12818 			 * we didn't even see this one.
12819 			 *
12820 			 * XXX: how can we pretend we didn't see it if we
12821 			 * have updated rnxt et. al.
12822 			 *
12823 			 * For loopback we defer sending up the T_CONN_CON
12824 			 * until after some checks below.
12825 			 */
12826 			mp1 = NULL;
12827 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12828 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12829 				freemsg(mp);
12830 				return;
12831 			}
12832 			/* SYN was acked - making progress */
12833 			if (tcp->tcp_ipversion == IPV6_VERSION)
12834 				tcp->tcp_ip_forward_progress = B_TRUE;
12835 
12836 			/* One for the SYN */
12837 			tcp->tcp_suna = tcp->tcp_iss + 1;
12838 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12839 			tcp->tcp_state = TCPS_ESTABLISHED;
12840 
12841 			/*
12842 			 * If SYN was retransmitted, need to reset all
12843 			 * retransmission info.  This is because this
12844 			 * segment will be treated as a dup ACK.
12845 			 */
12846 			if (tcp->tcp_rexmit) {
12847 				tcp->tcp_rexmit = B_FALSE;
12848 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12849 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12850 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12851 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12852 				tcp->tcp_ms_we_have_waited = 0;
12853 
12854 				/*
12855 				 * Set tcp_cwnd back to 1 MSS, per
12856 				 * recommendation from
12857 				 * draft-floyd-incr-init-win-01.txt,
12858 				 * Increasing TCP's Initial Window.
12859 				 */
12860 				tcp->tcp_cwnd = tcp->tcp_mss;
12861 			}
12862 
12863 			tcp->tcp_swl1 = seg_seq;
12864 			tcp->tcp_swl2 = seg_ack;
12865 
12866 			new_swnd = BE16_TO_U16(tcph->th_win);
12867 			tcp->tcp_swnd = new_swnd;
12868 			if (new_swnd > tcp->tcp_max_swnd)
12869 				tcp->tcp_max_swnd = new_swnd;
12870 
12871 			/*
12872 			 * Always send the three-way handshake ack immediately
12873 			 * in order to make the connection complete as soon as
12874 			 * possible on the accepting host.
12875 			 */
12876 			flags |= TH_ACK_NEEDED;
12877 
12878 			/*
12879 			 * Special case for loopback.  At this point we have
12880 			 * received SYN-ACK from the remote endpoint.  In
12881 			 * order to ensure that both endpoints reach the
12882 			 * fused state prior to any data exchange, the final
12883 			 * ACK needs to be sent before we indicate T_CONN_CON
12884 			 * to the module upstream.
12885 			 */
12886 			if (tcp->tcp_loopback) {
12887 				mblk_t *ack_mp;
12888 
12889 				ASSERT(!tcp->tcp_unfusable);
12890 				ASSERT(mp1 != NULL);
12891 				/*
12892 				 * For loopback, we always get a pure SYN-ACK
12893 				 * and only need to send back the final ACK
12894 				 * with no data (this is because the other
12895 				 * tcp is ours and we don't do T/TCP).  This
12896 				 * final ACK triggers the passive side to
12897 				 * perform fusion in ESTABLISHED state.
12898 				 */
12899 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12900 					if (tcp->tcp_ack_tid != 0) {
12901 						(void) TCP_TIMER_CANCEL(tcp,
12902 						    tcp->tcp_ack_tid);
12903 						tcp->tcp_ack_tid = 0;
12904 					}
12905 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12906 					BUMP_LOCAL(tcp->tcp_obsegs);
12907 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
12908 
12909 					if (!IPCL_IS_NONSTR(connp)) {
12910 						/* Send up T_CONN_CON */
12911 						putnext(tcp->tcp_rq, mp1);
12912 					} else {
12913 						cred_t	*cr;
12914 						pid_t	cpid;
12915 
12916 						cr = msg_getcred(mp1, &cpid);
12917 						(*connp->conn_upcalls->
12918 						    su_connected)
12919 						    (connp->conn_upper_handle,
12920 						    tcp->tcp_connid, cr, cpid);
12921 						freemsg(mp1);
12922 					}
12923 
12924 					freemsg(mp);
12925 					return;
12926 				}
12927 				/*
12928 				 * Forget fusion; we need to handle more
12929 				 * complex cases below.  Send the deferred
12930 				 * T_CONN_CON message upstream and proceed
12931 				 * as usual.  Mark this tcp as not capable
12932 				 * of fusion.
12933 				 */
12934 				TCP_STAT(tcps, tcp_fusion_unfusable);
12935 				tcp->tcp_unfusable = B_TRUE;
12936 				if (!IPCL_IS_NONSTR(connp)) {
12937 					putnext(tcp->tcp_rq, mp1);
12938 				} else {
12939 					cred_t	*cr;
12940 					pid_t	cpid;
12941 
12942 					cr = msg_getcred(mp1, &cpid);
12943 					(*connp->conn_upcalls->su_connected)
12944 					    (connp->conn_upper_handle,
12945 					    tcp->tcp_connid, cr, cpid);
12946 					freemsg(mp1);
12947 				}
12948 			}
12949 
12950 			/*
12951 			 * Check to see if there is data to be sent.  If
12952 			 * yes, set the transmit flag.  Then check to see
12953 			 * if received data processing needs to be done.
12954 			 * If not, go straight to xmit_check.  This short
12955 			 * cut is OK as we don't support T/TCP.
12956 			 */
12957 			if (tcp->tcp_unsent)
12958 				flags |= TH_XMIT_NEEDED;
12959 
12960 			if (seg_len == 0 && !(flags & TH_URG)) {
12961 				freemsg(mp);
12962 				goto xmit_check;
12963 			}
12964 
12965 			flags &= ~TH_SYN;
12966 			seg_seq++;
12967 			break;
12968 		}
12969 		tcp->tcp_state = TCPS_SYN_RCVD;
12970 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12971 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12972 		if (mp1) {
12973 			/*
12974 			 * See comment in tcp_conn_request() for why we use
12975 			 * the open() time pid here.
12976 			 */
12977 			DB_CPID(mp1) = tcp->tcp_cpid;
12978 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12979 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12980 		}
12981 		freemsg(mp);
12982 		return;
12983 	case TCPS_SYN_RCVD:
12984 		if (flags & TH_ACK) {
12985 			/*
12986 			 * In this state, a SYN|ACK packet is either bogus
12987 			 * because the other side must be ACKing our SYN which
12988 			 * indicates it has seen the ACK for their SYN and
12989 			 * shouldn't retransmit it or we're crossing SYNs
12990 			 * on active open.
12991 			 */
12992 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12993 				freemsg(mp);
12994 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12995 				    tcp, seg_ack, 0, TH_RST);
12996 				return;
12997 			}
12998 			/*
12999 			 * NOTE: RFC 793 pg. 72 says this should be
13000 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13001 			 * but that would mean we have an ack that ignored
13002 			 * our SYN.
13003 			 */
13004 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13005 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13006 				freemsg(mp);
13007 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13008 				    tcp, seg_ack, 0, TH_RST);
13009 				return;
13010 			}
13011 		}
13012 		break;
13013 	case TCPS_LISTEN:
13014 		/*
13015 		 * Only a TLI listener can come through this path when a
13016 		 * acceptor is going back to be a listener and a packet
13017 		 * for the acceptor hits the classifier. For a socket
13018 		 * listener, this can never happen because a listener
13019 		 * can never accept connection on itself and hence a
13020 		 * socket acceptor can not go back to being a listener.
13021 		 */
13022 		ASSERT(!TCP_IS_SOCKET(tcp));
13023 		/*FALLTHRU*/
13024 	case TCPS_CLOSED:
13025 	case TCPS_BOUND: {
13026 		conn_t	*new_connp;
13027 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13028 
13029 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13030 		if (new_connp != NULL) {
13031 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13032 			return;
13033 		}
13034 		/* We failed to classify. For now just drop the packet */
13035 		freemsg(mp);
13036 		return;
13037 	}
13038 	case TCPS_IDLE:
13039 		/*
13040 		 * Handle the case where the tcp_clean_death() has happened
13041 		 * on a connection (application hasn't closed yet) but a packet
13042 		 * was already queued on squeue before tcp_clean_death()
13043 		 * was processed. Calling tcp_clean_death() twice on same
13044 		 * connection can result in weird behaviour.
13045 		 */
13046 		freemsg(mp);
13047 		return;
13048 	default:
13049 		break;
13050 	}
13051 
13052 	/*
13053 	 * Already on the correct queue/perimeter.
13054 	 * If this is a detached connection and not an eager
13055 	 * connection hanging off a listener then new data
13056 	 * (past the FIN) will cause a reset.
13057 	 * We do a special check here where it
13058 	 * is out of the main line, rather than check
13059 	 * if we are detached every time we see new
13060 	 * data down below.
13061 	 */
13062 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13063 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13064 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13065 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13066 
13067 		freemsg(mp);
13068 		/*
13069 		 * This could be an SSL closure alert. We're detached so just
13070 		 * acknowledge it this last time.
13071 		 */
13072 		if (tcp->tcp_kssl_ctx != NULL) {
13073 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13074 			tcp->tcp_kssl_ctx = NULL;
13075 
13076 			tcp->tcp_rnxt += seg_len;
13077 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13078 			flags |= TH_ACK_NEEDED;
13079 			goto ack_check;
13080 		}
13081 
13082 		tcp_xmit_ctl("new data when detached", tcp,
13083 		    tcp->tcp_snxt, 0, TH_RST);
13084 		(void) tcp_clean_death(tcp, EPROTO, 12);
13085 		return;
13086 	}
13087 
13088 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13089 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13090 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13091 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13092 
13093 	if (tcp->tcp_snd_ts_ok) {
13094 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13095 			/*
13096 			 * This segment is not acceptable.
13097 			 * Drop it and send back an ACK.
13098 			 */
13099 			freemsg(mp);
13100 			flags |= TH_ACK_NEEDED;
13101 			goto ack_check;
13102 		}
13103 	} else if (tcp->tcp_snd_sack_ok) {
13104 		ASSERT(tcp->tcp_sack_info != NULL);
13105 		tcpopt.tcp = tcp;
13106 		/*
13107 		 * SACK info in already updated in tcp_parse_options.  Ignore
13108 		 * all other TCP options...
13109 		 */
13110 		(void) tcp_parse_options(tcph, &tcpopt);
13111 	}
13112 try_again:;
13113 	mss = tcp->tcp_mss;
13114 	gap = seg_seq - tcp->tcp_rnxt;
13115 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13116 	/*
13117 	 * gap is the amount of sequence space between what we expect to see
13118 	 * and what we got for seg_seq.  A positive value for gap means
13119 	 * something got lost.  A negative value means we got some old stuff.
13120 	 */
13121 	if (gap < 0) {
13122 		/* Old stuff present.  Is the SYN in there? */
13123 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13124 		    (seg_len != 0)) {
13125 			flags &= ~TH_SYN;
13126 			seg_seq++;
13127 			urp--;
13128 			/* Recompute the gaps after noting the SYN. */
13129 			goto try_again;
13130 		}
13131 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13132 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13133 		    (seg_len > -gap ? -gap : seg_len));
13134 		/* Remove the old stuff from seg_len. */
13135 		seg_len += gap;
13136 		/*
13137 		 * Anything left?
13138 		 * Make sure to check for unack'd FIN when rest of data
13139 		 * has been previously ack'd.
13140 		 */
13141 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13142 			/*
13143 			 * Resets are only valid if they lie within our offered
13144 			 * window.  If the RST bit is set, we just ignore this
13145 			 * segment.
13146 			 */
13147 			if (flags & TH_RST) {
13148 				freemsg(mp);
13149 				return;
13150 			}
13151 
13152 			/*
13153 			 * The arriving of dup data packets indicate that we
13154 			 * may have postponed an ack for too long, or the other
13155 			 * side's RTT estimate is out of shape. Start acking
13156 			 * more often.
13157 			 */
13158 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13159 			    tcp->tcp_rack_cnt >= 1 &&
13160 			    tcp->tcp_rack_abs_max > 2) {
13161 				tcp->tcp_rack_abs_max--;
13162 			}
13163 			tcp->tcp_rack_cur_max = 1;
13164 
13165 			/*
13166 			 * This segment is "unacceptable".  None of its
13167 			 * sequence space lies within our advertized window.
13168 			 *
13169 			 * Adjust seg_len to the original value for tracing.
13170 			 */
13171 			seg_len -= gap;
13172 			if (tcp->tcp_debug) {
13173 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13174 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13175 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13176 				    "seg_len %d, rnxt %u, snxt %u, %s",
13177 				    gap, rgap, flags, seg_seq, seg_ack,
13178 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13179 				    tcp_display(tcp, NULL,
13180 				    DISP_ADDR_AND_PORT));
13181 			}
13182 
13183 			/*
13184 			 * Arrange to send an ACK in response to the
13185 			 * unacceptable segment per RFC 793 page 69. There
13186 			 * is only one small difference between ours and the
13187 			 * acceptability test in the RFC - we accept ACK-only
13188 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13189 			 * will be generated.
13190 			 *
13191 			 * Note that we have to ACK an ACK-only packet at least
13192 			 * for stacks that send 0-length keep-alives with
13193 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13194 			 * section 4.2.3.6. As long as we don't ever generate
13195 			 * an unacceptable packet in response to an incoming
13196 			 * packet that is unacceptable, it should not cause
13197 			 * "ACK wars".
13198 			 */
13199 			flags |=  TH_ACK_NEEDED;
13200 
13201 			/*
13202 			 * Continue processing this segment in order to use the
13203 			 * ACK information it contains, but skip all other
13204 			 * sequence-number processing.	Processing the ACK
13205 			 * information is necessary in order to
13206 			 * re-synchronize connections that may have lost
13207 			 * synchronization.
13208 			 *
13209 			 * We clear seg_len and flag fields related to
13210 			 * sequence number processing as they are not
13211 			 * to be trusted for an unacceptable segment.
13212 			 */
13213 			seg_len = 0;
13214 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13215 			goto process_ack;
13216 		}
13217 
13218 		/* Fix seg_seq, and chew the gap off the front. */
13219 		seg_seq = tcp->tcp_rnxt;
13220 		urp += gap;
13221 		do {
13222 			mblk_t	*mp2;
13223 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13224 			    (uintptr_t)UINT_MAX);
13225 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13226 			if (gap > 0) {
13227 				mp->b_rptr = mp->b_wptr - gap;
13228 				break;
13229 			}
13230 			mp2 = mp;
13231 			mp = mp->b_cont;
13232 			freeb(mp2);
13233 		} while (gap < 0);
13234 		/*
13235 		 * If the urgent data has already been acknowledged, we
13236 		 * should ignore TH_URG below
13237 		 */
13238 		if (urp < 0)
13239 			flags &= ~TH_URG;
13240 	}
13241 	/*
13242 	 * rgap is the amount of stuff received out of window.  A negative
13243 	 * value is the amount out of window.
13244 	 */
13245 	if (rgap < 0) {
13246 		mblk_t	*mp2;
13247 
13248 		if (tcp->tcp_rwnd == 0) {
13249 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13250 		} else {
13251 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13252 			UPDATE_MIB(&tcps->tcps_mib,
13253 			    tcpInDataPastWinBytes, -rgap);
13254 		}
13255 
13256 		/*
13257 		 * seg_len does not include the FIN, so if more than
13258 		 * just the FIN is out of window, we act like we don't
13259 		 * see it.  (If just the FIN is out of window, rgap
13260 		 * will be zero and we will go ahead and acknowledge
13261 		 * the FIN.)
13262 		 */
13263 		flags &= ~TH_FIN;
13264 
13265 		/* Fix seg_len and make sure there is something left. */
13266 		seg_len += rgap;
13267 		if (seg_len <= 0) {
13268 			/*
13269 			 * Resets are only valid if they lie within our offered
13270 			 * window.  If the RST bit is set, we just ignore this
13271 			 * segment.
13272 			 */
13273 			if (flags & TH_RST) {
13274 				freemsg(mp);
13275 				return;
13276 			}
13277 
13278 			/* Per RFC 793, we need to send back an ACK. */
13279 			flags |= TH_ACK_NEEDED;
13280 
13281 			/*
13282 			 * Send SIGURG as soon as possible i.e. even
13283 			 * if the TH_URG was delivered in a window probe
13284 			 * packet (which will be unacceptable).
13285 			 *
13286 			 * We generate a signal if none has been generated
13287 			 * for this connection or if this is a new urgent
13288 			 * byte. Also send a zero-length "unmarked" message
13289 			 * to inform SIOCATMARK that this is not the mark.
13290 			 *
13291 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13292 			 * is sent up. This plus the check for old data
13293 			 * (gap >= 0) handles the wraparound of the sequence
13294 			 * number space without having to always track the
13295 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13296 			 * this max in its rcv_up variable).
13297 			 *
13298 			 * This prevents duplicate SIGURGS due to a "late"
13299 			 * zero-window probe when the T_EXDATA_IND has already
13300 			 * been sent up.
13301 			 */
13302 			if ((flags & TH_URG) &&
13303 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13304 			    tcp->tcp_urp_last))) {
13305 				if (IPCL_IS_NONSTR(connp)) {
13306 					if (!TCP_IS_DETACHED(tcp)) {
13307 						(*connp->conn_upcalls->
13308 						    su_signal_oob)
13309 						    (connp->conn_upper_handle,
13310 						    urp);
13311 					}
13312 				} else {
13313 					mp1 = allocb(0, BPRI_MED);
13314 					if (mp1 == NULL) {
13315 						freemsg(mp);
13316 						return;
13317 					}
13318 					if (!TCP_IS_DETACHED(tcp) &&
13319 					    !putnextctl1(tcp->tcp_rq,
13320 					    M_PCSIG, SIGURG)) {
13321 						/* Try again on the rexmit. */
13322 						freemsg(mp1);
13323 						freemsg(mp);
13324 						return;
13325 					}
13326 					/*
13327 					 * If the next byte would be the mark
13328 					 * then mark with MARKNEXT else mark
13329 					 * with NOTMARKNEXT.
13330 					 */
13331 					if (gap == 0 && urp == 0)
13332 						mp1->b_flag |= MSGMARKNEXT;
13333 					else
13334 						mp1->b_flag |= MSGNOTMARKNEXT;
13335 					freemsg(tcp->tcp_urp_mark_mp);
13336 					tcp->tcp_urp_mark_mp = mp1;
13337 					flags |= TH_SEND_URP_MARK;
13338 				}
13339 				tcp->tcp_urp_last_valid = B_TRUE;
13340 				tcp->tcp_urp_last = urp + seg_seq;
13341 			}
13342 			/*
13343 			 * If this is a zero window probe, continue to
13344 			 * process the ACK part.  But we need to set seg_len
13345 			 * to 0 to avoid data processing.  Otherwise just
13346 			 * drop the segment and send back an ACK.
13347 			 */
13348 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13349 				flags &= ~(TH_SYN | TH_URG);
13350 				seg_len = 0;
13351 				goto process_ack;
13352 			} else {
13353 				freemsg(mp);
13354 				goto ack_check;
13355 			}
13356 		}
13357 		/* Pitch out of window stuff off the end. */
13358 		rgap = seg_len;
13359 		mp2 = mp;
13360 		do {
13361 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13362 			    (uintptr_t)INT_MAX);
13363 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13364 			if (rgap < 0) {
13365 				mp2->b_wptr += rgap;
13366 				if ((mp1 = mp2->b_cont) != NULL) {
13367 					mp2->b_cont = NULL;
13368 					freemsg(mp1);
13369 				}
13370 				break;
13371 			}
13372 		} while ((mp2 = mp2->b_cont) != NULL);
13373 	}
13374 ok:;
13375 	/*
13376 	 * TCP should check ECN info for segments inside the window only.
13377 	 * Therefore the check should be done here.
13378 	 */
13379 	if (tcp->tcp_ecn_ok) {
13380 		if (flags & TH_CWR) {
13381 			tcp->tcp_ecn_echo_on = B_FALSE;
13382 		}
13383 		/*
13384 		 * Note that both ECN_CE and CWR can be set in the
13385 		 * same segment.  In this case, we once again turn
13386 		 * on ECN_ECHO.
13387 		 */
13388 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13389 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13390 
13391 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13392 				tcp->tcp_ecn_echo_on = B_TRUE;
13393 			}
13394 		} else {
13395 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13396 
13397 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13398 			    htonl(IPH_ECN_CE << 20)) {
13399 				tcp->tcp_ecn_echo_on = B_TRUE;
13400 			}
13401 		}
13402 	}
13403 
13404 	/*
13405 	 * Check whether we can update tcp_ts_recent.  This test is
13406 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13407 	 * Extensions for High Performance: An Update", Internet Draft.
13408 	 */
13409 	if (tcp->tcp_snd_ts_ok &&
13410 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13411 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13412 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13413 		tcp->tcp_last_rcv_lbolt = lbolt64;
13414 	}
13415 
13416 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13417 		/*
13418 		 * FIN in an out of order segment.  We record this in
13419 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13420 		 * Clear the FIN so that any check on FIN flag will fail.
13421 		 * Remember that FIN also counts in the sequence number
13422 		 * space.  So we need to ack out of order FIN only segments.
13423 		 */
13424 		if (flags & TH_FIN) {
13425 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13426 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13427 			flags &= ~TH_FIN;
13428 			flags |= TH_ACK_NEEDED;
13429 		}
13430 		if (seg_len > 0) {
13431 			/* Fill in the SACK blk list. */
13432 			if (tcp->tcp_snd_sack_ok) {
13433 				ASSERT(tcp->tcp_sack_info != NULL);
13434 				tcp_sack_insert(tcp->tcp_sack_list,
13435 				    seg_seq, seg_seq + seg_len,
13436 				    &(tcp->tcp_num_sack_blk));
13437 			}
13438 
13439 			/*
13440 			 * Attempt reassembly and see if we have something
13441 			 * ready to go.
13442 			 */
13443 			mp = tcp_reass(tcp, mp, seg_seq);
13444 			/* Always ack out of order packets */
13445 			flags |= TH_ACK_NEEDED | TH_PUSH;
13446 			if (mp) {
13447 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13448 				    (uintptr_t)INT_MAX);
13449 				seg_len = mp->b_cont ? msgdsize(mp) :
13450 				    (int)(mp->b_wptr - mp->b_rptr);
13451 				seg_seq = tcp->tcp_rnxt;
13452 				/*
13453 				 * A gap is filled and the seq num and len
13454 				 * of the gap match that of a previously
13455 				 * received FIN, put the FIN flag back in.
13456 				 */
13457 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13458 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13459 					flags |= TH_FIN;
13460 					tcp->tcp_valid_bits &=
13461 					    ~TCP_OFO_FIN_VALID;
13462 				}
13463 			} else {
13464 				/*
13465 				 * Keep going even with NULL mp.
13466 				 * There may be a useful ACK or something else
13467 				 * we don't want to miss.
13468 				 *
13469 				 * But TCP should not perform fast retransmit
13470 				 * because of the ack number.  TCP uses
13471 				 * seg_len == 0 to determine if it is a pure
13472 				 * ACK.  And this is not a pure ACK.
13473 				 */
13474 				seg_len = 0;
13475 				ofo_seg = B_TRUE;
13476 			}
13477 		}
13478 	} else if (seg_len > 0) {
13479 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13480 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13481 		/*
13482 		 * If an out of order FIN was received before, and the seq
13483 		 * num and len of the new segment match that of the FIN,
13484 		 * put the FIN flag back in.
13485 		 */
13486 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13487 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13488 			flags |= TH_FIN;
13489 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13490 		}
13491 	}
13492 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13493 	if (flags & TH_RST) {
13494 		freemsg(mp);
13495 		switch (tcp->tcp_state) {
13496 		case TCPS_SYN_RCVD:
13497 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13498 			break;
13499 		case TCPS_ESTABLISHED:
13500 		case TCPS_FIN_WAIT_1:
13501 		case TCPS_FIN_WAIT_2:
13502 		case TCPS_CLOSE_WAIT:
13503 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13504 			break;
13505 		case TCPS_CLOSING:
13506 		case TCPS_LAST_ACK:
13507 			(void) tcp_clean_death(tcp, 0, 16);
13508 			break;
13509 		default:
13510 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13511 			(void) tcp_clean_death(tcp, ENXIO, 17);
13512 			break;
13513 		}
13514 		return;
13515 	}
13516 	if (flags & TH_SYN) {
13517 		/*
13518 		 * See RFC 793, Page 71
13519 		 *
13520 		 * The seq number must be in the window as it should
13521 		 * be "fixed" above.  If it is outside window, it should
13522 		 * be already rejected.  Note that we allow seg_seq to be
13523 		 * rnxt + rwnd because we want to accept 0 window probe.
13524 		 */
13525 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13526 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13527 		freemsg(mp);
13528 		/*
13529 		 * If the ACK flag is not set, just use our snxt as the
13530 		 * seq number of the RST segment.
13531 		 */
13532 		if (!(flags & TH_ACK)) {
13533 			seg_ack = tcp->tcp_snxt;
13534 		}
13535 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13536 		    TH_RST|TH_ACK);
13537 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13538 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13539 		return;
13540 	}
13541 	/*
13542 	 * urp could be -1 when the urp field in the packet is 0
13543 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13544 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13545 	 */
13546 	if (flags & TH_URG && urp >= 0) {
13547 		if (!tcp->tcp_urp_last_valid ||
13548 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13549 			if (IPCL_IS_NONSTR(connp)) {
13550 				if (!TCP_IS_DETACHED(tcp)) {
13551 					(*connp->conn_upcalls->su_signal_oob)
13552 					    (connp->conn_upper_handle, urp);
13553 				}
13554 			} else {
13555 				/*
13556 				 * If we haven't generated the signal yet for
13557 				 * this urgent pointer value, do it now.  Also,
13558 				 * send up a zero-length M_DATA indicating
13559 				 * whether or not this is the mark. The latter
13560 				 * is not needed when a T_EXDATA_IND is sent up.
13561 				 * However, if there are allocation failures
13562 				 * this code relies on the sender retransmitting
13563 				 * and the socket code for determining the mark
13564 				 * should not block waiting for the peer to
13565 				 * transmit. Thus, for simplicity we always
13566 				 * send up the mark indication.
13567 				 */
13568 				mp1 = allocb(0, BPRI_MED);
13569 				if (mp1 == NULL) {
13570 					freemsg(mp);
13571 					return;
13572 				}
13573 				if (!TCP_IS_DETACHED(tcp) &&
13574 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13575 				    SIGURG)) {
13576 					/* Try again on the rexmit. */
13577 					freemsg(mp1);
13578 					freemsg(mp);
13579 					return;
13580 				}
13581 				/*
13582 				 * Mark with NOTMARKNEXT for now.
13583 				 * The code below will change this to MARKNEXT
13584 				 * if we are at the mark.
13585 				 *
13586 				 * If there are allocation failures (e.g. in
13587 				 * dupmsg below) the next time tcp_rput_data
13588 				 * sees the urgent segment it will send up the
13589 				 * MSGMARKNEXT message.
13590 				 */
13591 				mp1->b_flag |= MSGNOTMARKNEXT;
13592 				freemsg(tcp->tcp_urp_mark_mp);
13593 				tcp->tcp_urp_mark_mp = mp1;
13594 				flags |= TH_SEND_URP_MARK;
13595 #ifdef DEBUG
13596 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13597 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13598 				    "last %x, %s",
13599 				    seg_seq, urp, tcp->tcp_urp_last,
13600 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13601 #endif /* DEBUG */
13602 			}
13603 			tcp->tcp_urp_last_valid = B_TRUE;
13604 			tcp->tcp_urp_last = urp + seg_seq;
13605 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13606 			/*
13607 			 * An allocation failure prevented the previous
13608 			 * tcp_rput_data from sending up the allocated
13609 			 * MSG*MARKNEXT message - send it up this time
13610 			 * around.
13611 			 */
13612 			flags |= TH_SEND_URP_MARK;
13613 		}
13614 
13615 		/*
13616 		 * If the urgent byte is in this segment, make sure that it is
13617 		 * all by itself.  This makes it much easier to deal with the
13618 		 * possibility of an allocation failure on the T_exdata_ind.
13619 		 * Note that seg_len is the number of bytes in the segment, and
13620 		 * urp is the offset into the segment of the urgent byte.
13621 		 * urp < seg_len means that the urgent byte is in this segment.
13622 		 */
13623 		if (urp < seg_len) {
13624 			if (seg_len != 1) {
13625 				uint32_t  tmp_rnxt;
13626 				/*
13627 				 * Break it up and feed it back in.
13628 				 * Re-attach the IP header.
13629 				 */
13630 				mp->b_rptr = iphdr;
13631 				if (urp > 0) {
13632 					/*
13633 					 * There is stuff before the urgent
13634 					 * byte.
13635 					 */
13636 					mp1 = dupmsg(mp);
13637 					if (!mp1) {
13638 						/*
13639 						 * Trim from urgent byte on.
13640 						 * The rest will come back.
13641 						 */
13642 						(void) adjmsg(mp,
13643 						    urp - seg_len);
13644 						tcp_rput_data(connp,
13645 						    mp, NULL);
13646 						return;
13647 					}
13648 					(void) adjmsg(mp1, urp - seg_len);
13649 					/* Feed this piece back in. */
13650 					tmp_rnxt = tcp->tcp_rnxt;
13651 					tcp_rput_data(connp, mp1, NULL);
13652 					/*
13653 					 * If the data passed back in was not
13654 					 * processed (ie: bad ACK) sending
13655 					 * the remainder back in will cause a
13656 					 * loop. In this case, drop the
13657 					 * packet and let the sender try
13658 					 * sending a good packet.
13659 					 */
13660 					if (tmp_rnxt == tcp->tcp_rnxt) {
13661 						freemsg(mp);
13662 						return;
13663 					}
13664 				}
13665 				if (urp != seg_len - 1) {
13666 					uint32_t  tmp_rnxt;
13667 					/*
13668 					 * There is stuff after the urgent
13669 					 * byte.
13670 					 */
13671 					mp1 = dupmsg(mp);
13672 					if (!mp1) {
13673 						/*
13674 						 * Trim everything beyond the
13675 						 * urgent byte.  The rest will
13676 						 * come back.
13677 						 */
13678 						(void) adjmsg(mp,
13679 						    urp + 1 - seg_len);
13680 						tcp_rput_data(connp,
13681 						    mp, NULL);
13682 						return;
13683 					}
13684 					(void) adjmsg(mp1, urp + 1 - seg_len);
13685 					tmp_rnxt = tcp->tcp_rnxt;
13686 					tcp_rput_data(connp, mp1, NULL);
13687 					/*
13688 					 * If the data passed back in was not
13689 					 * processed (ie: bad ACK) sending
13690 					 * the remainder back in will cause a
13691 					 * loop. In this case, drop the
13692 					 * packet and let the sender try
13693 					 * sending a good packet.
13694 					 */
13695 					if (tmp_rnxt == tcp->tcp_rnxt) {
13696 						freemsg(mp);
13697 						return;
13698 					}
13699 				}
13700 				tcp_rput_data(connp, mp, NULL);
13701 				return;
13702 			}
13703 			/*
13704 			 * This segment contains only the urgent byte.  We
13705 			 * have to allocate the T_exdata_ind, if we can.
13706 			 */
13707 			if (IPCL_IS_NONSTR(connp)) {
13708 				int error;
13709 
13710 				(*connp->conn_upcalls->su_recv)
13711 				    (connp->conn_upper_handle, mp, seg_len,
13712 				    MSG_OOB, &error, NULL);
13713 				/*
13714 				 * We should never be in middle of a
13715 				 * fallback, the squeue guarantees that.
13716 				 */
13717 				ASSERT(error != EOPNOTSUPP);
13718 				mp = NULL;
13719 				goto update_ack;
13720 			} else if (!tcp->tcp_urp_mp) {
13721 				struct T_exdata_ind *tei;
13722 				mp1 = allocb(sizeof (struct T_exdata_ind),
13723 				    BPRI_MED);
13724 				if (!mp1) {
13725 					/*
13726 					 * Sigh... It'll be back.
13727 					 * Generate any MSG*MARK message now.
13728 					 */
13729 					freemsg(mp);
13730 					seg_len = 0;
13731 					if (flags & TH_SEND_URP_MARK) {
13732 
13733 
13734 						ASSERT(tcp->tcp_urp_mark_mp);
13735 						tcp->tcp_urp_mark_mp->b_flag &=
13736 						    ~MSGNOTMARKNEXT;
13737 						tcp->tcp_urp_mark_mp->b_flag |=
13738 						    MSGMARKNEXT;
13739 					}
13740 					goto ack_check;
13741 				}
13742 				mp1->b_datap->db_type = M_PROTO;
13743 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13744 				tei->PRIM_type = T_EXDATA_IND;
13745 				tei->MORE_flag = 0;
13746 				mp1->b_wptr = (uchar_t *)&tei[1];
13747 				tcp->tcp_urp_mp = mp1;
13748 #ifdef DEBUG
13749 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13750 				    "tcp_rput: allocated exdata_ind %s",
13751 				    tcp_display(tcp, NULL,
13752 				    DISP_PORT_ONLY));
13753 #endif /* DEBUG */
13754 				/*
13755 				 * There is no need to send a separate MSG*MARK
13756 				 * message since the T_EXDATA_IND will be sent
13757 				 * now.
13758 				 */
13759 				flags &= ~TH_SEND_URP_MARK;
13760 				freemsg(tcp->tcp_urp_mark_mp);
13761 				tcp->tcp_urp_mark_mp = NULL;
13762 			}
13763 			/*
13764 			 * Now we are all set.  On the next putnext upstream,
13765 			 * tcp_urp_mp will be non-NULL and will get prepended
13766 			 * to what has to be this piece containing the urgent
13767 			 * byte.  If for any reason we abort this segment below,
13768 			 * if it comes back, we will have this ready, or it
13769 			 * will get blown off in close.
13770 			 */
13771 		} else if (urp == seg_len) {
13772 			/*
13773 			 * The urgent byte is the next byte after this sequence
13774 			 * number. If there is data it is marked with
13775 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13776 			 * since it is not needed. Otherwise, if the code
13777 			 * above just allocated a zero-length tcp_urp_mark_mp
13778 			 * message, that message is tagged with MSGMARKNEXT.
13779 			 * Sending up these MSGMARKNEXT messages makes
13780 			 * SIOCATMARK work correctly even though
13781 			 * the T_EXDATA_IND will not be sent up until the
13782 			 * urgent byte arrives.
13783 			 */
13784 			if (seg_len != 0) {
13785 				flags |= TH_MARKNEXT_NEEDED;
13786 				freemsg(tcp->tcp_urp_mark_mp);
13787 				tcp->tcp_urp_mark_mp = NULL;
13788 				flags &= ~TH_SEND_URP_MARK;
13789 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13790 				flags |= TH_SEND_URP_MARK;
13791 				tcp->tcp_urp_mark_mp->b_flag &=
13792 				    ~MSGNOTMARKNEXT;
13793 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13794 			}
13795 #ifdef DEBUG
13796 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13797 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13798 			    seg_len, flags,
13799 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13800 #endif /* DEBUG */
13801 		}
13802 #ifdef DEBUG
13803 		else {
13804 			/* Data left until we hit mark */
13805 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13806 			    "tcp_rput: URP %d bytes left, %s",
13807 			    urp - seg_len, tcp_display(tcp, NULL,
13808 			    DISP_PORT_ONLY));
13809 		}
13810 #endif /* DEBUG */
13811 	}
13812 
13813 process_ack:
13814 	if (!(flags & TH_ACK)) {
13815 		freemsg(mp);
13816 		goto xmit_check;
13817 	}
13818 	}
13819 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13820 
13821 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13822 		tcp->tcp_ip_forward_progress = B_TRUE;
13823 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13824 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13825 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13826 			/* 3-way handshake complete - pass up the T_CONN_IND */
13827 			tcp_t	*listener = tcp->tcp_listener;
13828 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13829 
13830 			tcp->tcp_tconnind_started = B_TRUE;
13831 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13832 			/*
13833 			 * We are here means eager is fine but it can
13834 			 * get a TH_RST at any point between now and till
13835 			 * accept completes and disappear. We need to
13836 			 * ensure that reference to eager is valid after
13837 			 * we get out of eager's perimeter. So we do
13838 			 * an extra refhold.
13839 			 */
13840 			CONN_INC_REF(connp);
13841 
13842 			/*
13843 			 * The listener also exists because of the refhold
13844 			 * done in tcp_conn_request. Its possible that it
13845 			 * might have closed. We will check that once we
13846 			 * get inside listeners context.
13847 			 */
13848 			CONN_INC_REF(listener->tcp_connp);
13849 			if (listener->tcp_connp->conn_sqp ==
13850 			    connp->conn_sqp) {
13851 				/*
13852 				 * We optimize by not calling an SQUEUE_ENTER
13853 				 * on the listener since we know that the
13854 				 * listener and eager squeues are the same.
13855 				 * We are able to make this check safely only
13856 				 * because neither the eager nor the listener
13857 				 * can change its squeue. Only an active connect
13858 				 * can change its squeue
13859 				 */
13860 				tcp_send_conn_ind(listener->tcp_connp, mp,
13861 				    listener->tcp_connp->conn_sqp);
13862 				CONN_DEC_REF(listener->tcp_connp);
13863 			} else if (!tcp->tcp_loopback) {
13864 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13865 				    mp, tcp_send_conn_ind,
13866 				    listener->tcp_connp, SQ_FILL,
13867 				    SQTAG_TCP_CONN_IND);
13868 			} else {
13869 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13870 				    mp, tcp_send_conn_ind,
13871 				    listener->tcp_connp, SQ_PROCESS,
13872 				    SQTAG_TCP_CONN_IND);
13873 			}
13874 		}
13875 
13876 		if (tcp->tcp_active_open) {
13877 			/*
13878 			 * We are seeing the final ack in the three way
13879 			 * hand shake of a active open'ed connection
13880 			 * so we must send up a T_CONN_CON
13881 			 */
13882 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13883 				freemsg(mp);
13884 				return;
13885 			}
13886 			/*
13887 			 * Don't fuse the loopback endpoints for
13888 			 * simultaneous active opens.
13889 			 */
13890 			if (tcp->tcp_loopback) {
13891 				TCP_STAT(tcps, tcp_fusion_unfusable);
13892 				tcp->tcp_unfusable = B_TRUE;
13893 			}
13894 		}
13895 
13896 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13897 		bytes_acked--;
13898 		/* SYN was acked - making progress */
13899 		if (tcp->tcp_ipversion == IPV6_VERSION)
13900 			tcp->tcp_ip_forward_progress = B_TRUE;
13901 
13902 		/*
13903 		 * If SYN was retransmitted, need to reset all
13904 		 * retransmission info as this segment will be
13905 		 * treated as a dup ACK.
13906 		 */
13907 		if (tcp->tcp_rexmit) {
13908 			tcp->tcp_rexmit = B_FALSE;
13909 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13910 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13911 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13912 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13913 			tcp->tcp_ms_we_have_waited = 0;
13914 			tcp->tcp_cwnd = mss;
13915 		}
13916 
13917 		/*
13918 		 * We set the send window to zero here.
13919 		 * This is needed if there is data to be
13920 		 * processed already on the queue.
13921 		 * Later (at swnd_update label), the
13922 		 * "new_swnd > tcp_swnd" condition is satisfied
13923 		 * the XMIT_NEEDED flag is set in the current
13924 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13925 		 * called if there is already data on queue in
13926 		 * this state.
13927 		 */
13928 		tcp->tcp_swnd = 0;
13929 
13930 		if (new_swnd > tcp->tcp_max_swnd)
13931 			tcp->tcp_max_swnd = new_swnd;
13932 		tcp->tcp_swl1 = seg_seq;
13933 		tcp->tcp_swl2 = seg_ack;
13934 		tcp->tcp_state = TCPS_ESTABLISHED;
13935 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13936 
13937 		/* Fuse when both sides are in ESTABLISHED state */
13938 		if (tcp->tcp_loopback && do_tcp_fusion)
13939 			tcp_fuse(tcp, iphdr, tcph);
13940 
13941 	}
13942 	/* This code follows 4.4BSD-Lite2 mostly. */
13943 	if (bytes_acked < 0)
13944 		goto est;
13945 
13946 	/*
13947 	 * If TCP is ECN capable and the congestion experience bit is
13948 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13949 	 * done once per window (or more loosely, per RTT).
13950 	 */
13951 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13952 		tcp->tcp_cwr = B_FALSE;
13953 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13954 		if (!tcp->tcp_cwr) {
13955 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13956 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13957 			tcp->tcp_cwnd = npkt * mss;
13958 			/*
13959 			 * If the cwnd is 0, use the timer to clock out
13960 			 * new segments.  This is required by the ECN spec.
13961 			 */
13962 			if (npkt == 0) {
13963 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13964 				/*
13965 				 * This makes sure that when the ACK comes
13966 				 * back, we will increase tcp_cwnd by 1 MSS.
13967 				 */
13968 				tcp->tcp_cwnd_cnt = 0;
13969 			}
13970 			tcp->tcp_cwr = B_TRUE;
13971 			/*
13972 			 * This marks the end of the current window of in
13973 			 * flight data.  That is why we don't use
13974 			 * tcp_suna + tcp_swnd.  Only data in flight can
13975 			 * provide ECN info.
13976 			 */
13977 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13978 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13979 		}
13980 	}
13981 
13982 	mp1 = tcp->tcp_xmit_head;
13983 	if (bytes_acked == 0) {
13984 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13985 			int dupack_cnt;
13986 
13987 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
13988 			/*
13989 			 * Fast retransmit.  When we have seen exactly three
13990 			 * identical ACKs while we have unacked data
13991 			 * outstanding we take it as a hint that our peer
13992 			 * dropped something.
13993 			 *
13994 			 * If TCP is retransmitting, don't do fast retransmit.
13995 			 */
13996 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13997 			    ! tcp->tcp_rexmit) {
13998 				/* Do Limited Transmit */
13999 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14000 				    tcps->tcps_dupack_fast_retransmit) {
14001 					/*
14002 					 * RFC 3042
14003 					 *
14004 					 * What we need to do is temporarily
14005 					 * increase tcp_cwnd so that new
14006 					 * data can be sent if it is allowed
14007 					 * by the receive window (tcp_rwnd).
14008 					 * tcp_wput_data() will take care of
14009 					 * the rest.
14010 					 *
14011 					 * If the connection is SACK capable,
14012 					 * only do limited xmit when there
14013 					 * is SACK info.
14014 					 *
14015 					 * Note how tcp_cwnd is incremented.
14016 					 * The first dup ACK will increase
14017 					 * it by 1 MSS.  The second dup ACK
14018 					 * will increase it by 2 MSS.  This
14019 					 * means that only 1 new segment will
14020 					 * be sent for each dup ACK.
14021 					 */
14022 					if (tcp->tcp_unsent > 0 &&
14023 					    (!tcp->tcp_snd_sack_ok ||
14024 					    (tcp->tcp_snd_sack_ok &&
14025 					    tcp->tcp_notsack_list != NULL))) {
14026 						tcp->tcp_cwnd += mss <<
14027 						    (tcp->tcp_dupack_cnt - 1);
14028 						flags |= TH_LIMIT_XMIT;
14029 					}
14030 				} else if (dupack_cnt ==
14031 				    tcps->tcps_dupack_fast_retransmit) {
14032 
14033 				/*
14034 				 * If we have reduced tcp_ssthresh
14035 				 * because of ECN, do not reduce it again
14036 				 * unless it is already one window of data
14037 				 * away.  After one window of data, tcp_cwr
14038 				 * should then be cleared.  Note that
14039 				 * for non ECN capable connection, tcp_cwr
14040 				 * should always be false.
14041 				 *
14042 				 * Adjust cwnd since the duplicate
14043 				 * ack indicates that a packet was
14044 				 * dropped (due to congestion.)
14045 				 */
14046 				if (!tcp->tcp_cwr) {
14047 					npkt = ((tcp->tcp_snxt -
14048 					    tcp->tcp_suna) >> 1) / mss;
14049 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14050 					    mss;
14051 					tcp->tcp_cwnd = (npkt +
14052 					    tcp->tcp_dupack_cnt) * mss;
14053 				}
14054 				if (tcp->tcp_ecn_ok) {
14055 					tcp->tcp_cwr = B_TRUE;
14056 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14057 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14058 				}
14059 
14060 				/*
14061 				 * We do Hoe's algorithm.  Refer to her
14062 				 * paper "Improving the Start-up Behavior
14063 				 * of a Congestion Control Scheme for TCP,"
14064 				 * appeared in SIGCOMM'96.
14065 				 *
14066 				 * Save highest seq no we have sent so far.
14067 				 * Be careful about the invisible FIN byte.
14068 				 */
14069 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14070 				    (tcp->tcp_unsent == 0)) {
14071 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14072 				} else {
14073 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14074 				}
14075 
14076 				/*
14077 				 * Do not allow bursty traffic during.
14078 				 * fast recovery.  Refer to Fall and Floyd's
14079 				 * paper "Simulation-based Comparisons of
14080 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14081 				 * This is a best current practise.
14082 				 */
14083 				tcp->tcp_snd_burst = TCP_CWND_SS;
14084 
14085 				/*
14086 				 * For SACK:
14087 				 * Calculate tcp_pipe, which is the
14088 				 * estimated number of bytes in
14089 				 * network.
14090 				 *
14091 				 * tcp_fack is the highest sack'ed seq num
14092 				 * TCP has received.
14093 				 *
14094 				 * tcp_pipe is explained in the above quoted
14095 				 * Fall and Floyd's paper.  tcp_fack is
14096 				 * explained in Mathis and Mahdavi's
14097 				 * "Forward Acknowledgment: Refining TCP
14098 				 * Congestion Control" in SIGCOMM '96.
14099 				 */
14100 				if (tcp->tcp_snd_sack_ok) {
14101 					ASSERT(tcp->tcp_sack_info != NULL);
14102 					if (tcp->tcp_notsack_list != NULL) {
14103 						tcp->tcp_pipe = tcp->tcp_snxt -
14104 						    tcp->tcp_fack;
14105 						tcp->tcp_sack_snxt = seg_ack;
14106 						flags |= TH_NEED_SACK_REXMIT;
14107 					} else {
14108 						/*
14109 						 * Always initialize tcp_pipe
14110 						 * even though we don't have
14111 						 * any SACK info.  If later
14112 						 * we get SACK info and
14113 						 * tcp_pipe is not initialized,
14114 						 * funny things will happen.
14115 						 */
14116 						tcp->tcp_pipe =
14117 						    tcp->tcp_cwnd_ssthresh;
14118 					}
14119 				} else {
14120 					flags |= TH_REXMIT_NEEDED;
14121 				} /* tcp_snd_sack_ok */
14122 
14123 				} else {
14124 					/*
14125 					 * Here we perform congestion
14126 					 * avoidance, but NOT slow start.
14127 					 * This is known as the Fast
14128 					 * Recovery Algorithm.
14129 					 */
14130 					if (tcp->tcp_snd_sack_ok &&
14131 					    tcp->tcp_notsack_list != NULL) {
14132 						flags |= TH_NEED_SACK_REXMIT;
14133 						tcp->tcp_pipe -= mss;
14134 						if (tcp->tcp_pipe < 0)
14135 							tcp->tcp_pipe = 0;
14136 					} else {
14137 					/*
14138 					 * We know that one more packet has
14139 					 * left the pipe thus we can update
14140 					 * cwnd.
14141 					 */
14142 					cwnd = tcp->tcp_cwnd + mss;
14143 					if (cwnd > tcp->tcp_cwnd_max)
14144 						cwnd = tcp->tcp_cwnd_max;
14145 					tcp->tcp_cwnd = cwnd;
14146 					if (tcp->tcp_unsent > 0)
14147 						flags |= TH_XMIT_NEEDED;
14148 					}
14149 				}
14150 			}
14151 		} else if (tcp->tcp_zero_win_probe) {
14152 			/*
14153 			 * If the window has opened, need to arrange
14154 			 * to send additional data.
14155 			 */
14156 			if (new_swnd != 0) {
14157 				/* tcp_suna != tcp_snxt */
14158 				/* Packet contains a window update */
14159 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14160 				tcp->tcp_zero_win_probe = 0;
14161 				tcp->tcp_timer_backoff = 0;
14162 				tcp->tcp_ms_we_have_waited = 0;
14163 
14164 				/*
14165 				 * Transmit starting with tcp_suna since
14166 				 * the one byte probe is not ack'ed.
14167 				 * If TCP has sent more than one identical
14168 				 * probe, tcp_rexmit will be set.  That means
14169 				 * tcp_ss_rexmit() will send out the one
14170 				 * byte along with new data.  Otherwise,
14171 				 * fake the retransmission.
14172 				 */
14173 				flags |= TH_XMIT_NEEDED;
14174 				if (!tcp->tcp_rexmit) {
14175 					tcp->tcp_rexmit = B_TRUE;
14176 					tcp->tcp_dupack_cnt = 0;
14177 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14178 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14179 				}
14180 			}
14181 		}
14182 		goto swnd_update;
14183 	}
14184 
14185 	/*
14186 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14187 	 * If the ACK value acks something that we have not yet sent, it might
14188 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14189 	 * other side.
14190 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14191 	 * state is handled above, so we can always just drop the segment and
14192 	 * send an ACK here.
14193 	 *
14194 	 * Should we send ACKs in response to ACK only segments?
14195 	 */
14196 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14197 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14198 		/* drop the received segment */
14199 		freemsg(mp);
14200 
14201 		/*
14202 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14203 		 * greater than 0, check if the number of such
14204 		 * bogus ACks is greater than that count.  If yes,
14205 		 * don't send back any ACK.  This prevents TCP from
14206 		 * getting into an ACK storm if somehow an attacker
14207 		 * successfully spoofs an acceptable segment to our
14208 		 * peer.
14209 		 */
14210 		if (tcp_drop_ack_unsent_cnt > 0 &&
14211 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14212 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14213 			return;
14214 		}
14215 		mp = tcp_ack_mp(tcp);
14216 		if (mp != NULL) {
14217 			BUMP_LOCAL(tcp->tcp_obsegs);
14218 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14219 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14220 		}
14221 		return;
14222 	}
14223 
14224 	/*
14225 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14226 	 * blocks that are covered by this ACK.
14227 	 */
14228 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14229 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14230 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14231 	}
14232 
14233 	/*
14234 	 * If we got an ACK after fast retransmit, check to see
14235 	 * if it is a partial ACK.  If it is not and the congestion
14236 	 * window was inflated to account for the other side's
14237 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14238 	 */
14239 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14240 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14241 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14242 			tcp->tcp_dupack_cnt = 0;
14243 			/*
14244 			 * Restore the orig tcp_cwnd_ssthresh after
14245 			 * fast retransmit phase.
14246 			 */
14247 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14248 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14249 			}
14250 			tcp->tcp_rexmit_max = seg_ack;
14251 			tcp->tcp_cwnd_cnt = 0;
14252 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14253 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14254 
14255 			/*
14256 			 * Remove all notsack info to avoid confusion with
14257 			 * the next fast retrasnmit/recovery phase.
14258 			 */
14259 			if (tcp->tcp_snd_sack_ok &&
14260 			    tcp->tcp_notsack_list != NULL) {
14261 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14262 			}
14263 		} else {
14264 			if (tcp->tcp_snd_sack_ok &&
14265 			    tcp->tcp_notsack_list != NULL) {
14266 				flags |= TH_NEED_SACK_REXMIT;
14267 				tcp->tcp_pipe -= mss;
14268 				if (tcp->tcp_pipe < 0)
14269 					tcp->tcp_pipe = 0;
14270 			} else {
14271 				/*
14272 				 * Hoe's algorithm:
14273 				 *
14274 				 * Retransmit the unack'ed segment and
14275 				 * restart fast recovery.  Note that we
14276 				 * need to scale back tcp_cwnd to the
14277 				 * original value when we started fast
14278 				 * recovery.  This is to prevent overly
14279 				 * aggressive behaviour in sending new
14280 				 * segments.
14281 				 */
14282 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14283 				    tcps->tcps_dupack_fast_retransmit * mss;
14284 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14285 				flags |= TH_REXMIT_NEEDED;
14286 			}
14287 		}
14288 	} else {
14289 		tcp->tcp_dupack_cnt = 0;
14290 		if (tcp->tcp_rexmit) {
14291 			/*
14292 			 * TCP is retranmitting.  If the ACK ack's all
14293 			 * outstanding data, update tcp_rexmit_max and
14294 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14295 			 * to the correct value.
14296 			 *
14297 			 * Note that SEQ_LEQ() is used.  This is to avoid
14298 			 * unnecessary fast retransmit caused by dup ACKs
14299 			 * received when TCP does slow start retransmission
14300 			 * after a time out.  During this phase, TCP may
14301 			 * send out segments which are already received.
14302 			 * This causes dup ACKs to be sent back.
14303 			 */
14304 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14305 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14306 					tcp->tcp_rexmit_nxt = seg_ack;
14307 				}
14308 				if (seg_ack != tcp->tcp_rexmit_max) {
14309 					flags |= TH_XMIT_NEEDED;
14310 				}
14311 			} else {
14312 				tcp->tcp_rexmit = B_FALSE;
14313 				tcp->tcp_xmit_zc_clean = B_FALSE;
14314 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14315 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14316 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14317 			}
14318 			tcp->tcp_ms_we_have_waited = 0;
14319 		}
14320 	}
14321 
14322 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14323 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14324 	tcp->tcp_suna = seg_ack;
14325 	if (tcp->tcp_zero_win_probe != 0) {
14326 		tcp->tcp_zero_win_probe = 0;
14327 		tcp->tcp_timer_backoff = 0;
14328 	}
14329 
14330 	/*
14331 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14332 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14333 	 * will not reach here.
14334 	 */
14335 	if (mp1 == NULL) {
14336 		goto fin_acked;
14337 	}
14338 
14339 	/*
14340 	 * Update the congestion window.
14341 	 *
14342 	 * If TCP is not ECN capable or TCP is ECN capable but the
14343 	 * congestion experience bit is not set, increase the tcp_cwnd as
14344 	 * usual.
14345 	 */
14346 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14347 		cwnd = tcp->tcp_cwnd;
14348 		add = mss;
14349 
14350 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14351 			/*
14352 			 * This is to prevent an increase of less than 1 MSS of
14353 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14354 			 * may send out tinygrams in order to preserve mblk
14355 			 * boundaries.
14356 			 *
14357 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14358 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14359 			 * increased by 1 MSS for every RTTs.
14360 			 */
14361 			if (tcp->tcp_cwnd_cnt <= 0) {
14362 				tcp->tcp_cwnd_cnt = cwnd + add;
14363 			} else {
14364 				tcp->tcp_cwnd_cnt -= add;
14365 				add = 0;
14366 			}
14367 		}
14368 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14369 	}
14370 
14371 	/* See if the latest urgent data has been acknowledged */
14372 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14373 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14374 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14375 
14376 	/* Can we update the RTT estimates? */
14377 	if (tcp->tcp_snd_ts_ok) {
14378 		/* Ignore zero timestamp echo-reply. */
14379 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14380 			tcp_set_rto(tcp, (int32_t)lbolt -
14381 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14382 		}
14383 
14384 		/* If needed, restart the timer. */
14385 		if (tcp->tcp_set_timer == 1) {
14386 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14387 			tcp->tcp_set_timer = 0;
14388 		}
14389 		/*
14390 		 * Update tcp_csuna in case the other side stops sending
14391 		 * us timestamps.
14392 		 */
14393 		tcp->tcp_csuna = tcp->tcp_snxt;
14394 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14395 		/*
14396 		 * An ACK sequence we haven't seen before, so get the RTT
14397 		 * and update the RTO. But first check if the timestamp is
14398 		 * valid to use.
14399 		 */
14400 		if ((mp1->b_next != NULL) &&
14401 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14402 			tcp_set_rto(tcp, (int32_t)lbolt -
14403 			    (int32_t)(intptr_t)mp1->b_prev);
14404 		else
14405 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14406 
14407 		/* Remeber the last sequence to be ACKed */
14408 		tcp->tcp_csuna = seg_ack;
14409 		if (tcp->tcp_set_timer == 1) {
14410 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14411 			tcp->tcp_set_timer = 0;
14412 		}
14413 	} else {
14414 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14415 	}
14416 
14417 	/* Eat acknowledged bytes off the xmit queue. */
14418 	for (;;) {
14419 		mblk_t	*mp2;
14420 		uchar_t	*wptr;
14421 
14422 		wptr = mp1->b_wptr;
14423 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14424 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14425 		if (bytes_acked < 0) {
14426 			mp1->b_rptr = wptr + bytes_acked;
14427 			/*
14428 			 * Set a new timestamp if all the bytes timed by the
14429 			 * old timestamp have been ack'ed.
14430 			 */
14431 			if (SEQ_GT(seg_ack,
14432 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14433 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14434 				mp1->b_next = NULL;
14435 			}
14436 			break;
14437 		}
14438 		mp1->b_next = NULL;
14439 		mp1->b_prev = NULL;
14440 		mp2 = mp1;
14441 		mp1 = mp1->b_cont;
14442 
14443 		/*
14444 		 * This notification is required for some zero-copy
14445 		 * clients to maintain a copy semantic. After the data
14446 		 * is ack'ed, client is safe to modify or reuse the buffer.
14447 		 */
14448 		if (tcp->tcp_snd_zcopy_aware &&
14449 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14450 			tcp_zcopy_notify(tcp);
14451 		freeb(mp2);
14452 		if (bytes_acked == 0) {
14453 			if (mp1 == NULL) {
14454 				/* Everything is ack'ed, clear the tail. */
14455 				tcp->tcp_xmit_tail = NULL;
14456 				/*
14457 				 * Cancel the timer unless we are still
14458 				 * waiting for an ACK for the FIN packet.
14459 				 */
14460 				if (tcp->tcp_timer_tid != 0 &&
14461 				    tcp->tcp_snxt == tcp->tcp_suna) {
14462 					(void) TCP_TIMER_CANCEL(tcp,
14463 					    tcp->tcp_timer_tid);
14464 					tcp->tcp_timer_tid = 0;
14465 				}
14466 				goto pre_swnd_update;
14467 			}
14468 			if (mp2 != tcp->tcp_xmit_tail)
14469 				break;
14470 			tcp->tcp_xmit_tail = mp1;
14471 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14472 			    (uintptr_t)INT_MAX);
14473 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14474 			    mp1->b_rptr);
14475 			break;
14476 		}
14477 		if (mp1 == NULL) {
14478 			/*
14479 			 * More was acked but there is nothing more
14480 			 * outstanding.  This means that the FIN was
14481 			 * just acked or that we're talking to a clown.
14482 			 */
14483 fin_acked:
14484 			ASSERT(tcp->tcp_fin_sent);
14485 			tcp->tcp_xmit_tail = NULL;
14486 			if (tcp->tcp_fin_sent) {
14487 				/* FIN was acked - making progress */
14488 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14489 				    !tcp->tcp_fin_acked)
14490 					tcp->tcp_ip_forward_progress = B_TRUE;
14491 				tcp->tcp_fin_acked = B_TRUE;
14492 				if (tcp->tcp_linger_tid != 0 &&
14493 				    TCP_TIMER_CANCEL(tcp,
14494 				    tcp->tcp_linger_tid) >= 0) {
14495 					tcp_stop_lingering(tcp);
14496 					freemsg(mp);
14497 					mp = NULL;
14498 				}
14499 			} else {
14500 				/*
14501 				 * We should never get here because
14502 				 * we have already checked that the
14503 				 * number of bytes ack'ed should be
14504 				 * smaller than or equal to what we
14505 				 * have sent so far (it is the
14506 				 * acceptability check of the ACK).
14507 				 * We can only get here if the send
14508 				 * queue is corrupted.
14509 				 *
14510 				 * Terminate the connection and
14511 				 * panic the system.  It is better
14512 				 * for us to panic instead of
14513 				 * continuing to avoid other disaster.
14514 				 */
14515 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14516 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14517 				panic("Memory corruption "
14518 				    "detected for connection %s.",
14519 				    tcp_display(tcp, NULL,
14520 				    DISP_ADDR_AND_PORT));
14521 				/*NOTREACHED*/
14522 			}
14523 			goto pre_swnd_update;
14524 		}
14525 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14526 	}
14527 	if (tcp->tcp_unsent) {
14528 		flags |= TH_XMIT_NEEDED;
14529 	}
14530 pre_swnd_update:
14531 	tcp->tcp_xmit_head = mp1;
14532 swnd_update:
14533 	/*
14534 	 * The following check is different from most other implementations.
14535 	 * For bi-directional transfer, when segments are dropped, the
14536 	 * "normal" check will not accept a window update in those
14537 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14538 	 * segments which are outside receiver's window.  As TCP accepts
14539 	 * the ack in those retransmitted segments, if the window update in
14540 	 * the same segment is not accepted, TCP will incorrectly calculates
14541 	 * that it can send more segments.  This can create a deadlock
14542 	 * with the receiver if its window becomes zero.
14543 	 */
14544 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14545 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14546 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14547 		/*
14548 		 * The criteria for update is:
14549 		 *
14550 		 * 1. the segment acknowledges some data.  Or
14551 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14552 		 * 3. the segment is not old and the advertised window is
14553 		 * larger than the previous advertised window.
14554 		 */
14555 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14556 			flags |= TH_XMIT_NEEDED;
14557 		tcp->tcp_swnd = new_swnd;
14558 		if (new_swnd > tcp->tcp_max_swnd)
14559 			tcp->tcp_max_swnd = new_swnd;
14560 		tcp->tcp_swl1 = seg_seq;
14561 		tcp->tcp_swl2 = seg_ack;
14562 	}
14563 est:
14564 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14565 
14566 		switch (tcp->tcp_state) {
14567 		case TCPS_FIN_WAIT_1:
14568 			if (tcp->tcp_fin_acked) {
14569 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14570 				/*
14571 				 * We implement the non-standard BSD/SunOS
14572 				 * FIN_WAIT_2 flushing algorithm.
14573 				 * If there is no user attached to this
14574 				 * TCP endpoint, then this TCP struct
14575 				 * could hang around forever in FIN_WAIT_2
14576 				 * state if the peer forgets to send us
14577 				 * a FIN.  To prevent this, we wait only
14578 				 * 2*MSL (a convenient time value) for
14579 				 * the FIN to arrive.  If it doesn't show up,
14580 				 * we flush the TCP endpoint.  This algorithm,
14581 				 * though a violation of RFC-793, has worked
14582 				 * for over 10 years in BSD systems.
14583 				 * Note: SunOS 4.x waits 675 seconds before
14584 				 * flushing the FIN_WAIT_2 connection.
14585 				 */
14586 				TCP_TIMER_RESTART(tcp,
14587 				    tcps->tcps_fin_wait_2_flush_interval);
14588 			}
14589 			break;
14590 		case TCPS_FIN_WAIT_2:
14591 			break;	/* Shutdown hook? */
14592 		case TCPS_LAST_ACK:
14593 			freemsg(mp);
14594 			if (tcp->tcp_fin_acked) {
14595 				(void) tcp_clean_death(tcp, 0, 19);
14596 				return;
14597 			}
14598 			goto xmit_check;
14599 		case TCPS_CLOSING:
14600 			if (tcp->tcp_fin_acked) {
14601 				tcp->tcp_state = TCPS_TIME_WAIT;
14602 				/*
14603 				 * Unconditionally clear the exclusive binding
14604 				 * bit so this TIME-WAIT connection won't
14605 				 * interfere with new ones.
14606 				 */
14607 				tcp->tcp_exclbind = 0;
14608 				if (!TCP_IS_DETACHED(tcp)) {
14609 					TCP_TIMER_RESTART(tcp,
14610 					    tcps->tcps_time_wait_interval);
14611 				} else {
14612 					tcp_time_wait_append(tcp);
14613 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14614 				}
14615 			}
14616 			/*FALLTHRU*/
14617 		case TCPS_CLOSE_WAIT:
14618 			freemsg(mp);
14619 			goto xmit_check;
14620 		default:
14621 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14622 			break;
14623 		}
14624 	}
14625 	if (flags & TH_FIN) {
14626 		/* Make sure we ack the fin */
14627 		flags |= TH_ACK_NEEDED;
14628 		if (!tcp->tcp_fin_rcvd) {
14629 			tcp->tcp_fin_rcvd = B_TRUE;
14630 			tcp->tcp_rnxt++;
14631 			tcph = tcp->tcp_tcph;
14632 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14633 
14634 			/*
14635 			 * Generate the ordrel_ind at the end unless we
14636 			 * are an eager guy.
14637 			 * In the eager case tcp_rsrv will do this when run
14638 			 * after tcp_accept is done.
14639 			 */
14640 			if (tcp->tcp_listener == NULL &&
14641 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14642 				flags |= TH_ORDREL_NEEDED;
14643 			switch (tcp->tcp_state) {
14644 			case TCPS_SYN_RCVD:
14645 			case TCPS_ESTABLISHED:
14646 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14647 				/* Keepalive? */
14648 				break;
14649 			case TCPS_FIN_WAIT_1:
14650 				if (!tcp->tcp_fin_acked) {
14651 					tcp->tcp_state = TCPS_CLOSING;
14652 					break;
14653 				}
14654 				/* FALLTHRU */
14655 			case TCPS_FIN_WAIT_2:
14656 				tcp->tcp_state = TCPS_TIME_WAIT;
14657 				/*
14658 				 * Unconditionally clear the exclusive binding
14659 				 * bit so this TIME-WAIT connection won't
14660 				 * interfere with new ones.
14661 				 */
14662 				tcp->tcp_exclbind = 0;
14663 				if (!TCP_IS_DETACHED(tcp)) {
14664 					TCP_TIMER_RESTART(tcp,
14665 					    tcps->tcps_time_wait_interval);
14666 				} else {
14667 					tcp_time_wait_append(tcp);
14668 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14669 				}
14670 				if (seg_len) {
14671 					/*
14672 					 * implies data piggybacked on FIN.
14673 					 * break to handle data.
14674 					 */
14675 					break;
14676 				}
14677 				freemsg(mp);
14678 				goto ack_check;
14679 			}
14680 		}
14681 	}
14682 	if (mp == NULL)
14683 		goto xmit_check;
14684 	if (seg_len == 0) {
14685 		freemsg(mp);
14686 		goto xmit_check;
14687 	}
14688 	if (mp->b_rptr == mp->b_wptr) {
14689 		/*
14690 		 * The header has been consumed, so we remove the
14691 		 * zero-length mblk here.
14692 		 */
14693 		mp1 = mp;
14694 		mp = mp->b_cont;
14695 		freeb(mp1);
14696 	}
14697 update_ack:
14698 	tcph = tcp->tcp_tcph;
14699 	tcp->tcp_rack_cnt++;
14700 	{
14701 		uint32_t cur_max;
14702 
14703 		cur_max = tcp->tcp_rack_cur_max;
14704 		if (tcp->tcp_rack_cnt >= cur_max) {
14705 			/*
14706 			 * We have more unacked data than we should - send
14707 			 * an ACK now.
14708 			 */
14709 			flags |= TH_ACK_NEEDED;
14710 			cur_max++;
14711 			if (cur_max > tcp->tcp_rack_abs_max)
14712 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14713 			else
14714 				tcp->tcp_rack_cur_max = cur_max;
14715 		} else if (TCP_IS_DETACHED(tcp)) {
14716 			/* We don't have an ACK timer for detached TCP. */
14717 			flags |= TH_ACK_NEEDED;
14718 		} else if (seg_len < mss) {
14719 			/*
14720 			 * If we get a segment that is less than an mss, and we
14721 			 * already have unacknowledged data, and the amount
14722 			 * unacknowledged is not a multiple of mss, then we
14723 			 * better generate an ACK now.  Otherwise, this may be
14724 			 * the tail piece of a transaction, and we would rather
14725 			 * wait for the response.
14726 			 */
14727 			uint32_t udif;
14728 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14729 			    (uintptr_t)INT_MAX);
14730 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14731 			if (udif && (udif % mss))
14732 				flags |= TH_ACK_NEEDED;
14733 			else
14734 				flags |= TH_ACK_TIMER_NEEDED;
14735 		} else {
14736 			/* Start delayed ack timer */
14737 			flags |= TH_ACK_TIMER_NEEDED;
14738 		}
14739 	}
14740 	tcp->tcp_rnxt += seg_len;
14741 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14742 
14743 	if (mp == NULL)
14744 		goto xmit_check;
14745 
14746 	/* Update SACK list */
14747 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14748 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14749 		    &(tcp->tcp_num_sack_blk));
14750 	}
14751 
14752 	if (tcp->tcp_urp_mp) {
14753 		tcp->tcp_urp_mp->b_cont = mp;
14754 		mp = tcp->tcp_urp_mp;
14755 		tcp->tcp_urp_mp = NULL;
14756 		/* Ready for a new signal. */
14757 		tcp->tcp_urp_last_valid = B_FALSE;
14758 #ifdef DEBUG
14759 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14760 		    "tcp_rput: sending exdata_ind %s",
14761 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14762 #endif /* DEBUG */
14763 	}
14764 
14765 	/*
14766 	 * Check for ancillary data changes compared to last segment.
14767 	 */
14768 	if (tcp->tcp_ipv6_recvancillary != 0) {
14769 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14770 		ASSERT(mp != NULL);
14771 	}
14772 
14773 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14774 		/*
14775 		 * Side queue inbound data until the accept happens.
14776 		 * tcp_accept/tcp_rput drains this when the accept happens.
14777 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14778 		 * T_EXDATA_IND) it is queued on b_next.
14779 		 * XXX Make urgent data use this. Requires:
14780 		 *	Removing tcp_listener check for TH_URG
14781 		 *	Making M_PCPROTO and MARK messages skip the eager case
14782 		 */
14783 
14784 		if (tcp->tcp_kssl_pending) {
14785 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14786 			    mblk_t *, mp);
14787 			tcp_kssl_input(tcp, mp);
14788 		} else {
14789 			tcp_rcv_enqueue(tcp, mp, seg_len);
14790 		}
14791 	} else {
14792 		if (mp->b_datap->db_type != M_DATA ||
14793 		    (flags & TH_MARKNEXT_NEEDED)) {
14794 			if (IPCL_IS_NONSTR(connp)) {
14795 				int error;
14796 
14797 				if ((*connp->conn_upcalls->su_recv)
14798 				    (connp->conn_upper_handle, mp,
14799 				    seg_len, 0, &error, NULL) <= 0) {
14800 					/*
14801 					 * We should never be in middle of a
14802 					 * fallback, the squeue guarantees that.
14803 					 */
14804 					ASSERT(error != EOPNOTSUPP);
14805 					if (error == ENOSPC)
14806 						tcp->tcp_rwnd -= seg_len;
14807 				}
14808 			} else if (tcp->tcp_rcv_list != NULL) {
14809 				flags |= tcp_rcv_drain(tcp);
14810 			}
14811 			ASSERT(tcp->tcp_rcv_list == NULL ||
14812 			    tcp->tcp_fused_sigurg);
14813 
14814 			if (flags & TH_MARKNEXT_NEEDED) {
14815 #ifdef DEBUG
14816 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14817 				    "tcp_rput: sending MSGMARKNEXT %s",
14818 				    tcp_display(tcp, NULL,
14819 				    DISP_PORT_ONLY));
14820 #endif /* DEBUG */
14821 				mp->b_flag |= MSGMARKNEXT;
14822 				flags &= ~TH_MARKNEXT_NEEDED;
14823 			}
14824 
14825 			/* Does this need SSL processing first? */
14826 			if ((tcp->tcp_kssl_ctx != NULL) &&
14827 			    (DB_TYPE(mp) == M_DATA)) {
14828 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
14829 				    mblk_t *, mp);
14830 				tcp_kssl_input(tcp, mp);
14831 			} else if (!IPCL_IS_NONSTR(connp)) {
14832 				/* Already handled non-STREAMS case. */
14833 				putnext(tcp->tcp_rq, mp);
14834 				if (!canputnext(tcp->tcp_rq))
14835 					tcp->tcp_rwnd -= seg_len;
14836 			}
14837 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
14838 		    (DB_TYPE(mp) == M_DATA)) {
14839 			/* Does this need SSL processing first? */
14840 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
14841 			tcp_kssl_input(tcp, mp);
14842 		} else if (IPCL_IS_NONSTR(connp)) {
14843 			/* Non-STREAMS socket */
14844 			boolean_t push = flags & (TH_PUSH|TH_FIN);
14845 			int	error;
14846 
14847 			if ((*connp->conn_upcalls->su_recv)(
14848 			    connp->conn_upper_handle,
14849 			    mp, seg_len, 0, &error, &push) <= 0) {
14850 				/*
14851 				 * We should never be in middle of a
14852 				 * fallback, the squeue guarantees that.
14853 				 */
14854 				ASSERT(error != EOPNOTSUPP);
14855 				if (error == ENOSPC)
14856 					tcp->tcp_rwnd -= seg_len;
14857 			} else if (push) {
14858 				/*
14859 				 * PUSH bit set and sockfs is not
14860 				 * flow controlled
14861 				 */
14862 				flags |= tcp_rwnd_reopen(tcp);
14863 			}
14864 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14865 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
14866 			if (tcp->tcp_rcv_list != NULL) {
14867 				/*
14868 				 * Enqueue the new segment first and then
14869 				 * call tcp_rcv_drain() to send all data
14870 				 * up.  The other way to do this is to
14871 				 * send all queued data up and then call
14872 				 * putnext() to send the new segment up.
14873 				 * This way can remove the else part later
14874 				 * on.
14875 				 *
14876 				 * We don't do this to avoid one more call to
14877 				 * canputnext() as tcp_rcv_drain() needs to
14878 				 * call canputnext().
14879 				 */
14880 				tcp_rcv_enqueue(tcp, mp, seg_len);
14881 				flags |= tcp_rcv_drain(tcp);
14882 			} else {
14883 				putnext(tcp->tcp_rq, mp);
14884 				if (!canputnext(tcp->tcp_rq))
14885 					tcp->tcp_rwnd -= seg_len;
14886 			}
14887 		} else {
14888 			/*
14889 			 * Enqueue all packets when processing an mblk
14890 			 * from the co queue and also enqueue normal packets.
14891 			 */
14892 			tcp_rcv_enqueue(tcp, mp, seg_len);
14893 		}
14894 		/*
14895 		 * Make sure the timer is running if we have data waiting
14896 		 * for a push bit. This provides resiliency against
14897 		 * implementations that do not correctly generate push bits.
14898 		 */
14899 		if (!IPCL_IS_NONSTR(connp) && tcp->tcp_rcv_list != NULL &&
14900 		    tcp->tcp_push_tid == 0) {
14901 			/*
14902 			 * The connection may be closed at this point, so don't
14903 			 * do anything for a detached tcp.
14904 			 */
14905 			if (!TCP_IS_DETACHED(tcp))
14906 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14907 				    tcp_push_timer,
14908 				    MSEC_TO_TICK(
14909 				    tcps->tcps_push_timer_interval));
14910 		}
14911 	}
14912 
14913 xmit_check:
14914 	/* Is there anything left to do? */
14915 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14916 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14917 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14918 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14919 		goto done;
14920 
14921 	/* Any transmit work to do and a non-zero window? */
14922 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14923 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14924 		if (flags & TH_REXMIT_NEEDED) {
14925 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14926 
14927 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
14928 			if (snd_size > mss)
14929 				snd_size = mss;
14930 			if (snd_size > tcp->tcp_swnd)
14931 				snd_size = tcp->tcp_swnd;
14932 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14933 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14934 			    B_TRUE);
14935 
14936 			if (mp1 != NULL) {
14937 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14938 				tcp->tcp_csuna = tcp->tcp_snxt;
14939 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
14940 				UPDATE_MIB(&tcps->tcps_mib,
14941 				    tcpRetransBytes, snd_size);
14942 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14943 			}
14944 		}
14945 		if (flags & TH_NEED_SACK_REXMIT) {
14946 			tcp_sack_rxmit(tcp, &flags);
14947 		}
14948 		/*
14949 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14950 		 * out new segment.  Note that tcp_rexmit should not be
14951 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14952 		 */
14953 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14954 			if (!tcp->tcp_rexmit) {
14955 				tcp_wput_data(tcp, NULL, B_FALSE);
14956 			} else {
14957 				tcp_ss_rexmit(tcp);
14958 			}
14959 		}
14960 		/*
14961 		 * Adjust tcp_cwnd back to normal value after sending
14962 		 * new data segments.
14963 		 */
14964 		if (flags & TH_LIMIT_XMIT) {
14965 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14966 			/*
14967 			 * This will restart the timer.  Restarting the
14968 			 * timer is used to avoid a timeout before the
14969 			 * limited transmitted segment's ACK gets back.
14970 			 */
14971 			if (tcp->tcp_xmit_head != NULL)
14972 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14973 		}
14974 
14975 		/* Anything more to do? */
14976 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14977 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14978 			goto done;
14979 	}
14980 ack_check:
14981 	if (flags & TH_SEND_URP_MARK) {
14982 		ASSERT(tcp->tcp_urp_mark_mp);
14983 		ASSERT(!IPCL_IS_NONSTR(connp));
14984 		/*
14985 		 * Send up any queued data and then send the mark message
14986 		 */
14987 		if (tcp->tcp_rcv_list != NULL) {
14988 			flags |= tcp_rcv_drain(tcp);
14989 
14990 		}
14991 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14992 		mp1 = tcp->tcp_urp_mark_mp;
14993 		tcp->tcp_urp_mark_mp = NULL;
14994 		putnext(tcp->tcp_rq, mp1);
14995 #ifdef DEBUG
14996 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14997 		    "tcp_rput: sending zero-length %s %s",
14998 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14999 		    "MSGNOTMARKNEXT"),
15000 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15001 #endif /* DEBUG */
15002 		flags &= ~TH_SEND_URP_MARK;
15003 	}
15004 	if (flags & TH_ACK_NEEDED) {
15005 		/*
15006 		 * Time to send an ack for some reason.
15007 		 */
15008 		mp1 = tcp_ack_mp(tcp);
15009 
15010 		if (mp1 != NULL) {
15011 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15012 			BUMP_LOCAL(tcp->tcp_obsegs);
15013 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15014 		}
15015 		if (tcp->tcp_ack_tid != 0) {
15016 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15017 			tcp->tcp_ack_tid = 0;
15018 		}
15019 	}
15020 	if (flags & TH_ACK_TIMER_NEEDED) {
15021 		/*
15022 		 * Arrange for deferred ACK or push wait timeout.
15023 		 * Start timer if it is not already running.
15024 		 */
15025 		if (tcp->tcp_ack_tid == 0) {
15026 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15027 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15028 			    (clock_t)tcps->tcps_local_dack_interval :
15029 			    (clock_t)tcps->tcps_deferred_ack_interval));
15030 		}
15031 	}
15032 	if (flags & TH_ORDREL_NEEDED) {
15033 		/*
15034 		 * Send up the ordrel_ind unless we are an eager guy.
15035 		 * In the eager case tcp_rsrv will do this when run
15036 		 * after tcp_accept is done.
15037 		 */
15038 		ASSERT(tcp->tcp_listener == NULL);
15039 
15040 		if (IPCL_IS_NONSTR(connp)) {
15041 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15042 			tcp->tcp_ordrel_done = B_TRUE;
15043 			(*connp->conn_upcalls->su_opctl)
15044 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15045 			goto done;
15046 		}
15047 
15048 		if (tcp->tcp_rcv_list != NULL) {
15049 			/*
15050 			 * Push any mblk(s) enqueued from co processing.
15051 			 */
15052 			flags |= tcp_rcv_drain(tcp);
15053 		}
15054 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15055 
15056 		mp1 = tcp->tcp_ordrel_mp;
15057 		tcp->tcp_ordrel_mp = NULL;
15058 		tcp->tcp_ordrel_done = B_TRUE;
15059 		putnext(tcp->tcp_rq, mp1);
15060 	}
15061 done:
15062 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15063 }
15064 
15065 /*
15066  * This function does PAWS protection check. Returns B_TRUE if the
15067  * segment passes the PAWS test, else returns B_FALSE.
15068  */
15069 boolean_t
15070 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15071 {
15072 	uint8_t	flags;
15073 	int	options;
15074 	uint8_t *up;
15075 
15076 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15077 	/*
15078 	 * If timestamp option is aligned nicely, get values inline,
15079 	 * otherwise call general routine to parse.  Only do that
15080 	 * if timestamp is the only option.
15081 	 */
15082 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15083 	    TCPOPT_REAL_TS_LEN &&
15084 	    OK_32PTR((up = ((uint8_t *)tcph) +
15085 	    TCP_MIN_HEADER_LENGTH)) &&
15086 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15087 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15088 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15089 
15090 		options = TCP_OPT_TSTAMP_PRESENT;
15091 	} else {
15092 		if (tcp->tcp_snd_sack_ok) {
15093 			tcpoptp->tcp = tcp;
15094 		} else {
15095 			tcpoptp->tcp = NULL;
15096 		}
15097 		options = tcp_parse_options(tcph, tcpoptp);
15098 	}
15099 
15100 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15101 		/*
15102 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15103 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15104 		 */
15105 		if ((flags & TH_RST) == 0 &&
15106 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15107 		    tcp->tcp_ts_recent)) {
15108 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15109 			    PAWS_TIMEOUT)) {
15110 				/* This segment is not acceptable. */
15111 				return (B_FALSE);
15112 			} else {
15113 				/*
15114 				 * Connection has been idle for
15115 				 * too long.  Reset the timestamp
15116 				 * and assume the segment is valid.
15117 				 */
15118 				tcp->tcp_ts_recent =
15119 				    tcpoptp->tcp_opt_ts_val;
15120 			}
15121 		}
15122 	} else {
15123 		/*
15124 		 * If we don't get a timestamp on every packet, we
15125 		 * figure we can't really trust 'em, so we stop sending
15126 		 * and parsing them.
15127 		 */
15128 		tcp->tcp_snd_ts_ok = B_FALSE;
15129 
15130 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15131 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15132 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15133 		/*
15134 		 * Adjust the tcp_mss accordingly. We also need to
15135 		 * adjust tcp_cwnd here in accordance with the new mss.
15136 		 * But we avoid doing a slow start here so as to not
15137 		 * to lose on the transfer rate built up so far.
15138 		 */
15139 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15140 		if (tcp->tcp_snd_sack_ok) {
15141 			ASSERT(tcp->tcp_sack_info != NULL);
15142 			tcp->tcp_max_sack_blk = 4;
15143 		}
15144 	}
15145 	return (B_TRUE);
15146 }
15147 
15148 /*
15149  * Attach ancillary data to a received TCP segments for the
15150  * ancillary pieces requested by the application that are
15151  * different than they were in the previous data segment.
15152  *
15153  * Save the "current" values once memory allocation is ok so that
15154  * when memory allocation fails we can just wait for the next data segment.
15155  */
15156 static mblk_t *
15157 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15158 {
15159 	struct T_optdata_ind *todi;
15160 	int optlen;
15161 	uchar_t *optptr;
15162 	struct T_opthdr *toh;
15163 	uint_t addflag;	/* Which pieces to add */
15164 	mblk_t *mp1;
15165 
15166 	optlen = 0;
15167 	addflag = 0;
15168 	/* If app asked for pktinfo and the index has changed ... */
15169 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15170 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15171 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15172 		optlen += sizeof (struct T_opthdr) +
15173 		    sizeof (struct in6_pktinfo);
15174 		addflag |= TCP_IPV6_RECVPKTINFO;
15175 	}
15176 	/* If app asked for hoplimit and it has changed ... */
15177 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15178 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15179 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15180 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15181 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15182 	}
15183 	/* If app asked for tclass and it has changed ... */
15184 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15185 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15186 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15187 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15188 		addflag |= TCP_IPV6_RECVTCLASS;
15189 	}
15190 	/*
15191 	 * If app asked for hopbyhop headers and it has changed ...
15192 	 * For security labels, note that (1) security labels can't change on
15193 	 * a connected socket at all, (2) we're connected to at most one peer,
15194 	 * (3) if anything changes, then it must be some other extra option.
15195 	 */
15196 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15197 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15198 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15199 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15200 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15201 		    tcp->tcp_label_len;
15202 		addflag |= TCP_IPV6_RECVHOPOPTS;
15203 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15204 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15205 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15206 			return (mp);
15207 	}
15208 	/* If app asked for dst headers before routing headers ... */
15209 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15210 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15211 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15212 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15213 		optlen += sizeof (struct T_opthdr) +
15214 		    ipp->ipp_rtdstoptslen;
15215 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15216 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15217 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15218 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15219 			return (mp);
15220 	}
15221 	/* If app asked for routing headers and it has changed ... */
15222 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15223 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15224 	    (ipp->ipp_fields & IPPF_RTHDR),
15225 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15226 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15227 		addflag |= TCP_IPV6_RECVRTHDR;
15228 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15229 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15230 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15231 			return (mp);
15232 	}
15233 	/* If app asked for dest headers and it has changed ... */
15234 	if ((tcp->tcp_ipv6_recvancillary &
15235 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15236 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15237 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15238 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15239 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15240 		addflag |= TCP_IPV6_RECVDSTOPTS;
15241 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15242 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15243 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15244 			return (mp);
15245 	}
15246 
15247 	if (optlen == 0) {
15248 		/* Nothing to add */
15249 		return (mp);
15250 	}
15251 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15252 	if (mp1 == NULL) {
15253 		/*
15254 		 * Defer sending ancillary data until the next TCP segment
15255 		 * arrives.
15256 		 */
15257 		return (mp);
15258 	}
15259 	mp1->b_cont = mp;
15260 	mp = mp1;
15261 	mp->b_wptr += sizeof (*todi) + optlen;
15262 	mp->b_datap->db_type = M_PROTO;
15263 	todi = (struct T_optdata_ind *)mp->b_rptr;
15264 	todi->PRIM_type = T_OPTDATA_IND;
15265 	todi->DATA_flag = 1;	/* MORE data */
15266 	todi->OPT_length = optlen;
15267 	todi->OPT_offset = sizeof (*todi);
15268 	optptr = (uchar_t *)&todi[1];
15269 	/*
15270 	 * If app asked for pktinfo and the index has changed ...
15271 	 * Note that the local address never changes for the connection.
15272 	 */
15273 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15274 		struct in6_pktinfo *pkti;
15275 
15276 		toh = (struct T_opthdr *)optptr;
15277 		toh->level = IPPROTO_IPV6;
15278 		toh->name = IPV6_PKTINFO;
15279 		toh->len = sizeof (*toh) + sizeof (*pkti);
15280 		toh->status = 0;
15281 		optptr += sizeof (*toh);
15282 		pkti = (struct in6_pktinfo *)optptr;
15283 		if (tcp->tcp_ipversion == IPV6_VERSION)
15284 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15285 		else
15286 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15287 			    &pkti->ipi6_addr);
15288 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15289 		optptr += sizeof (*pkti);
15290 		ASSERT(OK_32PTR(optptr));
15291 		/* Save as "last" value */
15292 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15293 	}
15294 	/* If app asked for hoplimit and it has changed ... */
15295 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15296 		toh = (struct T_opthdr *)optptr;
15297 		toh->level = IPPROTO_IPV6;
15298 		toh->name = IPV6_HOPLIMIT;
15299 		toh->len = sizeof (*toh) + sizeof (uint_t);
15300 		toh->status = 0;
15301 		optptr += sizeof (*toh);
15302 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15303 		optptr += sizeof (uint_t);
15304 		ASSERT(OK_32PTR(optptr));
15305 		/* Save as "last" value */
15306 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15307 	}
15308 	/* If app asked for tclass and it has changed ... */
15309 	if (addflag & TCP_IPV6_RECVTCLASS) {
15310 		toh = (struct T_opthdr *)optptr;
15311 		toh->level = IPPROTO_IPV6;
15312 		toh->name = IPV6_TCLASS;
15313 		toh->len = sizeof (*toh) + sizeof (uint_t);
15314 		toh->status = 0;
15315 		optptr += sizeof (*toh);
15316 		*(uint_t *)optptr = ipp->ipp_tclass;
15317 		optptr += sizeof (uint_t);
15318 		ASSERT(OK_32PTR(optptr));
15319 		/* Save as "last" value */
15320 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15321 	}
15322 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15323 		toh = (struct T_opthdr *)optptr;
15324 		toh->level = IPPROTO_IPV6;
15325 		toh->name = IPV6_HOPOPTS;
15326 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15327 		    tcp->tcp_label_len;
15328 		toh->status = 0;
15329 		optptr += sizeof (*toh);
15330 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15331 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15332 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15333 		ASSERT(OK_32PTR(optptr));
15334 		/* Save as last value */
15335 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15336 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15337 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15338 	}
15339 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15340 		toh = (struct T_opthdr *)optptr;
15341 		toh->level = IPPROTO_IPV6;
15342 		toh->name = IPV6_RTHDRDSTOPTS;
15343 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15344 		toh->status = 0;
15345 		optptr += sizeof (*toh);
15346 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15347 		optptr += ipp->ipp_rtdstoptslen;
15348 		ASSERT(OK_32PTR(optptr));
15349 		/* Save as last value */
15350 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15351 		    &tcp->tcp_rtdstoptslen,
15352 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15353 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15354 	}
15355 	if (addflag & TCP_IPV6_RECVRTHDR) {
15356 		toh = (struct T_opthdr *)optptr;
15357 		toh->level = IPPROTO_IPV6;
15358 		toh->name = IPV6_RTHDR;
15359 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15360 		toh->status = 0;
15361 		optptr += sizeof (*toh);
15362 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15363 		optptr += ipp->ipp_rthdrlen;
15364 		ASSERT(OK_32PTR(optptr));
15365 		/* Save as last value */
15366 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15367 		    (ipp->ipp_fields & IPPF_RTHDR),
15368 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15369 	}
15370 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15371 		toh = (struct T_opthdr *)optptr;
15372 		toh->level = IPPROTO_IPV6;
15373 		toh->name = IPV6_DSTOPTS;
15374 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15375 		toh->status = 0;
15376 		optptr += sizeof (*toh);
15377 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15378 		optptr += ipp->ipp_dstoptslen;
15379 		ASSERT(OK_32PTR(optptr));
15380 		/* Save as last value */
15381 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15382 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15383 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15384 	}
15385 	ASSERT(optptr == mp->b_wptr);
15386 	return (mp);
15387 }
15388 
15389 /*
15390  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15391  * messages.
15392  */
15393 void
15394 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15395 {
15396 	uchar_t	*rptr = mp->b_rptr;
15397 	queue_t	*q = tcp->tcp_rq;
15398 	struct T_error_ack *tea;
15399 
15400 	switch (mp->b_datap->db_type) {
15401 	case M_PROTO:
15402 	case M_PCPROTO:
15403 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15404 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15405 			break;
15406 		tea = (struct T_error_ack *)rptr;
15407 		ASSERT(tea->PRIM_type != T_BIND_ACK);
15408 		ASSERT(tea->ERROR_prim != O_T_BIND_REQ &&
15409 		    tea->ERROR_prim != T_BIND_REQ);
15410 		switch (tea->PRIM_type) {
15411 		case T_ERROR_ACK:
15412 			if (tcp->tcp_debug) {
15413 				(void) strlog(TCP_MOD_ID, 0, 1,
15414 				    SL_TRACE|SL_ERROR,
15415 				    "tcp_rput_other: case T_ERROR_ACK, "
15416 				    "ERROR_prim == %d",
15417 				    tea->ERROR_prim);
15418 			}
15419 			switch (tea->ERROR_prim) {
15420 			case T_SVR4_OPTMGMT_REQ:
15421 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15422 					/* T_OPTMGMT_REQ generated by TCP */
15423 					printf("T_SVR4_OPTMGMT_REQ failed "
15424 					    "%d/%d - dropped (cnt %d)\n",
15425 					    tea->TLI_error, tea->UNIX_error,
15426 					    tcp->tcp_drop_opt_ack_cnt);
15427 					freemsg(mp);
15428 					tcp->tcp_drop_opt_ack_cnt--;
15429 					return;
15430 				}
15431 				break;
15432 			}
15433 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15434 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15435 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15436 				    "- dropped (cnt %d)\n",
15437 				    tea->TLI_error, tea->UNIX_error,
15438 				    tcp->tcp_drop_opt_ack_cnt);
15439 				freemsg(mp);
15440 				tcp->tcp_drop_opt_ack_cnt--;
15441 				return;
15442 			}
15443 			break;
15444 		case T_OPTMGMT_ACK:
15445 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15446 				/* T_OPTMGMT_REQ generated by TCP */
15447 				freemsg(mp);
15448 				tcp->tcp_drop_opt_ack_cnt--;
15449 				return;
15450 			}
15451 			break;
15452 		default:
15453 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15454 			break;
15455 		}
15456 		break;
15457 	case M_FLUSH:
15458 		if (*rptr & FLUSHR)
15459 			flushq(q, FLUSHDATA);
15460 		break;
15461 	default:
15462 		/* M_CTL will be directly sent to tcp_icmp_error() */
15463 		ASSERT(DB_TYPE(mp) != M_CTL);
15464 		break;
15465 	}
15466 	/*
15467 	 * Make sure we set this bit before sending the ACK for
15468 	 * bind. Otherwise accept could possibly run and free
15469 	 * this tcp struct.
15470 	 */
15471 	ASSERT(q != NULL);
15472 	putnext(q, mp);
15473 }
15474 
15475 /* ARGSUSED */
15476 static void
15477 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15478 {
15479 	conn_t	*connp = (conn_t *)arg;
15480 	tcp_t	*tcp = connp->conn_tcp;
15481 	queue_t	*q = tcp->tcp_rq;
15482 	uint_t	thwin;
15483 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15484 
15485 	ASSERT(!IPCL_IS_NONSTR(connp));
15486 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15487 	tcp->tcp_rsrv_mp = mp;
15488 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15489 
15490 	TCP_STAT(tcps, tcp_rsrv_calls);
15491 
15492 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15493 		return;
15494 	}
15495 
15496 	if (tcp->tcp_fused) {
15497 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15498 
15499 		ASSERT(tcp->tcp_fused);
15500 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15501 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15502 		ASSERT(!TCP_IS_DETACHED(tcp));
15503 		ASSERT(tcp->tcp_connp->conn_sqp ==
15504 		    peer_tcp->tcp_connp->conn_sqp);
15505 
15506 		/*
15507 		 * Normally we would not get backenabled in synchronous
15508 		 * streams mode, but in case this happens, we need to plug
15509 		 * synchronous streams during our drain to prevent a race
15510 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15511 		 */
15512 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15513 		if (tcp->tcp_rcv_list != NULL)
15514 			(void) tcp_rcv_drain(tcp);
15515 
15516 		if (peer_tcp > tcp) {
15517 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15518 			mutex_enter(&tcp->tcp_non_sq_lock);
15519 		} else {
15520 			mutex_enter(&tcp->tcp_non_sq_lock);
15521 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15522 		}
15523 
15524 		if (peer_tcp->tcp_flow_stopped &&
15525 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15526 		    peer_tcp->tcp_xmit_lowater)) {
15527 			tcp_clrqfull(peer_tcp);
15528 		}
15529 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15530 		mutex_exit(&tcp->tcp_non_sq_lock);
15531 
15532 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15533 		TCP_STAT(tcps, tcp_fusion_backenabled);
15534 		return;
15535 	}
15536 
15537 	if (canputnext(q)) {
15538 		/* Not flow-controlled, open rwnd */
15539 		tcp->tcp_rwnd = q->q_hiwat;
15540 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15541 		    << tcp->tcp_rcv_ws;
15542 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15543 		/*
15544 		 * Send back a window update immediately if TCP is above
15545 		 * ESTABLISHED state and the increase of the rcv window
15546 		 * that the other side knows is at least 1 MSS after flow
15547 		 * control is lifted.
15548 		 */
15549 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15550 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15551 			tcp_xmit_ctl(NULL, tcp,
15552 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15553 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15554 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
15555 		}
15556 	}
15557 }
15558 
15559 /*
15560  * The read side service routine is called mostly when we get back-enabled as a
15561  * result of flow control relief.  Since we don't actually queue anything in
15562  * TCP, we have no data to send out of here.  What we do is clear the receive
15563  * window, and send out a window update.
15564  */
15565 static void
15566 tcp_rsrv(queue_t *q)
15567 {
15568 	conn_t		*connp = Q_TO_CONN(q);
15569 	tcp_t		*tcp = connp->conn_tcp;
15570 	mblk_t		*mp;
15571 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15572 
15573 	/* No code does a putq on the read side */
15574 	ASSERT(q->q_first == NULL);
15575 
15576 	/* Nothing to do for the default queue */
15577 	if (q == tcps->tcps_g_q) {
15578 		return;
15579 	}
15580 
15581 	/*
15582 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
15583 	 * been run.  So just return.
15584 	 */
15585 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15586 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
15587 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
15588 		return;
15589 	}
15590 	tcp->tcp_rsrv_mp = NULL;
15591 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15592 
15593 	CONN_INC_REF(connp);
15594 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15595 	    SQ_PROCESS, SQTAG_TCP_RSRV);
15596 }
15597 
15598 /*
15599  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15600  * We do not allow the receive window to shrink.  After setting rwnd,
15601  * set the flow control hiwat of the stream.
15602  *
15603  * This function is called in 2 cases:
15604  *
15605  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15606  *    connection (passive open) and in tcp_rput_data() for active connect.
15607  *    This is called after tcp_mss_set() when the desired MSS value is known.
15608  *    This makes sure that our window size is a mutiple of the other side's
15609  *    MSS.
15610  * 2) Handling SO_RCVBUF option.
15611  *
15612  * It is ASSUMED that the requested size is a multiple of the current MSS.
15613  *
15614  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15615  * user requests so.
15616  */
15617 static int
15618 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15619 {
15620 	uint32_t	mss = tcp->tcp_mss;
15621 	uint32_t	old_max_rwnd;
15622 	uint32_t	max_transmittable_rwnd;
15623 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15624 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15625 
15626 	if (tcp->tcp_fused) {
15627 		size_t sth_hiwat;
15628 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15629 
15630 		ASSERT(peer_tcp != NULL);
15631 		/*
15632 		 * Record the stream head's high water mark for
15633 		 * this endpoint; this is used for flow-control
15634 		 * purposes in tcp_fuse_output().
15635 		 */
15636 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15637 		if (!tcp_detached) {
15638 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15639 			    sth_hiwat);
15640 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
15641 				conn_t *connp = tcp->tcp_connp;
15642 				struct sock_proto_props sopp;
15643 
15644 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
15645 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
15646 
15647 				(*connp->conn_upcalls->su_set_proto_props)
15648 				    (connp->conn_upper_handle, &sopp);
15649 			}
15650 		}
15651 
15652 		/*
15653 		 * In the fusion case, the maxpsz stream head value of
15654 		 * our peer is set according to its send buffer size
15655 		 * and our receive buffer size; since the latter may
15656 		 * have changed we need to update the peer's maxpsz.
15657 		 */
15658 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15659 		return (rwnd);
15660 	}
15661 
15662 	if (tcp_detached) {
15663 		old_max_rwnd = tcp->tcp_rwnd;
15664 	} else {
15665 		old_max_rwnd = tcp->tcp_recv_hiwater;
15666 	}
15667 
15668 	/*
15669 	 * Insist on a receive window that is at least
15670 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15671 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15672 	 * and delayed acknowledgement.
15673 	 */
15674 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
15675 
15676 	/*
15677 	 * If window size info has already been exchanged, TCP should not
15678 	 * shrink the window.  Shrinking window is doable if done carefully.
15679 	 * We may add that support later.  But so far there is not a real
15680 	 * need to do that.
15681 	 */
15682 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15683 		/* MSS may have changed, do a round up again. */
15684 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15685 	}
15686 
15687 	/*
15688 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15689 	 * can be applied even before the window scale option is decided.
15690 	 */
15691 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15692 	if (rwnd > max_transmittable_rwnd) {
15693 		rwnd = max_transmittable_rwnd -
15694 		    (max_transmittable_rwnd % mss);
15695 		if (rwnd < mss)
15696 			rwnd = max_transmittable_rwnd;
15697 		/*
15698 		 * If we're over the limit we may have to back down tcp_rwnd.
15699 		 * The increment below won't work for us. So we set all three
15700 		 * here and the increment below will have no effect.
15701 		 */
15702 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15703 	}
15704 	if (tcp->tcp_localnet) {
15705 		tcp->tcp_rack_abs_max =
15706 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
15707 	} else {
15708 		/*
15709 		 * For a remote host on a different subnet (through a router),
15710 		 * we ack every other packet to be conforming to RFC1122.
15711 		 * tcp_deferred_acks_max is default to 2.
15712 		 */
15713 		tcp->tcp_rack_abs_max =
15714 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
15715 	}
15716 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15717 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15718 	else
15719 		tcp->tcp_rack_cur_max = 0;
15720 	/*
15721 	 * Increment the current rwnd by the amount the maximum grew (we
15722 	 * can not overwrite it since we might be in the middle of a
15723 	 * connection.)
15724 	 */
15725 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15726 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15727 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15728 		tcp->tcp_cwnd_max = rwnd;
15729 
15730 	if (tcp_detached)
15731 		return (rwnd);
15732 	/*
15733 	 * We set the maximum receive window into rq->q_hiwat if it is
15734 	 * a STREAMS socket.
15735 	 * This is not actually used for flow control.
15736 	 */
15737 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
15738 		tcp->tcp_rq->q_hiwat = rwnd;
15739 	tcp->tcp_recv_hiwater = rwnd;
15740 	/*
15741 	 * Set the STREAM head high water mark. This doesn't have to be
15742 	 * here, since we are simply using default values, but we would
15743 	 * prefer to choose these values algorithmically, with a likely
15744 	 * relationship to rwnd.
15745 	 */
15746 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15747 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
15748 	return (rwnd);
15749 }
15750 
15751 /*
15752  * Return SNMP stuff in buffer in mpdata.
15753  */
15754 mblk_t *
15755 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15756 {
15757 	mblk_t			*mpdata;
15758 	mblk_t			*mp_conn_ctl = NULL;
15759 	mblk_t			*mp_conn_tail;
15760 	mblk_t			*mp_attr_ctl = NULL;
15761 	mblk_t			*mp_attr_tail;
15762 	mblk_t			*mp6_conn_ctl = NULL;
15763 	mblk_t			*mp6_conn_tail;
15764 	mblk_t			*mp6_attr_ctl = NULL;
15765 	mblk_t			*mp6_attr_tail;
15766 	struct opthdr		*optp;
15767 	mib2_tcpConnEntry_t	tce;
15768 	mib2_tcp6ConnEntry_t	tce6;
15769 	mib2_transportMLPEntry_t mlp;
15770 	connf_t			*connfp;
15771 	int			i;
15772 	boolean_t 		ispriv;
15773 	zoneid_t 		zoneid;
15774 	int			v4_conn_idx;
15775 	int			v6_conn_idx;
15776 	conn_t			*connp = Q_TO_CONN(q);
15777 	tcp_stack_t		*tcps;
15778 	ip_stack_t		*ipst;
15779 	mblk_t			*mp2ctl;
15780 
15781 	/*
15782 	 * make a copy of the original message
15783 	 */
15784 	mp2ctl = copymsg(mpctl);
15785 
15786 	if (mpctl == NULL ||
15787 	    (mpdata = mpctl->b_cont) == NULL ||
15788 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15789 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15790 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15791 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15792 		freemsg(mp_conn_ctl);
15793 		freemsg(mp_attr_ctl);
15794 		freemsg(mp6_conn_ctl);
15795 		freemsg(mp6_attr_ctl);
15796 		freemsg(mpctl);
15797 		freemsg(mp2ctl);
15798 		return (NULL);
15799 	}
15800 
15801 	ipst = connp->conn_netstack->netstack_ip;
15802 	tcps = connp->conn_netstack->netstack_tcp;
15803 
15804 	/* build table of connections -- need count in fixed part */
15805 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
15806 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
15807 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
15808 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
15809 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
15810 
15811 	ispriv =
15812 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15813 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15814 
15815 	v4_conn_idx = v6_conn_idx = 0;
15816 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15817 
15818 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15819 		ipst = tcps->tcps_netstack->netstack_ip;
15820 
15821 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
15822 
15823 		connp = NULL;
15824 
15825 		while ((connp =
15826 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15827 			tcp_t *tcp;
15828 			boolean_t needattr;
15829 
15830 			if (connp->conn_zoneid != zoneid)
15831 				continue;	/* not in this zone */
15832 
15833 			tcp = connp->conn_tcp;
15834 			UPDATE_MIB(&tcps->tcps_mib,
15835 			    tcpHCInSegs, tcp->tcp_ibsegs);
15836 			tcp->tcp_ibsegs = 0;
15837 			UPDATE_MIB(&tcps->tcps_mib,
15838 			    tcpHCOutSegs, tcp->tcp_obsegs);
15839 			tcp->tcp_obsegs = 0;
15840 
15841 			tce6.tcp6ConnState = tce.tcpConnState =
15842 			    tcp_snmp_state(tcp);
15843 			if (tce.tcpConnState == MIB2_TCP_established ||
15844 			    tce.tcpConnState == MIB2_TCP_closeWait)
15845 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
15846 
15847 			needattr = B_FALSE;
15848 			bzero(&mlp, sizeof (mlp));
15849 			if (connp->conn_mlp_type != mlptSingle) {
15850 				if (connp->conn_mlp_type == mlptShared ||
15851 				    connp->conn_mlp_type == mlptBoth)
15852 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15853 				if (connp->conn_mlp_type == mlptPrivate ||
15854 				    connp->conn_mlp_type == mlptBoth)
15855 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15856 				needattr = B_TRUE;
15857 			}
15858 			if (connp->conn_peercred != NULL) {
15859 				ts_label_t *tsl;
15860 
15861 				tsl = crgetlabel(connp->conn_peercred);
15862 				mlp.tme_doi = label2doi(tsl);
15863 				mlp.tme_label = *label2bslabel(tsl);
15864 				needattr = B_TRUE;
15865 			}
15866 
15867 			/* Create a message to report on IPv6 entries */
15868 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15869 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15870 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15871 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15872 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15873 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15874 			/* Don't want just anybody seeing these... */
15875 			if (ispriv) {
15876 				tce6.tcp6ConnEntryInfo.ce_snxt =
15877 				    tcp->tcp_snxt;
15878 				tce6.tcp6ConnEntryInfo.ce_suna =
15879 				    tcp->tcp_suna;
15880 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15881 				    tcp->tcp_rnxt;
15882 				tce6.tcp6ConnEntryInfo.ce_rack =
15883 				    tcp->tcp_rack;
15884 			} else {
15885 				/*
15886 				 * Netstat, unfortunately, uses this to
15887 				 * get send/receive queue sizes.  How to fix?
15888 				 * Why not compute the difference only?
15889 				 */
15890 				tce6.tcp6ConnEntryInfo.ce_snxt =
15891 				    tcp->tcp_snxt - tcp->tcp_suna;
15892 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15893 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15894 				    tcp->tcp_rnxt - tcp->tcp_rack;
15895 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15896 			}
15897 
15898 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15899 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15900 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15901 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15902 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15903 
15904 			tce6.tcp6ConnCreationProcess =
15905 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
15906 			    tcp->tcp_cpid;
15907 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
15908 
15909 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15910 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15911 
15912 			mlp.tme_connidx = v6_conn_idx++;
15913 			if (needattr)
15914 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15915 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15916 			}
15917 			/*
15918 			 * Create an IPv4 table entry for IPv4 entries and also
15919 			 * for IPv6 entries which are bound to in6addr_any
15920 			 * but don't have IPV6_V6ONLY set.
15921 			 * (i.e. anything an IPv4 peer could connect to)
15922 			 */
15923 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15924 			    (tcp->tcp_state <= TCPS_LISTEN &&
15925 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15926 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15927 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15928 					tce.tcpConnRemAddress = INADDR_ANY;
15929 					tce.tcpConnLocalAddress = INADDR_ANY;
15930 				} else {
15931 					tce.tcpConnRemAddress =
15932 					    tcp->tcp_remote;
15933 					tce.tcpConnLocalAddress =
15934 					    tcp->tcp_ip_src;
15935 				}
15936 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15937 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15938 				/* Don't want just anybody seeing these... */
15939 				if (ispriv) {
15940 					tce.tcpConnEntryInfo.ce_snxt =
15941 					    tcp->tcp_snxt;
15942 					tce.tcpConnEntryInfo.ce_suna =
15943 					    tcp->tcp_suna;
15944 					tce.tcpConnEntryInfo.ce_rnxt =
15945 					    tcp->tcp_rnxt;
15946 					tce.tcpConnEntryInfo.ce_rack =
15947 					    tcp->tcp_rack;
15948 				} else {
15949 					/*
15950 					 * Netstat, unfortunately, uses this to
15951 					 * get send/receive queue sizes.  How
15952 					 * to fix?
15953 					 * Why not compute the difference only?
15954 					 */
15955 					tce.tcpConnEntryInfo.ce_snxt =
15956 					    tcp->tcp_snxt - tcp->tcp_suna;
15957 					tce.tcpConnEntryInfo.ce_suna = 0;
15958 					tce.tcpConnEntryInfo.ce_rnxt =
15959 					    tcp->tcp_rnxt - tcp->tcp_rack;
15960 					tce.tcpConnEntryInfo.ce_rack = 0;
15961 				}
15962 
15963 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15964 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15965 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15966 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15967 				tce.tcpConnEntryInfo.ce_state =
15968 				    tcp->tcp_state;
15969 
15970 				tce.tcpConnCreationProcess =
15971 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
15972 				    tcp->tcp_cpid;
15973 				tce.tcpConnCreationTime = tcp->tcp_open_time;
15974 
15975 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15976 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15977 
15978 				mlp.tme_connidx = v4_conn_idx++;
15979 				if (needattr)
15980 					(void) snmp_append_data2(
15981 					    mp_attr_ctl->b_cont,
15982 					    &mp_attr_tail, (char *)&mlp,
15983 					    sizeof (mlp));
15984 			}
15985 		}
15986 	}
15987 
15988 	/* fixed length structure for IPv4 and IPv6 counters */
15989 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15990 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
15991 	    sizeof (mib2_tcp6ConnEntry_t));
15992 	/* synchronize 32- and 64-bit counters */
15993 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
15994 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
15995 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
15996 	optp->level = MIB2_TCP;
15997 	optp->name = 0;
15998 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
15999 	    sizeof (tcps->tcps_mib));
16000 	optp->len = msgdsize(mpdata);
16001 	qreply(q, mpctl);
16002 
16003 	/* table of connections... */
16004 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16005 	    sizeof (struct T_optmgmt_ack)];
16006 	optp->level = MIB2_TCP;
16007 	optp->name = MIB2_TCP_CONN;
16008 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16009 	qreply(q, mp_conn_ctl);
16010 
16011 	/* table of MLP attributes... */
16012 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16013 	    sizeof (struct T_optmgmt_ack)];
16014 	optp->level = MIB2_TCP;
16015 	optp->name = EXPER_XPORT_MLP;
16016 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16017 	if (optp->len == 0)
16018 		freemsg(mp_attr_ctl);
16019 	else
16020 		qreply(q, mp_attr_ctl);
16021 
16022 	/* table of IPv6 connections... */
16023 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16024 	    sizeof (struct T_optmgmt_ack)];
16025 	optp->level = MIB2_TCP6;
16026 	optp->name = MIB2_TCP6_CONN;
16027 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16028 	qreply(q, mp6_conn_ctl);
16029 
16030 	/* table of IPv6 MLP attributes... */
16031 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16032 	    sizeof (struct T_optmgmt_ack)];
16033 	optp->level = MIB2_TCP6;
16034 	optp->name = EXPER_XPORT_MLP;
16035 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16036 	if (optp->len == 0)
16037 		freemsg(mp6_attr_ctl);
16038 	else
16039 		qreply(q, mp6_attr_ctl);
16040 	return (mp2ctl);
16041 }
16042 
16043 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16044 /* ARGSUSED */
16045 int
16046 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16047 {
16048 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16049 
16050 	switch (level) {
16051 	case MIB2_TCP:
16052 		switch (name) {
16053 		case 13:
16054 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16055 				return (0);
16056 			/* TODO: delete entry defined by tce */
16057 			return (1);
16058 		default:
16059 			return (0);
16060 		}
16061 	default:
16062 		return (1);
16063 	}
16064 }
16065 
16066 /* Translate TCP state to MIB2 TCP state. */
16067 static int
16068 tcp_snmp_state(tcp_t *tcp)
16069 {
16070 	if (tcp == NULL)
16071 		return (0);
16072 
16073 	switch (tcp->tcp_state) {
16074 	case TCPS_CLOSED:
16075 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16076 	case TCPS_BOUND:
16077 		return (MIB2_TCP_closed);
16078 	case TCPS_LISTEN:
16079 		return (MIB2_TCP_listen);
16080 	case TCPS_SYN_SENT:
16081 		return (MIB2_TCP_synSent);
16082 	case TCPS_SYN_RCVD:
16083 		return (MIB2_TCP_synReceived);
16084 	case TCPS_ESTABLISHED:
16085 		return (MIB2_TCP_established);
16086 	case TCPS_CLOSE_WAIT:
16087 		return (MIB2_TCP_closeWait);
16088 	case TCPS_FIN_WAIT_1:
16089 		return (MIB2_TCP_finWait1);
16090 	case TCPS_CLOSING:
16091 		return (MIB2_TCP_closing);
16092 	case TCPS_LAST_ACK:
16093 		return (MIB2_TCP_lastAck);
16094 	case TCPS_FIN_WAIT_2:
16095 		return (MIB2_TCP_finWait2);
16096 	case TCPS_TIME_WAIT:
16097 		return (MIB2_TCP_timeWait);
16098 	default:
16099 		return (0);
16100 	}
16101 }
16102 
16103 /*
16104  * tcp_timer is the timer service routine.  It handles the retransmission,
16105  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16106  * from the state of the tcp instance what kind of action needs to be done
16107  * at the time it is called.
16108  */
16109 static void
16110 tcp_timer(void *arg)
16111 {
16112 	mblk_t		*mp;
16113 	clock_t		first_threshold;
16114 	clock_t		second_threshold;
16115 	clock_t		ms;
16116 	uint32_t	mss;
16117 	conn_t		*connp = (conn_t *)arg;
16118 	tcp_t		*tcp = connp->conn_tcp;
16119 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16120 
16121 	tcp->tcp_timer_tid = 0;
16122 
16123 	if (tcp->tcp_fused)
16124 		return;
16125 
16126 	first_threshold =  tcp->tcp_first_timer_threshold;
16127 	second_threshold = tcp->tcp_second_timer_threshold;
16128 	switch (tcp->tcp_state) {
16129 	case TCPS_IDLE:
16130 	case TCPS_BOUND:
16131 	case TCPS_LISTEN:
16132 		return;
16133 	case TCPS_SYN_RCVD: {
16134 		tcp_t	*listener = tcp->tcp_listener;
16135 
16136 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16137 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16138 			/* it's our first timeout */
16139 			tcp->tcp_syn_rcvd_timeout = 1;
16140 			mutex_enter(&listener->tcp_eager_lock);
16141 			listener->tcp_syn_rcvd_timeout++;
16142 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16143 				/*
16144 				 * Make this eager available for drop if we
16145 				 * need to drop one to accomodate a new
16146 				 * incoming SYN request.
16147 				 */
16148 				MAKE_DROPPABLE(listener, tcp);
16149 			}
16150 			if (!listener->tcp_syn_defense &&
16151 			    (listener->tcp_syn_rcvd_timeout >
16152 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16153 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16154 				/* We may be under attack. Put on a defense. */
16155 				listener->tcp_syn_defense = B_TRUE;
16156 				cmn_err(CE_WARN, "High TCP connect timeout "
16157 				    "rate! System (port %d) may be under a "
16158 				    "SYN flood attack!",
16159 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16160 
16161 				listener->tcp_ip_addr_cache = kmem_zalloc(
16162 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16163 				    KM_NOSLEEP);
16164 			}
16165 			mutex_exit(&listener->tcp_eager_lock);
16166 		} else if (listener != NULL) {
16167 			mutex_enter(&listener->tcp_eager_lock);
16168 			tcp->tcp_syn_rcvd_timeout++;
16169 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16170 			    !tcp->tcp_closemp_used) {
16171 				/*
16172 				 * This is our second timeout. Put the tcp in
16173 				 * the list of droppable eagers to allow it to
16174 				 * be dropped, if needed. We don't check
16175 				 * whether tcp_dontdrop is set or not to
16176 				 * protect ourselve from a SYN attack where a
16177 				 * remote host can spoof itself as one of the
16178 				 * good IP source and continue to hold
16179 				 * resources too long.
16180 				 */
16181 				MAKE_DROPPABLE(listener, tcp);
16182 			}
16183 			mutex_exit(&listener->tcp_eager_lock);
16184 		}
16185 	}
16186 		/* FALLTHRU */
16187 	case TCPS_SYN_SENT:
16188 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16189 		second_threshold = tcp->tcp_second_ctimer_threshold;
16190 		break;
16191 	case TCPS_ESTABLISHED:
16192 	case TCPS_FIN_WAIT_1:
16193 	case TCPS_CLOSING:
16194 	case TCPS_CLOSE_WAIT:
16195 	case TCPS_LAST_ACK:
16196 		/* If we have data to rexmit */
16197 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16198 			clock_t	time_to_wait;
16199 
16200 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16201 			if (!tcp->tcp_xmit_head)
16202 				break;
16203 			time_to_wait = lbolt -
16204 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16205 			time_to_wait = tcp->tcp_rto -
16206 			    TICK_TO_MSEC(time_to_wait);
16207 			/*
16208 			 * If the timer fires too early, 1 clock tick earlier,
16209 			 * restart the timer.
16210 			 */
16211 			if (time_to_wait > msec_per_tick) {
16212 				TCP_STAT(tcps, tcp_timer_fire_early);
16213 				TCP_TIMER_RESTART(tcp, time_to_wait);
16214 				return;
16215 			}
16216 			/*
16217 			 * When we probe zero windows, we force the swnd open.
16218 			 * If our peer acks with a closed window swnd will be
16219 			 * set to zero by tcp_rput(). As long as we are
16220 			 * receiving acks tcp_rput will
16221 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16222 			 * first and second interval actions.  NOTE: the timer
16223 			 * interval is allowed to continue its exponential
16224 			 * backoff.
16225 			 */
16226 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16227 				if (tcp->tcp_debug) {
16228 					(void) strlog(TCP_MOD_ID, 0, 1,
16229 					    SL_TRACE, "tcp_timer: zero win");
16230 				}
16231 			} else {
16232 				/*
16233 				 * After retransmission, we need to do
16234 				 * slow start.  Set the ssthresh to one
16235 				 * half of current effective window and
16236 				 * cwnd to one MSS.  Also reset
16237 				 * tcp_cwnd_cnt.
16238 				 *
16239 				 * Note that if tcp_ssthresh is reduced because
16240 				 * of ECN, do not reduce it again unless it is
16241 				 * already one window of data away (tcp_cwr
16242 				 * should then be cleared) or this is a
16243 				 * timeout for a retransmitted segment.
16244 				 */
16245 				uint32_t npkt;
16246 
16247 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16248 					npkt = ((tcp->tcp_timer_backoff ?
16249 					    tcp->tcp_cwnd_ssthresh :
16250 					    tcp->tcp_snxt -
16251 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16252 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16253 					    tcp->tcp_mss;
16254 				}
16255 				tcp->tcp_cwnd = tcp->tcp_mss;
16256 				tcp->tcp_cwnd_cnt = 0;
16257 				if (tcp->tcp_ecn_ok) {
16258 					tcp->tcp_cwr = B_TRUE;
16259 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16260 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16261 				}
16262 			}
16263 			break;
16264 		}
16265 		/*
16266 		 * We have something to send yet we cannot send.  The
16267 		 * reason can be:
16268 		 *
16269 		 * 1. Zero send window: we need to do zero window probe.
16270 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16271 		 * segments.
16272 		 * 3. SWS avoidance: receiver may have shrunk window,
16273 		 * reset our knowledge.
16274 		 *
16275 		 * Note that condition 2 can happen with either 1 or
16276 		 * 3.  But 1 and 3 are exclusive.
16277 		 */
16278 		if (tcp->tcp_unsent != 0) {
16279 			if (tcp->tcp_cwnd == 0) {
16280 				/*
16281 				 * Set tcp_cwnd to 1 MSS so that a
16282 				 * new segment can be sent out.  We
16283 				 * are "clocking out" new data when
16284 				 * the network is really congested.
16285 				 */
16286 				ASSERT(tcp->tcp_ecn_ok);
16287 				tcp->tcp_cwnd = tcp->tcp_mss;
16288 			}
16289 			if (tcp->tcp_swnd == 0) {
16290 				/* Extend window for zero window probe */
16291 				tcp->tcp_swnd++;
16292 				tcp->tcp_zero_win_probe = B_TRUE;
16293 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
16294 			} else {
16295 				/*
16296 				 * Handle timeout from sender SWS avoidance.
16297 				 * Reset our knowledge of the max send window
16298 				 * since the receiver might have reduced its
16299 				 * receive buffer.  Avoid setting tcp_max_swnd
16300 				 * to one since that will essentially disable
16301 				 * the SWS checks.
16302 				 *
16303 				 * Note that since we don't have a SWS
16304 				 * state variable, if the timeout is set
16305 				 * for ECN but not for SWS, this
16306 				 * code will also be executed.  This is
16307 				 * fine as tcp_max_swnd is updated
16308 				 * constantly and it will not affect
16309 				 * anything.
16310 				 */
16311 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16312 			}
16313 			tcp_wput_data(tcp, NULL, B_FALSE);
16314 			return;
16315 		}
16316 		/* Is there a FIN that needs to be to re retransmitted? */
16317 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16318 		    !tcp->tcp_fin_acked)
16319 			break;
16320 		/* Nothing to do, return without restarting timer. */
16321 		TCP_STAT(tcps, tcp_timer_fire_miss);
16322 		return;
16323 	case TCPS_FIN_WAIT_2:
16324 		/*
16325 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16326 		 * We waited some time for for peer's FIN, but it hasn't
16327 		 * arrived.  We flush the connection now to avoid
16328 		 * case where the peer has rebooted.
16329 		 */
16330 		if (TCP_IS_DETACHED(tcp)) {
16331 			(void) tcp_clean_death(tcp, 0, 23);
16332 		} else {
16333 			TCP_TIMER_RESTART(tcp,
16334 			    tcps->tcps_fin_wait_2_flush_interval);
16335 		}
16336 		return;
16337 	case TCPS_TIME_WAIT:
16338 		(void) tcp_clean_death(tcp, 0, 24);
16339 		return;
16340 	default:
16341 		if (tcp->tcp_debug) {
16342 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16343 			    "tcp_timer: strange state (%d) %s",
16344 			    tcp->tcp_state, tcp_display(tcp, NULL,
16345 			    DISP_PORT_ONLY));
16346 		}
16347 		return;
16348 	}
16349 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16350 		/*
16351 		 * For zero window probe, we need to send indefinitely,
16352 		 * unless we have not heard from the other side for some
16353 		 * time...
16354 		 */
16355 		if ((tcp->tcp_zero_win_probe == 0) ||
16356 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16357 		    second_threshold)) {
16358 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
16359 			/*
16360 			 * If TCP is in SYN_RCVD state, send back a
16361 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16362 			 * should be zero in TCPS_SYN_RCVD state.
16363 			 */
16364 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16365 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16366 				    "in SYN_RCVD",
16367 				    tcp, tcp->tcp_snxt,
16368 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16369 			}
16370 			(void) tcp_clean_death(tcp,
16371 			    tcp->tcp_client_errno ?
16372 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16373 			return;
16374 		} else {
16375 			/*
16376 			 * Set tcp_ms_we_have_waited to second_threshold
16377 			 * so that in next timeout, we will do the above
16378 			 * check (lbolt - tcp_last_recv_time).  This is
16379 			 * also to avoid overflow.
16380 			 *
16381 			 * We don't need to decrement tcp_timer_backoff
16382 			 * to avoid overflow because it will be decremented
16383 			 * later if new timeout value is greater than
16384 			 * tcp_rexmit_interval_max.  In the case when
16385 			 * tcp_rexmit_interval_max is greater than
16386 			 * second_threshold, it means that we will wait
16387 			 * longer than second_threshold to send the next
16388 			 * window probe.
16389 			 */
16390 			tcp->tcp_ms_we_have_waited = second_threshold;
16391 		}
16392 	} else if (ms > first_threshold) {
16393 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16394 		    tcp->tcp_xmit_head != NULL) {
16395 			tcp->tcp_xmit_head =
16396 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16397 		}
16398 		/*
16399 		 * We have been retransmitting for too long...  The RTT
16400 		 * we calculated is probably incorrect.  Reinitialize it.
16401 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16402 		 * tcp_rtt_update so that we won't accidentally cache a
16403 		 * bad value.  But only do this if this is not a zero
16404 		 * window probe.
16405 		 */
16406 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16407 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16408 			    (tcp->tcp_rtt_sa >> 5);
16409 			tcp->tcp_rtt_sa = 0;
16410 			tcp_ip_notify(tcp);
16411 			tcp->tcp_rtt_update = 0;
16412 		}
16413 	}
16414 	tcp->tcp_timer_backoff++;
16415 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16416 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16417 	    tcps->tcps_rexmit_interval_min) {
16418 		/*
16419 		 * This means the original RTO is tcp_rexmit_interval_min.
16420 		 * So we will use tcp_rexmit_interval_min as the RTO value
16421 		 * and do the backoff.
16422 		 */
16423 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
16424 	} else {
16425 		ms <<= tcp->tcp_timer_backoff;
16426 	}
16427 	if (ms > tcps->tcps_rexmit_interval_max) {
16428 		ms = tcps->tcps_rexmit_interval_max;
16429 		/*
16430 		 * ms is at max, decrement tcp_timer_backoff to avoid
16431 		 * overflow.
16432 		 */
16433 		tcp->tcp_timer_backoff--;
16434 	}
16435 	tcp->tcp_ms_we_have_waited += ms;
16436 	if (tcp->tcp_zero_win_probe == 0) {
16437 		tcp->tcp_rto = ms;
16438 	}
16439 	TCP_TIMER_RESTART(tcp, ms);
16440 	/*
16441 	 * This is after a timeout and tcp_rto is backed off.  Set
16442 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16443 	 * restart the timer with a correct value.
16444 	 */
16445 	tcp->tcp_set_timer = 1;
16446 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16447 	if (mss > tcp->tcp_mss)
16448 		mss = tcp->tcp_mss;
16449 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16450 		mss = tcp->tcp_swnd;
16451 
16452 	if ((mp = tcp->tcp_xmit_head) != NULL)
16453 		mp->b_prev = (mblk_t *)lbolt;
16454 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16455 	    B_TRUE);
16456 
16457 	/*
16458 	 * When slow start after retransmission begins, start with
16459 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16460 	 * start phase.  tcp_snd_burst controls how many segments
16461 	 * can be sent because of an ack.
16462 	 */
16463 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16464 	tcp->tcp_snd_burst = TCP_CWND_SS;
16465 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16466 	    (tcp->tcp_unsent == 0)) {
16467 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16468 	} else {
16469 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16470 	}
16471 	tcp->tcp_rexmit = B_TRUE;
16472 	tcp->tcp_dupack_cnt = 0;
16473 
16474 	/*
16475 	 * Remove all rexmit SACK blk to start from fresh.
16476 	 */
16477 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16478 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16479 		tcp->tcp_num_notsack_blk = 0;
16480 		tcp->tcp_cnt_notsack_list = 0;
16481 	}
16482 	if (mp == NULL) {
16483 		return;
16484 	}
16485 	/*
16486 	 * Attach credentials to retransmitted initial SYNs.
16487 	 * In theory we should use the credentials from the connect()
16488 	 * call to ensure that getpeerucred() on the peer will be correct.
16489 	 * But we assume that SYN's are not dropped for loopback connections.
16490 	 */
16491 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16492 		mblk_setcred(mp, tcp->tcp_cred, tcp->tcp_cpid);
16493 	}
16494 
16495 	tcp->tcp_csuna = tcp->tcp_snxt;
16496 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
16497 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
16498 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16499 
16500 }
16501 
16502 static int
16503 tcp_do_unbind(conn_t *connp)
16504 {
16505 	tcp_t *tcp = connp->conn_tcp;
16506 	int error = 0;
16507 
16508 	switch (tcp->tcp_state) {
16509 	case TCPS_BOUND:
16510 	case TCPS_LISTEN:
16511 		break;
16512 	default:
16513 		return (-TOUTSTATE);
16514 	}
16515 
16516 	/*
16517 	 * Need to clean up all the eagers since after the unbind, segments
16518 	 * will no longer be delivered to this listener stream.
16519 	 */
16520 	mutex_enter(&tcp->tcp_eager_lock);
16521 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16522 		tcp_eager_cleanup(tcp, 0);
16523 	}
16524 	mutex_exit(&tcp->tcp_eager_lock);
16525 
16526 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16527 		tcp->tcp_ipha->ipha_src = 0;
16528 	} else {
16529 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16530 	}
16531 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16532 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16533 	tcp_bind_hash_remove(tcp);
16534 	tcp->tcp_state = TCPS_IDLE;
16535 	tcp->tcp_mdt = B_FALSE;
16536 
16537 	connp = tcp->tcp_connp;
16538 	connp->conn_mdt_ok = B_FALSE;
16539 	ipcl_hash_remove(connp);
16540 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16541 
16542 	return (error);
16543 }
16544 
16545 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16546 static void
16547 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
16548 {
16549 	int error = tcp_do_unbind(tcp->tcp_connp);
16550 
16551 	if (error > 0) {
16552 		tcp_err_ack(tcp, mp, TSYSERR, error);
16553 	} else if (error < 0) {
16554 		tcp_err_ack(tcp, mp, -error, 0);
16555 	} else {
16556 		/* Send M_FLUSH according to TPI */
16557 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16558 
16559 		mp = mi_tpi_ok_ack_alloc(mp);
16560 		putnext(tcp->tcp_rq, mp);
16561 	}
16562 }
16563 
16564 /*
16565  * Don't let port fall into the privileged range.
16566  * Since the extra privileged ports can be arbitrary we also
16567  * ensure that we exclude those from consideration.
16568  * tcp_g_epriv_ports is not sorted thus we loop over it until
16569  * there are no changes.
16570  *
16571  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16572  * but instead the code relies on:
16573  * - the fact that the address of the array and its size never changes
16574  * - the atomic assignment of the elements of the array
16575  *
16576  * Returns 0 if there are no more ports available.
16577  *
16578  * TS note: skip multilevel ports.
16579  */
16580 static in_port_t
16581 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16582 {
16583 	int i;
16584 	boolean_t restart = B_FALSE;
16585 	tcp_stack_t *tcps = tcp->tcp_tcps;
16586 
16587 	if (random && tcp_random_anon_port != 0) {
16588 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16589 		    sizeof (in_port_t));
16590 		/*
16591 		 * Unless changed by a sys admin, the smallest anon port
16592 		 * is 32768 and the largest anon port is 65535.  It is
16593 		 * very likely (50%) for the random port to be smaller
16594 		 * than the smallest anon port.  When that happens,
16595 		 * add port % (anon port range) to the smallest anon
16596 		 * port to get the random port.  It should fall into the
16597 		 * valid anon port range.
16598 		 */
16599 		if (port < tcps->tcps_smallest_anon_port) {
16600 			port = tcps->tcps_smallest_anon_port +
16601 			    port % (tcps->tcps_largest_anon_port -
16602 			    tcps->tcps_smallest_anon_port);
16603 		}
16604 	}
16605 
16606 retry:
16607 	if (port < tcps->tcps_smallest_anon_port)
16608 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16609 
16610 	if (port > tcps->tcps_largest_anon_port) {
16611 		if (restart)
16612 			return (0);
16613 		restart = B_TRUE;
16614 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16615 	}
16616 
16617 	if (port < tcps->tcps_smallest_nonpriv_port)
16618 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
16619 
16620 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
16621 		if (port == tcps->tcps_g_epriv_ports[i]) {
16622 			port++;
16623 			/*
16624 			 * Make sure whether the port is in the
16625 			 * valid range.
16626 			 */
16627 			goto retry;
16628 		}
16629 	}
16630 	if (is_system_labeled() &&
16631 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16632 	    IPPROTO_TCP, B_TRUE)) != 0) {
16633 		port = i;
16634 		goto retry;
16635 	}
16636 	return (port);
16637 }
16638 
16639 /*
16640  * Return the next anonymous port in the privileged port range for
16641  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16642  * downwards.  This is the same behavior as documented in the userland
16643  * library call rresvport(3N).
16644  *
16645  * TS note: skip multilevel ports.
16646  */
16647 static in_port_t
16648 tcp_get_next_priv_port(const tcp_t *tcp)
16649 {
16650 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16651 	in_port_t nextport;
16652 	boolean_t restart = B_FALSE;
16653 	tcp_stack_t *tcps = tcp->tcp_tcps;
16654 retry:
16655 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
16656 	    next_priv_port >= IPPORT_RESERVED) {
16657 		next_priv_port = IPPORT_RESERVED - 1;
16658 		if (restart)
16659 			return (0);
16660 		restart = B_TRUE;
16661 	}
16662 	if (is_system_labeled() &&
16663 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16664 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16665 		next_priv_port = nextport;
16666 		goto retry;
16667 	}
16668 	return (next_priv_port--);
16669 }
16670 
16671 /* The write side r/w procedure. */
16672 
16673 #if CCS_STATS
16674 struct {
16675 	struct {
16676 		int64_t count, bytes;
16677 	} tot, hit;
16678 } wrw_stats;
16679 #endif
16680 
16681 /*
16682  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
16683  * messages.
16684  */
16685 /* ARGSUSED */
16686 static void
16687 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
16688 {
16689 	conn_t	*connp = (conn_t *)arg;
16690 	tcp_t	*tcp = connp->conn_tcp;
16691 	queue_t	*q = tcp->tcp_wq;
16692 
16693 	ASSERT(DB_TYPE(mp) != M_IOCTL);
16694 	/*
16695 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
16696 	 * Once the close starts, streamhead and sockfs will not let any data
16697 	 * packets come down (close ensures that there are no threads using the
16698 	 * queue and no new threads will come down) but since qprocsoff()
16699 	 * hasn't happened yet, a M_FLUSH or some non data message might
16700 	 * get reflected back (in response to our own FLUSHRW) and get
16701 	 * processed after tcp_close() is done. The conn would still be valid
16702 	 * because a ref would have added but we need to check the state
16703 	 * before actually processing the packet.
16704 	 */
16705 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
16706 		freemsg(mp);
16707 		return;
16708 	}
16709 
16710 	switch (DB_TYPE(mp)) {
16711 	case M_IOCDATA:
16712 		tcp_wput_iocdata(tcp, mp);
16713 		break;
16714 	case M_FLUSH:
16715 		tcp_wput_flush(tcp, mp);
16716 		break;
16717 	default:
16718 		CALL_IP_WPUT(connp, q, mp);
16719 		break;
16720 	}
16721 }
16722 
16723 /*
16724  * The TCP fast path write put procedure.
16725  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
16726  */
16727 /* ARGSUSED */
16728 void
16729 tcp_output(void *arg, mblk_t *mp, void *arg2)
16730 {
16731 	int		len;
16732 	int		hdrlen;
16733 	int		plen;
16734 	mblk_t		*mp1;
16735 	uchar_t		*rptr;
16736 	uint32_t	snxt;
16737 	tcph_t		*tcph;
16738 	struct datab	*db;
16739 	uint32_t	suna;
16740 	uint32_t	mss;
16741 	ipaddr_t	*dst;
16742 	ipaddr_t	*src;
16743 	uint32_t	sum;
16744 	int		usable;
16745 	conn_t		*connp = (conn_t *)arg;
16746 	tcp_t		*tcp = connp->conn_tcp;
16747 	uint32_t	msize;
16748 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16749 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
16750 
16751 	/*
16752 	 * Try and ASSERT the minimum possible references on the
16753 	 * conn early enough. Since we are executing on write side,
16754 	 * the connection is obviously not detached and that means
16755 	 * there is a ref each for TCP and IP. Since we are behind
16756 	 * the squeue, the minimum references needed are 3. If the
16757 	 * conn is in classifier hash list, there should be an
16758 	 * extra ref for that (we check both the possibilities).
16759 	 */
16760 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16761 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16762 
16763 	ASSERT(DB_TYPE(mp) == M_DATA);
16764 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
16765 
16766 	mutex_enter(&tcp->tcp_non_sq_lock);
16767 	tcp->tcp_squeue_bytes -= msize;
16768 	mutex_exit(&tcp->tcp_non_sq_lock);
16769 
16770 	/* Check to see if this connection wants to be re-fused. */
16771 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
16772 		if (tcp->tcp_ipversion == IPV4_VERSION) {
16773 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
16774 			    &tcp->tcp_saved_tcph);
16775 		} else {
16776 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
16777 			    &tcp->tcp_saved_tcph);
16778 		}
16779 	}
16780 	/* Bypass tcp protocol for fused tcp loopback */
16781 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
16782 		return;
16783 
16784 	mss = tcp->tcp_mss;
16785 	if (tcp->tcp_xmit_zc_clean)
16786 		mp = tcp_zcopy_backoff(tcp, mp, 0);
16787 
16788 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
16789 	len = (int)(mp->b_wptr - mp->b_rptr);
16790 
16791 	/*
16792 	 * Criteria for fast path:
16793 	 *
16794 	 *   1. no unsent data
16795 	 *   2. single mblk in request
16796 	 *   3. connection established
16797 	 *   4. data in mblk
16798 	 *   5. len <= mss
16799 	 *   6. no tcp_valid bits
16800 	 */
16801 	if ((tcp->tcp_unsent != 0) ||
16802 	    (tcp->tcp_cork) ||
16803 	    (mp->b_cont != NULL) ||
16804 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
16805 	    (len == 0) ||
16806 	    (len > mss) ||
16807 	    (tcp->tcp_valid_bits != 0)) {
16808 		tcp_wput_data(tcp, mp, B_FALSE);
16809 		return;
16810 	}
16811 
16812 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
16813 	ASSERT(tcp->tcp_fin_sent == 0);
16814 
16815 	/* queue new packet onto retransmission queue */
16816 	if (tcp->tcp_xmit_head == NULL) {
16817 		tcp->tcp_xmit_head = mp;
16818 	} else {
16819 		tcp->tcp_xmit_last->b_cont = mp;
16820 	}
16821 	tcp->tcp_xmit_last = mp;
16822 	tcp->tcp_xmit_tail = mp;
16823 
16824 	/* find out how much we can send */
16825 	/* BEGIN CSTYLED */
16826 	/*
16827 	 *    un-acked	   usable
16828 	 *  |--------------|-----------------|
16829 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
16830 	 */
16831 	/* END CSTYLED */
16832 
16833 	/* start sending from tcp_snxt */
16834 	snxt = tcp->tcp_snxt;
16835 
16836 	/*
16837 	 * Check to see if this connection has been idled for some
16838 	 * time and no ACK is expected.  If it is, we need to slow
16839 	 * start again to get back the connection's "self-clock" as
16840 	 * described in VJ's paper.
16841 	 *
16842 	 * Refer to the comment in tcp_mss_set() for the calculation
16843 	 * of tcp_cwnd after idle.
16844 	 */
16845 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
16846 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
16847 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
16848 	}
16849 
16850 	usable = tcp->tcp_swnd;		/* tcp window size */
16851 	if (usable > tcp->tcp_cwnd)
16852 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
16853 	usable -= snxt;		/* subtract stuff already sent */
16854 	suna = tcp->tcp_suna;
16855 	usable += suna;
16856 	/* usable can be < 0 if the congestion window is smaller */
16857 	if (len > usable) {
16858 		/* Can't send complete M_DATA in one shot */
16859 		goto slow;
16860 	}
16861 
16862 	mutex_enter(&tcp->tcp_non_sq_lock);
16863 	if (tcp->tcp_flow_stopped &&
16864 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
16865 		tcp_clrqfull(tcp);
16866 	}
16867 	mutex_exit(&tcp->tcp_non_sq_lock);
16868 
16869 	/*
16870 	 * determine if anything to send (Nagle).
16871 	 *
16872 	 *   1. len < tcp_mss (i.e. small)
16873 	 *   2. unacknowledged data present
16874 	 *   3. len < nagle limit
16875 	 *   4. last packet sent < nagle limit (previous packet sent)
16876 	 */
16877 	if ((len < mss) && (snxt != suna) &&
16878 	    (len < (int)tcp->tcp_naglim) &&
16879 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
16880 		/*
16881 		 * This was the first unsent packet and normally
16882 		 * mss < xmit_hiwater so there is no need to worry
16883 		 * about flow control. The next packet will go
16884 		 * through the flow control check in tcp_wput_data().
16885 		 */
16886 		/* leftover work from above */
16887 		tcp->tcp_unsent = len;
16888 		tcp->tcp_xmit_tail_unsent = len;
16889 
16890 		return;
16891 	}
16892 
16893 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
16894 
16895 	if (snxt == suna) {
16896 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16897 	}
16898 
16899 	/* we have always sent something */
16900 	tcp->tcp_rack_cnt = 0;
16901 
16902 	tcp->tcp_snxt = snxt + len;
16903 	tcp->tcp_rack = tcp->tcp_rnxt;
16904 
16905 	if ((mp1 = dupb(mp)) == 0)
16906 		goto no_memory;
16907 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
16908 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
16909 
16910 	/* adjust tcp header information */
16911 	tcph = tcp->tcp_tcph;
16912 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
16913 
16914 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
16915 	sum = (sum >> 16) + (sum & 0xFFFF);
16916 	U16_TO_ABE16(sum, tcph->th_sum);
16917 
16918 	U32_TO_ABE32(snxt, tcph->th_seq);
16919 
16920 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16921 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16922 	BUMP_LOCAL(tcp->tcp_obsegs);
16923 
16924 	/* Update the latest receive window size in TCP header. */
16925 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
16926 	    tcph->th_win);
16927 
16928 	tcp->tcp_last_sent_len = (ushort_t)len;
16929 
16930 	plen = len + tcp->tcp_hdr_len;
16931 
16932 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16933 		tcp->tcp_ipha->ipha_length = htons(plen);
16934 	} else {
16935 		tcp->tcp_ip6h->ip6_plen = htons(plen -
16936 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
16937 	}
16938 
16939 	/* see if we need to allocate a mblk for the headers */
16940 	hdrlen = tcp->tcp_hdr_len;
16941 	rptr = mp1->b_rptr - hdrlen;
16942 	db = mp1->b_datap;
16943 	if ((db->db_ref != 2) || rptr < db->db_base ||
16944 	    (!OK_32PTR(rptr))) {
16945 		/* NOTE: we assume allocb returns an OK_32PTR */
16946 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
16947 		    tcps->tcps_wroff_xtra, BPRI_MED);
16948 		if (!mp) {
16949 			freemsg(mp1);
16950 			goto no_memory;
16951 		}
16952 		mp->b_cont = mp1;
16953 		mp1 = mp;
16954 		/* Leave room for Link Level header */
16955 		/* hdrlen = tcp->tcp_hdr_len; */
16956 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
16957 		mp1->b_wptr = &rptr[hdrlen];
16958 	}
16959 	mp1->b_rptr = rptr;
16960 
16961 	/* Fill in the timestamp option. */
16962 	if (tcp->tcp_snd_ts_ok) {
16963 		U32_TO_BE32((uint32_t)lbolt,
16964 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
16965 		U32_TO_BE32(tcp->tcp_ts_recent,
16966 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
16967 	} else {
16968 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
16969 	}
16970 
16971 	/* copy header into outgoing packet */
16972 	dst = (ipaddr_t *)rptr;
16973 	src = (ipaddr_t *)tcp->tcp_iphc;
16974 	dst[0] = src[0];
16975 	dst[1] = src[1];
16976 	dst[2] = src[2];
16977 	dst[3] = src[3];
16978 	dst[4] = src[4];
16979 	dst[5] = src[5];
16980 	dst[6] = src[6];
16981 	dst[7] = src[7];
16982 	dst[8] = src[8];
16983 	dst[9] = src[9];
16984 	if (hdrlen -= 40) {
16985 		hdrlen >>= 2;
16986 		dst += 10;
16987 		src += 10;
16988 		do {
16989 			*dst++ = *src++;
16990 		} while (--hdrlen);
16991 	}
16992 
16993 	/*
16994 	 * Set the ECN info in the TCP header.  Note that this
16995 	 * is not the template header.
16996 	 */
16997 	if (tcp->tcp_ecn_ok) {
16998 		SET_ECT(tcp, rptr);
16999 
17000 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17001 		if (tcp->tcp_ecn_echo_on)
17002 			tcph->th_flags[0] |= TH_ECE;
17003 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17004 			tcph->th_flags[0] |= TH_CWR;
17005 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17006 		}
17007 	}
17008 
17009 	if (tcp->tcp_ip_forward_progress) {
17010 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17011 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17012 		tcp->tcp_ip_forward_progress = B_FALSE;
17013 	}
17014 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17015 	return;
17016 
17017 	/*
17018 	 * If we ran out of memory, we pretend to have sent the packet
17019 	 * and that it was lost on the wire.
17020 	 */
17021 no_memory:
17022 	return;
17023 
17024 slow:
17025 	/* leftover work from above */
17026 	tcp->tcp_unsent = len;
17027 	tcp->tcp_xmit_tail_unsent = len;
17028 	tcp_wput_data(tcp, NULL, B_FALSE);
17029 }
17030 
17031 /* ARGSUSED */
17032 void
17033 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17034 {
17035 	conn_t			*connp = (conn_t *)arg;
17036 	tcp_t			*tcp = connp->conn_tcp;
17037 	queue_t			*q = tcp->tcp_rq;
17038 	struct tcp_options	*tcpopt;
17039 	tcp_stack_t		*tcps = tcp->tcp_tcps;
17040 
17041 	/* socket options */
17042 	uint_t 			sopp_flags;
17043 	ssize_t			sopp_rxhiwat;
17044 	ssize_t			sopp_maxblk;
17045 	ushort_t		sopp_wroff;
17046 	ushort_t		sopp_tail;
17047 	ushort_t		sopp_copyopt;
17048 
17049 	tcpopt = (struct tcp_options *)mp->b_rptr;
17050 
17051 	/*
17052 	 * Drop the eager's ref on the listener, that was placed when
17053 	 * this eager began life in tcp_conn_request.
17054 	 */
17055 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17056 	if (IPCL_IS_NONSTR(connp)) {
17057 		/* Safe to free conn_ind message */
17058 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17059 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17060 	}
17061 
17062 	tcp->tcp_detached = B_FALSE;
17063 
17064 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17065 		/*
17066 		 * Someone blewoff the eager before we could finish
17067 		 * the accept.
17068 		 *
17069 		 * The only reason eager exists it because we put in
17070 		 * a ref on it when conn ind went up. We need to send
17071 		 * a disconnect indication up while the last reference
17072 		 * on the eager will be dropped by the squeue when we
17073 		 * return.
17074 		 */
17075 		ASSERT(tcp->tcp_listener == NULL);
17076 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17077 			if (IPCL_IS_NONSTR(connp)) {
17078 				ASSERT(tcp->tcp_issocket);
17079 				(*connp->conn_upcalls->su_disconnected)(
17080 				    connp->conn_upper_handle, tcp->tcp_connid,
17081 				    ECONNREFUSED);
17082 				freemsg(mp);
17083 			} else {
17084 				struct	T_discon_ind	*tdi;
17085 
17086 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17087 				/*
17088 				 * Let us reuse the incoming mblk to avoid
17089 				 * memory allocation failure problems. We know
17090 				 * that the size of the incoming mblk i.e.
17091 				 * stroptions is greater than sizeof
17092 				 * T_discon_ind. So the reallocb below can't
17093 				 * fail.
17094 				 */
17095 				freemsg(mp->b_cont);
17096 				mp->b_cont = NULL;
17097 				ASSERT(DB_REF(mp) == 1);
17098 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17099 				    B_FALSE);
17100 				ASSERT(mp != NULL);
17101 				DB_TYPE(mp) = M_PROTO;
17102 				((union T_primitives *)mp->b_rptr)->type =
17103 				    T_DISCON_IND;
17104 				tdi = (struct T_discon_ind *)mp->b_rptr;
17105 				if (tcp->tcp_issocket) {
17106 					tdi->DISCON_reason = ECONNREFUSED;
17107 					tdi->SEQ_number = 0;
17108 				} else {
17109 					tdi->DISCON_reason = ENOPROTOOPT;
17110 					tdi->SEQ_number =
17111 					    tcp->tcp_conn_req_seqnum;
17112 				}
17113 				mp->b_wptr = mp->b_rptr +
17114 				    sizeof (struct T_discon_ind);
17115 				putnext(q, mp);
17116 				return;
17117 			}
17118 		}
17119 		if (tcp->tcp_hard_binding) {
17120 			tcp->tcp_hard_binding = B_FALSE;
17121 			tcp->tcp_hard_bound = B_TRUE;
17122 		}
17123 		return;
17124 	}
17125 
17126 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
17127 		int boundif = tcpopt->to_boundif;
17128 		uint_t len = sizeof (int);
17129 
17130 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17131 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
17132 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL);
17133 	}
17134 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
17135 		uint_t on = 1;
17136 		uint_t len = sizeof (uint_t);
17137 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17138 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
17139 		    (uchar_t *)&on, NULL, tcp->tcp_cred, NULL);
17140 	}
17141 
17142 	/*
17143 	 * For a loopback connection with tcp_direct_sockfs on, note that
17144 	 * we don't have to protect tcp_rcv_list yet because synchronous
17145 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17146 	 * possibly race with us.
17147 	 */
17148 
17149 	/*
17150 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17151 	 * properly.  This is the first time we know of the acceptor'
17152 	 * queue.  So we do it here.
17153 	 *
17154 	 * XXX
17155 	 */
17156 	if (tcp->tcp_rcv_list == NULL) {
17157 		/*
17158 		 * Recv queue is empty, tcp_rwnd should not have changed.
17159 		 * That means it should be equal to the listener's tcp_rwnd.
17160 		 */
17161 		if (!IPCL_IS_NONSTR(connp))
17162 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17163 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
17164 	} else {
17165 #ifdef DEBUG
17166 		mblk_t *tmp;
17167 		mblk_t	*mp1;
17168 		uint_t	cnt = 0;
17169 
17170 		mp1 = tcp->tcp_rcv_list;
17171 		while ((tmp = mp1) != NULL) {
17172 			mp1 = tmp->b_next;
17173 			cnt += msgdsize(tmp);
17174 		}
17175 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17176 #endif
17177 		/* There is some data, add them back to get the max. */
17178 		if (!IPCL_IS_NONSTR(connp))
17179 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17180 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17181 	}
17182 	/*
17183 	 * This is the first time we run on the correct
17184 	 * queue after tcp_accept. So fix all the q parameters
17185 	 * here.
17186 	 */
17187 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
17188 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17189 
17190 	/*
17191 	 * Record the stream head's high water mark for this endpoint;
17192 	 * this is used for flow-control purposes.
17193 	 */
17194 	sopp_rxhiwat = tcp->tcp_fused ?
17195 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
17196 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
17197 
17198 	/*
17199 	 * Determine what write offset value to use depending on SACK and
17200 	 * whether the endpoint is fused or not.
17201 	 */
17202 	if (tcp->tcp_fused) {
17203 		ASSERT(tcp->tcp_loopback);
17204 		ASSERT(tcp->tcp_loopback_peer != NULL);
17205 		/*
17206 		 * For fused tcp loopback, set the stream head's write
17207 		 * offset value to zero since we won't be needing any room
17208 		 * for TCP/IP headers.  This would also improve performance
17209 		 * since it would reduce the amount of work done by kmem.
17210 		 * Non-fused tcp loopback case is handled separately below.
17211 		 */
17212 		sopp_wroff = 0;
17213 		/*
17214 		 * Update the peer's transmit parameters according to
17215 		 * our recently calculated high water mark value.
17216 		 */
17217 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17218 	} else if (tcp->tcp_snd_sack_ok) {
17219 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17220 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17221 	} else {
17222 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17223 		    tcps->tcps_wroff_xtra);
17224 	}
17225 
17226 	/*
17227 	 * If this is endpoint is handling SSL, then reserve extra
17228 	 * offset and space at the end.
17229 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17230 	 * overriding the previous setting. The extra cost of signing and
17231 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17232 	 * instead of a single contiguous one by the stream head
17233 	 * largely outweighs the statistical reduction of ACKs, when
17234 	 * applicable. The peer will also save on decryption and verification
17235 	 * costs.
17236 	 */
17237 	if (tcp->tcp_kssl_ctx != NULL) {
17238 		sopp_wroff += SSL3_WROFFSET;
17239 
17240 		sopp_flags |= SOCKOPT_TAIL;
17241 		sopp_tail = SSL3_MAX_TAIL_LEN;
17242 
17243 		sopp_flags |= SOCKOPT_ZCOPY;
17244 		sopp_copyopt = ZCVMUNSAFE;
17245 
17246 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
17247 	}
17248 
17249 	/* Send the options up */
17250 	if (IPCL_IS_NONSTR(connp)) {
17251 		struct sock_proto_props sopp;
17252 
17253 		sopp.sopp_flags = sopp_flags;
17254 		sopp.sopp_wroff = sopp_wroff;
17255 		sopp.sopp_maxblk = sopp_maxblk;
17256 		sopp.sopp_rxhiwat = sopp_rxhiwat;
17257 		if (sopp_flags & SOCKOPT_TAIL) {
17258 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17259 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
17260 			sopp.sopp_tail = sopp_tail;
17261 			sopp.sopp_zcopyflag = sopp_copyopt;
17262 		}
17263 		(*connp->conn_upcalls->su_set_proto_props)
17264 		    (connp->conn_upper_handle, &sopp);
17265 	} else {
17266 		struct stroptions *stropt;
17267 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17268 		if (stropt_mp == NULL) {
17269 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
17270 			return;
17271 		}
17272 		DB_TYPE(stropt_mp) = M_SETOPTS;
17273 		stropt = (struct stroptions *)stropt_mp->b_rptr;
17274 		stropt_mp->b_wptr += sizeof (struct stroptions);
17275 		stropt = (struct stroptions *)stropt_mp->b_rptr;
17276 		stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
17277 		stropt->so_hiwat = sopp_rxhiwat;
17278 		stropt->so_wroff = sopp_wroff;
17279 		stropt->so_maxblk = sopp_maxblk;
17280 
17281 		if (sopp_flags & SOCKOPT_TAIL) {
17282 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17283 
17284 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
17285 			stropt->so_tail = sopp_tail;
17286 			stropt->so_copyopt = sopp_copyopt;
17287 		}
17288 
17289 		/* Send the options up */
17290 		putnext(q, stropt_mp);
17291 	}
17292 
17293 	freemsg(mp);
17294 	/*
17295 	 * Pass up any data and/or a fin that has been received.
17296 	 *
17297 	 * Adjust receive window in case it had decreased
17298 	 * (because there is data <=> tcp_rcv_list != NULL)
17299 	 * while the connection was detached. Note that
17300 	 * in case the eager was flow-controlled, w/o this
17301 	 * code, the rwnd may never open up again!
17302 	 */
17303 	if (tcp->tcp_rcv_list != NULL) {
17304 		if (IPCL_IS_NONSTR(connp)) {
17305 			mblk_t *mp;
17306 			int space_left;
17307 			int error;
17308 			boolean_t push = B_TRUE;
17309 
17310 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
17311 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
17312 			    &push) >= 0) {
17313 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
17314 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17315 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17316 					tcp_xmit_ctl(NULL,
17317 					    tcp, (tcp->tcp_swnd == 0) ?
17318 					    tcp->tcp_suna : tcp->tcp_snxt,
17319 					    tcp->tcp_rnxt, TH_ACK);
17320 				}
17321 			}
17322 			while ((mp = tcp->tcp_rcv_list) != NULL) {
17323 				push = B_TRUE;
17324 				tcp->tcp_rcv_list = mp->b_next;
17325 				mp->b_next = NULL;
17326 				space_left = (*connp->conn_upcalls->su_recv)
17327 				    (connp->conn_upper_handle, mp, msgdsize(mp),
17328 				    0, &error, &push);
17329 				if (space_left < 0) {
17330 					/*
17331 					 * We should never be in middle of a
17332 					 * fallback, the squeue guarantees that.
17333 					 */
17334 					ASSERT(error != EOPNOTSUPP);
17335 				}
17336 			}
17337 			tcp->tcp_rcv_last_head = NULL;
17338 			tcp->tcp_rcv_last_tail = NULL;
17339 			tcp->tcp_rcv_cnt = 0;
17340 		} else {
17341 			/* We drain directly in case of fused tcp loopback */
17342 
17343 			if (!tcp->tcp_fused && canputnext(q)) {
17344 				tcp->tcp_rwnd = q->q_hiwat;
17345 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17346 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17347 					tcp_xmit_ctl(NULL,
17348 					    tcp, (tcp->tcp_swnd == 0) ?
17349 					    tcp->tcp_suna : tcp->tcp_snxt,
17350 					    tcp->tcp_rnxt, TH_ACK);
17351 				}
17352 			}
17353 
17354 			(void) tcp_rcv_drain(tcp);
17355 		}
17356 
17357 		/*
17358 		 * For fused tcp loopback, back-enable peer endpoint
17359 		 * if it's currently flow-controlled.
17360 		 */
17361 		if (tcp->tcp_fused) {
17362 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17363 
17364 			ASSERT(peer_tcp != NULL);
17365 			ASSERT(peer_tcp->tcp_fused);
17366 			/*
17367 			 * In order to change the peer's tcp_flow_stopped,
17368 			 * we need to take locks for both end points. The
17369 			 * highest address is taken first.
17370 			 */
17371 			if (peer_tcp > tcp) {
17372 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17373 				mutex_enter(&tcp->tcp_non_sq_lock);
17374 			} else {
17375 				mutex_enter(&tcp->tcp_non_sq_lock);
17376 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17377 			}
17378 			if (peer_tcp->tcp_flow_stopped) {
17379 				tcp_clrqfull(peer_tcp);
17380 				TCP_STAT(tcps, tcp_fusion_backenabled);
17381 			}
17382 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
17383 			mutex_exit(&tcp->tcp_non_sq_lock);
17384 		}
17385 	}
17386 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17387 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17388 		tcp->tcp_ordrel_done = B_TRUE;
17389 		if (IPCL_IS_NONSTR(connp)) {
17390 			ASSERT(tcp->tcp_ordrel_mp == NULL);
17391 			(*connp->conn_upcalls->su_opctl)(
17392 			    connp->conn_upper_handle,
17393 			    SOCK_OPCTL_SHUT_RECV, 0);
17394 		} else {
17395 			mp = tcp->tcp_ordrel_mp;
17396 			tcp->tcp_ordrel_mp = NULL;
17397 			putnext(q, mp);
17398 		}
17399 	}
17400 	if (tcp->tcp_hard_binding) {
17401 		tcp->tcp_hard_binding = B_FALSE;
17402 		tcp->tcp_hard_bound = B_TRUE;
17403 	}
17404 
17405 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
17406 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
17407 	    tcp->tcp_loopback_peer != NULL &&
17408 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
17409 		tcp_fuse_syncstr_enable_pair(tcp);
17410 	}
17411 
17412 	if (tcp->tcp_ka_enabled) {
17413 		tcp->tcp_ka_last_intrvl = 0;
17414 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17415 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17416 	}
17417 
17418 	/*
17419 	 * At this point, eager is fully established and will
17420 	 * have the following references -
17421 	 *
17422 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17423 	 * 1 reference for the squeue which will be dropped by the squeue as
17424 	 *	soon as this function returns.
17425 	 * There will be 1 additonal reference for being in classifier
17426 	 *	hash list provided something bad hasn't happened.
17427 	 */
17428 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17429 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17430 }
17431 
17432 /*
17433  * The function called through squeue to get behind listener's perimeter to
17434  * send a deffered conn_ind.
17435  */
17436 /* ARGSUSED */
17437 void
17438 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17439 {
17440 	conn_t	*connp = (conn_t *)arg;
17441 	tcp_t *listener = connp->conn_tcp;
17442 	struct T_conn_ind *conn_ind;
17443 	tcp_t *tcp;
17444 
17445 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
17446 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17447 	    conn_ind->OPT_length);
17448 
17449 	if (listener->tcp_state == TCPS_CLOSED ||
17450 	    TCP_IS_DETACHED(listener)) {
17451 		/*
17452 		 * If listener has closed, it would have caused a
17453 		 * a cleanup/blowoff to happen for the eager.
17454 		 *
17455 		 * We need to drop the ref on eager that was put
17456 		 * tcp_rput_data() before trying to send the conn_ind
17457 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17458 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17459 		 * listener is closed so we drop the ref.
17460 		 */
17461 		CONN_DEC_REF(tcp->tcp_connp);
17462 		freemsg(mp);
17463 		return;
17464 	}
17465 
17466 	tcp_ulp_newconn(connp, tcp->tcp_connp, mp);
17467 }
17468 
17469 /* ARGSUSED */
17470 static int
17471 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
17472 {
17473 	tcp_t *listener, *eager;
17474 	mblk_t *opt_mp;
17475 	struct tcp_options *tcpopt;
17476 
17477 	listener = lconnp->conn_tcp;
17478 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17479 	eager = econnp->conn_tcp;
17480 	ASSERT(eager->tcp_listener != NULL);
17481 
17482 	ASSERT(eager->tcp_rq != NULL);
17483 
17484 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
17485 	if (opt_mp == NULL) {
17486 		return (-TPROTO);
17487 	}
17488 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
17489 	eager->tcp_issocket = B_TRUE;
17490 
17491 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17492 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
17493 	ASSERT(econnp->conn_netstack ==
17494 	    listener->tcp_connp->conn_netstack);
17495 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
17496 
17497 	/* Put the ref for IP */
17498 	CONN_INC_REF(econnp);
17499 
17500 	/*
17501 	 * We should have minimum of 3 references on the conn
17502 	 * at this point. One each for TCP and IP and one for
17503 	 * the T_conn_ind that was sent up when the 3-way handshake
17504 	 * completed. In the normal case we would also have another
17505 	 * reference (making a total of 4) for the conn being in the
17506 	 * classifier hash list. However the eager could have received
17507 	 * an RST subsequently and tcp_closei_local could have removed
17508 	 * the eager from the classifier hash list, hence we can't
17509 	 * assert that reference.
17510 	 */
17511 	ASSERT(econnp->conn_ref >= 3);
17512 
17513 	opt_mp->b_datap->db_type = M_SETOPTS;
17514 	opt_mp->b_wptr += sizeof (struct tcp_options);
17515 
17516 	/*
17517 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17518 	 * from listener to acceptor.
17519 	 */
17520 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
17521 	tcpopt->to_flags = 0;
17522 
17523 	if (listener->tcp_bound_if != 0) {
17524 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
17525 		tcpopt->to_boundif = listener->tcp_bound_if;
17526 	}
17527 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17528 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
17529 	}
17530 
17531 	mutex_enter(&listener->tcp_eager_lock);
17532 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17533 
17534 		tcp_t *tail;
17535 		tcp_t *tcp;
17536 		mblk_t *mp1;
17537 
17538 		tcp = listener->tcp_eager_prev_q0;
17539 		/*
17540 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
17541 		 * deferred T_conn_ind queue. We need to get to the head
17542 		 * of the queue in order to send up T_conn_ind the same
17543 		 * order as how the 3WHS is completed.
17544 		 */
17545 		while (tcp != listener) {
17546 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17547 			    !tcp->tcp_kssl_pending)
17548 				break;
17549 			else
17550 				tcp = tcp->tcp_eager_prev_q0;
17551 		}
17552 		/* None of the pending eagers can be sent up now */
17553 		if (tcp == listener)
17554 			goto no_more_eagers;
17555 
17556 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17557 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17558 		/* Move from q0 to q */
17559 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17560 		listener->tcp_conn_req_cnt_q0--;
17561 		listener->tcp_conn_req_cnt_q++;
17562 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17563 		    tcp->tcp_eager_prev_q0;
17564 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17565 		    tcp->tcp_eager_next_q0;
17566 		tcp->tcp_eager_prev_q0 = NULL;
17567 		tcp->tcp_eager_next_q0 = NULL;
17568 		tcp->tcp_conn_def_q0 = B_FALSE;
17569 
17570 		/* Make sure the tcp isn't in the list of droppables */
17571 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
17572 		    tcp->tcp_eager_prev_drop_q0 == NULL);
17573 
17574 		/*
17575 		 * Insert at end of the queue because sockfs sends
17576 		 * down T_CONN_RES in chronological order. Leaving
17577 		 * the older conn indications at front of the queue
17578 		 * helps reducing search time.
17579 		 */
17580 		tail = listener->tcp_eager_last_q;
17581 		if (tail != NULL) {
17582 			tail->tcp_eager_next_q = tcp;
17583 		} else {
17584 			listener->tcp_eager_next_q = tcp;
17585 		}
17586 		listener->tcp_eager_last_q = tcp;
17587 		tcp->tcp_eager_next_q = NULL;
17588 
17589 		/* Need to get inside the listener perimeter */
17590 		CONN_INC_REF(listener->tcp_connp);
17591 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
17592 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
17593 		    SQTAG_TCP_SEND_PENDING);
17594 	}
17595 no_more_eagers:
17596 	tcp_eager_unlink(eager);
17597 	mutex_exit(&listener->tcp_eager_lock);
17598 
17599 	/*
17600 	 * At this point, the eager is detached from the listener
17601 	 * but we still have an extra refs on eager (apart from the
17602 	 * usual tcp references). The ref was placed in tcp_rput_data
17603 	 * before sending the conn_ind in tcp_send_conn_ind.
17604 	 * The ref will be dropped in tcp_accept_finish().
17605 	 */
17606 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
17607 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
17608 	return (0);
17609 }
17610 
17611 int
17612 tcp_accept(sock_lower_handle_t lproto_handle,
17613     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
17614     cred_t *cr)
17615 {
17616 	conn_t *lconnp, *econnp;
17617 	tcp_t *listener, *eager;
17618 	tcp_stack_t	*tcps;
17619 
17620 	lconnp = (conn_t *)lproto_handle;
17621 	listener = lconnp->conn_tcp;
17622 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17623 	econnp = (conn_t *)eproto_handle;
17624 	eager = econnp->conn_tcp;
17625 	ASSERT(eager->tcp_listener != NULL);
17626 	tcps = eager->tcp_tcps;
17627 
17628 	/*
17629 	 * It is OK to manipulate these fields outside the eager's squeue
17630 	 * because they will not start being used until tcp_accept_finish
17631 	 * has been called.
17632 	 */
17633 	ASSERT(lconnp->conn_upper_handle != NULL);
17634 	ASSERT(econnp->conn_upper_handle == NULL);
17635 	econnp->conn_upper_handle = sock_handle;
17636 	econnp->conn_upcalls = lconnp->conn_upcalls;
17637 	ASSERT(IPCL_IS_NONSTR(econnp));
17638 	/*
17639 	 * Create helper stream if it is a non-TPI TCP connection.
17640 	 */
17641 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
17642 		ip1dbg(("tcp_accept: create of IP helper stream"
17643 		    " failed\n"));
17644 		return (EPROTO);
17645 	}
17646 	eager->tcp_rq = econnp->conn_rq;
17647 	eager->tcp_wq = econnp->conn_wq;
17648 
17649 	ASSERT(eager->tcp_rq != NULL);
17650 
17651 	return (tcp_accept_common(lconnp, econnp, cr));
17652 }
17653 
17654 
17655 /*
17656  * This is the STREAMS entry point for T_CONN_RES coming down on
17657  * Acceptor STREAM when  sockfs listener does accept processing.
17658  * Read the block comment on top of tcp_conn_request().
17659  */
17660 void
17661 tcp_tpi_accept(queue_t *q, mblk_t *mp)
17662 {
17663 	queue_t *rq = RD(q);
17664 	struct T_conn_res *conn_res;
17665 	tcp_t *eager;
17666 	tcp_t *listener;
17667 	struct T_ok_ack *ok;
17668 	t_scalar_t PRIM_type;
17669 	conn_t *econnp;
17670 	cred_t *cr;
17671 
17672 	ASSERT(DB_TYPE(mp) == M_PROTO);
17673 
17674 	/*
17675 	 * All Solaris components should pass a db_credp
17676 	 * for this TPI message, hence we ASSERT.
17677 	 * But in case there is some other M_PROTO that looks
17678 	 * like a TPI message sent by some other kernel
17679 	 * component, we check and return an error.
17680 	 */
17681 	cr = msg_getcred(mp, NULL);
17682 	ASSERT(cr != NULL);
17683 	if (cr == NULL) {
17684 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
17685 		if (mp != NULL)
17686 			putnext(rq, mp);
17687 		return;
17688 	}
17689 	conn_res = (struct T_conn_res *)mp->b_rptr;
17690 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17691 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17692 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17693 		if (mp != NULL)
17694 			putnext(rq, mp);
17695 		return;
17696 	}
17697 	switch (conn_res->PRIM_type) {
17698 	case O_T_CONN_RES:
17699 	case T_CONN_RES:
17700 		/*
17701 		 * We pass up an err ack if allocb fails. This will
17702 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17703 		 * tcp_eager_blowoff to be called. sockfs will then call
17704 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17705 		 * we need to do the allocb up here because we have to
17706 		 * make sure rq->q_qinfo->qi_qclose still points to the
17707 		 * correct function (tcp_tpi_close_accept) in case allocb
17708 		 * fails.
17709 		 */
17710 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17711 		    &eager, conn_res->OPT_length);
17712 		PRIM_type = conn_res->PRIM_type;
17713 		mp->b_datap->db_type = M_PCPROTO;
17714 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17715 		ok = (struct T_ok_ack *)mp->b_rptr;
17716 		ok->PRIM_type = T_OK_ACK;
17717 		ok->CORRECT_prim = PRIM_type;
17718 		econnp = eager->tcp_connp;
17719 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
17720 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
17721 		eager->tcp_rq = rq;
17722 		eager->tcp_wq = q;
17723 		rq->q_ptr = econnp;
17724 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
17725 		q->q_ptr = econnp;
17726 		q->q_qinfo = &tcp_winit;
17727 		listener = eager->tcp_listener;
17728 
17729 		if (tcp_accept_common(listener->tcp_connp,
17730 		    econnp, cr) < 0) {
17731 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17732 			if (mp != NULL)
17733 				putnext(rq, mp);
17734 			return;
17735 		}
17736 
17737 		/*
17738 		 * Send the new local address also up to sockfs. There
17739 		 * should already be enough space in the mp that came
17740 		 * down from soaccept().
17741 		 */
17742 		if (eager->tcp_family == AF_INET) {
17743 			sin_t *sin;
17744 
17745 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17746 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17747 			sin = (sin_t *)mp->b_wptr;
17748 			mp->b_wptr += sizeof (sin_t);
17749 			sin->sin_family = AF_INET;
17750 			sin->sin_port = eager->tcp_lport;
17751 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17752 		} else {
17753 			sin6_t *sin6;
17754 
17755 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17756 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17757 			sin6 = (sin6_t *)mp->b_wptr;
17758 			mp->b_wptr += sizeof (sin6_t);
17759 			sin6->sin6_family = AF_INET6;
17760 			sin6->sin6_port = eager->tcp_lport;
17761 			if (eager->tcp_ipversion == IPV4_VERSION) {
17762 				sin6->sin6_flowinfo = 0;
17763 				IN6_IPADDR_TO_V4MAPPED(
17764 				    eager->tcp_ipha->ipha_src,
17765 				    &sin6->sin6_addr);
17766 			} else {
17767 				ASSERT(eager->tcp_ip6h != NULL);
17768 				sin6->sin6_flowinfo =
17769 				    eager->tcp_ip6h->ip6_vcf &
17770 				    ~IPV6_VERS_AND_FLOW_MASK;
17771 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17772 			}
17773 			sin6->sin6_scope_id = 0;
17774 			sin6->__sin6_src_id = 0;
17775 		}
17776 
17777 		putnext(rq, mp);
17778 		return;
17779 	default:
17780 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17781 		if (mp != NULL)
17782 			putnext(rq, mp);
17783 		return;
17784 	}
17785 }
17786 
17787 static int
17788 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17789 {
17790 	sin_t *sin = (sin_t *)sa;
17791 	sin6_t *sin6 = (sin6_t *)sa;
17792 
17793 	switch (tcp->tcp_family) {
17794 	case AF_INET:
17795 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17796 
17797 		if (*salenp < sizeof (sin_t))
17798 			return (EINVAL);
17799 
17800 		*sin = sin_null;
17801 		sin->sin_family = AF_INET;
17802 		if (tcp->tcp_state >= TCPS_BOUND) {
17803 			sin->sin_port = tcp->tcp_lport;
17804 			sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
17805 		}
17806 		*salenp = sizeof (sin_t);
17807 		break;
17808 
17809 	case AF_INET6:
17810 		if (*salenp < sizeof (sin6_t))
17811 			return (EINVAL);
17812 
17813 		*sin6 = sin6_null;
17814 		sin6->sin6_family = AF_INET6;
17815 		if (tcp->tcp_state >= TCPS_BOUND) {
17816 			sin6->sin6_port = tcp->tcp_lport;
17817 			if (tcp->tcp_ipversion == IPV4_VERSION) {
17818 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
17819 				    &sin6->sin6_addr);
17820 			} else {
17821 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
17822 			}
17823 		}
17824 		*salenp = sizeof (sin6_t);
17825 		break;
17826 	}
17827 
17828 	return (0);
17829 }
17830 
17831 static int
17832 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17833 {
17834 	sin_t *sin = (sin_t *)sa;
17835 	sin6_t *sin6 = (sin6_t *)sa;
17836 
17837 	if (tcp->tcp_state < TCPS_SYN_RCVD)
17838 		return (ENOTCONN);
17839 
17840 	switch (tcp->tcp_family) {
17841 	case AF_INET:
17842 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17843 
17844 		if (*salenp < sizeof (sin_t))
17845 			return (EINVAL);
17846 
17847 		*sin = sin_null;
17848 		sin->sin_family = AF_INET;
17849 		sin->sin_port = tcp->tcp_fport;
17850 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
17851 		    sin->sin_addr.s_addr);
17852 		*salenp = sizeof (sin_t);
17853 		break;
17854 
17855 	case AF_INET6:
17856 		if (*salenp < sizeof (sin6_t))
17857 			return (EINVAL);
17858 
17859 		*sin6 = sin6_null;
17860 		sin6->sin6_family = AF_INET6;
17861 		sin6->sin6_port = tcp->tcp_fport;
17862 		sin6->sin6_addr = tcp->tcp_remote_v6;
17863 		if (tcp->tcp_ipversion == IPV6_VERSION) {
17864 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
17865 			    ~IPV6_VERS_AND_FLOW_MASK;
17866 		}
17867 		*salenp = sizeof (sin6_t);
17868 		break;
17869 	}
17870 
17871 	return (0);
17872 }
17873 
17874 /*
17875  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
17876  */
17877 static void
17878 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
17879 {
17880 	void	*data;
17881 	mblk_t	*datamp = mp->b_cont;
17882 	tcp_t	*tcp = Q_TO_TCP(q);
17883 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
17884 
17885 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
17886 		cmdp->cb_error = EPROTO;
17887 		qreply(q, mp);
17888 		return;
17889 	}
17890 
17891 	data = datamp->b_rptr;
17892 
17893 	switch (cmdp->cb_cmd) {
17894 	case TI_GETPEERNAME:
17895 		cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len);
17896 		break;
17897 	case TI_GETMYNAME:
17898 		cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len);
17899 		break;
17900 	default:
17901 		cmdp->cb_error = EINVAL;
17902 		break;
17903 	}
17904 
17905 	qreply(q, mp);
17906 }
17907 
17908 void
17909 tcp_wput(queue_t *q, mblk_t *mp)
17910 {
17911 	conn_t	*connp = Q_TO_CONN(q);
17912 	tcp_t	*tcp;
17913 	void (*output_proc)();
17914 	t_scalar_t type;
17915 	uchar_t *rptr;
17916 	struct iocblk	*iocp;
17917 	size_t size;
17918 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17919 
17920 	ASSERT(connp->conn_ref >= 2);
17921 
17922 	switch (DB_TYPE(mp)) {
17923 	case M_DATA:
17924 		tcp = connp->conn_tcp;
17925 		ASSERT(tcp != NULL);
17926 
17927 		size = msgdsize(mp);
17928 
17929 		mutex_enter(&tcp->tcp_non_sq_lock);
17930 		tcp->tcp_squeue_bytes += size;
17931 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17932 			tcp_setqfull(tcp);
17933 		}
17934 		mutex_exit(&tcp->tcp_non_sq_lock);
17935 
17936 		CONN_INC_REF(connp);
17937 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
17938 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
17939 		return;
17940 
17941 	case M_CMD:
17942 		tcp_wput_cmdblk(q, mp);
17943 		return;
17944 
17945 	case M_PROTO:
17946 	case M_PCPROTO:
17947 		/*
17948 		 * if it is a snmp message, don't get behind the squeue
17949 		 */
17950 		tcp = connp->conn_tcp;
17951 		rptr = mp->b_rptr;
17952 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17953 			type = ((union T_primitives *)rptr)->type;
17954 		} else {
17955 			if (tcp->tcp_debug) {
17956 				(void) strlog(TCP_MOD_ID, 0, 1,
17957 				    SL_ERROR|SL_TRACE,
17958 				    "tcp_wput_proto, dropping one...");
17959 			}
17960 			freemsg(mp);
17961 			return;
17962 		}
17963 		if (type == T_SVR4_OPTMGMT_REQ) {
17964 			/*
17965 			 * All Solaris components should pass a db_credp
17966 			 * for this TPI message, hence we ASSERT.
17967 			 * But in case there is some other M_PROTO that looks
17968 			 * like a TPI message sent by some other kernel
17969 			 * component, we check and return an error.
17970 			 */
17971 			cred_t	*cr = msg_getcred(mp, NULL);
17972 
17973 			ASSERT(cr != NULL);
17974 			if (cr == NULL) {
17975 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
17976 				return;
17977 			}
17978 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
17979 			    cr)) {
17980 				/*
17981 				 * This was a SNMP request
17982 				 */
17983 				return;
17984 			} else {
17985 				output_proc = tcp_wput_proto;
17986 			}
17987 		} else {
17988 			output_proc = tcp_wput_proto;
17989 		}
17990 		break;
17991 	case M_IOCTL:
17992 		/*
17993 		 * Most ioctls can be processed right away without going via
17994 		 * squeues - process them right here. Those that do require
17995 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17996 		 * are processed by tcp_wput_ioctl().
17997 		 */
17998 		iocp = (struct iocblk *)mp->b_rptr;
17999 		tcp = connp->conn_tcp;
18000 
18001 		switch (iocp->ioc_cmd) {
18002 		case TCP_IOC_ABORT_CONN:
18003 			tcp_ioctl_abort_conn(q, mp);
18004 			return;
18005 		case TI_GETPEERNAME:
18006 		case TI_GETMYNAME:
18007 			mi_copyin(q, mp, NULL,
18008 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18009 			return;
18010 		case ND_SET:
18011 			/* nd_getset does the necessary checks */
18012 		case ND_GET:
18013 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18014 				CALL_IP_WPUT(connp, q, mp);
18015 				return;
18016 			}
18017 			qreply(q, mp);
18018 			return;
18019 		case TCP_IOC_DEFAULT_Q:
18020 			/*
18021 			 * Wants to be the default wq. Check the credentials
18022 			 * first, the rest is executed via squeue.
18023 			 */
18024 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18025 				iocp->ioc_error = EPERM;
18026 				iocp->ioc_count = 0;
18027 				mp->b_datap->db_type = M_IOCACK;
18028 				qreply(q, mp);
18029 				return;
18030 			}
18031 			output_proc = tcp_wput_ioctl;
18032 			break;
18033 		default:
18034 			output_proc = tcp_wput_ioctl;
18035 			break;
18036 		}
18037 		break;
18038 	default:
18039 		output_proc = tcp_wput_nondata;
18040 		break;
18041 	}
18042 
18043 	CONN_INC_REF(connp);
18044 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
18045 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
18046 }
18047 
18048 /*
18049  * Initial STREAMS write side put() procedure for sockets. It tries to
18050  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18051  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18052  * are handled by tcp_wput() as usual.
18053  *
18054  * All further messages will also be handled by tcp_wput() because we cannot
18055  * be sure that the above short cut is safe later.
18056  */
18057 static void
18058 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18059 {
18060 	conn_t			*connp = Q_TO_CONN(wq);
18061 	tcp_t			*tcp = connp->conn_tcp;
18062 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18063 
18064 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18065 	wq->q_qinfo = &tcp_winit;
18066 
18067 	ASSERT(IPCL_IS_TCP(connp));
18068 	ASSERT(TCP_IS_SOCKET(tcp));
18069 
18070 	if (DB_TYPE(mp) == M_PCPROTO &&
18071 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18072 	    car->PRIM_type == T_CAPABILITY_REQ) {
18073 		tcp_capability_req(tcp, mp);
18074 		return;
18075 	}
18076 
18077 	tcp_wput(wq, mp);
18078 }
18079 
18080 /* ARGSUSED */
18081 static void
18082 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18083 {
18084 #ifdef DEBUG
18085 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18086 #endif
18087 	freemsg(mp);
18088 }
18089 
18090 static boolean_t
18091 tcp_zcopy_check(tcp_t *tcp)
18092 {
18093 	conn_t	*connp = tcp->tcp_connp;
18094 	ire_t	*ire;
18095 	boolean_t	zc_enabled = B_FALSE;
18096 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18097 
18098 	if (do_tcpzcopy == 2)
18099 		zc_enabled = B_TRUE;
18100 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18101 	    IPCL_IS_CONNECTED(connp) &&
18102 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18103 	    connp->conn_dontroute == 0 &&
18104 	    !connp->conn_nexthop_set &&
18105 	    connp->conn_outgoing_ill == NULL &&
18106 	    do_tcpzcopy == 1) {
18107 		/*
18108 		 * the checks above  closely resemble the fast path checks
18109 		 * in tcp_send_data().
18110 		 */
18111 		mutex_enter(&connp->conn_lock);
18112 		ire = connp->conn_ire_cache;
18113 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18114 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18115 			IRE_REFHOLD(ire);
18116 			if (ire->ire_stq != NULL) {
18117 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18118 
18119 				zc_enabled = ill && (ill->ill_capabilities &
18120 				    ILL_CAPAB_ZEROCOPY) &&
18121 				    (ill->ill_zerocopy_capab->
18122 				    ill_zerocopy_flags != 0);
18123 			}
18124 			IRE_REFRELE(ire);
18125 		}
18126 		mutex_exit(&connp->conn_lock);
18127 	}
18128 	tcp->tcp_snd_zcopy_on = zc_enabled;
18129 	if (!TCP_IS_DETACHED(tcp)) {
18130 		if (zc_enabled) {
18131 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18132 			    ZCVMSAFE);
18133 			TCP_STAT(tcps, tcp_zcopy_on);
18134 		} else {
18135 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18136 			    ZCVMUNSAFE);
18137 			TCP_STAT(tcps, tcp_zcopy_off);
18138 		}
18139 	}
18140 	return (zc_enabled);
18141 }
18142 
18143 static mblk_t *
18144 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18145 {
18146 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18147 
18148 	if (do_tcpzcopy == 2)
18149 		return (bp);
18150 	else if (tcp->tcp_snd_zcopy_on) {
18151 		tcp->tcp_snd_zcopy_on = B_FALSE;
18152 		if (!TCP_IS_DETACHED(tcp)) {
18153 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
18154 			    ZCVMUNSAFE);
18155 			TCP_STAT(tcps, tcp_zcopy_disable);
18156 		}
18157 	}
18158 	return (tcp_zcopy_backoff(tcp, bp, 0));
18159 }
18160 
18161 /*
18162  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18163  * the original desballoca'ed segmapped mblk.
18164  */
18165 static mblk_t *
18166 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18167 {
18168 	mblk_t *head, *tail, *nbp;
18169 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18170 
18171 	if (IS_VMLOANED_MBLK(bp)) {
18172 		TCP_STAT(tcps, tcp_zcopy_backoff);
18173 		if ((head = copyb(bp)) == NULL) {
18174 			/* fail to backoff; leave it for the next backoff */
18175 			tcp->tcp_xmit_zc_clean = B_FALSE;
18176 			return (bp);
18177 		}
18178 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18179 			if (fix_xmitlist)
18180 				tcp_zcopy_notify(tcp);
18181 			else
18182 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18183 		}
18184 		nbp = bp->b_cont;
18185 		if (fix_xmitlist) {
18186 			head->b_prev = bp->b_prev;
18187 			head->b_next = bp->b_next;
18188 			if (tcp->tcp_xmit_tail == bp)
18189 				tcp->tcp_xmit_tail = head;
18190 		}
18191 		bp->b_next = NULL;
18192 		bp->b_prev = NULL;
18193 		freeb(bp);
18194 	} else {
18195 		head = bp;
18196 		nbp = bp->b_cont;
18197 	}
18198 	tail = head;
18199 	while (nbp) {
18200 		if (IS_VMLOANED_MBLK(nbp)) {
18201 			TCP_STAT(tcps, tcp_zcopy_backoff);
18202 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18203 				tcp->tcp_xmit_zc_clean = B_FALSE;
18204 				tail->b_cont = nbp;
18205 				return (head);
18206 			}
18207 			tail = tail->b_cont;
18208 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18209 				if (fix_xmitlist)
18210 					tcp_zcopy_notify(tcp);
18211 				else
18212 					tail->b_datap->db_struioflag |=
18213 					    STRUIO_ZCNOTIFY;
18214 			}
18215 			bp = nbp;
18216 			nbp = nbp->b_cont;
18217 			if (fix_xmitlist) {
18218 				tail->b_prev = bp->b_prev;
18219 				tail->b_next = bp->b_next;
18220 				if (tcp->tcp_xmit_tail == bp)
18221 					tcp->tcp_xmit_tail = tail;
18222 			}
18223 			bp->b_next = NULL;
18224 			bp->b_prev = NULL;
18225 			freeb(bp);
18226 		} else {
18227 			tail->b_cont = nbp;
18228 			tail = nbp;
18229 			nbp = nbp->b_cont;
18230 		}
18231 	}
18232 	if (fix_xmitlist) {
18233 		tcp->tcp_xmit_last = tail;
18234 		tcp->tcp_xmit_zc_clean = B_TRUE;
18235 	}
18236 	return (head);
18237 }
18238 
18239 static void
18240 tcp_zcopy_notify(tcp_t *tcp)
18241 {
18242 	struct stdata	*stp;
18243 	conn_t *connp;
18244 
18245 	if (tcp->tcp_detached)
18246 		return;
18247 	connp = tcp->tcp_connp;
18248 	if (IPCL_IS_NONSTR(connp)) {
18249 		(*connp->conn_upcalls->su_zcopy_notify)
18250 		    (connp->conn_upper_handle);
18251 		return;
18252 	}
18253 	stp = STREAM(tcp->tcp_rq);
18254 	mutex_enter(&stp->sd_lock);
18255 	stp->sd_flag |= STZCNOTIFY;
18256 	cv_broadcast(&stp->sd_zcopy_wait);
18257 	mutex_exit(&stp->sd_lock);
18258 }
18259 
18260 static boolean_t
18261 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18262 {
18263 	ire_t	*ire;
18264 	conn_t	*connp = tcp->tcp_connp;
18265 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18266 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18267 
18268 	mutex_enter(&connp->conn_lock);
18269 	ire = connp->conn_ire_cache;
18270 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18271 
18272 	if ((ire != NULL) &&
18273 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18274 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18275 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18276 		IRE_REFHOLD(ire);
18277 		mutex_exit(&connp->conn_lock);
18278 	} else {
18279 		boolean_t cached = B_FALSE;
18280 		ts_label_t *tsl;
18281 
18282 		/* force a recheck later on */
18283 		tcp->tcp_ire_ill_check_done = B_FALSE;
18284 
18285 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18286 		connp->conn_ire_cache = NULL;
18287 		mutex_exit(&connp->conn_lock);
18288 
18289 		if (ire != NULL)
18290 			IRE_REFRELE_NOTR(ire);
18291 
18292 		tsl = crgetlabel(CONN_CRED(connp));
18293 		ire = (dst ?
18294 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18295 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18296 		    connp->conn_zoneid, tsl, ipst));
18297 
18298 		if (ire == NULL) {
18299 			TCP_STAT(tcps, tcp_ire_null);
18300 			return (B_FALSE);
18301 		}
18302 
18303 		IRE_REFHOLD_NOTR(ire);
18304 
18305 		mutex_enter(&connp->conn_lock);
18306 		if (CONN_CACHE_IRE(connp)) {
18307 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18308 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18309 				TCP_CHECK_IREINFO(tcp, ire);
18310 				connp->conn_ire_cache = ire;
18311 				cached = B_TRUE;
18312 			}
18313 			rw_exit(&ire->ire_bucket->irb_lock);
18314 		}
18315 		mutex_exit(&connp->conn_lock);
18316 
18317 		/*
18318 		 * We can continue to use the ire but since it was
18319 		 * not cached, we should drop the extra reference.
18320 		 */
18321 		if (!cached)
18322 			IRE_REFRELE_NOTR(ire);
18323 
18324 		/*
18325 		 * Rampart note: no need to select a new label here, since
18326 		 * labels are not allowed to change during the life of a TCP
18327 		 * connection.
18328 		 */
18329 	}
18330 
18331 	*irep = ire;
18332 
18333 	return (B_TRUE);
18334 }
18335 
18336 /*
18337  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18338  *
18339  * 0 = success;
18340  * 1 = failed to find ire and ill.
18341  */
18342 static boolean_t
18343 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18344 {
18345 	ipha_t		*ipha;
18346 	ipaddr_t	dst;
18347 	ire_t		*ire;
18348 	ill_t		*ill;
18349 	mblk_t		*ire_fp_mp;
18350 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18351 
18352 	if (mp != NULL)
18353 		ipha = (ipha_t *)mp->b_rptr;
18354 	else
18355 		ipha = tcp->tcp_ipha;
18356 	dst = ipha->ipha_dst;
18357 
18358 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18359 		return (B_FALSE);
18360 
18361 	if ((ire->ire_flags & RTF_MULTIRT) ||
18362 	    (ire->ire_stq == NULL) ||
18363 	    (ire->ire_nce == NULL) ||
18364 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18365 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18366 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18367 		TCP_STAT(tcps, tcp_ip_ire_send);
18368 		IRE_REFRELE(ire);
18369 		return (B_FALSE);
18370 	}
18371 
18372 	ill = ire_to_ill(ire);
18373 	ASSERT(ill != NULL);
18374 
18375 	if (!tcp->tcp_ire_ill_check_done) {
18376 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18377 		tcp->tcp_ire_ill_check_done = B_TRUE;
18378 	}
18379 
18380 	*irep = ire;
18381 	*illp = ill;
18382 
18383 	return (B_TRUE);
18384 }
18385 
18386 static void
18387 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18388 {
18389 	ipha_t		*ipha;
18390 	ipaddr_t	src;
18391 	ipaddr_t	dst;
18392 	uint32_t	cksum;
18393 	ire_t		*ire;
18394 	uint16_t	*up;
18395 	ill_t		*ill;
18396 	conn_t		*connp = tcp->tcp_connp;
18397 	uint32_t	hcksum_txflags = 0;
18398 	mblk_t		*ire_fp_mp;
18399 	uint_t		ire_fp_mp_len;
18400 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18401 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18402 	cred_t		*cr;
18403 	pid_t		cpid;
18404 
18405 	ASSERT(DB_TYPE(mp) == M_DATA);
18406 
18407 	/*
18408 	 * Here we need to handle the overloading of the cred_t for
18409 	 * both getpeerucred and TX.
18410 	 * If this is a SYN then the caller already set db_credp so
18411 	 * that getpeerucred will work. But if TX is in use we might have
18412 	 * a conn_peercred which is different, and we need to use that cred
18413 	 * to make TX use the correct label and label dependent route.
18414 	 */
18415 	if (is_system_labeled()) {
18416 		cr = msg_getcred(mp, &cpid);
18417 		if (cr == NULL || connp->conn_peercred != NULL)
18418 			mblk_setcred(mp, CONN_CRED(connp), cpid);
18419 	}
18420 
18421 	ipha = (ipha_t *)mp->b_rptr;
18422 	src = ipha->ipha_src;
18423 	dst = ipha->ipha_dst;
18424 
18425 	ASSERT(q != NULL);
18426 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
18427 
18428 	/*
18429 	 * Drop off fast path for IPv6 and also if options are present or
18430 	 * we need to resolve a TS label.
18431 	 */
18432 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18433 	    !IPCL_IS_CONNECTED(connp) ||
18434 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18435 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18436 	    !connp->conn_ulp_labeled ||
18437 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18438 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18439 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18440 		if (tcp->tcp_snd_zcopy_aware)
18441 			mp = tcp_zcopy_disable(tcp, mp);
18442 		TCP_STAT(tcps, tcp_ip_send);
18443 		CALL_IP_WPUT(connp, q, mp);
18444 		return;
18445 	}
18446 
18447 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18448 		if (tcp->tcp_snd_zcopy_aware)
18449 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18450 		CALL_IP_WPUT(connp, q, mp);
18451 		return;
18452 	}
18453 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18454 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18455 
18456 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18457 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18458 #ifndef _BIG_ENDIAN
18459 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18460 #endif
18461 
18462 	/*
18463 	 * Check to see if we need to re-enable LSO/MDT for this connection
18464 	 * because it was previously disabled due to changes in the ill;
18465 	 * note that by doing it here, this re-enabling only applies when
18466 	 * the packet is not dispatched through CALL_IP_WPUT().
18467 	 *
18468 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18469 	 * case, since that's how we ended up here.  For IPv6, we do the
18470 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18471 	 */
18472 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18473 		/*
18474 		 * Restore LSO for this connection, so that next time around
18475 		 * it is eligible to go through tcp_lsosend() path again.
18476 		 */
18477 		TCP_STAT(tcps, tcp_lso_enabled);
18478 		tcp->tcp_lso = B_TRUE;
18479 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18480 		    "interface %s\n", (void *)connp, ill->ill_name));
18481 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18482 		/*
18483 		 * Restore MDT for this connection, so that next time around
18484 		 * it is eligible to go through tcp_multisend() path again.
18485 		 */
18486 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18487 		tcp->tcp_mdt = B_TRUE;
18488 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18489 		    "interface %s\n", (void *)connp, ill->ill_name));
18490 	}
18491 
18492 	if (tcp->tcp_snd_zcopy_aware) {
18493 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18494 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18495 			mp = tcp_zcopy_disable(tcp, mp);
18496 		/*
18497 		 * we shouldn't need to reset ipha as the mp containing
18498 		 * ipha should never be a zero-copy mp.
18499 		 */
18500 	}
18501 
18502 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18503 		ASSERT(ill->ill_hcksum_capab != NULL);
18504 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18505 	}
18506 
18507 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18508 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18509 
18510 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18511 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18512 
18513 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18514 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18515 
18516 	/* Software checksum? */
18517 	if (DB_CKSUMFLAGS(mp) == 0) {
18518 		TCP_STAT(tcps, tcp_out_sw_cksum);
18519 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18520 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18521 	}
18522 
18523 	/* Calculate IP header checksum if hardware isn't capable */
18524 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18525 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18526 		    ((uint16_t *)ipha)[4]);
18527 	}
18528 
18529 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18530 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18531 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18532 
18533 	UPDATE_OB_PKT_COUNT(ire);
18534 	ire->ire_last_used_time = lbolt;
18535 
18536 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18537 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18538 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18539 	    ntohs(ipha->ipha_length));
18540 
18541 	DTRACE_PROBE4(ip4__physical__out__start,
18542 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
18543 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
18544 	    ipst->ips_ipv4firewall_physical_out,
18545 	    NULL, ill, ipha, mp, mp, 0, ipst);
18546 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18547 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
18548 
18549 	if (mp != NULL) {
18550 		if (ipst->ips_ipobs_enabled) {
18551 			zoneid_t szone;
18552 
18553 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
18554 			    ipst, ALL_ZONES);
18555 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
18556 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
18557 		}
18558 
18559 		ILL_SEND_TX(ill, ire, connp, mp, 0, NULL);
18560 	}
18561 
18562 	IRE_REFRELE(ire);
18563 }
18564 
18565 /*
18566  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18567  * if the receiver shrinks the window, i.e. moves the right window to the
18568  * left, the we should not send new data, but should retransmit normally the
18569  * old unacked data between suna and suna + swnd. We might has sent data
18570  * that is now outside the new window, pretend that we didn't send  it.
18571  */
18572 static void
18573 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18574 {
18575 	uint32_t	snxt = tcp->tcp_snxt;
18576 	mblk_t		*xmit_tail;
18577 	int32_t		offset;
18578 
18579 	ASSERT(shrunk_count > 0);
18580 
18581 	/* Pretend we didn't send the data outside the window */
18582 	snxt -= shrunk_count;
18583 
18584 	/* Get the mblk and the offset in it per the shrunk window */
18585 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18586 
18587 	ASSERT(xmit_tail != NULL);
18588 
18589 	/* Reset all the values per the now shrunk window */
18590 	tcp->tcp_snxt = snxt;
18591 	tcp->tcp_xmit_tail = xmit_tail;
18592 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18593 	    offset;
18594 	tcp->tcp_unsent += shrunk_count;
18595 
18596 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18597 		/*
18598 		 * Make sure the timer is running so that we will probe a zero
18599 		 * window.
18600 		 */
18601 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18602 }
18603 
18604 
18605 /*
18606  * The TCP normal data output path.
18607  * NOTE: the logic of the fast path is duplicated from this function.
18608  */
18609 static void
18610 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18611 {
18612 	int		len;
18613 	mblk_t		*local_time;
18614 	mblk_t		*mp1;
18615 	uint32_t	snxt;
18616 	int		tail_unsent;
18617 	int		tcpstate;
18618 	int		usable = 0;
18619 	mblk_t		*xmit_tail;
18620 	queue_t		*q = tcp->tcp_wq;
18621 	int32_t		mss;
18622 	int32_t		num_sack_blk = 0;
18623 	int32_t		tcp_hdr_len;
18624 	int32_t		tcp_tcp_hdr_len;
18625 	int		mdt_thres;
18626 	int		rc;
18627 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18628 	ip_stack_t	*ipst;
18629 
18630 	tcpstate = tcp->tcp_state;
18631 	if (mp == NULL) {
18632 		/*
18633 		 * tcp_wput_data() with NULL mp should only be called when
18634 		 * there is unsent data.
18635 		 */
18636 		ASSERT(tcp->tcp_unsent > 0);
18637 		/* Really tacky... but we need this for detached closes. */
18638 		len = tcp->tcp_unsent;
18639 		goto data_null;
18640 	}
18641 
18642 #if CCS_STATS
18643 	wrw_stats.tot.count++;
18644 	wrw_stats.tot.bytes += msgdsize(mp);
18645 #endif
18646 	ASSERT(mp->b_datap->db_type == M_DATA);
18647 	/*
18648 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18649 	 * or before a connection attempt has begun.
18650 	 */
18651 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18652 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18653 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18654 #ifdef DEBUG
18655 			cmn_err(CE_WARN,
18656 			    "tcp_wput_data: data after ordrel, %s",
18657 			    tcp_display(tcp, NULL,
18658 			    DISP_ADDR_AND_PORT));
18659 #else
18660 			if (tcp->tcp_debug) {
18661 				(void) strlog(TCP_MOD_ID, 0, 1,
18662 				    SL_TRACE|SL_ERROR,
18663 				    "tcp_wput_data: data after ordrel, %s\n",
18664 				    tcp_display(tcp, NULL,
18665 				    DISP_ADDR_AND_PORT));
18666 			}
18667 #endif /* DEBUG */
18668 		}
18669 		if (tcp->tcp_snd_zcopy_aware &&
18670 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18671 			tcp_zcopy_notify(tcp);
18672 		freemsg(mp);
18673 		mutex_enter(&tcp->tcp_non_sq_lock);
18674 		if (tcp->tcp_flow_stopped &&
18675 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18676 			tcp_clrqfull(tcp);
18677 		}
18678 		mutex_exit(&tcp->tcp_non_sq_lock);
18679 		return;
18680 	}
18681 
18682 	/* Strip empties */
18683 	for (;;) {
18684 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18685 		    (uintptr_t)INT_MAX);
18686 		len = (int)(mp->b_wptr - mp->b_rptr);
18687 		if (len > 0)
18688 			break;
18689 		mp1 = mp;
18690 		mp = mp->b_cont;
18691 		freeb(mp1);
18692 		if (!mp) {
18693 			return;
18694 		}
18695 	}
18696 
18697 	/* If we are the first on the list ... */
18698 	if (tcp->tcp_xmit_head == NULL) {
18699 		tcp->tcp_xmit_head = mp;
18700 		tcp->tcp_xmit_tail = mp;
18701 		tcp->tcp_xmit_tail_unsent = len;
18702 	} else {
18703 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18704 		struct datab *dp;
18705 
18706 		mp1 = tcp->tcp_xmit_last;
18707 		if (len < tcp_tx_pull_len &&
18708 		    (dp = mp1->b_datap)->db_ref == 1 &&
18709 		    dp->db_lim - mp1->b_wptr >= len) {
18710 			ASSERT(len > 0);
18711 			ASSERT(!mp1->b_cont);
18712 			if (len == 1) {
18713 				*mp1->b_wptr++ = *mp->b_rptr;
18714 			} else {
18715 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18716 				mp1->b_wptr += len;
18717 			}
18718 			if (mp1 == tcp->tcp_xmit_tail)
18719 				tcp->tcp_xmit_tail_unsent += len;
18720 			mp1->b_cont = mp->b_cont;
18721 			if (tcp->tcp_snd_zcopy_aware &&
18722 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18723 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18724 			freeb(mp);
18725 			mp = mp1;
18726 		} else {
18727 			tcp->tcp_xmit_last->b_cont = mp;
18728 		}
18729 		len += tcp->tcp_unsent;
18730 	}
18731 
18732 	/* Tack on however many more positive length mblks we have */
18733 	if ((mp1 = mp->b_cont) != NULL) {
18734 		do {
18735 			int tlen;
18736 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18737 			    (uintptr_t)INT_MAX);
18738 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18739 			if (tlen <= 0) {
18740 				mp->b_cont = mp1->b_cont;
18741 				freeb(mp1);
18742 			} else {
18743 				len += tlen;
18744 				mp = mp1;
18745 			}
18746 		} while ((mp1 = mp->b_cont) != NULL);
18747 	}
18748 	tcp->tcp_xmit_last = mp;
18749 	tcp->tcp_unsent = len;
18750 
18751 	if (urgent)
18752 		usable = 1;
18753 
18754 data_null:
18755 	snxt = tcp->tcp_snxt;
18756 	xmit_tail = tcp->tcp_xmit_tail;
18757 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18758 
18759 	/*
18760 	 * Note that tcp_mss has been adjusted to take into account the
18761 	 * timestamp option if applicable.  Because SACK options do not
18762 	 * appear in every TCP segments and they are of variable lengths,
18763 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18764 	 * the actual segment length when we need to send a segment which
18765 	 * includes SACK options.
18766 	 */
18767 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18768 		int32_t	opt_len;
18769 
18770 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18771 		    tcp->tcp_num_sack_blk);
18772 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18773 		    2 + TCPOPT_HEADER_LEN;
18774 		mss = tcp->tcp_mss - opt_len;
18775 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18776 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18777 	} else {
18778 		mss = tcp->tcp_mss;
18779 		tcp_hdr_len = tcp->tcp_hdr_len;
18780 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18781 	}
18782 
18783 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18784 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18785 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
18786 	}
18787 	if (tcpstate == TCPS_SYN_RCVD) {
18788 		/*
18789 		 * The three-way connection establishment handshake is not
18790 		 * complete yet. We want to queue the data for transmission
18791 		 * after entering ESTABLISHED state (RFC793). A jump to
18792 		 * "done" label effectively leaves data on the queue.
18793 		 */
18794 		goto done;
18795 	} else {
18796 		int usable_r;
18797 
18798 		/*
18799 		 * In the special case when cwnd is zero, which can only
18800 		 * happen if the connection is ECN capable, return now.
18801 		 * New segments is sent using tcp_timer().  The timer
18802 		 * is set in tcp_rput_data().
18803 		 */
18804 		if (tcp->tcp_cwnd == 0) {
18805 			/*
18806 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18807 			 * finished.
18808 			 */
18809 			ASSERT(tcp->tcp_ecn_ok ||
18810 			    tcp->tcp_state < TCPS_ESTABLISHED);
18811 			return;
18812 		}
18813 
18814 		/* NOTE: trouble if xmitting while SYN not acked? */
18815 		usable_r = snxt - tcp->tcp_suna;
18816 		usable_r = tcp->tcp_swnd - usable_r;
18817 
18818 		/*
18819 		 * Check if the receiver has shrunk the window.  If
18820 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18821 		 * cannot be set as there is unsent data, so FIN cannot
18822 		 * be sent out.  Otherwise, we need to take into account
18823 		 * of FIN as it consumes an "invisible" sequence number.
18824 		 */
18825 		ASSERT(tcp->tcp_fin_sent == 0);
18826 		if (usable_r < 0) {
18827 			/*
18828 			 * The receiver has shrunk the window and we have sent
18829 			 * -usable_r date beyond the window, re-adjust.
18830 			 *
18831 			 * If TCP window scaling is enabled, there can be
18832 			 * round down error as the advertised receive window
18833 			 * is actually right shifted n bits.  This means that
18834 			 * the lower n bits info is wiped out.  It will look
18835 			 * like the window is shrunk.  Do a check here to
18836 			 * see if the shrunk amount is actually within the
18837 			 * error in window calculation.  If it is, just
18838 			 * return.  Note that this check is inside the
18839 			 * shrunk window check.  This makes sure that even
18840 			 * though tcp_process_shrunk_swnd() is not called,
18841 			 * we will stop further processing.
18842 			 */
18843 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18844 				tcp_process_shrunk_swnd(tcp, -usable_r);
18845 			}
18846 			return;
18847 		}
18848 
18849 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18850 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18851 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18852 
18853 		/* usable = MIN(usable, unsent) */
18854 		if (usable_r > len)
18855 			usable_r = len;
18856 
18857 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18858 		if (usable_r > 0) {
18859 			usable = usable_r;
18860 		} else {
18861 			/* Bypass all other unnecessary processing. */
18862 			goto done;
18863 		}
18864 	}
18865 
18866 	local_time = (mblk_t *)lbolt;
18867 
18868 	/*
18869 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18870 	 * BSD.  This is more in line with the true intent of Nagle.
18871 	 *
18872 	 * The conditions are:
18873 	 * 1. The amount of unsent data (or amount of data which can be
18874 	 *    sent, whichever is smaller) is less than Nagle limit.
18875 	 * 2. The last sent size is also less than Nagle limit.
18876 	 * 3. There is unack'ed data.
18877 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18878 	 *    Nagle algorithm.  This reduces the probability that urgent
18879 	 *    bytes get "merged" together.
18880 	 * 5. The app has not closed the connection.  This eliminates the
18881 	 *    wait time of the receiving side waiting for the last piece of
18882 	 *    (small) data.
18883 	 *
18884 	 * If all are satisified, exit without sending anything.  Note
18885 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18886 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18887 	 * 4095).
18888 	 */
18889 	if (usable < (int)tcp->tcp_naglim &&
18890 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18891 	    snxt != tcp->tcp_suna &&
18892 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18893 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18894 		goto done;
18895 	}
18896 
18897 	if (tcp->tcp_cork) {
18898 		/*
18899 		 * if the tcp->tcp_cork option is set, then we have to force
18900 		 * TCP not to send partial segment (smaller than MSS bytes).
18901 		 * We are calculating the usable now based on full mss and
18902 		 * will save the rest of remaining data for later.
18903 		 */
18904 		if (usable < mss)
18905 			goto done;
18906 		usable = (usable / mss) * mss;
18907 	}
18908 
18909 	/* Update the latest receive window size in TCP header. */
18910 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18911 	    tcp->tcp_tcph->th_win);
18912 
18913 	/*
18914 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
18915 	 *
18916 	 * 1. Simple TCP/IP{v4,v6} (no options).
18917 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18918 	 * 3. If the TCP connection is in ESTABLISHED state.
18919 	 * 4. The TCP is not detached.
18920 	 *
18921 	 * If any of the above conditions have changed during the
18922 	 * connection, stop using LSO/MDT and restore the stream head
18923 	 * parameters accordingly.
18924 	 */
18925 	ipst = tcps->tcps_netstack->netstack_ip;
18926 
18927 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
18928 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18929 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18930 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18931 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18932 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18933 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
18934 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18935 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
18936 		if (tcp->tcp_lso) {
18937 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
18938 			tcp->tcp_lso = B_FALSE;
18939 		} else {
18940 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18941 			tcp->tcp_mdt = B_FALSE;
18942 		}
18943 
18944 		/* Anything other than detached is considered pathological */
18945 		if (!TCP_IS_DETACHED(tcp)) {
18946 			if (tcp->tcp_lso)
18947 				TCP_STAT(tcps, tcp_lso_disabled);
18948 			else
18949 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
18950 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18951 		}
18952 	}
18953 
18954 	/* Use MDT if sendable amount is greater than the threshold */
18955 	if (tcp->tcp_mdt &&
18956 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18957 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18958 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18959 	    (tcp->tcp_valid_bits == 0 ||
18960 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18961 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18962 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18963 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18964 		    local_time, mdt_thres);
18965 	} else {
18966 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18967 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18968 		    local_time, INT_MAX);
18969 	}
18970 
18971 	/* Pretend that all we were trying to send really got sent */
18972 	if (rc < 0 && tail_unsent < 0) {
18973 		do {
18974 			xmit_tail = xmit_tail->b_cont;
18975 			xmit_tail->b_prev = local_time;
18976 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18977 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18978 			tail_unsent += (int)(xmit_tail->b_wptr -
18979 			    xmit_tail->b_rptr);
18980 		} while (tail_unsent < 0);
18981 	}
18982 done:;
18983 	tcp->tcp_xmit_tail = xmit_tail;
18984 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18985 	len = tcp->tcp_snxt - snxt;
18986 	if (len) {
18987 		/*
18988 		 * If new data was sent, need to update the notsack
18989 		 * list, which is, afterall, data blocks that have
18990 		 * not been sack'ed by the receiver.  New data is
18991 		 * not sack'ed.
18992 		 */
18993 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18994 			/* len is a negative value. */
18995 			tcp->tcp_pipe -= len;
18996 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18997 			    tcp->tcp_snxt, snxt,
18998 			    &(tcp->tcp_num_notsack_blk),
18999 			    &(tcp->tcp_cnt_notsack_list));
19000 		}
19001 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19002 		tcp->tcp_rack = tcp->tcp_rnxt;
19003 		tcp->tcp_rack_cnt = 0;
19004 		if ((snxt + len) == tcp->tcp_suna) {
19005 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19006 		}
19007 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19008 		/*
19009 		 * Didn't send anything. Make sure the timer is running
19010 		 * so that we will probe a zero window.
19011 		 */
19012 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19013 	}
19014 	/* Note that len is the amount we just sent but with a negative sign */
19015 	tcp->tcp_unsent += len;
19016 	mutex_enter(&tcp->tcp_non_sq_lock);
19017 	if (tcp->tcp_flow_stopped) {
19018 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19019 			tcp_clrqfull(tcp);
19020 		}
19021 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19022 		tcp_setqfull(tcp);
19023 	}
19024 	mutex_exit(&tcp->tcp_non_sq_lock);
19025 }
19026 
19027 /*
19028  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19029  * outgoing TCP header with the template header, as well as other
19030  * options such as time-stamp, ECN and/or SACK.
19031  */
19032 static void
19033 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19034 {
19035 	tcph_t *tcp_tmpl, *tcp_h;
19036 	uint32_t *dst, *src;
19037 	int hdrlen;
19038 
19039 	ASSERT(OK_32PTR(rptr));
19040 
19041 	/* Template header */
19042 	tcp_tmpl = tcp->tcp_tcph;
19043 
19044 	/* Header of outgoing packet */
19045 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19046 
19047 	/* dst and src are opaque 32-bit fields, used for copying */
19048 	dst = (uint32_t *)rptr;
19049 	src = (uint32_t *)tcp->tcp_iphc;
19050 	hdrlen = tcp->tcp_hdr_len;
19051 
19052 	/* Fill time-stamp option if needed */
19053 	if (tcp->tcp_snd_ts_ok) {
19054 		U32_TO_BE32((uint32_t)now,
19055 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19056 		U32_TO_BE32(tcp->tcp_ts_recent,
19057 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19058 	} else {
19059 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19060 	}
19061 
19062 	/*
19063 	 * Copy the template header; is this really more efficient than
19064 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19065 	 * but perhaps not for other scenarios.
19066 	 */
19067 	dst[0] = src[0];
19068 	dst[1] = src[1];
19069 	dst[2] = src[2];
19070 	dst[3] = src[3];
19071 	dst[4] = src[4];
19072 	dst[5] = src[5];
19073 	dst[6] = src[6];
19074 	dst[7] = src[7];
19075 	dst[8] = src[8];
19076 	dst[9] = src[9];
19077 	if (hdrlen -= 40) {
19078 		hdrlen >>= 2;
19079 		dst += 10;
19080 		src += 10;
19081 		do {
19082 			*dst++ = *src++;
19083 		} while (--hdrlen);
19084 	}
19085 
19086 	/*
19087 	 * Set the ECN info in the TCP header if it is not a zero
19088 	 * window probe.  Zero window probe is only sent in
19089 	 * tcp_wput_data() and tcp_timer().
19090 	 */
19091 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19092 		SET_ECT(tcp, rptr);
19093 
19094 		if (tcp->tcp_ecn_echo_on)
19095 			tcp_h->th_flags[0] |= TH_ECE;
19096 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19097 			tcp_h->th_flags[0] |= TH_CWR;
19098 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19099 		}
19100 	}
19101 
19102 	/* Fill in SACK options */
19103 	if (num_sack_blk > 0) {
19104 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19105 		sack_blk_t *tmp;
19106 		int32_t	i;
19107 
19108 		wptr[0] = TCPOPT_NOP;
19109 		wptr[1] = TCPOPT_NOP;
19110 		wptr[2] = TCPOPT_SACK;
19111 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19112 		    sizeof (sack_blk_t);
19113 		wptr += TCPOPT_REAL_SACK_LEN;
19114 
19115 		tmp = tcp->tcp_sack_list;
19116 		for (i = 0; i < num_sack_blk; i++) {
19117 			U32_TO_BE32(tmp[i].begin, wptr);
19118 			wptr += sizeof (tcp_seq);
19119 			U32_TO_BE32(tmp[i].end, wptr);
19120 			wptr += sizeof (tcp_seq);
19121 		}
19122 		tcp_h->th_offset_and_rsrvd[0] +=
19123 		    ((num_sack_blk * 2 + 1) << 4);
19124 	}
19125 }
19126 
19127 /*
19128  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19129  * the destination address and SAP attribute, and if necessary, the
19130  * hardware checksum offload attribute to a Multidata message.
19131  */
19132 static int
19133 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19134     const uint32_t start, const uint32_t stuff, const uint32_t end,
19135     const uint32_t flags, tcp_stack_t *tcps)
19136 {
19137 	/* Add global destination address & SAP attribute */
19138 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19139 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19140 		    "destination address+SAP\n"));
19141 
19142 		if (dlmp != NULL)
19143 			TCP_STAT(tcps, tcp_mdt_allocfail);
19144 		return (-1);
19145 	}
19146 
19147 	/* Add global hwcksum attribute */
19148 	if (hwcksum &&
19149 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19150 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19151 		    "checksum attribute\n"));
19152 
19153 		TCP_STAT(tcps, tcp_mdt_allocfail);
19154 		return (-1);
19155 	}
19156 
19157 	return (0);
19158 }
19159 
19160 /*
19161  * Smaller and private version of pdescinfo_t used specifically for TCP,
19162  * which allows for only two payload spans per packet.
19163  */
19164 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19165 
19166 /*
19167  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19168  * scheme, and returns one the following:
19169  *
19170  * -1 = failed allocation.
19171  *  0 = success; burst count reached, or usable send window is too small,
19172  *      and that we'd rather wait until later before sending again.
19173  */
19174 static int
19175 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19176     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19177     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19178     const int mdt_thres)
19179 {
19180 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19181 	multidata_t	*mmd;
19182 	uint_t		obsegs, obbytes, hdr_frag_sz;
19183 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19184 	int		num_burst_seg, max_pld;
19185 	pdesc_t		*pkt;
19186 	tcp_pdescinfo_t	tcp_pkt_info;
19187 	pdescinfo_t	*pkt_info;
19188 	int		pbuf_idx, pbuf_idx_nxt;
19189 	int		seg_len, len, spill, af;
19190 	boolean_t	add_buffer, zcopy, clusterwide;
19191 	boolean_t	rconfirm = B_FALSE;
19192 	boolean_t	done = B_FALSE;
19193 	uint32_t	cksum;
19194 	uint32_t	hwcksum_flags;
19195 	ire_t		*ire = NULL;
19196 	ill_t		*ill;
19197 	ipha_t		*ipha;
19198 	ip6_t		*ip6h;
19199 	ipaddr_t	src, dst;
19200 	ill_zerocopy_capab_t *zc_cap = NULL;
19201 	uint16_t	*up;
19202 	int		err;
19203 	conn_t		*connp;
19204 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19205 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19206 	int		usable_mmd, tail_unsent_mmd;
19207 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
19208 	mblk_t		*xmit_tail_mmd;
19209 	netstackid_t	stack_id;
19210 
19211 #ifdef	_BIG_ENDIAN
19212 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19213 #else
19214 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19215 #endif
19216 
19217 #define	PREP_NEW_MULTIDATA() {			\
19218 	mmd = NULL;				\
19219 	md_mp = md_hbuf = NULL;			\
19220 	cur_hdr_off = 0;			\
19221 	max_pld = tcp->tcp_mdt_max_pld;		\
19222 	pbuf_idx = pbuf_idx_nxt = -1;		\
19223 	add_buffer = B_TRUE;			\
19224 	zcopy = B_FALSE;			\
19225 }
19226 
19227 #define	PREP_NEW_PBUF() {			\
19228 	md_pbuf = md_pbuf_nxt = NULL;		\
19229 	pbuf_idx = pbuf_idx_nxt = -1;		\
19230 	cur_pld_off = 0;			\
19231 	first_snxt = *snxt;			\
19232 	ASSERT(*tail_unsent > 0);		\
19233 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19234 }
19235 
19236 	ASSERT(mdt_thres >= mss);
19237 	ASSERT(*usable > 0 && *usable > mdt_thres);
19238 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19239 	ASSERT(!TCP_IS_DETACHED(tcp));
19240 	ASSERT(tcp->tcp_valid_bits == 0 ||
19241 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19242 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19243 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19244 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19245 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19246 
19247 	connp = tcp->tcp_connp;
19248 	ASSERT(connp != NULL);
19249 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19250 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19251 
19252 	stack_id = connp->conn_netstack->netstack_stackid;
19253 
19254 	usable_mmd = tail_unsent_mmd = 0;
19255 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
19256 	xmit_tail_mmd = NULL;
19257 	/*
19258 	 * Note that tcp will only declare at most 2 payload spans per
19259 	 * packet, which is much lower than the maximum allowable number
19260 	 * of packet spans per Multidata.  For this reason, we use the
19261 	 * privately declared and smaller descriptor info structure, in
19262 	 * order to save some stack space.
19263 	 */
19264 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19265 
19266 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19267 	if (af == AF_INET) {
19268 		dst = tcp->tcp_ipha->ipha_dst;
19269 		src = tcp->tcp_ipha->ipha_src;
19270 		ASSERT(!CLASSD(dst));
19271 	}
19272 	ASSERT(af == AF_INET ||
19273 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19274 
19275 	obsegs = obbytes = 0;
19276 	num_burst_seg = tcp->tcp_snd_burst;
19277 	md_mp_head = NULL;
19278 	PREP_NEW_MULTIDATA();
19279 
19280 	/*
19281 	 * Before we go on further, make sure there is an IRE that we can
19282 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19283 	 * in proceeding any further, and we should just hand everything
19284 	 * off to the legacy path.
19285 	 */
19286 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19287 		goto legacy_send_no_md;
19288 
19289 	ASSERT(ire != NULL);
19290 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19291 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19292 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19293 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19294 	/*
19295 	 * If we do support loopback for MDT (which requires modifications
19296 	 * to the receiving paths), the following assertions should go away,
19297 	 * and we would be sending the Multidata to loopback conn later on.
19298 	 */
19299 	ASSERT(!IRE_IS_LOCAL(ire));
19300 	ASSERT(ire->ire_stq != NULL);
19301 
19302 	ill = ire_to_ill(ire);
19303 	ASSERT(ill != NULL);
19304 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19305 
19306 	if (!tcp->tcp_ire_ill_check_done) {
19307 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19308 		tcp->tcp_ire_ill_check_done = B_TRUE;
19309 	}
19310 
19311 	/*
19312 	 * If the underlying interface conditions have changed, or if the
19313 	 * new interface does not support MDT, go back to legacy path.
19314 	 */
19315 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19316 		/* don't go through this path anymore for this connection */
19317 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19318 		tcp->tcp_mdt = B_FALSE;
19319 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19320 		    "interface %s\n", (void *)connp, ill->ill_name));
19321 		/* IRE will be released prior to returning */
19322 		goto legacy_send_no_md;
19323 	}
19324 
19325 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19326 		zc_cap = ill->ill_zerocopy_capab;
19327 
19328 	/*
19329 	 * Check if we can take tcp fast-path. Note that "incomplete"
19330 	 * ire's (where the link-layer for next hop is not resolved
19331 	 * or where the fast-path header in nce_fp_mp is not available
19332 	 * yet) are sent down the legacy (slow) path.
19333 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19334 	 */
19335 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19336 		/* IRE will be released prior to returning */
19337 		goto legacy_send_no_md;
19338 	}
19339 
19340 	/* go to legacy path if interface doesn't support zerocopy */
19341 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19342 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19343 		/* IRE will be released prior to returning */
19344 		goto legacy_send_no_md;
19345 	}
19346 
19347 	/* does the interface support hardware checksum offload? */
19348 	hwcksum_flags = 0;
19349 	if (ILL_HCKSUM_CAPABLE(ill) &&
19350 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19351 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19352 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19353 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19354 		    HCKSUM_IPHDRCKSUM)
19355 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19356 
19357 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19358 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19359 			hwcksum_flags |= HCK_FULLCKSUM;
19360 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19361 		    HCKSUM_INET_PARTIAL)
19362 			hwcksum_flags |= HCK_PARTIALCKSUM;
19363 	}
19364 
19365 	/*
19366 	 * Each header fragment consists of the leading extra space,
19367 	 * followed by the TCP/IP header, and the trailing extra space.
19368 	 * We make sure that each header fragment begins on a 32-bit
19369 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19370 	 * aligned in tcp_mdt_update).
19371 	 */
19372 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19373 	    tcp->tcp_mdt_hdr_tail), 4);
19374 
19375 	/* are we starting from the beginning of data block? */
19376 	if (*tail_unsent == 0) {
19377 		*xmit_tail = (*xmit_tail)->b_cont;
19378 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19379 		*tail_unsent = (int)MBLKL(*xmit_tail);
19380 	}
19381 
19382 	/*
19383 	 * Here we create one or more Multidata messages, each made up of
19384 	 * one header buffer and up to N payload buffers.  This entire
19385 	 * operation is done within two loops:
19386 	 *
19387 	 * The outer loop mostly deals with creating the Multidata message,
19388 	 * as well as the header buffer that gets added to it.  It also
19389 	 * links the Multidata messages together such that all of them can
19390 	 * be sent down to the lower layer in a single putnext call; this
19391 	 * linking behavior depends on the tcp_mdt_chain tunable.
19392 	 *
19393 	 * The inner loop takes an existing Multidata message, and adds
19394 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19395 	 * packetizes those buffers by filling up the corresponding header
19396 	 * buffer fragments with the proper IP and TCP headers, and by
19397 	 * describing the layout of each packet in the packet descriptors
19398 	 * that get added to the Multidata.
19399 	 */
19400 	do {
19401 		/*
19402 		 * If usable send window is too small, or data blocks in
19403 		 * transmit list are smaller than our threshold (i.e. app
19404 		 * performs large writes followed by small ones), we hand
19405 		 * off the control over to the legacy path.  Note that we'll
19406 		 * get back the control once it encounters a large block.
19407 		 */
19408 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19409 		    (*xmit_tail)->b_cont != NULL &&
19410 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19411 			/* send down what we've got so far */
19412 			if (md_mp_head != NULL) {
19413 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19414 				    obsegs, obbytes, &rconfirm);
19415 			}
19416 			/*
19417 			 * Pass control over to tcp_send(), but tell it to
19418 			 * return to us once a large-size transmission is
19419 			 * possible.
19420 			 */
19421 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19422 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19423 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19424 			    tail_unsent, xmit_tail, local_time,
19425 			    mdt_thres)) <= 0) {
19426 				/* burst count reached, or alloc failed */
19427 				IRE_REFRELE(ire);
19428 				return (err);
19429 			}
19430 
19431 			/* tcp_send() may have sent everything, so check */
19432 			if (*usable <= 0) {
19433 				IRE_REFRELE(ire);
19434 				return (0);
19435 			}
19436 
19437 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19438 			/*
19439 			 * We may have delivered the Multidata, so make sure
19440 			 * to re-initialize before the next round.
19441 			 */
19442 			md_mp_head = NULL;
19443 			obsegs = obbytes = 0;
19444 			num_burst_seg = tcp->tcp_snd_burst;
19445 			PREP_NEW_MULTIDATA();
19446 
19447 			/* are we starting from the beginning of data block? */
19448 			if (*tail_unsent == 0) {
19449 				*xmit_tail = (*xmit_tail)->b_cont;
19450 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19451 				    (uintptr_t)INT_MAX);
19452 				*tail_unsent = (int)MBLKL(*xmit_tail);
19453 			}
19454 		}
19455 		/*
19456 		 * Record current values for parameters we may need to pass
19457 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
19458 		 * each iteration of the outer loop (each multidata message
19459 		 * creation). If we have a failure in the inner loop, we send
19460 		 * any complete multidata messages we have before reverting
19461 		 * to using the traditional non-md path.
19462 		 */
19463 		snxt_mmd = *snxt;
19464 		usable_mmd = *usable;
19465 		xmit_tail_mmd = *xmit_tail;
19466 		tail_unsent_mmd = *tail_unsent;
19467 		obsegs_mmd = obsegs;
19468 		obbytes_mmd = obbytes;
19469 
19470 		/*
19471 		 * max_pld limits the number of mblks in tcp's transmit
19472 		 * queue that can be added to a Multidata message.  Once
19473 		 * this counter reaches zero, no more additional mblks
19474 		 * can be added to it.  What happens afterwards depends
19475 		 * on whether or not we are set to chain the Multidata
19476 		 * messages.  If we are to link them together, reset
19477 		 * max_pld to its original value (tcp_mdt_max_pld) and
19478 		 * prepare to create a new Multidata message which will
19479 		 * get linked to md_mp_head.  Else, leave it alone and
19480 		 * let the inner loop break on its own.
19481 		 */
19482 		if (tcp_mdt_chain && max_pld == 0)
19483 			PREP_NEW_MULTIDATA();
19484 
19485 		/* adding a payload buffer; re-initialize values */
19486 		if (add_buffer)
19487 			PREP_NEW_PBUF();
19488 
19489 		/*
19490 		 * If we don't have a Multidata, either because we just
19491 		 * (re)entered this outer loop, or after we branched off
19492 		 * to tcp_send above, setup the Multidata and header
19493 		 * buffer to be used.
19494 		 */
19495 		if (md_mp == NULL) {
19496 			int md_hbuflen;
19497 			uint32_t start, stuff;
19498 
19499 			/*
19500 			 * Calculate Multidata header buffer size large enough
19501 			 * to hold all of the headers that can possibly be
19502 			 * sent at this moment.  We'd rather over-estimate
19503 			 * the size than running out of space; this is okay
19504 			 * since this buffer is small anyway.
19505 			 */
19506 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19507 
19508 			/*
19509 			 * Start and stuff offset for partial hardware
19510 			 * checksum offload; these are currently for IPv4.
19511 			 * For full checksum offload, they are set to zero.
19512 			 */
19513 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19514 				if (af == AF_INET) {
19515 					start = IP_SIMPLE_HDR_LENGTH;
19516 					stuff = IP_SIMPLE_HDR_LENGTH +
19517 					    TCP_CHECKSUM_OFFSET;
19518 				} else {
19519 					start = IPV6_HDR_LEN;
19520 					stuff = IPV6_HDR_LEN +
19521 					    TCP_CHECKSUM_OFFSET;
19522 				}
19523 			} else {
19524 				start = stuff = 0;
19525 			}
19526 
19527 			/*
19528 			 * Create the header buffer, Multidata, as well as
19529 			 * any necessary attributes (destination address,
19530 			 * SAP and hardware checksum offload) that should
19531 			 * be associated with the Multidata message.
19532 			 */
19533 			ASSERT(cur_hdr_off == 0);
19534 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19535 			    ((md_hbuf->b_wptr += md_hbuflen),
19536 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19537 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19538 			    /* fastpath mblk */
19539 			    ire->ire_nce->nce_res_mp,
19540 			    /* hardware checksum enabled */
19541 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19542 			    /* hardware checksum offsets */
19543 			    start, stuff, 0,
19544 			    /* hardware checksum flag */
19545 			    hwcksum_flags, tcps) != 0)) {
19546 legacy_send:
19547 				/*
19548 				 * We arrive here from a failure within the
19549 				 * inner (packetizer) loop or we fail one of
19550 				 * the conditionals above. We restore the
19551 				 * previously checkpointed values for:
19552 				 *    xmit_tail
19553 				 *    usable
19554 				 *    tail_unsent
19555 				 *    snxt
19556 				 *    obbytes
19557 				 *    obsegs
19558 				 * We should then be able to dispatch any
19559 				 * complete multidata before reverting to the
19560 				 * traditional path with consistent parameters
19561 				 * (the inner loop updates these as it
19562 				 * iterates).
19563 				 */
19564 				*xmit_tail = xmit_tail_mmd;
19565 				*usable = usable_mmd;
19566 				*tail_unsent = tail_unsent_mmd;
19567 				*snxt = snxt_mmd;
19568 				obbytes = obbytes_mmd;
19569 				obsegs = obsegs_mmd;
19570 				if (md_mp != NULL) {
19571 					/* Unlink message from the chain */
19572 					if (md_mp_head != NULL) {
19573 						err = (intptr_t)rmvb(md_mp_head,
19574 						    md_mp);
19575 						/*
19576 						 * We can't assert that rmvb
19577 						 * did not return -1, since we
19578 						 * may get here before linkb
19579 						 * happens.  We do, however,
19580 						 * check if we just removed the
19581 						 * only element in the list.
19582 						 */
19583 						if (err == 0)
19584 							md_mp_head = NULL;
19585 					}
19586 					/* md_hbuf gets freed automatically */
19587 					TCP_STAT(tcps, tcp_mdt_discarded);
19588 					freeb(md_mp);
19589 				} else {
19590 					/* Either allocb or mmd_alloc failed */
19591 					TCP_STAT(tcps, tcp_mdt_allocfail);
19592 					if (md_hbuf != NULL)
19593 						freeb(md_hbuf);
19594 				}
19595 
19596 				/* send down what we've got so far */
19597 				if (md_mp_head != NULL) {
19598 					tcp_multisend_data(tcp, ire, ill,
19599 					    md_mp_head, obsegs, obbytes,
19600 					    &rconfirm);
19601 				}
19602 legacy_send_no_md:
19603 				if (ire != NULL)
19604 					IRE_REFRELE(ire);
19605 				/*
19606 				 * Too bad; let the legacy path handle this.
19607 				 * We specify INT_MAX for the threshold, since
19608 				 * we gave up with the Multidata processings
19609 				 * and let the old path have it all.
19610 				 */
19611 				TCP_STAT(tcps, tcp_mdt_legacy_all);
19612 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19613 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19614 				    snxt, tail_unsent, xmit_tail, local_time,
19615 				    INT_MAX));
19616 			}
19617 
19618 			/* link to any existing ones, if applicable */
19619 			TCP_STAT(tcps, tcp_mdt_allocd);
19620 			if (md_mp_head == NULL) {
19621 				md_mp_head = md_mp;
19622 			} else if (tcp_mdt_chain) {
19623 				TCP_STAT(tcps, tcp_mdt_linked);
19624 				linkb(md_mp_head, md_mp);
19625 			}
19626 		}
19627 
19628 		ASSERT(md_mp_head != NULL);
19629 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19630 		ASSERT(md_mp != NULL && mmd != NULL);
19631 		ASSERT(md_hbuf != NULL);
19632 
19633 		/*
19634 		 * Packetize the transmittable portion of the data block;
19635 		 * each data block is essentially added to the Multidata
19636 		 * as a payload buffer.  We also deal with adding more
19637 		 * than one payload buffers, which happens when the remaining
19638 		 * packetized portion of the current payload buffer is less
19639 		 * than MSS, while the next data block in transmit queue
19640 		 * has enough data to make up for one.  This "spillover"
19641 		 * case essentially creates a split-packet, where portions
19642 		 * of the packet's payload fragments may span across two
19643 		 * virtually discontiguous address blocks.
19644 		 */
19645 		seg_len = mss;
19646 		do {
19647 			len = seg_len;
19648 
19649 			/* one must remain NULL for DTRACE_IP_FASTPATH */
19650 			ipha = NULL;
19651 			ip6h = NULL;
19652 
19653 			ASSERT(len > 0);
19654 			ASSERT(max_pld >= 0);
19655 			ASSERT(!add_buffer || cur_pld_off == 0);
19656 
19657 			/*
19658 			 * First time around for this payload buffer; note
19659 			 * in the case of a spillover, the following has
19660 			 * been done prior to adding the split-packet
19661 			 * descriptor to Multidata, and we don't want to
19662 			 * repeat the process.
19663 			 */
19664 			if (add_buffer) {
19665 				ASSERT(mmd != NULL);
19666 				ASSERT(md_pbuf == NULL);
19667 				ASSERT(md_pbuf_nxt == NULL);
19668 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19669 
19670 				/*
19671 				 * Have we reached the limit?  We'd get to
19672 				 * this case when we're not chaining the
19673 				 * Multidata messages together, and since
19674 				 * we're done, terminate this loop.
19675 				 */
19676 				if (max_pld == 0)
19677 					break; /* done */
19678 
19679 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19680 					TCP_STAT(tcps, tcp_mdt_allocfail);
19681 					goto legacy_send; /* out_of_mem */
19682 				}
19683 
19684 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19685 				    zc_cap != NULL) {
19686 					if (!ip_md_zcopy_attr(mmd, NULL,
19687 					    zc_cap->ill_zerocopy_flags)) {
19688 						freeb(md_pbuf);
19689 						TCP_STAT(tcps,
19690 						    tcp_mdt_allocfail);
19691 						/* out_of_mem */
19692 						goto legacy_send;
19693 					}
19694 					zcopy = B_TRUE;
19695 				}
19696 
19697 				md_pbuf->b_rptr += base_pld_off;
19698 
19699 				/*
19700 				 * Add a payload buffer to the Multidata; this
19701 				 * operation must not fail, or otherwise our
19702 				 * logic in this routine is broken.  There
19703 				 * is no memory allocation done by the
19704 				 * routine, so any returned failure simply
19705 				 * tells us that we've done something wrong.
19706 				 *
19707 				 * A failure tells us that either we're adding
19708 				 * the same payload buffer more than once, or
19709 				 * we're trying to add more buffers than
19710 				 * allowed (max_pld calculation is wrong).
19711 				 * None of the above cases should happen, and
19712 				 * we panic because either there's horrible
19713 				 * heap corruption, and/or programming mistake.
19714 				 */
19715 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19716 				if (pbuf_idx < 0) {
19717 					cmn_err(CE_PANIC, "tcp_multisend: "
19718 					    "payload buffer logic error "
19719 					    "detected for tcp %p mmd %p "
19720 					    "pbuf %p (%d)\n",
19721 					    (void *)tcp, (void *)mmd,
19722 					    (void *)md_pbuf, pbuf_idx);
19723 				}
19724 
19725 				ASSERT(max_pld > 0);
19726 				--max_pld;
19727 				add_buffer = B_FALSE;
19728 			}
19729 
19730 			ASSERT(md_mp_head != NULL);
19731 			ASSERT(md_pbuf != NULL);
19732 			ASSERT(md_pbuf_nxt == NULL);
19733 			ASSERT(pbuf_idx != -1);
19734 			ASSERT(pbuf_idx_nxt == -1);
19735 			ASSERT(*usable > 0);
19736 
19737 			/*
19738 			 * We spillover to the next payload buffer only
19739 			 * if all of the following is true:
19740 			 *
19741 			 *   1. There is not enough data on the current
19742 			 *	payload buffer to make up `len',
19743 			 *   2. We are allowed to send `len',
19744 			 *   3. The next payload buffer length is large
19745 			 *	enough to accomodate `spill'.
19746 			 */
19747 			if ((spill = len - *tail_unsent) > 0 &&
19748 			    *usable >= len &&
19749 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19750 			    max_pld > 0) {
19751 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19752 				if (md_pbuf_nxt == NULL) {
19753 					TCP_STAT(tcps, tcp_mdt_allocfail);
19754 					goto legacy_send; /* out_of_mem */
19755 				}
19756 
19757 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19758 				    zc_cap != NULL) {
19759 					if (!ip_md_zcopy_attr(mmd, NULL,
19760 					    zc_cap->ill_zerocopy_flags)) {
19761 						freeb(md_pbuf_nxt);
19762 						TCP_STAT(tcps,
19763 						    tcp_mdt_allocfail);
19764 						/* out_of_mem */
19765 						goto legacy_send;
19766 					}
19767 					zcopy = B_TRUE;
19768 				}
19769 
19770 				/*
19771 				 * See comments above on the first call to
19772 				 * mmd_addpldbuf for explanation on the panic.
19773 				 */
19774 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19775 				if (pbuf_idx_nxt < 0) {
19776 					panic("tcp_multisend: "
19777 					    "next payload buffer logic error "
19778 					    "detected for tcp %p mmd %p "
19779 					    "pbuf %p (%d)\n",
19780 					    (void *)tcp, (void *)mmd,
19781 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19782 				}
19783 
19784 				ASSERT(max_pld > 0);
19785 				--max_pld;
19786 			} else if (spill > 0) {
19787 				/*
19788 				 * If there's a spillover, but the following
19789 				 * xmit_tail couldn't give us enough octets
19790 				 * to reach "len", then stop the current
19791 				 * Multidata creation and let the legacy
19792 				 * tcp_send() path take over.  We don't want
19793 				 * to send the tiny segment as part of this
19794 				 * Multidata for performance reasons; instead,
19795 				 * we let the legacy path deal with grouping
19796 				 * it with the subsequent small mblks.
19797 				 */
19798 				if (*usable >= len &&
19799 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19800 					max_pld = 0;
19801 					break;	/* done */
19802 				}
19803 
19804 				/*
19805 				 * We can't spillover, and we are near
19806 				 * the end of the current payload buffer,
19807 				 * so send what's left.
19808 				 */
19809 				ASSERT(*tail_unsent > 0);
19810 				len = *tail_unsent;
19811 			}
19812 
19813 			/* tail_unsent is negated if there is a spillover */
19814 			*tail_unsent -= len;
19815 			*usable -= len;
19816 			ASSERT(*usable >= 0);
19817 
19818 			if (*usable < mss)
19819 				seg_len = *usable;
19820 			/*
19821 			 * Sender SWS avoidance; see comments in tcp_send();
19822 			 * everything else is the same, except that we only
19823 			 * do this here if there is no more data to be sent
19824 			 * following the current xmit_tail.  We don't check
19825 			 * for 1-byte urgent data because we shouldn't get
19826 			 * here if TCP_URG_VALID is set.
19827 			 */
19828 			if (*usable > 0 && *usable < mss &&
19829 			    ((md_pbuf_nxt == NULL &&
19830 			    (*xmit_tail)->b_cont == NULL) ||
19831 			    (md_pbuf_nxt != NULL &&
19832 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19833 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19834 			    (tcp->tcp_unsent -
19835 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19836 			    !tcp->tcp_zero_win_probe) {
19837 				if ((*snxt + len) == tcp->tcp_snxt &&
19838 				    (*snxt + len) == tcp->tcp_suna) {
19839 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19840 				}
19841 				done = B_TRUE;
19842 			}
19843 
19844 			/*
19845 			 * Prime pump for IP's checksumming on our behalf;
19846 			 * include the adjustment for a source route if any.
19847 			 * Do this only for software/partial hardware checksum
19848 			 * offload, as this field gets zeroed out later for
19849 			 * the full hardware checksum offload case.
19850 			 */
19851 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19852 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19853 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19854 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19855 			}
19856 
19857 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19858 			*snxt += len;
19859 
19860 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19861 			/*
19862 			 * We set the PUSH bit only if TCP has no more buffered
19863 			 * data to be transmitted (or if sender SWS avoidance
19864 			 * takes place), as opposed to setting it for every
19865 			 * last packet in the burst.
19866 			 */
19867 			if (done ||
19868 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19869 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19870 
19871 			/*
19872 			 * Set FIN bit if this is our last segment; snxt
19873 			 * already includes its length, and it will not
19874 			 * be adjusted after this point.
19875 			 */
19876 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19877 			    *snxt == tcp->tcp_fss) {
19878 				if (!tcp->tcp_fin_acked) {
19879 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19880 					BUMP_MIB(&tcps->tcps_mib,
19881 					    tcpOutControl);
19882 				}
19883 				if (!tcp->tcp_fin_sent) {
19884 					tcp->tcp_fin_sent = B_TRUE;
19885 					/*
19886 					 * tcp state must be ESTABLISHED
19887 					 * in order for us to get here in
19888 					 * the first place.
19889 					 */
19890 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19891 
19892 					/*
19893 					 * Upon returning from this routine,
19894 					 * tcp_wput_data() will set tcp_snxt
19895 					 * to be equal to snxt + tcp_fin_sent.
19896 					 * This is essentially the same as
19897 					 * setting it to tcp_fss + 1.
19898 					 */
19899 				}
19900 			}
19901 
19902 			tcp->tcp_last_sent_len = (ushort_t)len;
19903 
19904 			len += tcp_hdr_len;
19905 			if (tcp->tcp_ipversion == IPV4_VERSION)
19906 				tcp->tcp_ipha->ipha_length = htons(len);
19907 			else
19908 				tcp->tcp_ip6h->ip6_plen = htons(len -
19909 				    ((char *)&tcp->tcp_ip6h[1] -
19910 				    tcp->tcp_iphc));
19911 
19912 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19913 
19914 			/* setup header fragment */
19915 			PDESC_HDR_ADD(pkt_info,
19916 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19917 			    tcp->tcp_mdt_hdr_head,		/* head room */
19918 			    tcp_hdr_len,			/* len */
19919 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19920 
19921 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19922 			    hdr_frag_sz);
19923 			ASSERT(MBLKIN(md_hbuf,
19924 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19925 			    PDESC_HDRSIZE(pkt_info)));
19926 
19927 			/* setup first payload fragment */
19928 			PDESC_PLD_INIT(pkt_info);
19929 			PDESC_PLD_SPAN_ADD(pkt_info,
19930 			    pbuf_idx,				/* index */
19931 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19932 			    tcp->tcp_last_sent_len);		/* len */
19933 
19934 			/* create a split-packet in case of a spillover */
19935 			if (md_pbuf_nxt != NULL) {
19936 				ASSERT(spill > 0);
19937 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19938 				ASSERT(!add_buffer);
19939 
19940 				md_pbuf = md_pbuf_nxt;
19941 				md_pbuf_nxt = NULL;
19942 				pbuf_idx = pbuf_idx_nxt;
19943 				pbuf_idx_nxt = -1;
19944 				cur_pld_off = spill;
19945 
19946 				/* trim out first payload fragment */
19947 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19948 
19949 				/* setup second payload fragment */
19950 				PDESC_PLD_SPAN_ADD(pkt_info,
19951 				    pbuf_idx,			/* index */
19952 				    md_pbuf->b_rptr,		/* start */
19953 				    spill);			/* len */
19954 
19955 				if ((*xmit_tail)->b_next == NULL) {
19956 					/*
19957 					 * Store the lbolt used for RTT
19958 					 * estimation. We can only record one
19959 					 * timestamp per mblk so we do it when
19960 					 * we reach the end of the payload
19961 					 * buffer.  Also we only take a new
19962 					 * timestamp sample when the previous
19963 					 * timed data from the same mblk has
19964 					 * been ack'ed.
19965 					 */
19966 					(*xmit_tail)->b_prev = local_time;
19967 					(*xmit_tail)->b_next =
19968 					    (mblk_t *)(uintptr_t)first_snxt;
19969 				}
19970 
19971 				first_snxt = *snxt - spill;
19972 
19973 				/*
19974 				 * Advance xmit_tail; usable could be 0 by
19975 				 * the time we got here, but we made sure
19976 				 * above that we would only spillover to
19977 				 * the next data block if usable includes
19978 				 * the spilled-over amount prior to the
19979 				 * subtraction.  Therefore, we are sure
19980 				 * that xmit_tail->b_cont can't be NULL.
19981 				 */
19982 				ASSERT((*xmit_tail)->b_cont != NULL);
19983 				*xmit_tail = (*xmit_tail)->b_cont;
19984 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19985 				    (uintptr_t)INT_MAX);
19986 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19987 			} else {
19988 				cur_pld_off += tcp->tcp_last_sent_len;
19989 			}
19990 
19991 			/*
19992 			 * Fill in the header using the template header, and
19993 			 * add options such as time-stamp, ECN and/or SACK,
19994 			 * as needed.
19995 			 */
19996 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19997 			    (clock_t)local_time, num_sack_blk);
19998 
19999 			/* take care of some IP header businesses */
20000 			if (af == AF_INET) {
20001 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20002 
20003 				ASSERT(OK_32PTR((uchar_t *)ipha));
20004 				ASSERT(PDESC_HDRL(pkt_info) >=
20005 				    IP_SIMPLE_HDR_LENGTH);
20006 				ASSERT(ipha->ipha_version_and_hdr_length ==
20007 				    IP_SIMPLE_HDR_VERSION);
20008 
20009 				/*
20010 				 * Assign ident value for current packet; see
20011 				 * related comments in ip_wput_ire() about the
20012 				 * contract private interface with clustering
20013 				 * group.
20014 				 */
20015 				clusterwide = B_FALSE;
20016 				if (cl_inet_ipident != NULL) {
20017 					ASSERT(cl_inet_isclusterwide != NULL);
20018 					if ((*cl_inet_isclusterwide)(stack_id,
20019 					    IPPROTO_IP, AF_INET,
20020 					    (uint8_t *)(uintptr_t)src, NULL)) {
20021 						ipha->ipha_ident =
20022 						    (*cl_inet_ipident)(stack_id,
20023 						    IPPROTO_IP, AF_INET,
20024 						    (uint8_t *)(uintptr_t)src,
20025 						    (uint8_t *)(uintptr_t)dst,
20026 						    NULL);
20027 						clusterwide = B_TRUE;
20028 					}
20029 				}
20030 
20031 				if (!clusterwide) {
20032 					ipha->ipha_ident = (uint16_t)
20033 					    atomic_add_32_nv(
20034 						&ire->ire_ident, 1);
20035 				}
20036 #ifndef _BIG_ENDIAN
20037 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20038 				    (ipha->ipha_ident >> 8);
20039 #endif
20040 			} else {
20041 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20042 
20043 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20044 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20045 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20046 				ASSERT(PDESC_HDRL(pkt_info) >=
20047 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20048 				    TCP_CHECKSUM_SIZE));
20049 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20050 
20051 				if (tcp->tcp_ip_forward_progress) {
20052 					rconfirm = B_TRUE;
20053 					tcp->tcp_ip_forward_progress = B_FALSE;
20054 				}
20055 			}
20056 
20057 			/* at least one payload span, and at most two */
20058 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20059 
20060 			/* add the packet descriptor to Multidata */
20061 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20062 			    KM_NOSLEEP)) == NULL) {
20063 				/*
20064 				 * Any failure other than ENOMEM indicates
20065 				 * that we have passed in invalid pkt_info
20066 				 * or parameters to mmd_addpdesc, which must
20067 				 * not happen.
20068 				 *
20069 				 * EINVAL is a result of failure on boundary
20070 				 * checks against the pkt_info contents.  It
20071 				 * should not happen, and we panic because
20072 				 * either there's horrible heap corruption,
20073 				 * and/or programming mistake.
20074 				 */
20075 				if (err != ENOMEM) {
20076 					cmn_err(CE_PANIC, "tcp_multisend: "
20077 					    "pdesc logic error detected for "
20078 					    "tcp %p mmd %p pinfo %p (%d)\n",
20079 					    (void *)tcp, (void *)mmd,
20080 					    (void *)pkt_info, err);
20081 				}
20082 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20083 				goto legacy_send; /* out_of_mem */
20084 			}
20085 			ASSERT(pkt != NULL);
20086 
20087 			/* calculate IP header and TCP checksums */
20088 			if (af == AF_INET) {
20089 				/* calculate pseudo-header checksum */
20090 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20091 				    (src >> 16) + (src & 0xFFFF);
20092 
20093 				/* offset for TCP header checksum */
20094 				up = IPH_TCPH_CHECKSUMP(ipha,
20095 				    IP_SIMPLE_HDR_LENGTH);
20096 			} else {
20097 				up = (uint16_t *)&ip6h->ip6_src;
20098 
20099 				/* calculate pseudo-header checksum */
20100 				cksum = up[0] + up[1] + up[2] + up[3] +
20101 				    up[4] + up[5] + up[6] + up[7] +
20102 				    up[8] + up[9] + up[10] + up[11] +
20103 				    up[12] + up[13] + up[14] + up[15];
20104 
20105 				/* Fold the initial sum */
20106 				cksum = (cksum & 0xffff) + (cksum >> 16);
20107 
20108 				up = (uint16_t *)(((uchar_t *)ip6h) +
20109 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20110 			}
20111 
20112 			if (hwcksum_flags & HCK_FULLCKSUM) {
20113 				/* clear checksum field for hardware */
20114 				*up = 0;
20115 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20116 				uint32_t sum;
20117 
20118 				/* pseudo-header checksumming */
20119 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20120 				sum = (sum & 0xFFFF) + (sum >> 16);
20121 				*up = (sum & 0xFFFF) + (sum >> 16);
20122 			} else {
20123 				/* software checksumming */
20124 				TCP_STAT(tcps, tcp_out_sw_cksum);
20125 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20126 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20127 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20128 				    cksum + IP_TCP_CSUM_COMP);
20129 				if (*up == 0)
20130 					*up = 0xFFFF;
20131 			}
20132 
20133 			/* IPv4 header checksum */
20134 			if (af == AF_INET) {
20135 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20136 					ipha->ipha_hdr_checksum = 0;
20137 				} else {
20138 					IP_HDR_CKSUM(ipha, cksum,
20139 					    ((uint32_t *)ipha)[0],
20140 					    ((uint16_t *)ipha)[4]);
20141 				}
20142 			}
20143 
20144 			if (af == AF_INET &&
20145 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20146 			    af == AF_INET6 &&
20147 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20148 				mblk_t	*mp, *mp1;
20149 				uchar_t	*hdr_rptr, *hdr_wptr;
20150 				uchar_t	*pld_rptr, *pld_wptr;
20151 
20152 				/*
20153 				 * We reconstruct a pseudo packet for the hooks
20154 				 * framework using mmd_transform_link().
20155 				 * If it is a split packet we pullup the
20156 				 * payload. FW_HOOKS expects a pkt comprising
20157 				 * of two mblks: a header and the payload.
20158 				 */
20159 				if ((mp = mmd_transform_link(pkt)) == NULL) {
20160 					TCP_STAT(tcps, tcp_mdt_allocfail);
20161 					goto legacy_send;
20162 				}
20163 
20164 				if (pkt_info->pld_cnt > 1) {
20165 					/* split payload, more than one pld */
20166 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
20167 					    NULL) {
20168 						freemsg(mp);
20169 						TCP_STAT(tcps,
20170 						    tcp_mdt_allocfail);
20171 						goto legacy_send;
20172 					}
20173 					freemsg(mp->b_cont);
20174 					mp->b_cont = mp1;
20175 				} else {
20176 					mp1 = mp->b_cont;
20177 				}
20178 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
20179 
20180 				/*
20181 				 * Remember the message offsets. This is so we
20182 				 * can detect changes when we return from the
20183 				 * FW_HOOKS callbacks.
20184 				 */
20185 				hdr_rptr = mp->b_rptr;
20186 				hdr_wptr = mp->b_wptr;
20187 				pld_rptr = mp->b_cont->b_rptr;
20188 				pld_wptr = mp->b_cont->b_wptr;
20189 
20190 				if (af == AF_INET) {
20191 					DTRACE_PROBE4(
20192 					    ip4__physical__out__start,
20193 					    ill_t *, NULL,
20194 					    ill_t *, ill,
20195 					    ipha_t *, ipha,
20196 					    mblk_t *, mp);
20197 					FW_HOOKS(
20198 					    ipst->ips_ip4_physical_out_event,
20199 					    ipst->ips_ipv4firewall_physical_out,
20200 					    NULL, ill, ipha, mp, mp, 0, ipst);
20201 					DTRACE_PROBE1(
20202 					    ip4__physical__out__end,
20203 					    mblk_t *, mp);
20204 				} else {
20205 					DTRACE_PROBE4(
20206 					    ip6__physical__out_start,
20207 					    ill_t *, NULL,
20208 					    ill_t *, ill,
20209 					    ip6_t *, ip6h,
20210 					    mblk_t *, mp);
20211 					FW_HOOKS6(
20212 					    ipst->ips_ip6_physical_out_event,
20213 					    ipst->ips_ipv6firewall_physical_out,
20214 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20215 					DTRACE_PROBE1(
20216 					    ip6__physical__out__end,
20217 					    mblk_t *, mp);
20218 				}
20219 
20220 				if (mp == NULL ||
20221 				    (mp1 = mp->b_cont) == NULL ||
20222 				    mp->b_rptr != hdr_rptr ||
20223 				    mp->b_wptr != hdr_wptr ||
20224 				    mp1->b_rptr != pld_rptr ||
20225 				    mp1->b_wptr != pld_wptr ||
20226 				    mp1->b_cont != NULL) {
20227 					/*
20228 					 * We abandon multidata processing and
20229 					 * return to the normal path, either
20230 					 * when a packet is blocked, or when
20231 					 * the boundaries of header buffer or
20232 					 * payload buffer have been changed by
20233 					 * FW_HOOKS[6].
20234 					 */
20235 					if (mp != NULL)
20236 						freemsg(mp);
20237 					goto legacy_send;
20238 				}
20239 				/* Finished with the pseudo packet */
20240 				freemsg(mp);
20241 			}
20242 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
20243 			    ill, ipha, ip6h);
20244 			/* advance header offset */
20245 			cur_hdr_off += hdr_frag_sz;
20246 
20247 			obbytes += tcp->tcp_last_sent_len;
20248 			++obsegs;
20249 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20250 		    *tail_unsent > 0);
20251 
20252 		if ((*xmit_tail)->b_next == NULL) {
20253 			/*
20254 			 * Store the lbolt used for RTT estimation. We can only
20255 			 * record one timestamp per mblk so we do it when we
20256 			 * reach the end of the payload buffer. Also we only
20257 			 * take a new timestamp sample when the previous timed
20258 			 * data from the same mblk has been ack'ed.
20259 			 */
20260 			(*xmit_tail)->b_prev = local_time;
20261 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20262 		}
20263 
20264 		ASSERT(*tail_unsent >= 0);
20265 		if (*tail_unsent > 0) {
20266 			/*
20267 			 * We got here because we broke out of the above
20268 			 * loop due to of one of the following cases:
20269 			 *
20270 			 *   1. len < adjusted MSS (i.e. small),
20271 			 *   2. Sender SWS avoidance,
20272 			 *   3. max_pld is zero.
20273 			 *
20274 			 * We are done for this Multidata, so trim our
20275 			 * last payload buffer (if any) accordingly.
20276 			 */
20277 			if (md_pbuf != NULL)
20278 				md_pbuf->b_wptr -= *tail_unsent;
20279 		} else if (*usable > 0) {
20280 			*xmit_tail = (*xmit_tail)->b_cont;
20281 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20282 			    (uintptr_t)INT_MAX);
20283 			*tail_unsent = (int)MBLKL(*xmit_tail);
20284 			add_buffer = B_TRUE;
20285 		}
20286 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20287 	    (tcp_mdt_chain || max_pld > 0));
20288 
20289 	if (md_mp_head != NULL) {
20290 		/* send everything down */
20291 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20292 		    &rconfirm);
20293 	}
20294 
20295 #undef PREP_NEW_MULTIDATA
20296 #undef PREP_NEW_PBUF
20297 #undef IPVER
20298 
20299 	IRE_REFRELE(ire);
20300 	return (0);
20301 }
20302 
20303 /*
20304  * A wrapper function for sending one or more Multidata messages down to
20305  * the module below ip; this routine does not release the reference of the
20306  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20307  */
20308 static void
20309 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20310     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20311 {
20312 	uint64_t delta;
20313 	nce_t *nce;
20314 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20315 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20316 
20317 	ASSERT(ire != NULL && ill != NULL);
20318 	ASSERT(ire->ire_stq != NULL);
20319 	ASSERT(md_mp_head != NULL);
20320 	ASSERT(rconfirm != NULL);
20321 
20322 	/* adjust MIBs and IRE timestamp */
20323 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
20324 	tcp->tcp_obsegs += obsegs;
20325 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20326 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20327 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20328 
20329 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20330 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20331 	} else {
20332 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20333 	}
20334 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20335 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20336 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20337 
20338 	ire->ire_ob_pkt_count += obsegs;
20339 	if (ire->ire_ipif != NULL)
20340 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20341 	ire->ire_last_used_time = lbolt;
20342 
20343 	if (ipst->ips_ipobs_enabled) {
20344 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
20345 		pdesc_t *dl_pkt;
20346 		pdescinfo_t pinfo;
20347 		mblk_t *nmp;
20348 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
20349 
20350 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
20351 		    (dl_pkt != NULL);
20352 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
20353 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
20354 				continue;
20355 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
20356 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
20357 			freemsg(nmp);
20358 		}
20359 	}
20360 
20361 	/* send it down */
20362 	putnext(ire->ire_stq, md_mp_head);
20363 
20364 	/* we're done for TCP/IPv4 */
20365 	if (tcp->tcp_ipversion == IPV4_VERSION)
20366 		return;
20367 
20368 	nce = ire->ire_nce;
20369 
20370 	ASSERT(nce != NULL);
20371 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20372 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20373 
20374 	/* reachability confirmation? */
20375 	if (*rconfirm) {
20376 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20377 		if (nce->nce_state != ND_REACHABLE) {
20378 			mutex_enter(&nce->nce_lock);
20379 			nce->nce_state = ND_REACHABLE;
20380 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20381 			mutex_exit(&nce->nce_lock);
20382 			(void) untimeout(nce->nce_timeout_id);
20383 			if (ip_debug > 2) {
20384 				/* ip1dbg */
20385 				pr_addr_dbg("tcp_multisend_data: state "
20386 				    "for %s changed to REACHABLE\n",
20387 				    AF_INET6, &ire->ire_addr_v6);
20388 			}
20389 		}
20390 		/* reset transport reachability confirmation */
20391 		*rconfirm = B_FALSE;
20392 	}
20393 
20394 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20395 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20396 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20397 
20398 	if (delta > (uint64_t)ill->ill_reachable_time) {
20399 		mutex_enter(&nce->nce_lock);
20400 		switch (nce->nce_state) {
20401 		case ND_REACHABLE:
20402 		case ND_STALE:
20403 			/*
20404 			 * ND_REACHABLE is identical to ND_STALE in this
20405 			 * specific case. If reachable time has expired for
20406 			 * this neighbor (delta is greater than reachable
20407 			 * time), conceptually, the neighbor cache is no
20408 			 * longer in REACHABLE state, but already in STALE
20409 			 * state.  So the correct transition here is to
20410 			 * ND_DELAY.
20411 			 */
20412 			nce->nce_state = ND_DELAY;
20413 			mutex_exit(&nce->nce_lock);
20414 			NDP_RESTART_TIMER(nce,
20415 			    ipst->ips_delay_first_probe_time);
20416 			if (ip_debug > 3) {
20417 				/* ip2dbg */
20418 				pr_addr_dbg("tcp_multisend_data: state "
20419 				    "for %s changed to DELAY\n",
20420 				    AF_INET6, &ire->ire_addr_v6);
20421 			}
20422 			break;
20423 		case ND_DELAY:
20424 		case ND_PROBE:
20425 			mutex_exit(&nce->nce_lock);
20426 			/* Timers have already started */
20427 			break;
20428 		case ND_UNREACHABLE:
20429 			/*
20430 			 * ndp timer has detected that this nce is
20431 			 * unreachable and initiated deleting this nce
20432 			 * and all its associated IREs. This is a race
20433 			 * where we found the ire before it was deleted
20434 			 * and have just sent out a packet using this
20435 			 * unreachable nce.
20436 			 */
20437 			mutex_exit(&nce->nce_lock);
20438 			break;
20439 		default:
20440 			ASSERT(0);
20441 		}
20442 	}
20443 }
20444 
20445 /*
20446  * Derived from tcp_send_data().
20447  */
20448 static void
20449 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20450     int num_lso_seg)
20451 {
20452 	ipha_t		*ipha;
20453 	mblk_t		*ire_fp_mp;
20454 	uint_t		ire_fp_mp_len;
20455 	uint32_t	hcksum_txflags = 0;
20456 	ipaddr_t	src;
20457 	ipaddr_t	dst;
20458 	uint32_t	cksum;
20459 	uint16_t	*up;
20460 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20461 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20462 
20463 	ASSERT(DB_TYPE(mp) == M_DATA);
20464 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20465 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20466 	ASSERT(tcp->tcp_connp != NULL);
20467 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20468 
20469 	ipha = (ipha_t *)mp->b_rptr;
20470 	src = ipha->ipha_src;
20471 	dst = ipha->ipha_dst;
20472 
20473 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
20474 
20475 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20476 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20477 	    num_lso_seg);
20478 #ifndef _BIG_ENDIAN
20479 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20480 #endif
20481 	if (tcp->tcp_snd_zcopy_aware) {
20482 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20483 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20484 			mp = tcp_zcopy_disable(tcp, mp);
20485 	}
20486 
20487 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20488 		ASSERT(ill->ill_hcksum_capab != NULL);
20489 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20490 	}
20491 
20492 	/*
20493 	 * Since the TCP checksum should be recalculated by h/w, we can just
20494 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20495 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20496 	 * The partial pseudo-header excludes TCP length, that was calculated
20497 	 * in tcp_send(), so to zero *up before further processing.
20498 	 */
20499 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20500 
20501 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20502 	*up = 0;
20503 
20504 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20505 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20506 
20507 	/*
20508 	 * Append LSO flags and mss to the mp.
20509 	 */
20510 	lso_info_set(mp, mss, HW_LSO);
20511 
20512 	ipha->ipha_fragment_offset_and_flags |=
20513 	    (uint32_t)htons(ire->ire_frag_flag);
20514 
20515 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20516 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20517 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20518 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20519 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20520 
20521 	UPDATE_OB_PKT_COUNT(ire);
20522 	ire->ire_last_used_time = lbolt;
20523 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20524 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20525 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20526 	    ntohs(ipha->ipha_length));
20527 
20528 	DTRACE_PROBE4(ip4__physical__out__start,
20529 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
20530 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
20531 	    ipst->ips_ipv4firewall_physical_out, NULL,
20532 	    ill, ipha, mp, mp, 0, ipst);
20533 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20534 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
20535 
20536 	if (mp != NULL) {
20537 		if (ipst->ips_ipobs_enabled) {
20538 			zoneid_t szone;
20539 
20540 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
20541 			    ipst, ALL_ZONES);
20542 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
20543 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
20544 		}
20545 
20546 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL);
20547 	}
20548 }
20549 
20550 /*
20551  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20552  * scheme, and returns one of the following:
20553  *
20554  * -1 = failed allocation.
20555  *  0 = success; burst count reached, or usable send window is too small,
20556  *      and that we'd rather wait until later before sending again.
20557  *  1 = success; we are called from tcp_multisend(), and both usable send
20558  *      window and tail_unsent are greater than the MDT threshold, and thus
20559  *      Multidata Transmit should be used instead.
20560  */
20561 static int
20562 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20563     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20564     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20565     const int mdt_thres)
20566 {
20567 	int num_burst_seg = tcp->tcp_snd_burst;
20568 	ire_t		*ire = NULL;
20569 	ill_t		*ill = NULL;
20570 	mblk_t		*ire_fp_mp = NULL;
20571 	uint_t		ire_fp_mp_len = 0;
20572 	int		num_lso_seg = 1;
20573 	uint_t		lso_usable;
20574 	boolean_t	do_lso_send = B_FALSE;
20575 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20576 
20577 	/*
20578 	 * Check LSO capability before any further work. And the similar check
20579 	 * need to be done in for(;;) loop.
20580 	 * LSO will be deployed when therer is more than one mss of available
20581 	 * data and a burst transmission is allowed.
20582 	 */
20583 	if (tcp->tcp_lso &&
20584 	    (tcp->tcp_valid_bits == 0 ||
20585 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20586 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20587 		/*
20588 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20589 		 * Double check LSO usability before going further, since the
20590 		 * underlying interface could have been changed. In case of any
20591 		 * change of LSO capability, set tcp_ire_ill_check_done to
20592 		 * B_FALSE to force to check the ILL with the next send.
20593 		 */
20594 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) &&
20595 		    tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
20596 			/*
20597 			 * Enable LSO with this transmission.
20598 			 * Since IRE has been hold in tcp_send_find_ire_ill(),
20599 			 * IRE_REFRELE(ire) should be called before return.
20600 			 */
20601 			do_lso_send = B_TRUE;
20602 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20603 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20604 			/* Round up to multiple of 4 */
20605 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20606 		} else {
20607 			tcp->tcp_lso = B_FALSE;
20608 			tcp->tcp_ire_ill_check_done = B_FALSE;
20609 			do_lso_send = B_FALSE;
20610 			ill = NULL;
20611 		}
20612 	}
20613 
20614 	for (;;) {
20615 		struct datab	*db;
20616 		tcph_t		*tcph;
20617 		uint32_t	sum;
20618 		mblk_t		*mp, *mp1;
20619 		uchar_t		*rptr;
20620 		int		len;
20621 
20622 		/*
20623 		 * If we're called by tcp_multisend(), and the amount of
20624 		 * sendable data as well as the size of current xmit_tail
20625 		 * is beyond the MDT threshold, return to the caller and
20626 		 * let the large data transmit be done using MDT.
20627 		 */
20628 		if (*usable > 0 && *usable > mdt_thres &&
20629 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20630 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20631 			ASSERT(tcp->tcp_mdt);
20632 			return (1);	/* success; do large send */
20633 		}
20634 
20635 		if (num_burst_seg == 0)
20636 			break;		/* success; burst count reached */
20637 
20638 		/*
20639 		 * Calculate the maximum payload length we can send in *one*
20640 		 * time.
20641 		 */
20642 		if (do_lso_send) {
20643 			/*
20644 			 * Check whether need to do LSO any more.
20645 			 */
20646 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20647 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
20648 				lso_usable = MIN(lso_usable,
20649 				    num_burst_seg * mss);
20650 
20651 				num_lso_seg = lso_usable / mss;
20652 				if (lso_usable % mss) {
20653 					num_lso_seg++;
20654 					tcp->tcp_last_sent_len = (ushort_t)
20655 					    (lso_usable % mss);
20656 				} else {
20657 					tcp->tcp_last_sent_len = (ushort_t)mss;
20658 				}
20659 			} else {
20660 				do_lso_send = B_FALSE;
20661 				num_lso_seg = 1;
20662 				lso_usable = mss;
20663 			}
20664 		}
20665 
20666 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
20667 
20668 		/*
20669 		 * Adjust num_burst_seg here.
20670 		 */
20671 		num_burst_seg -= num_lso_seg;
20672 
20673 		len = mss;
20674 		if (len > *usable) {
20675 			ASSERT(do_lso_send == B_FALSE);
20676 
20677 			len = *usable;
20678 			if (len <= 0) {
20679 				/* Terminate the loop */
20680 				break;	/* success; too small */
20681 			}
20682 			/*
20683 			 * Sender silly-window avoidance.
20684 			 * Ignore this if we are going to send a
20685 			 * zero window probe out.
20686 			 *
20687 			 * TODO: force data into microscopic window?
20688 			 *	==> (!pushed || (unsent > usable))
20689 			 */
20690 			if (len < (tcp->tcp_max_swnd >> 1) &&
20691 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20692 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20693 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20694 				/*
20695 				 * If the retransmit timer is not running
20696 				 * we start it so that we will retransmit
20697 				 * in the case when the the receiver has
20698 				 * decremented the window.
20699 				 */
20700 				if (*snxt == tcp->tcp_snxt &&
20701 				    *snxt == tcp->tcp_suna) {
20702 					/*
20703 					 * We are not supposed to send
20704 					 * anything.  So let's wait a little
20705 					 * bit longer before breaking SWS
20706 					 * avoidance.
20707 					 *
20708 					 * What should the value be?
20709 					 * Suggestion: MAX(init rexmit time,
20710 					 * tcp->tcp_rto)
20711 					 */
20712 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20713 				}
20714 				break;	/* success; too small */
20715 			}
20716 		}
20717 
20718 		tcph = tcp->tcp_tcph;
20719 
20720 		/*
20721 		 * The reason to adjust len here is that we need to set flags
20722 		 * and calculate checksum.
20723 		 */
20724 		if (do_lso_send)
20725 			len = lso_usable;
20726 
20727 		*usable -= len; /* Approximate - can be adjusted later */
20728 		if (*usable > 0)
20729 			tcph->th_flags[0] = TH_ACK;
20730 		else
20731 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20732 
20733 		/*
20734 		 * Prime pump for IP's checksumming on our behalf
20735 		 * Include the adjustment for a source route if any.
20736 		 */
20737 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20738 		sum = (sum >> 16) + (sum & 0xFFFF);
20739 		U16_TO_ABE16(sum, tcph->th_sum);
20740 
20741 		U32_TO_ABE32(*snxt, tcph->th_seq);
20742 
20743 		/*
20744 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20745 		 * set.  For the case when TCP_FSS_VALID is the only valid
20746 		 * bit (normal active close), branch off only when we think
20747 		 * that the FIN flag needs to be set.  Note for this case,
20748 		 * that (snxt + len) may not reflect the actual seg_len,
20749 		 * as len may be further reduced in tcp_xmit_mp().  If len
20750 		 * gets modified, we will end up here again.
20751 		 */
20752 		if (tcp->tcp_valid_bits != 0 &&
20753 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20754 		    ((*snxt + len) == tcp->tcp_fss))) {
20755 			uchar_t		*prev_rptr;
20756 			uint32_t	prev_snxt = tcp->tcp_snxt;
20757 
20758 			if (*tail_unsent == 0) {
20759 				ASSERT((*xmit_tail)->b_cont != NULL);
20760 				*xmit_tail = (*xmit_tail)->b_cont;
20761 				prev_rptr = (*xmit_tail)->b_rptr;
20762 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20763 				    (*xmit_tail)->b_rptr);
20764 			} else {
20765 				prev_rptr = (*xmit_tail)->b_rptr;
20766 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20767 				    *tail_unsent;
20768 			}
20769 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20770 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20771 			/* Restore tcp_snxt so we get amount sent right. */
20772 			tcp->tcp_snxt = prev_snxt;
20773 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20774 				/*
20775 				 * If the previous timestamp is still in use,
20776 				 * don't stomp on it.
20777 				 */
20778 				if ((*xmit_tail)->b_next == NULL) {
20779 					(*xmit_tail)->b_prev = local_time;
20780 					(*xmit_tail)->b_next =
20781 					    (mblk_t *)(uintptr_t)(*snxt);
20782 				}
20783 			} else
20784 				(*xmit_tail)->b_rptr = prev_rptr;
20785 
20786 			if (mp == NULL) {
20787 				if (ire != NULL)
20788 					IRE_REFRELE(ire);
20789 				return (-1);
20790 			}
20791 			mp1 = mp->b_cont;
20792 
20793 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
20794 				tcp->tcp_last_sent_len = (ushort_t)len;
20795 			while (mp1->b_cont) {
20796 				*xmit_tail = (*xmit_tail)->b_cont;
20797 				(*xmit_tail)->b_prev = local_time;
20798 				(*xmit_tail)->b_next =
20799 				    (mblk_t *)(uintptr_t)(*snxt);
20800 				mp1 = mp1->b_cont;
20801 			}
20802 			*snxt += len;
20803 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20804 			BUMP_LOCAL(tcp->tcp_obsegs);
20805 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20806 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20807 			tcp_send_data(tcp, q, mp);
20808 			continue;
20809 		}
20810 
20811 		*snxt += len;	/* Adjust later if we don't send all of len */
20812 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20813 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20814 
20815 		if (*tail_unsent) {
20816 			/* Are the bytes above us in flight? */
20817 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20818 			if (rptr != (*xmit_tail)->b_rptr) {
20819 				*tail_unsent -= len;
20820 				if (len <= mss) /* LSO is unusable */
20821 					tcp->tcp_last_sent_len = (ushort_t)len;
20822 				len += tcp_hdr_len;
20823 				if (tcp->tcp_ipversion == IPV4_VERSION)
20824 					tcp->tcp_ipha->ipha_length = htons(len);
20825 				else
20826 					tcp->tcp_ip6h->ip6_plen =
20827 					    htons(len -
20828 					    ((char *)&tcp->tcp_ip6h[1] -
20829 					    tcp->tcp_iphc));
20830 				mp = dupb(*xmit_tail);
20831 				if (mp == NULL) {
20832 					if (ire != NULL)
20833 						IRE_REFRELE(ire);
20834 					return (-1);	/* out_of_mem */
20835 				}
20836 				mp->b_rptr = rptr;
20837 				/*
20838 				 * If the old timestamp is no longer in use,
20839 				 * sample a new timestamp now.
20840 				 */
20841 				if ((*xmit_tail)->b_next == NULL) {
20842 					(*xmit_tail)->b_prev = local_time;
20843 					(*xmit_tail)->b_next =
20844 					    (mblk_t *)(uintptr_t)(*snxt-len);
20845 				}
20846 				goto must_alloc;
20847 			}
20848 		} else {
20849 			*xmit_tail = (*xmit_tail)->b_cont;
20850 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20851 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20852 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20853 			    (*xmit_tail)->b_rptr);
20854 		}
20855 
20856 		(*xmit_tail)->b_prev = local_time;
20857 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20858 
20859 		*tail_unsent -= len;
20860 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
20861 			tcp->tcp_last_sent_len = (ushort_t)len;
20862 
20863 		len += tcp_hdr_len;
20864 		if (tcp->tcp_ipversion == IPV4_VERSION)
20865 			tcp->tcp_ipha->ipha_length = htons(len);
20866 		else
20867 			tcp->tcp_ip6h->ip6_plen = htons(len -
20868 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20869 
20870 		mp = dupb(*xmit_tail);
20871 		if (mp == NULL) {
20872 			if (ire != NULL)
20873 				IRE_REFRELE(ire);
20874 			return (-1);	/* out_of_mem */
20875 		}
20876 
20877 		len = tcp_hdr_len;
20878 		/*
20879 		 * There are four reasons to allocate a new hdr mblk:
20880 		 *  1) The bytes above us are in use by another packet
20881 		 *  2) We don't have good alignment
20882 		 *  3) The mblk is being shared
20883 		 *  4) We don't have enough room for a header
20884 		 */
20885 		rptr = mp->b_rptr - len;
20886 		if (!OK_32PTR(rptr) ||
20887 		    ((db = mp->b_datap), db->db_ref != 2) ||
20888 		    rptr < db->db_base + ire_fp_mp_len) {
20889 			/* NOTE: we assume allocb returns an OK_32PTR */
20890 
20891 		must_alloc:;
20892 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20893 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
20894 			if (mp1 == NULL) {
20895 				freemsg(mp);
20896 				if (ire != NULL)
20897 					IRE_REFRELE(ire);
20898 				return (-1);	/* out_of_mem */
20899 			}
20900 			mp1->b_cont = mp;
20901 			mp = mp1;
20902 			/* Leave room for Link Level header */
20903 			len = tcp_hdr_len;
20904 			rptr =
20905 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
20906 			mp->b_wptr = &rptr[len];
20907 		}
20908 
20909 		/*
20910 		 * Fill in the header using the template header, and add
20911 		 * options such as time-stamp, ECN and/or SACK, as needed.
20912 		 */
20913 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20914 
20915 		mp->b_rptr = rptr;
20916 
20917 		if (*tail_unsent) {
20918 			int spill = *tail_unsent;
20919 
20920 			mp1 = mp->b_cont;
20921 			if (mp1 == NULL)
20922 				mp1 = mp;
20923 
20924 			/*
20925 			 * If we're a little short, tack on more mblks until
20926 			 * there is no more spillover.
20927 			 */
20928 			while (spill < 0) {
20929 				mblk_t *nmp;
20930 				int nmpsz;
20931 
20932 				nmp = (*xmit_tail)->b_cont;
20933 				nmpsz = MBLKL(nmp);
20934 
20935 				/*
20936 				 * Excess data in mblk; can we split it?
20937 				 * If MDT is enabled for the connection,
20938 				 * keep on splitting as this is a transient
20939 				 * send path.
20940 				 */
20941 				if (!do_lso_send && !tcp->tcp_mdt &&
20942 				    (spill + nmpsz > 0)) {
20943 					/*
20944 					 * Don't split if stream head was
20945 					 * told to break up larger writes
20946 					 * into smaller ones.
20947 					 */
20948 					if (tcp->tcp_maxpsz > 0)
20949 						break;
20950 
20951 					/*
20952 					 * Next mblk is less than SMSS/2
20953 					 * rounded up to nearest 64-byte;
20954 					 * let it get sent as part of the
20955 					 * next segment.
20956 					 */
20957 					if (tcp->tcp_localnet &&
20958 					    !tcp->tcp_cork &&
20959 					    (nmpsz < roundup((mss >> 1), 64)))
20960 						break;
20961 				}
20962 
20963 				*xmit_tail = nmp;
20964 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20965 				/* Stash for rtt use later */
20966 				(*xmit_tail)->b_prev = local_time;
20967 				(*xmit_tail)->b_next =
20968 				    (mblk_t *)(uintptr_t)(*snxt - len);
20969 				mp1->b_cont = dupb(*xmit_tail);
20970 				mp1 = mp1->b_cont;
20971 
20972 				spill += nmpsz;
20973 				if (mp1 == NULL) {
20974 					*tail_unsent = spill;
20975 					freemsg(mp);
20976 					if (ire != NULL)
20977 						IRE_REFRELE(ire);
20978 					return (-1);	/* out_of_mem */
20979 				}
20980 			}
20981 
20982 			/* Trim back any surplus on the last mblk */
20983 			if (spill >= 0) {
20984 				mp1->b_wptr -= spill;
20985 				*tail_unsent = spill;
20986 			} else {
20987 				/*
20988 				 * We did not send everything we could in
20989 				 * order to remain within the b_cont limit.
20990 				 */
20991 				*usable -= spill;
20992 				*snxt += spill;
20993 				tcp->tcp_last_sent_len += spill;
20994 				UPDATE_MIB(&tcps->tcps_mib,
20995 				    tcpOutDataBytes, spill);
20996 				/*
20997 				 * Adjust the checksum
20998 				 */
20999 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21000 				sum += spill;
21001 				sum = (sum >> 16) + (sum & 0xFFFF);
21002 				U16_TO_ABE16(sum, tcph->th_sum);
21003 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21004 					sum = ntohs(
21005 					    ((ipha_t *)rptr)->ipha_length) +
21006 					    spill;
21007 					((ipha_t *)rptr)->ipha_length =
21008 					    htons(sum);
21009 				} else {
21010 					sum = ntohs(
21011 					    ((ip6_t *)rptr)->ip6_plen) +
21012 					    spill;
21013 					((ip6_t *)rptr)->ip6_plen =
21014 					    htons(sum);
21015 				}
21016 				*tail_unsent = 0;
21017 			}
21018 		}
21019 		if (tcp->tcp_ip_forward_progress) {
21020 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21021 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21022 			tcp->tcp_ip_forward_progress = B_FALSE;
21023 		}
21024 
21025 		if (do_lso_send) {
21026 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21027 			    num_lso_seg);
21028 			tcp->tcp_obsegs += num_lso_seg;
21029 
21030 			TCP_STAT(tcps, tcp_lso_times);
21031 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21032 		} else {
21033 			tcp_send_data(tcp, q, mp);
21034 			BUMP_LOCAL(tcp->tcp_obsegs);
21035 		}
21036 	}
21037 
21038 	if (ire != NULL)
21039 		IRE_REFRELE(ire);
21040 	return (0);
21041 }
21042 
21043 /* Unlink and return any mblk that looks like it contains a MDT info */
21044 static mblk_t *
21045 tcp_mdt_info_mp(mblk_t *mp)
21046 {
21047 	mblk_t	*prev_mp;
21048 
21049 	for (;;) {
21050 		prev_mp = mp;
21051 		/* no more to process? */
21052 		if ((mp = mp->b_cont) == NULL)
21053 			break;
21054 
21055 		switch (DB_TYPE(mp)) {
21056 		case M_CTL:
21057 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21058 				continue;
21059 			ASSERT(prev_mp != NULL);
21060 			prev_mp->b_cont = mp->b_cont;
21061 			mp->b_cont = NULL;
21062 			return (mp);
21063 		default:
21064 			break;
21065 		}
21066 	}
21067 	return (mp);
21068 }
21069 
21070 /* MDT info update routine, called when IP notifies us about MDT */
21071 static void
21072 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21073 {
21074 	boolean_t prev_state;
21075 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21076 
21077 	/*
21078 	 * IP is telling us to abort MDT on this connection?  We know
21079 	 * this because the capability is only turned off when IP
21080 	 * encounters some pathological cases, e.g. link-layer change
21081 	 * where the new driver doesn't support MDT, or in situation
21082 	 * where MDT usage on the link-layer has been switched off.
21083 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21084 	 * if the link-layer doesn't support MDT, and if it does, it
21085 	 * will indicate that the feature is to be turned on.
21086 	 */
21087 	prev_state = tcp->tcp_mdt;
21088 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21089 	if (!tcp->tcp_mdt && !first) {
21090 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21091 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21092 		    (void *)tcp->tcp_connp));
21093 	}
21094 
21095 	/*
21096 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21097 	 * so disable MDT otherwise.  The checks are done here
21098 	 * and in tcp_wput_data().
21099 	 */
21100 	if (tcp->tcp_mdt &&
21101 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21102 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21103 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21104 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21105 		tcp->tcp_mdt = B_FALSE;
21106 
21107 	if (tcp->tcp_mdt) {
21108 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21109 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21110 			    "version (%d), expected version is %d",
21111 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21112 			tcp->tcp_mdt = B_FALSE;
21113 			return;
21114 		}
21115 
21116 		/*
21117 		 * We need the driver to be able to handle at least three
21118 		 * spans per packet in order for tcp MDT to be utilized.
21119 		 * The first is for the header portion, while the rest are
21120 		 * needed to handle a packet that straddles across two
21121 		 * virtually non-contiguous buffers; a typical tcp packet
21122 		 * therefore consists of only two spans.  Note that we take
21123 		 * a zero as "don't care".
21124 		 */
21125 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21126 		    mdt_capab->ill_mdt_span_limit < 3) {
21127 			tcp->tcp_mdt = B_FALSE;
21128 			return;
21129 		}
21130 
21131 		/* a zero means driver wants default value */
21132 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21133 		    tcps->tcps_mdt_max_pbufs);
21134 		if (tcp->tcp_mdt_max_pld == 0)
21135 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21136 
21137 		/* ensure 32-bit alignment */
21138 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21139 		    mdt_capab->ill_mdt_hdr_head), 4);
21140 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21141 		    mdt_capab->ill_mdt_hdr_tail), 4);
21142 
21143 		if (!first && !prev_state) {
21144 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21145 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21146 			    (void *)tcp->tcp_connp));
21147 		}
21148 	}
21149 }
21150 
21151 /* Unlink and return any mblk that looks like it contains a LSO info */
21152 static mblk_t *
21153 tcp_lso_info_mp(mblk_t *mp)
21154 {
21155 	mblk_t	*prev_mp;
21156 
21157 	for (;;) {
21158 		prev_mp = mp;
21159 		/* no more to process? */
21160 		if ((mp = mp->b_cont) == NULL)
21161 			break;
21162 
21163 		switch (DB_TYPE(mp)) {
21164 		case M_CTL:
21165 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21166 				continue;
21167 			ASSERT(prev_mp != NULL);
21168 			prev_mp->b_cont = mp->b_cont;
21169 			mp->b_cont = NULL;
21170 			return (mp);
21171 		default:
21172 			break;
21173 		}
21174 	}
21175 
21176 	return (mp);
21177 }
21178 
21179 /* LSO info update routine, called when IP notifies us about LSO */
21180 static void
21181 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21182 {
21183 	tcp_stack_t *tcps = tcp->tcp_tcps;
21184 
21185 	/*
21186 	 * IP is telling us to abort LSO on this connection?  We know
21187 	 * this because the capability is only turned off when IP
21188 	 * encounters some pathological cases, e.g. link-layer change
21189 	 * where the new NIC/driver doesn't support LSO, or in situation
21190 	 * where LSO usage on the link-layer has been switched off.
21191 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21192 	 * if the link-layer doesn't support LSO, and if it does, it
21193 	 * will indicate that the feature is to be turned on.
21194 	 */
21195 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21196 	TCP_STAT(tcps, tcp_lso_enabled);
21197 
21198 	/*
21199 	 * We currently only support LSO on simple TCP/IPv4,
21200 	 * so disable LSO otherwise.  The checks are done here
21201 	 * and in tcp_wput_data().
21202 	 */
21203 	if (tcp->tcp_lso &&
21204 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21205 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21206 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21207 		tcp->tcp_lso = B_FALSE;
21208 		TCP_STAT(tcps, tcp_lso_disabled);
21209 	} else {
21210 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21211 		    lso_capab->ill_lso_max);
21212 	}
21213 }
21214 
21215 static void
21216 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21217 {
21218 	conn_t *connp = tcp->tcp_connp;
21219 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21220 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21221 
21222 	ASSERT(ire != NULL);
21223 
21224 	/*
21225 	 * We may be in the fastpath here, and although we essentially do
21226 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21227 	 * we try to keep things as brief as possible.  After all, these
21228 	 * are only best-effort checks, and we do more thorough ones prior
21229 	 * to calling tcp_send()/tcp_multisend().
21230 	 */
21231 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21232 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21233 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21234 	    !(ire->ire_flags & RTF_MULTIRT) &&
21235 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21236 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21237 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21238 			/* Cache the result */
21239 			connp->conn_lso_ok = B_TRUE;
21240 
21241 			ASSERT(ill->ill_lso_capab != NULL);
21242 			if (!ill->ill_lso_capab->ill_lso_on) {
21243 				ill->ill_lso_capab->ill_lso_on = 1;
21244 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21245 				    "LSO for interface %s\n", (void *)connp,
21246 				    ill->ill_name));
21247 			}
21248 			tcp_lso_update(tcp, ill->ill_lso_capab);
21249 		} else if (ipst->ips_ip_multidata_outbound &&
21250 		    ILL_MDT_CAPABLE(ill)) {
21251 			/* Cache the result */
21252 			connp->conn_mdt_ok = B_TRUE;
21253 
21254 			ASSERT(ill->ill_mdt_capab != NULL);
21255 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21256 				ill->ill_mdt_capab->ill_mdt_on = 1;
21257 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21258 				    "MDT for interface %s\n", (void *)connp,
21259 				    ill->ill_name));
21260 			}
21261 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21262 		}
21263 	}
21264 
21265 	/*
21266 	 * The goal is to reduce the number of generated tcp segments by
21267 	 * setting the maxpsz multiplier to 0; this will have an affect on
21268 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21269 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21270 	 * of outbound segments and incoming ACKs, thus allowing for better
21271 	 * network and system performance.  In contrast the legacy behavior
21272 	 * may result in sending less than SMSS size, because the last mblk
21273 	 * for some packets may have more data than needed to make up SMSS,
21274 	 * and the legacy code refused to "split" it.
21275 	 *
21276 	 * We apply the new behavior on following situations:
21277 	 *
21278 	 *   1) Loopback connections,
21279 	 *   2) Connections in which the remote peer is not on local subnet,
21280 	 *   3) Local subnet connections over the bge interface (see below).
21281 	 *
21282 	 * Ideally, we would like this behavior to apply for interfaces other
21283 	 * than bge.  However, doing so would negatively impact drivers which
21284 	 * perform dynamic mapping and unmapping of DMA resources, which are
21285 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21286 	 * packet will be generated by tcp).  The bge driver does not suffer
21287 	 * from this, as it copies the mblks into pre-mapped buffers, and
21288 	 * therefore does not require more I/O resources than before.
21289 	 *
21290 	 * Otherwise, this behavior is present on all network interfaces when
21291 	 * the destination endpoint is non-local, since reducing the number
21292 	 * of packets in general is good for the network.
21293 	 *
21294 	 * TODO We need to remove this hard-coded conditional for bge once
21295 	 *	a better "self-tuning" mechanism, or a way to comprehend
21296 	 *	the driver transmit strategy is devised.  Until the solution
21297 	 *	is found and well understood, we live with this hack.
21298 	 */
21299 	if (!tcp_static_maxpsz &&
21300 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21301 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21302 		/* override the default value */
21303 		tcp->tcp_maxpsz = 0;
21304 
21305 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21306 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21307 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21308 	}
21309 
21310 	/* set the stream head parameters accordingly */
21311 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21312 }
21313 
21314 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21315 static void
21316 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21317 {
21318 	uchar_t	fval = *mp->b_rptr;
21319 	mblk_t	*tail;
21320 	queue_t	*q = tcp->tcp_wq;
21321 
21322 	/* TODO: How should flush interact with urgent data? */
21323 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21324 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21325 		/*
21326 		 * Flush only data that has not yet been put on the wire.  If
21327 		 * we flush data that we have already transmitted, life, as we
21328 		 * know it, may come to an end.
21329 		 */
21330 		tail = tcp->tcp_xmit_tail;
21331 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21332 		tcp->tcp_xmit_tail_unsent = 0;
21333 		tcp->tcp_unsent = 0;
21334 		if (tail->b_wptr != tail->b_rptr)
21335 			tail = tail->b_cont;
21336 		if (tail) {
21337 			mblk_t **excess = &tcp->tcp_xmit_head;
21338 			for (;;) {
21339 				mblk_t *mp1 = *excess;
21340 				if (mp1 == tail)
21341 					break;
21342 				tcp->tcp_xmit_tail = mp1;
21343 				tcp->tcp_xmit_last = mp1;
21344 				excess = &mp1->b_cont;
21345 			}
21346 			*excess = NULL;
21347 			tcp_close_mpp(&tail);
21348 			if (tcp->tcp_snd_zcopy_aware)
21349 				tcp_zcopy_notify(tcp);
21350 		}
21351 		/*
21352 		 * We have no unsent data, so unsent must be less than
21353 		 * tcp_xmit_lowater, so re-enable flow.
21354 		 */
21355 		mutex_enter(&tcp->tcp_non_sq_lock);
21356 		if (tcp->tcp_flow_stopped) {
21357 			tcp_clrqfull(tcp);
21358 		}
21359 		mutex_exit(&tcp->tcp_non_sq_lock);
21360 	}
21361 	/*
21362 	 * TODO: you can't just flush these, you have to increase rwnd for one
21363 	 * thing.  For another, how should urgent data interact?
21364 	 */
21365 	if (fval & FLUSHR) {
21366 		*mp->b_rptr = fval & ~FLUSHW;
21367 		/* XXX */
21368 		qreply(q, mp);
21369 		return;
21370 	}
21371 	freemsg(mp);
21372 }
21373 
21374 /*
21375  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21376  * messages.
21377  */
21378 static void
21379 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21380 {
21381 	mblk_t	*mp1;
21382 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
21383 	STRUCT_HANDLE(strbuf, sb);
21384 	queue_t *q = tcp->tcp_wq;
21385 	int	error;
21386 	uint_t	addrlen;
21387 
21388 	/* Make sure it is one of ours. */
21389 	switch (iocp->ioc_cmd) {
21390 	case TI_GETMYNAME:
21391 	case TI_GETPEERNAME:
21392 		break;
21393 	default:
21394 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21395 		return;
21396 	}
21397 	switch (mi_copy_state(q, mp, &mp1)) {
21398 	case -1:
21399 		return;
21400 	case MI_COPY_CASE(MI_COPY_IN, 1):
21401 		break;
21402 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21403 		/* Copy out the strbuf. */
21404 		mi_copyout(q, mp);
21405 		return;
21406 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21407 		/* All done. */
21408 		mi_copy_done(q, mp, 0);
21409 		return;
21410 	default:
21411 		mi_copy_done(q, mp, EPROTO);
21412 		return;
21413 	}
21414 	/* Check alignment of the strbuf */
21415 	if (!OK_32PTR(mp1->b_rptr)) {
21416 		mi_copy_done(q, mp, EINVAL);
21417 		return;
21418 	}
21419 
21420 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
21421 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21422 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21423 		mi_copy_done(q, mp, EINVAL);
21424 		return;
21425 	}
21426 
21427 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21428 	if (mp1 == NULL)
21429 		return;
21430 
21431 	switch (iocp->ioc_cmd) {
21432 	case TI_GETMYNAME:
21433 		error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen);
21434 		break;
21435 	case TI_GETPEERNAME:
21436 		error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
21437 		break;
21438 	}
21439 
21440 	if (error != 0) {
21441 		mi_copy_done(q, mp, error);
21442 	} else {
21443 		mp1->b_wptr += addrlen;
21444 		STRUCT_FSET(sb, len, addrlen);
21445 
21446 		/* Copy out the address */
21447 		mi_copyout(q, mp);
21448 	}
21449 }
21450 
21451 static void
21452 tcp_disable_direct_sockfs(tcp_t *tcp)
21453 {
21454 #ifdef	_ILP32
21455 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
21456 #else
21457 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21458 #endif
21459 	/*
21460 	 * Insert this socket into the acceptor hash.
21461 	 * We might need it for T_CONN_RES message
21462 	 */
21463 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21464 
21465 	if (tcp->tcp_fused) {
21466 		/*
21467 		 * This is a fused loopback tcp; disable
21468 		 * read-side synchronous streams interface
21469 		 * and drain any queued data.  It is okay
21470 		 * to do this for non-synchronous streams
21471 		 * fused tcp as well.
21472 		 */
21473 		tcp_fuse_disable_pair(tcp, B_FALSE);
21474 	}
21475 	tcp->tcp_issocket = B_FALSE;
21476 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
21477 }
21478 
21479 /*
21480  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21481  * messages.
21482  */
21483 /* ARGSUSED */
21484 static void
21485 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21486 {
21487 	conn_t 	*connp = (conn_t *)arg;
21488 	tcp_t	*tcp = connp->conn_tcp;
21489 	queue_t	*q = tcp->tcp_wq;
21490 	struct iocblk	*iocp;
21491 
21492 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21493 	/*
21494 	 * Try and ASSERT the minimum possible references on the
21495 	 * conn early enough. Since we are executing on write side,
21496 	 * the connection is obviously not detached and that means
21497 	 * there is a ref each for TCP and IP. Since we are behind
21498 	 * the squeue, the minimum references needed are 3. If the
21499 	 * conn is in classifier hash list, there should be an
21500 	 * extra ref for that (we check both the possibilities).
21501 	 */
21502 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21503 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21504 
21505 	iocp = (struct iocblk *)mp->b_rptr;
21506 	switch (iocp->ioc_cmd) {
21507 	case TCP_IOC_DEFAULT_Q:
21508 		/* Wants to be the default wq. */
21509 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21510 			iocp->ioc_error = EPERM;
21511 			iocp->ioc_count = 0;
21512 			mp->b_datap->db_type = M_IOCACK;
21513 			qreply(q, mp);
21514 			return;
21515 		}
21516 		tcp_def_q_set(tcp, mp);
21517 		return;
21518 	case _SIOCSOCKFALLBACK:
21519 		/*
21520 		 * Either sockmod is about to be popped and the socket
21521 		 * would now be treated as a plain stream, or a module
21522 		 * is about to be pushed so we could no longer use read-
21523 		 * side synchronous streams for fused loopback tcp.
21524 		 * Drain any queued data and disable direct sockfs
21525 		 * interface from now on.
21526 		 */
21527 		if (!tcp->tcp_issocket) {
21528 			DB_TYPE(mp) = M_IOCNAK;
21529 			iocp->ioc_error = EINVAL;
21530 		} else {
21531 			tcp_disable_direct_sockfs(tcp);
21532 			DB_TYPE(mp) = M_IOCACK;
21533 			iocp->ioc_error = 0;
21534 		}
21535 		iocp->ioc_count = 0;
21536 		iocp->ioc_rval = 0;
21537 		qreply(q, mp);
21538 		return;
21539 	}
21540 	CALL_IP_WPUT(connp, q, mp);
21541 }
21542 
21543 /*
21544  * This routine is called by tcp_wput() to handle all TPI requests.
21545  */
21546 /* ARGSUSED */
21547 static void
21548 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21549 {
21550 	conn_t 	*connp = (conn_t *)arg;
21551 	tcp_t	*tcp = connp->conn_tcp;
21552 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21553 	uchar_t *rptr;
21554 	t_scalar_t type;
21555 	cred_t *cr;
21556 
21557 	/*
21558 	 * Try and ASSERT the minimum possible references on the
21559 	 * conn early enough. Since we are executing on write side,
21560 	 * the connection is obviously not detached and that means
21561 	 * there is a ref each for TCP and IP. Since we are behind
21562 	 * the squeue, the minimum references needed are 3. If the
21563 	 * conn is in classifier hash list, there should be an
21564 	 * extra ref for that (we check both the possibilities).
21565 	 */
21566 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21567 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21568 
21569 	rptr = mp->b_rptr;
21570 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21571 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21572 		type = ((union T_primitives *)rptr)->type;
21573 		if (type == T_EXDATA_REQ) {
21574 			tcp_output_urgent(connp, mp->b_cont, arg2);
21575 			freeb(mp);
21576 		} else if (type != T_DATA_REQ) {
21577 			goto non_urgent_data;
21578 		} else {
21579 			/* TODO: options, flags, ... from user */
21580 			/* Set length to zero for reclamation below */
21581 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21582 			freeb(mp);
21583 		}
21584 		return;
21585 	} else {
21586 		if (tcp->tcp_debug) {
21587 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21588 			    "tcp_wput_proto, dropping one...");
21589 		}
21590 		freemsg(mp);
21591 		return;
21592 	}
21593 
21594 non_urgent_data:
21595 
21596 	switch ((int)tprim->type) {
21597 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21598 		/*
21599 		 * save the kssl_ent_t from the next block, and convert this
21600 		 * back to a normal bind_req.
21601 		 */
21602 		if (mp->b_cont != NULL) {
21603 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21604 
21605 			if (tcp->tcp_kssl_ent != NULL) {
21606 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21607 				    KSSL_NO_PROXY);
21608 				tcp->tcp_kssl_ent = NULL;
21609 			}
21610 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21611 			    sizeof (kssl_ent_t));
21612 			kssl_hold_ent(tcp->tcp_kssl_ent);
21613 			freemsg(mp->b_cont);
21614 			mp->b_cont = NULL;
21615 		}
21616 		tprim->type = T_BIND_REQ;
21617 
21618 	/* FALLTHROUGH */
21619 	case O_T_BIND_REQ:	/* bind request */
21620 	case T_BIND_REQ:	/* new semantics bind request */
21621 		tcp_tpi_bind(tcp, mp);
21622 		break;
21623 	case T_UNBIND_REQ:	/* unbind request */
21624 		tcp_tpi_unbind(tcp, mp);
21625 		break;
21626 	case O_T_CONN_RES:	/* old connection response XXX */
21627 	case T_CONN_RES:	/* connection response */
21628 		tcp_tli_accept(tcp, mp);
21629 		break;
21630 	case T_CONN_REQ:	/* connection request */
21631 		tcp_tpi_connect(tcp, mp);
21632 		break;
21633 	case T_DISCON_REQ:	/* disconnect request */
21634 		tcp_disconnect(tcp, mp);
21635 		break;
21636 	case T_CAPABILITY_REQ:
21637 		tcp_capability_req(tcp, mp);	/* capability request */
21638 		break;
21639 	case T_INFO_REQ:	/* information request */
21640 		tcp_info_req(tcp, mp);
21641 		break;
21642 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21643 	case T_OPTMGMT_REQ:
21644 		/*
21645 		 * Note:  no support for snmpcom_req() through new
21646 		 * T_OPTMGMT_REQ. See comments in ip.c
21647 		 */
21648 
21649 		/*
21650 		 * All Solaris components should pass a db_credp
21651 		 * for this TPI message, hence we ASSERT.
21652 		 * But in case there is some other M_PROTO that looks
21653 		 * like a TPI message sent by some other kernel
21654 		 * component, we check and return an error.
21655 		 */
21656 		cr = msg_getcred(mp, NULL);
21657 		ASSERT(cr != NULL);
21658 		if (cr == NULL) {
21659 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
21660 			return;
21661 		}
21662 		/*
21663 		 * If EINPROGRESS is returned, the request has been queued
21664 		 * for subsequent processing by ip_restart_optmgmt(), which
21665 		 * will do the CONN_DEC_REF().
21666 		 */
21667 		CONN_INC_REF(connp);
21668 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
21669 			if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21670 			    B_TRUE) != EINPROGRESS) {
21671 				CONN_DEC_REF(connp);
21672 			}
21673 		} else {
21674 			if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21675 			    B_TRUE) != EINPROGRESS) {
21676 				CONN_DEC_REF(connp);
21677 			}
21678 		}
21679 		break;
21680 
21681 	case T_UNITDATA_REQ:	/* unitdata request */
21682 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21683 		break;
21684 	case T_ORDREL_REQ:	/* orderly release req */
21685 		freemsg(mp);
21686 
21687 		if (tcp->tcp_fused)
21688 			tcp_unfuse(tcp);
21689 
21690 		if (tcp_xmit_end(tcp) != 0) {
21691 			/*
21692 			 * We were crossing FINs and got a reset from
21693 			 * the other side. Just ignore it.
21694 			 */
21695 			if (tcp->tcp_debug) {
21696 				(void) strlog(TCP_MOD_ID, 0, 1,
21697 				    SL_ERROR|SL_TRACE,
21698 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21699 				    "state %s",
21700 				    tcp_display(tcp, NULL,
21701 				    DISP_ADDR_AND_PORT));
21702 			}
21703 		}
21704 		break;
21705 	case T_ADDR_REQ:
21706 		tcp_addr_req(tcp, mp);
21707 		break;
21708 	default:
21709 		if (tcp->tcp_debug) {
21710 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21711 			    "tcp_wput_proto, bogus TPI msg, type %d",
21712 			    tprim->type);
21713 		}
21714 		/*
21715 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21716 		 * to recover.
21717 		 */
21718 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21719 		break;
21720 	}
21721 }
21722 
21723 /*
21724  * The TCP write service routine should never be called...
21725  */
21726 /* ARGSUSED */
21727 static void
21728 tcp_wsrv(queue_t *q)
21729 {
21730 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
21731 
21732 	TCP_STAT(tcps, tcp_wsrv_called);
21733 }
21734 
21735 /* Non overlapping byte exchanger */
21736 static void
21737 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21738 {
21739 	uchar_t	uch;
21740 
21741 	while (len-- > 0) {
21742 		uch = a[len];
21743 		a[len] = b[len];
21744 		b[len] = uch;
21745 	}
21746 }
21747 
21748 /*
21749  * Send out a control packet on the tcp connection specified.  This routine
21750  * is typically called where we need a simple ACK or RST generated.
21751  */
21752 static void
21753 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21754 {
21755 	uchar_t		*rptr;
21756 	tcph_t		*tcph;
21757 	ipha_t		*ipha = NULL;
21758 	ip6_t		*ip6h = NULL;
21759 	uint32_t	sum;
21760 	int		tcp_hdr_len;
21761 	int		tcp_ip_hdr_len;
21762 	mblk_t		*mp;
21763 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21764 
21765 	/*
21766 	 * Save sum for use in source route later.
21767 	 */
21768 	ASSERT(tcp != NULL);
21769 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21770 	tcp_hdr_len = tcp->tcp_hdr_len;
21771 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21772 
21773 	/* If a text string is passed in with the request, pass it to strlog. */
21774 	if (str != NULL && tcp->tcp_debug) {
21775 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21776 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21777 		    str, seq, ack, ctl);
21778 	}
21779 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
21780 	    BPRI_MED);
21781 	if (mp == NULL) {
21782 		return;
21783 	}
21784 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
21785 	mp->b_rptr = rptr;
21786 	mp->b_wptr = &rptr[tcp_hdr_len];
21787 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21788 
21789 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21790 		ipha = (ipha_t *)rptr;
21791 		ipha->ipha_length = htons(tcp_hdr_len);
21792 	} else {
21793 		ip6h = (ip6_t *)rptr;
21794 		ASSERT(tcp != NULL);
21795 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21796 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21797 	}
21798 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21799 	tcph->th_flags[0] = (uint8_t)ctl;
21800 	if (ctl & TH_RST) {
21801 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
21802 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
21803 		/*
21804 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21805 		 */
21806 		if (tcp->tcp_snd_ts_ok &&
21807 		    tcp->tcp_state > TCPS_SYN_SENT) {
21808 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21809 			*(mp->b_wptr) = TCPOPT_EOL;
21810 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21811 				ipha->ipha_length = htons(tcp_hdr_len -
21812 				    TCPOPT_REAL_TS_LEN);
21813 			} else {
21814 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21815 				    TCPOPT_REAL_TS_LEN);
21816 			}
21817 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21818 			sum -= TCPOPT_REAL_TS_LEN;
21819 		}
21820 	}
21821 	if (ctl & TH_ACK) {
21822 		if (tcp->tcp_snd_ts_ok) {
21823 			U32_TO_BE32(lbolt,
21824 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21825 			U32_TO_BE32(tcp->tcp_ts_recent,
21826 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21827 		}
21828 
21829 		/* Update the latest receive window size in TCP header. */
21830 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21831 		    tcph->th_win);
21832 		tcp->tcp_rack = ack;
21833 		tcp->tcp_rack_cnt = 0;
21834 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
21835 	}
21836 	BUMP_LOCAL(tcp->tcp_obsegs);
21837 	U32_TO_BE32(seq, tcph->th_seq);
21838 	U32_TO_BE32(ack, tcph->th_ack);
21839 	/*
21840 	 * Include the adjustment for a source route if any.
21841 	 */
21842 	sum = (sum >> 16) + (sum & 0xFFFF);
21843 	U16_TO_BE16(sum, tcph->th_sum);
21844 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21845 }
21846 
21847 /*
21848  * If this routine returns B_TRUE, TCP can generate a RST in response
21849  * to a segment.  If it returns B_FALSE, TCP should not respond.
21850  */
21851 static boolean_t
21852 tcp_send_rst_chk(tcp_stack_t *tcps)
21853 {
21854 	clock_t	now;
21855 
21856 	/*
21857 	 * TCP needs to protect itself from generating too many RSTs.
21858 	 * This can be a DoS attack by sending us random segments
21859 	 * soliciting RSTs.
21860 	 *
21861 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21862 	 * in each 1 second interval.  In this way, TCP still generate
21863 	 * RSTs in normal cases but when under attack, the impact is
21864 	 * limited.
21865 	 */
21866 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
21867 		now = lbolt;
21868 		/* lbolt can wrap around. */
21869 		if ((tcps->tcps_last_rst_intrvl > now) ||
21870 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
21871 		    1*SECONDS)) {
21872 			tcps->tcps_last_rst_intrvl = now;
21873 			tcps->tcps_rst_cnt = 1;
21874 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
21875 			return (B_FALSE);
21876 		}
21877 	}
21878 	return (B_TRUE);
21879 }
21880 
21881 /*
21882  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21883  */
21884 static void
21885 tcp_ip_ire_mark_advice(tcp_t *tcp)
21886 {
21887 	mblk_t *mp;
21888 	ipic_t *ipic;
21889 
21890 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21891 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21892 		    &ipic);
21893 	} else {
21894 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21895 		    &ipic);
21896 	}
21897 	if (mp == NULL)
21898 		return;
21899 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21900 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21901 }
21902 
21903 /*
21904  * Return an IP advice ioctl mblk and set ipic to be the pointer
21905  * to the advice structure.
21906  */
21907 static mblk_t *
21908 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21909 {
21910 	struct iocblk *ioc;
21911 	mblk_t *mp, *mp1;
21912 
21913 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21914 	if (mp == NULL)
21915 		return (NULL);
21916 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21917 	*ipic = (ipic_t *)mp->b_rptr;
21918 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21919 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21920 
21921 	bcopy(addr, *ipic + 1, addr_len);
21922 
21923 	(*ipic)->ipic_addr_length = addr_len;
21924 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21925 
21926 	mp1 = mkiocb(IP_IOCTL);
21927 	if (mp1 == NULL) {
21928 		freemsg(mp);
21929 		return (NULL);
21930 	}
21931 	mp1->b_cont = mp;
21932 	ioc = (struct iocblk *)mp1->b_rptr;
21933 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21934 
21935 	return (mp1);
21936 }
21937 
21938 /*
21939  * Generate a reset based on an inbound packet, connp is set by caller
21940  * when RST is in response to an unexpected inbound packet for which
21941  * there is active tcp state in the system.
21942  *
21943  * IPSEC NOTE : Try to send the reply with the same protection as it came
21944  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21945  * the packet will go out at the same level of protection as it came in by
21946  * converting the IPSEC_IN to IPSEC_OUT.
21947  */
21948 static void
21949 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21950     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
21951     tcp_stack_t *tcps, conn_t *connp)
21952 {
21953 	ipha_t		*ipha = NULL;
21954 	ip6_t		*ip6h = NULL;
21955 	ushort_t	len;
21956 	tcph_t		*tcph;
21957 	int		i;
21958 	mblk_t		*ipsec_mp;
21959 	boolean_t	mctl_present;
21960 	ipic_t		*ipic;
21961 	ipaddr_t	v4addr;
21962 	in6_addr_t	v6addr;
21963 	int		addr_len;
21964 	void		*addr;
21965 	queue_t		*q = tcps->tcps_g_q;
21966 	tcp_t		*tcp;
21967 	cred_t		*cr;
21968 	mblk_t		*nmp;
21969 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21970 
21971 	if (tcps->tcps_g_q == NULL) {
21972 		/*
21973 		 * For non-zero stackids the default queue isn't created
21974 		 * until the first open, thus there can be a need to send
21975 		 * a reset before then. But we can't do that, hence we just
21976 		 * drop the packet. Later during boot, when the default queue
21977 		 * has been setup, a retransmitted packet from the peer
21978 		 * will result in a reset.
21979 		 */
21980 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
21981 		    GLOBAL_NETSTACKID);
21982 		freemsg(mp);
21983 		return;
21984 	}
21985 
21986 	if (connp != NULL)
21987 		tcp = connp->conn_tcp;
21988 	else
21989 		tcp = Q_TO_TCP(q);
21990 
21991 	if (!tcp_send_rst_chk(tcps)) {
21992 		tcps->tcps_rst_unsent++;
21993 		freemsg(mp);
21994 		return;
21995 	}
21996 
21997 	if (mp->b_datap->db_type == M_CTL) {
21998 		ipsec_mp = mp;
21999 		mp = mp->b_cont;
22000 		mctl_present = B_TRUE;
22001 	} else {
22002 		ipsec_mp = mp;
22003 		mctl_present = B_FALSE;
22004 	}
22005 
22006 	if (str && q && tcps->tcps_dbg) {
22007 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22008 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22009 		    "flags 0x%x",
22010 		    str, seq, ack, ctl);
22011 	}
22012 	if (mp->b_datap->db_ref != 1) {
22013 		mblk_t *mp1 = copyb(mp);
22014 		freemsg(mp);
22015 		mp = mp1;
22016 		if (!mp) {
22017 			if (mctl_present)
22018 				freeb(ipsec_mp);
22019 			return;
22020 		} else {
22021 			if (mctl_present) {
22022 				ipsec_mp->b_cont = mp;
22023 			} else {
22024 				ipsec_mp = mp;
22025 			}
22026 		}
22027 	} else if (mp->b_cont) {
22028 		freemsg(mp->b_cont);
22029 		mp->b_cont = NULL;
22030 	}
22031 	/*
22032 	 * We skip reversing source route here.
22033 	 * (for now we replace all IP options with EOL)
22034 	 */
22035 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22036 		ipha = (ipha_t *)mp->b_rptr;
22037 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22038 			mp->b_rptr[i] = IPOPT_EOL;
22039 		/*
22040 		 * Make sure that src address isn't flagrantly invalid.
22041 		 * Not all broadcast address checking for the src address
22042 		 * is possible, since we don't know the netmask of the src
22043 		 * addr.  No check for destination address is done, since
22044 		 * IP will not pass up a packet with a broadcast dest
22045 		 * address to TCP.  Similar checks are done below for IPv6.
22046 		 */
22047 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22048 		    CLASSD(ipha->ipha_src)) {
22049 			freemsg(ipsec_mp);
22050 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22051 			return;
22052 		}
22053 	} else {
22054 		ip6h = (ip6_t *)mp->b_rptr;
22055 
22056 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22057 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22058 			freemsg(ipsec_mp);
22059 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22060 			return;
22061 		}
22062 
22063 		/* Remove any extension headers assuming partial overlay */
22064 		if (ip_hdr_len > IPV6_HDR_LEN) {
22065 			uint8_t *to;
22066 
22067 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22068 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22069 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22070 			ip_hdr_len = IPV6_HDR_LEN;
22071 			ip6h = (ip6_t *)mp->b_rptr;
22072 			ip6h->ip6_nxt = IPPROTO_TCP;
22073 		}
22074 	}
22075 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22076 	if (tcph->th_flags[0] & TH_RST) {
22077 		freemsg(ipsec_mp);
22078 		return;
22079 	}
22080 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22081 	len = ip_hdr_len + sizeof (tcph_t);
22082 	mp->b_wptr = &mp->b_rptr[len];
22083 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22084 		ipha->ipha_length = htons(len);
22085 		/* Swap addresses */
22086 		v4addr = ipha->ipha_src;
22087 		ipha->ipha_src = ipha->ipha_dst;
22088 		ipha->ipha_dst = v4addr;
22089 		ipha->ipha_ident = 0;
22090 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22091 		addr_len = IP_ADDR_LEN;
22092 		addr = &v4addr;
22093 	} else {
22094 		/* No ip6i_t in this case */
22095 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22096 		/* Swap addresses */
22097 		v6addr = ip6h->ip6_src;
22098 		ip6h->ip6_src = ip6h->ip6_dst;
22099 		ip6h->ip6_dst = v6addr;
22100 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22101 		addr_len = IPV6_ADDR_LEN;
22102 		addr = &v6addr;
22103 	}
22104 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22105 	U32_TO_BE32(ack, tcph->th_ack);
22106 	U32_TO_BE32(seq, tcph->th_seq);
22107 	U16_TO_BE16(0, tcph->th_win);
22108 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22109 	tcph->th_flags[0] = (uint8_t)ctl;
22110 	if (ctl & TH_RST) {
22111 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22112 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22113 	}
22114 
22115 	/* IP trusts us to set up labels when required. */
22116 	if (is_system_labeled() && (cr = msg_getcred(mp, NULL)) != NULL &&
22117 	    crgetlabel(cr) != NULL) {
22118 		int err;
22119 
22120 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22121 			err = tsol_check_label(cr, &mp,
22122 			    tcp->tcp_connp->conn_mac_exempt,
22123 			    tcps->tcps_netstack->netstack_ip);
22124 		else
22125 			err = tsol_check_label_v6(cr, &mp,
22126 			    tcp->tcp_connp->conn_mac_exempt,
22127 			    tcps->tcps_netstack->netstack_ip);
22128 		if (mctl_present)
22129 			ipsec_mp->b_cont = mp;
22130 		else
22131 			ipsec_mp = mp;
22132 		if (err != 0) {
22133 			freemsg(ipsec_mp);
22134 			return;
22135 		}
22136 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22137 			ipha = (ipha_t *)mp->b_rptr;
22138 		} else {
22139 			ip6h = (ip6_t *)mp->b_rptr;
22140 		}
22141 	}
22142 
22143 	if (mctl_present) {
22144 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22145 
22146 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22147 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22148 			return;
22149 		}
22150 	}
22151 	if (zoneid == ALL_ZONES)
22152 		zoneid = GLOBAL_ZONEID;
22153 
22154 	/* Add the zoneid so ip_output routes it properly */
22155 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22156 		freemsg(ipsec_mp);
22157 		return;
22158 	}
22159 	ipsec_mp = nmp;
22160 
22161 	/*
22162 	 * NOTE:  one might consider tracing a TCP packet here, but
22163 	 * this function has no active TCP state and no tcp structure
22164 	 * that has a trace buffer.  If we traced here, we would have
22165 	 * to keep a local trace buffer in tcp_record_trace().
22166 	 *
22167 	 * TSol note: The mblk that contains the incoming packet was
22168 	 * reused by tcp_xmit_listener_reset, so it already contains
22169 	 * the right credentials and we don't need to call mblk_setcred.
22170 	 * Also the conn's cred is not right since it is associated
22171 	 * with tcps_g_q.
22172 	 */
22173 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22174 
22175 	/*
22176 	 * Tell IP to mark the IRE used for this destination temporary.
22177 	 * This way, we can limit our exposure to DoS attack because IP
22178 	 * creates an IRE for each destination.  If there are too many,
22179 	 * the time to do any routing lookup will be extremely long.  And
22180 	 * the lookup can be in interrupt context.
22181 	 *
22182 	 * Note that in normal circumstances, this marking should not
22183 	 * affect anything.  It would be nice if only 1 message is
22184 	 * needed to inform IP that the IRE created for this RST should
22185 	 * not be added to the cache table.  But there is currently
22186 	 * not such communication mechanism between TCP and IP.  So
22187 	 * the best we can do now is to send the advice ioctl to IP
22188 	 * to mark the IRE temporary.
22189 	 */
22190 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22191 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22192 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22193 	}
22194 }
22195 
22196 /*
22197  * Initiate closedown sequence on an active connection.  (May be called as
22198  * writer.)  Return value zero for OK return, non-zero for error return.
22199  */
22200 static int
22201 tcp_xmit_end(tcp_t *tcp)
22202 {
22203 	ipic_t	*ipic;
22204 	mblk_t	*mp;
22205 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22206 
22207 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22208 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22209 		/*
22210 		 * Invalid state, only states TCPS_SYN_RCVD,
22211 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22212 		 */
22213 		return (-1);
22214 	}
22215 
22216 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22217 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22218 	/*
22219 	 * If there is nothing more unsent, send the FIN now.
22220 	 * Otherwise, it will go out with the last segment.
22221 	 */
22222 	if (tcp->tcp_unsent == 0) {
22223 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22224 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22225 
22226 		if (mp) {
22227 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22228 		} else {
22229 			/*
22230 			 * Couldn't allocate msg.  Pretend we got it out.
22231 			 * Wait for rexmit timeout.
22232 			 */
22233 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22234 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22235 		}
22236 
22237 		/*
22238 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22239 		 * changed.
22240 		 */
22241 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22242 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22243 		}
22244 	} else {
22245 		/*
22246 		 * If tcp->tcp_cork is set, then the data will not get sent,
22247 		 * so we have to check that and unset it first.
22248 		 */
22249 		if (tcp->tcp_cork)
22250 			tcp->tcp_cork = B_FALSE;
22251 		tcp_wput_data(tcp, NULL, B_FALSE);
22252 	}
22253 
22254 	/*
22255 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22256 	 * is 0, don't update the cache.
22257 	 */
22258 	if (tcps->tcps_rtt_updates == 0 ||
22259 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22260 		return (0);
22261 
22262 	/*
22263 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22264 	 * different from the destination.
22265 	 */
22266 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22267 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22268 			return (0);
22269 		}
22270 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22271 		    &ipic);
22272 	} else {
22273 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22274 		    &tcp->tcp_ip6h->ip6_dst))) {
22275 			return (0);
22276 		}
22277 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22278 		    &ipic);
22279 	}
22280 
22281 	/* Record route attributes in the IRE for use by future connections. */
22282 	if (mp == NULL)
22283 		return (0);
22284 
22285 	/*
22286 	 * We do not have a good algorithm to update ssthresh at this time.
22287 	 * So don't do any update.
22288 	 */
22289 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22290 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22291 
22292 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22293 
22294 	return (0);
22295 }
22296 
22297 /* ARGSUSED */
22298 void
22299 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2)
22300 {
22301 	conn_t *connp = (conn_t *)arg;
22302 	mblk_t *mp1;
22303 	tcp_t *tcp = connp->conn_tcp;
22304 	tcp_xmit_reset_event_t *eventp;
22305 
22306 	ASSERT(mp->b_datap->db_type == M_PROTO &&
22307 	    MBLKL(mp) == sizeof (tcp_xmit_reset_event_t));
22308 
22309 	if (tcp->tcp_state != TCPS_LISTEN) {
22310 		freemsg(mp);
22311 		return;
22312 	}
22313 
22314 	mp1 = mp->b_cont;
22315 	mp->b_cont = NULL;
22316 	eventp = (tcp_xmit_reset_event_t *)mp->b_rptr;
22317 	ASSERT(eventp->tcp_xre_tcps->tcps_netstack ==
22318 	    connp->conn_netstack);
22319 
22320 	tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen,
22321 	    eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp);
22322 	freemsg(mp);
22323 }
22324 
22325 /*
22326  * Generate a "no listener here" RST in response to an "unknown" segment.
22327  * connp is set by caller when RST is in response to an unexpected
22328  * inbound packet for which there is active tcp state in the system.
22329  * Note that we are reusing the incoming mp to construct the outgoing RST.
22330  */
22331 void
22332 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22333     tcp_stack_t *tcps, conn_t *connp)
22334 {
22335 	uchar_t		*rptr;
22336 	uint32_t	seg_len;
22337 	tcph_t		*tcph;
22338 	uint32_t	seg_seq;
22339 	uint32_t	seg_ack;
22340 	uint_t		flags;
22341 	mblk_t		*ipsec_mp;
22342 	ipha_t 		*ipha;
22343 	ip6_t 		*ip6h;
22344 	boolean_t	mctl_present = B_FALSE;
22345 	boolean_t	check = B_TRUE;
22346 	boolean_t	policy_present;
22347 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22348 
22349 	TCP_STAT(tcps, tcp_no_listener);
22350 
22351 	ipsec_mp = mp;
22352 
22353 	if (mp->b_datap->db_type == M_CTL) {
22354 		ipsec_in_t *ii;
22355 
22356 		mctl_present = B_TRUE;
22357 		mp = mp->b_cont;
22358 
22359 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22360 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22361 		if (ii->ipsec_in_dont_check) {
22362 			check = B_FALSE;
22363 			if (!ii->ipsec_in_secure) {
22364 				freeb(ipsec_mp);
22365 				mctl_present = B_FALSE;
22366 				ipsec_mp = mp;
22367 			}
22368 		}
22369 	}
22370 
22371 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22372 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22373 		ipha = (ipha_t *)mp->b_rptr;
22374 		ip6h = NULL;
22375 	} else {
22376 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22377 		ipha = NULL;
22378 		ip6h = (ip6_t *)mp->b_rptr;
22379 	}
22380 
22381 	if (check && policy_present) {
22382 		/*
22383 		 * The conn_t parameter is NULL because we already know
22384 		 * nobody's home.
22385 		 */
22386 		ipsec_mp = ipsec_check_global_policy(
22387 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22388 		    tcps->tcps_netstack);
22389 		if (ipsec_mp == NULL)
22390 			return;
22391 	}
22392 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22393 		DTRACE_PROBE2(
22394 		    tx__ip__log__error__nolistener__tcp,
22395 		    char *, "Could not reply with RST to mp(1)",
22396 		    mblk_t *, mp);
22397 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22398 		freemsg(ipsec_mp);
22399 		return;
22400 	}
22401 
22402 	rptr = mp->b_rptr;
22403 
22404 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22405 	seg_seq = BE32_TO_U32(tcph->th_seq);
22406 	seg_ack = BE32_TO_U32(tcph->th_ack);
22407 	flags = tcph->th_flags[0];
22408 
22409 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22410 	if (flags & TH_RST) {
22411 		freemsg(ipsec_mp);
22412 	} else if (flags & TH_ACK) {
22413 		tcp_xmit_early_reset("no tcp, reset",
22414 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22415 		    connp);
22416 	} else {
22417 		if (flags & TH_SYN) {
22418 			seg_len++;
22419 		} else {
22420 			/*
22421 			 * Here we violate the RFC.  Note that a normal
22422 			 * TCP will never send a segment without the ACK
22423 			 * flag, except for RST or SYN segment.  This
22424 			 * segment is neither.  Just drop it on the
22425 			 * floor.
22426 			 */
22427 			freemsg(ipsec_mp);
22428 			tcps->tcps_rst_unsent++;
22429 			return;
22430 		}
22431 
22432 		tcp_xmit_early_reset("no tcp, reset/ack",
22433 		    ipsec_mp, 0, seg_seq + seg_len,
22434 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22435 	}
22436 }
22437 
22438 /*
22439  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22440  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22441  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22442  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22443  * otherwise it will dup partial mblks.)
22444  * Otherwise, an appropriate ACK packet will be generated.  This
22445  * routine is not usually called to send new data for the first time.  It
22446  * is mostly called out of the timer for retransmits, and to generate ACKs.
22447  *
22448  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22449  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22450  * of the original mblk chain will be returned in *offset and *end_mp.
22451  */
22452 mblk_t *
22453 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22454     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22455     boolean_t rexmit)
22456 {
22457 	int	data_length;
22458 	int32_t	off = 0;
22459 	uint_t	flags;
22460 	mblk_t	*mp1;
22461 	mblk_t	*mp2;
22462 	uchar_t	*rptr;
22463 	tcph_t	*tcph;
22464 	int32_t	num_sack_blk = 0;
22465 	int32_t	sack_opt_len = 0;
22466 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22467 
22468 	/* Allocate for our maximum TCP header + link-level */
22469 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22470 	    tcps->tcps_wroff_xtra, BPRI_MED);
22471 	if (!mp1)
22472 		return (NULL);
22473 	data_length = 0;
22474 
22475 	/*
22476 	 * Note that tcp_mss has been adjusted to take into account the
22477 	 * timestamp option if applicable.  Because SACK options do not
22478 	 * appear in every TCP segments and they are of variable lengths,
22479 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22480 	 * the actual segment length when we need to send a segment which
22481 	 * includes SACK options.
22482 	 */
22483 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22484 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22485 		    tcp->tcp_num_sack_blk);
22486 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22487 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22488 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22489 			max_to_send -= sack_opt_len;
22490 	}
22491 
22492 	if (offset != NULL) {
22493 		off = *offset;
22494 		/* We use offset as an indicator that end_mp is not NULL. */
22495 		*end_mp = NULL;
22496 	}
22497 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22498 		/* This could be faster with cooperation from downstream */
22499 		if (mp2 != mp1 && !sendall &&
22500 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22501 		    max_to_send)
22502 			/*
22503 			 * Don't send the next mblk since the whole mblk
22504 			 * does not fit.
22505 			 */
22506 			break;
22507 		mp2->b_cont = dupb(mp);
22508 		mp2 = mp2->b_cont;
22509 		if (!mp2) {
22510 			freemsg(mp1);
22511 			return (NULL);
22512 		}
22513 		mp2->b_rptr += off;
22514 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22515 		    (uintptr_t)INT_MAX);
22516 
22517 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22518 		if (data_length > max_to_send) {
22519 			mp2->b_wptr -= data_length - max_to_send;
22520 			data_length = max_to_send;
22521 			off = mp2->b_wptr - mp->b_rptr;
22522 			break;
22523 		} else {
22524 			off = 0;
22525 		}
22526 	}
22527 	if (offset != NULL) {
22528 		*offset = off;
22529 		*end_mp = mp;
22530 	}
22531 	if (seg_len != NULL) {
22532 		*seg_len = data_length;
22533 	}
22534 
22535 	/* Update the latest receive window size in TCP header. */
22536 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22537 	    tcp->tcp_tcph->th_win);
22538 
22539 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22540 	mp1->b_rptr = rptr;
22541 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22542 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22543 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22544 	U32_TO_ABE32(seq, tcph->th_seq);
22545 
22546 	/*
22547 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22548 	 * that this function was called from tcp_wput_data. Thus, when called
22549 	 * to retransmit data the setting of the PUSH bit may appear some
22550 	 * what random in that it might get set when it should not. This
22551 	 * should not pose any performance issues.
22552 	 */
22553 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22554 	    tcp->tcp_unsent == data_length)) {
22555 		flags = TH_ACK | TH_PUSH;
22556 	} else {
22557 		flags = TH_ACK;
22558 	}
22559 
22560 	if (tcp->tcp_ecn_ok) {
22561 		if (tcp->tcp_ecn_echo_on)
22562 			flags |= TH_ECE;
22563 
22564 		/*
22565 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22566 		 * There is no TCP flow control for non-data segments, and
22567 		 * only data segment is transmitted reliably.
22568 		 */
22569 		if (data_length > 0 && !rexmit) {
22570 			SET_ECT(tcp, rptr);
22571 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22572 				flags |= TH_CWR;
22573 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22574 			}
22575 		}
22576 	}
22577 
22578 	if (tcp->tcp_valid_bits) {
22579 		uint32_t u1;
22580 
22581 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22582 		    seq == tcp->tcp_iss) {
22583 			uchar_t	*wptr;
22584 
22585 			/*
22586 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22587 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22588 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22589 			 * our SYN is not ack'ed but the app closes this
22590 			 * TCP connection.
22591 			 */
22592 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22593 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22594 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22595 
22596 			/*
22597 			 * Tack on the MSS option.  It is always needed
22598 			 * for both active and passive open.
22599 			 *
22600 			 * MSS option value should be interface MTU - MIN
22601 			 * TCP/IP header according to RFC 793 as it means
22602 			 * the maximum segment size TCP can receive.  But
22603 			 * to get around some broken middle boxes/end hosts
22604 			 * out there, we allow the option value to be the
22605 			 * same as the MSS option size on the peer side.
22606 			 * In this way, the other side will not send
22607 			 * anything larger than they can receive.
22608 			 *
22609 			 * Note that for SYN_SENT state, the ndd param
22610 			 * tcp_use_smss_as_mss_opt has no effect as we
22611 			 * don't know the peer's MSS option value. So
22612 			 * the only case we need to take care of is in
22613 			 * SYN_RCVD state, which is done later.
22614 			 */
22615 			wptr = mp1->b_wptr;
22616 			wptr[0] = TCPOPT_MAXSEG;
22617 			wptr[1] = TCPOPT_MAXSEG_LEN;
22618 			wptr += 2;
22619 			u1 = tcp->tcp_if_mtu -
22620 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22621 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22622 			    TCP_MIN_HEADER_LENGTH;
22623 			U16_TO_BE16(u1, wptr);
22624 			mp1->b_wptr = wptr + 2;
22625 			/* Update the offset to cover the additional word */
22626 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22627 
22628 			/*
22629 			 * Note that the following way of filling in
22630 			 * TCP options are not optimal.  Some NOPs can
22631 			 * be saved.  But there is no need at this time
22632 			 * to optimize it.  When it is needed, we will
22633 			 * do it.
22634 			 */
22635 			switch (tcp->tcp_state) {
22636 			case TCPS_SYN_SENT:
22637 				flags = TH_SYN;
22638 
22639 				if (tcp->tcp_snd_ts_ok) {
22640 					uint32_t llbolt = (uint32_t)lbolt;
22641 
22642 					wptr = mp1->b_wptr;
22643 					wptr[0] = TCPOPT_NOP;
22644 					wptr[1] = TCPOPT_NOP;
22645 					wptr[2] = TCPOPT_TSTAMP;
22646 					wptr[3] = TCPOPT_TSTAMP_LEN;
22647 					wptr += 4;
22648 					U32_TO_BE32(llbolt, wptr);
22649 					wptr += 4;
22650 					ASSERT(tcp->tcp_ts_recent == 0);
22651 					U32_TO_BE32(0L, wptr);
22652 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22653 					tcph->th_offset_and_rsrvd[0] +=
22654 					    (3 << 4);
22655 				}
22656 
22657 				/*
22658 				 * Set up all the bits to tell other side
22659 				 * we are ECN capable.
22660 				 */
22661 				if (tcp->tcp_ecn_ok) {
22662 					flags |= (TH_ECE | TH_CWR);
22663 				}
22664 				break;
22665 			case TCPS_SYN_RCVD:
22666 				flags |= TH_SYN;
22667 
22668 				/*
22669 				 * Reset the MSS option value to be SMSS
22670 				 * We should probably add back the bytes
22671 				 * for timestamp option and IPsec.  We
22672 				 * don't do that as this is a workaround
22673 				 * for broken middle boxes/end hosts, it
22674 				 * is better for us to be more cautious.
22675 				 * They may not take these things into
22676 				 * account in their SMSS calculation.  Thus
22677 				 * the peer's calculated SMSS may be smaller
22678 				 * than what it can be.  This should be OK.
22679 				 */
22680 				if (tcps->tcps_use_smss_as_mss_opt) {
22681 					u1 = tcp->tcp_mss;
22682 					U16_TO_BE16(u1, wptr);
22683 				}
22684 
22685 				/*
22686 				 * If the other side is ECN capable, reply
22687 				 * that we are also ECN capable.
22688 				 */
22689 				if (tcp->tcp_ecn_ok)
22690 					flags |= TH_ECE;
22691 				break;
22692 			default:
22693 				/*
22694 				 * The above ASSERT() makes sure that this
22695 				 * must be FIN-WAIT-1 state.  Our SYN has
22696 				 * not been ack'ed so retransmit it.
22697 				 */
22698 				flags |= TH_SYN;
22699 				break;
22700 			}
22701 
22702 			if (tcp->tcp_snd_ws_ok) {
22703 				wptr = mp1->b_wptr;
22704 				wptr[0] =  TCPOPT_NOP;
22705 				wptr[1] =  TCPOPT_WSCALE;
22706 				wptr[2] =  TCPOPT_WS_LEN;
22707 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22708 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22709 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22710 			}
22711 
22712 			if (tcp->tcp_snd_sack_ok) {
22713 				wptr = mp1->b_wptr;
22714 				wptr[0] = TCPOPT_NOP;
22715 				wptr[1] = TCPOPT_NOP;
22716 				wptr[2] = TCPOPT_SACK_PERMITTED;
22717 				wptr[3] = TCPOPT_SACK_OK_LEN;
22718 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22719 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22720 			}
22721 
22722 			/* allocb() of adequate mblk assures space */
22723 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22724 			    (uintptr_t)INT_MAX);
22725 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22726 			/*
22727 			 * Get IP set to checksum on our behalf
22728 			 * Include the adjustment for a source route if any.
22729 			 */
22730 			u1 += tcp->tcp_sum;
22731 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22732 			U16_TO_BE16(u1, tcph->th_sum);
22733 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22734 		}
22735 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22736 		    (seq + data_length) == tcp->tcp_fss) {
22737 			if (!tcp->tcp_fin_acked) {
22738 				flags |= TH_FIN;
22739 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22740 			}
22741 			if (!tcp->tcp_fin_sent) {
22742 				tcp->tcp_fin_sent = B_TRUE;
22743 				switch (tcp->tcp_state) {
22744 				case TCPS_SYN_RCVD:
22745 				case TCPS_ESTABLISHED:
22746 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22747 					break;
22748 				case TCPS_CLOSE_WAIT:
22749 					tcp->tcp_state = TCPS_LAST_ACK;
22750 					break;
22751 				}
22752 				if (tcp->tcp_suna == tcp->tcp_snxt)
22753 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22754 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22755 			}
22756 		}
22757 		/*
22758 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22759 		 * is smaller than seq, u1 will become a very huge value.
22760 		 * So the comparison will fail.  Also note that tcp_urp
22761 		 * should be positive, see RFC 793 page 17.
22762 		 */
22763 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22764 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22765 		    u1 < (uint32_t)(64 * 1024)) {
22766 			flags |= TH_URG;
22767 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
22768 			U32_TO_ABE16(u1, tcph->th_urp);
22769 		}
22770 	}
22771 	tcph->th_flags[0] = (uchar_t)flags;
22772 	tcp->tcp_rack = tcp->tcp_rnxt;
22773 	tcp->tcp_rack_cnt = 0;
22774 
22775 	if (tcp->tcp_snd_ts_ok) {
22776 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22777 			uint32_t llbolt = (uint32_t)lbolt;
22778 
22779 			U32_TO_BE32(llbolt,
22780 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22781 			U32_TO_BE32(tcp->tcp_ts_recent,
22782 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22783 		}
22784 	}
22785 
22786 	if (num_sack_blk > 0) {
22787 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22788 		sack_blk_t *tmp;
22789 		int32_t	i;
22790 
22791 		wptr[0] = TCPOPT_NOP;
22792 		wptr[1] = TCPOPT_NOP;
22793 		wptr[2] = TCPOPT_SACK;
22794 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22795 		    sizeof (sack_blk_t);
22796 		wptr += TCPOPT_REAL_SACK_LEN;
22797 
22798 		tmp = tcp->tcp_sack_list;
22799 		for (i = 0; i < num_sack_blk; i++) {
22800 			U32_TO_BE32(tmp[i].begin, wptr);
22801 			wptr += sizeof (tcp_seq);
22802 			U32_TO_BE32(tmp[i].end, wptr);
22803 			wptr += sizeof (tcp_seq);
22804 		}
22805 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22806 	}
22807 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22808 	data_length += (int)(mp1->b_wptr - rptr);
22809 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22810 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22811 	} else {
22812 		ip6_t *ip6 = (ip6_t *)(rptr +
22813 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22814 		    sizeof (ip6i_t) : 0));
22815 
22816 		ip6->ip6_plen = htons(data_length -
22817 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22818 	}
22819 
22820 	/*
22821 	 * Prime pump for IP
22822 	 * Include the adjustment for a source route if any.
22823 	 */
22824 	data_length -= tcp->tcp_ip_hdr_len;
22825 	data_length += tcp->tcp_sum;
22826 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22827 	U16_TO_ABE16(data_length, tcph->th_sum);
22828 	if (tcp->tcp_ip_forward_progress) {
22829 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22830 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22831 		tcp->tcp_ip_forward_progress = B_FALSE;
22832 	}
22833 	return (mp1);
22834 }
22835 
22836 /* This function handles the push timeout. */
22837 void
22838 tcp_push_timer(void *arg)
22839 {
22840 	conn_t	*connp = (conn_t *)arg;
22841 	tcp_t *tcp = connp->conn_tcp;
22842 
22843 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
22844 
22845 	ASSERT(tcp->tcp_listener == NULL);
22846 
22847 	ASSERT(!IPCL_IS_NONSTR(connp));
22848 
22849 	/*
22850 	 * We need to plug synchronous streams during our drain to prevent
22851 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22852 	 */
22853 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22854 	tcp->tcp_push_tid = 0;
22855 
22856 	if (tcp->tcp_rcv_list != NULL &&
22857 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
22858 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22859 
22860 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22861 }
22862 
22863 /*
22864  * This function handles delayed ACK timeout.
22865  */
22866 static void
22867 tcp_ack_timer(void *arg)
22868 {
22869 	conn_t	*connp = (conn_t *)arg;
22870 	tcp_t *tcp = connp->conn_tcp;
22871 	mblk_t *mp;
22872 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22873 
22874 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
22875 
22876 	tcp->tcp_ack_tid = 0;
22877 
22878 	if (tcp->tcp_fused)
22879 		return;
22880 
22881 	/*
22882 	 * Do not send ACK if there is no outstanding unack'ed data.
22883 	 */
22884 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22885 		return;
22886 	}
22887 
22888 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22889 		/*
22890 		 * Make sure we don't allow deferred ACKs to result in
22891 		 * timer-based ACKing.  If we have held off an ACK
22892 		 * when there was more than an mss here, and the timer
22893 		 * goes off, we have to worry about the possibility
22894 		 * that the sender isn't doing slow-start, or is out
22895 		 * of step with us for some other reason.  We fall
22896 		 * permanently back in the direction of
22897 		 * ACK-every-other-packet as suggested in RFC 1122.
22898 		 */
22899 		if (tcp->tcp_rack_abs_max > 2)
22900 			tcp->tcp_rack_abs_max--;
22901 		tcp->tcp_rack_cur_max = 2;
22902 	}
22903 	mp = tcp_ack_mp(tcp);
22904 
22905 	if (mp != NULL) {
22906 		BUMP_LOCAL(tcp->tcp_obsegs);
22907 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22908 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
22909 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22910 	}
22911 }
22912 
22913 
22914 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22915 static mblk_t *
22916 tcp_ack_mp(tcp_t *tcp)
22917 {
22918 	uint32_t	seq_no;
22919 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22920 
22921 	/*
22922 	 * There are a few cases to be considered while setting the sequence no.
22923 	 * Essentially, we can come here while processing an unacceptable pkt
22924 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22925 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22926 	 * If we are here for a zero window probe, stick with suna. In all
22927 	 * other cases, we check if suna + swnd encompasses snxt and set
22928 	 * the sequence number to snxt, if so. If snxt falls outside the
22929 	 * window (the receiver probably shrunk its window), we will go with
22930 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22931 	 * receiver.
22932 	 */
22933 	if (tcp->tcp_zero_win_probe) {
22934 		seq_no = tcp->tcp_suna;
22935 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22936 		ASSERT(tcp->tcp_swnd == 0);
22937 		seq_no = tcp->tcp_snxt;
22938 	} else {
22939 		seq_no = SEQ_GT(tcp->tcp_snxt,
22940 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22941 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22942 	}
22943 
22944 	if (tcp->tcp_valid_bits) {
22945 		/*
22946 		 * For the complex case where we have to send some
22947 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22948 		 */
22949 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22950 		    NULL, B_FALSE));
22951 	} else {
22952 		/* Generate a simple ACK */
22953 		int	data_length;
22954 		uchar_t	*rptr;
22955 		tcph_t	*tcph;
22956 		mblk_t	*mp1;
22957 		int32_t	tcp_hdr_len;
22958 		int32_t	tcp_tcp_hdr_len;
22959 		int32_t	num_sack_blk = 0;
22960 		int32_t sack_opt_len;
22961 
22962 		/*
22963 		 * Allocate space for TCP + IP headers
22964 		 * and link-level header
22965 		 */
22966 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22967 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22968 			    tcp->tcp_num_sack_blk);
22969 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22970 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22971 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22972 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22973 		} else {
22974 			tcp_hdr_len = tcp->tcp_hdr_len;
22975 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22976 		}
22977 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
22978 		if (!mp1)
22979 			return (NULL);
22980 
22981 		/* Update the latest receive window size in TCP header. */
22982 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22983 		    tcp->tcp_tcph->th_win);
22984 		/* copy in prototype TCP + IP header */
22985 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22986 		mp1->b_rptr = rptr;
22987 		mp1->b_wptr = rptr + tcp_hdr_len;
22988 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22989 
22990 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22991 
22992 		/* Set the TCP sequence number. */
22993 		U32_TO_ABE32(seq_no, tcph->th_seq);
22994 
22995 		/* Set up the TCP flag field. */
22996 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22997 		if (tcp->tcp_ecn_echo_on)
22998 			tcph->th_flags[0] |= TH_ECE;
22999 
23000 		tcp->tcp_rack = tcp->tcp_rnxt;
23001 		tcp->tcp_rack_cnt = 0;
23002 
23003 		/* fill in timestamp option if in use */
23004 		if (tcp->tcp_snd_ts_ok) {
23005 			uint32_t llbolt = (uint32_t)lbolt;
23006 
23007 			U32_TO_BE32(llbolt,
23008 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23009 			U32_TO_BE32(tcp->tcp_ts_recent,
23010 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23011 		}
23012 
23013 		/* Fill in SACK options */
23014 		if (num_sack_blk > 0) {
23015 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23016 			sack_blk_t *tmp;
23017 			int32_t	i;
23018 
23019 			wptr[0] = TCPOPT_NOP;
23020 			wptr[1] = TCPOPT_NOP;
23021 			wptr[2] = TCPOPT_SACK;
23022 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23023 			    sizeof (sack_blk_t);
23024 			wptr += TCPOPT_REAL_SACK_LEN;
23025 
23026 			tmp = tcp->tcp_sack_list;
23027 			for (i = 0; i < num_sack_blk; i++) {
23028 				U32_TO_BE32(tmp[i].begin, wptr);
23029 				wptr += sizeof (tcp_seq);
23030 				U32_TO_BE32(tmp[i].end, wptr);
23031 				wptr += sizeof (tcp_seq);
23032 			}
23033 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23034 			    << 4);
23035 		}
23036 
23037 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23038 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23039 		} else {
23040 			/* Check for ip6i_t header in sticky hdrs */
23041 			ip6_t *ip6 = (ip6_t *)(rptr +
23042 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23043 			    sizeof (ip6i_t) : 0));
23044 
23045 			ip6->ip6_plen = htons(tcp_hdr_len -
23046 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23047 		}
23048 
23049 		/*
23050 		 * Prime pump for checksum calculation in IP.  Include the
23051 		 * adjustment for a source route if any.
23052 		 */
23053 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23054 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23055 		U16_TO_ABE16(data_length, tcph->th_sum);
23056 
23057 		if (tcp->tcp_ip_forward_progress) {
23058 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23059 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23060 			tcp->tcp_ip_forward_progress = B_FALSE;
23061 		}
23062 		return (mp1);
23063 	}
23064 }
23065 
23066 /*
23067  * Hash list insertion routine for tcp_t structures. Each hash bucket
23068  * contains a list of tcp_t entries, and each entry is bound to a unique
23069  * port. If there are multiple tcp_t's that are bound to the same port, then
23070  * one of them will be linked into the hash bucket list, and the rest will
23071  * hang off of that one entry. For each port, entries bound to a specific IP
23072  * address will be inserted before those those bound to INADDR_ANY.
23073  */
23074 static void
23075 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23076 {
23077 	tcp_t	**tcpp;
23078 	tcp_t	*tcpnext;
23079 	tcp_t	*tcphash;
23080 
23081 	if (tcp->tcp_ptpbhn != NULL) {
23082 		ASSERT(!caller_holds_lock);
23083 		tcp_bind_hash_remove(tcp);
23084 	}
23085 	tcpp = &tbf->tf_tcp;
23086 	if (!caller_holds_lock) {
23087 		mutex_enter(&tbf->tf_lock);
23088 	} else {
23089 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23090 	}
23091 	tcphash = tcpp[0];
23092 	tcpnext = NULL;
23093 	if (tcphash != NULL) {
23094 		/* Look for an entry using the same port */
23095 		while ((tcphash = tcpp[0]) != NULL &&
23096 		    tcp->tcp_lport != tcphash->tcp_lport)
23097 			tcpp = &(tcphash->tcp_bind_hash);
23098 
23099 		/* The port was not found, just add to the end */
23100 		if (tcphash == NULL)
23101 			goto insert;
23102 
23103 		/*
23104 		 * OK, there already exists an entry bound to the
23105 		 * same port.
23106 		 *
23107 		 * If the new tcp bound to the INADDR_ANY address
23108 		 * and the first one in the list is not bound to
23109 		 * INADDR_ANY we skip all entries until we find the
23110 		 * first one bound to INADDR_ANY.
23111 		 * This makes sure that applications binding to a
23112 		 * specific address get preference over those binding to
23113 		 * INADDR_ANY.
23114 		 */
23115 		tcpnext = tcphash;
23116 		tcphash = NULL;
23117 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23118 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23119 			while ((tcpnext = tcpp[0]) != NULL &&
23120 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23121 				tcpp = &(tcpnext->tcp_bind_hash_port);
23122 
23123 			if (tcpnext) {
23124 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23125 				tcphash = tcpnext->tcp_bind_hash;
23126 				if (tcphash != NULL) {
23127 					tcphash->tcp_ptpbhn =
23128 					    &(tcp->tcp_bind_hash);
23129 					tcpnext->tcp_bind_hash = NULL;
23130 				}
23131 			}
23132 		} else {
23133 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23134 			tcphash = tcpnext->tcp_bind_hash;
23135 			if (tcphash != NULL) {
23136 				tcphash->tcp_ptpbhn =
23137 				    &(tcp->tcp_bind_hash);
23138 				tcpnext->tcp_bind_hash = NULL;
23139 			}
23140 		}
23141 	}
23142 insert:
23143 	tcp->tcp_bind_hash_port = tcpnext;
23144 	tcp->tcp_bind_hash = tcphash;
23145 	tcp->tcp_ptpbhn = tcpp;
23146 	tcpp[0] = tcp;
23147 	if (!caller_holds_lock)
23148 		mutex_exit(&tbf->tf_lock);
23149 }
23150 
23151 /*
23152  * Hash list removal routine for tcp_t structures.
23153  */
23154 static void
23155 tcp_bind_hash_remove(tcp_t *tcp)
23156 {
23157 	tcp_t	*tcpnext;
23158 	kmutex_t *lockp;
23159 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23160 
23161 	if (tcp->tcp_ptpbhn == NULL)
23162 		return;
23163 
23164 	/*
23165 	 * Extract the lock pointer in case there are concurrent
23166 	 * hash_remove's for this instance.
23167 	 */
23168 	ASSERT(tcp->tcp_lport != 0);
23169 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23170 
23171 	ASSERT(lockp != NULL);
23172 	mutex_enter(lockp);
23173 	if (tcp->tcp_ptpbhn) {
23174 		tcpnext = tcp->tcp_bind_hash_port;
23175 		if (tcpnext != NULL) {
23176 			tcp->tcp_bind_hash_port = NULL;
23177 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23178 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
23179 			if (tcpnext->tcp_bind_hash != NULL) {
23180 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
23181 				    &(tcpnext->tcp_bind_hash);
23182 				tcp->tcp_bind_hash = NULL;
23183 			}
23184 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
23185 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23186 			tcp->tcp_bind_hash = NULL;
23187 		}
23188 		*tcp->tcp_ptpbhn = tcpnext;
23189 		tcp->tcp_ptpbhn = NULL;
23190 	}
23191 	mutex_exit(lockp);
23192 }
23193 
23194 
23195 /*
23196  * Hash list lookup routine for tcp_t structures.
23197  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23198  */
23199 static tcp_t *
23200 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23201 {
23202 	tf_t	*tf;
23203 	tcp_t	*tcp;
23204 
23205 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23206 	mutex_enter(&tf->tf_lock);
23207 	for (tcp = tf->tf_tcp; tcp != NULL;
23208 	    tcp = tcp->tcp_acceptor_hash) {
23209 		if (tcp->tcp_acceptor_id == id) {
23210 			CONN_INC_REF(tcp->tcp_connp);
23211 			mutex_exit(&tf->tf_lock);
23212 			return (tcp);
23213 		}
23214 	}
23215 	mutex_exit(&tf->tf_lock);
23216 	return (NULL);
23217 }
23218 
23219 
23220 /*
23221  * Hash list insertion routine for tcp_t structures.
23222  */
23223 void
23224 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23225 {
23226 	tf_t	*tf;
23227 	tcp_t	**tcpp;
23228 	tcp_t	*tcpnext;
23229 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23230 
23231 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23232 
23233 	if (tcp->tcp_ptpahn != NULL)
23234 		tcp_acceptor_hash_remove(tcp);
23235 	tcpp = &tf->tf_tcp;
23236 	mutex_enter(&tf->tf_lock);
23237 	tcpnext = tcpp[0];
23238 	if (tcpnext)
23239 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23240 	tcp->tcp_acceptor_hash = tcpnext;
23241 	tcp->tcp_ptpahn = tcpp;
23242 	tcpp[0] = tcp;
23243 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23244 	mutex_exit(&tf->tf_lock);
23245 }
23246 
23247 /*
23248  * Hash list removal routine for tcp_t structures.
23249  */
23250 static void
23251 tcp_acceptor_hash_remove(tcp_t *tcp)
23252 {
23253 	tcp_t	*tcpnext;
23254 	kmutex_t *lockp;
23255 
23256 	/*
23257 	 * Extract the lock pointer in case there are concurrent
23258 	 * hash_remove's for this instance.
23259 	 */
23260 	lockp = tcp->tcp_acceptor_lockp;
23261 
23262 	if (tcp->tcp_ptpahn == NULL)
23263 		return;
23264 
23265 	ASSERT(lockp != NULL);
23266 	mutex_enter(lockp);
23267 	if (tcp->tcp_ptpahn) {
23268 		tcpnext = tcp->tcp_acceptor_hash;
23269 		if (tcpnext) {
23270 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23271 			tcp->tcp_acceptor_hash = NULL;
23272 		}
23273 		*tcp->tcp_ptpahn = tcpnext;
23274 		tcp->tcp_ptpahn = NULL;
23275 	}
23276 	mutex_exit(lockp);
23277 	tcp->tcp_acceptor_lockp = NULL;
23278 }
23279 
23280 /*
23281  * Type three generator adapted from the random() function in 4.4 BSD:
23282  */
23283 
23284 /*
23285  * Copyright (c) 1983, 1993
23286  *	The Regents of the University of California.  All rights reserved.
23287  *
23288  * Redistribution and use in source and binary forms, with or without
23289  * modification, are permitted provided that the following conditions
23290  * are met:
23291  * 1. Redistributions of source code must retain the above copyright
23292  *    notice, this list of conditions and the following disclaimer.
23293  * 2. Redistributions in binary form must reproduce the above copyright
23294  *    notice, this list of conditions and the following disclaimer in the
23295  *    documentation and/or other materials provided with the distribution.
23296  * 3. All advertising materials mentioning features or use of this software
23297  *    must display the following acknowledgement:
23298  *	This product includes software developed by the University of
23299  *	California, Berkeley and its contributors.
23300  * 4. Neither the name of the University nor the names of its contributors
23301  *    may be used to endorse or promote products derived from this software
23302  *    without specific prior written permission.
23303  *
23304  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23305  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23306  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23307  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23308  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23309  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23310  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23311  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23312  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23313  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23314  * SUCH DAMAGE.
23315  */
23316 
23317 /* Type 3 -- x**31 + x**3 + 1 */
23318 #define	DEG_3		31
23319 #define	SEP_3		3
23320 
23321 
23322 /* Protected by tcp_random_lock */
23323 static int tcp_randtbl[DEG_3 + 1];
23324 
23325 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23326 static int *tcp_random_rptr = &tcp_randtbl[1];
23327 
23328 static int *tcp_random_state = &tcp_randtbl[1];
23329 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23330 
23331 kmutex_t tcp_random_lock;
23332 
23333 void
23334 tcp_random_init(void)
23335 {
23336 	int i;
23337 	hrtime_t hrt;
23338 	time_t wallclock;
23339 	uint64_t result;
23340 
23341 	/*
23342 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23343 	 * a longlong, which may contain resolution down to nanoseconds.
23344 	 * The current time will either be a 32-bit or a 64-bit quantity.
23345 	 * XOR the two together in a 64-bit result variable.
23346 	 * Convert the result to a 32-bit value by multiplying the high-order
23347 	 * 32-bits by the low-order 32-bits.
23348 	 */
23349 
23350 	hrt = gethrtime();
23351 	(void) drv_getparm(TIME, &wallclock);
23352 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23353 	mutex_enter(&tcp_random_lock);
23354 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23355 	    (result & 0xffffffff);
23356 
23357 	for (i = 1; i < DEG_3; i++)
23358 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23359 		    + 12345;
23360 	tcp_random_fptr = &tcp_random_state[SEP_3];
23361 	tcp_random_rptr = &tcp_random_state[0];
23362 	mutex_exit(&tcp_random_lock);
23363 	for (i = 0; i < 10 * DEG_3; i++)
23364 		(void) tcp_random();
23365 }
23366 
23367 /*
23368  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23369  * This range is selected to be approximately centered on TCP_ISS / 2,
23370  * and easy to compute. We get this value by generating a 32-bit random
23371  * number, selecting out the high-order 17 bits, and then adding one so
23372  * that we never return zero.
23373  */
23374 int
23375 tcp_random(void)
23376 {
23377 	int i;
23378 
23379 	mutex_enter(&tcp_random_lock);
23380 	*tcp_random_fptr += *tcp_random_rptr;
23381 
23382 	/*
23383 	 * The high-order bits are more random than the low-order bits,
23384 	 * so we select out the high-order 17 bits and add one so that
23385 	 * we never return zero.
23386 	 */
23387 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23388 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23389 		tcp_random_fptr = tcp_random_state;
23390 		++tcp_random_rptr;
23391 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23392 		tcp_random_rptr = tcp_random_state;
23393 
23394 	mutex_exit(&tcp_random_lock);
23395 	return (i);
23396 }
23397 
23398 static int
23399 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23400     int *t_errorp, int *sys_errorp)
23401 {
23402 	int error;
23403 	int is_absreq_failure;
23404 	t_scalar_t *opt_lenp;
23405 	t_scalar_t opt_offset;
23406 	int prim_type;
23407 	struct T_conn_req *tcreqp;
23408 	struct T_conn_res *tcresp;
23409 	cred_t *cr;
23410 
23411 	/*
23412 	 * All Solaris components should pass a db_credp
23413 	 * for this TPI message, hence we ASSERT.
23414 	 * But in case there is some other M_PROTO that looks
23415 	 * like a TPI message sent by some other kernel
23416 	 * component, we check and return an error.
23417 	 */
23418 	cr = msg_getcred(mp, NULL);
23419 	ASSERT(cr != NULL);
23420 	if (cr == NULL)
23421 		return (-1);
23422 
23423 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23424 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23425 	    prim_type == T_CONN_RES);
23426 
23427 	switch (prim_type) {
23428 	case T_CONN_REQ:
23429 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23430 		opt_offset = tcreqp->OPT_offset;
23431 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23432 		break;
23433 	case O_T_CONN_RES:
23434 	case T_CONN_RES:
23435 		tcresp = (struct T_conn_res *)mp->b_rptr;
23436 		opt_offset = tcresp->OPT_offset;
23437 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23438 		break;
23439 	}
23440 
23441 	*t_errorp = 0;
23442 	*sys_errorp = 0;
23443 	*do_disconnectp = 0;
23444 
23445 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23446 	    opt_offset, cr, &tcp_opt_obj,
23447 	    NULL, &is_absreq_failure);
23448 
23449 	switch (error) {
23450 	case  0:		/* no error */
23451 		ASSERT(is_absreq_failure == 0);
23452 		return (0);
23453 	case ENOPROTOOPT:
23454 		*t_errorp = TBADOPT;
23455 		break;
23456 	case EACCES:
23457 		*t_errorp = TACCES;
23458 		break;
23459 	default:
23460 		*t_errorp = TSYSERR; *sys_errorp = error;
23461 		break;
23462 	}
23463 	if (is_absreq_failure != 0) {
23464 		/*
23465 		 * The connection request should get the local ack
23466 		 * T_OK_ACK and then a T_DISCON_IND.
23467 		 */
23468 		*do_disconnectp = 1;
23469 	}
23470 	return (-1);
23471 }
23472 
23473 /*
23474  * Split this function out so that if the secret changes, I'm okay.
23475  *
23476  * Initialize the tcp_iss_cookie and tcp_iss_key.
23477  */
23478 
23479 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23480 
23481 static void
23482 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
23483 {
23484 	struct {
23485 		int32_t current_time;
23486 		uint32_t randnum;
23487 		uint16_t pad;
23488 		uint8_t ether[6];
23489 		uint8_t passwd[PASSWD_SIZE];
23490 	} tcp_iss_cookie;
23491 	time_t t;
23492 
23493 	/*
23494 	 * Start with the current absolute time.
23495 	 */
23496 	(void) drv_getparm(TIME, &t);
23497 	tcp_iss_cookie.current_time = t;
23498 
23499 	/*
23500 	 * XXX - Need a more random number per RFC 1750, not this crap.
23501 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23502 	 */
23503 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23504 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23505 
23506 	/*
23507 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23508 	 * as a good template.
23509 	 */
23510 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23511 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23512 
23513 	/*
23514 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23515 	 */
23516 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23517 
23518 	/*
23519 	 * See 4010593 if this section becomes a problem again,
23520 	 * but the local ethernet address is useful here.
23521 	 */
23522 	(void) localetheraddr(NULL,
23523 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23524 
23525 	/*
23526 	 * Hash 'em all together.  The MD5Final is called per-connection.
23527 	 */
23528 	mutex_enter(&tcps->tcps_iss_key_lock);
23529 	MD5Init(&tcps->tcps_iss_key);
23530 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
23531 	    sizeof (tcp_iss_cookie));
23532 	mutex_exit(&tcps->tcps_iss_key_lock);
23533 }
23534 
23535 /*
23536  * Set the RFC 1948 pass phrase
23537  */
23538 /* ARGSUSED */
23539 static int
23540 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23541     cred_t *cr)
23542 {
23543 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23544 
23545 	/*
23546 	 * Basically, value contains a new pass phrase.  Pass it along!
23547 	 */
23548 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
23549 	return (0);
23550 }
23551 
23552 /* ARGSUSED */
23553 static int
23554 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23555 {
23556 	bzero(buf, sizeof (tcp_sack_info_t));
23557 	return (0);
23558 }
23559 
23560 /* ARGSUSED */
23561 static int
23562 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23563 {
23564 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23565 	return (0);
23566 }
23567 
23568 /*
23569  * Make sure we wait until the default queue is setup, yet allow
23570  * tcp_g_q_create() to open a TCP stream.
23571  * We need to allow tcp_g_q_create() do do an open
23572  * of tcp, hence we compare curhread.
23573  * All others have to wait until the tcps_g_q has been
23574  * setup.
23575  */
23576 void
23577 tcp_g_q_setup(tcp_stack_t *tcps)
23578 {
23579 	mutex_enter(&tcps->tcps_g_q_lock);
23580 	if (tcps->tcps_g_q != NULL) {
23581 		mutex_exit(&tcps->tcps_g_q_lock);
23582 		return;
23583 	}
23584 	if (tcps->tcps_g_q_creator == NULL) {
23585 		/* This thread will set it up */
23586 		tcps->tcps_g_q_creator = curthread;
23587 		mutex_exit(&tcps->tcps_g_q_lock);
23588 		tcp_g_q_create(tcps);
23589 		mutex_enter(&tcps->tcps_g_q_lock);
23590 		ASSERT(tcps->tcps_g_q_creator == curthread);
23591 		tcps->tcps_g_q_creator = NULL;
23592 		cv_signal(&tcps->tcps_g_q_cv);
23593 		ASSERT(tcps->tcps_g_q != NULL);
23594 		mutex_exit(&tcps->tcps_g_q_lock);
23595 		return;
23596 	}
23597 	/* Everybody but the creator has to wait */
23598 	if (tcps->tcps_g_q_creator != curthread) {
23599 		while (tcps->tcps_g_q == NULL)
23600 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
23601 	}
23602 	mutex_exit(&tcps->tcps_g_q_lock);
23603 }
23604 
23605 #define	IP	"ip"
23606 
23607 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
23608 
23609 /*
23610  * Create a default tcp queue here instead of in strplumb
23611  */
23612 void
23613 tcp_g_q_create(tcp_stack_t *tcps)
23614 {
23615 	int error;
23616 	ldi_handle_t	lh = NULL;
23617 	ldi_ident_t	li = NULL;
23618 	int		rval;
23619 	cred_t		*cr;
23620 	major_t IP_MAJ;
23621 
23622 #ifdef NS_DEBUG
23623 	(void) printf("tcp_g_q_create()\n");
23624 #endif
23625 
23626 	IP_MAJ = ddi_name_to_major(IP);
23627 
23628 	ASSERT(tcps->tcps_g_q_creator == curthread);
23629 
23630 	error = ldi_ident_from_major(IP_MAJ, &li);
23631 	if (error) {
23632 #ifdef DEBUG
23633 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
23634 		    error);
23635 #endif
23636 		return;
23637 	}
23638 
23639 	cr = zone_get_kcred(netstackid_to_zoneid(
23640 	    tcps->tcps_netstack->netstack_stackid));
23641 	ASSERT(cr != NULL);
23642 	/*
23643 	 * We set the tcp default queue to IPv6 because IPv4 falls
23644 	 * back to IPv6 when it can't find a client, but
23645 	 * IPv6 does not fall back to IPv4.
23646 	 */
23647 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
23648 	if (error) {
23649 #ifdef DEBUG
23650 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
23651 		    error);
23652 #endif
23653 		goto out;
23654 	}
23655 
23656 	/*
23657 	 * This ioctl causes the tcp framework to cache a pointer to
23658 	 * this stream, so we don't want to close the stream after
23659 	 * this operation.
23660 	 * Use the kernel credentials that are for the zone we're in.
23661 	 */
23662 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
23663 	    (intptr_t)0, FKIOCTL, cr, &rval);
23664 	if (error) {
23665 #ifdef DEBUG
23666 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
23667 		    "error %d\n", error);
23668 #endif
23669 		goto out;
23670 	}
23671 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
23672 	lh = NULL;
23673 out:
23674 	/* Close layered handles */
23675 	if (li)
23676 		ldi_ident_release(li);
23677 	/* Keep cred around until _inactive needs it */
23678 	tcps->tcps_g_q_cr = cr;
23679 }
23680 
23681 /*
23682  * We keep tcp_g_q set until all other tcp_t's in the zone
23683  * has gone away, and then when tcp_g_q_inactive() is called
23684  * we clear it.
23685  */
23686 void
23687 tcp_g_q_destroy(tcp_stack_t *tcps)
23688 {
23689 #ifdef NS_DEBUG
23690 	(void) printf("tcp_g_q_destroy()for stack %d\n",
23691 	    tcps->tcps_netstack->netstack_stackid);
23692 #endif
23693 
23694 	if (tcps->tcps_g_q == NULL) {
23695 		return;	/* Nothing to cleanup */
23696 	}
23697 	/*
23698 	 * Drop reference corresponding to the default queue.
23699 	 * This reference was added from tcp_open when the default queue
23700 	 * was created, hence we compensate for this extra drop in
23701 	 * tcp_g_q_close. If the refcnt drops to zero here it means
23702 	 * the default queue was the last one to be open, in which
23703 	 * case, then tcp_g_q_inactive will be
23704 	 * called as a result of the refrele.
23705 	 */
23706 	TCPS_REFRELE(tcps);
23707 }
23708 
23709 /*
23710  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23711  * Run by tcp_q_q_inactive using a taskq.
23712  */
23713 static void
23714 tcp_g_q_close(void *arg)
23715 {
23716 	tcp_stack_t *tcps = arg;
23717 	int error;
23718 	ldi_handle_t	lh = NULL;
23719 	ldi_ident_t	li = NULL;
23720 	cred_t		*cr;
23721 	major_t IP_MAJ;
23722 
23723 	IP_MAJ = ddi_name_to_major(IP);
23724 
23725 #ifdef NS_DEBUG
23726 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
23727 	    tcps->tcps_netstack->netstack_stackid,
23728 	    tcps->tcps_netstack->netstack_refcnt);
23729 #endif
23730 	lh = tcps->tcps_g_q_lh;
23731 	if (lh == NULL)
23732 		return;	/* Nothing to cleanup */
23733 
23734 	ASSERT(tcps->tcps_refcnt == 1);
23735 	ASSERT(tcps->tcps_g_q != NULL);
23736 
23737 	error = ldi_ident_from_major(IP_MAJ, &li);
23738 	if (error) {
23739 #ifdef DEBUG
23740 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
23741 		    error);
23742 #endif
23743 		return;
23744 	}
23745 
23746 	cr = tcps->tcps_g_q_cr;
23747 	tcps->tcps_g_q_cr = NULL;
23748 	ASSERT(cr != NULL);
23749 
23750 	/*
23751 	 * Make sure we can break the recursion when tcp_close decrements
23752 	 * the reference count causing g_q_inactive to be called again.
23753 	 */
23754 	tcps->tcps_g_q_lh = NULL;
23755 
23756 	/* close the default queue */
23757 	(void) ldi_close(lh, FREAD|FWRITE, cr);
23758 	/*
23759 	 * At this point in time tcps and the rest of netstack_t might
23760 	 * have been deleted.
23761 	 */
23762 	tcps = NULL;
23763 
23764 	/* Close layered handles */
23765 	ldi_ident_release(li);
23766 	crfree(cr);
23767 }
23768 
23769 /*
23770  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23771  *
23772  * Have to ensure that the ldi routines are not used by an
23773  * interrupt thread by using a taskq.
23774  */
23775 void
23776 tcp_g_q_inactive(tcp_stack_t *tcps)
23777 {
23778 	if (tcps->tcps_g_q_lh == NULL)
23779 		return;	/* Nothing to cleanup */
23780 
23781 	ASSERT(tcps->tcps_refcnt == 0);
23782 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
23783 
23784 	if (servicing_interrupt()) {
23785 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
23786 		    (void *) tcps, TQ_SLEEP);
23787 	} else {
23788 		tcp_g_q_close(tcps);
23789 	}
23790 }
23791 
23792 /*
23793  * Called by IP when IP is loaded into the kernel
23794  */
23795 void
23796 tcp_ddi_g_init(void)
23797 {
23798 	tcp_timercache = kmem_cache_create("tcp_timercache",
23799 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23800 	    NULL, NULL, NULL, NULL, NULL, 0);
23801 
23802 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23803 	    sizeof (tcp_sack_info_t), 0,
23804 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23805 
23806 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23807 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23808 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23809 
23810 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23811 
23812 	/* Initialize the random number generator */
23813 	tcp_random_init();
23814 
23815 	/* A single callback independently of how many netstacks we have */
23816 	ip_squeue_init(tcp_squeue_add);
23817 
23818 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
23819 
23820 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
23821 	    TASKQ_PREPOPULATE);
23822 
23823 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
23824 
23825 	/*
23826 	 * We want to be informed each time a stack is created or
23827 	 * destroyed in the kernel, so we can maintain the
23828 	 * set of tcp_stack_t's.
23829 	 */
23830 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
23831 	    tcp_stack_fini);
23832 }
23833 
23834 
23835 #define	INET_NAME	"ip"
23836 
23837 /*
23838  * Initialize the TCP stack instance.
23839  */
23840 static void *
23841 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
23842 {
23843 	tcp_stack_t	*tcps;
23844 	tcpparam_t	*pa;
23845 	int		i;
23846 	int		error = 0;
23847 	major_t		major;
23848 
23849 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
23850 	tcps->tcps_netstack = ns;
23851 
23852 	/* Initialize locks */
23853 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23854 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
23855 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23856 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23857 
23858 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
23859 	tcps->tcps_g_epriv_ports[0] = 2049;
23860 	tcps->tcps_g_epriv_ports[1] = 4045;
23861 	tcps->tcps_min_anonpriv_port = 512;
23862 
23863 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
23864 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
23865 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
23866 	    TCP_FANOUT_SIZE, KM_SLEEP);
23867 
23868 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
23869 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
23870 		    MUTEX_DEFAULT, NULL);
23871 	}
23872 
23873 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
23874 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
23875 		    MUTEX_DEFAULT, NULL);
23876 	}
23877 
23878 	/* TCP's IPsec code calls the packet dropper. */
23879 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
23880 
23881 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
23882 	tcps->tcps_params = pa;
23883 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
23884 
23885 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
23886 	    A_CNT(lcl_tcp_param_arr), tcps);
23887 
23888 	/*
23889 	 * Note: To really walk the device tree you need the devinfo
23890 	 * pointer to your device which is only available after probe/attach.
23891 	 * The following is safe only because it uses ddi_root_node()
23892 	 */
23893 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23894 	    tcp_opt_obj.odb_opt_arr_cnt);
23895 
23896 	/*
23897 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23898 	 * by the boot scripts.
23899 	 *
23900 	 * Use NULL name, as the name is caught by the new lockstats.
23901 	 *
23902 	 * Initialize with some random, non-guessable string, like the global
23903 	 * T_INFO_ACK.
23904 	 */
23905 
23906 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23907 	    sizeof (tcp_g_t_info_ack), tcps);
23908 
23909 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
23910 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
23911 
23912 	major = mod_name_to_major(INET_NAME);
23913 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
23914 	ASSERT(error == 0);
23915 	return (tcps);
23916 }
23917 
23918 /*
23919  * Called when the IP module is about to be unloaded.
23920  */
23921 void
23922 tcp_ddi_g_destroy(void)
23923 {
23924 	tcp_g_kstat_fini(tcp_g_kstat);
23925 	tcp_g_kstat = NULL;
23926 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
23927 
23928 	mutex_destroy(&tcp_random_lock);
23929 
23930 	kmem_cache_destroy(tcp_timercache);
23931 	kmem_cache_destroy(tcp_sack_info_cache);
23932 	kmem_cache_destroy(tcp_iphc_cache);
23933 
23934 	netstack_unregister(NS_TCP);
23935 	taskq_destroy(tcp_taskq);
23936 }
23937 
23938 /*
23939  * Shut down the TCP stack instance.
23940  */
23941 /* ARGSUSED */
23942 static void
23943 tcp_stack_shutdown(netstackid_t stackid, void *arg)
23944 {
23945 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
23946 
23947 	tcp_g_q_destroy(tcps);
23948 }
23949 
23950 /*
23951  * Free the TCP stack instance.
23952  */
23953 static void
23954 tcp_stack_fini(netstackid_t stackid, void *arg)
23955 {
23956 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
23957 	int i;
23958 
23959 	nd_free(&tcps->tcps_g_nd);
23960 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
23961 	tcps->tcps_params = NULL;
23962 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
23963 	tcps->tcps_wroff_xtra_param = NULL;
23964 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
23965 	tcps->tcps_mdt_head_param = NULL;
23966 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
23967 	tcps->tcps_mdt_tail_param = NULL;
23968 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
23969 	tcps->tcps_mdt_max_pbufs_param = NULL;
23970 
23971 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
23972 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
23973 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
23974 	}
23975 
23976 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
23977 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
23978 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
23979 	}
23980 
23981 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
23982 	tcps->tcps_bind_fanout = NULL;
23983 
23984 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
23985 	tcps->tcps_acceptor_fanout = NULL;
23986 
23987 	mutex_destroy(&tcps->tcps_iss_key_lock);
23988 	mutex_destroy(&tcps->tcps_g_q_lock);
23989 	cv_destroy(&tcps->tcps_g_q_cv);
23990 	mutex_destroy(&tcps->tcps_epriv_port_lock);
23991 
23992 	ip_drop_unregister(&tcps->tcps_dropper);
23993 
23994 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
23995 	tcps->tcps_kstat = NULL;
23996 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
23997 
23998 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
23999 	tcps->tcps_mibkp = NULL;
24000 
24001 	ldi_ident_release(tcps->tcps_ldi_ident);
24002 	kmem_free(tcps, sizeof (*tcps));
24003 }
24004 
24005 /*
24006  * Generate ISS, taking into account NDD changes may happen halfway through.
24007  * (If the iss is not zero, set it.)
24008  */
24009 
24010 static void
24011 tcp_iss_init(tcp_t *tcp)
24012 {
24013 	MD5_CTX context;
24014 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24015 	uint32_t answer[4];
24016 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24017 
24018 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
24019 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
24020 	switch (tcps->tcps_strong_iss) {
24021 	case 2:
24022 		mutex_enter(&tcps->tcps_iss_key_lock);
24023 		context = tcps->tcps_iss_key;
24024 		mutex_exit(&tcps->tcps_iss_key_lock);
24025 		arg.ports = tcp->tcp_ports;
24026 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24027 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24028 			    &arg.src);
24029 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24030 			    &arg.dst);
24031 		} else {
24032 			arg.src = tcp->tcp_ip6h->ip6_src;
24033 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24034 		}
24035 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24036 		MD5Final((uchar_t *)answer, &context);
24037 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24038 		/*
24039 		 * Now that we've hashed into a unique per-connection sequence
24040 		 * space, add a random increment per strong_iss == 1.  So I
24041 		 * guess we'll have to...
24042 		 */
24043 		/* FALLTHRU */
24044 	case 1:
24045 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24046 		break;
24047 	default:
24048 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24049 		break;
24050 	}
24051 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24052 	tcp->tcp_fss = tcp->tcp_iss - 1;
24053 	tcp->tcp_suna = tcp->tcp_iss;
24054 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24055 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24056 	tcp->tcp_csuna = tcp->tcp_snxt;
24057 }
24058 
24059 /*
24060  * Exported routine for extracting active tcp connection status.
24061  *
24062  * This is used by the Solaris Cluster Networking software to
24063  * gather a list of connections that need to be forwarded to
24064  * specific nodes in the cluster when configuration changes occur.
24065  *
24066  * The callback is invoked for each tcp_t structure from all netstacks,
24067  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
24068  * from the netstack with the specified stack_id. Returning
24069  * non-zero from the callback routine terminates the search.
24070  */
24071 int
24072 cl_tcp_walk_list(netstackid_t stack_id,
24073     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
24074 {
24075 	netstack_handle_t nh;
24076 	netstack_t *ns;
24077 	int ret = 0;
24078 
24079 	if (stack_id >= 0) {
24080 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
24081 			return (EINVAL);
24082 
24083 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24084 		    ns->netstack_tcp);
24085 		netstack_rele(ns);
24086 		return (ret);
24087 	}
24088 
24089 	netstack_next_init(&nh);
24090 	while ((ns = netstack_next(&nh)) != NULL) {
24091 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24092 		    ns->netstack_tcp);
24093 		netstack_rele(ns);
24094 	}
24095 	netstack_next_fini(&nh);
24096 	return (ret);
24097 }
24098 
24099 static int
24100 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
24101     tcp_stack_t *tcps)
24102 {
24103 	tcp_t *tcp;
24104 	cl_tcp_info_t	cl_tcpi;
24105 	connf_t	*connfp;
24106 	conn_t	*connp;
24107 	int	i;
24108 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24109 
24110 	ASSERT(callback != NULL);
24111 
24112 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24113 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
24114 		connp = NULL;
24115 
24116 		while ((connp =
24117 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24118 
24119 			tcp = connp->conn_tcp;
24120 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24121 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24122 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24123 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24124 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24125 			/*
24126 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24127 			 * addresses. They are copied implicitly below as
24128 			 * mapped addresses.
24129 			 */
24130 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24131 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24132 				cl_tcpi.cl_tcpi_faddr =
24133 				    tcp->tcp_ipha->ipha_dst;
24134 			} else {
24135 				cl_tcpi.cl_tcpi_faddr_v6 =
24136 				    tcp->tcp_ip6h->ip6_dst;
24137 			}
24138 
24139 			/*
24140 			 * If the callback returns non-zero
24141 			 * we terminate the traversal.
24142 			 */
24143 			if ((*callback)(&cl_tcpi, arg) != 0) {
24144 				CONN_DEC_REF(tcp->tcp_connp);
24145 				return (1);
24146 			}
24147 		}
24148 	}
24149 
24150 	return (0);
24151 }
24152 
24153 /*
24154  * Macros used for accessing the different types of sockaddr
24155  * structures inside a tcp_ioc_abort_conn_t.
24156  */
24157 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24158 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24159 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24160 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24161 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24162 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24163 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24164 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24165 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24166 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24167 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24168 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24169 
24170 /*
24171  * Return the correct error code to mimic the behavior
24172  * of a connection reset.
24173  */
24174 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24175 		switch ((state)) {		\
24176 		case TCPS_SYN_SENT:		\
24177 		case TCPS_SYN_RCVD:		\
24178 			(err) = ECONNREFUSED;	\
24179 			break;			\
24180 		case TCPS_ESTABLISHED:		\
24181 		case TCPS_FIN_WAIT_1:		\
24182 		case TCPS_FIN_WAIT_2:		\
24183 		case TCPS_CLOSE_WAIT:		\
24184 			(err) = ECONNRESET;	\
24185 			break;			\
24186 		case TCPS_CLOSING:		\
24187 		case TCPS_LAST_ACK:		\
24188 		case TCPS_TIME_WAIT:		\
24189 			(err) = 0;		\
24190 			break;			\
24191 		default:			\
24192 			(err) = ENXIO;		\
24193 		}				\
24194 	}
24195 
24196 /*
24197  * Check if a tcp structure matches the info in acp.
24198  */
24199 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24200 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24201 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24202 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24203 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24204 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24205 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24206 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24207 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24208 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24209 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24210 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24211 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24212 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24213 	&(tcp)->tcp_ip_src_v6)) &&				\
24214 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24215 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24216 	&(tcp)->tcp_remote_v6)) &&				\
24217 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24218 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24219 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24220 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24221 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24222 	(acp)->ac_end >= (tcp)->tcp_state))
24223 
24224 #define	TCP_AC_MATCH(acp, tcp)					\
24225 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24226 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24227 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24228 
24229 /*
24230  * Build a message containing a tcp_ioc_abort_conn_t structure
24231  * which is filled in with information from acp and tp.
24232  */
24233 static mblk_t *
24234 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24235 {
24236 	mblk_t *mp;
24237 	tcp_ioc_abort_conn_t *tacp;
24238 
24239 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24240 	if (mp == NULL)
24241 		return (NULL);
24242 
24243 	mp->b_datap->db_type = M_CTL;
24244 
24245 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24246 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24247 	    sizeof (uint32_t));
24248 
24249 	tacp->ac_start = acp->ac_start;
24250 	tacp->ac_end = acp->ac_end;
24251 	tacp->ac_zoneid = acp->ac_zoneid;
24252 
24253 	if (acp->ac_local.ss_family == AF_INET) {
24254 		tacp->ac_local.ss_family = AF_INET;
24255 		tacp->ac_remote.ss_family = AF_INET;
24256 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24257 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24258 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24259 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24260 	} else {
24261 		tacp->ac_local.ss_family = AF_INET6;
24262 		tacp->ac_remote.ss_family = AF_INET6;
24263 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24264 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24265 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24266 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24267 	}
24268 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24269 	return (mp);
24270 }
24271 
24272 /*
24273  * Print a tcp_ioc_abort_conn_t structure.
24274  */
24275 static void
24276 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24277 {
24278 	char lbuf[128];
24279 	char rbuf[128];
24280 	sa_family_t af;
24281 	in_port_t lport, rport;
24282 	ushort_t logflags;
24283 
24284 	af = acp->ac_local.ss_family;
24285 
24286 	if (af == AF_INET) {
24287 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24288 		    lbuf, 128);
24289 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24290 		    rbuf, 128);
24291 		lport = ntohs(TCP_AC_V4LPORT(acp));
24292 		rport = ntohs(TCP_AC_V4RPORT(acp));
24293 	} else {
24294 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24295 		    lbuf, 128);
24296 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24297 		    rbuf, 128);
24298 		lport = ntohs(TCP_AC_V6LPORT(acp));
24299 		rport = ntohs(TCP_AC_V6RPORT(acp));
24300 	}
24301 
24302 	logflags = SL_TRACE | SL_NOTE;
24303 	/*
24304 	 * Don't print this message to the console if the operation was done
24305 	 * to a non-global zone.
24306 	 */
24307 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24308 		logflags |= SL_CONSOLE;
24309 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24310 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24311 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24312 	    acp->ac_start, acp->ac_end);
24313 }
24314 
24315 /*
24316  * Called inside tcp_rput when a message built using
24317  * tcp_ioctl_abort_build_msg is put into a queue.
24318  * Note that when we get here there is no wildcard in acp any more.
24319  */
24320 static void
24321 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24322 {
24323 	tcp_ioc_abort_conn_t *acp;
24324 
24325 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24326 	if (tcp->tcp_state <= acp->ac_end) {
24327 		/*
24328 		 * If we get here, we are already on the correct
24329 		 * squeue. This ioctl follows the following path
24330 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24331 		 * ->tcp_ioctl_abort->squeue_enter (if on a
24332 		 * different squeue)
24333 		 */
24334 		int errcode;
24335 
24336 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24337 		(void) tcp_clean_death(tcp, errcode, 26);
24338 	}
24339 	freemsg(mp);
24340 }
24341 
24342 /*
24343  * Abort all matching connections on a hash chain.
24344  */
24345 static int
24346 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24347     boolean_t exact, tcp_stack_t *tcps)
24348 {
24349 	int nmatch, err = 0;
24350 	tcp_t *tcp;
24351 	MBLKP mp, last, listhead = NULL;
24352 	conn_t	*tconnp;
24353 	connf_t	*connfp;
24354 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24355 
24356 	connfp = &ipst->ips_ipcl_conn_fanout[index];
24357 
24358 startover:
24359 	nmatch = 0;
24360 
24361 	mutex_enter(&connfp->connf_lock);
24362 	for (tconnp = connfp->connf_head; tconnp != NULL;
24363 	    tconnp = tconnp->conn_next) {
24364 		tcp = tconnp->conn_tcp;
24365 		if (TCP_AC_MATCH(acp, tcp)) {
24366 			CONN_INC_REF(tcp->tcp_connp);
24367 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24368 			if (mp == NULL) {
24369 				err = ENOMEM;
24370 				CONN_DEC_REF(tcp->tcp_connp);
24371 				break;
24372 			}
24373 			mp->b_prev = (mblk_t *)tcp;
24374 
24375 			if (listhead == NULL) {
24376 				listhead = mp;
24377 				last = mp;
24378 			} else {
24379 				last->b_next = mp;
24380 				last = mp;
24381 			}
24382 			nmatch++;
24383 			if (exact)
24384 				break;
24385 		}
24386 
24387 		/* Avoid holding lock for too long. */
24388 		if (nmatch >= 500)
24389 			break;
24390 	}
24391 	mutex_exit(&connfp->connf_lock);
24392 
24393 	/* Pass mp into the correct tcp */
24394 	while ((mp = listhead) != NULL) {
24395 		listhead = listhead->b_next;
24396 		tcp = (tcp_t *)mp->b_prev;
24397 		mp->b_next = mp->b_prev = NULL;
24398 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
24399 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
24400 	}
24401 
24402 	*count += nmatch;
24403 	if (nmatch >= 500 && err == 0)
24404 		goto startover;
24405 	return (err);
24406 }
24407 
24408 /*
24409  * Abort all connections that matches the attributes specified in acp.
24410  */
24411 static int
24412 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
24413 {
24414 	sa_family_t af;
24415 	uint32_t  ports;
24416 	uint16_t *pports;
24417 	int err = 0, count = 0;
24418 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24419 	int index = -1;
24420 	ushort_t logflags;
24421 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24422 
24423 	af = acp->ac_local.ss_family;
24424 
24425 	if (af == AF_INET) {
24426 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24427 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24428 			pports = (uint16_t *)&ports;
24429 			pports[1] = TCP_AC_V4LPORT(acp);
24430 			pports[0] = TCP_AC_V4RPORT(acp);
24431 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24432 		}
24433 	} else {
24434 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24435 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24436 			pports = (uint16_t *)&ports;
24437 			pports[1] = TCP_AC_V6LPORT(acp);
24438 			pports[0] = TCP_AC_V6RPORT(acp);
24439 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24440 		}
24441 	}
24442 
24443 	/*
24444 	 * For cases where remote addr, local port, and remote port are non-
24445 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24446 	 */
24447 	if (index != -1) {
24448 		err = tcp_ioctl_abort_bucket(acp, index,
24449 		    &count, exact, tcps);
24450 	} else {
24451 		/*
24452 		 * loop through all entries for wildcard case
24453 		 */
24454 		for (index = 0;
24455 		    index < ipst->ips_ipcl_conn_fanout_size;
24456 		    index++) {
24457 			err = tcp_ioctl_abort_bucket(acp, index,
24458 			    &count, exact, tcps);
24459 			if (err != 0)
24460 				break;
24461 		}
24462 	}
24463 
24464 	logflags = SL_TRACE | SL_NOTE;
24465 	/*
24466 	 * Don't print this message to the console if the operation was done
24467 	 * to a non-global zone.
24468 	 */
24469 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24470 		logflags |= SL_CONSOLE;
24471 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24472 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24473 	if (err == 0 && count == 0)
24474 		err = ENOENT;
24475 	return (err);
24476 }
24477 
24478 /*
24479  * Process the TCP_IOC_ABORT_CONN ioctl request.
24480  */
24481 static void
24482 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24483 {
24484 	int	err;
24485 	IOCP    iocp;
24486 	MBLKP   mp1;
24487 	sa_family_t laf, raf;
24488 	tcp_ioc_abort_conn_t *acp;
24489 	zone_t		*zptr;
24490 	conn_t		*connp = Q_TO_CONN(q);
24491 	zoneid_t	zoneid = connp->conn_zoneid;
24492 	tcp_t		*tcp = connp->conn_tcp;
24493 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24494 
24495 	iocp = (IOCP)mp->b_rptr;
24496 
24497 	if ((mp1 = mp->b_cont) == NULL ||
24498 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24499 		err = EINVAL;
24500 		goto out;
24501 	}
24502 
24503 	/* check permissions */
24504 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
24505 		err = EPERM;
24506 		goto out;
24507 	}
24508 
24509 	if (mp1->b_cont != NULL) {
24510 		freemsg(mp1->b_cont);
24511 		mp1->b_cont = NULL;
24512 	}
24513 
24514 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24515 	laf = acp->ac_local.ss_family;
24516 	raf = acp->ac_remote.ss_family;
24517 
24518 	/* check that a zone with the supplied zoneid exists */
24519 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24520 		zptr = zone_find_by_id(zoneid);
24521 		if (zptr != NULL) {
24522 			zone_rele(zptr);
24523 		} else {
24524 			err = EINVAL;
24525 			goto out;
24526 		}
24527 	}
24528 
24529 	/*
24530 	 * For exclusive stacks we set the zoneid to zero
24531 	 * to make TCP operate as if in the global zone.
24532 	 */
24533 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
24534 		acp->ac_zoneid = GLOBAL_ZONEID;
24535 
24536 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24537 	    acp->ac_start > acp->ac_end || laf != raf ||
24538 	    (laf != AF_INET && laf != AF_INET6)) {
24539 		err = EINVAL;
24540 		goto out;
24541 	}
24542 
24543 	tcp_ioctl_abort_dump(acp);
24544 	err = tcp_ioctl_abort(acp, tcps);
24545 
24546 out:
24547 	if (mp1 != NULL) {
24548 		freemsg(mp1);
24549 		mp->b_cont = NULL;
24550 	}
24551 
24552 	if (err != 0)
24553 		miocnak(q, mp, 0, err);
24554 	else
24555 		miocack(q, mp, 0, 0);
24556 }
24557 
24558 /*
24559  * tcp_time_wait_processing() handles processing of incoming packets when
24560  * the tcp is in the TIME_WAIT state.
24561  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24562  * on the time wait list.
24563  */
24564 void
24565 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24566     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24567 {
24568 	int32_t		bytes_acked;
24569 	int32_t		gap;
24570 	int32_t		rgap;
24571 	tcp_opt_t	tcpopt;
24572 	uint_t		flags;
24573 	uint32_t	new_swnd = 0;
24574 	conn_t		*connp;
24575 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24576 
24577 	BUMP_LOCAL(tcp->tcp_ibsegs);
24578 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
24579 
24580 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24581 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24582 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24583 	if (tcp->tcp_snd_ts_ok) {
24584 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24585 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24586 			    tcp->tcp_rnxt, TH_ACK);
24587 			goto done;
24588 		}
24589 	}
24590 	gap = seg_seq - tcp->tcp_rnxt;
24591 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24592 	if (gap < 0) {
24593 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
24594 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
24595 		    (seg_len > -gap ? -gap : seg_len));
24596 		seg_len += gap;
24597 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24598 			if (flags & TH_RST) {
24599 				goto done;
24600 			}
24601 			if ((flags & TH_FIN) && seg_len == -1) {
24602 				/*
24603 				 * When TCP receives a duplicate FIN in
24604 				 * TIME_WAIT state, restart the 2 MSL timer.
24605 				 * See page 73 in RFC 793. Make sure this TCP
24606 				 * is already on the TIME_WAIT list. If not,
24607 				 * just restart the timer.
24608 				 */
24609 				if (TCP_IS_DETACHED(tcp)) {
24610 					if (tcp_time_wait_remove(tcp, NULL) ==
24611 					    B_TRUE) {
24612 						tcp_time_wait_append(tcp);
24613 						TCP_DBGSTAT(tcps,
24614 						    tcp_rput_time_wait);
24615 					}
24616 				} else {
24617 					ASSERT(tcp != NULL);
24618 					TCP_TIMER_RESTART(tcp,
24619 					    tcps->tcps_time_wait_interval);
24620 				}
24621 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24622 				    tcp->tcp_rnxt, TH_ACK);
24623 				goto done;
24624 			}
24625 			flags |=  TH_ACK_NEEDED;
24626 			seg_len = 0;
24627 			goto process_ack;
24628 		}
24629 
24630 		/* Fix seg_seq, and chew the gap off the front. */
24631 		seg_seq = tcp->tcp_rnxt;
24632 	}
24633 
24634 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24635 		/*
24636 		 * Make sure that when we accept the connection, pick
24637 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24638 		 * old connection.
24639 		 *
24640 		 * The next ISS generated is equal to tcp_iss_incr_extra
24641 		 * + ISS_INCR/2 + other components depending on the
24642 		 * value of tcp_strong_iss.  We pre-calculate the new
24643 		 * ISS here and compare with tcp_snxt to determine if
24644 		 * we need to make adjustment to tcp_iss_incr_extra.
24645 		 *
24646 		 * The above calculation is ugly and is a
24647 		 * waste of CPU cycles...
24648 		 */
24649 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
24650 		int32_t adj;
24651 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24652 
24653 		switch (tcps->tcps_strong_iss) {
24654 		case 2: {
24655 			/* Add time and MD5 components. */
24656 			uint32_t answer[4];
24657 			struct {
24658 				uint32_t ports;
24659 				in6_addr_t src;
24660 				in6_addr_t dst;
24661 			} arg;
24662 			MD5_CTX context;
24663 
24664 			mutex_enter(&tcps->tcps_iss_key_lock);
24665 			context = tcps->tcps_iss_key;
24666 			mutex_exit(&tcps->tcps_iss_key_lock);
24667 			arg.ports = tcp->tcp_ports;
24668 			/* We use MAPPED addresses in tcp_iss_init */
24669 			arg.src = tcp->tcp_ip_src_v6;
24670 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24671 				IN6_IPADDR_TO_V4MAPPED(
24672 				    tcp->tcp_ipha->ipha_dst,
24673 				    &arg.dst);
24674 			} else {
24675 				arg.dst =
24676 				    tcp->tcp_ip6h->ip6_dst;
24677 			}
24678 			MD5Update(&context, (uchar_t *)&arg,
24679 			    sizeof (arg));
24680 			MD5Final((uchar_t *)answer, &context);
24681 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24682 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24683 			break;
24684 		}
24685 		case 1:
24686 			/* Add time component and min random (i.e. 1). */
24687 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24688 			break;
24689 		default:
24690 			/* Add only time component. */
24691 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24692 			break;
24693 		}
24694 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24695 			/*
24696 			 * New ISS not guaranteed to be ISS_INCR/2
24697 			 * ahead of the current tcp_snxt, so add the
24698 			 * difference to tcp_iss_incr_extra.
24699 			 */
24700 			tcps->tcps_iss_incr_extra += adj;
24701 		}
24702 		/*
24703 		 * If tcp_clean_death() can not perform the task now,
24704 		 * drop the SYN packet and let the other side re-xmit.
24705 		 * Otherwise pass the SYN packet back in, since the
24706 		 * old tcp state has been cleaned up or freed.
24707 		 */
24708 		if (tcp_clean_death(tcp, 0, 27) == -1)
24709 			goto done;
24710 		/*
24711 		 * We will come back to tcp_rput_data
24712 		 * on the global queue. Packets destined
24713 		 * for the global queue will be checked
24714 		 * with global policy. But the policy for
24715 		 * this packet has already been checked as
24716 		 * this was destined for the detached
24717 		 * connection. We need to bypass policy
24718 		 * check this time by attaching a dummy
24719 		 * ipsec_in with ipsec_in_dont_check set.
24720 		 */
24721 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
24722 		if (connp != NULL) {
24723 			TCP_STAT(tcps, tcp_time_wait_syn_success);
24724 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24725 			return;
24726 		}
24727 		goto done;
24728 	}
24729 
24730 	/*
24731 	 * rgap is the amount of stuff received out of window.  A negative
24732 	 * value is the amount out of window.
24733 	 */
24734 	if (rgap < 0) {
24735 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
24736 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
24737 		/* Fix seg_len and make sure there is something left. */
24738 		seg_len += rgap;
24739 		if (seg_len <= 0) {
24740 			if (flags & TH_RST) {
24741 				goto done;
24742 			}
24743 			flags |=  TH_ACK_NEEDED;
24744 			seg_len = 0;
24745 			goto process_ack;
24746 		}
24747 	}
24748 	/*
24749 	 * Check whether we can update tcp_ts_recent.  This test is
24750 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24751 	 * Extensions for High Performance: An Update", Internet Draft.
24752 	 */
24753 	if (tcp->tcp_snd_ts_ok &&
24754 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24755 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24756 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24757 		tcp->tcp_last_rcv_lbolt = lbolt64;
24758 	}
24759 
24760 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24761 		/* Always ack out of order packets */
24762 		flags |= TH_ACK_NEEDED;
24763 		seg_len = 0;
24764 	} else if (seg_len > 0) {
24765 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
24766 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
24767 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
24768 	}
24769 	if (flags & TH_RST) {
24770 		(void) tcp_clean_death(tcp, 0, 28);
24771 		goto done;
24772 	}
24773 	if (flags & TH_SYN) {
24774 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24775 		    TH_RST|TH_ACK);
24776 		/*
24777 		 * Do not delete the TCP structure if it is in
24778 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24779 		 */
24780 		goto done;
24781 	}
24782 process_ack:
24783 	if (flags & TH_ACK) {
24784 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24785 		if (bytes_acked <= 0) {
24786 			if (bytes_acked == 0 && seg_len == 0 &&
24787 			    new_swnd == tcp->tcp_swnd)
24788 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
24789 		} else {
24790 			/* Acks something not sent */
24791 			flags |= TH_ACK_NEEDED;
24792 		}
24793 	}
24794 	if (flags & TH_ACK_NEEDED) {
24795 		/*
24796 		 * Time to send an ack for some reason.
24797 		 */
24798 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24799 		    tcp->tcp_rnxt, TH_ACK);
24800 	}
24801 done:
24802 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24803 		DB_CKSUMSTART(mp) = 0;
24804 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24805 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
24806 	}
24807 	freemsg(mp);
24808 }
24809 
24810 /*
24811  * TCP Timers Implementation.
24812  */
24813 timeout_id_t
24814 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24815 {
24816 	mblk_t *mp;
24817 	tcp_timer_t *tcpt;
24818 	tcp_t *tcp = connp->conn_tcp;
24819 
24820 	ASSERT(connp->conn_sqp != NULL);
24821 
24822 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
24823 
24824 	if (tcp->tcp_timercache == NULL) {
24825 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24826 	} else {
24827 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
24828 		mp = tcp->tcp_timercache;
24829 		tcp->tcp_timercache = mp->b_next;
24830 		mp->b_next = NULL;
24831 		ASSERT(mp->b_wptr == NULL);
24832 	}
24833 
24834 	CONN_INC_REF(connp);
24835 	tcpt = (tcp_timer_t *)mp->b_rptr;
24836 	tcpt->connp = connp;
24837 	tcpt->tcpt_proc = f;
24838 	/*
24839 	 * TCP timers are normal timeouts. Plus, they do not require more than
24840 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
24841 	 * rounding up the expiration to the next resolution boundary, we can
24842 	 * batch timers in the callout subsystem to make TCP timers more
24843 	 * efficient. The roundup also protects short timers from expiring too
24844 	 * early before they have a chance to be cancelled.
24845 	 */
24846 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
24847 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
24848 
24849 	return ((timeout_id_t)mp);
24850 }
24851 
24852 static void
24853 tcp_timer_callback(void *arg)
24854 {
24855 	mblk_t *mp = (mblk_t *)arg;
24856 	tcp_timer_t *tcpt;
24857 	conn_t	*connp;
24858 
24859 	tcpt = (tcp_timer_t *)mp->b_rptr;
24860 	connp = tcpt->connp;
24861 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
24862 	    SQ_FILL, SQTAG_TCP_TIMER);
24863 }
24864 
24865 static void
24866 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24867 {
24868 	tcp_timer_t *tcpt;
24869 	conn_t *connp = (conn_t *)arg;
24870 	tcp_t *tcp = connp->conn_tcp;
24871 
24872 	tcpt = (tcp_timer_t *)mp->b_rptr;
24873 	ASSERT(connp == tcpt->connp);
24874 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24875 
24876 	/*
24877 	 * If the TCP has reached the closed state, don't proceed any
24878 	 * further. This TCP logically does not exist on the system.
24879 	 * tcpt_proc could for example access queues, that have already
24880 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24881 	 */
24882 	if (tcp->tcp_state != TCPS_CLOSED) {
24883 		(*tcpt->tcpt_proc)(connp);
24884 	} else {
24885 		tcp->tcp_timer_tid = 0;
24886 	}
24887 	tcp_timer_free(connp->conn_tcp, mp);
24888 }
24889 
24890 /*
24891  * There is potential race with untimeout and the handler firing at the same
24892  * time. The mblock may be freed by the handler while we are trying to use
24893  * it. But since both should execute on the same squeue, this race should not
24894  * occur.
24895  */
24896 clock_t
24897 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24898 {
24899 	mblk_t	*mp = (mblk_t *)id;
24900 	tcp_timer_t *tcpt;
24901 	clock_t delta;
24902 
24903 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
24904 
24905 	if (mp == NULL)
24906 		return (-1);
24907 
24908 	tcpt = (tcp_timer_t *)mp->b_rptr;
24909 	ASSERT(tcpt->connp == connp);
24910 
24911 	delta = untimeout_default(tcpt->tcpt_tid, 0);
24912 
24913 	if (delta >= 0) {
24914 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
24915 		tcp_timer_free(connp->conn_tcp, mp);
24916 		CONN_DEC_REF(connp);
24917 	}
24918 
24919 	return (delta);
24920 }
24921 
24922 /*
24923  * Allocate space for the timer event. The allocation looks like mblk, but it is
24924  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24925  *
24926  * Dealing with failures: If we can't allocate from the timer cache we try
24927  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24928  * points to b_rptr.
24929  * If we can't allocate anything using allocb_tryhard(), we perform a last
24930  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24931  * save the actual allocation size in b_datap.
24932  */
24933 mblk_t *
24934 tcp_timermp_alloc(int kmflags)
24935 {
24936 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24937 	    kmflags & ~KM_PANIC);
24938 
24939 	if (mp != NULL) {
24940 		mp->b_next = mp->b_prev = NULL;
24941 		mp->b_rptr = (uchar_t *)(&mp[1]);
24942 		mp->b_wptr = NULL;
24943 		mp->b_datap = NULL;
24944 		mp->b_queue = NULL;
24945 		mp->b_cont = NULL;
24946 	} else if (kmflags & KM_PANIC) {
24947 		/*
24948 		 * Failed to allocate memory for the timer. Try allocating from
24949 		 * dblock caches.
24950 		 */
24951 		/* ipclassifier calls this from a constructor - hence no tcps */
24952 		TCP_G_STAT(tcp_timermp_allocfail);
24953 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24954 		if (mp == NULL) {
24955 			size_t size = 0;
24956 			/*
24957 			 * Memory is really low. Try tryhard allocation.
24958 			 *
24959 			 * ipclassifier calls this from a constructor -
24960 			 * hence no tcps
24961 			 */
24962 			TCP_G_STAT(tcp_timermp_allocdblfail);
24963 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24964 			    sizeof (tcp_timer_t), &size, kmflags);
24965 			mp->b_rptr = (uchar_t *)(&mp[1]);
24966 			mp->b_next = mp->b_prev = NULL;
24967 			mp->b_wptr = (uchar_t *)-1;
24968 			mp->b_datap = (dblk_t *)size;
24969 			mp->b_queue = NULL;
24970 			mp->b_cont = NULL;
24971 		}
24972 		ASSERT(mp->b_wptr != NULL);
24973 	}
24974 	/* ipclassifier calls this from a constructor - hence no tcps */
24975 	TCP_G_DBGSTAT(tcp_timermp_alloced);
24976 
24977 	return (mp);
24978 }
24979 
24980 /*
24981  * Free per-tcp timer cache.
24982  * It can only contain entries from tcp_timercache.
24983  */
24984 void
24985 tcp_timermp_free(tcp_t *tcp)
24986 {
24987 	mblk_t *mp;
24988 
24989 	while ((mp = tcp->tcp_timercache) != NULL) {
24990 		ASSERT(mp->b_wptr == NULL);
24991 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24992 		kmem_cache_free(tcp_timercache, mp);
24993 	}
24994 }
24995 
24996 /*
24997  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24998  * events there already (currently at most two events are cached).
24999  * If the event is not allocated from the timer cache, free it right away.
25000  */
25001 static void
25002 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25003 {
25004 	mblk_t *mp1 = tcp->tcp_timercache;
25005 
25006 	if (mp->b_wptr != NULL) {
25007 		/*
25008 		 * This allocation is not from a timer cache, free it right
25009 		 * away.
25010 		 */
25011 		if (mp->b_wptr != (uchar_t *)-1)
25012 			freeb(mp);
25013 		else
25014 			kmem_free(mp, (size_t)mp->b_datap);
25015 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25016 		/* Cache this timer block for future allocations */
25017 		mp->b_rptr = (uchar_t *)(&mp[1]);
25018 		mp->b_next = mp1;
25019 		tcp->tcp_timercache = mp;
25020 	} else {
25021 		kmem_cache_free(tcp_timercache, mp);
25022 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
25023 	}
25024 }
25025 
25026 /*
25027  * End of TCP Timers implementation.
25028  */
25029 
25030 /*
25031  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25032  * on the specified backing STREAMS q. Note, the caller may make the
25033  * decision to call based on the tcp_t.tcp_flow_stopped value which
25034  * when check outside the q's lock is only an advisory check ...
25035  */
25036 void
25037 tcp_setqfull(tcp_t *tcp)
25038 {
25039 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25040 	conn_t	*connp = tcp->tcp_connp;
25041 
25042 	if (tcp->tcp_closed)
25043 		return;
25044 
25045 	if (IPCL_IS_NONSTR(connp)) {
25046 		(*connp->conn_upcalls->su_txq_full)
25047 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
25048 		tcp->tcp_flow_stopped = B_TRUE;
25049 	} else {
25050 		queue_t *q = tcp->tcp_wq;
25051 
25052 		if (!(q->q_flag & QFULL)) {
25053 			mutex_enter(QLOCK(q));
25054 			if (!(q->q_flag & QFULL)) {
25055 				/* still need to set QFULL */
25056 				q->q_flag |= QFULL;
25057 				tcp->tcp_flow_stopped = B_TRUE;
25058 				mutex_exit(QLOCK(q));
25059 				TCP_STAT(tcps, tcp_flwctl_on);
25060 			} else {
25061 				mutex_exit(QLOCK(q));
25062 			}
25063 		}
25064 	}
25065 }
25066 
25067 void
25068 tcp_clrqfull(tcp_t *tcp)
25069 {
25070 	conn_t  *connp = tcp->tcp_connp;
25071 
25072 	if (tcp->tcp_closed)
25073 		return;
25074 
25075 	if (IPCL_IS_NONSTR(connp)) {
25076 		(*connp->conn_upcalls->su_txq_full)
25077 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
25078 		tcp->tcp_flow_stopped = B_FALSE;
25079 	} else {
25080 		queue_t *q = tcp->tcp_wq;
25081 
25082 		if (q->q_flag & QFULL) {
25083 			mutex_enter(QLOCK(q));
25084 			if (q->q_flag & QFULL) {
25085 				q->q_flag &= ~QFULL;
25086 				tcp->tcp_flow_stopped = B_FALSE;
25087 				mutex_exit(QLOCK(q));
25088 				if (q->q_flag & QWANTW)
25089 					qbackenable(q, 0);
25090 			} else {
25091 				mutex_exit(QLOCK(q));
25092 			}
25093 		}
25094 	}
25095 }
25096 
25097 /*
25098  * kstats related to squeues i.e. not per IP instance
25099  */
25100 static void *
25101 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
25102 {
25103 	kstat_t *ksp;
25104 
25105 	tcp_g_stat_t template = {
25106 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
25107 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
25108 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
25109 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
25110 	};
25111 
25112 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
25113 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25114 	    KSTAT_FLAG_VIRTUAL);
25115 
25116 	if (ksp == NULL)
25117 		return (NULL);
25118 
25119 	bcopy(&template, tcp_g_statp, sizeof (template));
25120 	ksp->ks_data = (void *)tcp_g_statp;
25121 
25122 	kstat_install(ksp);
25123 	return (ksp);
25124 }
25125 
25126 static void
25127 tcp_g_kstat_fini(kstat_t *ksp)
25128 {
25129 	if (ksp != NULL) {
25130 		kstat_delete(ksp);
25131 	}
25132 }
25133 
25134 
25135 static void *
25136 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
25137 {
25138 	kstat_t *ksp;
25139 
25140 	tcp_stat_t template = {
25141 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
25142 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
25143 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
25144 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
25145 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
25146 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
25147 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
25148 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
25149 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
25150 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
25151 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
25152 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
25153 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
25154 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
25155 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
25156 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
25157 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
25158 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
25159 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
25160 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
25161 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
25162 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
25163 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
25164 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
25165 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
25166 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
25167 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
25168 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
25169 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
25170 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
25171 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
25172 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
25173 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
25174 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
25175 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
25176 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
25177 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
25178 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
25179 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
25180 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
25181 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
25182 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
25183 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
25184 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
25185 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
25186 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
25187 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
25188 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
25189 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
25190 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
25191 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
25192 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
25193 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
25194 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
25195 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
25196 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
25197 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
25198 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
25199 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
25200 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
25201 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
25202 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
25203 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
25204 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
25205 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
25206 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
25207 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
25208 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
25209 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
25210 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
25211 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
25212 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
25213 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
25214 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
25215 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
25216 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
25217 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
25218 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
25219 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
25220 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
25221 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
25222 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
25223 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
25224 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
25225 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
25226 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
25227 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
25228 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
25229 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
25230 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
25231 	};
25232 
25233 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
25234 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25235 	    KSTAT_FLAG_VIRTUAL, stackid);
25236 
25237 	if (ksp == NULL)
25238 		return (NULL);
25239 
25240 	bcopy(&template, tcps_statisticsp, sizeof (template));
25241 	ksp->ks_data = (void *)tcps_statisticsp;
25242 	ksp->ks_private = (void *)(uintptr_t)stackid;
25243 
25244 	kstat_install(ksp);
25245 	return (ksp);
25246 }
25247 
25248 static void
25249 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
25250 {
25251 	if (ksp != NULL) {
25252 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25253 		kstat_delete_netstack(ksp, stackid);
25254 	}
25255 }
25256 
25257 /*
25258  * TCP Kstats implementation
25259  */
25260 static void *
25261 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
25262 {
25263 	kstat_t	*ksp;
25264 
25265 	tcp_named_kstat_t template = {
25266 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25267 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25268 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25269 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25270 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25271 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25272 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25273 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25274 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25275 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
25276 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
25277 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25278 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25279 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25280 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25281 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25282 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25283 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25284 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25285 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25286 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25287 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25288 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25289 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25290 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25291 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25292 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25293 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25294 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25295 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25296 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25297 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25298 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25299 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25300 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25301 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25302 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25303 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25304 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25305 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25306 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25307 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25308 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25309 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25310 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25311 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25312 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25313 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25314 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25315 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25316 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25317 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25318 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25319 	};
25320 
25321 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
25322 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
25323 
25324 	if (ksp == NULL)
25325 		return (NULL);
25326 
25327 	template.rtoAlgorithm.value.ui32 = 4;
25328 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
25329 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
25330 	template.maxConn.value.i32 = -1;
25331 
25332 	bcopy(&template, ksp->ks_data, sizeof (template));
25333 	ksp->ks_update = tcp_kstat_update;
25334 	ksp->ks_private = (void *)(uintptr_t)stackid;
25335 
25336 	kstat_install(ksp);
25337 	return (ksp);
25338 }
25339 
25340 static void
25341 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
25342 {
25343 	if (ksp != NULL) {
25344 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25345 		kstat_delete_netstack(ksp, stackid);
25346 	}
25347 }
25348 
25349 static int
25350 tcp_kstat_update(kstat_t *kp, int rw)
25351 {
25352 	tcp_named_kstat_t *tcpkp;
25353 	tcp_t		*tcp;
25354 	connf_t		*connfp;
25355 	conn_t		*connp;
25356 	int 		i;
25357 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
25358 	netstack_t	*ns;
25359 	tcp_stack_t	*tcps;
25360 	ip_stack_t	*ipst;
25361 
25362 	if ((kp == NULL) || (kp->ks_data == NULL))
25363 		return (EIO);
25364 
25365 	if (rw == KSTAT_WRITE)
25366 		return (EACCES);
25367 
25368 	ns = netstack_find_by_stackid(stackid);
25369 	if (ns == NULL)
25370 		return (-1);
25371 	tcps = ns->netstack_tcp;
25372 	if (tcps == NULL) {
25373 		netstack_rele(ns);
25374 		return (-1);
25375 	}
25376 
25377 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25378 
25379 	tcpkp->currEstab.value.ui32 = 0;
25380 
25381 	ipst = ns->netstack_ip;
25382 
25383 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25384 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25385 		connp = NULL;
25386 		while ((connp =
25387 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25388 			tcp = connp->conn_tcp;
25389 			switch (tcp_snmp_state(tcp)) {
25390 			case MIB2_TCP_established:
25391 			case MIB2_TCP_closeWait:
25392 				tcpkp->currEstab.value.ui32++;
25393 				break;
25394 			}
25395 		}
25396 	}
25397 
25398 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
25399 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
25400 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
25401 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
25402 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
25403 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
25404 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
25405 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
25406 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
25407 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
25408 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
25409 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
25410 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
25411 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
25412 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
25413 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
25414 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
25415 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
25416 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
25417 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
25418 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
25419 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
25420 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
25421 	tcpkp->inDataInorderSegs.value.ui32 =
25422 	    tcps->tcps_mib.tcpInDataInorderSegs;
25423 	tcpkp->inDataInorderBytes.value.ui32 =
25424 	    tcps->tcps_mib.tcpInDataInorderBytes;
25425 	tcpkp->inDataUnorderSegs.value.ui32 =
25426 	    tcps->tcps_mib.tcpInDataUnorderSegs;
25427 	tcpkp->inDataUnorderBytes.value.ui32 =
25428 	    tcps->tcps_mib.tcpInDataUnorderBytes;
25429 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
25430 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
25431 	tcpkp->inDataPartDupSegs.value.ui32 =
25432 	    tcps->tcps_mib.tcpInDataPartDupSegs;
25433 	tcpkp->inDataPartDupBytes.value.ui32 =
25434 	    tcps->tcps_mib.tcpInDataPartDupBytes;
25435 	tcpkp->inDataPastWinSegs.value.ui32 =
25436 	    tcps->tcps_mib.tcpInDataPastWinSegs;
25437 	tcpkp->inDataPastWinBytes.value.ui32 =
25438 	    tcps->tcps_mib.tcpInDataPastWinBytes;
25439 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
25440 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
25441 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
25442 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
25443 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
25444 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
25445 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
25446 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
25447 	tcpkp->timKeepaliveProbe.value.ui32 =
25448 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
25449 	tcpkp->timKeepaliveDrop.value.ui32 =
25450 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
25451 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
25452 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
25453 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
25454 	tcpkp->outSackRetransSegs.value.ui32 =
25455 	    tcps->tcps_mib.tcpOutSackRetransSegs;
25456 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
25457 
25458 	netstack_rele(ns);
25459 	return (0);
25460 }
25461 
25462 void
25463 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25464 {
25465 	uint16_t	hdr_len;
25466 	ipha_t		*ipha;
25467 	uint8_t		*nexthdrp;
25468 	tcph_t		*tcph;
25469 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25470 
25471 	/* Already has an eager */
25472 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25473 		TCP_STAT(tcps, tcp_reinput_syn);
25474 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25475 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
25476 		return;
25477 	}
25478 
25479 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25480 	case IPV4_VERSION:
25481 		ipha = (ipha_t *)mp->b_rptr;
25482 		hdr_len = IPH_HDR_LENGTH(ipha);
25483 		break;
25484 	case IPV6_VERSION:
25485 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25486 		    &hdr_len, &nexthdrp)) {
25487 			CONN_DEC_REF(connp);
25488 			freemsg(mp);
25489 			return;
25490 		}
25491 		break;
25492 	}
25493 
25494 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25495 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25496 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25497 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25498 	}
25499 
25500 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25501 	    SQ_FILL, SQTAG_TCP_REINPUT);
25502 }
25503 
25504 static int
25505 tcp_squeue_switch(int val)
25506 {
25507 	int rval = SQ_FILL;
25508 
25509 	switch (val) {
25510 	case 1:
25511 		rval = SQ_NODRAIN;
25512 		break;
25513 	case 2:
25514 		rval = SQ_PROCESS;
25515 		break;
25516 	default:
25517 		break;
25518 	}
25519 	return (rval);
25520 }
25521 
25522 /*
25523  * This is called once for each squeue - globally for all stack
25524  * instances.
25525  */
25526 static void
25527 tcp_squeue_add(squeue_t *sqp)
25528 {
25529 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25530 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
25531 
25532 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25533 	tcp_time_wait->tcp_time_wait_tid =
25534 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
25535 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
25536 	    CALLOUT_FLAG_ROUNDUP);
25537 	if (tcp_free_list_max_cnt == 0) {
25538 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25539 		    max_ncpus : boot_max_ncpus);
25540 
25541 		/*
25542 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25543 		 */
25544 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25545 		    (tcp_ncpus * sizeof (tcp_t) * 100);
25546 	}
25547 	tcp_time_wait->tcp_free_list_cnt = 0;
25548 }
25549 
25550 static int
25551 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid)
25552 {
25553 	mblk_t	*ire_mp = NULL;
25554 	mblk_t	*syn_mp;
25555 	mblk_t	*mdti;
25556 	mblk_t	*lsoi;
25557 	int	retval;
25558 	tcph_t	*tcph;
25559 	uint32_t	mss;
25560 	queue_t	*q = tcp->tcp_rq;
25561 	conn_t	*connp = tcp->tcp_connp;
25562 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25563 
25564 	if (error == 0) {
25565 		/*
25566 		 * Adapt Multidata information, if any.  The
25567 		 * following tcp_mdt_update routine will free
25568 		 * the message.
25569 		 */
25570 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
25571 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
25572 			    b_rptr)->mdt_capab, B_TRUE);
25573 			freemsg(mdti);
25574 		}
25575 
25576 		/*
25577 		 * Check to update LSO information with tcp, and
25578 		 * tcp_lso_update routine will free the message.
25579 		 */
25580 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
25581 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
25582 			    b_rptr)->lso_capab);
25583 			freemsg(lsoi);
25584 		}
25585 
25586 		/* Get the IRE, if we had requested for it */
25587 		if (mp != NULL)
25588 			ire_mp = tcp_ire_mp(&mp);
25589 
25590 		if (tcp->tcp_hard_binding) {
25591 			tcp->tcp_hard_binding = B_FALSE;
25592 			tcp->tcp_hard_bound = B_TRUE;
25593 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
25594 			if (retval != 0) {
25595 				error = EADDRINUSE;
25596 				goto bind_failed;
25597 			}
25598 		} else {
25599 			if (ire_mp != NULL)
25600 				freeb(ire_mp);
25601 			goto after_syn_sent;
25602 		}
25603 
25604 		retval = tcp_adapt_ire(tcp, ire_mp);
25605 		if (ire_mp != NULL)
25606 			freeb(ire_mp);
25607 		if (retval == 0) {
25608 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
25609 			    ENETUNREACH : EADDRNOTAVAIL);
25610 			goto ipcl_rm;
25611 		}
25612 		/*
25613 		 * Don't let an endpoint connect to itself.
25614 		 * Also checked in tcp_connect() but that
25615 		 * check can't handle the case when the
25616 		 * local IP address is INADDR_ANY.
25617 		 */
25618 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25619 			if ((tcp->tcp_ipha->ipha_dst ==
25620 			    tcp->tcp_ipha->ipha_src) &&
25621 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25622 			    tcp->tcp_tcph->th_fport))) {
25623 				error = EADDRNOTAVAIL;
25624 				goto ipcl_rm;
25625 			}
25626 		} else {
25627 			if (IN6_ARE_ADDR_EQUAL(
25628 			    &tcp->tcp_ip6h->ip6_dst,
25629 			    &tcp->tcp_ip6h->ip6_src) &&
25630 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25631 			    tcp->tcp_tcph->th_fport))) {
25632 				error = EADDRNOTAVAIL;
25633 				goto ipcl_rm;
25634 			}
25635 		}
25636 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
25637 		/*
25638 		 * This should not be possible!  Just for
25639 		 * defensive coding...
25640 		 */
25641 		if (tcp->tcp_state != TCPS_SYN_SENT)
25642 			goto after_syn_sent;
25643 
25644 		if (is_system_labeled() &&
25645 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
25646 			error = EHOSTUNREACH;
25647 			goto ipcl_rm;
25648 		}
25649 
25650 		/*
25651 		 * tcp_adapt_ire() does not adjust
25652 		 * for TCP/IP header length.
25653 		 */
25654 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
25655 
25656 		/*
25657 		 * Just make sure our rwnd is at
25658 		 * least tcp_recv_hiwat_mss * MSS
25659 		 * large, and round up to the nearest
25660 		 * MSS.
25661 		 *
25662 		 * We do the round up here because
25663 		 * we need to get the interface
25664 		 * MTU first before we can do the
25665 		 * round up.
25666 		 */
25667 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
25668 		    tcps->tcps_recv_hiwat_minmss * mss);
25669 		if (!IPCL_IS_NONSTR(connp))
25670 			q->q_hiwat = tcp->tcp_rwnd;
25671 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
25672 		tcp_set_ws_value(tcp);
25673 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
25674 		    tcp->tcp_tcph->th_win);
25675 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
25676 			tcp->tcp_snd_ws_ok = B_TRUE;
25677 
25678 		/*
25679 		 * Set tcp_snd_ts_ok to true
25680 		 * so that tcp_xmit_mp will
25681 		 * include the timestamp
25682 		 * option in the SYN segment.
25683 		 */
25684 		if (tcps->tcps_tstamp_always ||
25685 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
25686 			tcp->tcp_snd_ts_ok = B_TRUE;
25687 		}
25688 
25689 		/*
25690 		 * tcp_snd_sack_ok can be set in
25691 		 * tcp_adapt_ire() if the sack metric
25692 		 * is set.  So check it here also.
25693 		 */
25694 		if (tcps->tcps_sack_permitted == 2 ||
25695 		    tcp->tcp_snd_sack_ok) {
25696 			if (tcp->tcp_sack_info == NULL) {
25697 				tcp->tcp_sack_info =
25698 				    kmem_cache_alloc(tcp_sack_info_cache,
25699 				    KM_SLEEP);
25700 			}
25701 			tcp->tcp_snd_sack_ok = B_TRUE;
25702 		}
25703 
25704 		/*
25705 		 * Should we use ECN?  Note that the current
25706 		 * default value (SunOS 5.9) of tcp_ecn_permitted
25707 		 * is 1.  The reason for doing this is that there
25708 		 * are equipments out there that will drop ECN
25709 		 * enabled IP packets.  Setting it to 1 avoids
25710 		 * compatibility problems.
25711 		 */
25712 		if (tcps->tcps_ecn_permitted == 2)
25713 			tcp->tcp_ecn_ok = B_TRUE;
25714 
25715 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
25716 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
25717 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
25718 		if (syn_mp) {
25719 			if (cr == NULL) {
25720 				cr = tcp->tcp_cred;
25721 				pid = tcp->tcp_cpid;
25722 			}
25723 			mblk_setcred(syn_mp, cr, pid);
25724 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
25725 		}
25726 	after_syn_sent:
25727 		if (mp != NULL) {
25728 			ASSERT(mp->b_cont == NULL);
25729 			freeb(mp);
25730 		}
25731 		return (error);
25732 	} else {
25733 		/* error */
25734 		if (tcp->tcp_debug) {
25735 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
25736 			    "tcp_post_ip_bind: error == %d", error);
25737 		}
25738 		if (mp != NULL) {
25739 			freeb(mp);
25740 		}
25741 	}
25742 
25743 ipcl_rm:
25744 	/*
25745 	 * Need to unbind with classifier since we were just
25746 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
25747 	 */
25748 	tcp->tcp_hard_bound = B_FALSE;
25749 	tcp->tcp_hard_binding = B_FALSE;
25750 
25751 	ipcl_hash_remove(connp);
25752 
25753 bind_failed:
25754 	tcp->tcp_state = TCPS_IDLE;
25755 	if (tcp->tcp_ipversion == IPV4_VERSION)
25756 		tcp->tcp_ipha->ipha_src = 0;
25757 	else
25758 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
25759 	/*
25760 	 * Copy of the src addr. in tcp_t is needed since
25761 	 * the lookup funcs. can only look at tcp_t
25762 	 */
25763 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
25764 
25765 	tcph = tcp->tcp_tcph;
25766 	tcph->th_lport[0] = 0;
25767 	tcph->th_lport[1] = 0;
25768 	tcp_bind_hash_remove(tcp);
25769 	bzero(&connp->u_port, sizeof (connp->u_port));
25770 	/* blow away saved option results if any */
25771 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
25772 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
25773 
25774 	conn_delete_ire(tcp->tcp_connp, NULL);
25775 
25776 	return (error);
25777 }
25778 
25779 static int
25780 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
25781     boolean_t bind_to_req_port_only, cred_t *cr)
25782 {
25783 	in_port_t	mlp_port;
25784 	mlp_type_t 	addrtype, mlptype;
25785 	boolean_t	user_specified;
25786 	in_port_t	allocated_port;
25787 	in_port_t	requested_port = *requested_port_ptr;
25788 	conn_t		*connp;
25789 	zone_t		*zone;
25790 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25791 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
25792 
25793 	/*
25794 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
25795 	 */
25796 	if (cr == NULL)
25797 		cr = tcp->tcp_cred;
25798 	/*
25799 	 * Get a valid port (within the anonymous range and should not
25800 	 * be a privileged one) to use if the user has not given a port.
25801 	 * If multiple threads are here, they may all start with
25802 	 * with the same initial port. But, it should be fine as long as
25803 	 * tcp_bindi will ensure that no two threads will be assigned
25804 	 * the same port.
25805 	 *
25806 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
25807 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
25808 	 * unless TCP_ANONPRIVBIND option is set.
25809 	 */
25810 	mlptype = mlptSingle;
25811 	mlp_port = requested_port;
25812 	if (requested_port == 0) {
25813 		requested_port = tcp->tcp_anon_priv_bind ?
25814 		    tcp_get_next_priv_port(tcp) :
25815 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
25816 		    tcp, B_TRUE);
25817 		if (requested_port == 0) {
25818 			return (-TNOADDR);
25819 		}
25820 		user_specified = B_FALSE;
25821 
25822 		/*
25823 		 * If the user went through one of the RPC interfaces to create
25824 		 * this socket and RPC is MLP in this zone, then give him an
25825 		 * anonymous MLP.
25826 		 */
25827 		connp = tcp->tcp_connp;
25828 		if (connp->conn_anon_mlp && is_system_labeled()) {
25829 			zone = crgetzone(cr);
25830 			addrtype = tsol_mlp_addr_type(zone->zone_id,
25831 			    IPV6_VERSION, &v6addr,
25832 			    tcps->tcps_netstack->netstack_ip);
25833 			if (addrtype == mlptSingle) {
25834 				return (-TNOADDR);
25835 			}
25836 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
25837 			    PMAPPORT, addrtype);
25838 			mlp_port = PMAPPORT;
25839 		}
25840 	} else {
25841 		int i;
25842 		boolean_t priv = B_FALSE;
25843 
25844 		/*
25845 		 * If the requested_port is in the well-known privileged range,
25846 		 * verify that the stream was opened by a privileged user.
25847 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
25848 		 * but instead the code relies on:
25849 		 * - the fact that the address of the array and its size never
25850 		 *   changes
25851 		 * - the atomic assignment of the elements of the array
25852 		 */
25853 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
25854 			priv = B_TRUE;
25855 		} else {
25856 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
25857 				if (requested_port ==
25858 				    tcps->tcps_g_epriv_ports[i]) {
25859 					priv = B_TRUE;
25860 					break;
25861 				}
25862 			}
25863 		}
25864 		if (priv) {
25865 			if (secpolicy_net_privaddr(cr, requested_port,
25866 			    IPPROTO_TCP) != 0) {
25867 				if (tcp->tcp_debug) {
25868 					(void) strlog(TCP_MOD_ID, 0, 1,
25869 					    SL_ERROR|SL_TRACE,
25870 					    "tcp_bind: no priv for port %d",
25871 					    requested_port);
25872 				}
25873 				return (-TACCES);
25874 			}
25875 		}
25876 		user_specified = B_TRUE;
25877 
25878 		connp = tcp->tcp_connp;
25879 		if (is_system_labeled()) {
25880 			zone = crgetzone(cr);
25881 			addrtype = tsol_mlp_addr_type(zone->zone_id,
25882 			    IPV6_VERSION, &v6addr,
25883 			    tcps->tcps_netstack->netstack_ip);
25884 			if (addrtype == mlptSingle) {
25885 				return (-TNOADDR);
25886 			}
25887 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
25888 			    requested_port, addrtype);
25889 		}
25890 	}
25891 
25892 	if (mlptype != mlptSingle) {
25893 		if (secpolicy_net_bindmlp(cr) != 0) {
25894 			if (tcp->tcp_debug) {
25895 				(void) strlog(TCP_MOD_ID, 0, 1,
25896 				    SL_ERROR|SL_TRACE,
25897 				    "tcp_bind: no priv for multilevel port %d",
25898 				    requested_port);
25899 			}
25900 			return (-TACCES);
25901 		}
25902 
25903 		/*
25904 		 * If we're specifically binding a shared IP address and the
25905 		 * port is MLP on shared addresses, then check to see if this
25906 		 * zone actually owns the MLP.  Reject if not.
25907 		 */
25908 		if (mlptype == mlptShared && addrtype == mlptShared) {
25909 			/*
25910 			 * No need to handle exclusive-stack zones since
25911 			 * ALL_ZONES only applies to the shared stack.
25912 			 */
25913 			zoneid_t mlpzone;
25914 
25915 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
25916 			    htons(mlp_port));
25917 			if (connp->conn_zoneid != mlpzone) {
25918 				if (tcp->tcp_debug) {
25919 					(void) strlog(TCP_MOD_ID, 0, 1,
25920 					    SL_ERROR|SL_TRACE,
25921 					    "tcp_bind: attempt to bind port "
25922 					    "%d on shared addr in zone %d "
25923 					    "(should be %d)",
25924 					    mlp_port, connp->conn_zoneid,
25925 					    mlpzone);
25926 				}
25927 				return (-TACCES);
25928 			}
25929 		}
25930 
25931 		if (!user_specified) {
25932 			int err;
25933 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
25934 			    requested_port, B_TRUE);
25935 			if (err != 0) {
25936 				if (tcp->tcp_debug) {
25937 					(void) strlog(TCP_MOD_ID, 0, 1,
25938 					    SL_ERROR|SL_TRACE,
25939 					    "tcp_bind: cannot establish anon "
25940 					    "MLP for port %d",
25941 					    requested_port);
25942 				}
25943 				return (err);
25944 			}
25945 			connp->conn_anon_port = B_TRUE;
25946 		}
25947 		connp->conn_mlp_type = mlptype;
25948 	}
25949 
25950 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
25951 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
25952 
25953 	if (allocated_port == 0) {
25954 		connp->conn_mlp_type = mlptSingle;
25955 		if (connp->conn_anon_port) {
25956 			connp->conn_anon_port = B_FALSE;
25957 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
25958 			    requested_port, B_FALSE);
25959 		}
25960 		if (bind_to_req_port_only) {
25961 			if (tcp->tcp_debug) {
25962 				(void) strlog(TCP_MOD_ID, 0, 1,
25963 				    SL_ERROR|SL_TRACE,
25964 				    "tcp_bind: requested addr busy");
25965 			}
25966 			return (-TADDRBUSY);
25967 		} else {
25968 			/* If we are out of ports, fail the bind. */
25969 			if (tcp->tcp_debug) {
25970 				(void) strlog(TCP_MOD_ID, 0, 1,
25971 				    SL_ERROR|SL_TRACE,
25972 				    "tcp_bind: out of ports?");
25973 			}
25974 			return (-TNOADDR);
25975 		}
25976 	}
25977 
25978 	/* Pass the allocated port back */
25979 	*requested_port_ptr = allocated_port;
25980 	return (0);
25981 }
25982 
25983 static int
25984 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
25985     boolean_t bind_to_req_port_only)
25986 {
25987 	tcp_t	*tcp = connp->conn_tcp;
25988 	sin_t	*sin;
25989 	sin6_t  *sin6;
25990 	in_port_t requested_port;
25991 	ipaddr_t	v4addr;
25992 	in6_addr_t	v6addr;
25993 	uint_t	origipversion;
25994 	int	error = 0;
25995 
25996 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
25997 
25998 	if (tcp->tcp_state == TCPS_BOUND) {
25999 		return (0);
26000 	} else if (tcp->tcp_state > TCPS_BOUND) {
26001 		if (tcp->tcp_debug) {
26002 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26003 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26004 		}
26005 		return (-TOUTSTATE);
26006 	}
26007 	origipversion = tcp->tcp_ipversion;
26008 
26009 	ASSERT(sa != NULL && len != 0);
26010 
26011 	if (!OK_32PTR((char *)sa)) {
26012 		if (tcp->tcp_debug) {
26013 			(void) strlog(TCP_MOD_ID, 0, 1,
26014 			    SL_ERROR|SL_TRACE,
26015 			    "tcp_bind: bad address parameter, "
26016 			    "address %p, len %d",
26017 			    (void *)sa, len);
26018 		}
26019 		return (-TPROTO);
26020 	}
26021 
26022 	switch (len) {
26023 	case sizeof (sin_t):	/* Complete IPv4 address */
26024 		sin = (sin_t *)sa;
26025 		/*
26026 		 * With sockets sockfs will accept bogus sin_family in
26027 		 * bind() and replace it with the family used in the socket
26028 		 * call.
26029 		 */
26030 		if (sin->sin_family != AF_INET ||
26031 		    tcp->tcp_family != AF_INET) {
26032 			return (EAFNOSUPPORT);
26033 		}
26034 		requested_port = ntohs(sin->sin_port);
26035 		tcp->tcp_ipversion = IPV4_VERSION;
26036 		v4addr = sin->sin_addr.s_addr;
26037 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
26038 		break;
26039 
26040 	case sizeof (sin6_t): /* Complete IPv6 address */
26041 		sin6 = (sin6_t *)sa;
26042 		if (sin6->sin6_family != AF_INET6 ||
26043 		    tcp->tcp_family != AF_INET6) {
26044 			return (EAFNOSUPPORT);
26045 		}
26046 		requested_port = ntohs(sin6->sin6_port);
26047 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
26048 		    IPV4_VERSION : IPV6_VERSION;
26049 		v6addr = sin6->sin6_addr;
26050 		break;
26051 
26052 	default:
26053 		if (tcp->tcp_debug) {
26054 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26055 			    "tcp_bind: bad address length, %d", len);
26056 		}
26057 		return (EAFNOSUPPORT);
26058 		/* return (-TBADADDR); */
26059 	}
26060 
26061 	tcp->tcp_bound_source_v6 = v6addr;
26062 
26063 	/* Check for change in ipversion */
26064 	if (origipversion != tcp->tcp_ipversion) {
26065 		ASSERT(tcp->tcp_family == AF_INET6);
26066 		error = tcp->tcp_ipversion == IPV6_VERSION ?
26067 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
26068 		if (error) {
26069 			return (ENOMEM);
26070 		}
26071 	}
26072 
26073 	/*
26074 	 * Initialize family specific fields. Copy of the src addr.
26075 	 * in tcp_t is needed for the lookup funcs.
26076 	 */
26077 	if (tcp->tcp_ipversion == IPV6_VERSION) {
26078 		tcp->tcp_ip6h->ip6_src = v6addr;
26079 	} else {
26080 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
26081 	}
26082 	tcp->tcp_ip_src_v6 = v6addr;
26083 
26084 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
26085 
26086 	error = tcp_bind_select_lport(tcp, &requested_port,
26087 	    bind_to_req_port_only, cr);
26088 
26089 	return (error);
26090 }
26091 
26092 /*
26093  * Return unix error is tli error is TSYSERR, otherwise return a negative
26094  * tli error.
26095  */
26096 int
26097 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26098     boolean_t bind_to_req_port_only)
26099 {
26100 	int error;
26101 	tcp_t *tcp = connp->conn_tcp;
26102 
26103 	if (tcp->tcp_state >= TCPS_BOUND) {
26104 		if (tcp->tcp_debug) {
26105 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26106 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26107 		}
26108 		return (-TOUTSTATE);
26109 	}
26110 
26111 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
26112 	if (error != 0)
26113 		return (error);
26114 
26115 	ASSERT(tcp->tcp_state == TCPS_BOUND);
26116 
26117 	tcp->tcp_conn_req_max = 0;
26118 
26119 	if (tcp->tcp_family == AF_INET6) {
26120 		ASSERT(tcp->tcp_connp->conn_af_isv6);
26121 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
26122 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
26123 	} else {
26124 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
26125 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
26126 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
26127 	}
26128 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
26129 }
26130 
26131 int
26132 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
26133     socklen_t len, cred_t *cr)
26134 {
26135 	int 		error;
26136 	conn_t		*connp = (conn_t *)proto_handle;
26137 	squeue_t	*sqp = connp->conn_sqp;
26138 
26139 	/* All Solaris components should pass a cred for this operation. */
26140 	ASSERT(cr != NULL);
26141 
26142 	ASSERT(sqp != NULL);
26143 	ASSERT(connp->conn_upper_handle != NULL);
26144 
26145 	error = squeue_synch_enter(sqp, connp, 0);
26146 	if (error != 0) {
26147 		/* failed to enter */
26148 		return (ENOSR);
26149 	}
26150 
26151 	/* binding to a NULL address really means unbind */
26152 	if (sa == NULL) {
26153 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
26154 			error = tcp_do_unbind(connp);
26155 		else
26156 			error = EINVAL;
26157 	} else {
26158 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
26159 	}
26160 
26161 	squeue_synch_exit(sqp, connp);
26162 
26163 	if (error < 0) {
26164 		if (error == -TOUTSTATE)
26165 			error = EINVAL;
26166 		else
26167 			error = proto_tlitosyserr(-error);
26168 	}
26169 
26170 	return (error);
26171 }
26172 
26173 /*
26174  * If the return value from this function is positive, it's a UNIX error.
26175  * Otherwise, if it's negative, then the absolute value is a TLI error.
26176  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
26177  */
26178 int
26179 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
26180     cred_t *cr, pid_t pid)
26181 {
26182 	tcp_t		*tcp = connp->conn_tcp;
26183 	sin_t		*sin = (sin_t *)sa;
26184 	sin6_t		*sin6 = (sin6_t *)sa;
26185 	ipaddr_t	*dstaddrp;
26186 	in_port_t	dstport;
26187 	uint_t		srcid;
26188 	int		error = 0;
26189 
26190 	switch (len) {
26191 	default:
26192 		/*
26193 		 * Should never happen
26194 		 */
26195 		return (EINVAL);
26196 
26197 	case sizeof (sin_t):
26198 		sin = (sin_t *)sa;
26199 		if (sin->sin_port == 0) {
26200 			return (-TBADADDR);
26201 		}
26202 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
26203 			return (EAFNOSUPPORT);
26204 		}
26205 		break;
26206 
26207 	case sizeof (sin6_t):
26208 		sin6 = (sin6_t *)sa;
26209 		if (sin6->sin6_port == 0) {
26210 			return (-TBADADDR);
26211 		}
26212 		break;
26213 	}
26214 	/*
26215 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
26216 	 * make sure that the template IP header in the tcp structure is an
26217 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
26218 	 * need to this before we call tcp_bindi() so that the port lookup
26219 	 * code will look for ports in the correct port space (IPv4 and
26220 	 * IPv6 have separate port spaces).
26221 	 */
26222 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
26223 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26224 		int err = 0;
26225 
26226 		err = tcp_header_init_ipv4(tcp);
26227 			if (err != 0) {
26228 				error = ENOMEM;
26229 				goto connect_failed;
26230 			}
26231 		if (tcp->tcp_lport != 0)
26232 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
26233 	}
26234 
26235 	switch (tcp->tcp_state) {
26236 	case TCPS_LISTEN:
26237 		/*
26238 		 * Listening sockets are not allowed to issue connect().
26239 		 */
26240 		if (IPCL_IS_NONSTR(connp))
26241 			return (EOPNOTSUPP);
26242 		/* FALLTHRU */
26243 	case TCPS_IDLE:
26244 		/*
26245 		 * We support quick connect, refer to comments in
26246 		 * tcp_connect_*()
26247 		 */
26248 		/* FALLTHRU */
26249 	case TCPS_BOUND:
26250 		/*
26251 		 * We must bump the generation before the operation start.
26252 		 * This is done to ensure that any upcall made later on sends
26253 		 * up the right generation to the socket.
26254 		 */
26255 		SOCK_CONNID_BUMP(tcp->tcp_connid);
26256 
26257 		if (tcp->tcp_family == AF_INET6) {
26258 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26259 				return (tcp_connect_ipv6(tcp,
26260 				    &sin6->sin6_addr,
26261 				    sin6->sin6_port, sin6->sin6_flowinfo,
26262 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
26263 				    cr, pid));
26264 			}
26265 			/*
26266 			 * Destination adress is mapped IPv6 address.
26267 			 * Source bound address should be unspecified or
26268 			 * IPv6 mapped address as well.
26269 			 */
26270 			if (!IN6_IS_ADDR_UNSPECIFIED(
26271 			    &tcp->tcp_bound_source_v6) &&
26272 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
26273 				return (EADDRNOTAVAIL);
26274 			}
26275 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
26276 			dstport = sin6->sin6_port;
26277 			srcid = sin6->__sin6_src_id;
26278 		} else {
26279 			dstaddrp = &sin->sin_addr.s_addr;
26280 			dstport = sin->sin_port;
26281 			srcid = 0;
26282 		}
26283 
26284 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
26285 		    pid);
26286 		break;
26287 	default:
26288 		return (-TOUTSTATE);
26289 	}
26290 	/*
26291 	 * Note: Code below is the "failure" case
26292 	 */
26293 connect_failed:
26294 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26295 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26296 	return (error);
26297 }
26298 
26299 int
26300 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
26301     socklen_t len, sock_connid_t *id, cred_t *cr)
26302 {
26303 	conn_t		*connp = (conn_t *)proto_handle;
26304 	tcp_t		*tcp = connp->conn_tcp;
26305 	squeue_t	*sqp = connp->conn_sqp;
26306 	int		error;
26307 
26308 	ASSERT(connp->conn_upper_handle != NULL);
26309 
26310 	/* All Solaris components should pass a cred for this operation. */
26311 	ASSERT(cr != NULL);
26312 
26313 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
26314 	if (error != 0) {
26315 		return (error);
26316 	}
26317 
26318 	error = squeue_synch_enter(sqp, connp, 0);
26319 	if (error != 0) {
26320 		/* failed to enter */
26321 		return (ENOSR);
26322 	}
26323 
26324 	/*
26325 	 * TCP supports quick connect, so no need to do an implicit bind
26326 	 */
26327 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
26328 	if (error == 0) {
26329 		*id = connp->conn_tcp->tcp_connid;
26330 	} else if (error < 0) {
26331 		if (error == -TOUTSTATE) {
26332 			switch (connp->conn_tcp->tcp_state) {
26333 			case TCPS_SYN_SENT:
26334 				error = EALREADY;
26335 				break;
26336 			case TCPS_ESTABLISHED:
26337 				error = EISCONN;
26338 				break;
26339 			case TCPS_LISTEN:
26340 				error = EOPNOTSUPP;
26341 				break;
26342 			default:
26343 				error = EINVAL;
26344 				break;
26345 			}
26346 		} else {
26347 			error = proto_tlitosyserr(-error);
26348 		}
26349 	}
26350 done:
26351 	squeue_synch_exit(sqp, connp);
26352 
26353 	return ((error == 0) ? EINPROGRESS : error);
26354 }
26355 
26356 /* ARGSUSED */
26357 sock_lower_handle_t
26358 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
26359     uint_t *smodep, int *errorp, int flags, cred_t *credp)
26360 {
26361 	conn_t		*connp;
26362 	boolean_t	isv6 = family == AF_INET6;
26363 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
26364 	    (proto != 0 && proto != IPPROTO_TCP)) {
26365 		*errorp = EPROTONOSUPPORT;
26366 		return (NULL);
26367 	}
26368 
26369 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
26370 	if (connp == NULL) {
26371 		return (NULL);
26372 	}
26373 
26374 	/*
26375 	 * Put the ref for TCP. Ref for IP was already put
26376 	 * by ipcl_conn_create. Also Make the conn_t globally
26377 	 * visible to walkers
26378 	 */
26379 	mutex_enter(&connp->conn_lock);
26380 	CONN_INC_REF_LOCKED(connp);
26381 	ASSERT(connp->conn_ref == 2);
26382 	connp->conn_state_flags &= ~CONN_INCIPIENT;
26383 
26384 	connp->conn_flags |= IPCL_NONSTR;
26385 	mutex_exit(&connp->conn_lock);
26386 
26387 	ASSERT(errorp != NULL);
26388 	*errorp = 0;
26389 	*sock_downcalls = &sock_tcp_downcalls;
26390 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
26391 	    SM_SENDFILESUPP;
26392 
26393 	return ((sock_lower_handle_t)connp);
26394 }
26395 
26396 /* ARGSUSED */
26397 void
26398 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
26399     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
26400 {
26401 	conn_t *connp = (conn_t *)proto_handle;
26402 	struct sock_proto_props sopp;
26403 
26404 	ASSERT(connp->conn_upper_handle == NULL);
26405 
26406 	/* All Solaris components should pass a cred for this operation. */
26407 	ASSERT(cr != NULL);
26408 
26409 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
26410 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
26411 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
26412 
26413 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
26414 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
26415 	sopp.sopp_maxpsz = INFPSZ;
26416 	sopp.sopp_maxblk = INFPSZ;
26417 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
26418 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
26419 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
26420 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
26421 	    tcp_rinfo.mi_minpsz;
26422 
26423 	connp->conn_upcalls = sock_upcalls;
26424 	connp->conn_upper_handle = sock_handle;
26425 
26426 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
26427 }
26428 
26429 /* ARGSUSED */
26430 int
26431 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
26432 {
26433 	conn_t *connp = (conn_t *)proto_handle;
26434 
26435 	ASSERT(connp->conn_upper_handle != NULL);
26436 
26437 	/* All Solaris components should pass a cred for this operation. */
26438 	ASSERT(cr != NULL);
26439 
26440 	tcp_close_common(connp, flags);
26441 
26442 	ip_free_helper_stream(connp);
26443 
26444 	/*
26445 	 * Drop IP's reference on the conn. This is the last reference
26446 	 * on the connp if the state was less than established. If the
26447 	 * connection has gone into timewait state, then we will have
26448 	 * one ref for the TCP and one more ref (total of two) for the
26449 	 * classifier connected hash list (a timewait connections stays
26450 	 * in connected hash till closed).
26451 	 *
26452 	 * We can't assert the references because there might be other
26453 	 * transient reference places because of some walkers or queued
26454 	 * packets in squeue for the timewait state.
26455 	 */
26456 	CONN_DEC_REF(connp);
26457 	return (0);
26458 }
26459 
26460 /* ARGSUSED */
26461 int
26462 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
26463     cred_t *cr)
26464 {
26465 	tcp_t		*tcp;
26466 	uint32_t	msize;
26467 	conn_t *connp = (conn_t *)proto_handle;
26468 	int32_t		tcpstate;
26469 
26470 	/* All Solaris components should pass a cred for this operation. */
26471 	ASSERT(cr != NULL);
26472 
26473 	ASSERT(connp->conn_ref >= 2);
26474 	ASSERT(connp->conn_upper_handle != NULL);
26475 
26476 	if (msg->msg_controllen != 0) {
26477 		return (EOPNOTSUPP);
26478 
26479 	}
26480 	switch (DB_TYPE(mp)) {
26481 	case M_DATA:
26482 		tcp = connp->conn_tcp;
26483 		ASSERT(tcp != NULL);
26484 
26485 		tcpstate = tcp->tcp_state;
26486 		if (tcpstate < TCPS_ESTABLISHED) {
26487 			freemsg(mp);
26488 			return (ENOTCONN);
26489 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
26490 			freemsg(mp);
26491 			return (EPIPE);
26492 		}
26493 
26494 		msize = msgdsize(mp);
26495 
26496 		mutex_enter(&tcp->tcp_non_sq_lock);
26497 		tcp->tcp_squeue_bytes += msize;
26498 		/*
26499 		 * Squeue Flow Control
26500 		 */
26501 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
26502 			tcp_setqfull(tcp);
26503 		}
26504 		mutex_exit(&tcp->tcp_non_sq_lock);
26505 
26506 		/*
26507 		 * The application may pass in an address in the msghdr, but
26508 		 * we ignore the address on connection-oriented sockets.
26509 		 * Just like BSD this code does not generate an error for
26510 		 * TCP (a CONNREQUIRED socket) when sending to an address
26511 		 * passed in with sendto/sendmsg. Instead the data is
26512 		 * delivered on the connection as if no address had been
26513 		 * supplied.
26514 		 */
26515 		CONN_INC_REF(connp);
26516 
26517 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
26518 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
26519 			    tcp_output_urgent, connp, tcp_squeue_flag,
26520 			    SQTAG_TCP_OUTPUT);
26521 		} else {
26522 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
26523 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
26524 		}
26525 
26526 		return (0);
26527 
26528 	default:
26529 		ASSERT(0);
26530 	}
26531 
26532 	freemsg(mp);
26533 	return (0);
26534 }
26535 
26536 /* ARGSUSED */
26537 void
26538 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
26539 {
26540 	int len;
26541 	uint32_t msize;
26542 	conn_t *connp = (conn_t *)arg;
26543 	tcp_t *tcp = connp->conn_tcp;
26544 
26545 	msize = msgdsize(mp);
26546 
26547 	len = msize - 1;
26548 	if (len < 0) {
26549 		freemsg(mp);
26550 		return;
26551 	}
26552 
26553 	/*
26554 	 * Try to force urgent data out on the wire.
26555 	 * Even if we have unsent data this will
26556 	 * at least send the urgent flag.
26557 	 * XXX does not handle more flag correctly.
26558 	 */
26559 	len += tcp->tcp_unsent;
26560 	len += tcp->tcp_snxt;
26561 	tcp->tcp_urg = len;
26562 	tcp->tcp_valid_bits |= TCP_URG_VALID;
26563 
26564 	/* Bypass tcp protocol for fused tcp loopback */
26565 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
26566 		return;
26567 	tcp_wput_data(tcp, mp, B_TRUE);
26568 }
26569 
26570 /* ARGSUSED */
26571 int
26572 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26573     socklen_t *addrlenp, cred_t *cr)
26574 {
26575 	conn_t	*connp = (conn_t *)proto_handle;
26576 	tcp_t	*tcp = connp->conn_tcp;
26577 
26578 	ASSERT(connp->conn_upper_handle != NULL);
26579 	/* All Solaris components should pass a cred for this operation. */
26580 	ASSERT(cr != NULL);
26581 
26582 	ASSERT(tcp != NULL);
26583 
26584 	return (tcp_do_getpeername(tcp, addr, addrlenp));
26585 }
26586 
26587 /* ARGSUSED */
26588 int
26589 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26590     socklen_t *addrlenp, cred_t *cr)
26591 {
26592 	conn_t	*connp = (conn_t *)proto_handle;
26593 	tcp_t	*tcp = connp->conn_tcp;
26594 
26595 	/* All Solaris components should pass a cred for this operation. */
26596 	ASSERT(cr != NULL);
26597 
26598 	ASSERT(connp->conn_upper_handle != NULL);
26599 
26600 	return (tcp_do_getsockname(tcp, addr, addrlenp));
26601 }
26602 
26603 /*
26604  * tcp_fallback
26605  *
26606  * A direct socket is falling back to using STREAMS. The queue
26607  * that is being passed down was created using tcp_open() with
26608  * the SO_FALLBACK flag set. As a result, the queue is not
26609  * associated with a conn, and the q_ptrs instead contain the
26610  * dev and minor area that should be used.
26611  *
26612  * The 'direct_sockfs' flag indicates whether the FireEngine
26613  * optimizations should be used. The common case would be that
26614  * optimizations are enabled, and they might be subsequently
26615  * disabled using the _SIOCSOCKFALLBACK ioctl.
26616  */
26617 
26618 /*
26619  * An active connection is falling back to TPI. Gather all the information
26620  * required by the STREAM head and TPI sonode and send it up.
26621  */
26622 void
26623 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
26624     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26625 {
26626 	conn_t			*connp = tcp->tcp_connp;
26627 	struct stroptions	*stropt;
26628 	struct T_capability_ack tca;
26629 	struct sockaddr_in6	laddr, faddr;
26630 	socklen_t 		laddrlen, faddrlen;
26631 	short			opts;
26632 	int			error;
26633 	mblk_t			*mp;
26634 
26635 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
26636 	connp->conn_minor_arena = WR(q)->q_ptr;
26637 
26638 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
26639 
26640 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
26641 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
26642 
26643 	WR(q)->q_qinfo = &tcp_sock_winit;
26644 
26645 	if (!direct_sockfs)
26646 		tcp_disable_direct_sockfs(tcp);
26647 
26648 	/*
26649 	 * free the helper stream
26650 	 */
26651 	ip_free_helper_stream(connp);
26652 
26653 	/*
26654 	 * Notify the STREAM head about options
26655 	 */
26656 	DB_TYPE(stropt_mp) = M_SETOPTS;
26657 	stropt = (struct stroptions *)stropt_mp->b_rptr;
26658 	stropt_mp->b_wptr += sizeof (struct stroptions);
26659 	stropt = (struct stroptions *)stropt_mp->b_rptr;
26660 	stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
26661 
26662 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
26663 	    tcp->tcp_tcps->tcps_wroff_xtra);
26664 	if (tcp->tcp_snd_sack_ok)
26665 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
26666 	stropt->so_hiwat = tcp->tcp_fused ?
26667 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
26668 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
26669 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
26670 
26671 	putnext(RD(q), stropt_mp);
26672 
26673 	/*
26674 	 * Collect the information needed to sync with the sonode
26675 	 */
26676 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
26677 
26678 	laddrlen = faddrlen = sizeof (sin6_t);
26679 	(void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen);
26680 	error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen);
26681 	if (error != 0)
26682 		faddrlen = 0;
26683 
26684 	opts = 0;
26685 	if (tcp->tcp_oobinline)
26686 		opts |= SO_OOBINLINE;
26687 	if (tcp->tcp_dontroute)
26688 		opts |= SO_DONTROUTE;
26689 
26690 	/*
26691 	 * Notify the socket that the protocol is now quiescent,
26692 	 * and it's therefore safe move data from the socket
26693 	 * to the stream head.
26694 	 */
26695 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
26696 	    (struct sockaddr *)&laddr, laddrlen,
26697 	    (struct sockaddr *)&faddr, faddrlen, opts);
26698 
26699 	while ((mp = tcp->tcp_rcv_list) != NULL) {
26700 		tcp->tcp_rcv_list = mp->b_next;
26701 		mp->b_next = NULL;
26702 		putnext(q, mp);
26703 	}
26704 	tcp->tcp_rcv_last_head = NULL;
26705 	tcp->tcp_rcv_last_tail = NULL;
26706 	tcp->tcp_rcv_cnt = 0;
26707 }
26708 
26709 /*
26710  * An eager is falling back to TPI. All we have to do is send
26711  * up a T_CONN_IND.
26712  */
26713 void
26714 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
26715 {
26716 	tcp_t *listener = eager->tcp_listener;
26717 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
26718 
26719 	ASSERT(listener != NULL);
26720 	ASSERT(mp != NULL);
26721 
26722 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
26723 
26724 	/*
26725 	 * TLI/XTI applications will get confused by
26726 	 * sending eager as an option since it violates
26727 	 * the option semantics. So remove the eager as
26728 	 * option since TLI/XTI app doesn't need it anyway.
26729 	 */
26730 	if (!direct_sockfs) {
26731 		struct T_conn_ind *conn_ind;
26732 
26733 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
26734 		conn_ind->OPT_length = 0;
26735 		conn_ind->OPT_offset = 0;
26736 	}
26737 
26738 	/*
26739 	 * Sockfs guarantees that the listener will not be closed
26740 	 * during fallback. So we can safely use the listener's queue.
26741 	 */
26742 	putnext(listener->tcp_rq, mp);
26743 }
26744 
26745 int
26746 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
26747     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26748 {
26749 	tcp_t			*tcp;
26750 	conn_t 			*connp = (conn_t *)proto_handle;
26751 	int			error;
26752 	mblk_t			*stropt_mp;
26753 	mblk_t			*ordrel_mp;
26754 	mblk_t			*fused_sigurp_mp;
26755 	mblk_t			*tcp_rsrv_mp;
26756 
26757 	tcp = connp->conn_tcp;
26758 
26759 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
26760 	    NULL);
26761 
26762 	/* Pre-allocate the T_ordrel_ind mblk. */
26763 	ASSERT(tcp->tcp_ordrel_mp == NULL);
26764 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
26765 	    STR_NOSIG, NULL);
26766 	ordrel_mp->b_datap->db_type = M_PROTO;
26767 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
26768 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
26769 
26770 	/* Pre-allocate the M_PCSIG used by fusion */
26771 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
26772 
26773 	/*
26774 	 * Pre-allocate the tcp_rsrv_mp mblk.
26775 	 * It is possible that this conn was previously used for a streams
26776 	 * socket and already has tcp_rsrv_mp
26777 	 */
26778 	tcp_rsrv_mp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
26779 
26780 	/*
26781 	 * Enter the squeue so that no new packets can come in
26782 	 */
26783 	error = squeue_synch_enter(connp->conn_sqp, connp, 0);
26784 	if (error != 0) {
26785 		/* failed to enter, free all the pre-allocated messages. */
26786 		freeb(stropt_mp);
26787 		freeb(ordrel_mp);
26788 		freeb(fused_sigurp_mp);
26789 		freeb(tcp_rsrv_mp);
26790 		/*
26791 		 * We cannot process the eager, so at least send out a
26792 		 * RST so the peer can reconnect.
26793 		 */
26794 		if (tcp->tcp_listener != NULL) {
26795 			(void) tcp_eager_blowoff(tcp->tcp_listener,
26796 			    tcp->tcp_conn_req_seqnum);
26797 		}
26798 		return (ENOMEM);
26799 	}
26800 
26801 	/*
26802 	 * No longer a direct socket
26803 	 */
26804 	connp->conn_flags &= ~IPCL_NONSTR;
26805 
26806 	tcp->tcp_ordrel_mp = ordrel_mp;
26807 
26808 	if (tcp->tcp_fused) {
26809 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
26810 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
26811 	} else {
26812 		freeb(fused_sigurp_mp);
26813 	}
26814 
26815 	if (tcp->tcp_rsrv_mp == NULL) {
26816 		tcp->tcp_rsrv_mp = tcp_rsrv_mp;
26817 	} else {
26818 		/*
26819 		 * reusing a conn that was previously used for streams socket
26820 		 */
26821 		freeb(tcp_rsrv_mp);
26822 	}
26823 	if (tcp->tcp_listener != NULL) {
26824 		/* The eager will deal with opts when accept() is called */
26825 		freeb(stropt_mp);
26826 		tcp_fallback_eager(tcp, direct_sockfs);
26827 	} else {
26828 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
26829 		    quiesced_cb);
26830 	}
26831 
26832 	/*
26833 	 * There should be atleast two ref's (IP + TCP)
26834 	 */
26835 	ASSERT(connp->conn_ref >= 2);
26836 	squeue_synch_exit(connp->conn_sqp, connp);
26837 
26838 	return (0);
26839 }
26840 
26841 /* ARGSUSED */
26842 static void
26843 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
26844 {
26845 	conn_t 	*connp = (conn_t *)arg;
26846 	tcp_t	*tcp = connp->conn_tcp;
26847 
26848 	freemsg(mp);
26849 
26850 	if (tcp->tcp_fused)
26851 		tcp_unfuse(tcp);
26852 
26853 	if (tcp_xmit_end(tcp) != 0) {
26854 		/*
26855 		 * We were crossing FINs and got a reset from
26856 		 * the other side. Just ignore it.
26857 		 */
26858 		if (tcp->tcp_debug) {
26859 			(void) strlog(TCP_MOD_ID, 0, 1,
26860 			    SL_ERROR|SL_TRACE,
26861 			    "tcp_shutdown_output() out of state %s",
26862 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
26863 		}
26864 	}
26865 }
26866 
26867 /* ARGSUSED */
26868 int
26869 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
26870 {
26871 	conn_t  *connp = (conn_t *)proto_handle;
26872 	tcp_t   *tcp = connp->conn_tcp;
26873 
26874 	ASSERT(connp->conn_upper_handle != NULL);
26875 
26876 	/* All Solaris components should pass a cred for this operation. */
26877 	ASSERT(cr != NULL);
26878 
26879 	/*
26880 	 * X/Open requires that we check the connected state.
26881 	 */
26882 	if (tcp->tcp_state < TCPS_SYN_SENT)
26883 		return (ENOTCONN);
26884 
26885 	/* shutdown the send side */
26886 	if (how != SHUT_RD) {
26887 		mblk_t *bp;
26888 
26889 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
26890 		CONN_INC_REF(connp);
26891 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
26892 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
26893 
26894 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26895 		    SOCK_OPCTL_SHUT_SEND, 0);
26896 	}
26897 
26898 	/* shutdown the recv side */
26899 	if (how != SHUT_WR)
26900 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26901 		    SOCK_OPCTL_SHUT_RECV, 0);
26902 
26903 	return (0);
26904 }
26905 
26906 /*
26907  * SOP_LISTEN() calls into tcp_listen().
26908  */
26909 /* ARGSUSED */
26910 int
26911 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
26912 {
26913 	conn_t	*connp = (conn_t *)proto_handle;
26914 	int 	error;
26915 	squeue_t *sqp = connp->conn_sqp;
26916 
26917 	ASSERT(connp->conn_upper_handle != NULL);
26918 
26919 	/* All Solaris components should pass a cred for this operation. */
26920 	ASSERT(cr != NULL);
26921 
26922 	error = squeue_synch_enter(sqp, connp, 0);
26923 	if (error != 0) {
26924 		/* failed to enter */
26925 		return (ENOBUFS);
26926 	}
26927 
26928 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
26929 	if (error == 0) {
26930 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26931 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
26932 	} else if (error < 0) {
26933 		if (error == -TOUTSTATE)
26934 			error = EINVAL;
26935 		else
26936 			error = proto_tlitosyserr(-error);
26937 	}
26938 	squeue_synch_exit(sqp, connp);
26939 	return (error);
26940 }
26941 
26942 static int
26943 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
26944     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
26945 {
26946 	tcp_t		*tcp = connp->conn_tcp;
26947 	int		error = 0;
26948 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26949 
26950 	/* All Solaris components should pass a cred for this operation. */
26951 	ASSERT(cr != NULL);
26952 
26953 	if (tcp->tcp_state >= TCPS_BOUND) {
26954 		if ((tcp->tcp_state == TCPS_BOUND ||
26955 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
26956 			/*
26957 			 * Handle listen() increasing backlog.
26958 			 * This is more "liberal" then what the TPI spec
26959 			 * requires but is needed to avoid a t_unbind
26960 			 * when handling listen() since the port number
26961 			 * might be "stolen" between the unbind and bind.
26962 			 */
26963 			goto do_listen;
26964 		}
26965 		if (tcp->tcp_debug) {
26966 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26967 			    "tcp_listen: bad state, %d", tcp->tcp_state);
26968 		}
26969 		return (-TOUTSTATE);
26970 	} else {
26971 		if (sa == NULL) {
26972 			sin6_t	addr;
26973 			sin_t *sin;
26974 			sin6_t *sin6;
26975 
26976 			ASSERT(IPCL_IS_NONSTR(connp));
26977 
26978 			/* Do an implicit bind: Request for a generic port. */
26979 			if (tcp->tcp_family == AF_INET) {
26980 				len = sizeof (sin_t);
26981 				sin = (sin_t *)&addr;
26982 				*sin = sin_null;
26983 				sin->sin_family = AF_INET;
26984 				tcp->tcp_ipversion = IPV4_VERSION;
26985 			} else {
26986 				ASSERT(tcp->tcp_family == AF_INET6);
26987 				len = sizeof (sin6_t);
26988 				sin6 = (sin6_t *)&addr;
26989 				*sin6 = sin6_null;
26990 				sin6->sin6_family = AF_INET6;
26991 				tcp->tcp_ipversion = IPV6_VERSION;
26992 			}
26993 			sa = (struct sockaddr *)&addr;
26994 		}
26995 
26996 		error = tcp_bind_check(connp, sa, len, cr,
26997 		    bind_to_req_port_only);
26998 		if (error)
26999 			return (error);
27000 		/* Fall through and do the fanout insertion */
27001 	}
27002 
27003 do_listen:
27004 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
27005 	tcp->tcp_conn_req_max = backlog;
27006 	if (tcp->tcp_conn_req_max) {
27007 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
27008 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
27009 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
27010 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
27011 		/*
27012 		 * If this is a listener, do not reset the eager list
27013 		 * and other stuffs.  Note that we don't check if the
27014 		 * existing eager list meets the new tcp_conn_req_max
27015 		 * requirement.
27016 		 */
27017 		if (tcp->tcp_state != TCPS_LISTEN) {
27018 			tcp->tcp_state = TCPS_LISTEN;
27019 			/* Initialize the chain. Don't need the eager_lock */
27020 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
27021 			tcp->tcp_eager_next_drop_q0 = tcp;
27022 			tcp->tcp_eager_prev_drop_q0 = tcp;
27023 			tcp->tcp_second_ctimer_threshold =
27024 			    tcps->tcps_ip_abort_linterval;
27025 		}
27026 	}
27027 
27028 	/*
27029 	 * We can call ip_bind directly, the processing continues
27030 	 * in tcp_post_ip_bind().
27031 	 *
27032 	 * We need to make sure that the conn_recv is set to a non-null
27033 	 * value before we insert the conn into the classifier table.
27034 	 * This is to avoid a race with an incoming packet which does an
27035 	 * ipcl_classify().
27036 	 */
27037 	connp->conn_recv = tcp_conn_request;
27038 	if (tcp->tcp_family == AF_INET) {
27039 		error = ip_proto_bind_laddr_v4(connp, NULL,
27040 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
27041 	} else {
27042 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
27043 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
27044 	}
27045 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
27046 }
27047 
27048 void
27049 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
27050 {
27051 	conn_t  *connp = (conn_t *)proto_handle;
27052 	tcp_t	*tcp = connp->conn_tcp;
27053 	tcp_stack_t	*tcps = tcp->tcp_tcps;
27054 	uint_t thwin;
27055 
27056 	ASSERT(connp->conn_upper_handle != NULL);
27057 
27058 	(void) squeue_synch_enter(connp->conn_sqp, connp, 0);
27059 
27060 	/* Flow control condition has been removed. */
27061 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
27062 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
27063 	    << tcp->tcp_rcv_ws;
27064 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
27065 	/*
27066 	 * Send back a window update immediately if TCP is above
27067 	 * ESTABLISHED state and the increase of the rcv window
27068 	 * that the other side knows is at least 1 MSS after flow
27069 	 * control is lifted.
27070 	 */
27071 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
27072 	    (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) {
27073 		tcp_xmit_ctl(NULL, tcp,
27074 		    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
27075 		    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
27076 		BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
27077 	}
27078 
27079 	squeue_synch_exit(connp->conn_sqp, connp);
27080 }
27081 
27082 /* ARGSUSED */
27083 int
27084 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
27085     int mode, int32_t *rvalp, cred_t *cr)
27086 {
27087 	conn_t  	*connp = (conn_t *)proto_handle;
27088 	int		error;
27089 
27090 	ASSERT(connp->conn_upper_handle != NULL);
27091 
27092 	/* All Solaris components should pass a cred for this operation. */
27093 	ASSERT(cr != NULL);
27094 
27095 	switch (cmd) {
27096 		case ND_SET:
27097 		case ND_GET:
27098 		case TCP_IOC_DEFAULT_Q:
27099 		case _SIOCSOCKFALLBACK:
27100 		case TCP_IOC_ABORT_CONN:
27101 		case TI_GETPEERNAME:
27102 		case TI_GETMYNAME:
27103 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
27104 			    cmd));
27105 			error = EINVAL;
27106 			break;
27107 		default:
27108 			/*
27109 			 * Pass on to IP using helper stream
27110 			 */
27111 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
27112 			    cmd, arg, mode, cr, rvalp);
27113 			break;
27114 	}
27115 	return (error);
27116 }
27117 
27118 sock_downcalls_t sock_tcp_downcalls = {
27119 	tcp_activate,
27120 	tcp_accept,
27121 	tcp_bind,
27122 	tcp_listen,
27123 	tcp_connect,
27124 	tcp_getpeername,
27125 	tcp_getsockname,
27126 	tcp_getsockopt,
27127 	tcp_setsockopt,
27128 	tcp_sendmsg,
27129 	NULL,
27130 	NULL,
27131 	NULL,
27132 	tcp_shutdown,
27133 	tcp_clr_flowctrl,
27134 	tcp_ioctl,
27135 	tcp_close,
27136 };
27137